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Preface

My research over the last ten years has contributed to two different and unrelated subfields of linguistic
theory: natural language semantics and pragmatics; and computational phonology from a constraint-
based perspective. Despite spanning two unrelated sub-fields, my research contributions are unified by a
common focus on computation, on the formal aspects of the linguistic theory, on the mathematical nature
of the underlying structure. Typological facts, linguistic evidence, and psycholinguistic data are reduced
to their core formal structure, accounted through detailed derivations from a few abstract principles,
subserved to the purpose of a mathematical argument. This document illustrates this property of my
research. Chapter 1 provides a broad outline of my research trajectory, by summarizing the main results
I have obtained so far. The rest of the volume illustrates the interplay between linguistic theory and
computation which characterizes my research by outlining a project on the computational theory of
opacity in constraint-based phonology. Chapter 2 provides an informal overview of the theory developed
in chapters 3-6. Two final appendices provide my list of publications and curriculum vitae (as of June
2016). This volume comes with a companion volume which reproduces my journal papers. All my
publications are available at https://sites.google.com/site/magrigrg/.

Editorial notice: The material presented in chapter 3 is based on Magri (to appeara). The material
presented in chapters 4 and 5 is based on Magri (to appearb), Magri (to appearc), and Magri (2016b).
Chapter 6 is more speculative and reports still unpublished material. Parts of this document have been
presented at WCCFL 33 at Simon Fraser University in March 2015 (see also Magri 2016a); at the EPG
(Experimental Phonology Group) meeting at Utrecht University in June 2015; at the LSA Workshop on
Computational Phonology and Morphology at the University of Chicago in July 2015; at the Rutgers
Optimality Research Group in September 2015; at OCP 12 in Budapest in January 2016; and at MIT
in April 2016. Feedback from those audiences is gratefully acknowledged. Finally, I would like to thank
Bruce Tesar for very useful comments on an earlier version of chapter 5. The research reported in this
document has been supported in part by a Marie Curie Intra European Fellowship (Grant agreement
number: PIEF-GA-2011-301938).
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CHAPTER 1

Research trajectory

Section 1.1 singles out the four main topics I have worked on so far: nominal semantics and the
ontology of quantification; individual-level predicates and the theory of scalar implicatures; the computa-
tional they of error-driven leaning in constraint-based phonology and the mode of constraint interaction;
restrictiveness and the so called early stage of the acquisition of phonotactics. Sections 1.2-1.5 summarize
the main results I have obtained so far, organized around these four main research topics. Throughout
this chapter, my publications are referred to with the numerical labels assigned to them in the list of
publications provided in Appendix A.

1.1. Overview

This section provides a broad overview of my research trajectory from graduate school to my current
research, singling out four main research topics. Sections 1.2-1.5 will then outline my main contributions
to each of these four topics.

1.1.1. Work on natural language semantics
During my undergraduate years at the University of Milano, I have pursued in parallel the degrees in

philosophy and mathematics (4 years each), which I have both completed summa cum laude. I have then
pursued training in generative linguistics through the linguistics graduate program at MIT. My research in
the first years of graduate school focused on nominal semantics and the ontology of quantification.
I have developed a new approach to the semantics of plurals and I have explored its implications for issues
such as the proper characterization of the mass/count distinction, the syntax/semantics of partitives, and
the semantics of collective nouns. This research has been consolidated into [pub 3], [pub 12], [pub 14],
[pub 30], and [man 4]. Section 1.2 summarizes the main results obtained.

Shortly after the beginning of graduate school, my research interests in natural language semantics
have extended beyond the nominal domain. In the first part of my dissertation, I have developed a
new theory of a well studied class of statives, called individual-level predicates. My proposal is
purely pragmatic and thus dispenses with the many ad hoc grammatical characterizations of this class
of predicates that have been proposed in the literature. Furthermore, my proposal has far reaching
implications for the recent debate on the nature of scalar implicatures, in particular for the issues
of implicature cancellation and of the modularity of implicature computation. This research has been
consolidated into [pub 24], [pub 28], [pub 29], [pub 37], and [sub 1], together with various papers
in conference proceedings. Section 1.3 summarizes the main results obtained.

1.1.2. Work on computational constraint-based phonology
Towards the end of my graduate years, my research interests have extended to computational models

of the acquisition of sound patterns. In order to gain some research experience in such a different
research field, I have applied for a fifth year of graduate funding. Building on my strong undergraduate
mathematical education, I have been able to take advanced classes in statistics and machine learning (at
the Laboratory for Information and Decision Theory of MIT; at the Statistics and Information Sciences
Laboratory of Harvard; at the Laboratory for Information and Decision Theory of MIT). During my
postdoctoral years in Paris, I have vigorously pursued training in Machine Learning: I have attended
machine learning graduate seminars (including Stéphane Boucheron’s graduate seminar on concentration
inequalities for machine learning in spring 2011 at the University of Paris 7); I have attended the meetings
of the SMILE (Statistical Machine Learning) group in Paris as well as the Machine Learning Workshop
organized by the French Mathematical Society in 2011; I have been admitted to the 18th Machine Learning
Summer School. This solid formal training has allowed me to obtain new results on the computational
theory of error-driven learning within constraint-based phonology, focusing in particular on the

11



12 1. RESEARCH TRAJECTORY

implications of different modes of constraint interaction for issues such as convergence, efficiency, and
noise robustness. This research has been consolidated into [pub 31], [pub 32], [pub 34], [pub 38],
[pub 39], and [pub 40], together with various papers in conference proceedings. Section 1.4 summarizes
the main results obtained.

This initial work in computational phonology built on my education in mathematics and machine
learning and focused on the purely computational perspective of language learnability. Towards the
end of my postdoctoral years, I have started to complement this learnability perspective with rich child
acquisition data. A grant from the Fyssen Research Foundation in 2011 allowed me to pursue this research
at the interface of mathematics and acquisition in collaboration with Adam Albright from MIT. I have
focused on the so called early stage of the child’s acquisition of phonotactics. How does the error-
driven learning scheme investigated since my dissertation work fare in modeling this early acquisition
stage? I have tackled this question from both a learnability and an acquisition perspectives. From the
learnability perspective, I have developed analytical guarantees that the model succeeds at learning a
sufficiently restrictive phonotactics. From an acquisition perspective, I have explored (in collaboration
with Albright) the model’s predictions on epenthesis data extracted from the INANP (Iowa-Nebraska
Articulation Norms Project) database (Smit et al. 1990), that I have acquired from Ann Bosma Smit at
Kansas State University. This research has been consolidated into [pub 16], [pub 18], [pub 19], [pub
20], [pub 23], [pub 33] and [pub 36]; this research will be further extended through [in prep 1], [in
prep 2], [in prep 3], and [in prep 4]. Section 1.5 summarizes the main results obtained.

In order for my work in computational phonology to reach maturity, it needed to be fertilized through
a closer connection with core phonological theory. A Marie Curie Fellowship for Career Development
has allowed me to strengthen my expertise in phonetics, typology and constraint-based phonology under
the guidance of René Kager at Utrecht University in the academic years 2013-2015. This new expertise
has allowed me to start a new thread in my research agenda, focused on computational opacity in
constraint-based phonology and its learnability implications. I have focused on two opaque patterns:
chain-shifts and saltations (a special type of derived environment effects), which lead to the two formal
properties of idempotency and output-drivenness. I have investigated these structural properties
from the perspective of sophisticated theories of phonological constraints, such as McCarthy and Prince’s
(1995) Correspondence Theory. These results have been consolidated into [pub 21], [pub 26], [sub 2],
[sub 3], [sub 4], and [man 3]. The rest of this document outlines the theory thus obtained.

1.1.3. Impact
My work in natural language semantics has had a strong impact on the literature. This is demonstrated

not only by the sheer number of citations (my 2009 paper [pub 28] in the journal Natural Language
Semantics has received over 115 citations according to Google Scholar), but also by the number of
articles and dissertations which have engaged with my proposals on scalar implicatures and individual-
level predicates. Here is a partial list. Spector (2014) is a detailed commentary of my proposal on
the computation of scalar implicatures. In his MIT dissertation, Thomas (2012) provides support for
(together with some modifications of) my analysis of life-time effects based on data from Mbyá Guaraní.
In his Stanford dissertation, Lauer (2014) takes issue with my theory of mandatory scalar implicatures.
And Romoli (2012) follows up on that issue. In her MIT dissertation, Meyer (2013) discusses my theory of
blind scalar implicatures and develops an alternative. Another variant is developed in Schlenker (2012),
which I actually show to be identical to my original proposal in [sub 1]. Further discussion of my work
is provided in Singh (2009, 2010, 2012) and Katzir and Singh (2014). Finally, I would like to mention
the fact that, when I first arrived in Paris at the beginning of my postdoctoral period in 2009, Angelika
Kratzer (who was at the time on sabbatical in Paris) organized a workshop at the Maison Suger dedicated
to my work, as another indication of its impact on the field.

My work in phonological learnability is more recent, but has already attracted the attention of the
research community. The specific implementation of error-driven learning developed in my 2012 paper
[pub 31] in Phonology has become standard in the OT modeling literature. And I have been recently
invited by the journal Phonology to write the review of Bruce Tesar’s recent book, showing that I have
been able to establish myself as one of the leading experts in computational phonology. Finally, I have
been invited to give a number of mini-courses on computational phonology at venues such as the École
Normale Supérieure, the University of Utrecht, the University College London, and MIT. I have also
taught courses on computational phonology at summer schools such as ESSLLI and the LSA summer
institute.
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1.2. Main results on nominal semantics and the ontology of quantification

The lexical distinction between singular and plural nominal morphology is at the heart of the proper
semantics of count, collective and mass nouns. A classical strategy to account for the linguistic facts that
pertain to this distinction is to “ontologize” the distinction into a distinction between singular and plural
individuals (Link 1983; Landman 1991; Chierchia 1996). The core idea is that the domain of quantification
is endowed with an atomic part-of relation that sorts the individuals into those that have proper parts
(plural individuals) and those that don’t (atomic individuals). And the morphological number distinction
is then mapped onto that ontological distinction, by assuming that a morphologically singular term such
as ‘the boy’ denotes an atomic individual while a morphologically plural term such as ‘the boys’ denotes
a plural individual. Yet, this approach runs into troubles with singular partitives, such as ‘some of this
boy’: the determiner ‘some’ seems to quantify over parts of the individual denoted by ‘this boy’, despite
that individual being atomic, as it is the denotation of a singular term. To get around this problem,
this literature assumes that the domain of individuals is also endowed with a further non-atomic part-of
relation; that the atomic individual denoted by the singular term ‘this boy’ does have proper parts relative
to the latter part-of relation; and that it is these parts that ‘some’ quantifies over in ‘some of this boy’.

My research on nominal semantics explores the hypothesis of a simplification of this ontology of
individuals that does away with the atomic part-of relation, and thus with the ontological distinction
between atomic and plural individuals that comes with it. The core intuition is that the set of atomic
individuals is not encoded once and for all into the algebraic structure of the domain of quantification.
Rather, it is provided whenever needed by a proper sortal fed by the syntax to the semantics in the form
of a phonologically null noun phrase. Crucially, a given individual might count as atomic relative to a
sortal but as non-atomic relative to another sortal. [pub 3], [pub 12], [pub 14], [pub 30], and [man
4] outline this sortal theory of plurals and start to explore some of its implications for the semantics of
mass and count nouns. This section outlines the main results I have obtained so far.

1.2.1. First result: the syntax of partitives
Various authors have provided syntactic arguments for a hidden sortal in partitives above the lower

definite, so that the LF of (1a) boils down to something like some boys of these boys, featuring the covert
noun boys (Selkirk 1977 and Cardinaletti and Giusti 2006 among others).

(1) a. Some of these boys.

b. Some of this boy.

This syntactic literature treats a plural partitive like (1a) and a singular partitive like (1b) on a par. This
makes good sense: from a syntactic perspective, the choice of the number feature on the embedded noun
should not imply any difference between the LFs of (1a) and (1b). Nor would we expect any difference
between the LFs of (1a) and (1b) from a semantic perspective, provided that the domain of quantification
is endowed with both an atomic and a non-atomic part-of relations. In fact, thanks to the two part-of
relations, the interpretation of singular and plural partitives is completely analogous. In the case of
the plural partitive (1a), we first use the atomic part-of relation to construct the set of atomic parts of
the individual denoted by the plural definite ‘these boys’, namely the set of boys; then, we apply the
determiner ‘some’ to that set. In complete analogy, in the case of the singular partitive (1b), we first use
the non-atomic part-of relation to construct the set of parts of the individual denoted by the singular
definite ‘this boy’, namely the set of his body parts; then, we apply the determiner ‘some’ to that set.

Rather different predictions follow from my hypothesis of a parsimonious ontology of quantification,
whereby the domain of quantification is only endowed with the non-atomic part-of relation. Again, the
singular partitive (1b) can be interpreted straightforwardly by means of the non-atomic part-of relation,
by feeding the determiner ‘some’ with the set of non-atomic parts of the individual denoted by the
embedded singular definite. Things are very different for the case of the plural partitive (1a). We cannot
feed the upstairs determiner ‘some’ with the set of non-atomic parts of the individual denoted by the
definite, as this set would contain legs and arms, that we do not want ‘some’ to quantify over in the case
of (1a). For the case of plural partitives it is thus crucial to have the right sortal above the definite,
which provides the relevant granularity. In conclusion, my hypothesis of a parsimonious ontology of
individuals predicts an otherwise unexpected asymmetry between singular and plural partitives: that the
latter require a hidden sortal, while the former don’t. My first result in nominal Semantics is that this
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prediction is borne out. In [pub 3], I review from the syntactic literature various arguments for a covert
noun in partitives and I show that the arguments don’t quite hold for the case of singular partitives.

Here is an example that illustrates the flavor of the argument. Selkirk (1977) notes an ambiguity
with relative clauses in partitives: the several paintings by Sienese artists in (2a) can be either among
the paintings they saw or among the famous paintings in the museum and not necessarily seen by them;
the ambiguity is lost in the case of the non-partitive (2b). Under the assumption that partitives have
two copies of the noun ‘paintings’ (the actual one plus a copy above the downstairs determiner), this
ambiguity is straightforwardly accounted for: the relative clause can modify either the higher or the lower
noun.

(2) a. In the Uffizi they saw many of the famous paintings, several of which were by Sienese artists.
b. In the Uffizi they saw many famous paintings, several of which were by Sienese artists.

Selkirk only considers plural partitives, such as (2). Let’s now turn to singular partitives, by comparing
the two pairs (3) and (4). Sentences (3) contain a plural partitive: the relative clause ‘most of which . . . ’
is ambiguous in the way detected by Selkirk, with no difference between (3b) with an overt sortal above
the definite and (3a) without it. The case of the singular partitive in (4) is different: the relative clause
is ambiguous only in the case of (4b) with the overt sortal but not in the case of (4a) without it.

(3) a. In the library, they read some of those books, most of which were interesting.
b. In the library, they read some books of those, most of which were interesting.

(4) a. In the library, they read some of that book, most of which was interesting.
b. In the library, they read some part of that book, most of which was interesting.

The contrast between (3) and (4) suggests that there is no sortal for the relative clause to modify in the
case of singular partitives, contrary to the case of plural partitives.

1.2.2. Second result: number agreement and distributivity
The predicate ‘tall’ in sentence (5a) distributes from the plural definite down to the singular boys, so

that (5a) is truth-conditionally equivalent to (5b), with a universal quantifier.

(5) a. The boys are tall.
b. Every boy is tall.

It is standard to account for this equivalence by positing a covert universal quantifier for the case of
(5a), called the distributivity operator. The set of single boys needs to be available again for this covert
operator, after it has been fed as an argument to the definite article. In a semantics endowed with
the atomic part-of relation, this is trivial to achieve: the set of single boys can be reconstructed as
the set of atomic parts of the individual denoted by the plural definite ‘the boys’. But an alternative
strategy is needed under my hypothesis of a parsimonious ontology of individuals, whereby the domain
of quantification is only endowed with the non-atomic part-of relation. I want to explore the following
strategy. Various authors have suggested that the subject definite in (5a) is base generated in a more
embedded position and then moved to its surface position. Recent theories of syntactic movement assume
that this movement operation leaves in situ a copy of the dislocated subject. And Fox (1995) argues that
the copy of the subject left in situ is (roughly) stripped of its determiner and turned into a property.
I suggest that it is this property that provides the relevant granularity for the distributivity operator.
This link between distributivity and movement predicted by my hypothesis of a parsimonious ontology
of individuals provides a rationale for a generalization by Kratzer (in progress) and Ferreira (2005), that
only definites that have undergone movement (and thus have left in situ a copy) can be interpreted
distributively.

An interesting test case for the proposal just sketched is provided by subjects with a rich left periphery,
such as collective terms (‘that group of boys’) and measure phrases (‘some boxes of marbles’). In these
cases, Fox’s theory of copies leaves it open how much of the left edge of the copy left in situ gets stripped:
only little, as in ‘some boxes of marbles’; or a bit more, as in ‘some boxes of marbles’. My proposal
that the granularity of distributivity is provided by the content of the copy, predicts that we should
get distributivity to the boxes in the former case and distributivity down to the marbles in the latter
case. In order to test whether this correlation holds, proper tools to access the content of the covert
copy are needed. One such tool is Antecedent Contained Deletion (ACD), according to recent accounts
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of the latter, such as Fox (2002). Another tool to access the content of the covert copy is subject-verb
agreement, under the assumption that agreement is established locally, and thus holds with the copy
left in situ rather than with the dislocated copy. My second main result in nominal Semantics is that
this predicted correlation between agreement and distributivity is borne out by certain facts in British
English (see also Elbourne 1999), as argued in [pub 12].

Here is an example, that gives the flavor of the argument. Consider the new piece of data (6) on
collective nouns in British English.1 These data show that plural agreement is required in the case of
the inherently distributive predicate ‘to be odd’. There is thus a correlation between subject/predicate
number agreement and distributivity.

(6) a. *This set of numbers is (all) odd.
b. This set of numbers are (all) odd.

I show that these data follow from my sortal theory of plurals. The core intuition of the account is as
follows. Assume that number agreement is established with the copy of the subject left in situ within VP.
This means that this copy is ‘This set of numbers’ in the case of singular agreement in (6a) and ‘This set
of numbers’ in the case of plural agreement in (6b). As it is the meaning of the copy that provides the
granularity of distributivity, it is only in the case of (6b) that the predicate ‘odd’ can distribute down to
the numbers, thus explaining the contrast in acceptability displayed in (6).

1.2.3. Third result: mass and collective nouns
There are a variety of cases where the atomic part-of relation is standardly exploited in the literature,

besides the cases of partitives and distributivity just considered. Each such case raises an interesting
challenge for my hypothesis of a parsimonious ontology of quantification that dispenses with the atomic
part-of relation. I am interested in two such cases in particular. One case is that of the linguistic
distinction between count and mass nouns, that is usually represented by assuming that the property
denoted by the former is atomic (i.e. it has minimal parts) while the property denoted by the latter is
atomless (i.e. it lacks minimal parts). Another case is that of the linguistic distinction between singular
and plural nominal morphology, that is usually mapped into an ontological distinction between atomic
and non-atomic individuals, as noted above. Both these characterizations are lost under the hypothesis
that the domain of quantification is only endowed with a non-atomic part-of relation. Thus, both of these
classical characterizations need to be rethought from scratch. I submit that this is a welcome conclusion.
In fact, the classical characterization of the mass/count distinction in terms of the atomic/atomless
distinction just mentioned has come into question in the recent psycholinguistic literature (Gillon et al.
1999; Barner and Snedeker 2005), motivating a very different approach such as the one pursued in [man
4]. Also the classical characterization of singular/plural morphology in terms of the atomic/non-atomic
distinction leads into trouble, for instance w.r.t. the issue of the semantics of collective nouns. The core
problem is whether the collective definite (7a) and the corresponding simple definite (7b) are coreferential.

(7) a. that pack of dogs.
b. those dogs.

On the one hand, the pre-theoretical intuition suggests that (7a) and (7b) are indeed coreferential. Yet,
this position is untenable if the morphological distinction is mapped into an ontological distinction: the
two definites cannot be coreferential, since (7a) is morphologically singular and thus denotes an atomic
individual while (7b) is morphologically plural and thus denotes a plural individual. This difficulty
evaporates as soon as we give up the atomic part-of relation and the ontological distinction between
atomic and non-atomic individuals that comes with it.

In [pub 12], I develop this intuition into a new semantics for collective nouns. I argue that a collective
term such as (7a) and the corresponding individual term (7b) indeed denote the same individual. This
coreferentiality hypothesis is the null hypothesis, since it doesn’t require any enrichment of the ontology
with new individuals, such as Link’s (1984) impure atoms, Landman’s (1989) groups or Schwarzschild’s
(1996) bunches. The argument in favor of this coreferentiality hypothesis is twofold. On the one hand, I
provide new evidence that the mutual replacement of a collective term with the corresponding individual
term most often doesn’t affect neither the truth-conditions nor the grammaticality of a sentence, even in
the context of distributive predication. Since distributive predication is peculiar to plural-denoting terms,

1The judgment reported in (6) was provided to me by Paul Elbourne (p.c.).



16 1. RESEARCH TRAJECTORY

a collective term cannot denote an atomic individual. On the other hand, I show how to account under
this coreferentiality hypothesis for some linguistic evidence that at first sight seems to point against it. I
consider two such pieces of evidence: the special behavior of collective terms with reciprocals as well as
predicate non-sharing between a collective term and the corresponding individual term.

1.3. Main results on individual-level predicates and scalar implicatures

Predicates such as ‘tall’ or ‘French’, which intuitively denote (quasi) permanent properties, are called
individual-level predicates (henceforth: ILPs), after Carlson (1977). A huge number of peculiar properties
of this class of predicates have been noted in the literature; see Fernald (2000) for an overview. One such
property is that we cannot say (8a). My starting point is the intuition that this sentence (8a) sounds
odd because it triggers the inference (more precisely: the scalar implicature) that John is not always tall,
which mismatches with the piece of common knowledge that tallness is a permanent property.

(8) a. #John is sometimes tall.
b. #Some Italians come from a warm country.

This reasoning carries over to the oddness of other sentences that have nothing to do with ILPs, such as
(8b). In fact, I submit that this sentence (8b) sounds odd because it triggers the scalar implicature that
not all Italians come from a warm country, which mismatches with the piece of common knowledge that
all Italians come from the same country.

The main result of my work in semantics has been the development of this intuition into a new
implicature-based theory of ILPs in [pub 24], [pub 28], [pub 29], [pub 37], and [sub 1]. I have devel-
oped a general theory of oddness, based on scalar implicatures that mismatch with common knowledge.
The theory is casted within the recent grammatical approach to scalar implicatures (Chierchia 2004; Fox
2007; Chierchia et al. 2012). And it is developed independently of ILPs, based on various patterns of
oddness such as (8b), that have nothing to do with ILPs. I have then shown how the theory of ILPs can
be derived as a theorem of this more general theory of oddness, by exploiting formal analogies such as
the one in (8). I have focused on various puzzling properties of ILPs that have to do with restrictions
on the interpretation of their bare plural subjects, noted in Carlson (1977), Milsark (1977), and Fox
(1995); with restrictions on German word order and extraction, noted in Diesing (1992); and restrictions
on Q-adverbs, noted in Kratzer (1995). The main advantage of my theory of ILPs is that it does away
with ad hoc grammatical characterizations of ILPs, such as those by Kratzer (1995), Diesing (1992) or
Chierchia (1995); and instead derives the relevant properties of ILPs from the mere assumption that
they denote (quasi) permanent properties, as the intuition suggests. This section sketches the four main
results I have obtained so far.

1.3.1. First result: ILPs as homogeneous predicates
In order to account for the many linguistic properties of ILPs, various grammatical characterizations

of ILPs have been put forward in the literature: as predicates with a special argumental structure, as in
Kratzer (1995); as predicates with a special Davidsonian argument, as in Jäger (2001); as predicates with
a special syntactic feature, as in Chierchia (1995); as predicates selected by a special inflectional node, as
in Diesing (1992); etcetera. I want instead to explore the null hypothesis that all what is special about
an ILP such as ‘tall’ is that it is homogeneous w.r.t. time, in the sense that it either holds of an individual
at every time in his life-span or else it never holds of him. This characterization of ILPs makes the
following remarkable empirical prediction: that there should be no properties peculiar to ILPs; namely,
that it should be possible to mimic alleged peculiar properties of ILPs with any other predicate that is
homogeneous w.r.t. one of its arguments. My first main result is that this surprising empirical prediction
is indeed borne out, as argued in [pub 24] and [pub 28]. Here are a few examples to illustrate the gist
of the argument.

As illustrated in (9), ILPs do not tolerate time Q-adverbs; see Kratzer (1995). Let me show that this
property extends to arbitrary homogeneous predicates.

(9) a. #John is sometimes tall.
b. #John is always tall.

The predicate ‘to come from a warm country’ in (10) is homogeneous w.r.t. Italians, since it is either the
case that Italy is warm and thus all Italians come from a warm country or else Italy is cold and thus no
Italians come from a warm country.
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(10) a. #Some Italians come from a warm country.
b. #All Italians come from a warm country.

Sentences (10) thus show that the apparently peculiar property of ILPs of disallowing overt quantification
over their homogeneous time argument extends to the homogeneous argument of arbitrary homogeneous
predicates.

Let me now consider a couple of slightly more involved examples. One of the most puzzling properties
of ILPs concerns restrictions on the interpretation of their bare plural subjects (henceforth: BPSs). The
BPS ‘firemen’ of the non-ILP ‘available’ in (11a) can be construed both existentially (“There are firemen
who are available”) and generically (“Firemen are available people”); but the BPS of the ILP ‘tall’ of
sentence (11b) lacks the existential reading and can only be construed generically (Milsark 1977; Carlson
1977).

(11) a. Firemen are available.
√
∃-BPS = There are firemen who are available

b. Firemen are tall. ∗∃-BPS = ∗There are firemen who are tall

The Logical Form corresponding to the unattested existential reading of (11b) would plausibly look like
(12): the time argument t of the ILP ‘tall’ would be bound by a covert universal (generic) operator ∀t;
the variable x over firemen introduced by the BPS would be bound by an existential operator ∃x; the
latter existential operator would scope below the universal operator, since existential BPSs always select
the narrowest possible scope, as it is well known since Carlson (1977).

(12) [∀t [∃x [Phom(x, t)] ] ].

The predicate ‘won the swimming competition’ is homogeneous in the context considered in (13): for
every given individual, either he won the swimming competition throughout the entire week or else he
never won, since we know that the same guy always won. The predicate ‘won the running competition’ is
not homogeneous, since a given individual might have won just once. The universal quantifier ‘every day’
in (13a) and (13b) corresponds to the universal operator ∀t in (12); the indefinite ‘a fireman’ in (13a)
and (13b) corresponds to the existential quantifier ∃x in (12); fronting of the universal quantifier in (13a)
and (13b) forces it to take wide scope over the indefinite, ensuring the scope configuration represented in
(12).

(13) Context: a competition lasted for five days, Monday through Friday; each day, two challenges are
held: swimming and running; both John and Bill know that the same guy x won the swimming
competition on all five days; nothing is known about the running competition:

m t w t f
swimming: x x x x x
running: y1 y2 y3 y4 y5

John wants to know more about these competitions, and thus asks Bill for more information; Bill
replies as follows:
a. Every day, it was a fireman who won the running competition.
b. #Every day, it was a fireman who won the swimming competition.

The contrast in (13) thus shows that the apparently peculiar property of ILPs of disallowing Logical
Forms like (12), extends to arbitrary homogeneous predicates.

Fox (1995) adds the surprising observation that the restriction on the existential reading of BPSs of
ILPs illustrated in (11) is waived when the BPS is embedded under a universal quantifier: as expected,
the BPS ‘Jewish women’ of the ILP ‘to be related to Chomsky’ in (14a) lacks the existential reading; in
(14b), the definite ‘Chomsky’ has been replaced by the universal quantifier ‘every Jewish man’ and the
BPS ‘Jewish women’ does admit the existential reading in (14b), provided that the universal object is
assigned wide scope (“For every Jewish man there are Jewish women related to him”).

(14) a. Jewish women are related to Chomsky.
∗∃-BPS = ∗There are women related to Chomsky

b. Jewish women are related to every Jewish man.
∃-BPS = ∗For every man, there are women related to him
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The Logical Form corresponding to the attested existential reading of (14b) looks like (15): the time
argument t of the ILP ‘related to’ is bound by a covert universal (generic) operator ∀t; the variable y over
Jewish men is bound by a wide scope universal operator ∀y; the variable x over Jewish women introduced
by the BPS is bound by an existential operator ∃x; the latter existential operator scopes below all other
operators, since once more existential BPSs always take the narrowest possible scope.

(15) [∀y[∀t [∃x [Phom(x, y, t)] ] ] ].

The predicate ‘won’ is homogeneous in the context considered in (16): for every given individual and
for every given competition, either that guy won that competition throughout the entire week or else he
never won it. The universal quantifier ‘every day’ in (16b) corresponds to the universal operator ∀t in
(15); the indefinite ‘a fireman’ in (16b) corresponds to the existential quantifier ∃x in (15); the universal
quantifier ‘for every competition’ in (16b) corresponds to the universal operator ∀y in (15); fronting of
the two universal quantifiers in (16b) forces them to take wide scope over the indefinite, ensuring the
scope configuration (15).

(16) Context: a competition lasted for five days, Monday through Friday; each day, three challenges
are held: swimming, running and jumping; both John and Bill know that the same guy x won
the swimming competition on all five days, the same guy y won the running competition on all
five days, and the same guy z won the jumping competition on all five days:

m t w t f
swimming: x x x x x
running: y y y y y
jumping: z z z z z

John wants to know more about these competitions, and thus asks Bill for more information; Bill
replies as follows:
a. #Every day, it was a fireman who won the running competition.
b. Every day, for every competition, it was a fireman who won it.

The contrast in (16) thus shows that the apparently peculiar property of ILPs of disallowing Logical
Forms like (12) but not like (15), extends to arbitrary homogeneous predicates.

These and various other similar cases show that apparently peculiar properties of ILPs can be mimicked
with arbitrary homogeneous predicates. This empirical finding means that there is no need for a dedicated
theory of ILPs based on specific grammatical assumptions on ILPs. Rather, we need a general theory of
oddness, that is able to explain the oddness of sentences such as (10) or (13b) that have nothing to do
with ILPs. My version of such a theory is sketched in subsections 1.3.2-1.3.3. The theory of ILPs then
follows as a theorem of this more general theory of oddness, along the lines sketched in subsection 1.3.4.

1.3.2. Second result: oddness and scalar implicatures
It is well known that an existentially quantified sentence such as (17a) triggers the inference that

the corresponding universally quantified alternative (17b) is false, namely that John did not do all of
his homework. This inference is called a scalar implicature. A crucial property of this inference is that
it is context-dependent: in the context of question (18a), (17a) triggers a strong not-all implicature;
but it pretty much loses that implicature in the context of question (18b). Classical (neo) Gricean
theories account for the flimsy, context-dependent nature of scalar implicatures by assuming that they
are pragmatic, extra-grammatical inferences (Horn 2005; Geurts 2010).

(17) a. John did some of the homework.
b. John did all of the homework.

(18) a. How well did John do on the homework?
b. Who did some of the homework?

By analogy with (17a), I want to maintain that the existentially quantified odd sentence (8b)=(10a),
repeated once more in (19a), triggers the analogous scalar implicature that the corresponding universally
quantified alternative (19b) is false, namely that only some Italians come from a warm country. Of course,
this implicature mismatches with the piece of common knowledge that all Italians come from the same
country. I thus submit that the oddness of the sentence follows from this mismatching scalar implicature.
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(19) a. #Some Italians come from a warm country.
b. All Italians come from a warm country.

This intuition of a theory of oddness based on mismatching scalar implicatures faces two challenges. My
second main result consists of a theory of (mismatching) scalar implicatures that is able to cope with
these two challenges, developed in [pub 24], [pub 28], and [sub 1].

The first challenge is that the mismatching implicature needs to be blind to common knowledge. In
fact, the target odd sentence (19a) and the corresponding alternative (19b) are equivalent once we factor
in the piece of common knowledge that all Italians come from the same country, namely both sentences
say that Italy is warm. If the algorithm that computes implicatures were sensitive to common knowledge,
the contrast in (19) would be left unexplained. Yet, blindness to common knowledge is inconsistent with
the (neo) Gricean assumption that scalar implicatures are pragmatic inferences, as pragmatic reasoning
is well know to be heavily dependent on contextual knowledge (Heim 1991). The core idea of my solution
to this puzzle is as follows. The (neo) Gricean pragmatic approach to scalar implicatures has been
recently challenged for independent reasons, having to do with patterns of scalar implicatures in embedded
positions (Chierchia 2004; Chierchia et al. 2012). And an alternative framework has been developed, that
maintains that scalar implicatures are not pragmatic, extra-grammatical inferences. Rather, they are
derived by a covert operator equivalent to ‘only’, capturing the intuition that sentence (17a) enriched
with its scalar implicature is essentially equivalent to the variant in (20), with overt ‘only’ (Fox 2007).

(20) John only did some of the homework.

I show that the proper semantics of overt ‘only’ needs to be construed as blind to common knowledge.
This observation lends strong support to the conjecture that also the covert ‘only’ that allegedly derives
scalar implicatures is blind to common knowledge. Scalar implicatures are thus expected to be blind to
common knowledge.

The second challenge for a theory of oddness based on scalar implicatures that mismatch with common
knowledge is that these mismatching implicatures need to be strong and mandatory. In fact, we want
to rule out the possibility that they are cancelled, suspended or not computed at all, and thus odd
sentences such as (19a) rescued from their oddness. Yet, plain non-mismatching implicatures are flimsy
and context-dependent, as shown by cases of implicature cancellation illustrated in (18). The core idea
of my solution to this puzzle is as follows. Assume that covert ‘only’ is always present at Logical Form.
It negates every alternative in its domain. And its domain is defined as the set of alternatives that are
logically stronger than the target sentence and furthermore relevant (Fox and Spector to appear; Fox
and Katzir 2009). In a context such as (18b), where (17a) does not trigger the not-all implicature, the
universally quantified alternative (17b) is not relevant in the context of utterance. Thus it does not
belong to the domain of the mandatorily present covert ‘only’, and therefore does not get negated by
it. In other words, implicature cancellation is just contextual restriction of the domain of covert ‘only’.
The case of an odd sentence such as (19a) is crucially peculiar with this respect. In fact, the target
odd sentence (19a) and its universally quantified alternative (19b) are contextually equivalent. Since the
target sentence (19a) is relevant (because uttered) and since relevance is plausbly closed w.r.t. contextual
equivalence (because it is a contextual notion), then the alternative (19b) is relevant too and must get
negated by the covert ‘only’, thus deriving the mismatching implicature. Mismatching implicatures are
thus expected to be mandatory.

1.3.3. Third result: oddness in DE contexts
Various authors (such as Sauerland 2008 and Percus 2006), have dismissed the hypothesis of an

implicature-based theory of oddness based on the observation that it seems to make wrong predictions
for the case of embedding in downward entailing contexts (DECs). Let me spell out the problem. DECs
are contexts, such as sentential negation, ‘no’ or the restrictor of ‘every’, that license inferences such as
(21), from the “superset” (‘boy’) to the “subset” (‘tall boy’).

(21) a. No boy came → No tall boy came.
b. Every boy came → Every tall boy came.

It is well known that plain scalar implicatures “flip” in DECs: sentence (17a) with ‘some’ triggers the
not-all implicature while sentence (17b) with ‘all’ triggers no implicature; when embedded under negation
as in (22), the opposite pattern arises: sentence (22b) with ‘all’ triggers the implicature that John indeed
did some of the homework; while sentence (22a) with ‘some’ triggers no implicature.
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(22) a. It is not the case that John did some of the homework. = not(17a)
b. It is not the case that John did all of the homework. = not(17b)

If oddness comes about through mismatching implicatures, then oddness is expected to flip in DECs:
when embedded in a DEC, an odd sentence should turn fine, and vice versa the fine alternative should
turn odd. The case of sentential negation shows that this prediction seems not to be born out: sentence
(19a), repeated in (23a), remains odd when embedded under negation, as illustrated in (23b).

(23) a. #Some Italians come from a warm country.
b. #It is not the case that some Italians come from a warm country. = not(23a)

As my third main result, I have shown in [pub 29] how to properly extend the implicature-based theory of
oddness to DECs and how to make sense of apparently problematic examples such as (23). The proposal
furthermore offers a new argument that scalar implicatures can be computed in embedded position.

To get started, let’s look at the behavior of oddness in DECs different from sentential negation, such
as the restrictor of ‘every’. Surprisingly, the facts split into two opposite patterns, illustrated by the two
cases in (24) and (25). Both pairs (24) and (25) consist of two contextually equivalent scalar alternatives,
that only differ on whether the restrictor of ‘every’ has ‘some’ or ‘all’. I will thus schematically notate the
two alternatives as ‘every(some)’ and ‘every(all)’. In (24), oddness flips as expected: the logically
stronger sentence (24b) sounds fine; and the logically weaker sentence (24a) sounds odd. Surprisingly,
we get the opposite pattern in (25): it is the logically weaker sentence (25a) that sounds fine; while the
logically stronger sentence (25b) sounds odd.

(24) Context: Every year, the dean has to decide: if the college has made enough profit that year, he
gives a prize to every professor who has assigned an A to at least some of his students; if there is
not enough money, then no one gets a prize.
a. #This year, every professor who assigned an A to all of his students got a prize.

#every(all)
b. This year, every professor who assigned an A to some of his students got a prize.

√
every(some)

(25) Context: In this department, every professor assigns the same grade to all of his students.
a. This year, every professor who assigned an A to all of his students got a prize.√

every(all)
b. #This year, every professor who assigned an A to some of his students got a prize. #ev-

ery(some)

What is the relavant difference between the two patterns (24) and (25)? In both cases, the two matrix
alternatives ‘every(some)’ and ‘every(all)’ are contextually equivalent, notated ‘=ck’ in (26). Yet,
contextual equivalence is achieved in a different way in the two cases. In the case of (25), contextual
equivalence is achieved at the embedded level: the context says that the restrictors of ‘every’ in the
two sentences coincide, namely that the set of professors who gave an A to all students and the set of
professors who gave an A to some students are the same set; contextual equivalence of the restrictors of
course entails matrix contextual equivalence. The case of (24) is different, as contextual equivalence is not
established at the embedded level but only at the matrix level: the context leaves open the possibility that
some professors gave an A only to some students, so that the restrictors of ‘every’ in the two sentences
are not contextually equivalent.

(26) Case (24): some 6=ck all, every(some) =ck every(all);
Case (25): some=ckall, every(some) =ck every(all);

I show that my implementation of the theory of scalar implicatures, as sketched in subsection 1.3.3, is
fine grained enough to exploit this crucial difference (26) and thus to account for the complex pattern in
(24)-(25). The rough idea is as follows. In the case of (25), embedded contextual equivalence forces an
embedded mismatching implicature that rules out the sentence ‘every(some)’ with the logically weaker
restrictor, even though the matrix sentence would otherwise be logically stronger. In the case of (24),
there is no embedded contextual equivalence, and thus no mandatory embedded mismatching implicature;
rather, we only get the matrix implicature, which rules out the sentence ‘every(all)’ which is logically
weaker at the matrix level. The case of sentential negation (23) considered in the literature hides the
actual behavior of oddness in DECs, since negation has the crucial property that matrix contextual
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equivalence holds iff embedded contextual equivalence does, so that the two cannot be dissociated and
the behavior displayed in (24), where oddness flips as expect, is not visible.

1.3.4. Fourth result: ILPs as a theorem of the theory of oddness
ILPs have figured prominently in the recent literature because they display a huge number of peculiar

properties, most of which seem prima facie to have nothing to do with the intuitive characterization of
ILPs as denoting permanent properties. One case in point is that of restrictions on bare plural subjects
(henceforth: BPSs) of ILPs. These restrictions come in various forms. There are meaning restrictions
on BPSs of ILPs: for instance, BPSs of ILPs lack the existential construal which is instead available for
non-ILPs, as illustrated above in (11). And there are distributional restrictions on BPSs of ILPs as well:
for instance, Diesing (1992) notes that the BPS ‘Feuerwehrmänner’ (‘firemen’) of the ILP ‘intelligent’
cannot sit at the right of the particles ‘ja doch’ (‘indeed’) in German, contrary to the case of the non-ILP
‘verfügbar’ (‘available’), as illustrated in (27).

(27) a. . . . weil
. . . since

ja doch
parts

Feuerwehrmänner
firemen

verfügbar
available

sind.
are

b. #. . . weil
. . . since

ja doch
parts

Feuerwehrmänner
firemen

intelligent
intelligent

sind.
are

As the fourth main result of my work on ILPs, I have shown that meaning and distributional restrictions
on BPSs of ILPs can be derived as a theorem of the general theory of oddness based on mismtaching
scalar implicatures sketched above. I will not present the details of the account here. But I would like
to stress two crucial properties of the proposed account. The first property is that my account does not
make use of any ad hoc grammatical characterization of ILPs. Instead, my account is able to derive these
surprising restrictions on BPSs of ILPs from the mere intuitive assumption that ILPs denote (quasi)
permanent properties. The second property of my account is that it predicts that these restrictions on
BPSs of ILPs are waived when the BPS is embedded under a universal operator (over individuals). Fox’s
effect (14) above shows that this surprising prediction is borne out for the case of meaning restrictions on
BPSs of ILPs. I have shown that this surprising prediction is also borne out for the case of distributional
restrictions on BPSs of ILPs. Sentence (28a), with the ILP ‘verwandt’ (‘related to’) and the BPS ‘jüdische
Frauen’ (‘Jewish women’) at the right of ‘ja doch’ is deviant, as expected given the contrast in (27). Yet,
sentence (28b), where the definite object ‘Chomsky’ has been replaced by the universal quantifier ‘jedem
jüdischen Mann’ (‘every Jewish man’), sounds fine.

(28) a. #Mit
with

Chomsky
Chomsky

sind
are

ja doch
parts

jüdische
Jewish

Frauen
women

verwandt.
related

b. Mit
with

jedem
every

Jüdischen
Jewish

Mann
man

sind
are

ja doch
parts

jüdische
Jewish

Frauen
women

verwandt.
related

To the best of my knowledge, my proposal is unique in being able to derive these predictions (14) and
(28) concerning embedding of BPSs of ILPs under universal operators.

1.4. Main results on error-driven learning and the mode of constraint interaction

Constraint-based phonology assumes that speakers are equipped with a universal set of phonological
constraints, which extract the relevant properties of phonological structures. Two or more constraints
can conflict. Languages differ in how they resolve constraint conflicts. Two main modes of constraint
interaction have been considered in the literature. According to Optimality Theory (OT; Prince and
Smolensky 2004), constraints are ranked and constraint conflicts are resolved by a language in favor of
the constraints that it ranks at the top. According to Harmonic Grammar (HG; Legendre, Miyata, and
Smolensky 1990b,a; Smolensky and Legendre 2006), constraints are weighted and constraint conflicts are
resolved by a language additively in terms of the weighted averages of constraint violations.

The choice between OT and HG is an empirical issue which should in the end be decided by typological
considerations. Yet, recent research has also started to compare the two frameworks from the perspective
of their learnability implications (Riggle 2009; Bane et al. 2010; Jesney and Tessier 2011). Error-driven
learning has played a crucial role in this debate. An error-driven learner entertains a current OT or HG
grammar which is slightly updated whenever it makes an error on the current piece of data, gradually
converging to the target grammar. Pater (2008) provides an elegant counterexample against Boersma’s
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(1998) GLA implementation of OT error-driven learning. He then diagnoses that “one reason for the
failure [of the GLA on his counterexample], and potentially for its failure to provably converge in general,
is its use of [. . . ] OT as a model of grammar.” He then notes that “the GLA closely resembles Rosenblatt’s
(1958) Perceptron”, which instead uses the HG model of grammar. And he thus concludes advocating
the replacement of OT with HG and the adoption of the Perceptron update rule for HG error-driven
learning. Pater (2009, p. 1021) indeed argues that “one broad argument for weighted constraints [. . . ] is
that weighted constraints are compatible with existing well-understood algorithms for learning variable
outcomes and for learning gradually [. . . ].” Additive models of constraint interaction have indeed become
widespread in the recent literature (Hayes and Wilson 2008; Boersma and Pater 2007, to appear; Potts
et al. 2010; Jesney and Tessier 2011; Coetzee and Kawahara 2013).

In [pub 24], [pub 31], [pub 34], [pub 38], [pub 39], and [pub 40], I have reassessed this debate.
I have shown that the problem with Pater’s counterexample is not germane to OT but due to a specific
GLA’s implementation detail. Building on previous work (Tesar and Smolensky 1998), I have shown
that error-driven learning in OT admits robust computational guarantees which follow from the formal
properties of the mode of constraint interaction and thus hold for any constraint set. Finally, I have shown
that error-driven learning in HG instead is inefficient without substantive restrictions on the constraint
set, thus effectively turning Pater’s assessment on its head. This section sketches the main results I have
obtained so far.

1.4.1. First result: a complete computational theory of OT error-driven learning
As recalled above, an error-driven learner entertains a current grammar which is slightly updated

whenever it makes an error on the current piece of data. The computational theory of error-driven
learning provides guarantees for four core requirements: convergence (is the number of errors made by
the learner finite?), efficiency (is the number of errors furthermore small?), stochastic tolerance (does the
number of errors remain small for the stochastic implementation?), and noise robustness (does it remain
small in the presence of noisy data?). Throughout this section, I illustrate the gist of the analysis of OT
error-driven learning by focusing on convergence and efficiency.

Tesar and Smolensky (1998) develop the first provably convergent OT error-driven learner. Its peculiar
property is that it only performs constraint demotion of offending constraints, but no constraint promotion
of virtuous constraints. Because of this restrictive update schedule, the predicted learning dynamics is too
simple to match the attested complexity of child acquisition paths (see subsection 1.5.1 below). These
considerations motivate the following research question: is it possible to devise promotion/demotion
EDRAs that provably converge, without restrictive assumptions on the underlying OT typology?

Here is the idea informally. Following Boersma (1997, 1998), assume that the EDRA entertains a
numerical representation of the current ranking, by assigning to each constraint a numerical ranking
value whose relative size reflects the relative ranking of that constraint. Such a numerical representation
of the current ranking allows for a numerical formulation of re-ranking rules: constraint demotion consists
in decreasing the current ranking value of offending constraints by a small fixed demotion amount, say
1 for concreteness; and constraint promotion consists in increasing the current ranking value of virtuous
constraints by a small promotion amount. As demotion-only has been shown by Tesar and Smolensky
(1998) to have a good convergent behavior, the promotion component of the re-ranking rule should not
overwhelm the demotion-component, so as not to disrupt too much its good convergent behavior. This
requires a proper calibration of the promotion amount. For instance, if there are three constraints that
are demoted and two constraints that are promoted, then the promotion amount should be less than
3/2. In fact, two promotions by less than 3/2 lead to an overall promotion which is less than the total
demotion of 3, so that indeed constraint promotion does not overall overwhelm constraint demotion.

These heuristic considerations suggest that in the general case, the promotion amount should be
smaller than the number of constraints demoted divided by the number of constraints promoted, as
stated in (29a). Indeed, I show in [pub 31] that convergence holds in this case, with an error-bound
which is asymptotically identical to the one obtained by Tesar and Smolensky for the demotion-only case.
This guarantee of efficient convergence follows from the OT mode of constraint interaction and does not
require any substantive assumption on the constraint set.
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Figure 1. Horizontal axis: number n of constraints (between n = 5 and n = 10).
Vertical axis: (a) number of errors made by the deterministic HG learner; (b) number
of additional errors due to the stochastic component; (c) number of updates needed to
recover from a single noisy update.

(29) a. promotion amount <
number of constraints demoted
number of constraints promoted

=⇒ fast and efficient
convergence

b. promotion amount =
number of constraints demoted
number of constraints promoted

=⇒ convergence, but
exponentially slow

c. promotion amount >
number of constraints demoted
number of constraints promoted

=⇒ no convergence

The ratio between the number of demoted constraints and the number of promoted constraints is called
the calibration threshold. The calibration condition in (29a) requires the promotion amount to be strictly
smaller than this calibration threshold. What happens if we increase the promotion amount up to the
calibration threshold, as in (29b)? I show that in this case convergence is retained but efficiency is
not, as the worst-case number of updates grows exponentially with the number of constraints. The
analysis I develop rests on a property of error-driven ranking algorithms that is interesting in its own
right: these algorithms explore the typology efficiently, in the sense that they can never entertain again
a ranking (vector) that had made a mistake at some earlier time. This property is in turn derived from
a connection between the notion of OT-consistency and the geometric property of conic independence.
Finally, Pater’s (2008) counterexample shows that also convergence fails for a promotion amount larger
than the calibration threshold, as stated in (29c). The results in (29) thus provide a complete theory
of convergence and efficiency for error-driven ranking algorithms. In [pub 38], I have extended these
results to the other two crucial issues of the computational theory of error-driven learning: I provide tight
guarantees that the OT learner tolerates the stochastic implementation and is robust to noise. Also the
latter guarantees follow from the OT mode of constraint interaction and do not require any substantive
assumptions on the constraint set. The theory of OT error-driven learning has thus been successfully
completed from a constraint-independent perspective.

1.4.2. Second result: comparison with HG error-driven learning
Is it possible to develop analogous computational guarantees for the HG implementation of error-

driven learning? In [pub 40], I construct a family of counterexamples which provide a negative answer
to this question. To illustrate, the solid line in Figure 1a plots the number of errors made by the HG
error-driven learner currently used in the literature on the counterexample corresponding to a number n
of constraints between n = 5 and n = 10. Comparison with the function 550×6n−5 plotted by the dashed
line shows that the number of errors grows fast (exponentially) with the number n of constraints. Indeed,
the HG learner makes over five million errors when weighting just n = 10 constraints! For comparison,
the OT error-driven learner makes around 40 errors when ranking n = 10 constraints. In conclusion, these
simulation results show that it is not possible to develop constraint-independent guarantees of efficient
convergence for the HG error-driven learner. Any such guarantees will crucially have to be restricted
through specific assumptions on the constraint set.
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The implementation of error-driven learning considered so far is called deterministic, to distinguish it
from the stochastic implementation (Boersma 1997, 1998; Boersma and Hayes 2001; Coetzee and Pater
2008, 2011; Coetzee and Kawahara 2013; Jarosz 2013; Boersma and Pater to appear). The latter differs
because the current piece of data is compared not with the current grammar but with a variant thereof
sampled from a neighborhood of the current grammar. In the worst-case scenario, the stochastic learner
can make more errors than the deterministic learner, because the stochastic component can derail the
leaner away from the most straightforward learning path. The solid line in Figure 1b plots the difference
between the largest number of errors made by the stochastic HG learner minus the number of errors
made by the deterministic HG learner. In other words, it plots the additional number of errors due to the
stochastic component. Comparison with the function 166×6n−5 plotted by the dashed line shows that the
number of additional errors grows fast (exponentially) with the number n of constraints. Indeed, in the
case with just n = 10 constraints, the stochastic learner performs almost one million and a half additional
errors compared with the deterministic learner, which in turn was already performing over five million
errors! For comparison, the OT error-driven makes less than 200 additional errors when ranking n = 10
constraints. In conclusion, these simulation results show that it is not possible to develop constraint-
independent guarantees that the HG error-driven learner tolerates the stochastic implementation, namely
that the number of additional errors due to the stochastic component remains small. Any such guarantees
will crucially have to be restricted through specific assumptions on the constraint set.

Finally, the solid line in Figure 1c plots the number of updates required by the HG learner to recover
from the update triggered by a single corrupted, noisy piece of data (which changes at most three weights
by at most 3). Comparison with the function 40×4n−5 plotted by the dashed line shows that the number
of updates needed to recover grows fast (exponentially) with the number n of constraints. So fast that
the learner requires over 64,000 updates in the case with just n = 10 constraints. In conclusion, this
counterexample shows that constraint-independent guarantees of noise-robustness for the HG error-driven
learner are impossible, as a single faulty update can require a large number of updates to recover. Any
such guarantees will have to be restricted through specific assumptions on the constraints.

1.4.3. Third result: algorithmic portability from HG into OT
The peculiar property of OT is that it uses constraint ranking and thus enforces strict domination,

according to which the highest ranked relevant constraint “takes it all”. Because of this property, OT
seems prima facie not to have any close correspondent within machine learning. Thus, computational
OT has developed so far combinatorial algorithms, tailored to the specific OT framework, with little
connections to methods and results from computational linguistics or machine learning. As recalled at
the beginning go this section, additive models such as HG have thus been singled out in the literature as a
way to bridge this gap between computational constraint-based phonology and machine learning. Let me
recall again Pater’s (2009; p. 1021) statement: “One broad argument for [“the replacement of OT ranking
with HG weighting”] is that weighed constraints are compatible with existing well-understood algorithms
for learning variable outcomes and for learning gradually [. . . ]. As these algorithms are broadly applied
with connectionist and statistical models of cognition, this forms an important connection between HG
[. . . ] and other research in cognitive science.”

In [pub 34], I prove that this conjecture of an alleged computational superiority of HG over OT is
false. In fact, I develop a general strategy that allows any algorithm for HG to be ported into OT. It
follows that HG has no computational advantage over OT. This result is important because it opens the
way to an approach to computational OT radically different from the one pursued so far in the literature:
rather than devising from scratch ad hoc combinatorial algorithms, computational problems that arise in
computational OT can be tackled by importing and straightforwardly adapting well known algorithms
from Machine Learning.

