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Short bio:

Alexandre Janot received the Ph.D. degree from the University of Nantes, Nantes, France, and the
French Atomic Agency, Fontenay aux Roses, France, in December 2007.

He joined HAPTION, Soulgé Sur Ouette, France, in January 2008 as a research and development
engineer in electrotechnics and automatics. His works focused on the hardware and software design
of electronic boards controlling the haptic interfaces manufactured and sold by HAPTION as well as
their geometrical calibration and dynamic identification.

Since November 2010, he is with ONERA, the French Aerospace Lab, Centre Midi-Pyrénées, Toulouse,
France as a research engineer specialized in identification of electromechanical and aeronautical
systems. His research activities also focus on the implementation of control laws and identification
methods on microcontrollers for embedded systems. He participates in different projects involving
industrials and/or academics. In 2016, with Francoise Lamnabhi-Lagarrigue, Hugues Garnier and
Peter Young, he acts as a guest editor for the following special issue “Identification and Control of
Nonlinear Electro-Mechanical Systems” which will be published in International Journal of Control.

Fields of interest:

Robotics: modelling and identification of rigid and flexible robots;

System identification: identification of continuous-time systems operating in open or closed loop;
Aeronautics: aircraft identification, load distribution rescaling;

Real-time programming: implementation of controls on microcontrollers for embedded systems.
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Research activities and detailed professional career

Overview of research activities

My main research activities focus on parametric identification of electromechanical and aeronautical
systems and real-time programming for motor control. My scientific background belongs to
mechanical/electrical engineering (called electromechanical engineering), real-time programming
and system identification. Working at ONERA which is a public research establishment devoted to
solve practical problems raised by both industrials and academics, my activities are application-
oriented and they aim at solving the following practical challenges:

e robot identification: industrial robots being identified in closed loop, the LS estimation must
be used with caution because it provides bias estimates in this context. Methods able to
provide consistent estimates while the system is operating in closed loop must be therefore
developed and experimentally validated;

o flexible aircraft identification: the problem being highly nonlinear, a relevant multi-step
identification has to be preferred in order to keep the physical interpretation of the results.
Application with the rescaling of the load distribution applied on the flexible wings of the
A380 manufactured by AIRBUS;

e real-time programming: development and implementation of control schemes on
microcontrollers for real-time control of motors; application to the AEA CARNOT project
managed by ONERA.

My main methodological contributions are the development of the IDIM-IV and the DIDIM methods
that have been validated on robots and prototypes. Finally, | have brought methods commonly used
in econometrics in order to address robot identification. This point of view is new and provides
interesting results that have been published in refereed international journals.

Professional career

January 2008 - October 2010: HAPTION

After my Ph.D. thesis, | have joined HAPTION based in Soulgé sur Ouette, Mayenne, France as a R&D
Engineer in electrotechnics and automatics (see [HAPTION website]). My works focused on the
hardware and software design of an electronic board for the control of multi-DOF haptic interfaces.
They also addressed their geometrical calibration and dynamic identification. | was in charge of
customer-oriented projects (PSA Peugeot Citroén, AREVA, AIRBUS and Electricité de France among
others) and | participated in R&D projects involving academic partners (IRCCyN, IRISA and INRIA
among others).

HAPTION is a spin-off of CEA (French Nuclear Research Agency) and benefits from results and know-
how developed in more than 30 years of research. HAPTION designs, manufactures and sells haptic
devices with professional quality, suited to the needs of its customers, both industrial and academic.
A haptic interface is a computer device which enables its user to interact with a software application
or with a virtual object through the sense of touch. It consists of an articulated mechanical structure
with motors and position sensors as well as embedded electronics (see e.g. [Janot 2007], [Janot et al.
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2007 a], [Gosselin et al. 2016] and the references therein. The user holds the end-point of the
structure in his hand and can move it around, both in the real and in the virtual world on the
computer screen. Whenever his virtual hand makes contact with a digital object, a force value is sent
to the motors, which simulate a real contact. HAPTION is a founding member of EuroVR, the
European Association for Virtual Reality and Augmented Reality. Jerome Perret, Managing Director of
HAPTION, is leading the Special Interest Group on Haptics (Haptic SIG) within EuroVR. Haption is also
a member of AFRV, the French association of Virtual Reality, and LVRC (Laval Virtual Reality Capital),
the technology cluster of Laval dedicated to Virtual Reality and its applications.

The work achieved was the opportunity to interact with customers/partners and to develop
pragmatic and practical approaches to solve problems/challenges raised by the customers/partners
within a limited time-framework. This position gave me the opportunity to put into practice the
knowledge gained at the university and during my Ph.D. and emphasize my skills in real-time
programming. The two main achievements are now presented: the first is the hardware and software
design of an electronic board able to control a 6 DOF haptic interface (see Fig. 1) and the second one
is the development and validation of a geometric calibration relevant for haptic devices and an
identification process devoted to friction model for haptic interfaces.

Hardware and software design of an electronic board

In 2007, HAPTION decided to design, manufacture and sell a new board for the control of the multi-
DOF haptic interfaces. This decision was motivated by the fact that some components of the former
board were about to be obsolete (and therefore difficult to find and buy) resulting in a rise of the
cost of the board. One R&D engineer, two technicians and one trainee student per year were
involved in this project and | was in charge to manage this team. The board illustrated in Fig. 1 should
control 6 DC motors simultaneously and communicate with the host PC over a UDP protocol in order
to 1) receive the orders from the PC and 2) send the responses to the PC within less than 1
millisecond. The orders were the forces/torques calculated by the software implemented on the host
PC while the responses were the positions, velocities, currents and states of the 6 DC motors. The
control of the 6 DC motors consisted of a nested loop involving an inner current loop and an outer
velocity loop. The force/torque references were converted into velocity references via a simple static
gain. Each DC motor was associated with a fixed-point microcontroller, the TMS320F28035
manufactured and sold by Texas Instruments, and a circuitry composed of a current-shunt monitor
and an extern 14-bits ADC able to capture the current absorbed by the DC motor. The orders were
received by the PIC32MX795F512L manufactured and sold by MICROCHIP which allows Ethernet
connectivity via an integrated Ethernet MAC/PHY and sent them to each TMS320F28035 over a SPI
protocol. Serial communications were preferred because of constraints of time and space. All the
source code was developed in C and assembler for real-time applications and the tests run showed
that it was possible to control the 6 DC motors within 500us i.e. two times faster than required.
Finally, the cost of the new board was around 600€ instead of 2000€ for the former board.
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Fig. 1. Electronic board developed in HAPTION in order to control a 6 DOF haptic interface

Geometric calibration and friction model identification

The second main achievement was the development and validation of a geometric calibration
relevant for haptic devices and an identification process devoted to friction model for haptic
interfaces. The geometric calibration was a customer-oriented project piloted by PSA while the
identification process devoted to friction model was another customer-oriented project managed by
AREVA. The calibration process was very close to the standard geometric calibration method
presented in [Khalil and Dombre 2002], chapter 11. The geometric parameters i.e. the length of the
arms, MDH parameters and offsets of measurements of positions are calibrated by executing a NLP
algorithm. However, it is known that NLP algorithms are sensitive to initialization and multiple local
minima while the experimental results obtained showed that the error observed in the Cartesian
space was mainly caused by the calibration of offsets. The proposed calibration method turned to a
calibration method for offsets of measurements of positions and this new and pragmatic calibration
process was proposed and experimentally validated in situ (i.e. in the customers’ sites) on several
haptic devices. In all cases, calibrating the haptic interfaces with this approach resulted in a
significant decrease of the error in the Cartesian space that is to say from 3cm to 0.3cm where 0.5cm
was the maximum error tolerated by PSA. The identification process devoted to friction model was
very close to the one developed during my Ph.D., see [Janot et a/ 2007 a], [Janot et al 2007 b] and
[Janot 2007] chapters 2 and 3. Usually, a simple linear friction model is enough because of capstan
reducers, see e.g. [Janot et al. 2007 a], and the friction parameters are identified by applying the
standard IDIM-LS method presented in the first chapter of the manuscript. The identified values are
then implemented in the controller in order to improve the transparency and backdrivability of the
haptic interface. This pragmatic approach based on the IDIM-LS method was accepted by AREVA
since it provided good and acceptable results for AREVA's applications. Furthermore, this process
was able to detect a cable fatigue. In this case, the friction model becomes nonlinear.

Publications

Regarding the publications, despite the fact | was with a private company, | have authored and co-
authored 6 conference papers and one book chapter was published. Finally, it is worth to note that
the material published in [Gosselin et al. 2016] was a part of my works done while | was with
HAPTION.



November 2010 - Today: ONERA

In November 2010, | had the opportunity to join ONERA Centre Midi-Pyrénées based in Toulouse
(Haute Garonne, France) as a Research Engineer in the IDCO unit which belongs to the Department of
Systems Control and Flight Dynamics (DCSD). | was hired in order to strengthen the identification
part of the unit and compensate future retirements. My research works focus on system
identification  applied to aeronautical and electromechanical systems while my
managerial/administrative tasks consist to act as a WP leader or task leader (also called sub-WP
leader) in different projects involving industrials and/or academics.

ONERA is the French national aerospace research centre. It is a public research establishment, with
eight major facilities in France and about 2,000 employees, including 1,500 scientists, engineers and
technicians. ONERA was originally created by the French government in 1946, and assigned six key
missions: Direct and conduct aeronautical research; Support the commercialization of this research
by national and European industry; Construct and operate the associated experimental facilities;
Supply industry with high-level technical analyses and other services; Perform technical analyses for
the government; Train researchers and engineers. All of this research is keyed to applications.
Whether the research has short, medium or long-term goals, it is designed to support the
competitiveness and creativity of the aerospace and defence industries. The research carried out at
ONERA results in computation codes, methods, tools, technologies, materials and other products and
services which are used to design and manufacture everything to do with aerospace: Civil aircraft,
Military aircraft, Helicopters and tiltrotors, Propulsion systems, Orbital systems, Space transport,
Missile systems, Defence systems and Networked systems and security systems. ONERA's funding
comes from two sources: 60% from contract research for industry and agencies and 40% from annual
subsidy from the French government. The subsidy primarily finances long-term research, which lays
the groundwork for future developments. Research contracts finance medium and short-term work,
closer to the application. The strategic challenge for ONERA is to organize this broad knowledge
stream, ranging from the acquisition of knowledge to transferring it to industry. The missions of the
DCSD consist in conducting research on methods and tools for the conception/improvement of
system control and contributing to the mastering of the complexity and the security of aerospace
systems. Its areas of expertise include automatics, artificial intelligence, flight mechanics, cognitive
sciences while its contributions are methods and tools for guidance, control, identification, steering,
decision making and conception/performances of aerospace systems.

Since 60% of the funding of ONERA comes from contractual research while the 40% remaining comes
from annual subsidy, my works are naturally split into two parts: one called the “contractual part”
and the other called “research part”. The contractual part is devoted to industrial needs/challenges
and usually leaded by the major industrials in aeronautics (e.g. AIRBUS) whereas the research part
focuses on the development/conception of identification methods for different applications and
usually piloted by ONERA. In the first subpart, the contractual part is addressed and in a second
subpart follows the research part. For both activities, only two major projects are presented.

Contractual part

The first main project | have worked on is the pluriannual CORAC project called FLIPPER where my
task was devoted to the rescaling of load distribution. The aim of this task was to propose and
validate a methodology able to rescale the load distribution applied on the flexible wings of the A380
manufactured by AIRBUS. The methodology was first validated with simulations and then validated



with experimental data delivered by AIRBUS. The first main part of my work was to become familiar
with the flexible model of the A380 (see Fig. 2). This flexible model being calculated through a finite
elements method is highly nonlinear and awfully complex. In addition, this model is written in C
language and must be thus compiled in order to build a library than can be loaded into a MATLAB
project. This allows for the user to obtain a reasonable running time. Then, the main components of
the MATLAB project should be identified and stacked in order to get a whole MATLAB code that is
readable and understandable for any R&D engineer working with AIRBUS (because of confidential
policies, | am not allowed to provide the components of the MATLAB project). Once the library
loadable and once the whole MATLAB project clearly written, organized and validated through
simulations, the methodology has been developed. The first difficulty lied in the fact that the
deflection was measured in only eight points of each 45m-long wing. It was therefore decided to
interpolate these points in order to reconstruct information and this allowed for the user to apply
different identification methods in “good conditions”. The second difficulty was due to the fact that
the problem was highly nonlinear. Despite this, it appeared that the problem was actually separable
into two parts: one which was nonlinear and the second one which was linear. It was natural to build
the methodology upon the concepts of the SLS method introduced in [Golub and Pereyra 1973].
Although the SLS method is quite popular in the community of numerical analysis and natural for
R&D engineers who are used to separate/split the problems whenever possible, it is actually rarely
addressed in the field of automatic control (see e.g. [Bruls et al. 1999] and [Previdi and Lovera 2004])
and rarely applied in robotics (see e.g. [Hashemi and Werner 2009]). In addition, in order to select
the parameters that are enough to rescale the load distribution of the 45m-long wing, the QR
factorization of the jacobian was introduced. The QR factorization of the observation matrix is
common in robotics (see e.g. [Presse and Gautier 1993]) but not in engineering. Such a methodology
has provided good and reliable results that have been validated in AIRBUS site and with real-world
data i.e. coming from A380 flights. This project was a real and exciting opportunity to understand
what highly-nonlinear aeroelastic model means, become familiar with the tools delivered by AIRBUS
and import methods from robotics. Finally, 5 confidential technical reports were delivered to AIRBUS.

The second main project | am currently working on is the 3-years SEFA-IKKY project where my works
address the calculation of standard deviations of estimates in flutter analysis where the frequency
and the damping of each mode are estimated. If the damping is high enough, there is no reason for
alarm and the plane keeps its trajectory, otherwise, there is reason for concerns because keeping the
trajectory and/or not modifying the flight conditions may result in structure damages that generally
lead to an air crash disaster. Surprisingly, the calculation of deviations is rarely addressed or is
performed with the “usual classical rules” in statistics that is to say the observation matrix is
considered as deterministic and the error homoscedastic (see e.g. [Young 2011] among others). It is
known that if those “usual” conditions are violated, the estimated deviations are not consistent
(over- or under-estimated) and it is impossible to make a relevant interpretation of those estimated
deviations. My works consist in presenting and validating different statistical approaches in order to
get consistent estimates of standard deviations and pseudo-online estimation via batching
algorithms should be taken into account for online surveillance. As usual with projects piloted by
industrials, the first part of the task consists in becoming familiar with their tools and models, the
second part consists in developing a methodology and validating it through MCS while the third and
last part consists in validating it with real-world data. To address the calculation of the deviations, the
framework developed in [Mellinger 2014] has been evaluated. Although the material presented
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within this thesis is of great interest, this work can be seen as an Errors-in-Variables framework
[Soderstréom 2007], the resulting algorithm is quite involved and there is still the same remaining
question: how to interpret the deviations when facing identification of real-world systems? This
explains why we intend to use the methods from the fields of automatic control, statistics and
econometrics combined with the knowledge we have of aeronautical models. This is equivalent to
associate grey-box methods with black-box approaches. Such a way of doing is now considered in the
fields of automatic control and mechanical engineering, see e.g. [Noél et al. 2015] and [Janot et al.
2016 b] among others. The first results obtained in simulation are encouraging and tend to
emphasize the usefulness of combining grey- and black-box methods.

Fig. 2. A380 aircraft - AIRBUS

Research part

As stated above, ONERA leads (or is involved in) research projects which have different fundings and
names: research projects (denoted PR in the following) that are funded and managed by ONERA,
CARNOT projects and European projects. In contrast with the projects conducted by the industrials,
these projects are generally dedicated to researches not already validated on real-world systems or
not really known to the end-user/industrial. In other words, such projects are not focused on
industrial needs only.

The first major project | am involved is the CARNOT project called AMPERE which is in line with the
AEA topic. The AEA subject takes a growing place in pluriannual projects (e.g. H2020 and CleanSky)
that involve major industrials such as AIRBUS and SAFRAN which now consider this topic. It is
therefore natural and essential that ONERA takes part in this research field. It is important to stress
that the AEA differs from the MEA in the sense that an electric aircraft is an aircraft that runs on
electric motors rather than internal combustion engines, with electricity coming from fuel cells, solar
cells, ultracapacitors, power beaming, or batteries [Wiki AEA]. The key achievement of the AMPERE
project is the design and assembling of the AEA prototype illustrated in Fig. 3. As we can see in Fig. 4,
this AEA prototype is actuated by 32 electric BLDC motors. This choice is deliberate and its technical
justification is beyond the topic of the study and will be not discussed in this manuscript. In the
AMPERE project, | serve as the WP leader of the WP focusing on identification and control of electric
motors. By control it must be understood local control (i.e. the control loop of each motor) and
distributed control (i.e. the order sent by a central computer to each motor). In this WP, four
research engineers and two internship students per year are involved. In addition, two researchers
and two internship students with ISAE are also involved in this WP via the Equipes de Recherche
Communes (ERC — Common Research Teams). My technical tasks focus on the application of
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identification approaches of motors and the design and implementation on microcontrollers of local
controls. My managerial task consists in coordinating the studies in order to avoid overlaps between
the different tasks. The key outputs of this WP are the following:

e The flux oriented control is recommended to limit the electric losses;

e The frequency of the PWM frequency must be optimized in order to limit the losses;
e The notion of optimal control is critical from an energetic point of view;

e Because of PWM, the integrity of signals is source of concerns;

e Fixed-point unit microcontrollers are enough for the local control.

It must be noticed that the electric losses must absolutely be limited in order to avoid premature
batteries discharges that will compromise the mission of the AEA. This explains why the concept of
optimal control is of critical importance and tends to show that the AEA is an interesting and
unexplored topic for optimal control.

Fig. 4. The 32 motors actuating the AEA prototype

The second main project | am involved is the PR called “RObotique Service en Orbite” (ROSO) which
aims at designing, assembling, identifying and controlling a flexible robot for aerospace tasks. In this
PR, | act as the WP leader of the WP that addresses the development and validation of identification
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and control methods of the prototype robot. Four research engineers and two PhD students are
involved in this WP. Like with the AMPERE project, my research/technical tasks focus on the
development and validation of identification methods applied to robots while my managerial tasks
consist in coordinating the different works to avoid overlaps and delays. The ROSO PR is a great
opportunity to study and evaluate some approaches that are not well known in the mechatronics
community such as the IV methods. In collaboration with Maxime Gautier (IRCCyN and University of
Nantes, Nantes, France) and Pierre-Olivier Vandanjon (IFSTTAR, Bouguenais, France), | have
succeeded to develop and validate an IV approach suitable for industrial robot identification. This
method called IDIM-IV is particularly interesting because it validates the direct and inverse dynamic
models simultaneously. This is due to the fact that the instruments are constructed by simulating the
direct dynamic model. Then, the simulated joint positions, velocities, accelerations and the inverse
dynamic model are utilized to build the instrumental matrix. Experimental results have shown that
the IDIM-IV method is robust against noises in the observation matrix and needs few iterations to
converge. Finally, in order to assess the quality of the set of instruments, an algorithm based on the
2SLS method and the Hausman-test widely used in econometrics has been proposed and
experimentally validated. This test is called Revised DWH-test. Because the IDIM-IV method and the
Revised DWH-test are my main contributions in experimental methodology (5 papers published in
international refereed journals), they are completely described in the second and third chapter of
this manuscript. In addition, a new approach which makes use of the SDP method developed by
Peter Young (Lancaster University, United Kingdom) has been proposed and validated. Although this
new approach has been published in a refereed international journal, further studies are still
required and this SDP-based approach is introduced in the fourth chapter of the manuscript. Future
works will focus on the application of these approaches on a flexible robot, as well as identification
for control. To address the theme of identification for control, my current Ph.D. Valentin Pascu will
be involved as well as Hugues Garnier (CRAN, Nancy, France).

Publications

As regards the publications, | have authored and co-authored 7 papers in international refereed
journals, 1 paper in an open-access international refereed journal, 1 paper in a national refereed
journal and 23 conference papers. Finally, | have participated to several seminars.

Research activities

Roots: robotics, identification and control engineering

My research activities are conducted within the DCSD of ONERA Toulouse centre, France. Before
joining ONERA, | have completed a 3 years university degree in Electronics, Electrotechnics and
Automation with majors in Automatic Control, a Master’s Degree in Robotics at University of Nantes,
Nantes, France, my Ph.D. degree at the French Atomic Energy Agency at Fontenay aux Roses, France
and | have worked with HAPTION at Soulgé sur Ouette, France. During my four first years of studies
at university, | gained a solid background in robotics, identification of robots and control engineering.
In the fourth year, Maxime Gautier taught the standard identification method of robots i.e. the IDIM-
LS method with an experimental validation on the EMPS prototype. In addition, it has been
emphasized how important identification is for system control. Then, during the fifth year which can
be seen as an introduction to the Ph.D., my works addressed the application of the EKF and other
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non-deterministic observers for estimating the trunk position of a biped robot [Aoustin et al. 2004]
and [Janot 2004]. This work supervised by Gaétan Garcia and Yannick Aoustin, IRCCyN, Nantes,
France, definitively convinced me that parametric identification is crucial for the design of observers
and controls. This explains why | naturally decided to complete a Ph.D. degree that focused on the
modelling and identification of haptic interfaces. The Ph.D. was supervised by Maxime Gautier.
During my Ph.D., | had the opportunity to first assimilate and apply the methods learned at university
and then do experiments on my own. By “do the experiments on my own” it must be understood
design of the optimal trajectories, coding those trajectories in C language and implementing them on
microcontrollers if required, tuning the gains of the controller and/or re-coding it in C language if
required. Regarding the identification methods, it was natural to apply the IDIM-LS technique
developed by Maxime Gautier which is the most popular method for robot identification [Gautier et
al. 2013]. These works made me realize how important is the offline tailor-made data filtering when
we face closed-loop identification of electromechanical systems. If this offline tailor-made filtering
data is not appropriate, we can obtain negative values for mass and/or friction coefficients and this is
totally impossible. However, it is important to point out that it is possible to obtain negative values of
regrouped inertia parameters because of regrouping formulas of robot parameters (see the first
chapter of the manuscript). It should be confessed that such a result is very disturbing (if not
incomprehensible) for someone who has no (or little) knowledge of robot identification and who is
not familiar with regrouping formulas. Although the experimental results were good, some raised the
problem of the tailor-made data filtering which was considered as the weak link of the IDIM-LS
method. This offline tailor-made data filtering is actually based on a priori knowledge we have about
the system (especially the bandwidth of the position loop) and this is not clear to
researchers/engineers from automatic control that are more familiar with black-box identification
techniques. This is the reason why | decided to take a closer look at other identification methods
such as the IV approaches. The Journées de [ldentification et Modélisation Expérimentales
conference held at Poitiers on November 2006 can be considered as a definitive turning point in my
carrier. | indeed met Pierre-Olivier Vandanjon, Hugues Garnier asked me why | disregarded IV
approaches for robot identification and Peter Young made an interesting plenary before the
audience. The combination of these three events produced the spark required to create an IV
approach suitable for robot identification. The IDIM-IV method was born and it has led us to an
unexpected result: the DIDIM method which is a CLIE approach. Furthermore, Pierre-Olivier
Vandanjon brought to me the basis in statistics | did not have and suggested me to take a look at the
methods considered/published in econometrics. Interestingly, in Peter Young’s papers, there are
some references to works published in econometrics e.g. the important Durbin’s works. Since then, |
commonly use the IDIM-LS, IDIM-IV and DIDIM methods for electromechanical system identification
depending on the data available and my mood.

Identification with applications in robotics and aeronautics

With my background, it is expected that my main methodological contributions are devoted to
system identification with applications to robots and electromechanical systems. As mentioned
earlier, | had the opportunity to work on friction identification for AREVA while | was with HAPTION
and | am involved in projects managed by ONERA or industrials. | have therefore opportunities to
pursue my works on system identification with applications to robots and electromechanical systems
and to understand how aircraft are identified.
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It is interesting to note that the IV approaches commonly used in automatic control, signal processing
and econometrics have not yet well penetrated the fields of robotics and mechatronics. This can be
explained by the following reasons: 1) the IDIM-LS technique is popular and gives good results
provided that the offline tailor-made data filtering is appropriate; 2) if we have to treat of nonlinear
effects identification (e.g. friction), the OE method is then utilized; 3) the models being calculated
from Newton's laws and/or Ohm's law, identification of electromechanical systems belongs to grey-
box identification of continuous-time models; 4) the models studied in the field of automatic control
are rather “simple” and can be hardly related with the models from robotics. In addition, in order to
obtain estimates with minimal variances, the methods developed and published in automatic control
suggest identifying a stable DT filter that colours the error that is assumed to be serially independent
and identically distributed. This is way of doing is not well understood and therefore not popular in
robotics because it is impossible to make a physical interpretation of this filter. For instance, it may
hide a modelling error or it may just indicate that the bandwidth of interest is smaller than the
sampling frequency. These reasons tend to show that a gap must be bridged between automatic
control and robotics. Nevertheless, despite this gap, in a very close collaboration with Pierre-Olivier
Vandanon and Maxime Gautier, | succeeded to design and validate a generic IV approach relevant for
the identification of rigid industrial robots. This IV approach can be summarized as follows: 1) the set
of instruments is the inverse dynamic model constructed from simulated data calculated from the
simulation of the direct dynamic model; 2) the simulation of the direct dynamic model assumes the
same reference trajectories and the same control structure for both the actual and the simulated
robots and is based on the previous IV estimates; 3) in order to obtain a valid set of instruments, the
gains of the simulated controller are updated according to the IV estimates. This algorithm called the
IDIM-IV method validates the inverse and direct dynamic models simultaneously, improves the noise
immunity of estimates with respect to corrupted data in the observation matrix and has a rapid
convergence. The IDIM-IV method is completely described in the second chapter of this manuscript.
However, the IDIM-IV method is based on the assumption that the set of instruments is valid i.e. well
correlated with the model and uncorrelated with the noise. A violation of this assumption obviously
leads to biased IDIM-IV estimates. The quality of the instruments must be evaluated and this
evaluation can be seen as a model evaluation. Interestingly, model evaluation was raised by Gerard
Piolain working with AREVA who asked me if it was possible to assess the quality/validity of the
model of a system. To tackle this point, a formal test suitable for robot identification has been
developed. This test is based on the 2SLS method and the DWH test widely utilized in econometrics.
This algorithm is described in the third chapter of the manuscript. The IDIM-IV method and the
approach that evaluates the quality of the instruments are my main methodological contributions
and have been published in international journals. Then, Francisco Carrillo, Hugues Garnier and Peter
Young showed an interest in these methods (but for different reasons). By co-supervising Ph.D.
theses, we succeeded to establish relationships between the different approaches, introduce a
general framework for robot identification which is very close to the one commonly applied in
automatic control (see the algorithms presented in [Gilson et al. 2011]) and a new approach that
makes use of the SDP method and the inverse dynamic model has been developed, validated and
published in an international journal [Janot et al. 2016 b]. This new method that still requires further
investigations is introduced in the fourth chapter of the manuscript.

Regarding the methods developed and applied to aircraft identification, it is obvious that the
methods mentioned above cannot be straightforwardly applied because aircraft differ significantly
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from robots (see the difference between the A380 plane and the TX40 robot). First, the user cannot
do experiments on his/her own as he/she can do with robots. In addition, because of constraints of
time and cost, industrials limit the number of experiments and try to collect data from different
flights in different conditions. Second, the instrumentation is very different: if the data collected from
industrial robots are of good quality at high sampling rate (a sampling rate of 1ms is usual), for
aircraft, data are collected at “low” sampling rate (usually 0.1s but it can decrease to 0.01s if we are
lucky), are of average quality compared with data from industrial robots (offsets and noise), some
data are reconstructed with others (eventually associated with a pre-treatment) that are not
delivered by the industrial and mounting external sensors is quite expensive and requires time. This
explains why the number of external measurements is rather limited. Third, unlike robots, aircraft
are often perturbed by wind gusts and turbulences that can be considered as unmeasured input
disturbances. Those three main differences justify a data selection which consists in selecting the
data that are in agreement with the fight conditions where the aircraft model is valid and a data
reconstruction which consists in creating data by interpolating between the points of measurements.
Finally, as mentioned earlier, the flexible models are calculated via a finite elements method and
they are highly nonlinear and awfully complex. Despite these differences, | succeeded to bring the
following ideas. The first one is to run the SLS method when the model can be split into two parts,
one which is linear in relation to a subset of parameters and the other one that is nonlinear in
relation to the other subset. The second one is to run the QR factorization of the hessian matrix in
order to assess the excitation of the parameters. This way of doing is common in robotics but not in
engineering. The third one is to make use of forward and reverse filtering in order to avoid a shift in
the filtered signals. This manner of filtering is common in mechatronics but not in aeronautics. The
last one is to combine grey- and black-box methods in order to keep the physical interpretation of
the results and to calculate the optimal variances of the estimates as it is done in automatic control
field.

Real-time programming for motor control

Since | followed courses of microcontrollers and digital signal processors programming at university
and since | have worked on real-time programming for motor control during my Ph.D. and with
HAPTION, | made some contributions in this field. However, it must be stressed that these
contributions are more technological-oriented than methodological-oriented i.e. they cannot be
compared with the contributions described in the previous subsection.

The principal issue with real-time programming lies in the fact that the control developed and
validated in a MATLAB-SIMULINK environment cannot be straightforwardly implemented on a
microcontroller. In other words, there is a gap between the MATLAB-SIMULINK structure and the
structure implemented in the microcontroller. Interestingly, it should be pointed out that only few
researchers/engineers developing and validating a control in a MATLAB-SIMULINK environment are
able to implement it on a microcontroller. The first reason of this matter of fact is that the control
laws are designed with CT models whereas only DT models are implementable on microcontrollers.
The second reason is due to the fact that the embedded code must be optimized in order to make its
running-time as short as possible and make its size as small as possible to be stored in the memory of
the targeted microcontroller which is often limited and, as we will see latter, mapped. The third
reason is that we must have a good knowledge of the targeted microcontroller e.g. a knowledge of
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its memory mapping, its peripherals and its CPU. Finally, it is important to note that a control suitable
for one microcontroller is not necessarily suitable for another one. All these main reasons explain
why the C language is commonly used and why the source code is often written in a “linear manner”
i.e. the number of functions is limited in order to get a minimal number of “jumps” resulting in a
short running time. Such codes can be hardly read and understood by a user who is not familiar with
real-time programming (see the appendices).

With HAPTION, apart from the design of the new board completely described in the previous section,
| have contributed to the enhancement of the haptic rendering by developing a rigorous
methodology to calculate the maximum value of the proportional gain of the position loop (called
stiffness in the following) admissible for the control, proposing and validating a control based on
rotor inertia compensation and validating/invalidating different control based on linear observers.
The calculation of the maximum admissible stiffness is inspired from the methodology developed and
validated on a one DOF haptic interface in [Janot 2007], chapter 2. This method can be applied to any
multi-DOF haptic device because the maximum value is calculated for the worst case, i.e. at the
extremities of the workspace of the interface, in order to ensure the security of the user. Another
possible way consists in mapping and adapting the value of the stiffness with respect to the Cartesian
positions. However, if the user intends to adopt the second solution, the microcontroller must
possess a wide internal memory because of the stiffness mapping. In order to partly compensate the
inertia rotor, | have used and implemented the well-known computed torque control. Although the
main difficulty was the on-line calculation of the acceleration, using and implementing a simple linear
filter on the microcontroller was enough because the motors' positions were measured by accurate
encoders. The use of accurate encoders is common in haptics because using low-resolution encoders
affects the haptic rendering, see e.g. [Abbot and Okamura 2006]. Regarding the controls based on
the use of linear observers, they seemed not really suitable since the inertia seen by the actuator
depends on the position, see e.g. [Jabbour et al. 2009 a] and [Jabbour et al. 2009b] and the first
chapter of this manuscript. Because of the position-dependent inertia, nonlinear observers must be
preferred. However, they often involve trigonometric functions and the user must choose powerful
microcontrollers. With ONERA, my main technological contributions are the enhancements of
controls' performances implemented on microcontrollers. However, because of constraints of time
and budget, we work on kits that are manufactured and sold by manufacturers e.g. the Three Phase
BLDC Motor Kit with DRV8312 and InstaSPIN-Enabled Piccolo TMS320F28069M manufactured by
Texas Instruments illustrated in Fig. 5. and Fig. 6. The source code of controls is provided, free and
coded in C/assembler. It is thus possible to modify it and load it on the targeted microcontroller with
appropriate tools. Since | use the skills developed with HAPTION for the projects funded by ONERA,
the technological contributions are very similar with those described above. These works are done in
collaboration with internship students and Francois Defay with ISAE, Toulouse, France.

It is misleading if not simplistic to believe it is sufficient to “translate” a control law in C language and
implement it on the targeted microcontroller. First of all, the user must enable all the peripherals/
buses required to fetch data (e.g. SPI, CAN, I12C, Ethernet...) and the peripherals required to capture
the signals (e.g. ADC, Quadratic Encoder Pulse, PWM...) in order to properly control the system. To
do so, some functions are written and they have to be executed before starting the process control.
Second, the control must be regularly executed i.e. at each sampling time. It is said that its execution
must be “deterministic” that is to say without latency and overrun. Interrupts are utilized and, for
some microcontrollers such as the TMS320F28035 manufactured by Texas Instruments, some
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instructions are totally forbidden within the interrupt functions (e.g. using floating numbers). Third, if
the targeted microcontroller is not equipped of a FPU, all floats must be converted into integers in an
appropriate Q format (also called Qx format or Q type format). In the following, | use the notation Qx
format by convenience. The Qx format is a fixed point number format where the number of
fractional bits (and optionally the number of integer bits) is specified. Of course, the Qx format
depends on the maximum of the absolute value of the float i.e. the higher the maximum value, the
smaller the Qx format. When working with HAPTION, | have developed and validated a simple
method to choose an appropriate Qx format. Fourth, the developer has to deal with the builder and
linker files. The builder files are usually delivered by the manufacturers and the developer can modify
it according to his/her needs. Although the linker files are also provided by the manufacturers, the
user has to take care of the memory mapping and program/variables allocation. For instance, in
order to obtain a running-time that is as short as possible, some parts of the code and some variables
must be allocated in RAM. This is due to the fact that the code and the variables are initially located
in FLASH memory which is a ROM. There is thus a delay to access to FLASH memory to read the
instruction and/or the variable. This justifies why the user must re-write the linker file delivered by
the manufacturer in a way that sticks to his/her application. | have written some user guides (or
technical reports) for helping the researchers/engineers who are not familiar with builder and linker
files (see the appendices of the manuscript).

These works on real-time programming explain well the fact | consider to connect identification and
real-time programming as a perspective in my career (see the fourth chapter of the manuscript).

Fig. 5. The Three Phase BLDC Motor Kit with DRV8312, InstaSPIN-Enabled Piccolo TMS320F28069M
and the BLDC motor manufactured by Texas Instruments
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On the identification of continuous-time inverse dynamic model of
electromechanical systems operating in closed loop with an instrumental
variable approach: application to industrial robots

The works focus on the identification of industrial robots that belongs to the field of the identification of
continuous-time inverse dynamic models in closed loop. First, a generic instrumental approach
relevant for the identification of rigid industrial robots is proposed. The set of instruments is the inverse
dynamic model constructed from simulated data calculated from the simulation of the direct dynamic
model. This algorithm termed the IDIM-IV method validates the inverse and direct dynamic models
simultaneously, improves the noise immunity of estimates with respect to corrupted data in the
observation matrix and has a rapid convergence. This new approach is experimentally validated and
compared with other standard methods. Then, a statistical test able to assess the validity of the set of
instruments as well as the consistency of the least-squares estimates is presented. This test is based
on the use of the Two-Stage-Least-Squares method and the regressed Durbin-Wu-Hausman test that
are commonly used in econometrics. Finally, the perspectives that the IDIM-IV method can offer to the
communities of robotics and automatic control are enlightened
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Fig. 6. Detailed view of the Three Phase BLDC Motor Kit

Supervising activities, committees and editorial activities

Post-doc supervision

Candidate: CASSARO Marco. The proposed postdoctoral position deals with modelling, identification
and control of an unmanned aircraft on ground (before take-off and after landing). The objective will
be first to create an accurate dynamic model of the aircraft behaviour, including the highly nonlinear
tires-ground interactions, and then to identify the most relevant parameters on the basis of
experimental data. This model will finally be used to design control and guidance laws, so as to
ensure stability and performance during various manoeuvres, despite perturbations such as
crosswind, backlash and delays, and whatever the runway state. Those works are involved in a large-
scale European project gathering several industrial and research partners.

Thesis supervisions

Ph.D. student: PASCU Valentin. Thesis supervisor: GARNIER Hugues. Title: Closed-loop identification
methods for efficient and robust control of flexible joint space robotic manipulators. Funding: 50%
ONERA and 50% University of Lorraine. List of publications: 1 conference paper has been accepted.
Topic: Technological advancements to date have allowed us to control and utilise robotics as a means
of automating a vast range of tasks found and performed within the manufacturing industry.
However, these uses are often limited to predefined engineering environments which mean that
current applications have limitations when the environment it is employed in, demands a complex or
dynamic result. Although dynamic model identification for conventional industrial robots is now a
well-established field, a systematic identification method dedicated to spatial robots does not exist
yet. This is mainly due to the fact that such robots are highly flexible, have very long arm and moves
slowly. The latter imposes that the effects of friction cannot be neglected in the modelling and
control design. Recently, robust control has been considered for slowly motion systems. Although
promising results have been achieved, it is recognized that a key limiting factor on the achievable
control performance is the limited accuracy to which the true system is described by the models. For
spatial robots, obtaining highly accurate models is likely to be even more challenging, due to the
increase of modelling complexity. This illustrates that there is much research still needing to be
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performed to design robust model-based control for spatial robots. With this in mind it can be made
clear that much research is required within the area of mechatronics and robotics systems before
such technologies could be utilized efficiently in an alien environment such as a space situation. The
aim of the thesis is twofold: 1) Enable identification of high-fidelity models for flexible joint space
robotic manipulators from closed-loop experimental data. These spatial robots are characterized by
highly flexible phenomena, as well as nonlinear phenomena due to the effects of slow motion. 2)
Design a framework for the synthesis of model-based controllers to achieve performance beyond the
limits of conventional industrial robots.

Ph.D. student: BRUNOT Mathieu. Thesis supervisor: CARRILLO Francisco. Title: Identification de
modeéles non linéaires et linéaires en boucle ouverte ou en boucle fermée par application des
méthodes a erreur de sortie et des techniques variables instrumentales. Funding: 50% ONERA and
50% Région Midi Pyrénées. List of publications: 1 journal paper has been submitted, 3 conference
papers have been published and 2 conference papers have been submitted for the IFAC World
Congress 2017. Topic: The thesis deals with the identification of physical parameters of
electromechanical systems that operate in closed loop (e.g. robots). The inverse dynamic model is
usually used for such systems because it is linear in relation to the dynamic parameters to identify.
This explains why the LS estimation is popular. However, since the systems are operating in closed
loop, a tailor-made data filtering has to be performed in order to obtain consistent estimates. Two
other possible approaches are the OE method and the techniques based on the IV approach. The
main advantage of IV methods lies on the fact that the consistency of estimates is secured while the
main advantage of OE methods is that nonlinear models can be identified. However, IV methods
have not penetrated the community of mechatronics while it is known that the OE methods are
sensitive to initial conditions and multiple local minima. A recent CLIE method called DIDIM has been
developed and validated for robot identification. It has been experimentally proved that the DIDIM
method outperform the usual CLOE method. In this thesis, the approaches based on the use of LS,
CLOE, IV and CLIE techniques have been compared and evaluated on three robots: the EMPS, the
SCARA prototype and the TX40 robot. Both the theoretical and experimental results show that if the
model is linear in relation to the parameters, the IV methods must be preferred for closed-loop
identification and if the model is nonlinear, the CLIE method has to be preferred to the standard
CLOE method. Finally, a PEM has been developed and validated in order to tackle the problem of
accuracy of estimates which is totally disregarded in mechatronics. The obtained experimental
results tend to show a real improvement in the estimation accuracy.

Ph.D. student: JUBIEN Anthony. Thesis supervisor: GAUTIER Maxime. Title: Identification
paramétrique et commande de systéemes multicorps a flexibilités localisées. Funding: 50% ONERA and
50% Région Pays de la Loire. The thesis has been defended on 14 November 2014 at IRCCyN. List of
publications: 1 journal paper has been published, 1 journal paper has been submitted and more than
10 conference papers have been accepted. Topic: This work is the result of collaboration between
IRCCyN and ONERA on dynamic identification of robots with joint flexibilities, used for example in
new applications for collaborative robotics. The standard identification technique in robotics requires
the actual data of motor positions and the actual data of elastic deformations, which are usually not
available in industrial robots. Recently, a new technique called DIDIM using the data of motor
torques only has been proposed and validated on rigid robots. In this thesis, an extension of DIDIM to
the case of robots with joint flexibilities is proposed. This extension does not require position data at
all. First, a comparative study on a rigid 6-axis robot with 61 parameters shows the superiority of
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DIDIM over the standard CLOE method in position. Second, DIDIM is extended to robots with joint
flexibilities in a three steps procedure: rigid model identification at low frequencies, an approximated
identification of the flexible mode and of the inertia of each side of the flexibility, and finally the
overall accurate identification of the full flexible dynamic model. A first experimental validation is
performed on a test bench robot with one joint and one flexibility. A second validation in simulation
on the 7 axes Kuka Light Weight Robot shows the effectiveness of DIDIM applied to industrial robots
with joint flexibilities, in the case where the actual control law is known.

Thesis committees
JUBIEN Anthony: Identification paramétrique et commande de systemes multicorps a flexibilités
localisées. Thesis defended on 14 November 2014 at IRCCyN.

VAYSSETTES Jeremy : Méthodes d’analyse modale des systéemes multivariables pour des essais de
courte durée en conditions opérationnelles. Application aux essais de flottement. Thesis defended on
14 November 2013 at Faculté des Sciences Fondamentales et Appliquées de Poitiers.

HAMON Pauline: Modélisation et identification dynamiques des robots avec un modele de
frottement sec fonction de la charge et de la vitesse. Thesis defended on 30 May 2011 at CEA
Fontenay aux Roses.

DAI Zheng: Actionneurs piézo-électriques dans des interfaces homme machine a retour d’effort.
Thesis defended on 9 March 2009 at Université des Sciences et Technologies de Lille.

Trainees supervisions

Master of Engineering (3d year), GONZALES-CONDE Damien: “Commande multi-moteurs d’une
maquette motorisée du véhicule AMPERE”, INP-Ecole Nationale Supérieure Electronique
Electrotechnique Informatique Hydraulique Télécommunications, March — September 2016.

Master of Engineering (3d year), BORSCHNECK Guillaume: “Commande locale et répartie de
machines électriques”, INP-Ecole Nationale Supérieure Electronique Electrotechnique Informatique
Hydraulique Télécommunications, March — September 2015.

Master of Engineering (3d year), FRAUDEAU Robin: “Expérimentation de lois de pilotage-guidage
pour parachute autoguidé”, INP-Ecole Nationale Supérieure Electronique Electrotechnique
Informatique Hydraulique Télécommunications, March — September 2015.

Master of Science degree (3d year), TORRES Gabriel: “Etude de méthodes d’identification
paramétrique pour les systemes électromécaniques”, Ecole Centrale de Lyon, March — September
2014.

Master of Engineering (3d year), BERTRAND Etienne: “Reconstruction d’état temps réel d’'un mini
drone paramoteur”, INP-Ecole Nationale Supérieure Electronique Electrotechnique Informatique
Hydraulique Télécommunications, March — September 2014.

Master of Science degree (3d year), SALAMEH Farah: “ldentification et Commande de Moteurs
Brushless pour Mini-drones”, I'Université Libanaise, March — September 2013.

Master of Science degree (3d year), KOTEICH Mohamad: “Commande Vectorielle Sensorless des
Moteurs Brushless de Mini-Drones”, I'Université Libanaise, March — September 2012.
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Master of Engineering (2nd year), BROUSSARD Hélene: “Développement d’un patch de compilation
pour la programmation d'un DSP”, PolyTech Nantes, June — September 2010.

Master of Engineering (2nd vyear), HERMES Rami: “Développement d’une interface de
II’ II

communication DSP — PC pour les interfaces haptiques
June — September 2009.

Ecole Supérieure d’'Ingénieurs de Beyrouth,

Master of Science degree (3d year), POUTORD Antoine: “Optimisation des lois de commande dédiées
aux interfaces haptiques”, Ecole Normale supérieure, June — September 2008.

Editorial activities and reviewing activities

Upon suggestion of Peter Young, | served as a guest editor for the special issue on “Identification and
Control of Nonlinear Electro-Mechanical Systems” for the International Journal of Control.
Approximatively 45 papers have been submitted and 16 papers have been accepted.

| serve as a regular reviewer for the following journals: International Journal of Control, Robotics and
Integrated Manufacturing, Journal of Computational and Nonlinear Dynamics and Proceedings of the
Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture.

| serve as an occasional reviewer for the following journals: Automatica, Mechatronics (IFAC), IEEE
Transactions on Automatic Control, IEEE Transactions on Control Systems Technology and IEEE
Transactions on Industrial Electronics.

List of projects/expertise activities

Projects I am/was involved
All the projects | am/was involved are gathered in Table 1. | have participated to the IHS10, SCALE 1
and SKILLS projects while | was working with HAPTION.

Table 1 : List of the projects | am/was involved

Name Funding Role Task(s)

AMPERE Carnot WP leader Identification and control of BLDC motors — Coordination of
tasks and reporting

ROSO ONERA WP leader Modelling and identification of flexible robots -
Coordination of tasks and reporting

FAWOPADS | DGA WP leader Real-time implementation for control and sensors fusion —
Coordination of tasks

ERA European | Task leader | Modelling and identification of patroller for taxiing —
Coordination of tasks and reporting

FLIPPER CORAC Task leader | Rescaling of the load distribution applied to the wings of

A380 — Coordination of tasks and reporting

SEFA-IKKY CORAC Participation | Estimation of the standard deviations of estimates -

Reporting

SKILLS European | Participation | Modelling and identification of a new cable-driven reducer
— Reporting

SCALE 1 ANR Participation | Identification and control of a scale-one haptic interface —
Reporting
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IHS10 ANR Participation | Identification and control improvement of a haptic glove —
Reporting

Expertise activities I was involved
All the expertise activities | was involved are regrouped in Table 2. Only the last activity was done
while | am working with ONERA.

Table 2 : List of the expertise activities | was involved

Name of Task(s) Budget
customer
AIRBUS Upgrade of HAPTION controllers for aeronautical requirements. 15k€
(company)
CEA (institution) | Identification of dissymmetric friction for force-feedback robots. 15k€
EDF (company) | Characterisation of cable-driven reducers. 15k€
ESTACA Design and control of a force-feedback wheel. 20k€

(institution)

CEA (institution) | Identifying couplings between the articulations of a medical robot; | 20k€
design of an accurate control law for slow motions.

AREVA Identification of frictions for haptic applications 30k€
(company)

PSA (company) | Geometric calibration for haptic interfaces. 30k€
AIRBUS Rescaling the load distribution applied to the A380 wings and validation | 50k€
(company) through simulations.

List of publications, technical reports and seminars

Papers in refereed international journals
Janot, A.; Young, P.-C.; Gautier, M.; “Identification and Control of Electromechanical Systems using
State-Dependent Parameter Estimation,” International Journal of Control, July 2016, accepted.

Janot, A.; Vandanjon, P.-O.; Gautier, M.; “A revised DWH-test for rigid industrial robots
identification,” Control Engineering Practice, Vol. 48, March 2016, pp. 52—62.

Janot, A.; Gautier, M., Jubien A; Vandanjon, P.-0.; “Comparison Between the CLOE Method and the
DIDIM Method for Robots Identification,” IEEE Trans. on Control Systems Technology, Vol. 22(5),
September 2014, pp. 1935-1941.

Janot, A.; Vandanjon, P.-O.; Gautier, M.; “An instrumental variable approach for rigid industrial
robots identification,” Control Engineering Practice, Vol. 25, April 2014, pp. 85-101.

Janot, A.; Vandanjon, P.-O.; Gautier, M., “A Generic Instrumental Variable Approach for Industrial
Robot Identification,” IEEE Trans. on Control Systems Technology, January 2014, Vol. 22(1), pp. 132-
145.

Janot, A.; Vandanjon, P.-O.; Gautier, M.; “Identification of Physical Parameters and Instrumental
Variables Validation With Two-Stage Least Squares Estimator,” IEEE Trans. on Control Systems
Technology, July 2013, Vol. 21(4), pp. 1386 — 1393.
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Gautier, M.; Janot, A.; Vandanjon, P.-O.; “A New Closed-Loop Output Error Method for Parameter
Identification of Robot Dynamics,” IEEE Trans. on Control Systems Technology, Vol. 21(2), March
2013, pp. 428 — 444,

Papers in refereed international open-access journals
Gosselin, F.; Ferlay, F.; Janot, A.; “Development of a New Backdrivable Actuator for Haptic Interfaces
and Collaborative Robots,” Actuators 2016, 5(2), 17, doi:10.3390/act5020017.

Papers in refereed national journals

Pham, M-T.; Rouby C.; Lizandier J.; Rémond D.; Janot A.; Vandanjon P-0O.; Gautier M.; “Utilisation de
polyndmes de Tchebychev pour l'identification de modéles a temps continu de robots,” Journal
Européen des Systemes Automatisés, Vol. 46(6/7), 2012, pp 779 — 798.

Papers in refereed domestic journals

Bucharles, A.; Cumer, C.; Hardier, G.; Jacquier, B.; Janot, A.; Le Moing, T.; Seren, C.; Toussaint, C,;
Vacher, P.; “An Overview of Relevant Issues for Aircraft Model Identification,” Journal Aerospacelab,
May 2012, Issue 4.

Book chapters

Marcassus, N.; Janot, A.; Vandanjon, P.O.; Gautier, M.; “Experimental Identification of the Inverse
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0 Introduction

The present manuscript is divided into four chapters.

The first chapter introduces the geometric description of industrial robots and the standard
identification method used to identify their dynamic parameters. The most popular geometric
description is the modified Denavit and Hartenberg (MDH) notation introduced by Khalil and
Kleinfinger in 1986 [Khalil and Kleinfinger 1986] which utilizes a number of geometric parameters
that is minimum and allows to obtain a IDM linear in the relation to the dynamic parameters. In this
chapter, only the geometric description of simple open structures is presented. For the other types of
structures, the readers can refer to [Khalil and Dombre 2002]. The links are assumed to be perfectly
rigid, the joints are either prismatic or revolute and are assumed to be ideal (no elasticity and no
backlash). Regarding the identification method, the standard technique is IDIM-LS method. This
approach is based on the use of the inverse dynamic identification model and the least squares
estimation combined with a pragmatic offline tailor-made data filtering.

The second chapter treats of an instrumental variable approach that is relevant for the identification
of rigid industrial robots. This work is motivated by the fact that the user can doubt whether the
IDIM-LS estimates are consistent or not because robots are identified while they are operating in
closed-loop and it is known that the LS estimates are biased in this case [Van den Hof 1998]. For
robot identification, the set of instruments is the inverse dynamic model constructed with simulated
data calculated from the simulation of the DDM. The simulation of the direct dynamic model
assumes the same reference trajectories and the same control structure for both the actual and the
simulated robots and is based on the previous IV estimates. In addition, in order to obtain a valid set
of instruments, the gains of the simulated controller are updated according to the IV estimates. This
IV approach called the IDIM-IV method validates the inverse and direct dynamic models
simultaneously, improves the noise immunity of estimates with respect to corrupted data in the
observation matrix and has a rapid convergence. This new approach is experimentally validated on
the EMPS robot, SCARA robot and the TX40 robot. A condensed version of this work has been
presented in [Janot et al 2009] and [Janot et a/ 2012] and the IDIM-IV method was published in
[Janot et al 2014 a] and [Janot et al 2014 b]. Introducing the instrumental variable approach in the
robotics field is the first contribution of my works.

The third chapter presents a statistical test able to check the validity of the instruments and the
consistency of the IDIM-LS estimates. This test is based on the 2SLS method and the regressed
Durbin-Wu-Hausman test (DWH-test) that are commonly used in econometrics. This work was
motivated by two pragmatic questions:

e When can we stick to the IDIM-LS estimates?

e How to validate/invalidate the construction of the instrumental matrix?

To tackle the first point, the DWH-test which is a formal test that examines whether the exogeneity
condition holds or not can be run. To tackle the second point, a formal test suitable for robot
identification has to be developed. In this chapter, the 2SLS method and the DWH-test are first
introduced and it is then shown how to extend the econometric theory to robot identification. A
condensed version of this work has been presented in [Janot et al. 2013 a] and published in [Janot et
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al. 2013 b] and [Janot et al. 2016 a]. Linking econometrics and robotics is the second contribution of

my works.

The final chapter enlightens the perspectives that the IDIM-IV method can offer to the communities
of robotics and automatic control. In a first part, the IDIM-IV method is compared with two different
identification methods: the standard CLOE method which is one of the most popular techniques used
in automatic control and the DIDIM method which is a recent CLIE method published in [Gautier et
al. 2013]. This comparison was published in [Janot et al. 2014 c] and comparing the standard CLOE
method with the IDIM-IV method is the third contribution of my works. In the second part, a method
combining grey- and black-box methods is presented. This new method is based on the use of the
State-Dependent Parameter method introduced by Young in 2000, [Young 2000]. This new approach
is applied to the EMPS prototype and the results show the usefulness of this mehodology. Then, it is
shown why the robotic and the automatic control approaches should be linked and why some
technological aspects such as real-time programming of online closed-loop identification methods
should be considered.
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1 Chapter 1: Robot modelling and identification

1.1 Introduction

In robotics, the common geometric description is the MDH notation introduced by Khalil and
Kleinfinger [Khalil and Kleinfinger 1986]. This notation utilizes a number of geometric parameters
that is minimum and allows to obtain a IDM linear in the relation to the dynamic parameters of
robot. In this chapter, only the geometric description of simple open structures is presented. For the
other types of structures, the readers can refer to [Khalil and Dombre 2002]. The links are assumed
to be perfectly rigid, the joints are either prismatic or revolute and are assumed to be ideal (no
elasticity and no backlash), finally, a complex joint is represented by an equivalent combination of
revolute and prismatic joints with zero-length massless links. Regarding the standard identification
method, it based on the use of the IDM which is linear in relation to the dynamic parameters and the
LS estimation. This method is called as IDIM-LS method. As we shall see, robot identification belongs
to grey-box closed-loop identification of CT models.

1.2 Rigid robot modelling

A serial robot is composed of a sequence of n—1 links and # joints. The links are numbered such

that link O constitutes the base of the robot and link » is the terminal link, see Fig. 1-1 where Cj is
the link j.Joint j connects link j to link j—1 and its variable is denoted g¢; . In order to define the

relationship between the location of links, we assign a frame Rj attached to each link j , such that

e the z; axis is along the axis of joint j;
e the X, axis is aligned with the common normal between z; and z,, ;
e theintersection of z;, and x; defines the origin O, ;

e they, axisis formed by the right-hand rule to complete the coordinate system (xj,y].,zj) .

As illustrated in Fig. 1-2, the transformation matrix from frame R, ; to frame R, is expressed as a

function of the following four geometric parameters

* (;:theangle between z, , and z; about X_;
e d,:thedistance between z, | and z, along X ;
e 0, :theangle between x, , and X, about z,;

e r;:thedistance between X, and X; along z,.

The variable of joint j, defining the relative orientation or position between links j—1 and j, is
either Gj or r;, depending on whether the joint is revolute or prismatic, respectively. This is defined

by the relation
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q,=0,0,+0r, (1.1)

with

Ji?

o; =0 if the joint is revolute;
o; =1 if the joint is prismatic;

o, :1—0'J..

It must be indicated if the joint is actuated or passive. This discrimination is of capital importance for

robots having a closed-loop structure. This is defined by

U; =1, the joint j is actuated;

H; =0, the joint j is passive.

The antecedent of the link j is given by the parameter a(j) while the (4x4) transformation matrix

defining the frame R; relative to the frame R, , is given as

J4’1Tj = Rot(x,(lj)Tmns(x,dj)Rot(z,Hj)Trans(z,rj ), (1.2)
Co, -5, 0 d,

Ca;S9, Ca,CO, —Sa;, -rSa, z[HAJ‘ HPJ} (1.3)

SajSHj SajCHj Caj eraj 0 1
0 0 0 1

1x3

j_le is the (3><1) vector of the homogeneous coordinates of the point O; with respect to

frame RH;
i A is the (3><3) orthogonal matrix representing the rotation of R, with respectto R, ;.

The matrix j_'Aj represents the direction cosine matrix and can be written as

HA=(s, Tny May)
Aj=("s; Ty Tay);

j—1 i—1 i—1 . . .
J S;, J n, and ’ a; are the unit vectors along X, Y, and z,, receptively, of frame R/ with

respect to RH;

and C.=cos(.) and S.=sin(.).

It is worth noting that P, and A; can be expressed in any frame R, . In this case, the general

J

notation kPj and kAj is used.

In this section, the geometric description of robots having simple open structures has been

presented. This description is required for the calculation of the inverse and direct dynamic models

which are now introduced.
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Fig. 1-1: Robot with simple open structure
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T, aj//
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Fig. 1-2: The geometric parameters in the case of an open structure

1.3 Dynamic models of robots

Introduction of the inverse dynamic model
The IDM provides the joint torques/forces in terms of the joint positions, velocities and accelerations.

It is described by

Tidm = f;dm (q7 q5 q; Text ) ’ (14)
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T, the (nxl) vector of joint torques/forces depending on whether the joint is revolute or

idm

prismatic, respectively. In the sequel, we conveniently use joint torques;

q the (nx1) vector of joint positions;
q the (nx1) vector of joint velocities;
g the (nx1) vector of joint accelerations;

1, the (nx1) vector of forces and moments exerted by the robot on the environment;

J.un the function that expresses the IDM;

e 7 the number of degrees of freedom of the robot.

Equation (1.4) is an inverse dynamic model because it defines the system input as a function of the

output variables and it is often called the dynamic model. All the quantities are given in S.I. units on

the load side.

The IDM can be calculated from the Lagrange formulation which describes the behaviour of a

dynamic system in terms of work and energy stored in the system. The Lagrange equation is

commonly written in the following form

Tidm=i a—L _a_L+Tf T (1.5)
dt\dq) Jq
with
e [ =F-U the Lagrangian of the robot;
e F the kinetic energy of the robot;
e U the potential energy of the robot;
e T, the (nx1) vector of friction torques.
Equation takes the following explicit form given by
Tidm +Text :M<q)q+c(q’q)q+Q(q)+Tf :M(q)q+N(q’q) ’ (16)

with

e M(q) the (nxn) symmetric and positive definite inertia matrix of the robot;

e C(q,q9)q the (nxl) vector of

- oE
C(q.9)a=M(q)q——;
(a-d)a=M(a)a-5

Coriolis and centrifugal torques, such that

e Q(q) the (nx1) vector of gravity torques;

e N(q.9)=C(q,9)q+Q(q)+7, the (nxl) vector that regroups the Coriolis, centrifugal,

gravity and friction torques.

As we will see, the IDM is linear in relation to the dynamic parameters of the robot.
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1.3.2 Introduction of the direct dynamic model (DDM)
The DDM provides the joint accelerations in terms of the joint positions, velocities and torques. It is
described by

quddm (qaan,-dmaTax,), (17)
where f,, is the function that expresses the DDM.

The DDM can be written as a state-space form given by

0

"‘z[—M-l(qé;Nm,q)J*(M-l(q)j“' .

where

e X= {q} is the (2-nx1) state vector;
q

e u=t, +71,, isthe (nxl) input vector.

According to (1.8), the DDM is nonlinear in relation to the states and to the dynamic parameters.

1.3.3 Comments on friction modelling
The huge literature which treats of friction modelling and identification shows that there are actually
two types of models (see the survey [Bona and Indri 2005]):

e the static models depending on the velocity only;
e the dynamic models which introduce an additional degree of freedom per joint.

According to [Khalil and Dombre 2002] and the references given therein, the most common model in
robotics is described by

7, =ijq'j+chsign(q'j), (1.9)
where

e 7, is the joint j friction torque;
e Fvy, isthejoint j viscous friction coefficient;
e Fc; isthejoint j Coulomb friction (or dry friction) coefficient;
° sign(q'j) is the sign of ¢, given by:
o sign(qj)zl if g,>0;
o sign(c}j)=—1 if g, <0;

o sign(qj)=0 if g,=0.
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This model illustrated in Fig. 1-3 b) is usually enough for non-zero velocities. However, it does not
encompass the stiction effect which occurs at null velocities. The stiction effect is illustrated in Fig.
1-3 ¢) and its main characteristics are: while the applied torque is less than the stiction torque, the
system remains motionless i.e. it is stuck. This effect is thus expressed as

Fv,q; +FC.iSign(qj) itg; #0

7, =1qu, ifg,=0and |u|<Fs, (1.10)

I*;Sjsign(uj) if g, =0and ‘uj‘Zst
where

e Fjs; isthejoint j stiction coefficient;

e u, isthe joint j applied torque.
Finally, Stribeck showed that there is a transition between the stiction and the common friction
model. The Coulomb coefficient actually decreases until its minimum and remains constant. The
Stribeck effect is illustrated in Fig. 1-3 d) and given by

5/
o o q,
7, —ijqj+chszgn(qj)+(st—ch)exp - q— , (1.11)
SI

where

* (g isthe Stribeck's velocity;

° 5j a coefficient to be determined.

All these static models can be found in e.g. [Ge et al. 2001] and [Bona and Indri 2005]. Armstrong-
Hélouvry proposed dimensional analyses for very small velocities in order to take the Stick-Slip effect
[Armstrong-Hélouvry 1992] and the memory effect [Armstrong-Helouvry 1994] into account. In
addition, the author proposed some controls able to compensate those effects in order to increase
the tracking performances, [Armstrong-Hélouvry and Amin 1994]. It is worth noting that other
interesting controls has been proposed and validated in [Dupont and Dunlap 1993], [Dupont 1994]
and [Olson and Astrom 2001].

Static models can be identified by applying constant velocities around a constant position, [Spetch
and Iserman 1988]. At constant velocities, the acceleration is indeed null and the inertia has no effect
while the effect of gravity proves to be negligible or acts as an offset when the robot is moving
around a constant position. It comes out that the measured torque can be considered as the friction
torque. Such a method was successfully applied to identify the dynamic parameters of a hydraulic
arm [Bidard et al. 2005] and a haptic interface [Janot et al. 2007 a], [Jlanot et al. 2007 b]. To identify
the coefficient st , @ pragmatic method is based on the use of masses, see e.g. [Nahvi et al. 1994].

