
HAL Id: tel-01691715
https://hal.science/tel-01691715

Submitted on 24 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic hand gesture recognition - From traditional
handcrafted to recent deep learning approaches

Quentin de Smedt

To cite this version:
Quentin de Smedt. Dynamic hand gesture recognition - From traditional handcrafted to recent deep
learning approaches . Computer Vision and Pattern Recognition [cs.CV]. Université de Lille 1, Sciences
et Technologies; CRIStAL UMR 9189, 2017. English. �NNT : �. �tel-01691715�

https://hal.science/tel-01691715
https://hal.archives-ouvertes.fr

Année 2017 Num d’ordre: 42562

Université Lille 1

Ecole Doctorale Sciences Pour l’Ingénieur

Laboratoire CRIStAL (umr cnrs 9189)

THÈSE

pour obtenir le grade de

Docteur,

spécialité Informatique

soutenu par

Quentin De Smedt

le 14/12/2017

Dynamic hand gesture recognition - From traditional handcrafted

to recent deep learning approaches

COMPOSITION DU JURY

M. Laurent Grisoni Professeur, Université de Lille 1 Président

Mme. Saida Bouakaz Professeur, Université Claude Bernard Lyon 1 Rapporteur

M. Fabien Moutarde Professeur, Mines ParisTech Rapporteur

M. Francisco Flórez-Revuelta Associate professor, Université Alicante, Espagne Examinateur

M. Jean-Philippe Vandeborre Professeur, IMT Lille Douai Directeur

M. Hazem Wannous Maître de conférences, Université de Lille 1 Encadrant

Abstract

Hand gestures are the most natural and intuitive non-verbal communica-

tion medium while using a computer, and related research efforts have

recently boosted interest. Additionally, data provided by current com-

mercial inexpensive depth cameras can be exploited in various gesture

recognition based systems. The area of hand gesture analysis covers hand

pose estimation and gesture recognition. Hand pose estimation is con-

sidered to be more challenging than other human part estimation due to

the small size of the hand, its greater complexity and its important self

occlusions. Beside, the development of a precise hand gesture recognition

system is also challenging due to high dissimilarities between gestures

derived from ad-hoc, cultural and/or individual factors of users. First,

we propose an original framework to represent hand gestures by using

hand shape and motion descriptors computed on 3D hand skeletal fea-

tures. We use a temporal pyramid to model the dynamic of gestures and

a linear SVM to perform the classification. Additionally, we create the

Dynamic Hand Gesture dataset containing 2800 sequences of 14 gesture

types. Evaluation results show the promising way of using hand skele-

tal data to perform hand gesture recognition. Experiments are carried

out on three hand gesture datasets, containing a set of fine and coarse

heterogeneous gestures. Furthermore, results of our approach in terms of

latency demonstrated improvements for a low-latency hand gesture recog-

nition systems, where an early classification is needed. Then, we extend

the study of hand gesture analysis to online recognition. Using a deep

learning approach, we employ a transfer learning strategy to learn hand

posture and shape features from depth image dataset originally created

for hand pose estimation. Second, we model the temporal variations of

the hand poses and its shapes using a recurrent deep learning technology.

Finally, both information are merged to perform accurate prior detection

and recognition of hand gestures. Experiments on two datasets demon-

strate that the proposed approach is capable to detect an occurring gesture

and to recognize its type far before its end.

i

ii Abstract

Key words: hand gesture recognition, depth data, skeletal data, deep

learning, online detection.

Résumé

Reconnaisance de gestes dynamiques de la main - De la création

de descripteurs aux récentes méthodes d’apprentissage profond.

Les gestes de la main sont le moyen de communication non verbal

le plus naturel et le plus intuitif lorsqu’il est question d’interaction avec

un ordinateur. Les efforts de recherche qui y sont liés ont récemment

relancé son intérêt. De plus, les données fournies par des caméras de pro-

fondeur actuellement commercialisées à des prix abordables peuvent être

exploitées dans une large variété de systèmes de reconnaissance de gestes.

L’analyse des gestes de la main s’appuie sur l’estimation de la pose de la

main et la reconnaissance de gestes. L’estimation de la pose de la main est

considérée comme étant un défi plus important que l’estimation de la pose

de n’importe quelle autre partie du corps du fait de la petite taille d’une

main, de sa plus grande complexité et de ses nombreuses occultations.

Par ailleurs, le développement d’un système précis de reconnaissance des

gestes de la main est également difficile du fait des grandes dissimilarités

entre les gestes dérivant de facteurs ad-hoc, culturels et/ou individuels in-

hérents aux acteurs. Dans un premier temps, nous proposons un système

original pour représenter les gestes de la main en utilisant des descrip-

teurs de forme de main et de mouvement calculés sur des caractéristiques

de squelette de main 3D. Nous utilisons une pyramide temporelle pour

modéliser la dynamique des gestes et une machine à vecteurs de support

(SVM) pour effectuer la classification. De plus, nous proposons une base

de données de gestes de mains dynamiques contenant 2800 séquences de

14 types de gestes. Les résultats montrent une utilisation prometteuse

des données de squelette pour reconnaître des gestes de la main. Des ex-

périmentations sont menées sur trois ensembles de données, contenant un

ensemble de gestes hétérogènes fins et grossiers. En outre, les résultats de

notre approche en termes de latence ont démontré que notre système peut

reconnaître un geste avant sa fin. Dans un second temps, nous étendons

l’étude de l’analyse des gestes de main à une reconnaissance en ligne.

En utilisant une approche d’apprentissage profond, nous employons une

iii

iv Résumé

strategie de transfert d’apprentissage afin d’entrainer des caractéristiques

de pose et de forme de la main à partir d’images de profondeur d’une base

de données crée à l’origine pour un problème d’estimation de la pose de

la main. Nous modélisons ensuite les variations temporelles des poses de

la main et de ses formes grâce à une methode d’apprentissage profond

récurrente. Enfin, les deux informations sont fusionnées pour effectuer

une détection préalable et une reconnaissance précise des gestes de main.

Des expériences menées sur deux ensembles de données ont démontré

que l’approche proposée est capable de détecter un geste qui se produit et

de reconnaître son type bien avant sa fin.

Mots-clés reconnaisance de gestes de la main, données de profondeur,

données de squelettes, apprentissage profond, detection en temps réel.

Acknowledgement

A thesis is often defined as a lonely process made by a single PhD

student. In practice, it is the opposite. In hindsight, I never could have

reach the end of my thesis without the help and the engagement of many

people the last three years.

Special thanks to my PhD committee members for taking the time to

participate in this process, and especially the reviewers of the manuscript

for having accepted this significant task: Prof. Fabien Moutarde, Prof.

Saida Bouakaz, Ass. Prof. Francisco Flórez-Revuelta and Prof. Laurent

Grisoni.

I would like to express my gratitude to my advisor, Prof. Jean-Philippe

Vandeborre for guiding me through my research with professionalism,

understanding, and patience. His high experience strongly helped me to

make this experience productive and stimulating.

I also thank my co-advisor, Dr. Hazem Wannous, for his time and

advice in beneficial scientific discussions. His friendly and encouraging

guidance make me more confident in my research.

A special thanks to my friends and PhD student colleagues with whom

I shared this experience: Maxime Devanne, Vincent Léon, Meng Meng,

Taleb Alashkar, Matthieu Allon, Vincent Itier, Sarah Ribet, Anis Kacem,

Omar Ben Tanfous, Kaouthar Larbi and Nadia Hosni.

I also thank gratefully my family and my friends for their support and

encouragements. I would like to cite them all but I am too afraid to forget

one and I know they will make me pay for it.

Villeneuve d’Ascq, October 16, 2017.

v

Publications

International journal

• Quentin De Smedt, Hazem Wannous and Jean-Philippe Vande-

borre. Heterogeneous Hand Gesture Recognition Using 3D Dynamic

Skeletal Data. Computer Vision and Image Understanding, (Under re-

view).

International worshops

• Quentin De Smedt, Hazem Wannous, Jean-Philippe Vandeborre,

Joris Guerry, Bertrand Le Saux and David Filliat. SHREC’17 Track:

3D Hand Gesture Recognition Using a Depth and Skeletal Dataset.

10th Eurographics Workshop on 3D Object Retrieval, 2017.

• Quentin De Smedt, Hazem Wannous and Jean-Philippe Vande-

borre. Skeleton-based dynamic hand gesture recognition. Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, 2016.

• Quentin De Smedt, Hazem Wannous and Jean-Philippe Vande-

borre. 3D Hand Gesture Recognition by Analysing Set-of-Joints Tra-

jectories. 2nd International Conference on Pattern Recognition (ICPR)

Workshops, 2016.

In progress

• Quentin De Smedt, Hazem Wannous and Jean-Philippe Vande-

borre. Dynamic gesture recognition using deep hand posture and

shape features.

vi

Contents

List of Figures xi

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Thesis outline . 4

2 Literature overview 7

2.1 Introduction . 8

2.1.1 Hand gesture understanding problem 8

2.1.2 Applications . 12

2.2 Acquisition systems of depth images and 3D skeletal

data . 14

2.3 Datasets for hand pose estimation 17

2.4 Related work on hand pose estimation 21

2.4.1 Hand pose estimation from RGB images 21

2.4.2 Hand pose estimation from depth images 22

2.5 Datasets for hand gesture recognition 25

2.6 Related works on hand gesture recognition 28

2.6.1 Pre-processing steps for hand localization 29

2.6.2 Spatial features extraction 30

2.6.3 Temporal modeling . 36

2.6.4 Classification . 39

2.6.5 Deep learning approaches 40

2.7 Discussion and conclusion 45

3 Heterogeneous hand gesture recognition using 3D

skeletal features 49

3.1 Introduction . 51

vii

viii CONTENTS

3.1.1 Challenges . 53

3.1.2 Overview of the proposed method 54

3.1.3 Motivations . 54

3.2 The Dynamic Hand Gesture dataset (DHG-14/28) 56

3.2.1 Overview and protocol 56

3.2.2 Gesture types included 57

3.2.3 DHG-14/28 challenges 59

3.3 Hand gesture recognition using skeletal data 60

3.4 Features extraction from skeletal sequences 60

3.5 Features representation . 63

3.6 Temporal modeling . 64

3.7 Classification process . 66

3.8 Experimental results . 66

3.8.1 Experimental settings 67

3.8.2 Hand Gesture Recognition Results 70

3.8.3 Latency analysis and computation time 77

3.8.4 Influence of the upstream hand pose estimation step on

hand gesture recognition 79

3.9 Conclusion . 86

4 Recent deep learning approaches in Computer Vision 87

4.1 Introduction . 88

4.1.1 Different pipelines in Computer Vision: handcrafted ver-

sus deep learning approaches 88

4.1.2 Feature extraction . 89

4.1.3 Pros and cons . 92

4.2 Where does deep learning come from and why is it so

hot topic right now? . 93

4.2.1 History . 93

4.2.2 Perceptrons and biological neurons similarities 94

4.2.3 Why only now? . 95

4.3 Technical keys to understand Deep Learning 97

4.3.1 The multilayer perceptrons 97

4.3.2 Training a feedforward neural network 99

CONTENTS ix

4.4 Technical details of deep learning elements 101

4.4.1 Softmax function . 102

4.4.2 Cross-entropy cost function 103

4.4.3 Convolutional Neural Network 104

4.4.4 Recurrent Neural Networks 109

4.5 Conclusion . 115

5 Dynamic hand gestures using a deep learning approach117

5.1 Introduction . 119

5.1.1 Challenges . 119

5.1.2 Overview of the proposed framework 120

5.1.3 Motivations . 121

5.2 Deep extraction of hand posture and shape features . 123

5.2.1 Formulation of hand pose estimation problem 123

5.2.2 Hand pose estimation dataset 124

5.2.3 Pre-processing step . 125

5.2.4 Network model for predicting 3D joints locations 125

5.2.5 CNN training procedure 127

5.3 Temporal features learning on hand posture sequences 128

5.4 Temporal features learning on hand shape sequences 130

5.5 Training procedure . 130

5.6 Two-stream RNN fusion . 132

5.7 Experimental results on the NVIDIA Hand Gesture

dataset . 133

5.7.1 Dataset . 133

5.7.2 Implementation details 134

5.7.3 Offline recognition analysis 135

5.7.4 Online detection of continuous hand gestures 140

5.8 Experimental results on the Online Dynamic Hand

Gesture (Online DHG) dataset 152

5.8.1 Dataset . 152

5.8.2 Offline recognition analysis 154

5.8.3 Online recognition analysis 159

5.9 Conclusion . 162

x CONTENTS

6 Conclusion 167

6.1 Summary . 168

6.2 Future works . 170

Bibliography 173

List of Figures

2.1 Illustration of the hand pose estimation task. 9

2.2 Illustration of the hand gesture recognition task. 10

2.3 The pipeline of vision-based hand gesture recognition sys-

tems. 10

2.4 Illustration of the hand gesture recognition task. 12

2.5 AR technologies . 13

2.6 Example of RGB-D sensors. 15

2.7 Example of data provided by RGB-D. 16

2.8 Example of short range RGB-D sensors. 17

2.9 Example of data provided by short range RGB-D sensors. . 17

2.10 The ShapeHand glove motion apture systems. 20

2.11 Pipeline illustration of Oikonomidis et al. 22

2.12 Tang et al. searching process for one joint. 23

2.13 Oberwerger et al. evaluated the use of a low dimensional

embedding layer for hand pose estimation. 24

2.14 Overview of Ge et al. 25

2.15 Otsu’s method for hand segmentation from a depth image. 29

2.16 Overview of Dardas et al. method. 31

2.17 Overview of the method from Kurakin et al. 32

2.18 Overview of Ren et al. method. 33

2.19 Overview of Stergiopoulou and Papamarkos method. 34

2.20 Overview of Wang et al. method. 35

2.21 Overview of Zhang et al. method. 38

2.22 Multi-modal deep learning framework from Neverova et al. 41

2.23 The 3DCNN architecture from Molchanov et al. 42

2.24 Multi-modal deep learning framework from Molchanov et al. 42

2.25 Method from Du et al. 44

xi

xii LIST OF FIGURES

2.26 Method from Liu et al. 44

3.1 Depth and hand skeletal data returned by the Intel Re-

alSense camera. 52

3.2 Overview of our hand gesture recognition approach using

hand skeletal data. 55

3.3 Swipe Right gesture performed with one finger and with

the whole hand from the DHG-14/28 dataset. 58

3.4 An example of the SoCJ descriptor constructed around the

thumb. 62

3.5 An example of a Temporal Pyramid. 65

3.6 Temporal modeling. 65

3.7 Nine tuples chosen intuitively to construct the SoCJ descrip-

tors. 68

3.8 SoCJ selection using SFFS algorithm on the fine gesture sub-

set of the DHG dataset. 69

3.9 The first three SoCJ chosen by the Sequential Forward Float-

ing Search algorithm. 70

3.10 The confusion matrix for the DHG-14 dataset. 72

3.11 The confusion matrix for the DHG-28 dataset. 73

3.12 Observationnal latency analysis on the DHG-14 and

Handicraft-Gesture datasets. 80

3.13 Recognition accuracies per class of gesture on the DHG-14

dataset using three hand pose estimators. 82

3.14 Gesture list of the NVIDIA dataset. 83

3.15 Comparison of recognition accuracies per class of gestures

on the NVIDIA Dynamic Hand Gestures dataset. 84

4.1 Flowcharts showing differences between handcrafted and

learned-based algorithm. 90

4.2 Example of different data representation. 91

4.3 (left) Representation of a biological neuron. (right) Repre-

sentation of an artificial neuron. 95

4.4 Schema of a multilayer perceptrons 98

LIST OF FIGURES xiii

4.5 The three most popular activation functions 98

4.6 Values of the cross entropy cost function. 104

4.7 Architecture of LeNet-5 by Lecun et al. 106

4.8 A simple illustration of two dimensional convolution oper-

ation. 107

4.9 A simplified scheme of a max pooling layer. 108

4.10 From low to high level features using a CNN architecture. . 108

4.11 A scheme of a simple RNN also called Elman network [32]. 110

4.12 A simplified Scheme of a LSTM layer. 112

4.13 Correlations between the capacity of a model and error

measures. 113

4.14 Number of paper’s citation of Yann Lecun. 116

5.1 Overview of the framework for online hand gesture recog-

nition. 122

5.2 A hand depth image and its 3D joints. 124

5.3 Pre-processing step for hand pose estimation. 125

5.4 Architecture of the CNN for hand shape and posture ex-

traction using prior enforcement. 126

5.5 Huber loss. 128

5.6 The network architecture to classify dynamic hand gesture

using hand skeletal data. 129

5.7 The network architecture to classify dynamic hand gesture

using hand shape data. 131

5.8 Gesture list of the NVIDIA dataset. 134

5.9 The confusion matrix obtained using hand skeleton and a

RNN on the NVIDIA Hand Gesture dataset. 136

5.10 The confusion matrix obtained using hand shape features

and a RNN on the NVIDIA Hand Gesture dataset. 137

5.11 Three different fusion configurations of our deep learning

framework. 138

5.12 Performance of the fusion probabilistic distributions. 139

5.13 Confusion matrix after the fusion by joint-fine tuning on the

NVIDIA dataset. 140

xiv LIST OF FIGURES

5.14 Phases of hand gestures. 142

5.15 Accuracies of correctly classified frames following phases

by gestures of the NVIDIA dataset. 144

5.16 An example of a gesture Swipe Left and Swipe Right, both

hand open . 144

5.17 Accuracies of correctly classified frames following phases

by gestures of the NVIDIA dataset using a “garbage” class. 145

5.18 The ROC curve using our framework on the NVIDIA dataset.147

5.19 The Normalized Time to Detect values for the 25 gestures

contained in the NVIDIA dataset. 148

5.20 Nucleus lengths of the 25 gestures contained in the NVIDIA

dataset. 149

5.21 Final confusion matrix. 149

5.22 The confusion matrix obtained on the Online DHG dataset

for the task of offline recognition of 14 gesture types using

hand posture features. 155

5.23 The confusion matrix obtained on the Online DHG dataset

for the task of offline recognition of 14 gesture types using

hand shape features. 156

5.24 The final confusion matrix obtained on the Online DHG

dataset for the task of offline recognition of 14 gesture types. 157

5.25 The final confusion matrix obtained on the Online DHG

dataset for the task of recognizing 28 gesture types. 158

5.26 The ROC curve using our framework on the Online DHG

dataset. 160

5.27 The Normalized Time to Detect values for the 28 gestures

contained in the Online DHG dataset. 160

5.28 Nucleus lengths of the 28 gestures contained in the Online

DHG dataset. 161

5.29 The confusion matrix obtained on the Online DHG dataset

for the task of recognizing 28 gesture types. 161

5.30 The gesture detection and recognition performance on a

continuous video stream of 10 gestures. 163

LIST OF FIGURES xv

5.31 Problems of incorrectly labeled gestures on the Online DHG

dataset. 164

1Introduction

Contents

1.1 Thesis Contributions . 3

1.2 Thesis outline . 4

1

2 Chapter 1. Introduction

The analysis and the interpretation of human behavior from visual in-

put is one of the most trendy computer vision fields of research. It is

not only due to its exciting scientific challenges but also motivated by the

increase of societal needs in terms of applications, such as manipulation

in real and virtual environments, monitoring systems, health support, se-

curity, entertainment, etc. Human behavior analysis from vision cues is

composed of sub-domaine of research differing in scale, both, spatially

– from face to body analysis – and temporally – from gesture to activ-

ity analysis. In this thesis, we focus our research on the analysis and the

recognition of gestures based specifically on hand cues.

Among human body parts, hands are the most effective and intuitive

interaction tools in Human-Computer Interaction (HCI) applications. In

computer vision, the task of hand gesture recognition exists for many

years and has attracted many researchers. Last years, the growing interest

for virtual and augmented reality applications instigated a real need in

accurate hand gesture recognition. Indeed it could allow users to play

and interact with a virtual world in the most natural way and offer new

endless possibilities of applications.

The area of hand gesture analysis covers hand pose estimation and ges-

ture recognition. Hand pose estimation is considered to be more challeng-

ing than other human part estimation due to the small size of the hand,

its greater complexity and its important self occlusions. Beside, the devel-

opment of a precise hand gesture recognition system is also challenging.

Different occurrences of the same gesture type contain high dissimilari-

ties derived from ad-hoc, cultural and/or individual factors in the style,

the position and the speed of gestures. In addition, gestures with differ-

ent meanings contain high similarities derived from the heterogeneity of

possible gestures.

Hand gesture analysis has been widely investigated in the literature,

especially from 2D videos captured with RGB cameras. There are, how-

ever, challenges confronted by these methods, such as the sensitivity to

color and illumination changes, background clutter and occlusions.

The recent release of new effective and low-cost depth sensors allows

1.1. Thesis Contributions 3

researchers to consider the 3D information of the scene and thus easily

perform background substraction and hand detection in the scene. In ad-

dition, the technology behind such depth sensors is more robust to light

variations. Using these depth cameras, researches made available a real-

time estimation of 3D humanoid skeletons. Such skeletons are composed

of a set of 3D connected joints representing the human body. This data

facilitated and improved the analysis of the human pose and its motion

over the time. Their effectiveness for human action recognition have moti-

vated very recently researchers to investigate the extraction of 3D skeletal

data from depth images to describe precisely the hand pose.

Traditionally, once spatio-temporal hand gesture descriptors have been

extracted, machine learning algorithms are used to perform the recogni-

tion process. However, recent advances in terms of data and computa-

tional resources with powerful hardware lead to a change of paradigm in

computer vision, with the uprising of deep learning. Furthermore, mo-

tivated by their success for images and videos, researchers are working

intensely towards developing models for learning hand pose features. Un-

precedented results have been also obtained in many tasks including hand

gesture recognition. Not only is it efficient in the recognition task but it

also automatically learns relevant descriptors.

1.1 Thesis Contributions

All the above considerations lead this thesis to address the problem of

hand gesture recognition, according to two categories of approaches;

handcrafted and deep learning. Hence, we investigate in the first part

the gesture recognition problem by employing geometric features derived

from hand skeleton data, for heterogeneous and fine dynamic hand ges-

tures. The hand pose, can be either captured directly by certain sensors, or

extracted later from depth images. A study of the impact of the hand pose

estimator on the recognition process will be considered. In the second

part, we extend the study to online dynamic hand gestures taking over

the whole pipeline of the recognition process, from hand pose estimation

4 Chapter 1. Introduction

to the classification step, using deep learning. So as to face the main chal-

lenges, we propose to revisit the feature pipeline by combining the merits

of geometric shape and dynamic appareance, both extracted from a CNN

trained for hand pose estimation problem. The main contributions of this

thesis can be summarized as follows:

• Recognition of heterogeneous dynamic hand gesture based on 3D

skeletal data: We propose an original framework to represent hand

gesture sequences by using hand shape and motion descriptors com-

puted on 3D hand skeletal features. We use a temporal pyramid to

model the dynamic of gestures and a linear SVM to perform the

classification. Additionally, prompted by the lack of dynamic hand

gesture dataset publicly available providing skeletal features, we cre-

ate the Dynamic Hand Gesture dataset containing 2800 sequences of

14 gesture types. It allows us to investigate the use of hand skeletal

data to recognize heterogeneous grained-fine hand gestures;

• Online detection and recognition of hand gesture using a deep

learning approach: We extend the study of hand gesture analysis

to detection of gestures allowing us to perform online recognition.

Using a deep learning approach, we take over the whole pipeline

of the hand gesture analysis from the hand pose estimation step to

the recognition process. First, we learn hand pose and shape fea-

tures from depth images. Second, we model the temporal aspect

separately of the hand poses and the shape variations over the time

using a recurrent deep learning technology. Finally, both informa-

tion are merged to perform accurate detection and recognition of

hand gestures.

1.2 Thesis outline

The thesis is organized as follows: in Chapter 2, we lay out the issues of

hand pose estimation and hand gesture recognition from videos as well

as existing solutions in the literature. Chapter 3 introduces the algorithm

that we employ to analyze and compare the use of skeletal features for dy-

1.2. Thesis outline 5

namic hand gesture recognition. Chapter 4 is dedicated to the comparison

between traditional and deep learning pipelines as well as introducing

the deep learning technology. In Chapter 5, we propose a deep learn-

ing framework for detection and recognition of dynamic hand gestures

by performing, both, hand posture and shape features extraction and the

recognition process. Finally, we conclude the manuscript in Chapter 6 by

summarizing the contributions of the thesis and proposing several direc-

tions of future research.

2Literature overview

Contents

2.1 Introduction . 8

2.1.1 Hand gesture understanding problem 8

2.1.2 Applications . 12

2.2 Acquisition systems of depth images and 3D skeletal

data . 14

2.3 Datasets for hand pose estimation 17

2.4 Related work on hand pose estimation 21

2.4.1 Hand pose estimation from RGB images 21

2.4.2 Hand pose estimation from depth images 22

2.5 Datasets for hand gesture recognition 25

2.6 Related works on hand gesture recognition 28

2.6.1 Pre-processing steps for hand localization 29

2.6.2 Spatial features extraction 30

2.6.3 Temporal modeling . 36

2.6.4 Classification . 39

2.6.5 Deep learning approaches 40

2.7 Discussion and conclusion . 45

7

8 Chapter 2. Literature overview

2.1 Introduction

In computer vision, the task of hand gesture recognition exists for many

years and has attracted many researchers notably because of its wide

range of potential applications. In this chapter, we discuss the defined

challenges of hand gesture analysis and their potential applications. Then,

we introduce the depth sensor technology as well as RGB-D and 3D skele-

tal data provided by such cameras. We present related works about hand

pose estimation problem aiming to retrieve 3D skeletal features from

depth images. Benchmark datasets of depth images and/or 3D skeletal

data collected for the task of hand gesture recognition are then presented.

Finally, we review the main existing state-of-the-art approaches, which

provide methodology to tackle the problem of hand gesture recognition.

2.1.1 Hand gesture understanding problem

The field of human motion analysis from vision clues is composed of

many sub-areas of research and covers a large variety of tasks including,

but not limited to:

• Face expression recognition;

• Hand gesture recognition;

• Upper-body gesture recognition;

• Action recognition;

• Activity recognition;

• Body expression recognition.

They differ in scale, both spatially (i.e. face, hand, upper-body, whole

body clues) and temporally (i.e. time to perform an expression, a gesture,

an action or yet an activity). Similar approaches can be used to tackle each

or a part of those problems. However, each of them has their own partic-

ularities that have to be taken into account to create robust and efficient

recognition systems.

2.1. Introduction 9

In this thesis, we focus on hand gesture analysis and recognition based

specifically on hand cues. Modeling the deformation of a hand is consid-

ered to be more challenging that other human parts due to its smaller size,

greater complexity and higher self occlusions. The hand gesture analysis

area covers hand modeling and gesture recognition.

First, we focus on hand modeling also called hand pose estimation.

This task aims to map an observed input (generally a 2D or a 3D image)

to a set of 3D joints together forming a possible hand configuration called

hand skeleton or hand pose, which takes into account the anatomic struc-

ture constraints of the hand as depicted in Figure 2.1.

Figure 2.1 – Illustration of the hand pose estimation task. (a) from an input image and
after (b) a pre-processing step, a hand pose estimation system is able to (c) output a set of
3D joints called together hand skeleton or hand pose based on (d) the anatomic structure
constraints of the hand.

Hand skeletal data can further serve as features for the task of gesture

recognition. Beside, the task of hand gesture recognition from sequences

of images can be defined as follows: given a set of known samples of

meaningful hand gesture types from a predefined vocabulary, which type

is performed during a new observed sequence? Figure 2.2 illustrates this

problem.

The problem can then be extended to the analysis of a long unseg-

mented stream of gestures, where different hand motions are performed

successively and should be recognized and localized in the time by the sys-

10 Chapter 2. Literature overview

Figure 2.2 – Illustration of the hand gesture recognition task. Given a set of labeled
gesture samples, the system is able to recognize which gesture have been performed in an
unknown sequence.

tem. This task is called online recognition. The task of hand gesture recog-

nition can be traditionally (i.e. non deep learning) divided in a pipeline

(depicted in Figure 2.3) of ordered sub-tasks as follows:

1. Data generation: creation of a dataset using one or multiple 2D

and/or 3D cameras;

2. Preprocessing steps: including localization of the hand region of in-

terest, background subtraction, denoising or yet segmentation;

3. Engineering or representation of data: transforming the input (e.g.

an image) in a representation which extracts meaningful features.

Most of the time, this task can be realized in several steps as a cas-

cade of successive data transformations;

4. Classification: a machine learning algorithm is used here to help

mapping the hand gesture representation to a gesture class.

Figure 2.3 – The pipeline of vision-based traditional hand gesture recognition systems.
First, visual data are captured. Second, an optional pre-processing step is often conducted
in order to extract the region of interest of the hand from the background. Third, features
are computed to extract relevant hand gesture information. Finally, a classification step
outputs a label.

2.1. Introduction 11

Before the release of new depth sensors, hand gesture recognition has

been widely investigated in computer vision from 2D images captured

from standard RGB cameras [70, 171, 139, 22]. However, most of these

methods suffer of some limitations coming from 2D videos, like the sen-

sitivity to color and illumination changes, background clutter and occlu-

sions.

Since the recent release of RGB-D sensors, like Microsoft Kinect 1 [61]

or the Intel RealSense [117], new opportunities have emerged in the field

of human motion analysis. Hence, many researchers investigated data

provided by such cameras to benefit from their advantages [7]. Indeed,

depth data allow to consider the 3D information of the scene and thus

easily perform background substraction and detect object in the scene (e.g.

human body or hand). In addition, the technologies behind such depth

sensors provide more robustness to light variations as well as working in

complete darkness.

However, working with human motion analysis poses great challenges.

What complicates the task is the necessity of being robust to execution

speed and geometric transformations, like the size of the subject, its posi-

tion in the scene and its orientation with respect to the sensor.

In addition, the task of precise dynamic hand gesture recognition also

presents its own challenges. The heterogeneity of possible gesture types

arises from a large amount of intraclass gesture dissimilarity (coming from

ad-hoc, cultural and/or individual factors in the style, position and speed

of gestures in addition to the high dexterity of the hand) and interclass

similarities – derived from high similarities between different type of ges-

tures.

Moreover, an efficient algorithm of hand gesture recognition needs to

work with a low computational complexity to be used in real world ap-

plications. It should also allow a low latency, making the interaction with

the system more fluid.

12 Chapter 2. Literature overview

2.1.2 Applications

The main motivation behind the interest of precise hand gesture recog-

nition, whether using standard cameras or RGB-D sensors, is the large

range of applications in various fields, like Human-Computer Interaction,

virtual and augmented reality interaction, sign language recognition, and

robotics. In many futuristic movies, characters perform human-computer

interactions using hand gestures as depicted in Figure 2.4. If current sys-

tems do not yet allow such freedom, these examples show the potential

impact that interaction systems based on hand gestures could have on the

way we interact with computers.

Figure 2.4 – Two examples of human-computer interaction based on hand gestures: (top)
Robert Downey Jr. (Tony Stark) from the movie Iron Man is using his hands to interact
with an augmented reality system. (bottom) Tom Cruise (John Anderton) from the movie
Minority report interacts with a computer system using hand gestures on a 3D screen.

A) Interaction with virtual and augmented reality systems

Virtual Reality (VR) is a computer technology that uses headsets to gener-

ate images, sounds and other sensations that simulate the user presences

in a virtual environment. A person using high quality virtual reality

equipment is able to look and move around the artificial world. Aug-

mented reality (AR) is a view of the real-world environment which is

augmented by computer-generated input. AR enhances the current real

2.1. Introduction 13

environment, where in contrast, VR replaces the entire real world with a

simulated one.

Until recently, VR has been a fantasy for futuristic storytellers. But

in 2010, an american teenager, Palmer Luckey, created the first prototype

of a VR headset, evolving later into the Oculus Rift [103]. Since, several

competitors have emerged, from the HTC Vive [112] and the Sony PlaySta-

tion VR [4] to the Samsung Gear VR [124] and the Google Cardboard [85].

Consequently, many developers are developing VR games and applica-

tions and filmmakers are investigated the potential for movies. VR and

AR technologies has a tremendous amount of potential applications start-

ing from video games but could be also used for art making, education,

medical applications, flight training, etc.

Once the user is immersed into the virtual world, it needs to interact

with its new environment. Precise hand gesture recognition based on

visual cues will allow users to play and interact with a virtual world in

the most natural and intuitive way and will offer new endless possibilities

of applications as shown as illustrated in Figure 2.5.

Figure 2.5 – Example of a natural interaction with an augmented reality system using
hands.

B) Sign language recognition

Sign language is the primary language used by people with impaired

hearing and speech. People use sign language gestures as a means of

14 Chapter 2. Literature overview

non-verbal communication to express their thoughts and emotions. Gen-

erally, sign languages consist of three parts: finger-spelling, word level

sign vocabulary, and non-manual features [30]. Finger-spelling is to spell

words letter by letter, using the fingers and word level sign vocabulary

uses a gesture as a word. Non-manual features include facial expressions,

mouth and body poses to indicate meaning.

However, only few people are able to understand sign language and,

therefore, impaired hearing people often require the assistance of a trained

interpreter. Although, employing an interpreter is expensive and not al-

ways available. Robust and efficient sign language recognition system

using visual clues could enable cheap, natural and convenient system of

interaction with people with impaired hearing and speech.

C) Ambient assisted living

The development of a vision-based assistive system can help patient in

their ambient lifestyle by analyzing their daily activities. Indeed, as robots

move away from industrial settings and closer into our lives, the question

arises of how to simply interact with them in an unconstrained and natural

way. A large part of natural interaction happens through hand gestures,

especially if a robot is designed to help humans with everyday tasks (e.g.

bring something by pointing at the object, go somewhere, ...). This requires a

system that allows the robot to detect an interacting human and, obvi-

ously, make it understand hand gestures.

2.2 Acquisition systems of depth images and 3D skele-

tal data

Analyzing and understanding a real-world scene observed by a camera

is the main goal of many computer vision systems. Standard cameras

provide only 2D information which have some limitations when analyzing

and understanding the scene. Having the full 3D information about the

observed scene became an important challenge in computer vision. In

a traditional stereo-vision system, using two cameras observing the same

2.2. Acquisition systems of depth images and 3D skeletal data 15

scene from different points of view, we compare the two images to develop

a disparity image and estimate the relief of the scene.

For the task of human motion analysis, extracting 3D information

about the human pose is a challenge that has attracted many researchers.

Motion capture systems are able to capturing an accurate human pose,

and track it along the time using markers representing the human pose.

Motion capture data have been widely used in industry such as in anima-

tion and video games. However, these systems present some disadvan-

tages. First, the high cost of this technology limits its usage. Second, it

implies that the subject wears physical markers to estimate the 3D pose.

Recently, new depth sensors have been released, like the Microsoft

Kinect [61] or the Asus Xtion [3] PRO LIVE shown in Figure 2.6.

Figure 2.6 – Example of RGB-D sensors. Left: Microsoft Kinect 2 [61], right: Asus
Xtion PRO LIVE [3].

In addition to standard RGB images, depth sensors provide a depth

map giving for each pixel the corresponding distance with respect to the

sensor. The 3D information of the scene can be estimated from such depth

maps. Behind these depth sensors, there are two types of technology:

• Structured light: a visible or invisible known pattern is projected in

the scene. A sensor analyzes the distortion of the pattern in contact

with objects and estimates the distance of each point of the pattern;

• Time of flight: a light signal is emitted in the scene. Knowing the

speed of light, a receiver computes the distance of the object based on

the time elapsed between the emission of the signal and its reception.

Depth sensors, like Microsoft Kinect 1 [61] or Asus Xtion PRO LIVE

employ the structured light technique, while the new Microsoft Kinect 2

employs the time of flight. These new acquisition devices have stimulated

16 Chapter 2. Literature overview

the development of various promising applications. A recent review of

kinect-based computer vision applications can be found in [47].

In 2011, Shotton et al. [134] proposed a real-time method to accurately

predict the 3D positions of 20 body joints from single depth image, with-

out using any temporal information. Thus, the human pose can be repre-

sented as a 3D humanoid skeleton. Such RGB-D sensors provide for each

frame the 2D color image of the scene, its corresponding depth map and

a body skeleton representing the subject pose. An example is illustrated

in Figure 2.7.

Figure 2.7 – Example of data provided by RGB-D sensors as Microsoft Kinect 2 [61] :
2D color image (left), depth map (middle) and body 3D skeleton (right).

Several feature descriptors in the literature proved how the position,

the motion, and the orientation of joints could be excellent descriptors for

human actions [151, 157, 27].

