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Résumé étendu

La recherche sur l’automatisation du comportement a mis en évidence divers défis
technologiques pour parvenir aux performances d’un système biologique. Il devient de
plus en plus clair que les caractéristiques des organes sensoriels et moteurs humains sont
essentielles pour atteindre certains objectifs. Malgré l’intérêt croissant en matière de so-
lutions robotiques pour des applications de service et d’assistance, une machine qui soit
polyvalente et qui imite de façon réaliste le corps anthropomorphe de l’être humain n’est
pas encore disponible. Actuellement, le domaine de l’intelligence artificielle (IA) passe
par des reformulations importantes. L’approche cognitiviste de l’IA n’a pas abouti à des
modèles et des stratégies de représentation adaptés pour fournir un système de résolu-
tion de problème universel. Pendant les dernières décennies, la recherche en cognition
incarnée (Embodied Cognition (EC)), où la représentation de la connaissance est fondée
sur l’interaction physique avec l’environnement, s’est développée offrant une alternative
pour l’étude du comportement naturel. Toutefois, l’adoption de la méthodologie EC pose
également des défis importants pour les roboticiens. Notamment, lorsqu’elle vise à satis-
faire les exigences imposées par l’hypothèse du fondement physique (physical grounding
hypothesis). Ainsi, son utilisation dans les applications de robotique de service n’est pas
encore très développée.

Cette étude a pris un point de vue intermédiaire entre la méthodologie cognitiviste
et l’EC. Ce travail porte sur l’aspect architectural du comportement et se concentre sur
l’exploration des sources locales d’information pour obtenir des solutions flexibles et ro-
bustes vis-à-vis des applications en robotique de service. Lors de ce travail une com-
pétence fondamentale a été considérée comme cas d’étude : il s’agit de l’utilisation de
l’ego-localisation pour se rapprocher et se positionner par rapport à des cibles visuelles.
Pour cela, d’une part, on adopte l’hypothèse cognitiviste selon laquelle le robot peut se
servir des représentations indépendantes-de-l’action (sous la forme de schémas percep-
tifs) pour faire la reconnaissance visuelle de la cible. Alors que, d’autre part, une fois
que le robot s’engage dans une tâche sensorimotrice il aura recours à des représenta-
tions locales sous la forme de sensations corporelles afin d’anticiper les conséquences de
l’action, de discriminer les objets, de réagir à des circonstances imprévues, d’apprendre
à partir d’expériences passées, et d’évaluer le progrès et le succès de la mission. Ainsi,
à partir d’une approche multidisciplinaire, ce travail porte sur différents aspects : les
architectures de comportements, l’attention visuelle ascendante et descendante, la vision
par ordinateur, la localisation égocentrique embarquée, la sélection d’action, l’intégration
multisensorielle, et l’apprentissage par renforcement.
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1
Introduction

1.1 Humanoid assistants

The word robot was popularized, according to Ichbiah [88], in a 1920 science-fiction
play by the Czech writer Karel Čapek named Rossumovi Univerzální Roboti (which stand
for Rossum’s Universal Robots, or "R.U.R”). In the play, artificial people are manufactured
to help and free humanity from the slavery of manual labor, but things don’t go as
expected, and they turn against their makers. These creatures would be made from
synthetic organic matter, so they could be easily mistaken for humans. Thus, perhaps
under the effects of the severe consequences of the First World War, the literature of the
20-30s pictured a dystopian view of robots as a menace and a replacement for mankind.

This negative connotation started to change through the work of Issac Asimov. The
American Russian-born biologist contributed to a positive view of robots as our allies,
servants and assistants, simply because we can choose it to be so. The introduction of
the famous three laws of robotics in the short story Runaround (Asimov [13]), became an
influential step towards ethics in robotics, accordingly:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given to it by human beings, except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.

The story takes place in a mining station on the planet Mercury. The photo-cell banks
that provide life support to the base station were short on selenium. Since the robot SPD-
13 (also named Speedy) could withstand Mercury’s high temperatures, the crew requested
it to get some selenium from the nearest pool. Speedy became confused about its mission,
suffering from what is described as the "robotic equivalent of drunkenness”. The situation
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is illustrated in Fig. 1.1. The robot walked uninterruptedly a huge circle around the
selenium pool when it was found by the crew. After failing to recover Speedy by a voice
command, the astronaut Powell eventually realized that the selenium source contained
unforeseen danger to the robot, so the second rule (to obey an order given by a human)
and the third rule (to preserve itself) were in conflict. Thus, the momentary equilibrium in
Speedy’s behavior is finally broken when Powell decides to put himself in danger by going
out in the heat, hoping that the first law would force the robot to break the cognitive
dissonance and save Powell’s life, which indeed happened.

Figure 1.1 – Illustration of Speedy’s confusion, as described in the short story Runaround by
Asimov [13]. Speedy cannot decide whether to execute the mission order or to protect himself
from danger. The robot then oscillates between the two behavioral modes of approaching and
avoiding the selenium pool.

Leaving aside for the moment the fascination with fiction, one might ask if there
are legitimate reasons that justify the interest in the research of humanoid applications.
This issue is tackled by Behnke [17], when he argues that the increasing popularity of
humanoids research is motivated by the vision of creating a tool that cooperates with
humans to solve problems in their same environment. That is, given the human-centered
design of our environments, humanoids are believed to be more suited to move (e.g.
climbing stairs) or to dexterously manipulate tools. In addition, a robot that is able
to synthesize speech, to move the eyes, or to gesticulate; would favor a more intuitive
and fluid communication with human beings, increasing its adaptation and acceptance
to the home or the office environment. The anthropomorphic body is also advantageous
to facilitate programming by demonstration and automatic learning from imitation, since
the human and the robot actions and gestures would be similar.

The development of service robotics has indeed been viewed as a promising way
to provide assistance to elderly people, given the aging trend in the world’s population.
A report by the United Nations (UN) [180] revealed that the global population of 60
or over is projected to multiply more than three times in the first half of the century,
reaching nearly 2 billion in 2050 (see Fig. 1.2). Moreover, conforming to the projections
of the International Monetary Fund and the World Bank (see Carone & Costello [33]),
population aging would threaten the prospects for economic growth by exerting severe
pressure on public expenditure. Under such a scenario, humanoid robots are expected to
provide assistance and health care for elderly people, increasing their quality of life and
autonomy.

Despite the growing interest in robotics solutions to service and assistance applica-
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Figure 1.2 – Population aged 60 or over (UN [180]).

tions, which is evidenced by ambitious funding to humanoid research projects in some
developed countries, a general-purpose machine that realistically mimics the anthropo-
morphic body of human beings (until the point of being mistaken by humans as in sci-fi
literature) is still on the way. Thus, the research on behavior automation has pointed out
the technological challenge to reach the performance sophistication of biological systems,
and to how the characteristics of human sensory and motor organs are crucial for the
accomplishment of certain behaviors. In fact, by drawing attention to such differences,
the research on humanoids (and robotics in general) has revealed itself as a useful means
to understand human cognitive processes, and has also contributed to advances in the
field of artificial intelligence.

1.2 A shift in artificial intelligence research

The field of artificial intelligence (AI) transverses important reformulations. Under
the influence of Cartesian dualism, classical AI (also named cognitivist AI) has considered
physical and mental processes belonging to different realms. Efforts under this perspective
have not been successful in modeling and providing knowledge to a general-purpose prob-
lem solver to deliberate on the task. A criticism has been formulated from what is known
as the Moravec’s paradox (Russell & Cohn [158]), that is, the discovery by AI and robotics
researchers that, contrary to traditional assumptions, high-level reasoning requires very
little computation, but low-level sensory-motor skills require enormous computational re-
sources. Therefore, the humanoid robot has not been able to leave the environment of
the lab, under strict control of extraneous variables.

In the last decades, a different perspective has been adopted to study natural be-
havior from the research on embodied cognition (EC), where knowledge representation
is considered to be grounded in the physical interaction with the environment. Unlike
the cognitivist approach, behavior is believed to emerge from multiple concurrent pro-
cesses, so behavior would not be globally representable nor planned. The analysis of the
sensory-motor coupling in natural tasks, from a dynamics system perspective, is becoming
a promising research direction that could result in more efficient, robust, and autonomous
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solutions. However, adopting the EC methodology also poses important challenges to
roboticists, in particular, when fulfilling the requirements underlying the physical ground-
ing hypothesis (Brooks [29]). Firstly, the autonomous development of behavior, as it
happens in natural beings, would ideally occur in a phylogenetic architecture that can
modify itself, which is hard to obtain for an artificial body. Secondly, the ontology of the
system must be flexible enough to ensure knowledge acquisition for diverse purposes, by
fusing information from different sensory modalities. Lastly, the development of cognitive
skills is conditioned to sensory-motor coupling and interaction with the environment, thus
knowledge acquisition is a slow process analogous to natural learning.

In view of the advantages and the challenges encountered in the aforementioned
research approaches, this work has opted for an intermediate perspective for behavior
automation, by acknowledging the importance of obtaining an adequate balance between
generality and autonomy in applications of service robotics. In this sense, it takes into
account the aspects of deliberation and reaction in the context of the action selection
problem. For example, getting back to Speedy’s dilemma (see Fig. 1.1), the deliberative
aspect of the mission would be to accomplish the general plan of bringing some selenium
to the crew, whereas the reactive aspect would be to handle the unexpected situations
encountered, such that the emergence of danger. Both aspects are important for the
mission, and the robot should ideally be able to detect the contradictory effects of these
behavioral modes, and eventually to stop and to ask for guidance.

1.3 The research problem

This research focuses on the architectural aspect of the behavior of a humanoid
robot, and concentrates on the exploration of local sources of information for obtaining
more flexible and robust solutions to service applications. It has taken as a case study
the fundamental skill of approaching and positioning in relation to visual stimuli. Thus,
the problems of top-down and bottom-up visual attention, knowledge representation and
action selection, are investigated. For this, the work takes a cognitivist assumption ac-
cording to which action-independent knowledge (in the form of perceptive schemes) can
be employed for recognizing stimuli before approaching them. But, as an embodied be-
ing, when the robot engages in sensory-motor activities, it can efficiently resort to local
representations in the form of bodily sensations, in order to anticipate the consequences
of action, to discriminate the object, to react to unexpected circumstances, and to assess
the progress and success on the mission.

1.4 Chapters overview

Given the interdisciplinary approach adopted in this work, this manuscript reports
on a variety of topics of interest. Thus, Chapter 2 starts by presenting an overview
on humanoid robotics research and the main challenges encountered. Then, the chapter
focuses on the problem of humanoid navigation and localization, and the problem of
deliberation and reactivity (i.e. the action selection problem). Different aspects of the top-
down (i.e. deliberation) and bottom-up (i.e. reaction) processing are discussed, including
the advantages and disadvantages of pure deliberative or reactive schemes.

Chapter 3 deals with the topic of visual attention. It starts by reviewing some
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models derived from cognitive science research. The focus is placed on the aspect of
efficiency in managing visual information available. Commonly used sensor technologies
are reviewed and contrasted to the human eye, in order to illustrate potential challenges
for artificial solutions. The literature of machine vision is also reviewed to discuss the
approaches of whole scene segmentation and feature tracking. Three case studies are
developed in order to evaluate potential top-down and bottom-up visual saliency methods.

In Chapter 4 the problem of egocentric on-board localization for autonomous walk
is investigated, so the visually-guided approach task is defined and modeled. For this,
a distributed solution relying on visual servoing and motion primitives is studied. A
cylindrical ego-sensory structure is defined for processing the localization, and different
placements for this structure are compared. Several case studies in simulation and a real
experiment are conducted in order to assess the autonomous execution of the task, under
a restricted scenario to a single salient object.

Chapter 5 focuses on the aspect of attention selection. A more realistic solution to
the approach task is proposed by defining a behavior scheme according to the EC research
methodology. Thus, from a first-person perspective analysis of the sources of information
available, the agent is given a non-holonomic walking style that mimics human motion. In
order to ensure robustness and reliability in the task, the behavior scheme is integrated to
a hybrid architecture in charge of monitoring the execution. This functionality is obtained
from the design of a Bayesian network that fuses information for attention selection. The
chapter finishes by proposing a six-steps methodology to develop robust visually-guided
approach tasks.

The central topic of concern in Chapter 6 is reactive walk. Hence, the chapter
is dedicated to the study of embodiment, knowledge representation, and learning under
different action selection scenarios. By maintaining the first-person perspective adopted
throughout the work, and the proposal of distributed models for the task, a behavior-based
framework is selected to study concurrency in the access of available resources, so emergent
behavior is produced. Local action-oriented representations of the task are studied, thus
the agent can approach the object while avoiding obstacles. Visual encoding is proposed
as an embodied description of the task, so more efficient solutions can be learned.

1.5 Contributions

From a personal perspective on the various topics studied, the technical and concep-
tual proposals presented next are original.

Chapter 3. The improvement of the MRF color-based segmentation technique de-
scribed in Sec. 3.4.3 for a use of top-down saliency detection, in the context of real-time
processing of visual inflow.

Chapter 4. The behavior scheme in Sec. 4.4 based on ego-cylindrical localization,
combining the IBVS and PBVS modeling techniques, relying on a low-frequency acquisi-
tion rate, from robust color-based MRF segmentation. The embodied evaluation of the
sensory ego-space for stimuli persistence in Sec. 4.6.3, so the hybrid control policy based
on body- and eye-centered references is proposed to obtain a computationally efficient
solution, which heuristically exploits the body posture context of humanoid walking on a
plane surface.

Chapter 5. The HMW egocentric first-order description of walk in Sec. 5.3.1, that
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mimics human motion style when positioning in relation to the frontal face of an object of
interest, by moving on a plane surface. The distributed scheme for visual selection in Sec.
5.3.3, that combines ideas from the information processing models in cognitive science
and the EC methodology. The embodied and filtering features set detailed in Sec. 5.4.1,
that include diverse information about the stimulus of interest and the body context.
The hybrid model for action selection in Sec. 5.5.3 based on motion primitives, so remote
resources can be safely used in the task, from the probabilistic evaluation of the degree of
confidence and the discriminative power of the attention selection process. The Bayesian
network model for information fusion in Sec. 5.4.2, under static and dynamic estimation
of certainty. The six-steps methodology for designing reliable approach tasks in Sec. 5.6.

Chapter 6. The behavior model in Sec. 6.5.3 that exploits embodiment and lo-
cal heuristics, so a solution for the task is obtained by relying on high-frequency dense
optic flow processing, and distributed action-oriented representations of the stimulus of
interest. The behavior scheme in Sec. 6.5.4 for obstacle avoidance and object approach-
ing, combining top-down and bottom up attention selection, relying on the processing of
dense optic flow and whole scene segmentation from on-board acquisitions in a humanoid
robot. The visual encoding heuristics proposed as an embodied description of the task
for behavioral arbitration and approach policy learning.

1.6 Notation

• Lowercase letters in boldface "u" denote vectors which are always column vectors.
• Uppercase letters in boldface "M" are used for matrices.
• The ith element of a vector is denoted by "ui". In case a particular element is

referenced in a matrix, a double index notation "Mij" is used (i.e., the element at
the ith row and the jth column). A single index can be used for matrices denoting
the ith row "Mi" of the matrix.
• The transpose of a real matrix or vector is denoted "Mt".
• The inverse of a matrix is "M−1"
• The pseudo-inverse of a matrix is "M+".
• Vectors and matrices columns are delimited by brackets (e.g. u = [u1 u2 ... uk]t).
• The inner product operator for vectors is "·", so r = u·v. The cross product operator

of vectors is "×", so i = u× v.
• The euclidean norm of a vector is obtained from the inner product, such that

‖u‖ =
√

ut · u (1.1)

• The absolute norm of a vector is obtained such that

|u| =
∑
i

|ui| (1.2)

• The observation of a variable o is "ô".
• The estimation or prediction of a variable s is "s̃".
• The saturation of a measurement k is "k̄", so |k| < ε for the saturation value ε.
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• Points in the 3D Cartesian space are uppercase so "B = (X, Y, Z)", the coordinates
components are also uppercase. The fact that a point B is expressed in a given
reference frame G is denoted by GB.
• Image projections of points are represented by "B′ = (x, y)", with pixel coordinates

in lowercase.
• The axis of a frame is lowercase so "~x".
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2.1 Introduction

The research in humanoid robotics has been intensifying over the last decades, includ-
ing international collaboration in the form of annual meetings, conferences, and robotic
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challenges. Thus, an interesting question to be asked is: how far are these robots from
reaching the performance of human beings? To answer this question the first part of the
chapter presents an overview on the field, including important milestones and challenges
encountered in different topics, such that: locomotion, perception, human-machine inter-
action, dexterous manipulation, learning and adaptation. The problem of autonomous
navigation is reviewed in more detail, since it is on the core of this project’s research
interests. For this, the distinction between allocentric and egocentric spatial representa-
tions is established. In view of the stochastic nature of the studied task, the problem of
action selection (i.e. deciding what to do next given the task constraints) is reviewed, and
existing approaches are classified into deliberative, reactive, hybrid and behavior-based.
The relative advantages of these models are analyzed in the context of autonomous walk.

2.2 Humanoid robots

In a broader sense, a robot is a goal-oriented machine with capabilities of sensing,
planning and acting on the environment (Corke [51]). According to the goal, diverse
body configurations have been proposed to automate different industrial mass production
processes. A humanoid is a robot with an anthropomorphic body plan and human-like
senses (Behnke [17]). Although the concept of human-like automata is relatively old in
the literature and arts, the appearance of the humanoid robot had to wait until the late
20th century for the advances in digital computing.

2.2.1 Some milestones

The key initial contributions were produced both in Japan and the USA, although
these projects had very different focus and background. In 1986 the Japanese company
Honda started the confidential Humanoid Project with the goal of developing a robot
for coexisting and cooperating with human beings. The evolution of the prototypes is
illustrated in Fig. 2.1 (see Hirose & Ogawa [82]). The first versions corresponded to the
E-Series, which focused exclusively on the automation of biped locomotion. Full-body
humanoids appeared in the P-Series. The project was made public with the announcement
of the P2 prototype in 1996. The release of the model P3 in 1997 was undoubtedly an
important milestone. The robot was not only able to walk on flat floors and climb stairs,
but it could also kneel, stand up, keep balance when disturbed, and move gracefully at
the human speed. Since 2001 the latest series is named Asimo 1.

By 1993 in the MIT (USA) Rodney Brooks and his team started to construct the
upper-body Cog (see Fig. 2.2). The project differed significantly from the standard
assumptions of artificial intelligence, that viewed humans as general purpose individuals
in possession of full monolithic control and internal models. Instead, the project adopted a
multidisciplinary approach to robotics, with strong influence of cognitive science, systems
theory, philosophy, and linguistics; under the hypothesis that: "human-level intelligence
requires gaining experience from interacting with humans, like human infants do" (Brooks
et al. [28]). Thus, the control for Cog is implemented as a heterogeneous network of
different processor types operating at distinct levels in the control hierarchy, ranging from
small microcontrollers for joint-level control, to digital signal processor (DSP) networks
for audio and visual preprocessing. The Cog project was active until 2003, though it was

1. project’s website http://asimo.honda.com
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Figure 2.1 – Historic evolution of Honda’s humanoid achievements [82].

very influential to other humanoid projects. This is the case of the robot iCub developed
by the Italian Institute of Technology (IIT), as part of the EU RobotCub project (see
Metta et al. [119]). The development counted on the collaboration of former participants
of the Cog project.

Figure 2.2 – The MIT Cog project. On the left, the upper-torso humanoid robot. Cog has
twenty-one degrees of freedom. It is equipped with visual, vestibular, auditory, and tactile
senses. In the center the robot’s head. On the right, Rodney Brooks is interacting with Cog.

The upper-body Hadaly-2 was relatively contemporary with Cog. Hadaly-2 was
developed in 1997 by the University of Waseda (Japan). The robot was given skills
to interact with the environment, such that visual processing, conversation (e.g. voice
recognition and synthesis), and gesticulation (Hashimoto et al. [79]). The project focused
on the human morphology beyond the simple imitation of the anthropomorphic shape (e.g.
the mobility of the eyes, neck and hands). However, the approach taken for behavior
automation was not as innovative as in the Cog project and followed the standard AI
assumptions. In this sense, the behaviors were explicitly modeled by the engineers and
counted on extensive knowledge data-bases, including the 3D model of the scene.

2.2.2 Worldwide research

Japan has undoubtedly excelled in full-body humanoid innovation. After being left
behind in the personal computer industry run, both the Japanese private and the public
sector have striven for getting ahead on humanoids research. This has been in fact the case
when Sony released the ludic 60 centimeters tall robot Qrio, which was at the forefront of
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Asimo. The robot is able to dance, recognizing faces, detecting obstacles, climbing stairs,
and running, among other skills. Some other important projects in the private sector are:
the Toshiba series Partners, Fijitsu’s HOAP-1 and HOAP-2, Kawada Industries’ Isamu,
and Kitano Symbiotic Systems’ Pino, Sig2, Morph and Morph3. In the public sector
in 1998 the Ministry of Economy, Trade and Industry of Japan launched the famous
Humanoid Robotics Project (HRP). An important release was the prototype HRP-2,
which can walk at two third human speed (2.5 km/h), move on narrow paths, cope with
uneven surfaces, lie down, and get up by itself (Kaneko et al. [93]).

According to Ward [185], the USA has been left behind in the run for humanoids.
Few investments have been done at the industrial level, due to non immediate profit
return from the commercial point of view. A study in 2006 by the Technology Evaluation
Center (see Ambrose et al. [5]) has compared the USA research activity with the rest of
the world. It concluded that:

[...] The U.S. currently leads in such areas as robot navigation in outdoor en-
vironments, robot architectures (the integration of control, structure and com-
putation), and in applications to space, defense, underwater systems and some
aspects of service and personal robots. Japan and Korea lead in technology
for robot mobility, humanoid robots, and some aspects of service and personal
robots (including entertainment). Europe leads in mobility for structured envi-
ronments, including urban transportation. Europe also has significant programs
in eldercare and home service robotics. Australia leads in commercial applica-
tions of field robotics, particularly in such areas as cargo handling and mining,
as well as in the theory and application of localization and navigation. In
contrast with the U.S., Korea and Japan have national strategic initiatives in
robotics; the European Community has EC-wide programs. [...] The U.S. lost
its preeminence in industrial robotics at the end of the 1980s, so that nearly all
robots for welding, painting and assembly are imported from Japan or Europe.
The U.S. is in danger of losing its leading position in other aspects of robotics
as well.
Nevertheless, more recently some initiatives have been conducted in academia, space

research, and defense. The country’s first full-sized humanoid robot named CHARLI was
developed by the Virginia Polytechnic Institute and State University (popularly known
as Virginia Tech) in the Robotics and Mechanisms Laboratory (RoMeLa) 2. NASA has
financed the Robonaut project 3 in collaboration with General Motors and Oceaneering.
The current release is the highly dexterous model R2, built from multiple component
technologies and systems (e.g. image recognition systems, sensor integrations, tendon
hands, among others). The Defense Advanced Research Projects Agency (DARPA) has
funded projects such as the robot Atlas developed by Boston Dynamics, and the Robotics
Challenge DRC.

In relation to the research in China, the Beijing Institute of Technology (BIT) has
been developing the BHR series, and the Zhejiang University (ZHU) has been working on
the table-tennis-playing humanoid twins Kong and Wu; among other projects. In Korea
there is the prestigious research team KAIST, who won the DARPA Robotics Challenge
2015. The team developed the robot DRC-Hubo, which is a semi-autonomous humanoid
that presents a hybrid structure, it is capable of both biped and wheeled locomotion.
In Thailand the King Mongkut’s University of Technology Thonburi (KMUTT) has de-

2. http://www.romela.org/main/Robotics_and_Mechanisms_Laboratory
3. http://robonaut.jsc.nasa.gov/
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veloped the robot Ka-Nok for playing football. In the Singapore Polytechnic (SP), the
Advanced Robotics and Intelligent Control Centre (ARICC) research group has released
the Robo-Erectur series. Australia has developed the robot GuRoo in the Mobile Robotics
Laboratory of the University of Queensland.

European projects are diverse with Germany probably leading the way. The Tech-
nische Universität München (TUM) in Munich has developed Johnnie. In the same city
the University of Bundeswehr has worked on the robot HERMES. The Karlsruhe Insti-
tute of Technology (KIT) has developed the ARMAR series for collaborative tasks. The
NimbRo team 4 from the University of Bonn was the best ranked from Europe (coming at
the fourth overall place) in the DARPA Robotics Challenge 2015, with the robot Momaro
(a four-legged humanoid torso). Other developments of the team are: the NimbRo-OP
Humanoid Open Platform, Copedo, Dynaped and Bodo. In the Netherlands the Delft
University of Technology is doing research on the concept of passive dynamics for energy
storage in biped walking, and many robots have been released (e.g. Flames and Fides).
In the UK the Imperial College of London developed an upper torso LUDWIG. In Sweden
the Chalmers University has been developing several robots (e.g. Priscilla, Elvina, HR
2), also the University of Uppsala has released Murphy. In Russia the company New Era
has developed in cooperation with the St. Petersburg State Polytechnical University the
robots ARNE and ARNEA. In Italy the Polytechnic University of Turin has released the
Isaac Robot. The humanoid iCub was also developed at the Italian Institute of Technol-
ogy (IIT), as part of the EU project RobotCub and subsequently adopted by more than
20 laboratories worldwide 5. The project is an open source initiative for the research in
human cognition and artificial intelligence. The motivation behind the humanoid design
is strongly based on the embodied cognition research, so the dimensions of the iCub are
similar to those of a 2.5 year-old child.

A. Challenges and competitions

There are important international events around the humanoids community that have
encouraged progress in the field. Indeed, many challenges and competitions have become
application domains for these robots, since their commercialization to the wide public
has not excelled yet. There are several participation modalities, the teams can either
build their own robots or use available commercial kits. Some relatively famous events
are for instance the soccer competitions RoboCup 6 and FIRA 7. The goal is to develop
fully autonomous robot teams that play together. The RobotChallenge 8 in the Humanoid
Sprint modality requires the robots to complete a course walking or running as fast as
possible. Another popular competition is Robo-One in Japan 9, where teleoperated robots
engage in martial arts. In the competition RoboCup@home 10 the goal is to develop service
and assistive technologies, with the emphasis on household and personal applications.

As already mentioned, DARPA has financed the Robotics Challenge (DRC) 11. The
teams that reached the final round are shown in Fig. 2.3. The objective of the compe-

4. http://www.nimbro.net/Humanoid/robots.html
5. http://www.icub.org/
6. http://www.robocup.org/robocup-soccer/
7. http://www.fira.net/main/
8. http://www.robotchallenge.org/competition/
9. http://www.robo-one.com/
10. http://www.robocupathome.org/
11. http://www.theroboticschallenge.org
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Figure 2.3 – Darpa Robotics Challenge finals 2015 [1]. The KAIST team from the Republic
of Korea won the competition.

tition is to promote the development of semi-autonomous ground robots (most of them
are anthropomorphic but it is not a requirement), for accomplishing complex tasks in
dangerous, degraded, human-engineered environments. Examples of tasks are driving a
vehicle, opening doors, clearing obstacles on the way, maneuvering a valve, and so on.
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For this, the robot has to operate in environments it has not encountered previously, or
to flexibly use human tools without requiring extensive reprogramming. The autonomy
must be enough to ensure operation under degraded communications with the mission
operator.

2.2.3 French projects

In France initial efforts started in 2000 with the project INRIA BIB. The objective
was to research various aspects related to the control of complex robotic systems, including
walking machines. Due to shortages in the budget these efforts ceased in 2002 and were
later incorporated to the BIBOP project, which is currently active 12. In 2001 the Centre
National de la Recherche Scientifique (CNRS) founded the project Robea (Robotique et
Entités Artificielles), which produced the RABBIT testbed platform (see Chevallereau
et al. [45]). The project 13 was a joint effort between several French labs (including the
IRCCyN), and some international contributions. The main goal was to build a prototype
for studying dynamics motion control for high speed walking and running. The CNRS
has also signed an agreement with the Japanese Humanoid Robotics Project, so the robot
HRP-2 has been available at the Laboratoire d’Analyse et d’Architecture des Systèmes
(LAAS) since 2006. The interactive robotics team of the Laboratoire des Systèmes Inté-
grés de Versailles (LISV) has been working since 2006 on HYDROïD 14, a humanoid robot
for medical applications. In the private sector Aldebaran Robotics has been successful
worldwide with the launch of the robot Nao in 2004, which substituted since 2007 Sony’s
Aibo in the RoboCup Standard Platform League (SPL) 15. The latest developments of the
company are the robot Romeo and Pepper (see Fig. 2.4).

Figure 2.4 – Aldebaran humanoids. From left to right the robots Nao, Romeo and Pepper.

2.2.4 The humanoid Nao

The humanoid robot Nao by Aldebaran Robotics is the platform considered in this
work (see Fig 2.5), so it is presented in detail. As described in Gouaillier et al. [75], Nao

12. http://www.inria.fr/equipes/bipop/%28section%29/activity
13. http://www.gipsa-lab.grenoble-inp.fr/projet/Rabbit/English/
14. http://www.uvsq.fr/hydroid-8201-un-robot-humanoide-au-service-de-la-sante-173507.kjsp
15. http://www.robocup.org/robocup-soccer/standard-platform/
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is an innovative lightweight and compact robot that is 0.57 meters tall and weighs about
4.5 kg. The body mass index (BMI) is about 13.5 kg/m2, which means that it is very
light compared to other robots of the same height. Moreover, the walk speed is similar
to the speed of a child of the same size, that is about 0.6 km/h.

Figure 2.5 – The robot Nao by Aldebaran Robotics (Gouaillier et al. [75])

Distinctive aspects of Nao are its pelvis kinematics design (see Fig. 2.6), its pro-
prietary actuation system based on brush DC motors, its electronic, computer, and dis-
tributed software architecture. Nao is also affordable when compared to other platforms.
As shown in Tab. 2.1, humanoids are somewhat expensive, making the price for Nao (by
2008) a plausible alternative for research teams with moderate budget. The platform is
also extensible and easy-to-handle, where the user can change the embedded software or
add some applications to make the robot adopt specific behaviors. The robot’s head and
forearms are modular and can be changed to promote further evolution. The comprehen-
sive and functional design is one of the reasons so Nao substituted the AIBO quadruped
in the RoboCup standard league.

Figure 2.6 – Nao’s pelvis design. On the left the classical set of three rotary joints, one
horizontal axis at the waist and two vertical axis for the legs. On the right the coupled inclined
axis rotary joints (at 45◦ towards the body) for the Nao pelvis (Gouaillier et al. [75]).

Table 2.2 summarizes the characteristics of Nao. It has a total of 25 degrees of
freedom (DOF), 11 DOF for the lower part that includes the legs and pelvis, and 14 DOF
for the upper part that includes the trunk, arms and head. Each leg has 2 DOF at the
ankle, 1 DOF at the knee and 2 DOF at the hip. Figure 2.7 gives the kinematics details.
Tab. 2.3 shows the sensory modalities included in the platform.
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Height (m) Weight (kg) BMI (kg/m2) Price
KHR-2HV 0.34 1.3 10.9 1K US $
HOAP 0.50 7.0 28.0 50K US $
Nao 0.57 4.5 13.5 10K euros
QRIO 0.58 6.5 19.0 NA
ASIMO 1.30 54.0 32.0 NA
REEM-A 1.40 40.0 20.4 400K US $
HRP-2 1.54 58.0 24.5 (5 year lease)
Human 1.5-2 50-100 18-25 NA

Table 2.1 – Characteristics of functional humanoids (Gouaillier et al. [75]). BMI: body mass
index = w/h2, NA: not available.

Body
Height (m) 0.57
Weight (kg) 4.5

Battery
Type Lithium-ion
Capacity 55 Wh
Degrees of freedom (DOF): 25
Head 2 DOF
Arms 5 DOF X 2
Pelvis 1 DOF
Leg 5 DOF X 2
Hands 1 DOF X 2

Masses (g)
Chest 1217.1
Head 401
Upper Arm 163
Lower Arm 87
Thigh 533
Tibia 423
Foot 158
Total 4346.1

Table 2.2 – Characteristics of the Nao humanoid (Gouaillier et al. [75]).

Type Number
30 FPS CMOS videocamera 1
Gyrometer 2
Accelerometer 3
Magnetic rotary encoder (MRE) 34
FSR 8
Infrared sensor (emitter/receiver) 2
Ultrasonic sensor 2
Loudspeaker 2
Microphone 4

Table 2.3 – Sensors available in Nao (Gouaillier et al. [75]).

The Aldebaran Robotics software framework is the architecture NaoQi, which is a
modular and distributed environment that can deal with a variable number of executable
binaries, depending on the user’s architectural choices. The advantages of a distributed
environment are diverse. It allows the user to run behaviors locally or remotely. Robot
functionalities such that motion and vision can be run standalone or interact with other
modules on other computers. The development of applications is easier in a distributed en-
vironment, since the same code can be compiled on different platforms and cross-compiled
for embedded execution. A distributed environment also allows the developer to imple-
ment and run methods on any real or simulated robot from the programming interfaces.
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Figure 2.7 – Kinematics of Nao. The wrist joint is not represented (Gouaillier et al. [75]).

2.3 Challenges in humanoid research

Although it may appear that the most important challenges for the conception and
control of humanoids have been solved, the current capabilities of these robots are rather
limited when compared to human beings. Below some of these limitations are discussed.

2.3.1 Bipedal locomotion

A distinctive feature of full-body humanoids is bipedal locomotion. Human beings
can walk and run with apparent ease, but these skills have proven to be hard to achieve in
humanoids. According to Behnke [17], there are two main research areas in bipedal walk.
One is zero-moment-point (ZMP) theory, that focuses on the point on the horizontal plane
about which the sum of the moments of all the active forces equals zero (Vukobratović
& Borovac [183]). Hence, dynamic stability can be evaluated such that if the ZMP is
within the convex hull (i.e. the support polygon) of all contact points between the feet
and the ground, the system is stable. ZMP theory became a major advance over the
center-of-mass projection criterion describing static stability. Many robots (e.g, Asimo,
Nao, HRP, etc) employ ZMP-based control, however this approach is not energy-efficient
since the robot do not recycle energy stored in elastic elements in the way humans do.

The other approach for bipedal locomotion research is to use the robot dynamics. A
work by McGeer [118] has shown that for planar walking it is possible to down a slope
without control or actuation. The idea of passive-dynamics walking has inspired the
study of walk on level ground (see Collins et al. [48]). As shown Fig. 2.8, these robots are
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very efficient and easy to control since their actuators only support the inherent machine
dynamics. However, there are problems to be solved such that the autonomous starting
and stopping of the walk, and changing speed or direction. Furthermore, since round feet
are employed these machines cannot stand still. Perhaps a promising research direction
is to combine ZMP theory with passive-dynamics, though many aspects are still to be
investigated (e.g. walking over uneven terrain and multi contact with the environment,
among others).

Figure 2.8 – Passive-dynamics research. Three level-ground powered walking robots based on
the ramp-walking designs (Collins et al. [48]). On the left the Cornell biped, in the center the
Delft biped, on the right the MIT learning biped.

2.3.2 Perception

Humanoid robots are equipped with sensory devices for perceiving their own state
and the environment. Usually joint encoders, force sensors, or potentiometers, are avail-
able for proprioceptive feedback. Contact with the ground is detected through Force
Sensitive Resistors (FSR) placed at the feet, which register resistance changes according
to the pressure applied. More recently, some robots have been covered with force-sensitive
skin (e.g. Stiehl & Breazeal [171], and Elkmann et al. [62]). Capacitive sensors (usually
placed at the hands, head and fore-arms) are also used for detecting contact with the en-
vironment. Super-human senses, such as laser range-finders or ultrasonic distance sensors
may be available for exteroceptive feedback.

Vision and audition are perhaps the most important modalities. Humanoids are
commonly equipped with two movable cameras, and sometimes include on-board com-
puters for image interpretation. However, the interpretation of real-world images is still
an unsolved problem since the cameras employed are mostly general-purpose, differing
significantly from the characteristics of the human visual system, which is much more
efficient at handling noise. Thereby, many vision-based tasks work well only under con-
trolled conditions. Frequently, key objects are color-coded to ease their perception (e.g.
in Moughlbay et al. [127]). Similar difficulties arise when interpreting the audio signals
captured by on-board microphones (e.g. Allen et al. [4]). One major problem is the
separation of the sound source of interest (e.g. a human communication partner) from
other sound sources and noise. So far there is probably no audio recognition system that
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is infallible.

2.3.3 Human-robot interaction

Several research projects have focused on human-robot interaction. The general
idea is to provide humanoids with capabilities normally present in natural face-to-face
communications. This includes multiple sensory modalities such that speech, eye gaze,
facial expressions, gestures with arms and hands, body language, and so on. According
to Breazea [25], sociable robots are designed to communicate and interact with humans,
to understand and to relate to humans or other robots in a personal way, by sharing
social terms. Figure 2.9 shows some examples of these robots. They are equipped with
expressive animated heads.

Figure 2.9 – Sociable robots. On the left, the robot Kismet developed in the MIT. On the
right, the therapeutic baby harp seal Paro by AIST.

Perhaps the most extreme form of sociable robots are androids and gynoids, which
exhibit a photo-realistic resemblance to humans. Their faces are covered with silicone skin,
they have human-like hair, and are dressed as humans. Some of these robots are modeled
after living persons, such that Repliee Q2 developed in Osaka (see Matsui et al. [117]).
However, these robots may produce uncanny valley effect (Mori [124]). Accordingly, as
the appearance of a robot approaches the human, some observers’ emotional response to
the robot will become increasingly positive and empathic, until a point where there is a
sudden drop in attractiveness close to perfect human-likeness. In Behnke’s opinion [17],
in these robots the synthesis-part of multi-modal interaction works reasonably well, but
the insufficient performance in perception and action, and the lack of true meaning in
the dialogue systems, prevent them so far from engaging in truly intuitive multimodal
interactions with humans.

2.3.4 Dexterous manipulation

Another key human capability is dexterous manipulation. The human hand has
about thirty degrees of freedom, and it is not easy to reproduce its strength, flexibility,
and sensitivity. As shown in Fig. 2.10, among the most advanced robotic hands is
Shadow (Reichel [154]), which has 25 DOF and is capable of performing much of the
motion of the human hand, including the curling of the palm. The actuation includes
a flexible pneumatic system, acting as "air muscles". Other designs consider motorized
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biomimetic prosthetic hands based on tendon driven mechanisms (e.g. the iCub’s hand,
see Stellin et al. [170]). As pointed out by Amlie et al. [94], the study of human hand
morphology reveals that developing an artificial hand with the dexterous capabilities of the
human hand is an extremely challenging task. Furthermore, hand dexterous manipulation
also requires hand-arm and visual coordination. In practice, most of the studies have
considered tasks with known objects.

Figure 2.10 – Robot hands. On the left, the hand developed by Shadow Robot Company Ltd.
On the right, the iCub hand developed in the IIT.

2.3.5 Learning and adaptive behavior

Humanoids must ideally be flexible in their adaptation to the environment. Thus, it
is desirable that they can autonomously acquire knowledge, extend current skills to solve
related tasks, and cope with unexpected changes. An efficient way of learning is by imi-
tation. According to Schaal [161], the study of imitation learning offers a promising route
to gain new insights into mechanisms of perceptual motor control that could ultimately
lead to autonomous humanoid robotics solutions. The field focuses on three important as-
pects: motor learning, the connection between action and perception, and modular motor
control in the form of motion primitives. There are several problems to be solved. One is
obtaining a precise perception of the teacher. Another is reliably mapping human body
dynamics to robot body dynamics. That is, some human motions may not be possible for
the robot given the body differences (e.g. in Munirathinam et al. [130]). Moreover, the
robot might have degrees of freedom that are not constrained by the captured motion,
hence a useful technique to simplify imitation is kinesthetic teaching (e.g. in Kormushev
[102]), where the teacher directly moves the limbs of the robot.

Programming by demonstration can also benefit the adaptability of the robot to the
environment. According to Cypher [53], the motivation behind this methodology can be
announced as follows: "if a user knows how to perform a task on the computer, that
should be sufficient to create a program to perform the task". When extended to robotic
agents, this method can be useful to teach procedural knowledge in the form of a task
algorithm. Reinforcement learning (RL) has also been used to optimize the behavior of
humanoid robots. A mode detailed discussion about RL is presented in Sec 6.4. In a
nutshell, RL can be viewed as the mapping from situations to actions that maximizes
a reward signal (Kaelbling et al. [92]). The learner is not told which actions to take,
instead, it must discover those that yield the most reward by trying them. As pointed
out by Russell & Norvig [159], an important challenge encountered in RL is the trade-
off between exploration and exploitation. Especially because it cannot be assumed that
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the environment would generate a reward structure that is sufficient for the learning of
complex tasks. Thus, the agent must try a variety of actions and progressively favor those
policies that appear to be best.

A distinct perspective is adopted in the research of enaction (see Vernon [182]). The
agent is given autonomy and an active role in learning through sensory motor coupling.
Thus, knowledge is constructed from the interactions with the environment. Here, embod-
iment and stimuli affordances are fundamental for directly perceiving the environment.
That is, the physical properties of stimuli and the agent’s body would provide the oppor-
tunity for learning actions. For example, the operations allowed by a knob are twisting
and pushing, whereas a cord would afford pulling. By following these ideas autonomous
sensory-motor coordination has been learned (e.g. eye-hand coordination in Fanello et
al. [66]), and stimuli categorization (e.g. visual recognition in Morse et al. [125]), among
other skills.