The idea consist in applying an external torque via a mass m and a lever arm /. The stiction
coefficient is then simply given by Fis, = g/m; where g = 9.81m/s* is the gravity constant.

18



The dynamic models are usually described by the following state-space representation
2, =1(z.4,), (1.12)
as done in [Dhal 1976], [Canudas de Wit et al. 1995] and [Ge et al. 2001].

Such models can be interpreted as a generalization of static models [Canudas de Wit et al. 1995].
However, it must be stressed that identifying dynamic models is quite involved and needs external
very accurate sensors. In addition, sometimes those models are utilized whereas a simple model is
enough. For instance, a Dahl's model was used in [Mahvash and Okamura 2006] in order to
compensate the friction torque for teleoperation applications whereas the friction model could have
been approximated by a simple static Coulomb model.

EI} I:Jlu b} FJL_______...-—-""'
v v
.--""""HF.’
c) i d)
3 F
v v
_-"'-.-.-.-.-.-.-.-.-.

Fig. 1-3: Static friction models available in the literature: a) Coulomb friction; b) Coulomb and
viscous friction — the most common; c) stiction effect; d) Stribeck effect.

1.3.4 Dynamic parameters of robots
Before presenting the dynamic parameters, the calculations of the kinetic and potential energies are
introduced. Let us consider a link j represented in its frame as illustrated in Fig. 1-4 where

e L, isthe (3x1) position vector between O, ; and O ;

J

e S, isthe (3x1) vector of the centre-of-mass coordinates of a link j which is equal to O G

The kinetic energy of a link is given by

1/, _ o
E:E(_,mjlc T, +m, VIV, ), (1.13)

J
with
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e ’o, the (3x1) vector of angular velocity of link j with respect to frame R ;

e I, the (3><3) inertia tensor of link j about G, and with respect to a frame parallel to

J

frame R/.;

e m; the massof link j;
o 'V, the (3><1) vector of the linear velocity of the center-of-mass of link j with respect to

frame R, .
Since Vc] is given by
Vo, ="V, +70,x8,,
and by applying the Hugens' theorem, one obtains
'iJj =IG/ —méé

and the kinetic energy is finally given by

Lo oo - o _
E; :E(’l"’j 3 0 +m VTV, +27MS; ('IV./ X l")./))' (1.14)
where

° ~’Jj is the (3><3) inertia tensor of link j with respect to frame R;. The 6 components of
ij are denotedas XX, XY,, XZ,, YY,, YZ, and ZZ,.
° ~’Vj is the (3><1) vector of the linear velocity of Oj with respect to frame R;

° fMSj is (3><1) vector of the first moments of link j with respect to frame R;, equal to
m;S ;. The components of -’MSJ. are denoted by [MX/. My, MZ(/.]T;

° Sj is the (3><3) skew-symmetric matrix defined by the components of the vector Sj in

order to calculate the vector product Sj ><Sj .

It is clear that (1.14) is linear with in relation to the components of ij , jMS_/ and m; .

The potential energy is calculated with
U,=="g"(m'P,+'A 'MS,), (1.15)

where

e ‘gisthe (3><1) vector of the gravity acceleration expressed in the frame R ;

o OPj is the (3x1) vector of position of O, expressed in the frame R, ;
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e "A, is (3x3) rotation matrix of R, expressed in the frame R .
Relation (1.15) is linear in relation to jMSJ. and m, .
Let [im/_ be the (10><1) vector of the inertial parameters of a link j given by
B, Z[)O(j XY, Xz, YY, YZ; ZZ, MX, MY, MZ, m/]

The total energy of a link j is given by the following linear relation [Gautier and Khalil 1990] and
[Gautier 1990]

H,=E+U,=hp,, (1.16)
where h; isa (10x1) row matrix given by

oH oH oH

h. = .
/ BXXj E)XY/ am_/.

(1.17)

hj can be rewritten as

° th/ 2%'i@/ ’la)z/ ;

° hXZ/ :%j@, jws, ’

oy =%”wz."wz ;

o hy :%fa)zl_ ‘o, ;
1.

° hzz, :ijs, jws,"

—J J J J 0,70
® hMX/ ="y Vz, -, Vaj - 8 S;;
—J J J J 0470 .
¢ hMY - a)li 1/31 B a)}r I/IJ B g nj !

i

—J J J J 0570,
° hMZJ_ W, Vl,_ @ sz_ g a;;
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1. )
° hm,.ZEJV}-jVj_OgTOPj-

It comes out that the robot has 10-# inertial standard parameters, n being the number of degrees
of freedom. The total energy of the robot is, indeed, given by

10n

H=) H, =Y hp, =>hp,, (1.18)
J=1 Jj=1 i=1

where [, is the ith inertial standard parameter and 4, its associated energetic function.

in;

Since the Lagrangian L is equalto £—U , itisalso linearin relationto B, .

The kinetic energy of the drive chain is given by

|
E,.. =51a/6]f, (1.19)

where [, is the inertia of the drive chain.

Finally, the joint j friction torque being given by (1.9), the (13><1) vector of the standard

parameters of a link j is given by

Bso, =[ﬁ§1, 1, Fv, ch]r. (1.20)
Then, for a robot having » moving links, there are 13- »n standard parameters.

The IDM can be, therefore, written as a linear-in-the-parameters form given by

Tigm — Toq =IDMg7p, (q’q’ij)BSTD , (1.22)
where

e IDMy, (q.q.q) is (nx13-n) the matrix of basis functions;

e By, isthe (13-nx1) vector of the standard parameters of the robot.

In the sequel, without loss of generality it is assumed that t,, =0 in order to simplify the notations.
The IDM given by (1.21) reduces to

Tidm = IDMSTD (q’q’q)BSTD . (122)

Because of the serial structure of robot, a link j “sees” the dynamics of links j+1 to n.

IDMg,, (q,4,q) is therefore an upper triangular matrix and this implies that with 7, , the jth

component of t,, , we can identify the dynamical parameters of links j to n.
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Fig. 1-4: Composition of velocities

1.3.5 Base dynamical parameters

All the standard dynamical parameters are not identifiable because some standard parameters have
a null or a constant energetic function (i.e. have no influence on the IDM) while some are regrouped
with others via linear relations [Gautier and Khalil 1990]. The set of identifiable dynamical
parameters has to be determined. The base parameters are the minimum number of dynamic
parameters from which the IDM can be calculated. The set of base parameters can be determined
analytically as done in [Gautier and Khalil 1990] or numerically by the use of the QR decomposition as
suggested in [Gautier 1991].

From now, only the minimum IDM is considered i.e. the IDM which considers the base parameters
only. Relation (1.22) is rewritten as

Tidm :IDM<qaan)B: (123)
where

e IDM(q,q,q) is the (nxb) matrix of basis functions;

e B isthe (bx1) vector of base parameters;

e ) is the number of base parameters.
It is important to note that the b base parameters constitute the set of dynamic parameters that can
be identified regardless q, q and . This explains why the calculation of the set of the base
parameters is related with the problem of structural identifiability. Finally, since IDMg,,, (q,q,ij) is
an upper triangular matrix, so is IDM(q,q,ij). In the rest of the manuscript, b, is the number of
base parameters that can be identified with 7, i.e. the number of identifiable base parameters for

the jth DOF.
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1.4 Modelling of three robots

1.4.1 The EMPS robot

The EMPS is a high-precision linear Electro-Mechanical Positioning System, see Fig. 1-5. It is a
standard configuration of a drive system for prismatic joint of robots or machine tools. It is
connected to a dSPACE digital control system for easy control and data acquisition using MATLAB and
SIMULINK software. Its main components are

e A Maxon DC motor equipped with an incremental encoder. As we shall see later, the DC
motor is position-controlled;

e A Star high-precision low-friction ball screw drive positioning unit and a load in translation;

e An encoder at the extremity of the ball screw. This encoder is not used;

e An accelerometer on the load which measures its acceleration. The accelerometer is not
used.

The geometry description of the robot uses the MDH notations illustrated in Fig. 1-6 while the MDH
parameters are given in Table 1-1.

In this simple case, one has '@ =0 and “g is orthogonal to z, and x,. It comes out that the
energetic functions of XX, XY, XZ, YY,, YZ,, ZZ, MX, and MZ, are null while the energetic

function of MY, is constant (planar prototype). Because m, and Ia, have the same energetic

1.
function i.e. quz , they are regrouped together.

From the 13 standard dynamic parameters, only 3 dynamic parameters are structurally identifiable
which means that the IDM depends on 3 base parameters only

B= [mlR Fv, Fe ]T ,
with
° my=m+la.
The subscript R stands for regrouped. The columns of IDM(q,q,('j) are given as follows

° IDMmlR =q,;
o IDMy, =¢q;
° IDMFC1 :sign(q'l) ;

®* q=gq;
[ ] q:ql’
b qz%

The components of the matrix M(q) and the vector N(q.,q) that are scalars in this case are given

by
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* M, =my;

o N, ==Fvg, —Fesign(q,).

Encoder at the
extremity of the
Accelerometer ball screw

Ball screw drive

DC motor + encoder c .
Load in translation

positioning unit

Fig. 1-5: Photo of the EMPS prototype robot and its instrumentation

Yo Y1
___________ o z, O z,
9, =h

Fig. 1-6: MDH frames of the EMPS robot

Table 1-1 : MDH parameters of the EMPS prototype robot

Jo|ali) | 4 0, a; d, 0, 7
0 1 1 0 0 0 q

1.4.2 The SCARA robot
The SCARA robot considered in this work is a two-DOF-planar-direct-drive robot illustrated in Fig. 1-7.

This direct-drive robot is suitable for the study of the identification methods because it emphasizes
nonlinear coupling torques. It is indeed worth to note that for industrial robots having gear ratios
greater than 50, these nonlinear effects are divided by 2500.

The geometry description of the robot uses the MDH notations illustrated in Fig. 1-8 while the MDH
parameters are given in Table 1-2. Although the SCARA robot is more complex than the EMPS, the
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T
calculation of the base parameters is quite straightforward. First, since one has 1(01 =[0 0 cjl] ,

T
2m2 =[0 0 qz] and g orthogonal to x; and y,, it comes out that the energetic functions of

XX, Xy, Xz, Yy, YZ,, MX,, MY,, m;, XX,, XY,, XZ,, YY, and YZ, are null while the
energetic function of MZ, and MZ, are constant (planar robot). Because /a, (resp. la,) and ZZ,
(resp. ZZ,) have the same energetic function, they are regrouped together. Finally, m, is regrouped
with ZZ, because the Huygens' theorem produces a linear relation between their energetic

functions.

Thus, from 26 standard dynamic parameters, only 8 are structurally identifiable which means that
the IDM depends on 8 base parameters

[$=[ZZIR Fv, Fe, ZZ,, MX, MY, Fv, Fcz]T,
with

o 7Z,,=7Z +Ia +mL’;
o 7Z,,=72Z,+Ila,;
e [ =0.5mis the first link length.

The columns of IDM(q,q,éi) are automatically calculated with SYMORO+ software [Khalil and

Creusot 1997] which is now open-source, see [Khalil et al. 2014]. They are given as follows

° IDMZZIR :|:(Z)]}

iy
e IDM,, :{qj f{z}
2R ql+q2
o IDM,, :[(26‘1'1"‘%.). cosq, —Cli ('2q'1+q'2)sinq2}
q, cosq, +q, sing,

’

o IDM,, =

_(qu +Q2) sing, —¢, (2Q1 +q'2)cosq2}

%2 cosq, — ¢, sing,
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.. .. .77
e d=[G 4]
The components of the matrix M(q) and the vector N(q,q) are given by

o M, =77Z,+7Z,+2MX,C2-2MY,S2;
o M, =M,=7Z,+ MX,C2- MY,S2;

o M,=77,;

o N, =MX,S524,(q, +24,)+ MY,C24, (¢, +2¢,) — Fv¢, — Fe,sign(q,) ;
o N,=-MX,S24; — MY,C2¢; — Fv,q, — Fe,sign(q,) .

It is clear that IDM(q.q,q) is an upper triangular matrix. With T, » the parameters ZZ,,, Fv,, Fc,

, ZZ,p, MX, and MY, can be identified while ZZ,,, MX,, MY,, Fv, and Fc, can be identified

with 7., . It yields b =6 and b, =5 (see Table 1-3 where X stands for identifiable with 7,,, and 0

idm,

not identifiable with 7.

idm;

). It is important to note that there is no relationship between b,, b,and 5.

0%, o! X

Fig. 1-8: MDH frames of the SCARA robot
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Table 1-2 : MDH parameters of the SCARA robot

Jali) | 4 d, g, 7
0 0 a4 0
1 L 9, 0
Table 1-3: Calculation of the b;'s for the SCARA robot

ZZ,, Fv, Fe, 77, MX, MY, Fv, Fre,

Tidml X X X X X X 0 0

Tidmz 0 0 X X X X

1.4.3 The TX40 robot

The Stdubli TX40 robot illustrated in Fig. 1-9 has a serial structure with six rotational joints. Its
kinematics is defined by the MDH notation Fig. 1-10 while the geometric parameters defining the
TX40 frames are given in Table 1-4.

The TX40 robot is characterized by a coupling between the joints 5 and 6 such that

qms Ng  Ng ]| 4
where
e g, isvelocity of motor j onthe motor side;
e N,is the gear ratio of the joint drive chain ;.
Thus, the duality relation of torque gives
Z, N, Ng || T,
= T, (1.25)
T, 0 Ngjr,
where
e 7 isthe motor's torque of joint j taking into account the coupling effect;
e 7 isthe electro — magnetic torque of the rotor of motor j on motor side.

;

The coupling between joints 5 and 6 also adds to the effect of the inertia of rotor 6 and new viscous
and Coulomb friction parameters Fvmg and Femg to both 7, and 7, . We can write

T, =Ts +lagGs + Fvmgqg + Femgsign(qy), (1.26)

T, =7, +1ayGs + Fvmqs + Femy (sign(q5 +q'6)—sign(q6)) ,

&3

(1.27)
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where 7 and 7, already contain the terms /a g, + Fv .4, +chsign(q'j) for j =35 and 6 respectively

with
la, = N:Ja, + N Ja, and la, = N} Ja,, (1.28)
where
® Ja, is the moment of inertia of rotor j;
e Fvm, and Fcmyg are the friction parameters due to the coupling between joints 5 and 6.

The energetic functions of XX, XY, XZ,, YY,, YZ,, MX,, MY, m, are null while the energetic
function of MZ, and MZ, are constant. Because the TX40 robot is a more complex system than the

EMPS and the SCARA robot, the calculation of the base parameters cannot be made by hand: the
SYMORO+ software has to be utilized. The base parameters and the regrouping formulas are given
below

Link 1: ZZ

IR

Fv, and Fc, with

o ZZy=ZZ +1la+YY,+YY, + 25 MZy+ (5 +d5 ) (my +m, +ms+m).
Link 2: XX, ,, XY,, XZ,,, YZ,, ZZ,,, MX,,, MY,, Fv, and Fc, with

° XXZR=XX'2—YY2—d32(m3+m4+m5+m6);

° XZZR=X22—d3MZ3—r3d3(m3+m4+m5+m6);

o 7Z,,=7Z,+la,+d; (m;+m,+ms+m) ;

o MX,,=MX,+d,(m;+m,+ms+my).

Link 3: XX

3R?

XY,, XZ,, YZy, ZZy,, MX,, MY,

x» lay, Fv; and Fc; with

3R
° XX3R:XX3_YY3+Yy4+2d3A/[Z4+r42(m4+m5+m6);
o ZZ,=ZZ,+YY,+2dMZ,+7r](m,+m;+my);
o MY, =MY,~MZ,~r,(m,+ms+m).

Link 4: XX,,, XY,, XZ,, YZ,, ZZ,,, MX,, MY,,, la,, Fv, and Fe, with
o XX, =XX,-YY, +YY;
o ZZ,,=ZZ,+YY,;

o MY,,=MY,-MZ,.
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Link 5: XX,,, XY., XZ,, YZ., ZZ,,, MX,, MY, , Ila,, Fv; and Fc, with
o XX, =XX,-YY. +YY;
o Il.,=ZZ,+YY;
o« MYy = MY, - MZ,.

Link 6: XX,,, XY, XZ,, YZ,, ZZ,,, MX,, MY,,, Ila,, Fv, and Fc, with
o XX =XX -YY,.

From 78 standard parameters, 60 parameters are structurally identified which means that the TX40
robot has 60 base dynamic parameters. Finally, one has b =34, b, =37, b, =31, b, =24, b, =20

and b, =10.

The columns of IDM(q,q,('j) are obtained using the Newton-Euler recursive algorithm. SYMORO+

software is used to automatically calculate the customized symbolic expressions of models [Khalil
and Creusot 1997]. The expressions being too complex, they are not given within this manuscript.

Fig. 1-9: Presentation of the 6-DOF TX40 industrial robot
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Fig. 1-10: MDH frames of the TX40 robot
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Table 1-4 : MDH parameters of the TX40 robot

Jla(j) | /o @ d; 9, B
1 0 1 0 0 0 q, 0
2 1 | 1] 0]|-22 0 7 0
3 2 |10 0 |d=0225m|gq, | r=0035m
a1 3 | 1]0] 72 0 4. | r=0225m
5| 4 | 1]|0]-x2 0 7 0
6 5 1 0 7Z'/2 0 qs 0

1.5 Dynamic parameters identification

1.5.1 Introduction
This section presents the IDIM-LS method that is commonly utilized to identify the set of base

parameters, see [Khosla and Kanade 1985], [Atkeson et al. 1986], [Kawasaki and Nishimura 1988],
[Ha et al. 1989], [Raucent et al. 1991], [Priifer et al. 1994], [Swevers et al. 1997], [Kozlowski 1998],
[Olsen and Petersen 2001], [Olsen et al. 2002], [Swevers et al. 2007] and [Gautier et al. 2013] among
others. This approach is based on the utilisation of the IDM and the LS identification technique. As
we shall see later, robot identification belongs to grey-box closed-loop identification of CT models.

1.5.2 The Inverse Dynamic Identification Model
Because of uncertainties (measurement noise, model mismatch ...), the (nxl) vector of the actual

joint torques T differs from t,,, bya (nx1) vector of error e i.e.

t=1,,+e=1DM(q,q.G)p+e. (1.29)

Equation (1.29) represents the IDIM.

1.5.3 Data acquisition and robot control
The offline identification of the base parameters B is considered, given the measured or estimated

offline data for T and (q,q,q) , collected while the robot is tracking planned trajectories.

Usually, data available from controllers of robots are the following

e the measurements of q denoted q

meas !

e the measurements of v_, the (nx1) vector of control signals denoted v,

::::::

Robots are position-controlled and the control laws commonly used are PD, PID, computed torque
(flatness control) and passive controls [Khalil and Dombre 2002], chapter 14. When identifying the
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base parameters, the PD control is preferred to the others because it is easy to tune and an excellent
tracking is not necessary [Gautier et al. 2013].

Motors are current-controlled with a Pl control. The current-loop has a bandwidth greater than
500Hz. Then, within the frequency range of body dynamics (less than 20Hz), its transfer function is
modeled as a static gain [Gautier et al. 2013].

The joint torques are connected with the control signals by the following relation

t=G,v_, (1.30)

where G, is the (n><n) diagonal matrix of drive gains. The diagonal components of G, have a priori

values given by the manufacturers that can be checked with special tests, see e.g. [Gautier and Briot
2014].

1.5.4 Offline tailor-made data filtering

In (1.29), q is estimated with q obtained by filtering q through a low-pass Butterworth filter in

meas

both the forward and reverse directions. This can be achieved by using for instance the filtfilt Matlab

function. This filter has a flat amplitude characteristic without phase shift in the range [O a)ﬁJ , @

being the filter cutoff frequency. We choose @, 25w,,, , @,, being the maximum bandwidth of the

joint position-loop [Gautier et al. 2013].

((i,(i) are calculated offline without phase shift using a central differentiation algorithm of low-pass

filtered positions q i.e.

o a (R 1)=g, (k1)

(k)== ] ) 1.31
q;(k) S (1.31)
where

* §,(k) isthe kth sample of the filtered joint j position;

. éj(k) is the kth sample of the estimated joint j velocity;

e dt isthe sampling period.

In doing so, the distortion is avoided while the coefficients of IDM(q,q,ij) are calculated [Gautier et
al. 2013].

The IDIM given by (1.29) is sampled at a measurement frequency £, while the robot is tracking
reference trajectories (q,.q,.q, ) . We obtain an over-determined linear system of », equations and

b unknowns given by

yAfm(T):Xfm ((’i:(’i:i’i)ﬁ"'s‘fm/ (1.32)
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where

e ¥, () isthe (n,x1) sampled vector of t;
e X, (d,f],fj) is the (n,, xb) sampled matrix of IDM((],&,&) ;
e g, isthe (n,x1) sampled vector of e.
T is perturbed by high-frequency disturbances which are rejected by the closed-loop control. These

torque ripples are eliminated by using a parallel decimation procedure which low-pass filters in

parallel y ;, and each column of X, and resamples them at a lower rate, keeping one sample over

n, . This parallel decimation can be carried out with the decimate Matlab function for instance. It is

recalled that decimation reduces the original sampling rate of a sequence to a lower rate (opposite of
interpolation). The decimate Matlab function lowpass filters the input to guard against aliasing and
downsamples the result. The low-pass filter cutoff frequency @, =27z -0.8f, /(2n,) is tuned to keep

the decimated vector of measurements and columns of x,m(q,&,&) within the same frequency

range of dynamics. According to [Gautier et al. 2013] a good choice is w,, >2a,, .

It is clear that this pragmatic tailor-made data filtering is based on the prior knowledge of @,,, . For

rigid industrial robots, @, usually lies within 5Hz-10Hz for the three first joints and 10Hz-20Hz for

the three last joints.

1.5.5 IDIM-LS estimates and statistical analysis
After the data filtering and the decimation process, the following over-determined system is
obtained

y(t)=X(4,6.4)B+z, (1.33)
where
e y(7) isthe (rx1) measurements vector built from the actual torques ;

e X(,G,d) is the (rxb) observation matrix built from (4,4,d);

e gisthe (rx1) vector of error terms;

e r=n,/n,=n-n, is the number of rows in (1.33) while n, is the number of rows in a

subsystem (or DOF) y.

In y and X, the equations of each joint j are regrouped together. y and X are thus partitioned so
that

yl X]
v(r)=| i |, X(ad.d)=| i | (1.34)

yVl Xn
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where

DM’ (§(n,),4(n,).d(n,))

A

. IDM’(Q(-),q(-),&(-)) is the jth row of the (nxb) matrix of the basis functions

IDM (§(+),G(+)(+)) given by (1.23).

y’ and X’ represent the n, equations of a subsystem j (or of the jth DOF). Finally, relations (1.33)

and (1.34) explain why robot identification belongs to closed-identification grey-box identification of
CT models from regularly sampled data. Although identification of CT models is quite common in
electrical and mechanical engineering (see the references given in introduction), the benefits of
identifying CT models from sampled data have been highlightened only recently in the automatic
control field as shown in the following recent contributions [Garnier et al. 2003], [Rao and
Unbehauen 2006], [Garnier et al. 2007], [Garnier et al. 2011] and [Garnier and Young 2014] and the
following overview [Garnier 2015] whereas this topic was addressed at least 25 years ago in [Young
1970], [Young 1981] and [Unbehauen and Rao 1990].

Robots being nonlinear MIMO systems, € is assumed to have zero mean, to be serially uncorrelated
and to be heteroskedastic with a clustered form i.e. to have a diagonal covariance matrix €
partitioned so that

Q=diag(c/1, - o1, - o), (1.35)
where I, is the (n,xn,) identity matrix.

O'jz. is the error variance calculated from OLS solution of the subsystem ; (see [Gautier 1997] for the

technical details)

A

v (t,)=X/ (IDMf (q,fl,q))ﬁ +el. (1.36)
Then, the WLS estimates of B are given by
B =(X'Q'X) X'y, (1.37)

The subscripts LS is used instead of WLS because weighting operations improve the efficiency of
estimates and do not affect their consistency [Davidson and Mackinnon 1993]. Such weighting
operations normalize the deviation of error terms in (1.33). With

t=Q"%, (1.38)
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one indeed obtains

E(ET ) — Q—I/ZE(SST)Q—I/Z — 9—1/299—1/2 =1

where

e I, isthe (rxr) identity matrix;

e E(+) is the expectation operator.

r?

If heteroskedasticity is well accounted for, one has

A2 _ -1/2 12~ P
O-E,LS_HQ y-—Q X

because of (1.39).

Jir-p)=1,

The covariance matrix of the IDIM-LS estimates is given by

T, =(X'Q'X) .

Let 67 ) :ZLS(i,i) be the ith diagonal coefficient of X

B

of B,5(i), the ith component of B, , is thus given by

%0, = 10? . O.B”‘(i)
ST B ()

Fig. 1-11: Scheme of the IDIM-LS method applied for robot identification
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1.5.6 Exciting trajectories and cross-test validations
By calculating the base parameters and applying “exciting” reference trajectories, a well-conditioned
matrix X is obtained. A good conditioning number of X implies that the base parameters are well
excited and they can be well identified [Presse and Gautier 1993]. It is recalled that the conditioning
number of X is given by

O-m

cond (X) =—"2, (1.43)
o,

1n

where:

e o isthe maximal singular value of X;

max

e 0. isthe minimalsingular value of X.

Two other criteria are of interest. First, to avoid the pervert effect of having a good conditioning
number with small singular values, the following criterion should be used [Presse and Gautier 1993],

C = cond (X)+ -, (1.44)

min
where £, is a user-defined constant.

If one has a priori values of the parameters e.g. CAD values, then the following criterion could be
considered

Czcond(X Diag([iup)), (1.45)

where Diag([iap) is the diagonal matrix of the a priori values of the base parameters denoted as
Bap *

To be complete, in [Indri et al. 2002] and [Calafiore et al. 2003], the authors have considered other

criteria, e.g. the determinant of X' X for instance. Though these criteria can also be considered, the
experimental results are quite similar.

To check the validity of estimates, cross-test validations have to be performed. These validations are
carried out with trajectories different from those used during the identification process. A set of 3
trajectories is usually enough. The points of those trajectories are randomly chosen in the accessible
workspace of the robot. The user must checked that these trajectories are exciting enough because
using underexciting trajectories for cross-test validations may lead to misinterpretation of
experimental results. If possible, data must be stored with another measurement frequency. The
cross-test validations are carried out as follows:

e First: one designs another set of exciting trajectories different from the set used during the
identification process;

e Second: the robot is excited with these trajectories in order to obtain another set of
measured joint torques denoted as y_ ;
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e Third: with these trajectories, we build the observation matrix X as described in section
1.5.5;

e Fourth: the following relative error HyO—XOﬁLS

/||y0|| is calculated and if the IDIM-LS

estimates are unbiased, this value must be compatible with the relative error given by

|y —XB.s | /Iv] -

1.6 Limitations of the IDIM-LS method
The IDIM-LS estimates are unbiased if

E(X"g)=0, (1.46)
where E(.) is the expectation operator [Davidson and MacKinnon 1993].

Because robots are identified in closed loop, the user can doubt whether X((],(i,('i') is correlated

with € or not [Van den Hof 1998]. As we shall see in the following chapter, an appropriate method to
overcome the problem of a correlation between X and ¢ is the IV method.

1.7 Conclusion

In this chapter, the geometric description of the robots having a simple serial structure has been
introduced. The direct and inverse dynamic models have been presented as well the standard
identification based on the use of the inverse dynamic model and the weighted least squares
method. However, because robots are identified in closed loop, a tailor-made data filtering must be
designed and applied in order to obtain reliable least-squares estimates.

The following chapter presents an instrumental variable method suitable for robot identification.
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2 Chapter 2: An Instrumental Variable Approach for Robot
Identification

2.1 Introduction

In the previous chapter, the IDIM-LS method has been presented. This method based on the inverse
dynamic identification model and least squares estimation is the standard procedure to identify the
dynamic parameters of robots. It has been successfully applied to identify the dynamic parameters of
several prototypes and industrial robots (see [Gautier et al. 2013] and the references therein). Good
results can be obtained provided that an appropriate derivative bandpass filtering of the joint
positions is used in order to calculate the joint velocities and accelerations. However, even with the
guidelines for tuning the bandpass filtering given in [Gautier 1997] and recalled in the first chapter,
the user can doubt whether the IDIM-LS estimates are consistent or not because robots are
identified while they are operating in closed loop and it is known that the LS estimates are biased in
this case [Van den Hof 1998].

Other identification methods were tried: the TLS [Xi 1995] and [Hollerbach and Nahvi 1995], the
Set Membership Uncertainty [Ramdani and Poignet 2005], an algorithm based on LMI tools [Indri et
al. 2002], a ML approach [Olsen et al. 2002], the CLOE method [Landau 2001], [Ostring et al. 2003]
and [Gautier et al. 2013], an algorithm based on neural network [Soewandito et al. 2011], a Bayesian
approach [Ting et al. 2006], the EKF [Gautier and Poignet 2001] and [Kostic et al. 2004], a method
which estimates the nonlinear effects in the frequency domain [Wernholt and Gunnarsson 2008] and
the UKF [Dellon and Matsuoka 2009]. Although all these techniques are of interest, they do not really
improve the IDIM-LS method combined with an appropriate data filtering. Furthermore, the
robustness against data filtering was not studied, some of these approaches were not validated on a
6 DOF industrial robot and the condition that the regressors are not correlated with the error terms
is not addressed whereas it is a critical condition to obtain consistent estimates [Hausman 1978],
[Davidson and MacKinnon 1993] and [Wooldridge 2009].

An approach able to provide consistent estimates while the system is identified in closed loop is the
IV technique introduced by Reiersgl in 1941, [Reiersgl 1941], according to Wong and Polak, [Wong
and Polak 1967]. In [S6derstrom and Stoica 1983], [S6derstrém and Stoica 1989], [Garnier and Wang
2008], [Gilson et al. 2011], [Young 2011] and the references given therein, IV approaches are studied
for linear systems. However, these works are mostly theoretically oriented and validated on low-
dimensional linear systems. This may explain why there are few real world applications, especially in
robotics [Puthenpura and Shina 1986], [Yoshida et al. 1992], [Xi 1995] and [Vandanjon et al. 2007].
This tends to show that a gap must be bridged between theory and robotics.

In this chapter, a generic IV approach which is relevant for the identification of rigid industrial robots
is proposed. The set of instruments is the IDM constructed from simulated data calculated from the
simulation of the DDM. The simulation of the direct dynamic model assumes the same reference
trajectories and the same control structure for both the actual and the simulated robots and is based
on the previous IV estimates. In addition, in order to obtain a valid set of instruments, the gains of
the simulated controller are updated according to the IV estimates. This algorithm called the IDIM-IV
method validates the inverse and direct dynamic models simultaneously, improves the noise
immunity of estimates with respect to corrupted data in the observation matrix and has a rapid
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convergence. This new approach is experimentally validated on the EMPS robot, SCARA robot and
the TX40 robot. In the fourth chapter, the IDIM-IV is compared with other methods such as the
standard CLOE method and the new DIDIM method which belongs to CLIE techniques.

A condensed version of this work has been presented in [Janot et al. 2009] and [Janot et al. 2012]
and the IDIM-IV method was published in [Janot et al. 2014 a] and [Janot et al. 2014 b].

2.2 The Instrumental variable method: brief theoretical background

2.2.1 Preliminary definitions
All measurements being corrupted by noises, the following definitions are first introduced

. 7,=7, +07, +5qu;
where

® G, IS the measurement of the joint j position;

Gy ,q,?f, ,(']'nf, are the joint j noise-free position, velocity and acceleration respectively;

7, is the joint j noise-free torque given by 7, :Cj(s)(% —qnf/), where C,(s) is the

joint j controller with s as the Laplace's variable

5‘]mes,. is the measurement error;

64, 6q3 and 66}1. are the errorsin g, (}j and (}j respectively;

ot, =C(s)04,,, istheerrorin 7, due to the feedback;

&'j is the errorin T, due to the measurement noise.

T
Let eT:[é‘q &n:l be the (nxl) vector of measurements noises in T,
T
e, :I:é‘rq1 52"1} be the (nx1) vector of measurements noises in T due to
T
0q,,.. :[5%@1 e 0q,. J the (nx1) vector of measurements noises in q,,,, the (nx1) vector

of joint positions measurements.

let 64, 6q and G be the (nx1) vector of noises in 4, q and {, respectively, with

si=[oq, - 64, 84=[84, - 8G,] and Si=[5G - G|

40



Letq,.q, .4, bethe (nxl) vector of noise-free positions, velocities and accelerations respectively.
q being obtained through the filtering of q,, and since (f],(i) are calculated from the

differentiation of § , the errors dq,,, and 84, 44 and & are thus correlated.

2.2.2 Consistency of the IDIM-LS estimates in robotics
In robotics, the true model is assumed to be

y=X(q,.4,.d, )B+e, +5 =X, B+e, +¢,, (2.1)
where

e ¢_isthe (rx1) sampled vector of e, ;

e g, isthe (rx1) sampled vectorof e, ;

° (qn,,qn,,qnf) are the (rxl) vectors of the noise-free joint positions, velocities and

accelerations, respectively;

e [ isthe (bxl) vector of base parameters (see the first chapter);
e X, = x(qn,,q,?f,qnf) is the (rxb) noise-free observation matrix which is uncorrelated with

€, and g, by definition.

Let the observation matrix be defined as follows

X=X,+V, (2.2)
where V isa (rxb) matrix of error terms which is uncorrelated with X, by definition.

With E(sq):E(sf) =0, E(V) =0 by definition and because €, is not correlated with g,,one has

Since dq,,,, and 4q, 561 and 5& are correlated, ¢, and V are also correlated. The following linear

relation is then introduced

g, =Vy, (2.3)
where 7’is the (bxl) vector of parameters that explain the correlation between Vand ¢, .
With X, =X—-V and by introducing

0=v"-8, (2.4)
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the (bx1) vector of omitted variables, the error € is then given by

€=¢,+V0. (2.5)
With (2.5), one obtains

E(X"e)=E(X] ¢, )+E(X],V0)+E(V'e, )+ E(V'V0),

E(X"e)=X] E(e,)+ X E(V)0+E(V")E(e, )+ E(V'V)0.

and this gives

E(X"e)=E(V'V)0. (2.6)

The relation E(XT8> =0 provides two exogeneity conditions

0=0, (2.7)
or
V=0. (2.8)

The first condition (2.7) is implausible by definition because y” and P are not of the same nature in
the case of identification of robots. B is, indeed, the vector of dynamic parameters while y” is the

vector of parameters that have no real physical meaning. So, in robotics, the exogeneity condition is
given by (2.8). This result is consistent with the analysis presented in [Young 2011], page 153,
equation 6.37.

In practice, the condition (2.8) cannot be perfectly met because this relation implies that at least one
of the two following conditions holds:

e Data are noise-free;
e Data are accurate and associated with a well-tuned tailor-made data filtering.

The first condition is unrealistic in practice because data are always corrupted by noises. Regarding
the second condition, the user can be in doubt whether it holds or not. This explains why an
identification method able to provide consistent estimates while the observation matrix and the
error term are correlated must be preferred. An interesting approach is the IV method which was
introduced by Reiersgl in 1941, [Reierspgl 1941].

2.2.3 Introduction of the IV method
The IV method consists in introducing an (x5) instrumental matrix denoted as Z such that

y=X(q.q,q4)p +& becomes

Z'y=7"Xp+Z'¢. (2.9)
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With the following assumptions,

E((ZTX)_I) exists, is finite and full rank 5, (2.10)

E(Z'¢)=0, (2.11)
the simple IV estimator provides the following consistent estimates

A -1

Bow = (ZTX) Z'y.

The proof is straightforward by considering (2.9). IV methods are widely studied and applied to linear
systems, [Soderstrom and Stoica 1983], [Soderstrom and Stoica 1989], [Garnier and Wang 2008],
[Gilson et al. 2011] and [Young 2011] among others. However, the main problem with IV methods is
the construction of Z. According to these references, a good way consists in constructing Z from
simulated data which are the outputs of an auxiliary model. Loosely speaking, the auxiliary model can
be considered as the noise-free mathematical model of the system to be identified. Instruments can

be constructed on previous IV estimates, [i’,‘;l , and this defines an iterative process. However, these

works are mostly theoretically oriented and validated on low-dimensional linear systems.
Furthermore, in many real-world applications, these methods cannot be straightforwardly applied.
This may explain why IV methods are rarely employed in robotics, see [Puthenpura and Shina 1986],
[Yoshida et al. 1992], [Xi 1995] and [Vandanjon et al. 2007].

2.3 An instrumental approach for robot identification

2.3.1 Choice of a valid instrumental matrix

According to [Soderstrom and Stoica 1983], a (rxb) valid instrumental matrix is

Z=X, :X(qnf’qnf’qnf)' (2.12)
The proof is straightforward by assuming that there is no modelling error. In this case, one obtains

X=Z+V=X,+V,

and it follows

E(Z'X)=E(X[ X, )+E(X[V)=E(X] X, ).

Since

E(Z'e)=E(X,VO)+E(X e, ) =—X] E(V)0+X E(e,)=0,

according to the assumptions made in the subsection 2.2.2, the following relations hold
mnk(E(ZTX)) = rank(E(XZanf)) =b, (2.13)
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E(Z'e)=E(X])=0, (2.14)

However, from a practical point of view X, . is not accessible. If it were, the IV approach would be

totally useless because the IDIM-LS method would provide consistent estimates by replacing X with

an. In order to build an (rxb) instrumental matrix, denoted Z, which is as close as possible to Z

defined by (2.12), a valid auxiliary model must be first defined and then simulated.

2.3.2 Choice and simulation of the auxiliary model

For robot identification, the auxiliary model is the DDM. The simulation of the DDM is performed
assuming the same reference trajectories and the same control law structure for both the actual and
the simulated robots. In addition, the simulation of the DDM is based on the previous IV estimates,

ﬁ’,‘;‘ . At step k, where k is the kth IV estimates, the (nxl) vectors of simulated joint accelerations,

q,,is given by
iis:Mil(anAllct;l)(Ts_N(quqstlch;l))- (2.15)

where

e (g and q, arethe (nxl) vectors of simulated joint positions and velocities, respectively;

e 1, isthe (nxl) vector of the simulated torques whose the jth component is given by

7 =C_I.(s)(qr/ —qs/) where ¢ is the joint j simulated position.

The vectors q, and q, are obtained by numerical integration of (2.15) and like the measurements,
the simulated data are sampled at a measurement frequency f,,. The (nm xb) instrumental variable

matrix is given by

A

me =X5fm(qs’qsaijsa 1;1;1)/ (216)

0 k-1

where X(;fm(qs,qs,ijs, " ) is the (n,, xb) sampled matrix of IDM(qS,qS’qS,”If;I).

Each column of me is then resampled at a lower rate (parallel decimation) and it yields

A

Z:XJ(qS’qS’qS’AIIcl;I)' (2.17)

Compared with the IDIM-LS method and the other methods cited in introduction, this IV approach
validates the IDM and the DDM simultaneously. This is the first contribution of this approach.

A simple simulation of the DDM is not generally sufficient to construct Z defined by (2.12). This

explains why the simulation of the DDM is based on B! : with the use of an iterative process, it is

aimed that Z tends to Z. This way of doing, called boostraping method [S6dertrom and Stoica
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1983], raises the problem of initialization even though it has been shown via numerical examples
that the IV algorithms are quite robust to initialization [Garnier and Wang 2008], [Gilson et al. 2011]
and [Young 2011]. However, it worth notice that this robustness is not theoretically proved and in

[Janot et al. 2013 b], it has been experimentally shown that a bad choice of ﬁ(;v may result in a

divergence of the algorithm or invalid IV estimates because the conditions (2.13) and (2.14) may be
violated. This remark raises the problem of the quality of the instruments. This point will be treated
in the following chapter.

In the following subsection, an IV algorithm which is insensitive to initial conditions is proposed. This
assumes that the following condition

(as (Bl )-as (B )-dis (B ) = (a,-6,d, ) for any B, (2.18)

is met at iteration k, starting with £=0.

Since this IV approach is based on the simulation of the DDV, it is clear that this approach is related
with the OE methods. This point is addressed in the fourth chapter.

2.3.3 Simulation of the auxiliary model
Relation (2.18) is verified if we take the same control structure for both the actual and the simulated
robots with the same performances given by the bandwidth, the stability margin or closed-loop

poles. The parameters of the simulated robot ﬁf,, changing at each iteration &, the gains of the

simulated controller must be updated according to ﬁ',‘,,

In this chapter, a joint ; PD control is considered because such a control is usually sufficient for

robot identification (a similar rationale can be straightforwardly applied to any controller, see [Jubien
2014], subpart 3.3.2).

In robotics, it is convenient to consider a joint j IDM as a decoupled double-integrator system

perturbed by a coupling torque
T, =M, ;(q)d,-p,, (2.19)

where p; is considered as a perturbation given by

P, =2 M,, (@)i, N, (a:4), (2.20

i#j
with M, (q) approximated by a constant inertia, ./, given by

J,=2Z,+1la,+max(M ,(q)-2Z,~1Ia;). (2.21)

q
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J; is the maximum value of inertia moment with respect to q which gives the smallest stability

margin of the second-order transfer function of the position-loop while q varies. It must be taken at

least as ZZ; + Ia; which can be calculated from a priori CAD values.

Ajoint j DDM is conveniently approximated by a double-integrator system as follows

i = (,+p,) _ (7, +p.f)_ (2.22)

M, (q) J;

Relation (2.22) explains why linear techniques are used to tune the performances of joint ; closed

loop in robotics.

A joint j PD control of the actual robot illustrated in Fig. 2-1 is now considered. The control input is
given by

ap )
v, =(“kp, , (a, -q,)- ”’%‘L)ﬁ' (2.23)

j
T/

T, being given by

T.=g.v,, (2.24)

J j j

where

a

° g, is the actual joint j drive gain;

e “J; isthe actual value of J;

e %J, and ?g, are a priorivalues of the actual unknown values “J; and “g, , respectively.
J J

If the a priori values are equal to the actual ones, then “k, and “k, are the PD control gains of the
J J

normalized double integrator 1/s2 . The closed-loop performances are chosen with the desired 2

poles of the second-order transfer function characterized by da)n and "g“]. where
J A

° dwnv is the desired natural frequency which characterizes the closed-loop bandwidth;
J

° d§j is the desired damping which characterizes the closed-loop stability margin.

It comes (see [Gautier et al. 2013] for the details)

d

1)
%k =——2 and k, =2 ‘o . (2.25)
; d Vi J n;
p 2 é‘j J

A joint ; PD control of the simulated robot illustrated in Fig. 2-2 is now considered. The variables
(qS Qs -G T ) present in Fig. 2-2 are computed by numerical integration of (2.15). The PD control

of the simulated robot has the same structure as the actual one illustrated in Fig. 2-1. It can be seen
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that the actual gain “k, ””Jj/“”gT must be multiplied by j;‘/“ij in order to obtain the same

normalized double integrator, l/s2 , and the same closed-loop transfer function. The proportional

gain “k, being independent on parameters values, we keep °k, = “k, whereas the derivative gain

in the simulator is updated with jj’? as follows

A

k
Sk =% J
Vi Vi aPJ'
J

, k. (2.26)

Finally, after simulating the DDM with the gains updating given by (2.26), after the sampling of
simulated data and parallel decimation, one has

Z = Xé‘(qS’qS’iiS’ﬁ];I;]) = X(qrg/‘sqnf,qnf) = an =Z7. (227)

In [Gautier et al. 2013], it is proposed to take a regular inertia matrix M(qs,ﬁ?V) to have a good

initialization for numerical integration of the DDM. It is obtained with
B°, =0, except for, Ia)=1,for j=1Ln. (2.28)

The use of the regular initialization is interesting because there is no need of prior knowledge of the
values of the base parameters.

Compared with the other IV algorithms, the gains of the simulated controller updated at each

iteration allows to obtain Z = X, VB’}V and the relations (2.13) and (2.14) hold. This algorithm not

sensitive to the initial values fi(;V is the second contribution of this approach.

P;
q’; a a “J, l 1
4.@. kpj kv_ — j. — gT—T’@_’

Fig. 2-1. Joint j PD control of the actual robot
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Fig. 2-2. Joint j PD control of the simulated robot

2.3.4 Calculation of the IDIM-IV estimates
After data acquisition, data filtering and parallel decimation, we obtain the following over-
determined system

2'y(1)=2"X(4,4.§)B+Z"¢, (2.29)
where

e Zisthe (rxb) instrumental variable matrix given by (2.27);

A

° y(‘r) and X((i,(i,q) are constructed as explained in the first chapter.

In y, X and Z, the equations of each joint ;j are regrouped together and Z is partitioned so that

7! IDM’ (qs (1),(13 (1)aq_v (1))
o Z=|i |withz = : /
z DM (g (n, ). 4 (n.).ds (n,))
. IDMj(qS(.),qs(~):qS(-)) is the j" row of the (nxb) matrix of the basis functions

IDM (q; ()45 ()-ds ()

e The partitions of y and X are given in the first chapter.

y’, X/ and Z’ represent the n, equations of a subsystem ;.

The error g is assumed to be heteroskedastic (see Chapter 1), the IDIM-IV estimates are given by
Bl =(z'@'X) z'Qy. (2.30)

Such weighting operations normalize the variance of the error, but when using the IDIM-IV method,

of. is the variance of the subsystem ; error calculated from the following IV solution
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(Zj)Tyj =(Z/)T X/ (q,T,iAj)B+(Z’)T8’. (2.31)

The covariance matrix of the IDIM-IV estimates is given by

-1
r,=(z'Q'z) . (2.32)
6'§*,(i) =X, (i,i) being the i™ diagonal coefficient of £,,, the relative standard deviation %6'5*;(1-) is
given by
06, =D OB o B, (1) =0 (2.33)
B (i) ﬁk (Z)‘ v !
v

where [, (i) is the IDIM-IV estimate of (i) at step k.

2.3.5 Convergence criterion
This process is iterated until its convergence i.e.

MSZOZI and max
||8k—1|| i=l,...,b

Bl (1)~ B (1)

B (1)

<tol,, (2.34)

where ||£k|| is the 2-norm of € atstep k.

The parameters 0/, and ¢/, are values ideally chosen to obtain an acceptable compromise between
rapid convergence and good accuracy. If 10/, and tl/, are too small (less than 1%), then we obtain
accurate identified values but the algorithm converges slowly. On the other hand, if 7/, and rl, are

too large (greater than 10%), then the algorithm converges quickly but the identified values are
inaccurate. For robot identification, 0/, and 7o/, can lie between 2.5% and 5.0%.
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2.3.6 Scheme of the IDIM-IV method
The scheme of IDIM-IV method is illustrated in Fig. 2-3 and is summarized as follows

Compute the inverse and direct dynamic models thanks to Newton-Euler equations [Khalil and
Dombre 2002];

Compute X and y as explained in the first chapter;
Step 0: initialize the IDIM-IV method with the regular initialization given by (2.28);

B ()-8 ()]
5(0)

Step k: While w 2tol, & & max
skfl i=l,...,

Simulate the DDM and update the gains of the simulated controller with (2.26);
Compute 7~7= X, as explained in Section 2.3.3;

Compute the IDIM-1V solution with (2.30);

End of while.

The direct and inverse dynamic models can be calculated with the SYMORO+ software developed by
the IRCCyN Robotics team. The SYMORO+ software can calculate the kinematic and dynamic models
from the robot geometric parameters [Khalil and Creusot 1997]. In addition, the number of
operations (additions and multiplications) is optimized in order to have a reduced calculation-time. It
comes that the IDIM-IV method is a “fully-automated” identification method. This is the third
contribution of this approach.
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Fig. 2-3. Scheme of the IDIM-IV method for industrial robot identification

2.4 Some comments on the IDIM-IV method

In this work, € is assumed to have zero mean and to be serially uncorrelated. It is not tried to identify
the parameters of a stable filter coloring € as done with Box-Jenkins model (see e.g. [Gilson et al.
2011]). This choice is deliberate because it is very difficult, if not impossible, to choose an a priori
structure for such filters for real-world system identification (see the comment on this in the general
introduction of this manuscript). In addition, according to the MCS executed in [Gilson et al. 2011],
the IV methods give consistent estimates even though ¢ is colored. Such MCS have been carried out
on the SCARA robot and the results obtained with the IDIM-IV method agree with those exposed in
[Gilson et al. 2011]. Hence, the IDIM-IV method is robust to statistical assumptions made on ¢.

The parallel decimation performed on y, X and Z can be related with the prefilters used with the

RIV method, [Young 2011]. The cutoff frequency of the decimate filter must be compatible with the
bandwidth of the position closed-loop, [Gautier 1997]. This leads to choose w,, >2w,,, [Gautier et al.

2013], w,, being the cutoff frequency of the decimate filter. The decimate filter and the “optimal
prefilter” have therefore the same properties within the frequency range [0 @,,] which is the

frequency range of interest. Finally, the use of a decimate filter affects the efficiency of the IDIM-IV
estimates only; consistency is not affected. This point was validated with MCS and will be
emphasized during experimental validations.

When using the IDIM-IV method, it is assumed that the controller is known to the user. In [Gilson et
al. 2011] and [Young 2011], the authors have developed some IV approaches when the controllers
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are unknown to the user. Unfortunately, such algorithms may be inefficient while identifying
industrial robots because their controllers contain nonlinear components such as switches, offset
compensations, saturation and digital filters with time delay compensation. This makes the
identification of such controllers very difficult even though the structure is known. As an example, we
failed to identify the parameters of the TX40 robot controller, although the structure was known to
us.

2.5 Validating the statistical hypotheses

2.5.1 Introduction

In many practical papers, the statistical hypotheses are not verified while the efficiency of the
estimates depends on them. In statistics, the statistical tests are mostly carried out with
homoskedastic errors, see e.g. [Davidson and MacKinnon 1993]. That is the reason why the tests
described in this sections make use of € instead of €. In addition, since € =Q ¢, if the hypotheses
made on € hold, those made on ¢ also hold. In the third chapter, other methods will be introduced
and applied.

2.5.2 Normality of €

The normality assumption is critical to run the following tests. The KS-test allows for the validation of
the normality assumption [Davidson and MacKinnon 1993]. The KS-test is a nonparametric test for
equality of continuous one dimensional probability distribution that can be used to compare a
sample with a reference probability distribution. The KS-test quantifies a distance between the EDF
of the sample and the CDF of the reference distribution.

€ resulting from a normalization of € i.e. €=Q'g, the reference distribution is thus N(O,l) . The

null hypothesis is therefore H : € ~ N(O,l) . The EDF of € is compared with the CDF of the reference

distribution with a 0.05 level of significance. The KS-test can be carried out with the kstest MATALB
function.

If the KS-test rejects H ), it is recommended to check the following points:

e the quality of the measurements;
e the tuning of the bandpass filtering;
e errorsin the model (nonlinear friction and/or stiffness are missing).

2.5.3 Serially independent samples

It is important to check if the samples are serially independent because if € is serially correlated, the
standard deviations of the IDIM-LS and the IDIM-IV estimates are no longer consistent: they are
underestimated or overestimated, see e.g. [Davidson and MacKinnon 1993].

A simple way to find correlations between the samples consists in using a linear regression. For the
ith sample of €, one writes
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2(i)=pE(i-1)+p.E(i-2)+..+p,E(i-p), (2.35)
where

e p. is acoefficient to be identified;

e p isthe order of dependence chosen by the user with p<<n, .
The following over-determined linear system is obtained
Y. =P@p+eg, (2.36)

where

B(n-1) - E(n-p)
e p=[p - p,];

e ¢ istheerror assumed to be serially independent and to have zero mean.

Ay

The LS estimates of p are given by

~ T ) d!

p=(0'®) @'y,. (2.37)
The coefficient of determination R? is calculated with

RE =1y, - @ /ly. [ - (2.38)

€ is serially uncorrelated if each p, is close to zero with large deviation and if R} is close to zero

(typically less than 0.1). Roughly speaking, the columns of @ do not explain (or poorly explain) the
variations observed on y, .

Another way consists in using the DW-test. Assuming that € ~ N(O,I,) holds, the DW-test is given by

r

aw=>(2(i)-&(i-1)) Zg P=2(1-p)), (2.39)

i=2
where p, is the sample autocorrelation and E(z’) is the ith sample of €.

The value of dw lies between 0 and 4 while dw=2 indicates no autocorrelation i.e. p, =0. If the

DW-test is substantially less than 2, there is evidence of positive serial correlation. As a rough rule of
thumb, if dw is less than 1.0, there is reason for alarm because small values of dw indicate that
successive error terms are close in value to one another (or positively correlated). If dw is greater
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than 2, successive error terms are much different in value from one another (negatively correlated).
For robot identification, as a rough rule of thumb, if dw varies between 1.8 and 2.2, € can be
considered as serially uncorrelated.

2.5.4 Model reduction

Some dynamic parameters remain poorly identifiable because they have a poor contribution on the
dynamics. They can be thus removed in order to simplify the dynamic models without affecting the
accuracy the models.

In the papers written by Gautier and Khalil, it is suggested that the parameter whose %&ﬁ is
greater than a bound lying between 20% and 30% can be removed to keep a set of essential
parameters of a simplified dynamic model without loss of accuracy (see [Gautier and Briot 2014] for
instance). However, there is no formal test that validates/rejects such statement.

In statistics, the F-test is commonly run to validate/invalidate model reduction [Davidson and

MacKinnon 1993]. It is assumed that H : € ~ N(O,l) holds. From b base parameters, it is assumed

that bc parameters constitute the set of essential parameters. The F-statistic is executed as follows:

1. First, one runs the IDIM-IV method with the b base parameters and one computes ||E

’

2. Second, one runs the IDIM-IV method with the bc essential parameters and one computes |,

7’

the error norm obtained with the reduced model;

(15 IR} fo-re)

B
3. Third, one calculates F = —
2l /(r—2)

If F is less than (or compatible with) Fv(]—a),(h—bc),(r—b)’ then the F-statistic accepts the model

reduction. Otherwise, the model reduction is rejected. The expression "compatible with" is used
because we deal with the identification of real-world systems. The parameters that show the largest
relative deviations are eliminated first and this process is executed in a decreasing way (

%0”'[3, ) =60%,%o”'/;, =50%, ..., %0”'[3, ) =30% ) until the F-test fails.

It is important to note that the IDIM-IV method is used instead of the IDIM-LS method because the
IDIM-LS estimates may be biased. It is also suggested to execute the KS-test to check the normality of
€, . If the KS-test fails, it does not make sense to run the F-statistic.

2.6 EMPS robot

2.6.1 Technical details
The EMPS robot is controlled with the PD structure given by (2.23) where

o J, =M.
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The actual gains are calculated with (2.25) taking a desired damping d{,zl corresponding to no
overshoot. The desired natural frequency ”’a)n1 is chosen according to the driving capacity without

saturation of the joint drive. In motion control community, it is known the bandwidth of the position-
loop is limited by the electro-mechanical cutoff frequency wy,, given by [Gautier et al. 2013],

_ 2
a)EMl - JlKrl /RA1 ’
where

e  K_ isthe electromagnetic motor torque constant;

|

* R, isthe motor armature resistance.

For this robot, we obtain a full bandwidth with:
° da)nfl' =130(rad/s) .

The data measurement frequency is f, =1kHz. The torque data are calculated with (1.30) while the

position is obtained through an incremental encoder (12500 lines/rev) with a 4-fold subdivision of
each encoder line (50000 pulses/rev).

The simulation of the DDM is carried out with the same reference trajectories and with the same PD
structure as the actual EMPS robot. The reference trajectories, (qu N/ ) , are designed so that ¢,
is trapezoidal and since conaI(X(é],qu,é}'I )) =23, (q,] ,c]rl,c'jrl) excite well the base parameters
[Gautier and Khalil 1992] and [Pressé and Gautier 1993]. The gains of the simulated controller are
updated with (2.26) where

® d§1 =1;

° da)n] =130(rad/s) .

This gives Ska =65.0 (s™) . The drive gains have been identified with special tests as described in

[Gautier and Briot 2014]:

o “g, =37(Nm/V).

This leads to the following initial values Skfl:260/37:7.03(Vs). Finally, we choose
tol, =tol, =2.5% .

2.6.2 IDIM-LS and IDIM-IV estimates with an appropriate data filtering
The IDIM-LS and IDIM-IV methods are carried out with the filtered position, ¢, , calculated with a 100

Hz forward and reverse Butterworth filter and with velocity, &1 , acceleration, é}l , calculated with a
central differentiation algorithm of ¢, . The cutoff frequency of the Butterworth filter is tuned

according to the guidelines given in [Gautier 1997] which are recalled in the first chapter. The
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maximum bandwidth for the joint being @, =da)n, =130(rad/s), this leads to choose
o, 250,,, 0, 2650(rad/s)=103.5(Hz), @, being the cutoff frequency of the Butterworth filter.

Then, we choose a 100 Hz cutoff frequency. The parallel decimation of y ,,, Xf

m

and Z,, is carried
out with a lowpass Tchebyshef filter with a cutoff frequency @, 22@,,, @, = 260(rad/s)=41.4(Hz).
Then we choose a 40 Hz cutoff frequency. According to the relation @, =27-0.8f,/(2n,), the

sample rate f is divided by a factor n,=20. The IDIM-IV method starts with the regular

initialization.

The first hypothesis € ~ N(O,I,.) is validated by the KS-test with a level of significance &¢=0.05. In
addition, the distribution of € obtained with the IDIM-IV method and its estimated Gaussian plotted
in Fig. 2-5 match a Gaussian distribution (similar results are obtained with the IDIM-LS method and
are not shown here). The test of independency described in section 2.5.3 provides Rg2 =0.005<0.1
and all the coefficients p, are small with large relative deviations. € can be thus considered serially
independent. This result is supported by the DW-test since dw given in Table 2-1 is indeed close to

2.0 for the two methods. This suggests that there is no evidence of serial correlation. Finally, all the
statistical assumptions made on € hold (similar results are obtained with the IDIM-LS method).

The IDIM-LS and IDIM-IV estimates are given in Table 2-1. The IDIM-IV method needs only 2
iterations to converge (see Table 2-2). The IDIM-LS estimates stick to the IDIM-IV estimates and they
are comparable with the nominal values. According to [Hausman 1978], the IDIM-LS estimates can be
considered as consistent. Like the other identification methods cited in the introduction, the IDIM-IV
method does not really improve the IDIM-LS method associated with a well-tuned bandpass filtering.

A A A ANT
This is explained by the fact that one has X((],q,tj) =~X,, leading to E(X(q,q,ij) s) = E(Xﬁfa) =0.

The relative errors reported in Table 2-1 being less than 5%, the matching is, therefore, good.
Furthermore, the direct comparison plotted in Fig. 2-4 shows that the reconstructed torque matches
the measured one.

Table 2-1: IDIM-LS and IDIM-IV estimates — Appropriate data filtering — EMPS

Bus (%0, ) by (%, )
Mg 100.6 (0.8%) 100.2 (0.9%)
Fv; 234.9 (2.2%) 236.9 (2.5%)
Fc 24.2 (2.4%) 24.8 (2.5%)
Yorel, 3.0% 3.0%
dw 1.9 1.9
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Table 2-2: Convergence of the IDIM-IV estimates - EMPS robot

Parameters | g9, B, B2,

Mg 1 100.6 100.6
Fvq 0 234.9 234.9
Fc, 0 24.2 24.2

Direct Comparison with IDM and LS estimates
150 T T T
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Fig. 2-4. Direct comparison - measurement: blue solid line; estimation: red dashed line; error: black
dash-dot line - only the three first seconds are shown for sake of clarity.

Histogram of the error
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Fig. 2-5. Histogram of IDIM-LS error and its estimated Gaussian — Appropriate data filtering.
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2.6.3 IDIM-LS and IDIM-IV estimates without data filtering
The IDIM-LS and IDIM-IV methods are carried out with the measurements of g, and with (él,él)

calculated by a central differentiation algorithm of ¢, without low-pass filtering and parallel
decimation. The IDIM-IV method starts with the regular initialization. The IDIM-LS and the IDIM-IV
estimates are given in Table 2-3. In the case of the EMPS robot, even though there is no data
filtering, the IDIM-LS estimates can be considered as consistent because they stick to the IDIM-IV
estimates and the observed differences are spanned by the deviations of the IDIM-IV estimates,
[Hausman 1978]. In addition, the statistical tests suggest that € is serially independent with

£~N(0,1,).

The experimental results show that, in the case of the EMPS robot, the data filtering has practically
no impact on the estimates and their associated variances because the results summed up in Table
2-3 are very close to those given in Table 2-1. Such a result has been achieved thanks to the very
accurate data used to control the EMPS and to identify its parameters. Furthermore, it is also
reasonable to assume that the simple IDM of the EMPS has contributed to this achievement.
However, it is important to note that this result cannot be generalized to all robots as we shall see in
the following sections.

Table 2-3: IDIM-LS and IDIM-IV estimates — No data filtering — EMPS robot

Bus (%9, ) by (%5, )
Migr 100.6 (0.9%) 100.2 (0.9%)
Fvy 234.9 (2.3%) 236.9 (2.6%)
Fcy 24.2 (2.4%) 24.8 (2.5%)
Yorel; 3.1% 3.1%
dw 1.9 1.9

2.7 SCARA robot

2.7.1 Technical details
The SCARA robot is controlled with the PD structure given by (2.23) where

o J, =77, +7Z,,+2LMX,;
o J,=7Z,,.

The actual gains are calculated with (2.25) taking a desired damping d{,zl (for joint 1 and 2)
corresponding to no overshoot. The desired natural frequency da)n/_ is chosen according to the

driving capacity without saturation of the joint drive. For this robot, we obtain a full bandwidth with:

° da)nfl =1(rad/s);
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° da),{; =10(rad/s).

Several controls including PID control and feedforward velocity/acceleration which give better
tracking accuracy were tried and the same results have been obtained. This shows that the IDIM-IV
method is not sensitive to the control structure, needs only a simple easy-to-tune control and does
not need an excellent tracking to succeed. Consequently, only the results obtained with the PD
control are presented.

The data measurement frequency is f, =200 (Hz). The torque data are calculated with (1.30) while

the positions are obtained through incremental encoders (2000 and 5000 (lines/rev) for joint 1 and 2,
respectively) with a 4-fold subdivision of each encoder line (8000 and 20000 (pulses/rev) for joint 1
and 2 respectively).

The simulation of the DDM is carried out with the same reference trajectories and with the same PD

structure as the actual SCARA robot. The reference trajectories, (q,,qr,q,), are fifth order
polynomials and since cond(X((],(i,(’i))zZS, the parameters are well excited [Gautier and Khalil

1992]. The gains of the simulated controller are updated with (2.26) where

o ‘o =I(radss);

o ‘o, =10(rad/s).
This gives *k, =0.5(s")and ‘k, =5(s").

The drive gains have been identified with special tests as described in [Gautier and Briot 2012]:
e Yg, =1414(Nm/V);
° “”gfz =0.845 Nm/V).