In the field of hand pose estimation and gesture recognition, many re-

searchers have benefited from 3D information in order to perform reliable

and efficient algorithms. The hand is a small and a complex object with

a lot of potential self-occlusions and, so, analyzing the hand shape infor-

mation is very challenging with long range depth cameras like Microsoft

Kinect [61] (0.8 - 4.2 meters). Hand gesture analysis does not necessary

require information about the whole body, thus, researchers focus recently

on data extracted from short range depth cameras as the Intel RealSense

SR300 [117] and the SoftKinetic DS325 cameras shown in Figure 2.8. These

cameras provide more details from object near the lens of the camera (0.2

- 2 meters) and, so, allow to extract preciser information about the hand

shape. A comparison between depth cameras can be found in [53].

In addition to depth images, the software development kit of the Intel

2.3. Datasets for hand pose estimation 17

Figure 2.8 – Example of short range RGB-D sensors. Left: Intel RealSense SR300 [117],
right: SoftKinetic DS325 [135].

RealSense SR300 [117] provides a stream of 3D full hand skeleton of 22

joints at 30 frames per second (see in Figure 2.9). Beside, in july 2013,

the Leap Motion Controller (LMC) is launched on the public market. The

LMC was primarily designed for hand tracking and provides 3D full hand

skeleton of 24 joints. Such data offer new opportunities and axes of re-

search related to hand gesture analysis.

Figure 2.9 – Example of data provided by short range RGB-D sensors as Intel RealSense
[117] : 2D color image (left), depth map (middle) and hand 3D skeleton (right).

2.3 Datasets for hand pose estimation

The emergence of RGB-D data has encouraged research groups to build

new datasets for the task of hand pose estimation from depth images. The

current state-of-the-art methods mostly employ deep neural networks to

estimate hand pose from a depth image [147, 101, 102, 177, 40, 170]. The

availability of a large-scale, accurately annotated dataset is a key factor for

advancing this field of research. Consequently, numerous RGB-D datasets

have been made publicly available last years. The different hand pose

datasets differ in the annotation protocol used, the number of samples, the

number of joints in the hand skeleton representation, the view point and

18 Chapter 2. Literature overview

the depth image resolution. Table 2.1 lists the principal current publicly

available datasets for hand pose estimation and their characteristics.

Publicly available datasets for evaluation of hand pose estimation al-

gorithms are significantly limited in scale (from a few hundred to tens of

thousands samples) and the annotation accuracy is not always efficient.

The barrier for building a large-scale dataset based on depth data is the

lack of a rapid and accurate annotation method.

Creating a dataset by manual annotation [136, 115] is time consuming

and results in inaccurate labels. As a result, these datasets are small in

size. MSRA14 [115] and Dexter 1 [136] have only 2, 400 and 2, 137 samples,

respectively, making them unsuitable for large-scale training.

Alternative annotation methods, which are still time consuming, track

a hand model and manually refine the results [144, 147, 140]. The ICVL

dataset [144] was annotated using 3D skeletal tracking [91] followed by

manual refinement. Annotations of the NYU dataset [147] were obtained

by model-based hand tracking on depth images from three cameras.

These methods often result in incorrect poses where manual correction

is needed. The MSRA15 dataset [140] was annotated in an iterative way,

where an optimization method [115] and manual refinements were done

until convergence. Annotations still contains errors, such as occasionally

missing finger annotations.

Two small datasets were made using semi-automatic annotation meth-

ods [120, 100]. The UCI-EGO dataset [120] was annotated by searching

for the closest example in a synthetic set and manual refinements. In the

Graz16 dataset [100] visible joints in a number of key frames were anno-

tated and automatically inferring the complete sequence. Manual refine-

ments are also required when the optimization fails. This semi-automatic

method resulted in 2, 166 annotated samples which are also insufficient

for large-scale training.

Additional sensors can help automatic annotation [164, 161] but atten-

tion must be paid to not restrict the naturalness of motion. The ASTAR

dataset [164] used a ShapeHand glove [131] depicted in Figure 2.10. How-

2.3. Datasets for hand pose estimation 19

Ta
bl

e
2
.1

–
Su

m
m

ar
y

of
m

os
tp

op
ul

ar
ha

nd
po

se
da

ta
se

ts
.

D
at

as
et

A
nn

ot
at

io
n

N
o.

fr
am

es
N

o.
jo

in
ts

V
ie

w
po

in
t

D
ep

th
m

ap
re

so
lu

ti
on

Ye
ar

D
ex

te
r

1
[1

3
6
]

m
an

ua
l

2
,1

3
7

5
3
rd

32
0
×

24
0

2
0
1
3

M
SR

A
1
4

[1
1
5
]

m
an

ua
l

2
,4

0
0

2
1

3
rd

32
0
×

24
0

2
0
1
4

IC
V

L
[1

4
4
]

tr
ac

k
+

re
fin

e
1
7
,6

0
4

1
6

3
rd

32
0
×

24
0

2
0
1
5

N
Y

U
[1

4
7
]

tr
ac

k
+

re
fin

e
8
1
,0

0
9

3
6

3
rd

64
0
×

48
0

2
0
1
4

M
SR

A
1
5

[1
4
0
]

tr
ac

k
+

re
fin

e
7
6
,3

7
5

2
1

3
rd

32
0
×

24
0

2
0
1
5

U
C

I-
EG

O
[1

2
0
]

se
m

i-
au

to
m

at
ic

4
0
0

2
6

eg
o

32
0
×

24
0

2
0
1
5

G
ra

z1
6

[1
0
0
]

se
m

i-
au

to
m

at
ic

2
,1

6
6

2
1

eg
o

32
0
×

24
0

2
0
1
6

A
ST

A
R

[1
6
4
]

au
to

m
at

ic
8
7
0

2
0

3
rd

32
0
×

24
0

2
0
1
5

H
an

dN
et

[1
6
1
]

au
to

m
at

ic
2
1
2
,9

2
8

6
3
rd

32
0
×

24
0

2
0
1
5

M
SR

C
[1

3
2
]

sy
nt

he
ti

c
1
0
2
,0

0
0

2
2

3
rd

51
2
×

42
4

2
0
1
5

Bi
gH

an
d2

.2
M

[1
7
2
]

au
to

m
at

ic
2
,2

M
2
1

fu
ll

64
0
×

48
0

2
0
1
7

20 Chapter 2. Literature overview

ever, wearing the glove alter hand depth images and reduce the freedom

of motion.

Figure 2.10 – The ShapeHand [131] glove motion apture systems.

More recently, less intrusive sensors have been used for finger tip anno-

tation in the HandNet dataset [161] which exploits the trakSTAR magnetic

sensors [148]. This dataset only provides fingertip locations, not the full

hand annotations.

Synthetic data has also been exploited for generating hand pose data

[132]. If an unlimited synthetic data can be generated, it still remains large

differences between synthetic and real data.

Currently, the widely used datasets in the literature for benchmarking

purposes are the ICVL [144] and the NYU [147] datasets.

Very recently, Yuan et al. [172] introduce the million-scale Big-

Hand2.2M dataset and made a significant advancement in terms of the

scale and the annotation quality using the same magnetic sensors as Wet-

zler et al. [161] but providing a full hand annotated pose. The dataset

contains 2.2 million depth images with 21 accurately annotated joint lo-

cations but is not yet publicly available. This large amount of correctly

annotated hand pose will allows improvements and new advances in the

field of hand pose estimation using depth images.

2.4. Related work on hand pose estimation 21

2.4 Related work on hand pose estimation

Accurate hand pose estimation is an important requirement for many

Human-Computer Interaction or Augmented Reality tasks, and has at-

tracted lots of attention in the Computer Vision research community.

2.4.1 Hand pose estimation from RGB images

There has been a significant amount of works that dealt with hand pose

estimation using RGB images. Those approaches can be divided into two

categories: model based approaches and appearance based approaches

[176].

Model based approaches generate hand pose hypotheses and evaluate

them with the input image. Heap et al. [48] proposed to fit the mesh

of a 3D hand model with the surface of the hand by a mesh constructed

via Principal Component Analysis (PCA) from training samples. Real-

time tracking is achieved by finding the closest possibly deformed model

matching the image. Henia et al. [50] used a two-step minimization algo-

rithm for model-based hand tracking. They proposed a new dissimilarity

function and a minimization process that operates in two steps: the first

one provides the global parameters of the hand, i.e. position and orien-

tation of the palm, whereas the second step gives the local parameters of

the hand, i.e. finger joint angles. However, those methods are unable to

handle the occlusion problem.

Appearance based methods use directly the information contained in

images. They do not use an explicit prior model of the hand, but rather

seek to extract the region of interest of the hand in the image. Bretzner et

al. [13] used color features to recognize hand shapes. Therefore, the hand

can be described as one big blob feature for the palm, having smaller blob

features representing fingers. This became a very popular method but has

some drawbacks such as skin color detection which is very sensitive to

lighting conditions. We refer the reader to Garg et al. [39] for an overview

of hand pose estimation based on RGB approaches.

22 Chapter 2. Literature overview

2.4.2 Hand pose estimation from depth images

The hand pose estimation community has rapidly grown larger in recent

years. The introduction of commodity depth sensors and the multitude

of potential applications have stimulated new advances. However, it is

still challenging to achieve efficient and robust estimation performance

because of large possible variations of hand poses, severe self-occlusions

and self-similarities between fingers in the depth image.

A) Tracking based hand pose estimation

We focus our analysis on single frame methods. However, for complete-

ness, we introduce Oikonomidis et al. [106] which proposed a tracking

approach and, therefore, need a ground-truth initialization.

They formulated the challenging problem of 3D tracking of hand artic-

ulations as an optimization problem that minimizes differences between

hypothesized 3D hand model instances and an actual visual observa-

tions. Optimization was performed with a stochastic method called Parti-

cle Swarm Optimization (PSO) [60]. Figure 2.11 illustrates their pipeline,

where they first extracted the region of interest of the hand from a depth

image and then fitted a 3D hand model using PSO. For an image at step

t, the model is initialized using the final one found from the image t− 1.

Figure 2.11 – Pipeline illustration of Oikonomidis et al. [106]. (a) The current depth
image. (b) First, the region of interest of the hand was extracted. (c) Second, the proposed
method fitted the retrieved hand model from the last depth image (d) to the current one to
recover the hand pose. Image reproduced from [106].

Manual initialization may provide an unfair advantage but single

frame methods are still competitive and in most cases even outperform

tracking based approaches. One reason is that single frame methods re-

2.4. Related work on hand pose estimation 23

initialize themselves at each frame, while trackers cannot recover from

continuous errors.

B) Single frame based hand pose estimation

Many recent approaches exploit the hierarchy of the tree structure of the

hand model. Tang et al. [144] splited the hand into smaller sub-regions

along the hand topological tree creating new latent joints. Using the Ran-

dom Decision Forest algorithm, they perform coarse-to-fine localization of

finger joints as depicted in Figure 2.12.

Figure 2.12 – Tang et al. [144] can be viewed as a search process, guided by a binary
tree model. Starting from the root of the tree, they minimize the offset to its children at
each level until reaching a leaf node which corresponds to a hand skeletal joint position.
For simplicity, the figure only show the searching process for one joint. Image reproduced
from [144].

Tang et al. [145] extended their idea using an energy function aiming

to keep only the best partial poses through optimization iterations. Sun

et al. [140] use a hierarchical hand pose regression from the palm to the

fingertip locations. Yang et al. [166] proposed to use specialized hand

pose regressors by, first, classify an incoming depth hand image based

on a finite hand pose vocabulary and trained separate pose regressors for

each classes.

All these approaches require multiple predictors, one for each joint,

finger or yet hand pose classes and often multiple regressors for different

steps of the algorithm. Thus the number of regression models ranges from

10 to more than 50 different models that have to be trained and evaluated.

24 Chapter 2. Literature overview

Deep neural networks allowed overall improvement in many Com-

puter Vision tasks. In 2015, Oberwerger et al. [101] evaluated several

Convolutional Neural Network (CNN) architectures to predict 3D joint

locations of a given a hand depth map. They stated that a constrained

prior on the 3D pose can be introduced in the form of a bottleneck layer

after the CNN (see in Figure 2.13). This method has significantly improved

the accuracy and the reliability of the predictions.

Figure 2.13 – Oberwerger et al. [101] evaluated the use of a low dimensional embedding
layer with less neurons than the output layer to incorporate a constrained pose prior.
Image reproduced from [101].

Zhou et al. [177] went further by integrating the real physical con-

straints into a CNN and introducing an additional layer that penalized

unnatural predicted poses. Those constraints had to be defined manually.

Beside, several works integrated the hand model hierarchy into a sin-

gle CNN structure. Ye et al. [170] introduced a spatial attention mecha-

nism based on Convolutional Neural Network (CNN) that specializes on

each joint and an additional optimization step to enforce kinematic con-

straints. Guo et al. [44] trained a set of networks for different spatial

regions of the image and Madadi et al. [86] used a tree-shaped CNN ar-

chitecture where each branch focus on one finger. Neverova et al. [97]

combined a hand part segmentation based on CNN followed by a regres-

sion to perform joint locations. Unfortunately the segmentation has shown

being sensitive to sensor noises.

Several representation of the input depth image has also been inves-

tigated. Deng et al. [26] converted the depth image to a 3D voxel vol-

2.5. Datasets for hand gesture recognition 25

ume and used a 3DCNN to predict joint locations. However, the 3DCNN

showed a low computational efficiency. Beside, instead of directly pre-

dicts the 3D joint locations, Ge et al. [40] used multiple CNNs to predict

heatmaps from different projections of the depth image and trained dis-

tinct CNNs for each projection as depicted in Figure 2.14.. This approach

required a complex post-processing step to reconstruct a hand pose model

from the heatmaps.

Figure 2.14 – Overview of Ge et al. [40]. They generated heat-maps for three views by
projecting 3D points onto three planes. Three CNNs are trained in parallel to map each
view image to a heatmap. Finally, heatmaps are fused to estimate 3D hand joint locations.
Image reproduced from [40].

2.5 Datasets for hand gesture recognition

In recent years, the field of hand gesture analysis from RGB-D sensors has

grown quickly, as it can facilitate a wide range of applications in Human-

Computer Interaction, grasping taxonomy or yet daily life activities analy-

sis. Compared to action and activity analysis, gesture analysis often does

not need to deal with the whole body but only focuses on the hand re-

gion. Similarly to hand pose estimation, hand gesture datasets are neces-

sary for the reliable testing and comparison of hand gesture recognition

algorithms. The last few years, several RGB-D hand gesture datasets have

been made publicly available. Most of them are reviewed here.

As shown in Table 2.2, these datasets have been collected for different

26 Chapter 2. Literature overview

purposes in distinct scenarios and contain several specific characteristics

listed bellow:

• Context: hand gesture datasets can be divided into four main context

of study: Grasp taxonomy introduced by Feix et al. [35], Sign language

datasets, Hand gesture datasets, a sub-field of study is In car scenario

hand gesture analysis, finally, Daily life activities datasets.

• Size: with the arrival of data hungry algorithms, the number of sam-

ples available in a dataset has become an important factor.

• Spatial focus: if generally, hand gesture analysis focus on the region

of interest of the hand. Meanwhile, some datasets, generally with

the purpose of sign language recognition, focus on the upper-body

or even the whole body motions.

• Temporal: datasets can also be divided in two groups following if

they contain only static gestures (one sample is one image) or dy-

namic gestures (one sample is a sequence of images). Studying dy-

namic gestures is harder as it needs to study the temporal aspect of

gestures in addition to its spatial one.

• Sensors: In the field of hand gesture recognition, the choice of the

depth camera is primordial. Since very recently, a large amount of

datasets have been made using the Kinect 1. Unfortunately, its low

resolution do not allow a precise capture of the hand shape. To

overcome this statement, several researchers created new datasets

using newer short range camera with better resolutions.

• Data: in addition to RGB images, recent datasets provide depth

maps. Very recently, following statements made in the field of action

recognition, few datasets provide hand skeletal data in the form of

3D points referring to hand joints.

Additionally, Table 2.2 provides the size of the dataset vocabulary. We

note that more a dataset contains a large vocabulary of gestures, more the

recognition process is challenging.

2.5. Datasets for hand gesture recognition 27

Ta
bl

e
2
.2

–
Su

m
m

ar
y

of
th

e
m

os
tp

op
ul

ar
ha

nd
ge

st
ur

e
da

ta
se

ts
.

D
at

as
et

C
on

te
xt

Si
ze

vo
c.

Sp
at

ia
lf

oc
us

Te
m

po
ra

l
D

ep
th

se
ns

or
s

Sa
m

pl
es

D
at

a
V

ie
w

Ye
ar

A
v.

Ya
le

[1
4
]

G
ra

sp
3
3

H
an

d
D

yn
am

ic
R

ag
eC

am
s

1
8
,2

1
0

R
G

B
Fi

rs
t

2
0
1
5

X
U

T
G

ra
sp

[1
5
]

G
ra

sp
1
7

H
an

d
D

yn
am

ic
G

oP
ro

–
R

G
B

Fi
rs

t
2
0
1
5

X
G

U
N

-7
1

[1
2
1
]

G
ra

sp
7
1

H
an

d
St

at
ic

In
te

lS
en

z3
D

1
2
,0

0
0

R
G

B,
D

ep
th

Fi
rs

t
2
0
1
5

X
A

SL
fin

ge
r-

sp
el

lin
g

[1
1
4
]

Si
gn

la
ng

ua
ge

2
4

H
an

d
St

at
ic

K
in

ec
t

1
4
8

,0
0
0

R
G

B,
D

ep
th

Th
ir

d
2
0
1
1

X
M

SR
G

es
tu

re
3
D

[6
6
]

Si
gn

la
ng

ua
ge

1
2

H
an

d
D

yn
am

ic
K

in
ec

t
1

3
3
6

D
ep

th
Th

ir
d

2
0
1
2

X
U

ES
TC

-A
SL

[1
8
]

Si
gn

la
ng

ua
ge

1
0

H
an

d
St

at
ic

–
1

,1
0
0

R
G

B,
D

ep
th

Th
ir

d
2
0
1
3

7

C
ha

Le
ar

n
[3

3
]

Si
gn

la
ng

ua
ge

2
0

W
ho

le
bo

dy
D

yn
am

ic
K

in
ec

t
1

7
,7

5
4

R
G

B,
D

ep
th

,
Bo

dy
po

se
Th

ir
d

2
0
1
4

X

M
ar

in
et

al
.[

8
8
]

Si
gn

la
ng

ua
ge

1
0

H
an

d
St

at
ic

K
in

ec
t

1
,

LM
C

1
,4

0
0

D
ep

th
,

3
D

fin
ge

rt
ip

po
si

ti
on

s
Th

ir
d

2
0
1
4

X

H
U

ST
-A

SL
[3

6
]

Si
gn

la
ng

ua
ge

3
4

H
an

d
St

at
ic

K
in

ec
t

1
5

,4
4
0

R
G

B,
D

ep
th

Th
ir

d
2
0
1
7

X
G

es
tu

re
[7

8
]

Si
gn

la
ng

ua
ge

1
4

U
pp

er
-b

od
y

D
yn

am
ic

–
1
2
6

R
G

B
Th

ir
d

2
0
0
9

X
N

TU
H

an
d

D
ig

it
[1

1
9
]

H
an

d
ge

st
ur

e
1
0

H
an

d
St

at
ic

K
in

ec
t

1
1
0
0
0

R
G

B,
D

ep
th

Th
ir

d
2
0
1
1

X
SK

IG
[8

1
]

H
an

d
ge

st
ur

e
1
0

H
an

d
D

yn
am

ic
K

in
ec

t
1

2
,1

6
0

R
G

B,
D

ep
th

Th
ir

d
2
0
1
3

X
X

u
et

al
.[

1
6
5
]

H
an

d
ge

st
ur

e
1
0

H
an

d
D

yn
am

ic
LM

C
1

,6
0
0

H
an

d
po

se
Th

ir
d

2
0
1
4

7

W
an

g
et

al
.[

1
5
2
]

H
an

d
ge

st
ur

e
1
0

H
an

d
St

at
ic

K
in

ec
t

1
1
0
0
0

R
G

B,
D

ep
th

Th
ir

d
2
0
1
5

X
H

an
di

cr
af

t
[8

4
]

H
an

d
ge

st
ur

e
1
0

H
an

d
D

yn
am

ic
LM

C
3
0
0

H
an

d
sk

el
et

on
Th

ir
d

2
0
1
6

X
O

hn
-B

ar
et

al
.[

1
0
5
]

In
ca

r
sc

en
ar

io
1
9

H
an

d
D

yn
am

ic
K

in
ec

t
1

8
8
6

R
G

B,
D

ep
th

Th
ir

d
2
0
1
4

X
N

V
ID

IA
[9

4
]

In
ca

r
sc

en
ar

io
2
5

H
an

d
D

yn
am

ic
So

ft
K

in
et

ic
1

,5
3
2

R
G

B,
D

ep
th

Th
ir

d
2
0
1
6

X
A

D
L

[1
1
0
]

D
ai

ly
ac

ti
vi

ti
es

1
8

H
an

d
D

yn
am

ic
G

oP
ro

1
0

ho
ur

s
R

G
B

Fi
rs

t
2
0
1
2

X
W

C
V

S
[9

2
]

D
ai

ly
ac

ti
vi

ti
es

1
0

H
an

d
D

yn
am

ic
K

in
ec

t
1

–
R

G
B,

D
ep

th
Fi

rs
t

2
0
1
4

X

D
ai

ly
H

-O
A

ct
io

ns
[3

8
]

D
ai

ly
ac

ti
vi

ti
es

4
5

H
an

d
D

yn
am

ic
In

te
lR

ea
lS

en
se

1
,1

7
5

R
G

B,
D

ep
th

,
H

an
d

sk
el

et
on

Fi
rs

t
2
0
1
7

7

28 Chapter 2. Literature overview

In the field of grasp taxonomy, RGB images is still used [14, 15] as

2D images are easily obtained from common devices. Beside, Rogez et al.

[121] created a grasp dataset providing depth images in addition to RGB

but they only provide static gestures.

Several static hand gesture datasets [114, 18, 88, 36, 119, 152] have been

introduced since 2011. They all contain two drawbacks: static gestures do

not allow to study the temporal aspect useful for new HCI applications

and they all has been captured using the kinect 1 [61] which has a low

resolution.

Beside, dynamic hand gesture datasets [66, 81, 105, 92] have also been

introduced using the Kinect 1 in the past. As the hand is a small and

complex object with many self-occlusions, high resolution provided by

new short range devices is needed. In addition, the Chalearn dataset [33]

study sign language recognition with visual cues from the whole body

and, so, is not suitable for fine-grained hand gesture analysis.

The NVIDIA Hand gesture [94] dataset aims to study dynamic hand

gesture recongition in car and provides depth map sequences from a high

resolution short range device. The Handicraft dataset [84] has been cre-

ated to investigate the use of fine-grained hand gestures using hand skele-

tal data sequences. The dataset created by Xu et al. [165] contains also

hand pose sequences but is not publicly available. While, the Daily Hand-

Object Actions dataset [38] has been introduced in 2017 and is not yet

publicly available.

2.6 Related works on hand gesture recognition

Due to the high number of potential applications and the increasing

amount of publicly available datasets, many works have been proposed

in the literature to address the problem of hand gesture recognition.

In this section, we first focus our review on the pre-processing steps

on depth images which generally requires the extraction of the region of

interest of the hand. Second, we introduce spatial features used in the lit-

erature to perform static and dynamic hand gesture recognition. Third,

we review the proposed methods which consider the temporal aspect

2.6. Related works on hand gesture recognition 29

of gestures, then, the main classification algorithms used for hand ges-

ture recognition are listed. Finally, we introduce new advances in gesture

recognition using deep learning approaches.

2.6.1 Pre-processing steps for hand localization

In the field of hand gesture recognition, pre-processing steps include a

set of techniques and methods used in order to localize and segment the

region of interest of the hand from the background, while trying to re-

duce noises from raw data. The quality of data pre-processing presents a

challenge and it can significantly affect the performance of an algorithm.

Supancic et al. [141] have shown that hand segmentation can be very chal-

lenging depending on the scenario, as from a complex background, and

that an inaccurate result on this step causes poor gesture recognition.

Generally, hand localization techniques based on RGB images use skin

color detection. They often give a fair result in simple contexts as skin

tones are typically distinct from background colors. However, RGB based

methods remain highly sensitive to illumination, individual differences

and backgrounds. We refer to Schmugge et al. [127] for an overview of

skin detection methods based on RGB images.

The arrival of depth sensors bringing another dimension has made

possible to overcome certain challenges. Hand segmentation based on

depth map can be done by thresholding the depth map [143, 142] – called

Otsu’s method – and region growing or contracting [66]; sometimes fol-

lowed by an iterative refinement step [63] as depicted in Figure 2.15. In

these cases, the hand is typically assumed to be the closest object to the

camera.

Figure 2.15 – Otsu’s method steps for hand segmentation from a depth image. (a) initial
depth image. (b) segmented human body. (c) initial hand region. (d) refined hand region.
Image reproduced from [66].

30 Chapter 2. Literature overview

Oberweger et al. [101] extended this idea by refining the extracted re-

gion using a cube around the center of mass and rejecting outsider points.

However, this method can involve holes in the resulting map.

Inspired by Shotton et al. [134], Tompson et al. [147] trained, as a

pre-processing step, a Random Decision Forest (RDF) to perform binary

classification of each pixel of a depth map as either belonging to the hand

or the background. If having an accurate hand mask is crucial for the task

of hand pose estimation, their method seems over-engineered for hand

gesture recognition.

2.6.2 Spatial features extraction

In this section, we introduce several descriptors proposed in the literature,

which are computed from RGB or depth images to extract relevant infor-

mation allowing to perform hand gesture recognition. Those descriptors

can be divided in three groups: grid-shaped data descriptors which are

used in several fields of computer vision, hand shape based descriptors

which are specifically created for hand gesture analysis and, finally, skele-

tal features computed using outputs from a hand pose estimation system.

A) Grid-shaped data descriptors

Filters and gradients based descriptors have been widely used in many

computer vision tasks. Van den Bergh et al. [150] used the Average Neigh-

borhood Margin Maximization method [153] which computes Haarlet co-

efficients on single image. They combined features extracted from RGB

and depth images but showed no improvements in adding the depth in-

formation. Pugeault et al. [114] used both grey-scale and depth images of

a hand convolved with Gabor filters at different scales for the recognition

of static hand gestures. Well known grid-shaped data descriptors, such as

the Histogram of oriented Gradients (HoG) [21], the Scale-Invariant Fea-

ture Transform (SIFT) [83] or the Speeded Up Robust Features (SURF) [8]

have been also used for the recognition of hand gestures in the past. SURF

features have been directly exploited by Yao et Li [169] and Bao et al. [5]

for, respectively, a static and a dynamic hand gesture recognition based

2.6. Related works on hand gesture recognition 31

on RGB images. While the robust local feature descriptor SURF used his-

tograms of gadrients on previously detected key points, Takimoto et al.

[143] computed the SURF features after a hand extraction step from depth

images, by replacing the key point detection step. Next, they divided the

region of interest of the hand into 8× 8 blocks of pixels, and computed

histogram of gradients for each pixel block. Finally, Principal Component

Analysis (PCA) was applied for feature dimensionality reduction, result-

ing in a new descriptor robust to scale and rotation of the hand. Dardas

et al. [22] proposed a Bag Od Word (BoW) technique, which uses the SIFT

features extracted from grey-scale images in addition to a vector quantifi-

cation which maps keypoints into a unified dimensional histogram vector

after K-means clustering. Their method is depicted in Figure 2.16.

Figure 2.16 – Overview of the method from Dardas et al. [22] SIFT features are extracted
from grey-scale images and used as words to create a BoW dictionary. Image reproduced
from [22].

Zhang et al. [175] proposed a depth-based descriptor inspired by the

HoG feature, called Histogram of 3D facets, and used it to perform recog-

nition of static hand gestures.

32 Chapter 2. Literature overview

Another group of depth-based methods exploits an occupancy pattern,

like Kurakin et al. [66] who proposed to used cell and silhouette features

extracted from thresholded depth maps of hands depicted in Figure 2.17.

They split the image into square cells of equivalent sizes. For each cell,

they computed the occupied area and the average depth, which they called

a cell occupancy feature. For the silhouette feature, they divided the im-

age into multiple fan-like sectors and computed the average distance of

each contour segment from the center. The dimensionality of the obtained

feature vector is then reduced with PCA.

Figure 2.17 – Overview of the method from Kurakin et al. [66]. Occupancy pattern based
feature extraction. (a) They computed the occupied area of each cell as well as the average
depth for the non-empty cells. (b) Using the silhouette, they divided the entire image into
fan-like sectors. For each sector, they computes the average distance from the part of the
contour inside this sector to the origin center of the mass of the region of interest of the
hand. Image reproduced from [66].

B) Hand shape descriptors

Beside general image descriptors, researchers have been actively looking

for strong and robust descriptors designed specifically to describe the

global hand shape and to perform hand gesture recognition.

Binary segmentation masks – called silhouettes – are often used for

recognition and matching in static static hand gestures related problems.

In the simplest case, they are obtained from color images or depth maps

2.6. Related works on hand gesture recognition 33

as a result of background subtraction. Different shape descriptors can be

further extracted from the extracted silhouettes.

Ren et al. [119] represented hand silhouettes as time-series contour

curve, as depicted in Figure 2.18. In their framework, curves are compared

using a Finger Earth Mover’s Distance, originally proposed for measuring

distances between signatures of histograms. They used the depth image

to improve the hand segmentation step.

Figure 2.18 – Overview of the method from Ren et al. [119]. (a) Coarse hand segmenta-
tion by depth thresholding; (b) A more accurate hand detection with black belt; (b - c) A
time-series curve representation is computed using an initial point (red dot) and the palm
point (cyan dot). Image reproduced from [119].

The time-series curve representation has been also used by Cheng et

al. [18] to generate sets of curves representing each static gestures from

the dataset vocabulary. Conseil et al. [20] used Hu moments to encode

hand silhouette shapes with invariance to translation, scale and rotation

and perform a static hand gesture recognition.

At the early stage of hand gesture recognition, Shimada et al. [133]

extracted a hand silhouette from a RBG image and compared it to prede-

fined 3D models to infer the hand pose and use it to recognize static hand

gestures. Later, Sudderth et al. [138] used edges and a hand silhouette in

addition to a predefined hand model to extract the 2D hand topology, i.e.

fingers and palm locations.

34 Chapter 2. Literature overview

Stergiopoulou and Papamarkos [137] used a Self-Growing and Self-

Organized Neural Gas (SGONG) network to identify the hand palm and

the fingers, based on binarized hand image extracted from RGB images.

Their method is depicted in Figure 2.19. They computed higher level 2D

features from the hand topology such as angles, palm position and num-

ber of fingers raised to perform the recognition of static hand gestures.

Instead of using a SGONG network, Wang et al. [152] studied the hand

Figure 2.19 – Overview of the method from Stergiopoulou and Papamarkos [137]. They
use a SGONG network to identify the hand palm and the finger tips. (a) first, a grid
of neurons is computed using a SGONG. (b) second, connection that go through the
background are removed. (c) third, they determine the fingertip neurons. (d - e) finally,
they successively determine the finger neurons and the root neurons. Image reproduced
from [137].

shape classification using a superpixel representation [2] depicted in Fig-

ure 2.20. They also extended the Finger Earth Mover’s Distance [119]

in order to use it on their representation and called it Superpixel Earth

Mover’s Distance.

With the arrival of inexpensive depth sensors, researchers started to

used 3D information provided by such devices in addition to RGB im-

ages in order to extract precise 3D hand topology features. Inspired by

Stergiopoulou et al. [137], Mateo et al. [89] extended their work using

RGB to detect the hand and depth information in order to locate finger-

2.6. Related works on hand gesture recognition 35

Figure 2.20 – Overview of the method from Wang et al. [152]. Hand shape representation
using superpixels. First row: superpixels on color textures. Second row: corresponding
shapes represented by superpixels. Black dots indicate the centers of superpixels. Image
reproduced from [152].

tips using a k-d tree. Later, Dominio et al. [28] combined several types of

hand anatomically meaningful descriptors computed on depth data, such

as distances between estimated fingertips with a palm center or yet from

a plane fitted on the palm, as well as curvature of the hand contour and

the shape of the palm region. In order to find hand part locations, they

employed skin-based segmentation.

Dong et al. [29] performed an analysis of static hand gestures for sign

language recognition going in depth into the hand representation. They

proposed a hierarchical mode-seeking method to locate positions of hand

joints under kinematic constraints, segmenting the hand region into 11

natural parts: one for the palm and two for each finger.

C) Skeletal features

Motivated by the effectiveness of shape descriptors designed specifically

for hand gesture analysis, recent works have shown their interest to extract

skeletal features – called hand pose – from hand depth data. A review of

hand skeletal feature extraction has been presented in Section 2.4. With

advances in the field of hand pose estimation, skeletal features can be used

instead of raw depth data for precise hand gesture recognition.

Beside, in the field of action recognition, Shotton et al. [134] proposed a

real-time method to accurately predict the 3D positions of 20 body joints,

36 Chapter 2. Literature overview

together called body skeleton, from depth images. Recently, several de-

scriptors in the literature proved how the position, motion, and orientation

of joints could be excellent descriptors for human actions [151, 155, 27].

In the field of hand gesture recognition, the use of hand skeletal data

is at its beginning. Potter et al. [111] presented an early exploration of the

suitability of using such hand skeletal data captured from a Leap Motion

Controller (LMC) in order to recognize and classify precise hand gestures

of the Australian Sign Language. They observed that the LMC has diffi-

culty maintaining accuracy and fidelity of detection when the hands do

not have direct line of sight with the controller.

Marin et al. [88] mixed depth features (i.e. multi-scale curvatures and

correlations [28]) and skeletal data descriptors (i.e. fingertips angles, dis-

tances and elevation), respectively using a Kinect 1 and a LMC. Lu et al.

[84] computed more features on the same data as palm direction and nor-

mal, adjacent fingertip distances and angles to perform precise dynamic

hand gesture recognition.

Very recently, Garcia et al. [38] studied the use of hand skeletal data

for hand daily life activities analysis. They perform numerous experimen-

tation over their new dataset showing better performance of their hand

gesture recognition system (based on the JOULE method [54]) using hand

skeletal data compared to depth data. Finally, an improvement has been

shown while merging RGB, depth and pose data.

2.6.3 Temporal modeling

The dynamic hand gesture recognition task involves modeling the tempo-

ral aspect of gestures in addition to the feature extraction. The literature of

dynamic hand gesture temporal modeling shows two distinct strategies:

• Creating descriptors which carry spatial and temporal information;

• Modeling sequences of spatial descriptors via temporal classifiers.

A) Spatio-temporal descriptors

Spatio-temporal descriptors are widely used to recognize gestures from

videos. Several of these descriptors have evolved from their 2D ver-

2.6. Related works on hand gesture recognition 37

sions, by augmenting existing descriptors with additional features ex-

tracted along the temporal dimension.

For example, Ohn et al. [104] introduced a 3D version of the HOG

descriptor, called HOG2, to handle videos and Klaser et al. [62] proposed

similarly the HOG3D descriptor. Ohn et al. [105] experimented both de-

scriptors to recognize dynamic hand gestures performed in a car scenario.

They computed both descriptors on both depth and RGB videos, where

depth data has showed better performances and merging both informa-

tion increased their results.

Zhang et al. [174] introduced a spatio-temporal representation of hand

depth sequences, called Edge Enhanced Depth Motion Map (E2DMM).

Their method is related to the Depth Motion Map (DMM) representation

which has been used in the action recognition field [168]. According to

Yang et al. [168], edge suppression is suitable for action recognition since

the contours do not provide useful information to help distinguishing be-

tween different actions. However, both static hand pose and motions con-

vey significant information in the perspective of dynamic hand gesture

recognition. Following this statement, Zhang et al. [174] changed the edge

suppression term to an edge enhancement term. The E2DMM descriptor

is depicted in Figure 2.21. Finally, they computed the HoG descriptor [21]

on the E2DMM. As characterizing a whole hand gesture sequence using a

single representation can lead to miss-classification due to inverse gesture,

they used a temporal pyramid. The principle of the temporal pyramid is

to divide a sequence into n sub-sequences at each nth level of the pyra-

mid. The final representation is the concatenation of all spatio-temporal

descriptors computed on all sub-sequences. This strategy allows to distin-

guish the beginning, the middle and the end of gestures.

