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Abstract

The detection of moving objects is an important step in computer vision field to develop
numerous kinds of systems, such as intelligent video surveillance, motion capture, among
the others. These systems are used in a wide range of applications, including retail, home
automation, safety and security. The most commonly used equipment are stationary cam-
eras or pan-tilt-zoom (PTZ) cameras to monitor activities in outdoor or indoor environments.
Since the cameras are stationary (or almost stationary), the detection of moving objects can
be achieved by building a representation of the scene background and comparing each new
frame with this one. This process is called background subtraction, also named background/-
foreground separation.

More recently, the research on decomposition into low-rank plus sparse matrices (or ten-
sors) has been showing to be a suitable framework to deal with the background/foreground
separation problem. This framework consider that the data to be processed satisfy two im-
portant assumptions: a) the inliers (latent structure) are drawn from a single or a union of
low-dimensional subspaces, and b) the corruptions are sparse. This assumption holds a partic-
ular association to the problem of background/foreground separation, where the background
model (almost static) is represented as a low-rank structure and the foreground objects are
associated with the sparse residuals. However, the key issues and challenges in such ap-
proaches are their capabilities to handle complex and dynamic background scenarios, as well
as performing in a real-time manner.

Given the importance of this subject, this thesis introduces the recent advances on de-
composition into low-rank plus sparse matrices and tensors, as well as the main contributions
to face the principal issues in moving object detection. First, we present an overview of the
state-of-the-art methods for low-rank and sparse decomposition, as well as their application
to background modeling and foreground segmentation tasks. Next, we address the problem
of background model initialization as a reconstruction process from missing/corrupted data.
A novel methodology is presented showing an attractive potential for background modeling
initialization in video surveillance. Subsequently, we propose a double-constrained version
of robust principal component analysis to improve the foreground detection in maritime envi-
ronments for automated video-surveillance applications. The algorithm makes use of double
constraints extracted from spatial saliency maps to enhance object foreground detection in
dynamic scenes. We also developed two incremental tensor-based algorithms in order to per-
form background/foreground separation from multidimensional streaming data. These works
address the problem of low-rank and sparse decomposition on tensors. Finally, we present
a particular work realized in conjunction with the Computer Vision Center (CVC) at Au-
tonomous University of Barcelona (UAB).
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Résumeé

La détection d’objets mobiles dans des vidéos acquises a partir de caméras est une étape im-
portante dans plusieurs systemes automatiques de vision par ordinateur. Ces systeémes sont
utilisés dans une large gamme d’applications, comprenant entre autres la Vidéo-Surveillance
Intelligente (VSI) et la capture de mouvement optique. Les équipements les plus utilisés sont
des caméras fixes ou pan-tilt-zoom (PTZ) pour surveiller les activités dans les environnements
extérieurs ou intérieurs. Etant donné que les caméras sont fixes (ou presque stationnaires), la
détection d’objets mobiles peut tre obtenue en construisant une représentation du modele du
fond et comparant chaque nouvelle image avec ce modele. Ce processus est appelé < sous-
traction de fond > ou séparation fond et objets du premier plan.

Les récentes avancées en ACP robuste par décomposition en matrices (ou tenseurs) de
rang faible et parcimonieuse montrent un grand potentiel pour séparer les objets en mouve-
ment dans des vidéos. Cette formulation de probléme considere que les données a traiter ont
deux hypotheses importantes: a) les < inliers > (structure latente) proviennent d’un seul sous-
espace (ou d’une union de sous-espaces) de dimension faible, et b) les données corrompues
< outliers > sont de caracteres parcimonieuses. Cette hypothese est particulierement adaptée
au probleme de la séparation entre le fond et les objets du premier plan, ol le modele du fond
(presque statique) est représenté par une structure de rang faible et les objets de premier plan
sont associés aux résidus parcimonieux. Cependant, les principaux enjeux et défis dans telles
approches sont ses capacités a gérer des scénarios de fond complexes et dynamiques ainsi
que I’exécution incrémentale et en temps-réel.

Dans ce contexte, cette thése introduit les avancées récentes sur la décomposition en
matrices (et tenseurs) de rang faible et parcimonieuse ainsi que les contributions pour faire
face aux principaux problémes dans ce domaine. Nous présentons d’abord un apercu des
méthodes matricielles et tensorielles les plus récentes ainsi que ses applications sur la sous-
traction de fond. Ensuite, nous abordons le probleme de I’initialisation du modele de fond
comme un processus de reconstruction a partir de données manquantes ou corrompues. Une
nouvelle méthodologie est présentée montrant un potentiel intéressant pour I’initialisation de
la modélisation du fond dans le cadre de VSI. Par la suite, nous proposons une version < dou-
ble contrainte > de I’ ACP robuste pour améliorer la détection de premier plan en milieu marin
dans des applications de vidéo-surveillance automatisés. Nous avons aussi développé deux
algorithmes incrémentaux basés sur tenseurs afin d’effectuer une séparation entre le fond
et le premier plan a partir de données multidimensionnelles. Ces deux travaux abordent le
probléme de la décomposition de rang faible et parcimonieuse sur des tenseurs. A la fin, nous
présentons un travail particulier réalisé en conjonction avec le Centre de Vision Informatique
(CVC) de I’Université Autonome de Barcelone (UAB).
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Chapter 1

Introduction

In this chapter, we provide the thesis context concerning the application of low-rank and
sparse decomposition to the problem of moving object detection in videos.

1.1 Presentation

The detection of moving objects is an important step in computer vision to develop numer-
ous kinds of systems, such as intelligent video surveillance and motion capture, among the
others [26,57, 173]. These systems are used in a wide range of applications, including retail,
home automation, safety and security [1]. For example, in visual surveillance systems, the
detection of moving objects can be important to identify useful insights from video data, such
as intrusion/anomaly detection, abandoned objects, traffic data collection, etc. These insights
are usually extracted after a sequence of video processing steps that are part of a more general
module named Video Content Analysis (VCA), also known as Intelligent Video Analytics.
Figure 1.1 summarizes the approach described here, where a VCA module is used to auto-

Example of automatic

Tracking and
counting of
people, cars, etc.

Intrusion
detection

Anomaly  Apandoned
detection objects

Traffic
Road traffic data surveillance
collection

Video Content Analysis
(VCA)

Video Object
Pre-processing {}  Detection

Figure 1.1: Illustration of an intelligent video surveillance system.



2 INTRODUCTION

Frames —» __!\/quel_ | Background —Pp] Foreground
initialization model detection

i

»| Model update

Figure 1.2: Block diagram of the background subtraction process.

matically report road traffic incidents. In many domains, VCA is implemented on CCTV
systems, where the most commonly used equipments are stationary cameras or pan-tilt-zoom
(PTZ) cameras to monitor activities in outdoor or indoor environments. Since the cameras
are stationary (or almost stationary), the detection of moving objects can be achieved by
building a representation of the scene background and comparing each new frame with this
one. This process is called background subtraction (BS), also named background/foreground
(B/F) separation, and the scene representation is called the background model (BM) [26,57].
This basic operation works as a two-class classifier and it consists in separating the moving
objects called “foreground” (FG), from the static (or quasi static) information, called “back-
ground” (BG). Typically the BS process includes three main steps: a) background model
initialization, b) background model maintenance, and c) foreground detection (see block dia-
gram in Figure 1.2). These steps work as follows:

* Model initialization - In general, this step consists in creating a BM that best repre-
sents the scene background. It is often assumed that initialization can be achieved by
exploiting some “clean” frames (free of foreground objects) at the beginning of the
sequence, and the scene here is assumed to be stationary or quasi stationary. However,
this assumption is rarely encountered in indoor or outdoor scenarios, because several
challenges appear and perturb this process, such as noise acquisition, dynamic factors,
etc. [25,135].

* Model maintenance - In real-life scenarios, there are changes that occur over time.
These changes can be local, such as a moving object entering (or leaving) the scene,
or global, such as day-light inference [26, 57]. It is important for any BM to adapt
to these changes. The model maintenance step aims to preserve and maintain the BM
learned in the initialization step to be as close as possible to the real scene background.

* Foreground detection - Given the representation of the scene background, the fore-
ground detection step consists in comparing the learned background model with the
input frame. This process depends on the type of changes expected in the scene back-
ground. These changes could be related to a specific object of interest or any other
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factor, such as noise, illumination changes, among the others [26,57]. The main chal-
lenge of this step is to minimize the number of false positive and false negative pixels.

The BS process must deal with a large number of challenges that may occur during its
application for moving object detection, as described below:

Camera jitter: In general, the camera jitter occurs when a fixed camera is affected by
natural or environmental events, such as strong winds or earthquake. In such cases,
the fixed camera presents a nominal motion that is usually indistinguishable from the
motion of the foreground objects, leading to undesirable detection results.

Camera automatic adjustments: Today, most of digital cameras have automatic ad-
justments, such as automatic exposure mode. This feature automatically determines
the correct exposure for pictures. In automatic mode, the cameras make some deci-
sions without any user input, including the aperture setting, the shutter speed and white
balance. These settings may make difficult the task of segmentation.

Pan-Tilt-Zoom (PTZ) cameras: Most of background subtraction research is focused
on stationary cameras. However, the adoption of PTZ cameras for intelligent video
surveillance became more frequent because of their ability to cover a wide field of
view. These cameras are capable of (automatically or manually) remote directional
and zoom control. In general, most of background subtraction algorithms fail in the
case of moving cameras, due to the non stationarity of the background.

Video noise: In general, a video signal can be contaminated by noise in the recording
process. The noise is usually a random pattern that is caused by signal transmis-
sion/acquisition, coding, and between the processing steps. Usually, this phenomenon
can produce undesirable effects or artifacts affecting the background scenes.

Intermittent object motion: In some cases, moving objects stop for a long period of
time or a background object starts moving. In such situations, the intermittent objects
can produce “ghosting” artifacts in the background model. Typical examples include
parking vehicles and abandoned objects. Dealing with these situations depends on the
context. For some applications, motionless foreground objects must be incorporated
into the background model and others not.

Dynamic backgrounds: Dynamic factors of the environment are one of the main
causes of dynamic backgrounds that are generally the outcome of an external event or
a chain of events, such as flowing water and moving leaves caused by winds. In such
environment, modeling a good representation of the background is a challenging task
for a background subtraction algorithm, due to the separation of the dynamics of the
foreground objects in comparison to the natural dynamics of the scene background.

Shadows: Normally shadows are generated as result of a light source blocked by an
opaque object. Shadows can be seen as a dark area that either may be attached or not to
detected objects, causing objects merging and objects shape distortion. The presence
of shadows usually does not allow a robust shape detection of moving objects. In
general, the shadow areas are often misclassified as foreground objects, causing errors
in the segmentation of moving objects.
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Figure 1.3: Background/foreground separation based on low-rank plus sparse de-
composition.

¢ Illumination changes: Illumination changes often occur over time in outdoor (i.e.
daylight) and indoor (i.e. light switch) scenes. In outdoor environments, the gradual
changes in the appearance of the scene may result from Earth’s rotation changing
patterns of illumination of Earth’s surface. Otherwise, in indoor scenes the occurrence
of a sudden illumination change is a typical factor due to light switch. It is important
for a background subtraction algorithm to adapt to these kind of changes by building
a light invariant model of the background scene.

* Bootstrapping: It is often assumed that a representative model of the background
can be produced by exploiting some clean frames (without moving objects) at the
beginning of the sequence. However, this assumption is rarely encountered in real-
life scenarios, because of continuous clutter presence. In such situations, a robust
initialization process of the background model must be adopted, learning the correct
background model over time.

* Camouflage: Moving objects can be visually similar to the background scene, or
some portion of it. This effect is called camouflage, leading to erroneous distinction
between foreground and background. The camouflage can be at color level, texture
level, or any other appearance/depth feature level.

* Night scenes: Night videos are still a challenging task. Indeed, the low contrast be-
tween foreground and background causes many false detections due to the dramatic
illumination change and low signal to noise ratio (SNR).

Many background subtraction methods facing these issues have been designed over the
last decade [24, 183,234], and they generally share the same scheme presented previously in
the Figure 1.2. Conventional BS methods exploit the temporal (or spatio-temporal) variation
of each pixel (or region) under many mathematical models, including probabilistic/statisti-
cal models, fuzzy models, neural/neuro-fuzzy models, subspace learning models, among the
others [24,183,234].

More recently, the research on decomposition into low-rank plus sparse matrices (or ten-
sors') has been showing to be a suitable framework to deal with the background/foreground
separation problem [27,28]. This framework consider that the data to be processed satisfy
two important assumptions: a) the inliers (latent structure) are drawn from a single (or a
union of) low-dimensional subspace(s), and b) the corruptions are sparse. This assumption
holds a particular association to the problem of B/F separation, where the background model

'The reader can also refer to Appendix C for an introduction on tensors
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(almost static) is represented as a low-rank structure and the foreground objects are associ-
ated with the sparse residuals. Figure 1.3 illustrates the process described here. In general,
the input video is converted into a matrix (or tensor) representation and then decomposed
into a sum of low-rank and sparse components. The choice of the number of components
is a free parameter and it varies according to the type of behavior needed to be modeled.
Sometimes a third component that models the Gaussian noise is used to enhance the noise
suppression, improving the foreground detection. However, the key issues and challenges in
such approaches are their capabilities to handle complex and dynamic background scenarios,
as well as performing in a real-time manner.

Given the importance of this subject, the thesis introduces recent advances in decompo-
sition into low-rank plus sparse matrices and tensors, as well as the main contributions to
face the principal issues in this domain. In the next sections, we present a list of the main
contributions developed in the thesis and the outline of each chapter.

1.2 Contributions

In order to fit the above objectives, we have accomplished the following contributions sum-
marized in this thesis?:

* A new library, named LRSLibrary’: that provides a collection of low-rank and
sparse decomposition algorithms. The library was designed for background/fore-
ground separation in videos and it contains a total of 104* matrix-based and tensor-
based algorithms [180]. It has been fundamental for all the experiments conducted in
the thesis.

* A novel methodology for background model initialization: that considers the back-
ground model initialization as a reconstruction problem from missing/corrupted data.
Given a sequence of images, a simple joint motion-detection and frame-selection op-
eration removes the redundant frames and induces missing entries from the moving
regions. Next, the background model is recovered by matrix/tensor completion under
partially observed data [178, 184].

* A double-constrained Robust Principal Component Analysis (RPCA) method,
named SCM-RPCA: that takes the advantage of shape and confidence maps, both ex-
tracted from spatial saliency maps, to enhance object foreground detection in dynamic
scenes [179].

* An incremental tensor subspace learning (IMTSL) algorithm: that handles the
problem of background/foreground separation in streaming multidimensional data for
intelligent video surveillance applications. Differently from the traditional tensor-
based methods for background/foreground separation that only use the gray-scale or

2We suggest the reader to see the list of publications related to the thesis in the Appendix E.
3Please refer to the Appendix D for a complete description of the library.
4Up—t0—date information on November 8, 2017.
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color information, the proposed method constructs a multi-feature low-rank model for
robust modeling of the scene background [176].

* An online stochastic tensor decomposition (OSTD): that is more robust and faster
than IMTSL algorithm for handling streaming multispectral video sequences. The
OSTD algorithm makes use of RPCA on tensors for robust background/foreground
separation. The proposed method was designed to be much faster than IMTSL and to
address the major difficulties of multispectral imaging for video surveillance [182].

* A survey of low-rank and sparse representation: that covers the main aspects of the
recent approaches for low-rank and sparse representation [27].

* An evaluation of subspace clustering algorithms to the problem of human action
recognition from 3D skeletal data: that explores a particular approach for low-rank
and sparse representation, named subspace clustering (SC). Instead of applying SC for
background modeling and foreground separation as shown previously, here we eval-
uate the robustness of some subspace clustering algorithms to the problem of human
action recognition from 3D skeletal data. This is a work realized in conjunction with
CVC at UAB [73,181].

1.3 Outline

The rest of the thesis is organized as follows:

* Chapter 2 provides an overview of the state-of-the-art methods for low-rank and sparse
decomposition on matrices and tensors, as well as their application to the problem
of background modeling and foreground segmentation. The methods were unified
in a more general framework, named DLSM, that categorizes the matrix separation
problem into three main approaches: implicit, explicit and stable.

* Chapter 3 presents a novel methodology for background model initialization, seen as a
reconstruction problem from missing/corrupted data. This chapter is closely related to
the first part of the DLSM framework introduced in Chapter 2, covering a wide range
of methods for low-rank approximation on matrices and tensors.

* Chapter 4 describes a new double-constrained RPCA, named SCM-RPCA, to improve
the object foreground detection in maritime scenes. This algorithm follows the third
approach of the DLSM framework by adopting a stable decomposition. The algorithm
makes use of double constraints extracted from spatial saliency maps to enhance object
foreground detection in dynamic scenes.

* Chapters 5 and 6 present two incremental tensors-based algorithms in order to per-
form background/foreground separation from multidimensional streaming data. These
chapters address the problem of low-rank and sparse decomposition on tensors. Chap-
ter 5 introduces a new incremental method for higher-order decomposition on tensors,
whereas Chapter 6 presents a new online stochastic algorithm that makes use of robust
principal component analysis on tensors.
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» Chapter 7 presents a particular approach of low-rank and sparse representation, named
subspace clustering, for human action recognition from 3D skeletal data. This chapter
address a particular work realized in conjunction with CVC at UAB.

* Chapter 8 summarizes the conclusions of the thesis, showing the advantages and lim-
itations of the proposed approaches. It also discusses the open issues and future per-
spectives of the thesis.

* Appendices A and B provide a homogenized overview of all different mathematical
notations, symbols and abbreviations found over all chapters in the thesis.

» Appendix C introduces the concept of tensors, as well as their basic operations.

» Appendix D presents the LRSLibrary, showing a brief overview of available algo-
rithms and usage example.

* Appendix E presents a list of publications related to this thesis.
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Chapter 2

Recent approaches via low-rank and
sparse representation

This chapter introduces the principles of low-rank and sparse decomposition for the prob-
lem of B/F separation. Here, we present a concise overview based on our recently published
survey (Computer Science Review, 2016, [27]) to cover the main aspects of the recent ap-
proaches of low-rank and sparse representation. In addition, an extension to tensors was also
considered.

2.1 Introduction

Learning low-rank and sparse structures from corrupted or even incomplete observations has
recently attracted wide attention in intelligent video surveillance to develop robust algorithms
for background modeling and foreground segmentation [27]. As stated in Chapter 1, the main
objective of these algorithms is to highlight the foreground (or moving) objects for further
steps, such as detection, tracking and recognition. However, in this domain the observed data
(images or videos) are rarely pure and often have high dimensionality.

A large number of approaches for robust low-rank and sparse modeling have been pro-
posed in the last few years [27,49, 117,259]. These approaches are based on the assumption
that the uncorrupted information lies in a low-dimensional subspace, whereas noise is sparse.
This assumption holds a particular association to the problem of B/F separation, where the
background model (almost static) is represented as a low-rank structure and the foreground
objects are associated with the sparse residuals. However, the key issues and challenges in
such approaches are their capabilities to handle complex and dynamic background scenarios,
as well as performing in a real-time manner. Given the importance of this subject, several
methods have been developed in order to perform B/F separation in a robust way [27].

In the next sections, we present an overview of the state-of-the-art algorithms for low-
rank and sparse decomposition, as well as their application to background modeling and
foreground segmentation tasks. First we start with recovering low-rank and sparse structures

9
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on matrices in Section 2.2, then we present a more general case of RPCA, named subspace
clustering, in Section 2.3. Finally, in Section 2.4, we show how to deal with the multidi-
mensional case through tensor methods. The reader may refer to Appendix A for a complete
description of the mathematical notations and symbols found in the current and next chapters
of the thesis.

2.2 Decomposition into low-rank plus additive matrices

Let a sequence of n gray-scale images (or frames) F'; ... F,, captured from a static camera,
thatis, F € R% %%z where i, and i, denote the frame resolution (rows by columns, a.k.a image
height by image width), and considering that all frames are vectorized! into an observation
matrix A = [vec(Fy)...vec(F,)], where A € R™*™ and m = (i1 X i2). The process
of background/foreground separation can be regarded as a matrix separation problem. The
background (almost static and highly correlated between frames) is assumed to lie in a low-
dimensional subspace, where the sparse outliers usually represent the foreground (or moving)
objects. We assume that this matrix separation problem can be unified in a more general
framework formulated as follows:

Y
A=>"K, 2.1)

y=1

where, in most of the cases, Y € {1,2,3}, and for Y = 1...3, the matrices K; ... Kj3 are
commonly defined as follows:

e Implicit: For Y = 1, the first matrix K; is a low-rank matrix (e.g. K; = L). The
matrix L is assumed to be the best low-rank approximation of the matrix A, where
A =~ L. The low-rank assumption for A comes from the fact that the uncorrupted
data appear to be highly correlated to a certain degree. This means that we try to re-
cover only the background component (almost stationary) from a sequence of vector-
ized images in the matrix A. We call this decomposition as “implicit decomposition”
due to the fact that we have any constraint with respect to the sparse components (or
foreground objects). The sparse matrix S is recovered by performing the difference
between the input matrix A and its low-rank component L (e.g. S = A — L). Some
methods are included in this category, such as Low-Rank Approximation (LRA), Non-
negative Matrix Factorization (NMF), and Matrix Completion (MC).

An alternative approach is to assume that the first matrix K; = S is the best sparse
approximation of the matrix A (also known as sparse coding), where A ~ S. In this
case, we ignore the low-rank structure and we find only the sparse components that
minimize the reconstruction error. This approach is widely used for sparse dictionary
learning [138] and compressed sensing [158]. Some authors [232] considered the
background model can be sparsely represented as a linear combination of a few atoms
in the learned dictionary. However, in the context of this thesis we consider that our
first matrix K; (implicit decomposition) is recovered from a low-rank perspective.

I"This operation consists of stacking vertically all columns of the frame F.
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The main drawback of the methods based on Y = 1 is that there is only one assumption
about the structure of the approximated matrix K (either it is low-rank or sparse). In
the case where K; = L, the foreground objects in the matrix S = A — L are mixed
with dense or sparse noise, or anything else. Otherwise, if we consider that K; = S,
any assumption about the structure of the background exists. For this reason, some
authors proposed to “explicitly” specify a sparse component, resulting in ¥ = 2.

» Explicit: For Y = 2, the matrices K; and K5 are usually assumed to be the low-rank
and sparse representation of the data, respectively, such that K; = L and Ko = S.
In this case, the input matrix A is decomposed in such way that A ~ L + S. We
call this decomposition as “explicit decomposition” due to the fact that we have two
constraints: the first one enforcing a low-rank structure over the matrix L, and the sec-
ond one enforcing a sparse structure over the matrix S. Usually we call the methods
based on Y = 2 as robust methods, such as Robust Principal Component Analy-
sis (RPCA), Robust Non-Negative Matrix Factorization (RNMF), Robust Dictionary
Learning (RDL), among the others [27].

Methods based on Y = 2 usually work better for the problem of background/fore-
ground separation in comparison to the methods based on Y = 1. However, in real
life surveillance videos the background is never completely stationary, and there is al-
ways measurement noise or corruptions. In order to deal with this, some authors [260]
proposed to “explicitly” add a new component representing the noise term, resulting
inY =3.

e Stable: For Y = 3, the matrices K;, K5 and K3 are usually assumed to be the
low-rank, sparse and noise components, respectively, resulting in K; = L, Ky = S
and K3 = E, where A ~ L 4+ S + E. The noise can be modeled by a Gaussian, a
Mixture of Gaussians (MoG) or a Laplacian distribution [140]. This decomposition is
called “stable decomposition” as it separates the outliers in S and the noise in E. In
the case of background/foreground separation, the noise matrix E can also represent
some dynamic properties of the background, as well as it can capture the turbulence in
thermal videos [152].

Several methods based on Y = 3 were developed [28], and they are usually based on
Stable Robust Principal Component Analysis (Stable RPCA) or Stable Principal Com-
ponent Pursuit (Stable PCP) [260] and Three Term Decomposition (TTD) [74, 152].
In Chapter 4, we investigate the problem of moving object detection in maritime envi-
ronment through a stable decomposition framework for separating the mixed dynamic
behavior of the background (e.g. moving water, waves, etc) from the motion of the
objects of interest (e.g. ships or boats).

From this homogenized overview, we call the above framework as Decomposition into
Low-rank and Sparse Matrices (DLSM). In the next sections we introduce each part of this
framework where the state-of-the-art methods based on Y = 1. .. 3 are presented in the Sec-
tions 2.2.1 (implicit approaches), 2.2.2 (explicit approaches) and 2.2.3 (stable approaches).
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A (full rank) A, (rank 1) A (rank 3)

Figure 2.1: Example of a low-rank approximation from an input matrix contami-
nated by Gaussian noise. From left to right: the input matrix A, its rank-1 approxi-
mation and its rank-3 approximation.

2.2.1 Implicit decomposition

The implicit decomposition of the DLSM framework can be seen as a low-rank matrix re-
covery problem, where the uncorrupted data can be recovered from a low-dimensional rep-
resentation of the input matrix. The low-rank approximation is formulated as a minimization
problem, in which the cost function measures the fit between the input matrix A and an
approximating matrix L (the optimization variable), subject to a constraint that the approxi-
mating matrix has reduced rank. This optimization, also known as rank minimization under
hard-rank constraint, is defined as follows:

minimize  f(A — L),
L 2.2)
subjectto  rank(L) =1,

where f(.) denotes aloss functionand r (1 < r < rank(A)) represents the desired rank. The
minimum error can be given by the Frobenius norm or the ¢5-norm, due to their invariance
to rotation. Solving (2.2) can be interpreted as finding the best rank r estimation of A in a
least-squares sense, where the loss function is defined as f (A —L) = ||A —L||%. This means
that (2.2) does not have a local minimum and also a closed form solution can be estimated by
computing the Singular Value Decomposition (SVD) of A. Formally, the SVD of an m x n
real or complex matrix A is a factorization of the form:

A=UxVT (2.3)

where U is an m x m real or complex unitary matrix, 3 is an m X n rectangular diagonal
matrix with non-negative real numbers on the diagonal, and VT is an n x n real or complex
unitary matrix. The m columns of U and the n columns of V are called the left-singular
vectors and right-singular vectors of A, respectively. The diagonal entries 3 are known as
the singular values of A and they are ordered in decreasing order. However, instead of taking
all singular values (full SVD), the low-rank approximation problem, according to Eckart and
Young [56] theorem, considers the existence of an optimal rank r approximation, denoted by
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Sequence of n frames F, ... F, Sequence of n background models

A = [vec(Fy) ... vec(F,)] A, (rank-1 approximation)

Input matrix (full rank) Low-rank approximation

(a) Example of background model estimation through low-rank approximation.

0 2 4 6 8 10
first 10 singular values

rank-1 approximation

rank-2 approximation rank-3 approximation

(b) The influence of the rank approximation in the background model.

