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Abstract

Wireless Sensor Networks (WSNs) are made of multiple sensor devices which measure physical value
(e.g. temperature, pressure. . . ) and communicate wirelessly. These networks form a key enabling
technology of many Internet of Things (IoT) applications such as smart building and precision
farming. The bottleneck of long-term WSN applications is typically the energy. Indeed, traditional
WSNs are powered by individual batteries and a signi�cant e�ort was devoted to maximizing the
lifetime of these devices. However, as the batteries can only store a �nite amount of energy, the
network is still doomed to die, and changing the batteries is not always possible if the network is
dense or if the nodes are deployed in a harsh environment.

A promising solution is to enable each node to harvest energy directly in its environment,
using individual energy harvesters. As most of the energy sources are dynamic and uncontrolled,
avoiding power failures of the nodes is critical to enable reliable networks. Increasing the quality
of service typically requires increasing the power consumption, and a simple solution is to set the
quality of service of the nodes to a constant value low enough to avoid power failures. However,
this solution does not fully exploits the available energy and therefore leads to high energy waste
and poor quality of service regarding the available environmental energy.

A more e�cient solution is online adaptation of the node power consumption, which is performed
by an energy manager on each node. In this thesis, two new approaches for online adaptation of
the nodes energy consumption were proposed, relying on fuzzy control theory and reinforcement
learning. Moreover, as communications are typically the most energy consuming task of a WSN
node, emerging wake-up receivers were leveraged to reduce the energy cost of communications. A
generic analytical framework for evaluating Medium Access Control (MAC) protocols was proposed,
and it was combined to experiments to evaluate emerging wake-up receivers. A new opportunistic
MAC protocol was also introduced for "on-the-�y" relay selection. Finally wake-up receivers and
energy harvesting were combined and experimentally evaluated in a practical use case.
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Résumé

Les Réseaux de Capteurs Sans Fils (RCSFs) sont composés d'une multitude de n÷uds, chacun étant
capable de réaliser des mesures (température, pression, etc) et de communiquer par radio fréquence.
Ces réseaux forment une pierre angulaire de l'Internet des Objets, en étant au c÷ur de nombreuses
applications, par exemple de domotique ou d'agriculture de précision. La limite d'utilisation des
RCSFs provient souvent de leurs durées de vie restreintes, les rendant peut intéressants pour des
applications nécessitants de longues périodes de fonctionnement en autonomie. En e�et, les RCSFs
traditionnels sont alimentés par des piles individuelles équipant chaque n÷ud, et les n÷uds sont
ainsi condamnés à une durée de vie �nie et courte par rapport aux besoins de certaines applications.
De plus, changer les piles n'est pas toujours réalisable si le réseau est dense, ou si les n÷uds sont
déployés dans des environnements les rendant di�cile d'accès.

Une solution plus prometteuse est d'équiper chaque n÷ud d'un ou de plusieurs récolteur(s)
d'énergie individuel(s), et ainsi de le rendre capable de s'alimenter exclusivement à partir de
l'énergie récoltée dans son environnent. Plusieurs sources d'énergie sont possibles, telles que le
vent ou le solaire. Étant donné que les sources d'énergie sont typiquement dynamiques et non
contrôlées, ne pas tomber en panne d'alimentation et nécessaire pour garantir un fonctionnement
�able. Comme l'augmentation de la qualité de service engendre souvent une augmentation de la
puissance consommée, une solution simple est de con�gurer la qualité de service au déploiement
à une valeur constante su�samment faible pour éviter la panne d'alimentation. Cependant, cette
solution ne permet pas d'exploiter pleinement l'énergie récoltée, et mène ainsi à un gaspillage
d'énergie important ainsi qu'à de faibles qualités de service au vu de l'énergie récoltée.

Une solution plus e�cace est d'adapter dynamiquement la puissance consommée, et donc
la qualité de service. Cette adaptation est faite par un composant logiciel appelé gestionnaire
d'énergie. Dans cette thèse, deux nouvelles approches pour l'adaptation en ligne sont proposées,
l'une s'appuyant sur la théorie du contrôle �oue, et l'autre sur l'apprentissage par renforcement.
De plus, comme la communication est souvent la tâche la plus énergivore dans les RCSFs, les
wake-up receivers sont utilisées dans cette thèse pour pour réduire le coût des communications. Un
modèle analytique générique a été proposé pour étudier di�érents protocoles de contrôle d'accès au
support (Medium Access Control � MAC), et combiné à des résultats expérimentaux pour évaluer
les wake-up receivers. Aussi, un nouveau protocole MAC permettant la sélection opportuniste de
relais a été proposé. En�n, la combinaison des wake-up receivers et de la récolte d'énergie a été
étudiée expérimentalement avec un cas pratique.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) are composed of multiple wireless sensor nodes that monitor an
environment and gather data to one or more locations called sinks. These networks form a key
enabling technology of the Internet of Things (IoT), and are critical in many applications such as
smart cities, smart factories, precision farming. . . Unlike cellular networks or IEEE 802.11, WSNs
do not rely on any �xed infrastructure, and therefore the nodes typically self-organize in an ad-hoc
manner. Multiple network topologies are possible for nodes organization, the simplest one being
star networks in which nodes are organized around the sink. In this topology, all nodes are at a
one-hop distance from the sink, and therefore directly send their data to it. In situations were the
monitoring area is large and where part of the sensor nodes are too far from the sink(s) for one-hop
communication, a multi-hop network is used. In this topology, each node both generates new data
by sensing and sends the so-obtained data to the sink, but also relays data for the networks. The
rate at which a node senses and sends packets is referred to as the packet generation rate, while
the rate at which it relays packets from other nodes is referred to as the packet relaying rate. This
latter is only de�ned in multi-hop networks.