B) Sequence modeling

Once a spatial descriptor has been computed in a frame-wise or after a

sub-sequences-wise segmentation, the sequence is modeled by statistical

algorithms that take a sequence as input. In the category of sequence mod-

eling methods, Hidden Markov Models (HMMs), Hidden Conditional

38 Chapter 2. Literature overview

Figure 2.21 – Overview of the method from Zhang et al. [174]. (a) A depth video
showing a hand gesture from the American Sign Language. (b) Accumulative Motion
Maps and corresponding visualizations of the HoG descriptor following different degree
of edge enhancement. When ρ = −1, it degenerates to DMM and when ρ > 0, it is in
the form of E2DMM. Image reproduced from [174].

2.6. Related works on hand gesture recognition 39

Random Fields (HCRFs) and their extensions have proven to be efficient

in many sequential recognition tasks. While HMM models joint probabil-

ity of states and observed features, the parameters in HCRFs model are

conditioned only on observations.

The HMM is a stochastic algorithm governed by a finite number of

probabilistic states and a set of probabilistic functions associated with each

state. The idea is to create a probabilistic model for each class of the vo-

cabulary of the current classification problem. Given an input sequence S,

each HMM outputs the probability that S belongs to their associated class

which make HMM a temporal classifier and not only a modeler. In the

context of dynamic hand gesture recognition, each state could represent

a set of possible hand positions [17, 71]. The state transitions represent

the probability that a certain hand position goes into another. An exten-

sion of HMM called action graph [73] has been used by Kurakin et al. [66].

Compared to HMM, an action graph has the advantage that it requires less

training data and allows different actions to share the states. The HCRF al-

gorithm is driven by the idea to eliminate unrealistic assumptions, that can

build a HMM, and handling long term dependencies. Wang et al. [159]

experimented the effectiveness of HCRF over HMM on the challenge of

arm gesture classification. In addition, Manitsaris et al. [87] combined a

HMM and a Dynamic Time Warping (DTW) approach permitting to early

recognize and predict the gestures.

2.6.4 Classification

Classification algorithms are systems that learn to map an unknown input

data to one label from a finite vocabulary. Supervised machine learning

takes a set of labeled training data which is used to infer the mapping

function. It exists a large variety of classifier and we refer to Kotsiantis

et al. [64] for a review of classification techniques. In this section, we

introduce three of the main used classification algorithms which are the

Support vector machine (SVM) [49], the k-Nearest Neighbor (k-NN), and

the Random Decision Forest (RDF) [12] algorithms.

40 Chapter 2. Literature overview

SVM [49] finds the optimal hyperplane to separate the training data fol-

lowing their known label. An SVM maximizes the margin around the

separating hyperplane. Optimization techniques are employed to find the

optimal hyper plane. SVM is, so far, the most used classifier in human

behavior analysis and a baseline for many datasets [22, 175, 82, 88, 174].

k-NN is a simple statistical method, where an input data will be as-

signed to the most common class among its k nearest neighbors in the

training set. The neighbors are defined following a similarity measure

often computed on features extracted from raw data. Gupta et al. [45]

used k-NN based on HOG and SIFT descriptors to classify static gestures.

However, several experimentation on comparing the accuracy of k-NN

against SVM [49] have shown that the performance of k-NN is compara-

tively lower [146, 118, 6].

RDF [12] consists of a learned set of randomized classification trees.

Each of them is trained with a random subset of the original training

data. Each binary classification tree is built by recursively partitioning

the input data at each node, so as to reduce the entropy of the class dis-

tribution. At each node, a random subset of features is selected and the

threshold leading to the largest reduction in class distribution entropy is

chosen. RDF [12] has been used by Pugeault et al. [114] for static hand

gesture recognition based on Gabor filter response features.

2.6.5 Deep learning approaches

Like many research areas in pattern recognition, including the hand pose

estimation field, deep learning approaches have shown particularity good

performance for hand gesture recognition. Their ability to learn relevant

spatial and/or temporal features in addition to play the role of classifier,

has been studied last years.

Convolutional neural networks [69] designed to take images as input

has been used for static hand gesture recognition using RGB data [77, 96]

and/or depth maps [72].

2.6. Related works on hand gesture recognition 41

Neverova et al. [98] designed a multi-modal deep learning framework

which takes as inputs: RGB, depth, audio stream and body skeleton data

(see in Figure 2.22). Their network captured several spatial information,

such as motions of the upper body or the hand, at three distinct spa-

tial scales in order to perform dynamic sign language recognition. Their

framework classified each frame and the final label of a sequence was

computed using a majority vote.

Figure 2.22 – The single-scale multi-modal deep learning framework from Neverova et
al. [98]. Individual classifiers are trained for each data modality (paths V1, V2, M, A).
Image reproduced from [98].

Molchanov et al. [93] proposed a dynamic hand gesture algorithm

using a two-stream 3DCNN which takes as inputs stacked image gradients

and depth maps to classify sequence of images. The 3DCNN is depicted

in Figure 2.23.

They later enhanced their method and proposed a dynamic hand ges-

ture algorithm – called R3DCNN [94] – using a larger 3DCNN, prece-

dently defined by Karpathy et al. [59], to extract features from sub-

sequences followed by a recurrent layer to model the temporal aspect

of gestures. The 3DCNN was composed of eight convolutions with an

increasing number of filters in order to get both spatial and temporal fea-

tures on sequences of RGB and depth images. In addition, they used a

Connectionist Temporal Classification [43] as the cost function. While it

has been initially designed to perform prediction of sequence in an unseg-

42 Chapter 2. Literature overview

Figure 2.23 – The 3DCNN architecture classifier from Molchanov et al. [93]. The inputs
of the classifier were stacked image gradients and depth values. The classifier consisted
of two sub-networks: a high-resolution network (HRN) and a low-resolution network
(LRN). The two networks were fused by multiplying their respective class probabilities.
Image reproduced from [93].

mented input streams scenario, the CTC is applied here to perform online

classification. Their framework is depicted in Figure 2.24.

Figure 2.24 – The hand gesture classification framework from Molchanov et al. [94]. A
gesture video is presented in the form of sequence of short clips to a 3DCNN for extracting
local spatial-temporal features. These features are input to a recurrent network. The
recurrent network has a hidden state ht−1, which is computed from the previous clips.
The updated hidden state for the current clip, ht, is input into a softmax layer to estimate
class-conditional probabilities. During training, a Connectionist Temporal Classification
is used as the cost function. Image reproduced from [94].

2.6. Related works on hand gesture recognition 43

To overcome the hungryness of deep learning algorithms, they pre-

trained their model on the large-scale Sport-1M [59] human action recog-

nition dataset. If they claimed to obtain real-time results, they used a

powerful hardware configuration not suitable for public use.

The recognition algorithms of dynamic hand gestures based on skeletal

data are not yet well represented in the literature. This is due to the fact

that hand pose estimation methods begin only recently to be robust and

efficient in challenging contexts. Lu et al. [84] used a neural based variant

of the HCRF which were fed with features computed on hand skeletal

data captured via a LMC.

In the meantime, the problem of modeling skeletal data sequences with

deep neural networks has been studied in the field of action recognition.

We introduce recent advances in skeletal sequence modeling using recur-

rent networks for completeness.

Wang et al. [156] used a two-stream Recurrent Neural Network (RNN)

architecture for skeleton based action recognition. One stream was used

in order to model temporal information while the other focus on spatial

cues.

Garcia et al. [38] used a two-stacked Long-Term Short Memory (LSTM)

network as a baseline for their hand action dataset. LSTM has shown

better performance over all previous traditional methods. Du et al. [31]

proposed to divide the human body skeleton in five meaningful parts and

fed each one into a distinct RNN network. They used a bidirectionnal

variant [128] of the LSTM in order to use past frames but also future one

to model each time step of a sequence. The recurrent layers are then fused

step by step to be inputs of higher layers. Their network is depicted in

Figure 2.25.

Very recently, Liu et al. [80] defined a global context-aware attention

LSTM networks for skeleton-based action recognition. The idea behind

their approach is that an upstream recurrent network process an incoming

sequence and update a context memory cell which allowed to extract the

potential importance of each body joints in the sequence. A second LSTM

44 Chapter 2. Literature overview

Figure 2.25 – An illustration of the hierarchical recurrent neural network proposed by
Du et al. [31]. The body skeleton is divided into five parts, which are fed into five
bidirectional recurrent neural networks (BRNNs). As the number of layers increases,
the representations extracted by the subnets are hierarchically fused to be the inputs of
higher layers. A fully connected layer and a softmax layer are performed on the final
representation to classify actions. Image reproduced from [31].

performed the classification paying attention more precisely at some joints

using the context memory.

Figure 2.26 – An illustration of the global context-aware attention LSTM network pro-
posed by Liu et al. [80]. The first LSTM layer encodes the skeleton sequence and update
the global context memory. The second layer performs attention over the inputs with
the assistance of the context memory and generates an attention representation for the
sequence. Image reproduced from [80].

2.7. Discussion and conclusion 45

2.7 Discussion and conclusion

The 3D information given by depth sensors encouraged researchers to in-

vestigate depth maps for both tasks of hand pose estimation and hand ges-

ture recognition. Modeling motions and deformation of the hand shape

is considered to be more challenging that other human parts due to its

smaller size, greater complexity and higher amount of self occlusions.

Consequently, new datasets and new methods have been conducted last

years taking advantages of short range depth camera which extract more

accurate details in comparison with long range camera.

Hand pose estimation aims to retrieve the transformation of a pre-

defined structured model of the hand from visual cues which represent

the real hand shape of the user captured by a camera. In the field of ac-

tion recognition, such human body skeleton improved considerably the

performance of systems which aim to understand human behavior. Cur-

rently, the challenge of using hand skeletal data for hand gesture analysis

is at its beginning. Researchers have been able to exploit skeletal data in

the field of human behavior understanding since many years due to the

maturity of the body pose estimation. On the other side, hand pose es-

timation is still very challenging due to the intrinsic characteristics of the

hand.

To overcome challenges of hand pose estimation, current state-of-the-

art methods use deep learning approaches. Briefly, deep learning is a fam-

ily of learned based features algorithms based on neural networks. Very

recently, using this approach allowed researchers to make a jump in ro-

bustness and efficiency in hand pose estimation. However, deep learning

algorithms are data hungry and annotating hand pose dataset is very time

consuming. Thus, only small amount of samples are available in publicly

available datasets. In the end of 2017, Yuan et al. [172] will make available

a hand pose dataset with more than two millions of samples hoping it

will allow researchers to overcome some of the challenges of hand pose

estimation.

In the field of hand gesture recognition, early proposed methods were

using RGB data. However, extracting the region of interest of the hand

46 Chapter 2. Literature overview

was very challenging, even with powerful skin detector algorithms, due to

the highly sensitivity of algorithms to illumination, individual differences

and backgrounds. In addition, the hand suffers from severe self-occlusions

and RGB data allowed researchers to study the hand shape only in two

dimensions. Similarly to the field of hand pose estimation, as soon as

cheap depth sensors were available, researchers investigated ways to take

advantage from the 3D information they provide. Proposed methods can

be sorted from algorithms using general descriptors – which were already

used to tackle others computer vision challenges – to hand specific feature

extraction such as time-series curves describing the states of fingers and

very recently the use of sequence of hand skeletal data for dynamic hand

gesture recognition.

Similarly to hand pose estimation, methods using deep learning for

the task of hand gesture recognition showed a jump in the robustness and

the efficiency of new algorithms based on learned features compared to

traditional handcrafted descriptors. However, in the same way, current

available hand gesture datasets are small in size and strategies have to be

used to overcome the hungriness of deep learning algorithms.

All these considerations motivate us to address the problem of hand

gesture recognition according to two categories of methods: hand-crafted

and deep learning approaches, while investigating all challenges raised in

the literature.

Hence, in the following chapters, we first investigate precise and dy-

namic hand gestures using handcrafted descriptors on hand skeletal data.

We also discuss the creation of our own challenging dataset. This dataset

allowing us to study the intra-class and inter-class high similarities between

hand gestures not yet invested in the literature.

In a second time, we study the evolution of the traditional recognition

processes compared to deep learning approaches. We also detail technical

elements of deep neural networks useful for hand gesture recognition.

Finally, we extend the analysis of dynamic hand gesture recognition

mixing two deep learning approaches for, both, hand pose estimation and

hand gesture recognition. We aim to take over the whole pipeline of the

2.7. Discussion and conclusion 47

process in order to propose an online hand gesture recognition system for

real time applications.

3Heterogeneous hand gesture

recognition using

hand-crafted descriptors on

3D skeletal features

Contents

3.1 Introduction . 51

3.1.1 Challenges . 53

3.1.2 Overview of the proposed method 54

3.1.3 Motivations . 54

3.2 The Dynamic Hand Gesture dataset (DHG-14/28) 56

3.2.1 Overview and protocol . 56

3.2.2 Gesture types included . 57

3.2.3 DHG-14/28 challenges . 59

3.3 Hand gesture recognition using skeletal data 60

3.4 Features extraction from skeletal sequences 60

3.5 Features representation . 63

3.6 Temporal modeling . 64

3.7 Classification process . 66

3.8 Experimental results . 66

3.8.1 Experimental settings . 67

3.8.2 Hand Gesture Recognition Results 70

3.8.3 Latency analysis and computation time 77

49

50 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

3.8.4 Influence of the upstream hand pose estimation step on

hand gesture recognition 79

3.9 Conclusion . 86

3.1. Introduction 51

3.1 Introduction

Using hand gestures as a Human-Computer Interaction (HCI) modality

introduces intuitive and easy-to-use interfaces for a wide range of ap-

plications in virtual and augmented reality systems, offering support for

the hearing-impaired and providing solutions for all environments us-

ing touchless interfaces. However, the hand is an object with a complex

topology and has endless possibilities to perform the same gesture. For

example, Feix et al. [35] summarize the grasping taxonomy and found

17 different hand shapes to perform a grasp. Grasping is a hand gesture

where we need precise information about the hand shape if we want to

recognize it. Other gestures, such as swipes, which are defined more by

hand motions than its shape, are already commonly used in tactile HCI.

Thus, the heterogeneity between useful gestures have to be taken into ac-

count in a hand gesture recognition algorithm.

To date, most reliable tools used to capture 3D hand gestures are mo-

tion capture devices, which have sensors attached to a glove delivering

real-time measurements of the hand. However, they present several draw-

backs in terms of the naturalness of the hand gesture and cost, in addition

to their complex calibration setup process. Recently, effective and inex-

pensive depth sensors, like the Microsoft Kinect, have been increasingly

used in the domain of computer vision. By adding a third dimension into

the game, depth images offer new opportunities to many research fields,

one of which is the hand gesture recognition. In recent years, many re-

searchers [67, 154, 119, 18, 152, 114, 66, 175, 95, 33, 105, 93, 94] has studied

3D hand gesture recognition challenges using depth images.

Beside, in the field of action recognition, Shotton et al. [134] proposed a

real-time method to accurately predict the 3D positions of 20 body joints,

together called body skeleton, from depth images. Hence, several descrip-

tors in the literature proved how positions, motions, and orientations of

joints could be excellent descriptors for human actions. Following this

statement, hand skeletal data could also handle precise information of the

hands that HCI needs in order to use them as a manipulation tool.

Very recently, new devices, such as the Intel RealSense or the Leap

52 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

Motion Controller (LMC), provide, in addition to depth images, precise

skeletal data of the hand and fingers in the form of a full 3D skeleton

corresponding to 22 joints in R3 labeled as depicted in Figure 3.1. Potter

et al. [111] presented an early exploration of the suitability of using such

data from a LMC in order to recognize and classify precise hand gestures

in Australian Sign Language. However, hand pose estimation from depth

Figure 3.1 – Depth and hand skeletal data returned by the Intel RealSense camera. The
22 joints include: one for the center of the palm, one for the position of the wrist and four
joints for each finger represent the tip, the two articulations and the base. All joints are
represented in R3. The Leap Motion Controller provides a similar hand skeleton.

images remains a prominent field of research. Many issues still have to be

solved: properly recognizing the skeleton when the hand is either closed,

perpendicular to the camera, or without an accurate initialization, or when

the user performs a quick gesture. The hand contains more joints than

there are in the rest of the human body model of Shotton et al. [134] and is

a smaller object. The hand has also a more complex structure. If an arm, a

head or a leg have different shapes, the hand is composed of a palm and

five similar fingers making its pose estimation more challenging.

In this chapter, we aim to study the use of hand skeletal data to per-

form dynamic hand gesture recognition from a set of heterogenous ges-

tures. The idea behind the term “heterogenous” is that there are vari-

ous gesture types. Coarse gestures that are defined by hand motions (e.g.

Swipes), Fine gestures that are defined by hand shape variations (e.g. Open

the hand) or even both. In addition, gestures can be either Static (e.g. Show

3.1. Introduction 53

one finger) or Dynamic (e.g. Grab something). To fully understand and de-

sign a robust algorithm able to classify an unknown incoming gesture,

motions and precise shape information about the hand have to be ex-

tracted.

3.1.1 Challenges

The development of a precise dynamic hand gesture recognition system,

able to take into account the heterogeneity of possible gesture types,

presents some important challenges.

First, the main challenge is the intraclass gesture dissimilarities. They

come from ad-hoc, cultural and/or individual factors in the style, position

and speed of gestures. Indeed, even after explanations and examples,

two different subjects rarely perform the same gesture in the same way.

These variations are caused by differences of dexterity, size or yet again

culture. In fact, even a particular subject never perform the same gesture

twice. The first obvious reason is that its position relative to the camera

can change. Moreover, as a user performs a particular type of gesture

multiple times, he makes it his own. It follows sometimes large differences

with the example given at the beginning. An efficient algorithm should be

able to recognize hand gestures independently of this factors.

In addition to intraclass gesture dissimilarities, an important factor in

precise hand gesture recognition task is interclass similarities. They come

from high similarities between different types of gestures. Furthermore,

these similarities are exacerbated by deformations due to intraclass varia-

tions.

Finally, some hand gestures can only be described by hand shape vari-

ations through time. However, a hand is a small object with a high degree

of freedom and with a high potential of self-occlusion. It is very hard to

extract precise information of the hand shape based on data captured us-

ing old depth sensors with a low image resolution such as the first version

of Microsft Kinect. In addition, the noise of depth images, self-occlusions

and situational variations in the viewpoints make the study of hand shape

very challenging. Nevertheless, new short ranged depth devices allow re-

54 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

searchers to get more precise hand capture (e.g. Intel RealSense or the

SoftKinetic DS325).

3.1.2 Overview of the proposed method

To face challenges of dynamic hand gesture recognition, we introduce an

original approach using three features computed on hand skeletal feature

sequences to classify unknown hand gestures.

Our proposed method is a hand skeleton-based approach since we

consider those features contain precise information about hand motions

and shape variations information. In addition, new devices are able to

directly provide us hand skeletal features. However, even if 3D joint po-

sitions of hand skeleton are available, the hand gesture recognition task is

still challenging due to significant spatial and temporal variations in the

way of performing a gesture.

First, we use a temporal pyramid to represent the dynamic aspect of

gestures. We cut sequences in overlapping sub-sequences. On each sub-

sequences, we compute three set of features: a set of direction vector which

the hand is taking through the sequence, a set of rotation and a hand shape

descriptor called Shape of Connected Joints. Those sets are then transformed

into a statistical representation vector using a Fisher Kernel. The final ges-

ture descriptor is the concatenation of the three statistical representation

features computed for each sub-sequence.

Finally, a linear SVM is used to perform classification. Figure 3.2 sum-

marizes the proposed approach.

3.1.3 Motivations

The main considerations that motivated our approach are:

• Precise hand gesture recognition is becoming a central key for dif-

ferent types of applications (e.g. virtual game control, sign language

recognition, ...).

• Heterogeneous hand gesture recognition needs to fully understand

hand shape variations and motions through gestures.

3.1. Introduction 55

Fi
gu

re
3

.2
–

O
ve

rv
ie

w
of

ou
r

ha
nd

ge
st

ur
e

re
co

gn
iti

on
ap

pr
oa

ch
us

in
g

ha
nd

sk
el

et
al

da
ta

.
Fi

rs
t,

se
qu

en
ce

s
ar

e
di

vi
de

d
in

ov
er

la
pp

in
g

su
b-

se
qu

en
ce

s
to

re
pr

es
en

t
th

e
dy

na
m

ic
as

pe
ct

of
ge

st
ur

es
us

in
g

a
te

m
po

ra
lp

yr
am

id
st

ra
te

gy
.O

n
ea

ch
su

b-
se

qu
en

ce
s,

w
e

co
m

pu
te

d
th

re
e

se
to

ff
ea

tu
re

s:
di

re
ct

io
ns

,r
ot

at
io

ns
an

d
a

ha
nd

sh
ap

e
de

sc
ri

pt
or

.
A

fis
he

r
ke

rn
el

is
us

e
to

tr
an

sf
or

m
th

os
e

se
ts

in
a

st
at

is
tic

al
re

pr
es

en
ta

tio
n.

Fi
na

lly
,w

e
us

e
a

SV
M

fo
r

ha
nd

ge
st

ur
e

cl
as

si
fic

at
io

n.

56 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

• The use of skeletal features result in improvements in the field of

action recognition.

• New short ranged depth devices and hand pose estimation methods

allow to extract hand skeletal information.

3.2 The Dynamic Hand Gesture dataset (DHG-14/28)

Skeleton-based action recognition approaches have become popular as

Shotton et al. [134] proposed a real-time method to accurately predict the

3D positions of body joints from depth images. Hence, several descriptors

in the literature proved how the position, the motion, and the orienta-

tion of joints could be excellent descriptors for human actions. Collected

datasets for action recognition purpose [158, 74, 130, 129, 74] provide the

3D body skeleton of the person performing the action in addition to depth

images.

However, in the context of hand gesture recognition, there are no pub-

licly released dynamic hand gestures dataset providing labeled sequences

of depth and hand skeletal features.

In this section, we present the Dynamic Hand Gesture 14 / 28 (DHG)

dataset collected by De Smedt at al. [23], which provides hand skeletal se-

quences in addition to depth images. Such a dataset facilitate the analysis

of hand gestures and open new scientific axes to consider1.

3.2.1 Overview and protocol

The DHG-14/28 dataset contains 14 dynamic hand gesture types per-

formed in two ways: using one finger or the whole hand (an example is

shown in Figure 3.3). Each gesture is performed 5 times by 20 participants

in 2 ways, resulting in 2800 sequences.

Sequences are labeled following their gesture, the number of fingers

used and the performer. Each frame contains a depth image, coordinates

of 22 joints – together called a hand skeleton – both in the 2D image and in

the 3D camera space. The Intel RealSense short ranged depth camera is

1Available on: http://www-rech.telecom-lille.fr/DHGdataset

3.2. The Dynamic Hand Gesture dataset (DHG-14/28) 57

used to collect the dataset. Depth images and hand skeletons were cap-

tured at 30 frames per second. Depth images have a 640× 480 resolution.

The length of sample gestures ranges goes from 20 to 50 frames.

Fothergill et al. [37] investigated the problem of the most appropri-

ate semiotic modalities of instructions for conveying to performers the

movements the system developer needs to perform. They found out that

a gesture recognition algorithm not only needs examples of desired ges-

tures but also in order to cope with a wide array of users, the dataset must

include common desired variants of the gestures. To achieve a good cor-

rectness in our dataset, we use two modalities to explain what we waited

from our performers. First, the register explains in an abstractive way the

gesture (e.g. to perform a swipe gesture with one finger: “You’re going

to mime a swipe in the air with only one finger”), then we were showing

them a video of someone performing the gesture.

In terms of hand pose estimation, much attention has been received

over the last two years in the computer vision community [144, 132]. The

Software Development Kit (SDK) released for Intel RealSense F200 pro-

vides a full 3D skeleton of the hand corresponding to 22 joints labeled as

depicted in Figure 3.1. However, we note that the sensor still has trouble

to properly recognize the skeleton when the hand is closed, perpendicular

to the camera, without a correct initialization or when the user performs

a quick gesture. Our participants were asked to start each sequence by

one or two seconds with the hand well opened in front of the camera.

This may be necessary for some state-of-the-art hand pose estimation al-

gorithms requiring a hand shape initialization step. For those who do not

need initialisation frames, we manually labeled effective beginnings and

ends of each gesture sequences.

3.2.2 Gesture types included

Gesture types included in the DHG dataset are listed in Table 3.1. Most

of them have been chosen to be close to the state-of-the-art, like the VIVA

challenge dataset [105]. Nevertheless, we removed the differentiation be-

tween normal and scroll swipes as you can find it in our number-of-fingers

58 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

Figure
3.

3
–

D
epth

m
ap

sequences.C
olored

lines
representthe

hand
skeletons

extracted
from

the
IntelR

ealSense
[117]cam

era.Sw
ipe

R
ightgesture

perform
ed

(top)w
ith

one
finger

and
(bottom

)w
ith

the
w

hole
hand

from
the

D
H

G
-14/28

dataset.

3.2. The Dynamic Hand Gesture dataset (DHG-14/28) 59

approach. The same thing appears with the pair of gesture Pinch/Expand

and Open/Close. In addition, we supplement this base with the gesture

Grab because of its usefulness in augmented reality applications, but also

to study the scientific challenge of high potentially variations among per-

formers. We also add the gesture Shake, as it can be interesting for recog-

nition algorithm to be able to differentiate gesture composed of other ges-

tures (a shake gesture can be seen as a repetition of opposed swipe ges-

tures).

Table 3.1 – Gesture list included in the DHG-14/28 dataset.

Gesture Labelization Tag name
Grab Fine G
Expand Fine E
Pinch Fine P
Rotation CW Fine R-CW
Rotation CCW Fine R-CCW
Tap Coarse T
Swipe Right Coarse S-R
Swipe Left Coarse S-L
Swipe Up Coarse S-U
Swipe Down Coarse S-D
Swipe X Coarse S-X
Swipe V Coarse S-V
Swipe + Coarse S-+
Shake Coarse Sh

3.2.3 DHG-14/28 challenges

We focused the creation of the DHG dataset on three main challenges:

• Studying dynamic hand gesture recognition using 3D hand skeletal

features;

• Evaluating the effectiveness of the recognition process following the

heterogeneity of hand shapes depending on the set of fingers used.

• Distinguishing between both fine-grained and coarse-grained ges-

tures. Indeed, dividing the gesture sequences into two categories –

coarse and fine gestures – contributes to increasing difficulties in the

recognition challenge.

60 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

3.3 Hand gesture recognition using skeletal data

Using 3D hand skeletal data, as depicted in Figure 3.1, a dynamic gesture

can be seen as a time series of hand skeletons. It describes motions and

hand shapes over the gesture sequence. For each frame t of a sequence,

the position in the camera space of each joint is represented by three co-

ordinates, e.g. ji(t) = [xi(t) yi(t) zi(t)]. The skeleton at frame t is then

represented by the 3Nj dimension row vector:

s(t) = [x1(t) y1(t) z1(t) ... xNj(t) yNj(t) zNj(t)] (3.1)

where Nj is the number of joints which compose the hand skeleton and

N f is the number of frames in the sequence. The final representation of a

sequence is a matrix of size N f × 3Nj where each line t is the row vector

s(t):

M =

s(1)

...

s(N f)

 (3.2)

This new data type handles a lot of information on the motion and the

shape of the hand over the sequence. In order to fully represent the ges-

ture, we propose to mainly capture the hand shape variation based on

skeleton joints, but also the direction of the movement and the rotation of

the hand in the space with three distinct features.

3.4 Features extraction from skeletal sequences

In this section, we introduce three distinct frame-wise features computed

on hand skeletal data. Two of them aim to represent hand motions, while

the last extract hand shape variations though the gesture.

Motion features

Some hand gestures are defined almost only by the way the hand moves

in space (e.g. swipes). To take this characteristic into account, we compute

a direction vector in R3 for each frame t of our sequence using the position

3.4. Features extraction from skeletal sequences 61

of the palm joint noted jpalm:

−→
d dir(t) =

jpalm(t)− jpalm(t− c)∥∥jpalm(t)− jpalm(t− c)
∥∥ (3.3)

where c reduce noises when the hand is not moving and is a constant value

chosen experimentally. We normalize the direction vector by dividing it

by its norm.

For a sequence of N f frames, we have the set SD:

SD =
{ −→

d dir(t)
}
[1 < t < N f]

(3.4)

The rotation of the wrist during the gesture describes also how the

hand is moving in space. For each frame t, we compute the vector from

the wrist node to the palm node to get the rotational information in R3 of

the hand:
−→
d rot(t) =

jpalm(t)− jwrist(t)∥∥jpalm(t)− jwrist(t)
∥∥ (3.5)

For a sequence of N f frames, we have the set SR:

SR =
{ −→

d rot(t)
}
[1 < t < N f]

(3.6)

Shape features

To represent the variation of the hand shape during the sequence using

a full 3D hand skeleton, we propose a descriptor based on sets of joints,

denoted as Shape of Connected Joints (SoCJ).

Hand skeleton returned from sensors consists of 3D coordinates of

joints, represented in the camera coordinate system. Therefore, they vary

with the rotation and translation of the hand with respect to the camera.

To make our hand shape descriptor invariant to hand geometric trans-

formations, we propose a normalization phase. Firstly, in order to take

into account the differences of hand size between performers, we estimate

the average size of each bone of the hand skeleton using all hands in the

dataset. Secondly, carefully keeping the angles between bones, we change

their size by their respective average size found previously. Then, in or-

der to be consistent with the translation and rotation transformations, we

62 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

create a reference hand skeleton H f corresponding to an open hand in

front of the camera with its palm node at [0 0 0]. Then, for each frame,

we use a Singular Value Decomposition to find the optimal translation and

rotation from the current hand skeleton to H f and then apply it to all its

joints. This process results in a new hand which keeps its skeleton shape

but centered around [0 0 0] and the palm facing the camera.

Let x represent the coordinates of a joint in R3 and T = [x1 x2 x3 x4 x5]

a tuple of five ordered different joints from the hand skeleton s. To de-

scribe the shape of the joint connections, we compute the displacement

from one point to its right-hand neighbor:

SoCJ(T) = [x2 − x1 ... x5 − x4] (3.7)

This results in a descriptor in R12. Figure 3.4 shows an example of a

particular SoCJ using the palm’s joint and the thumb’s.

Figure 3.4 – An example of the SoCJ descriptor constructed around the thumb tuple. Let
be T = (j1, j2, j3, j4, j5) where ji ∈ R3. We compute the displacements from points to
their respective right neighbor resulting in the SoCJ vector

[
~d1, ~d2, ~d3, ~d4

]
.

We remind that the skeleton of the Intel RealSense camera is composed

of 22 joints. Theoretically, with C binomial coefficient function , we can

compute C(22, 5) = 26334 different SoCJs for the hand skeleton s resulting

3.5. Features representation 63

in the set:

ssocj = { SoCJ(i) }[1 < i < 26334] (3.8)

For a sequence of N f frames, we have the set Ssocj:

Ssocj =
{

ssocj(t)
}
[1 < t < N f]

(3.9)

3.5 Features representation

The Fisher Vector (FV) coding method was first introduced for large-

scale image classification. Its superiority against the Bag-Of-Word (BOW)

method has been analyzed in the image classification [125] as it is going

beyond count analysis. It encodes additional information about the distri-

bution of the descriptors. It also has been used over the past five years in

action recognition [34, 109, 173, 155].

As a particular hand gesture is so far represented by three sets of fea-

tures, we aim to use the FV coding method to obtain a statistical represen-

tation vector for each of them.

First, we train a K-component Gaussian Mixture Model (GMM) using all

sets of a particular feature in the training set. We denote the parameters

of a GMM by λ = {πk, µk, σk}[1≤k≤K] where πk, µk, σk are respectively the

prior weight, mean and covariance of the Gaussian k. After the training

process, we are able to model any new incoming set S from the test data

as follows:

p(S|λ) =
N

∏
n=1

K

∑
k=1

πk p(Sn|λk) (3.10)

where Sn is the nth element of S and N the size of the set. Once we have

the set of Gaussian Models, we can compute our FV which is given by the

gradient of the formula of Eq. (3.10):

GSλ =
1
N
∇λ log p(S|λ) (3.11)

The derivatives in Eq. (3.11) are computed separately with respect to mean

64 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

and standard deviation parameters, leading to the final FV representation:

Φ(S) = {GS
µk

,GS
σk
}[1 ≤ k ≤ K] (3.12)

We also normalize the final vector with a l2 and power normalization to

eliminate the sparseness of the FV and increase its discriminability. We

refer the reader to Sanchez et al. [125] for more details.

It is also interesting to notice that the final size of a FV is 2dK where d

is the size of the feature and K the number of clusters used in the GMM.

This observation is a drawback compared to BOW, which has a size of K,

when applied to a long descriptor. However, this effect can be ignored in

our case where K is relatively small.

3.6 Temporal modeling

The descriptors explained previously in Section 3.4 describe hand shapes

and motion variations inside the sequence but they do not take into con-

sideration the dynamic aspect of a gesture. To add the temporal cue, we

use a Temporal Pyramid (TP) representation already employed in action and

hand gesture recognition approaches [34, 175].

The principle of the TP is to divide the sequence into n sub-sequences

at each nth level of the pyramid, as depicted in Figure 3.5.

After feature extraction, we represent a sequence of hand skeletons by

three sets of different features describing the direction of the hand (SD),

its rotation (SR) and its shape (Ssocj) during the sequence. For a new

gesture sequence, we use the Eq. (3.12) with the corresponding GMM

created from the training set to get the three statistical representation,

Φ(SD), Φ(SR) and Φ(Ssocj). We compute our three descriptors and their

statistical representations for each sub-sequence and concatenate them, as

depicted in Figure 3.6. Adding more levels to the pyramid gives more

temporal precision but increases the size of the final descriptor and the

computing time substantially.

3.6. Temporal modeling 65

Figure 3.5 – An example of a Temporal Pyramid of size 3.

Figure 3.6 – After temporal modeling, the three descriptors and their statistical represen-
tations are computed on each sub-sequences and, finally, concatenated.

66 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

3.7 Classification process

In the field of machine learning, a supervised classification task is the

problem of identifying to which of a set of categories – called also classes

or labels – a new observation belongs to. The term supervised comes from

the idea that the algorithm learns from a training set of data containing

observations whose category membership is known.

Let L = {(βi, yi)}i=1...N be a set of data called a dataset, where βi ∈ Rn

and yi a categorical variable taking values in 1, . . . , k, with k the number

of classes. A classification algorithm aim to find a mathematical approxi-

mation function h(βi) : Rn → 1, . . . , k that maps new unknown input data

learned from a training set of labeled samples.

In our case, βi is the concatenation of the three statistical representa-

tions of features described in Section 3.4 for each sub-sequences obtained

from a pyramid temporal segmentation. Each sequence is also labeled

with a gesture type yi taking values in 1, . . . , Ng where Ng is the number

of gesture types in the dataset currently used .

To learn a mapping classification function, we use a supervised learn-

ing classifier called Support Vector Machine (SVM) [49]. A SVM model

represent the training samples as points in a new space through linear

transformations and mapped so that samples of different categories are

divided by a clear gap, wide as possible. New incoming unknown sam-

ples are then mapped into the same space and predicted to belong to a

category based on which side of the gap they fall. If a kernel trick makes

possible to add non-linearity inside of the SVM mapping, we do not use it

as a linear kernel easily deals with our high-dimensional representation.

As originally SVM is a binary classfier, we employ a one-vs-rest strategy

resulting in Ng binary classifiers. We used the implementation contained

in the LIBSVM library [16].

3.8 Experimental results

In this section, we first introduce experimental settings of our method and

study intuitive versus automatic selection of features. Second, we evaluate

3.8. Experimental results 67

our proposed approach with two datasets and compare it with four state-

of-the-art methods using depth images and skeletal data. We explore its

capability to reduce the latency of the recognition process by evaluating

the trade-off between accuracy and latency. We also study the impact of

the upstream hand pose estimation algorithm on our method, and finally

discuss its promising potential and limitations.

3.8.1 Experimental settings

A) Descriptor encoding

We choose the number of levels Lpyr of the TP as equal to 4 as it pro-

vides a satisfactory compromise between the temporal representation of

gestures and the final size of our descriptor. The final size of our com-

puted descriptor is then (∑
Lpyr
i=1 i) × (sizeΦD + sizeΦR + sizeΦSoCJ), where

sizeΦx is the FV representation computed from the set of features x. Note

that sizeΦ = 2dK, where K is the number of models created in the GMM.

d is the feature dimension: respectively in R3, R3 and R12 for the direc-

tion, the rotation and the SoCJ features. For FV encoding, we map our

descriptors into a K-component GMM with K equal to 8, 8 and 256 gaus-

sians respectively for the direction, the rotation and the SoCJ features. If

not mentioned otherwise, we use a Leave-One-Subject-Out cross-validation

protocol for all conducted experiments.