Figure 2.2: Application of low-rank approximation to the background model esti-
mation in a sequence of images.

svd,(A), by truncating the SVD keeping the r largest singular values such that:
svd,(A) = Z wov! (2.4)
i=1

where u; and v; denote the ith column of U and V, respectively, and o; represents the di-
agonal entries of 3. Figure 2.1 shows an example of an input matrix A contaminated by
a Gaussian noise and its rank-1 (A; = svd;(A)) and rank-3 (A3 = svds(A)) approxi-
mation, respectively. As it can be seen, the low-rank approximation can eliminate the noise
component enough. However, some partial information in the rank-1 approximation is lost
compared to the rank-3 approximation. For example, there are only 3 peaks in A instead of
4 peaks in Ag, that is, A3 is closer to the original matrix (without noise) than A;.

Concerning the problem of background/foreground separation, the low-rank approxima-
tion can be used for the background model initialization task. As an example, Figure 2.2 (a)
shows how to estimate the background model through low-rank approximation. It can be
observed that the rank-1 approximation can recover, successfully, a good representation of
the background model. Figure 2.2 (b) presents the influence of the rank approximation in
the background model. It can be seen that the more the rank is increased the more artifacts
are included into the background model. Taking into account the first 10 singular values, the
high magnitude of the first singular value explains the high correlation between video frames
and why the rank-1 approximation can give a good approximation of the background model.
The best rank r approximation for background modeling is not always evident to find, and it
depends on the scene.
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(a) Input frame (b) Background model (¢) Moving objects (d) Foreground mask (e) Segmentation
(low-rank aprox.) (sparse components)

Figure 2.3: Example of moving vehicles segmentation after background model es-
timation from low-rank approximation.

The next step for estimating the foreground components is to find the sparse matrix S,
which can be recovered by performing the difference between the input matrix A and its low-
rank component L = svd,.(A) for a given r, such that S = A — L (e.g. Figure 2.3 (c)). The
foreground masks (e.g. Figure 2.3 (d)) are simply obtained by hard thresholding the sparse
matrix S such that:

0=258%<s?

o? = var(s),

(2.5)
where O represents the outliers, s = vec(S) denotes the vectorization of the matrix S and
var(s) is the variance of the elements of the vector s. Equation (2.5) is also known as variance
threshold method, that removes all low-variance entries of S. Finally the segmentation of the
moving objects is obtained by coloring the elements of O (see Figure 2.3 (e)).

However, the low-rank approximation method presented previously is based on rank
minimization under hard-rank constraint, and a closed form solution is obtained by SVD.
Unfortunately, this approach has several limitations and drawbacks. It cannot handle affine
transformations, missing entries, gross corruptions, etc. Consider the following example:

Affine transformation and missing entries: In many applications, we need to recover
a minimal rank matrix subject to some problem-specific constraints, often characterized as
an affine set. A typical situation is when the columns are i.i.d. samples of a random pro-
cess with low-rank covariance [165], such as collaborative filtering [2] and latent semantic
indexing [141]. This affine rank minimization problem is defined as follows:

minimize rank(L),
L (2.6)
subjectto  A(L) = b,

where A : R™*"™ — RP denotes a linear mapping and b € RP represents a vector of
observations of size p. The above minimization is equivalent to seeking the simplest model
satisfying a given set of constraints. A special case of problem (2.6) is the matrix completion
problem:

minimize rank(L),
L 2.7)
subjectto  Pq(L) = Po(A),
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minimize  [|L|.,
L

subject to  Po(L) = Pa(A),

Figure 2.4: Example of low-rank matrix completion for background model estima-
tion.

where Pq(.) denotes a sampling operator restricted to the elements of €2 (set of observed
entries), i.e., Po(A) has the same values as A for the entries in €2 and zero values for the
entries outside 2.

However, the problems (2.6) and (2.7) are NP-hard and all known finite time algorithms
have at least doubly exponential running times in both theory and practice [40]. Candes
and Recht [40] proposed to replace the rank(.) function with the nuclear norm [63] (sum
of singular values, see Appendix A) making the problem tractable, in such a way that the
problem reduces to:

minimize  ||Lj|+,
L (2.8)
subjectto  Po(L) = Po(A).

Given that the singular values are always positive, the nuclear norm can be regarded as an
¢1-norm of the singular values, while the rank(.) function is the cardinality or £5-norm of the
singular values. The advantages of using the nuclear norm relaxation are: a) the nuclear norm
is convex?, enabling to compute global optima efficiently, b) the nuclear norm is the tightest
convex surrogate of the rank function [63], and c) due to its convexity, the minimization
can be achieved tractably via several popular algorithms, such as semidefinite programming
(SDP) [124], projected subgradient method [55], or low-rank parametrization [165]. Candes
and Recht [40] theoretically proved that the solution of problem (2.8) can exactly recover
the low-rank matrix with a high probability. However, in real applications, the input matrix
can be contaminated by noise and the equality constraint in Equation (2.8) is too strict. For
matrix completion with noise [39], a relaxed form of (2.8) it is often considered as follows:

L 1
minimize §||PQ(L)—PQ(A)||%—|—)\||L||* (2.9)

where ) is a trade-off parameter between the error and the low-rank regularization induced
by the nuclear norm, and the selection of A should depend on the noise level. This is an
unconstrained convex optimization problem, and can be solved in a systematic way using a
proximal algorithm [155,200]. Figure 2.4 illustrates an example of low-rank matrix comple-
tion for background model estimation. In this example, the input matrix A is sampled from

%For instance, a (strictly) convex function on an open set has no more than one minimum.
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Figure 2.5: RPCA via decomposition in low-rank and sparse matrices.

a uniform distribution by Pq(.) where only 50% of its entries are revealed. As it can be seen,
the low-rank matrix L was reconstructed successfully by using a Singular Value Threshold-
ing (SVT) algorithm proposed by Cai et al. [37]. In Chapter 3 we develop the formulation
of Matrix Completion for the recent approaches. In addition, we investigate the background
model initialization as a reconstruction problem from missing/corrupted data.

2.2.2 Explicit decomposition

When considering the low-rank recovery problem in the case of strong noise, it seems that this
problem is well solvable by the traditional Principal Component Analysis (PCA). However,
the traditional PCA is effective in accurately recovering the underlying low-rank structure
only when the noise is Gaussian. If the noise is non-Gaussian and strong, even a few out-
liers can make PCA fail. To overcome this issue, an extended model called “Robust PCA”
or RPCA was considered by Wright et al. [229], Candes et al. [38] and Chandrasekaran et
al. [41] when the gross errors are sparse, and we call this model as “explicit decomposition”.

The explicit decomposition of the DLSM framework refers to the problem of decompos-
ing an input data matrix A into the sum of two other matrices in such way that A = L + S,
where L is a low-rank matrix and S express the corrupted entries assumed to be sparse (see
Figure 2.5). This definition is also known as Robust Principal Component Analysis (RPCA),
and can be formulated as follows:

minimize rank(L) + card(S),
LS (2.10)
subjectto A =L+ S,

where card(S) = ||S||o denotes the number of non-zero entries of S. Usually problem (2.10)
is rewritten as:

minimize rank(L) + A||S|]o,
LS (2.11)
subjectto A =L+ S,

where A > 0, similar to the Equation 2.9, is a weight parameter that balances the significance
between minimizing ||S||o and minimizing rank(L). That is, for a larger A the optimal
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Figure 2.6: Background/foreground separation by RPCA via PCP.

solution will maximize the sparsity in S providing a less “low-rankness” in L, whereas a
smaller A will result in a minimum sparsity in S and a more low-rankness in L.

The low-rank minimization concerning L offers a suitable framework for background
modeling due to the high correlation between frames. So, minimizing L and S implies that
the background is approximated by a low-rank subspace that can gradually change over time,
while the moving foreground objects constitute the correlated sparse outliers which are con-
tained in S. The rank(L) influences the number of “modes” of the background that can be
represented by L: if rank(L) is too high, the model will incorporate the moving objects into
its representation; if the rank(L) is too low, the model tends to be uni-modal and then the
multi-modality which appears in dynamic backgrounds will be not captured. The quality of
the background/foreground separation is directly related to the assumption of the low-rank
and sparsity of the background and foreground, respectively.

However, as stated in Section 2.2.1, rank(L) = ||o(L)||o and ||S||o yields a highly non-
convex optimization problem. The problem (2.10) involves both low rank matrix recovery
problem and ¢y-minimization problem, and both are NP-hard and hard to approximate [9, 38,
229]. In order to address this issue, a tractable optimization problem is obtained by relaxing
(2.10) with convex envelopes that are easier to minimize [38,229]. Usually the p-norm is
replaced with the ¢;-norm and the rank(.) with the nuclear norm ||.||, yielding the following
convex surrogate:

minimize  ||L||.+A\||S]|1,
LS (2.12)
subjectto A =L+ S,

where ||L||.+A||S||; is the convex envelope of rank(L) + A||S||o over the set of (L, S)
such that max(||L||z, ||S||1,0) < 1 (see Appendix A) [229]. Wright et al. [229] showed
that, under natural probabilistic models, the low-rank matrix L and the sparse matrix S can
be efficiently recovered by solving a convex program. However, the recovery depends on an
appropriate choice of the regularizing parameter A > 0. Usually, A is widely assigned as
A= —— | becoming a universal choice [38,229]. Shortly, Candes et al. [38] extended

max(m,n
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Figure 2.7: Visual comparison of foreground segmentation between PCP and Stable
PCP for dynamic background. From left to right: input video, RPCA via PCP, and
RPCA via Stable PCP.

the work of Wright et al. [229] for matrices with missing values and showed that it is possible
to recover both the low-rank and the sparse components exactly by solving a convex program,
called Principal Component Pursuit (PCP), by minimizing a weighted combination of the
nuclear norm and of the ¢;-norm. The RPCA for matrices with missing entries is formulated
as follows:

minimize  ||L||«+A||S||1,
LS (2.13)
subjectto  Pn(A) = Po(L + S).

Figure 2.6 presents an illustration of the background/foreground separation by using RPCA
via PCP proposed by Candes et al. [38]. Essentially, the nuclear-norm term corresponds to
the low-frequency components while the ¢;-norm describes the high-frequency components.
Usually, the low-frequency components (smooth variations) represent the background model
and the high-frequency components are the foreground objects. However, this separation is
not a trivial task. For example, low frequency components from foreground objects can leak
into extracted background images for areas that are very crowded by moving objects. The
leakage as ghost artifacts which appear in extracted background cannot be well handled by
adjusting the weights between the two regularization parameters. An inverse problem occurs
when we seek to separate the moving objects from a very dynamic background. Figure 2.7
shows a typical issue faced by RPCA via PCP for handling very dynamic background scenes
(e.g. videos recorded by maritime video surveillance systems). As can be seen, the fore-
ground segmentation is highly contaminated by sparse outliers coming from the dynamic
factors in the background model. In order to deal with this issue, some authors [10, 260]
proposed a stable version of PCP, discussed in the next section.

2.2.3 Stable decomposition

As previously shown, the PCP has some limitations, as the low-rank component needs to
be exactly low-rank and the sparse component needs to be exactly sparse (e.g. consider the
input matrix as the sum of a true low-rank matrix plus a true sparse matrix, see Figure 2.5).
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However, in real applications the observations are often corrupted by noise. Zhou et al. [260]
proposed a stable version of PCP, named Stable PCP (or SPCP), adding a third component
that guarantees stable and accurate recovery in the presence of noise. The SPCP is defined
by the following model:

minimize  ||L|[.+A1|[S|[1+ 2| [E|[%,
L,S.E 2.14)
subjectto A =L+ S+E,

where A\; > 0 and Ay > 0 are weighting parameters, E is the noise term, and it is usually
assumed to be ||E||%< ¢, where ¢ > 0, allowing the existence of a Gaussian noise. The
model (2.14) can be also represented as a relaxed version of PCP:

minimize  ||L||.+A|[S]|1,
g 2.15)
subjectto  ||A — L — S|[%< e,

resulting in a stable recovery of L and S. SPCP offers a suitable framework for background/-
foreground separation in real-life applications, as the background model is frequently con-
taminated by noise. Reconsidering the Figure 2.7, we can see a visual comparison between
PCP and SPCP. We can note a relevant improvement given by SPCP compared to PCP in
the foreground segmentation mask when dealing with scenes containing a highly dynami-
cal background. In the SPCP model, the dynamical factors from the background model are
usually included in the noise matrix E, decreasing the number of wrong sparse components
added in the matrix S.

2.2.4 Solvers

In the last few years several algorithms (also named solvers) have been proposed for solv-
ing RPCA. All these algorithms require solving the following generalized model defined as
follows:

minimize A1 fiow (L) + A2 fsparse(S) + A3 froise (),
L,S (2.16)
subjectto  C,

where fiow(.), fsparse(-) and froise(.) are surrogate loss functions that are easier to mini-
mize (usually convex functions), and C is a constraint on the matrices L, S and E. Depend-
ing on the choice of fiow(.), fsparse(.) and froise(.), different instantiations of the prob-
lem (2.16) can be produced. Usually fiow(.), foparse(.) and froise(.) are taken to enforce
the low-rank, sparsity, and noise constraints of L, S and E, respectively. Common choices
for fiow(.), fsparse(-) and froise(.) are the nuclear norm, ¢;-norm, and (squared) Frobe-
nius norm, respectively. The constraint C is generally based on: a) an equality, such as
JA—-L—S8|7,.,= 0or A =L+S8, or b) an inequality, such as ||[A — L — S||7_ .. <€
where 7 and € are defined commonly as € {1,2} and € = 0.5. The ||.||norm could be any
norm, and the most used are the /5-norm and the Frobenius norm.
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2.2.4.1 Optimization algorithms

A wide number of algorithms for solving RPCA both via PCP and via SPCP were proposed
in the literature [27, 117]. Here we present an overview of the state-of-the-art algorithms,
but for a more complete review, please refer to the recent surveys Bouwmans et al. [27] and
Lin [117]. In Chapter 4 we present a special case of RPCA via SPCP in which a partic-
ular type of constraint is employed. We also propose a new variant of SPCP to deal with
background/foreground separation in maritime video surveillance applications.

Given the original formulation of RPCA, where fj,,,(L) = rank(L) = ||o(L)||o and
fsparse(S) = card(S) = ||S||o, this minimization problem yields a NP-hard discrete opti-
mization problem. To overcome this difficulty, a common way is to convert it into a contin-
uous optimization problem, and there are two principal ways to do this. The first way is by
converting into a convex program. For example, fi,,,(.) and fsperse(.) are replaced by the
nuclear norm and the ¢;-norm, respectively. The second way is by converting into a non-
convex program. More specifically, using a non-convex continuous function to approximate
the rank(.) and the card(.) functions. For example, replacing the rank(.) by the Schatten-p
pseudo norm ||.||s, and card(.) by £, pseudo norm ||.||, where 0 < o < 1. The princi-
pal advantage of convex programs is that a global optimal solution can be relatively easily
obtained. The disadvantage is that the solution may not be strictly low-rank or sparse. In con-
trast, the advantage of non-convex optimization is that low-rank and/or sparse solutions can
be obtained. However, their global optimal solution may not be reached. The quality of the
solution may heavily depend on the initialization. So the convex and non-convex algorithms
complement each other. In the next paragraphs we introduce both convex and non-convex
algorithms for solving RPCA.

Convex algorithms: The nuclear norm in the PCP/SPCP problem can be represented
as a semidefinite program and solved by interior point methods [29, 38, 117, 165]. These
methods are implemented in some commercial solvers such as Mosek?, SeDuMi*, YALMIP?
and CVX®. However, interior point methods are typically limited to small size problems (e.g.
n < 100), due to the O(n%) complexity. In real applications such as computer vision and
machine learning, we often require matrices of size n > 10%, making interior point meth-
ods impractical. To overcome this issue, recent approaches focus on first-order optimization
methods instead. In general, first-order methods have less numerical precision than interior
point methods, but large scale problems can be solved efficiently because no second-order in-
formation needs to be stored. First-order methods, such as iterative thresholding algorithms
for ¢1-minimization [37], perform nuclear-norm minimization by repeatedly shrinking the
singular values of the input matrix. This approach reduces the complexity of each iteration to
the cost of a SVD. However, iterative thresholding algorithms, such as SVT, converge very
slowly [38]. Sub-gradient methods have also been used for convex minimization problems
with very large number of dimensions [165]. The main advantages of sub-gradient methods
are their simplicity to implement and their scalability to large-scale problems. However, as

https://www.mosek.com/
‘nttp://sedumi.ie.lehigh.edu/
Shttps://yalmip.github.io/
*http://cvxr.com/
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it remains on SVD, the computation of the singular values can be computationally expen-
sive. Currently, the majority of optimization methods for large scale computing are based
on first order methods [117]. The most popular techniques include the Accelerated Proximal
Gradient (APG) [16, 145], the Frank-Wolfe algorithm [65, 86], and the Alternating Direction
Method (ADM) [119, 120].

Non-convex algorithms: RPCA is a popular convex optimization scheme for decom-
posing an observation matrix into its sparse and low rank components. However, the current
methods based on convex optimization are computationally expensive as they require either
matrix inversion and/or full (or partial) SVD. Moreover, replacing fp-norm by ¢;-norm to
achieve sparsity may be suboptimal, since the ¢;-norm is a slack approximation of the ¢y-
norm leading to an over-penalized problem [131]. Recently, some authors [77,92,94, 109,
116,129,131, 146, 190,223,242,244,250] developed a non-convex counter part to rank min-
imization and RPCA. In general, non-convex optimization problems are NP-hard, even if
our goal is to compute a local minimizer [188]. However, some problems, such as deep
neural networks (or deep learning) [18, 107], dictionary learning [187] and tensor decompo-
sition [69] can be efficiently solved with heuristic algorithms such as (noisy) gradient descent
and alternating directions [188]. Indeed, recent works demonstrate that some non-convex reg-
ularizers can outperform their convex counterparts [222,231]. Several non-convex regulariz-
ers have been proposed, such as the £,-norm [133], Capped ¢;-norm [249], Logarithm [68],
Exponential-Type Penalty (ETP) [67], Smoothly Clipped Absolute Deviation (SCAD) [62],
Minimax Concave Penalty (MCP) [245], Geman [70] and Laplace [206].

The major limitation of the convex approaches for rank minimization (i.e. nuclear norm
minimization) is that all the singular values are simultaneously minimized. As previously
shown in Equation (2.8), the nuclear norm is essentially an /;-norm of the singular values
and it has a shrinkage effect leading to a biased estimator. In order to deal with this issue,
Hu et al. [85] developed a better approximation to the rank by Truncated Nuclear Norm
(TNN), which is given by the nuclear norm subtracted by the sum of the largest few singular
values. By minimizing TNN, the tailing singular values are influenced to be small, while
the magnitudes of the first r singular values are unaffected. A weighted version of the TNN,
named Weighted Nuclear Norm (WNN), was also proposed in Gu et al. [77], adding larger
weights to smaller singular values. In Lu et al. [130], an Iteratively Reweighted Nuclear Norm
(IRNN) algorithm was proposed to solve the non-convex non-smooth low-rank minimization
problem. The authors developed a weighted version of the Singular Value Thresholding
(SVT) algorithm, which has a closed form solution and is solved iteratively by IRNN. In Lu
et al. [129], the authors used a non-convex continuous function to approximate the rank(.)
and the card(.) functions, replacing the rank(.) by the Schatten-p pseudo norm ||.||s, and
card(.) by £ pseudo norm ||.||o where 0 < « < 1. The authors have shown that the
algorithm can be solved effectively by Iteratively Reweighted Least Squares (IRLS) [129]. In
Lu et al. [131], the authors generalized the SVT, which is widely used in many convex low-
rank minimization methods. A Generalized Singular Value Thresholding (GSVT) operator is
proposed to solve the non-convex low-rank minimization problem in place of SVT.

Most recently, some authors [94,146,242] proposed fast methods for non-convex RPCA.
For example, in Netrapalli et al. [146] the method has a linear convergence rate, low com-
plexity, global convergence guarantee and a theoretical guarantee for exact recovery of the
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low-rank matrix. The method consists of simple alternating (non-convex) projections onto
low-rank and sparse matrices. When the rank 7 is small, the method nearly matches the com-
plexity of the traditional PCA. In Kang et al. [94], the authors proposed a new matrix norm
for non-convex rank approximation, named y-norm. The «-norm overcomes the imbalanced
penalization by different singular values in convex nuclear norm. The authors adopted the
difference of convex (DC) programming [196] to decompose a non-convex function as the
difference of two convex functions. As the final solution might not be a globally optimal
one, the experiments have shown that the algorithm produces promising results and con-
verges more than twice faster than Netrapalli et al. [146] and 54 times faster than traditional
convex RPCA solved by inexact augmented Lagrange multiplier 1ALM) [38]. Finally, Yi
et al. [242] proposed fast and efficient non-convex algorithms for RPCA via gradient de-
scent. The method was also extended to solve robust PCA with partial observations (matrix
completion). In short, the authors propose a projected gradient method that uses a novel
sorting-based sparse estimator to produce a rough estimate of the sparse matrix based on the
observed matrix. The sparsification operator keeps simultaneously a a-fraction of the entries
of the residual matrix that have large magnitude. The algorithm outperforms previous non-
convex RPCA approaches and shows a linear convergence rate under proper initialization.

2.3 Relation to low-rank/sparse subspace clustering

Subspace clustering via sparse [59] and/or low-rank representation [121] can be regarded
as a particular case of RPCA. Differently from RPCA, where inliers’ lie on a single low
dimensional subspace, Low-rank/Sparse Subspace Clustering (L/S-SC) methods consider the
inliers are drawn from the union of low-dimensional subspaces. These two common models
can be summarized as follows:

* Sparse Subspace Clustering (SSC):

min ||Z[|s+X||El|;, st. X = AZ+E, diag(Z) =0, (2.17)

* Low-Rank Representation (LRR):

min [|Z[.+A|[E[|;, st. X =AZ+E, (2.18)

In the above formulations, Z € R™*" E € R™*" and A € R™*" as the represen-
tation matrix, the noise matrix, and the dictionary matrix (linearly spans the data space),
respectively, where A > 0 is a parameter to balance the effects of two terms. By choosing
A =X (i.e., X = XZ + E), we assume that the data matrix X is self-expressive. When
A =1(I = diag(1,1,...,1)), LRR degenerates to RPCA [38], which is suitable for the
case that data are drawn from a single subspace. An appropriate dictionary A enables the
low-rank representation to reveal the true subspace structure of the data lying near several
subspaces [43,121]. Usually, the minimization of ||Z||; enforces the sparsity in the represen-

"Data points that have strong mutual coherence.
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(a) noise (b) random corruptions  (c) sample-specific corruptions

Figure 2.8: Illustration of three typical types of errors in the matrix data (from Liu
et al. [121]): a) noise, b) random corruptions, and ¢) sample-specific corruptions.

tation matrix Z for SSC, and the minimization of ||Z||. enforces the low-rank assumption for
LRR. The ||E[|; can be replaced by:

e  Squared frobenius norm (||.||%) to specify the Gaussian disturbance (Figure 2.8(a)).
e [;-norm (||.||1) to characterize the sparse errors (entry-wise corruption) (Figure 2.8(b)).
e I 1-norm(||.||2,1) to deal with sample-specific corruptions and outliers (Figure 2.8(c)).

Robustness of SSC and LRR algorithms has been reported previously in the works of El-
hamifar et al. [59] and Liu et al. [121]. The SSC algorithm addresses the subspace clustering
problem using techniques from sparse representation theory, while LRR aims to decompose
the data matrix as the sum of a clean, self-expressive, low-rank dictionary plus a matrix of
noise. Normally, the observed data is chosen to be the dictionary and the noise is assumed to
be sparse.

2.3.1 Recent advances in subspace clustering

In the last few years, several authors have developed improved versions of the SSC and LRR
given their successes in many computer vision applications. Several variants of SCC and
LRR have been developed to deal with special cases when the data matrix can be corrupted
by noise, missing entries, and outliers.

SSC variants: Wang et al. [222] developed a modified version of SSC that considers
the problem of subspace clustering under noise. Specifically, when random noise is added
to the unlabeled input data points, which are assumed to lie in a union of low-dimensional
subspaces. Patel et al. [159] proposed a novel algorithm called Latent Space Sparse Sub-
space Clustering (LS3C) for simultaneous dimensionality reduction and clustering of data
lying in a union of subspaces. Specifically, the method learns the projection of data and finds
the sparse coefficients in the low-dimensional latent space. Cluster labels are then assigned
by applying SC to a similarity matrix built from these sparse coefficients. Soltanolkotabi
et al. [185] developed a robust version of SSC to cluster noisy data. In particular, the au-
thors used geometric functional analysis to show that the algorithm can accurately recover
the underlying subspaces under minimal requirements on their orientation and on the num-
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ber of samples per subspace. Xu et al. [233] proposed a new subspace clustering algorithm,
named re-weighted sparse subspace clustering (RSSC) that consists of an iterative weighting
(reweighted) /; minimization framework which improves the performance of the traditional
l1 minimization framework used in the original SSC. Yang et al. [238] proposed a SSC variant
to deal with missing entries outperforming the natural approach (low-rank matrix completion
followed by sparse subspace clustering) when the data matrix is high-rank or the percent-
age of missing entries is large. Li et al. [111] proposed a unified optimization framework
for learning both the affinity (affine transformation) and the segmentation (identification of
multiple subspaces). The framework is based on expressing each data point as a structured
sparse linear combination of all other data points, where the structure is induced by a norm
that depends on the unknown segmentation.

LRR variants: Babacan et al. [12] considered the problem of clustering data points into
low dimensional subspaces in the presence of outliers. The authors first developed an iter-
ative expectation-maximization (EM) algorithm and then derived its global solution. While
the first method is based on an alternating optimization scheme for all unknowns, the sec-
ond method makes use of recent results in matrix factorization leading to fast and effective
estimation. Both methods are extended to handle sparse outliers and missing values. Vidal
and Favaro [214] proposed a framework, named Low Rank Subspace Clustering (LRSC), that
considers the problem of fitting a union of subspaces to a collection of data points drawn from
one or more subspaces and corrupted by noise and/or gross errors. The authors decomposed
the corrupted data matrix as the sum of clean and self-expressive dictionary plus a matrix
of noise and/or gross errors. The solution involves a novel polynomial thresholding opera-
tor on the singular values of the data matrix, which requires a minimal shrinkage. Chen et
al. [43] proposed a new framework, named robust low-rank representation (Robust LRR), by
considering the low-rank representation as a low-rank constrained estimation for the errors
in the observed data. This framework aims to find the maximum likelihood estimation of the
low-rank representation residuals and the experimental results have shown the robustness of
this method to various type of noises (illumination, occlusion, etc) compared to the original
LRR.

Combinations of SSC and LRR: Wang et al. [222] showed that SSC and LRR are
fundamentally similar in that both are convex optimizations exploiting the intuition of “Self-
Expressiveness”. The authors proposed a new algorithm, named Low-Rank Sparse Subspace
Clustering (LRSSC), by combining SSC and LRR taking the advantages of both methods in
preserving the “Self-Expressiveness Property” and “Graph Connectivity” at the same time.
Patel et al. [160] proposed three novel algorithms for simultaneous dimensionality reduction
and clustering of data lying in a union of subspaces. Specifically, the authors described meth-
ods that learn the projection of the data points and find the sparse and/or low-rank coefficients
in the low-dimensional latent space.