The aspects of learning and adaptation are of great interest for this research. Through-
out chapters 4-6 different topics related to embodiment and emergent behavior are studied,
where supervised demonstrations are fundamental to teach the agent the desired state of
the task. The use of RL is also explored to increase the effectiveness in the task by se-
lecting successful actions from previous experiences. The analysis of the sensory-motor
coupling is a central topic for this study, so the agent can rely on egocentric representa-
tions that it is able to obtain on-board in an autonomous manner (e.g. without relying
on a ubiquitous representation of the scene). Finally, in this work the achievement of the
task goals require the efficient control of the robot locomotion based on visual and pro-
prioceptive information. Hence, the research on robot navigation and the action selection
problem are relevant to this study, which is discussed in more details in the next sections.

2.4 Autonomous navigation

The appearance of mobile robots in the late 1960s initiated the research domain of
autonomous navigation. According to the historical review by Siciliano & Khatib [167],
early navigation systems were based on fruitful ideas that influenced later development
of motion planning algorithms. Some examples are grid-based environment exploration
(Nilsson [135]), and search-trees for the optimal path to a goal (Thompson [177]). Later,
studies in robot manipulation popularized the notion of the configuration space of a
mechanical system (Lozano-Pérez [112]). Thus, motion planning was reduced to finding
a path for a point in the configuration space.

Another important contribution came from the problem of car parking, which moti-
vated the interest for non-holonomic motion planning (see Li & Canny [109]). According
to Laumond [105], non-holonomic systems are characterized by constraint equations in-
volving the time derivatives of the system configuration variables. These equations are
non integrable and typically model the case where the system has less controls than con-
figuration variables. For instance, a car-like robot has two controls (i.e. the linear and
angular velocities) though it moves in a 3D configuration space. Consequently, a path in
the configuration space does not necessarily correspond to a feasible path for the system.
This is basically why the purely geometric techniques developed for holonomic motion
planning do not apply directly to non-holonomic systems.

More recently, the focus of the research in the field has turned to the problem of
autonomous outdoor navigation. That is, under inaccurate localization conditions, such
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as uncertain and incomplete models of the world (e.g. navigation maps), and unexpected
disturbance (e.g. moving obstacles). These topics definitely present a challenge to the
cognitivist approach in AI, by emphasizing the gap between planning a path and executing
the motion. This is discussed in more detail when reviewing the action selection problem
in Sec. 2.5.

2.4.1 Robot localization

According to Thrun et al. [178], localization can be seen as a problem of coordinate
transformation. Maps are described in a global coordinate system, which is independent
of the robot’s pose. Thus, localization is the problem of establishing correspondence
between the map coordinate system and the robot’s local coordinate system. Knowing
this transformation enables the robot to express the location of objects of interests in
space within its own reference frame. Conforming to Murphy [131], localization can be
relative to a local environment (e.g., the robot is in the center of the room), to a topology
(e.g., in Room 311), or to absolute coordinates (e.g., latitude, longitude, altitude).

Unfortunately, it is often the case where localization cannot be directly sensed, but
has to be inferred from data. The process of observation is subject to sensory noise, such
that a single sensor measurement is usually insufficient to determine the localization.
Instead, the robot has to integrate data over time to determine its pose. Depending on
the circumstances of the task (e.g. the resources available) research topics may be of
different levels of difficulty. A taxonomy for classifying research problems is given in Tab.
2.4. The categories are presented in increasing order of difficulty.

In this work the problem of localization considered is the observation of a desired
configuration with respect to a known object fixed in the environment. Other elements in
the scene (e.g. walls and furniture) are unknown. A global representation of the task, in
the form of a navigation map, is assumed to be unavailable. Under this scenario, from the
taxonomy given in Tab. 2.4, the research problems can fit on the categories: single-robot
moving in a static environment, passive localization, and kidnapped robot. However, not
only external references are studied in the walk task. As discussed in Chapter 6, from
the egocentric perspective the robot avoids obstacles and learns motion primitives. This
distinction is better established in the next section, when discussing multidisciplinary
research in spatial cognition.

Category Types
Local vs. global
localization.
(knowledge available
initially and at runtime
to the agent)

Position tracking. Known initial pose. Local problem. Un-
certainty in the form of sensory noise (assumed to be small) is
confined to a region near the true pose. Noise is accommodated
to motion usually through unimodal distributions (e.g., a Gaus-
sian).
Global localization. Unknown initial pose. No boundedness of
pose error can be assumed, thus unimodal probability distributions
are usually inappropriate.
Kidnapped robot. During operation the robot can get kid-
napped and teleported to some other location. Thus, it might
believe it knows where it is while it does not. The ability to re-
cover from failures is essential for truly autonomous robots.
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Static vs. Dynamic
Environments

Static. The only variable quantity (state) is the robot’s pose.
Objects in the environment remain at the same location forever.
Dynamic. Objects and the robot can move. Of particular in-
terest are changes that persist over time, and that impact more
than a single sensor reading. Changes that affect only a single
measurement are best treated as noise.

Passive vs. Active
Approaches

Passive. The localization module only observes the robot oper-
ating. The robot is controlled through some other means. Motion
is not aimed at facilitating localization.
Active. The robot is controlled so as to minimize the localization
error and/or the costs arising from moving a poorly localized robot
into a hazardous place.

Single- vs.
Multi-Robot

Single-robot. All data is collected at a single robot platform,
and there are no communication issues.
Multi-robot. A team of robots is considered. One approach is
to allow each robot to localize itself, such that robots are able to
detect each other. There is also the possibility to use one robot’s
belief to bias other’s when knowledge on the relative location be-
tween them is available. This is a non-trivial problem involving
team communication.

Table 2.4 – Localization problems taxonomy (Thrun et al. [178]).

2.4.2 Spatial cognition in the brain

In the study of spatial cognition a primary distinction is established between egocen-
tric and allocentric reference frames. According to Klatzky [98], in an egocentric reference
system entities are represented with respect to the particular perspective of the agent.
The allocentric reference frame would conform to the previously discussed definition by
Thrun et al. [178] of the robot localization problem, so locations are expressed with
respect to a fixed reference that is external to the holder of the representation, thus, it
is independent of the agent’s position. Another important methodological distinction is
established for the experimental study of spatial cognition. According to Freksa and Mark
[132], the frame for measurement of the motion event may be different from the frame for
the representation of motion.

Burgess [30] has reviewed the advances in the understanding of spatial cognition.
Accordingly, spatial memory appears to include multiple representations for the tasks of
both egocentric and allocentric types. Thereby, spatial memory and imagery are described
as a mechanistic process, where different brain regions intervene. Thus, the hippocampus
and medial temporal lobe would provide allocentric environmental representation, the
parietal lobe would provide egocentric representation, and the retrosplenial cortex and
parieto-occipital sulcus would allow both types of representations to interact. The way
how representations are combined is still a matter of debate, that may also depend on
the nature of the task. In this sense, Mou et al. [126] have suggested that individuals
use allocentric representations to learn spatial relations of objects for locomotion and
reorientation, though egocentric representations are used when allocentric representations
are not high fidelity. According to Graziano [76], in ocular-manual reaching distinct
egocentric representations may be employed, including eye- and body-centered.
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Klatzky [98] has proposed a useful terminology to describe studies in spatial cognition
that is going to be adopted in this work. The terminology is based on the following
assumptions:

a) Objects have an intrinsic front side.
b) Objects (including the agent) normally move forward with respect to their front

(unlike crabs, that regularly move laterally).
c) Motion is performed on a plane surface.

Figure 2.11 illustrates some spatial relations of interest to describe 2D motion. Spatial
parameters are values that can be assigned to individual points (e.g., the location of a
point) or multiple points (e.g., distance between two points). Primitive parameters are
spatial representations directly conveyed for the entities included in the representation.
Derived parameters are obtained from primitives, possibly in several computation steps.

Allocentric reference direction

Origin
Ego

A

B

Ego’s bearing

Allocentric AB bearing

Ego-oriented AB bearing

Egocentric bearing of B

Ego’s heading

Figure 2.11 – Spatial representations. A fixed allocentric reference is represented as a black
dot and a vector direction. In red two objects are represented, in blue the agent is represented
with the heading direction. The angles in green correspond to allocentric description, whereas
the angles in blue correspond to egocentric descriptions.

Points are spatial locations for which the values of the primitive parameters are
known. An object comprises multiple points that are organized into a coherent entity.
The axis of orientation of an object is a line between points on the object that defines a
canonical direction in space. Not all objects have an axis of orientation, for example an
object that is radially symmetrical has none. The axis of orientation of a person within
a space is aligned with the sagittal plane (as shown in Fig. 2.12). A distinction can be
established between the axis of orientation of the head and the body.

The heading in space is the angle between the object’s axis of orientation and some
reference direction external to the object. The heading of a moving object can be differ-
entiated from its course, or direction of travel as defined over the past few locations that
were occupied. Because the reference direction is external to the object (a heading that
was defined relative to its own axis of orientation would always be zero), heading will
sometimes be referred to as allocentric heading.

The bearing between two points is defined with respect to a reference direction. The
bearing from point A to point B is the angle between the reference direction and a line
from A to B. If the reference direction is aligned with the axis of orientation of an "ego"
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Transverse Frontal Sagittal

Figure 2.12 – Illustration of human planes of motion.

(i.e., an oriented organism in the space), the bearing from A to B will be named ego-
oriented. If any other reference direction is used, the bearing from A to B will be named
allocentric. The egocentric bearing of a point B, is equivalent to a bearing from ego to B,
using ego’s axis of orientation as the reference direction. Thus, the egocentric bearing is
a special case of the ego-oriented bearing in which ego’s location is the source point. The
egocentric bearing of B is numerically (but not conceptually) equivalent to the difference
between B’s allocentric bearing from ego and ego’s allocentric heading, when both are
defined with respect to a common reference direction.

2.5 The action selection problem

Robot navigation tasks involve several sources of uncertainties. One is related to
inaccuracies in the observation of the system state, given the measurement noise and
incomplete knowledge about the environment. Other is the stochasticity in the actuation
system, so the outcome of motion may differ from what is expected. Lastly, disturbances
independent of the agent, in the form of environment changes (e.g. slippery floor, uneven
illumination, windy weather conditions, and so on), may also affect the task.

In the field of autonomous robotic systems (hereafter agents), a fundamental issue
is to decide what to do next. An agent should maximize its expected utility, which
is a function of its goals and priorities. Though, due to important constraints, such
as environmental complexity, unpredictability, limited response time and resources; the
selection may not be optimal. According to Pirjanian [145], this is denoted in the literature
as the action selection problem (ASP), that is, the problem of resolving conflicts between
competing behavioral alternatives.

As pointed out by Prescott [149], initial works in AI viewed the ASP as the execution
of the steps of a plan that would lead the way from the current state to the desired goals.
This plan was thought to be optimal, obtained from a formal process of search, acquired
from imitation learning, or derived from a set of social norms. However, an influential
study by Chapman [41] suggested that even refined planning techniques would ultimately
turn out to be unusable in any time-constrained system. In Zhao’s [191] opinion, Chapman
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exerted a profound impact on subsequent planning research, and put into question the
whole symbolic AI paradigm.

Brooks’ research in the MIT (Brooks [29]) strongly contributed to a shift in the
emphasis towards hand-coded systems with minimal on-board search. Thus, the ASP
was studied from a modular and hierarchical decomposition of the task for obtaining
tractable solutions. Therefore, instead of focusing on planning, the central issue was
the integration of disparate, distributed, and parallel functionalities, in order to obtain
coherent behavior.

Several authors (e.g. Zhao [191], Pirjanian [145], Murphy [131]) have pointed out
three different approaches in the study of the ASP. Despite being named differently, as
illustrated in Fig. 2.13, available models are more commonly classified into deliberative,
reactive and hybrid. However, there is no agreement in this classification. Thus, Mataric
[116] has distinguished between hybrid and behavior-based architectures. Next, the main
characteristics of these approaches are discussed.

Figure 2.13 – Architectures for mobile robot control. Classification of mobile robot control
architectures in Pirjanian [145].

2.5.1 Deliberative models

Deliberative models are related to cognitivist AI research. The emphasis is placed
on a global world representation. As shown in Fig. 2.14, the model is based on three
sequential operations. Action in the environment is derived from a plan, this means that
the robot first senses, then plans, and then acts. Thus ASP is treated as a centralized
process. Since action is planned before execution, an advantage of this approach is that
it can produce optimal behavior (e.g. the most efficient route to a goal). Though, the
computational pipeline usually requires a significant amount of time, so becoming an
architectural bottleneck. Moreover, the task representation must be precise enough as
to provide planners with sufficient knowledge to choose optimal actions, which can be
difficult to obtain. Another important disadvantage is the difficulty for the architecture
to handle uncertainty in the task model (due to sensor noise, environment changes, etc.).

Figure 2.14 – Deliberative models rely on a central representation of the world so the solution
can be planned (Murphy [131]).
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According to Murphy [131], as roboticists began to study biological intelligence, they
realized that the deliberative logic-based approach was inadequate for navigational tasks
requiring rapid response time to open worlds. Thus, solutions based on deliberative
models have been employed under controlled environmental conditions. Perhaps two best
known deliberative models are the nested hierarchical controller (NHC) by Meystel [120],
and the NIST real time control system (RCS) by Albus & Proctor [3].

2.5.2 Reactive models

Reactive models were originally proposed by Brooks [27]. The fundamental attribute
of the reactive paradigm is that all actions are accomplished through behaviors, which are
a direct mapping of sensory inputs to a pattern of motor action. Thus, behaviors would be
equivalent to a transfer function, that transforms sensory inputs into actuator commands.
As shown in Fig. 2.15, in reactive models sense and act are tightly coupled processes, so
the overall behavior of the agent emerges as the result of their conjoint operation. Thus,
sensing is local to each behavior, so there is no global representation of the task (see Fig.
2.16 for a comparison with the deliberative approach).

Figure 2.15 – The reactive principle (Murphy [131]). Models are characterized by a close
coupling between perception and action. The observable behavior emerges from the concurrent
execution of specific tasks.

Figure 2.16 – Comparison between deliberative and reactive models (Pirjanian [145]). On the
left, the deliberative pipeline between the sensory input and the actuation on the environment.
On the right, the concurrent execution of specialized programs so behavior emerges out of their
conjoint actions.

Several advantages are associated with these models. Behaviors are inherently modu-
lar and easy to test in isolation from the system, which complies with software engineering
principles. The approach also leads to the development of fast response systems (that is
convenient to robot navigation problems), since the tight coupling between sensing and
acting allows agents to operate in real-time. Behaviors can be implemented directly in
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low-cost commercially available hardware, or in low computational complexity algorithms.
Nevertheless, there are some disadvantages. Given the simplicity of behaviors and the
fact that reactive systems have no memory, they are limited to the level of abstraction
of stimulus-response reflexes, which may result in local minima and inefficient motion in
complex task scenarios. Also, according to Brooks [29], an important challenge encoun-
tered in the study of emergent behavior is to find efficient ways to fuse multiple sources
of perceptual information when needed (e.g. when sensing more elaborated events). The
complexity of the model can augment significantly as the tasks become more complex.
Perhaps the more restrictive limitation for service robotics applications is that reactive
models cannot be directly commanded to achieve a goal in a particular manner, since
there is not a global representation of the task available.

2.5.3 Hybrid models

According to Orebäck & Christensen [138], neither purely reactive nor deliberative
models can perform well when solving complex tasks. Although reactive models were
successful in producing robots operating in real-time (which is a limitation of deliberative
models), that came at the cost of preventing planning or other functionalities related to
the optimal solution (e.g. remembering, reasoning about the global state, etc.). Therefore,
hybrid architectures have been increasingly used since they share both desirable proper-
ties. By the one hand they are reactive, so they can respond in real-time to changes in
dynamic environments. By the other hand they provide deliberation, so actions can be
planned ahead in time.

As shown in Fig. 2.17, hybrid models are characterized by the plan and sense-act
principle. The plan component includes all deliberation and global world modeling. Thus,
the robot plans how to accomplish a mission and activates at each time the set of behaviors
(i.e. sense-act) related to the execution of specific subgoals. The selected behaviors would
remain active until completion of the subgoal, then the planner would activate a new
set of behaviors according to the subsequent objectives of the plan, and so on. Hybrid
models employ asynchronous processing techniques (e.g. multi-tasking, threads, etc.),
thus deliberative functions are executed independently of reactive behaviors. For example,
the planner computes the next goal for a robot to navigate to, while it is reactively
navigating toward its current goal.

Figure 2.17 – The hybrid model principle (Morphy [131]). The sequence implies that the
robot first plans how to accomplish a mission or a task based on a global world model, and then
activates a set of behaviors to fulfill the plan that is executed until it is completed.

According to Murphy [131] there are three main types of hybrid architectures: man-
agerial, state-hierarchy, and model-based. The first type (e.g. AuRA by Arkin [8]) presents
a bottom-up organization. At the top are agents which do high level planning, then pass
off the plan to subordinates who refine it, gather resources, and then transfer those down
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to the lowest level workers which are reactive behaviors. For example, let us suppose a
driving task where the robot is off-road at the moment, so it has to advance through a
small portion of irregular terrain to get back to the road, and then to follow the road until
the next intersection. There are two sub-goals that require specific skills (off-road and
path following navigation). Notice that, although a map may be available, the trajectory
is not explicitly given to the agent, so the overall behavior would emerge as a function
of the two behavioral modes selected in the bottom layer. From the point of view of the
task representation, managerial types would be the closest to pure reactive models, with
deliberative functionalities added on the top of the architecture.

The state-hierarchy type (e.g. 3T by Bonasso et al. [22]) distinguishes between de-
liberation and reaction by the state or scope of knowledge. Reactive behaviors are viewed
as having no state, no self-awareness, and operate in the present. Deliberative functions
are categorized into those that require knowledge about the past (e.g. the previous lo-
calization) and the future (e.g. the mission, path planning, etc.). This type of model is
more complex than the previous one, since the task representations are more elaborated,
and the possibility of learning is considered. Sequences of behaviors can be managed
for instance by remembering what the robot has already done and the success obtained.
The planner layer can also process state information to predict the future. Therefore,
the overall behavior of the agent in these models would emerge from the sequencing of
behaviors, rather than the pure concurrency.

The model-based type (e.g. Saphira by Konolige & Myers[101]) is characterized
by a top-down organization, focusing on the creation and maintenance of a global task
model. Both specific-sensing and virtual behaviors can be defined. Goal coordination
between behaviors is also ensured (which is not considered by the reactive paradigm).
The communication with the user or other robots is based on absolute references since the
global representation is shared. Thus, this type is conceptually close to pure deliberative
architectures, though the task representation is generally less ambitious, and deliberation
activities are usually implemented distributed among independent software agents. This
provides a high degree of flexibility and computational efficiency. In fact, the programs
do not have to run on-board so the processing bottleneck is mitigated.

In the hybrid types reviewed, managerial and state-hierarchy models seem to have
evolved from the reactive models, whereas model-based is more close to the deliberative
models. In this work global representations of the task are not studied, so the model-
based type is of less relevance. The principle of the managerial type is used in Chapter 5
to define an architecture for task supervision, to obtain a reliable approach to an object
of interest under saliency ambiguity.

2.5.4 Behavior-based models

According to Mataric [116], behavior-based architectures are derived from the phi-
losophy behind reactive models, though computations are not restricted to look-up or
simple functional mappings. Thus, a behavior has a different meaning from reactive mod-
els, where it is given the connotation of a purely reflexive action. Here the term “behavior”
is more consistent with the ethological use and includes reflexive, innate, and learned be-
haviors (i.e. close to the notion of a skill). For this, the behavior can implement various
types of state representations providing local persistence. Since behavior-based models do
not necessarily require of deliberative processes (which is essential to the hybrid model),
their scope may include reactive models with internal state representation, and for the
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case of deliberative functionalities, the types managerial and state-hierarchy according to
Morphy’s categorization of hybrid architectures. This flexibility is a desirable property of
the behavior-based models, so different tasks can be studied. In Chapter 6 the integrated
behavior-based control (iB2C) framework by Proetzsch et al. [152] is selected for studying
various topics of visually-guided walk tasks with Nao.

2.6 Conclusions

This chapter started by presenting an overview on the state of the art of the research
in humanoid robotics. The historical review has pointed out a research field that has
been developing in the last decades. Initial contributions started in Japan and the USA,
and more recently spread to many other countries. Funding has come from the public
sector in the form of research projects for the development of solutions in diverse domains
(e.g. health-care, military, assistance, space exploration, and service). From Honda’s
experience with the Asimo series, investments in the private sector have been cautious
due to non immediate commercial profit. At present, the humanoid robot has not reached
the level of massive consumption as for instance mobile and personal computers did. In
practice, the humanoid industry has mostly produced robots for research labs, followed
by the ludic and the entertainment domains.

The exploration of diverse challenges encountered in humanoid research has shown
that, compared to the human being, the current capabilities of these robots are limited.
On the one hand, although designed with an anthropomorphic body, there are important
physical differences related to the kinematic properties, the sense organs, and the actu-
ation system, that impose restrictions on humanoids. By the other hand, cognitivist AI
research has not been able to provide the robot with adaptability, given the stochasticity
of unstructured environments. Thus, despite the many advances obtained in the con-
trol of locomotion, manipulation, or adaptation; the field is still waiting for technological
and scientific breakthroughs, to reach the maturity required for reliable operation under
unstructured scenarios. However, more recently some progress has been achieved under
the embodied cognition perspective. Embodiment is considered as of central interest for
obtaining adaptation, autonomy, and learning, among other desirable qualities. These
aspects are of great concern for this work. In Chapter 5, inspired by embodied cognition
research, a methodology is proposed for obtaining reliable visual object approach.

The literature on robot navigation was reviewed so the problems of localization and
task representation were discussed. A taxonomy for classifying robot localization topics
was provided. This work explores the topics of single-robot navigation in a static environ-
ment, passive localization, and robot kidnapping, through several study cases in Chapters
4-6. The review on studies in spatial cognition has suggested that multiple representa-
tions (both egocentric and allocentric) may coexist in the same task. The computational
complexity and reliability of the task parameters are related to the definition of the mea-
surement and the representation frames of reference. This work focuses on ego-centric
representations obtained from visual information. For this, in Chapter 3 machine vision
algorithms are studied for extracting features from images. The definition of a perceptive
ego-cylinder for localization is presented in Chapter 4, so different placements for the
measurement and the representation frames of reference are studied.

The topic of navigation in unstructured situations has also motivated the research of
different solutions for the action selection problem. This is a fundamental aspect for an
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agent that consists in deciding what to do next. Given the stochasticity of the task, delib-
erative, reactive, hybrid, and behavior-base approaches have been proposed. This work is
interested in the behavior-based type (though depending on the terminology adopted, it
may also include reactive models, and the managerial and state-hierarchy types of hybrid
models). Therefore, the tasks under study are modeled as a distributed system, where
there is no global representation available (since centralization of computation has been re-
ported as an important weakness of deliberative models). The principle of managerial type
is used in Chapter 5 to define an architecture for task supervision, to reliably approach
a known object under saliency ambiguity. In Chapter 6, by adopting the behavior-based
formalism iB2C, several topics (e.g. emergent behavior, obstacle avoidance, and learning)
are investigated.
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3.1 Introduction

A cardinal aspect for autonomous artificial behavior is efficiency in processing infor-
mation, since robotic agents have limited computational and storage capacity. Different
human-inspired sensory modalities (e.g. vision, touch, audition, etc.) and supra-human
modalities (e.g. laser range, sonar, etc.) can provide humanoids with data when interact-
ing with the environment. In this work the focus is placed on visual attention, notably, on
how the robot can process retinal saliency from images of the scene captured on-board.
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For this, studies from the fields of cognitive science (i.e. bio-inspired solutions) and ma-
chine vision (e.g. solutions based on computer science and engineering) are reviewed.

This chapter starts by introducing relevant theories of human attention that can be
(or have already been) used for robotics tasks. Next, potential challenges for machine
vision are illustrated by reviewing benchmark visual sensor technologies and contrasting
it to the human eye. Several approaches in machine vision are presented, including whole
scene segmentation and feature tracking. The chapter then reports on three case studies
for obtaining both top-down and bottom-up visual selection schemes: a) top-down whole
scene segmentation from color information, b) bottom-up whole scene segmentation from
heuristic clustering, and c) bottom-up segmentation from feature tracking (dense optical
flow). Finally, the possibility of employing these approaches for on-board visually-guided
walk tasks is evaluated.

3.2 Theories of attention

According to Quinlan & Dyson [153], attention is the process whereby the individual
can select from among the many competing stimuli present in the environment, facilitating
processing of some while inhibiting others. As pointed out by Pinto et al. [144], this
selection can be driven endogenously by goals (also called top-down or goal-driven), or
exogenously by a salient or novel stimulus that captures attention away from the task at
hand (also called bottom-up or stimulus-driven). These two attentional systems seem to
operate independently. Thus, the balance between endogenous and exogenous factors not
only allows the accomplishment of goals (e.g. finding a particular object of interest on
a supermarket’s shelve), but also to be sensitive to important external information (e.g
attending to a fire alarm or to the sound of a crashing glass).

Because there is too much information at any given moment for the individual to
cope with, the attentional mechanism ensures that relevant or important information
obtains further processing. In this sense, conforming to Smith & Kosslyn [168], in view of
the limitation in the human capacity of information processing in both space and time,
the attentional process ensures that selections occur conveniently and not in a random
fashion. A number of different information-processing theories have attempted to explain
the human attentional process. Although none of them can cope with the full scope of
attentional phenomena issues, they certainly handle particular aspects of attention. Some
of the most important theories are: filter, spotlight, feature integration, and guided search.
These theories are discussed next.

3.2.1 Filter theory

Broadbent [26] viewed the attentional system as containing a limited-capacity channel
through which only a certain amount of information can pass. As illustrated in Fig. 3.1,
the multi-sensory input stream entering the cognitive system at a particular moment is
filtered out, so only the most important information gains access to semantic processing.
According to the theory, information is pre-processed in a pre-attentive sensory store
and only sensory events characterized by relevant physical properties are allowed to pass
through the limited capacity processing system. The items blocked by the filter would
vanish from the store within a matter of seconds. Consequently, the theory supposes that
an information bottleneck occurs immediately after the sensory store.
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Figure 3.1 – Illustration of the filter model (Quinlan & Dyson [153]). The S (or sensory)
system comprises many input channels that deliver information continuously (and in parallel)
as stimulation from the outside world impinges on the body. Items that are selected for read-out
by the filter are passed on to the limited capacity channel, shown as the P (or perceptual) system
in the figure. The P system is assumed to operate serially. Since items decay from the store
within a matter of seconds if they are not read out by the filter, the Rehearsal system passes
back information from the P system for recirculating it into the short-term store, in case the
system is in danger of information overload. Only items that have been selected and have exited
from the P system stand a chance of entering the long-term memory system.

Filter theory has received experimental support (see Cherry [44]). In studies of di-
chotic listening, subjects are exposed to different messages at each ear and required to
attend to one in particular. Generally, subjects are unable to remember the unattended
message, even though it was systematically repeated throughout the trials. However,
broader research on the so-called cocktail party effect (see Arons [12]), which is the abil-
ity to focus one’s listening attention on a single talker among surrounding conversations
and background noise, has pointed out some limitations of filter theory. That is, certain
subjects are able to recognize unattended information (e.g. the person’s name, words as
"fire", etc.) even though the speakers’ voice is kept constant in the experiment (i.e. no
physical novelty), which is considered to be evidence against perceptual processing occur-
ring only before the information bottleneck (also called late-selection). In other words,
both physical characteristics and semantic content seem to account for how unattended
but high-priority information can still be detected.

Despite criticism, an important contribution of the theory is to stimulate debate on
whether attention operates at an early or late stage, which has highlighted two important
aspects of attention. The first one is that attention can have an effect on earliest levels
of perceptual processing by reducing the amount of information entering the cognitive
system. The second one is that some unattended information reaches very late stages
of processing, which shows that information is not entirely filtered out. Hence, contents
related to the goal context or likely to be of extreme importance can pass through the
attentional filter.

3.2.2 Spotlight theory

A study by Posner et al. [147] has shown that knowledge about where in space
a stimulus will occur affects the efficiency of detection. Consequently, spatial attention
would act like a spotlight by highlighting information within the beam region. Information
within such a circumscribed region of space is selectively brought to awareness, and outside
such a region it is more likely to be ignored.
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Olshausen et al. [137] have proposed a biologically plausible model of attention based
on the spotlight metaphor, to represent position- and scale-invariant information of visual
objects. As illustrated in Fig. 3.2, in the model control neurons dynamically modify the
synaptic strengths of intracortical connections, so information from a windowed region
of primary visual cortex (VI) is selectively routed to higher cortical areas. The selection
mechanism provides a computational advantage, because most processing is limited to the
small selected region, which considerably simplifies the connection circuitry that would
be necessary to cope with the entire visual field at once.

Figure 3.2 – A simple one-dimensional dynamic routing circuit (see Olshausen et al. [137]).
The model relies on a set of control neurons to dynamically modify the synaptic strengths of
intracortical connections, thus information from a windowed region of primary visual cortex (VI)
is selectively routed to higher cortical areas.

An important contribution of the spotlight metaphor for attention is the idea that
space is a powerful coordinate system for the perceptual systems, and that attention may
directly operate on these sensory systems. For example, turning toward the spatial source
of a noise might result in the incidental selection of other objects that otherwise would
have failed to be noticed.

Nevertheless, there are some criticisms of the model. According to Cave & Bichot [34],
although the spotlight metaphor has considerably inspired research in visual attention,
it is no longer able to account for the level of complexity of recent theories and models
of visual selection. Furthermore, according to Smith & Kosslyn [168], a major problem
of the model is to explain results from studies suggesting that attention can be directed
to a single object, even when superimposed on another object. This contradicts the idea
that attention indiscriminately highlights information in a particular spatial region, since
if that were the case all objects would have been selected together.

3.2.3 FIT and GS theories

Feature Integration Theory (FIT) is mostly concerned with the role attention plays
in selecting and binding complex information. Consequently, it takes some distance from
the ideas of bottleneck, filtering, and the spotlight metaphor. According to Treisman
& Gelade [179], the perceptual system is constituted by separate maps, each of which
registers the presence of a different visual feature (e.g., color, edges, shapes, etc.). That
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is, the image is decomposed into low level attributes across several spatial scales, which
are combined to form a master saliency map. When the searched object is defined by a
single feature (e.g. by its shape) only such a map would be consulted to detect the object,
thereby, a disjunctive search is produced. In cases where the searched object would be
best informed by multiple-features, a joint consultation of corresponding maps would be
required, so a conjunctive search is produced. According to the theory disjunctive search
is pre-attentive, whereas conjunctive search involves attention.

Koch & Ullman [99] have proposed a biologically plausible architecture within the
FIT conceptualization. As illustrated in Fig. 3.3, an implementation of the model has
been provided in Itti et al. [89], and has been used for visually-guided autonomous navi-
gation (e.g. Siagian et al. [166], and García et al. [72] for the Robocup, among others).
Some neuroimaging studies have provided evidence for the distinction between disjunctive
and conjunctive processes (see Smith & Kosslyn [168]), that is, different types of features
appear to be handled by partially distinct neural mechanisms. However, evidence from
hemispatial neglect patients research has challenged the FIT assumption that disjunctive
search does not engage attention. Moreover, behavioral studies with neurologically unim-
paired participants have found that some conjunctions are easier to detect, contrary to
purely serial search as predicted by the model.

Figure 3.3 – Implementation of the Koch & Ullman architecture by Itti et al. [89]. Visual
input is first decomposed into a set of topographic feature maps. Different spatial locations then
compete for saliency within each map, such that only locations which locally stand out from
their surroundings can persist. All the feature maps are feed, in a purely bottom-up manner, into
a master saliency map, which topographically codes for local conspicuity over the entire visual
space. Finally, the model’s saliency map is endowed with internal dynamics which generates
attentional shifts.

The guided search (GS) theory evolved out of the FIT architecture, and it is currently
in its fourth revision (see Wolfe [189]). The idea behind is that the output from a first
stage of information processing can guide later search mechanisms. Although the first
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stage is similar to FIT by including feature maps, it differs in that items that cannot
possibly be the target are eliminated in parallel in the feature maps. Thus, by the time
information reaches the second attentive stage, the number of candidate targets is already
much reduced, when compared to the total number of items possessing a particular feature
of the target. In general, major contributions of FIT and GS are the description of the
mechanism of information integration, and a more complex model of attention involving
early pre-attentive and later attentive stages of processing.

3.2.4 Inspiring robotics solutions

The models of attention reviewed have inspired the current study in several ways. As
it is discussed in Chapters 4-6, in agreement with the filter theory data is pre-processed
for obtaining more efficiency, so only relevant information gains access to more complex
processing stages (i.e. early selection). Based on the idea that space is a powerful co-
ordinate system for perception, so attention may directly operate on the sensory native
space; in Sec. 5.3.3 the spotlight metaphor is adopted to propose an embodied mech-
anism (i.e. the Embodied Filtering task) that is in charge of selecting the retinal data
related to the object of interest, under top-down saliency ambiguity. Moreover, inspired
by the models FIT and GS, the idea of combining multiple layers of image features is
adopted in Chapter 6, so top-down and bottom-up saliency features are used to control
the robot walking to reactively approach an object or avoid obstacles. However, differ-
ently from these models that appear to consider attention as a synchronous process (this
is a key aspect of information processing models), in this work attention is also stud-
ied as a distributed and asynchronous process, so parallel sensory schemes track specific
features, by considering one or more acquisitions (of visual, proprioceptive, and inertial
sensory modalities). In the next section the literature on machine vision is reviewed to
explore available techniques for extracting information from digital images. As it will be
discussed, the artificial sensor operates in a much different way that human vision works.
This imposes several constraints to the development of robotic solutions based on vision.

3.3 Machine vision

Computer vision is the application of a computer system for receiving and processing
visual information. There are excellent books available in the field of image processing
(e.g. Stockman & Shapiro[172], Jähne [90], and Gonzalez & Wood [74]) and robot control
based on vision (e.g. Siciliano & Khatib [167] and Hyungsuck [46]), though one that
clearly relates both fields in a theoretical and practical way, and certainly is a reference
on the domain, is the work by Corke [52]. According to Corke, two prominent research
areas in computer vision are: image processing and image interpretation. The former
includes techniques for enhancing the quality of the image for visualization (e.g. motion
blurs removal in Pretto et al. [150]), examples of applications are remote sensing and
medical imagery. Alternatively, image interpretation —also known as scene understanding
or machine vision —is the problem of describing physical objects in a scene, given an
image (or several images) of that scene. Machine vision techniques are based on the
definition of numeric or image features, which reduce the dimensionality of the sensory
space for constituting simpler datasets, from which manageable solutions can be obtained
by a computer system. In order to illustrate potential challenges encountered in image
interpretation, benchmark visual sensor technologies are firstly reviewed and contrasted
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to the human eye, then the perspective projective model (typical of conventional cameras)
is presented, and the extraction of visual features is reviewed, including techniques for
whole scene segmentation and object tracking.

3.3.1 Camera sensors

According to Corke [52], most of the research in vision-based control has employed
some form of solid-state imaging sensor of the type CMOS, NMOS, CCD or CID. These
sensors comprise a number of discrete photosites (or pixels), where each site accumulates
a charge proportional to the illumination of the photosite integrated over the exposure
period (see Fig. 3.4). Charge Coupled Device (CCD) sensors are considered to produce
better-looking images with less visual noise and distortion, but consume more energy and
provide slower data-throughput speed. The most significant difference between CCDs and
other types is that all photosites are sampled simultaneously, when the photosite charge
is transferred to the transport registers. For other modalities sensor pixels are exposed
over the field-time during the reading (which may result in the effect known by rolling
shutter, where the image is skewed depending on the direction of camera or object motion).
The robot Nao considered in this study is equipped with Complementary Metal Oxide
Semiconductor (CMOS) sensors, which are also widely used in mobile devices, given their
less manufacturing cost and energy consumption compared to CCDs.

Figure 3.4 – Photosite charge wells and incident photons (Corke [52]). Silicon is more transpar-
ent at long wavelengths such that photons may generate electrons deeper within the substrate.
This introduces cross-talk between pixels, where the pixel values are not truly independent
spatial samples of incident illumination.

An important property associated with a signal is dynamic range, which describes
the range of the input levels that can be reliably measured simultaneously, that is, the
ability to accurately measure small signals in the presence of large signals (Halámek et
al. [77]). The most commonly used unit for measuring dynamic range in photography is
f-stop, which describes the ratio between the lightest and darkest recordable regions of a
scene in powers of two (e.g. a scene with a dynamic range of 3 f-stops has a white that
is 8X as bright as its black, since 23 = 8). The largest signal at saturation is directly
related to the capacity of the charge well. At very low illumination levels the response of
the sensor is totally overwhelmed by the dark current and noise effects described in Fig.
3.4. The smallest discernible output is thus the output noise level. Commercial sensors
normally have between 8-14 f-stops.
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High-speed relative motion between the camera and scene affect mobile robotic vision,
resulting in an artifact known as image blur. Since the photosites respond to the integral
of illumination over the exposure period, a blurred object will appear elongated in the
direction of motion. In the case where an object moves more than its width during
the exposure interval, illumination will be spread over a greater number of pixels and
each will receive less light. That is, as the image blurs, it elongates and becomes more
attenuated. This artifact should be handled in robust mobile robotic applications. In the
next subsection, the human visual system is briefly described so a comparison with the
artificial sensor can be established.

3.3.2 The human eye

The human eye presents a nearly spherical morphology with an average diameter
of approximately 20 mm (Gonzalez & Wood [74]). A simplified depiction of the eye is
presented in Fig. 3.5. Three membranes enclose the eye: the cornea and sclera outer
cover, the choroid, and the retina. The cornea is a tough transparent tissue that covers
the anterior surface of the eye. Continuous with the cornea, the sclera is an opaque
membrane that encloses the remainder of the optic globe. The choroid lies directly below
the sclera and provides nutrition to the eye through a network of blood vessels. It is
heavily pigmented and hence it helps to reduce the amount of extraneous light entering
the eye and the backscatter within the optical globe. The innermost membrane of the eye
is the retina, which lines the inside of the wall’s entire posterior portion. When the eye
is properly focused, light from an object outside the eye is imaged on the retina.

Figure 3.5 – Simplified cross section of the human eye (Gonzalez & Wood [74]).

According to Corke [52], the human eye is different in several ways when compared to
artificial sensors. Light is sensed in the eye by two types of photoreceptors located in the
retina: cones and rods. Cones are color sensitive activated in normal daylight conditions.
Proportionally, they are distributed such that 65% sense red, 33% sense green, and only
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2% sense blue color. The biggest concentration of cones (around 34,000) is located in the
fovea region, so their density in the rest of the retina is considerably lower. Due to this,
the eye presents high resolution of a few degrees only over the foveal field of view, but
subconscious fixation point shifts (i.e saccadic eye motions) direct the fovea over the entire
field of view. Rod sensors are activated at very low light levels. They are monochromatic
and their density in the fovea is only 7% of the cones’, but increases in the peripheral
region. The distance between the lens and retina is approximately constant at 15 mm, so
focusing is achieved by muscles which change the shape of the lens.

Cone photoreceptors have a dynamic range of 9 f-stops. Likewise the iris of a lens, the
pupil varies in diameter from 2 to 8 mm which provides for a factor of 4 f-stops (3 f-stops
in eldery people). Rods provide another factor of 5 f-stops. Rod sensitivity is chemically
adapted with a time constant of tens of minutes. The overall dynamic range of the eye
is thus approximately 18 f-stops. The eye has three degrees of rotational motion. The
muscles that actuate the human eye are the fastest acting in the body, allowing it to rotate
at up to 600 deg/s and 35,000 deg/s2 for saccadic motion. Smooth pursuit eye motions
involved in tracking a moving object operate at up to 100 deg/s. Rotation about the
viewing axis (i.e. cyclotorsion), is limited and the maximum varies between individuals
(ranging from 5 to 20 deg).

To summarize, the human eye presents several advantages with respect to artificial
sensors. Since the retina is curved along the back surface of the eyeball, the edges of the
retina would be about the same distance from the lens as the center (differently from 2D
area sensors), so better sharpness at the corners of the image is obtained (this will be
better understood when reviewing the perspective projective model used by conventional
sensors in Sec. 3.3.3). However, punctual comparisons like these may be misleading, since
the eye is a living organ and human vision is actually a dynamic process that takes place
in several steps, so it would be comparable to a video and not to a photograph. That
is, the resulting mental image is more a reconstruction of the scene based on different
sorts of inputs provided by the eyes, than the mere registry of the actual light received
by the sensor. This is extremely advantageous since the eye can compensate as it focuses
on regions of varying brightness (that is why human night vision is much better than in
artificial sensors, and the dynamic range is higher, see Fig. 3.6). It can also look around to
encompass a broader angle of view, or focus on objects at a variety of distances. The dual
eye overlap field of view region is around 130°(nearly as wide as a fish-eye lens). However,
for evolutionary reasons the peripheral vision is used for sensing motion and large-scale
objects, and not for high resolution vision. Thereby, the human eye is specialized in
detecting different sorts of events.

3.3.3 Perspective projection

Conventional cameras use perspective projection. As illustrated in Fig. 3.7, in the
perspective transform the 3D space is mapped to the 2D image plane. A non-inverted
image is formed on the image plane at Z = 0 from a viewpoint at Z = −f . Let a world
point in the 3D Cartesian space be denoted by the coordinates (X, Y, Z). Using similar
triangles, it can be shown that the 2D coordinates (x, y) of its projection on the image
plane is defined by

(x, y) =
(

fX

f − Z
,
fY

f − Z

)
. (3.1)
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Figure 3.6 – The photographer chooses to take many pictures of the scene at a given exposure
by changing either the shutter speed or the aperture. The images are processed in software that
determines dynamic information such as the shutter speed and aperture, to calculate how much
light actually came from each image region. On the left a single image of the scene, on the right
the enhanced image1 .

