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Résumé étendu

La recherche sur I'automatisation du comportement a mis en évidence divers défis
technologiques pour parvenir aux performances d’un systeme biologique. Il devient de
plus en plus clair que les caractéristiques des organes sensoriels et moteurs humains sont
essentiels pour atteindre certains objectifs. Malgré I'intérét croissant en matiere de so-
lutions robotiques pour des applications de service et d’assistance, une machine qui soit
polyvalente et qui imite de fagon réaliste le corps anthropomorphe de I’étre humain n’est
pas encore disponible. Actuellement, le domaine de l'intelligence artificielle (IA) passe
par des reformulations importantes. L’approche cognitiviste de I'A n’a pas abouti a des
modeles et des stratégies de représentation adaptés pour fournir un systeme de résolu-
tion de probleme universel. Pendant les dernieres décennies, la recherche en cognition
incarnée (Embodied Cognition (EC)), ou la représentation de la connaissance est fondée
sur l'interaction physique avec 'environnement s’est développée offrant une alternative
pour I'étude du comportement naturel. Toutefois, I’adoption de la méthodologie EC pose
également des défis importants pour les roboticiens. Notamment, lorsqu’elle vise a satis-
faire les exigences imposées par 'hypotheése du fondement physique (physical grounding
hypothesis). Ainsi, son utilisation dans les applications de robotique de service n’est pas
encore tres développée.

Cette étude a pris un point de vue intermédiaire entre la méthodologie cognitiviste
et 'EC. Ce travail porte sur 'aspect architectural du comportement et se concentre sur
I’exploration des sources locales d’information pour obtenir des solutions flexibles et ro-
bustes vis-a-vis des applications en robotique de service. Lors de ce travail une com-
pétence fondamentale a été considérée comme cas d’étude : il s’agit de 1'utilisation de
I’'ego-localisation pour se rapprocher et se positionner par rapport a des cibles visuelles.
Pour cela, d’une part, on adopte ’hypothese cognitiviste selon laquelle le robot peut se
servir des représentations indépendantes-de-l’action (sous la forme de schémas percep-
tifs) pour faire la reconnaissance visuelle de la cible. Alors que, d’autre part, une fois
que le robot s’engage dans une tache sensorimotrice il aura recours a des représenta-
tions locales sous la forme de sensations corporelles afin d’anticiper les conséquences de
I’action, de discriminer les objets, de réagir a des circonstances imprévues, d’apprendre
a partir d’expériences passées, et d’évaluer le progres et le succes de la mission. Ainsi,
a partir d’'une approche multidisciplinaire, ce travail porte sur différents aspects : les
architectures de comportements, ’attention visuelle ascendante et descendante, la vision
par ordinateur, la localisation égocentrique embarquée, la sélection d’action, l'intégration
multisensorielle, et ’apprentissage par renforcement.
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Introduction

Humanoid assistants

According to the historical review by Ichbiah [88] the word robot was popularized
in 1920 in the science fiction Czech play R.U.R. by Karel Capek. In the play artificial
people are manufactured to help and free humanity from the slavery of manual labor, but
they turn against their creators. These creatures would be made from synthetic organic
matter so they could be easily mistaken for humans. Thus, perhaps under the effects of
the severe consequences of the First World War, the literature of the 20-30s pictured a
distopic view of robots as a menace and a replacement for mankind.

This negative connotation started to change through the work of Issac Assimov. The
American Russian-born biologist contributed to a positive view of robots as our allies,
servants and assistants; simply because we can choose it to be so. The famous introduc-
tion of the three laws of robotics in the short story Runaround (Assimov [13]), became
an influential step towards ethics in robotics, accordingly:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given to it by human beings, except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.

The story takes place in a mining station on the planet Mercury. The photo-cell
banks that would provide life support to the base station was short on selenium. Given
that the robot SPD-13 (also called Speedy) could withstand Mercury’s high temperatures,
the crew asked it to get some selenium from the nearest pool. Speedy got confused about
its mission, suffering from what is described as the "robotic equivalent of drunkenness”.
The situation is illustrated in Fig. 1.1. The robot walked uninterruptedly a huge circle
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around the selenium pool when it was found by the crew. After failing to recover Speedy
by a voice command, the astronaut Powell eventually realized that the selenium source
contained unforeseen danger to the robot, so the second rule (to obey an order given by
a human) and the third rule (to preserve itself) were in conflict. Thus, the momentary
equilibrium in Speedy’s behavior is finally broken when Powell decides to put himself
in danger by going out in the heat, hoping that the first law would force the robot to
overcome the cognitive dissonance and saving his life, what indeed happened.

Figure 1.1 — Illustration of Speedy’s confusion, as described in the short story Runaround by
Assimov [13]. Speedy cannot decide whether to execute the mission order or to protect himself
from danger. The robot then oscillates between the two behavioral modes of approaching and
avoiding the selenium pool.

Leaving aside for the moment the fascination with fiction, one might ask if there
are legitimate reasons that justify the interest in the research of humanoid applications.
This issue is tackled by Behnke [17], when he argues that the increasing popularity of
humanoids research is motivated by the vision of creating a tool that cooperates with
humans to solve problems in their same environment. That is, since our everyday tasks
are human-centered designed, humanoids are believed to be more suited to move (e.g.
climbing stairs) or to dexterously manipulate tools. In addition, a robot that is able to
synthesize speech, to move the eyes, or to gesticulate; would favor a more intuitive and
fluid communication with human beings, so increasing its adaptation and acceptance to
the home or the office environment. The anthropomorphic body is also advantageous to
facilitate programming by demonstration and automatic learning from imitation, since
the actions would be more or less equivalents.

The development of service robotics has indeed been viewed as a promising way to
provide assistance to elderly people, given the fact that the world population is aging.
According to the UN [180], over the first half of the current century the global population
60 or over is projected to expand by more than three times, to reach nearly 2 billion
in 2050 (see Fig. 1.2). Moreover, conforming to the projections of the International
Monetary Fund and the World Bank (see Carone & Costello [33]), the aging of population
would threaten the prospects for economic growth by exerting severe pressure on public
expenditure. Therefore, humanoid robots could provide assistance and health care for
elderly people so increasing their quality of life and autonomy.

However, despite the growing interest in robotics solutions to service and assistance
applications, which is evidenced by ambitious funding to humanoid research projects
in some developed countries; a general-purpose machine that realistically mimics the
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Figure 1.2 — Population aged 60 or over (UN [180]).

anthropomorphic body of human beings - until the point of being mistaken by humans
as in the sci-fi literature - is still on the way. The research on behavior automation
has pointed out to the technological challenge to reach the performance of the biological
system, and to how the characteristics of human sensory and motor organs are crucial for
the accomplishment of certain behaviors. In fact, by drawing attention to such differences,
the research on humanoids (and robotics in general) has revealed itself as a useful means
to understand human cognitive processes, and has also contributed to advances in the
field of artificial intelligence.

A shift in artificial intelligence research

The field of artificial intelligence (Al) is going through important reformulations. The
traditional view of Al (also known by cognitivist AI), under the influence of Cartesian
dualism, has tended to look at physical and mental processes as belonging to different
realms. Efforts in this direction have not come to a satisfactory end, notably, when propos-
ing models and representation strategies to endorse a general-purpose problem solver with
knowledge to deliberate on the task. A criticism has been formulated from what is known
as the Moravec’s paradox (Russell & Cohn [158]), that is, the discovery by Al and robotics
researchers that, contrary to traditional assumptions, high-level reasoning requires very
little computation, but low-level sensory-motor skills require enormous computational re-
sources. Therefore, the humanoid robot has not been able to leave the environment of
the lab, under strict control of extraneous variables.

In the last decades, a different perspective has been adopted to study natural be-
havior from the research on embodied cognition (EC), where knowledge representation
is thought to be grounded in the physical interaction with the environment. Unlike the
cognitivist approach, behavior is considered to emerge from multiple concurrent pro-
cesses, so behavior would not be globally representable nor planed. The analysis of the
sensory-motor coupling in natural tasks, from a dynamic system perspective, is becoming
a promising research direction that can provide more efficient, robust, and autonomous
solutions. However, adopting the EC methodology also poses important challenges to
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robotists, in particular, when fulfilling the requirements underlying the physical ground-
ing hypothesis (Brooks [29]). Firstly, the autonomous development of the behavior, as it
happens in natural beings, would ideally occur under a phylogenetic architecture that can
modify itself; which is hard to obtain for an artificial body. Secondly, the ontology of the
system must be flexible enough to ensure knowledge acquisition for diverse purposes, by
fusing information from different sensory modalities. Lastly, the development of cognitive
skills is conditioned to sensory-motor coupling and interaction with the environment, thus
knowledge acquisition is a slow process analogous to natural learning.

In view of the advantages and the challenges encountered in the aforementioned
research approaches, this work has opted for an intermediate perspective for behavior
automation, by acknowledging the importance of obtaining an adequate balance between
generality and autonomy in applications of service robotics. In this sense, it takes into
account the aspects of deliberation and reaction in the context of the action selection
problem. For example, getting back to Speedy’s dilemma (see Fig. 1.1), the deliberative
aspect of the mission would be to accomplish the general plan of bringing some selenium
to the crew, whereas the reactive aspect would be to handle the unexpected situations
encountered, such that the emergence of danger. Both aspects are important for the
mission, and the robot should ideally be able to detect the contradictory effects of these
behavioral modes, and eventually to stop and to ask for guidance.

The research problem

This research focuses on the architectural aspect of the behavior of a humanoid
robot, and concentrates on the exploration of local sources of information for obtaining
more flexible and robust solutions to service applications. It has taken as a case study
the fundamental skill of approaching and positioning in relation to visual stimuli. Thus,
the problems of top-down and bottom-up visual attention, knowledge representation, and
action selection, are investigated. For this, the work adopts the cognitivist assumption
that action-independent knowledge (in the form of perceptive schemes) can be employed
for recognizing stimuli. But, as an embodied being, when the robot engages in sensory-
motor activities, it can efficiently resort to local representations in the form of bodily
sensations, in order to anticipate the consequences of action, to discriminate the object,
to react to unexpected circumstances, and to assess the progress and success on the
mission.

Overview of Chapters

From the multidisciplinary approach adopted in this work, this manuscript reports
on different topics of interest. Thus, Chapter 2 starts by presenting an overview on
humanoid robotics research and the main challenges encountered. Then, it focuses on
the problem of humanoid navigation and localization, and the problem of deliberation
and reactivity (i.e. the action selection problem). Different aspects of the top-down
(i.e. deliberation) and bottom-up (i.e. reaction) processing are discussed, including the
advantages and disadvantages of pure deliberative or reactive schemes.

Chapter 3 deals with the topic of visual attention. It starts by reviewing some
models derived from cognitive science research. The focus is placed over the aspect of

4
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the efficient management of the visual information available. The more commonly used
sensor technologies are reviewed, and contrasted to the human eye, in order to illustrate
potential challenges for artificial solutions. A review on the literature of machine vision is
also presented, where the whole scene segmentation and the feature tracking approaches
are described. Three case studies are developed in order to evaluate potential top-down
and bottom-up approaches.

In Chapter 4 the problem of egocentric on-board localization for autonomous walk
is investigated. The visually-guided approach task is defined and modeled. For this,
a distributed solution relying on visual servoing and motion primitives is studied. A
cylindrical ego-sensory structure is defined for processing the localization, and different
placements for this structure are compared. Several case studies in simulation and a real
experiment are conducted in other to assess the autonomous execution of the task, under
a restricted scenario to a single salient object.

Chapter 5 focuses on the aspect of attention selection. A more realistic solution to
the approach task is proposed by defining a behavior scheme according to the EC research
methodology. Thus, from a first-person perspective analysis of the sources of information
available, the agent is given a non-holonomic walking style that mimics human motion.
In order to ensure robustness and reliability in the task, the behavior scheme is integrated
to a hybrid architecture in charge of monitoring the execution. This functionality is ob-
tained from the design of a Bayesian network in charge of information fusion for attention
selection. The chapter finishes by presenting the proposal of a six-steps methodology to
develop robust visually-guided approach tasks.

The central topic of concern in Chapter 6 is reactive walking. For this, it includes
the study of embodiment, knowledge representation, and learning; under different action
selection scenarios. By keeping the first-person perspective adopted throughout the work,
and the proposal of distributed models for the task; a behavior-based framework is se-
lected to study concurrency in the access of available resources, so emergent behavior is
produced. Local action-oriented representations of the task are studied, thus the agent
can approach the object while avoiding obstacles. Visual encoding is proposed as an
embodied description of the task, so more efficient solutions can be learned.

Contributions

From a personal perspective on the various topics studied, the technical and concep-
tual proposals presented next are original.

Chapter 3. The improvement of the MRF color-based segmentation technique de-
scribed in Sec. 3.4.3 for a use of top-down saliency detection, in the context of real-time
processing of visual inflow.

Chapter 4. The behavior scheme in Sec. 4.4 based on ego-cylindrical localization,
combining the IBVS and PBVS modeling techniques, relying on a low-frequency acquisi-
tion rate, from robust color-based MRF segmentation. The embodied evaluation of the
sensory ego-space for stimuli persistence in Sec. 4.6.3, so the hybrid control policy based
on body- and eye-centered references is proposed to obtain a computationally more effi-
cient solution, by heuristically exploiting the posture adopted by the robot while moving
on a plane.

Chapter 5. The HMW egocentric first-order description of the walk in Sec. 5.3.1,
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that mimics human motion style, when positioning in relation to the frontal face of an ob-
ject of interest, by moving on a plane surface. The distributed scheme for visual selection
in Sec. 5.3.3, that combines ideas from the information processing models in cognitive
science, and the EC methodology. The embodied and filtering features set detailed in
Sec. 5.4.1, that register diverse information about the stimulus of interest and the body
context. The hybrid model for action selection in Sec. 5.5.3 based on motion primitives,
so remote resources can be safely used in the task, from the probabilistic evaluation of the
degree of confidence and the discriminative power of the attention selection process. The
Bayesian network model for information fusion in Sec. 5.4.2, under static and dynamic
estimation of the features certainty. The six-steps methodology for designing reliable
approach tasks in Sec. 5.6.

Chapter 6. The behavior model in Sec. 6.5.3 that exploits embodiment and local
heuristics, so a solution for the task is obtained by relying on high-frequency dense optic
flow processing, and distributed action-oriented representations of the stimulus of inter-
est. The behavior scheme in Sec. 6.5.4 for obstacle avoidance and object approaching,
combining top-down and bottom up attention selection, relying on the processing of dense
optic flow and whole scene segmentation, from on-board acquisitions in a humanoid robot.
The visual encoding proposed as an embodied description of the task, so the arbitration of
behavioral modes is produced, and actions in the form of walk primitives can be learned.

Notation

e Lowercase letters in boldface "u" denote vectors which are always column vectors.
e Uppercase letters in boldface "M" are used for matrices.

e The " clement of a vector is denoted by "u;". In case a particular element is

L}

referenced in a matrix, a double index notation "M,;" is used (i.e., the element at
the i*® row and the j** column). A single index can be used for matrices denoting
the " row "M," of the matrix.

e The transpose of a real matrix or vector is denoted "M*®".

e The inverse of a matrix is "M~!"

e The pseudo-inverse of a matrix is "M™".

e Vectors and matrices columns are delimited by brackets (e.g. u = [ug ug ... ug]*).

e The inner product operator for vectorsis "-", so r = u-v. The cross product operator

of vectors is "x", soi=u x v.

e The euclidean norm of a vector is obtained from the inner product, such that

lul| = Vut - u (1.1)

e The absolute norm of a vector is obtained such that

] =3 Jug (1.2

nAn

e The observation of a variable o is "0".

n~n

e The estimation or prediction of a variable s is "5".

e The saturation of a measurement k is "k", so |k| < € for the saturation value e.

6
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e Points in the 3D Cartesian space are uppercase so "B = (X, Y, Z)", the coordinates
components are also uppercase. The fact that a point B is expressed in a given
reference frame G is denoted by “B.

e Image projections of points are represented by "B’ = (x,y)", with pixel coordinates
in lowercase.

e The axis of a frame is lowercase so "X".
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Introduction

The research is humanoid robotics has been intensifying over the last decades, includ-
ing international collaboration in the form of annual meetings, conferences, and robotic
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challenges. Thus, an interesting question to be asked is: how far are these robots from
reaching the performance of human beings? To answer this question the first part of the
chapter presents an overview on the field, including important milestones and challenges
encountered in different topics, such that: locomotion, perception, human-machine inter-
action, dexterous manipulation, learning and adaptation. The problem of autonomous
navigation is reviewed in more detail, since it is on the core of the research interests. For
this, the distinction between allocentric and egocentric spatial representations is estab-
lished. In view of the stochastic nature of the studied task, the problem of action selection
(i.e. deciding what to do next given the task constraints) is reviewed, and existent ap-
proaches are classified into deliberative, reactive, hybrid and behavior-based. The relative
advantages of these models are analyzed in the context of autonomous walk.

Humanoid robots

In a broader sense, a robot is a goal-oriented machine with capabilities of sensing,
planning and acting on the environment (Corke [51]). According to the goal, diverse
body configurations have been proposed to automate different industrial mass production
processes. A humanoid is a robot with an anthropomorphic body plan and human-like
senses (Behnke [17]). Although the concept of human-like automata is relatively old in
the literature and arts, the appearance of the humanoid robot had to wait until late 20th
century for the advances in digital computing.

Some milestones

The key initial contributions were produced both in Japan and the USA, although the
projects had very different focus and background. In 1986 the Japanese company Honda
started the confidential Humanoid Project with the goal of developing a robot that would
coexist and cooperate with human beings. The evolution of the prototypes is illustrated
in Fig. 2.1 (see Hirose & Ogawa [82]). The first versions corresponded to the E-Series,
which focused exclusively on the automation of biped locomotion. Full-body humanoids
appeared in the P-Series. The project was made public with the announcement of the P2
prototype in 1996. The release of the model P3 in 1997 was undoubtedly an important
milestone. Like its predecessor, the robot was able to walk on flat floors and climb stairs,
but it could also kneel, stand up, keep balance when disturbed, and move gracefully at

the human speed. Since 2001 the latest series is called Asimo!.

By 1993 in the MIT (USA) Rodney Brooks and his team started to construct the
upper-body Cog (see Fig. 2.2). The project differed significantly from the standard
assumptions of artificial intelligence, that viewed human as a general purpose individuals
in possession of full monolithic control and internal models. Instead, the project adopted a
multidisciplinary approach to robotics, with strong influence of cognitive science, systems
theory, philosophy, and linguistics; under the hypothesis that: "human-level intelligence
requires gaining experience from interacting with humans, like human infants do" (Brooks
et al. [28]). Thus, the control for Cog is implemented as a heterogeneous network of
different processors types operating at distinct levels in the control hierarchy, ranging from
small micro-controllers for joint-level control, to digital signal processor (DSP) networks
for audio and visual preprocessing. The Cog project was active until 2003, though it was

1. project’s website http://asimo.honda.com
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Figure 2.1 — Historic evolution of Honda’s humanoid achievements [82].

very influential to other humanoid projects. This is the case of the robot iCub developed
by the Italian Institute of Technology (IIT), as part of the EU RobotCub project (see
Metta et al. [119]). The development counted on the collaboration of former participants
of the Cog project.

Figure 2.2 — The MIT Cog project. On the left, the upper-torso humanoid robot. Cog has
twenty-one degrees of freedom. It is equipped with visual, vestibular, auditory, and tactile
senses. In the center the robot’s head. On the right, Rodney Brooks is interacting with Cog.

The upper-body Hadaly-2 was relatively contemporary with Cog. Hadaly-2 was
developed in 1997 by the University of Waseda (Japan). The robot was given skills
to interact with the environment, such that visual processing, conversation (e.g. voice
recognition and synthesis), and gesticulation (Hashimoto et al. [79]). The project focused
on the human morphology beyond the simple imitation of the anthropomorphic shape (e.g.
the mobility of the eyes, neck and hands). However, the approach taken for behavior
automation was not as innovative as in the Cog project and followed the standard Al
assumptions. In this sense, the behaviors were explicitly modeled by the engineers and
counted on extensive knowledge data-bases, including the 3D model of the scene.

Worldwide research

Japan has undoubtedly excelled in full-body humanoid innovation. After being left
behind in the personal computer industry run, both the Japanese private and the public
sector have striven for getting ahead on humanoids research. This has been in fact the case
when Sony released the ludic 60 centimeters tall robot Qrio, that was at the forefront of

11
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Asimo. The robot is able to dance, recognizing faces, detecting obstacles, climbing stairs,
and running, among other skills. Some other important projects in the private sector are:
the Toshiba series Partners, Fijitsu’s HOAP-1 and HOAP-2, Kawada Industries’ Isamu,
and Kitano Symbiotic Systems’ Pino, Sig2, Morph and Morph3. At the public sector
in 1998 the Ministry of Economy, Trade and Industry of Japan launched the famous
Humanoid Robotics Project (HRP). An important release was the prototype HRP-2,
which can walk at two third human speed (2.5 km/h), move on narrow paths, cope with
uneven surfaces, lie down, and get up by itself (Kaneko et al. [93]).

According to Ward [185], the USA has been left behind in the run for humanoids.
Few investments have been done at the industrial level, due to non immediate profit
return from the commercial point of view. A study in 2006 by the Technology Evaluation
Center (see Ambrose et al. [5]) has compared the USA research activity with the rest of
the world. It concluded that:

[...] The U.S. currently leads in such areas as robot navigation in outdoor en-

vironments, robot architectures (the integration of control, structure and com-

putation), and in applications to space, defense, underwater systems and some
aspects of service and personal robots. Japan and Korea lead in technology

for robot mobility, humanoid robots, and some aspects of service and personal

robots (including entertainment). Europe leads in mobility for structured envi-

ronments, including urban transportation. Europe also has significant programs

in eldercare and home service robotics. Australia leads in commercial applica-

tions of field robotics, particularly in such areas as cargo handling and mining,

as well as in the theory and application of localization and navigation. In

contrast with the U.S., Korea and Japan have national strategic initiatives in

robotics; the European Community has EC-wide programs. [...] The U.S. lost

its preeminence in industrial robotics at the end of the 1980s, so that nearly all

robots for welding, painting and assembly are imported from Japan or Europe.

The U.S. is in danger of losing its leading position in other aspects of robotics

as well.

Nevertheless, more recently some initiatives have been conducted in academia, space
research, an defense. The country’s first full-sized humanoid robot called CHARLI was
developed by the Virginia Polytechnic Institute and State University (popularly known as
Virginia Tech) in the Robotics and Mechanisms Laboratory (RoMeLa)?. The NASA has
financed the Robonaut project® in collaboration with General Motors and Oceaneering.
The current release is the highly dexterous model R2, build from multiple component tech-
nologies and systems (e.g. image recognition systems, sensor integrations, tendon hands,
among others). The Defense Advanced Research Projects Agency (DARPA) has funded
projects such that the robot Atlas developed by Boston Dynamics, and the Robotics
Challenge DRC.

In relation to the research in China, the Beijing Institute of Technology (BIT) has
been developing the BHR series, and the Zhejiang University (ZHU) has been working on
the table-tennis-playing humanoid twins Kong and Wu; among other projects. In Korea
there is the prestigious research team KAIST, who won the DARPA Robotics Challenge
2015. The team developed the robot DRC-Hubo, which is a semi-autonomous humanoid
that presents a hybrid structure, it is capable of both biped and wheeled locomotion.
In Thailand the King Mongkut’s University of Technology Thonburi (KMUTT) has de-

2. http://www.romela.org/main/Robotics__and_Mechanisms_ Laboratory
3. http://robonaut.jsc.nasa.gov/
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veloped the robot Ka-Nok for playing football. In the Singapore Polytechnic (SP), the
Advanced Robotics and Intelligent Control Centre (ARICC) research group has released
the Robo-Erectur series. Australia has developed the robot GuRoo in the Mobile Robotics
Laboratory of the University of Queensland.

European projects are diverse with Germany probably leading the way. The Technis-
che Universitdt Miinchen (TUM) in Munich has developed Johnnie. In the same city the
University of Bundeswehr has worked on the robot HERMES. The Karlsruhe Institute of
Technology (KIT) has developed the ARMAR series for collaborative tasks. The NimbRo
team ¢ from the University of Bonn was the best ranked from Europe (coming at the fourth
overall place) in the DARPA Robotics Challenge, with the robot Momaro (a four-legged
humanoid torso). Other developments of the team are: the NimbRo-OP Humanoid Open
Platform, Copedo, Dynaped and Bodo. In the Netherlands the Delft University of Tech-
nology is doing research on the concept of passive dynamics for energy storage in biped
walking, and many robots have been released (e.g. Flames and Fides). In the context of
the UK, the Imperial College of London developed an upper torso LUDWIG. In Sweden
the Chalmers University has been developing several robots (e.g. Priscilla, Elvina, HR 2),
also the University of Uppsala has released Murphy. In Russia the company New Era in
cooperation with the St. Petersburg State Polytechnical University, have developed the
robots ARNE and ARNEA. In Italy the Polytechnic University of Turin has released the
Issac Robot. The humanoid iCub was also developed at the Italian Institute of Technol-
ogy (IIT), as part of the EU project RobotCub and subsequently adopted by more than
20 laboratories worldwide®. The project is an open source initiative for the research in
human cognition and artificial intelligence. The motivation behind the humanoid design
is strongly based on the embodied cognition research, so the dimensions of the iCub are
similar to those of a 2.5 year-old child.

Challenges and competitions

There are important international events around the humanoid community that have
encouraged progress in the field. Indeed, many challenges and competitions have become
application domains for these robots, since their commercialization to the wide public
has not excelled yet. There are several participation modalities, the teams can either
build their own robots or use available commercial kits. Some relatively famous events
are for instance the soccer competitions RoboCup® and FIRA 7. The goal is to develop
fully autonomous robot teams that play together. The RobotChallenge ® in the Humanoid
Sprint modality requires the robots to complete a course walking or running as fast as
possible. Other popular competition is Robo-One in Japan?, where teleoperated robots
engage in martial arts. In the competition RoboCup@home '° the goal is to develop service
and assistive technologies, with the emphasis on household and personal applications.

As already mentioned, DARPA has financed the Robotics Challenge (DRC)!!. The
teams that reached the final round are shown in Fig. 2.3. The objective of the compe-

http://www.nimbro.net/Humanoid /robots.html
http://www.icub.org/
http://www.robocup.org/robocup-soccer/
http://www.fira.net/main/
http://www.robotchallenge.org/competition/
http://www.robo-one.com/
http://www.robocupathome.org/
http://www.theroboticschallenge.org
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Figure 2.3 — Darpa Robotics Challenge finals 2015 [1]. The KAIST team from the Republic

of Korea won the competition.

tition is to promote the development of semi-autonomous ground robots (most of them
are anthropomorphic but it is not a requirement), for accomplishing complex tasks in
dangerous, degraded, human-engineered environments. Examples of tasks are driving a

vehicle, opening doors, clearing

obstacles on the way, maneuvering a valve, and so on.
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For this, the robot has to operate in environments it has not encountered previously, or
to flexibly using human tools without requiring extensive reprogramming. The autonomy
must be enough to ensure operation under degraded communications with the mission
operator.

French projects

In France initial efforts started in 2000 with the project INRIA BIB. The objective
was to research on various aspects related to the control of complex robotic systems, in-
cluding walking machines. Due to shortages in the budget these efforts ceased in 2002
and were latter incorporated to the BIBOP project, which is currently active 2. In 2001
the Centre National de la Recherche Scientifique (CNRS) founded the project Robea
(Robotique et Entités Artificielles), which produced the RABBIT testbed platform (see
Chevallereau et al. [45]). The project '* was a joint effort between several French labs
(including the IRCCyN), and some international contributions. The main goal was to
build a prototype for studying dynamic motion control for high speed walking and run-
ning. The CNRS has also signed an agreement with the Japanese Humanoid Robotics
Projects, so the robot HRP-2 is available at the Laboratoire d’Analyse et d’Architecture
des Systemes (LAAS) since 2006. The interactive robotics team of the Laboratoire des
Systeémes Intégrés de Versailles (LISV), has been working since 2006 on HYDROID ', a
humanoid robot for medical applications. In the private sector, Aldebaran Robotics has
been successful worldwide with the launch of the robot Nao in 2004, which substituted
since 2007 Sony’s Aibo in the RoboCup Standard Platform League (SPL)'. The latest
developments of the company are the robot Romeo and Pepper (see Fig. 2.4).

Figure 2.4 — Aldebaran humanoids. From left to right the robots Nao, Romeo and Pepper.

The humanoid Nao

The humanoid robot Nao by Aldebaran Robotics is the platform considered in this
work (see Fig 2.5), so it is presented in detail. As described in Gouaillier et al. [75], Nao

12. http://www.inria.fr/equipes/bipop/%28section%29/activity

13. http://www.gipsa-lab.grenoble-inp.fr/projet /Rabbit/English/

14. http://www.uvsq.fr/hydroid-8201-un-robot-humanoide-au-service-de-la-sante-173507.kjsp
15. http://www.robocup.org/robocup-soccer/standard-platform/
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is an innovative lightweight and compact robot, that is 0.57 meters tall and weights about
4.5 kg. The body mass index (BMI) is about 13.5 kg/m?, which means that it is very
light compared to other robots of the same height. Moreover, the walk speed is similar
to the speed of a child of the same size, that is about 0.6 km /h.
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Figure 2.5 — The robot Nao by Aldebaran Robotics (Gouaillier et al. [75])

Distinctive aspects of Nao are its pelvis kinematics design (see Fig. 2.6), its pro-
prietary actuation system based on brush DC motors, its electronic, computer, and dis-
tributed software architecture. Nao is also affordable when compared to other platforms.
As shown in Tab. 2.1, these robots are somewhat expensive, making the price for Nao (by
2008) a plausible alternative for research teams with moderate budget. The platform is
also extensible and easy-to-handle, where the user can change the embedded software or
add some applications to make the robot adopt specific behaviors. The robot’s head and
forearms are modular and can be changed to promote further evolution. The comprehen-
sive and functional design is one of the reasons so Nao substituted the AIBO quadruped
in the RoboCup standard league.

Figure 2.6 — Nao’s pelvis design. On the left the classical set of three rotary joints, one
horizontal axis at the waist and two vertical axis for the legs. On the right the coupled inclined
axis rotary joints (at 45° towards the body) for the Nao pelvis (Gouaillier et al. [75]).

Table 2.2 summarizes the characteristics of Nao. It has a total of 25 degrees of
freedom (DOF), 11 DOF for the lower part that includes the legs and pelvis, and 14 DOF
for the upper part that includes the trunk, arms and head. Each leg has 2 DOF at the
ankle, 1 DOF at the knee and 2 DOF at the hip. Figure 2.7 gives the kinematics details.
Tab. 2.3 shows the sensory modalities included in the platform.

16



Chapter 2. Humanoid navigation 2.2. Humanoid robots

Height (m) Weight (kg) BMI (kg/m?) Price
KHR-2HV 0.34 1.3 10.9 1K US $
HOAP 0.50 7.0 28.0 50K US $
Nao 0.57 4.5 13.5 10K euros
QRIO 0.58 6.5 19.0 NA
ASIMO 1.30 54.0 32.0 NA
REEM-A 1.40 40.0 20.4 400K US $
HRP-2 1.54 58.0 24.5 (5 year lease)
Human 1.5-2 50-100 18-25 NA

Table 2.1 — Characteristic of functional humanoids (Gouaillier et al. [75]). BMI: body mass
index = w/h?, NA: not available.

Body
Height (m) 0.57
. Masses (g)
Weight (ke) T 45 | Chost 1217.1
y Head 101

Type Lithium-ion Uoper Arm 163
Capacity 55 Wh PP

Lower Arm 87
Degrees of freedom (DOF): 25 Thich 533
Head 2 DOF 8

Tibia 423
Arms 5 DOF X 2 Foot 158
Pelvis 1 DOF Total 1316 1
Leg 5 DOF X 2 :
Hands 1 DOF X 2

Table 2.2 — Characteristics of the Nao humanoid (Gouaillier et al. [75]).

Type Number
30 FPS CMOS videocamera 1
Gyrometer 2
Accelerometer 3
Magnetic rotary encoder (MRE) 34
FSR 8
Infrared sensor (emitter/receiver) 2
Ultrasonic sensor 2
Loudspeaker 2
Microphone 4

Table 2.3 — Sensors available in Nao (Gouaillier et al. [75]).

The Aldebaran Robotics software framework is the architecture NaoQi, which is a
modular and distributed environment that can deal with a variable number of executable
binaries, depending on the user’s architectural choices. The advantages of a distributed
environment are diverse. It allows the user to run behaviors locally or remotely. Robot
functionalities such that motion, vision, among others, can be run standalone or inter-
acting with other modules on other computers. The development of applications is easier
in a distributed environment, since the same code can be compiled on different platforms
and cross-compiled for embedded execution. A distributed environment also allows the
user to look at variables and running methods on any real or simulated robot from the
programming interfaces.
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Figure 2.7 — Kinematics of Nao. The wrist joint is not represented (Gouaillier et al. [75]).

Challenges in humanoid research

Although it may look like the most important challenges for the conception and
control of humanoids have been solved, the current capabilities of these robots are rather
limited when compared to humans beings. Below some of these limitations are discussed.

Bipedal locomotion

One of the distinctive features of full-body humanoids is bipedal locomotion. Human
beings can walk and run with apparently ease, though these skills have been proven hard
to obtain in humanoids. According to Behnke [17] there are two opposing approaches to
bipedal walking. One is based on the concept of zero-moment-point theory (ZMP), that
is defined as the point on the horizontal plane about which the sum of the moments of
all the active forces equals zero (Vukobratovi¢ & Borovac [183]). Dynamic stability can
be evaluated such that, if the ZMP is within the convex hull (i.e. the support polygon)
of all contact points between the feet and the ground, the system is stable. This was
a major advance over the center-of-mass projection criterion describing static stability.
Many robots (e.g, Asimo, Nao, HRP, etc) employ ZMP-based control, however they are
not energy-efficient since they do not recycle energy stored in elastic elements in the way
humans do.

The other approach for bipedal locomotion is to use the robot dynamics. A work by
McGeer [118] has shown that for planar walking it is possible to down a slope without
control or actuation. The idea of passive dynamic walking has inspired the study of walk

18



Chapter 2. Humanoid navigation 2.3. Challenges in humanoid research

on level ground (see Colins et al. [48]). As shown Fig 2.8, these robots are very efficient
and easy to control since their actuators only support the inherent machine dynamics.
However, there are problems to be solved such that the autonomous starting and stopping
of the walk, and the change of speed or direction. Furthermore, since round feet are
employed, these machines cannot stand still. Perhaps a promising research direction
is to combine ZMP theory with passive dynamics, though many aspects are still to be
investigated (e.g. walking over uneven terrain and multi contact with the environment,
among others).

Figure 2.8 — Passive dynamics research. Three level-ground powered walking robots based on
the ramp-walking designs (Collins et al. [48]). On the left the Cornell biped, in the center the
Delft biped, on the right the MIT learning biped.

Perception

Humanoid robots are equipped with sensory devices for perceiving their own state and
the environment. Usually joint encoders, force sensors, or potentiometers, are available
for proprioceptive feedback. Contact with the ground is detected through Force Sensitive
Resistors (FSR) placed at the feet, which register resistance changes according to the
pressure applied. More recently, some robots have been covered with force-sensitive skin
(e.g. Stiehl & Breazeal [171], and Elkmann et al. [62]). Capacitive sensors are also used
for detecting contact with the environment, they are usually placed at the hands, head
and fore-arms. Super-human senses, such as laser range-finders or ultrasonic distance
sensors may be available for exteroceptive feedback. Vision and audition are perhaps the
most important modalities. Frequently robots are equipped with two movable cameras,
the architecture may also include on-board computers for image interpretation. Though,
the interpretation of real-world images is still an unsolved problem since the cameras
employed are mostly general-purpose, differing significantly from the characteristics of
the human visual system, which is much more efficient handling noise. Thereby, many
vision-based tasks work well only under controlled conditions. Frequently, key objects are
color-coded to ease their perception (e.g. in Moughlbay et al. [127]). Similar difficulties
arise when interpreting the audio signals captured by on-board microphones (e.g. Allen
et al. [4]). One major problem is the separation of the sound source of interest (e.g.
a human communication partner) from other sound sources and noise. So far there is
probably no audio recognition system that is infallible.
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Human-robot interaction

Several research projects have focused on human-robot interaction. The general
idea is to provide humanoids with capabilities normally present in natural face-to-face
communications. This includes multiple sensory modalities such that speech, eye gaze,
facial expressions, gestures with arms and hands, body language, and so on. According
to Breazea [25], sociable robots are designed to communicate and interact with human,
to understand and to relate to human or other robots in a personal way, by sharing
social terms. Figure 2.9 shows some examples of these robots. They are equipped with
expressive animated heads.

Figure 2.9 — Sociable robots. On the left, the robot Kismet developed in the MIT. On the
right, the therapeutic baby harp seal Paro by AIST.

Perhaps the most extreme form of sociable robots are androids and gynoids, which
exhibit a photo-realistic resemblance to humans. Their faces are covered with silicone skin,
they have human-like hair, and are dressed as humans. Some of these robots are modeled
after living persons, such that Repliee Q2 developed in Osaka (see Matsui et al. [117]).
However, these robots may produce the uncanny valley effect (Mori [124]). Accordingly,
as the appearance of a robot approaches the human, some observers’ emotional response
to the robot will become increasingly positive and empathic, until a point where there
is a sudden drop in attractiveness close to perfect human-likeness. In Behnke’s opinion
[17], in these robots the synthesis-part of multi-modal interaction works reasonably well,
but the insufficient performance in perception and action, and the lack of true meaning
in the dialogue systems, prevent them so far from engaging in truly intuitive multimodal
interactions with humans.

Dexterous manipulation

Another key human capability is dexterous manipulation. The human hand has
about thirty degrees of freedom. It is not easy to reproduce its strength, flexibility, and
sensitivity. As shown in Fig. 2.10, among the most advanced robotic hands is Shadow
(Reichel [154]), which has 25 DOF and is capable of performing much of the motion of
the human hand, including the curling of the palm. The actuation includes a flexible
pneumatic system, acting as "air muscles". Other designs consider motorized biomimetic
prosthetic hands based on tendon driven mechanisms (e.g. the iCub’s hand, see Stellin
et al. [170]). As pointed out by Amlie et al. [94], the study of human hand morphology
reveals that developing an artificial hand with the dextereous capabilities of human hand

20



Chapter 2. Humanoid navigation 2.3. Challenges in humanoid research

is an extremely challenging task. Furthermore, hand dexterous manipulation also requires
hand-arm and visual coordination. In practice, most of the studies have considered tasks
with known objects.

Figure 2.10 — Robot hands. On the left the hand developed Shadow Robot Company Ltd. On
the right the iCub hand developed in the IIT.

Learning and adaptive behavior

Humanoids must ideally be flexible in their adaptation to the environment. Thus, it
is desirable that they can autonomously acquire knowledge, extend current skills to solve
related tasks, and cope with unexpected changes. An efficient way of learning is by imi-
tation. According to Schaal [161], the study of imitation learning offers a promising route
to gain new insights into mechanisms of perceptual motor control, that could ultimately
lead to autonomous humanoid robotics solutions. The field focuses on three important as-
pects: motor learning, the connection between action and perception, and modular motor
control in the form of motion primitives. There are several problems to be solved. One is
obtaining a precise perception of the teacher. Other is the reliable mapping between the
human body and the robot’s body. That is, some human motions may not be possible
for the robot given the body differences (e.g. in Munirathinam et al. [130]). The robot
might have degrees of freedom that are not constrained by the captured motion, thus a
useful technique to simplify imitation is kinesthetic teaching (e.g. in Kormushev [102]),
where the teacher directly moves the limbs of the robot.