B) Intuitive versus automatic selection of SoCJ descriptors

On hand skeletal data composed of 22 joints, we can compute 26334 dif-

ferent SoCJs. Using all of them is unnecessary as they provide redundant

information and cost computing time. We propose to evaluate two ways

to choose our feature set as a combination of the most relevant SoCJs. We

firstly evaluate a SOCJ set chosen intuitively and, secondly, by using an

automatic suboptimal deterministic feature selection algorithm called Se-

quential Forward Floating Search (SFFS). In this section, the score J for

each feature set is the classification accuracy obtained using a SVM and

only fine gestures of the DHG dataset. We choose this subset of gestures

68 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

as the SoCJs are meant to describe the hand shape (50% of the dataset is

used for test while using the remainder as training observations).

First, to represent the hand shape, we intuitively divide the hand skele-

ton into nine tuples of five joints representing the hand’s physical structure

as presented in Figure 3.7 and from which we compute our SoCJ descrip-

tor. This subset of nine tuples is chosen as it forms a grid on the hand

skeleton and each joint appears at least once. This subset obtains a score

J of 73.22%.

Figure 3.7 – Nine tuples chosen intuitively to construct the SoCJ descriptors. On the left
side are the five constructed with the four joints of each finger plus the palm. On the right
side, the one using the five tips, the five first articulations, the five second articulations
and the five finger bases.

Second, we use the SFFS algorithm proposed by Pudil et al. [113] in

order to automatically choose a relevant subset X following the score J(X)

laid down above. Starting with an empty set of feature X, this method

works in three steps detailed in Algorithm 1.

Results of the SFFS algorithm are shown in Figure 3.8. We obtain a

score J of 75.73% using 10 SoCJs, while adding more SoCJ seems irrelevant

as the accuracy does not increase.

Figure 3.9 shows the first three SoCJs selected by the SFFS algorithm.

It is interesting to see that the first one is composed of joints which be-

long to the thumb and the index, thus providing the necessary information

3.8. Experimental results 69

Algorithm 1: SFFS algorithm

1 X = {∅} ;
2 k = 0 ;
3 /* Select the best feature. */ ;
4 x+ = arg maxx/∈Xk(J(Xk + x)) ;
5 Xk = Xk + x+ ;
6 k = k + 1 ;
7 /* Select the worst feature. */ ;
8 x− = arg maxx∈Xk(J(Xk − x)) ;
9 /* Remove the worst feature. */ ;

10 if J(Xk − x−) > J(Xk) then
11 Xk+1 = Xk − x− ;
12 k = k + 1 ;
13 Go to 7 ;

14 else
15 Go to 3 ;

Figure 3.8 – SoCJ selection using SFFS algorithm on the fine gesture subset of the DHG
dataset. The y-axis accuracy is obtained using the number of SOCJ on the x-axis. Using
more that 10 SOCJ is not relevant as the accuracy stagnate.

70 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

Figure 3.9 – The first three SoCJ chosen by the Sequential Forward Floating Search
algorithm.

about the hand “clamp”. The second one gathers one joint of each finger

handling the information of the general shape of the hand (i.e. “open” or

“close”). If we use all the 26334 possible combinations, we decrease the

accuracy to 74.30%. We understand the drop as a misclassification due to

the lack of precision and the redundancy. We note that the computation

of 26334 SoCJs for a sequence of 35 frames takes 6.24 seconds, and only

0.0022 seconds for the 10 SoCJs chosen by the SFFS. We use these SoCJs in

the following experiments as this subset improves the score compared to

the one chosen intuitively.

3.8.2 Hand Gesture Recognition Results

A) DHG 14-28 dataset

To assess the effectiveness of our algorithm to classify gestures of the DHG

dataset into 14 classes, we compare the results obtained by the hand shape

and motion descriptors separately. Table 3.2 presents the accuracies of our

approach obtained using each of our descriptors independently and by

combining them. For clarity, we divide the results by coarse and fine

3.8. Experimental results 71

gestures according to the labels from Table 3.1, allowing us to analyze the

impact of each descriptor on each gesture category.

Table 3.2 – Accuracy comparison fine / coarse / both gesture for the DHG-14 dataset.

Features Fine (%) Coarse (%) Both (%)
Direction 44.60 88.50 72.79

Rotation 50.30 50.61 50.50

SoCJ 67.84 63.12 64.88

SoCJ + Direction + Rotation 74.43 93.77 86.86

Using all descriptors (direction + rotation + SoCJ) presented in Sec-

tion 3.3, the final accuracy of our algorithm on the DHG-14 is 86.86%.

It rises to 93.77 % recognition for the coarse gestures, but for the fine

ones the accuracy drops below 75%. A large difference can be observed

between accuracies obtained for the fine and the coarse gestures, respec-

tively 44.60% and 88.50% when using only the direction. The analysis of

the results obtained using only the SoCJ descriptor shows that the hand

shape is the most effective feature for the fine gestures with an accuracy of

67.84%. On the other hand, this result shows that the hand shape is also

a way to describe coarse gestures with a fair accuracy of 63.12%. If the

rotation descriptor shows a low average accuracy of 50.50% for both fine

and coarse gestures, it is a valuable feature for pairs of similar gestures

such as Rotation CW and Rotation CCW. These results confirm the interest

of using several descriptors in order to completely describe hand gestures.

To better understand the behavior of our approach according to the

recognition per class, the confusion matrix is illustrated in Fig. 3.10.

The first observation is that 11 gestures out of 14 have scored higher

than 85.00%. The second observation is the great amount confusion be-

tween the gestures Grab and Pinch. By analyzing the sequences, we ob-

serve that they are very similar and hard to distinguish even by the human

eye. The main difference between them is the hand movement amplitude

which is not taken into account by our approach. With a final accuracy

of 86.86% obtained on DHG-14 dataset, we noticed that the recognition

of dynamic hand gestures is still challenging. The recognition system has

72 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

Figure 3.10 – The confusion matrix of the proposed approach for the DHG-14 dataset.

to deal with the considerable differences between gestures performed by

different people, resulting in a challenging heterogeneity of the gestures.

Finally, in order to meet the challenge of gesture recognition when per-

formed with different numbers of fingers existing in the DHG-28 dataset,

we consider hand gestures as belonging to 28 classes related to the ges-

ture type and the way it has been performed (with one finger or the whole

hand). The resulting confusion matrix is shown in Figure 3.11. Using our

approach, we obtain an accuracy of 84.22%. As shown in Table 3.6, by

multiplying the number of classes by two, we lose 2.64% of accuracy.

The impact of using a Temporal Pyramid, a Fisher Vector representa-

tion and their combinations in our processing pipeline are also measured

and the evaluation results of the DHG-14 dataset are shown in Table 3.3.

Note that using SVM directly on features requires the descriptor to have

a fixed size. Indeed, we use a linear interpolation to resize the sequence

dimension to 35 frames which is the average number of frame of the se-

quences in the DHG dataset. Obtained results show that adding the FV

representation increases the accuracy by 2.87%. The temporal information

is very important because it encodes the dynamic aspect of gestures. Tak-

ing this into account in our pipeline – by adding the Temporal Pyramid

step – increases the final accuracy by 7.10%.

3.8. Experimental results 73

Fi
gu

re
3
.1

1
–

Th
e

co
nf

us
io

n
m

at
ri

x
ob

ta
in

ed
by

th
e

pr
op

os
ed

ap
pr

oa
ch

fo
r

th
e

D
H

G
-2

8
da

ta
se

t.
Th

e
ge

st
ur

es
an

no
ta

te
d

(1
)

an
d

(2
)

w
er

e
pe

rf
or

m
ed

re
sp

ec
tiv

el
y

us
in

g
on

e
fin

ge
r

an
d

w
ith

th
e

w
ho

le
ha

nd
.

74 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

Table 3.3 – Recognition accuracies obtained on the DHG-14 gesture dataset following
different pipeline configurations.

Pipeline Accuracy (%)
Features + SVM 76.89

Features + FV + SVM 79.76

Features + TP + FV + SVM 86.86

B) Handicraft-Gesture dataset

Handicraft-Gesture is a dataset built with a Leap Motion Controller (LMC)

[84]. A LMC is a device providing accurate information about the hand

skeleton which contains the same 22 joints described in Figure 3.1. This

dataset is made of 10 gestures which originate from pottery skills: poke,

pinch, pull, scrape, slap, press, cut, circle, key tap, mow. The data are cap-

tured at a rate of 60 frames per second. There were 10 volunteers helping

to build the dataset and each one performed every gesture three times.

Therefore, the Handicraft-Gesture dataset contains 300 sequences of dy-

namic hand gestures.

To evaluate our approach on the Handicraft-Gesture dataset, we follow

the experimental protocol proposed by Lu et al. [84], i.e. Leave-One-Subject-

Out cross-validation. They compute several features based on palm di-

rection, palm normal, fingertip positions, and palm center position. For

the classification of temporal sequences, they use a Hidden Conditional

Neural Field classifier. Table 3.4 shows how the hand gesture recognition

accuracy has been increased by 2.11% using our approach.

Table 3.4 – Recognition accuracies obtained on the Handicraft-Gesture dataset.

Method Accuracy (%)
Lu et al. [84] 95.00

Ours 97.11

In order to investigate the impact of each of our descriptors (direction,

rotation and SoCJ) on the Handicraft-Gesture dataset, Table 3.5 presents

the accuracy obtained using each of those descriptors independently and

by concatenating them in only one descriptor. The direction and the ro-

tation of the hand through the movement give acceptable results, respec-

tively 71.66% and 62.67%. However, the score increases to 92.35% using

3.8. Experimental results 75

only the SoCJ descriptor. Indeed, pottery skills require fine hand gestures

which do not contain a lot of motion information, similarly to fine ges-

tures of the DHG dataset. These gestures are better described by hand

shape variations, so, that is the reason why the SoCJ is considered as the

most effective feature for recognition.

Table 3.5 – Recognition accuracies obtained on the Handicraft-Gesture dataset for each
descriptor of our approach.

Features Accuracy (%)
Direction 71.66

Rotation 62.67

SoCJ 92.35

SoCJ + Direction + Rotation 97.11

We also note, as shown in Table 3.2, that combining the descriptors

leads to a significant gain in performance. This combination is more useful

for the DHG dataset that for the Handicraft-Gesture dataset where adding

the motion features improves the recognition rate by only 4.76%. That is

explained by the different nature of gestures incorporated in the datasets.

Gestures of the Handicraft-Gesture dataset come from pottery skills. The

DHG dataset is more heterogeneous as it also contains coarse gestures

for which our motion features are important. In fact, both coarse and

fine gestures are useful in a Human-Computer Interface. Future gesture

recognition algorithms will have to take the two varieties into account.

C) Comparison with state-of-the-art methods

We compare our approach with four state-of-the-art methods on the DHG

dataset. We chose two depth-based descriptors: HOG2 proposed by Ohn-

Bar et al. [104] and HON4D proposed by Oreifej et al. [107]. We also

compare our approach to a skeleton-based method proposed by Devanne

et al. [27] showing a good accuracy for human action recognition. De-

vanne’s approach is based on a similarity metric of human trajectories

using the shape of 3D body skeleton in a Riemannian manifold. Finally,

we compare the hand shape descriptor SoCJ with a similar state-of-the-art

76 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

feature called Skeletal Quad defined by Evangelidis et al. [34]. The pub-

licly available source codes of these methods are used in our experiments.

For the two depth-based descriptors [104, 107], pre-processing steps

on the depth sequences are needed. First, using a suitable threshold, we

clean the image by removing the background and the body of the subject

keeping only the region-of-interest of the hand. Then, we crop the size of

the images by removing all regions where the hand does not appear along

the sequence. For the HON4D method, we choose a spatio-temporal grid

of size 5 × 5 × 3 since it gives the best accuracy. For Evangelidis et al.

method [34], in order to properly compare the hand shape descriptors, we

use our approach by swapping our SoCJ with the Skeletal Quad descriptor

while keeping the rotation and direction features.

Table 3.6 presents the results obtained by the methods cited previously

using 14 and 28 gestures on the DHG dataset. We note that our approach

outperformed, with an accuracy of 86.86%, the two depth-based descrip-

tors showing the promising direction of using skeletal data for hand ges-

ture recognition. The accuracy obtained by the action recognition method

[27] applied for 3D hand joints trajectories is 76.61%. It shows that an ac-

tion recognition approach is often not appropriate for hand gesture recog-

nition and that hand trajectories are not sufficiently distinctive enough for

hand gesture classification.

Table 3.6 – accuracy comparison 14 / 28 gestures for the DHG dataset.

Method 14 gestures (%) 28 gestures (%)
Ohn-Bar et al. [104] 81.85 76.53

Oreifej et al. [107] 75.53 74.03

Devanne et al. [27] 76.61 62.00

Evangelidis et al. [34] 84.50 79.43

Ours 86.86 84.22

When we apply these methods on 28 classes, the HOG2 descriptor

[104], which had a good result on 14 gestures, obtains 76.53% of accuracy.

The depth-based methods do not handle enough hand shape information

to deal with the challenge of hand gestures performed with different num-

bers of fingers. We note that Devanne’s approach loses 14.61% of recog-

nition rate on this experiment showing that the method, giving a good

3.8. Experimental results 77

result on action recognition dataset, it is unsuitable for fine and dynamic

hand gesture recognition.

Evangelidis et al. [34] propose a local body skeleton descriptor that

encodes the relative position of joint quadruples. It requires a Similarity

Normalisation Transform (SNT) that leads to a compact (6D) view-invariant

skeletal feature, called Skeletal Quad. Because of the SNT, their descriptor

takes more computation time and is less suitable for hand shape descrip-

tion as it lost information about distances between joints. The accuracy

on the DHG-28 dataset using their hand shape descriptor decreases by 4%

compared to the SoCJ descriptor.

In Table 3.7, we investigate the impact of the different methods on the

fine and coarse gestures separately. We notice that coarse gestures are

defined by the motion of the hand in space and fine gestures are more

distinguished by the variation of the hand shape during the sequence.

The statement of a need of precision in the field of dynamic hand gesture

recognition is also shown in this experiment. Except for the HOG2 de-

scriptor [104], Oreifej et al. [107] and Devanne et al. [27] give honorable

results in the task of coarse gesture classification but they show a lack of

precision generating a recognition rate below 61% when trying to classify

fine gestures. Although our approach gives the best results with 74.43%

of correctly labeled fine gestures, we note that further improvements are

needed.

Table 3.7 – Accuracy comparison for coarse / fine gestures of the DHG-14 dataset.

Method Coarse gestures (%) Fine gestures (%)
Ohn-Bar et al. [104] 86.00 71.60

Oreifej et al. [107] 83.88 60.50

Devanne et al. [27] 86.61 58.60

Evangelidis et al. [34] 92.22 70.62

Our approach 93.77 74.43

3.8.3 Latency analysis and computation time

For many applications, making a potentially unreliable forced decision

based on partial available frames is a real challenge. The goal of the fol-

lowing experiments is to automatically determine when a sufficient num-

78 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

ber of frames are observed to provide a reliable recognition of the oc-

curring gesture, hence the term low-latency recognition. The latency can

be defined as the time lapse between the moment when a sequence is

given to the algorithm and the instant when the system recognizes the

performed gesture. We study here two characteristics: computational and

observational latency. The computational latency is the time the system

takes to perform the recognition process. The observational latency repre-

sents the percentage of a continuous gesture needed by a system in order

to perform its recognition.

A) Computational latency

The computational time is a very important characteristic of a hand ges-

ture recognition algorithm as it should be working in real time for some

HCI applications. We evaluate the computational latency of our approach

on the DHG-14 dataset, using a MatLab implementation with an Intel

Xeon CPU E3 3.40 GHz and 8 GB RAM. Since the proposed approach

is based only on skeletal joint coordinates, it needs a small computation

time. Table 3.8 reports the minimum, average and maximum computation

time for each step of our approach. For the whole recognition process,

the average computation time is 0.2502s for a sequence of 35 frames. This

time makes our approach suitable for real-time recognition. We note that

88.49% of this time is taken by the classification process.

Table 3.8 – Computation time in second for each step of our approach on the DHG-14
dataset. We note that some steps are dependent of the size of the sequence. We report the
time for the smallest sequence (N f = 20), the mean size over all the sequence (N f = 35)
and the biggest sequence (N f = 150).

Step Mins (sec) Averages (sec) Maxs (sec)
Normalization of hand size 0.0038 0.0154 0.0640

Direction descriptor 0.0002 0.0011 0.0045

Rotation descriptor 0.0001 0.0005 0.0026

Registration of the hand 0.0009 0.0038 0.0157

SoCJ descriptor 0.0005 0.0022 0.0089

FV and TP construction 0.0033 0.0058 0.0188

Classification 0.1905 0.2214 0.2150

Total 0.1993 0.2502 0.3295

3.8. Experimental results 79

B) Observational latency

To analyze the observational latency of our approach, we show how the ac-

curacy depends on the percentage of the sequence. New recognition rates

are computed by processing only a percentage of the sequence length. In

each case, we cut the training sequences into shorter ones to create a new

training set. During the classification step, we also cut the test sequences

to the corresponding length and apply our method with the same learning

protocol Leave-One-Subject-Out cross validation.

Figure 3.12 shows the observational latency of our approach on the

DHG-14 and the Handycraft dataset. We see that a near-maximum accu-

racy is obtained using 60% of each sequence on both datasets. In other

words, the evaluations in terms of latency have revealed the efficiency of

our approach for rapid gesture recognition. It is possible to recognize a

gesture from the DHG-14 dataset composed of 50 frames up to 80.82%

seeing only 30 frames (versus 86.86% using all the frames). Thus, our ap-

proach can be used for interactive systems, notably, in entertainment ap-

plications to resolve the problem of lag and improve some gesture-based

games.

This shows that the computational latency can be masked by the ob-

servational latency in the cases where sequences are nearly twice as long

as the computational latency.

3.8.4 Influence of the upstream hand pose estimation step on hand ges-

ture recognition

Hand pose estimation is a growing field of research. The needs of precise

mid-air HCI for emerging applications (i.e. interaction with a virtual or

augmented realty world) has attracted much attention in the Computer

Vision community [101, 40, 75, 76, 140]. We conduct a final experiment in

order to assess the influence of the depth-based hand pose estimation on

our approach.

80 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

Figure 3.12 – Observationnal latency analysis on the DHG-14 and Handicraft-Gesture
datasets. The accuracy on the y-axis is obtained by processing only the percentage of the
sequence shown in the x-axis.

3.8. Experimental results 81

A) Hand Pose Estimators

In order to measure the impact of hand pose estimation on gesture recog-

nition, we evaluate three distinct hand pose estimators on the DHG-14

dataset: the methods proposed by Oberweger et al. [101] and Ge et al.

[40] in addition to the Intel RealSense estimator [117]. The hand pose esti-

mator proposed by Oberweger et al. in [101] predicts joint positions from

hand depth images using Convolutional Neural Networks (CNN). For the

CNN training step, we use the ICVL dataset [144] composed of 180,000

ground truth annotated depth images with the 3D joint locations of the

hand. The depth images comes from the Intel Creative depth sensor. The

second method proposed by Ge et al. [40] projects the hand depth images

onto three orthogonal planes and utilizes these multi-view projections to

regress into 2D heat-maps using CNNs which estimate the joint positions

on each plane. These multi-view heat-maps are then fused to produce fi-

nal 3D hand pose estimation. The dataset, introduced by Sun et al. [140]

and composed of 76500 depth images captured using the Intel Creative

depth sensor, is used to train the CNNs. A cross-dataset challenge has

been experimented by Ge et al. [40] to verify the possible generalization

of their method by showing its ability to use a dataset for training and

another one for testing.

We use in these experiments the region-of-interest of the hand returned

by Intel RealSense depth camera as inputs to pre-trained hand pose esti-

mator algorithms instead of a particular hand extraction algorithm, with-

out any preprocessing step.

Finally, we perform hand gesture recognition using our method from

the estimated 3D joint positions obtained by each one of the two estimator

algorithms, and compared the results with those obtained using the Intel

RealSense. Figure 3.13 shows the recognition accuracies on our DHG-14

dataset per class of gestures. The average accuracies by estimator, available

in Table 3.9, show that the performance of our method is independent of

the pose estimation algorithm.

82 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

Figure 3.13 – Recognition accuracies per class of gesture on the DHG-14 dataset using
three hand pose estimators.

Table 3.9 – Average recognition accuracies obtained on the DHG-14 dataset using three
hand pose estimators.

Hand pose estimation algorithm Accuracy (%)
Ge et al. [40] 86.92

Oberwerger et al. [101] 86.24

Intel Realsense [117] 86.86

B) Results on the NVIDIA Dynamic Hand Gesture dataset

Recently, Molchanov et al. [94] introduced a new challenging multimodal

dynamic hand gesture dataset captured with depth, color and stereo-IR

sensors in a car simulator. Using multiple sensors, they acquired a total

of 1532 gestures of 25 hand gesture types as depicted in Figure 3.14. A to-

tal of 20 subjects participated in data collection, performing gestures with

their right hand. The SoftKinetic DS325 sensor is used to acquire frontal

view color and depth videos. We evaluate our approach applied to this

challenging dataset, using Ge et al. hand pose estimator [40] which gives

the best recognition accuracy on DHG-14 dataset (see Table 3.9). The ex-

tracted 3D joint positions of hand from depth images are used as input

for our gesture recognition method. Following the same protocol pro-

posed in [94], we randomly split the data into a training (70%) and a test

(30%) sets, resulting in 1050 training and 482 test videos. We perform the

hand region-of-interested extraction step using the same algorithm used

3.8. Experimental results 83

Fi
gu

re
3

.1
4

–
Th

e
25

di
ffe

re
nt

ge
st

ur
es

of
th

e
N

V
ID

IA
ha

nd
ge

st
ur

e
da

ta
se

t.
Ea

ch
co

lu
m

n
sh

ow
s

a
di

ffe
re

nt
ge

st
ur

e
cl

as
s

(1
-2

5)
.T

he
ge

st
ur

es
in

cl
ud

ed
(fr

om
le

ft
to

ri
gh

t:
m

ov
in

g
th

e
ha

nd
le

ft,
ri

gh
t,

up
,o

r
do

w
n;

m
ov

in
g

tw
o

fin
ge

rs
le

ft,
ri

gh
t,

up
,o

r
do

w
n;

cl
ic

ki
ng

w
ith

th
e

in
de

x
fin

ge
r;

ca
lli

ng
so

m
eo

ne
(b

ec
ko

ni
ng

w
ith

th
e

ha
nd

);
op

en
in

g
an

d
sh

ak
in

g
th

e
ha

nd
;s

ho
w

in
g

th
e

in
de

x
fin

ge
r,

tw
o

fin
ge

rs
or

th
re

e
fin

ge
rs

;p
us

hi
ng

th
e

ha
nd

up
,d

ow
n,

ou
t

or
in

;r
ot

at
in

g
tw

o
fin

ge
rs

cl
oc

kw
is

e
or

co
un

te
r-

cl
oc

kw
is

e;
pu

sh
in

g
fo

rw
ar

d
w

ith
tw

o
fin

ge
rs

;
cl

os
in

g
th

e
ha

nd
tw

ic
e;

an
d

sh
ow

in
g

“t
hu

m
b

up
”

or
“O

k”
.

Th
e

to
p

an
d

bo
tt

om
ro

w
s

sh
ow

th
e

st
ar

tin
g

an
d

en
di

ng
de

pt
h

fr
am

es
,

re
sp

ec
tiv

el
y,

an
d

ye
llo

w
ar

ro
w

s
in

di
ca

te
th

e
m

ot
io

n
pe

rf
or

m
ed

in
in

te
rm

ed
ia

te
fr

am
es

.I
m

ag
e

re
pr

od
uc

ed
fr

om
[4

6]
.

84 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

by Oberwerger et al. and Get et al. [101, 40]. In Table 3.10, we compare

our approach to two handcrafted methods (HOG+HOG2 [105] and Super

Normal Vector (SNV) [167]) and two deep learning methods (C3D [149]

and R3DCNN [94]). It should be noticed that we show results obtained

by the state-of-the-art methods using only depth information. The recog-

nition accuracies per gesture types obtained by our approach and by the

R3DCNN method [94] are also presented in Fig. 3.15.

Figure 3.15 – Comparison of recognition accuracies per class of gestures on the NVIDIA
Dynamic Hand Gestures dataset. The list of gestures – annotated 1 to 25 – is depicted in
Figure 3.14.

Table 3.10 – Comparison of our method to the state-of-the-art methods on depth images
of the NVIDIA Dynamic Hand Gesture dataset.

Method Type Data Accuracy (%)
HOG+HOG2 [105] Hand-Crafted Depth 36.3

SNV [167] Hand-Crafted Depth 70.7
C3D [149] Deep Learning Depth 78.8

R3DCNN [94] Deep Learning Depth 80.3
Ours Hand-Crafted 3D Hand Skeletal 74.0

Our results allow us to make three main observations: First, with a final

recognition accuracy of 74.0%, we go beyond the two handcrafted methods

[105, 167] which use depth image based descriptors and obtain respec-

tively 36.3% and 70.7%. Second, deep learning methods outperformed

3.8. Experimental results 85

recent results in many domains in computer vision. Following this state-

ment, 3D convolutional layers presented in [149, 94] show particularly

reliable accuracies on the task of 3D hand gesture recognition, obtaining,

respectively, 78.8% and 80.3%. The R3DCNN method [94] gets better re-

sults using a recurrent layer after the 3D convolution in order to model

the global temporal information.

Finally, despite the overall superiority of the R3DCNN method, our

approach provides more accurate recognition accuracy for eight gestures:

hand up (69% to 80%), two fingers left (68% to 80%), two fingers down

(65% to 89%), showing one (65% to 78%) or two (66% to 85%) fingers, one

(63% to 73%) or two (74% to 100%) fingers forward , "OK" sign (73% to

94%). Labels of these gestures in Figure 3.14 are, respectively, 3, 6, 8, 13,

14, 9, 22 and 25.

It is interesting to note that the R3DCNN method outperforms our ap-

proach mostly on gestures with an open hand and where the gesture can

be described mainly by the movement in space. In contrast, our method

surpasses the recognition of the different number of fingers used during

the sequence. We interpret this as our approach lacking precision to de-

scribe the dynamic part of hand gestures. It remains to be noted that the

hand pose estimator still has difficulty to estimate the hand pose in certain

acquisition conditions (i.e. as the the hand is perpendicular to the camera

or when the user performs a quick gesture). In fact, hand pose estima-

tion is a challenging task and recent state-of-the-art approaches still need

improvements. We expect enhancing hand pose estimation will bring im-

provement of hand gesture recognition.

Moreover, the R3DCNN is composed of a large neural network with

more than 50 million parameters. They use a NVIDIA DIGITS DevBox

with four Titan X GPUs to train and predict a new incoming gesture. Cur-

rently, this configuration is not suitable for real applications. Additionally,

with the use of our SoCJ descriptors, we are able to analyze the impact

of our descriptors on the recognition process(3.8.1), which is not possible

using a deep neural network refered to as a “black box”.

86 Chapter 3. Heterogeneous hand gesture recognition using 3D skeletal features

3.9 Conclusion

In this chapter, we explored a way to perform dynamic hand gestures

recognition using hand skeletal features. We proposed a method using

three gestural features: hand’s direction, rotation and a set of Shape of

Connected Joint to extract an efficient hand shape information. Each set

of features is transformed in a statistical representation using a Fisher

Kernel. In addition, we computed those descriptions on overlapping sub-

sequences of gestures using a temporal pyramid representation. The eval-

uation of our approach shows a promising way to perform hand gesture

recognition using skeletal-based features.

Experiments are carried out on three hand gesture datasets, containing

a set of fine and coarse heterogeneous gestures captured in different sce-

narios. Furthermore, results of our approach in terms of latency demon-

strated improvements for a low-latency hand gesture recognition systems,

where an early classification is needed. Comparative results with state-

of-the-art methods demonstrate that our approach outperforms existing

handcrafted approaches.

Moreover, we also revealed a lack of precision to describe the dynamic

of complex hand gestures, compared with the feature learning power of

modern deep learning models.

In the two following chapters, we focus on deep learning strategies in

order to better represent the complex dynamic and temporal information

of hand gestures. Moreover, gesture detection in an online scenario are

considered as an extension of our current approach.

4Recent deep learning

approaches in Computer

Vision

Contents

4.1 Introduction . 88

4.1.1 Different pipelines in Computer Vision: handcrafted ver-

sus deep learning approaches 88

4.1.2 Feature extraction . 89

4.1.3 Pros and cons . 92

4.2 Where does deep learning come from and why is it so

hot topic right now? . 93

4.2.1 History . 93

4.2.2 Perceptrons and biological neurons similarities 94

4.2.3 Why only now? . 95

4.3 Technical keys to understand Deep Learning 97

4.3.1 The multilayer perceptrons 97

4.3.2 Training a feedforward neural network 99

4.4 Technical details of deep learning elements 101

4.4.1 Softmax function . 102

4.4.2 Cross-entropy cost function 103

4.4.3 Convolutional Neural Network 104

4.4.4 Recurrent Neural Networks 109

4.5 Conclusion . 115

87

88 Chapter 4. Recent deep learning approaches in Computer Vision

4.1 Introduction

Recently, many applications of the Computer Vision (CV) field shown a

change of paradigm. From human activity recognition to speech recog-

nition, image classification and labeling, CV areas see the emergence and

successful arrival of the machine learning technology called deep learn-

ing. Since 2010, researchers migrate from traditional handcrafted features

to learned-based features also called data-driven algorithm. There are

many learned-based feature methods for vision recognition tasks such as

dictionary-based approaches or genetic programming. Nevertheless, we

focus on deep learning as, in recent years, it changes the game in com-

puter vision.

4.1.1 Different pipelines in Computer Vision: handcrafted versus deep

learning approaches

Vision-based recognition algorithms can be divided into two categories:

handcrafted and learned-based feature methods. Many CV challenges

can be solved by handcrafting the right set of features from the data to ac-

complish the task. The pipeline of handcrafted based algorithms consists

often of three main steps:

1) Data generation and pre-processing. Data are captured from devices,

e.g. 2D and/or 3D sensors, which are inputs of algorithms. Raw data

are often pre-processed. Generally, the pre-processing step consists of

foreground detection, background removal and/or raw data filtering to

remove outliers and defaults. Often, inputs can also be a representation

computed from the original data. For example, a set of 3D joints – called

a body skeleton – is retrieved and computed from a sequence of human

depth images and is the input of a gesture recognition algorithm [27].

Algorithms take generally a combination of multiple raw data and/or

representations as inputs in order to get a maximum of relevant informa-

tion [99].

4.1. Introduction 89

2) Handcrafted feature extraction. Handcrafted features is also called

feature engineering. A handcrafted feature comes generally from human

intuitions and problem-specific prior knowledge. For researchers, it con-

sists of understanding a problematic emerging from a specific type of data,

e.g. how to recognize different hand gestures from depth images? As

computers deal with numbers, researchers extract a bunch of mathemati-

cal features from raw data that correctly help to solve the problematic.

3) Trainable classifier. Machine learning allows us to tackle tasks that are

too difficult to solve with a hand design program. Classification problems

are machine learning tasks where the program is asked to specify which

of K categories or labels some input data belongs to.

Let L = {(βi, yi)}i=1...N be a set of data called a dataset, where βi ∈

Rn and yi a categorical variable ∈ 1, . . . , k called label, such that yi =

f (βi) known as ground-truth. The goal here is to find a mathematical

approximation function ŷi = h(βi, θ) of f that maps the input data with

its label. This function – called a classifier – has to minimize a cost function

which penalizes the mismatching between the output of the classification

function ŷ and the ground-truth y.

Feature engineering is able to incorporate human ingenuity and

problem-specific prior knowledge. However, the lack of knowledge and

the high level of abstraction of the task make difficult to find a correct

mathematical representation of the data. One possible solution of this

problem is to use machine learning to discover not only the classification

mapping but also the efficient set of features from the original data. In the

deep learning paradigm, as show in Figure 4.1, we replace handcrafted

features by computing low and abstract features using a learning algo-

rithms.

4.1.2 Feature extraction

Pre-processing, representation and feature engineering are steps of the

recognition process that happen after capturing raw data and before using

a classifier. They can be grouped in a step called feature extraction.

90 Chapter 4. Recent deep learning approaches in Computer Vision

Figure 4.1 – Flowcharts showing how the different parts of the AI system relate to each
other within different strategies. White squares indicate operations that are able to learn
from data. Blue squares indicates hand made operation. Green squares and red circles
represent, respectively, data and label.

4.1. Introduction 91

Boundaries between steps of pre-processing, representation, and fea-

tures engineering are unclear. Bengio et al. [9] use the words representation

and feature as synonyms in their survey in the area of unsupervised fea-

ture learning and deep learning. For example, are data normalization and

standardization pre-processing steps or a new representation of data in

a different mathematical basis? The common idea behind the difference

between a representation and a feature is the possibility of performing the

inverse function if using a representation.

Figure 4.2 is depicting a simple example of the impact of data repre-

sentation on the classification process. We display two sets of 2D points

in the Cartesian space where one is circled by the other. If we aim to sep-

arate the two sets by a single line, the task seems impossible. Unless, we

represent the points in the Polar space and, thus, easily separate the two

sets by a straight vertical line.

Figure 4.2 – Example of different data representation. Let us suppose we want to separate
by a line the two set of 2D points in the Cartesian space coordinates displayed on the left
picture. This task is impossible. By passing into the Polar space coordinates showed in
the right picture, the task becomes simple to solve with a vertical line. Image reproduced
from [41].

Theoretically, a fully data-driven algorithm should take as inputs raw

data but none works in that way. A pre-processing step is always nec-

essary and a representation is often used. Some of the best performing

deep neural networks on recognition tasks still use representation or even

engineered features as inputs. Recently, Jaderberg et al. [56] proposed to

92 Chapter 4. Recent deep learning approaches in Computer Vision

learn – instead of compute – the pre-processing step, trying to make their

algorithms real fully end-to-end data-driven algorithms.

4.1.3 Pros and cons

Performances of traditional machine learning algorithms, such as Support

Vector Machine [49], Ramdom Forest [12] or Hidden Markow Model [116],

heavily depend on the chosen data representation. However, handcrafted

features often suffer from a loss of information.

Deep Learning algorithms have recently given particularly amazing re-

sults on many challenges in CV but they also suffer from drawbacks. They

need a huge amount of data to work properly, which is still a problem in

some area of research where data are not created easily such as 3D data.

Additionally, training and parameterizing deep neural networks need a

lot of computation resources and experimentation times.

Are handcrafted algorithms will become obsolete? It yet exists a wide

area of applications that needs handcrafted features. To better understand

when and where we should use one or the other, let us have a look at two

practical examples:

First example. A group of researchers have a dataset of 200,000 images

representing random colored geometric forms. A psychological experi-

ment have been done and each of these images have been binary classified

according to whether children like them or not. We know the images are

labeled correctly. However, psychologist did not find explanations about

why children like an image and not another. Whatever the reasons, re-

searchers aim to classify an incoming image according to whether it will

please a child or not.

This is a perfect challenge to use deep learning algorithm. First, re-

searchers have a huge amount of labeled data. Second, experts have no

idea about how to extract effective features from data in order to solve the

problem. In this case, we can use a deep neural network in order to tackle

the challenge.

4.2. Where does deep learning come from and why is it so hot topic right now? 93

Second example. A group of researchers have a dataset of 1000 images of

a rare skin disease. Physicians classified them as sick or not sick. They aim

to develop an algorithm that is able to classify a new incoming skin image.

The application aims to be used in old computers with low computational

resources.

In this case, we miss data in order to use a deep learning algorithm.

Additionally, deep neural networks, as Convolutional Neural Network

(see 4.4.3), need a powerful hardware configuration to works on images.

Compared to learned features, this case will profit the flexibility and com-

putational efficiency of features engineering, and it does not rely on a (too)

large dataset.

Deep neural networks are a revolution and a wonderful technology

that already prove their effectiveness. However, fully end-to-end learned

deep neural network models, often referred to as “black-box”, have limita-

tions. Sometimes, using deep neural networks as the only hammer might

make the solution over-engineered. It is also difficult to take into account

problematic-specific prior knowledge into deep neural network models.

Finally, once features are learned they are hardly understandable by hu-

mans.

4.2 Where does deep learning come from and why is it

so hot topic right now?

4.2.1 History

Since ancient Greece, humanity dreams about creating new forms of intel-

ligence. In his book, Metamorphoses, Ovid, one of the most famous ancient

Roman poet, told the story of Pygmalion, an artist which, with the help of

gods, gave life to a statue he had carved. In the Jewish folklore exists the

Golem, a half-intelligent creature made of mud and magic.

