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Abstract

Branch and Bound (B&B) algorithms are exact methods used to solve combinatorial
optimization problems (COPs). The computation process of B&B is extremely time-
intensive when solving large problem instances since the algorithm must explore a
very large space which can be viewed as a highly irregular tree. Consequently, B&B
algorithms are usually parallelized on large scale distributed computing environ-
ments in order to speedup their execution time. Large scale distributed computing
environments, such as Grids and Clouds, can provide a huge amount of comput-
ing resources so that very large B&B instances can be tackled. However achieving
high performance is very challenging mainly because of (i) the irregular character-
istics of B&B workload and (ii) the heterogeneity exposed by large scale computing
environments.

This thesis addresses and deals with the above issues in order to design high
performance parallel B&B on large scale heterogeneous computing environments.
We focus on dynamic load balancing techniques which are to guarantee that no
computing resources are underloaded or overloaded during execution time. We also
show how to tackle the irregularity of B&B while running on different computing
environments, and consider to compare our proposed solutions with the state-of-the-
art algorithms. In particular, we propose several dynamic load balancing algorithms
for homogeneous, node-heterogeneous and link-heterogeneous computing platforms.

Firstly, in homogeneous computing environments, we propose to organize com-
puting resources following a logical peer-to-peer overlay and to distribute the load
according to the so-defined overlay [Vu 2012]. Large scale experiments involving up
to 1200 computing cores are reported and the performance of our approach in terms
of deployment cost, parallel efficiency, speed-up, and scalability, is finely analyzed.
Compared to previous approaches of B&B such as Master-Worker or Hierarchical
Master-Worker, our approach provides significant improvements. Besides, we inves-
tigate the interaction between work distribution and the properties of the overlay
topology, and study their cumulative impact on the performance of the whole sys-
tem. These results provide new insights in understanding how topology and work-
sharing are crucial to design efficient and scalable distributed systems.

Secondly, in node-heterogeneous environments with possibly multiple cores, mul-
tiple CPUs and multiple GPU devices, we describe two approaches addressing the
critical issue of how to map B&B workload with the different levels of parallelism
exposed by the target compute platform. We essentially deal with two issues: (i)
the difference of computing power when a mixture of multiple distributed CPUs and
multiple GPUs devices [Vu 2013] is considered, and (ii) when multiple shared mem-
ory cores are additionally considered [Vu 2014b]. We thereby contribute a through-
out large scale experimental study which allows us to derive a comprehensive and
fair analysis of the proposed approaches under different system configurations us-
ing up to 20 GPUs and up to 512 distributed cores. In particular, we are able to
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obtain linear speed-ups at moderate scales where adaptive load balancing among
the heterogeneous compute resources is shown to have a significant impact on per-
formance. At the largest scales, intra-node and inter-node parallelism are shown to
have a crucial importance in order to alleviate locking issues among shared memory
threads and to scale the distributed resources while optimizing communication costs
and minimizing idle times.

Finally, in link-heterogeneous computing environments, we investigate the de-
sign of a generic dynamic load balancing algorithm [Vu 2014a] which can be easily
implemented to fit different types of link-heterogeneity. The proposed algorithm
extends on reference approaches, namely Probabilistic Work Stealing (PWS), and
Adaptive Cluster-aware Random Stealing (ACRS); by introducing new adaptive
control operations that are shown to be highly accurate in increasing work locality
and decreasing steals cost. We further conduct an extensive experiment with many
link-heterogeneity configurations ranging from a Grid scenario with two-level com-
munication hierarchy, to Peer-to-Peer systems with a more complex communication
hierarchy. Over all experimented configurations, our results show that although
the proposed protocol is not tailored for a specific networked platform, it can save
30% execution time compared to its competitors, while demonstrating high quality
self-adjusting capabilities.

Keywords:

Parallel Branch-and-Bound, Dynamic Load Balancing, Work Stealing, Heteroge-
neous Computing, Combinatorial Optimization, Exact Methods, Grid’5000.
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Introduction

The PhD Thesis, presented in this document, deals with the important topic of im-
proving the performance of Large-scale Combinatorial Optimization on Heterogenous
Distributed Computing Environments. It has been prepared within the DOLPHIN
research group from CNRS/LIFL, Inria Lille-Nord Europe and Université Lille 1.
We also note that this thesis was funded through the Inria HEMERA project.

Combinatorial Optimization Problems (COPs)1 arise in many application do-
mains including all the areas of technology and industry management. Solving
them is a process of finding one or several best solutions(s) in a set of finite feasible
solutions. There are two main types of resolution methods for COPs: heuristics and
exact methods. Heuristics produce high quality solutions in a reasonable time, but
no guarantee is given on the optimality of computed solutions. Conversely, exact
methods allow to find the optimal solutions with the proof of optimality, but the
computation time can be very huge in particular for large problem instances. Among
the exact methods, Branch and Bound (B&B) algorithms are the most commonly
used to solve COPs in practice. Instead of searching the optimal solutions ex-
haustively, B&B algorithms wisely discard some branches which do not contain the
optimal solution, hence reducing the search space and computation time. However,
although such a technique allows to reduce effectively the search space generated by
the corresponding instances, it still remains unsatisfactory to solve large instances
within a reasonable time. As a result, the use of parallelism allows us to improve the
resolution time while dealing with large instances. In this thesis, we deal with the
design of parallel B&B algorithms while using paradigms coming from distributed
and high performance computing (HPC).

In the HPC field, since the last decades we have witnessed an impressive evolu-
tion of computing technologies. A typical solution is to use supercomputers equipped
with hundreds thousands of processing cores connected by a local high-speed com-
puter network. One can find a list of the most powerful supercomputers in the
world at the TOP500 [Top500 ]. Though providing an impressive computing power,
supercomputers are very expensive so that only big research institutes and indus-
trial enterprises are able to fund such supercomputers. With the arise of high speed
networks, computing resources are nowadays available in the form of clouds, grids,
aggregated clusters and personal computers geographically distributed around the
world. Such computing resources provide a great computing power which is in the-
ory sufficient to solve all the large instances of COPs. However in practice achieving
this power is very challenging due to many challenging issues. Among them, hetero-
geneity is one of the most crucial factor with respect to the overall performance of
distributed computing systems. The heterogeneity in computation and communica-
tion is a natural aspect of distributed large scale systems as different compute nodes
1

An optimization problem can be formulated as a minimization or maximization of a cost function.

Without loss of generality, we consider minimization problems in this document.



2 Introduction

of different architectures are connected via different networks of different communi-
cation cost. Dealing with the heterogeneity is indeed a key challenge to explore the
potential computing power of such heterogeneous computing resources.

Parallel B&B algorithms on distributed computing systems appear to be a use-
ful tool to solve the large instances of COPs. During the resolution process, paral-
lel B&B yields compute irregularity and raises difficult challenges. In the course
of the execution, task units are generated dynamically which are unknown be-
forehand, hence causing unbalanced workload among processing units. This issue
requires further communications in order to balance workload among processing
units in overloaded and underloaded areas. In particular, most of recent works
[Mezmaz 2007a, Bendjoudi 2012a, Chakroun 2013a] are only based on the Master-
Worker or Hierarchical Master-Worker paradigm which are strongly limited regard-
ing scalability in the large scale computing environments. To overcome this issue,
some approaches [Djamai 2013] are proposed based on the Peer-To-Peer paradigm.
Nevertheless, to the best of our knowledge, these existing approaches still do not
focus on the irregularity issues of parallel B&B and the heterogeneity aspects of
distributed computing systems.

The contribution of this thesis is to deal with such issues at the aim of improv-
ing the current state-of-the-art parallel B&B approaches. In this dissertation, we
propose new generic guidelines for building efficient parallel B&B. Specifically, we
target the three main questions that arise when designing parallel B&B in large
scale distributed computing environments:

1. Which is a right paradigm for solving the irregularity issues or the unbalanced
workload of parallel B&B?

2. What is the impact of the computation’s heterogeneity on the performance of
parallel B&B?

3. What is the impact of the communication’s heterogeneity on the performance
of parallel B&B?

To answer the first question, we study some dynamic load balancing algorithms
which dynamically solve the unbalanced world situations at runtime. Among them,
we found that the work stealing algorithm [Burton 1981, Blumofe 1999] might be
a suitable solution for the irregularity problems. In contrast with previous works
of parallel B&B [Mezmaz 2007a, Bendjoudi 2012a, Djamai 2013, Chakroun 2013a],
the work stealing approach is fully distributed and does not rely on any central
point in making decisions for balancing workload. Let us notice that despite a
rich references of parallel B&B in the literature [Mezmaz 2007a, Bendjoudi 2012a,
Djamai 2013, Chakroun 2013a], the work stealing paradigm has not been consid-
ered in order to solve the workload irregularity of parallel B&B while running on
distributed computing environments. We further proposed a tree-based overlay load
balancing algorithm which uses the tree structure in making load balancing deci-
sions. Our algorithm is novel in the sense that it allows all the processing units co-
operate to each other according to the tree structure while balancing the workload.



Introduction 3

We experimentally show that both approaches can significantly improve speedups
of parallel B&B compared to other algorithms [Mezmaz 2007a, Bendjoudi 2012a].

To answer the second question, we consider the common characteristics of dis-
tributed computing systems where processing units are heterogeneous and their po-
tential computing power might be different in order of magnitude. For instance, a
processing unit can be a single core CPU, a multi-core GPU or a CPU equipped with
GPU devices, etc. To deal with this type of heterogeneity, we propose to estimate
the compute capability of processing units continuously at runtime with respect to
the problem instance being executed so that tasks can be accordingly assigned to
all processing units by load balancing operations. Moreover we present an efficient
load balancing mechanism for Multi-cores systems where load balancing operations
takes the hardware hierarchy (intra-node vs inter-node) into consideration.

To answer the third question, we consider the current geographically distributed
computing platforms where processing units are distributed such as Grids, Peer-To-
Peer or Global Computing. In this context, all the processing units communicate
to each other via different network links with different communication latencies.
In particular, we investigate how link-heterogeneity of such distributed platforms
impacts the performance of parallel B&B. We also propose an efficient and generic
approach to deal with dynamic load balancing for link-heterogeneous computing
platforms. The proposed approach is generic in the sense that it can be deployed
in different distributed computing contexts exposing different properties in terms of
communication latency.
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Thesis Structure

Chapter 1

In the first chapter, we will describe general concepts of parallel Branch and Bound
(B&B) and its challenges. For this purpose, we will first detail the sequential Branch
and Bound algorithms. Thereafter, we will present some common parallel models
of B&B. We will then present the architecture of shared and distributed memory
computing systems and highlight different challenges that appear when dealing with
parallel B&B. The rest of the chapter is dedicated to the description of several
existing works of parallel distributed B&B.

Chapter 2

In the second chapter, we will describe in details work stealing algorithms and
their design for parallel distributed B&B. Thereby, we will further present tree-
based dynamic load balancing algorithms. Furthermore, extensive experiments up
to the scale of 1200 processing units demonstrate the efficiency of the tree-based
algorithms as well as the strong potential of work stealing compared to Master-
Worker or Hierarchical Master-Worker paradigm.

Chapter 3

In the third chapter, the focus is on the efficient control of node-heterogeneity when
designing dynamic balancing algorithms for parallel distributed B&B. We will first
introduce our approach, called 2MBB (Multi-CPUs Multi-GPUs Parallel B&B),
while considering a completely distributed settings where all processing units are
distributively connected via a network and each processing unit is either a single
CPU-core or a single CPU-core equipped with a GPU device. We will then present
the 3MBB (Multi-cores Multi-CPUs Multi-GPUs Parallel B&B) as the Multi-core
processors appear in heterogeneous platforms. Finally, we will present the extensive
experiments up to 512 CPU cores and 20 GPUs in order to show the performance
of these approaches.

Chapter 4

In the fourth chapter, we will mainly investigate the performance of parallel B&B
while running on geographically distributed link-heterogeneous computing systems.
In particular, we consider the Grid with two-level communication hierarchy and the
Peer-To-Peer with more complex communication hierarchy. Different state-of-the-
art work stealing algorithms including our generic approaches will be presented and
experimented on different complicated link-heterogeneous settings.
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6 Chapter 1. Parallel Branch and Bound on Distributed System

1.1 Introduction

Many real-world problems can be modeled as Combinatorial Optimization Problems
(COPs). They are NP-hard and CPU-time intensive, therefore solving them to opti-
mality requires a huge amount of computing resources. Generally speaking, solving
COPs consists in searching in a very large space comprising all possible solutions in
order to find one or several best solution(s). Instead of the exhaustive enumeration
of all possible solutions of COPs, the Branch and Bound (B&B) algorithm performs
an implicit enumeration and properly eliminates some parts which will not eventu-
ally lead to the optimal solutions. In other words, B&B is a technique that allows
to find the optimal solution by keeping the best solution found so far. If a new
(partial) solution is not able to improve the current best one, it will be eliminated
for reducing the size of the search space. Although the elimination mechanism of
B&B can be effective, the search space generated by large instances of COPs is still
too huge to be fully explored by the sequential B&B in a reasonable time. From
the perspective of HPC community, computing resources are available in the form
of aggregated clusters, grids and personal computers scattered over possibly large
scale distributed platforms connected via networks. These types of resources pro-
vide many levels of parallelism to improve the computing performances of B&B
while solving large instances in parallel.

In this chapter, we introduce all the key concepts at the crossroads of B&B
and Distributed Computing which are closely related to our works. The chapter is
organized as follows. Section 1.2 describes the B&B algorithms. Section 1.3 presents
some classifications of parallel B&B in the literature. Section 1.4 provides possible
implementation designs for parallel B&B. Section 1.5 presents the characteristics of
the considered computing environments ranging from shared to distributed memory
system. Section 1.6 briefly highlights some related works in parallel B&B on the
considered systems. Finally, section 1.7 concludes the chapter.

1.2 Serial Branch and Bound

Branch and Bound (B&B) algorithm is a well-known technique for solving to op-
timality NP-hard optimization problems. It implicitly enumerates all the possible
solutions over a search space and looks for the global optimal one. The search
space is constructed at runtime as a tree whose root node is the original problem.
The intermediate nodes of the tree, which are obtained by decomposing from their
parents, represent corresponding subproblems and can be recursively decomposed
into other subproblems in next iterations. The leaves represent potential solutions
of the original problem which can not be decomposed further. The main idea of
B&B algorithms is to detect and discard all nodes which do not contain or lead to
the global optimal solution. The optimization process stops when all nodes are ex-
plored or discarded. A B&B algorithm contains the following four basic operations:
branching, bounding, selection, and pruning.
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• Branching: the branching operation divides a (parent) subproblem into two
or more (child) subproblems depending on the level of the parent subproblem
in the B&B tree. Then the generated child subproblems will be taken into
account in the next iteration. Generally, this operation decomposes a given
problem (which is difficult to solve directly) into smaller problems (which are
easier to solve) based on some constraints. In a B&B tree, only the root
or the intermediate nodes are processed by this operation. These nodes are
recursively branched/decomposed until reaching the leaves.

• Bounding: the bounding operation estimates a bound value for all generated
subproblems according to the objective of the considered instance. The bound
value of a subproblem then allows the algorithm to decide whether or not it
is necessary to explore this subproblem.

• Selection: the selection operation determines a strategy to select the next
subproblems of a B&B tree to be processed. There are three basic strategies
for B&B algorithms: depth-first, bread-first and best-first. Depth-First B&B
functions like a DFS algorithm in graph theory which aims to explore as far
as possible along each branch of a B&B tree until reaching a leaf. Hence
a node with deepest level in the tree will be chosen for exploration in the
next iteration. The main idea of this strategy is to allow the algorithm to
find a new solution quickly. Similarly, in Best-First B&B strategy, a node
with the best bound so far will be selected to process. It aims to look for
a good solution rapidly so that the algorithm is able to eliminate as many
remaining subproblems in the tree as possible. In practice, the performance of
this strategy depends on the considered instance. In contrast, the Breadth-first
B&B performs like a BFS algorithm which explores all nodes of the same level
before moving to the next one. For instance, when a problem is decomposed
into several subproblems, all the subproblems are fully explored before moving
to process the new generated nodes. Therefore the number of nodes at each
level of the tree grows exponentially with the level making it infeasible to solve
large problems.

• Pruning: the pruning operation reduces the size of the tree. In a B&B
tree, it eliminates all branches which surely can not lead to the best solution.
Technically speaking, this operation compares the current best found solution
with a bound value of a subproblem and eliminates the subproblem if its
bound value is worse than the current best found solution. For instance, in a
minimization problem, if a lower bound of a subproblem is greater than the
current best found solution, then the subproblem is discarded since we will
not find any better solutions in the subspace rooted at the subproblem. It is
worth to notice that eliminating a subproblem allows to implicitly prune the
subspace rooted at this subproblem.

Algorithm 1 describes a sequential template of a typical B&B algorithm. The
algorithm terminates when all subproblems are explicitly or implicitly visited.
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Algorithm 1: A Template of sequential B&B Algorithm
Data: r: root node;
Optimal_Solution: the optimal solution of the problem r
Optimal_V alue: the value of the optimal solution of the problem r
Found_Solution: the current best found solution of the problem r
Found_V alue: the value of the current best found solution of the problem r
Q: queue of B&B subproblems

1 Q  � r ;
2 while Q.size > 0 do
3 P  � SELECT() ;
4 if P is LEAF then
5 P.cost  � f(P ) ;
6 if P.cost < Found_V alue then
7 Found_V alue  � P.cost ;
8 Found_Solution  � P ;

9 else
10 P.lowerbound  � f(P ) ;
11 if P.lowerbound < Found_V alue then
12 (P

1

, ..., P
k

)  � BRANCH(P) ;
13 Q  � (P

1

, ..., P
k

) ;
14 else
15 PRUNE(P)

16 Optimal_V alue  � Found_V alue ;
17 Optimal_Solution  � Found_Solution ;

1.3 Parallel Branch and Bound algorithm

1.3.1 Classification of Parallel B&B

Parallel B&B algorithms have attracted a lot of attention from the community.
Many references can be found in the literature [Trienekens 1986, Trienekens 1992,
Gendron 1994, Bourbeau 2000, Melab 2005]. Most of them identify and investi-
gate the potential parallelism in designing parallel B&B. The potential source of
parallelism comes from the characteristics of the B&B algorithm as well as from
the considered computing environments. In the following, we briefly discuss some
existing classifications of parallel B&B.

1.3.1.1 Classification of Trienekens et al.

Trienekens et al. [Trienekens 1986, Trienekens 1992] classified parallel B&B into low
and high level according to their degree of parallelization:

• Low level: Some parts of the sequential B&B are parallelized, and the others
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are processed sequentially. But these parts are interacted as similar as the
original sequential one. For instance, the branching, bounding, selection or
pruning operation can be processed in parallel by several threads/processes.
Therefore the overall behavior of this approach resembles the behavior of the
sequential B&B algorithm (e.g they process the same subproblem at a given
order during the execution)

• High Level: In case of a high level parallelization, the effects and consequences
of the parallelism introduced are not restricted to a particular part of the B&B,
but influence the algorithm as a whole. The work performed by the parallel
algorithm does not need to be equal to the work performed by the sequential
algorithm. The order in which the work is performed can differ, and it is even
possible that some parts of the work performed by the parallel algorithm are
not performed by the sequential algorithm, or vice versa. For example, several
iterations of the main loop can be performed in parallel (e.g., several processes
executing the algorithm branch in parallel from their own subproblem).

1.3.1.2 Classification of Gendron et al.

Gendron et al. [Bourbeau 2000, Gendron 1994] identified three types of parallel
B&Bs according to the degree of parallelism of the search tree:

• Parallelism of type 1 (node-based): introduces parallelism when performing
the operations on generated subproblems. For instance, it consists in exe-
cuting the bounding operation in parallel for each subproblem to accelerate
the execution. Thus, this type of parallelism has no impact on the general
structure of the B&B algorithm and is particular to the problem to be solved.
Clearly, this type is similar to the Low level of the classification of Trienekens
et al.

• Parallelism of type 2 (tree-based): consists in building the solution tree in par-
allel by performing operations on several subproblems simultaneously. Hence,
this type of parallelism may affect the design of the algorithm. This type
of parallelization is suitable for coarse-grained asynchronous MIMD architec-
tures. This type is also similar to the High Level classified by Trienekens et
al.

• Parallelism of type 3 (multi-search): implies that several solution trees are gen-
erated in parallel. The trees are characterized by different operations (branch-
ing, bounding, and pruning), and the information generated when building
one tree can be used for the construction of another.

1.3.1.3 Classification of Melab

The most recent classification is the one done by Melab in [Melab 2005] and reported
by Mezmaz in [Mezmaz 2007a]. In this taxonomy, four models of parallel B&B
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algorithms are identified: parallel multi-parametric model, parallel tree exploration
model, parallel evaluation of the bounds, and parallel evaluation of a single bound.
They are essentially a mix of the previously described classifications.

• Parallel multi-parametric model: consists in considering several coarse-grained
B&B algorithms. Each algorithm uses its own parameters and several variants
of an algorithm can be obtained by modifying these parameters. Therefore,
different B&B algorithms can be obtained and executed in parallel. This type
is not commonly used in practice.

• Parallel tree exploration model: this model is similar to the type 2 classified
by Gendron et al. or the high level model classified by Trienekens et al. In this
model, different subtrees can be explored in parallel. Therefore, the branching,
bounding, selection, and elimination can be executed simultaneously

• Parallel evaluation of the bounds: this model is similar to the type 1 classified
by Gendron et al. or the low level model classified by Trienekens et al. It
allows a parallel evaluation of the subproblems generated by the branching
operator. This model is exploitable only if the bounds evaluation is entirely
executed after the branching operation. However, it is not suitable for grid
environments. Indeed, in the case of synchronous model, additional delays are
engendered because of the heterogeneous nature of grid resources.

• Parallel evaluation of a single bound: This model does not change the se-
mantics of the algorithm because it identical to the sequential version but the
evaluation phase is faster. This model depends on the considered problem
and it is in general synchronous and centralized. It is limited in terms of
extensibility, nevertheless, it is efficient when combined with other models.

1.4 Implementation considerations

The above section presents some different classifications of parallel B&B in the lit-
erature. These studies mainly investigated potential parallelism sources of B&B
and proposed possible models to parallelize B&B on the current architectures of
computing systems. Among the proposed models, the parallel tree exploration
model, which has been studied in several research on parallel B&B algorithms
[Casado 2008, Mezmaz 2007a, Djamai 2011b], was shown to be the most suitable
for high performance and scalability. In fact, it is the most coarse-grain and often
implemented in MIMD architectures. In this type of parallelism, each processing
unit performs the exploration to simultaneously process different parts of a B&B
tree [Casado 2008, Mezmaz 2007a, Djamai 2011b]. Technically speaking, there are
two important issues when designing and implementing a parallel B&B: work pool
management and communication model.
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1.4.1 Work pool management

In parallel B&B, work pool management plays an important role in the performance
of the algorithm. In fact, at each iteration of B&B, one has to perform two operations
related to work pool. Algorithm 1 shows that, an iteration of a B&B consists in a
procedure to pop a subproblem from a pool, perform a set of operations (branching,
bounding and pruning), then insert one or several generated subproblem(s) into the
same pool. Generally speaking, a work pool is simply a data structure (e.g. array,
list, map, stack, queue, etc) placed in a memory location where processing units
can find and store the generated subproblems during execution. In other words,
work pool management handles the I/O of B&B. In parallel B&B, simultaneous
I/O operations of several processing units to the same work pool is critical for
performance which poses several challenges of how to handle them effectively. In
practice, there are two common strategies for managing work pool:

• Single pool algorithms use one single memory location. They are imple-
mented both on shared and distributed memory systems. In a shared memory
system, a single global work pool is shared among worker threads. All threads
concurrently get work units (e.g generated B&B subproblems) from the global
single work pool. When they finish their processing, the threads push new
generated work units to the global work pool. Synchronization techniques are
unavoidable to synchronize among worker threads when popping/pushing a
node from/to the single global pool. In distributed memory system, single
pool algorithms are implemented using a master-slave paradigm. Typically,
the master sends work units to its slaves and the slaves send back results (i.e
new generated works) to the master. The single pool provides a global picture
of unexplored and pending works in the whole system. Therefore, this makes
it easy to design, implement and deploy. But, a single pool is subject to a
bottleneck limiting its scalability since only one process can access to the pool
at a given time.