1. Available at http://www.cambridgeincolour.com/tutorials/high-dynamic-range.htm (accessed on
10/12/2015)

The projective-perspective transform has the following characteristics:

• World lines are mapped to lines on the image plane.

• Parallel world lines, not in the plane orthogonal to the optical axis, are projected
to lines that intersect at a vanishing point.

• Conics in world space are projected to conics on the image plane. For example, a
circle is projected as a circle or an ellipse.

• The mapping is not one-to-one, and a unique inverse does not exist. In general,
the location of an object’s point cannot be determined uniquely by its image. All
that can be said is that the point lies somewhere along the projecting ray (see Fig.
3.7). Other information, such as a different view, or knowledge of some physical
constraint (i.e. it is known that the object is lying on the floor) is required in order
to fully determine the object’s location in 3D space.

Figure 3.7 – Central perspective geometry (Corke [52]).
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3.3.4 Visual feature extraction

Image features are measurable relations in an image. According to Jang [91], these
functionals are defined by

f =
∫ ∫

Image
h(x, y, I(x, y))dxdy, (3.2)

where I(x, y) is the pixel intensity at location (x, y). The function h(., ., .) is a linear or
non-linear mapping depending on the feature, and may also include Dirac delta functions.
Many image features can be defined. For example, the lengths or orientation of line
segments connecting distinct objects in the scene (e.g. holes and corners), and template
matching for distinctive pixel patterns. Moments are easy to compute and very useful
features. The (p+ q)th order moments is defined by

mpq =
∫ ∫

Image
xpyqI(x, y)dxdy. (3.3)

The (p+ q)th order moment for a digitized image is

mpq =
∑
i

∑
j

xpi y
q
j I(xi, yj). (3.4)

For a binary image the function I(x, y) is either 0 or 1, so the moments describe a
set of locations and not the grey-level of those points. According to Hyungsuck [46],
moments can be given a physical interpretation by considering the image function as a
mass distribution. Thus m00 would be the total mass of the region, the centroid of the
region is given by

(xc, yc) =
(
m10

m00
,
m01

m00

)
. (3.5)

However, as illustrated in Fig. 3.8, when the object is not viewed along the surface normal,
the centroid of the image does not correspond with the centroid of the object.

Figure 3.8 – Exaggerated view showing the centroid offset in the image plane (Corke [52]).

Translation-invariant central moments for a regionR are computed about the centroid
(xc, yc), such that
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µpq =
∑
i

∑
j

(xi − xc)p(yj − yc)qI(xi, yi), (i, j) ∈ R. (3.6)

Similarly, scale-invariant and orientation-invariant moments can be defined. A closed
boundary Rb (i.e. the perimeter of the area) can be characterized by Nb pixels, so the
normalized contour central moment is defined by

µ̄pq = µpq
Nb

. (3.7)

Contour moments are computationally less demanding and can be used for calculating the
direction (or orientation) of a region. As shown in Fig. 3.9, the region can be represented
by an ellipse. The direction of a closed elongated region (it is not defined for a circular
region) would correspond to the angle θ between the elongated side and the positive x-axis
of the image, such that

θ = 1
2tan−1

(
2µ̄11

µ̄20 − µ̄02

)
. (3.8)

Figure 3.9 – Contour central moment (Hyungsuck [46]).

In general, in vision-based control research the definition and extraction of image fea-
tures have relied on two main approaches: whole scene segmentation, and feature tracking.
Some relevant techniques within these approaches are reviewed next.

A. Whole scene segmentation

According to Stockman & Shapiro[172], image segmentation is the process of parti-
tioning an image into a set of regions that cover it, with the goal of representing meaningful
areas (e.g. objects, people, urban areas, forests of a satellite image, and so on). When
the regions of interest do not cover the whole image, the segmentation would partition
the foreground from the background to be ignored. Figure 3.10 and Tab. 3.1 illustrate
the contribution of image segmentation to a more general task of scene interpretation.

Step Description
Classification Pixels are classified into spatial sets according to low-level characteristics.
Representation The spatial sets are represented in a suitable form for further computation

(e.g. connected regions, boundaries).
Description Sets are described in terms of scalar or vector features.

Table 3.1 – Description of the scene interpretation workflow presented in Fig. 3.10.
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Figure 3.10 – Processing pipeline for scene interpretation (Corke [52]).

Pixel values may be scalar or vector quantities that can represent luminosity, color,
range, velocity, or any other measurable property on the scene. A basic approach to do
the classification step is to apply a threshold test T to individual pixels (also known by
thresholding). Thus, a segmented image is obtained as follows

Pij ∈
{
Sb if I(xi, yi) < T
Sf if I(xi, yi) ≥ T

, (3.9)

Where Pij is the pixel, and the sets Sb and Sf contain respectively the pixels in the back-
ground and the foreground. The threshold T can be obtained automatically by processing
the image histogram (i.e. in Otsu [140]). This technique is mostly employed in the context
of the lab where the environment can be controlled (e.g. disposing bright objects over a
dark background, using fluorescent lamps, etc.). For less constrained situations, such as
outdoor tasks, the performance is generally inadequate.

Jähne [90] has classified basic approaches of image segmentation into pixel-based,
region-based, edge-based and model-based. Pixel-based methods rely exclusively on the
value of the pixel to produce the segmentation. The advantage of these methods is that
they tend to be simple to implement and computationally efficient. As a drawback, noise
can be easily misclassified. In the study developed in Sec. 3.4.2, the clustering algorithm k-
means by MacQueen [115] is employed to segment the image based on the pixel intensities.
Region-based techniques analyze the values in larger areas, so the resulting segmentation
is relative to a local vicinity or neighborhood (spatial coherence). Some examples are the
region growing the split-and-merge techniques, and the NCA texture kernel (Ferreira et
al. [70]). These methods are computationally more expensive, though the effect of noise
can be more efficiently mitigated. The case study developed in Sec. 3.4.3 employed the
technique by Kato et al. [95] to obtain more robust segmentation. Edge-based methods
exploit the fact that the position of an edge is given by a peak on the first-order derivative
of the signal, or a zero crossing in the second-order derivative. Therefore, these methods
are conveniently employed to detect the borders of objects in the image (e.g. the edge
detector by Canny [32]). Model-based segmentation relies on specific knowledge about
the geometrical shape of the objects, which can be compared with the local information
available in the image. Depending on the application a detailed model of the object may
be required (e.g. the segmentation of magnetic resonance images based on a heart mesh,
see Legrand et al. [106]). Though, in less constrained scenarios, heuristics on the shape
of the object may also be employed (e.g. the detection of line and curves through the
hough transform, see Duda & Hart [57]).
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B. Feature tracking

Feature tracking can be obtained under the principle of Verification Vision (VV),
as proposed by Bolles [21]. VV algorithms assume that prior knowledge about the type,
placement, and appearance of the objects is available to the system, such that the goal
is to verify and to refine the location of such features in the scene. Determining the
initial location of features requires the entire image to be searched, but this need only
to be done once. Thus, this approach is analogous to a top-down search. A commonly
used criteria to match features between consecutive frames is least-squares fitting. Hence,
features are chosen on the basis of a confidence measure computed in a neighborhood. The
tracking technique by Comport et at. [49] is based on this principle. From the knowledge
of the object’s geometry, initial pose, and the estimation of the spatial evolution of the
camera; the features are predicted in the image plane, such that local search matches real
measurements to virtual projections to track the object.

Less restrictive approaches in terms of object geometric modeling have also been
proposed. The continuously adaptive mean shift (CAMShift) algorithm by Bradski [24]
considers a color model of the object to perform heuristic optimization search in a local
neighborhood. The technique was originally proposed in the context of user machine
interface applications (e.g. to track the face of the user). Thus, acceptable results are
obtained under favorable conditions. Although, when variations in the point of view are
introduced, the color model may no longer be useful to detect the object. An improvement
is proposed by Exner et al. [64], and consists in the accumulation of multiple histograms
to handle various perspectives of the object.

In the other extreme are model-less approaches. As pointed out by Bradski [23],
the idea is to estimate motion between two frames without any prior knowledge but
the changes induced by the motion itself. This is in fact the notion of optical flow, as
originally introduced by Gibson [73] when working with direct visual perception. The
optical flow (also named optic flow, or flow field) is the visual motion that results from an
observer’s own movement through the environment. According to Beauchemin & Barron
[16], optical flow algorithms are useful for applications such that: recovering 3D motion of
the visual sensor (to within a scale factor), recovering 3D structure of surfaces (the shape
or relative depth) of the environment, motion detection, object segmentation, time-to-
collision calculations, motion compensated encoding, stereo disparity measurement, and
perhaps many others.

According to Gonzalez & Woods [74], the mathematical definition of optical flow
is based on three important premises: a) the object reflectivity and illumination does
not change during the interval [t1, t2], b) the distances of the object from the camera
or light sources does not vary significantly over this interval, and c) each small intensity
neighborhood Rx,y at time t1 is observable in some shifted position Rx+δx, y+δy. Obviously,
these assumptions do not hold tight in real imagery, though in some cases they can lead
to useful computation of image flows. Using the brightness constancy constraint for the
intensity function f(x, y, t), the image flow can be defined by

f(x, y, t) = f(x+ δx, y + δy, t+ δt). (3.10)

A Taylor series representation (including only the linear terms) in a small neighbor-
hood of an arbitrary point (x, y, t) can be considered, such that
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f(x+ δx, y + δy, t+ δt) = f(x, y, t) + ∂f

∂x
δx+ ∂f

∂y
δy + ∂f

∂t
δt. (3.11)

The image vector to be determined is the velocity [δx δy]t associated to each pixel. From
the previous equations it follows that

− ∂f

∂t
δt = ∂f

∂x
δx+ ∂f

∂y
δy =

[
∂f

∂x

∂f

∂y

]t [
δx
δy

]
= ∇f

[
δx
δy

]
(3.12)

Equation (3.12) does not give a unique solution for the flow vector [δx δy]t, but
imposes a linear constraint on it. In fact, a problematic situation described as the aperture
problem (see Fig. 3.11) may produce multiple possibilities for the vector flow, due to
similar pixel intensities.

Figure 3.11 – The aperture problem. An intensity edge moves towards the right from time
t1 to time t2. However, due to the limited size of the neighborhood (i.e., the aperture used for
matching), the location of the displaced point P could be R or Q, or some other point along the
edge segment determined by them (Gonzalez & Woods [74]).

According to Bradski [23], an estimate of the instantaneous velocity can be associated
to each pixel of the image, representing the distance the pixel has moved between two
successive frames. Such a construction is usually referred to as dense optical flow. Dense
algorithms usually consider interpolation between points that are more easily distinguish-
able, so as to solve for points that are more ambiguous. Thus, these algorithms usually
present higher computational cost. Some approaches available are: the Horn-Schunck
method (Horn & Schunck [85]) that computes the velocity field, the block matching tech-
niques (e.g. Beauchemin & Barron [16]) where the images are divided into small regions
named blocks and motion is computed within each block, and the polynomial expansions
approach by Farnebäck [68] which is studied in Sec. 3.4.4.

As alternatives to dense estimations, sparse optical flow algorithms have been pro-
posed with much less computational cost. These methods rely on some means of specifying
beforehand the subset of points that are to be tracked. The selection may be obtained
automatically according to some desirable properties (e.g. corners and edges, see Harris
& Stephens [78]). The Lucas-Kanade algorithm (Lukas & Kanade [113]) was originally
designed to calculate dense flow, but is widely used as a sparse technique since it only
relies on local information. A survey on existing bottom-up tracking methods is presented
in Ngau et al. [133] (see Tab. 3.2).
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Biologically Inspired Models Purely Computational Models
Characteristics Pixel-

based
Frequency-
based

Region-
based

Pixel-
based

Frequency-
based

Region-
based

Algorithm
complexity

High Very-high High Average High Average

Computational
speed

Average Low Average High Average Average

Memory
requirements

Average Very-high High Low Low High

Detection
performance

High High Average High High Average

Table 3.2 – Survey on the performance of bottom-up tracking method according to the feature
choice (Ngau et al. [133]).

3.4 Case studies

Given the task of interest for this work, which is approaching and positioning with
respect to objects of interest on the scene guided by vision, several techniques for whole
segmentation and feature tracking were studied. The idea was to verify whether reliable
top-down and bottom-up information could be obtained from an inflow of digital images
captured on-board. Since flexibility and adaptation to partially known scenarios are
desirable aspects of the solution, only methods relying on soft modeling were considered
(i.e. the principle of Verification Vision is excluded). In the testing conditions random
and brusque motion are applied to the camera (producing motion blurs), simulating robot
biped locomotion disturbances on vision. Furthermore, the algorithms are tested under
illumination noise (i.e. under artificial and natural light sources). Thereby, the most
promising methods explored are discussed in three case studies. The first one details a
pixel-based semi-automatic approach relying on the clustering technique k-means. In the
second one a top-down region-based segmentation technique, considering a color model
of the object under a Markov random field framework, is improved for use in the context
of continuous processing of visual inflow. In the third one a feature tracking technique
based on dense optical flow from polynomial expansions is reported.

3.4.1 Materials and resources

The visual sensor corresponded to a low cost color web camera Logitech model C210
with a resolution of 640 × 480 (1.3 megapixels). Some images were also downloaded
from the Internet for testing. The programs were implemented in the C++ programming
language. The Open Computer Vision (OpenCV) library version 2.4.8 was linked to the
project, providing the implementation of the methods for dense optic flow estimation by
Farnebäck polynomial expansions and k-means clustering. The algorithms were developed
under the Eclipse Juno IDE and run in Ubuntu 12.04.5 LTS (Precise Pangolin). The host
platform was a DELL Vostro 1500 laptop (Intel Core 2 Duo 1.8GHz 800Mhz, 4.0GB
DDR2 667MHz RAM, 256MB NVIDIA GeForce 8600M GT).

3.4.2 CS-I: Semi-automatic color-based segmentation

The k-means algorithm by MacQueen [115] is a convenient technique that can be
used for unsupervised learning. The distinctive aspect of clustering is that it avoids the
need for pre-structuring data, so structure is automatically found. According to Ertel [63],
k-means can be considered as a deterministic or discrete version of the expectation maxi-
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mization (EM) algorithm, where clusters are represented by points and not by probability
distributions. K-means has been employed for image segmentation (e.g. in Doggaz & Fer-
jani [56]), such that properties related to the image pixels can be grouped into clusters.
In this study case, the problem of segmentation of a sequence of images is tackled.

As its name suggests, k clusters are defined by their average value. The procedure
is illustrated in Algorithm 1. Firstly, the k cluster midpoints C = {µ1, ... , µk} are
randomly or manually initialized. Then, the classify and the recalculate procedures are
systematically applied until convergence. In the former points are assigned to a cluster
based on distinct metrics depending on particular applications. Some available criteria
are squared euclidean or manhattan distance (see Duda et al. [58]). In the recalculate
step, the cluster midpoint µ for points S = {P1, ..., Pn} are determined, such that

µ = 1
n

n∑
i=1

Si. (3.13)

Algorithm 1 K-means
1: procedure k-means(S, k)
2: initialize µ1, ... , µk . e.g. randomly
3: repeat
4: Š ← classify P ∈ S to each’s nearest µi ∈ C
5: recalculate C
6: until no change in C
7: ← (Š, C)

The outputs of k-means are the midpoints set C and the clusters set Š. It is important
to mention that optimal assignment to clusters is not guaranteed in the algorithm, given
its sensitivity to the selection of the initial midpoints set. Although, a reasonably good
practice consists in sampling several candidates for the initial set and heuristically select-
ing a resulting clustering. In cases of high-dimensional and numerous datasets, iterations
are normally restricted to a much smaller number than the cardinality of the dataset, in
order to obtain a solution in a reasonable amount of time. The complexity order of the
algorithm is O(ndkt), where n is the total number of points, d is the dimensionality of
the feature space, and t the number of iteration steps.

A. Experiment

The images were captured in the RGB color space (an additive color space based on
the red, green and blue light color model) and convolved with a 3× 3 low-pass Gaussian
kernel to reduce noise. Three experiments were designed. In the first experiment the color
channels of the image are de-multiplexed (which is equivalent of obtaining 3 gray-scale
image matrices R, G, and B; representing respectively the intensities of the red, green,
and blue components), so the feature vector Pi related to the image location i = (x, y)
is Pi = [Rxy Gxy Bxy]t. In the second experiment the coordinates of the pixels are
also included in the feature vector, in order to enforce clusters to have also a topological
coherence, such that Pi = [x y Rxy Gxy Bxy]t. The dataset was normalized in each
dimension to avoid the effect of the scaling factor. For these experiments the clusters
are initialized randomly, k is varied between 2 and 10, and a threshold for the iteration
number t ≤ 10 is set. In a last experiment an heuristic criteria for initializing the clusters
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is examined. Under the assumption of scene constancy, the cluster midpoints obtained
from the processing of a frame are provided as initial values for the successive frame.

B. Results

A comparison of the results for the first two experiments is given in Fig. 3.12.
The differences are more distinguishable when the number of clusters is reduced, so the
coordinate of the pixel would enforce a topological clustering. For larger values of k the
results are more or less equivalent. In general, for the scene shown a value of 4 ≤ k ≤ 6
provided the best results. That is, for low values of k distinct objects tended to be
merged (a problem known as under segmentation), contrarily, with a high number of
clusters objects scattered on adjacent regions (i.e. the over segmentation problem). As
illustrated in the top row of Fig. 3.13, the structure of the black filing cabinet at the back
could be consistently recognized, though the red ball and the blue-frame calendar could
not. When the clusters were initialized randomly the segmentation varied considerably
between successive frames. Thus, the heuristics used in the third experiment produced
more consistent clusters among frames.

C. Discussion

The objective of this study was to explore a segmentation technique from pixel-based
clustering, in order to verify whether a physically plausible segmentation can be obtained
from the scene without possessing previous knowledge about the characteristics (e.g. the
color and shape) of the objects contained. As the results have shown, although some
structure can be recovered, the stability of the segmentation for small objects cannot be
ensured (the segmentation varied given the illumination noise). Another disadvantage of
the method is that it is sensitive to the parameter k, which implies that some knowledge
about the scene may be available. In case the last cluster midpoints were given for ini-
tialization, better results were obtained, though when the first clusters did not produce a
correct segmentation, errors were propagated to successive frames. Moreover, the appear-
ance and disappearance of objects in the scene when moving the camera destabilized the
clusters, so the heuristics criteria would no longer hold (this is problematic since even for
static scenes, objects can enter and leave the field of vision of the robot when it walks).

The addition of topological information in the feature vector did not produce the ex-
pected results, since the number of clusters is much smaller than the number of locations
in the image, which is insufficient to capture the local context around neighbor pixels.
Increasing the number of clusters would not produce better results since the image would
be over segmented. Ming et al. [122] have proposed to impose spatial constraints to the
clustering, so considering contour detection for merging regions in order to reduce over
segmentation. The algorithm gives good results for individual images, but it is not obvi-
ous how to obtain adequate performance for on-line applications over a video sequence.
Consequently, from the results obtained, it cannot be concluded that the clustering al-
gorithm detailed is adequate for visual saliency estimation from an image flow captured
on-board during humanoid locomotion.
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Figure 3.12 – K-means segmentation from color and topology. The first row shows two captured
frames of the scene. From the second to the bottom row the results for k ∈ {3, 4, 5}. The left
column presents the clustering obtained from the first experiment (i.e. the feature vector Pi =
[Rxy Gxy Bxy]t). The right column presents the clusters generated for the second experiment
(i.e. the feature vector Pi = [x y Rxy Gxy Bxy]t).

3.4.3 CS-II: Top-down color-based segmentation

In top-down color-based segmentation the objective is to distinguish the regions of
interest on the image, based on a supervised color model of the object(s) of interest.
Kato et al. [95] proposed an image segmentation technique within a Markov Random
Field (MRF) framework. The approach combines information from individual pixels and
a surrounding neighborhood (i.e spatial coherence), providing a more robust solution
under noisy conditions. Let the observed image F = {fi | i ∈ I} consisting of spectral
components values expressed in a certain color-space η be represented by the vector fi
at each location i. The label of interest ϕ̂ is the one that maximizes the a posteriori
probability p(ϕ | F ), such that
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Figure 3.13 – Comparison between k-means and the top-down region-based segmentation
method developed in Sec. 3.4.3. In the top row, the results for k-means with 6 clusters. At
the bottom row the results for the region-based segmentation algorithm. On the left column is
the RGB image. At the center and right two successive segmentations within an interval of 50
milliseconds. K-means cannot ensure a consistent detection of the red ball.

argmaxϕ∈Φ
∏
i∈I
p(fi | ϕs)p(ϕ), (3.14)

where Φ denotes the set of all possible labellings. Since the goal is to partition the image
into labeled regions, a pixel class λ may represent more than one homogeneous color
patch in the input image. Such regularities are modeled by considering additive white
noise with covariance Σλ, centered around the expected color value µλ. Thus, p(fi | ϕi)
follows a Gaussian distribution and pixel classes λ ∈ Λ = {1, 2, ... , L} are represented
by the mean vectors µλ and the covariance matrices Σλ. Furthermore, p(ϕ) corresponds
to a MRF with respect to a first-order neighborhood system (as shown in Fig. 3.14).

Cliques

Figure 3.14 – First-order neighborhood system. Single pixel cliques are denominated single-
tons, horizontal and vertical cliques are denominated doubletons (Kato et al. [95]).

According to the Hammersley-Clifford theorem, p(ϕ) follows a Gibbs distribution,
such that

p(ϕ) = e−u(ϕ)

m(γ) =
∏
c∈C e

−vc(ϕc)

m(γ) , (3.15)
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where u(ϕ) is an energy function, m(γ) = ∑
ϕ∈Φ

e−u(ϕ) is the normalizing constant (or

partition function), and vc denotes the clique potential of clique c ∈ C having the label
configuration ϕc. The energy from pixel values (i.e. the singleton contribution) directly
reflects the probabilistic modeling of labels without context, while clique potentials (i.e.
the doubleton contribution) expresses the relationship between neighboring pixel labels.
The energy function has the form

u(ϕ, F ) =
∑
i∈I

ln
((√

(2π)3|Σϕi|
)

+ 1
2(fi − µϕi)Σ−1

ϕi
(fi − µϕi)t

)
+ β

∑
{i,r}∈C

δ(ϕi, ϕr),

(3.16)
where δ(ϕi, ϕr) is the Kronecker delta function. At the right side of the equation, the
left term corresponds to the singleton contribution and the right term to the doubleton
contribution. The parameter β > 0 controls the homogeneity of the regions. As β
increases the regions become more homogeneous. The function u(ϕ, F ) is non-convex, so
convergence to the global optimum cannot be ensured, since the calculation of m(γ) in
(3.15) is intractable. In practice, combinatorial optimization techniques (e.g. the iterated
conditional modes (ICM) by Besag [19]) are employed to compute the segmentation. The
next state ϕ̂k+1

i is determined by

ϕ̂k+1
i ← argminϕi∈{1,...,L}u(ϕ̂k, F ). (3.17)

Finally, the stop condition is attained when

ϕ̂k+1
i = ϕ̂ki ,∀i ∈ I. (3.18)

To summarize, the parameters of the system are (µλ,Σλ, β). In case when they are
provided by the user, a supervised segmentation is obtained. Otherwise, they must be
estimated simultaneously to ϕ (e.g. the unsupervised algorithm by Deng & Clausi [55]).

A. The segmentation algorithm

The application of interest for the algorithm is to distinguish a particular object
(the foreground) from other elements on the scene (the background), that is, to obtain a
binary mask of the scene (i.e. |Λ| = 2) at each frame. For this, the implementation 1 for
the segmentation of single images was improved for an efficient use in continuous video
inflow. The resulting routine considered ICM optimization (see Algorithm 2).

Concretely, the user specifies the color model of the object by enclosing a region on
the image. In order to assist this procedure, the GrabCut technique by Rother et al.
[156] is employed. The images are converted from the RGB to the YUV color-space (both
are 3D image color spaces, see Stockman & Shapiro[172] for an in depth review), since
in the YUV color space compression artifacts are more efficiently masked. Consequently,
a probabilistic distribution of color intensity under Gaussian noise is obtained (i.e. the
parameters µλ and Σλ of the model), and given to the segmentation algorithm.

The initialize step in Algorithm 2 sets the initial segmentation ϕ̂ by minimizing the
singleton term in Eq. (3.16) (i.e. a labeling without context), whereas the localEnergy

1. Available at http://www.inf.u-szeged.hu/~kato/software/mrfdemo.html
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function corresponds to the full computation of the equation in which the energy cost for
each pixel is evaluated only for the object’s color model. Hence, no assumptions are made
about the colors in the background. This is crucial since the same object model sample can
be reused to process successive frames, under the assumption of illumination invariance.
In case a model would be taken for the background, unseen colors eventually entering the
scene would introduce ambiguity in the labeling. Concerning the homogeneity component,
the parameter β is set to 1. The resulting computational complexity is O(tn|Λ|), where n
is the number of pixels in the image, and t is the maximal number of iterations allowed
(in case it is specified).

Algorithm 2 Segmentation
1: procedure doSegmentation
2: ϕ̂← initialize . Singleton initialization
3: eOld ← 0
4: repeat
5: e← 0
6: for y = 0→ y < height do
7: mine ← localEnergy(x, y, ϕ̂)
8: for x = 0→ x < width do
9: for λ = 0→ λ < |Λ| do

10: ce ← localEnergy(x, y, λ) . current energy
11: if ce < mine then
12: ϕ̂y,x ← λ
13: mine ← ce

14: e← e+mine

15: ∆e← abs(eOld − e)
16: eOld ← e . stop when the change is too small
17: until ∆e > ε
18: ← ϕ̂

B. Experiment

Two applications of the algorithm are evaluated: one with single images, and the
other with on-line processing of captured sequences from a moving camera. For reducing
noise in the second condition, the 10 initial acquisitions with the camera are sampled and
averaged before building the object color model.

C. Results

As shown in Figs. 3.15 and 3.16, the technique provides robust segmentation for
natural scenes and colored objects. This was also the case for the condition of camera
motions. As illustrated in Fig. 3.17, despite motion blurs (see Sec. 3.3.1) were produced,
so the morphology of the salient blob was slightly elongated and deformed, the object
could be fully segmented. In relation to the number of iterations for convergence, it was
observed that most of the final segmentation is accomplished in t ≤ 5 iterations. In
general, good results are obtained for diffuse, non-reflective textures. Less satisfactory
segmentations were obtained for metallic textures that reflected specular illumination. It
was also observed that when artificial light was present more samplings were required to
build the color model (since conventional light bulbs add oscillatory noise to the scene).
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Figure 3.15 – Segmentation of a natural scene. On the left the original image. On the right
the segmentation of the backboard.

Figure 3.16 – Segmentation of colored objects. On the left the original image. On the right
the segmentation of the zebras.

D. Discussion

The evaluation of the segmentation algorithm has shown that it is a plausible ap-
proach for unstructured scenes. The information provided by the local neighborhood
allows a more robust handling of illumination noise, which is not possible from the pixel-
based approach (see Fig. 3.13). However, it is important to mention that the segmentation
does not provide good results for certain materials (e.g. polished and reflective surfaces),
or when artificial illumination is excessive (e.g. the incidence of low-frequency lights on
the scene, specially during the night). Besides, as a top-down technique, it presents the
disadvantage of requiring an explicit model of the color of the object, which was provided
by demonstration. This technique is used in the study cases of Chapters 4-6 as a means
to obtain top-down saliency processing, for approaching a known object in the scene from
images captured on-board.

3.4.4 CS-III: Bottom-up segmentation based on optical flow

Inspired by research in ecological or direct visual perception (Gibson [73]), the interest
of bottom-up segmentation in this research is to improve adaptability, so the agent is
able to interact with the spatial structure of the scene without possessing a disembodied
representation of objects or the arrangement between them in the environment. This is
investigated through the computation of dense optic flow. In the method proposed by
Farnebäck [68], the central idea is to predict the signal at a pixel location x based on a
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Figure 3.17 – Segmentation under camera motions. On the left column the still image of the
scene, on the right column a strong lateral motion was applied to the camera. The row at the
bottom shows the segmentation obtained for red regions.

polynomial approximation of its local neighborhood (i.e. a polynomial expansion), and
searching for a similar pattern in the next image. For this, a quadratic polynomial is used
to capture information about the signal. The direct current level, the odd, and the even
part of the signal are respectively modeled by the constant, the linear, and the quadratic
term. Thus, the signal can be expressed in the coordinate system

f(x) ∼ xtAx + btx + c, (3.19)

from the quadratic basis {1, x, y, x2, y2, xy}, such that

A =
[
x2 xy

2
xy
2 y2

]
, b =

[
x
y

]
, c = 1. (3.20)

The model can be generalized so the pixels of the image are associated to a n × 1
polynomial parameter vector r that captures the structure of the signal, with n the size of
the neighborhood. These parameters can be obtained by r = (BWaWcB)−1BWaWcf ,
where the n × n matrices Wa = diag(a) and Wc = diag(c). The non-negative n ×
1 applicability vector a indicates the significance or importance of each point in the
neighborhood (i.e. the locationsm on a 2D region centered on the pixel are represented by
a column vector). The non-negative n×1 certainty vector c is a measure of the confidence
in the signal values at each point. Possible causes for uncertainty are: defective sensor
elements, varying confidence in the results from previous processing, and locations outside
the image bounds, among others. The measured signal in the neighborhood is denoted by
f . Each basis function is an element of a finite dimensional vector space Qn represented
by n× 1 column vectors bi. The set {bi}m1 of the basis functions are stored in the n×m
matrix B = [b1 b2 · · · bm]. For an example of an n = 9 basis function see Eq. (3.39).
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According to Farnebäck [67], polynomial expansion are performed in both images
which provides the coefficients of Eq. (3.19) A1, b1, and c1 for the first image; and A2,
b2, and c2 for the second image. From the analysis of polynomial changes under ideal
global translation between the two images (in practice more sophisticated motion models
of pixels are used, e.g. in Eq. (3.30)), the following identities hold

A2 = A1, (3.21)

b2 = b1 − 2A1d, (3.22)

c2 = dtA1d− bt
1d + c1, (3.23)

where the first and the second frames are denoted by 1 and 2 respectively, and d is the
translation between the polynomial locations. A solution can be obtained from Eq. (3.22)
if A1 is non-singular, such that

d = −1
2A−1

1 (b2 − b1). (3.24)

However, since noise affects measurements, Eq. 3.19 is approximated with local
polynomials at each pixel neighborhood. Thus, a new notation is introduced to denote
the fact that global displacement is replaced by the spatially varying displacement field
d(x). In practice

A(x) = A1(x) + A2(x)
2 (3.25)

and

∆b(x) = −1
2(b2(x)− b1(x)) (3.26)

are used. Thus, the primary constraint of Eq. (3.24) becomes

A(x)d(x) = ∆b(x), (3.27)

Despite Eq. (3.27) can be solved point-wise, the results would be probably affected
by noise. Thereby, by assuming a slow variation of the displacement field, information
can be integrated over a neighborhood I around each pixel. Thus, a solution is obtained
by minimizing the term

∑
∆x∈I

w(∆x)‖A(x +∆x)d(x)−∆b(x +∆x)‖2, (3.28)

where w(∆x) is a weight function affecting the contribution of the points in the neigh-
borhood. The minimum is obtained from

d(x) =
(∑

wAtA
)−1∑

wAt∆b. (3.29)
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The previous notation was simplified to make the expression more readable. According to
Farnebäck [68], a solution exists and is unique unless the whole neighborhood is exposed
to the aperture problem (see Fig. 3.11).

The displacement field can be parameterized according to a more sophisticated pixel
motion model, so both the affine transform (i.e. translation and rotation under ortho-
graphic projection), and the perspective projection, are taken into account. The model is
defined by eight parameters as follows

tx(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy,

ty(x, y) = a4 + a5x+ a6y + a7xy + a8y
2.

(3.30)

Thus, the displacement from Eq. (3.29) is defined such that

d(x) = Sp (3.31)

S =
[

1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

]
(3.32)

p = [a1 a2 a3 a4 a5 a6 a7 a8]t, (3.33)

The weighted least squares problem in Eq. (3.28) is reformulated to consider the
motion model, so

∑
i

wi‖AiSip−∆bi‖2, (3.34)

with i indexing the coordinates in a neighborhood. The solution for the motion model
parameters is

p =
(∑

i

wiSt
iAt

iAiSi
)−1∑

i

wiSt
iAt

i∆bi. (3.35)

A priori knowledge about the displacement field can be heuristically used to compare
the polynomial at x in the first signal to the polynomial at x + d̃(x) in the second signal,
where d̃(x) is the initial displacement field rounded to integer values (since in the image
measurements are taken in discrete pixels). The relative displacement between real values
and rounded a priori estimates can be obtained by replacing Eqs. (3.25) and (3.26) by

A(x) = A1(x) + A2(x̃)
2 . (3.36)

∆b(x) = −1
2(b2(x̃)− b1(x)) + A(x)d̃(x), (3.37)

where

x̃ = x + d̃(x). (3.38)

The structure of the iterative solution to the flow estimation is presented in Fig.
3.18. Two different approaches are considered: iterative and multi-scale estimation. In
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the former, the output of one iteration is used as a priori displacement for the next step.
The system can be initialized with a priori zero displacement, unless actual knowledge
about the displacement field is available. The multi-scale approach is suited for handling
the cases of too large displacements between successive frames. The idea is to start by a
coarse scale to get a rough displacement estimate, and propagating it through finer scales
to obtain increasingly more accurate estimates. Compared to iterative estimation, this
approach requires new polynomial expansion coefficients to be computed for each scale.

Eq. (3.38)

Eqs. (3.36), (3.37), (3.38)

G(x) and h(x) are components of Eq. (3.35)

The motion model parameters p of Eq. (3.33)
are estimated

Figure 3.18 – Algorithm for displacement estimation (Farnebäck [68]).

The computational complexity of the displacement estimation is dominated by two
steps: the polynomial expansion and the spatial averaging step. The complexity of poly-
nomial expansion depends on a number of factors, including the dimensionality u of the
signal space, the size n of the applicability per dimension, whether certainty is assumed
to be constant, and whether applicability is separable and sufficiently symmetric. For
a 2D image, assuming constant certainty in symmetric kernels, a complexity O(2u2) is
obtained. The averaging operation can be assumed to be implemented by separable fil-
tering. Let s and z be respectively the length and dimensionality of such filters, and j
the components of the motion model (for 2D images there are in total 39 components for
the eight-parameter motion model). For k iterations of the algorithm the computational
complexity per pixel is O( zsj2k2 ).
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A. Experiments

Two experiments are designed. In the first one, a single image is processed according
to the polynomial expansion technique, in order to verify whether the predicted signal
preserves the structure of the scene. The image is firstly converted to gray-scale and
convolved with a 3 × 3 Gaussian low-pass filter for reducing noise. The quadratic basis
functions are employed for the polynomial expansion (see Eq. (3.19)), according to the
basis set {1, x, y, x2, y2, xy}. For this, a 3 × 3 neighborhood (n = 9) is considered.
In the certainty matrix Wc, a value of 1 was given to all pixels populated with valid
data, and 0 otherwise. A Gaussian kernel is used as the applicability criteria Wa. The
resulting matrices are obtained by variating the coordinates x and y (e.g. the azimuth
and elevation with respect to the sensor retina) relative to the central pixel, such that

g =

1 2 1
2 4 2
1 2 1

 , a =



1
2
1
2
4
2
1
2
1


, B =



1 −1 −1 1 1 1
1 −1 0 1 0 0
1 −1 1 1 −1 1
1 0 −1 0 1 1
1 0 0 0 0 0
1 0 1 0 −1 1
1 1 −1 1 1 1
1 1 0 1 0 0
1 1 1 1 −1 1


, (3.39)

where g is the Gaussian kernel, and a is the column vector of g. The local coordinate
system for obtaining B is defined from a second order neighborhood (i.e. a grid topology
containing the central element surrounded by 8 neighbors).

The second experiment considered the segmentation of the scene based on the optical
flow induced by camera motions. The magnitude of the flow in the image is partitioned
into 5 sets, to verify whether the segmentation is physically plausible. That is, if the
magnitude of the flow would provide information about the depth of the parts of the
object relative to the camera sensor. Hence, let the optic flow vector associated to each
pixel i = (x, y) of the image I be denoted by oi = [δx δy]t (see Eq. (3.12)), and the flow
magnitude image f̄ be defined such that

f̄ = ‖oi‖, ∀i ∈ I. (3.40)

The segmentation is obtained by a threshold test for each cluster conforming to Eq. (3.9).

B. Results

The results for the first experiment are presented in Fig. 3.19. As seen, the structure
of the scene was approximately reconstructed by the polynomial expansion, though some
contours were lost (e.g. the top border of the filing cabinet). Figure 3.20 gives the results
for the second experiment. As the images show, it is possible to segment the objects from
the background and detect the morphology, without possessing any prior information
about the objects (e.g., the color, the geometrical properties, etc.).
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0 255

Figure 3.19 – Polynomial basis and signal reconstruction. In relation to the quadratic basis
set {1, x, y, x2, y2, xy}, the top row includes from left to right the images corresponding to
x, x2, xy, and the image I. Likewise, in the bottom row the images correspond to y, y2, the
reconstructed signal f(x) (see Eq. (3.19)), and the original scene mapped to a similar color
gradient scale (shown at the bottom) for comparison.

Figure 3.20 – Optical flow segmentation. The images illustrate the segmentation of the scene
based on the magnitude of the optical flow. From left to right, columns correspond to: a captured
frame, the dense flow estimated at two consecutive frames, and the segmentation obtained. In
the segmentations brighter regions presented bigger flow magnitude.
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C. Discussion

The first experiment (i.e. the polynomial expansion of the image) showed that in-
formation related to the structure of the scene can be captured with relative precision.
As expected, the best results are obtained for contrasting textured regions, where more
distinguishable features can be detected. This is the case of edges (e.g. the calendar fixed
at the wall, see Fig. 3.19). Regions of low variations on pixel intensities are flattered (e.g.
the irregular illumination in the walls is practically undetected). Moreover, given the
aperture problem (illustrated in Fig. 3.11), it is possible that contours between adjacent
homogeneous regions are undetected.

The results for the second experiment suggested that it is possible to obtain direct
perception of the structure of objects from the optical flow. The magnitude of the flow
can be related to the spatial depth relative to the sensor for a static object. Problems
occur when the camera motions are too brusque. When motion blurs are produced the
local contrast is reduced, so the prediction based on polynomial expansion is less precise.
Furthermore, the greater the displacement between features, the less precise the estimation
of motion would be, thus a relatively high frame-rate must be available for applications
in humanoid locomotion. As it is discussed in the study cases of Chapter 6, this approach
is used for controlling reactive motion away from obstacles in a static scene. The more
general problem of segmentation under joint motion (from the agent and the objects) is
investigated in Sekkati & Mitiche [163], where the level sets approach is proposed.

3.5 Conclusions

In the context of autonomous behavior, this chapter has focused on the study of vi-
sual attention. As discussed, the selection of information can be driven endogenously (by
goals or top-down), or exogenously (by novelty or bottom-up). From a multidisciplinary
perspective, related research in cognitive science research was reviewed. Hence, filter the-
ory has pointed out the effect attention exerts on reducing the amount of information that
enters the cognitive system. Spotlight theory has pointed out how space can constitute a
powerful coordinate system for perceptual systems where attention may directly operate.
FIT and GS theories have focused on the description of mechanisms for information inte-
gration and stages of processing (i.e. the pre- and post-selection of information). As it is
discussed in Chapters 4-6, these theories have inspired the current study in several ways.
In agreement with filter theory data is pre-processed for obtaining more efficiency, so only
relevant information gains access to more complex processing stages (i.e. early selection).
In Sec. 5.3.3 the spotlight metaphor is employed to propose an embodied mechanism
(i.e. the Embodied Filtering task) that is in charge of selecting retinal data related to the
object of interest, under top-down saliency ambiguity. Inspired by FIT and GS theory,
the idea of combining multiple layers of image features is adopted. For this, in Chapter 6
top-down and bottom-up saliency features are investigated to control humanoid walk, so
the robot can reactively approach an object while avoiding obstacles.

A review on vision sensor technologies was also presented. Some problems related
to camera sensors (e.g. motion blurs) were discussed, and the anatomy of the human
eye was presented for comparison. Among the several differences existent with respect
to vision sensor technologies are: in the human eye information of illumination and color
is decoupled in dedicated photoreceptors vs. coupling in camera photosites, the higher
dynamic range of human vision, the non-uniform disposition of receptors in the retina vs.
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a grid-like arrangement of pixels, and the fact that curved geometry of the retina vs. the
planar geometry of the camera retina may provide better resolution at the image borders.
Perhaps the most important difference is that human vision is actually a dynamic process
that takes place in several phases, so it would be comparable to a video inflow and not to
a photograph. That is, the resulting mental image is a reconstruction of the scene based
on different sorts of inputs that the eyes actively gather in different phases, and not the
mere registry of light received by the sensor within a sampling interval. Therefore, human
vision is much less affected by noise.