In 1842, the Countess of Lovelace, Augusta Ada King Noel wrote the

first algorithm which made her the first programmer in the history. Since

then, computer technology did not stop to evolve, making objects more

and more intelligent. Artificial Intelligence (AI) is one of the most active

94 Chapter 4. Recent deep learning approaches in Computer Vision

topic of research in computer science and have many practical applica-

tions. Yesterday, we asked computers to perform routine labor for us.

Today, we ask them to understand speech, images and videos, or yet, to

help doctors to diagnose diseases.

In AI, the big question is: how to make a computer learn by itself ?

As we saw in the previous section, the traditional way to do it is to find

an expert of the topic you want the computer to learn about. With its

problem-specific prior knowledge, you are able to write a rules based pro-

gram that makes the computer helpful. What makes deep learning really

interesting is that it do not need a deep implication from experts about a

specific problem to learn a possible solution. One thing that need to keep

in mind is that, so far, we still need label data and human intuitions to

find an efficient objective function.

As early as 1943, Warren McCulloch and Walter Pitts introduced a

model of neurological networks. They recreated neurons based on thresh-

old switches and showed that even simple networks of this kind are able

to calculate any logic or arithmetic function [90]. In the 1950s, following

their statements and inspired by the successfully working brain systems

and its wonderful capability to learn, Frank Rosenblatt developed the idea

of an artificial neuron called Perceptron [122].

4.2.2 Perceptrons and biological neurons similarities

Biological neurons. Many things are still unknown about how the brain

trains itself. In the human brain, a neuron collects electrical signals from

many others through fine structures called dendrites. The sum of inputs

is received by the nucleus. If it receives a sufficiently high signal, it sends

a spike of electrical activity. The latter is sent out through the axon. At the

end, a structure called a synapse, passes this activity to the next connected

neurons. Learning occurs by changing the effectiveness of synapses so that

the influence of one neuron on another changes. A simplified representa-

tion of a biological neuron is shown in Figure 4.3.

The perceptron. A perceptron is a mathematical model of a biological

neuron depicted in Figure 4.3. It takes as input a set X of boolean values.

4.2. Where does deep learning come from and why is it so hot topic right now? 95

Figure 4.3 – (left) Representation of a biological neuron. (right) Representation of an
artificial neuron.

The nucleus is modeled by a weighted sum of the inputs ∑ WiXi. The

synaptic potential is represented by a hyperbolic tangent:

Z = tanh(∑ WiXi) (4.1)

Finally, the model uses the Heaviside step function to binarize the out-

put Y, as follow:

Y =

0 si Z < 0

1 si Z ≥ 0
(4.2)

4.2.3 Why only now?

Why deep learning has only recently become recognized as a trustful,

powerful and essential technology as the first experiments with artificial

neural networks were conducted in the 1950s. The most noticeable de-

velopment is that, nowadays, we can provide to algorithms the required

resources to succeed: large sets of data and powerful hardware.

Size of datasets. The size of CV datasets has increased dramatically the

last few years. This was possible thanks to the digitization of the society.

As more and more of our activities take place on the internet, many of our

information and actions are recorded including pictures and videos. A

deep learning algorithm can take advantage of a huge amount of data and,

even, exceed human performance. Recently, the YouTube company made

publicly available a large-scale dataset [1] that consists of eight million of

YouTube labeled video according to a vocabulary of 4700 visual entities.

Beside, the ImageNet project [25] created a large visual dataset designed

96 Chapter 4. Recent deep learning approaches in Computer Vision

for use in visual object recognition which contains over ten million of

labeled images.

Size of models. Deep neural networks algorithms are neural networks

with higher depth.

There is no universally agreed upon threshold of depth dividing shal-

low learning from deep learning. Most researchers in the field agree

that deep learning has more than one nonlinear layers and more than

10 is considered has very deep learning. In Schmidhuber et al. [126].

Initially, the number of neurons in artificial neural networks were lim-

ited by hardware capabilities. Neural networks have been relatively small

until quite recently. Today, the number of neurons is mostly a design

choice. Some artificial neural networks [19] have nearly as many connec-

tions per neuron as a cat (≈ 1013).

The explosion of the neural network model sizes is due to faster com-

puters with larger memories. Larger networks are able to achieve higher

accuracy on more complex tasks. In 2017, the current hardware built by

NVIDIA and dedicated for learning deep neural networks is the NVIDIA

DiGiTS DevBox. It cost 15, 000 dollars and includes the following hard-

ware:

• Four TITAN X GPUs with 12GB of memory per GPU

• 64GB DDR4

• Asus X99-E WS workstation class motherboard with 4-way PCI-E

Gen3 x16 support

• Core i7-5930K 6 Core 3.5GHz desktop processor

• Three 3TB SATA 6Gb 3.5" Enterprise Hard Drive in RAID5

• 512GB PCI-E M.2 SSD cache for RAID

• 250GB SATA 6Gb Internal SSD

• 1600W Power Supply Unit from premium suppliers including EVGA

4.3. Technical keys to understand Deep Learning 97

Why the NVIDIA DiGiTS DevBox contains four powerful Graphics Pro-

cessing Units (GPU)? In Section 4.4.3, we present a type of deep neural

network – called Convolutional Neural Network – that can take an image

as input and apply an analog operation of filtering to it. A filtering opera-

tion consists of computing a small function on each pixel of the image. It

is a highly parallelizable operation that is handled efficiently by a GPU.

4.3 Technical keys to understand Deep Learning

4.3.1 The multilayer perceptrons

The basic example of a deep learning model is called a feedforward neural

network or a multilayer perceptrons (MLP).

The goal of a MLP is to find a mathematical function f that maps

a set of input values to outputs. In the recognition process in CV, as

explained in Section 4.1, f is the function that will map an input data x to

a categorical variable y. In other terms, it aims to learn parameters θ of the

function f (x, θ) that result in the best approximation function f : x → ŷ of

a specific classification problem.

Networks are called so because they contained a chain of many simpler

vector-to-vector functions called layers which makes possible to write the

function ŷ = f (x, θ) in the form ŷ = f4(f3(f2(f1(x, θ1), θ2), θ3), θ4). In

this case, the function f is composed of four layers as depicted in Figure

4.4. Each layer can be seen as a mathematical function providing a new

representation of the input. They are designed to achieve a statistical

generalization. The number of layers defines the depth of the model. The

first one is called the input layer, the last one is called the output layer and

the middle ones are called hidden layers as their values are not given by the

data.

We note that this network is called feedforward because information

flows from the input x to the output y. There are no feedback connections

in which outputs of a layer are fed back onto itself. When feedback con-

nections exist in a layer, it is called Recurrent Neural Layer. These networks

are studied in Section 4.4.4.

98 Chapter 4. Recent deep learning approaches in Computer Vision

Figure 4.4 – Schema of a multilayer perceptrons of depth 4

A layer of a MLP is composed of many units called artificial neurons

(AN) that act in parallel. The number of AN in a layer defines its width. An

AN is an evolution of the perceptron described above and is a vector-to-

scalar function. Units are called neurons as they receive inputs from many

other previous units and compute their own activation value. An artificial

neuron outputs a weighted sum of its inputs followed by an activation

function:

Z = activation_ f unction(∑ WiXi) (4.3)

where X is the input vector, W is the neuron’s weights, Z is the output

scalar and the operation ∑ WiXi defines a linear mapping of inputs. An

activation function is used here in order to add non-linearity to the trans-

formation. It exists many activation functions but the three most popular

in the state-of-the-art are the tangent-hyperbolic, the sigmoid and the rec-

tified linear unit (see in Figure 4.5).

Figure 4.5 – The three most popular activation functions: (right to left) the sigmoid, the
tangent-hyperbolic and the rectified linear unit function.

4.3. Technical keys to understand Deep Learning 99

Learning algorithms can be described with fairly simple ingredients: a

set of data, a cost function, an optimization procedure and a model.

4.3.2 Training a feedforward neural network

The task of a neural network f consists of using a set of labeled data in

order to minimize the differences between its output ŷ and the label y of

a given input x though a cost function – also called loss function – and

an optimization procedure. To accomplish this task, we train the model

by updating the parameters θ of f to be the best approximation function

ŷ = f (x, θ).

The common optimization procedure to train a network is the back-

propagation algorithm. Its name comes from the backward propagation of

errors procedure [123]. This algorithm works in two steps:

1. Propagation: When an input vector is presented to the network,

it is propagated forward through the network, layer by layer, un-

til it reaches the output layer. The output of the network is then

compared to the desired label, using the cost function, and an error

value is computed. This error is then propagated backwards, start-

ing from the output, until each neuron has an associated error value

which roughly represents its contribution to the error.

2. Weight update: Backpropagation uses these error values to com-

pute the gradient of the cost function. This gradient is fed to the

optimization method which uses it to update the weights in order to

minimize the cost function.

The backpropagation step is repeated until the network has processed

several times the whole dataset. A complete pass through the whole

dataset is called an epoch. So, by the end of the first epoch, the model

will have been exposed to every sample in the training set once.

If the performance of a neural network for a particular task highly

depends on its architecture, several training meta-parameters has to be

chosen carefully. We develop a common iterative loop to train a neural

network in Algorithm 2.

100 Chapter 4. Recent deep learning approaches in Computer Vision

Algorithm 2: Common iterative loop for training procedure of a neu-
ral network

Inputs :
• A training set: L = {(di, yi)}i=1...N where di are inputs and yi are

desired labels.
• The neural network model: Mθ ;

Output :

• The trained model: Mθ .

Parameters:

• The desired number of epoch: E
• The starting learning rate: λ
• The number of data in batches: B
• The cost function: C

1 Initialize the values of θ ;
2 i← 0 ;
3 nbDataSaw← 0 ;
4 while i < E do
5 Extract a subset (D, Y) = {(di, yi)}i=1...B from L ;
6 nbDataSaw := nbDataSaw + B ;
7 /* Backpropogation procedure */

8 Ŷ = Mθ(D) ;

9 ∆θ = ∂C(Ŷ,Y)
θ ;

10 θ ← α× θ − λ× ∆θ ;
11 if nbDataSaw = N then
12 Randomly shuffle L;
13 nbDataSaw← 0 ;
14 i := i + 1 ;

4.4. Technical details of deep learning elements 101

The Stochastic Gradient Descent (SGD) algorithm optimizes gradient de-

scent and minimizes the loss function during network training (see lines

9 and 10 of algorithm 2). It is named stochastic as it implies randomness.

The learning rate λ is used to give a weight to the current update. We

often decrease the learning rate while the number of epoch increases to

slowly approach a local minima. The parameter B defines the number of

training samples that is going to be propagated through the network at

each iteration. Using batches in SGD allows to reduce the variance of the

gradient updates (applying the average of the gradients in the batch), and

accelerate the model’s optimization.

For more information about existing layers, optimization procedures,

applications and on Deep and Machine Learning technology in general,

we refer the reader to the book Deep Learning [41] written by Ian Good-

fellow, Yoshua Bengio and Aaron Courville, freely readable at http:

//www.deeplearningbook.org.

To summarize, a deep learning model is a chain of simpler functions

called layers. It exist many different layers in order to handle different

data, such as images, vectors and different challenges, such as handling

sequences, etc.

Deep neural networks are modeled according to:

1. The nature of the data;

2. The nature of the output;

3. The nature of the problem;

4. The hardware environment.

Layers can also be tuned by their width and their activation function.

Among many others, theses parameters are called hyper parameters or yet

meta parameters as they cannot be learn directly from the data.

4.4 Technical details of deep learning elements

As explained above, the design of a neural network model is mostly driven

by the problem to solve. In this section, we explain in details the essen-

http://www.deeplearningbook.org
http://www.deeplearningbook.org

102 Chapter 4. Recent deep learning approaches in Computer Vision

tial elements for a deep learning recognition process. We present several

essential elements of deep learning for hand gesture recognition:

• As we study a classification task, we introduce the softmax activation

function which is useful for outputting a class-conditional probabil-

ity vector, essential to represent categorical variable, and the cross-

entropy cost function.

• Generally in CV, inputs are often images. We present the convo-

lutional layer which is a layer specialized in processing grid shape

inputs.

• To take into account the dynamic aspect of videos, we introduce

Recurrent Neural Networks (RNN) which are designed to handle

sequence of data.

• As 3D datasets are time consuming, hard to capture and using deep

learning algorithm with datasets of small size leads to a bad general-

ization called overfitting during the training phase. A way to fix this

problem is to use a transfer learning strategy using an other similar

larger dataset to extract features.

4.4.1 Softmax function

The output of a classification task is a categorical variable (in opposition

with quantitative variable). By definition, a categorical variable has a fixed

number of possible and discrete value. For example, in an animal recog-

nition application based on images, the categories could be: fish, bird, cat

and dog. Each sample in the dataset is assigned to one of those finite cat-

egories. They differ from quantitative variables in that the distances from

one category to another are equals, regardless of the number of categories.

We could use a single scalar to represent the outputs but the distances

between each category would not be equal. In order to fix this issue, deep

learning models designed for classification use the one-hot encoding to

represent their outputs. It consists of a vector which the size is equal to

the number of categories, fill with 0 and a 1 in the cell of the category

to which the input belongs. We can also see this encoding scheme as a

4.4. Technical details of deep learning elements 103

particular stochastic vector which represents the probability that an input

belongs to each category, called a class-conditional probability vector.

In order to output a stochastic vector, a model needs two elements.

First and obviously, the last layer of the model needs to have the size of the

number of categories. Second, to compute a class-conditional probability

vector, the last layer uses the softmax activation function. The output of the

softmax function is a categorical probability distribution which indicates

the probability that the input belongs to any of the classes.

Let K be the number of categories in a classification task and Z the

weighted sum of the input of the last layer (see in Section 4.3.1). The

softmax function is defined as follows:

so f tmax(z)j =
ezj

∑K
k=1 ezk

(4.4)

where j = 1 . . . K and z is the output of the last layer. The second purpose

of this function is, using the exponential terms, to highlight largest inputs

and to suppress all significantly smaller ones.

4.4.2 Cross-entropy cost function

A primordial aspect of a deep neural network training is the choice of

the cost function. Cost functions, for neural networks, are more or less

the same as for any trainable classifiers. We use the cross-entropy between

ground-truth and model’s predictions as the cost function.

Let L = {(βi, yi)}i=1...N be a set of labeled data. The class-conditional

probability output of the deep neural network is noted ŷi = f (βi, δ). The

cross-entropy expression is given by:

L(W) = − 1
N

N

∑
i=1

[
yi log ŷi + (1− yi) log(1− ŷi)

]
(4.5)

The lowest is L(W), the best is the quality of the approximation function f .

Figure 4.6 shows the values of the cross-entropy error according to values

of y and ŷ.

104 Chapter 4. Recent deep learning approaches in Computer Vision

Figure 4.6 – Values of the cross entropy cost function L(W) according to values of y
(target) and the output of a classifier ŷ (prediction). Image reproduced from https:
//github.com/matplotlib/matplotlib/issues/6027.

4.4.3 Convolutional Neural Network

Convolutional Neural Networks (CNN) are a specialized kind of neural

network for processing data that has a grid-like topology. It includes

time-series of vectors, which are grid-like data when concatenated, and,

of course, images which are 2D grids of pixels. In 1998, LeCun et al. [69]

proposed a pioneering 7-level CNN called LeNet-5 designed to classify

32× 32 digits images extracted from bank checks. As the raw input of

hand gesture recognition algorithms are generally 2D images, we intro-

duce motivations of a CNN design.

A) Motivations

In traditional neural network layers such as multilayer perceptrons, intro-

duced in Section 4.3, every output interacts with every input. It means

that the number of parameter of a neural network model is proportional

to its input size. In addition, if they are m inputs and n outputs, the

matrix multiplication requires m× n parameters and the algorithm have

https://github.com/matplotlib/matplotlib/issues/6027
https://github.com/matplotlib/matplotlib/issues/6027

4.4. Technical details of deep learning elements 105

a O(m × n) runtime. When processing an image, the input might have

thousands or millions values and a conventional multilayer perceptrons

will see its number of parameter and runtime explode. Also, such net-

work architecture does not take into account the spatial structure of the

image. By handling images as vector of pixels, it does not allow the net-

work to benefit of the strong spatially local correlation present in images

which are important features in recognition task.

B) A biologically inspired version

The design of the CNN have been guided by neuroscience. The CNN

history begins with neuroscientific experiments long before the first one

has been developed. Neurophysiologists David Hubel and Torsten Wiesel

have collaborated for several years to determine many of most basic facts

we know about how the mammalian vision system works [55]. They ob-

served how neurons in a cat’s brain responded to images projected in

precise locations on a screen. They identified two basic visual cell types.

The simple cells in the early visual system respond to very specific patterns

of light, such as oriented bars, but respond hardly to complex patterns.

Beside, complexer cells, with a larger receptive fields, are invariant to small

shifts in feature positions.

C) Design

To simulate the visual cortex, a CNN architecture is composed of stacked

bunch of distinct layers. An example of a CNN architecture is given in

Figure 4.7.

First, there is the convolutional layer which is the core of a CNN. The

layer’s parameters consist of a set of learnable filters which have a small

size but slide over the whole image. A filter is convolved across the width

and the height of the grid-like input. It follows an activation function

which produces a 2-dimensional response map, one for each filter. As a

result, the network learns filters that activate when they detect some spe-

cific features at some spatial positions in the input. A simple convolution

step is depicted in Figure 4.8.

106 Chapter 4. Recent deep learning approaches in Computer Vision

• Layer C1 is a convolution layer with 6 response maps of 28 × 28
filters.

• Layer S2 is a subsampling layer with 6 response maps of 14 × 14
filters.

• Layer C3 is a convolution layer with 16 response maps of 10× 10
filters.

• Layer S4 is a subsampling layer with 16 response maps of 5× 5 fil-
ters.

• Layer C5 is a multilayer perceptron also called fully connected layer
of size 120.

• Layer F6 is a fully connected layer of size 84.

Figure 4.7 – Architecture of LeNet-5 by Lecun et al. [68], a Convolution Neural network
designed for digits recognition. Image reproduced from [69].

4.4. Technical details of deep learning elements 107

The convolutional layer can be represented by a function C : Rh×w×c 7→

Rh×w×n where h, w and c are respectively the height, the width and the

number of channel of the input grid and n the number of filters learned

by the layer. The convolutional layer is designed to emulate properties of

simple cells described above as it tries to learn simple and local features

in the input grid.

Figure 4.8 – A simple illustration of two dimensional convolution operation.

The convolutional layer is followed by a subsampling layer performed

by a non-linear operation called pooling. If there are several non-linear

functions to implement the pooling, max pooling is the most common. It

partitions the input image into a set of non-overlapping region and out-

puts maximums. A simplified scheme of a max pooling layer is given in

Figure 4.9. The intuition is that exact feature positions are less important

than their locations relative to other features. The pooling layer serves to

progressively reduce the size of the representation, the number of param-

eters and the amount of computation while the information flow through

the network. It provides also a form of translation invariance. The pooling

layer is inspired by complex cells as it allows the network to be invariant

to small shifts of the feature positions.

The pooling layer can be represented as a function P : Rh×w×c 7→

Rh/p1×w/p2×c/p3 where h, w and c are respectively the height, the width

and the number of channel of the input grid and p1, p2, p3 are fixed hyper-

parameters of the pooling layer.

D) Conclusion

The basic strategy of convolutional feature detection followed by pooling

is repeatedly applied as we move deeper into the network. It allows the

108 Chapter 4. Recent deep learning approaches in Computer Vision

Figure 4.9 – A simplified scheme of a 2× 2 max pooling layer.

CNN to learn from low to more abstract features. Stacking many layers

leads to non-linear local filters that become more and more global. This

concept is illustrated in Figure 4.10.

Figure 4.10 – An illustration of how stacked convolutionnal layers learn from low to high
level features in images, e.g. pixels to edges to motifs to parts of objects. Image reproduced
from [10].

Generally, the output of stacked convolutional layers are finally flat-

tened in order to use learned features as inputs to other types of layers

that need vector as input. All together, they form what we call a Convo-

lutional Neural Network architecture that allows to perform some classi-

fication tasks on images.

This independence from prior knowledge and human effort in feature

design is a major advantage. The network is able to learn filters that in

traditional algorithms were hand-engineered. In addition, each filter is

used across the entire image. It means that all neurons in a given convo-

4.4. Technical details of deep learning elements 109

lutional layer respond to the same inputs. This property, so called weight

sharing, reduces the number of learned parameters, lowering the memory

requirements for training and running the network.

In addition to images, CNN can handle 1-D temporal sequences repre-

sented as stacked vectors. The idea behind 1-D convolutions of temporal

sequences is to share parameters across time. The output of a sequence

convolution is a sequence where each vector of the output is a function of

a small number of neighboring vector of the input.

4.4.4 Recurrent Neural Networks

Many CV recognition applications need to handle dynamic data, as the

term dynamic referred to, which take temporal sequences as input. Recur-

rent neural networks (RNN) are a family of neural networks, introduced

by Rumelhart et al. in 1985 [123], for handling sequential data as input. As

a CNN is specialized for processing grid shaped inputs, a recurrent neural

network is a neural network specialized for processing vector sequences.

A) Motivations

Compared to CNN, most recurrent networks can process sequences of

variable length. Recurrent networks share parameters in a different way

and each output can be a function of the whole previous vectors of the

input. For the simplicity of explanation, we refer to RNNs as operating

on a sequence that contains n vectors v(t) with t = 1 . . . n. In practice,

recurrent networks usually operate on sequences with different lengths.

B) Time-series representation

Unlike feedforward neural networks, RNNs use an internal memory to

process arbitrary sequences and a relation between their output and their

input. We consider the dynamical system: s(t) = f (s(t − 1), θ) where

s(t) is the current state of the system and θ are the transition parameters.

This equation is recurrent because the state of the system at the time t is

dependent of the system’s state at time t− 1.

110 Chapter 4. Recent deep learning approaches in Computer Vision

In the case of RNN, we rewrite the function s to add an input vector

h exterior to the system: y(t) = s(h(t− 1), x(t), θ) where h is the internal

memory (or the internal state) of the layer. We can train the parameters

θ such as the output y(t) extract features which will be a representation

of the sequence from the time step 1 to t. This lossy representation might

select some aspects of the past sequence while forgetting irrelevant ones.

For example, in order to recognize only swipe dynamic hand gestures, the

RNN will probably not store information when the hand is not moving.

Figure 4.11 – A scheme of a simple RNN also called Elman network [32].

A simple RNN layer is depicted in Figure 4.11. The figure does not

specify the activation function for the hidden units. Assuming the hyper-

bolic tangent activation function is used, the equation of the RNN layer

is:

h(t) = tanh(W1x(t) + W2h(t− 1)) (4.6)

y(t) = tanh(W3h(t)) (4.7)

where Wi are weight matrices. This is an example of a recurrent net-

work that maps an input sequence to an output sequence of the same

length.

C) The challenge of long term dependencies

Like most neural networks, recurrents are old. In the beginning of the

1990s, the vanishing gradient problem emerged as an obstacle to RNN’s

4.4. Technical details of deep learning elements 111

performance. During training stage, gradients propagated over many

stages tend to vanish. This problem is particular to recurrent networks.

Multiplying a weight w by itself many times result in a power function

which either vanish or explode following if w is inferior at 1 or not. Also,

as the input sequences become larger, simple RNNs are unable to learn

long term dependencies. In 2017, most effective sequence based neural

networks used in practical applications are called Gated-RNNs. These in-

clude the Long Short-Term Memory (LSTM) layer introduced by Hochre-

iter and Schmidhuber in 1997 [52].

LSTMs are designed to handle long-term dependencies and to fix the

vanishing gradient problem. They have proven their usefulness on a large

variety of problems and are now widely used. The amazing idea behind

the LSTM is the addition of three gates that handle different mechanisms:

• The gate ft handles a forgetting mechanism to decide which informa-

tion of the current state is now useless and should be forgotten.

• The gate it handles a saving mechanism to decide which information

of the current input should be saved.

• The gate ot handles a focus mechanism to decide which information

of the state is useful for the current step.

Thus, where a RNN changes its memory cell at each time step in an

uncontrolled way, a LSTM transforms its memory in a very precise way. It

uses specific learning mechanisms to choose which pieces of information

to remember, to update, and which to pay attention to for the current time

step as depicted in Figure 4.12.

Let us now take a look at the mathematical formulation of the LSTM,

which consists of five equations. Let xt be the input vector, yt the output

vector, ht the cell state vector, W and U the learned parameters, σg the sig-

moid activation function and ◦ denote the Hadamard product (element-

wise product). The first three equations are for the new mechanisms de-

scribed above:

ft = σg(W f xt + U f yt−1) (4.8)

it = σg(Wixt + Uiyt−1) (4.9)

112 Chapter 4. Recent deep learning approaches in Computer Vision

Figure 4.12 – A simplified Scheme of a LSTM layer. Image reproduced from http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/.

ot = σg(Woxt + Uoyt−1) (4.10)

We can see that ft, it and ot take their decisions based of the previous

output of the LSTM layer and its current input but do no share their pa-

rameters. The next equation has for purpose to update the cell state:

ht = ft ◦ ht−1 + it ◦ tanh(Wcxt + Ucyt−1) (4.11)

The first part of the equation ft ◦ ht−1 uses the ft gate in order to remove

useless information from ht−1. The second one uses it and new parameters

to choose the relevant information to save from xt in order to update the

cell state. Finally, the LSTM computes its output using its cell state ht and

chooses which current information is relevant using the focus gate ot:

yt = ot ◦ tanh(ht) (4.12)

D) Overfitting problem and transfer learning

The goal in a classification process is to propose a classifier which works

correctly on new previously unseen inputs. The ability to handle unob-

served inputs is called generalization.

Typically, a dataset is composed of two non-overlapping sets. The first,

called training set, is composed of data on which the algorithm is learn-

ing from. The second, called test set is composed of data unseen by the

algorithm during the training phase. The classifier has to minimize error

measures between its outputs and ground-truths through an optimization

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

4.4. Technical details of deep learning elements 113

procedure. This error measure is called training error when computed on

the training set and generalization or test error when computed on the test

set. What determines the effectiveness of a learning algorithm is its ability

to make the training error small and to reduce the difference between the

training and the test error called generalization gap.

The capacity of a deep learning model is its ability to fit a particular

problem. Two main hyper-parameters define the capacity of a model; its

depth and its width. A model with a low capacity may be unable to fit the

training set. A model with a high capacity may overfit by learning specific

properties of the training set that do not serve for the generalization. A

model with a high capacity can solve complex tasks but it needs more data

to avoid the overfitting. To resume, harder is the task, higher has to be the

depth and the width of the model and, consequently, the amount of data

needed increased. Figure 4.13 shows relationships between the capacity

of a model and error measures. Unfortunately, we have no chance to find

the best network architecture that generalizes the training set perfectly as

unlimited different solutions exist.

Figure 4.13 – Typical correlation between the capacity of a model and error measures.
At the left of the optimal capacity, we could increase the capacity to find a better gener-
alization of the training set. This state is called underfitting. To the right of the optimal
capacity, the model is too large or the training set is too small and the algorithm starts to
learn training data specification. It results of a decreasing training error, an unfortunate
increasing of the test error and a bigger generalization gap. This state is called overfitting.
Image reproduced from [41].

For image classification or object detection challenges, the CV commu-

nity have access to very large datasets, such as the Open Images dataset

[65] which is composed of 10,000,000 labeled images. In the field of

114 Chapter 4. Recent deep learning approaches in Computer Vision

hand gesture recognition, datasets are composed of only thousands of

sequences. If creating more data would be the best way to avoid overfit-

ting, it is time consuming and not always possible. Nevertheless, it exists

methods and tricks to prevent the model to overfit, here are some:

• Use a smaller model;

• Use weight decay. Weight decay is a regularization term added to

the cost function that penalizes big weights. When the weight decay

coefficient is big, the penalty for big weights is also big, when it is

small weights can freely grow.

• Use a dropout strategy. Dropout randomly makes nodes in the neu-

ral network “drop out” by setting them to zero, which push the

network to rely on other features. It results in a more generalized

representation of the data;

• Use data augmentation. As deep networks need large amount of

training data to achieve good performance, we can artificially create

additional training data. For example, to train a CNN architecture,

new images can be created through random rotations, shifts, etc;

• Use early stopping. Stop the training phase before the model starts

to learn training set specifications;

• Use transfer learning.

Focus on transfer learning. First of all, we give definitions of a domain

and a task as defined by Pan et al. [108] in their survey on Transfer Learn-

ing. A domain D consists of two components: a feature space X and a

marginal probability distribution P(X) where X = {x1, x2, . . . , xn} ∈ X .

Given a domain D = {X , P(X)}, a task consists of two components: a label

space Y and an objective predictive function f (denoted by T = {Y , f }),

which is not observed but learned from the training data which consists of

pairs {xi, yi}, where xi ∈ X and yi ∈ Y . For example, in the field of hand

pose estimation, X is the image depth space, xi are hand depth images, Y

is R3∗k where k is the number of joints in the hand model, yi are 3D joint

4.5. Conclusion 115

positions for each samples in the dataset and, finally, f is the mapping

regression function defined as f : X 7→ Y learned from the training set.

We define a source domain DS and a target domain DT. More

specifically, we denote DS = {(x1S , y1S), . . . , (xnS , ynS)}, where xiS ∈ XS

is a data sample and yiS ∈ YS is the corresponding label. Similarly,

DT = {(x1T , y1T), . . . , (xnT , ynT)}. Note that, in most cases, 0 ≤ nT � nS.

Given a source domain DS and a learning task TS, a target domain

DT and a learning task TT, transfer learning aims to help the learning of

the target predictive function fT in DT using the knowledge in DS and TS

where DS 6= DT and TS 6= TT but similar.

Learning features on images is a complex task. Beside, CNN archi-

tecture contains lot of parameters and, so, are not usually trained from

scratch with random initialization. This is because it is relatively rare to

have a target dataset of sufficient size to train a network with a depth large

enough to handle the complexity of the task. Instead, it is common to

train a CNN on an other larger source dataset and then use the, so called,

pre-trained weights either as an initialization or a fixed feature extractor for

the task. Transfer learning and depends on two major factors: the size of

the source dataset and its similarity to the original dataset.

4.5 Conclusion

In this chapter, we studied why and how researchers in the field of Com-

puter Vision migrate from handcrafted to learned-based features algo-

rithms, so called deep learning or also deep neural networks. The main

difference between them is that handcrafted features use human ingenuity

and problem-specific knowledge to extract relevant features from the data

while deep learning algorithms learn them from the data. Last years, deep

neural networks have proven their wonderful effectiveness of many area

of research. Nevertheless, both of these approaches have their strengths,

their weaknesses and their scope of application.

Deep learning became a hot topic since 2010 thanks to the digitization

of the society that exponentially increased the size of dataset. Also, new

116 Chapter 4. Recent deep learning approaches in Computer Vision

and powerfull hardware capacities allow researcher to use much deeper

neural networks. Yann LeCun is a French computer scientist with many

contributions in machine learning and in computer vision. He is also

a founding father of convolutional neural networks. The number of its

paper’s citations through time in Figure 4.14 proves the trend of deep

learning in the computer vision community.

Figure 4.14 – Number of paper’s citation of Yann Lecun, french computer scientist and
founding father of convolutional neural network, from 1990 to July 2017.

One of the drawbacks of using a deep neural network is that its hyper-

parameterization is conducted by human intuitions and experimentations.

Unfortunately, to the best author’s knowledge, there is no mathematical

way to choose the design of a neural network according to the challenge

and the data. Researchers have no chance of finding the optimal solu-

tion that will perfectly fit their problematic. However in 2017, Kaiser et

al. [58] from the Google company, introduce a single model that can fit a

variety of tasks including translation, language parsing, speech recogni-

tion, image recognition, and object detection in their paper One Model To

Learn Them All. It opens the door to a future where, maybe, the hyper-

parameterization of a model is not be a problem anymore.

In the case of the use of deep learning for hand gesture recognition

task, the main negative factor is the size of current available dataset.

Learning a deep neural network using a small amount of data leads to an

overfitting of the model. Extracting a very large amount of no naturally

digitized 3D data is time consuming and not always possible. There are

still methods to learn less deeper network with less data as smart transfer

learning strategy and data augmentation.

5Online detection and

recognition of hand

gestures using a deep

learning approach

Contents

5.1 Introduction . 119

5.1.1 Challenges . 119

5.1.2 Overview of the proposed framework 120

5.1.3 Motivations . 121

5.2 Deep extraction of hand posture and shape features . 123

5.2.1 Formulation of hand pose estimation problem 123

5.2.2 Hand pose estimation dataset 124

5.2.3 Pre-processing step . 125

5.2.4 Network model for predicting 3D joints locations 125

5.2.5 CNN training procedure . 127

5.3 Temporal features learning on hand posture sequences 128

5.4 Temporal features learning on hand shape sequences . 130

5.5 Training procedure . 130

5.6 Two-stream RNN fusion . 132

5.7 Experimental results on the NVIDIA Hand Gesture

dataset . 133

5.7.1 Dataset . 133

5.7.2 Implementation details . 134

117

118 Chapter 5. Dynamic hand gestures using a deep learning approach

5.7.3 Offline recognition analysis 135

5.7.4 Online detection of continuous hand gestures 140

5.8 Experimental results on the Online Dynamic Hand

Gesture (Online DHG) dataset 152

5.8.1 Dataset . 152

5.8.2 Offline recognition analysis 154

5.8.3 Online recognition analysis 159

5.9 Conclusion . 162

5.1. Introduction 119

5.1 Introduction

Deep neural networks have proven their effectiveness in various chal-

lenges, improving recognition rates substantially for various image clas-

sification tasks. Furthermore, motivated by their success for images and

videos, many research works have appeared very recently proposing mod-

els, such as convolutional neural network, for learning hand pose features.

Convinced of the usefulness of the pose features to describe hand ges-

tures and motivated by the success of these approaches, we extend the

study to online dynamic hand gestures taking over the whole pipeline of

the recognition process, from hand pose estimation to the classification

step, using deep learning.

We aim to structure such a framework following two statements made

in Chapter 3:

1. Hand postures along the sequence are relevant features to describe

the gesture.

2. Hand gestures can be efficiently described by the temporal variation

of both, hand shape and its motions.

Based on the previous statements, we present in this chapter a new

framework based on deep learning for online dynamic hand gesture

recognition using a transfer learning strategy. So as to face the main chal-

lenges, we propose to revisit the feature pipeline by combining the merits

of geometric shape features and dynamic appearance, both extracted from

a CNN trained for hand pose estimation problem.

Despite an increasing amount of methods proposed over the last few

years, defining an online dynamic hand gesture recognition system robust

enough to work in real world applications is still very challenging.

5.1.1 Challenges

In addition to challenges defined in Chapter 3 for dynamic hand gesture

recognition, like inter-class similarities, intra-class dissimilarities and issues

linked to the intrinsic properties of the hand, others appear for an online

recognition in real time using learned features.

120 Chapter 5. Dynamic hand gestures using a deep learning approach

It is hard to include prior specific knowledge in a data-driven learning

algorithm. Dynamic hand gestures can be defined by shape variations of

the hand during sequences (e.g. fine gestures performed by fingers), or

by hand movements (e.g. swipe gestures), but often both. These multi-

ple characteristics, which have to be taken into account, make harder the

process of features learning as it have to learn both spatial and temporal

information.

In order to fully extract relevant features of complex hand gestures

using raw data, models of neural network need a large number of layers

which increase their time complexity. However, the time complexity has to

be small enough so that the algorithm can predict a new incoming gesture

in real time. Some methods present acceptable runtime results using very

deep networks but use a powerful hardware with several GPUs. Currently,

this hardware configuration is too expansive and usually unavailable and,

so, not suitable for real applications.

We must not forget that, the user in front of the camera is not always

performing a gesture. Even worse, the user performs also movements

that are not relevant and belong to none of the gesture categories; for

example, to come back to a restful position between relevant gestures.

Thus, an online gesture recognition task implies a gesture detection, also

called gesture localization.

In addition, in some field of computer vision, researchers have access

to millions of data allowing them to train very deep neural networks from

scratch. For example, in the field of image classification, Deng et al. [25]

make publicly available the ImageNet dataset which contains 10 million

images. However, it is not the case while working with 3D data mak-

ing difficult the use of data-driven approaches easily. To our knowledge,

the largest dynamic hand gesture dataset contains only 2, 800 gesture se-

quences [23].