• Multiple pool algorithms simply use multiple memory locations to store work
units. There exist some variants depending on the number of pools used in
the system. The three most popular are collegial, grouped and mixed. In the
first case, each processing unit has its own private pool. In the second one, all
processing units are partitioned in several groups and each group shares the
same work pool. The choice of the number of pools depends on the number
of processing units as well as their accessing frequency. The last one is a
mix between collegial and grouped. Each processing unit is associated with
its private pool and shares a single global pool with others. Multiple pool
algorithms are intended to tackle the bottleneck problem raised by single pool
algorithms.
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1.4.2 Communication model

In parallel B&B, processing units (PUs) do not work separately, but instead they
communicate with each other in order to exchange information during execution.
There are three phases requiring communication between PUs in parallel B&B: load
balancing, knowledge sharing and termination. In load balancing, a PU which runs
out of work needs to communicate with others in order to request works to process.
In knowledge sharing, whenever a PU finds a better solution, it broadcasts the new
solution to other PUs in order to update the new solution for all of them. This en-
sures that there is no unnecessary exploration of B&B in other PUs. In termination,
all PUs exchange their working status in order to distributively detect whether or
not there is no work existing anywhere in the system. The communication can be
distinguished between synchronous and asynchronous algorithms. In synchronous
algorithms, a computation is split into several iterations. Within an iteration, all
PUs process their own B&B subproblems independently. The communication only
happens between iterations. In other words, PUs only communicate with each other
before moving to the next iteration. In contrast, asynchronous algorithms do not
define any boundary and the communication can happen at any time during execu-
tion.

Besides, these communication models can be combined with the work pool man-
agement when designing a parallel B&B algorithm. In our thesis, we only focus on
multiple work pool associated with asynchronous communication model as this was
shown to be the most suitable for high performance and large scale heterogeneous
environments.

1.5 Computing Environments

Before discussing further the main challenges of parallel B&B, we first recall the
computing environments considered in this thesis in order to get a complete picture.
In practice, computing resources may nowadays be available in the form of cloud,
grid, aggregated clusters and personal computers scattered over possibly large scale
distributed platforms connected via a network. This huge amount of computational
resources offers an impressive computing power which is in theory sufficient to tackle
many difficult and large instances of B&B. However exploiting all this impressive
power when parallelizing B&B on such platforms is very challenging due to the
complexity coming from the system architectures. In our thesis, we consider to use
computing resources coming from both shared and distributed memory systems. In
the next subsections, we will describe their characteristics and challenges for high
performance computing.

1.5.1 Shared Memory Systems

A shared memory system refers to a computing environment where all threads (pro-
cessors) share the same common memory space. The most common shared memory
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Figure 1.1: Shared Memory System. Left: UMA Architecture. Right: NUMA
Architecture

systems use one or more multicore processors in which a multicore processor has
multiple CPUs or cores on a single chip. This architecture assumes that all asyn-
chronous processors are able to access directly any part of main memory thanks
to its single logical address space. The interconnection of processors to the main
memory defines two types of architectures in shared memory systems. The first one
is called uniform memory access (UMA) system, in which all processors connect
directly to the main memory. All processors have the same access time to the main
memory. This makes UMA architecture easier to program due to the uniform access
time to memory. However it also causes scalability issues when many processors are
to be handled. Fig 1.1 Left describes a simplified overview of UMA system.

In contrast to UMA system, in a NUMA (non-uniform memory access) archi-
tecture, each processor has its own memory block, but each block of memory share
the same single address space. It means the same physical address on two proces-
sors indicates the same location in memory. Therefore, a processor can have faster
access to the directly connected memory. This allows NUMA architectures to scale
efficiently because each processor has its own memory controller. Fig 1.1 Right
describes a simplified architecture of a typical NUMA system. Nowadays, most of
shared memory systems are built based on the NUMA architecture.

Generally, writing parallel programs for either UMA or NUMA architecture re-
quires to coordinate the work of the cores through the shared memory space. This
can involve communication among the cores. In fact, all the cores communicate
with each other via some local operations on the shared variables. For instance,
in parallel B&B, an idle thread running on a core can perform load balancing to
migrate some subproblems from another working thread. The idle thread has to
remove the subproblems out of the work pool of the working thread and to write
them into its own pool. As the number of threads gets higher, the probability that
two or more threads access to the same pool at the same time gets also higher.
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This can cause data race issues. In order to handle this problem, synchronization
techniques are borrowed to transform simultaneous accesses to a sequence of several
single access. Although the synchronization allows to protect the shared variables
from data race problems, it comes with a price and reduces the potential parallelism
of a system. Therefore, overusing the synchronization significantly downgrades the
potential parallelism as well as the performance.

1.5.2 Distributed Memory Systems

A distributed memory system indicates that the underlying PUs do not share a
common memory but are connected through some kind of networks. The message
passing paradigm is the only mean for communication in such system. Generally,
the message passing communication is much expensive than the local operations on
shared memory systems.

In this thesis, we are interested in large scale distributed systems where PUs are
geographically distributed and connected through physical networks (i.e Local area
networks or Wide area networks). In fact, this kind of system contains many types of
PUs connected by different types of networks. The properties of such systems open
several challenging issues for large scale distributed applications. Heterogeneity is
the most important issue and it is the main focus of this thesis. Generally speaking,
there are two types of heterogeneity [Beaumont 2010a]: node-heterogeneity and
link-heterogeneity.

• Node-heterogeneity: refers to systems that use more than one kind of pro-
cessor. In node-heterogeneous computing system, several PUs have differ-
ent compute powers defined by their hardware architectures. For example, a
node can be simply a single CPU, multi-core CPU or a complex one with a
multi-core CPU equipped with many GPUs of different potential computing
capabilities.

• Link-heterogeneity: refers to systems that use different underlying physical
networks connecting the underlying PUs. The PUs can thus communicate with
different network speeds and bandwidths. There are currently many types of
networks such as: ethernet, infiniband, LANs, WANs. etc.

1.5.2.1 Centralized computing architectures

A centralized architecture is widely used when setting up parallel and distributed
computing systems and algorithms. In this model, PUs are split into Master and
Workers. The master is the central point of the system which usually manages
all the control operations. The workers are responsible for most of computation.
For example, in parallel B&B, the master usually controls the load balancing to
assign subproblems to workers, broadcasts new found solution for knowledge sharing
or decides whether to terminate the distributed computation at all workers. The
workers perform B&B computation like branching, bounding, selecting and pruning.
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We can also find this model in many distributed software such as Napster [Napster ],
Bittorrent [Bittorrent ], Hadoop [Apache ]. In fact, this architecture is easy to design
and implement, but it was shown to have several shortcomings to the scalability.
The centralized master is the single point subjecting to downgrade the performance
of the whole system. Since in large scale systems, the master has to process a
large amount of requests coming from the workers. If the master does not respond
effectively, the workers can waste their computing time by waiting for the responses.
For instance, in parallel B&B, whenever a worker is idle, it sends a request to the
master and waits for new B&B subproblems. In our experience, we observed that
this model is very efficient in small scales as the master is fast enough to handle all
the requests of the workers. However, in large scale systems, the performance drops
dramatically because of the bottleneck at the master level.

1.5.2.2 Decentralized computing architectures

This model attempts to leverage the bottleneck issue of the centralized architecture
as it is fully distributed and does not count on any centralized master. There is no
difference between master or worker in this model. Each PU can play the role of
both master and worker so that the communications are evenly distributed among
them. This model can be classified according to logical overlay or topology induced
by PUs communications:

• Unstructured Overlay: there is no specific overlay topology imposed glob-
ally upon all PUs and the topology is often random. Each PU broadcasts
messages to its neighbors when sending a request. The broadcast is repeated
until the sender receives the answer or a maximum number of flooding is
reached.

• Structured Overlay: an overlay topology is used to structure the PUs (or
peers) in the system. The overlay structure aims at routing traffic effectively
through the network. PUs in a structured overlay have to maintain a list of
neighbors that satisfy a given criterion. Stoica et al. [Stoica 2001] firstly pro-
posed to organize the PUs as a Ring and use Distributed Hash Table (DHT).
Later on, the DHT is adapted in many works (e.g YaCy [Yacy ], CoralCDN
[CoralCDN ], Kademlia [Maymounkov 2002].

In this thesis, we also studied the impact of a structured overlay on the perfor-
mance of parallel B&B in distributed large scale systems. In particular, we organize
all available PUs as a tree and use the tree overlay structure to handle all the commu-
nications of parallel B&B such as load balancing, knowledge sharing and distributed
termination detection in a minimal cost.
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1.6 Parallel B&B for Distributed Computing Environ-
ments

In the previous sections, we briefly presented some characteristics of the considered
computing environments, sequential/parallel B&B as well as some general imple-
mentation issues. In this section, we will firstly detail specific challenges of parallel
B&B algorithms, then we will present some related works of parallel B&B on both
shared and distributed memory systems.

1.6.1 Main challenges in parallel distributed B&B

1.6.1.1 Irregularity

At a first glance, it is straightforward to parallelize a B&B algorithm because each
of the generated subproblems can be solved independently. However, the tree-based
parallelization yields highly irregular computations and raises difficult challenges:

• tasks are created dynamically in the course of the algorithm.

• tasks are assigned to PUs at runtime.

• the structure of the B&B tree to explore is not known beforehand.

• workload of PUs varies dynamically during execution.

Figure 1.2: An Example of Parallel B&B on 3 CPUs

A B&B process can be simply viewed as a search tree exploration where the orig-
inal optimization problem is the root node of the tree. The root node is processed to
generate several children nodes. After being processed, some of the children nodes
continue to generate new children, and the others are completely explored and do
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not create any children due to the pruning operation of B&B. During the execu-
tion, many new nodes are recursively created and this makes the corresponding tree
grow larger and larger. In parallel B&B, the tree-based computation is handled
simultaneously by several PUs. For instance, Fig 1.2 illustrates a simple example
of a parallel B&B computation on 3 CPUs. Firstly, CPU

1

processes the root node
(i.e the original optimization problem) and generates several children nodes. CPU

0

and CPU
2

perform a load balancing operation to fetch some nodes from CPU
1

. Al-
though at this time all the CPUs have the same workload and process approximately
the same number of nodes, CPU

0

is eventually the most overloaded and the others
are underloaded during the computation. In fact, CPU

0

performs the B&B compu-
tation for a very large part of the B&B tree, but CPU

1

and CPU
2

only handle a
relatively small part. This problem comes from the irregular nature of parallel B&B
as the tree structure is unknown in advance and it is shaped at runtime. Therefore,
several processing units are under-utilized and few processing units are overloaded
to process works during the computation of parallel B&B. The workload irregularity
of B&B can significantly downgrade performance and prevent high performance and
scalability which makes it challenging to design efficient parallel B&B.

1.6.1.2 Knowledge sharing

Following the workload irregularity issue, designing a scheme for exchanging the
best solution found so far among processing units is another major issue in parallel
B&B algorithms. In fact, it is crucial to share any new best solution discovered
by any processing units at runtime in order to quickly prune unnecessary branches
which could not lead to the optimal solution. The strategies for updating the new
best solution depend strongly upon the architecture being used. For instance, in
shared memory systems, a global variable, which is accessible by all threads, is used
to store this global information. When a thread finds a better value, the thread
will update to the global variable that makes all other threads be aware of the new
value. In distributed memory systems, message passing is the only mean to use
for communication among processing units. Therefore, whenever a processing unit
finds a better value, it must send messages to others in order to update the new
found value into their local variable. In both cases, a strategy has to ensure that
the global information is broadcasted to all other processes and the performance of
such a broadcast is clearly dependent on the interconnect of a given architecture.
In this thesis, we use the centralized approach for shared memory systems and a
distributed approach based on a tree overlay for distributed memory systems in
order to broadcast the new best found solution so far to all PUs in the system.

1.6.1.3 Termination detection

Termination detection is one central issue in parallel B&B. It consists in determining
the state when all works are completed at all processing units (PUs). Similar to the
knowledge sharing, the strategies for detecting termination depend on the underly-
ing computing environments. In general, termination algorithms must satisfy the
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following aspects: (i) correctly detect whether or not some work still exists some-
where in the system, (ii) run efficiently and lightly with minimal communication
cost to not disturb useful computations. In shared memory systems, a centralized
approach can be employed. A global barrier allows threads to check-in and check-
out in order to nominate the termination. When a thread runs out of works, it
checks-in to the barrier. If a thread notices that it is the last one to check-in, it will
inform the termination to other threads. When a thread fetches works from others,
it checks-out from the barrier. In distributed memory systems, as the centralized
approach is not scalable as the number of PUs increases, a distributed scheme is
usually employed. In this thesis, to detect termination distributively, we employ a
distributed scheme based on a tree topology.

1.6.2 B&B on shared memory systems

Barreto et al. [Barreto 2010] conducted a comparison of parallel B&B approaches
on shared and distributed memory systems as well as their potential improvements
compared to the sequential one. The authors used OpenMP and MPI to implement
their approaches on shared and distributed memory respectively. In the OpenMP
approach, a single work pool storing all tasks (i.e generated subproblems of B&B)
is shared by all worker threads. In order to avoid the data race situation at the
pool, a synchronization technique is chosen. It properly handles multiple accesses
to the single pool either when idle threads try to retrieve tasks or when working
threads push new tasks. In [Barreto 2010], the authors reported a good speedup
of OpenMP and MPI approaches compared with the sequential one. However, the
speedup of MPI was found to be slightly better than the OpenMP approach which
may appear counter-intuitively at the first sight. It is in fact well understood that
inter-communication is much costly in MPI since the messages have to pass through
standard networks connecting computers. However, this result also enlightens the
negative impact of using synchronization mechanisms in shared memory systems. It
can be explained as following. Firstly, high parallelism can not be achieved since all
working threads are serialized while accessing the single pool. Secondly, the overuse
of synchronization also introduces an important overhead.

Casado et al. [Casado 2008] proposed two schemes for parallelizing B&B algo-
rithms on shared memory multicore systems. In the first scheme, so-called Global-
PAMICO, all threads share a global pool of generated subproblems therefore a
synchronization mechanism is used to synchronize the accesses of all threads to the
global pool. In the second scheme, so-called Local-PAMICO, each thread manages
a local pool to avoid a significant overhead of the synchronization caused by the
global pool of the first scheme. Besides, a thread terminates itself when there is
no more subproblems in its local pool. A dynamic load balancing is proposed to
deal with the irregularity of B&B as following. At each iteration, when a certain
condition is satisfied, a thread will generate a new one and migrates work from its
local pool to the pool of the new thread. The condition is described as following:
the number of running threads are less than the total number of available cores and
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there is more than one subproblem in the local pool of the thread. This strategy
might also introduce a significant overhead when creating a lot of new threads due
to the irregularity of parallel B&B.

Similarly, in [Mezmaz 2013], the authors presented an approach to parallelize
B&B on multicore systems. In this approach, all threads also share a single work
pool. They reported a big gap between their implementation and the ideal linear
speed up. In fact, the larger the number of threads/cores are used, the bigger the
gap is. There are many reasons behind the scene however synchronization is the
biggest issue.

In [Evtushenko 2009], the B&B solver (BNB-Solver), a software platform allow-
ing the use of serial, shared memory and distributed memory B&B algorithm is
presented. BNB-Solver is based on the parallel exploration of the tree and assumes
that several CPU threads are used where each thread has its local pool of subprob-
lems and shares a global pool of subproblems with other threads. In BNB-Solver,
each thread executes a fixed number of N iterations of the sequential B&B algo-
rithm. During the N iterations, each thread stores the generated new subproblems
in its local pool. It only transfers a part of subproblems from the local pool to the
global pool at the end of N iterations. Each thread tries to select from its local pool
the next subproblem to be processed. If the local pool is empty, the thread selects
a subproblem from the global pool. If the global pool is empty, the thread blocks
itself until another thread puts at least one subproblem in the global pool. Once
new subproblems are inserted into the global pool, blocked threads are released and
subproblems are retrieved from the global pool. BNB-Solver ends when the global
pool is empty and all threads are blocked.

Savadi et al. [Savadi 2012] introduced an approach taking into account the
memory hierarchy of multicore systems. The authors proposed to map task tree of
B&B to the memory hierarchy tree of multicore systems. In the memory hierarchy
tree, non-leaf nodes and leaf nodes are mapped on cache/memory components and
the processor cores respectively. A node of the task tree is mapped on a level of
memory tree which has equal or larger memory size than needed memory for the
node execution. Furthermore, the mapping should respect the locality of the node
and its children so that it tries to reduce execs communication between levels of
memory tree.

Recently, Silva et al. [Silva 2014] proposed a model called Multicore Cluster
Model which captures some relevant performance characteristics in multicore sys-
tems such as the influence of memory hierarchy and contention. In the model, three
communication models are taken into account: i) the communication made through
shared memory by intra-chip cache, ii) through inter-chip shared memory and iii)
communication between cluster nodes via messages. Furthermore, a load balance is
also proposed to schedule tasks based on the available amount of the cache mem-
ory so that it can avoid memory contention which negatively affect performance.
An improvement is reported when the model is used to implement a parallel B&B
algorithm for the Set Partition Problem.
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1.6.3 B&B on distributed memory systems

Parallel B&B on distributed memory systems have also attracted much attention
from the community. In this context, three paradigms are widely used: Master-
Worker B&B, Hierarchical Master-Work B&B and Decentralized B&B. A non ex-
haustive set of representive approaches are described in this section.

1.6.3.1 Master-Worker B&B

The Master-Worker (MW) paradigm is the most popular technique for designing
distributed applications. This paradigm appears in many applications in both aca-
demic and industry since it is simple in terms of design, implementation but pro-
duces quite good performance. SETI [Korpela 2001] is one of the first large scale
distributed computing system which is based on the MW paradigm. SETI employs
the power of volunteer computing, which comprises of large number of home com-
puters connected by internet, to analyze scientific data from radio telescope. The
data are parsed in small chunks that are sent to home computers (i.e workers) for
off-site computation. Then the results will be sent back to the SETI facility (i.e.
master). This paradigm is also being widely used to solve large and difficult B&B
problems. For instance, some frameworks [Chen , Goux 2000] allow users to run
parallel B&B computation on the grid.

Mezmaz et al. [Mezmaz 2007b, Mezmaz 2007c] proposed B&B@Grid for large
scale B&B algorithm using the MW paradigm. The authors proposed a compact
encoding for subproblems of B&B. A list of subproblems is encoded by fold operators
into a unique interval of two integers. On the other hand, an interval is decoded by
a unfold operator to a list of corresponding subproblems. This approach tends to
reduce the size of data transferred through the networks in the grid while managing
load balancing among master and workers. Though interval representation brings
many advantages, there are few disadvantages. Firstly, the fold/unfold operations
introduce a non-negligible overhead. Secondly, the interval representation is not
suitable for workers with SIMD architecture (i.e. GPUs).

Otten et al. [Otten ] introduced a scheme to predict the complexity of a sub-
problem so that subproblems can be evenly distributed among workers based on the
prediction scheme. Initially, the master node explores the tree up to a parallelization
frontier for having enough subproblems, then send them to its workers and wait for
the result. Load balancing is ensured by their prediction scheme which estimates
the size of the explored space of a subproblem (i.e. the number of explored nodes
to solve a subproblem) so that load is evenly distributed among workers.

Recently, [Budiu 2011] introduced a DryadOpt library which enables massively
parallel and distributed execution of optimization algorithms on distributed data-
parallel execution engines (DDPEE) such as Dryad [Isard 2007], MapReduce [Dean 2008]
or Hadoop [Apache ]. In fact, DDPEEs bring high parallelism but they impose some
important restrictions on the algorithms which can be implemented. Algorithms
suited to DDPEEs need to process a large amount of independent data and pro-
cesses run in different memory address spaces can not communicate until completed.
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Communication and data exchanges can only happen when a round of computation
among processes terminate. The DryadOpt adapted the synchronous model, pre-
sented in previous section, in order to solve optimization problems on DDPEEs as
following. Generally, the parallel B&B based on DryadOpt can be interpreted as a
sequence of computations, which is called round, and communication for load bal-
ancing only occurs between two consecutive rounds. Firstly, the client workstation
plays the role of the master and reads a problem instance and run a sequential B&B
solver to generate a large frontier containing enough tasks for cluster machines. The
tasks in the frontier are partitioned in disjoint sets and each set will be processed by
each machine independently. Then each round, which takes the previous frontier as
an input, is executed on cluster machines to produce a new frontier. After a round
of computation, control is returned to the client workstation which decides either
to start a new round or to terminate. The computation is terminated whenever the
frontier is empty. Moreover, load balancing is ensured at the end of each round by
repartitioning the tasks in the frontier such that each machine processes approxi-
mately the same amount of work. This solution can be applied on machine level as
well as core level. Even though the DryadOpt brings a promising result, it does not
take into account the computational grid environments.

[Kouki 2010] proposed an algorithm called GAUUB which is based on the master-
worker paradigm that distributes tasks to all worker processors on grid computing
environments. The lower bound algorithms [Ladhari 2005] is firstly used by the
algorithm GAUUB. Moreover, the authors reported that the instances Ta42 and
Ta50 were firstly solved by 50 processors. Then the authors improved the algorithm
GAUUB by proposing another version called GALB [Kouki 2012, Kouki 2013] that
reduces load unbalancing among the available processors. The algorithm GALB is
composed of two steps: initialization and distribution. The master executes the ini-
tialization step by performing the sequential B&B algorithm until reaching a fixed
level L of the search tree in order to generate a large amount of work to distribute
among the slaves processors and therefore to ensure load balancing for all proces-
sors. All slaves execute the distribution step by exploring the assigned tasks locally
and update new found better solution to the master.

1.6.3.2 Hierarchical Master-Worker B&B

Generally, the performance of a MW-based system strongly depends on the capabil-
ity of the master. If the master can handle efficiently requests coming from workers,
then the system can bring very good performance, otherwise the performance will be
significantly decreased. Therefore, it is well understood that MW-based approaches
are only suitable at small or intermediate scales. Some hierarchical master-worker
(HMW) schemes are proposed to solve the scalability issue of MW. Basically, de-
spite many variations among the HMW approaches, their key idea is to construct
several masters in a hierarchical manner (like a tree) in order to leverage commu-
nication bottleneck on a single master. In HMW paradigm, there are two layers: a
control layer comprising of one or more levels of masters and a work layer composing
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workers.
Aida et al. [Aida 2002, Aida 2005] proposed a three-tier tree structure compris-

ing a supervisor, masters and workers. The supervisor is the root node of the tree
and manages all masters. Workers are grouped into sets and each set is managed
by a master. The supervisor and the masters are in charge of all communications
among workers belonging to different sets such as load balancing, broadcasting upper
bound values. The communications are performed along the upward and downward
paths of the tree. The supervisor splits the B&B tree into several disjoint parts
and assigns each of them to a master. The master of each set then assigns work
units to its workers for computation. The workers execute the B&B computation
and request more work units from the master when they run out of work. When
all the workers completely process the assigned B&B tree part, their master will
then ask the supervisor for another part. The authors discussed the granularity of
tasks, especially when tasks are fine-grained, the communication overhead is too
high compared to the computation of tasks.

Xu et al. [Xu 2005] proposed a framework to implement parallel search algo-
rithms called APLS. The framework uses: Master, Hub and Workers. A hub con-
trols a fixed number of workers and the number of hubs increases proportionally
with the number of workers. Load balancing is also taken into account at two levels:
intra-cluster and inter-cluster. In the first level, the hub manages dynamic load bal-
ancing. Workers periodically update their workload to the hub, hence the hub can
try to balance workload among workers when it detects an unbalanced situation.
Besides, workers also sends work requests to the Hub when workload is lower than
a threshold. Upon receiving the message, the hub asks the most overloaded worker
to share some works (i.e subproblems) to the requesting one. Similarly, the master
is responsible to balance workload among hubs. This design principle can also be
found in PICO [Eckstein 2001] or in [Drozdowski 2012].