The review on the literature of machine vision has revealed two main research
branches for feature extraction. In the whole scene segmentation branch, available meth-
ods were classified into pixel-, region-, edge-, and model-based. In the feature tracking
branch, the principle of verification vision was described and contrasted to model-less
approaches, such as dense and sparse optical flow. Based on this review three study cases
were conducted. The first study considered semi-automatic pixel-based segmentation, by
employing the k-means clustering technique. The results suggested that although some
structure is recovered, the segmentation may not be physically plausible for continuous
imagery, so the approach is not suited for goals of this work. In the second study, a
top-down region-based technique for image segmentation within a MRF was improved for
operating in real-time in the case of continuous inflow. The evaluation showed that it is
a plausible approach for unstructured scenes, though the performance is degraded under
artificial illumination, and the detection of metallic or reflective objects. This technique is
used in the study cases of Chapters 4-6 as a means to obtain top-down saliency processing,
for approaching a known object in the scene from images captured on-board. Finally, the
third study considered a tracking method for direct visual perception from the estimation
of dense optical flow based on polynomial expansion. The results suggested that, despite
some limitations in signal reconstruction from neighborhood polynomial expansion, it is
possible to obtain unsupervised estimation of scene structure from the optical flow. As it
is discussed in the study cases of Chapter 6, this approach is used for controlling reactive
motion away from obstacles in unknown human-centered static environments.
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4.1 Introduction

Humanoid robots are designed to resemble the body and comportment of human be-
ings. As part of the behavior repertoire, the capacity of visually localizing and positioning
in relation to stimuli is very important for individual adaptation. However, vision-based
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locomotion is a challenging task for walking robots. As discussed in the precedent chap-
ter, unlike human beings which possess an extremely specialized and sophisticated visual
sense, humanoid vision employs simpler general purpose technology. Given the low quality
of the images captured on-board, several studies have fixed the sensors on the environ-
ment for obtaining reliable localization. The main disadvantages of this approach are
the need for adaptations on the scene, and non-compliance with the corporal metaphor.
Other studies have considered on-board solutions relying on comprehensive knowledge
about the environment, which has impacted generality to proximal scenarios. Thus, a
main challenge faced in this work is preserving the humanoid body metaphor from pro-
cessing on-board sensory acquisitions, while aiming at general solutions based on light
environment modeling.

Inspired by embodiment research, egocentric on-board localization for autonomous
walk is investigated. Hence, under the assumption of walking on a plane surface, this
chapter proposes the model of a computational structure in charge of fusing information
from different sensory modalities in a sensory ego-cylinder, in order to represent the lo-
cation and orientation of stimuli with respect to the agent. Concretely, the top-down
visual attention capacity of the robot to focus on objects of interest is provided by the
color-based segmentation technique discussed in Sec. 3.4.3. Several embodied placements
(eye-centered and body-centered) for sensory ego-cylinder localization are studied. Con-
cerning the motor skill of object approaching, emergent behavior is investigated relying
on independent visual servoing schemes for controlling the walk and the head motion of
the robot, so the knowledge to solve the task is distributed in independent behaviors.

This chapter starts by introducing relevant works in the field, and presenting the
mathematical foundations of visual servoing control. From the definition of the walk and
the look-at tasks models, the definition of egocentric localization is provided, followed by
the report of three case studies conducted with the humanoid Nao: a) simulation of holo-
nomic approach to an object, b) comparison of simulated object approach from distinct
placements of the sensory ego-cylinder, and c) real experience of holonomic approach to
an object. Finally, the possibility of obtaining autonomous and robust egocentric visually-
guided approach to objects in human-centered environments is discussed.

4.2 Related work

In view of difficulties encountered in processing images captured on-board, early
research on visual humanoid localization has resorted to fix external cameras in the en-
vironment (e.g., Lewis & Simo [108], and Michel et al. [121]). Although it is possible to
obtain higher quality images for the task, the use of extra-corporeal sensors present several
disadvantages. One is the eventual sensor occlusion by the robot motion, thus compromis-
ing the visual feedback. The approach also is somewhat restrictive, since the environment
must be adapted to the task. This is in practice a form of rigorous control over extraneous
variables, that conditions the generality of the solution. Lastly, extra-corporeal sensors
don’t comply with the humanoid metaphor.

On-board solutions have been proposed based on visual servoing (VS) control (which
is detailed in the next section). A study by Dune et al. [59] considered a monocular
vision task with the robot HRP2. Given the walk style of the robot, the solution aimed at
canceling the oscillatory contribution of the camera motion to the control signal (which
is named sway motion). In order to handle image noise, feature tracking based on the
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VV principle (Comport et al. [49], see Sec. 3.3.4) was employed. A similar strategy was
followed by Moughlbay et al. [128] when studying service tasks with the robot Nao. In
general, some limitations of this approach could be mentioned. Since a realistic model
of the object is required (e.g. a 3D model of the door or the drawer), the reusability of
the solution to other stimuli is not ensured. Also, the evolution of the task is sensitive to
the quality of the initial estimate of the object’s pose (this information must be obtained
at each trial). Moreover, since the sensor is considered to be dismembered, accurate
estimates of the spatial evolution of the camera (visual odometry) is required. Thus,
ideally a high frequency acquisition rate must be available, which is not achievable in
some platforms.

Allocentric model-based navigation has been studied in Simultaneous Localization
and Mapping (SLAM) research (see Thrun et al. [178]). Examples of contributions in
the field are numerous. To mention a few, in the work by Hornung et al. [86] starting from
a volumetric map of the environment, precise indoor localization is obtained by fixing a
range sensor to the robot’s head. A work by Oriolo et al. [139] considered building the
map on-line by fusing proprioceptive, inertial, and visual information, through Extended
Kalman filtering. In general, map-based navigation has produced impressive results,
but it has also received some criticism. According to Shapiro [164], researchers in the
field of embodied cognition disagree on the premise that autonomous agents must firstly
represent the environment for then traversing it. Indeed, this would not be adequate to
unstructured or reactive situations. Moreover, from a practical point of view, map-based
solutions present as a drawback requiring maintenance, where environmental changes
must be systematically acknowledged.

4.3 Visual servoing

In visual servo control (Chaumette & Hutchinson [42]) computer vision data is used
to control the motion of a robot. The approach relies on techniques from the fields of
image processing, computer vision, and control theory. The goal of a vision-based control
scheme is to minimize the error e(t), which is typically defined by

e(t) = s(m(t), a)− s∗. (4.1)

The vector of k visual features s(m(t), a) is defined from image measurements m(t) (e.g.
point coordinates of the target, image coordinates of an object’s centroid), and the set
of parameters a that represent additional knowledge about the system (e.g. the camera
intrinsic parameters, or a 3-D model of the target). The vector s∗ represents desired
values of the features.

Depending on the characteristics of the task, a fixed goal can be considered where
changes in s depend only on the camera motion. A more general situation can also
be modeled, where the target is moving, and the resulting image depends both on the
camera and the target motion. In any case, visual servoing schemes mainly differ in the
way s is designed. For Image-based Visual Servo Control (IBVS), s consists of a set
of features that are immediately available in the image data. For Position-based Visual
Servo Control (PBVS), s consists of a set of 3-D parameters that must be estimated from
image measurements.

The relation between the time variation of s and the camera velocity is given by
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ṡ = Lsv (4.2)

The spatial velocity of the camera is denoted v = (vc, ωc), with vc the instantaneous linear
velocity of the origin of the camera frame, and ωc the instantaneous angular velocity. The
interaction matrix related to s is denoted Ls ∈ <6×k.

By combining Eq. (4.1) and Eq. (4.2), the relation between v and the time variation
of the error e(t) can be defined by

ė = Lee, (4.3)

An exponential decrease of the error can be obtained by taking v as the input to the
robot controller, so the velocity of the camera is defined by

v = −λL+
e e, (4.4)

where λ is a proportional gain, Le
+ ∈ <6×k is chosen as the Moore-Penrose pseudoinverse

of Le, that is L+
e = (Lt

eLe)−1Lt
e when Le is of full rank 6. When k = 6 and det Le 6= 0 it

is possible to invert Le, obtaining the control v = −λL−1
e e.

For real visual servo systems it is not possible to know perfectly either Le or L+
e , so an

approximation or estimation of one of these two matrices must be available. Consequently,
the control law is defined such that

v = −λL̂+
e e (4.5)

4.3.1 The interaction matrix

The analytical form of the interaction matrix depends on the type of sensor considered
(e.g. 2D, 3D, omnidirectional camera), the projection model used, and the features s
selected. Conventional cameras are 2D sensors designed under a perspective projection
model (see Sec. 3.3.3). Thus, the definition of the iteration matrix to be discussed is
based on perspective projective geometry.

A. Image-based Visual Servoing (IBVS)

In IBVS the definition of features s includes the camera intrinsic parameters relating
image measurements (expressed in pixels) to features. Points are commonly used as
features. Hence, let si = (x, y) be the pixel coordinates of an image point i related to the
world coordinates (X, Y, Z), the interaction matrix Lsi can be defined such that

Lsi =
[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z (1 + y2) −xy −x

]
. (4.6)

Notice that the depth Z of point i relative to the camera frame is required. Thus, any
control scheme that adopts this form of interaction matrix must be provided with an
estimate of Z. Each point i allows the control of 2 degrees of freedom (DOF), in order
to control more DOFs additional points are needed (e.g. 6 DOF would require 3 points).
The interaction matrix Ls is obtained from Lsi related to each feature point, such that
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Ls =


Ls1
...

Lsn

 (4.7)

B. Position-based Visual Servoing (PBVS)

In PBVS the features s are defined by expressing the camera pose in a reference
frame. Thus, it requires the intrinsic and extrinsic parameters of the camera, and the 3-D
model of the observed object.

Three coordinate frames are defined: the actual camera frame C, the desired camera
frame C∗, and a reference frame O attached to the object. The feature vector s = [p θu]t
depends on the translation p and the angle/axis parameterization for the rotation θu. A
convenient choice is to defined p = C∗pC, such that s∗ = 0 and e = s.

The iteration matrix (Chaumette & Hutchinson [42]) is given by

Le =
[
R 0
0 Lθu

]
(4.8)

where R = CRC∗ is the rotation matrix that expresses the orientation of the current
camera frame relative to the desired frame. The rotational component Lθu is defined by

Lθu = I3 −
θ

2[u]× +
1− sinc(θ)

sinc2
(
θ
2

)
 [u]2×, (4.9)

I3 is the 3 × 3 identity matrix, sinc(θ) is the sinus cardinal (i.e., θsinc(θ) = sin(θ) and
sinc(0) = 1), and [u]× is the skew symmetric matrix of the axis vector u. Thereby, Lθu
is defined such that Lθu = L−1

θu θu = θu.
The control law is given by

[
vc
ωc

]
=
[
−λRtp
−λθu

]
. (4.10)

4.3.2 Controlling the robot’s effectors in joint space

A VS control law can be defined in joint space in order to ensure the operation of the
robot’s end-effectors. For the eye-to-hand configuration (Chaumette & Hutchinson [43]),
that is, when vision data is acquired from a pan-tilt camera mounted on the humanoid’s
head, the control law has the form

ṡ = Jsq̇ + ∂s
∂t
, (4.11)

where the derivative term is the time variation of s due to potential motion of the object,
Js ∈ <k×6 is the feature Jacobian matrix. It is related to the interaction matrix Ls, so

Js = Ls
CVB

BJ(q), (4.12)
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where the matrix BJ(q) is the robot Jacobian expressed in the base reference frame B.
The matrix CVB is the spatial transformation of velocities expressed in frame B. Let the
rigid body transformation from the camera frame C to the base frame B be denoted by
CRB ∈ SE(3), and the translation be CpB, the general form of CVB is given by

CVB =
[

CRB [CpB]×CRB
0 CRB

]
. (4.13)

An exponential decoupled decrease of e = s − s∗ can be obtained in joint space,
through the control scheme

q̇ = −λĴe
+
e− Ĵe

+ ∂̂e
∂t
. (4.14)

The contribution of the second term of the control law anticipates the variation of s∗ and
regulates the tracking error that it would produce (i.e. it is null when the object is static).

4.4 Task definitions

The behavior under study consists in approaching a given face of a static object, by
walking on a plane in a scene supposed free from obstacles. Figure 4.1 illustrates task
frames placements. The desired behavior is obtained from the simultaneous execution of
the Walk and the Look-at motor tasks, which are defined next.

G,B

C

T O

Figure 4.1 – Reference frames definitions to solve the localization task. G corresponds to
the walk primitive frame, B is the movable reference frame for the Walk task (in the figure it
coincides with G, though in Sec. 4.6.3 different locations for B are studied), C is the camera
frame, T is the torso frame, and O is the object frame.

4.4.1 The Walk task

The localization Bζ of the object is represented by the four parameters

Bζ =
[
ρ θ ι φ

]t
, (4.15)

where ρ, θ, and ι are position components, respectively the distance, the bearing, and the
height of the center of the object. The parameter φ corresponds to the heading of the
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object. It is estimated by the difference between the projection on the motion plane of
the mean normal direction of the tracked object’s face, and the projection of the robot
sagittal plane (see Fig. 2.12).

ρ
φ

θ
ι

τ ∗

Figure 4.2 – Top view of the localization parameters observed by the agent. The object center
and the heading direction are represented in black. The agent’s position and sagittal direction
projection are represented in blue. A desired configuration in relation to the object is represented
τ∗. A possible trajectory to approach the object is illustrated in light blue.

In the Walk task, starting from a known desired ego-centric perception of the object
Bζ∗ provided by demonstration, the agent has to autonomously return as close as possible
to such state once disturbed. The behavior can be viewed as a PBVS regulation task
where the control parameters include a 2D pose (i.e. the object height ι is assumed to
be constant). Formally, the approach error Be1 (see Eq. (4.1)) expresses the desired
configuration τ ∗ of the body (see Fig. 4.2) in the actual egocentric perspective, such that

Be1 =
[
τρ∗ τθ∗ τφ∗

]t
. (4.16)

Notice that Be1 = 0 once the agent is at the desired location.
The walk task also produces a prediction B ζ̃ for the next observation of the object,

based on the assumption of deterministic motion Bm̄ = [ρ̄ θ̄ φ̄]t (the motion request Bm̄
is defined in Eq. (4.30)). That is, the prediction assumes a noise-free robot moving at
constant velocity (see Fig. 4.3). More specifically, B ζ̃ is defined by

B ζ̃ =


√
ρ2 − 2cρρ̄+ ρ̄2

atan2(a, b)− φ̄
ι

φ− φ̄

 , (4.17)

where c = cos(θ − θ̄), a = sin(θ)ρ− sin(θ̄)ρ̄, b = cos(θ)ρ− cos(θ̄)ρ̄, and ( ¯ ) denoting the
elements of m̄.

ρ̃φ̃
θ̃

θ̂φ̂

ρ̂

B ζ̂

O

Figure 4.3 – Localization prediction top view. The parameter ι is not shown since it is assumed
to be constant. The heading direction of the object is shown in black. The motion direction of
the agent is shown in blue. The prediction B ζ̃ from Eq. (4.17) is shown in orange.
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4.4.2 The Look-at task

The goal of the Look-at task is to maintain the object centered in the field of view
by controlling the articulated neck of the robot. Motion is expressed with respect to the
reference frame T , which is attached to the torso (see Fig. 4.1). Two internal sub-tasks
are executed in sequence. One is directing the gaze toward the predicted object location
in open-loop, under deterministic motion assumption. The other is the regulation in
close-loop of the view direction to maintain the object centered in the field of view.

Let q = [α β]t be the pitch α and yaw β orientation of Nao’s neck. In the predictive
sub-task, the head orientation error e2 is expressed in the joint space, such that

e2 = q − q∗. (4.18)

The desired posture q∗ is obtained from the prediction of the robot’s pose in relation
to the object, by assuming that the posture of the legs and the torso is constant after
undertaking the motion, thus

q∗ =
[
atan2(ι̃, cos(θ̃)ρ̃)

θ̃

]
. (4.19)

A proportional regulation of the neck posture with gain λ is obtained by

q̇ = λe2. (4.20)

The second sub-task corresponds to a close-loop IBVS scheme (see Eq. (4.14)). As
illustrated in Fig. 4.4, the desired retinal motion to maintain the object centered in the
field of view is computed by visual feedback. Thereby, the feature s is selected as the
image point corresponding to the centroid of the salient blob, so the task error Te3 is
defined such that

Te3 =
[
sx − ix
sy − iy

]
, (4.21)

where (ix, iy) is the coordinate of the center of the image.

~z

~y

~x

α
β

ρ

C

O

Figure 4.4 – Look-at task illustration. The center of the object is denoted O. After head
reorientation, the x-axis of the camera frame C would be aligned with the direction CO.

72



Chapter 4. Visually-guided locomotion 4.5. Egocentric localization

4.5 Egocentric localization

4.5.1 Sensory ego-cylinder

Inspired by studies on mammalian neural systems, Peters et al. [142] have proposed
the concept of Sensory Ego-Sphere (SES) for humanoids, which is a computational struc-
ture in charge of fusing information from multiple sensory modalities to represent stimuli
in the environment. The SES would exert the role of a short-term episodic memory, pro-
viding the location and orientation of stimuli with respect to the agent. Despite being a
less general approach, cylindrical geometry is more appealing to represent positions on a
plane, which are characteristic of human-centered environments. The model is also easier
to implement and computationally more efficient to query. Thereby, an ego-cylinder prin-
ciple for localization is employed in this work. As shown in Fig. 4.5, the four parameters
defined in Eq. (4.15) are persisted in the structure. The first three parameters repre-
sent the position of the center of the stimulus in cylindrical coordinates, and the fourth
parameter represents the heading direction of the object.

B ~y~x

~z

φ

ι

ζ

θ
ρ

Figure 4.5 – Representation of ego-cylindrical localization. In the image, B corresponds to
the base frame, and ζ represents the localization of an object in the environment. The object’s
heading direction φ is represented emerging from the cylinder’s surface.

The origin of the ego-cylinder can be fixed to different parts of the body. There is no
agreement in the literature on the placement for this structure. A work by Bodiroza et
al. [20] has for instance fixed the SES on the robot’s neck, whereas in Ruesch et al. [157]
it was centered at the head, fixed with respect to the orientation of the torso. However,
under the assumption of walking on a flat surface, a spatial constraint is imposed to the
definition of the base frame, so the z-axis should be taken perpendicular to the motion
plane. In Sec. 4.6.3 different placements for the ego-cylinder are studied. For the moment,
in order to illustrate the concept, and taking into account that the walk primitive of the
robot Nao uses by default the reference frame G to express motion (see Fig. 4.1), the
origin B is placed at the same location of G.
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4.5.2 Vision-based localization

The localization of the object is obtained from the task frames described in Fig. 4.1.
Let the homogeneous transformation BTO between the base frame and the object frame
be defined by

BTO = BTC(q)CTO, (4.22)

so the transformation BTC(q) expresses the camera frame C in the base frame B, and
depends on the actual joint configuration q of the robot. Similarly, the transformation
CTO expresses the object frame O in frame C, and is determined from the 3D pose

Co =
[
ξ ϑ

]t
=

[[
X Y Z

] [
γ β φ

]]t
, (4.23)

where ξ is the position component and ϑ is the orientation component. The calculation of
Co is obtained by computer vision processing, so a rough 3D container encompassing the
object is fit to the segmented region on the image. This is discussed in the next section.

The localization of the object in the ego-cylinder is obtained from BTO, by expressing
the position of the center of frame O in cylindrical coordinates, and adding the heading
direction φ, as defined in Eq. (4.15). The transformation BTB∗ between the current
placement of B and the desired placement B∗ in relation to the object, is given by

BTB∗ = BTO
OTB∗ , (4.24)

where OTB∗ is defined by kinesthetic demonstration. That is, by positioning the robot
at the desired configuration in relation to the object. Thereby, the estimation of the
localization error in Eq. (4.16) is obtained from BTB∗ .

4.5.3 Object models

The estimation of the object 3D pose in the camera frame relies on the region-based
segmentation technique described in Sec. 3.4.3. Thus, the pose is observed by establishing
a correspondence between the 3D model of the object and its perspective projection on
the image plane. The quality of the estimation hardly depends on the segmentation
available. Relatively good segmentations can be obtained with the MRF algorithm, so
the model of the object is approximated by a rough 3D container that can virtually
encompass or be attached to the surface of the object. This provides flexibility and is a
reasonable assumption for convex objects. The dimensions of the object is known, and
the color model is obtained by supervised demonstration. Next, the modeling of two of
these containers and how to estimate the pose from the image blob is given as examples.

A. Cylindrical Wrapper

The frame O is attached to the center of mass of the model as shown in Fig. 4.6.
Given the bilateral symmetry of the shape, the projection of the object in the image plane
is not affected by the rotation β around Oy, so it is assumed to be constant.

74



Chapter 4. Visually-guided locomotion 4.5. Egocentric localization

Object frame Segmented image

~z

~y

~x

L RO

U

~y′

~x′
O′

G′ H ′

J ′K ′

Figure 4.6 – Cylindrical object model. On the left, the 3D model of the object, the placement
of frame O, and the definition of four points of interest. On the right, the segmented blob and
the definition of image features from the oriented bounding box.

1) Depth estimation

The blob is assumed to be approximately centered on the image due to the action of
the Look-at task. Thus, calculations over a clipped projection of the object are avoided.
As illustrated in Fig. 4.7, in order to estimate the position Coξ of frame O, the observation
of the depth Ẑ for CL and CR is obtained by

Ẑ = r

r′

√
r′2 + f 2, (4.25)

where r is the radius of the cylinder, r′ is its projection on the image plane, and f is
the focal length of the camera. The projection of the radius r′l and r′r for CL and CR
is respectively taken such that r′l = ‖G′ − K ′‖/2 and r′r = ‖H ′ − J ′‖/2. As shown in
Fig. 4.7, better estimations are obtained when the assumption concerning the orientation
component Coφ = π is fulfilled (see Eq. (4.23)).

2) Position estimation

The position of a point P in 3D can be recovered from the image projection P ′ by
applying Eq. 3.1, such that

P =
(

((P ′x − C ′x)PZ)
f

,
((P ′y − C ′y)PZ)

f
, Z

)
, (4.26)

where C ′ is the image center, and Z is the point’s depth. Thereby, the observations CL̂
and CR̂ are obtained through Eq. (4.26). Derived points are defined such that CÔ =
mean(CL̂, CR̂) and CÛ = CÔ + (0, 0, r). Thus, the position component Coξ in Eq. (4.23)
is obtained by

Coξ = CÔ. (4.27)

3) Orientation estimation

The orientation component Coϑ is obtained from the rotation matrix CW, thus
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Image Plane

2r′
f d

~y

r

O α

Image Plane
~x
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R

Figure 4.7 – Estimation of the object’s depth. On the top, the model assumes a view per-
spective Coφ = π. Below, the ~x~z plane visualization of a situation where the circumference
corresponds to an ellipse and the distance from the projective ray and the center of frame O is
larger than r, due to violations of the view perspective assumption.

CW =
[
s n a

]
=
[
H V (H × V )

]
, (4.28)

with H = (CR− CL)/|CR− CL|, and V = (CU − CO)/|CU − CO|.

B. Rectangular Surface

Rectangles are useful geometric models for tracking surfaces in walls, doors and
furniture. The model is simpler than the previous case since it is a 2D shape. The points
defining O correspond to those of Fig. 4.6, so the features tracked in the image are the
same as in the previous case. The calculation for the depth of O is given by

d(h, h′, f) = hf

h′
, (4.29)

where f is the focal distance of the camera, h is the height of the rectangle, and h′ is the
image projection of h. The relation between the image features and the location of CR,
CL, CO = mean(CL, CR), and CU is similar to the previous case.

4.6 Case studies

Three studies were conducted in order to evaluate distinct aspects of the task model.
In the first study, a simulated scene was designed containing a single salient object, and the
agent’s task is to approach the object by doing holonomic walk. The objective is to verify
the plausibility of the model. The second study focused on the aspect of embodiment.
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Thus, different placements (i.e. body- and eye-centered) for the origin of the sensory ego-
cylinder were studied. Several aspects are analyzed, such that the computational cost,
the precision, and the robustness to noise. The last study consisted in a real experiment
where the robot Nao approached a yellow card fixed in the scene.

4.6.1 Materials

The robot platform is the humanoid Nao by Aldebaran Robotics. The control pro-
grams are implemented in the C++ programming language. Images are captured on-
board at 320×240 pixels resolution. Vision processing is obtained with the support of
the OpenCV 2.4.8 library. The robot functionalities are accessed through the naoqi 1.14
library. The algorithms are developed in Eclipse Juno IDE, under Ubuntu 12.04.5 LTS
(Precise Pangolin). Simulations are performed in Webots 7.4.0 by Cyberbotics. The
results are processed in GNU Octave 3.2.4 and KNIME (data analytics, reporting and
integration platform) 2.10.4. On-board calculations are performed in a CPU ATOM Z530
1.6GHz, with 1 GB RAM, 2 GB flash memory, and 4 flash memory dedicated to user
purposes. The study also included a DELL Vostro 1500 laptop (Intel Core 2 Duo 1.8GHz
800Mhz, 4.0 GB DDR2 667 MHz RAM, 256 MB NVIDIA GeForce 8600M GT), in charge
of processing data received from on-board captures and computing the desired state sent
to the robot behavior primitives through a wireless connection.

4.6.2 CS-I: Approaching a salient object in simulation

This study considered holonomic regulation of the agent’s posture in relation to a
salient stimulus. The observed localization error Bê1 (see Eq. (4.16)) between the current
and the desired configuration is obtained from the matrix BTB∗ (see Eq. (4.24)). Given
the sources of observation uncertainties (e.g., image noise, 3D model imprecisions), the
study aimed at verifying whether the Walk task can steer the agent toward the desired
state. For this, Be1 is defined by saturating the observed error. The bounds corresponded
to the radial distance ρ = 0.1 meters (m), the bearing θ = π radians (rad), and the
heading φ = π/12 rad. A proportional correction Bm according to the magnitude of the
individual components of Be1 is applied, such that

Bm = λBe1, (4.30)

where the normalized vector λ is defined from the motion bounds as follows

λi = |e1i|
(|e1ρ|/ρ+ |e1θ|/θ + |e1φ|/φ)

. (4.31)

The motor tasks are implemented with the help of the naoqi environment, which pro-
vides a Program Application Interface (API) for sending commands to the robot through
parametrized routine calls. In the Walk task, the agent is stopped once all the components
of the observed localization error Bê1 are smaller than a given threshold ε. The tolerance
considered is a radial distance ερ = 0.05 m, the bearing εθ = 0.04 rad, and the heading
εφ = 0.1 rad. The walk primitive can be controlled both in position or velocity. The
position version was selected, since it showed a more accurate performance. The primi-
tive receives position commands in Cartesian coordinates (so the cylindrical localization

77



4.6. Case studies Chapter 4. Visually-guided locomotion

coordinates are accordingly converted). The mean walk velocity set for the robot was
around v = [0.022 m/s 0.04 m/s 0.106 rad/s]t.

The Look-at task is also controlled in position. The correction of the head posture is
obtained by assuming constant velocity motion. A tolerance ε = 0.03 rad is admitted for
convergence of e2 (see Eq. (4.18)), and a tolerance of 10 pixels is accepted for Te3 (see
Eq. (4.21)). The head posture is regulated independently of the walk (i.e. the tasks run
in parallel), which means that motion induced by the Walk task can affect convergence of
the Look-at task, notably, at slow turning of the head. Hence, a heuristic velocity profile
of 4 rad/s was employed to obtain convergence for the Look-at task.

A. Experiments

In order to assess performance under modeling imprecision, a simulated environment
was designed in Webots. As illustrated in Fig. 4.8, the object of interest is a red soda
can disposed over the table. The texture of the can is clearly distinguishable from the
rest of the room to avoid multiple saliency detection. The desired configuration B∗TO is
specified by positioning the robot in front of the can. Two experiments are designed. In
the first one, the robot is moved away from the desired pose such that it has to return
autonomously to the desired configuration. In the second experiment, disturbances are
introduced in the task. Thus, the robot is moved while approaching the object (i.e. the
robot kidnapped problem as described in Sec. 2.4.1).

Figure 4.8 – The approach task modeled in Webots. On the left, the robot’s initial pose. In
the center, the performed trajectory. On the right, the desired pose with respect to the red
can. As noticed, despite modeling imprecision, the robot was able to converge to a location very
similar to the demonstration.

B. Results

The evolution of the localization along the followed trajectory is shown in Fig. 4.9. A
comparison of localization precision is also given in Fig. 4.10, where the difference between
on-board estimations and ground truth measurements provided by Webots is shown. As
expected, the more distant the robot is from the object, the less precise estimations are.
This is due to perspective projection geometry effects (i.e. distant objects are perceived as
smaller, so the 3D model of the object is fit to smaller segmentations, producing imprecise
estimates). The most affected component is the observation of the object’s heading, which
depends on the quality of the blob contours. However, as the robot approached the target,
the precision improved enough to allow it to converge to a location very similar to the
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demonstration. In relation to the second experiment, it was observed that despite the
disturbances applied, whenever the object remained within the field of view, the robot
was able to approach it.
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Figure 4.9 – Localization egocentric visualization as perceived in B. The circumference rep-
resents the ego-cylinder. Ground truth values are shown in red and observations in green.
Distances are expressed in m.
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Figure 4.10 – Time evolution of localization error between estimations b̂ and measurements b.

C. Discussion

This study has explored behavior schemes based on visual servoing motor control.
That is, PBVS and IBVS control schemes were employed asynchronously for, respectively,
steering the robot to the desired pose in relation to the object, and maintaining the object
of interest in the field of view. Therefore, an emergent solution to the task was proposed,
considering the motion primitives of walking and directing the head. The processing of
localization was based on the design of a sensory ego-cylinder, where the 3D position of the
object’s center and its heading direction on the plane were represented. This information
was obtained from a binary image and a rough 3D model of the object. Thus, region-based
whole segmentation was employed for binarization, and monocular vision mapping allowed
to relate salient image regions to 3D space from the rough model encompassing the object.
In this study, a fairly simple situation was simulated where a single object was salient,
and there were no obstacles between the robot and the object. Under these conditions, it
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was observed that the farther the robot was, the less precise is the localization obtained.
The most affected component was the estimation of the object’s heading. Nevertheless,
the agent was able to accomplish the task when the object was visible, even when being
kidnapped.

4.6.3 CS-II: Placement for the spatial reference system

Five placements were studied for the base frame B. As listed in Tab. 4.1 and
illustrated in Fig. 4.11, three locations considered the spatial constraint imposed by the
localization model (i.e., taking the z-axis perpendicular to the motion plane), whereas the
others did not. Moreover, among the locations, some are body-centered whereas others
are eye-centered.

B Description Type Constraint
G Ground body-centered Yes
Tg Torso body-centered Yes
Eg Eyeg sensory-centered Yes
N Neck body-centered No
E Eye sensory-centered No

Table 4.1 – Studied placements for the reference frame.

G

Tg

E Eg

N

Figure 4.11 – Evaluated placements for the base frame B. For each frame the z-axis is
represented in blue, the y-axis in green, and the x-axis goes towards the reader’s direction, so is
represented as a red dot.

The definition of the placements relied on the direct geometrical model of the robot.
For this, the body of Nao was modeled as a set of interconnected serial structures that
depart from the common reference frame T , which is placed at the center of the torso. The
body kinematics was defined according to the modified Denavit and Hartenberg notation
(see Khalil & Kleinfinger [97]). Table 4.2 presents the geometric parameters of the robot
model. Figure 4.12 illustrates the body structure, excluding the representation of the
arms since they are irrelevant to the studied behavior.

The transformations from T to the effectors frames (i.e. the left foot frame Fl, the
right foot frame Fr, and the camera frame C mounted at the forehead) are obtained by
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j aj σj αj dj θj rj

0 T 2 −3π/4 0 π/2 0
1 0 0 0 0 q1 0
2 1 0 π/2 0 q2 − 3π/4 0
3 2 0 π/2 0 q3 0
4 3 0 0 −d4 q4 0
5 4 0 0 −d5 q5 0
6 5 0 −π/2 0 q6 + π 0
7 T 2 −π/4 0 π/2 0
8 7 0 0 0 q8 0
9 8 0 π/2 0 q9 + 3π/4 0
10 9 0 π/2 0 q10 0
11 10 0 0 −d11 q11 0
12 11 0 0 −d12 q12 0
13 12 0 −π/2 0 q13 + π 0
14 T 2 0 0 0 r14
15 14 0 0 0 q15 0
16 15 0 −π/2 0 q16 0

Table 4.2 – Modified Denavit & Hartenberg parameters for the robot Nao. For the frame j,
aj is the predecessor, σj is the joint type (0 for revolute, 1 for a prismatic joint, and 2 for fixed
joint), αj is the angle between ~zj−1 and ~zj about ~xj−1, dj is the distance between ~zj−1 and ~zj
about ~xj−1 (d4 = d11 = 0.1 m and d5 = d12 = 0.1029 m), θj is the angle between ~xj−1 and ~xj
about ~zj , and rj is the distance between ~xj−1 and ~xj about ~zj (r14 = 0.1265 m).
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Figure 4.12 – Geometrical model of the robot Nao. Distances are expressed in m. The
orientation of the z-axis is projected in black along the structure. For the base frame T and
the effector frames C, Fl, and Fr, the x- and y-axis are also plotted in magenta and green
respectively. The active joints are enumerated and represented by blue boxes. The effectors are
represented in red.

TTFl = TT0
0T6(q)6TFl

TTFr = TT7
7T13(q)13TFr

TTC = TT14
14T16(q)16TC,

(4.32)

where 6TFl = Trans(rf , 0, 0)Rot(~y,−π/2), 13TFr = Trans(rf , 0, 0)Rot(~y,−π/2), 16TC =

81



4.6. Case studies Chapter 4. Visually-guided locomotion

Trans(rxc,−ryc, 0)Rot(x, π/2), rf = 0.04519 m, rxc = 0.05871 m, and ryc = 0.06364 m.

1) The frame Ground

The frame G is placed between both feet by taking the z-axis perpendicular to the
motion plane. It is the same frame employed by the walk primitive of the robot (see Fig.
4.13). Two auxiliary frames are defined for obtaining the transformation TTG: the frame
K that is placed at the foot in contact with the ground, and the frame Q that is fixed
to the other foot. The ground contact is measured by the force sensitive resistor (FSR)
sensors located in the foot sole. In case when both feet are in contact, the frame K is
placed at the right foot. Therefore, TTG(q) depends on the current body posture q, it is
obtained from KTQ(q), such that

TTG =

 RΦ
2

[p x
2

p y
2

0]t
0 1

 , (4.33)

where R and p are the rotation and position component of KTQ(q). That is, RΦ
2

=
Rot(~z, Φ2 ) considers half of the rotation along the z-axis, whereas p x

2
and p y

2
denote half

of the translation along the x- and the y-axis respectively.

QLeft foot

K Right foot

G
~z

~y

~x

Figure 4.13 – Definition of the ground frame for the case where the right foot is in contact
with the ground. The frames Q and K are projected in the ground. The location of G is placed
at the intermediate position. The z-axis is taken perpendicular to the ground, and the x-axis is
taken as the mean direction from the projection of the x-axis of Q and K.

2) The frame Torsog

The frame Tg is placed at the center of the torso, so the z-axis direction is aligned
with the gravity vector direction. The orientation components are obtained from the
inertial measurement unit (IMU), also located at the torso. The transformation TTTg is
defined such that

TTTg = Rot(~y, γ)Rot(~x, η), (4.34)

where γ and η correspond respectively to the azimuth and the direction of torso inclination
with respect to the gravity vector.
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3) The frame Eyeg

The frame Eg provides an eye-centered reference aligned with the direction of the
gravity vector. For this, the placement of Eg coincides with the placement of the camera
frame C. The orientation components are obtained from the IMU (similarly to Tg). Thus,
TTEg is defined by

TTEg = TTC

[
Rγβ 0

0 1

]
, (4.35)

where Rγβ = Rot(~x, γ)Rot(~y, β), with γ and β the rotations around the x- and the y-axis
obtained from the transformation CTT = (TTTg

TgTC)−1.

4) The frames Neck and Eye

The orientation of the z-axis for the frames Neck (N) and Eye (E) are taken according
to the instantaneous posture of the robot. Therefore, frame N is placed at the location of
frame 15 (see Tab. 4.2 and Fig. 4.12), so TTN = TT14

14T15. Frame E actually corresponds
to the camera frame C. The new notation is introduced simply to improve readability.
Therefore, In the definition of E the frames for measurement and representation of the
object’s localization are the same (Freksa and Mark [132], see Sec. 2.4.2).

A. Experiments

Three experiments were designed under the same scenario considered for the previous
study (see. Fig. 4.8). In the first experiment, each location B is evaluated at ten distinct
initial conditions (some cases are illustrated in Fig. 4.14). In order to avoid simulation
bias, each trial is repeated 3 times, so the total number of trials is 10 × 5 × 3 = 150.
Since the walk and the Look-at task run simultaneously, the joint positions q are stored
during image capture time, such that computations for the localization are based on
proprioceptive data related to the image under analysis. Ground truth is obtained from
Webots by attaching sensors to the body of the robot (i.e. the type GPS for the position
and Compass for the orientation).

The dependent variables under study are summarized in Tab. 4.3. Etim is the total
time in seconds required for convergence. Teff is the ratio between the initial distance to
the desired location and the integration of the agent’s linear displacement. Lpre is the
absolute norm between the final 2D pose of the robot in relation to the object and the
2D pose taught by demonstration. It is a scale-less measurement obtained by adding
the angular and the linear differences. Ppre is the absolute norm in radians between the
demonstrated joint positions (i.e., the body posture) and the final joint positions.

Motion in the robot Nao walk primitive is usually expressed with respect to the ref-
erence frame G. Thus, motion represented in other reference frames has to be accordingly
converted. Let the 6D pose vector ζ = [ξ ϑ]t = [[X Y Z] [γ β φ]]t express the 3D position
ξ and the orientation ϑ of a body in space, a 3D rotation matrix be denoted R, and the
position of frame G be denoted g. The differential of motion B∆M can be expressed with
respect to frame G, such that
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Figure 4.14 – Examples of initial conditions for the frame placement study. The robot must
approach the blue object over the sofa as taught by demonstration.

Var Expression Description
Etim

τ∫
0
dt Experiment time in s.

Teff
ρ0(

τ∫
0
mρdt

) Trajectory efficiency, with ρ0 the initial distance and mρ

the ground truth displacements.
Lpre |ζτ − ζ∗| 2D pose precision, with ζτ the final pose and ζ∗ the

desired pose.
Ppre |qτ − q∗| Body posture precision in rad, with qτ the final joint

values and q∗ the desired values.

Table 4.3 – Dependent variables under study.

G∆M =
[
GRB(Bϑ× Bg + Bξ)

GRB
Bϑ

]
, (4.36)

where Bϑ = [0 0 φ]t is the rotation around the z-axis (i.e. the change on the angular
motion direction of the robot). Notice that this definition imposes a spatial constraint to
frame B, so the z-axis must be taken parallel to the z-axis of G. As it happens with some
placements evaluated, this constraint is not ensured. Therefore, the other components
of the orientation are ignored (i.e. a less effective regulation of the robot heading is
obtained). The motion correction defined in Eq. (4.30) can be expressed with respect to
G as follows

Gm = [G∆MX
G∆MY

G∆Mφ]t. (4.37)

A second experiment considered a new criterion for the regulation of angular motion.
Based on the intuitive observation that the z-axis of frame 16 (the neck yaw, see Tab. 4.2
and Fig. 4.12) is approximately aligned with the gravity vector direction, it is studied
whether the robot walking body posture (inspired by human erect locomotion) would
allow defining simpler heuristics for controlling angular motion. Hence, it was studied if
regulating the neck yaw posture α to the desired state α∗ learned by demonstration would
allow convergence in the task 1. In other words, the robot changes the orientation of the
walk to reach the desired posture of the neck. Thus, the error e1 in Eq. (4.16) is redefined

1. It should be remembered at this point that the desired state is demonstrated by placing the robot
in relation to a desired face of the object, so the Look-at task centers the object saliency on the field of
view and the neck posture is registered
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such that

e1 ≈

 e1ρ
e1θ

α− α∗

 . (4.38)

Finally, a third experiment is designed in order to study the effect of proprioceptive
uncertainties over the walk trajectories. For this, Gaussian noise (µ = 0, σ = 2 deg) is
added to the joint measurements q when computing the localization.

B. Results

The results of the first experiment are illustrated in Fig. 4.15. The final precision
Lpre was slightly higher for E and Eg. This is due to the additional contribution of the
Look-at task to the regulation of the localization error. That is, since these placements are
centered on the sensor, they are constantly redirected toward the stimulus, which reduces
localization error. Concerning trajectory efficiency, the proximity to frame G seems to
play a relevant role. In this sense, the closer to G the more efficient appeared to be the
trajectories. This may be due to sway motions as pointed out by Dune et al. [60], which
is the contribution to the error signal from the oscillatory motions of the torso when
walking. The placement G also presented more consistent results in time consumption
Etim (the lowest standard deviation was observed).
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Figure 4.15 – Box plots for CS-II (experiment 1). In the plots the bottom and top box
correspond to the first and third quartiles, the band inside the box is the second quartile (the
median), the whiskers ends represent the data range. Outliers are shown with dots and crosses.
In the first row from left to right the results for Lpre and Teff , these variables are unit-less.
Likewise, in the bottom row, the results for Etim in seconds and Ppre in radians.

The previous comparisons showed relatively subtle differences among the candidates,
but the evaluation of posture precision revealed that E and Eg were significantly less
adequate choices. As illustrated in Fig. 4.16, the final posture differed significantly

85



4.6. Case studies Chapter 4. Visually-guided locomotion

Figure 4.16 – Body posture comparison between G and Eg. On the left, the demonstrated
posture. At the center, convergence obtained for frame G. On the right, convergence obtained
for frame Eg. In both cases the agent converged to the correct position but the body posture
for Eg differed.

from the demonstration provided. The differences can be clearly observed in Figs. 4.17
and 4.18, which compare the spatial evolution of stimulus positions in the ego-space for
distinct choices of the base frame. It is noticeable that eye-centered placements produced
almost straight-line paths towards the desired location, given the fact that head posture
with respect to the body is constantly modified by the Look-at task (see Fig. 4.19 for
a comparison of the neck yaw evolution). Thus, the context of the body posture is lost,
which would be equivalent to considering a flying (or dismembered) frame.
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Figure 4.17 – Egocentric localization top view. Circumferences represent the ego-cylinder. In
red ground truths, in green estimations. Distances are expressed in m.