This leads to the following initial values for °k, :

o k) =2/1.414=14(Vs) ;
ok, =20/0.845=23.67(Vs).

Finally, we choose tol, =tol, =2.5%.

2.7.2 IDIM-LS and IDIM-IV estimates with an appropriate data filtering
The IDIM-LS and IDIM-IV methods are carried out with the filtered positions, q, calculated with a 10

Hz forward and reverse Butterworth filter and with the velocities, f], the accelerations, q, calculated

with a central differentiation algorithm of q. The maximum bandwidth for the second joint being

@y, = da)n2 =10(rad/s) , this leads to choose @, 25, ®, =50(rad/s)=8(Hz). Finally, we choose a
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10 Hz cutoff frequency. The parallel decimation is carried out with a lowpass Tchebyshef filter with a
cutoff frequency @, >2@,,,, @, =20(rad/s)=3.18(Hz) . Then we choose a 4 Hz cutoff frequency. The
sample rate f is divided by a factor n,=20. The IDIM-IV method starts with the regular
initialization.

The IDIM-LS and IDIM-IV estimates are given in Table 2-4. The IDIM-IV method needs only 3
iterations to converge (see Table 2-7). The IDIM-LS estimates stick to the IDIM-IV estimates and they
are comparable with the nominal values. According to the Hausman's theory [Hausman 1978], the

IDIM-LS estimates can be considered as consistent. Like the other identification methods cited in the
introduction, the IDIM-IV method does not really improve the IDIM-LS method combined with a well-

leading to

tuned bandpass filtering. This is explained by the fact that one has X((],f],(’i)zan

E(X(q,&,&)r a) =~ E(X]£)=0.

Direct comparisons have been performed and the estimated torques reconstructed with the IDIM-IV
/I¥|=3% and

/||y||:3%, it can be conclude that the identification results are of good quality. Similar

estimates match the measured ones as shown in Fig. 2-6. Since Hy—XﬁLS

Hy - Zﬁir/

results being obtained with IDIM-LS estimates, they are not shown here.

The IDIM-IV error is plotted in Fig. 2-7. Because we have &, ,; =6, =1.025=1.0, the variance of ¢

is well normalized because one has &, ,,=0;, =1.025=1.0. This result implies that the

heteroskedasticity is well taken into account. The hypothesis € ~ N(ﬂ,Ir) has been validated by the
KS-test with a level of significance & =0.05. The histogram of IDIM-IV error plotted in Fig. 2-7 shows
that its distribution matches a Gaussian one. The test of independency described in section 2.5.3
provides R =0.05< 0.1 and all the coefficients p, are small with large relative deviations. € can be

considered serially independent. This result is supported by the DW-test because dw given in Table
2-4 is indeed close to 2.0 for the two methods. This suggests that there is no evidence of serial
correlation. Finally, all the statistical assumptions made on & hold (similar results are obtained with
the IDIM-LS method).

The assumption (2.18) holds at each iteration & with a constant relative error close to 0.5% for the
positions, 5% for the velocities and 10% for the accelerations (see Table 2-5). These results validate
the procedure that updates the gains of the simulated PD control given by (2.26).

It can be seen in Table 2-6 and on Fig. 2-8 and Fig. 2-9 that the simulated trajectories, (qs.qs.45), are

3 to 5 times closer to the noise-free ones, (q,&,&):(qnf,qnf,qn,.), than to the references,

(q,.4,.4,), with a relative error close to 1.5% for the positions, 15% for the velocities and 30% for

the accelerations. Constructing Z with the reference trajectories leads to invalid estimates of the
SCARA robot because the set of instruments is no longer valid. This point will be fully discussed in the
third chapter.
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The right assumption made in the section 2.3.3 is (qs(ﬁ];V)aqS(ﬁ];V):‘js(ﬁfy))z(qn,-,qn,-,('jn,-) for

any [Ai’,ﬂ,, with a constant small error. This can be seen on Fig. 2-8 and Fig. 2-9, at iteration & =0, with

the regular initialization (wrong estimates).

2.7.3 IDIM-LS and IDIM-IV estimates without data filtering
The IDIM-LS and IDIM-IV methods are carried out with the measurements of q and with ((i,(i)

calculated by a central differentiation algorithm of q without low-pass filtering and parallel

decimation. The IDIM-IV method starts with the regular initialization.

The IDIM-LS and IDIM-IV estimates are given in Table 2-8. In that case, the IDIM-LS estimates do not
stick to the IDIM-IV estimates and they are not comparable with the nominal values given in Table
2-4 whereas the IDIM-IV estimates given in Table 2-8 stick to those given in Table 2-4. Finally, the
differences between the IDIM-LS and IDIM-IV estimates are not spanned by the deviations of the
IDIM-IV estimates, the IDIM-LS estimates can be considered as biased, [Hausman 1978]. The IDIM-LS

method fails because of the noise level in the observation matrix Xfm((],(i,fj) coming from the
differentiation of q without low-pass filtering leading to a violation of the exogeneity condition i.e.

E(XTs);tO. The IDIM-IV  method succeeds because the instrumental matrix

Zﬁn =X/ (qs,qs,qs,ﬁf;) is calculated with the simulated values which are very close to the noise-

free ones (qnf,qnf,ijnf) thanks to the gains of the simulated robot updated at each iteration making
the set of instruments always valid. This experimental result shows that the IDIM-IV method is able

to cancel the bias of the IDIM-LS method which comes from a noisy observation matrix X ;. (ﬁ,(i,(i) .

This result is consistent with the theory of IV approaches. However, it must be noticed that the IDIM-
IV method has lost its statistical efficiency. The deviations given in Table 2-8 are, indeed, greater than
those given in Table 2-4. This experimental result validates the theoretical approach described in
section 2.3 and shows that the parallel decimation can be related with the “optimal prefilters” used
in [Garnier and Wang 2008], [Young 2011] and [Gilson et al. 2011].

Direct comparisons have been performed and the estimated torques reconstructed with the IDIM-IV
estimates fit the measured ones as shown in Fig. 2-10. The identification results are of good quality

because one has Hy—iﬁ?,, /||y|| =6% . The IDIM-IV error and its histogram plotted in Fig. 2-11 match

a Gaussian distribution. The statistical tests introduced in section 2.5 validate the hypothesis
€~N(0,I,) and that £ is serially independent. With &, ,, =1.03=1.0, the variance of € is well

normalized showing that the heteroskedasticity is well taken. It comes out that all the statistical
assumptions made on € hold in practice.
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2.7.4 Robustness of the IDIM-IV method against an error in ‘o,
This section investigates the effect of an error between the actual value “@, and the simulated value

4@, of the natural frequency.

The IDIM-IV method is performed taking half of the full values given in section 2.7.1,

‘o, =dw,£/2=0.5(rad/s) and da)n2=dwnfz/2=5(md/s), and the same procedure used to obtain the

results shown in Table 2-4, that is: a 10 Hz lowpass Butterworth filter and a parallel decimation filter

with a factor n,=20.

The IDIM-IV estimates given in Table 2-9 converge in 6 steps and they stick to those given in Table
2-4 obtained with a full closed-loop bandwidth. The relative errors of positions, velocities and
accelerations are given in Table 2-10 and Table 2-11. It can be seen that the assumption (2.18) holds
at each iteration k£ with constant relative errors larger but close to the values obtained with the full
bandwidth (Table 2-5). The relative errors are close to, 0.5% for the positions, 3% for the velocities
and 10% for the accelerations.

Finally, the IDIM-IV method is not really sensitive to an error in the simulated closed-loop bandwidth
provided that the control structure is known. However, the IDIM-IV method fails beyond 1/3 of the

full bandwidth, with “o,<?®/ /3. The distortion between the actual closed-loop bandwidth and the

simulated closed-loop bandwidth is too large and the set of instruments is no longer valid.

Table 2-4. IDIM-LS and IDIM-IV estimates of SCARA robot, well-tuned data filtering

Parameters | Nominal {§i §, %G, B, %6,
values
77, 3.45 3.450 0.13 3.450 0.15
Fv, X 0.013 128.0 0.010 150.0
Fcy X 0.782 0.38 0.780 0.38
77, 0.06 0.063 0.49 0.063 0.51
LMX, 0.25 0.241 0.50 0.240 0.55
LMY, 0.00 -0.007 10.7 -0.0064 | 12.82
Fv, X 0.021 0.95 0.021 1.04
Fc, X 0.130 0.28 0.132 0.3
|y =X /Iyl =3% [l |y - 28, | /Iyl = 3%
dw=19 dw=19

Table 2-5. Errors (%) relative to the actual filtered trajectories

Jointj=1 Jointj=2
Iteration k 0 1 2 3 0 1 2 3
100*|gs, -, /"é/" 0.5|10.49 047 | 047§10.5|0.49 | 0.49 | 0.49
100* qS, _(}j / éj 22| 21 2 2 4.5 3 2.7 | 2.7
100 * ‘qs/ _'qﬁ'j /“é/“ 6.5 6 5.4 5.4 (9.5 | 9.2 9 9
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Table 2-6. Errors (%) relative to the reference trajectories

Jointj=1 Jointj=2
Iteration k 0 1 2 3 0 1 2 3
100%[q, —q, "/ 9, 16 (14|12 |121.56 | 15 |14 |14
100 * qS, _q~r/ / (?r, 8 |72|6.1|61125|11.3(9.2|09.2
100 * qS, —51}, / q 24 | 23 | 20 | 20 |jif 31 30 | 26 | 26

Table 2-7. Convergence of IDIM-IV estimates of SCARA robot

Parameters | §j, By By By

77, 1 3.449 3.450 3.450
Fvy 0 0.013 0.013 0.013
Fcq 0 0.783 0.780 0.780
77, 1 0.063 0.063 0.063
LMX, 0 0.242 0.240 0.240
LMY, 0 -0.0060 -0.0064 -0.0064
Fv, 0 0.020 0.021 0.021
Fc, 0 0.133 0.132 0.132

Table 2-8. IDIM-LS and IDIM-IV estimates of SCARA robot, no data filtering

Parameters B, %G, B, %G,
7, 1.50 1.60 3.450 1.73
Fv, 0.095 80.0 0.013 384.0
Fc, 0.55 23.3 0.80 4.38
7, 0.14 6.7 0.063 1.96
LMX, 0.63 2.7 0.240 4.38
LMY, 0.1 11.8 -0.0065 | 123.0
Fv, 0.001 700.0 (§0.022 9.0
Fc, 0.19 68.40 (§0.132 9.5

|y =XB.s| /Iyl =80% [l |y - 283, | /Iv] = 6%

dw=0.5 dw=138
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Table 2-9. IDIM-IV estimates with simulated half full bandwidth ‘w,="w/ /2,

Parameter B, B, %0 'y
77, 1 3.451 0.15
Fvq 0 0.010 150.0
Fc, 0 0.778 0.38
77, 1 0.063 0.51
LMX, 0 0.241 0.55
LMY, 0 -0.0064 12.82
Fv, 0 0.021 1.04
Fc, 0 0.131 0.3
|y 285, | /Iv] = 3%
aw=19

Table 2-10. Errors (%) relative to the actual filtered trajectories

Jointj=1 Jointj=2
Iteration k 0 1 2 3 4 5 6 0 1 2 3 4 5 6
100-\qs —4,|/|a,| llo7s | 090 | 0.6 | 0.7 | 06 | 0.54 | 0safflo.8 | 07 | 0.65 | 0.7 | 07 | 0.67 | 0.67
100-”451 —c}j / qj 40 | 3.0 |40(30|40| 30 | 3040 | 46| 40 |30|40| 2.8 | 2.8
100-1qs, —é}'j /Hq/“ 14 | 17 |14 |12 |11 | 11 | 11 (14 [ 16 | 15 | 12 | 11 | 11 | 11
Table 2-11. Errors (%) relative to the reference trajectories
Jointj=1 Jointj=2
Iteration k 0 1 |2 3 |4 5 |6 MO0 |1 2 |3 |4 |5 |6
100-\q, —q, |/ |4, 21 25|17 21|18 |16 | 16(fl2.1 |18 |15|18| 18| 16| 1.6
100'”‘7& —qu / c},l 105 | 80| 10.7 | 81 | 10.6 | 80 | 8.0|fl10 | 112.5 |10 | 75| 10 | 8.0 | 8.0
100- q‘sj —éj,j / éj,j 41 45 | 41 38 | 35 33 | 33 |41 | 45 41 |37 |35 |33 |33
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Referecence, simulated, measured joint position 1 and tracking error
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Fig. 2-9. Joint position at iteration k = 0; blue: measured position; red: simulated position; green:
reference; black: tracking error between reference and simulated position
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Fig. 2-10. SCARA robot, direct comparisons with IDIM-IV estimates, no data filtering
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filtering
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2.8 TX40 robot

2.8.1 Technical details

The TX40 robot is controlled with the PD structure given by (2.23). As done with the SCARA robot,
several controls were tried and the same results as those presented in this section have been
obtained. Consequently, only the results obtained with the PD control are presented. However,
because of confidentiality policies, the numerical values of the gains and the drive gains cannot be
provided in this manuscript. The joint positions and control signals are stored with a measurement
frequency f, =5kHz.

The robot simulation is carried out with the same reference trajectories and with the same PD
control structure as the actual TX40 robot. In addition, the gains of the simulated controller are
updated with the relation (2.26). The IDIM-IV method is initialized with the regular initialization and
Ias =2 because of the coupling effect. Finally, we choose tol, =tol, =2.5% . A C MEX S-Function of

SIMULINK is used on a 2011 laptop PC with INTEL i7 CPU to run the simulation of the DDM. One
iteration of the IDIM-IV method takes 3.5s for a 8s trajectory. This tends to show that the IDIM-IV
method could be suitable for real-time applications.

The reference trajectories, (q,.q,.q,), are designed so that {, are trapezoidal (also called

smoothed bang-bang accelerations). An illustration for the sixth joint is shown in Fig. 2-14. With such

trajectories one has cond(X)=200impIying that the reference trajectories excite well the base

parameters.

2.8.2 IDIM-LS and IDIM-IV estimates with an appropriate data filtering
The IDIM-LS and IDIM-IV methods are carried out with a filtered position, q, calculated with a 50 Hz

fourth-order Butterworth filter and with velocities, fl, and accelerations, ('i, calculated with a central
difference algorithm of q . The maximum bandwidth for the sixth joint is W, = da)né =10Hz leading
to choose a 50 Hz cutoff frequency. The parallel decimation is carried out with a lowpass Tchebyshef
filter with a cutoff frequency of 10 Hz. According to the relation @, =27-0.8- 1, /(2n,), the sample
rate f,, is divided by n, =100.

The statistical analysis made on & hold because the KS-test accepts H,:t ~N(0,1) , the test of

independency described in section 2.5.3 and the DW-test suggest there is no significant serial
correlations (dw is close to 2.0; see Table 2-14 and Table 2-15). In addition, the histogram of €
obtained with the IDIM-IV method plotted in Fig. 2-15 matches a Gaussian distribution with
0;,5=0;, =1.03=1.0. The error ¢ is normalized and heteroskedasticity is well taken into

account.

The IDIM-LS and IDIM-IV estimates are given in Table 2-14 and Table 2-15 respectively. The IDIM-IV
method needs only 3 steps to converge (see Table 2-16). The F-test accepts to remove the

parameters such that %6, . or %06, .. is greater than 30%. We obtain

Bis(i) By (i)
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Iz =48.5;
€. =49;
r=2160;
b=60 ;

e hc=28;

and this provides
2 2
P 49 4§.5 (2160 60j:1_4
48.5 60—28

Since (ﬁz1.4)<(F0‘95~32~2100z1.6), the F-test accepts the model reduction. So, from 60 base

parameters, only 28 are significant. These parameters define a set of essential dynamic parameters.

The IDIM-LS estimates stick to the IDIM-IV estimates and the observed differences are spanned by
the deviations of the IDIM-IV estimates. According to [Hausman 1978], the IDIM-LS estimates can be
considered as consistent. Like the other identification methods cited in introduction, the IDIM-IV
does not really improve IDIM-LS associated with a well-tuned bandpass filtering data. This result is in
agreement with those obtained with the EMPS and the SCARA robots.

The errors relative to the filtered joint positions calculated at each iteration & and for each axis j
are given in Table 2-10. These relative errors being very small, less than 0.2%, the relation (2.18) is
always met emphasizing the effectiveness of updating procedure of the gains of the simulated
controller given by (2.26). The set of instrument is always valid and this explains the quick
convergence of the IDIM-IV approach.

Direct comparisons have been performed (see Fig. 2-12) and the estimated torques reconstructed

with the IDIM-LS and IDIM-IV estimates match the measured ones with Hy—XBLS /||y||:5% and

Hy - Zmr/

definitively validate the estimates, cross-test validations have been performed. The cross-test

/||y|| =6% . This result means that the identification results are of good quality. In order to

validations are carried out with trajectories that are different from those used during the
identification process; a set of 3 trajectories is usually enough. The points which define the
trajectories are randomly chosen in the accessible workspace of the robot and the trajectories must
be exciting enough because using underexciting trajectories for cross-test validations may lead to
misinterpretation of the experimental results. Furthermore, if possible, it is recommended to store
the data with another measurement frequency. In the case of the TX40 robot, these trajectories are
fifth-order polynomials and they pass through specified points different from those defined to
construct the trajectories used to run the IDIM-LS and IDIM-IV methods (an example for the sixth
joint is shown in Fig. 2-14). The data are stored with a measurement frequency f, =1kHz instead of

/., =5kHz . While using the IDIM-IV method, the cross-test validations are performed as follows:

e 1. First: one designs another set of exciting trajectories different from the set used during the
identification process;
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e 2. Second: the robot is excited with these trajectories in order to obtain another set of
measured joint torques, y, ;

e 3. Third: one simulates the robot with these trajectories and the IDIM-IV estimates given in
Table 2-15 to construct the instrumental matrix denoted Zn as described in section 2.3.1;

e 4. Fourth: the following relative error yo—ZoﬁiV

/||y0|| is calculated and if the IDIM-IV

estimates are consistent, this value must be compatible with Hy - ZﬁiVH/"y” =6%.

For the IDIM-LS method, only the steps 3 and 4 differ:

e 3. Third: with these trajectories, the observation matrix, X_, is built as described in chapter
one;

is calculated and if the IDIM-LS
Jill=5%.

The results of the cross-test validations obtained with the IDIM-IV estimates are given in Table 2-12

e 4. Fourth: the following relative error

Yo

v, X,Bus/]

estimates are consistent, this value must be compatible with Hy - XﬁLS

while Fig. 2-13 shows a comparison between the actual joint torques and the torques reconstructed
with the first trajectory. The reconstructed torques fit the actual ones and all the relative errors

Y, _Zomv /|

exciting enough because cond(Za) is close to cond(X) =200 for each trajectory. This implies that

Yo

are compatible with Hy—ZﬁiV

/||y||=6%. In addition, these trajectories are

the IDIM-IV estimates can be trusted. Similarly, the results of cross-test validations obtained with the
Y, _XUBLSH/|

/||y|| =5%, the IDIM-LS estimates can be considered as consistent.

IDIM-LS estimates are given in Table 2-13. All the relative errors

y,| matching

Hy - XﬁLS

2.8.3 IDIM-LS and IDIM-IV estimates without a data filtering
The IDIM-LS and IDIM-IV methods are carried out with measurements of q and with ((i,(i)

calculated by a central difference algorithm of q measurements without lowpass filtering and no

parallel decimation.

The IDIM-IV method starts with the regular initialization and needs 3 steps to converge (see Table
2-16). The IDIM-LS and IDIM-IV estimates are given in Table 2-18 and Table 2-19. Only the set of
essential parameters is provided because the model reduction is accepted by the F-test. Finally, the

following relative error is obtained Hy - Z[AiiV “/”y” =10% . In that case, the IDIM-LS estimates do not

stick with the IDIM-IV estimates which are compatible with those given in Table 2-15. The observed
differences between the IDIM-LS and IDIM-IV estimates being not spanned by the deviations of the
IDIM-IV estimates, the IDIM-LS estimates can be considered as biased, [Hausman 1978]. The IDIM-LS
method fails to provide consistent results because of the noise level in the observation matrix

X(q,f],('i) coming from the numerical derivation of q,,, without lowpass filtering. This result is in
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agreement with the one obtained with the SCARA robot. On the contrary, the IDIM-IV method
succeeds to provide consistent results because the instrumental matrix me =X/ (qS,qS,('jS, A’,‘,jl)
is calculated with the simulated values, (qs,qs,qs), which are very close to the noise-free ones,
(qn,,qnf,qnf), thanks to gains of the simulated controller which are updated at iteration of the

algorithm. However, the reader can notice that the IDIM-IV approach has lost its statistical efficiency
compared with the IDIM-IV method associated with a parallel decimation. The deviations given in
Table 2-19 are, indeed, greater than those given in Table 2-15. This is explained by the fact that

Hy_ZBiV
this result shows that the parallel decimation can be related with “optimal prefilters” used in
[Garnier and Wang 2008], [Young 2011] and [Gilson et al. 2011].

/||y||=10% because of a higher noise level in y . In agreement with the previous results,

It has been checked that all the statistical assumptions made on € hold while using the IDIM-IV
estimates: the KS-test accepts H: € ~ N(O,l) while the histogram of € obtained with the IDIM-IV

method plotted in Fig. 2-16 matches a Gaussian distribution; the test of independency described in
section 2.5.3 and the DW-test suggest there are no significant correlations between the samples. If
the IDIM-LS estimates are used to run the statistical tests, the results are different: the KS-test rejects
the normality hypothesis while the test of independency and the DW-test suggest significant
correlations. Such results are explained by the fact that the IDIM-LS are no longer consistent, so is
the residual obtained with the IDIM-LS method. Finally, such results must warn the user.

Table 2-12. Relative errors obtained with the cross-test validations and the IDIM-IV estimates

v,

Jon cond(zo ) Y, - ngv

Trajectory 1 | 1 kHz 280 6.5%
Trajectory 2 | 1kHz 270 7.0%
Trajectory 3 | 1kHz 300 6.5%

Table 2-13. Relative errors obtained with the cross-test validations and the IDIM-LS estimates

Jon cond (W,) Y, -WpB, / Y,
Trajectory 1 | 1 kHz 280 6.0%
Trajectory 2 | 1 kHz 270 5.5%
Trajectory 3 | 1 kHz 300 5.5%
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Table 2-14. IDIM - LS estimates - TX40 robot - Appropriate data filtering

ﬁLS %OA-[}LS ﬁLS %OA-,BLS
ZZx | 1.25 |11 Fe; | 6.10 | 1.8
Fv, |818 |06 MX, | -0.02 | 16.0
F, | 657 |22 la, |0.03 |88
XX,z | -0.48 | 2.6 Fv, | 114 |14
XZx | -0.16 | 4.3 Fc, | 230 |25
ZZ,x | 1.08 | 1.0 MYs; | -0.03 | 13.0
MXs | 220 |25 las | 0.04 |88
Fv, |5.67 |1.0 Fvs | 1.88 | 1.8
Fe, |7.76 |18 Fes | 290 |29
XX;z | 0.13 | 9.4 lag, | 0.01 |9.4
77 | 012 |7.6 Fve |0.68 | 1.5
MYz | -0.60 | 2.2 Fes | 2.10 | 2.5
la; | 0.09 |88 fums | 0.63 | 1.6
Fvs |2.02 |16 fcms | 1.80 | 3.7

Table 2-15. IDIM - IV estimates obtained after 3 iterations - TX40 robot - appropriate data filtering

ﬁiV %OA-/?" ﬁ;V %6-,6‘”
Y/AT 1.25 13 Fcs 6.0 1.9
Fvy 8.20 0.7 MX, -0.02 | 20.0
Fcy 6.55 2.6 lay 0.03 9.4
XX;n | -0.48 |29 |Fv, 1.15 | 1.5
XZk -0.16 | 4.8 Fcy 2.27 2.6
ZZx | 1.09 |12 |Mys |-003 |14.0
MX;r | 2.21 2.9 las 0.04 11.0
Fv, 5.68 1.2 Fvs 1.90 2.0
Fc, 7.77 2.1 Fcs 2.80 3.5
XX3r 0.13 10.0 | lag 0.01 10.9
7735 0.12 8.8 Fvg 0.69 1.6
MYz | -0.60 | 2.3 Fce 2.00 2.8
las 0.10 9.2 fVime 0.63 1.8
Fvs 2.03 1.8 fcme 1.81 4.2
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Table 2-16. Convergence of the IDIM - IV estimates - TX40 robot

By | Bl B B}

7.z 1.0 |1.24 1.25 | 1.25
Fv, 0.0 |8.18 820 |8.20
Fo, 0.0 |6.54 6.54 | 6.54
XXz 00 |-047 |-048 |-0.48
XZor 0.0 |-0.15 -0.16 |-0.16
7750 1.0 | 1.08 1.09 |1.09
MX,z 0.0 |2.20 221 | 221
Fv, 0.0 |5.62 568 | 5.68
Fc, 0.0 |7.75 777 | 7.77
XXsz 00 |0.125 |0.13 |0.13
773 00 |0.12 0.12 |o0.12
MYax 00 |-0.60 |-0.60 |-0.60
las 1.0 |0.09 0.10 |o0.10
Fvs 0.0 |2.00 2.03 |2.03
Fes 0.0 |6.00 6.0 6.0
MX, 0.0 |-0.01 -0.02 |-0.02
lag 1.0 |0.03 0.03 | 0.03
Fv, 0.0 |1.13 1.15 | 1.15
Fc, 0.0 |2.26 227 | 227
MYsg 0.0 |-0.025 |-0.03 |-0.03
las 2.0 |0.04 0.04 | 0.04
FVs 0.0 |1.90 1.90 |1.90
Fcs 0.0 |2.75 2.80 |2.80
lag 1.0 |0.009 [0.01 |[o0.01
Fve 0.0 |0.64 0.69 | 0.69
FCe 0.0 |1.95 2.00 |2.00
Ve 0.0 |0.61 0.63 | 0.63
fCme 00 |1.78 1.81 |1.81

Table 2-17. Norm of errors relative the joint positions - TX40 robot

la,-as,[ | #=0 | k=t | k=2 | k=3

q;
Joint 1 0.080% | 0.078% | 0.078% | 0.078%
Joint 2 0.050% | 0.045% | 0.045% | 0.045%
Joint 3 0.050% | 0.048% | 0.048% | 0.048%
Joint 4 0.051% | 0.050% | 0.050% | 0.050%
Joint 5 0.100% | 0.097% | 0.097% | 0.097%
Joint 6 0.120% | 0.119% | 0.119% | 0.119%
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Table 2-18. IDIM - LS estimates - TX40 robot - No data filtering

l’jLS %6[3“ ﬁLS %OA-[}LS
72,z | 0.06 |55 Fc; | 556 | 1.4
Fv, |8.10 |04 MX, | 0.06 |2.8
F, |6.06 |13 la, |0.01 |115
XX,z | -0.08 | 4.1 Fv, | 120 |1.9
XZx | -0.02 | 6.7 Fc, | 230 |35
ZZ,x | 0.05 |3.2 MYs | -0.02 | 8.1
MXo: | 4.20 | 0.7 las | 001 |68
Fv, |5.15 |06 Fvs | 1.84 | 1.9
Fc, |8.26 |09 Fes | 2.85 | 1.5
XXsz | -0.01 [20.0 |lag |0.001 |19.0
77 | -0.05 | 3.2 Fve |0.68 |22
MYs | -0.30 | 1.8 Fcs | 200 |38
las | 0.05 |22 funs | 0.64 | 1.8
Fvs |221 |105 [fce | 1.74 | 3.62

Table 2-19. IDIM - LS estimates - TX40 robot - No data filtering

ﬁiV %OA-/?" ﬁiV %6-,6‘”
Y/AT 1.25 2.6 Fcs 5.9 34
Fvy 8.25 1.7 MX, -0.02 | 40.0
Fc, 6.50 6.6 lay 0.03 | 13.0
XX;n | -0.48 | 6.0 |Fv, 1.16 | 1.9
XZr -0.16 | 10.0 | Fcq 2.20 | 3.8
ZZx | 1.08 |24 |[Mvy |-003 |217
MX;r | 2.20 5.8 las 0.04 |17.0
Fv, 5.68 2.3 Fvs 195 | 2.6
Fc, 7.73 4.1 Fcs 280 |55
XXsx | 0.13 | 20.0 | lag 0.01 |15.1
7735 0.11 19.0 | Fvg 0.69 |22
MYz | -0.60 | 4.2 Fce 200 | 4.0
las 0.10 15.0 | fvye 064 |24
Fvs 2.06 2.8 fcme 1.79 | 5.8
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Direct comparison, joint 1
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Cross test validation, joint 3 Cross test validation, joint 4
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Fig. 2-13. Cross test validations performed for joint 1, 2, 3, 4, 5 and 6, with IDIM - IV estimates and
trajectory 1. Blue: measurement; red: estimation; black: error.
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Cross-validation, joint 3 Cross-validation, joint 4
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Fig. 2-17. Cross test validations performed for joint 1, 2, 3, 4, 5 and 6, with IDIM — IV estimates and
trajectory 1. Blue: measurement; red: estimation; black: error.

2.9 Conclusion

In this chapter, a generic IV method that is relevant for identification of robots was introduced and
successfully applied on the EMPS, the SCARA prototype and the 6 DOF TX40 robot manufactured by
STAUBLI. This new approach, called IDIM-IV method, combines the inverse and the direct dynamic
models, improves the noise immunity of estimates with respect to corrupted data in the observation
matrix which is due to noisy measurements and/or an inappropriate bandpass filtering of the joint
positions and thanks to the update of the gains of the simulated controller, the IDIM-IV has a rapid
convergence. For instance, with the TX40 robot, only 3 iterations are needed to identify 60 dynamic
parameters.

This new approach is interesting because the inverse and direct models were validated separately up
to now and the simulation of the direct dynamic model is not a heavy burden because the number of
operations is optimized. This, associated with an appropriate C MEX S-Function of SIMULINK, one
iteration of the IDIM-IV method takes 3.5s only for a 8s trajectory for the TX40 robot. This offers
some perspectives for real-time identification by making use of batching methods.

However, like the other identification methods cited in introduction, the IDIM-IV method does not
really improve the IDIM-LS method when it associated with a well-tuned bandpass filtering data.
Furthermore, if the IDIM-IV method is run without a parallel decimation, it may loss its statistical
efficiency.
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Finally, the IDIM-IV method proves that it is possible to extend some methods commonly utilized in
automatic control for mechatronic and robotic purposes provided that the appropriate modifications
are brought by the user. This offers perspectives for the methodologies coming from the automatic
control field that are partially or totally disregarded by the mechatronics and robotics communities.

This point is addressed in the fourth chapter of this manuscript.
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3 Chapter 3: On the validation of the instruments and the IDIM-LS
estimates

3.1 Introduction

In the previous chapter, an IV approach suitable for robot identification called the IDIM-IV method
has been introduced and experimentally validated on three robots. The experimental results have
shown that the IDIM-IV estimates have to be trusted and it has been concluded that the set of
instruments was valid thanks to the update of the gains of the simulated robot. However, no formal
proof or test was presented. From a theoretical point of view, one can thus argue that the validity of
the instruments was a posteriori verified and the gain of using the IDIM-IV method instead of the
IDIM-LS approach is not really clear if not inexistent. It is a kind of dog-biting-its-own-tail problem.

To tackle this problem, the 2SLS method and the regressed DWH-test that are widely used in
econometrics can be utilized. The reason to choose these methods coming from econometrics is
motivated by two points:

First, robots are identified in closed loop and the user can doubt whether X(q,&,fj) is correlated
with ¢ or not even with an offline tailor-made data filtering. The following exogenity condition may
be therefore violated

E(X"g)=0, (3.1)

where E(.) is the expectation operator. However, if (3.1) holds while the base parameters are

estimated with the IDIM-IV method, the IDIM-IV estimates are still consistent but they are
statistically inefficient i.e. their variances are not minimal. This raises the following question: when
can we stick to IDIM-LS estimates?

Second, the IDIM-IV method is based on the assumption that the two following conditions are met

E((ZTX)_I) exists, is finite and full rank 5, (3.2)

E(Z'¢)=0. (3.3)

In this case, it is said the set of instruments is valid. A violation of (2.10) and/or (2.11) leads to biased
IDIM-1V estimates. The quality of the instruments must be evaluated.

To tackle the first point, the DWH-test which is a formal test that examines whether (3.1) holds or
not can be executed. To tackle the second point, a formal test suitable for robot identification has to
be developed. In this chapter, the 2S5LS method and the DWH-test are first introduced and then
extended to robot identification. Introducing some concepts of econometrics is the second main
contribution of my work. This material has been presented in [Janot et al. 2013 a] and then published
in [Janot et al. 2013 b] and [Janot et al. 2016 a]
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3.2 Review of the theory of Econometrics

3.2.1 The Two Stage Least Squares method

The 2SLS method estimates B through two LS regressions. Researchers in econometrics consider the
model

y=Xp+eg, (3.4)

as the reduced form of the more general model defined by

y=Xp+¢ (3.5)
X=ZI+V’ '

where

e Zisthe (rxz) instrumental matrix with z2b;
o II isthe (sz) matrix of coefficients to be identified;

e Visa (rxb) matrix of error terms.

The columns of Z are called instruments and if the following assumptions hold
° rank(Z) =z,
. E(ZT?,) =0,
e E(Z'V)=0,
° E(V) =0,
Z is said valid. At this step, it is assumed that such a matrix Z exists.
The first stage consists in calculating the LS estimate of II , denoted n , given by
A T -1 T
n=(z'z) z'x. (3.6)
X the projected of X onto the space spanned by the columns of Z is given by

A A T -1 T
X=ZN=Z(Z'Z) Z'X=P)X, (3.7)

-1
where P, = Z(ZTZ) Z" is the idempotent (r>< r) projection matrix of Z..

The second stage consists in calculating the 2SLS estimates. Assuming that Z is well correlated with
X, X"P,X=X"X is nonsingular i.e. rank(f() =b, [Wooldridge 2009]. The 2SLS estimates and their

associated covariance matrix are given by
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A A AN—l A A A AL
Boos =(X'Q7'X) X'Qy, £, =(X"Q7X) . (3.8)
where Q is the covariance matrix of € (see the first chapter).

If z=5b the 2SLS estimates reduce to the well-known IV estimates given by

B, =(2'X) Z7y. (3.9)

3.2.2 Assessing the correlation between Z and X
In econometrics, the first stage is required because the choice of Z is based on the user's expertise
[Wooldridge 2009]. The correlation between Z and X must be therefore evaluated by verifying

that II differs significantly from 0 [Wooldridge 2009]. To do so, the concentration parameter
introduced by Basmann in 1963, [Basmann 1963] and [Bound et al. 1995], is calculated with

AT rgTrg A
»_ m 7L 7w,

P =T 5 , (3.10)
where
e isthe number of samples (see the first chapter);
A 12
-Z
° 63 — ||Xk n/c ;
* r—>b
e @, isthe k™ column of M calculated as
-1
7, =(2'2) Z'x,; (3.11)
where x, is the k™ column of X;
e V, isthe k™" column of V given by
v, =Zm, —X,. (3.12)

This parameter is often interpreted as the following Wald—statistic that tests H:7, =0. Calculating
this parameter makes sense because @, =0 implies that the instruments are not able to explain the

variations observed in X. In that case, Z is not sufficiently correlated with X and must be rejected.
However, as pointed out in [Bound et al. 1995], [Staiger and Stock 1997], [Stock et al. 2002] and
[Stock and Yogo 2005], if &, is modelled as fixed i.e. the amount of the information per instrument
does not increase with the sample size, this number tends to infinity with ». It follows that the
concentration parameter may be irrelevant when we deal with weak instruments i.e. instruments
that are weakly correlated with X but not completely uncorrelated. It is interesting to point out that
the concept of weak instruments is not treated in automatic control whereas it is a prolific topic in
econometrics (see e.g. [Staiger and Stock 1997], [Stock et al. 2002], [Chao and Swanson 2005], [Stock
and Yogo 2005] and [Andrews and Stock 2007]) and in medicine (see e.g. [Martens et al. 2006],
[French and Popovici 2011] and the references given therein). This may be explained by the fact that
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systematic ways exist to construct the set of instruments in automatic control (e.g. using delayed
inputs or an auxiliary model) whereas such ways do not exist in econometrics and medicine.

3.2.3 The Durbin-Wu-Hausman-test (DWH-test)

If the 2SLS method is used while relation (3.1) holds, the 2SLS estimates are still consistent but their
variances are not minimal [Hausman 1978], [Davidson and MacKinnon 1993] and [Wooldridge 2009].
The DWH-test is a formal test which examines whether (3.1) holds or not. Interestingly, the DWH-test
is a formal statistic of the intuitive idea of Sargan who stated that the LS estimates can be considered
as consistent if the differences observed between the LS and IV estimates are spanned by the
deviations of the IV estimates [Sargan 1958]. This part focuses on the augmented DWH-test
introduced by Hausman in 1978, [Hausman 1978]. In this part, only the key equations are given and
the interested readers can refer to [Hausman 1978] for the technical details.

Assuming that Z is valid, Hausman pointed out that the model (3.5) can be written as
y=XB+Vp+e. (3.13)

E(VTX)=0 holds by construction and if E(VT3)=0, the two estimates of B, f =()A(T)A()71 X"y
and P, =(VTV)_l V'y  are unbiased. But if E(VTs):&O, By is no longer unbiased and has no

longer the same probability limit as ﬁx i.e. |A5V¢[A5X=B. By referring to the coefficient

corresponding to V as 7 instead of P in order to avoid ambiguities and rewriting (3.13) after

adding and subtracting VP, one obtains
y=(X+V)B+V(y-B)+e=Xp+V0+z. (3.14)
with =7y —B which is the (bxl) vector of omitted parameters able to explain the correlation

between X and €. Usually, the omitted parameters have no real physical meaning.

The presence of 0 explains why the endogeneity bias is considered as an omitted-variables bias. In
fact, by considering only y=Xp+¢, the contribution of @ may be missing and the model may be

therefore incomplete. The following relation called as exogeneity condition is thus obtained

A

E(X"e)=0=0=0. (3.15)
In practice, V being unknown it is replaced with its estimate given by

V=X-7I, (3.16)

and the following augmented regression is built

y=|:X V:||:g:|+8=XXTDﬁXTD te, (3.17)
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where X, =[X \7] is the (rx2-b) augmented observation matrix and f’,, =[|3T BTJT is the

(2-bx1) augmented vector of parameters.

The LS estimates ﬁ and 0 are calculated and with an appropriate statistical test (e.g. F-test), it is

verified that the null hypothesis H, :0=0 holds. If the test accepts H,, the LS estimates are

considered as consistent; otherwise, they are biased [Hausman 1978] and [Wooldridge 2009].

Finally, it has been shown that if Z is valid then the LS estimates |§ and 0 calculated with (3.17) are

consistent and V is a consistent estimate of V, see [Hausman 1978] and [White 1980] for the
technical details.

3.3 Extension to robotics

3.3.1 Validating/invalidating the construction of Z

The statistical tests presented in [Staiger and Stock 1997] and [Stock et al. 2002] cannot be
straightforwardly applied because the econometric models are different from those used in robotics.
In this part, it is shown how to extend the econometric theory to robotic problems. The models used
in electrical and mechanical engineering are mostly calculated from mathematical equations (e.g.
Newton's laws, Ohm's relations...). It thus makes sense to compare @, with an expected value

denoted as @, . The null hypothesis is H,:m, =m, . against the alternative hypothesis

H &, # Ty exp -

It has already been shown that Z =X is a valid instrumental matrix. With Z=X ., the following

equality holds

nm=i,, (3.18)
where I, is the (bxb) identity matrix.

The expected value of 1| , the estimate of Il , denoted ﬁexp is defined by

exp :Ib * (3'19)
m, ., the expected value of the kth column of Il is given by
ft, o, (i)=1fori=k and #,_ (i)=0 fori#k. (3.20)

It is assumed that v, ~ N(O,Q”) where on is a diagonal matrix whose the diagonal elements are

unknown to the user. In [MacKinnon and White 1985], the authors have shown that the ith diagonal
component of £; can be consistently estimated with
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Q, (ii)= (3.21)

where

Al AmAarN—] A
e P, (i,i) is the ith diagonal element of P, :Z(ZTZ) 7"

e Z is constructed as explained in the second chapter;

e V¥, (i) istheithelementof v, .

Furthermore, the authors have proved that Q% is consistent even though Vv, is homoskedastic i.e.

v, ~N(0,0'@2klr). It is worth noting that the assumption of homoskedastic errors is common in

econometrics, see e.g. [Hausman 1978], [Davidson and MacKinnon 1993], [Bound et al. 1995],
[Staiger and Stock 1997], [Stock et al. 2002] and [Wooldridge 2009] whereas this assumption is often
violated in control engineering and robotics.

For robot identification, the relation (3.21) can be reduced to

A

Q, (i,i)=V,(i), (3.22)

which is the first estimation suggested by White in [White 1980]. The reduction given by (3.22) is
justified by the following reasons:

e For robot identification, we usually have »> b which gives

" land -0 (3.23)

r—b r
e Robots being identified in closed loop, the identification process can be considered as

“controlled by the user”. Each diagonal element Pi(i,i) can be considered as well

equilibrated [Huber 1973] and the following approximation is obtained

P, (i,i)=2~0. (3.24)

z r
The estimated covariance matrix of fr,ﬁ is then given by

.. =(2'2) 270, 2(2'7) . (3.25)

t ft,

The following Wald-statistic is then calculated

>

(3.26)

P ’
ko Ty Wy

where 8 =m —m_ .

k

If 72 < x*(b) for a level of significance, &, that usually lies between 0.1 and 0.01, H,:#, =#,_,,

holds and the construction of Z is validated; otherwise, this construction is rejected.
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Another possible way to address the problem of heteroskedasticity is presented in [Young 2011]
chapter 4, page 83 and chapter 5, pages 103-106. Since the methodology presented by the author is
also based on the use of the squared residuals, it is expected that this method provides results that
are comparable with those obtained with the White's method.

3.3.2 Validating/invalidating the IDIM-LS estimates
In the second chapter, it has been shown that the exogeneity condition for robot identification is
given by

V=0. (3.27)

According to [Gautier 1991], the relation (3.27) is equivalent to state that 0 has no influence on
robot dynamics. But, it does not mean that =0, [Gautier 1991]. To assess the influence of 0, (3.5)
is first rewritten as

y=[X V]Eﬂhﬁr =X By T €, (3.28)

where

e X,,=[X V]isthe (rx2-b) augmented observation matrix;

* By =[BT eT]T is the (2~b><1) augmented vector of parameters.

Second, the QR decomposition of X, is considered. This gives

r=2b)x2b

RXXTD
X =Qx,, | o , (3.29)
(

where

. .. T _ .
e Q_isa (rxr) orthogonal matrixi.e. Qy_ Qy =1 ;

e Ry isa (2-b><2-b) upper triangular matrix.

Third, let r¢ (resp. ry ) be the absolute value of the b first (resp. last) diagonal elements of Ry
e g =|Rxm (k,k)| for k=1,...,b (resp. r =|Rxm (k,k)| for k=b+1,...,2-b). According to

[Gautier 1991], 0 has no influence if all ! 's are nulli.e.

re=0 for k=1,..,b. (3.30)

In this case, (3.27) holds. X, is indeed rank deficient because X,,, collapses to X with

rank (X, ) = rank([X 0])=b. Finally, 8 has no influence on robot dynamics.

Fourth, if all or some 7, 's are not null, then ® may significantly contribute to robot dynamics. To

assess this contribution and to make a final decision, the F-test associated with the following
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hypothesis ,:0=0 is run. If the F-test accepts H,, then the LS estimates can be considered as

unbiased because 0 does not significantly contribute to robot dynamics; otherwise, they are biased.
The Revised DWH-test is illustrated in Fig. 3-1.

Construction of Z,

| Improvement of the model

Instruments valid ? Improvement of the design

;, of exciting trajectories

| QR factorization of X, =[X \7] |

ka,
—> restwith Hy 020

| F-test accepts H,:0=0?

| LS estimates unbiased |<—

LS estimates biased

Fig. 3-1. Scheme of the Revised DWH-test suitable for robot identification.

3.4 Experimental applications

3.4.1 Validating the statistical assumptions with toolbox routines

In the second chapter, the methods suggested to validate the statistical assumption were the DW-
test, the KS-test, the F-test and a test based on a linear regression. It is worth noting that there are
other interesting methods that are available in free toolboxes e.g. the CAPTAIN toolbox. The main
advantage of using toolbox routines is that there is no need to develop a code and they can be run in
a straightforward manner by the user. These methods are now presented.

The whiteness hypothesis of the error can be validated/invalidated by executing the ACF routine of
the CAPTAIN toolbox, see [Young 2011], page 90 and appendix G. The sample autocorrelation
function measures the linear correlation between a time series and several past values. The PACF
function also measures the linear correlation between different lags of a variable, but when all the
intermediate lags have been taken into account simultaneously. If significant autocorrelations are
found by the ACF routine, an AR model of the transfer function of the filter that colours the noise has
to be estimated with the AIC routine. The function returns the AR polynomial of the model selected
by the AIC. An ARMA model can be also identified with the IVARMA routine which estimates an
ARMA model for any noise signal. However, in practice, AR models are mostly preferred to ARMA
models because they are usually enough and easier to manipulate for physical interpretation.

In the later experimental validations, the results obtained with the ACF, AIC and IVARMA routines will
compared with the results given by the DW-test, the KS-test and the F-test. Finally, to perform the
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Wald-test described in section 3.3.1, the relation (3.26) is first calculated and the chi2cdf MATLAB
function is then used by entering the following instruction

o p=l-chi2edf (n,b),

where p is the p-value. It is checked that p >« to validate the set of instruments. It is recalled that

the p-value is the probability that the observed result has nothing to do with what one is actually
testing for. Specifically, the p-value is defined as the probability of obtaining a result equal to or
“more extreme” than what was actually observed, assuming that the model is true.

3.4.2 EMPS prototype

3.4.2.1 The Revised DWH-test with an appropriate data filtering
The filtering applied to the data is the same as the one applied in section 2.6.2. Before calculating the

IDIM-LS and the 2SLS estimates, the construction of 7 is validated with the procedure described in
section 3.3.1. The results are given in Table 3-1 where b is the number of base parameters. The

Wald-test given by the relation (3.26) validates the construction of Z because one has 775 <y (b)

with a p-value greater than 0.05. It is important to understand that the p-value does not indicate that
the instruments are valid in an absolute sense: it indicates that there are no reasons to reject the

construction of Z. Hence, in the rest of the chapter, by “the construction of Z. is considered as valid”

must be understood as “there are no reasons to reject the construction of Z”. The instruments being

valid, the 2SLS estimates can be considered as consistent. The results show that the ré 's are null for

all the columns of V since they are less than 1le-18. According to the theoretical approach presented
in section 3.3.2, it is also expected that the IDIM-LS estimates will be consistent.

The statistical tests presented in the second chapter validate the hypothesis that € is serially
uncorrelated with € ~ N(O,Ir). This result is supported by the plot provided by the ACF function of

the CAPTAIN toolbox shown in Fig. 3-2 which suggests that € can be considered as white and by the
plot of the histogram of € illustrated in Fig. 3-3 which matches a Gaussian distribution.

The estimates of the IDIM-LS, 2SLS methods and 6, the estimates calculated with the augmented
DWH-test (3.17), are given in Table 3-2 where NI stands for “Not Identifiable”. The parameters in 0

are not identifiable because their associated r\f,‘ 's are null. The augmented matrix X,,,, being rank

deficient collapses to X. The IDIM-LS estimates can be considered as consistent because they stick
to the 2SLS estimates and the remaining differences are spanned by the deviations of the 2SLS
estimates, [Hausman 1978]. This is easily explained by the fact that one has

X((i,f],('i) = X(qn,.,qnf,ijnf) because X,,,, collapsesto X. However, the 2SLS estimates are slightly

less efficient than the IDIM-LS estimates because one has %0, 2>%0; for any estimate. This

ﬁZSLS I}LS

result is consistent with the theory of statistics [Wooldridge 2009].

Direct comparisons have been performed and the plots are the same as those exposed in the second
chapter (they are not shown here). The following relative errors are calculated:
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o Yrel, =[y—XB, /|| with the IDIM-LS method;
o Yorel, :Hy—ZﬁZSLSH/”y” with the revised DWH-test;

o Yorel, = Hy - XXTDﬁXTD“/||y|| with the regressed DWH-test;

The relative errors given in Table 3-2 being close to 3%, the matching can be, therefore, considered
as of good quality (the direct comparison shows that the reconstructed torque matches the

measured one).

In this case, although the 2SLS method has not improved the IDIM-LS method associated with very
accurate data and an appropriate offline tailor-made data filtering, it has been emphasized how
painful it is to obtain consistent LS estimates with systems operating in closed loop:

e data must be accurate enough;
e the data filtering must be appropriate.

To be complete, it must be noticed that the IDM of the EMPS is quite simple since it depends on 3

base parameters only.

Table 3-1: Results of the Wald test - Appropriate data-filtering - EMPS robot

b 2 (b) maX(ﬂ;) p-value
3 7.81 0.5 0.98

Table 3-2: IDIM-LS and 2SLS estimates, regressed DWH-test estimates — Appropriate data-filtering -

EMPS robot
Bus (%5, ) Bass (%6, ) | 9
Mir 100.6 (0.8%) 100.2 (0.9%) NI
Fvy 234.9 (2.2%) 236.9 (2.5%) NI
Fcy 24.2 (2.4%) 24.8 (2.5%) NI
Yorel; 3.0% 3.0% 3.0%
dw 1.9 1.9 1.9
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Fig. 3-2. Autocorrelation (upper panel) and partial autocorrelation of the error obtained with
appropriate filtering and the 2SLS estimates. There is no significant correlation between the
samples of the error. EMPS robot.

40

35

30

25

20

Population

15

10

Histogram of the error

T A

T
|
|
d
TN

Fig. 3-3. Histogram of IDIM-LS error and its estimated Gaussian — Appropriate data filtering.

3.4.2.2 The Revised DWH-test with an inappropriate data filtering

As done in the second chapter with the IDIM-IV method, the robustness of the 2SLS method against
raw data was studied in [Janot et al. 2013 b], [Janot et al. 2014, a] and [Janot et al. 2014, b].
However, utilizing the IDIM-LS method with raw data is not wise because, in the community of

system identification, it is known that the LS estimates are biased when the systems are operating in
closed loop while utilizing raw data. In this section, the robustness of the methods against an
inappropriate data filtering is studied.

The IDIM-LS and 2SLS methods are carried out with the position ¢, filtered with a 200 Hz fourth-

order Butterworth filter and with velocity, c}l, and acceleration, é}l, calculated with a central

difference algorithm of g, . The parallel decimation is carried out with a lowpass Tchebyshef filter
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with a cut-off frequency of 120 Hz. It is important to note that those cut-off frequencies are chosen
in an arbitrary way as a user not familiar with robot identification (or a beginner) can (or will) do.

The Wald-test given by the relation (3.26) validates the construction of Z because one has
7732 <y (b) with a p-value greater than 0.05. The results, being very close to those given in Table 3-1,
are not shown here. The instruments being valid, the 2SLS estimates can be considered as consistent.

The results showing that the r‘f/‘ 's are null for all the columns of V (they are less than 1e-18), it is

also expected that the IDIM-LS estimates will be consistent.

The statistical tests presented in the second chapter and the plot provided by the ACF function
validate the hypothesis that € is serially uncorrelated with € ~ N(O,Ir ) .

The IDIM-LS estimates, the 2SLS estimates and the regressed DWH-test estimates are given in Table
3-3. In the case of the EMPS robot, even though the data filtering is inappropriate, the IDIM-LS
estimates are still consistent because they still match the 2SLS estimates. This is due to the fact that

all the rvk 's are null, X,,, collapsing to X. Such a result has been achieved thanks to the very
accurate data. The data filtering has thus little impact on the estimates and their associated variances
because the results summed up in Table 3-3 are very close to those given in Table 3-2. This result
supports the result obtained with the IDIM-IV method exposed in the second chapter. However, as
we shall see in the following sections, this result cannot be generalized to all robots.

Table 3-3: IDIM-LS and 2SLS estimates, regressed DWH-test estimates — Inappropriate data-filtering

— EMPS robot
Buof%6;,) | Buas(%0y,) |0
Mg 100.6 (0.9%) 100.2 (0.9%) NI
Fvy 234.9 (2.3%) 236.9 (2.6%) NI
Fcy 24.2 (2.4%) 24.8 (2.5%) NI
Yorel; 3.1% 3.1% 3.1%
dw 1.9 1.9 1.9

3.4.3 SCARA robot

3.4.3.1 Revised DWH-test with an appropriate data filtering

The filtering applied to the data is the same as the one utilized in section 2.7.2. The construction of
Z is validated with the procedure described in section 3.3.1 and the results are given in Table 3-4
where b, is the number of identifiable parameters of a joint j (see the first chapter). The Wald-test
given by the relation (3.26) validates the construction of Z because one has 7732 <y (b) with a p-
value greater than 0.05. The instruments being valid, the 2SLS estimates can be considered as

consistent. The results show that the r‘f; 's are null for all the columns of V depending on the joint

positions and/or velocities since they are less than 1e-20 whereas the ré 's are not null for the
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columns of V depending on the joint accelerations although they are less than le-4. Interestingly,
we obtain the same results if the heteroskedasticity is treated with the method presented in [Young
2011], chapter 4, page 83.

The statistical tests presented in the second chapter validate the hypothesis that € is serially

uncorrelated with E~N(0,Ir). In addition, the plot of the histogram of € illustrated in Fig. 3-4

matches a Gaussian distribution. This result is supported by the plot provided by the ACF function
shown in Fig. 3-5 which suggests that there are no correlations between the samples of € .

The estimates of the IDIM-LS, 2SLS methods and 6, the estimates calculated with the augmented
DWH-test (3.17), are given in Table 3-5 where NS stands for “Not Significant”. The parameters of 0

associated with the friction parameters are not identified since their associated ré‘ 's are null.

Regarding the parameters of 0 associated with the inertia and gravity parameters, their contribution
proves to be negligible because the F-test accepts the null hypothesis H,:0=0. The relation (3.27)

holds, X, collapses to X leading to X((j,fl,fj) = X(qnf,qn/.,('jn/.), the IDIM-LS estimates can finally

be considered as consistent. However, the 2SLS estimates are slightly less efficient than the IDIM-LS

estimates because one has %OA'[;V > %0,

2SLS BLS

for each estimate. This result is consistent with the
theory of statistics [Wooldridge 2009].

Direct comparisons have been performed. The torque reconstructed with the IDIM-LS and the 2SLS
estimates match the measured one. The plots obtained are similar with those provided in the second

chapter; they are not reshown here. The relative errors given in Table 3-5 being close to 3%, the
matching can be, therefore, considered as of good quality.

Table 3-4: Results of the Wald test — Appropriate data filtering - SCARA robot

Joint j b, Ve (b,-) max(ng) p-value
1 7.81 0.5 0.98
2 12.4 2.3 0.99
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Table 3-5: IDIM-LS and 2SLS estimates, regressed DWH-test estimates — Appropriate data-filtering —

Fig. 3-4: Histogram of the 2SLS error and estimated Gaussian — Appropriate data filtering — SCARA

robot

Population

SCARA robot
72, 3.44 (1.0%) 3.44 (1.5%) NS
Fv, -0.04 (300%) -0.02 (950%) NI
Fc, 0.90 (5.0%) 0.88 (16.5%) NI
77, 0.062 (2.0%) 0.062 (2.2%) NS
MX, 0.25 (2.0%) 0.25 (2.4%) NS
MY, | -0.002 (300%) | -0.007 (400%) NS
Fv, 0.021 (16.5%) 0.021 (20.0%) NI
Fc, 0.13 (5.0%) 0.13 (6.0%) NI
Yorel; 3.1% 3.1% 3.1%
aw 1.9 1.9 1.9

Residuals histogram with the 2SLS method and estimated Gaussian
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Fig. 3-5: Autocorrelation (upper panel) and partial autocorrelation of the error obtained with
appropriate filtering and the 2SLS estimates. There are no correlations between the samples of the
error. SCARA robot.

3.4.3.2 Revised DWH-test with an inappropriate data filtering

The IDIM-LS and 2SLS methods are carried out with the positions ¢ filtered with a 200 Hz fourth-
order Butterworth filter and with velocities, (i, and accelerations, ('i', calculated with a central
difference algorithm of q . The parallel decimation is carried out with a lowpass Tchebyshef filter

with a cut-off frequency of 100 Hz. Once again, those choices are completely arbitrary (see the
remark in subsection 3.4.2.2).

The Wald-test given by the relation (3.26) validates the construction of 7 because one has
7732 <y (b) with a p-value greater than 0.05. The results, being very close to those given in Table 3-4,
are not shown here. The instruments being valid, the 2SLS estimates can be considered as consistent.

The results given in Table 3-6 show that the r‘f,‘ 's are null for the columns of V depending on the
joint positions and/or velocities since they are less than 1e-20 whereas the ré 's are of the same

magnitude as those of the r,'(‘ 's for the columns of V depending on the joint accelerations.
According to the theoretical approach presented in section 3.3.2, the IDIM-LS estimates are expected

to be biased because the contribution of V does not prove to be negligible.

With the 2SLS method and the standard regressed DWH-test, the statistical tests presented in the
second chapter still validate the hypothesis that € is serially uncorrelated with € ~ N(O,Ir) while
the plot provided by the ACF function supports the results. With the IDIM-LS method, all the
methods reject the hypothesis that € is serially uncorrelated with €~ N(0,I,): dw given in Table

3-7 is far smaller than 2.0 while the plot provided that the ACF illustrated in Fig. 3-6 suggest that
there are multiple correlations between the samples of the IDIM-LS error. The user must be
concerned by such results.
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The IDIM-LS estimates, the 2SLS estimates and the estimates obtained with the regressed DWH-test
are given in Table 3-7. In the case of the SCARA robot, if the data filtering is inappropriate, the IDIM-
LS estimates are biased because they do not match the 2SLS estimates and the differences are not
spanned by the deviations of the 2SLS estimates. This result was expected because of the

contribution of V. All the components of 0 associated with the inertia parameters (ZZx, 2Z,) and
with the gravity parameters (MX,, MY,) are identifiable and have a significant contribution. The F-test
indeed rejects the hypothesis /:0=0. This result is explained by the fact that their corresponding
columns contain very noisy joint accelerations. The augmented DWH-test supports the results of the
Revised DWH-test. This result shows that the IDIM-LS method alone is not able to detect a bias and
this is consistent with the theory of statistics. The 2SLS estimates obtained with an inappropriate
data filtering are less efficient than those obtained with an appropriate data filtering because their
relative deviations are approximately four/five times greater. This result highlights the behaviour of
IV estimators: they are able to provide consistent estimates with very large deviations if they are
associated with an inappropriate data filtering or if they are utilized without data filtering. This result
is consistent with the theory of statistics [Hausman 1978], [Davidson and MacKinnon 1993] and
[Wooldridge 2009] and with the theory of automatic control [Garnier and Wang 2008] and [Young
2011]. Finally, the estimates of B provided by the regressed DWH-test are not given because they

stick to [§2SLS .

Table 3-6 : r)f ’s and r\ff ’s obtained with an inappropriate data-filtering — SCARA robot

g R
Z7:r | 260 | 123 | Fv; | 123 | O
77, | 480 | 192 | Fc, | 105 | O
MX, | 251 | 74 | Fv, | 119 | O
MY, | 372 | 126 | Fc, | 95 | O

Table 3-7: IDIM-LS and 2SLS estimates, regressed DWH-test estimates — Inappropriate data-filtering
— SCARA robot

Bus (%55, Basis (%5, ) | O

ZZ:x | 2.10(1.2%) 3.45 (4.0%) -3.35 (3.7%)
Fv. | 0.31(40%) 0.0 (1000%) NI

Fc; | 0.07 (300%) 0.85 (23.0%) NI

ZZ, |0.03(1.5%) 0.062 (6.0%) | -0.057 (5.8%)
MX, | 0.15 (1.8%) 0.25 (5.5%) -0.23 (5.4%)
MY, | -0.007 (35.0%) | -0.01 (500%) NS

Fv, |0.029(17.0%) | 0.022 (40.0%) NI

Fc, | 0.09 (8.0%) 0.13 (9.5%) NI
Yorel, 25.0% 3.1% 3.1%
dw 0.7 1.9 1.9
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Fig. 3-6 : Autocorrelation (upper panel) and partial autocorrelation of the error obtained with an
inappropriate filtering and the IDIM-LS estimates. There are significant correlations between the
samples of the error. SCARA robot.

3.4.4 TX40 robot

3.4.4.1 Revised DWH-test with an appropriate data filtering
The filtering applied to the data is the same as the one applied in section 2.8.2. The construction of

Z is validated with the procedure described in section 3.3.1 and the results are given in Table 3-8.
The construction of Z is validated by the Wald-test given by (3.26) because one has 7752 <y (b) with
a p-value greater than 0.05. The validation implies that the 2SLS estimates can be considered as

consistent. The results obtained show that the ré 's are null for all the columns of V depending on
the joint positions and/or velocities since they are less than 1e-20 whereas the rvk 's are not null for

the columns of V depending on the joint accelerations although the rvk 's are less than 1e-6.

The statistical tests presented in the second chapter validate the hypothesis that € is serially

uncorrelated with € ~ N(O,Ir). This result is supported by the plot provided by the ACF function

shown in Fig. 3-7 which suggests that € can be considered as white and by the plot of the histogram
of € illustrated in Fig. 3-8 which matches a Gaussian distribution.

The estimates of the IDIM-LS, 2SLS methods and 6, the estimates calculated with the augmented
DWH-test (3.17), are given in Table 3-9. Only the parameters that define the set of essential
parameters are given. The model reduction has been validated by using the F-test as explained in

section 2.8.2. The parameters of 0 associated with the r‘f; 's that are null are not identifiable by

definition. Regarding the parameters of 0 associated with the r‘f,‘ 's that are not null, their

contribution proves to negligible because the F-test accepts the null hypothesis H,:0=0. The
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relation (3.27) holds and X,,,, collapses to X leading to X(fl,fl,fj)zX(qnf.,qn/.,('jn/). The IDIM-LS

estimates can be considered as consistent. However, it is worth to notice that the 2SLS estimates are

slightly less efficient than the IDIM-LS estimates because one has %é-ﬁzm Z%OA'[}LS for each estimate.
Direct comparisons have been performed and the plots are the same as those exposed in the second
chapter. They are therefore not shown here. The relative errors given in Table 3-9 being less than
10%, the matching can be considered as of good quality. Cross-test validations have been also
performed with the IDIM-LS and 2SLS methods according to the procedure described in section 2.8.3.
The torques reconstructed with the 2SLS estimates and with the second trajectory of validation are
illustrated in Fig. 3-9 (similar results, not shown here, are obtained with the IDIM-LS estimates and
the other two trajectories) while the relative errors calculated with each trajectory of validation and
with the IDIM-LS and the 2SLS estimates are regrouped in Table 3-10. The relative errors matching
the ones calculated during the direct comparisons, the estimates can be considered as consistent.