Diconstanzo [Diconstanzo 2007] described a HMW approach composed of four
types of components: master, sub-master, worker and leader. The master, sub-
master, and worker components have similar functionality as the other HMW ap-
proaches presented above. The main difference is the leader components. Each set
of processes is deployed on a physical cluster, and a leader is chosen among workers.
The role of the leader is to handle communication of broadcasting the upper bounds
among groups of workers. When a worker finds an upper bound, it broadcast the
new solution to all workers of the group, and only the leader is in charge of forward-
ing the new solution to other leaders of other groups in order to broadcast to all
workers in all groups.

More recently, in [Bendjoudi 2012b, Bendjoudi 2012c], the authors suggest a
MHW architecture which allows workers to communicate directly together after
receiving a task from the master. The proposed approach tends to avoid up/down
communication among workers of different group while performing load balancing in
MHW so that tasks are distributed more quickly from one group to others compared
with the standard communication manner in MHW. Furthermore, this mechanism
also exposes less communication bottleneck to masters and implicitly employs a
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peer-to-peer communication among workers.

1.6.3.3 Decentralized B&B

The MW paradigm only works well at small/intermediate scales and often faces
the scalability issues due to communication bottlenecks around the master. The
performance of MW systems strongly depends on the capability of the master. To
overcome this limitation, the HMW paradigm considers to use multiple levels of
masters to handle the whole system so that the communication load can be distorted
evenly among the masters. However, these approaches do not solve completely the
scalability issues as detailed in the following. Firstly, scalability of a HWM system
strongly depends on the proportion between master and workers. If this ratio is not
well chosen, the communication bottleneck can occur at sub-masters and downgrade
the overall performance. Secondly, the control layer of a HWM system are mainly
responsible for communication, hence all potential computational power of this layer
are wasted. Lastly, all communication have to pass through the masters of the
control layer

On the other hand, a fully distributed peer-to-peer paradigm overcomes this
limitation by distributing communication load among all processes in the system.
In distributed B&B, the asynchronous multiple pool paradigm is considered as a
good design and implementation choice. Each peer has a local pool storing all work
units for processing. If the local pool of a peer is empty, the peer will send work
requests to others according to the corresponding load balancing algorithms. Upon
receiving a work request, a peer will share some work units from its local pool to
the requesting peer.

In [Luling 1992, Tschoke 1995], the load balancing is performed on each pro-
cessor in parallel to the sequential B&B algorithm. The authors proposed a load
balancing algorithm based on workload. The basic idea is to balance the workload
of a peer with its neighbors. A peer and its four neighbors collaborate to form an
island. The peers of an island help to balance workload each other whenever some
of them are under/over load (i.e workload difference among them reach a predefined
situation). Besides every peer belongs to several overlapped islands, the workload
balance through the whole system is therefore achieved. Furthermore, in this ap-
proach, the workload is defined by a weight function which takes both quality and
quantity of generated subproblems into account. The quantity is simply the number
of subproblems in a local pool. The quality is interpreted as the minimum cost of
generated subproblems of a local pool since they want to keep all best subproblems
(with current best lower bounds) in every local pool in order to provide best-first
search and avoid search overhead as much as possible.

Similarly, some fully distributed B&B were presented in [Finkel 1987, Iamnitchi 2000,
Diconstanzo 2007, Djamai 2011a]. Iamnitchi et al. [Iamnitchi 2000] proposed to pig-
gyback the best solutions to the most used messages in order to efficiently broadcast
the solution over the whole system. Di Constanzo et al. [Diconstanzo 2007] pro-
posed to define a peer-to-peer infrastructure at the communication layer for routing
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messages in a HMW system. A message is routed through multiple intermediate
peers to reach the final destination. The objective of this approach is to reduce
communication bottleneck at the masters, but it introduced unnecessary additional
delays for sending messages. Therefore, the system can not be utilized at its full
potential capacity. Djamai et al. [Djamai 2011a] proposed an approach for very
large scale systems (up to hundred of thousand peers) and provided new work shar-
ing mechanism, termination detection. Beside the authors also provided a proof of
correctness of their approach.

1.7 Conclusions and discussions

Solving large instances COPs is time-intensive because of their large search space.
The B&B algorithm appears to be a good solution in this context as it aims to
efficiently reduce the search space by eliminating unnecessary regions. Despite the
search space is significantly decreased, it is still too large to be completed in a rea-
sonable time by the sequential B&B. Consequently, sequential approaches often fail
providing good performances. Within this context, parallel and distributed B&B
are a key solution to tackle the underlying compute challenge. B&B computations
can be distributed to many threads of the same compute node, or many compute
nodes of the same cluster, or many clusters of the same grid, or even many com-
pute nodes geographically distributed and connected via internet. On one side, the
distributed resources coming from cluster, grid or cloud provide an impressive ag-
gregated computing power. On the other side, parallel B&B exposes several sources
of parallelism ranging from low to high level, from node-based to tree-based par-
allelism which allow parallel B&B to be effectively implemented on different types
of computing resources associated with different architectures. In theory, B&B ex-
poses several sources of parallelism. In practice, there exists several challenging
issues which might significantly downgrade the performance of parallel B&B when
executing on complex distributed systems.

• Workload Irregularity: parallel B&B workload is too irregular to be predicted
beforehand. B&B work is generated at runtime which can push most of the
workload on few processing units while the others are starving. This issue is
the major cause of poor performance and low scalability. Let us remind that
good performance and high scalability are only achieved when the workload is
evenly distributed during the execution. Dynamic load balancing approaches
seem to be a good answer to this problem as they try to balance workload of
computing systems at runtime. Previous works aimed to distribute workload
on several computing platforms, however dynamic load balancing was not the
main concern.

• Heterogeneity: complex computing systems harness different computing re-
sources with different architectures interconnected by different networks. Node-
heterogeneity and link-heterogeneity, which are rarely addressed in a compre-
hensive manner, also have a strong impact on the performance of parallel B&B.
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We also take into consideration these heterogeneity aspects when designing a
dynamic load balancing algorithm.

In this thesis we mainly focus on tackling the workload irregularity of parallel
B&B as well as the heterogeneity of the distributed underlying computing systems
while solving difficult and challenging COPs. In the following chapters, we will study
the impact of different dynamic load balancing schemes for parallel B&B on different
distributed computing systems ranging from homogeneous to node-heterogeneous
and link-heterogeneous systems. We then discuss our solution for each scenario.

The remainder of this thesis is organized as the following. Chapter 2 describes in
detail our solutions for dynamic load balancing while running parallel B&B on ho-
mogeneous systems. Chapter 3 and 4 describes our proposal for balancing irregular
workload of parallel B&B on node-heterogeneous and link-heterogeneous systems.
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Main publication related to this chapter

T. Vu, B. Derbel, A. Ali, A. Bendjoudi and N. Melab. Overlay-centric Load Balanc-
ing: Applications to UTS and B&B. 14th IEEE International Conference on Cluster
Computing, CLUSTER 2012, page 382-390, Proceedings, IEEE, 2012.

2.1 Introduction

Most existing recent works on parallel B&B in distributed computational environ-
ments are based on Master-Worker [Mezmaz 2007a], Hierarchical Master-Worker
[Bendjoudi 2012a] and Peer-to-Peer [Djamai 2013] architectures. Let us recall some
key contributions of these works in this context. In [Mezmaz 2007a], the authors
proposed an efficient mechanism to transform a B&B tree to a compact represen-
tation and vice versa. This mechanism reduces communication cost among pro-
cessing units. The authors implemented their approach using MW scheme. In
[Bendjoudi 2012a], the authors focus on the bottleneck issues of the MW architec-
ture by adding some intermediate layers of masters to control all workers in the
system. They handle communication among workers of different groups by enabling
direct communication among them. Similarly, [Djamai 2013] proposed a fully dis-
tributed protocol for B&B in order to overcome the scalability issues faced in the
centralized approaches. However, the authors mainly focused on the correctness
of distributed termination of their distributed protocol. Despite several important
issues of parallel B&B tackled in the recent works, the irregularity issue still lacks
attention in the literature. We argue that this is the most severe issue of parallel
B&B leading to poor performance in distributed and massively parallel systems.

Our main objective is to tackle the irregularity issues and to ensure a good load
balancing in computing systems during execution time. Good load balancing refers
to good utilization of computing units and results in good speedup of the parallel
application. Achieving a good load balance in the presence of irregularity in parallel
applications is a very challenging task. There are many issues that need to be taken
into account when choosing an accurate load balancing method, especially in large
scale computing systems.

The focus of this chapter is to present, design and implement dynamic load
balancing protocols to solve parallel B&B on homogeneous distributed computing
systems. The main objective is to solve the irregularity of the B&B application ef-
fectively and achieve high performance in large scale systems. The remainder of this
chapter is structured as follows. Section 2.2 presents some classifications of dynamic
load balancing algorithms. We further analyze and highlight that work stealing is
a good candidate in the context of this thesis. Section 2.3 describes the design
and the implementation of random work stealing for parallel B&B in distributed
settings. Section 2.4 details about our approach. Section 2.5 briefly introduces two
application benchmarks (i.e the Taillard Flow-Shop scheduling problems and the
Unbalanced Tree Search problems) which are used not only in this chapter, but also
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in the remainder of this thesis. Finally, Section 2.6 presents our experimental results
and Section 2.7 concludes the chapter.

2.2 Dynamic Load Balancing

2.2.1 Overview

Balancing workload among processing units (PUs) is one of the most important
challenges when developing parallel irregular applications, especially in distributed
computing systems. In the context of parallel B&B, balancing workload refers to
offload subproblems from overloaded PUs to underloaded/idle PUs in order to ensure
that all PUs have approximately the same workload. If the subproblems are not
evenly distributed among PUs, then some PUs may run out of work and become idle
while others have large number of subproblems to process. This issue is referred to as
workload unbalance, and it is believed to majorly downgrade the overall performance
of computing systems if not handled efficiently. Furthermore, this problem is more
pronounced with the irregularity of parallel B&B where subproblems are created
dynamically during execution. Consequently, good speedups and parallel efficiency
can not be directly achieved in a straightforward manner.

Dynamic load balancing methods are well suited for tackling workload unbal-
ance occurring at runtime. These methods [Burton 1981, Eager 1986, Kumar 1994,
Shivaratri 1992a] are fully distributed and often implemented in asynchronous com-
munication with multiple pools. In more details, each PU is associated with a single
pool for storing generated subproblems and communicate with others at runtime
for load balancing. Having this in mind, dynamic load balancing methods can be
distinguished in three types, depending on who is the initiator:

• Sender-initiated or work pushing [Eager 1986]: refers to the class of meth-
ods where overloaded PUs are in charge of balancing workload. In these meth-
ods, a sender PU automatically offloads tasks to an appropriately chosen PU.
The task offload occurs when the sender PU has more tasks than a threshold
value in its work pool. These techniques aim at minimizing idle time of PUs
because tasks are pushed ahead before they are actually needed but at the
cost of additional communication overheads. Before offloading the tasks, the
senders have to answer these questions: How to select a target PU? How many
tasks to offload? How often to offload tasks?

• Receiver-initiated or work stealing [Burton 1981]: refers to the class of
methods where idle PUs perform load balancing operations. In contrast with
work pushing methods, tasks are not automatically offloaded ahead between
PUs. When a PU finds no task in its local pool, it sends work requests to
an appropriately chosen PU for effectively retrieving tasks. Upon receiving a
request, a PU will offload tasks if its own work pool is not empty. Otherwise,
the receiver PU rejects the work request and the sender PU repeats the process
until fetching some tasks. This approach aims at minimizing communication
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overheads at the expense of idle time of PUs. Similarly, some questions have
to be answered: How to chose an appropriate target PU? How many tasks to
offload?

• Hybrid [Shivaratri 1992a]: combines the previous two approaches into a com-
prehensive one. Tasks are offloaded to PUs needing them, or on demand when
PUs are idle.

The policy of choosing appropriate PUs in these approaches is the most impor-
tant factor for good load balancing. Besides, there are some variants of dynamic
load balancing algorithms according to the target selection policy. In work pushing,
three variants have been proposed in [Eager 1986]:

• Random: a sender PU offloads a task to another PU selected at random
whenever the local pool of the sender exceeds a predefined threshold value.

• Threshold : a sender PU offloads a task to another PU chosen at random if it
finds that the local pool of the selected one smaller than a predefined threshold
value.

• Shortest : a sender PU randomly picks a set of PUs and offloads a task to the
one owning the shortest local pool.

Although, work pushing produces good performance, there are sill some draw-
backs in the algorithm. Good load balancing strongly depends on how often tasks
are offloaded in a system. Work pushing is controlled through the use of a predefined
threshold. If this threshold is not well optimized to the correct value, tasks will be
moved ahead so often or so rarely. For instance, if the value is larger than needed,
very few offload operations are performed. If the value is smaller than needed,
many task are offloaded in advance causing communication overhead and waste of
bandwidth. Furthermore, work pushing is unstable when solving large instances.
Although the system load is high and all PUs are kept busy, task offloading still
occurs. Therefore, work pushing is not a good choice for irregular applications like
parallel B&B.

[Shivaratri 1992b] proposed the hybrid approach which improves both work
pushing and work stealing. In this approach, a PU uses current load information
of others to decide where to look for tasks and where to offload tasks. However
this approach is not suitable because the load information changes very quickly over
time in irregular applications like parallel B&B.

Work stealing techniques seem to be more suitable for irregular applications and
give a better overall load balance. In the work stealing approach, communication
is only enabled when PUs are idle. Work stealing is stable because there is no
communication as the system load is high. Therefore, it is chosen as a scheduler
for load balancing in many frameworks (e.g Cilk [Frigo 1998], Intel TBB [Intel ],
OpenMP 3.0 [OpenMP 2011] and Javelin [Neary 2000]). We mainly focus on work
stealing in the rest of the thesis.
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2.2.2 Work Stealing

Work stealing was firstly proposed by Burton et al. [Burton 1981]. Later on, it
appeared in many parallel frameworks for scheduling work load while executing
parallel applications, both on shared memory and distributed memory systems. In
work stealing, a PU, which runs out of work and has no task in its local pool,
is called thief. A thief attempts to retrieve tasks by sending a steal request to
an appropriately chosen PU. The selected PU is called victim. Upon receiving a
steal request, a victim PU will service the request by offloading some tasks to the
corresponding thief if its local pool is not empty. Otherwise, a reject message is
sent back to the thief and the thief repeats steal attempts until fetching some tasks.
Figure 2.1 sketches the status of PUs during execution of work stealing.
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or several tasks
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steal requests

select a victim

and steal tasks from it
tasks

No task
was found
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no termination

no task

was found
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ENDtermination?
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Figure 2.1: State Diagram of Work Stealing

Algorithm 2 briefly describes a base implementation of the algorithm. Let us
remark that the victim selection and work sharing policy are the heart of the algo-
rithm. The victim selection policy defines how a thief chooses a victim in order to
fetch works as quickly as possible, leading to minimize idle time. The work sharing
policy defines how a victim shares tasks with a thief so that the workload will be
eventually balanced between them resulting in maximizing useful computations.

In particular, there are some variants of work stealing in homogeneous compu-
tational environments based on the victim selection policy:

• Random: it is the simplest form of work stealing where a thief chooses a victim
uniformly at random. Hence the stealing probability is a constant value and
it is the same for any PUs.

• Local Round Robin: each PU locally manages a separate variable nextTarget
pointing to the next victim. When a PU becomes a thief, it sends a steal
request to the victim pointed by the local variable nextTarget. The variable
nextTarget is then increased in round robin manner (e.g (nextTarget+1) mod
N , where N is the total available number of PUs in the system). Therefore,
different PUs probably store different values for the variable nextTarget.
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• Global Round Robin: it is similar to the Local Round Robin scheme, but
instead of storing the variable nextTarget locally at each PU, the variable
nextTarget is globally shared among all PUs. Thus all PUs share the same
value for the variable nextTarget.

Algorithm 2: Work Stealing Template
1 while termination not detected do
2 if local queue is empty then
3 Execute Procedure Thief;
4 else
5 Execute Procedure Victim;

Procedure Thief
1 repeat
2 u VICTIM_SELECTION;
3 SEND a steal request message to u;
4 RECEIVE u’s response (reject or work) message ;
5 if a steal request is pending then
6 v  pull the next pending thief request;
7 Send back a reject message to v ;

8 until retrieving work from victim u or termination detected ;

Procedure Victim
1 if a steal request is pending then
2 if tasks are available then
3 v  pull the next pending thief request;
4 work  SHARE_WORK;
5 Send back shared work to v ;
6 else
7 Send back a reject message to v ;

8 else
9 task  pop the next task from local pool;

10 EXECUTE task ;

In theory, Blumofe et al. [Blumofe 1999] proved that the Random policy is opti-
mal according to some constraints on the communication model. In practice, the ran-
dom policy produces very good performance in homogeneous computational environ-
ments [Dinan 2007, Dinan 2009]. In this thesis, we propose to apply the work steal-
ing paradigm for B&B. Let us notice that despite a rich references of parallel B&B
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in the literature [Mezmaz 2007a, Bendjoudi 2012a, Djamai 2013, Chakroun 2013a],
the work stealing paradigm has not been considered in order to solve the workload
irregularity of parallel B&B while running on distributed computing environments.

2.3 Random Work Stealing and Parallel B&B

2.3.1 Preliminaries

To simplify the presentation let us model the B&B algorithm, as a tree search al-
gorithm starting from the root node which is the representation of an optimization
problem. During the search, a parent node generates new child nodes (e.g., rep-
resenting partial/complete candidate solutions) at runtime. The quality of these
nodes is evaluated (bounding) using a given (heuristic) procedure. Then, according
to the search state, some nodes are discarded (pruning) whether some others can
be selected and the tree is expanded (branching) to push the search forward and so
on. Having this in mind, the general architecture of our approach for distributing
search computations is depicted in Fig. 2.2
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Figure 2.2: Overview of Random Work Stealing for Parallel B&B

Let us remark that there are three challenges in parallel B&B: irregularity, knowl-
edge sharing and termination detection. The irregularity comes from the nature of
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the applications as presented above. We aim at tackling this issue by using the
random work stealing (RWS) algorithm.

2.3.2 Work sharing

One crucial issue in RWS for efficient dynamic load balancing is the amount of
work, denoted f , to be transferred between thieves and victims. Generally, the
thief attempts to balance the load evenly between itself and the victim. In fact,
when this amount of work is very small, the large overhead is observed since many
load balancing operations are performed. At the opposite, when it is very large,
too few load balancing operations will occur, thereby resulting in large idle times
despite the fact that surplus work could be available. In classical RWS approaches,
this is a hand-tuned parameter which depends on the distributed system and the
application context [Min 2011]. In a theoretical study [Blumofe 1999], the stability
and optimality of RWS can be analytically guaranteed for f  1/2. In practice, the
so called steal-half strategy (f = 1/2) is often shown to perform efficiently using
homogenous computing units. Therefore, we decided to use steal-half for balancing
workload between thieves and victims in our distributed computing system.

2.3.3 Knowledge sharing and termination detection

Knowledge sharing and termination detection are also the two crucial parameters
which may impact the overall performance of parallel B&B. We map all available
PUs to a binary tree as presented in Fig 2.3, and use this tree to tackle the two
issues effectively. In the following two subsections, we describe in detail how these
issues are addressed by the overlay.

2.3.3.1 Knowledge sharing

In distributed B&B, broadcast communication plays an important role for sharing
knowledge among PUs in the system. For instance, a PU, which finds a new upper
bound, must broadcast it to other PUs in order to update the new upper bound
for all PUs. It is a mandatory phase in B&B to avoid unnecessary exploration of
branches in other PUs (i.e. problems whose evaluated bound value is worse than
the newly found best solution). To perform a broadcast in a simple and efficient
manner, we use a hierarchical broadcast mechanism. All PUs are mapped into a
binary tree overlay. The broadcast is implemented as following:

• If a new upper bound improves previous best known solution is found locally
by a PU, then it sends the new upper bound to its parent (1� to� 1 commu-
nication) and children (1� to�N communication).

• If a PU receives a new upper bound from either its children or its parent, the
PU will compare the new upper bound with its local best solution. If the new
upper bound improves the local best solution, then the PU will update the
new value to its local variable and forward the information to its parent and
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Figure 2.3: Communication for broadcasting a solution and termination detection

children. The process is recursively repeated until all PUs receive the new
upper bound.

Compared to the simple broadcast mechanism, this hierarchical approach enables
an efficient broadcasting. In fact, the straightforward broadcast use 1 � to � N
communication and takes N iterations to broadcast a message to N available PUs.
However it takes up to 2 ⇤ log

2

N iterations in the hierarchical approach.

2.3.3.2 Termination detection

One issue in the template of Algorithm 2 is how to detect termination distributively
(Line 1). For B&B, this occurs when all tree nodes are explored (explicitly or im-
plicitly, i.e., pruned). However, since stealing is performed locally by idle PUs, the
work remaining in the system is not maintained anywhere. Normally, the termina-
tion detection runs in background and in parallel with other operations (e.g useful
computation, load balancing, knowledge sharing)
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To tackle this issue without introducing any complexity in the design, or any
overhead causing performance degradation, we decided to use the fully distributed
scheme adopted in the binary tree presented above. The termination is detected in
an ’Up-Down’ distributed fashion. In the up phase, if a PU becomes idle and has not
served any stealing request, it will then integrate a positive termination signal to its
children signals. If a PU turns to idle and has served at least one stealing request,
it will then integrate a negative termination signal to its children signals. Then the
termination signal is forwarded to the parent and eventually to the root. In the down
phase, if the root receives at least one negative termination signal from its children,
it broadcasts a signal to restart a new round of termination detection. Otherwise,
if only positive termination signals are received, the root broadcasts a message to
announce global termination. The tree overlay used in our implementation allows a
message between root and leaves to take at most log

2

N hops. Therefore this enable
us to scale out PUs while avoiding communication bottlenecks and performance
degradation once a termination phase is performed.

2.4 Overlay-based Work Stealing and Parallel B&B

2.4.1 Preliminaries

Designing efficient load balancing protocols for parallel B&B is challenging. Tech-
nically speaking, there are two separate components in a B&B algorithms. The
first component is responsible for load balancing and it is the core of the protocol.
The second component handles other control operations like knowledge sharing and
termination detection. The second component does not directly contribute to a
good load balance or performance of a protocol, however it is still very important,
especially for parallel B&B.

Actually, structuring computing nodes in a specific overlay shall allow us to
address the issue of where to find work in a simple and efficient manner. In this
section, we will present an overlay based protocol, namely a tree, which will cope
with all aspects of B&B parallel computations: load balancing, knowledge sharing
and termination detection. In the following, we shall the assume that computing
nodes form a rooted tree where every node knows his parent and his children in the
tree.

2.4.2 Tree-based work stealing

Let us assume that the target application to be parallelized is initially pushed at
the root PU. Throughout the algorithm execution, an idle PU first chooses a target
PU among its children in the tree to send a steal request asking for a piece of
work. This is to contrast with RWS where victims are chosen uniformly at random.
The strategy for PU selection plays a key role. In our distributed protocol, an
idle PU steals downwards and upwards in the tree. In the down phase, every idle
PU first requests its children. The steals are sent sequentially by choosing a child
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uniformly at random at each step. Then, if and only if all children are idle, a steal
is sent at last upwards to the parent. Notice that if a child has in parallel sent
a request to its parent, then the parent needs not to steal from that child, thus
saving some communication messages. Conceptually, this corresponds to a random
work stealing strategy, but considering only the set of children that have not sent
a request upwards yet. Algorithm 3 sketches this load balancing strategy. Notice
that by synchronous request, we mean that a PU will wait until receiving a response
from the corresponding neighbor in the tree (either children or parent).