Programming by demonstration can also benefit the adaptability of the robot to the
environment. According to Cypher [53] the motivation behind this methodology can be
announced as follows: '"if a user knows how to perform a task on the computer, that
should be sufficient to create a program to perform the task'. When extended to robotic
agents, this method can be useful to teach procedural knowledge in the form of a task
algorithm. Reinforcement learning (RL) has also been used to optimize the behavior of
humanoid robots. A mode detailed discussion about RL is presented in Sec 6.4. In a
nutshell, RL can be viewed as the mapping from situations to actions that maximizes
a reward signal (Kaelbling et al. [92]). The learner is not told which actions to take,
instead, it must discover those that yield the most reward by trying them. As pointed
out by Russell & Norvig [159], an important challenge encountered in RL is the trade-
off between exploration and exploitation. Specially because it cannot be assumed that
the environment would generate a reward structure that is sufficient for the learning of
complex tasks. Thus, the agent must try a variety of actions and progressively favor those
policies that appear to be best.
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A distinct perspective is adopted in the research of enaction (see Vernon [182]). The
agent is given autonomy and an active role in learning through sensory motor coupling.
Thus, knowledge is constructed from the interactions with the environment. Here, em-
bodiment and stimuli affordances are fundamental for the robot’s understanding of the
world. That is, the physical properties of stimuli and the agent’s body would provide
the opportunity for learning actions. For example, the operations allowed by a knob are
twisting and pushing, whereas a cord would afford pulling. By following these ideas au-
tonomous sensory-motor coordination has been learned (e.g. eye-hand coordination in
Fanello et al. [66]), and stimuli categorization (e.g. visual recognition in Morse et al.
[125]), among other skills.

The aspects of learning and adaptation is of great interest for this research. Through-
out chapters 4-6 different topics related to embodiment and emergent behavior are studied,
where supervised demonstrations are fundamental to teach the agent the desired state of
the task. The use of RL is also explored to increase the effectiveness in the task by se-
lecting successful actions from previous experiences. The analysis of the sensory-motor
coupling is a central topic, so the agent can rely on egocentric representations that it is
able to obtain on-board in an autonomous manner (e.g. without relying on a ubiquitous
representation of the scene). In this work the achievement of the task goals require the
efficient control of the robot locomotion based on visual and proprioceptive information.
The research on robot navigation and the action selection problem are relevant to this
study, so they are discussed in more details in the next sections.

Autonomous navigation

The appearance of mobile robots in the late 1960s initiated the research domain of
autonomous navigation. According to the historical review by Siciliano & Khatib [167],
early navigation systems were based on fruitful ideas that influenced latter development
of motion planning algorithms. Some examples are grid-based environment exploration
(Nilsson [135]), and search-trees for the optimal path to a goal (Thompson [177]). Latter,
studies in robot manipulation popularized the notion of the configuration space of a
mechanical system (Lozano-Pérez [112]). Thus, motion planning was reduced to finding
a path for a point in the configuration space.

Other important contribution came from the problem of car parking, which moti-
vated the interest for non-holonomic motion planning (see Li & Canny [109]). According
to Laumond [105], non-holonomic systems are characterized by constraint equations in-
volving the time derivatives of the system configuration variables. These equations are
non integrable and typically model the case where the system has less controls than con-
figuration variables. For instance, a car-like robot has two controls (i.e. the linear and
angular velocities) though it moves in a 3D configuration space. Consequently, a path in
the configuration space does not necessarily correspond to a feasible path for the system.
This is basically why the purely geometric techniques developed for holonomic motion
planning do not apply directly to non-holonomic systems.

More recently, the focus of the research in the field has turned to the problem of
autonomous outdoor navigation. That is, under inaccurate localization conditions, such
that, uncertain and incomplete models of the world (e.g. navigation maps), and unex-
pected disturbance (e.g. moving obstacles). These topics definitely present a challenge
to the cognitivist approach in AI, by emphasizing the gap between planning a path and
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executing the motion. This is discussed in more detail in review of the action selection
problem in Sec. 2.5.

Robot localization

According to Thrun et al. [178], localization can be seen as a problem of coordinate
transformation. Maps are described in a global coordinate system, which is independent of
the robot’s pose. Thus, localization would be the problem of establishing correspondence
between the map coordinate system and the robot’s local coordinate system. Knowing
this transformation enables the robot to express the location of objects of interests in
space within its own reference frame. Conforming to Murphy [131], localization can be
relative to a local environment (e.g., the robot is in the center of the room), to a topology
(e.g., in Room 311), or to absolute coordinates (e.g., latitude, longitude, altitude).

Unfortunately, it is often the case where the localization cannot be directly sensed,
but has to be inferred from data. The process of observation is subject to sensory noise,
such that a single sensor measurement is usually insufficient to determine the localization.
Instead, the robot has to integrate data over time to determine its pose. Depending on
the circumstances of the task (e.g. the resources available) research topics may be of
different levels of difficulty. A taxonomy for classifying research problems is given in Tab.
2.4. The categories are presented in increasing order of difficulty.

In this work the problem of localization considered is the observation of a desired
configuration with respect to a know object fixed in the environment. Other elements in
the scene (e.g. walls and furniture) are unknown. A global representation of the task, in
the form of a navigation map, is assumed to be unavailable. Under this scenario, from the
taxonomy given in Tab. 2.4, the research problems can fit on the categories: single-robot
moving in a static environment, passive localization, and kidnapped robot. However, not
only external references are studied in the walk task. As discussed in Chapter 6, from
the egocentric perspective the robot avoids obstacles and learns motion primitives. This
distinction is better established in the next section, when discussing multidisciplinary
research in spatial cognition.

Category Types

Local vs. global Position tracking. Known initial pose. Local problem. Un-
localization. certainty in the form of sensory noise (assumed to be small) is
(knowledge available confined to a region near the true pose. Noise is accommodated

initially and at runtime to motion usually through unimodal distributions (e.g., a Gaus-
to the agent) sian).
Global localization. Unknown initial pose. No boundedness of
pose error can be assumed, thus unimodal probability distributions
are usually inappropriate.
Kidnapped robot. During operation the robot can get kid-
napped and teleported to some other location. Thus, it might
believe it knows where it is while it does not. The ability to re-
cover from failures is essential for truly autonomous robots.
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Static vs. Dynamic Static. The only variable quantity (state) is the robot’s pose.

Environments Objects in the environment remain at the same location forever.
Dynamic. Objects and the robot can move. Of particular in-
terest are changes that persist over time, and that impact more
than a single sensor reading. Changes that affect only a single
measurement are best treated as noise.

Passive vs. Active Passive. The localization module only observes the robot oper-
Approaches ating. The robot is controlled through some other means. Motion
is not aimed at facilitating localization.

Active. The robot is controlled so as to minimize the localization
error and /or the costs arising from moving a poorly localized robot
into a hazardous place.

Single- vs. Single-robot. All data is collected at a single robot platform,

Multi-Robot and there are no communication issues.
Multi-robot. A team of robots is considered. One approach is
to allow each robot to localize itself, such that robots are able to
detect each other. There is also the possibility to use one robot’s
belief to bias other’s when knowledge on the relative location be-
tween them is available. This is a non-trivial problem involving
team communication.

Table 2.4 — Localization problems taxonomy (Thrun et al. [178]).

Spatial cognition in the brain

In the study of spatial cognition a primary distinction is established between egocen-
tric and allocentric reference frames. According to Klatzky [98], in an egocentric reference
system entities are represented with respect to the particular perspective of the agent.
The allocentric reference frame would conform to the previously discussed definition by
Thrun et al. [178] of the robot localization problem, so locations are expressed within a
fixed framework that is external to the holder of the representation, thus, it is indepen-
dent of the agent’s position. Other important methodological distinction is established
for the experimental study of spatial cognition. According to Freksa and Mark [132],
the frame for measurement of the motion event may be different from the frame for the
representation of motion.

Burgess [30] has reviewed the advances in the understanding of spatial cognition.
Accordingly, spatial memory appears to include multiple representations for the tasks of
both egocentric and allocentric types. Thereby, spatial memory and imagery are described
as a mechanistic process, where different brain regions intervene. Thus, the hippocampus
and medial temporal lobe would provide allocentric environmental representation, the
parietal lobe would provide egocentric representation, and the retrosplenial cortex and
parieto-occipital sulcus would allow both types of representations to interact. The way
how representations are combined is still a matter of debate, that may also deppend on
the nature of the task. In this sense, Mou et al. [126] have suggested that individuals
use allocentric representations to learn spatial relations of objects for locomotion and
reorientation, though egocentric representations are used when allocentric representations
are not high fidelity. According to Graziano [76], in occular-manual reaching distinct
egocentric representations may be employed, including eye- and body-centered.
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Klatzky [98] has proposed a useful terminology to describe studies in spacial cogni-
tion, that is going to be adopted in this work. The terminology is based on the following
assumptions:

a) Objects have and intrinsic front side.

b) Objects (including the agent) normally move forward with respect to their front
(unlike crabs, that regularly move laterally).

¢) Motion is performed on a plane surface.

Figure 2.11 illustrates some spatial relations of interest to describe 2D motion. Spa-
tial parameters are values that can be assigned to individual points (e.g., the location
of a point) or multiple points (e.g., distance between two points). Primitive parameters
are spatial representations directly conveyed for the entities included in the representa-
tion. Derived parameters are computed from primitives, possibly in several computational
steps.

Allocentric AB bearing

-- Ego-oriented AB bearing

Allocentric reference direction

Ego’s heading

Ego’s bearing

R Egocentric bearing of B

Ego

Origin

Figure 2.11 — Spatial representations. A fixed allocentric reference is represented as a black
dot and a vector direction. In red two objects are represented, in blue the agent is represented
with the heading direction. The angles in green correspond to allocentric description, whereas
the angles in blue correspond to egocentric descriptions.

Points are spatial locations for which the values of the primitive parameters are
known. An object comprises multiple points that are organized into a coherent entity.
The axis of orientation of an object is a line between points on the object that defines a
canonical direction in space. Not all objects have an axis of orientation; for example, an
object that is radially symmetrical has none. The axis of orientation of a person within
a space is aligned with the sagittal plane (as shown in Fig. 2.12). A distinction can be
established between the axis of orientation of the head and the body.

The heading in space is the angle between the object’s axis of orientation and some
reference direction external to the object. The heading of a moving object can be differ-
entiated from its course, or direction of travel as defined over the past few locations that
were occupied. Because the reference direction is external to the object (a heading that
was defined relative to its own axis of orientation would always be zero), heading will
sometimes be referred to as allocentric heading.

The bearing between two points is defined with respect to a reference direction. The
bearing from point A to point B is the angle between the reference direction and a line
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Transverse Frontal Sagittal

Figure 2.12 — Illustration of human planes of motion.

from A to B. If the reference direction is aligned with the axis of orientation of an "ego"
(i.e., an oriented organism in the space), the bearing from A to B will be called ego-
oriented. If any other reference direction is used, the bearing from A to B will be called
allocentric. The egocentric bearing of a point B, is equivalent to a bearing from ego to B,
using ego’s axis of orientation as the reference direction. Thus, the egocentric bearing is
a special case of the ego-oriented bearing in which ego’s location is the source point. The
egocentric bearing of B is numerically (but not conceptually) equivalent to the difference
between B’s allocentric bearing from ego and ego’s allocentric heading, when both are
defined with respect to a common reference direction.

The action selection problem

Robot navigation tasks involve several sources of uncertainties. One is related to
inaccuracies in the observation of the system state, given the measurement noise and
incomplete knowledge about the environment. Other is the stochasticity in the actuation
system, so the outcome of motion may differ from what is expected. Lastly, disturbances
independent of the agent, in the form of environment changes (e.g. slippery floor, uneven
illumination, windy weather conditions, and so on), may also affect the task.

In the field of autonomous robotic systems (hereafter agents), a fundamental issue
is to decide what to do next. An agent should maximize its expected utility, which
is a function of its goals and priorities. Though, due to important constraints, such
that environmental complexity, unpredictability, limited response time and resources; the
selection may not be optimal. According to Pirjanian [145], this is denoted in the literature
as the action selection problem (ASP), that is, the problem of resolving conflicts between
competing behavioral alternatives.

As pointed out by Prescott [149], initial works in Al viewed the ASP as the execution
of the steps of a plan that would lead the way from the current state to the desired goals.
This plan was thought to be optimal, obtained from a formal process of search, acquired
from imitation learning, or derived from a set of social norms. However, an influential
study by Chapman [41] suggested that even refined planning techniques would ultimately
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turn out to be unusable in any time-constrained system. In Zhao’s [191] opinion, Chapman
exerted a profound impact on subsequent planning research, and put into question the
whole symbolic Al paradigm.

Brooks’ research in the MIT (Brooks [29]) strongly contributed to a shift on the
emphasis towards hand-coded systems with minimal on-board search. Thus, the ASP
was studied from a modular and hierarchical decomposition of the task for obtaining
tractable solutions. Therefore, instead of focusing on planning, the central issue was
the integration of disparate, distributed, and parallel functionalities, in order to obtain
coherent behavior.

Several authors (e.g. Zhao [191], Pirjanian [145], Murphy [131]) have pointed out
three different approaches in the study of the ASP. Despite named differently, as il-
lustrated in Fig. 2.13, available models are more commonly classified into deliberative,
reactive and hybrid. However, there is no agreement in this classification. Thus, Mataric
[116] has distinguished between hybrid and behavior-based architectures. Next the main
characteristics of these approaches are discussed.

Robot Software Architecture

RN

Coordinated Reactive Deliberative Others
deliberation & deliberation reaction
reaction

Figure 2.13 — Architectures for mobile robot control. Classification of mobile robot control
architectures in Pirjanian [145].

Deliberative models

Deliberative models are related to the cognitivist Al research. The emphasis is put
on a global world representation. As shown in Fig. 2.14, the model is based on three
sequential operations. Action in the environment is derived from a plan, this means that
the robot first senses, then thinks, and then acts. Thus ASP is treated as a centralized
process. Since action is planned before execution, an advantage of this approach is that
it can produce optimal behavior (e.g. the most efficient route to a goal). Though, the
computational pipeline usually requires a significant amount of time, so becoming an
architectural bottleneck. Moreover, the task representation must be precise enough as
to provide planners with sufficient knowledge to choose optimal actions, which can be
difficult to obtain. Another important disadvantage is the difficulty for the architecture
to handle uncertainty in the task model (due to sensor noise, environment changes, etc.).

According to Murphy [131], as robotists began to study biological intelligence, they
realized that the deliberative logic-based approach was inadequate for navigational tasks
requiring a rapid response time to an open world. Thus, solutions based on deliberative
models have been employed under controlled environmental conditions. Perhaps two best
known deliberative models are the nested hierarchical controller (NHC) by Meystel [120],
and the NIST realtime control system (RCS) by Albus & Proctor [3].
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Sense | Plan — Act —‘

Figure 2.14 — Deliberative models rely on a central representation of the world so the solution
can be planned (Murphy [131]).

Reactive models

Reactive models were originally proposed by Brooks [27]. The fundamental attribute
of the reactive paradigm is that all actions are accomplished through behaviors, which are
a direct mapping of sensory inputs to a pattern of motor action. Thus, behaviors would be
equivalent to a transfer function, that transforms sensory inputs into actuator commands.
As shown in Fig. 2.15, in reactive models sense and act are tightly coupled processes, so
the overall behavior of the agent emerges as the result of their conjoint operation. Thus,
sensing is local to each behavior so there is no global representation of the task (see Fig.
2.16 for a comparison with the deliberative approach).

BEHAVIOR |
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Figure 2.15 — The reactive principle (Murphy [131]). Models are characterized by a close
coupling between perception and action. The observable behavior emerges from the concurrent
execution of specific tasks.
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Figure 2.16 — Comparison between deliberative and reactive models (Pirjanian [145]). On the
left, the deliberative pipeline between the sensory input and the actuation on the environment.
On the right, the concurrent execution of specialized programs so behavior emerges out of their
conjoint actions.

Several advantages are associated to these models. Behaviors are inherently modular
and easy to test in isolation from the system, which complies with software engineering
principles. The approach also conduces to the development of fast response systems (that
is convenient to robot navigation problems), since the tight coupling between sensing
and acting allows agents to operate in real-time. Behaviors can be implemented directly
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in low-cost commercially available hardware, or in low computational complexity algo-
rithms. Nevertheless, there are some disadvantages. Given the simplicity of behaviors
and the fact that reactive systems have no memory, they are limited to the level of ab-
straction of stimulus-response reflexes, which may result in local minima and inefficient
motion in complex task scenarios. Also, according to Brooks [29], an important challenge
encountered in the study of emergent behavior is to find efficient ways to fuse multi-
ple sources of perceptual information when needed (e.g. when sensing more elaborated
events). The complexity of the model can augment significantly as the tasks becomes
more complex. Perhaps the more restrictive limitation for service robotics applications
is that reactive models cannot be directly commanded to achieve a goal in a particular
manner, since there is not a global representation of the task available.

Hybrid models

According to Orebdck & Christensen [138], neither the purely reactive nor delibera-
tive models can perform well when solving complex tasks. Although reactive models were
successful in producing robots operating in real-time (which is a limitation of deliberative
models), that came at the cost of preventing planning or other functionalities related to
the optimal solution (e.g. remembering, reasoning about the global state, etc.). Therefore,
hybrid architectures have been increasingly used since they share both desirable proper-
ties. By the one hand they are reactive, so they can respond in real-time to changes in
dynamic environments. By the other hand they provide deliberation, so actions can be
planed ahead in time.

As shown in Fig. 2.17, hybrid models are characterized by the plan and sense-act
principle. The plan component includes all deliberation and global world modeling. Thus,
the robot plans how to accomplish a mission and activates at each time the set of behaviors
(i.e. sense-act) related to the execution of specific subgoals. The selected behaviors would
remain active until completion of the subgoal, then the planner would activate a new
set of behaviors according to the subsequent objectives of the plan, and so on. Hybrid
models employ asynchronous processing techniques (e.g. multi-tasking, threads, etc.),
thus deliberative functions are executed independently of reactive behaviors. For example,
the planner computes the next goal for a robot to navigate to, while it is reactively
navigating toward its current goal.

Plan

|—) Sense I > Act —‘

Figure 2.17 — The hybrid model principle (Morphy [131]). The sequence implies that, the
robot first plans how to accomplish a mission or a task based on a global world model, and then
activates a set of behaviors to fulfill the plan that is executed until it is completed.

According to Murphy [131] there are three main types of hybrid architectures: man-
agerial, state-hierarchy, and model-based. The first type (e.g. AuRA by Arkin [8]) presents
a bottom-up organization. At the top are agents which do high level planning, then pass
off the plan to subordinates who refine it, gather resources, and then transfer those down
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to the lowest level workers which are reactive behaviors. For example, let us suppose a
driving task where the robot is off-road at the moment, so it has to advance through a
small portion of irregular terrain to get back to the road, and then to follow the road until
the next intersection. There are two subgoals that require of specific skills (off-road and
path following navigation). Notice that, despite a map may be available, the trajectory
is not explicitly given to the agent, so the overall behavior would emerge as a function
of the two behavioral modes selected in the bottom layer. From the point of view of the
task representation, managerial types would be the closest to pure reactive models, with
deliberative functionalities added on the top of the architecture.

The state-hierarchy type (e.g. 3T by Bonasso et al. [22]) distinguishes between
deliberation and reaction by the state or scope of knowledge. Reactive behaviors are
viewed as having no state, no self-awareness, and operate in the present. Deliberative
functions are categorized into those that require knowledge about the past (e.g. the
previous localization) and the future (e.g. the mission, path planning, etc.). This type
of models is more complex than the previous one, since the task representations are
more elaborated, and the possibility of learning is considered. Sequences of behaviors
can be managed for instance by remembering what the robot has already done and the
success obtained. The planner layer can also process state information to predict the
future. Therefore, the overall behavior of the agent in these models would emerge from
the sequencing of behaviors, rather than the pure concurrency.

The model-based type (e.g. Saphira by Konolige & Myers[101]) is characterized
by a top-down organization, focusing on the creation and maintenance of a global task
model. Both specific-sensing and virtual behaviors can be defined. Goal coordination
between behaviors is also ensured (which is not considered by the reactive paradigm).
The communication with the user or other robots is based on absolute references since the
global representation is shared. Thus, this type is conceptually close to pure deliberative
architectures, though the task representation is generally less ambitious, and deliberation
activities are usually implemented distributed among independent software agents. This
provides a high degree of flexibility and computational efficiency. In fact, the programs
do not have to run on-board so the processing bottleneck is mitigated.

In the hybrid types reviewed, managerial and state-hierarchy models seem to have
evolved from the reactive models, whereas model-based is more close to the deliberative
models. In this work global representations of the task are not studied, so the model-
based type is of less relevance. The principle of the managerial type is used in Chapter
5 to define a supervised architecture, to obtain reliable approach to an object of interest
under saliency ambiguity.

Behavior-based models

According to Mataric [116], behavior-based architectures are derived from the phi-
losophy behind reactive models, though computations are not restricted to look-up or
simple functional mappings. Thus, a behavior has a different meaning from reactive mod-
els, where it is given the connotation of a purely reflexive action. Here the term “behavior”
is more consistent with the ethological use and includes reflexive, innate, and learned be-
haviors (i.e. close to the notion of a skill). For this, the behavior can implement various
types of state representations providing local persistence. Since behavior-based models do
not necessarily require of deliberative processes (which is essential to the hybrid model),
their scope may include reactive models with internal state representation, and for the
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case of deliberative functionalities, the types managerial and state-hierarchy according to
Morphy’s categorization of hybrid architectures. This flexibility is a desirable property of
the behavior-based models, so different task can be studied. In Chapter 6 the integrated
behavior-based control (iB2C) framework by Proetzsch et al. [152] is selected for studying
various topics of visually-guided walk tasks with Nao.

Conclusions

This chapter has started by presenting an overview on the state of the art of the
research in humanoid robotics. The historical review has pointed out to a research field
that has been developing in the last decades. Initial contributions started in Japan and
the USA, and more recently spread to many other countries. Funding has come from the
public sector in the form of research projects, for the development of solutions in diverse
domains (e.g. health-care, military, assistance, space exploration, and service). From
the Honda’s experience with the Asimo series, investments in the private sector have
been cautious due to non immediate commercial profit. At present, the humanoid robot
has not reached the level of massive consumption as for instance mobile and personal
computers did. In practice, humanoid industry has mostly produced robots for research
labs, followed by the ludic and the entertainment domains.

The exploration of diverse challenges encountered in humanoid research has shown
that, compared to the human being, the current capabilities of these robots are limited.
By the one hand, although designed with an anthropomorphic body, there are important
physical differences related to the kinematic properties, the sense organs, and the actua-
tion system; that impose restrictions to humanoids. By the other hand, the cognitivist Al
approach has not been able to provide the robot with adaptability, given the stochasticity
of unstructured environments. Thus, despite the many advances obtained in the control
of locomotion, manipulation, or adaptation; the field is still waiting for technological and
scientific breakthroughs, to reach the maturity required for reliable operation under un-
structured scenarios. However, more recently some progresses have been achieved under
the embodied cognition perspective. Embodiment is considered as of central interest for
obtaining adaptation, autonomy, and learning; among other desirable qualities. These
aspect are of great concern for this work. In Chapter 5, inspired by embodied cognition
research, a methodology is proposed for obtaining reliable visual object approaching.

The literature on robot navigation was reviewed so the problems of localization and
task representation were discussed. A taxonomy for classifying robot localization topics
was provided. This work explores the topics of single-robot navigation in a static environ-
ment, passive localization, and robot kidnapping; through several study cases in Chapters
4 - 6. The review on studies in spatial cognition has suggested that multiple representa-
tions (both egocentric and allocentric) may coexists in the same task. The computational
complexity and reliability of the task parameters are related to the definition of the mea-
surement and the representation frames of reference. This work focuses on ego-centric
representations obtained from visual information. For this, in Chapter 3 machine vision
algorithms are studied for extracting features from images. The definition of a perceptive
ego-cylinder for localization is presented in Chapter 4, so different placements for the
measurement and the representation frames of reference are studied.

The topic of navigation in unstructured situations has also motivated the research of
different solutions for the action selection problem. This is a fundamental aspect for an
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agent that consists in deciding what to do next. Given the stochasticity of the task, delib-
erative, reactive, hybrid, and behavior-base approaches have been proposed. This work is
interested in the behavior-based type (though depending on the terminology adopted, it
may also include reactive models, and the managerial and state-hierarchy types of hybrid
models). Therefore, the tasks under study are modeled as a distributed system, where
there is no global representation available (since centralization of computation has been
reported as an important weakness of deliberative models). The principle of managerial
type is used in Chapter 5, to define a supervised architecture for reliably approaching a
known object under saliency ambiguity. In Chapter 6, by adopting the behavior-based
formalism iB2C, several topics (e.g. emergent behavior, obstacle avoidance, and learning)
are investigated.
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Visual attention

In the study of autonomous behavior, an aspect of crucial importance is the efficient
processing of information, since robotic agents have limited computational and storage
capacity. Different human-inspired sensory modalities (e.g. vision, touch, audition, etc.)
and supra-human modalities (e.g. laser range, sonar, etc.) can provide humanoids with
data about the environment. Here the focus is placed on vision. Thus, from visual
attention processing, the robot should be able to detect feature saliency from images of
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the scene captured on-board. For this, the literature in the field in reviewed, including
both proposals derived from research in cognitive science (i.e. bio-inspired solutions), and
from the field of machine vision (e.g. solutions based on mathematical modeling).

Thereby, this chapter starts by introducing relevant theories of human attention that
can be (or have already been) used for robotics tasks. Next benchmark visual sensor
technologies are reviewed and contrasted to the human eye, in order to illustrate po-
tential challenges for robot vision. A review on the state of the art in machine vision
follows, where the whole scene segmentation and the feature tracking approaches are dis-
cussed. Three case studies are developed so potential methods for obtaining top-down
(i.e. supervised) and bottom-up (i.e. unsupervised) visual selection are prototyped and
evaluated. The first two consider whole scene segmentation based on color information
(one is top-down, relying on a color model of the object, and the other is bottom-up, based
on heuristic clustering). The third study considers feature tracking from dense optical
flow, to obtain an unsupervised estimation of the scene structure. The possibilities of
employing these approaches for on-board visually-guided walk tasks are evaluated.

Theories of attention

According to Quinlan & Dyson [153] attention is the process whereby the individual
can select from among the many competing stimuli present in the environment, facilitating
processing of some while inhibiting others. As pointed out by Pinto et al. [144], this
selection can be driven endogenously by goals (also called top-down or goal-driven), or
exogenously by a salient or novel stimulus that captures attention away from the task at
hand (also called bottom-up or stimulus-driven). These two attentional systems seem to
operate independently. Thus, the balance between endogenous and exogenous factors not
only allows the accomplishment of the goals (e.g. finding a particular object of interest on
a supermarket’s shelve), but also to be sensitive to important external information (e.g
attending to a fire alarm or to the sound of a crashing glass).

Because there is too much information at any given moment for the individual to cope
with, the attentional mechanism ensures that relevant or important information obtain
further processing. In this sense, conforming to Smith & Kosslyn [168], in view that the
human being is capable of processing a limited quantity of information in both space and
time, the attentional process ensures that the selection occurs in a convenient and not a
random fashion. A number of different information-processing theories have attempted
to explain the human attentional process. Although none of them can cope with all the
aspects related to the attentional phenomena, they certainly handle particular aspects of
attention. Some of the most important theories are: the filter, the spotlight, the feature
integration, and the guided search theory.

The filter theory

Broadbent [26] viewed the attentional system as containing a limited-capacity channel
through which only a certain amount of information can pass. Accordingly, as illustrated
in Fig. 3.1, the many sensory inputs entering the cognitive system at a particular moment
are filtered out, such that only the most important information gain access to semantic
processing. In other words, information would be pre-processed in a pre-attentive sensory
store, and only sensory events characterized by relevant physical properties would pass
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trough the limited capacity processing system. The items blocked by the filter would
vanish from the store within a matter of seconds. Thus, the theory suggests that an
information bottleneck would occur immediately after the sensory store.

Foccoocoosoo Rehearsal |----------

Long-term

Ssystem [ Psystem [ storage

—
Filtering

All-or-nothing
Based on physical characteristics

Figure 3.1 — Illustration of the filter model (Quinlan & Dyson [153]). The S (or sensory)
system comprises many input channels that deliver information continuously (and in parallel)
as stimulation from the outside world impinges on the body. Items that are selected for read-
out by the filter are passed on to the limited capacity channel, shown as the P (or perceptual)
system in the figure. The P system is assumed to operate serially (items are processed one at
a time). Since items decay from the store within a matter of seconds if they are not read out
by the filter, the Rehearsal system passes back information from the P system and rehearsed
such that it is recirculated into the short-term store in case where the system is in danger of
information overload. Only items that have been selected and have exited from the P system
stand any chance of entering the long-term memory system.

Broadbent’s ideas have received experimental support (see Cherry [44]). In studies
of dichotic listening the subject is exposed to different messages at each ear and re-
quired to attend to one in particular. Generally, subjects are unable to remember the
unattended message, even tough it was systematically repeated throughout the trials.
However, broaden research on the so-called cocktail party effect (see Arons [12]), which is
the ability to focus one’s listening attention on a single talker among a cacophony of con-
versations and background noise; has pointed out to some limitations in the filter theory.
That is, certain subjects are able to recognize unattended information (e.g. the person’s
name, words as 'fire", etc.) even though the speaker voices are kept constant in the ex-
periment (i.e. no physical novelty), which is considered to be evidence against perceptual
processing occurring only before the information bottleneck (also called late-selection).
In other words, both physical characteristics and semantic content seem to account for
how unattended but high-priority information can still be detected.

Despite criticism, an important contribution of the theory is to promote the debate
itself over whether attention operates at an early or late stage, which has highlighted two
important aspects of attention. The first one, is that attention can have an effect on the
very earliest levels of perceptual processing by reducing the amount of information that
enters into the cognitive system. The second one, is that some unattended information
reaches very late stages of processing, which shows that the information is not entirely
filtered out. Contents related to the context of the current goal or likely to be of extreme
importance, can penetrate the attentional filter.
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The spotlight theory

A study by Posner et al. [147] has shown that the subject’s knowledge about where
in space a stimulus will occur affects the efficiency of detection. Consequently, spatial
attention would act like a spotlight by highlighting information within the beam region.
Information within such circumscribed region of space is selectively brought to awareness,
and outside such region it is more likely to be ignored.

Olshausen et al. [137] have proposed an implementation of a biologically plausible
model of an attentional mechanism based on the spotlight metaphor, to represent position-
and scale-invariant information of visual objects. As ilustrated in Fig. 3.2, in the model
control neurons dynamically modify the synaptic strengths of intracortical connections,
so that information from a windowed region of primary visual cortex (VI) is selectively
routed to higher cortical areas. The selection mechanism provides a computational advan-
tage, because most processing is limited to the small selected region, which considerably
simplifies the connection circuitry that would be necessary to cope with the entire visual
field at once.

(L LR ] } LI XX LYY

window of attention

Figure 3.2 — A simple, one-dimensional dynamic routing circuit (see Olshausen et al. [137]).
The model relies on a set of control neurons to dynamically modify the synaptic strengths of
intracortical connections, thus information from a windowed region of primary visual cortex (VI)
is selectively routed to higher cortical areas.

An important contribution of the spotlight metaphor for attention is the idea that
space is a powerful coordinate system for the perceptual systems, and that attention may
directly operate on these sensory systems. For example, turning toward the spatial source
of a noise might result in the incidental selection of other objects that otherwise would
have been failed to be noticed.

Nevertheless, there are some criticism to the model. According to Cave & Bichot [34],
despite the spotlight metaphor has been inspiring much of the research in visual attention,
it is no longer able to account for the level of complexity of recent theories and models
of visual selection. Furthermore, according to Smith & Kosslyn [168], a major problem
of the model is to explain results from studies suggesting that attention can be directed
to a single object, even when superimposed on another object. This contradicts the idea
that attention indiscriminately highlights information in a particular spatial region, since
if that were the case all objects would have been selected together.
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The FIT and GS theories

The feature integration theory (FIT) is mostly concerned with the role attention
plays in selecting and binding complex information. Consequently, it takes some distance
from the ideas of bottleneck, filtering, and the spotlight metaphor. According to Treis-
man & Gelade [179], the perceptual system is divided into separate maps, each of which
registers the presence of a different visual feature (e.g., color, edges, shapes, etc.). That
is, the image is decomposed into low level attributes across several spatial scales, which
are combined to form a master saliency map. When the searched object is defined by
a single feature (e.g. by its shape) only such map would be consulted to detect the ob-
ject, thereby, a disjunctive search is produced. In case where the searched object would
combines features, a joint consultation of corresponding maps would be required, such
that, a conjunctive search is produced. According to the theory, disjunctive search is
pre-attentive, whereas conjunctive search does involve attention.

Koch & Ullman [99] have proposed a biologically plausible architecture within the
FIT conceptualization. As illustrated in Fig. 3.3, an implementation of the model has
been provided in Itti et al. [89], and has been used for visually-guided autonomous navi-
gation (e.g. Siagian et al. [166], and in Garcia et al. [72] for the Robocup, among others).
Some neuroimaging studies have provided evidence for the distinction between disjunctive
and conjunctive processes (see Smith & Kosslyn [168]), that is, different types of features
appear to be handled by partially distinct neural mechanisms. However, evidence from
hemispatial neglect patient research has challenged the FIT assumption that disjunctive
search does not engage attention. Moreover, behavioral studies with neurologically unim-
paired participants have found that some conjunctions are easier to detect, contrarily to
a purely serial search as predicted by the model.

The guided search (GS) theory evolved out of the FIT architecture, and it is currently
in its fourth revision (see Wolfe [189]). The idea behind is that the output from a first
stage of information processing can guide later search mechanisms. Although the first
stage is similar to FIT by including feature maps, it differs in that items that cannot
possibly be the target are eliminated in parallel in the feature maps. Thus, by the time
information reaches the second attentive stage, the number of candidate targets is already
much reduced, when compared to the total number of items possessing a particular feature
of the target. In general, major contributions of FIT and GS are the description of the
mechanism of information integration, and a more complex model of attention involving
early pre-attentive and later attentive stages of processing.

Inspiring robotics solutions

The models of attention reviewed have inspired the current study in several ways. As
it is discussed in Chapters 4 - 6, in agreement with the filter theory data is pre-processed
for obtaining more efficiency, so only relevant information gains access to more complex
processing stages (i.e. early selection). Based on the idea that space is a powerful co-
ordinate system for perception, so attention may directly operate on the sensory native
space; in Sec. 5.3.3 the spotlight metaphor is adopted to propose an embodied mech-
anism (i.e. the Embodied Filtering task) that is in charge of selecting the retinal data
related to the object of interest, under top-down saliency ambiguity. Moreover, inspired
by the models FIT and GS, the idea of combining multiple layers of image features is
adopted in Chapter 6, so top-down and bottom-up saliency features are used to control
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Figure 3.3 — Implementation of the Koch & Ullman architecture by Itti et al. [89]. Visual
input is first decomposed into a set of topographic feature maps. Different spatial locations
then compete for saliency within each map, such that only locations which locally stand out
from their surround can persist. All the feature maps feed, in a purely bottom-up manner, into
a master saliency map, which topographically codes for local conspicuity over the entire visual
scene. Finally, the model’s saliency map is endowed with internal dynamics which generates
attentional shifts.

the robot walk to reactively approaching an object or avoiding obstacles. However, differ-
ently from these models that appear to consider attention as a synchronous process (this
is a key aspect of information processing models); in this work attention is also studied
as a distributed and asynchronous process, so parallel sensory schemes observe specific
features, by considering one or more acquisitions (of visual, proprioceptive, and inertial
sensory modalities). In the next section the literature on machine vision is reviewed to
explore available techniques for extracting information from digital images. As it will be
discussed the artificial sensor operates in a much different way that human vision works.
This imposes several constraints to the development of robotic solutions based on vision.

Machine vision

Computer vision is the application of a computer system for receiving and processing
visual information. There are excellent books available in the field of image processing
(e.g. Stockman & Shapiro[172], Jahne [90], and Gonzalez & Wood [74]) and robot control
based on vision (e.g. Siciliano & Khatib [167] and Hyungsuck [46]), though one that clearly
relates both fields in a theoretical and practical way, and certainly is a reference on the
domain, is the work by Corke [52]. According to Corke, there are two main research areas
in the field: image processing and image interpretation. The former includes techniques
for enhancing the quality of the image for visualization (e.g. motion blurs removal in
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Pretto et al. [150]), examples of applications are remote sensing and medical imagery.
Alternatively, image interpretation - also known by scene understanding or machine vision
- is the problem of describing physical objects in a scene, given an image (or several images)
of that scene. Machine vision techniques are based on the definition of numeric or image
features, which reduce the dimensionality of the sensory space in order to derive simpler
datasets, from which manageable solutions can be obtained by a computer system. In
order to illustrate potential challenges encountered in image interpretation, benchmark
visual sensor technologies are firstly reviewed and contrasted to the human eye, then
the perspective projective model (typical of conventional cameras) is presented, and the
extraction of visual features including techniques for whole scene segmentation and object
tracking, are reviewed.

The camera sensor

According to Corke most of the research in vision-based control has employed some
form of solid-state imaging sensor of the type CMOS, NMOS, CCD or CID. These sensors
comprise a number of discrete photosites (or pixels), where each site accumulates a charge
proportional to the illumination of the photosite integrated over the exposure period (see
Fig. 3.4). The charge coupled device (CCD) sensors are considered to produce better-
looking images with less visual noise and distortion, but they consume more energy and
provide slower data-throughput speed.

The most significant difference between CCDs and other types is that all photosites
are sampled simultaneously, when the photosite charge is transferred to the transport
registers. For other modalities sensor pixels are exposed over the field-time during the
reading (which may result in the effect known by rolling shutter, where the image is skewed
depending on the direction of camera or object motion). The robot Nao is equipped with
complementary metal-oxide semiconductor (CMOS) sensors, which are also widely used
in mobile devices, given their less manufacture cost compared to CCDs.
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Figure 3.4 — Photosite charge wells and incident photons (Corke [52]). Silicon is more transpar-
ent at long wavelengths such that photons may generate electrons deeper within the substrate.
This introduces cross-talk between pixels, where the pixel values are not truly independent
spatial samples of incident illumination.

An important property associated to a signal is the dynamic range, which describes

the range of the input levels that can be reliably measured simultaneously, that is, the
ability to accurately measure small signals in the presence of the large signals (Haldmek
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et al. [77]). The most commonly used unit for measuring dynamic range in photography
is the f-stop, which describes the ratio between the lightest and darkest recordable regions
of a scene in powers of two (e.g. a scene with a dynamic range of 3 f-stops has a white
that is 8X as bright as its black, since 23 = 8). The largest signal at saturation is directly
related to the capacity of the charge well. At very low illumination levels the response of
the sensor is totally overwhelmed by the dark current and noise effects described in Fig.
3.4. The smallest discernible output is thus the output noise level. Commercial sensors
normally have between 8-14 f-stops.

High-speed relative motion between the camera and scene results in a blurred image,
since the photosites respond to the integral of illumination over the exposure period. As a
consequence, a blurred object will appear elongated in the direction of motion. In the case
where an object moves more than its width during the exposure interval, the illumination
will be spread over a greater number of pixels and each will receive less light. That is,
as the image blurs, it elongates and becomes more attenuated. Next, the human visual
system is briefly described so a comparison with the artificial sensor can be established.

The human eye

The human eye presents a nearly spheric morphology with an average diameter of
approximately 20 mm (Gonzalez & Wood [74]). A simplified depiction of the eye is
presented in Fig. 3.5. Three membranes enclose the eye: the cornea and sclera outer
cover, the choroid, and the retina. The cornea is a tough transparent tissue that covers
the anterior surface of the eye. Continuous with the cornea, the sclera is an opaque
membrane that encloses the remainder of the optic globe. The choroid lies directly below
the sclera and provides nutrition to the eye trough a network of blood vessels. It is heavily
pigmented and hence it helps to reduce the amount of extraneous light entering the eye
and the backscatter within the optical globe. The innermost membrane of the eye is
the retina, which lines the inside of the wall’s entire posterior portion. When the eye is
properly focused, light from an object outside the eye is imaged on the retina.

According to Corke [52], the human eye is different in several ways when compared
to a artificial sensors. Light is sensed in the eye by two types of photoreceptors located in
the retina: the cones and the rods. Cones are color sensitive activated in normal daylight
conditions. Proportionally, they are distributed such that 65% sense red, 33% sense
green, and only 2% sense blue color. The biggest concentration of cones (around 34,000)
is located in the fovea region, so their density in the rest of the retina is considerably
lower. Due to this, the eye presents high resolution of a few degrees only over the foveal
field of view, but subconscious fixation point shifts (i.e saccadic eye motions) directs the
fovea over the entire field of view. Rod sensors are activated at very low light levels. They
are monochromatic and their density in the fovea is only 7% of the cones’, but increases in
the peripheral region. The distance between the lens and retina is approximately constant
at 15 mm, so focusing is achieved by muscles which change the shape of the lens.