2.3.2 Adequacy for the background/foreground separation

L/S-SC methods were widely applied to the motion segmentation (or motion clustering) prob-
lem by separating a video sequence into multiple spatio-temporal regions, as they correspond
to different rigid-body motions in the scene [59,93,111,164,216,233,238]. Differently from
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Figure 2.9: Turning sparse point trajectories into dense regions. Figure from Ochs
and Brox [149].

background/foreground separation by RPCA where the entire video sequence is represented
by a dense matrix decomposed into its low-rank and sparse components, L/S-SC methods
work slightly differently. In general, they solve this problem by extracting a set of points in
an image, and tracking these points through the video. Given a set of points drawn from a
union of linear (or affine) subspaces, all the trajectories associated with a single rigid motion
live in a low-dimensional subspace. Therefore, the motion segmentation problem reduces to
clustering a collection of point trajectories according to multiple subspaces [59,215]. Usu-
ally the algorithms assume that the feature points are visible in all the frames. However, some
authors [164,216] extended existing methods to the case of missing data, where some of the
features are not visible in all the frames. Figure 2.9 (top) illustrates how motion trajectories
are clustered into multiple subspaces using Hopkins 155 database [205]. As can be seen,
the output from subspace clustering methods differs from the traditional foreground masks
given by RPCA approaches. In general, clustering motion trajectories results in sparse tra-
jectories and some additional efforts need to be done to obtain a foreground mask. Some
authors [32, 149, 150] developed novel techniques for turning sparse point trajectories into
dense regions, please see Figure 2.9 (bottom). Compared to the binary foreground masks
obtained from RPCA methods, where the background is represented by a black color and the
moving objects by a white color, subspace clustering approaches can provide a more complete
information about the moving objects, splitting them into different class of motions. In ad-
dition, L/S-SC methods can deal with a particular limitation of the traditional B/F separation
methods, that cannot perform well the case of moving cameras.

"Hopkins 155 dataset: http://www.vision.jhu.edu/data/hopkinsl55/
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TENSOR METHODS

v v

PARAFAC Tucker Alternative
family family models
e.g. PARAFAC, PARAFAC?, ... e.g. Tucker, Tucker3 / HOSVD, ... e.g. t-SVD, Multiway analysis, ...

Figure 2.10: Families of tensor methods for multi-way data analysis. Adapted from
Acar and Yener [3].

2.4 Extension to tensors

As seen in previous sections, matrix-based low-rank and sparse decomposition methods used
for background subtraction work only on a single dimension and consider the image as a
vector; hence, multidimensional data for efficient analysis can not be considered. In addition,
the local spatial information is lost and erroneous foreground regions can be obtained. Some
authors [83, 112,176, 182,192,204] used a tensor representation to solve this problem.

In the thesis, we address some related works that employ robust tensor subspace learning
for the background/foreground separation problem. First, we present the principal tensor
decomposition tools in Section 2.4.1, then we describe the recent works that employ RPCA
on tensors in Section 2.4.2. Moreover, we also present in Chapters 5 and 6 two different
approaches for background modeling via tensor subspace learning.

2.4.1 Tensor decomposition and factorization

Tensor decompositions have been widely studied and applied to many real-world problems [76,
99,132]. They were used to design low-rank approximation algorithms for multidimensional
arrays [3,72,76, 105] taking full advantage of the multi-dimensional structures of the data.

In the next sections we introduce two widely-used models for low rank decomposition
on tensors: the Tucker decomposition (Section 2.4.1.1) and the PARAFAC decomposition
(Section 2.4.1.2). Other approaches were also developed [3, 45, 76] and usually they are
classified as alternative models (see Figure 2.10). The reader may refer to [3, 45,76, 99] for
a deep literature review on tensor methods. We suggest the reader to refer to Appendix A
for a summarized overview of mathematical notations and symbols used for tensors. The
reader can also refer to Appendix C for an introduction on tensors, their properties and their
operations.
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Figure 2.11: Illustration of a Tucker model for a third-order tensor. A third-order
tensor is decomposed as the sum of a low-rank tensor (a core tensor multiplied by its
factor matrices) and a residual tensor. Image adapted from [3,99].

2.4.1.1 Tucker decomposition

The Tucker decomposition can be considered as a form of higher-order principal component
analysis. It decomposes a tensor into a small tensor, named core tensor, multiplied by a matrix
along each mode [99] (please refer to Figure 2.11 for a better illustration). For an N-order
tensor X € RI1*12x-XIN the Tucker model is formulated as:

X=¢gxN U +¢& (2.19)

where G x1 Uy X9 Usy... xy Uy is the Tucker model, G € R™*72%---X"N represents
the core tensor, U; € R %" are the factor matrices along the N modes, r; X 192 X ... X
rn represents the rank of each mode, and £ contains the residuals. Unlike the SVD for
matrices, the core tensor G does not always result in a diagonal tensor. The columns of
U,, are the principal components of the n-mode fibers on X’. For a third-order tensor, the
core tensor of minimal size is defined by 71 (the column rank), r5 (the row rank), and r3
(the tube rank). In other words, the multi-linear rank of an N-order tensor is represented by
an N-tuple (r1,72,...,7rn). The Tucker decomposition is also considered as a non-convex
optimization problem. Several algorithms were developed to solve the Tucker model and the
most popular are based on the Alternating Least Squares (ALS) framework [99], also named
as Tucker-ALS. However, the ALS method is not guaranteed to converge to a global optimal.
In Goldfarb and Qin [72], the authors solve the Tucker model under a convex optimization
framework by using an alternating direction augmented Lagrangian (ADAL) method, also
named as Tucker-ADAL.

Some authors [3, 104, 105] considered the Tucker model as the generalization of SVD to
higher-order tensors®. Lathauwer et al. [104, 105] presented a Tucker model (also named as
Tucker3) with orthogonality constraints on the components, and this approach is frequently
referred to as Higher-Order Singular Value Decomposition (HOSVD). The HOSVD is com-
puted by flattening the tensor in each mode and calculating the singular vectors corresponding
to its mode. In other words, it considers the tensor as multiple matrices and forces the un-

81s important to note that, unfortunately, there does not exist a higher order SVD that inherits all
the properties of the matrix SVD [3,99,210,211].
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Figure 2.12: Illustration of the CP decomposition of a third-order tensor as the sum
of rank-1 tensors u,; o u, ou,3 forr € {1,2,..., R}. Image adapted from [3,99].

folding matrix along each mode of the tensor to be low rank as follows:
N
x =Y uklghlyiiT 4 ¢ (2.20)
n=1

where U B VT represents the SVD applied in the n-mode matricized tensor X (see
Appendix C). This approach is usually referred to as Multilinear SVD [45, 104]. A major
difference between SVD and HOSVD is that SVD represents a matrix as a sum of rank-one
matrices, while HOSVD does not have this property.

2.4.1.2 CANDECOMP/PARAFAC decomposition

CANDECOMP/PARAFAC(CP)-decomposition can be seen as a special case of the Tucker
model, where the core tensor is superdiagonal and the number of components in the factor
matrices is the same [99]. The CP-decomposition expresses a tensor as the sum of a finite
number of rank-one tensors (please refer to Figure 2.12). Given an N order tensor X, the R-
component CP model (also referred to as canonical decomposition) results into the following
optimization problem:

R
X:ZurlOUTQOHT3:U10U2...OUR+S (2.21)

r=1

where o denotes the outer product, U; € RI*E U,;0U,...0Ug represents the PARAFAC
model, and £ contains the residuals. Differently from the matrix case, the rank of a tensor is
a NP-hard problem [82,99]. In practice, the rank of a tensor is determined numerically by
fitting several rank-R CP models. It is important to note that the best rank-R approximation
of a tensor of a rank higher than R is not guaranteed [45, 53]. In general, to compute the
rank- R CP model in the presence of noise, the Frobenius norm of the difference between the
data tensor and its CP approximation is minimized as follows:

1
minimize [ & — L||%, (2.22)

where £L = Uj o Uy... o Ui. Usually the PARAFAC model is considered to be the
method closest to SVD for matrices, because it decomposes an N-order tensor as the sum
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X | L *

Figure 2.13: Extending robust principal component analysis on a third-order tensor.

of rank-one tensors. In general, the algorithms for solving the PARAFAC model use the
ALS framework due to its simplicity. These algorithms were also named as CP-ALS. In
the CP-ALS, each component matrix is optimized at a time, keeping the other component
matrices fixed [45,99]. Algorithms based on closed form solutions and gradient methods
have also been proposed [202]. Other authors, e.g. Xu and Yin [236], imposed additional
structure on the coefficients of the CP decomposition, such as non-negativity. In Zhou et
al. [254], the authors proposed an accelerated and online algorithm for fitting the PARAFAC
model. Their method achieves the solution much faster than the traditional PARAFAC solved
by ALS. Algorithms for solving the PARAFAC model with missing entries were also pro-
posed [201,243,252]. In Chapter 3, we investigate a particular problem of background model
initialization. Not only matrix-based completion methods are evaluated, but also the recent
approaches for tensor completion. We address the problem of background model initializa-
tion as a reconstruction problem from missing/corrupted data.

2.4.2 Robust Principal Component Analysis on tensors

In the last few years, some authors [72, 115, 128, 182,204] extended the Robust PCA frame-
work to the multilinear case. Basically, the RPCA for matrices was reformulated into its
“tensorized” version. For an N-order tensor X, it can be decomposed as:

X=L+S+E, (2.23)

where £, S and £ represent the low-rank, sparse and noise tensors, respectively (please see
Figure 2.13). Similarly to the matrix-case, problem (2.23) can be rewritten as the following
optimization problem:

minimize rank(L) + card(S)
£.8 (2.24)
subjectto X =L+ S.

Due to the intractability of problem (2.24), the rank(.) and card(.) are replaced by their
convex envelopes, such as nuclear norm and the element-wise ¢;-norm. However, differently
from matrices, the rank of a tensor is known to be NP-hard to compute. It is usually replaced
by the tensor n-rank.

Definition 2.1. (Tensor n-rank). Let X € RI1*/2X--XIN be an N-th order tensor. The n-
rank of X, denoted as rank,,(X), is defined as the number of linearly independent n-mode
fibers of X’ by
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rank, (X) = rank(XM)) (2.25)

For matrices, rank(X) = rank(XT). However, for a N-th order tensor this is not true. The
convex envelope of a rank, (X) = rank(X[™) is replaced by ||X™||,. Given an N-order
tensor A, its nuclear norm can be generalized as follows:

N
1= Y IIXl (2.26)

n=1

Equation (2.26) represents the Sum of Nuclear Norms (SNN) [122] also referred to as tensor
trace norm. So, replacing the rank(.) by SNN and card(.) by ¢;-norm in Equation (2.24),
the tensor RPCA can be described by the following optimization problem:

N
mlnlllr,glze ;H [« +A[|S] |1

2.27)
subjectto X =L+ S.

This formulation, first introduced in Li et al. [115], was also extended to the Stable PCP
problem:

N
minimize LML +A]|S
e SIIL S .

subjectto  ||X — £ — S||4< ¢,

resulting in a stable recovery of £ and S. Li et al. [115] proposed a multilinear extension
of the PCP and SPCP problem to the tensor case. The tensor is decomposed into a low di-
mensional structure plus additive (sparse) component. Their method, named Rank Sparsity
Tensor Decomposition (RSTD), employs the alternating direction method (ADM) for the op-
timization, leading to a block coordinate descent (BCD) algorithm. Some computer vision
applications, such as image restoration, BS and face recognition, were also addressed [115].
Subsequently, Tran et al. [204] proposed a tensor-based method for video anomaly detection,
applying the Stable PCP decomposition in each tensor mode. The proposed method uses
the IALM framework [38] for each unfolded matrix of a tensor to determine which frames
are anomalous in a video. Next, Tan et al. [192] proposed a method, named Low-n-rank Ten-
sor Recovery Based on Multi-linear Augmented Lagrange Multiplier Method (LTR-MALM),
to overcome the slowly convergence of the previous algorithm [115]. A new minimization
method based on augmented Lagrange multiplier method (ALM) is used. The authors showed
in the experimental results that the LTR-MALM algorithm is at least several times faster than
the RSTD algorithm, while their results are comparable in terms of accuracy. Moreover, Don-
ald and Qin [72] developed a rich framework with several variants of Higher-Order RPCA
(HORPCA) methods for robust tensor recovery. Convergence guarantee and proofs of each
method were also addressed. Recently, Zhao et al. [253] proposed a Robust Bayesian Tensor
Factorization (BRTF) scheme for incomplete tensor completion data. BRTF provides a fast
multi-way data convergence but tuning of annoying parameters and batch processing are the
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major difficulties of this approach. Finally, Lu et al. [128] proposed a new approach for ro-
bust PCA on tensors. Their model is based on a new tensor Singular Value Decomposition
(t-SVD) method developed by [97,251]. t-SVD is the best close representation of SVD for
third order tensors, decomposing X = U * S * V7.

2.5 Conclusion

In summary, we presented an overview of the state-of-the-art methods for low-rank and sparse
decomposition, as well as their application to the problem of background/foreground separa-
tion. The methods were unified in a more general framework, named DLSM, that categorizes
the matrix separation problem into three main approaches: implicit, explicit and stable. In
addition, we presented the matrix separation problem from a single low dimensional subspace
to a union of low-dimensional subspaces, introducing the subspace clustering approach. We
also showed its adequacy to the problem of background/foreground separation by cluster-
ing motion trajectories. Finally, we extended the matrix case to the tensor case for handling
multidimensional data.
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Chapter 3

Background model initialization via
matrix and tensor completion

In this chapter, we investigate the problem of background model initialization as a reconstruc-
tion problem from missing/corrupted data. This problem can be formulated as a matrix or
tensor completion task where the image sequence (or video) is revealed as partially observed
data. This work is based on our publication (SBMI/ICIAP, 2015, [178]), and on its extended
version for tensors (PRL, 2016, [184]). In addition, the majority of matrix and tensor comple-
tion algorithms presented here were made publicly available in the LRS library [180]" (see
Appendix D).

3.1 Introduction

As outlined in Chapter 1, background model initialization is commonly the first step of the
BS process. It typically consists of creating a background model that best represents the
scene background. In a simple way, this can be done by manually setting a static image that
represents the background. Indeed, it is often assumed that initialization can be achieved
by exploiting some clean frames at the beginning of the sequence, and the scene here is
assumed to be stationary or quasi stationary. Naturally, this assumption is rarely encountered
in real-life scenarios, because of continuous clutter presence. In addition, this procedure
presents several limitations, because it needs a fixed camera with constant illumination, and
the background needs to be static (commonly in indoor environments), and having no moving
object in the first frames. In practice, several challenges appear and perturb this process, such
as noise acquisition, bootstrapping, dynamic factors, etc. [25, 135].

The main challenge is to obtain a first background model when video frames contain
foreground objects. Some authors perform the initialization of the background model by the
arithmetic mean [102] (or weighted mean) of the pixels between successive images. Prac-

"LRSLibrary: https://github.com/andrewssobral/lrslibrary
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Figure 3.1: Proposed approach to background model initialization: given an input
image, a joint motion-detection and frame-selection operation is applied. Next, a
low-rank reconstruction process recovers the background model from the partially
observed data.

Table 3.1: Classification of background model initialization methods according to
Bouwmans et al. [25]. The approaches presented in this chapter are in bold face.

Type of methods Related works

Temporal Statistics Mean, Color Median, MoG [186,262], KNN [263], BE-AAPSA [163]
Subintervals of Stable Intensity WS2006 [220], IMBS-MT [21], LaBGen [106]

Model Completion RSL2011 [166]

Optimal Labeling Photomontage [4]

Subspace Estimation Eigen [151], RSL [52], RPCA [38]

Missing Data Reconstruction Matrix Completion [178], Tensor Completion [184]

Neural Networks SC-SOBS [134], BEWiS [51]

tically, some algorithms are: (1) batch, using n training frames (consecutive or not), (2)
incremental with known n or (3) progressive with unknown n, as the process generates par-
tial backgrounds and continues until a complete background image is obtained. Furthermore,
initialization algorithms depend on the number of background modes and the complexity of
their background models. However, BS initialization has also been achieved by many other
methodologies [24,25, 135].

In 2014, Maddalena and Petrosino [135] initiated a first survey on background initial-
ization models. This survey was extended in Maddalena and Petrosino [136] by adding
new methods. Moreover, the authors assembled a dataset, named SBI 2015, consisting of
sequences frequently adopted for background initialization. Second, a more complete sur-
vey was developed in Bouwmans et al. [25] by adding new methods and extending the SBI
2015 dataset. The main investigations used methods based on temporal statistics [163, 186,
262,263], subintervals of stable intensity [21, 106, 220], model completion [166], optimal
labeling [4], subspace estimation [38,52, 151], and neural networks [51, 134]. Table 3.1
summarizes the type of methods according to the taxonomies presented in [25]. Concerning
the works based on subspace learning (related to this chapter), we can cite for example the
computation of eigen values and eigen vectors [151], and the robust subspace learning ap-
proach proposed by De La Torre and Black [52]. However, the recent research on subspace
estimation by sparse representation and rank minimization [28] has been showing a suitable
framework for background modeling. The background model is recovered by the low-rank
subspace that can gradually change over time, while the moving foreground objects constitute
the correlated sparse outliers.
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3.2 Proposed methodology

In this chapter, we present a novel methodology for background model initialization, clas-
sified as Missing Data Reconstruction in Table 3.1. The initialization of the background
model is addressed as a reconstruction problem from missing data. Indeed, this problem can
be formulated as a matrix or tensor completion task, where the image sequence (or video)
is revealed as partially observed data. The missing entries are induced from the moving
regions through a simple joint motion-detection and frame-selection operation. The redun-
dant frames are eliminated, and the moving regions are represented by zeros in our obser-
vation model. The second stage involves evaluating twenty-three state-of-the-art algorithms
including thirteen matrix completion and ten tensor completion algorithms. These algorithms
aim to recover the low-rank component (or background model) from partially observed data.
All experiments were performed by using the SBI dataset proposed by Maddalena and Pet-
rosino [136]?. Figure 3.1 shows the proposed framework. In this chapter, the processes
described here are conducted in a batch manner.

3.2.1 Joint motion detection and frame selection

The elimination of redundant frames is an important step for a fast low-rank reconstruc-
tion process, removing the irrelevant information and decreasing the high computational cost
of some matrix and tensor based methods. All algorithms evaluated in this thesis (except
GROUSE) are batch methods, requiring all frames to be vectorized and stored in a column
vector from a big matrix (usually, frame resolution x number of frames) before optimization.

Given a sequence of images, in order to reduce the number of redundant frames, a simple
joint motion-detection and frame-selection operation is applied. First, the color images are
converted into their gray-scale representation. So, let a sequence of n gray-scale images
(frames) F; ... F,, captured from a static camera, that is, F € R/1*/2 where I, and I,
denote the frame resolution (rows by columns). The difference between two consecutive
frames (motion detection step) is calculated by:

0 ift=1
D, = ; (3.1)
(Fy — F;_1)? otherwise
wheret =1,...,n, 0 € R'*2 denotes a zero matrix® and D; € R’ *!2 denotes the matrix

of pixel-wise Lo-norm differences from frame ¢ — 1 to frame ¢. Next, the sum of all elements
of D, is stored in a data vector d € R™ whose ¢-th element is given by:

I Iz
d =YY Dy(x,y), (32)
r=1y=1
where D, (x,y) is the matrix element located in the row z € [1,...,I;] and column y €

http://sbmi2015.na.icar.cnr.it/SBIdataset.html
3 A matrix with all its entries being zero.
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Table 3.2: Number of selected frames after the frame-selection process.

# Sequence Frames Selected Reduction 7

1 Board 228 64 71.93% 0.125
2 Candela.ml.10 350 84 76.00% 0.100
3 CAVIARI 610 88 85.57% 0.100
4 CAVIAR2 460 83 81.96% 0.125
5 CaVignal 258 65 74.81% 0.125
6 Foliage 394 68 82.74% 0.600
7 Hall&Monitor 296 94 68.24% 0.075
8 Highwayl 440 59 86.59% 0.100
9 Highwayll 500 49 90.20% 0.075
10 HumanBody2 740 86 88.38% 0.050
11 IBMtest2 90 33 63.33% 0.100
12 People&Foliage 341 55 83.87% 0.100
13  Snellen 321 70 78.19% 0.125
14 Toscana 6 6 0.00% -

[1,...,I5]. Then, the data vector d is normalized between 0 and 1 by:
d =norm(d) = d — min(d) (3.3)

max(d) — min(d)’

where min(d) and max(d) denote the minimum and the maximum value of the vector, re-
spectively. The frame-selection step is done by calculating the derivative of d by:
d -
d=-—-d 34
pTA (34
Next, the vector d’ is also normalized as in Equation (3.3). Finally, the index of the more
relevant frames is obtained by thresholding d":

1 ifld — | >r
vV = | wl , 3.5
0 otherwise

where 1/ denotes the mean value of the vector d’, and 7 € [0,1] controls the threshold
operator. In this chapter, n < n represent the set of all frames where v = 1, and the parameter
7 was chosen empirically for each scene. Figure 3.2 illustrates the frame selection operation
in HallAndMonitor scene. The normalized vector (in blue) shows the difference between two
consecutive frames. The derivative vector (in red) draws how much the normalized vector
changes. Then, it is thresholded and the more relevant frames are selected (in orange). For
this example, with 7 = 0.075, only 94 relevant frames are selected from a total of 296 frames
(68, 24% of reduction). Table 3.2 shows the number of selected frames after frame selection
process for the SBI dataset. As it can be seen, an average of 80% of reduction was achieved
for each scene. The Toscana scene was ignored, due to its small amount of frames.
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3.2.2 Low-rank reconstruction from missing data

In this section the low-rank reconstruction is addressed from two points of view: matrix
completion (MC) and tensor completion (TC). First, we start with a matrix concept of the
completion process in Section 3.2.2, and next we describe a generalized concept with ten-
sors in Section 3.2.2, providing brief descriptions of the methods adopted for the evaluation
(Section 3.3).

The matrix completion case

As explained previously in Chapter 2, MC aims to recover a low rank matrix from partial
observations of its entries. In recent years, several methods for low-rank matrix recovery have
been proposed. Basically, they are divided into two categories based on their approaches to
modeling the low-rank prior [259]. The first approach is to minimize the rank of the input
matrix subject to some constraints. The second approach is to factorize the input matrix as
the product of two factor matrices; the rank of the input matrix is upper bounded by the ranks
of the factor matrices.

Matrix completion by rank minimization A direct approach to recover a low-rank
matrix is to find a matrix L € R™*"™ with minimum rank that best approximates the matrix
A € R™*"™ as reported in Section 2.2.1, Equation (2.7). Candés and Recht [40] showed that
this problem can be formulated as:

minimize rank(L),
L (3.6)
subjectto  Po(L) = Pa(A),

where rank(L) indicates the rank of the matrix L, and P, denotes the sampling operator
restricted to the elements of (2 (set of observed entries), i.e., Po(A) has the same values as A
for the entries in €2 and zero values for the entries outside {2. Candes and Recht [40] proposed
to replace the rank(.) function with the nuclear norm:

minimize  ||L||,
L (3.7)
subjectto  Pq(L) = Pa(A),

where ||L||.= }_._, 0; such that o1, 0, ..., 0, are the singular values of L and 7 is the rank
of L. The nuclear norm makes the problem tractable and Candes and Recht [40] proved theo-
retically that the solution can be exactly recovered with a high probability. In addition, Cai et
al. [37] proposed an algorithm based on soft Singular Value Thresholding (SVT) to solve this
convex relaxation problem. However, in real world applications the observed entries may be
noisy. In order to make the problem (3.7) robust to noise, Candes and Plan [39] proposed a
stable matrix completion approach relaxing the equality constraint by:

1
minimize 5|\PQ(L) — Po(A)|[F+M|L]«, (3.8)
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where ||.||r denotes the Frobenious norm and the parameter A controls the rank of L. The
selection of A should depend on the noise level [39].

A few recent works used an online formulation for matrix completion [15, 80, 127]. On-
line algorithms are useful because they are faster and need less storage compared to most
batch techniques. In He et al. [80], the authors introduce GRASTA (Grassmannian Ro-
bust Adaptive Subspace Tracking Algorithm), an online robust subspace tracking algorithm
that operates on highly subsampled data. In Balzano and Wright [15], the authors present
GROUSE (Grassmanian Rank-One Update Subspace Estimation), a subspace identification
and tracking algorithm that builds high quality estimates from very sparsely sampled vec-
tors. In Lois and Vaswani [127], the authors introduce the ReProCS (Recursive Projected
Compressive Sensing) algorithm for both online MC and online RPCA.

Matrix completion by matrix factorization Instead of minimizing rank, another ap-
proach for performing MC is through matrix factorization (MF). MF methods decompose the
matrix A € R™*"™ as the product of two factor matrices: A = WHT, where W € R™*",
H ¢ R"™ ", and r controls the rank of W and H. Therefore, if r is small, A has a
small rank. Using matrix factorization to model a low-rank matrix is based on the fact that
rank(WHT) < min(rank(W), rank(H)). The problem of recovering a low-rank matrix
can be converted into estimating two factor matrices W and H. In the case of missing values,
the factorization-based methods for MC aim to solve the following optimization problem:

1
minimize  Z[| Po(A) — Po(WHT)||%. (3.9)

A straightforward approach to solve the problem (3.9) is by minimizing the function over
W or H alternately, fixing the other one. Each subproblem of estimating W or H turns
into a least-squares problem, which admits a closed-form solution. Algorithms of this type
have been well studied in many works in the recent matrix recovery literature [87, 193]. For
example, the matrix completion solver LMaFit [227] also adopted the alternating strategy to
solve the following equivalent form of the problem (3.9):

1
minimize ~||Z - WHT|%,
5 (3.10)
subjectto  Pq(Z) = Pa(A),

where Z is an auxiliary variable. Additionally, LMaFit integrates a nonlinear successive
over-relaxation scheme to accelerate the convergence of alternation.

Nonnegative factors Non-negative Matrix Factorization (NMF) is a special case of
the traditional MF, where the factor matrices W and H have no negative elements. The
non-negativity makes the resulting matrices easier to inspect*, as in many applications (e.g.
images, texts, etc.) the data is non-negative. However, NMF is an NP-hard problem that
requires to impose additional assumptions (e.g. lowrankness, convexity, etc.) on the data

*NMF learns a parts-based representation of the data, whereas PCA learn holistic representa-
tions [108].



3.2. Proposed methodology 41

points in order to reduce the original NMF to a tractable problem. In the literature, some
authors [237,255] have addressed the non-negativity and low-rank completion to take the ad-
vantages of both, obtaining superior results than those of just using one of the two properties.