Table 3-8: Results of the Wald-test for each joint j — TX40 robot

Joint j b, 7 (b‘f) maX(ﬂgf) p-value
1 34 | 48,5 18.5 0.98
2 37 52.3 12.4 0.99
3 31 |45.0 18.1 0.97
4 24 | 36.5 54 0.99
5 20 | 313 11.7 0.93
6 11 19.7 9.1 0.61

97



Table 3-9: IDIM-LS and 2SLS estimates, regressed DWH-Test results — Appropriate data filtering -

TX40 robot

ﬁLS (%OA—B” ) ﬁZSLS (%6[;”” ) 0
775 1.26 (1.2%) 1.25(1.3%) NS
Fvy 8.1 (0.7%) 8.20 (0.7%) NI
Fcy 6.60 (2.3%) 6.54 (2.6%) NI
XXar -0.48 (2.5%) -0.48 (2.9%) NS
XZyr -0.16 (4.4%) -0.16 (4.8%) NS
77z 1.09 (1.1%) 1.09 (1.2%) NS
MXzr 2.20 (2.5%) 2.21 (2.9%) NI
Fv, 5.68 (1.1%) 5.68 (1.2%) NI
Fc, 7.76 (1.8%) 7.77 (2.1%) NI
XXag 0.13 (9.5%) 0.13 (10.2%) NS
773 0.12 (7.6%) 0.12 (8.8%) NS
MYz -0.59 (2.2%) -0.59 (2.3%) NI
las 0.084 (8.8%) 0.088 (9.2%) NS
Fvs 2.02 (1.7%) 2.03 (1.8%) NI
Fcs 6.10 (1.8%) 6.05 (1.9%) NI
MX, -0.02 (26.7%) -0.02 (30.0%) NI
lag 0.029 (8.8%) 0.029 (9.4%) NS
Fv, 1.14 (1.5%) 1.15 (1.5%) NI
Fca 2.34 (2.6%) 2.27 (2.6%) NI
MYsg -0.03 (13.7%) -0.03 (14.1%) NI
las 0.044 (8.9%) 0.041 (11.2%) NS
Fvs 1.87 (1.8%) 1.92 (2.0%) NI
Fcs 2.93 (3.0%) 2.79 (3.5%) NI
lag 0.01 (9.4%) 0.01 (10.9%) NS
Fvs 0.67 (1.5%) 0.69 (1.6%) NI
Fce 2.08 (2.5%) 2.00 (2.8%) NI
fVime 0.63 (1.6%) 0.63 (1.8%) NI
fcms 1.80 (3.7%) 1.81 (4.2%) NI
Yorely 6.0% 6.0% 6.0%
dw 1.8 1.9 1.9

Table 3-10: Relative errors obtained with the cross-test validations, the IDIM-LS and 2SLS estimates
- Appropriate data filtering - TX40 robot

. Yorel; (LS) Yorel; (2SLS)
Trajectory 1 1 kHz 6.5% 6.5%
Trajectory 2 1 kHz 6.5% 6.5%
Trajectory 3 1 kHz 7.0% 7.0%
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Fig. 3-9. Cross-validations, joints 1, 2, 3, 4, 5 and 6 with 2SLS estimates and with the first trajectory.
Blue: measurement; red: estimation; black: error. Appropriate data filtering.

3.4.4.2 Revised DWH-test with an inappropriate data filtering
The IDIM-LS and 2SLS methods are carried out with the positions ¢ filtered with a 200 Hz fourth-

order Butterworth filter and with velocities, (i, and accelerations, ('i', calculated with a central
difference algorithm of q . The parallel decimation is carried out with a lowpass Tchebyshef filter

with a cut-off frequency of 100 Hz. This choice is totally arbitrary as explained in subsection 3.4.2.2.

The Wald-test given by the relation (3.26) validates the construction of Z because one has
7732 <y (b) with a p-value greater than 0.05. The results being very close to those given in Table 3-8
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are not shown here. The instruments being valid, the 2SLS estimates can be considered as consistent.

The results given in Table 3-11 show that the r‘f,‘ 's are null for the columns of V depending on the
joint positions and/or velocities since they are less than 1e-10 whereas the ré‘ 's are of the same

magnitude as those of the r,lg 's for the columns of V depending on the joint accelerations.

According to the theoretical approach presented in section 3.3.2, the contribution of V does not
prove to be negligible and it is expected that the IDIM-LS estimates are biased.

With the 2SLS method and the regressed DWH-test, the statistical tests presented in the second
chapter and the plot provided by the ACF function still validate the hypothesis that € is serially

uncorrelated with € ~ N(O,I,. ) . With the IDIM-LS method, all the methods reject the hypothesis that

‘€ is serially uncorrelated with € ~ N(O,I,): dw given in Table 3-12 is far smaller than 2.0 while the

plot provided that the ACF similar as the plot illustrated in Fig. 3-6 suggests that there are multiple
correlations between the samples of the IDIM-LS error. The user must be concerned by such results.

The IDIM-LS estimates, the 2SLS estimates and the regressed DWH-test estimates are given in Table
3-12 (only the set of essential parameters are given). At a first glance, the IDIM-LS estimates seem
acceptable because:

e they are not aberrant compared with CAD values;
e the relative error %rely is not critical;

e the histogram of the IDIM-LS error plotted in Fig. 3-10 matches a Gaussian distribution.

A non-expert or a beginner in system identification can infer that the IDIM-LS estimates can be
trusted whereas they are biased since:

e they do not match 2SLS estimates;
e the observed differences are not spanned by the 2SLS variances;
e 0 contributes to the dynamics because the F-test rejects the null hypothesis H,:0=0.

This result shows that the IDIM-LS method alone, like all the methods based on LS estimation, is not
able to detect a bias. This result is consistent with the theory of statistics and it must be noticed that
the 2SLS estimates obtained with an inappropriate data filtering are less efficient than the 2SLS
estimates obtained with an appropriate data filtering, the relative deviations being four/five times
greater than those estimated with a well-tuned data filtering. All the components of 0
corresponding to inertia parameters (ZZir, XXor, XZor, ZZor, XXar, ZZ3g, las, 1as, las, lag) and to some
gravity parameters (MYzz, MX,, MYsg) are identifiable and have a significant contribution. The F-test
indeed rejects the hypothesis H,:0=0. This is mainly due to the fact that their corresponding
columns contain noisy joint accelerations. The augmented DWH-test supports the results of the
Revised DWH-test and the estimates of P provided by the regressed DWH-test are not given because

they stick to ﬁms .

Cross-test validations have been also performed with the IDIM-LS and 2SLS methods according to the
procedure described in section 2.8.3. The torques reconstructed with the IDIM-LS estimates and with
the second trajectory of validation are illustrated in Fig. 3-11. Despite the fact that the errors are not
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negligible, the reconstructions of torques are quite acceptable and it follows that a non-expert in
system identification may deduce, once again, that the IDIM-LS estimates are acceptable and they
can be used for model-based control laws. This experimental result shows that the cross-test
validations may be not enough to make a final decision. The norms of relative errors calculated with
the set of trajectories and with the IDIM-LS (resp. the 2SLS) estimates are given in Table 3-13. With
the 2SLS estimates, these relative errors match those calculated with the direct comparisons while
with the IDIM-LS estimates, though there are some differences, they are not as critical as expected.
The 2SLS estimates can be considered as consistent whereas it is quite difficult to make decision for
the IDIM-LS estimates without running the Revised DWH-test. This result shows the usefulness of the
Revised the DWH-test.

Table 3-11: r,'(‘ ’s and rvk ’s obtained with an inappropriate data-filtering — TX40 robot

" i " iy

7. 946.9 190.0 Fes 1355 |0

Fv 167.2 0 MX, 707.4 | 189.33
Fe, 134.5 0 la, 970.5 | 445.61
XXog 552.8 63.9 Fv, 2079 |0

XZox 851.5 153.2 Fc, 1330 |0

275 807.2 175.3 MYsg 846.4 | 320.15
MXg 4423 0 las 812.4 | 636.15
Fv, 139.0 |0 Fvs 146.6 |0

Fc, 136.1 0 Fes 1372 |0

XXag 495.8 59.0 lae 516.5 | 416.4
773 848.7 840.4 FVe 2958 |0

MYg 369.5 128.1 Fce 136.7 |0

las 897.2 3241 | fume 3200 |0

Fvs 191.8 0 feme 1411 |0
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Table 3-12: IDIM-LS and 2SLS estimates, regressed DWH-Test results — Inappropriate data filtering -

TX40 robot

ﬁLS (%OA—B” ) ﬁZSLS (%6-I§Z.VL.V ) e(%é-é)
77k 1.11 (0.8%) 1.24 (4.1%) -1.22 (3%)
Fvy 8.23 (0.5%) 8.25 (2.4%) NS
Fc, 6.42 (1.7%) 6.38 (9.1%) NS
XXor -0.38 (1.9%) -0.48 (10.6%) 0.46 (9%)
XZyr -0.16 (3.0%) -0.16 (15.9%) 0.14 (16%)
275, 0.88 (0.8%) 1.08 (3.8%) -1.0 (3%)
MXzr 2.42 (1.7%) 2.22 (9.9%) NS
Fv, 5.63 (0.8%) 5.75 (4.4%) NS
Fc, 7.88 (1.3%) 7.55 (6.4%) NS
XXag 0.19 (5.7%) 0.13 (29.3%) -0.11 (20%)
773, 0.07 (6.2%) 0.11 (28.8%) -0.12 (10%)
MYy -0.71 (1.0%) -0.60 (6.6%) 0.5 (6%)
las 0.15 (2.6%) 0.09 (24.5%) -0.07 (20%)
Fvs 2.03 (1.0%) 2.01 (4.5%) NS
Fes 5.96 (1.1%) 5.83 (5.1%) NS
MX, -0.01 (20.1%) -0.02 (27.5%) 0.01 (50%)
lag 0.022 (3.9%) 0.028 (25.5%) NS
Fv, 1.14 (0.6%) 1.17 (3.2%) NS
Fca 2.35 (1.0%) 2.23 (6.3%) NS
MYsg -0.02 (5.7%) -0.03 (28.3%) 0.03 (9%)
las 0.02 (3.2%) 0.04 (25.2%) -0.03 (12%)
Fvs 1.84 (0.7%) 1.94 (4.0%) NS
Fcs 3.01 (1.1%) 2.72 (7.3%) NS
lag 0.007 (3.3%) 0.01 (24.5%) -0.008 (10%)
Fve 0.67 (0.6%) 0.69 (3.8%) NS
Fce 2.11 (1.0%) 1.97 (6.2%) NS
fVime 0.63 (0.6%) 0.64 (3.8%) NS
fcms 1.80 (1.4%) 1.74 (8.1%) NS
Yorel, 17.0% 12.5% 11.0%
dw 1.7 1.8 1.8

Table 3-13: Relative errors obtained with the cross-test validations, IDIM-LS and 2SLS estimates -

TX40 robot
o Yorel, (LS) | %rel, (2SLS)
Trajectory 1 1 kHz 20.0% 14.0%
Trajectory 2 1 kHz 22.0% 14.0%
Trajectory 3 1 kHz 21.0% 14.5%
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Fig. 3-11: Cross-validations, joints 1, 2, 3, 4, 5 and 6 with IDIM-LS estimates and with the second
trajectory. Blue: measurement; red: estimation; black: error. Inappropriate data filtering.

3.4.4.3 Robustness against a misspecified model

The robustness of the Revised DWH-test against a misspecified model is studied. The gear ratios
being greater than 25, the user can assume that the parameters of gravity and the off-diagonal
elements of inertia matrices do not significantly contribute to the dynamics. These parameters and
their associated columns are removed from the IDM and the data are filtered as explained in Section
3.4.4.1.

For the inertia parameters of joints 1, 2, 3 and 4, the Wald-test rejects the hypothesis Z is a valid

instrumental matrix. The results given in Table 3-14 show that the minimum of 77§ is greater than
,(2 (b/.) while the p-value is almost null. Interestingly, the set of instruments of joint 5 and 6 is valid

(see Table 3-15). This is mainly due to the fact that the gravity parameters and the off-diagonal
components of inertia matrices are practically null and this implies that removing them from the
dynamic model is of no consequences for those joints. It is expected that the 2SLS estimates are

biased because Z is not valid.

The IDIM-LS and 2SLS estimates are given in Table 3-16. The estimates differ from those given in
Table 3-9, they can be considered as biased. Interestingly, all the methods reject the hypothesis that

€ is serially uncorrelated with € ~ N(O,Ir) for a level of significance of 5% but they accept the

hypothesis for a level of significance of 0.5%. Furthermore, the IDIM-LS error and its estimated
Gaussian plotted in Fig. 3-12 suggests that the distribution of the error does not match a Gaussian
distribution but there is no strong evidence; a similar result is obtained with the 2SLS method. Finally,
the plot obtained with the ACF routine illustrated in Fig. 3-13 suggests there are some correlations
between the samples of the error but, comparing with Fig. 3-6, there is no reason for concern. This
experiment shows that the Revised DWH-test is able to detect an error in the model and is helpful to
make a final decision.
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Table 3-14: Results of the Wald-Test for the joints 1, 2, 3 and 4 — Misspecified model and
appropriate data filtering - TX40 robot

Joint j | b, | 2 (b)) min(ng) p-value
1 3 7.81 16.3 ~0
2 3 7.81 19.1 ~0
3 4 9.5 25.7 ~0
4 4 9.5 19.6 ~0

Table 3-15: Results of the Wald-Test for the joints 5 and 6 — Misspecified model and appropriate
data filtering - TX40 robot

Joint j b, 7 (b,-) maX(ﬂ;f) p-value
9.5 5.1 0.28
6 6 12.59 4.9 0.56

Table 3-16: IDIM-LS estimates and 2SLS estimates — Misspecified model and appropriate data

filtering - TX40 robot

Bus (%03, ) | Baus (%6, )
7Z: 1.10 (3.0%) | 1.08 (3.5%)
Fv, 8.16 (3.0%) | 8.17 (3.6%)
Fc, 6.50 (10.6%) | 6.48 (11.0%)
77 1.37 (2.3%) | 1.20 (2.0%)
Fv, 5.80(5.2%) | 5.83 (5.8%)
Fc, 6.80 (10.3%) | 6.80 (11.0%)
ZZ;x | 031(7.8%) | 0.27 (6.7%)
las 0.05 (36.0%) | 0.07 (40.0%)
Fvs 2.21(7.2%) | 2.22 (7.6%)
Fcs 5.55(9.3%) | 5.53 (9.5%)
las 0.04 (26.2%) | 0.05 (31.1%)
Fv, 1.18 (5.0%) | 1.20 (5.8%)
Fc, 2.20(9.6%) | 2.17 (10.0%)
las 0.06 (28.2%) | 0.05 (29.3%)
Fvs 1.90 (7.1%) | 1.89 (7.3%)
Fcs 2.75(12.5%) | 2.75 (12.6%)
lag 0.01(31.0%) | 0.01(33.0%)
Fve 0.69 (5.1%) | 0.69 (5.4%)
Fce 2.0 (8.9%) 2.0 (9.3%)
Vs 0.64 (5.6%) | 0.64 (5.9%)
fems 1.70 (15.2%) | 1.70 (16.0%)
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Yorel, 17.0% 21.0%
dw 1.8 1.8

Histogram of IDIM-LS error and Estimated Gaussian
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Fig. 3-12. Histogram of IDIM-LS error and its estimated Gaussian — Appropriate data filtering -
Misspecified dynamic model.
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Fig. 3-13. Autocorrelation (upper panel) and partial autocorrelation of the error obtained with an
appropriate filtering and a misspecified IDM.

3.5 Comments on the method and the results

3.5.1 Rightinputs design

Another way of looking at (3.27) is the design of the set of trajectories that allows the relation (3.27)
satisfied. In this case, the best estimates will be obtained. This way of solving the problem is the
experiment design [Aguero and Goodwin 2006] and [Aguero and Goodwin 2007]. Although the works
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presented in these two papers are of great interest, caution is required because they cannot be
straightforwardly applied for robot identification. The main reasons are:

e Robots are nonlinear MIMO systems whereas the works presented in these two papers are
devoted to linear SISO systems.

e Although robots are linear in relation to the base parameters, the basis functions contain
nonlinear functions such as sine, cosine, square and sign functions.

e Finally, even though a set of right inputs is found, they may be not implementable in the
robot controller. For manufactured robots, the choice of trajectories is indeed usually rather
limited and the structure of the controller is usually not modifiable, [Gautier et al. 2013].

In other words, the works presented in [Aguero and Goodwin 2006] and [Aguero and Goodwin 2007]
could be applied if the controller of the robot is accessible by the user, if point-to-point trajectories
are implementable and if the nonlinear functions and the coupling effects have a weak impact on the
dynamics. Those reasons explain why it is suggested to choose the revised DWH-test.

3.5.2 Comments on relation (3.18)

The relation (3.18) emphasizes the main difference between econometric models which are mostly
empirical and the physically-based models used in mechanical and electrical engineering. In robotics,
the IDM is considered as deterministic because it is based on the Newton’s laws. The basis functions

of the IDM are, therefore, assumed to be true and this suggests that each x, differs from z, by an

error v, . When dealing with empirical models, such reasoning does not make sense since the
models are not based on a priori physical laws. This explains why researchers in econometrics

evaluate the correlation between Z and X by verifying that I #0 holds. In fact, there is no a priori
expected value of II and this may explain there are more instruments than regressors. Finally, the

relation (3.19) defines I the expected value of M. If Z is valid then each column of X is

exp ’

projected onto each column of Z and (3.19) must be verified.

3.5.3 Comments on relation (3.26)

The relation (3.26) indicates if the distance between @, and 7, ., is compatible with the variances
calculated. If the Wald-test accepts H,:#, =#,_,, for all k, the relation 1| =l:[exp is verified. The

relation (3.26) is the most important because it proves that the statistical assumption made on \Y%

hold. If (3.26) indeed holds, then 7, is a consistent estimate of @, = and there exists a compact

neighbourhood such that ‘frk - @, | is finite; see [White 1980]. In addition, the trajectories being

bounded and according to the results exposed in [White 1980], it follows that v, is a consistent

estimate of v, . Finally, since E(V)=0 implies E(vk)=0, one obtains E(Qrk)z() for all £ and this

leads to E(V):() .
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3.5.4 Commentson 0

The experimental results given in Table 3-7 and Table 3-12 tend to show that one obtains 0~ —p for
the SCARA and the TX40 robot, respectively, when the data filtering is inappropriate or not used. This
result is quite interesting because it implies that y"=0+B =0 which indicates that the bias of the
IDIM-LS method is mainly due to the contribution of Vi.e. ¥’ has a poor contribution on the bias.

Recall that y” is defined in the second chapter, equation (2.4).

One possible explanation of this result is that the measurement of the joint j position, g, , is
filtered by a linear low-pass filter before computing the joint j control signal, v, , applied to the

joint j actuator while g, is filtered by making use of a forward and reverse Butterworth in order

to construct X as explained in the first chapter. Hence, the data filtering carried out to construct X
is exogenous in the sense that it differs from the filtering applied to calculate the control signal. The

expression 07, :C(S)&lmes,. used in the second chapter must be replaced with 67, =C(s)5qwm/
which is the error introduced by the filtered joint j measurement used to calculate the signal

control, 4., =4, +5qwn,/ . &'qm has little contribution on the global error in 7, while g, differs

from ¢, Wwhich yields E(é‘qmdqwm_)zE(é‘qm_)E(&]wm_):O. Finally, it must be noticed that

4, Is filtered in order to decrease the sensitivity of v, with respect dg,,. and this allows to obtain

a closed-loop bandwidth that is as large as possible.

It is important to stress that this explanation makes sense for the SCARA and TX40 robots because it
is supported by the experimental results. However, this does not mean that this explanation is
relevant for any robot.

3.5.5 Comments on the IDIM-IV method

The results obtained with the EMPS, SCARA and TX40 robots show that the IDIM-IV method which
belongs to the linear IV approaches appears to be sufficient to obtain consistent estimates. The
experimental results are supported by the theoretical framework developed in section 3.3.1 which
has proved that the instruments are valid i.e. well correlated with the observation matrix X and
uncorrelated with the error €. This result is quite commendable because it was not a priori obvious
that a linear IV approach was sufficient to estimate the base parameters of robots. For instance, in
[Prifer et al. 1994] the authors wrote: “The latter may be treated by the Instrumental Variable
method. But because of the nonlinearity of data functions, it is not possible to completely eliminate
this effect.” (in this sentence, “data functions” must be understood as basis functions). This may
explain why the IV approaches were ignored by researchers in robotics and mechatronics.

From a theoretical point of view, the statement formulated in [Priifer et al. 1994] makes sense
because of the nonlinear functions (sine, cosine, square and sign) contained in the basis functions of
the IDM; a simple linear IV approach is not sufficient to address those nonlinearities. In this case, the
relation (2.2) is violated. However, the authors did not notice that the combination of the three
following important factors
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e the errors are mostly contained in the joint accelerations,
e the IDM has a very particular structure,
e exciting trajectories are applied to robots,

which are usually met for manufactured industrial robots makes a linear IV method sufficient.

The first point can be justified by invoking the concepts of “position accuracy” and “position
repeatability” well known in robotics (see Figure 1.11 in [Khalil and Dombre 2002]). Industrial robots
are, indeed, designed so that the standard ISO 9946 criteria are met. Assuming that the mechanical
design meets the standard I1SO 9946 criteria, positioning accuracy of an industrial robot can be
improved to approach its repeatability by a calibration/identification procedure that determines
current values of the geometrical dimensions and mechanical characteristics of the structure and the
base parameters. Furthermore, in order to obtain the best position accuracy and position
repeatability, the measurements must be also accurate enough and in relation with the application
or tasks that the robot has to perform. The measurements of the positions that are used to compute
the control signals can be considered, therefore, as almost noise-free, i.e.

qmes zqnf * (331)

By denoting Ag, the resolution of the position measurement, and 7, , the sampling time, the
resolutions of the velocity and the acceleration are Aq/TS and Aq/Tsz, respectively. The
measurement frequency being usually greater than 100Hz, one obtains the following approximation

Aq/TS2 > Aq/TS > Ag . This explanation partly explains the reason why the ré 's are null for the
columns of V depending on the joint positions and/or velocities whereas the rvk 's are of the same

magnitude as those of the r,'(‘ 's for the columns of V depending on the joint accelerations.

The second point is a bit more technical than the first one because it involves the expressions given
by (1.3) and (1.17). First, the relation (1.3) shows that the sine and cosine functions contain the
measurements of the joint positions that are assumed to be almost noise-free according to (3.31).
Then, we obtain the following approximations

cos(q,,, ) = cos(qnf) and sin(q,,, ) = sin(qnf) : (3.32)

Second, M(q) and Q(q) depending only on the joint positions, one has M(qm):M(qnf)and
Q(qmes) = Q(qnf) according to the approximations given by (3.32). To complete the explanation, it

has to be shown that C(q,,.;, ., )y zc(qnf,qnf)qnf holds. To do so, the third point must be

invoked.

According to the relations (1.3) and (1.17), only the joint velocities can be squared. This implies that
we must prove that the following approximation

Gres, = (G, + Bt )2 =Gy (3.33)

holds for j=1,..,n.
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Straightforward calculations give

Qe =(dy 404, ) =0 + 64y (0, +2d, ).

If the trajectories are assumed to be sufficiently exciting, then one obtains

Qo > 0 s

which yields

(5q.mesj + 2q‘nf‘/ ) = 2qnf,. . (3.34)

The following approximation is obtained

Gres, =iy 24,y Oy =Gy (4 +204,, )

leading to (3.33) thanks to (3.34). Finally, one obtains C (4., s ) Qpes = C(qnf,qnf)qnf :

It has been proved that the errors are mostly contained in the joint accelerations and this
explanation is consistent with the experimental results obtain with the SCARA and the TX40 robots
and with the concepts of “position accuracy” and “position repeatability”.

3.5.6 Comments on the construction of the instruments

In this manuscript, only one way to build the instrumental matrix was presented and validated
through the Revised DWH-test. Without a shadow of doubt, it would have been possible to construct
the instrumental through another way. It must be noticed that in the case of robot identification, it
seems natural to simulate the DDM which is our auxiliary model since it can be calculated by the
Newton’s law(s). Furthermore, the initialization of the IDIM-IV is not a critical issue because the
regular initialization or, as we shall see in the next chapter, the CAD values can be used. However, it
is interesting to note that the closed-loop relations can be utilized in order to build the set of
instruments as done in [Boeren et al. 2015 a], [Boeren et al. 2015 b] and [Boeren et al. 2016].
Furthermore, the authors make a relationship with [Janot et al. 2014 c] where some approximations

are made. It should be interesting to apply the way of constructing 7 presented in [Boeren et al.
2016] and evaluate the quality of the instruments with the Revised DWH-test.

3.6 Conclusion

In this paper, a statistic based on the DWH-test relevant for identification of robots has been
introduced and experimentally validated on the EMPS, the SCARA prototype and the 6 DOF TX40
robot. The main contributions of the work presented in this chapter are the following:

e The statistic can validate/invalidate the instruments chosen by the user and is based on
general statistical assumptions;
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e The statistic is able to detect model misspecifications;
e The algorithm makes use of the QR factorization of an augmented matrix and is combined
with a F-test if required;

e The revised statistic is able to validate/invalidate IDIM-LS estimates.

The results provided by the revised statistic were cross-validated and compared with those provided
by the augmented DWH-test widely used in econometrics. Since all the results are close to each
others, this shows that the results provided by the Revised DWH-test are reliable.

Finally, by bringing and adapting methods coming from econometrics, it is now possible to assess the
quality of instruments which is equivalent to validate the model in the case of robot and
electromechanical system identification.
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4 Chapter 4: Perspectives and future works

4.1 Introduction

The timeline of my contributions presented within this manuscript is plotted in Fig. 4-1. The timeline
starts with the IDIM-LS method considered as the root, continues with the IDIM-IV method and
“ends” with the Revised DWH-test. This chapter introduces the perspectives that the IDIM-IV method
and the Revised DWH-test can offer.

In the first section, the IDIM-IV method is compared with other approaches. The first one is the
standard CLOE method which is a popular technique in automatic control used to overcome the
problem of noisy observation matrix. Then, the IDIM-IV method is compared with the DIDIM method
which belongs to CLIE methods. Finally, some comments on the results obtained and some
perspectives are introduced. This work was partly published in [Janot et al. 2014 a] and [lanot et al
2014 c]. In the second part, a method that combines grey- and black-box identification approaches is
presented. This new approach based on the use of the SDP method introduced by Young in [Young
2000] and the IDM is applied to the EMPS prototype. The results show the usefulness of such an
approach. This new idea is published in [Janot et al. 2016 b]. Then, relationships between the robotic
and automatic control approaches are highlighted while the technological aspects of real-time
programming and implementation of online closed-loop identification methods are dealt with in a
fourth section. Finally, other interesting real-world applications for the application and/or adaptation
of the methods presented within the manuscript are presented.

I Statistics I | Robotics ‘ Mechanical
engineering

| ]

Statistics

Automatic
control

~ [ Contributions |

Econometrics

Statistics

IDIM-IV method +
Revised DWH-test

Fig. 4-1 : Timeline of my contributions presented within this manuscript.
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4.2 The IDIM-IV method compared with other identification methods

4.2.1 Presentation of the standard Closed-Loop Output Error Method (CLOE)

The OE method is a standard method utilized to overcome the problem of noisy observation matrix
in the automatic control community. According to [SOderstrom and Stoica 1989], Chapter 7 pp. 198,
the OE method is a particular case of the PEM introduced by Ljung, see e.g. [Ljung 1976], [Ljung
1999] and [Ljung 2002]. It thus makes sense to compare the IDIM-IV method with this approach
which minimizes a quadratic error between an actual output and a simulated output of the system
assuming both the actual and the simulated systems have the same input. For robot identification, it
is more convenient to choose the CLOE method than the OE method because robots are unstable
open-loop systems [Gautier et al. 2013]. By taking the measured joint positions as the outputs, the

actual output vector is y, =q and the simulated output vector is y; = qg where q; is obtained from

the integration of the DDM. The criterion to be minimized is

T(B)=ly, ~¥s[ =(v,~¥s) (v,~¥s). (4.1)

The minimization of J(B) given by (4.1) is a Nonlinear Least-Squares (NLS) problem. The estimates

can be computed using algorithms such as the gradient method or Newton methods that are based

on a first- or second-order Taylor’s expansion of J(B), and available in the Isgnonlin MATLAB
function. In this part, we focus on the GN method which is a Newton method based on a Taylor series

expansion of Yy at the current estimates ﬁkaog . With

k+1

yZYS< CLOE)+eCLOE' (4.2)

where €., results from modelling errors and noises.
After data sampling and parallel decimation, the following over-determined system is obtained
Ay = X(SAﬁ]g;)E Tec 06, (4.3)
where
® AﬁI&IOE = 1&105 - ﬁ]éLOE ;
e Ay isthe sampling of (y—ys (ﬁ’gLOE));
o X, is the sampling of 8, =(8yS(B)/aB)ﬁZ,_oE the (nxb) jacobian matrix of y, with respect

to P evaluated at fi'éLOE;
® &, isthe sampling of (0+eCLOE);

e 0 is the residual of the Taylor series expansion.
Aﬁk&‘og is the LS solution of (4.3).

This process is iterated with new estimates given by
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0 k+1 nk 0 k+1
CZOE = BCLOE + ABCZOE ’ (4.4)

0 k+1
( CZOE ﬁCLOE / BCLOE

H‘(:CLOE//(H is the norm of error at iteration k& and BCLOE(i) is the ith component of ﬁ’gm. The

HSCLOE//(H/HSCLOE//(H<t01 and max )|<tol,, where

AAAAA

until HSCLOE//H—I

parameters to/, and fol, are chosen as discussed in the second chapter.

The error €. is assumed to have zero mean, to be serially uncorrelated and to have a diagonal

covariance matrix £ partitioned so that Q=diag(0';1ni 0'5 L - 0'5 InA), where 1, is the

(n,xn,) identity matrix and O'; is the variance of the joint ; position ¢, . The covariance matrix of

CLOE estimates is then given by

_ -1
Zoor =(X5Q27X,) (4.5)
The relative standard deviation %O'ﬁ n of %, (i), the ith component of BY, oz, is given by
%G, —IOOJECLOE(I',I')/ ﬁ’éLOE(i)‘ for ﬁ/éLOE(i)‘;tO, where X, (i,i) is the ith component of
z"CLOE :

Although the CLOE method is robust against data filtering, it is more time consuming than the IDIM-
LS method because the DDM must be integrated to calculate the sensitivity functions [Richalet and
Fiani 1995] and [Walter and Pronzato 1997]. Finally, it is necessary to have good initial estimates in
order to avoid multiple and local solutions [Richalet and Fiani 1995], [Walter and Pronzato 1997] and
this explains why researches deal with the problem of initialization, see e.g. [Tohme et al. 2007],
[Ouvrard et al 2010] and [Carrillo et al. 2012]. However, for robot identification, the problem of
initialization is conveniently circumvented with the CAD values. It is finally expected that the CLOE
method is more time consuming than the IDIM-IV method which requires only one simulation of the
DDM per iteration.

4.2.2 Presentation of the DIDIM method
The DIDIM method is a CLIE method where the actual and simulated outputs are y=71 and y, =1,

respectively. This method being completely described in [Janot 2007], chapter 4, [Gautier et al.
2013], only the main steps are recalled in this subsection.

The Taylor series expansion of y, =1, at current estimates B¢, is calculated with the jacobian

matrix of T (p) approximated by

6ys/|1 = IDM(qs (ﬁkD[D[M ) aqs (ﬁlz)[D[M ) aqs (ﬁkDID[M )) , (4.6)

with y=t+e,,,,,, €ppn, resulting from modelling errors and noises. After data sampling and

parallel decimation, the following over-determined system is obtained
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y(r) =X (qS’qSWqS’BIZ)ID[M)B+8DID1M1 (4.7)
where y(1), X, and ¢,,,,, arethesamplingof =, &, , and (o+e,,,, ), respectively.

From relation (4.7), it comes out that the DIDIM method makes use of the IDM where (q,q.4) are
estimated with (qy,qy.q;) instead of (6‘,&,&) . The vector of the simulated joint accelerations, ¢, is
calculated with the DDM as explained in the second chapter while (qy,q5) are calculated by

numerical integration of ;. At iteration k+1, B:! , the LS solution of (4.7) is given by

. -1
BEJIMM = (ngs) ng . (4.8)

This process is iterated until HSDIDIM/kH —HSD,D,M/kH/HSDID,M/ku <tol, and

E}axb‘(ﬁgém (l) - ﬁ]z)]DIM (i))/ﬁgww (’)

and fi’g,D,M (i) is the ith component of ﬁ]bmm- The parameters to/, and fol, are chosen as discussed

is the norm of error at iteration k&

<tol,, where HSD,DIM/,(

in the second chapter.

€,pn 1S assumed to have a diagonal covariance matrix Q  partitioned so that

deiag(oflm ol

Jon,

ofl,,(,). The covariance matrix of DIDIM estimates is given by

-1 A~ A .
Zoom = (X5Q7'X;) . The relative standard deviation %G, ., of Bhwns (i), the ith component of

BX oy » is given by %d6, 0= 10042,/ (i,i)/‘ﬁ’,;,D,M (1)‘ for ‘ﬁ’,‘),D,M (1)‘ #0 where X, (i,i) is the ith

B 'DIDIM

componentof X .

4.2.3 Experimental comparison with the CLOE and DIDIM methods

The IDIM-IV method is now compared with the CLOE and DIDIM methods on the TX40 robot. In this
comparison, the DDM simulation is performed without updating the gains of the simulated
controller, the three methods are initialized with the CAD values provided by the manufacturer, data
are filtered as explained in the second chapter and the Isqnonlin MATLAB function is used to run the
GN algorithm.

The results given in Table 4-1 show that the GN algorithm converges after 30 iterations while both
the DIDIM and IDIM-IV methods converge in 3 iterations only. The same results are obtained if the
GN, DIDIM and IDIM-IV methods are executed without data filtering; they are not shown here. The
CLOE estimates stick with the IDIM-IV and DIDIM estimates. However, if the GN algorithm is
initialized with values that are far from CAD values, it does not converge (some values of inertia and
friction parameters are negative) whereas the IDIM-IV and DIDIM methods converge in 5 iterations.
As expected, the standard CLOE method seems not really suitable for 6 DOF robots identification:

e it converges slowly;
e it needs multiple DDM simulations to calculate the gradient and/or the Hessian matrix of the
criterion;
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e tis sensitive to initialization.

For completeness, two other optimization algorithms have been tested: the LM and the NM
methods.

The main advantage of the LM method lies in the fact that it combines the Gradient and GN methods
and this usually results in better convergence properties and good robustness against initialization
[Marquadt 1963]. The results obtained with the LM method are very close to those obtained with the
GN method given in Table 4-1: when initialized with the CAD values, the LM method converges in 26
iterations and takes 56 minutes but if it is initialized with values far from CAD values, the LM method
converges to another optimal in 37 iterations and 94 minutes. This result can be explained by the fact
that the jacobian matrix is ill-conditioned and it follows that the LM method is quite sensitive to
initialization like the GN method is.

The NM method is a simplex method which avoids the calculation of the gradient and of the Hessian
matrix [Lagarias et al. 1998]. If the NM method is initialized with the CAD values, the NM method
converges after 257 iterations to the values given in Table 4-1 within 2 hours. If the NM method is
initialized with values far from the CAD values, it succeeds to converge to the values given in Table
4-1 but it needs 864 iterations and 3 hours. Despite a bad initialization, the NM method succeeds to
converge but it is not really suitable for industrial robots identification because of its convergence-
time.
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Table 4-1: CLOE, DIDIM and IDIM-IV estimates obtained after convergence - Data filtering - TX40

robot
ﬁSC‘OLOE (%5- Bror ) ﬁi)[D]M (%OA-‘MDW ) mv (%6/%)

Z71r 1.25(1.1%) 1.25(1.3%) 1.25(1.3%)
Fvy 8.21 (0.8%) 8.20 (0.7%) 8.20 (0.7%)
Fe, 6.53 (3.1%) 6.55 (2.6%) 6.55 (2.6%)
XXk | -0.48 (10.6%) -0.48 (2.9%) -0.48 (2.9%)
XZ,x | -0.15 (4.2%) -0.16 (4.8%) -0.16 (4.8%)
ZZx | 1.08 (1.8%) 1.09 (1.2%) 1.09 (1.2%)
MX,z | 2.20 (2.9%) 2.21(2.9%) 2.21(2.9%)
Fv, 5.70 (1.0%) 5.68 (1.2%) 5.68 (1.2%)
Fc, 7.74 (1.8%) 7.77 (2.1%) 7.77 (2.1%)
XXsr | 0.13 (9.3%) 0.13 (10.0%) 0.13 (10.0%)
ZZx | 0.11 (8.8%) 0.12 (8.8%) 0.12 (8.8%)
MYsz | -0.56 (2.2%) -0.60 (2.3%) -0.60 (2.3%)
la; | 0.098 (9.5%) 0.10 (9.2%) 0.10 (9.2%)
Fvs 2.00 (1.5%) 2.03 (1.8%) 2.03 (1.8%)
Fcs 6.07 (1.3%) 6.0 (1.9%) 6.0 (1.9%)
MX,; | -0.03 (17.5%) -0.02(20.0%) -0.02(20.0%)
la, | 0.03(9.5%) 0.03 (9.4%) 0.03 (9.4%)
Fv, 1.14 (1.2%) 1.15 (1.5%) 1.15 (1.5%)
Fcs | 2.30(3.3%) 2.27 (2.6%) 2.27 (2.6%)
MYsz | -0.04 (15.0%) -0.03 (14.0%) -0.03 (14.0%)
las 0.04 (9.2%) 0.04 (11.0%) 0.04 (11.0%)
Fvs 1.85 (1.5%) 1.90 (2.0%) 1.90 (2.0%)
Fcs | 2.90 (3.3%) 2.80 (3.5%) 2.80 (3.5%)
lag. | 0.0099 (9.5%) 0.01 (10.9%) 0.01 (10.9%)
Fve | 0.65 (1.4%) 0.69 (1.6%) 0.69 (1.6%)
Fce 2.22 (2.7%) 2.00 (2.8%) 2.00 (2.8%)
fVms | 0.60 (1.4%) 0.63 (1.8%) 0.63 (1.8%)
fcme 1.93 (3.3%) 1.81 (4.2%) 1.81 (4.2%)

4.2.4 Comments on the performances of the CLOE method
In this subsection, it is explained why both the IDIM-IV and the DIDIM methods have better
performances than the standard CLOE method for the identification of rigid robots.

Let us consider a joint j control as illustrated in Fig. 4-2. As done in the second chapter, it is
convenient to consider the nonlinear model of a robot as decoupled linear models where each joint
j dynamic model P (s) is a double integrator perturbed by the nonlinear coupling term p,. It is

is given by pj:—ZMj,i(q)('ji—Nj(q,q), where M, (q) is approximated by a

i#j

recalled that p;
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constant inertia denoted J,, with J, =ZZ, +1a, +m§1x(M‘,.,, (45)-2Z,—1Ia;). One has P (s)=1/J s’

while C,(s) is the transfer function of the joint ; controller. Finally, s is the Laplace's variable and

q, is the reference of the joint ; position.

With straightforward calculations, the following closed-loop relations are obtained

- (4.9)

o H;(s)=C;(s)F(s)/Den(s)
*  D;(s)=P(s)/Den(s)
° H;(S)ZCJ. (s)/Den(s)

® Den(s)=1+C;(s)P,(s).

With a well-tuned controller, for frequencies below @, , the bandwidth of the joint ; closed loop,

the following approximations are obtained:

The relations (4.9) are thus approximated by

=1, (4.10)
T;fzqr,/Pj(S)_pj ' .

The relations (4.10) show that we have clearly a better access to the dynamic behaviour of the robot
by considering the IDM than by considering the DDM. The first equation of relation (4.10) is indeed
essentially the steady-state error which is mainly caused by Coulomb friction and gravity (low-
frequency behaviour). However, because o, is usually large for industrial robots [Khalil and Dombre,
2002], chapter 14, this error is small and this leads either to an ill-conditioned jacobian matrix X; or
a well-conditioned jacobian matrix with small singular values. The second equation of relation (4.10)

shows that both Pj(s) and p, are directly accessible via the joint torque. This leads to a well-

conditioned jacobian matrix X and instrumental matrix Z.

q, Jpj q,
4?*(71(5) S Pj(s):JjSZ

Fig. 4-2: Actual joint j control
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4.2.5 On the relation(s) between the IDIM-IV and DIDIM methods

The experimental results show that the IDIM-IV method and the DIDIM approach have the same
performances. It is thus legitimate to assume that the two methods are linked i.e. the IDIM-IV
method turns to the DIDIM approach or the DIDIM approach can be seen as an IV method,
depending on our point of view.

In the case of robots, both the IDIM-IV and DIDIM methods are based on the simulation of the DDM
which is the auxiliary model. Hence, the following relation holds

A

Z=X,. (4.11)
Assuming that there is no modelling error, the IDM is well specified and one obtains
Z=X;=X,. (4.12)

The DIDIM estimates given by (4.8) can be thus written as

i = (XX, ) XDy, (4.13)

which is completely equivalent with the IDIM-IV solution according to the relation (2.12) given in the
second chapter. Relation (4.13) also explains why the DIDIM method converges quickly.

Interestingly, the DIDIM estimates given by (4.8) is the IV solution raised in [S6derstrom and Stoica
1983] equation (3.43b) page 38. If we follow the authors’ point of view, the DIDIM approach can be
considered as a sort of bootstrap IV variant. In our case, this point of view makes sense since at

iteration k+1, (q5.4s.ds) are constructed based on the estimates B¢, and then, B is used to

construct (q,,45.qs) atiteration k+2 and so on.

It is worth to note that the DIDIM estimates (4.8) can also be seen as the 2SLS estimates (3.8) where
X is replaced with X . Those different relations explain well the correlation that exists between the

IDIM-IV and DIDIM methods and this correlation explains why the two methods have the same
performances.

To be complete, the reader is invited to read [S6derstrom and Stoica 1989] part 7.4 page 198 where
the authors make some relationships between the PEM and other methods, [S6derstrom and Stoica
1989] complement 7.4 page 236 where the authors deal with the GLS method and [S6derstrom and
Stoica 1989] complement 7.5 page 239 where the authors introduce the OE method. The correlations
made by the authors are really interesting and deserve attention from mechatronics and robotics
communities. Finally, it might be interesting to establish relationships between the covariance matrix
of the PEM with the covariance matrix of the GMM estimates, see [Baum et al. 2007] equations 13
and (20) and with the HAC matrix, see [Newey and West 1987] and [Baum et al. 2007] equation 25.
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4.2.6 Brief comments on the Total Least Squares approach

In [Janot et al. 2014 a], the TLS method have been compared with the IDIM-IV and the experimental
results showed that the IDIM-IV method outperforms the TLS technique when raw data are utilized.
But, in [Van Huffel and Vandewalle 1989 a] and [Soderstrom and Mahata 2002], it has been
demonstrated that the IV and TLS approaches have similar performances. In order to explain the
poor performances of the TLS method for robot identification, it must be noticed that in [Janot et al.
2014 a] only the simple TLS approach has been considered whereas in [Van Huffel and Vandewalle
1989 b] the authors have proved that the covariance matrix of the noises corrupting the observation
matrix and the vector of measurements must be known to get consistent TLS estimates. This implies
that the GTLS method must be used instead of the simple TLS technique. If in the case of linear DT
models the knowledge of the covariance matrix of the noises is not a critical issue, see e.g. [Van
Huffel and Vandewalle 1989 a], [Van Huffel and Vandewalle 1991] and [S6derstrom and Mahata
2002], this is not true for robot because, as stated in subsection 3.5.5., we have to face nonlinear
trigonometric and square functions and this implies that some approximations are required to
compute this covariance matrix. Furthermore, since the DDM can be calculated analytically by
applying the Newton’s law, it seems more natural to simulate it in order to construct the set of
instruments, as explained in the second chapter, than to calculate the covariance matrix of the noises
contained in the observation matrix and the vector of measurements. Interestingly, although in a
somewhat different context, Peter Young raises the same problem, in [Young 2011], chapter 6, page
153, equation 6.37. Finally, it should be stressed that the GTLS technique is popular in computer
vision, see [Leedan and Meer 2000], [Nayak et al. 2006] and [Matei and Meer 2006] and in signal
processing, [Markovsky and Van Huffel 2007]. This is explained by the fact that the covariance matrix
of the noises can be calculated.

4.2.7 Comments on the initialization

The IV algorithms are often initialized with values obtained through LS estimation [S6derstrom and
Stoica 1983], [Soderstrém and Stoica 1989], [Garnier and Wang 2008], [Gilson et al. 2011], [Young
2011] and the references given therein. Although this way of doing is perfectly suitable, in the case of
identification of electromechanical systems it is recommended to use the CAD values that are often
provided by the manufacturers. Furthermore, as shown in the second chapter of the present
manuscript, the LS estimates could be strongly biased i.e. far from the optimal ones. In that case, the
IV algorithms may diverge or converge to bad values (to understand the difference between optimal,
good, acceptable and bad values, the reader is invited to read [Young 2011], epilogue) as enlightened
in [Janot et al. 2013 b]. This enlightens very well another one major difference between grey-box and
black-box identification methods.

4.2.8 Conclusion

In this section, the IDIM-IV method has been compared with the standard CLOE approach and a new
CLIE technique called DIDIM. The experimental results have shown that the IDIM-IV and DIDIM
methods have the same performances whereas the standard CLOE method seems not really suitable
for identification of rigid industrial robots. This result is mainly explained by the fact that each joint is
controlled resulting in a jacobian matrix, X, that contains little information. In addition, it has been
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briefly explained why the IDIM-IV and DIDIM methods have the same performances. This tends to
show that some paths exist between the different approaches from different fields (robotics,
mechatronics, automatic control, econometrics, environmental sciences..) and it would be
interesting to explore them in order to establish some relationships and then enrich the different
methodologies. This might be an extension of the work presented within this manuscript.

4.3 Combining grey- and black-box identification methods: introduction of
the State-Dependent Parameter method

4.3.1 Motivation

As presented in the first chapter, the dynamic models of robots (and electromechanical systems in
general) are most often formulated directly from the Newton’s laws or Lagrange’s equations. The
models are thus available directly in a physically meaningful form and this explains why black-box
identification and estimation is not or rarely considered necessary (or completely ignored) in the field
of robotics and mechatronics. However, this does mean that the modeller is assuming that the
physical interpretation is completely correct. For instance, it is known that it is difficult to a priori
model the friction effect because it is usually nonlinear at low velocities and this explains why friction
model is often identified through specific tests (see the survey [Bonnat and Indri 2005] and
[Bittencourt and Axelsson 2014]). Another way of looking at this problem consists in combining grey-
and black-box identification procedure as done in [Noél et al. 2015]. Such a combination “helps” the
black-box approach by introducing prior knowledge of the system that the user has. In our case, we
“help” the grey-box technique by introducing a black-box approach able to capture some nonlinear
effects. A promising approach that allows for the identification and estimation of nonlinearities in
dynamic systems is the SDP method of nonlinear model estimation considered in the present section.
This SDP methodology is also a tool that has proven useful in a number of practical applications in
various different areas of study (see e.g. [Young 2011], chapter 11 and the prior references therein).

4.3.2 Introduction of the SDP method

The SDP method is a statistical identification procedure able to identify the presence and graphical
shape of nonlinearities in dynamic system models based on experimental sampled data, with a
minimum of assumptions about the nature of the nonlinearities. SDP estimation is carried out in two
distinct stages (see e.g. [Young 2005]): the first, a non-parametric identification stage, where the
detailed model structure is identified; and the second, a parametric estimation stage, where the
(normally constant) parameters that characterize a selected parameterization of this structure are
optimized in some appropriate manner.

In the first, non-parametric stage of SDP modelling, the recursive SDP estimation algorithm is an
extension of the stochastic approach to TVP estimation (e.g. [Young 1999] and the prior references
therein). As in this TVP case, SDP estimation exploits the power of recursive fixed interval smoothing
(FIS) estimation to obtain lag-free, smoothed estimates of the parameter variations. However, it
differs from TVP estimation in two important respects (for the detailed description, see [Young
2000], [Young 2001 a] and [Young et al. 2001]. First, in order to allow for the rapid variation that

122



state dependency can induce in the parameters, the data are sorted into some other, normally non-
temporal order (e.g. ascending order of magnitude), so that the rate of change of the parameter
variations between samples in this sorted data space is much smaller than in the original observation
space. Secondly, an iterative “back-fitting” algorithm is used to allow for the possibility of different
state dependency in each parameter.

As we see in the later experimental example, this nonparametric stage results in a plot of each SDP
against its associated state variable, so providing a graphical portrayal of the non-linearity and its
location within the model. In other words, non-parametric SDP estimation identifies the structure of
the non-linear model, preparatory to the second, parametric estimation stage. Here, the non-
linearities are parameterized in some parametrically efficient manner involving parameters that are
normally constant and estimated using a suitable optimization approach. It is this two-stage
approach that most distinguishes the SDP method from other related approaches to nonlinear
system modelling, such as linear and nonlinear parameter varying (LPV/NLPV) methods (e.g. [Previdi
and Lovera 2003]). The two stages are useful in practice because they help to ensure that the model
is parsimonious, with nonlinearities identified and estimated only where they occur within the non-
linear SDP model structure.

SDP modelling was developed in this two-stage manner so that it could act as a major tool in DBM
modelling (see, e.g. [Young 1998] and the prior references therein), where the non-parametric stage
often allows for the interpretation of the nonlinear model elements in some physically meaningful
manner. Such an interpretation is less straightforward in the case of “black-box” nonlinear models,
such as LPV and NLPV, that exploit linear combinations of basis functions or neural net algorithms
(see e.g. [Previdi and Lovera 2004] and the comment on this in [Young 2005]). Moreover, it is
important to note that the non-parametric model can be used in its own right, depending on the
nature of the application, and so it is not always parameterized; whereas parameterization is the
norm in LPV identification.

4.3.3 SDP-based identification method of the EMPS

As stated in the first chapter, the standard linear friction model is only valid within a given velocity
range. At low velocities, the friction normally exhibits clear non-linear effects (e.g. Stiction and
Stribeck etc.). It is convenient, therefore, to introduce a state-dependent parameter that is able to
cope with such non-linearities. Also, in order to validate/invalidate the assumption that the other
dynamic parameters are time-invariant, other state-dependent parameters may be identified during
SDP estimation.

In the case of the EMPS, the mass M may be acceleration-dependent. The IDM is thus rewritten as
Tidm :M(q)q-{_dfr[c(q.)' (4.14)

with d,. (¢)=7,, and M(g) allowing for the possibility of any significant acceleration dependency.
Note that 4, (¢) is simply the friction force that depends only on the velocity and so it can be
considered, therefore, as a state-dependent parameter (d,, (¢) is used instead of d(¢) in order to

avoid ambiguity with the linear friction model).
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The IDM (4.14) is now written as a linear-in-the-state-dependent-parameters form given by

Tidm = IDMsa’p (q5 q.a q)esdp ’ (415)

.. . T
Wlth IDMsdp (q’q’q) = [q 1] and esdp :I:M(q) dﬁic (q):' *

As with the IDIM-LS method, the actual force 7z differs from ¢, by anerror ¢, and so, in a similar

i

fashion, the following over-determined system of equations is obtained
Yin =X, (8:4:G)0,,, +2,,,, (4.16)

where X, is the (N x2) sampled matrix of IDMSdP(c},é,qA'); g, is the (N;x1) sampled vector of

sdp

e, and (j,é,é} are constructed as explained in the first chapter.

sdp

The acceleration-dependent mass M (G(z)) and the friction nonlinearity d, (¢(z)) are

simultaneously estimated by the SDP routine in the CAPTAIN Toolbox. The SDP routine provides

M(é), the estimate of M(q), the (Nyx1) sampled vector of the acceleration-dependant mass
M(é), and (Aifn.c (é), the estimate of d ;. (é), the (N4 x1) sampled vector of the velocity-dependant

friction d ;. . As a result, the SDP model residual, ¢ ,,, is calculated as
A _ di al
gsdp =Yidn — e Xsdp®sdp ’ (417)

where “¢X =[diag(fj) INS} is the (Ngx2-Ny) matrix of Xsdp(c},c},é}) all of whose sampled
basis sampled basis functions are diagonalized and horizontally stacked; diag(fj) is the (NgxNy)
diagonal matrix whose the ith element is the ith element of q the (Nyx1) sampled vector of §; Iy,

A AT A NVl
is the (Ny;xNg) identity matrix; and @Sdp:[M(Q) dfm,(q')} is the estimate of

AT NVl
0, =[M(é) dfric(q') } the (2 Ny x1) sampled vector of 0, . Finally, the relative error is given

sdp

o |-

by

4.3.4 Experimental results
The dynamic parameters M, F,, F. and offset are first identified with the standard identification

IDIM-LS approach described in the first chapter.

As pointed out in the third chapter, since it is possible to generate very accurate experimental data
and utilize appropriate data filtering, the LS estimates can be considered as unbiased, even though
the EMPS is identified in closed loop. This point is dealt with in the second chapter. The LS estimates
and the relative errors are given in Table 4-2.
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The acceleration-dependent mass estimated by the SDP method is illustrated in Fig.4-3. We see that
the SDP estimation suggests a constant value very similar to the IDIM-LS estimate (there is only a
difference of 60g which is negligible compared with 95Kg). Note also that the optimized NVR

associated with the M((}) term in the SDP regression, which defines the amount of state

dependency (see [Young 2011], chapter 11), is 1.0e-23 i.e. virtually zero; while the NVR associated

with cAl/.”.C(é) is 2.9. This large difference between the two NVR's is consistent with our a priori

knowledge and suggests that the mass is not acceleration-dependent. As similar results are obtained
with a position- and velocity-dependent mass i.e. M (g) and M(q), respectively, it can be assumed

that the mass is state-invariant. Given the large value of 2.9 for the NVR associated with the friction
SDP estimate, the SDP method is able to reconstruct the shape of the frictional nonlinearity, as
shown in Fig.4-4. Finally, the relative error obtained with the SDP-based identification method is only
1.5%.

At first glance, the results obtained with the standard IDIM-LS identification method and the linear
friction model seems quite acceptable. Indeed, the relative error is small (less than 5%) and the
estimated mass is close to its CAD value i.e. 95kg. However, the relative error obtained using SDP
estimation is only 1.5% and we need to examine the reason for this discrepancy between the results.
This is due to the estimates of the friction parameters, as revealed in Fig.4-4. Here we see that there
is a small but sustained difference between the red and blue lines in the lower part of the curves
(negative velocities), which suggests that there could be a small bias in the latter (see the enlarged
panel in the lower right corner of Fig.4-4). In other words, there is a small error in the friction model
identified by the standard method and the SDP friction estimate eliminates this by suggesting an
asymmetrical friction model; i.e. a model that depends on the sign of ¢ where, for negative
velocities, the red and blue lines are not perfectly parallel. This asymmetry can be explained by the
fatigue of the screw.

In order to take this asymmetry into account, the friction model is modified to

T, =F 07 (¢)+F/ sign(07(¢))+ F, 07 (¢)+F,sign(07(¢)), (4.18)

Lt sien(a L= sion(
where 0" and 0~ are two operators defined by 0*(q)=q[#(q)j and 0(4):4(%(6])}

F and F' (resp. F, and F, ) are the viscous and Coulomb friction coefficients for the positive (resp.

negative) velocities. Finally, 07 (¢) (resp. 0" (¢) ) returns ¢ if ¢ >0 (resp. ¢ <0)and 0 otherwise.
When equation (4.18) is inserted into the IDM, it yields the following linear-in-the-parameters IDM

r,, =IDM_ 0 (4.19)

asym~ asym !
with IDM,,,, =[4 07 (¢) sign(0"(¢)) 07(q) sign(0™(¢))] and 0, =[M F~ F~ F F|.

As in the previous situations, the actual force 7 differs from t,,, by an error ¢, and the resulting

asym

over-determined set of equations takes the form,
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Yiim = XsomOasom T € (4.20)

asym ™ asym asym’

where vy, is the (Ngx1) sampled vector of z; X, is the (N;x5) matrix of IDM_, ((},é,é}); and

asym

€, is the (Ngxl1) vector of e

asym

error terms. The LS estimates of (4.20) and their associated

asym
deviations are given in the second chapter, X, beingreplaced with X .
The resulting estimates and the relative error are given in Table 4-3. These confirm that the friction
has asymmetric behaviour because F," is significantly different from F, while the estimate of M
has not changed. Furthermore, the LS relative error has now decreased to 1.5%, a value that is
compatible with the relative error obtained with the non-parametric SDP method. The direct
comparison plotted in Fig.4-5 shows clearly that the agreement between the SDP estimated friction
shape and the asymmetrical friction model reconstructed with the above LS estimates is now
acceptable. This finally estimated relationship is the parameterised SDP model of the EMPS, which
we will term the IDIM-SDP model. Clearly, if the prior assumptions of the IDIM-LS estimation are
modified in the light of the SDP estimation, then the IDIM-LS estimation results would be the same.

Table 4-2 : IDIM-LS estimates of the EMPS with the standard linear friction model

Parameters | |DIM-LS estimates (%o, )
M (kg) 95.08 (0.15%)
F, (N/ms™) 202.30 (0.74%)
F. (N) 20.53 (0.64%)
Relative error 3.7%

Table 4-3 : Parametric IDIM-SDP estimates for an asymmetrical friction model

Parameters LS estimates (%o, )
LS (

0

M (kg) 95.12 (0.11%)
F* (N/ms?) | 16580 (0.92%)

F! (N) 20.19 (0.67%)
F~ (N/ms?) | 238.89(0.64%)

F(N) 20.85 (0.65%)
Relative error 1.5%
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Mass estimated with SDP vs Mass estimated with IDM
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Fig.4-3: Direct comparison between mass estimated with the IDIM-LS method (blue dots) and the
acceleration-dependent mass estimated with the SDP algorithm (red crosses): it is clear that the
mass is acceleration-independent.
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Friction estimated with SDP VS friction estimated with IDM
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Fig.4-4: The upper panel shows a direct comparison between the friction nonlinearity
reconstructed with the LS estimates of the linear friction model (blue dots) and the nonlinearity
estimated by the SDP algorithm (red crosses). The enlarged portion shown in the lower panel
reveals a small but persistent error that suggests an asymmetrical friction model.
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Asymetrical friction estimated with IDM and friction reconstructed with SDP
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Fig.4-5: Direct comparison between the friction nonlinearity estimated with the asymmetrical
linear friction model (2nd stage IDIM-SDP model, blue dots) and the friction nonlinearity previously
estimated by the first stage SDP algorithm (red crosses), showing that the two estimates are
consistent and confirm the asymmetry.

4.3.5 Conclusions

This section has shown how the concept of SDP models for nonlinear dynamic systems can be
exploited to aid the identification and control of electro-mechanical systems. It has demonstrated
how SDP identification provides an alternative to the existing standard methods of statistical
identification for such systems; an alternative that can help to avoid over-reliance on prior
conceptions about the nature of the nonlinear characteristics.

When used as a tool in the experimental evaluation of an EMPS, the first, non-parametric estimation
stage in the SDP identification procedure is able to discover deviations from the assumed nonlinear
characteristics of the system and quantify the resulting nonlinear characteristics in a practically
useful SDP form. The second IDIM-SDP stage, based on least squares estimation of the suitably
parameterized SDP model, can be considered as a logical improvement of the standard IDIM-LS
method.

SDP identification is one of the tools used for the DBM modelling of dynamic systems. This general,
inductive method of modelling differs from the alternative, hypothetico-deductive “grey-box”
approach that is often used for identifying electro-mechanical systems. In particular, only after initial,
purely data-based “black-box” modelling are any prior assumptions and hypotheses considered in
order to see if they are compatible with the identified model, or whether new data need to be
collected in order to examine any significant differences.

The perspectives will address the combination of the IDIM-IV method, the Revised DWH-test and the
SDP method in order to tackle the problem of nonlinear static frictions (i.e. nonlinear friction models
that depend on the joint velocities only) or nonlinear stiffness.
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For instance, the first results obtained with the second joint of TX40 robot which exhibits a Stribeck
effect at very low velocities show that the IDIM-SDP method is able to capture this effect. The results
plotted in Fig. 4-6 emphasize a good matching between the shape reconstructed by the IDIM-SDP
method and the shape extracted by standard methods while the linear model given by (1.9) is not
enough. It is planned to publish these results. A second example is the Silverbox system which is an
electronic circuit mimicking a Duffing oscillator associated with a nonlinear stiffness. This benchmark
is completely described in [Schoukens et al. 2003] and [No6el et al. 2015]. The system was excited
using random phase multisines [Pintelon and Schoukens 2001] considering root-mean-squared (RMS)
amplitudes of 5 and 100 mV. The results gathered in Fig. 4-11 show that the SDP method is able to
capture the quadratic shape of the involved nonlinear stiffness. This estimated shape matches the
forms obtained with different approaches. For the Silverbox benchmark, the SDP method was
associated with the DDM in order to get accurate results. The combination of the DDM and the LS
estimation is called DDIM-LS method while the combination of the DDM and the SDP method is
called the DDIM-SDP technique. The details are given in [Janot et al. 2016 c] and it is planned to
present and publish these results.

Friction estimated with SDP and Linear friction model %3 friction extracted

Friction extracted
+  Friction estimated with SOP ]|
4  Linear friction estimated

Friction (Mm)
[am]

45 04 03 02 -01 1] 0.1 02 03 04 05
Welocity (radis)

Fig. 4-6 : Stribeck effect captured by the IDIM-SDP method compared with the shape extracted
with standard methods and the usual linear model. Second joint of TX40 robot.
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Fig. 4-7 : Quadratic stiffness reconstructed by the DDIM-SDP method compared with the shapes
calculated with the estimates of other approaches. Silverbox system.