So far, I have explored two applications of this new approach to Computational OT. Tesar (1995)
develops a batch OT ranking algorithm, called Recursive Constraint Demotion (RCD). His analysis of
RCD is combinatorial in nature and specifically tailored to the logic of OT. As a first illustration of
this new approach to computational OT, I show that RCD can be reinterpreted as the classical Fourier-
Motzkin Elimination Algorithm for solving systems of linear inequalities (Bertsimas and Tsitsiklis 1997).
This reinterpretation might turn out useful in improving later applications of RCD such as Biased RCD
(Prince and Tesar 2004) and Low Faithfulness RCD (Hayes 2004). As a second illustration of my new
approach to computational OT, I derive an alternative very different proof of finite time convergence
for the calibrated OT error-driven learner, that hinges on the convergence theorem for the celebrated



1.5. MAIN RESULTS ON RESTRICTIVENESS 25

Perceptron Algorithm for linear classification. This alternative proof is interesting because it can be
generalized from the Perceptron to any other online algorithm for linear classification, thus leading to a
potentially large number of new OT online algorithms, whose modeling predictions are still completely
unexplored.

1.5. Main results on restrictiveness and the early acquisition of phonotactics

Knowledge of the phonotactics of the target language is knowledge of the distinction between licit and
illicit sounds and sound concatenations. For instance, English speakers know that [blik] would be a licit
English word while ∗[bnik] would not, although both are unattested in the English lexicon, and despite
the fact that both would be licit in Arabic. Based on a comprehensive review of the psycholinguistic
literature, Hayes (2004) concludes that the acquisition of phonotactics goes through an early stage (around
one year of life) that can be described by the two (somewhat idealized) properties in (30).

(30) a. Properties of the input. Throughout the early stage, morphology lags behind and the child is
thus blind to alternations.

b. Properties of the output. By the end of the early stage, the child is able to distinguish legal
from illegal structures, namely displays knowledge of the target adult phonotactics.

Of course, (30) is the statement of a computational problem, namely a mapping from an input (30a) to
an output (30b). Most of my work in computational phonology (and in particular [pub 16], [pub 18],
[pub 19], [pub 20], [pub 23], [pub 32], [pub 33], and [pub 36]) has focused on this problem.

My core research hypothesis is that OT error-driven learning (introduced in the preceding chapter 1.4)
provides a computationally sound and cognitively plausible model of the early acquisition of phonotactics.
I have so far tried to establish this research hypothesis from two perspectives. One perspective focuses
on learnability: under which assumptions on the constraint set and on the stream of learning data, can
I guarantee that the final OT grammar entertained by the OT error-driven learner at converge captures
the target phonotactics? Another perspective focuses instead on fine grained data on the time-course of
acquisition: how well does the OT error-driven learner predict the distribution of child repair strategies?
This section sketches the main results I have obtained so far.

1.5.1. First result: constraint promotion is needed from a modeling perspective
As recalled in chapter 1.4, an OT error-driven learner slightly re-ranks the constraints whenever

the current ranking makes an error on the current piece of data. Re-ranking can involve two types
of operations: offending constraints can be demoted to a lower position in the ranking; and virtuous
constraints can be promoted to a higher position. As recalled, Tesar and Smolensky (1998) develop the
first error-driven ranking algorithm, called Error Driven Constraint Demotion (EDCD). Its signature
property is that it demotes offending constraints but does not promote virtuous constraints. Lack of
constraint promotion allows Tesar and Smolensky (1998) to prove that EDCD converges efficiently. Yet,
although a virtue from a computational perspective, lack of constraint promotion turns out to be a liability
from a modeling perspective. Informal arguments in favor of constraint promotion have been provided
by Gnanadesikan (2004) and Bernhardt and Stemberger (1998); Boersma and Hayes (2001) provide a
computational argument, but framed within a stochastic variant of the standard OT framework. In [pub
31], I develop a new formal argument in favor of constraint promotion within standard OT, based on the
modeling implications of the early stage of the acquisition of phonotactics.

The gist of the argument can be informally sketched as follows. As summarized in (30a), morphology
lags behind throughout this early stage and the learner thus lacks the information on underlying forms
provided by morphological alternations. The best the learner can do is thus to assume fully faithful
underlying forms (Prince and Tesar 2004; Hayes 2004). This means that the faithfulness constraints never
make any mistake and are thus never re-ranked by a demotion-only ranking algorithm such as EDCD.
This cannot be right. In fact, if two phonotactic patterns in the typology require the opposite relative
ranking of some faithfulness constraints, EDCD fails on at least one of them (see below for examples of
such cases). Furthermore, EDCD is unable to model learning paths where the child’s repair strategy for
a certain marked structure changes over time (for instance McLeod et al. 2001 document leaning paths
where complex onsets are simplified first by deletion and then by coalescence). In conclusion, EDCD
does not provide an adequate implementation of error-driven learning and some amount of constraint
promotion is needed.
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1.5.2. Second result: intractability of the problem of the acquisition of phonotactics
The research summarized so far focuses on the input property (30a) of the early stage: I have formalized

lack of alternations through the assumption that the learner posits faithful underlying forms; and I have
explored the consequences of this assumption for the choice of proper re-ranking rules. Let me now turn
to the output property (30b) of the early stage: despite lack of alternations, the learner does acquire (most
of) the target phonotactics. Knowledge of phonotactics is twofold. On the one hand, it requires knowing
which structures are consistent with the target phonotactics, such as [blik] in English. On the other hand,
it requires knowing which structures are inconsistent with the target phonotactics, such as ∗[bnik]. These
two components are formalized in the literature through the consistency and restrictiveness conditions
in (31a) and (31b), respectively (Berwick 1985; Manzini and Wexler 1987; Prince and Tesar 2004; Hayes
2004).

(31) Given: a finite set of surface forms all phonotactically licit according to the phonotactics of some
grammar in the underlying typology.

Find: a grammar in the underlying typology which is:
a. consistent, namely it predicts each training surface form to be phonotactically licit;
b. restrictive, namely there exists no other grammar in the typology which is consis-

tent with the training data as well and furthermore predicts a subset of forms to be
phonotactically licit.

This problem (31) formalizes the challenge raised by the early acquisition of phonotactics.
Convergence requires the OT error-driven learner to make only a finite number of errors. Any conver-

gent learner thus returns a final grammar which satisfies the consistency condition (31a) — otherwise, the
learner would still make an error on the training data, contradicting the hypothesis that it has converged.
As recalled in subsection 1.4.1, efficient convergence can be established for OT error-driven learners
without any restrictive assumptions on the underlying constraint set. In other words, the consistency
condition (31a) by itself is easy to meet. Unfortunately, the addition of the restrictiveness condition (31b)
drastically changes the quality of the problem. In fact, I prove in [pub 7] and [pub 33] that the problem
(31) of the acquisition of phonotactics within OT is intractable: it cannot be solved efficiently by any al-
gorithm, no matter whether it is error-driven or not. In the sense that for any alleged solution algorithm,
there exists an instance of the problem for which that algorithm fails. The proof is by polynomial-time
reduction from the Cyclic Ordering problem, a well-known NP-complete computational problem.

“Discovering that a problem is [intractable] is to arrive at the beginning of a computational challenge,
rather than at the end of an inquiry” (Clark and Lappin 2011, p. 139). Indeed, Barton et al. (1987,
p. 4) explain that “[intractable] problems don’t have any special structure that would support an efficient
solution algorithm, so there’s little choice but brute force”. These problems “might well be characterized as
unnatural” because “there is every reason to believe that natural language has an intricate computational
structure that is not reflected in combinatorial search methods”. They thus conclude that an intractable
problem “leaves unmentioned some constraints of the natural problem.” From this perspective, the
complexity result just mentioned motivates the following question: which restrictions provide sufficient
additional structure to develop efficient solution algorithms for the problem (31)? Restrictions come in
two types: restrictions on the target phonotactic patterns and restrictions on the constraint set, leading
to the two sets of results described in subsections 1.5.3 and 1.5.4.

1.5.3. Third result: restrictiveness through assumptions on phonotactic patterns
As the very first step in the acquisition of phonotactics, the child needs to learn the inventory of

licit segments (the basic phonological units) in the target adult language. When modeling a segment
inventory in OT, it often happens that some subset of the markedness constraints punish exactly all and
only the illicit segments. In this case, the inventory can be modeled through a ranking such as (32a).
The designated subset of markedness constraints hold sway at the top of the ranking while the remaining
markedness constraints are silent at the bottom. The relative ranking of the faithfulness constraints
sandwiched in between is irrelevant. The inventory can thus be called F-irrelevant, to distinguish it from
inventories which instead require some faithfulness constraints to be crucially ranked above some other
faithfulness constraints in order to sandwich some markedness constraints in between, as illustrated in
(32b).
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(32) a. a subset ofM constraints

all F constraints

the remainingM constraints

b. some F constraints

someM constraints

some other F constraints

For instance, suppose that the constraint set contains a markedness constraint against voiced velar obstru-
ents and another markedness constraint against dorsal fricatives. The velar inventory [g k G x] which only
consists of the voiceless velar stop (illicit segments are stricken out) simply requires those two markedness
constraints to hold sway at the top, as they together punish the three illicit segments [g], [G], and [x].
These considerations trivially extend from segment inventories to arbitrary phonotactic patterns.

In [pub 16], [pub 19], [in prep 1], [in prep 2], and [in prep 3], I have obtained the first result
on correctness of OT error-driven ranking algorithms. Roughy stated, this result says that, whenever the
learner does not perform “too much” constraint promotion, it succeeds at learning any target phonotactic
pattern which is F-irrelevant, namely which does not require any specific relative ranking of the faith-
fulness constraints. This result holds under no assumptions on the constraint set, apart from the mild
assumption that the generating function be symmetric, in the sense that y is a candidate for x if and only
if x is vice versa a candidate for y. This learnability result does not extend to OT error-driven learners
which promote “too much”, such as Boersma’s (1998) Gradual Learning Algorithm (GLA). This shows
that success on F-irrelevant languages is not trivial, and requires a proper choice of the implementation
details. As tested on a number of specific test cases, F-irrelevant languages make up the large majority
of OT typologies. The intuitive reason is that, as the relative ranking of the faithfulness constraints
mainly governs the repair strategies, it turns out to be crucial for alternations, but mostly irrelevant for
phonotactics. As F-irrelevant languages represent the vast majority of any typology, correctness of OT
error-driven learning on these languages represents a substantial result.

1.5.4. Fourth result: restrictiveness through assumptions on constraint sets
The result just recalled copes with the intractability of the problem (31) of the acquisition of OT

phonotactics through a restriction on the target phonotactic patterns (namely, the F-irrelevance assump-
tion). Another approach is to restrict the constraint sets which define the underlying OT typology.
Focusing again on the acquisition of segment inventories, I assume that segments are described through
total, binary phonological features (roundness, voicing, height, etcetera) that extract the relevant segmen-
tal properties. Each feature comes with a dedicated faithfulness constraint and a dedicated markedness
constraint. Besides these unary constraints, there is a set of feature co-occurrence constraints (FCCs),
which penalize certain combinations of feature values. The learning algorithm needs to infer a ranking
of these constraints that corresponds to the inventory of licit segments in the target adult phonotactics.
The learner is required to succeed no matter whether the target inventory is F-irrelevant or not.

In [pub 10] and [pub 23], I start to investigate the conditions under which an OT error-driven learner
is able to tackle this task, obtaining the following preliminary result. If the degree of feature interaction
is limited (i.e., each feature interacts with at most another feature) and the mode of feature interaction
is phonologically plausible (i.e., no FCC punishes a form which has the unmarked value for each feature
targeted by that FCC), then the OT error-driven learner with a calibrated promotion component (as
defined in subsection 1.4.1) succeeds on any phonotactic pattern in the typology (no matter whether it is
F-irrelevant or not), no matter what the input stream of data looks like. Interestingly, this learnability
result does not extend to two other OT learners available in the current literature, namely Tesar and
Smolensky’s (1998) EDCD and Boersma’s (1997) GLA.

I am currently extending these preliminary results along the following lines. Towards the goal of
developing a comprehensive formal theory of FCCs, I want to explore the Tree Hypothesis (TH). It
maintains that the FCCs define universal entailments among the features which are representable though
a feature interaction graph which crucially has no loops, namely it is a tree. I want to explore the TH
from the perspectives of learnability and typology. My first goal is to show that the TH provides enough
structure to derive restrictiveness guarantees for a properly designed OT error-driven learner—while OT
phonotactics is provably unlearnable without a substantive markedness theory, as recalled above. My
second goal is to develop a system of FCCs which complies with the TH and has good typological coverage
relative to various available databases of segment inventories.
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1.5.5. Fifth result: modeling child epenthesis data from the INANP database
The acquisition of phonotactics is characterized by a gradual, stepwise progression towards the target

adult grammar. The OT acquisition literature has endorsed the error-driven learning model because it
has the potential to model these child acquisition paths, as it describes a sequence of current rankings,
each corresponding to an intermediate phonotactics. The research summarized so far has contributed
algorithmically sound implementations of the error-driven model. Yet, this computational perspective
needs to be complemented by an investigation of the modeling implications of these algorithms, focusing
on the following core research question: is it the case that the learning sequences formally predicted
by these computationally sound implementations of the error-driven ranking model match attested child
acquisition paths?

In collaboration with Adam Albright (MIT), we have focused on the database collected as part of the
Iowa-Nebraska Articulation Norms Project (INANP; Smit et al. 1990), that I have acquired from Ann
Bosma Smit at Kansas State University. It consists of transcribed productions of all English singleton
consonants in both onset and coda position, as well as of the 27 most common English onset (bi- and
tri-) consonant clusters, for a total of 108 targets per child. The database contains production data from
more than 500 English-learning, normally developing children with age between 2 and 9 years. Child
productions were collected and coded by trained speech pathologists. The database had so far only been
used within the speech-pathology literature, to determine articulation norms for the diagnosis of speech
impairment. The database had not been the subject of phonological analysis and its modeling implications
were still completely unexplored. We have used this database for the first time for phonological and
computational modeling. The dimension of the database by far exceeds the datasets that have been
considered so far in the OT child phonology and modeling literature, for the number of children (over
500), the wide range of ages considered (from 2 to 9 years) and the exhaustivity of the set of phonological
targets (virtually all English onset consonant clusters).

We have focused on child’s patterns of epenthesis into consonant clusters (/CCV/ → [CVCV]). In
principle, this process may be motivated by a strong articulatory preference in children for mandibular
oscillation, favoring CV sequences (MacNeilage 1998); or it may be motivated by the same phonological
constraints that derive epenthesis in adult phonologies. We provide evidence that epenthesis in child
English is not merely a result of articulatory pressures, but is shaped by the same set of perceptually
motivated constraints that govern epenthesis in adult phonologies. Here is the gist of the argument.
In adult systems, converging evidence from reduplication, infixation, loanword adaptation, alliteration,
and puns shows that epenthesis is preferred in stop+liquid clusters (/pra/ → [pVra]), relative to s+stop
clusters (/sta/→ [sVta]). Fleischhacker (2001, 2005) attributes this asymmetry to the greater perceptual
similarity of [pra] ∼ [pVra], and the lesser similarity of [sta] ∼ [sVta]. Based on data from the INANP
database, we show in [in prep 4] that children are subject to the very same set of asymmetries. This
finding supports the strong continuity hypothesis that children possess the same set of representations
and constraints as adults.

This finding furthermore yields a new approach to the long standing problem posed by children who
acquire s+stop clusters before other cluster types (Barlow 2001; Fikkert 1994), despite the fact that
s+stop clusters are marked and are thus expected to be acquired later. Approaches that posit a special
status for the initial /s/ are unable to account for children that acquire s+stop clusters before other
sC clusters. Our findings pave the way for a new approach. As just recalled, epenthesis into s+stop
clusters is heavily dispreferred in adult phonology. Also deletion has been reported to be dispreferred
in the case of s+stop clusters (Fleischhacker 2005). Our findings show that (at least some of) these
dis-preferences for certain repair strategies for certain cluster types carry over to child phonology. This
suggests the following approach to the precocious acquisition of s+stop clusters in certain developmental
paths: s+stop clusters are acquired early despite their marked status because they are “harder to simplify”,
i.e. epenthesis and deletion incur a higher cost (say, a violation of a higher ranked faithfulness constraint).
We explicitly implement this idea within the error-driven learning scheme using Fleischhacker’s family of
Dep-constraints.



CHAPTER 2

Project overview

According to generative phonology, phonological grammars map underlying forms to corresponding
surface forms (Kenstowicz and Kisseberth 1977; Heinz 2011). This work looks at two structural prop-
erties of phonological grammars: idempotency, which requires phonotactically licit forms to be faithfully
mapped to themselves (Hayes 2004; Prince and Tesar 2004); and output-drivenness, which requires any
discrepancy between underlying and surface (or output) forms to be driven exclusively by the phonotac-
tics (Tesar 2013). Output-drivenness entails idempotency: if unfaithful mappings are only motivated by
the phonotactics (as demanded by output-drivenness), then phonotactically licit forms cannot surface
unfaithfully (as required by idempotency).

This work extends and systematizes the theory of idempotency and output-drivenness within constraint-
based phonology (Prince and Smolensky 2004). This framework assumes that a set of constraints ex-
tract the relevant properties of phonological representations, analogously to features in machine learning
(Schölkopf and Smola 2002) and cognitive science (since Shepard et al. 1961). Constraints come in two
types: markedness constraints, which measure the phonotactic badness of surface forms; and faithfulness
constraints, which measure the disparity between underlying targets and corresponding surface realiza-
tions. Two implementations of constraint-based phonology are considered, which differ for the mode
of constraint interaction. Optimality Theory (OT; Prince and Smolensky 2004) assumes constraints to
be ranked and thus resolves constraint conflicts in favor of the single top ranked relevant constraint.
Harmonic Grammar (HG; Legendre et al. 1990b,a; Smolensky and Legendre 2006) instead assumes con-
straints to be weighted and thus resolves constraint conflicts in terms of the weighted average of constraint
violations.

Within constraint-based phonology, the crucial question of the theory of idempotency and output-
drivenness can be stated as follows: which conditions on the constraint set ensure that all the grammars
in the corresponding OT or HG typology satisfy the structural properties of idempotency or output-
drivenness? Two main findings emerge in addressing this question. First, all available sufficient conditions
for idempotency and output-drivenness only target the faithfulness constraints: surprisingly, they place
no restrictions whatsoever on the markedness constraints. Second, the basic faithfulness constraints
posited in the phonological literature all satisfy these sufficient conditions for idempotency and output-
drivenness: surprisingly, the only faithfulness constraints which fail at these sufficient conditions are those
that are derived from the basic ones through either constraint aggregation (e.g., constraint conjunction) or
constraint restriction (e.g., restriction to certain specific positions, to certain specific segments, etcetera).
These findings are rather surprising: given that the faithfulness constraint conditions for idempotency
and output-drivenness all look technical, rather bizarre and hard to interpret, why is it the case that the
basic faithfulness constraints posited in the phonological literature all happen to satisfy them?

The main contribution of this work is a solution to this puzzle: despite first appearance, the suf-
ficient conditions for idempotency and output-drivenness are shown to all admit a uniform, intuitive
interpretation which explains why the basic faithfulness constraints all satisfy these conditions. Here is
the core intuition. Faithfulness constraints measure the phonological distance between underlying and
surface forms. They should thus comply with a crucial axiom of the definition of distance (or metric),
namely that any side of a triangle is shorter than the sum of the other two sides. This intuition can be
straightforwardly formalized through a faithfulness triangle inequality. This inequality is in turn shown
to be equivalent to the various faithfulness sufficient conditions for idempotency and output-drivenness.
These equivalences hold under various additional assumptions, crucially including McCarthy’s (2003b)
generalization that faithfulness constraints are all categorical. In conclusion, the reason why the basic
faithfulness constraints posited in the phonological literature all satisfy the sufficient conditions for idem-
potency and output-drivenness is that these conditions are equivalent to the metric triangle inequality
and the basic faithfulness constraints all comply with this inequality because they measure phonological
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distance in a sensible way. This initial chapter provides an informal overview of the results obtained,
roughly section by section.

The connection between idempotency/output-drivenness and the metric properties of the faithful-
ness constraints has implications for phonological theory. A grammar fails at idempotency provided
it displays a chain shift (Łubowicz 2011, Moreton and Smolensky 2002, and reference therein). An
idempotent grammar fails at output-drivenness provided it displays a derived environment effect or a
saltation (Łubowicz 2002, White 2013 and references therein). Thus, output-drivenness captures the
classical notion of transparency developed in the theory of rule ordering: failure at output-drivenness
corresponds to counter-feeding opacity (chain shifts) or counter-bleeding opacity (saltations). It is often
claimed in the literature that constraint-based phonology is incompatible with opacity because of its non-
derivational architecture and its related lack of intermediate representational levels. As a recent example,
Kawahara (2006) writes: “phonological opacity involves a generalization that cannot be stated solely by
reference to surface structures. The classic, non-derivational version of OT does not predict the existence
of phonological opacity, as it is surface-oriented.” The theory presented here shows that this alleged
“surface-orientedness” (formally captured by output-drivenness) does not follow from lack of derivations
and intermediate representational levels. Indeed, it is not an architectural property of constraint-based
phonology. Instead, surface-orientedness/output-drivenness requires a specific restriction on the theory
of faithfulness: that all faithfulness constraints measure phonological distance in a sensible way, namely
in compliance with the metric triangle inequality.

Finally, the theory of opacity presented in this work has implications for learnability. The core idea
of computational generative linguistics is that “for language learning to be possible, the linguistic theory
must have some kind of non-trivial structure [. . . ] that can be exploited by a learner” (Tesar 2013, p. 18).
The structure provided by idempotency and output-drivenness has figured prominently in the literature
on the learnability of phonology. The typological structure provided by idempotency has been argued
to boost the learnability of phonotactics, as it allows the learner to safely assume a faithful underlying
form for each phonotactically licit training surface form (Gnanadesikan 2004; Hayes 2004; Prince and
Tesar 2004). And Tesar (2013) argues that the typological structure provided by output-drivenness
boosts the learnability of underlying forms for a given set of training surface forms. Sufficient conditions
for idempotency and output-drivenness thus provide solid computational guarantees for various current
learning models.

2.1. Idempotency and counter-feeding opacity (section 3.1)

Suppose there are no representational differences between underlying and surface forms: any given
representation can be construed as both an underlying and a surface form (see Moreton 2004b for dis-
cussion). In this case, a phonological grammar is called idempotent (Hayes 2004; Prince and Tesar 2004)
provided any form which is phonotactically licit (as a surface form) is faithfully mapped (as an underlying
form) to itself (as a surface form). Section 3.1 formalizes this notion of idempotency within a representa-
tional framework where underlying and surface forms are strings of segments related by correspondence
relations in the sense of McCarthy and Prince (1995).

To appreciate the phonological relevance of the notion of idempotency, consider a phonological gram-
mar which fails at idempotency. This means that there exists some phonological form (say the mid vowel
e) which is phonotactically licit according to that grammar and yet it is not faithfully realized. The
assumption that [e] is phonotactically licit means that it is “attainable” by the grammar, in the sense
that it is the surface realization of some underlying vowel, say of the low vowel /a/ for concreteness. The
assumption that the mid vowel /e/ is not faithfully mapped to itself means that it is realized as some
other vowel, say as the high vowel [i] for concreteness. In conclusion, the grammar considered fails at
idempotency because it enforces the chain shift (34).

(33)
a e i

Within SPE, chain shifts are the result of counter-feeding rule interactions (Baković 2011 and references
therein). In conclusion, the notion of idempotency is relevant to phonology because its negation captures
counter-feeding opacity.
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2.2. The faithfulness idempotency condition (section 3.2)

Within constraint-based phonology, structural properties of a typology of grammars follow from prop-
erties of the constraint set.1 I focus on a classical implementation of Optimality Theory (OT; Prince and
Smolensky 2004), whereby the constraint set only consists of markedness and faithfulness constraints.
Which assumptions on the constraint set suffice to guarantee that the OT grammar corresponding to
any constraint ranking is idempotent? Here is a preview of the answer developed in section 3.2 (this
reasoning was anticipated in Moreton and Smolensky 2002, section 3, Prince 2007, and Buccola 2013;
furthermore, it is analogous to the analysis in Tesar 2013, section 3.2). Suppose that an OT grammar
maps the underlying form /a/ to the surface form [e], as represented by the arrow (34a). This means that
[e] is phonotactically licit. Idempotency then requires the underlying form /e/ to be faithfully mapped
to [e], as represented by the loop (34b).

(34)

a e i
(a)

(b)

(b′)

(a′)

We reason by contradiction. Thus, we make the contradictory assumption that idempotency fails and
that /e/ is instead mapped to something else, say it is raised further to [i] for concreteness, as represented
by the arrow (34b′). In order to establish idempotency, we want to derive the contradictory conclusion
that /a/ is also mapped to [i], as represented by the long arrow (34a′), against the hypothesis that /a/
be mapped to [e].

Assume that every constraint C in the constraint set satisfies the implication (35). The contradictory
assumption that /e/ is raised to [i] rather than faithfully mapped to [e] intuitively means that high ranked
constraints fail at penalizing the contradictory mapping (/e/, [i]) in (34b′) with respect to the idempotent
mapping (/e/, [e]) in (34b), thus satisfying the antecedent of (35).

(35) If: constraint C does not prefer the idempotent mapping (/e/, [e]) to the contradictory map-
ping (/e/, [i]) namely:
C(/e/, [i]) ≤ C(/e/, [e])

Then: constraint C does not prefer the actual mapping (/a/, [e]) to the contradictory mapping
(/a/, [i]) namely: C(/a/, [i]) ≤ C(/a/, [e])

The implication (35) thus ensures that high ranked constraints also fail at penalizing the contradictory
mapping (/a/, [i]) in (34a′) with respect to the actual mapping (/a/, [e]) in (34a). In conclusion, we
intuitively expect this implication (35) to provide a sufficient condition for the contradictory assumption
to entail the contradictory conclusion, thus guaranteeing the idempotent mapping of /e/ to [e].

The mappings (/e/, [e]) and (/e/, [i]) compared in the antecedent of (35) feature the underlying form
/e/. The mappings (/a/, [e]) and (/a/, [i]) compared in the consequent only differ because they feature the
underlying form /a/. The implication (35) thus trivially holds for the markedness constraints, because
they are insensitive to the underlying forms, so that antecedent and consequent coincide. The implication
(35) is thus a condition on the faithfulness constraints. For a faithfulness constraint, the number of
violations assigned to the identity mapping (/e/, [e]) is zero. The implication (35) therefore becomes (36),
where I have replaced “C” with “F ”, to highlight the fact that the implication only needs to be checked
for the faithfulness constraints.

(36) If: F (/e/, [i]) = 0

Then: F (/a/, [i]) ≤ F (/a/, [e])

Section 3.2 formalizes this reasoning and concludes that idempotency holds for the OT grammar
corresponding to any ranking of a given constraint set provided every faithfulness constraint F in the
constraint set satisfies condition (37) for any forms a, b, and c. This condition is thus referred to as the
faithfulness idempotency condition (FIC).

1 Properties of the candidate set also play a crucial role in shaping a typology in constraint-based phonology. This
introductory chapter offers only an informal preview and thus omits various candidate conditions which will be carefully
discussed in the following chapters.
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(37) If: F (b, c) = 0

Then: F (a, c) ≤ F (a, b)

Here is another way to appreciate the intuitive meaning of the FIC. Recall that idempotency fails in
the presence of a chain shift such as a → e → i. In order to get the chain shift a → e → i, the top
ranked relevant faithfulness constraint cannot penalize the mapping (/e/, [i]) relative to (/e/, [e]), thus
satisfying the antecedent of the FIC (36). Furthermore, it cannot penalize the mapping (/a/, [e]) relative
to (/a/, [i]), thus failing at the consequent of the FIC (36).

2.3. Which faithfulness constraints satisfy the FIC? (sections 3.3-3.5)

Given the sufficient condition for idempotency provided by the FIC (37), the problem of establishing
OT idempotency is thus reduced to the problem of determining which faithfulness constraints satisfy the
FIC. The latter problem is taken on by sections 3.3-3.5, for a variety of faithfulness constraints which
naturally arise within McCarthy and Prince’s (1995) correspondence theory of faithfulness and its recent
developments. To start, section 3.3 looks at the three basic faithfulness constraints Max, Dep, and
Ident. Max is shown to satisfy the FIC under no additional assumptions while Dep and Ident require
no correspondence relation in the candidate set to break any underlying segment. This edge of Max over
Dep and Ident can be intuitively explained as follows. The left- and right-hand side in the consequent
of the FIC (37) involve two mappings which share the underlying string (namely a) but differ for the
surface strings (namely b and c). While Max only “counts” over underlying segments, Dep and Ident
are also sensitive to the surface segments and thus need some additional assumption (in the form of the
no-breaking condition) to guarantee the “commensurability” of the two different surface forms in the two
candidates being compared.

Section 3.4 extends the analysis of the FIC to restricted variants of these basic constraints, such
as faithfulness constraints which punish consonant deletion but not vowel deletion, which punish de-
nasalization but not nasalization, or which punish obstruent devoicing only before a sonorant. These
restricted faithfulness constraints are shown to fail at the FIC as soon as the correspondence relations
are allowed to cross the restriction, namely to establish a correspondence between a segment which does
satisfy the restriction and one which does not. For instance, a variant of Max restricted to consonants (it
does not penalize vowel deletion) fails at the FIC whenever the candidate set contains candidates where
a consonant is in correspondence with a vowel.

Section 3.5 concludes the analysis of the FIC by looking at a variety of other faithfulness constraints
which naturally arise within correspondence theory, such as Integrity, Uniformity, featural Dep[±ϕ]

and Max[±ϕ], Contiguity, Alignment, and Linearity. Constraints obtained by aggregation (such
as conjunction and disjunction) of basic constraints are investigated as well. The overall picture that
arises from this investigation is that all basic faithfulness constraints do satisfy the FIC (at least when
correspondence relations are not allowed to break underlying segments). The constraints which fail at
the FIC are those derived from basic ones, through either constraint restriction or constraint aggregation.

2.4. The faithfulness triangle inequality (section 4.1)

Idempotency has been made to follow from the sufficient condition provided by the FIC in (37). This
condition looks admittedly rather technical, without a straightforward interpretation. One might thus
expect only a small subset of the faithfulness constraints to satisfy this apparently bizarre condition.
Yet, sections 3.3-3.5 have shown that all basic faithfulness constraints used in the OT literature seem to
satisfy it. Indeed, the only faithfulness constraints which fail at it are those derived from basic ones, either
through constraint aggregation (such as constraint conjunction) or restriction. The fact that the basic
faithfulness constraints all happen to satisfy the FIC is puzzling and calls for an explanation. Obviously,
it must be the case that the FIC captures some deep formal condition that phonologists have implicitly
assumed to be crucial in designing proper faithfulness constraints. What is this condition?

Intuitively, faithfulness constraints measure the “distance” between underlying and surface forms along
various phonologically relevant dimensions. It thus makes sense to investigate whether faithfulness con-
straints satisfy formal properties of distances (or metrics). One such important property is the triangle
inequality (105): it captures the intuition that the distance between any two points a and c is shorter
than the distance between a and b plus the distance between b and c, for any choice of the intermediate
point b (Rudin 1953).
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(38) distance(a, c) ≤ distance(a, b) + distance(b, c) a

b
c

Based on these considerations, section 4.1 says that a faithfulness constraint F satisfies the faithfulness
triangle inequality provided condition (107) holds for three phonological forms a, b, c (recall that I am
assuming that there are no representational differences between underlying and surface forms, so that
any form can figure as both an underlying and a surface form).

(39) F
(
a, c
)
≤ F

(
a, b
)

+ F
(
b, c
)

The goal of chapter 4 is to establish an equivalence result between the sufficient condition for idempo-
tency provided by the FIC in (37) and the FTI just stated. This equivalence thus provides an intuitive
metric interpretation of the apparently technical FIC: the equivalence says that the FIC effectively sim-
ply requires the faithfulness constraints to measure phonological distance in a sensible way, namely in
compliance with the triangle inequality. The fact that all basic faithfulness constraints satisfy the FIC
thus simply reflects the fact that phonologists have posited faithfulness constraints with good metrical
properties.

2.5. Idempotency and the triangle inequality: the HG case (section 4.2)

In order to prepare the ground for the equivalence result between the FIC and the metric FTI, it useful
to make a detour from OT to the related framework of Harmonic Grammar (HG; Legendre et al. 1990b,a;
Smolensky and Legendre 2006), which allows for a more pristine view of the role played by the triangle
inequality in the theory of idempotency. Section 4.2 thus repeats for HG the same reasoning initially
developed in section 3.2 for OT. The result of this reasoning is that the HG grammar corresponding
to any weighting of a given constraint set is idempotent provided each faithfulness constraint satisfies
the implication (40). This implication is thus referred to as the HG faithfulness idempotency condition
(FICHG; from now on, the FIC obtained above for OT is referred to as the FICOT).

(40) For every choice of the threshold ξ ≥ 0:
If: F (b, c) ≤ ξ
Then: F (a, c) ≤ F (a, b) + ξ

The FICOT (37) is a special case of the FICHG (40) corresponding to the choice ξ = 0. The fact that the
FICHG is stronger than the FICOT makes good sense: HG typologies properly contain OT typologies (at
least when constraint violations are bounded), so that a stronger condition is expected to be needed in
order to discipline a larger typology of grammars to all comply with idempotency. Crucially, the FICHG

(40) is trivially equivalent to the metric FTI (107). This equivalence holds under no additional assump-
tions on the faithfulness constraints, the phonological candidates, or their correspondence relations. This
equivalence says that idempotency in HG is tightly linked to the metric properties of the faithfulness
constraints, as the sufficient condition for HG idempotency provided by the FICHG simply requires the
faithfulness constraints to measure phonological distances in a sensible way, namely in compliance with
the metric triangle inequality.

2.6. Faithfulness additivity, categoricity, and monotonicity (section 4.3)

The sufficient condition for OT idempotency provided by the FICOT turns out not to be equivalent to
the metric FTI in the general case. This is expected, given that the FTI has been found to be equivalent to
the FICHG which is in turn stronger than the FICOT. Although the equivalence between the FICOT and
the FTI fails in the general case, one might expect the equivalence to hold for special (hopefully realistic)
classes of faithfulness constraints. To this end, section 4.3 looks at McCarthy’s (2003b) conjecture that
all constraints relevant for phonological theory are categorical. He provides an explicit formalization of
this intuition for markedness constraints (see his scheme (1) on p. 77). His treatment of faithfulness
constraints is not as explicit: he discusses individual faithfulness constraints but does not provide a
general scheme. Section 4.3 fills this gap: it carefully formulates the notion of faithfulness categoricity
and introduces the two related notions of faithfulness additivity and monotonicity.
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Here is an informal preview. Intuitively, a faithfulness constraint F is additive whenever a phonological
candidate can be broken up into smaller “sub-candidates” in such a way that the number of violations
assigned by F to the candidate is the sum of the number of violations assigned to the “sub-candidates”,
as informally stated in (41).

(41) F (candidate)=
∑

sub-candidates

F (sub-candidate)

An additive faithfulness constraint F is called categorical provided the sub-candidates can be chosen
“small enough” that they are assigned either 0 or 1 violations, but never more than 1, as stated in (42).
The notion of “sub-candidate” thus formalizes McCarthy’s intuitive notion of locus of violations.

(42) F (sub-candidate) = 0 or 1

A faithfulness constraint is monotone provided the number of violations grows when the candidate gets
“larger”, in the sense of having a larger number of sub-candidates, as stated in (43). Intuitively, additivity
entails monotonicity: a larger candidate has more sub-candidates, yielding a sum (41) with more non-
negative terms.

(43) candidatesmall ⊆ candidatelarge =⇒ F (candidatesmall) ≤ F (candidatelarge)

According to correspondence theory (McCarthy and Prince 1995), a candidate is a triplet consisting of
an underlying form, a surface form, and a correspondence relation between them. Hence, a candidate
can be split into sub-candidates along three dimensions: the underlying string can be split into sub-
strings; the surface string can be split into sub-strings; and the correspondence relations can be split
into sub-relations. These informal considerations thus yield three notions of additivity, categoricity, and
monotonicity, carefully formalized in section 4.3.

McCarthy’s original conjecture that all faithfulness constraints relevant for phonological theory are
“categorical” can thus be formalized by requiring them to be categorical relative to the input, or relative
to the output, or relative to the correspondence relation. A slight strengthening on this conjecture is
considered and shown to hold for the faithfulness constraints used in the phonological literature. This
strengthened conjecture requires all faithfulness constraints to be: categorical relative to the correspon-
dence relation; or categorical relative to the underlying form and furthermore monotone relative to the
surface form; or categorical relative to the surface form and furthermore monotone relative to the under-
lying form. This slight asymmetry between categoricity relative to the correspondence relation (which
does not require a corresponding monotonicity assumption) and categoricity relative to the underlying
or surface form (which instead does come with a corresponding monotonicity requirement) has to do
with subtle differences in the formalization of the three notions of categoricity. I will refer to the latter
strengthened conjecture as the categoricity-plus-monotonicity conjecture.

2.7. Idempotency and the triangle inequality: the OT case (section 4.4)

Section 3.2 has established the FICOT (37) as a sufficient condition for the idempotency of OT gram-
mars. Section 4.1 has introduced the requirement that faithfulness constraints measure phonological
distance in compliance with the triangle inequality, as captured by the FTI (107). What is the relation-
ship between the FICOT and the FTI? The metric FTI entails the FICOT for any faithfulness constraint
(indeed, the FTI is equivalent to the FICHG which in turn entails the FICOT). The reverse entailment
fails for general faithfulness constraints, as recalled above. Yet, is it possible to secure the reverse entail-
ment from the FICOT to the FTI for special classes of faithfulness constraints? To start, I note that the
entailment from the FICOT to the FTI trivially holds for faithfulness constraints which are binary, namely
assign only zero or one violations. Obviously, binary faithfulness constraints are useless in phonology.
Yet, this trivial observation concerning binary faithfulness constraints provides the starting point for a
stronger result, which can be informally previewed as follows. Recall that a faithfulness constraint is
additive provided the number of violations it assigns to a candidate is equal to the sum of the number
of violations it assigns to the corresponding sub-candidates. The faithfulness constraint is furthermore
categorical provided the sub-candidates can be chosen in such a way that they are assigned either zero or
one violations. In other words, a categorical constraint is binary when restricted to the sub-candidates.
Since the entailment from the FICOT to the FTI holds for binary faithfulness constraint, one then expects
the entailment to extend to categorical faithfulness constraints, by summing over sub-candidates. Section
4.4 formalizes this intuition into the proof of an equivalence result between the FTI and the FICOT for
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faithfulness constraints which satisfy the categoricatiy-plus-monotonicity conjecture stated above. The
additional monotonicity requirement is technical grease needed by the non-trivial proof machinery. This
equivalence result is the main technical result contained in this document.

2.8. Output-drivenness and counter-bleeding opacity (section 5.1)

Tesar (2013) investigates another structural condition on phonological grammars, which he calls
output-drivenness. It formalizes the intuition that any discrepancy between an underlying and a sur-
face (or output) form is driven exclusively by the goal of making the surface form fit the phonotactics. It
thus captures the intuition that, if /p/ is mapped to [B], then /b/ should be mapped to [B] as well, as /b/
is more similar to [B] than /p/ is. In other words, output-drivenness rules out derived environment effects
or saltations (Łubowicz 2002; White 2013) such as the one in (44). Output-drivenness is predicated on a
notion of relative similarity (see below for more details). For instance, the phonological pattern in (44)
only fails at output-drivenness under the assumption that /b/ is more similar to [B] than /p/ is (say,
because the former only differs for voicing, while the latter differs for both voicing and continuancy).

(44) p b B

Output-drivenness entails idempotency: if phonological forms are only repaired to satisfy the phonotac-
tics (output-drivenness), phonotactically licit forms are faithfully realized (idempotency). The reverse
entailment fails: output-drivenness is a stronger condition than idempotency. This is shown for instance
by the saltation in (44), which fails at output-drivenness (under a plausible definition of the similarity
order) and yet succeeds at idempotency (as the two phonotactically licit forms b, B are faithfully mapped
to themselves). Within SPE, saltations are the result of counter-bleeding rule interactions (Baković 2011
and references therein). In conclusion, the notion of output-drivenness is relevant to phonology because
its negation captures counter-feeding opacity (chain shifts) and counter-bleeding opacity (saltations).

2.9. Output-drivenness in OT (section 5.2)

Which assumptions on the constraint set suffice to guarantee that the OT grammar corresponding to
any constraint ranking is output-driven? Tesar settles this question by showing that it suffices that each
faithfulness constraint in the constraint set satisfies the two implications (170) for every two candidates
(a, d) and (b, d) such that a is less similar to d than b is (according to the relevant notion of similarity),
for every other candidate (b, c), and for some candidate (a, c). Condition (170) is thus referred to as the
faithfulness output-drivenness condition (FODC).

(45) a. If: F (a, d) < F (a, c)

Then: F (b, d) < F (b, c)

b. If: F (b, c) < F (b, d)

Then: F (a, c) < F (a, d)

Section 5.2 reviews Tesar’s theory of OT output-drivenness leading to a proof of the sufficiency of the
FODC. The FODC are easily seen to entail the FIC (37), matching the fact that output-drivenness entails
idempotency.

2.10. An axiomatic definition of the similarity order (sections 5.3-5.4)

As anticipated above, the notion of output-drivenness (as well as the sufficient condition for output-
drivenness provided by the FODC) is predicated upon a notion of relative similarity. This notion of
similarity is formalized through a partial order ≤sim on the candidate set which intuitively orders two
candidates (which share the same surface form) according to their degree of internal similarity. How should
the partial order ≤sim which induces similarity comparisons be defined? Section 5.3 reviews Tesar’s (2013)
specific definition of similarity. It is stated concretely in terms of strings and correspondence relations and
it is tailored to a faithfulness constraint set which only consists of three types of faithfulness constraints,
namely Max, Dep, and Ident. Tesar indeed establishes that these three types of faithfulness constraints
satisfy the FODC (in the special case where all correspondence relations are one-to-one). The latter result,
although quite limited, turns out to be non-trivial. For instance, two pages of Tesar’s book suffice to
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establish the FODC as a sufficient condition for OT output-drivenness, while the entire chapter 3 is
devoted to verifying the FODC for just these three constraint types Max, Dep, and Ident.

Section 5.4 thus explores an alternative approach. I start from the intuition that, within constraint-
based phonology, it is natural to assess similarity through the faithfulness constraints. Thus, instead
than a specific, concrete definition of the similarity order, I consider a general axiom on the similarity
order, stated in terms of faithfulness constraints. The proposed axiom is parameterized by an arbitrary
faithfulness constraint set F (which might be smaller than or different from the faithfulness constraint set
used to define the typology). The proposed axiom roughly requires the less similar candidate to violate
each faithfulness constraint in F more than the more similar candidate. The reasoning in Tesar (2013;
chapter 3) can be re-booted to show that Tesar’s concrete definition of the similarity order satisfies the
proposed axiom as a special case (when the faithfulness constraint set F consists of Max, Dep, and
Ident). His theory of output-drivenness thus counts as a special case of the theory of output-drivenness
developed for the axiomatized similarity order.

2.11. Output-drivenness and the triangle inequality (section 5.5)

The main result of section 5.5 is that the theory of output-drivenness relative to the axiomatized simi-
larity order turns out to be related to the requirement that faithfulness constraints measure phonological
distance in compliance with the metric triangle inequality, as captured by the FTI (107). In particu-
lar, I show that the FTI entails Tesar’s FODC relative to the axiomatized notion of similarity order.
This entailment holds for any faithfulness constraint which belongs to the selected faithfulness subset F
used to measure similarity. Furthermore, this entailment holds under no assumptions on the faithfulness
constraints (such as the categoricity-plus-monotonicity restriction). What about the reverse entailment
from the FODC to the metric FTI? As recalled above, the FODCOT entails the sufficient condition for
idempotency provided by the FICOT. Furthermore, we have seen that the FICOT entails the metric FTI
for those faithfulness constraints which satisfy the categoricity-plus-monotonicity conjecture. I conclude
that the FODCOT, the FICOT and the FTI are equivalent for any categorical-plus-monotone faithful-
ness constraint (which furthermore belongs to the faithfulness constraint subset F used in the axiomatic
definition of the similarity order). This equivalence affords a substantial simplification of Tesar’s theory.
In fact, it says that all constraints that have been established in sections 3.3-3.5 to satisfy the FICOT,
actually also satisfy the FODC (as they are all categorical-plus-monotone). A large set of faithfulness
constraints (beyond the three considered by Tesar) are thus shown in a snap to satisfy the FODC.

2.12. Output-drivenness in HG (section 5.6)

In the case of idempotency, we have seen above that the connection with the triangle inequality
was enhanced by switching from OT to HG. The situation is analogous for the case of output-drivenness.
Section 5.6 adapts Tesar’s reasoning from OT to HG. The result of this reasoning is that the HG grammar
corresponding to any weighting of a given constraint set is output-driven relative to an arbitrary similarity
order ≤sim provided each faithfulness constraint satisfies the implication (46) for every two candidates
(a, d) and (b, d) such that (a, d) ≤sim (d, b), for every other candidate (b, c), and for some candidate
(a, c). Condition (46) is thus referred to as the HG faithfulness output-drivenness condition (FODCHG;
from now on, the FODC obtained above for OT is referred to as the FODCOT).

(46) For every choice of the threshold ξ:
If: F

(
b, c
)
≤ F

(
b, d
)

+ ξ

Then: F
(
a, c
)
≤ F

(
a, d
)

+ ξ

It can be shown that the FODCOT (170) is a special case of the FODCHG (46) corresponding to the
choice −1 < ξ < +1. The fact that the FODCHG is stronger than the FODCOT makes good sense:
HG typologies properly contain OT typologies (at least when constraint violations are bounded), so that
a stronger condition is expected to be needed in order to discipline a larger typology of grammars to
all comply with output-drivenness. Crucially, the FODCHG (46) is trivially equivalent to the metric
FTI (107). This equivalence holds under no additional assumptions on the faithfulness constraints, the
phonological candidates, or their correspondence relations.
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2.13. A network of relationships among faithfulness conditions (section 6.1)

Let me take stock. Idempotency requires any phonotactically licit form to be faithfully realized.
Output-drivenness requires any discrepancy between underlying and surface (or output) forms to be
driven by the phonotactics. Chapters 3-5 have systematized the theory of idempotency and Tesar’s (2013)
theory of OT output-drivenness within OT and HG. These theories provide tight guarantees for OT and
HG idempotency and output-drivenness through conditions on the faithfulness constraints, referred to as
the FICOT

comp, FICHG
comp, the FODCOT

comp and the FODCHG
comp. These four conditions are technical conditions

which lack prima facie any intuitive interpretation. To provide such an interpretation, I have dug deeper
into the formal underpinning of the theory of faithfulness. Intuitively, faithfulness constraints measure the
phonological distance between underlying and surface forms. It thus makes sense to investigate whether
faithfulness constraints satisfy axioms of the abstract notion of distance. I have focused on one such
axiom, the triangle inequality. The main result obtained is that:

(47) The four abstract conditions FICOT, FODCOT, FICHG and FODCHG for idempotency and
output-drivenness in OT and HG are all equivalent to the faithfulness triangle inequality.

The four conditions can thus all be interpreted as simply requiring the faithfulness constraints to measure
phonological distance in compliance with a core axiom of the abstract notion of distance. This equivalence
(47) holds for categorical faithfulness constraints in the case of the two OT conditions FICOT

comp and
FODCOT

comp, while it holds without restrictions on the nature of the faithfulness constraints in the case of
the two HG conditions FODCHG and FICHG.

Section 6.1 discusses various implications of this metric interpretation (47) of the four conditions
FICOT

comp, FODCOT
comp, FICHG

comp, and FODCHG
comp for idempotency and output-drivenness. First, (47) entails

that idempotency and output-drivenness do not require stronger constraint conditions in HG than in OT,
at least when we restrict ourselves to categorical constraints, as independently conjectured by McCarthy
(2003b). Second, (47) entails that the conditions for idempotency and output-drivenness (in either
OT or HG) are equivalent when we restrict ourselves to categorical constraints, under the additional
assumption that the similarity order which underlies output–drivenness takes into account all of the
faithfulness constraints in the constraint set used to define the typology. In other words, the only way to
obtain idempotent grammars which fail at output-drivenness is to define output-drivenness relative to a
similarity order which is blind to some of the faithfulness constraints. Third, (47) allows the results on
which constraints satisfy the FICOT

comp obtained in sections 3.3-3.5 to be extended in a snap to the other
three conditions FODCOT

comp, FICHG
comp, and FODCHG

comp.

2.14. Opacity between output-drivenness and input-drivenness (sections 6.2 and 6.3)

As anticipated, idempotency and output-drivenness are related to phonological opacity. Indeed, sec-
tion 6.3 recalls that counter-feeding opacity is equivalent (under mild assumptions) to chain shifts and
thus corresponds to a non-idempotent grammar. Furthermore, counter-bleeding opacity is equivalent (un-
der mild assumptions) to (a generalized notion of) saltations and thus corresponds to an idempotent but
not output-driven grammar. I then probe deeper into the theory of opacity by comparing Tesar’s notion
of output-drivenness with a closely related notion of input-drivenness. The intuition can be previewed
as follows. Tesar’s notion of output-drivenness is based on an interpretation perspective (motivated by
the goal of contributing to the foundation of algorithms for learning lexicons of underlying forms from a
given paradigm of surface forms). For instance, Tesar’s notion of similarity order compares two candi-
dates which share the same surface form and only differ for the underlying form. The alternative notion
of input-drivenness instead adopts a production perspective. For instance, it is based on a notion of
similarity order which compares two candidates which share the same underlying form and only differ
for the surface form. Like Tesar’s original notion, also this alternative notion of input-drivenness fails
for chain shifts and saltations, so that its negation captures both counter-feeding opacity (chain shifts)
and counter-bleeding opacity (saltations). Furthermore, like Tesar’s original notion, also this alternative
notion of output-drivenness turns out to be related to the condition that the faithfulness constraints
measure phonological distance in compliance with the metric triangle inequality. I conclude with some
remarks on how to pull apart Tesar’s original notion of output-drivenness and the alternative notion of
input-drivenness.
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2.15. Idempotency and chain shifts (section 6.4)

The FIC is only a sufficient condition for OT idempotency. Yet, for any faithfulness constraint which
fails at the FIC, it is easy to construct a simple case where idempotency fails, leading to a chain shift
such as the pattern a → e → i in (34). Any analysis of chain shifts within (classical) OT requires
at least one faithfulness constraint which does not satisfy the FIC. From this perspective, the results
obtained in sections 3.2-3.5 concerning which faithfulness constraints happen to satisfy the FIC under
which conditions can be reinterpreted as a toolkit for modeling chain shifts. Articulating the phonological
implications of the formal theory of idempotency, section 6.4 systematizes various approaches to chain
shifts in the classical OT literature by showing that they differ for how they choose the culprit faithfulness
constraint from the list of non-FIC abiding constraints compiled in sections 3.3-3.5. Particular attention
is paid to approaches to chain shifts which rely on restricted faithfulness constraints, which are shown to
offer an exact translation of the classical rule-based counter-feeding approach to chain shifts.

2.16. Benign chain shifts (section 6.5)

Nine-month-olds already react differently to licit and illicit sound combinations (Jusczyk et al. 1993),
thus displaying knowledge of the target adult phonotactics. The literature on this early acquisition of
phonotactics usually assumes that the learner posits a fully faithful underlying form for each phono-
tactically licit training surface form (Gnanadesikan 2004; Hayes 2004; Prince and Tesar 2004). Is this
assumption of faithful underlying forms computationally sound? or could it instead doom the learner
to positing inconsistent mappings? For instance, if the target grammar is not idempotent and rather
enforces a chain shift such as (48a), the assumption that the phonotactically licit e is faithfully mapped
to itself might be dangerous.

(48) a. a e i

b. a e i

Yet, the chain shift (48a) raises no issues for the learner’s assumption of fully faithful underlying forms
whenever the chain shift happens to be benign, in the sense that the typology entertained by the learner
happens to contain another grammar such as (48b), which is idempotent (there is no chain shift) and yet
makes the same phonotactic distinctions ([a] is illicit and [e, i] licit for both grammars). The theory of
idempotency in classical OT systematized in section 6.4 says that there are just three strategies to derive
chain shifts in OT: through the conjunction of two faithfulness constraints which individually satisfy the
FIC; through the restriction of a faithfulness constraint whose unrestricted counterpart satisfies the FIC;
and through breaking of underlying forms into multiple surface forms. Are the chain shifts obtained
through these three means benign? Section 6.5 offers some preliminary discussion on this question,
towards a computational foundation for a variety of models of the acquisition of phonotactics which
share the assumption of completely faithful underlying forms.



CHAPTER 3

The theory of idempotency in Optimality Theory

This chapter contributes to a research program in constraint-based phonology which aims at distilling
analytically the implications of constraint theories for formal typological properties (Prince 2007). For
instance, Moreton (2004b) develops constraint conditions for the property of eventual idempotency and
Tesar (2013) develops constraint conditions for the property of output-drivenness (which I’ll discuss
in chapter 5). This chapter focuses on a third formal property which is intermediate between those
two, namely idempotency. Building on Tesar’s analysis of output-drivenness, this chapter develops tight
sufficient conditions for idempotency within classical Optimality Theory (OT; Prince and Smolensky
2004; Moreton 2004b). Chapter 4 will then extend the theory of idempotency to the case of Harmonic
Grammar (Legendre et al. 1990b,a; Smolensky and Legendre 2006) and discuss the relationship between
idempotency and Tesar’s output-drivenness.

A formal theory of idempotency is relevant both for phonological theory and for modeling the acquisi-
tion of phonology. In fact, idempotency is related to opacity: a grammar fails at idempotency provided it
displays a chain shift, which corresponds to counter-feeding ordering in a rule-based phonological frame-
work. Understanding the conditions which ensure idempotency thus yields a toolkit for modeling chain
shifts, which have proven recalcitrant to constraint-based analyses. Furthermore, various models of the
early acquisition of phonotactics (Gnanadesikan 2004; Hayes 2004; Prince and Tesar 2004) assume that
the learner posits a fully faithful underlying form for each training phonotactically licit surface form.
These models thus effectively assume that the typology explored by the learner consists of idempotent
grammars. Chapter 6 will explore the implications of the analysis of idempotency developed here for
modeling chain shifts and for modeling the early acquisition of phonotactics.