Cone photoreceptors have a dynamic range of 9 f-stops. Likewise the iris of a lens, the
pupil varies in diameter from 2 to 8 mm which provides for a factor of 4 f-stops (3 f-stops
in older people). Rods provide another factor of 5 f-stops. Rod sensitivity is chemically
adapted with a time constant of tens of minutes. The overall dynamic range of the eye
is thus approximately 18 f-stops. The eye has three degrees of rotational motion. The
muscles that actuate the human eye are the fastest acting in the body, allowing it to rotate
at up to 600 deg/s and 35,000 deg/s? for saccadic motion. Smooth pursuit eye motions
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Figure 3.5 — Simplified cross section of the human eye (Gonzalez & Wood [74]).

involved in tracking a moving object operate at up to 100 deg/s. Rotation about the
viewing axis (i.e. cyclotorsion), is limited and the maximum varies between individuals
(ranging from 5 to 20 deg).

To summarize, the human eye presents several advantages with respect to artificial
sensors. Since the retina is curved along the back surface of the eyeball, the edges of the
retina would be about the same distance from the lens as the center (differently from 2D
area sensors), so better sharpness at the corners of the image is obtained (this will be
better understood when reviewing the perspective projective model used by conventional
sensors in Sec. 3.3.3). However, punctual comparisons like these may be misleading, since
the eye is a living organ and human vision is actually a dynamic process that takes place
in several steps, so it would be comparable to a video and not to a photography. That
is, the resulting mental image is more a reconstruction of the scene based on different
sort of inputs provided by the eyes, that the mere registry of the actual light received by
the sensor. This is extremely advantageous since the eye can compensate as it focuses
on regions of varying brightness (that is why human night vision is much better than in
artificial sensors, and the dynamic range is higher, see Fig. 3.6). It can also look around to
encompass a broader angle of view, or focus on objects at a variety of distances. The dual
eye overlap field of view region is around 130°(nearly as wide as a fish-eye lens). However,
for evolutionary reasons the peripheral vision is used for sensing motion and large-scale
objects, and not for high resolution vision. Thereby, the human eye is specialized in
detecting different sort of events.

Perspective projection
Conventional cameras use perspective projection. As illustrated in Fig. 3.7, in the

perspective transform the 3D space is mapped to the 2D image plane. A non-inverted
image is formed on the image plane at Z = 0 from a viewpoint at Z = —f. Let a world
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Single Photo without HDR

After High Dynamic Range Technigue

Figure 3.6 — The photographer chooses to take many pictures of the scene at a given exposure
by changing either the shutter speed or the aperture. The images are processed in software that
determines dynamic information such that the shutter speed and aperture, to calculate how
much light actually came from each image region. On the left a single image of the scene, on
the right the enhanced image' .

1. Available at http://www.cambridgeincolour.com/tutorials/high-dynamic-range.htm (accessed on
10/12/2015)

point in the 3D Cartesian space be denoted by the coordinates (X, Y, 7). Using similar
triangles, it can be shown that the 2D coordinates (z,y) of its projection on the image

plane is defined by
(XY

The projective-perspective transform has the following characteristics:

e World lines are mapped to lines on the image plane.

e Parallel world lines, not in the plane orthogonal to the optical axis, are projected
to lines that intersect at a vanishing point.

e Conics in world space are projected to conics on the image plane, for example, a
circle is projected as a circle or an ellipse.

e The mapping is not one-to-one, and a unique inverse does not exist. In general the
location of an object point cannot be determined uniquely by its image. All that
can be said is that the point lies somewhere along the projecting ray shown in Fig.
3.7. Other information, such that a different view, or knowledge of some physical
constraint on the object point (i.e. it is known that the object is lying on the floor)
is required in order to fully determine the object’s location in 3D space.

Visual feature extraction

Image features are measurable relations in an image. According to Jang [91], these
functionals are defined by

f://lmage h(z,y, I(z,y))dzxdy, (3.2)

where I(z,y) is the pixel intensity at location (x,y). The function h(.,.,.) is a linear or
non-linear mapping depending on the feature, and may also include Dirac delta functions.
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Figure 3.7 — Central perspective geometry (Corke [52]).

Many image features can be defined. For example, the lengths or orientation of line
segments connecting distinct objects in the scene (e.g. holes and corners), and template
matching for distinctive pixel patterns. Moments are easy to compute and very useful
features. The (p + ¢)* order moments is defined by

mpq—//Imagexpyql(x,y)dxdy. (3.3)

The (p + q)™ order moment for a digitized image is
Mpq = Z Z vy (@i, yj)- (3.4)
i

For a binary image the function I(x,y) is either 0 or 1, so the moments describe a
set of locations and not the grey-level of those points. According to Hyungsuck [46],
moments can be given a physical interpretation by considering the image function as a
mass distribution. Thus mgy would be the total mass of the region, the centroid of the
region would be given by

mip Mo

(e, Ye) = ( ) : (3.5)

)
Moo Moo

However, as illustrated in Fig. 3.8 when the object is not viewed along the surface normal,
the centroid of the image does not correspond with the centroid of the object.

Translation-invariant central moments for a region R are computed about the centroid
(%, Ye), such that

o = Y03 = s~y (i), (J) € R (3.6)

Similarly, scale-invariant and orientation-invariant moments can be defined. A closed
boundary R, (i.e. the perimeter of the area) can be characterized by N, pixels, so the
normalized contour central moment is defined by

_ H
flpg =~ (3.7)
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‘Calibration target plans
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Figure 3.8 — Exaggerated view showing the centroid offset in the image plane (Corke [52]).

Contour moments are computationally less demanding and can be used for calculating the
direction (or orientation) of a region. As shown in Fig. 3.9, the region can be represented
by an ellipse. The direction of a closed elongated region (it is not defined for a circular
region) would correspond to the angle 6 between the elongated side and the positive x-axis
of the image, such that

fl2o — [o2

1 21
0= §tan_1 <MH> . (3.8)

Feature
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i /)1"'- i No

Major axis

. Meighboring
' pixels

= X
Figure 3.9 — Contour central moment (Hyungsuck [46]).

In general, in vision-based control research the definition and extraction of image fea-
tures have relied on two main approaches: whole scene segmentation, and feature tracking.
Some relevant techniques within these approaches are reviewed next.

Whole scene segmentation

According to Stockman & Shapiro[172], image segmentation is the process of parti-
tioning an image into a set of regions that cover it, with the goal of representing meaningful
areas (e.g. objects, people, urban areas, forests of a satellite image, and so on). When
the regions of interest do not cover the whole image, the segmentation would partition
the foreground from the background to be ignored. Figure 3.10 and Tab. 3.1 illustrate
the contribution of image segmentation to a more general task of scene interpretation.

Pixel values may be scalar or vector quantities that can represent luminosity, color,
range, velocity, or any other measurable property on the scene. A basic approach to do
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Figure 3.10 — Processing pipeline for scene interpretation (Corke [52]).

Step Description

Classification Pixels are classified into spatial sets according to low-level characteristics.

Representation The spatial sets are represented in a suitable form for further computation
(e.g. connected regions, boundaries).

Description Sets are described in terms of scalar or vector features.

Table 3.1 — Description of the scene interpretation workflow presented in Fig. 3.10.

the classification step is to apply a threshold test 7" to individual pixels (also known by
thresholding). Thus, a segmented image is obtained as follows

Where Pj; is the pixel, and the sets S}, and Sy contain respectively the pixels in the back-
ground and the foreground. The threshold 7" can be obtained automatically by processing
the image histogram (i.e. in Otsu [140]). This technique is mostly employed in the context
of the lab where the environment can be controlled (e.g. disposing bright objects over a
dark background, using fluorescent lamps, etc.). For less constrained situations such that
outdoor tasks, the performance is generally inadequate.

Jahne [90] has classified basic approaches of image segmentation into pizel-based,
region-based, edge-based and model-based. Pixel-based methods rely exclusively on the
value of the pixel to produce the segmentation. The advantage of these methods is that
they tend to be simple to implement and computationally efficient. As a drawback, noise
can be easily misclassified. In the study developed in Sec. 3.4.2, the clustering algorithm k-
means by MacQueen [115] is employed to segment the image based on the pixel intensities.
Region-based techniques analyze the values in larger areas, so the resulting segmentation
is relative to a local vicinity or neighborhood (spacial coherence). Some examples are the
region growing the split-and-merge techniques, and the NCA texture kernel (Ferreira et
al. [70]). These methods are computationally more expensive, though the effect of noise
can be more efficiently mitigated. The case study developed in Sec. 3.4.3 has employed
the technique by Kato et al. [95] to obtain robust segmentation. Edge-based methods
exploit the fact that the position of an edge is given by a peak on the first-order derivative
of the signal, or a zero crossing in the second-order derivative. Therefore, these methods
are conveniently employed to detect the borders of objects in the image (e.g. the edge
detector by Canny [32]). Model-based segmentation relies on specific knowledge about
the geometrical shape of the objects, which can be compared with the local information
available in the image. Depending on the application a detailed model of the object may
be required (e.g. the segmentation of magnetic resonance images based on a heart mesh,
see Legrand et al. [106]). Though, in less constrained scenarios, heuristics on the shape
of the object may also be employed (e.g. the detection of line and curves through the
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hough transform, see Duda & Hart [57]).

Feature tracking

Feature tracking can be obtained under the principle of Verification Vision (VV),
as proposed by Bolles [21]. VV algorithms assume that prior knowledge about the type,
placement, and appearance of the objects is available to the system, such that the goal is
to verify and to refine the location of such features in the scene. Determining the initial
location of features requires the entire image to be searched, but this need only to be done
once. Thus, this approach is analogous to a top-down search. A commonly used criteria
to match features between consecutive frames is the least-squares fitting. Features are
chosen on the basis of a confidence measure computed in a neighborhood. The tracking
technique by Comport et at. [49] is based on this principle. From the knowledge of the
geometry of the object, its initial pose, and the estimation of the spatial evolution of the
camera; the features are predicted in the image plane, such that local search matches real
measurements with the virtual features to track the object.

Less restrictive approaches in terms of modeling have also been proposed. The con-
tinuously adaptive mean shift (CAMShift) algorithm by Bradski [24] considers a color
model of the object to perform heuristic optimization search in a local neighborhood.
The technique was originally proposed in the context of user machine interface appli-
cations (e.g. to track the face of the user). Thus, in favorable conditions acceptable
results are obtained. Though when variations in the point of view are introduced, the
color model may no longer be useful to detect the object. An improvement is proposed
by Exner et al. [64], and consists in the accumulation of multiple histograms to handle
various perspectives of the object.

In the other extreme are model-less approaches. As pointed out by Bradski [23],
the idea is to estimate motion between two frames without any prior knowledge but the
changes induced by the motion itself. This is in fact the notion of optical flow, as originally
introduced by Gibson [73] when working with visual perception. The optical flow (also
named optic flow, or flow field), is the visual motion that results from an observer’s own
movement through the environment. According to Beauchemin & Barron [16], optical flow
algorithms are useful for applications such that: recovering 3D motion of the visual sensor
(to within a scale factor), recovering 3D structure of surfaces (the shape or relative depth)
of the environment, motion detection, object segmentation, time-to-collision calculations,
motion compensated encoding, stereo disparity measurement, and perhaps many others.

According to Gonzalez & Woods [74], the mathematical definition of optical flow
is based on three important premises: a) the object reflectivity and illumination does
not change during the interval [¢;, 3], b) the distances of the object from the camera
or light sources does not vary significantly over this interval, and c) each small intensity
neighborhood R, , at time ¢; is observable in some shifted position R, sz, 45, Obviously,
these assumptions do not hold tight in real imagery, though in some cases they can lead
to useful computation of image flows. Using the brightness constancy constraint for the
intensity function f(z,y,t), the image flow can be defined by

flx,y,t) = f(x + dz, y+ oy, t+ ot). (3.10)

A Taylor series representation (including only the linear terms) in a small neighbor-
hood of an arbitrary point (x,y,t) can be considered, such that

46



Chapter 3. Visual attention 3.3. Machine vision
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The image vector to be determined is the velocity [0x dy]* associated to each pixel. From
the previous equations it follows that

0f o _ 0F 5. f _[or of S
T ay B lax 83/] [51/1 VI LSy} (3.12)

Equation (3.12) does not give a unique solution for the flow vector [0z dy]*, but
imposes a linear constraint on it. In fact, a problematic situation described as the aperture
problem (see Fig. 3.11) may produce multiple possibilities for the vector flow, due to
similar pixel intensities.

Figure 3.11 — The aperture problem. An intensity edge moves towards the right from time
t1 to time ty. However, due to the limited size of the neighborhood (i.e., the aperture used for
matching), the location of the displaced point P could be R or @, or some other point along the
edge segment determined by them (Gonzalez & Woods [74]).

According to Bradski [23], an estimate of the instantaneous velocity can be associated
to each pixel of the image, representing the distance the pixel has moved between two
successive frames. Such a construction is usually referred to as dense optical flow. Dense
algorithms usually consider interpolation between points that are more easily distinguish-
able, so as to solve for points that are more ambiguous. Thus, these algorithms usually
present higher computational cost. Some approaches available are: the Horn-Schunck
method (Horn & Schunck [85]) that computes the velocity field, the block matching tech-
niques (e.g. Beauchemin & Barron [16]) where the images are divided into small regions
called blocks and motion is computed within each block, and the polynomial expansions
approach by Farnebéck [68] which is explored in detail in Sec. 3.4.4.

As alternatives to dense estimations, sparse optical flow algorithms have been pro-
posed with much less computational cost. These methods rely on some means of specifying
beforehand the subset of points that are to be tracked. The selection may be obtained
automatically according to some desirable properties (e.g. corners and edges, see Harris
& Stephens [78]). The Lucas-Kanade algorithm (Lukas & Kanade [113]) was originally
designed to calculate dense flow, but is widely used as a sparse technique since it only
relies on local information. A survey on existing bottom-up tracking methods is presented
in Ngau et al. [133] (see Tab. 3.2).
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Biologically Inspired Models Purely Computational Models

Characteristics Pixel- Frequency- Region- Pixel- Frequency- Region-
based based based based based based

Algorithm High Very-high High Average High Average
complexity
Computational Average Low Average High Average Average
speed
Memory Average Very-high High Low Low High
requirements
Detection High High Average High High Average
performance

Table 3.2 — Survey on the performance of bottom-up tracking method according to the feature
choice (Ngau et al. [133]).

Case studies

Given the task of interest for this work, which is approaching and positioning with
respect to objects of interest on the scene guided by vision, several techniques for whole
segmentation and feature tracking were explored. The idea was to verify whether reli-
able top-down and bottom-up information could be obtained from an inflow of digital
images captured on-board. Since the autonomy is a desirable aspect of the solution, only
methods relying on soft modeling were considered (the principle of Verification Vision
was not included). In the testing conditions random and brusque motion are applied to
the camera (producing motion blurs), simulating the robot walk motions. Furthermore,
the algorithms are tested under illumination noise (i.e. under artificial and natural light
sources). Thereby, the more promising results obtained are discussed in three case stud-
ies. In the first study a pixel-based semi-automatic approach relying on the clustering
technique k-means is detailed. In the second study a top-down region-based segmentation
technique considering a color model of the object under a Markov random field frame-
work, is improved for a use in the context of continuous processing of visual inflow. In the
third case study a feature tracking technique based on dense optical flow from polynomial
expansions is explored.

Materials and resources

A RGB color web camera Logitech model C210, 640 x 480 (1.3 megapixels) resolution
was used. Some images were also downloaded from the Internet for testing. The programs
were implemented in the C+4 programming language. The OpenCV 2.4.8 library was
linked to the project, providing the implementation of calcOptical F'lowFarneback and
kmeans. The algorithms were developed under the Eclipse Juno IDE and run in Ubuntu
12.04.5 LTS (Precise Pangolin). The host plattform was a DELL Vostro 1500 laptop (Intel
Core 2 Duo 1.8GHz 800Mhz, 4.0GB DDR2 667MHz RAM, 256MB NVIDIA GeForce
8600M GT).

CS-I: Semi-automatic color-based segmentation

The k-means algorithm by MacQueen [115] is a convenient technique that can be
used for unsupervised learning. The distinctive aspects of clustering is that it avoids the
need for pre-structuring data, so structure is automatically found. According to Ertel [63],
k-means can be considered as a deterministic or discrete version of the expectation maxi-
mization (EM) algorithm, where clusters are represented by points and not by probability
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distributions. K-means has been employed for image segmentation (e.g. in Doggaz & Fer-
jani [56]), such that properties related to the image pixels can be grouped into clusters.
In this study case, the problem of segmentation of a sequence of images is tackled.

As its name suggests, k clusters are defined by their average value. The procedure
is illustrated in Algorithm 1. Firstly, the k cluster midpoints C' = {1, ... ,ux} are
randomly or manually initialized. Then, the classify and the recalculate procedures are
systematically applied until convergence. In the former points are assigned to a cluster
based on distinct metrics depending on the particular application. Some available criteria
are euclidean distance, sum of squared, manhattan distance, among others (see Duda et
al. [58]). In the recalculate step, the cluster midpoint p for points S = {Py, ..., P,} are
determined such that

= —Zsi. (3.13)

Algorithm 1 K-means

1: procedure K-MEANS(S, k)

2 initialize pq, ..., ug > e.g. randomly
3 repeat

4: S+ classify P € S to each’s nearest u; € C

5: recalculate C'

6

7

until no change in C
«~ (5,0)

The outputs of k-means are the midpoints set C' and the clustered set S. It is important
to mention that convergence is not ensured in the algorithm. Though a partial solution
is obtained by restricting to a maximal number of iterations. Normally, the number
of iterations is typically much smaller than the cardinality of the data point set. The
complexity order of the algorithm is O(ndkt), where n is the total number of points, d is
the dimensionality of the feature space, and ¢t the number of iteration steps.

Experiment

The images were captured in the RGB color space and convolved with a 3 x 3 low-pass
Gaussian kernel to reduce noise. Three experiments were designed. In the first experiment
the color channels of the image are de-multiplexed (which is equivalent of obtaining 3
gray-scale image matrices R, G, and B; representing respectively the intensities of the
red, green, and blue components), so the feature vector P; related to the image location
i = (z,y) is P, = [Ryy Gyy Byl In the second experiment the coordinates of the
pixels are also included in the feature vector, in order to enforce clusters to have also a
topological coherence, such that P, = [z y Ryy Guy Byy]". The dataset was normalized in
each dimension to avoid the effect of the scaling factor. For these experiments the clusters
are initialized randomly, k is varied between 2 and 10, and a threshold for the iteration
number ¢ < 10 is set. In a last experiment an heuristic criteria for initializing the clusters
is examined, such that, based on the assumption of scene constancy, the cluster midpoints
obtained from the processing of a frame are provided as initial values for the successive
frame.
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Results

A comparison of the results for the first two experiments is given in Fig. 3.12.
The differences are more distinguishable when the number of clusters is reduced, so the
coordinate of the pixel would enforce a topological clustering. For larger values of k the
results are more or less equivalent. In general, for the scene shown a value of 4 < k < 6
provided the best results. That is, for low values of k£ distinct objects tended to be
merged (a problem known as under segmentation), contrarily, with a high number of
clusters objects scattered on adjacent regions (i.e. the over segmentation problem). As
illustrated in the top row of Fig. 3.13, the structure of the black filing cabinet at the back
could be consistently recognized, though the red ball and the blue-frame calendar were
not. When the clusters were initialized randomly the segmentation varied considerably
between successive frames. Thus, the heuristics used in the third experiment produced
more consistent clusters among frames.

Discussion

The objective of this study was to explore a segmentation technique from pixel-based
clustering, in order to verify whether a physically plausible segmentation can be obtained
from the scene without possessing previous knowledge about the characteristics (e.g. the
color and shape) of the objects contained. As the results have shown, although some
structure can be recovered, the stability of the segmentation for small objects cannot be
ensured (the segmentation oscillates given the illumination noise). Another disadvantage
of the method is that it is sensitive to the parameter k, which implies that some knowl-
edge about the scene may be available. In case the last cluster midpoints were given for
initialization, better results were obtained, though when the first clusters did not pro-
duce a correct segmentation, errors were propagated to successive frames. Moreover, the
appearance and disappearance of objects in the scene destabilized the clusters, so the
heuristics criteria would no longer hold (this is problematic since even though the scene
is static, objects can enter and leave the field of vision of the robot when it walks).

The addition of topological information in the feature vector did not produce the
expected results, since the number of clusters is much smaller than the number of locations
in the image, which is insufficient to capture the local context around neighbor pixels.
Increasing the number of clusters would not produce better results since the image would
be over segmented. Ming et al. [122] have proposed to impose spatial constraints to the
clustering, so considering contour detection for merging regions in order to reduce over
segmentation. The algorithm gives good results for individual images, but it is not obvious
how to obtain adequate performance for on-line applications over a video sequence, since it
is based on the estimation of the adjacency between regions. There are n = r!/(2(r —2)!)
possible ways of selecting a pair among r regions. For a natural scene, depending on
k, hundreds or regions may be segmented which would be intractable. From the results
obtained, it can be concluded that the clustering algorithm detailed is not adequate for
processing visual saliency for the image sequence generated by the robot locomotion.

CS-II: Top-down color-based segmentation

In top-down segmentation the objective is to distinguish the regions of interest on
the image, based on a supervised color model of the object(s) of interest. Kato et al.
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Figure 3.12 — K-means segmentation from color and topology. The first row shows two captured
frames of the scene. From the second to the bottom row the results for k € {3,4,5}. The left
column presents the clustering obtained from the first experiment (i.e. the feature vector P; =
[Ryy Guy Bgyl®). The right column presents the clusters generated for the second experiment
(i.e. the feature vector P; = [z y Ryy Gay Byyl?).

[95] proposed an image segmentation technique within a Markov Random Field (MRF)
framework. The approach combines information from individual pixels and a surrounding
neighborhood (the spacial coherence), providing a more robust solution under noisy con-
ditions. Let the observed image F' = {f; | i € I} consisting of spectral components values
expressed in a certain color-space 7, be represented by the vector f; at each location 1.
The label of interest ¢ is the one that maximizes the a posteriori probability p(¢ | F),
such that

argmax g [ [ p(fi | 0s)p(¢). (3.14)
el

where @ denotes the set of all possible labellings. Since the goal is to partition the image
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Figure 3.13 — Comparison between k-means and the top-down region-based segmentation
method developed in Sec. 3.4.3. In the top row, the results for k-means with 6 clusters. At
the bottom row the results for the region-based segmentation algorithm. On the left column
the RGB image. At the center and right two successive segmentations within an interval of 50
milliseconds. K-means cannot ensure a consistent detection of the red ball.

into labeled regions, a pixel class A may represent more than one homogeneous color
patches in the input image. Such regularities are modeled by considering additive white
noise with covariance 3, centered around the expected color value py. Thus, p(f; | ¢;)
follows a Gaussian distribution and pixel classes A € A = {1,2, ... | L} are represented
by the mean vectors ) and the covariance matrices X,. Furthermore, p(¢) corresponds
to a MRF with respect to a first order neighborhood system (as shown in Fig. 3.14).

Figure 3.14 — First-order neighborhood system. Single pixel cliques are called singletons,
horizontal and vertical cliques are called doubletons (Kato et al. [95]).

According to the Hammersley-Clifford theorem, p(p) follows a Gibbs distribution,
such that

e_u(‘p) B HCEC e_'UC(‘pC)

m(y)  m(y)

ply) = : (3.15)

where u(y) is called the energy function and m(y) = ¥ e ™) is the normalizing constant
ped

(or partition function). v, denotes the clique potential of clique ¢ € C having the label
configuration ¢.. The energies from pixel values (i.e. the singleton contribution) directly
reflect the probabilistic modeling of labels without context, while clique potentials (i.e.
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the doubleton contribution) express the relationship between neighboring pixel labels. The
energy function has the form

e, F) = Xt ((VRRIIZAT) + 56— w6 o)) 8 % d(onen),

el {i,r}eC
(3.16)

where §(¢;, ) is the Kronecker delta function. At the right side of the equation, the
left term corresponds to the singleton contribution and the right term to the doubleton
contribution. The parameter 8 > 0 controls the homogeneity of the regions. As f3
increases the regions become more homogeneous. The function u(p, F) is non-convex, so
the convergence to the global optimum cannot be ensured, since the calculation of m(~) in
(3.15) is intractable. In practice, combinatorial optimization techniques (e.g. the iterated
conditional modes (ICM) by Besag [19]) are employed to achieve the segmentation. The

next state @¥! is determined by

Pt argmin,, L}u(g?)k, F). (3.17)
The stop condition is attained when
Pl = gk Vi e I (3.18)

To summarize, the parameters of the system are (uy, 3y, 3). In case when they are
provided by the user, a supervised segmentation is obtained. Otherwise, they must be
estimated simultaneously to ¢ (e.g. the unsupervised algorithm by Deng & Clausi [55]).

The segmentation algorithm

The application of interest for the algorithm is to distinguish a particular object (the
foreground) from other elements on the scene (the background), that is, to obtain a binary
mask of the scene (i.e. |A| = 2) at each frame. For this, the sample implementation of
the technique® for the segmentation of single images was improved for an efficient use
in continuous video inflow. The resulting routine considered the ICM optimization (see
Algorithm 2). The user specifies the color model of the object by enclosing a region on the
image. In order to assist this procedure, the GrabCut technique by Rother et al. [156] is
employed. The images are converted from the RGB to the YUV color-space (see Stockman
& Shapiro[172] for an in depth review on image color spaces), since with YUV typically
compression artifacts are more efficiently masked, both are 3D color spaces. Consequently,
a probabilistic distribution of color intensity under Gaussian noise is obtained (i.e. the
parameters u, and 3, of the model), and given to the segmentation algorithm. The
parameter 3 is set to 1. The resulting computational complexity is O(tn*), where n is
the number of pixels in the image, and ¢ is the maximal number of iterations allowed (in
case it is specified). The localEnergy function corresponds to Eq. (3.16). The energy
cost for each pixel is evaluated only with the model of the object, that is, no assumptions
are made about the colors at the background. This is crucial since the same model is
used to process successive frames, so in case a model would be taken for the background,
unseen colors eventually entering the scene would introduce ambiguity in the labeling.

1. Available at http://www.inf.u-szeged.hu/~kato/software/mrfdemo.html
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The initialize step sets the initial segmentation ¢ by minimizing the singleton term (i.e.
a labeling without context, see Eq. (3.16)).

Algorithm 2 Segmentation

1: procedure DOSEGMENTATION
2 © «initialize D> Singleton initialization
3 €old < 0
4: repeat
5: e+ 0
6: for y =0 — y < height do
7 min,. < local Energy(z,y, )
8: for x =0 = =z < width do
9: for \=0— X< |A]| do
10: ce < local Energy(z,y, \) > current energy
11: if c. < min, then
12: Gyx — A
13: Mmine < Ce
14: e < e+ mine
15: Ae + abs(epiq — €)
16: eold < e > stop when the change is too small
17: until Ae > €
18: — ¢
Experiment

Two applications of the algorithm are evaluated: one with single images, and the
other with on-line processing of captured sequences from a moving camera. For reduc-
ing noise in the second condition, the 10 initial acquisitions with the static camera are
averaged before building the color model.

Results

As shown in Figs. 3.15 and 3.16, the technique provides robust segmentation for
natural scenes and colored objects. This was also the case for the condition of camera
motions. As illustrated in Fig. 3.17, despite motion blurs (see Sec. 3.3.1) were produced,
so the morphology of the salient blob was slightly elongated and deformed; the object
could be fully segmented. In relation to the number of iterations for convergence, it was
observed that most of the final segmentation is accomplished in ¢t < 5 iterations. In
general, good results are obtained for diffuse, non-reflective textures. Less satisfactory
segmentations were obtained for metallic textures that reflected specular illumination. It
was also observed that when artificial light was present more samplings were required to
build the color model (since conventional light bulbs add oscillatory noise to the scene).

Discussion

The evaluation of the segmentation algorithm has shown that it is a plausible ap-
proach for unstructured scenes. The information provided by the local neighborhood
allows a more robust handling of illumination noise, which is not possible from the pixel-
based approach (see Fig. 3.13). However, it is important to mention that the segmentation
does not provide good results for certain materials (e.g. polished and reflective surfaces),
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Figure 3.15 — Segmentation of a natural scene. On the left the original image. On the right
the segmentation of the backboard.

Figure 3.16 — Segmentation of colored objects. On the left the original image. On the right
the segmentation of the zebras.

or when artificial illumination is excessive (e.g. the incidence of low-frequency lights on
the scene, specially during the night). Besides, as a top-down technique, it presents the
disadvantage of requiring an explicit model of the color of the object, which was provided
by demonstration. This technique is used in the study cases of Chapters 4 - 6 as a means
to obtain top-down saliency processing, for approaching a known object in the scene from
images captured on-board.

CS-III: Bottom-up segmentation based on optical flow

The interest of bottom-up segmentation in this research is to recognize the spatial
structure of the scene, without possessing a model of the objects or the arrangement
between them in the environment. This can be done through the processing of the dense
optic flow. In the method proposed by Farnebéck [68], the central idea is to predict the
signal at a pixel location x based on a polynomial approximation of its local neighborhood
(i.e. a polynomial expansion), and to look for a similar pattern in the next image. For
this, a quadratic polynomial is used to capture information about the signal. The DC
level, the odd, and the even part of the signal, are respectively modeled by the constant,
the linear, and the quadratic term. Thus, the signal can be expressed in the coordinate
system

f(x) ~x'Ax +b'x +c, (3.19)
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Figure 3.17 — Segmentation under camera motions. On the left column the still image of the
scene, on the right column a strong lateral motion was applied to the camera. The row at the
bottom shows the segmentation obtained for red regions.

from the quadratic basis {1, z, y, 22, y?, zy}, such that

2 ay
A:l‘fj 22], b:ﬂ, c=1. (3.20)
2

The model can be generalized so the pixels of the image are associated to a n x 1
polynomial parameter vector r that captures the structure of the signal, with n the size of
the neighborhood. These parameters can be obtained by r = (BWaWCB)_lBWaWCf ,
where the n x n matrices W, = diag(a) and W, = diag(c). The non negative n x
1 applicability vector a indicates the significance or importance of each point in the
neighborhood (i.e. the locations m on a 2D region centered on the pixel are represented
by a column vector). The non negative n x 1 certainty vector ¢ is a measure of the
confidence in the signal values at each point. Possible causes for uncertainty are: defective
sensor elements, varying confidence in the results from previous processing, and locations
outside the image bounds, among others. The measured signal in the neighborhood is
denoted by f. Each basis function is an element of a finite dimensional vector space Q"
represented by a n x 1 column vectors b;. The set {b;}]* of the basis functions, are stored
in the n x m matrix B = [b; by --- b,,] (an example of a basis function of size n = 9 is
given in Eq. (3.39)).

According to Farnebéack [67], a polynomial expansion is performed in both images
which provides the coefficients of Eq. (3.19) Ay, by, and ¢; for the first image; and Aa,
by, and ¢, for the second image. From the analysis of polynomial changes under an ideal
global translation between the two images (in practice more sophisticated motion model
of pixels are used, e.g. in Eq. (3.30)), the following identities hold
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Ay = Ay, (3.21)
bg - bl - 2A1d, (322)
¢, =d'A;d — bld + ¢y, (3.23)

where the first and the second frames are denoted by 1 and 2 respectively, and d is the
translation between the polynomial locations. A solution can be obtained from Eq. (3.22)
if A is non-singular, such that

1
d= —iAl‘l(bQ —by). (3.24)

However, since noise affects the measurements, Eq. 3.19 is approximated with local
polynomials at each pixel neighborhood. Thus, a new notation is introduced to denote the
fact that the global displacement has been replaced by the spatially varying displacement
field d(x). In practice

Afx) = A FAX) (3.25)

and

Ab(x) =~ (ba(x) — b1 (x) (3.26)

are used. Thus, the primary constraint of Eq. (3.24) would become

A(x)d(x) = Ab(x), (3.27)

Despite Eq. (3.27) can be solved point-wise, the results would be probably affected
by noise. Thereby, by assuming a slow variation of the displacement field, information
can be integrated over a neighborhood I around each pixel. Thus, a solution is obtained
by minimizing the term

> w(Ax)[|A(x + Ax)d(x) — Ab(x + Ax) ||, (3.28)

Axel

where w(Ax) is a weight function affecting the contribution of the points in the neigh-
borhood. The minimum is obtained from

d(x) = (L wA'A) Y wA'Ab. (3.29)

The notation has been simplified to make the expression more readable. According to
Farnebéck [68], a solution exist and is unique unless the whole neighborhood is exposed
to the aperture problem (see Fig. 3.11).

The displacement field can be parameterized according to a more sophisticated pixel
motion model, so both the affine transform (i.e. translation and rotation under ortho-
graphic projection), and the perspective projection, are taken into account. The model is
defined by eight parameters as follows
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te(z,y) = a1 + asx + azy + a7x? + agzy,
Y (3.30)
ty(x,y) = a4 + a5 + agy + azxy + asy”.
Thus, the displacement from Eq. (3.29) is defined such that
d(x) = Sp (3.31)
|1 2y 000 2% xzy
S_0001xy3cyy2 (3.32)
p = [a1 az a3 a4 a5 ag a7 ag]', (3.33)

The weighted least squares problem in Eq. (3.28) is reformulated to consider the
motion model, so

with ¢ indexing the coordinates in a neighborhood. The solution for the motion model
parameters is

1

A priori knowledge about the displacement field can be heuristically used to compare
the polynomial at x in the first signal to the polynomial at x + a(x) in the second signal,
where a(x) is the initial displacement field rounded to integer values (since in the image
measurements are taken in discrete pixels). The relative displacement between the real
value and the rounded a priori estimate can be obtained by replacing Eqs. (3.25) and
(3.26) by

Ay (x) + As(X)

A(x) = 5 . (3.36)
Ab(x) = —;(bg(i) — by (x)) + A(x)d(x), (3.37)

where
% =x+d(x). (3.38)

The structure of the iterative solution to the flow estimation is presented in Fig.
3.18. Two different approaches are considered: iterative and multi-scale estimation. In
the former, the output of one iteration is used as a priori displacement for the next step.
The system can be initialized with a priori zero displacement, unless actual knowledge
about the displacement field is available. The multi-scale approach is suited for handling
the cases of too large displacements between successive frames. The idea is to start
by a coarse scale to get a rough displacement estimate, and to propagate this through
finer scales to obtain increasingly more accurate estimates. Compared to the iterative
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A.[. b[ din As. bs

J

ronind to integers and force

x + dix) within frame

Eq. (3.38)
| d
F=x+d(x)
Afx) = Db T AN Egs. (3.36), (3.37), (3.38)
Ab(x) = —ér._bgr._i; — by(x)) + Alx)d(x)
A Ab

Gix) = Six)" Alx)" A(x)S(x)
hix) = S(x)" A(x)" Ab(x)

G(x) and h(x) are components of Eq. (3.35)

G.h

spatial averaging component-wise

G:u';.-,- I-'-l:u'g

d-::-ul I'X1 = G:nu:. I:_X ,:I_ ! h:w}:,i_xll

The motion model parameters p of Eq. (3.33)
are estimated

d()lll

Figure 3.18 — Algorithm for displacement estimation (Farnebéack [68]).

estimation, this approach requires new polynomial expansion coefficients to be computed
for each scale.

The computational complexity of the displacement estimation is dominated by two
steps: the polynomial expansion and the spatial averaging step. The complexity of poly-
nomial expansion depends on a number of factors, including the dimensionality u of the
signal space, the size n of the applicability per dimension, whether the certainty is assumed
to be constant, and whether the applicability is separable and sufficiently symmetric. For
a 2D image, assuming constant certainty in symmetric kernels, a complexity O(2u2) is
obtained. The averaging operation can be assumed to be implemented by separable fil-
tering. Let s and z be respectively the length and dimensionality of such filters, and j
the components of the motion model (for 2D images there are in total 39 components for
the eight-parameter motion model). For k iterations of the algorithm the computational

complexity per pixel is O(%)

Experiments

Two experiments are designed. In the first one, an single image is processed according
to the polynomial expansion technique, in order to verify whether the predicted signal
preserves the structure of the scene. The image is firstly converted to gray-scale and
convolved with a 3 x 3 Gaussian low-pass filter for reducing noise. The quadratic basis
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functions is employed for the polynomial expansion (see Eq. (3.19)), according to the
basis set {1, z, y,2?, %? wxy}. For this, a 3 x 3 neighborhood (n = 9) is considered.
In the certainty matrix W, a value of 1 was given to all pixels populated with valid
data, and 0 otherwise. A Gaussian kernel is used as the applicability criteria W,. The
resulting matrices are obtained by variating the coordinates z and y (e.g. the azimuth
and elevation with respect to the sensor retina) relative to the central pixel, such that

1] 1 -1 -1 1 1 1
2 1 -1 0 1 0 0
1 1 -1 1 1 -1 1
121 2 1 0 -10 1 1
g=12 42/, a=|4, B=|1 0 0 0 0 o0, (3.39)
121 2 1 0 1 0 —11
1 1 1 -11 1 1
2 1 1 0 1 0 0
1] 11 1 1 -1 1

where g is the Gaussian kernel, and a is the column vector of g. The local coordinate
system for obtaining B is defined from a second order neighborhood (i.e. a grid topology
containing the central element surrounded by 8 neighbors).

The second experiment considered the segmentation of the scene based on the optical
flow induced by camera motions. The magnitude of the flow in the image is partitioned
into 5 sets, to verify whether the segmentation is physically plausible. That is, if the
magnitude of the flow would provide information about the depth of the parts of the
object to the camera sensor. Let the optic flow vector associated to each pixel i = (z,y)
of the image I be denoted by o, = [dz dy]* (see Eq. (3.12)). The flow magnitude image

f is defined such that

f=los, Viel. (3.40)

The segmentation is obtained by a threshold test for each cluster conforming to Eq. (3.9).

Results

The results for the first experiment are presented in Fig. 3.19. As seen, the structure
of the scene was approximately reconstructed by the polynomial expansion, though some
contours were lost (e.g. the top border of the filing cabinet). Figure 3.20 gives the results
for the second experiment. As the images show, it is possible to segment the objects from
the background and detecting the morphology, without possessing any prior information
about the objects (e.g., the color, the geometrical properties, etc.).

Discussion

The first experiment (i.e. the polynomial expansion of the image) showed that in-
formation related to the structure of the scene can be captured with relative precision.
As expected, the best results are obtained for contrasting textured regions, where more
distinguishable features can be detected. This is the case of edges (e.g. the calendar fixed
at the wall, see Fig. 3.19). Regions of low variations on pixel intensities are flattered
(e.g. the irregular illumination in the walls is practically undetected). Moreover, given
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Figure 3.19 — Polynomial basis and signal reconstruction. In relation to the quadratic basis
set {1, =, y,22, y?, zy}, the top row, includes from left to right the images corresponding to
x, 22, xy, and the image I. Likewise, in the bottom row the images correspond to ¥, 42, the
reconstructed signal f(x) (see Eq. (3.19)), and the original scene mapped to a similar color
gradient scale (shown at the bottom) for comparison.

Figure 3.20 — Optical flow segmentation. The images illustrate the segmentation of the scene
based on the magnitude of the optical flow. From left to right, columns correspond to: a captured
frame, the dense flow estimated at to two consecutive frames, and the segmentation obtained.
In the segmentations brighter regions presented bigger flow magnitude.
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the aperture problem (illustrated in Fig. 3.11), it is possible that the contour between
adjacent homogeneous regions is undetected.

The results for the second experiment suggested that it is possible to obtain an un-
supervised estimation of the structure of objects from the optical flow. The magnitude
of the flow can be related to the spatial depth relative to the sensor for a static object.
Problems occur when the camera motions are too brusque. When motion blurs are pro-
duced the local contrast is reduced, so the prediction based on polynomial expansion is
less precise. Furthermore, the greater the displacement between features, the less precise
the estimation of motion would be, thus a relatively high frame-rate must be available
for applications in humanoid locomotion. As it is discussed in the study cases of Chap-
ter 6, this approach is used for inducing reactive motion in a static scene. The more
general problem of segmentation under joint motion (from the agent and the objects) is
investigated in Sekkati & Mitiche [163], where the level sets approach is proposed.