The results for the second experiment are presented in Tab. 4.4, where a comparison
between the performance of the original and the heuristic version of the Walk task is
given. Rows with apparent improvements are highlighted in blue, whereas deterioration
is marked in red. Concerning G, the heuristic scheme had a positive effect by maintaining
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Positions in Tg Positions in Eg
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Figure 4.18 – Top view of object positions for Tg and Eg. The plots show the 10 initial
conditions evaluated. Each trial is assigned a distinctive color. Distances are expressed in m.
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Figure 4.19 – Comparison of neck yaw time evolution for the test case 3. E and Eg exhibited
faster convergence, but final body posture differed largely from the others.

the results for Ppre and improving the other measurements. The choice Tg was penalized
in Teff evidencing larger trajectories, contrarily, Etim tended to be shorter. One plausible
explanation for this effect is that the velocity achievable by the robot when moving in the
sagittal direction is higher than moving in the frontal direction. Therefore, the robot may
have walked more in the sagittal direction. The placement N presented improvements in
Ppre and Lpre, but slightly larger times Teff . Concerning E and Eg, an overall tendency
of improvements is observed. It is noticeable that final posture precision Ppre for the eye-
centered cases is now comparable to the performance obtained with other placements.
Overall, the heuristic version appeared to exert either positive or neutral effect over the
agent’s behavior.

The results for the third experiment, where noise is added to the joint measure-
ments, are illustrated in Fig. 4.20. Eye-centered placements appeared to be less affected
by noise, so the relative advantages of body-centered placements observed in the first ex-
periment were drastically reduced. Figure 4.21 presents a comparison of the evolution of
the localization signals for frame G during the task. It is noticeable that noise hampered
convergence, so the agent invested more efforts to position in front of the object.
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B Var µ1 µ2 σ1 σ2
G Lpre 0.20 0.19 0.03 0.02

Ppre 0.24 0.24 0.02 0.02
Teff 0.90 0.92 0.07 0.04
Etim 57.73 53.32 13.31 6.83

T Lpre 0.22 0.21 0.03 0.03
Ppre 0.24 0.23 0.01 3.9e-3
Teff 0.84 0.81 0.06 0.05
Etim 56.14 53.17 16.05 9.65

N Lpre 0.22 0.20 0.02 0.03
Ppre 0.24 0.23 0.01 2.2e-3
Teff 0.82 0.82 0.07 0.06
Etim 55.55 56.97 12.28 10.51

E Lpre 0.21 0.23 0.04 0.03
Ppre 0.30 0.24 0.05 0.01
Teff 0.75 0.77 0.08 0.07
Etim 57.57 53.65 15.14 10.91

Eg Lpre 0.21 0.20 0.02 0.02
Ppre 0.29 0.23 0.04 4.5e-3
Teff 0.73 0.78 0.09 0.06
Etim 57.58 58.90 13.13 11.28

Table 4.4 – Comparison of the performance of the original version (i = 1) and the heuristic
version (i = 2) of the Walk task (see Tab. 4.3), for the mean µi and the standard deviation σi.
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Figure 4.20 – Comparison of Teff for experiments 1 (left) and 3 (right). In experiment 3 the
angular motion of the agent was obtained by the regulation of the yaw position of the neck, and
noise was added to the proprioceptive measurements.
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Figure 4.21 – Time evolution of localization for frame G with Gaussian noise (µ = 0, σ = 2 deg)
added to proprioceptive measurements. Thicker lines correspond to the noise-free condition.
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C. Discussion

Previous works have proposed distinct placements for the ego-sensory structure with-
out presenting extensive comparative results. Hence, for human-centered scenarios, which
involve approaching objects by moving on a plane surface, this study has investigated five
possibilities: three body-centered and two eye-centered locations. The results of the first
experiment suggested that from the characteristics of the robot (i.e. the fact that the
motion primitive operates preferably in frame G), the more adequate placement for the
base frame is G. Nevertheless, convergence was obtained for all body-centered choices.
It is noticeable that the placement N did not conform to the constraint imposed by the
localization model. Thus, the fact that the agent walked on a plane in erect posture
constrained the mobility of the reference frame N . Consequently, close results can be
obtained for G and N without the need to use the robot’s IMU.

Eye-centered placements did not preserve the context of the body posture during
the task (since they were not necessarily aligned to the sagittal plane of the agent, see
Fig 2.12). However, as the second experiment has shown, in case heuristic knowledge is
employed, such that a body posture regulation task is enforced, a hybrid solution can
be obtained where posture regulation is determined eye-centered and angular motion
regulation is determined body-centered. This combination produced interesting results
and was the least affected by noise on the third experiment, where the more intermediate
joints are between the measure frame (i.e. the sensor frame) and the task representation
frame, the worse the result were obtained. The heuristic solution is also computationally
more efficient, since transformations between the camera and the base frame are no longer
required to be computed.

4.6.4 CS-III: Approaching a real object

From the promising results obtained in simulation, a real experiment was designed as
a third case study to verify whether the robot Nao can approach and position in relation
to a known object in the environment. This is reported next.

A. Experiments

The scene consisted of the lab indoors. It is an environment subject to uneven illu-
mination (natural and artificial light sources), under constant influx of collaborators and
other robots moving around. The object selected was a yellow card clearly distinguishable
in the scene. In case the segmentation ambiguity with more than one salient area, the
biggest blob was selected for processing the localization. The desired pose in relation to
the object was shown to the robot by pressing the head tactile sensor. Two experiments
are designed. In the first one, the robot is moved away from the desired configuration
and 10 trials are repeated from different initial configurations. In view of the processing
limitations of the robot, the images are captured on-board and transferred to the remote
station for processing. Likewise, motion commands are sent to the robot through the wire-
less link. Given that the performance and accuracy of the motion primitives are affected
by several factors (e.g. motor heat, error accumulation in the software platform, sensor
inaccuracies, sliding), the base frame was placed in location G since it seemed to produce
more accurate motion. A move-then-stop policy for the walk was employed, where the
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robot stopped completely before processing additional commands. Though, the Look-at
task run continuously. The tolerance for convergence was the same as detailed in Sec.
4.6.2. In the second experiment, disturbance is included, so the robot is moved to another
location while approaching the object (i.e. the robot kidnapped problem as described in
Sec. 2.4.1).

B. Results

Figure 4.22 shows the trajectory followed by the robot in two distinct trials, and Fig.
4.23 presents some on-board view segmentations during the approach. The experiment
was successfully accomplished all the time, so the robot could autonomously return to the
front of the yellow card, as learned by demonstration. Though, as it can be noticed in
superimposed experiment images, the robot walked much of the trajectory in the frontal
plane direction. In relation to the second experiment, the results confirmed those obtained
in simulations. Thus, it was observed that despite disturbances applied, whenever the
object remained within the field of view, the robot was able to approach it.

Figure 4.22 – Different trials of the yellow card approach experiment.
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Figure 4.23 – On-board view and segmentations of the yellow card experiment.

C. Discussion

The objective of this study was to assess whether a real task could be accomplished
under the modeling approach proposed. The results of the experiments have shown that
from the controlled conditions described (i.e., a move-then-stop policy and the presence
of a clearly salient object), the robot was able to autonomously accomplish the task.
Nevertheless, the trajectories obtained were not necessarily aesthetically appropriate and
efficient, since the robot is able to move faster in the sagittal direction than in the frontal
direction. Also, the fact of disposing an object clearly distinguishable from the rest of
the scene is a bit far from natural situations. Indeed, as shown in Fig. 4.24, changing
the stimulus by a more complex object would invalidate the approach, since a more
sophisticated process of attention selection would be required.

Figure 4.24 – Multi-color saliency. On the left, a closeup view of a tracked object, which
corresponds to a colored can with different tonalities of yellow and orange. In the center, the
scene registered on-board from distance. On the right, several regions are salient in segmentation,
due to the color diversity of the object model. Hence, a problem to be solved is selecting the
correct salient region on the segmented image.

4.7 Conclusions

This chapter started by reviewing related studies on humanoid locomotion. Since this
is a diverse research field, the discussion focused on works that considered on-board cap-
ture of visual data. A common aspect noticed in related studies is the use of Verification
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Vision for localization, which requires of realistic object modeling, accurate initial state
estimation, and high-frequency image acquisition rate. In this work a different perspective
was taken, and relied on less restrictive conditions (i.e. rough object modeling, inaccurate
initial localization from distant approach, and low visual acquisition rate). Concretely,
from the results reported in the study of Sec. 3.4.3, region-based whole segmentation was
employed for obtaining top-down binarization of the scene, and monocular vision map-
ping allowed to relate salient image regions to 3D space by modeling a rough container
encompassing the object.

Two behavior schemes were proposed as visual servoing control tasks. Thus, IBVS
and PBVS tasks controlled independently centering the object of interest in the field of
view and steering the robot to the desired 2D pose in relation to the object. The solution
considered the robot motion primitives of orienting the head and walking. Although
the results corroborated the plausibility of the model for the approaching task, some
limitations can be mentioned. Firstly, a fairly simple situation was considered where a
single object was salient, and there were no obstacles between the robot and the object.
Secondly, the robot walked much of the trajectory in the frontal plane direction, which is
neither aesthetic nor efficient, given that the robot is able to move faster in the sagittal
plane direction. In Chapter 5 it is proposed a more sophisticated walk control law that
mimics human non-holonomic motion, and the problem of reliable approaching to objects
under saliency ambiguity is investigated, so the agent robustly process visual selection to
discriminate and localize the object.

Another important topic treated in this chapter was the study of stimuli localization
and embodiment. Previous works have proposed distinct reference frames for ego-sensory
localization, without presenting extensive comparative results. Under the assumption of
walking on a plane surface, it was proposed a computational structure in charge of fusing
information from different sensory modalities as a sensory ego-cylinder. Hence, body-
and eye-centered locations were investigated for the base frame. The results suggested
that, from the body posture that the agent adopts when walking on a plane, convergence
was obtained for body-centered choices, even when the placement did not conform to
the constraints imposed by the localization model. Thus, the fact that the agent walked
in erect posture restricted the mobility of the reference frame. These results suggest
that embodiment can be exploited to obtain heuristic solutions with efficient resource
consumption (e.g. the IMU was not required when placing the base frame in the ground
or the neck).

Eye-centered placements did not preserve the context of the body posture during
the task. However, in case heuristic knowledge is employed, such that a body posture
regulation task is enforced, a hybrid solution can be obtained where posture regulation
is determined eye-centered (i.e. the measurement and the representation frames are the
same) and angular motion regulation is determined body-centered. This combination pro-
duced interesting results in simulations and was less affected by noise on the proprioceptive
acquisitions. The solution was also computationally more efficient, since transformations
between the camera and the base frame were not required to be computed. However,
in the real robot experiment, placing the base frame at the ground (which is the same
reference for the walk primitive) produced more accurate motion. The hybrid location is
considered in Chapter 6 where stimuli action-oriented representations are studied.
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5.1 Introduction

The automation of visually-guided walk has arguably adopted in its infancy the so-
called cognitivist approach to artificial intelligence (AI), which, under Cartesian dualist
influence, has tended to look at physical and mental processes as belonging to different
realms. Significant progress has been obtained from this view, though performance is still
distant from the sophistication observed in natural behavior. Among challenges reported
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in the literature, one is undoubtedly to achieve reliable perception from noisy data. Since
the sensory input goes through a process of symbolization, and cognition would involve
—under this view —computations over symbols, the physical context at which the latter
emerged is no longer available to the cognitive process. In other words, in abstracting
cognition from the context, information is inevitably lost.

Several frameworks were proposed in the field of machine learning to cope with the
challenges of object perception during locomotion (e.g. Markovian models, support vec-
tor machines). These approaches have produced impressive results, although, by keeping
intact the fundamental premise of decoupling between bodily and mental processes, they
have relied on extensive resources in the form of disembodied explicit models, knowledge
databases, and intensive computation. Thus, the processing bottleneck has impacted
autonomy and reactivity of the agent. As it was discussed in the previous chapter, extra-
neous variables (i.e. un-modeled phenomena) are controlled by adapting the scene to the
task, which compromises generality.

This chapter focuses on the limitations pointed out by the studies developed in
Sec. 4.6.4, which are: a) considering a fairly simple situation where a single object is
salient (no attention selection is required), and b) inefficiency in motion since the robot
walked considerably in the frontal plane direction. For this, a more realistic solution to
the approach task is proposed by redefining the behavior scheme according to the EC
research methodology. Thus, from a first-person perspective analysis of the sources of
information available, the agent is given a non-holonomic human-like walking style. In
order to ensure robustness and reliability in the task, the behavior scheme is integrated
to a hybrid architecture in charge of execution monitoring. This functionality is obtained
from the design of a Bayesian network for information fusion. Furthermore, the network
grounds the attention selection mechanism developed for perceiving the object. Finally,
these aspects are analyzed and integrated to a methodological proposal, which synthesizes
the development of robust humanoid approach tasks in six steps.

5.2 Grounding vision-based locomotion

The term embodied cognition reunites co-existing research interests with diverse sub-
ject matters. A thorough review on coexisting views in EC is beyond the scope of this
work (the reader is referred to the works of Shapiro [165] and Wilson [188] for a discussion
on this topic). Thus, this study is in agreement with Anderson [6] when he identifies in
the physical grounding hypothesis (Brooks [29]) the distinctive aspect of EC, as opposed
to a situated but cognitivist view of embodiment. Accordingly, behavior is studied as a
complex dynamical system, where knowledge representation is thought to be grounded in
physical interaction.

EC research has experienced a growing boom by considering emergent aspects of
behavior (Pfeifer & Pitti [143], Hoffmann & Pfeifer [84]). Initial works focused on body
morphology, particularly, on the aspect of energy consumption, robustness, and com-
putation offloading. These studies showed how morphological computation and passive
dynamics can significantly reduce the need for control and modeling, decentralize com-
putations, and dissipate disturbances from the environment. Given the success of these
experiments, the research has gradually evolved to include sensory motor coupling, and
higher cognitive processes such that perception and learning.

However, according to Vernon [182] the study of enactment poses significant chal-
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lenges to roboticists. From the phylogenetic point of view, the autonomous development
of the cognitive system would also require the hosting platform to evolve. The acquisition
of several human sensory-motor skills, for instance, is accomplished only once the body
has either matured or adapted to new conditions (e.g. by increasing muscle strength).
This capacity of self-modification is not easy to obtain in artificial bodies. From the on-
togenetic point of view, a main challenge consists in designing structures for efficiently
integrating information from different sensory modalities, while enabling learning and
generalization from previous experiences. Moreover, in the context of service robotics,
perhaps the most restrictive aspect of enactment is the fact that knowledge acquisition is
constrained by coupling, so it is a slow process analogous to natural learning.

Restrictions imposed by the study of enactment hinder at present an exclusive use
of EC methodology for service robotics. In the scenario envisaged, the agent is required
to deliberate a plan or generalizing skills to objects seen for the first time. In order to
provide solutions to such requirements, this work adopts an intermediate perspective be-
tween the cognitivist and the EC methodology. Hence, a dynamic first-person experiential
description of behavior is performed to rigorously restrict modeling. However, since flexi-
ble solutions are desired, the possibility of counting on a rough action-independent object
model is admitted. Thus, the aspect of grounding or instantiation of action-independent
knowledge, and how contextual representations can contribute to perceive the object, are
of central importance for this research. In this sense, this work is in agreement with
Clark’s assertion that radical opposition of EC to cognitivism invites competition where
progress demands cooperation (Clark [47]).

5.3 EC-based task analysis

According to Wilson & Golonka [187], the study of embodied cognition involves four
essential steps: a) performing a dynamic analysis and description of the task, b) identi-
fying required resources from the body, the brain, and the environment, c) formulating a
research hypothesis on how resources may contribute to the task solution, and d) con-
ducting experimental evaluation on the task. This methodology is adopted in this work
with the particularity that the interest is focused on behavior automation, and not on
understanding the natural being. Next, the first three methodological steps are described,
whereas the forth one is treated in the case studies of Secs. 5.5.4 and 5.5.5.

5.3.1 Mimicking human walking style

The study of behavior dynamics as complex systems is a widely known methodology
in automation research that is rooted in the fields of physics and mathematics. Within the
field of developmental psychology, Thelen & Smith [175] has studied human development
as a complex, far-from-equilibrium, open system. Although the degrees of freedom of
such a system is very high, interactions between components would produce patterns that
emerge as behavior in the environment with a spatial and temporal order, which can be
mathematically described. Thus, the state-space description of behavior is an abstraction
used for studying human development by reducing its dimensionality. The idea behind
is that configurations emerging from collective interaction of individual elements increase
until dominating the behavior of the system, and can be described by order parameters
(i.e., the state variables). Regions in the state-space that function as attractors to the
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state variables characterize behavioral modes. An important goal of dynamics analysis is
to identify control parameters, which are endogenous or exogenous variables that assemble
the state-space in particular attractor regimes.

Steering and obstacle avoidance dynamics was investigated in Fajen & Warren [65].
An experiment was conducted where subjects carried a head-mounted display. Partici-
pants were instructed to walk freely toward the goal while avoiding obstacles. Recorded
trajectories were compared to the author’s first- and second-order description of the be-
havior, which consisted in the state-space abstraction of the heading direction and linear
velocity with respect to a fixed reference. Hence, the control parameters were perceptually
available to subjects, including the goal and obstacles bearing and distance.

Unfortunately, in the Fajen & Warren study bilateral symmetrical stimuli were used,
so both the obstacles and the goal were conceptually represented as points on the plane.
Normally, people tend to approach the front of a coffee machine or a drawer, in order
to facilitate manipulability. For cases like those it is important to consider a particular
perspective of the object. Furthermore, objects may be located at different heights to
which the agent must direct the gaze. In this more complex scenario, as detailed in
the previous chapter, the localization Bζ of the object is represented within a sensory
ego-cylinder (see Eq. (4.15) and Fig. 4.2).

An egocentric first-order description of object approach named human-mimic walk
(HMW) is proposed in this work. HMW describes the behavior from the observation of
localization error Bê (see Eq. (4.16)). Human walk is mimicked in order to take into
account motion aesthetics. That is, non-holonomic motion is used when humans are far
from objects and targets, but holonomic motion is preferred in proximity to the goal. Let
ḣ and ṅ denote, respectively, the holonomic and non-holonomic evolution of the walk. A
sigmoid transition 0 ≤ λ ≤ 1 between the motion policies can be established depending
on the distance Bêρ, such that

HMW : λḣ + (1− λ)ṅ. (5.1)

where λ = 1/(1 + exp(s1(êρ − s2))), the parameter s1 is a proportional gain, and the
parameter s2 is the sensitive distance for the transition. The notation for Bê is simplified
to ê to improve readability

The holonomic evolution ḣ of the walk is defined so the position components of ê are
expressed in Cartesian coordinates for convenience (since the walk primitive of Nao uses
this coordinate system). Thereby,

ḣ =

 Ẋ
Ẏ
ω

 =

 k1cos(êθ)êρ
k2sin(êθ)êρ

k3êφ

 . (5.2)

Ẋ and Ẏ are the linear velocities, and ω is the angular velocity. Independent corrections
along the 3 degrees of freedom are obtained from the proportional gains k1, k2, k3

In non-holonomic motion the correction on the lateral distance to the desired location
and the body orientation are coupled (since motion on the y-axis direction is not allowed).
As illustrated in Fig. 5.1, rotational motion is induced to reduce both the lateral distance d
and the orientation error êφ. This can be done by estimating d from on-board observations,
such that d̂ = sin(êφ − êθ)êρ. Thus, the desired angular correction is
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ω = −k4d̂+ k5êφ, (5.3)

with proportional gains k4 and k5.

~yo

~xo

d̂

êφ

O

τ∗

Figure 5.1 – HMW non-holonomic angular motion. The variable d̂ represents the observed
lateral distance to the desired location τ∗ in relation to the object. The object frame origin
is denoted O. The observed orientation error êφ is shown with respect to the sagittal plane
direction (blue).

By substituting d̂ in Eq. (5.3), the desired angular correction can be expressed, such that

ω = k4sin(êθ − êφ)êρ + k5êφ. (5.4)

It is interesting to notice that the contribution of the term at the left (lateral distance
correction) can be divided by the distance localization error component êρ, so the regula-
tion of the body orientation error is done in relation to the distance error. Thereby, the
non-holonomic evolution of the walk ṅ is defined, such that

ṅ =

 Ẋ
Ẏ
ω

 =

 k6êρ
0

k4sin(êθ − êφ) + k5êφ

 . (5.5)

Motion in the sagittal plane is regulated by the gain k6. Finally, by combining Eqs. (5.1),
(5.2), and (5.5), HMW is defined, such that

HMW :

 Ẋ
Ẏ
ω

 =

 λ(k6êρ) + (1− λ)(k1cos(êθ)êρ)
(1− λ)(k2sin(êθ)êρ)

λ(k4sin(êθ − êφ) + k5êφ) + (1− λ)k3êφ

 . (5.6)

A simulated comparison between HMW and the description in Fajen & Warren [65]
is proposed in Fig. 5.2. As noticed, with HMW the agent completes the approach with
the body oriented according to the heading direction of the object.

5.3.2 Resources available

As listed in Tab. 5.1, the task solution requires a combination of resources from
the brain, the body and the environment (Wilson & Golonka [187]). Short- and long-
term memory are required to store information about the actual context and the desired
state, respectively. The memory contents include endogenous (e.g., proprioceptive) and
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Figure 5.2 – Top view simulation of the Cartesian trajectory followed by the agent. Blue
circumferences represent position and gray trajectories represent heading direction. In red initial
configurations, in green desired configurations. Distances are expressed in meters. On the left,
the description by Fajen & Warren [65]. Notice that final body orientation is variable, since
only object bearing is observed. On the right, the HMW proposal is shown.

exogenous (e.g. visual) data, and more elaborated perceptions of spatial relations. The
agent employs ego-centric localization relying on a top-down feature attention process.
The perceptive system includes a sensory ego-structure for localizing stimuli. Actions in
the task are ensured by the skills of walking and head direction. Finally, the environment
is assumed to provide a plane surface for motion, where objects are considered to be
convex and static.

Type Resource Description
Brain Memory Long- and short-term storage of bodily sensations and

spatial relations.
Feature attention Top-down saliency.
Localization Egocentric, represented in the sensory ego-cylinder.

Body Proprioception Joint encoders.
Vision Color vision.
Motion primitives Walking and head direction.

Environment Plane floor The agent moves on a plane surface.
Static scene Stimuli are fixed, there are no obstacles along the way.
Convex objects The object morphology is expected to be convex, with

the tracked face distinguishable from the other faces.

Table 5.1 – Resources available to solve the task.

5.3.3 Modeling a behavior scheme

Clark [47] has described the action-oriented dimension of knowledge, as distinct from
the action-independent dimension. Accordingly, agents possess action-independent knowl-
edge in the form of general properties about objects (e.g., shape, weight), and action-
oriented representations including idiosyncratic, locally effective features to guide behavior
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(Ballard 1991, as cited by Clark [47]). Thus, general knowledge about the object is accom-
panied by locally-driven bodily sensations that the agent experiences in the presence of a
particular instance of the object. As colloquially expressed, the task would be equivalent
to ask the agent: to approach the blue drawer at the left. Notice that such description
is only valid in context, and will not be useful to direct the agent toward other sort of
drawers. The behavior model proposed in this work is inspired by Clark’s philosophy,
which is detailed next.

A. Behavior emergence

The behavior scheme is modeled as a sub-sumption architecture (see Brooks [29]). In
these architectures behavior is considered to emerge from the joint contribution of several
independent and self-contained subsystems, where there is no central process in charge of
goal coordination. The scheme proposed is illustrated in Fig. 5.3. Three different sorts of
tasks are defined: a) motor tasks control actuation in the environment, b) sensory tasks
handle feedback from the body and the environment, and c) localization tasks ensure
coupling between the motor and the sensory tasks.

+

−

Vref uw
q

ζ

D

S

Š

uh

ζ̃

ζ̃

υ̂

ê

Figure 5.3 – Behavior block diagram view. The behavior corresponds to the regulation of the
observed state ê. The egocentric localization of the stimulus is denoted ζ. The predicted local-
ization from a motion model is denoted ζ̃. The control signals uw and uh are sent respectively
to the walk and the head-direction motion primitives. Data retrieved from the robot are the raw
image D and the current joint configuration q. The salient feature set S is ranked according to
the anticipation Š. The observation of the object’s pose in the vision system is denoted υ̂.

1) Walk task

It is in charge of controlling the walk primitive to steer the agent toward the object.
From the localization error estimation (see Eq. (4.16)), a motion command is sent to
the robot in agreement to Eq.(5.6). Motion has to be expressed with respect to the
walk primitive reference system. As illustrated in Fig. 4.13, for the robot Nao motion is
expressed with respect to frame G, that is placed at the intermediate point between the
center of projection of both feet on the ground.
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2) Look-at task

It is in charge of controlling the robot articulated neck to direct the view toward the
object. This task is formally defined in Sec. 4.4.2. It is constituted by two internal sub-
tasks executed in sequence. The first one corresponds to an open-loop predictive PBVS
scheme that directs the gaze toward a predicted location on the scene. The second one
corresponds to a regulatory close-loop IBVS scheme that receives by visual feedback the
desired retinal distance to center the object in the field of view.

3) Emergence task

Visual exploration and scene understanding are efficiently accomplished by human
beings. When approaching the object, exogenous (e.g. the visual stimulus) and endoge-
nous (e.g. the body posture) information emerge. Moreover, studies of human attention
(see Sec. 3.2) have pointed out a mechanism in charge of information saliency selection
originated from two independent processes, one occurring deliberatively (i.e. top-down),
and the other involuntarily (i.e. bottom-up). The Emergence task is inspired by Feature
Integration Theory (FIT) of attention (see Sec. 3.2.3). In this sense, visual saliency is or-
ganized into separate features or layers representing different properties (e.g. color, edges,
shapes, optic flow, etc). The endogenous saliency must also be represented. The source of
information considered in this study is proprioceptive, that is, the instantaneous posture
of the agent. The objective of the emergence task is thus to register behavior context.
The output of the task is the feature set S containing information saliency.

4) Anticipation task

A work by Lungarella & Sporns [114] has explored the relation between sensory-motor
coordination, body morphology, and information processing. In the study quantifiers for
information content were defined in order to estimate the temporal evolution of sensory
and motor information under two experimental conditions: sensory-motor coordination,
and uncoordinated motion. The results corroborated the research hypothesis according
to which higher levels of information correlation occur when actions and perceptions are
coordinated. Moreover, sensory-motor coordination reduced information dimensionality,
from perceptual regularities induced in the task (i.e. sensory data entropy was reduced).

Thus, the objective of the anticipation task is to conveniently exploit the two effects
described for sensory-motor coordination (i.e., the induction of perceptive regularities and
information redundancy), in order to provide the saliency attention process with informa-
tion on the coupling. Therefore, a prediction for next state observation is produced from
the last observation and the current action. Predictive models have been employed for
diverse purposes in robotics and automation research. Just to mention a few applications,
they have been used for calibration tasks (see Khalil & Dombre [96]), robot localization
(see Thrun et al. [178]), and motor coordination (see Arbib et al. [7]).

5) Embodied filtering task

This task is inspired by the spotlight metaphor of attention (see Sec. 3.2.2) in the
sense that knowledge about where in space a stimulus will occur can be used to improve
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perception efficiency. Therefore, perception anticipation can be conveniently related to
feature emergence, so information saliency is compared to predicted saliency. As shown
in Fig. 5.4, a periphery-to-center flow projects information from salient regions (e.g, the
blobs centroids) to the sensory ego-space. It is also possible to proceed in the opposite
direction, a center-to-periphery flow can be employed to predict the evolution of visual
features. Unlike the Verification Vision principle (in Bolles [21], see Sec. 3.3.4), projections
are expected to be coarse, since action-independent object representation is unavailable
at this stage, and acquisition frequency is expected to be low.

Figure 5.4 – Embodied filtering illustration. The agent is approaching the red can on the top
of the table. The white dots correspond to the center of the salient objects. The estimate on the
distance to the blob center is unavailable during the saliency analysis, thus, the last observation
B ζ̂ρ is heuristically used (see Eq. (4.15)). The projection of the blobs in the ego-cylinder is
represented by the blue dots. The predicted localization is represented by the yellow dot.

6) Perception task

The task goal is to estimate the object’s pose with respect to the visual system.
From information provided by the filtering process, where features relate body sensation
emergence with prediction, the agent solves the Perception task in two phases. Firstly,
it selects the retinal region associated with the object at a certain level of confidence.
According to Brooks [29], one of the challenges encountered in the study of emergent
behavior is to find efficient ways to fuse multiple sources of perceptual information when
needed. In this work a Bayesian network structure is proposed for this purpose (Sec.
5.4). Secondly, in case the object is present in the scene view, its posture with respect
to the visual system is determined by fitting the salient region to the object 3D model
(many geometries can be considered, the cases of a cylindrical container and a rectangular
surface were detailed in Sec. 4.5.3).
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7) Ego-localization task

The approach to the object is based on ego-centric localization (see Sec. 4.5). Ac-
cordingly, the definition of the sensory ego-cylinder is obtained by heuristically setting the
z-axis perpendicular to the ground, under the assumption of motion on a plane surface.
Localization observation is computed from the reference frames G, T , and C, and depends
on the current joint configuration q of the robot. Thus, in this task the control parameters
(see Fig. 4.2) are considered and the localization error in Eq. (4.16) is computed.

5.4 Behavior autonomy

In the behavior scheme modeled (see Fig 5.3) the agent must accomplish the task
by relying on action-independent object knowledge (i.e. a rough 3D model), action-
oriented representations obtained from embodied sensations, and a supervised demon-
stration. However, two important aspects remain to be discussed concerning robust ap-
plications in service robotics. The first one is how to combine these elements for organized,
reusable, and efficient task solutions. The second one is how to know when things are not
going as expected, so error recovery is possible. These two aspects are analyzed next.

The field of mobile applications has progressed enormously in recent years from ad-
vances in the fields of information technology and artificial intelligence. Thus, ubiqui-
tous computing relying on client-server computational frameworks is a mature technology
these days. These ideas have started to inspire researchers in service robotics when facing
challenges in applications for heath-care, assistance, and other domains. Hence, robot
applications could share knowledge or be assisted by cloud-connected resources. Recent
initiatives have focused on the definition of robot architectures (e.g. Vasiliu et al. [181])
integrating distributed resources to the task, thus mitigating specific constraints of the
robot platform. In parallel, several research communities have engaged in the definition
of ontologies for sharing knowledge, distributed learning, and the collection and reuse of
information for practical applications (e.g. Waibel et al. [184]).

Considering the execution of the approach task under disturbed conditions, in this
work it is proposed a solution where the agent is endorsed with a locally autonomous im-
plementation of the behavior scheme that can be self-assessed. Once perception becomes
too uncertain, the agent resorts to remote computation for support. Figure 5.5 illustrates
the hybrid architecture proposed. The Behavior node implements the local task (for this
study it corresponds to scheme described in Sec. 5.3.3). Based on the analysis of local
information obtained by action-perception coupling (i.e. the embodied features described
in Sec. 5.4.1), the Deliberation node estimates task confidence, so remote resources are
used in case confidence is below a given tolerance. This is ensured by a Bayesian network
implementation (detailed in Sec. 5.4.2), that fuses embodied features signals to discrimi-
nate the object and to evaluate consistency. The Deliberative process must also preserve
local safety (e.g. by stopping motion, or sending the robot to rest), since remote access to
resources is subject to disturbance (e.g. interruption in the network service). Therefore,
safety would not depend on remote resources. The philosophy behind the hybrid model
will be better understood in Sec. 5.5.3, where the case study implementation is detailed.
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Figure 5.5 – Hybrid task architecture. The deliberative process evaluates consistency of au-
tonomous local behavior. Remote processes are queried for support when inconsistency exceeds
established tolerance.

5.4.1 Embodied features

A set of embodied features is proposed in this work as action-oriented representations
for the task. The features carry information on the spatial, morphologic, and topographic
properties related to the visual stimulus, and the body posture during the task. Table
5.2 presents the features definition and Fig. 5.6 illustrates the concept behind. The first
two features are based on segmentation blob moments (see Eq. (3.4)). The radio-aspect
F3 is defined from the width and height of the minimum bounding-box (MBB) enclosing
the blob, where the angle between the MBB’s principal axis and the image x-axis is
γ = 0.5(atan(2m11/(m20 −m02))). Feature F4 includes proprioceptive information from
the instantaneous neck posture. Feature F5 represents the topographic relation between
blobs. It is a descriptor of saliency at a four cardinal neighborhood.

Feature Description
F1 = (m10

m00
, m01
m00

) Retinal blob centroid.
F2 = m00 Retinal blob area.
F3 = Hheight/Hwidth Ratio-aspect, where H denotes the oriented bounding box.
F4 = (α, β) Posture, with α and β the pitch and yaw neck angles.
F5 = v(S, s) Topology, where v attributes a 4-bit vicinity code according to

the saliency set S around the blob s.

Table 5.2 – Embodied features. The Features F1 and F4 are directly expressed in the sensory
space. All but F4 capture information about the stimulus (i.e retinal location, area, morphology,
and topological arrangement).

The feature proposal is inspired by human attention theory. In this sense, based
on the spotlight metaphor and FIT (see Sec. 3.2) some features represent information
directly or relative to the sensory space (e.g. object centroid in the retinal, joint positions).
It is important to notice that despite some features are computationally derived (i.e. F1,
F3, F5), there is no obvious redundancy in the information they provide.

A second set of variables are defined by considering the anticipatory process. For
this, a deterministic motion model is employed under the assumption of an ideal noise-
free robot, moving at constant velocity v = [Ẋ Ẏ ω]t along the time interval ∆t. Thus,
a prediction for the localization of the object B ζ̃ is obtained from the last observation
available B ζ̂, and the expected displacement m = v∆t. Table 5.3 presents the definition
of the variables where actual saliency is related to anticipated information flow. The
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Blob properties Head posture Vicinity code

F2:Area

F3:Radio-aspect

F1:Centroid

a

11
1

0

Figure 5.6 – Embodied features illustration. On the left, features obtained from blob measure-
ments. At the center, the body posture feature representing the neck attitude. On the right,
the topographic relation between salient blobs expressed through a vicinity descriptor.

principle of feature F1 design is illustrated in Fig. 5.4. Following a periphery-to-center
flow, information from salient regions (i.e. blobs centroids) are projected to the sensory
ego-space. Notice that among the variables defined, some are not directly related to the
prediction of the localization. Such is the case of F 3 and F 5, where the criteria used for
anticipation are the statistical regularities induced by the sensory-motor coupling (e.g.
the perspective from which the object is seen will change gradually between consecutive
acquisitions, as the robot approaches it).

Expression Description
F1 = |σ(F ′1 − B ζ̃)| F ′1 denotes the projection of the blob centroid in the ego-space,

B ζ̃ is the predicted localization of the object, and σ weights the
contribution of each component.

F2 = 1− F2(
ζ̂ρ+mρ
ζ̂ρ

)
F2(k−1)

Relation between the actual blob’s area F2 and the simulated area
from the expected motion m. Here F2(k−1) denotes the saliency
during the last observation B ζ̂.

F3 = |F3(k) − F3(k−1)| Absolute difference between the current radio-aspect and the last
perceived denoted by F3(k−1).

F4 = |F̌4 − F̃4| Absolute difference between the simulated posture of the neck F̌4,
that would center the blob on the visual field, and the predicted
attitude of the neck F̃4.

F5 =
∑
i∈N

δ(F5(k−1)i, F5i) Estimate of the topographic relation through the Kronecker
delta function δ(a, b). The neighborhood set is defined by N =
{left, right, up, down}.

Table 5.3 – Filtering features.

5.4.2 Bayesian network for information fusion

The information provided by the embodied features is diversified, capturing various
aspects of the local context. Moreover, different spatial reference frames are involved.
Hence, a Bayesian network (BN) is defined to fuse information, so saliency is filtered
for localizing the object. Thus, a BN is a directed acyclic graph that represents the
conditional probabilities of interconnected random variables. BNs have been used for
diverse automatic diagnosing and recognition tasks (see Ertel [63]). In a BN, a node is
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assumed to be conditionally independent from non-successors, given its parents. The joint
probability p(N1, ..., Nn) of the nodes Ni is expressed by

p(N1, ... , Nn) =
n∏
j=1

p(Nj|parents(Nj)). (5.7)

One important advantage of knowledge representation through BNs is that the infor-
mation contained is directly understandable by humans, which facilitates doing future
modifications (e.g. including new features, or more complex observations).

Object

B3B2B1 B4 B5

O3O2O1 O4 O5

Figure 5.7 – Bayesian network for contextual information fusion.

As illustrated in Fig. 5.7, the structure proposed for the network corresponds to
a tree of height 2. The root node is a binomial random variable, which represents the
probability that the blob saliency is related to the object of interest. The intermediate
nodes Bi are binomial random variables that represent a posteriori probability of the
features, given the observation of the object. This layer is included in order to simplify
adjustments to the contribution of the features to the discriminative process. The leaves
Oi are multinomial random variables that represent a posteriori probability of observing
a particular intensity of Fi, given Bi. The tree can easily accommodate new features by
horizontal expansion. Formally, the query of interest is defined by

p(Object|O1, ... O5) = 1
Z

5∏
i=1

p(Object)p(Bi|Object)p(Oi|Bi), (5.8)

with Z a scaling factor depending on the observations Oi available. A tutorial on the
calculation of p(Object|Oi) is given in Appendix A.

Probabilistic independence between the branches of the network (the nodes Bi and
Oi) is assumed for convenience, which is also known as naive Bayes classifier. Phys-
iology research has shown that perception in cross-modal tasks can be described as a
context-dependent Bayesian multi-sensory integration process (Denve & Pouget [54]). It
is believed that such knowledge could represented by a network of basis functions (Pouget
& Sejnowski [148]). Thus, in physiology research, the hypothesis of probabilistic indepen-
dence between multi-sensory cues would hardly be justified. However, as pointed out by
Ertel [63], the naive classifier assumption has led in practice to good results.

The most likely blob b among the saliency set S is obtained by maximizing the
expression

s = argmaxb∈Sp(Object| Bi, Oi). (5.9)
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Thus, the BN can be used to discriminate saliency, while providing an estimate of certainty
according to expectations. As it shall be discussed in the case study of Sec. 5.5.5, this
information is of crucial importance to the hybrid architecture’s Deliberative process
presented in Fig. 5.5, in charge of deciding whether or not resorting to remote assistance.

From the previous considerations, saliency discrimination processing consists in dis-
cerning between two hypotheses: the null hypothesis according to which a particular ob-
servation does not relate to the object, and the alternative hypothesis that considers it as
related to the object. Therefore, the estimation is susceptible of two types of errors. The
error type T1 consists in accepting observation unrelated to the object (i.e. a false posi-
tive), whereas with the error type T2 related observation is rejected (i.e. a false negative).
Let the events of interest be enumerated by E1i = {Bi,Object}, E2i = {¬Bi,Object},
E3i = {Bi,¬Object} and E4i = {¬Bi,¬Object}. Ideally, the information provided by Bi

to the discriminative process is maximal when p(E1i) = p(E4i) = 1, so p(E2i) = p(E3i) = 0.
Contrarily, no information is provided at the uniform distribution, that is, when the prob-
ability of the aforementioned events is 0.25. As shown in Fig. 5.8, the probability distri-
butions p(Bi|Object) and p(Bi|¬Object) can be estimated at iteration t from the previous
decisions taken by the BN, according to the expression

p(Bi|Object)(t) =

k∑
d=1

γd−1p(Bi|Object)(t−d)(
1−γk
1−γ

) . (5.10)

The parameter k corresponds to the size of a temporal sliding window. The role of the
constant γ ∈]0, 1] is analogous to the discounted reward factor employed in reinforcement
learning, where the contribution of neighbor states is related to the proximity to the
actual state. The denominator is a normalization term that corresponds to the solution
of the geometrical series

j∑
i=1

γi. At each decision process the feature set Š = {Šo, Šo} is

partitioned into the set Šo, that contains observations related to the selected candidate,
and the set Šo, that contains observations related to discarded candidates. Thereby, the
previous distributions are obtained from

p(Bi|Object)(t−d) = 1
n

∑
oi∈ψ

p(E|oi). (5.11)

where n = |ψi| and oi is the observation of the intensity of feature F i. For the distribution
p(Bi|Object) the set considered is ψ = Šo and E ∈ {E1i,E2i}, whereas for the distribution
p(Bi|¬Object) the set considered is ψ = Šo and E ∈ {E3i,E4i}. In Sec. 5.5.5 different
policies are studied for determining the probability distribution of features Bi.

5.5 Case studies

The behavioral scheme proposed in Sec. 5.3.3 consists in a general description of
the task solution. Thus, a particular implementation for the model components must
be provided and evaluated. This is done through the definition of three case studies.
Since embodied observations are used, the objective of the first study is to estimate the
system parameters. For this, the spontaneous occurrence of the features is registered
under distinct acquisition delay profiles. In the second study, the task is evaluated in
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Figure 5.8 – Dynamic policies for the Bayesian network. Past observations Oi(t−1, ... ,k) are
shown in green (these nodes don’t belong to the network). Gradual color fading illustrates
a decaying contribution (taking γ < 1) according to recency (see Eq. (5.10)). In red the
dynamically updated nodes Bi.

simulation, where the robot has to approach a particular object among multiple instances.
Different policies for determining the probability distribution of features Bi (see Fig. 5.7)
are compared. In the third study, an implementation of the hybrid architecture of Fig.
5.5 is evaluated in experiment, where the robot has to approach multi-color tea cans. In
the task, autonomous execution is firstly studied in isolation (only the Behavior module
is enabled), to verify whether the agent can perform the task without remote assistance.
Next, the Deliberative module is enabled for detecting abnormal situations, so improving
the success rate.