This chapter is organized as follows. Section 3.1 formalizes the intuition that a phonological grammar is
idempotent provided it maps phonotactically licit forms faithfully to themselves. Equivalently, provided it
displays no chain shifts. The rest of the chapter then establishes tight sufficient conditions for idempotency
in (classical) Optimality Theory. Building on Tesar (2013), these conditions are derived in two steps.
First, section 3.2 shows that idempotency follows from a formal condition on the faithfulness constraints,
called the faithfulness idempotency condition (FIC). Second, sections 3.3, 3.4, and 3.5 shown that this FIC
is satisfied by a variety of faithfulness constraints which naturally arise within McCarthy and Prince’s
(1995) Correspondence Theory of faithfulness. Chapter 4 will provide an intuitive interpretation of
the FIC based on the intuition that faithfulness constraints measure the phonological distance between
underlying and surface forms.

3.1. Idempotency

This section introduces the notion of idempotent phonological grammar within a representational
framework which is a segmental version of McCarthy and Prince’s (1995) Correspondence Theory.

3.1.1. Representational framework
Consider a finite set of segments (for instance, the segments in the IPA table, or some subset thereof),

denoted by a, b, c, . . . . Strings obtained through segment concatenation are denoted by a, b, c, . . . The
notation a = a1 · · · a` says that the string a is the concatenation of the segments a1, . . . , a` and thus has
length `. Throughout this document, I assume the representational framework (49). Underlying and
surface forms are strings of segments. Phonological candidates establish a correspondence between the
segments of these underlying and surface strings.
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(49) The candidate set consists of triplets (a, b, ρa,b) of an underlying segment string a and a surface
segment string b together with a correspondence relation ρa,b between the segments of a and those
of b.1

Correspondence relations will be denoted by thin lines. To illustrate, (50) represents the candidate
(a, b, ρa,b) whose underlying string a is /bnIk/, whose surface string b is [blIk], whose correspondence
relation ρa,b maps underlying to surface segments respecting their position in the strings.

(50) a = bn I k

b = b l I k

The representational assumption (49) places no a priori restrictions neither on the underlying and sur-
face strings nor on the relations which put them in correspondence. The representational framework is
thus sufficiently flexible to encompass approaches which hardwire some (universal) restrictions into the
candidate set (Blaho et al. 2007). This flexibility will be exploited in the rest of this chapter, which will
explore the implications of various restrictions on the correspondence relations which can figure in the
candidate set.

3.1.2. Identity candidates
Idempotency is about phonotactically licit forms being mapped to themselves. It thus requires the

distinction between underlying and surface forms to be blurred. This is achieved through axiom (51).
It can be interpreted as a candidacy reflexivity axiom, as it requires each (surface) string to be in cor-
respondence with itself. This axiom will play a crucial role in the definition of idempotency in the next
subsection.

(51) If the candidate set contains a candidate (a, b, ρa,b) with a surface form b, it also contains the
corresponding identity candidate (b, b, Ib,b), where Ib,b is the identity correspondence relation
among the segments of b.

By (51), any surface form can be construed as an underlying form (of the corresponding identity
candidate). In other words, the set of surface forms is a subset of the set of underlying forms. This is
a slightly weaker condition than Moreton’s (2004b) homogeneity, which requires the sets of underlying
and surface forms to coincide. Both reflexivity and homogeneity hold when underlying and surface rep-
resentations are constructed out of the same “building blocks”. Moreton claims that “most phonological
representations are in fact present in both [underlying and surface forms]” so that reflexivity and ho-
mogeneity hold for “much of the core business of phonology.” Yet, the reflexivity axiom (51) obviously
does not hold in full generality. To illustrate, suppose that the candidate set contains the candidate
(a, b) = (/mabap/, [ma.ba]). The reflexivity axiom (51) requires the candidate set to also contain the
candidate (b, b) = (/ma.ba/, [ma.ba]). This contravenes the plausible assumption that syllabification is
a property of the surface representations and is absent in the underlying representations. In the case of
constraint-based phonology, this difficulty can be circumvented by switching from the identity candidates
required by (51) to McCarthy’s (2002) fully faithful candidates, as explained in subsection 3.2.5.

3.1.3. Idempotency
Within the representational framework just defined, a phonological grammar is a map G which takes

an underlying form a and returns a candidate (a, b, ρa,b) whose underlying string is indeed a.2 A string b
is called phonotactically licit according to a grammar G provided there exists at least one string a (with
a possibly identical to b) such that the grammar G maps the underlying form a to a candidate (a, b, ρa,b)
whose surface string is b. A grammar G is idempotent provided it maps any phonotactically licit surface
form to itself, as formalized by the implication (52) in the following definition. The antecedent of the
implication says that the surface form b is phonotactically licit relative to the grammar G, because it is

1 Correspondence relations might want to distinguish between multiple occurrences of the same segment in a string.
Thus, correspondence relations cannot be defined simply as relations between the two sets of underlying and surface
segments. To keep the presentation straightforward, I follow common practice and ignore these subtleties.

2 For the sake of simplicity, I assume that a grammar maps an underlying form to a single candidate. This assumption
is not crucial and the results obtained extend to a framework where grammars map an underlying form to a set of candidates,
thus modeling phonological variation.
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the surface realization of some underlying form a. The consequent says that b is then mapped faithfully
to itself. The reflexivity axiom (51) ensures the existence of the identity candidate (b, b, Ib,b) in the
consequent of (52).

Definition 1. [Idempotency] A grammar G is idempotent provided it satisfies the implication

(52) If: G(a) =
(
a, b, ρa,b

)
Then: G(b) =

(
b, b, Ib,b

)
for any candidate (a, b, ρa,b) in the candidate set. �

To illustrate, suppose that a grammar raises the low vowel /a/ to [e]. The mid vowel [e] is therefore
phonotactically licit. In order for that grammar to comply with condition (52) and thus qualify as
idempotent, the underlying form /e/ must be mapped faithfully to [e].3

3.1.4. Chain shifts
The candidate set might provide many different relations ρb,b to put a string b in correspondence with

itself. Some options are illustrated in (53) in the case where b = amba. Axiom (51) requires one of these
correspondence relations provided by the candidate set to be the identity relation Ib,b, illustrated the
left-most candidate in (53). This identity relation Ib,b is intuitively the best way to put the string b in
correspondence with itself. A grammar G is well-behaved provided it abides to this intuition: whenever G
maps an underlying string b to the same surface string b, it does so through the identity correspondence
relation Ib,b. In other words G(b) = (b, b, ρb,b) is impossible when ρb,b 6= Ib,b.

(53) b = amba

b = amba

b = amba

b = amba

b = amba

b = amba

Suppose now that a grammar G fails at the idempotency implication (52) for some candidate (a, b, ρa,b),
as stated in (54): G maps the underlying form a to (a, b, ρa,b), as required by the antecedent of the
idempotency implication; but G fails to map the underlying form b to the identity candidate (b, b, Ib,b),
as required by the consequent.

(54) A grammar G fails at idempotency on a candidate (a, b, ρa,b) iff:

a. G(a) = (a, b, ρa,b);

b. G(b) 6= (b, b, Ib,b).

Condition (54b) means that G maps the underlying form b to some candidate (b, c, ρb,c) different from
(b, b, Ib,b). This means that either the two strings b and c differ or b and c coincide but the two
correspondence relations ρb,c and Ib,b differ. The latter option is impossible when G is well-behaved. The
strings b and c must thus differ and condition (54) becomes (55).

(55) A (well-behaved) grammar G fails at idempotency on a candidate (a, b, ρa,b) iff there is a candidate
(b, c, ρb,c) with b 6= c such that:

a. G(a) = (a, b, ρa,b);

b. G(b) = (b, c, ρb,c).

Condition (55) says that G maps a to b and then in turn maps b to c. Since b 6= c, this scheme a→ b→ c
is called a chain shift in the phonological literature (see Łubowicz 2011 for a comprehensive review). In
conclusion, a (well-behaved) grammar G fails at idempotency if and only if it enforces chain shifts.

3 Usually, idempotency is a notion which applies to a function f between a set X and itself and requires the identity
f(f(x)) = f(x) for every argument x ∈ X. The connection between this notion and definition above is straightforward.
Given a grammar G, let g be the corresponding string function, namely the function from strings to strings defined by
the condition g(a) = b provided G(a) = (a, b, ρa,b) for some correspondence relation ρa,b. The grammar G is idempotent
according to the definition above if and only if the corresponding string function g satisfies the condition g(g(a)) = g(a) for
any underlying string a.
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3.2. Idempotency in Optimality Theory

The notion of idempotency introduced in the preceding section is independent of any specific phono-
logical framework used to define the grammar G. Starting with this section, I focus on the specific
framework of Optimality Theory (OT; Prince and Smolensky 2004) (Magri to appearb extends the theory
of idempotency to the related framework of Harmonic Grammar). Which conditions guarantee that all
the grammars in an OT typology are idempotent? The answer developed in this section has two parts:
a condition on the candidate set, in the form of a candidacy transitivity axiom; and a condition on the
violation profiles of the faithfulness constraints.

3.2.1. Classical Optimality Theory (OT)
A constraint C is a function which takes a candidate (a, b, ρa,b) and returns a number of violations

C(a, b, ρa,b) which is large when the candidate scores poorly from the perspective relevant to that con-
straint. A constraint C prefers a candidate (a, b, ρa,b) to another candidate (c, d, ρc,d) provided it assigns
less violations to the former than to the latter, namely C(a, b, ρa,b) < C(c, d, ρc,d). A constraint ranking
is an arbitrary linear order � over a set of constraints. A constraint ranking � prefers a candidate
(a, b, ρa,b) to another candidate (c, d, ρc,d) provided the �-highest constraint which assigns a different
number of violations to the two candidates (a, b, ρa,b) and (c, d, ρc,d), prefers the former candidate to
the latter. The OT grammar G� corresponding to a ranking � maps an underlying form a to a candi-
date (a, b, ρa,b) which is preferred by the ranking � to all other candidates (a, c, ρa,c) which share that
underlying form a.4

A faithfulness constraint F has the property that it never assigns any violations to any identity
candidate (b, b, Ib,b), as stated in (56).

(56) F (b, b, Ib,b) = 0

A markedness constraint M has the property that it is blind to underlying forms, so that it assigns the
same number of violations to any two candidates (a, c, ρa,c) and (b, c, ρb,c) sharing the surface form c
(independently of their underlying forms), as stated in (57).

(57) M(a, c, ρa,c) = M(b, c, ρb,c)

Given the candidacy reflexivity axiom (51), no (non-trivial) constraint can be both a faithfulness and
a markedness constraint. In fact, suppose by contradiction that were the case for some constraint C.
Consider an arbitrary candidate (a, b, ρa,b) in the candidate set. The reflexivity axiom thus ensures that
the candidate set also contains the corresponding identity candidate (b, b, Ib,b). These two candidates
(a, b, ρa,b) and (b, b, Ib,b) share the surface form b. Since C is a markedness constraint, C must assign
the same number of violations to those two candidates, as stated in (58a). Since C is also a faithfulness
constraint, it does not penalize the identity candidate (b, b, Ib,b), as stated in (58b).

(58) C(a, b, ρa,b)
(a)
= C(b, b, Ib,b)

(b)
= 0

In conclusion, C does not penalize any candidate, and it is therefore trivial.5

Although no constraint can be both a faithfulness and a markedness constraint, it can easily be neither
(for instance, comparative markedness constraints are neither; see McCarthy 2002, 2003a as well as section
6.4 below for additional references). To rule out the latter case, I assume that the constraint set only
consists of faithfulness and markedness constraints (this is Moreton’s 2004 conservativity assumption).

(59) constraint set = faithfulness constraints ∪ markedness constraints

Let me call classical the version of OT endowed with the latter restriction (59) on the constraint set.

4 As noted in footnote 2, I assume that grammars map an underlying form to a single candidate. This condition holds
for OT grammars provided the constraint set is sufficiently rich relative to the candidate set, in the following sense: for
any two candidates (a, b, ρa,b) and (a, c, ρa,c) which share the underlying form a, the constraint set contains a constraint C
which assigns them a different number of violations.

5 This conclusion crucially rests on the candidacy reflexivity axiom (51), which intuitively ensures that the candidate
set has enough identity candidates. Without this axiom, the assumption that C is a faithfulness constraint would indeed
have no bite, as the faithfulness definitional condition (56) is stated in terms of identity candidates.
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3.2.2. A sufficient condition for chain shifts
The classical assumption (59) that each constraint is either a faithfulness constraint (56) or a marked-

ness constraint (57) ensures that the identity candidate (b, b, Ib,b) harmonically bounds any candidate
(b, b, ρb,b) with ρb,b 6= Ib,b. To illustrate, the left-most candidate in (53) outperforms the other candidates
listed. In fact, faithfulness constraints cannot prefer (b, b, ρb,b) to (b, b, Ib,b), by (56); and markedness
constraints do not distinguish between two such candidates, by (57). In other words, the OT grammar G�
corresponding to any ranking � is well-behaved in the sense of subsection 3.1.4: G�(b) 6= (b, b, ρb,b)
whenever ρb,b 6= Ib,b. The characterization of non-idempotency in terms of chain shifts in subsection
3.1.4 thus applies to (classical) OT grammars. To distill the implications of that characterization, let me
weaken the “if-and-only-if” statement (55) into the “if” statement (60). In fact, if the grammar G� maps
the underlying form a to the candidate (a, b, ρa,b) as stated in (55a), the ranking � must in particular
prefer the candidate (a, b, ρa,b) to any other loser candidate (a, c, ρa,b), as stated in (60a). Furthermore, if
the grammar G� maps the underlying form b to the candidate (b, c, ρb,c) as stated in (55a), the ranking
� must in particular prefer this candidate (b, c, ρb,c) to the identity candidate (b, b, Ib,b), as stated in
(60b).

(60) If G� fails at idempotency on a candidate (a, b, ρa,b), there exists some candidate (b, c, ρb,c) with
b 6= c such that:
a. � prefers (a, b, ρa,b) to (a, c, ρa,b),

for any correspondence ρa,b in the candidate set (if any);
b. � prefers (b, c, ρb,c) to (b, b, Ib,b).

Condition (60b) that the ranking� prefers (b, c, ρb,c) to the identity candidate (b, b, Ib,b) means that
the constraint set contains a constraint which prefers (b, c, ρb,c) to (b, b, Ib,b) such that all the constraints
which are ranked by � above it assign the same number of violations to the two candidates. By (56),
this constraint which prefers (b, c, ρb,c) to (b, b, Ib,b) cannot be a faithfulness constraint and must instead
be a markedness constraint M . Condition (60b) can thus be explicitated as (61b) and (61c).

(61) If G� fails at idempotency on (a, b, ρa,b), there exist a candidate (b, c, ρb,c) with b 6= c and a
markedness constraint M such that:
a. � prefers (a, b, ρa,b) to (a, c, ρa,b),

for any correspondence ρa,b in the candidate set (if any);
b. M assigns fewer violations to (b, c, ρb,c) than to (b, b, Ib,b);
c. any faithfulness or markedness constraint�-ranked aboveM assigns (b, c, ρb,c) and (b, b, Ib,b)

the same number of violations.

Since faithfulness constraints assign no violations to identity candidates by (56), condition (61c) that
any faithfulness constraint ranked above M assigns the same number of violations to (b, c, ρb,c) and
(b, b, Ib,b) means that it assigns no violations to (b, c, ρb,c). Condition (61c) can thus be made explicit as
in (62c) and (62d).

(62) If G� fails at idempotency on (a, b, ρa,b), there exist a candidate (b, c, ρb,c) with b 6= c and a
markedness constraint M such that:
a. � prefers (a, b, ρa,b) to (a, c, ρa,b),

for any relation ρa,b in the candidate set (if any);
b. M assigns fewer violations to (b, c, ρb,c) than to (b, b, Ib,b);
c. any faithfulness constraint �-ranked above M assigns no violations to (b, c, ρb,c);
d. any markedness constraint �-ranked above M assigns the same number of violations to

(b, c, ρb,c) and (b, b, Ib,b).

The designated markedness constraint M prefers (b, c, ρb,c) to (b, b, Ib,b), by (62b). Furthermore, it is
blind to the underlying forms, by (57). Hence, M also prefers (a, c, ρa,c) to (a, b, ρb,b). Assumption (62a)
thus requires M to be ranked below some constraint with the opposite preference. The latter constraint
cannot be a markedness constraint, because of (62d). It must therefore be a faithfulness constraint.
Condition (62a) can thus be made explicit as in (63a).

(63) If G� fails at idempotency on (a, b, ρa,b), there exist a candidate (b, c, ρb,c) with b 6= c and a
markedness constraint M such that:
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a. for any correspondence ρa,c in the candidate set (if any), there exists a faithfulness constraint
�-ranked above M which assigns fewer violations to (a, b, ρa,b) than to (a, c, ρa,c);

b. M assigns fewer violations to (b, c, ρb,c) than to (b, b, Ib,b);
c. any faithfulness constraint �-ranked above M assigns no violations to (b, c, ρb,c);
d. any markedness constraint �-ranked above M assigns the same number of violations to

(b, c, ρb,c) and (b, b, Ib,b).

Condition (63) just derived is necessary for idempotency to fail.

3.2.3. The faithfulness idempotency condition (FIC)
I am now ready to tackle the central question of this section: which conditions ensure that the the

OT grammars corresponding to any ranking of a given constraint set is idempotent? The answer to this
question is provided by the following proposition 1. The assumption made by the proposition is twofold.
First, it restricts the candidate set: if it contains two candidates (a, b, ρa,b) and (b, c, ρb,c) which share
a string b as the surface and underlying form respectively, it must also contain a candidate (a, c, ρa,c)
which puts the underlying string a of the former candidate in correspondence with the surface string c
of the latter candidate, as in (64).

(64)

a b c
ρa,b ρb,c

ρa,c

Second, the assumption of the proposition restricts the constraint set: it requires all the faithfulness
constraints to satisfy the implication (65), which is referred to as the faithfulness idempotency condition
(FIC). The specific implication (36) in section 2.2 is a concrete example of the FIC.

Proposition 1. Assume that, for any two candidates (a, b, ρa,b) and (b, c, ρb,c) which share b as the
underlying and surface form respectively, the candidate set also contains a candidate (a, c, ρa,c) such that
the following implication holds for every faithfulness constraint F in the constraint set.

(65) If: F
(
b, c, ρb,c

)
= 0

Then: F
(
a, c, ρa,c

)
≤ F

(
a, b, ρa,b

)
Then, the OT grammar corresponding to any ranking of the constraint set is idempotent. �

Proposition 1 follows straightforwardly from the discussion in the preceding subsection 3.2.2: the FIC
(65) makes the two conditions (63a) and (63c) incompatible and thus prevents idempotency to fail. In
fact, (63a) requires the designated markedness constraint M to be outranked by a faithfulness constraint
F which assigns fewer violations to (a, b, ρa,b) than to (a, c, ρa,c). This means that the consequent of
the FIC (65) fails. The antecedent must therefore fail as well. This means in turn that F assigns some
violations to (b, c, ρb,c), contradicting (63c).

3.2.4. Composition candidates and the FICcomp

Proposition 1 makes no assumptions on the nature of the correspondence relation ρa,c depicted in
(64) and in particular on its relationship with the two other correspondence relations ρa,b and ρb,c. For
instance, ρa,c could be the empty relation. This would make the FIC (65) trivial when F is an identity
faithfulness constraint (because the quantity on the left-hand side of the inequality in the consequent
would be equal to zero) but difficult when F is Dep or Max (because the quantity on the left-hand side
of the inequality would be large in this case). At the opposite extreme, ρa,c could be the total relation,
which puts any underlying segment in correspondence with any surface segment. This would make the
FIC (65) trivial when F is Dep or Max but difficult when F is an identity faithfulness constraint.

A natural assumption is that ρa,c is the composition ρa,c = ρa,bρb,c of the two correspondence relations
ρa,b and ρb,c.6 This means that a segment a of the string a and a segment c of the string c are in
correspondence through ρa,bρb,c if and only if there exists some “mediating” segment b of the string b

6 The operation of composition between two relations is usually denoted by “◦”. In the rest of this document, I write
more succinctly ρa,bρb,c instead of ρa,b ◦ ρb,c.
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such that a is in correspondence with b through ρa,b and furthermore b is in correspondence with c through
ρb,c (many examples will be provided in sections 3.3-3.5). The existence of this composition candidate is
guaranteed by (66), which can thus be interpreted as a candidacy transitivity axiom, complementing the
reflexivity axiom (51).

(66) If the candidate set contains two candidates (a, b, ρa,b) and (b, c, ρa,b) which share b as the sur-
face and the underlying form, it also contains the composition candidate (a, c, ρa,bρb,c) whose
correspondence relation ρa,bρb,c is the composition of ρa,b and ρb,c.

The original FIC (65) can now be specialized in terms of this composition candidate as the implication
(67), which will be referred to as the FICcomp to highlight the fact that the left hand side of the inequality
in the consequent features the composition candidate. The FICcomp entails the original FIC and thus
provides a sufficient condition for the idempotency of all the grammars in an OT typology.

(67) If: F
(
b, c, ρb,c

)
= 0

Then: F
(
a, c, ρa,bρb,c︸ ︷︷ ︸

ρa,c

)
≤ F

(
a, b, ρa,b

)
The FICcomp is only a sufficient condition for idempotency, not a necessary-and-sufficient characterization
of idempotency.7 Yet, the FICcomp is a tight sufficient condition: for any faithfulness constraint which
fails at the FICcomp, it is possible to construct a counterexample where idempotency indeed fails, as will
be shown in section 6.4.

3.2.5. Refinements
The definition of idempotency in subsection 3.1.3 crucially relies on the existence of the identity can-

didate, as guaranteed by the reflexivity axiom (51). Yet, as discussed in subsection 3.1.2, this reflexivity
axiom fails when surface representations are richer than underlying representations. For instance, the
identity candidate (b, b) = (/ma.ba/, [ma.ba]) makes no sense if syllabification is construed as a surface
property. Within a constraint-based framework such as OT, this difficulty can be circumvented as fol-
lows.8 Following McCarthy (2002, section 6.2), (a, b, ρa,b) is called a fully faithful candidate (FFC) relative
to a constraint set provided it violates no faithfulness constraints in that constraint set. Identity can-
didates (b, b, Ib,b) are FFCs, because of the definition (56) of faithfulness constraints. Yet, non-identity
candidates can also qualify as FFCs. For instance, the candidate (/maba/, [ma.ba]) is not the identity can-
didate and yet qualifies as a FFC, under the plausible assumption that syllabification of tautomorphemic
sequences is never contrastive and that no faithfulness constraint is therefore sensitive to syllabification.
The reasoning presented in this section holds unchanged if idempotency is re-defined as follows: whenever
G(a) = (a, b, ρa,b), there exists a FFC (β,b, ρβ,b) such that G(β) = (β,b, ρβ,b). This definition of idem-
potency does not require the existence of the identity candidate (b, b, Ib,b) and thus dispenses with the
problematic reflexivity axiom (51). Instead, it requires the following weaker axiom on the candidate set:
for any candidate (a, b, ρa,b) with a surface string b, the candidate set also contains a FFC (β,b, ρβ,b)
with that same surface form b. This assumption complements McCarthy’s (2002) assumption that each
underlying form a admits a FFC (a,α, ρa,α) with that underlying form.

3.3. Establishing the FICcomp: basic constraints

The preceding section has established the FICcomp (67) as a sufficient condition for idempotency
in OT. This condition places no restrictions on the markedness constraints and instead only concerns
the faithfulness constraints. The theory of idempotency in the rest of this chapter thus turns into an
investigation of the formal underpinning of theories of faithfulness. Consider the strictest faithfulness
constraint Fstrictest, which is violated by every candidate but the identity candidate and thus demands
perfect string identity. This constraint Fstrictest satisfies the implication (68). In fact, the antecedent of
(68) requires the candidate (b, c, ρb,c) to be the identity candidate. This means that the two strings b and
c are identical and that the correspondence relation ρb,c is the identity relation, so that the composition
ρa,bρb,c coincides with ρa,b. The equation in the consequent of (68) thus holds because the two candidates
being compared are identical.

7 Looseness has loomed at two steps in the derivation of the FICcomp. First, in the replacement of the if-and-only-if
condition (55) with the if-condition (60). Second, in the replacement of the original FIC (65) for an arbitrary correspondence
relation ρa,c with the FICcomp (67) for the composition correspondence relation ρa,bρb,c.

8 Thanks to an anonymous reviewer for discussion on the content of this subsection.
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(68) If: Fstrictest
(
b, c, ρb,c

)
= 0

Then: Fstrictest
(
a, c, ρa,bρb,c

)
= Fstrictest

(
a, b, ρa,b

)
The faithfulness constraints adopted in the phonological literature require something weaker than perfect
string identity. Correspondingly, the FICcomp (67) is weaker than (68), because the consequent of the
former features an inequality while the consequent of the latter features an identity. Is it the case that
what is left of perfect string identity in the definition of the common faithfulness constraints suffices
to satisfy the FICcomp (67)? This section starts to address this question, focusing on the three core
constraints in McCarthy and Prince’s (1995) Correspondence Theory: Max, Dep and Ident. A variety
of other constraints will be considered in sections 3.4 and 3.5.

3.3.1. Max
The faithfulness constraint Max assigns to a candidate (a, b, ρa,b) one violation for each deleted under-

lying segment, namely for each segment of the underlying string a which has no corresponding segments
in the surface string b according to ρa,b (McCarthy and Prince 1995, Harris 2011, and references therein).
To illustrate, Max assigns two violations to the candidate (a, b, ρa,b) in (69), because of its two underlying
deleted segments /s/ and /e/.

(69) a = s t o emt

b = t on

Let’s consider two candidates (a, b, ρa,b) and (b, c, ρb,c) together with their composition candidate (a, c, ρa,bρb,c).
Does the faithfulness constraint Max satisfy the FICcomp (67)?

If the antecedent of the implication is false, the implication trivially holds. Thus, let’s suppose that
the antecedent is true, namely that the candidate (b, c, ρb,c) does not violate Max. For instance, assume
that the strings b and c consist of two corresponding consonants each, as represented in (70a).

(70) a. Max(b, c)=0 b. Max(a, c)=1 c. Max(a, b)=1

b = s t

c = s t

a = s t r

c = s t

a = s t r

b = s t

Let’s now turn to the inequality in the consequent of the FICcomp. If the left-hand side of the inequality is
zero, the inequality trivially holds. Thus, let’s suppose that the left-hand side is larger than zero, namely
that the composition candidate (a, c, ρa,bρb,c) does violate Max. For instance, assume that the last of
the three consonants of the string a is deleted in c according to the composition correspondence relation
ρa,bρb,c, as represented in (70b). If the consonant /r/ of a had a correspondent [s] or [t] in b according to
ρa,b, then it would also have a correspondent in c according to ρa,bρb,c, because both segments /s/ and
/t/ of b have a correspondent in c relative to ρb,c. Thus, the correspondence relation ρa,b must fail to
provide a surface correspondent of /r/ in b, as represented in (70c). This says in turn that the candidate
(a, b, ρa,b) which figures in the right-hand side of the FICcomp inequality violates Max as well, so that
the inequality holds in this case.

This reasoning suggests that the FICcomp (67) holds because the assumption that no segment of b
is deleted in c (the antecedent of the FICcomp) entails that any segment of a which is deleted in c (as
quantified by the left-hand side of the inequality in the consequent) is also deleted in b (as quantified
by the right-hand side of the inequality). Proposition 2 thus obtained will be refined in section 3.4 and
proven in appendix A.1.

Proposition 2 (provisional) The faithfulness constraint Max satisfies the FICcomp (67) under no
additional assumptions. �

3.3.2. Dep
The faithfulness constraint Dep assigns to a candidate (a, b, ρa,b) one violation for each epenthetic

surface segment, namely for each segment of the surface string b which has no corresponding segments in
the underlying string a according to ρa,b (McCarthy and Prince 1995, Hall 2011, and references therein).
To illustrate, Dep assigns two violations to the candidate (a, b, ρa,b) in (71), because of its two epenthetic
vowels [@] and [e] (from Temiar; Itô 1989).
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(71) a = s n g l O g

b = s @ n e g l O g

Let’s consider two candidates (a, b, ρa,b) and (b, c, ρb,c) together with their composition candidate (a, c, ρa,bρb,c).
Does the faithfulness constraint Dep satisfy the FICcomp (67)?

We can reason exactly as in the preceding subsection 3.3.1. We assume that the antecedent of the
FICcomp holds, namely that the candidate (b, c, ρb,c) does not violate Dep, as in (72a). Also, we assume
that the left-hand side of the inequality in the consequent of the FICcomp is larger than zero, namely
that the composition candidate (a, c, ρa,bρb,c) does violate Dep, say because of the surface [@] with no
underlying correspondents in (72b).

(72) a. Dep(b, c)=0 b. Dep(a, c)=1 c. Dep(a, b)=1

b = s @ l O g

c = s @ l O g

a = s l O g

c = s @ l O g

a = s l O g

b = s @ l O g

By definition of the composition correspondence relation ρa,bρb,c, it follows that the vowel [@] of b cannot
have a correspondent relative to ρa,b, as represented in (72c). This says in turn that the candidate
(a, b, ρa,b) which figures in the right-hand side of the FICcomp inequality violates Dep as well, so that the
inequality holds in this case.

In order to secure the FICcomp for Dep, some additional care is needed, though: the correspondence
relation ρb,c must be prevented from breaking any underlying segments into two or more surface segments,
as shown by the counterexample (73).

(73) a. Dep(b, c)=0 b. Dep(a, c)=2 c. Dep(a, b)=1

b = s @ l O g

c = s e i l O g

a = s l O g

c = s e i l O g

a = s l O g

b = s @ l O g

The antecedent of the FICcomp holds, as shown in (73a): the candidate (b, c, ρb,c) does not violate Dep,
because every segment of c has a correspondent, although the two surface vowels [e] and [i] share the
underlying correspondent /@/. The right-hand side of the FICcomp inequality is equal to 1, as shown
in (73c): the candidate (a, b, ρa,b) violates Dep once, because it has a unique epenthetic vowel [@]. The
FICcomp inequality fails because its left-hand side is instead equal to 2, as shown in (73b): the composition
candidate (a, c, ρa,bρb,c) violates Dep twice, because both [e] and [i] are epenthetic. These considerations
lead to proposition 3, which will be refined in section 3.4 and proven in appendix A.2.

Proposition 3 (provisional) The faithfulness constraint Dep satisfies the FICcomp (67) provided
no correspondence relation in the candidate set breaks any underlying segment. �

Propositions 2 and 3 highlight a difference between Max and Dep: the former satisfies the FICcomp
without additional assumptions; the latter instead requires the correspondence relation ρb,c not to break
any underlying segments, forbidding scenarios such as (73a). The reason behind this difference can be
intuitively appreciated as follows. Dep quantifies over epenthetic surface segments and the two candidates
(a, c, ρa,bρb,c) and (a, b, ρa,b) compared by the inequality in the consequent of the FICcomp have different
surface strings b and c. In order to make these two strings “commensurate”, the correspondence relation
ρb,c which links them cannot break underlying segments. Max instead quantifies over deleted underlying
segments and the two candidates (a, c, ρa,bρb,c) and (a, b, ρa,b) compared by the FICcomp inequality share
the underlying form a, so that no additional “commensurability” assumptions are needed.

3.3.3. Ident

A phonological feature ϕ takes a segment a and returns a feature value. A feature is called binary if it
takes only two values; otherwise, it is called multi-valued. For instance, the feature [nasal] is binary while
the feature [place] could be construed as distinguishing between three major places of articulation, making
it multi-valued (de Lacy 2006, section 2.3.2.1.1). A feature ϕ is called total (relative to the candidate
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set) provided there is no underlying or surface string which contains a segment for which the feature ϕ
is undefined. The identity faithfulness constraint Identϕ corresponding to a total feature ϕ assigns to a
candidate (a, b, ρa,b) one violation for each pair (a, b) of an underlying segment a and a surface segment
b which are put in correspondence by ρa,b despite the fact that they are assigned different values by the
feature ϕ (McCarthy and Prince 1995). To illustrate, Ident[nasal] assigns two violations to the candidate
(a, b, ρa,b) in (74), because of the two corresponding pairs (/n/, [t]) and (/k/, [N]).

(74) a = a n t a N k

b = a t a N N

Let’s consider two candidates (a, b, ρa,b) and (b, c, ρb,c) together with their composition candidate (a, c, ρa,bρb,c).
Does the identity faithfulness constraint Ident[nasal] satisfy the FICcomp (67)?

We can reason exactly as in the two preceding subsections 3.3.1 and 3.3.2. We assume that the
antecedent of the FICcomp holds, namely that the candidate (b, c, ρb,c) does not violate Ident[nasal], as
in (75a).

(75) a. Id[nas](b, c)=0 b. Id[nas](a, c)=1 c. Id[nas](a, b)=1

b = ga

c = ga

a = Na

c = ga

a = Na

b = ga

Also, we assume that the left-hand side of the inequality in the consequent of the FICcomp is larger
than zero, namely that the composition candidate (a, c, ρa,bρb,c) does violate Ident[nasal], as in (75b).
By definition of the composition correspondence relation ρa,bρb,c, ρa,b must put in correspondence the
underlying nasal /N/ of a with the surface oral [g] of b, as represented in (75c). This says in turn that the
candidate (a, b, ρa,b) which figures in the right-hand side of the FICcomp inequality violates Ident[nasal]
as well, so that the inequality holds.

Also for Ident[nasal], as for Dep, the FICcomp requires no underlying segment to be broken by the
correspondence relation ρb,c, as shown by the counterexample (76), analogous to (73).

(76) a. Id[nas](b, c)=0 b. Id[nas](a, c)=2 c. Id[nas](a, b)=1

b = ga

c = gga

a = Na

c = gga

a = Na

b = ga

The antecedent of the FICcomp holds: gemination preserves nasality in the candidate in (76a) (which
could correspond for instance to the Japanese loan [fu.róg.gu] of English frog; Kubozono et al. 2008).
But the inequality in the consequent of the FICcomp fails: the composition candidate (76b) violates
Ident[nasal] twice because of the gemination while the candidate (76c) violates it only once, so that the
left-hand side of the inequality exceeds the right-hand side.

These considerations extend from Ident[nasal] to the identity faithfulness constraint Identϕ corre-
sponding to any feature ϕ, independently of whether it is binary or multivalued, as long as it is total.
The case of partial features is indeed more delicate. Assume that the identity faithfulness constraint
Identϕ corresponding to a partial feature ϕ assigns to a candidate (a, b, ρa,b) one violation for each pair
(a, b) ∈ ρa,b of corresponding segments such that the feature ϕ is defined for both segments and assigns
them a different value. Thus, Identϕ is not violated when the feature ϕ is undefined for at least one of
the two segments.9 To illustrate, suppose that the feature [strident] is only defined for coronals (Hayes
2009). The corresponding constraint Ident[strident] does not satisfy the FICcomp (67), as shown by the
counterexample (77).

9 Another option is to let Identϕ assign one violation also when the feature ϕ is undefined for one and only one of the
two segments in the corresponding pair (a, b). This definition of Identϕ effectively treats ϕ has a total but multi-valued
feature. Under this approach, feature partiality raises no additional complications for the FICcomp.
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(77) a. Id[str](b, c)=0 b. Id[str](a, c)=1 c. Id[str](a, b)=0

b = f a

c = s a

a = Ta

c = s a

a = Ta

b = f a

The antecedent of the FICcomp holds: the candidate (b, c, ρb,c) in (77a) does not violate Ident[strident],
because the underlying /f/ of b is not coronal and thus undefined for stridency. The right-hand side of
the FICcomp inequality is equal to 0: the candidate (a, b, ρa,b) in (77c) does not violate Ident[strident],
because again [f] is undefined for stridency. The FICcomp inequality fails because its left-hand side is
equal to 1: the composition candidate (a, c, ρa,bρb,c) in (77b) does violate Ident[strident], because of the
two corresponding coronal segments /T/ and [s]. These considerations lead to proposition 4, which will
be refined in section 3.4 and proven in appendix A.3.

Proposition 4 (provisional) The identity faithfulness constraint Identϕ relative to a phonological
feature ϕ satisfies the FICcomp (67) provided no correspondence relation in the candidate set breaks any
underlying segment and furthermore the feature ϕ is total relative to the candidate set. �

3.4. Establishing the FICcomp: restricted constraints

The phonological literature has made use of restricted variants of Max, Dep, and Ident which are
only offended when the deleted, epenthetic, or mismatching segments belong to a privileged segment set.
Privilege can be determined by segmental quality or position in the string. This section investigates how
these restricted constraints fair with respect to the FICcomp.

3.4.1. MaxR
A restriction R pairs a string a with a subset R(a) of its segments. A segment of the string a satisfies

the restriction provided it belongs to R(a). The faithfulness constraint MaxR assigns to a candidate
(a, b, ρa,b) one violation for each segment of the underlying string a which satisfies the restriction R and
is deleted. Deletion of underlying segments which do not satisfy the restriction is not penalized. To
illustrate, consider the restriction R which pairs a string a with the set R(a) of its consonants. The
corresponding constraint MaxR is the constraint Max-C which militates against consonant deletion,
but is not offended by vowel deletion (it thus assigns only one violation to the candidate (69), while
unrestricted Max assigns two violations).

While we have seen that unrestricted Max satisfies the FICcomp, its restricted counterpart MaxR can
fail at the FICcomp, as shown by the counterexample (78) for MaxR = Max-C.

(78) a. MaxR(b, c)=0 b. MaxR(a, c)=1 c. MaxR(a, b)=0

b = ee

c = e

a = es

c = e

a = e s

b = ee

The antecedent of the FICcomp holds: the candidate (b, c, ρb,c) in (78a) does not violate Max-C, because
the deleted segment is a vowel. The right-hand side of the FICcomp inequality is equal to zero: the candi-
date (a, b, ρa,b) in (78c) does not violate Max-C, because it involves no deletion. The FICcomp inequality
thus fails, because its left-hand side is instead equal to 1: the composition candidate (a, c, ρa,bρb,c) in
(78b) does violate Max-C, because it deletes a consonant.

In order for MaxR to fail at the FICcomp in (78), it is crucial that ρa,b establishes a correspondence
between the consonant /s/ and the vowel [e], namely between a segment which satisfies the restriction R
and a segment which does not satisfy it. Given a candidate (a, b, ρa,b), the correspondence relation ρa,b
is said to exit from the restriction R if it puts some underlying segment a which satisfies the restriction
R in correspondence with some surface segment b which does not satisfy it, as in (79). The top and
bottom rectangles represent the sets of segments of a and b, with the subsets selected by the restriction
R highlighted in gray.
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(79) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b) a

b

R(a)

R(b)

The following proposition ensures that MaxR satisfies the FICcomp provided no correspondence relation
in the candidate set exits from the restriction R. To illustrate, the proposition guarantees that Max-C
satisfies the FICcomp provided no underlying consonant is in correspondence with a surface vowel. The
proposition will be further extended in subsection 3.4.3.

Proposition 2 (provisional) Assume the candidate set contains no candidate (a, b, ρa,b) whose
correspondence relation exits from the restriction R, so that condition (79) is impossible relative to the
candidate set. The faithfulness constraint MaxR then satisfies the FICcomp (67). �

A restriction is trivial provided it pairs every string with the totality of its segments. The case of
unrestricted Max discussed in subsection 3.3.1 follows as a special case of MaxR with a trivial restriction
R: no correspondence relation can exit from R in this case and (79) is thus contradictory.

3.4.2. DepS

The reasoning in subsection 3.4.1 extends straightforwardly from Max to Dep. Given a restriction S,
the corresponding faithfulness constraint DepS assigns to a candidate (a, b, ρa,b) one violation for each
segment of the surface string b which satisfies the restriction S and is epenthetic.10 To illustrate, consider
the restriction S which pairs a string with the set of its vowels. The corresponding constraint DepS is the
constraint Dep-V which militates against vowel epenthesis, but is not offended by consonant epenthesis.
Given a candidate (a, b, ρa,b), the correspondence relation ρa,b is said to enter into S provided it puts
some underlying segment a which does not satisfy the restriction S in correspondence with some surface
segment b which does satisfy it, as in (80). Condition (80) is analogous to (79), only with the roles of
underlying and surface segments switched.

(80) (a, b) ∈ ρa,b, a 6∈ S(a), b ∈ S(b) a

b

S(a)

S(b)

In the case of MaxR, the no-exiting assumption that (79) is impossible suffices to establish the FICcomp.
In the case of DepS , the no-entering assumption that (80) is impossible needs to be coupled with the
no-breaking condition, as expected based on the discussion in subsection 3.3.2. The following proposition
guarantees that it suffices to require the no-breaking condition among the segments which satisfy the
restriction S, intuitively because DepS only cares about those segments. To illustrate, the proposition
guarantees that Dep-V satisfies the FICcomp provided no surface vowel is in correspondence with an
underlying consonant and furthermore no underlying vowel is diphthongized.11 The proposition will be
further extended in subsection 3.4.4.

Proposition 3 (provisional) Assume that no underlying segment which satisfies the restriction S
is broken into two surface segments which both satisfy the restriction S, in the sense that the candidate
set contains no candidate (a, b, ρa,b) with two different corresponding pairs (a, b1), (a, b2) ∈ ρa,b for the
same underlying segment a such that a ∈ S(a) and b1, b2 ∈ S(b). Assume furthermore that the candidate
set contains no candidate (a, b, ρa,b) whose correspondence relation enters into the restriction S, so that
condition (80) is impossible relative to the candidate set. The faithfulness constraint DepS then satisfies
the FICcomp (67). �

3.4.3. MaxSR
The doubly restricted constraint MaxSR assigns to a candidate (a, b, ρa,b) one violation for each seg-

ment of the underlying string a which satisfies the restriction R (namely, it belongs to R(a)) and has
no correspondent segment in the surface string b which satisfies the restriction S (namely, it belongs to

10 Throughout this section, a restriction on the underlying segments is denoted by R and appears as a subscript on the
constraint’s name (as in MaxR) while a restriction on the surface segments is denoted by S and appears as a superscript
(as in DepS).

11 Assuming a breaking analysis of vowel diphtongization.
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S(b))—although it might have surface correspondents which do not satisfy the restriction S. To illus-
trate, consider the restriction R which pairs a string with the set of its consonants and the restriction S
which pairs a string with the set of the segments in its initial syllable. MaxSR is Beckman’s (1999) con-
straint Max-C-σ1 which mandates that every consonant has a correspondent in the initial syllable. The
following proposition extends the analysis of the singly restricted MaxR to the doubly restricted MaxSR.
This proposition concludes the analysis of segmental Max constraints. The proof is a straightforward
verification, as shown in appendix A.1.

Proposition 2. Assume that the candidate set contains no candidate (a, b, ρa,b) which satisfies condition
(81), which is therefore impossible relative to the candidate set.

(81) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b), b ∈ S(b)

The faithfulness constraint MaxSR then satisfies the FICcomp (67). �

Condition (81) for MaxSR and condition (79) considered in subsection 3.4.1 for MaxR differ only in
that the former has the additional fourth clause b ∈ S(b). Because of this additional clause, the assump-
tion that (81) is impossible required for MaxSR to satisfy the FICcomp is weaker than the assumption
that (79) is impossible required for MaxR. To illustrate, the proposition says that the doubly restricted
Max-C-σ1 satisfies the FICcomp provided no consonant is in correspondence with the vowel of the ini-
tial syllable—while the singly restricted Max-C was shown in subsection 3.4.1 to require the stronger
assumption that no consonant is in correspondence with any vowel.

The case of MaxR follows as a special case of MaxSR with a trivial restriction S: the additional
clause b ∈ S(b) is trivially satisfied in this case and the two conditions (79) and (81) thus coincide. The
constraint MaxS always satisfies the FICcomp because in this case the restriction R is trivially satisfied
by every segment and thus the clause b 6∈ R(b) is impossible. As another interesting special case, suppose
that the two restrictions R and S coincide. Condition (81) is then contradictory, because it cannot be the
case that b 6∈ R(b) and b ∈ S(b). The constraint MaxSR thus satisfies the FICcomp without additional
assumptions. This observation will be used in subsections 3.5.1 to establish the FICcomp for featural Max
constraints.

3.4.4. DepSR
The reasoning in subsection 3.4.3 extends straightforwardly from MaxSR to DepSR. The doubly re-

stricted constraint DepSR assigns to a candidate (a, b, ρa,b) one violation for each segment of the surface
string b which satisfies the restriction S (namely, it belongs to S(b)) and has no correspondent segment in
the underlying string a which satisfies the restriction R (namely, it belongs to R(a))—although it might
have underlying correspondents which do not satisfy the restriction R. The following proposition extends
the analysis of the singly restricted DepS to the doubly restricted DepSR and thus concludes the analysis
of segmental Dep constraints. The assumption that (82) is impossible is weaker than the assumption
that (80) is impossible, because of the additional clause a ∈ R(a). The proof of the proposition is a
straightforward verification, as shown in appendix A.2.

Proposition 3. Assume that no underlying segment which satisfies the restriction S is broken into two
surface segments which both satisfy the restriction S, in the sense that the candidate set contains no
candidate (a, b, ρa,b) with two different corresponding paris (a, b1), (a, b2) ∈ ρa,b for the same underlying
segment a such that a ∈ S(a) and b1, b2 ∈ S(b). Assume furthermore that the candidate set contains no
candidate (a, b, ρa,b) which satisfies condition (82), which is therefore impossible relative to the candidate
set.

(82) (a, b) ∈ ρa,b, b ∈ S(b), a 6∈ S(a), a ∈ R(a)

The faithfulness constraint DepSR then satisfies the FICcomp (67). �

3.4.5. Identϕ,R

The faithfulness constraint Identϕ,R corresponding to a total feature ϕ and a restriction R assigns to
a candidate (a, b, ρa,b) one violation for each corresponding pair (a, b) ∈ ρa,b of segments which differ for
the value of the feature ϕ such that the underlying segment a satisfies the restriction R (namely it belongs
to R(a)). To illustrate, consider the restriction R which pairs a string with the set of its nasal segments.
The corresponding constraint Ident[nasal],R is the constraint IdentI→O[+nasal] of Pater (1999), which
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punishes de-nasalization (i.e., an underlying nasal segment with an oral surface correspondent), but not
nasalization. Proposition 4/A guarantees that Identϕ,R satisfies the FICcomp provided the candidate set
makes (83) impossible (and furthermore satisfies the usual no-breaking assumption).

Proposition 4 (A). Assume that no correspondence relation in the candidate set breaks any underlying
segment. Consider a feature ϕ which is total relative to the candidate set. Assume furthermore that the
candidate set contains no candidate (a, b, ρa,b) which satisfies condition (83), which is therefore impossible
relative to the candidate set.

(83) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b), ϕ(a) = ϕ(b)

The faithfulness constraint Identϕ,R then satisfies the FICcomp (67). �

Condition (83) coincides with condition (79) used above in the analysis of MaxR, apart from the
additional clause ϕ(a) = ϕ(b) that the two segments a and b are assigned the same value by the feature
ϕ. The assumption that (83) is impossible thus means that the correspondence relation ρa,b cannot exit
from R without changing the value of the feature ϕ. The assumption that (83) is impossible is thus
weaker than the assumption that (79) is impossible, which was needed above for MaxR. To illustrate,
consider again the feature ϕ = [nasal] and the restriction R which pairs a string with the set of its
nasals. Condition (83) is contradictory in this case, because the three clauses a ∈ R(a), b 6∈ R(b), and
ϕ(a) = ϕ(b) cannot hold simultaneously. Pater’s constraint IdentI→O[+nasal] = Ident[nasal],R thus
satisfies the FICcomp (provided there is no breaking).

3.4.6. IdentSϕ

The faithfulness constraint IdentSϕ is defined analogously, the only difference being that the restriction
is applied to surface rather than underlying segments. To illustrate, consider the restriction S which
pairs a string with the set of segments which belong to its initial syllable. The corresponding constraint
IdentS[high] is the constraint Identσ1

[high] of Beckman (1997, 1999), which is violated by a surface vowel in
the initial syllable in correspondence with an underlying vowel which differs with respect to the feature
[high]. As another example, consider the restriction S which pairs a string with the set of its nasal
segments. The corresponding constraint IdentS[nasal] is the constraint IdentO→I[+nasal] of Pater (1999),
which punishes nasalization (i.e., an underlying oral segment with a nasal surface correspondent), but
not de-nasalization. Proposition 4/B guarantees that IdentSϕ satisfies the FICcomp provided condition
(84) is impossible. This assumption means that the correspondence relation ρa,b cannot exit from R
without changing the value of the feature ϕ. The only difference between propositions 4/A and 4/B is
that the no-breaking assumption in the latter proposition is restricted to the segments which satisfy the
restriction. The proof of both propositions is a straightforward verification, as shown in appendix A.3.

Proposition 4 (B) Assume that no underlying segment which satisfies the restriction S can be
broken into two surface segments which both satisfy the restriction S, in the sense that the candidate
set contains no candidate (a, b, ρa,b) with two different candidate pairs (a, b1), (a, b2) ∈ ρa,b for the same
underlying segment a such that a ∈ S(a) and b1, b2 ∈ S(b). Consider a feature ϕ which is total relative
to the candidate set. Assume furthermore that the candidate set contains no candidate (a, b, ρa,b) which
satisfies condition (84), which is therefore impossible relative to the candidate set.

(84) (a, b) ∈ ρa,b, b ∈ S(b), a 6∈ S(a), ϕ(a) = ϕ(b)

The faithfulness constraint IdentSϕ then satisfies the FICcomp (67). �

3.4.7. IdentSϕ,R

For completeness, let’s also consider the faithfulness constraint IdentSϕ,R corresponding to a total
feature ϕ and two restrictions R,S, which assigns to a candidate (a, b, ρa,b) one violation for each pair
(a, b) ∈ ρa,b of an underlying segment a which satisfies the restriction R (namely, it belongs to R(a)) and a
surface segment b which satisfies the restriction S (namely, it belongs to S(b)) such that ϕ(a) 6= ϕ(b). To
illustrate, consider the constraint *Replace(coronal, labial) proposed in Boersma (1998): it is violated
by an underlying coronal consonant with a labial surface correspondent. It can be reinterpreted as the
constraint IdentS[place],R corresponding to a tri-valued feature [place] where the restrictions R and S
pair a string with the set of its coronal segments and the set of its labial segments, respectively. As
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another example, consider the *Map constraint in (85), proposed by White (2013) and Hayes and White
(to appear) building on Zuraw (2007, 2013): it is violated by an underlying voiceless stop which is in
correspondence with a surface voiced fricative. This constraint can be reinterpreted as the constraint
IdentS[voice],R or IdentS[cont],R where the restrictions R and S pair a string with the set of its voiceless
stops and the set of its voiced fricatives, respectively.12

(85) *Map
([
−voice
−cont

]
,

[
+voice
+cont

])
No simple conditions on the correspondence relations and the restrictions R,S seem to suffice to ensure

that the doubly restricted constraint IdentSϕ,R satisfies the FICcomp. In particular, it does not suffice
to simply assume that the two conditions (83) and (84) for IdentSϕ and Identϕ,R are both impossible.
Here is a counterexample. Consider a feature ϕ which is partial and binary. Consider the corresponding
feature ϕ̂ which is total and ternary, in the sense that ϕ̂ coincides with ϕ for any segment that ϕ is defined
for, while ϕ̂ assigns the dummy value “0” to the segments that ϕ is undefined for. Consider the identity
faithfulness constraint Identϕ relative to the partial feature ϕ, which only penalizes an underlying and
a corresponding surface segments when the feature is defined for both and assigns them a different value
(Identϕ does not assign a violation when the feature is defined for exactly one of the two corresponding
segments). This constraint Identϕ is identical to the doubly restricted identity faithfulness constraint
IdentSϕ̂,R relative to the total three-valued feature ϕ̂ and the restrictions R = S which pair a string
with the set of its segments for which the feature ϕ is defined (namely the set of segments to which the
corresponding total feature ϕ̂ assigns values ± and not the dummy value). Since the identity constraint
Identϕ corresponding to the partial feature ϕ has been shown not to satisfy the FICcomp in subsection
3.3.3, the doubly restricted constraint IdentSϕ̂,R cannot satisfy the FICcomp either. And yet conditions
(83) and (84) are both contradictory, because the restrictions R,S are defined in terms of the values of
the feature ϕ̂.

3.5. Establishing the FICcomp: other constraints

This section completes the analysis of the FICcomp within Correspondence Theory, by looking at a
variety of other faithfulness constraints which naturally arise within that framework. For simplicity, only
the unrestricted versions of these constraints are considered.

3.5.1. Max[+ϕ], Dep[+ϕ]

Let “+” be a designated value of a feature ϕ, either partial or total, either binary or multi-valued.
The faithfulness constraint Max[+ϕ] assigns to a candidate (a, b, ρa,b) one violation for each segment of
the underlying string a which has the designated value + for the feature ϕ but has no correspondent
in the the surface string b which shares the value + for the feature ϕ (Casali 1997, 1998; Walker 1999;
Lombardi 2001).13 To illustrate, Max[+voice] assigns two violations to the candidate (86), because both
/b/ and /d/ lose their voicing (through devoicing and deletion, respectively).

(86) a = b a d

b = p a

The featural constraint Max[+ϕ] coincides with the doubly restricted segmental constraint MaxSR when
the two restrictions R and S both pair up a string with the set of its segments which have the value +
for the feature ϕ. Since in particular R = S, condition (81) of proposition 2 is impossible, because its
last two clauses b 6∈ R(b) and b ∈ S(b) are contradictory. The following result thus follows as a special
case of proposition 2.

12 Zuraw (2013) actually assumes that *Map applies to corresponding output segments. Output-output correspondence
falls outside the scope of this work.