Algorithm 3: Tree-based work stealing

1 C  set of my children PUs in the tree;
2 if All PUs from C already sent a work request then
3 u pick the parent PU;
4 Send a synchronous load balancing request to u;
5 else
6 u pick a PU that potentially has work from C;
7 Send a synchronous load balancing request to u;

The tree-based work stealing exhibits much locality, since tasks inside a sub-
tree will always be completely finished before load balancing requests are sent to
the parent of the subtree. This property of the protocol exposes some drawbacks.
Firstly, a PU only steals upward when its subtree becomes idle. Therefore the whole
subtree remains idle during the round trip of the steal request which may cause a
significant lost in performance. The issue is more severe in large scale as the size
of a subtree grows proportionally to the number of PUs in the system. Secondly,
the performance of this protocol strongly depends on the tree diameter. If the tree
diameter is large (i.e a PU has small number of PUs as its children), workload flows
slowly from one side to another side of the tree (e.g binary tree). Otherwise, if
the tree diameter is small, bottleneck could occur at some points in the tree (e.g
star topology). Therefore, the tree diameter should be well optimized in order to
produce good performance.

2.4.3 Bridge-based work stealing

The tree-based work stealing protocol described above suffers from the stalling of
a set of PUs belonging to the subtree when stealing upwards. To tackle this issue,
while maintaining the low-cost communication of the tree, we developed Bridge-
based work stealing which is an extension of the above approach. This approach
aims at speeding up work flow from overloaded subtrees to under-loaded ones. Apart
from the tree edges, we propose to connect PUs being far away each other using
bridges. Those bridge edges are to be viewed as logical shortcuts that can be traveled
by work to reach under-loaded subtrees more quickly. Hence, bridge edges tend to
minimize the dependency of our protocol on the tree diameter, thus leading to the
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best achievable performance of the overlay.
In this approach, every PU v further requests work from one PU r through a

bridge edge b
v!r

chosen uniformly at random among PUs being neither children nor
parent. More precisely, in parallel while requesting its neighbors in the tree, every
idle PU v asynchronously sends a steal request over b

v!r

. Such an asynchronous
steal request does not block v while waiting for a response from r. Instead, v is
allowed to concurrently search for work from its neighboring PUs in the tree. If
the remote neighbor r owns work, then it immediately services v. If r is idle, then
this means that r has already sent an asynchronous work request through its bridge
edge, and it is also requesting its respective direct neighbors. Thus, whenever an idle
node, say p, gets work from its neighbors or through its bridge, then it immediately
services all nodes from which a steal request was received. Let us remark that
this distributed strategy operates in a recursive manner, implicitly building up a
logical cluster of idle PUs. Consequently, all idle PUs are more likely to cooperate
efficiently in searching for fresh work units. Algorithm 4 present the load balancing
mechanism of this approach in more details.

Algorithm 4: Bridge-based work stealing

1 C  set of my children PUs;
2 if All PUs from C already sent a work request then
3 u pick the parent PU;
4 Send a synchronous load balancing request to u;
5 else
6 u pick a PU that potentially has work from C;
7 Send a synchronous load balancing request to u;

8 if A remote request has not yet been issued then
9 r  a remote PU corresponding to a bridge edge;

10 Send an asynchronous request to r;

Notice also that a PU could acquire more than one piece of work (from both a
neighbor and a bridge), which we logically append to each other when computing
the amount of work to send to other requesting peers. For the correctness of our
bridge-augmented load balancer, one can also ask whether the asynchronous work
requests may cause deadlock issues, e.g., u chooses r as its b

u!r

, simultaneously r
chooses u as its b

r!u

and neither u nor r could get new works. Since the designed
overlay assures that if there is a place which has work, there is always a path from
it to other places in the system, one can prove that this kind of issues can never
happen, i.e., our protocol is correct and deadlock free.

2.4.4 Cooperative tree-dependent work sharing

The previous section described a stealing mechanism based on a tree overlay. It
aims to solve the question how to choose a target PU to steal when a PU runs out
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of works. It is in fact one of the crucial issue in dynamic load balancing. Another
crucial issue in dynamic load balancing is the work sharing policy. This policy aims
at distributing workload among idle and active PUs, therefore resulting in reducing
idle time for stealing. A bad policy would in fact lead to the situation where many
steal requests are performed thus inducing a loss in parallel efficiency.

In our approach, we propose to dynamically adjust the amount of work trans-
ferred from a PU to another according to the size of overlay subtrees. The main
idea behind our protocol is based on the simple observation that idle PUs should
not be selfish when searching for work, but should acquire enough work to serve
their neighbors. More precisely, our work sharing policy is overlay-dependent: a
PU divides its current work into the ratio of its own tree size and the tree size of
the requesting PU as depicted in Algorithm 5. One should notice that each node
must know the size of its own subtree and also the size of its parent subtree. This
is computed in a fully distributed manner using a classical converge-cast process
starting from leaf nodes until reaching the root.

Algorithm 5: Cooperative Work Sharing

// PU u sends work to PU v
1 T

u

 tree size of u;
2 T

v

 tree size of v;
3 if v is parent of u then

4 work  T
v

� T
u

T
v

· (current_works);

5 else if v is children of u then

6 work  T
v

T
u

· (current_works);

7 else if v is not neighbor of u then

8 work  T
v

T
u

+ T
v

· (current_works);

9 return work;

2.5 Application Benchmarks

In order to evaluate the performance of our dynamic load balancing protocols, we
consider the Flow-Shop optimization problem as the benchmark application. Fur-
thermore, to be more generic, we also evaluate our algorithms with the Unbalanced
Tree Search application. In the next subsections, we will introduce these two ap-
plications in more detail and motivate their use in studying the performance of our
load balancing algorithms.
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2.5.1 Flow-Shop

Flow-Shop problems are NP-hard [Garey 1976] optimization problems. In this the-
sis, we consider the C

max

Flowshop which consists in finding the optimal schedule
of N jobs on M machines. Each job is scheduled only once on each machine without
interruption and each machine can process only one job at a time. The set of jobs
and machine are represented by J = {j

1

, j
2

, · · · , j
N

} and M = {m
1

,m
2

, · · · ,m
m

}
respectively. Each job j

i

has a set of m operations O
i

= {o
i1

, o
i2

, · · · , o
im

} where
o
ik

is the operation of the job i executed on machine m
k

for a duration d
ik

. There
are some constraints for this Flow-Shop problem. Firstly, the job j

i

can not start
the operation o

ik

on machine m
k

if the previous operation o
ik�1

on machine m
k�1

is not yet completed. Secondly, the sequence of jobs must be the same on every
machine (e.g if j

1

is processed in the last position on the first machine, then it has
to be executed in the last position on others). There are some variants of the Flow-
Shop problems based on the objective criteria, however we only consider the C

max

Flow-Shop problem in our work. The objective is to minimize the makespan, which
is the elapsed time between the first job on the first job on the first machine and
the last job on the last machine, when scheduling N jobs on M machines. Fig 2.4
presents an example of a problem of scheduling 3 jobs on 4 machines.

makespan

1

m2

m3

m4

m

O 1,2

O

3,4O

1,1O 2,1O

2,2O

2,4O
1,4O

1,3O 2,3O

3,1O

3,3

O3,2

Figure 2.4: Example of flow-shop permutation problem

We consider the well-known Taillard’s instances {Ta
21

, · · · , Ta
30

} of the family
Ta-20 ⇤ 20, i.e., 20 jobs and 20 machines [Taillard 1993]. These instances are highly
irregular compared to others and the sequential time needed to solve them ranges
from some hours to some days, making them good candidates to experimentally
validate dynamic load balancing algorithm in large scale environment. Let us notice
that larger instances, e.g the family Ta-50⇤50, generate a very huge search consisting
of excessive amount of works so that load balancing is relatively not a big issue.

2.5.2 Unbalanced Tree Search

Our works are at the frontier of optimization and HPC. To be more generic and
not specific to B&B, we also take into account other application benchmarks com-
ing from the HPC community. We decided to use the Unbalanced Tree Search
(UTS) [Olivier 2007] benchmark in order to experimentally validate our protocols.
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The UTS was specially designed to be the representative benchmark to evaluate
the parallel performance of state space exploration and combinatorial search algo-
rithms. Although UTS is relatively simple to design and experiment, it is a reference
benchmark in HPC. In fact, it consists in an exhaustive parallel depth-first search to
explore/count all nodes of a parameterized tree with extreme variation/imbalance in
the relative size of its induced subtrees. The tree is constructed using a splittable,
deterministic random stream generated using the SHA-1 secure hash algorithm.
Each node is represented by a 20-byte SHA-1 digest and its children are found by
applying the SHA-1 algorithm to the parent node’s digest combined with the child
id. There is a high degree of variation in the size of each subtree rooted at any given
node in a UTS tree. Thus, if each node is taken as a task in a UTS execution there is
a high degree of variation in the amount of work contained within each task. These
properties make UTS be an excellent adversary benchmark application for dynamic
load balancing schemes.

2.6 Large Scale Experimental Analysis

Our goal is to maximize the load balance with least communication overhead ulti-
mately scaling up as much as possible and thus reducing the execution time of target
application. Therefore we conducted extensive large scale experiments and extracted
many measures to help understanding the properties of the designed protocols. In
particular, three ’parameters’ having a significant impact on our protocol are stud-
ied: (i) the structural properties of the underlying tree topology, (ii) the strategy
used to share work, and (iii) the complexity/nature of the jobs being processed in
parallel. We shall also focus on the scalability of experimented protocols and their
behavior in terms of load balancing. Besides, we also consider other algorithms
(i.e Master-Worker (MW) [Mezmaz 2007c], Adaptive Hierarchical Master-Worker
(AHMW) [Bendjoudi 2012b] and the Random Work Stealing (RWS)) and compare
them with our tree-based approaches in order to fairly elicit the relative performance
of the different available protocols.

2.6.1 Experimental setting

Two clusters C
1

and C
2

of the Grid’5000 [Grid’5000 ] were involved in our experi-
ments. Cluster C

1

(resp. C
2

) has 92 nodes (resp. 144 nodes), each one equipped
with 2 CPU of 2.5 Ghz Intel Xeon processor with 4 cores per CPU (resp. 1 CPU of
2.6 Ghz Intel Xeon processor having 4 cores) and a network card Infiniband-20G.
Once some nodes of clusters C

1

or C
2

are reserved through the Grid’5000 reservation
system, they are exclusively owned by the user, but the network is not completely
dedicated to that user. For a scale of n < 800 cores, we use cores of cluster C

1

. For
a scale of n � 800, we use cores from both C

1

and C
2

.
In the remainder, we use notation T

R

to refer to our distributed protocol running
over a randomized tree overlay constructed as following. Starting with the first node
as root, children nodes are chosen uniformly at random in the already constructed
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tree. We use T
D

to refer to a deterministic tree overlay with a fixed upper bound
d
max

on the maximum number of children per node. More precisely, depending on
the number of peers, the overlay tree is constructed starting with a root node and
packing at most d

max

nodes in the first level. Then, we loop over the nodes of the
new level packing again at most d

max

children per node, and so on. We use BT
D

to refer to the extended version of T
D

(see Subsection 2.4.3), where each node in
BT

D

further chooses a random bridge edge to ask in parallel for work. If not stated
explicitly, our overlay based work sharing is always adopted when computing the
amount of work to transfer between nodes.

In the following experiments, all the protocols are deployed before application
execution, where each core plays the role of a PU. No specific binding between peers
and cores is adopted, i.e., PUs are just thrown randomly on available cores. After
completely built, the application (UTS or B&B) is pushed into an initial PU, i.e.,
the root PU in case of our approach, MW and AHMW, a random PU in case of
RWS, to start the parallel computation phase. The deployment phase is described
and evaluated in the next subsection.

2.6.2 Comparison between parallel and sequential deployment

Deploying efficiently distributed applications in large scale environments is critical
since the cost of a deployment could be very expensive, especially in large scale sys-
tems [Bendjoudi 2012b]. The deployment includes initializing PUs on available CPU
cores, constructing necessary overlay to connect PUs (e.g binary tree for knowledge
sharing and termination detection in RWS, star topology in MW, or a tree in our
approach), and pushing the problem to be solved into the constructed PUs. The
critical point in this process is the cost of initializing and starting PUs on available
CPU cores.

In this section, we consider two deployment techniques: sequential and parallel.
The sequential one is the basic and simplest strategy consisting in launching PUs one
by one on a list of available CPU cores. It is obvious that despite the simplicity this
approach leads to a high deployment cost which may exceed the time needed to run
our applications. Therefore, we designed a parallel strategy inspired by collective
communication procedures in standard message passing libraries. More precisely,
depending on the number of PUs we want to deploy, we proceed in a recursive
manner; where each CPU core hosting a newly deployed peer is in turn responsible
for starting new PUs on other cores in parallel, and so on until all PUs are initialized.
It is not difficult to see that using a tree structure where each core is responsible
for starting its children, the number of steps required to start n PUs is O(log(n))
which is to contrast with the O(n) steps required in the sequential one. Figure 2.5
presents an analysis of the cost of the two deployment techniques presented above.

To assess the performance of this strategy in practice, Fig. 2.6 shows the time
taken to deploy PUs in function of n for both the simple sequential deployment strat-
egy and the parallel one. We can clearly see that, as the number of PUs increases,
the deployment cost stays relatively very low in the parallel deployment strategy,
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whereas it increases linearly for the sequential strategy and it is not negligible (with
respect to the time it takes to run the whole application as it can be observed later
in this). Therefore, the parallel approach is chosen for the deployment phase of all
experiments presented in this chapter as well as in the following ones.

2.6.3 Comparison between T
R

and T
D

2.6.3.1 Impact of tree structure

Let us consider some benchmark instances of B&B and UTS and let us study the
relative performance of T

D

and T
R

under different overlay configurations. Results
are summarized in Fig 2.7. We see that the execution time of the distributed protocol
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highly depends on the shape of the tree overlay. For a deterministic tree, execution
time decreases as we increase the degree. Overall, a deterministic tree performs
better compared to a randomized one (T

R

). We also observe that as we increase
d
max

, the protocol becomes more stable. In fact, as the degree of the tree increases,
the distance between computing nodes decreases, thus making workload flows more
quickly.
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Figure 2.7: Impact of tree degree and shape. Top Left (resp. Top Right): B&B at
scale 100 cores (resp. at scale 200 cores) averaged over 10 runs and using Flowshop
instances Ta
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. Bottom: a UTS benchmark with Binomial distri-
bution of size 157 billion nodes, i.e., generator parameters: (b=2000 q=0.4999995
m=2 r=599).

To fully understand the impact of tree degree and diameter on execution time,
load distribution and any congestion in the network, we conduct a second set of
experiments at the higher scale of 500 cores. One can clearly see (Fig. 2.8 Top) that
by increasing tree degree we gain in execution time, but quickly the gain becomes
marginal as we increase the degree beyond some threshold (around 6). In fact,
workload flows faster for large degree since the distance between nodes is minimized.
However, this has a price, as confirmed by the distribution of message requests over
tree nodes (Fig. 2.8 Bottom Left and Bottom Right). Although execution time
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tends to decrease for larger degrees, communication load gets higher at intermediate
nodes, i.e. message traffic is mostly supported by non-leaf tree nodes, thus inducing
communication delays at those nodes.
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Figure 2.8: Top: Execution time using 500 cores as a function of d
max

for two
B&B instances (Ta

21

and Ta
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). Bottom Left resp. Bottom Right: Number of
messages sent by each peer respectively for instance Ta

21

and Ta
23

, and different
tree degrees. The x-axis refers to peers identifiers where peers are numbered in a
BFS manner, i.e., with d

max

= 10 (resp. 5) the root has id 0, peers in the first level
have ids 1 to 10 (resp. 1 to 5), and so on.

2.6.3.2 Impact of work granularity policy

To study the performance of our strategy compared to the situation where the
amount of transferred work is fixed by a parameter, we consider the widely used
strategy of dividing work in two halves. In Fig. 2.9, we report execution time ob-
tained for ten B&B instances at a scale of 200 cores and for UTS up to a scale of 128
cores. One can clearly see that our subtree proportional work load distribution per-
forms substantially better than the steal-half strategy, independently of B&B, UTS
and network scale. In Fig. 2.9 Top Right, we draw the total number of work requests
injected to the network by both strategies. We can clearly see that execution time
and work requests are perfectly correlated. Thus, we can say that the overlay propor-
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tional strategy tends to guide the load balancing operations in order to result in the
best performance. Recall that too few or too many load balancing operations cause
the situation from which the performance can fall down [Olivier 2007, Olivier 2008].

We conclude this section by remarking that although the ten B&B Flowshop
instances have the same theoretical size (20 jobs on 20 machines), their effective
complexity may vary substantially making some instances harder to solve than the
others. This can be attributed to two facts: (i) depending on the instance, B&B
is able prune a variable number of branches, and (ii) work distribution implies
starting exploring one region in the solution space before another one which can
impact the best found solution upper bound, thus the number of explored branches
and consequently execution time. This empirical claim shall be verified in the next
section where the best variant of T

D

(d
max

= 10) is compared with BT
D

.
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2.6.4 Comparison between T
D

and BT
D

In this section, we study the effect of adding bridge edges to the overlay tree by
comparing T

D

and BT
D

. In the first column of Fig. 2.10, we report the execution
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time we obtain for three different B&B instances and at a scale ranging from 8 to
128. The first observation is that BT

D

outperforms T
D

. This confirms the fact that
bridge edges help the work to flow quickly over the tree, thus minimizing the number
of idle nodes and improving performance. In fact, in Fig. 2.11 we depicted the ’life-
story’ of a run at scale 128 for the three considered instances by distinguishing
between nodes which are in a compute state (i.e., processing work) and those which
are idle (i.e., requesting for work or sharing work). To obtain those results, we
instrumented our application for each computing node and recorded every fixed
time delay the state of the corresponding node (either computing or idle). The
start time for these life-stories was normalized to 0 to take into account clock skew
between the nodes. The histories were then merged in an order preserving way to
determine the composite picture presented in Fig. 2.11. To interpret the picture,
one can focus on the size of the green area, i.e., the smaller it is, the better the
performance. One can clearly see that while BT

D

is almost optimal, the number of
idle nodes is not negligible with T

D

independently of the considered B&B instance.
In Fig. 2.10 (second column), we also show the performance in terms of number

of B&B nodes explored, i.e., the number of branches effectively explored overall all
computing cores. This allows us to account for the irregularity of the B&B search
process and to better illustrate the load balancing of our protocol independently of
the tackled instance. In fact, since sharing the work differently could result in dis-
covering different solutions more or less quickly, this can have a deep impact in the
elimination (pruning) operator of the B&B search process. Thus, even when con-
sidering the same B&B instance, this can result in different amount of B&B search
nodes to explore in parallel depending on the scale or on the work sharing strat-
egy. The number of B&B search nodes provides a more uniform measure informing
how much work was generated overall the execution. We can see that although T

D

generates less work overall, it cannot outperform BT
D

which can only be attributed
the efficiency of the load balancing mechanism. In addition, we can remark that the
speed-up in terms of number of explored nodes per second is linear for BT

D

(third
column in Fig. 2.10). The speed-up in execution time is worst, but BT

D

is still able
to scale efficiently. Notice also that the speed-up in execution time is super-linear
at scale 128 for instance Ta

30

. This may appear surprising at a first sight. However,
by the discussion made above this can be explained by the fact that at this scale
a very good solution (actually the optimal one) is found very quickly so that the
pruning is very effective and the parallel B&B is very efficient. We emphasis the
fact that in order to fully appreciate the speed-up of our approach as we increase
the scale, one should keep in mind that the size of the induced B&B search process
may not remain constant.

2.6.5 T
D

and BT
D

vs. AHMW for B&B

In this section, we compare our approach with the so-called adaptive hierarchi-
cal master-worker (AHMW) approach studied very recently in [Bendjoudi 2012b,
Bendjoudi 2012c], specifically for B&B. AHMW is mostly related to our work since
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it explicitly organizes computing nodes in a tree hierarchy, and then adapts the com-
putations according to that tree. For this chapter to be self-contained we recall the
design principles and distributed policies used for AHMW. We first notice that the
parallel B&B-specific search algorithm induced by AHMW is conceptually different
from ours in all aspects.

In AHMW, computing nodes are organized in a hierarchical topology, thus in-
ducing a tree backbone. Every node can both play the role of a master and/or a
worker, depending on its height in the hierarchy. Furthermore, masters belonging
to the same hierarchy level can directly communicate and share work with each
other. The global B&B search tree is then decomposed into B&B subtrees which
are mapped into the master hierarchy dynamically at runtime. In fact, the gen-
eral idea of AHMW is to adapt the size of the B&B sub-trees being processed by
each master/worker in an attempt to balance the load evenly. Roughly speaking,
each master owns a work pool corresponding to sub-problems partially explored
in its corresponding B&B sub-tree. When the work pool becomes empty, a mas-
ter steals a sub-problem from its parent. It then re-generates a new work pool,
and so on. B&B work grain plays a crucial role in AHMW. It corresponds to the
depth at which a master/worker is allowed to explore a sub-problem. It is tuned
to be a function of every master level in the overlay hierarchy which is shown to
allow efficient and adaptive B&B work distribution among masters. (Notice that
AHMW [Bendjoudi 2012b, Bendjoudi 2012c] is argued to perform best when the
tree hierarchy has degree 10, which is in a way consistent with our study). The
results obtained with AHMW at scale of 200 cores in comparison with our approach
for configurations T

D

, BT
D

and d
max

= 10, are summarized in Table 2.1.

T
D

, d
max

= 10 BT
D

, d
max

= 10 AHMW
AHMW

T
D

AHMW

BT
D

Ta
21

499 354 15804 31.6 44.6

Ta
22

430 224 438 1.01 1.95

Ta
23

1183 791 776 0.656 0.98

Ta
24

368 194 3352 9.11 17.27

Ta
25

762 404 2652 3.48 6.56

Ta
26

664 472 3231 4.87 6.85

Ta
27

523 346 445 0.85 1.28

Ta
28

112 65 1208 10.79 18.58

Ta
29

330 68 325 0.98 4.78

Ta
30

55 29 303 5.5 10.49

Table 2.1: Execution time (in seconds) of T
D

and BT
D

compared with AHMW at
scale of 200 cores. Bold style refers to execution time better than AHMW.

When considering the T
D

strategy, we perform substantially better than AHMW
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for 7 out of 10 instances. Using BT
D

, our approach performs better than AHMW for
9 out of 10 instances. One can clearly see the relatively huge gap between AHMW
and our approach, e.g., over all instances, BT

D

(resp. T
D

) is approximately 10

(resp. 5) times faster than AHMW. This set of experiments also shows that BT
D

performs significantly better than T
D

. This is naturally attributed to the bridge
edges which are fully playing their role of speeding up workflow through the tree.

2.6.6 BT
D

vs. MW vs. RWS for B&B
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Figure 2.12: Results of BT
D

, RWS and MW for B&B instance Ta
30

at small scales.
Top Left: Execution time. Top Right: Number of explored nodes per second.
Bottom: Parallel efficiency.

To fully appreciate the performance of our approach, we further compare it to
the Master Worker (MW) approach studied in [Mezmaz 2007c] and the well-known
Random Work Stealing (RWS). For completeness, the important implementation
issues raised by the MW approach is sketched in the following. The load-balancing
and work distribution operations of this approach are fundamentally different from
our approach. In particular, they are tuned to take into account specific properties
of B&B works. This makes the MW approach an interesting candidate for evaluating
the performance of our generic load-balancing scheme. In MW, there is a unique
master playing the role of managing a global work pool for workers. The work
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pool at the master consists of a set of unprocessed B&B and their corresponding
workers. Workers periodically communicate with their master in order to update
those B&B subproblems which have already been completed, and to acquire fresh
work whenever their local work pool becomes empty. Whenever a master is asked
for work, it shares a set of B&B subproblems to the requesting worker. Because the
master could assign works which are not completely disjoint to different workers,
some kind of redundancy may appear when executing the B&B in parallel. This
issue is well studied in [Mezmaz 2007c] and was shown to have very negligible impact
on overall performance, i.e., the redundancy reported in [Mezmaz 2007c] is of only
0.39% (in terms of B&B explored nodes).
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Figure 2.13: Parallel Efficiency of BT
D

, RWS and MW for B&B instances at scale
of 200 cores

In Fig. 2.12, we show the scalability of the three approaches BT
D

, MW, and
RWS while using up to 128 cores and B&B flowshop instance Ta

30

. The three
approaches appear to be comparable both in terms of execution time, number of
explored nodes, and parallel efficiency (i.e., the ratio of computing time over execu-
tion time). Notice that the parallel efficiency is almost optimal which witness the
effectiveness of the three approaches. The same observation can also be made at the
larger scale of 200 cores as depicted in Fig. 2.13 summarizing the parallel efficiency
of the three approaches for the 10 B&B instances. Particularly, although the MW
may seem rather simplistic at a first side, it is actually very competitive against our
approach and RWS which is a reference approach for dynamic load balancing. This
can be attributed to two facts: (i) The MW approach of [Mezmaz 2007c] is well
tuned to perform efficiently for B&B, and (ii) Such a centralized approach, where
all dependencies are concentrated at a single point (the master), works well at a
relatively low network scale. In next section, the relative scalability of the three
approaches is analyzed in details for both B&B and UTS, but at the larger scales.