5.1.2 Overview of the proposed framework

To face challenges stated above, we introduce a framework for online hand

gesture detection and recognition. It is based on temporal hand shape

5.1. Introduction 121

and posture learned features. Those data are both extracted from a CNN

trained for hand pose estimation. The overview of our framework is de-

picted in Figure 5.1.

First, we aim to use a transfer learning strategy to extract hand shape

and posture features for hand gesture recognition purpose. To do so,

we train a CNN for hand pose estimation using the ICVL dataset [144].

Once the training of the CNN is over, we can use it to output two distinct

representation for each time step of a hand depth image sequence: hand

posture features, noted Jt, which represent hand joints locations and a

hand shape feature vector Xt laying in a high dimensional space. We note

that if a hand posture sequence is represented by the absolute position of

the hand joints, the descriptor X focuses on describing the hand shape.

Thus, original hand depth image sequences, soriginal = {It}t=1...N , are

transformed into two different sets of sequences as follows: sposture =

{Jt}t=1...N and sshape = {Xt}t=1...N for a sequence of N frames.

We fed both sequences in parallel to the RNNskeleton and the RNNshape.

Both recurrent networks are made of two stacked LSTM layers and a final

fully connected layer. We aim to extract temporal features, respectively,

about hand motions and hand shape variations. Finally, we fuse the re-

sults of the two networks using a joint fine tuning strategy in order to

get a single class-conditional probabilities vector for each time step. The

maximum probability is then chosen as the predicted class. We take the

predicted class of the last frame as the predicted label of the sequence.

Figure 5.1 summarizes the proposed solution.

5.1.3 Motivations

Main considerations that motivated our approach are:

• Data-driven approaches show outstanding results in many recogni-

tion tasks.

• Hand posture data are efficient feature for hand gesture description.

• A hand gesture is efficiently described by the temporal aspect of

hand shapes and its motions.

122 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure
5.

1
–

O
verview

of
our

fram
ew

ork.
First,tw

o
fram

e-w
ise

features
are

extracted
from

hand
depth

im
ages

using
a

C
N

N
trained

for
hand

pose
estim

ation:
hand

posture
features

and
hand

shape
features.

Both
descriptor

sequences
are

fed
to

tw
o

distinct
recurrent

netw
orks,called

R
N

N
skeleton

and
R

N
N

shape ,in
order

to
extract

tem
poralfeatures,respectively,about

hand
m

otions
and

hand
shape

variations.
Finally,output

netw
orks

are
fused

using
joint

fine
tuning

and
a

softm
ax

layer
output

a
class-conditionalprobabilities

vector
for

each
tim

e
step.The

predicted
labelofthe

lastfram
e

is
use

for
sequence

classification.

5.2. Deep extraction of hand posture and shape features 123

• The transfer learning strategy allows the use of more labeled data

than provided in dynamic hand gesture datasets.

• Online hand gesture recognition needs real time processing for real

world applications.

• Online hand gesture recognition implies a prior hand gesture detec-

tion.

5.2 Deep extraction of hand posture and shape fea-

tures

In Chapter 3, we highlighted the potential of hand skeletal features in the

hand gesture recognition task.

Hand pose estimation is a growing field of research. They focus on

creating new algorithms able to retrieve a set of 3D hand joints, called

later hand skeletal data, from 2D and/or 3D hand images. The needs

of precise mid-air HCI for emerging applications, such as the interaction

with a virtual or augmented reality world, attracted much attention in the

Computer Vision community [102, 101, 40, 75, 76, 140].

In this section, we introduce a Convolutional Neural Network (CNN)

learned to extract hand shape and posture features inspired by Oberw-

erger et al. [101] approach of hand pose estimation. The later uses a two

steps method. First, a CNN output an estimated hand pose. Second, they

train one CNN for each joint to correct small mistakes in the previous

hand pose estimated. As the second step is a computationally expensive

and that we do not need millimeter precision for hand gesture recognition,

we use in our framework only the CNN of the first step.

5.2.1 Formulation of hand pose estimation problem

The hand pose estimation is formulated as the estimation a set J of 3D

hand joints coordinates J = {ji} where i = 1 . . . K and ji = (xi, yi, zi) from

a depth image I as depicted in Figure 5.2. Thus, the goal of hand pose

estimation is to find parameters θ of the mapping regression function f

124 Chapter 5. Dynamic hand gestures using a deep learning approach

such as f (θ) : I → J. Several algorithms of hand pose estimation have

been presented in Chapter 2.

Figure 5.2 – A hand depth image and its K 3D joints. Here, K equal to 16: 3 joints by
fingers and one for the palm.

5.2.2 Hand pose estimation dataset

A learned-based hand pose estimation algorithm needs a large amount

of hand depth images labeled with their hand skeletal annotation to be

trained. There are only one hand gesture datasets which provide both

depth and skeletal data. So far and to our knowledge, only De Smedt

et al. [23] made publicly available such dataset. Moreover, hand skeletal

features from this dataset are extracted by the Intel Real Sense camera.

Consequently, we can not used this dataset for hand pose estimation as

the skeletal annotations are estimated from an algorithm and can not be

considered as reliable ground-truths.

There are several hand pose datasets in the literrature. The two widely

used in the 3D hand pose estimation area are the NYU dataset [147] and

the ICVL dataset [144], respectively, captured using a first version of Mi-

crosoft Kinect and an Intel Creative depth sensors.

These devices have two main differences: Microsoft Kinect is a struc-

tured light-based sensor and a long-range camera. The Intel Creative use the

time-of-flight technology and is a mid-range camera, thus providing more

precise and less noisy data. For our experiments, we choose the ICVL

dataset, as it contains a larger amount and cleaner data.

5.2. Deep extraction of hand posture and shape features 125

5.2.3 Pre-processing step

For a depth image noted I, we first estimate the region-of-interest (ROI) of

the hand. It is done assuming the hand is the closest object to the camera,

similarly to Tang et al. [144]. Second, we refine this estimation using a 3D

bounding box of size 128× 128× 300. Finally, we compute and save the

3D center of mass Pcom of points laying inside of the cube. We crop the

depth image around the 3D bounding box and normalize the patch values

to [−1, 1]. Outlier points that are outside of the box depth are assigned a

value of 1. The resulting image is noted I∗.

On the annotated skeleton J, we remove the global hand position in the

scene by substracting the Pcom coordinates to skeleton joints as follows:

J∗ = {ji − Pcom}i=1...K (5.1)

where ji is the ith joint in J, Pcom is the center of mass of the ROI of the

hand and J∗ is the skeleton centered around Pcom.

The pre-processing step is depicted in Figure 5.3.

Figure 5.3 – The pre-processing step for hand pose estimation. (a) First, we estimate the
region-of-interest (ROI) of the hand assuming the hand is the closest object to the camera.
(b) Second, we refine the estimation using a 3D bounding box around the center of the
mass. (c) From this, we can extract a cropped image of the hand and we compute its center
of the mass Pcom in the original image space. (d) Using Pcom, we remove the global hand
position from the skeletal ground-truth in the scene by substracting the Pcom coordinates
to each skeleton joints.

5.2.4 Network model for predicting 3D joints locations

Inspired by Oberweger et al. [101], we consider the hand pose estimation

algorithm based on a CNN architecture using prior enforcement. The idea

126 Chapter 5. Dynamic hand gestures using a deep learning approach

comes from that, given the physical constraints over the hand, there are

strong correlations between 3D joint locations. Wu et al. [163] showed

that a lower dimensional space that 3× K is sufficient to parameterizes

a 3D hand pose of K joints. The network, further called CNNhand_pose,

architecture is depicted in Figure 5.4. The implementation of the prior

enforcement is made by introducing a bottleneck in the penultimate layer,

having a smaller size than the final one which outputs the 3D joint coordi-

nates. The linear mapping between the lower dimensional space and the

final output is kept by not adding any activation function to the bottleneck

layer.

Figure 5.4 – Architecture of the CNN for hand shape and posture extraction using prior
enforcement. The model takes as input a cropped depth image I∗ around the hand. It
use a CNN architecture to map this image to a high dimensional space vector X, laying
in R1024. The latter contains large, global and local information about the hand shape.
Follows a “bottleneck” layer with a smaller size that the desired output to model the
physical constraints over the hand topology. The network finally output hand skeletal
features J∗ centered around the center of mass of the original hand depth image and hand
shape features X.

CNNhand_pose outputs a vector J∗ which contains 3D hand joints loca-

tions centered around the center of mass of the hand Pcom in the original

depth image. We can easily retrieve the original joint locations into the im-

age space by applying an inverse transformation to the joints using Pcom,

as follows:

5.2. Deep extraction of hand posture and shape features 127

Ji = {j∗i + Pcom}i=1...K (5.2)

where j∗i is the ith joint in the predicted hand skeletal data J∗, Pcom

is the center of mass of the hand in the original depth image and Ji is

the final skeletal data predicted by our CNN for hand pose estimation

CNNhand_pose.

From this network, we can extract two different feature vectors from a

hand depth image: skeletal features J and a hand shape feature vector X

lying in a high dimensional space.

5.2.5 CNN training procedure

Parameters of the model have to be initialized before the training step. A

common way to generate the values is to use a random normal distribu-

tion. An exception is made for the bottleneck layer as we can help the

network using prior knowledge. We initialize its weights with the 30 ma-

jor components from a Principal Component Analysis (PCA) of the hand

skeletal label space of the training set.

As the cost function, we minimize the Huber loss to evaluate the differ-

ences between the hand pose ground-truth J and the output of the network

noted Ĵ:

H(J, Ĵ, δ) =

1
2 (J − Ĵ)2 for |J − Ĵ| ≤ δ,

δ |J − Ĵ| − 1
2 δ2 otherwise.

(5.3)

The Hubert loss is thus quadratic when the error is small (≤ δ) and linear

when it became larger. Consequently, this loss function is less sensitive to

noisy annotations (which imply large errors) than the squared error loss

function as depicted in Figure 5.5.

Weight decay is also applied to prevent an overfitting. The network

is trained with back-propagation using the Stochastic Gradient Descent al-

gorithm. The learning rate decrease following the number of epoch e by
lr

1+0.2×e .

128 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure 5.5 – Huber loss defined in Equation 5.3 (green δ = 1) and the squared error loss
(blue 1

2 x2) as functions of J − Ĵ. Huber loss is less sensitive to large errors.

5.3 Temporal features learning on hand posture se-

quences

A temporal modeling of hand skeletal feature sequences can efficiently be

used for hand gesture recognition. Indeed, an algorithm which takes hand

skeletal data as input is able to handle both spatial and temporal informa-

tion. So, it has to extract efficient features to learn the dynamic aspect of

both hand motions and shape variations. For example, it must learn that

when a hand goes to the right, the user is performing a Swipe Right gesture

but also that, if the user closed three fingers, it is, more precisely, a Swipe

Right with two fingers gesture (e.g. contained in the NVIDIA dataset [94]).

To learn the temporal aspect of hand skeletal feature sequences, ex-

tracted using the CNNhand_pose, we use LSTM layers. This recurrent neural

network model has to learn the dynamic variation of both the hand shape

and its motions in order to be efficient on the task of hand gesture recog-

nition.

First, we use the hand pose estimation CNNhand_pose to extract 3D joints

5.3. Temporal features learning on hand posture sequences 129

information from a hand depth image which describes the hand posture.

Thus, hand gestures are represented as sequences of hand skeletal features

s = {[j1, . . . , jK]}t=1...N be an ordered list of N vectors and ji ∈ J.

To model the temporal aspect of gestures, we fed the hand skeletal

sequences to two stacked LSTM layers with the purpose to map them into

a single spatial and temporal description vector h
′
t, describing the temporal

variations of the hand posture during the sequences.

Finally, recurrent layers are followed by a softmax layer which trans-

forms the vector h
′
t into a class-conditional probability ŷi

t where i ∈

{1 . . . K} and K the number of gesture classes. The classification of a ges-

ture is performed using the last output vector ŷN of the sequence. Thus,

the predicted class of the gesture is ŷ = argmax
i

(ŷi
N). This model, noted

RNNskeleton, is depicted in Figure 5.6.

Figure 5.6 – The network architecture which performs classification of hand gestures
from temporal hand posture description using hand skeletal features. A sequence s =
{Jt}t=1...N is given as input to two stacked Long-Short Term Memory layers. Their
output h

′
t is finally transform by a fully connected layer which as a softmax activation

function in order to output a class-conditional probabilities vector. The size of the last
layer is not given in the figure as it is dependent to the number of class in the dataset.
The final predicted label of the sequence s is ŷ = argmaxi(ŷi

N).

130 Chapter 5. Dynamic hand gestures using a deep learning approach

5.4 Temporal features learning on hand shape se-

quences

The method described in Chapter 3 confirms the importance of the hand

shape information for hand gesture recognition algorithms. Indeed, pre-

cise and fine dynamic hand gestures are specially defined by hand shape

variations though the gesture and less by its motions, such as fine gestures

performed with fingers.

In this section, we describe a recurrent network model used to clas-

sify hand gesture sequences using exclusively the information of hand

shape variations. We aim to improve the hand gesture recognition pro-

cess by learning temporal descriptors specifically on hand shape feature

sequences in addition to temporal hand skeletal features.

Before reducing the feature space to the skeleton space, the

CNNhand_pose, trained for hand pose estimation, has a transition state

from which we can extract hand shape features, called X, laying in a high

dimensional space: X ∈ R1024. In order to efficiently extract hand pose

features, this state has to handle global and local hand shape information.

Moreover, using this state as shape features allows to decrease the com-

puting time of our framework as we do not need to compute additional

descriptors.

First, we define a sequence of hand shape features s = {Xt}t=1...N

which is an ordered list of N vectors and Xt ∈ R1024. Each vector Xt is

extracted from a cropped hand depth image using the CNNhand_pose.

Similarly to the RNNskeleton, we create a new model, noted RNNshape,

composed of two stacked LSTM layers followed by a softmax prediction

layer. We depict the operations performed by the RNNshape in Figure 5.7.

5.5 Training procedure

During the training phase of both the RNNskeleton and the RNNshape,

weight decay and a dropout strategy are applied to prevent overfitting.

Networks are trained using the Back-Propagation-Through-Time (BPTT)

algorithm [160]. BPTT is equivalent of unrolling the recurrent layers, trans-

5.5. Training procedure 131

Figure 5.7 – The network architecture to classify dynamic hand gesture using tempo-
ral hand shape variations features. A sequence s = {Xt}t=1...N is given as input to
two stacked Long-Short Term Memory layers. Their output h

′
t is finally transform by a

fully connected layer which as a softmax activation function in order to output a class-
conditional probabilities vector. The size of the last layer is not given in the figure as it is
dependent to the number of classes in the dataset. The final predicted label of the sequence
s is ŷ = argmaxi(ŷi

N).

132 Chapter 5. Dynamic hand gestures using a deep learning approach

forming them into a multi-layer feed-forward network of depth N; where

N is the number of frame in the gesture. The standard gradient-based

back-propagation, introduced in Algorithm 2 in Section 4.3.2, is then used.

We average the gradients to consolidate weight updates to duplicated un-

rolling. The learning rate decreases following the number of epochs ne by

lr = 0.001× N0e−λ×ne. Networks try to minimize the cross-entropy cost.

To increase variability in the training examples, we apply random hor-

izontal, vertical and depth translations on depth image sequences before

each learning iteration. This step is called data augmentation. Since recur-

rent connections can learn the specific order of gesture sequences in the

training set, we randomly permute the training gesture videos before each

new epoch.

5.6 Two-stream RNN fusion

The RNNskeleton encodes the hand posture variations and the RNNshape

encodes the shape variations, both, during the sequence. Once it is done,

network outputs need to be fused.

In 2015, Jung et al. [57] proposed a joint fine-tuning strategy in order

to join information from networks learning from different modalities and

showed performance improvements. We aim to fuse the output of the

RNNskeleton and the RNNshape to enhance the classification process using a

similar method as depicted in Figure 5.11.

Since both networks are trained separately, we retrain last fully con-

nected layers before the softmax activation functions with a new cost func-

tion, noted L f usion, defined as follows:

L f usion = λ1L1 + λ2L2 + λ3L3 (5.4)

where L1, L2 and L3 are respectively loss functions computed on the

RNNskeleton , the RNNshape and the sum of both outputs. The λ1, λ2 and

λ3 are tuning parameters. Each cost function is a cross entropy function.

Let l1 and l2 be respectively the output values of the network RNNskeleton

and RNNshape, L3 is then defined as follow:

5.7. Experimental results on the NVIDIA Hand Gesture dataset 133

yi
3 = so f tmax(li

1 + li
2) (5.5)

L3 = − 1
N

N

∑
i=1

[
yi log ŷi

3 + (1− yi) log(1− ŷi
3)

]
(5.6)

The final decision is obtained using yi
3:

ŷ = argmax
i

(yi
3) (5.7)

As a result, we utilize three loss functions in the training step: L1, L2

and L3. L1 and L2 are used to regulate, respectively, both streams and

avoid that one of them vanished under the weight of the other. L3 is used

to optimize the fusion of the two modalities. Consequently, we use only y3

for prediction as it is impacted by both the RNNshape and the RNNskeleton.

To train the joint fine-tuning method, we use the same training procedure

defined previously.

5.7 Experimental results on the NVIDIA Hand Gesture

dataset

In this section, we propose to analyze the impact of the RNNs separatly

and fused on the recognition rate according to the type of gestures. We

evaluate the performance of networks for the task of detection and recog-

nition of hand gestures on the NVIDIA hand gesture dataset [94]. We

finally compare our results and network capacities with the R3DCNN net-

work [94].

5.7.1 Dataset

Very recently, Molchanov et al. [94] introduced a new challenging multi-

modal dynamic hand gesture dataset. Details of the dataset can be found

in Section 3.8.4. We note that the dataset contains 1532 gestures of 25 hand

gesture types depicted in Figure 5.8. The gestures include Swipe gestures,

which are defined by hand motions, static gestures, as Show up two fingers,

134 Chapter 5. Dynamic hand gestures using a deep learning approach

which are only defined by hand shapes, or yet, Rotation gestures which

need both information.

Figure 5.8 – The 25 different gestures of the NVIDIA hand gesture dataset. Each column
shows a different gesture class (1-25). The gestures included (from left to right: moving
the hand left, right, up, or down; moving two fingers left, right, up, or down; clicking
with the index finger; calling someone (beckoning with the hand); opening and shaking
the hand; showing the index finger, two fingers or three fingers; pushing the hand up,
down, out or in; rotating two fingers clockwise or counter-clockwise; pushing forward
with two fingers; closing the hand twice; and showing “thumb up” or “Ok”. The top and
bottom rows show the starting and ending depth frames, respectively, and yellow arrows
indicate the motion performed in intermediate frames. Image reproduced from [46].

In the following experiments, the same protocol proposed by

Molchanov et al. [94] is used: we randomly split the data into a training

(70%) and a test (30%) sets, resulting in 1050 training and 482 test videos.

5.7.2 Implementation details

A) Hand posture and shapes features

To extract the deep features of hand posture and its shape, we train a CNN

on the ICVL dataset [144], which comprises a training set of over 180,000

depth images showing various hand poses. The dataset is recorded using a

time-of-flight Intel Creative Interactive Gesture Camera and has 16 annotated

3D joints for each depth image. Depth images have a high quality with

little noise.

We use the Hubert loss function defined in Equation 5.3. We choose

a sensitive factor to error δ = 500 (we remind that 3D hand coordinates

annotations are given in mm). It means that errors on the joint location

prediction superior to half a centimeter is linear while smaller errors are

quadratic.

Weight decay is applied with a regularization factor equal to 0.001. The

networks are trained with a batch size of 128 for 100 epochs. The initial

learning rate lr is set to 0.01 with a momentum of 0.9.

5.7. Experimental results on the NVIDIA Hand Gesture dataset 135

B) Temporal features

To avoid overfitting while training the recurrent layers, weight decay is

applied with a regularization factor equal to 0.001. The dropout strategy

has a probalistic value equal to 25%. We stop the training after 30 epochs

to avoid learning training dataset specification. The initial learning rate lr

is set to 0.001.

For the data augmentation step, the ranges of the horizontal and ver-

tical translations are ±20 pixels and the range of the depth translation is

±100. Parameters for each translation are drawn from a uniform distribu-

tion.

5.7.3 Offline recognition analysis

A) Dynamic hand gesture recognition using temporal hand posture fea-

tures

We propose to evaluate the RNNskeleton and to analyze its usefulness ac-

cording to the type of gestures. We remind that the RNNskeleton aims to

classify gestures using hand posture variations during the gestures hand

skeletal features extracted by a CNN trained for hand pose estimation.

We evaluate the coherence between predicted labels and ground-truths by

computing the confusion matrix presented in Figure 5.9.

Using only the RNNskeleton, we obtain an overall recognition rate of

65.41%, where the first statement is that only 5 gestures show an accuracy

higher than 80%. We note that using hand skeletal features, inverse Swipe

gestures (1 - 6) do not show too much confusion between them. Also

Rotation gestures obtained a correct accuracy up to 80%.

Confusion between gestures Swipe right hand open (1) and Swipe right

one finger (5) is up to 11%. In this case, the RNNskeleton recognizes the mo-

tion but struggles to define the hand shape differences. Also, the network

does not perform correctly on almost every Static gestures (13 - 15, 25).

136 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure 5.9 – The confusion matrix obtained using the RNNskeleton on the NVIDIA Hand
Gesture dataset. Labels of gestures can be found in Figure 5.8.

B) Dynamic hand gesture recognition using temporal hand shape fea-

tures

In this section, we propose to evaluate the RNNshape and to analyze its

recognition rates and its efficiency according to the type of gestures. We

remind that the RNNshape takes as input features based on the cropped

region of interest of the hand and, so, does not contain any information

about the absolute hand position in the scene.

Using only the RNNshape, we obtain an overall recognition rate of

77.08%. It is 11.64% higher than the result obtained using the RNNskeleton.

Also, 11 gestures show an accuracy higher than 85%. From the resulting

confusion matrix, we made several statements.

First, accuracies for gestures that are described by the hand shape (e.g.

12 - 14, 22 - 25) show the efficiency of using hand shape features coming

from the high dimensional shape space of the CNNhandpose. Second, the

need of the motion cues in hand gesture appears in the confusion matrix

5.7. Experimental results on the NVIDIA Hand Gesture dataset 137

Figure 5.10 – The confusion matrix obtained using the RNNshape on the NVIDIA Hand
Gesture dataset. Labels of gestures can be found in Figure 5.8.

with lower results for several Swipe gestures (1 , 3 - 6, 18). In addition, ges-

tures having similar hand shapes but different motion patterns as Swipe

left with the hand open (2) and Push the hand open (18) show high confusions.

Finally, some gestures with high similarities of hand shape, as Show two

fingers and Show three fingers, still have high confusions and are a window

for future improvements. Meanwhile, the RNNshape does not show sev-

eral misclassifications like those appeared using the RNNskeleton such as

between gestures Swipe right hand open (1) and Swipe right one finger (5).

C) Fusion process

In Chapter 3, we studied a way to perform dynamic hand gesture recog-

nition using the hand shape and its motions using handcrafted features

on skeletal data. Results show the effectiveness of combining those two

specific information to describe hand gestures.

Combining different information or modalities using deep learning is

not an obvisous task. Wu et al. [162] investigated intermediate and late

138 Chapter 5. Dynamic hand gestures using a deep learning approach

fusion strategies for multimodal gesture recognition. They discover that

averaging results in the last stage of the process gives accurate and more

robust results. In this section, we evaluate multiple fusion configurations

of the RNNskeleton and the RNNshape depicted in Figure 5.11. If needed,

new layers are trained using back-propagation. We keep using the rmsprop

optimizer with a batch size of 10 for 30 epochs. The initial learning rate

lr is set to 0.0001 and it decreases following the number of epochs ne by

lr = 0.001× N0e−λ×ne. Model optimizers minimize the cross-entropy cost

function during the training phase.

Figure 5.11 – Three different fusion configurations: (a) Using a weighted summation of
the final probabilistic distributions. (b) Adding fully connected layer to learn a represen-
tation of the two networks output. (c) Using the Joint Fine-Tuning methods introduced in
Section 5.6. Hatched boxes are element that are fixed and not changed during the training
fusion process.

1 - Weighted summation of final probabilistic distributions. A strat-

egy to fuse two modalities is to combine their final emission probabilities.

Network outputs were integrated by weighted summing their values. Let

be ŷ1 and ŷ2 be, respectively, the output probabilities of the RNNskeleton

and the RNNshape. In this fusion strategy, the predicted label are:

ŷ f inal = argmax
i

(α ŷi
1 + (1− α) ŷi

2) , 0 < α < 1 (5.8)

with i = 1 . . . K and K is the number of classes. The parameter α

depends on the performance of each network. We set the value of α to

0.48 which is the optimal value as shown in Figure 5.12. Using a weighted

summation of the outputs, we obtain a final accuracy of 78.33%.

5.7. Experimental results on the NVIDIA Hand Gesture dataset 139

Figure 5.12 – Performance of the fusion probabilistic distributions of the RNNskeleton
and the RNNshape using a weighted summation strategy with respect to α. We changed
the value of α from 0 to 1 with interval of 0.001. We found an optimal value when α is
equal to 0.48 with an overall accuracy of 78.33%.

2 - Add and learn an additional fully connected layer. Another way to

fuse two modalities is to learn a possible intermediate representation of

output networks. We concatenate the outputs of the RNNskeleton and the

RNNshape and feed them into a fully connected layer followed by a softmax

layer as depicted in Figure 5.11. It is similar to the intermediate solution

investigate by Wu et al. [162]. Compared to them, this solution shows a

better accuracy than simply apply a weighted sum with a final accuracy

of 79.37%.

3 - Joint fine-tuning. The joint fine-tuning method introduced in Section

5.6 is a mixture of the two previous fusion strategies. It consists in retrain-

ing the two last softmax layers of the RNNskeleton and the RNNshape while

forcing their sum to be a representation of both networks. This strategy

takes advantage of previous fusion method benefits. Firstly, it does not

add parameters to the model and, so, does not increase its complexity.

Secondly, it allows the network to learn a joint representation of network

outputs. Using this approach, the final accuracy of fusion networks is

79.58%. The confusion matrix is given in Figure 5.13.

The confusion matrix shows that results of both RNN have not de-

140 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure 5.13 – The confusion matrix obtained after the fusion by joint-fine tuning of the
RNNshape and RNNskeleton on the NVIDIA Hand Gesture dataset. Labels of gestures
can be found in Figure 5.8.

creased and that the recognition system benefits from the fusion. Let us

take as example the gesture Show up two finger (index 14 in Figure 5.8).

Using the RNNshape, it shows high confusion (14%) with the gesture Swipe

right with two fingers (5) as the network does not take motion information

into account. Using the RNNskeleton, the gesture Show up two finger shows,

this time, high confusion (14%) with the gesture Show up three finger (15)

as the network do no handle precise information about the hand shape.

After the fusion step, the recognition accuracy of the gesture Show up two

finger reach 100%.

5.7.4 Online detection of continuous hand gestures

The difference between offline and online recognition is in the mapping

definition. Offline recognition maps a sequence to a class-conditional

probability vector y following a mapping function Fo f f line, in our case,

defined as:

5.7. Experimental results on the NVIDIA Hand Gesture dataset 141

Fo f f line : {It}t=1...N 7→ y (5.9)

where {It}t=1...N is a sequence of depth images of size N. Instead, an

online recognition algorithm maps each frame of the sequence to a class-

conditional probability vector:

Fonline : {It}t=1...N 7→ {yt}t=1...N (5.10)

In this section, we study the online potential of the framework intro-

duced so far. Online hand gesture recognition requires a prior gesture

detection as it contains motions belonging to none of the gesture cate-

gories. We study two different methods to perform gesture detection and

new metrics to analyze the online capacity are introduced.

A) Gesture detection

An unsegmented stream of gestures contains a lot of unwanted and mean-

ingless hand motions that do not belong to none of the gesture categories.

First, hand gesture movements are often composed of three phases:

1. The pre-stroke phase, which is composed of hand motions happening

before the relevant gesture when the user needs to put its hand in

a starting position. For example, it is the movement the user per-

forms to move the hand from its restful position to a place where

the camera can see the hand.

2. The nucleus phase, where the hand gesture is performed and have

meanings.

3. The post-stroke phase, which is composed of hand motions happen-

ing after the relevant gesture when the user wants to move back its

hand to a restful position.

Additionally, a stream of gestures contains motions between the ges-

tures as depicted in Figure 5.14. For example, in a human-computer in-

terface based on hand gestures in a car scenario, while the user is not

performing a gesture, his hands are still moving to control the vehicle

142 Chapter 5. Dynamic hand gestures using a deep learning approach

and, so, contains a lot of parasitical hands motions. A challenge of online

hand gesture recognition is to detect and extract only hand motions from

nucleus phases in order to improve the gesture recognition accuracy.

Figure 5.14 – Different phases of a continuous stream of gestures. The figure depicts a
fictive curve of the motion energy of a sequence of two hand gestures. Frames which do
not belong to a gesture, with or without parasitical motions, are in red. Blue, green and
orange squares identify, respectively, pre-stroke, nucleus and post-stroke phases. We note
that the second gesture does not contain a post-stroke phase as with the pre-stroke phase,
their existence is not automatic.

In the following experimentation, we study the gesture detection step

of our framework and its impact on the overall accuracy. The NVIDIA

dataset has been captured following a human-computer interaction based

on hand gestures in a car scenario. While the user is not performing

a gesture, its hands still move to control the vehicle and, so, is highly

suitable to study gesture detection.

The ground-truth annotations of the NVIDIA dataset do not contain

the nucleus locations, we manually labeled each frame following a binary

categorical variable {gesture, no_gesture}. To compare our detection step,

we first remove every frame labeled no_gesture of the dataset and perform

the whole classification process as defined so far. We obtain an overall ac-

curacy of 83.33%, which outperformed the previous score by 3.75%. This

result shows the importance to perform gesture detection. We compare

two ways to accomplish the detection step: by adding a gesture local-

ization step using a frame-wise light gesture localization network and by

adding a garbage class that gathers all no_gesture motions.

5.7. Experimental results on the NVIDIA Hand Gesture dataset 143

1 - Adding a frame-wise light gesture localization network. In real ap-

plications, we do not have information about when and where the hand

gesture is going to be performed. Neverova et al. [98] added a binary clas-

sification step before the classification process using {gesture, no_gesture}

labels. Following this method, we propose to learn a light binary classi-

fier network composed of a single LSTM layer, but the network is trained

based only on skeletal features. The localization network is placed before

the classification network. If the localization network classifies the cur-

rent frame as gesture, it is fed to the classification network, it is rejected

otherwise.

On the task of frame-wise binary classification following labels

{gesture, no_gesture}, our localization network has obtained 76.31%. It is

a weak result for a task with only two classes. To compare, Neverova et al.

obtained a binary classification up to 98% on the Chalearn 2014 Looking at

People Challenge (track 3) [33] using body skeletons. The aim of this track is

to perform classification on a dataset of 20 Italian conversational gestures.

These are not hand gestures but whole body gestures and they are mostly

defined by arm movements. Between gestures, users are not moving and

keep the same body restful position making the gesture localization task

much easier.

In hand gestures, there are high similarities between some pre-stroke

phases and other gestures nucleus phases. Figure 5.15 shows the frame-

wise classification following labels {gesture, no_gesture} by gesture types

of the NVIDIA dataset using our localization network.

The first thing we observe is that static gestures (e.g. Show up one,

two or three fingers (12 - 16) or yet Ok sign (24) and Thumb up (25)) show

accuracy higher than 80%. An other interesting statement is that Swipe

left gestures (1 and 5) show weak results, respectively, 61.59% and 72.43%.

While, Swipe right gestures (2 and 6) reach accuracies higher than 80%.

Indeed, as depicted in Figure 5.16, different phases of inverse gestures

contain high similarities. For example, the pre-stroke phase of a Swipe left

gesture consists in moving the hand to the right so that the camera is able

to see the entire gesture. However, this movement to the right can be seen

144 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure 5.15 – Accuracies of correctly classified frames following labels
{gesture, no_gesture} by gestures of the NVIDIA dataset and using a light
network composed of one LSTM layer. The red line shows the limit at 80% of recognition.

as a Swipe right gesture nucleus by the localization algorithm and not as a

pre-stroke phase of a Swipe left gesture.

Figure 5.16 – An example of a gesture Swipe Left (up) and Swipe Right (down), both
hand open, and their respective phases (blue: pre-stroke, green: nucleus, orange: post-
stroke). The figure shows high similarities between the pre-stroke phase of the Swipe Left
gesture and the nucleus phase of Swipe Right gesture.

Despite a bad recognition rate of nucleus phases by a localization net-

work, we went through the entire recognition process. Compared to our

previous results, we obtain a lower overall recognition accuracy equal to

78.87% on the NVIDIA dataset.

5.7. Experimental results on the NVIDIA Hand Gesture dataset 145

2 - Adding a garbage class. This method consists of extending the dictio-

nary of existing gestures such as: Y′ = Y ∪ { no_gesture }. Consequently,

the softmax layer outputs a class-conditional probability for this additional

“garbage” class. All frames which do not belong to a nucleus phase are

labeled with this new class.

To compare the effectiveness of the “garbage” class against the method

which add a binary classification step, frames predicted as belonging

to any gestures are mapped as positive examples, others are consid-

ered as negatives. Each frame is thus assigned with a label gesture or

no_gesture. On the task of frame-wise binary classification following labels

{gesture, no_gesture}, the “garbage” class strategy obtained 84.72%, being

5.85% more accurate than using an additional binary classification step.

Figure 5.17 shows results of binary frame-wise accuracyies using a

“garbage” class by gesture types of the NVIDIA dataset. We observe that

12 gestures show a score higher than 80%. As it is more accurate, we apply

the “garbage” class strategy to our framework in order to perform online

hand gesture recognition.

Figure 5.17 – Accuracies of correctly classified frames following labels
{gesture, no_gesture} by gesture types of the NVIDIA dataset using a “garbage” class.
The red line shows the limit at 80% of recognition.

146 Chapter 5. Dynamic hand gestures using a deep learning approach

B) Metrics for online gesture detection and recognition algorithms

In the folowing section, we analyze the online gesture detection and recog-

nition capacity of our framework applied to the NVIDIA dataset. To do so,

we use three metrics: the Receiver Operating Characteristic (ROC) curve

[11] and the Normalized Time to Detect (NTtD) [51] for the detection anal-

ysis and the recognition accuracy to analyze the recognition process.

1 - ROC curve. We are considering testing a detector on a set of time se-

ries. The False Positive Rate (FPR) of the detector is defined as the fraction

of time series that the detector fires outside of the event of interest (in our

case the nucleus). The True Positive Rate (TPR) is defined as the fraction

of time series that the detector fires inside a nucleus phase. A detector

typically has a detection threshold that can be adjusted to trade off high

TPR for low FPR and vice versa. By varying this detection threshold, we

can generate and plot a ROC curve, which is the function of TPR against

FPR. We use the area under the ROC for evaluating the detector accuracy.

2 - NTtD. To evaluate the detection time, we used the NTtD. Given a

testing hand gesture where the nucleus occurs from a to b. Suppose the

detector starts to fire at time t. For a successful detection, a ≤ t ≤ b, NTtD

is the fraction of the nucleus that has occurred before the system fires a

detection:

t− a + 1
b− a + 1

(5.11)

By adjusting the detection threshold chosen using the ROC curve, one

can achieve lower NTtoD at the cost of higher FPR and vice versa.

3 - Recognition accuracy. The recognition accuracy is the fraction of se-

quences in the test set which is correctly labeled by our framework. Previ-

ously, for offline gesture recognition, we choose the predicted label of the

last frame as the predicted label of the sequence. In an online scenario,

we can not perform gesture classification in that way as it is possible that

5.7. Experimental results on the NVIDIA Hand Gesture dataset 147

the last frame is labeled as no_gesture and that does not implies a wrong

classification.

Consequently, to compute a recognition accuracy for an online hand

gesture recognition, the predicted label of a particular gesture is chosen

as the predicted label of the last frame which is not labeled as no_gesture,

such as:

ŷ = argmax
i

(yi
M) | argmax

i
(yi

M+1...N) = no_gesture (5.12)

where N is the number of frame in the gesture.

C) Evaluation results

In the following experiments, we evaluate the effectiveness of our ap-

proach of hand gesture detection and recognition on the NVIDIA dataset.

To detect the presence of any one of the 25 gestures relative to

no_gesture, we compare the highest current class probability output of our

framework to a threshold ξ ∈ [0, 1]. When the detection threshold is ex-

ceeded, a classification label is assigned to the most probable class. First,

we do it in a frame-wise manner and compute the ROC curve depicted in

Figure 5.18.