13 Throughout this document, I assume correspondence relations to be defined among segments. Correspondence
relations among feature values are then defined indirectly: two feature values are in correspondence provided their segmental
carriers are in correspondence. The investigation of idempotency in an auto-segmental framework where correspondence
relations are defined directly among feature values is left for future research.
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Proposition 5. Let “+” be a designated value of a feature ϕ (either binary or multivalued, either partial
or total). The faithfulness constraint Max[+ϕ] satisfies the FICcomp (67) under no additional assump-
tions. �

Analogous considerations hold for the constraint Dep[+ϕ], which assigns to a candidate (a, b, ρa,b) one
violation for each segment of the surface string b which has the designated value + for the feature ϕ but
has no correspondent in the the underlying string a which shares the value +.

Proposition 6. Let “+” be a designated value of a feature ϕ (either binary or multivalued, either partial
or total). Assume that no underlying segment with value + is broken into two surface segments which
both have value +. The faithfulness constraint Dep[+ϕ] then satisfies the FICcomp (67). �

The featural constraints Max[+ϕ]/Dep[+ϕ] differ subtly from the restricted segmental constraints
MaxR/DepS where R and S both pair a string with the set of its segments which have the value “+” for
the feature ϕ. In fact, MaxR/DepS are violated by an underlying/surface segment which has value “+”
and is deleted/epenthesized, while Max[+ϕ]/Dep[+ϕ] are violated by an underlying/surface segment which
has the value “+” and is deleted/epenthesized or put in correspondence with segments with a different
value for feature ϕ. This subtle difference is computationally substantial: Max[+ϕ]/Dep[+ϕ] satisfy the
FICcomp under no additional assumptions; but MaxR/DepS require the additional no-entering and no-
exiting assumptions that (79) and (80) are impossible, as seen in subsections 3.4.1-3.4.2. Formally, this
difference is due to the fact that Max[+ϕ]/Dep[+ϕ] coincide not with MaxR/DepS but with MaxSR/DepSR
with S = R.

3.5.2. Uniformity and Integrity

The faithfulness constraint Uniformity assigns to a candidate (a, b, ρa,b) one violation for each surface
coalescence, namely for each segment of the surface string b which has two or more correspondents in the
underlying string a according to ρa,b (McCarthy and Prince 1995). To illustrate, Uniformity assigns
two violations to the candidate (a, b, ρa,b) in (87), because of its two surface coalescences [b] and [f].
The constraint thus defined is coarse (Wheeler 2005): it does not distinguish between a coalescence
of just two segments (such as [f] below) and a coalescence of more than two segments (such as [b]).
This distinction can be captured through the following alternative gradient definition: the faithfulness
constraint Uniformitygrad assigns k violations for each coalescence of k ≥ 2 underlying segments.

(87) a = s k w i sm

b = b i f

While Dep punishes surface segments which have no underlying correspondents, Uniformity punishes
surface segments which have too many. The analysis of Dep in subsection 3.3.2 extends to Uniformity,
yielding the following proposition 7, whose simple verification is omitted for brevity.

Proposition 7. The faithfulness constraints Uniformity and Uniformitygrad satisfy the FICcomp (67)
provided no correspondence relation in the candidate set breaks any underlying segment. �

Analogous considerations hold for the faithfulness constraint Integrity, which assigns to a candidate
(a, b, ρa,b) one violation for each broken underlying segment, namely for each segment of the underlying
string a which has two or more correspondents in the surface string b according to ρa,b (see McCarthy and
Prince 1995 and Staroverov 2014 for discussion). The corresponding gradient constraint Integritygrad

assigns instead k violations for each underlying segment which is broken into k ≥ 2 surface segments.
While Max punishes underlying segments which have no surface correspondents, Integrity punishes un-
derlying segments which have too many. The analysis of Max in subsection 3.3.1 extends to Integrity,
yielding the following proposition 8.

Proposition 8. The faithfulness constraints Integrity and Integritygrad satisfy the FICcomp (67)
under no additional assumptions. �

3.5.3. Contiguity
The faithfulness constraint I-Contiguity assigns to a candidate (a, b, ρa,b) one violation for each

skipped underlying segment, namely for each segment of the underlying string a which has no correspon-
dents in the surface string b according to ρa,b and furthermore is flanked both on the left and on the right
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by underlying segments which instead do admit surface correspondents.14 The faithfulness constraint I-
Contiguity fails at the FICcomp, as shown by the counterexample (88). The antecedent of the FICcomp
holds: the candidate (b, c, ρb,c) in (88a) does not violate I-Contiguity because it has no skipped seg-
ments (the deleted coda /k/ does not count as skipped because it is string-final). The right-hand side
of the FICcomp inequality is small, namely equal to zero: the candidate (a, b, ρa,b) in (88c) (modeled
on metathesis in Rotuman; Carpenter 2002) does not violate I-Contiguity, because it has no skipped
segments (because no underlying segment is deleted). The FICcomp inequality fails because its left-hand
side is large, namely equal to 1: the composition candidate (a, c, ρa,bρb,c) in (88b) violates I-Contiguity
because /k/ is skipped.

(88) a. I-Con(b, c)=0 b. I-Con(a, c)=1 c. I-Con(a, b)=0

b = t a k

c = t a

a = t k a

c = t a

a = t k a

b = t a k

As McCarthy and Prince (1995) note, I-Contiguity can in most applications be re-defined as punishing
the deletion of internal segments, namely underlying segments which are flanked on both sides by other
underlying segments, no matter whether these flankers have correspondents. The counterexample (88)
shows that the constraint thus re-defined fails at the FICcomp as well. This is not surprising, because
the constraint thus redefined coincides with MaxR, where the restriction R pairs a string with the set of
its internal segments. As seen in subsection 3.4.1, MaxR fails at the FICcomp when the correspondence
relations can exit from the restriction R. That is precisely the case in the counterexample (88), as the
correspondence relation ρa,b establishes a correspondence between underlying /k/ (which satisfies the
restriction R because it is internal to a) and surface [k] (which does not satisfy the restriction R because
it is not internal to b). Analogous considerations hold for O-Contiguity.

3.5.4. Adjacency
Carpenter (2002) suggests to replace the faithfulness constraint I-Contiguity with the faithfulness

constraint O-Adjacency. The latter assigns to a candidate (a, b, ρa,b) one violation for any two pairs
(a1, b1), (a2, b2) of underlying segments a1, a2 and surface segments b1, b2 which are in correspondence
according to ρa,b despite the fact that b1, b2 are adjacent in the surface string b while a1, a2 are not
adjacent in the underlying string a. The faithfulness constraint I-Adjacency is defined analogously, by
looking at adjacency relative to the underlying string. To appreciate the difference between I-Contiguity
and O-Adjacency, consider again the counterexample (88) used to show that I-Contiguity fails at
the FICcomp. This counterexample raises no problems for O-Adjacency. The crucial difference is
that O-Adjacency assigns one violation to the candidate (a, b, ρa,b) in (88c), because of the two pairs
of corresponding segments (/t/, [t]) and (/a/, [a]). Indeed, despite the fact that O-Adjacency and
I-Contiguity are shown by Carpenter to do much of the same work, they differ with respect to the
FICcomp: I-Contiguity fails at the FICcomp, as seen in the preceding subsection; O-Adjacency instead
satisfies the FICcomp, as stated by the following proposition whose simple verification is omitted for
brevity.

Proposition 9. The faithfulness constraints O-Adjacency and I-Adjacency satisfy the FICcomp (67)
provided no correspondence relation in the candidate set breaks any underlying segment. �

3.5.5. Linearity
The faithfulness constraint Linearity punishes metathesis. McCarthy (2008, p. 198) defines this

constraint as follows: LinearityMcCarthy assigns to a candidate (a, b, ρa,b) one violation for each pair of
underlying segments a1 and a2 which admit two swapped surface correspondents, namely there exist two

14 McCarthy and Prince (1995) consider a slightly different definition, whereby I-Contiguity assigns to a candidate
(a, b, ρa,b) a number of violations which is equal to 1 (equal to 0) if the candidate has at least one (does not have any)
skipped segments. The choice between the two alternative definitions of I-Contiguity is irrelevant to the point made in
this subsection that it does not satisfy the FICcomp, since the candidates in the counterexample (88) have no more than
one skipped segment, so that the two definitions collapse.
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surface segments b1 and b2 such that a1 corresponds through ρa,b to b1, a2 corresponds to b2, and yet a1

precedes a2 while b1 follows b2. Heinz (2005) offers the following alternative definition: LinearityHeinz
assigns to a candidate (a, b, ρa,b) one violation for each pair of underlying segments a1 and a2 which admit
no non-swapped surface correspondents, namely there exist no two surface segments b1 and b2 such that
a1 corresponds through ρa,b to b1, a2 corresponds to b2, and both a1 precedes a2 and b1 precedes b2.15,16

The faithfulness constraint LinearityMcCarthy fails at the FICcomp when the candidate set allows both
coalescence and breaking, as shown by the counterexample (89). The antecedent of the FICcomp holds:
the candidate (b, c, ρb,c) in (89a) does not violate LinearityMcCarthy because it has a unique underlying
segment. The right-hand side of the FICcomp inequality is small, namely equal to zero: the candidate
(a, b, ρa,b) in (89c) does not violate LinearityMcCarthy, because it has a unique surface segment. The
FICcomp inequality fails because its left-hand side is large, namely equal to 1: the composition candidate
(a, c, ρa,bρb,c) in (89b) violates LinearityMcCarthy because the two underlying segments /a/ and /i/ are
in correspondence with the two surface segments [e] and [i] which have the opposite linear order.17

(89) a. LinMC(b, c)=0 b. LinMC(a, c)=1 c. LinMC(a, b)=0

b = e

c = i e

a = a i

c = i e

a = a i

b = e

This counterexample does not threaten LinearityHeinz. Although the composition candidate (89b) vio-
lates LinearityMcCarthy because the two underlying segments admit swapped surface segments, it does
not violate LinearityHeinz, because the two underlying segments also admit non-swapped correspon-
dents. These considerations lead to the following proposition, whose proof is a simple verification which
is omitted for brevity.

Proposition 10. The faithfulness constraint LinearityHeinz satisfies the FICcomp (67) under no ad-
ditional assumptions on the correspondence relations. The faithfulness constraint LinearityMcCarthy
satisfies the FICcomp (67) provided no correspondence relation in the candidate set breaks any underlying
segment into multiple surface segments or else no correspondence relation coalesces multiple underlying
segments into a single surface segment. �

McCarthy and Prince’s (1995) Contiguity and Carpenter’s (2002) Adjacency are closely related
constraints meant to serve the same purpose. The same holds for McCarthy’s (2008) and Heinz’s (2005)
slightly different implementations of Linearity constraints. The discussion in the last two subsections
has shown that these small differences in the definition of the constraints can have substantial formal
consequences for idempotency.

3.5.6. Constraint conjunction and disjunction
The OT literature has made use of constraints defined as boolean combinations of other constraints

(Crowhurst and Hewitt 1997; Wolf 2007). Two boolean operations which have figured prominently are
constraint conjunction (Smolensky 1995; Moreton and Smolensky 2002) and disjunction (Downing 1998,
2000). Constraint conjunction fails at the FICcomp, as shown by the counterexample in (90). The
conjoined constraint Ident[low]∧Ident[high] assigns one violation for each pair of corresponding segments
which differ for both features [low] and [high]. The antecedent of the FICcomp holds: the candidate

15 Heinz’s suggests a further departure from McCarthy’s formulation, namely the replacement of precedence with
immediate precedence. The difference has implications for the comparison between short and long distance metathesis
(Hume 1998, section 4; Heinz 2005). Yet, the difference between precedence and immediate precedence has no implications
for establishing the FICcomp, and I thus ignore it here.

16McCarthy’s formulation of Linearity counts over pairs of underlying segments a1, a2 which admit swapped surface
correspondents. I am thus comparing it here with what Heinz calls MaxContiguity. Heinz also considers a constraint
DepContiguity, which is defined analogously by counting over pairs of surface segments with no non-swapped underlying
correspondents.

17 LinearityMcCarthy counts over underlying segments, just like Max. Based on the discussion in section 3.3,
one might thus have expected LinearityMcCarthy to satisfy the FICcomp without requiring additional assumptions on
the correspondence relations, just as Max. The difference lies in the fact that Max counts over single segments while
LinearityMcCarthy counts over pairs of segments.
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(b, c, ρb,c) in (90a) does not violate the conjoined constraint, because /e/ and [i] only differ for the feature
[high]. The right-hand side of the FICcomp inequality is small, namely equal to zero: the candidate
(a, b, ρa,b) in (90c) does not violate the conjoined constraint, because /a/ and [e] only differ for the
feature [low]. The FICcomp inequality fails because its left-hand side is large, namely equal to 1: the
composition candidate (a, c, ρa,bρb,c) in (90b) violates the conjoined constraint, because /a/ and [i] differ
for both features [low] and [high].

(90) a. Id[low] ∧ Id[high](b, c)=0 b. Id[low] ∧ Id[high](a, c)=1 c. Id[low] ∧ Id[high](a, b)=0

b = e

c = i

a = a

c = i

a = a

b = e

The case of constraint disjunction is different. For concreteness, consider the disjunction Identϕ ∨
Identψ of two identity faithfulness constraints Identϕ and Identψ corresponding to two (total) features
ϕ and ψ. This constraint assigns one violation for each pair of corresponding segments which differ for
either features ϕ or ψ (possibly both). Proposition 11 ensures that it satisfies the FICcomp. The proof is a
straightforward verification, which is omitted for brevity. This conclusion easily extends to the disjunction
of other (disjoinable) faithfulness constraints: conditions on the FICcomp-compliance of the constraint
disjunction follow by combining conditions on the FICcomp-compliance of the faithfulness constraints
being combined in the disjunction.18

Proposition 11. Assume that the features ϕ and ψ are total and that correspondence relations are not
allowed to break any underlying segment. The disjunctive faithfulness constraint Identϕ ∨ Identψ then
satisfies the FICcomp (67). �

The difference between constraint conjunction and disjunction with respect to the FICcomp can be
appreciated as follows. Suppose that the antecedent of the FICcomp holds for the disjunction Ident[low]∨
Ident[high]. This means that the candidate (b, c, ρb,c) does not violate it. This entails in turn that the
candidate violates neither Ident[low] nor Ident[high]. The FICcomp for the disjunction thus follows from
the FICcomp previously established for the individual disjuncts. The case of conjunction is different:
even if the candidate (b, c, ρb,c) does not violate the conjunction Ident[low] ∧ Ident[high] as required
by the antecedent of the FICcomp, it could nonetheless violate one of the two conjuncts Ident[low] or
Ident[high]. The fact that the conjuncts satisfy the FICcomp thus provides no guarantees that their
conjunction satisfies it as well.

3.6. Conclusions

A grammar is idempotent provided it faithfully maps to itself any phonotactically licit phonological
form. Equivalently, a grammar fails at idempotency provided it displays at least one chain shift. Within
constraint-based phonology, the typology of grammars is defined through a constraint set and a candidate
set. Formal grammatical conditions such as idempotency must therefore be derivable from assumptions
on the constraint set and assumptions on the candidate set, which exclude potentially dangerous con-
straints and candidates. This chapter has pursued this idea within the (classical) OT implementation
of constraint-based phonology. Building on Tesar’s (2013) theory of output-drivenness, the theory of
idempotency has been developed in this chapter through two steps. First, proposition 1 has distilled
the FICcomp as a general condition on the faithfulness constraints which suffices to ensure idempotency.
Second, propositions 2-11 have established the FICcomp for a number of faithfulness constraints which
naturally arise within McCarthy and Prince’s (1995) Correspondence Theory, under various assumptions
on the correspondence relations in the candidate set. The overall picture obtained by combining these
propositions is summarized in the following result, which summarizes this chapter.

18 The situation is rather different for the disjunction of a faithfulness and a markedness constraint. Such a disjunction
can yield a constraint which is neither a faithfulness nor a markedness constraint (see Wolf 2007 for broader discussion),
contrary to what required by the classical implementation of OT defined in subsection 3.2.1.
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Proposition 12. Consider a candidate set which consists of triplets (a, b, ρa,b) of an underlying segment
string a and a surface segment string b together with a correspondence relation ρa,b between the segments
of a and those of b. Assume that this candidate set satisfies the reflexivity axiom (51) and the transitivity
axiom (66), repeated below in (91) and (92).

(91) If the candidate set contains a candidate (a, b, ρa,b) with a surface form b, it also contains the
corresponding identity candidate (b, b, Ib,b), where Ib,b is the identity correspondence relation
among the segments of b.

(92) If the candidate set contains two candidates (a, b, ρa,b) and (b, c, ρa,b) which share b as the surface
and underlying form, it also contains the composition candidate (a, c, ρa,bρb,c) whose correspon-
dence relation ρa,bρb,c is the composition of ρa,b and ρb,c.

Assume that no correspondence relation breaks any underlying segment, namely puts it in correspondence
with two or more surface segments. Assume furthermore that the constraint set only contains faithfulness
constraints drawn from the following list:

(93) a. Identϕ (when the feature ϕ is total, not necessarily binary);
b. segmental Max and Dep;
c. featural Max[±ϕ] and Dep[±ϕ] (for any feature ϕ);
d. Uniformity, Linearity and Adjacency.

The OT grammar corresponding to any ranking of this constraint set is idempotent. This conclusion
extends to the case where the constraint set contains restricted variants of these constraints (such as
MaxR, DepS, Identϕ,R, or IdentSϕ), as long as no correspondence relation crosses the restrictions,
namely puts in correspondence a segment which satisfies the restrictions with a segment which does not
satisfy them. �

A. Proofs

Throughout this appendix, I consider three strings a, b, and c, whose generic segments are denoted
by a, b, and c. I use statements such as “for every/some segment a” as a shorthand for “for every/some
segment a of the string a”, thus leaving the domain of the quantifiers implicit.

A.1. Proof of proposition 2

A segment a violates the constraint MaxSR relative to a candidate (a, b, ρa,b) provided a belongs to
R(a) and it has no ρa,b-correspondent in the surface string b which belongs to S(b). MaxSR assigns one
violation for each underlying segment which violates it. This appendix proves proposition 2 repeated
below, which establishes the FICcomp for MaxSR.

Proposition 2. The faithfulness constraint MaxSR satisfies the FICcomp

(94) If: MaxSR
(
b, c, ρb,c

)
= 0

Then: MaxSR
(
a, c, ρa,bρb,c

)
≤MaxSR

(
a, b, ρa,b

)
for any two candidates (a, b, ρa,b) and (b, c, ρb,c) such that the former candidate (a, b, ρa,b) has no under-
lying segment a and no surface segment b such that:

(95) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b), b ∈ S(b) �

Proof. Assume that the antecedent of the implication (94) holds, namely that the candidate
(b, c, ρb,c) does not violate MaxSR. The following chain of implications (96) then holds for any seg-
ment a of the string a. In step (96a), I have used the definition of MaxSR. In step (96b), I have used the
definition of the composition correspondence relation ρa,bρb,c. In step (96c), I have used the antecedent
of the implication (94), which guarantees that (*) entails (**). In fact, suppose by contradiction that (*)
is true but (**) false. This means that b ∈ R(b) and furthermore b has no surface correspondent c which
belongs to S(c). In other words, the candidate (b, c, ρb,c) incurs at least one violation of MaxSR, contra-
dicting the antecedent of the implication (94). In step (96d), I have replaced (**) with (***) because of
the assumption that (95) is impossible. In step (96e), I have used again the definition of MaxSR.
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(96) a violates MaxSR relative to (a, c, ρa,bρb,c)
(a)⇐⇒ a ∈ R(a) and ∀c

[
(a, c) ∈ ρa,bρb,c → c 6∈ S(c)

]
(b)⇐⇒ a ∈ R(a) and ∀b

[
(a, b) ∈ ρa,b → ∀c

[
(b, c) ∈ ρb,c → c 6∈ S(c)

]
︸ ︷︷ ︸

(∗)

]
(c)
=⇒ a ∈ R(a) and ∀b

[
(a, b) ∈ ρa,b → b 6∈ R(b)︸ ︷︷ ︸

(∗∗)

]
(d)⇐⇒ a ∈ R(a) and ∀b

[
(a, b) ∈ ρa,b → b 6∈ S(b)︸ ︷︷ ︸

(∗∗∗)

]
(e)⇐⇒ a violates MaxSR relative to (a, b, ρa,b)

The chain of implications (96) says that, if an underlying segment a violates MaxSR relative to the
composition candidate (a, c, ρa,bρb,c), then a also violates MaxSR relative to the candidate (a, b, ρa,b).
This conclusion establishes the inequality in the consequent of the FICcomp (94). �

By (96), if a violates MaxSR relative to (a, c, ρa,bρb,c), then a also violates MaxSR relative to (a, b, ρa,b).
Suppose that the restriction S is trivial, namely S pairs any string a with the complete set S(a) of
its segments. In this case, the reverse implication trivially holds as well: if a violates MaxR relative to
(a, b, ρa,b), then a has no ρa,b-correspondents in b and therefore a cannot have any ρa,bρb,c-correspondents
in c neither, thus violating MaxR also relative to (a, c, ρa,bρb,c). In conclusion, the inequality in the
consequent of the FICcomp (94) holds as an identity in the case where S is the trivial restriction.

A.2. Proof of proposition 3

A segment b violates the constraint DepSR relative to a candidate (a, b, ρa,b) provided b belongs to
S(b) and has no ρa,b-correspondent in the underlying string a which belongs to R(a). DepSR assigns one
violation for each surface segment which violates it. This appendix proves proposition 3 repeated below,
which establishes the FICcomp for DepSR.

Proposition 3. The faithfulness constraint DepSR satisfies the FICcomp

(97) If: DepSR
(
b, c, ρb,c

)
= 0

Then: DepSR
(
a, c, ρa,bρb,c

)
≤ DepSR

(
a, b, ρa,b

)
for any two candidates (a, b, ρa,b) and (b, c, ρb,c) such that the latter candidate (b, c, ρb,c) has no underlying
segment b and no surface segment c such that

(98) (b, c) ∈ ρb,c, c ∈ S(c), b 6∈ S(b), b ∈ R(b)

and furthermore it enforces no breaking among the segments which satisfy the restriction S, namely there
exist no underlying segment b and no surface segments c1, c2 such that

(99) b ∈ S(b), c1, c2 ∈ S(c), (b, c1) ∈ ρb,c, (b, c2) ∈ ρb,c, c1 6= c2 �

Proof. Assume that the antecedent of the implication (97) holds, namely that the candidate
(b, c, ρb,c) does not violate DepSR. The following chain of implications (100) then holds for any seg-
ment c of the string c. In step (100a), I have used the definition of DepSR. In step (100b), I have used the
definition of the composition correspondence relation ρa,bρb,c. In step (100c), I have used the antecedent
of the implication (97), which guarantees that the surface segment c ∈ S(c) admits a correspondent
underlying segment b ∈ R(b) according to ρb,c. In step (100d), I have replaced replaced (*) with (**)
because of the assumption that (98) is impossible. In step (100e), I have used again the definition of
DepSR. Note that the no-breaking assumption that (99) is impossible has not been used in deriving the
chain of implications (100). Note that the chain of implications (100) makes no use of the no-breaking
assumption (99).
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(100) c violates DepSR relative to (a, c, ρa,bρb,c)
(a)⇐⇒ c ∈ S(c) and ∀a

[
(a, c) ∈ ρa,bρb,c → a 6∈ R(a)

]
(b)⇐⇒ c ∈ S(c) and ∀b

[
(b, c) ∈ ρb,c → ∀a

[
(a, b) ∈ ρa,b → a 6∈ R(a)

]]
(c)

=⇒ c ∈ S(c) and ∃b
[
(b, c) ∈ ρb,c and b ∈ R(b)︸ ︷︷ ︸

(∗)

and ∀a
[
(a, b) ∈ ρa,b → a 6∈ R(a)

]]
(d)

=⇒ c ∈ S(c) and ∃b
[
(b, c) ∈ ρb,c and b ∈ S(b)︸ ︷︷ ︸

(∗∗)

and ∀a
[
(a, b) ∈ ρa,b → a 6∈ R(a)

]]
(e)⇐⇒ c ∈ S(c) and ∃b

[
(b, c) ∈ ρb,c and b violates DepSR relative to (a, b, ρa,b)

]
By (100), for each segment c which violates DepSR relative to (a, c, ρa,bρb,c), there exists a segment

b which violates DepSR relative to (a, b, ρa,b) such that (b, c) ∈ ρb,c. This is not sufficient to secure the
inequality in the consequent of (97). In fact, it could still be the case that two different segments c1 and c2

which violate DepSR relative to (a, c, ρa,bρb,c) both correspond to the same segment b which violates DepSR
relative to (a, b, ρa,b). In this case, (a, c, ρa,bρb,c) could have more epenthetic segments than (a, b, ρa,b) and
the inequality in the consequent of (97) would fail.19 In order to secure the inequality in the consequent
of (97), I need to make sure that the mapping from the segments c1,2 , . . . which violate DepSR relative
to (a, c, ρa,bρb,c) to the segments b1, b2, . . . which violate DepSR relative to (a, b, ρa,b) defined by (100) is
injective: if two violating segments c1, c2 are different, the two corresponding violating segments b1, b2

are different as well.
The no-breaking assumption (99) serves precisely this purpose. Indeed, consider two different segments

c1 and c2 which both violate the constraint DepSR relative to (a, c, ρa,c) and thus both belong to S(c). By
(100), there exist segments b1, b2 such that (b1, c1), (b2, c2) ∈ ρb,c and furthermore b1, b2 violate DepSR
relative to (a, b, ρa,b) and thus belong to S(b). If it were b1 = b2 = b, it would be (b, c1) ∈ ρb,c and
(b, c2) ∈ ρb,c, contradicting the no-breaking assumption (99). In conclusion, (100) establishes an injective
mapping from the segments c1, c2, . . . which violate DepSR relative to (a, c, ρa,c) to the segments b1, b2, . . .

which violate DepSR relative to (a, b, ρa,b). This conclusion establishes the inequality in the consequent
of the FICcomp (97). �

The two chains of implications (96) and (100) in the proofs of the two propositions 2 and 3 for MaxSR
and DepSR are completely analogous. Yet, the no-crossing assumptions (95) and (98) target different
correspondence relations: the former targets the correspondence relation ρa,b; the latter targets the
correspondence relation ρb,c.

A.3. Proof of proposition 4
A pair (a, b) of an underlying segment a and a surface segment b violate the faithfulness constraint

Identϕ,R relative to a candidate (a, b, ρa,b) provided the following three conditions hold: the two segments
a and b are in correspondence: (a, b) ∈ ρa,b; the two segments a and b differ with respect to feature ϕ:
ϕ(a) 6= ϕ(b); the underlying segment a belongs to R(a) and thus satisfies the restriction R. Identϕ,R

assigns one violation for each underlying/surface segment pair (a, b) which violates it. This appendix
proves proposition 4/A repeated below, which establishes the FICcomp for Identϕ,R. The proof of
proposition 4/B for IdentSϕ is analogous.

Proposition 4 (A) Consider a total feature ϕ. The identity faithfulness constraint Identϕ,R satisfies
the FICcomp

(101) If: Identϕ,R

(
b, c, ρb,c

)
= 0

Then: Identϕ,R

(
a, c, ρa,bρb,c

)
≤ Identϕ,R

(
a, b, ρa,b

)
for any two candidates (a, b, ρa,b) and (b, c, ρb,c) such that the former candidate (a, b, ρa,b) has no under-
lying segment a and no surface segment b such that

19 That is precisely what happens in the counterexample (73): the two segments c1 = [e] and c2 = [i] are both epithetic
relative (a, c, ρa,bρb,c); they both correspond to the same segment b = [@] which is indeed epenthetic relative to (a, b, ρa,b).
The candidate (a, c, ρa,bρb,c) thus has more epenthetic segments than the candidate (a, b, ρa,b) and the inequality in the
consequent of (97) thus fails.
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(102) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b), ϕ(a) = ϕ(b)

and furthermore either the correspondence relation ρa,b does not break any underlying segment into two
or more surface segments, namely there exist no underlying segment a and no surface segments b1, b2

such that

(103) (a, b1) ∈ ρa,b, (a, b2) ∈ ρa,b, b1 6= b2 �

Proof. Assume that the antecedent of the implication (101) holds, namely that the candidate
(b, c, ρb,c) does not violate Identϕ,R. The following chain of implications (104) then holds for any
segment a of the string a and any segment c of the string c. In step (104a), I have used the definition
of the constraint Identϕ,R. In step (104b), I have used the definition of the composition correspondence
relation ρa,bρb,c. In step (104c), I have added the conjunct (*). This is licit because the antecedent of
(101) guarantees that the the pair of segments (b, c) does not violate the constraint Identϕ,R relative
to (b, c, ρb,c). Since they are in correspondence through ρb,c, this means that either ϕ(b) 6∈ R(b) or else
ϕ(b) = ϕ(c). In step (104d), I have replaced (*) with the equivalent (**). In fact, if it is the first condition
ϕ(b) = ϕ(c) of the disjunction (*) which holds, then it must be ϕ(a) 6= ϕ(b), because ϕ(a) 6= ϕ(c). If it
is instead the second condition b 6∈ R(b) of the disjunction (*) which holds, then it must be ϕ(a) 6= ϕ(b),
because (102) is impossible. Finally, in step (104e), I have used again the definition of Identϕ,R relative
to (a, b, ρa,b). Note that the chain of implications (104) does not make use of the no-breaking assumption
(103).

(104) (a, c) violates Identϕ,R relative to (a, c, ρa,bρb,c)
(a)⇐⇒ ϕ(a) ∈ R(a), ϕ(a) 6= ϕ(c), (a, c) ∈ ρa,bρb,c
(b)⇐⇒ ϕ(a) ∈ R(a), ϕ(a) 6= ϕ(c), ∃b

[
(a, b) ∈ ρa,b, (b, c) ∈ ρb,c

]
(c)⇐⇒ ϕ(a) ∈ R(a), ϕ(a) 6= ϕ(c), ∃b

[
(a, b) ∈ ρa,b, (b, c) ∈ ρb,c,

[
ϕ(b) = ϕ(c) or b 6∈ R(b)

]︸ ︷︷ ︸
(∗)

]
(d)

=⇒ ϕ(a) ∈ R(a), ϕ(a) 6= ϕ(c), ∃b
[
(a, b) ∈ ρa,b, (b, c) ∈ ρb,c, ϕ(a) 6= ϕ(b)︸ ︷︷ ︸

(∗∗)

]
(e)⇐⇒ ∃b

[
(b, c) ∈ ρb,c and (a, b) violates Identϕ,R relative to (a, b, ρa,b)

]
Consider two different pairs (a1, c1) and (a2, c2) which both violate the faithfulness constraint Identϕ,R

relative to (a, c, ρa,bρb,c). The chain of implications (104) guarantees that there exist b1, b2 such that
the two pairs (a1, b1) and (a2, b2) violate the faithfulness constraint Identϕ,R relative to (a, b, ρa,b) and
furthermore (b1, c1) ∈ ρb,c and (b2, c2) ∈ ρb,c. If a1 6= a2, also the two pairs (a1, b1) and (a2, b2) are
different. Thus assume that a1 = a2 = a, whereby c1 6= c2. If it were b1 = b2 = b, then the latter
two conditions would say that (b, c1) ∈ ρb,c and (b, c2) ∈ ρb,c, contradicting the hypothesis that the
correspondence relation ρb,c cannot break any underlying segment b. In conclusion, (104) defines an
injective mapping from the pairs (a, c) which violate the constraint Identϕ,R relative to (a, c, ρa,c) to
the pairs (a, b) which violate it relative to (a, b, ρa,b). This conclusion establishes the inequality in the
consequent of the implication (101). �





CHAPTER 4

Idempotency and the triangle inequality

A phonological grammar is idempotent provided it maps any phonotactically licit form faithfully to
itself. Chapter 3 has shown that idempotency in OT follows from a condition on the faithfulness con-
straints, referred to as the FIC. Since phonology is by-and-large idempotent (chain shifts are attested but
marginal), faithfulness constraint must by-and-large satisfy the FIC, as I have indeed verified in chapter
3 for a variety of constraints which naturally arise within the Correspondence Theory of faithfulness.
That is apparently surprising, since the FIC looks prima facie like a rather technical formal condition:
why should the faithfulness constraints used in phonological theory satisfy it? This chapter answers this
question by showing that the FIC actually admits an intuitive interpretation: it simply requires the faith-
fulness constraints to measure the phonological distance between underlying and surface representation
in a sensible way, namely in compliance with the metrical triangle inequality.

This chapter is organized as follows. Section 4.1 introduces this crucial metric inequality for faithful-
ness constraints. Section 4.2 offers a digression on Harmonic Grammar, where the connection between
idempotency and the triangle inequality is more readily visible. Section 4.3 probes deeper into the formal
underpinning of the theory of faithfulness, developing a thorough formalization of McCarthy’s (2003)
conjecture that faithfulness constraints are categorical. Finally, section 4.4 shows that the FIC for cat-
egorical faithfulness constraints is indeed equivalent to the requirement that they measure phonological
distances in compliance with the triangle inequality.

4.1. The metric nature of the faithfulness constraints

This section formalizes the intuition that faithfulness constraints measure the phonological distance
between underlying and surface forms in compliance with a core axiom of the notion of distance, namely
the triangle inequality.

4.1.1. Intuition: the metric triangle inequality
A distance (or a metric) maps two points A and B to a non-negative value dist(A,B). In order to

capture the intuitive notion of distance, this mapping needs to satisfy some core axioms (Rudin 1953,
ch. 2). One of these axioms is the triangle inequality (105): the distance between two points A and C
is never larger than the sum of the distance between A and B plus the distance between B and C, no
matter how the intermediate point B is chosen. In other words, no side of a triangle can be longer than
the sum of the other two sides.

(105) dist(A,C) ≤ dist(A,B) + dist(B,C) A

B

C

Motivated by the intuition that a faithfulness constraint measures the phonological distance between
underlying and corresponding surface forms, I extend the metric triangle inequality to faithfulness con-
straints as condition (106) for any two candidates (a, b, ρa,b) and (b, c, ρb,c) which share the string b as
the underlying and the surface form, respectively.1

(106) F
(
a, c, ρa,c

)
≤ F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)
In order to enforce this condition, we need an explicit assumption on the correspondence relation ρa,c
which appears on the left-hand side of (106).

1 The triangle inequality is applied here to each faithfulness constraint individually, rather than to some aggregation
(e.g., a weighted sum) of their number of violations.
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4.1.2. Formalization: the FTIcomp

No faithfulness constraint satisfies condition (106) for every correspondence relation ρa,c, because
some choices of ρa,c make the left-hand side too large (for instance when ρa,c is empty and F is Max
or Dep). Conversely, every faithfulness constraint satisfies condition (106) for some correspondence
relation ρa,c, because some choices of ρa,c make the left-hand side equal to zero (for instance when ρa,c
is total and F is Max or Dep). Some link is needed between the correspondence relations ρa,b and ρb,c
on the right-hand side of (106) and the correspondence relation ρa,c on the left-hand side. A natural
assumption is that ρa,c is the composition ρa,bρb,c of the correspondence relations ρa,b and ρb,c, whose
existence is guaranteed by the transitivity axion (66). In conclusion, a faithfulness constraint F is said to
satisfy the faithfulness triangle inequality (FTIcomp) provided condition (107) holds for any two candidates
(a, b, ρa,b) and (b, c, ρb,c) and their composition candidate (a, c, ρa,bρb,c). The subscript “comp” in the
acronym FTIcomp makes it explicit that the candidate on the left-hand side of the inequality (107) is the
composition candidate.

(107) F
(
a, c, ρa,bρb,c︸ ︷︷ ︸

ρa,c

)
≤ F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)
Subsection 4.4.6 will show that a wide range of faithfulness constraints within Correspondence Theory
satisfy the FTIcomp.

4.1.3. Faithfulness constraints and other metrical axioms
Besides the triangle inequality, a function dist from pair of points to non-negative numbers is required

two satisfy two additional axioms in order to satisfy the abstract definition of distance. The first axiom is
symmetry, which requires the distance between two points to be insensitive to their order: dist(A,B) =
dist(B,A). The second axiom is the identity of the indiscernibles, which requires two points to coincide
if and only if their distance is null: A = B iff dist(A,B) = 0. Together with the triangle inequality, these
axioms ensure the non-negativity of a distance: dist(A,B) ≥ 0. Symmetry holds for certain faithfulness
constraints (most notably, those of the Ident type), but fails for core faithfulness constraints such as
Max and Dep (see Magri 2015 for the computational implications of symmetric faithfulness constraints).
Half of the identity of the indiscernibles is enforced by the definition (56) of the faithfulness constraints
provided in subsection 3.2.1: if the underlying and surface forms coincide (and the correspondence relation
is the identity), their faithfulness violations are equal to zero. But the other half of the identity of
the indiscernibles fails, as faithfulness constraints can obviously be satisfied by less than perfect string
identity. These considerations motivate the focus on the remaining crucial metric axiom, namely the
triangle inequality.

4.1.4. Summary
This section has introduced the FTIcomp (107), which formalizes the intuition that faithfulness con-

straints measure the phonological distance between underlying and surface forms in compliance with
a crucial axiom of the abstract notion of distance, namely the triangle inequality. A number of ques-
tions now arises: which faithfulness constraints satisfy this metrical faithfulness condition? what are its
implication for phonological theory. The rest of this chapter will address these questions.

4.2. Idempotency in Harmonic Grammar and the triangle inequality

Chapter 3 has introduced the structural condition of idempotency and has investigated it for (classical)
OT. In particular, it has established the FICcomp as a sufficient condition for idempotency in OT. The
goal of this chapter is to provide an intuitive interpretation of the FICcomp, by showing that it is related
to the FTIcomp, namely to the requirement that faithfulness constraints measure phonological distance in
a sensible way, namely in compliance with the triangle inequality. Towards establishing this connection,
this section makes a digression on the related framework of Harmonic Grammar (HG; Legendre et al.
1990b,a; Smolensky and Legendre 2006), which allows for a more pristine view of the relationship between
idempotency and the faithfulness triangle inequality.

4.2.1. Harmonic Grammar
As OT, also HG presupposes an underlying candidate set together with a constraint set which extracts

the relevant phonological properties of the candidates. A constraint weighting θ assigns a numerical
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weight θC ≥ 0 to each constraint C. The weighting θ prefers a candidate (a, b, ρa,b) to another candidate
(c, d, ρc,d) provided the weighted sum of the constraint violations of the former candidate is smaller than
that of the latter, as in (108). The HG grammar Gθ corresponding to a constraint weighting θ maps an
underlying form a to a candidate (a, b, ρa,b) which is preferred by the weighting θ to all other candidates
(a, c, ρa,c) which share that underlying form a.

(108)
∑
C

θCC(a, b, ρa,b) <
∑
C

θCC(c, d, ρc,d)

Constraints are always interpreted as expressing penalties, never rewards. Hence, constraint weights
need to be enforced to satisfy the non-negativity condition θC ≥ 0 in order for HG to avoid undesired
typological predictions, whereby less marked structures are mapped to more marked ones (Legendre et al.
2006; Keller 2000). This assumption that constraint weights are non-negative plays a crucial role in the
rest of this section (in particular in the proof of Proposition 13 below provided in Appendix A.1).

4.2.2. A condition on the candidate set: the one-to-one assumption
Which conditions on the candidate and the constraint set ensure that the HG grammars corresponding

to any weighting is idempotent? Let me start with candidate conditions. The counterexamples in
subsection 3.3.2 and 3.3.3 have shown that OT idempotency fails when correspondence relations can
break an underlying segment into multiple surface segments. Let me recall the counterexample. The
grammar (109) fails at idempotency: b = [g] is phonotactically licit, as it is the surface realization of
a = /N/, which Ident[nasal] prevents from geminating; yet b = /g/ cannot surface faithfully, because
Ident[nasal] fails at protecting it against gemination.

(109)
/N/ Ident[nas] Stress

+ a = N

b = g

∗ ∗

a = N

c = gg

∗∗!

/g/ Ident[nas] Stress

b = g

b = g

∗!

+ b = g

c = gg

The no-breaking assumption is thus necessary for idempotency in OT. The same counterexample of course
shows that the no-breaking assumption is needed for idempotency in HG as well.

The situation is different for coalescence of two underlying segments into a single surface segment.
While coalescence does not threaten OT idempotency, it does hinder HG idempotency, as shown by the
following counterexample. Before the suffix /-i/, Finnish long low vowels shorten (/aa/→ [a]), short low
vowels raise (/a/→ [o]), short round vowels surface faithfully (/o/→ [o]) (Łubowicz 2011).

(110) sing nom plural essive
a. /aa/→ [a]: maa ma-i-na ‘earth’

vapaa vapa-i-na ‘free’
b. /a/→ [o]: kissa kisso-i-na ‘cat’

vapa vapo-i-na ‘fishing rod’
c. /o/→ [o]: talo talo-i-na ‘house’

pelko pelko-i-na ‘fear’

Let’s analyze vowel shortening as coalescence of two underlying vowels into a single surface vowel. The
mapping /aa/→ [o] thus violates the faithfulness constraint F = Ident[low] twice, while the mapping
/a/→ [o] violates it only once, as represented in (111). Assume that the constraint set also contains a
markedness constraintM which punishes [a]. The HG grammar corresponding to the weights θF = 2 and
θM = 3 yields the chain shift (110) and thus fails at idempotency: the short low vowel [a] is phonotactically
licit, as it is the surface realization of the long low vowel /aa/ which Ident[low] prevents from raising;
yet, /a/ does not surface faithfully, because Ident[low] fails to protect it.

(111) /aa/ F = Ident[low] M

+ [a] ∗
[o] ∗∗

/a/ F = Ident[low] M

[a] ∗
+ [o] ∗
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In conclusion, HG idempotency fails even in the simplest cases when correspondence relations display
breaking or coalescence, thus effectively requiring the correspondence relations in the candidate set to be
one-to-one.

4.2.3. A condition on the faithfulness constraint set: the FICHG
comp

The following Proposition 13 provides the HG analogue of the OT Proposition 1. The proof is provided
in Appendix A.1. Condition (112) will be referred to as the HG faithfulness idempotency condition
(FICHG). No assumptions are made on the markedness constraints, on the nature of the faithfulness
constraints (for instance, they are not required to be categorical), on the correspondence relations (for
instance, they are not required to be one-to-one).
Proposition 13. Assume that, for any two candidates (a, b, ρa,b) and (b, c, ρb,c), the candidate set also
contains a candidate (a, c, ρa,c) such that the following condition (112) holds for any faithfulness constraint
F in the constraint set.

(112) For every choice of the constant ξ ≥ 0:2

If: F
(
b, c, ρb,c

)
≤ ξ

Then: F
(
a, c, ρa,c

)
≤ F

(
a, b, ρa,b

)
+ ξ

Then, the HG grammar corresponding to any weighting of the constraint set is idempotent, no matter
what the markedness constraints look like. � �

In subsection 3.2.4, I have specialized the FICOT to the FICOT
comp, by focusing on the composition

candidate. Analogously, the FICHG (112) can be specialized to the FICHG
comp (113), by choosing as

the candidate (a, c, ρa,c) the composition (a, c, ρa,bρb,c) of (a, b, ρa,b) and (b, c, ρb,c), whose existence is
guaranteed by the transitivity axiom (66).

(113) For every choice of the constant ξ ≥ 0:
If: F

(
b, c, ρb,c

)
≤ ξ

Then: F
(
a, c, ρa,bρb,c︸ ︷︷ ︸

ρa,c

)
≤ F

(
a, b, ρa,b

)
+ ξ

This sufficient condition for idempotency provided by the FICHG
comp is tight: any faithfulness constraint

which fails the FICHG
comp can be shown to admit an elementary counterexample where HG idempotency

fails.

4.2.4. The FICHG
comp is stronger than the FICOT

comp in the general case

The sufficient condition for HG idempotency provided by the FICHG
comp (113) entails the sufficient

condition for OT idempotency provided by the FICOT
comp, repeated in (114) for ease of comparison. In

fact, the latter is a special case of the former corresponding to the choice ξ = 0.

(114) If: F
(
b, c, ρb,c

)
= 0

Then: F
(
a, c, ρa,bρb,c

)
≤ F

(
a, b, ρa,b

)
The reverse implication fails in the general case, showing that the FICHG

comp is stronger than the FICOT
comp.

Here is a counterexample. The faithfulness constraint Ident[low] satisfies the FICOT
comp under the no-

breaking assumption, by Proposition ??b. Yet, the counterexample (111) shows that it fails at the
FICHG

comp (113) for the two corresponding candidates (a, b, ρa,b) and (b, c, ρb,c) in (115a) and (115b), their
composition (a, c, ρa,bρb,c) in (115c), and the constant ξ = 1.5.

(115) a. Idt[low](a, b)=0 b. Idt[low](b, c)=1 c. Idt[low](a, c)=2

a = a a

b = a b = a

c = o

a = a a

c = o
The fact that the FICHG

comp is stronger than the FICOT
comp in the general case is unsurprising, given that

HG typologies are larger than OT typologies and thus harder to discipline to idempotency.

2 The implication (112) trivially holds also for ξ < 0, because the antecedent is always false in that case, due to the
non-negativity of constraint violations.
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4.2.5. The FICHG
comp is equivalent to the FTIcomp in the general case

Section 4.1 has introduced the FTIcomp repeated in (116) to formalize the condition that faithfulness
constraints measure phonological distance in compliance with the triangle inequality. Suppose the an-
tecedent of the FICHG

comp (113) holds. The term (*) in (116) is thus smaller than ξ and (116) entails the
consequent of the FICHG

comp. In other words, the FTIcomp entails the FICHG
comp.

(116) F
(
a, c, ρa,bρb,c

)
≤ F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)︸ ︷︷ ︸
(∗)

The reverse entailment holds as well, because the antecedent of the FICHG
comp (113) trivially holds with

the position ξ = F (b, c, ρb,c) and its consequent is equivalent to the FTIcomp (116) in this case. In con-
clusion, we have obtained the equivalence between the FICHG

comp and the FTIcomp stated by the following
Proposition 14.

Proposition 14. The FICHG
comp (113) and the FTIcomp repeated in (116) are equivalent: a faithfulness

constraint satisfies the former relative to two candidates (a, b, ρa,b) and (b, c, ρb,c) if and only if it satisfies
the latter. �

Since the triangle inequality characterizes the intuitive notion of distance, this proposition provides
an intuitive interpretation of the sufficient condition for HG idempotency provided by the FICHG

comp (113):
the FICHG

comp simply requires the faithfulness constraints to measure the phonological distance between
underlying and surface forms in a sensible way, namely in compliance with the triangle inequality.

4.2.6. Summary
This section has extended the theory of idempotency from OT to HG. In the case of HG, the sufficient

condition for idempotency provided by the FICHG
comp admits a straightforward metric interpretation in

terms of the triangle inequality. I now would like to derive an analogous interpretation for the sufficient
condition for idempotency in OT provided by the FICOT

comp derived in chapter 3. That turns out to require
a closer look at the formal theory of faithfulness, developed in the next section.

4.3. Faithfulness categoricity, additivity and monotonicity

McCarthy (2003b) conjectures that phonological constraints are all categorical. Informally, this means
that they assign at most one violation per locus of violation. McCarthy provides an explicit formalization
of categoritcity for markedness constraints (see his scheme (1) on p. 77). His treatment of faithfulness
constraints is not as explicit: he discusses individual faithfulness constraints but does not provide a
general scheme. This section fills the gap. The idea of the formalization is that a candidate can be sliced
into “sub-candidates” by slicing either its correspondence relation, or its underlying string, or its surface
string. A faithfulness constraint is additive provided the number of violations it assigns to a candidate is
the sum of the number of violations it assigns to the sub-candidates. An additive faithfulness constraint
is categorical provided it only takes values 0 or 1 when applied to the sub-candidates. Finally, additivity
entails monotonicity, which says that the number of violations of bigger candidates (namely, those with
more sub-candidates) ought to be larger.

4.3.1. Additivity, categoricity, and monotonicity w.r.t. correspondence relations
Intuitively, the identity faithfulness constraint Identϕ corresponding to a (total) feature ϕ counts

over pairs of corresponding segments (McCarthy and Prince 1995). This intuition can be formalized
through the following two-step definition. First, the constraint is defined for a candidate (a, b, ρa,b) whose
correspondence relation ρa,b consists of a single segment pair (a, b), as in (117a). Second, the definition is
extended to an arbitrary candidate (a, b, ρa,b) by summing over pairs (a, b) in the correspondence relation
ρa,b, as in (117b).

(117) a. Identϕ
(
a, b, {(a, b)}

)
=

{
1 if a and b differ relative to feature ϕ
0 otherwise

b. Identϕ
(
a, b, ρa,b

)
=

∑
(a,b)∈ρa,b

Identϕ
(
a, b, {(a, b)}

)
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Intuitively, the faithfulness constraints Linearity (McCarthy and Prince 1995) and I/O-Adjacency
(Carpenter 2002) count over two pairs of corresponding segments. This intuition can be formalized
through the following two-step definition. First, the constraints are defined for a candidate (a, b, ρa,b)
whose correspondence relation ρa,b consists of only two pairs of segments (a1, b1) and (a2, b2), as in (118).
I also consider the variant I/O-Adjacencygrad in (119), which is sensitive to the number of intervening
segments.

(118) Linearity
(
a, b, {(a1, b1), (a2, b2)}

)
=

=

{
1 a1 precedes a2 in a but b1 follows b2 in b
0 otherwise

I-Adjacency
(
a, b, {(a1, b1), (a2, b2)}

)
=

=

{
1 if a1, a2 are adjacent in a but b1, b2 are not adjacent in b
0 otherwise

O-Adjacency
(
a, b, {(a1, b1), (a2, b2)}

)
=

=

{
1 if b1, b2 are adjacent in b but a1, a2 are not adjacent in a
0 otherwise

(119) I-Adjacencygrad(a, b, {(a1, b1), (a2, b2)}
)

=

=

{
k if a1, a2 are adjacent but b1, b2 are separated by k segments
0 otherwise

O-Adjacencygrad(a, b, {(a1, b1), (a2, b2)}
)

=

=

{
k if b1, b2 are adjacent but a1, a2 are separated by k segments
0 otherwise

Second, the constraints are defined for an arbitrary candidate (a, b, ρa,b) by summing over any two pairs
(a1, b1) and (a2, b2) in the relation ρa,b, as in (120).

(120) F
(
a, b, ρa,b

)
=

∑
(a1,b1),(a2,b2)∈ρa,b

F
(
a, b, {(a1, b1), (a2, b2)}

)
Generalizing from these examples, a faithfulness constraint F is called additive relative to the corre-

spondence relations (C-additive) of order ` provided the identity (121) holds for any candidate (a, b, ρa,b).
The sum is over subsets of cardinality ` of the correspondence relation ρa,b (not necessarily disjunct one
from the other). In other words, the number of violations assigned by F to the candidate (a, b, ρa,b) is
the sum of the number of violations that F assigns to the “sub-candidates” (a, b, {(a1, b1), . . . , (a`, b`)})
obtained by considering all correspondence sub-relations {(a1, b1), . . . , (a`, b`)} of cardinality ` of ρa,b.

(121) F
(
a, b, ρa,b

)
=

∑
(a1,b1),...,(a`,b`)∈ρa,b

F
(
a, b, {(a1, b1), . . . , (a`, b`)}

)
F is called categorical relative to the correspondence relations (C-categorical) of order ` provided it is
additive and furthermore can only take values 0 or 1 when it is applied to a candidate whose correspon-
dence relation has cardinality `, so that the addenda on the right-hand side of (121) are all equal to 0
or 1. To illustrate, the constraint Identϕ is C-categorical of order 1; the constraints I/O-Adjacency
and Linearity are C-categorical of order 2; the constraints I/O-Adjacencygrad are C-additive but not
C-categorical.

Finally, a faithfulness constraint F is called monotone relative to the correspondence relations (C-
monotone) provided it satisfies the implication (122): if two candidates (a, b, ρa,b) and (a, b, ρ̂a,b) share
both the underlying string a and the surface string b and only differ because the correspondence relation
of the former is a subset of the correspondence relation of the latter, F assigns less violations to the
former candidate than to the latter.

(122) If: ρa,b ⊆ ρ̂a,b
Then: F

(
a, b, ρa,b

)
≤ F

(
a, b, ρ̂a,b

)
Any C-additive faithfulness constraint is C-monotone, as a larger correspondence relation yields more
addenda on the right-hand side of (121).
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4.3.2. Additivity, categoricity, and monotonicity w.r.t. underlying strings

Intuitively, the faithfulness constraints Max and Integrity (McCarthy and Prince 1995), Integritygrad

(Wheeler 2005) and Max[+ϕ] (Casali 1997, 1998; Walker 1999; Lombardi 2001) count over underlying
segments. This intuition can be formalized through the following two-step definition. First, these con-
straints are defined for a candidate (a, b, ρa,b) whose underlying string consists of a single segment a, as
in (123).

(123) Max
(
a, b, ρa,b

)
=

{
1 if a has no surface correspondent w.r.t ρa,b
0 otherwise

Int
(
a, b, ρa,b

)
=

{
1 if a has multiple correspondents w.r.t. ρa,b
0 otherwise

Intgrad(a, b, ρa,b
)

=

{
k if a has k≥2 correspondents w.r.t. ρa,b
0 otherwise

Max[+ϕ]

(
a, b, ρa,b

)
=


1 if a has value + for feature ϕ but a has no correspondent b w.r.t ρa,b such

that b also has value + for feature ϕ
0 otherwise

Second, the constraints are defined for a generic candidate (a, b, ρa,b) by summing over each segment a
of the underlying string a, as in (124).3 The correspondence relation ρa,b �(a,b) on the right-hand side of
(124) is the restriction of the correspondence relation ρa,b from the string a to its segment a.4

(124) F
(
a, b, ρa,b

)
=
∑
a⊆a

F
(
a, b, ρa,b �(a,b)

)
Intuitively, the faithfulness constraint MaxLinearity (Heinz 2005) counts over subsequences of length

2 of the underlying string. This intuition can be formalized through the following two-step definition.
First, the constraint is defined for a candidate (a1a2, b, ρa1a2,b) whose underlying string a1a2 has length
2, as in (125a). Second, the constraint is defined for an arbitrary candidate (a, b, ρa,b) by summing over
all subsequences a1a2 of length 2 of the underlying string a, as in (125b).