Randomized decomposition The factorization of large matrices becomes expensive
and sometimes impractical for the traditional (deterministic) MF algorithms. In recent years,
some authors focused on modern randomized matrix approximation techniques [78]. These
algorithms use random sampling to identify a subspace that captures most of the underlying
information of a matrix. Instead of computing the SVD of the whole matrix A, the random-
ized low-rank SVD [61,228] consists of computing a rank-r approximation of A, such that
A ~ QQTA, where Q € R™*" is orthonormal representing the economic QR decompo-
sition® of AQ) = QR such that 2 € R™*" is a random sub-Gaussian® matrix. Then, the
algorithm efficiently computes the SVD of a relatively small matrix B = QT A. Zhou and
Tao [257] proposed a fast alternative way, named Bilateral Random Projections (BRP), that
avoids the SVD for large matrices. The effectiveness and the efficiency of BRP was verified
in the GoDec [256], SSGoDec [256] and GreGoDec [258] algorithms for low-rank matrix
approximation and completion. Given r bilateral random projections of a m x n dense ma-
trix A, the low-rank approximation L can be rapidly built by L = Y (X2Y;)"'YZ, where
Y, =AX,, Yy =ATX,, and X; € R®*" and X5 € R™*" are random matrices.

Riemannian optimization Another widely-used regularization strategy in low-rank
matrix factorization is to constrain the search space and optimize over manifolds. Keshavan
et al. [96] proposed to solve the following matrix completion problem:

1
minimize §HPQ(A) — Po(WEH")||7, 3.11)

subjectto W € Gr(r,m),H € Gr(r,n), X € R™*",

where Gr(r, p) denotes the set of r-dimensional subspaces in R?, which forms a Riemannian
manifold, named Grassmannian. Keshavan et al. [96] proposed an algorithm named OptSpace
to iteratively estimate the factor matrices, where W and H are updated by gradient descent
over the Grassmannian, while 3 is updated by least squares.

Instead of exploring the geometries of search spaces of factor matrices, Vandereycken [209]
proposed to directly optimize a function over the set of fixed-rank matrices:

1
inimize  =||Po(A) — Po(L)|[2,
Inll’lliane 2|| o (A) o(L)||7 (3.12)

subjectto A € M,,

where M, denotes the set of rank-r matrices in € R™*", which forms a smooth manifold.
Vandereycken [209] developed a conjugate gradient descent algorithm named LRGeomCG

°If A is an m-by-n matrix with m > n, then QR computes only the first n columns of Q and the
first n rows of R.
6 A sub-Gaussian distribution is a probability distribution with strong tail decay property [33].
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Table 3.3: List of MC algorithms evaluated for BM initialization.

Type Method Main techniques Author(s)
IALM Augmented Lagrangian  Lin and Wei (2010) [118]

RM RMAMR Augmented Lagrangian  Ye et al. (2015) [241]

SVP Hard thresholding Jain et al. (2010) [87]
OptSpace Grassmannian Keshavan et al. (2010) [96]
MC-NMF Non-negative factors Xu et al. (2012) [237]

MF LMaFit Alternating Wen et al. (2012) [227]
ScGrassMC Grassmannian Ngo and Saad (2012) [148]
LRGeomCG Riemannian Vandereycken (2013) [209]
GROUSE Online algorithm Balzano and Wright (2013) [15]
ORIMP Matching pursuit Wang et al. (2015) [224]
GoDec Randomized Zhou and Tao (2011) [256]
SSGoDec Randomized Zhou and Tao (2011) [256]
GreGoDec Randomized Zhou and Tao (2013) [258]

RM - Rank Minimization
MF - Matrix Factorization

to efficiently optimize any smooth function over M,..

Background modeling through matrix completion

Considering the background model initialization as a matrix completion problem, once the
frame-selection process is done, the moving regions of the n frames, selected in the previous
step (see Section 3.2.1), are determined by:

1 if0.5(Dg)? > B
My, = thresh(Dy) = , (3.13)
0 otherwise

where k € {1,...,n}, thresh(.) denotes a thresholding function, Dy, is computed as in
Equation (3.1) using only the n selected frames and ( is a thresholding parameter (in this
chapter, 3 = 1le~? for all experiments). Next, the moving regions of each selected frame
are filled with zeros by Fy, o M,,, where M}, denotes the complement of My, and o de-
notes the element-wise multiplication of two matrices. For color images, each channel is
processed individually, then they are vectorized into a partially observed real-valued matrix
A = [vec(F1)...vec(Fy)], where A € R™*", m = (I; x I), and n = n. Figure 3.3 (top)
illustrates our matrix completion process. It can be seen that the partially observed matrix
can be recovered successfully even with the presence of many missing entries. So, let L be
the recovered matrix from the matrix completion process, the background model is estimated
by calculating the average value of each row, resulting in a vector 1 € R™, and then reshaped
into a matrix B € RI1*/2,
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Table 3.4: List of TC algorithms evaluated for BM initialization.

Type Method Main techniques Author(s)
NCPC Non-negative factors Xu and Yin (2013) [236]
CP BCPF Bayesian CP Factorization ~ Zhao et al. (2015) [252]
TenALS Alternating Jain et al. (2014) [88]
SPC Smooth PARAFAC Yokota et al. (2016) [243]
HoRPCA-IALM  Augmented Lagrangian Goldfarb and Qin (2014) [72]
FaLRTC Trace norm Liu et al. (2013) [122]
geomCG Riemannian Kressner et al. (2013) [100]
D TMac Alternating Xu et al. (2015) [235]
t-SVD Fourier domain Zhang et al. (2014) [251]
t-TNN Nuclear norm Hu et al. (2015) [84]

CP - CANDECOMP/PARAFAC decomposition.
TD - Tucker decomposition / HOSVD / N-mode SVD.

The tensor completion case

Differently from previous matrix-based methods that consider the image as a vector, so that
the local spatial information is almost lost, some authors use a tensor representation to solve
this low-rank reconstruction problem. Tensor decompositions have been widely studied and
applied to many real-world problems [76,99, 132]. As outlined in Chapter 2, Section 2.4,
CP decomposition and Tucker decomposition are two widely-used low rank decompositions
of tensors. Today, the Tucker model is better known as the Higher-Order SVD (HOSVD)
from the work of Lathauwer et al. [105]. The HOSVD of a tensor X can be seen as the
generalization of the matrix SVD, which involves the matrix SVDs of its unfolding matrices.
In general, the low-rank completion for tensors is formulated as the following optimization
problem:

minimize rank(L),
£ (3.14)
subjectto  Po(L) = Pa(X),

where £ € R71>12X--XIN g 3 tensor with minimum rank that best approximates the tensor
X. However, similarly to the matrix case, the optimization problem (3.14) is a non-convex
optimization problem. This is commonly solved through trace norm optimization by:

minimize ||£]].,
£ (3.15)
subjectto  Pq(L) = Pa(X).

For a general tensor case, the definition of the trace norm is represented by a combination of
the trace norms of all matrices unfolded along each mode as:

N
1X][o=> ail| X1, (3.16)
=1
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where «;’s are constants satisfying a;; > 0 and Zf\il «; = 1. However, unlike in the matrix
case, computing the rank of a general tensor (N > 2) is an NP hard problem [82]. In tensor
literature [76], three non-convex ways to deal with tensor completion problem can be found:

Tucker A natural approach is to analyze the tensor completion problem through Tucker
model, introduced in Chapter 2 (see Section 2.4.1.1), in such a way that:

1
minimize = ||X — L||%,
C 2 (3.17)
subjectto P (L) = Po(X).

where £ = G x1 Uy xo Uy ... x5y Uy is the Tucker model, G € R"1*"2X--X"N represents
the core tensor, U; € RT*™ are the factor matrices along the N modes and 71 X 1o X

. X ry represents the rank of each mode. This can be solved by block coordinate descent
method by iteratively optimizing two blocks X and G, Uy, ..., Uy. Similar to the matrix
case, approaches based on Riemannian optimization were also used for tensor completion
problems. In Kasai and Mishra [95], the authors developed a novel Riemannian metric and
explore the symmetry structure in Tucker decomposition.

CANDECOMP/PARAFAC A second approach is to use the CP model, introduced
in Chapter 2 (see Section 2.4.1.2), resulting in the following optimization problem:

1
minimize  ~||X — L||%,
z D (3.18)
subjectto  Pq(L) = Pa(X).

where £L = U;0Us; ...0oUy, o denotes the outer product, U; € R and U,0Us...0oUy
represents the PARAFAC model and r represents the rank of the model. An alternative
to the canonical tensor decomposition is the Tensor-Train (TT) format introduced by Os-
eledets [153]. Recent work employing TT in the context of tensor completion was released
by Grasedyck et al. [75]. TT format offers a number of advantages over the canonical decom-
position, and it is therefore attractive to consider its application to function approximation.

Tucker3 or Higher-Order SVD A third alternative is to consider the tensor as mul-
tiple matrices and force the unfolding matrix along each mode of the tensor to be low rank,
(see Tucker model in Chapter 2, Section 2.4.1.1), as follows:

N
1 N .

S 1 1t — plid))2

minimize 2;:1%”/\’ LR, (3.19)

subjectto  Pqo(L) = Po(X).
where «;’s are constants satisfying o; > 0 and Zivzl a; = 1. This approach is also known

as matrix SVD adapted for tensors. Recently Kilmer and Martin [97] and Zhang et al. [251]
proposed a real representation of SVD for third order tensors called t-SVD (Tensor Singular
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Value Decomposition). For a tensor X € Rt *12X13 jts SVD is formulated by X = U * S *
VT, where i € RI1*11xIs and Y € RI2X12%1s are orthogonal tensors, and S € Rt % 12X 13 ig
a rectangular f-diagonal tensor (see Appendix C, Section C.4.3) and * denotes the ¢-product
(see Appendix C, Section C.4.3).

A few recent works used non-convex functions instead of the nuclear norm as the surro-
gates of rank for rank minimization. Tomioka and Suzuki [203] proposed a structured version
of Schatten norms for tensors. The authors consider the following more general overlapped
Sp/q — norm defined by: [[X[|,/q= (S0 |XT7[[4,)1/9, where | X||s,= (31_, o) /"
is the Schatten p-norm for matrices. When p — 0 the minimization is intractable, and when
p = 1 turns out to be the nuclear norm. For non-convex cases: 0 < p < 1 [259].

3.3 Experimental results

In order to evaluate the proposed approach, twenty-three state-of-the-art low-rank reconstruc-
tion algorithms were selected. These algorithms include thirteen MC and ten TC algorithms,
and they are listed in Table 3.3 and in Table 3.4, respectively. The algorithms were grouped
into two categories, as well as their main techniques, following the same definition of Zhou et
al. [259]. The parameters of each method were tuned for each sequence, so that the estimated
background model is the best as possible.

Data set In this chapter, the SBI dataset’ [136] was chosen for the background ini-
tialization task. This dataset contains 14 image sequences and their corresponding ground
truth backgrounds. It provides also MATLAB scripts for evaluating background initialization
results in terms of six metrics®: 1) Average Gray-level Error (AGE), 2) Percentage of Error
Pixels (pEPs), 3) Percentage of Clustered Error Pixels (pCEPs), 4) Peak-Signal-to-Noise-
Ratio (PSNR), 5) Multi-Scale Structural Similarity Index (MS-SSIM), and 6) Color image
Quality Measure (CQM).

Methodology The algorithms are ranked as follows: 1) for each algorithm we calcu-
late its rank position for each metric (Metric Rank); Next, 2) we sum the value of the rank
position for each algorithm over the six metrics, and finally, 3) we calculate the rank position
over the sum, and we call it as Scene Rank. For the Global Rank, first we sum the Scene
Rank for each algorithm, then we calculate its rank position over the sum. MATLAB codes
are publicly available at https://github.com/andrewssobral/mctcdbmi

Quantitative analysis Tables 3.5 and 3.6 show the rank of MC and TC algorithms,
respectively, over the SBI dataset. Analyzing the scene rank of MC algorithms, LRGeomCG
was the top-1 in 9 over 14 scenes, becoming the first algorithm in the Global Rank of its
category. For TC algorithms, TMac was the top-1 in 11 over 14 scenes, becoming the first

"http://sbmi2015.na.icar.cnr.it/SBIdataset.html
8Please, refer to Maddalena and Petrosino [136] for a complete description of each metric.
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algorithm in the Global Rank of its category. In order to compare the best MC and the best
TC algorithms, Table 3.7 presents the top-5 matrix and top-5 tensor completion algorithms,
respectively, over the SBI dataset. As it can be seen, the first four best ranked algorithms
(headed by LRGeomCG) are based on the MC approach. This is an interesting factor be-
cause usually tensor-based methods are seen to be more robust for multidimensional data
completion in comparison to matrix-based methods. However, given that SBI dataset scenes
are based on RGB color images, this may not mean that they are multidimensional enough
for the power of TC methods. In order to provide more detailed results, Tables 3.8, 3.9, 3.10
and 3.11 present the quantitative results of the top-10 best algorithms over all scenes from the
SBI dataset. The results are ordered by the Scene Rank, and the Global Rank shows the best
ranked algorithms for all scenes. Finally, Table 3.12 summarizes the top-1 best algorithms
for each individual scene. The performance of tensor-based approaches has been highlighted
only on two scenes: Candela'm1.10 by SPC and HallAndMonitor by t-TNN.

Qualitative analysis Figures 3.4 and 3.5 compare the background estimated by the
top-10 best ranked low-rank reconstruction algorithms. As it can be seen, almost all meth-
ods present similar visual results, except in some particular cases where the IALM method
presents some color divergence artifacts. These color artifacts are expected because the ma-
trix completion process is done for each color channel separately. The CQM can penalize
such color artifacts, however it is averaged with other five metrics, decreasing its importance.
Finally, we verified that for some scenes, in particular for Board, CAVIARI, and CaVignal
(columns 1, 3 and 5 of Figure 3.4) all low-rank reconstruction algorithms failed to remove
some artifacts, showing some areas with shadings with different tones.
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Figure 3.4: Part 1 - Visual comparison for the background model initialization over
the first 7 scenes of the SBI dataset. From top to bottom: 1) example of input frame,
2) background model ground truth, and background model results for the top 10 best
ranked low-rank recovery algorithms: 3) LRGeomCG, 4) LMaFit, 5) RMAMR, 6)
MC-NMEF, 7) TMac, 8) IALM, 9) SPC, 10) t-SVD, 11) t-TNN, and 12) FaLRTC.
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Figure 3.5: Part 2 - Visual comparison for the background model initialization over
the last 7 scenes of the SBI dataset. From top to bottom: 1) example of input frame,
2) background model ground truth, and background model results for the top 10 best
ranked low-rank recovery algorithms: 3) LRGeomCG, 4) LMaFit, 5) RMAMR, 6)
MC-NMF, 7) TMac, 8) IALM, 9) SPC, 10) t-SVD, 11) t-TNN, and 12) FaLRTC.
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Table 3.12: Summary of the top-1 best algorithms for each scene. The columns Top-
1 MC and Top-1 TC show the best algorithms among matrix and tensor completion
methods, respectively. The last column highlights the winner algorithm among the
top-10 best ranked low-rank recovery methods.

Scenes Top-1 MC  Top-1TC  Scene Top-1
Board IALM TMac IALM
Candela_m1.10 LRGeomCG SPC SPC
CAVIARI1 LMaFit TMac LMaFit
CAVIAR2 LRGeomCG TMac LRGeomCG
CaVignal LRGeomCG TMac LRGeomCG
Foliage GROUSE TMac LRGeomCG
HallAndMonitor =~ LRGeomCG t-TNN t-TNN
Highwayl RMAMR TMac RMAMR
Highwayll IALM TMac IALM
HumanBody?2 LRGeomCG TMac LRGeomCG
IBMtest2 LMaFit TMac LMaFit
PeopleAndFoliage LRGeomCG TMac LRGeomCG
Snellen LRGeomCG TMac LRGeomCG
Toscana LRGeomCG SPC LRGeomCG

Matrix-based completion.
Tensor-based completion.

3.4 Conclusion

In this chapter, we have formulated the background initialization problem as a matrix or ten-
sor completion task, and evaluated twenty-three recent low-rank recovery algorithms. The
key idea is to first eliminate the redundant frames in a video, and consider their moving re-
gions as non-observed values. This approach results in a data completion problem, which
can be represented by a matrix or a tensor with missing entries. We show that the back-
ground model can be recovered even with partially observed data. The experimental results
on the SBI dataset show the comparative evaluation of recent methods for matrix and ten-
sor completion, and highlight the good performance of LRGeomCG method over its direct
competitors. Finally, we note that matrix-based completion methods show an attractive po-
tential for background modeling initialization in video surveillance. Moreover, in Bouwmans
et al. [25], the proposed approach was classified in a new category of background initializa-
tion methods, named Missing Data Reconstruction methods. Future research may concern to
evaluate incremental and real-time approaches of low-rank reconstruction algorithms for the
background model initialization of streaming videos.
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Chapter 4

Improving foreground detection by
double-constrained robust PCA

This chapter investigates the problem of moving object detection in maritime environment for
automated video-surveillance applications. To cope with this particular situation, a double-
constrained robust principal component analysis algorithm, named SCM-RPCA (Shape and
Confidence Map-based RPCA), is proposed. The work presented in this chapter is based on
our publication (IEEE AVSS, 2015, [179]), and the related source code can be found in the
SCM-RPCA website!.

4.1 Introduction

As outlined in Chapter 2, the recent advances in low-rank and sparse decomposition offer
a suitable framework for background modeling due to the high correlation between frames.
However, the Robust Principal Component Analysis (RPCA) solved via Principal Component
Pursuit (PCP) is limited to the low-rank component being exactly low-rank and the sparse
component being exactly sparse (see Section 2.2.2). However, the observations in real ap-
plications are often corrupted by noise that affects every entry of the data matrix. Therefore,
Zhou et al. [260] proposed a stable PCP (SPCP) that guarantees stable and accurate recovery
in the presence of entry-wise noise (see Section 2.2.3). SPCP assumes that the observation
matrix A is represented as A = L+ S + E (also named as three-term decomposition), where
L is a low-rank matrix, S is constrained to be a sparse matrix, and E is a noise term. To re-
cover L, S and E, Zhou et al. [260] proposed to solve the following optimization problem, as
a relaxed version of PCP: mlinémze [|IL|[«+A1][S||1+X2||E||%, s.t. A =L + S + E, where

A1 > 0and \g > 0 are arbitrary weighting parameters. This decomposition is called “stable”
decomposition as it separates the outliers in S and the noise in E.

'SCM-RPCA: https://sites.google.com/site/scmrpca/
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(c) Object confidence map

RPCA !

(e) Foreground mask

(a) Input image (b) Saliency detection

(d) Shape constraint

Figure 4.1: Block diagram of the proposed approach. Given an input image (a), a
saliency detector is applied (b). Next, the confidence map (c) is built by normalizing
the saliency map, while the shape constraint (d) is built by thresholding this one, and
(e) the foreground mask obtained by thresholding the RPCA sparse component.

Maritime surveillance represents a challenging scenario due to the different background
dynamics of the observed scenes, such as moving water, waves, etc [20]. Indeed, the mo-
tion of the objects of interest (i.e. ships or boats) can be mixed with the dynamic behavior
of the background (non-regular patterns). Many algorithms have been designed to perform
foreground detection, see surveys [24,28, 183], but only a few of them have been designed
for maritime scenes. Some related work can be found in Bloisi et al. [20]. The authors pro-
pose a multimodal approach for BS to deal with the water background. In addition, Liu et
al. [125] propose an iterative approach for ship target segmentation in infrared images based
on multiple features. However, the recent research on subspace estimation by sparse repre-
sentation and rank minimization shows an interesting framework to separate moving objects
from the background in videos. The background sequence is modeled by the low-rank sub-
space that can gradually change over time, while the moving foreground objects constitute
the correlated sparse outliers.

In scenes where the background is very dynamic (i.e. sea waves in maritime surveil-
lance [20]), the motion of the objects of interest (i.e. boats) will be mixed with the dynamic
behavior of the background (i.e. waves). SPCP-based methods try to deal with this problem
under the term where the multi-modality of the background (i.e. waves) is considered as noise
component (E), while the moving objects (i.e. boats) are considered as sparse component (S).
The low-rank component (L) represents the static part of the background.

In this chapter, a double-constrained RPCA, named SCM-RPCA (Shape and Confidence
Map-based RPCA), is proposed to improve foreground detection in dynamic scenes. The
sparse component is constrained by shape and confidence maps, both extracted from spatial
saliency maps. One advantage of the SCM-RPCA in relation to its direct competitors, is
the possibility of combining two types of source, which may come from: spatial, temporal,
and spatio-temporal information; however, here we focus only on spatial saliency maps. Our
motivation is to study how it improves RPCA in the task of foreground detection in maritime
scenes. Fig. 4.1 highlights our proposed approach. Given an input image (a), a saliency
detector is applied (b). Next, the confidence map (c) is built by normalizing the saliency map,
while the shape constraint (d) is built by thresholding the saliency map, and (e) the foreground
mask is obtained by thresholding the RPCA sparse component.
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4.2 Related work

In the literature, there are several modifications which concern the original SPCP. Some au-
thors [152,239,241] added constraint in the sparse term in order to improve the foreground
detection. First, Oreifej et al. [152] used a turbulence model to enforce an additional con-
straint on the rank minimization. The authors quantify the scene’s motion in terms of the mo-
tion of the particles, which are driven by dense optical flow. The obtained confidence map (a
real-valued matrix) provides a rough prior knowledge of the moving objects’ locations, which
can be incorporated into the matrix optimization problem. Subsequently, Yang et al. [239]
proposed a motion-assisted matrix restoration (MAMR) model for foreground-background
separation. Thus, a dense motion field is estimated for each frame by dense optical flow, and
mapped into a weighting matrix, which indicates the likelihood of each pixel belonging to the
background. By incorporating this information, areas dominated by slowly-moving objects
are suppressed, while the background that appears at only a few frames has more chances to
be recovered in the foreground detection results. In addition, Ye et al. [241] extended MAMR
(RMAMR) (also adopted in Chapter 3), which is robust to noise for practical applications.

4.3 Proposed method

In this chapter, we propose to combine some ideas proposed by Oreifej et al. [152] and Ye et
al. [241]. The weighting matrix proposed by Ye et al. [241] can be used as a shape constraint
(or region constraint), while the confidence map proposed by Oreifej et al. [152] reinforces
the pixels belonging to the moving objects. A modified version of the original 3WD method
proposed by Oreifej et al. [152] was implemented adding the shape constraint as done in
RMAMR. Part of the reason we chose to modify the 3WD instead of RMAMR is it robustness
to deal with the multimodality of the background. The second contribution of this chapter
refers to the way of building the shape constraint and confidence map. Instead of using dense
optical flow (temporal descriptor) as a preliminary step, we suggest using a saliency detector
(spatial descriptor). In some cases where a) the object of interest moves very slowly (i.e long
distance boats) or b) the background is very dynamic (i.e boats in the sea), the optical flow
may not be enough to ensure the object detection. In addition, computing the dense optical
flow requests high computational cost, while computing the saliency map is commonly much
faster. Several saliency detection methods have been proposed in the literature [22]. In this
chapter, the BMS? method proposed by Zhang and Sclaroff [247,248] was selected, due to
its speed performance and accuracy results.

Consider a sequence of n gray-scale images (frames) F; ... F,, captured from a static
camera, that is, F € R’ %72 where I; and I, denotes the frame resolution (rows by columns).
All frames are vectorized into a observation matrix A = [vec(F1) ... vec(F, )], where A €
R™*™ and m = (I; X I2). The decomposition is formulated as:

minimize [L{|+A|[TI(S) |1+ A2||[E[|7, st. A=L+WoS+E (4.1)

http://cs—people.bu.edu/jmzhang/BMS/BMS.html
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Author(s) Minimization
Oreifej et al. (2013) [152] miniénize [|L| [+ 1| [ TL(S) |1 +A2 || El|%

subjectto A=L+S+E

Ye et al. (2015) [241] minimize  [[L|.+A1[[S[[1+ s [E]

i)

subjectto WoA=Wo(L+S+E)

SCM-RPCA (proposed)  minimize |[Li[.-+:||TI(S)|[1+X2|[ B3

subjectto A =L+ WoS+E

Table 4.1: Comparison of the proposed method and related works.

where II € R™*™ and W € [0,1]™*™ are the confidence map and shape constraint (bi-
nary map), respectively, and “o” denotes element-wise multiplication of two matrices. As
explained previously, the confidence map II reinforces the pixels belonging to the moving
objects and the shape constraint W defines the region of interest. Table 4.1 compares the
proposed method with those by Oreifej et al. [152] and Ye et al. [241]. These minimization
problems are convex and can be solved by the Alternating Direction Method (ADM) under
the Augmented Lagrangian Multiplier (ALM) framework [118].

4.3.1 Double-constrained robust PCA

To solve the problem in Equation (4.1), the ALM [118] is used. The ALM framework con-
verts the constrained optimization problem in (4.1) to the minimization of the augmented
Lagrange function:

D(L,S.E,Y) = |[L]l.+A[[IL(S)[ |1+ [E[[ (4.2)

+<Y,A—L—WoS—E)>+§||(A—L—WOS—E)||§D

where Y € R™*" is a Lagrange multiplier matrix, 8 > 0 is the penalty parameter for the
violation of the linear constraint, and <, > denotes the matrix inner product. Next, the ADM
is used to update L, S, E and Y alternatively for each iteration ¢:

Liy1 = argmin (L, Sy, Ey, Yy), 4.3)
L

StJrl = arg min F(Lt+17 S7 Et, Yt),
S

Et+1 = arg min F(Lt+1, St+1, ]5)7 Yt),
E

Z= (A1 — Ly —Se1 — Epa),
Y1 =Y+ B2
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Algorithm 1 Algorithm for solving SCM-RPCA.

Input: A € R™*" (observation), IT € R™*" (confidence map), W € [0, 1]"*"
(shape constraint), t,,4, max # of iterations, and € error tolerance.
t=0
while (||Z||r/||A||F) > €ort < tp, do
Y =5,
URVT = svd(A —L;, —E; + Y)
Lip1 = Usqyp)(R)VT
Sit1=Wo S(\/BII) (A — Ly —E; + T)
k= (1+ %)_1
Eif1 =k(A—Lig1 — S+ 7Y)
Z=A1 — L1 —Sip1 — Erny
Yip1 =Y+ B2
Bt+1 = pBt
t=t+1
end while
return L € R™*™ (background), S € R™*™ (foreground), and E € R™*"
(noise).

where Z € R™*™ is the residual. Then, a closed form solution for each of the minimization
problems can be defined by:

Y =5Y,, (4.4)
URV? = svd(A —L; — E; + Y),
Lyt = Usq,)(R)VT,
Sit1=Wosn/sm(A—Liy —E +7),
2o

k= (1 + ﬁ)_a

Ei1 =k(A—Liyp1 — S0+ 7))

where svd(.) denotes a full singular value decomposition, and s (.) is the soft thresholding

operator defined by:
5(a)(X) = sign(X)maz(abs(X) — a,0) (4.5)

and it is applied to a matrix X in an element-wise manner. The main steps of the proposed
algorithm are shown in Algorithm 1. Usually the convergence is done when

(1Zll=/[|AllF) <, (4.6)

where ¢ is the error tolerance, or when the # of iterations is reached (tf = t,,4,). The pa-
rameters A and )\, are scalars and define the weighting parameter for the sparse and noise
component, respectively, and p is a constant scalar and growth factor for the S parameter.
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Oreifej et al. [152] shows when (3; is a monotonically increasing positive sequence, the iter-
ations converge to the optimal solution of problem 4.1. Here, A, A, p, and By were defined
empirically as 2, 1/[|A[|2, 1.25, and 5/+/m, respectively.