5.5.1 Materials and resources

The robot platform is the humanoid Nao by Aldebaran Robotics. The control pro-
gram is implemented in the C++ programming language. Images are captured at 320×240
pixels resolution. Vision processing is obtained with the support of the OpenCV 2.4.8 li-
brary. The Bayesian network implementation is provided by the dlib C++ Library 18.13.
For prototyping the network, the SamIam tool 3.0 is also used. The robot functionalities
are accessed through the naoqi 1.14 library. The algorithms are developed in the Eclipse
Juno IDE, under Ubuntu 12.04.5 LTS (Precise Pangolin). Simulations are conducted in
Webots 7.4.0 by Cyberbotics. The results are processed in Gnu Octave 3.2.4 and KNIME
(data analytics, reporting and integration platform) 2.10.4. On-board calculations relied
on an ATOM Z530 1.6GHz CPU, with 1 GB RAM, 2 GB flash memory, and 4 flash mem-
ory dedicated to user purposes. The study also included a DELL Vostro 1500 laptop (Intel
Core 2 Duo 1.8GHz 800Mhz, 4.0 GB DDR2 667 MHz RAM, 256 MB NVIDIA GeForce
8600M GT), in charge of processing data received from on-board captures and computing
the desired state sent to the robot behavior primitives through a wireless connection.

5.5.2 Behavior scheme implementation

A. Motor tasks

In the Walk task the agent has to move to a desired location, and to stop once the
observed localization error Bê1 (as defined in Eq. (4.16)) is smaller than a given threshold
ε. The tolerance considered is the same as Sec. 4.6.2 which is a radial distance ερ = 0.05
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meters (m), the azimuth εθ = 0.04 radians (rad), and εφ = 0.1 rad for the orientation
component. The walk primitive is controlled in position, since it provides more precise
results. Motion commands are expressed in Cartesian coordinates conforming to Eq.
(5.6), and sent to the walk primitive under the assumption of constant velocity motion.
The robot may not faithfully execute the request, so the estimated motion Gm̃ obtained
from the request Gm = [X Y ς]t (with the linear components denoted X and Y , and the
angular component denoted ς), is defined by

Gm̃ = HGm, (5.12)

where H is a 3 × 3 matrix that represents the estimated efficiency of motion, including
the coupling between the motion components of the walk primitive. As reported in the
case first study, the estimation of H corresponds to the left side of Tab. 5.4.

The mean walk velocity under the gait configuration recommended by the manufac-
turer is estimated to be around ṽ = [0.022 m/s 0.04 m/s 0.106 rad/s]t. Continuous motion
is achieved by sending commands at regular time intervals. In order to prevent unforeseen
delays affecting the fluidity of the walk, the actual displacement sent considers a larger
delay (e.g. 1.5 times the expected value). Thus, a new command would be sent when
the routine is about to finish the previous one. If this would not be the case (e.g. due
to losing the object, a program crash, etc.), the robot would stop moving after a while.
This strategy ensures a fluid walk while keeping the safety aspects. For speeding up task
convergence, given observation noise and the fact that the walk primitive is less precise
in continuous motion, once the robot is nearly at the desired location (at Bê1ρ < 0.1 m),
the Walk task switches to a step-by-step policy (i.e. a new correction is sent only after
finishing the previous one).

The Look-at task is also controlled in position, conforming to the implementation
detailed in Sec. 4.6.2. Thus, a tolerance ε = 0.03 rad is admitted for convergence of ê2
in the predictive motion sub-task, and a tolerance for 10 pixels is accepted for the object
centering sub-task Te3 (see Eq. (4.21)). The head posture is regulated independently
from the walk (i.e. the tasks run in parallel), which means that motion induced by the
Walk task can affect convergence of the Look-at task, notably, at slow turning of the head.
Hence, a heuristic velocity profile of 4 rad/s was employed to obtain convergence for the
Look-at task.

B. Localization tasks

The implementation of ego-localization was detailed in Sec. 4.6.3. In this study B
is selected as the same definition of frame G (see Fig. 4.11). The Anticipation task is
based on deterministic prediction, assuming an ideal noise-free robot moving at constant
velocity (see Eq. (4.17)). A saturation is applied to the motion estimation Gm̃ in Eq.
(5.12), in order to take into account the maximum velocity Gv̊ attainable under the actual
gait settings. Thereby, the motion estimation considered is Gm̄ = min(Gm̃, Gv̊∆t), with
v̊ taken in this study as the mean velocity profile of the default gait configuration of Nao.

C. Sensory tasks

The Emergence task computes multi-modal sensory estimates for top-down visual
attention. Retinal saliency is obtained through the whole segmentation technique (see
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Sec. 3.4.3). Thus, a supervised color model is initially built by sampling the pixels that
represent the object of interest on the image. This model is then reused for successive
segmentations. Hence, the task then computes the multi-modal features detailed in Tab.
5.2 from the blob morphology and disposition on the image, and the acquisitions from
the neck joints encoders.

The Embodied Filtering task firstly computes the variables detailed in Tab. 5.3,
in relation to the localization prediction Gζ̃ (see Eq. (4.17)). The task then computes
the BN illustrated in Fig. 5.7. Since observations on the leaf nodes are discrete events,
clustering is employed to rank the measured signals according to levels of intensity. Data
partitions are defined from the statistical properties of the information flow recorded in
the task (the numerical values and the way to proceed to calculate them is detailed in Sec.
5.5.4 and Tab. 5.6). Five partitions are established from the mean µi and the standard
deviation σi of features F i (see Tab. 5.3). Thus, observations are grouped according to
f(Fi, µi, σi), such that

f(Fi, µi, σi) =



L0 ← Fi if Fi ≤ µi − 4σi
L1 ← Fi if µi − 4σi < Fi ≤ µi − 2σi
L2 ← Fi if µi − 2σi < Fi < µi + 2σi
L3 ← Fi if µi + 2σi ≤ Fi < µi + 4σi
L4 ← Fi if Fi ≥ µi + 4σi

(5.13)

Given the symmetry around L2, only three clusters are defined to represent the levels
of intensity of features Fi in the leaf nodes Oi of the BN. Thereby, the nearest neighbor
method (see Ertel [63]) is employed to classify observations, such that

Oi =


0 if Fi ∈ L0 ∪ L4
1 if Fi ∈ L1 ∪ L3
2 if Fi ∈ L2

. (5.14)

After the BN evaluation, the selected retinal region is passed to the localization
routine in the Perceptive task which is in charge of determining the object pose in the
camera frame. The principles behind the implementation of this routine were detailed in
Sec. 4.5.3, where a cylindrical wrapper and a rectangular surface were modeled.

5.5.3 Hybrid architecture implementation

As illustrated in Fig. 5.5, three components are defined in the hybrid architecture:
the nodes Behavior, Deliberation, and Remote Processing. The implementation for the
Behavior node has been provided in Sec. 5.5.2. Thus, it includes the autonomous behavior
scheme developed from the EC methodology. The implementation of the Deliberation
node (which is in charge of detecting task inconsistency and eventually requiring remote
assistance), is based on two important estimates obtained from the activity of the BN:
the degree of confidence ψ, and the discriminative power %. Accordingly, ψ is defined by

ψ = p(Object| Bi, Oi), (5.15)

where p(Object|Bi, Oi) is the probability issued by the BN, given the intermediate variable
Bi and the observed evidence Oi. The discriminative power is defined by
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% = ψ1 − ψ2, (5.16)

so ψ1 and ψ2 is the degree of confidence on the two most likely candidates in the saliency
set S, obtained by applying Eq. (5.9) twice: one to the full set S, and the other to the
reduced set Sr = S − {s1} (i.e. excluding the first selection s1).

The state automate is illustrated in Fig. 5.9. The transition events are determined
by t(, ) which observes ψ and % to decide whether remote help is requested, thus

t(ψ, %) =
{

True if ψ > ε1 ∧ % > ε2
False otherwise . (5.17)

Therefore, the transition events are defined so g0 is the task initiation request event,
g1 = t(ψ, %), g2 = ¬g1, and g3 is an interruption signal to stop the program. The thresholds
for the transition are ε1 and ε2. In relation to the states, in Start the program is initialized.
Remote Assistance includes a graphical user interface (GUI) of the application program
where the user can access the on-board captures and perform actions, such that: a)
providing the visual demonstration for the object recognition, b) clicking above a salient
region to specify the desired object to be tracked, c) suggesting a search direction to
relocate the object, or d) aborting the program. In the Deliberation state data received
remotely is passed to the Behavior module. A start/stop signal is also sent to the robot
in case the event g2 or g3 are produced (either from a remote user request or a local
erroneous condition detected). In the Local Execution state robot motion is controlled
by the Behavior node. In the End state the application program finishes the execution.

Start

Remote-
Assistance Deliberation Local-

Execution

End

g0

g2, g3 g1

g3

Figure 5.9 – Deliberation state automate. The transition events are denoted by gi. Compulsory
transitions have no events associated.

5.5.4 CS-I: Model parameters estimation

The objective of this case study is to characterize the system and to estimate the
model parameters, including the motion profile of the walk primitive and the evolution
of the embodied features. Since the behavior model relies on motion primitives already
acquired by the agent, it is necessary to provide the Anticipation task with knowledge
relevant to the locomotion style of the robot. Similarly, the Embodied Filtering task relies
on information of how the features Fi evolve under undisturbed conditions. Furthermore,
in view of the multiple constraints affecting motion generation (e.g. keeping balance,
energy safe, etc.), it is possible that the walk primitive does not accurately execute the
motion requests, and such errors must be taken into account. These aspect are evaluated
through two sub-cases studies.
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A. Experiments

In the first sub-case study the agent is required to walk in open-loop to distinct
locations under the default gait profile as recommended by the manufacturer. The case
conditions are variations in the step distance along the 3 DOF of motion. The ground
truth is obtained in simulation from Webots. Variations of 0.01 m are applied in the
positive and negative sense within a maximal distance of 0.1 m for the X and Y linear
motion, and 0.04 rad within a maximal turn of 0.4 rad for the angular motion. Each
case is repeated three times to avoid simulation bias, so the total number of cases are 3
(repetitions)× 3(DOF) × 20 (10 cases in the positive and negative senses) = 180. The
second sub-case study is designed to study the anticipation process. For this, a controlled
scene containing a single salient soda can was designed. The robot’s task is to approach
the can from 3 different initial configurations. Twenty delay profiles for the visual feedback
are simulated (from 100 ms until 2000 ms, varying in 100 ms), each case is repeated 2
times, so the total number of cases are 2 (repetitions) × 3 (initial conditions) × 20 (delay
profiles) = 120.

B. Results

The results of the first sub-case study are given in Tab. 5.4. On the left segment
the mean coupling was calculated by relating the motion requested to the ground truth.
As the figures on the diagonal suggest, the angular displacement ς is the most efficiently
accomplished by the walk primitive, followed by the sagittal displacement X. The least
efficient motion corresponded to the lateral displacement Y , which, as shown on the right
segment of the table, also presented greater variability.

µ X Y ς σ X Y ς

X 0.613 0.351 0.199 X 0.057 0.054 0.122
Y 0.273 0.476 0.017 Y 0.102 0.174 0.024
ς 0.007 0.022 0.662 ς 0.008 0.018 0.055

Table 5.4 – Motion profile evaluation. The average relation µud = mean(wu/w∗d) and the
standard deviation σud are calculated for u, d ∈ {X,Y, ς}. The ground truth motion wu was
obtained from Webots, with wd

∗ denoting the motion request. The information of the table
should be read as follows. When requested to move in the sagittal plane direction w∗X meters,
the robot moved on average wX = 0.613w∗X meters in the sagittal plane direction, wY = |0.273w∗X|
meters in the frontal plane direction, and rotated wς = |0.007w∗X| radians.

The results of the second sub-case study are provided in Tab. 5.5, where the difference
between the observed localization Gζ̂ and the predicted localization Gζ̃ under distinct delay
profiles is given. A comparison on the mean localization discrepancy is illustrated in Fig.
5.10. It is noticed that discrepancy in bearing µθ appears to be most sensitive to increasing
delay, whereas the height dimension µι would be the least sensitive. The heading direction
discrepancy µφ appears to be always high. Table 5.6 presents some of the results obtained
for the evaluation of the features Fi under distinct delay profiles. Figure 5.11 illustrates
the comparison on the evolution of the feature means. The ascending tendency is more
pronounced for the features F 2, and F 4.
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r µρ σρ µθ σθ µι σι µφ σφ
100 0.026 0.055 0.013 0.009 0.004 0.008 0.292 0.466
300 0.020 0.024 0.920 0.062 0.021 0.045 0.040 0.030
500 0.045 0.063 0.046 0.025 0.010 0.032 0.538 0.564
1000 0.045 0.059 0.085 0.047 0.016 0.046 0.607 0.646
1700 0.034 0.040 0.110 0.073 0.024 0.066 0.479 0.483
2000 0.053 0.071 0.118 0.093 0.022 0.045 0.496 0.458
mean 0.042 0.061 0.080 0.054 0.015 0.041 0.461 0.475

Table 5.5 – Difference between the observed localization Gζ̂ and the predicted localization Gζ̃.
The delay profiles r ∈ {100, 200, ... , 2000} are expressed in ms, distances in m, and angles in
rad. The average µd = mean(|Gζ̂d − Gζ̃d|), and the standard deviation σd for each localization
component d ∈ {ρ, θ, z, φ} (see Eq. (4.15)), are shown for some delay profiles r. The last row
presents the global mean obtained by column.
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Figure 5.10 – Mean discrepancy between localization and prediction for each delay profile.
Distances are expressed in m and angles in rad.

r µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4
100 0.011 0.016 0.037 0.075 0.017 0.027 0.046 0.066
300 0.020 0.024 0.080 0.062 0.021 0.045 0.040 0.030
500 0.022 0.030 0.117 0.088 0.027 0.047 0.073 0.092
1000 0.027 0.022 0.119 0.080 0.031 0.037 0.079 0.062
1700 0.044 0.048 0.197 0.099 0.025 0.023 0.123 0.073
2000 0.042 0.042 0.190 0.116 0.032 0.030 0.126 0.094
mean 0.026 0.035 0.138 0.095 0.031 0.038 0.092 0.077

Table 5.6 – Embodied filtering observation. The delay profiles r ∈ {100, 200, ... , 2000} are
expressed in ms. The average µi = mean(Fi) and the standard deviation σi of some delay profiles
r are given for features Fi = {F1, ... , F4} (see Tab. 5.3). Since only one object is salient in the
simulation, the effect of delay over F 5 is not studied. The last row presents the global mean
obtained by column.

C. Discussion

The first sub-case results revealed differences in walk primitive performance along
individual DOFs. Also, a certain level of coupling is observed, so corrections along one
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Figure 5.11 – Evolution of mean values of embodied features defined in Tab. 5.3. F 5 is not
considered since only one object was salient.

motion component may disturb convergence on others. In relation to the second sub-case,
it was observed that increasing delay impacts on the localization anticipation quality. As
shown in Fig. 5.10, highest discrepancy is observed in the mean heading µφ component,
which has to do with the fact that the observation Gζ̂φ is also the noisiest (see Fig. 4.10).
Features F 1, F 2, and F 4 are also negatively affected by delay (see Fig. 5.11), since they
are based on localization prediction from a deterministic motion model. Contrarily, F 3
and F 5 are related to visual characteristics of the scene (e.g. the morphology of the object,
and the topological arrangements between salient stimuli).

5.5.5 CS-II: Simulation of object redundancy

The objective of this case study is to evaluate in simulations whether the robot is
able to do visual selection to approach the object of interest, by discriminating consistent
information in relation to the task context. For this, a scene is designed in Webots where
many cans are available in the robot’s visual field, so it has to approach a particular one
while ignoring the others, relying on the BN model proposed. The desired configuration
is specified by positioning the robot in front of the desired can. Three sub-case studies
were designed to investigate distinct aspects of the BN, which is reported below.

A. Experiments

In the first sub-case study a static policy named BNf is considered for the BN. Thus,
the information provided by Bi to the discriminative process are heuristically fixed, so
p(Bi|Object) = p(¬Bi|¬Object) = 0.9 (i.e., the probability that the feature Bi is true
given the object is true, and the probability that the feature Bi is false given that the
object is false). The task is repeated at 4 initial locations under 26 delay profiles (from
100 ms until 2400 ms, increasing 100 ms; and at 3000 and 4000 ms), so a total of 104
trials are evaluated.

The second sub-case study is designed to verify whether the motion prediction is
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actually needed for the discriminative process. For exploring this issue, the features F1,
F2, and F4 (see Tab. 5.3) are redefined in order to consider the last observation of the
localization instead of the predicted localization. The BNf policy is also employed. The
task is repeated at 4 initial locations under 15 delay profiles (from 100 ms until 1500 ms,
increasing 100 ms), so a total of 60 trials are evaluated.

In the third sub-case study, dynamic policies are investigated for determining in
runtime the contributions of the nodes Bi to the discriminative process. Thereby, a
"pessimistic" policy BNd1 attempts to reduce the false positives (i.e. the error of type
T1 of accepting an observation that does not belong to the object), by updating only the
probability distribution p(Bi|¬Object) (see Eq. (5.11)). An "optimistic" policy BNd2 aims
at reducing the false negatives (i.e. the error type T2 so an observation that is related
to the object is rejected), by updating only the probability distribution p(Bi|Object). A
hybrid policy BNd3 attempts to reduce both types of errors. A time window of size k = 3
and a discount factor γ = 0.7 (see Eq. (5.10)) are set. In order to compare the policies,
and given the fact that feature observations F̄i result from a process of symbolization at
three categories (or levels or intensity, see Eq. (5.14)), the observations Oi registered in
the first sub-case study are compared offline against the dynamic policies.

B. Results

Figure 5.12 presents the trajectory followed from two trials of the first sub-case study.
Despite many soda cans being placed on the scene, the agent was able to systematically
approach the desired one while ignoring the others, until a delay profile of 2000 ms. Above
this, it occasionally switched attention to the neighbor can. Another interesting aspect
to be noticed is that resulting trajectories clearly mimicked human walking style, which
shows the adequacy of the first-order motion description HMW (see Sec. 5.3.1) for the
approaching task.

Figure 5.12 – Simulation of the task with object redundancy. On the left, starting from the
same position the agent was required to approach a distinct can over the table (the resulting
trajectories are superimposed). Some on-board views and the corresponding segmentations are
shown on the right. Many blobs were detected, the one selected is highlighted in orange.

Concerning the second sub-case study condition (i.e. employing the last observation
as prediction, instead of deterministic motion model assuming constant velocity) it was ob-
served that the task could be accomplished until a delay profile of 1100 ms. Notice that the
mean walk velocity of the robot is approximately ṽ = [0.022 m/s 0.04 m/s 0.106 rad/s]t.
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Figure 5.13 – Comparison between the network policies under two delay profiles. The left
column presents the results for a 300 ms delay profile. The right column corresponds to a 1700
ms delay profile. The first row shows the evolution of the observations Oi (only for the tracked
can), as defined in Eq. (5.14), with 0 the lowest and 2 the highest intensity. The signals are
shifted vertically for visualization. The second row shows the output of the network for the
policy BNf . The tracked can over the table is represented by s1, and s2 corresponds to the
lateral neighbor (see Fig. 5.12). The third row presents the comparison between the outputs of
the dynamic policies. The signals are also shifted vertically for visualization. The discriminative
power on the left column is higher, since distinct mean and standard deviation parameters (see
Tab. 5.6) are considered for defining the partition intervals in Eq. (5.13)

Figure 5.13 presents a comparison on the third sub-case study for two delay profiles.
The column on the left shows the results for 300 ms delay, whereas at the right the
delay was set to 1700 ms. The plots on each column are related to the case of Fig. 5.12
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where the robot was requested to approach the rightmost can on the top of the table.
The registered feature intensities are shown in the first row for the tracked can only (the
desired value is the maximal intensity of 2). A comparison on the classification obtained
by the static and dynamic versions of the BN is shown in the second and third rows.
The discriminative power of the BNs at the right column was reduced at about the 3th
iteration, probably because of the minimal intensity detected in O1 (which depends on
localization prediction). Also, around the iteration 25 the disappearance of the third
can on the field of vision disturbed O4 (which represents saliency topology). Subtitle
differences were observed among the BN policies, so equivalent selections were made.
However, as seen in Tab. 5.7, policies differed were observed at a 2200 ms delay profile.
Thus, only BNd2 and BNd3 were able to select the correct blob. Additional simulations
were performed with these policies in the same scenario, revealing that the task could be
accomplished by BNd2 until a delay profile of 4000 ms.

Iteration Blob O1 O2 O3 O4 O5 BNf BNd1 BNd2 BNd3
3 s0 0 2 2 0 2 0.339 0.269 0.534 0.451

s1 0 2 2 0 0 0.062 0.045 0.129 0.096
4 s0 0 2 2 0 2 0.339 0.225 0.666 0.529

s1 0 2 2 0 0 0.062 0.036 0.205 0.127
5 s0 2 2 2 0 2 0.799 0.616 0.883 0.754

s1 2 2 2 0 0 0.339 0.172 0.495 0.285
6 s0 2 1 2 0 2 0.517 0.433 0.694 0.618

s1 2 1 2 0 0 0.122 0.090 0.227 0.173
7 s0 0 2 2 0 2 0.339 0.252 0.604 0.500

s1 1 2 2 2 0 0.517 0.379 0.447 0.315

Table 5.7 – Analysis of 5 iterations of a trial situation where two blobs were salient. The
delay profile corresponded to 2200 ms. No threshold was fixed as a minimum requirement for
acceptance, so that the most likely blob was selected. In the experiment the agent originally
applied the fixed policy BNf , and failed the approach by switching attention at the seventh
iteration. The decisions based on observations Oi are simulated for the other policies. The
dynamic versions considered a sliding window size k = 3, and a discount factor γ = 0.7 (see
Eq. (5.10)). The cells in blue correspond to the correct selection at each iteration, whereas
the cells in red correspond to the wrong selection. The policy BNf selected s1 in iteration 7
simply because it has an additional observation of level 1 for O1. The policy BNd1 has mostly
valued the fact that the last observations O4 and O5 were of minimal intensity for the rejected
candidates, thus, the features were considered as good discriminants, and s1 was assigned the
highest probability. As noticed, only the dynamic policies that attempted to reduce the error
type T2 were able to choose the correct candidate at the last iteration. These policies have
valued the contributions of O3 and O5, that were of maximal intensity for the winner blob at
all the iterations.

C. Discussion

The results of the first sub-case study suggested that the behavior scheme proposed
is able to produce the desired comportment at very high delay profiles. In this sense, in-
formation redundancy in the sensory-motor coupling provided the agent with the means
to anticipate the features evolution, so discriminating the object in the scene without
relying on ubiquitous knowledge about the environment (e.g. a localization map). Fur-
thermore, the dynamics system analysis of the agent’s locomotion resulted in aesthetic
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trajectories that mimicked the human walk style. Although this aspect is a non-functional
requirement, it is of crucial importance for the acceptance of the solution in a human-
robot interaction context. Trajectories were also more efficient than those obtained in the
study of Sec. 4.6, since the robot walked more in the sagittal plane direction and had
less difficulty to converge to the desired location once close to the object; which is a clear
improvement.

The first sub-case study also showed that the discriminative power of the network is
conditioned to the delay profile employed (see Fig. 5.13). This is reasonable since when
using predictive models, the more delay involved, the more uncertainty. In addition, the
predictive model considered was fairly simple (i.e. deterministic motion under continuous
velocity profile).

The second sub-case study revealed that the statistical regularities induced by the
coupling can be conveniently exploited to assist the discrimination of the object, so the
criteria for anticipation used was simply the last observed context. However, a model-less
version of the task would not ensure conversion in the proximity of the object (since at
short distances the blob’s size would increase considerably, so it easily leaves the field of
vision). As detailed in Sec. 4.4.2, the Look-at task performs a predictive gaze that is
useful to relocate the object.

The third sub-case study showed that the differences between the BN policies are
subtle until a delay profile 2000 ms. However, as the comparison presented in Tab. 5.7
revealed, the dynamic policies BNd2 and BNd3 that aimed at reducing the error type T2
were more robust under high delays. These policies were sensitive to the fact that pure
visual information was consistent despite the high delays, so more weight was assigned
to the corresponding features. In fact, in several additional trials it was verified that the
best results are obtained from the "optimistic" policy BNd2.

5.5.6 CS-III: Approaching a real can

The objective of this case study is to evaluate the full implementation of the hybrid
architecture (see Sec. 5.5.3) in a real task. The experiments are conducted with Nao,
in an unstructured environment under natural and artificial illumination. The desired
pose in relation to a multicolor tea can is shown to the robot by pressing the head tactile
sensor. The robot is then moved away from the desired configuration, so it has to return
as close as possible to the demonstrated position.

The parameters of the system were adjusted for execution in the real platform. The
estimation of the delay profile relied on the measurement of the time required for the
simplest case of the perceptive loop, that is, when the object is already centered on the
field of vision, so a single iteration of the Emergence task is needed. The programs were
firstly compiled to run natively on the robot, though the average delay obtained was too
high (with mean µ = 2736.5 ms, and standard deviation σ = 573.3 ms). Therefore, the
control programs are executed remotely, by retrieving the visual and the proprioceptive
data from the robot through a wireless connection. Under this condition, the mean delay
obtained was µ = 811.1 ms with standard deviation σ = 373.6 ms. Since the Look-at task
operates in closed-loop, the number of iterations required to center the blob is limited to
a maximum of two, such that the expected delay is 1700 ms.
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A. Experiments

Two experimental scenarios are considered. In the first one, a single tea can is placed
in the scene so the robot has to approach it, while ignoring other saliency emerging in
the task. In a more challenging scenario, two cans were placed one beside the other at a
distance around 4 cm, and the agent is requested to approach one of them. Two motion
modalities are also considered. In the step-by-step motion policy (as in Sec. 4.6.4), the
Walk task waits until the robot stops before sending additional commands to the motion
primitive. In the continuous motion modality, the robot walks fluently towards the object
(as explained in Sec. 5.5.2). Finally, two control modalities for the runtime execution are
also evaluated. In the off-line modality the task is unsupervised, that is, the thresholds ε1
and ε2 (see (5.17)) for the Deliberative process are set to zero (which is equivalent to letting
the Behavior module to run uninterruptedly until either convergence is obtained or the
object is lost). In the on-line modality the thresholds are activated (ε1 = 0.6 and ε2 = 0.2)
so the Deliberative module can resort to Remote Processing when the confidence in the
task progress is low. Thereby, a total of 2 (scenarios) × 2 (motion styles) × 2 (control
modalities) = 8 experimental cases are designed. Each case is evaluated at 10 distinct
initial locations.

B. Results

The experiment results are presented in Tab. 5.8. The apparent precision of the
system (no ground truth was measured) is illustrated in Fig. 5.14. As the images suggest
the robot was able to converge to a very similar location. Some of the trajectory followed
are given in Fig. 5.16, whereas some on-board views are shown In Fig. 5.17.

Id Case Successes/trials Supervision
1 Off-line/One can/Step-by-step 9/10 NA
2 Off-line/One can/Continuous 7/10 NA
3 Off-line/Two cans/Step-by-step 7/10 NA
4 Off-line/Two cans/Continuous 5/10 NA
5 On-line/One can/Step-by-step 10/10 1
6 On-line/One can/Continuous 10/10 3
7 On-line/Two cans/Step-by-step 10/10 4
8 On-line/Two cans/Continuous 10/10 5

Table 5.8 – CS-III experimental cases results. The column Supervision/trials indicates the
number of trials where the Remote Processing node was activated. The other column headers
are self explanatory. NA denotes non-available data.

C. Discussion

In the results reported in Tab. 5.8 a first aspect to be noticed is the fact that the
off-line execution of the task produced lower success rates. Several reasons can explain the
failures obtained. When step-by-step motion was employed, though more success trials
were registered, momentary degradation of the saliency detection made the robot rotate
in the wrong direction, so it lost the view of the can. Depending on the view perspective
and the head’s motion, the cans were eventually merged in the saliency detection, this is
illustrated in Fig. 5.15. A workaround would be to pre-evaluate the images as to ignore
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Task demonstration Apparent precision

Figure 5.14 – On the left, the demonstration of the desired pose in relation to the can. On
the right, the final position of some trials are superimposed.

On-board view Saliency detection

Figure 5.15 – On-board view of the experimental modality of continuous motion. Saliency
degradation due to the view angle to the cans and the motion blur produced.

noisy captures. Though, in the experimental platform a new acquisition would have an
extra time cost of 800 ms, which prevented the adoption of this solution.

The lower success rates in the continuous motion trials can be explained by unex-
pected peaks in the feedback delay (e.g. the robot exceeded the delay profile in more
than 2000 ms), which affected the precision of the prediction. Also, a less accurate per-
formance of the walk primitive was observed under continuous motion. Other sources of
disturbances were due to variations in the scene topology due to motion at the background
(e.g. the orange robot arm in front moved during some trials, and people walked in front
of the robot, see Fig. 5.17).

In the on-line trials the performance of the network was very consistent. The thresh-
old established for the estimate, based on the degree of confidence and the discriminative
power, were sufficient to produce the transition to the Remote Assistance state in the
Deliberation process (see Fig. 5.9). Thus, the user either suggested a search direction to
re-locate the object when it was lost, or clicked above the correct blob in the image when
the certainty was low. This is reflected in the column Supervision/trials of Tab. 5.8, so
the maximal success rate is obtained through the remote assistance in the task solution.

Finally, the same approach used in Sec. 5.5.6 was adopted in order to compare
the distinct BN policies. That is, the observations registered under the BNf policy were
simulated with the dynamic policies. Therefore, the interest was to verify whether in off-
line simulations the dynamic versions would have chosen the correct can when attention
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Figure 5.16 – Experimental evaluation with object redundancy. The sequences for three trials
are shown. The robot was required to approach the can on the right.

shifts were produced in the experiment. Unfortunately, no significant advantages could be
found in the dynamic versions for the real experiments. As discussed previously, in view
of degradations in the visual saliency and unexpected variations in the scene topology,
the consistency of pure visual information could not be ensured.
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Figure 5.17 – On-board views of the experimental task. In the first row, the view of a frame
is enlarged. As it can be seen, the scene is illuminated irregularly, given the presence of big
windows in one of the walls of the lab. In the intermediate row, an approach sequence is shown.
On the bottom, the corresponding saliency is presented.

5.6 Designing reliable approach tasks in six-steps

Throughout this chapter two main topics related to the locomotion guided by vision
were investigated. One is the behavioral dimension of the task. Here, the efficient use
of information emerging in sensory-motor coupling was studied, in order to design the
behavior scheme for controlling the robot, which mimicked human motion style. The
other topic is situated at a meta-behavioral level of concern, where the robot is viewed as
a limited resource system. Thus, the safety and the robustness of the solution were ana-
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lyzed in the hybrid architecture design, that included the possibility of integrating remote
processing to the solution. These developments can be organized in a methodological
proposal that orderly exposes the steps to be followed, either to replicate the reported
results, or to design solutions to other sensory-motor tasks.

Thereby, reliable humanoid object approaching can be obtained by applying the fol-
lowing six steps:

1. Studying the behavior as emergent.
2. Defining embodied features related to the task.
3. Anticipating the context from a predictive model.
4. Relating actual measurements with the anticipation.
5. Doing attention selection.
6. Evaluating the task consistency.

The first step involves the use of the EC research methodology (see Sec. 5.3) to
analyze the task at hand as a dynamical system, such that identifying efficient control
parameters. Thus, it is crucial to consider the task from a first-person perspective and
rigorously restrict modeling.

In the second step, starting from the sensory resources available and the character-
istics of the task, a set of features providing information about the context of the task are
designed. In this study the visual and proprioceptive sensory modalities where considered
(see Tab. 5.2), though other sensory modalities (e.g. acoustic, inertial, etc.) could be
included.

In the third step a predictive model is employed to anticipate the measurements for
the next execution cycle. A deterministic model was considered in this study, but other
approaches are available (e.g. probabilistic models in Thrun [178]). In case the acquisition
and control rate are high enough, and the object is fully perceived, by exploiting the
statistical regularities induced in sensory-motor coupling, the next state can be anticipated
from the current state (i.e. no motion prediction would be required).

In the fourth step a set of variables is defined to conveniently relate embodied fea-
tures measurement with anticipation (see Tab. 5.3). In this study discretization through
clustering was applied to measurements, so classifying them into levels of intensity. This
is due to the fact that the algorithm used for attention selection (the BN) is discrete.

In the fifth step the attention selection model is employed. In this study spatial
congruence is considered (see the spotlight metaphor in Sec. 3.2.2), but other endogenous
criteria can also be used (e.g. the opportunity for actions or the affordance of stimuli, see
Horton et al. [87]). In addition, as mentioned before, the selection occurs in a Bayesian
network, although other frameworks are available in the machine learning literature (e.g.
neural networks, support vector machines, among others).

Finally, in the sixth step the consistency of the task is evaluated through a probabilis-
tic criteria. In this study the discriminative power of the attention selection mechanism
and the anticipation congruence were proposed, but other criteria could be developed.
This step also involves the design of a deliberative transition model (e.g., see Fig. 5.9).
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5.7 Conclusions

This chapter has focused on the development of more realistic solutions to the prob-
lem of approaching and positioning in relation to objects on the environment, based on
vision. From the analysis of the dynamics aspects of human locomotion guided by vision,
the first-order description proposed named HMW allowed the agent to mimic the human
walking style. This is of crucial importance since the resultant behavior is more efficient
and aesthetic, which are valued aspects for the acceptance of the solution in the context
of human-robot interaction and service robotics applications.

The methodology proposed to design reliable solutions illustrated an interesting com-
bination between the cognitivist and the EC research. In this sense, the attention selection
mechanism was inspired by the spotlight metaphor, which is an information processing
model of attention. Moreover, Bayesian networks are usually employed for information
fusion and knowledge representation in applications related to cognitivist AI research (e.g.
probabilistic diagnosing). However, in the network structure designed, multi-sensory in-
formation is fused from features that exploited embodiment, so they were carefully defined
from the EC perspective. The anticipative aspect of the behavior scheme was also an in-
teresting opportunity to study the effect of the statistical regularities induced by the
coupling, and the information redundancy in the sensory-motor coordination.

The case studies results suggested that the BN model is a convenient and easy to
use technique, which produced reliable information about the degree of confidence and
the discriminative power of the attention selection mechanism. This consisted in a sig-
nificant contribution to the autonomy of the agent through the efficient use of available
resources, where the solution was operational at high delay profiles with a low-cost robot.
Furthermore, the designed hybrid architecture ensured that remote resources could be
used in a safe way, and opened the possibility for enriching the local behavior repertory,
thus constituting a distributed and extensible solution for the task.

In general, the studies conducted in this chapter illustrated a potential and feasible
strategy that can be adopted for prototyping and exploring more complex sensory-motor
coordinations. The fact of counting on modular motion primitives that are already avail-
able to the agent, handles much of the security aspects of the task, as for example, main-
taining the body balance. Therefore, the possibilities of exploring other behavior schemes
seem to be vast, and perhaps require less modeling efforts than pure cognitivist definitions
of the task. Thus, more skills can be organized into behavior architectures. This aspect
is investigated in the next chapter through the action selection problem, where reactive
motion and learning is considered for approaching the object and avoiding obstacles.
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6.1 Introduction

The previous two chapters have dealt with different aspects of visually-guided walking
towards a known object, under relatively favorable circumstances. This was the case since
the access to the object was free from obstacles. In service robotics more difficult scenarios
may be encountered, so obstacles must be contoured before reaching the object. For this,
different objectives may be achieved (e.g. steering to the object, and avoiding inconvenient
locations). Although the behavior scheme presented in Sec. 5.3.3 included the parallel
execution of the Walk and the Look-at tasks, it did not evoke the problem of concurrent
access of available resources. As discussed in Sec. 2.5, this is known by the Action
Selection Problem (ASP), which is a difficult problem from the control and the AI point
of view, given task uncertainties and limitations in resources availability.
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In this chapter, the central topics of concern are the study of embodiment, knowledge
representation, and learning under different ASP scenarios. By keeping the first-person
experience perspective adopted throughout the work, and the proposal of distributed
representations of the task, a behavior-based framework is selected to model concurrency
and emergent behavior. Three case studies are developed. In the first one, from the
concurrent access to the robot’s walk primitive different walk modes are proposed, so the
approach to the object is reactive and based on action-oriented representations of the
object (differently from the previous chapters where it was based on a 3D model of the
object, so the interest is to observe whether action independent knowledge is required to
solve the task). In the second study, the behaviors of object approaching and obstacle
avoidance are studied in the model, where the agent’s task is to dodge obstacles to reach
the object, without using a global representation of the scene. In the third study, the
aspect of solution efficiency is explored where visual encoding is proposed as an embodied
description of the task, so efficient policies can be learned.

6.2 Related work

Behavior-based architectures are conceptualized from Reactive models (Mataric [116]).
Though behaviors are given a larger connotation than merely reflexive actions, so they
may also refer to learned skills including a state representation (see Sec. 2.5.4). Thus,
the scope of behavior-based architectures covers reactive models (Brooks [27]) and hybrid
models of the types managerial and state-hierarchy (Murphy [131]). There are numerous
architectures reported in the literature that would fall into this range. Since an extensive
exploration of available models is out of the scope of this work, some related contributions
are briefly discussed, focusing on the aspects of the model structure and the strategy for
behavior selection.

Brooks [27] has proposed a hierarchical organization of behavior, as a bottom-up
methodological design principle for studying the task at hand. This has influenced many
architecture designs. Thus, in Burghart et al. [31] a three-layer hierarchy is proposed,
with the low-level containing fast interpretation methods of sensor data, the middle-level
containing various recognition components of the system having access to persistence,
and the highest level providing multimodal fusion and situation recognition. In Lenser et
al. [107] sensor, motor, and control hierarchies are distinguished. The sensor hierarchy
represents knowledge that the robot has about the world. Sensors are classified as real
(i.e. provided by hardware) or virtual (i.e. processed information from real sensors).
Behaviors are organized according to complexity, so the control hierarchy buffers the
communication between different behavior levels. An important aspect to be noticed is
that the computation frequency of sensors, behaviors, and control processes decrease when
moving up in the hierarchy.

Different approaches have been followed for behavior selection. In the work by Conde
et al. [50], fuzzy logic is employed for establishing correspondence between detected
events and the weighted contribution of behaviors. Fujita et al. [71] have proposed the
evaluation of external and internal drives to determine the agent’s behavioral mode. Thus,
the homeostasis regulation rule for action selection is employed (see Arkin et al. [9]). For
this, the control system has to evaluate the potential activation of the behavior in relation
to the current situation. This is also close to Minsky’s [123] ideas where meta-knowledge
about a process (e.g. preconditions, effects on the system, and post-conditions after
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successful execution) is considered to reduce the difference between the system’s current
state and a goal state.

Case-based reasoning (CBR) has also been used for behavior selection. According
to Kolodner [100], in CBR previous experiences are used to understand and solve new
problems. Under this approach, a work by El-Bagoury et al. [61] has proposed a hierar-
chical case-based controller for the robot Nao, for handling distinct situations (or roles)
encountered in Robocup soccer league. Liu & Hitoshi [110] have resorted to genetic pro-
gramming in a simplified simulation of the task to identify high-level decisions, and then
to CBR as an on-line adaptation means for obtaining low-level decisions in real world
environments. In these studies the knowledge required to do action selection is explicitly
provided to the model. CBR would alleviate these efforts by defining a core case set
that can be generalized to other situations encountered. It is also possible to obtain this
knowledge automatically. This aspect is treated in Sec. 6.4 where reinforcement learning
is discussed.

Given its wide use, and the fact that Nao is a standard platform for the RoboCup
SPL competition, several architectures have been proposed to control this robot. Thus, in
Ferland [69] the hybrid behavior-based architecture (HBBA) was implemented to provide
learning and sharing past experiences related to episodic memory. In Testart et al. [174]
functionalities are organized in four parallel modules (i.e. perception, actuation, world-
modeling, and hybrid control) for applications in soccer competitions. In Niemüller et
al. [134] a behavior engine was developed to provide skill level functionalities (in a three-
layer hierarchy), relying on a hybrid state machines implementation. In Agüero et al.
[2] tree-graph representations are proposed to hierarchically organize the activation of
behavior in runtime. There are probably many other works that could be mentioned.
Therefore, the choice for an architecture has to be justified based on important criteria,
such that: relevance to the research context, software availability, usability, and learning
curve, among others.

Hawes and Wyatt [81] have proposed a useful classification for robot architectures
that can base the discussion on relevance to the current study. Three levels of abstraction
are identified. The most general level corresponds to computational architecture (CA),
where a structure to process information is described without a specific problem in mind.
At a less general level, instantiated information-processing architectures (IIpA) are pro-
posed in a specific problem domain (most of the previously discussed works would fall
into this category). Lastly, software architecture (SA) corresponds to the lowest level of
abstraction and consists in concrete software implementations.