(125) a. MaxLin
(
a1a2, b, ρa1a2,b

)
=

{
1 if a1, a2 have no correspondents b1, b2 such that b1 precedes b2

0 otherwise

b. MaxLin
(
a, b, ρa,b

)
=

∑
a1a2⊆a

MaxLin
(
a1a2, b, ρa,b �(a1a2,b)

)
Generalizing from these examples, a faithfulness constraint F is called additive relative to the under-

lying strings (I-additive) of order ` provided the identity (126) holds for any candidate (a, b, ρa,b). The
sum is over all (possibly overlapping) subsequences of a of length `.5

(126) F
(
a, b, ρa,b

)
=

∑
a1···a`⊆a

F
(
a1 · · · a`, b, ρa,b �(a1···a`,b)

)
3 For any two strings a and b, the notation a ⊆ b indicates that a is a subsequence of b: a is obtained from b by

replacing some symbols of b with the empty symbol.
4 In other words, ρa,b �(a,b) is the set of those pairs (a′, b′) in ρa,b such that a′ = a. Once the underlying string a is

restricted to a single segment a, the correspondence relation ρa,b must necessarily be restricted to ρa,b �(a,b). In fact, the
triplet (a, b, ρa,b) (with the singleton underlying segment a and the original correspondence relation ρa,b) does not count as
a candidate according to the assumption (49) that correspondence relations hold between the segments of the two strings
in the candidate.

5 A subsequence needs not consist of contiguous elements, contrary to a substring: itk is both a subsequence and a
substring of pitkol, while ptkl is a subsequence but not a substring. It might be possible to define I-additivity in terms of a sum
over sub-strings of contiguous segments, rather than over sub-sequences of possibly non-contiguous strings. For Linearity-
type constraints, this modification would capture Heinz’s (2005) proposal that only immediate precedence matters in the
definition of the faithfulness constraints. Switching from sub-sequences to sub-strings would also have implications for
Adjacency-type constraints. They have been defined in (118) and (120) as counting over corresponding pairs, whereby
they qualify as C-categorical. An alternative definition of, say, I-Adjacency would be the following: it assigns to a
candidate (a, b, ρa,b) a number of violations equal to the number of underling adjacent pairs of segments which have no
adjacent surface correspondents. If I-additivity is redefined in terms of sub-strings, then I-Adjacency qualifies as I-additive
(it would not count as I-additive according to definition in terms of sub-sequences).
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F is called categorical relative to the underlying strings (I-categorical) of order ` provided it is additive
and furthermore it can only take values 0 or 1 when it is applied to a candidate whose underlying string
has length `, so that the addenda on the right-hand side of (126) are all equal to 0 or 1. To illustrate, the
constraints Max, Integrity, and Max[+ϕ] are I-categorical of order 1; the constraint MaxLinearity
is I-categorical of order 2; and the constraint Integritygrad is I-additive but not I-categorical.

Finally, a faithfulness constraint F is called monotone relative to the underlying strings (I-monotone)
provided it satisfies the implication (127): if two candidates (a, b, ρa,b) and (â, b, ρa,b) share both the
surface string b and the correspondence relation ρa,b and only differ because the underlying string a of
the former is a subsequence of the underlying string â of the latter,6 then F assigns less violations to the
former candidate than to the latter.

(127) If: a ⊆ â
Then: F

(
a, b, ρa,b

)
≤ F

(
â, b, ρa,b

)
Any I-additive faithfulness constraint is I-monotone, as a longer underlying string yields more addenda
on the right-hand side of (126).

4.3.3. A remark on the proper definition of I-additivity
Let me entertain an alternative definition of I-additivity through the alternative condition (128) instead

of the actual condition (126) considered above. In both the actual condition (126) and the variant (128),
the correspondence relation ρa,b which appears on the left-hand side is replaced on the right-hand side with
its restriction ρa,b �(a1···a`,b) to the underlying subsequence a1 · · · a`. Yet, the actual condition (126) and
the variant (128) differ because only the former also replaces the underlying string a with the underlying
subsequence a1 · · · a`. The variant (128) thus makes I-additivity completely analogous to condition (121)
used to define C-additivity: in both cases, the right-hand side sums over candidates which share the
underlying and surface strings of the original candidate, but have a restricted correspondence relation.

(128) F (a, b, ρa,b) =
∑

a1···a`⊆a

F (a, b, ρa,b �(a1···a`,b))

Yet, this alternative condition (128) makes no sense. To see that, suppose that the original correspon-
dence relation is empty: ρa,b = ∅. Its restriction to any underlying subsequence is thus empty as well:
ρa,b �(a1···a`,b)= ∅. Since the original and the restricted correspondence relations thus coincide, the original
candidate (a, b, ρa,b) which appears on the left-hand side of (128) and the candidates (a, b, ρa,b �(a1···a`,b))
which appear on the right-hand side coincide and must therefore be assigned the same number of viola-
tions by the faithfulness constraint F . Condition (128) is thus contradictory, unless F never assigns any
violations in the case of empty correspondence relations (which is obviously false for instance in the case
of Max).

4.3.4. Additivity, categoricity, and monotonicity w.r.t. surface strings

Intuitively, the faithfulness constraints Dep, Uniformity, Uniformitygrad, and Dep[+ϕ] count over
surface segments. As in Subsection 4.3.2, this intuition can be formalized through the following two-step
definition. First, the constraints are defined for a candidate (a, b, ρa,b) whose surface string consists of a
single segment b, as in (129).

(129) Dep
(
a, b, ρa,b

)
=

{
1 if b has no underlying correspondent w.r.t ρa,b
0 otherwise

Unif
(
a, b, ρa,b

)
=

{
1 if b has multiple correspondents w.r.t. ρa,b
0 otherwise

Unifgrad(a, b, ρa,b
)

=

{
k if b has k≥2 correspondents w.r.t. ρa,b
0 otherwise

Dep[+ϕ]

(
a, b, ρa,b

)
=


1 if b has value + for feature ϕ but b has no correspondent a w.r.t ρa,b

such that a also has value + for feature ϕ
0 otherwise

6 This implies that the shared correspondence relation must hold between the shared surface string b and the “smaller”
underlying string a.
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Second, the constraints are defined for a generic candidate (a, b, ρa,b) by summing over the segments b of
the surface string b, as in (130). The correspondence relation ρa,b �(a,b) which appears on the right-hand
side of (130) is the restriction of the original correspondence relation ρa,b to the surface segment b.

(130) F
(
a, b, ρa,b

)
=
∑
b⊆b

F
(
a, b, ρa,b �(a,b)

)
Intuitively, the faithfulness constraint DepLinearity (Heinz 2005) counts over subsequences of length

2 of the surface string. This intuition can be formalized through the following two-step definition. First,
the constraint is defined for a candidate (a, b1b2, ρa,b1b2) whose surface string b1b2 has length 2, as in
(131a). Second, the constraint is defined for an arbitrary candidate (a, b, ρa,b) by summing over all surface
subsequences b1b2 of length 2, as in (131b).

(131) a. DepLin
(
a, b1b2, ρa,b1b2

)
=

{
1 if b1, b2 have no correspondents a1, a2 such that a1 precedes a2

0 otherwise

b. DepLin
(
a, b, ρa,b

)
=

∑
b1b2⊆b

DepLin
(
a, b1b2, ρa,b �(a,b1b2)

)
Generalizing from these examples, a faithfulness constraint F is called additive relative to the surface

strings (O-additive) of order ` provided the identity (132) holds for any candidate (a, b, ρa,b). The sum
is over all (possibly overlapping) subsequences of b of length `.

(132) F
(
a, b, ρa,b

)
=

∑
b1···b`⊆b

F
(
a, b1 · · · b`, ρa,b �(a,b1···b`)

)
F is called categorical relative to the surface strings (O-categorical) of order ` provided it is additive and
furthermore it can only take values 0 or 1 when it is applied to a candidate whose surface string has
length `, so that the addenda on the right-hand side of (132) are all equal to 0 or 1. To illustrate, the
constraints Dep, Uniformity, and Dep[+ϕ] are O-categorical of order 1; the constraint DepLinearity
is O-categorical of order 2; and the constraint Uniformitygrad is O-additive but not O-categorical.

Finally, a faithfulness constraint F is called monotone relative to the surface strings (O-monotone)
provided it satisfies the implication (133): if two candidates (a, b, ρa,b) and (a, b̂, ρa,b) share both the
underlying string a and the correspondence relation ρa,b and only differ because the surface string b of
the former is a subsequence of the surface string b̂ of the latter, then F assigns less violations to the
former candidate than to the latter.

(133) If: b ⊆ b̂
Then: F

(
a, b, ρa,b

)
≤ F

(
a, b̂, ρa,b

)
Any O-additive faithfulness constraint is O-monotone, as a longer surface string yields more addenda on
the right-hand side of (132).

4.3.5. McCarthy’s (strengthened) categoricity conjecture
McCarthy (2003b) conjectures that every constraint which is relevant for phonological theory is cat-

egorical. Given the preceding discussion, this conjecture takes the following form for the faithfulness
constraints.
McCarthy’s categoricity conjecture. Any faithfulness constraint which is relevant for phonological
theory is either C-categorical, or I-categorical or O-categorical. �

The notion of categoricity builds on the notion of additivity. As remarked in Subsection 4.3.3, there is a
slight formal asymmetry between C-additivity on the one hand and I-/O-additivity on the other hand: all
three notions of additivity require a restriction of the correspondence relations; yet, only I-/O-additivity
(but not C-additivity) requires additional restrictions on the underlying and surface strings. I will now
formulate a slightly stronger version of McCarthy’s categoricity conjecture, which takes into account this
asymmetry.

The constraints Max, Max[+ϕ], Integrity, and MaxLinearity are I-categorical and therefore
automatically I-monotone, as shown in Subsection 4.3.2. They are also O-monotone: the number of
violations does not shrink (actually, it does not change at all) when the surface string is extended with
additional segments (while keeping the correspondence relation unchanged). This is illustrated in (134)
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for Max: the additional surface segment [i] in b̂ does not affect the number of deleted underlying segments
(the correspondence relation is the same in the two candidates, as required by O-monotonicity).

(134) a. Max
(
a, b, ρa,b

)
= 1 b. Max

(
a, b̂, ρa,b

)
= 1

a = uka r

b = k r a

a = ukar

b̂ = k i ra

Analogously, the constraints Dep, Dep[+ϕ], Uniformity, and DepLinearity are O-categorical and
therefore automatically O-monotone, as shown in Subsection 4.3.4. They are also I-monotone: the number
of violations does not shrink (actually, it does not change at all) when the underlying string is extended
with additional segments. These considerations suggest that McCarthy’s categoricity conjecture can
be strengthened as follows, complementing categoricity with monotonicity. This revised formulation of
the categoricity conjecture captures the formal asymmetry between C-categoricity and I-/O-categoricity.
This revision is crucial for proposition 15 to hold.
Strengthened categoricity conjecture. Any faithfulness constraint which is relevant for phonological
theory is either C-categorical; or I-categorical and O-monotone; or O-categorical and I-monotone. �

The conjecture makes no assumptions on the monotonicity of C-categorical constraints. Indeed, the C-
categorical constraint I-Adjacency (O-Adjacency) is O-monotone but not I-monotone (I-monotone
but not O-monotone), as additional underlying segments can disrupt adjacency and thus reduce viola-
tions.7

4.3.6. Summary
Informally, a candidate can be split into smaller “sub-candidates” by splitting either its correspondence

relation, or its underlying string, or its surface string. A faithfulness constraint is additive provided the
number of violations it assigns to a candidate is the sum of the number of violations it assigns to the
sub-candidates, as formalized by the three identities (121), (126), and (132). An additive faithfulness
constraint is categorical provided it only takes values 0 or 1 when applied to the sub-candidates, thus
formalizing McCarthy’s (2003b) notion of categoricity. Finally, additivity is closely related to monotonic-
ity, which says that the number of violations assigned to bigger candidates (namely, those with more
sub-candidates) ought to be larger. I will now use these formal preliminaries in order to obtain an in-
terpretation of the sufficient condition for idempotency in OT provided by the FICOT

comp in terms of the
triangle inequality.

4.4. OT Idempotency and the triangle inequality

Chapter 3 has looked at idempotency in OT. In particular, section 3.2 has established the FICOT
comp

(67) as a sufficient condition for OT idempotency, repeated in (135).

(135) If: F
(
b, c, ρb,c

)
= 0

Then: F
(
a, c, ρa,bρb,c

)
≤ F

(
a, b, ρa,b

)
The FICOT

comp (135) looks like a technical condition without an intuitive interpretation. The rest of this
section will derive an intuitive metric interpretation of this condition by investigating its relationship
with the FTIcomp introduced in section 4.1, repeated in (136).

(136) F
(
a, c, ρa,bρb,c

)
≤ F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)
4.4.1. The FTIcomp is stronger than the FICOT

comp in the general case

The FTIcomp entails the FICOT
comp in the general case. In fact, assume that the antecedent of the

FICOT
comp (135) holds, namely that F (b, c, ρb,c) = 0. In this case, the FTIcomp (136) coincides with the

consequent of the FICOT
comp, which therefore holds true. The reverse entailment fails in the general case, as

shown by the counterexample (137). The candidate (a, b, ρa,b) in (137a) does not violate the faithfulness

7 The alternative definition of I-Adjacency in footnote 5 makes it I-additive. Crucially, it is also O-monotone: adding
surface segments can only disrupt surface adjacency and thus increase the number of violations. Analogous considerations
hold for O-Adjacency.
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constraint Max: the two underlying consonants of the string a are coalesced into the single consonant of
b but not deleted. The candidate (b, c, ρb,c) in (137b) does violate Max once, because no correspondence
is established between the underlying and surface consonants. The composition candidate (a, c, ρa,bρb,c)
in (137c) violates Max twice, as both underlying consonants lack a correspondent according to the
composition correspondence relation ρa,bρb,c. Max thus fails at the FTIcomp (136): the left-hand side is
equal to 2 and is thus larger than the right-hand side which is instead equal to 0 + 1.

(137) a. Max(a, b) = 0 b. Max(b, c) = 1 c. Max(a, c) = 2

a = CCV

b = CV b = CV

c = CV

a = CCV

c = CV
As seen in subsection 3.3.1, proposition 2 guarantees that Max satisfies the FICOT

comp under no assumptions
on the correspondence relations. The counterexample (137) thus shows that the FTIcomp is a stronger
condition than the FICOT

comp in the general case.

4.4.2. The FTIcomp and the FICOT
comp are equivalent for binary constraints

Which assumptions on the candidates and the faithfulness constraints suffice to take the edge off
the FTIcomp, making it equivalent to the FICOT

comp? One of the properties of the counterexample (137)
just used to show that the FTIcomp is stronger than the FICOT

comp is that the composition candidate
(a, c, ρa,bρb,c) which appears on the left-hand side of the FTIcomp (136) incurs a large (namely, larger
than 1) number of violations. To start, suppose instead that the quantity F (a, c, ρa,bρb,c) which appears
on the left-hand side of the FTIcomp is “small”, namely equal to either 0 or 1 but not larger. Then, the
FICOT

comp entails the FTIcomp. In fact, if F (b, c, ρb,c) ≥ 1, then the right-hand side of the FTIcomp is
already large enough to exceed the small left-hand side, ensuring that the inequality holds. If instead
F (b, c, ρb,c) = 0, the antecedent of the FICOT

comp holds and the consequent of the FICOT
comp then entails the

FTIcomp. I conclude that the FICOT
comp and the FTIcomp are equivalent when the faithfulness constraint

F is binary, namely it assigns to any candidate either 0 or 1 violations.

4.4.3. The FTIcomp and the FICOT
comp are equivalent for categorical constraints

Most faithfulness constraints in the phonological literature are not binary.8 The equivalence between
the FTIcomp and the FICOT

comp established in Subsection 4.4.2 for binary faithfulness constraints thus has
a modest applicability. Yet, McCarthy (2003b) conjectures that all faithfulness constraints relevant for
natural language phonology are categorical. This conjecture has been formalized and slightly strengthened
in section 4.3. Crucially, the equivalence between the FTIcomp and the FICOT

comp extends from binary to
categorical constraints. The intuitive idea is as follows. Consider a faithfulness constraint which satisfies
the FICOT

comp. Assume that it is furthermore additive, so that the number of violations it assigns to a
candidate is the sum of the numbers of violations it assigns to the sub-candidates. Assume finally that
it is also categorical, so that these sub-candidates can be chosen in such a way that they are assigned
either 0 or 1 violations. In other words, the faithfulness constraint is binary when restricted to the sub-
candidates. By reasoning as in Subsection 4.4.2 for binary faithfulness constraints, the FICOT

comp entails the
FTIcomp when restricted to the sub-candidates. By summing over all sub-candidates through additivity,
the FTIcomp for the original candidate finally follows. This intuitive reasoning is formalized in Appendix
A.2 into a proof of the following Proposition 15, which is the main technical result of this chapter. Since
the triangle inequality characterizes the intuitive notion of distance, this proposition provides an intuitive
interpretation of the sufficient condition for OT idempotency provided by the FICOT

comp (135): the FICOT
comp

simply requires the faithfulness constraints to measure the phonological distance between underlying and
surface forms in a sensible way, namely in compliance with the triangle inequality.
Proposition 15. Assume the candidate set (49) satisfies the transitivity axiom (66) and only contains
one-to-one correspondence relations. Consider a faithfulness constraint F which is C-categorical; or I-
categorical and O-monotone; or O-categorical and I-monotone. F satisfies the FTIcomp (136) if and only
if it satisfies the FICOT

comp (135). �

8 McCarthy and Prince’s (1995) definition of I-/O-Contiguity makes them binary.
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4.4.4. On the candidate assumptions of proposition 15
Proposition 15 requires all correspondence relations in the candidate set to be one-to-one, namely

rules out both coalescence and breaking (deletion and epenthesis are instead of course allowed).9 This
assumption is unavoidable. In fact, a counterexample such as (76), repeated below in (138), shows that
the FTIcomp fails for core faithfulness constraints when correspondence relations can break an underlying
segment into multiple surface segments.

(138) a. Ident[nas](b, c)=0 b. Ident[nas](a, c)=2 c. Ident[nas](a, b)=1

b = ga

c = gga

a = Na

c = gga

a = Na

b = ga

Furthermore, the counterexample (137) shows that it also fails when correspondence relations can coalesce
multiple underlying segments into a single surface segment.

4.4.5. On the constraint assumptions of proposition 15
Proposition 15 also requires I- and O-categorical faithfulness constraints to satisfy O- and I-monotonicity

while no monotonicity conditions are imposed on C-categorical faithfulness constraints. The proof pro-
vided in Appendix A.2 shows that this asymmetry between I/O-categoricity and C-categoricity stems from
the asymmetry in the definitions of additivity discussed in Subsection 4.3.3: in the case of C-additivity
(121), the sub-candidates are obtained by restricting only the correspondence relation; in the case of
I-/O-additivity (126)/(132), the sub-candidates are obtained by restricting both the underlying/surface
string and the correspondence relation.

The following counterexample shows that the additional monotonicity assumption made by Proposi-
tion 15 is indeed crucial. Consider the (unreasonable) faithfulness constraint F defined in (139) through
the by now familiar two steps. It is indeed a faithfulness constraint, namely it assigns zero violations to
the identity candidate, in compliance with condition (56).

(139) a. F
(
a, b, ρa,b

)
=


1 if the underlying segment a has no surface correspondents and the string

b has length 1
0 otherwise

b. F
(
a, b, ρa,b

)
=
∑
a⊆a

F
(
a, b, ρa,b �(a,b)

)
This constraint F is I-categorical (of order ` = 1) by construction. Yet, the counterexample (140) shows
that it is not O-monotone. In fact, F assigns one violation to the candidate (a, b, ρa,b) in (140a), because
the underlying coda /t/ is deleted and the surface string b has length 1. O-monotonicity says that the
number of violations cannot decrease if the surface string b is extended to b̂ by adding surface segments.
This requirement is shown to fail in (140b): the addition of the onset [p] increases the length of the
surface string b̂ to 2 and thus prevents F from assigning any violations to the candidate (a, b̂, ρa,b)

(140) a. F (a, b, ρa,b) = 1 b. F (a, b̂, ρa,b) = 0

a = at

b = a

a = a t

b̂ = pa

9 A close look at the proof of Proposition 15 shows that, if the faithfulness constraint F is I-categorical of order
` = 1, the one-to-one assumption can be weakened to the assumption that no correspondence relation coalesces any two
underlying segments into a single surface segment. If the faithfulness constraint F is O-categorical of order ` = 1, the
one-to-one assumption can be weakened to the assumption that no correspondence relation breaks any underlying segment
into two surface segments. If the faithfulness constraint F is instead C-categorical, the one-to-one assumption cannot be
weakened, not even in the case ` = 1.
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This faithfulness constraint F is easily shown to satisfy the FICOT
comp (135) when correspondence relations

are one-to-one.10 Yet, F does not satisfy the FTIcomp, as shown by the counterexample (141). The
candidate (a, b, ρa,b) in (141a) does not violate F , because its surface string is longer than 1. The
candidate (b, c, ρb,c) in (141b) violates F once, because it has a single deleted underlying segment. The
right-hand side of the FTIcomp is thus equal to 0+1 and is smaller than the left-hand side, which is instead
equal to 2 because the composition candidate (a, c, ρa,bρb,c) in (141c) violates F twice.

(141) a. F
(
a, b, ρa,b

)
=0 b. F

(
b, c, ρb,c

)
=1 c. F

(
a, c, ρa,bρb,c

)
=2

a = a t t

b = a t b = a t

c = a

a = a t t

c = a

In conclusion, the assumption made by Proposition 15 that I-categorical (and O-categorical) faithfulness
constraints also be O-monotone (and I-monotone, respectively) is unavoidable in order for the FICOT

comp
to entail the FTIcomp.

4.4.6. Which faithfulness constraints satisfy the FTIcomp

I am now in a position to address the question raised at the end of section 4.1: which faithfulness
constraints satisfy the FTIcomp and thus measure the phonological distance between underlying and
surface forms in compliance with the triangle inequality? In fact, section 4.3 has shown that Identϕ,
I/O-Adjacency, and Linearity are C-categorical; that Max, Max[+ϕ], and MaxLinearity are I-
categorical and O-monotone; finally, that Dep, Dep[+ϕ], and DepLinearity are O-categorical and
I-monotone.11 The following proposition 16 thus follows straightforwardly from the equivalence between
the FICOT

comp and the FTIcomp guaranteed by proposition 15 together with the characterization of the
faithfulness constraints which satisfy the FICOT

comp provided by propositions 2-11 in chapter 3.

Proposition 16. Assume the candidate set only contains one-to-one correspondence relations. The
following faithfulness constraints satisfy the FTIcomp: segmental Max and Dep, featural Max[±ϕ] and
Dep[±ϕ], Identϕ (corresponding to a total feature ϕ), the local disjunction of any two disjoinable such
constraints, Linearity, Max/DepLinearity, I/O-Adjacency. �

The following constraints instead fail at the FTIcomp: Contiguity, LinearityMcCarthy and the local
conjunction of any two conjoinable faithfulness constraints.

4.4.7. The FICHG
comp and the FICOT

comp are equivalent for categorical constraints
Assume that all correspondence relations in the candidate set are one-to-one, as otherwise HG idempo-

tency fails as shown in subsection 4.2.2, and the FICHG
comp must therefore fail as well. Assume furthermore

that each faithfulness constraint in the constraint set satisfies McCarthy’s (strengthened) categoricity con-
jecture, formalized in section 4.3. Under these assumptions, the FICHG

comp and the FICOT
comp are equivalent,

as they are both equivalent to the FTIcomp by propositions 15 and 14.

Proposition 17. Assume that the correspondence relations in the candidate set are all one-to-one.
Consider a faithfulness constraint F which is C-categorical; or I-categorical and O-monotone; or O-
categorical and I-monotone. Then, F satisfies the FICHG

comp (113) if and only if it satisfies the FICOT
comp

(114). �

10 In fact, assume that the quantity F (a, c, ρa,bρb,c) in the left-hand side of the inequality in the consequent of the
FICOT

comp is larger than 0 (otherwise, the inequality trivially holds). This means that c has length 1. The antecedent
F (b, c, ρb,c) = 0 of the FICOT

comp thus requires every segment of b to have a correspondent in c. Since correspondence
relations are one-to-one, the string b must consist of a single segment which is put in correspondence by ρb,c with the single
segment of c. It then follows that every underlying segment a of a which violates F relative to the composition candidate
(a, c, ρa,bρb,c) also violates F relative to the candidate (a, b, ρa,b), thus establishing the inequality in the consequent of the
FICOT

comp.
11 Analogous considerations hold for Integrity (which is I-categorical and O-monotone) and Uniformity (which is

O-categorical and I-monotone). I ignore these two constraints here, because proposition 16 requires correspondence relations
to be one-to-one.
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Since an HG typology can be larger than an OT typology, stronger conditions are expected to be
needed to discipline all the grammars in the former to satisfy idempotency. Indeed, candidate conditions
for HG idempotency are stronger than candidate conditions for OT idempotency, as shown in subsection
4.2.2. The constraint conditions instead turn out to be equivalent on the background of McCarthy’s
(strengthened) categoricity conjecture. The faithfulness constraints listed by propositions 2-11 in chap-
ter 3 as satisfying the FICOT

comp thus also satisfy the FICHG
comp (under the further assumption that all

correspondence relations are one-to-one).

4.4.8. Summary
This section has shown that the sufficient condition for OT idempotency provided by the FICOT

comp

admits a metric interpretation: it effectively requires the faithfulness constraints to measure the phono-
logical distance between underlying and surface representations in compliance with the metric triangle
inequality. This interpretation holds under (a slightly stronger version of) McCarthy’s (2003b) categoric-
ity conjecture, formalized in section 4.3.

A. Proofs

Throughout this appendix, I consider four strings a, b, c, and d, whose generic segments are denoted
by a, b, c, d. I use statements such as “for every/some segment a” as a shorthand for “for every/some
segment a of the string a”, thus leaving the domain of the quantifier implicit.

A.1. Proof of proposition 13
Proposition 13 Assume that, for any two candidates (a, b, ρa,b) and (b, c, ρb,c), the candidate set
also contains a candidate (a, c, ρa,c) such that the FICHG repeated in (142) holds for any faithfulness
constraint F in the constraint set.

(142) For every choice of the constant ξ ≥ 0:
If: F

(
b, c, ρb,c

)
≤ ξ

Then: F
(
a, c, ρa,c

)
≤ F

(
a, b, ρa,b

)
+ ξ

Then, the HG grammar corresponding to any weighting of the constraint set is idempotent, no matter
what the markedness constraints look like. �

Proof. Suppose that the HG grammar Gθ corresponding to some weighting θ fails at the idempo-
tency implication (52) for some candidate (a, b, ρa,b), as stated in (143): Gθ maps the underlying form
a to (a, b, ρa,b), as required by the antecedent of the idempotency implication; but it fails to map the
underlying form b to the identity candidate (b, b, Ib,b), as required by the consequent.

(143) Gθ fails at idempotency on a candidate (a, b, ρa,b) if and only if:
a. Gθ(a) = (a, b, ρa,b);
b. Gθ(b) 6= (b, b, Ib,b).

Condition (143b) means that the grammar Gθ maps the underlying form b to a candidate (b, c, ρb,c)
different from (b, b, Ib,b). This means that either the two strings b and c differ or else b and c coincide
but the two correspondence relations ρb,c and Ib,b differ. The latter option is impossible, because the
candidate (b, b, ρb,b) with ρb,b 6= Ib,b is harmonically bounded by (b, b, Ib,b): faithfulness constraints
cannot prefer the former candidate, by (56); and markedness constraints cannot distinguish between the
two candidates, by (57). The two strings b and c must therefore differ and condition (143) becomes (144).

(144) Gθ fails at idempotency on a candidate (a, b, ρa,b) if and only if there exists a candidate (b, c, ρb,c)
with b 6= c such that:
a. Gθ(a) = (a, b, ρa,b);
b. Gθ(b) = (b, c, ρb,c).

By assumption, the two candidates (a, b, ρa,b) and (b, c, ρb,c) come with a companion candidate
(a, c, ρa,c). The “if-and-only-if” statement (144) can thus be weakened to the “if” statement (145). In
fact, if the grammar Gθ maps the underlying form a to the candidate (a, b, ρa,b) as stated in (144a), the
weights θ prefer this candidate (a, b, ρa,b) to the candidate (a, c, ρa,c), as stated in (145a). Furthermore, if
the grammar Gθ maps the underlying form b to the candidate (b, c, ρb,c) as stated in (145b), the weights
θ prefer this candidate (b, c, ρb,c) to the identity candidate (b, b, Ib,b), as stated in (145b).



A. PROOFS 77

(145) If Gθ fails at idempotency on a candidate (a, b, ρa,b), there exists some candidate (b, c, ρb,c) with
b 6= c such that:
a. θ prefers (a, b, ρa,b) to (a, c, ρa,c),
b. θ prefers (b, c, ρb,c) to (b, b, Ib,b).

Condition (145) can be made explicit as in (146) in terms of the number of constraint violations. These
sums run over a generic markedness constraint M with weight θM and a generic faithfulness constraint
F with weight θF . The faithfulness constraints do not appear on the right-hand side of (146b) because
F (b, b, Ib,b) = 0 for every faithfulness constraint F , by (56).

(146) If Gθ fails at idempotency on a candidate (a, b, ρa,b), there exists some candidate (b, c, ρb,c) with
b 6= c such that:

a.
∑
M

θMM(a, b, ρa,b) +
∑
F

θFF (a, b, ρa,b) <

<
∑
M

θMM(a, c, ρa,c) +
∑
F

θFF (a, c, ρa,c)

b.
∑
M

θMM(b, c, ρb,c) +
∑
F

θFF (b, c, ρb,c) <
∑
M

θMM(b, b, Ib,b)

Let the constant ξ be defined as ξ =
∑
M θMM(b, b, Ib,b)−

∑
M θMM(b, c, ρb,c). Since markedness con-

straints are blind to underlying forms by (57), then also ξ =
∑
M θMM(a, b, ρa,b)−

∑
M θMM(a, c, ρa,c).

Condition (146) thus becomes:

(147) If Gθ fails at idempotency on a candidate (a, b, ρa,b), there exists some candidate (b, c, ρb,c) with
b 6= c such that:

a.
∑
F

θFF (a, c, ρa,c) >
∑
F

θFF (a, b, ρa,b) + ξ

b.
∑
F

θFF (b, c, ρb,c) < ξ

In conclusion, idempotency holds for the HG grammar corresponding to any weighting of the constraint
set provided the two conditions (147a) and (147b) can never be satisfied both, no matter the choice of
the weights θF and the constant ξ. In other words, it suffices to assume that, for every two candidates
(a, b, ρa,b) and (b, c, ρb,c), there exists some candidate (a, c, ρa,c) such that:

(148) For every choice of the constant ξ ≥ 0, for every choice of the weights θF :
If:

∑
F

θFF
(
b, c, ρb,c

)
< ξ

Then:
∑
F

θFF
(
a, c, ρa,c

)
≤
∑
F

θFF
(
a, b, ρa,b

)
+ ξ

To conclude the proof, I need to show that (148) is equivalent to the FICHG (142). To start, let
me show that (142) entails (148). In fact, suppose that the antecedent of the implication (148) holds.
For every faithfulness constraint F , let ξF be defined as in (149a). The antecedent of the implication
(148) can thus be restated as in (149b). I can assume without loss of generality that the weights θF
are all different from zero. The position (149a) thus entails (149c). Since the implication (142) holds by
hypothesis, (149c) entails (149d). The consequent of the implication (148) thus follows from (149b) by
taking the weighted average of the inequalities (149d) over all faithfulness constraints.

(149) a. ξF = θFF (b, c, ρb,c)

b.
∑
F

ξF < ξ

c. F (b, c, ρb,c) ≤ ξF /θF
d. F (a, c, ρa,c) ≤ F (a, b, ρa,b) + ξF /θF

Let me now show that (148) vice versa entails (142). In fact, suppose that the antecedent of the
implication (142) holds, namely that F (b, c, ρb,c) ≤ ξ. Let me distinguish two cases, depending on whether
ξ is an integer or not. To start, assume that ξ is not an integer. The assumption F (b, c, ρb,c) ≤ ξ (with



78 4. IDEMPOTENCY AND THE TRIANGLE INEQUALITY

the loose inequality) is thus equivalent to the assumption F (b, c, ρb,c) < ξ (with the strict inequality),
because constraint violations are integers. The antecedent of the implication (148) thus holds with all the
weights set equal to zero but for the weight θF corresponding to the faithfulness constraint F considered,
which is equal to 1. The consequent of the implication (148) must therefore hold as well, which is in turn
identical to the consequent of the implication (142) with this special choice of the weights. If instead the
antecedent of (142) holds with ξ equal to an integer, let ξ̂ = ξ + 1/2. By reasoning as above, I conclude
that the consequent of the implication (142) holds for ξ̂. Since constraint violations are integers, the
latter entails in turn that the consequent of the implication (142) holds for ξ. �

A.2. Proof of proposition 15
Proposition 15 Assume the candidate set (49) satisfies the transitivity axiom (66) and only contains
one-to-one correspondence relations. Consider a faithfulness constraint F which is C-categorical; or I-
categorical and O-monotone; or O-categorical and I-monotone. F satisfies the FICOT

comp if and only if it
satisfies the FTIcomp. �

Proof. As shown in Subsection 4.4.1, the FTIcomp entails the FICOT
comp in the general case. To prove

the reverse entailment, consider a faithfulness constraint F which satisfies the FICOT
comp repeated in (150)

for any two candidates (a, b, ρa,b) and (b, c, ρb,c) and their composition candidate (a, c, ρa,bρb,c), and let
me show that F then satisfies the FTIcomp repeated in (151).

(150) If: F
(
b, c, ρb,c

)
= 0

Then: F
(
a, c, ρa,bρb,c

)
≤ F

(
a, b, ρa,b

)
(151) F

(
a, c, ρa,bρb,c

)
≤ F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)
For concreteness, the rest of the proof considers the case where F is I-categorical of order ` and O-

monotone, so that it satisfies the I-additivity condition repeated in (152); the cases where F is instead
C-categorical or O-categorical and I-monotone are treated analogously.

(152) F
(
a, b, ρa,b

)
=

∑
a1···a`⊆a

F
(
a1 · · · a`, b, ρa,b �(a1···a`,b)

)
The I-additivity condition (152) entails that F assigns zero violations to candidates whose underlying
string is shorter than `, as the sum on the right-hand side is empty in this case (there are no subsequences
of length `). The FTIcomp (151) thus trivially holds when its string a is shorter than `, because its left-
hand side F (a, c, ρa,bρb,c) is equal to zero. From now on, I assume therefore that the string a has length
at least `.

Consider a subsequence a1 · · · a` of a of length `. Let ba1···a` be the surface correspondent subsequence
in b of the underlying subsequence a1 · · · a` relative to the correspondence relation ρa,b (namely, ba1···a`
is the subsequence of b consisting of all and only the segments which are in correspondence with one
of the segments a1, . . . , a`). The operations of composition and restriction over correspondence relations
commute in the sense of the identity (153): the restriction of the composition correspondence relation
ρa,bρb,c to the pair of strings (a1 · · · a`, c) coincides with the composition of the restrictions of the relations
ρa,b and ρb,c to the pairs of strings (a1 · · · a`, ba1···a`) and (ba1···a` , c).

(153)
(
ρa,b ◦ ρb,c

)
�(a1···a`, c)=

(
ρa,b �(a1···a`, ba1···a` )

)
◦
(
ρb,c �(ba1···a` , c)

)
The identity (153) says that the candidate (154c) is the composition of the two candidates (154a) and
(154b).

(154) a.
(
a1 · · · a`, ba1···a` , ρa,b �(a1···a`, ba1···a` )

)
b.
(
ba1···a` , c, ρb,c �(ba1···a` , c)

)
c.
(
a1 · · · a`, c, ρa,bρb,c �(a1···a`, c)

)
The hypothesis that F satisfies the FICOT

comp (150) for these two candidates (154a) and (154b) and their
composition candidate (154c) becomes:

(155) If: F
(
ba1···a` , c, ρb,c �(ba1···a` , c)

)
= 0

Then: F
(
a1 · · · a`, c, ρa,bρb,c �(a1···a`, c)

)
≤

≤ F
(
a1 · · · a`, ba1···a` , ρa,b �(a1···a`, ba1···a` )

)



A. PROOFS 79

Since F is I-categorical of order ` and since the underlying string a1 · · · a` has length `, the left-hand
side of the inequality in the consequent of (155) is equal to either 0 or 1. By reasoning as in Subsection
4.4.2, the FICOT

comp (155) thus entails the FTIcomp (156).

(156) F
(
a1 · · · a`, c, ρa,bρb,c �(a1···a`, c)

)︸ ︷︷ ︸
(a)

≤

≤ F
(
a1 · · · a`, ba1···a` , ρa,b �(a1···a`, ba1···a` )

)︸ ︷︷ ︸
(b)

+F
(
ba1···a` , c, ρb,c �(ba1···a` ,c)

)︸ ︷︷ ︸
(c)

The rest of the proof obtains the FTIcomp (151) by summing the inequality (156) over all subsequences
a1 · · · a` of length ` of the underlying string a.

To start, the definition of I-additivity of order ` applied to the composition candidate (a, c, ρa,bρb,c)
immediately yields the expression (157) for the sum of the terms (156a) over all subsequences a1 · · · a` of
the underlying string a.

(157)
∑

a1···a`⊆a

F
(
a1 · · · a`, c, ρa,bρb,c �(a1···a`, c)

)︸ ︷︷ ︸
(156a)

= F
(
a, c, ρa,bρb,c

)
The sum of the terms (156b) over all subsequences a1 · · · a` of the underlying string a can be upper

bounded as in (158). In step (158a), I have used the hypothesis that F is O-monotone (together with
the obvious fact that ba1···a` is a subsequence of b). Step (158b) follows from the fact that the restriction
of ρa,b to the string pair (a1 · · · a`, ba1···a`) is identical to its restriction to the string pair (a1 · · · a`, b),
because ba1···a` is the subsequence of b consisting of those segments which are in correspondence with one
of the segments a1, . . . , a`. Step (158c) follows again from the hypothesis that F is I-additive of order `.

(158)
∑

a1···a`⊆a

F
(
a1 · · · a`, ba1···a` , ρa,b�(a1···a`, ba1···a` )

)︸ ︷︷ ︸
(156b)

≤

(a)

≤
∑

a1···a`⊆a

F
(
a1 · · · a`, b, ρa,b�(a1···a`, ba1···a` )

)
(b)
=

∑
a1···a`⊆a

F
(
a1 · · · a`, b, ρa,b�(a1···a`, b)

)
(c)
= F

(
a, b, ρa,b

)
Finally, let me bound the sum of the terms (156c) over all subsequences a1 · · · a` of the underlying

string a. To this end, I note that the implication (159) holds for any two subsequences a1 · · · a` and
â1 · · · â` and their surface correspondent subsequences ba1···a` and bâ1···̂a` of b.

(159) If: a1 · · · a` 6= â1 · · · â` and ba1···a` has length at least `
Then: ba1···a` 6= bâ1···̂a`

In fact, assume by contradiction that the antecedent holds but the consequent fails. Since the surface
correspondent string ba1···a` has length at least ` and since the correspondence relation ρa,b cannot break
any underlying segment into two or more surface segments (because it is one-to-one), each underlying
segment ai of a1 · · · a` must have a surface correspondent in ba1···a` . The hypothesis a1 · · · a` 6= â1 · · · â`
means that there exists at least one segment ai which belongs to a1 · · · a` but not to â1 · · · â`. Let b be
the surface correspondent of ai in ba1···a` . Because of the contradictory assumption that the consequent
of (159) fails, ba1···a` = bâ1···̂a` . This means that b also belongs to bâ1···̂a` , namely must correspond to
some segment âj of â1 · · · â`. Since ai does not belong to â1 · · · â`, then ai and âj must be different.
The conclusion that both (ai, b) and (âj , b) belong to ρa,b despite the fact that ai 6= âj contradicts the
hypothesis that ρa,b does not coalesce any two underlying segments.

Let me now go back to the goal of bounding the sum of the terms (156c) over all subsequences a1 · · · a`
of the underlying string a. Since a1 · · · a` has length ` and since the correspondence relation ρa,b cannot
break any underlying segment (because it is one-to-one), the surface correspondent string ba1···a` has
length ` or smaller. If ba1···a` has length smaller than `, the corresponding term (156c) is null, because F
is I-additive of order ` and thus assigns zero violations to candidates whose underlying string is shorter
than `, as noted at the beginning. The sum can thus be restricted to candidates whose underlying
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form ba1···a` has length exactly `, as in step (160a). Condition (159) says that the mapping from the
subsequences a1 · · · a` to the corresponding surface subsequences ba1···a` (of length `) is an injection, thus
guaranteeing step (160b). Step (160c) follows again from the hypothesis that F is I-additive of order `.

(160)
∑

a1···a`⊆a

F
(
ba1···a` , c, ρb,c �(ba1···a` , c

)︸ ︷︷ ︸
(156c)

(a)
=

∑
a1 · · · a` ⊆ a

s.t. ba1···a` has length `

F
(
ba1···a` , c, ρb,c �(ba1···a` , c

)
(b)

≤
∑

b1···b`⊆b

F
(
b1 · · · b`, c, ρb,c �(b1···b`, c)

)
(c)
= F

(
b, c, ρb,c

)
The FTIcomp (151) follows by summing the inequality (156) over all subsequences a1 · · · a` of length ` of
the string a, using the three expressions (157), (158), and (160) for the sums over the three terms (156a),
(156b), and (156c). �



CHAPTER 5

The theory of output-drivenness from the perspective of the
triangle inequality

Tesar’s (2013) notion of output-drivenness is a formal condition on phonological grammars, construed
as mappings from underlying to surface (or output) forms. It demands that a grammar which maps an
underlying form UR1 to some surface form SR also maps to that surface form SR any other underlying
form UR2 such that UR2 is more similar to SR than UR1 is. The notion of output-drivenness is relevant
to phonological theory, because non-output-drivenness unifies various opaque phonological phenomena
such as chain shifts (Łubowicz 2011) and derived environment effects (or saltations; White 2014), as we
will see in more detail in section 6.2. Furthermore, Tesar shows that output-drivenness has significant
learnability implications in the context of the classical inconsistency detection approach (Merchant 2008)
to the problem of learning a lexicon of underlying forms from a paradigm of surface forms.

The main result of Tesar’s theory guarantees output-drivenness of an entire typology of OT grammars
when the correspondence relations are one-to-one and the constraint set only contains three types of
faithfulness constraints, namely Dep, Max, and Ident. This chapter reconstructs Tesar’s theory from
the perspective of the faithfulness triangle inequality formulated in section 4.1. To highlight the role of
the triangle inequality, I define the notion of phonological similarity that output-drivenness is predicated
on axiomatically through a condition on the faithfulness constraints, rather than concretely in terms of
strings and correspondence relations, as Tesar does. This alternative approach yields a stronger result
which ensures a slightly stronger notion of output-drivenness for a larger variety of faithfulness constraints,
beyond the three faithfulness constraints considered by Tesar.

This chapter is organized as follows. Session 5.1 recalls Tesar’s notion of output-drivenness, high-
lighting its dependence on an underlying notion of phonological similarity. Section 5.2 recalls Tesar’s
result that the output-drivenness of the grammars in an OT typology is guaranteed by a condition on the
faithfulness constraints, called the faithfulness output-drivenness condition (FODC). Section 5.3 reviews
in detail Tesar’s concrete definition of the notion of phonological similarity that output-drivenness is
predicted on and section 5.4 introduces my axiomatization thereof, in terms of a condition on a selected
set of faithfulness constraints (which could in principle be smaller than or different from the faithfulness
constraint set used to define the typology). Section 5.5 presents the main result of this chapter: although
the FODC has an apparently very technical nature, it is actually equivalent to the faithfulness triangle
inequality when phonological similarity is defined in terms of the proposed axiomatization. This result in
turns entails an equivalence between the sufficient condition for idempotency provided by the FIC and the
sufficient condition for output-drivenness provided by the FODC, for those faithfulness constraints which
are categorical and furthermore figure in the faithfulness constraint set used to measure phonological
similarity. This observation strengthens Tesar’s result on the output-drivenness of OT grammars: from
the case where the constraint set only contains the three faithfulness constraints Dep, Max, and Ident
to the case where it contains any of the faithfulness constraints considered in chapter 3.

5.1. Output-drivenness and its relationship with idempotency

This section reviews Tesar’s notion of output-drivennessand and compares it to the notion of idem-
potency considered in the receding chapters.

5.1.1. Tesar’s notion of output-drivenness
Consider two candidates (a, d, ρa,d) and (b, d, ρb,d) which share a surface form d. Suppose that the

underlying form b is more similar to d than the other underlying form a is. In other words, that the
candidate (b, d, ρb,d) has more internal similarity than the candidate (a, d, ρa,d). Tesar formalizes this
assumption through the condition (161), where ≤sim is a similarity order, namely an ordering relation
among candidates (or, more precisely, among candidates which share the surface form) based on their

81
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internal similarity. Subsections 5.3-5.4 will address the issue of the proper definition of this similarity
order.

(161) (a, d, ρa,d) ≤sim (b, d, ρb,d)

Suppose that a phonological grammar G maps the less similar underlying form a to the surface form d,
namely that G(a) = (a, d, ρa,d). This means that d is phonotactically licit and that a is not too dissimilar
from d. Since the phonotactic status of d does not depend on the underlying form and furthermore b is
even more similar to d, the grammar G should map also the more similar underlying form b to that same
surface form d, namely G(b) = (b, d, ρb,d). A grammar which abides by this logics is called output-driven.

Definition 2. [Tesar’s Output-drivenness] A grammar G is output-driven relative to a similarity order
≤sim provided the following implication holds

(162) If: G(a) = (a, d, ρa,d) (candidate with less similarity)
Then: G(b) = (b, d, ρb,d) (candidate with more similarity)

for any two candidates (a, d, ρa,d) and (b, d, ρb,d) which share the surface form d and satisfy the condition
(a, d, ρa,d) ≤sim (b, d, ρb,d). �

5.1.2. Output-drivenness entails idempotency
Intuitively, any string b is more similar to itself than to any other string a. In other words, identity

candidates have the greatest internal similarity. A similarity order ≤sim thus needs to satisfy condition
(163) for any candidate (a, b, ρa,b) and the corresponding identity candidate (b, b, Ib,b), whose existence
is guaranteed by the reflexivity axiom (51).

(163) (a, b, ρa,b) ≤sim (b, b, Ib,b)

Whenever condition (163) holds, output-drivenness entails idempotency. In fact, output-drivenness re-
quires the implication (162) to hold for any two candidates (a, d, ρa,d) and (b, d, ρb,d) such that the former
has less internal similarity than the latter. Condition (163) ensures that is indeed the case when the two
strings b and d coincide and ρb,d is the identity on the string b = d). In this case, the implication (162)
in the definition of output-drivenness specializes to (164), which is in turn the implication (52) in the
definition of idempotency.

(164) If: G(a) = (a, b, ρa,b)
Then: G(b) = (b, b, Ib,b)

In conclusion, the definition of idempotency coincides with the definition of output-drivenness in the
special case where b = d and ρb,d is the identity.

5.1.3. Output-drivenness is stronger than idempotency: saltations
Although output-drivenness entails idempotency, the reverse entailment fails: output-drivenness is

a stronger condition than idempotency. As a counterexample, consider the derived environment effect
or saltation (Łubowicz 2002, White 2013) in (165) from the Campidanian dialect of Sardinia: voiceless
stops are lenited to voiced fricatives in post-vocalic position, while voiced stops are faithfully realized
(Bolognesi 1998, via White 2013).

(165) isolated form post-vocalic form
/p, t, k/→ [B, D, G]: [piS:i] [bel:u BiS:i] ‘(nice) fish’

[trintaduzu] [s:u Drintaduzu] ‘(the) thirty-two’
[kuat:ru] [dE Guat:ru] ‘(of) four’

/b, d, g/→ [b, d, g]: [b̃ıu] [s:u b̃ıu] ‘(the) wine’
[dominiGu] [don:ja dominiGu] ‘(every) Sunday’
[gOma] [dE gOma] ‘(of) rubber’

A reasonable definition of the similarity order ≤sim (see below footnote 4) should guarantee that the
candidate (a, d, ρa,d) in (166) has less internal similarity than the candidate (b, d, ρb,d), since the former
involves a disparity for both voicing and continuancy, while the latter only for continuancy.
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(166) a = /p/

d = [B]

b = /b/

d = [B]

The phonological pattern (165) can thus be represented as in (167): the voiced stop a is mapped to the
voiced fricative d, skipping or jumping over the closer licit voiced stop b.

(167) a = p b = b d = B

Since (a, d, ρa,d) ≤sim (b, d, ρb,d), output-drivenness would require the more similar underlying form
b=/b/ to be mapped to the surface form d= [B] when the less similar underlying form a=/p/ is mapped
to d= [B]. The saltation pattern (165) thus fails at output-drivenness, despite being idempotent.

5.2. Output-driveness in OT

Which conditions on the candidate and constraint sets ensure that the OT grammars corresponding
to any ranking is output-driven? This section reviews Tesar’s answer to this question.

5.2.1. A condition on the candidate set: the one-to-one assumption
Let me start with candidate conditions. As seen in sections 3.3.2 and 3.3.3, OT idempotency fails

when correspondence relations can break an underlying segment into multiple surface segments. Since
output-drivenness entails idempotency, the no-breaking assumption is needed for output-drivenness as
well. The situation is different for coalescence of two underlying segments into a single surface segment.
While coalescence does not threaten OT idempotency, it does hinder output-drivenness, as shown by
the following counterexample. A reasonable definition of the similarity order ≤sim (see below footnote
4) should guarantee that the candidate (a, d, ρa,d) in (168), with coalescence of the underlying complex
coda, has less internal similarity than the candidate (b, d, ρb,d).

(168) a = t e td

d = tat

b = tad

d = ta t

Although (a, d, ρa,d)≤sim (b, d, ρb,c), the constraintM = *Voice in the grammar (169) maps the underly-
ing form a to the candidate (a, d, ρa,d) with less internal similarity; yet, it fails at mapping the underlying
form b to the candidate (b, d, ρb,d) with more internal similarity, violating output-drivenness.

(169) /tetd/ Ident[vce] M

+ a = t e td

d = tat

∗

a = t e t d

c = tad

∗ ∗!

/tad/ Ident[vce] M

b = tad

d = ta t

∗!

+ b = tad

c = tad

∗

In conclusion, output-drivenness fails even in the simplest cases when correspondence relations display
breaking or coalescence and thus are not one-to-one.

5.2.2. A condition on the faithfulness constraint set: the FODCOT

The following Proposition 18 ensures output-drivenness when all the faithfulness constraints satisfy
the two implications (170). These implications are thus jointly referred to as the OT faithfulness output-
drivenness condition (FODCOT). No assumptions are made on the markedness constraints, on the nature
of the faithfulness constraints (for instance, they are not required to be categorical), on the correspondence
relations in the candidate set (for instance, they are not required to be one-to-one), or on the similarity
order (which is left completely unspecified). Proposition 18 was derived in Tesar (2013, chapter 3) and
its proof is recalled in appendix A.1 for completeness. This proposition 18 is analogous to Proposition 1
in Subsection 3.2.3, which was indeed derived by mimicking Tesar’s reasoning.
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Proposition 18. Assume that, for any two candidates (a, d, ρa,d) and (b, d, ρb,d) such that (a, d, ρa,d) ≤sim
(b, d, ρb,d), for any other candidate (b, c, ρb,c) different from (b, d, ρb,d), the candidate set also contains
a candidate (a, c, ρa,c) different from (a, d, ρa,d) such that the two following implications (170) hold for
every faithfulness constraint F in the constraint set.

(170) a. If: F (a, d, ρa,d) < F (a, c, ρa,c)

Then: F (b, d, ρb,d) < F (b, c, ρb,c)

b. If: F (b, c, ρb,c) < F (b, d, ρb,d)

Then: F (a, c, ρa,c) < F (a, d, ρa,d)

Then, the OT grammar corresponding to any ranking of the constraint set is output-driven relative to the
similarity order ≤sim. �

5.2.3. The FODCOT entails the FICOT

Subsection 5.1.2 has shown that output-drivenness entails idempotency because the definition of idem-
potency coincides with the definition of output-drivenness in the special case of maximal similarity where
the two strings b and d coincide. This entailment relationship carries over to the two sufficient conditions
for output-drivenness and idempotency: the FODCOT entails the FICOT derived in subsection 3.2.3. In
fact, condition (163) on the similarity order ensures that the FODCOT holds in the special case where the
two strings b and d coincide (and the correspondence relation ρb,d is the identity over the string b = d).
In this special case, the contrapositive of the first FODCOT implication (170a) specializes to (171).