4.3.6 Comments on “Non-Parametric Model Structure Identification and Parametric
Efficiency in Nonlinear State Dependent Parameter Models” by P.C. Young, [Young
2006]

Some comments on [Young 2006] are now provided. This paper is based on [Hu et al. 2001] and the
comments on this in [Young 2001 b]. It emphasizes well how the SDP method can be applied for the
identification of a crane and shows that the performances (in terms of model prediction) of the
model identified through the SDP method are completely equivalent with the performances of a
model containing 102 constant parameters estimated via a fuzzy method that is not introduced here.
In the case of this study, as the first step in the SDP analysis, the author examines a scatter plot of the
Input-Output (I0) data. Such a plot makes sense because it can reveal important aspects of the
nonlinearity affecting the system and its examination should be de rigueur for any analysis of
nonlinear 10 data. From this figure, the author enlightens strong evidence of an input nonlinearity
which involves asymmetric limiting, a possible dead-zone effect around the origin and the sign
reversal. Then, the author reconstructs the input data by accounting for the enlightened
nonlinearities. Finally, the author points out that the results suggest strongly that the most significant
aspects of nonlinearity occur at the input to the system and so yield an effective input to a linear
transfer-function model in series with this nonlinearity i.e. Hammerstein type model. This result is
not really surprising since electromechanical systems such as robots can be seen as Hammerstein-
type systems because the nonlinearities affect the input. By accounting for the input-nonlinearities, a
linear model with 6 parameters is enough to describe the dynamics of the crane resulting in a rather
simple dynamic model of the crane. Finally, the author concludes that “the SDP model's ability to
explain the data compares very favourably with the results obtained by other research workers using
much more heavily parameterized models and so its limitations could be due to data deficiencies.”

Interestingly, the analysis made by the author in [Young 2006] can be related with the examination of
the residuals made by the authors in [Thamasebi et al. 2005]. In this paper, the authors showed that
a friction model must be accounted for in order to enhance the dynamic model of the Phantom
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haptic interface presented in [Cavosglu et al. 2002]. A scatter plot of the velocity-residuals data
indeed revealed a strong evidence of a missing friction model which involved a viscous and Coulomb
coefficients i.e. the standard linear model introduced in the first chapter. Similarly, in [Ljung et al.
2004], the authors provide a scatter plot of the voltage-residuals data that reveals strong evidence of
an unmodelled nonlinear effect. To be complete, it is interesting to point out that scatter plots are
often utilized in engineering in order to get a physical and meaningful interpretation of the
experimental results.

These comments tend to show that there obviously are relationships between the different fields of
research (even though they are closely related such as robotics and haptics) that have to be explored
in order to enrich the methods. Finally, the comments provided in this subsection are in line with
those provided in the section 4.2.

4.4 Linking the robotic approach with the automatic control approach

It is clear that the IDIM-IV method presented in the second chapter has been designed upon the IV
approaches known to the automatic control community since most of references come from this
community (see the references given in the second chapter). In a sense, the IDIM-IV method is in line
with the most advanced and recent IV methods proposed in automatic control because it can be
interpreted as Closed-Loop IV method for identification of CT dynamic models. In addition, the actual
joint ;j closed loop illustrated in Fig. 4-2 can be related with the closed-loop framework illustrated in

figure 5.1, chapter 5, and page 135, in [Garnier and Wang 2008]. However, despite those similarities,
some important differences still remain:

e The IDM is used instead of the DDM;
e An offline tailor-made data filtering is used;
e The filter that colours the residuals is not identified (structure and parameters).

Finally, there is no general framework similar with the one presented in [Gilson et al. 2011] for
instance. It would be therefore interesting to define a general methodology based on a multi-step IV
approach for robot identification. It is worth noting that some reviewers have raised this point when
our papers were submitted for publication in journals.

In robotics, the first critical issue is the identification of the structure of the controller. If the
structure is indeed known to the user, then a simple augmented IDIM-IV approach or a two-step IV
process will be sufficient. If the structure is not known to the user, then black-box methods have to
be utilized and it is obvious that such approaches are possible when no non-linearities are involved in
the control. This is actually the case when robots are identified for the very first time by the
design/research engineers because the dynamics is not perfectly known. In addition, it does not
make to use a model-based control while the model is not accurately known. However, when end-
users want to (re)identify the base parameters of industrial robots, some nonlinear effects may be
accounted for in the control (see e.g. [Jubien et al. 2014 a], [Jubien et al. 2014 b] and [Jubien 2014],
chapter 4) and the use of linear black-box methods is not appropriate. This explains why it was not
recommended to identify the structure of the controller as done in the second chapter. By putting
this critical point aside, a feasible two-step IV framework which assumes that the structure of the
controller is known to the user would be the following:
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e Identify the base parameters with the IDIM-IV method;
e |dentify the parameters of the filter structure the colours the IDIM-IV residuals.

This two-step IV procedure (or separable IV procedure) was the root for designing a two-step PEM
(or separable PEM) relevant for robot identification. This class of PEM was successfully applied to the
SCARA robot and the results are presented in [Brunot et al. 2016]. It is planned to publish them in an
international journal.

If the control does not involve any nonlinear component, a feasible three-step IV framework will be
the following:

e |dentify the structure and the gains of the controller via black-box methods;
e I|dentify the base parameters with the IDIM-IV method;
e |dentify the parameters of the filter that colours the IDIM-IV residuals.

The first results obtained with the EMPS prototype and the SCARA robot are really promising and
tend to show that this three-step IV approach is perfectly feasible. It is intended to apply this three-
step IV approach to the TX40 robot and to publish these results.

The second critical issue is the physical interpretation (or meaning) of the filter colouring the error.
As stated in the general introduction, such a filter may hide a modelling error, indicate that data are
over-sampled compared with the bandwidth of the closed loop or emphasize a “problem” in data
measurements e.g. the torque meters used in the LWR4+ robot (see e.g. [Jubien et al. 2014 a],
[Jubien et al. 2014 b] and [Jubien 2014], chapter 4). To be concrete, let us consider the plots provided
by the ACF routine illustrated Fig. 4-8 for two residual series obtained with the IDIM-IV method: left
panel, residuals with appropriate data filtering and modelling error (see subsection 3.4.4.3); right
panel, residuals with inappropriate data filtering and the “good” IDM. The robot considered here is
the TX40. As indicated in subsection 3.4.4.3, despite a modelling error, the plot of the ACF function
suggests a 10th order AR filter which is actually not a reason for concerns whereas with the good
IMD and inappropriate data filtering, the plot of the ACF function suggests a 100th order AR filter
which is actually a reason for concerns. Indeed, it is not common to deal with such an order.
Interestingly, | have asked 20 researchers, engineers and students to give me their opinion on the
plots and without surprise, they thought the 100th order AR filter was caused by a modelling error.
This result shows that caution must be taken when trying to find a physical meaning of the identified
filter.
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Fig. 4-8 : Left: Autocorrelation (upper panel) and partial autocorrelation of the error obtained with
an appropriate filtering and a misspecified IDM (see subsection 3.4.4.3). Right: Autocorrelation
(upper panel) and partial autocorrelation of the error obtained with an inappropriate filtering and
the “good” IDM. TX40 robot and IDIM-IV method.

4.5 Technological aspects: real-time programming of online identification

methods

In this manuscript, only offline identifications methods have been considered. The IDIM-LS, the IDIM-
IV, the DIDIM and the standard CLOE methods fall into the offline approaches. However, online
methods are utilized in many real-world application and research/industrial projects. It is known that
online approaches make use of recursive algorithms [Walter and Pronzato 1997]. Recursive IV
algorithms are presented in [Soderstrom and Stoica 1983] and [Young 2011], chapter 6 to chapter 10
while recursive LS algorithm is dealt with in [Walter and Pronzato 1997]. The recursive schemes are
not presented here, the interested readers can refer to those references and the references therein.
In this subsection, implementation of recursive algorithms on microcontrollers and/or DSP for
embedded systems is considered.

Most of today microcontrollers are equipped with a DSP-core that includes a FPU, have reasonable
RAM and FLASH memory sizes (see Fig. 4-9), and libraries dealing with trigonometric calculations and
matrix operations are provided by the manufacturers, see e.g. [Texas Instruments FPUfastRTS]. This
allows for the user to implement recursive algorithms that support floating operations resulting in
easier implementations. Otherwise, all the floating numbers must be converted into 32-bits integers
via an appropriate Qx format (as discussed in the general introduction) and specific libraries must be
used if matrix and/or trigonometric operations are involved, see e.g. [Texas Instruments IQlib].
However, it should be stressed that the Qx format is interesting and still used for hard real-time
implementations i.e. applications that require a running-time below 1ms. Such microcontrollers offer
now some perspectives for implementation of identification methods that have to be accounted for.

For instance, in the subsection 4.2.5, it has been shown that the IDIM-IV and DIDIM methods have, in
fine, the same performances when the robot parameters are identified offline. However, this does
not necessarily mean that the two methods have the same performances for online identification.
The two methods indeed involve the simulation of the DDM but the main difference lies in the
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calculation of the estimates since the DIDIM estimation is the IDIM-LS estimation where X(ﬁ,(i,(i) is

replaced with X;. The recursive scheme of the DIDIM method will be very close to the recursive LS

estimation. It comes out that it seems a priori easier to implement the DIDIM method than the IDIM-
IV method for online estimation. On the other hand, if the instrumental matrix Z can be built once
and for all (e.g. the columns of Z consist of delayed inputs) and assuming there is enough room in
non-volatile memory (e.g. FLASH memory), it is possible to store Z in non-volatile memory and then
relocate it in RAM after the system power-up. In this particular case, the implementation of a
recursive IV method for embedded systems is possible and will be not more time-consuming than the
DIDIM method.

Real-time programming of online identification methods for drones which are systems operating in
closed loop is a topic that will be treated in the following thesis “Commande et identification des
modeéles de perturbations des drones en milieu confiné” (Control and identification of disturbances'
models for drones operating in confined environment) co-supervised with Frangois Defay, ISAE,
France. The funding is already secured and the thesis starts in October 2017.
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Fig. 4-9: Architecture of a Cortex M4 core (left panel) and architecture of the TMS320F2806X family
(Texas Instruments, right panel).

4.6 Applications to other systems

The systems considered in the present manuscripts were rigid robots. It is planned to apply and/or
adapt the IDIM-IV approach as well as the other methods to flexible robots, electrical motors, aircraft
and drones. As stated in the previous subsection, closed-loop online identification methods will be
dealt with for identification of drones operating in confined environment. In collaboration with Jean-
Philippe Noél, University of Liege, Belgium, identification of large flexible robots for spatial
applications will be addressed through a thesis that should start in January 2018. Within the SEFFA
project leaded by AIRBUS, the statistical analysis of the residuals will be treated. As written in the
general introduction, such statistical analyses are rarely performed by aeronautical engineers and
this usually leads to misinterpretation of the estimated standard deviations. Finally, identification of
electrical motors with the presented methods will be considered within projects or theses. For
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instance, Tom Oomen with Eindhoven University, Eindhoven, Netherlands, has shown a recent
interest in the IDIM-IV approach and is willing to apply/improve it to electromechanical systems.
Furthermore, he raised interesting questions about the relationships between our approach and the
general framework depicted in [Garnier and Wang 2008].

4.7 Conclusion
In this last chapter, the perspectives that the IDIM-IV can offer to the robotics and automatic control

communities and the future works have been enlightened. The main perspectives illustrated in Fig.
4-10 and Fig. 4-11 are the following:

e Theoretical comparisons between the IDIM-IV method and other popular approaches;

e Establishing relationships between different approaches coming from different fields, e.g.
robotics, automatic control, econometrics...;

e Combining grey- and black-box identification methods;

e Linking the robotics and automatic control approaches by designing and validating a general
IV framework for robot identification;

e Study and comparisons of online identification methods;

e Implementation of online identification methods on the most advanced microcontrollers for

embedded systems.
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Fig. 4-10 : The perspectives that the IDIM-IV method and the Revised DWH-test can offer (first
part).
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5 Conclusion
The present manuscript has presented my main methodological and technical contributions.

Regarding the methods, my main contributions are the following:

Development and experimental validation of an instrumental variable approach for robot
identification called the IDIM-IV method. This approach validates the inverse and direct
dynamic models simultaneously, improves the noise immunity of estimates with respect to
corrupted data in the observation matrix and has a rapid convergence. Finally, it has been
successfully validated on the EMPS prototype, SCARA robot and the TX40 robot.

Design and experimental validation of the DWH-test commonly used in econometrics
revisited for robot identification. The revisited DWH-test can validate/invalidate the
instruments chosen by the user and is based on general statistical assumptions, is able to
detect modelling errors, makes use of the QR factorization of an augmented matrix and is
combined with a F-test if required and can validate/invalidate IDIM-LS estimates. Finally, it
has been successfully validated on the EMPS prototype, SCARA robot and the TX40 robot.
Experimental comparison between the IDIM-IV and other standard approaches such as the
CLOE and the DIDIM techniques. The experimental results have shown that the IDIM-IV
method outperforms the standard CLOE method and the IDIM-IV and DIDIM methods have
similar performances.

Development and experimental validation of an approach that combines the IDIM-LS and the
SDP methods. It has been demonstrated how the SDP identification provides an alternative
to the existing standard methods of statistical identification for electromechanical systems;
an alternative that can help to avoid over-reliance on prior conceptions about the nature of
the nonlinear characteristics. This new method which combines grey- and black-box
techniques has been successfully validated on the EMPS prototype.

Regarding the applications, my main contributions are the following:

Design of an electronic board to control multi-DOF haptique interfaces. The board is able to
control 6 direct-current motors simultaneously, communicate with the host PC over a UDP
protocol in order to receive the orders sent from the PC and to send the responses to the PC
within less than 1 millisecond. Finally, the cost of the new board was approximately 600€
instead of 2000€ for the former board.

Development and experimental validation of a methodology able to rescale the load
distribution applied on the wings of the A380 manufactured by AIRBUS. The methodology
was first validated through simulations and then validated with experimental data delivered
by AIRBUS.

Enhancement of the haptic rendering by developing a rigorous methodology to calculate the
maximum value of the proportional gain of the position loop admissible for the control,
proposing and validating a control based on rotor inertia compensation and
validating/invalidating different control based on linear observers.

The three main perspectives made feasible by the mentioned contributions are the following:

Linking the robotic approach with the automatic control approach by proposing a multi-step
prediction-error/instrumental variable method that can be summarized as follows: identify
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the structure and the gains of the controller via black-box methods, then identify the base
parameters with the DIDIM/IDIM-IV method and finally identify the parameters of the filter
that colours the DIDIM/IDIM-IV residuals.

Combining grey- and black-box methods in order to improve the identification results with
applications to multi-DOF industrial robots.

Real-time programming of online identification methods in order to compare their
performances for embedded systems. This perspective is justified by the fact that most of
today microcontrollers are equipped with a DSP-core combined with a floating point unit,
have reasonable RAM and FLASH memory sizes, and some libraries dealing with
trigonometric calculations and matrix operations are provided by the manufacturers. This
allows for the user to implement recursive algorithms that support floating operations
resulting in easier implementations.
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7 Appendices

7.1 Appendix A: implementation of a proportional-integral control

In this appendix, a simple proportional-integral (Pl) control written in embedded C language depicted
in Fig. 7-1 is presented in order to show that “converting” a simple Pl control designed in a MATLAB-
SIMULINK framework into an optimized C file is not straightforward. This code implemented in the
TMS320F28035 microcontroller manufactured by Texas Instruments. This microcontroller has a CPU
and manipulating floats within interrupts is not allowed. This implies that only integers are
manipulated.

The following instruction

Mt->Consigne Courant = Qsaturation (Mt->Consigne Courant,Mt->I max, - (Mt->I_max)) ;

limits the reference in current to avoid overload. The current absorbed by the motor is measured via
the analog-to-digital converter

Symetrization = Mt->ADC Courant - Mt->ADC Offset;
and the voltage is converted into current with
Mt->I mesure = _ IQmpy (Mt->Kconv I,Symetrization,5);

The result must be shifted 5 bits to the right in order to obtain a compatible Q15 result. The variable
Kconv_lI is indeed defined in Q20 for accuracy while Symetrization is defined in Q0 and multiplying a
QO with a Q20 provides a Q20 integer. The function __IQmpy is native i.e. known to the compiler and
tells that two integers are multiplied.

The integral term is simply calculated with
Mt->I_integral += I_erreur;

Since this Pl control is a part of an interrupt program, it is called every interruptions and the error in
current is added at each interrupt. In order to avoid overflow, the integral term is limited

Mt->I integral = Qsaturation(Mt->I_ integral,Q0_to Q15(16000),Q0 to Q15(-16000)) ;

The ratio that lies between 0 and 1 is then calculated as the output of the PI control by invoking the
three following instructions

Mt->R_consigne
Mt->R consigne

I_erreur + Ql5mpy(Mt->Ki_ I,Mt->I_integral);
Q15mpy (Mt->Kp_ I,Mt->R consigne) ;

and this ratio is converted into a duty cycle for the PWM signals

Duty Cycle = Q15 to QO ((long)PWM2 TIMER TBPRD* (Mt->R consigne)) ;

The functions Q15mpy and Q15 to QO being not native, they have been defined earlier in the source
code. This is done with the following “defines”

#define Q15mpy (A,B) _ IQmpy (A,B,15)

#define Q15 to QO0(A) ((long) (A)>>15)
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The function Q15mpy indicates that two integers defined in Q15 are multiplied while the function
Q15_to_QO converts a Q15 into a QO by shifting the Q15 integer 15 bits to the right.

Finally, the PWM signals are generated with the following instructions

if (Duty Cycle > 0)

{EPWm1Regs.CMPA.half.CMPA = Duty Cycle; EPwmlRegs.CMPB = 0;}
else

{EPWm1Regs.CMPA.half.CMPA = 0; EPwmlRegs.CMPB = -Duty Cycle;}

Please note that the variable EPwm1Regs.CMPA.half.CMPA is the register where the duty cycle has
to be put. The motor is finally actuated.

void PI_Current Loop (Rec_Moteur *Mt)

{

Q15 I _erreur;
long Symetrization;
Q0 Duty Cycle;

// Saturation of the reference
Mt->Consigne Courant = Qsaturation (Mt->Consigne Courant,Mt->I max,- (Mt->I max));

// Electric current absorbed by the motor (in Q15)

// Q15 = (Q20*Q0) >> 5
Symetrization = Mt->ADC_Courant - Mt->ADC Offset;
Mt->I mesure = _ IQmpy (Mt->Kconv I,Symetrization,5);

// Integrator term
Mt->I_integral += I_erreur;

// Saturation of integral term (+-16000 in QO)
Mt->I_ integral = Qsaturation(Mt->I integral,Q0_to Q15(16000),Q0_ to Q15(-16000)) ;

// Duty cycle calculation

// R _consigne = Kp I * ( I erreur + Ki I * I integral ) in Q15
Mt->R consigne = I_erreur + Ql5mpy(Mt->Ki I,Mt->I integral);
Mt->R_consigne = Ql5mpy (Mt->Kp I,Mt->R_consigne) ;

// Compute the PWM cycle
Duty Cycle = Q15 to QO ((long)PWM2 TIMER TBPRD* (Mt->R consigne)) ;

// Update the PWM registers according to the sense of the ref
if (Duty Cycle > 0)

{EPwmlRegs.CMPA.half.CMPA = Duty Cycle; EPwmlRegs.CMPB = 0;}
else

{EPwmlRegs.CMPA.half.CMPA = 0; EPwmlRegs.CMPB = —Duty_Cycle;}

}

Fig. 7-1: Embedded C code of a Pl control of a direct-current motor controlled in current

7.2 Appendix B: writing a linker file

In this subpart, it is explained how a linker file is written. A typical linker file is depicted in Fig. 7-2.
This linker file is used to allocate all the variables and the text i.e. the program in appropriate
memory blocks (or memory range). The blocks are defined by addresses that are given in the user's
guide. The user has to check that all the addresses put in the linker file are compatible with the
addresses given in the user's guide. It should be stressed that this is not a heavy burden because a
generic linker file devoted to the targeted microcontroller is often provided by the manufacturer.

The first thing we have to do is to split the memory into two pages: the first one (page 0) devoted to
the program and the second one (page 1) devoted to the variables or data. Of course, data cannot be
allocated in page 0 and program cannot be allocated in page 1. In so doing will produce an erratic
behaviour of the microcontroller. For instance, the instruction
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RAMLO012 : origin = 0x008000, length = 0x000800

tells that the three Random-Access-Memory (RAM) blocks RAMLO, RAML1 and RAML2 (L stands for
low) have been merged, are devoted for program allocation, 0x008000 is the address of the origin
i.e. beginning of the block and its length is 0x000800. The following instruction

FLASH : origin = 0x3E8000, length = 0x00FF80

tells that all the blocks of the FLASH memory have been merged and devoted to program allocation.
The block begins at the 0x3E8000 address and its length is 0OxO0FF80. It worth to note that the blocks
of the FLASH memory are called sectors. The following instruction

RAMMO1 : origin = 0x000050, length = 0x0007BO

tells that the RAM blocks RAMMO and RAMM1 have been merged, are devoted to data allocation,
0x00050 is the address of the origin of the block and its length is 0x0007BO0. Finally, this type of
instruction

EPWM1 : origin = 0x006800, length = 0x000040

is used to write and read the bits of registers of peripherals (here the PWM1 peripheral). As we shall
see latter, this allocation is useful for the user. Unlike with the memory blocks, the origin and length
for peripherals must be not modified by the user.

Once the origins and lengths of memory blocks defined, we have to define the sections (or
segments). For instance, the following instruction

.text : > FLASH PAGE = 0

tells the .text segment (or the program) is allocated in the FLASH blocks defined earlier while the
instruction

codestart : > BEGIN PAGE = 0

simply indicates that the code starts at the address stored in the variable BEGIN (FLASH memory in
this case). This section is of importance because, as we shall see latter, it is used to branch to code
starting point. The following instructions

ramfuncs : LOAD = FLASH, PAGE 0
RUN = RAMLO12, PAGE 0
LOAD START(_ RamfuncsLoadStart),
LOAD_END (_RamfuncsLoadEnd) ,
RUN_START (_RamfuncsRunStart)

tell to the compiler that a part of the .text section has to be executed in RAM (instruction RUN) while
initially stored in FLASH memory (instruction LOAD). The instructions LOAD_START, LOAD_END and
RUN_START are native, define the length of .text section that has to be re-allocated and where it is
run. In the source code, the instruction

#pragma CODE_SECTION (NAME FUNC, "ramfuncs");
is executed to re-allocate the function NAME_FUNC into RAM. The instructions

.stack : > RAMMO1 PAGE
.ebss : > RAML3 PAGE
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.esysmem : > RAML3 PAGE = 1

tell that all the uninitialized variables are allocated in RAM while the following instructions

.econst : LOAD = FLASH, PAGE = 0
RUN = RAML3, PAGE = 1
LOAD_START(_eConstLoadStart),
LOAD END (_ eConstLoadEnd),
RUN_START( eConstRunStart)

indicate that all the initialized variables are initially allocated in FLASH memory and then re-allocated
in the RAM blocks memory. It is important to note that the initialized variables must be stored in a
non-volatile memory in order to keep their values once the microcontroller powered-off. This
caution is not required for uninitialized variables since their values are defined during the program
execution.

Finally, this type of instruction

EPwmlRegsFile : > EPWM1, PAGE = 1

is executed to allocate an address defined earlier in the variable EPWM1 to use the bits field register.
This instruction allows for the user to write such instruction

EPwmlRegs.CMPA.half.CMPA = Duty Cycle; EPwmlRegs.CMPB = 0;}

encountered in the Pl control depicted in the section 7.1.

MEMORY

{
PAGE O: /* Program Memory */
RAMLO12 : origin = 0x008000, length = 0x000800
OTP : origin = 0x3D7800, length = 0x000400
FLASH : origin = 0x3E8000, length = 0x00FF80
CSM_RSVD : origin = 0x3F7F80, length = 0x000076
BEGIN : origin = 0x3F7FF6, length = 0x000002
CSM_PWL_PO : origin = 0x3F7FF8, length = 0x000008
IQTABLES : origin = 0x3FE000, length = 0x000B50
IQTABLES2 : origin = 0x3FEB50, length = 0x00008C
IQTABLES3 : origin = O0x3FEBDC, length = 0x0000AA
ROM : origin = 0x3FF27C, length = 0x000D44
RESET : origin = O0x3FFFCO, length = 0x000002
VECTORS : origin = 0x3FFFC2, length = 0x00003E
PAGE 1 : /* Data Memory */
BOOT RSVD : origin = 0x000000, length = 0x000050
RAMMO1 : origin = 0x000050, length = 0x0007BO
RAML3 : origin = 0x008800, length = 0x001800

/* To use the bits field structures */

DEV_EMU : origin = 0x000880, length = 0x000180
FLASH REGS : origin = 0x000A80, length = 0x000060
CSM : origin = 0x000AEO, length = 0x000010
ADC RESULT : origin = 0x000B0OO, length = 0x000020
CPU_TIMERO : origin = 0x000C00, length = 0x000008
CPU_TIMER1 : origin = 0x000C08, length = 0x000008
CPU_TIMER2 : origin = 0x000C10, length = 0x000008
PIE CTRL : origin = 0x000CEO, length = 0x000020
PIE VECT : origin = 0x000D00, length = 0x000100
CLAl : origin = 0x001400, length = 0x000080
ECANA : origin = 0x006000, length = 0x000040
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}

ECANA LAM
ECANA MOTS
ECANA MOTO
ECANA MBOX
comp1
COMP2
COMP3
EPWM1
EPWM2
EPWM3
EPWM4
EPWM5
EPWM6
EPWM7
ECAP1
EQEP1

LINA
GPIOCTRL
GPIODAT
GPIOINT
SYSTEM
SPIA

SPIB

SCIA
NMIINTRUPT
XINTRUPT
ADC

I2CA
PARTID
CSM_PWL

origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin
origin

= 0x006040, length = 0x000040
= 0x006080, length = 0x000040
= 0x0060C0, length = 0x000040
= 0x006100, length = 0x000100
= 0x006400, length = 0x000020
= 0x006420, length = 0x000020
= 0x006440, length = 0x000020
= 0x006800, length = 0x000040
= 0x006840, length = 0x000040
= 0x006880, length = 0x000040
= 0x0068C0, length = 0x000040
= 0x006900, length = 0x000040
= 0x006940, length = 0x000040
= 0x006980, length = 0x000040
= 0x006A00, length = 0x000020
= 0x006B00, length = 0x000040
= 0x006C00, length = 0x000080
= 0x006F80, length = 0x000040
= 0x006FCO0, length = 0x000020
= 0x006FEO, length = 0x000020
= 0x007010, length = 0x000020
= 0x007040, length = 0x000010
= 0x007740, length = 0x000010
= 0x007050, length = 0x000010
= 0x007060, length = 0x000010
= 0x007070, length = 0x000010
= 0x007100, length = 0x000080
= 0x007900, length = 0x000040
= 0x3D7E80, length = 0x000001
= 0x3F7FF8, length = 0x000008

/* Allocate sections to memory blocks. */

SECTIONS

{

/* Allocate program areas: */

.cinit
.pinit
.text
codestart

ramfuncs

csmpasswds
csm_rsvd

> FLASH PAGE = 0

> FLASH PAGE = 0

> FLASH PAGE = 0

> BEGIN PAGE = 0

LOAD = FLASH, PAGE = 0
RUN = RAMLO12, PAGE = 0

LOAD_START (_RamfuncsLoadStart),
LOAD_ END (_RamfuncsLoadEnd) ,
RUN_START (_RamfuncsRunStart)

> CSM_PWL_PO PAGE = 0
> CSM_RSVD PAGE = O

/* Allocate uninitalized data sections: */

.stack
.ebss
.esysmem

> RAMMO1 PAGE = 1
> RAML3 PAGE = 1
> RAML3 PAGE = 1

/* Initalized sections go in Flash */

.econst

.switch

LOAD = FLASH, PAGE 0
RUN = RAML3, PAGE = 1
LOAD START(_ eConstLoadStart),
LOAD_END (_eConstLoadEnd) ,
RUN_START (_eConstRunStart)

> FLASH PAGE = 0

/* Allocate IQ math areas: */

IQmath

> FLASH PAGE

1]
o
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IQmathTables : > IQTABLES, PAGE = 0, TYPE = NOLOAD

/* .reset is a standard section used by the compiler. It contains the */

/* the address of the start of ¢ int00 for C Code. /*
.reset : > RESET, PAGE = 0, TYPE = DSECT
vectors : > VECTORS PAGE = 0, TYPE = DSECT

/*** PIE Vect Table and Boot ROM Variables Structures ***/
UNION run = PIE VECT, PAGE = 1
{
PieVectTableFile
GROUP
{
EmuKeyVar
EmuBModeVar
FlashCallbackVar
FlashScalingVar

}

/*** Peripheral Frame 0 Register Structures ***/

DevEmuRegsFile > DEV_EMU, PAGE = 1
FlashRegsFile > FLASH_ REGS, PAGE = 1
CsmRegsFile > CSM, PAGE = 1
AdcResultFile > ADC RESULT, PAGE = 1
CpuTimerORegsFile > CPU_TIMERO, PAGE = 1
CpuTimerlRegsFile > CPU _TIMER1, PAGE = 1
CpuTimer2RegsFile > CPU _TIMER2, PAGE =1
PieCtrlRegsFile > PIE CTRL, PAGE = 1
ClalRegsFile > CLA1, PAGE = 1

/*** Peripheral Frame 1 Register Structures **%x/

ECanaRegsFile : > ECANA, PAGE = 1
ECanalLAMRegsFile > ECANA LAM, PAGE =1
ECanaMboxesFile > ECANA MBOX, PAGE = 1
ECanaMOTSRegsFile > ECANA MOTS, PAGE =1
ECanaMOTORegsFile > ECANA MOTO, PAGE = 1
ECaplRegsFile > ECAP1, PAGE = 1
EQeplRegsFile > EQEP1, PAGE = 1
LinaRegsFile > LINA, PAGE =1
GpioCtrlRegsFile > GPIOCTRL, PAGE = 1
GpioDataRegsFile > GPIODAT, PAGE =1
GpioIntRegsFile > GPIOINT, PAGE = 1

/*** Peripheral Frame 2 Register Structures **%x/

SysCtrlRegsFile > SYSTEM, PAGE = 1
SpiaRegsFile > SPIA, PAGE = 1
SpibRegsFile > SPIB, PAGE = 1
SciaRegsFile : > SCIA, PAGE = 1
NmiIntruptRegsFile: > NMIINTRUPT, PAGE =1
XIntruptRegsFile > XINTRUPT, PAGE =1
AdcRegsFile > ADC, PAGE = 1
I2caRegsFile > I2CA, PAGE =1

/*** Peripheral Frame 3 Register Structures **%x/

ComplRegsFile > COMP1, PAGE = 1
Comp2RegsFile > COMP2, PAGE = 1
Comp3RegsFile > COMP3, PAGE =1
EPwmlRegsFile > EPWM1, PAGE = 1
EPwm2RegsFile > EPWM2, PAGE = 1
EPwm3RegsFile > EPWM3, PAGE = 1
EPwm4RegsFile > EPWM4, PAGE = 1
EPwm5SRegsFile > EPWMS5, PAGE = 1
EPwmé6RegsFile > EPWM6, PAGE = 1
EPwm7RegsFile > EPWM7, PAGE = 1

/*** Code Security Module Register Structures x**/
CsmPwlFile : > CSM_PWL, PAGE = 1
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/*** Device Part ID Register Structures ***/
PartIdRegsFile : > PARTID, PAGE = 1

}

Fig. 7-2 : A typical linker file invoked during the compilation in order to allocate all the variables
and the text in the right memory range or memory blocks.

7.3 Appendix C: writing a builder file
In Fig. 7-3 is depicted a typical builder file for the TMS320F28035 manufactured by Texas
Instruments. The two most important instructions are —v28 and —ml.

The -v28 instruction specifies the TMS320F28x architecture. In the case of the TMS320F28035 the
version is 28 (indicated by F28 in its name). The instruction —ml indicates that large memory model is
used i.e. it is assumed that data can be anywhere in the memory space, [Texas Instruments
Opt_Comp]. For F28x code Texas Instruments uses large memory model because any memory block
can be used as either program memory or data memory. In this case, it is said that the model is a
type of “unified memory model”. Furthermore, the instruction —v28 —ml tells that the library
rts2800_ml.lib which is the library for the fixed-point CPU has to be used. Using this library is justified
by the fact that the TMS320F28x family does not directly support some C/C++ integer operations,
[Texas Instruments Opt_Comp]. Evaluating these operations is done with calls to run-time-support
(RTS) routines that are hard-coded in assembly language. They are members of the object and source
RTS libraries (rts2800_ml.lib) in the toolset. The C28x C/C++ compiler represents float and double
floating-point values as IEEE single-precision numbers. Long double floating-point values are
represented as |EEE double-precision numbers. Single precision floating-point numbers are
represented as 32-bit values and double-precision floating-point numbers are represented as 64-bit
values. The run-time-support library, rts2800_ml.lib, contains a set of floating-point math functions
that support: 1) addition, subtraction, multiplication, and division; 2) comparisons (>, <, >=, <=, ==,
I=); 3) conversions from integer or long to floating-point and floating-point to integer or long, both
signed and unsigned. The conventions for calling these routines are the same as the conventions
used to call the integer operation routines. Conversions are unary operations. Finally, before we can
run a C/C++ program, we must create the C/C++ run-time environment. The C/C++ boot routine
performs this task using a function called _c int00, [Texas Instruments Opt_Comp]. The run-time-
support source library contains the source to this routine in a module named boot.asm. The
boot.asm file is called within the DSP2803x_CodeStartBranch.asm file by the following assembly
instruction

LB ¢ into00
where LB stands for Long Branch, [Texas Instruments CPU_Inst].

The instruction -i adds the specified directory to the #include search path. This instruction is useful
because all the header files can be allocated in a same directory. The instruction -c stands for
compile_only i.e. it disables linking. Once the C file compiled, an object file is created. The instruction
-s interlists optimizer comments (if available); otherwise interlists C and assembly source statements,
[Texas Instruments Opt_Comp].
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@echo off
SET C_DIR= C:\ti\c2000\cgtools\include;C:\ti\c2000\cgtools\1lib;
SET A DIR= C:\ti\c2000\cgtools\include;C:\ti\c2000\cgtools\1lib;

@echo on

C:\ti\c2000\cgtools\bin\cl2000 -¢ -s -v28 -ml -iC:\DSPF28035\sources\header -
fttemp C:\DSPF28035\sources\DSP2803x_usDelay.asm

C:\ti\c2000\cgtools\bin\cl2000 -c¢ -s -v28 -ml -iC:\DSPF28035\sources\header -
fttemp C:\DSPF28035\sources\DSP2803x_CSMPasswords.asm

C:\ti\c2000\cgtools\bin\cl2000 -¢ -s -v28 -ml -iC:\DSPF28035\sources\header -
fttemp C:\DSPF28035\sources\DSP2803x_CodeStartBranch.asm
C:\ti\c2000\cgtools\bin\cl2000 -c¢ -s -v28 -ml -iC:\DSPF28035\sources\header -
fttemp C:\DSPF28035\sources\DSP2803x_GlobalVariableDefs.c
C:\ti\c2000\cgtools\bin\cl2000 -c¢ -s -v28 -ml -iC:\DSPF28035\sources\header -

fttemp C:\DSPF28035\sources\axes cc_v3.c
C:\ti\c2000\cgtools\bin\1nk2000 -w F28035.cmd
@echo off

echo .

pause

Fig. 7-3 : A typical builder file invoked to compile all the files of the project.

7.4 Appendix D: full texts of the main contributions

This appendix is composed of the full texts of the main contributions. Those main contributions are
the two regular papers published in IEEE Transactions on Control Systems Technology in 2013 and
2014, respectively, the paper published in Control Engineering Practice in 2016 and the paper
published in International Journal of Control in 2016. The abstract are provided in the rest of the
appendix.

Gautier, M.; Janot, A.; Vandanjon, P.-O.; “A New Closed-Loop Output Error Method for Parameter
Identification of Robot Dynamics,” IEEE Trans. on Control Systems Technology, Vol. 21(2), March
2013, pp. 428 — 444,

Abstract: Off-line robot dynamic identification methods are mostly based on the use of the inverse
dynamic model, which is linear with respect to the dynamic parameters. This model is sampled while
the robot is tracking reference trajectories that excite the system dynamics. This allows using linear
least-squares techniques to estimate the parameters. The efficiency of this method has been proved
through the experimental identification of many prototypes and industrial robots. However, this
method requires the joint force/torque and position measurements and the estimate of the joint
velocity and acceleration, through the bandpass filtering of the joint position at high sampling rates.
The proposed new method requires only the joint force/torque measurement, which avoids the
calculation of the velocity and acceleration by bandpass filtering of the measured position. It is a
closed-loop output error method where the usual joint position output is replaced by the joint
force/torque. It is based on a closed-loop simulation of the robot using the direct dynamic model, the
same structure of the control law, and the same reference trajectory for both the actual and the
simulated robot. The optimal parameters minimize the 2-norm of the error between the actual
force/torque and the simulated force/torque. This is a nonlinear least-squares problem which is
dramatically simplified using the inverse dynamic model to obtain an analytical expression of the
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simulated force/torque, linear in the parameters. A validation experiment on a 2 degree-of-freedom
direct drive rigid robot shows that the new method is efficient.

Janot, A.; Vandanjon, P.-O.; Gautier, M.; “A Generic Instrumental Variable Approach for Industrial
Robots Identification,” IEEE Transactions on Control Systems Technology, Vol. 22(1), pp.132-145.

Abstract: This paper deals with the important topic of industrial robots identification. The usual
identification method is based on the inverse dynamic identification model and least squares
technique. This method has been successfully applied on several industrial robots. Good results can
be obtained provided a well-tuned derivative bandpass filtering of joint positions is used to calculate
joint velocities and accelerations. However, we can doubt whether the bandpass filtering is well-
tuned or not. An alternative is the instrumental variable method which is robust to data filtering and
which is statistically optimal. In this paper, a generic instrumental variable approach suitable for
robots identification is proposed. Instruments set is the inverse dynamic model built from simulated
data calculated from simulation of the direct dynamic model. The simulation is based on previous
estimates and assumes the same reference trajectories and the same control structure for both
actual and simulated robots. At last, gains of the simulated controller are updated according to
instrumental variable estimates to obtain a valid instruments set at each step of the algorithm. The
proposed approach validates the inverse and direct dynamic models simultaneously, is not sensitive
to initial conditions and has a rapid convergence. Experimental results obtained on a six degrees of
freedom industrial robot show the effectiveness of this approach: 60 dynamic parameters are
identified in 3 iterations.

Janot, A.; Vandanjon, P.-O.; Gautier, M.; “A revised DWH-test for rigid industrial robots
identification,” Control Engineering Practice, Vol. 48, March 2016, pp. 52—-62.

Abstract: This paper addresses the topic of robot identification. The usual identification method
makes use of the inverse dynamic model (IDM) and the least squares (LS) technique while robot is
tracking exciting trajectories. Assuming an appropriate bandpass filtering, good results can be
obtained. However, the users are in doubt whether the columns of the observation matrix (the
regressors) are uncorrelated (exogenous) or correlated (endogenous) with the error terms. The
exogeneity condition is rarely verified in a formal way whereas it is a fundamental condition to
obtain unbiased LS estimates. In Econometrics, the Durbin-Wu-Hausman test (DWH-test) is a formal
statistic for investigating whether the regressors are exogenous or endogenous. However, the DWH-
test cannot be straightforwardly used for robot identification because it is assumed that the set of
instruments is valid. In this paper, a Revised DWH-test suitable for robot identification is proposed.
The Revised DWH-test validates/invalidates the instruments chosen by the user and validates the
exogeneity assumption through the calculation of the QR factorization of the augmented observation
matrix combined with a F-test if required. The experimental results obtained with a 6 degree-of-
freedom (DOF) industrial robot validate the proposed statistic.
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Janot, A.; Young, P.-C.; Gautier, M.; “ldentification and Control of Electromechanical Systems using
State-Dependent Parameter Estimation,” International Journal of Control, July 2016, accepted.

Abstract: This paper addresses the important topic of electro-mechanical systems identification with
an application in robotics. The standard inverse dynamic identification model with least squares
(IDIM-LS) method of identifying models for robotic systems is based on the use of a continuous-time
inverse dynamic model whose parameters are identified from experimental data by linear LS
estimation. The paper describes a new alternative but related approach that exploits the state-
dependent parameter (SDP) method of nonlinear model estimation and compares its performance
with that of IDIM-LS. The SDP method is a two-stage identification procedure able to identify the
presence and graphical shape of nonlinearities in dynamic system models with a minimum of a priori
assumptions. The performance of the SDP method is evaluated on two electro-mechanical systems:
the electro-mechanical positioning system and the second link of the TX40 robot. The experimental
results demonstrate how SDP identification helps to avoid over-reliance on prior conceptions about
the nature of the nonlinear characteristics and correct any deficiencies in this regard. Finally, a
simulation study shows how the resulting SDP model is able to facilitate nonlinear control system
design using linear-like design procedures.
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A New Closed-Loop Output Error Method for
Parameter Identification of Robot Dynamics

Maxime Gautier, Alexandre Janot, and Pierre-Olivier Vandanjon

Abstract—Offline robot dynamic identification methods are
mostly based on the use of the inverse dynamic model, which
is linear with respect to the dynamic parameters. This model is
sampled while the robot is tracking reference trajectories that
excite the system dynamics. This allows using linear least-squares
techniques to estimate the parameters. The efficiency of this
method has been proved through the experimental identification
of many prototypes and industrial robots. However, this method
requires the joint force/torque and position measurements and
the estimate of the joint velocity and acceleration, through the
bandpass filtering of the joint position at high sampling rates.
The proposed new method called DIDIM requires only the joint
force/torque measurement, which avoids the calculation of the
velocity and acceleration by bandpass filtering of the measured
position. It is a closed-loop output error method where the usual
joint position output is replaced by the joint force/torque. It is
based on a closed-loop simulation of the robot using the direct
dynamic model, the same structure of the control law, and the
same reference trajectory for both the actual and the simulated
robot. The optimal parameters minimize the 2-norm of the error
between the actual force/torque and the simulated force/torque.
This is a nonlinear least-squares problem which is dramatically
simplified using the inverse dynamic model to obtain an analytical
expression of the simulated force/torque, linear in the parameters.
A validation experiment on a two degree-of-freedom direct drive
rigid robot shows that the new method is efficient.

Index Terms—Closed-loop output error, direct dynamics, dy-
namic parameters, identification, inverse dynamics, least-squares
methods, robot dynamics.

1. INTRODUCTION

HE usual identification method based on the inverse dy-
namic identification model (IDIM) and least-squares (LS)
technique has been successfully applied to identify inertial and
friction parameters of several robotic prototypes and industrial
robots [1]-[15], among others. Good results can be obtained
provided a well-tuned derivative bandpass filtering of joint po-
sition to calculate the joint velocities and accelerations is used.
Another approach is to minimize a quadratic error between
an actual output and a simulated output of the system, assuming
both the actual and simulated systems have the same input. This
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is known as an output error (OE) identification method [16],
[17]. The optimal values of the parameters are calculated using
nonlinear programming algorithms to solve a nonlinear least-
squares problem. The output is given by a state-space model
output equation, which is typically the joint position for me-
chanical systems. Difficulties arise from the choice of initial
conditions, resulting in multiple, local solutions [18]. The OE
method has been used to identify electrical parameters of a syn-
chronous machine, and a comparison with the IDIM-LS method
showed very similar results [19].

Both IDIM and OE methods require the joint position and the
joint force/torque measurements.

The proposed new identification method needs only the joint
force/torque measurements. It is based on a closed-loop sim-
ulation using the direct dynamic model while the optimal pa-
rameters minimize the 2-norm of the error between the actual
force/torque and the simulated force/torque, assuming the same
control law and the same reference trajectory. This nonlinear
least-squares problem is dramatically simplified using the in-
verse dynamic model to formulate the simulated force/torque
as an algebraic function linear in relation to the parameters.
Because this method uses both the Direct and the Inverse Dy-
namic Identification Models, it is named the DIDIM method:
Direct and Inverse Dynamic Identification Models technique.
This paper describes the new identification method DIDIM and
experimental results obtained using a two degrees-of-freedom
(DOF) robot.

A condensed version of this work has been presented in [20].
This paper contains detailed proofs to enlighten the theoretical
understanding of the method and gives additional experimental
results to show the practical efficiency of the method.

This paper is organized as follows. Section II reviews the
usual identification technique of the dynamic parameters of
the robot. Section III presents the output error method. The
new identification method DIDIM is presented in Section IV.
The modeling of the SCARA prototype robot is presented in
Section V. This direct drive prototype is very well suitable
for the study of the method because it emphasizes nonlinear
coupling while it is divided by the squared high gear ratio
for industrial robots. The experimental results are given in
Section VI. Finally, Section VII is the conclusion.

II. INVERSE DYNAMIC IDENTIFICATION MODEL TECHNIQUE

Identification results obtained with the IDIM method are
compared with those obtained with the new DIDIM method.
Moreover, the IDIM method is used at each step of the iterative
procedure in DIDIM. So it is important to give a review of the
conventional IDIM method.

1063-6536/$31.00 © 2012 IEEE
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The inverse dynamic model (IDM) of a rigid robot composed
of n moving links calculates the motor torque vector 7iqm, as
a function of the generalized coordinates and their derivatives.
It can be obtained from the Newton-Euler or the Lagrangian
equations [13], [21]. It is given by the following relation:

Tidm = M(Q)q + N(q q) (1)

where ¢, ¢, and § are respectively the (n x 1) vectors of gener-
alized joint positions, velocities, and accelerations, M (¢) is the
{n x n) robot inertia matrix, and N (g, ¢) is the (n x 1) vector of
centrifugal, Coriolis, gravitational, and friction forces/torques.
The choice of the modified Denavit and Hartenberg frames
attached to each link allows a dynamic model that is linear in
relation to a set of standard dynamic parameters, xst [3], [22]:

Tidm = IDMST(qa q d)XST (2)

where IDMgsr(q, ¢, §) is the (n x N, ) Jacobian matrix of 7igy,
with respect to the (N, x 1) vector x4t of the standard parame-
ters given by

T
T ’n,T
XsT = [Xé% X%T ce XST}
with

X = [XX; XY; X2, YY; Y Z; 225
MX; MY; MZ; M; Ia; Fo; Fe; tog,]" (3)

where

« XX, XY;,XZ,;,YY;,YZ;, ZZ; are the six components
of the inertia matrix, 7.J;, of link j at the origin of frame
g4, MX;, MY;, MZ; are the components of the first mo-
ments, 7 M S;, of link j;

* M; is the mass of link j;

* Ju; is a total inertia moment for rotor and gears of actuator
75

» vy, Fe; are the viscous and Coulomb friction parameters
of joint y;

s Toff, = Ofpg; + Ofy; is an offset parameter where Of g5
is the dissymmetry of the Coulomb friction with respect
to the sign of the velocity and Of;; is due to the current
amplifier offset which supplies the motor;

o N, = 14 % n is the number of standard parameters.

The columns of the matrix IDMgt (¢, ¢, §) are obtained using
the recursive algorithm of Newton-Euler, which calculates 7igy,
(1), in terms of the same set of standard dynamic parameters,
such that the kth column IDMgr. (¢, ¢, §) is equal to

IDN[ST;Jc :Tidm(qa q d, with XSTk — 1, XSTi :0, for ¢ 7é k)
“4)

To increase the efficiency of this algorithm, we use the cus-
tomized symbolic technique [13], [23].

The base parameters are the minimum number of dynamic
parameters from which the dynamic model can be calculated.
They are obtained from the standard inertial parameters by elim-
inating those which have no effect on the dynamic model, and

by regrouping some others by means of linear relations. They
can be determined using simple closed-form rules [22] or a nu-
merical method based on the QR decomposition [24].

The minimal inverse dynamic model can be written as

Tidm = IDM(qa q q)X (5)
where
IDM(q, ¢, §) is the (n x b) matrix of the minimal
set of basis functions of the rigid body dynamics,  (6)
x is the (b x 1) vector of the b base parameters. @)

Because of perturbations due to noise measurement and mod-
eling errors, the actual force/torque 7 differs from 74y, by an
error, e, such that

T = Tidm + € = IDM(q, ¢, §)x + e. (8)

Equation (8) represents the IDIM.

We consider the offline identification of the base dynamic
parameters y, given measured or estimated offline data for 7
and (q, ¢, §), collected while the robot is tracking some planned
trajectories.

Usually, the signals available from the robot controller are the
joint position measurement and the (n x 1) control signal vector
v, calculated according to the control law.

Then (g, ¢, ¢) in (8) are estimated with ({, q, (}), respectively,
obtained by bandpass filtering the measure of ¢. The type
of filter and its cutoff frequency we, are chosen in order to
keep (4, ¢, ) equal to (g, ¢, ) in the range [0,ws,] such as to
avoid distortion in calculating the coefficients of the matrix
IDM(q, ¢.§) (6). This point is discussed in [9]. The filtered
position ¢ is calculated offline with a non-causal zero-phase
digital filter by processing the input data, ¢, through a lowpass
Butterworth filter in both the forward and reverse direction
using the filtfilt procedure from MATLAB. This filter has a
flat amplitude characteristic without phase shift in the range
[0, wiy], with the rule of thumb wgy > 10 * wqyy, where wyyy is
the maximum bandwidth of the joint position closed-loop. The
derivatives are calculated offline without phase shift, using a
central difference algorithm of the lowpass filtered position §.

The control signal, v, is connected to the input current refer-
ence of the current closed-loop of the amplifiers which supplies
the motors. Assuming that the current closed-loop has a band-
width greater than 500 Hz, then its transfer function is equal to
its static gain, K, in the frequency range (less than 10 Hz) of
the rigid robot dynamics. Then, the actual force/torque, 7, is cal-
culated with the relation

)

T = g-Ur

where g, is the (n x n) diagonal matrix of the drive gains, with

gr = K, K K, (10)
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where

K, isthe (n x n) gear ratios diagonal matrix of the joint
drive chains (¢, = K¢, with ¢,,, the velocity on the
motor side);

K. isthe (n x n) static gains diagonal matrix of the current

amplifiers;

K, isthe (n x n) diagonal matrix of the electromagnetic

motor torque constants.

Those parameters have a priori values, given by manufac-
turers, which can be checked with special tests [25].

The IDIM (8) is calculated at a measurement frequency f,,,,
using samples of (g, 4, (}) to calculate IDM(q, q, (}) and sam-
ples of v, to calculate 7 with (9), at different times iz, & =
1,...,n,,, while the robot is tracking a reference trajectory
(4r, G, Gr), during the time length T, of the trajectory.

The equations of each joint are regrouped together on the en-
tire trajectory to get an overdetermined linear system such that

Yfm(T) = me(@ (}a (})X +0m (11)

with

[ Yflm . Tj (tl)

Yi.=| .. (12)
7j(tn,,)

Vin(r) = | -
_Yfm
Wf'm((i {L Q) = . .

L W;'LmJ
[ IDMY(q(t1), 4(t1), 4(11))

W;’ = -
| IDMY (Gt ), @t )s @(tn,, )

(13)

where

IDMY (G(t1), q(tr), §(tr)) s the jth row of the (nxb)
matrix of the basis functions,

IDM(G(tx), 4(tx), d(tx)). (6);

Y_)Zvn and W;m ?epres‘ent the n,,, equations of
joint j;
N = Tobs* fm is the number of sample
measurements.
The notation Wy,,,(IDM(4,¢,4)) = Wym(d.4,q), will

be used AtoArecall that Wy,,, is calculated with a sampling of
IDM(3. 4. ).

The force/torque 7 is perturbed by high frequency unmod-
elled friction and flexibility force/torque of the joint drive chain
which is rejected by the closed loop control. These force/torque
ripples are eliminated with a parallel decimation procedure
which lowpass filters in parallel Yy,,, and each column of Wy,
and resamples them at a lower rate, keeping one sample over 4.
This parallel decimation can be carried out with the MATLAB
decimate function, where the lowpass filter cutoff frequency,
wpp = 2% 7% 0.8 % f,,,/(2 % ng), is chosen in order to keep
Y (7) and W(4, ¢, ¢)x in (14), in the same frequency range of
the model dynamics. After the data acquisition procedure and

the parallel decimation of (11), we obtain the overdetermined
linear system

V(1) = W(d.q,4)x +p (14)

where

* Y(7) is the (r x 1) vector of measurements, built from the

actual force/torque ;

« W(4.q, ) is the (rxb) observation matrix, built from the

estimated values (¢, 7, (}) of (q, 4, q);

» pis the (r x 1) vector of errors;

* 7 = n* Ny, /ng is the number of rows in (14).

It is to be noted that no error is introduced by this parallel
filtering process in the linear relation (14) compared with (11).
In [9], we gave practical rules for tuning this filter. The main
point is to choose the cutoff frequency wy, > 2% wqyy, in order
to keep useful signal of the dynamic behavior of the robot in the
filter bandwidth. The cutoff frequency is typically less than 10
Hz for a rigid robot.

InY and W, the equations of each joint are grouped together

such that
[
Y=1...1, W -
LYJ [WJ
where Y4 and W represent the n.,,, /ng equations of joint j.

The ordinary LS (OLS) solution ¥ minimizes the squared
2-norm ||p||? of the vector of errors.

Using the base parameters and tracking “exciting” reference
trajectories as discussed in [26], we get a full rank and well
conditioned matrix W. Mainly an “exciting” trajectory gives a
condition number of W close to one, with large singular values
which means that the amplitudes of force/torque in Y are large
enough to get a good signal to noise ratio. Nonlinear optimiza-
tion can be used to calculate such trajectories, but it’s also pos-
sible to find acceptable trajectories by a trial and error method,
moving the robot from point to point in the whole operational
space with high velocities and accelerations, using the trajec-
tory generator of the robot based on polynomial interpolation.
The LS solution x is given by

(15)

x=(WTw) 'why =w'Y. (16)

It is computed using the QR factorization of W. Standard
deviations oy, , are estimated using classical results from sta-
tistics under the assumptions that W is a deterministic matrix,
according to the data filtering procedure described above, and
p, is a zero-mean additive independent Gaussian noise, with a

covariance matrix C,,, such that:
Cpp = E(pp") = 071y (17)

where £ is the expectation operator and /,, the (» x r) identity
matrix.
An unbiased estimation of the standard deviation o, is

&2 =Y = Wx|*/(r —b). (18)

The covariance matrix of the estimation error is given by

Cix = Bllx -~ 0)x —x)]=6,(Wiw) ! (19)
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T
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7 =min|Y -W;(”Z V4
z —>

Linear LS

Fig. 1. IDIM-LS identification scheme.

0)22‘_ = Cyy(i,4) is the ith diagonal coefficient of Cyy. The

relative standard deviation %o, is given by

for |xi| # 0.

The OLS can be improved by taking into account different
standard deviations on joint j equations errors [9]. Each equa-
tion of joint 7 in (14), (15), is weighted with the inverse of the
standard deviation of the error calculated from OLS solution of
the equations of joint j, given by

%0y, = 1000%,/

)A(i|7 (20)

Y/(7;) = W/(IDM’(4,4.9))x + o' 21)

This weighting operation normalizes the errors in (14) and
gives the weighted LS (WLS) estimation of the parameters.

This identification method is illustrated in Fig. 1.

Compared with the OE method described in the following
Section III, the use of IDIM, which is an analytical function of
(4,4, ), is particularly interesting because it does not require
the integration of the direct dynamic model (22). Moreover, ¥
is a one step linear LS solution which does not need initial con-
ditions. However, the calculation of the velocities and acceler-
ations are required using well-tuned bandpass filtering of the
joint position [9].

III. OE METHOD

The OE identification methods minimize a quadratic error
between an actual output y, and a simulated output y5, of the
system, assuming both the actual and the simulated systems
have the same input. This approach can be implemented in an
open-loop form, [17], [27], or in a closed-loop form, [28], [29].
Considering a closed-loop controlled robot, the input, in the
open-loop scheme shown in Fig. 2, is the actual force/torque
7, and the input, in the closed-loop scheme shown in Fig. 3, is
the reference trajectory (g, ¢, ¢, ). Because the open-loop sim-
ulation of unstable robotic systems is very sensitive to the initial
state conditions and to the errors in numerical algorithms which
solve the differential equations, it is more suitable to choose the
closed-loop form.

In both cases, the output is given by a state-space model
output equation. Considering a robot and taking the measured

|
—lwq(f)

Sampling
and filtering

4q, )
q, -> Actual Robot

4q,

" N Vs = Didm (t )
Direct Dynamic Model (DDM)

1) . :
M(G44) Gaan = Tain = N (Qian> Gitam)

Y(4), Y (i)

. 1 2
7 =min_|Y, - Y|

Non Linear LS T,

Fig. 2. Open-loop OE identification scheme.

o) ‘

Actual Robot
—l y=4q(r)

Sampling
and filtering

Control law

Vs = Daam (t)

Direct Dynamic Model (DDM)
M(Gaan) Gain = Taan = N(Qain> Gaam)

|

. 1
x= mZmEHYS - Y”Z

Y(q), Y(quun)

Non Linear LS

~

obs

Fig. 3. Closed-loop OE identification scheme.

joint position as the output, the actual output is, y = ¢, and
the simulated output is, ¥s = ¢qdm, as shown in Figs. 2 and 3,
where gqam(#), is the simulated joint position which is the so-
lution of the differential equation given by the direct dynamic
model (DDM).

The DDM can be obtained by writing the IDM equation (1),
as follows:

M (Gaam; X)Gadm = Tadm — N (qadm, adm, X) (22)
where M (¢adam, X) and N (¢dadm; gadam, X) depend on an estima-
tion of the base parameters Yy,

Tddm, 18 the force/torque input of the DDM.

The function gqam(¢, x), is the result of the integration of the
linear implicit differential equation (22) which can be written as
a nonlinear state-space model

G(Le)le — f(lfev UJ#) (23)

where s = [gddm ], is the (2 x n x 1) state-space vector, 4, =
ddim
Tddm, 18 the (n x 1) control input

I 0
G(x,) = ) nxn
(DLL) |:On,><n M(qddm7X):|

Jxs,us) = { fddm ]

. 24
- N(qddma dddm; X) ( )

Tddm

where 0, xn, 18 @ (1 X n), matrix of zeros.
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The linear output equation is given by
Ys = CS:L.S +D<:ue (25)

Taking the measure of joint position as the output, s = ¢dadm,
we get

Cs - [In

D, = 04,5 is the, (n x n), direct feedthrough matrix.

Onx2sn], 18 the, (n X 2% n), output matrix  (26)
27)

Hence, for robotic systems, an OE identification method is
based on the integration of the DDM.
The optimal solution ¥, minimizes the quadratic criterion
J(x), given by
Jx) =Y, - Y[ = -, -Y) (29
where Y and Y, are vectors obtained by filtering the vectors

of samples Yy,,, and Yg 1., , respectively, where the equations of
each joint are grouped together, with

(Y], _ q;(t1)
Vi = vl =
L fnm = qj (tnm)
V] [wna)]
Yopm= | - |+ Yip, = . (29)
L Ys'm, J [ Gad () J

The minimization of J(x), (28), is a nonlinear least-squares
problem. The estimation of the parameters can be computed
using algorithms such as the gradient method, the Newton
methods or the Levenberg Marquardt method. These methods
are based on a first or second-order Taylor’s expansion of J(x).

In [20], we used the Gauss-Newton method to calculate the
optimal solution. It is a Newton method where approximations
of the gradient and the Hessian of .J(x) are calculated with the
Jacobian matrix of y, with respect to x. The Gauss-Newton re-
gression is the Gauss-Newton method where a Taylor series ex-
pansion of y,, at a current estimate x”, of the parameters at it-
eration k, simples the calculation of the optimal solution [30]

s ) = s() + (LB gy

(30)
where
Iys(x)) |
— = 31
( Dy o ys/x €2))
where
by./x is the (n x b), Jacobian matrix of y,, with respect to
x, evaluated at x*;
0 is the residual of the Taylor series expansion.

Each coefficient of 6, _,,, defines a sensitivity function.
These sensitivity functions characterize the variation of the
output function yg, with respect to a variation of the parameter
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x. The sensitivity functions are the solutions of a differential
system calculated from (22). However, this technique is more
time-consuming compared to the IDIM method. Indeed, the
DDM and the sensitivity functions must be integrated many
times at each step of the iterative nonlinear optimization
method. Moreover, it is necessary to have good initial condi-
tions in order to avoid multiple and local solutions.
Let us define

y=ys(x") +e. (32)

From (30), it becomes

g —ys(X") = 6, 1 T =)+ (04 6e). (33)

An overdetermined linear system is obtained by filtering and
sampling (33) over the time window T 1,s

AY = WsAx* 4+ p (34)

with

Axk+1 — (Xk:Jrl _ X/.k)

AY, W, and p are, respectively, the sampling and filtering of
(y = yo(x*)), 8,. /. and of (0 + ¢).

Ax**1is the LS solution of (34). This process is iterated with
a new estimate, Y**! = x* + AxF*+1 until

[[ocrall = lloxll

o]
AR

< toly, and,

< tol; 35)

where tol; and tols, are values ideally chosen to be small num-
bers to get fast convergence with good accuracy.

IV. DIDIM TECHNIQUE

A. Theoretical Approach

In the OE method as shown in Fig. 3, the actual output is the
measured joint position y = g.

We propose to change the output, ¢, from the actual joint posi-
tion g, to the actual joint force/torque 7, and the simulated output
95, from the simulated joint position, ¢4qm, to the simulated
joint force/torque, Tqdm. Then, we take y = 7, and ys = Tadm,
according to Fig. 4.

This means that the output equation (25) of the state-space
model (23) reduces to a direct feedthrough equation such as,
Ys — Us = Tddm-

Then we have C; = 0, x24n, and D; = I,,, in the output
equation (25).

The optimal solution, ¥, minimizes the quadratic criterion,
J(x), (28), where, Y, and Y, are vectors obtained by filtering
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Fig. 4. DIDIM identification scheme.

the vectors of samples, Y, and Yy, , respectively, where the
equations of each joint are grouped, with

[ Yflm . Tj (tl)
Yfm,(T) = M Y;'m = ( M )
n
L+ fm Ti(tn.,
Y;fra . Tddmj (fl)
YSfm = e ’ Yéfm = s . (36)
L Snfm Tddm; (tn771 )

This nonlinear LS problem is solved by the Gauss-Newton re-
gression as explained in Section III.

The input force/torque of the DDM, 7441, can be calculated
with the analytical expression of the inverse dynamic model (5),
such as

= Tddm(X) = Tidm(X)
= IDM((]ddm(X), Qddm(X)v qddm(X))X

ys(x)
37)

The Taylor series expansion (30), with ys = Tgam, at a current

estimate, ¥, of the parameters , at iteration k, is calculated
with the Jacobian matrix of 74am (), given by

5 = NTaam) _ (9(Tiam)
vs/X = T T 0X
Xk )Zk

a N A Ak -
= & (IDM ((]ddm(Xk)7 qddm(xk)v qddm(Xk)) Xk) .