Figure 5.18 – The ROC curve using our framework on the NVIDIA dataset. We obtained
an Area Under the Curve equal to 0.92.

148 Chapter 5. Dynamic hand gestures using a deep learning approach

Using it, we choose a detection threshold ξ equal to 0.16 as it shows

a good trade-off between a high TPR (85%) and a low FPR (17%). The

NTtD distribution values for various gesture types is shown in Figure

5.19. The average NTtD across all classes is 0.2158 which means that, in

average, a hand gesture can be detected after only 22% of its nucleus. In

general, static gestures require the finest portion of the nucleus to be seen

before classification (around 10%), while dynamic gesture are classified on

average within 25%.

Figure 5.19 – The Normalized Time to Detect values for the 25 gestures contained in the
NVIDIA dataset using our framework and a detection threshold ξ equal to 0.16.

The average nucleus length over the whole dataset are given in Figure

5.20.

Static gestures have longest nucleus phases. Intuitively, NTtD differ-

ences between dynamic and static gestures are explained as users letting

their hand a long time in front of the camera to express a static gesture

but the algorithm can detect it using few frames.

Finally, we compute the overall recognition accuracy using the fusion

of the RNNskeleton and the RNNshape in addition to a “garbage” class to

perform an online hand gesture recognition. We obtained an accuracy of

81.25%. The confusion matrix is given in Figure 5.21.

5.7. Experimental results on the NVIDIA Hand Gesture dataset 149

Figure 5.20 – Nucleus lengths in number of frames of the 25 gestures contained in the
NVIDIA dataset.

Figure 5.21 – Final confusion matrix using the RNNskeleton and the RNNshape fused
in addition with a “garbage” class to performed online hand gesture recognition. The
average recognition accuracy is equal to 81.25%.

150 Chapter 5. Dynamic hand gestures using a deep learning approach

Table 5.1 – Comparison with state-of-the-art methods on the NVIDIA dataset.

Method Modality
Features extraction

strategy
Accuracy

Human color 88.4%
HOG+HOG2 [105] depth handcrafted 36.3%
SNV [167] depth handcrafted 70.7%
C3D [149] depth learned 78.8%
R3DCNN [94] depth learned 80.3%
Ours depth learned 81.3%

D) Comparison with state-of-the-art methods

We compare our approach to several state-of-the-art methods:

HOG+HOG2 descriptors [105], Super Normal Vector (SNV) [167], con-

volutional 3D (C3D) [149] and a C3D followed by a recurrent layer

(R3DCNN) [94], as well as human labeling accuracy.

To compute HOG+HOG2 descriptors [105], all video sequences are

ressampled to 32 frames and the parameters of the SVM classifier are

tuned via grid search to maximize accuracy. Among the CNN-based meth-

ods, we compare against the C3D method [149], which is pre-trained with

the Sports-1M [59] dataset and fine-tuned with the depth modalities of the

NVIDIA dataset. The R3DCNN method uses the C3D network to extract

spatiotemporal features of sub-video clip of 8 frames and fed the result

sequence in a recurrent layer. Molchanov et al. [94] trained the whole

network using a Connectionist Temporal Classification (CTC) [42, 43] loss

function.

Lastly, Molchanov et al. [94] evaluated human performance on the

NVIDIA dataset by asking six subjects to label each of the 482 gestures

videos in the test set after viewing the front-view color video. Prior to

the experiment, each subject familiarized themselves with all 25 gesture

types. State-of-the-art method results are given in Table 5.1. We note

that handcrafted methods give lower results that deep learning methods.

Our approach achieves the best performances, meanwhile it is still below

human accuracy (88.4%).

Focus on the number of parameters in networks. In Chapter 4, we de-

fined the capacity of a model following its size and its depth. Higher

5.7. Experimental results on the NVIDIA Hand Gesture dataset 151

Table 5.2 – Formulas of the number of parameters for different layers with a number of
hidden parameters equal to n and an input of size m.

Layers Formulas Examples (m = 64, n = 9)
Fully Connected Layer m× n 576

Recurrent layer m× n + n2
657

Long Short Term Memory 4× (m× n + n2) 2628

CNN m× n 576

are the size and the depth, higher is the number of parameters. Differ-

ences in the computational complexity between models are not exactly

linearly comparable to their number of parameters, as some layers can see

their computational time decrease dramatically using parallel computing

(e.g. convolutional layer). However, it is a good start to study the overall

complexity differences between models. Formulas giving the number of

parameters of different layers are shown in Table 5.2.

The R3DCNN [94] contains 79, 116, 288 parameters distributed as fol-

lows: they extract spatiotemporal features using a 3D CNN of 8 convo-

lutional steps and two fully connected layers of size 4096 which together

contains 77, 885, 776 parameters. They append a recurrent layer of size 256

(1, 114, 112 parameters) and a softmax layer (6, 400 parameters).

Our framework extracts hand shape and skeletal features from a single

light 2D CNN with 3 convolutional steps and two fully connected of size

1024 which together contains 3, 182, 414 parameters. Our method uses also

two-stacked LSTM layers, both, containing 14, 680, 064 parameters and end

on a single softmax layer of 12, 800 parameters. The whole framework

described in this chapter contains 32, 555, 342 parameters, so, less than half

the number contained in the R3DCNN [94] network and still outperforms

their accuracy result by 1%.

The tranfer strategy using a hand pose estimation system to extract

hand shape and skeleton features allowed us to perform better while using

a far less complex network.

152 Chapter 5. Dynamic hand gestures using a deep learning approach

5.8 Experimental results on the Online Dynamic Hand

Gesture (Online DHG) dataset

In Section 3.2, we introduced the Dynamic Hand Gesture - 14/28 (DHG-

14/28) dataset that we have created to study the potential of using skeletal

features for heterogeneous hand gesture recognition. This dataset is com-

posed of 2800 sequences, each corresponding to a labeled gesture, provid-

ing, both, depth image sequences and hand skeletal features. Therefore,

as the sequences are pre-segmented, the DHG dataset is not suitable to

study the potential of our framework to perform gesture detection.

To study the potential of our framework on challenges coming from

both the detection of gestures in an unsegmented video stream and the

recognition process of heterogeneous hand gesture types, we created a

new version of the DHG-14/28 dataset called Online Dynamic Hand Gesture

(Online DHG) dataset. We note that for all following experiments, we use

the same implementation details as defined in Section 5.7.

5.8.1 Dataset

All sequences of the Online DHG dataset are newly recorded and are dif-

ferent from the first version DHG-14/28 dataset. The dataset has been

designed to keep all the characteristic of its first version: it contains the

same 14 coarse and fine gesture types (presented in Table 5.3). Each ges-

ture is either performed using one finger or the whole hand. Both depth

image sequences and hand skeletal features are recorded by the Intel Re-

alSense camera [117]. Further details are provided in Section 3.2.

Beside, the Online DHG dataset is different as it provides 280 se-

quences of 10 unsegmented gestures occurring sequentially. Between

meaningful gestures, participants were free to take back a restful posi-

tion without any suggestions from the recorders. In addition, comparing

to the sequence-wise labeling of the first version, we provide a label for

each frame of the gesture sequences. Frames between meaningful gestures

are labeled as belonging to a no gesture class. Providing unsegmented se-

quences of many distinct gestures with frame-wise labeling will allows

5.8. Experimental results on the Online Dynamic Hand Gesture (Online DHG) dataset 153

Table 5.3 – Gesture list included in the Online DHG dataset.

Index (14) Index (28) Gesture Labelization

1

1

2

Grab Fine

2

3

4

Expand Fine

3

5

6

Pinch Fine

4

7

8

Rotation CW Fine

5

9

10

Rotation CCW Fine

6

11

12

Tap Coarse

7

13

14

Swipe Right Coarse

8

15

16

Swipe Left Coarse

9

17

18

Swipe Up Coarse

10

19

20

Swipe Down Coarse

11

21

22

Swipe X Coarse

12

23

24

Swipe V Coarse

13

25

26

Swipe + Coarse

14

27

28

Shake Coarse

154 Chapter 5. Dynamic hand gestures using a deep learning approach

researchers to use the Online DHG dataset to study the potential of their

algorithms to perform gesture detection and online recognition. We ran-

domly split the dataset into a training (70%) and a test (30%) sets, resulting

in 196 training and 84 test unsegmented videos.

5.8.2 Offline recognition analysis

First, we aim to experiment the potential of our framework to perform

an offline recognition. We analyze the results obtained using, first, the

RNNskeleton and the RNNshape separately and finally the benefits coming

from their fusion. To study the offline recognition process, we extract the

gesture nucleus resulting in a dataset of 2800 gestures of either 14 or 28

distinct labels.

A) Dynamic hand gesture recognition using hand posture features

We propose to evaluate the RNNskeleton for the task of hand gesture recog-

nition from the 14 gesture vocabulary of the Online DHG dataset. We

remind that the RNNskeleton aims to classify gestures using hand posture

variations along the time represented by hand skeletal sequences.

Using only the RNNskeleton, we obtain an overall recognition rate of

84.52% where the first statement is that 10 gestures show an accuracy

higher than 80%. Figure 5.22 illustrates the confusion matrix obtained for

this experiment.

We note that using hand skeletal features, coarse gestures (6 - 14) do not

show too much confusion between each other. In the meantime, recogni-

tion accuracies of fine gestures are the lowest. For example, the confusion

between the Grab (1) and the Expand (2) gestures is up to 23%.

In our framework, we first extract the skeletal features from a pre-

trained CNN using formulations in Section 5.2. The Intel RealSense

[117] camera is also able to extract such features. We trained again the

RNNskeleton from scratch , using skeletal features captured this time from

the Intel Realsense camera. We obtain an overall accuracy equal to 84.88%,

showing that the temporal modeling of our approach is independent of the

skeletal features used.

5.8. Experimental results on the Online Dynamic Hand Gesture (Online DHG) dataset 155

Figure 5.22 – The confusion matrix obtained using the RNNskeleton on the Online DHG
dataset for the task of offline recognition of 14 gesture types. Labels of gestures can be
found in Table 5.3.

B) Dynamic hand gesture recognition using hand shape features

We propose to evaluate the RNNshape for the task of hand gesture recog-

nition from the 14 gesture vocabulary of the Online DHG dataset. The

RNNshape takes as input features based on the cropped region of interest

of the hand and, so, does not contain any information about the absolute

hand position in the scene.

Using only the RNNshape, we obtain an overall recognition rate of

80.60%. Eight gestures show an accuracy higher than 80%. From the

resulting confusion matrix, depicted in Figure 5.23, we made several state-

ments.

First, as the RNNshape has no cues about the hand motions, several

Swipe gestures show poor results as the gestures Swipe Down (10), Swipe

X (11), Swipe + (13). Beside, the recognition accuracy of gestures that are

described more by the hand shape variations (1 - 5) increases compared

to the accuracy obtained using the RNNskeleton. Those results confirm the

156 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure 5.23 – The confusion matrix obtained using the RNNshape on the Online DHG
dataset for the task of offline recognition of 14 gesture types. Labels of gestures can be
found in Table 5.3.

statement we made in Section 5.7.3 and show again the efficiency of using

the high dimensional shape space of the CNNpose ashand shape features

to distinguish fine gestures.

C) Fusion process

Finally, we fuse the two RNNs and obtain an overall accuracy of 94.17%.

The confusion matrix is depicted in Figure 5.24.

The matrix illustrates that the fusion is not only able to choose the

right features to perform the classification but also takes benefit from both

information to outperform the previous recognition accuracies. For exam-

ple, the gesture Swipe Down (10) obtained 77% and 72% of accuracy using

respectively the RNNskeleton and the RNNshape. Once they are fused, our

system is able to correctly recognize 89% of these gestures.

5.8. Experimental results on the Online Dynamic Hand Gesture (Online DHG) dataset 157

Figure 5.24 – The confusion matrix obtained using a joint-fine tuning fusion of the
RNNshape and the RNNskeleton on the Online DHG dataset for the task of offline recog-
nition of 14 gesture types. Labels of gestures can be found in Table 5.3.

Let us now study the capacity of our framework to distinguish the same

gestures performed with one finger or the whole hand. With a vocabu-

lary of 28 gesture types, we obtain an accuracy of 76.30% and 76.67%

respectively using the RNNskeleton and the RNNshape. Once fused, we ob-

tain an overall accuracy equal to 90.48%. This result illustrates the out-

standing potential of fusing shape and posture features to perform fine

hand gesture recognition. The confusion matrix resulting from this exper-

iment, depicted in Figure 5.25, show that we obtain almost no confusion

between gestures with the same meaning but performed with different

number of fingers, thanks to the precise shape information coming from

the RNNshape.

D) Comparison with state-of-the-art methods

We compare here our framework to state-of-the-art methods for the task

of offline hand gesture recognition on the Online DHG dataset. First, with

158 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure 5.25 – The confusion matrix obtained using a joint-fine tuning fusion of the
RNNshape and the RNNskeleton on the Online DHG dataset for the task of offline recog-
nition of 28 gesture types. Labels of gestures can be found in Table 5.3.

two handcrafted descriptors based on depth images: the HOG+HOG2 de-

scriptor proposed by Ohn-bar [105] and the HON4D descriptors proposed

by Oreifej et al. [107]. Second, we compare our approach to a skeleton-

based method proposed by Devanne et al. [27] originally designed for

human action recognition. Third, we present the results obtained by our

approach [23] introduced in Chapter 3. Those methods are introduced in

details in Section 3.8.2. Finally, Guerry et al. [24] proposed a hand gesture

recognition algorithm based on key frames detection followed by a CNN.

The recognition accuracies, using both 14 and 28 gesture types of the On-

line DHG dataset, obtained by the state-of-the-art methods cited below are

presented in Table 5.4. We note that the publicly available source codes of

these methods are used in our experiments.

Our method outperforms all this state-of-the-art approaches. The key

frames detection of Guerry et al. [24] leads to a temporal lossy representa-

5.8. Experimental results on the Online Dynamic Hand Gesture (Online DHG) dataset 159

Table 5.4 – Comparison with state-of-the-art methods on the Online DHG dataset.

Method 14 gestures (%) 28 gestures (%)
Guerry et al. [24] 82.90 71.90

De Smedt et al. [23] 88.24 81.90

Ohn-Bar et al. [105] 83.85 76.53

Oreifej et al. [107] 78.53 74.03

Devanne et al. [27] 79.61 62.00

Intel RealSense [117] + RNNskeleton 84.88 -
Ours, RNNskeleton 84.52 76.30

Ours, RNNshape 80.60 76.67

Ours, fusion 94.17 90.48

tion of the gestures. Beside, the action recognition method of Devanne et

al. performs poorly and is not suitable for hand gesture recognition.

We note that the RNNskeleton alone does not outperform our hand-

crafted approach proposed in [23]. Only by adding the shape features,

our framework can outperform this methods by 6%. The effectiveness

of the fusion of the hand shape variations and its motions appears truly

when looking at results obtained on the task of recognizing 28 gestures,

where we outperform state-of-the-art methods by more than 10%.

5.8.3 Online recognition analysis

In this section, we analyze the behavior of our framework on the detection

and the recognition processes, as defined in Section 5.7.4, on the Online

DHG dataset. We note that in the following experiments, we used the

unsegmented sequences of gestures labeled following the vocabulary con-

taining 28 labels.

A) Online detection and recognition

Using the metrics defined in Section 5.7.4, we compute the first ROC curve

depicted in Figure 5.26. We choose a gesture detection threshold equal to

0.15 as it shows a good trade-off between a high TPR (85%) and a low FPR

(17%).

The NTtD distribution values for various gesture types is shown in Fig-

ure 5.27. The average NTtD across all classes is 0.2104, which means that,

in average, a hand gesture can be detected after only 21% of its nucleus.

160 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure 5.26 – The ROC curve using our framework on the Online DHG dataset. We
obtained an Area Under the Curve equal to 0.91.

Figure 5.27 – The Normalized Time to Detect values for the 28 gestures contained in the
Online DHG dataset using our framework and a detection threshold ξ equal to 0.15.

The average nucleus lengths over the whole Online DHG dataset are

given in Figure 5.28. We note that nucleus of fine gestures (1 - 10) are

shorter than those of coarse gestures (11 - 25). Moreover, Swipe gestures

that contain multiple motions, such as Swipe V, X and + (21 - 28), have

naturally the longest nucleus.

Using the detection upstream step, we obtain an overall online accu-

5.8. Experimental results on the Online Dynamic Hand Gesture (Online DHG) dataset 161

Figure 5.28 – Nucleus lengths in number of frames of the 28 gestures contained in the
Online DHG dataset.

racy recognition of 82.14%. The confusion matrix is depicted in Figure

5.29.

Figure 5.29 – The confusion matrix obtained on the Online DHG dataset for the task of
online recognition of 28 gesture types. Labels of gestures can be found in Table 5.3.

162 Chapter 5. Dynamic hand gestures using a deep learning approach

Due to issues resulting from the detection of gestures, the recogni-

tion accuracy decreases by 8.34% compared to the easiest task of pre-

segmented gesture recognition. This difference can result from incorrect

gesture detection or from confusion between gestures with similar parts.

For example, the Swipe Down gesture (20) performed with the whole hand

obtains an offline recognition accuracy up to 87%. In the online scenario,

the accuracy decreases by 57% and a high confusion up to 24% appears

with the Swipe V gesture (24). This can be explained as the first half a Swipe

V gesture is extremely similar to the Swipe Down gesture. In addition, the

recognition process suffers from an incorrect prior gesture detection.

B) Discussion

In this section, we analyzed the potential of our framework to perform the

detection and the recognition of hand gestures from heterogeneous sets of

gesture types. Figure 5.30 illustrates the output of our framework on a test

sequence. In this case, the result is almost perfect, each of the 10 gestures

is correctly labeled after only few frames.

However, our framework still can be improved. Figure 5.31 shows a

test sequence where 5 out of 10 gestures show a missclassification during

the first few frames.

Those mistakes arise when our framework detect that a gesture is hap-

pening but do not have enough frames, so, not enough information to be

recognize correctly. We could overcome issues resulting from those miss-

classifications by firing an incoming gesture only if its length is longer

than a threshold.

5.9 Conclusion

In this chapter, we proposed an effective framework for online hand ges-

ture detection and recognition. Based on statements from a previous work,

our goal was to use a transfer learning strategy to perform hand gesture

recognition. A CNN trained on a hand pose estimation dataset is used

in order to extract hand posture and shape features. Thus, hand gestures

represented as depth image sequences were transformed into two distinct

5.9. Conclusion 163

Figure 5.30 – The gesture detection and recognition performance of our framework on
a continuous video stream of 10 gestures. The top figure illustrates the classification
outputs of our framework (blue) versus the ground-truth (orange) where the x-axis is
the time in number of frames and the y-axis represents the class outputs. The bottom
figure represents the accuracy for each gesture types along the time where various colors
indicate different gesture types. The no_gesture class is not shown. This figure illustrates
an almost perfect recognition result.

164 Chapter 5. Dynamic hand gestures using a deep learning approach

Figure 5.31 – The gesture detection and recognition performance of our framework on
a continuous video stream of 10 gestures. The top figure illustrates the classification
outputs of our framework (blue) versus the ground-truth (orange) where the x-axis is the
time in number of frames and the y-axis represents the class outputs. The bottom figure
represents the accuracy for each gesture types along the time where various colors indicate
different gesture types. The no_gesture class is not shown. The top curve shows that five
gestures are miss-classified during the first frames of their nucleus.

5.9. Conclusion 165

ordered lists of hand shapes and hand skeletal features. Then, we used

two specific recurrent networks to model separately the temporal aspect

of hand shape and skeletal variations through hand gestures. Finally, we

fused outputs of both networks to obtain a single class-conditional proba-

bility vector by gesture and choose the maximum as the predicted label.

Experiments on the NVIDIA dataset [94] demonstrated that the pro-

posed approach is capable to recognize hand gestures and to improve

results of state-of-the-art methods, both, using handcrafted and learned

features. Results showed that adding hand shape variation features into

the recognition process enhances significantly the overall accuracy for pre-

cise hand gesture classification.

For online recognition analysis, we computed the Normalized Time to

Detect [51] metric. Results showed that our framework is able to detect an

occurring gesture after only 22% of the nucleus phase.

We compared the total number of parameters in our framework

(32, 555, 342) to those of the R3DCNN [94] (79, 116, 288). The use of a

transfer learning strategy allowed us to outperform their result by 1% us-

ing less than half parameters.

However, we did not exceed human performance and gestures which

contain high hand shape similarities still showed confusions. Thus, hand

shape and skeletal features need to be more investigated. Hand pose es-

timation task, which need also to be improved, is an important challenge

for precise and fine hand gestures recognition.

In a second phase, we introduced the Online Dynamic Hand Gesture

dataset. We created this dataset in order to study the detection and the

recognition of hand gestures from heterogeneous sets of gesture types.

The potential of the fusion of learned features from hand shape varia-

tions and its motions appears truly when looking at the results obtained

on the task of recognizing 14 gestures types performed with different

number of fingers, where we outperform state-of-the-art methods by more

than 10%.

Online detection and recognition evaluation results on this challeng-

ing dataset show that we can detect an arising gesture after only 21% of

166 Chapter 5. Dynamic hand gestures using a deep learning approach

its nucleus. However, our framework shows some missclassification dur-

ing the first few frames of gestures where the algorithm has been able to

detect a gesture in progress but does not yet have sufficient information

to correctly recognize its type.

6Conclusion

Contents

6.1 Summary . 168

6.2 Future works . 170

167

168 Chapter 6. Conclusion

6.1 Summary

In this thesis, we addressed several issues of dynamic hand gesture recog-

nition from depth data, a widely investigated topic due to its wide range

of potential applications.

In a first time, we aimed to perform dynamic hand gesture recognition

on a set of heterogeneous gesture types. Indeed, the hand is an object

with a complex topology. The hand has endless possibilities to perform

the same gesture. For example, Feix et al. [35] summarized the grasp-

ing taxonomy and found 17 distinct hand shapes to perform a grasp. In

addition, other gestures, such as swipes which are defined by hand mo-

tions, are already commonly used in tactile HCI. Thus both hand shape

and its motions variations along a gesture have to be taken into account

to perform a full recognition process.

Beside, in the field of action recognition, Shotton et al. [134] proposed

a real-time system to extract 3D positions of a humanoid skeleton from

a depth image. Hence, several descriptors in the literature proved how

the positions, the motions, and the orientations of skeleton joints could

be relevant descriptors for human action recognition. Following those

statements, we aimed to perform dynamic hand gesture recognition using

hand skeletal features.

As the use of skeletal features for hand gesture recognition is at its

beginning, there were no publicly released dataset providing these kind

of data. Consequently, we created the Dynamic Hand Gesture dataset

providing both hand skeletal sequences in addition to depth images. It

contains 2800 samples of 14 gesture types. In order to study the challenge

of recognition from an heterogeneous set of gestures, participants were

asked to perform the gestures in two ways: using one finger and the whole

hand.

We proposed a method to perform dynamic hand gesture recogni-

tion using three gestural features computed from hand skeletal sequences:

hand direction, rotation and a hand shape descriptor called Shape of Con-

nected Joint. Each set of features was encoded in a statistical representation

using a Fisher Kernel. In addition, we used a temporal pyramid to model

6.1. Summary 169

the dynamic aspect of gestures and a linear SVM to perform the classifi-

cation step. The evaluation of our approach showed a promising potential

of the use of skeletal features to perform hand gesture recognition. Eval-

uation results demonstrated the efficiency of our approach over the depth

image based descriptors. However, the results also revealed a lack of pre-

cision to describe the dynamic of complex hand gestures, compared with

the feature learning power of modern deep learning approaches.

Recently, deep neural networks have proven their outstanding effec-

tiveness of many area of research. Deep learning became a hot topic since

2010 thanks to the digitization of the society that exponentially increased

the size of dataset. Indeed, deep learning algorithms are data-hungry and,

while people uploads an increasing amount of data (i.e. texts, photos and

videos) every year, the Computer Vision community can use these data to

improve the effectiveness of their systems. However, no naturally digitized

data, such as hand gesture sequences of depth images, is hard to capture.

To be able to take benefit of the power of deep learning algorithms with a

smaller amount of data, we can use a smart transfer learning strategy.

In a second time, we aimed to go further in the hand gesture analysis.

First, we proposed to perform online recognition which allows the sys-

tem to detect the presence of a gesture in an unsegmented video stream

and to recognize the type of the gesture before its end, which is an essen-

tial capacity for real applications. Second, we have taken over the whole

pipeline of the recognition process, from hand pose estimation to the clas-

sification step, and used the power of deep learning models to increase

the efficiency and the robustness of our system.

Our framework is mainly composed of three steps. First, we used

a deep learning model which can take image as input – called a Con-

volutional Neural Network (CNN) – to extract both hand posture and

shape descriptors. The CNN is trained using a large hand pose estima-

tion dataset and we transferred its knowledge to extract relevant features.

Thus, hand gestures originally represented as depth image sequences are

encoded into two distinct lists of features: hand skeletal sequences, which

described the hand posture along the gesture, and hand shape feature se-

170 Chapter 6. Conclusion

quences. Second, we used two recurrent networks, designed to take as in-

put time-series data, to model separately the temporal variations of hand

postures and its shapes. Finally, we merged outputs of both networks to

obtain a single label by gesture. To perform hand gesture detection, we

added a garbage class. Specifically, we assign the label garbage to frames

that do not belong to a nucleus phase, i.e. where the gesture occurs.

Experimental results demonstrated that the proposed approach is ca-

pable to recognize hand gestures and to improve state-of-the-art results.

In addition, the experiments showed that our framework is able to detect

the presence of a gesture and to recognize it long before its end, mak-

ing our system efficient for real-time applications. The use of the transfer

learning strategy allowed us to outperform state-of-the-art deep learning

approaches using less than half of the number of parameters of the base-

line model. However, we did not exceed the human performance and

gestures containing high similarities still shows some confusion.

6.2 Future works

Experiments showed that the proposed solutions guarantee an effective

dynamic hand gesture recognition but still not exceed the human per-

formance. First, hand pose estimation is still an active field of research

and the model designed to extract features used in our framework can

be enhanced. In 2017, Yuan et al. [172] introduced the million-scale Big-

Hand2.2M hand pose dataset which should help researchers to improve

the effectiveness of their hand pose estimation algorithms.

Recently, several LSTM configurations have been studied for action

recognition application to perform human behavior analysis, such as the

hierarchical LSTM [31] or the Spatio-Temporal LSTM [79]. As a new field

of study, hand gesture recognition using temporal learned features on

skeletal sequences has been only partially studied. Going deeper into the

temporal modeling using recurrent layers could provide new ways to dis-

tinguish gestures with high similarities. In addition, new recurrent layers

have appeared recently providing an attention system. Such networks

are able to selectively focus on the informative joint skeletons along a se-

6.2. Future works 171

quence. For example, the system could automatically detect the fingers

which provides the most reliable information and focus on them to per-

form the gesture recognition.

In this thesis, we focused on abstract hand gestures (i.e. each gesture

has a specific meaning for the system). Meanwhile, in 2017, Garcia et al.

[38] introduced a hand daily life activities dataset providing sequences

of depth images and accurate hand poses. They obtained the best per-

formance using a recurrent neural network on the hand skeletal features.

They extracted the hand pose data from a kind of data-glove, since state-

of-the-art methods in terms of hand pose estimation still face several issues

with fast moving hands or finger self-occlusions. However, the use of a

data-glove in real applications is not suitable. An interesting idea would

be to use these skeleton data (extracted from the data-glove) during the

training phase to support the deep learning model in focusing on rele-

vant features from depth images. Once the model is trained, the skeleton

data are not needed anymore for the testing phase. This process is called

regularization.

The use of a gesture recognition system as the interface with a virtual

world can improve the quality of the interaction with the computer. If we

focused specifically in this thesis on hand visual cues, other parts of the

body can be use as the gaze, the face, the arms, etc. Moreover, in addition

to the visual cues, the voice is also an intuitive way to interact with a

computer. A system that can process multi-modal data would be able to

understand the will of a user with more precision.

Also, using a finite set of abstract gestures to interact with a virtual

world is very restrictive. If the systems we proposed in this thesis are able

to recognized that a user is grasping a virtual object, it do not have precise

information about the required transformation to apply on the object to

simulate the real world. To be able to fully reproduce the interaction in

the virtual world between the object and the hand, a lot of physical rules

has to be taken into account.

Finally, current gesture recognition systems are intrinsically indirect

interaction systems and, so, can seem unnatural to users. The barrier of

172 Chapter 6. Conclusion

bringing the sense of touch into a virtual world is a current problematic

with many challenges. We can imagine futuristic applications where the

limit between the real world and a virtual one is blurring. With this in

mind, we still have to develop algorithms able to reproduce the physi-

cal rules that guide the interaction between objects and haptic interfaces

which can reproduce the sense of touch.

Bibliography

[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev,

George Toderici, Balakrishnan Varadarajan, and Sudheendra Vijaya-

narasimhan. Youtube-8m: A large-scale video classification bench-

mark. arXiv preprint arXiv:1609.08675, 2016. (Cited page 95.)

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,

Pascal Fua, and Sabine Süsstrunk. Slic superpixels compared to

state-of-the-art superpixel methods. IEEE transactions on pattern anal-

ysis and machine intelligence, 34(11):2274–2282, 2012. (Cited page 34.)

[3] ASUS Xtion PRO LIVE. http://www.asus.com/Multimedia/

Xtion_PRO/, 2013. (Cited page 15.)

[4] J Bakalar. Sony playstation vr review. CNET, San Francisco, CA,

accessed July, 15:2016, 2016. (Cited page 13.)

[5] Jiatong Bao, Aiguo Song, Yan Guo, and Hongru Tang. Dynamic

hand gesture recognition based on surf tracking. In Electric Infor-

mation and Control Engineering (ICEICE), 2011 International Conference

on, pages 338–341. IEEE, 2011. (Cited page 30.)

[6] Neha Baranwal and GC Nandi. An efficient gesture based hu-

manoid learning using wavelet descriptor and mfcc techniques. In-

ternational Journal of Machine Learning and Cybernetics, 8(4):1369–1388,

2017. (Cited page 40.)

[7] Mathieu Barnachon, Saïda Bouakaz, Boubakeur Boufama, and Er-

wan Guillou. Ongoing human action recognition with motion cap-

ture. Pattern Recognition, 47(1):238–247, 2014. (Cited page 11.)

[8] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up

173

http://www.asus.com/Multimedia/Xtion_PRO/
http://www.asus.com/Multimedia/Xtion_PRO/

174 Bibliography

robust features. Computer vision–ECCV 2006, pages 404–417, 2006.

(Cited page 30.)

[9] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representa-

tion learning: A review and new perspectives. IEEE transactions on

pattern analysis and machine intelligence, 35(8):1798–1828, 2013. (Cited

page 91.)

[10] Yoshua Bengio and Yann LeCun. NIPS 2015 Deep Learning Tutorial.

(Cited page 108.)

[11] Andrew P Bradley. The use of the area under the roc curve in

the evaluation of machine learning algorithms. Pattern recognition,

30(7):1145–1159, 1997. (Cited page 146.)

[12] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

(Cited pages 39, 40, and 92.)

[13] Lars Bretzner, Ivan Laptev, and Tony Lindeberg. Hand gesture

recognition using multi-scale colour features, hierarchical models

and particle filtering. In Automatic Face and Gesture Recognition,

2002. Proceedings. Fifth IEEE International Conference on, pages 423–

428. IEEE, 2002. (Cited page 21.)

[14] Ian M Bullock, Thomas Feix, and Aaron M Dollar. The yale hu-

man grasping dataset: Grasp, object, and task data in household

and machine shop environments. The International Journal of Robotics

Research, 34(3):251–255, 2015. (Cited pages 27 and 28.)

[15] Minjie Cai, Kris M Kitani, and Yoichi Sato. A scalable approach

for understanding the visual structures of hand grasps. In Robotics

and Automation (ICRA), 2015 IEEE International Conference on, pages

1360–1366. IEEE, 2015. (Cited pages 27 and 28.)

[16] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support

vector machines. ACM transactions on intelligent systems and technol-

ogy (TIST), 2(3):27, 2011. (Cited page 66.)

Bibliography 175

[17] Feng-Sheng Chen, Chih-Ming Fu, and Chung-Lin Huang. Hand

gesture recognition using a real-time tracking method and hidden

markov models. Image and vision computing, 21(8):745–758, 2003.

(Cited page 39.)

[18] Hong Cheng, Zhongjun Dai, and Zicheng Liu. Image-to-class dy-

namic time warping for 3d hand gesture recognition. In Multimedia

and Expo (ICME), 2013 IEEE International Conference on, pages 1–6.

IEEE, 2013. (Cited pages 27, 28, 33, and 51.)

[19] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catan-

zaro, and Ng Andrew. Deep learning with cots hpc systems. In

International Conference on Machine Learning, pages 1337–1345, 2013.

(Cited page 96.)

[20] Simon Conseil, Salah Bourennane, and Lionel Martin. Comparison

of fourier descriptors and hu moments for hand posture recognition.

In Signal Processing Conference, 2007 15th European, pages 1960–1964.

IEEE, 2007. (Cited page 33.)

[21] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for

human detection. In Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, volume 1, pages

886–893. IEEE, 2005. (Cited pages 30 and 37.)

[22] Nasser H Dardas and Nicolas D Georganas. Real-time hand gesture

detection and recognition using bag-of-features and support vector

machine techniques. IEEE Transactions on Instrumentation and Mea-

surement, 60(11):3592–3607, 2011. (Cited pages 11, 31, and 40.)

[23] Quentin De Smedt, Hazem Wannous, and Jean-Philippe Vande-

borre. Skeleton-based dynamic hand gesture recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pages 1–9, 2016. (Cited pages 56, 120, 124, 158, and 159.)

[24] Quentin De Smedt, Hazem Wannous, Jean-Philippe Vandeborre,

Joris Guerry, Bertrand Le Saux, and David Filliat. Shrec’17 track: 3d

hand gesture recognition using a depth and skeletal dataset. In 10th

176 Bibliography

Eurographics Workshop on 3D Object Retrieval, 2017. (Cited pages 158

and 159.)

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In Computer

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,

pages 248–255. IEEE, 2009. (Cited pages 95 and 120.)

[26] Xiaoming Deng, Shuo Yang, Yinda Zhang, Ping Tan, Liang Chang,

and Hongan Wang. Hand3d: Hand pose estimation using 3d neural

network. arXiv preprint arXiv:1704.02224, 2017. (Cited page 24.)

[27] Maxime Devanne, Hazem Wannous, Stefano Berretti, Pietro Pala,

Mohamed Daoudi, and Alberto Del Bimbo. 3-d human action recog-

nition by shape analysis of motion trajectories on riemannian man-

ifold. IEEE transactions on cybernetics, 45(7):1340–1352, 2015. (Cited

pages 16, 36, 75, 76, 77, 88, 158, and 159.)

[28] Fabio Dominio, Mauro Donadeo, and Pietro Zanuttigh. Combin-

ing multiple depth-based descriptors for hand gesture recognition.

Pattern Recognition Letters, 50:101–111, 2014. (Cited pages 35 and 36.)

[29] Cao Dong, Ming C Leu, and Zhaozheng Yin. American sign lan-

guage alphabet recognition using microsoft kinect. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition Work-

shops, pages 44–52, 2015. (Cited page 35.)

[30] Philippe Dreuw, Carol Neidle, Vassilis Athitsos, Stan Sclaroff, and

Hermann Ney. Benchmark databases for video-based automatic sign

language recognition. In LREC, 2008. (Cited page 14.)

[31] Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural

network for skeleton based action recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1110–

1118, 2015. (Cited pages 43, 44, and 170.)

[32] Jeffrey L. Elman. Finding structure in time. Cognitive Science,

14(2):179–211, 1990. (Cited pages xiii and 110.)

Bibliography 177

[33] Sergio Escalera, Xavier Baró, Jordi Gonzalez, Miguel Ángel Bautista,

Meysam Madadi, Miguel Reyes, Víctor Ponce-López, Hugo Jair Es-

calante, Jamie Shotton, and Isabelle Guyon. Chalearn looking at

people challenge 2014: Dataset and results. In ECCV Workshops (1),

pages 459–473, 2014. (Cited pages 27, 28, 51, and 143.)

[34] Georgios Evangelidis, Gurkirt Singh, and Radu Horaud. Skeletal

quads: Human action recognition using joint quadruples. In Pattern

Recognition (ICPR), 2014 22nd International Conference on, pages 4513–

4518. IEEE, 2014. (Cited pages 63, 64, 76, and 77.)

[35] Thomas Feix, Roland Pawlik, Heinz-Bodo Schmiedmayer, Javier

Romero, and Danica Kragic. A comprehensive grasp taxonomy.