(171) If: F (b, c, ρb,c) ≤ F (b, b, Ib,b)

Then: F (a, c, ρa,c) ≤ F (a, b, ρa,b)

By condition (56) in subsection 3.2.1, faithfulness constraints assign no violations to identity candi-
dates. Since violation numbers are non-negative, the antecedent of (171) is equivalent to the condition
F (b, c, ρb,c) = 0. The (contrapositive of) the first FODCOT implication in (171) thus coincides with the
FICOT (65) from subsection 3.2.3, repeated in (172).1

(172) If: F (b, c, ρb,c) = 0

Then: F (a, c, ρa,c) ≤ F (a, b, ρa,b)

5.2.4. The FODCOT is stronger than the FICOT

Subsection 5.1.3 has shown that output-drivenness is a stronger condition on phonological grammars
than idempotency, because output-drivenness also excludes idempotent phonological patterns such as
saltations. This relationship carries over to the two sufficient conditions for output-drivenness and idem-
potency: the FODCOT is stronger than the FICOT repeated above in (172). Here is an interesting coun-
terexample which illustrates this fact. Consider the faithfulness constraint F = Ident[voice] ∨ Ident[cont]

which is the disjunction of the two identity faithfulness constraints Ident[voice] and Ident[cont] for voicing
and continuancy (Downing 1998, 2000). Subsection 3.5.6 has shown that F satisfies the FICOT (provided
the correspondence relations do not break any underlying segment). Let me show that F nonetheless does
not satisfy the FODCOT. Consider again the candidates (a, d, ρa,d) and (b, d, ρb,d) in (166), repeated in
(173). As noted above, any reasonable definition of the similarity order ≤sim should guarantee that the
candidate (a, d, ρa,d) has less internal similarity than the candidate (b, d, ρb,d), since the former involves
a disparity for two features (voicing and continuancy) while the latter involves a disparity for only one
feature (continuancy, not voicing). Thus, (a, d, ρa,d) ≤sim (b, d, ρb,d).

(173) a. a = /p/

d = [B]

b. b = /b/

d = [B]

Consider b = c. The antecedent of the second FODCOT implication (170b) holds, as shown in (174a).
Yet, its consequent fails, as shown in (174b).

1 The second FODCOT implication (170b) is trivially satisfied in the special case where (b, d, ρb,d) = (b, b, Ib,b), because
its antecedent F (b, c, ρb,c) < F (b, d, ρb,d) becomes F (b, c, ρb,c) < 0, which contradicts the non-negativity of constraint
violations.
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(174) a. F (/b/, [b]) < F (/b/, [B]) namely F (b, c) < F (b, d)

b. F (/p/, [b]) = F (/p/, [B]) namely F (a, c) = F (a, d)

5.2.5. Only a sufficient constraint condition?
Consider an arbitrary candidate set, an arbitrary constraint set, and an arbitrary constraint ranking.

Subsection 5.2.2 has established the FODCOT as a sufficient condition for the output-drivenness of the
corresponding OT grammar. This statement contains three universal quantifications: over candidate
sets, over constraint sets, and over rankings. At this level of generality, the FODCOT is not only a
sufficient but also a necessary condition for output-drivenness. Let me illustrate this point with the
faithfulness constraint F = Ident[voice] ∨ Ident[cont] which Subsection 5.2.4 has just shown to fail at the
FODCOT. Tableaux (175) show indeed that it can be straightforwardly used to derive the non-output-
driven saltation in (165), whereby /p/ is mapped all the way to [B] while the closer /b/ is faithfully
mapped to itself.

(175) a.
/p/ *[p] F *[p, b]

[p] ∗ ∗
[b] ∗ ∗

+ [B] ∗

b.
/b/ *[p] F *[p, b]

[p] ∗ ∗ ∗
+ [b] ∗

[B] ∗

The account in (175) has the following formal structure. The conjoined constraint F effectively requires
perfect identity in both voicing and continuancy. Markedness constraints are split into those above
F (here, a single constraint against voiceless labials; Flack 2007) and those below it (here, a single
constraint which penalizes stops and thus favors spirantization). If the markedness constraints above F
can be satisfied with perfect identity so that F is not violated, those constraints get to determine the
winner. Otherwise, it is the markedness constraints below F which determine the winner.

5.3. Tesar’s concrete definition of the similarity order

To make further progress in the theory of output-drivenness, we need to make assumptions on the
similarity order ≤sim that output-drivenness is predicated on. Tesar proposes a specific definition of
phonological similarity concretely defined in terms of the disparities exhibited by the underlying and the
surface strings of segments together with the relation which puts those two strings in correspondence in
the sense of McCarthy and Prince (1995). The concreteness of Tesar’s definition of similarity is motivated
by the goal that the resulting notion of output-drivenness be framework-independent and thus be able to
bridge rule-based and constraint-based phonology (I will come back to this point in section 6.2). This is
important because the phonological relevance of (non)-output-drivenness lies in its ability to characterize
opaque processes extensionally (namely, at the framework-independent level of mappings from underlying
to surface forms) rather than intensionally (namely, in terms of framework-dependent notions such as
counter-feeding and counter-bleeding rule orderings). This section reconstructs Tesar’s definition of the
similarity order.

5.3.1. An initial attempt
Tesar assumes a faithfulness constraint set which consists of the constraints Max and Dep together

with the set of featural Ident constraints relative to a set Φ of (total) phonological features (see Magri to
appearc for discussion of output-drivenness with partial phonological features). Within this framework,
Definition 3 provides an intuitive definition of the similarity order, which captures the intuition that
the less similar candidate (a, d, ρa,d) “makes up” for any underlying/surface disparity of the more similar
candidate (b, d, ρb,d).

Definition 3. For any two candidates (a, d, ρa,d) and (b, d, ρb,d) sharing a surface form d, let (a, d, ρa,d) ≤Φ,weak
sim

(b, d, ρb,d) provided:
Identity clause: for every feature ϕ in Φ, for every segment d of d, if there exists a segment b of b such

that (b, d)∈ρb,d and ϕ(b) 6= ϕ(d), then there exists a segment a of a such that (a, d)∈ρa,d and
ϕ(a) 6= ϕ(d).
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Deletion clause: there exists an injection from the segments of b deleted relative to (b, d, ρb,d) to the
segments of a deleted relative to (a, d, ρa,d).2

Epenthesis clause: every segment of d which is epenthetic relative to (b, d, ρb,d) is also epenthetic
relative to (a, d, ρa,d). �

Let me illustrate Definition 3 with a couple of examples which will be relevant for what follows.
The two candidates in (176a) satisfy the similarity inequality (a, d, ρa,d) ≤Φ,weak

sim (b, d, ρb,d). In fact, the
epenthesis clause trivially holds because neither candidate displays epenthesis. The identity clause holds
relative to the feature set Φ = {[high], [voice]}, because the more similar candidate (b, d, ρb,d) displays
no feature mismatches. Finally, the deletion clause holds because both candidates feature exactly one
deleted coda. Note crucially that the two deleted underlying codas differ from each other in voicing.

(176) a. a = r i d

d = r e

b = r e t

d = r e

b. a = pa

d = t i

b = k i

d = t i

As another example, the two candidates in (176b) satisfy the similarity inequality (a, d, ρa,d) ≤Φ,weak
sim

(b, d, ρb,d). In fact, the epenthesis and deletion clauses trivially hold, because neither candidate features
epenthesis or deletion. Consider the feature set Φ = {[high], [place]} and assume that [place] is a three-
valued feature. The identity clause holds because the underlying onset of both candidates has a surface
correspondent which mismatches in place but only the underlying vowel of the less similar candidate has
a surface correspondent which mismatches in height. Note crucially that the two underlying onsets differ
from each other in place of articulation.

5.3.2. Towards a stronger similarity order
Unfortunately, output-drivenness fails even in the simplest cases relative to the similarity order pro-

vided by Definition 3. To start, consider the two candidates (a, d, ρa,d) and (b, d, ρb,d) in (176a). Suppose
that, because of a higher ranked markedness constraint against voiced codas (omitted here), the OT
grammar (177a) maps the underlying form a to the surface form d (which deletes the voiced coda) rather
than to c (which instead devoices it). Since (a, d, ρa,d) ≤sim (b, d, ρb,d), output-drivenness requires that
grammar to map also the underlying form b to d, contrary (177b).3

(177) a. /rid/ Id[voice] Max

a = rid

c = ret

∗!

+ a = rid

d = re

∗

b. /ret/ Id[voice] Max

+ b = ret

c = ret
b = ret

d = re

∗

As another counterexample, consider the two candidates (a, d, ρa,d) and (b, d, ρb,d) in (176b). The OT
grammar (178a) maps the underlying form a to the surface form d. Since (a, d, ρa,d) ≤sim (b, d, ρb,d),
output-drivenness requires that grammar to map also the underlying form b to d, contrary to (177b).

(178) a. /pa/ Id[place] *[k]

a = pa

b = k i

∗ ∗!

+ a = pa

d = t i

∗

b. /ki/ Id[place] *[k]

+ b = ki

b = ki

∗

b = ki

d = ti

∗!

2 This means that there exists a mapping from the segments of b deleted relative to (b, d, ρb,d) to the segments of a
deleted relative to (a, d, ρa,d) such that two different deleted segments of b correspond to two different deleted segments of
a. In other words, (a, d, ρa,d) has at least as many deleted segments as (b, d, ρb,d).

3 It is an interesting exercise to check that this failure of output-drivenness comes, as expected, with a failure of
the FODCOT. Indeed, the first FODCOT (170a) fails for F = Ident[voice]: Id(a, d) = 0 and Id(a, c) = 1, so that the

antecedent of the first FODCOT (170a) holds; yet Id(b, d) = Id(b, c) = 0, so that its consequent fails. Other choices of
the correspondence relation ρa,c yields analogous failures. For instance, suppose that ρa,c establishes no correspondence
between the codas of a and c. In this case, the second FODCOT (170b) fails for F =Max: Max(b, c)=0 and Max(b, d)=1,
so that the antecedent of the second FODCOT (170b) holds; yet Max(a, c)=Max(a, d)=1, so that its consequent fails.
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These counterexamples show that Definition 3 is too weak: it yields a similarity order which holds between
too many pairs of candidates, making output-drivenness too hard to satisfy. We thus need a stronger
definition of the similarity order, which is satisfied by less pairs of candidates and in particular is not
satisfied by pairs of candidates such as those in (176), which we have just seen to be problematic for
output-drivenness.

5.3.3. Tesar’s similarity order
Indeed, the similarity order considered by Tesar is not the one provided by Definition 3 above but the

one provided by the following Definition 4. The two definitions differ for the material underlined.

Definition 4. [Tesar’s similarity order] For any two candidates (a, d, ρa,d) and (b, d, ρb,d) sharing a
surface form d, let (a, d, ρa,d) ≤Φ

sim (b, d, ρb,d) provided:
Identity clause: for every feature ϕ in Φ, for every segment d of d, if there exists a segment b of b

such that (b, d)∈ρb,d and ϕ(b) 6= ϕ(d), there exists a segment a of a such that (a, d)∈ρa,d and
ϕ(a) = ϕ(b).

Deletion clause: there exists an injection from the segments of b deleted relative to (b, d, ρb,d) to the
segments of a deleted relative to (a, d, ρa,d) such that any two deleted segments corresponding
through the injection agree on the value of every feature in Φ.

Epenthesis clause: every segment of d which is epenthetic relative to (b, d, ρb,d) is also epenthetic
relative to (a, d, ρa,d). �

The deletion clause of the new Definition 4 is stronger than the corresponding clause in the original
Definition 3 because of the additional boxed condition which requires two deleted segments (corresponding
through the injection) to match in feature values. To illustrate, consider the two candidates in (176a). The
two deleted underlying codas differ relative to the feature [voice]. The additional underlined condition
of the deletion clause therefore fails. The two candidates in (176a) thus fail the similarity inequality
(a, d, ρa,d) ≤Φ

sim (b, d, ρb,d) relative to the similarity order ≤Φ
sim provided by the revised Definition 4. The

problem with the failure of output-drivenness in (177) is therefore circumvented.
The identity clause of the new Definition 4 has the underlined condition ϕ(a) = ϕ(b) instead of

the condition ϕ(a) 6= ϕ(d) of the original Definition 3. Because of the assumption ϕ(b) 6= ϕ(d), the
condition ϕ(a) = ϕ(b) of the new Definition 4 entails the condition ϕ(a) 6= ϕ(d) of the original Definition
3. The reverse entailment fails whenever the feature ϕ is has more than two values. To illustrate,
consider the two candidates in (176b). The underlying onset /k/ of the underlying form b differs from
its surface correspondent [t] relative to the feature [place]. The underlying onset /p/ of a also differs
from its surface correspondent [t]. The identity condition of the original Definition 3 thus holds. But
the identity condition of the new Definition 4 fails, because the two underlying onsets /p/ and /k/ differ
relative to the three-valued feature [place]. The two candidates in (176b) thus fail the similarity inequality
(a, d, ρa,d) ≤Φ

sim (b, d, ρb,d) relative to the similarity order ≤Φ
sim provided by the revised Definition 4. The

problem with the failure of output-drivenness in (178) is therefore circumvented.

5.4. Axiomatizing the similarity order

As discussed in section 5.3, Tesar’s Definition 4 describes the similarity order concretely, in terms of
strings and correspondence relations. Within constraint-based phonology, it is natural to assess similarity
through the faithfulness constraints. This section thus provides an axiomatization of the similarity order
in terms of conditions on the faithfulness constraints. The proposed axiomatization subsumes Tesar’s
concrete similarity order provided by Definition 4 as a special case. Despite its reliance on faithful-
ness constraints, I submit that my alternative approach is not inconsistent with the desired framework-
independency of output-drivenness. To start, the technical notion of disparity that Tesar relies on for
its definition of similarity is really nothing else than a different name for a faithfulness constraint viola-
tion. Furthermore, Tesar does not shy away from correspondence relations despite the fact that they are
a representational device needed in constraint-based phonology to get around the lack of phonological
derivations. In fact, Tesar (p. 34) explains that, “while in linguistics the terminology of correspondence
is perhaps found most explicitly in the OT literature, the concept is equally important to any genera-
tive theory. There is a correspondence relation implicit in every SPE-style rule.” The same argument
applies to faithfulness constraints: although they were only formalized in OT, faithfulness considerations
are plausibly intrinsic to phonological theorizing, independently of the framework. Finally, Tesar’s con-
crete definition of similarity is tailored to restrictive representational assumptions, which only allow for
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deletion, epenthesis and feature mismatches but no additional faithfulness violations. Indeed, Tesar’s
application of output-drivenness to OT presupposes a faithfulness constraint set limited to Max, Dep
and Ident constraints. An axiomatization of similarity in terms of an arbitrary set of faithfulness con-
straints seems to me the most straightforward way to generalize Tesar’s theory of output-drivenness to
richer representational assumptions, as shown in the next section. I conclude that there is no principled
impediment against rephrasing Tesar’s definition of similarity in terms of faithfulness constraints.

5.4.1. An initial attempt
Intuitively, a candidate has more internal similarity than another candidate provided the former incurs

less faithfulness violations than the latter. This intuition is formalized by Definition 5. For the sake of
generality (see below Subsection 5.5.4), the similarity order is parameterized by a set F of faithfulness
constraints which can in principle be different from or smaller than the entire faithfulness constraint set
used to define the OT typology.

Definition 5. For any two candidates (a, d, ρa,d) and (b, d, ρb,d) sharing the surface form d, let (a, d, ρa,d) ≤F ,weak
sim

(b, d, ρb,d) provided the following inequality holds

(179) F
(
a, d, ρa,d

)
≥ F

(
b, d, ρb,d

)
for every faithfulness constraint F in the faithfulness constraint set F . �

When the faithfulness constraint set F consists of Max, Dep, and Identϕ corresponding to features
ϕ ∈ Φ, the similarity order ≤F ,weak

sim provided by the faithfulness-based Definition 5 coincides with the
weak similarity order ≤Φ,weak

sim provided by the concrete Definition 3 and thus inherits the drawbacks
discussed in Subsection 5.3.2. A stronger axiomatization is therefore needed.

5.4.2. A stronger axiomatization
Subsection 5.2.5 has shown that the sufficient condition for output-drivenness provided by the FODCOT

(170) is tight: any faithfulness constraint which fails the FODCOT yields a failure of output-drivenness. In
order to amend Definition 5, I thus look at the FODCOT. Given two candidates such that (a, d, ρa,d) ≤sim
(b, d, ρb,d), Tesar’s proposition 18 requires the FODCOT to hold for every candidate (b, c, ρb,c) and some
candidate (a, c, ρa,c). Consider the special case where c = b and ρb,c is the identity Ib,b over the string
b = c. Tesar’s proposition thus requires in particular that there exists some candidate (a, b, ρa,b) such
that the first FODCOT implication (170a) holds, which in the specific case considered becomes (180).

(180) If: F (a, d, ρa,d) < F (a, b, ρa,b)

Then: F (b, d, ρb,d) < F (b, b, Ib,b)

By (56), faithfulness constraints assign zero violations to the identity candidate (b, b, Ib,b). The conse-
quent of the implication (180) thus says that F (b, d, ρb,d) < 0. The latter contradicts the assumption
that constraint violations are non-negative. Since the consequent of the implication (180) is false, the
antecedent must be false as well. This means that the similarity order ≤sim must be defined in such a
way that (a, d, ρa,d) ≤sim (b, d, ρb,d) entails the existence of some candidate (a, b, ρa,b) which satisfies the
inequality (181).

(181) F (a, d, ρa,d) ≥ F (a, b, ρa,b)

In conclusion, the similarity order≤sim must be defined in such a way that the inequality (a, d, ρa,d) ≤sim
(b, d, ρb,d) entails both the intuitive condition (179) and the technical condition (181). The simplest way
to achieve that is by adding the right-hand side of those two conditions yielding (182). This revised
condition is stronger than the original condition (179) because of the additional term on the right-hand
side of the inequality. Intuitively, this new condition (182) requires the less similar candidate (a, d, ρa,d)
to “make up” not only for any faithfulness violation incurred by the more similar candidate (b, d, ρb,d)
but also for any faithfulness violation incurred by the candidate (a, b, ρa,b) which puts the two strings a
and b in correspondence.

Definition 6. [Axiomatization of similarity orders] For any candidates (a, d, ρa,d) and (b, d, ρb,d) which
share a surface form d, let (a, d, ρa,d) ≤Fsim (b, d, ρb,d) provided the candidate set contains a candidate
(a, b, ρa,b) which puts in correspondence the two strings a and b in such a way that the following inequality
holds
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(182) F
(
a, d, ρa,d

)
≥ F

(
b, d, ρb,d

)
+ F

(
a, b, ρa,b

)︸ ︷︷ ︸
additional term

for every faithful constraint F in the faithfulness constraint set F . �

To illustrate, consider the two candidates (a, d, ρa,d) and (b, d, ρb,d) in (183a). They satisfy the similar-
ity inequality (a, d, ρa,d)≤Fsim (b, d, ρb,d) relative to the faithfulness constraint set F = {Max, Ident[high], Ident[voice]}
because each of those three faithfulness constraints satisfies condition (182) when the candidate (a, b, ρa,b)
which features in the additional term is (183b).

(183) a. a = r i d

d = r e

b = r ed

d = r e

b. a = r i d

b = r ed

For comparison, consider again the two candidates (a, d, ρa,d) and (b, d, ρb,d) in (176a) repeated in (184a),
which were found to be problematic for output-drivenness. These two candidates fail the similarity
inequality (a, d, ρa,d) ≤Fsim (b, d, ρb,d). In fact, the two obvious choices for the candidate (a, b, ρa,b) which
features in the additional term of the revised condition (182) are (184b) and (184b′). Yet, condition (182)
fails for F =Ident[voice] in the case of (184b) and for F =Max in the case of (184b′).

(184) a. a = r i d

d = r e

b = r e t

d = r e

b. a = r i d

b = r e t

b′. a = r i d

b = r e t

The crucial difference between the two candidates (a, d, ρa,d) and (b, d, ρb,d) in (183a) which satisfy the
similarity inequality and those in (184a) which instead fail is that the deleted codas in the latter two
candidates differ in voicing. The additional term in the revised condition (182) thus plays the role of the
additional underlined condition in the deletion clause of Tesar’s definition 4.

As another example, consider the two candidates (a, d, ρa,d) and (b, d, ρb,d) in (185a). They sat-
isfy the similarity inequality (a, d, ρa,d) ≤Fsim (b, d, ρb,d) relative to the faithfulness constraint set F =
{Max, Ident[high], Ident[place]} because each of those faithfulness constraints satisfies condition (182)
when the candidate (a, b, ρa,b) which features in the additional term is (185b).

(185) a. a = pa

d = t i

b = p i

d = t i

b. a = pa

b = p i

For comparison, consider again the two candidates (a, d, ρa,d) and (b, d, ρb,d) in (176b) repeated in (186a),
which were found to be problematic for output-drivenness. Those two candidates fail the similarity
inequality (a, d, ρa,d) ≤Fsim (b, d, ρb,d). In fact, the two obvious choices for the candidate (a, b, ρa,b) which
features in the additional term of the revised condition (182) are (186a) and (186b). Yet, condition (182)
fails for F = Ident[place] in the case of (186a) and it fails for F = Max in the case of (186b′).

(186) a. a = pa

d = t i

b = k i

d = t i

b. a = pa

b = k i

b′. a = pa

b = k i

The crucial difference between the two candidates (a, d, ρa,d) and (b, d, ρb,d) in (185a) which satisfy the
similarity inequality and those in (186a) which instead fail is that the underlying onsets in the latter two
candidates differ in place not only with their surface correspondent but also between each other. The
additional term in the revised condition (182) thus plays the role of the additional underlined condition
in the identity clause of Tesar’s definition 4.4

4 Consider again the candidates (a, d, ρa,d) and (b, d, ρb,d) in (166), repeated below in (ia) and (ib). In order to
secure the argument made in Subsection 5.1.3, we need to secure the similarity inequality (a, d, ρa,d) ≤Fsim (b, d, ρb,d) with
F = {Ident[voice], Ident[cont]}. Indeed, condition (182) holds for both faithfulness constraints in F when the candidate
(a, b, ρa,b) in the additional term of (182) is defined as in (ic).

(i) a. a = p

d = B

b. b = b

d = B

c. a = p

b = b
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5.4.3. Formal properties of the strong similarity order
The following proposition (proven in appendix A.2) shows that the relation ≤Fsim provided by definition

6 is indeed a partial order on the candidate set and that it satisfies the intuitive condition (163) that
identity candidates have maximal internal similarity. Note that the reflexivity axiom in (187) is stronger
than the reflexivity axiom (51) from section 3.1: the latter only requires the existence of the identity
candidate relative to the surface form, while the former also requires the existence of the identity candidate
relative to the underlying form.

Proposition 19. Assume the candidate set (49) satisfies the following reflexivity axiom (187) as well as
the transitivity axiom (66) of section 3.2, repeated in (188)

(187) If the candidate set contains a candidate (a, b, ρa,b), it also contains the corresponding identity
candidates (a, a, Ia,a) and (b, b, Ib,b), where Ia,a and Ib,b are the identity correspondence relations
among the segments of a and b, respectively.

(188) If the candidate set contains two candidates (a, b, ρa,b) and (b, c, ρa,b) which share b as the sur-
face and the underlying form, it also contains the composition candidate (a, c, ρa,bρb,c) whose
correspondence relation ρa,bρb,c is the composition of ρa,b and ρb,c.

Assume that the faithfulness constraint subset F is complete: for any two candidates (a, d, ρa,d), (b, d, ρb,d)
which share the surface form, there exists a faithfulness constraint F in F which assigns them a different
number of violations. Assume furthermore that each faithfulness constraint F in F satisfies the triangle
inequality FTIcomp repeated in (189) from section 4.1.

(189) F
(
a, c, ρb,cρb,c

)
≤ F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)
Then, the relation ≤Fsim provided by definition 6 is a partial order on the candidate set and it satisfies the
condition (163) that identity candidates have maximal internal similarity. �

5.4.4. The axiomatic definition subsumes Tesar’s concrete definition
Assume that the faithfulness constraint set F consists of the faithfulness constraints that Tesar focuses

on, namely Max, Dep, and Identϕ for any feature ϕ in the feature set Φ. The sophisticated analysis
developed in Tesar (2013, chapter 3) can be rebooted (see Magri 2016b for details) to establish that:

Proposition 20. For any two candidates (a, d, ρa,d) and (b, d, ρb,d), if the similarity inequality (a, d, ρa,d) ≤Φ
sim

(b, d, ρb,d) holds relative the similarity order ≤Φ
sim provided by Tesar’s concrete Definition 4, then the

similarity inequality (a, d, ρa,d) ≤Fsim (b, d, ρb,d) holds relative to the similarity order ≤Fsim provided by the
axiomatic Definition 6. �

Yet, the two similarity orders ≤Φ
sim and ≤Fsim are not equivalent: it is easy to construct cases where

(a, d, ρa,d) ≤Fsim (b, d, ρb,d) but (a, d, ρa,d) 6≤Φ
sim (b, d, ρb,d), even when F only consists of the three types of

faithfulness constraints that Tesar focuses on (see Magri 2016b for discussion). In conclusion, the proposed
axiomatization of the similarity order subsumes Tesar’s concrete definition as a special, concrete case.
The notion of output-drivenness relative to the axiomatized similarity order ≤Fsim is thus slightly stronger
than Tesar’s original notion (because it holds relative to a similarity order which is slightly looser) and
the resulting theory therefore slightly more general.

5.4.5. The composition candidate and the FODCOT
comp

Consider two candidates (a, d, ρa,d) and (b, d, ρb,d) which satisfy the similarity inequality (a, d, ρa,d) ≤Fsim
(b, d, ρb,d). Tesar’s Proposition 18 considers an arbitrary third candidate (b, c, ρb,c) which puts the more
similar underlying form b in correspondence with a candidate c different from d through some relation
ρb,c. The proposition then requires the existence of a fourth candidate (a, c, ρa,c) which puts the less

Consider next the candidates (a, d, ρa,d) and (b, d, ρb,d) in (168), repeated below in (iia) and (iib). In order to secure
the argument made in Subsection 5.2.1, we need to secure the similarity inequality (a, d, ρa,d) ≤Fsim (b, d, ρb,d) with
F = {Ident[voice], Ident[low]}. Indeed, condition (182) holds for both faithfulness constraints in F when the candidate
(a, b, ρa,b) in the additional term in (182) is defined as in (iic).

(ii) a. a = t e t d

d = t a t

b. b = t a d

d = t a t

c. a = t e t d

b = t a d
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similar underlying form a in correspondence with that same candidate c through some relation ρa,c, as
represented in (190).

(190)
a d

b c

ρa,d

ρb,d
ρb,cρa,b

ρa,c

By Definition 6 of the similarity order ≤Fsim, the assumption (a, d, ρa,d) ≤Fsim (b, d, ρb,d) ensures the
existence of a correspondence relation ρa,b between the two strings a and b. It is thus natural to assume
that ρa,c is the composition ρa,bρb,c of ρa,b and ρb,c. The existence of this composition candidate is
guaranteed by the transitivity axiom (66). The FODCOT (170) can thus be specialized as in (191), which
will be referred to as the FODCOT

comp.

(191) a. If: F
(
a, d, ρa,d

)
< F (a, c,

ρa,c︷ ︸︸ ︷
ρa,bρb,c)

Then: F
(
b, d, ρb,d

)
< F (b, c, ρb,c)

b. If: F
(
b, c, ρb,c

)
< F

(
b, d, ρb,d

)
Then: F

(
a, c, ρa,bρb,c︸ ︷︷ ︸

ρa,c

)
< F

(
a, d, ρa,d

)
The reasoning in this section is analogous to the reasoning in section 3.2.4, which replaced the general
sufficient condition for idempotency provided by the FICOT with the special condition FICOT

comp in terms
of the composition candidate.

5.5. OT output-drivenness and the triangle inequality

The condition for output-drivenness provided by the FODCOT
comp (191) looks like a technical condition

without an intuitive interpretation. This section will derive an intuitive metric interpretation of this
condition by investigating its relationship with the triangle inequality.

5.5.1. The FTIcomp entails the FODCOT
comp in the general case

Consider two candidates (a, d, ρa,d) and (b, d, ρb,d) which satisfy the similarity inequality (a, d, ρa,d) ≤Fsim
(b, d, ρb,d) relative to the similarity order provided by Definition 6. This means that there exists a candi-
date (a, b, ρa,b) such that each faithfulness constraint F in the faithfulness constraint set F satisfies the
inequality (182), repeated in (192).

(192) F
(
a, d, ρa,d

)
≥ F

(
b, d, ρb,d

)
+ F

(
a, b, ρa,b

)
Assume now that the faithfulness constraint F measures the phonological distance between underlying
and surface forms in compliance with the metric triangle inequality, which has been formalized in Section
4.1 as the FTIcomp. The latter boils down to the inequality (193) in the specific case of the two candidates
(a, b, ρa,b) and (b, c, ρb,c) and their composition candidate (a, c, ρa,bρb,c).

(193) F
(
a, c, ρa,bρb,c

)
≤ F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)
The inequality (192) allows F (a, b, ρa,b) in (193) to be upper bounded with F (a, d, ρa,d) − F (b, d, ρb,d),
yielding the inequality (194).

(194) F
(
a, c, ρa,bρb,c

)
− F

(
b, c, ρb,c

)
≤ F

(
a, d, ρa,d

)
− F

(
b, d, ρb,d

)
Assume that the antecedent of the first FODCOT

comp implication (191a) holds, namely that F (a, d, ρa,d) <
F (a, c, ρa,bρb,c). The inequality (194) then entails that F (b, d, ρb,d) < F (b, c, ρb,c), thus ensuring that
the consequent of the implication holds as well. In other words, the inequality (194) entails the first
FODCOT

comp implication (191a). An analogous reasoning applies to the second FODCOT
comp implication
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(191b). In conclusion, the FTIcomp entails Tesar’s FODCOT
comp relative to the similarity order provided

by Definition 6, as summarized in the following Proposition 21, which is the main technical result of this
chapter. No assumptions are made on the nature of the faithfulness constraints (for instance, they are
not required to be categorical) or on the correspondence relations in the candidate set (for instance, they
are not required to be one-to-one).

Proposition 21. If a faithfulness constraint F satisfies the FTIcomp and it belongs to the faithfulness
constraint set F used define the similarity order ≤Fsim according to Definition 6, then F satisfies the
FODCOT

comp (191) relative to that similarity order ≤Fsim. �

5.5.2. The FTIcomp is stronger than the FODCOT
comp in the general case

Proposition 21 says that the FTIcomp entails the FODCOT
comp. The following counterexample shows that

the reverse entailment fails in the general case, so that the FTIcomp is stronger than the FODCOT
comp. Let

`(a) be the length of the string a. Assume that the candidate set displays no epenthesis and thus consists
of candidates (a, b, ρa,b) whose surface form b is not longer than the the underlying form a: `(b) ≤ `(a).
Since correspondence relations play no role in the counterexample, I omit them and represent candidates
simply as pairs of strings. Consider the faithfulness constraint (195) which assigns to a candidate (a, b)
a number of violations equal to the squared difference of the length of its two strings. This is a proper
faithfulness constraint, in the sense that it assigns zero violations to any identity candidate, in compliance
with the definitional faithfulness condition (56).

(195) F (a, b) =
(
`(a)− `(b)

)2
This faithfulness constraint F satisfies both FODCOT

comp implications (191), as their antecedent and con-
sequent are equivalent.5 Yet, F fails at the FTIcomp for any two candidates (a, b) and (b, c) and their
composition candidate (a, c).6 This constraint F thus shows that the FODCOT

comp is weaker than the
FTIcomp.

5.5.3. The FTIcomp, FODCOT
comp, and FICOT

comp are equivalent for categorical constraints

Subsections 5.2.3 and 5.5.1 have shown that the FTIcomp entails the FODCOT
comp which in turn entails

the FICOT
comp. Assume now that all correspondence relations in the candidate set are one-to-one, as

otherwise output-drivenness fails (as shown in Subsection 5.2.1) and the FODCOT
comp must therefore fail

as well. Assume furthermore that each faithfulness constraint in F satisfies McCarthy’s (strengthened)
categoricity conjecture, formalized in section 4.3. Under these assumptions, the FICOT

comp entails the
FTIcomp, as shown in Subsection 4.4.3. I conclude that the FTIcomp, the FODCOT

comp, and the FICOT
comp

are equivalent, as summarized in the following proposition.

Proposition 22. Assume that the correspondence relations in the candidate set are all one-to-one. Con-
sider a faithfulness constraint F which is C-categorical; or I-categorical and O-monotone; or O-categorical
and I-monotone. Assume that F belongs to the faithfulness subset F used to define the similarity order
≤Fsim according to Definition 6. The constraint F satisfies the FTIcomp if and only if it satisfies the
FODCOT

comp if and only if it satisfies the FICOT
comp. �

Proposition 22 provides an intuitive interpretation of the rather technical sufficient condition for OT
output-drivenness provided by the FODCOT

comp. In fact, it says that the FODCOT
comp simply requires (cate-

gorical and monotone) faithfulness constraints to measure the phonological distance between underlying

5 Consider the first FODCOT
comp implication (191a). Its antecedent and consequent are shown to be equivalent in (i),

using the fact that x < y iff x2 < y2, for any x, y ≥ 0

(i) F (a, d) < F (a, c) ⇐⇒ (`(a)− `(d))2 < (`(a)− `(c))2
⇐⇒ (`(a)− `(d)) < (`(a)− `(c))
⇐⇒ −`(d) < −`(c)
⇐⇒ (`(b)− `(d)) < (`(b)− `(c))
⇐⇒ (`(b)− `(d))2 < (`(b)− `(c))2
⇐⇒ F (b, d) < F (b, c)

An analogous reasoning holds for the second FODCOT
comp implication (191b).

6 In fact F (a, c) = (`(a)− `(c))2 = [(`(a)− `(b)) + (`(b)− `(c))]2 ≥ (`(a)− `(b))2 + (`(b)− `(c))2 = F (a, b) + F (b, c),
contradicting the FTIcomp.
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and surface forms in compliance with the metrical axiom of the triangle inequality, as formalized through
the FTIcomp. Furthermore, Proposition 22 provides a straightforward characterization of the faithful-
ness constraints which satisfy the FODCOT

comp. In fact, the faithfulness constraints listed in chapter 3 as
satisfying the FICOT

comp are all categorical and monotone. The equivalence between the FICOT
comp and the

FODCOT
comp established by Proposition 22 thus ensures that they also all satisfy the FODCOT

comp (under
the assumption that all correspondence relations are one-to-one).

5.5.4. The restriction to faithfulness constraints which belong to the subset F
Consider again the two candidates (a, d, ρa,d) = (/p/, [B]) and (b, d, ρb,d) = (/b/, [B]) in (166) (corre-

spondence relations play no role because I am considering singleton segments). As discussed in Subsection
5.1.3, any plausible measure of internal similarity should yield that candidate (a, d, ρa,d) has less internal
similarity than candidate (b, d, ρb,d), because the former candidate displays disparities for both voicing
and continuancy while the latter displays a disparity for continuancy but not for voicing. Consider the
faithfulness constraint F = Ident[voice] ∨ Ident[cont] which is the disjunction of the two identity faith-
fulness constraints Ident[voice] and Ident[cont] for voicing and continuancy. Subsection 5.2.4 has shown
that F fails at the FODCOT

comp. Yet, Proposition 11 in Subsection 3.5.6 states that F succeeds at the
FICOT

comp. Furthermore, F is obviously C-categorical, as it is the disjunction of two identity constraints
which are both C-categorical. The fact that F satisfies the FICOT

comp but not the FODCOT
comp is not a coun-

terexample to the entailment from the FICOT
comp to the FODCOT

comp ensured by Proposition 22. In fact,
that proposition only looks at the faithfulness constraints which crucially belong to the faithfulness con-
straint set F used to define the similarity order ≤Fsim according to Definition 6. Crucially, the disjunctive
faithfulness constraint F = Ident[voice] ∨ Ident[cont] cannot belong to the set F . In fact, the inequality
(196) required by Definition 6 for the similarity inequality (a, d, ρa,d) ≤Fsim (b, d, ρb,d) to hold fails for this
specific faithfulness constraint F .7 In other words, if F did belong to F , the two candidates (a, d, ρa,d)
and (b, d, ρb,d) would not be comparable relative to the similarity order ≤Fsim, contrary to intuitions.

(196) F (a, d, ρa,d)︸ ︷︷ ︸
=F (/p/, [B])=1

6≥ F (b, d, ρa,b)︸ ︷︷ ︸
=F (/b/, [B])=1

+F (a, b, ρa,b)︸ ︷︷ ︸
=F (/p/, [b])=1

The reason why Definition 6 of the similarity order ≤Fsim has been parameterized by a faithfulness con-
straint subset F possibly smaller than the entire faithfulness constraint set is precisely to allow for the
possibility that certain faithfulness constraints (and in particular those derived from other more basic
faithfulness constraints through operations such as local disjunction) not be considered in the computation
of similarity.

5.5.5. Summary
This section has reconstructed Tesar’s (2013) theory of output-drivenness. The sufficient condition for

output-drivenness provided by his FODCOT has been shown to admit a metric interpretation: it effectively
requires the faithfulness constraints (which belong to the faithfulness constraint set F used to compare
similarity) to measure the phonological distance between underlying and surface forms in compliance with
the metric triangle inequality. This interpretation holds under McCarthy’s (strengthened) categoricity
conjecture. Because of this reinterpretation, the FODCOT turns out to be equivalent to the sufficient
condition for idempotency provided by the FICOT (for faithfulness constraints which are categorical and
belong to F).

5.6. Output-drivenness in Harmonic Grammar

This section extends the theory of output-drivenness from OT to HG. This extension will provide a
more pristine view of the relationship between output-drivenness and the triangle inequality, which does
not rely on categoricity.

7 I am assuming that the correspondence relation ρa,b in the candidate (a, b, ρa,b) = (/p/, [b]) does put the singleton
underlying and surface segments in correspondence. If that is not the case, then the inequality (196) would indeed succeed
for F = Ident[voice] ∨ Ident[cont] but it would fail for F = Max and F = Dep.
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5.6.1. A condition on the faithfulness constraint set: the FODCHG
comp

Subsection 5.2.2 has recalled Tesar’s (2013) Proposition 18, which provides guarantees for the output-
drivenness of the grammars in an OT typology under the assumption that each faithfulness constraint
satisfies the FODCOT (170). The following Proposition 23 provides the HG analogue of Tesar’s OT
Proposition 18. The proof is analogous to that of Proposition 13 for HG idempotency and it is provided
in Appendix A.3. The implication (197) will be referred to as the HG faithfulness output-drivenness
condition (FODCHG). Proposition 23 makes no assumptions on the markedness constraints, on the
nature of the faithfulness constraints (for instance, it does not require them to be categorical), on the
correspondence relations in the candidate set (for instance, it does not require them to be one-to-one),
or on the similarity order ≤sim (which is indeed left completely unspecified).

Proposition 23. Assume that, for any two candidates (a, d, ρa,d) and (b, d, ρb,d) such that (a, d, ρa,d) ≤sim
(b, d, ρb,d), for every other candidate (b, c, ρb,c) different from (b, d, ρb,d), the candidate set also contains
a candidate (a, c, ρa,c) different from (a, d, ρa,d) such that the following condition (197) holds for any
faithfulness constraint F in the constraint set.

(197) For every choice of the constant ξ (with no restrictions on its sign):
If: F

(
b, c, ρb,c

)
≤ F

(
b, d, ρb,d

)
+ ξ

Then: F
(
a, c, ρa,c

)
≤ F

(
a, d, ρa,d

)
+ ξ

Then, the HG grammar corresponding to any weighting of the constraint set is output-driven relative to
the similarity order ≤sim. �

Let’s now consider the special case where the similarity order is defined as in Subsection 5.4.2. The
similarity condition (a, d, ρa,d) ≤Fsim (b, d, ρb,d) thus means that there exists some candidate (a, b, ρa,b)
which puts the two underlying forms a and b in correspondence and validates the crucial inequality (182)
for every faithfulness constraint F in the faithfulness constraint subset F . By reasoning as in Subsection
5.4.5, the FODCHG (197) can be specialized to the FODCHG

comp (198), by assuming that the candidate
(a, c, ρa,c) which appears on the left-hand side of the inequality in the consequent is the composition
candidate (a, c, ρa,bρb,c) of the two candidates (a, b, ρa,b) and (b, c, ρb,c), whose existence is guaranteed
by the transitivity axiom (66).

(198) For every choice of the constant ξ (with no restrictions on its sign):
If: F

(
b, c, ρb,c

)
≤ F

(
b, d, ρb,d

)
+ ξ

Then: F
(
a, c, ρa,bρb,c

)
≤ F

(
a, d, ρa,d

)
+ ξ

The sufficient condition for output-drivenness provided by the FODCHG
comp is tight: any faithfulness con-

straint which fails the FODCHG
comp admits an elementary counterexample where output-drivenness fails.

5.6.2. The FODCHG entails the FICHG in the general case
Subsection 5.2.3 has shown that the sufficient condition for OT output-drivenness provided by the

FODCOT entails the sufficient condition for OT idempotency provided by the FICOT, because the latter
coincides with the former in the special case where (b, d, ρb,d) is the identity candidate. An analogous
reasoning holds in the case of HG. The sufficient condition for HG output-drivenness provided by the
FODCHG (197) reduces to (199) when (b, d, ρb,d) is the identity candidate. The latter is the sufficient
condition for HG idempotency provided by the FICHG (112), as derived in Section 4.2.3.8

(199) For every choice of the constant ξ (with no restrictions on its sign):
If: F

(
b, c, ρb,c

)
≤ ξ

Then: F
(
a, c, ρa,c

)
≤ F

(
a, d, ρa,d

)
+ ξ

In conclusion, the FODCHG entails the FICHG in the general case, no matter how the similarity order in
the definition of output-drivenness is defined. This conclusion matches the fact that output-drivenness
entails idempotency independently of the grammatical fromework, as noted in Subsection 5.1.2.

8 As explained in footnote 2, it makes no difference whether the constant ξ in (112)/(199) is restricted to be non-
negative or allowed to be negative. That is of course not the case for (197): the fact that ξ is allowed to be negative makes
it a stronger condition.
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5.6.3. The FODCHG entails the FODCOT in the general case
Subsection 5.2.2 has introduced Tesar’s sufficient condition FODCOT for OT output-drivenness, re-

peated in (200) for ease of comparison.

(200) a. If: F
(
a, d, ρa,d

)
< F

(
a, c, ρa,c

)
Then: F

(
b, d, ρb,d

)
< F

(
b, c, ρb,c

)
b. If: F

(
b, c, ρb,c

)
< F

(
b, d, ρb,d

)
Then: F

(
a, c, ρa,c

)
< F

(
a, d, ρa,d

)
These two implications (200a) and (200b) are closely related: if we were to replace “<” with “≤”, then
one would be the counter-positive of the other and we could retain only one of the two implications.
This intuition is brought out by the following Proposition 24: the two implications (200a) and (200b) are
jointly equivalent to the condition (201). The latter indeed coincides with the second implication (200b)
where “<” has been replaced with “≤” at the price of adding a small constant ξ at the right-hand side.
The proof of this equivalence is straightforward but tedious, and it is therefore relegated to Appendix
A.4.

Proposition 24. The two FODCOT implications (200) are jointly equivalent to the condition:

(201) For every choice of the constant ξ between −1 and +1 (both excluded):
If: F

(
b, c, ρb,c

)
≤ F

(
b,d, ρb,d

)
+ ξ

Then: F
(
a, c, ρa,c

)
≤ F

(
a, d, ρa,d

)
+ ξ

for any faithfulness constraint F . �

The restatement (201) of the FODCOT shows that it is actually entailed by the sufficient condition
FODCHG (197) for HG output-drivenness in the general case, matching the fact that HG typologies can
be larger than OT typologies.

5.6.4. The FODCHG
comp, FICHG, and FTIcomp are equivalent in the general case

The FODCHG
comp entails the FICHG

comp in the general case (as seen in Subsection 5.6.2). The FICHG
comp is

in turn equivalent to the triangle inequality formalized though the FTIcomp (as seen in Subsection 4.2.5).
Thus, the FODCHG

comp entails the FTIcomp. This entailment holds under no assumptions on the faithfulness
constraints. To investigate the reverse entailment, consider a faithfulness constraint F which belongs to
the faithfulness constraint set F used to define the similarity order ≤Fsim according to Definition 6 in
Subsection 5.4.2. Consider two candidates such that (a, d, ρa,d) ≤Fsim (b, d, ρb,d). As seen in Subsection
5.5.1, the FTIcomp entails the inequality (194), repeated in (202). And the latter in turn straightforwardly
entails the FODCHG

comp.

(202) F
(
a, c, ρa,bρb,c

)
− F

(
b, c, ρb,c

)
≤ F

(
a, d, ρa,d

)
− F

(
b, d, ρb,d

)
In conclusion, the FODCHG

comp relative to the similarity order≤Fsim provided by the Definition 6 is equivalent
to both the FICHG

comp and the FTIcomp, as summarized in the following Proposition 21. This equivalence
holds for any faithfulness constraint which belongs to F . No additional assumptions are made neither on
the nature of the faithfulness constraints (for instance, they are not required to be categorical) nor on
the correspondence relations in the candidate set (for instance, they are not required to be one-to-one).

Proposition 25. The FODCHG
comp relative to the similarity order ≤Fsim is equivalent to both the FICHG

comp
and the FTIcomp for any faithfulness constraint which belongs to the faithfulness set F used to define the
similarity order. �

This proposition provides an intuitive interpretation of the rather technical sufficient condition for HG
output-drivenness provided by the FODCHG

comp. In fact, it says that the FODCHG
comp simply requires the

faithfulness constraints (which belong to F) to measure the phonological distance between underlying
and surface forms in compliance with the metrical axiom of the triangle inequality, as formalized through
the FTIcomp.
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5.6.5. The FODCHG
comp, FODCOT

comp and FICOT
comp are equivalent for categorical constraints

The FODCHG
comp entails the FODCOT

comp in the general case (as seen in Subsection 5.6.3). The FODCOT
comp

in turn entails the sufficient condition for OT idempotency provided by the FICOT
comp (as seen in Subsection

5.2.3). Thus, the FODCHG
comp entails the FICOT

comp. This entailment holds under no assumptions on the
faithfulness constraints. To investigate the reverse entailment, assume that all correspondence relations
in the candidate set are one-to-one, as otherwise output-drivenness fails (as seen in Subsection 5.2.1)
and the FODCHG

comp thus fails as well. Consider a faithfulness constraint which satisfies McCarthy’s
(strengthened) categoricity conjecture, formalized in section 4.3. Under these assumptions, the FICOT

comp
entails the FTIcomp (as seen in Subsection 4.4.3). The FTIcomp in turn entails the FODCHG

comp for every
faithfulness constraint which belongs to the faithfulness constraint set F used to define the similarity
order ≤Fsim (as seen in Subsection 5.6.4). We have thus obtained the following equivalence among the
FODCHG

comp, the FODCOT
comp and the FICOT

comp.

Proposition 26. Assume that the correspondence relations in the candidate set are all one-to-one.
Consider a faithfulness constraint F which is C-categorical; or I-categorical and O-monotone; or O-
categorical and I-monotone. Assume that F belongs to the faithfulness set F used to define the similarity
order ≤Fsim according to Definition 6. The constraint F satisfies the FODCHG

comp if and only if it satisfies
the FODCOT

comp if and only if it satisfies the FICOT
comp. �

This Proposition 22 provides a straightforward characterization of the faithfulness constraints which
satisfy the FODCHG

comp. In fact, the faithfulness constraints listed in chapter 3 as satisfying the FICOT
comp

are all categorical and monotone. The equivalence between the FICOT
comp and the FODCHG

comp established
by Proposition 26 thus ensures that they also all satisfy the FODCHG

comp relative to ≤Fsim (under the
assumption that all correspondence relations are one-to-one and that they belong to the subset F).

5.6.6. Summary
This section has completed the theory of output-drivenness within the OT and HG implementations

of constraint-based phonology. Output-drivenness follows from conditions on the faithfulness constraints,
namely the FODCOT

comp and the FODCHG
comp. These conditions are equivalent for faithfulness constraints

which satisfy McCarthy’s (strengthened) categoricity conjecture, because both conditions can be inter-
preted as requiring faithfulness constraints to measure phonological distances in compliance with the
triangle inequality, formalized as the FTIcomp.

A. Proofs

A.1. Proof of proposition 18
Proposition 18Assume that, for any two candidates (a, d, ρa,d) and (b, d, ρb,d) such that (a, d, ρa,d) ≤sim

(b, d, ρb,d), for any other candidate (b, c, ρb,c), the candidate set also contains a candidate (a, c, ρa,c) such
that the two following implications (170) hold for every faithfulness constraint F in the constraint set.

(203) a. If: F (a, d, ρa,d) < F (a, c, ρa,c)

Then: F (b, d, ρb,d) < F (b, c, ρb,c)

b. If: F (b, c, ρb,c) < F (b, d, ρb,d)

Then: F (a, c, ρa,c) < F (a, d, ρa,d)

Then, the OT grammar corresponding to any ranking of the constraint set is output-driven relative to the
similarity order ≤sim, no matter what the markedness constraints look like. �

Proof. Suppose that the OT grammar corresponding to a certain ranking maps the underlying
form a to the candidate (a, d, ρa,d). This means that the candidate (a, d, ρa,d) beats any other candidate
(a, c, ρa,c) for any other surface form c according to that ranking. This means in turn that one constraint
which correctly prefers the winner candidate (a, d, ρa,d) over the loser candidate (a, c, ρa,c) is ranked above
every constraint which instead prefers (a, d, ρa,c) over (a, d, ρa,d) as in (204).

(204) C a constraint which prefers (a, d, ρa,d) over (a, c, ρa,c)

C1,C2, . . . all the constraints which prefer (a, c, ρa,c) over (a, d, ρa,d)
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If the constraint C top ranked in (204) is a markedness constraint, then it does not care whether the
underlying form is a or b. The fact that it prefers (a, d, ρa,d) over (a, c, ρa,c) thus entails that it also
prefers (b, d, ρb,d) over (b, c, ρb,c). If instead C is a faithfulness constraint, this entailment is guaranteed
by condition (203a). I can thus update (204) as in (205).

(205)
C a constraint which prefers (b, d, ρb,d) over (b, c, ρb,c)

C1,C2, . . . all the constraints which prefer (a, c, ρa,c) over (a, d, ρa,d)

Consider a constraint which incorrectly prefers (b, c, ρb,c) over (b, d, ρb,d). If it is a markedness constraint,
then again it also prefers (a, c, ρa,c) over (a, d, ρa,d), namely it is one of the constraints C1,C2, . . . ranked
at the bottom of (205). If instead it is a faithfulness constraint, that same conclusion is guaranteed by
(203b). I can thus update (205) as in (206).

(206)
C a constraint which prefers (b, d, ρb,d) over (b, c, ρb,c)

C1,C2, . . . all the constraints which prefer (b, c, ρb,c) over (b, d, ρb,d)

In conclusion, (206) says that the ranking considered ranks a constraint which prefers (b, d, ρb,d) over
(b, c, ρb,c) above every constraint which instead prefers (b, c, ρb,c) over (b, d, ρb,d). Since this is true for
any candidate c, the grammar considered maps also the underlying form b to the candidate (b, d, ρb,d),
as required by output-drivenness. �

A.2. Proof of proposition 19
Proposition 19 Assume the candidate set (49) satisfies the following reflexivity axiom (187) as well

as the transitivity axiom (66) of section 3.2, repeated in (188)

(207) If the candidate set contains a candidate (a, b, ρa,b), it also contains the corresponding identity
candidates (a, a, Ia,a) and (b, b, Ib,b), where Ia,a and Ib,b are the identity correspondence relations
among the segments of a and b, respectively.

(208) If the candidate set contains two candidates (a, b, ρa,b) and (b, c, ρa,b) which share b as the sur-
face and the underlying form, it also contains the composition candidate (a, c, ρa,bρb,c) whose
correspondence relation ρa,bρb,c is the composition of ρa,b and ρb,c.

Given a subset F of the faithfulness constraint set, consider the relation ≤Fsim provided by definition
6, whereby (a, d, ρa,d) ≤Fsim (b, d, ρb,d) provided the candidate set contains a candidate (a, b, ρa,b) which
validates the inequality (209) for every constraint F in F .

(209) F
(
a, d, ρa,d

)
≥ F

(
b, d, ρb,d

)
+ F

(
a, b, ρa,b

)
Assume that the set F is complete: for any two candidates (a, d, ρa,d), (b, d, ρb,d) which share the surface
form, there exists a faithfulness constraint F in F which assigns them a different number of violations.
Assume furthermore that each faithfulness constraint F in F satisfies the triangle inequality FTIcomp

repeated in (210).

(210) F
(
a, c, ρb,cρb,c

)
≤ F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)
Then, ≤Fsim is a partial order on the candidate set and it satisfies the condition that identity candidates
have maximal internal similarity, repeated in (211).

(211) (a, d, ρa,d) ≤Fsim (d, d, Id,d) �

Proof. Let me show that ≤Fsim satisfies condition (211). In fact, the inequality (212) trivially holds
(as an identity), as faithfulness constraints assign zero violations to the identity candidate (d, d, Id,d). The
latter inequality coincides with the definitional inequality (209) in the case b=d, thus ensuring (211).

(212) F
(
a, d, ρa,d

)
≥ F

(
d, d, Id,d

)
+ F

(
a, d, ρa,d

)
Let me show that ≤Fsim is reflexive, namely that (a, d, ρa,d) ≤Fsim (a, d, ρa,d) for any candidate (a, d, ρa,d).
In fact, consider the identity candidate (a, a, Ia,a), whose existence is guaranteed by the reflexivity axiom
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(207). The inequality (213) trivially holds (as an identity), as faithfulness constraints assign zero violations
to the identity candidate (a, a, Ia,a). The latter inequality coincides with the definitional inequality (209)
in the case a = b and thus ensures that (a, d, ρa,d) ≤Fsim (a, d, ρa,d), as required by reflexivity.

(213) F
(
a, d, ρa,d

)
≥ F

(
a, d, ρb,d

)
+ F

(
a, a, Ia,a

)
Let me show that ≤Fsim is antisymmetric, namely that it satisfies the implication (214) for any two
candidates (a, d, ρa,d) and (b, d, ρb,d).

(214) If: (a, d, ρa,d) ≤Fsim (b, d, ρb,d) and (b, d, ρb,d) ≤Fsim (a, d, ρa,d)
Then: (b, d, ρb,d) = (a, d, ρa,d).

By the definition of ≤Fsim, the antecedent of the implication (214) means that there exist two candidates
(a, b, ρa,b) and (b, a, ρb,a) which validate the inequalities (215).