(38)
Then, it becomes
d ~ky o ~ky oo ~k ~ R
B (IDM (gaam(£"), daam ("), Gaam(£)) £¥)
= IDM (Qddm( ) qd(lm( ) qddm( )) + -
(IDM (q(ldm ) qddm( ) qddm( ))) Xk~
(39)

The calculation of the second term on the right side of (39) needs
to calculate the expression

a (IDM (Qddm(Xk)7 Qddm(Xk)v (Jddm(Xk)))
0
B aqddm

(IDM ((Iddm()zk )7

3f1ddm

dddm(X ) (Iddm(x ))) Dy + ...

(IDM (Qddln()%k )a

adddm
G(Jddm

7 ok 2] ok - e
qddm(X )7 qddm(X ))) aX +

(IDM (Qddm(X 7)3

. ~k . ~k a(.jddrn
k

q b q I P M

ddHl(X ) dd II(X ))) OX

dQddm

(40)

Let us recall that the joint force/torque y = 7, is obtained
while the robot is tracking a reference trajectory, (g, 4r, ¢y ),
with a closed-loop control law. The closed-loop simulation uses
the direct dynamic model, the same control law and the same
reference trajectory (g, ¢, ¢ ), as the actual one, to calculate
Ys-

In the following Section IV-B, we show how to tune the con-
trol law of the closed-loop simulation in order to keep the same
bandwidth and stability margin as the actual closed-loop for
any x*, obtained at iteration k. This assumes for the simulated
tracking error to keep close to the actual one for any ¥*, that is
to say

(¢, 4,q), forany *.
(41)

(qddm()’ak)r q.ddm()ek)a dddln()%k))

This means that (¢ddm (X)), dddm (X), Gaam(x)), have little de-
pendence on Y, such that

qaam _ 9daam _ daam
o — Ox  Ox

~ ().

Then (40) is simplified as

g Ak - Ay .

a (IDM ((Iddm(Xk)a qddm(Xk)a qddm(Xk))) =~ 0.
Taking into account this simplification in (39), we obtain the
following approximation of the Jacobian matrix (38):

7, ks ke AN A
) (IDM (qddrﬂ(Xk)r qddm(Xk)a Qddm(Xk)) Xk)

vo/x = 8
- IDM (qddm(X )ﬂ dddm()%k)7 ijddm()%k)) . (42)
The closed-loop identification, with the gain adaptation pro-
posed in Section IV-B, dramatically reduces the sensitivity of
the simulated position to the variation of the parameters (41),
but amplifies the sensitivity of the simulated force/torque to the
variation of the parameters (42). That is why it is a major con-
tribution of the paper to take force/torque output instead of po-
sition output for closed-loop identification.
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Another major contribution is using the Inverse Dynamic
Model to approximate the sensitivity functions in the Jacobian
matrix by the algebraic equation (42). This is much simpler
than for usual OE method where the sensitivity functions are
the solutions of complicated differential equations. The sim-
plicity of the sensitivity functions and the speed of convergence
of the nonlinear optimization resulting are another reasons to
minimize the error between the measured force/torque and
the simulated force/torque rather than to minimize the error
between the actual position and the simulated position.

Taking the approximation (42) of the Jacobian matrix into the
Taylor series expansion (33), it becomes

Yy=7T= ys(fék) + IDM (qddm(f(k% qddm(f(k)v
Gaam(X*)) OFFT = X*) + (o +e). (43)

From (37), it becomes

Ys(XF) = Tiam (X*)

= IDM (qddm (X*). dddm (XF), dadam (X)) ¥*.
(44)
Taking (44) in (43), it becomes
y=r7
=1DM ((]ddm(f(k)v (.}ddm()%k)-, dddm()%k)) Xk+l + (O + E))
(45)

This is the IDIM (8), where (q,¢,§) are estimated with
(Gddms Gddm; Gddm ), simulated with DDM(¢*) (22). At each it-
eration k, the IDIM method is applied as described in Section II.

The sampling of (45) at a sampling rate f,,,, gives an overde-
termined linear system such as

Yim(T) = Wagm (dadm, dadm. Gadm. X¥) X + ppm  (46)
with
Yflm y Tj (tl)
Yfm(T) - e y Yfm = (47)
Yﬁn Tj (tnnz )
1
. . ok Wéf’m
W5f7n (qddm: Gddm>s dddm: X ) = e
, Wénfm
. IDM/ (qddm(tl)v qddm(tl)a ijddm(tl)v )ACk)
ngm, = . T
IDM? (Qddm (tnm) » §ddm (tnm) s §ddm (tnm) 7)2’«)
(48)
The parallel decimation of (46) gives
Y(T) = W§ (qddnn Qdd1117 {'jddmv X/,k) X + P (49)

The LS solution of (49) gives Xx+1, at iteration k£ + 1.

-
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Fig. 5. DIDIM with the Gauss-Newton regression, identification scheme.

This process is iterated until

o]l — Il < tol,
ol
Skl ok
max % < toly
i=1,....b X;

where tol; and toly are values ideally chosen to be small num-
bers to get fast convergence with good accuracy. A good com-
promise consists in choosing tol; and tol, between 2.0% and
5.0%.

This new identification method is based on a closed-loop sim-
ulation using the DDM while the optimal parameters minimize
the 2-norm of the error between the actual force/torque 7, and
the simulated force/torque 7qdn,, Over an observation window
time T,,ps. This new technique overcomes the problems of non-
linear optimization in OE method, Section III, using the IDIM to
calculate the simulated force/torque vector, ¥s = Tddm = Tidm-
Because this method uses both models DDM and IDIM, it is
named the DIDIM method technique.

The DIDIM method with the Gauss-Newton regression is il-
lustrated Fig. 5.

This approach is particularly interesting thanks to the fol-
lowing reasons.

» It needs only the actuator force/torque measurement or es-

timation.

e It avoids tuning the bandpass filter in the IDIM method
by using the integration of the DDM in a closed-loop sim-
ulation where the tuning of the bandwidth automatically
defines the same frequency range for the dynamics of the
actual and of the model to be identified.

* It combines the inverse and the direct dynamic model
and validates, in the same identification procedure, both
models for computed torque control and for simulation.

o It dramatically simplifies the computation of the matrix
of the sensitivity functions which is given by an alge-
braic equation (the inverse dynamic identification model)
whereas it is given by the resolution of a complicated
system of differential equations in the usual OE method.
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The drawback is that the structure and the tuning of the actual
closed-loop control law must be known to be implemented in
the closed-loop simulation of the robot. Most often, this is not a
real problem, because working on identification for simulation
or control of the robot, needs a minimal knowledge on the robot
controller.

B. Initialization of the Algorithm

A problem is how to choose the initial values ¥°.

We can use CAD values, or identified values with the IDIM
method, but we show that there is no need at all of a priori
values.

We propose an algorithm not sensitive to the ini-
tial conditions, which assumes that the condition
(Qddm(f(k)v (.;d<'1n1(>2k)7 dddm()%k‘r)) =~ (Q7 (L Q)a is satisfied at any
iteration &, and especially for k£ = 0.

This is possible by taking the same control law structure for
the actual robot and for the simulated one with the same per-
formances given by the bandwidth, the stability margin or the
closed-loop poles. Because the simulated robot parameters %",
change at each iteration k, the gains of the simulated control law
must be updated according to x*.

The inverse dynamic model IDM (1) for the joint 7, can be
written as a decoupled double integrator perturbed by a coupling
force/torque, such that

T = Tldm] Z qt + N; ((] Q)
qg+ZM, )i + Ny(q, 4)
i#]
= M, ;(¢)d; — p; (50)
where p; is considered as a perturbation given by
Z M;,i N;(q,d)- (51)

i#]

M; ;(¢) which depends on ¢, is approximated by a constant
inertia moment .J;, given by

T = max(M; ;(q))- (52)

J;, is the maximum value, with respect to g, of the inertia
moment around joint z; axis. This gives the smallest damping
value and the smallest stability margin of the closed-loop second
order transfer function (56), while ¢ varies.

It can be calculated from a priori CAD values of inertial pa-
rameters and must be equal at least as ZZ; 4+ I, .. The nonlinear
model of arobot can be seen as n decoupled hnear models where
each joint 7 dynamic model is a double integrator, considering
the nonlinear coupling term p;, as a perturbation, as follows:

1 1
%25T77@3+m)23ﬂﬁ+Pﬁ- (53)

3.

~

Py
9y B Vo[ % 119119 B/
? ;

Fig. 6. Joint PD control of the actual robot.

Then, it makes sense to use linear control techniques to tune
the closed-loop of each joint § double integrator. For simplicity,
let us consider the joint 7 PD control of the actual robot, which
is illustrated Fig. 6.

The control input calculated by the robot controller is given
by

Ur, =% kp, “kio, (ar, — 45) — "k, d;- (54)
v, s the current reference of the current amplifiers which sup-
plies the motor.

The joint 7, force/torque is given by
(55)

_
Ty = g‘rj Urj
where

a

gr; s the actual drive gain, calculated with the actual
parameters in (10);

@.J; is the actual value of J;.

In order to tune the tracking performances of the reference po-
sition ¢, the transfer function (¢,,)/(¢;) is calculated with

p; =0
H - (q_)
;) <o
B 1
- uw J.og2 1
“gTJ- a.k.] akpj “k’pj S + 1
B 1
afz ] + 2 ‘1 + 1
nj
(56)
where
YW is the actual natural frequency which characterizes
the closed-loop bandwidth;
o is the actual damping coefficient which

characterizes the closed-loop stability margin,
with

(57)

Then it becomes

[£3

a a a. ']"
P T 2u<j’ 'kvj = 2% wnjug—:~

7

a
_ Wny

“k

(58)
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Fig. 7. Joint PD control of the simulated robot.

The closed-loop performances are chosen with the desired
two poles of a second-order transfer function characterized by,
Qw,;,% ¢;, where

4w, s the desired natural frequency;

4¢;  is the desired damping coefficient.

Because the actual values are unknown, the gains are
calculated from (58), where the unknown actual values,
“wrj," 5" J;," gi,, are replaced respectively by their desired
values, dwnj,d (;, and by their a priori values, **.J; ¥ 9r;

ay,

d., . ap J.
_ Wny ap. _2d<'dw . ']]
Pi T odr 0 vy T 7 nj

2 Cj g,

4

(59)
where

“PJjand“g..  are a priori values of the actual unknown
values “J; and “g-,, respectively.

Now, let us consider the joint § PD control of the simulated
robot which is illustrated Fig. 7.

The variables (7)Tddmj y Tddm, s dddm; 5 q'ddm_,- y (.]‘ddm_,' ), in
Fig. 7, are computed by numerical integration of DDM(x*),
(22).

The control law of the simulated robot has the same structure
as the actual one, Fig. 6, where we take

“gi, ="" gi, the a priori value of “g; ;

o = jk the value of J;, (52), calculated with the
‘ estimation Yy, at iteration k;

Syt ke, are the gains of the simulated control law.

They are calculated in order to keep the same performances
for the simulated closed-loop and for the actual closed-loop, that
is to say to keep the same desired values, “w,,; and 4(;, for the
closed-loop poles. Then, it becomes

~

Ay, s e d Jk
5 ny ay. 5 _ [ 3 J
kpj = 2d<j = kpjv kvj =2 Cj Wnj @ (60)

The gain, *k,., does not depend at all on the parameters
values, but the derivative gain in the simulator, *£,,, must be
updated with f %, at each iteration k.

It is important to note that only the gain in the simulated
closed-loop, *k,,, is modified during the iterative procedure.
The actual gain of the robot control law, “k, ., is not modified.

The simulated closed-loop tuning given by, ¢w,,;.¢ (;, differs
from the actual one, “w,,;,* (;, with the following ratio, calcu-
lated by taking (59) into (57):

a wn] B E B
dwnj d<j

(61)

09, o!

Fig. 9. DHM frames of the scara robot.

Usually this ratio is between 0.8 and 1.2. The actual values,
“wpj,* (5, can be estimated from step response or frequency
analysis of the actual closed-loop. But this is not necessary,
because there is little effect on the identification accuracy, as-
suming, %w,,;, is regularly chosen more than 10 times greater
than the frequency range of the robot dynamics.

This allows to keep (Qadm(X&); daam(Xx)s Gaam(Xx)) =
(¢.4,4d), at each iteration k.

We propose to take a regular inertia matrix M {gadm, )20), in
order to have a good initialization for the numerical integration
of the DDM (22). This is named the “regular initialization”.

It can be obtained with

X" =0, except for, Iug =1,7=1,n. (62)

The inertia of the rotor and gear of actuator j is generally

taken into account in the IDM model (1) as

T = la;d;.

Then, the initial inertia matrix becomes the identity matrix,
which is the best regular matrix

M (qddmv )ACO) =I,. (63)
Another simple regular initialization is to take
R =0, except for, ZZ) = 1,j = 1.n. (64)

The initial inertia matrix, M (qaqum, X*), is no more the identity
matrix, but remains regular.

Another point is to choose the state initial condition of the
state vector, (gadm(0), Gaam(0)), in order to integrate the DDM
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(22). Because DIDIM does not need the joint position mea-
surement, the actual values (¢(0), ¢(0}), are supposed to be un-
known and we choose, (qadm(0), Gaam(0)) = (¢-(0),¢.-(0)),
which is close to (¢(0), ¢(0)). Because the closed-loop transient
response due to different initial conditions differs between the
actual and the simulated signals during a transient period of ap-
proximately, 5/%w,,, the corresponding joint force/torque sam-
ples are eliminated from the identification data in (46).

C. Structure of the DIDIM Algorithm
The DIDIM algorithm can be summarized as follows.

Step 0: algorithm regular initialization given by (64).

do while ((' o] > t011>
> t012>>

&& ( Iax
Step k + 1: update gains with (60) and perform
simulation with x*.

[Pl =

[l o]l
Xt — &b
ok

i

perform an IDIM-LS identification with the observation
matrix (48) and parallel decimation.

The weighted LS solution of (49) gives x*™1

end.

Motor torque (Nm)

Joint 2
Ay
Measurement: Yfm £
----- Estimation: Ye
e Error = Yfm - Ye

f
i

05 k=%
¥

oy

! *
g £ H 5 W %
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J
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time(s)

DIDIM, validation, Y. = W (qacwm - dadm dadam, X° )X 7, decimate cutoff frequency = 4 (Hz), sample frequency = 5 (Hz).

V. CASE STUDY: MODELING OF THE SCARA ROBOT

The identification method is carried out on a 2 DOF planar
direct drive prototype robot without gravity effect, shown in
Fig. 8. This direct drive prototype is very suitable for the study
of DIDIM because it emphasizes nonlinear coupling torques.
Indeed, for industrial robots with gear ratio greater than 50, this
nonlinear effect is divided by at least 2500. Moreover, the dy-
namic model of this robot depends on eight parameters only,
which facilitates the study of the identification efficiency with
respect to several conditions. At last, this robot and its real pa-
rameters, called the nominal parameters, are well known. Thus,
we can check the physical meaning of the identified parameters.

The description of the geometry of the robot uses the mod-
ified Denavit and Hartenberg (DHM) notations [31] which are
illustrated in Fig. 9. The robot is direct driven by two DC per-
manent magnet motors supplied by PWM amplifiers.

The dynamic model depends on eight minimal dynamic pa-
rameters, considering four friction parameters

X = [ZZlR F’Ul F(Zl ZZQR LMX2 LMY2 F712 FCQ]T
Z7ip =722y + Taq + Mo L?

ZZon = Z 7 + Tas. (65)

L = 0.5 m, is the length of the first link.
In the case of the SCARA robot, the parameters, LA X 5, and
LMY ,, are identified instead of, M X5, and M Y5, respectively.
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TABLE 1
COMPARISON OF IDIM AND DIDIM METHODS
IDIM DIDIM
Parameter | /M 20, %o, Ml 2°= 7" Ve 20, %0,
ZZir 3.44 0.034 0.50 3.44 3.45 0.036 0.52
Fv, 0.03 0.031 52.0 0.03 0.04 0.032 40.0
Fe, 0.82 0.1 6.0 0.82 0.82 0.05 3.0
zZ, 0.062 0.0006 0.51 0.062 0.061 0.0006 0.49
LMX, 0.121 0.0014 0.56 0.121 0.124 0.0013 0.52
LMY, 0.007 0.0007 5.0 0.007 0.007 0.0005 3.5
Fv, 0.013 0.006 23.0 0.013 0.014 0.0084 30.0
Fe, 0.137 0.006 2.30 0.137 0.133 0.0080 3.0
[y —w 2|/ ¥ |=2.4% [y -wz|/|¥]=2.1%
TABLE TI TABLE TII
DIDIM WITH THE REGULAR INITIALIZATION NORM ERRORS (%) RELATIVE TO THE ACTUAL FILTERED TRAJECTORY
Parameter |  3° 7 20, | %0, Joint j=1 Joint j=2
Z7r 1 3.45 0.014 0.2 Iteration & 0] 1 2 30 1 2 | 3
Fy, 0 | 002 | 0012 | I3 100*|,4, -,/ [0.5]0.49]0.47]0.470.5|0.49| 0.49|0.49
Fe, 0 0.85 0.016 1.0 100*”4 —L}H/”q” 2al21l 2 | 2 3 (2727
77, 1 0.061 | 0.0001 | 0.1 dam; )] ‘ ‘ :
LMX, 0 0.124 | 0.0002 | 0.1 100*”1’1",(1”,] =g,/ ||65| 6 |54 |54f0.5|92] 9 |9
LMY, 0 0.007 0.0003 | 2.0
v, 0 0.01 0.003 10 DIDIM needs only a simple control law which is very easy to
Fe, 0 0.132 | 0.0008 | 03 tune, and does not need very good tracking accuracy to succeed.

The eight columns, IDM. .,k = 1,8, of IDM(q, 4, ¢), in
IDIM (8), are the following:
q

q1
0
I

i

sign(q1)
0
g1+ fiz]
g1+ g2

IDM:J - IDMzle =

|
|

DMA:DMHM:[

IDM. 5 = IDMp,,

IDM. 5 = IDMp..,

IDM;,.S = IDML1MX2
[(2G1 + G2) cos gz — G2(2G1 + G2) sin gz
G108 g2 + ¢i sin g»

IDM. ¢ = IDMppsy,
_ [ (261 + G2) sin g2 — 2261 + (jg)cosqg]
L i cosqz — G1singa
DM, ; = IDMp,

0
sign(ge) ] - (66)

The columns IDM. ;, k = 1, 8, are automatically calculated
with the SYMORO+ software [23] as given by (4).

We tried several control laws including proportional-integral-
derivative (PID) control and feedforward velocity and accelera-
tion which give better tracking accuracy. We obtained the same
results showing that DIDIM is not sensitive to the control law
structure. We choose to present PD results because it shows that

p ,IDM. s = IDMpg,, = [
L 42 '

The closed-loop control is a PD control law (54), according
to Fig. 6, with

S =722\ g+ 775 +20LMX, Jo = Z7Z5p.

The actual gains are calculated with (59), taking a desired
damping, dC;/ = 1, for joint 1 and joint 2, corresponding to no
overshoot.

The desired natural frequency, dw"j, is chosen according to
the driving capacity without saturation of the joint drive. In the
field of motion control, it is known that the bandwidth of the
velocity and position closed-loop are limited by the electro-me-
chanical cutoff frequency wgn of the open-loop transfer func-
tion between the velocity and the voltage control of the electrical
motor, including the case of current controlled motor

wenj = K7/ Raj + Jj, for j = 1,2

where K; is the electromagnetic motor torque constant and
R 4; is the motor armature resistance.

For this robot we obtain a full bandwidth with, ‘w/
(rd/s), and 4w = 10 (rd/s).

The sample rates of the control and of the measurement are
equal to, f,, = 200 (Hz).

Torque data are obtained from (55), and from the current
reference data, while position data are obtained through incre-
mental encoders (2000 and 5000 (lines/rev), for joint 1 and 2, re-
spectively) with a 4-fold subdivision of each encoder line, (8000
and 20000 (pulses/rev), for joint 1 and 2, respectively).

The simulation of the robot is carried out with the same refer-
ence trajectory and with the same PD control law structure as the

=1
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Fig. 14. Joint torques at iteration k¥ = 0.

The drive gains in (60) are calculated with (10), where the
gear ratios K,, = K,, = 1, for this direct drive robot, and K

and K, are measured with special tests given in [25].
We obtain “Pg,, = 1.414 (Nm/V), “Pg,, = 0.845 (Nm/V),

which gives the initial values for *%,

actual robot. The reference trajectory ¢,. is a fifth-order polyno-
mial. The condition number of Wy (49), equals 25. According
to [32], the system (49) is well conditioned meaning that the pa-
rameters are well excited.

The gains in the simulator are calculated with (60) and with
the same values, 4¢; = 1,9w,, = 1 (rad/s), and ‘w,, = 10

(rad/s), which gives *k,, = 0.5 (s~ 1) and *k,, = 5 (s~ 1) k) =2/1.414 = 1.4 (Vs)
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and
s k()

"o

=20/0.845 = 23.67 (Vs).

VI. EXPERIMENTAL IDENTIFICATION RESULTS

The new identification process is performed in different cases
in order to compare the previous IDIM technique to the new
DIDIM technique and to investigate the robustness of DIDIM
with respect to the initialization, to the acquisition sampling
rate, to the data filtering and to the closed-loop tuning.

All the results are given in SI units, on the joint side.

A. Comparison of IDIM and DIDIM With Good Initial Values,
70 = ¢IPM

At first, the algorithm is initialized with, XIDIM , the vector of
parameters identified with the IDIM LS estimator.

The IDIM LS offline estimation is carried out with a filtered
position ¢ calculated with a 20 (Hz) cutoff frequency forward
and reverse Butterworth filter, and with the velocities (}, and the
accelerations, (}', calculated with a central difference algorithm
of §.

The filter is tuned according to rules given in [9] and recalled
in Section II. The maximum bandwidth for joint 2 is wqyn = 10
(rad/s), leading to choose wiq > 10 * wayn, wegqg > 100 (rad/s) =
16 (Hz). Then we choose a 20 Hz cutoff frequency.

The parallel decimation of Y,,, and Wy, in (11), is carried
out with a lowpass Tchebyshef filter with a cutoff frequency
Wep > 2 % Wayn, wep > 20 (rad/s) = 3.18 (Hz). Then we choose
a 4 (Hz) cutoff frequency. According to the relation wg, = 2 =
7% 0.8 % [, /(2% ng), the sample rate f,, is divided by a factor
ng = 20.

The results are given in Table 1. It needs only two steps to
obtain the optimal solution which is very close to the IDIM so-
lution. Hence, the DIDIM method does not improve the IDIM
solution calculated with good bandpass filtered data.

B. DIDIM, Validation of the Regular Initialization,
M(gadam, X°) = I

The robustness of DIDIM with respect to a wrong initializa-
tion, such as the regular initialization (63), is investigated.

The initial values of the dynamic parameters are given by
(62), with

The identified values given in Table II, are very close to those
given in Table 1. This result validates the regular initialization
procedure, described in Section IV-B.

Moreover the algorithm converges in only three steps and is
not time consuming.

The relative norm errors on joint position, velocity and accel-
eration are given in Table III.

The assumption (41), made in SAecAtion IV-B,
(Qd(lxn()%k‘r% q.ddm(f(k‘r% (jd('lnl(f(k)) = ((j (L Q)’ at each
iteration k, is confirmed in Table III and on Fig. 12, with a
constant relative norm error close to 0.5% for the position, 5%,

TABLE 1V
NORM ERRORS (%) RELATIVE TO THE REFERENCE TRAJECTORY

Joint j=1 Joint j=2
Iteration k& O(1 (2|30 | 1 [2]|3
100%q,4, ~a,|/[a,| [1.6]1.4]1.2|1.2f1.56| 1.5 [1.4]1.4
100*d,, ~d, |/, || 8 |7.2|6.1|6.1f12.5|11.3]9.2|9.2
100* |G, | /[, || 24| 23| 20 | 20f 31 | 30 | 26|26

TABLE V
RELATIVE NORM ERROR (%) OF JOINT TORQUE: 100 % ||Y7 — W3 x*||/||Y7]|

Iteration k | 0 | 1 |2 3
Joint j=1 |42 |3.6/2|1.8
Joint j=2 [320|11|2]2.2

TABLE VI
PARAMETERS CONVERGENCE

Parameters | 70 7 7 7
ZZ 5 1 346 | 345 | 345
Fv, 0 | 0.04 | 0.02 | 0.02
Fe, 0 | 0.86 | 0.85 | 0.85
zZ, 1 0.06 | 0.061 | 0.061
LMX, 0 [0.122(0.124 | 0.124
LMY, 0 | 0.05 | 0.07 | 0.07
Fv, 0 |0.005| 0.01 | 0.01
Fc, 0 [0.130(0.132 | 0.132

for the velocity and 10%, for the acceleration. These results
validate the updating procedure (60), of the simulated PD
control law gains.

It can be seen also in Table IV and on Fig. 13, that the sim-

ulated trajectory, ((Iddm(f(k)vqddm()zlf)vf.jddm()zk))a is3to5
times closer to the actual one, (¢, 7, ¢), than to the reference
one, (¢r, ¢, 4r), with a relative norm error close to 1.5% for
the position, 15%, for the velocity and 30%, for the acceler-
ation. Moreover, this error depends on the closed-loop band-
width. Computing the observation matrix in (14) with the refer-
ence trajectory, (g, ¢r. dr ), leads to a bad identification of the
dynamic parameters of this scara robot.

Then, the right assumption made in Section IV-B is,
(Qddm(ik)v q'ddm()%k)a (.jddm(f(k’)) ~ (g, 4, q), (41), at each iter-
ation &, with a constant small error. This can be seen on Figs. 12
and 13, at iteration & = 0, with the wrong parameters of the reg-
ular initialization. On the contrary, Fig. 14 shows that DIDIM
amplifies the parameter errors in the simulated torques which
are very different from the actual ones at iteration & = 0. This is
an illustration of the material given by (42), (43), (44), (45). Be-
cause IDM(Qddm()%k)v q'ddm(fék)v (.jddm(f(k)) =~ IDM(% d» (]),
has small variation at each iteration k, the parameter sensitivity
is mainly focused on the simulated torques as shown by (44),
and the error between the actual and the simulated torque is
mainly focused on the parameter value in (45). This is why it
is much better to take force/torque output instead of position
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TABLE VII
IDIM AND DIDIM, LOW SAMPLING RATE, f,,, = 0.5 Hz

IDIM DIDIM
Parameter | 3P/ 20, %0, 7° 7 20, %0,
ZZ,, 3.10 0.03 0.3 1.0 3.45 0.04 0.5
Fv, 0.9 1.8 100 0 0.04 0.02 30
Fe, 1.0 0.1 5 0 0.81 0.05 3
zz, 0.025 0.003 5.5 1.0 0.061 0.0006 0.5
LMX, 0.075 0.008 53 0 0.124 0.001 0.5
LMY, -0.02 0.01 250 0 0.008 0.0006 4.0
Fv, 0.35 5.6 800 0 0.01 0.005 25
Fc, 0.19 0.087 23 0 0.13 0.008 3.0
[y =w 2| /|y |=50% | -wz|/|¥]=4%
output for closed-loop identification with gain updating in the TABLE VIII
simulator, resulting in a very fast convergence in few steps. To IDIM, JOINT DATA ERRORS (%) AT f,, = 0.5 Hz
illustrate this point, we carried out the identification of a single - - - >
DOF robot with three dynamic parameters, based on CLOE Hq’ (ZOOHZ)_q’(O'SHZ)H/ H‘LQOOHZ)H 9%
method described in Section III. The norm error between the H,’},(zooﬂz)_g}](()jHZ)H /Hg}](zo()HZ)H 73%
actual and the simulated position, as given by (28), (29), is . . ; 80%
minimized, without gain updating. The nonlinear LS problem 4:(200H2) ~¢, (O'SHZ)H/H% (ZOOHZ)H
is solved with the Nelder-Mead simplex algorithm (fininsearch é}_,(ZOOHz)—('}j(O.SHz)H / Hi}Z(ZOOHZ)H 81%

Matlab) [34]. The algorithm, initialized with the regular initial-
ization, converges after 60 iterations, while DIDIM converges
dramatically faster in only one iteration. This simple example
proves that our new approach converges much faster than
existing OE identification methods. The validation of DIDIM
on a single DOF rigid and flexible robot is carried out in [34].

Moreover, the relative torque norm error, given in Table V,
dramatically decreases in only three steps. This shows the fast
algorithm convergence.

The fast convergence of each parameter is shown in Table VI.

C. Comparison of IDIM and DIDIM Robustness With Respect
to a Low Sample Rate

The actual torque and the simulated data are resampled to
obtain a low measurement frequency f,, = 0.5 Hz. This is a
downsample procedure without lowpass anti-aliasing filtering
which investigates a real problem on industrial robots where the
available sample rate measurement given by the controller may
be much lower than the control sample rate. All the actual and
simulated data are sampled at f,, = 0.5 Hz.

The IDIM LS estimation is carried out with the measured
joint position ¢, and with ((}, (}), calculated by a central dif-
ference algorithm of ¢, without lowpass Butterworth filtering.
There is no parallel decimation. DIDIM starts with the regular
initialization. Results are given in Table VII.

The identified values with IDIM are not good while the iden-
tified values with DIDIM are still good. This shows the robust-
ness of DIDIM with respect to the sampling rate measurement.

IDIM fails because there is an amplitude distortion in the es-
timation of ((} (}) , with a central difference of ¢, sampled at a too
low frequency f,,. This point is illustrated in Table VIII, which

gives the relative norm errors on velocity (80%) and accelera-
tion (80%).

[& (200 Hz), (i] (200 Hz)], are calculated from ¢, sampled at
200 Hz and lowpass filtered at a 0.5 Hz cutoff frequency, and
derived with a central difference algorithm.

[(}' (0.5 Hz), & (0.5 Hz)], are calculated from ¢, sampled at 0.5
Hz and derived with a central difference algorithm.

DIDIM succeeds because, (Gadm; dadm, Gddm )» 1S computed
with accuracy by the integration of the DDM with a well-tuned
variable step solver, and it can be sampled without error at any
frequency f,,.

D. Comparison of IDIM and DIDIM, Without Data Filtering

All the actual and simulated data are sampled at f,,, = 200
Hz.

The IDIM LS estimation is carried out with the measured
joint position ¢, and with ((i] (}), calculated by a central dif-
ference algorithm of ¢, without lowpass Butterworth filtering.
There is no parallel decimation. DIDIM starts with the regular
initialization. Results are given in Table IX.

The identified values with IDIM are not good while the iden-
tified values with DIDIM are still good.

IDIM fails because of the too large noise in the observation
matrix, W, (g, q. (}), coming from the derivation of g, without
lowpass filtering. Then the LS estimation is biased.

DIDIM succeeds because the observation matrix,
W fon (Gddm; Gadms Gadm, X¥), is calculated without noise
with the simulated values (¢ddm, ddm, dddm ) -

This validation shows that DIDIM cancels the bias of IDIM
estimation, coming from a noisy estimation of (g, (}, (}), which

gives a too noisy observation matrix Wy,,(q, ¢, q).
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TABLE IX
IDIM AND DIDIM ESTIMATION WITHOUT DATA FILTERING
IDIM DIDIM
Parameter 7 20, %0, 7’ e 20, %0,
ZZ,x 1.50 0.05 1.60 1.0 3.45 0.007 0.1
Fv, 0.095 0.15 80.0 0 0.05 0.023 21
Fc, 0.55 0.26 23.3 0 0.81 0.004 0.24
ZZ, 0.14 0.018 6.7 1.0 0.061 0.0004 0.3
LMX, 0.63 0.035 2.7 0 0.124 0.0015 0.3
LMY, 0.1 0.023 11.8 0 0.008 0.0009 5.6
Fv, 0.001 0.143 700.0 0 0.023 0.0022 48
Fe, 0.19 0.244 68.40 0 0.13 0.0038 1.5
[y =w 2| /v |=80% [y -wz|/|r|=8%

TABLE X
DIDIM, WITH SIMULATED HALF FULL BANDWIDTH, %w,, =% w/! /2

Parameter |  7° 7° 20, %0,
ZZ,, 1 3.44 0.014 0.2
Fv, 0 0.02 0.012 15
Fc, 0 0.86 0.016 1.0
ZZ, 1 0.060 0.0001 | 0.1

LMX, 0 0.124 0.0002 | 0.1
LMY, 0 0.007 0.0003 2.0
Fv, 0 0.01 0.003 10
Fe, 0 0.13 0.0008 | 0.3

E. DIDIM Robustness With Respect to Error in the Simulated
Closed-Loop Tuning, “w,,

This section investigates the effect of an error between the
actual value, “w,,, and the simulated value %w,,, of the natural
frequency which represents the closed-loop bandwidth.

The DIDIM identification is performed taking half the values
of the full ones given in Section V, ‘w,, = wf /2 = 1/2
(rad/s) and “w,, = wf /2 = 10/2 (rad/s), and the same pro-
cedure used to obtain results shown in Table II, that is to say a
measurement frequency, f,,, = 200 Hz, and a parallel decima-
tion with a factor, ny = 20, and a lowpass filter cutoff frequency
equal to 4 Hz.

The parameters, given in Table X, converge in only six steps
to values which are very close to those obtained in Table II, with
a full closed-loop bandwidth.

The relative norm errors on joint position, velocity and accel-
eration are given in Tables XI and XII.

IE (ian be seen that, ((Iddm(fék)vdddm(f(k‘)vf.jddm()zk‘)) =
(G, q,q), at each iteration &, with a constant norm error larger
but close to the value obtained with the full bandwidth,
Table III, close to, 0.5% for the position, 3%, for the velocity
and 10%, for the acceleration.

The relative torque norm error which is given in Table XIII,
decreases in 6 steps, that is only twice more than with the full
bandwidth, given in Table V. This shows that DIDIM is not
very sensitive to error in the simulated closed-loop bandwidth,
provided the control law structure is known.

However, DIDIM fails beyond 1/3 of the full bandwidth, with
dw, < dwl/3.

VII. CONCLUSION

This paper deals with a new offline identification tech-
nique of robot dynamic parameters, called DIDIM technique.
This method is a closed-loop OE approach, but consid-
ering the output is no more the joint position but the joint
force/torque. The optimal parameters are the solution of
a nonlinear least-squares problem which is solved with a
Gauss-Newton method. Each step of the iterative procedure
of the Gauss-Newton regression is dramatically simplified to
a linear regression which is solved with the IDIM technique.
Then, DIDIM mixes the closed-loop OE technique and the
IDIM technique.

DIDIM needs a closed-loop simulation of the robot using the
DDM and assuming the same structure of the control law and the
same reference trajectory for both the actual and the simulated
robot. Then, it needs to initialize the parameters and the state
vector of the DDM.

The difficulties for the choice of the initial conditions for non-
linear LS problem are overcome with a “regular initialization”
of the parameters and an updating of the control law gains at
each step of the iterative procedure. The initial state is given by
the initial values of the reference trajectory.

An experimental validation is carried out on a 2 DOF robot.
The following points were checked:

* DIDIM gives the same results as IDIM, provided well-
tuned data filtering for IDIM, adapted to the system dy-
namics;

» DIDIM is robust to the initialization of both parameters and
state;

* DIDIM is robust to the closed-loop performances tuning
errors between the simulated and the actual closed-loop
robot, provided the same control law structure.

Compared to IDIM, DIDIM technique is particularly attrac-

tive thanks to the following reasons.

» It needs only the actuator force/torque measurement or es-
timation,

 Itavoids the calculation of the velocity and acceleration by
bandpass filtering of the measured position, through well
tuned bandpass filter in the IDIM method. In the DIDIM
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TABLE XI
NORM ERRORS (%) RELATIVE TO THE ACTUAL FILTERED TRAJECTORY

Joint j=1 Joint j=2
Tteration k 0T 12345 ]6llo]1[2[3]4[5]6
100* 444, 3, /]d,] 10.75)0.90] 0.6|0.7|0.6|0.54| 0.54]l0.8 | 0.7] 0.65 | 0.7| 0.7 | 0.67 | 0.67
100*d,4, =4, /i, | 4.0 | 3.0 {4.0[3.0(4.0] 3.0 | 3.0 fa.0| 4.6 4.0 [3.0{4.0| 2.8 | 2.8
IOO*HiJ'ddm,—é}, I BCARTARCIREIRTARTRETY (TR ERRTI U TR
TABLE XII
NORM ERRORS (%) RELATIVE TO THE REFERENCE TRAJECTORY
Joint ;=1 Joint j=2
Tteration k o J1J 2734 s5]e6fo] 1 T2]3]4[5]s
100* g4, =4, |/[a,] [ 2.1 [25] 1.7 |2.1] 1.8 | 16| 1.6]2.1] 1.8 [1.5|1.8]1.8|1.6] 1.6
100*|d,, 4, /|4, [10.5[8.0[10.7]8.1 10,6 |8.0[8.00 10 [ 11.5| 10 7.5 10 [8.0[8.0
100*Hiiddm,—éj,, /ld, ||| 41 |45] 41 |38 | 35 |33 |3341 | 45 |41 |37]35]33|33

TABLE XIII

RELATIVE NORM ERROR (%) OF JOINT TORQUE, 100 * ||Y7 — W *||/||Y7]|,

FULL BANDWIDTH/2

Iteration £k | 0 1123 4|56
Joint j=1 | 60 | 5 |6|4|25[2]|2
Joint j=2 |300|11|5]|2|25[2]|2

method, position, velocity, and acceleration are simulated
data without noise obtained from the integration of the
DDM in a closed-loop simulation. Then, closed-loop band-
width automatically defines the same frequency range for
the dynamics of the actual system and of the model to be
identified.

It cancels bias in IDIM due to errors in bandpass filtering
data, or no filtering at all, or too low measurement fre-
quency.

It combines the inverse and the direct dynamic model
and validates, in the same identification procedure, both
models for computed torque control and for simulation. Up
to now, the DDM was validated a posteriori in simulation.
Future work concerns the validation of DIDIM on a 6 DOF

industrial robot.
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A Generic Instrumental Variable Approach for
Industrial Robot Identification

Alexandre Janot, Pierre-Olivier Vandanjon, and Maxime Gautier

Abstract— This paper deals with the important topic of indus-
trial robot identification. The usual identification method is based
on the inverse dynamic identification model and the least squares
technique. This method has been successfully applied on several
industrial robots. Good results can be obtained, provided a well
tuned derivative band-pass filtering of joint positions is used
to calculate the joint velocities and accelerations. However, one
cannot be sure whether or not the band-pass filtering is well
tuned. An alternative is the instrumental variable (IV) method,
which is robust to data filtering and is statistically optimal. In this
paper, a generic IV approach suitable for robot identification is
proposed. The instrument set is the inverse dynamic model built
from simulated data calculated from simulation of the direct
dynamic model. The simulation is based on previous estimates
and assumes the same reference trajectories and the same control
structure for both actual and simulated robots. Finally, gains of
the simulated controller are updated according to IV estimates
to obtain a valid instrument set at each step of the algorithm.
The proposed approach validates the inverse and direct dynamic
models simultaneously, is not sensitive to initial conditions,
and converges rapidly. Experimental results obtained on a six-
degrees-of-freedom industrial robot show the effectiveness of
this approach: 60 dynamic parameters are identified in three
iterations.

Index Terms— Closed-loop identification, instrumental vari-
able method, model reduction, rigid robot dynamics, statistical
hypotheses testing.

I. INTRODUCTION

HE usual robot identification method is based on the

inverse dynamic identification model and least squares
technique. This method, called the (IDIM-LS), has been
successfully applied to identify inertial parameters of several
prototypes and industrial robots [1]-[5]. Good results can be
obtained provided a well tuned derivative band-pass filtering
of joint positions is used to calculate the joint velocities and
accelerations. However, even with guidelines for the tuning of
band-pass filtering given in [6], one doubts whether or not the
IDIM-LS estimates are unbiased.
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This leads to us to try other identification methods: the
extended Kalman filter (EKF) [7], the set membership uncer-
tainty [8], an algorithm based on linear matrix inequality
(LMI) tools [9], and a maximum likelihood (ML) approach
[10], [11]. However, these techniques do not really improve the
IDIM-LS method coupled with a well tuned band-pass filtering
and they were not validated on six-degrees-of-freedom (DOF)
industrial robots.

Another approach is the instrumental variable (IV) tech-
nique introduced by Reiersgl in 1941 [12]. In [13]-[15], and
references therein, IV methods were studied for linear systems.
However, these works are mostly theoretical and validated on
low-dimensional linear systems. This might explain why there
are very few real-world applications, especially in robotics
[16], [17]. This means that the gap must be bridged between
the theory and control engineering practices.

In this paper, a generic IV approach relevant for rigid robot
identification is proposed. The instrument set is the inverse
dynamic model built from the simulated data calculated
from simulation of the direct dynamic model. The simulation
assumes the same reference trajectories and the same control
structure for both actual and simulated robots and is based
on previous IV estimates. This defines an iterative algorithm.
Finally, gains of the simulated controller are updated according
to IV estimates to obtain a valid instrument set at each step
of the algorithm. This algorithm, called the IDIM-IV, validates
the inverse and direct dynamic models of robot simultaneously,
improves the noise immunity of estimates with respect to
corrupted data in the observation matrix, is not sensitive to
initialization, and converges rapidly.

A condensed version of this paper has been presented in [18]
and [19]. This paper contains detailed proofs to enlighten the
theoretical understanding of IDIM-IV method, gives additional
experimental results, and deals with statistical hypotheses
testing.

The rest of the paper is organized as follows. Section II
reviews the usual identification technique IDIM-LS. Section III
presents the IDIM-IV identification method. Tests checking
the statistical hypotheses are introduced in Section IV. The
modeling and experimental identification of a TX40 robot are
presented in Section V. Section VI concludes this paper.

II. IDIM: INVERSE DYNAMIC IDENTIFICATION
MODEL TECHNIQUE

In this part, the main steps of IDIM-LS method are recalled.
The details can be found in [6] and [7].

1063-6536 © 2013 IEEE
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A. Inverse Dynamic Model of Robots

The inverse dynamic model (IDM) of a robot with n moving
links calculates the (n x 1) joint torques vector T as a function
of generalized coordinates and their derivatives [20], as

© =M(q)q + N(q. ) Sy

where q, ¢, and ¢ are, respectively, the (n x 1) vectors of
generalized joint positions, velocities and accelerations; Mq)
is the (n x n) inertia matrix; and N(q, q) is the (n x 1) vector
of centrifugal, Coriolis, gravitational, and friction torques.

The modified Denavit and Hartenberg (DHM) notation
allows us to obtain an IDM linear in relation to a set of base
parameters 8 as

where IDM(q, q, ¢) is the (n x b) matrix of basis functions
of the bodies dynamics and B is the (b x 1) vector of base
parameters.

Equation (2) represents the IDIM. The base parameters
are the minimum number of dynamic parameters from which
the IDM can be calculated. They are obtained from standard
dynamic parameters by regrouping some of them with linear
relations [21], [22]. The standard parameters of a link j are
XX;, XY;, XZ;j, YY;, YZ;, and ZZ;, which are the six
components of the inertia matrix of link j at the origin of
frame j; MX;, MY;, and MZ; the components of the first
moment of link j; M; the mass of link j; /a; is the total
inertia moment for the rotor and gears of the actuator j; and
Fv; and Fc; are the viscous and Coulomb friction parameters
of joint j. Because only the base parameters are considered,
the matrix IDM(q, q, q) is linearly independent.

B. Data Acquisition

Usually, the data available from robots controllers are
measurements of q and measurements of the (n x 1)
control signals vector v, calculated according to control
law. Robots are mostly position-controlled. The usual con-
trols are proportional-differential (PD), proportional-integral-
differential (PID), computed torque (flatness control), and
passive controls [20]. When identifying base parameters, the
PD control is preferred to the others because it is easy to
tune and excellent tracking is not necessary [6]. Motors are PI
current-controlled. The current closed loop has a bandwidth
greater than 500 Hz. Then, in the frequency range of the
dynamics (less than 10 Hz), its transfer function is modeled
as a static gain [6]. The control signal of the motor j, i.e., v,
is related to the reference of current of the motor j, T, as

T =GV, 3)

where G is the (n x n) diagonal matrix of drive gains. The
diagonal components of G; have a priori values given by
manufacturers which can be checked with special tests.

C. Data Filtering

In (2), q is estimated with ¢ obtained by filtering mea-
surements of q through a low-pass Butterworth filter in both
the forward and reverse directions using the filtfilt MATLAB

function. (a, a) are calculated with a central differentiation
algorithm of ¢. By doing so, we avoid distortion when calcu-
lating IDM(q, q, ) coefficients. This point is discussed in [6].
The IDIM given by (2) is sampled at a measurement frequency
fm while the robot is tracking some reference trajectories
(qr,q, q,). The following over-determined linear system is
obtained:

Yin (0 =Wyn (3.70%0) B+ 0,

where Y 7, (7) is the (1, x 1) measurements vector built from
actual torques 7; Wy, (g, f], a) is the (n,, x b) observation
matrix built from IDM((A],f],iAj); P fm 18 the (n, x 1) vector
of error terms; and n,, is the number of samples.

T is perturbed by high-frequency disturbances, and since
there is no information in high frequencies because of low-
pass filtered data (q, ¢ q q) a parallel decimation procedure is
used to eliminate torque ripples and information-free samples
in high frequencies. The parallel decimation is carried out with
the decimate MATLAB function. This point is discussed in [6]
also.

D. IDIM-LS Estimates and Statistical Analysis

After data acquisition, sampling, and parallel decimation,
the following decimated overdetermined linear system is
obtained:

A A

4.9)B+p “)

where Y(7) is the (r x 1) measurements vector built from
actual torques t;W(g, q, q) is the (r x b) observation matrix
built from IDM (q, q, ¢); and p is the (r x 1) vector of error
terms; r is the number of rows in (4).

In (4), Y and W, equations of each joint j are regrouped
together. Thus, Y and W are partitioned so that

Y(7) = W(q,

Yl ‘R’1
Y@= [ W(@ad)=|
y" w"
with
R e OB TURTC)
Y/ = , W/ =
Z; (ne) IDM/ (é (ne), q (ne), é (ne))

IDM §(), 4(.), G(.)) being the jth row of the (n x b)
matrix of the basis function IDM(q(.), (), q(.)) given by (2).
Y/ and W/ represent the 1, equations of a subsystem j, n,
being the number of rows in Y/ and W/.

Using base parameters and “exciting” reference trajectories
[1], [3], [23], we get a well conditioned matrix W. A good
conditioning number of W means that base parameters are
well excited and they can be well identified. In [24] and [25],
the authors have considered other criteria (the determinant
of WI'W for instance). Though these criteria can also be
considered, in our experience, the experimental results are
quite similar.
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p is assumed to have zero mean, be serially uncorrelated,
and be heteroskedastic, i.e., to have a diagonal covariance
matrix 2 partitioned so that

2 2
0L - O'nIne)

@ = diag (07, -+ o]
where I, is the (n, xn,) identity matrix. The heteroskedasticity
hypothesis is based on the fact that robots are nonlinear multi-
input multi-output (MIMO).

o? is the error variance calculated from subsystem j ordi-
nary LS (OLS) solution [7]

Y/ =W/ (4,448 +p’. )

Thus, the weighted LS (WLS) estimator is used to

estimate 8. The WLS solution of (4) is given by
Brs =W 'w)~'wie! 6)

Usually, such weighting operations normalize the error
terms in (4). Indeed, with

p=2""%p (7)
one obtains X g, = E(ppT) = ' 2E(ppT)@ /2 =1,.
The estimated covariance matrix of WLS estimates is
s =W e 'w)™! ®)
Al% ® = X;5(i,1) is the ith diagonal coefficient of X .
LS
The relative standard deviation %&BLS(') of B;g; the ith
component of [?I Ls 1s then given by
100 aﬁ @)
g = s for|Bus@)] £0. )
Brs() = A
Brs()

The IDIM-LS, illustrated in Fig. 1, was successfully applied
on several prototypes and industrial robots (see the references
given in introduction).

E. Drawbacks of IDIM-LS Method

To provide unbiased results, measurements of q and v, must
be accurate enough at high sampling rate and the data filtering
must be well tuned. Finally, the direct dynamic model (DDM)
given by (10) is validated a posteriori

M(q)q = T — N(q, q).

An alternative for eliminating the bias of IDIM-LS estimates
is the IV method, which deals with the problem of noisy
observation matrix and which is statistically optimal.

(10)

F. Brief Theoretical Background of the IV Method

LS estimates are unbiased if the following hypothesis holds
[26, Ch.7]:

EWTp)=0 (11)

where E(.) is the expectation operator.

In this case, W is not correlated with p. A violation of
hypthesis (11) leads to biased LS estimates [26]. W(q, q, q)
being built from noisy measured data, users can doubt whether
W(q,q, q) is correlated with p or not, even though the data

l

q,
: Control T Sampling (f,,)
{q,] law @ q,q | +bandpass filtering
q,
Sampling (f,,) 9.9-9

Y

Inverse Dynamic
Jin Y

Identification Model
IDM

IDM (4.4.4)

Lowpass filtering
+ downsampling

B = min]v - W

Linear LS

Fig. 1. IDIM-LS identification scheme.

filtering described in the Section II-C is performed. That is the
reason why it is interesting to use the IV method introduced
by Reiersgl in 1941 [11]. This method consists in introducing
an (r x b) instrumental matrix denoted as Z such that (4)
becomes ZTY =ZTWB + Z7 p.

With the assumptions

E (ZTW) exists, is finite, and, full rank b, and
EZ"p)=0

12)
(13)

the simple IV estimator provides unbiased estimates given by
Bsiv = @TW)~'ZTY.

IV methods were widely studied and applied to linear sys-
tems, especially the Box-Jenkins model [13]-[15]. According
to these works, a good way is to build from simulated data
only. These simulated data are outputs of an auxiliary model
which is the noise-free mathematical model of the system
to be identified. Instruments can be constructed on previ-

ous IV estimates denoted as ﬁ];‘_,l This defines an iterative
process.

However, these works are mostly theoretically oriented and
validated on low-dimensional linear systems. Furthermore, in
many-real world applications, these methods cannot be used
as they are. This may explain why IV methods are rarely
employed in robotics [16], [17].

In the following section, we aim at bridging the gap
between theory and control engineering practices by proposing
a generic IV approach relevant for rigid robot identification.

III. INSTRUMENTAL VARIABLE APPROACH FOR
ROBOTS IDENTIFICATION

A. Choice of a Valid IV Matrix
Because rank(Z) = rank(W) = b, the system is called “just
identified.” In this case, the true model is assumed to be
Y= W(an, (infa qnj)ﬂ +ey = W”fﬂ +ey

where e, is the (r x 1) vector of measurement noise,
(Qnf» Qny» G, are the noise-free vectors of joint positions,
velocities, and accelerations, respectively, and W, is the
noise-free observation matrix with E (WZ fey). One has

W=W,+V
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where V is a (r x b) matrix of error terms uncorrelated with
W,s and ey, i.e., E(VIW,;) = 0 and E(V'e,) = 0. Since
p = e, — VB, Wis correlated with p, leading to biased LS
estimates.

An (r x b) valid instrumental matrix is

Z=Wur =W{nf, Qpr> Any) (14)

to show that the IDM is assumed to be well specified. Hence,
we obtain W=7+ V =W,y + V. Thus, it follows:

E@Z"W) = E(W,:W,z) + E(W, V= EW,] W,f).
Finally, the following relations hold:
rank (E(Z" W)) = rank (E(Wp :W,p)) =b  (15)
E(Z"p) = E(W};p) =0 (16)
Indeed, E(W,-p) = E(W, e,) — E(W].V)B = 0.

Hence, with Z = W, ¢, assumptions (12) and (13) hold.
Now, we must choose and simulate a valid auxiliary model to
build an instrumental matrix Z which is as close as possible
to Z defined by (14).

B. Choice and Simulation of a Valid Auxiliary Model

For robots, the auxiliary model is the DDM (direct dynamic
model) given by (10). Simulation of the DDM is performed
assuming the same reference trajectories and the same control
law structure for both actual and simulated robots. In addition,
DDM simulation is based on previous IV estimates. Hence, at
step k, where k is the k™ IV estimates, the simulated joint
accelerations are given by

k-1, . Ak—l
M(qs, B;yv )4s = ts — N(qs, qs, By )- (17)

By integrating (17), the (n x 1) vector of simulated joint
velocities ¢ and positions qg is obtained. The (n x 1) vector
of simulated torque 7 is given by 7, = G,V s, where v, g
is the (n x 1) vector of simulated control signals calculated
according to the control law.

Like measurements, simulated data are sampled at a mea-
surement frequency fm The (n, x b) 1nstrumenta1 vari-

able matrix is then Z m = Wafm(qs,qs,anﬁlv ), where
Wéfm(qs,qs,qs,ﬂlv ) is the (n, x b) sampled matrix of

IDM(QgJ]SJ]S»ﬁIV )
Each column of Z fm 18 resampled at a lower rate (parallel

decimation). Then we have Z = Ws(qg, qs, qs» [}];‘_/1).

Compared with IDIM-LS and the other methods cited in
the introduction, IDIM-IV uses IDM and DDM. Thus, both
DDM and IDM are validated simultaneously. This is the first
contribution of our approach.

Unfortunately, a simple simulation of the DDM to get (s,
Q5. and g is not enough to build Z defined by (14). Indeed,
simulation of the DDM is based on previous IV estimates
[§I;V1 and we can obtain Z # Z = W,r. The choice of the
initial values ﬁ(I)V is crucial even though IV algorithms are
known to be quite robust to initialization [14]. However, this
behavior was never theoretically proved and, in [27], it has

been shown that a bad choice of lé(l)v leads to algorithm diver-
gence or invalid IV estimates because of violation of relations
(12) and (13).

Thus, we propose an IV algorithm which is insensitive to
initial conditions. This assumes that the condition

(@sBrv), asBry)r dsBr) ~ @i s d)¥Byy (18)

is satisfied at iteration k, starting with k = 0.

This is possible by tacking the same control structure for
both actual and simulated robots with the same performances
given by the bandwidth, the stability margin, or closed-loop

~k
poles. Because the parameters of the simulated robot B,y
change at each iteration k, gains of the simulated controller
k

must be updated according to B v

For example, a joint j PD control is considered. The joint
j inverse dynamic model (IDM) (1), can be written as a
decoupled double integrator perturbed by a coupling torque

;=M ;(@q; —pj

where pj is considered as a perturbation given by

n
— > M;i(@d; —N;(q, q)
i#]
M; ;(q) is approximated by a constant inertia J;, given by

Ji=ZZj+ la; +m;1x(Mj,i(q) —ZZj— laj).

J; is the maximum value of inertia moment with respect to
q. This gives the smallest stability margin of the second-order
transfer function of the position loop while q varies. It must
be taken at least as ZZ; + Iaj, which can be calculated from
a priori CAD values. The joint j DDM is approximated by a
double integrator as follows:

g = TP (Tite)
7 M, (@) Jj
It makes sense to use linear techniques to tune the perfor-
mances of joint j closed loop.
Now, a joint j PD control of the actual robot, illustrated in
Fig. 2, is considered.
The control input is given by

ap j.
_7 (19)
al’g .

zj

Ve = (“hpj“ko; (q”j —q;) = kvjqj)
and 7; is given by

Tj = 87;Vr; (20

where ¢ 8r; is the actual drive gain, “J; is the actual value of
Jj, and “PJj and “Pg,; are the a priori values of the actual
unknown values “J; and “g;;, respectively.

If the a priori values are equal to actual ones, then “kp,
and %k, ; are the PD control gains of the normalized double
integrator 1/s2. Closed-loop performances are chosen with
the desired two poles of the second-order transfer function
characterized by “w, ; and d(j. 40, ; s the desired natural
frequency that characterizes the closed-loop bandwidth, and
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Fig. 2. Joint PD control of the actual robot.
Ps,;
q, : 4 7k q
’ Skp () Hkv'/ aij Jj Tk T i qS/ m o
j g/‘ ap J/ T, M
vr,S,
Fig. 3. Joint PD control of the simulated robot.

d(j is the desired damping which characterizes the closed-
loop stability margin. It becomes [6]
d

)y, .
Ykp; = # and “ky; = zdévfg‘lw”j'
j

ey

Now let us consider a joint j PD control of the simulated
robot illustrated in Fig. 3.

The variables (qs, ;, qs,j, ijs’j, tg,j) in Fig. 3 are computed
by numerical integration of (10). The PD control of the
simulated robot has the same structure as the actual one
illustrated in Fig. 2. It can be seen that the actual gain
Yk P J /P gr; must be multiplied by J Jk / 4P J; to obtain the
same normalized double integrator 1 / 52 and the same closed-
loop transfer function. The proportional gain “kj,; does not
depend on parameter values. Hence, we keep *kp, = “kp;.
But the derivative gain in the simulator must be updated with
J jk at each iteration k. Hence, *k, ; must be updated as follows:

Tk

vk,

Sk“j =" k“/ ap J;

(22)
. . Ak .. A~k

This allows uskto keep (qs (ﬂIV)a qs (ﬂIV)a qs (ﬂlv)) ~

(Qnf, Qyg» 4,7)VB - Finally, after simulating the MDD with

gains updating given by (22), after sampling of simulated data
and parallel decimation, one has

A .. ak—l
Z=W; (an qs, ds, ﬁIV )’\’W (ql’lfa qnf’ qnf)

Compared with other IV algorithms, gains updating per-
formeg(i at each iteration of IDIM-IV allows us o obtain

(asB;v), QS(ﬂlv) qS(ﬂlv)) ~ (qnf,qnf,qnf)\?’ﬁm, lead-
ing to Z ~ an‘v’ﬂlv. Thus, (12) and (13) hold Vﬂ,v. This
algorithm, which is not sensitive to initial values ﬁ 7y 1s the
second contribution of our approach.

In the following sections, it is reasonable to make the
following approximation, i.e., Z ~ Z.

C. Algorithm Initialization

In [6]
M(qs, ﬁ IV) to have a good initialization for numerical inte-
gration of the DDM. It is obtained with

it is proposed to take a regular inertia matrix

~0

By =0,exceptf0r,la?= I,forj=1,n. 24)
The use of the regular initialization is interesting because

there is no need of a priori knowledge about the values of

base parameters.

D. Calculation of IDIM-IV Estimates

After data acquisition, data filtering, and parallel decima-
tion, we obtain

727Y (1) = ZTW (a,&,&) B+ZTp

where Z is the (r x b) IV matrix given by (23). Y and W are
defined by (4).

In Y, W, and Z, equations of each joint j are regrouped
together. Thus, like Y and W, Z is partitioned so that

7! IDM/ (gs (1), 45 (1), ds (1))
with Z/ = :

7" IDM/ (qg (ne) , ('ls (ne) , iiS (”L))

IDM (qs(.), qs(.), Gs(.)) being the jth row of the (n x b)
matrix of the basis functions IDM(qs(.), 45(.), Gs(.)) given
by (2). Partitions of Y and W are given in (4).

Y/,W/, and Z/ represent the n, equations of a
subsystem ;.

Because p is assumed to be heteroskedastic (see Section II),
the IV estimates are given by

7 =

~k

B,y =@ 'wy 'z ly. (25)
This solution is called the weighted IV (WIV) estimates.
As with LS techniques, such weighting operations normalize

the error terms. However, when using the IDIM-IV method, af

is the error variance calculated from subsystem j IV solution

ZHTY = (2/)W/(§,4, B + 2/)T p’.

The covariance matrix of IV estimates is given by

Tiv=Z"Q'z2)7!

c}ﬁgk © = Zyv(i,i) is the ith diagonal coefficient of X;y. The
l
relative standard deviation %6 2 (0) is given by
1V

100 * UﬁIV(I)

_ forl A7y (1)) # 0
1By ()

%0 Hi

G = (26)

Ak
where B,y (i) is an IDIM-IV estimation of B(i) at step k.
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Fig. 4. Scheme of the IDIM-IV identification method.

E. Convergence Criterion

This process is iterated until its convergence
ko Ak—1
‘ﬂlv(l) — By (l)‘
k=1
By (@)

okl = llog—1ll < tol; and max

< toly
lor_1ll i=1,..,b

27)
where ||p,|| is the 2-norm of p at step k.

The parameters rol; and toly are values ideally chosen to
obtain a good compromise between rapid convergence and
good accuracy. A good compromise consists in choosing roly
and tol> between 2.5% and 5.0%.

F. Algorithm of the IDIM-1V Identification Method

The scheme of IDIM-IV method is illustrated in Fig. 4.
DDM and IDM can be calculated with the SYMORO-+
software developed by the IRCCyN robotics team [35]. This
software can compute all dynamic and kinematic models
from the geometric parameters of the robot [35]. In addition,
the number of operations (additions and multiplications) is
optimized to obtain a reduced calculation time.

Thus, IDIM-1V is a “fully automated” identification method.
This is the third contribution of our approach.

IV. VALIDATION OF STATISTICAL HYPOTHESES AND
MODEL REDUCTION

A. Introduction

In many papers, statistical hypotheses are not verified, while
estimate unbiasedness depends on them. This is particularly
true when one faces identification of real-world systems.

In statistics, statistical hypotheses testing are carried out
with homoskedastic errors [26]. That is the reason why the
tests described in this section use p and not p. In addition,
according to (7), if hypotheses made on p hold, those made
on p hold, too.

B. Statistical Hypotheses Made on p

1) Normality of p: Normality assumption is crucial to run
the following tests. The Kolmogorov Smirnov test (KS test)
allows doing that [26]. The KS test is a nonparametric test
for the equality of continuous 1-D probability distribution
that can be used to compare a sample with a reference
probability distribution. The KS test quantifies a distance
between the empirical distribution function (edf) of the sample
and the cumulative distribution function (cdf) of the reference
distribution.

In our case, p resulting from a normalization of p, the
reference distribution is N(0, 1). The null hypothesis is then
Ho : p ~ N(0, 1). The edf of p is compared with the cdf of
the reference distribution via a KS test with a 0.05 level of
significance. The KS test is carried out with the kstest MATALB
function.

If the KS test rejects Hp, something goes wrong: measure-
ments quality, tuning of band-pass filtering, or IDM misspecifi-
cation. For a misspecified IDM, some effects such as nonlinear
frictions, stiffness, and so forth are missing and they must be
included (see [28] for a good overview).

2) Independent Samples Test: 1t is important to check
whether the samples are independent or not. Indeed, if p is
serially correlated, then relative deviations given by (9) or (26)
are no longer consistent because they are underestimated or
overestimated.