Conclusions

In the context of autonomous behavior, this chapter has focused on the study of visual
attention. As discussed, the selection of information can be driven endogenously (by goals
or top-down), or exogenously (by novelty or bottom-up). From the multidisciplinary
perspective, important models from cognitive science research were reviewed. In this
sense, the filter theory has pointed out the effect attention exerts on reducing the amount
of information that enters the cognitive system. The spotlight metaphor has pointed
out how space can constitute a powerful coordinate system for perceptual systems where
attention may directly operate. The FIT and GS models have provided a more detailed
description of mechanisms for information integration, and a more complex treatment
for the stages of processing (i.e. the pre- and post-selection of information). As it is
discussed in Chapters 4 - 6, these models have inspired the current study in several ways.
In agreement with the filter theory data is pre-processed for obtaining more efficiency,
so only relevant information gains access to more complex processing stages (i.e. early
selection). In Sec. 5.3.3 the spotlight metaphor is employed to propose an embodied
mechanism (i.e. the Embodied Filtering task) that is in charge of selecting the retinal
data related to the object of interest, under top-down saliency ambiguity. Inspired by the
models FIT and GS, the idea of combining multiple layers of image features is adopted.
For this, in Chapter 6 top-down and bottom-up saliency features are used to control the
robot walk, so it can reactively approaching an object or avoiding obstacles.

A review on the sensor technologies was also presented. Some problems related to
CCD sensors (e.g. motion blurs) were discussed, and an overview of the structure of
the human eye was included. Among the several differences with respect to conventional
cameras are: the decoupling of information of illumination and color in dedicated pho-
toreceptors in the eye vs. coupling in the camera photosites, the higher dynamic range
of human vision, the non-uniform disposition of receptors in the retina vs. a grid-like
arrangement of pixels, and the fact that curved geometry of the retina vs. the planar ge-
ometry of the camera retina may provide better resolution at the image borders. Perhaps
the most importance difference is that human vision is actually a dynamic process that
takes place in several phases, so it would be comparable to a video inflow and not to a
photography. That is, the resulting mental image is a reconstruction of the scene based
on different sort of inputs that the eyes actively gathers in different phases, and not the
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mere registry of the actual light received by the sensor. Thereby, human vision is much
less affected by noise.

The review on the literature of machine vision has revealed two main research
branches for feature extraction. In the whole scene segmentation branch, available meth-
ods were classified into pixel-, region-, edge-, and model-based. In the feature tracking
branch, the principle of verification vision was described and contrasted to model-less ap-
proaches, such that dense and sparse optical flow. Based on this review three study cases
were conducted. The first study considered semi-automatic pixel-based segmentation, by
employing the k-means clustering technique. The results suggested that although some
structure is recovered, the segmentation may not be physically plausible for continuous
imagery, so the approach is not suited for goals of this work. In the second study, a
top-down region-based technique for image segmentation within a MRF was improved for
operating in real-time in the case of continuous inflow. The evaluation showed that it is
a plausible approach for unstructured scenes, though the performance is degraded under
artificial illumination, and the detection of metallic or reflective objects. This technique
is used in the study cases of Chapters 4 - 6 as a means to obtain top-down saliency
processing, for approaching a known object in the scene from images captured on-board.
Finally, the third study considered a tracking method for the estimation of dense optical
flow based on polynomial expansion. The results suggested that, despite some limitations
in the reconstruction of the signal from the neighborhood of a polynomial expansion, it is
possible to obtain an unsupervised estimation of the structure of objects from the optical
flow. As it is discussed in the study cases of Chapter 6, this approach is used for producing
reactive motion under unstructured but static scenarios.
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Introduction

Humanoid robots are designed to resemble the body and comportment of human
beings. Among the behavior repertoire, the possibility of visually positioning in relation

to stimuli is

crucial for individual adaptation and relies on the on-board sensory system.

Vision-based locomotion is a challenging task for walking robots. As discussed in the
precedent chapter, unlike human beings which possess a extremely sophisticated visual
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sense, the majority of the research in humanoid vision has employed general purpose
cameras. Given the low quality of the images captured on-board, several studies have fixed
the sensors on the environment for obtaining reliable localization. The main disadvantages
of this approach are the need for adaptations on the scene, and the disregard of the
corporal metaphor. Some studies have considered on-board solutions, though they have
relied on extensive knowledge about the environment, consequently, the results have been
obtained under controlled conditions.

In this chapter the problem of egocentric on-board localization for autonomous walk
is investigated. The top-down segmentation technique discussed in Sec. 3.4.3 is inte-
grated to a behavior model of the task, so visual servoing schemes are used to control
independently the walk and the head motion of the robot. Given that the knowledge
available to the agent is distributed, embodiment in the form of eye-centered and body-
centered placements for the sensory ego-cylinder is investigated. Thus, the chapter starts
by presenting relevant works in the field, and discussing the visual servoing framework.
From the proposal of the behavior scheme three case studies are conducted in Nao. The
possibility of obtaining autonomous and robust visually-guided walk is assessed in both
simulations and real experiments.

Related work

Early research on humanoid localization have resorted to external cameras to extract
information (e.g., Lewis & Simo [108], and Michel et al. [121]), due to difficulties in
the processing of images captured on-board. Despite the fact of obtaining higher quality
images for the task, the use of extra-corporeal sensors present several disadvantages. One
is the fact that the robot may occlude the sensors, thus compromising the visual feedback.
The approach is inflexible since the environment must be adapted to the task. This is in
practice a form of rigorous control over extraneous variables, that conditions the autonomy
of the solution. Extra-corporeal sensors also don’t comply to the humanoid metaphor.

On-board solutions have been proposed under the visual servoing (VS) framework
(which is detailed in the next section). A study by Dune et al. [59] has considered a
monocular vision task with the robot HRP2. Given the walk style of the robot, the
solution involved the cancellation of the oscillatory contribution to the control signal
(also called the sway motion). In order to handle the image noise, the feature tracking
technique based on the VV principle (see Sec. 3.3.4) by Comport et al. [49] was employed.
A similar strategy was followed by Moughlbay et al. [128] when studying service tasks with
the robot Nao. In general, some limitations of this approach could be mentioned. Since a
realistic model of the object is required (e.g. a 3D model of the door or the drawer), the
reusability of the solution to other stimuli is prevented. Also, the evolution on the task
depends on the quality of the initial estimate of the object’s pose (this information must
be obtained at each trial). Moreover, since the sensor is considered to be dismembered,
accurate estimates on the spatial evolution of the camera (visual odometry) is required.
Thus, a relatively high frequency acquisition must be available, which may not be the
case for some platforms.

Allocentric model-based navigation has been explored in the simultaneous localiza-
tion and mapping (SLAM) research (see Thrun et al. [178]). Examples of contributions
in the field are numerous. Just to mention a few, in the work by Hornung et al. [86]
starting from a volumetric map of the environment, precise indoor localization is ob-
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tained by adapting a range sensor to the robot’s head. A work by Oriolo et al. [139]
considered building the map on-line by fusing proprioceptive, inertial, and visual infor-
mation, within an extended Kalman filter. In general, map-based navigation has produced
impressive results, but it has also received some criticism. According to Shapiro [164],
researchers in the field of embodied cognition disagree on the premise that organisms must
firstly represent the environment for then transversing it. Indeed, this would not be ade-
quate to unstructured or reactive situations. Moreover, from the practical point of view,
map-based solutions present as a drawback requiring maintenance, where environmental
changes must be systematically acknowledged.

Visual servoing

In visual servo control computer vision data is used to control the motion of a robot
(see Chaumette & Hutchinson [42]). The approach relies on techniques from image pro-
cessing, computer vision, and control theory. The goal of a vision-based control scheme
is to minimize an error e(t), which is typically defined by

e(t) =s(m(t),a) —s™. (4.1)

The vector of k visual features s(m(t), a) is defined from the image measurements m(t)
(e.g. point coordinates of the target, image coordinates of the centroid of an object,
among others), and the set of parameters a that represent additional knowledge about
the system (e.g. the camera intrinsic parameters, or a 3-D model of the target). The
vector s* contains the desired values of the features.

Depending on the characteristics of the task, a fixed goal can be considered where
changes in s depend only on the camera motion. A more general situation can also
be modeled, where the target is moving and the resulting image depends both on the
camera and the target motion. In any case, visual servoing schemes mainly differ in the
way s is designed. For image-based visual servo control (IBVS), s consists of a set of
features that are immediately available in the image data. For position-based visual servo
control (PBVS), s consists of a set of 3-D parameters that must be estimated from image
measurements.

The relationship between the time variation of s and the camera velocity is given by

§ =Lgv (4.2)

The spatial velocity of the camera is denoted by v = (v, w.), with v, the instantaneous
linear velocity of the origin of the camera frame, and w, the instantaneous angular velocity.
The matrix Ly € R** is named the interaction matrix related to s.

By combining Eq. (4.1) and Eq. (4.2), the relationship between v and the time
variation of the error can be defined by

é = Lee, (4.3)

An exponential decrease of the error e can be obtained by taking v as the input to the
robot controller, so the velocity of the camera can is define by
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v =—AL"e, (4.4)

where )\ is a proportional gain, L." € 3% is chosen as the Moore-Penrose pseudoinverse
of L, that is L} = (L{L.) 'Lt when L, is of full rank 6. When k = 6 and det L, # 0 it
is possible to invert L, obtaining the control v = —\L_ 'e.

For real visual servo systems it is not possible to know perfectly either L, or L}, so

an approximation or estimation of one of these two matrices must be done. So the control
law is in fact

v=—\Lfe (4.5)

The interaction matrix

The analytical form of the interaction matrix depends on the type of sensor (e.g. 2D,
3D, omni-directional camera, etc.), the projection model used, and the features s selected.
Conventional cameras are 2D sensors that employ perspective projection (see Sec. 3.3.3),
thus, the definition of the iteration matrix to be discussed is based on the perspective
projective geometry.

Image-Based Visual Servoing (IBVS)

In IBVS the definition of features s includes the camera intrinsic parameters to go
from image measurements (expressed in pixels) to features. Commonly used features are
points. Let s; = (x,y) be the pixel coordinates of an image point i related to the world
coordinates (X, Y, Z); the interaction matrix Lg; is defined by

L. — -1/zZ 0 z/Z7 xy —(1+2*) vy (4.6)
S0 —1/Z y/Z (144 e '
Notice that the depth Z of point ¢ relative to the camera frame is required. Thus, any
control scheme that adopts this form of interaction matrix must be provided with an
estimation of Z. Each point i allows the control of 2 degrees of freedom (DOF), in order
to control more DOFs additional points are needed (e.g. 6 DOF would require of 3 points).
The interaction matrix Lg is obtained from the Lg; related to each feature point, such that

Position-Based Visual Servoing (PBVS)

In PBVS the features s are defined from the pose of the camera expressed in a
reference frame. Thus, it requires of the intrinsic and extrinsic parameters of the camera,
and the 3-D model of the observed object.

Three coordinate frames are defined: the actual camera frame C, the desired camera
frame C*, and a reference frame O attached to the object. The feature vector s = [p 6u]"
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depends on the translation p and the angle/axis parameterization for the rotation fu. A
convenient choice is to define p = " p¢, such that s* =0 and e =s.

The iteration matrix (Chaumette & Hutchinson [42]) is given by

L. = [IO{ L(;u] (4.8)

where R = “Rg¢- is the rotation matrix that expresses the orientation of the current
camera frame relative to the desired frame. The rotational component Ly, is defined by

B 0 sinc(0) 2
Loy =13 — i{u]x + (1 - 9)) [u]x7 (49)

20
S1nc (2

I5 is the 3 x 3 identity matrix, sinc(f) is the sinus cardinal (i.e., fsinc(f) = sin(f) and
sinc(0) = 1), and [u]« is the skew symmetric matrix of the axis vector u. Thereby, Ly, is
define such that Ly, = L, !fu = fu.

The control law is given by
vel  |-AR'p
M w10

Controlling the robot effectors in joint space

A control law based on VS can be defined in the joint space in order to ensure the
operation of the robot end effectors. For the eye-to-hand configuration (Chaumette &
Hutchinson [43]), that is, when vision data is acquired from a pan-tilt camera mounted
on the humanoid’s head, the control law has the form

Js
s=J,q+ — 4.11
Sq + at ) ( )
where the derivative term is the time variation of s due to potential motion of the object,
J, € R#*6 is the feature Jacobian matrix. It is related to the interaction matrix Lg, so

J, = L,°VsBI(q), (4.12)

where the matrix BJ(q) is the robot Jacobian expressed in the end-effector reference frame
B. The matrix “Vj is the spatial transformation of velocities expressed in frame B. Let
the rigid body transformation from the camera frame C' to the base frame B be denoted
by “Rp € SE(3), and the translation be “pg, the general form of “Vy is given by

CRB [CpB]XCRB

C _
VB=1 CRp

(4.13)
An exponential decoupled decrease of e = s — s* can be obtained in the joint space,
trough the control scheme

+  —+0e

G=-\.e-1J, % (4.14)
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The contribution of the second term of the control law anticipates the variation of s* and
removes the tracking error that it would produce (i.e. it is null when the object is static).

Task definitions

The behavior under study is the approach to a given face of a static object, by walking
on a plane in a scene without obstacles. Figure 4.1 shows the definition of the task frames.
The desired behavior is obtained from the simultaneous execution of the Walk and the
Look-at motor tasks.

Figure 4.1 — Definition of the reference frames to solve the localization task. G corresponds
to the walk primitive frame, B is the movable reference frame for the Walk task (in the figure
it coincides with G, though in Sec. 4.6.3 different locations for B are studied), C' is the camera
frame, T is the torso frame, and O is the object frame.

The Walk task

The localization ¢ of the object is represented by the four parameters

Be=[p 0. 0], (4.15)

where p, 6, and ¢ are position components, respectively the distance, the bearing, and
the height of the center of the object. The parameter ¢ corresponds to the heading of
the object. It is estimated by the difference between the projection on the motion plane
of the mean normal direction to the tracked face of the object, and the projection of the
robot Saggital plane (see Fig. 2.12).

Therefore, starting from the knowledge of a desired ego-centric perception of the
object B(*, the agent has to autonomously return as close as possible to such state once
disturbed. The behavior can be viewed as a PBVS regulation task where the control pa-
rameters include a 2D pose (i.e. the object height ¢ is assumed to be constant). Formally,
the approach error e, (see Eq. (4.1)) expresses the desired configuration 7* of the body
(see Fig. 4.2) in the actual egocentric perspective, such that

Be, = [ Tpe  Tor Ty ]t. (4.16)
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Figure 4.2 — Top view of the localization parameters observed by the agent. The object center
and the heading direction is represented in black. The agent position and Saggital projection
direction is represented in blue. A desired configuration in relation to the object is represented
by 7*, a possible trajectory to approach the object is illustrated in light blue.

Notice that Pe; = 0 once the agent is at the desired location.

The walk task also produces a prediction 2¢ for the next observation of the object,
based on the assumption of deterministic motion #m = [p  ¢]* (the motion request “m
is defined in Eq. (4.30)), that is, an ideal noise-free robot moving at constant velocity
(see Fig. 4.3). More specifically, B( is defined by

Vp? = 2cpp + p?
BE atanQ(cz, b) — ¢ ’ (4.17)

60—

where ¢ = cos(d — 0), a = sin(6)p — sin()p, b = cos(8)p — cos(6)p, and ( ~ ) denoting the
elements of m.
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Figure 4.3 — Top view of the localization prediction. The parameter ¢ is not shown since it
is assumed do be constant. The heading direction of the object is shown in black. The motion
direction of the agent is shown in blue. The prediction 2 from Eq. (4.17) is shown in orange.

The Look-at task

The goal of the Look-at task is to maintain the object centered in the field of view
by controlling the articulated neck of the robot. Motion is expressed with respect to the
reference frame T', which is attached to the trunk (see Fig. 4.1). Two internal subtasks
are executed in sequence. One is the open-loop direction of the gaze toward the predicted
location of the object, under deterministic motion assumption. The other is the regulation
in close-loop of the view direction to maintain the object centered in the field of view.

Let q = [a (]' be the posture of the pitch « and the yaw /3 of the Nao’s neck. In the
predictive subtask, the head orientation error es is expressed in the joint space such that

ea=q—q". (4.18)
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The desired posture q* is obtained from the prediction of the pose of the robot in relation
to the object, by assuming that the configuration of the legs and the trunk is constant
after the motion, thus

o - [atan2(l,0~008(9~)ﬁ)1 _ (4.19)

A proportional regulation of the neck posture with gain A is obtained by

d = Aes. (4.20)

The second subtask corresponds to a close-loop IBVS scheme (see Eq. (4.14)). As
illustrated in Fig. 4.4, the desired retinal motion to maintain the object centered in the
field of view is received by visual feedback. Thereby, the feature s is the image point
corresponding to the centroid of the salient blob. The task error Tes is defined such that

Tey = lsx N ?X] , (4.21)

Sy — Iy

where (ix, i) is the coordinate of the center of the image.

Ny

ol

<

Figure 4.4 — Illustration of the Look-at task. The center of the object is denoted by O. After
the head correction, the x-axis of the camera frame C will be aligned with the direction CO.

Egocentric localization

Sensory ego-cylinder

Inspired by studies on mammalian neural systems, Peters et al. [142] have proposed
the concept of Sensory Ego-Sphere (SES) for humanoids, which is a computational struc-
ture in charge of integrating different sensory modalities. The SES would exert the role
of a short-term episodic memory, providing the location and orientation of stimuli with
respect to the agent. Though less general, cylindrical geometry is more appealing to
represent positions on a plane. It is also easier to implement and computationally more
efficient to query. Thereby, an ego-cylinder principle for localization is adopted. As shown
in Fig. 4.5, the four parameters defined in Eq. (4.15) are persisted in the structure. The
first three parameters represent the position of the center of the stimulus in cylindrical
coordinates, and the fourth parameter represents the heading direction of the object.
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Figure 4.5 — Representation of the ego-cylinder localization. In the image, B corresponds to
the base frame, and ( represents the localization of an object in the environment. The heading
direction ¢ is represented emerging from the cylinder’s surface.

The origin of the ego-cylinder can be fixed to different parts of the body. There is no
agreement in the literature on the placement for this structure. A work by Bodiroza et
al. [20] has for instance fixed the SES on the robot’s neck, whereas in Ruesch et al. [157]
it was centered at the head, fixed with respect to the orientation of the torso. In Sec.
4.6.3 different placements for the ego-cylinder are studied. For the moment, in other to
illustrate the concept, and taking into account that the walk primitive of the robot uses
the reference frame G to express motion (see Fig. 4.1), the origin B is placed at the same
location of G.

Vision-based localization

The localization of the object is obtained from the task frames described in Fig. 4.1.
Let the homogeneous transformation 2T between the base frame and the object frame

be defined by
BTo =PT(q)"To, (4.22)

so the transformation #T¢(q) expresses the camera frame C in the base frame B, and
depends on the actual joint configuration q of the robot. Similarly, the transformation
€Ty expresses the object frame O in frame C, and is determined from the 3D pose
t t

“o=l¢ W] =[x YV z] |y B ¢]], (4.23)
where £ is the position component and 1 is the orientation component. The calculation of
€0 is obtained by computer vision processing so a rough 3D container encompassing the
object is fit to the segmented region on the image. This is discussed in the next section.

The localization of the object in the ego-cylinder is obtained from ?Tq by expressing
the position of the center of frame O in cylindrical coordinates, and adding the heading
direction ¢, as defined in Eq. (4.15). The transformation ?Tg between the current
placement of B and the desired placement B* in relation to the object, is given by
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Brge = BT 9T, (4.24)

where ©Tg- is defined by kinesthetic demonstration. That is, by positioning the robot
at the desired configuration in relation to the object. Thereby, the estimation of the
localization error in Eq. (4.16) is obtained from #Tg..

Object models

The estimation of the object 3D pose in the camera frame relies on the region-based
segmentation technique described in Sec. 3.4.3. Thus, the pose is observed by establishing
a correspondence between the 3D model of the object and its perspective projection on
the image plane. The quality of the estimation hardly depends on the segmentation
available. Relatively good segmentations can be obtained with the MRF algorithm, so
the model of the object is approximated by a rough 3D container that can virtually
encompass or be attached to the surface of the object. This provides flexibility and is a
reasonable assumption for convex objects. The dimension of the object are known, and
the color model is obtained by supervised demonstration. Next, the modeling of two of
these containers and how to estimate the pose from the image blob is given as examples.

Cylindrical Wrapper

The frame O is attached to the center of mass of the model as shown in Fig. 4.6.
Given the bilateral symmetry of the shape, the projection of the object in the image plane
is not affected by the rotation 5 around Oy, so it is assumed to be constant.

Object frame Segmented image

Figure 4.6 — Cylindrical object model. On the left the 3D model of the object, the placement
of frame O, and the definition of four points of interest. On the right the segmented blob and
the definition of image features from the oriented bounding box.

Depth estimation

The blob is assumed to be approximately centered on the image due to the action of
the Look-at task. Thus, calculations over a clipped projection of the object are avoided.
As illustrated in Fig. 4.7, in order to estimate the position “o¢ of frame O, the observation
of the depth Z for °L and R is obtained by
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S r
Z = p\/r’Q + 12, (4.25)

where r is the radius of the cylinder, r’ is its projection on the image plane, and [ is
the focal length of the camera. The projection of the radius 7{ and 7/ for °L and °R is
respectively taken such that r| = |G’ — K’||/2 and r] = ||H'— J'||/2. This model produces
the best results when the orientation component o4 = 7 (see Eq. (4.23)).

Image Plane ¢ R
X

Figure 4.7 — Estimation of the object’s depth. On the top, the model assumes a view perspec-
tive Co¢ = 7. Bellow, the X7 visualization of the scenario, where the circumference corresponds
to an ellipse and the distance from the projective ray and the center of frame O is larger than r.

Position estimation

The position of a point P in 3D can be recovered from the image projection P’ by
applying Eq. 3.1, such that

P —CP, P —CHP.
P:<(( x— G Z),(( v =) Z>,z>, (4.26)
f f
where C” is the image center, and Z is the poinjz’s deptAh. Thgreby, the obAservatiAon of points
€L, °R are obtained through Eq. (4.26). “O = (°L +“R)/2, and “U = €O + (0,0, 7).

The position component “o¢ in Eq. (4.23) is such that

A

€0, = 0. (4.27)

Orientation estimation
The orientation component “oy is obtained from the rotation matrix “W, thus
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“W=[s n a|=|H V (HxV)|, (4.28)

with H = (“R—°L)/|°R—CL|, and V = (U — €0)/|°U - €0O|.

Rectangular Surface

Rectangles are useful geometric models for tracking surfaces in walls, doors and
furnitures. The model is simpler than the previous case since it is a 2D shape. The points
defining O correspond to those of Fig. 4.6. The features tracked in the image are the
same of the previous case. The calculation for the depth of O is given by

d(h,h, f) = ’;Lf (4.29)

where f is the focal distance of the camera, h is the height of the rectangle, and b’ is the
image projection of h. The relation between the image features and the location of “R,
€L, °O = mean(“L,“R), and €U is similar to the previous case.

Case studies

Three studies are conducted in order to evaluate distinct aspects of the task model.
In the first study a simulated scene is designed so a single object is salient, and the agent’s
task is to approach the object by doing holonomic walk. The objective is to verify the
plausibility of the model. The second study focuses on the aspect of embodiment. Thus,
different placements (i.e. body- and eye-centered) for the origin of the sensory ego-cylinder
are studied. In the comparison many aspects are analyzed, such that the computational
cost, the precision, and the robustness to noise. In the last study a real task with the
robot Nao is evaluated so it approaches a yellow card in the scene.

Materials

The platform is the humanoid robot Nao by Aldebaran Robotics. The control pro-
gram is implemented in the C+4 programming language. The images are captured at
320x240 pixels resolution. The vision processing is obtained with the support of the
OpenCV 2.4.8 library. The robot functionalities are accessed through the naoqi 1.14 li-
brary. The algorithms are developed in the Eclipse Juno IDE under Ubuntu 12.04.5 LTS
(Precise Pangolin). The simulations are performed in the Webots robot simulator 7.4.0
by Cyberbotics. The results are processed in Gnu Octave 3.2.4 and the KNIME data
analytics, reporting and integration platform 2.10.4. The on-board calculations relied on
an ATOM 7530 1.6GHz CPU, with 1 GB RAM, 2 GB flash memory, and 4 flash memory
dedicated to user purposes. The study also included a DELL Vostro 1500 laptop (In-
tel Core 2 Duo 1.8GHz 800Mhz, 4.0GB DDR2 667MHz RAM, 256MB NVIDIA GeForce
8600M GT).
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CS-I: Simulation of the approach to a salient object

This study considered holonomic correction of the agent’s posture in relation to a
salient stimulus. The observed localization error 6, (see Eq. (4.16)) between the current
and the desired configuration is obtained from the matrix 2 Tg- (see Eq. (4.24)). Given the
sources of uncertainties in the observation (e.g., the 3D model imprecisions), the study
aims to verify whether the Walk task would steer the agent toward the desired state.
Thereby, Be7 is defined by saturating the observed error. The bounds corresponded to
the radial distance p = 0.1 meters (m), the bearing § = 7 radians (rad), and the heading
¢ = m/12rad. A proportional correction ?m according to the magnitude of the individual
components of #ey is applied, such that

bm = \e, (4.30)
where the normalized vector ) is defined from the motion bounds as follows

&1
([e1,]/p+ le1ol/0 + [e1sl/0)

A = (4.31)

The motor tasks are implemented with the help of the naoqi environment, which pro-
vides a Program Aplication Interface (API) for sending commands to the robot through
parameterizable routine calls. In the Walk task the agent is stopped once all the com-
ponents of the observed localization error 2é; are smaller than a given threshold e. The
tolerance considered is a radial distance ¢, = 0.05 m, the bearing ¢4 = 0.04 rad, and
the heading €, = 0.1 rad. The walk primitive can be controlled both in position or ve-
locity. The position version is used since it showed a more accurate performance. The
primitive receives position commands in Cartesian coordinates (so the cylindrical coor-
dinates are accordingly converted). The mean walk velocity set for the robot is around
v =[0.022 m/s 0.04 m/s 0.106 rad/s]".

The Look-at task is also controlled in position. The correction of the head posture is
obtained by assuming constant velocity along the time interval. A tolerance ¢ = 0.03 rad
is admitted for convergence of e, (see Eq. (4.18)), and a tolerance for 10 pixels is accepted
for Tes (see Eq. (4.21)). The head posture is regulated independently from the walk (i.e.
the tasks run in parallel), which means that the motion induced by the Walk task can
affect the convergence of the Look-at task, notably, at slow turning of the head. Thereby,
a velocity profile of 4 rad/s is employed so convergence for the Look-at task is obtained.

Experiments

In order to assess the performance under modeling imprecisions, a simulated envi-
ronment was designed in Webots. As illustrated in Fig. 4.8, the object of interest is a red
soda can placed over the table. The texture of the can is clearly distinguishable from the
rest of the room to avoid multiple saliency detection. The desired configuration BTy is
specified by positioning the robot in front of the can. Two experiments are designed. In
the first one, the robot is moved away from the desired pose such that it has to return
autonomously to the desired configuration. In the second experiment disturbances are
introduced in the task. Thus, the robot is moved while approaching the object (i.e. the
robot kidnapped problem as described in Sec. 2.4.1).
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Figure 4.8 — The approach task modeled in Webots. On the left the robot’s original pose. In
the center the followed trajectory. On the right the desired pose with respect to the red can. As
noticed, despite the modeling errors the robot was able to converge to a location very similar to
the demonstration.

Results

The evolution of the localization along the followed trajectory is shown in Fig. 4.9.
A comparison on the precision of the localization is also given in Fig. 4.10, where the
difference between the on-board estimations and the ground truth measurements pro-
vided by Webots is shown. As expected, the more distant from the object the less precise
the estimations are. This is due to the effect of the perspective projection (i.e. distant
objects are perceived as smaller, so the 3D model of the object is fit to smaller segmen-
tations, producing imprecise estimates). The most affected component is the observation
of the heading direction of the object, which depends on the quality of the blob contours.
Though, as the robot approached the target, the precision improved enough as to allow it
to convergence to a location very similar to the demonstration. In relation to the second
experiment, it was observed that despite the disturbances applied, whenever the object
remained within the field of view, the robot was able to approach it.

0.6
0.4
0.2

0.0

00 02 04 06 08 10 12 14
Figure 4.9 — Egocentric visualization of the localization as perceived in B. The circumference

represents the ego-cylinder. In red the real values, in green the estimations. Distances are
expressed in m.
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Figure 4.10 — Evolution of the localization error between the estimations b and the measure-
ments b.

Discussion

This study has explored a behavior scheme based on vision. The modeling of the task
followed the visual servoing framework. That is, the PBVS and IBVS control techniques
were employed simultaneously to maintain the object of interest in the field of view and to
steer the robot to the desired pose in relation to the object. The solution considered the
motion primitives of walking and directing the head. The processing of the localization
was based on the design of a sensory ego-cylinder, where the 3D position of the center of
the object and its heading direction on the plane were represented. This information was
obtained from a binary image and a 3D model of the object. A region-based whole seg-
mentation technique was employed for the binarization. The monocular vision mapping
from the salient region on the image to the 3D space relied on a rough model encom-
passing the object. In this study a fairly simple situation was simulated where a single
object was salient, and there were no obstacles between the robot and the object. Under
these conditions, it was observed that the farther the robot was, the less precise is the
localization obtained. The most affected component was the estimation of the object’s
heading. Though, the agent was able to accomplish the task when the object was visible,
even when being kidnapped.

CS-1I: Placement for the spatial reference system

Five placements were studied for the base frame B. As listed in Tab. 4.1 and
illustrated in Fig. 4.11, three locations considered the spatial constraint imposed by the
localization model (i.e., taking the z-axis perpendicular to the motion plane), whereas the
others did not. Moreover, among the locations some are body-centered whereas others
are eye-centered.

B Description Type Constraint
G Ground body-centered Yes
Ty Torso body-centered Yes
E, Eye, sensory-centered Yes
N Neck body-centered No
E Eye sensory-centered No

Table 4.1 — The studied placements for the reference frame.
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Figure 4.11 — Evaluated placements for the base frame B. For each frame the z-axis is
represented in blue, the y-axis in green, and the x-axis goes towards the reader’s direction so is
represented as a red dot.

The definition of the placements relied on the direct geometrical model of the robot.
For this, the body of Nao was modeled as a set of interconnected serial structures that
depart from the common reference frame 7', which is placed at the center of the torso. The
body kinematics is defined according to the modified Denavit and Hartenberg notation
(see Khalil & Kleinfinger [97]). Table 4.2 presents the geometric parameters of the robot
model. Figure 4.12 illustrates the body structure, excluding the representation of the
arms since they are irrelevant to the studied behavior.

a4 05 o d; 0 rj
0 T 2 -—3r/4 0 /2 0
1 0 0 0 0 a 0
2 1 0 /2 0 g2 —3r/4 0
3.2 0 w2 0 0 0
4 3 0 0 —d4 qa 0
5 4 0 0 —d5 qds 0
6 5 0 -—m/2 0 g+ 0
7 T 2 —x/4 0 /2 0
8 7 0 0 0 as 0
9 8 0 w2 0 q+3r/4 0
10 9 0 /2 0 q10 0
11 10 0 0 —dn q11 0
12 11 0 0 *dlg q12 0
13 12 0 —7w/2 0 qs+7 0
14 T 2 0 0 0 714
15 14 0 0 0 q15 0
16 15 0 -—x/2 0 Q16 0

Table 4.2 — Modified Denavit & Hartenberg parameters for Nao. For the frame j, a; is the
predecessor, 0; is the joint type (0 for revolute, 1 for a prismatic joint, and 2 for fixed joint), a;
is the angle between Z;_; and Z; about X;_1, d; is the distance between Z;_; and Z; about X;_;
(d4 = di1 = 0.1 m and ds = dy2 = 0.1029 m), 6; is the angle between X;_; and X; about Z;, and
r; is the distance between X;_; and X; about Z; (114 = 0.1265 m).

The transformations from 7" to the effectors frames (i.e. the left foot frame Fj, the
right foot frame F;, and the camera frame C' mounted at the forehead) are obtained by
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0.4

-0.4
-0.2

0.2 0.

Figure 4.12 — Geometrical model of the robot Nao. Distances are expressed in m. The
orientation of the z-axis are projected in black along the structure. For the base frame T and
the effector frames C, Fj, and F;, the x- and y-axis are also plotted in magenta and green
respectively. The active joints are numerated and represented by blue boxes. The effectors are
represented in red.

TTF1 = TTOOT6<Q>6TF1
TTFr = TT77T13<Q)13TFr (432)
TTC = TT1414T16(Q)16TC;

where 5Ty, = Trans(rg, 0,0)Rot(¥, —7/2), ¥Tg, = Trans(rg, 0,0)Rot(¥, —7/2), *T¢ =
Trans(rye, —rye, 0)Rot(x, 7/2), ry = 0.04519 m, ry, = 0.05871 m, and ry. = 0.06364 m.

The frame Ground

The frame G is placed between both feet by taking the z-axis perpendicular to the
motion plane. It is the same frame employed by the walk primitive of the robot (see Fig.
4.13). Two auxiliary frames are defined for obtaining the transformation TTq: the frame
K that is placed at the foot in contact with the ground, and the frame () that is fixed
to the other foot. The ground contact is measured by the force sensitive resistor (FSR)
sensors located in the foot sole. In case when both feet are in contact the frame K is
placed at the right foot. Therefore, "T¢(q) depends on the current body posture q, it is
obtained from ¥Tq(q), such that

Rs: [p
0

TTe = : (4.33)

where R and p are the rotation and position component of ¥Tq(q). That is, R% =

Rot(Z, %) considers half of the rotation along the z-axis, whereas px and Py denote half
of the translation along the x- and the y-axis respectively.
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Figure 4.13 — Definition of the ground frame. The frame G is placed at center of the projection
of the feet in the ground. The z-axis is taken perpendicular to the ground, the x-axis is the
mean direction obtained from the projection of the orientation Fj of the left foot and F; of the
right foot on the motion plane.

The frame Torso,

The frame T, is placed at the center of the torso, so the z-axis direction is aligned
with the gravity vector direction. The orientation components are obtained from the
inertial measurement unit (IMU) also located at the torso. The transformation *Tr, is
defined such that

"Tr, = Rot(¥,7)Rot (X, ), (4.34)

where v and 7 correspond respectively to the azimuth and the direction inclination of the
torso with respect to the gravity vector.

The frame Eye,

The idea of this frame is to provide an eye-centered reference aligned with the di-
rection of the gravity vector. For this, the placement of frame E, coincides with the
placement of the camera frame C. Therefore, in the observation of the position of the
object the frames for measurement and representation (Freksa and Mark [132], see Sec.
2.4.2) are the same. The orientation components are obtained from the IMU (similarly
to Ty,). Thus, TTEg is defined by

vy, e | (43)

where R,3 = Rot(X, v)Rot(¥, 8), with v and /8 the rotations around the x- and the y-axis
obtained from the transformation “Tp = (*Trp,TsT¢) ™"

The frames Neck and Eye

The orientation of the z-axis for the frames N and E are taken according to the
instantaneous posture of the robot. Therefore, frame N is placed at the location of frame
15 (see Tab. 4.2 and Fig. 4.12), so TTy =TT 1,"T5. The frame F actually corresponds

to the camera frame C'. The new notation is introduced simply to improve readability.
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In the definition of E the observation of the object’s pose is done such that the frame for
measurement and representation are the same.

Experiments

Three experiments were designed under the same scenario considered for the previous
study (see. Fig. 4.8). In the first experiment each location B is evaluated at ten distinct
initial conditions (some cases are illustrated in Fig. 4.14). In order to avoid simulation
bias, each trial is repeated 3 times, so the total number of trials are 10 x 5 x 3 = 150.
Since the walk and the Look-at task run simultaneously, the joint positions q are stored
during the image capture time, such that the computations for the localization are based
on proprioceptive data related to the image under analysis. The ground truth is obtained
from Webots by attaching sensors to the body of the robot (i.e. the type GPS for the
position and Compass for the orientation).

The dependent variables under study are summarized in Tab. 4.3. Ey, is the total
time in seconds required for convergence. T.g is the ratio between the initial distance to
the desired location and the total linear displacement of the agent. L., is the absolute
norm between the final pose of the robot in relation to the object and the pose taught
by demonstration. It is a scale-less measurement obtained by adding the angular and the
linear differences. P, is the absolute norm in radians between the demonstrated joint
positions (i.e., the body posture) and the final joint positions.

Figure 4.14 — Examples of initial conditions for the frame placement study. The robot must
approach the blue object over the sofa as taught by demonstration.

Var Expression Description

Eiim [ dt Experiment time in s.
0

Togr i Trajectory efficiency, with py the initial distance and m,
<{ mpdt> the ground truth displacements.

Loye €T — ¥ 2D pose precision, with (7 the final pose and (* the

desired pose.
Pire la™ — q*| Body posture precision in rad, with 7 the final joint

values and q* the desired values.

Table 4.3 — Dependent variables under study.

Motion in the walk primitive is expressed with respect to the reference frame G.
Thus, motion represented in other reference frames has to be accordingly converted. Let
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the 6D pose vector ¢ = [£ I]' = [[X Y Z] [y B ¢]]' express the 3D position £ and the
orientation ¥ of a body in space, a 3D rotation matrix be denoted by R, and the position
of frame G be denoted by g. The differential of motion BAM can be expressed with
respect to frame G, such that

“Rp(PY x Bg + B¢)

G _
AM = GRBB’ﬁ )

(4.36)
where B9 = [0 0 ¢]' is the rotation around the z-axis (i.e. the change on the angular
motion direction of the robot). Notice that this definition imposes a spatial constraint
to frame B, so the z-axis must be taken parallel to the z-axis of G. As it happens
with some of the placements evaluated this constraint is not ensured, therefore the other
components of the orientation are ignored (i.e. a less effective regulation of the robot
heading is obtained). The motion correction defined in Eq. (4.30) can be expressed with
respect to G as follows

“m = [“AMx “AMy ©AM,)". (4.37)

A second experiment considered a new criteria for the regulation of the angular
motion. Based on the heuristic assumption that the z-axis of frame 16 (the neck yaw, see
Tab. 4.2 and Fig. 4.12) is approximately aligned with the z-axis of frame G, the idea is
to verify whether the body configuration of the robot and its walk style would allow to
obtain a correction on the angular motion, by the regulation of the yaw posture « of the
neck to the desired state a*, learned by demonstration (i.e. the robot is put in front of
the object so the Look-at task centers it on the field of view, and the posture of neck is
registered). In other words, the robot changes the orientation of the walk to reach the
desired posture of the neck. Thus, the error e; in Eq. (4.16) is redefined such that

e~ e ) (4.38)

A third experiment is designed in order to study the effect of proprioceptive uncer-
tainties over the walk trajectories. For this, Gaussian noise (1 = 0, o0 = 2deg) is added
to the joint measurements q when computing the localization.

Results

The results of the first experiment are illustrated in Fig. 4.15. The final precision
Lpye was slightly superior for £/ and E,. This is due to the additional contribution of the
Look-at task to the regulation of the localization error. That is, since these placements
are centered on the sensor, they are constantly redirected toward the stimulus, which
results in a decrease of the localization error. In relation to the trajectory efficiencies the
results seemed to be related to the proximity to frame . In this sense, the closer to G
the more efficient appeared to be the trajectories. This may be due to the sway motions
as pointed out by Dune et al. [60], which is the contribution to the signal error from the
oscillatory evolution of the torso. The placement G also presented more consistent results
in the time consumption F;, (lowest standard deviation).

The previous comparisons showed relatively subtle differences among the candidates,
but the evaluation of the posture precision revealed that F and FE, were significantly
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Figure 4.15 — Box plots for experiment 1. In the plots the bottom and top box correspond to
the first and third quartiles, the band inside the box is the second quartile (the median), the
ends of the whiskers represent the range of the data. Outliers are shown with dots and crosses.
In the first row from left to right the results for L, and Tig, these variables are unit-less.
Likewise, in the bottom row the results for i, in seconds and Py, in radians.

Figure 4.16 — Body posture comparison between Fy; and G. On the left the demonstrated
posture. At the center the convergence obtained for frame G. On the right the convergence
obtained for frame E;. In both cases the agent converged to the correct position but the body
posture for E, differed.

less adequate choices. As illustrated in Fig. 4.16, the final posture differed significantly
from the demonstration provided. The differences can be clearly appreciated in Figs.
4.17 and 4.18, which compare the evolution of the position of the stimulus in the ego-
space for distinct choices of the base frame. It is noticeable that eye-centered placements
produced almost straight-line paths towards the desired location, given the fact that the
head posture in relation to the body is constantly altered by the Look-at task (see Fig.
4.19 for a comparison on the evolution of the neck yaw). Thus, the context of the body
posture is lost, which would be equivalent to consider a flying (or dismembered) camera.