(215) a. F
(
a, d, ρa,d

)
≥ F

(
b, d, ρb,d

)
+ F

(
a, b, ρa,b

)
b. F

(
b, d, ρb,d

)
≥ F

(
a, d, ρa,d

)
+ F

(
b, a, ρb,a

)
The chain of inequalities in (216) then holds. In step (216a), I have used the inequality (215a) together
with the fact that constraint violations are non-negative. In step (216b), I have used the inequality
(215b).

(216) F
(
a, d, ρa,d

) (a)

≥ F
(
b, d, ρb,d

) (b)

≥ F
(
a, d, ρa,d

)
+ F

(
b, a, ρb,a

)
The inequality (216) thus derived, together with the non-negativity of constraint violations, implies that
F
(
b, a, ρb,a

)
= 0. An analogous reasoning shows that F

(
a, b, ρa,b

)
= 0. The two inequalities (215) thus

become F (a, d, ρa,d) ≥ F (b, d, ρb,d) and F (b, d, ρb,d) ≥ F (a, d, ρa,d), which entail the identity (217). Since
the latter identity holds for every faithfulness constraint F in F and since the faithfulness constraint subset
F is by hypothesis complete relative to the candidate set, I conclude that the two candidates (a, d, ρa,d)
and (b, d, ρb,d) coincide, as required by the consequent of the implication (214).

(217) F (a, d, ρa,d) = F (b, d, ρb,d)

Finally, let me show that ≤Fsim is transitive, namely that it satisfies the implication (218) for any three
candidates (a, d, ρa,d), (b, d, ρb,d), and (c, d, ρc,d)

(218) If: (a, d, ρa,d) ≤Fsim (b, d, ρb,d) and (b, d, ρb,d) ≤Fsim (c, d, ρc,d)
Then: (a, d, ρa,d) ≤Fsim (c, d, ρc,d)

By the definition of ≤Fsim, the antecedent of the implication (218) means that there exist two candidates
(a, b, ρa,b) and (b, c, ρb,c) which validate the inequalities (219).

(219) a. F
(
a, d, ρa,d

)
≥ F

(
b, d, ρb,d

)
+ F

(
a, b, ρa,b

)
b. F

(
b, d, ρb,d

)
≥ F

(
c, d, ρc,d

)
+ F

(
b, c, ρb,c

)
Consider the candidate (a, c, ρa,bρb,c) which is the composition of the two candidates (a, b, ρa,b) and
(b, c, ρb,c), whose existence is guaranteed by the transitivity axiom (208). The chain of inequalities (220)
then holds. In step (220a), I have used the inequality (219a). In step (220b), I have used the inequality
(219b). Finally in step (220c), I have used the FTIcomp (210).

(220) F
(
a, d, ρa,d

) (a)

≥ F
(
b, d, ρb,d

)
+ F

(
a, b, ρa,b

)
(b)

≥ F
(
c, d, ρc,d

)
+ F

(
b, c, ρb,c

)
+ F

(
a, b, ρa,b

)
(c)

≥ F
(
c, d, ρc,d

)
+ F

(
a, c, ρb,cρb,c

)
The inequality obtained in (220) ensures that (a, d, ρa,d) ≤Fsim (c, d, ρc,d), as required by the consequent
of the implication (218). �



A. PROOFS 99

A.3. Proof of proposition 23
Proposition 23Assume that, for any two candidates (a, d, ρa,d) and (b, d, ρb,d) such that (a, d, ρa,d) ≤sim
(b, d, ρb,d), for every candidate (b, c, ρb,c) different from (b, d, ρb,d), the candidate set also contains a
candidate (a, c, ρa,c) different from (a, d, ρa,d) such that the FODCHG repeated in (221) holds for any
faithfulness constraint F .

(221) For every choice of the constant ξ (with no restrictions on its sign):
If: F

(
b, c, ρb,c

)
≤ F

(
b, d, ρb,d

)
+ ξ

Then: F
(
a, c, ρa,c

)
≤ F

(
a, d, ρa,d

)
+ ξ

Then, the HG grammar corresponding to any weighting of the constraint set is output-driven relative to
the similarity order ≤sim. �

Proof. The proof is similar to the proof of Proposition 13 in Appendix A.1. Suppose that the HG
grammar Gθ corresponding to some weighting θ fails at the output-drivenness implication (162) for two
candidates (a, d, ρa,d) and (b, d, ρb,d), as stated in (222): the grammar Gθ maps the underlying form a to
the candidate (a, b, ρa,b) with less internal similarity, as required by the antecedent of (162); but it fails
to map the underlying form b to the candidate (b, d, ρb,d) with more internal similarity, as required by
the consequent of (162).

(222) Gθ fails at output-drivenness on candidates (a, d, ρa,d) ≤sim (b, d, ρb,d) iff there exists a candidate
(b, c, ρb,c) different from (b, d, ρb,d) such that:
a. Gθ(a) = (a, d, ρa,d);
b. Gθ(b) = (b, c, ρb,c) 6= (b, d, ρb,d).

By assumption, the candidate (b, c, ρb,c) different from (b, d, ρb,d) comes with a companion candidate
(a, c, ρa,c) different from (a, d, ρa,d). The “if-and-only-if” statement (222) can thus be weakened into the
“if” statement (223).

(223) If Gθ fails at output-drivenness on candidates (a, d, ρa,d) ≤sim (b, d, ρb,d), there exists a candidate
(b, c, ρb,c) different from (b, d, ρb,d) such that:
a. θ prefers (a, d, ρa,d) to (a, c, ρa,c),
b. θ prefers (b, c, ρb,c) to (b, d, ρb,d).

Condition (223) can be made explicit as in (224) in terms of the numbers of constraint violations. The
sums run over a generic markedness constraint M with weight θM and a generic faithfulness constraint
F with weight θF .

(224) If Gθ fails at output-drivenness on candidates (a, d, ρa,d) ≤sim (b, d, ρb,d), there exists a candidate
(b, c, ρb,c) different from (b, d, ρb,d) such that:

a.
∑
M

θMM(a, d, ρa,d) +
∑
F

θFF (a, d, ρa,d) <

<
∑
M

θMM(a, c, ρa,c) +
∑
F

θFF (a, c, ρa,c)

b.
∑
M

θMM(b, c, ρb,c) +
∑
F

θFF (b, c, ρb,c) <

<
∑
M

θMM(b, d, ρb,d) +
∑
F

θFF (b, d, ρb,d)

Taking advantage of the fact that markedness constraints are blind to underlying forms by (57), condi-
tion (224) can be rewritten as in (225) with the position ξ =

∑
M θMM(a, d, ρa,d)−

∑
M θMM(a, c, ρa,c) =∑

M θMM(b, d, ρb,d)−
∑
M θMM(b, c, ρb,c).

(225) If Gθ fails at output-drivenness on candidates (a, d, ρa,d) ≤sim (b, d, ρb,d), there exists a candidate
(b, c, ρb,c) different from (b, d, ρb,d) such that:

a.
∑
F

θFF (a, c, ρa,c) >
∑
F

θFF (a, d, ρa,d) + ξ

b.
∑
F

θFF (b, c, ρb,c) <
∑
F

θFF (b, d, ρb,d) + ξ
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In conclusion, output-drivenness holds for the HG grammar corresponding to any constraint weighting
provided the two conditions (225a) and (225b) can never be satisfied both, no matter the choice of the
weights θF and the constant ξ. In other words, it suffices to assume that for every candidate (b, c, ρb,c)
different from (b, d, ρb,d) there exists a candidate (a, c, ρa,c) different from (a, d, ρa,d) such that:

(226) For every choice of the constant ξ, for every choice of the weights θF :
If:

∑
F

θFF
(
b, c, ρb,c

)
<
∑
F

θFF
(
b, d, ρb,d

)
+ ξ

Then:
∑
F

θFF
(
a, c, ρa,c

)
≤
∑
F

θFF
(
a, d, ρa,d

)
+ ξ

To conclude the proof, condition (226) can be shown to be equivalent to the FODCHG (221) by reasoning
as at the end of the proof of Proposition 13 to show that condition (148) is equivalent to the FICHG

(142). �

A.4. Proof of proposition 24
Proposition 24 The two FODCOT implications repeated in (227)

(227) a. If: F
(
a, d, ρa,d

)
< F

(
a, c, ρa,c

)
Then: F

(
b, d, ρb,d

)
< F

(
b, c, ρb,c

)
b. If: F

(
b, c, ρb,c

)
< F

(
b, d, ρb,d

)
Then: F

(
a, c, ρa,c

)
< F

(
a, d, ρa,d

)
are jointly equivalent to the following condition:

(228) For every choice of the constant ξ between −1 and +1 (both excluded):
If: F

(
b, c, ρb,c

)
≤ F

(
b, d, ρb,d

)
+ ξ

Then: F
(
a, c, ρa,c

)
≤ F

(
a, d, ρa,d

)
+ ξ

for any faithfulness constraint F . �

Proof. Let me show that the two FODCOT implications (227) jointly entail the implication (228).
Thus, assume that the antecedent of the latter implication holds for some ξ. I distinguish two cases,
depending on whether ξ is (strictly) smaller than 0 or not. Let me start with the former case, stated in
(229a).

(229) a. F (b, c, ρb,c) ≤ F (b,d, ρb,d) + ξ with −1 < ξ < 0

b. F (b, c, ρb,c) < F (b,d, ρb,d)

c. F
(
a, c, ρa,bρb,c

)
< F

(
a, d, ρa,d

)
d. F

(
a, c, ρa,bρb,c

)
≤ F

(
a, d, ρa,d

)
+ ξ

Since ξ is strictly negative, (229a) entails the strict inequality (229b). The latter in turn coincides with
the antecedent of the second FODCOT implication (227b), which therefore ensures that its consequent
holds as well, repeated in (229c). Since ξ is larger than −1 and constraint violations are integers, (229c)
in turn entails (229d), which is the desired consequent of the implication (228). Note that this reasoning
has used only the second FODCOT implication (227b).

Consider next the complementary case where the antecedent of the implication (228) holds with a
nonnegative ξ, as stated in (230a).

(230) a. F (b, c, ρb,c) ≤ F (b,d, ρb,d) + ξ with 0 ≤ ξ < +1

b. F (b, c, ρb,c) ≤ F (b,d, ρb,d)

c. F
(
a, d, ρa,d

)
≥ F

(
a, c, ρa,c

)
d. F

(
a, d, ρa,d

)
+ ξ ≥ F

(
a, c, ρa,c

)
Since ξ is smaller than +1 and constraint violations are integers, (229a) entails (229b). The latter in turns
says that the consequent of the first FODCOT implication (227a) fails. The antecedent must therefore
fail as well, as stated in (229c). Since ξ is nonnegative, the latter in turn entails (229d), which is the
desired consequent of the implication (228). Note that this reasoning has used only the first FODCOT

implication (227a).
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Next, let me show that condition (228) with 0 < ξ < +1 in turn entails the first FODCOT im-
plication (227a). In fact, suppose that the antecedent of the latter implication holds, namely that
F (a, d, ρa,d) < F (a, c, ρa,c). Since ξ is smaller than +1 and constraint violations are integers, the lat-
ter entails that F (a, d, ρa,d) + ξ < F (a, c, ρa,bρb,c). The consequent of the implication (228) thus fails.
Its antecedent must therefore fail as well, namely F (b, c, ρb,c) ≥ F (b,d, ρb,d) + ξ. The latter entails
that F (b, c, ρb,c) > F (b,d, ρb,d), establishing the consequent of the first FODCOT

comp implication (227a).
An analogous reasoning shows that condition (228) with −1 < ξ < 0 entails the second FODCOT

comp
implication (227b). �





CHAPTER 6

Implications for phonology and its acquisition

Section 6.1 summarizes the main results obtained in the preceding chapters, highlighting the place of
the faithfulness triangle inequality at the center of the theory of idempotency and output-drivenness. The
rest of the chapter then speculates on the applications of the theory of idempotency and output-drivenness
for phonological theory and for the acquisition of phonology. To start, sections 6.2 looks into Tesar’s
claim that output-drivenness corresponds to transparent phonology while failure of output-drivenness
corresponds to phonological opacity. This connection is brought out by formalizing the relationship
(implicit in much literature on phonological opacity) between counter-feeding and chain shifts and between
counter-bleeding and saltations. Section 6.3 formulates the conjecture that a dual of the notion of output-
drivenness, called here input-drivenness, might provide a better match with the distinction between
opacity and transparency.

The rest of the chapter zooms in on the implications of the theory of idempotency for chain shifts.
From the perspective of phonology, the crucial question raised by chain shifts is how to get them. Section
6.4 summarizes various OT approaches to chain shifts, showing that they differ for the choice of a
faithfulness constraint which fails at the sufficient faithfulness condition for idempotency provided by the
FIC in chapter 3. On the other hand, the type of opacity introduced by chain shifts has been argued to
make the learning problem harder, particularly for the initial stage of phonotactic learning. From the
perspective of learnability, the crucial question seems therefore to be the opposite, namely how to avoid
chain shifts. Section 6.5 tries to reconcile this tension between phonology and learnability, by formulating
the conjecture that attested chain shifts turn out to be benign for learnability.

6.1. Summary: idempotency, output-drivenness, and the triangle inequality

The results obtained in the preceding chapters can be summarized through the entailments in (231).
The solid arrows correspond to entailments which hold for arbitrary faithfulness constraints. The dotted
arrows correspond to entailments which hold for faithfulness constraints which satisfy the categoricity-
plus-monotonicity conjecture formulated in section 4.3. The dashed arrows correspond to entailments
which hold for faithfulness constraints that belong to the faithfulness constraint set F used in the ax-
iomatic definition of phonological similarity along the lines of section 5.4. The dotted/dashed arrows
correspond to entailments which hold for faithfulness constraints which belong to F and are categorical-
plus-monotone.

(231) OT idempotency OT output-drivenness

FICOT
comp FODCOT

comp

FTIcomp

FICHG
comp FODCHG

comp

HG idempotency HG output-drivenness

103
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The diagram nicely summarizes the main conclusion obtained: the triangle inequality for faithfulness
constraints formalized in section 4.1 through the FTIcompcomp sits at the heart of the theory of idempo-
tency and output-drivenness. The results obtained, summarized in the diagram (231), have a number of
implications summarized in the rest of this section.

6.1.1. Implications for the interpretation of faithfulness constraint conditions
The four sufficient conditions FICOT

comp, FICHG
comp, FODCOT

comp, and FODCHG
comp for OT and HG idem-

potency and output-drivenness are abstract and technical conditions which do not seem prima facie to
admit an intuitive interpretation. The equivalences with the FTIcomp at the center of the scheme (231)
is thus useful because it provides an intuitive metric interpretation of these four abstract conditions. Ac-
cording to this interpretation, these conditions simply require the faithfulness constraints to measure the
phonological distance between underlying and surface forms in compliance with the triangle inequality
which characterizes metrical distances. This metric interpretation holds under no additional assumptions
for the HG conditions FICHG

comp and FODCHG
comp while it requires categoricity-plus-monotonicity for the

OT conditions FICOT
comp and FODCOT

comp (for the case of output-drivenness, it also requires membership
to the faithfulness constraint set F used to measure phonological similarity).

6.1.2. Implications for the relationship between idempotency and output-drivenness
Output-drivenness entails idempotency: if phonological forms are only modified to meet the phono-

tactics (output-drivenness), phonotactically licit forms are faithfully realized (idempotency). Indeed, the
conditions FODCOT

comp and FODCHG
comp for output-drivenness entail the corresponding conditions FICOT

comp
and FICHG

comp for idempotency in the general case. Consider a faithfulness constraint which belongs to
the faithfulness constraint set F used to measure phonological similarity in the definition of output-
drivenness. For such a faithfulness constraint, the scheme (231) then says that the conditions FICOT

comp
and FICHG

comp for idempotency are actually equivalent to the corresponding conditions FODCOT
comp and

FODCHG
comp for output-drivenness (in the case of OT, the equivalence requires the additional assumption

that the faithfulness constraint satisfies the categoricity-plus-monotonicity conjecture). This conclusion
says that output-drivenness is stronger than idempotency (in the sense that there exist idempotent gram-
mars which fail at output-drivenness) only if the relation of similarity underlying output-drivenness is
blind to some of the faithfulness constraints used to define the typology, namely only if similarity is mea-
sured relative to a faithfulness constraint set F which is smaller than or different from the faithfulness
constraint set used to define the typology.

6.1.3. Implications for the relationship between OT and HG
HG typologies are larger than OT typologies. The conditions needed to discipline all grammars in

a typology to satisfy idempotency or output-drivenness are thus expected to be stronger in HG than in
OT. Indeed, the conditions FICHG

comp and FODCHG
comp for idempotency and output-drivenness in HG entail

the corresponding conditions FICOT
comp and FODCOT

comp in OT in the general case. Yet, the scheme (231)
says that the OT conditions FICOT

comp and FODCOT
comp for idempotency and output-drivenness are actually

equivalent to the corresponding HG conditions FICHG
comp and FODCHG

comp for faithfulness constraints which
are categorical-plus-monotone, thus distilling yet another implication of McCarthy’s (2003) categoricity
conjecture.

6.1.4. Implications for the analysis of faithfulness constraints
Which faithfulness constraints satisfy the conditions FICOT

comp, FICHG
comp, FODCOT

comp, or FODCHG
comp for

idempotency and output-drivenness in OT and HG? The answer to this question is non-trivial. Indeed,
the entire chapter 3 of Tesar’s book is devoted to establishing the FODCOT

comp for just the three constraints
Max, Dep, and Ident. The scheme (231) affords a substantial simplification. Since the four conditions
FICOT

comp, FICHG
comp, FODCOT

comp, FODCHG
comp are equivalent for categorical-plus-monotone faithfulness con-

straints, it suffices to focus on the FICOT
comp, which is arguably the simplest of the four conditions, as

revealed by the fact that it is the weakest one in the general case. Sections 3.3-3.5 have investigated this
condition for a large variety of faithfulness constraints which have been proposed within McCarthy and
Prince’s (1995) Correspondence Theory and its more recent developments. Since those constraints all sat-
isfy the categoricity-plus-monotonicity requirement, the scheme (231) says that those results concerning
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the faithfulness constraints which satisfy the FICOT
comp translate straightforwardly into results concerning

the faithfulness constraints which satisfy the other three conditions FICHG
comp, FODCOT

comp, FODCHG
comp. A

measure of the improvement obtained is provided by the fact that a large array of faithfulness constraints
(beyond the three considered by Tesar) are shown in a snap to satisfy the FODCOT

comp.

6.2. Output-drivenness and opacity

Tesar’s output-drivenness is meant to capture at the extensional level of phonological mappings the
distinction between transparent and opaque patterns which is usually drawn at the intensional level of
conditions on rule ordering. Ideally, we would like to equate transparency with output-drivenness and
opacity with non-output-drivenness. This section elaborates on this claim by making explicit through
propositions 27 and 28 the connection (implicit in much of the literature on opacity) between counter-
feeding and chain shifts and between counter-bleeding and saltations.

6.2.1. Counter-feeding and chain shifts
As in (most of) the rule-based literature on opacity (Baković 2011 and references therein), let me

focus for simplicity on derivations consisting of only two ordered rules, which will be denoted by A and
B. Consider a target derivation (232a) which takes an underlying form a and applies rule A first followed
by rule B. Consider the derivation (232b) where the order of the two rules A and B is swapped. Rule B
is said to counter-feed rule A relative to the derivation (232a) provided rule A applies vacuously in that
derivation but it applies non-vacuously in the swapped derivation (232b). In other words, B counter-feeds
A relative to a derivation (232a) if and only if B feeds A relative to the swapped derivation (232b).

(232) a. UR: a
rule A: vacuous
rule B: . . .

b. UR: a
rule B: . . .
rule A: non vacuous

As an example (taken from Baković 2011), let A be a rule which palatalizes consonants before front vowels
and let B be a rule which deletes the first vowel of a hiatus. Deletion counter-feeds palatalization in the
derivation in (233a), as shown by comparison with the swapped derivation in (233b).

(233) a. UR: /tui/
rule A = Palatalization: tui (vacuous)

rule B = Deletion: ti

b. UR: /tui/
rule B = Deletion: ti

rule A = Palatalization: tSi (non vacuous)

Counter-feeding is said to yield under-application opacity: the palatalization rule A has under-applied
in the derivation (233a), as the surface form [ti] obtained through that derivation would undergo palatal-
ization if it were fed back to the phonology as the underlying form /ti/. This intuition can be restated as
follows: the SPE phonology corresponding to the two ordered rules 〈A,B〉 = 〈Pal,Del〉 yields the chain
shift (234) whereby /tui/ is mapped to [ti] but /ti/ is mapped to [tSi].

(234) tui ti tSi

As stated by the following proposition, this conclusion holds in general under mild assumptions: counter-
feeding opacity entails chain shifts. The “mild assumptions” mentioned in the informal statement of the
proposition are made explicit in appendix A.1.

Proposition 27. Consider a derivation which starts at an underlying form a and applies rule A first
followed by rule B, yielding a surface form b. If it is a counter-feeding derivation, then the derivation
which starts at the underlying form b and applies again rule A first followed by rule B yields a surface form
c which is different from b under mild assumptions. In other words, the SPE phonology corresponding to
the ordered rules 〈A,B〉 yields the chain shift a→ b→ c. �
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6.2.2. Counter-bleeding and saltations
Consider a target derivation (232a) which takes an underlying form a and applies rule A first followed

by rule B. Consider the derivation (232b) where the order of the two rules A and B is swapped. Rule B is
said to counter-bleed rule A relative to the derivation (235a) provided rule A applies non-vacuously in that
derivation but it applies vacuously in the swapped derivation (235b). In other words, B counter-bleeds
A relative to the derivation (235a) if and only if B bleeds A relative to the swapped derivation (235b).

(235) a. UR: a
rule A: non vacuous
rule B: . . .

b. UR: a
rule B: . . .
rule A: vacuous

As an example (taken from Baković 2011), let A be a rule which palatalizes consonants before front vowels
and let B be a rule which deletes the first vowel of a hiatus, exactly as in (233). Deletion counter-bleeds
palatalization in the derivation (236a), as shown by comparison with the swapped derivation (236b).

(236) a. UR: /tio/
rule A = Palatalization: tSio (non vacuous)

rule B = Deletion: tSo

b. UR: /tio/
rule B = Deletion: to

rule A = Palatalization: to (vacuous)

Counter-bleeding is said to yield over-application opacity: the palatalization rule A has over-applied
in the derivation (236a), as the surface form [tSo] obtained through that derivation displays the result
of palatalization without a front vowel. This intuition can be restated as follows: the SPE phonology
corresponding to the two ordered rules 〈A,B〉 = 〈Pal,Del〉 yields the saltation (237) whereby /tio/ shoots
all the way to [tSo] skipping over [to] which is “closer” in the sense that it involves less changes (only
deletion rather than both deletion and palatalization).

(237) tio to tSo

As stated by the following proposition, this conclusion holds in general under mild assumptions: counter-
bleeding opacity entails saltations. The “mild assumptions” mentioned in the informal statement of the
proposition are made explicit in appendix A.2.

Proposition 28. Let b the result of applying rule B to an underlying form a. Let c be the result of
applying rule A first followed by rule B to that same underlying form a. If the latter derivation is a
counter-bleeding derivation, then the SPE phonology corresponding to the ordered rules 〈A,B〉 maps the
underlying form b faithfully to itself. The resulting pattern

(238) a b c

is a saltation because a is closer to b than to c, as b is obtained from a through rule B only while c is
obtained from a through both rules A and B which are both non-vacuous under mild assumptions. �

Note that the mappings depicted in (238) hold irrespectively of these additional assumptions. The latter
assumptions are only needed in order for both rule A and B to be non-vacuous in the derivation from a
to c, so that effectively c is further away from a than b is.

6.2.3. Output-drivenness, counter-feeding, and counter-bleeding
Phonological patterns are usually sorted into opaque and transparent. Opacity is defined in terms of

rule ordering and equated with either counter-feeding or counter-bleeding rule orders. Assume that the
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distinction between opacity and transparency is psychologically real, namely that it has cognitive impli-
cations for a number of phenomena related to historical sound change, acquisition, and artificial learning.
The switch from rule-based to constraint-based phonology then requires a rule-independent definition of
opacity. Tesar submits that output-drivenness provides such a rule-independent characterization of the
transparent/opaque distinction:

(239) transparent ∼ output-driven
opaque ∼ non-output-driven

The two propositions 27 and 28 easily lead to this connection between opacity and non-output-drivenness,
as discussed in the rest of this subsection and summarized in table 1.

By proposition 27, counter-feeding opacity yields chain shifts (under mild assumptions). As seen
in subsection 3.1.4, chain shifts are equivalent to the negation of idempotency. Non-idempotency thus
captures half of the classical definition of opacity, namely counter-feeding opacity. The same holds for
non-output-drivenness, as output-drivenness entails idempotency, as seen in section 5.1. It is worth
pointing out that, nonetheless, the classical intuition of “what goes wrong” in counter-feeding opacity is
turned upside down when we switch from rule interaction to idempotency. To illustrate, consider again
the concrete example in (233)-(234). According to the classical rule-based intuition, what goes wrong in
this case is under-application: the underlying form /tui/ under-shoots and ends up as [ti] instead of going
all the way to [tSi]. According to idempotency instead, what goes wrong is that /ti/ over-shoots: it goes
all the way to [tSi] when it should instead have stopped to the faithful [ti].

By proposition 28, counter-bleeding opacity yields saltations (under mild assumptions). As seen in
subsection 5.1.3, saltations are not output-driven (modulo a careful definition of the similarity order).
Non-Output-Drivenness thus captures counter-bleeding opacity. It is worth pointing out that, nonetheless,
the classical intuition of what goes wrong in counter-bleeding opacity is turned upside down when we
switch from rule interaction to output-drivenness. To illustrate, consider again the concrete example
in (236)-(237). According to the classical rule-based intuition, what goes wrong in this case is over-
application: the underlying form /tio/ over-shoots and ends up all the way at [tSo] instead of going just
to [to]. According to output-drivenness, what goes wrong is instead the fact that /to/ under-shoots: it
goes faithfully to [to] itself when it should have instead mapped further away to [tSo].

type of opacity: counter-feeding counter-bleeding

resulting
phonological pattern: a chain shift: a saltation:

a b c a b c

intuition of what
goes wrong

according to SPE:

a under-shoots (under-application
opacity) and the following should

have happened instead:

a over-shoots (over-application
opacity) and the following should

have happened instead:

a b c
a b c

intuition of what
goes wrong according
to output-drivenness:

b over-shoots and the following should
have happened instead: since b

attracts a then it should a fortiori
attract b itself

b under-shoots and the following
should have happened instead: since c
attracts a, then it should a fortiori

attract b

a b c a b c

Table 1. Opacity according to SPE and output-drivenness
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6.2.4. Refinements
Whether a phonological pattern counts as a failure of output-drivenness effectively depends on the

notion of phonological similarity used to define output-drivenness. In the preceding subsection, I have
avoided this issue by illustrating the connection between counter-bleeding/saltations and non-output-
drivenness in a particularly simple case where the relevant phonological forms consist of a single segment
each and similarity is thus unambiguously defined in terms of feature value mismatches. Yet, we have seen
in sections 5.3 and 5.4 that formalizing a notion of similarity adequate to output-drivenness is not a trivial
task in the general case. In particular, we have compared two approaches: a weaker notion of similarity
provided by definition 3 and axiomatized by definition 5; and a stronger notion of similarity provided
by definition 4 and axiomatized by definition 6. The switch from the weak to the strong definition
of similarity obviously has implications for what counts as a failure of output-drivenness, and thus for
the connection between non-output-drivenness and opacity. The relationship between counter-bleeding
opacity (or saltations) and output-drivenness thus requires a more careful discussion which takes into
account the difference between these two approaches to similarity. This subsection only illustrates this
point with a couple of examples

According to the weak notion of the similarity order provided by definitions 3 and 5, there is no
difference between the two cases (240) and (241): in both cases, the candidate (a, d, ρa,d) counts has
having less internal similarity than the candidate (b, d, ρb,d). Whether the two underlying deleted codas
are identical as in (240a)/(240b) or different as in (241a)/(241/b) is irrelevant. Hence, both patterns
(240c) and (241c) count as a saltation and a failure of output-drivenness relative to the weak similarity
order.

(240) a. a = r i t

d = r e

b. b = r e t

d = r e

c. a = rit b = ret c = re

(241) a. a = r i d

d = r e

b. b = r e t

d = r e

c. a = rid b = ret c = re

The situation is different relative to the strong notion of similarity order provided by definitions 4 and 6.
Relative to the latter similarity order, the candidate (a, d, ρa,d) counts as having less internal similarity
than the candidate (b, d, ρb,d) only in the case of (240), where the two underlying deleted codas are
identical; but not in the case of (241), where the two candidates are simply not comparable relative to
their internal similarity because of the two different underlying deleted codas. Hence, only the pattern
(240c) but not the pattern (241c) counts as a saltation and a failure of output-drivenness relative to the
strong similarity order.

Analogous considerations hold for (242): both patterns (242a) and (242b) count as a saltation and a
failure of output-drivenness relative to the weak similarity order, while only the pattern (242a) but not
the pattern (242b) qualifies relative to the strong similarity order.

(242) a. a = pa b = pi c = ti b. a = pa b = ki c = ti

Let me close by noting that the characterization of counter-bleeding opacity in terms of rule ordering
fails at making any distinction between the two patterns (240c) and (241c) as well as between the two
patterns (242a) and (242b). For instance, the pattern (241c) admits a straightforward counter-bleeding
derivation. Consider the three rules in (243): rule A deletes coronals after high vowels; rule B lowers high
vowels; and rule C devoices final obstruents. Obviously, the underlying form /ret/ is faithfully mapped to
[ret] by the SPE phonology 〈A,B,C〉. Furthermore, the underlying form /rid/ is mapped to [re], as shown
by the derivation (244a). The rule A applies non-vacuously in the latter derivation. This is therefore a
case of counter-bleeding, as the rule A instead applies vacuously in the derivation (244b) where A has
been swapped with 〈B,C〉.

(243) a. A : t/d→ ∅ / i_



b. B : i→ e
c. C : d→ t/_#

(244) a. rid A−→ ri B−→ re C−→ re (A applies non-vacuously)

b. rid B−→ red C−→ ret A−→ ret (A applies vacuously)

There is a potentially interesting idea here: that derivations with three rules (as opposed to derivations
with only two rules traditionally considered in the rule-based theory of opacity) can be used to construct
cases of counter-bleeding opacity which do not count as non-output-driven relative to the strong similarity
order. A more detailed investigation of this conjecture is left for future research.

6.3. Output-drivenness or input-drivenness?

This section sketches an alternative to Tesar’s notion of output-drivenness, which I call input-drivenness
because it adopts a production perspective (focused on the underlying or input forms) rather than Tesar’s
interpretation perspective (focused on the surface or output forms). Like Tesar’s output-drivenness,
also input-driveness fails for chain shifts and saltations, so that its negation captures both counter-
feeding opacity (chain shifts) and counter-bleeding opacity (saltations). Furthermore, like Tesar’s output-
drivenness, also input-drivenness turns out to be related to the condition that the faithfulness constraints
measure phonological distance in compliance with the metric triangle inequality. I conclude with some
remarks on how to pull apart output-drivenness and input-drivenness.

6.3.1. Input-drivenness
Tesar’s notion of output-drivenness introduced in section 5.1 focuses on two candidates (a, d, ρa,d)

and (b, d, ρb,d) which share a surface form d and differ for their underlying forms a and b. These two
underlying forms are assumed to differ with respect to their similarity to the shared surface form: a is
less similar to d than b is, as formally captured by the similarity inequality (245). From now on, I will
denote by ≤OD

sim the similarity order used in the theory of Tesar’s output-drivenness.

(245) (a, d, ρa,d) ≤OD
sim (b, d, ρb,d)

Throughout this section, I explore an alternative notion of input-drivenness which focuses instead on two
candidates (a, d, ρb,d) and (a, c, ρb,c) which share the underlying form a and differ for their surface forms
c and d. These two surface forms are assumed to differ with respect to their similarity to the shared
underlying form: d is less similar to a than c is, as formally captured by the similarity inequality (246).
I denote by ≤ID

sim the similarity order used in the theory of this alternative notion of input-drivenness.

(246) (a, d, ρb,d) ≤ID
sim (a, c, ρb,c)

Tesar’s original notion of output-drivenness adopts the perspective of interpretation: given a surface form,
how do I compute a corresponding underlying form? I am now interested in developing an analogous
notion from the alternative perspective of production: given an underlying form, how do I compute a
corresponding surface form?

Given the similarity inequality (246), suppose that a phonological grammar G declares the surface
form c phonotactically licit. This means that there exists some underlying form b which G maps to c,
namely G(b) = (b, c, ρb,c). Since the underlying form a is more similar to c than to d and since c is
already phonotactically licit, the grammar G should not be able to map a to d, namely G(a) 6= (a, d, ρa,d).
Let me call any grammar G which abides by this logics input-driven relative to the similarity order ≤ID

sim,
yielding the following definition. The connection between the two implications (162) and (247) which
define Tesar’s original output-drivenness and the alternative input-drivenness considered here is not
immediately evident.

Definition 7. [Input-drivenness] A grammar G is input-driven relative to a similarity order ≤ID
sim provided

the following implication holds

(247) If: G(b) = (b, c, ρb,c)
Then: G(a) 6= (a, d, ρa,d)

for any two different candidates (a, c, ρa,c) and (a, d, ρa,d) such that (a, d, ρa,d) ≤ID
sim (a, c, ρa,c) and for

any third candidate (b, c, ρb,c).
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In other words, input-drivenness says that a grammar G maps any underlying form a to a candidate
(a, c, ρa,d) which has the highest internal similarity among the candidates which share that underlying
form a and have a surface form c which is phonotactically licit relative to G, as stated in (248).

(248) G(a) ∈ max
≤ID

sim

{
(a, c, ρa,c)

∣∣∣ c is phonotactically licit relative to G
}

To illustrate, consider the special case where each underlying form admits a unique surface form which
counts as the most similar one among the surface forms which are phonotactically licit. In this case, the
phonotactics (together with the similarity order) completely determines the grammar G: input-drivenness
requires G to map any underlying form to the most similar licit surface form.

6.3.2. Input-drivenness entails idempotency
As noted in subsection 5.1.2, it makes sense to assume that identity candidates have the greatest

internal similarity. The similarity order ≤ID
sim thus needs to satisfy condition (249) for any candidate

(c, d, ρc,d) and the corresponding identity candidate (c, c, Ic,c).

(249) (c, d, ρc,d) ≤ID
sim (c, c, Ic,c)

Whenever condition (249) holds, input-drivenness entails idempotency. In fact, input-drivenness requires
the implication (247) to hold for any two candidates (a, d, ρa,d) and (a, c, ρa,c) such that the former has less
internal similarity than the latter. Condition (249) ensures that is indeed the case when the two strings
a and c coincide (and furthermore ρa,c is the identity correspondence relation on the string a = c). In
this case, the implication (247) in the definition of input-drivenness specializes to (250).

(250) If: G(b) = (b, c, ρb,c)
Then: G(c) 6= (c, d, ρa,d)

Since the consequent of (250) holds for every candidate (c, d, ρa,d) different from (c, c, Ic,c), I obtain (251),
which is in turn the implication (52) in the definition of idempotency investigated in chapter 3.

(251) If: G(b) = (b, c, ρb,c)
Then: G(c) = (c, c, Ic,c)

In conclusion, the definition of idempotency coincides with the definition of input-drivenness in the special
case where a = c and ρa,c is the identity correspondence relation.

6.3.3. Input-drivenness and saltations
Consider the candidates (a, d, ρa,d) and (a, c, ρa,c) in (252). Any reasonable definition of the similarity

order ≤ID
sim should guarantee that the candidate (a, d, ρa,d) has less internal similarity than the candidate

(a, c, ρa,c), since the former involves a disparity for two features (voicing and continuancy) while the latter
involves a disparity for only one feature (continuancy, not voicing). Thus, (a, d, ρa,d) ≤ID

sim (a, c, ρa,c).

(252) a. a = /p/

d = [B]

b. a = /p/

c = [b]

The phonological pattern (253) is therefore a saltation: the voiceless stop a is mapped to the voiced
fricative d, skipping or jumping over the closer licit voiced stop c.

(253) a = p c = b d = B

Input-drivenness crucially fails in the case of a saltation such as (253). In fact, the antecedent of the
implication (247) which defines input-drivenness holds (with b = c) but the consequent fails. Intuitively,
the phonotactically licit surface form c acts as a barrier which prevents a to shoot all the way to d.
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6.3.4. Sufficient conditions for input-drivenness
Which conditions ensure that the OT grammars corresponding to any ranking of a given constraint

set is input-driven? The answer to this question is provided by the following proposition 29. This propo-
sition is completely analogous to Tesar’s proposition 18 from subsection 5.2.2, which provides sufficient
constraint conditions for the original notion of output-drivenness. The proof of this proposition 29 is
omitted because it is indeed completely analogous to Tesar’s proof of his proposition 18.

Proposition 29. Assume that, for any two candidates (a, d, ρa,d) and (a, c, ρa,c) such that (a, d, ρa,d) ≤ID
sim

(a, c, ρa,c), for any other candidate (b, c, ρb,c), the candidate set also contains a candidate (b, d, ρb,d) such
that the two following implications (254) hold for every faithfulness constraint F in the constraint set.

(254) a. If: F (a, d, ρa,d) < F (a, c, ρa,c)

Then: F (b, d, ρb,d) < F (b, c, ρb,c)

b. If: F (b, c, ρb,c) < F (b, d, ρb,d)

Then: F (a, c, ρa,c) < F (a, d, ρa,d)

Then, the OT grammar corresponding to any ranking of the constraint set is input-driven relative to the
similarity order ≤ID

sim, no matter what the markedness constraints look like. �

The assumption made by the proposition is twofold. First, it restricts the candidate set through the
following condition: if two surface forms c and d share an underlying form a, namely if the candidate
set contains the two candidates (a, d, ρa,d) and (a, c, ρa,c); then, the surface forms c and d share every
underlying form, namely the candidate set cannot contain a candidate (b, c, ρb,c) without also containing
the candidate (b, d, ρb,d). Second, the assumption of the proposition restricts the constraint set: it
requires all the faithfulness constraints to satisfy the two implications (254). The latter two implications
are identical to the two implications (170) which appear in Tesar’s original output-drivenness proposition
18 and have been referred to as the FODCOT

comp. Despite involving the same two implications, the two
propositions impose different faithfulness constraint conditions because they differ for the two candidates
which have to stand in the similarity relation. I highlight this crucial difference in (255), where I have
boxed the candidates which stand in a similarity relation in the two cases.

(255) Output-drivenness: Input-drivenness:

a. If: F (a, d, ρa,d) < F (a, c, ρa,c) If: F (a, d, ρa,d) < F (a, c, ρa,c)

Then: F (b, d, ρb,d) < F (b, c, ρb,c) Then: F (b, d, ρb,d) < F (b, c, ρb,c)

b. If: F (b, c, ρb,c) < F (b, d, ρb,d) If: F (b, c, ρb,c) < F (b, d, ρb,d)

Then: F (a, c, ρa,c) < F (a, d, ρa,d) Then: F (a, c, ρa,c) < F (a, d, ρa,d)

The next subsection turns to the following question: which faithfulness constraints satisfy the sufficient
condition for input-drivenness provided by proposition 29?

6.3.5. The triangle inequality entails input-drivenness
Let’s start with the second implication (254b) which appears in proposition 29. Consider three candi-

dates (a, d, ρa,d), (a, c, ρa,c), and (b, c, ρb,c) which are universally quantified over by proposition 29. Their
correspondence relations are represented through solid arrows in (256). Proposition 29 requires in partic-
ular the existence of a fourth candidate (b, d, ρb,d) which puts the two strings b and d in correspondence
through some relation ρb,d, as represented by the dotted arrow in (256).

(256) a d

b c

ρa,d

ρb,c

ρa,c

ρb,d
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It is natural to assume that ρb,d is the composition of: the correspondence relation ρb,c, the inverse of
the correspondence relation ρa,c (which is denoted by ρc,a), and the correspondence relation ρa,d. The
existence of this composition correspondence relation is guaranteed by the transitivity axiom (66) from
subsection 3.2.4. The implication (254b) can thus be specialized as in (257).

(257) If: F
(
b, c, ρb,c

)
< F

(
b, d,

ρb,d︷ ︸︸ ︷
ρb,cρc,aρa,d

)
Then: F

(
a, c
)
< F

(
a, d
)

Assume that the faithfulness constraint F satisfies the triangle inequality as formalized by the FTIcompcomp
in section 4.1. By applying the FTIcomp to the two candidates (b, c, ρb,c) and (c, d, ρc,aρa,d) and their
composition candidate (b, d, ρb,cρc,aρa,d), I obtain the inequality (258). The latter inequality in turn says
that the antecedent of the (257) never holds, whereby the implication is trivially satisfied.

(258) F
(
b, d, ρb,cρc,aρa,d

)
≤ F

(
b, c, ρb,c

)
+ F

(
c, d, ρc,aρa,d

)
Let’s now turn to the first implication (254a) which appears in proposition 29. In order to make further

progress in the theory of input-drivenness, I need to be more explicit about the similarity order ≤ID
sim

that input-drivenness is predicated on. As noted in subsection 5.3.1, within constraint-based phonology,
it is natural to assess similarity through the faithfulness constraints. Intuitively, a candidate has more
internal similarity than another candidate provided the former incurs less faithfulness violations than the
latter. This intuition can be formalized into the following axiom on the similarity order ≤ID

sim: for any
two candidates (a, d, ρa,d) and (a, c, ρa,c) which share the underlying form a, let (a, d, ρa,d) ≤ID

sim (a, c, ρa,c)
provided the inequality (259) holds for every faithfulness constraint F in the constraint set.1

(259) F
(
a, d, ρa,d

)
≥ F

(
a, c, ρa,c

)
This axiom was found in subsection 5.3.2 to be too weak to ensure output-drivenness by itself, even for
the simplest faithfulness constraint set, consisting of just the plain faithfulness constraints Ident and
Max. This initial condition on similarity had therefore to be strengthened along the lines of subsection
5.3.3 in order to guarantee output-drivenness. The case of input-drivenness turns out to be different:
the intuitive axiom (259) on the similarity order ≤ID

sim turns out to suffice to ensure input-drivenness. In
fact, this axiom (259) suffices to ensure that the antecedent in the first implication (254a) can never hold,
whereby the implication is trivially satisfied.

6.3.6. How to pull apart output-drivenness and input-drivenness
Phonological patterns are usually sorted into opaque and transparent. Opacity is defined in terms of

rule ordering and equated with either counter-feeding or counter-bleeding rule orders. Counter-feeding
opacity yields chain shifts (subsection 6.2.1). Chain shifts are equivalent to the negation of idempotency
(subsection 3.1.4). And both output-drivenness and input-drivenness entail idempotency (subsections
5.1.2 and 6.3.2). Hence, the negation of either output-drivenness or input-drivenness covers cases of
counter-feeding opacity. Furthermore, counter-bleeding opacity yields saltations (subsection 6.2.2). And
both output-drivenness and input-drivenness fail for saltations (subsections 5.1.3 and 6.3.3). Hence, the
negation of either output-drivenness or input-drivenness covers cases of counter-bleeding opacity. In
conclusion, we now have at our disposal the two notions of output-drivenness and input-drivenness which
both capture the distinction between opacity and transparency at least in basic cases. How can output-
drivenness and input-drivenness be pulled apart? This subsection offers some preliminary considerations.2

Let me take a closer look at a concrete case of saltation such as (260). Both output-drivenness and
input-drivenness fail in this case. But the failure is derived in different ways in the two cases. Let me
make the difference explicit.

(260) p f v

1 Obviously, ≤ID
sim is reflexive and transitive. In order for it to also be antisymmetric (and thus qualify as a partial

order), the set of faithfulness constraints must be rich enough that for any two candidates which share the underlying form,
there exists at least one faithfulness constraint which assigns them a different number of violations.

2 This subsection is based on discussion with Ezer Rasin.
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Tesar’s output-drivenness compares the two candidates (261) which share the surface form [v] and differ
for the two underlying forms /p/ and /f/. The reason why output-drivenness fails in the case of the
saltation (260) can be informally stated as follows: since the surface form [v] attracts the underlying
form /p/ from far away, then [v] should also attract any other underlying form closer to it, including in
particular /f/.

(261) (/p/, [v]) ≤OD
sim (/f/, [v])

The alternative notion of input-drivenness explored in this section instead compares the two candidates
(262) which share the underlying form /p/ and differ for the two surface forms [v] and [f]. The reason
why input-drivenness fails in the case of the saltation (260) can be informally stated as follows: since the
surface form [f] is phonotactically licit, it acts as a barrier and thus prevents the underlying form /p/ to
shift any further into the surface form [v].

(262) (/p/, [v]) ≤OD
sim (/p/, [f])

Crucially, the two notions of output-drivenness make different predictions for a variant of the saltation
pattern (260) illustrated in (263): the intermediate form /f/ is not faithfully realized but neutralized to
something different than [v].

(263)

. . .

p f v

type of opacity: counter-feeding counter-bleeding

resulting
phonological pattern: a chain shift: a saltation:

a b c a b c

intuition of what
goes wrong

according to SPE:

a under-shoots (under-application
opacity) and the following should

have happened instead:

a over-shoots (over-application
opacity) and the following should

have happened instead:

a b c
a b c

intuition of what
goes wrong according
to output-drivenness:

b over-shoots and the following should
have happened instead: since b

attracts a then it should a fortiori
attract b itself

b under-shoots and the following
should have happened instead: since c
attracts a, then it should a fortiori

attract b

a b c a b c

intuition of what
goes wrong according
to input-drivenness:

b over-shoots and the following should
have happened instead: since b is
phonotactically licit (as it is the

surface realization of a) it acts like a
barrier and prevents b itself from

shooting any further

a over-shoots and the following should
have happened instead: since b is
phonotactically licit, it acts like a

barrier and prevents a from shooting
beyond b all the way to c

a b c a b c

Table 2. Opacity according to SPE, output-drivenness, and input-drivenness
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Tesar’s output-drivenness does not distinguish between the two patterns (260) and (263), as it fails in the
latter case as well. In fact, the notion of output-drivenness is based on the intuition that alternations are
governed by attractors. Since /p/ is mapped to [v], then [v] counts as an attractor for any underlying form
which is not further away than /p/. Thus, [v] must in particular attract to itself the underlying form /f/.
In other words, output-drivenness really requires /f/ to go to [v], any other option for /f/ is ruled out, just
as the original option (260) of a faithful mapping of /f/ to [f]. The case of input-drivenness is different:
it does distinguish between (260) and (263), because it fails in the former case (as seen above) but not
in the latter case. In fact, the notion of input-drivenness is based on the intuition that alternations are
governed by barriers. Since [f] is phonotactically licit in the original saltation (260), then it acts as a
barrier which prevents /p/ from going further away to [v]. But since [f] is not licit in the variant (263),
it does not count as a barrier and /p/ is effectively allowed to slide all the way to [v]. I summarize these
considerations by updating table 1 into table 2.

I can now go back to my initial question: which of the two notions of output-drivenness and input-
drivenness provides the best characterization of the distinction between transparency and opacity? An
experimental paradigm developed in White (2014) might be used to address this question. The logics
of his main experiment (experiment 1) is summarized in (264). Subjects in the target condition are
trained on the alternation /p/→[v], which changes both voicing and continuancy. Subjects in the control
condition are instead trained on the alternation /b/→[v] which changes only continuancy but not voicing.
At test phase, subjects are tested on the forms they have not been trained on, namely the forms /b/
and /f/ in the target condition and the forms /p/ and /f/ in the control condition. For each such form,
subjects are asked to choose between the faithful mapping of that form to itself and the neutralization of
that form to [v]. The dependent variable is the percentage of times that subjects choose the neutralization
mapping over the faithful mapping. The results are reported in the bottom row of (264).

(264) Target condition Control condition

training:
subjects are trained on the
alternation /p/→[v] which

changes two features

subjects are trained on the
alternation /b/→[v] which
changes a single feature

test: • /b/→[v] preferred 70% of the
time to /b/→[b]

• /p/→[v] preferred 20% of the
time to /p/→[p]

• /f/→[v] preferred 45% of the
time to /f/→[f]

• /f/→[v] preferred 15% of the
time to /f/→[f]

The underlying form /f/ is the crucial one, because subjects in both the target and the control
conditions are tested on that underlying form. The main finding is that subjects are more likely to
choose the neutralization mapping /f/→[v] in the target condition (45% of the times) than in the control
condition (15% of the times). White explains this result as follows. Ceteris paribus, subjects prefer
the faithful mapping /f/→[f] to the neutralization mapping /f/→[v]. Yet, positing the faithful mapping
/f/→[f] in the target condition leads to the saltation (260). Positing the faithful mapping /f/→[f] in the
control condition instead does not yield a saltation. The larger frequency of neutralizations /f/→[v] in
the target than in the control condition thus reflects a bias against saltations.

What are the formal properties of saltations which make them dispreferred and thus drive White’s re-
sult? Either output-drivenness or input-drivenness represents a natural answer to this question. Subjects
in White’s experiment were asked to choose between the neutralization mapping /f/→[v] and the faithful
mapping /f/→[f]. Hence, both notions of output-drivenness and input-drivenness predict the experimen-
tal result, because both notions penalize the saltation (260) which would follow from the choice of the
faithful mapping /f/→[f] in the target condition. Yet, consider a variant of White’s experiment where the
neutralization mapping /f/→[v] is pitted not against the faithful mapping /f/→[f] but against some other
neutralization mapping /f/→[. . . ]. In the target condition, the former neutralization mapping /f/→[v]
yields the original saltation (260) while the latter neutralization mapping /f/→[. . . ] yields the pattern
(263). Suppose that Tesar’s output-drivenness is the relevant notion of output-drivenness targeted by
the bias in White’s subjects. Crucially, output-drivenness fails for both patterns (260) and (263). Thus,
subjects in the target condition have no reasons to choose between /f/→[v] and /f/→[. . . ], because both
yield a failure of output-drivenness. The percentages in the target and the control conditions are thus
expected to be similar because subjects have no reason to choose between /f/→[v] and /f/→[. . . ] in
neither the target nor the control condition. Suppose instead that it is input-drivenness which is targeted
by the bias in White’s subjects. Crucially, input-drivenness fails for the original saltation (260) but not



6.4. IDEMPOTENCY AND CHAIN SHIFTS 115

for the variant (263). Thus, subjects in the target condition are expected to prefer /f/→[. . . ] (which does
not lead to a failure of input-drivenness) to /f/→[v] (which does lead to a failure of input-drivenness).
The percentages in the target and the control conditions are thus expected to be different, because the
bias against input-drivenness has something to say in the target condition (but obviously nothing to say
in the control condition). This issue is left open for future research.

6.4. Idempotency and chain shifts

A phonological grammar is idempotent provided it realizes faithfully any phonotactically licit forms.
Equivalently, provided it displays no chain shifts, as explained in subsection 3.1.4. Chain shifts have
been widely documented in adult phonology (Łubowicz 2011; Moreton 2004a; Moreton and Smolensky
2002), child phonology (Velten 1943; Smith 1973; Macken 1980; Dinnsen and Barlow 1998; Cho and
Lee 2000, 2003; Dinnsen et al. 2001; Jesney 2007), second language acquisition (Lee 2000; Jesney 2007),
and delayed phonological acquisition (Dinnsen and Barlow 1998; Dinnsen et al. 2011). OT approaches
to chain shifts can be sorted into two groups. Some approaches trade some of the assumptions of
(classical) OT, reviewed in subsection 3.2.1. Such approaches include: sympathy theory (McCarthy 1999);
output-output correspondence (Burzio 1998; Benua 2000); targeted constraints (Wilson 2001); turbidity
(Goldrick 2001); anti-faithfulness constraints (Alderete 2001, 2008); comparative markedness (McCarthy
2003a); candidate chains (McCarthy 2007); stratal OT (Bermúdez-Otero 2007); and contrast preservation
constraints (Łubowicz 2012). Other OT approaches to chain shifts are instead framed squarely within
the classical architecture. This section provides an overview of the latter approaches from the formal
perspective of the results established in sections 3.2-3.5.

6.4.1. Only a sufficient condition?
Consider an arbitrary (reflexive and transitive) candidate set, an arbitrary constraint set, and an

arbitrary constraint ranking. Section 3.2 has established the FICcomp (67) repeated in (265) as a sufficient
condition for the idempotency of the corresponding OT grammar.

(265) If: F
(
b, c, ρb,c

)
= 0

Then: F
(
a, c, ρa,bρb,c︸ ︷︷ ︸

ρa,c

)
≤ F

(
a, b, ρa,b

)
This statement contains three universal quantifications: over candidate sets, over constraint sets, and over
rankings. At this level of generality, the FICcomp is not only a sufficient but also a necessary condition
for idempotency, in the following sense. Consider a faithfulness constraint F which does not satisfy the
FICcomp (265). This means that there exist two candidates (a, b, ρa,b) and (b, c, ρb,c) such that: F assigns
no violations to the candidate (b, c, ρb,c), so that the antecedent of the FICcomp holds; but F assigns more
violations to the candidate (a, c, ρa,bρb,c) than to the candidate (a, b, ρa,b), so that the consequent fails.
Suppose that the constraint set also contains a markedness constraintM which assigns more violations to
the surface form b than to the surface form c.3 The OT grammar corresponding to the ranking F �M
displays the chain shift a → b → c and thus fails at idempotency: the string b is phonotactically licit,
because the underlying form a is mapped to the candidate (a, b, ρa,b), as shown in (266a); yet, the string
b does not surface faithfully, because the underlying form b is not mapped to the identity candidate
(b, b, Ib,b), as shown in (266b).

(266) a. F fails at the consequent of the FICcomp (265):

a F M

+ (a, b, ρa,b) ∗ · · · ∗ ∗
(a, c, ρa,bρb,c) ∗ · · · ∗ ∗!