A simple way to find the correlation between samples
consists in using linear regressions. For the i™ sample of p,
one writes

p@i) =aipli — 1) +ap(i—2)+-+app@—p)

where each a; is a coefficient and p is an dependence order
chosen by the user with p << n,.
The following overdetermined linear system is obtained:

¥, =®a+u (28)
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Algorithm 1 IDIM-IV Identification Algorithm

Compute the inverse and direct dynamic models using
Newton—Euler equations [20];

Compute W and Y according to (4);

Step O: initialize IDIM-IV with the regular initialization given

by (24);
While (w > tol,&& max M > tolz)
. k-t i=L..b 1By )]

0:

Simulate the DDM by updating gains of the simulated con-
troller with (22);

Compute Z ~ Z = W,y as described in section B;

Compute IV solution with (25);

End of while.

where
p(p+1) p(p) p(1)
Yp = : , @ = : :
p(ne) p(ne—1) --- p(n. — p)
a=[a - a,,]T, and u is the error assumed to be serially

uncorrelated and to have zero mean.
Estimates of a, a, are LS solution of (28), i.e.,

a=(o"o) ey, (29)
The coefficient of determination R% is given by [26]
RE=1—y, — ®a|*/ly,l. (30)

p is serially uncorrelated if each d; is close to zero with
large deviation and if R2 is close to zero (typically less than
0.1). Roughly speaking, in this case, columns of @ do not
explain the variations observed on y,.

If p is serially correlated, then useless information-free
samples are present and they must be removed. The parallel
filter cut-off frequency must be therefore rescaled according
to the order p.

C. Model Reduction

Some dynamic parameters remain poorly identifiable
because they have a poor contribution to the dynamics. They
can be cancelled to simplify the inverse and direct models.

Gautier and Khalil [21], [23] suggested that parameters such
that %aA is greater than a bound between 20% and 30% are
cancelled to keep a set of essential parameters of a simplified
dynamic model without loss of accuracy [3]. However, there
is neither a formal proof nor any test that validates or rejects
such statement.

In statistics, the F-statistic is widely run to vali-
date/invalidate model reduction [26]. It is assumed that Hy :
p ~ N(0, 1) holds. From b base parameters, bc parameters
may constitute the set of essential parameters. The F-statistic
is run as follows:

1) one runs IDIM-IV method with the b base parameters
and one computes ||p]||;

Link frames of the TX40 Stdubli robot.

Fig. 5.

2) one runs the IDIM-IV method with the bc essential
parameters and one computes ||p.||, the error norm

obtained with the reduced model
(A )(
417

If F is less than or compatible with F(1_g), (b—bc),(n.—b)
then the F-statistic accepts the model reduction; otherwise,
the model reduction is rejected.

Parameters that show the largest relative deviations are
eliminated first and this process is executed in a decreasing
way (%6, = 60%, %6'/);“/ = 50%,...,%&/§1V = 30%,)
until the F-statistic fails.

It is important to note that IDIM-IV method is used instead
of IDIM-LS because IDIM-LS estimates may be biased. It is
also suggested to perform the KS test to check the normality
of p.. If the KS test fails, it does not make sense to run the
F-statistic.

3) one calculates F = = bc)

V. EXPERIMENTAL IDENTIFICATION RESULTS
A. Modeling of TX40 Robot

The Stidubli TX40 robot has a serial structure with six
rotational joints. The robot kinematics is defined using the
modified Denavit and Hartenberg notation (see Fig. 5) [20].

The geometric parameters defining TX40 frames are given
in Table I: 6; = O means that joint j is rotational; a; and
d; give, respectively, the angle and the distance between z;_1
and z; along x;_1; 0; and r; give, respectively, the angle
and the distance between x;_1 and x; along z;. Because all
joints are rotational, 6; is the position variable of joint j, i.e.,
q; =0;.

The TX40 robot is characterized by a coupling between
joints 5 and 6. This coupling effect adds two additional
parameters: fv,6, the viscous friction coefficient of motor 6;
and fcpe, the dry friction coefficient of motor 6. Full details
about TX40 modeling are given in [29]. TX40 has 60 base
dynamic parameters. The columns of IDM(q, ¢, q) in (2)
are obtained using the Newton—Euler recursive algorithm. The
SYMORO+ software is used to automatically calculate the
customized symbolic expressions of models [20].

Joint positions and control signals are stored with a mea-
surement frequency f;,, =5 kHz.
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TABLE I
GEOMETRIC PARAMETERS OF TX40 ROBOT

jloj| @ dj 0; rj

1] o0 0 0 a

2| 0| 2n 0 q— /2 0
3]0 0 | 3=0225m | q3+7/2 | r3=0035m
4l o] zn 0 g4 14 = 0225 m
5 0 | —x/2 0 qs

6 0 /2 0 q6

Robot simulation is carried out with the same reference tra-
jectories and with the same PD control structure as the actual
TX40 robot. In addition, gains of the simulated controller are
updated with (22). IDIM-IV identification method is initialized
with all base parameters equal to O except /a; =1 for j # 5
and /a5 = 2 because of the coupling effect. Finally, we choose
toly = 2.5%.

A C MEX S-Function of SIMULINK is used on a 2011
laptop PC with INTEL i7 CPU to run the DDM simulation.
One iteration of IDIM-IV takes 3.5 s for an 8-s trajectory.

Reference trajectories (q;, q,, (,) are designed so that q,
are trapezoidal (also called smoothed bang-bang accelera-
tions). An illustration for the sixth joint is shown in Fig. 8.
Since cond(W) = 200, reference trajectories excite well the
base parameters [23].

B. IDIM-LS and IDIM-1V Methods With Well Tuned Band-Pass
Filtering

IDIM-LS and IDIM-IV methods are carried out with a
filtered position q, calculated with a §0-Hz fourth-order BuAt-
terworth filter and with velocities q and accelerations q,
calculated with a central difference algorithm of §. The
Butterworth filter is tuned according to guidelines given in [6]
and recalled in Section II . The maximum bandwidth for joint 6
is wgyn = 10 Hz. This leads us to choose wy, > S*wdyn and
wyfq > 50 Hz, wy, being the filter cut-off frequency. Then we
choose a 50-Hz cutoff frequency. Parallel decimation is carried
out with a low-pass Tchebyshef filter with a cut-off frequency
wfp > 2*wdyn and wy, > 20 Hz, wy, being the parallel filter
cut-off frequency. Then we choose a 10-Hz cut-off frequency.
According to the relation wys, = 2*7%0.8 x f,,/(2*ng), the
sample rate fy, is divided by ng = 100.

The normality assumption of p holds because the KS test
accepts Hyp : p ~N(0,1). The histogram of p obtained with
IDIM-IV method is plotted in Fig. 9. It matches a Gaussian
distribution and one has 6, 1.5 = 6,,;v = 1.03 ~ 1.0. So, the
error terms in p are normalized and heteroskedasticity is well
taken into account. Thus, there is no missing effect such as
nonlinear friction or stiffness. IDM is well specified. The test
of independency described in Section IV was run: it provides
R2 =0.05 < 0.1 and small coefficients a; with large relative
deviations. So, samples of p can be considered independent.
Finally, all statistical hypotheses made on p hold in practice.

IDIM-LS and IDIM-IV estimates are given in
Tables IV and V, respectively. IDIM-IV method needs
only three steps to converge (see Table IV). The
F-statistic accepts to cancel parameters such that %&/?Ls(i) or

%53’;‘,(1‘) is greater than 30%. Indeed, we have ||p|| = 48.5,
[l = 49, n, = 2160, b = 60, and bc = 28, leading to
F = (49% — 48.52/48.52)(2160 — 60/60 — 28) ~ 1.4. Since
(I:’ ~ 1.4) < (Fo.95,32,2100 ~ 1.6), the F-statistic accepts the
model reduction. So, from 60 base parameters, only 28 are
well identified with good relative standard deviations. These
parameters define a set of essential dynamic parameters.

IDIM-LS estimates match the IDIM-IV estimates. Accord-
ing to the theory proposed in [30] IDIM-LS estimates are
unbiased. Like the other identification methods cited in the
introduction, IDIM-IV does not really improve IDIM-LS cou-
pled with good band-pass filtering data. In fact, in such case,
one can write W(@, q, ) ~ W(quf, q,s, d,y) = Way, and
this explains why IDIM-LS estimates are unbiased. If LS
estimates are used to run the statistical tests, then we obtain
the same results as those obtained with IDIM-IV estimates.
This is because LS estimates are unbiased.

Norm of error relative to filtered joint position calculated at
each step k and for each axis j is given in Table VII. Since
these relative errors are very small, i.e., less than 0.2%, relation
(18) is always satisfied. This result emphasizes effectiveness
of gains updating of the simulated controller given by (22).

C. Direct Comparisons and Crosschecking

Direct comparisons have been performed (see Fig. 6).
Estimated torques constructed with IDIM-LS and IDIM-IV
estimates fit measured torques: we have |[Y — WB¢|l/IY| =

5% and [IY — ZB,y I/1Y || = 6%.

To check the validity of the estimates, cross-test validations
(or crosschecking) must be performed. The crosschecking
is carried out with trajectories different from those used
during the identification process. A set of three trajectories
is usually enough. These points are randomly chosen in the
accessible workspace of the robot. Users must ensure that these
trajectories are exciting enough because using underexciting
trajectories for crosschecking may lead to misinterpretation
of experimental results. If possible, data must be stored with
another measurement frequency. For the TX40 robot, these
trajectories are fifth-order polynomials and they pass through
specified points different from those defined to build the
trajectories used to run the IDIM-IV and IDIM-LS methods.
An example for the sixth joint is shown in Fig. 8. Data are
stored with a measurement frequency f;,;, = 1 kHz instead of

n =5 kHz.

While using the IDIM-IV method, crosschecking is per-
formed as follows:

1) design another set of exciting trajectories different from

the set used during the identification process;

2) excite the robot with these trajectories to obtain another
set of measured joint torques denoted as Y,;

3) simulate the robot with these trajectories and the IDIM-
IV estimates given in Table V to build the instrumental
matrix 20 as described in Section III-B;

4) calculate the relative error ||Y, — Zoﬁiv I/IIYoll and, if
the IDIM-IV estimates are unbiased, this value must be

A3
compatible with [[Y —ZB;y|I/IY| = 6%. For IDIM-
LS, only steps 3 and 4 differ;
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TABLE 1T
RELATIVE ERRORS OBTAINED DURING CROSSCHECKING
AND IDIM-IV ESTIMATES

SnlkHi) | cond(Zo) | 1Yo — ZoB1v /1Yol (%)
Trajectory 1 1 280 6.5
Trajectory 2 1 270 7.0
Trajectory 3 1 300 6.5
TABLE III

RELATIVE ERRORS OBTAINED DURING CROSSCHECKING
AND IDIM-LS ESTIMATES

fn (kKHz) | cond(Wo) | Yo — WoBpsll/IIYo (%)
Trajectory 1 1 280 6.0
Trajectory 2 1 270 5.5
Trajectory 3 1 300 5.5

5) with these trajectories, build the observation matrix W,
as described in Section II; R

6) calculate the relative error ||[Y, — Wo B 5ll/l'Yoll and, if
the IDIM-LS estimates are unbiased, this value must be
compatible with [[Y — WB ¢[I/IY] = 5%.

The results of crosschecking obtained with the IDIM-IV
estimates are given in Table II. Fig. 7 shows a comparison
between actual joint torques and reconstructed joint torques
obtained with the first trajectory. The reconstructed torques fit

. A A3
the actual ones, and all relative errors Y, — ZoB vy /1Yol

are compatible with ||Y—Z/§§V||/||Y|| = 6%. In addition,
these trajectories are exciting enough because, for each tra-
jectory, cond(Z,) is close to cond(W) = 200. This means
that the IDIM-IV estimates can be considered as unbiased.

Results of cross-test validations obtained with IDIM-IV
estimates are given in Table III. All relative errors
1Yo — WoBsll/IYoll match [[Y —WBslI/IYI = 5%.
This means that IDIM-LS estimates can be considered as
unbiased.

D. IDIM-LS and IDIM-1V Methods
Filtering

IDIM-LS and IDIM-IV methods are carried out with mea-
surements of q and with (q,q) calculated by a central
difference algorithm of q measurements without the low-
pass Butterworth filtering. There is no parallel decimation.
IDIM-IV starts with the regular initialization. IDIM-LS and
IDIM-IV estimates are given in Tables VIII and IX. Once
again, IDIM-IV method needs three steps to converge (see VI).
We give the essential parameters because the model reduc-
tion is 3accepted by the F-statistic. Finally, we have
1Y = ZB;y /1Yl = 10%.

The IDIM-LS estimates do not match the IDIM-IV esti-
mates. Since the IDIM-IV estimates given in Table IX stick
to those given in Table V, and according to the Hausman’s
theory, the IDIM-LS estimates are biased. IDIM-LS fails
because of the noisy observation matrix W(q, ¢, §) coming
from derivation of q without low-pass filtering. In fact, we
have E(W7 p) # 0.

Without Band-Pass

TABLE IV
IDIM-LS ESTIMATES

Bus | %oy, Bus | %oy,
ZZir | 125 1.1 Fe; | 6.10 1.8
Fvy 8.18 0.6 MX4 -0.02 16.0
Fe; 6.57 22 Tag 0.03 8.8
XXor | 048 | 26 Fva 1.14 14
XZog | 016 | 43 Fei | 2.30 25
7Z7)R 1.08 1.0 MYs5g | -0.03 13.0
MXog 2.20 2.5 Ias 0.04 8.8
Fv, 5.67 1.0 Fvs 1.88 1.8
Fc, 776 1.8 Fcs | 2.90 2.9
XXsg | 0.13 94 Tag 0.01 94
ZZ:x | 012 | 76 Fvg | 0.68 15
MYsg | 060 | 22 Feg | 2.10 25
Ias 0.09 8.8 fvne | 0.63 1.6
Fyv3 2.02 1.6 fome | 1.80 3.7
TABLE V

IDIM- IV ESTIMATES AFTER THREE STEPS

~3 R ~3 ~
Brv | %54, Brv | %,
ZZ1R 1.25 1.3 Fecs 6.0 1.9
Fvy 8.20 0.7 MX4 —0.02 20.0
Fc; 6.55 2.6 Tay 0.03 9.4
XXor | —0.48 2.9 Fvy 1.15 1.5
XZog | —0.16 438 Fey 227 2.6
Z75R 1.09 12 MYsg | —0.03 | 14.0
MXor | 221 2.9 Ias 0.04 | 11.0
Fv, 5.68 12 Fvs 1.90 2.0
Fcp 7.77 2.1 Fcs 2.80 35
XX3p 0.13 10.0 Tag 0.01 10.9
773R 0.12 8.8 Fvg 0.69 1.6
MY3g | —0.60 23 Feg 2.00 2.8
laz 0.10 9.2 Ve 0.63 1.8
Fv3 2.03 1.8 feme 1.81 42

IDIM-IV succeeds because the instrumental matrix Z fm =

Wsrm(dg, 454 s ﬁl;‘_,l) is calculated with the simulated val-
ues (qs, qg,(s) are very close to the actual ones (ﬁ,a, z})
thanks to gains updating performed at each step of the
algorithm.

This validation shows that IDIM-IV cancels the bias of
IDIM-LS, coming from a noisy estimation of (q,(:l,cz),
that gives a too noisy observation matrix W(q, q, §).
This result was expected because this is a property of the
IV methods.

However, one can notice that IDIM-IV has lost its effi-
ciency compared with IDIM-IV coupled with a parallel
decimation. Indeed, deviations given in Table IX are greater
than those given in Table V. This is because one has
Y — Zﬁiv [I/IY]| = 10% because of the noise corrupting Y.

This experimental result shows that parallel decimation can be
related with “optimal prefilters” used in [13]-[15].
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The normality assumption of p holds because the KS test
accepts Hyp : p ~ N(0,1). The histogram of p obtained
with the IDIM-IV method is plotted in Fig. 10. It matches
a Gaussian distribution and we have 6, ;v = 1.02 ~ 1.0. So,
the errors terms in p are normalized and heteroskedasticity is
well taken into account. The test of independency described
in Section IV was run. We have R2 = 0.07 < 0.1 and
coefficients a; are small with large relative deviations. So,
samples of p can be considered independent. Hence, with
IDIM-IV estimates, all hypotheses made on p hold in practice.
If LS estimates are used to run the statistical tests, then the

results are different. This is because LS are biased: first, the
KS test rejects the normality hypothesis; second, samples of
p are serially correlated. Such results must warn users.

E. IDIM-IV Method Compared With the Total Least Squares
(TLS) Technique

IDIM-IV method is now compared with the TLS method
because one can resort to the TLS method when facing a noisy
observation matrix. Details about TLS method can be found
in [31] and many papers by the same authors.
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TABLE VI
IDIM- IV ESTIMATES CONVERGENCE

ﬁ? \4 B\} \4 B\% Vv ﬂ’? V
ZZig | 10 124 | 125 | 125
Fv; 00 | 818 | 820 | 820
Fc 00 | 654 | 654 | 654
XXor | 0.0 | -047 | -048 | -048
XZog | 00 | -0.15 | -0.16 | -0.16
ZZr | 10 1.08 | 1.09 | 1.09
MXog | 00 | 220 | 221 | 221
Fv, 00 | 562 | 568 | 5.68
Fey 00 | 775 | 777 | 177
XX3g | 00 | 0125 | 013 | 013
ZZzg | 00 | 012 | 012 | 012
MYsg | 00 | —0.60 | —0.60 | -0.60
Ta3 10 | 009 | o010 | o0.10
Fv3 00 | 200 | 203 | 203
Fe3 0.0 | 6.00 6.0 6.0
MX4 00 | -0.01 | -0.02 | -0.02
Tay 10 | 003 | 003 | 003
Fv, 0.0 113 115 | 115
Fey 00 | 226 | 227 | 227
MYsg | 0.0 | —0.025 | -0.03 | —0.03
Tas 20 | 004 | 004 | 004
Fvs 0.0 190 | 190 | 1.90
Fcs 00 | 275 | 280 | 280
Tag 1.0 | 0009 | 0.01 | 0.01
Fvg 00 | 064 | 069 | 0.69
Feg 0.0 195 | 2.00 | 2.00
V6 00 | 061 | 063 | 063
feme 0.0 178 | 181 | 1.81

The TLS method is carried with and without band-pass
filtering. When coupled with well tuned band-pass filtering,
TLS estimates stick to IDIM-LS estimates given in Table IV.
Like the other approaches, the TLS technique does not
improve the IDIM-LS method coupled with well tuned data
filtering. Without band-pass filtering, the TLS method provides
estimates given in Table X. In this case, the TLS estimates do
not match the IDIM-IV estimates. According to the Hausman’s
theory [30], the TLS estimator is biased. Unlike the IDIM-IV
method, TLS cannot cancel the bias resulting from a noisy
observation matrix W(q, q, q).

TABLE VII
NORM OF ERROR RELATIVE TO FILTERED JOINT POSITION

é i—qs. i
M k=0%) | k=1%) | k=2%) k=3%)
aj
Joint 1 0.080 0.078 0.078 0.078
Joint 2 0.050 0.045 0.045 0.045
Joint 3 0.050 0.048 0.048 0.048
Joint 4 0.051 0.050 0.050 0.050
Joint 5 0.100 0.097 0.097 0.097
Joint 6 0.120 0.119 0.119 0.119
TABLE VIII

IDIM-LS ESTIMATES WITHOUT DATA FILTERING

Bus | %op Bus | %op
771 R 0.06 5.5 Fes 5.56 14
Fvy 8.10 0.4 MXy 0.06 2.8
Fcy 6.06 1.3 Tag 0.01 11.5
XX | -0.08 4.1 Fvy 1.20 1.9
XZog | -0.02 6.7 Fey 2.30 3.5
Z7oR 0.05 32 MYs5g | -0.02 8.1
MXog 4.20 0.7 Ias 0.01 6.8
Fv, 5.15 0.6 Fvs 1.84 1.9
Fc, 8.26 0.9 Fcs 2.85 1.5
XX3r | =0.01 | 20.0 Tag 0.001 19.0
7Z3r | -0.05 32 Fvg 0.68 22
MY3g | -0.30 1.8 Fcg 2.00 3.8
Taz 0.05 22 Ve 0.64 1.8
Fv3 221 1.05 fCme 1.74 3.62

F. IDIM-1V Method Compared With the Classical Output
Error (OE) Method

Because the OE overcomes the problem of noisy observa-
tion matrix, IDIM-IV method is compared with a classical
OE technique (see [Section III, 6]). OE identification methods
minimize a quadratic error between an actual output and
a simulated output of the system assuming both the actual
and the simulated systems have the same input. For robot
identification, it is more suitable to choose the closed-loop
OE method (CLOE) [6]. Taking the measured joint positions
as outputs, the actual output vector is y, = q and the simulated
output vector is ys = (s. (s is obtained from integration of
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TABLE IX
IDIM-IV ESTIMATES WITHOUT DATA FILTERING

Biv | %y, Biv | o,
7Z71Rr 1.25 2.6 Fc3 5.9 3.4
Fvi 8.25 1.7 MXy -0.02 40.0
Fc, 6.50 6.6 lay 0.03 | 13.0
XXor | -0.48 6.0 Fvy 1.16 1.9
XZog | -0.16 10.0 Fey 220 | 3.8
Z7ZoRr 1.08 24 MYs5g | -0.03 21.7
MXsr | 2.20 5.8 Ias 0.04 | 17.0
Fvy 5.68 2.3 Fvs 1.95 2.6
Fc, 7.73 4.1 Fcs 280 | 55
XX3g | 0.13 20.0 Tag 0.01 | 15.1
ZZzgr | 0.11 19.0 Fvg 0.69 | 22
MY3g | -0.60 42 Feg 200 | 4.0
Taz 0.10 15.0 fvue | 064 | 2.4
Fv3 2.06 2.8 fen6 179 | 58

I% error histogram and estimated Gaussian
300 T T T T

)

250

200

o
o

Population

=
o

a0

Fig. 9. Histogram of IV error and estimated Gaussian with data filtering.
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Fig. 10. Histogram of IV error and estimated Gaussian without data filtering.

the DDM (10). The criterion to be minimized is therefore

JB) = lyg —ysI* = (yg —ys) (yg —ys). (3D

The minimization of J(B) is a nonlinear LS problem.
Estimates can be computed using algorithms such as gradient
method or Newton methods. These methods, based on a

TABLE X
TLS ESTIMATES WITHOUT BAND-PASS FILTERING

Brs | %op Brs | %op
ZZ1R 0.11 5.0 Fc3 5.60 1.6
Fvy 8.05 0.5 MXy 0.01 2.5
Fcy 6.00 1.4 lTag 0.01 13.0
XXor | —0.12 4.0 Fvy 1.18 2.5
XZyg | —0.08 6.3 Fecy 2.30 3.7
Z7ZoRr 0.43 5.1 MYs5g | —0.03 8.0
MXog 3.21 0.9 las 0.02 7.0
Fvyp 5.22 0.6 Fvs 1.91 2.1
Fcy 8.20 1.0 Fcs 2.80 1.8
XX3r | —0.01 22.0 Tag 0.005 20.0
773R 0.05 33 Fve 0.68 2.0
MY3g | —0.40 2.1 Fcg 2.00 4.1
Iy 0.07 22 Ve 0.65 2.0
Fvs 2.10 1.4 fcn6 1.75 3.8

first- or second-order Taylor’s expansion of J(f), are available
in the Isqnonlin MATLAB function. The calculation of the gra-
dient and/or the Hessian of J () makes the CLOE method the
most involved identification method compared to IDIM-LS,
IDIM-IV, and the other methods cited in the introduc-
tion because several DDM simulations are needed. So,
it is expected that the CLOE method is very time
consuming.

DDM simulation is performed without updating gains of the
simulated controller, and the Gauss—Newton (GN) algorithm
is initialized with acceptable values. The Isqnonlin MATLAB
function is used. The GN algorithm converges after 1000
iterations and we retrieve IDIM-IV estimates given in Table V.
However, if the GN algorithm is initialized with the regular
initialization, it does not converge (some values of inertia and
friction parameters are negative). As expected, classical OE
methods are really not suitable for six-DOF robot identifica-
tion: they converge slowly, they need several DDM simulations
to calculate the gradient and/or the Hessian of the criterion,
and they are sensitive to initialization. We recall that IDIM-IV
converges after three iterations only and is not sensitive to
initialization.

G. Comments About Friction Model

In this paper, a linear model of friction composed of viscous
and Coulomb (dry) coefficients was considered. Experimental
results supported by a rigorous statistical analysis validate this
choice. In addition, this linear model is always valid within
a frequency range [20]. However, friction models are often
nonlinear and complex (especially at low frequencies).

Hamon et al. [32] have shown that it is possible to identify
a load-dependent friction model with linear LS techniques.
Thus, in this case, IDIM-IV method described in this paper
can be used as it is.

Another way consists in using the separable least squares
(SLS) introduced by Golub and Pareyra [33], as was done in
[34]. The whole inverse dynamic model is split into two parts:
one that is linear to the set of base parameters, and another
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one that is nonlinear to the friction parameters. Hence, IDM
(4) turns to

Y(T) ZW(és'q;"I» ﬂNL)ﬂ+p (32)
where By regroups all parameters of nonlinear friction.
B is estimated with the linear LS techniques, as
B=W+(§.9.9.By)Y(®) (33)

where W+(é,a,i},/§NL) is the pseudo-invert of

W(éa (.L ija ﬂNL)'
By is estimated with nonlinear LS techniques, as

Byi =min|[Y(r) — WG, q. 981>

So, B and B, can be estimated through an iterative algo-
rithm [33], [34]. For technical details, the interested readers
can refer to [34].

The IDIM-IV described in this paper can be used as it is
to identify the base parameters . A nonlinear IV approach
could be used to identify friction parameters ;. However,
to our knowledge, performances of nonlinear IV methods
were never compared with those of nonlinear programming

methods. This may constitute an interesting extension of the
IDIM-IV method.

(34)

VI. CONCLUSION

In this paper, a generic IV method suitable for robots
identification, called IDIM -1V, was successfully applied on
a six-DOF industrial robot manufactured by STAUBLI.

This identification method combined the inverse and the
direct dynamic models. These models were validated simul-
taneously. Until now, the inverse and direct models had been
validated separately.

The IDIM-IV algorithm improves noise immunity of esti-
mates with respect to corrupted data in W coming from noisy
measurements and/or bad tuning of band-pass filters of joint
positions. A band-pass filtering is not needed to get unbiased
estimates. However, if the IDIM-IV method is used without
parallel decimation, it may lose its efficiency.

Gains of the simulated controller being updated at each step
of IDIM-IV according to IDIM-IV estimates, the algorithm is
not sensitive to initialization and has a rapid convergence. Only
three iterations are needed to identify 60 dynamic parameters.
With classical IV methods, at least five iterations are needed
to identify low-dimensional systems.

IDIM-IV was also compared with the TLS and OE methods.
Experimental results show that IDIM-IV is more effective than
these latter two approaches.

However, like the other identification methods cited in the
introduction, the IDIM-IV method does not really improve the
IDIM-LS method coupled with good band-pass filtering data.
Furthermore, the IDIM-IV method needs the simulation of the
direct dynamic model. However, thanks to the SYMORO+
software, the number of operations is optimized. This, coupled
with an appropriate C MEX S-Function of SIMULINK, the
simulation is not a heavy burden because one iteration of
IDIM-IV takes 3.5 s for an 8-s trajectory.

Finally, statistical hypotheses were experimentally validated
with rigorous statistical tests. In many papers, statistical

hypotheses are rarely verified while they are crucial to obtain
good estimates.
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ABSTRACT

This paper addresses the topic of robot identification. The usual identification method makes use of the
inverse dynamic model (IDM) and the least squares (LS) technique while robot is tracking exciting tra-
jectories. Assuming an appropriate bandpass filtering, good results can be obtained. However, the users
are in doubt whether the columns of the observation matrix (the regressors) are uncorrelated (exo-
genous) or correlated (endogenous) with the error terms. The exogeneity condition is rarely verified in a
formal way whereas it is a fundamental condition to obtain unbiased LS estimates. In Econometrics, the
Durbin-Wu-Hausman test (DWH-test) is a formal statistic for investigating whether the regressors are
exogenous or endogenous. However, the DWH-test cannot be straightforwardly used for robot identifi-
cation because it is assumed that the set of instruments is valid. In this paper, a Revised DWH-test
suitable for robot identification is proposed. The revised DWH-test validates/invalidates the instruments
chosen by the user and validates the exogeneity assumption through the calculation of the QR factor-
ization of the augmented observation matrix combined with a F-test if required. The experimental results

obtained with a 6 degrees-of-freedom (DOF) industrial robot validate the proposed statistic.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The usual robot identification method makes use of the con-
tinuous-time inverse dynamic model and the least squares (LS)
technique while the robot is tracking some exciting trajectories.
This explains why robot identification belongs to the closed-loop
identification of continuous-time models from sampled data. This
method, called as Inverse Dynamic Identification Model with Least
Squares method (IDIM-LS), has been successfully applied to
identify the inertial parameters of several prototypes and in-
dustrial robots, (Olsen, Swevers, & Verdonck, 2002; Swevers,
Verdonck, & De Schutter, 2007; Hollerbach, Khalil, & Gautier,
2008; Calanca, Capisani, Ferrara, & Magnani, 2011; Gautier, Janot, &
Vandanjon, 2013; Janot, Vandanjon, Gautier, 2014a) among others.
Good results are obtained provided that an appropriate bandpass
filtering of the joint positions is used to calculate the joint velo-
cities and accelerations. However, because robots are identified in
closed loop, the users can doubt whether the columns of the ob-
servation matrix (the regressors) are correlated with the error
terms (endogenous) or not (exogenous) even with a data filtering,

* Corresponding author.
E-mail addresses: Alexandre.Janot@onera.fr (A. Janot),
pierre-olivier.vandanjon@ifsttar.fr (P.-O. Vandanjon),
Maxime.Gautier@irccyn.ec-nantes.fr (M. Gautier).

http://dx.doi.org/10.1016/j.conengprac.2015.12.017
0967-0661/© 2015 Elsevier Ltd. All rights reserved.

see e.g. Soderstrom and Stoica (1989), Garnier and Wang (2008),
Young (2011), Gilson, Garnier, Young, and Van den Hof (2011).
Other identification methods were tried: the Total Least-
Squares (Xi, 1995), the Set Membership Uncertainty (Ramdani &
Poignet, 2005), an algorithm based on Linear Matrix Inequality
(LMI) tools (Indri, Calafiore, Legnani, Jatta, & Visioli, 2002), a
maximum likelihood (ML) approach (Olsen et al., 2002), the
Closed-Loop Output-Error method (Landau, 2001; Ostring, Gun-
narsson, & Norrlof, 2003; Gautier et al., 2013), an algorithm based
on neural network (Soewandito, Oetomo, Ang, 2011), a Bayesian
approach (Ting, Mistry, Peters, Schaal, & Nakanishi, 2006), the
extended Kalman filter (Gautier & Poignet, 2001) and (Kostic, de
Jager, Steinbuch, & Hensen, 2004), a method which estimates the
nonlinear effects in the frequency domain (Wernholt & Gunnars-
son, 2008) and the Unscented Kalman Filter (Dellon & Matsuoka,
2009). Although all these techniques are of interest, they do not
really improve the IDIM-LS method combined with an appropriate
data filtering. Furthermore, the robustness against data filtering
was not studied, some of these approaches were not validated on a
6 degrees-of-freedom (DOF) industrial robot and the condition
that the regressors are not correlated with the error terms is not
addressed whereas it is a critical condition to obtain unbiased
estimates (Hausman, 1978; Davidson & MacKinnon, 1993; Wool-
dridge, 2009). This condition is called as the exogeneity condition.
The Instrumental Variable method (IV) provides unbiased es-
timates while the regressors are endogenous (Soderstrom & Stoica,



A. Janot et al. / Control Engineering Practice 48 (2016) 52-62 53

1989; Garnier & Wang, 2008; Young, 2011). A generic IV method
for industrial robots identification is proposed in Janot et al.
(2014a), Janot, Vandanjon, and Gautier (2014b). This approach
called as the IDIM-IV method was successfully validated on a
2 DOF prototype robot and on a 6 DOF industrial robot. However,
the validity of the instruments was not addressed and using the IV
method while the regressors are exogenous provides inefficient
unbiased estimates i.e. their variances are not minimal (Hausman,
1978; Davidson & MacKinnon, 1993; Wooldridge, 2009).

In Econometrics, the Durbin-Wu-Hausman test (DWH-test) is a
formal statistic for investigating whether the regressors are exo-
genous or endogenous (Hausman, 1978). The DWH-test makes use
of the Two Stages Least Squares (2SLS) technique and an aug-
mented LS regression. However, the DWH-test cannot be
straightforwardly used for robot identification because it is im-
plicitly assumed that the instrumental matrix is well correlated
with the observation matrix and uncorrelated with the errors.
Furthermore, the econometric models are empirical whereas the
models used in mechanical engineering are based on physical laws
(e.g. the Newton's laws).

In this paper, it is proposed to bridge the gap between Econo-
metrics theory and Control engineering practice by presenting a
Revised DWH-test suitable for identification of robots. This re-
visited statistic validates/invalidates the model chosen by the user
and the exogeneity condition is validated by the QR factorization
of the augmented observation matrix combined with the F-test.

A condensed version of this work has been presented in Janot,
Vandanjon, and Gautier (2013). This paper contains detailed proofs
to enlighten the theoretical understanding of the Revised DWH-
test, heteroskedasticity is taken into account and additional ex-
perimental results are provided.

The rest of the paper is organized as follows. Section 2 recalls
the IDIM-LS method and reviews the theory of Econometrics.
Section 3 introduces the Revised DWH-test while Section 4 is
devoted to experimental results. Finally, Section 5 concludes the

paper.

2. Theoretical background: modeling, identification of robots
and introduction of the DWH-test

2.1. Modeling and identification of robots

The inverse dynamic model (IDM) of robot with n moving links
calculates the (n x 1) joint torques vector =g, as a function of
generalized coordinates and their derivatives (Khalil & Dombre,
2002),

Tigm = M(@)q + N(q, q), 1)

where q, q and § are respectively the (n x 1) vectors of generalized
joint positions, velocities and accelerations; M(q) is the (n x n)
inertia matrix; N(q, q) is the (n x 1) vector of centrifugal, coriolis,
gravitational and friction torques.

The modified Denavit and Hartenberg (MDH) notation allows
to obtain an IDM which is linear in relation to a set of base para-
meters

Tigm = IDM(q, 4, 4)B, %))

where IDM(q, q, §) is the (n x b) matrix of basis functions of
bodies dynamics and g is the (b x 1) vector of base parameters.
The base parameters are the minimum number of dynamic
parameters from which the IDM can be calculated. They are ob-
tained from the standard dynamic parameters by regrouping some
of them with linear relations (Mayeda, Yoshida, & Osukaet, 1990).
The standard parameters of a link j are XX;, XY;, XZ;, YY;, YZ; and ZZ;

the six components of the inertia matrix of link j at the origin of
frame j; MX;, MY; and MZ; the components of the first moment of
link j; M; the mass of link j; Ia; a total inertia moment for rotor
and gears of actuator j; Fv; and Fc; the viscous and Coulomb
friction parameters of joint j.

The direct dynamic model (DDM) of robots is given by

M@4q = tigm — N(q, q). 3)

Proportional-Derivative (PD) and Proportional-Integral-Deri-
vative (PID) controls are often implemented to identify the dy-
namic parameters. The joint j signal control Vi is given by

Vrj = Cj(s)(qr}- - qmesj)v (4)

where C(s) is the transfer function of the joint j controller, qr; is
the joint j position reference, Gmes; 19 the measurement of ¢; the

joint j position, s is the time derivative operator i.e. s = d/dt.

The data available from robots controllers are q,,,, the (n x 1)
vector of measurements of q and v,, the (n x 1) vector of control
signals. Each joint j torque is connected with each joint j control
signal v; by

%= &ty 6)
where g is the joint j drive gain a priori given by manufacturers.

In (2), q is estimated with q obtained by filtering (nes through a
lowpass Butterworth filter in both the forward and reverse di-
rections. (é\l, é\i) are calculated with a central differentiation algo-
rithm of §. T being perturbed by high-frequency disturbances, a
parallel decimation procedure is used to eliminate torque ripples
(see Gautier et al.,, 2013 for the details).

Because of uncertainties, the (n x 1) vector of the actual joint
torques = differs from 4, by an error e. The model (2) is sampled
while the robot is tracking trajectories (see Gautier et al., 2013 for
the details). After data acquisition and data filtering, the following
overdetermined linear system is obtained

A

V() = X(ﬁ, 4 q)ﬁ +e, ©)

where y(7) is the (r x 1) measurements vector built from the actual
torques t; X(q, é\l é\j) is the (r x b) observation matrix built from the

sampling of IDM(q, cAl ('Aj); e is the (rx 1) sampled vector of e;
r = n-n, is the number of rows in (6), n, being the number of rows
in a subsystem j.

Relation (6) is the Inverse Dynamic Identification Model (IDIM).
The columns of X(§, é\[ (‘Ii) are the regressors. ¢ is assumed to have
zero mean, to be serially uncorrelated with a covariance matrix Q
partitioned so that Q = diag (621, - 621y, I, being the
(ne x ne) identity matrix. o'jz is estimated through the Ordinary
Least Squares (OLS) solution of a subsystem j (see Gautier et al.,
2013 for the details). The IDIM-LS estimates and their covariance
matrix are given by

2
oy,

Bis = (X' X)Xy, £ = (X' X) . 7

The IDIM-LS estimates are unbiased if

(Xe) =0, ®
where E(.) is the expectation operator (Davidson & MacKinnon,
1993).

Because robots are identified in closed loop, the users can
doubt whether X(q, é\l ('Ii) is correlated with € or not. To overcome
the problem of a correlation between X and e, the Two-Stage-
Least-Squares (2SLS) technique is an appropriate method.
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2.2. Review of theory of econometrics

The 2SLS method estimates p with two LS regressions. Re-
searchers in Econometrics consider the model (6) as the reduced
form of the general model defined by

{y:Xﬁ+s
X=Zn+V )

where Z is the (r x z) instrumental matrix with z > b; I is the
(z x b) matrix of coefficients to be identified and V is a (r x b)
matrix of error terms.

The columns of Z are called instruments. If the following as-
sumptions hold rank(Z) = b, E(Z'¢) =0, E@Z'V) =0 and E\V) =0, Z
is said valid.

The first stage calculates ﬁ, the LS estimate of II, given by

fl = @'Z)'Z'X. X, the projected of X onto the space spanned by
the columns of Z, is given by

X=1zfi=2(72) 'Tx = PX, (10)

where P, = Z(Z'Zy"'Z" is the idempotent (r x r) projection matrix
of Z.
The second stage calculates the 2SLS estimates. Assuming that

T
X'PX = X X is nonsingular i.e. rank()/\() = b, the 2SLS estimates
and their associated covariance matrix are given by Wooldridge
(2009)

A AT AN AT A AT AV
Bosis = | X @X| X Q7ly, Zpg5 = | X Q7 KX| . an

If z = b the 2SLS estimates collapse to the IV estimates given by
By = @X)Zy.

If the 2SLS method is used while relation (8) holds, the esti-
mates are unbiased but their variances are not minimal (Hausman,
1978; Davidson & MacKinnon, 1993; Wooldridge, 2009). The
Durbin-Wu-Hausman test (DWH-test) is a formal test which ex-
amines whether Eq. (8) holds or not. This paper focuses on the
augmented DWH-test (Hausman, 1978). Assuming that Z is valid,

the model (9) can be written as y= )/iﬁ + VB + e. Then, by
referring to the coefficient corresponding to V as ¢ and
rewriting (9) after adding and subtracting Vg, one obtains
y=()A(+V)[3+V(7—[3)+£=Xﬁ+\/(-)+£, with 6 =y — B being
the (b x 1) vector of omitted parameters that explain the corre-
lation between X and e. The following relation called as “exo-
geneity condition” is obtained

dﬂg=0@6=a (12)

Because V is not known, its estimate is calculated with
V=X-2zfi and the following augmented regression is built

y= [X "‘,][g] + ¢. The LS estimates ﬁ and # are then calculated

and with an appropriate statistical test (e.g. F-test), it is checked
that the null hypothesis Hy: 8 = 0 holds. If the test accepts Hg, the
LS estimates are unbiased, otherwise they are biased (Hausman,
1978, Wooldridge, 2009).

Although the DWH-test is of great interest, it cannot be used as
it is. First, the unbiasedness of the 2SLS estimates and the DWH-
test are based on the fact that the Z is valid. In practice, how to
validate/invalidate this assumption? Second, the DWH-test can
detect a bias of the LS estimator but it cannot provide the origin of
this bias. Third, the models used in Econometrics are empirical
whereas the models used in Mechanical/Electrical Engineering are
mostly based on physical laws. Fourth, the notion of closed-loop
identification is not addressed in Econometrics. In the following

section, a Revised DWH-test that validates/invalidates the con-
struction of Z and determinates the origin of the bias of LS esti-
mates is presented.

3. A statistic to validate/invalidate the IDIM-LS estimates
3.1. Preliminary definitions

Because of noisy measurements, the following definitions are
. A A
introduced Gmes; = Gnf; + Omesp % = Tnf; + 57 + O7qp G = Gy, + 5G;s

G; = Goy; + 5&} and (’1; = q'nfj + 5(”1;-. ngy qnfj, c'jnfj are the joint j noise-
free position, velocity and acceleration respectively, Tnf; is the joint
Jj noise-free torque given by Tnfj = gTjC (s)(qrj - qnfj). 5qmesj is the
measurement error, 5(’1}, 5&} and 5&} are the errors in c’l\j é} and c’;}
respectively. At last 6zg; = 84,C(8) 80 es; 1 the error in ; due to the
feedback and &7; is the error in 7; due to the measurement noise.

Let e, =[6r - ory]' be the (n x 1) vector of measurements
noises in t, e; = [07q - 5ranT be the (n x 1) vector of mea-
surements noises in t due to §q,,,; = [0qmes; 6qmes“]T the (n x 1)
vector of measurements noises in q,,,. Let 5q, 5& and 5(‘/i be the
(nx 1) vector of noises in q, (Al and é\l respectively with
58 = (54, - o8, 54 =154, - o1 and 54 =[s§, ... o4 I'. Let
d, 4, G,y be the (n x 1) vector of noise-free positions, velocities
and accelerations respectively. Since q is obtained through the
filtering of q,, and since @, §) are calculated from the differ-

entiation of §, the errors 5,0 and 5q, 6&, 5& are correlated.
3.2. Exogeneity condition for robot identification

For robot identification, the true model is assumed to be

V=XyB +eq+e;
X=Xy+V ’ (13)

where X, is the (r x b) noise-free observation matrix built from
the sampling of IDM(q,, q, G,). €. is the (r x 1) sampled vector
of e; g is the (r x 1) sampled vector of e, ; V is the (r x b) matrix

of error terms that depends on the sampling of 54, 5&, 5&
With E(eq) = E(e,) = 0, E(V) = 0 and e, being uncorrelated with
eg, one obtains E(V'e,)=E(V)E(e,) = 0 and E (efe,)=E (e))E (¢,) = 0.

Because 4q,,, and 54, 5&. 5& are correlated, ¢, and V are also

correlated. As usually done in Statistics, we introduce e;=Vy’'

where vy’ is the (b x 1) vector of parameters that explain the cor-

relation between V and e, With X, = X — V and by introducing

0=y —-p the (bx1) vector of omitted variables, it yields

€ = ¢, + V0. After calculations, one obtains E(X'e) = E(V'V)0.
E(X'e) = 0 implies two exogeneity conditions

0=0, (14)
or
V=0 (15)

vy’ being the vector of parameters that have no real physical
meaning, y’ and B are not of the same nature in the case of robot
identification and relation (14) is quite implausible. Furthermore,
by calculating q through the filtering of (s and by calculating

((I'i, (‘Ii) from the differentiation of ¢, the relations 5q ~ 0, 5@[ ~ 0,

5tA'| ~ 0 are expected. V being built from the sampling of 54, 5&, 5&
relation (15) is the expected relation.
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Another way of looking at (15) is the design of the right inputs
(also called”optimal trajectories’ in robotics) that allow to obtain
the best estimates. This is the experiment design (Aguero &
Goodwin, 2006; Aguero & Goodwin, 2007). The works presented
in these references cannot be straightforwardly applied for robot
identification because robots are nonlinear Multi-Input-Multi-
Output (MIMO) systems whereas the works presented in these
references are focussed on linear Single-Input-Single-Output
(SISO) systems. At last, the basis functions contain nonlinear
functions. Those reasons explain why the authors suggest to run
the proposed approach.

According to (Gautier, 1991), Eq. (15) is equivalent to state that
0 has no influence on robot dynamics. To assess the influence of 9,

p

Eq. (6) is first rewritten as y=[X V][e] + &; = XxmoPxmp + -

where Xymp = [X V] is the (r x 2b) augmented observation matrix
and Bypp = [p' 0’1" is the (2b x 1) augmented vector of para-
meters. Second, the QR decomposition of Xyrp is considered. This
gives

Rx
Xxmp = Qxxm[ P ]

0 262p | (16)

where Qy, . is a (r x r) orthogonal matrix i.e. Qg(meXxm =1, and

Rxyqp is @ (2b x 2b) upper triangular matrix.

Third, let % (resp. r§) be the absolute value of the b first (resp.
last) diagonal elements of Rxyp, i.e. 1 = [Rxypp (k, k)| fork =1, ..., b
(resp. 1§ = |Rxypp (k, k)| for k= b+ 1, ..., 2b). According to Gautier
(1991), 6 has no influence if all r§'s are null

rf=0fork=1,..,b. a7

In this case, Eq. (15) holds because Xypp is rank deficient and
collapses to X.

Fourth, if all or some r{'s are not null, then  may significantly
contribute to robot dynamics. To assess this contribution and to
make a final decision, a F-test associated with the following hy-
pothesis Hy: = 0 is run. If the F-test accepts Hy, then the LS es-
timates are unbiased; otherwise they are biased.

In this section, the exogeneity condition for robot identification
has been given. However, it is assumed that a valid instrumental
matrix Z exists. In the following section, it is explained how to
construct Z and how to validate/invalidate this construction.

3.3. Construction and validation/invalidation of an instrumental
matrix

In Janot et al. (2014a), it has been shown that a (r x b) valid
instrumental matrix is

Z= xnf = X(qnf' qnf' qnf) (18)

where  X(qy, q,, 4, is the

IDM(qnf' qnfv qnf)
To build Z, the DDM given by Eq. (3) is simulated with the

. . Alt—1 )
previous IV estimates denoted as p,, and assuming the same

references and the same control law structure for both the actual
and the simulated robots. ¢ the vector of the simulated joint

(rx b) sampled matrix of

accelerations is given by M(qs, ﬁ;;l)qs =15 — N(qs, qs, ﬁ;f;])
where q, g are respectively the (n x 1) vectors of the simulated
joint positions and velocities calculated by numerical integration
of the DDM while =5 is the (n x 1) vector of simulated torques with
7sp the jth element of =, is given by 75 = g,j(fj(s)(q,j - qu).

Let Z defined by

A . .ot
Z= X(qs‘ qs. Gs, Byy )' (19)

where X(qs, qs, s, ﬁ;;l] is the (rxb) sampled matrix of

N
IDM(qs- qs, 4s, By )
At iteration it, the IV estimates are given by

Alt AT \"IAT
By = (Z x) Zy.

it-1
In order to ensure Z ~ X @yfs Qups lnp) ¥ [Aillv , the gains of the
simulated controller of the simulated robot are updated according

(20)

to ﬁl,i, The updating procedure is completely described in Janot
et al. (2014a, 2014b). According to the results presented in Janot
et al. (2014a), this IV approach can be considered as a one-step IV
algorithm. Consequently, a one-step 2SLS algorithm is considered
for experiments.

It is now shown how to validate/invalidate the construction of

7. With Z = Xuy, the following equality holds IT = I, where I, is the
(b x b) identity matrix. ﬁexp the expected value of fi the estimate
of I is defined by ﬁexp = Ip. Mk_exp the expected value of the kth
column of 1 is defined as

Ri_exp(i) = 1fori = k and fty_exp(i) = 0 fori # k. Q@1

A A A ATA AT

i, the kth column of II is calculated with 7ty = (Z Z)"'Z x, where
Xy is the kth column of X. Vi the kth column of v is given by
Vi = ﬁ:’%k — Xy. It is assumed that ¥ ~ N (0, Q;,) where Qg is a di-
agonal matrix whose the diagonal elements are unknown to the
users. In White (1980), the author showed that the ith diagonal ele-

ment of ©, can be estimated with 04, (, 1) = U1(i), V(i) being the ith
element of ;. The estimated covariance matrix of #; is then given by

A ATA 7]AT/\ Af ATAY !
Sam=|ZZ| ZQWZ|Z Z
(22)
Then, the following Wald-statistic is calculated
2 AT A-1 A
1§ = O Eys Oy (23)

A
where 8., = iy — Rk—exp-
If ;132 < 4% (b) for a level of significance « usually chosen between

0.1 and 0.01, Hp: #t = f_exp holds. The construction is 7 validated.
Otherwise, this construction is invalidated.

Relation (23) indicates if the distance between ft; and fty_eyp is
compatible the variances calculated. If the Wald-test accepts

Ho: &k = Ri_exp for all k, then the relation fi = fiey, is verified and
that proves that the statistical assumption made on vV hold. In-
deed, if relation (23) holds, # is a consistent estimate of ﬁ:k—exp and
there exists a compact neighborhood such that |# — rA:k_EXp is fi-
nite. Because the trajectories are bounded and according to the

results exposed in White (1980), it follows that ¥y is a consistent
estimate of wv,. Since E(V)=0 implies E(vy) =0, one obtains

E¥ = 0 for all k and this leads to EV) = 0.
3.4. Algorithm of the revised DWH-test for robot identification
The Revised DWH-test is run as follows (see Fig. 1):

A
1. Construct the instrumental variable matrix Z and validate/in-
validate this construction with the algorithm described in
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Fig. 1. Scheme of the revised DWH-test suitable for robot identification.

Se«;.\tion 3.3. R R

. If Z is valid, calculate V=X - Z.

3. Check with the QR decomposition of Xxrp = [x {;] that 6 has no
influence on robot dynamics as explained in Section 3.2.

4. If the r§'s are not null, assess the contribution of  thanks to a F-
test associated with Hy: 6 = 0. If the F-test accepts Hy, then the
LS estimates are considered as unbiased; otherwise, they are
biased.

\S]

Compared with the classical regressed DWH-test, the revised
DWH-test can determine the origin of the bias by evaluating the
validity of the instruments, can detect a model misspecification
and combines the QR factorization with a F-test. Those remarks
make the proposed statistic relevant for mechatronic system
identification.

4. Experimental identification results obtained with the TX40
4.1. Model reduction and validation of the statistical hypotheses

Before presenting the experimental results obtained with the
TX40 robot, the F-test used to eliminate the dynamic parameters
having no effect on robot dynamics is first introduced. Then, the
tests which validate/invalidate the statistical assumptions are
presented.

4.1.1. F-test

Some dynamic parameters remain poorly identifiable because they
are small. They can be canceled to simplify the inverse and direct
models. The most rigorous way consists in using the F-test (Davidson
& MacKinnon, 1993) which is carried out with the weighted error
g = Q1/2¢. Because E (g87) = Q~112E (ee") Q112 = Q-12QQ-112 = 1, it is
assumed that & ~ N (0, I) and the samples of & are independent. From
b base parameters, bc parameters may define the set of essential
parameters that is enough to describe the robot dynamics. The F-test is
performed as follows:

1. First, one runs the 2SLS method with the b base parameters and
one computes ||g||;

2. Second, one runs the 2SLS method with the bc essential para-
meters and one computes ||g, the error norm obtained with
the reduced model;

3. Third, one calculates

p_ (el - 1iel”) b - be)
el —by 4)

If Fis less than Fa —ayb-be).r—by, the F-test accepts the model
reduction; otherwise, it is rejected.

The F-test works if € ~ N (0, I,) holds and if the samples of & are
independent. These assumptions must be validated with the Kol-
mogorov-Smirnov test (KS-test) and the Durbin-Watson test (DW-
test).

4.1.2. Kolmogorov-Smirnov test (KS-test)

The KS-test is a nonparametric test for equality of continuous
one dimensional probability distribution that can be used to
compare a sample with a reference probability distribution. The
KS-test quantifies a distance between the empirical distribution
function (EDF) of the sample and the cumulative distribution
function (CDF) of the reference distribution. In our case, the null
hypothesis is Hy: &8 ~ N (0, I,). The EDF of & is compared with the
CDF of the reference distribution via a KS-test with a 0.05 level of
significance.

4.1.3. DW-test
Assuming & ~ N (0, I,), the DW-statistic is given by
r r
. . 2 .
dw=Y (e) -2 1) /D e’ ~2(1-py).
i=2 i=1 (25)
where p; is the sample autocorrelation and & (i) is the ith sample of
E.
The value of dw lies between 0 and 4. dw = 2 indicates no
autocorrelation i.e. p; = 0 and if the DW-statistic is substantially
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Table 1
Results of the Wald-test (23) for each joint j.

Joint j bj )(Z(bj) maX('igz) p-Value
1 34 48.5 18.5 0.98
2 37 52.3 124 0.99
3 31 45.0 18.1 0.97
4 24 36.5 5.4 0.99
5 20 313 1.7 0.93
6 1 19.7 9.1 0.61

less than 2, there is evidence of positive serial correlation. Small
values of dw indicate that successive error terms are close in value
to one another (or positively correlated). Similarly, if dw is greater
than 2, successive error terms are much different in value from
one another (negatively correlated).

For robot identification, as a rough rule of thumb, if dw varies
between 1.8 and 2.2, & can be considered as serially uncorrelated.
Otherwise, a suspicion of a serial correlation is legitimate.

4.1.4. KS-test, Wald-test and F-test with MATLAB

In order to perform the KS-test, the KS-test MATLAB function is
used. The level of significance « is 5%. It is recommended to cal-
culate the p-value in order to make a good interpretation of the
result.

To perform the Wald-test, relation (23) is first calculated and
the chi2cdf MATLAB function is used. For instance, with relation
(23), the following instruction is used p = 1 — chi2cdf (;132, b) where
p is the p-value. It is checked that p > a to validate the set of
instruments.

For the F-test, the fcdf MATALAB function is used. F given by
relation (24) is first calculated and the following instruction is
used p=1 —fcdf(ﬁ, b — bc, r — b) and if p > «, the model reduc-
tion is validated.

4.2. Brief introduction of the TX40 Robot

The TX40 robot has a serial structure with six rotational joints
and is characterized by a coupling between the joints 5 and 6. This
coupling adds two additional parameters: fv,,g the viscous friction
coefficient of motor 6 and fc,¢ the dry friction coefficient of motor
6. The TX40 robot has 60 base dynamic parameters. Its complete
modeling is given in Janot et al. (2014a).

The robot is controlled by a cascade controller which consists of
a P control of the inner velocity loop and a P control of the outer
position loop. 7; is given by

7= grj(kpj(er - quSj) - k"quesj)' 26)

where kpj is the proportional gain of the outer position loop in Nm/
rad, ky; is the proportional gain of the inner velocity loop in Nm/
(rad/s), g is the drive gain and qmesj is the velocity calculated from
the differentiation of mes;-

The bandwidth of the first (resp. last) three position closed-
loops is 10 Hz (resp. 20 Hz). The results obtained with a PID con-
troller sticking to those given in this paper, the use of a PD con-
troller is enough and this is consistent with the results presented
in Gautier et al. (2013).

The reference trajectories (q,, 4, §,) are designed so that ¢, are
trapezoidal. Since cond (X(, (/i ('/i)) = 200, (q,, q,, §,) excite well the
base parameters (Gautier & Khalil, 1992; Pressé & Gautier, 1993).
To evaluate the three identification methods, data are stored with
a measurement frequency f,, = 5kHz.

To validate the estimates, cross-validations are performed. They
are carried out with 3 fifth-order polynomials passing through
points different from those defined to build the trajectories used to
run the 3 identification methods. For cross-test validations, data
are stored with a measurement frequency f = 1kHz and the
relative errors are calculated with the LS or 2SLS estimates and
with these trajectories (see Janot et al., 2014a for the details).

4.3. IDIM-LS method, 2SLS method and regressed DWH-test com-
bined with an appropriate bandpass filtering

The IDIM-LS, the 2SLS methods and the regressed DWH-test
are carried out with a filtered position § calculated with a 40 Hz
fourth-order Butterworth filter. For the three methods, the parallel
decimation is carried out with a 10 Hz Tchebyshef filter.

Before calculating the LS and the 2SLS estimates, the con-

struction of Z is validated with the procedure described in the
subsection 3.3. The results are given in Table 1 where b; is the
number of identifiable parameters of a joint j. Because one has

'Igz < 4% (b) with a p-value greater than 0.05, 7 is valid and the 2SLS

estimates are thus unbiased. For the columns associated with joint
accelerations, the rf's are not null although very small (i.e. less
than 1e-3) whereas for the columns associated with joint positions
and/or velocities only, the r&'s are null (smaller than 1e-20). A F-
test is therefore required to make a final decision.

The first hypothesis & ~ N (0, I,) is validated with the KS-test
with a level of significance « = 0.05. The distribution of & obtained
with the IDIM-LS method and its estimated Gaussian are plotted in
Fig. 3 (similar results are obtained with the two others methods).
The KS-test accepts & ~ N (0, I) and the distribution of & matches a
Gaussian distribution with the three methods. Furthermore, dw
calculated with (25) and given in Table 2 is close to 2.0 with the
three methods. & is thus serially independent with & ~ N (0, I,).

Table 2
IDIM-LS and 2SLS estimates, regressed DWH-test estimates — appropriate data
filtering.

ﬁLS (%gﬁLS) ﬁZSLS (%’/’\'6255) 6
2Z:x 126 (1.2%) 125 (1.3%) NS
Fv, 8.1 (0.7%) 8.20 (0.7%) NI
Fc, 6.60 (2.3%) 6.54 (2.6%) NI
XXor —0.48 (2.5%) —048 (2.9%) NS
XZor —0.16 (4.4%) —0.16 (4.8%) NS
ZZo 1.09 (11%) 1.09 (1.2%) NS
MXag 2.20 (2.5%) 221 (2.9%) NI
Fv, 5.68 (1.1%) 5.68 (1.2%) NI
Fc, 7.76 (1.8%) 7.77 (21%) NI
XX3r 0.13 (9.5%) 0.13 (10.2%) NS
ZZsx 0.12 (7.6%) 0.12 (8.8%) NS
MYsx ~0.59 (2.2%) ~0.59 (2.3%) NI
las 0.084 (8.8%) 0.088 (9.2%) NS
Fvs 2,02 (1.7%) 2.03 (1.8%) NI
Fcs 6.10 (1.8%) 6.05 (1.9%) NI
MX. ~0.02 (26.7%) —0.02 (30.0%) NI
lag 0.029 (8.8%) 0.029 (9.4%) NS
Fv, 114 (1.5%) 115 (1.5%) NI
Fc, 2.34 (2.6%) 227 (2.6%) NI
MYsg —0.03 (13.7%) ~0.03 (141%) NI
las 0.044 (8.9%) 0.041 (11.2%) NS
Fvs 1.87 (1.8%) 1.92 (2.0%) NI
Fcs 2.93 (3.0%) 2.79 (3.5%) NI
lag 0.01 (9.4%) 0.01 (10.9%) NS
Fvg 0.67 (1.5%) 0.69 (1.6%) NI
Fce 2.08 (2.5%) 2.00 (2.8%) NI
Vs 0.63 (1.6%) 0.63 (1.8%) NI
fems 1.80 (3.7%) 1.81 (4.2%) NI
%rely 6.0% 6.0% 6.0%
dw 1.8 19 19
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Fig. 2. Cross-validations, joints 1, 2, 3, 4, 5 and 6 with 2SLS estimates and with the first trajectory. Blue: measurement; red: estimation; black: error. Appropriate data
filtering. The constructed torques stick to the measured ones. Similar results are obtained with the IDIM-LS method. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The IDIM-LS and the 2SLS estimates are given in Table 2 as well the

estimates ® calculated with the augmented DWH-test (NS stands for
“Not Significant”). The F-test accepts to cancel the base parameters such

that %54, ) (resp. %6p,a) is greater than 30%. Actually, one obtains

||g]| = 48.5 with the whole model and ||&.|| = 49 with the reduced
model. With b = 60, b, = 28 and r = 2160, one has ﬁz 1.4 with a p-

value greater than 0.05. From 60 base parameters, only 28 define a set of
essential dynamic parameters. Since the F-test accepts Hy: 0 = 0, rela-

tion (15) holds, Xxrp collapses to X and X(ﬁ, cAl tA'l) ~ X @5, s Gnp)-
However, the 2SLS estimates are slightly less efficient than the IDIM-LS
estimates because one has %5, > %6}, for each estimate. This result
is consistent with the theory of statistics (Wooldridge, 2009).
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Table 3
Relative errors obtained with cross-validation, the IDIM-LS and the 2SLS estimates.

< (kHz) %rel§, (LS) %rel§, (2SLS)
Trajectory 1 1 6.5 6.5
Trajectory 2 1 6.5 6.5
Trajectory 3 1 7.0 7.0

Direct comparisons have been performed with the following
relative errors: %rely = ||y—XﬁL5||/||y|| for the IDIM-LS method,

%rely = |ly — Z625L5||/||y|| for DWH-test and for

%rely = |ly — XXTDﬁme/ llyl| the regressed DWH-test. With relative
errors close to 6% (see Table 2), the matching is therefore good.
Cross-test validations have been performed. In Fig. 2, the torque
reconstructed with the IDIM-LS estimates and with the second
trajectory matches the measured one while the norm of the re-
lative error calculated with each validation trajectory and with the
IDIM-LS and the 2SLS estimates given in Table 3 stick to those
calculated with the direct comparisons. The estimates can be
considered as unbiased (Fig. 3).

revised

4.4. IDIM-LS method, 2SLS method and the regressed DWH-test
combined with an inappropriate data filtering

In this section, the robustness of the methods against an in-
appropriate data filtering is studied. The IDIM-LS and 2SLS
methods are carried out with the position § filtered with a 200 Hz

fourth-order Butterworth filter and with velocities a and accel-

erations a calculated with a central difference algorithm of . The
parallel decimation is carried out with a lowpass Tchebyshef filter
with a cutoff frequency of 100 Hz.

Because one has ;132 < z%(b) with a p-value greater than 0.05, A
is valid and the 2SLS estimates are thus unbiased. In that case, the
r&'s associated with joint accelerations are of the same magnitude
as those of the r§'s. With the IDIM-LS method, the 2SLS method
and the regressed DWH-test, the KS-test accepts the hypothesis
g ~ N (0, I) with a level of significance a = 0.05 while dw is close to
2.0 (see Table 4). Finally, it comes out that & is serially independent
with & ~ N (0, I,).