The results for the second experiment are presented in Tab. 4.4, where a comparison
between the performance of the original and the heuristic version of the Walk task is
given. Rows with apparent improvements are highlighted in blue, whereas deterioration
is marked in red. In relation to G the new scheme had a positive effect by maintaining
the results for P, and improving the other measurements. The choice T, was penalized
in T,g evidencing larger trajectories, contrarily, Fi;, tended to be shorter. One plausible
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Figure 4.17 — Top view of egocentric localization. The circumference represents the ego-
cylinder. In red the ground truth, in green the estimations. Distances are expressed in m.
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Figure 4.18 — Top view of object positions for 7, and E;. The plots show the 10 initial
conditions evaluated. Each trial is assigned a distinctive color. Distances are expressed in m.

explanation for this effect is that the velocity achievable by the robot in the saggital
plane is higher than in the frontal plane, thus the robot may have walked more in the
saggital direction. The placement N presented improvements in Py, and Ly, but slightly
larger times T.g. In relation to £ and Fj, there is a general tendency of improvements.
It is noticeable that the final precision of the posture P, for the eye-centered cases is
now comparable to the performance obtained with other placements. Thus, the heuristic
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Figure 4.19 — Comparison on the evolution of the neck yaw for the test case 3. F and FE,
exhibited faster convergence but the body posture differed largely from the others.

modification appeared to exert a positive or neutral effect over the agent’s behavior.

B Var M2 o1 o2
G Lpre 0.20 0.19 0.03 0.02
Pyre 0.24 0.24 0.02 0.02
Tery 0.90 0.92 0.07 0.04
FEiim, 5773 53.32 13.31 6.83
T Ly 0.22 0.21 0.03 0.03
Prre 0.24 0.23 0.01  3.9e-3
T.;; 084 081 006 0.05
Eiin  56.14  53.17 16.05 9.65
N Ly, 0.22 0.20 0.02 0.03
Prre 0.24 0.23 0.01  2.2e-3
T.;; 082 082 007 006
FEiim 5555 56.97 12.28 10.51
E Ly, 0.21 0.23 0.04 0.03
Prre 0.30 0.24 0.05 0.01
T.;; 075 077 008 007
FEiim 5757 53.65 15.14 10.91
E, Lpe 021 020 002 002
Prre 0.29 0.23 0.04 4.5e-3
T.;; 073 078 009 0.6
FEipm, 5758 5890 13.13 11.28

Table 4.4 — Comparison on the performance of the original version (i = 1) and the heuristic
version (i = 2) of the Walk task (see Tab. 4.3). The mean p; and the standard deviation o; are
given.

The results obtained for the third experiment, where noise is added to the joint
measurements, are illustrated in Fig. 4.20. The performance of eye-centered placements
appeared to be less affected by noise and the relative advantages of body-centered place-
ments observed in the first experiment were practically leveled. Figure 4.21 presents a
comparison on the evolution of the localization signals for frame G during the task. It
is noticeable that noise hampered the convergence so the agent invested more efforts to
position in front of the object.

Discussion

Given the lack of consensus in the literature about the placement for the ego-sensory
structure, this study has investigated five possibilities: three body-centered and two eye-
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Figure 4.20 — Comparison on T for experiments 1 (left) and 3 (right). In the experiment 3
the angular motion of the agent was obtained by the regulation of the yaw position of the neck,
and noise was added to the proprioceptive measurements.
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Figure 4.21 — Localization error for frame G with Gaussian noise (¢ = 0, 0 = 2deg) added to
proprioceptive measurements. Thicker lines correspond to the noise-free condition.

centered locations. The results of the first experiment suggested that from the charac-
teristics of the robot (i.e. the fact that the motion primitive operates in frame G), the
more adequate placement for the base frame is G. Though, convergence was obtained for
all body-centered choices. It is noticeable that the placement N did not conform to the
constraint imposed by the localization model. Thus, the fact that the agent walked on
a plane in vertical posture constrained the mobility of the reference system N. Thereby,
close results can be obtained for G and N without using the IMU of the robot.

Eye-centered placements did not preserve the context of the body posture during
the task (since they were not necessarily aligned to the sagittal plane of the agent, see
Fig 2.12). However, as the second experiment has showed, in case heuristic knowledge
is employed, such that a body posture regulation task is enforced; a hybrid solution
can be obtained where the correction in the position is determined eye-centered but the
regulation on the angular motion is calculated body-centered. This combination produced
interesting results and was the less affected by the noisy condition of the third experiment,
where the more intermediate joints between the measure frame (i.e. the sensor frame)
and the task representation frame, the worse the result obtained. The heuristic solution
is also computationally more efficient since the operations for the frame transformations
between the camera and the base frame are no longer required.
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CS-III: Approaching a real object

From the results obtained in simulation, the objective of this study is to verify
whether a real task with the robot Nao can be accomplished.

Experiments

The scene considered was indoor (i.e. the robotics lab), closed to an unstructured
environment, under uneven illumination (natural and artificial light sources), under con-
stant influx of collaborators in the facilities. The object of interest is a yellow card clearly
distinguishable in the scene. In case the segmentation provides more than one salient area,
the biggest blob is selected for processing the localization. The desired pose in relation
to the object is shown to the robot by pressing the head tactile sensor. Two experiments
are designed. In the first one the robot is moved away from the desired configuration
and 10 trials are repeated from different initial configurations. In view of the processing
limitations of the robot, the images are captured on-board and transferred to the remote
station for processing. Likewise, motion commands are sent to the robot trough the wire-
less link. Given that the performance and accuracy of the motion primitives are affected
by several factors (e.g. the heat of the motors, the accumulation of errors in the software
platform, sensor inaccuracies, and sliding, among others), the base frame was placed in
location G since it seemed to produce more accurate motion. A move-then-stop policy
for the walk is employed, where the robot stops completely before processing additional
commands. Though, the Look-at task runs continuously. The tolerance for convergence
was the same as detailed in Sec. 4.6.2. In the second experiment disturbance is included
so the robot is moved to another location while approaching the object (i.e. the robot
kidnapped problem as described in Sec. 2.4.1).

Results

Figure 4.22 shows the trajectory followed by the robot in two distinct trials, and
Fig. 4.22 presents some on-board views and the corresponding segmentations during the
approach. The experiment was successfully accomplished all the times so the robot could
autonomously return to the front of the yellow card as learned by demonstration. Though,
as it can be noticed in the frames, the robot walked much of the trajectory in the frontal
plane direction. In relation to the second experiment the results confirmed those obtained
in simulations, thus, it was observed that despite the disturbances applied, whenever the
object remained within the field of view, the robot was able to approach it.

Discussion

The objective of this study was to assess whether a real task could be accomplished
under the modeling approach adopted. The results of the experiments have shown that
from the controlled conditions described (i.e., a move-then-stop policy and a clearly salient
object), the robot was able to autonomously accomplish the task. Nevertheless, the
trajectories obtained were not esthetically appropriate, and perhaps inefficient since the
robot moves faster in the saggital plane than in the frontal plane. Also, the fact of
disposing an object clearly distinguishable from the rest of the scene is a bit far from
natural situations. In fact, as shown in Fig. 4.24, changing the stimulus by a more
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Figure 4.23 — On-board view and segmentations of the yellow card experiment.

complex object would invalidate the approach, since a more adequate filtering mechanism
for selecting among the emerged blobs would be requited.
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Figure 4.24 — Multi-color saliency. On the left a closeup of the object of interest: a colored
can with different tonalities of yellow and orange. In the center the scene registered on-board.
On the right different regions were salient due to the diversity of the color model.

Conclusions

This chapter has started by reviewing related studies on humanoid locomotion. Sev-
eral approaches were found, thus the discussion focused on works that considered the
on-board capture of visual data. A common aspect noticed is the use of feature tracking
relying on the principle of Verification Vision, for processing localization. In this work a
different approach was taken, by considering a lower acquisition rate. From the results
reported in the study of Sec. 3.4.3, the region-based whole segmentation technique was
employed for obtaining a top-down binarization of the scene. So the monocular vision
mapping from the salient region on the image to the 3D space relied on a rough 3D model
encompassing the object.

A behavior scheme based on visual processing was designed. For this, the modeling of
the task followed the literature of visual servoing. The PBVS and IBV'S control approaches
were employed simultaneously, in order to maintain the object of interest in the field
of view, and to steer the robot to the desired 2D pose in relation to the object. The
solution considered the motion primitives of walking and directing the head. The results
corroborated the plausibility of the model for the approaching task, though a fairly simple
situation was considered where a single object was salient, and there were no obstacles
between the robot and the object. Furthermore, the robot walked much of the trajectory
in the frontal plane direction, which was not aesthetic and efficient. In Chapter 5 a control
law that mimics human motion, and the problem of reliable approaching to objects under
saliency ambiguity are investigated, so the agent has to do robust visual selection to
discriminate and localize the object.

Other important topic treated was the study of some effects of embodiment over the
perception of the stimuli. Given the lack of consensus in the literature about the placement
for the ego-sensory structure, body- and eye-centered locations were investigated. The
results suggested that, from the body posture that the agent adopts when walking on a
plane, convergence was obtained for body-centered choices, even when the placement did
not conform to the constraints imposed by the localization model. Thus, the fact that the
agent walked in vertical posture restricted the mobility of the reference system. These
results suggest that embodiment can be exploited to obtain an efficient solution in terms
of resource consumption (e.g. the IMU was not required for G and N).

Eye-centered placements did not preserve the context of the body posture during the
task, but in case heuristic knowledge is used, such that a body posture regulation task is
enforced; a hybrid solution can be obtained where the correction in the position is deter-
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mined eye-centered (i.e. the measurement and the representation frames are the same)
but the regulation on the angular motion is body-centered. This combination produced
interesting results in simulations and was less affected by noise on the proprioceptive ac-
quisitions. It was also computationally more efficient. However, with the real robot, the
placement G (which is the same reference for the walk primitive) produced more accurate
motion, so the base frame was taken at the placement G. The hybrid location is con-
sidered in Chapter 6 where action-oriented representations of the stimulus are studied in
simulations.
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Introduction

The automation of visually-guided walk has arguably adopted in its infancy the so
called cognitivist approach to artificial intelligence (AI), which, under the Cartesian dual-
ist influence, has tended to look at physical and mental processes as belonging to different
realms. Significant progress has been obtained from this view, though the performance
is still distant from the sophistication observed in natural behavior. Among the several
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challenges reported in the literature, one is undoubtedly to achieve reliable perception
from noisy data. Since the sensory input goes through a process of symbolization, and
cognition would involve - under this view - computations over symbols, the physical con-
text at which the latter emerged is no longer available to the cognitive process. In other
words, in abstracting cognition from the context, information is inevitably lost.

To cope with the difficulties of perceiving the object while moving, several frame-
works that flourished in the machine learning research have been employed (e.g. Marko-
vian models, support vector machines, among others). These attempts have produced
impressive results, although, by keeping intact the fundamental premise of decoupling
between bodily and mental processes, they have relied on expensive resources in the form
of disembodied explicit models, knowledge databases, and intensive computation. Thus,
the processing bottleneck has impacted the autonomy and the reactivity of the agent. As
it was discussed in the previous chapter, extraneous variables (i.e. un-modeled phenom-
ena) have been controlled by adapting the scene to the task, which has compromised the
generality of the solution.

This chapter focuses on the limitations pointed out by the studies developed in
Sec. 4.6.4. That is, a) a fairly simple situation where a single object was salient, so no
attention selection was required, and b) the fact that the robot walked in the frontal place
direction much of the trajectory. For this, a more realistic solution to the approach task
is proposed by redefining the behavior scheme according to the EC research perspective.
Thus, from a first-person perspective analysis of the sources of information available, the
agent is given a non-holonomic human-like walking style. In order to ensure robustness
and reliability in the task, the behavior scheme is integrated to a hybrid architecture in
charge of monitoring the execution. This functionality is obtained from the design of a
Bayesian network in charge of information fusion. Moreover, the network grounds the
attention selection mechanism developed for perceiving the object. These aspects are
analyzed and integrated to a methodological proposal which synthesizes the development
of robust humanoid approach tasks in six steps.

Grounding vision-based locomotion

The term embodied cognition reunites co-existing research interests with diverse sub-
ject matters. A thorough review on the conflicting views in EC is beyond the scope of
this work (the reader is referred to the works of Shapiro [165] and Wilson [188] for a
discussion on this topic). Thus, this study is in agreement with Anderson [6] when he
identifies in the physical grounding hypothesis (Brooks [29]) the distinctive aspect of EC
as opposed to a situated but cognitivist view of embodiment. Accordingly, behavior is
studied as a complex system, where knowledge representation is thought to be grounded
in the physical interaction.

By considering the emergent aspects of behavior, the research in EC has been expe-
riencing a growing boom (Pfeifer & Pitti [143], Hoffmann & Pfeifer [84]). Initial works
focused on the body morphology, particularly, in the aspect of energy consumption, ro-
bustness, and computation offloading. These studies showed how morphological compu-
tation and passive dynamics can significantly reduce the need for control and modeling,
decentralize computations, and dissipate disturbances from the environment. Given the
success of these experiments, the research has gradually evolved as to include the sensory-
motor coupling, and higher cognitive processes such that perception and learning.
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However, the study of enactment as reported by Vernon [182], poses significant chal-
lenges to robotists. From the phylogenetic point of view, the autonomous development of
the cognitive system would also require the hosting platform to evolve. The acquisition
of several human sensory-motor skills, for instance, is accomplished only once the body
has either matured or adapted to new conditions (e.g. by increasing muscle strength).
This capacity of self-modification is not easy to obtain in artificial bodies. From the
ontogenetic point of view, the difficulty is to design structures for efficiently integrating
information from different sensory modalities, that would enable learning diverse tasks
and generating knowledge from previous experiences. Moreover, in the context of service
robotics applications, perhaps the most restrictive aspect of enactment is the fact that
knowledge acquisition is constrained by coupling, so it is a slow process analogous to
natural learning.

Restrictions imposed by the study of enactment hinder at present an exclusive use
of this methodology for service robotics. In the scenario envisaged, the agent may be
required to deliberate a plan, or to extend learned skills to objects seen for the first time.
In order to provide solutions to such requirements, this work adopts an intermediate
perspective between the cognitivist and the EC methodology. Hence, a dynamic first-
person description of the studied behavior is performed to rigorously restrict modeling.
However, since flexible solutions are desired, the possibility of counting on a rough model
of the object and the fact that the initial perception of the object is based on action-
independent knowledge are tolerated. Thus, the aspect of grounding or instantiation
of action-independent knowledge, and how contextual representations can contribute to
perceive the object; are of central importance for this research. In this sense, this works
is in agreement with Clark’s assertion that the radical opposition of EC to cognitivism
invites competition where progress demands cooperation (Clark [47]).

EC-based task analysis

According to Wilson & Golonka [187] the study of embodied cognition involves four
essential steps: a) a dynamic analysis and description of the task, where b) a set of
resources from the body, the brain, and the environment are identified, c¢) a research
hypothesis on how these resources may contribute to the solution is formulated, and
d) experimental evaluation is conducted in order to confirm that the agent is able to
accomplish the task. This methodology is adopted in this work with the particularity
that the interest is focused on behavior automation, and not on understanding the natural
being. Next, the first three methodological steps are described, whereas the forth one is
treated in the case studies of Secs. 5.5.4 and 5.5.5.

Mimicking human walking style

The dynamic description of behavior is a widely known methodology in the automa-
tion research, that is rooted in the study of complex systems in the fields of physics and
mathematics. According to Thelen & Smith [175] human development can be viewed as
a complex, far-from-equilibrium, open system. The degrees of freedom of such system
are very large. Though, the interactions between the system components would produce
patterns that emerge as behavior in the environment with a spatial and temporal order,
which can be mathematically described. Thus, the state-space description of behavior
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is an abstraction used for studying human development by reducing its dimensionality.
The idea behind is that configurations emerging from collective interaction of individual
elements increase until dominating the behavior of the system, and can be described by
order parameters (i.e., the state variables). Regions in the state-space that function as
attractors to the state variables characterize behavioral modes. An important goal of the
dynamic analysis is to identify control parameters, which are endogenous or exogenous
variables that assemble the state-space in a given attractor regime.

The dynamics of steering and obstacle avoidance has been investigated by Fajen &
Warren [65]. Subjects were invited to participate in an experiment where they walked
freely carrying a head-mounted display. They were instructed to walk toward the goal
while dodging obstacles. The trajectories followed were recorded, and compared to a first-
and second-order description of the behavior. In the experiment, the state-space included
the heading direction and velocity of the subjects with respect to a fixed reference. The
control parameters were perceptually available including the goal’s and obstacles’ bearing
and distance.

Unfortunately, in the Fajen & Warren study bilateral symetric stimuli were used,
so both the obstacles and the goal were conceptually represented as points on the plane.
Normally, people tend to approach the front of a coffee machine or a drawer, so to facilitate
the manipulability. For cases like those it is important to consider a particular perspective
of the object. Furthermore, objects may be located at different heights to which the agent
must direct the gaze. In this more complex scenario, as detailed in the previous chapter,
the localization ?¢ of the object is represented according to Eq. (4.15) (see Fig. 4.2).

The egocentric first-order description of the approach human-mimic walk (HMW) is
proposed in this work. HMW defines the motion of the agent from the observed local-
ization error %@ (see Eq. (4.16)). In order to take into account the aesthetics of motion,
human walk is mimicked. That is, non-holonomic motion is used when human is far from
the object, but holonomic motion is preferred when human is close enough to the goal.
Let h and nn denote respectivelly the holonomic and non-holonomic evolution of the walk,
a sigmoid transition 0 < A < 1 between the motion policies can be established depending
on the distance #é,, such that

HMW : Ah + (1 — M) (5.1)

where A = 1/(1+4 exp(s1(é, — s2))). The notation for #& in simplified to & to improve the
readability. The parameter s; is a proportional gain, and s, is the sensitive distance for
the transition.

The holonomic evolution h of the walk is defined so the position components of € are
expressed in Cartesian coordinates for convenience (since the walk primitive of Nao uses
this coordinate system). Thereby,

) X kicos(€g)e,
h = Y = kQSin(ég)ép . (52)
w k3é¢

X and Y are the linear velocities, and w is the angular velocity. Independent corrections
along the 3 degrees of freedom are obtained from the proportional gains ky, ko, k3

In non-holonomic motion the correction on the frontal plane and the orientation of
the body are coupled (since motion on the y-axis direction is not allowed). As illustrated

96



Chapter 5. Embodied perception 5.3. EC-based task analysis

in Fig. 5.1, the idea is to induce a rotational motion to reduce both the frontal distance
d to the object and the orientation error €4. This can be done by estimating d from

on-board observations, such that d = sin(és — €p)€,. The desired angular correction w is

W = —]C4CZ+ k‘5é¢, (53)

with k4 and ks denoting proportional gains.

Figure 5.1 — HMW non-holonoic angular motion. The lateral distance with respect to the
object is denoted by d. O is the object frame origin. The direction of the saggital plane of the
robot is shown in blue.

By substituting d in Eq. (5.3) the expression becomes

w = kysin(&p — €4)€, + kséy. (5.4)

It is interesting to notice that the contribution of the term at the left of Eq. (5.4), which
is related to the frontal correction, can be divided by €, so the correction is proportional
to the error in the sagittal plane. Thereby, the non-holonomic evolution of the walk n is

define by

X ko€,
n=|v|= 0 . (5.5)
w kysin(€p — €4) + k56,

Motion in the sagittal plane is regulated by the gain kg.
By combining Egs. (5.1), (5.2), and (5.5), HMW is defined such that

X A(ke&,) + (1 — \)(kycos(&p)é,)
HMW : | vV | = (1 — \)(kosin(ég)é,) . (5.6)
w )\(k:4sin(é9 — é¢) + k’5é¢) + (1 — A)k3é¢

The comparison between HMW and the Fajen & Warren description is given in Fig. 5.2.
As noticed, with HMW the agent would complete the approach with the body oriented
according to the heading direction of the object.

Resources available

As listed in Tab. 5.1, the task solution requires a combination of resources from the
brain, the body and the environment (Wilson & Golonka [187]). Short- and long-term
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Cartesian trajectory evolution Cartesian trajectory evolution

1.5 8

051

-0.51

Figure 5.2 — Top view simulation of the Cartesian trajectory followed by the agent. The blue
circumferences represent the position and the gray trajectories represent the heading direction.
In red the initial configuration, in green the desired configuration. Distances are expressed in
meters. On the left the Fajen & Warren description is presented, notice that the final orientation
of the body is variable since only the object beating is observed. On the right the HMW proposal
is depicted.

memory are required respectively to store information about the actual context and the
desired state. The memory contents include endogenous (e.g., proprioceptive) and exoge-
nous (e.g. visual) data, and more elaborated perceptions of spatial relations. The agent
employs ego-centric localization relying on a top-down feature attention process. The per-
ceptive system includes a sensory ego-structure for localizing stimuli. The actions in the
task are ensured by the skills of walking and head direction. Finally, the environment is
assumed to provide a plane surface for motion, where objects are considered to be convex
and static.

Type Resource Description

Brain Memory Long- and short-term storage of bodily sensations and
spatial relations.
Feature attention = Top-down saliency.

Localization Egocentric, relying on a sensory ego-cylinder.
Body Proprioception Joint enconders.
Vision Color vision.
Motion primitives = Walking and head direction.
Environment Plane floor The agent moves on a plane surface.
Static scene Stimuli are fixed, there are no obstacles along the way.
Convex objects The object morphology is expected to be convex, with

the tracked face distinguishable from the other faces.

Table 5.1 — Resources available to solve the task.

Modeling a behavior scheme

The interest here is in exploring what Clark described as the action-oriented dimen-
sion of knowledge, as opposed to the action-independent dimension. Accordingly, the in-
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dividual possesses action-independent knowledge, in the form of general properties about
the object (e.g., shape, functionality, among others), and action-oriented representations,
that include idiosyncratic, locally effective features to guide behavior (Ballard 1991, as
cited by Clark [47]). Thus, general knowledge about the object category is accompanied
by locally-driven bodily sensations that the agent experience in the presence of a particu-
lar instance of the object. As colloquially expressed, the task would be equivalent to ask
the agent: to approach the blue drawer at the left. Notice that such description is valid in
the context, and will not be useful to direct the agent toward other sort of drawers.

Behavior emergence

The behavior scheme proposed is inspired by the design of sub-sumption architectures
(see Brooks [29]). In these architectures behavior is considered to emerge from the con-
joint contribution of several independent and self-contained subsystems, where there is no
central process in charge of goal coordination. As illustrated in Fig. 5.3, three different
sort of tasks are defined: a) motor tasks control the actuation on the environment, b) sen-
sory tasks handle feedback from the body and the environment, and ¢) localization tasks
ensure the coupling between the motor and the sensory tasks. Next, these components
are detailed.

: Motor tasks } q
Vier ™ Walk Uw ¢
: ' Robot plant
: : D
Anticipation T C
' ' Emergence
uy :
Look-at : +>| Embodied filtering
€ LRt EEFTEEPTE ! : S
Multisensory integration [« E Perception
. U
Localization tasks ' Sensory tasks |

Figure 5.3 — Behavior block diagram view. The behavior corresponds to the regulation of the
observed state €. The egocentric localization of the stimulus is represented by (, with prediction
C. The control signals uy, and uy, are sent respectively to the walk and the head-direction motion
primitives of the robot. The information retrieved from the robot are the unprocessed image D
and the current joint configuration q. The embodied feature set S is ranked according to the
anticipation in the feature set S. The observation of the object’s pose in the vision system is

denoted by 0.

Walk task

It is in charge of controlling the walk primitive to steer the agent toward the object.
From the estimation of the localization error (see Eq. (4.16)), a motion command is sent
to the robot in agreement to Eq.(5.6). The motion has to be expressed with respect to
the reference system of the walk primitive. As illustrated in Fig. 4.13, in the case of
the robot Nao the motion is expressed with respect to the frame G, that is placed at the
intermediate point between the center of projection of both feet on the ground.
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Look-at task

It is in charge of controlling the articulated neck of the robot to direct the view
toward the object. This task is formally defined in Sec. 4.4.2. The idea is that two
internal subtasks are executed in sequence. The first one corresponds to an open-loop
predictive PBVS scheme that directs the gaze toward a predicted location on the scene.
The second subtask corresponds to a regulatory close-loop IBVS scheme that receives by
visual feedback the desired retinal distance to center the object in the field of view.

Emergence task

Visual exploration and scene understanding are efficiently accomplished by human
beings. When approaching the object, exogenous (e.g. the visual stimulus) and endoge-
nous (e.g. the body posture) information emerge. Moreover, models of human attention
(see Sec. 3.2) have pointed out to a mechanism in charge of selecting the saliency of
information originated from two independent processes, one occurring deliberatively (i.e.
top-down), and the other involuntarily (i.e. bottom-up). The Emergence task is inspired
by the Feature Integration Theory (FIT) of attention (see Sec. 3.2.3). In this sense, visual
saliency is organized into separate features or layers, each of which registering the pres-
ence of different properties (e.g. color, edges, shapes, optic flow, etc). The endogenous
saliency must also be represented. The source of information considered in the study
is proprioceptive, that is, the instantaneous posture of the agent. The objective of the
emergence task is thus to register the context of the behavior. The output of the task is
the feature set S containing the saliency of information.

Anticipation task

A work by Lungarella & Sporns [114] has explored the relation between sensory-motor
coordination, body morphology, and information processing. In the study, quantifiers for
information content were defined, in order to estimate the temporal evolution of sensory
and motor information under two experimental conditions: sensory-motor coordination,
and uncoordinated motion. The results corroborated the research hypothesis, according
to which, higher levels of information correlation occur when actions and perceptions
are coordinated. Moreover, sensory-motor coordination reduced the dimensionality of the
information content, given the perceptual regularities induced in the task (i.e. the entropy
on sensory data was reduced).

Thus, the objective of the anticipation task is to conveniently exploit the two effects
described for sensory-motor coordination (i.e., the induction of perceptive regularities and
the information redundancy), in order to provide the discriminative process of the object
with information on the coupling. Therefore, a prediction for the next observation of the
state is produced from the last observation and the current action. Predictive models have
been employed for diverse purposes in robotics and automation research. Just to mention
a few applications, they have been used for calibration tasks (see Khalil & Dombre [96]),
robot localization (see Thrun et al. [178]), and motor coordination (see Arbib et al. [7]).
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Embodied filtering task

This task is inspired by the spotlight metaphor of attention (see Sec. 3.2.2) in
the sense that knowledge about where in space a stimulus will occur can be used to
improve the efficiency of detection. Therefore, the anticipation of perception can be
conveniently related to the emergence of features. Here, the actual information saliency
is compared to the predicted saliency. As shown in Fig. 5.4, an periphery-to-center flow
projects information from salient regions (e.g, the blobs centroids) to the sensory ego-
space. It is also possible to proceed in the opposite direction, a center-to-periphery flow
can be employed to predict the evolution of visual features. Unlike the Verification Vision
principle (in Bolles [21], see Sec. 3.3.4) the projections are expected to be coarse, since
the model of the object is unavailable at this stage, and the frequency of acquisitions is
expected to be low.

Figure 5.4 — Embodied filtering illustration. The agent is approaching the red can on the top
of the table. The white dots correspond to the center of the salient objects. The estimate on the
distance to the blob center is unavailable during the saliency analysis, thus, the last observation
B¢, is heuristically used (see Eq. (4.15)). The projection of the blobs in the ego-cylinder is
represented by the blue dots. The predicted localization is represented by the yellow dot.

Perception task

The goal of the task is to estimate the object’s pose with respect to the visual sys-
tem. From the information provided by the filtering process, where diverse features relate
the emergence of information with the prediction, the agent solves the Perception task
in two phases. Firstly, it selects the retinal region associated to the object with certain
confidence. According to Brooks [29], one of the challenges encountered in the study of
emergent behavior is to find efficient ways to fuse multiple sources of perceptual infor-
mation when needed. For this, the discriminative process may rely on diverse techniques
that are available in the literature of machine learning (e.g. artificial neural networks,
support vector machines, among others). In this study a Bayesian network structure is
proposed in Sec. 5.4. Secondly, in case the object is present in the scene view, its posture
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with respect to the visual system is determined by fitting the salient region to the object
3D model (many geometries can be considered, the cases of a cylindrical container and a
rectangular surface were detailed in Sec. 4.5.3).

Ego-localization task

The approach to the object is based on ego-centric localization. The choice for the
ego-cylinder structure for multi-sensory integration was discussed in Sec. 4.5. Basically,
the definition of the sensory ego-cylinder is obtained by heuristically setting the z-axis
perpendicular to the ground, under the assumption of motion over a plane surface. The
localization depends on the transformation between the reference frames G, T, and C,
defined from the current joint configuration q of the robot. Thus, in this task the control
parameters (see Fig. 4.2) and the localization error in Eq. (4.16) are used.

Behavior autonomy

According to the behavior scheme defined in Fig 5.3, the agent must accomplishing
the task by relying on action-independent knowledge about the object (i.e. a rough 3D
model), action-oriented representations obtained from the embodied perception of the
object, and a supervised demonstration. Though, two important aspects remain to be
discussed when developing robust applications in service robotics. The first one is how
to integrate these elements in a organized, reusable, and efficient way in order to solve
the task. The second one is how to know when things are not going as expected, so error
recovery is possible.

Given the progresses in the fields of information technology and artificial intelligence,
ubiquitous computing relying on the client-server computational paradigm has proved to
be mature enough as to provide many solutions in the form of mobile applications. These
success cases have been inspiring researchers in service robotics when facing the challenges
of unstructured applications in heath-care, assistance, and other domains. Hence, the
idea is that robot applications can share knowledge or be assisted by cloud-connected
resources. There are currently initiatives that focus on the definition of robot architectures
(e.g. Vasiliu et al. [181]) that integrate distributed resources to the task, so mitigating
specific constraints of the robot platform. In parallel, several research communities have
engaged in the definition of ontologies for knowledge sharing, distributed learning, and
the collection and reuse of information for practical applications (e.g. Waibel et al. [184]).

Therefore, the idea is to provide the agent with a locally autonomous implementation
of the behavior scheme, that can be continuously assessed. Figure 5.5 illustrates the hybrid
architecture proposed. The Behavior node implements the local task (for this study it
corresponds to scheme described in Sec. 5.3.3). Based on the analysis of local information
obtained by the action-perception coupling (i.e. the embodied features described in Sec.
5.4.1), the Deliberation node estimates the confidence in the task, so remote resources
are used in case this estimate is below a given tolerance. This is ensured by a Bayesian
network implementation (detailed in Sec. 5.4.2) that observes the signals of embodied
features to discriminate the object and to evaluate the task consistency. The Deliberative
process must also preserve the safety on the local state (e.g. by stopping motion, or
sending the robot to rest), since the remote access to resources is subject to disturbance
(e.g. interruption in the network service). Therefore, the agent would ideally not depend
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on remote resources. The philosophy behind the designed hybrid model is going to be
better understood in Sec. 5.5.3, where the case study implementation is detailed.

Remote Processing

Deliberation

A

Behavior

Local processing

Figure 5.5 — Hybrid task architecture. The deliberative process evaluates the consistency of the
autonomous local execution of the behavior. Once inconsistency is detected, remote processes
are queried for support.

Embodied features

A set of embodied features is proposed in this work as action-oriented represen-
tations for the task. The features carry information on the spatial, morphologic, and
topographic properties related to the visual stimulus, and the body posture during the
task. Table 5.2 presents their definition whereas Fig. 5.6 illustrates the concept behind.
The first two features are based on the blob moments (see Eq. (3.4)). The radio-aspect
F3 is defined from the width and height of the minimum bounding-box (MBB) enclos-
ing the blob, where the angle between the MBB’s principal axis and the image x-axis is
~v = 0.5(atan(2mq1/(mag — me2))). The feature Fy includes proprioceptive information
from the instantaneous posture of the neck. The feature F5 represents the topographic
relation between the blobs, it is a descriptor of the presence of saliency at a four cardinal
neighborhood.

Feature Description

by = (T, ) Retinal blob centroid.

o =mgo Retinal blob area.

F3 = Hyeight / Hyidth Radio-aspect, where H denotes the oriented bounding box.

Fy = (a, ) Posture, with o and 8 the pitch and yaw neck angles.

F5 =wv(S,s) Topology, where v attributes a 4-bit vicinity code according to

the saliency set S around the blob s.

Table 5.2 — Embodied features. The Features F} and Fj are directly expressed in the sensory
space. All but Fy capture information about the stimulus (i.e the retinal location, area and
morphology, the topological arrangement).

As it can be seen, the feature design has been inspired on theories of human atten-
tion. In this sense, based on the spotlight metaphor and FIT (see Sec. 3.2) some features
represent information directly or relative to the sensory space (e.g. the centroid in the
retinal, and joint positions). It is important to notice that despite some features are com-
putationally derived (i.e. Fy, F3, F3), there is no obvious redundancy in the information
they provide.
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Blob properties Head posture Vicinity code

F3:Radio-aspect

Figure 5.6 — Embody features illustration. On the left the first three features are shown
corresponding to measurements related to the salient blob. At the center the feature representing
the neck attitude is illustrated. On the right the topographic descriptor of the blob in relation
to the retinal saliency is shown.

A second set of variables are defined by considering the anticipatory process. For
this, a deterministic motion model is employed under the assumption of ideal noise-free
robot, moving at constant velocity v = [X Y w]® along the time interval At. Thus,
a prediction for the localization of the object B is obtained from the last observation
available ? f , and the expected displacement m = vAt. Table 5.3 presents the definition
of the variables where the actual saliency is related to the anticipated information flow.
The idea of the feature F} has been illustrated in Fig. 5.4 where from a periphery-to-
center flow, information from salient regions (e.g, the blobs centroids) are projected to
the sensory ego-space. Notice that among the variables defined, some are not directly
related to the prediction of the localization. Such is the case of F'5 and F5, where the
criteria used for anticipation are the statistical regularities induced by the sensory-motor
coupling (e.g. the perspective from which the object is seen will change gradually between
consecutive acquisitions, as the robot approaches it).

Expression Description

Fl =|o(F] - B0 F| denotes the projection of the blob centroid in the ego-space,
B¢ is the predicted localization of the object, and ¢ weights the
contribution of each component.

Fr=1-— # Relation between the actual blob’s area F5 and the simulated area

( Pép p)FZ(’C*U from the expected motion m. Here Fy(;_;) denotes the saliency

during the last observation 2 CA .

F3 = ]Fg(k) — Fg(k_l)\ Absolute difference between the current radio-aspect and the last
perceived denoted by Fj(;_1).

F, = ]15'4 — F4| Absolute difference between the simulated posture of the neck 15'4,
that would center the blob on the visual field, and the predicted
attitude of the neck Fj.

Fs=3Y6 (Fs(k—1yi» F5i) ~ Estimate of the topographic relation through the Kronecker

teN delta function d6(a,b). The neighborhood set is defined by N =
{left,right,up, down}.

Table 5.3 — Filtering features.

104



Chapter 5. Embodied perception 5.4. Behavior autonomy

Bayesian network for information fusion

The information provided by the embodied features is diversified so various aspects of
the local context are captured. Moreover, different frames of reference may be involved.
A Bayesian network (BN) is defined to integrate the available information, so relevant
saliency is discriminated for localizing the object. Thus, a BN is a directed acyclic graph
that represents the conditional probabilities of interconnected random variables. BNs
have been used for diverse automatic diagnosing and recognition tasks (see Ertel [63]). In
a BN, a node is assumed to be conditionally independent from non-successors, given its
parents. The joint probability p(Ny, ..., N,,) of the nodes N; is expressed by

p(Ny, ... ,N,) = ﬁp(Nj|parents(Nj)). (5.7)

One important advantage of knowledge representation through BNs is that the infor-
mation contained is directly understandable by humans, which facilitates doing future
modifications (e.g. including new features, or more complex observations).

Figure 5.7 — Bayesian network for contextual information fusion.

As illustrated in Fig. 5.7, the structure proposed for the network corresponds to a
tree of height 2. The root node is a binomial random variable, which represents the proba-
bility that the blob saliency observed is related to the object of interest. The intermediate
nodes B; are binomial random variables that represent the a posteriori probability of the
features, given the observation of the object. This layer is included in order to simplify
adjustments to the contribution of the features to the discriminative process. The leaves
O; are multinomial random variables that represent the a posteriori probability of observ-
ing a particular intensity of Fj, given B;. The tree can easily accommodate new features
by horizontal expansion. Formally, the query of interest is defined by

1 5
p(Object|Oy, ... Os) = Z [ p(Object)p(B;|Object)p(O;| B;), (5.8)

i=1
with Z a scaling factor depending on the observations O; available. A tutorial on the
calculation of p(Object|O;) is given in Appendix A.

Probabilistic independence between the branches of the network (the nodes B; and
O;) is assumed for convenience, which is also known as a naive Bayes classifier. Re-
search on physiology has shown that perception in cross-modal tasks can be described as
a context-dependent Bayesian multi-sensory integration process (Denve & Pouget [54]).
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It is believed that such knowledge is represented by a network of basis functions (Pouget
& Sejnowski [148]). Thus, in physiology research, the hypothesis of probabilistic indepen-
dence between multi-sensory cues would hardly be justified. However, as pointed out by
Ertel [63], the naive classifier assumption has lead in practice to good results.

The most likely blob b among the saliency set S is obtained by maximizing the
expression

s = argmax,.gp(Object| B;, O;). (5.9)

Thus, the BN can be used to classify the saliency, while providing an estimate of the
certainty in such classification. As it shall be discussed in the case study of Sec. 5.5.5, this
information is of crucial importance to the Deliberative process of the hybrid architecture
presented in Fig. 5.5, once it has to decide whether or not resorting to remote processing.

The process of object recognition consists in discerning between two hypotheses.
The null hypothesis would state that a particular observation does not correspond to
the expectation about the object, whereas the alternative hypothesis would consider it
as adequate to the expectation. Therefore, it is possible to commit two types of errors.
The error type T consists in accepting an observation that does not belong to the object
(i.e. a false positive), whereas with the error type Ty an observation that is related to
the object is rejected (i.e. a false negative). Let the events of interest be enumerated by
Eq1; = {B;, Object}, Eo; = {—B;, Object}, E3; = {B;, ~Object} and Ey; = {—B;, =Object}.
Ideally, the information provided by B; to the discriminative process is maximal when
p(E1;) = p(Ey) = 1, so p(Ey;) = p(Es;) = 0. Contrarily, no information is provided at the
uniform distribution, that is, when the probability of the aforementioned events is 0.5.
As shown in Fig. 5.8, the probability distributions p(B;|Object) and p(B;|—~Object) can
be estimated at iteration ¢ from the previous decisions taken by the BN, according to the
expression

k
> v 'p(BilObject) ;)
p(Bi|Object),, = = — . (5.10)
( 1=y )
The parameter k corresponds to the size of the sliding window. The role of the constant
v €]0, 1] is analogous to the discounted reward factor employed in reinforcement learning,
where the contribution of neighbor states is related to the proximity to the actual state.
The denominator is a normalization term that corresponds to the solution of the geomet-

i “ v
rical series > 7". At each decision process the feature set S = {S,, S5} is partitioned
i=1

into the set go, that contains the observations related to the selected candidate, and the
set Sg, that contains the observations related to the discarded candidates. Thereby, the
previous distributions are obtained from

p(Bi|Object) ;) Z p(Elo;). (5.11)

oZGIZJ

where n = ¢;] and o; is the observation of the intensity of feature F;. For the distribution
p(B;|Object) the set considered is ¢ = S, and E € {E1s, Eo;}, whereas for the distribution
p(B;|~Object) the set considered is 1) = S5 and E € {Eg;, Ey;}. In Sec. 5.5.5 different
policies are studied for determining the probability distribution of features B;.
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Figure 5.8 — Dynamic policies for the Bayesian network. In green the past observations
Oi(¢—1, ... k)- These nodes don’t belong to the actual network, the gradual fading of the color
illustrates a decaying contribution (taking v < 1) according to recency (see Eq. (5.10)). In red
the dynamically updated nodes B;.