In Robotics, science and systems: workshop on understanding the human

hand for advancing robotic manipulation, volume 2, pages 2–3, 2009.

(Cited pages 26, 51, and 168.)

[36] Bin Feng, Fangzi He, Xinggang Wang, Yongjiang Wu, Hao Wang,

Sihua Yi, and Wenyu Liu. Depth-projection-map-based bag of con-

tour fragments for robust hand gesture recognition. IEEE Transac-

tions on Human-Machine Systems, 47(4):511–523, 2017. (Cited pages 27

and 28.)

[37] Simon Fothergill, Helena Mentis, Pushmeet Kohli, and Sebastian

Nowozin. Instructing people for training gestural interactive sys-

tems. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, pages 1737–1746. ACM, 2012. (Cited page 57.)

[38] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek,

and Tae-Kyun Kim. First-person hand action benchmark with

rgb-d videos and 3d hand pose annotations. arXiv preprint

arXiv:1704.02463, 2017. (Cited pages 27, 28, 36, 43, and 171.)

[39] Pragati Garg, Naveen Aggarwal, and Sanjeev Sofat. Vision based

hand gesture recognition. World Academy of Science, Engineering and

Technology, 49(1):972–977, 2009. (Cited page 21.)

178 Bibliography

[40] Liuhao Ge, Hui Liang, Junsong Yuan, and Daniel Thalmann. Robust

3d hand pose estimation in single depth images: from single-view

cnn to multi-view cnns. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3593–3601, 2016. (Cited

pages 17, 25, 79, 81, 82, 84, and 123.)

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016. http://www.deeplearningbook.org. (Cited

pages 91, 101, and 113.)

[42] Alex Graves et al. Supervised sequence labelling with recurrent neural

networks, volume 385. Springer, 2012. (Cited page 150.)

[43] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen

Schmidhuber. Connectionist temporal classification: labelling un-

segmented sequence data with recurrent neural networks. In Pro-

ceedings of the 23rd international conference on Machine learning, pages

369–376. ACM, 2006. (Cited pages 41 and 150.)

[44] Hengkai Guo, Guijin Wang, Xinghao Chen, Cairong Zhang, Fei

Qiao, and Huazhong Yang. Region ensemble network: Improv-

ing convolutional network for hand pose estimation. arXiv preprint

arXiv:1702.02447, 2017. (Cited page 24.)

[45] Bhumika Gupta, Pushkar Shukla, and Ankush Mittal. K-nearest

correlated neighbor classification for indian sign language gesture

recognition using feature fusion. In Computer Communication and

Informatics (ICCCI), 2016 International Conference on, pages 1–5. IEEE,

2016. (Cited page 40.)

[46] Shalini Gupta, Pavlo Molchanov, Xiaodong Yang, Kihwan Kim,

Stephen Tyree, and Jan Kautz. Towards selecting robust hand ges-

tures for automotive interfaces. In Intelligent Vehicles Symposium (IV),

2016 IEEE, pages 1350–1357. IEEE, 2016. (Cited pages 83 and 134.)

[47] Jungong Han, Ling Shao, Dong Xu, and Jamie Shotton. Enhanced

computer vision with microsoft kinect sensor: A review. IEEE trans-

actions on cybernetics, 43(5):1318–1334, 2013. (Cited page 16.)

http://www.deeplearningbook.org

Bibliography 179

[48] Tony Heap and David Hogg. Towards 3d hand tracking using a

deformable model. In Automatic Face and Gesture Recognition, 1996.,

Proceedings of the Second International Conference on, pages 140–145.

IEEE, 1996. (Cited page 21.)

[49] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and

Bernhard Scholkopf. Support vector machines. IEEE Intelligent Sys-

tems and their Applications, 13(4):18–28, 1998. (Cited pages 39, 40, 66,

and 92.)

[50] O Ben Henia, Mohamed Hariti, and Saida Bouakaz. A two-step

minimization algorithm for model-based hand tracking. 2010. (Cited

page 21.)

[51] Minh Hoai and Fernando De la Torre. Max-margin early event de-

tectors. International Journal of Computer Vision, 107(2):191–202, 2014.

(Cited pages 146 and 165.)

[52] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-

ory. Neural computation, 9(8):1735–1780, 1997. (Cited page 111.)

[53] Radu Horaud, Miles Hansard, Georgios Evangelidis, and Clément

Ménier. An overview of depth cameras and range scanners based

on time-of-flight technologies. Machine Vision and Applications,

27(7):1005–1020, 2016. (Cited page 16.)

[54] Jian-Fang Hu, Wei-Shi Zheng, Jianhuang Lai, and Jianguo Zhang.

Jointly learning heterogeneous features for rgb-d activity recogni-

tion. In Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 5344–5352, 2015. (Cited page 36.)

[55] David H Hubel and Torsten N Wiesel. Receptive fields and func-

tional architecture of monkey striate cortex. The Journal of physiology,

195(1):215–243, 1968. (Cited page 105.)

[56] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial

transformer networks. In Advances in Neural Information Processing

Systems, pages 2017–2025, 2015. (Cited page 91.)

180 Bibliography

[57] Heechul Jung, Sihaeng Lee, Junho Yim, Sunjeong Park, and Junmo

Kim. Joint fine-tuning in deep neural networks for facial expres-

sion recognition. In Proceedings of the IEEE International Conference on

Computer Vision, pages 2983–2991, 2015. (Cited page 132.)

[58] Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani,

Niki Parmar, Llion Jones, and Jakob Uszkoreit. One model to learn

them all. arXiv preprint arXiv:1706.05137, 2017. (Cited page 116.)

[59] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,

Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification

with convolutional neural networks. In Proceedings of the IEEE con-

ference on Computer Vision and Pattern Recognition, pages 1725–1732,

2014. (Cited pages 41, 43, and 150.)

[60] James Kennedy. Particle swarm optimization. In Encyclopedia of ma-

chine learning, pages 760–766. Springer, 2011. (Cited page 22.)

[61] Microsoft Kinect. http://www.microsoftcom/en-us/

kinectforwindows, 2013. (Cited pages 11, 15, 16, and 28.)

[62] Alexander Klaser, Marcin Marszaek, and Cordelia Schmid. A spatio-

temporal descriptor based on 3d-gradients. In BMVC 2008-19th

British Machine Vision Conference, pages 275–1. British Machine Vi-

sion Association, 2008. (Cited page 37.)

[63] Eva Kollorz, Jochen Penne, Joachim Hornegger, and Alexander

Barke. Gesture recognition with a time-of-flight camera. Interna-

tional Journal of Intelligent Systems Technologies and Applications, 5(3-

4):334–343, 2008. (Cited page 29.)

[64] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised ma-

chine learning: A review of classification techniques, 2007. (Cited

page 39.)

[65] Ivan Krasin, Tom Duerig, Neil Alldrin, Andreas Veit, Sami Abu-

El-Haija, Serge Belongie, David Cai, Zheyun Feng, Vittorio Ferrari,

Victor Gomes, Abhinav Gupta, Dhyanesh Narayanan, Chen Sun,

http://www.microsoftcom/en-us/kinectforwindows
http://www.microsoftcom/en-us/kinectforwindows

Bibliography 181

Gal Chechik, and Kevin Murphy. Openimages: A public dataset for

large-scale multi-label and multi-class image classification. Dataset

available from https://github.com/openimages, 2016. (Cited page 113.)

[66] Alexey Kurakin, Zhengyou Zhang, and Zicheng Liu. A real time

system for dynamic hand gesture recognition with a depth sensor.

In Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th

European, pages 1975–1979. IEEE, 2012. (Cited pages 27, 28, 29, 32,

39, and 51.)

[67] Alina Kuznetsova, Laura Leal-Taixé, and Bodo Rosenhahn. Real-

time sign language recognition using a consumer depth camera.

In Proceedings of the IEEE International Conference on Computer Vision

Workshops, pages 83–90, 2013. (Cited page 51.)

[68] Yann Le Cun, LD Jackel, B Boser, JS Denker, HP Graf, I Guyon,

D Henderson, RE Howard, and W Hubbard. Handwritten digit

recognition: Applications of neural network chips and automatic

learning. IEEE Communications Magazine, 27(11):41–46, 1989. (Cited

page 106.)

[69] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. Pro-

ceedings of the IEEE, 86(11):2278–2324, 1998. (Cited pages 40, 104,

and 106.)

[70] Hyeon-Kyu Lee and Jin-Hyung Kim. An hmm-based threshold

model approach for gesture recognition. IEEE Transactions on pat-

tern analysis and machine intelligence, 21(10):961–973, 1999. (Cited

page 11.)

[71] Jong Lee-Ferng, Javier Ruiz-del Solar, Rodrigo Verschae, and Mauri-

cio Correa. Dynamic gesture recognition for human robot interac-

tion. In Robotics Symposium (LARS), 2009 6th Latin American, pages

1–8. IEEE, 2009. (Cited page 39.)

[72] Shao-Zi Li, Bin Yu, Wei Wu, Song-Zhi Su, and Rong-Rong Ji. Feature

182 Bibliography

learning based on sae–pca network for human gesture recognition

in rgbd images. Neurocomputing, 151:565–573, 2015. (Cited page 40.)

[73] Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Expandable data-

driven graphical modeling of human actions based on salient pos-

tures. IEEE transactions on Circuits and Systems for Video Technology,

18(11):1499–1510, 2008. (Cited page 39.)

[74] Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Action recognition

based on a bag of 3d points. In Computer Vision and Pattern Recogni-

tion Workshops (CVPRW), 2010 IEEE Computer Society Conference on,

pages 9–14. IEEE, 2010. (Cited page 56.)

[75] Hui Liang, Junsong Yuan, and Daniel Thalmann. Parsing the hand

in depth images. IEEE Transactions on Multimedia, 16(5):1241–1253,

2014. (Cited pages 79 and 123.)

[76] Hui Liang, Junsong Yuan, and Daniel Thalmann. Resolving am-

biguous hand pose predictions by exploiting part correlations. IEEE

Transactions on Circuits and Systems for Video Technology, 25(7):1125–

1139, 2015. (Cited pages 79 and 123.)

[77] Hsien-I Lin, Ming-Hsiang Hsu, and Wei-Kai Chen. Human hand

gesture recognition using a convolution neural network. In Automa-

tion Science and Engineering (CASE), 2014 IEEE International Confer-

ence on, pages 1038–1043. IEEE, 2014. (Cited page 40.)

[78] Zhe Lin, Zhuolin Jiang, and Larry S Davis. Recognizing actions by

shape-motion prototype trees. In Computer Vision, 2009 IEEE 12th In-

ternational Conference on, pages 444–451. IEEE, 2009. (Cited page 27.)

[79] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang. Spatio-

temporal lstm with trust gates for 3d human action recognition.

In European Conference on Computer Vision, pages 816–833. Springer,

2016. (Cited page 170.)

[80] Jun Liu, Gang Wang, Ping Hu, Ling-Yu Duan, and Alex C Kot.

Global context-aware attention lstm networks for 3d action recog-

Bibliography 183

nition. In The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), volume 7, 2017. (Cited pages 43 and 44.)

[81] Li Liu and Ling Shao. Learning discriminative representations from

rgb-d video data. In IJCAI, volume 4, page 8, 2013. (Cited pages 27

and 28.)

[82] Liwei Liu, Junliang Xing, Haizhou Ai, and Xiang Ruan. Hand pos-

ture recognition using finger geometric feature. In Pattern Recog-

nition (ICPR), 2012 21st International Conference on, pages 565–568.

IEEE, 2012. (Cited page 40.)

[83] David G Lowe. Distinctive image features from scale-invariant key-

points. International journal of computer vision, 60(2):91–110, 2004.

(Cited page 30.)

[84] Wei Lu, Zheng Tong, and Jinghui Chu. Dynamic hand gesture recog-

nition with leap motion controller. IEEE Signal Processing Letters,

23(9):1188–1192, 2016. (Cited pages 27, 28, 36, 43, and 74.)

[85] Dan MacIsaac et al. Google cardboard: A virtual reality headset for

10? The Physics Teacher, 53(2):125–125, 2015. (Cited page 13.)

[86] Meysam Madadi, Sergio Escalera, Xavier Baro, and Jordi Gonzalez.

End-to-end global to local cnn learning for hand pose recovery in

depth data. arXiv preprint arXiv:1705.09606, 2017. (Cited page 24.)

[87] Sotiris Manitsaris, Apostolos Tsagaris, Alina Glushkova, Fabien

Moutarde, and Frédéric Bevilacqua. Fingers gestures early-

recognition with a unified framework for rgb or depth camera. In

Proceedings of the 3rd International Symposium on Movement and Com-

puting, page 26. ACM, 2016. (Cited page 39.)

[88] Giulio Marin, Fabio Dominio, and Pietro Zanuttigh. Hand gesture

recognition with leap motion and kinect devices. In Image Processing

(ICIP), 2014 IEEE International Conference on, pages 1565–1569. IEEE,

2014. (Cited pages 27, 28, 36, and 40.)

184 Bibliography

[89] Carlos Mateo Agulló, Pablo Gil, Corrales Ramón, Juan Antonio, San-

tiago Timoteo Puente Méndez, and Fernando Torres. Rgbd human-

hand recognition for the interaction with robot-hand. 2012. (Cited

page 34.)

[90] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas

immanent in nervous activity. The bulletin of mathematical biophysics,

5(4):115–133, 1943. (Cited page 94.)

[91] Stan Melax, Leonid Keselman, and Sterling Orsten. Dynamics based

3d skeletal hand tracking. In Proceedings of Graphics Interface 2013,

pages 63–70. Canadian Information Processing Society, 2013. (Cited

page 18.)

[92] Mohammad Moghimi, Pablo Azagra, Luis Montesano, Ana C

Murillo, and Serge Belongie. Experiments on an rgb-d wearable vi-

sion system for egocentric activity recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops,

pages 597–603, 2014. (Cited pages 27 and 28.)

[93] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Jan Kautz. Hand

gesture recognition with 3d convolutional neural networks. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition

workshops, pages 1–7, 2015. (Cited pages 41, 42, and 51.)

[94] Pavlo Molchanov, Xiaodong Yang, Shalini Gupta, Kihwan Kim,

Stephen Tyree, and Jan Kautz. Online detection and classification

of dynamic hand gestures with recurrent 3d convolutional neural

network. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4207–4215, 2016. (Cited pages 27, 28, 41,

42, 51, 82, 84, 85, 128, 133, 134, 150, 151, and 165.)

[95] Camille Monnier, Stan German, and Andrey Ost. A multi-scale

boosted detector for efficient and robust gesture recognition. In

ECCV Workshops (1), pages 491–502, 2014. (Cited page 51.)

[96] Jawad Nagi, Frederick Ducatelle, Gianni A Di Caro, Dan Cireşan,

Ueli Meier, Alessandro Giusti, Farrukh Nagi, Jürgen Schmidhuber,

Bibliography 185

and Luca Maria Gambardella. Max-pooling convolutional neural

networks for vision-based hand gesture recognition. In Signal and

Image Processing Applications (ICSIPA), 2011 IEEE International Con-

ference on, pages 342–347. IEEE, 2011. (Cited page 40.)

[97] Natalia Neverova, Christian Wolf, Florian Nebout, and Graham Tay-

lor. Hand pose estimation through semi-supervised and weakly-

supervised learning. arXiv preprint arXiv:1511.06728, 2015. (Cited

page 24.)

[98] Natalia Neverova, Christian Wolf, Graham Taylor, and Florian

Nebout. Moddrop: adaptive multi-modal gesture recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 38(8):1692–

1706, 2016. (Cited pages 41 and 143.)

[99] Natalia Neverova, Christian Wolf, Graham W Taylor, and Florian

Nebout. Multi-scale deep learning for gesture detection and local-

ization. In Workshop at the European conference on computer vision,

pages 474–490. Springer, 2014. (Cited page 88.)

[100] Markus Oberweger, Gernot Riegler, Paul Wohlhart, and Vincent

Lepetit. Efficiently creating 3d training data for fine hand pose esti-

mation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4957–4965, 2016. (Cited pages 18 and 19.)

[101] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Hands

deep in deep learning for hand pose estimation. arXiv preprint

arXiv:1502.06807, 2015. (Cited pages 17, 24, 30, 79, 81, 82, 84, 123,

and 125.)

[102] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Training a

feedback loop for hand pose estimation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 3316–3324, 2015.

(Cited pages 17 and 123.)

[103] VR Oculus. Oculus rift. Available from WWW:

http://www.oculusvr.com/rift, 2015. (Cited page 13.)

186 Bibliography

[104] Eshed Ohn-Bar and Mohan Trivedi. Joint angles similarities and

hog2 for action recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages 465–470,

2013. (Cited pages 37, 75, 76, and 77.)

[105] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Hand gesture recog-

nition in real time for automotive interfaces: A multimodal vision-

based approach and evaluations. IEEE transactions on intelligent

transportation systems, 15(6):2368–2377, 2014. (Cited pages 27, 28,

37, 51, 57, 84, 150, 158, and 159.)

[106] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A Argyros. Ef-

ficient model-based 3d tracking of hand articulations using kinect.

In BmVC, volume 1, page 3, 2011. (Cited page 22.)

[107] Omar Oreifej and Zicheng Liu. Hon4d: Histogram of oriented 4d

normals for activity recognition from depth sequences. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 716–723, 2013. (Cited pages 75, 76, 77, 158, and 159.)

[108] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning.

IEEE Transactions on knowledge and data engineering, 22(10):1345–1359,

2010. (Cited page 114.)

[109] Xiaojiang Peng, Changqing Zou, Yu Qiao, and Qiang Peng. Action

recognition with stacked fisher vectors. In European Conference on

Computer Vision, pages 581–595. Springer, 2014. (Cited page 63.)

[110] Hamed Pirsiavash and Deva Ramanan. Detecting activities of daily

living in first-person camera views. In Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on, pages 2847–2854. IEEE,

2012. (Cited page 27.)

[111] Leigh Ellen Potter, Jake Araullo, and Lewis Carter. The leap motion

controller: a view on sign language. Australian computer-human in-

teraction conference: augmentation, application, innovation, collaboration,

pages 175–178, 2013. (Cited pages 36 and 52.)

Bibliography 187

[112] Lily Prasuethsut. Htc vive: Everything you need to know about the

steamvr headset. Retrieved January, 3:2017, 2016. (Cited page 13.)

[113] Pavel Pudil, Jana Novovičová, and Josef Kittler. Floating search

methods in feature selection. Pattern recognition letters, 15(11):1119–

1125, 1994. (Cited page 68.)

[114] Nicolas Pugeault and Richard Bowden. Spelling it out: Real-time

asl fingerspelling recognition. In Computer Vision Workshops (ICCV

Workshops), 2011 IEEE International Conference on, pages 1114–1119.

IEEE, 2011. (Cited pages 27, 28, 30, 40, and 51.)

[115] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian Sun. Real-

time and robust hand tracking from depth. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1106–

1113, 2014. (Cited pages 18 and 19.)

[116] Lawrence Rabiner and B Juang. An introduction to hidden markov

models. ieee assp magazine, 3(1):4–16, 1986. (Cited page 92.)

[117] Intel RealSense. http://www.intel.com/realsense, 2016.

(Cited pages 11, 16, 17, 58, 81, 82, 152, 154, and 159.)

[118] J Rekha, J Bhattacharya, and S Majumder. Shape, texture and local

movement hand gesture features for indian sign language recogni-

tion. In Trendz in Information Sciences and Computing (TISC), 2011 3rd

International Conference on, pages 30–35. IEEE, 2011. (Cited page 40.)

[119] Zhou Ren, Junsong Yuan, Jingjing Meng, and Zhengyou Zhang. Ro-

bust part-based hand gesture recognition using kinect sensor. IEEE

transactions on multimedia, 15(5):1110–1120, 2013. (Cited pages 27, 28,

33, 34, and 51.)

[120] Grégory Rogez, James S Supancic, and Deva Ramanan. First-person

pose recognition using egocentric workspaces. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 4325–

4333, 2015. (Cited pages 18 and 19.)

http://www.intel.com/realsense

188 Bibliography

[121] Grégory Rogez, James S Supancic, and Deva Ramanan. Understand-

ing everyday hands in action from rgb-d images. In Proceedings of

the IEEE International Conference on Computer Vision, pages 3889–3897,

2015. (Cited pages 27 and 28.)

[122] Frank Rosenblatt. The perceptron: A probabilistic model for infor-

mation storage and organization in the brain. Psychological review,

65(6):386, 1958. (Cited page 94.)

[123] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.

Learning internal representations by error propagation. 1985. (Cited

pages 99 and 109.)

[124] Samsung Gear VR. http://www.samsung.com/fr/consumer/

mobile-devices/smartphones/galaxy-s/galaxy-s7/

gear-vr/, 2016. (Cited page 13.)

[125] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Ver-

beek. Image classification with the fisher vector: Theory and prac-

tice. International journal of computer vision, 105(3):222–245, 2013.

(Cited pages 63 and 64.)

[126] Jürgen Schmidhuber. Deep learning in neural networks: An

overview. CoRR, abs/1404.7828, 2014. (Cited page 96.)

[127] Stephen J Schmugge, Sriram Jayaram, Min C Shin, and Leonid V

Tsap. Objective evaluation of approaches of skin detection using

roc analysis. Computer Vision and Image Understanding, 108(1):41–51,

2007. (Cited page 29.)

[128] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural

networks. IEEE Transactions on Signal Processing, 45(11):2673–2681,

1997. (Cited page 43.)

[129] Lorenzo Seidenari, Vincenzo Varano, Stefano Berretti, Alberto

Bimbo, and Pietro Pala. Recognizing actions from depth cameras

as weakly aligned multi-part bag-of-poses. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops,

pages 479–485, 2013. (Cited page 56.)

http://www.samsung.com/fr/consumer/mobile-devices/smartphones/galaxy-s/galaxy-s7/gear-vr/
http://www.samsung.com/fr/consumer/mobile-devices/smartphones/galaxy-s/galaxy-s7/gear-vr/
http://www.samsung.com/fr/consumer/mobile-devices/smartphones/galaxy-s/galaxy-s7/gear-vr/

Bibliography 189

[130] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu

rgb+ d: A large scale dataset for 3d human activity analysis. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 1010–1019, 2016. (Cited page 56.)

[131] ShapeHand. http://http://www.shapehand.com/

shapehand.html, 2009. (Cited pages 18 and 20.)

[132] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie

Shotton, David Kim, Christoph Rhemann, Ido Leichter, Alon Vin-

nikov, Yichen Wei, et al. Accurate, robust, and flexible real-time

hand tracking. In Proceedings of the 33rd Annual ACM Conference on

Human Factors in Computing Systems, pages 3633–3642. ACM, 2015.

(Cited pages 19, 20, and 57.)

[133] Nobutaka Shimada, Yoshiaki Shirai, Yoshinori Kuno, and Jun Miura.

Hand gesture estimation and model refinement using monocular

camera-ambiguity limitation by inequality constraints. In Automatic

Face and Gesture Recognition, 1998. Proceedings. Third IEEE Interna-

tional Conference on, pages 268–273. IEEE, 1998. (Cited page 33.)

[134] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark

Finocchio, Andrew Blake, Mat Cook, and Richard Moore. Real-

time human pose recognition in parts from single depth images.

Communications of the ACM, 56(1):116–124, 2013. (Cited pages 16, 30,

35, 51, 52, 56, and 168.)

[135] Softkinetic. https://www.softkinetic.com, 2013. (Cited

page 17.)

[136] Srinath Sridhar, Antti Oulasvirta, and Christian Theobalt. Interactive

markerless articulated hand motion tracking using rgb and depth

data. In Proceedings of the IEEE International Conference on Computer

Vision, pages 2456–2463, 2013. (Cited pages 18 and 19.)

[137] Ekaterini Stergiopoulou and Nikos Papamarkos. Hand gesture

recognition using a neural network shape fitting technique. En-

http://http://www.shapehand.com/shapehand.html
http://http://www.shapehand.com/shapehand.html
https://www.softkinetic.com

190 Bibliography

gineering Applications of Artificial Intelligence, 22(8):1141–1158, 2009.

(Cited page 34.)

[138] Erik B Sudderth, Michael I Mandel, William T Freeman, and

Alan S Willsky. Visual hand tracking using nonparametric belief

propagation. In Computer Vision and Pattern Recognition Workshop,

2004. CVPRW’04. Conference on, pages 189–189. IEEE, 2004. (Cited

page 33.)

[139] Heung-Il Suk, Bong-Kee Sin, and Seong-Whan Lee. Hand gesture

recognition based on dynamic bayesian network framework. Pattern

recognition, 43(9):3059–3072, 2010. (Cited page 11.)

[140] Xiao Sun, Yichen Wei, Shuang Liang, Xiaoou Tang, and Jian Sun.

Cascaded hand pose regression. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 824–832, 2015.

(Cited pages 18, 19, 23, 79, 81, and 123.)

[141] James Steven Supancic III, Gregory Rogez, Yi Yang, Jamie Shotton,

and Deva Ramanan. Depth based hand pose estimation: methods,

data, and challenges. arxiv preprint. arXiv preprint arXiv:1504.06378,

2015. (Cited page 29.)

[142] Poonam Suryanarayan, Anbumani Subramanian, and Dinesh Man-

dalapu. Dynamic hand pose recognition using depth data. In Pattern

Recognition (ICPR), 2010 20th International Conference on, pages 3105–

3108. IEEE, 2010. (Cited page 29.)

[143] Hironori Takimoto, Jaemin Lee, and Akihiro Kanagawa. A robust

gesture recognition using depth data. International Journal of Machine

Learning and Computing, 3(2):245, 2013. (Cited pages 29 and 31.)

[144] Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-Kyun

Kim. Latent regression forest: Structured estimation of 3d articu-

lated hand posture. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3786–3793, 2014. (Cited

pages 18, 19, 20, 23, 57, 81, 121, 124, 125, and 134.)

Bibliography 191

[145] Danhang Tang, Jonathan Taylor, Pushmeet Kohli, Cem Keskin, Tae-

Kyun Kim, and Jamie Shotton. Opening the black box: Hierarchical

sampling optimization for estimating human hand pose. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages

3325–3333, 2015. (Cited page 23.)

[146] Alaa Tharwat, Tarek Gaber, Aboul Ella Hassanien, MK Shahin, and

Basma Refaat. Sift-based arabic sign language recognition system.

In Afro-european conference for industrial advancement, pages 359–370.

Springer, 2015. (Cited page 40.)

[147] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin.

Real-time continuous pose recovery of human hands using convolu-

tional networks. ACM Transactions on Graphics (ToG), 33(5):169, 2014.

(Cited pages 17, 18, 19, 20, 30, and 124.)

[148] NDI trakSTAR. https://www.ascension-tech.com/

products/trakstar-2-drivebay-2/. (Cited page 20.)

[149] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and

Manohar Paluri. Learning spatiotemporal features with 3d convolu-

tional networks. In Proceedings of the IEEE international conference on

computer vision, pages 4489–4497, 2015. (Cited pages 84, 85, and 150.)

[150] Michael Van den Bergh and Luc Van Gool. Combining rgb and tof

cameras for real-time 3d hand gesture interaction. In Applications of

Computer Vision (WACV), 2011 IEEE Workshop on, pages 66–72. IEEE,

2011. (Cited page 30.)

[151] Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human

action recognition by representing 3d skeletons as points in a lie

group. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 588–595, 2014. (Cited pages 16 and 36.)

[152] Chong Wang, Zhong Liu, and Shing-Chow Chan. Superpixel-based

hand gesture recognition with kinect depth camera. IEEE transac-

tions on multimedia, 17(1):29–39, 2015. (Cited pages 27, 28, 34, 35,

and 51.)

https://www.ascension-tech. com/products/trakstar-2-drivebay-2/
https://www.ascension-tech. com/products/trakstar-2-drivebay-2/

192 Bibliography

[153] Fei Wang and Changshui Zhang. Feature extraction by maximiz-

ing the average neighborhood margin. In Computer Vision and Pat-

tern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,

2007. (Cited page 30.)

[154] Hanjie Wang, Qi Wang, and Xilin Chen. Hand posture recognition

from disparity cost map. In Asian Conference on Computer Vision,

pages 722–733. Springer, 2012. (Cited page 51.)

[155] Heng Wang and Cordelia Schmid. Action recognition with im-

proved trajectories. In Proceedings of the IEEE international conference

on computer vision, pages 3551–3558, 2013. (Cited pages 36 and 63.)

[156] Hongsong Wang and Liang Wang. Modeling temporal dynam-

ics and spatial configurations of actions using two-stream recur-

rent neural networks. arXiv preprint arXiv:1704.02581, 2017. (Cited

page 43.)

[157] Jiang Wang, Zicheng Liu, and Ying Wu. Learning actionlet ensemble

for 3d human action recognition. In Human Action Recognition with

Depth Cameras, pages 11–40. Springer, 2014. (Cited page 16.)

[158] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining ac-

tionlet ensemble for action recognition with depth cameras. In Com-

puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,

pages 1290–1297. IEEE, 2012. (Cited page 56.)

[159] Sy Bor Wang, Ariadna Quattoni, L-P Morency, David Demirdjian,

and Trevor Darrell. Hidden conditional random fields for gesture

recognition. In Computer Vision and Pattern Recognition, 2006 IEEE

Computer Society Conference on, volume 2, pages 1521–1527. IEEE,

2006. (Cited page 39.)

[160] Paul J Werbos. Backpropagation through time: what it does and

how to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990. (Cited

page 130.)

[161] Aaron Wetzler, Ron Slossberg, and Ron Kimmel. Rule of thumb:

Bibliography 193

Deep derotation for improved fingertip detection. arXiv preprint

arXiv:1507.05726, 2015. (Cited pages 18, 19, and 20.)

[162] Di Wu, Lionel Pigou, Pieter-Jan Kindermans, Nam Do-Hoang Le,

Ling Shao, Joni Dambre, and Jean-Marc Odobez. Deep dynamic

neural networks for multimodal gesture segmentation and recog-

nition. IEEE transactions on pattern analysis and machine intelligence,

38(8):1583–1597, 2016. (Cited pages 137 and 139.)

[163] Ying Wu, John Y Lin, and Thomas S Huang. Capturing natural

hand articulation. In Computer Vision, 2001. ICCV 2001. Proceedings.

Eighth IEEE International Conference on, volume 2, pages 426–432.

IEEE, 2001. (Cited page 126.)

[164] Chi Xu, Ashwin Nanjappa, Xiaowei Zhang, and Li Cheng. Estimate

hand poses efficiently from single depth images. International Journal

of Computer Vision, 116(1):21–45, 2016. (Cited pages 18 and 19.)

[165] Yuanrong Xu, Qianqian Wang, Xiao Bai, Yen-Lun Chen, and Xinyu

Wu. A novel feature extracting method for dynamic gesture recogni-

tion based on support vector machine. In Information and Automation

(ICIA), 2014 IEEE International Conference on, pages 437–441. IEEE,

2014. (Cited pages 27 and 28.)

[166] Hongwei Yang and Juyong Zhang. Hand pose regression via a

classification-guided approach. In Asian Conference on Computer Vi-

sion, pages 452–466. Springer, 2016. (Cited page 23.)

[167] Xiaodong Yang and YingLi Tian. Super normal vector for activity

recognition using depth sequences. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 804–811, 2014.

(Cited pages 84 and 150.)

[168] Xiaodong Yang, Chenyang Zhang, and YingLi Tian. Recognizing

actions using depth motion maps-based histograms of oriented gra-

dients. In Proceedings of the 20th ACM international conference on Mul-

timedia, pages 1057–1060. ACM, 2012. (Cited page 37.)

194 Bibliography

[169] Yi Yao and Chang-Tsun Li. Hand posture recognition using surf

with adaptive boosting. In Electronic Proceedings of the British Ma-

chine Vision Conference, pages 1–10. British Machine Vision Associa-

tion and Society for Pattern Recognition, 2012. (Cited page 30.)

[170] Qi Ye, Shanxin Yuan, and Tae-Kyun Kim. Spatial attention deep

net with partial pso for hierarchical hybrid hand pose estimation.

In European Conference on Computer Vision, pages 346–361. Springer,

2016. (Cited pages 17 and 24.)

[171] Ho-Sub Yoon, Jung Soh, Younglae J Bae, and Hyun Seung Yang.

Hand gesture recognition using combined features of location, an-

gle and velocity. Pattern recognition, 34(7):1491–1501, 2001. (Cited

page 11.)

[172] Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhand Jain, and Tae-Kyun

Kim. Bighand2. 2m benchmark: Hand pose dataset and state of the

art analysis. arXiv preprint arXiv:1704.02612, 2017. (Cited pages 19,

20, 45, and 170.)

[173] Gloria Zen, Lorenzo Porzi, Enver Sangineto, Elisa Ricci, and Nicu

Sebe. Learning personalized models for facial expression analysis

and gesture recognition. IEEE Transactions on Multimedia, 18(4):775–

788, 2016. (Cited page 63.)

[174] Chenyang Zhang and Yingli Tian. Edge enhanced depth motion

map for dynamic hand gesture recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops,

pages 500–505, 2013. (Cited pages 37, 38, and 40.)

[175] Chenyang Zhang, Xiaodong Yang, and YingLi Tian. Histogram of

3d facets: A characteristic descriptor for hand gesture recognition.

In Automatic Face and Gesture Recognition (FG), 2013 10th IEEE Inter-

national Conference and Workshops on, pages 1–8. IEEE, 2013. (Cited

pages 31, 40, 51, and 64.)

[176] Hanning Zhou et al. Tracking articulated hand motion with eigen

dynamics analysis. In Computer Vision, 2003. Proceedings. Ninth IEEE

Bibliography 195

International Conference on, pages 1102–1109. IEEE, 2003. (Cited

page 21.)

[177] Xingyi Zhou, Qingfu Wan, Wei Zhang, Xiangyang Xue, and Yichen

Wei. Model-based deep hand pose estimation. arXiv preprint

arXiv:1606.06854, 2016. (Cited pages 17 and 24.)

	List of Figures
	Introduction
	Thesis Contributions
	Thesis outline

	Literature overview
	Introduction
	Hand gesture understanding problem
	Applications

	Acquisition systems of depth images and 3D skeletal data
	Datasets for hand pose estimation
	Related work on hand pose estimation
	Hand pose estimation from RGB images
	Hand pose estimation from depth images

	Datasets for hand gesture recognition
	Related works on hand gesture recognition
	Pre-processing steps for hand localization
	Spatial features extraction
	Temporal modeling
	Classification
	Deep learning approaches

	Discussion and conclusion

	Heterogeneous hand gesture recognition using 3D skeletal features
	Introduction
	Challenges
	Overview of the proposed method
	Motivations

	The Dynamic Hand Gesture dataset (DHG-14/28)
	Overview and protocol
	Gesture types included
	DHG-14/28 challenges

	Hand gesture recognition using skeletal data
	Features extraction from skeletal sequences
	Features representation
	Temporal modeling
	Classification process
	Experimental results
	Experimental settings
	Hand Gesture Recognition Results
	Latency analysis and computation time
	Influence of the upstream hand pose estimation step on hand gesture recognition

	Conclusion

	Recent deep learning approaches in Computer Vision
	Introduction
	Different pipelines in Computer Vision: handcrafted versus deep learning approaches
	Feature extraction
	Pros and cons

	Where does deep learning come from and why is it so hot topic right now?
	History
	Perceptrons and biological neurons similarities
	Why only now?

	Technical keys to understand Deep Learning
	The multilayer perceptrons
	Training a feedforward neural network

	Technical details of deep learning elements
	Softmax function
	Cross-entropy cost function
	Convolutional Neural Network
	Recurrent Neural Networks

	Conclusion

	Dynamic hand gestures using a deep learning approach
	Introduction
	Challenges
	Overview of the proposed framework
	Motivations

	Deep extraction of hand posture and shape features
	Formulation of hand pose estimation problem
	Hand pose estimation dataset
	Pre-processing step
	Network model for predicting 3D joints locations
	CNN training procedure

	Temporal features learning on hand posture sequences
	Temporal features learning on hand shape sequences
	Training procedure
	Two-stream RNN fusion
	Experimental results on the NVIDIA Hand Gesture dataset
	Dataset
	Implementation details
	Offline recognition analysis
	Online detection of continuous hand gestures

	Experimental results on the Online Dynamic Hand Gesture (Online DHG) dataset
	Dataset
	Offline recognition analysis
	Online recognition analysis

	Conclusion

	Conclusion
	Summary
	Future works

	Bibliography