2.6.7 Scalability of BT
D

vs. MW for B&B

In Fig 2.14, we compare our approach with MW at the scale of 1200 cores. One can
clearly see that our approach is substantially better than MW for all instances, but
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for Ta
30

where both approaches are comparable. In Fig. 2.15, we further consider
two instances Ta

21

and Ta
23

and we scale the network from 200 up to 1000 cores.
As it can be observed, the performance of MW starts to slow down while scaling
up. Specifically, when using more than 600 cores, the execution time for Ta

21

starts
to increase rapidly and the execution time for Ta

23

decreases very marginally. This
is attributed to the severe communication bottleneck at the master caused by fine-
grain works. This contrasts with our BT

D

scheme which is fully distributed so that it
continues scaling for both Ta

21

and Ta
23

while efficiently distributing communication
load with fine-grain works.

2.6.8 Scalability of BT
D

vs. RWS for B&B and UTS
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Figure 2.16: Scalability results of BT
D

vs. RWS for B&B. Execution time and
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D

and RWS for the 10 B&B instances at scale of 1200 cores.

In Fig. 2.16, we report the execution time and the corresponding parallel effi-
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ciency of BT
D

against RWS for the two instances Ta
21

and Ta
23

. One can clearly see
that RWS stays competitive up to 400 cores, but then it deteriorates dramatically
compared with BT

D

. Specifically, while the parallel efficiency of BT
D

decreases
marginally and stays above 90% (resp. 96%) for Ta

21

(resp. Ta
23

) in the scale of
1000 cores, it drops down quickly for RWS reaching 52% (resp. 63%) for Ta

21

(resp.
Ta

23

). To better understand this performance drop, we report in Fig. 2.17 the ratio
of successful steals, i.e., the proportion of work requests that allow a core to acquire
work. One can clearly see that finding work becomes very difficult for RWS, i.e.,
only relatively few work requests are successful and are able to fetch work. As a
consequence the load is not balanced evenly and the performance is getting down
at large scales. The relative scalability of BT

D

is confirmed when executed for the
UTS benchmark as shown in Fig. 2.18. The parallel efficiency of BT

D

is in fact
substantially better than RWS, i.e, 77% vs 64%, using 512 cores.
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Figure 2.18: Results of BT
D
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(PE), as a function of overlay size n for UTS.

Several conclusions can be drawn from this set of experiments. For relatively low
network scales, RWS is confirmed to be very competitive which is consistent with
previous studies. However, there is still an opportunity for further improvements as
demonstrated by our BT

D

scheme. By extending tree paths with bridge edges, we
allow work to flow more quickly improving on RWS. At larger scales, RWS reaches
its limits, since idle nodes try to catch victims ’blindly’ using random requests over
a fully connected overlay. In contrast, our tree centric approach tends to minimize
communication delays by distributing the load in a more deterministic/cooperative
manner and the gain in parallel efficiency, thus in speed-up, becomes substantial as
we scale up the network.
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2.7 Conclusion

In this chapter, we attempted to tackle the irregularity of parallel B&B generated
at runtime during execution. Firstly, we presented and discussed briefly an overview
of load balancing techniques. We then proposed to use the random work stealing to
solve the irregularity issues. Secondly, we proposed and studied a new tree-based
load balancing protocol for solving the irregularity in parallel B&B. In particular,
we map all the available computing resources to a tree overlay in order to make
them cooperate efficiently. Thirdly, we proposed a work sharing policy based on the
subtree size of thieves and victims while stealing works along the tree. Instead of
only stealing works for itself, a thief should try to steal works for its whole subtree,
as later, it must serve the stealing requests coming from its children. Similarly, when
a victim shares works to a thief, it takes into consideration the subtree size of the
thief and itself in order to balance evenly the workload between the two subtrees.
We also proposed to extend the tree by adding some bridge edges to make work
flow faster in the distributed system. Finally, we conducted an extensive set of
experiments to evaluate our tree-based solution as well as the random work stealing
in several scenarios at large scales up to 1200 cores for both B&B and UTS. We
also compare them with previous protocol, namely, Master-Worker and Adaptive
Hierarchical Master-Worker. Through our extensive experiments, we observed that:

• The tree-dependent work sharing policy outperforms the standard steal-half
one where a victim simply shares half of its work to a requesting thief. In fact,
the steal-half uses more steal requests and spends more time in communication
than our approach for balancing the workload.

• The structure of the tree overlay strongly impacts performance. If the tree
overlay has small degree or large diameter, a good performance is hardly
achieved as works must take more hops to flow from one side to another side of
the tree. Moreover, our bridge-based work stealing outperforms the tree-based
as bridge edges help the work to flow quickly over the tree, thus minimizing
the communication time and improving performance.

• The Master-Worker or Adaptive Hierarchical Master have several shortcom-
ings, thus producing poor performance and our approach is able to significantly
improve their performance.

• The Random Work Stealing produces good performance for both B&B and
UTS but it also struggles to balance the workload in very large scales as the
applications are relatively fine-grained.

In summary, this chapter presented some load balancing technologies to handle
the irregularity of B&B and UTS application. The studies were performed on homo-
geneous computing platforms where the compute nodes and interconnect networks
are assumed to have the same characteristics and performance. However, most of
computing platforms are heterogeneous in both compute nodes and interconnection
networks. The next chapters will mainly focus on these heterogeneity issues.
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3.1 Introduction

Node-heterogeneous computing systems, interconnecting several hundreds of pro-
cessing units (PUs) ranging from multi-core CPUs, multi CPUs to multi-GPUs,
are the current trend in high performance computing. They provide an impressive
computing power for solving large and challenging problems. Although the aggre-
gated computing capability of those resources is very powerful in theory, achieving
high performance and scalability is still bound to the expertise of programmers in
developing new parallel techniques and paradigms operating both at the algorith-
mic and the system levels. The heterogeneity of resources in terms of computing
power and programming models, make it difficult to parallelize a given application
without significantly drifting away from the optimal and theoretically attainable per-
formance. In particular, when parallelizing highly irregular applications producing
unpredictable workload at runtime like parallel B&B, mapping dynamically gener-
ated tasks into the hardware so that workload is distributed evenly is a challenging
issue.

In this chapter, we push forward the design of parallel and distributed B&B
algorithms, in order to run them efficiently on node-heterogenous systems where a
PU can be either single CPU, single CPU equipped with GPU, multi-core CPUs or
multi-core CPUs equipped with GPUs. Given that all PUs coming from possibly
different clusters connected through a network can be used to parallelize the B&B
tree search, three major issues are addressed:

Q1. Can we benefit from the different degrees of parallelism available in the tree
search procedure and map them efficiently into the different PUs?

Q2. Given no knowledge about the amount of work the search would produce,
can we distributively coordinate PUs so that parallelism dynamically unfolds,
while communication cost and idle time of PUs are kept minimal?

Q3. Having PUs with different computing abilities, can we distribute the load
evenly in order to attain optimal speedup while scaling the network?
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In the next sections, we answer the three questions in a positive manner while
giving new insights into how to fully benefit from node-heterogenous computing
systems and tackle irregularity issues of parallel B&B. The remainder of this chapter
is organized as following. Section 3.2 briefly discusses our solution to deal with the
three above questions. Section 3.3 presents the design and implementation of our
algorithmic solution while using Multi-CPUs Multi-GPUs as computing platforms.
Section 3.4 introduces an improvement of the previous design while adding the usage
of Multi-cores into the computing platform. Section 3.5 reports our experimental
results and findings. Finally, Section 3.6 concludes the chapter.

3.2 A comprehensive overview of our approach

In this section, we give the general principles guiding our approach which will be
described later in detail. The goal is to introduce the different components of our
approach in a comprehensive manner without going into system technicalities or
implementation details. A thorough detailed discussion is presented below in order
to answer the three questions of the previous section.

3.2.1 Mapping B&B Parallelism (Q1)

On one side, considering node-heterogeneous computing platform having different
levels of hierarchy and computing ability of PUs, we can identify two types of PU.
The first type refers to PUs containing only CPUs that are not equipped with
any GPUs. The second type refers to PUs containing both CPUs and GPUs. The
GPUs, equipped with many cores, offer massive computing capability as well as high
parallelism. However the SIMD architecture of GPUs makes them very sensitive to
thread divergence while the SPMD design of CPUs is less sensitive.

On the other side, as discussed in Section 1.3, two types of parallelism are
mostly considered in general for the generic B&B algorithm. At the node-based
parallelism, several B&B tree nodes can be bound in parallel. At the tree-based
parallelism, several B&B subtrees can be explored in parallel. The CPUs deal with
the tree-based parallelism in order to manage irregularity generated at runtime of
parallel B&B. The GPUs are mostly suitable for the node-based parallelism so that
the bounding operation is managed inside the GPUs while the other operations
are performed by the GPUs’ host (i.e CPUs). In fact, due to the irregularity and
unpredictable shape of the tree, it is well understood that implementing the whole
search operations inside GPUs, could suffer from the thread divergence induced by
the SIMD programming model of GPUs. The bounding operation, on the other
hand, can highly benefit from the parallelism offered by many GPU cores.

Although GPU devices can handle the evaluation of many tree B&B nodes in
parallel [Chakroun 2012, Lalami 2012], the CPU hosts still have to prepare a data
containing these nodes, copy them into GPU memory and copy back the results.
This implies that while computations are carried out on GPU device, CPU host
is idle and vice-versa. In our approach, the CPU host and the GPU device are
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managed to run computations in parallel, i.e., while the GPU device is evaluating
tree nodes, the CPU host is preparing new tree nodes for the upcoming evaluation
in the GPU device.

3.2.2 Workload Irregularity (Q2)

It is essential to fully explore computing resources of a single CPU-GPU. How-
ever, it is more challenging to fully utilize the networked resources that is available
in distributed computational environments. In fact, the irregularity generated at
runtime can eventually lead to very poor performances because most computing
nodes are underloaded and few others are highly overloaded, or because of the cost
of synchronizing PUs and transferring work is so high. We decided to use Ran-
dom Work Stealing (RWS) to tackle the irregularity problems among distributed
PUs for node-heterogeneous platforms due to the following reasons. Firstly, RWS
is theoretically proved to be an optimal solution to deal with irregularity issues
under some constraints [Blumofe 1999]. Secondly, we observed that RWS produces
good performance at small and average scales without any tuned parameters. Lastly,
comparing to the tree-based approach presented in Chapter 2 or other overlay-based
approaches, RWS is less sensitive to where PUs are placed in a logical graph as RWS
can be seen as a clique and each vertex of the graph is equivalent.

3.2.3 PUs Compute Power (Q3)

The potential computational capability of different types of PUs might be different
in order of magnitude. For instance, the relative performance of CPU and GPU
can range from dozens to some hundreds orders in the favor of GPU. Since the
bounding operation is the most time consuming in a B&B process and it can be
implemented inside the GPU. Computing the bound for thousands of B&B nodes
in parallel can result in an impressive acceleration. However, a GPU can only run
with its maximum capacity when an accurate amount of B&B nodes is provided as
input. Therefore there will be a significant lost if a GPU is provided less than its
required value.

To understand the issues of node-heterogeneity of distributed PUs, one has to
keep in mind that (i) a GPU is substantially faster in evaluating B&B tree nodes
than a CPU, (ii) nothing can be assumed about the amount of tree nodes initially.
Hence, if GPUs run out of work and stay idle searching for work, the performance
of the system can drop dramatically. If only few CPUs are available in the system,
work stealing operations from CPUs to GPUs can cause a severe penalty to perfor-
mance. This is because the few CPUs can only contribute very little to the overall
performance but their stealing operations to GPUs can disturb the GPU computa-
tions and prevent them from reaching their maximal speed. In contrast, if work is
scheduled more on GPUs, then a significant loss in performance can occur when a
relatively large number of CPUs are available.

To tackle these issues, we propose to estimate the compute capability of PUs
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continuously at runtime with respect to the problem instance being executed so that
tasks can be offloaded based on the normalized power of thieves and victims.

3.3 The 2MBB architecture: Multi-CPUs Multi-GPUs
Parallel B&B

In this section, we will describe in detail our approach in the scenarios of Multi-
CPUs and Multi-GPUs. In these scenarios, all PUs are distributively connected
and each PU is either a single CPU or a single CPU equipped with a GPU device.
Fig. 3.1 presents the big picture as well as different components of our framework.
We will detail them in the next subsections.
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Figure 3.1: Overview of the 2MBB architecture: Multi-CPUs Multi-GPUs for B&B

3.3.1 Host-device parallelism for single CPU-GPU

For the PUs equipped with GPUs as depicted in Fig 3.1, the select, branch and prune
operations are performed by the CPU host and the bound evaluation is handled
by the GPU device. Generally speaking, for each bounding evaluation running
on a GPU, input data comprising several B&B tree nodes is transferred to GPU
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memory, a kernel is executed on the input and the outputs are copied back to the
CPU host for being processed (i.e prune operations). In other words, standard
CPU/host-GPU/device executions are synchronized sequentially. While the CPU
host is performing select, branch or prune operations in order to prepare a new input
data for GPU device, or even while copying data to/from device, the GPU is stalled.
Similarly, while the evaluation of B&B tree nodes is running on the GPU device, the
CPU host is stalled. This can significantly slow down computations especially when
the CPU host and the GPU device can perform concurrent operations in parallel.

With the rapid evolving of GPU devices, it is now possible to address the above
issue by carefully exploiting the new available hardware and software technologies.
For instance, NVIDIA GPUs with compute capability � 1.1 are associated with a
compute engine and a copy engine (DMA engine). NVIDIA’s Fermi GPUs have up
to 2 copy engines, one for uploading from CPU host to GPU device and one for
downloading from GPU device to CPU host. Each engine is equipped with a queue
to store pending data and kernels that will be processed by the engine shortly.

Parallel execution

Communication: GPU device to CPU host

Sequential execution

Time line

stream 1

stream 2

stream 3

stream 4

GPU: bouding evaluation

Communication: CPU host to GPU device

CPU: select, branch and prune operations

GPU device

CPU host

Figure 3.2: Example of host-device parallelism for single CPU-GPU

The host-device parallelism discussed in our approach can be enabled using
CUDA primitives as sketched in Algorithm 6. Each Enqueue procedure dispatches
CUDA operations into the GPU device asynchronously, i.e pushes/retrieves data and
launches the kernel. This is possible by wrapping those operations into a CUDA
stream. All operations inside the same CUDA stream get automatically synchro-
nized and executed sequentially, but the CUDA operations of different streams could
overlap one with the other, e.g., execute the kernel of stream 1 and retrieve data
from stream 2 concurrently in parallel. In our implementation, we use a maximum
number of streams, i.e., variable r

max

, which is the maximum number of elements
(data, kernel) in the queue of GPU Copy engine and Compute engine. The maxi-
mum number of streams that a GPU can handle depends in general on GPU global
memory characteristics. Asynchronously in parallel to the Enqueue procedure, the
Dequeue procedure in Algorithm 6 waits for data copied back from the device on
a given CUDA stream, and processes the output data. Figure 3.2 briefly illustrates
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the host-device concurrent parallelism of four CUDA streams comparing with the
sequential one.

Algorithm 6: CPU-GPU parallelism — Concurrent host-device template
Data: q_host, q_device: queue of task in host and GPU; q_host_size:

current size of q_host (0 initially); stream[r
max

]: CUDA Stream of
r
max

elements; w_index, r_index: next index to write (resp. read) to
(resp. from) the queues (0 initially).

1 while tree nodes are available do in parallel:
// Push tree nodes for evaluation inside GPU

2 Execute Procedure Enqueue;
// Retrieve and process evaluated nodes from the GPU

3 Execute Procedure Dequeue;

Procedure Enqueue
1 while q_host_size < r

max

do
2 q_host[w_index].task  prepare a pool of tree nodes;

// Asynchronous Operations on stream[w_index]
3 cudaMemcpyAsyn(q_device[w_index], q_host[w_index], sizeof(q_host[w_index].task),
4 cudaMemcpyHostToDevice, stream[w_index]);

// Launch parallel evaluation (bounding) on device
5 KERNEL<<< stream[w_index] >>> (q_device[w_index]) ;
6 cudaMemcpyAsyn(q_host[w_index].bound, q_device[w_index].bound,
7 sizeof(q_device[w_index].bound),
8 cudaMemcpyDeviceToHost, stream[w_index]) ;
9 w_index  (w_index + 1) (mod r

max

);
q_host_size q_host_size+ 1 ;

Procedure Dequeue
1 if q_host_size > 0 then

// Wait for results from device on stream[r_index]
2 cudaStreamSynchronize(stream[r_index]) ;
3 Process output data from q_host[r_index], i.e., prune nodes ;
4 r_index  (r_index+ 1) (mod r

max

) ;
5 q_host_size q_host_size� 1 ;

3.3.2 Adaptive Stealing for Multi-CPUs Multi-GPUs

We decided to use Random Work Stealing (RWS) to balance the workload among
PUs. In this context, the stealing granularity, that is the amount of B&B tree nodes
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to be offloaded from victims to thieves for stealing operations, denoted f , plays a
crucial role. Depending on the hardware platform and the input application, there
may exist a value of stealing granularity giving the best performance. In general,
a thief attempts to balance workload evenly between itself and the victim. In fact,
when this amount of work is very small, the large overhead is observed since many
load balancing operations are performed. At the opposite, when it is very large,
too few load balancing operations will occur, thereby resulting in large idle times
despite the fact that surplus work could be available. In classical RWS approaches,
this is a hand-tuned parameter which depends on the distributed system and the
application context [Min 2011]. In a theoretical study [Blumofe 1999], the stability
and optimality of RWS can be analytically guaranteed for f  1/2. In practice, the
so called steal-half strategy (f = 1/2) is often shown to perform efficiently using
homogenous computing units. Besides, in a heterogeneous and hybrid computing
system, the hardware characteristics of PUs, e.g., clock speed, Cache, RAM, etc, can
be highly needed to balance the work load evenly depending on the characteristics of
every available PU. Because high variations in computing power among PUs can lead
to high imbalance and idle times, one has also to manage this issue carefully when
distributing work. One possible solution for the above issues could be to profile
the system components/PUs and tune work granularity offline before application
execution in order to get the best performance. It should be clear that such an
approach is not reasonable nor feasible, for instance when the system may undergo
a huge number of many different types of PUs, or when having many different
applications at hand.

In our stealing approach, we make every PU maintain at runtime a measure
reflecting its computing power, i.e., variable X in Algorithm 7. As the computations
are running on, every PU adjusts its measure continuously with respect to the work
processed in the previous iterations. In our approach, we simply use the average
time needed for processing a B&B subproblem. More precisely, each PU sets its
computing power to be X = N/T , where T is the (normalized) computing time
elapsed since the PU has started the computation and N is the number of tree
nodes explored locally by that PU. Notice that time T includes, in addition to
tree node evaluation (i.e. B&B lower bounding), the time needed for other search
operations (i.e. select, branch and prune) but not the time when a PU stays idle.
When running out of work, a PU v then attempts to steal work by sending a request
message to another PU u chosen at random, while wrapping the value of X in the
request. If a victim has some work to serve, then the amount of work (i.e., number
of tree nodes) to be transferred is in the proportion of X/(X + Y ), where Y is the
computing power maintained locally by the victim. Otherwise, a reject message is
sent back to notify the thief and a new stealing round is performed. Initially, the
value of X is normalized so that all PUs have the same computing ability. In other
words, the system starts stealing half and then the stealing granularity is refined
for each pairwise PU. Intuitively, each PU acts as a black-hole, so that the higher
computing power of PUs is, the more available work are flowed to the black-hole.
Furthermore, no knowledge about PUs is needed so that any performance variation
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at system/application level would also be detected at runtime.

Algorithm 7: Random Work Stealing for Multi CPUs Multi GPUs
1 while termination not detected do
2 if local queue is empty then
3 Execute Procedure Thief;
4 else
5 Execute Procedure Victim;

Procedure Thief
1 X  runtime normalized computing power ;
2 repeat
3 u VICTIM_SELECTION_AT_RANDOM;
4 SEND a steal request message with X to u;
5 RECEIVE u’s response (reject or work) message ;
6 if a steal request is pending then
7 v  pull the next pending thief request;
8 Send back a reject message to v ;

9 until retrieving work from victim u or termination detected ;

Procedure Victim
1 if a steal request is pending then
2 if tasks are available then
3 Y  runtime normalized computing power ;
4 (v,X) pull the next pending thief request;

5 work  SHARE_WORK in the proportion of
X

X + Y
;

6 Send back shared work to v ;
7 else
8 Send back a reject message to v ;

9 else
10 task  pop the next task from local pool;
11 EXECUTE task ;
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3.4 The 3MBB architecture: Multi-cores Multi-CPUs
Multi-GPUs Parallel B&B

The previous section introduced our approach for balancing workload of parallel
B&B in the scenarios of Multi-CPUs Multi-GPUs. However, many node-heterogeneous
platforms come with multi-core processors, hence they have a mix of shared memory
and distributed memory, which brings more challenges to the parallel computation as
well as dynamic load balancing. In this context, there exists two levels of parallelism
from the perspective of hardware-aware topology. Intra-node parallelism refers to
parallel computations among cores of a single compute node through shared mem-
ory, while inter-node parallelism indicates parallel computations among compute
nodes in distributed memory systems. The difference in communication cost be-
tween shared memory and distributed memory is very pronounced so that stealing
tasks between cores in a single compute node is much faster compared with the one
in distributed memory. Our approach takes the hardware topology into account and
the algorithm tries to steal work from the lowest hierarchy (i.e intra-node) to the
highest hierarchy (i.e inter-node).

Fig 3.3 describes the big picture as well as different components of our framework.
In the considered platforms, each computing node is a multicore system, and some
of them are equipped with GPU devices. Each GPU device is hosted by a CPU
core. In our approach, we applied work stealing at two levels. In the first level,
work stealing is performed in the multicore shared memory system among CPU
cores. In the second one, work stealing is performed through distributed memory
system as the 2MBB presented in the previous section. We will detail our approach
in the next subsections. Let us remind that this nature design of work stealing
has several advantages compared to the typical design of using a single global pool
shared by many worker threads that are recently used in many works [Mezmaz 2013,
Chakroun 2013b].

3.4.1 Intra-node parallelism

In a shared memory system, the communication cost among threads is very negligible
which allows efficient parallel computations of B&B. We decided to use asynchronous
multiple work pools so that each thread runs on a single physical core and manages
a separate work pool storing new generated B&B subproblems. We adopted work
stealing for multi-core systems such that a thread plays a role of either a thief or a
victim. Whenever a thread finishes all subproblems of its work pool, it will become
a thief and tries to steal works from other threads running on the same compute
node. Let us remind that stealing operations and task offloading among cores are
converted to read/write operations to/from common data structures therefore they
are very fast compared with message-passing mechanism in distributed memory
systems. However, simultaneous read/write operations to common data causes data
race problems leading to unexpected outputs eventually. Locking and synchronizing
simultaneous accesses of several threads are the popular solution in this context but
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they come with a price. Overusing these techniques highly reduces the potential
parallelism of a multi-core system. Therefore, achieving a good performance requires
a well design of data structure in order to minimize locking operations as many as
possible.