The estimates of the IDIM-LS, the 2SLS methods and the re-
gressed DWH-test are given in Table 4 (only the significant para-
meters are given). At first glance, the IDIM-LS estimates seem
acceptable because they are not aberrant, the relative error %rely is
not critical and the histogram of IDIM-LS error plotted in Fig. 4
matches a Gaussian distribution. Unfortunately, they are biased

WLS error and estimated Gaussian
10 O

90 [ — e e e

Population

Fig. 3. Histogram of IDIM-LS error and its estimated Gaussian - appropriate data
filtering. The distribution matches a Gaussian distribution. A similar result is ob-
tained with the 2SLS method.
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Table 4
IDIM-LS and 2SLS estimates, regressed DWH-test results - inappropriate data
filtering.
BrsG4,5) Basis %8hyess) 084)

ZZ1R 1.11 (0.8%) 1.24 (4.1%) —1.22 (3%)

Fvq 8.23 (0.5%) 8.25 (2.4%) NS

Fc, 6.42 (1.7%) 6.38 (9.1%) NS

XXar —0.38 (1.9%) —0.48 (10.6%) 0.46 (9%)

XZor —0.16 (3.0%) —0.16 (15.9%) 0.14 (16%)

ZZ5r 0.88 (0.8%) 1.08 (3.8%) —1.0 (3%)

MX3r 242 (1.7%) 2.22 (9.9%) NS

Fv, 5.63 (0.8%) 5.75 (4.4%) NS

Fc, 7.88 (1.3%) 7.55 (6.4%) NS

XX3r 0.19 (5.7%) 0.13 (29.3%) —0.11 (20%)

ZZ3r 0.07 (6.2%) 0.11 (28.8%) —0.12 (10%)

MYsg —0.71 (1.0%) —0.60 (6.6%) 0.5 (6%)

las 0.15 (2.6%) 0.09 (24.5%) —0.07 (20%)

Fvs 2.03 (1.0%) 2.01 (4.5%) NS

Fcs 5.96 (1.1%) 5.83 (5.1%) NS

MX4 —0.01 (20.1%) —0.02 (27.5%) 0.01 (50%)

lay 0.022 (3.9%) 0.028 (25.5%) NS

Fvy 1.14 (0.6%) 1.17 (3.2%) NS

Fcy 2.35 (1.0%) 2.23 (6.3%) NS

MYsg —0.02 (5.7%) —0.03 (28.3%) 0.03 (9%)

las 0.02 (3.2%) 0.04 (25.2%) —0.03 (12%)

Fvs 1.84 (0.7%) 1.94 (4.0%) NS

Fcs 3.01 (1.1%) 2.72 (7.3%) NS

lag 0.007 (3.3%) 0.01 (24.5%) —0.008 (10%)

Fvg 0.67 (0.6%) 0.69 (3.8%) NS

Fcg 2.11 (1.0%) 1.97 (6.2%) NS

fVime 0.63 (0.6%) 0.64 (3.8%) NS

fcme 1.80 (1.4%) 1.74 (8.1%) NS

%rely 17.0% 12.5% 11.0%

dw 1.7 18 1.8
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Fig. 4. Histogram of IDIM-LS error with its estimated Gaussian - inappropriate data

filtering. The error distribution matches a Gaussian distribution.

since they do not stick to the 2SLS estimates while the observed
differences are not spanned by the LS variances and 6 contributes
to the dynamics, the F-test rejecting Hy: © = 0. The 2SLS estimates
obtained with an inappropriate data filtering are less efficient than
those obtained with an appropriate data filtering, their relative
deviations being four/five times greater. This result highlights the
behavior of IV estimators: they are able to provide unbiased esti-
mates with very large deviations. This result is consistent with the
theory of statistics (Wooldridge, 2009).

All the components of 0 corresponding to inertia parameters
(ZZ1R, XXor, XZor, ZZor, XX3r, ZZ3R, 1a3, lag, las, Iae) and to some
gravity parameters (MYsg, MX,4, MYsg) are identifiable and have a
significant contribution because the F-test rejects Hy: 0 = 0. This is
due to the fact that their associated columns contain noisy joint
accelerations. The augmented DWH-test supports the results of
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Fig. 5. Cross-validations, joints 1, 2, 3, 4, 5 and 6 with IDIM-LS estimates and with the second trajectory. Blue: measurement; red: estimation; black: error. Inappropriate data
filtering. The matching is quite good despite the fact that the IDIM-LS estimates are biased. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

the Revised DWH-test (the estimates of the regressed DWH-test
are not given because they stick to ﬁZSLS)'

Cross-test validations have been performed and the results
obtained with the second trajectory and the IDIM-LS estimates are
plotted in Fig. 5. Despite the fact that the errors are not negligible,
the reconstruction of torques is quite acceptable and the IDIM-LS

estimates are acceptable for a non-expert in system identification.
This result shows that the cross-validations may be not enough to
make a final decision. In Table 5, the norms of relative errors
calculated with the set of trajectories and with the IDIM-LS (resp.
the 2SLS) estimates are given. With the 2SLS estimates, these re-
lative errors match those calculated with the direct comparisons
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Table 5
Relative errors obtained with crosschecking, IDIM-LS and 2SLS estimates.

< (kHz) %rel§, (LS) %rel§, (2SLS)
Trajectory 1 1 20.0 14.0
Trajectory 2 1 22.0 14.0
Trajectory 3 1 21.0 14.5

Table 6
Results of the Wald-test (23) for the joints 1, 2, 3 and 4 - misspecified model -
appropriate data filtering.

Joint j bj 72 (bj) min(”éz) p-Value
1 3 7.81 16.3 ~0

2 3 7.81 19.1 ~0

3 4 9.5 25.7 ~0

4 4 9.5 19.6 ~0

5 4 9.5 5.1 0.28

6 6 12.59 4.9 0.56

Table 7

IDIM-LS estimates and 2SLS estimates — misspecified model and appropriate data
filtering.

A A A A

Prs(Bopys) Basis Bofyg1s)
7Z:x 1.10 (3.0%) 1.08 (3.5%)
Fv, 8.16 (3.0%) 8.17 (3.6%)
Fo, 6.50 (10.6%) 6.48 (11.0%)
7Zx 1.37 (2.3%) 1.20 (2.0%)
Fv, 5.80 (5.2%) 583 (5.8%)
Fc, 6.80 (10.3%) 6.80 (11.0%)
7Z3x 0.31 (7.8%) 0.27 (6.7%)
las 0.05 (36.0%) 0.07 (40.0%)
Fvs 221 (7.2%) 2.22 (7.6%)
Fcs 5.55 (9.3%) 5.53 (9.5%)
las 0.04 (26.2%) 0.05 (31.1%)
Fv, 1.18 (5.0%) 1.20 (5.8%)
Fcu 2.20 (9.6%) 2.17 (10.0%)
las 0.06 (28.2%) 0.05 (29.3%)
Fvs 1.90 (7.1%) 1.89 (7.3%)
Fcs 2.75 (12.5%) 2.75 (12.6%)
las 0.01 (31.0%) 0.01 (33.0%)
Fvs 0.69 (5.1%) 0.69 (5.4%)
Feg 2.0 (8.9%) 2.0 (9.3%)
Vs 0.64 (5.6%) 0.64 (5.9%)
fems 1.70 (15.2%) 1.70 (16.0%)
%rel}A, 17.0% 21.0%
dw 18 1.8

whereas there are some differences with the IDIM-LS estimates
although these differences are not as critical as expected. Without
running the Revised DWH-test, there are no undisputable evi-
dences to conclude that the IDIM-LS estimates are biased.

4.5. Robustness against a misspecified model

The robustness of the Revised DWH-test against a misspecified
model is now studied. Because the gear ratios are greater than 25,
it is legitimate to assume that the parameters of gravity and the
off-diagonal elements of inertia matrices do not contribute sig-
nificantly to the dynamics. These parameters and their associated
columns are removed from the IDM. The data are filtered as ex-
plained in Section 4.3.

For the inertia parameters of joints 1, 2, 3 and 4, the Wald-test
rejects the hypothesis that 7 is valid because the minimum of '132

given in Table 6 is greater than y?(b;) while the p-value is almost

Histogram of IDIM-LS error and Estimated Gaussian

Population

Fig. 6. Histogram of IDIM-LS error and its estimated Gaussian - appropriate data
filtering — misspecified dynamic model.

null. Interestingly, the set of instruments of joint 5 and 6 is valid.
This is mainly due to the fact that the gravity parameters and the
off-diagonal elements of inertia matrices are practically null. Be-

cause Z is not valid, the 2SLS estimates are biased.

The IDIM-LS and 2SLS estimates given in Table 7 differ from those
given in Table 2. They are therefore biased. The KS-test rejects the
hypothesis & ~ N (0, I,) for both methods. The IDIM-LS error and its
estimated Gaussian are plotted in Fig. 6 and the distribution does not
match a Gaussian distribution (a similar result is obtained with the
2SLS method). This experiment shows that the Revised DWH-test is
able to detect a model misspecification.

5. Conclusion

In this paper, a Revised DWH-test suitable for identification of
robots was introduced and experimentally validated on a 6 de-
grees-of-freedom industrial robot. The main contributions of the
work presented in this paper are the following:

e The Revised DWH-test can validate/invalidate the instruments
chosen by the user and is based on general statistical
assumptions,

® The Revised is able to detect model misspecifications,

® The algorithm makes use of the QR factorization of an aug-
mented matrix and is combined with a F-test if required,

® The Revised DWH-test is able to validate/invalidate IDIM-LS
estimates.

The results provided by the revised statistic were cross-vali-
dated and compared with those provided by the augmented
DWH-test widely used in Econometrics. Since all the results are
close to each others, this shows that the results provided by the
Revised DWH-test are reliable.

Future works will address the application of the Revised DWH-
test on flexible robots and electrical motors. The calculation of the
optimal prefilters for robot identification and the application of
the experiment design are worth of investigation and will be
addressed.
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ABSTRACT

This paper addresses the important topic of electro-mechanical systems identification with an appli-
cation in robotics. The standard inverse dynamic identification model with least squares (IDIM-LS)
method of identifying models for robotic systems is based on the use of a continuous-time inverse
dynamic model whose parameters are identified from experimental data by linear LS estimation. The
paper describes a new alternative but related approach that exploits the state-dependent parame-
ter (SDP) method of nonlinear model estimation and compares its performance with that of IDIM-LS.
The SDP method is a two-stage identification procedure able to identify the presence and graphical
shape of nonlinearities in dynamic system models with a minimum of a priori assumptions. The per-
formance of the SDP method is evaluated on two electro-mechanical systems: the electro-mechanical
positioning system and the second link of the TX40 robot. The experimental results demonstrate how
SDP identification helps to avoid over-reliance on prior conceptions about the nature of the nonlin-
ear characteristics and correct any deficiencies in this regard. Finally, a simulation study shows how
the resulting SDP model is able to facilitate nonlinear control system design using linear-like design
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procedures.

1. Introduction

1.1. Robot identification

A standard method of identifying models for robotic sys-
tems is based on the use of a continuous-time inverse
dynamic model (IDM) and the application of least
squares (LS) estimation based on experimental data mea-
sured while the robot is being used to track trajecto-
ries that excite its full range of dynamic behaviour. For
this reason, the inverse dynamic identification model with
least squares (IDIM-LS) method, as it is called, is applied
with the system operating within a closed-loop. It has
been applied successfully for the identification of the
inertial parameters of several prototypes and industrial
robots, (Calanca, Capisani, Ferrara, & Magnani, 2011;
Gautier, Janot, & Vandanjon, 2013; Hollerbach, Khalil, &
Gautier, 2008; Janot, Vandanjon, & Gautier, 2014a, 2014b;
Olsen, Swevers, & Verdonck, 2002; Swevers, Verdonck, &
De Schutter, 2007), amongst others. Good results can be
obtained using this approach provided appropriate band-
pass filtering of the joint positions is used to calculate low
noise estimates of the joint velocities and accelerations.
Other identification methods have been tried: the
total least squares (Xi, 1995); the extended Kalman filter

(Gautier & Poignet, 2001; Kostic, de Jager, Steinbuch,
& Hensen, 2004); an algorithm based on linear matrix
inequality tools (Indri, Calafiore, Legnani, Jatta, & Visi-
oli, 2002); a maximum likelihood approach (Olsen et al.,
2002); the closed-loop output-error method (Gautier
et al, 2013; Ostring, Gunnarsson, &Norrldf, 2003);
the set membership uncertainty method (Ramdani &
Poignet, 2005); a method which estimates the nonlinear
effects in the frequency domain (Wernholt & Gunnars-
son, 2008) and an instrumental variable approach that
combines the direct and IDM (Janot et al., 2014a, 2014b).

Another promising approach that allows for the identi-
fication and estimation of nonlinearities in dynamic sys-
tems is the state-dependent parameter (SDP) method of
nonlinear model estimation considered in the present
paper. This SDP methodology is also a tool that has
proven useful in a number of practical applications in var-
ious different areas of study (see e.g. Young, 2011 and the
prior references therein).

1.2. The SDP method

The SDP method is a statistical identification proce-
dure able to identify the presence and graphical shape of

CONTACT Alexandre Janot @ alexandre.janot@onera.fr
©2016 Informa UK Limited, trading as Taylor & Francis Group
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nonlinearities in dynamic system models based on exper-
imental sampled data, with a minimum of assumptions
about the nature of the nonlinearities. SDP estimation is
carried out in two distinct stages (see e.g. Young, 2005):
the first, a non-parametric identification stage, where the
detailed model structure is identified; and the second, a
parametric estimation stage, where the (normally con-
stant) parameters that characterise a selected parameteri-
sation of this structure are optimised in some appropriate
manner.

In the first, non-parametric stage of SDP modelling,
the recursive SDP estimation algorithm is an extension of
the stochastic approach to time variable parameter (TVP)
estimation (e.g. Young, 1999 and the prior references
therein). As in this TVP case, SDP estimation exploits
the power of recursive fixed interval smoothing estima-
tion to obtain lag-free, smoothed estimates of the param-
eter variations. However, it differs from TVP estimation
in two important respects (for the detailed description,
see Young, 2000, 2001; Young, McKenna, & Bruun, 2001).
First, in order to allow for the rapid variation that state
dependency can induce in the parameters, the data are
sorted into some other, normally non-temporal order
(e.g. ascending order of magnitude), so that the rate of
change of the parameter variations between samples in
this sorted data space is much smaller than in the orig-
inal observation space. Second, an iterative ‘back-fitting’
algorithm is used to allow for the possibility of different
state dependency in each parameter.

As we see in the later experimental examples, this non-
parametric stage results in a plot of each SDP against its
associated state variable, so providing a graphical por-
trayal of the nonlinearity and its location within the
model. In other words, non-parametric SDP estimation
identifies the structure of the nonlinear model, prepara-
tory to the second, parametric estimation stage. Here,
the nonlinearities are parameterised in some parametri-
cally efficient manner involving parameters that are nor-
mally constant and estimated using a suitable optimisa-
tion approach (see e.g. Beven, Leedal, Smith, & Young,
2012). It is this two-stage approach that most distin-
guishes the SDP method from other related approaches
to nonlinear system modelling, such as linear and nonlin-
ear parameters varying (LPV/NLPV) methods (e.g. Pre-
vidi & Lovera, 2003). The two stages are useful in prac-
tice because they help to ensure that the model is par-
simonious, with nonlinearities identified and estimated
only where they occur within the nonlinear SDP model
structure.

SDP modelling was developed in this two-stage man-
ner so that it could act as a major tool in data-based mech-
anistic (DBM) modelling (see, e.g. Young, 1998a, b and
the prior references therein), where the non-parametric

stage often allows for the interpretation of the nonlinear
model elements in some physically meaningful manner.
Such an interpretation is less straightforward in the case
of ‘black-box’ nonlinear models, such as LPV and NLPV,
that exploit linear combinations of basis functions or neu-
ral net algorithms (see e.g. Previdi & Lovera, 2004, and the
comment on this in Young, 2005). Moreover, it is impor-
tant to note that the non-parametric model can be used in
its own right, depending on the nature of the application
and, therefore, it is not always parameterised; whereas,
parameterisation is the norm in LPV identification.

1.3. Contributions of the paper

Surprisingly, the SDP method has not received much
attention in the field of mechanical engineering (e.g.
robotics), although its potential for use in this context was
reported some years ago (Young, 1996, 1998). This may
be due to the fact that the dynamic models of electro-
mechanical systems are most often formulated directly
from the Newton’s laws or Lagranges equations. The
models are, thus, available directly in a physically mean-
ingful form and black-box identification and estimation
is not considered necessary, although this does mean
that the modeller is assuming that the physical inter-
pretation is completely correct. In order to evaluate the
performance of the SDP method, it is applied on two
electro-mechanical systems: the electro-mechanical posi-
tioning system (EMPS) and the second link of the TX40
robot; and its performance is compared with that of the
IDIM-LS method.

The contribution of the paper is four-fold. First,
a SDP-based identification method that combines the
continuous-time IDM and the SDP method is introduced
and experimentally validated on both the EMPS and the
second link of the TX40 robot. Second, it is shown how
this SDP-based method is able to improve on the perfor-
mance of the standard IDIM-LS method. Third, a new,
iterative SDP-based algorithm is proposed that is able to
provide a graphical portrayal of a multi-SDP nonlinear-
ity on the second link of the TX40 robot. It is shown that
this iterative SDP-based algorithm yields accurate graphi-
cal results, provided the effects encompassed in the multi-
SDP disturbance are sufficiently separable. Finally, a sim-
ulation example illustrates how the EMPS model with a
SDP identified nonlinearity can be used in the design of
a closed-loop servomechanism control system.

The rest of the paper is organised as follows. Section 2
reviews the usual LS-based identification method, IDIM-
LS, and presents the results obtained by applying this
and the new SDP method to data obtained from exper-
iments on the EMPS prototype. Section 3 presents the
iterative SDP-based algorithm that is able to extract the



LUV iivaudva v) 1Yr fdivadlidliv Jallvt dat £ J. VS UL LAUsUol SV LV

nonlinearities encompassed in a multi-SDP model and
demonstrates its practical utility by application to the sec-
ond link of the TX40 robot. This is followed by Section 4
that deals with SDP control system design. Concluding
remarks are given in Section 5.

2, First case study: the EMPS

2.1. Experimental set-up

The EMPS is a high-precision EMPS (see Figure 1). It is
a standard configuration of a drive system for the pris-
matic joints of robots or machine tools. It is connected to
a dSPACE digital control system for easy control and data
acquisition using Matlab and Simulink software. Its main
components are

e A Maxon DC motor equipped with an incremen-
tal encoder. As we will see later, the DC motor is
position-controlled.

e A star high-precision low-friction ball screw drive
positioning unit and a load in translation.

e An encoder at the extremity of the ball screw. This
encoder is not used in this study.

e An accelerometer on the load which measures its
acceleration. The accelerometer is not used in this
study.

All variables and parameters are given in SI units on
the load side.

2.2. Standard physically based modelling of the
EMPS

2.2.1. Direct dynamic model

The direct dynamic model (DDM) of a robot expresses
the acceleration vector as a function of the motor torque,
joint position and velocity vector (Khalil & Dombre,
2002). From Newton’s laws, we have

Mg = typy — Tgi — offset, (1)

where g, ¢, g are the joint position, velocity and accel-
eration in m, m/s™! and m/s~?, respectively; 7y, is the
motor force in N; 7, is the friction force in N; M is the
mass in kg; offset is the offset of measurements. In the case
of a ‘linear’ friction model, z;,_is given by

Thric — Fuq + FcSign (q) ’ (2)

where F, and E, are the viscous and Coulomb friction
parameters in N/m/s~! and N, respectively.

INTERNATIONAL JOURNAL OF CONTROL 3

Although the friction model is usually nonlinear
(especially at low velocities), this simple friction model is
always valid over a range of velocities (Khalil & Dombre,
2002) and the physical parameters M, F,, F. and offset are
referred to as the ‘dynamic parameters’

2.2.2. Inverse dynamic model

The IDM of a robot expresses tipy as a function of g, g
and g (Khalil & Dombre, 2002). In the case of a linear
friction model, the IDM of the EMPS is given by

Tipm = Mg + F,q + F.sign (q) + offset. (3)

The important difference between this version of the
model and the DDM in Equation (1) is that Equation (3)
is linear in relation to the dynamic parameters, i.e.

Tpy = IDM (‘lv g ‘l) 0, (4)

where IDM(q, q,q) =[q qsign(q) 1] the (1 x4)
matrix of basis functions of the IDM and 6 =
[MFE, FE offset]” is the (4 x 1) vector of the four
dynamic parameters. This linearity in the unknown
parameters makes the IDM relatively easy to estimate
using standard statistical methods. This is in contrast
to the DDM, which is normally nonlinear with respect
to the dynamic parameters and so less straightforward
to identify statistically from the experimental data. As a
result, it is rarely used for robot identification (Gautier
et al., 2013; Swevers et al., 2007).

2.3. Data acquisition and control of the EMPS

The data available for identification of the EMPS are the
measurements g denoted gme,s and the control signal
denoted as v. The control signal v results from the control
law and is linked to 7y, by the following relationship:

Tpm — &V (5)

where g, is the ‘drive gain’ of the EMPS. Although g is
normally provided by the manufacturers, it can be iden-
tified using special tests (Gautier & Briot, 2014). In the
case of the EMPS, this yields g; = 35.15N/V.

As the EMPS is a system involving a pure integra-
tor, it cannot be identified in open-loop and, therefore,
it is first position-controlled by a proportional-derivative
(PD) controller. In Gautier et al. (2013), it has been shown
that a PD control is sufficient to identify the dynamic
parameters of robots because excellent tracking is not
needed for this purpose. The PD control signal v is given
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Accelerometer

Encoder at the
extremity of the
ball screw

DC motor + encoder - -
I [Load in translation I

Ball screw drive

Figure 1. EMPS prototype and its instrumentation.

by
V= KpK} (qr - q) - K)q’ (6)

where K, is the proportional gain and K, is the deriva-
tive gain. The calculation of the control gains K, and K,
is based on the closed-loop block-diagram for the EMPS,
as shown in Figure 2, where p denotes the differentiation
operator, while w, denotes the noise on the position.

It is assumed that w, is serially independent and
homoscedastic, with a bounded variance. These assump-
tions are usually valid in practice. The EMPS can be
modelled as

q= (v —d)/Mp’, 7

where d = F g+ Esign(q) + offset is the linear fric-
tion model plus the offset effect, considered as a state-
dependent input disturbance. Expression (7) is typical in
robotics (and in mechanical engineering in general, see
e.g. Noel, Schoukens, & Kerschen, 2015). This explains
why such systems are considered as double-integrator
systems with a state-dependent perturbation. Naturally,
such systems cannot be identified in open-loop because
they are unstable.
The closed-loop relations are given by

q= Hq (P) qr — Hd (P) d? (8)
. K, K,
with  H,(p) = M—p2+gf K,,pfg, e and  H,(p) =

1
Mp*+g.K, p+g:. KK, *
The gains K, and K, are calculated by comparing
H, (p) with the following second-order transfer function:

positioning unit

H,(p) = l/( )2 + 2'7p + 1, where w,, is the natural fre-
quency of the closed- loop and 7 is the damping coef-
ficient. This yields K, = Mo and K, = 2"(; M. With

2nw,M
w, = 2m -20rad/s,n = lselected to avoid overshoot and

M 95 kg from computer-aided design (CAD) values, this
produces the gain settings K, = 62.83 1/s and K, = 679.26
V/m/s™!

Note that the above simple control design procedure
includes approximations; therefore, the design specifica-
tions are not met completely in practice. However, this
is not important when the resulting experimental data
are being used only for identification purposes. More
sophisticated nonlinear control system design methods
can be exploited after an adequate nonlinear model of
the system has been identified. This is discussed later in
Section 4.

2.4. Standard LS-based identification of the EMPS

As pointed out previously, the traditional identification
method developed for robotic systems has been based on
the use of the IDM combined with simple linear LS esti-
mation. However, in this example, we are considering a
closed-loop situation, and this requires a special approach
to identification (see e.g. Van den Hof, 1998).

First, a pragmatic approach, based on an efficient
‘tailor-made’ data filtering, can be used (see e.g. Gautier
et al,, 2013) In Equation (3), q is estimated with its esti-
mate g obtained by ﬁlterlng qmeas through a zero-phase
low-pass filter; while (q q) are calculated from qusing
either a central differentiation algorithm (see e.g. Gau-
tier et al., 2013), or preferably, as in the present paper,
by an optimal filtering algorithm based on recursive fixed
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Figure 2. Closed-loop block-diagram for the EMPS prototype.

interval smoothing (Young, Foster, & Lees, 1993). Hence,
the actual motor forcer differs from 7, by an error
eipm because of model mismatch, noisy measurements
and data filtering. The resulting estimation model is then

r=IDM((§,(},(}')9+e 9)

so that, fromNg available samples of the measured signals
observed at discrete-time instants while tracking the tra-
jectories (q,. q,, q,), the following over-determined sys-
tem of regression equations is obtained:

yYiom = XipmO + €pm, (10)

where y;p, is the (Ns x 1) sampled vector of 7; X, is
the (N5 x 4) matrix ofIDM(q, %, f}); &pu 1 the (Ns x 1)
vector of eipy error terms and Ny is the number of sam-
ples where the sampling is regular, with a constant sam-
pling interval Ts.

The motor force tis perturbed by high-frequency dis-
turbances and, since there is no 1nformat10n on high-
frequencies variations because the data (q, q, q) are low-
pass filtered, a parallel decimation procedure is used to
eliminate torque ripples and any samples at high frequen-
cies that contain no information. By applying the tailor-
made data pre-filtering, the filtered regression model is
assumed to be free of any significant circulatory noise that
could lead to biased estimates, so that simple LS can be
used to deliver the following estimates:

- -1
O1s = (XipyXiom)  XippyYiom. (11)

The identifiability of the LS solution (11) is ensured if
X py is @ column-full-rank matrix, i.e. rank(X;,,,) = 4
and this requires that the trajectories (q,, q,, q,) are suf-
ficiently exciting.

Provided the LS identification residuals are zero mean
and white (serially uncorrelated), and it is assumed that
Xipy is deterministic, then the covariance matrix of the
LS estimates can be calculated as follows using stan-
dard linear regression theory (see e.g. Janot et al., 2014a;

Young, 2011):

~ —1
ZLS = OEZ]DM (XITDMXIDM) 5 (12)

where 65211)1\/[ = ||YIDM - XIDMQLS”/(NS —4).
85 = X¢(i, i) is the ith diagonal coefficient of
LS(i)

Y- The relative standard deviation %0, s given by

LS(i)
%%Lw = 1006(5Ls(i) /10,5 ()] for |6, s (i)] # 0.

Note that the statistical assumptions required for these
results to apply are met in the present practical context
thanks to the accurate experimental data and appropriate
data filtering (see Brunot et al., 2015; Janot et al., 2014a).
However, if this filtering is not adequate and the noise
level is too high, then the LS estimation would need to
be replaced, for instance, by the instrumental variable
approach presented in Janot et al. (2014a).

2.5. SDP-based identification method of the EMPS

As stated in Section 2.2, the linear friction model (2) is
only valid within a given velocity range. At low velocities,
the friction normally exhibits clear nonlinear effects (e.g.
Stiction and Stribeck). It is convenient, therefore, to intro-
duce a SDP that is able to cope with such nonlinearities.
Also, in order to validate/invalidate the assumption that
the other dynamic parameters are time-invariant, other
SDP may be identified during SDP estimation.

In the case of the EMPS, the mass Mmay be
acceleration-dependent. The IDM is, thus, rewritten as

TIDM —M( )q+dfr1c(.)» (13)

with d;; () = 7, and M(q) allowing for the possibil-
ity of any significant acceleration dependency. Note that

d;;.(q) is simply the friction force that depends only on
the velocity and so it can be considered, therefore, as a
SDP (d,,;.(q) is used instead of d(q) in order to avoid
ambiguity with the linear friction model).
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The IDM (13) is now written as a linear-in-the-SDP
form given by

tiom = IDMspp (4, 4. 4) Ospe, (14)

with IDMp(q, 4, 9) = [q 1] and Ospp =
[M(§) i (P

As with the IDIM-LS method, the actual force 7 dif-
ters from 7,5, by an error egpp and, therefore, in a similar
fashion, the following over-determined system of equa-
tions is obtained:

Yspr = Xspp (q, q, q) Ospp + Espp, (15)

where XSDP is the (Ngx2) sampled matrix of
IDM¢p» (4, 4, q) Espp is the (Ns x 1) sampled vec-
tor of espp and g, ¢, q are constructed as explained in
Section 2.4.

The acceleration-dependent mass M(q(¢)) and the
friction nonlinearity d;; (4(t)) are simultaneously esti-
mated by the SDP routine in the CAPTAIN Toolbox. The
SDP routine provides M(Zj) the estimate of M(Zj) the
(Ng x 1) sampled vector of the acceleration- dependent
mass M(q) and dfm(q) the estimate of dfnc(q) the
(Ns x 1) sampled vector of the velocity-dependent fric-
tion d,, . As a result, the SDP model residual, £y, is cal-
culated as

Espp = Yipm — Y% Xspp@spp, (16)

where dlagXSDP [dlag(q)l ] is the (Ngx 2-Ng)

matrix of Xqpp (4, q, q) all of whose sampled basis func-
tions are diagonalised and horizontally stacked; diag(iAj)
is the (Ns x Ng) diagonal matrix whose the ith ele-
ment is the ith element of (Al the (Ng x 1) sampled
vector of ¢ q, N; 18 the (Ns x Ns) identity matrix and
O, = [M(q)" dfm(q)T ]T is the estimate of @, =

[M(§)” dfric(q)T]T the (2- Ns x 1) sampled vector of
O¢pp- Finally, the relative error is given by || £ Il /1Yo I-

2.6. Experimental results

The dynamic parameters M, F,, F. and offset are first iden-
tified with the standard identification IDIM-LS approach
described in Section 2.4.

Aspointed out in Section 2.4, since it is possible to gen-
erate very accurate experimental data and utilise appro-
priate data filtering, the LS estimates can be considered as
unbiased, even though the EMPS is identified in closed-
loop. This point is dealt with in Janot et al. (2014a) and
Brunot et al. (2015). The LS estimates and the relative
errors are given in Table 1.

Table 1. IDIM-LS estimates of the EMPS with the standard linear
friction model.

Parameters IDIM-LS estimates (%"é )
LS(i)
M (kg) 95.08 (0.15%)
F, (N/m/s™) 20230 (0.74%)
F.(N) 20.53 (0.64%)
Oflset (N) —3.19 (1.81%)
Relative error 3.7%
pro Mgss estirnate{_i with SDP vs Mass esti i with IDM
s o7 * Mass esimated wih IOV
Mass estimated with SDP
45 08
g a5
n
Sos0ap
gs0ar
9502} (R p— —

50 L i 1 1
» .|1*'. 1 s o es 1 11 1

Acceleration (rad/s?*)

Figure 3. Direct comparison between mass estimated with the
IDIM-LS method (blue dots) and the acceleration-dependent mass
estimated with the SDP algorithm (red crosses): it is clear that the
mass is acceleration-independent.

The acceleration-dependent mass estimated by the
SDP method is illustrated in Figure 3. We see that the
SDP estimation suggests a constant value very similar to
the IDIM-LS estimate (there is only a difference of 60
g which is negligible compared with 95 kg). Also note
that the optimised noise variance ratio (NVR) associated
with the I\A/I(i}) term in the SDP regression, which defines
the amount of state dependency (see Young, 2011), is
1.0e—23, i.e. virtually zero; while the NVR associated
with dfric(c}) is 2.9. This large difference between the two
NVRs is consistent with our a priori knowledge and sug-
gests that the mass is not acceleration-dependent. As sim-
ilar results are obtained with a position- and velocity-
dependent mass, i.e. M(q) and M(q), respectively, it can
be assumed that the mass is state-invariant. Given the
large value of 2.9 for the NVR associated with the friction
SDP estimate, the SDP method is able to reconstruct the
shape of the frictional nonlinearity, as shown in Figure 4.
Finally, the relative error obtained with the SDP-based
identification method is only 1.5%.

At first glance, the results obtained with the standard
IDIM-LS identification method and the linear friction
model seem quite acceptable. Indeed, the relative error is
small (less than 5%) and the estimated mass is close to its
CAD value, i.e. 95 kg. However, the relative error obtained
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Figure 4. The upper panel shows a direct comparison between the
friction nonlinearity reconstructed with the LS estimates of the lin-
ear friction model (blue dots) and the nonlinearity estimated by
the SDP algorithm (red crosses). The enlarged portion shown in
the lower panel reveals a small but persistent error that suggests
an asymmetrical friction model.

using SDP estimation is only 1.5% and we need to exam-
ine the reason for this discrepancy between the results.
This is due to the estimates of the friction parameters, as
revealed in Figure 4. Here, we see that there is a small but
sustained difference between the red and blue lines in the
lower part of the curves (negative velocities), which sug-
gests that there could be a small bias in the latter (see the
enlarged panel in the lower right corner of Figure 4). In
other words, there is a small error in the friction model
identified by the standard method, and the SDP friction
estimate eliminates this by suggesting an asymmetrical
friction model; i.e. a model that depends on the sign of
q where, for negative velocities, the red and blue lines are
not perfectly parallel. This asymmetry can be explained
by the fatigue of the screw.
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Table 2. Parametric IDIM-SDP estimates for an asymmetrical fric-
tion model.

Parameters LS estimates (%0 . )
LS(i)

M (kg) 95.12 (0.11%)

P (N/m/s™) 165.80 (0.92%)

FF(N) 20.19 (0.67%)

F (N/m/s™) 238.89 (0.64%)

F- (N) 20.85 (0.65%)

Relative error 1.5%

In order to take this asymmetry into account, the fric-
tion model is modified to

Thic = F 0T () + E'sign (0% (¢))
+F707 (q) + Fsign (07 (¢)). (17

where 0" and 0~ are two operators defined by 0" (9) =
Q(W) and 07 (q) = c](ﬂ);ﬁ)+ and F (resp.
F and E) are the viscous and Coulomb friction coef-
ficients for the positive (resp. negative) velocities. Finally,
07 (g) (resp. 07 (q)) returns q if ¢ > 0 (resp. g < 0) and 0
otherwise.

When Equation (17) is inserted into Equation (1), it
yields the following linear-in-the-parameters IDM:

TIDM = IDMasymgasym > (18)

with IDM, . = [07 (¢)sign (07 (¢))0™ (¢)sign(07(9))]
and 6, = [M E" EVE B,

As in the previous situations, the actual force 7 dif-
fers from 7y, by an error e, and the resulting over-

determined set of equations takes the form,

Yiom = Xasymgasym + Easym > (19)

where i, is the (Ng x 1) sampled vector of 7; X, is
the (N5 x 5) matrix of IDM,,, (4, 4. q) and Easym 15 the
(Ns x 1) vector of e, error terms. The LS estimates of
Equation (19) and their associated deviations are given by
Equations (11) and (12), Xjp,; being replaced with X, ..

The resulting estimates and the relative error are given
in Table 2. These confirm that the friction has asymmetric
behaviour because F;" is significantly different from F,",
while the estimate of Mhas not changed. Furthermore,
the LS relative error has now decreased to 1.5%, a value
that is compatible with the relative error obtained with
the non-parametric SDP method. The direct compari-
son plotted in Figure 5 shows clearly that the agreement
between the SDP estimated friction shape and the asym-

metrical friction model reconstructed with the above LS
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Asymetrical friction estimated with IDM and friction reconstructed with SDP
60 T T T

Table 3. Geometric parameters of the TX40 robot.
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Figure 5. Direct comparison between the friction nonlinearity
estimated with the asymmetrical linear friction model (second
stage IDIM-SDP model, blue dots) and the friction nonlinearity
previously estimated by the first stage SDP algorithm (red crosses),
showing that the two estimates are consistent and confirm the
asymmetry.

estimates is now acceptable. This finally estimated rela-
tionship is the parameterised SDP model of the EMPS,
which we will term the IDIM-SDP model. Clearly, if the
prior assumptions of the IDIM-LS estimation are modi-
fied in the light of the SDP estimation, then the IDIM-LS
estimation results would be the same.

J % % d/’ 9/ /]
1 0 0 0 0, 0
2 0 —71/2 0 0, 0
3 0 0 d; =0225m 03 r;=0.035m
4 0 /2 0 0, r,=0225m
5 0 —71/2 0 05 0
6 0 /2 0 0 0

3. Second case study: TX40 robot

3.1. Introduction and presentation of the TX40 robot

In the previous section, it has been shown that the SDP
method can be used as a two-stage alternative to the
IDIM-LS method for estimating and evaluating the qual-
ity of the friction model; an alternative that helps to avoid
over-reliance on prior conceptions about the nature of
the nonlinear characteristics. In this section, SDP estima-
tion is evaluated on a more challenging system: the TX40
robot.

The Staubli TX40 robot has a serial structure with six
rotational joints. Its kinematics are defined by the DHM
notation, as in Figure 6 (Khalil & Dombre, 2002). The
geometric parameters defining the TX40 frames are given
in Table 3: 0; = 0 means that joint j is rotational; «; and
d; give, respectively, the angle and the distance between

Figure 6. Link frames of TX40 Staubli robot.
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zj—1 and z; along x;_y; 0; and r; give, respectively, the
angle and the distance between x;_; and x; along z;.

The joint positions and the control signals are
stored with a measurement frequency f,, = 5kHz. The
reference trajectories are fifth-order polynomials that
excite the base parameters sufficiently for identification
purposes.

3.2. IDM of the second link with the usual method

When only the second link is moving, with the others
maintained at their steady-state levels, the IDM of the sec-
ond link (also known as the arm of the robot) reduces to

TIDM, = ZZZéZ + Tgravz + Tric, + Oﬂseth (20)

where tipy, is the second joint torque; gy, is the
gravity torque of the second link given by Ty, =
—gMX;c08(q2) + gMY,sin(qz), MX; and MY, being the
components of the gravity effect;g = 9.81 m/s* is the
gravity constant; T, is the friction torque of the second
link; g2, g2 and g, are, respectively, the position, velocity
and acceleration of the second link; ZZ, is the total inertia
of the second link and offset; is an offset parameter.
In the case of a linear friction model, 7¢,  is given by

Tfric, = 1)242 + FCZSign (6]2) s (21)

where F,, and E,, are the viscous and Coulomb friction
parameters of the second link.

The resulting IDM is linear in relation to the dynamic
parameters, i.e.

Tpm, = IDM (‘12’ 92, qz) 0, (22)

where  IDM(q2, 42, 42) = [g2 —gcos(q2) gsin(q2) 42
sign(q) 1] is the (1 x 6) matrix of the basis functions of
the IDM and 6 = [ ZZ, MX, MY, F,, E, offset, ] is the
(6 x 1) vector of the dynamic parameters. As 7, differs
from tipyp, by an error eypy,and there are Ng available
samples of the measured signals, it is straightforward
to formulate the following over-determined system of
equations:

yiom, = Xipm,0 + €pm, (23)

where yp,), is the (Ns x 1) sampled vector of 755 Xypy,
is the (Ns x 6) matrix of IDM(q,, 2}2, c}'z);eIDM2 is the
(Ns x 1) vector of erpy, error terms and ¢, &2, 52 are
constructed as explained in Section 2.4. The LS esti-
mates from Equation (19) and their associated covariance
matrix are given by Equations (11) and (12), with X,
being replaced with X, , again under the assumption
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that the pre-filtering has been fully effective in its removal
of noise from the variables.

3.3. Using the SDP function of the CAPTAIN Toolbox
to retrieve the shapes of gravity and friction

When using the SDP estimation method, the IDM is
rewritten in the form

Tidm, = ZZ>G> + d (92, 42) » (24)

with d(qga, 2) = dy, (2) + dy, (2)  where dy, () =
—gMX;cos(q2) + gMY,sin(qy) and dy,(q2) = F2qe +
Fosign(qy) + offset,.

It is assumed here that the parameter d(q, q2)
depends on the position g, and the velocity ¢, so, ide-
ally, it should be identified using the multi-SDP method
(see e.g. Sadeghi, Tych, Chotai, & Young, 2010). Unfor-
tunately, such a multi-state dependent algorithm is quite
involved and has not yet been fully implemented in the
CAPTAIN Toolbox. As a result, the existing SDP routine
in CAPTAIN cannot be used directly in this situation.
This difficulty has been partially circumvented, however,
by developing an additional iterative ‘back-fitting’ proce-
dure, which is quite similar to that used in the standard
SDP algorithm. Provided it converges satisfactorily, back-
fitting estimation such as this is reasonably justified in this
example because the perturbations can be considered as
decoupled: i.e. one depends on the position alone, while
the other depends on the velocity alone, so the estimation
is potentially ‘separable’

As in the case of IDIM-LS estimation, 7, differs from
TipMm, by an error egpp, and, therefore, from Ns available
samples, the following system of regression equations is
obtained:

Yiom, = ZZZqz + d (éZa %2> + Esdp, » (25)

where d(qa, éz) is the (Ngx 1) sampled vector of
d(q2, 4,); Espp, 1 the (Ng x 1) sampled vector of egpp,;
9y %2, sz are constructed as explained in Section 2.4 and

q, is the (Ng x 1) sampled vector of %2 The SDP iter-
ations then involve the following three step procedure,
with steps 2-3 repeated until convergence is achieved:

(1) Initial step: the estimate of d(q;, 2}2), denoted by
d(q, (}2), is calculated as follows:

d (éz’ ‘12) = YoM, — 27,Q,
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where Z\Zz is the CAD value ofZZ,. Then, the shapes
of d;,(92) and dg,(q2) are initialised with dgz (42) and
&gz ((32) = 0, respectively, since they are assumed to be
unknown to the users.

For k=1, 2, ..., until convergence
At each step k,

(1) Theestimate of d';z (q2), denoted by &';2 (q2), s esti-
mated using the SDP algorithm: here, the mea-
surement vector is yzz = (Al(éz, %2) — &’qu (%2); the
regressor is z = 1 and the state vector is x = qa,
q2, being the (N5 x 1) sampled vector of g,.

(2) The estimate of d’q?z (%2 ), denoted by &gz (%2)’ is esti-
mated using the SDP algorithm: here, the mea-
surement vector is ygz = (Al(cjz, %2) — &gz (q2); the
regressor is again z = 1; but the state vector is now
X= flz, 312, being the (Ns x 1) sampled vector
of (}2.

end
The following convergence criterion has been found to
yield good results:

(i) |

()|

< tol,

()

where d (Q2, 2}2) = (Alz2 (q2) + (Allq?2 (%2) is the estimate
of d*(gs, c}z) = d’;z (q2) + d’q?2 ((}2) at step k and tol
is a threshold defined by the users (between 0.5%
and 5.0%). Finally, the relative error is simply given
bY ||€SDP||/||YIDM2|| with &) = Yiom, — 272Gy —
(@, 4,)-

Although this back-fitting procedure is reasonably jus-
tified in this example, caution is still necessary because
gravity and friction are low-frequency phenomena, so
that it is not clear a priori that the SDP algorithm will
be able to extract d,, (q) and d;, (q,) from d(q;, g2) ina
completely separable manner. However, as we see below,
it does work reasonably well in this example when only
the second link is moving.

3.4. Experimental results

3.4.1. Only the second link is moving

The dynamic parameters are first identified with the
IDIM-LS method with only the second link being
excited by the fifth-order polynomial trajectories that
are required to ensure good estimation of the dynamic

Table 4. IDIM-LS and IDIM-SDP estimates compared with the ref-
erence values.

Parameters IDIM-LS estimates ~ SDP estimates  Reference values
ZZ, 1.56 (1.44%) - 1.60
F.s 5.52 (2.08%) 5.52 (1.99%) 5.68

- 7.06 (0.47%) 7.05 (0.42%) 777
MX, 2.84(0.16%) 2.83(0.14%) 2.80
my, 0.026 (39.18%) 0.045 (38.38%) 0.0
Oflset, 0.055 (8.61%) 0.062 (8.54%) 0.0
Relative error 5.8% 4.5% -

characteristics. The other links are maintained at their
steady-state levels.

The IDIM-LS estimates are given in Table 4. The refer-
ence values are the CAD values for the inertia and gravity
parameters; and the friction parameters are the estimated
values given in Janot et al. (2014a). The reconstruction is
quite good with a relative error of 5.8%. Finally, the esti-
mates of inertia, gravity and friction parameters are close
to the reference values.

The iterative SDP estimation procedure outlined ear-
lier in Section 3.3 is initialised with &gz (q2) and &gz (2}2) =
0, while tol= 1% is used as the convergence crite-
rion. In order to evaluate the resulting estimates, the
SDP nonlinearities (Ai’;2 (q2) and &'qu (2}2) identified by
this procedure are regressed on [ —gcos(g2) gsin(gz) 1]
and [2}2 sign(éz) ], respectively, using standard linear LS
estimation. These constant parameter LS estimates are
referred to as the IDIM-SDP estimates in Table 4 and
one would expect these to be close to the IDIM-LS esti-
mates if the SDP method is to be considered successful
and the SDP identified nonlinearities d};z (q2) and d’q?z (%2)
are to be trusted. In this case, the SDP iterative algo-
rithm converges in five iterations and the results plotted
in Figure 7, together with the parameter estimates given
in Table 4, demonstrate that the iterative SDP algorithm
does indeed yield very good results in this example. In
particular, the shape of the gravity and friction nonlinear-
ities reconstructed by the SDP-based algorithm matches
the shape of the same nonlinearities reconstructed with
the IDIM-LS estimates pretty well. The model output
is compared with the measured data in the left hand
panel of Figure 8; the residuals are serially uncorrelated
and the amplitude distribution of the normalised SDP
error distribution appears reasonably Gaussian (see the
right hand panel in Figure 8). Similar results are obtained
with the IDIM-LS method but they are not shown here.
In addition, the estimates of inertia, gravity and fric-
tion parameters are close to the reference values and the
relative error obtained with the SDP-based algorithm is
4.5%, less than the 5.8% obtained using the IDIM-LS
method.
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Gravity estimated with SDP VS gravity estimated with IDM
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Figure 7. The friction nonlinearity estimated by the non-parametric first stage SDP method compared with the friction effect identified
with the IDIM-LS method (left panel); and a similar comparison between the two gravity effect nonlinearities in the right panel.

Examination of the results shows that there is one
small but interesting difference between the nature of the
estimated offsets obtained by IDIM and SDP estimation.
These differences can be explained by the implementa-
tion of the SDP algorithm, which attempts to identify
a separate offset for each state-dependent nonlinearity,
with one offset identified for the friction and another for
the gravity. However, by adding these two identified off-
sets together, we obtain the value given in Table 4, which
is very close to the IDIM-LS identified value. In other
words, the SDP algorithm has conveniently separated the
parameter offset, into two offsets (one for the friction and
one for the gravity).

Direct comparison between the actual torque and the torque etimated by SDP method

60

- -
Measurement X X
————— Estimation X X

3.4.2. Allthe links are moving simultaneously

In this situation, all the six joints of the TX40 robot are
now excited with fifth-order polynomial trajectories that
ensure good estimation of the dynamic characteristics.
The dynamic parameters of the second link are again
identified using SDP estimation. Here, the gear ratio is
quite high, i.e. greater than 10, so the second link is seen as
a one-degree-of-freedom robot and its IDM is still given
by Equation (22). As in the previous examples, the SDP
estimation results are similar to those obtained by the
IDIM-LS method, but they provide further insight into
the detailed nature of the nonlinearity.

Normalized histogram of SDP error and estimated Gaussian

80

Population
)
'
)
)
'
)
]1
\%

-1 0 1
Normalized torque

Figure 8. Direct comparison of the measured data with the output of the SDP-based identification method (IDIM-SDP, left panel) and
histogram of the normalised error (right panel). A similar result is obtained with the IDIM-LS method.
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Table 5. IDIM-LS and SDP estimates compared with the reference
values.

Parameters IDIM-LS estimates  SDP estimates  Reference values
ZZ, 0.9636 (2.17%) - 1.09
Fry 5.2358 (2.64%) 5.1711 (1.85%) 5.68

n 7.8059 (4.17%) 7.8245 (2.78%) 777
MX, 0.5636 (16.53%) 0.3573 (7.31%) 2.21
MY, —3.6043 (3.08%) —3.2864 (1.07%) 0.0
Oflset, 12.8879 (8.61%) 9.5048 (3.48%) 0.0
Relative error 20.0% 1.0% -

The IDIM-LS estimates are given in Table 5 and the
comparison of the model output with the experimental
data is shown in Figure 9. The estimates of inertia and
friction parameters are quite close to the reference values,
but while the amplitude distribution of the normalised
IDIM-LS error looks reasonably Gaussian, the error is
serially correlated. Not surprisingly, therefore, the model
output does not explain the measured data very well, with
a relative error of 20.0%. Such a result is a reason for
concern because a relative error is expected to be less
than 10%.

As reported in Section 3.4.1, the iterative SDP estima-
tion procedure is initialised with &gz (q2) and &gz (c}z) =
0; tol = 1% is used as the convergence criterion; while
the SDP nonlinearities &’;Z (g2) and a’;z ((}2) identified by
this procedure are regressed on [ —gcos(q,) gsin(gz) 1]
and [2}2 sign(%z) ], respectively. In this case, the algo-
rithm converges in six iterations and the results plotted in
Figure 10 demonstrate, together with the parameter esti-
mates given in Table 5, that the gravity and friction shapes
reconstructed by the algorithm do not match the gravity
and the friction shapes reconstructed with the IDIM-LS
estimates. The observed mismatches that can be seen in
Figure 10 are due to the fact that all the links are moving in
the experiments and, therefore, some neglected coupling
effects are being excited. Interestingly, the mismatches
reflect and, therefore, account for such neglected coupling
effects, so that the explanation of the data using the multi-
SDP model, as shown in Figure 11, is rather better than
that for the IDIM-LS estimated model in Figure 9. This
"confirmed by the calculation of the relative errors, which
are 20.0% with the IDIM-LS method and 11.0% with the
SDP method.

These experimental results demonstrate once again
the utility of the SDP estimation approach in high-
lighting where problems exist in nonlinear modelling
and how they may be corrected. They also show how
SDP estimation can be used as a tool in DBM mod-
elling. This is an inductive modelling strategy where
less weight is placed on prior assumptions and more
weight on the information in the experimental data.

Only after carefully analysing the experimental data using
appropriate model identification and signal processing
tools, such as SDP estimation, does the modeller con-
sider, at the mechanistic stage of the procedure, the prior
assumptions and hypotheses, in order to see if these are
compatible with the identified, data-based model. Or, if
the data-based model is found to be deficient in any ways,
as in this case when all the links are moving simulta-
neously, the modeller must consider whether new data
need to be collected in order to examine these deficiencies
using a better experimental design. And then, depending
on the new SDP estimation results, the parametric form
of the nonlinearities can be modified and re-estimated.

4. SDP control of the EMPS system

One advantage of SDP nonlinear models is that they can
form the basis for control system design based on the
use of linear control theory (see Taylor, Chotai, & Young,
2008; Taylor, Young, & Chotai, 2013, chapter 9). This
SDP approach has some similarities with other methods
that have been proposed, such as exact linearisation by
feedback (Isidori, 1995) (better known as the computed
torque in robotics: see Khalil & Dombre, 2002), velocity-
based linearisation (Leith & Leithead, 1998) and LPV-
based control design (see e.g. White, Zhu, & Choi, 2013).
In this section, we consider how this methodology can
be applied to the control of the simulated EMPS system
represented by the DDM in Equation (1), written as

g = c1g + czsign(q) + ¢z + ¢4, (26)

where

¢y = —F,/M; ¢; = —F./M; ¢; = —offset/M and ¢, =
1/M.

Based on the LS estimates given in Table 1, the values
of these parameters are

¢ = —2.1277; ¢, = —0.2123;¢3 = 0.0336 and ¢4 =
0.0105.

4.1. Derivation of the SDP control model

Considering u = t as the input and x = gq as the out-
put, this estimated model can be represented as follows
in transfer function form:

x=— 4y
p(p+ aspp)
y=x+w, (27)

where p" = d"/dt" is the derivative operator; w, repre-
sents the additive noise with a noise/signal ratio by stan-
dard deviation of 5% and agpp is an SDP estimated by
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Normalized histogram of IDIM-LS error and estimated Gaussian
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- Estimation
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Normalized torque

Figure 9. Direct comparison with the IDIM-LS method (left panel) and histogram of the normalised IDIM-LS error (right panel). The recon-
structed torque does not match very well with the measured one, and although the error distribution is reasonably a Gaussian distribution,
the errors are serially correlated. This tends to show that the IDM given by Equation (23) is not well specified while all the joints are moving.

the SDP routine in CAPTAIN using data from the prior
closed-loop experiments on the EMPS unit when con-
trolled by the linear PD controller.

As we have seen in previous sections, agpp defines the
nonlinear characteristics of the open-loop system, and
although it is denoted here as a parameter and used as
such in the SDP control system design, it is a complete
nonlinear function. This is illustrated in the Simulink
model of the open-loop system appearing at the left
of Figure 12 with the SDP nonlinearity block shown

Friction estimated with SDP VS friction estimated with IDM
40 T T T

Friction estimated with IDM
30F - -| ===== Friction estimated with SDP | - - - 2 - - - __ o 2 _ __ _ ]
—— - Matching error

Friction

Velocity

expanded at the right of the Figure 12. The functional
form of agpp is shown as the red part of the curve in
Figure 13, while the blue parts of the curve are extrapo-
lations to the estimated linear parts of the curve. These
extensions of the relationship are required to handle
larger fluctuations in the velocity arising from the more
rapid SDP controlled response of the closed-loop sys-
tem. Note how the extrapolations reveal the asymme-
try of the estimated nonlinearity, as exposed by the SDP
estimation.

Gravity estimated with SDP VS gravity estimated with IDM

10 T I I T
Gravity estimated with IDM
[ N | Gravity estimated with SDP | ]
[ — - Matching error

Position

Figure 10. Friction shape reconstructed with the SDP method compared with the friction effect identified with the IDIM-LS method (left
panel) and gravity shape reconstructed with the SDP method compared with the gravity effect identified with the IDIM-LS method (right
panel). The mismatches observed suggest that there are missing couplings.
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Direct comparison with SDP-based method

Normalized histogram of SDP error and estimated Gaussian
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Figure 11. Direct comparison with the SDP-based method (left panel) and histogram of the normalised SDP-based error (right panel). A
better matching between the reconstructed torque and the measured one is obtained. Furthermore, the error distribution is reasonably
Gaussian but again there is some serial correlation. This shows that the IDM given by Equation (23) is not well specified while all the joints

are moving. This IDM must be, therefore, rejected.

It will seem that Figure 13 is a combination of the
non-parametric SDP estimate and the parametric extrap-
olations. This combined form was chosen here, rather
than the fully parametric form in Equation (17), because
it demonstrates how SDP control can be implemented
directly using the non-parametric estimates, the paramet-
ric estimate or a hybrid combination of both, as here. This
can be particularly useful if the estimated nonlinearity is
rather complex, such as those shown in Figure 10, which

would be more difficult to parameterise by simple rela-
tionships.

4.2. SDP control system design: re-design of the PD
controller

The idea of using SDP models to simplify nonlinear con-
trol system design has a long heritage (see e.g. Young,
1981, 1996). In the latter reference, it follows from

Gaing
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Figure 12. Simulation of the EMPS with the SDP-based control.
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Figure 13. Friction model used with the SDP-based control.

research into linear control system design based on the
non-minimal state space (NMSS) form of the system
model (see Section 4.3). The NMSS control gains in the
SDP case are effectively updated at each sampling instant,
based on the linear ‘snapshot’ of the SDP model at this
sampling instant. Taylor et al. (2008) have shown that,
using this approach, the stability of the closed-loop non-
linear system is guaranteed for ‘all-pole’ systems, such as
Equation (27) and that good control system designs can
be obtained for more general models. Although stabil-
ity is not guaranteed in the case of model mismatch, the
Monte Carlo-based uncertainty analysis reported in the
paper suggests that the SDP/Proportional-Integral-Plus
(PIP) approach is relatively robust to such uncertainty.

As an initial exercise in SDP control system design, let
us consider re-design of the simple PD controller used
for the identification studies described in Section 2.3,
but based on the SDP transfer function model (27) and
desired closed-loop characteristics with 7 = 1.0 (criti-
cal damping) and w, = 250 rad/s. As in Section 2.3, the
design is carried out by simple block-diagram analysis
with an SDP-based PD (SDP-PD) pre-compensator K, +
K, p. The closed-loop transfer function obtained in this
manner is given by

.= C4(Kp + K, p) ,
P* + (aspp + 4K, p + cKp

(28)

where 7 is the command input, i.e. the reference. Since
the system is second-order, this PD control is equiva-
lent to state variable feedback; therefore, we see that both
poles are assignable. And because the open-loop sys-
tem model has a free integrator, the closed-loop system
exhibits ‘type 1" performance with unity gain and zero
steady-state error to step command inputs.

If the desired closed-loop transfer function denomina-
tor has damping 1, and natural frequency w,,, then we

0 0.1 02 0.3 0.4 0.5

Velocity

see that the values for the control gains can be computed
from the equations:

K, = wly/ca; Ky = (2nawna — aspp)/ca,  (29)

where it will be noted that the K, gain is a function of
the SDP parameter agpp and, therefore, the closed-loop
system synthesised with these gains includes the SDP
nonlinearity, reflecting the nonlinear nature of the SDP-
PD control system. In particular, because it is a SDP, it
changes or ‘adapts’ in response to the changes in velocity.

The simulated response of the closed-loop system to
a step input command starting at zero, with a final value
of 0.05 m, is plotted in Figure 14 where it will be noted
that the rapid response has a total settling time of 0.04 s.
Also plotted in Figure 14 is the response of the conven-
tional, linear PD controlled system used in the identifi-
cation studies, where we see that the response is clearly
much slower and oscillatory, with a total settling time
about three times as long.

4.3. SDP control system design: PIP-SDP outer-loop
control system design

The NMSS-based PIP approach to control system design
has been described comprehensively in the recent book
by Taylor et al. (2013), which includes all aspects of the
design process, as well as numerous examples illustrating
its application. In the present EMPS example, it could be
applied directly, using the EMPS model in discrete-time
NMSS form, but it would then require nonlinear mod-
ification of the kind described in the previous sections,
which is not straightforward once the model is trans-
formed into discrete-time, digital form.
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Figure 14. Output step response obtained with the SDP-based control (black solid line) and the PD control (black dash-dot line).

A simple, alternative approach is to implement PIP
control as an ‘outer-loop’ or ‘trimming’ control that con-
siders the SDP-PD controlled system, which is effectively
linearised by its SDP mechanisation, as the system to
be controlled. The discrete-time model required for this
design is obtained by statistical identification and estima-
tion based on input-output data from the SDP-PD con-
trolled system using optimal refined instrumental vari-
able (RIV) estimation for continuous-time systems (see
Young, 2011), as implemented by the RIVCBJID and
RIVCB]J routines in the CAPTAIN Toolbox.

The discrete-time model required for PIP control
system design is then obtained via the Matlab c2d
continuous- to discrete-time conversion routine. The
sampling interval for such conversion is at the discre-
tion of the control system designer but, in this case, the
discrete-time model so obtained, for a sampling interval
of 0.01 s, is

0.0107z™! — 0.0088z2 + 0.0025z ™"
x(k) = r(k),
1 — 1.8660z! + 0.8706z>
(30)

where z77 is the backward shift operator, i.e. z77x(k) =
x(k — 7).

The PIP design for this model system is based on
linear-quadratic optimisation of the associated NMSS
model form, where the NMSS control gains are com-
puted by the PIPOPT and GAINS routines in the
CAPTAIN Toolbox. These use the numerator and
denominator model coefficients in Equation (30)
together with the user specified weightings on the
error, ew; control input, uw and the non-minimal state
variables xw where, in this example, ew = 10; uw = 1.0
and xw = 1.0. A serially connected loop gain LG = 5.0
is added to the design in order to tune the closed-loop
response so that it just meets the constraint imposed by
a required 0.15 m/s velocity limit.

The full details of this PIP-SDP control system design
and evaluation are given in Young (2015). This shows
that the closed-loop system responds well to any viola-
tion of hard constraints and is not sensitive to uncertainty
in the estimated model parameters, including the SDP
nonlinearity, unless these reach very high levels. Conse-
quently, this control system design represents a reason-
able, simulation-based starting point for future planned
research and development studies.

5. Conclusions

This paper has shown how the concept of SDP models
for nonlinear dynamic systems can be exploited to aid the
identification and control of electro-mechanical systems.
It has demonstrated how SDP identification provides an
alternative to the existing standard methods of statisti-
cal identification for such systems; an alternative that can
help to avoid over-reliance on prior conceptions about the
nature of the nonlinear characteristics.

When used as a tool in the experimental evaluation
of an EMPS, the first, non-parametric estimation stage
in the SDP identification procedure is able to discover
deviations from the assumed nonlinear characteristics of
the system and quantify the resulting nonlinear charac-
teristics in a practically useful SDP form. The second
IDIM-SDP stage, based on LS estimation of the suitably
parameterised SDP model, can be considered as a logi-
cal improvement of the standard IDIM-LS method. One
application of such SDP models is to facilitate nonlin-
ear control system design using linear-like design proce-
dures. This is illustrated by simulation studies that show
how the SDP model of the EMPS system can be used as
the basis for the SDP-PIP design of a nonlinear control
system for the EMPS.
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SDP identification is one of the tools used for the
DBM modelling of dynamic systems. This general, induc-
tive method of modelling differs from the alternative,
hypothetico-deductive ‘grey-box’ approach that is often
used for identifying electro-mechanical systems. In par-
ticular, only after initial, purely data-based ‘black-box’
modelling are any prior assumptions and hypotheses con-
sidered in order to see if they are compatible with the
identified model, or whether new data need to be col-
lected in order to examine any significant differences.
A typical example of how SDP identification can be
exploited in such a diagnostic role is demonstrated by the
results of experiments that show SDP identified deficien-
cies in the initially assumed nonlinear characteristics of
the Staubli TX40 robot system.

Note

1. This is available as the IRWSM routine in the CAPTAIN
Toolbox for Matlab (see http://captaintoolbox.co.uk/
Captain_Toolbox.html/Peter Young.html).
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On the identification of continuous-time inverse dynamic model of
electromechanical systems operating in closed loop with an instrumental
variable approach: application to industrial robots

The works focus on the identification of industrial robots that belongs to the field of the identification of
continuous-time inverse dynamic models in closed loop. First, a generic instrumental approach
relevant for the identification of rigid industrial robots is proposed. The set of instruments is the inverse
dynamic model constructed from simulated data calculated from the simulation of the direct dynamic
model. This algorithm termed the IDIM-IV method validates the inverse and direct dynamic models
simultaneously, improves the noise immunity of estimates with respect to corrupted data in the
observation matrix and has a rapid convergence. This new approach is experimentally validated and
compared with other standard methods. Then, a statistical test able to assess the validity of the set of
instruments as well as the consistency of the least-squares estimates is presented. This test is based
on the use of the Two-Stage-Least-Squares method and the regressed Durbin-Wu-Hausman test that
are commonly used in econometrics. Finally, the perspectives that the IDIM-IV method can offer to the
communities of robotics and automatic control are enlightened
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