3 Furthermore, assume that there exists a markedness constraint (eitherM or a different markedness constraint ranked
above M) which assigns more violations to the surface form a than to the surface form b. The latter markedness constraint
is responsible for ruling out the candidate (a, a, Ia,a), which is therefore ignored in the rest of this section.
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b. F satisfies the antecedent of the FICcomp (265):

b F M

(b, b, Ib,b) ∗
+ (b, c, ρb,c)

The rest of this section shows how various approaches to chain shifts in the classical OT literature fit
within the schema (266), where F is one of the faithfulness constraints which were shown in sections
3.3-3.5 to fail the FICcomp.

6.4.2. Chain-shifts through constraint conjunction
As noted in subsection 3.5.6, constraint conjunction yields faithfulness constraints which fail the

FICcomp. The use of constraint conjunction to model chain shifts within classical OT has been pioneered
by Kirchner (1996) and systematized by Moreton and Smolensky (2002). To illustrate, consider the chain
shift in the Lena dialect of Spanish in (267) (data from Hualde 1989 and Gnanadesikan 1997, section
5.4.3): because of the high final vowel in the masculine form, the underlying low and mid vowels (as
revealed by the feminine form) raise to mid and high vowels, respectively.

(267) /a/→ [e] gáta ‘cat-fem’ gétu ‘cat-mas’
sánta ‘saint-fem’ séntu ‘saint-mas’

/e/→ [i] néna ‘child-fem’ nínu ‘child-mas’
séks ‘dry-fem’ síku ‘dry-mas’

The markedness constraint Raise favors higher vowels before a high vowel. The conjunction of the two
faithfulness constraints Ident[high] and Ident[low] punishes underlying low vowels mapped to surface
high vowels. The analysis (268) is an instance of the scheme (266), with the conjoined constraint playing
the role of the non-FICcomp faithfulness constraint.

(268) a.

/gátu/ Id[high] ∧ Id[low
]

Raise

+ [gétu] ∗
[gítu] ∗!

b.

/nénu/ Id[high] ∧ Id[low
]

Raise

[nénu] ∗!
+ [nínu]

Other approaches proposed in the literature are equivalent to the approach based on the conjunction
of identity faithfulness constraints (see also the discussion of V-HeightDistance in Kirchner 1995).
For instance, Gnanadesikan (1997, chapter 3) accounts for the chain shift p → b → m (in post-nasal
position) through the faithfulness constraint Ident-Adj, which is violated by a voiceless obstruent and
a corresponding sonorant because they are separated by a distance larger than 2 on the inherent voicing
scale. This constraint is thus equivalent to the conjunction Ident[voice]∧Ident[son]. Analogously, Dinnsen
and Barlow (1998) account for the chain shift s→ T→ f through the faithfulness constraint DistFaith,
which is violated when the underlying and surface form differ by more than 1 on the scale f = 1, T = 2,
and s=3 and is thus equivalent to the conjunction Ident[coronal] ∧ Ident[strident].

Yet, the approach based on constraint conjunction is more general than the latter approaches based
on “scales”, as the former but not the latter extends to chain shifts which involve deletion (Moreton and
Smolensky 2002). To illustrate, consider the Sea Dayak chain shift in (269) (data from Kenstowicz and
Kisseberth 1979).

(269) /Nga/→ [Na]: /naNga/ [nãNaP] ‘set up a ladder’
/Na/→ [Nã]: /naNa/ [nãNãP] ‘straighten’

The analysis based on constraint conjunction extends as in (268) (based on Łubowicz 2011), which is
another instance of the scheme (266).

(270) a.
/naNga/ Id[nas] ∧Max *NV

+ [nãNaP] ∗
[nãNãP] ∗!

b.
/naNa/ Id[nas] ∧Max *NV

[nãNaP] ∗!
+ [nãNãP]
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6.4.3. Chain shifts through constraint restrictions
As noted in section 3.4, constraint restriction yields faithfulness constraints which fail the FICcomp

when the correspondence relations are allowed to “cross” the restriction. This observation systematizes
various approaches to chain shifts proposed in the classical OT literature. This subsection discusses
some examples in detail, with the goal of showing that restricted faithfulness constraints actually offer a
straightforward translation of the classical counter-feeding rule ordering of chain shifts.

6.4.3.1. First example
Jesney (2005, 2007) considers the classical child chain shift in (271): coronal stridents are stopped;

but underlying coronal stops are velarized when followed by a lateral (data from Amahl at age 2;2-2;11
as described in Smith 1973).

(271) /s, z, S, Z, tS, dZ/→ [t, d]: [p2d@l] ‘puzzle’ [pa:tli:] ‘parsley’
[pEt@l] ‘special’ [ænd@l@] ‘Angela’

/t, d, n/→ [k, g, N]: [p2g@l] ‘puddle’ [b2kl@] ‘butler’
[tæNg@l] ‘sandal’ [bOk@l] ‘bottle’

Jesney’s analysis is summarized in (272). It relies on what she calls the “specific” faithfulness constraint
IdentCoronal/[+strident], which mandates that input stridents preserve their coronality. This constraint
can be re-interpreted as Identϕ,R where ϕ is the feature [coronal] and the restriction R pairs a string with
the set of its stridents. As noted in subsection 3.4.5, Identϕ,R fails at the FICcomp when correspondence
relations are allowed to exit from the restriction R without changing the value of the feature ϕ, namely
to put in correspondence an underlying segment which satisfies the restriction with a surface segment
which does not and yet has the same value for the feature ϕ, as described in (83). That is precisely the
case in (272), as the underlying /s/ (which satisfies the restriction R) corresponds to surface [t] (which
does not satisfy the restriction) and yet they are both coronals.

(272) a.
/s/ Ident[cor]/[+str] *TL

+ [t] ∗
[k] ∗!

b.
/t/ Ident[cor]/[+str] *TL

[t] ∗!
+ [k]

Jesney’s analysis (272) is thus an instance of the scheme (266), with the restricted constraint Ident[cor],R

playing the role of the non-FICcomp faithfulness constraint.4

It is interesting to compare Jesney’s OT analysis with a rule-based analysis. Obviously, two rules are
needed in order to derive the chain shift (271), corresponding to the two processes of velarization and
stopping. Crucially, velarization must must be ordered before stopping: there would otherwise be no
difference between an underlying /t/ and a t derived through stopping at the point when velarization
applies, as shown by the two derivations in (273).

(273) a. underlying representation: /s/
stopping: t

velarization: [k]

b. underlying representation: /t/
stopping: t

velarization: [k]

Yet, properly ordering the two rules does not suffice to get the chain shift (271). In fact, if velarization
targeted all coronals (independently of their stridency or continuancy), velarization would incorrectly
affect /s/ as well, as shown by the derivations in (274). Thus, velarization must apply first and furthermore
be restricted to non-tridents (or non-fricatives).

(274) a. underlying representation: /s/
velarization: x

stopping: [k]

b. underlying representation: /t/
velarization: k

stopping: [k]

In conclusion, the SPE analysis of the chain shift (271) can be made explicit as in (275). Here, I use a
non-standard notation for SPE rules, where I pool together the conditions on the quality of the target
(usually written on the left of the SPE rule formula) and the conditions on the environment (usually
written on the right). The reason for that is that I want to draw a parallel with restricted faithfulness
constraints, where the restriction can be defined either in terms of segmental quality or position.

4 Assume that only coronals can be [+strident], while all non-coronals are [-strident]. Jesney’s constraint
IdentCoronal/[+strident] is then provably equivalent to the conjoined constraint Ident[strident] ∧ Ident[coronal].
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(275) a. First rule to apply: restricted velarization rule:
change: [place=cor] −→ [place=dor]

quality conditions: the target is [−strid]
environment conditions: the target is followed by a lateral

b. Second rule to apply: stopping rule:
change: [−cont] −→ [+cont]

quality conditions: the target is [−son]
environment conditions: —

Interestingly, Jesney’s OT analysis (272) can be interpreted as a straightforward and faithful trans-
lation of the SPE analysis (275) into OT, as made explicit in (276). Each rule of the SPE analysis
corresponds to a pair of a markedness and a faithfulness constraint. The restriction of the velarization
rule (275a) to non-stridents corresponds to the restriction of the corresponding faithfulness constraint
Ident[place]/[+str] to stridents. In other words, the faithfulness constraint is restricted to the complement
of the quality condition of the corresponding SPE rule. The switch to the complement is intuitively due
to the fact that SPE rules “do things” while faithfulness constraints “prevent things” from happening.
The fact that it is the quality condition which matters for the restriction of the faithfulness constraint
(rather than the environment restriction) captures the fact that the SPE analysis (275) is an instance
of counter-feeding on the focus. Finally, the ordering of velarization before stopping in the SPE analysis
(275) corresponds to the fact that the markedness constraint *Fricative corresponding to stopping (the
second rule) must be ranked above the markedness constraint *TL corresponding to velarization (the first
rule), in order for /s/ to go to [t] rather than to stay at /s/.

(276) SPE analysis OT analysis
restricted velarization rule (275a) =⇒ restricted faithfulness: Ident[place]/[+str]

markedness: *TL
stopping rule (275b) =⇒ faithfulness: Ident[cont]

markedness : *Fricative
velarization rule precedes stopping rule =⇒ *Fricative� *TL

6.4.3.2. Second example
Orgun (1995) considers the chain shift in (277) from Bedouin Hijazi Arabic: /a/ is raised to [i] but /i/

is deleted (both processes are restricted to short vowels in non-final open syllables; the data come from
McCarthy 1993).

(277) /a/→ [i]: /katab/ [kitab] ‘he wrote’
/rafaagah/ [rifaagah] ‘companions’

/i/→ ∅: /Qarif+at/ [Qarfat] ‘she knew’
/kitil/ [ktil] ‘he was killed’

Orgun’s analysis is summarized in (278)—plus a markedness constraint [*a] which is omitted here. It relies
on his constraint Correspond(/a/), which mandates that “every input /a/ has an output correspondent”.
This constraint can be re-interpreted as MaxR where the restriction R pairs a string with the set of its
a’s. As shown in subsection 3.4.1, MaxR fails at the FICcomp when correspondence relations are allowed
to exit from the restriction R, namely to put in correspondence an underlying segment which satisfies
the restriction with a surface segment which does not, as described in (79). That is precisely the case
in (278), as the underlying /a/ (which satisfies the restriction R) corresponds to the surface [i] (which
does not satisfy the restriction). Orgun’s analysis (278) is thus an instance of the scheme (266), with the
restricted constraint MaxR playing the role of the non-FICcomp faithfulness constraint.

(278) a.
/a/ Corr(/a/) *V

+ [i] ∗
∅ ∗!

b.
/i/ Corr(/a/) *V

[i] ∗!
+ ∅

It is interesting to compare Orgun’s OT analysis with a rule-based analysis. That analysis requires
two rules corresponding to deletion and raising. Two crucial conditions must be met in order for the SPE
analysis to succeed. The first condition is that deletion be ordered before raising. That by itself does
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not suffice An additional necessary condition is that the deletion rule be restricted to high (or non-low)
vowels. The SPE analysis can thus be made explicit as in (279).

(279) a. First rule to apply: restricted deletion rule:
change: deletion

quality conditions: the target is [+high]
environment conditions: the target is not the last vowel

the target belongs to an open syllable
b. Second rule to apply: raising rule:

change: [+low, −high] −→ [−low, +high]
quality conditions: —

environment conditions: —

Orgun’s OT analysis (278) faithfully translates the SPE analysis (279), as made explicit in (280).
Each rule of the SPE analysis corresponds to a pair of a markedness and a faithfulness constraint. The
restriction of the deletion rule (279a) to high vowels corresponds to the restriction of the corresponding
faithfulness constraint Max/[+low, -high] to low vowels. In other words, the faithfulness constraint is
restricted to the complement of the quality condition of the corresponding SPE rule. The fact that it
is the quality condition which matters for the restriction of the faithfulness constraint (rather than the
environment restriction) captures the fact that the SPE analysis (279) is an instance of counter-feeding
on the focus.

(280) SPE analysis OT analysis
restricted velarization rule =⇒ restricted faithfulness: Max/[+low, -high]

markedness: *HighNonFinalVowelOpenSyllable
stopping rule =⇒ faithfulness: Ident[low], Ident[high]

markedness: Raise

6.4.3.3. Third example
McCarthy (2007, p. 34-36) considers the following chain shift from Bedouin Arabic: the vowel /a/

of /gabur/ belongs to a non-final open syllable and is therefore raised, yielding [gibur]; the vowel /a/ of
/gabr/ does not belong to a non-final open syllable and is therefore not raised despite the fact that vowel
epenthesis opens that syllable, yielding [gabur].

(281) gabr gabur gibur

The rule-based analysis of this chain shift requires two rules corresponding to raising and epenthesis.
Two crucial conditions must be met in order for the SPE analysis to succeed. The first condition is that
raising be ordered before epenthesis. That by itself does not suffice. An additional necessary condition
is that raising be restricted to vowels in non-final open syllables. The SPE analysis can thus be made
explicit as in (282).

(282) a. First rule to apply: restricted raising rule:
change: [+low, −high] −→ [−low, +high]

quality conditions: —
environment conditions: the target belongs to an open non-final syllable

b. Second rule to apply: epenthesis rule:
change: ∅ −→ V

quality conditions: —
environment conditions: C_C

McCarthy entertains an OT analysis based on the conjunction of Dep and Ident[low] (within the
domain of a single underlying syllable or two adjacent surface syllables). And he criticizes this analysis
based on the fact that it fails to capture the following asymmetry: although raising does not happen when
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epenthesis targets the complex coda following the vowel, it does happen when epenthesis targets the com-
plex onset preceding the vowel, as shown by alternations such as /tQarad Kanam-ih/→[tQa.ra.diK.ani.mih].
The complete pattern thus looks as follows:

(283) a. /Ca.σ/→[Ci.σ]
/CaC.(σ)/→[CaC.(σ)]

b. /CaCC.(σ)/→[Ca.CVC.(σ)]
/CCa.σ/→[CV.Ci.σ]

McCarthy’s critique of the OT analysis seems to me disingenuous, as the context-free faithfulness con-
straint Ident[low] he entertains actually fails to capture even the transparent facts in (283a), which have
nothing to do with opacity. In order to get the pattern (283a), we need a positional variant of Ident[low]
which is restricted to the complement of the environment condition of the raising rule. That complement
boils down to the condition that either the vowel is hosted by the final syllable or it is hosted by a closed
syllable. Equivalently, either it is hosted by a final syllable or it is hosted by a non-final closed syllable.
A vowel hosted by a non-final closed syllable can also be characterized as a vowel followed by a cluster
C1C2. The SPE analysis (282) could therefore be restated in OT as in (284).

(284) SPE analysis OT analysis
restricted raising rule =⇒ restricted faithfulness: Ident[low]/last-vowel, Ident[low]/_CC

markedness: *[+low]
epenthesis rule =⇒ faithfulness: Dep

markedness: *CC

6.4.4. Chain-shifts through breaking
Let me close this section by discussing a fictional example. Kubozono et al. (2008) report that English

frog is imported as [fu.róg.gu] into Japanese: the velar stop geminates (despite being voiced) because
of a requirement on the placement of stress, captured here through a place-holder constraint Stress.
Assume an analysis of consonant gemination in terms of breaking of a single underlying consonant into
two surface copies, as indicated by the correspondence relations in (285). Subsection 3.3.3 has shown that
plain identity faithfulness constraints fail at the FICcomp when the correspondence relations are allowed
to break underlying segments. This fact could be used to derive a fictional chain shift such as N→g→gg
through the analysis (285), which is an instance of the scheme (266) with the identity constraint playing
the role of the non-FICcomp faithfulness constraint.

(285) a. /N/ Ident[nas] Stress

+
(
N, g

)
∗ ∗(

N, gg
)

∗∗!

b.
/g/ Ident[nas] Stress(
g, g

)
∗!

+
(
g, gg

)
This example is fictional because I have not been able to find a realistic case of chain shift which involves
an underlying segment broken into two surface segments.

6.4.5. Summary
Section 3.2 has shown that chain shifts require the FICcomp to fail. Based on sections 3.3-3.5, there

are three major ways for the FICcomp to fail. One option is to use a faithfulness constraint which flouts
the FICcomp, such as a faithfulness constraint obtained through constraint conjunction. A second option
is to use the restriction of a faithfulness constraint which would otherwise comply with the FICcomp. The
third option is to let the correspondence relations break underlying segments. The former two options
have been exploited in the literature on chain shifts, as reviewed in this section.

6.5. Idempotency and the early acquisition of phonotactics

This section investigates the learnability implications of the structure provided by idempotency from
the perspective of modeling the early stage of the acquisition of phonotactics.
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6.5.1. Learning without underlying forms
The initial, most basic formulation of the language learning problem within constraint-based phonology

is (286). Sticking with the generative perspective, the learner is provided with full typological information,
by (286a.i). Since a grammar is effectively a set of candidates, the linguistic data that the learner is trained
on are indeed a certain number ` of candidates, by (286a.ii). The target grammar which has allegedly
generated the data ought to be consistent with it. The learner is thus required to find a grammar in the
typology which satisfies the consistency condition (286b).

(286) a. Given: i. a typology specified through a candidate and a constraint set;
ii. a dataset consisting of ` candidates (a1, b1, ρa1,b1

), . . . , (a`, b`, ρa`,b`
).

b. Find: a grammar G in the typology which is consistent with the data,
i.e., G(ai) = (ai, bi, ρai,bi

) for every i = 1, . . . , `.

We know how to solve efficiently this problem within both OT and HG (Tesar and Smolensky 1998;
Potts et al. 2010), at least if the learner is allowed the resources to list all the candidates which share
a given underlying form. Yet, this formulation (286) of the grammar learning problem suffers from two
drawbacks: the success condition (286b) is too weak and the training data (286a.ii) are too rich, as
discussed in the rest of this subsection.

The problem (286) is ill-posed in particular because it admits multiple solutions: how should the
learner choose among the plausibly many grammars which all satisfy the consistency condition (286b)?
Each grammar G generates the corresponding set LG of surface forms which are phonotactically licit
according to G. A natural additional condition on the grammar returned by the learner is that the
corresponding set of licit surface forms be as small as possible compatibly with consistency, as stated by
the added condition (287b.ii). This is the classical Subset Principle (Fodor and Sakas 2005).

(287) a. Given: i. a typology specified through a candidate and a constraint set;
ii. a dataset consisting of ` candidates (a1, b1, ρa1,b1

), . . . , (a`, b`, ρa`,b`
).

b. Find: a grammar G in the typology which is
i. consistent with the data,

i.e., G(ai) = (ai, bi, ρai,bi
) for every i = 1, . . . , `;

ii. restrictive relative to the data,
i.e., no grammar Ĝ such that LĜ ( LG satisfies the consistency condition(287b.i).

The added restrictiveness condition (287b.ii) changes drastically the nature of the learning problem: while
the original learning problem (286) is efficiently solvable in OT, the amended problem (287) is intractable
(Magri 2013), namely its admits no efficient solution algorithm. Intractability holds even if the learner
is allowed the resources to list and inspect all the candidates which share a given underlying form. This
intractability result plausibly extends from OT to comparable frameworks such as HG (indeed Clark and
Lappin 2011, p. 137 submit that “complexity problems are largely independent of the learning paradigm,
as all frameworks encounter them.”).

Another shortcoming shared by the problem formulations (286) and (287) is that they both assume
the linguistic data available to the learner to consist not only of the surface forms b1, . . . , b` but of
the corresponding underlying forms a1, . . . , a` and correspondence relations ρa1,b1

, . . . , ρa`,b`
as well. This

assumption is problematic because underlying forms (and correspondence relations) are most likely hidden
to the learner in a realistic learning setting and indeed need to be inferred as part of the learning problem.
This assumption that underlying forms are available to the learner is particularly implausible for what
Hayes (2004) calls the early stage of the acquisition of phonology. This acquisition stage (around nine
months) is characterized by two properties. The first property is that the child reacts differently to licit
and illicit sound structures. In other words, the phonological grammar learned by the end of this stage
satisfies both the consistency condition (287b.i) (whereby the learned grammar recognizes licit forms as
such) and the restrictiveness condition (287b.ii) (whereby the learned grammar recognizes illicit forms
as such). The second property of the early acquisition stage considered is that morphology is plausibly
still lagging behind and the child has therefore no access to paradigms of morphological alternations.
Lack of morphological paradigms plausibly means that the child is blind to alternations and thus has no
information on the underlying forms. These considerations suggest a further reformulation of the learning
problem, where the linguistic data available to the learner consist more realistically of nothing more than
a certain number ` of surface forms, as in (288a.ii).
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(288) a. Given: i. a typology specified through a candidate and a constraint set;
ii. a dataset consisting of ` surface forms b1, . . . , b`.

b. Find: a grammar G in the typology which is
i. consistent with the data,

i.e., G(ai) = (ai, bi, ρai,bi
) for some ai, ρai,bi

, for every i = 1, . . . , `;
ii. restrictive relative to the data,

i.e., no grammar Ĝ such that LĜ ( LG satisfies the consistency condition (288b.i).

Note that the consistency condition (288b.i) needs to be slightly restated as well, by introducing an
existential quantification over the underlying forms and the correspondence relations.

6.5.2. Reconstructing faithful underlying forms
A number of scholars in both the computational literature (e.g., Hayes 2004 and Prince and Tesar

2004) and the acquisition literature (e.g., Gnanadesikan 2004 and Pater and Barlow 2003) have proposed
that the learner circumvents the lack of underlying forms (and correspondence relations) in the training
data (288a.ii) by assuming fully faithful underlying forms, as stated in (289).

(289) For each training surface form b in the training data (288a.ii), the learner assumes the corre-
sponding identity candidate (b, b, Ib,b), whose existence is guaranteed by the reflexivity axiom
(51).

The learner then tackles problem (290) instead of the original problem (288). The crucial difference is
that the consistency condition (290a.i) as been restated so as to require the learner to find a grammar
which in particular maps each bi to the corresponding identity candidate (bi, bi, Ibi,bi

).

(290) a. Given: i. a typology specified through a candidate and a constraint set;
ii. aa dataset consisting of ` surface forms b1, . . . , b`.

b. Find: a grammar G in the typology which is
i. consistent with the data,

i.e., G(bi) = (bi, bi, Ibi,bi
) for every i = 1, . . . , `;

ii. restrictive relative to the data,
i.e., no grammar Ĝ such that LĜ ( LG satisfies the consistency condition (290b.i).

The assumption (289) of faithful underlying forms is computationally sound provided each solution of
the derived problem (290) also counts as solutions of the original problem (288). This ensures that the
learner can solve the original problem (288) by tackling the corresponding derived problem (290) instead.
Under which conditions can computational soundness be guaranteed?

6.5.3. Idempotency
The consistency condition (288b.i) says that each surface form bi is phonotactically licit relative to the

grammar G, because there exists some underlying form ai which is mapped to bi. The revised consistency
condition (290b.i) says that the grammar G maps each form bi faithfully to itself. The two conditions
are equivalent if the grammar G is idempotent, by the very definition of idempotency provided in section
3.1. If every grammar in the typology explored by the learner is idempotent, the two problems (288) and
(290) are thus equivalent: any grammar in the typology solves the former if and only if it solves the latter.
And the subroutine (289) is therefore computationally sound: no harm comes by entertaining faithful
underlying forms. The sufficient conditions for idempotency developed in chapter 3 thus yield sufficient
conditions for the computational soundness of the assumption (289) of faithful underlying forms, leading
to the following result.

Proposition 30. Suppose that the learner explores an OT typology corresponding to a constraint set
whose faithfulness constraints all satisfy the FICcomp. For instance, suppose that no correspondence
relation in the candidate set breaks any underlying segment and that the faithfulness constraints in the
constraint set are drawn from the following list: Identϕ (relative to a total feature ϕ), segmental Max and
Dep, featural Max[±ϕ] and Dep[±ϕ] (relative to a possibly partial feature ϕ), Uniformity, Linearity
and Adjacency. The assumption (289) of faithful underlying forms is then computationally sound,
because the two problems (288) and (290) are equivalent. �
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Proposition 30 might be useful to investigate specific learnability test cases corresponding to small
OT fragments, such as those considered in Hayes (2004) or Prince and Tesar (2004). Yet, the assumption
made by the proposition that all the faithfulness constraints in the constraint set satisfy the FICcomp is
unfortunately too strong in the general case: it implies that all grammars in the typology explored by the
learner are idempotent and it thus contradicts the fact that chain shifts are well attested in both adult
and child phonology, as seen in section 6.4.

6.5.4. Benign chain shifts
Fortunately this tension between the existence of chain shifts and the assumption (289) of faithful

underlying forms can be relieved. The tension stems from the fact that the assumptions of proposition 30
effectively say that the grammars in the typology explored by the learner are all idempotent. This ensures
in turn that the original problem (288) and the derived problem (290) are equivalent: a grammar solves
the former if and only if it solves the latter. But the computational soundness of the assumption (289)
of faithful underlying forms requires much less: it only requires that a grammar which solves the derived
problem (290) also solves the original problem (288)—while the reverse is not needed. The assumptions
made by proposition 30 should thus be weakened. We do not need the grammars in the typology to be
all idempotent. It is sufficient that for any grammar which fails at idempotency, the typology contains a
companion grammar which is idempotent and yet makes the same phonotactic distinctions, namely defines
exactly the same set of licit surface forms (and therefore also the same set of illicit surface forms, as the
two sets are one the complement of the other). Let me thus say that a non-idempotent grammar is benign
(relative to the typology it belongs to) provided the typology contains a companion grammar Ĝ such
that Ĝ is idempotent and nonetheless LG = LĜ. The computational soundness of the assumption (289)
of faithful underlying forms is compatible with some grammars in the typology failing at idempotency,
as long as the failure is benign. In other words, computational soundness does not require that all
grammars in the typology explored by the learner are idempotent and it thus does not exclude chain
shifts, as long as all non-idempotent grammars are benign. This observation motivates the search for
conditions which guarantee that all grammars in the typology are idempotent or else benign—just as
chapter 3 has investigated conditions which guarantee that all grammars in the typology are idempotent.

Unfortunately, at the current stage of the development of computational OT, it does not seem possible
to provide general formal sufficient conditions for benignity (mimicking the general formal sufficient
condition for idempotency provided by the FIC). To at least start the investigation, I will nonetheless
look not at whole grammars but at single chain shifts. A generic chain shift has the shape in (291a). The
chain shift is called benign provided the typology contains another grammar which enforces the mappings
in (291b) and thus “resolves” the shift. Crucially, the set of surface forms which are licit according to the
two grammars is the same, namely b and c at the exclusion of a. A chain shift (291a) poses no challenges
to the assumption (289) of faithful underlying forms when it is benign, namely when the typology contains
the companion grammar (291b).

(291) a. a b c b. a b c

The rest of this section thus tackles the following question: under which conditions is a chain shift
benign? In other words, under which conditions can I manipulate the ranking corresponding to (291a)
and obtain a ranking which corresponds to (291b) instead, thus making sure that both patterns (291)
belong to the same OT typology? The gist of the answer that I would like to pursue in future work is the
following. As we have seen in chapter 3, in order to flout idempotency and thus derive a chain shift (291a),
the faithfulness constraint set needs to contain a faithfulness constraint which fails at the FICcomp. Yet,
all basic faithfulness constraints satisfy the FICcomp (whereby the common wisdom that chain shifts are
problematic for OT). The faithfulness constraints which do fail at the FICcomp are derived from basic
FICcomp-abiding faithfulness constraints, thorough either constraint conjunction or constraint restriction.
By simply replacing the derived non-FICcomp-complying faithfulness constraint in a ranking (292a) which
yields the chain shift (291a) with a corresponding basic FICcomp-complying faithfulness constraint, I hope
to obtain a ranking (292b) which yields the phonotactically equivalent grammar (291b).

(292) a. . . .� derived non-FICcomp-complying faithfulness constraint� . . .

b. . . .� corresponding basic FICcomp-complying faithfulness constraint� . . .
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6.5.5. Benign chain shifts derived through two markedness constraints
To start investigate benign chain shifts, consider again the concrete chain shift s → t → k from

subsection 6.4.3. Jesney’s (2007) analysis is repeated in some more detail in (293).

(293)
/s/ M̂

=
*St

rid

F
=

Ide
nt [co

r]
/[+

str]

M
=
*TL

[s] ∗
+ [t] ∗

[k] ∗

/t/ M̂
=
*St

rid

F
=

Ide
nt [co

r]
/[+

str]

M
=
*TL

[s] ∗
[t] ∗

+ [k]

One crucial property of this analysis is that it makes use of two separate markedness constraints to
punish [s] and [t], namely M̂ = *Strid and M = *TL respectively, with the former ranked above
the latter. This allows for further faithfulness constraints to be ranked in between them, such as the
(unresricted) faithfulness constraint F̂ = Ident[cor] in (294). This grammar (294) has the same set of
phonotactically licit surface forms as the original grammar (293), namely [t] and [k] at the exclusion of
[s]. It is furthermore idempotent, because both underlying forms /t/ and /k/ are faithfully mapped to
themselves, so that the shift of /t/ to [k] is broken.

(294)
/s/ M̂

=
*S

tr
id

F
=

Ide
nt [co

r]
/[+

str
]

F̂
=

Ide
nt [co

r]

M
=
*T

L

[s] ∗
+ [t] ∗

[k] ∗ ∗

/t/ M̂
=
*S

tr
id

F
=

Ide
nt [co

r]
/[+

str
]

F̂
=

Ide
nt [co

r]

M
=
*T

L

[s] ∗
+ [t] ∗

[k] ∗

The grammar (294) thus shows that the original chain shift (293) is benign.
These considerations hold in complete generality. Thus, consider an arbitrary chain shift a→ b→ c

which is derived through two markedness constraints M̂ and M , which are responsible for punishing a
and b, respectively. M̂ must be ranked above M , while the relative ranking of M̂ and F does not matter.
For concreteness, suppose that M̂ is also ranked above F , as in (295). If instead M̂ is ranked underneath
F , the only difference is that F can assign no violations to the candidate (a, b, ρa,b). The symbol “—”
in a cell means that it must have no stars. Empty cell are simply unspecified (not necessarily without
starts).

(295) a M̂ F M

(a, a, Ia,a) ∗ —
+ (a, b, ρa,b) ∗

(a, c, ρa,bρb,c) ∗

b M̂ F M

(b, a, Ib,a) ∗
(b, b, Ib,b) — ∗

+ (b, c, ρb,c) —

Assume that the faithfulness constraint set is complete. This means that any candidate which is not the
identity candidate violates at least one faithfulness constraint. Completeness ensures that the constraint
set contains a faithfulness constraint F̂ which punishes the candidate (b, c, ρb,c). Suppose this constraint
F̂ in now ranked between M̂ and M , as in (296). No matter the behavior of F̂ on the other candidates,
this grammar (296) has the same set of phonotactically licit surface forms as the original grammar (295),
namely b and c at the exclusion of a. It is furthermore idempotent, because both b and c are faithfully
mapped to themselves, so that the shift of b to c is broken. The grammar (296) thus shows that the
original chain shift (295) is benign.
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(296) a M̂ F F̂ M

(a, a, Ia,a) ∗ —
+ (a, b, ρa,b) ∗

(a, c, ρa,bρb,c) ∗

b M̂ F F̂ M

(b, a, Ib,a) ∗
+ (b, b, Ib,b) — ∗

(b, c, ρb,c) — ∗

In conclusion, when the constraint set is complete, all chain shifts a → b → c derived through two
separate markedness constraints (one which punishes a and possibly b; the other which punishes b but
not a) are benign. We thus now need to study benignity only for chain shifts a→b→c derived through
a single markedness constraint which is responsible for punishing both a and b. We consider in turn the
three cases where the FICcomp fails because of constraint conjunction, breaking, or constraint restriction.

6.5.6. Benign chain shifts derived through constraint conjunction
One strategy to derive chain shifts is to use a conjunction of two faithfulness constraints which both

satisfy the FICcomp. I want to investigate whether the chain shift thus derived is benign. As noted in
the preceding subsection, it suffices to consider the case where a single markedness constraint is involved
in deriving the shift. To start with a concrete case, consider again the chain shift a→ e→ i discussed
in subsection 6.4.2. The analysis is repeated in (297), slightly expanded. The conjunction of the two
faithfulness constraints Ident[high] and Ident[low] does not satisfy the FICcomp and is responsible for the
non-idempotent behavior. The single markedness constraint Raise is responsible for penalizing both [a]
and [e] (with the former being penalized more than the latter).

(297)

/a/ Id
[h
ig
h]
∧ I

d [l
ow

]

Rai
se

[a] ∗∗!
+ [e] ∗

[i] ∗!

/e/ Id
[h
ig
h]
∧ I

d [l
ow

]

Rai
se

[a] ∗∗!
[e] ∗!

+ [i]

/i/ Id
[h
ig
h]
∧ I

d [l
ow

]

Rai
se

[a] ∗! ∗∗
[e] ∗!

+ [i]

Consider now the grammar (298), where it is the constraint Ident[high] which is ranked above the marked-
ness constraint Raise, while the conjunction Ident[high] ∧ Ident[low] is low ranked, together with the
other conjunct Ident[low]. This grammar (298) has the same set of phonotactically licit surface forms
as the original grammar (297), namely [e] and [i] at the exclusion of [a]. It is furthermore idempotent,
because both underlying forms /e/ and /i/ are faithfully mapped to themselves, so that the shift of /e/
to [i] is broken.

(298)

/a/ Id
[h
ig
h]

Rai
se

[a] ∗∗!
+ [e] ∗

[i] ∗!

/e/ Id
[h
ig
h]

Rai
se

[a] ∗∗!
+ [e] ∗

[i] ∗!

/i/ Id
[h
ig
h]

Rai
se

[a] ∗! ∗∗
[e] ∗!

+ [i]

The grammar (298) thus shows that the original chain shift (297) is benign.
These considerations hold in complete generality. Thus, consider an arbitrary chain shift a→ b→ c

which is derived through a single markedness constraint M together with the conjunction F1 ∧F2 of two
faithfulness constraints F1 and F2 which both satisfy the FICcomp, as in (299).

(299)
a F1 ∧ F2 M

(a, a, Ia,a) — ∗∗
+ (a, b, ρa,b) — ∗

(a, c, ρa,bρb,c) ∗

b F1 ∧ F2 M

(b, a, ρb,a) ∗∗
(b, b, Ib,b) — ∗

+ (b, c, ρb,c) —
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Crucially, the conjunction F1∧F2 cannot penalize the candidate (a, b, ρa,b) in (299), which would otherwise
lose to the identity candidate. This means5 that one of the two conjoined faithfulness constraints (say, F1

for concreteness) assigns no violations to the candidate (a, b, ρa,b). Since the conjunction F1 ∧F2 assigns
violations to the composition candidate (a, c, ρa,bρb,c), the conjunct F1 must in particular assign some
violations to that composition candidate. Since F1 assigns some violations to (a, c, ρa,bρb,c) but not to
(a, b, ρa,b), the inequality in the consequent of the FICcomp (265) fails for F1. Since F1 by assumption
satisfies the FICcomp, the antecedent of the FICcomp must fail as well for F1. In other words, F1 must
assign some violations to the candidate (b, c, ρb,c). Consider now the grammar (300) where it is F1 which
is ranked above the markedness constraint, while the conjunction F1 ∧ F2 is low ranked, together with
the other conjunct F2. This grammar (300) has the same set of phonotactically licit surface forms as
the original grammar (299), namely b and c at the exclusion of a. It is furthermore idempotent, because
both b and c are faithfully mapped to themselves, so that the shift of b to c is broken. The grammar
(300) thus shows that the original chain shift (299) is benign.

(300)
a F1 M

(a, a, Ia,a) — ∗∗
+ (a, b, ρa,b) — ∗

(a, c, ρa,bρb,c) ∗

b F1 M

(b, a, ρb,a) ∗∗
+ (b, b, Ib,b) — ∗

(b, c, ρb,c) *

In conclusion, all chain shifts a→b→ c derived through a single markedness constraint and a conjunction
F1 ∧ F2 are benign (modulo footnote 5) whenever the two conjunct faithfulness constraints F1 and F2

both satisfy the FICcomp.

6.5.7. Benign chain shifts derived through breaking
One strategy to derive a chain shift a→b→ c is to use a plain faithfulness constraint such as Dep or

Ident and to get it to fail at the FICcomp (265) through breaking. I want to investigate whether the chain
shift thus derived is benign. If the chain shift involves two markedness constraints which punish a and b
separately, then the chain shift falls within the scope of subsection 6.5.5, which ensures that it is benign
whenever the set of faithfulness constraints is complete. Thus assume that there is a unique markedness
constraint involved, which is responsible for punishing both a and b, albeit the former more than the
latter, as in (301). Crucially, since the shift involves a single markedness constraint, the faithfulness
constraint F cannot assign any violation to the winning candidate (a, b, ρa,b), as it of course assigns no
violations to the loser identity candidate (a, a, Ia,a).

(301)
a F M

(a, a, Ia,a) — ∗∗
+ (a, b, ρa,b) — ∗

(a, c, ρa,bρb,c) ∗

b F M

(b, a, Ib,a) ∗∗
(b, b, Ib,b) — ∗

+ (b, c, ρb,c) —

Section 3.2 has shown that, in order to derive a chain shift a→b→ c, we need a faithfulness constraint
F which fails at the FICcomp, repeated once more in (302) for comparison. The tableaux (301) show
that, if we furthermore insist on deriving the chain shift through a single markedness constraint being
responsible for punishing both a and b, we need a faithfulness constraint which fails at the implication
(303). Note that this implication (303) is weaker than the FICcomp: it is satisfied by any faithfulness
constraint which satisfies the FICcomp (but not vice versa6). Let me thus refer to this weaker condition
as the FICweak

comp.

5 Strictly speaking, this entailment only holds if the local domain of conjunction is instantiated only once in the
candidate (a, b, ρa,b). If that is not the case, F1 ∧ F2 could assign no violations to the candidate (a, b, ρa,b) with F1 and F2

both assigning violations to it. In the latter case, the assumption that either F1 or F2 assigns no violations to (a, b, ρa,b)

needs to be added as an additional assumption to the reasoning.
6 Here is a counterexample that shows that the vice versa fails: Dep and Ident fail at the FICcomp (302) in the

presence of breaking, as seen in section 3.3. Yet, they succeed at the weaker FICweak
comp (303), as guaranteed by the lemma

below.
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(302) If: F
(
b, c, ρb,c

)
= 0

Then: F
(
a, c, ρa,bρb,c

)
≤ F

(
a, b, ρa,b

)
(303) If: F

(
b, c, ρb,c

)
= 0 and F

(
a, b, ρa,b

)
= 0

Then: F
(
a, c, ρa,bρb,c

)
= 0

Section 3.3 has shown that Max satisfies the FICcomp (and thus also the weaker FICweak
comp) under no

additional assumptions on the correspondence relations, while Dep and Ident require the additional
no-breaking assumption in order to satisfy the FICcomp. An analogous reasoning (omitted for brevity7)
shows that the no-breaking assumption is not needed in order to get Dep and Ident to satisfy the weaker
FICweak

comp, as stated by the following proposition.

Proposition 31. The faithfulness constraints Max, Dep, and Ident satisfy the FICweak
comp (303) under

no additional assumptions on the correspondence relations. �

Let me take stock. In subsection 6.4.4, we have seen that breaking is one of the three possible
strategies to derive chain shifts. This subsection has shown that the strategy only works when we use
two markedness constraints. The resulting chain shift is therefore benign by virtue of the discussion in
subsection 6.5.5.

6.5.8. Benign chain shifts derived through constraint restrictions
One final strategy to derive a chain shift a→ b→ c is to use a plain faithfulness constraint such

as Max, Dep or Ident and to get it to fail at the FICcomp through restriction. I want to investigate
whether the chain shift thus derived is benign. Let me start with the case of MaxR . If the chain shift
involves two markedness constraints which punish a and b separately, then the chain shift falls within
the scope of subsection 6.5.5, which ensures that it is benign whenever the set of faithfulness constraints
is complete. Thus assume that there is a unique markedness constraint involved, which is responsible for
punishing both a and b, albeit the former more than the latter, as in (304).

(304)
a MaxR M

(a, a, Ia,a) — ∗∗
+ (a, b, ρa,b) — ∗

(a, c, ρa,bρb,c) ∗

b MaxR M

(b, a, Ib,a) ∗∗
(b, b, Ib,b) — ∗

+ (b, c, ρb,c) —

Crucially, MaxR must penalize the composition candidate (a, c, ρa,bρb,c) but neither of the two component
candidates (a, b, ρa,b) and (b, c, ρb,c). I consider an arbitrary segment a of the string a and reason as in
(305). In step (305a), I have used the definition of the restricted constraint MaxR and the definition of
the composition correspondence relation ρa,bρb,c. In step (305b), I have used the fact that MaxR does
not penalize (a, b, ρa,b), which entails that a cannot be epenthetic relative to (a, b, ρa,b). In step (305c),
I have noted that the condition ∀c[(b, c) 6∈ ρb,c] entails that b 6∈ R(b) given the fact that MaxR does not
penalize (b, c, ρb,c).

(305) a violates MaxR relative to (a, c, ρa,bρb,c)
(a)⇒ a ∈ R(a),∀b[(a, b) ∈ ρa,b → ∀c[(b, c) 6∈ ρb,c]]
(b)⇒ a ∈ R(a),∃b[(a, b) ∈ ρa,b and ∀c[(b, c) 6∈ ρb,c]]
(c)⇒ a ∈ R(a),∃b[(a, b) ∈ ρa,b and ∀c[(b, c) 6∈ ρb,c] and b 6∈ R(b)]

This chain of implications says in particular that, since the restricted constraint MaxR penalizes the com-
position candidate (a, c, ρa,bρb,c), the corresponding unrestricted constraint Max also penalizes (b, c, ρb,c),
because there exists some segment b which does not satisfy the restriction R and has no correspondent

7 The intuition is straightforward. The proofs of the fact that Max, Dep, and Ident satisfy the FICcomp (302)
presented in appendices A.1, A.2, and A.3 use the antecedent F (b, c, ρb,c) = 0 of the FICcomp to show that every violation
of F relative to (a, c, ρa,bρb,c) corresponds to a violation of F relative to (a, b, ρa,b). The no-breaking assumption was then
used to establish the injectivity of this correspondence. But the additional assumption F (a, b, ρa,b) = 0 in the antecedent
of the FICweak

comp (303) says that there are no violations of F relative to (a, b, ρa,b) to start with. Hence, there can be no
violations of F relative to (a, c, ρa,bρb,c) neither. This establishes the consequent in the FICweak

comp (303).
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in c. Consider now the grammar (306) where it is the unrestricted Max which is ranked above the
markedness constraint, while the restricted counterpart MaxR is low ranked. This grammar (306) has
the same set of phonotactically licit surface forms as the original grammar (304), namely b and c at the
exclusion of a. It is furthermore idempotent, because both b and c are faithfully mapped to themselves,
so that the shift of b to c is broken. The grammar (306) thus shows that the original chain shift (304) is
benign.

(306)
a Max M

(a, a, Ia,a) — ∗∗
+ (a, b, ρa,b) — ∗

(a, c, ρa,bρb,c) ∗

b Max M

(b, a, Ib,a) ∗∗
+ (b, b, Ib,b) — ∗

(b, c, ρb,c) ∗

In conclusion, all chain shifts a→b→ c derived through a single markedness constraint and a restricted
constraint MaxR are benign. Analogous considerations hold for IdentR. This reasoning instead fails
for DepS . By repeating the reasoning in (305) for Dep rather than Max, the fact that (a, c, ρa,bρb,c)

violates DepS entails that (a, b, ρa,b) violates Dep, not that (b, c, ρb,c) violates Dep.

6.5.9. Summary
Idempotency is a property of the phonology, not of the phonotactics. A certain phonotactic pattern

might correspond to various and very different phonological grammars, some of which are idempotent
while some others are not. The computational soundness of the assumption (289) of faithful underlying
forms only requires idempotency to hold for one of the grammars which yield the target phonotactic
pattern, not for all of them. The assumption (289) of faithful underlying forms is thus not a priori
incompatible with the typology containing chain shifts. This section has sketched a way to capitalize on
this intuition.

A. Proofs

A.1. Proof of proposition 27
Throughout this appendix, let me denote by (307) the fact that the surface form b can be obtained

from the underlying form a through the SPE derivation which applies rule R1 first, immediately followed
by rule R2, and so. The mode of rule application (whether each rule applies simultaneously to all targets
or sequentially, say, from left to right) is not crucial for what follows.

(307) 〈a,R1,R2, . . . ,Rn, . . .〉 = b

A rule Rn is said to apply vacuously in the derivation 〈a,R1,R2, . . . ,Rn−1,Rn,Rn+1 . . .〉 provided condi-
tion (308) holds: at the stage in the derivation when rule Rn is applied, it has no effect.8

(308) 〈a,R1,R2, . . . ,Rn−1,Rn〉 6= 〈a,R1,R2, . . . ,Rn−1〉.

With this notation, rule B counter-feeds rule A relative to the derivation 〈a,A,B〉 provided the two
conditions (309) hold. The first condition (309a) says that the rule A applies vacuously in the original
derivation 〈a,A,B〉. The second condition (232b) says that the rule A instead applies non-vacuously in
the swapped derivation 〈a,B,A〉.

(309) a. 〈a,A〉 = a
b. 〈a,B,A〉 6= 〈a,B〉

8 According to condition (308), vacuity of the rule Rn only depends on the underlying form a and on the rules
R1, . . . ,Rn−1 which precede rule Rn, not on the following rules Rn+1, . . . which follow rule Rn. Condition (i) provides a
natural alternative to condition (308), which makes vacuity also possibly dependent on the later rules. According to this
alternative condition (i), rule Rn is vacuous in the derivation provided it can be omitted without changing the outcome of
the derivation.

(i) 〈a,R1,R2, . . . ,Rn−1,Rn,Rn+1, . . .〉 = 〈a,R1,R2, . . . ,Rn−1,Rn+1, . . .〉.

Conditions (308) and (i) coincide for the last rule in a derivation. For any other rule, condition (308) entails condition (i)
but the vice versa fails, as shown by Duke-of-York derivations. The choice between these two definitions of rule vacuity is
irrelevant for what follows.
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Proposition 27 from subsection 6.2.1 can be made explicit as follows, where the expression “under mild
assumptions” used in the informal formulation of the proposition provided in subsection 6.2.1 has been
made explicit through the (underlined) condition that the derivation 〈〈a,B〉,A,B〉 is not a Duke-of-York.
The latter assumption is mild because Duke-of-Yorks are uncommon.
Proposition 27 Suppose that 〈a,A,B〉 is a counter-feeding derivation and that the derivation 〈〈a,B〉,A,B〉
is not a Duke-of-York, namely that it is not the case that the two following conditions (310) both hold.

(310) a. 〈a,B〉 6= 〈〈a,B〉,A〉 (first Duke-of-York condition)
b. 〈a,B〉 = 〈〈a,B〉,A,B〉 (second Duke-of-York condition)

The SPE phonology corresponding to the ordered rules 〈A,B〉 then yields a chain shift: 〈a,A,B〉 = b but
〈b,A,B〉 6= b. �

Proof. Condition (309b) in the definition of counter-feeding says that the first Duke-of-York condi-
tion (310a) holds. The second Duke-of-York condition (310b) therefore fails. Let b the result of applying
the SPE phonology 〈A,B〉 to the underlying form a, namely b = 〈a,A,B〉. The claim follows by applying
the SPE phonology 〈A,B〉 to b as in (311).

(311) 〈b,A,B〉 (a)
= 〈〈a,A,B〉,A,B〉 (b)

= 〈〈a,B〉,A,B〉
(c)

6= 〈a,B〉 (d)
= 〈〈a,A〉,B〉 (e)

= b

In step (311a), I have used the definition of the form b as the result of applying 〈A,B〉 to a. In step
(311b), I have used the first condition (309a) of the definition of counter-feeding, which says that A applies
vacuously to a. In step (311c), I have used the fact that the second Duke-of-York condition (310b) fails.
In step (311d), I have used again the first condition (309a) of the definition of counter-feeding. Finally
in step (311e), I have used again the definition of b. �

The assumption that 〈〈a,B〉,A,B〉 is not a Duke-of-York derivation is crucial in order for proposition
27 to hold. Here is a counterexample. Nootka (also known as Nuuchahnulth; Sapir and Swadesh 1978;
McCarthy 1999; Kenstowicz and Kisseberth 1977) has the two rules (312). The labialization rule A is
illustrated by the mapping /èaju+qi/→[èajuqwi] (‘ten on top’). The delabialization rule B is illustrated
by the mapping /ìa:kw+Sitì/→[ìa:kSitì] (‘to take pity on’).

(312) A: [+dor]→ [+rnd] / [+rnd]__ (Dorsals labialization after round vowels)
B: [+dor]→ [−rnd] /__]σ (Delabialization of dorsal codas)

Let a = uqw and b = uq. The derivation 〈a,A,B〉 = b is an instance of counter-feeding, because the
labialization rule A applies vacuously in that derivation whereas it applies non vacuously in the swapped
derivation 〈a,B,A〉. Yet, no chain shift arises in this case, because 〈b,A,B〉 = b. And indeed in this case
both Duke-of-York conditions (310a) and (310b) hold, so that proposition 27 does not apply.

A.2. Proof of proposition 28
With the notation introduced in appendix A.1, rule B counter-bleeds rule A relative to the derivation

〈a,A,B〉 provided the two conditions (313) hold. The first condition (313a) says that the rule A applies
non-vacuously in the original derivation 〈a,A,B〉. The second condition (235b) says that the rule A
instead applies vacuously in the swapped derivation 〈a,B,A〉.

(313) a. 〈a,A〉 6= a
b. 〈a,B,A〉 = 〈a,B〉

Proposition 28 from subsection 6.2.2 can be made explicit as follows, where the expression “under mild
assumptions” used in the informal formulation of the proposition provided in subsection 6.2.2 has been
made explicit through the (underlined) condition that A does not bleed B in the derivation 〈a,A,B〉. The
latter assumption is mild because its failure would mean that the derivation 〈a,B,A〉 is a case of mutual
bleeding (Baković 2011), which is uncommon.
Proposition 28 Let b the result of applying rule B to an underlying form a, namely b = 〈a,B〉.
Let c be the result of applying rule A first followed by rule B to that same underlying form a, namely
c = 〈a,A,B〉. If the latter derivation is a counter-bleeding derivation, then 〈b,A,B〉 = b. If A does not
bleed B in the derivation 〈a,A,B〉, the resulting pattern



130 6. IMPLICATIONS FOR PHONOLOGY AND ITS ACQUISITION

(314) a b c

is a saltation because a is closer to b than to c, as b is obtained from a through rule B only while c is
obtained from a by through both rules A and B which are both non-vacuous. �

Proof. The form b is faithfully mapped to itself by the SPE phonology 〈A,B〉, as shown in (315).
In step (315a), I have used the definition of the form b as the result of applying rule A to a. In step
(315b), I have used the second condition (313b) of the definition of counter-bleeding. In step (315c), I
have used the fact that SPE rules apply exhaustively. Finally in step (315d), I have used again the fact
that b is the result of applying rule B to a.

(315) 〈b,A,B〉 (a)
= 〈〈a,B〉,A,B〉 = 〈〈a,B,A〉,B〉 (b)

= 〈〈a,B〉,B〉 (c)
= 〈a,B〉 (d)

= b

By assumption, it is not the case that A bleeds B relative to the derivation 〈a,A,B〉. In other words, both
rules A and B apply non-vacuously in that derivation. The pattern (314) therefore counts as a saltation
because c = 〈a,A,B〉 is separated from a through two non-vacuous rules while b = 〈a,B〉 is separated
from a through only one of those two rules. �

The assumption that A does not bleed B in 〈a,A,B〉 is crucial in order for proposition 28 to hold.
Here is a counterexample (based on Baković 2011). Lardil (Hale 1973; Hayes 2009) has the two rules in
(316). The glide-epenthesis rule A is illustrated by the mapping /papi+uõ/→[papiwuõ] (‘father’s mother-
acc-fut’). The vowel deletion rule B is illustrated by the mapping /tjæmpæ+uõ/→[tjæmpæõ] (‘mother’s
father-acc-fut’).

(316) A: ∅ → w / i__u (Glide epenthesis)
B: V→ ∅ /V__ (Vowel deletion)

Let a = iu, b = i and c = iwu. Hence b = 〈a,B〉 and the derivation c = 〈a,A,B〉 is a case of counter-
bleeding. Yet, no saltation arises in this case: there is no sense in which the surface form c = iwu is
further away than the surface form b = i from the underlying form a = iu. And indeed rule A does bleed
rule B in the derivation 〈a,A,B〉, so that proposition 28 does not apply.

The implication from counter-bleeding to saltations established by proposition 28 is not invertible:
saltations can arise without counter-bleeding, as shown by the following counterexample (from Baković
2011). Turkish (Kenstowicz and Kisseberth 1979) has the two rules (317). The s/j-deletion rule A is
illustrated by the mapping /tSan+sW/→[tSanW]. The g-deletion rule B is illustrated by the mapping
/bebeg+i/→[bebei].

(317) A: s/j→ ∅ /C__ (post-consonantal s/j-deletion)
B: g→ ∅ /V__V (intervocalic g-deletion)

Let a = /VgsV/, b = /VsV/, and c = [VV]. Hence b = 〈a,B〉. The derivation c = 〈a,A,B〉 is not an
instance of counter-bleeding (Baković 2011 dubs such cases self-destructive feeding on the environment).
Yet, the corresponding phonology yields a saltation: the underlying form a = /VgsV/ is mapped to the
surface form c = [VV] not to the closer and phonotactically licit surface form b = /VsV/.
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2014 Phonology: Typology and Acquisition. Utrecht University, LIMV13010. Master-level
course co-taught with Aoju Chen and René Kager.

2012 Cognitive Computational Phonology: the case study of error-driven models of the acqui-
sition of phonotactics. 24th ESSLLI: European Summer School in Logic, Language and
Information. Opole, Poland; 13-17 August (http://esslli2012.pl/index.php?id=132).
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