A naive approach is that each thread manages a fully shared work pool. In other
words, a thread can fully access to the work pools of other threads during execution.
This approach is simple in design as well as implementation but it introduces high
overhead as locking techniques are used to synchronize multiple accesses to a work
pool of a thread. For instance, when a thief thread tries to steal work from another
victim thread, it has to lock the work pool of the victim then offloads tasks from
the victim’s work pool to the thief’s work pool. During the locking time, the victim
is forced to be stalled as it can not access to its own work pool to pop/push task.
Notice that a thread has also to perform a lock operation to its own pool whenever
it accesses to the pool since the pool is fully shared with other threads.

A better approach is to split work pool into two different pools: one for the owner
thread storing new generated tasks, one for storing sharable tasks for being stolen
by other threads. Therefore, locking is avoided whenever the owner thread tries
to access to its own pool, thus improving performance. However, tasks are copied
backward and forward between the two pools whenever one of them is empty. The
copy operations expose a shortcoming of this approach.

The most appropriate approach is to use a single work pool split into a private
and a public part as described in [Dinan 2009]. The private region functions like
the work pool which is exclusively owned by the owner thread. The global region is
exposed to other threads. In a single work pool, these two regions are separated by
a split pointer. Furthermore, the amount of tasks of the private and public regions
are adjusted by moving the split pointer forward or backward without any memory
copies.
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Figure 3.4: Split work pool

Figure 3.4 describes the design of split work pool. In detail, the private portion
functions like a Stack with a LIFO manner and the public portion works like a Queue
with a FIFO manner. The LIFO characteristics of the private region allows threads
to perform a DFS search on a B&B tree in order to reach to a leaf quickly. The
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FIFO property of the public region allows to share coarse grain B&B subproblems
that potentially generate more descent subproblems. In B&B, subproblems that are
close to the root usually contain large amount of works while this amount decreases
as the recursion develops. Besides, steals of other threads to the public regions are
handled by a lock, but the owner threads is lock-free with respect to its private
region since it can freely push/pop task to/from it. A split pointer is associated
with two operations: release and reacquire. The release operation refers to move
the split pointer to the private region for exposing private tasks to public region.
The reacquire operation indicates to move the split pointer to the public region for
moving public tasks to the private region. In our design, we define two types of split
pointer:

• CPU-based split pointer: refers to performing the reacquire operation
whenever the private region is empty. As CPU threads can only process a
single task at once. We also call it as strictly split pointer.

• GPU-based split pointer: refers to perform the reacquire operation in ad-
vance before the private region is completely empty. As GPU threads can
handle several tasks at once, the maximum potential compute power of GPUs
is only guaranteed if and only if they are provided large enough tasks as in-
puts. In this case, if the current tasks of the private region does not fit as
a good input for GPUs, the reacquire operation is performed to increase the
input size for GPUs.

Termination. the intra-node approach can be borrowed to easily handle ter-
mination by making available threads handle a same shared variable. In fact, the
value of the termination variable refers to how many idle threads exist in the system.
Therefore the variable is increased by one if a thread becomes idle, and it is decreased
by one if an idle thread becomes busy. When the value is equal to the number of
running threads, termination can be detected locally within a shared memory com-
ponent. Locking techniques are used when updating the termination variable. This
approach does not scale due to the central nature, but it’s still acceptable in shared
memory systems.

Knowledge Sharing. Each thread manages a separate data structure for stor-
ing the best solution found so far. Whenever a thread finds a better solution, it will
simply update the value to all other threads. Locking technique is also used when
updating the best-found solution.

3.4.2 Inter-node parallelism

So far we have presented the design of intra-node parallelism to parallelize and to
balance workload of B&B applications in shared memory systems. To expand the
intra-node parallelism on distributed memory systems, stealing operations must be
transformed to messages that are sent across compute nodes through the underlying
interconnect networks. One naive approach is to allow individual threads perform
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random work stealing as the 2MBB presented above with one main difference. Steal-
ing operations are performed differently according to the relative location of thieves
and victims. In more details, when a thief and a victim thread share the same
compute node, the stealing operation is performed as the intra-node parallelism
presented above. Otherwise, the thief sends a stealing message to the victim. This
approach is straightforward but exposes some shortcomings. In fact, thieves might
suffer from high communication overhead since stealing across compute nodes is
much more expensive than stealing in the shared memory system. Instead, they
must take into account the usage of the multicore systems in priority compared
with the distributed systems.

In our approach, stealing across compute nodes is only enabled when all threads
detect that there is no work available locally. Here, a single compute node is meant
as a shared memory system where several compute cores are available. This allows
all threads of a compute node try to complete all available local works before stealing
works from other distributed compute nodes. However, if all idle threads try to steal
works through the distributed memory system, they might generate large amount
of messages and cause unnecessary overhead for processing them. This led us to
design an approach where stealing across compute nodes is only handled by a single
thread in each distributed node. In fact, this thread is responsible for processing
and handling all incoming messages of the other nodes and it plays the role as a
leader or a master thread in the corresponding compute node.

The master thread functions as the other threads with one main difference.
When it detects that there is no work in the work pools of itself and the other
threads, it will perform the random work stealing work across compute nodes. The
master thread randomly selects another compute node as a victim and sends a
steal request message. In our design, we use the adaptive work sharing policy in
order to evenly share works among compute nodes, but with two main differences
as the following. The first one is that the power of a compute node is measured
as an aggregated value of all the threads of a node. The second one is that the
amount of work to be considered at victims is the amount of all available tasks in
the public regions of all local threads. In more details, the master thread of a thief i
collects the aggregated computing power X =

P
j

x
i,j

(where x
i,j

is the computing
power of thread j at thief i) and sends message to a randomly selected victim p
while wrapping the value of X. Similarly, upon receiving a steal message, the master
thread of the victim p also measures its aggregated computing power Y =

P
q

y
p,q

(where y
p,q

is the computer power of thread q at the victim p), and then the amount
of work to be transferred is in the proportion of X

X+Y

. Technically speaking, the
master thread of the victim p collects s

p,q

= t
p,q

· X

X+Y

work units from the public
region of every work pool of all the local threads (where t

p.q

is the total available
works of the public region of thread q at the victim p), and shares the total amount
of S =

P
s
p,q

work units to the requesting thief. Figure 3.5 details all the working
states of this approach.

Knowledge sharing and Termination. Both issues are managed using a
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binary tree as for the random work stealing approach presented in Section 2.3.
Notice however that the tree is only used to span distributed compute nodes (that
is the master threads) and not all available cores.

3.5 Experiments

3.5.1 Experimental Setting

Three clusters C
1

, C
2

and C
3

of the Grid’5000 French national platform [Grid’5000 ]
were involved in our experiments. Cluster C

1

contains 10 nodes, each equipped with
2 CPUs of 2.26Ghz Intel Xeon processors with 4 cores per CPU. Besides, each node
is coupled with two Tesla T10 GPUs. Each GPU contains 240 CUDA cores, a 4GB
global memory, a 16.38 KB shared memory and a warp size of 32 threads. Cluster
C
2

(resp. C
3

) is equipped with 72 nodes (resp. 34 nodes), each one equipped with
2 CPUs of 2.27 Ghz Intel Xeon processor with 4 cores per CPU (resp. 2 CPUs of
2.5 Ghz Intel Xeon processor having 4 cores) and a network card Infiniband-40G.

We use the standard Taillard’s Flowshop instances in the family 20⇤20. Only the
bounding operation has to be executed inside the GPU devices. We use the kernel
implementation provided by [Chakroun 2012, Melab 2012] and use it as a black-
box. Let us point out that the GPU kernel implementation of [Chakroun 2012,
Melab 2012] has a parameter s referring to the maximum number of B&B tree
nodes that are pushed into GPU memory for parallel evaluation. It is shown
in [Melab 2012] that the parameter s has to be fixed to a value s? so that the
device memory is optimized and the performance is the best on a single GPU. Since
we assume that the GPU kernel is provided as a black-box, and unless stated explic-
itly, the value of s is fixed in our experiments to be simply s?. In our experimental
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study, we are also interested in analyzing how our approach would perform when
having GPU kernels allowing for different speed-ups in the evaluation phase. This
can be typically the case for other type of problems, different hardware configu-
rations, etc. Being able to understand whether our load balancing mechanism is
efficient in such a heterogeneous setting, independently of the considered scale or
speedup gap between available CPUs and GPUs, is of great importance. In this
chapter, we additionally view the parameter s as allowing us to empirically reduce
the intrinsic speed of a single GPU, and thus to experiment our approach while
using different GPU and CPU configurations.

In the remainder, we shall evaluate our 2MBB and 3MBB approach in several
scenarios. Two sets of experiments are designed as following:

• We consider the following set of experiments for 2MBB..

1. Running our approach with a single CPU-GPU.

2. Running our approach at different scales with Multi GPUs.

3. Running our approach with a fixed number of GPUs, while scaling the
CPUs.

4. Running our approach with a fixed number of CPUs, while scaling the
GPUs.

5. Running our approach with CPUs and GPUs having different computa-
tional powers.

• We consider the following set of experiments for 3MBB and 2MBB.

6. Comparing our approaches when running them with multi-core CPUs
and multiple GPUs in large scales.

7. Comparing our approaches when running them with multi-core CPUs in
large scales (without GPUs).

Regarding the experiments of 2MBB, each processing unit is launched on one
CPU core or on a CPU core equipped with a GPU device (taken from C

1

). For
the first four scenarios, CPUs are taken from cluster C

2

. As for the fifth scenario,
we mix CPUs of different hardware clock speeds, taken from C

2

and C
3

, and GPUs
launching kernels configured with different values of s. The previous scenarios aim
at providing insights on how the system performs independently of the scale and/or
the power of CPUs and GPUs. Regarding the experiments of 3MBB, the CPUs
are taken from clusters C

1

, C
2

, C3 and the GPUs are taken from C
1

. For all
experiments, we measure T and N , respectively the time needed to complete the
B&B tree search and the number of B&B tree nodes that were effectively explored.
All reported speedups are relative to the number of B&B tree nodes explored by
time units, that is N/T .
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3.5.2 Performance of 2MBB architecture

3.5.2.1 Impact of host-device parallelism in single CPU-GPU

We start our analysis by evaluating the impact of host device concurrent operations.
For the ten instances in Taillard’s family 20*20, we report in Fig 3.6 execution time
and speedup w.r.t. the baseline sequential host-device execution [Melab 2012], for
different number of concurrent CUDA streams (variable r

max

in Algorithm 6) and
different GPU kernel parameters s. One can clearly see that substantial improve-
ments are obtained, i.e., our approach is at least twice faster. It also appears that
the maximum number of concurrent CUDA streams r

max

, which is the only parame-
ter used in our approach, has only a marginal impact on performance. Fig 3.6 Right
shows that the speed-up, w.r.t the sequential host-device execution, is substantial
(> 30%) but depends on kernel parameter s. This is because for lower values of s,
the host spends more time pushing small amount of data, while the device is less
efficient. In other words, host-device parallelism performs better when the amount
of data and computations on device is higher.
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Figure 3.6: Host-device parallelism vs. baseline sequential host-device execu-
tion [Chakroun 2012]. Left: Execution time with different number r

max

of CUDA
streams and s = s? (Lower is better). Right: Speedup w.r.t baseline for different
values of s and r

max

= 10 (Higher is better).

3.5.2.2 Scalability and Stealing Granularity for Multi GPUs

In this section, we study the scalability of our approach when only multiple GPUs
are available in the system. For this set of experiments we choose the first instance
Ta

21

to be our case study. In Fig 3.7 Left, we report the speedup of our approach
w.r.t one single GPU, and also the speedup obtained when using a static stealing
granularity (with of course host-device parallelism enabled). By static stealing, we
mean that we initially fix the proportion of tree nodes to be stolen as a parameter
f 2 {1/2, 1/4, 1/8}. Two observations can be made. Firstly, our adaptive approach
performs similar to the best static stealing, which is for f = 1/2 from our experi-
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ments. Other values of f in static stealing are in fact worse especially in high scales.
Secondly, we are able to scale linearly with the number of GPUs. At scale 16, one
can notice a slight decrease in speedup. We attribute this to two factors: (i) the
communication cost of distributing work strategy to be not negligible in large scales,
and (ii) sharable work becomes very fine grain so that it limits the maximal perfor-
mance of GPUs. Actually, the results of Fig. 3.7 Left are obtained with parameter s
being s? the maximal (and best) amount of tree nodes that a single GPU can han-
dle. In Fig 3.7 Right, we push our experiments further by taking other values for
parameter s. We can clearly see that the speed-up (w.r.t. one single GPU running
a kernel with the same value of s) is not impacted. The scalability is even slightly
better when the kernels are less efficient. This can be interpreted as the scalability
of our approach being not sensitive to other system/application settings with GPUs
having possibly different processing powers.
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3.5.2.3 Adaptive Stealing for Multi-CPUs Multi-GPUs

In this section, we study the properties of our approach when mixing both CPUs
and GPUs. For that purpose, we proceed as following. Let ↵j

i

be the speedup
obtained by a single PU j with respect to PU i. We naturally define the linear
(ideal) normalized speedup with respect to PU i, to be

P
j

↵j

i

. For instance, having
p identical GPUs and q identical CPUs, each GPU being � times faster than each
CPU, our definition gives a linear speedup with respect to one GPU (resp. one
CPU ) of p+ q/� (resp. q + � · p). The following sets of experiments shall allow us
to appreciate the performance of our approach when varying substantially the ratio
between the number of GPUs and CPUs.

Mixed Scaling. Our first set of experiments is complex since we manage to mix
multiple GPUs with empirically different powers and multiple CPUs with different
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clock speeds. This scenario is in fact intended to reproduce a heterogeneous setting
where, even PUs in the same family do not have the same computing abilities. In
this kind of scenario, where in addition the power of PUs can evolve, e.g., due
to system maintenance constraints or hardware renewals/updates, even a weighted
hand tuned steal strategy is not plausible nor applicable. In the results of Fig. 3.8,
we fix the number of CPUs to 128 with half of them taken from cluster C

2

and the
other half from cluster C

3

(C
2

and C
3

have different CPU clock speeds as specified
previously). For GPUs, we proceed as following. We use a variable number of GPUs
in the range p 2 {1, 4, 8, 12, 16, 20}. For p > 1, we configure the system so that 1/2
of GPUs run a kernel with pool size s?, 1/4 of them with pool size s?/2 and the
last 1/4 of them with pool size s?/4. Once again our approach is able to adapt
the load for this complex heterogeneous scenario and to obtain a nearly optimal
speedup while outperforming the standard steal-half strategy. From the previous
set of experiments we can thus conclude that our approach allows us to take full
advantage of both GPU and CPU power independently of considered scales, or any
hand tuned parameter.
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Figure 3.8: Speedup when scaling heterogenous GPUs (1/2 with s?, 1/4 with s?/2,
1/4 with s?/4), and 128 heterogenous CPUs (1/2 from cluster C
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C
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). Speedup is w.r.t. one GPU configured with s?. r
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= 10.

GPU Scaling. We now fix the number of CPUs and study how the behavior of
the system when scaling the number of GPUs. Results with 128 (identical) CPUs
and (identical) GPUs ranging from 1 to 16 are reported in Fig 3.9. We can similarly
see that our adaptive approach is still scaling in a linear manner while being near
optimal. It is also substantially outperforming the static steal-half strategy.

CPU Scaling. In this set of experiments, we fix the number of GPUs and scale
the number of CPUs. Besides, we experiment two other static baseline strategies.
The first one is the standard steal-half strategy. The second one, we term ’Weighted
Steal’, is hand tuned as following. After profiling the different PUs in the system
and running the B&B tree search with the corresponding FlowShop instance on
every single PU until termination, we provide each PU with the relative computing
power of every other PU in the system. Then, the amount of work transferred from
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Figure 3.9: Speedup (w.r.t. one GPU) when scaling GPUs and using 128 CPUs.
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PU i to PU j is initially fixed to be in the proportion of the relative computing
power observed in the profiling phase. The results with 1 and 2 (identical) GPUs
and (identical) CPUs ranging from 1 to 128 are reported in Fig 3.10.
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One can clearly see that our approach performs similar to the weighted static
strategy while avoiding any tedious profiling and/or PU code configurations. In
particular, the weighted strategy cannot be reasonable in production systems with
different PU configurations since it requires much time to tune the systems. Turning
to the steal half static strategy, it appears to perform substantially worse. When
having relatively few CPUs, the performance of steal half is even worse than in a
scenario where only GPUs are available (see Fig. 3.7). It is also getting worse as we
push additional few CPUs in the system. Improvements over 1 or 2 GPUs are only
observed when the number of CPUs is relatively high (w.r.t GPU power). Besides,
our approach is able to scale near linearly at small and immediate scales up to
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128 CPU cores. However, its performance significantly drops at larger scales (256
and 512 CPU cores) compared with the linear speedup. At the large scales, work
become more fine-grained so that PUs spend more time in fetching them compared
with the small and intermediate scales. In the next subsection, we will present the
performance of 3MBB architecture while running at the large scales.

3.5.3 Performance of 3MBB architecture

In this section, we analyze the performance of our approach when dealing with
multi-core platforms. In order to push our experiment further, we consider to solve
the Taillard’s instances at a larger scale of 512 CPU cores. Let us remind that
in large scale experiments the application granularity might be broken into fine-
grained which pushes more challenges on workload balancing techniques. In fact,
the fine-grain aspects of the irregular applications can make PUs look for work more
often, thus reducing the utilization of PUs in computation. The objective of the
experimental study presented in this section is to evaluate the design of multi-core
approach of 3MBB for B&B.

3.5.3.1 Relative scalability of 3MBB and 2MBB

In Fig 3.11, we analyze the scalability of 3MBB compared to 2MBB in different
heterogeneous scenarios where the number of GPUs is fixed in the range 0, 1, 2, 4
and the CPU-cores are scaled from 1 up to 512. The results clearly show that the
3MBB approach significantly improves the performance of 2MBB. More precisely,
the performance of the two approaches is equivalent in small and average scales (up
to 128 CPU cores) where they both scale near linearly. In small and average scales,
B&B workload is relatively not very fine-grained, hence decreasing the need for PUs
to steal work units more frequently. This results in increasing the utilization of PUs
in computations and consequently in better speedups. However, the performance of
2MBB starts to drop in the scale of 256 and 512 CPU-cores and it is substantially
outperformed by the 3MBB approach. This is clearly attributed to the advanced
and hybrid load balancing mechanism used in 3MBB which allows us to take full
advantage of the different levels of parallelism exposed by the compute environment.
In fact, balancing B&B workload locally at every shared memory component allows
PUs to significantly reduce the idle times and the cost of stealing using message
passing. We shall analyze this aspect in more details in the next subsection.

3.5.3.2 Large scale analysis

To appreciate the gain we can obtain for parallel B&B when using hybrid load
balancing with both shared memory and message passing, we consider to solve the
ten Flowshop instances in the scenario where no GPUs are used but only multiple
CPUs with multi-core systems at the largest scale of 512 cores. The results reported
in Fig. 7 clearly show that the 3MBB significantly improves the 2MBB by 30% (for
instance Ta23) up to 50% (for instance Ta30). Notice that according to Fig. 3.12,
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Figure 3.11: Speedup of 3MBB vs. 2MBB when scaling CPUs and using 0 GPU
(Top Left), 1 GPU (Top Right), 2 GPUs (Bottom Left) and 4 GPUs (Bottom
Right). X-axis is in the log scale. Speed-up are w.r.t. one GPU. r

max

= 10.

instance Ta30 (resp. Ta23) is likely to expose the most (resp. least) fine-grained
parallelism.
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Figure 3.12: Explored Nodes of 3MBB vs. 2MBB on 512 cores

Table 3.1 allows us to get more insights on the impact of the shared memory
parallelism incorporated in the 3MBB approach. More precisely, we measure and
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report therein different statistics concerning the time where a PU stays idle search-
ing work. Firstly, we can see (last column of Table 3.1) that the proportion of time
that a PU spends requesting work over all B&B execution is significantly smaller
for 3MBB (6.79% in average and over all instances) compared to 2MBB (32.88%).
This indicates that the 3MBB allows us to maximize useful B&B computations over
work transfer. This also shows that balancing B&B work efficiently among PUs is
the critical issue when considering fine-grain large scale scenarios. Secondly, we can
see that much less inter-node communications are performed by 3MBB compared
to 2MBB (by a factor of 40.5 times in average). In fact, only the leader threads
are allowed to perform inter-node steals in contrast to 2MBB where all individual
threads execute inter-node steals. Not only the number of inter-node steals is signif-
icantly smaller for 3MBB, but they are also much less time consuming (by a factor
of 3.43 times in average). This is attributed to the fact that a PU is likely to re-
ceive more work requests simultaneously, thus inducing more delays for responding
them. Secondly, we can see that the intra-node steals are dominant compared with
the inter-node ones which illustrates how the 3MBB approach prioritizes intra-node
steals over inter-node steals. Since the cost of intra-node communication is relatively
low and the design of the split work pool allows us to minimize the cost of thread
synchronizations, the shared-memory computations are then optimized resulting in
an efficiency mechanism for balancing the B&B tasks among the shared memory
CPU-cores. On the other side, inter-node steals are much slower than intra-node
steals; but they are very important to balance work load among distributed com-
pute nodes. Let us remind that 3MBB tries to balance workload adaptively based
on the aggregated power of available cores. A leader thread in 3MBB always tries
to fetch enough tasks in order to serve all the threads sharing the same memory.
Since only one single leader performs remote steals on behalf of many others, the
scale of the distributed system is then artificially reduced to relatively few leaders
and the inter-node communication is likely to be much more efficient.

The previous observations also hold when considering a large scale scenario in-
corporating GPUs devices as reported in Table 3.2 for the first Flowshop instance
Ta21. We can see that 3MBB is not sensitive to the number of GPUs devices used.
Furthermore, the reported results also confirm that this approach is able to reduce
the overall communication cost, consequently limiting the penalty in performance
one must pay when balancing B&B irregular workload distributively. However, no-
tice from Fig. 3.11 that there is still a gap between the actual speedup of 3MBB
and the linear one at the largest scale. We attribute this to the combined effect of
two facts: (i) a single GPU device can only run at its maximum capacity only when
there is enough B&B subproblems to push in, and (ii) the available B&B work gets
more and more fine-grained and scattered over PUs at such large scales. Hence,
although the GPU devices do not stay idle, it is more likely that they cannot ac-
quire enough B&B subproblems to bound in parallel, hence decreasing the compute
capacity of GPUs. In other words, as work is too fine-grained and the number of
B&B subproblems that are pushed inside the GPUs is not optimal so that the GPUs
are not able to reach their maximum speedups for such scales. Overall, we argue



82
Chapter 3. Dynamic Load Balancing for Node-Heterogeneous

Computing Environments

Inter-node Intra-node % of steal

time# Steals Time (s) Time/Steal (s) # Steals Time (s) Time/Steal (s)

Ta21
2MBB 1831 115.18 0.063 N/A 26.57%

3MBB 226 3.59 0.016 3351813 5.69 0.0000017 3.96%

Ta22
2MBB 1926 154.36 0.080 N/A 38.01%

3MBB 193 2.43 0.013 3219090 5.47 0.0000017 2.78%

Ta23
2MBB 3897 263.14 0.067 N/A 22.56%

3MBB 153 3.02 0.019 3342713 5.68 0.0000017 0.89%

Ta24
2MBB 1336 98.83 0.074 N/A 32.24%

3MBB 145 6.60 0.045 2939638 5 0.0000017 5.47%

Ta25
2MBB 2921 208.20 0.071 N/A 30.96%

3MBB 195 4.13 0.021 4519199 7.23 0.0000016 2.23%

Ta26
2MBB 3387 221.17 0.065 N/A 24.95%

3MBB 168 2.90 0.017 4053746 6.89 0.0000017 2.20%

Ta27
2MBB 3002 187.90 0.062 N/A 28.32%

3MBB 177 2.62 0.015 3833216 6.516 0.0000017 3.26%

Ta28
2MBB 830 76.54 0.090 N/A 47.93%

3MBB 177 5.62 0.032 3053185 5.49 0.0000018 15.64%

Ta29
2MBB 1323 95.38 0.072 N/A 28.35%

3MBB 148 2.88 0.019 2649031 4.77 0.0000018 10.92%

Ta30
2MBB 563 58.35 0.103 N/A 48.94%

3MBB 127 2.74 0.021 2023738 3.64 0.0000018 20.58%

Table 3.1: 2MBB: time taken for inter-node steals

Inter-node Intra-node % of steal

time# Steals Time (s) Time/Steal (s) # Steals Time (s) Time/Steal (s)

0 GPU

2MBB 1831 115.18 0.063 N/A 26.57%

3MBB 226 3.59 0.016 3351813 5.69 0.0000017 3.96%

1 GPU

2MBB 1554 101.81 0.065 N/A 32.02%

3MBB 151 5.83 0.038 3112522 4.980 0.0000016 4.23%

2 GPUs

2MBB 1459 110.34 0.075 N/A 36.64%

3MBB 166 2.54 0.015 3845257 6.15 0.0000016 4.75%

4 GPUs

2MBB 1090 96.13 0.088 N/A 40.72%

3MBB 199 3.43 0.017 3955168 6.72 0.0000017 5.97%

Table 3.2: 2MBB: time taken for inter-node steals

that the 3MBB approach allows us to push the distributed system to its extremes by
taking as much benefit as possible from different levels of parallelism of computing
environments.