Case studies

The behavioral scheme proposed in Sec. 5.3.3 consists in a general description of
the solution of the task. Thus, a particular implementation for the model components
must be provided and evaluated. This is done through the definition of three case studies.
Since embodied observations are used, the objective of the first study is to estimate the
system parameters. For this, the spontaneous occurrence of the features is registered
under distinct delay profiles. In the second study the task is evaluated in a simulated
scene, where the robot has to approach a particular object among multiple instances.
Different policies for determining the probability distribution of features B; (see Fig. 5.7)
are compared. In the third experiment, an implementation of the hybrid architecture
of Fig. 5.5 is evaluated in a real task, where the robot has to approach multi-color tea
cans. Therefore, the autonomous execution of the behavior is studied firstly to verify the
extent to which the agent can perform the task without using remote resources. Then,
the Deliberative module of the hybrid solution is activated so failures can be detected and
the success rate can be improved.

Materials and resources

The platform is the humanoid robot Nao by Aldebaran Robotics. The control pro-
gram is implemented in the C++ programming language. The images are captured at
320x240 pixels resolution. The vision processing is obtained with the support of the
OpenCV 2.4.8 library. The Bayesian network implementation is provided by the dlib
C++ Library version 18.13. For prototyping the network the Samlam tool version 3.0
is also used. The robot functionalities are accessed through the naoqi 1.14 library. The
algorithms are developed in the Eclipse Juno IDE under Ubuntu 12.04.5 LTS (Precise
Pangolin). The simulations are conducted in the Webots robot simulator 7.4.0 by Cyber-
botics. The results are processed in Gnu Octave 3.2.4 and the KNIME data analytics,
reporting and integration platform 2.10.4. The on-board calculations relied on an ATOM
7530 1.6GHz CPU, with 1 GB RAM, 2 GB flash memory, and 4 flash memory dedicated
to user purposes. The study also included a DELL Vostro 1500 laptop (Intel Core 2 Duo
1.8GHz 800Mhz, 4.0GB DDR2 667MHz RAM, 256 MB NVIDIA GeForce 8600M GT).

107



5.5. Case studies Chapter 5. Embodied perception

Behavior scheme implementation

Motor tasks

In the Walk task the agent has to move to the desired location, and to stop once
all the components of the observed localization error #&; (as defined in Eq. (4.16)) are
smaller than a given threshold e. The tolerance considered is the same as Sec. 4.6.2 which
is a radial distance €, = 0.05 meters (m), the azimuth ¢y = 0.04 radians (rad), and ¢, = 0.1
rad for the orientation component. The walk primitive is controlled in position since it
provided more precise results. Motion commands are expressed in Cartesian coordinates
conforming to Eq. (5.6), and sent to the walk primitive under the assumption of constant
velocity motion. The robot may not faithfully execute the request, so the estimated
motion “m obtained from the request “m = [X Y ¢|' (with the linear components
denoted by X and Y, and the angular component by ), is defined by

“m = H%m, (5.12)

where H is a 3 x 3 matrix that represents the estimated efficiency of motion, including the
coupling between the motion components of the walk primitive (H is determined in the
first study, and corresponds to the left side of Tab. 5.4). The mean walk velocity under
the gait configuration recommended by the manufacturer is estimated to be around v =
[0.022 m/s 0.04 m/s 0.106 rad/s]*. Continuous motion is achieved by sending commands
at regular time intervals. In order to prevent that unforeseen delays affect the fluidity of
the walk, the actual displacement sent considers a larger delay (e.g. 1.5 times the expected
value). Thus, a new command would be ideally sent before the routine could finish the
previous one. If this would not be the case (e.g. due to losing the object, a program crash,
etc.), the robot would stop moving after a while. This strategy ensures a fluid walk while
keeping the safety aspects. For speeding up convergence, given the observation noise and
the fact that the walk primitive is less precise in continuous motion, once the robot is
nearly at the desired location (at #&;, < 0.1 m), the Walk task switches to a step-by-step
policy (i.e. a new correction is sent only after finishing the previous one).

The Look-at task is also controlled in position and the same implementation detailed
in Sec. 4.6.2 is employed. Thus, a tolerance e = 0.03 rad is admitted for convergence of &,
in the predictive motion sub-task, and a tolerance for 10 pixels is accepted for the object
centering sub-task Te; (see Eq. (4.21)). The head posture is regulated independently
from the walk (i.e. the tasks run in parallel), which means that the motion induced by
the Walk task can affect the convergence of the Look-at task, notably, at slow turning
of the head. Thereby, a velocity profile of 4 rad/s is employed so convergence in both
sub-task is easily obtained.

Localization tasks

The ego-localization implementation was detailed in Sec. 4.6.3. In this study B is
selected as the same definition of frame G (see Fig. 4.11). The Anticipation task involves
a deterministic prediction that assumes an ideal noise-free robot, moving at constant
velocity (see Eq. (4.17)). A saturation is applied to the motion estimation “m in Eq.
(5.12), in order to take into account the maximum velocity “v attainable under the actual
gait settings. Thereby, the motion estimation considered is “m = min(“mm, “vAt), with
v taken in this study as the mean velocity profile of the default gait configuration of Nao.
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Sensory tasks

The Emergence task relies on the whole segmentation technique (see Sec. 3.4.3) for
processing the top-down visual saliency (that is, only one saliency layer is used). From
the supervised detection of the object, a color model is obtained by sampling the pixels
that represent it on the image. The features detailed in Tab. 5.2 are calculated from the
blob morphology and disposition on the image, and the posture of the neck is registered.
The Embodied Filtering task requires no additional efforts that applying the definitions
given in Tab. 5.3 in relation to the prediction of the localization “¢ (see Eq. (4.17)).

The Embodied Filtering task contains the BN (see Fig. 5.7). The observation of
the leaf nodes consider discrete events, so discretization through clustering is employed
to rank the measured signals according to levels of intensity. Data partitions are defined
from the statistical properties of the information flow recorded in the task (the numerical
values and the way to proceed to calculate them is detailed in Sec. 5.5.4 and Tab. 5.6).
Five partitions are established from the mean pu; and the standard deviation o; of features
F; (see Tab. 5.3). Thus, the observations are grouped according to f(F}, u;, 0;) such that

Ly« F; if F;, < p; — 4oy
Ly« F; if p;—4o; < F, < py — 20;
f(E, i Ui) = Lo + E if i — 20; < E < Wi + 20; (513)
Ly« F; if p;+20; < F; < p; + 4o;
Ly« F; if F, > pi; + 4o;

Given the symmetry around Lo, only three clusters are defined to represent the levels of
intensity of features F; in the leaf nodes O; of the BN. Thereby, the nearest neighboor
method (see Ertel [63]) is employed to classify the observations, so

0 if EELDUL4
O;=<X1if F,eUL;3 . (5.14)
2 if F, €L,

After the BN evaluation, the selected retinal region is passed to the localization
routine in the Perceptive task which is in charge of determining the object pose in the
camera frame. The principles behind the implementation of this routine were detailed in
Sec. 4.5.3, where a cylindrical wrapper and a rectangular surface were modeled.

Hybrid architecture implementation

As illustrated in Fig. 5.5, three components are defined in the hybrid architecture:
the Behavior, the Deliberation, and the Remote Processing nodes. The implementation
for the Behavior node has been provided in Sec. 5.5.2. Thus, it includes the autonomous
behavior scheme developed from the EC methodology. The implementation of the De-
liberation node (which is in charge of detecting task inconsistence and requiring remote
assistance), is based on two important estimates obtained from the activity of the BN:
the degree of confidence v, and the discriminative power p. Accordingly, v is defined by

1 = p(Object| B;, O;), (5.15)

where p(Object| B;, O;) is the probability issued by the BN, given the certainty in B; and
the observed evidence O;. The discriminative power is defined by
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0 =11 — o, (5.16)

so 11 and 1, is the degree of confidence on the two most likely candidates in the saliency
set S, obtained by applying Eq. (5.9) twice: one to the full set S, and the other to the
reduced set S, = S — {s1}, excluding the first selection s;.

The state automate is illustrated in Fig. 5.9. The transition events are determined
by ¢(.,.) which observes 1) and p to decide whether remote help is requested, thus

_J True if Yp>eNo>e€
t¥,0) = { False otherwise (5.17)
Therefore, the transition events are defined so g1 = (¢, 0), go = —¢1, and g3 is an

interruption signal to stop the program. The thresholds for the transition are €; and e,.
In relation to the states, in Start the program is initialized. Remote Assistance includes
a graphical user interface (GUI) of the application program where the user can access the
on-board captures and perform actions, such that: a) providing the visual demonstration
for the object recognition, b) clicking above a salient region to specify the desired object
to be tracked, c) suggesting a search direction to relocate the object, or d) aborting
the program. In the Deliberation state data received remotely is passed to the Behavior
module. A start/stop signal is also sent to the robot in case the event gs or g3 are produced
(either from a remote user request of a local erroneous condition detected). In the Local
Execution state robot motion is controlled by the Behavior node. In the End state the
application program finishes the execution.

Local-
Execution

Remote-
Assistance

Deliberation

Figure 5.9 — Deliberation state automate. The transition events are denoted by g;. Compulsory
transition have no events associated.

CS-I: Model parameters estimation

The objective of this case study is to characterize the system and to estimate the
model parameters, including the motion profile of the walk primitive and the evolution of
the embodied features. In this sense, since the behavior model relies on motion primitives
already acquired by the agent, it is necessary to provide the Anticipation task with knowl-
edge concerning the characteristics of locomotion. Similarly, the Embodied Filtering task
would rely on information on how the features F; evolve under undisturbed conditions,
so the object can be properly recognized. Moreover, in view of the multiple constraints
affecting the generation of motion (e.g. keeping balance, energy safe, etc.), it is possible
that the walk primitive does not execute accurately the motion requests, and such errors
must be taken into account.
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Experiments

In the first experiment the agent is required to walk in open-loop to distinct locations
under the default gait profile as recommended by the manufacturer. The case conditions
are variations in the step distance along the 3 DOF of motion. The ground truth is
obtained from Webots. Variations of 0.01 m are applied in the positive and negative
sense until a maximal distance of 0.1 m for the X and Y linear motion, and 0.04 rad until
a maximal turn of 0.4 rad for the angular motion. Each experiment is repeated three
times to avoid simulation bias, so the total number of cases are 3 (repetitions)x 3(DOF)
X 20 (10 cases in the positive and negative senses) = 180. The second experiment is
designed to study the anticipation process. For this, a controlled scene that contained
a single salient soda can was designed. The robot’s task is to approach the can from 3
different initial configurations. Twenty delay profiles for the visual feedback are simulated
(from 100 ms until 2000 ms, varying in 100 ms), each case is repeated 2 times, so the total
number of cases are 2 (repetitions) x 3 (initial conditions) x 20 (delay profiles) = 120.

Results

The results obtained for the first experiment are given in Tab. 5.4. On the left
segment the mean coupling was calculated by relating the motion requested to the ground
truth. As the figures on the diagonal suggest, the angular displacement ¢ is the more
efficiently accomplished by the walk primitive, followed by the saggital displacement X.
The less efficient motion corresponded to the lateral displacement Y, which, as shown on
the right segment of the table, also presented greater variability.

" X Y S o X Y S

X 0.613 0.351 0.199 | X 0.057 0.054 0.122
Y Y
S S

0.273 0.476 0.017 0.102 0.174 0.024
0.007 0.022 0.662 0.008 0.018 0.055

Table 5.4 — Motion profile. The average relation fp,q = mean(w,/w}) and the standard
deviation o,y are calculated for u,d € {X,Y,¢}. The ground truth motion w, was obtained
from Webots, with wg* denoting the motion request. The information of the table should be
read as follows. When requested to move in the saggital plane direction wy meters, the robot
moved on average wx = 0.613w% meters in the saggital plane direction, wy = |0.273w% | meters
in the frontal plane direction, and rotated w¢ = |0.007w% | radians.

The results for the second experiment are provided in Tab. 5.5, where the difference
between the observed localization GCA and the predicted localization ©¢ under distinct delay
profiles is given. A comparison between the mean localization discrepancy at distinct
delay profiles is illustrated in Fig. 5.10. It is noted that the discrepancy in the bearing
[ appears to be more sensitive to increasing delay, whereas the height p, would be the
less sensitive. The heading direction discrepancy p, appears to be always high. Table 5.6
presents some of the results obtained for the evaluation of the features F; under distinct
delay profiles. Figure 5.11 illustrates the comparison on the evolution of the feature
means. The ascending tendency is more pronounced for the features Fy, and F.
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r Hp Op He o6 He g, He 9¢
100  0.026 0.055 0.013 0.009 0.004 0.008 0.292 0.466
300 0.020 0.024 0.920 0.062 0.021 0.045 0.040 0.030
500  0.045 0.063 0.046 0.025 0.010 0.032 0.538 0.564
1000 0.045 0.059 0.085 0.047 0.016 0.046 0.607 0.646
1700 0.034 0.040 0.110 0.073 0.024 0.066 0.479 0.483
2000 0.0563 0.071 0.118 0.093 0.022 0.045 0.496 0.458
mean 0.042 0.061 0.080 0.054 0.015 0.041 0.461 0.475

Table 5.5 — Difference between the observed localization Gé and the predicted localization “C.
The delay profiles r € {100,200, ... ,2000} are expressed in ms, distances in m, and angles in
rad. The average g = mean(|9Cy — “{y|), and the standard deviation oq for each localization
component d € {p,0,z, ¢} (see Eq. (4.15)), are shown for some delay profiles r. The last row
presents the global mean obtained by column.

0.7
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o
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o
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T
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L
0 500 1000 1500 2000
Delay in ms

Figure 5.10 — Mean discrepancy between the localization and the prediction for each delay
profile. Distances are expressed in m and angles in rad.

r 251 01 H2 02 M3 03 K4 04
100 0.011 0.016 0.037 0.075 0.017 0.027 0.046 0.066
300 0.020 0.024 0.080 0.062 0.021 0.045 0.040 0.030
500 0.022 0.030 0.117 0.088 0.027 0.047 0.073 0.092
1000 0.027 0.022 0.119 0.080 0.031 0.037 0.079 0.062
1700 0.044 0.048 0.197 0.099 0.025 0.023 0.123 0.073
2000 0.042 0.042 0.190 0.116 0.032 0.030 0.126 0.094

mean 0.026 0.035 0.138 0.095 0.031 0.038 0.092 0.077

Table 5.6 — Embodied filtering observation. The delay profiles » € {100,200, ... ,2000} are
expressed in ms. The average u; = mean(F;) and the standard deviation o; of some delay
profiles r are given for features F; = {Fy, ... ,Fy} (see Tab. 5.3). Since there was only one
salient object in the simulation, the effect of the delay over F'5 could not be appreciated, thus,
the values pus = 0 and o5 = 0.5 were fixed manually in the study. The last row presents the

global mean obtained by column.
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Figure 5.11 — Evolution of mean values of embodied features defined in Tab. 5.3. F’5 in not
considered since only one object was salient.

Discussion

The results obtained in the first experiment revealed that the walk primitive exe-
cutes with distinct efficiency the motion requests along individual DOFs. Furthermore, a
certain level on coupling is present, so the correction along one motion component may
disturb convergence on others. In relation to the second experiment it was observed that
increasing delay affects the quality of the anticipation of the localization. As shown in
Fig. 5.10 the highest discrepancy is observed at the mean heading fi4, which has to do
with the fact that the observation Gf(b is also the noisiest (see Fig. 4.10). The quality of
the features F';, Fo, and F is also affected (see Fig. 5.11) since they are based on the
prediction of the localization. Contrarily, F'53 and F'5 are related to visual characteristics
of the scene (e.g. the morphology of the object, and the topological arrangements between
salient stimuli).

CS-II: Simulation of object redundancy

The objective of this case study is to evaluate in simulations whether the robot is
able to do visual selection to approach the object of interest, by discriminating consistent
information in relation to the task context. For this, a scene is designed in Webots where
many cans are disposed in the visual field of the robot, so it has to approach a particular
one while ignoring the others. The desired configuration is specified by positioning the
robot in front of the desired can.

Experiments

In the first experiment a static policy named BNy is considered for the BN. Thus,
the information provided by B; to the discriminative process are heuristically fixed, so
p(B;|Object) = p(—B;|-Object) = 0.9 (i.e., the probability that the feature B; is true
given the object is true, and the probability that the feature B; is false given that the
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object is false). The task is repeated at 4 initial locations under 26 delay profiles (from
100 ms until 2400 ms, increasing 100 ms; and at 3000 and 4000 ms), so a total of 104
trials are evaluated.

The second experiment is designed to verify whether the motion prediction is ac-
tually needed for the discriminative process. For exploring this issue, the features F7,
Iy, and Fy (see Tab. 5.3) are redefined in order to consider the last observation of the
localization instead of the predicted localization. The BN; policy is also employed. The
task is repeated at 4 initial locations under 15 delay profiles (from 100 ms until 1500 ms,
increasing 100 ms), so a total of 60 trials are evaluated.

In the third experiment dynamic policies are investigated for determining in runtime
the contributions of the nodes B; to the discriminative process. Thereby, a "pessimistic"
policy BNg; attempts to reduce the false positives (i.e. the error of type T of accepting
an observation that does not belong to the object), by updating only the probability
distribution p(B;|—~Object) (see Eq. (5.11)). An "optimistic" policy BNy aims at reducing
the false negatives (i.e. the error type Ty so an observation that is related to the object
is rejected), by updating only the probability distribution p(B;|Object). A hybrid policy
BNg3 attempts to reduce both types of errors. A time window of size k = 3 and a discount
factor v = 0.7 (see Eq. (5.10)) are set. In order to compare the policies, and given the
fact that the observation of the features Fj is indeed a process of symbolization at three
categories (or levels or intensity, see Eq. (5.14)); the observations O; registered in the
first experiment are evaluated with the dynamic policies.

Results

Figure 5.12 presents the trajectory followed from two trials of the first experiment.
Despite many soda cans were placed on the scene, the agent was able to systematically
approach the desired one while ignoring the others, until a delay profile of 2000 ms. Above
this, it occasionally switched attention to the neighbor can.

Figure 5.12 — Simulation of the task with object redundancy. On the left, starting from the
same position the agent was required to approach a distinct can over the table (the resulting
trajectories are superimposed). Some on-board views and the corresponding segmentations are
shown on the right. Many blobs were detected, the one selected is highlighted in orange.

In relation to the second experiment (i.e. the last observation is used instead of the
motion prediction to anticipate the next state) it was observed that the task could be

114



Chapter 5. Embodied perception 5.5. Case studies

accomplished until a delay profile of 1100 ms. Notice that the mean walk velocity of the
robot is approximately v = [0.022 m/s 0.04 m/s 0.106 rad/s]".
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Figure 5.13 — Comparison between the network policies under two delay profiles. The left
column presents the results for a 300 ms delay. The right column corresponds to a 1700 ms
delay. The first row shows the evolution of the observations O; as defined in Eq. (5.14), with
0 the lowest and 2 the highest intensity. The signal are shifted vertically for visualization. The
second row shows the output of the network for the policy BN¢. The tracked can over the table
is represented by si, and so corresponds to the lateral neighbor (see Fig. 5.12). The third
row presents the comparison between the outputs of the dynamic policies. The signals are also
shifted vertically for visualization. The discriminative power on the left column is higher since
distinct mean and standard deviation (see Tab. 5.6) are considered for defining the partition
intervals in Eq. (5.13)

Figure 5.13 presents a comparison on the third experiment for two delay profiles. The
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column on the left shows the results for 300 ms delay, whereas at the right the delay was
set to 1700 ms. The plots on each column are related to the case of Fig. 5.12 where the
robot was requested to approach the rightmost can on the top of the table. The registered
feature intensities are shown in the first row (the desired value is the maximal intensity
of 2). A comparison on the classification obtained by the static and dynamic versions of
the BN is shown in the second and third rows. The discriminative power of the BNs at
the right column was reduced at about the 3% iteration, probably because of the minimal
intensity detected in O; (that is related to the localization prediction). Also, around the
iteration 25 the disappearance of the third can on the field of vision disturbed Oy (that
is related to the topology of the saliency). Subtitle differences were observed among the
BN policies, so equivalent selections were made. However, as seen in Tab. 5.7, where
some iterations from another trial are compared at 2200 ms delay, under this condition
the policies differed, so only BNgy and BNg3 were able to select the correct blob. Extra
simulations where performed using these policies in the same scenario. The task could be
successfully accomplished by BNg, until a delay profile of 4000 ms.

Iteration Blob O Oy O3 0O4 Os BNy BNg; BNy BNgs

3 50 0 2 2 0 2 0339 0.269 0.534 0.451
1 0 2 2 0 0 0.062 0.045 0.129 0.096
4 50 0 2 2 0 2 0339 0.225 0.666 0.529
51 0 2 2 0 0 0.062 0.036 0.205 0.127
5 50 2 2 2 0 2 0799 0.616 0.883 0.754
51 2 2 2 0 0 0339 0172 0495 0.285
6 50 2 1 2 0 2 0517 0.433 0.694 0.618
51 2 1 2 0 0 0.122 0.090 0.227 0.173
7 50 0 2 2 0 2 0339 0.252  0.604 0.500
51 1 2 2 2 0 0517 0.379 0.447 0.315

Table 5.7 — Analysis of 5 iterations of an experiment where two blobs were salient. The
delay profile corresponded to 2200 ms. No threshold was fixed as a minimum requirement for
acceptance, so that the most likely blob was selected. In the experiment the agent originally
applied the fixed policy BN¢, and failed the approach by switching attention at the seventh
iteration. The decisions based on observations O; are simulated for the other policies. The
dynamic versions considered a sliding window size k = 3, and a discount factor v = 0.7 (see
Eq. (5.10)). The cells in blue correspond to the correct selection at each iteration, whereas
the cells in red correspond to the wrong selection. The policy BN¢ selected s; in iteration 7
simply because it has an additional observation of level 1 for O;. The policy BNg; has mostly
valued the fact that the last observations O4 and Os were of minimal intensity for the rejected
candidates, thus, the features were considered as good discriminants, and s; was assigned the
highest probability. As noted, only the dynamic policies that attempted to reduce the error type
Ty were able to chose the correct candidate at the last iteration. These policies have valued
the contributions of O3 and Os, that were of maximal intensity for the winner blob at all the
iterations.

Discussion

The results obtained in the first experiment suggested that the behavior scheme
implemented is able to produce the desired comportment at very high delay profiles. In
this sense, the information redundancy in the sensory-motor coordination provided the
agent with the means to anticipate the evolution of the features, so discriminating the
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object in the scene without relying on ubiquitous knowledge about the environment (e.g.
a localization map). Furthermore, the dynamic analysis of the agent’s locomotion resulted
in aesthetic trajectories that mimicked the human walk style. Despite this aspect is a non-
functional requirement, it is of crucial importance for the acceptance of the solution in
a human-machine interaction context. The trajectories obtained were also more efficient
that the ones in the study of Sec. 4.6, since the robot walked more in the sagittal plane
direction and had less difficulty to converge to the desired location once close to the object;
which is a clear improvement.

In the first experiment it was also observed that the discriminative power of the
network is conditioned to the delay profile employed (see Fig. 5.13). This is reasonable
since when using predictive models, the more delay involved, the more uncertainty. In
addition, the predictive model considered was fairly simple (i.e. a deterministic continuous
motion assumption).

The second experiment revealed that the statistical regularities induced by the cou-
pling can be conveniently exploited to assist the discrimination of the object, so the criteria
for anticipation used was simply the last observed context. However, a model-less version
of the task would not ensure the conversion in the proximity of the object (since at short
distances the blob’s size would increase considerably, so it easily leaves the field of vision).
As detailed in Sec. 4.4.2, the Look-at task performs a predictive gaze that is useful to
relocate the object.

The third experiment showed that the differences between the BN policies are subtle
until a delay profile 2000 ms. However, as the comparison presented in Tab. 5.7 revealed,
the dynamic policies BNgy and BNy3 that aimed at reducing the error type Ty were
more robust under high delays. These policies were sensitive to the fact that pure visual
information was consistent despite the high delays, so more weight was assigned to the
corresponding features. In fact, in several additional trials it was verified that the best
results are obtained from the "optimistic" policy BNgs.

CS-III: Approaching a real can

The objective of this case study is to evaluate the full implementation of the hybrid
architecture (see Sec. 5.5.3) in a real task. The experiments are conducted with Nao,
in an unstructured environment under natural and artificial illumination. The desired
pose in relation to a multicolor tea can is shown to the robot by pressing the head tactile
sensor. The robot is then moved away from the desired configuration, so it has to return
as close as possible to the demonstrated position.

The parameters of the system were adjusted for execution in the real platform. The
estimation of the delay profile relied on the measurement of the time required for the
simplest case of the perceptive loop, that is, when the object is already centered on the
field of vision, so a single iteration of the Emergence task is needed. The programs were
firstly compiled to run natively on the robot, though the average delay obtained was too
high (with mean p = 2736.5 ms, and standard deviation ¢ = 573.3 ms). Therefore, the
control programs are executed remotely, by retrieving the visual and the proprioceptive
data from the robot though a wireless connection. Under this condition, the mean delay
obtained was ¢ = 811.1 ms with standard deviation o = 373.6 ms. Since the Look-at task
operates in closed-loop, the number of iterations required to center the blob is limited to
a maximum of two, such that the expected delay is 1700 ms.
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Experiments

Two experimental scenarios are considered. In the first one, a single tea can is placed
in the scene so the robot has to approach it while ignoring other saliency emerging in
the task. In a more challenging scenario, two cans were placed one beside the other at a
distance around 4 c¢m, and the agent is requested to approach one of them. Two motion
modalities are also considered. In the step-by-step motion policy (as in Sec. 4.6.4), the
Walk task waits until the robot stops before sending additional commands to the motion
primitive. In the continuous motion modality the robot walks fluently towards the object
(as explained in Sec. 5.5.2). Finally, two control modalities for the runtime execution are
also evaluated. In the off-line modality the task is unsupervised, that is, the thresholds ¢;
and €y (see (5.17)) for the Deliberative process are set to zero (which is equivalent to let
the Behavior module to run uninterruptedly until either convergence is obtained or the
object is lost). In the on-line modality the thresholds are activated (¢; = 0.6 and €3 = 0.2)
so the Deliberative module can resort to Remote Processing when the confidence in the
task progress is low. Thereby, a total of 2 (scenarios) x 2 (motion styles) x 2 (control
modalities) = 8 experimental cases are designed. Each case is evaluated at 10 distinct
initial locations.

Results

The results for the cases designed are presented in Tab. 5.8. The apparent precision
of the system (no ground truth was measured) is illustrated in Fig. 5.14. As the images
suggest the robot was able to converge to a very similar location. Some of the trajectory
followed are given in Fig. 5.16. Some on-board views are shown In Fig. 5.17.

Id Case Successes/trials Supervision
1 Off-line/One can/Step-by-step 9/10 NA

2 Off-line/One can/Continuous 7/10 NA

3 Off-line/Two cans/Step-by-step 7/10 NA

4 Off-line/Two cans/Continuous 5/10 NA

5  On-line/One can/Step-by-step 10/10 1

6  On-line/One can/Continuous 10/10 3

7 On-line/Two cans/Step-by-step 10/10 4

8  On-line/Two cans/Continuous 10/10 5

Table 5.8 — CS-III experimental cases results. The column Supervision indicates the num-
ber of trials where the Remote Processing was activated. The other column headers are self
explanatory. NA denotes non-available data.

Discussion

In the results reported in Tab. 5.8 a first aspect to be noticed is the fact that the
off-line execution of the task produced lower success rates. Several reasons can explain the
failures obtained. When step-by-step motion was employed, though more success trials
were registered, momentary degradation of the saliency detection made the robot to rotate
to the wrong direction, so it lost the view of the can. Depending on the view perspective
and the head’s motion, the cans were eventually merged in the saliency detection, this is
illustrated in Fig. 5.15. A workaround would be to pre-evaluate the images as to ignore
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Figure 5.14 — On the left the demonstration of the desired pose in relation to the can. On the
right the final position of some trials are superimposed.

On-board view Saliency detection

Figure 5.15 — On-board view of the experimental modality of continuous motion. Saliency
degradation due to the view angle to the cans and the motion blur produced.

noisy captures. Though, in the experimental platform a new acquisition would have an
extra time cost of 800 ms, which prevented the adoption of this solution.

The lower success rates in the continuous motion trials can be explained by unex-
pected peaks in the feedback delay (e.g. the robot exceeded the delay profile in more than
2000 ms), which affected the precision of the prediction. Also, a less accurate performance
of the walk primitive was observed under continuous motion. Other source of perturba-
tions were unexpected variations in the scene topology due to motion at the background
(e.g. the orange robot arm in front moved during some trials, and people walked in front
of the robot, see Fig. 5.17).

In the on-line trials the performance of the network was very consistent. The thresh-
old established for the estimate of the degree of confidence and the discriminative power,
were sufficient to produce the transition to the Remote Assistance state in the Delibera-
tion process (see Fig. 4.7). Thus, the user either suggested a search direction to re-locate
the object when it was lost, or clicked above the correct blob in the image when the cer-
tainty was low. This is reflected in the column Supervision of Tab. 5.8, so the maximal
success rate is obtained through the remote assistance in the task solution.

Finally, the same approach used in Sec. 5.5.6 was adopted in order to compare the
distinct BN policies. That is, the observations registered under the BN¢ policy were simu-
lated with the dynamic policies. Therefore, the interest was to verify whether the dynamic
versions would have chosen the correct can once the attention shifts were produced in the
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Figure 5.16 — Experimental evaluation with object redundancy. The sequences for three trials
are shown. The robot was required to approach the can on the right.

off-line trials. Unfortunately, no significant advantages could be found in the dynamic
versions for the real experiments. As discussed previously, in view of degradations in the
visual saliency and unexpected variations in the scene topology, the consistency of pure
visual information could not be ensured.
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Figure 5.17 — On-board views of the experimental task. In the first row the view of a frame
is enlarged. As it can be seen, the scene is illuminated irregularly given the presence of big
windows in one of the walls of the lab. In the intermediate row an approach sequence is shown.
On the bottom the corresponding saliency is presented.

Designing reliable approach tasks in six-steps

Throughout this chapter two main topics related to the locomotion guided by vision
were investigated. One is the behavioral dimension of the task. Here the efficient use
of information emerging in the coupling was studied, in order to design the behavior
scheme for controlling the robot so mimicking the human motion style. The other topic
is situated at a meta-behavioral level of concern, where the robot is viewed as a limited
resource system. Thus, the safety and the robustness of the solution were analyzed in the
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hybrid architecture design, that included the possibility of integrating remote processing
to the solution. These developments can be organized in a methodological proposal that
orderly exposes the steps to be followed, either to replicate the reported results, or to
design solutions to other sensory-motor tasks.

Thereby, reliable humanoid object approaching can be obtained by applying the fol-
lowing six steps:

Studying the behavior as emergent.

Defining embodied features related to the task.
Anticipating the context from a predictive model.
Relating actual measurements with the anticipation.

Doing attention selection.

SEEERSATIR SN I

FEvaluating the task consistency.

The first step involves the use of the EC research methodology (see Sec. 5.3) to
analyze the task at hand as a dynamic system, such that identifying efficient control
parameters. Thus, it is crucial to consider the task from a first-person perspective and
rigorously restrict modeling.

In the second step, starting from the sensory resources available and the character-
istics of the task, a set of features providing information about the context of the task are
designed. In this study the visual and proprioceptive sensory modalities where considered
(see Tab. 5.2), though other sensory modalities (e.g. acoustic, inertial, etc.) could be
included.

In the third step a predictive model is employed to anticipate the measurements for
the next execution cycle. A deterministic model was considered in this study, but other
approaches are available (e.g. probabilistic models in Thrun [178]). In case the acquisition
and control rate are high enough, by exploiting the statistical regularities induced in the
sensory-motor coupling, the next state can be anticipated from the current state (i.e. no
motion prediction would be required).

In the fourth step a set of variables is defined to conveniently relate the embodied
features measurement with the anticipation (see Tab. 5.3). In this study discretization
through clustering was applied to the measurements, so they are classified into levels of
intensity. This is due to the fact that the algorithm used for attention selection (the BN)
is discrete.

In the fifth step the attention selection model is employed. In this study the spatial
congruence is considered (see the spotlight metaphor in Sec. 3.2.2), but other endogenous
criteria can also be used (e.g. the opportunity for actions or the affordance of stimuli, see
Horton et al. [87]). In addition, as mentioned before, the selection occurs in a Bayesian
network, although other frameworks are available in the machine learning literature (e.g.
neural networks, support vector machines, among others).

Finally, in the sixth step the consistency of the task is evaluated through a probabilis-
tic criteria. In this study the discriminative power of the attention selection mechanism
and the anticipation congruence were proposed, but other criteria could be developed.
This step also involves the design of a deliberative transition model (e.g., see Fig. 5.9).
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Conclusions

This chapter has focused on the development of more realistic solutions to the prob-
lem of approaching and positioning in relation to objects on the environment based on
vision. From the analysis of the dynamic aspects of human locomotion guided by vi-
sion, the first-order description proposed allowed the agent to mimic the human walking
style. This is of crucial importance since the resultant behavior is more efficient and
aesthetic, which are valued aspects for the acceptance of the solution in the context of
human-machine interaction and service robotics applications.

The methodology proposed to design reliable solutions illustrated an interesting com-
bination between the cognitivist and the EC research. In this sense, the attention selection
mechanism was inspired by the spotlight metaphor, which is an information processing
model of attention. Moreover, Bayesian networks are usually employed for information
fusion and knowledge representation in applications related to the cognitivist Al research
(e.g. probabilistic diagnosing). However, in the network structure designed, multi-sensory
information is fused from features that exploited embodiment, so they were carefully de-
fined from the EC perspective. The anticipative aspect of the behavior scheme was also
an interesting opportunity to study the effect of the statistical regularities induced by the
coupling, and the information redundancy in the sensory-motor coordination.

The results obtained in the case studies suggested that the BN is a convenient and
easy to use technique, which produced reliable information about the degree of confidence
and the discriminative power of the attention selection mechanism. This consisted in a
significant contribution to the autonomy of the agent through the efficient use of available
resources, where the solution was operational at high delay profiles with a low-cost robot.
Furthermore, the designed hybrid architecture ensured that remote resources could be
used in a safe way, and opened the possibility for enriching the local behavior repertory,
so constituting a distributed and extensible solution for the task.

In general, the studies conducted in this chapter illustrated a potential and feasible
strategy that can be adopted for prototyping and exploring more complex sensory-motor
coordinations. The fact of counting on modular motion primitives that are already avail-
able to the agent, handles much of the security aspects of the task, as for example,
maintaining the body balance. Therefore, the possibilities of exploring other behaviors
schemes seem to be vast, and perhaps require of less modeling efforts than the pure
cognitivist definition of the task. Thus, more skills can be organized into behavior ar-
chitectures. This aspect is investigated in the next chapter through the action selection
problem, where reactive motion and learning is considered for approaching the object and
avoiding obstacles.
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Introduction

The two previous chapters have dealt with different aspects of the problem of visually
guided walking under relatively favorable circumstances. This was the case since the
access to the object of interest was free from obstacles. In service robotics more difficult
scenarios may be encountered, so obstacles must be contoured before reaching the object.
For this, different objectives may be achieved (e.g. steering to the object, and avoiding

inconvenient

locations). Although the behavior scheme presented in Sec. 5.3.3 included

the parallel execution of the Walk and the Look-at tasks, it did not evoke the problem
of concurrent access of available resources. As discussed in Sec. 2.5, this is known by the
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Action Selection Problem (ASP), which is a difficult problem from the control and the Al
point of view, given the uncertainties on the task.

In this chapter the central topics of concern are the study of embodiment, knowledge
representation, and learning; under different ASP scenarios. By keeping the first-person
perspective adopted throughout the work, and the proposal of distributed representations
of the task; a behavior-based framework is selected to model concurrency, so emergent
behavior is produced. Three case studies are developed. In the first one, from the concur-
rent access to the walk primitive of the robot, different walk modes are proposed so the
approaching to the object is reactive and based on action-oriented representations of the
object (differently from the previous chapters where it was based on a 3D model of the
object). In the second study, the behaviors of object approaching and obstacle avoidance
are studied in the model, so the agent has to bypass obstacles to reach the object, without
using a global representation of the scene. In the third study, visual encoding is proposed
as an embodied description of the task, so more efficient solutions can be learned.

Related work

Behavior-based architectures are conceptualized from Reactive models (Mataric [116]).
Though behaviors are given a larger connotation than merely reflexive actions, so they
may also refer to learned skills including a state representation (see Sec. 2.5.4). Thus,
the scope of behavior-based architectures covers the reactive model and hybrid models
of the types managerial and state-hierarchy (Murphy [131]). There are numerous archi-
tectures reported in the literature that would fall into this range. A detailed exploration
of available models is out of the scope of this work. Next, some contributions are briefly
discussed by focusing on the aspects of the model structure and the strategy for behavior
selection.

A hierarchical organization of behavior has been proposed by Brooks [27] as a bottom-
up methodological design principle for studying the task at hand. This has influenced
many architecture designs. Thus, in Burghart et al. [31] a three-layer hierarchy is
proposed, with the low-level containing fast interpretation methods of sensor data, the
middle-level layer containing various recognition components of the system having access
to persistence, and the highest layer providing multimodal fusion and situation recogni-
tion. In Lenser et al. [107] sensor, motor, and control hierarchies are distinguished. The
sensor hierarchy represents the knowledge that the robot has about the world. Sensors
are classified as real (i.e. provided by hardware) or virtual (i.e. processed information
from real sensors). The behaviors are organized according to the complexity, so the con-
trol hierarchy buffers the communication between different behavior levels. An important
aspect to be noticed is that the frequency of sensors, behaviors, and control processes
decrease when moving up in the hierarchy.

Different approaches have been followed to do behavior selection. In the work by
Conde et al. [50] fuzzy logic is employed for establishing a correspondence between de-
tected events and the weighted contribution of behaviors. Fujita et al. [71] have proposed
the evaluation of external and internal drives to determine the behavioral mode of the
agent. Thus, the homeostasis regulation rule for action selection is employed (see Arkin
et al. [9]). For this, the control system has to evaluate the potential activation of the
behavior in relation to the current situation. This is also close to Minsky’s [123] ideas
where meta-knowledge about a process (e.g. preconditions, effects on the system, and
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postconditions after successful execution) is considered to reduce the difference between
the system’s current state and a goal state.

Case-based reasoning (CBR) has also been used for behavior selection. According to
Kolodner [100], in CBR old experiences are used to understand and solve new problems.
Under this approach a work by El-Bagoury et al. [61] has proposed a hierarchical case-
based controller for the robot Nao, for the distinct situations (or roles) taking place in
the Robocup soccer league. Liu & Hitoshi [110] have resorted to genetic programming in
a simplified simulation of the task to identify high-level decisions, and then to CBR as
an on-line adaptation means for obtaining low-level decisions in real world environments.
In these studies the knowledge required to do action selection is explicitly provided to
the model. CBR would alleviate these efforts by defining a core case set that can be
generalized to the other situations encountered. It is also possible to obtain this knowledge
automatically. This aspect is treated in Sec. 6.4 where reinforcement learning is discussed.

Given its wide use, and the fact that Nao is a standard platform for the RoboCup
SPL competition, several architectures have been proposed to control this robot. In this
sense, in Ferland [69] the hybrid behavior-based architecture (HBBA) was implemented to
provide learning and sharing past experiences related to episodic memory. In Testart et
al. [174] the functionalities are organized in four parallel modules (i.e. perception, actu-
ation, world-modeling, and hybrid control) for applications in the soccer competition. In
Niemiiller et al. [134] a behavior engine was developed to provide the functionalities of the
skill level (in a three-layer hierarchy), relying on a hybrid state machines implementation.
In Agiiero et al. [2] tree-graph representations is proposed to hierarchically organize the
activation of behavior in runtime. There are certainly many other works that could be
mentioned, so an important question to be asked is: which option is the more adequate
for the current study? To answer this question some important criteria are considered,
such that: the relevance to the research context, the availability of the software, and the
usability (e.g. the learning curve).