4.3.2 Definition of shape and confidence map

In this chapter, both the confidence map II and the shape constraint W are constructed from
spatial information given by saliency maps instead of optical flow, as proposed originally by
Oreifej et al. [152] and Ye et al. [241]. Consider a sequence of n saliency maps denoted by
Mi,..., M, where M € RI1*/2 so:

IT = [vec(norm(My)) ... vec(norm(M,,))] (4.7a)
W = [vec(thresh(My)) ... vec(thresh(M,,))] (4.7b)

where norm(.) denotes the min-max normalization, scaling all entries of M between 0 and
1, as defined in Chapter 3, Equation 3.3. Subsequently, thresh(.) denotes the thresholding
function defined as:
1 if (0.5M)? < p
thresh(M) = 4.8)

0 otherwise

where p = 0.51(std(vec(M)))?, and std(.) denotes the standard deviation of a data vector.
Here, 1 was chosen experimentally and defined as 10.

4.4 Experimental results

In order to evaluate the performance of the proposed method for background subtraction, four
videos extracted from the UCSD Background Subtraction Dataset® proposed by Mahadevan
and Vasconcelos [137] and three videos from MarDT dataset* proposed by Bloisi et al. [19]
were selected. The UCSD and MarDT datasets consist of 18 and 28 video sequences, respec-
tively, both acquired from stationary and moving cameras; here, we have selected only the
four sequences from UCSD and three sequences from MarDT, all sequences coming from
stationary cameras.

We have compared the SCM-RPCA with its direct competitors: the original PCP pro-
posed by Candes et al. [38], the stable PCP proposed by Aravkin et al. [10], the 3WD pro-
posed by Oreifej et al. [152], and the RMAMR proposed by Ye et al. [241]. Note that the
PCP and stable PCP are not constrained, while 3WD and RMAMR are single-constrained
RPCA. It is important to note that for all constrained RPCA methods here evaluated have

3http: //www.svcl.ucsd.edu/projects/background_subtraction/
ucsdbgsub_dataset.htm
*nttp://www.dis.uniromal.it/~labrococo/MAR/index.htm
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Table 4.2: Precision, Recall and F-Measure metrics.

Metrics Description
Precision (Pr) TP/(TP + FP)
Recall (Re) TP/(TP+ FN)

F-Measure (F}) 2 X (Pr x Re)/(Pr + Re)

TP = # of foreground pixels classified as foreground.

F'P =# of background pixels classified as foreground.
T N = # of background pixels classified as background.
F'N =# of foreground pixels classified as background.

used saliency maps as input constraint. In the next sections, we report the qualitative and
quantitative evaluation, as well as the computational cost evaluation of the selected algo-
rithms.

4.4.1 Qualitative and quantitative evaluation

Figures 4.2 and 4.3 show the visual results for background subtraction task in the UCSD and
MarDT datasets, respectively. The true positive pixels (7' P) are in white, true negative pixels
(T'N) in black, false positive pixels (¥'P) in red and false negative pixels (F'NV) in green. Is
important to note that in the UCSD scenes we have used the original spatial saliency map
provided by BMS, while for the MarDT scenes we have subtracted its temporal median due
to the high saliency from the buildings around the river. The quantitative results in Table 4.3
show that the SCM-RPCA outperforms the previous methods, with the highest average F-
measure over the selected video sequences. Each metric is described in Table 4.2. As can
be seen from Figures 4.2 and 4.3, and Table 4.3, the combination with confidence map and
shape constraint can reduce the amount of false positive pixels.

4.4.2 Computational cost

In Table 4.4, we report the computational cost evaluation over four videos of UCSD Back-
ground Subtraction Dataset [137]. The algorithms are implemented in MATLAB (R2014a)
running on a laptop computer with Windows 7 Professional 64 bits, 2.7 GHz Core i7-3740QM
processor and 32Gb of RAM. Note that in Table 4.4 the number of iterations (Iter) of the
proposed method is slightly less than the 3WD and RMAMR, except for the Ocean scene.
However, the computation time is slightly increased, except for the Boats scene. We noticed
that the combination of shape constraint and confidence map did not changed significantly
the number of iterations and computation time over original 3WD.
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Table 4.3: Quantitative results on four videos of UCSD Background Subtraction

Dataset.
Birds Surfers Boats Ocean Rank
Re Pr F Re Pr Fy Re Pr I3 Re Pr I3 Avg.Fy
PCP 0.842 0.094 0.170 0.754 0.075 0.137 0.814 0.100 0.178 0.748 0.115 0.200 | 0.171
Lag-SPCP-QN 0.413 0.322 0362 0.244 0.282 0.261 0.405 0.215 0.281 0.484 0.313 0.380 | 0.321
RMAMR 0.823 0.229 0358 0.775 0.248 0.376 0.816 0.230 0.359 0.777 0.175 0.286 | 0.345
3WD 0.586 0.604 0.595 0.538 0.405 0462 0.673 0473 0.556 0.563 0.337 0.422 | 0.509

SCM-RPCA 0573 0.638 0.604 0.518 0.565 0.541 0.663 0.550 0.602 0.457 0.544 0.497 | 0.561

Table 4.4: Computational cost evaluation over four videos of UCSD Background
Subtraction Dataset.

Birds Surfers Boats Ocean

(242 x 156 x 71) (344 x 224 x 41) (344 x 224 x 31) (316 x 196 x 176)

Iter Time* Iter Time* Iter Time* Iter Time*

PCP 100 27.29 100 21.19 100 18.47 100 110.53
Lag-SPCP-QN 29 10.12 53 16.27 39 10.01 18 29.49
RMAMR 34 10.63 35 13.09 33 11.44 35 44.22
3WD 30 4.53 26 4.28 31 4.06 42 29.96
SCM-RPCA 29 4.59 25 4.37 27 3.82 43 33.02

(width x height x length) denotes the frame resolution and the number of processed frames.
* Time for matrix decomposition (in seconds). Does not include the time to compute the input constraint (saliency maps).
* Tteration limit 100 reached.

4.5 Conclusion

In summary, a double-constrained version of RPCA is proposed to improve the foreground
detection in dynamic scenes. The sparse component is constrained by shape and confidence
maps both extracted from spatial saliency maps. The experimental results indicate a better
enhancement of the object foreground mask when compared with its direct competitors. As
shown in qualitative and quantitative evaluation, the combination with confidence map and
shape constraint can reduce the amount of false positive pixels. In addition, the computational
cost evaluation demonstrates that the proposed algorithm has a slightly change in the number
of iterations and computation time compared to the original 3WD.

In further works, we plan to investigate how spatio-temporal saliency detectors can help
the proposed approach to improve the foreground detection. In this chapter, the confidence
map and shape constraint were built from the same source, specifically by saliency maps. We
will explore how different sources can be used to build separately these constraints.



Chapter 5

Incremental tensor subspace learning
using multiple features

In this chapter, we present an incremental multi-feature tensor subspace learning (IMTSL) al-
gorithm for handling streaming multidimensional data in the case of intelligent video surveil-
lance applications. The proposed method constructs a multi-feature low-rank model for ro-
bust modeling of the scene background. Moreover, the IMTSL method updates the low-rank
model incrementally through an incremental learning of its unfolding matrices. This work is
based on our publication (ICIAR, 2014, [176]), and the related source code can be found in
the IMTSL website!.

The remainder of this chapter is organized as follows. First we start with some related
work in Section 5.1. Section 5.2 describes the incremental and multi-feature tensor subspace
learning algorithm. Section 5.3 presents the foreground detection method. Finally, in Sec-
tions 5.4 and 5.5, the experimental results are shown, as well as conclusions.

5.1 Related work

In the literature, several authors have employed tensor decomposition for learning a low-rank
representation of the data. [211] by Vasilescu and Terzopoulos was one of the first works
to employ HOSVD (see Chapter 2, Section 2.4.1.1) for performing a multilinear analysis
of facial images under different illumination conditions, expressions, viewpoints and person
identities. The image sequence is represented as a higher-dimensional tensor and then de-
composed in order to separate and parsimoniously represent the constituent factors, resulting
in a “TensorFaces” representation. Wang and Ahuja [219] also employed HOSVD for learn-
ing the expression subspace and person subspace from an ensemble of facial images. The
algorithm performs a simultaneous face and facial expression recognition, which can classify
the given image into one of the basic facial expression categories. He et al. [81] presented

"IMTSL: https://github.com/andrewssobral/imtsl
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Figure 5.1: Block diagram of the proposed approach. In the step (a), the last NV
frames from a streaming video are stored in a sliding block or tensor 4;. Next,
a feature extraction process is done at step (b) and the tensor A; is transformed
in another tensor 7; (step (c)) . In (d), an incremental higher-order singular value
decomposition (iIHOSVD) is applied in the tensor 7; resulting in a low-rank tensor
L. Finally, in the step (e) a foreground detection method is applied for each new
frame to segment the moving objects.

a tensor subspace analysis algorithm called TSA (Tensor Subspace Analysis), which detects
the intrinsic local geometrical structure of the tensor space by learning a lower dimensional
tensor subspace. Experiments on PIE and ORL databases demonstrated the efficiency and
effectiveness of the method. However, in these last works any experiment was carried out for
the background subtraction problem.

Recently, online tensor subspace learning approaches have been introduced. Sun et
al. [189] proposed three tensor subspace learning methods: DTA (Dynamic Tensor Analysis),
STA (Streaming Tensor Analysis) and WTA (Window-based Tensor Analysis). However, Li
et al. [83] explained that the above tensor analysis algorithms cannot be applied to background
modeling and object tracking directly. To solve this problem, some authors [83, 112, 113]
proposed a high-order tensor learning algorithm, called incremental rank-(R1,R2,R3) tensor
based subspace learning. This online algorithm builds a low-order tensor eigenspace model in
which the mean and the eigenbasis are updated adaptively. The authors model the background
appearance images as a 3-order tensor. Next, the tensor is subdivided into sub-tensors. Then,
the proposed incremental tensor subspace learning algorithm is applied to effectively mine
statistical properties of each sub-tensor. The experimental results show that the proposed
approach is robust to appearance changes in background modeling and object tracking. The
method described above only uses the gray-scale and color information. In some situations,
only the pixels intensities may be insufficient to perform a robust foreground detection. To
deal with this situation, an incremental and multi-feature tensor subspace learning algorithm
is presented in this chapter.

5.2 Proposed method

Differently from previous related works, where the tensor model is built directly from the
video data (i.e., each frontal slice of the tensor is a gray-scale image), in this chapter the
tensor model is built from the feature extraction process. First, the last A3 frames from a
streaming video data are stored in a tensor A; € RA41XA42X4s where ¢ represents the tensor
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Aattime t. A; and A, is the frame width and frame height respectively, and A3 is the number
of stored frames (A3 = 25 in the experiments). Subsequently, the tensor A; is transformed
into a tensor 7; € RT1xT2xTs gfter a feature extraction process, where 7} is the number of
pixels (77 = A; x As), Ty the number of feature values for each frame (75 = Ag) and T3
the number of features. Here, 8 features are extracted: 1) red channel, 2) green channel, 3)
blue channel, 4) gray-scale, 5) local binary patterns (LBP), 6) spatial gradients in horizontal
direction, 7) spatial gradients in vertical direction, and 8) spatial gradients magnitude. All
frames’ resolution are resized to 160x120 (19200 pixels), so the dimension of the tensor
model is 7; € R19200x25x8 " The steps described here are shown in Figure 5.1 (a), (b) and
(c). The steps (d) and (e) will be described in the next sections.

Incremental high-order singular value decomposition

Let A € R™*" be a matrix of full rank » = min(m,n). Its singular value decomposition
can be expressed as: A = UXVT, where U € R™*™ and V € R" " are orthonormal
matrices containing the eigenvectors of AAT and ATA, respectively, (i.e. right and left
singular vectors of A), and ¥ = diag(cy,...,0,) is a diagonal matrix with the eigenvalues
of A in descending order. However, the matrix factorization step in SVD is computation-
ally very expensive, especially for large matrices. Moreover, the entire data may be not
available for decomposition (e.g. streaming data when the full size of the data is unknown).
Businger [36], and Bunch and Nielsen [34] are the first authors who have proposed to update
SVD sequentially with the arrival of more samples, i.e. appending/removing a row/column.
Subsequently, various approaches [15,31, 110, 139, 169] have been proposed to update the
SVD more efficiently and supporting new operations. Recently, Baker et al. [13] provided a
generic approach to perform a low-rank incremental SVD. An implementation of the algo-
rithm is freely available in the IncPACK MATLAB package?.

In this chapter, we have used a modified version of the algorithm in [13]. The original
version supports only the updating operation. As described previously, the tensor model
T¢ is updated dynamically. The last feature values are appended (i.e. updating operation)
and the old feature values are removed (i.e. downdating operation) for each new frame. A
simple change would be to modify the algorithm so that, instead of using a hard window, we
insert an exponential forgetting factor A < 1 (A = 1 no forgetting occurs), weighting new
columns preferentially over earlier columns. The forgetting factor is explained in the work of
Ross et al. [169].

The proposed iHOSVD algorithm is shown in Algorithm 2. It creates a low-rank tensor
model £; with the dominant singular subspaces of the tensor model 7;. 7;[”] denotes the
n-mode unfolding matrix (see Appendix C) of the tensor 7 at time ¢. r[" and ¢[" are the
desired rank r and its thresholding value of the n-mode unfolding matrix (rm =1, ri2l = 8,
73l = 2, and I} = ¢l = Bl = 0.01 in the experiments). U@l, 2£7i]1, and Vz[:i]l denote
the previous SVD of the n-mode unfolding matrix of the tensor 7 at time ¢ — 1.

http://www.math. fsu.edu/~cbaker/IncPACK/
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Algorithm 2 iHOSVD algorithm.

Input: 7, rlnl ¢n]
St Tt
if ¢ = 0 then
for i = 1 to n do {Performs the standard rank-r SVD}
Ol sl Vi) svperl, pli, ¢l
end for
else
for i = 1 to n do {Performs the incremental rank-r SVD}
ol sl Vil —isvper, o il ol sl v
end for
end if
S +— T X1 (UP])T co Xp (Ul[fn])T (X, denotes the n-mode product between
tensor 7 and matrix U)
Output: S, UE}, - UL"]

5.3 Foreground detection

The foreground detection consists of segmenting all foreground pixels of the image to obtain
the foreground components for each frame. As explained in the previous sections, a low-
rank model £; is built from the tensor model 7; incrementally. Then, for each new frame
a weighted combination of similarity measures is performed. This process has two stages:
first a similarity function is calculated, then a weighted combination is performed. Let F; €
RA1x42xTs the feature’s set extracted from the input frame at time ¢ and 7, the set of low-
rank features reconstructed from the low-rank model £, at time ¢; the similarity function S
for the k-th feature (k = {1,...,T3}) at the pixel (¢, j) is computed as follows:

FTR) S F (64 k) < F(i, 4, k)

F'i(4,,k)
Siling. k) = 4 1 if Fo(i, g, k) = F'u(i 3, k)
% if Fi(i,4,k) > F'(4,5,k)

where F;(i, j, k) and F',(i, j, k) are the feature value of pixel (4, j) for the feature k at time ¢,
respectively. Note that S;(i, j, k) assumes values in [0, 1]. Furthermore, S;(4, j, k) is close to
one if F¢(¢, j, k) and F';(4, j, k) are very similar. Next, a weighted combination of similarity
measures is computed as follows:

Ts
ij) =Y wpSi(i, 5. k)
k=1

where T3 is the total number of features and wy, weight for the k-th feature (wy = wy =
w3 = wg = wy = wg = 0.125, wy = 0.225, w5 = 0.025 in the experiments). The weights
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are chosen empirically in order to maximize the true positive pixels and minimize the false
negative pixels in the foreground detection. The foreground mask FG at time ¢ is obtained
by applying the following threshold function:

1 W, (i,j) <7

0 otherwise
where 7 is the threshold value (7 = 0.5 in the experiments). In the next section we shows the
experimental results of the proposed method.

5.4 Experimental results

In order to evaluate the performance of the proposed method for background modeling and
subtraction, the BMC dataset® proposed by Vacavant et al. [207] is selected. We have com-
pared our method with GRASTA algorithm proposed by He et al. [80] and BLWS algorithm
proposed by Lin and Wei [118]. Tables 5.1 and 5.3 show the quantitative and the visual results
(input image, ground-truth and foreground detection) with synthetic and real video sequences
of the BMC dataset. The quantitative results in Table 5.1* show that the proposed method
outperforms the previous methods, with the highest F-measure average and best scores over
all video sequences except in 212, 312, 412 and 512. The visual results in Table 5.1 show the
foreground detection for the frame #300 (Street) and frame #645 (Rotary), respectively. The
experiments were performed on a computer running Intel Core i7-3740qm 2.7GHz processor
with 16Gb of RAM. However, the proposed algorithm requires aprox. 2min per frame for
background subtraction, where more than > 95% of time is used for low-rank decomposi-
tion. Further research consist in improving the speed of the incremental low-rank decompo-
sition for real-time applications. Matlab codes and experimental results can be found in the
iHOSVD homepage”.

3http ://bmc.iut-auvergne.com/
*In terms of Precision, Recall and F-Measure (defined in Chapter 4, Table 4.2)
Shttps://sites.google.com/site/ihosvd/
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Table 5.3: Visual comparison with real videos of the BMC dataset.
Sequence Video “Wandering student”(frame #651)

.

Sequence Video “Traffic during windy day”(frame #140)

In summary, an incremental and multi-feature tensor subspace learning algorithm is pre-
sented. The multi-feature tensor model allows us to build a robust low-rank model of the
background scene. Experimental results show that the proposed method achieves promising
results for the background subtraction task. However, additional features can be added, en-
abling a more robust model of the background scene. Moreover, the proposed foreground
detection approach can be changed to automatically select the best features allowing an accu-
rate foreground detection. Further research consist of improving the speed of the incremental
low-rank decomposition for real-time applications. Additional support for dynamic back-
grounds might be interesting for real and complex scenes.

5.5 Conclusion



Chapter 6

Online stochastic tensor decomposition
for multispectral video sequences

In this chapter, we propose an online stochastic tensor decomposition algorithm, named
OSTD, to perform background/foreground separation in streaming multispectral video se-
quences. Differently from the IMTSL method presented in the previous chapter, that em-
ployed an incremental version of HOSVD, the OSTD algorithm makes use of RPCA on
tensors for a robust background/foreground separation. In addition, OSTD was designed to
be much faster than IMTSL and address the major difficulties of multispectral imaging for in-
telligent video surveillance applications. The work presented in this chapter is based on our
publication (IEEE ICCV Workshop on RSL-CV, 2015, [182]), and the related source code
can be found in the OSTD website!.

6.1 Introduction

Until now, most of background subtraction algorithms were designed for mono (i.e. graylevel)
or trichromatic cameras (i.e. RGB) within the visible spectrum or near infrared part (NIR).
Recent advances in multispectral imaging technologies give the possibility to record multi-
spectral videos for video surveillance applications [17]. In addition, this task becomes more
complex when the data size grows (i.e. massive multidimensional data), since the real-world
scenario requires larger data to be processed in a more efficient way, and in some cases, in a
continuous manner (streaming data).

The primary advantage of multispectral cameras for video surveillance is the possibility
to take into account the spatial (or spatio-temporal) relationships among the different spectra
in a neighbourhood, allowing more elaborate spectral-spatial (and -temporal) models for a
more accurate segmentation. However, the primary disadvantages are cost and complexity,
due its massive and multidimensional characteristics.

lOSTD: https://github.com/andrewssobral/ostd
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Usually a multispectral video consists of a sequence of multispectral images sensed
from contiguous spectral bands. Each multispectral image can be represented as a three-
dimensional data cube, or fensor, and here we call frame the measurements corresponding to
a single spectral band (frontal slice of the tensor). Due to the specific nature of these data,
many of the bands within multispectral images are often strongly correlated. In addition, pro-
cessing multispectral images with hundreds of bands can be computationally burdensome.

In order to address these major difficulties of multispectral imaging for video surveillance
(in particular, the detection of moving objects), this chapter proposes an online stochastic
framework for tensor decomposition of multispectral video sequences. In short, the main
contributions of this chapter are:

* an online stochastic framework for tensor decomposition to deal with multi-dimensional
and streaming data, and

* the use of multispectral video sequences instead of standard mono/trichromatic im-
ages, enabling a better background subtraction.

First, we start with the related work in Section 6.2. The proposed method is described in
Section 6.3. Finally, in Sections 6.4 and 6.5, the experimental results are shown, as well as
conclusions.

6.2 Stochastic decomposition on tensors

Most of incremental tensor subspace learning approaches apply matrix SVD in the unfolded
matrices. These approaches are usually an incremental version of the Tucker3 model (see
Chapter 2, Section 2.4.1.1). However, the matrix factorization step in SVD is computation-
ally very expensive, especially for large matrices. Therefore, real time processing is sacri-
ficed, due to the major challenges discussed above. In order to address these problems, this
chapter proposes a robust and fast online tensor-based algorithm for RGB videos, as well
as for MSVS (multispectral video sequences). The proposed algorithm is based on stochas-
tic decomposition of low-rank and sparse components. The idea of online stochastic RPCA
optimization was previously proposed by Feng et al. [64] and Goes et al. [71], and it was
successfully applied to background subtraction in [§9-91]. In this chapter, we extend this
approach to tensor analysis. The stochastic optimization is applied on each mode of the ten-
sor and the individual basis® are updated iteratively followed by the processing of one video
frame per time instance. In addition, a comparison of RGB and MSVS is provided, which
shows that visible together with NIR spectral bands provide an improved foreground estima-
tion compared to RGB features alone.

2Here, we refer basis as the set of elements (vectors) from a low-dimensional subspace.
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6.3 Proposed method

Let say that ) is an input N-th order tensor, which is corrupted by outliers, say £; then ) can
be reconstructed by separating it into low-rank tensor X (that corresponds to BG), and sparse
error £ (that corresponds to FG objects), i.e., Y = X + &£, under the convex optimization
framework developed in Goldfarb and Qin [72] as:

minimize Z||ym XU — gl)1Z o ||| 420 | E1 )4, (6.1)

where || X[7||, and ||£[)||; denote the nuclear and [; norm of each i-mode unfolding matrices
of X and &, respectively. Efficient methods such as CP decomposition and Tucker decom-
position [99] (a.k.a HOSVD) are used for low-rank decomposition of tensors (see Chapter 2,
Section 2.4). In addition, APG, HORPCA-s based on ADAL and HORPCA-M based on I-
ADAL were also developed in Goldfarb and Qin [72] to solve the problem in Equation (6.1).
However, as mentioned above, these methods are based on batch optimization and are not
suitable for scalable or streaming data.

In this chapter, an online optimization is considered to solve problem (6.1). The major
challenge is the computation of HOSVD, because the nuclear norm keeps all the samples
tightly and therefore all samples are accessed during optimization at each iteration. Therefore,
it suffers from high computational complexity. In contrast, an equivalent nuclear norm is used
in this chapter for each i-mode unfolding matrices of X', whose rank is upper bounded, as
shown in Recht et al. [165], as:

oyt O ERE) o
subjectto Xl = L;,RYT,

where L; € RP*", R; € R?*", p x ¢ denotes the dimension of the unfolding matrix X [,
and r is the rank. Equation (6.2) shows that ¢:-mode unfolding matrices of low-rank tensor
X can be an explicit product of each low-dimensional subspace basis L € RP*" and its
coefficients R € R?2*" and this re-formulated nuclear norm is shown in [35,165,167]. Hence,
Equation (6.1) is re-formulated by substituting Equation (6.2) by:

N
1 : A A .
inimize = [ _ 2l _ glil2, 4+ AL L2 112 0
minimize 22_1H37 A = EIF + 5 ([Lal[ + [[Ral[7) + A2llE][1, (6.3)

subjectto Xl = L,RT.

The objective function minimization, avoiding the constraints in Equation (6.3) and setting
Xl = L;RT, is defined as follows:

minimize Z||y - LR} - ’]HF+ (Ll Rl [7) + A2ll€W]1, (6.4
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where \; and )y are regularization parameters for low-rank and sparsity patterns. Equa-
tion (6.4) is the main equation for stochastic tensor decomposition, which is not completely
convex with respect to L; and R,;. However, Equation (6.3) gives the global optimal solution
to the original optimization problem in Equation (6.2), as proved in Feng et al. [64]. The
following cost function is required to be optimized for solving Equation (6.3) as:

N n )\
LYOE L) + 2L L3 6.5
= DD IV L) + I (65)

i=1 t=1

S\H

where n is the number of samples, and YOI denotes the 7" mode of a tensor ) at time
instance t given by:

_ . A
HYOEL;) = minimige [[vec(Y ) — Lir — ef 3+ [[r[ 34Xz lef|1- (6.6)

where r € R” and e € RP are vectors of coefficient and noise for matrix RT and unfolded
matrix £, respectively. Finally, the objective function I;(L;) for updating the basis L; at
time instance ¢ is given by:

n

1 1
(L) = 3 { SlueeO19) — Lar® - 3431 10

t=1

A
Faalle® s+ FHILl ©7)

The main goal is to minimize the cost function in Equation (6.5) through stochastic optimiza-
tion method, as shown in Algorithm 3. In case of BG modeling, one video frame (i.e. RGB
image) at a time ¢ is processed in an online manner. The coefficient r, sparse outliers e and
basis L; are optimized in an iterative way. Moreover, r and e are estimated with fixed random
basis L; by projecting one sample using Equation (6.2). This subproblem requires to solve
the following small-scale convex optimization problem at time instance ¢:

r/ = (L;L; + “"L; Jvec 1y — elt= .
O = (LTL; + M) 'LT {vec( ) — eV ], (638)
M® (k) — Xy, if MO (k) > Ay,
e® = M@ (k) + Xy, it M@ (k) < Ay, (6.9)
0, otherwise,

where M®) = vec(Y®) — Lr(®) and M) (k) is the k-th element in M(®). The basis L;
is estimated using Equation (6.13) through minimizing the previously computed coefficients
r and e, and it is updated using Algorithm (4). If the rank r is given and the basis L; is
estimated as above, then L; converges to the optimal solution asymptotically as compared
to its batch counterpart, as shown in Feng et al. [64]. The BG sequence is then modeled by
low-rank tensor X which changes at a time instance ¢. Finally, a hard thresholding scheme is
applied on a sparse component to get the binary FG mask (see Equation 4.8).
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Algorithm 3 Online Stochastic Tensor Decomposition

Input: Y € RIX2XXIN,

Initialize: X' = £ = 0 (low-rank and sparse components), L. € RP*" (initial basis),
AeR™* BeRY reR,ReR™, ecR,Ie R (unitary matrix),

— 1 —
/\1 = \/m, and /\2 = 10/\1.

1: for t = 1ton do {access each sample}
2:  fori=1to N do {each tensor mode}
3: Access each sample from it mode of tensor by y@)[il.