3.6 Conclusion

In this chapter, we have proposed and investigated dynamic load balancing schemes
for parallelizing time-intensive B&B algorithms in node-heterogenous systems, where
multiple CPUs and GPUs with possibly different properties are used. We designed
an adaptive dynamic load balancing scheme for Multi-CPUs Multi-GPUs. Then we
extend it to Multi-cores systems.

• Multi-CPUs Multi-GPUs B&B (2MBB). This approach deals with two-
level parallelism allowing for (i) distributed subtree exploration among PUs
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and (ii) concurrent operations between every single GPU host and device. An
adaptive scheme for sharing works based on PUs’ computing power is also pro-
posed. Through extensive experiments involving different PU configurations,
this approach gives good performance at the scales up to 20GPUs and 128
CPUs. It’s worth to highlight that to the best of our knowledge we firstly con-
duct experiments at the scale of 20 GPUs and 128 CPUs and the scalability
of our approach is near optimal. However, the performance of this approach
starts to drop significantly in larger scales compared with the linear speedup.

• Multi-core Multi CPU Multi GPU B&B (3MBB). In this scenario
where several GPUs are equipped with Multi-core CPUs, the hardware hier-
archy is taken into account when balancing workload. This approach deals
with two-level of hardware of compute nodes allowing for (i) intra-node steals
performed by local threads of compute nodes to fully explore their locality
(ii) inter-node steals performed by master threads of compute nodes through
distributed memory systems. Furthermore, prioritizing intra-node steals over
inter-node steals helps to speedup the computational portion while limits the
communication over expensive links. Besides, a solution to split work pool
into private and public portions for minimizing locking mechanism while per-
forming intra-node steals is presented. Experimental result shows that the
3MBB improves up to 50% the results obtained using 2MBB.

We also showed that the B&B granularity can have a big impact on performance.
Despite our approaches obtain near linear speedups at reasonable scales, there still
might be room for improvements when considering fine-grained B&B instances and
large scale heterogeneous systems. In particular, designing new distributed protocols
in oder to fully take advantage of the power offered by the GPU is worth to be
investigated in the future. Furthermore, the lessons learned from this study should
help the design of new distributed and parallel B&B algorithms taking into account
other types of compute devices such as the ones integrating many more compute
cores with specific shared memory properties.

Besides, we confirmed that communication cost plays a crucial role in distributed
computing environments while executing parallel B&B. In this chapter, we studied
the impacts of intra-node and inter-node communication of Multi-core systems where
PUs communicate to each other over different links with different cost. Let us
notice that the differences in communication cost might be more complicated in
other distributed platforms. For instance, geographically distributed systems or
grid platforms have more complex heterogeneity in communication. In the next
chapter, we will make a more in-depth study on the impact of link-heterogeneity on
the performance of parallel B&B.
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4.1 Introduction

Heterogeneity in computing environments has recently appeared with grid comput-
ing [Dongarra 2006], volunteer and global computing [Korpela 2001, Fedak 2001]
and more recently in cloud computing [Zhai 2011]. In contrast to dedicated su-
percomputers, such distributed environments are constituted of several compo-
nents with variable degrees of heterogeneity. Node-heterogeneity with computing
power, or different computing models was discussed in details in Chapter 3. Link-
heterogeneity appears as different processing units (PUs) are connected by different
communication networks [Kielmann 2002, Plaat 1999]. This chapter is devoted to
the study of the impact of link-heterogeneity on dynamic load balancing algorithms
for irregular tree search applications like B&B.

In parallel B&B algorithms, there exist many recent works [Mezmaz 2007a,
Bendjoudi 2012a, Djamai 2013] solving challenging optimization instances on grid
platforms. However, they did not focus on link-heterogeneity while trying to achieve
high performance. In fact, the irregularities of B&B and the link-heterogeneity
greatly complicate the challenges of achieving high performance. The irregulari-
ties continuously cause workload unbalanced situations which make dynamic load
balancing algorithms function consecutively during the execution. The more unbal-
anced workload of a system is, the more load balancing operations are performed.
However the cost of load balancing operations refers to how fast the workload is
evenly distributed among PUs and it strongly depends on the underlying networks.
If the networks are fast, the cost is cheaper since the workload is quickly distributed
and unbalanced situations are solved rapidly. If the networks are slow, then the
cost is more expensive because workload unbalance is not quickly fixed causing poor
performance. Therefore, in link-heterogeneous systems where both fast and slow
networks exist, handling the link-heterogeneity issues of the underlying networks is
crucial to ensure the high performance of irregular applications like B&B. In fact,
as the gap between computation and communication is substantial, it is likely that
the parallel efficiency of the dynamic load balancing protocols drops significantly

Previous research studies have mostly considered the heterogeneity in communi-
cation speed by addressing the specific hierarchy proper to each computing environ-
ment such as multi-cpu multi-cluster platforms [Baldeschwieler 1996], geographically
distributed multi-cluster multi-site grids [Van Nieuwpoort 2001, Van Nieuwpoort 2004,
Janjic 2013], and others [Gast 2010, Pilla 2012, Acar 2000]. Despite that skillful de-
sign practices have been gained, previous studies targeted to specific computing
contexts and ended up with a number of protocol variants which are essentially
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platform-dependent. In particular, there is still little insights [Pilla 2012] into how
network latency impacts fine-grain parallelism and how distributed communications
have to be optimized to face the increasing complexity of heterogeneous networked
resources in a portable and unified way. This makes it more complicated for pro-
grammers to deal with different link-heterogeneous of different distributed compu-
tational environments, which may result in ad-hoc implementations burdening the
parallelization process and leading to non-efficient protocols. On the other hand,
a knowledge about the computing platform could not be available at the time an
application needs to be effectively deployed. For instance, clouds have the dis-
tinct characteristic of hiding the actual physical mapping of resources, and recent
studies [Zhai 2011] showed that the interconnection latencies in modern virtualized
environments pose the most severe obstacles when executing HPC workloads.

In this chapter, we will describe our generic approach to deal with dynamic load
balancing for link-heterogeneous computing platforms. The proposed approach is
generic in sense that it can be deployed in different distributed computing contexts
exposing different properties in terms of communication latency. The remainder of
the chapter is organized as the following. In Section 4.2, we present our classifi-
cations for current distributed geographical platforms. We then propose a simple
model to abstract the complex of the link-heterogeneous platforms and review sev-
eral state-of-the-art variants of work stealing to deal with the considered issues. In
Section , we describe in detail our new proposed work stealing algorithm. In Section
4.4 we discuss the selected experimental method as well as all the link-heterogeneous
platforms considered for our experiments. In Section 4.5 we present our experimen-
tal results and give insights into the dynamics of the proposed protocol. In Section
4.6, we finally conclude the chapter and raise some open research issues.

4.2 Work stealing in distributed link-heterogeneous com-
putational environments

4.2.1 Distributed Link-heterogeneous Computational Environments

In link-heterogeneous computing environments, different network links offer different
communication latencies which directly influence the performance of an application
running on such platforms. Although the platforms are very complicated causing
many obstacles for running HPC applications effectively, they are still being used to
solve challenging applications requiring large computing resources of such platforms.
Currently, there are many geographically distributed computing platforms exposing
many link-heterogeneous settings, but they can be classified in two types according
to their communication hierarchy:

• Grid. In the first classification, compute nodes are organized into groups ac-
cording to the two-level communication hierarchy. In the first level, compute
nodes of the same group communicate each other through link-homogeneous
local area networks (LANs). In the second level, compute nodes of different
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groups are interconnected by different link-heterogeneous wide area networks
(WANs). For instance, Grid’5000 [Grid’5000 ] is an experimental testbed com-
posed of a set of clusters distributed over 11 sites located in 11 different towns
in France.

• Peer-to-Peer. In the second classification, the level of communicate hierar-
chy is more complicated. The compute nodes are interconnected by differ-
ent WANs links with many levels of communication hierarchy. For instance,
compute nodes are geographically distributed in different cities of the same
country, different countries of the same continent or different continents.

Besides, different computing systems associated with different network config-
urations preserve different properties which makes it difficult to design a common
model. Some works tried to propose a general model so that any network config-
uration can be instantiated from it. However modeling the link-heterogeneity of
modern multi-computer distributed systems is a difficult task which is, per se, the
subject of several dedicated research investigations, e.g. [Cappello 2005]. In our
work, we also consider to build an abstract model allowing us to construct a generic
algorithm which is independent of any particular distributed platforms. In line with
previous studies [Beaumont 2010b], we focus on the case of distributed nodes hav-
ing identical computing power and heterogeneous communication resources. The
set of computing nodes V are fully connected and form a complete interconnection
graph G, i.e., every node can communicate with any other node in the system by
message passing. To model the interconnection heterogeneity between nodes, we
endow the graph G with a function ! : V ⇥ V ! R; which assigns for each pair
of nodes i and j a real-valued weight !

i,j

informing about the cost experienced by
node i when communicating with node j. The more the communication over edge
(i, j) is costly, the higher is the weight !

i,j

. Every node i is assumed to know solely
the local weights !

i,j

connecting it with every other nodes j 6= i; thus hiding all the
architectural characteristics the physical resources. In this study, we concentrate
on link heterogeneity so that the function ! shall simply be viewed as a measure
of nodes pairwise latency; that is, the network delay in a point-to-point message
exchange.

Our model exposes only a flat view of the distributed environment. This is
however sufficient to reason about link heterogeneity and to design an effective and
efficient generic load-balancing protocol. Later in the chapter, different networked
scenarios, ranging from purely virtual (peer-to-peer) environments to grid platforms,
will be considered by simply instantiating the local weights !

i,j

at every distributed
node in a consistent manner.

4.2.2 Work stealing in link-heterogeneous environments

In this section, we present some state-of-the-art work stealing algorithms dealing
with link-heterogeneous distributed platforms. Since network links are no longer
homogeneous, different links preserve different costs in terms of delay for stealing
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messages while going through them. A bad network link offers a high cost and a
long time for delivering stealing messages/responses. A good link offers a small
cost and a short time in delay for sending the messages. Therefore, most of the
proposed work stealing algorithms tried to minimize the cost of stealing messages
by limiting the number of the messages sent through bad network links. In fact, a
good work stealing algorithm for link-heterogeneous systems has to ensure a good
workload balance by mostly profiting all the best network links. Let us remind that
one of the most important questions in work stealing is how to choose a victim?.
The random work stealing (RWS) presented previously in this thesis uses a uniform
probability to choose a victim. It only considers all compute nodes in the same
way, no matter where they are or how are the network links connecting them. It
therefore can not be a good choice for link-heterogeneous computing platforms. In
the following, we will briefly describe some existing algorithms leveraging RWS in
this heterogeneous context.

4.2.2.1 Probabilistic Work Stealing (PWS)

This approach is an improvement of RWS while taking into account communication
cost between compute nodes. The key idea of PWS is to pick up nearby compute
nodes in priority. It suggests to use a measure to estimate the distance between
computing nodes, and to modify the classical RWS algorithm in the following way:
the probability to choose a target computer for steal attempts is not uniform any-
more but instead proportional to the inverse of the distance between the thief and
the target. With respect to our distributed model, this corresponds to every thief i
choosing its victim with probability:

p
i,j

=

1

!i,jP
j 6=i

1

!i,j

(4.1)

The idea behind PWS is to privilege stealing over fast links without discarding
the possibly slow links, in an attempt to reduce the average latency of steal requests.
PWS has the nice property of being inherently local. This enables to capture the
possibly different levels of hierarchy that might be implied by the computing ar-
chitecture without loosing in generality nor in efficiency, as experimentally shown
in [Quintin 2010] on a hierarchical system of 8 processors. Nevertheless, we found no
experimental studies investigating the performance of PWS on large scale and more
complex platforms. As systems’ scale increases, it is likely that the gap between
communication costs over different links increases substantially. This might has the
effect of decreasing drastically the probability of stealing over slow links; thus even-
tually isolating some compute nodes and making work stuck at few regions without
being able to flow fairly and quickly in the system.

4.2.2.2 Cluster-aware Hierarchical Stealing (CHS)

Basically, the idea of this algorithm is based on building a hierarchy of compute
nodes. In this algorithm, all compute nodes are structured in a tree, and a thief
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Figure 4.1: Tree Structure for Cluster-aware Hierarchical Stealing in Grid Platforms

looks for works among its children in the tree. When the whole subtree is idle,
then the thief tries to steal work from its parent. This approach is mostly used in
grid platforms, when several separate trees are built for several clusters and all the
clusters are interconnected at their roots node through WANs.

This algorithm aims to minimize steal attempts through expensive WANs since
the root node of a cluster only attempts to steal works from other clusters when
it finds no work in its own cluster. The structure of the tree for grid platforms
is sketched in Figure 4.1 and stealing mechanism along the tree is presented in
Algorithm 8.

However, it is reported in [Van Nieuwpoort 2001] that this algorithm suffers
some shortcomings. The whole cluster is stalled while the root of the corresponding
tree tries to steal works via WANs. Therefore, this approach is not suitable for high
irregular applications like B&B.

4.2.2.3 (Adaptive) Cluster-aware Random Stealing

The Adaptive Cluster-aware Random Stealing protocol is an improvement of the so-
called Cluster-aware Random Stealing (CRS) protocol described originally in [Van Nieuwpoort 2001].
As indicated by their names, both protocols, were designed specifically for grid plat-
forms with two-level hierarchical communication. The only assumption made in
order to work properly is that each node is explicitly given a full knowledge about
locations of other nodes in the system. In other words, a node has two sets of neigh-
bors, one set of local neighbors containing all nodes locating in the same cluster,
one set of remote neighbors comprising all nodes locating in other clusters.

CRS [Van Nieuwpoort 2001]. This algorithm extends RWS by allowing each
node to steal works from both local neighbors and remote neighbors. In general, an
idle node performs two steals, one to local neighbors and one to remote neighbors.
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Algorithm 8: Cluster-aware Hierarchical Stealing in Grid Plat-
forms
1 flag_wide_area_steal_request  � false ;
2 while termination do
3 job  � check for work from local pool ;
4 if job 6= ? then
5 process job ;
6 else
7 C  set of my children nodes in the tree;
8 if all nodes of C already sent steal requests to me then
9 if I am the root then

10 if flag_wide_area_steal_request= false then
11 flag_wide_area_syn_steal_request  � true ;
12 R set of root nodes of other clusters;
13 r  a random node of R;
14 work  Send a steal request to r;

15 else
16 p parent node;
17 work  Send a steal request to p;

18 else
19 c a random node of C;
20 work  Send a steal request to c;

21 if work 6= ? then
22 Unpack work and push into the local pool;
23 if work is stolen from another root then
24 flag_wide_area_steal_request  � false ;

The two steals are sent asynchronously hence the idle node does not stay blocked
waiting for a response. If it receives a reject message from either local neighbors
or remote neighbors and it is still idle then it will continue to steal from them.
Whenever a node is idle, it first attempts to steal from the local neighbors through
LANs, and in parallel it sets a flag and further sends an additional steal requests
through WANs to another node of its remote neighbors. The flag is reset whenever
it receives a response (reject or works) from remote neighbors. As long as the flag is
set, idle nodes only steal works from its local neighbors. This approach is detailed
in Algorithm 9.

The extensive study conducted in [Van Nieuwpoort 2001] shows that CRS pro-
vides very good performances; however, it still suffers from the following limitations:

• Knowledge of grid platforms should be made available to all available compute
nodes.
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Algorithm 9: Cluster-aware Random Stealing
Data: L\i = {1, 2, · · · , n} \ {i}: local neighbors’ identifiers;

R = {n+ 1, n+ 2, · · · , n+m}: remote neighbors’ identifiers;
1 flag_asyn_steal_request  � false ;
2 flag_syn_steal_request  � false ;
3 while termination do
4 job  � check for work from local pool ;
5 if job 6= ? then
6 process job ;
7 else
8 if flag_syn_steal_request=false then
9 flag_syn_steal_request  � true ;

10 u a random node of L\i;
11 Send a steal request to u;

12 if flag_asyn_steal_request=false then
13 flag_asyn_steal_request  � true ;
14 r  a random node of R ;
15 Send a steal request to r;

16 Handle_Steals() ;

Procedure HandleSteals
1 if a reply msg from node ` is pending then
2 work  � check for work by processing msg;
3 if work 6= ? then
4 Unpack work and push into the local pool;

5 if ` is a local neighbor then
6 flag_syn_steal_request  � false ;
7 else
8 flag_asyn_steal_request  � false ;

• The protocol is designed for grid systems with two-level communication hier-
archy and it raises open questions about how to adapt it to other platforms
with more complex communication hierarchy.

• When both steals are successful, tasks might be unnecessary transferred from
one cluster to another which causes ping pong effects of moving tasks back
and forward between clusters.

• This approach is only suitable for link-homogeneous WANs as stealing requests
through WANs are randomly performed. In fact it brings the same limitation
as in the RWS.
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ACRS [Van Nieuwpoort 2004]. This algorithm extends on the CRS by adapting
the non-uniform probability given by Equation 4.1 when choosing remote neighbors:
the probability of choosing a remote neighbor is inversely proportional to the com-
munication cost of the connected WANs between them. Generally speaking, ACRS
uses RWS when stealing works from local neighbors and PWS when stealing works
from remote neighbors. Despite ACRS improves CRS, it still does not address the
three previously mentioned limitations.

4.3 Link-heterogeneous work stealing

Though there are several differences in principles and designs, all the above protocols
have a common aspect. They all attempt to increase the locality while balancing
workload in link-heterogeneous systems by preferring to steal works from close neigh-
bors through good links rather than remote neighbors through bad links. This is
the key ingredient to counteract the link-heterogeneous issues. In PWS, the remote
neighbors are set with relative small probability to be chosen resulting in only few
steal messages spend longer time to across bad links. Similarly, in hierarchical work
stealing, the remote neighbors are only chosen when no work is found locally inside
a cluster and the root node is in charge of stealing works from remote neighbors.
In contrast, the CRS and ACRS try to hide the communication cost when steal-
ing works from remote neighbors by stealing works asynchronously both from local
neighbors and remote neighbors at once. In fact, all the protocols bring many advan-
tages but also suffer from several disadvantages as presented in the above sections.
All of these aspects inspired us to design a protocol inheriting all the advantages
and overcoming the disadvantages.

Assuming that a distributed link-heterogeneous platform is viewed as a complete
weighted graph G, we can make the two following observations. The first one is
that the more we encourage nodes to communicate over fast links according the
constructed steal probabilities over G, the more efficient woks are offloaded. The
second observation is that the stealing preference to fast links might not be efficient
enough if most of the workload stays on regions connected by slow links. These
observations pose a dilemma which is difficult to face because of the unpredictable
nature of workload.

For a node to distributively take the good decision at runtime, we propose the
generic distributed algorithm called Link-Heterogeneous Work Stealing (LWS) de-
picted in Algorithm 10. Our approach is able to effectively detect local neighbors
and remote neighbors at run time which makes it less dependent on distributed
computing platforms. The key ingredients of LWS are summarized as the following:

• Identify a set of preferred victims by synchronous steals. The synchronous
steals are performed according to a modified PWS such that the stealing prob-
ability is calculated based on both physical distance and logical distance among
compute nodes. The physical distance represents how much time it takes for
them to communicate each other physically. The logical distance represents
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how data is close between thieves and peered victims.

• Every node splits its neighbors into local neighbors and remote neighbors using
a standard classification algorithm, namely, the K-means algorithm [Dunham 2002].

• Asynchronous steals are only enabled when necessary in order to avoid the
ping-pong effects.

In the following, we give a detailed description of our LWS algorithm for load
balancing irregular workload in link-heterogeneous environments. We recall that the
high level code of LWS is depicted in Algorithm 10.

Synchronous Steal. When becoming idle, a node first starts sending synchronous
steals. A thief sends synchronous steals probabilistically as in PWS; but using a
modified probability function to select victims (lines 18 to 22):

p
i,j

=

s
i,j

· r
i,jP

6̀=i

s
i,`

· r
i,`

(4.2)

where:

s
i,j

=

1

!i,jP
j 6=i

1

!i,j

r
i,j

=

c
i,jP

` 6=i

c
i,`

In fact, every node i stores the number of synchronous work requests c
i,j

that
have been issued towards node j (lines 3 and 21). The probability for node i to
choose victim j is inversely proportional to the communication latency !

i,j

and
proportional to the local counter c

i,j

. This probability is denoted by variable p
i,j

(line 13) which is computed as a multiplicative aggregation of the two probability
functions r

i,j

(line 12) and s
i,j

. Clearly, this strategy accentuates the locality be-
tween a thief i and its previous victims, and aims at isolating few very preferred
victims from where it is likely to be very fast to check for work.

Victim Partition. The victims which are likely to be connected with slow links,
are not completely discarded. They are in fact requested for work asynchronously as
in ACRS to avoid loosing time waiting for steal replies. A thief needs to separate be-
tween preferred synchronous victims and asynchronous targets using a partitioning
procedure (line 10). Procedure Partition_Victims is actually a simple imple-
mentation of the well known k-means algorithm, e.g., [Dunham 2002]. For k = 2,
the 2-means algorithm is a heuristic to cluster a set of objects in two groups; such
that, variability within the same group is minimized and variability between the
groups are maximized. In the design of LWS, victims’ counters are used to define
variability. The group of victims having the lowest counters values is identified as



4.3. Link-heterogeneous work stealing 95

Algorithm 10: Link-Heterogenous Work-Stealing (LWS): distributed high
level pseudo-code for every node i 2 V .

Data: V\i = {1, 2, · · · , n} \ {i}: neighbors’ identifiers;
⌦

i

= {!
i,j

, 8j 2 V\i}: latencies between i and j;
C
i

= {c
i,j

, 8j 2 V\i}: counter values of j stored at i ;
T: a parameter ;

1 flag_asyn_steal_request  � false ;
2 flag_syn_steal_request  � false ;
3 8j 2 V\i, ci,j  � 1; X

i

 � 0 ; Y
i

 � 0 ;
4 while termination do
5 job  � check for work from local pool ;
6 if job 6= ? then
7 process job ;
8 else
9 if

P
j2V\i

c
i,j

% T = 0 then
// Update asyn. victims

10 V
asyn

 � VICTIM_PARTITION() ;

// Update selection probabilities

11 8j 2 V
asyn

, q
i,j

 � 1/!
i,jP

`2Vasyn
1/!

i,`

;

12 8j 2 V\i, ri,j  �
c
i,jP

`2V\i
c
i,`

;

13 8j 2 V\i, pi,j  �
s
i,j

· r
jP

`2V\i
s
i,`

· r
`

;

// Syn. and Asyn. Steal attempt(s)

14 if flag_asyn_steal_request=false && Y � X then
15 s  a node in V

asyn

selected with prob. q
i,s

;
16 Send an asynchronous work request to s ;
17 flag_asyn_steal_request  � true ;

18 if flag_syn_steal_request = false then
19 k  a node in V\i selected with prob. p

i,k

;
20 Send a synchronous work request to k ;
21 c

i,k

 c
i,k

+ 1 ;
22 flag_syn_steal_request  � true ;

23 Handle_Timer() ;

the set V
asyn

from which asynchronous steals should be performed.