Hawes and Wyatt [81] have proposed a useful classification for robot architectures
that can base the discussion on their relevance to the current study. Three level of abstrac-
tion are identified. The more general level corresponds to a computational architecture
(CA), where a structure to process information is described without a specific problem
in mind. At a less general level, instantiated information-processing architectures (IIpA)
are proposed in a specific problem domain (most of the previously discussed works would
fall into this category). In the lowest level of abstraction are software architecture (SA),
that consist in a concrete implementation under a hardware and software platform. By
definition, behavior-based architectures are embodied so they are tied to the particular
domain of the task. Thus, the decision to reuse an architecture to similar tasks has to
be judiciously taken. Even at the more favorable scenario (i.e. to change only the host
robotic platform by keeping the same virtualization hierarchy, hoping that the robot bod-
ies are similar enough) adaptations would be required to adjust the bottom layer to the
available sensory and motor equipment. In case the task would also change, more adjust-
ments would be required. For instance, a RoboCup model would consider events in the
context of a football match (e.g. a ball pass, an opponent attack, etc.) so it can hardly be
used for an application in robot navigation. Similarly, architectures for wheeled outdoor
navigation would include a series of functionalities (e.g. cartography, communication,
etc.) relying on super-human sensory, which may be irrelevant to a biped locomotion case
study. The learning curve of these models is generally slow, so considerable efforts may
be invested to master the conceptualization of the model, and to proceed later with major

127



6.3. The framework iB2C Chapter 6. Reactive walking

customizations. Indeed, perhaps this would explain the diversity of models reported in
the literature. Since the integrated behavior-based control (iB2C) framework is a CA, it is
selected to develop the case studies. The main characteristics of iB2C are discussed next.

The framework iB2C

The iB2C by Proetzsch et al. [152] defines a set of architectural design principles
that provide support for several behavior-based mechanisms, such that, coordination,
behavior interaction, and hierarchical abstraction. Many practical applications have been
developed within the framework. Such is the case of wheeled navigation and exploration
on rough off-road terrain (e.g. in Proetzsch et al. [151], and Armbrust et al. [11]), the
control of a humanoid head for interaction using emotional states (Berns & Hirth [18]),
and indoor service task in home and office environments (Schmidt et al. [162]); among
others. In the following, the mathematical formalism of a iB2C model is detailed.

Model components

The fundamental unit of the framework is the behavior module (see Fig. 6.1), which
is an atomic wrapper around a specific task. Thus, a behavior B is a container providing
a uniform interface to diverse functionalities of the system. It is defined as a three-tuple,
such that

B: (F7f[17f7")7 (61)

where f, is the activity function, f,. is the target rating function, and F' is the transfer
function. Table 6.1 describes the inputs and outputs of a behavior.

The activity ¥ (or effective relevance) of B in the network at a given moment depends
on the stimulation s and the inhibition i, received from other nodes. It is defined by

9=s-(1—1i). (6.2)
{
F(d,9)

Figure 6.1 — Basic iB2C behavior module (Proetzsch et al. [152]).
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Var 1I/O Definition

d input  The input data d € R™ can contain sensory data (e.g. joint positions,
image measurements) or information from other behaviors (e.g. their
target rating)

s input A behavior can be stimulated by k others such that s € [0, 1]% is the
intended relevance of By. In case s, = 0 indicates no stimulation and
s = 1 a fully stimulation from behavior k. Values between 0 and 1
refer to a partial stimulation.

i input  Inhibition has the inverse effect of stimulation. Each behavior can be
inhibited by k other via i € [0, 1]*. Thus, i, = 1 refers to full inhibition
and i, = 0 to no inhibition from behavior By.

a output The activity signal a € [0, 1]* of a behavior B represents the amount

of influence of B in the current state of the system. With a; = 1 all
output values are intended to have highest impact, whereas a = 0
indicates inactivity.

output The behavior signal target rating r € [0,1] is an indicator for the
contentment of a behavior. A value of r = 0 indicates that the be-
havior is satisfied with the actual state, while »r = 1 shows maximal
dissatisfaction.

u output Output data u € R” is generated by the behavior which can be used

for actuator control or as input for other behaviors.

<

Table 6.1 — Definition of the input and output variables of a behavior.

The transfer function F' provides the intelligence of the behavior. The output pro-
duced depends on the inputs received and the internal representation. This can be a
reflexive response to an input, a more complex operation in the form of a state machine,
or a sophisticated algorithm. The transfer function is defined by

F:R"x[0,1] » R, u=F(d,V). (6.3)

The activity function f, of B is defined by

fa: R x[0,1] = [0,1] x [0,1]F,a = f,(d,¥) = [a a]' (6.4)

where a = [a; as ... ag]* are the derived activities, so the behavior can transfer part of its
activity to other behaviors. Thus, a is the activation of B, and a; < a V; € {1, ... ,k} are
the derived activities sent to the connected nodes.

The target rating function f, depends on the characteristics of the task executed
by B. In case of continuous state space representations, the normalized distance to the
desired state is usually employed. It is important to point out that the fact of reaching
the goal state does not necessarily mean that B is inactive (e.g. in on-line applications of
motion imitation the behavior must never become inactive). Therefore, there is no direct
influence on the activation of B and its target rate r.

As shown in Fig. 6.2, hierarchical abstraction can be defined in iB2C through a
behavioral group, which embeds a collection of modules with a new interface, so externally
it is viewed as a single behavior unit. Groups possess the same standardized interface
illustrated in Fig. 6.1 and described in Tab. 6.1.
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Behavioral group\\/

Figure 6.2 — Illustration of a group behavior interface (Proetzsch et al. [152]). Internally the
outputs of two behaviors are combined in the fusion behavior represented in blue.

Behavior coordination

In the study of behavior coordination a distinction has been established (Pirjanian
[146] and Hoffmann [83]) between arbitration and command fusion. In the former, one
or various behaviors have control over the system resources for a period of time, that is,
the actions of the selected behaviors are transferred without modifications. Contrarily, in
command fusion the output is obtained by a combination of individual contributions. The
framework defines a distinct type of node (represented in blue in Fig. 6.2) for command
fusion. Though it shares the same interface of basic nodes. From the control inputs a
and r received, the activity signal a and the rate signal r of the node must comply to the
following conditions

i=1

k
min;(a;)Y < a < min (1, Zak> v, (6.5)

min;(r;) <r < max;(r;). (6.6)

Several fusion strategies are reported in the literature (e.g. wvoting in Rosenblatt
[155], fuzzy logic in Saffiotti et al. [160], among others). Three simple criteria that can
be employed are mazimum, weighted, and weighted sum fusion. Let w;, a;, r; denote
respectively the output u, the activation a, and the target rating » produced by the 7"
behavior connected to the fusion node. For maximum fusion the model components are
defined such that

u=u,, a=a, r=r, (6.7)

where s = argmax,(a.). For weighted fusion the model components are

k ko k
2 a4y 2 4 2 4T
j= j= =
u=|——|,a=|= v, r= p (6.8)
> > 3 a

For weighted sum fusion the model components are
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k k
u= | ,a=min [1,Y L |9, r= J_k (6.9)
ag =0 ag 3
a

In relation to behavior arbitration, perhaps the more commonly used criteria are
priority- and state-based. Priority-based arbitration is originated from the research on
subsumption architecture (Brooks [27]). Accordingly, the models consist of a set of be-
haviors forming a network of hardwired finite state machines. Action selection occurs
when a higher-level competency (i.e. a more specific desired class of behaviors) overrides
the output of lower-level ones. In state-based arbitration behaviors are selected based on
their relevance to the current situation. There are many approaches available. In discrete
event systems (e.g. Kosecka & Bajesy [103]) the arbitration is based on the detection of
events under a finite state automata model. The states correspond to the execution of
actions/behaviors, and the events are observations and actions that cause transitions be-
tween the states. In bayesian decision analysis (Kristensen [104]) sensory operations are
evaluated according to the cost/benefit of the information they provide. Other approach
available is Reinforcement Learning, which is going to be discussed in Sec. 6.4.

The sequence node extension

Armbrust et al. [10] have proposed an extension to the architecture. As shown
in Fig. 6.3, it consists in the inclusion of a new type of node for representing sequences,
which is called conditional behavior stimulator (CBS). This node becomes active if certain
conditions related to the activity or target rating inputs are met. Consequently, the
connected nodes to the output ports can be also stimulated. Once active, a CBS monitors
the values of a second set of its input ports. If the conditions concerning these values are
fulfilled, the nodes activity goes down to zero again. Thus, arbitrarily complex behavior
sequences can be created.

Input conditions

Feerback conditions
Figure 6.3 — Structure of the CBS module (Armbrust et al. [10]). Three different types of

ports (Enabling, Ordering, and Permanent) for input conditions (top) and feedback conditions
(below). As a CBS is a behaviour, it also features the standard behaviour ports.

A relation ir;(t) occurring on time ¢, where the input value v; is compared to a
threshold ¢;, is denoted by

. . 1 A\ @j €;
ir; (t) _{ 0 otherwise ’ (6.10)

SO j = {1, ,m} and @3 € {<7§7:a 27>}
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As shown in Fig. 6.3 three different types of conditions ic;(t) are distinguished for
the activation of the behavior. In permanent activation the corresponding relation from
the input p has to be fulfilled during the whole time when the behavior shall be active
(see Eq. (6.11)). In ordering activation the corresponding relation from the input o has
to be fulfilled at some point in time before the behavior shall get active (see Eq. (6.12)).
In enabling activation the corresponding relation from the input e has to be fulfilled at
the exact point in time when the behavior shall get active (see Eq. (6.13)). Formally, the
expression for these conditions are

ic;(t) = { 0 otherwise ’ (6.11)

ic;(t) = { 0 otherwise ' (6.12)
Enabling conditions are the most complex ones. In order to determine whether an enabling
condition is fulfilled at time ¢, it has to be checked whether there is a point in time tq < ¢
at which all other conditions were fulfilled. Furthermore, all conditions have to be fulfilled
from %y on, thus

1if Jtp<t: (/\g”b1 i1y (to) = 1)
enabling
ic;(t) = : (Ak‘loi‘i’szfﬁ N 1) , (6.13)
A (AZL:1 ick(t1) =1Vt 1tg <t < t)
permanent
0 otherwise

where A is the logical AND operator. The behavior signals of a CBS are calculated as
follows

a(t) = s(t)(1 —i(t)) f[icj(t) =9 f[ ic; (t), (6.14)

r(t) = ﬁlicj(t). (6.15)

The terms a, s, i were defined in Tab. 6.1, and ¢ is the activation of the behavior
conforming to Eq. (6.2). In the case study of Sec. 6.5.3, the CBS node is used for
synchronizing a top-down and bottom-up visual saliency tasks under enabling conditions.

Reinforcement Learning

According to Kaelbling et al. [92], reinforcement learning (RL) can be viewed as the
mapping from situations to actions so a reward signal is maximized. The learner is not
told which actions to take, instead, it must discover those that yield the most reward
by trying them. In the most interesting and challenging cases, actions may affect not
only the immediate reward, but also the next situation, and through that, all subsequent
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rewards. These characteristics (trial-and-error search and delayed reward) are the two
most distinguishing features of RL.

RL-based policies have been studied in the context of service and industrial automa-
tion. In a previous work (see Chame & Martinet [40]) a cognitive model considering RL
was proposed to automate a pick-and-place task. Some other applications include grasp-
ing (e.g. in Baier-Lowenstein & Jianwei [14], Moussa & Kamel [129]), and navigation
(e.g. Zhu & Levinson [192]). In Peters et al. [141] the scalability of RL to higher dimen-
sional spaces for applications with humanoid robots is discussed, under the natural policy
gradient representation.

One of the challenges in RL is the trade-off between exploration and exploitation
(Russell & Norvig [159]). To obtain maximal reward, an agent must prefer actions that it
has tried in the past and found to be effective in producing reward. But to discover such
actions, it has to try actions that it has not selected before. The dilemma is that neither
exploration nor exploitation can be pursued exclusively without failing at the task. The
agent must try a variety of actions and progressively favor those that appear to be best.
On a stochastic task, each action must be tried many times to gain a reliable estimate of
its expected reward.

Beyond the agent and the environment, four main sub-elements of a RL system can
be identified: a policy, a reward function, a value function, and, optionally, a model of the
environment. This elements are described in Tab. 6.2.

Element Description

Policy A policy 7 : S — A defines the agent’s behavior at a given time. It
maps from perceived states of the environment to actions to be taken
when in those states.

Reward It is a function that relates each perceived state (or state-action pair)
of the environment to a single number indicating the intrinsic desir-
ability of that state.

Value function It specifies what is good in the long run. Roughly speaking, the
value of a state is the total amount of reward an agent can expect to
accumulate over the future, starting from that state.

Model of the It mimics the behavior of the environment. For example, given a

environment state and action, the model might predict the next state and reward.
Models are used for planning, by considering future situations before
they are actually experienced.

Table 6.2 — Components of a RL problem.

In the action selection problem Thrun et al. [178] have distinguished between un-
certainty in the action effects and uncertainty in perception. Two important tools for
designing RL-based tasks are Markov decision process (MDP) and partially observable
Markov decision process (POMDP). The MDP framework considers the state as fully
observable under stochastic effects of actions, whereas in POMDP the agent actively
gathers information about the task, due to the lack of observability of the state. How-
ever, according to Barto & Mahadevan [15], despite considerable research is based on
these formalisms, RL is not restricted to discrete state and action representations. Thus,
continuous representations have been derived from statistical estimation theory, so the
policies are parametrized (e.g. the PI? algorithm by Theodorou et al. [176], the black-box
optimization approach PIBB by Stulp & Sigaud [173], among others).

In this work the discrete MDP framework is going to be discussed. Formally, an
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MDP is composed by a 5-tuple (S, 4, 7(.,.,.),¥(.,.,.),7), where S is the state space, A is
the action space, and «y € [0, 1] is the discount factor. The transition probability function
7(a, s,s’) gives the probability that taking the action a in the state s at a given time-step
t, would lead to the state s’ at time-step ¢ + 1. It is defined by

7(a,s,s") = p(sur1) = §'|sw = s, a0 = a). (6.16)

The reward function (s, a, s") gives the expected value of the next reward (1), when
being in the state s, tacking the action a, and getting to the state s’. It is defined by

Y(a,s, s') = E(rus)|se = S, ap) = a, 541y = 8 ). (6.17)
Figure 6.4 illustrates the graphical representation of a MDP.

ai(oo1,701)

(1 — ao1,702)

a2

(1,7’12)

Figure 6.4 — Graphical representation of an hypothetical 3-state MDP. State nodes are rep-
resented by light circles. Action nodes are represented by small dark circles. The transition
probabilities o and reward r are also shown.

The Q-learning algorithm was firstly introduced by Watkins [186]. It is suited to the
case when the agent does not possess a model of the world (differently from the value
iteration algorithm, see Thrun et al. [178]). Let the function @ : S x A — R provide
the value of a state-action combination. The expected discounted reinforcement Q*(s, a)
of taking action a in state s, then continuing to select actions optimally, can be defined
recursively so

Q*(s,a) = Q*(s,a) +~ Z;gr(a, s, s )max, (Q*(s',d)). (6.18)

The learned action value function Q(s,a) directly approximates Q*(s,a), the optimal
action value function. Thus, the Q-learning rule is such that

Qs,a) = Q(s,a) + v(¥(a, s,8') +ymax,(Q(s', ') — Q(s, )) (6.19)

where v € [0, 1] is the learning rate. That is, the extend to which newly acquired informa-
tion will override the old information. An episode ends when state s is a final state
(also called absorbing state). The algorithm is illustrated in Fig. 3 (Ertel [63]).

Case studies

The studies conducted is this section explore different aspects in the context of the
ASP, such that, embodiment, knowledge representation, and learning. In the models pro-
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Algorithm 3 Q-learning

1: procedure LEARN
2 Q(s,a) < initialize() > Arbitrary
3 repeat > for each episode e
4: s « initialize(initial state)
5: repeat > for each step of the episode
6: Choose a from s using the policy derived from Q(s, a) > e.g., e-greedy
7 Take action a
8: Observe r, s’
9: Q(s,a) < Q(s,a) + v[r + ymazy Q(s',a') — Q(s,a)]

10: s+ ¢

11: until s is terminal

12: until e is the last episode

posed, local representations obtained from proprioceptive data and visual processing are
considered (i.e. the computation of color-based and dense- optic-flow-based segmentation,
see Secs. 3.4.3 and 3.4.4). In the first case study, concurrent walking modes are defined
so a reactive implementation of the approach task is proposed, by relying on distributed
action-oriented representations of the object (differently from the last two chapters, where
a rough 3D model of the object was used, and a unique task controlled the walk primi-
tive of the robot). In the second case study a multi-objective navigation task is designed
where the agent has to avoid obstacles as it approaches the object of interest. In the
third case study learning is considered to obtain more efficient solutions to the task. The
models proposed require of an acquisition rate (around 30 Hz) that is not available in the
platform Nao, thus, the evaluations are conducted in simulation under Webots.

Materials and resources

The algorithms were implemented in the C++ programming language. Scheduling
was obtained with the boost library 1.54.0. The vision processing was obtained with the
support of the OpenCV 2.4.8 library. The robot functionalities were accessed through the
naoqi 1.14 library. The programs were developed in the Eclipse Juno IDE under Ubuntu
12.04.5 LTS (Precise Pangolin). The simulations were carried out under the Webots
robot simulator 7.4.0 by Cyberbotics. The host plattform was a HP Compaq Elite 8300
Convertible Microtower (8x Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz, 8GB DDR3
RAM, Intel HD Graphics, HD ATA WDC WD5000AAKX-6).

Behavior-based models implementation

The models are implemented from scratch. In the hierarchical architectures pro-
posed behaviors execute asynchronously. Moreover, different behaviors may concurrently
attempt to access a sensory or motor resource of the robot. This is a more complex
scenario that in the studies of Chapters 4 and 5. Hence, the runtime organization of
behaviors has to be discussed in more details. The scheduling algorithm used is first in
first out (FIFO), also known as first come first served. Processes are added to the ready
queue in the order of arrival. Context switches only occur upon process termination, so
no reorganization of the queue is required, and the scheduling overhead is minimal. Since
the host platform is multi-core, concurrency is ensured. The risk that a process would
hold others is practically negligible, so deadlines are easily met (this was evaluated in
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simulations, delays of 1 ms were rarely observed).

CS-1: Action-oriented approach

The study developed in Sec. 5.5.4 showed that, by observing the egocentric localiza-
tion of the object, from the knowledge of a rough 3D model, and the color of the object;
the robot could perform the approaching task while mimicking human walk style. That is,
the knowledge required to represent the object in the sensory ego-space was not obtained
from the context of the task (i.e. a 3D model is an action-independent representation,
see Sec. 5.3.3). Thus, an interesting question to be answered is whether similar results
can be achieved by fully relying on action-oriented representations (i.e. locally effective
features to guide behavior).

Thereby, in this case study the task is defined according to the model presented
in Fig. 6.5. Inspired by the FIT and GS theories of attention (see Sec. 3.2), image
features obtained from color and optic flow saliency are combined to perceive the object
of interest. A two-layer hierarchy is proposed. The data and motion buffers are related
to the host platform. The top layer contains nodes that operate as virtual sensors and
nodes in charge of controlling the motion primitives of the robot. Regular nodes are
represented in gray, the fusion behavior in blue, and the conditional node in yellow. The
data signal is represented by the thick gray arrow, whereas meta-data (i.e. control data)
is represented by the thin black line. For comparison, in Fig. 6.6 the analogous version of
the behavior scheme of Fig. 5.3 is given in the iB2C framework. Sensory and localization
tasks have been grouped in the same behavior for simplicity. As noticed, single behavior
modes control the walk and the head direction primitives.

Behavior definitions

As shown in Fig. 6.5, a total of ten behaviors were defined for handling specific
aspects of the task. Since the walk primitive of the robot considers motion expressed in
Cartesian coordinates, the output of the Saggital, Frontal, and Angular Motion behaviors,
are related respectively to the regulation of the components of the 2D pose m = [X YV ¢]".
Next, the implementations of the behaviors are detailed.

Data Acquisition

It is in charge of querying the robot for the proprioceptive and visual data. The
objective of this behavior is to guarantee a centralized and more efficient access to the
resources, thus avoiding overheads in the network protocols. The internal state consists
in a buffer that stores consecutive acquisitions. The output u of the behavior contains a
list of sequence of raw images captured on-board and joint measurements. The activity
signal is set to a = 1 if no runtime exceptions occur, and a = 0 otherwise. The target
rating signal is r = a — 1.

Dense Optic Flow

It is in charge of computing the dense optic flow induced by the robot motion (the
scene is assumed to be static). The technique is detailed in Sec. 3.4.4. Thus, the output u
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Robot sensors

Data
Acquisition

Level O
Dense Top-down
Optic Flow Saliency
Level 1

Saggital Frontal Angular Head
Motion Motion Motion Motion

Walk Motion
Group

~

Motion Level 0
Execution

Robot actuation

Figure 6.5 — Two-level hierarchy model. The level 0 corresponds to the real sensory and motor
data. Virtual sensors and behavior primitives are defined in the level 1.

of the behavior is the image f(z, y, t) representing the optic flow in the x and y components
during the time interval ¢, as defined in Eq. (3.10). The activity signal is set to a = 1
if no runtime exceptions occur, and a = 0 otherwise. The target rating signal is set to
r=a—1.

Top-down Saliency

It is in charge of processing the supervised detection of the object of interest. For
this, the segmentation algorithm detailed in Sec. 3.4.3 is employed. The binary image is
obtained from a MRF modeling framework that considers the color model of the object
under Gaussian noise. The output u of the behavior is a binary image O indicating the
regions related to the object of interest and the centroid of the salient blob area (see Eq.
(3.5)). In the task the problem of visual attention is not of concern. A single object of
interest is set on the scene, so in case many blobs are salient, the biggest one is heuristically
selected. The activity signal is set to a = 1 if there is a salient object and a = 0 otherwise.
The target rating signal is set to r = a — 1.
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Robot sensors

Data
Acquisition

Level O
Top-down
Sensory
Localization
Walk Look-at
Task Task
Level 0

Motion
Execution

Robot actuation

Figure 6.6 — Equivalent iB2C model for the behavior scheme describes in Sec. 5.3. The
Sensory and Localization tasks were grouped in single nodes for simplicity. The orange arrow
corresponds to the feedback sent for predicting the evolution of the embodied features detailed
in Sec. 5.4.1

Synchronizer

As its name suggests, this node is in charge of synchronizing the output of the Dense
Optic Flow and the Top-down Saliency nodes, since the information provided by them
are related when controlling the walk (i.e. the region in the image where the object is,
and the measured optic flow at such region). The condition to be fulfilled is of the type
Enabling (see Eq. (6.13)). The activation signals of the input node set .J are evaluated
in Eq. (6.10), such that the condition is a;(t) = 1 Vj € J. In case a synchronization is
detected the Walk Motion Group is activated.

Saggital Motion

In this node the magnitude of the flow is taken as informative on the scene depth.
Thus, from the optic flow vector [0z 0y]* (see Eq. (3.12)) associated to each pixel (x,y)
of the image, and the binary image O obtained by the color-based segmentation of the
object; the average magnitude Cv of the optic flow related to the object is defined by

E= 1330yl 6yl (6.20)

where n = mgq is the zero moments of O, as defined in Eq. (3.4). The output u of the
behavior includes ¢ and the associated correction in the saggital motion plane, so
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X if 5—5*<—61
u= —X if 5—5*>€1

0 otherwhise

(6.21)

Here (V* is the learned by kinesthetic demonstration. Thus, the robot is put to a static
march so it moves to generate flow without changing the position. The parameter ¢;
is a threshold tolerance. Thereby, the behavior assumes that the mean flow magnitude
produced by the object approaching in the saggital plane direction, is similar to the one
registered in static march (this is reasonable for walking, but it may not hold in case of
running). As seen, the correction is a step signal of magnitude X. The activity signal is
set to a = 1 if no runtime exceptions occur, and a = 0 otherwise. The target rating signal
is set to r =0 if u =0, and r = 1 otherwise.

Frontal Motion

This behavior relies on the analysis of the bilateral symmetry of the object (other
features are reported in Hauagge [80]). Let the salient blob b be split into a left and a right
half by the vertical axis of symmetry (i.e. a parallel to the image y-axis passing through
the center ¢ of the bounding box enclosing the blob), so b = b, Ubg. The proportion k is
defined such that

mMroo0

k= (6.22)

MRoo’
where mrgy and mpggy are the zero moments associated to by, and bg respectively. The
output u of the behavior is the correction in the frontal plane, defined by

}:/ if E—Fk >e¢
u=< —-Y if k—k"<—€ . (6.23)
0 otherwhise

Here k* is the demonstrated value. It is registered by placing the robot in the desired
configuration with respect to the object. The parameter €, is a threshold tolerance.
Similarly to the previous case, motion in the frontal plane is defined by a step signal of
magnitude Y. The activity signal is set to @ = 1 if no runtime exceptions occur, and
a = 0 otherwise. The target rating signal is set to r = 0 if u = 0, and r = 1 otherwise.

Angular Motion

This behavior is in charge of regulating the angular motion of the robot. The desired
correction ¢ is obtained from the heuristics knowledge that the z-axis of the neck yaw
is approximately aligned to the motion plane normal direction (see Sec. 4.6.3), so, it is
informative on the heading direction of the object. Thus, it is defined by

¢ = max(min((a — o), ¢), —), (6.24)

where « is the yaw posture of the neck, o™ is the desired state learned by demonstration,
and ¢ is a saturation to the angular motion. The output u is defined by considering a
threshold tolerance €3, such that
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u:{ o if [0l > e (6.25)

0 otherwhise

The activity signal is set to a = 1 if no runtime exceptions occur, and a = 0 otherwise.
The target rating signal is set to r = 0 if u = 0, and r = 1 otherwise.

Head Motion

Similarly to the Look-at task defined in Sec. 4.4.2, this node is in charge of directing
the head towards the object of interest. However, only the close-loop regulation is con-
sidered (i.e. there is no open-loop anticipation of the object’s pose, since the localization
in the ego-cylinder is not observed).

Let qn = [o (]' be the correction of the joint neck positions to center the object
in the field of view (see Eq. (4.21)). The output u of the behavior is defined from the
threshold ¢4, such that

0 otherwhise - (6.26)

if d
u— { qn 1 > €y
Here d = ||(¢x, ¢y) — (ix, iy)|| is the euclidean distance between the coordinate of the blob
centroid (cy, ¢y), and the coordinate of the center of the image (ix,iy). The activity signal
is set to @ = 1 in case the object is detected, and a = 0 otherwise. The target rating
signal is set to

r— ; <|Cx _ ix| 4 ey '_1y|> ’ (6.27)

ix Iy

Walk Arbiter

This behavior is in charge of determining the walk correction to steer the robot to-
wards the objects. As discussed in Sec. 5.3.1, human locomotion is mostly non-holonomic
when approaching the object, though holonomic corrections may be applied in the prox-
imity of the object. A state-based arbitration scheme is considered to select the motion
style. As illustrated in Fig. 6.7, the motion policy transits between the Non-holonomic

and the Holonomic states.

g1

g1

Non-

92 holonomic

g1

Figure 6.7 — State automate for discrete events arbitration between holonomic and non-
holonomic walk style. The transition events are denoted by g;
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The module is initialized in the Start state. The Non-holonomic state combines
the information from the output of Saggital and Angular Motion, such that the motor
command issued by the state is u; = [X 0 ¢]'. The Holonomic state combines the
information from the three motion behaviors, so the motor command issued by the state
is up = [X Y ¢]*. The state End is reached once an interruption signal is produced, in
this case the motor command us = 0 is issued to stop the robot. Thereby, the arbitrated
output u of the behavior is defined by

u=(1—g3)(gius + gouy) + gs(us), (6.28)

where the event g, is the activation of the Non-holonomic state, such that g; = 1 if Cv < €5,
and g; = 0 otherwise. Here 5 is the average flow related to the object of interest (see Eq.
(6.20)), and €5 is a parameter representing the transition threshold. The event g = 1— g1,
and the event gs is a user interruption or a runtime exception. The activation signal is
a =1 — g3. The target rating signal is set to = 0 if |u| = 0, and r = 1 otherwise.

Motion Execution

This behavior is in charge of sending the most recent commands to the motion
primitives of the robot. So it centralizes the access to the robot actuation in order to
avoid concurrency issues. The input data is d = [d,, dy,|*, where d, is a relative 2D pose
to be execute by the walk primitive, and dy, is the desired motion of the robot neck. The
activity signal is set to a = 1 if no runtime exceptions occur, and a = 0 otherwise. The
target rating signal is set to r =a — 1.

Experiments

A scene was simulated in Webots where the agent has to approach a painting on the
wall. The frequency for the Data Acquisition and Motor Execution nodes is set to 30 Hz.
The rest of the nodes run at a frequency of 20 Hz. The model parameters are detailed in
Tab. 6.3. Similarly to the study cases of Chapters 4 and 5, the color model of the object
is provided by first-person demonstration. Likewise, the desired states of the Saggital,
Frontal, and Angular Motion nodes are also provided by kinesthetic demonstration. Three
experiments are designed. In the first experiment the model presented in Fig. 6.5 is
evaluated. In the second experiment the texture of the object is changed such that the
bilateral symmetry is affected. The idea is to evaluate whether the criteria employed to
observe the lateral displacement is effective with less symmetrical objects. In the third
experiment a simpler and computationally less expensive version of the model is studied.
As shown in Fig. 6.8, the calculation of dense optic flow is approximated by the estimation
of the sparse flow generated by the centroid of the emergent blob, which operates as a
virtual sensor. Thereby, the state space of the Top-down Saliency node is extended to
include the image position of centroid in the last two consecutive acquisitions, which is
denoted respectively by c(; and c;_1). So the average flow considered in Saggital Motion
(see Eq. (6.20)) is approximated by the sparse flow

F=llew = ca-vll, (6.29)
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Id Description Value
€1 Tolerance for Saggital Motion convergence. 0.5

€2 Tolerance for Frontal Motion convergence. 0.02

es  Tolerance for Angular Motion convergence. 0.06 rad
€4 Tolerance for Head Motion convergence. 5

€5 Mean flow threshold to switch between the holonomic 20
and the non-holonomic motion styles.

Table 6.3 — CS-I task parameters.

Robot sensors

Data
Acquisition

Level 0
Top-down
Saliency
Level 1
Saggital Argular Head
Motion Motion Motion
Motion

Robot actuation

Figure 6.8 — CS-I sparse flow task model. The optic flow of the object is approximated by the
virtual flow of the centroid. The two-level hierarchy is maintained.

Figure 6.9 — Reactive object approach. Some frames have been superimposed to illustrate the
trajectory followed by the agent under two distinct initial conditions. The scene is static (the
human model was not moving).

Results

In the first experiment the agent was able to approach the painting. Figure 6.9 shows

the results for two different initial conditions. As it can be noticed, the robot performed
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Frame-a Frame b

Frame:¢ Frame d

Figure 6.10 — Snapshots of the evaluation of the bilateral symmetry condition.

Figure 6.11 — On-board view of the bilateral symmetry condition. On the left the painting’s
texture is changed to generate a perceived asymmetric blob. In the center the features are
marked. The centroid of the bounding box is plotted in blue and the vertical axis is green. On
the right the salient blob. The on-board view corresponds approximately to the situation of
"Frame a" in Fig. 6.10.

Figure 6.12 — On-board view of the sparse flow evaluation. In case the robot is critically prox-
imal to the object, the centroid flow is no longer informative for the Saggital Motion behavior.
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most of the time non-holonomic motions, so the trajectories obtained were efficient. The
results for the second experiment where less satisfactory. As illustrated in Fig. 6.10, the
robot required more time to converge to the desired location since it took a less optimal
path. This is due to the fact that the heuristics employed in Frontal Motion is satisfied
from more locations, since the object is less bilateral symmetric (see Fig. 6.11, the agent
is attracted to a diagonal location that corresponds approximately to "Frame A" in Fig.
6.10). In the last experiment the robot was able to efficiently approach the object when it
was completely visible. Though, when it was cropped in the field of view the virtual flow
detected was noisy, which induced errors in Saggital Motion. As shown in Fig. 6.12, the
worse case occurs when the robot is critically proximal to the object, so the blob spans
over the whole image and the sparse flow is null.

Discussion

From the results obtained an interesting aspect to be noticed is that, by exploiting
embodiment and local heuristics, and in case a sufficiently high acquisition rate is available
in the platform, the model proposed can provide similar trajectories to those obtained in
Sec. 5.5.5 (that were based on the observation of the ego-cylindrical localization, from a
disembodied representation of the object). This is consistent with the physically grounding
hypothesis (Brooks [29]), so action-oriented representations would ground the solution of
the task. That is, the representations would be obtained from the embodied experience
(e.g. the color perceived from the object, the optic flow, the neck posture, and the bilateral
proportion of the object). However, as seen in the second experiment, the heuristics used
by Frontal Motion did not produce the same results for a less symmetric stimulus. Thus,
alternative representations should be investigated to determine the corrections on the
frontal plane. Generic frameworks are available in the literature of machine learning (e.g.
Self Organization Maps, Artificial Neural Networks, among others), though training is
normally required to produce reliable observations. This is in fact a distinctive aspect of
pure EC models, where the generalization of the solution is not ensured, even to small
changes in the task specifications (which can be disadvantageous for service robotics
applications). In practice different sort of representations may be required. Finally,
other interesting aspect observed was the fact that, in case a color model of the object
is available, and the object is fully visible, virtual features (e.g. the blob centroid) can
be used to obtain a computationally less expensive solution, based on the sparse flow
estimation of depth.

CS-II: Object approach and obstacle avoidance

The previous case study showed that optic flow can provide an estimate on the depth
of a known object with respect to the camera sensor, so a question to be answered is:
can the information obtained from optic flow be used to avoid unknown obstacles in the
scene? In the context of mobile robot control some studies have explored the use of optic
flow processing. A work by Yoo et al. [190] investigated the control of an unmanned aerial
vehicle by heuristically balancing between the right and the left optical flow vectors. The
same strategy was employed by Souhila & Karim [169] for controlling a wheeled robot.
A work by Low & Wyeth [111] has reported that consistent information about obstacles
can be obtained from sparse optical flow in a wheeled robot Pioneer. However, when
considering the aspect of embodiment, the mobility of the visual system of these robots
may be different than the one induced by walking robots, so it is not clear whether reliable
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information about obstacles can be obtained in humanoids. In the RoboCup competition
sensorimotor mapping and activity mining, relying on optical flow patterns, has been
used to learn different situations of the game (e.g. to select most relevant skill, such that
kicking, approaching, or catching the ball; see Ogino et al. [136]), though the visual task
was strongly bound to the structure of the environment (e.g. the assumption that a ball
rolls on the floor).

In this study a multi-objective navigation task is designed in which the agent has to
avoid obstacles as it approaches the object of interest. Figure 6.13 presents the model
proposed. Similarly to the precedent case, regular nodes are represented in gray and the
fusion behavior in blue. CBS nodes are not used. The two-layer hierarchy of the model
is maintained. The data signal is represented by the thick gray arrow. It is interesting
to notice that feedback represented in orange, from the last motion command sent to the
robot, is now available to all the nodes. The control signals are represented by the thin
black lines. The model comprises a total of ten concurrent behaviors, which are generally
more complex than in the previous case. Next, these behaviors are detailed.

Robot sensors

Data

Acquisition

Level 0
Bottom-up Top-down
Saliency Saliency
Stimuli

Persistence

Level 1

Head
Motion

Approach Search Reactive
Motion Motion Motion

Walk Motion
Group

—

Motion Level 0
Execution

Robot actuation

Figure 6.13 — CS-II task model.

Behaviors

Some behaviors, such that Motion Execution, have been fully defined in the preceding
study. Some others behaviors have been extended in the current architecture. This is the
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case of Data Acquisition, that receives and propagates the last motion command sent to
the walk primitive as feedback. Top-down Saliency is also extended to implement the full
version of the Look-at task as detailed in Sec. 4.4.2 (i.e. by including both the predictive
and the regulation control of the neck). The remaining behaviors are quite different, so
are discussed in more detail.

Bottom-up Saliency

This node is in charge of unsupervised saliency detection based on the computation of
dense optic flow. For this, the segmentation algorithm detailed in Sec. 3.4.4 is employed.
The binary image is obtained by applying an heuristic threshold test ¢; to the magnitude
of the measured flow f (see Eq. (3.40)). Thereby, the output u of the behavior includes the
measured flow, the binarization obtained from Eq. (3.9), and the centroid of the salient
areas (see Eq. (3.5)). The centroid is used by the Stimuli Persistence node to represent
locations related to the obstacle, so the Reactive Motion behavior can produce the control
signal to avoid such locations. The activity signal is set to a = 1 if an obstacle is detected
(that is, by applying a threshold test €3 to filter out noisy detection, so mgy > €3), and
a = 0 otherwise. The target rating signal is set to » = 0 if no runtime exceptions occur,
and to r = 1 otherwise.

Stimuli Persistence

This behavior implements the sensory ego-cylinder, as detailed in Sec. 4.5. Thus,
it works like a sensory buffer that ensures persistence of recent locations related to the
object of interest and the obstacles. That is, given the camera motions and the fact that
the vision sensor has a limited view angle, it is important to retain recent locations to
keep motion consistency; an aspect also noticed by Fujita [71].

The input d of the behavior includes the information provided by the saliency de-
tection (both bottom-up and top-down). In realistic scenarios, many regions may be
identified in the retinal space by Top-down Saliency, so the information related to the
object of interest has to be discriminated. As explained in Sec. 5.4, the selection relies
on embodied filtering obtained through the Bayesian network. Thereby, the localization
of the object of interest in the ego-cylinder is estimated from the retinal saliency and the
3D model of the object (see Sec. 4.5.3).

No model is available for observing an obstacle location "o, so only the position
component can be estimated. The bearing and the height of the blob centroid issued by the
Bottom-up Saliency node are directly observable. Knowledge acquired from known stimuli
can be exploited to estimate the distance to the obstacles. By kinesthetic demonstration,
the robot is put to walk toward an object in the saggital plane direction, so the mean
optic flow 5 associated to the object and its localization ©( are registered. Thus, a
rough estimation of the obstacle’s depth “6, with respect to the camera frame C can be
obtained, by establishing a linear correspondence between the mean flow magnitude o of
the bottom-up salient blobs, the mean flow magnitude Cv detected for the known object
(i.e. it is calculated over the mask resulting from applying the logical AND operator to
the top-down and the bottom-up saliency segmentations), and the observed depth ©¢,.
Thereby, the obstacle’s depth is estimated such that

B
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- o
COP = TCC/M (630)

where the position of the obstacle 26 with respect to the base frame B is obtained from
B5 = BT¢(q)%0, so it depends on the current joint configuration q.

Locations of stimuli are updated in the ego-cylinder by considering a motion model of
the walk (which in this study is deterministic). Thereby, the prediction for the evolution
of stimuli are determined according to Eq. (4.17). The heading direction for the obstacles
are set to zero since they are not observed. The representations expire according to the
forgetting factors ~,(; and ¢, associated respectively to the obstacle o; and the object of
interest (. They are defined by

to %
Yo(i) = 1 — min <( L, 1) (6.31)
€3
and
. ([t
Y =1—min (, 1> . (6.32)
€4

Here the parameters €3 and €4 represent respectively the expiration time for locations
related to obstacles and the object on interest. The timers ¢,;) and ¢; are independent
(i.e. the information related to the obstacle and the object of interest may arrive at
different instants). Once a location is stored its timer is initialized to zero. Since only
one object of interest is tracked, the observation of the localization of the object overrides
the previous information. In case the object leaves the field of view, the forgetting factor
7¢ would provide a valuable information, so the search motion can be activated in the
Walk Fusion node. Contrarily, the detection of an obstacle location does not override the
previous ones (that continue to exist until the expiration time €3 is reached). However,
a unique fused location 26 is issued by the behavior (as if only one object would be
detected), which is defined by

1
By _

Z exp(l — %(i))BO(i), (6.33)
i=1

2

where L is a normalization term, and the issued forgetting factor is

Vs = max(Yo(i))- (6.34)
That is, the one associated to the most recent obstacle location.

To summarize, the output of the behavior is the vector u containing the active
locations #¢ and £6, and the associated forgetting factors . and ~;. The activity signal
is @ = max(v:,7s). In case 7. = 0 the Search Motion policy is used in Walk Fusion to
find the object. The target rating signal is set to » = 0 if no runtime exceptions occur,
and r = 1 otherwise.