4: Compute the coefficients r and noise e by projecting the new sample as:

(50,6} = arg min 1{joec(Y0) - L r — o]

A
+ Sl B2 lefl- (6.10)

5: Compute the accumulation matrices A® and B®):
AD  AED 4 O OT

B®  BO-D 4 (pec(Y®lil) — e®)OT

(t-1)

6: Compute Ll(-t) with previous iteration L;

gorithm (4).

(6.11)

(6.12)

and update the basis using Al-

1 _ _ _
LY = arg minETr[Lgt DTA® 4 \TLi Y] — 7LV TBO),

(6.13)
7: LO LiR;r (low-dimensional subspace for each ¢-th mode)
8: vec(EW) « e® (sparse error)
9:  end for
10: end for
N N
Output: X = & S Xl &= gl
i=1 i=1
Algorithm 4 Basis Update
Imput: L = [4,...,1,] € RP*", A = [a1,...,a,] € R™*", B = [by,...,b,] €

RP7.
1: ;& — A+ M1
2: for j =1 to r do {access each column of L}
3:  Update each column of basis matrix L

1

1]‘ — T(b] — Lév]) + lj (6.14)

Jj
4: end for
5: return L (Updated basis)
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6.4 Experimental results

In this section, we present our experimental results in detail. We first evaluate the proposed
method performance on synthetic generated data; then the qualitative and quantitative analy-
sis on MSVS is presented.

6.4.1 Evaluation on synthetic data

The proposed method is first quantitatively tested on synthetic data. For data evaluation,
a true low-rank tensor £ of size 30 x 30 x 30 is generated by rank-3 factor matrices e.g.,
Y[ € R39%3 where k = 1,2, 3. Each factor matrix Y¥! consists of three components such
as [sin(4m£), cos(4m45), sgn(sin(m))]. The first two components are different and third
one is common in all modes. A random entries of L is corrupted by outliers from uniform
distribution and small noise A(0,0.01). We used Root Relative Square Error (RRSE) as

measure for evaluation, given by llﬁZﬁJ2’ where L is the estimated low-rank tensor. We

compare our RRSE performance with other state of the art methods, such as BRTF [253],
CP-ARD [142], CP-ALS [99], HORPCA [72] and HOSVD [72], respectivgly (see Chapter 2,
Section 2.4). Figure 6.1 shows the value of RRSE for the recovered tensor £. We consider two
cases for robust tensor recovery for true data generation in Figure 6.1. First, the magnitude
is considered within a range of true data (fully observed data) as shown in Figure 6.1 (a).
However, Figure 6.1 (b) shows that the magnitude is taken larger for corrupting some entries
in true low-rank (partially observed data). In each case, the proposed method shows a very
significant improvement compared to its batch counter-part, such as BRTF.

6.4.2 Evaluation on multispectral video sequences

We evaluate the proposed method on MSVS dataset [17]. This is the first dataset on MSVS?3
available for research community in background subtraction. The main purpose of this dataset
is to show the advantage of multispectral information for an efficient foreground-background
separation when illumination variations and color saturation occurs. Both qualitative and
quantitative results are presented.

The MSVS dataset contains a set of 5 video sequences with 7 multispectral bands (6 vis-
ible spectra and 1 NIR spectrum). Each sequence presents a well known BS challenge, such
as color saturation and dynamic background. Figure 6.2 shows the visual comparison of the
proposed approach for BS task over three scenes of MSVS dataset. The true positives pixels
(T'P) are in white, true negatives pixels (I'N) in black, false positives pixels (¥'P) in red and
false negatives pixels (F'N) in green. Figure 6.3 shows the visual results of these sequences
using individual band with RGB features. This qualitative evaluation shows that BS using
stochastic tensor decomposition on 7 multispectral bands together with visible spectra pro-
vides a satisfactory FG segmentation. Figure 6.4 shows the result from RGB image, 6 visible
spectrum and 1 NIR spectral band together with visible spectra.

*http://ilt.u-bourgogne.fr/benezeth/projects/ICRA2014/
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Figure 6.1: Performance of reconstructed low-rank tensor.

Figure 6.2: Visual comparison of background subtraction results over three scenes
of the MSVS dataset. From left to right: (a) input RGB image, (b) ground truth, (c)
proposed approach, (d) BRTF, (e) HORPCA, and (f) CP-ALS.

The proposed method is also tested for quantitative analysis. The MSVS dataset contains
images of size 658 x 492 for each band. So, the size of the input tensor .4 with 7 multispectral
bands is 658 x 492 x 7 for each video frame. The F-measure value (see Table 4.2) is computed
for each video sequence with its available ground truth images. Table 6.1 shows a comparison
results achieved using the RGB bands and all the seven multispectral bands (MSB). The
average F-measure score is compared for each video with 3 other methods: CP-ALS [99],
HORPCA [72], and BRTF [253] (see Chapter 2, Section 2.4). The experimental evaluations
show that the proposed methodology outperforms the other approaches.

The proposed scheme processes each multispectral or RGB image per time instance
reaching almost real-time processing, whereas CP-ALS, HORPCA, and BRTF are based on
batch optimization strategy. Due to this limitation, the CP-ALS, HORPCA, and BRTF were
applied for each 100 frames at time (reducing the computational cost) of the whole video
sequence (fourth-order tensor). In this chapter, the parameter  in Algorithm (3) was defined
experimentally as 10. For CP-ALS, the rank was defined as 50 for better visual results. For
HORPCA and BRTF, we used their default parameters. To obtain the foreground mask, the
sparse component £ was thresholded. We calculated the mean of £ along the third dimension,
generating a matrix E, then a hard threshold function (see Equation 4.8) was applied.
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Figure 6.3: Visual results of the proposed method on each RGB and multispectral
band. From top to bottom: input image, low-rank component, sparse component,
and the foreground mask. From left to right: RGB image, set of 6 visible, and 1 NIR
spectrum are shown in each column separately.

Table 6.1: MSVS dataset: Comparison of average F-measure score in (%) with other

approaches.
Methods 15t 2nd 3 4th 5t Avg
CP-ALS RGB 58.69 | RGB 71.25 | RGB 51.32 | RGB 60.21 | RGB 49.35 | RGB 58.16
MSB 71.61 | MSB 83.50 | MSB 68.54 | MSB 78.63 | MSB 66.97 | MSB 73.85
HORPCA RGB 63.23 | RGB 78.52 | RGB 55.69 | RGB 67.56 | RGB 58.80 | RGB 64.76
MSB 80.65 | MSB 84.79 | MSB 68.12 | MSB 77.56 | MSB 74.47 | MSB 77.11
BRTFE RGB 68.56 | RGB 79.21 | RGB 63.56 | RGB 73.22 | RGB 62.51 | RGB 70.32
MSB 85.30 | MSB 89.63 | MSB 68.11 | MSB 84.65 | MSB 77.91 | MSB 82.76
Proposed RGB 78.63 | RGB 85.96 | RGB 79.56 | RGB 76.32 | RGB 71.23 | RGB 76.69
MSB 93.65 | MSB 95.17 | MSB 90.64 | MSB 89.29 | MSB 92.66 | MSB 92.28
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Figure 6.4: FG results on 1°¢ and 2" videos of the MSVS dataset. (a) input image,
(b) ground truth, (c) results for only RGB, (d) for only 6 visible bands, and (e) for 1
NIR spectral band alone.

6.4.3 Basis initialization with bilateral random projections

Bilateral Random Projections (BRP) was first proposed by Zhou and Tao [257] as a fast low-
rank approximation method for dense matrices. The effectiveness and the efficiency of BRP
was verified in [256] for the GoDec algorithm to perform low-rank and sparse decomposition.
Given 7 bilateral random projections of a m x n dense matrix X, the low-rank approximation
L can be rapidly built by:

L=Y (ATy)"'YT (6.15)

where Y; = XA, Yo = XTA,, and A; € R?*" and A, € RPX" are random matrices.

In this section, we evaluate the robustness of BRP for the basis initialization instead of
the traditional uniformly distributed random numbers (UDRN). For demonstration, Figure 6.5
shows a fast background modeling convergence for the first 20 video frames on the 3" video
of the MSVS dataset. As it can be seen, BRP enables a fast and effective low-rank approx-
imation, reducing the amount of false positive pixels in the background model initialization
task. Finally, the power scheme modification proposed by Zhou and Tao [257] can accelerate
the low-rank recovery when the singular values of X decay slowly.

6.4.4 Computational time

Execution times have also been analyzed in our experiments. The time is recorded in CPU
time as [hh : mm : ss] and Table 6.2 shows the computational time of each method for the
first 100 frames varying the image resolution. As it can be seen, the proposed algorithm is
much faster than its direct competitors: it is almost 5 times faster than BRTF considering
frames with size 160 x 120, and 10 times faster than CP-ALS for frames with size 320 x
240. The algorithms were implemented in MATLAB (R2014a) running on a laptop computer
with Windows 7 Professional 64 bits, 2.7 GHz Core 17-3740QM processor and 32Gb of
RAM. The MATLAB implementation of the proposed approach is available at https://
github.com/andrewssobral/ostd, and the the evaluated algorithms are available in


https://github.com/andrewssobral/ostd
https://github.com/andrewssobral/ostd
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Figure 6.5: FG results on the 37? video of the MSVS dataset (red = FP). From top
to bottom: basis initialization with UDRN and BRP. From left to right, the FG mask
at: (a) frame 1, (b) frame 5, (c) frame 10, (d) frame 15, and (e) frame 20.

Size HORPCA | CP-ALS BRTF | Proposed
160 x 120 | 00:01:35 | 00:00:40 | 00:00:22 | 00:00:04
320 x 240 | 00:04:56 | 00:02:09 | 00:03:50 | 00:00:12

Table 6.2: Execution times according to different image resolutions.

the LRS* [177] library.

6.5 Conclusion

In summary, we proposed an online stochastic tensor decomposition algorithm for robust
BS application. Experimental results show that the proposed methodology outperforms the
other considered approaches, and we have achieved almost real time processing, since one
video frame is processed at time. The basis initialization with BRP can accelerate the low-
rank approximation, reducing the amount of false positive pixels in the background model
initialization step. In addition, the basis is updated incrementally, making it more robust
against gross outliers. A future research may concern the recent advances on randomized
principal component analysis [61,78,228]. Instead of making a full decomposition of the
unfolded matrices, the randomized algorithms provide an efficient computational framework
that computes a compressed representation of the data using random sampling.

4http ://github.com/andrewssobral/lrslibrary
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Chapter 7

Robust subspace clustering: from single
subspace to multiple subspaces

In this chapter, we investigate a particular approach of low-rank and sparse representation,
named subspace clustering. Differently from previous methods described in the last chap-
ters, where inliers lie on a single low dimensional subspace, subspace clustering methods
consider the inliers are drawn from the union of low-dimensional subspaces. Instead of ap-
plying subspace clustering for background modeling and foreground separation as shown in
the previous chapters, we evaluate the robustness of some subspace clustering algorithms for
human action recognition from 3D skeletal data. This chapter presents a particular work re-
alized in conjunction with the Computer Vision Center (CVC) at Autonomous University of
Barcelona (UAB). The work presented here is currently under revision for publication [181].
This chapter is also related with a recently published survey (Sensors, 2016, [73]) on hu-
man pose estimation from monocular images in collaboration with researchers from China
University of Petroleum and CVC.

7.1 Introduction

Human action recognition (HAR) is an important problem in computer vision. Application
fields include video surveillance, automatic video indexing and human computer interaction.
Most solutions for HAR learn action patterns from sequences of image features, like Space-
Time Interest Points (STIP) [103], temporal templates [50], 3D SIFT [171], optical flow [6,
8], Motion History Volume [225], among the others. These features are commonly used
to describe human actions, which are subsequently classified using techniques like Hidden
Markov Models [6] and Support Vector Machines [170]. Recent and exhaustive reviews of
methods for HAR can be found in [162,226].

However, the development of advanced motion sensing devices, and especially the emer-
gence of Microsoft Kinect [79], has enabled us to capture the human skeleton from the depth
information in real-time, which inspired the research on activity recognition from 3D skeletal

85
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Figure 7.1: Proposed framework for robust subspace clustering of human activities
through skeletal data.

data. An increasing number of algorithms have employed depth data in vision-based human
action recognition [5,44, 126]. The human body is represented as an articulated system of
rigid segments connected by joints (human skeleton) [174,175], and human action is consid-
ered as a continuous evolution of the spatial configuration of these segments. In essence, the
problem of action recognition is based on the information extracted from a number of action
descriptors calculated from a skeleton fitted to the body of a tracked subject.

On the one hand, approaches for recognizing human activities from skeletal data play
an important role in human motion analysis using depth imagery. On the other hand, very
few researches explore the recent advances in robust subspace clustering. In particular, we
consider that the skeletal actions can be drawn from the union of low-dimensional subspaces.
In accordance with the last advances on subspace clustering, Sparse Subspace Clustering
(SSC) [59] and Low-Rank Representation (LRR) [121] are both considered as the state-of-
the-art methods for subspace clustering [60, 185,213,214,222] (see Chapter 2, Section 2.3).
In the meantime, most of related works on subspace clustering were applied to motion seg-
mentation [93,111,164,216,233,238], face clustering [43,111,156,233], and video summa-
rization or scene categorization [58, 197]. Only a few works [58, 198] have explored the use
of low-dimensional subspace approaches for human activity analysis from 3D skeletal data.

In this chapter, we present a methodology for robust subspace clustering of human ac-
tivities from 3D skeletal data (whose black diagram is shown in Figure 7.1). In addition, we
evaluate some LRR and SSC-based approaches for the 3D skeletal action recognition prob-
lem. A comparison between five skeletal representations is also covered in the experimental
results. First, we start with the related work in Section 7.2. A brief introduction to subspace
clustering is provided in Section 7.3. Next, the feature extraction process from skeletal data
is described in Section 7.4. Finally, the experimental results on recent skeletal action datasets
are reported in Section 7.5, as well as conclusions in Section 7.6.

7.2 Related works

Here, we present some works related to skeletal action recognition taking into account a
supervised learning perspective (Section 7.2.1) and from an unsupervised one (Section 7.2.2).
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7.2.1 Supervised skeletal-based action recognition

Recent skeletal-based action recognition approaches have incorporated new representations
for describing actions, and some related works are here summarized.

Xia et al. [230] present an approach to human action recognition using histograms of 3D
joint locations (HOJ3D) as a compact representation of postures. The 3D skeletal joint loca-
tions are extracted from Kinect depth maps using Shotton et al.’s method [174]. The HOJ3D
computed from the action depth sequences are reprojected using LDA and then clustered
into k posture visual words, which represent the prototypical poses of actions. The temporal
evolutions of those visual words are modeled by discrete hidden Markov models (HMMs).

Devanne et al. [54] proposed a spatio-temporal motion trajectory representation for skele-
tal action recognition. Each trajectory consists of one motion channel corresponding to the
evolution of the 3D position of all joint coordinates within frames of action sequence. The ac-
tion recognition is achieved through a shape trajectory representation that is learnt by a K-NN
classifier, which takes benefit from Riemannian geometry in an open curve shape space.

In Yang et al. [240], a feature descriptor is proposed for action recognition based on dif-
ferences of skeleton joints (EigenJoints), which combine action information including static
posture, motion property, and overall dynamics. An Accumulated Motion Energy (AME)
method is proposed to perform informative frame selection, which is able to remove noisy
frames and reduce computational cost. In addition, a non-parametric Naive-Bayes-Nearest-
Neighbor (NBNN) is employed to classify multiple actions.

In Vemulapalli et al. [212], a new skeletal representation is proposed that explicitly mod-
els the 3D geometric relationships between various body parts using rotations and transla-
tions in 3D space. Since 3D rigid body motions are members of the special Euclidean group
SE(3), the proposed skeletal representation lies in the Lie group SE(3) X ... x SE(3), which
is a curved manifold. Using the proposed representation, human actions can be modeled as
curves in this Lie group. The classification is done using a combination of dynamic time
warping (DTW), Fourier temporal pyramid representation and linear SVM.

In Pazhoumand-Dar et al. [161], a novel technique that automatically determines dis-
criminative sequences of relative joint positions is proposed for each action class. The au-
thors employ a combination of spatio-temporal based skeleton features and propose a new
similarity function based on the longest common subsequence (LCSS) algorithm [217] for
dealing with both simple and complex actions. The LCSS algorithm provide an intuitive
notion of similarity between trajectories by giving more weight to similar portions of the
sequences [217].

Tao et al. [195] proposed a novel body-part motion based feature called Moving Poselet,
which corresponds to a specific body part configuration undergoing a specific movement. A
simple algorithm for jointly learning Moving Poselets and action classifiers is also proposed.



88 ROBUST SUBSPACE CLUSTERING

7.2.2 Clustering human activities from skeletal data

To date, only a few works have been proposed to use subspace clustering approaches for
human activity recognition from skeletal data.

Ball et al. [14] used the k—means algorithm for recognizing individual persons from their
walking gait using three-dimensional skeleton data extracted from Microsoft Kinect.

Zhang et al. [246] proposed a subspace clustering approach, named SCAR, to recognize
human activity and detect exceptional activities. However, different from previously de-
scribed approaches, the proposed method was validated on data collected from RFID-based
systems.

Oszust et al. [154] presented an approach for recognition of signed expressions based on
visual and skeletal data obtained from Kinect sensor. Three clustering algorithms; k—means,
k-medoids and minimum entropy clustering (MEC) [114], are used to isolated Polish sign
language words from time series data.

Kitsikidis et al. [98] presented a method for body motion analysis in dance combining
the skeletal tracking data of multiple sensors. A posture vocabulary is generated by perform-
ing k—means clustering on a large set of unlabeled postures. Then, body part postures are
combined into body posture sequences and the Hidden Conditional Random Fields (HCRF)
classifier is used to recognize motion patterns.

Finally, in Azis et al. [11] k—means clustering is applied to build a dictionary of frame
representatives, and actions are encoded as sequences of frame representatives.

7.3 Introduction to subspace clustering

Subspace clustering, also referred to as spectral clustering, can be regarded as an extension of
the traditional clustering algorithms that seeks to find clusters that best fit a collection of data
points taken from a high-dimensional space [157,185,213]. Subspace clustering is defined as
the problem of fitting a union of subspaces to a collection of data points drawn from one or
more subspaces and corrupted by noise and/or gross errors. Mathematically, let X € RM >N
be the data matrix consisting of N vectors {x; € R} . which are assumed to be drawn
from the union of K linear (or affine) subspaces Sy of unknown dimensions dj, = dim(Sy)
with 0 < dj, < M. The subspace clustering problem is to find the number K of subspaces,
their dimensions {dk},ﬁ{:l, the subspace bases, and the clustering of vectors x; into these
subspaces [12,213].

In the last few years, a large number of subspace clustering methods have been developed.
Vidal et al. [213,214] presented four categories of subspace clustering algorithms: algebraic
methods (i.e., Generalized PCA or GPCA [215]), iterative methods (i.e., k-plane cluster-
ing [30] — generalization of the k-means algorithm), statistical methods (i.e., “mixtures of
PCA”, and MPPCA [199]) and spectral clustering-based methods (ie. factorization-based
affinity [23, 48], sparse subspace clustering or SSC [59, 60], and low-rank representation or
LRR [43,121,214]). Among them, methods based on spectral clustering have been shown to
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Figure 7.2: Illustration of the subspace clustering framework based on sparse and
low-rank representation approaches for building the affinity matrix.

perform very well for several applications in computer vision. In general, these methods tries
to first find a sparse or low-rank representation Z of the data matrix X and then apply a SC
method on Z [147].

In the literature, von Luxburg [218] defined spectral clustering-based methods in two
steps. First, a symmetric affinity matrix C € [c;;] is constructed, where ¢;; = ¢;; > 0 mea-
sures whether points ¢ and j belong to the same subspace. Ideally c¢;; ~ 1 if points ¢ and
j are in the same subspace and c;; ~ 0 otherwise. The second step consists in building a
weighted undirected graph where the data points are the nodes and the affinities c;; are the
weights. Finally, the segmentation of the data is found by clustering the eigenvectors of the
graph Laplacian using central clustering techniques, such as k-means (see Figure 7.2). How-
ever, a good affinity matrix is the main challenge of this approach. Sometimes the data points
could be very close to each other, even from different subspaces (e.g. near the intersection of
two subspaces) [213,214].

Previous works [23, 48] tried to build the affinity matrix of X by computing the SVD
from data matrix X = UXVT where C = V, VT and V,. are the top r = rank(X)
singular vectors of X. However, in real world applications, the data are often contaminated
by noise and gross errors. In addition, selecting a good r becomes very difficult and many
datasets are better modeled by affine subspaces [213,214].

Recent advances on sparse and low-rank representation approaches have allowed the
development of robust methods for building the affinity matrix in the case of data corrupted
by noise and/or gross errors. As mentioned in Chapter 2, SSC [59] and LRR [121] are both
considered as the state-of-the-art methods for subspace clustering. In this chapter we evaluate
LRR and SCC (and their variants) for human activity recognition from 3D skeletal data.
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7.4 Feature extraction on skeletal action datasets

Given a video sequence containing a specific human action, the 3D skeletal joint locations
are inferred from depth maps via Kinect device using Shotton et al.’s method [174]. The
3D coordinates of each skeletal joint are represented as € R, where D = 3. The J
extracted skeletal joints are stored in a data vector x = {z1,7a,...,25}T € R, where
P = DJ. For the whole video sequence, all skeleton joint locations are stored in a data
matrix X1 € RPXT as:

11 Ti2 o T1,T

L r21 T22 c T2T
XM = , (7.1)

rp1 ZTp2 -~ ITPT

)

where 7' is the number of frames. As T may vary per video sequence, a skeletal representation
needs to be applied in data matrix X1, resulting in a feature matrix X(?) € RF*T" with
fixed size (I'* < T). Finally, the skeletal representation of each action is grouped into an
action matrix X € RM*N for clustering, where M = FT* and N is the total number of
actions. The steps described here are shown in Figure 7.3. Several skeletal representations
have been proposed in the literature (please refer to Tagliasacchi [191] for a complete survey).
In this chapter, we have selected five well-known skeletal representations:

* AJP (Absolute Joint Positions) is the concatenation of 3D coordinates of all joints
T1yeeoy .

* RJP (Relative Joint Positions) is the concatenation of all vectors z;z7,1 <1 < 7 < J.

* JAQ (Joint Angles Quaternions) is the concatenation of the quaternions corresponding
to all joint angles.

* SE3AP (SE3 Lie Algebra with Absolute Pairs) and SE3RP (SE3 Lie Algebra with
Relative Pairs), both proposed by Vemulapalli et al. [212], where each individual body
part is represented as a point in a Lie group which is a curved manifold. Using this
representation, human actions can be modeled as curves in this Lie group. For classi-
fication, the action curves are mapped from the Lie group to its Lie algebra, which is
a vector space.

However, these skeletal representations are not sufficient for effective classification or
clustering due to various issues, like rate variations, temporal misalignment, noise, etc. To
deal with these problems, Dynamic Time Warping (DTW) [143] was first applied to handle
rate variations. Next, the warped curves are represented using the Fourier temporal pyramid
representation [221] removing the high frequency coefficients, handling the temporal mis-
alignment and noise issues. This procedure is illustrated in Figure 7.4. Table 7.2 shows the
length of each skeletal representation before and after the temporal modeling procedure. The
length is represented by F' times T of the feature matrix X (?), where the difference of RAW
length and Final length depends of the skeletal body model. It is important to note that the
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Figure 7.3: Steps behind the construction of the action representation matrix.
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Figure 7.4: Temporal modeling procedure applied in the skeletal representation to
deal with rate variations, temporal misalignment, and noise.

RAW data from a skeletal representation (output of Figure 7.4(a)) is not the same as the RAW
data built up from 3D skeletal joint locations (X (V) in Figure 7.3).

Pre-processing step: In this chapter, we have employed the same pre-processing step as
adopted by Vemulapalli et al. [212]. This step work as follows:

* Invariance to absolute location: all 3D joint coordinates were transformed from
the world coordinate system to a person-centric coordinate system by placing
the hip center at the origin.

¢ Invariance to scale: one of the skeletons is used as reference, and all the other
skeletons were normalized (without changing their joint angles) such that their
body part lengths are equal to the corresponding lengths of the reference skele-
ton.

¢ Invariance to rotation: the skeletons were rotated so that the ground plane pro-
jection of the vector from left hip to right hip is parallel to the global x-axis.

7.5 Experimental results

In this section, we evaluate the performance of five state-of-the-art subspace clustering algo-
rithms on two skeletal action datasets: UTKinect-Action [230]"! and Florence3D-Action [172].
Table 7.1 compares both datasets in term of number of actions, subjects and sequences. For
all subspace clustering algorithms shown in Table 7.3, we followed the same pipeline:

"http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
http://www.micc.unifi.it/vim/datasets/3dactions/
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Table 7.1: Datasets for human action recognition from 3D skeletal data.

Dataset # of actions # of subjects # of sequences
UTKinect-Action 10 10 199
Florence3D-Action 9 10 215

Table 7.2: Length of each skeletal representation before (RAW column) and after
(Final column) temporal modeling.
AJP RJP JAQ SE3AP SE3RP
Dataset RAW Final RAW  Final RAW  Final RAW  Final RAW Final

UTKinect 4218 7182 42180 71820 11248 19152 8436 14364 151848 258552
Florence3D 215 2352 11025 17640 3920 6272 2940 4704 38220 61152

1. First, thelow-rank or sparse representation of the action matrix X®3) is obtained.

2. An undirected weighted graph W is constructed by using the low-rank or sparse rep-
resentation to define the affinity matrix of the graph. W € RV*¥ is a symmetric
non-negative similarity matrix representing the weights of the edges.

3. The clustering of the nodes is computed using a spectral clustering algorithm. We
choose here the Ng et al.’s method [147] based on the normalized Laplacian as the
standard SC method.

7.5.1 Evaluation protocol

In the evaluation, all the parameters are chosen so that the final average clustering error is
the lowest (see Section 7.5.2). For all algorithms we varied the threshold p in the coefficient
matrix in [0, 1] increasing by 0.01. The best p is found when the clustering error is minimal.
Then, to eliminate the effect of randomness, we repeated such trial 20 times and compared
representative algorithms based on the average accuracy and standard deviation.

Implementation details: For all algorithms, we use the MATLAB code provided by their
authors. All experiments are carried out using MATLAB 2015a on a laptop machine
with Intel(R) Core(TM) 17-3740QM CPU at 2.70 GHz and 32 GB RAM.

7.5.2 Evaluation metrics

Following Chang et al. [42], we adopted clustering accuracy (ACC) as evaluation metrics in
the experiments. Let ¢; be the clustering label resulted from a clustering algorithm and p;
the corresponding ground truth label of an arbitrary data point x;. Then, ACC is defined as

follows: n
>iz1 0(pi; map(gi))
n

ACC =

(7.2)
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Table 7.3: Selected subspace clustering algorithms for evaluation on skeletal action

datasets.
Representation Method Author(s)
LRR Liu et al. (2013) [121]
low-rank LRSC  Vidal and Favaro (2014) [214]
SSC Elhamifar and Vidal (2009) [59]
sparse RSSC Xu et al. (2015) [233]

LS3C Patel et al. (2013) [159]

where §(z,y) = 1if z = y and §(z, y) = 0 otherwise. map(g;) is the best mapping function
that permutes clustering labels to match the ground truth labels using the Kuhn-Munkres
algorithm [144]. A larger ACC indicates better clustering performance.