Asynchronous Steal. The asynchronous steal mechanism used in LWS (lines 14
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Procedure VictimParition
Result: The set of asynchronous target victims.

// 2-means based on steal counters

j
1

 � a node from V\i uniformly at random ;
j
2

 � a node from V\i \ {j1} uniformly at random ;
t  � 0; mt

1

 � c
i,j1 ; mt

2

 � c
i,j2 ;

repeat
t  � t+ 1 ;

// Assignment step

V
1

 �
�
j :

��c
i,j

�mt�1

1

�� 
��c

i,j

�mt�1

2

�� ;
V
2

 � V\i \ V1

;

// Means Update

mt

1

 � 1

n�1

P
j2V1

c
i,j

;
mt

2

 � 1

n�1

P
j2V2

c
i,j

;
until mt

1

= mt�1

1

&& mt

2

= mt�1

2

;
if mt

1

< mt

2

then return V
1

; else return V
2

;

Procedure HandleTimer
Result: Handles work replies and updates ’timers’ for asynchronous steals.

if a reply msg from node ` is pending then
work  � check for work by processing msg;
if work 6= ? then

Unpack work and push into the local pool;

if ` = k then
// Reply w.r.t the synch. steal

if work 6= ? then
Y
i

 � 0 ;
X

i

 � X
i

+ !
i,k

;
else

Y
i

 � Y
i

+ !
i,k

;
X

i

 � X
i

/2 ;

flag_syn_steal_request  � false ;
else

// Reply w.r.t the asynch. steal

flag_asyn_steal_request  � false ;

to 22) differs from ACRS in the following aspect. As implemented by the second con-
dition of the if instruction line 14, an asynchronous work steal is not systematically
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issued as soon as a node becomes idle. In order to avoid an unnecessary work trans-
fer, a thief i first makes a number of synchronous steal attempts towards its preferred
victims. The starting signal before issuing an asynchronous steal is handled in proce-
dure Handle_Timer through control variables X

i

and Y
i

. These variables play the
role of adaptive timers. The idea is to distributively detect the availability of work
among nearby processors by self-adjusting a time window over which work, if any,
is expected to flow synchronously. Inspired by the additive-increase/multiplicative-
decrease feedback approach for congestion avoidance [Chiu 1989], if a synchronous
steal made by thief i to preferred victim k is successful then the waiting window
X

i

is increased proportional to network latency, that is by !
i,k

. Otherwise, X
i

is
decreased by half and the ’elapsed time’ Y

i

is increased by !
i,k

. The formulas are
summarized in Equation 4.3 and Equation 4.4. Only after Y exceeds X that an asyn-
chronous steal is sent to a victim s selected from V

asyn

with probability q
s

(line 15),
inversely proportional to the communication costs.

X
i

(t+ 1) =

(
X

i

(t) + !
i,k

if synchronous steal to j is successful

X
i

(t) · 1
2

if synchronous steal to j is NOT successful
(4.3)

Y
i

(t+ 1) =

⇢
0 if synchronous steal to j is successful
Y
i

(t) + !
i,k

if synchronous steal to j is NOT successful
(4.4)

In Algorithm 10, we remark that in order to avoid introducing computing over-
heads (i.e., victim partitioning procedure), some control variables are only updated
periodically. This is ruled by parameter T defining the number of synchronous steal
attempts that have to be performed before control variables are updated (line 9).
Termination and Knowledge sharing. These are two important issues of LWS
which have not been discussed yet. As similar to other work stealing approaches
presented in the previous chapters, we still use a binary tree to distributively handle
the two issues. The termination is detected in the ’Up-Down’ distributed manners
and it takes at most log

2

N hops between the leaves and the root. Similarly, the
knowledge sharing takes 2 ⇤ log

2

N hops to update a new found better solution so
far to all available compute nodes in the systems allowing an effective exploration
of the parallel B&B.

To conclude, let us emphasis that load balancing in LWS is achieved distribu-
tively by every node in a purely local manner without needing any global informa-
tion about the system hierarchy or network construct: Only the local communica-
tion costs !

i,j

are exploited locally by every thief i. Although LWS is generic, it
introduces advanced control operations which are expected to provide better per-
formances. The rest of the chapter is devoted to the experimental evaluation of
LWS.
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4.4 Experimental Design and Methodology

Our experiments are designed not only to assess the performance of LWS but also
to show the impact of link heterogeneity and application granularity. Therefore, we
analyze all competing protocols for two different applications and study different
network scenarios in which the communication hierarchy and the range of latencies
varies from two-level to a more complex distributed setting. We start describing the
methodology we adopt in our experimental design.

4.4.1 Methodology

Currently there are three common categories for experimental evaluation: real ex-
periments, simulation, and emulation. Real experiments involve running a real-
application on a real experimental-platform, which is generally believed to provide
high realism. However, experimenters face many difficulties to validate their find-
ings, e.g., platform dependency, result reproducibility, etc. In contrast, simulation
facilitates complex configurations at the prices of a relative loss in realism; also,
the applicability of real applications could be questionable. In this thesis, we want
to consider different complex network configurations and to have high confidence
in collected results. By combining the advantages of the two first approaches,
emulation appears to be an appropriate solution for experimenting complex dis-
tributed configurations with real applications. In this chapter, we decided to use
Distem [dis , Sarzyniec 2013] to emulate a broad range of link-heterogeneous network
configurations. Distem is a distributed systems emulator for realistic environments
appearing in cloud, peer-to-peer, high performance computing or grid systems. It
uses virtualization to transform a homogeneous real-cluster into an experimental
platform where nodes have different power and/or are linked together through a
complex network topology; thus making it an ideal tool for our study. We would
like to emphasis that real-CPU compute nodes of a real distributed test-bed are used
in our experiments; only network link latencies are artificially configured through
Distem.

4.4.2 Network instances

As discussed in Subsection 4.2.1, there exists many possible levels in communication
hierarchy of geographically distributed computing platforms. In our classification,
we classify them into two types such as Grid with two-level communication hierarchy
and P2P with a complex of many-levels communication hierarchy. In order to get
more insights into the impact of link-heterogeneity on performance, we consider
Grid as well as the P2P compute settings with different network heterogeneity.

4.4.2.1 Grid or Clustered environments (C_Env)

We consider a grid computing context, where a number of homogenous clusters are
available in different geographically distributed sites connected with different speeds.
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More precisely, a two-level communication hierarchy is considered. In the first level,
the latency between nodes from the same cluster is set to a fixed value of 0.2 ms.
In the second level, clusters are fully connected with WAN links which are split into
two sub-groups, fast WAN links with latency in the range Rgrid

fast

= {30, 40, 50} (ms);
and slow WAN links with latency in the range Rgrid

slow

= {100, 150, 200} (ms). To
keep the experiments manageable, the number of computing nodes is fixed to 128

and the following variations are considered when setting this type of distributed
environment:

• The number of clusters c is fixed to 8 with the same number of nodes in each
cluster. The latency between pairwise clusters are randomly drawn from one of
the two ranges Rgrid

fast

and Rgrid

slow

following a bernoulli-distribution of parameter
p 2 {0, 0.25, 0.5, 0.75, 1}, i.e., latency is picked uniformly at random from
Rgrid

fast

(resp. Rgrid

slow

) with probability p (resp. 1 � p). We shall use notation
C_Env(c = 8, p) when referring to a randomly generated network instance
in this setting.

• The number of clusters c varies in the range {1, 2, 4, 8, 16} with equal num-
ber of nodes in each cluster. Network latency between clusters is uniformly
distributed in the range Rgrid

fast

[ Rgrid

slow

(which corresponds to p = 0.5 in the
previous scenario). We shall use notation C_Env(c, p = 0.5) when referring
to a randomly generated network instance in this setting.

4.4.2.2 P2P or ’Virtualized’ flat environments (VF_Env)

Motivated by cloud, Internet, and peer-to-peer computing systems, we extend on
the previous network setting in order to take into account more complex com-
munication patterns. No explicit fixed hierarchy is set; Instead, compute nodes
are fully connected and the communication latency between each pair of nodes
are randomly drawn from one of the two ranges Rflat

fast

= {1, 3, 5, 10} (ms) and
Rflat

slow

= {50, 100, 150, 200} (ms) following a bernoulli-distribution of parameter
p 2 {0, 0.25, 0.5, 0.75, 1}, i.e., latency is picked uniformly at random from Rflat

fast

(resp. Rflat

slow

) with probability p (resp. 1 � p). Generally speaking, the group of
fast links is for example relative to compute nodes (or peers) in different clusters of
different cities of same country, or different workstations in distant countries of the
same continent. The group of slow links represents typically inter-continent com-
munication links. We shall use notation VF_Env(p) when referring to a randomly
generated network instance in this setting.

4.4.3 Protocol deployment

The experimented protocols are: LWS, RWS, PWS, CRS and ACRS. Although
RWS is known to perform worst than the other protocols, we still include it in our
experiments in order to give a more comprehensive picture on relative performance.
In fact, the performance of RWS is the worst case showing an upper bound for the
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performance of our experiments. Notice also that ACRS degenerates to PWS and
CRS degenerates to RWS for VF_Env.

Our experiments are performed using Distem as a network emulator running
on one cluster of the Grid’5000 experimental platform [Grid’5000 ]. The cluster in
use has 92 nodes, each one equipped with 2 CPU of 2.5 Ghz Intel Xeon processor
with 4 cores per cpu and a network card infiniband-20G. Every compute node in our
experiments is deployed with Distem on a dedicated physical compute core initialized
and configured with the corresponding communication latencies. The latencies are
managed internally by Distem without any additional operations at the application
level. We also remark that LWS is deployed with parameter T, controlling the
frequency of victim partitioning and steal probability update, empirically set to
100.

Like in the previous chapter of this thesis, we use the Flowshop instances as
target problems in our experiments, as well as the UTS benchmark in order to gain
in genericity.

4.5 Experimental Results and Analysis

We start by analyzing the differences in execution time between competing algo-
rithms. Then-after, we give a more focused analysis of protocols’ behavior.

4.5.1 Overall performances

In Fig. 4.2, we summarize the average execution time obtained for the different
network settings and applications.

4.5.1.1 Protocols pairwise comparison

The basic RWS is the worst performing protocol, and the other competing algorithms
are able to improve performance substantially. Zooming in the performance of LWS,
ACRS and PWS, we found that LWS performs better with a variable gap depending
on the type of faced heterogeneity. In average over all the runs made in C_Env,
LWS saves 38% and 10% execution time (resp. 16% and 26%) when compared to
ACRS and PWS for the UTS benchmark (resp. B&B). The gaps are even larger
in VF_Env where LWS saves 15% and 43% execution time (resp. 62% and 65%)
in average when compared to PWS and RWS for UTS (resp. B&B). We further
performed several statistical tests to assess the superiority of LWS. By running
Friedman tests, the null hypothesis that protocols’ average execution times are same
cannot be accepted in any setting with a high confidence level. By running pairwise
post-hoc Mann-Whitney tests to evaluate the differences in execution times, we were
able to report the following observations (where ’significance’ is with respect to a
p-value of at least 0.05):
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Figure 4.2: The obtained execution time of competing algorithm in different sce-
narios. First column: UTS. Second column: B&B. From Top to Bottom:
C_Env(8, p), C_Env(c, 0.5), and VF_Env(p). Error bars shows 95% confidence
interval. Notice that because the gap between RWS and other protocols is relatively
huge for B&B, we put the y-axis in the log scale for more readability.

In the C_Env settings we found a significant difference between LWS and
ACRS for both UTS and B&B. In fact, LWS is able to provide up to 58% gain in
execution time. Comparing LWS to PWS, we are able to report significant superi-
ority of LWS only for B&B where the gap in execution time is up to 26%. For UTS,
while LWS performs slightly better than PWS in average, the difference was not sta-
tistically significant. This can be explained by the fact that work units in UTS take
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much less time to be processed compared to the realistic B&B computations; thus
making the impact of link-latency on the overall processing time more pronounced
for B&B than for UTS. One can also notice the very good performances obtained
with PWS compared to ACRS; the former being able to provide significantly better
execution times for the UTS benchmark, but not for B&B.

In the VF_Env settings LWS performs significantly better than PWS and
RWS; achieving up to an acceleration factor of two acceleration. The larger gaps in
execution time are obtained with B&B rather than with UTS, which we attribute to
the work granularity of B&B. Notice also the expected poor performance obtained
with RWS which indicates that link-latency can have a deep impact on standard
work-stealing.

4.5.1.2 Impact of heterogeneity level

Fig. 4.2 allows us to extract interesting observations on the impact of heterogene-
ity. In the C_Env(8, p) settings, we see a clear tendency of the execution time
of all protocols to increase when more slow inter-cluster links are included, i.e.,
for small values of probability parameter p. The same effect can be observed for
C_Env(c,0.5) when the number of clusters increases, which is clearly because the
average latency between compute nodes also increases. Notice however, the relative
robustness of LWS for B&B with varying number of clusters. In the VF_Env(p)
settings, we see a significant impact of link latency when parameter p is in the range
{0, 0.25}. This corresponds to roughly less than 25% of links being fast. Below
that percentage, LWS suffers a deterioration in execution time for UTS while being
relatively robust for B&B. Above that percentage, both LWS and PWS stabilize
quickly with LWS being better. This indicates that LWS is able to schedule work
steals efficiently by exploiting maximally the few fast links available in the network.

4.5.2 Analysis of Protocol Dynamics

To better understand why LWS is performing better, we extracted several measures
rendering its dynamics compared to PWS and ACRS; and providing new insights
into how to deal with network heterogeneity.

4.5.2.1 LWS vs. PWS in VF_Env

One key difference between LWS and PWS is the probability of synchronous steals.
In Fig. 4.3, we illustrate the values taken by the probability that node i selects a
victim j in a synchronous steal attempt for all i and j. For clarity, we plot these
values in the form of heat-maps; and we also show their empirical distribution in
the Fig. 4.4. Since probabilities in LWS were observed to converge quickly to a
stationary regime where they change only very marginally, data is extracted from
the latest stages of protocol execution.
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Figure 4.3: Left (resp. Right) Heat-map matrix of synchronous-steal probability
of LWS (resp. PWS) in VF_Env(p = 0.5). The darker a point is, the higher is the
probability. Results are for one typical run of B&B.
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A good way to understand the implications of Fig. 4.3 is to remember that
if RWS was considered, then steal probabilities would be a constant equals to
1/128 ' 0.0078. We observe that a thief executing LWS has very few nodes where
the probability of being selected for a synchronous steal is very high. In contrast,
although the probabilities in PWS are not ’uniform’, the gap between them is less
pronounced than LWS. This means that there are a large number of victims in PWS
that have roughly equal chances of being selected. By viewing victim selection prob-
abilities as defining a random weighted graph [Janson 1998, Garlaschelli 2009], LWS
is distributively electing very few preferred edges connecting nodes with a high prob-
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Figure 4.5: Strength empirical cumulative distribution of a typical run of LWS and
PWS in VF_Env(p = 0.5) and UTS.

ability. These edges are inducing a probabilistic overlay structure allowing work to
flow distributively. The so-constructed overlay is very sparse in the case of LWS
while it is not in the case of PWS; and we suspect it to implicitly induce very short
paths between nodes in terms of network latency. In Fig 4.5, we also show the
empirical cumulative distribution of the so-called Strength ’feature’ used in random
graph theory [Garlaschelli 2009]. The strength of any node i is computed as the sum
of the probabilities that other nodes j select i in a synchronous steal. The strength
of node i informs about the number of work steals that i should expect if all other
nodes were idle. Remark that the strength of any node would be exactly 1 in the
case of RWS. From Fig 4.5, we can see that the strength distributions induced by
LWS and PWS look both like a gaussian of mean 1; but with a higher variance for
LWS. This indicates that there are some nodes in LWS that are acting like ’Hubs’
from where work is likely to transit and to flow out more frequently.

To summarize these observations, we can say that LWS is distributively con-
structing a kind of probabilistic network spanner [Peleg 1989] connecting nodes.
This structure has the very specific properties of being sparse and containing very
few nodes with high in-degree; thus improving work locality and optimizing the
global cost of synchronous work transfers.

4.5.2.2 LWS vs. ACRS in C_Env

One key design choice made in LWS compared to ACRS is the time that an asyn-
chronous steal attempt is performed. In Fig. 4.6, we compare the adaptive additive-
increase/multiplicative-decrease strategy of LWS with the situation where an idle
node would just wait for a prefixed period. The results depicted in Fig. 4.6 are ob-
tained by running this new protocol variant with a range of waiting periods (ACRS
corresponds to a waiting time being set to 0). Clearly, waiting time has an impact
on performances: a node should neither send an asynchronous work request imme-
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diately, nor it should wait for a long period. Nevertheless, no pre-fixed value is able
to outperform the adaptive strategy of LWS. We are then able to confirm that the
dilemma of waiting for work to flow with synchronous steals or attempting to steal
asynchronously is well solved by LWS. This property is obtained although every
distributed node has a very flat view of the system.

In Fig. 4.7, we further show the ratio of asynchronous work transfers with respect
to all steal attempts that a node performed. This ratio appears to be much smaller
for LWS independently of the number of clusters available. This indicates that the
adaptive mechanism of LWS tends to minimize unnecessary work transfers; whereas
in ACRS work is likely to travel back-and-forth between clusters.

To conclude our analysis, the lifestory of a typical run of LWS is presented in
Fig. 4.8 informing about the ratio of idle and working nodes. We found that work is
evenly distributed among clusters. The ratio of idle nodes stays relatively low in this
harsh network scenario (20% in average); only when approaching termination that
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Figure 4.8: Lifestory of nodes in LWS. The x-axis refers to elapsed time un-
til application termination. Top (resp. Bottom) figure summarizes the status
of nodes in every cluster (resp. overall). Results are for one run of B&B in
C_Env(c = 8, p = 0.5); data was collected by normalizing and discretizing times-
tamps at every node.

parallel efficiency starts to drop which is inherent to the nature of the unbalanced
tree search applications we are studying.

4.6 Conclusion

In this chapter, we addressed the question how to choose a victim at runtime
in work stealing protocols while solving irregular applications like B&B on link-
heterogeneous computing platforms. We described our solution, called Link-Heterogeneous
Work Stealing (LWS), to address the heterogeneity of link latency in networked
computing systems. LWS is generic, local, and self-adaptive. Although LWS is not
designed to fit a specific network context, our experiments show that LWS is able to
outperform well-established load balancing protocols. This is due to the accuracy of
LWS in self-adjusting synchronous and asynchronous steals attempts, as well as the
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advanced and self-optimized communication patterns induced among nodes. The
lessons learnt from our analysis support that scheduling highly irregular applications
in large scale networked platforms can be attained with generic unified mechanisms
without neither complicating the underlying protocols nor loosing in efficiency.

In future work, we intend to study the behavior of LWS when network links
experience speed variance during execution time. Since all LWS components are
fully distributed, we expect LWS to react efficiently without further design efforts.
Moreover, we only focused on heterogeneity in link latencies and relaxed the other
sources of heterogeneity, e.g., compute power, throughput, etc. Combining LWS
and the approach presented in Chapter 3 to take into account such complex settings
which are likely to appear in real-world networked environments is also one of our
future goals. Another difficult research direction would be to integrate LWS in
existing cloud computing environments and to evaluate the obtained performances
with respect to classical Grid and HPC facilities, in an attempt to push forward the
landscape of possible parallel applications in virtualized platforms.





Conclusions and Perspectives

In this thesis, we presented our contributions in improving the performance of paral-
lel Branch-and-Bound algorithms for solving Combinatorial Optimization Problems.
In particular, the different approaches presented in this thesis address the three fol-
lowing challenging issues:

• The irregularity of parallel B&B.

• The heterogeneity in computation of computing resources.

• The heterogeneity in communication of communication resources.

In the first contribution, to solve the irregularity of Parallel B&B, we proposed a
tree-based dynamic load balancing algorithm aiming at enhancing cooperation be-
tween processing when searching for work. The extensive experimental study showed
that this approach is able to produce a good performance in large scales up to 1200
processing units while improving over the previous Master-Worker [Mezmaz 2007a]
or Hierarchical Master-Worker paradigm [Bendjoudi 2012a]. The achieved speedup
is obtained due to a comprehensive design of our approach. Firstly, processing units
can communicate directly with their neighbors (e.g the children and parent) in the
tree when stealing works. Secondly, direct communication of processing units be-
longing to different subtrees can be established through bridge edges in order to
speedup their communication along the tree. Thirdly, a cooperative tree-dependent
work sharing policy is proposed in order to reduce the communication time for
stealing requests. This policy in fact allows to minimize the number of stealing
requests as processing units not only fetch works for themselves but also for serv-
ing their neighbors of the same subtree later on. Along with this contribution, we
also proposed to use work stealing to deal with the irregularity problems of parallel
B&B. Through extensive experimental study, we also confirmed that work stealing
paradigm is a good candidate in this context. This observation in fact establishes a
base for further investigations in order to improve the performance of parallel B&B
on different computing systems.

In the second contribution, we mainly targeted the design of an efficient ap-
proach for parallel B&B on heterogeneous computing resources comprising of mul-
tiple CPUs and GPUs. The main objective is to ensure that all heterogeneous
processing units run at their maximum capacity and an evenly balanced workload
is maintained during execution. Firstly, we proposed the 2MBB approach in the
context of completely distributed CPUs and GPUs. This approach deals with two-
level parallelism allowing for (i) distributed subtree exploration among processing
units and (ii) concurrent operations between every single GPU host and device. The
2MBB approach attains near-linear speedups when parallelizing B&B computations
on relatively low and moderate distributed scales (up to 128 processing units). At
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larger scales, the 2MBB however suffers from distributed communication cost and
does not allow to fully use the power offered by the distributed system. Conse-
quently, we proposed the 3MBB approach which extends the 2MBB for multi-core
heterogeneous systems. The 3MBB approach deals with the hardware hierarchy
(shared vs. distributed memory) in order to minimize communication cost. Within
a multi-core system, decentralized split work pools are used to share B&B problems;
and intra-node stealing operations are performed in order to acquire work efficiently
while avoiding shared memory locking and synchronization issues. Our experimental
results show up to 50% improvement compared to 2MBB in large scales.

In the last contribution, we proposed a Link-Heterogeneous Work Stealing (LWS)
to deal with the link-heterogeneous issues when deploying parallel B&B on dis-
tributed geographical computing environments. The LWS is generic in the sense
that it can be deployed in different computing contexts exposing different properties
in terms of link latency. In LWS, an idle processing unit performs two types of steal-
ing requests: one to locally preferred neighbors and another one to remote neigh-
bors. This stealing mechanism is inspired by the CRS [Van Nieuwpoort 2001] and
ACRS [Van Nieuwpoort 2004] algorithm which are specially designed for the grids
of two-level hierarchy communication. However unlike the ACRS or CRS, the LWS
can identify the preferred neighbors and remote neighbors during execution, hence
resulting in the possibility of deploying it on several distributed computing environ-
ments. We performed a set of extensive experiments on different link-heterogeneous
distributed environments, and the result confirmed that the LWS not only produces
good performance on different types of computing environments, but also improves
the performance of some state-of-the-art algorithms designed for specific computing
environments.

As future research directions for this work, we have identified some challenging
perspectives summarized in the following:

• In this thesis, we only consider to tackle either the node-heterogeneity or link-
heterogeneity and relax the other one for the sake of simplicity. However the
two issues always appear in real large scale distributed systems. Therefore, one
direction to extend this work is to consider more realistic scenarios where node-
heterogeneity and link-heterogeneity exist. A possible solution is to integrate
the 3MBB and LWS into a comprehensive solution in order to efficiently deal
with such complex distributed systems.

• Another research issue is to consider other hardwares components with new
characteristics and to study at what extent load balancing can be managed
efficiently. For instance, it would be interesting to consider new many-core
shared memory systems with specific properties and to study how they can be
taken into account within a complex distributed and heterogenous system.

• Load balancing is an important issue especially when the different levels of
parallelism are hidden by the compute platform. This can be typically the
case when considering virtualized and cloud environments. An open research
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question is to study the feasibility of solving large scale COPs in such compute
settings.
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