Since behavior-based models are embodied, they are tied to particular task domains.
Consequently, decisions aiming to obtain reusability to similar tasks have to be judiciously
taken. In this sense, even at favorable scenarios (e.g. to change only the host robotic plat-
form by keeping the same virtualization hierarchy, hoping that the robot bodies are similar
enough) adaptations would be required to adjust the bottom layer to the available sensory
and motor equipment. In case the task would also change, more adjustments would be
required. For instance, a RoboCup model would consider events in the context of a soccer
match (e.g. a ball pass, an opponent attack), so it can hardly be used for applications in
robot navigation. Similarly, architectures for wheeled outdoor navigation would include
functionalities (e.g. cartography, communication, etc.) relying on super-human sensory,
which are irrelevant to the current biped locomotion study scope. Furthermore, the learn-
ing curve of these models is generally slow, and considerable efforts may be invested to
master the conceptualization of the model, which would make unreasonable proceeding

127



6.3. The framework iB2C Chapter 6. Reactive walk

later with major customizations. Indeed, perhaps this would explain the diversity of mod-
els reported in the literature. Based on the arguments above, the integrated behavior-based
control (iB2C) framework, which corresponds to a CA architecture, is selected to develop
the case studies. The main characteristics of iB2C are discussed next.

6.3 The framework iB2C

The iB2C by Proetzsch et al. [152] defines a set of architectural design principles
that provide support for several behavior-based mechanisms, such that, coordination,
behavior interaction, and hierarchical abstraction. Many practical applications have been
developed within the framework. Such is the case of wheeled navigation and exploration
on rough off-road terrain (e.g. in Proetzsch et al. [151], and Armbrust et al. [11]), the
control of a humanoid head for interaction using emotional states (Berns & Hirth [18]),
and indoor service task in home and office environments (Schmidt et al. [162]); among
others. In the following, the mathematical formalism of a iB2C model is detailed.

6.3.1 Model components

The fundamental unit of the framework is the behavior module (see Fig. 6.1), which
is an atomic wrapper around a specific task. Thus, a behavior B is a container providing
a uniform interface to diverse functionalities of the system. It is defined as a three-tuple,
such that

B = (F, fa, fr), (6.1)

where fa is the activity function, fr is the target rating function, and F is the transfer
function. Table 6.1 describes the inputs and outputs of a behavior.

The activity ϑ (or effective relevance) of B in the network at a given moment depends
on the stimulation s and the inhibition i, received from other nodes. It is defined by

ϑ = s · (1− i). (6.2)

d

u

F (d, ϑ)

s a

i r

Figure 6.1 – Basic iB2C behavior module (Proetzsch et al. [152]).
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Var I/O Definition
d input The input data d ∈ <m can contain sensory data (e.g. joint positions,

image measurements) or information from other behaviors (e.g. their
target rating).

s input A behavior can be stimulated by k others such that s ∈ [0, 1]k is the
intended relevance of Bk. In case sk = 0 indicates no stimulation and
sk = 1 a full stimulation from behavior k. Values between 0 and 1
refer to a partial stimulation.

i input Inhibition has the inverse effect of stimulation. Each behavior can be
inhibited by k other via i ∈ [0, 1]k. Thus, ik = 1 refers to full inhibition
and ik = 0 to no inhibition from behavior Bk.

a output The activity signal a ∈ [0, 1]k of a behavior B represents the amount
of influence of B in the current state of the system. With ak = 1 all
output values are intended to have highest impact, whereas ak = 0
indicates inactivity.

r output The behavior signal target rating r ∈ [0, 1] is an indicator for the
contentment of a behavior. A value of r = 0 indicates that the be-
havior is satisfied with the actual state, while r = 1 shows maximal
dissatisfaction.

u output Output data u ∈ <n is generated by the behavior which can be used
for actuator control or as input for other behaviors.

Table 6.1 – Definition of the input and output variables of a behavior.

The transfer function F provides the intelligence of the behavior. The output pro-
duced depends on the inputs received and the internal representation. This can be a
reflexive response to an input, a more complex operation in the form of a state machine,
or a sophisticated algorithm. The transfer function is defined by

F : <m × [0, 1]→ <n,u = F (d, ϑ). (6.3)

The activity function fa of B is defined by

fa : <m × [0, 1]→ [0, 1]× [0, 1]k, a = fa(d, ϑ) = [a a]t (6.4)

where a = [a1 a2 ... ak]t are the derived activities, so the behavior can transfer part of its
activity to other behaviors. Thus, a is the activation of B, and ai ≤ a ∀i ∈ {1, ... , k} are
the derived activities sent to the connected nodes.

The target rating function fr depends on the characteristics of the task executed
by B. In case of continuous state space representations, the normalized distance to the
desired state is usually employed. It is important to point out that reaching the goal
state does not necessarily means that B is inactive (e.g. in on-line applications of motion
imitation the behavior must never become inactive). Therefore, there is no direct influence
on the activation of B and its target rate r.

As shown in Fig. 6.2, hierarchical abstraction can be defined in iB2C through a
behavioral group, which embeds a collection of modules with a new interface, so externally
it is viewed as a single behavior unit. Groups possess the same standardized interface
illustrated in Fig. 6.1 and described in Tab. 6.1.
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Behavioral group

B0 B1

Fusion

Figure 6.2 – Illustration of a group behavior interface (Proetzsch et al. [152]). Internally, the
outputs of two behaviors are combined in the fusion behavior represented in blue.

6.3.2 Behavior coordination

In the study of behavior coordination arbitration is distinguished from command
fusion (Pirjanian [146] and Hoffmann [83]). In the former, one or various behaviors
have control over the system resources for a period of time, that is, the actions of the
selected behaviors are transferred without modifications. Contrarily, in command fusion
the output is obtained by a combination of individual contributions. The framework
defines a distinct type of node (represented in blue in Fig. 6.2) for command fusion.
Though it shares the same interface of basic nodes. From the control inputs a and r
received, the activity signal a and the rate signal r of the node must comply to the
following conditions:

min
j

(aj)ϑ ≤ a ≤ min
1,

k∑
j=1

ak

ϑ, (6.5)

min
j

(rj) ≤ r ≤ max
j

(rj). (6.6)

Several fusion strategies are reported in the literature (e.g. voting in Rosenblatt [155]
and fuzzy logic in Saffiotti et al. [160]). Three simple criteria that can be employed are
maximum, weighted, and weighted sum fusion. Let ui, ai, ri denote respectively the output
u, the activation a, and the target rating r produced by the ith behavior connected to the
fusion node. For maximum fusion the model components are defined such that

u = us, a = as, r = rs (6.7)

where s = argmax
c

(ac). For weighted fusion the model components are

u =


k∑
j=1

ajuj
k∑
l=1

al

 , a =


k∑
j=1

a2
j

k∑
l=1

al

ϑ, r =


k∑
j=1

ajrj

k∑
l=1

al

 . (6.8)

For weighted sum fusion the model components are

u =


k∑
j=1

ajuj

as

 , a = min
1,

k∑
j=1

a2
j

as

ϑ, r =


k∑
j=1

ajrj

k∑
l=1

al

 (6.9)
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Perhaps the more commonly used criteria for behavior arbitration are priority and
state. Priority-based arbitration originated from the research on subsumption architec-
ture (Brooks [27]). Hence, the model consist of a set of behaviors forming a network of
hardwired finite state machines. Action selection occurs when a higher-level node (i.e. a
more specific desired class of behaviors) overrides the output of lower-level ones. In state-
based arbitration behaviors are selected based on their relevance to the current situation.
There are many approaches available. In discrete event systems (e.g. Kosecka & Bajcsy
[103]) arbitration is based on the detection of events under a finite state automata model.
States correspond to actions or behaviors, and events are observations that cause transi-
tions between states. In bayesian decision analysis (Kristensen [104]) sensory operations
are evaluated according to the cost/benefit of the information they provide. Another
approach available is Reinforcement Learning, which is going to be discussed in Sec. 6.4.

6.3.3 The sequence node extension

Armbrust et al. [10] have proposed an extension to the iB2C architecture. As shown
in Fig. 6.3, it consists in the inclusion of a new type of node for representing sequences,
which is named conditional behavior stimulator (CBS). This node becomes active if certain
conditions related to the activity or target rating inputs are met. Consequently, the
connected nodes to the output ports can be also stimulated. Once active, a CBS monitors
the values of a second set of its input ports. If the conditions concerning these values are
fulfilled, the node’s activity goes down to zero again. Thus, arbitrarily complex behavior
sequences can be modeled.

Input conditions

Feedback conditions

B(fa, fr, F )

s aa
e o p

e o p
i r

Figure 6.3 – Structure of the CBS module (Armbrust et al. [10]). Three different types of
ports (Enabling, Ordering, and Permanent) for input conditions (top) and feedback conditions
(bottom). As a behavior node, CBS features the standard behavior ports.

A relation irj(t) occurring on time t, where the input value vj is compared to a
threshold εj, is denoted by

irj(t) =
{

1 vj �j εj
0 otherwise , (6.10)

so j = {1, ... ,m} and �j ∈ {<,≤,=,≥, >}.
As shown in Fig. 6.3 three different types of conditions icj(t) are distinguished for

the activation of the behavior. In permanent activation the corresponding relation from
the input p has to be fulfilled during the whole time when the behavior shall be active
(see Eq. (6.11)). In ordering activation the corresponding relation from the input o has
to be fulfilled at some point in time before the behavior shall get active (see Eq. (6.12)).
In enabling activation the corresponding relation from the input e has to be fulfilled at

131



6.4. Reinforcement Learning Chapter 6. Reactive walk

the exact point in time when the behavior shall get active (see Eq. (6.13)). Formally, the
expression for these conditions are

icj(t) =
{

1 if irj(t) = 1
0 otherwise , (6.11)

icj(t) =
{

1 if ∃t0 ≤ t : irj(t0) = 1
0 otherwise . (6.12)

Enabling conditions are the most complex ones. In order to determine whether an enabling
condition is fulfilled at time t, it has to be checked whether there is a point in time t0 ≤ t
at which all other conditions were fulfilled. Furthermore, all conditions have to be fulfilled
from t0 on, thus

icj(t) =



1 if ∃t0 ≤ t :
(∧m

k=1 irk(t0) = 1
enabling

)

∧
(∧m

k=1 ick(t0) = 1
ordering

)

∧
(∧m

k=1 ick(t1) = 1 ∀t1 : t0 ≤ t1 ≤ t
permanent

)
0 otherwise

, (6.13)

where ∧ is the logical AND operator. The behavior signals of a CBS are calculated as
follows

a(t) = s(t)(1− i(t))
m∏
j=1

icj(t) = ϑ
m∏
j=1

icj(t), (6.14)

r(t) =
m∏
j=1

icj(t). (6.15)

The terms a, s, i were defined in Tab. 6.1, and ϑ is the activation of the behavior
conforming to Eq. (6.2). In the case study of Sec. 6.5.3, the CBS node is used for
synchronizing top-down and bottom-up visual saliency tasks under enabling conditions.

6.4 Reinforcement Learning

According to Kaelbling et al. [92], reinforcement learning (RL) can be viewed as the
mapping from situations to actions so a reward signal is maximized. The learner is not
told which actions to take, instead, it must discover those that yield the most reward
by trying them. In the most interesting and challenging cases, actions may affect not
only the immediate reward, but also the next situation, and through that, all subsequent
rewards. These characteristics (trial-and-error search and delayed reward) are the two
most distinguishing features of RL.

RL-based policies have been studied in the context of service and industrial automa-
tion. In a previous work (see Chame & Martinet [40]) a cognitive model considering RL
was proposed to automate a pick-and-place task. Some other applications include grasp-
ing (e.g. in Baier-Lowenstein & Jianwei [14], Moussa & Kamel [129]), and navigation
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(e.g. Zhu & Levinson [192]). In Peters et al. [141] the scalability of RL to higher dimen-
sional spaces for applications with humanoid robots is discussed, under the natural policy
gradient representation.

One of the challenges in RL is the trade-off between exploration and exploitation
(Russell & Norvig [159]). To obtain maximal reward, an agent must prefer actions that it
has tried in the past and found to be effective in producing reward. But to discover such
actions, it has to try actions that it has not selected before. The dilemma is that neither
exploration or exploitation can be pursued exclusively without failing at the task. The
agent must try a variety of actions and progressively favor those that appear to be best.
On a stochastic task, each action must be tried many times to gain a reliable estimate of
its expected reward.

Beyond the agent and the environment, four main sub-elements of a RL system can
be identified: a policy, a reward function, a value function, and optionally a model of the
environment. These elements are described in Tab. 6.2.

Element Description
Policy A policy π : S → A defines the agent’s behavior at a given time. It

maps from perceived states of the environment to actions to be taken
when in those states.

Reward It is a function that relates each perceived state (or state-action pair)
of the environment to a single number indicating the intrinsic desir-
ability of that state.

Value function It specifies what is good in the long run. Roughly speaking, the
value of a state is the total amount of reward an agent can expect to
accumulate over the future, starting from that state.

Model of the
environment

It mimics the behavior of the environment. For example, given a
state and action, the model might predict the next state and reward.
Models are used for planning, by considering future situations before
they are actually experienced.

Table 6.2 – Components of a RL problem.

In the action selection problem Thrun et al. [178] have distinguished between uncer-
tainty in the action effects and uncertainty in perception. Two important tools for design-
ing RL-based tasks are Markov decision process (MDP) and partially observable Markov
decision process (POMDP). The MDP framework considers the state as fully observable
under stochastic effects of actions, whereas in POMDP the agent actively gathers infor-
mation about the task, due to the lack of observability of the state. However, according to
Barto & Mahadevan [15], despite considerable research based on these formalisms, RL is
not restricted to discrete state and action representations. Thus, continuous representa-
tions have been derived from statistical estimation theory, so the policies are parametrized
(e.g. the PI2 algorithm by Theodorou et al. [176], the black-box optimization approach
PIBB by Stulp & Sigaud [173], among others).

In this work the discrete MDP framework is going to be discussed. Formally, an
MDP is composed by a 5-tuple (S,A, τ(., ., .), ψ(., ., .), γ), where S is the state space, A is
the action space, and γ ∈ [0, 1] is the discount factor. The transition probability function
τ(a, s, s′) gives the probability that taking the action a in the state s at a given time-step
t would lead to the state s′ at time-step t+ 1. It is defined by

τ(a, s, s′) = p(s(t+1) = s′|s(t) = s, a(t) = a). (6.16)
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The reward function ψ(s, a, s′) gives the expected value of the next reward r(t+1), when
being in the state s, tacking the action a, and getting to the state s′. It is defined by

ψ(a, s, s′) = E(r(t+1)|s(t) = s, a(t) = a, s(t+1) = s′). (6.17)

Figure 6.4 illustrates the graphical representation of a MDP.

s0
a1(α01, r01)

s1

a2

s2
a3

(1− α01, r02)

(1, r12)
(1, r20)

Figure 6.4 – Graphical representation of an hypothetical 3-state MDP. State nodes are rep-
resented by big circles. Action nodes are represented by small dark circles. The transition
probabilities α and reward r are also shown.

The Q-learning algorithm was firstly introduced by Watkins [186]. It is suited to the
case when the agent does not possess a model of the world (differently from the value
iteration algorithm, see Thrun et al. [178]). Let the function Q : S × A → R provide
the value of a state-action combination. The expected discounted reinforcement Q∗(s, a)
of taking action a in state s, then continuing to select actions optimally, can be defined
recursively so

Q∗(s, a) = Q∗(s, a) + γ
∑
s′∈S

τ(a, s, s′) max
a′

(Q∗(s′, a′)) . (6.18)

The learned action value function Q̂(s, a) directly approximates Q∗(s, a), the optimal
action value function. Thus, the Q-learning rule is such that

Q̂(s, a) = Q̂(s, a) + ν
(
ψ(a, s, s′) + γmax

a′

(
Q̂(s′, a′)

)
− Q̂(s, a)

)
(6.19)

where ν ∈ [0, 1] is the learning rate. That is, the extent to which newly acquired informa-
tion will override the old information. An episode ends when state s(t+1) is a final state
(also called absorbing state). The algorithm is illustrated in Fig. 3 (Ertel [63]).

6.5 Case studies

The studies conducted in this section explore different aspects in the ASP context,
such as embodiment, knowledge representation, and learning. In the models proposed,
local representations obtained from proprioceptive data and visual processing are consid-
ered (i.e. the computation of color-based and dense optic-flow-based segmentation, see
Secs. 3.4.3 and 3.4.4). In the first case study, concurrent walking modes are defined
so a reactive implementation of the approach task is proposed, by relying on distributed
action-oriented representations of the object (differently from the last two chapters, where
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Algorithm 3 Q-learning
1: procedure Learn
2: Q̂(s, a)← initialize() . Arbitrary
3: repeat . for each episode e
4: s← initialize(initialstate)
5: repeat . for each step of the episode
6: Choose a from s using the policy derived from Q̂(s, a) . e.g., ε-greedy
7: Take action a
8: Observe r, s′

9: Q̂(s, a)← Q̂(s, a) + ν
(
r + γmax

a′
(Q̂(s′, a′))− Q̂(s, a)

)
10: s← s′

11: until s is terminal
12: until e is the last episode

a rough 3D model of the object was used, and a unique task controlled the walk primi-
tive of the robot). In the second case study a multi-objective navigation task is designed
where the agent has to avoid obstacles as it approaches the object of interest. In the
third case study learning is considered to obtain more efficient solutions to the task. The
models proposed require of an acquisition rate (around 30 Hz) that is not available in the
platform Nao, thus, the evaluations are conducted in simulation under Webots.

6.5.1 Materials and resources

The robot platform is the humanoid Nao by Aldebaran Robotics. The control pro-
grams are implemented in the C++ programming language. Images are captured at
320×240 pixels resolution. Vision processing is obtained with the support of the OpenCV
2.4.8 library. The robot functionalities are accessed through the naoqi 1.14 library. The
algorithms are developed in the Eclipse Juno IDE, under Ubuntu 12.04.5 LTS (Precise
Pangolin). Simulations are conducted in Webots 7.4.0 by Cyberbotics. The host platform
was a HP Compaq Elite 8300 Convertible Microtower (8x Intel(R) Core(TM) i7-3770 CPU
@ 3.40GHz, 8GB DDR3 RAM, Intel HD Graphics, HD ATA WDC WD5000AAKX-6).

6.5.2 Behavior-based models implementation

The models are implemented from scratch. In the hierarchical architectures pro-
posed behaviors execute asynchronously. Moreover, different behaviors may concurrently
attempt to access a sensory or motor resource of the robot. This is a more complex
scenario that in the studies of Chapters 4 and 5. Hence, the runtime organization of
behaviors has to be discussed in more details. The scheduling algorithm used is first in
first out (FIFO), also known as first come first served. Processes are added to the ready
queue in the order of arrival. Context switches only occur upon process termination, so
no reorganization of the queue is required, and the scheduling overhead is minimal. Since
the host platform is multi-core, concurrency is ensured. The risk that a process would
hold others is practically negligible, so deadlines are easily met (this was evaluated in
simulations, delays of 1 ms were rarely observed).
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6.5.3 CS-I: Action-oriented approach

The study developed in Sec. 5.5.4 showed that, by observing the egocentric localiza-
tion of the object, from the knowledge of a rough 3D model, and the color of the object,
the robot could perform the approach task while mimicking human walk style. That
is, the knowledge required to represent the object in the sensory ego-space was not ob-
tained from the context of the task (a 3D model is an action-independent representation,
see Sec. 5.3.3). Thus, an interesting question to be answered is whether similar results
can be achieved by fully relying on action-oriented representations (i.e. locally effective
features to guide behavior).

Thereby, in this case study the task is defined according to the model presented
in Fig. 6.5. Inspired by FIT and GS attention theories (see Sec. 3.2), image features
obtained from color and optic flow saliency are combined to perceive the object of interest.
A two-layer hierarchy is proposed. The data and motion buffers are related to the host
platform. The top layer contains nodes that operate as virtual sensors and nodes in
charge of controlling the motion primitives of the robot. Regular nodes are represented in
gray, the fusion behavior in blue, and the conditional node in yellow. The data signal is
represented by the thick gray arrow, whereas meta-data (i.e. control data) is represented
by the thin black line. For comparison, in Fig. 6.6 the analogous version of the behavior
scheme of Fig. 5.3 is given in the iB2C framework. Sensory and localization tasks have
been grouped in the same behavior for simplicity. As noticed, single behavior modes
control the walk and the head direction primitives.

A. Behavior definitions

As shown in Fig. 6.5, a total of ten behaviors were defined for handling specific
aspects of the task. Since the walk primitive of the robot considers motion expressed in
Cartesian coordinates, the output of the Sagittal, Frontal, and Angular Motion behaviors,
are related respectively to the regulation of the components of the 2D pose m = [X Y φ]t.
Next, the implementations of the behaviors are detailed.

1) Data Acquisition

It is in charge of querying the robot for the proprioceptive and visual data. The
objective of this behavior is to guarantee a centralized and more efficient access to the
resources, thus avoiding overheads in the network protocols. The internal state consists
in a buffer that stores consecutive acquisitions. The output u of the behavior contains a
list of sequence of raw images captured on-board and joint measurements. The activity
signal is set to a = 1 if no runtime exceptions occur, and a = 0 otherwise. The target
rating signal is r = a− 1.

2) Dense Optic Flow

It is in charge of computing the dense optic flow induced by the robot motion (the
scene is assumed to be static). The technique is detailed in Sec. 3.4.4. Thus, the output u
of the behavior is the image f(x, y, t) representing the optic flow in the x and y components
during the time interval t, as defined in Eq. (3.10). The activity signal is set to a = 1

136



Chapter 6. Reactive walk 6.5. Case studies

Robot sensors

Robot actuation

Data
Acquisition

Motion
Execution

Dense
Optic Flow

Top-down
Saliency

Synchronizer

Saggital
Motion

Frontal
Motion

Angular
Motion

Head
Motion

Walk Motion
Group

Walk Arbiter

Level 0

Level 1

Level 0

Figure 6.5 – Two-level hierarchy model. The level 0 corresponds to the real sensory and motor
data. Virtual sensors and behavior primitives are defined in the level 1.

if no runtime exceptions occur, and a = 0 otherwise. The target rating signal is set to
r = a− 1.

3) Top-down Saliency

It is in charge of processing the supervised detection of the object of interest. For
this, the segmentation algorithm detailed in Sec. 3.4.3 is employed. The binary image is
obtained from a MRF modeling framework that considers the color model of the object
under Gaussian noise. The output u of the behavior is a binary image O indicating the
regions related to the object of interest and the centroid of the salient blob area (see Eq.
(3.5)). In the task the problem of visual attention is not of concern. A single object of
interest is set on the scene, so in case many blobs are salient, the biggest one is heuristically
selected. The activity signal is set to a = 1 if there is a salient object and a = 0 otherwise.
The target rating signal is set to r = a− 1.
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Figure 6.6 – Equivalent iB2C model for the behavior scheme described in Sec. 5.3. The
Sensory and Localization tasks were grouped in single nodes for simplicity. The orange arrow
corresponds to the feedback sent for predicting the evolution of the embodied features detailed
in Sec. 5.4.1

4) Synchronizer

As its name suggests, this node is in charge of synchronizing the output of the Dense
Optic Flow and the Top-down Saliency nodes, since the information provided by them
are related when controlling the walk (i.e. the region in the image where the object is,
and the measured optic flow at such region). The condition to be fulfilled is of the type
Enabling (see Eq. (6.13)). The activation signals of the input node set J are evaluated
in Eq. (6.10), such that the condition is aj(t) = 1 ∀j ∈ J . In case a synchronization is
detected the Walk Motion Group is activated.

5) Sagittal Motion

In this node the magnitude of the flow is taken as informative on the scene depth.
Thus, from the optic flow vector [δx δy]t (see Eq. (3.12)) associated to each pixel (x, y)
of the image, and the binary image O obtained by the color-based segmentation of the
object, the average magnitude ζ̌ of the optic flow related to the object is defined by

ζ̌ = 1
n

∑
x

∑
y

O(x, y)‖[δx δy]t‖, (6.20)

where n = m00 is the zero moments of O, as defined in Eq. (3.4). The output u of the
behavior includes ζ̌ and the associated correction in the sagittal motion plane, so
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u =


X̄ if ζ̌ − ζ̌∗ < −ε1
−X̄ if ζ̌ − ζ̌∗ > ε1

0 otherwise
. (6.21)

Here ζ̌∗ is the learned by kinesthetic demonstration. Thus, the robot is set to do static
march in the desired location relative to the object, so it moves to generate optic flow with-
out changing the relative position. The parameter ε1 is a threshold tolerance. Thereby,
the behavior assumes that the mean flow magnitude produced by object approaching in
the sagittal plane direction is similar to the one registered in static march (this is rea-
sonable for walking, but it may not hold in case of running). As seen, the correction is a
step signal of magnitude X̄. The activity signal is set to a = 1 if no runtime exceptions
occur, and a = 0 otherwise. The target rating signal is set to r = 0 if u = 0, and r = 1
otherwise.

6) Frontal Motion

This behavior relies on the analysis of the bilateral symmetry of the object (other
features are reported in Hauagge [80]). Let the salient blob b be split into a left and a right
half by the vertical axis of symmetry (i.e. a parallel to the image y-axis passing through
the center c of the bounding box enclosing the blob), so b = bL

⋃
bR. The proportion k is

defined such that

k = mL00

mR00
, (6.22)

where mL00 and mR00 are the zero moments associated to bL and bR, respectively. The
output u of the behavior is the correction in the frontal plane, defined by

u =


Ȳ if k − k∗ > ε2
−Ȳ if k − k∗ < −ε2

0 otherwise
. (6.23)

Here k∗ is the demonstrated value. It is registered by placing the robot in the desired
configuration with respect to the object. The parameter ε2 is a threshold tolerance.
Similarly to the previous case, motion in the frontal plane is defined by a step signal of
magnitude Ȳ . The activity signal is set to a = 1 if no runtime exceptions occur, and
a = 0 otherwise. The target rating signal is set to r = 0 if u = 0, and r = 1 otherwise.

7) Angular Motion

This behavior is in charge of regulating the angular motion of the robot. The desired
correction φ is obtained from the heuristics knowledge that the z-axis of the neck yaw
is approximately aligned to the motion plane normal direction (see Sec. 4.6.3), so it is
informative on the heading direction of the object. Thus, it is defined by

φ = max(min((α− α∗), φ̄),−φ̄), (6.24)
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where α is the yaw posture of the neck, α∗ is the desired state learned by demonstration,
and φ̄ is a saturation to the angular motion. The output u is defined by considering a
threshold tolerance ε3, such that

u =
{
φ if |φ| > ε3
0 otherwise . (6.25)

The activity signal is set to a = 1 if no runtime exceptions occur, and a = 0 otherwise.
The target rating signal is set to r = 0 if u = 0, and r = 1 otherwise.

8) Head Motion

Similarly to the Look-at task defined in Sec. 4.4.2, this node is in charge of directing
the head towards the object of interest. However, only the closed-loop regulation is con-
sidered (i.e. there is no open-loop anticipation of the object’s pose, since the localization
in the ego-cylinder is not observed).

Let qh = [α β]t be the correction of the joint neck positions to center the object
in the field of view (see Eq. (4.21)). The output u of the behavior is defined from the
threshold ε4, such that

u =
{

qh if d > ε4
0 otherwise . (6.26)

Here d = ‖(cx, cy)− (ix, iy)‖ is the euclidean distance between the coordinate of the blob
centroid (cx, cy), and the coordinate of the center of the image (ix, iy). The activity signal
is set to a = 1 in case the object is detected, and a = 0 otherwise. The target rating
signal is set to

r = 1
2

(
|cx − ix|

ix
+ |cy − iy|

iy

)
, (6.27)

9) Walk Arbiter

This behavior is in charge of determining the walk correction to steer the robot to-
wards the objects. As discussed in Sec. 5.3.1, human locomotion is mostly non-holonomic
when approaching the object, though holonomic corrections may be applied in the prox-
imity of the object. A state-based arbitration scheme is considered to select the motion
style. As illustrated in Fig. 6.7, the motion policy transits between the Non-holonomic
and the Holonomic states.

The module is initialized in the Start state. The Non-holonomic state combines
the information from the output of Sagittal and Angular Motion, such that the motor
command issued by the state is u1 = [X 0 φ]t. The Holonomic state combines the
information from the three motion behaviors, so the motor command issued by the state
is u2 = [X Y φ]t. The state End is reached once an interruption signal is produced, in
this case the motor command u3 = 0 is issued to stop the robot. Thereby, the arbitrated
output u of the behavior is defined by

u = (1− g3)(g1u1 + g2u2) + g3(u3), (6.28)
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Figure 6.7 – State automate for discrete events arbitration between holonomic and non-
holonomic walk style. The transition events are denoted by gi

where the event g1 is the activation of the Non-holonomic state, such that g1 = 1 if ζ̌ < ε5,
and g1 = 0 otherwise. Here ζ̌ is the average flow related to the object of interest (see Eq.
(6.20)), and ε5 is a parameter representing the transition threshold. The event g2 = 1−g1,
and the event g3 is a user interruption or a runtime exception. The activation signal is
a = 1− g3. The target rating signal is set to r = 0 if |u| = 0, and r = 1 otherwise.

10) Motion Execution

This behavior is in charge of sending the most recent commands to the motion
primitives of the robot. So it centralizes the access to the robot actuation in order to
avoid concurrency issues. The input data is d = [dw dh]t, where dw is a relative 2D pose
to be executed by the walk primitive, and dh is the desired motion of the robot neck. The
activity signal is set to a = 1 if no runtime exceptions occur, and a = 0 otherwise. The
target rating signal is set to r = a− 1.

B. Experiments

A scene was simulated in Webots where the agent has to approach a painting on the
wall. The frequency for the Data Acquisition and Motor Execution nodes is set to 30 Hz.
The rest of the nodes run at a frequency of 20 Hz. The model parameters are detailed in
Tab. 6.3. Similarly to the study cases of Chapters 4 and 5, the color model of the object
is provided by first-person demonstration. Likewise, the desired states of the Sagittal,
Frontal, and Angular Motion nodes are also provided by kinesthetic demonstration. Three
experiments are designed. In the first experiment the model presented in Fig. 6.5 is
evaluated. In the second experiment the texture of the object is changed such that the
bilateral symmetry is affected. The idea is to evaluate whether the criteria employed to
observe the lateral displacement is effective with less symmetrical objects. In the third
experiment a simpler and computationally less expensive version of the model is studied.
As shown in Fig. 6.8, the calculation of dense optic flow is approximated by the estimation
of the sparse flow generated by the centroid of the emergent blob, which operates as a
virtual sensor. Thereby, the state space of the Top-down Saliency node is extended to
include the image position of centroid in the last two consecutive acquisitions, which is
denoted respectively by c(t) and c(t−1). So the average flow considered in Sagittal Motion
(see Eq. (6.20)) is approximated by the sparse flow

f̃ = ‖c(t) − c(t−1)‖, (6.29)
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Id Description Value
ε1 Tolerance for Sagittal Motion convergence. 0.5
ε2 Tolerance for Frontal Motion convergence. 0.02
ε3 Tolerance for Angular Motion convergence. 0.06 rad
ε4 Tolerance for Head Motion convergence. 5
ε5 Mean flow threshold to switch between the holonomic

and the non-holonomic motion styles.
20

Table 6.3 – CS-I task parameters.
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Figure 6.8 – CS-I sparse flow task model. The optic flow of the object is approximated by the
virtual flow of the centroid. The two-level hierarchy is maintained.

Figure 6.9 – Reactive object approach. Some frames have been superimposed to illustrate the
trajectory followed by the agent under two distinct initial conditions. The scene is static (the
human model was not moving).

C. Results

In the first experiment the agent was able to approach the painting. Figure 6.9 shows
the results for two different initial conditions. As it can be noticed, the robot performed
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Frame a Frame b

Frame c Frame d

Figure 6.10 – Snapshots of the evaluation of the bilateral symmetry condition.

Figure 6.11 – On-board view of the bilateral symmetry condition. On the left the painting’s
texture is changed to generate a perceived asymmetric blob. In the center the features are
marked. The centroid of the bounding box is plotted in blue and the vertical axis is green. On
the right the salient blob. The on-board view corresponds approximately to the situation of
"Frame a" in Fig. 6.10.

Figure 6.12 – On-board view of the sparse flow evaluation. In case the robot is critically prox-
imal to the object, the centroid flow is no longer informative for the Sagittal Motion behavior.
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most of the time non-holonomic motions, so the trajectories obtained were efficient. The
results for the second experiment were less satisfactory. As illustrated in Fig. 6.10, the
robot required more time to converge to the desired location since it took a less optimal
path. This is due to the fact that the heuristics employed in Frontal Motion is satisfied
from more locations, since the object is less bilateral symmetric (see Fig. 6.11, the agent
is attracted to a diagonal location that corresponds approximately to "Frame A" in Fig.
6.10). In the last experiment the robot was able to efficiently approach the object when it
was completely visible. Though, when it was cropped in the field of view the virtual flow
detected was noisy, which induced errors in Sagittal Motion. As shown in Fig. 6.12, the
worst case occurs when the robot is critically proximal to the object, so the blob spans
over the whole image and the sparse flow is null.

D. Discussion

From the results obtained an interesting aspect to be noticed is that, by exploiting
embodiment and local heuristics, and in case a sufficiently high acquisition rate is available
in the platform, the model proposed can provide similar trajectories to those obtained in
Sec. 5.5.5 (that were based on the observation of the ego-cylindrical localization, from a
disembodied representation of the object). This is consistent with the physically grounding
hypothesis (Brooks [29]), so action-oriented representations would ground the solution of
the task. That is, the representations would be obtained from the embodied experience
(e.g. the color perceived from the object, the optic flow, the neck posture, and the bilateral
proportion of the object). However, as seen in the second experiment, the heuristics used
by Frontal Motion did not produce the same results for a less symmetric stimulus. Thus,
alternative representations should be investigated to determine the corrections on the
frontal plane. Generic frameworks are available in the literature of machine learning (e.g.
Self Organization Maps, Artificial Neural Networks, among others), though training is
normally required to produce reliable observations. This is in fact a distinctive aspect of
pure EC models, where the generalization of the solution is not ensured, even to small
changes in the task specifications (which can be disadvantageous for service robotics
applications). In practice different sorts of representations may be required. Finally,
other interesting aspect observed was the fact that, in case a color model of the object
is available, and the object is fully visible, virtual features (e.g. the blob centroid) can
be used to obtain a computationally less expensive solution, based on the sparse flow
estimation of depth.

6.5.4 CS-II: Object approach and obstacle avoidance

The previous case study showed that optic flow can provide an estimate on the depth
of a known object with respect to the camera sensor, so a question to be answered is:
can the information obtained from optic flow be used to avoid unknown obstacles in the
scene? In the context of mobile robot control some studies have explored the use of optic
flow processing. A work by Yoo et al. [190] investigated the control of an unmanned aerial
vehicle by heuristically balancing between the right and the left optical flow vectors. The
same strategy was employed by Souhila & Karim [169] for controlling a wheeled robot.
A work by Low & Wyeth [111] has reported that consistent information about obstacles
can be obtained from sparse optical flow in a wheeled robot Pioneer. However, when
considering the aspect of embodiment, the mobility of the visual system of these robots
may be different than the one induced by walking robots, so it is not clear whether reliable
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information about obstacles can be obtained in humanoids. In the RoboCup competition,
sensorimotor mapping and activity mining relying on optical flow patterns has been used
to learn different situations of the game (e.g. to select most relevant skill, such that
kicking, approaching, or catching the ball; see Ogino et al. [136]), though the visual task
was strongly bound to the structure of the environment (e.g. the assumption that a ball
rolls on the floor).

In this study a multi-objective navigation task is designed in which the agent has to
avoid obstacles as it approaches the object of interest. Figure 6.13 presents the model
proposed. Similarly to the precedent case, regular nodes are represented in gray and the
fusion behavior in blue. CBS nodes are not used. The two-layer hierarchy of the model
is maintained. The data signal is represented by the thick gray arrow. It is interesting
to notice that feedback represented in orange, from the last motion command sent to the
robot, is now available to all the nodes. The control signals are represented by the thin
black lines. The model comprises a total of ten concurrent behaviors, which are generally
more complex than in the previous case. Next, these behaviors are detailed.

Robot sensors
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Stimuli
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Approach
Motion

Search
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Reactive
Motion
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Figure 6.13 – CS-II task model.

A. Behaviors

Some behaviors, such that Motion Execution, were fully defined in the preceding
study. Some other behaviors have been extended in the current architecture. This is the
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case of Data Acquisition, that receives and propagates the last motion command sent to
the walk primitive as feedback. Top-down Saliency is also extended to implement the full
version of the Look-at task as detailed in Sec. 4.4.2 (i.e. by including both the predictive
and the regulation control of the neck). The remaining behaviors are quite different, so
are discussed in more detail.

1) Bottom-up Saliency

This node is in charge of unsupervised saliency detection based on the computation of
dense optic flow. For this, the segmentation algorithm detailed in Sec. 3.4.4 is employed.
The binary image is obtained by applying an heuristic threshold test ε1 to the magnitude
of the measured flow f̄ (see Eq. (3.40)). Thereby, the output u of the behavior includes the
measured flow, the binarization obtained from Eq. (3.9), and the centroid of the salient
areas (see Eq. (3.5)). The centroid is used by the Stimuli Persistence node to represent
locations related to the obstacle, so the Reactive Motion behavior can produce the control
signal to avoid such locations. The activity signal is set to a = 1 if an obstacle is detected
(that is, by applying a threshold test ε2 to filter out noisy detection, so m00 > ε2), and
a = 0 otherwise. The target rating signal is set to r = 0 if no runtime exceptions occur,
and to r = 1 otherwise.

2) Stimuli Persistence

This behavior implements the sensory ego-cylinder, as detailed in Sec. 4.5. Thus,
it works like a sensory buffer that ensures persistence of recent locations related to the
object of interest and the obstacles. That is, given the camera motions and the fact that
the vision sensor has a limited view angle, it is important to retain recent locations to
keep motion consistency, an aspect also noticed by Fujita [71].

The input d of the behavior includes the information provided by the saliency de-
tection (both bottom-up and top-down). In realistic scenarios, many regions may be
identified in the retinal space by Top-down Saliency, so the information related to the
object of interest has to be discriminated against. As explained in Sec. 5.4, the selection
relies on embodied filtering obtained through the Bayesian network. Thereby, the local-
ization of the object of interest in the ego-cylinder is estimated from the retinal saliency
and the 3D model of the object (see Sec. 4.5.3).

No model is available for observing an obstacle location Bo, so only the position
component can be estimated. The bearing and the height of the blob centroid issued by the
Bottom-up Saliency node are directly observable. Knowledge acquired from known stimuli
can be exploited to estimate the distance to the obstacles. By kinesthetic demonstration,
the robot is put to walk toward an object in the sagittal plane direction, so the mean
optic flow ζ̌ associated to the object and its localization Cζ are registered. Thus, a
rough estimation of the obstacle depth Cõρ with respect to the camera frame C can be
obtained, by establishing a linear correspondence between the mean flow magnitude ǒ of
the bottom-up salient blobs, the mean flow magnitude ζ̌ detected for the known object
(i.e. it is calculated over the mask resulting from applying the logical AND operator to
the top-down and the bottom-up saliency segmentations), and the observed depth Cζρ.
Thereby, the obstacle’s depth is estimated such that
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Cõρ = ǒ

ζ̌
Cζρ, (6.30)

where the position of the obstacle B õ with respect to the base frame B is obtained from
B õ = BTC(q)Cõ, so it depends on the current joint configuration q.

Locations of stimuli are updated in the ego-cylinder by considering a motion model of
the walk (which in this study is deterministic). Thereby, the predictions for the evolution
of stimuli are determined according to Eq. (4.17). The heading direction for the obstacles
are set to zero since they are not observed. The representations expire according to the
forgetting factors γo(i) and γζ , associated respectively to the obstacle oi and the object of
interest ζ. They are defined by

γo(i) = 1−min
(
to(i)

ε3
, 1
)

(6.31)

and

γζ = 1−min
(
tζ
ε4
, 1
)
. (6.32)

Here the parameters ε3 and ε4 represent respectively the expiration time for locations
related to obstacles and the object of interest. The timers to(i) and tζ are independent (i.e.
the information related to the obstacle and the object of interest may arrive at different
instants). Once a location is stored its timer is initialized to zero. Since only one object of
interest is tracked, the observation of the localization of the object overrides the previous
information. In case the object leaves the field of view, the forgetting factor γζ would
provide valuable information, so the search motion can be activated in the Walk Fusion
node. Contrarily, the detection of an obstacle location does not override the previous ones
(that continue to exist until the expiration time ε3 is reached). However, a unique fused
location B õ is issued by the behavior (as if only one object would be detected), which is
defined by

B õ = 1
L

n∑
i=1

exp(1− γo(i))Bo(i), (6.33)

where L is a normalization term, and the issued forgetting factor is

γõ = max(γo(i)). (6.34)

That is, the one associated with the most recent obstacle location.
To summarize, the output of the behavior is the vector u containing the active

locations Bζ and B õ, and the associated forgetting factors γζ and γõ. The activity signal
is a = max(γζ , γõ). In case γζ = 0 the Search Motion policy is used in Walk Fusion to
find the object. The target rating signal is set to r = 0 if no runtime exceptions occur,
and r = 1 otherwise.