7.5.3 Results on UTKinect-Action dataset

For this dataset, the action matrix X(®) was projected into a = 2s dimensional subspace
using PCA, where s = 10 represents the number of distinct actions. Thus, the number of
rows of X(3) ¢ RMx199 jg reduced, where M = 20 is the final row size of the action ma-
trix before subspace clustering. Figure 7.5 shows the feature embedding visualizations using
t-SNE [208]. Each clip is visualized as a point and clips belonging to the same action have
the same color. Note that the features are better grouped after temporal modeling improving
the clustering accuracy. Table 7.4 shows the performance comparison in terms of clustering
accuracy and std of selected subspace clustering methods between the five skeletal represen-
tations, respectively. The best scores for each skeletal representation are in bold face. As it
can be seen, LRSC and RSSC both using AJP and RIJP as skeletal representation show the
best results in terms of clustering ACC compared to their direct competitors. The confusion
matrices for these two algorithms are shown in Figure 7.6.

7.5.4 Results on Florence3D-Action dataset

This is a challenging dataset due to the high intra-class variations, where the same action is
performed using the left hand in some sequences and the right hand in others. In addition, the
presence of actions like drink from a bottle and answer phone are quite similar to each other.

For this dataset, the action matrix X () was projected into a = 10s dimensional sub-
space using PCA, where s = 9 represents the number of distinct actions. Thus, the row size
of XB) € RM*215 ig reduced, where M = 90 is the final row size of the action matrix be-
fore subspace clustering. Table 7.5 shows the performance comparison in terms of clustering
accuracy and std of five subspace clustering methods between five skeletal representations,
respectively. The best scores for each skeletal representation are in bold face. This is best
viewed in Figure 7.7, that shows the feature embedding using t-SNE [208]. We note that
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Table 7.4: Clustering accuracy and std of five subspace clustering methods between
five skeletal representations extracted from UTKinect dataset.
Method AJP RJP JAQ SE3AP SE3RP

SSC 0913+ 0.055 0.936+ 0.048 0.777 = 0.027 0.893 + 0.040 0.820 + 0.057
RSSC 0.921 £ 0.020 0.951+ 0.037 0.760+ 0.018 0.900 + 0.022 0.826 + 0.026
LRR 0.795 + 0.035 0.788 + 0.026 0.643 = 0.034 0.659 = 0.041 0.653 = 0.042
LRSC 0.951+ 0.040 0.812+ 0.074 0.762+ 0.013 0.768 + 0.028 0.777 = 0.042
LS3C 0.751 £ 0.034 0.723+ 0.018 0.680+ 0.013 0.675+ 0.023 0.579 + 0.020

some features are more overlapped than others, which results in a difficult task for clustering.
As it can be seen, the RSSC using AJP as skeletal representation shows the best result in
terms of clustering ACC compared to its direct competitors. The confusion matrix for this
algorithm is shown in Figure 7.8. However, compared to the results obtained with UTKinect
dataset, the Florence3D dataset seems to be more difficult even for the state-of-the-art meth-
ods, due to very similar actions such as drink from a bottle and answer phone, as can be
seen in Table 7.6. Most of evaluated methods have clustering ACC decreased by a factor of
approximately 10%.

7.5.5 Comparison to the state-of-the-art methods

As previously described, the methodology presented in this chapter explores an unsupervised
learning approach through robust subspace clustering methods for skeletal action recognition.
Table 7.6 compares the result of several state-of-the-art methods with the best subspace clus-
tering method for both datasets. As can be seen, LRSC (low-rank based) and RSSC (sparse
based) both achieved promising results compared with state-of-the-art supervised methods.
The proposed work explores unlabeled data to find some intrinsic “natural” structures, orga-
nizing them into k-groups taking into account the recent advances on sparse and low-rank
representation approaches. Evidently, supervised approaches usually outperforms the unsu-
pervised ones in several key tasks.
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Figure 7.5: Feature embedding visualizations of AJP skeletal representation before
(left) and after (right) temporal modeling procedure from UTKinect actions using
t-SNE.
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Figure 7.6: From top-down: confusion matrix for LRSC with AJP skeletal repre-
sentation and RSSC with RJP skeletal representation in the UTKinect dataset.
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Table 7.5: Clustering accuracy and std of five subspace clustering methods between
five skeletal representations extracted from Florence3D-Action dataset.

Method AJP RIP JAQ SE3AP SE3RP
SSC 0.788 £ 0.002 0.742 + 0.028 0.708 £ 0.002 0.670+ 0.005 0.642 + 0.021
RSSC 0.790 = 0.001 0.733+ 0.045 0.706 £ 0.001 0.679 + 0.004 0.673 £ 0.010
LRR 0.784 + 0.002 0.503+ 0.022 0.493 + 0.012 0.522+ 0.014 0.469 £+ 0.014
LRSC 0.723 £ 0.007 0.730+ 0.004 0.693 + 0.001 0.692 + 0.009 0.561 = 0.026
LS3C 0.655+ 0.020 0.624 + 0.019 0.732+ 0.009 0473+ 0.018 0.612+ 0.039
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Figure 7.8: Confusion matrix for RSSC in the Florence3D dataset with AJP skeletal
representation.
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Table 7.6: Performance comparison with state-of-the-art methods.

Type Author(s) Approach Recognition rate

UTKinect-Action dataset

S Xia et al. (2012) [230] Histograms of 3D joints 90.92%

S Zhu et al. (2013) [261] Random forests 87.90%

S Vemulapalli et al. (2014) [212] Points in a Lie Group 97.08%

U proposed LRSC + AJP or RSSC + RJP 95.10%
Florence3D-Action dataset

S Seidenari et al. (2013) [172] Multi-Part Bag-of-Poses 82.00%

S Cippitelli et al. (2016) [47] Key poses 82.10%

S Vemulapalli et al. (2014) [212] Points in a Lie Group 90.88%

U proposed RSSC + AJP 79.00%

S - Supervised, U - Unsupervised

7.6 Conclusion

In summary, we presented a methodology to recognize human activities from skeletal data
through robust subspace clustering. The 3D skeletal joints locations are inferred from depth
maps via the Kinect device using Shotton et al.’s method [174]. The experimental results
showed that low-rank based (e.g. LRSC) and sparse based (e.g. RSSC) methods are both
unsupervised approaches which provide interesting results for human action recognition from
skeletal data compared with state-of-the-art supervised methods.

Ideas for future work include the possibility to apply recent Robust PCA methods for
filtering the noise in the action matrix before the subspace clustering step. In addition, recent
feature selection algorithms [168] can be evaluated to reduce the dimension of the action
matrix instead of traditional PCA approach.
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Chapter 8

Conclusions

In this chapter, we summarize the main contributions of the thesis covering the strengths and
weaknesses of the proposed approaches presented in the main chapters of this thesis. Finally,
we provide an outlook of the future research possibilities and directions.

8.1 Summary and contributions

The recent research on decomposition into low-rank plus sparse matrices or tensors shows
a general-purpose framework that covers a wide range of applications where the data to be
processed have two important assumptions: a) the inliers are drawn from a single (or a union
of) low-dimensional subspace(s), and b) the corruptions are sparse. In the thesis, we have
explored the fact that this assumption holds a particular association to the problem of B/F
separation where the background model (almost static) is represented as a low-rank structure
and the foreground objects are associated with the sparse residuals. However, the key is-
sues and challenges in such approaches are their capabilities to handle complex and dynamic
background scenarios, as well as performing in a real-time manner. Given the importance of
this subject, the thesis presented here has brought the following contributions:

e In Chapter 1, we introduced the problem of moving object detection under back-
ground/foreground separation for visual-surveillance applications. We highlighted that
the recent research on decomposition into low-rank plus sparse matrices shows a suit-
able framework to separate moving objects from the background.

* In Chapter 2, we gave an overview of the state-of-the-art methods for low-rank and
sparse decomposition, as well as their application to background modeling and fore-
ground segmentation tasks. The methods were unified in a more general framework,
named DLSM, that categorizes the matrix separation problem into three main ap-
proaches: implicit, explicit and stable. In addition, we developed the matrix separation
problem from a single low dimensional subspace to the union of low-dimensional sub-
spaces, introducing the subspace clustering approach. We showed also its adequacy
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to the problem of background/foreground separation by clustering motion trajectories.
Finally, we extended the matrix case to the tensor case for handling multidimensional
data.

In Chapter 3, we presented a novel methodology for background model initializa-
tion seen as a reconstruction problem from missing/corrupted data. The redundant
frames are eliminated and the moving regions are set to be non-observed values. Next,
twenty-three matrix and tensor low-rank recovery algorithms were evaluated for the
background initialization problem. The experimental results on the SBI dataset high-
lighted the good performance of LRGeomCG method over its direct competitors. Fi-
nally, we note that matrix-based completion methods show an attractive potential for
background modeling initialization in video surveillance.

In Chapter 4, we proposed a double-constrained version of RPCA to improve the fore-
ground detection in maritime environments for automated video-surveillance appli-
cations. The sparse component is constrained by shape and confidence maps, both
extracted from spatial saliency maps. The experimental results indicate a better en-
hancement of the object foreground mask when compared with its direct competitors.

In Chapter 5, an incremental and multi-feature tensor subspace learning algorithm
(IMTSL) was presented. Different from previous related works where a tensor model
is built directly from the video data (i.e., each frontal slice of the tensor is a gray-scale
image), in this work the tensor model was built from a previous feature extraction pro-
cess. The multi-feature tensor model allows us to build a robust low-rank model of the
background scene. In addition, an incremental high-order singular value decomposi-
tion was proposed, making our method able to process streaming data when the full
size of the data is unknown. The experimental results have shown that the proposed
method achieves promising results for the background subtraction task.

In Chapter 6, we proposed an online stochastic tensor decomposition algorithm, named
OSTD, for handling streaming multispectral video sequences for intelligent video
surveillance applications. Differently from the IMTSL algorithm, the OSTD algorithm
makes use of robust principal component analysis on tensors for a robust background/-
foreground separation. The experimental results have shown that the proposed method
outperforms its direct competitors, and we have achieved almost real time processing,
since one video frame is processed in an online optimization scheme. Moreover, it is
shown that the basis initialization with BRP can accelerate the low-rank approxima-
tion, reducing the amount of false positive pixels in the background model initializa-
tion step.

Finally, in Chapter 7 we presented a particular work realized in conjunction with Com-
puter Vision Center (CVC) at Autonomous University of Barcelona (UAB). In this
chapter, we have shown a methodology to recognize human activities from 3D skeletal
data through robust subspace clustering approaches. The experimental results showed
that LRSC and RSSC methods were both unsupervised approaches which provided
interesting results compared with state-of-the-art supervised methods.
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8.2 Limitations and future perspectives

The strengths of the contributions introduced in the thesis have been demonstrated through
many experimental evaluations. However, there are limitations which could be open oppor-
tunities for future research.

* The methodology presented in Chapter 3 has two main drawbacks. First, it makes
use of a simple joint motion-detection and frame-selection operation that removes the
redundant frames and induces missing entries from the moving regions. This joint
operation cannot deal with many real-world challenges of background model initial-
ization, due to its sensitivity to noise, inability to deal with dynamic background and
stopped objects, among the others. Secondly, the matrix and tensor completion ap-
proaches evaluated in this work make use of a batch optimization process, requiring
that all video frames be stored in memory in advance. This is an important issue that
limits the application in the case of streaming data or high resolution images.

Future researches may concern: a) the investigation of a more robust approach for
frame-selection that can handle the major challenges of video surveillance applica-
tions, and b) the development or evaluation of incremental and real-time approaches
for low-rank reconstruction, enabling the algorithm to perform the background model
initialization in streaming videos.

* The double-constrained RPCA algorithm presented in Chapter 4 makes use of shape
and confidence maps, both extracted from spatial saliency maps. Thus it strongly
depends on the robustness of the saliency extractor, that could present incorrect seg-
mentation in the presence of high visual saliency objects coming from the background
scene. In addition, both confidence map and shape constraint were built from the
same source, instead of two complementary sources. Finally, the proposed SCM-
RPCA works in a batch manner, requiring all frames be stored in memory, restricting
the application in streaming or high resolution videos.

Future work may concern the investigation of how spatio-temporal saliency detectors
can help the proposed approach to improve the foreground detection, or how different
sources could be used to build complementary shape and confidence maps. Further-
more, the development of an incremental version of the proposed algorithm could be
desirable for streaming applications.

* The incremental and multi-feature tensor subspace learning algorithm presented in
Chapter 5 has two main drawbacks. The first one is related to the high computational
cost of the incremental SVD method, making it infeasible for real-time applications.
The second one is related to the foreground detection method that relies on three ba-
sic steps: a) similarity function, b) weighted combination of features, and c) hard
thresholding. The major limitation concerns the set of weights for each feature, that
are calculated manually, making the foreground detection step unable to automatically
adjust to new conditions.

Further research may consists in improving the speed of the incremental low-rank de-
composition for real-time applications. Additional supports for dynamic backgrounds
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might be interesting for real and complex scenes. Finally, the investigation of fast op-
timization algorithms for finding the most appropriate weights could be an important
research direction for this work.

The online stochastic tensor decomposition algorithm proposed in Chapter 6 makes
use of an online stochastic optimization algorithm to decompose the unfolded ma-
trices of a tensor into a low-rank and sparse representation. The main drawback of
the proposed algorithm is the computational cost required to process each unfolded
matrix.

A future research may concern the exploitation of recent advances on randomized
principal component analysis [61,78,228]. Instead of making a full decomposition
of the unfolded matrices, the randomized algorithms provide an efficient computa-
tional framework that computes a compressed representation of the data using random
sampling. In other words, it captures the essential information that can then be used
to obtain a low-rank matrix/tensor approximation. Finally, the implementation of the
OSTD algorithm in C/C++ language with GPU support could improve its scalability
for high resolution and real-time applications.

Finally, concerning Chapter 7, ideas for future work include the possibility to apply
recent Robust PCA methods for filtering the noise in the action matrix before the
subspace clustering step. In addition, recent feature selection algorithms [168] can be
evaluated to reduce the dimension of the action matrix instead of the traditional PCA
approach.



Appendix A

Notations and symbols

In this section we provide a homogenized overview of all different mathematical notations
and symbols found over all chapters in this thesis. Table A.1 presents a summarized overview
of the adopted symbols.

Matrices For matrices, A stands for the observation matrix, L is the low-rank matrix, S is
the unconstrained (residual) matrix or sparse matrix, and E is the noise matrix. I is
the identity matrix. For the specific matrices, the notations are given in the section of
the corresponding method.

Tensors Similar to matrices, but represented by calligraphic letters, such as A, £, S, and €.

Norms The different norms used for vectors and matrices in this thesis are classified as
follows:

* Vector ,-norm, with 0 < o < 2: ||v]|p is the {yp-norm of the vector v, and it
corresponds to the number of non-zero entries. ||v|[;= )", v; is the {;-norm
of the vector v, and it corresponds to the sum of the vector elements. ||v||o=

>;(v;)? is the £5-norm of the vector v, and it corresponds to the Euclidean
distance.

* Matrix {,-norm, with 0 < a < 2: ||A]|p is the £p-norm of the matrix A, and
it corresponds to the number of non-zero entries. ||A||;= max; > ,|A;;| is the
{1-norm of the matrix A, and it corresponds to the maximum absolute column
sum norm. |[|Allo= \/0maz(ATA) = 0pnaz(A) is the £o-norm of the matrix
A, and it corresponds to the largest singular value of the matrix A or the square
root of the maximum eigenvalue of ATA. The /3-norm for matrices is also
known as spectral norm. The /5-norm is also employed in its squared version
such that ||A||2= 0na (ATA).

* Matrix {oo-norm: [|A|[= max; Y ;|Aj;] is the {o-norm of the matrix A,
and it corresponds to the maximum absolute row sum norm. The £,-norm of
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the matrix A is equivalent to the /;-norm of the transposed matrix, such that
[|A]|oo= [|AT][1.

Matrix £ g-norm, with 0 < a, 8 < 2: ||Al|4,p is the £, g-mixed norm of the
matrix A, and it corresponds to the {g-norm of the vector formed by taking
the /,-norms of the columns of the matrix A. The norm ¢, ; is equivalent to
Zi, j |A; ;|, that is the sum of all absolute values of the matrix elements. The
norm (1 5 is equivalent to o(}_.|A;|), that corresponds to the singular value
of the vector formed by taking the ¢;-norms of the columns of the matrix A.
The norm /5 ; is equivalent to >, ||A,||2 or trace(v ATA). The norm /3 5 is
equivalent to \/trace(AAT) (also known as Frobenius norm).

Matrix Frobenius norm: [[Al|r= /37, > ;[Ai;[? = (/trace(AAT) is the
Frobenius norm of the matrix A, and it is defined as the square root of the sum of
the squared absolute values of its elements. The Frobenius norm is equivalent to
{3 9-norm and it is sometimes also called the Euclidean norm, which may cause
confusion with the vector ¢s-norm. The Frobenius norm is also employed in its
squared version such that ||A[|z= 37, 3= |Ai;|*= trace(AA™), representing
the sum of squares of all entries.

Matrix max norm: ||A||;qz= max|A,;| is the max norm of the matrix A, and
it corresponds to the maximum absolute value of the matrix A. The max norm
is equivalent to the ¢ oo-norm such that ||A||,00= || Al co,c0-

Matrix nuclear norm: ||A||,= >, 0;(A) is the nuclear norm of the matrix A,
and it corresponds to the sum of the singular values of the matrix A. The nuclear
norm is equivalent to the ¢;-norm applied on the vector whose elements are
the singular values of the matrix, such that ||A||.= ||o(A)||;. For a desired
rank 7 in low-rank minimization, the nuclear norm is also defined by ||A||.=
i1 0i(A).

Matrix Schatten-p norm, with 0 < p < 2: the Schatten-p norm is the p-norm
applied to the vector of singular values of a matrix. The Schatten p-norm is de-
fined by ||A||s,= (3°,(0:i(A))P)Y/P, where o;(A) represents the i-th singular
value of the matrix A. For p = 1 and p = 2, it yields the nuclear norm and the
Frobenius norm, respectively. The case p = oo yields the spectral norm.

Tensor Frobenius norm: ||X||p= /Y, ... > y|Xi...n|? is the Frobenius norm
of an Nt"-order tensor X, and it is defined as the square root of the sum of the
absolute values of its elements. The Frobenius norm is sometimes also called
the Euclidean norm, which may cause confusion with the vector #-norm. The
Frobenius norm is also employed in its squared version representing the sum of
squares of all entries, such that || X]|3= >, ... > y| X .~|*



107

Table A.1: Summary of symbols used in this thesis.

x,y, 2, X, Y, Z Scalars (lowercase or uppercase letters)
X,¥,Z Vectors (lowercase bold letters)
X,Y,Z Matrices (uppercase bold letters)
X, )V, Z Tensors (uppercase calligraphic bold letters)
x; ith element of vector x
X(4,7), Xi; Entry at position (2, j) of matrix X
X(i,4,k), Xijk Entry at position (4, j, k) of 3!"-order tensor X’
X(i1,i9,...,iN), Xijiy. i Entry at position (i, is,...,7iy) of N*"-order tensor X
X; 1th vector
xl(.t) tth vector at time instance ¢
X; 7th matrix
Z(.t) tth matrix at time instance ¢
X; ith tensor
Xi(t) ith tensor at time instance ¢
X;. A vector formed by all columns of the ith row of a matrix X
X.j A vector formed by all rows of the jth column of a matrix X
Xk, Xk, Xij: Column, row, and tube fibers of a third-order tensor X’
X, Xejo, Xoog Horizontal, lateral and frontal slices of a third-order tensor X’
xT, XT Transpose of vector x and matrix X
X Denotes the complement of the matrix X
Xl n-mode matricization of tensor X’
X Matrix representing the n-mode matricization of tensor X
x® n-mode matricization of tensor X’ at time instance ¢
X ®1 Matrix representing the n-mode matricization of tensor X’ at time instar
0 € R™xn Zero matrix. A matrix with all its entries being zero.
1 e R™*" All-ones matrix. A matrix where every element is equal to one.
R The set of real numbers
R™ The set of all real vectors of length n
Rmx™ The set of all real matrices of size m x n
RItxI2x...xIn The set of all N*"-order real tensors of size I; X I X ... x I
{-..} A set, depending on context
[z, Y] Closed interval from z to y
|| Absolute value of a real number
-] Norm (in general)
-0 £o-norm (number of non-zero elements)
-] Elementwise £,-norm
[-1oo Infinity norm
|-/ max Max norm
||| 7 Frobenius norm
-l 8 Elementwise ¢, s-mixed norm (matrices only)
II-Ils, Schatten p-norm (matrices only)
[-1]« Nuclear norm (matrices only)
(o) Inner product
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var(x)

std(x)

card(S)

rank(.)

rank, (X)
svd,(X)

vee(X), vee(X)
X®y

XoY

X®Y

X x, U

X Xg\il Ui
Pq())

min(x1, Ta, ..., TN)
min(x), min(X)
max(x), max(X)
min, f(x)

arg min,, f(z)

NOTATIONS AND SYMBOLS

Variance of the elements of the vector x

Standard deviation of the elements of the vector x
Denotes the number of non-zero entries of matrix S
Matrix or tensor rank

rank-r approximation of matrix X (general case)
rank-r approximation of matrix X by SVD
Vectorization of matrix X or tensor X

Outer product between vectors x and y

Element-wise multiplication between matrices X and 'Y
Kronecker product between matrices X and Y

n-mode product between tensor X and matrix U
Shorthand for X X1 U1 X9 UQ X3 ... XN UN
Sampling operator

The smallest among scalars {x; }

The smallest element of a vector x or matrix X

The biggest element of a vector x or matrix X

The minimum value of real function f with respect to x
The minimizer of real function f with respect to x



ADM
ALM
ALS
APG
B/F
BCD
BM
BMI
BMM
BRP

BS
CANDECOMP
CP
DLSM
FD

FS
GSVT
HOSVD
IALM
iHOSVD
IMTSL
IRLS
IRNN
L/S-SC
LRA
LRR
MC

MF
NMF
MoG

Appendix B

List of abbreviations

Alternating Direction Method

Augmented Lagrange Multipliers
Alternating Least Squares

Accelerated Proximal Gradient
Background/Foreground

Block Coordinate Descent

Background Model

Background Model Initialization
Background Model Maintenance

Bilateral Random Projections

Background Subtraction

CANonical DECOMPosition
CANDECOMP/PARAFAC

D ecomposition into Low-rank and Sparse Matrices
Foreground Detection

Foreground Segmentation

Generalized Singular Value Thresholding
Higher-Order Singular Value Decomposition
Inexact Augmented Lagrange Multiplier
Incremental HOSVD

Incremental Multi-feature Tensor Subspace Learning
Iteratively Reweighted Least Squares
Iteratively Reweighted Nuclear Norm
Low-rank/Sparse Subspace Clustering
Low-Rank Approximation

Low-Rank Representation

Matrix Completion

Matrix Factorization

Non-negative Matrix Factorization

Mixture of Gaussians
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OSTD
PARAFAC
PCA

PCP

RDL

RM
RNMF
RPCA

SC
SCM-RPCA
SDP

SNN

SSC

SVD

SVT

TC

TD

TNN
t-SVD
TTD

LIST OF ABBREVIATIONS

Online Stochastic Tensor Decomposition
PARAIllel FACtors

Principal Component Analysis

Principal Component Pursuit

Robust Dictionary Learning

Rank Minimization

Robust Non-negative Matrix Factorization
Robust PCA

Subspace Clustering

Shape and Confidence Map-based RPCA
Semidefinite Programming

Sum of Nuclear Norms

Sparse Subspace Clustering

Singular Value Decomposition

Singular Value Thresholding

Tensor Completion

Tucker Decomposition

Truncated Nuclear Norm

Tensor Singular Value Decomposition
Three Term Decomposition
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Introduction to tensors

1d-tensor 2d-tensor 3d-tensor
(vector) (matrix) (cube)

o

0d-tensor
(scalar)

4d-tensor 5d-tensor 6d-tensor
(cube's sequence) (bidimensional cube's grid) (tridimensional cube's grid)

Figure C.1: From left to right: illustration of tensor’s dimensionality, and partial vi-
sualization of the TensorFaces representation (image from Vasilescu thesis’s [210]).

From the point of view of multi-linear algebra, a tensor can be considered as a multi-
dimensional or multi-way array of data, usually seen as a generalization of the vector con-
cept [99, 104]. For example, a scalar is represented as a Oth-order tensor, a vector as a 1st-
order tensor, and a matrix (a 2-dimensional array) as a 2nd-order tensor. The order (also
degree or rank) of a tensor is the dimensionality of the array needed to represent it. Tensors
of order three or higher are usually called higher-order tensors. Figure C.1 (left) gives an
example of tensor’s dimensionality. Since the human brain’s is limited to three dimensional
perception, the visualization of high dimensional data is still a non trivial task. However,
several approaches have been proposed in the literature for visualizing data with four or more
dimensions [123, 194]. An easy way to interpret the fourth dimension case is to consider a
cube’s sequence, for example a sequence of color images (a spatio-temporal volume) where
its first three dimensions are represented by its width, height and color channels (i.e. RGB
color model). In the case of the fifth (or more) dimension, an interesting example is the repre-
sentation of the TensorFaces proposed by Vasilescu and Terzopoulos [211] (Figure C.1 right).
The image database consists of 28 male subjects imaged in 15 different views, under 4 dif-
ferent illuminations, performing 3 different expressions. In Vasilescu and Terzopoulos [211],
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third-order
tensor

Figure C.2: Illustration of a third-order tensor X € R®>*6%6 and its entries.

| —

NN

(a) Tensor fibers (b) Tensor slices

Figure C.3: Decomposing a third-order tensor into fibers and slices.

the facial image data tensor is represented by R7943X28x15X4x3 " yielding a total of 7943
pixels per image.

Tensors have been widely used in mathematics and physics for decades, and they have
become very popular in psychometrics and chemometrics for multi-way data analysis [99].
However, in the last few years, with the accelerated growth of higher-dimensional data sets,
the use of tensors has expanded to other fields, such as neuroscience, data mining, signal/im-
age/video processing, computer vision and machine learning, among the others [7,45,46, 66,
99,101,210].

In the next sections, we introduce the basic operations of multi-linear algebra on tensors.
For a deeper discussion on tensors, their properties, their operations and their applications,
the reader may refer to [3,99].

C.1 Tensor basics

As introduced in the previous section, a tensor can be defined as a multidimensional array of
data'. Following the usual conventions found in the literature [99, 104], a tensor is denoted
by calligraphic letters, e.g. &X. The order of a tensor is the number of dimensions, also

known as ways or modes, and an N-th order tensor of size Iy X Is X ... x Iy is defined
as X € RI1xI2x..xIn Each element in tensor X is addressed by Xi,i,...i, representing an
entry at position (iq,42,...,4,), where 1 < i; < I;, j = 1,..., N. Figure C.2 shows a

third-order tensor of size 5 x 6 x 6 and its modes. In the next sections, we present some of
the most important operations that are usually done in tensors.