Approach Motion

This node is in charge of steering the robot toward the object of interest. It handles
the control of locomotion as detailed in Sec. 5.3.3. Thus, the node implements the first-
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order description of motion given in Eq. (5.6), which mimics the human walk style. The
regulation of the view direction is delegated to Head Motion in order to preserve the
modular philosophy, so the control of the head and the walk is decoupled. Thereby, the
input d includes the current localization of the object in the ego-cylinder. The output
u=[XY ¢]'is the desired regulation of the walk. The activity signal is set to

(6.35)

1 if3ie{1,2,3}] (Juy| —€5) >0
%=1 0 otherwise

where €5 is a 2D pose tolerance. An inhibitory signal is heuristically sent to Reactive
Motion when €, < €, in order to ensure the convergence of the task. That is, once closed
enough to the object of interest the reactive motion is no longer relevant, since the agent
would react to the presence of the object of interest itself, instead to an obstacle. The
target rating signal is defined by

1 (]
= mi — —|.1]. 6.36
T min (3 o ( €5; ) y ) ( )

Reactive Motion

This node is in charge of directing the robot away from the obstacles. The input d
contains the estimated position of the obstacle 6 in the ego-cylinder (see Eq. (6.33)),
and the associated forgetting factor 75 (see Eq. (6.34)). The principle is illustrated in Fig.
6.14. The robot heuristically moves in the opposite direction of the obstacle’s bearing to
leave the security region. The angular correction ¢ is obtained by

¢ = —sign(f)max(e; — |6],0), (6.37)

where 6 is the bearing of the obstacle. The function sign(.) returns the signed unity, and
¢7 defines the bounds of the security region.

Figure 6.14 — The obstacle in red induces clockwise reactive motion, since it falls within the
security region delimited by the dashed lines. The blue obstacle would not produce reactive
motion in the depicted situation.

Motion in the saggital plane (see Fig. 2.12)) is also induced to bypass the obstacle.
The idea is to advance while turning in a non-holonomic fashion. The closer the obstacle
is, the less the robot should move in the sagittal plane to avoid the collision. Thereby,
the desired motion is defined by

X =(1-|¢|/er)es (6.38)
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where eg is a parameter describing the saturation for the saggital plane displacement.
The output of the behavior is u = [X 0 ¢]*. The activation signal is set to a = 0 if an
inhibition signal is received from Approach Motion, and a = 7, otherwise. The target
rating is defined by

r= 0

€7

(6.39)

Search Motion

The objective of this behavior is to search for the object once it has left the field of
view. The input to the node is the prediction of the object’s bearing 0, conforming to Eq.
(4.17). The output is the non-holonomic search motion u = [X 0 ¢]*, where the angular
component is obtained by

¢ = sign(0)min(|6], eo). (6.40)

The parameter ¢y is a saturation on the angular motion. Motion in the saggital plane is
heuristically induced once the robot has turned to the expected location of the object with
a tolerance €19, so the robot can wander until eventually re-locating the object. Thus,

. X if |§| < €10
X = { 0 otherwise (6.41)

The activation signal is set to a = 1 if 7. = 0, and @ = 0 otherwise. The target rating
is defined by

r = min (ml, 1) . (6.42)

€9

Walk Fusion

This node is in charge of combining the three walk policies available. For this, two
behavioral modes are defined. In the approaching mode, the object of interest is considered
to be available if the forgetting factor 7. > 0 (see Eq. (6.32)). That is, even though the
object can be eventually occluded, the localization is persisted in the sensory ego-cylinder
for a while. A fusion between Approach and Reactive Motion is produced, according to
the scheme described in Eq. (6.8). The other scenario corresponds to the searching mode,
when 7, = 0 (i.e. the object is considered to be lost). In this case, the fusion is produced
between Search and Reactive Motion.

Experiments

A scene was simulated in Webots where the agent has to approach to the blue can
over the sofa, while avoiding the static columns. The frequency for the Data Acquisition
and Motor Execution nodes was set to 30 Hz, the rest of the nodes run at a frequency of
20 Hz. The model parameters are detailed in Tab. 6.4. A first experiment was designed
in order to evaluate whether the agent is able to accomplish the task, by relying only on
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Approach Motion. This is to verify whether the task is challenging enough. The second
experiment includes the approach to the object from ten distinct initial locations with the
model fully operational. In the third experiment more columns are added to increase the
difficulty on the task.

Id Description Value

€1 Bottom-up threshold test for segmentation. 12.0

€s  Bottom-up segmentation noise tolerance. 20

€3 Expiration time for obstacles in the ego-cylinder. 15

€4  Expiration time for the object of interest in the ego-cylinder. 20

€5 Approach Motion convergence tolerance. Distance in meters and [p 6 ¢]* =
angles in radians. [0.050.04 0.1]

€s  Object distance test for Reactive Motion inhibition. 0.4 m

e7  Bounds of the security region for obstacle avoidance. 0.79 rad

es  Saturation for saggital plane displacement in Reactive Motion. 0.1m

€9 Saturation for angular motion search. 0.26 rad

€10 Tolerance for orientation correction in Search Motion. 0.03 rad

Table 6.4 — CS-II task parameters ¢;.

Results

As shown on the left side of Fig. 6.15, in the first experiment the agent lost the
object of interest and did not finish the task when only the Approach Motion walk was
active. In the second experiment the robot could approach the object while avoiding the
obstacles. Figure 6.16 illustrates the reactive motion produced based on the segmentation
of the optic flow. As seen in Fig. 6.17, the robot was able to avoid the locations of the
obstacles.

Figure 6.15 — Non-reactive vs. reactive approach. On the left Reactive Motion is deactivated.
Some frames capturing the evolution of the robot are superimposed. The robot ended up blocked
by the obstacle. On the right, with the activation of the Reactive Motion the agent is able to
accomplish the task.

Discussion

The experiments showed that the task could be accomplished, so the robot ap-
proached the object of interest and reacted to obstacle locations, from color and dense
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On-board image Detected flow Segmented flow Obstacle localization
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Figure 6.16 — Model performance. The robot avoids the column in the saggital plane direction
by processing the optic flow.

Figure 6.17 — Evaluation of motion consistency. During the approach the agent losses the view
contact with the object of interest, so it has to rely on the temporarily persisted locations.

optic flow saliency processing. The robot was able to do the task despite the fact of count-
ing on a reduced field-of-view sensory system (i.e. monocular vision), and not planning
the motion in a cartographic representation of the scene. Through the persistence mech-
anism designed in the ego-cylinder, the desired behavior could be obtained even when
the object temporarily left the field of view. Thus, motion coherence is observed through
short-term persistence, a distinguishable aspect of behavior-based models.

As noticed on the right side of Fig. 6.15, though the inhibition of Reactive Motion,
based on the heuristics consideration of the distance to the object, allowed the agent to
do the task; the resulting trajectories after bypassing the obstacles were not necessarily
the most efficient. This happened since the agent reacted to noisy obstacle detections,
and also by the fact that Reactive Motion directed the robot away from the sofa, where
the object of interest was. Furthermore, as shown in Fig. 6.17, the path taken may also
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not have been the most efficient from the beginning of the task, so the robot could have
gone through the columns instead of around them. This is because in the model the
trajectory is largely dependent on the initial pose of the robot in relation to the obstacles,
since motion is not planned but emerges on-line. In the next case study the possibility
of improving these results is explored by defining alternative behavioral mode profiles in
the Walk Fusion node, and by considering motion primitives to start the approach from
different directions.

Finally, since objects were represented by particles in space, occasionally the robot’s
hand touched the columns when bypassing them. This can be controlled by assigning
more weight to reaction in relation to the approach component of the walk, in order to
increase the distance to obstacles. Thus, a compromise between producing safer but longer
trajectories must be found. This seems to constitute a limitation of the representation
chosen. Alternatively, the exploration of volumetric representations of the obstacle in the
ego-space could motivate the study of more efficient trajectories. This aspect remains for
future research.

CS-III: Learning-based approach

In order to improve the results obtained in the precedent case study, a more flexible
scheme in Walk Fusion is studied. The idea is to arbitrate between different walk profiles,
depending on the evaluation of the current state of the task. Hence, by exploiting the em-
bodied aspect of behavior, the agent learns visual descriptors of the scene from kinesthetic
demonstrations, that helps it to distinguish between the situations of free and blocked
access to the object of interest. Accordingly, two walk profiles are defined by assigning
different weights to Reactive and Approach Motion. In addition, by representing the task
as a Markov Decision Process (MDP), more flexibility is obtained through the definition
of motion primitives, so the robot can start the approach from different directions and
learn the actions that produce the best performance. Learned policies are extended to
new cases by case-based reasoning.

Visual encoding

A visual description of the scene is proposed as a means to select between distinct
walk profiles. For this, the nodes Bottom-up Saliency, Stimuli Persistence, and Walk
Fusion, of the model shown in Fig. 6 are modified, as detailed next.

Bottom-up Saliency

The output of this node is slightly changed, so instead of producing a binary segmen-
tation, a ternary image M is obtained by applying two global threshold tests €; and e
to the magnitude of the measured flow f (see Eq. (3.40)). These thresholds correspond
respectively to a high and a moderate flow condition. Thus,

2 if ﬁ > €
M; =< lelseif f; >e . (6.43)
0 otherwise

The thresholds are defined so €; > ¢5. They are set from kinesthetic demonstration. That
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is, the robot is put to walk toward an obstacle placed in the saggital plane direction, and
the mean flow magnitude is registered at two given proximities in relation to the object.
Figure 6.18 illustrates the obtained segmentation by following this approach. Thereby,
the output u of the behavior is changed so it includes the ternary image M obtained from
Eq. (6.43), and the centroid of M = 2 (high flow saliency condition) conforming to Eq.
(3.5). Similarly to the previous study case, this centroid is used by the Stimuli Persistence
node to represent locations related to the obstacle, so the Reactive Motion behavior can
produce a walk motion signal to avoid such locations.

Segmented flow

On-board image Detected flow

\[IJ

Figure 6.18 — Bottom-up segmentation. The red regions correspond to high flow, whereas the
green regions correspond to moderate flow.

il

Stimuli Persistence

The purpose of this node is now twofold. It is in charge of persisting the ego-
localization of stimuli (as defined previously), but also of fusing the information from
Bottom-up and Top-down Saliency, in order to produce a visual encoding of the scene, as
a means to assist the behavior arbitration conducted in the Walk Fusion node.

From the bottom-up segmentation of the optic flow into moderate and high intensity
regions, and the binary mask obtained by top-down processing so the region that belongs
to the object is identified; a scene encoding is proposed as an egocentric visual description
of the task. As illustrated in Fig. 6.19, the current view is partitioned into three sectors
H = {LLII,IIT}. Three flow modalities associated to obstacles are: low ’0’, moderate '6’,
and high ’O’. Similarly, the flow associated to the object of interest is described by: low o,
moderate ‘67, and high ¢’ Since the tracked object is considered to be unique in the scene
(due to the embodied filtering selection described in Sec. 5.4), in case it would span over
more than one sector, it is heuristically assigned to the one containing the biggest propor-
tion of the blob. Therefore, the scene is encoded by words of length 6 (i.e. 3 binomials),
according to the regular expression (RegExp): ([060]o)*(([060][od¢])(? = .0))([060]o)*.
A total of 189 unique encodings can be obtained. Formally, the encoding for the sectors
h € H is computed from the binary mask ¢ associated to the object of interest, and the
ternary mask M (see Eq. (6.43)) associated to obstacles, according to the functions g,(.)
and g¢(.), defined such that

O if (M =2)A-p)
go(M,p) =14 6 elseif (M =1)A-p) , (6.44)
o otherwise

¢ if (M =2)Np)
ge(M,p) =% 6 elseif (M=1)Ayp) . (6.45)
o otherwise
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Here A is the logical AND operator.

Figure 6.19 — Visual encoding. On the left the external view of the scene. The visualization
cone is projected so the regions corresponding to the sectors H = {I,II,III} are shown. The
region shaded in red would correspond approximately to the space associated to high optic flow.
Similarly, the external green arc would delimit the space associated to moderate flow. On the
right column the on-board views are given. The image at the middle corresponds to the top-
down segmentation based on color, so the can is identified in the retinal area in blue. The image
at the bottom is the ternary segmentation of the optic flow. The encoding obtained for the
situation depicted are the pairs: "60" (moderate obstacle flow and low object flow in the sector
I), "O¢" (high obstacle flow and moderate object flow in the sector II), and "Oc" (high obstacle
flow and low object flow in the sector III). Thereby, the word encoded is "6c0500".

To summarize, the output of the behavior is the vector u that contains, in addition
to the active locations ¢, 6, and the associated forgetting factors v, and 75; the scene
encoding produced.

Walk Fusion

In this node the arbitration between the three walk behaviors is produced. Inspired
by the weighted fusion scheme described in Proetzsch et al. [152], the node signals are
defined, such that

k k
2
Z() Wjajllj Zo aj ‘E() aj’f'j
j= j= j=
u=|———|,a= | v, = - (6.46)
> Wiay > IR
=0 =0 =0

In the calculation of u the input activation vector a is pre-multiplied by the vector w,
that assigns different weight to each walk behavior (i.e. Approach, Reactive, and Search
Motion).

As illustrated in Fig. 6.20 and described in Tab. 6.5, at each iteration a state-based
arbitration scheme is processed in the state Sy, so a transition is produced to one of three
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Figure 6.20 — State automate for discrete events arbitration between the motion profiles de-
scribed in Tab. 6.5. The transition events are denoted by g;, which are described in Tab.
6.6.

State wy w1 Wo Profile

So - - - Arbitration

S1 0.00 0.75 0.25 Object search

So 0.80 0.20 0.00 Fast approaching
S3 0.25 0.75 0.00 Obstacle avoidance

Table 6.5 — State arbitration profiles. The weights wq, w1, ws are assigned respectively to the
input from Approach Motion, Reactive Motion and Search Motion.

Event Condition

g1 The forgetting factor 7 = 0 (see Eq. (6.32)), that is to say the object
is considered to be lost and not temporarily occluded.

29 The probability p of having a free access to the object, given the encoding
transition detected, is p > e3. The estimation of p is done conforming
to Eq. (6.47).

g3 g3 = 782

Table 6.6 — Arbitration events.

walk modes. Similarly to the previous definition of this behavior in Sec. 6.5.4, a switch
from Sy to S7 occurs when Search Motion becomes active, due to the lost of the object.
The novelty here is the distinction between walk modes that are adequate for the cases
of having a free access and a blocked access to the object of interest. Thus, the idea of
the state Sy is to ensure a fast convergence to the object once there is no obstacle along
the path. This is done by assigning less weight to the contribution of Reactive Motion in
relation to Approach Motion, so the robot ideally neither reacts to noise nor avoids the
location of interest. Contrarily, in the state S3 more weight is assigned to the reactive
component to avoid the obstacles.

As described in Tab. 6.6, the switch event g, is triggered based on the probabilistic
evaluation of the scene encoding. Let () be a random variable representing the fact
of having a free access to the object of interest, and the event E denote the encoding
transition binomial (a, b) occurring in the task. That is, the passage from a word descriptor
a in time t = k to a word descriptor b in time t = k 4+ 1. From the a priori probability
distribution p(E|Q), obtained by kinesthetic demonstration, the desired a posteriori query
p(Q|E) is evaluated by applying the Bayes theorem. Thus,

(E1Qp(@)

P
p(QIE) = (E) (6.47)
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The learning of this probability is treated in the first experiment of the case study.

Learning motion primitives

The robot is given the possibility of choosing from five actions, that consist is starting
the motion in a particular direction (see Fig. 6.21). This selection is modeled as a Markov
Decision Process (MDP). As illustrated in Fig. 6.22, the transitions to be learned are
enclosed in the blue box. The state set S is described in Tab. 6.7. Action selection
is obtained based on the observation of the scene encoding. In this case the encoding
is done previously to start the locomotion and not during the walk. Ideally an ocular
saccade would be produced. Since it is not available to the Nao platform, the robot turns
slowly the head while standing up to generate the optic flow. Given a particular scene
encoding, the idea is to learn by reinforcement the transition from Sy that produces the

most reward.
%%

Figure 6.21 — Top view of the action primitives.
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Figure 6.22 — MDP task model. The transition from s; to s; when taking the action a;; is
denoted by (oj,7ij), where r;; is the immediate reward and o; is the transition probability.
From all actions there is a transition to sg (some are omitted for clarity), which model an
abnormal end of the task with probability 1 — a;; and reward r;3. The transitions to be learned
are those departing from Sy (which are delimited by the blue box). A detailed description of
the states and rewards are provided in Tab. 6.7.

Learned policies from similar encodings can be heuristically used as an initial guess
when facing new situations. The idea is to check whether there is a physically similar
experience encoded from which a policy can be attempted. In case there is, the learned
action is expressed according to the current view perspective, so it is tried in the current
situation. The comparison on the similarity between the current encoding w; and a learned
encoding wy, is obtained through the function man(G(a,b)), that gives the Manhattan
distance (see Fig. 6.23) between two nodes a and b in a graph G(a,b). The distance n
between two encodings is defined by
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State Description

Sp: Start Entry to the control program, in case the resources are available, an initial-
ization signal is sent so the joints are activated and the robot stands up.

S1: Encoding The scene is encoded by slowly turning the head from left to right.

S9: Selection  The robot choses a motion primitive to execute.

Ss: Walk-72  The robot turns 72 degrees clockwise and then walks in the saggital plane
direction a distance €4 m.

Sy: Walk-36  The robot turns 36 degrees clockwise and then walks in the saggital plane
direction a distance €4 m.

S5: Walk-0 The robot walks in the saggital plane direction a distance €4 m.

Se: Walk+36  The robot turns 36 degrees counter-clockwise and then walks in the saggital
plane direction a distance €4 m.

S7: Walk+72  The robot turns 72 degrees counter-clockwise and then walks in the saggital
plane direction a distance ¢4 m.

Sg: End Terminal state. Program ending requested by the user are penalized, so in case

an interruption « is produced x = 0, otherwise x = 0. Reward is also related to
the dead reckoning estimate on the linear distance traveled d = Zig i+ vz,
and the number n of times the object was out of the field of view. Therefore,
the reward is rg = kes + d + neg.

Table 6.7 — MDP state descriptions. When not specified, the reward r; = 0.

n=">_ man(G(wyn), Wn)))- (6.48)
heH

Thus, two encodings are considered to be similar if n < e;. Once a trial is finished, the
case-based memory is updated with the learned Q-value.

Experiments

Figure 6.23 — Visual encoding neighborhood. Manhattan distance graph G.

Four experiments were designed. As shown in Fig. 6.24, in the first experiment

the robot is put to walk toward the object in two conditions: in one the path is cleared
from obstacles, in the other it is not. Thus, the encoding transitions are registered from
kinesthetic demonstration, in order to calculate the a posteriori probability distribution
p(Q|FE), as defined in Eq. (6.47). In the second experiment the current implementation
of the behavior is compared to the model defined in the precedent case study (see Sec.
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6.5.4). For this, the task is repeated under the same conditions. In the third experiment
multiple instances of the object of interest are added to increase the difficulty on the task.
In the forth experiment, the RL-based approach is evaluated at distinct initial positions.
Table 6.8 presents the parameters used in the model.

Figure 6.24 — Example of kinesthetic demonstrations for learning the scene encoding transi-
tions. The robot walks towards the object. On the left a column is blocking the path, whereas
on the right there is a free access to the object.

Id Description Value
€1 High flow threshold test 12.00
€9 Moderate flow threshold test 7.0

€3 Probabilistic test for state arbitration. 0.8

€4 Motion in the saggital plane induced by RL  0.15 m
€5 User program interruption cost 200

€6 Object lost iteration cost 0.1

€7 Manhattan distance threshold 4

Table 6.8 — CS-III task parameters.

Results

In the first experiment (see Fig. 6.25), the transitions produced were registered,
so p(E|Q) was estimated. After training, several tests where performed to assess the
recognition of the event ). The free access to the object was identified at a rate of
65.21% when this condition was tested (with €3 = 0.8). On the contrary, the robot failed
to recognize the condition of blocked access to the object at a rate of 1.07% . As shown
in Fig. 6.26, failures can probably be explained by noisy detection of the optic flow from
simulated images.

Figure 6.27 illustrates the results obtained for the second experiment. The differences
are subtle, though the trajectory followed on the right (i.e. the Walk Fusion behavior is
based on learned transitions from the scene encodings), was slightly more efficient. The
results for the third experiment is shown in Fig. 6.28. It is noticed that despite the
presence of other cans over the sofa, the robot was able to converge to the desired one.
The result for the fourth experiment is presented in Fig. 6.29. Table 6.9 gives the roll-
out reward obtained for the full set episode. In this case, the most efficient action was
do__ Walk+36, since no occlusions were produced. As shown in Fig. 6.30, the robot was
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188

Figure 6.25 — Encoding transition matrix. The encodings are enumerated from 0 to 188, so
a white dot in the matrix represents a transition between two indexes. The matrix on the left
corresponds to the demonstration of a free access to the object. On the right, the transitions
obtained when obstacles blocked the access to the object. Two transitions are shown. The
location A corresponds to a transition from the encoding "o60505" to the encoding "oG0666"
(probably due to noise), whereas the location B corresponds to a transition from the encoding
"060606" to the encoding "odooos".

Figure 6.26 — Panoramic flow detection. On the top, the view of the scene at a range of «
rad in the frontal ego-space. On the bottom, the normalized magnitude of the flow. Clearer
regions should be phisically closer to the sensor than darker regions. As seen, noise from texture
mapping in the simulated images affected the computation of the optic flow (e.g. the top-left
corner of the sofa is perceived closer than the frontal part).

placed in an adjacent location so it applied the policy previously learned for a similar
scene encoding. The trajectories obtained also were very similar. Finally, as shown in

Discussion

The experiments conducted have shown that the model is able to produce the desired
behavior. In relation to the process of arbitration based on the scene encoding, smoother
and more efficient trajectories were obtained, since the robot reacted less to noise. The
fact of estimating the optic flow on simulated images, probably accounts for the relatively

159



6.5. Case studies Chapter 6. Reactive walking

Action Distance Occusions Reward
asz: do_ Walk-72 4.13 85 12.63
asq: do_ Walk-36 3.92 83 12.22
ass: do Walk-0 3.81 5% 9.61
asg: do_ Walk+36 3.60 0 3.60
as7: do Walk+172 4.08 62 10.80

Table 6.9 — Reward obtained for the full set of actions illustrated in Fig 6.29. The table
shows the estimated distance walked in m and the occlusions registered. No interruptions were
generated by the user in the trial.

Figure 6.27 — CS-II vs CS-IIT implementation. On the left, the result for CS-II where a single
walk mode was available. On the right, the results for the current implementation, so a dual
walk scheme based on visual encoding arbitration was available.

Figure 6.28 — Evaluation of the condition of multiple objects and obstacles. Despite the
presence of other cans on the sofa, the robot was able to approach the desired one by relying on
the embodied filtering process (described in Sec. 5.4).

low reliability obtained in the visual encoding process. Thus, the verification of these
results with a real robot remains for future research.

In relation to the aspect of learning motion primitives by reinforcement, the robot
was able to do the task and to efficiently reuse previous experiences in a similar situation.
However, some limitations must be addressed. Given the stochastic nature of the behavior,
it is possible that for real experiences the same action produces considerably different
rewards (e.g. the robot may slip, so the estimate on the reward based on dead reckoning
may be noisy). Additionally, the state reward did not consider important aspects such
that the safety on the task. That is, a shorter path where the object is fully visible, may
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Figure 6.29 — RL policy learning. The available actions are shown in green. The robot walked
0.15 m along each of these directions before activating Approach Motion. The rest of the nodes
operated normally, so reactivity to the obstacles and convergence on the task is obtained.

Figure 6.30 — CBR experience retrieval. The policy learned (do_ Walk+36) at the left-most
trial (see Fig. 6.29), was expressed with respect to the perspective of the agent on the right-most
trial (do__ Walk-0), so the knowledge acquired could be reused in the similar situation.

be for instance narrower so there is a greater risk for collision.

Conclusions

In the context of the action selection problem for the control of humanoid locomo-
tion guided by vision, this chapter has started by a review on proposals available in the
literature of behavior-based architectures. The choice for the iB2C framework to model
the task was justified based on its generality and flexibility. Through a detailed imple-
mentation proposal, and several experiments; different topics were investigated, such as
embodiment, knowledge representation, learning, and the adaptive aspect of behavior.

The results of the first study have shown that, by combining multiple image features
that exploited embodiment and local heuristics, and in case a high acquisition rate is
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available in the platform; the reactive model proposed can provide similar trajectories to
those obtained in Sec. 5.5.5 (that were based on the observation of the localization from
a disembodied representation of the object). This is consistent with the EC statements.
Though, the heuristics used to estimate the heading direction of the object (i.e. the
bilateral symmetry), did not produce the same results for a less symmetrical object.
Thus, alternative representations are to be investigated. This is in fact a distinctive
aspect of pure EC models, where the generalization of the solution is not ensured, even to
small changes in the task specifications (which can be disadvantageous for service robotics
applications). Therefore, although the methodology can produce efficient solutions from
reduced modeling (a relatively rudimentary model was proposed), that comes with the
price of poor generalization.

In the models proposed the philosophy adopted was to define individual behaviors in
charge of specific aspects of the response. The operation of these nodes were mostly de-
termined from kinesthetic demonstrations of the task, and relied on a local representation
context. The agent accomplished the task efficiently without building a global represen-
tation, so the knowledge available was distributed in the architecture. The second and
third case studies showed that behavior emerged and persisted enough in the absence of
stimuli. The consistency on the behavior was provided by the perceptive ego-sensory that
temporarily stored the localization of stimuli.

As the third case study has shown, visual information obtained from a first-person
perspective was used to refine the behavior repertory, so the agent was able to learn
actions and arbitrate between walk policies. Thus, the visual encoding proposed led to
improvements in the execution of the task. Some aspects remain for future research.
Although the stimuli representation chosen was efficient and convenient to ensure the re-
activity on the task, it did not guarantee optimal behavior. This is particularly significant
when representing the obstacles as particles in space. Alternative representations (e.g. a
volume area in the ego-space) should be explored to study optimal behavior when avoid-
ing obstacles, so the robot can decide between adopting a frontal or a saggital walking
style, as human eventually do. It would also be interesting to evaluate the bottom-up
processing proposed with a real robot capable of providing the required acquisition rate,
so the arbitration based on visual encoding could be assessed.
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Conclusions

In the study of service robotics applications for human-centered scenarios, the review
of the state of the art of the research in humanoid robotics has suggested that, despite
important achievements in the control of locomotion, manipulation, or adaptation; these
robots have not reached a sufficient level of maturity as to become a viable technological
solution. Although designed with an anthropomorphic body, there are important phys-
ical differences related to the kinematic properties, the sense organs, and the actuation
system; that impose restrictions to humanoids. Thus, the field is still waiting for techno-
logical and scientific breakthroughs, to meet the requirements of reliable operation under
unstructured scenarios.

In this work the architectural aspect of behavior was studied in the context of the
action selection problem. Through a general case study, which is the fundamental skill
of approaching and positioning in relation to stimuli guided by vision, several topics were
explored, including: embodiment, visual attention, knowledge representation, egocentric
localization and learning. The study focused on the processing of information from the
visual and the proprioceptive sensory modalities, acquired on-board.

The study of visual attention showed that this process can be driven endogenously
(by goals or top-down), or exogenously (by novelty or bottom-up). From a multidis-
ciplinary perspective, the spotlight metaphor, the FIT and GS theories motivated the
design of visual features and the structure of some of the behavior models proposed. The
literature on machine vision was reviewed and relevant techniques were explored to ex-
tract information from images. The results of the case studies developed have shown
that, although some structure may be recovered by heuristic clustering, the segmentation
obtained may not be physically plausible. A supervised segmentation technique defined
within a MRF framework was adapted for top-down saliency processing in a continuous
image inflow. The evaluation suggested that it is a plausible approach for unstructured
scenes, though the performance is degraded with metallic or reflective objects, or under
excessive artificial illumination. The exploration of dense optical flow based on polyno-
mial expansion has showed that some structure of the scene can be recovered (an estimate
on the depth with respect to the sensor), by measuring the magnitude of the detected
flow. Thus, unsupervised segmentation was obtained for textured objects.
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A visual servoing scheme was studied for modeling the behavior of the robot. The
PBVS and IBVS control approaches were employed simultaneously, in order to maintain
the object of interest in the field of view, and to steer the robot to the desired 2D pose
in relation to the object. The solution considered the motion primitives of walking and
directing the head. The processing of the localization was based on the design of a sensory
ego-cylinder, where the 3D position of the center of the object and its heading direction
on the plane were represented. This information was obtained from a binary image and
a rough 3D model of the object. Differently from previous contributions in the field, that
relied on the principle of Verification Vision, the MRF segmentation technique was used
for localizing the object, so the top-down saliency processing does not require of knowledge
on the spatial motion of the sensor. This is advantageous since the solution operates at
a low acquisition rate. The model was tested both in simulation and a real experiment.
The results showed that it is a plausible strategy to approaching convex colored objects
on the environment.

The computational complexity and the reliability on the localization parameters are
related to the definition of the measurement and the representation frames of reference.
Thus, different locations for the sensory ego-cylinder were studied. Given the lack of
consensus in the literature about the placement of the ego-sensory structure, body- and
eye-centered locations were investigated. The results of the experiments suggested that
converge can be obtained for body-centered locations (i.e. the measurement and the rep-
resentation frame are defined at different placements). The fact that the robot walked in
vertical posture constrained the mobility of the reference system, so heuristic placements
also provided convergence. This was not the case for eye-centered placements (i.e. the
measurement and the representation frame are defined in the same location). The visual
system is constantly redirected toward the object of interest by the look-at task, so the
local context of the body posture during the task is not preserved. A hybrid solution
was proposed, so the correction in the position is determined eye-centered, but the reg-
ulation on the angular motion is calculated body-centered. This combination provided
correct results, it was computationally more efficient, and less affected by noise in the
proprioceptive measurements.

From the analysis of the dynamic aspects of human locomotion guided by vision,
a first-order description HMW was proposed for approaching the object. HMW allowed
the agent to mimic the human walking style. That is, non-holonomic motion is used
when the individual is far from the object, but holonomic motion is preferred when the
individual is close enough to the goal. A contribution of HMW is to consider a desired
2D pose in relation to the object, whereas previous studies focused only on the control of
the position component. This is of crucial importance, since the operational face of the
stimulus is taken into account in the motion, so the path followed is more efficient and
aesthetic. These are valued aspects for the acceptance of the solution in the context of
human-machine interaction and service robotics applications.

The six-steps methodology developed to design reliable solutions illustrated an in-
teresting combination between the cognitivist and the EC research. As mentioned previ-
ously, the visual selection mechanism proposed was inspired by the information processing
models of attention. It was also based on a Bayesian Network structure, which is usu-
ally employed for information fusion and knowledge representation in the context of the
cognitivist research in AI. However, in the BN multi-sensory information is fused from
features that exploited embodiment, so they were carefully defined from the EC per-
spective. Furthermore, the anticipative aspect of the behavior scheme was an interesting
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opportunity to study the effect of the statistical regularities induced by the coupling, and
the information redundancy in the sensory-motor coordination.

The BN structure designed provided reliable information about the degree of confi-
dence and the discriminative power of the attention selection mechanism. This became a
significant contribution to the autonomy of the agent, through the efficient use of available
resources. Thus, the solution was operational at a low acquisition rate in a low-cost robot.
The static policies for the BN were adequate to real tasks, whereas the advantages of the
dynamic policies were noted only in simulations, given the observation noise and the lack
or redundancy in the information provided by the features. The BN also grounded the
implementation of the hybrid architecture proposed to ensure the safety when accessing
remote resources.

In the behavior-based models proposed the philosophy adopted was to define indi-
vidual behaviors in charge of specific aspects of the response. The operation of the nodes
were mostly determined from kinesthetic demonstrations of the task, which is very con-
venient to robotic service applications. The nodes rely on a local representation context,
so the task is efficiently accomplished without building a global representation. In the
study of reactive walk, by defining action-oriented representations of the object, similar
trajectories were obtained to the scheme using a disembodied representation of the ob-
ject; which is consistent with the EC statements. Though, the heuristics considered did
not produce the same results for a less symmetrical object. This illustrated a distinctive
aspect of pure EC models, where the generalization of the solution is not ensured, even to
small changes in the task specifications (which can be disadvantageous for service robotics
applications).

In the action selection problem, visual information was used to refine the behavior
repertory of the robot, so it was able to learn actions and arbitrate between walk policies.
Thus, the visual encoding proposed led to improvements in the execution of the task. In
the models behavior emerged and persisted enough in the absence of stimuli, given the
temporal storage of information in the perceptive ego-sensory. The models have illustrated
a potential and feasible strategy that can be adopted for prototyping and exploring more
complex sensory-motor coordinations. Thus, the fact of counting on modular motion
primitives that are already available to the agent, handles much of the security aspects
involved in the task, as for example, maintaining the body balance.

Research perspectives

In the studies conducted several aspects remained for future research. The fact of
considering a static scene is restrictive to applications in service robotics, so the approach
to moving objects should be studied. Time constrained tasks could also be explored (e.g.
approaching an object in motion, or avoiding a moving obstacle). The models considered
the case of walking at a constant velocity profile, so a deterministic predictive model was
sufficient to obtain the desired results. It is important to notice that this assumption
may not hold when the objects move, or when the robot walks faster or runs. Thereby,
stochastic models of motion could be considered in the task, notably when the acquisition
rate is low.

The processing of top-down saliency was based on color features. Depending on
the surface of the object, disturbances, or illumination noise; momentary degradations
where produced in the segmentation. Thus, features redundancy (e.g. the image con-
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tours, edges, among others) could be integrated to the model to increase the reliability
of the task. Likewise, other sensory modalities available in humanoids (e.g. sonars, laser
range, binocular vision) could also be included. In a context of feature redundancy, the
advantages of the dynamic policies for the BN could be observed.

Although the stimuli representation chosen was efficient and convenient to ensure
the reactivity on the task, it did not guarantee optimal behavior. This is particularly
significant when representing the obstacles as particles in the ego-space. Alternative
representations (e.g. a volume area) should be explored to study optimal behavior when
avoiding obstacles, so the robot can for instance decide between adopting a frontal or a
saggital walking style, as human eventually do. It would also be interesting to evaluate
the bottom-up processing proposed with a real robot capable of providing the required
acquisition rate, so the arbitration based on visual encoding could be assessed.
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Appendixes

Bayesian Network probability observation

This appendix details the calculation of Eq. (5.8), which is the query to determine
the probability that the current observations O; correspond to the object of interest.
Thus, Fig. A.1 recalls the structure of the BN proposed, which is a naive Bayes classifier.
That is, the information provided by the features on the branches are assumed to be
independent from each other.

Figure A.1 — Bayesian network for contextual information fusion.

In the query the particular observation of the leaf features are propagated recur-
sively until the root node. Given the assumption of statistical independence between the
branches, only the case of the left-most branch is going to be developed here, in order
to illustrate the calculations required. For this, let us assume that the following a priori
knowledge is available:

1. The probability distribution p(Object) of observing the object in Tab. A.1.

Object Probability
True 0.5
False 0.5

Table A.1 — Object’s a priori probability.

2. The probability distribution p(B;|Object) in Tab. A.2. It is the discriminative
power of the feature By, given the observation of the object.
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By /Object True False

True 0.9 0.1
False 0.1 0.9

Table A.2 — A priori knowledge on the discriminative power of feature Bj.

3. The probability distribution p(Oy|B;) in Tab. A.3. It is the discriminative power
of the leaf O, given the observation of feature Bj.

01/B; True False
0 0.05 0.333
1 0.15 0.333
2 0.80 0.333

Table A.3 — A priori knowledge on the discriminative power of leaf O;.

Let an observation be described by three levels of intensity, so O; € {0,1,2}. As-
suming a value O, = 2 is observed, the query to be stated has the form

p(Object = True|By, O = 2) (A1)

Case Object By O
1 False False O
2 False False 1
3 False False 2
4 False True O
5 False True 1
6 False True 2
7 True False 0
8 True False 1
9 True False 2
10 True True 0
11 True True 1
12 True  True 2

Table A.4 — All possible queries related to the left-most branch of the network

Before proceeding to solve the query notice that all the possible observations on
the network are enumerated in Tab. A.4. Let the notation be simplified so F:False and

T:True. The cases that match the clues (Object = T, and O; = 2) are 9 and 12. The
likelihood [, of the match (which is not a probability distribution) is obtained by

ly = p(Case =9) + p(Case = 12). (A.2)

By definition, in the network a node is independent from others given its parents (see Eq.

(5.7)), thus

p(Object = T|By, 01 = 2) = p(Object = T)p(B1|Object = T)p(Oy = 2| By). (A.3)
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Consequently,

p(Case = 9) = p(Object = T)p(By = F|Object = T)p(O; = 2|B; = F), (A.4)

and

p(Case = 12) = p(Object = T)p(B; = T|Object = T)p(O, = 2|B; = T). (A.5)
By consulting Tabs. A.1, A.2, A.3, the likelihood of the query is

Iy = (0.5)(0.1)(0.333) + (0.5)(0.9)(0.8) = 0.37655 (A.6)

In order to get a full probability distribution, the likelihood of the complementary
event [, must be estimated. Which is done according to the expression

l.q = p(Case = 3) + p(Case = 6). (A7)
Thus,
p(Case = 3) = p(Object = F)p(By, = F|Object = F)p(Oy = 2|B; = F), (A.8)
and
p(Case = 6) = p(Object = F)p(B; = T|Object = F)p(O; = 2|B, =T). (A.9)

The likelihood of the complementary query is

I_q = (0.5)(0.9)(0.333) + (0.5)(0.1)(0.8) = 0.18985 (A.10)

Finally, the answer to the original query is

b
(g + 1)

Notice that if the network is used without considering the discriminative power, it is
not necessary to calculate the normalization term Z in Eq. (5.8) (which in this case is
Z = (lq+1-q)), but to keep the biggest likelihood (see Eq. (5.9)). Finally, it can be handy
to recall at this point that the Eqgs. (5.10) and (5.11) are used in case the probability
distribution of Tab. A.2 is estimated in runtime.

p(Object = T|By,01 =2) = = 0.6647. (A.11)
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Résumé

Les applications en robotique de service nécessitent
d’étre capable de réaliser des taches d’approches et
de positionnement vis a vis d’un objet d’intérét a partir
d’informations visuelles. Les scénarios envisagés
congus pour les activités humaines (e. g. au bureau
ou a la maison) sont naturellement stochastiques, il
est donc important que la solution proposée permette
de réagir face a 'imprévu et garantisse I'autonomie
décisionnelle du robot. Lapproche connectiviste
traditionnelle en intelligence artificielle (IA) n’a pas
réussi a produire de résultats fiables car elle est basée
sur une sélection d’action centralisée introduisant un
retard et des représentations non contextualisées des
taches. En revanche les modéles de comportements
émergents ont permis d’obtenir des réponses rapides
mais au prix d’'une faible possibilité de généralisation a
des scénarios proches. Notre travail s’est appuyé sur
un point de vue intermédiaire entre la méthodologie
connectiviste et la cognition incarnée (Embodied
Cognition (EC)). On adopte simultanément des
représentation indépendantes-de-I'action pour faire la
reconnaissance visuelle de la cible et des
représentations locales sous la forme de sensations
corporelles afin d’anticiper les conséquences de
I'action, de discriminer les objets, de réagir a des
circonstances imprévues, et d’évaluer le progres et le
succes de la mission.

Mots clés

Architectures des comportements, Attention visuelle ascendante et
descendante, Vision par ordinateur, Localisation égocentrique
embarquée, Sélection d’action, Intégration multisensorielle,
Apprentissage par renforcement.

Abstract

The skill of visually approaching and positioning in
relation to objects on the scene is of crucial
importance for service robotics applications.
Furthermore, the autonomy of the solution is
essential, since human-centered scenarios, where
these robots are expected to operate (e.g. at the office
of home), are stochastic; so is important that the agent
can react to unforseen situations. The traditional
approach of Al has not produced reliable results since
they are based on extensive context-free models of
the tasks, so action selection is a centralized and
delayed process. Emergent models have in contrast
produced fast-response systems at the cost of poor
generalization power even to very similar scenarios.
This research has taken an intermediate perspective
between the cognitivist and the EC research. It
employs simultaneously action-independent
knowledge for visually recognizing the stimuli of
interest, and local representations in the form of bodily
sensations, in order to anticipate the consequences of
action, to discriminate the object, to react to
unexpected circumstances and to assess the progress
and success on the mission.

Key Words

Behavior architectures, Bottom-up and top-down visual attention,
Machine vision, Egocentric on-board localization, Action-selection,
Multisensory-integration, and Reinforcement learning.
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