3) Approach Motion

This node is in charge of steering the robot toward the object of interest. It handles
the control of locomotion as detailed in Sec. 5.3.3. Thus, the node implements the first-
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order description of motion given in Eq. (5.6), which mimics the human walk style. The
regulation of the view direction is delegated to Head Motion in order to preserve the
modular philosophy, so the control of the head and the walk is decoupled. Thereby, the
input d includes the current localization of the object in the ego-cylinder. The output
u = [X Y φ]t is the desired regulation of the walk. The activity signal is set to

a =
{

1 if ∃ i ∈ {1, 2, 3} | (|ui| − ε5i) > 0
0 otherwise . (6.35)

where ε5 is a 2D pose tolerance. An inhibitory signal is heuristically sent to Reactive
Motion when êρ < ε6, in order to ensure the convergence of the task. That is, once close
enough to the object of interest the reactive motion is no longer relevant, since the agent
would react to the presence of the object of interest itself, instead to an obstacle. The
target rating signal is defined by

r = min
(

1
3

3∑
i=1

(
|ui|
ε5i

)
, 1
)
. (6.36)

4) Reactive Motion

This node is in charge of directing the robot away from the obstacles. The input d
contains the estimated position of the obstacle B õ in the ego-cylinder (see Eq. (6.33)),
and the associated forgetting factor γõ (see Eq. (6.34)). The principle is illustrated in Fig.
6.14. The robot heuristically moves in the opposite direction of the obstacle’s bearing to
leave the security region. The angular correction φ is obtained by

φ = −sign(θ)max(ε7 − |θ|, 0), (6.37)

where θ is the bearing of the obstacle. The function sign(.) returns the signed unity, and
ε7 defines the bounds of the security region.

2ε7

Figure 6.14 – The obstacle in red induces clockwise reactive motion, since it falls within the
security region delimited by the dashed lines. The blue obstacle would not produce reactive
motion in the depicted situation.

Motion in the sagittal plane (see Fig. 2.12)) is also induced to bypass the obstacle.
The idea is to advance while turning in a non-holonomic fashion. The closer the obstacle
is, the less the robot should move in the sagittal plane to avoid the collision. Thereby,
the desired motion is defined by

X = (1− |φ|/ε7)ε8 (6.38)
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where ε8 is a parameter describing the saturation for the sagittal plane displacement.
The output of the behavior is u = [X 0 φ]t. The activation signal is set to a = 0 if an
inhibition signal is received from Approach Motion, and a = γ̃o otherwise. The target
rating is defined by

r = |φ|
ε7
. (6.39)

5) Search Motion

The objective of this behavior is to search for the object once it has left the field of
view. The input to the node is the prediction of the object’s bearing θ̃, conforming to Eq.
(4.17). The output is the non-holonomic search motion u = [X 0 φ]t, where the angular
component is obtained by

φ = sign(θ̃)min(|θ̃|, ε9). (6.40)

The parameter ε9 is a saturation on the angular motion. Motion in the saggital plane is
heuristically induced once the robot has turned to the expected location of the object with
a tolerance ε10, so the robot can wander until eventually re-locating the object. Thus,

X =
{
X̄ if |θ̃| < ε10
0 otherwise . (6.41)

The activation signal is set to a = 1 if γζ = 0, and a = 0 otherwise. The target rating
is defined by

r = min
(
|θ̃|
ε9
, 1
)
. (6.42)

6) Walk Fusion

This node is in charge of combining the three walk policies available. For this, two
behavioral modes are defined. In the approaching mode, the object of interest is considered
to be available if the forgetting factor γζ > 0 (see Eq. (6.32)). That is, even though the
object can be eventually occluded, the localization is persisted in the sensory ego-cylinder
for a while. A fusion between Approach and Reactive Motion is produced, according to
the scheme described in Eq. (6.8). The other scenario corresponds to the searching mode,
when γζ = 0 (i.e. the object is considered to be lost). In this case, the fusion is produced
between Search and Reactive Motion.

B. Experiments

A scene was simulated in Webots where the agent has to approach the blue can over
the sofa, while avoiding the static columns. The frequency for the Data Acquisition and
Motor Execution nodes was set to 30 Hz, the rest of the nodes run at a frequency of 20
Hz. The model parameters are detailed in Tab. 6.4. A first experiment was designed in
order to evaluate whether the agent is able to accomplish the task, by relying only on
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Approach Motion. This is to verify whether the task is challenging enough. The second
experiment includes the approach to the object from ten distinct initial locations with the
model fully operational. In the third experiment more columns are added to increase the
difficulty on the task.

Id Description Value
ε1 Bottom-up threshold test for segmentation. 12.0
ε2 Bottom-up segmentation noise tolerance. 20
ε3 Expiration time steps for obstacles in the ego-cylinder. 15
ε4 Expiration time steps for the object of interest in the ego-cylinder. 20
ε5 Approach Motion convergence tolerance. Distance in meters and

angles in radians.
[ρ θ φ]t =
[0.05 0.04 0.1]t

ε6 Object distance test for Reactive Motion inhibition. 0.4 m
ε7 Bounds of the security region for obstacle avoidance. 0.79 rad
ε8 Saturation for saggital plane displacement in Reactive Motion. 0.1 m
ε9 Saturation for angular motion search. 0.26 rad
ε10 Tolerance for orientation correction in Search Motion. 0.03 rad

Table 6.4 – CS-II task parameters εi.

C. Results

As shown on the left side of Fig. 6.15, in the first experiment the agent lost the object
of interest and did not finish the task when only Approach Motion walk was active. In
the second experiment the robot could approach the object while avoiding the obstacles.
Figure 6.16 illustrates reactive motion produced based on the segmentation of the optic
flow. As seen in Fig. 6.17, the robot was able to avoid the locations of the obstacles.

Figure 6.15 – Non-reactive vs. reactive approach. On the left Reactive Motion is deactivated.
Some frames capturing the evolution of the robot are superimposed. The robot ended up
blocked by the obstacle. On the right, with the activation of Reactive Motion the agent is able
to accomplish the task.

D. Discussion

The experiments showed that the task could be accomplished, so the robot ap-
proached the object of interest and reacted to obstacle locations, from color and dense
optic flow saliency processing. The robot was able to do the task despite the fact of count-
ing on a reduced field-of-view sensory system (i.e. monocular vision), and not planning
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On-board image Detected flow Segmented flow Obstacle localization

Figure 6.16 – Model performance. The robot avoids the column in the saggital plane direction
by processing the optic flow.

Figure 6.17 – Evaluation of motion consistency. During the approach the agent losses the view
contact with the object of interest, so it has to rely on the temporarily persisted locations.

the motion in a cartographic representation of the scene. Through the persistence mech-
anism designed in the ego-cylinder, the desired behavior could be obtained even when
the object temporarily left the field of view. Thus, motion coherence is observed through
short-term persistence, a distinguishable aspect of behavior-based models.

As noticed on the right side of Fig. 6.15, although Reactive Motion based on the
heuristics consideration of distance to the object allowed the agent to do the task, the
resulting trajectories after bypassing the obstacles were not necessarily the most efficient.
This happened since the agent reacted to noisy obstacle detections, and also by the fact
that Reactive Motion directed the robot away from the sofa, where the object of interest
was. Furthermore, as shown in Fig. 6.17, the path taken may also not have been the most
efficient from the beginning of the task, so the robot could have gone through the columns
instead of around them. This is because in the model the trajectory is largely dependent
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on the initial pose of the robot in relation to the obstacles, since motion is not planned
but emerges on-line. In the next case study the possibility of improving these results is
explored by defining alternative behavioral mode profiles in the Walk Fusion node, and
by considering motion primitives to start the approach from different directions.

Finally, since objects were represented by particles in space, occasionally the robot’s
hand touched the columns when dodging them. This can be controlled by assigning
more weight to reaction in relation to the approach component of the walk, in order to in-
crease the distance to obstacles. Hence, a compromise between producing safer but longer
trajectories must be found. This seems to constitute a limitation of the representation
chosen. Alternatively, the exploration of volumetric representations of the obstacle in the
ego-space could motivate the study of more efficient trajectories. This aspect remains for
future research.

6.5.5 CS-III: Learning-based approach

In order to improve the results obtained in the precedent case study, a more flexible
scheme in Walk Fusion is studied. The idea is to arbitrate between different walk profiles,
depending on the evaluation of the current state of the task. Hence, by exploiting the em-
bodied aspect of behavior, the agent learns visual descriptors of the scene from kinesthetic
demonstrations, that helps it to distinguish between the situations of free and blocked
access to the object of interest. Accordingly, two walk profiles are defined by assigning
different weights to Reactive and Approach Motion. In addition, by representing the task
as a Markov Decision Process (MDP), more flexibility is obtained through the definition of
motion primitives, so the robot can start the approach from different directions and learn
the actions that produce the best performance. Thus, learned policies can be extended
to new cases by case-based reasoning.

A. Visual encoding

A visual description of the scene is proposed as a means to select between distinct
walk profiles. For this, the nodes Bottom-up Saliency, Stimuli Persistence, and Walk
Fusion of the model shown in Fig. 6 are modified, as detailed next.

1) Bottom-up Saliency

The output of this node is slightly changed, so instead of producing a binary segmen-
tation, a ternary image M is obtained by applying two global threshold tests ε1 and ε2
to the magnitude of the measured flow f̄ (see Eq. (3.40)). These thresholds correspond
respectively to a high and a moderate flow condition. Thus,

Mi =


2 if f̄i > ε1
1 else if f̄i > ε2
0 otherwise

. (6.43)

The thresholds are defined so ε1 > ε2. They are set from kinesthetic demonstration. That
is, the robot is put to walk toward an obstacle placed in the saggital plane direction, and
the mean flow magnitude is registered at two given proximities in relation to the object.
Figure 6.18 illustrates the obtained segmentation by following this approach. Thereby,
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the output u of the behavior is changed so it includes the ternary imageM obtained from
Eq. (6.43), and the centroid of M = 2 (high flow saliency condition) conforming to Eq.
(3.5). Similarly to the previous study case, this centroid is used by the Stimuli Persistence
node to represent locations related to the obstacle, so the Reactive Motion behavior can
produce a walk motion signal to avoid such locations.

On-board image Detected flow Segmented flow

Figure 6.18 – Bottom-up segmentation. The red regions correspond to high flow, whereas the
green regions correspond to moderate flow.

2) Stimuli Persistence

The purpose of this node is now twofold. It is in charge of persisting the ego-
localization of stimuli (as defined previously), but also of fusing the information from
Bottom-up and Top-down Saliency, in order to produce a visual encoding of the scene, as
a means to assist behavior arbitration conducted in the Walk Fusion node.

From the bottom-up segmentation of the optic flow into moderate and high intensity
regions, and the binary mask obtained by top-down processing so the region that belongs
to the object is identified, a scene encoding is proposed as an egocentric visual description
of the task. As illustrated in Fig. 6.19, the current view is partitioned into three sectors
H = {I, II, III}. Three flow modalities associated to obstacles are: low ’o’, moderate ’̊o’,
and high ’O’. Similarly, the flow associated to the object of interest is described by: low ’σ’,
moderate ’̊σ’, and high ’ς’. Since the tracked object is considered to be unique in the scene
(due to embodied filtering selection described in Sec. 5.4), in case it would span over more
than one sector, it is heuristically assigned to the one containing the biggest proportion
of the blob. Therefore, the scene is encoded by words of length 6 (i.e. 3 binomials),
according to the regular expression (RegExp): ([o̊oO]σ)∗(([o̊oO][σσ̊ς])(? = .σ))([o̊oO]σ)∗.
A total of 189 unique encodings can be obtained. Formally, the encoding for the sectors
h ∈ H is computed from the binary mask ϕ associated to the object of interest, and the
ternary mask M (see Eq. (6.43)) associated to obstacles, according to the functions go(.)
and gζ(.), defined such that

go(M,ϕ) =


O if ((M = 2) ∧ ¬ϕ)
o̊ else if ((M = 1) ∧ ¬ϕ)
o otherwise

, (6.44)

gζ(M,ϕ) =


ς if ((M = 2) ∧ ϕ)
σ̊ else if ((M = 1) ∧ ϕ)
σ otherwise

. (6.45)

Here ∧ is the logical AND operator.
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I II III

H:I II III

Figure 6.19 – Visual encoding. On the left the external view of the scene. The visualization
cone is projected so the regions corresponding to the sectors H = {I, II, III} are shown. The
region shaded in red would correspond approximately to the space associated to high optic flow.
Similarly, the external green arc would delimit the space associated to moderate flow. On the
right column the on-board views are given. The image at the middle corresponds to the top-
down segmentation based on color, so the can is identified in the retinal area in blue. The image
at the bottom is the ternary segmentation of the optic flow. The encoding obtained for the
situation depicted are the pairs: "̊oσ" (moderate obstacle flow and low object flow in the sector
I), "Oσ̊" (high obstacle flow and moderate object flow in the sector II), and "Oσ" (high obstacle
flow and low object flow in the sector III). Thereby, the word encoded is "̊oσOσ̊Oσ".

To summarize, the output of the behavior is the vector u that contains the active
locations Bζ, B õ, the associated forgetting factors γζ and γõ, and the scene encoding
produced.

3) Walk Fusion

This node performs arbitration between the three walk behaviors. The node signals
are defined inspired by weighted fusion scheme (Proetzsch et al. [152]), such that

u =


k∑
j=0

wjajuj
k∑
l=0

wlal

 , a =


k∑
j=0

a2
j

k∑
l=0

al

ϑ, r =


k∑
j=0

ajrj

k∑
l=0

al

 . (6.46)

In the calculation of u the input activation vector a is pre-multiplied by the vector w,
that assigns different weight to each walk behavior (i.e. Approach, Reactive, and Search
Motion).

As illustrated in Fig. 6.20 and described in Tab. 6.5, at each iteration a state-based
arbitration scheme is processed in the state S0, so a transition is produced to one of three
walk modes. Similarly to the previous definition of this behavior in Sec. 6.5.4, a switch
from S0 to S1 occurs when Search Motion becomes active, due to object loss. The novelty
here is the distinction between walk modes that are adequate for the cases of having a
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S0 S2

S3

S1

g1

g2

g3

Figure 6.20 – State automate for discrete events arbitration between the motion profiles de-
scribed in Tab. 6.5. The transition events are denoted by gi (see Tab. 6.6).

State w0 w1 w2 Profile
S0 - - - Arbitration
S1 0.00 0.75 0.25 Object search
S2 0.80 0.20 0.00 Fast approaching
S3 0.25 0.75 0.00 Obstacle avoidance

Table 6.5 – State arbitration profiles. The weights w0, w1, w2 are assigned respectively to the
input from Approach Motion, Reactive Motion and Search Motion.

Event Condition
g1 The forgetting factor γζ = 0 (see Eq. (6.32)), that is to say the object

is considered to be lost and not temporarily occluded.
g2 The probability p of having a free access to the object, given the encoding

transition detected, is p > ε3. The estimation of p is done conforming
to Eq. (6.47).

g3 g3 = ¬g2.

Table 6.6 – Arbitration events.

free access and a blocked access to the object of interest. Thus, the idea of the state
S2 is to ensure fast convergence to the object once there is no obstacle along the path.
This is done by assigning less weight to the contribution of Reactive Motion in relation
to Approach Motion, so the robot ideally neither reacts to noise nor avoids the location
of interest. Contrarily, in the state S3 more weight is assigned to the reactive component
to avoid obstacles.

As described in Tab. 6.6, the switch event g2 is triggered based on the probabilistic
evaluation of the scene encoding. Let Q be a random variable representing the fact of
having free access to the object of interest, and the event E denote the encoding transition
binomial (a, b) occurring in the task. That is, the passage from a word descriptor a in time
t = k to a word descriptor b in time t = k + 1. From the a priori probability distribution
p(E|Q), obtained by kinesthetic demonstration, the desired a posteriori query p(Q|E) is
evaluated by applying the Bayes theorem, thus

p(Q|E) = p(E|Q)p(Q)
p(E) . (6.47)

The learning of this probability is treated in the first experiment of the case study.
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B. Learning motion primitives

The robot is given the possibility of choosing from five actions that consist in starting
the motion in a particular direction (see Fig. 6.21). This selection is modeled as a Markov
Decision Process (MDP). As illustrated in Fig. 6.22, the transitions to be learned are
enclosed in the blue box. The state set S is described in Tab. 6.7. Action selection is
obtained based on the observation of the scene encoding. In this case the encoding is done
previously to start the locomotion and not during the walk. Ideally an ocular saccade
would be produced. Since it is not available to the Nao platform, the robot slowly turns
the head while standing up to generate the optic flow. Given a particular scene encoding,
the idea is to learn by reinforcement the transition from S2 that produces the most reward.

Figure 6.21 – Top view of the action primitives.

s0
a01(α01, r01)

s1
a12(α12, r12)

s2
a25(α25, r25)

a24(α24, r24)

a23(α23, r23)

a26(α26, r26)

a27(α27, r27)

s5

s4

s3

s6

s7

a58(α58, r58)

a48(α48, r48)

a38(α38, r38)

a68(α68, r68)

a78(α78, r78)

s8

Figure 6.22 – MDP task model. The transition from si to sj when taking the action aij is
denoted by (αij , rij), where rij is the immediate reward and αij is the transition probability.
From all actions there is a transition to s8 (some are omitted for clarity), which models an
abnormal end of the task with probability 1−αij and reward ri8. The transitions to be learned
are those departing from S2 (which are delimited by the blue box). A detailed description of
the states and rewards are provided in Tab. 6.7.

Learned policies from similar encodings can be heuristically used as an initial guess
when facing new situations. The idea is to check whether there is a physically similar
experience encoded from which a policy can be attempted. In case there is, the learned
action is expressed according to the current view perspective, so it is tried in the current
situation. The comparison on the similarity between the current encoding wt and a learned
encoding wr is obtained through the function man(G(a, b)), that gives the Manhattan
distance (see Fig. 6.23) between two nodes a and b in a graph G(a, b). The distance η
between two encodings is defined by

η =
∑
h∈H

man(G(wt(h), wr(h))). (6.48)
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State Description
S0: Start Entry to the control program, in case the resources are available, an initial-

ization signal is sent so the joints are activated and the robot stands up.
S1: Encoding The scene is encoded by slowly turning the head from left to right.
S2: Selection The robot choses a motion primitive to execute.
S3: Walk-72 The robot turns 72 degrees clockwise and then walks in the sagittal plane

direction a distance ε4 m.
S4: Walk-36 The robot turns 36 degrees clockwise and then walks in the sagittal plane

direction a distance ε4 m.
S5: Walk-0 The robot walks in the sagittal plane direction a distance ε4 m.
S6: Walk+36 The robot turns 36 degrees counter-clockwise and then walks in the sagittal

plane direction a distance ε4 m.
S7: Walk+72 The robot turns 72 degrees counter-clockwise and then walks in the sagittal

plane direction a distance ε4 m.
S8: End Terminal state. Program terminations requested by the user are penalized,

so in case an interruption κ is produced κ = 0, otherwise κ = 1. Reward
is also related to the dead reckoning estimate on the linear distance traveled
d =

∑tf
t0

√
x2
t + y2

t , and the number n of times the object was out of the field
of view. Therefore, the reward is r8 = κε5 + d+ nε6.

Table 6.7 – MDP state descriptions. When not specified, the reward ri = 0.

Thus, two encodings are considered to be similar if η < ε7. Once a trial is finished, the
case-based memory is updated with the learned Q-value.

oσ o̊σ

oσ̊ o̊σ̊ Oσ̊

o̊ς Oς

1

11

1 1

1

1

1

Figure 6.23 – Visual encoding neighborhood. Manhattan distance graph G.

C. Experiments

Four experiments were designed. As shown in Fig. 6.24, in the first experiment
the robot is put to walk toward the object in two conditions: in one the path is cleared
from obstacles, in the other it is not. Thus, the encoding transitions are registered from
kinesthetic demonstration, in order to calculate the a posteriori probability distribution
p(Q|E), as defined in Eq. (6.47). In the second experiment the current implementation
of the behavior is compared to the model defined in the precedent case study (see Sec.
6.5.4). For this, the task is repeated under the same conditions. In the third experiment
multiple instances of the object of interest are added to increase the difficulty on the task.
In the fourth experiment, the RL-based approach is evaluated at distinct initial positions.
Table 6.8 presents the parameters used in the model.
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Figure 6.24 – Example of kinesthetic demonstrations for learning the scene encoding transi-
tions. The robot walks towards the object. On the left a column is blocking the path, whereas
on the right there is a free access to the object.

Id Description Value
ε1 High flow threshold test 12.00
ε2 Moderate flow threshold test 7.0
ε3 Probabilistic test for state arbitration. 0.8
ε4 Motion in the sagittal plane induced by RL 0.15 m
ε5 User program interruption cost 200
ε6 Object lost iteration cost 0.1
ε7 Manhattan distance threshold 4

Table 6.8 – CS-III task parameters.

D. Results

In the first experiment (see Fig. 6.25), the transitions produced were registered,
so p(E|Q) was estimated. After learning, several tests were performed to assess the
recognition of the event Q. Free access to the object was identified at a rate of 65.21%
when this condition was tested (with ε3 = 0.8), whereas the condition of blocked access
to the object was recognized at a rate of 98.03%. As shown in Fig. 6.26, failures can
probably be explained by noisy detection of the optic flow from simulated images.

Figure 6.27 illustrates the results obtained for the second experiment. The differences
are subtle, though the trajectory followed on the right (i.e. the Walk Fusion behavior is
based on learned transitions from the scene encodings), was slightly more efficient. The
results for the third experiment is shown in Fig. 6.28. It is noticed that despite the
presence of other cans over the sofa, the robot was able to converge to the desired one.
The result for the fourth experiment is presented in Fig. 6.29. Table 6.9 gives the roll-
out reward obtained for the full set episode. In this case, the most efficient action was
do_Walk+36, since no occlusions were produced. As shown in Fig. 6.30, the robot was
placed in an adjacent location so it applied the policy previously learned for a similar
scene encoding. The trajectories obtained also were very similar.

E. Discussion

The experiments conducted have shown that the model is able to produce the desired
behavior. Concerning arbitration based on scene encoding, smoother and more efficient
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Figure 6.25 – Encoding transition matrix. The encodings are enumerated from 0 to 188, so
a white dot in the matrix represents a transition between two indexes. The matrix on the left
corresponds to the demonstration of a free access to the object. On the right, the transitions
obtained when obstacles blocked the access to the object. Two transitions are shown. The
location A corresponds to a transition from the encoding "oσ̊oσ̊oσ̊" to the encoding "oσ̊oσ̊o̊σ̊"
(probably due to noise), whereas the location B corresponds to a transition from the encoding
"̊oσ̊oσ̊oσ̊" to the encoding "oσ̊oσoσ̊".

Figure 6.26 – Panoramic flow detection. On the top, the view of the scene at a range of π
rad in the frontal ego-space. On the bottom, the normalized magnitude of the flow. Clearer
regions should be physically closer to the sensor than darker regions. As seen, noise from texture
mapping in the simulated images affected the computation of the optic flow (e.g. the top-left
corner of the sofa is perceived closer than the frontal part).

trajectories were obtained, since the robot reacted less to noise. The fact of estimating the
optic flow on simulated images, probably impacted on visual encoding process reliability.
Thus, the verification of these results with a real robot remains for future research.

In relation to the aspect of learning motion primitives by reinforcement, the robot
was able to do the task and to efficiently reuse previous experiences in a similar situation.
However, some limitations must be addressed. Given the stochastic nature of the behavior,
it is possible that for real experiences the same action produces considerably different
rewards (e.g. the robot may slip, so the estimate on the reward based on dead reckoning
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Action Distance Occlusions Reward
a23: do_Walk-72 4.13 85 12.63
a24: do_Walk-36 3.92 83 12.22
a25: do_Walk-0 3.81 58 9.61
a26: do_Walk+36 3.60 0 3.60
a27: do_Walk+72 4.08 62 10.80

Table 6.9 – Reward obtained for the full set of actions illustrated in Fig 6.29. The table
shows the estimated distance walked in m and the occlusions registered. No interruptions were
generated by the user in the trial.

Figure 6.27 – CS-II vs CS-III implementation. On the left, the result for CS-II where a single
walk mode was available. On the right, the results for the current implementation, so a dual
walk scheme based on visual encoding arbitration was available.

Figure 6.28 – Evaluation of the condition of multiple objects and obstacles. Despite the
presence of other cans on the sofa, the robot was able to approach the desired one by relying on
the embodied filtering process (described in Sec. 5.4).

may be noisy). Additionally, the state reward did not consider important aspects such
as safety. That is, a shorter path where the object is fully visible may be for instance
narrower, so there is a greater risk for collision.

6.6 Conclusions

In the context of the action selection problem for the control of humanoid locomotion
guided by vision, this chapter has started by reviewing proposals available in the literature
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Figure 6.29 – RL policy learning. The available actions are shown in green. The robot walked
0.15 m along each of these directions before activating Approach Motion. The rest of the nodes
operated normally, so reactivity to the obstacles and convergence on the task is obtained.

Figure 6.30 – CBR experience retrieval. The policy learned (do_Walk+36 ) at the left-most
trial (see Fig. 6.29) was expressed with respect to the perspective of the agent on the right-most
trial (do_Walk-0 ), so the knowledge acquired could be reused in the similar situation.

of behavior-based architectures. The choice for the iB2C framework to model the task
was justified based on its generality and flexibility. Through a detailed implementation
proposal, and several experiments, different topics were investigated, such as embodiment,
knowledge representation, learning, and the adaptive aspect of behavior.

The results of the first study have shown that, by combining multiple image features
that exploited embodiment and local heuristics, and in case a high acquisition rate is
available in the platform, the reactive model proposed can provide similar trajectories to
those obtained in Sec. 5.5.5 (that were based on the observation of localization from a
disembodied representation of the object). This is consistent with the EC statements.
Though, the heuristics used to estimate the heading direction of the object (i.e. bilateral
symmetry), did not produce the same results for a less symmetrical object. Thus, alterna-
tive representations are to be investigated. This is in fact a distinctive aspect of pure EC
models, where the generalization of the solution is not ensured, even to small changes in
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the task specifications (which can be disadvantageous for service robotics applications).
Therefore, although the methodology can produce efficient solutions from reduced mod-
eling (a relatively rudimentary model was proposed), that comes with the price of poor
generalization.

In the models proposed, the philosophy adopted was to define individual behaviors
in charge of specific aspects of the response. The operation of these nodes were mostly de-
termined from kinesthetic demonstrations of the task, and relied on a local representation
context. The agent accomplished the task efficiently without building a global represen-
tation, so the knowledge available was distributed in the architecture. The second and
third case studies showed that behavior emerged and persisted enough in the absence of
stimuli. Behavior consistency was ensured by the perceptive ego-sensory structure, that
temporarily stored stimuli localization.

As the third case study has shown, visual information obtained from a first-person
perspective was used to refine the behavior repertoire, so the agent was able to learn ac-
tions and to arbitrate between walk policies. Thus, the visual encoding scheme proposed
led to improvements in the execution of the task. Some aspects remain for future research.
Although the stimuli representation chosen was efficient and convenient to ensure the re-
activity on the task, it did not guarantee optimal behavior. This is particularly significant
when representing the obstacles as particles in space. Alternative representations (e.g. a
volume area in the ego-space) should be explored to study optimal behavior when avoid-
ing obstacles, so the robot can decide between adopting a frontal or a sagittal walking
style, as humans eventually do. It would also be interesting to evaluate the bottom-up
processing proposed with a real robot capable of providing the required acquisition rate,
so the arbitration based on visual encoding could be assessed.
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7
Conclusions

In the study of service robotics applications for human-centered scenarios, the review
of the state of the art of the research in humanoid robotics has suggested that, despite
important achievements in the control of locomotion, manipulation, or adaptation; these
robots have not reached a sufficient level of maturity as to become a viable technological
solution. Although designed with an anthropomorphic body, there are important phys-
ical differences related to the kinematic properties, the sense organs, and the actuation
system; that impose restrictions on humanoids. Thus, the field is still waiting for techno-
logical and scientific breakthroughs, to meet the requirements of reliable operation under
unstructured scenarios.

In this work the architectural aspect of behavior was studied in the context of the
action selection problem. Through a general case study, which is the fundamental skill
of approaching and positioning in relation to stimuli guided by vision, several topics were
explored, including: embodiment, visual attention, knowledge representation, egocentric
localization and learning. The study focused on the processing of information from the
visual and the proprioceptive sensory modalities, acquired on-board.

The study of visual attention showed that this process can be driven endogenously
(by goals or top-down), or exogenously (by novelty or bottom-up). From a multidis-
ciplinary perspective, the spotlight metaphor, the FIT and GS theories motivated the
design of visual features and the structure of some of the behavior models proposed. The
literature on machine vision was reviewed and relevant techniques were explored to ex-
tract information from images. The results of the case studies developed have shown
that, although some structure may be recovered by heuristic clustering, the segmentation
obtained may not be physically plausible. A supervised segmentation technique defined
within a MRF framework was adapted for top-down saliency processing in a continuous
image inflow. The evaluation suggested that it is a plausible approach for unstructured
scenes, though the performance is degraded with metallic or reflective objects, or under
excessive artificial illumination. The exploration of dense optical flow based on polyno-
mial expansion has shown that some structure of the scene can be recovered (an estimate
on the depth with respect to the sensor), by measuring the magnitude of the detected
flow. Thus, unsupervised segmentation was obtained for textured objects.
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A visual servoing scheme was studied for modeling the behavior of the robot. The
PBVS and IBVS control approaches were employed simultaneously, in order to maintain
the object of interest in the field of view, and to steer the robot to the desired 2D pose
in relation to the object. The solution considered the motion primitives of walking and
directing the head. The processing of the localization was based on the design of a sensory
ego-cylinder, where the 3D position of the center of the object and its heading direction
on the plane were represented. This information was obtained from a binary image and
a rough 3D model of the object. Differently from previous contributions in the field that
relied on the principle of Verification Vision, the MRF segmentation technique was used
for localizing the object, so the top-down saliency processing does not require knowledge
on the spatial motion of the sensor. This is advantageous since the solution operates at
a low acquisition rate. The model was tested both in simulation and a real experiment.
The results showed that it is a plausible strategy to approach convex colored objects on
the environment.

The computational complexity and the reliability of the localization parameters are
related to the definition of the measurement and the representation frames of reference.
Thus, different locations for the sensory ego-cylinder were studied. Given the lack of
consensus in the literature about the placement of the ego-sensory structure, body- and
eye-centered locations were investigated. The results of the experiments suggested that
converge can be obtained for body-centered locations (i.e. the measurement and the rep-
resentation frame are defined at different placements). The fact that the robot walked in
vertical posture constrained the mobility of the reference system, so heuristic placements
also provided convergence. This was not the case for eye-centered placements (i.e. the
measurement and the representation frame are defined in the same location). The visual
system is constantly redirected toward the object of interest by the look-at task, so the
local context of the body posture during the task is not preserved. A hybrid solution
was proposed, so the correction in the position is determined eye-centered, but the reg-
ulation on the angular motion is calculated body-centered. This combination provided
correct results, it was computationally more efficient, and less affected by noise in the
proprioceptive measurements.

From the analysis of the dynamics aspects of human locomotion guided by vision,
the first-order description proposed named HMW allowed the agent to mimic the human
walking style. That is, non-holonomic motion is used when the individual is far from
the object, but holonomic motion is preferred when the individual is close enough to the
goal. A contribution of HMW is to consider a desired 2D pose in relation to the object,
whereas previous studies focused only on the control of the position component. This is of
crucial importance, since the operational face of the stimulus is taken into account in the
motion, so the path followed is more efficient and aesthetic. These are valued aspects for
the acceptance of the solution in the context of human-machine interaction and service
robotics applications.

The six-steps methodology developed to design reliable solutions illustrated an in-
teresting combination between the cognitivist and the EC research. As mentioned previ-
ously, the visual selection mechanism proposed was inspired by the information processing
models of attention. It was also based on a Bayesian Network structure, which is usu-
ally employed for information fusion and knowledge representation in the context of the
cognitivist research in AI. However, in the BN multi-sensory information is fused from
features that exploited embodiment, so they were carefully defined from the EC per-
spective. Furthermore, the anticipative aspect of the behavior scheme was an interesting
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opportunity to study the effect of the statistical regularities induced by the coupling, and
the information redundancy in the sensory-motor coordination.

The BN structure designed provided reliable information about the degree of confi-
dence and the discriminative power of the attention selection mechanism. This became a
significant contribution to the autonomy of the agent, through the efficient use of avail-
able resources. Thus, the solution was operational at a low acquisition rate in a low-cost
robot. The static policies for the BN were adequate to real tasks, whereas the advantages
of the dynamic policies were noted only in simulations, given the observation noise and the
lack or redundancy in the information provided by the features. The BN also grounded
the implementation of the hybrid architecture proposed to ensure safety when accessing
remote resources.

In the behavior-based models proposed, the philosophy adopted was to define indi-
vidual behaviors in charge of specific aspects of the task. The operation of the nodes
were mostly determined from kinesthetic demonstrations, which is very convenient to
robotic service applications. The nodes relied on local representation context, so the task
is efficiently accomplished without constructing a global representation. In the study of
reactive walk, by defining action-oriented representations of the object, similar trajecto-
ries were obtained to the scheme using a disembodied representation of the object; which
is consistent with the EC statements. Though, the heuristics considered did not produce
the same results for a less symmetrical object. This illustrated a distinctive aspect of pure
EC models, where the generalization of the solution is not ensured, even to small changes
in the task specifications (which can be disadvantageous for service robotics applications).

In the action selection problem, visual information was used to refine the behavior
repertory of the robot, so it was able to learn actions and arbitrate between walk policies.
Thus, the visual encoding proposed led to improvements in the execution of the task. In
the models behavior emerged and persisted enough in the absence of stimuli, given the
temporal storage of information in the perceptive ego-sensory. The models have illustrated
a potential and feasible strategy that can be adopted for prototyping and exploring more
complex sensory-motor coordinations. Thus, the fact of counting on modular motion
primitives that are already available to the agent, handles much of the security aspects
involved in the task, as for example, maintaining the body balance.

7.1 Research perspectives

In the studies conducted several aspects remained for future research. The fact of
considering a static scene is restrictive to applications in service robotics, so the approach
to moving objects should be studied. Time constrained tasks could also be explored (e.g.
approaching an object in motion, or avoiding a moving obstacle). The models considered
the case of walking at a constant velocity profile, so a deterministic predictive model was
sufficient to obtain the desired results. It is important to notice that this assumption
may not hold when the objects move, or when the robot walks faster or runs. Thereby,
stochastic models of motion could be considered in the task, notably when the acquisition
rate is low.

The processing of top-down saliency was based on color features. Depending on
the surface of the object, disturbances, or illumination noise, momentary degradations
were produced in the segmentation. Thus, features redundancy (e.g. the image con-
tours, edges, among others) could be integrated to the model to increase the reliability
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of the task. Likewise, other sensory modalities available in humanoids (e.g. sonars, laser
range, binocular vision) could also be included. In a context of feature redundancy, the
advantages of the dynamic policies for the BN could be observed.

Although the stimuli representation chosen was efficient and convenient to ensure re-
activity on the task, it did not guarantee optimal behavior. This is particularly significant
when representing the obstacles as particles in the ego-space. Alternative representations
(e.g. a volume area) should be explored to study optimal behavior when avoiding obsta-
cles, so the robot can for instance decide between adopting a frontal or a sagittal walking
style, as humans eventually do. It would also be interesting to evaluate the bottom-up
processing proposed with a real robot capable of providing the required acquisition rate,
so the arbitration based on visual encoding could be assessed.
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Appendixes

A. Bayesian Network probability observation

This appendix details the calculation of Eq. (5.8), which is the query to determine
the probability that the current observations Oi correspond to the object of interest.
Thus, Fig. A.1 recalls the structure of the BN proposed, which is a naive Bayes classifier.
That is, the information provided by the features on the branches are assumed to be
independent from each other.

Object

B3B2B1 B4 B5

O3O2O1 O4 O5

Figure A.1 – Bayesian network for contextual information fusion.

In the query, the particular observation of the leaf features are propagated recur-
sively until the root node. Given the assumption of statistical independence between the
branches, only the case of the left-most branch is going to be developed here, in order
to illustrate the calculations required. For this, let us assume that the following a priori
knowledge is available:

1. The probability distribution p(Object) of observing the object in Tab. A.1.

Object Probability
True 0.5
False 0.5

Table A.1 – Object’s a priori probability.

2. The probability distribution p(B1|Object) in Tab. A.2. It is the discriminative
power of the feature B1, given the observation of the object.
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B1/Object True False
True 0.9 0.1
False 0.1 0.9

Table A.2 – A priori knowledge on the discriminative power of feature B1.

3. The probability distribution p(O1|B1) in Tab. A.3. It is the discriminative power
of the leaf O1, given the observation of feature B1.

O1/B1 True False
0 0.05 0.333
1 0.15 0.333
2 0.80 0.333

Table A.3 – A priori knowledge on the discriminative power of leaf O1.

Let an observation be described by three levels of intensity, so O1 ∈ {0, 1, 2}. As-
suming a value O1 = 2 is observed, the query to be stated has the form

p(Object = True|B1, O1 = 2) (A.1)

Case Object B1 O1
1 False False 0
2 False False 1
3 False False 2
4 False True 0
5 False True 1
6 False True 2
7 True False 0
8 True False 1
9 True False 2
10 True True 0
11 True True 1
12 True True 2

Table A.4 – All possible queries related to the left-most branch of the network

Before proceeding to solve the query, notice that all the possible observations on
the network are enumerated in Tab. A.4. Let the notation be simplified so F:False and
T:True. The cases that match the clues (Object = T, and O1 = 2) are 9 and 12. The
likelihood lq of the match is obtained by

lq = p(Case = 9) + p(Case = 12). (A.2)

By definition, in the network a node is independent from others given its parents (see Eq.
(5.7)), thus

p(Object = T|B1, O1 = 2) = p(Object = T)p(B1|Object = T)p(O1 = 2|B1). (A.3)
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Consequently,

p(Case = 9) = p(Object = T)p(B1 = F|Object = T)p(O1 = 2|B1 = F), (A.4)

and

p(Case = 12) = p(Object = T)p(B1 = T|Object = T)p(O1 = 2|B1 = T). (A.5)

By consulting Tabs. A.1, A.2, A.3, the likelihood of the query is

lq = (0.5)(0.1)(0.333) + (0.5)(0.9)(0.8) = 0.37655 (A.6)

In order to get a full probability distribution, the likelihood of the complementary
event l¬q must be estimated. Which is done according to the expression

l¬q = p(Case = 3) + p(Case = 6). (A.7)

Thus,

p(Case = 3) = p(Object = F)p(B1 = F|Object = F)p(O1 = 2|B1 = F), (A.8)

and

p(Case = 6) = p(Object = F)p(B1 = T|Object = F)p(O1 = 2|B1 = T). (A.9)

The likelihood of the complementary query is

l¬q = (0.5)(0.9)(0.333) + (0.5)(0.1)(0.8) = 0.18985 (A.10)

Finally, the answer to the original query is

p(Object = T|B1, O1 = 2) = lq
(lq + l¬q) = 0.6647. (A.11)

Notice that if the network is used without considering the discriminative power, it is
not necessary to calculate the normalization term Z in Eq. (5.8) (which in this case is
Z = (lq + l¬q)), but to keep the highest likelihood (see Eq. (5.9)). Finally, it can be handy
to recall at this point that the Eqs. (5.10) and (5.11) are used in case the probability
distribution of Tab. A.2 is estimated in runtime.
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Représentations Ego-centrées pour la Navigation Autonome d’un Robot
Humanoïde

Egocentric Representations for Autonomous Navigation of Humanoid Robots

Résumé
Les compétences de rapprochement et de
positionnement par rapport à des objets guidé par
vision sont d’une importance cruciale pour les
applications en robotique de service. De plus,
l’autonomie et la robustesse de la solution sont
essentielles pour les scénarios stochastiques, dont
l’agent doit être capable de réagir face à des
situations imprévues. L’approche traditionnelle
(cognitiviste) en IA n’a pas abouti à des modèles et
des stratégies de représentation adaptés, en
s’appuyant sur une stratégie de sélection d’action
centralisée. Les modèles émergents (cognition
incarnée) ont en revanche produit des systèmes de
réponse rapide au prix d’une faible capacité de
généralisation. Ce travail porte sur l’aspect
architectural du comportement et se concentre sur
l’exploration des sources locales d’information pour
obtenir des solutions flexibles et robustes vis-à-vis des
applications en robotique de service, en adoptant une
perspective intermédiaire entre la recherche
cognitiviste et la cognition incarnée. Pour cela, d’une
part, on adopte l’hypothèse cognitiviste selon laquelle
le robot peut se servir des représentations
indépendantes-de-l’action (sous la forme de schémas
perceptifs) pour faire la reconnaissance visuelle de la
cible. Alors que, d’autre part, une fois que le robot
s’engage dans une tâche sensorimotrice il aura
recours à des représentations locales sous la forme
de sensations corporelles afin d’anticiper les
conséquences de l’action, de discriminer les objets,
de réagir à des circonstances imprévues, d’apprendre
à partir d’expériences passées, et d’évaluer le progrès
et le succès de la mission.

Abstract
The skills of visually approaching and positioning in
relation to objects on the scene are of crucial
importance for service robotics applications.
Furthermore, the autonomy of the solution is
essential, since human-centered scenarios, where
these robots are expected to operate (e.g. at the office
or home), are stochastic. Hence, it is important that
the agent can react to unforeseen situations. The
traditional approach of AI has not produced reliable
results since it is based on extensive context-free
models of the tasks, so action selection is a
centralized and delayed process. Emergent models
have in contrast produced fast response systems at
the cost of poor generalization power, even to very
similar scenarios. This research has taken an
intermediate perspective between the cognitivist and
the EC research. It employs simultaneously
action-independent knowledge for visually recognizing
the stimuli of interest, and local representations in the
form of bodily sensations, in order to anticipate the
consequences of action, to discriminate the object, to
react to unexpected circumstances, and to assess the
progress and success of the mission.

Mots clés
Architectures des comportements, Attention visuelle ascendante et
descendante, Vision par ordinateur, Localisation égocentrique
embarquée, Sélection d’action, Intégration multisensorielle,
Apprentissage par renforcement.
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Behavior architectures, Bottom-up and top-down visual attention,
Machine vision, Egocentric on-board localization, Action-selection,
Multisensory-integration, and Reinforcement learning.
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