'The definition of tensors used in this thesis should not be confused with tensor fields used in
physics and differential geometry in mathematics, such as, stress tensor, Einstein tensor, metric tensor,
curvature tensor, among the others [99].
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Figure C.4: Matricization of a third-order tensor into its n-mode matrices.

C.2 Fibers and slices

A tensor can be decomposed into subarrays by fixing a subset of its indices. A tensor fiber
can be regarded as a one-dimensional fragment (or column vector) of a tensor and it is defined
by fixing every index except one. A third-order tensor X’;;;, has column, row, and tube fibers
denoted by &X’ji, &j.r and Xj;., as can be seen in Figure C.3 (a). A second property is the
tensor slice. A tensor slice is a two-dimensional section of a tensor, when all but two indices
are fixed, resulting in a matrix called slice. A third-order tensor X;;; has horizontal, lateral
and frontal slices indicated by A&j.., X;. and X1, as can be seen in Figure C.3 (b). Fibers
and slices are the core of the most important operations on tensors, such as vectorization,
matricization, n-mode product, among the others [99], some of which are described in the
next sections.

C.3 Vectorization and matricization

In order to work with tensors, it is often convenient to represent tensors as vectors or matri-
ces. This process is known as vectorization or matricization, and consist in reordering the
elements of an N-th order tensor into a vector or a matrix, respectively [99]. For example, a
5 X 6 x 8 tensor can be arranged as a vector of 240 elements or a 5 x 48 matrix.

Definition C.1. (Tensor vectorization). Let X € RI1xI2X--XIN be an N-th order tensor.
The vectorized tensor, denoted by vec(X'), is a vector formed by the tensor entries, such that
tensor entry (i1, 42, . .., i, ) is mapped to vector entry j, where
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N k-1
j=14+> (k=12 and Jp= [] Im (C.1)
k=1 m=1
Definition C.2. (Tensor matricization). Let X € RI1X%2X.-XIN be an N-th order tensor.
The n-mode tensor matricization, with n € {1,2,..., N}, denoted by X (], maps the tensor
element (iy,...,4,...,4,) to matrix element (i, j), where
N k-1
J=14+> (k=1 and  Jp= ] Im (C.2)
= At

In essence, the tensor vectorization vec(X) is formed by stacking the entries of X in
column-major order, while in the tensor matricization the n-mode fibers are rearranged to be
the columns of the matrix X[™. Consider the following example:

Example C.1. (Tensor vectorization and matricization) Let a third-order tensor X € R2*3%2
formed by the following two frontal slices

1 3 5 7 9 11
X::l = and X::2 = 5 (C3)
2 4 6 8 10 12
then, the vectorization of X is
vec(X)=1[1 2 3 4 5 6 7 8 9 10 11 12]7 (C.4)

and the three n-mode matrices of X" are

<l _ 135 7 9 11 ©s)
12 4 6 8 10 12 '
1 2 7 8
xZ =13 4 9 10 (C.6)
5 6 11 12
I3 _ 1 23 4 5 6 ©n
Tl 8 9 10 11 12 '

C.4 Other tensor operations

Similarly to vectors and matrices, addition and subtraction between two tensors are defined
in a element-wise manner. However, the multiplication between tensors is more complex.
For a complete treatment of tensor multiplication, please refer to Kolda and Bader [99]. In
the thesis, we focus only on the n-mode product between a tensor and a vector or a matrix.
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C.4.1 n-mode tensor vector product

The n-mode vector product of an N-th order tensor X' € RI1>*/2X--XIn with a vector v €
R is denoted by X x,, v. Each n-mode fiber is multiplied by the vector v, and usually is
expressed by

I7L
X Xn V=Y Tijiy inUi, (C8)

in=1

C.4.2 n-mode tensor matrix product
The n-mode matrix product of an N-th order tensor X € R11>*/2XXIN with a matrix U €

R7*In is denoted by X x,, U. Each n-mode fiber is multiplied by the matrix U, and usually

is expressed by
I

G=Xx%x,U <« Z Tiyig..in Ujiy, (€9

in=1

C4.3 t-product

Let Abe an Iy x I5 x I3 tensor and B be an I3 x I4 x I3. The t-product of A and B, C = AxB,
isan Iy x I4 x I3, defined as follows [97]:

I
Cij: = Y Ai: () Bij, (C.10)
k=1

where (©) denotes a circular convolution.

C.44 f-diagonal

An I; x I x I3 tensor A is called f-diagonal, if each frontal face of A is a diagonal ma-
trix [97].
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Figure D.1: LRSLibrary GUL

The LRSLibrary [180]' provides a collection of low-rank and sparse decomposition al-
gorithms in MATLAB. The library was designed for background/foreground separation in
videos, and it contains a total of 104 matrix-based and fensor-based algorithms. The library
is also equipped with an easy-to-use graphical user interface (GUI), enabling the user to se-
lect the type of method (e.g. RPCA for Robust PCA) and its related algorithm (e.g. FPCP
for Fast PCP), please see Figure D.1 (left). The library also disposes of an additional tool to
resize and crop videos (Figure D.1 (right)).

The remainder of this appendix is organized as follows. First we start with the moti-
vation behind the LRSLibrary in Section D.1. Section D.2 presents a brief overview of the
algorithms available in the LRSLibrary. Section D.3 evaluates the computational cost of each
algorithm and its speed. Finally, in Sections D.4 and D.5, we present a usage example of the
LRSLibrary, as well as conclusions.

"LRSLibrary: https://github.com/andrewssobral/lrslibrary

117


https://github.com/andrewssobral/lrslibrary

118 LRSLIBRARY

D.1 Motivation

The main motivation behind the LRSLibrary was to build an easy-to-use framework for ap-
plying low-rank and sparse decomposition tools for the background/foreground separation
problem. The library was developed to be open source and free for academic/research pur-
pose. The LRSLibrary was crucial for all experiments conducted in the current thesis.

D.2 Algorithms

Up to the date of writing, the LRSLibrary provided 104 algorithms for B/F. An updated
list of currently available algorithms can be found in the library website. The algorithms
were grouped into the following categories: RPCA for Robust PCA, ST for Subspace Track-
ing, MC for Matrix Completion, TTD for Three-Term Decomposition, LRR for Low-Rank
Representation, NMF for Non-negative Matrix Factorization, NTF for Non-negative Tensor
Factorization, or TD for standard Tensor Decomposition.

D.3 Computational cost

Many efforts have been recently concentrated to develop low-computational subspace learn-
ing algorithms. In this section, an evaluation of the computational cost of the LRSLibrary
algorithm’s is shown in Figure D.3. It presents the averaged CPU time and the speed classi-
fication of each algorithm to decompose a 2304 x 51 matrix or a 48 x 48 x 51 tensor. The
speed classification criterion (SCC) function was defined as:

1 ift<1 (very fast: represented by blue color)

2 if1<t<5b (fast: represented by green color)
SCC(t)=<¢3 if5<t<20 (medium: represented by yellow color)  (D.1)

4 if20 <t <60 (slow: represented by red color)

5 ift > 60 (very slow: represented by dark red color)

where t is the average time (in seconds) over three successive executions. Figure D.2 presents
the icons used by LRSLibrary GUI to represent the speed classification of each algorithm.
The experiments were performed using an Intel Core 17-3740QM CPU 2.70GHz with 16Gb
of RAM running MATLAB R2013b and Windows 7 Professional SP1 64 bits.

it .AI|AI|
slow

wery fast fast madiurn wary slow

Figure D.2: Icons that represent the speed classification of each LRS algorithm.
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Method  Algorithm ID
RPCA  FPCP

RPCA  GoDec

RPCA  SsGoDec

NMF  NeNMF

RPCA  GM

RPCA  TGA

RPCA  GreGoDec
RPCA  GA

NMF  Deep-Semi-NMF
NMF  LNMF

NMF  iNMF

RPCA  Lag-SPCP-QN
LRR ROSL

MC LRGeomCG
T Tucker-ALS
T

T

RPCA

NMF

RPCA

ST

NMF

LRR FastLADMAP
RPCA  R2PCP

NMF  NMF-MU
RPCA  STOC-RPCA
NMF  NMF-PG

TTD MAMR
TTD 3WD
RPCA  LSADM
RPCA  PSPG

NTF  bcuNcP
NMF  NMF-ALS

LRR IALM

LRR LADMAP
RPCA  LIF

NMF  NMF-ALS-0BS
RPCA  NSAL

RPCA  NSA2

MC GROUSE

RPCA  Regll-ALM
NMF  DRMF

TTD RMAMR

RPCA  IALM_LMSVDS,

TTD ADMM

LRR ADM

RPCA  PCP

RPCA  APG_PARTIAL
T HosVD

RPCA  DECOLOR
RPCA  APG

RPCA  VBRPCA
RPCA  IALM_BLWS
RPCA  PRMF

MC  OptSpace
NMF  nmfls2

NMF  PNMF

RPCA  Lag-SPCP-SPG
RPCA  TFOCS-IC
RPCA  TFOCS-EC
NMF  ENMF

NTF  betaNTF
RPCA  MOG-RPCA

RPCA  EALM
™ HORPCA-IALM
ST GOsUs

LRR  EALM

i HORPCA-S.
NTF  NTD-APG

NTF  NTD-MU
RPCA  ADM

NTF  bouNTD

i) RSTD

RPCA  RPCA

i) Tucker-ADAL
NTF  NTD-HALS
ME  FRC

RPCA  ALM

ST PROST

MC svT

RPCA  flip-SPCP-max-QN
i CP-APR

RPCA  DUAL

i cr2

RPCA  OPRMF

RPCA  BRPCA-MD
RPCA  BRPCA-MD-NSS
RPCA  MBRMF

bl HORPCA-5-NCX.
RPCA  OP-RPCA

Algorithm Name
Fast PCP (Rodriguez and Wohlberg 2013)
Go Decomposition (Zhou and Tao 2011)
Semi-Soft GoDec (Zhou and Tao 2011)
NMF via Nesterovs Optimal Gradient Method (Guan et al. 2012)
Grassmann Median {Hauberg et al. 2014)
Trimmed Grassmann Average (Hauberg et al. 2014)
Greedy Semi-Soft GoDec Algatithm (Zhou and Tao, 2013)
Grassmann Average (Hauberg et al. 2014)
Deep Semi Non-negative Matrix Factorization (Trigeorgis et al. 2014)
Spatially Localized NMF (Li et al. 2001)
Incremental Subspace Learning via NMF (Bucak and Gunsel, 2003)
Lagrangian SPCP solved by Quasi-Newton (Aravkin et al. 2014)
Robust Orthonormal Subspace Learning (Shu et al. 2014)
Low-rank matrix by i ization (Bart 2013)
Tucker Decomposition solved by ALS
Tensor SVD in Fourrier Domain (Zhang et al. 2013}
PARAFAC/CP decomposition solved by ALS
Inexact ALM (Lin et al. 2009)
Manhattan NMF (Guan etal. 2013)
SPCP solved by Frank-Wolfe method (Mu et al. 2014)
Grassmannian Robust Adaptive Subspace Tracking Algorithm (He et al. 2012)
Semi Non-negative Matrix Factorization
Fast LADMAP (Lin et al. 2011)
Robust Principal C Pursuit (Hi and Wu, 2014)
NMF solved by Multiplicative Updates
Online Robust PCA via Stochastic Optimization (Feng et al. 2013)
NMF solved by Projected Gradient
Motion-Assisted Matrix Restoration (Ye et al. 2015)
3-Way-Decomposition (Oreifej et al. 2012)
LSADM (Goldfarb et al. 2010)
Partially Smooth Proximal Gradient (Aybat et al. 2012)
N gative CP D by block inate update (Xu and ¥in, 2012)
NMF solved by Alternating Least Squares
Active Subspace: Towards Scalable Low-Rank Learning (Liu and Yan, 2012)
Inexact ALM (Lin et al. 2009)
Linearized ADM with Adaptive Penalty (Lin etal. 2011)
L1 Filtering (Liu et al. 2011)
NMF solved by Alternating Least Squares with Optimal Brain Surgeon
Non-Smooth Augmented Lagrangian v1 (Aybat et al. 2011)
Non-Smooth Augmented Lagrangian v2 (Aybat et al, 2011)
Grassmannian Rank-One Update Subspace Estimation (Balzano et al. 2010)
Low-Rank Matrix Approximation under Robust L1-Norm (zheng et al. 2012)
Direct Robust Matrix Factorization (Xiong et al. 2011)
Robust Motion-Assisted Matrix Restoration (Ye etal, 2015)
1ALM with LMSVDS (Liu et al. 2012)
Alternating Direction Methad of Multipliers (Parikh and Boyd, 2014)
Alternating Direction Method (Lin et al. 2011)
Principal Component Pursuit (Candes et al. 2003)
Partial Actelerated Proximal Gradient (Lin et al. 2009)
Higher-order singular Value Decomposition (Tucker Decomposition)
Contiguous Outliers in the Low-Rank Representation (Zhou et al. 2011)
Accelerated Proximal Gradient (Lin et al. 2009)
Variational Bayesian RPCA (Babacan et al. 2011)
1ALM with BLWS (Lin and Wei 2010)
Robust Matrix ization (Wang et al. 2012)
A Matrix Completion Algorithm (Keshavan et al. 2009)
Non-negative Matrix Factorization with sparse matrix (Ji and Eisenstein, 2013}
ilistic N gative Matrix i
Lagrangian SPCP solved by Spectral Projected Gradient (Aravkin et al. 2014)
TFOCS with inequality constraints (Becker et al. 2011)
TFOCS with equality constraints (Becker et al. 2011)
Exact NMF (Gillis and Glineur, 2012)
simple beta-NTF implementation (Antaine Liutkus, 2012)
Mixture of Gaussians RPCA (Zhao et al. 2014)
Exact ALM (Lin et al. 2009)
HORPCA solved by IALM {Goldfarb and Qin, 2013)
Grassmannian Online Subspace Updates with Structured-sparsity {Xu et al, 2013)
Exact ALM (Lin et al. 2003)
HORPCA with Singleton model solved by ADAL (Goldfarb and Qin, 2013)

N gative Tucker D ition solved by Proximal Gradient (Zhou et al. 2012)
N gative Tucker D ition solved by icative Updates (Znou et al. 2012)
Alternating Direction Method (Yuan and Yang 2009)

N gative Tucker D ition by block update (Xu and Yin, 2012)

Rank Sparsity Tensor Decomposition (Yin Li 2010)

Robust Principal Companent Analysis (De |a Torre and Black, 2001)

Tucker Decomposition solved by ADAL (Goldfarb and Qin, 2013)

N gative Tucker D ition solved by Hi ALS (zhou etal. 2012)

Fixed point and Bregman iterative methods for matrix rank minimization (Ma et al. 2008)
Augmented Lagrange Multiplier (Tang and Nehorai 2011)

Robust PCA and subspace tracking from using LO- (Hage and
A singular value thresholding algorithm for matrix completion (Cai et al. 2008}
Flip-Flop version of Stable PCP-max solved by Quasi-Newton (Aravkin et al. 2014)
PARAFAC/CP solved by Poisson (Chietal. 2011)
Dual RPCA (Lin etal. 2009)

PARAFAC2 decomposition solved by ALS (Bro etal, 1999)

Online PRMF (Wang et al. 2012}

Bayesian Robust PCA with Markov Dependency (Ding etal. 2011)

BRPCA-MD with Non-Stationary Noise (Ding et al. 2011)

Markov BRMF (Wang and Yeung 2013)

HORPCA with Singleton model solved by ADAL (non-convex) (Goldfarb and Qin, 2013)
Robust PCA via Outlier Pursuit (Xu et al. 2012)

RPCA  flip-SPCP-sum-SPG Flip-Flop version of Stable PCP-sum solved by Spectral Projected Gradient (Aravkin et al. 2014)

RPCA  SVT

singular Value Thresholding (Cai et al. 2008)
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Figure D.3: CPU time consumption and the speed classification of each algorithm.
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D.4 Usage example

The LRSLibrary was designed to be easy to use. It contains several ready-to-use functions to
help the user to perform B/F by low-rank and sparse representation. Listing D.4 demonstrates
how to perform matrix and tensor factorization, given an input video file. The final results are
stored in the out variable, and the function show_results shows the background subtraction
process. Please, refer to the online version of demo.m? file for a complete overview.

1 % First run the setup script

2 rs_setup; % or run('C:/lrslibrary/lrs_setup')
3 Load configuration

4 rs_load_conf;

5 % Load video file
6

7

8

9

[

o

=

video = load_video_file(fullfile(lrs_conf.lrs_dir, 'dataset','demo.avi'));

%% Demo: Matrix-based factorization

= im2double (convert_video_to_2d(video));
= video.height;

video.width;

= video.nrFramesTotal;

14 opts.rows = m;

15 opts.cols = n;

Mo R= = B
I

17 % Robust PCA using FPCP algorithm

18 out = process_matrix('RPCA', 'FPCP', M, opts);

19 % Subspace Tracking using GRASTA algorithm

20 out = process_matrix('ST', 'GRASTA', M, opts);

21 % Matrix Completion using GROUSE algorithm

22 out = process_matrix('MC', 'GROUSE', M, opts);

23 %% Low Rank Recovery using FastLADMAP algorithm

24 out = process_matrix('LRR', 'FastLADMAP', M, opts);
25 % Three-Term Decomposition using 3WD algorithm

26 out = process_matrix('TTD', '3WD', M, opts);

27 % Non-negative Matrix Factorization using ManhNMF algorithm
28 out = process_matrix ('NMF', 'ManhNMF', M, opts);

29

30 % Show results
31 show_out (M,out.L,out.S,out.0,p,m,n);

32

3B G e e

34 %% Demo: Tensor-based factorizatin

35 T = tensor (im2double (convert_video_to_3d(video)));

36

37 % Non-Negative Tensor Factorization using bcuNCP algorithm
33 out = process_tensor ('NTF', 'bcuNCP', T);

39 % Tensor Decomposition using Tucker-ALS algorithm

40 out = process_tensor ('TD', 'Tucker-ALS', T);

41

42 % Show results
43 show_3dtensors (T,out.L,out.S,out.0);

https://github.com/andrewssobral/lrslibrary/blob/master/demo.m
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D.5 Conclusions

The LRSLibrary provides a wide variety of subspace learning algorithms that can be accessed
by an easy-to-use GUI and command line functions. The library was designed to serve as
a framework for detection and segmentation of moving objects using robust matrix-based
and tensor-based factorization techniques. The experimental results in speed classification
can further help the user to choose the best algorithm for his own experiments. We expect
to continuously improve the LRSLibrary, adding new features and new subspace learning
methods.
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Appendix E

List of publications

The thesis has led to the following publications':

Talks

* 2016 - Sobral, Andrews. “Recent advances on low-rank and sparse decomposition for
moving object detection.”. Workshop/atelier: Enjeux dans la détection d’objets mo-
biles par soustraction de fond. Reconnaissance de Formes et Intelligence Artificielle
(RFIA), 20162,

Journal papers

¢ 2017 - Sobral, Andrews; Gong, Wenjuan; Gonzalez, Jordi; Bouwmans, Thierry; Za-
hzah, El-hadi. “Robust Subspace Clustering of Human Activities from 3D Skeletal
Data”, (in progress).

* 2016 - Sobral, Andrews; Zahzah, El-hadi. “Matrix and Tensor Completion Algo-
rithms for Background Model Initialization: A Comparative Evaluation”, In the Spe-
cial Issue on Scene Background Modeling and Initialization (SBMI), Pattern Recog-
nition Letters (PRL), 2016. [184].

¢ 2016 - Gong, Wenjuan; Zhang, Xuena; Gonzalez, Jordi; Sobral, Andrews; Bouw-
mans, Thierry; Tu, Changhe; Zahzah, El-hadi. “Human Pose Estimation from Monoc-
ular Images: A Comprehensive Survey”, Sensors, 2016. [73].

'The reader can refer to https://scholar.google.fr/citations?user=
ONmOuHcAAAAJ for an updated list of publications and their citations.

http://rfia2016.iut-auvergne.com/index.php/autres—evenements/
detection-d-objets-mobiles-par-soustraction-de-fond
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¢ 2016 - Bouwmans, Thierry; Sobral, Andrews; Javed, Sajid; Ki Jung, Soon; Zahzah,
El-Hadi. “Decomposition into Low-rank plus Additive Matrices for Background/-
Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale
Dataset”, Computer Science Review, 2016. [27].

Books

e 2017 - Bouwmans, Thierry; Sobral, Andrews; Zahzah, El-hadi. Handbook on “Back-
ground Subtraction for Moving Object Detection: Theory and Practices”, (in progress)>.

Book chapters

e 2017 - Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. “Robust Tensor Mod-
els”. Chapter in the handbook “Background Subtraction for Moving Object Detection:
Theory and Practices”, (in progress).

e 2015 - Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. “LRSLibrary: Low-
Rank and Sparse tools for Background Modeling and Subtraction in Videos”. Chapter
in the handbook “Robust Low-Rank and Sparse Matrix Decomposition: Applications
in Image and Video Processing”, CRC Press, Taylor and Francis Group, 2015. [180].

Conferences

¢ 2015 - Sobral, Andrews; Javed, Sajid; Ki Jung, Soon; Bouwmans, Thierry; Zahzah,
El-hadi. “Online Stochastic Tensor Decomposition for Background Subtraction in
Multispectral Video Sequences”. ICCV Workshop on Robust Subspace Learning and
Computer Vision (RSL-CV), Santiago, Chile, December, 2015. [182].

e 2015 - Javed, Sajid; Ho Oh, Seon; Sobral, Andrews; Bouwmans, Thierry; Ki Jung,
Soon. “Background Subtraction via Superpixel-based Online Matrix Decomposition
with Structured Foreground Constraints”. ICCV Workshop on Robust Subspace Learn-
ing and Computer Vision (RSL-CV), Santiago, Chile, December, 2015. [90].

e 2015 - Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. ”Comparison of Ma-
trix Completion Algorithms for Background Initialization in Videos”. Scene Back-
ground Modeling and Initialization (SBMI), Workshop in conjunction with ICIAP
2015, Genova, Italy, September, 2015. [178].

* 2015 - Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. “Double-constrained
RPCA based on Saliency Maps for Foreground Detection in Automated Maritime
Surveillance”. Identification and Surveillance for Border Control (ISBC), Interna-
tional Workshop in conjunction with AVSS 2015, Karlsruhe, Germany, August, 2015. [179].

*https://sites.google.com/site/foregrounddetection/
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e 2015 - Javed, Sajid; Sobral, Andrews; Bouwmans, Thierry; Ki Jung, Soon. “OR-
PCA with Dynamic Feature Selection for Robust Background Subtraction”. In Pro-
ceedings of the 30th ACM/SIGAPP Symposium on Applied Computing (ACM-SAC),
Salamanca, Spain, 2015. [91].

e 2014 - Javed, Sajid; Ho Oh, Seon; Sobral, Andrews; Bouwmans, Thierry; Ki Jung,
Soon. “OR-PCA with MRF for Robust Foreground Detection in Highly Dynamic
Backgrounds”. In the 12th Asian Conference on Computer Vision (ACCV 2014),
Singapore, November, 2014. [89].

e 2014 - Sobral, Andrews; Baker, Christopher G.; Bouwmans, Thierry; Zahzah, El-
hadi. “Incremental and Multi-feature Tensor Subspace Learning applied for Back-
ground Modeling and Subtraction”. International Conference on Image Analysis and
Recognition (ICIAR’2014), Vilamoura, Algarve, Portugal, October, 2014. [176].

Websites

¢ Andrews Sobral’s homepage
http://andrewssobral . .wixsite.com/home

* Publons
https://publons.com/author/619460/andrews-sobral#profile

¢ Behance.net project
http://be.net/andrewssobral

* GitHub profile
https://github.com/andrewssobral

e LRSLibrary - Low-Rank and Sparse tools for Background Modeling and Subtraction in Videos
https://github.com/andrewssobral/lrslibrary

e MTT - Matlab Tensor Tools for Computer Vision
https://github.com/andrewssobral/mtt

e IMTSL - Incremental and Multi-feature Tensor Subspace Learning
https://github.com/andrewssobral/imtsl

e OSTD - Online Stochastic Tensor Decomposition:
https://github.com/andrewssobral/ostd

Social networks

e Academia
http://univ-larochelle.academia.edu/AndrewsSobral

* ResearchGate
http://www.researchgate.net/profile/Andrews_Sobral
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Détection d’objets mobiles dans des vidéos par décomposition en rang faible et
parcimonieuse: de matrices a tenseurs

Résumé :

Dans ce manuscrit de these, nous introduisons les avancées récentes sur la décomposition en matrices
(et tenseurs) de rang faible et parcimonieuse ainsi que les contributions pour faire fice aux principaux
problémes dans ce domaine. Nous présentons d’abord un apercu des méthodes matricielles et tensorielles
les plus récentes ainsi que ses applications sur la modélisation d’arriere-plan et la segmentation du premier
plan. Ensuite, nous abordons le probleme de I’initialisation du modele de fond comme un processus de
reconstruction a partir de données manquantes ou corrompues. Une nouvelle méthodologie est présentée
montrant un potentiel intéressant pour I’initialisation de la modélisation du fond dans le cadre de VSI. Par
la suite, nous proposons une version « double contrainte » de 1’ACP robuste pour améliorer la détection de
premier plan en milieu marin dans des applications de vidéo-surveillance automatisés. Nous avons aussi
développé deux algorithmes incrémentaux basés sur tenseurs afin d’effectuer une séparation entre le fond
et le premier plan a partir de données multidimensionnelles. Ces deux travaux abordent le probleme de
la décomposition de rang faible et parcimonieuse sur des tenseurs. A la fin, nous présentons un travail
particulier réalisé en conjonction avec le Centre de Vision Informatique (CVC) de 1’Université Autonome
de Barcelone (UAB).

Mots clés: détection d’objets mobiles, soustraction de fond, ACP robuste, décomposition en rang faible et
parcimonieuse.

Robust low-rank and sparse decomposition for moving object detection: from
matrices to tensors

Summary:

This thesis introduces the recent advances on decomposition into low-rank plus sparse matrices and tensors,
as well as the main contributions to face the principal issues in moving object detection. First, we present an
overview of the state-of-the-art methods for low-rank and sparse decomposition, as well as their application
to background modeling and foreground segmentation tasks. Next, we address the problem of background
model initialization as a reconstruction process from missing/corrupted data. A novel methodology is
presented showing an attractive potential for background modeling initialization in video surveillance.
Subsequently, we propose a double-constrained version of robust principal component analysis to improve
the foreground detection in maritime environments for automated video-surveillance applications. The
algorithm makes use of double constraints extracted from spatial saliency maps to enhance object fore-
ground detection in dynamic scenes. We also developed two incremental tensor-based algorithms in order
to perform background/foreground separation from multidimensional streaming data. These works address
the problem of low-rank and sparse decomposition on tensors. Finally, we present a particular work reali-
zed in conjunction with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB).

Keywords: moving object detection, background/foreground separation, low-rank and sparse representation,
matrix decomposition, tensor factorization.
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