A wireless sensor node is made of several components: a Microcontroller Unit (MCU), memory,
sensors, a transceiver, and a power source. The MCU controls the other components and processes
the data. The sensors are used to capture the data from the environment. The transceiver enables
communication with the other nodes. Finally, the power source provides the energy required to
power the system. In order to be able to deploy large WSNs, an important consideration is the cost
of the nodes which must be kept low. Also, in order for some applications to be interesting, WSNs
must be able to operate for long period of times. Typically, the bottleneck of long-term WSNs
applications is the energy. Indeed, traditional wireless nodes are powered by individual batteries,
which can store only a �nite amount of energy. Therefore, when a node consumes all the energy
initially stored in its battery, it turns o�, and replacing the batteries is not always possible if the
network is dense or deployed in harsh environment. Therefore, energy e�ciency is critical in WSNs
as it is closely related to network lifetime.

In the last decades, important e�orts were devoted to develop low power consumption devices
and energy e�cient communication schemes to maximize the lifetime of WSNs. Indeed, it is
well-known that communications are one of the most, if not the most, energy consuming tasks in
WSNs [10]. Typically, a node power consumption, which is closely related to the quality of service
(sensing rate, throughput. . . ) is set at deployment to a value that guarantees the required lifetime.
However, as batteries can only store a �nite amount of energy, the network is doomed to die. A
promising solution to increase the lifetime of WSNs is to enable each node to harvest energy in its
environment. In this scenario, each node is equipped with one or more energy harvesters, as well as
an energy bu�er (battery or capacitor) to allow storing part of the harvested energy for future use
during periods of energy scarcity. Various energy sources are possible, such as light, wind, motion,
fuel cells. . . [9, 11]. As the energy sources are typically dynamic and uncontrolled, it is required
to dynamically adapt the power consumption of the nodes, by adjusting their quality of service in
order to avoid power failure while maximizing the energy e�ciency and ensuring the ful�llment of
application requirements. This task is done by a software module called Energy Manager (EM),
which is in charge of dynamically adapting the power consumption of the nodes, and therefore
their quality of service.
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Figure 1.1 � Architecture of an energy harvesting sensor node equipped with a WuRx.

In order to achieve sustainable EH-WSNs, the power consumption of the nodes should be min-
imized. Many schemes were proposed to improve the energy e�ciency of communication protocols
for WSNs. Especially, a great emphasis was put on Medium Access Control (MAC) protocols,
which are responsible for point-to-point communication and control the transceiver and therefore
strongly impact the energy e�ciency of communications [12]. An e�cient way to reduce the power
consumption of the nodes is duty-cycling, which idea is simply to turn o� the transceivers when
they are not needed. However, to avoid deafness, the nodes need to periodically listen to the chan-
nel for incoming packets. Recent circuit-level advances have made possible the realization of ultra
low power Wake up receiver (WuRx) circuits that can e�ciently �wake up� a node when a speci�c
signal, called Wake up Command (WuC), is sent by a neighboring node [2, 5, 13�15]. Moreover,
many WuRx embed address matching features, which allow nodes to wake up only a speci�c node
and not all their neighbors [16, 17]. The main feature of WuRx is the continuous listening of the
wireless medium while keeping the main transceiver in sleep state. The cost of ultra low power
consumption is low sensitivity and low bitrates, which makes sending WuCs energetically costly.
Therefore, the WuRx does not replace the main receiver, but is an extra device in addition to a
traditional transceiver. However, in order to e�ciently take advantage of WuRx, the design of
ad-hoc protocols leveraging these emerging devices is required.

The typical architecture of Energy Harvesting (EH) sensor nodes considered in this thesis is
shown in Figure 1.1. The EM reads information from the energy �ow controller about the currently
amount of energy stored in the energy bu�er and possibly the the amount of harvested energy, and
uses this information to control various tasks of the node (e.g. sensing, processing and networking).
Therefore, the EM indirectly controls the energy consumption. This thesis focuses on the design of
energy management algorithms and MAC protocols leveraging WuRx. An important consideration
when designing algorithms for WSNs is to make them able to run on the highly constraint systems
that are wireless sensor nodes in terms of computational power, memory, storage and energy.

1.1 Energy Management in Energy Harvesting Wireless Sen-
sor Networks

In EH-WSNs, each node is equipped with one or more energy harvesting devices, enabling the
nodes to be entirely powered by the energy harvested in their environments. To be able to store
part of the harvested energy for future use, e.g. periods of energy scarcity, each node also embeds
an energy storage device, which can be a supercapacitor or a battery. The energy bu�er has a �nite
capacity denoted by Emaxr and a failure threshold denoted by Efailr , as illustrated in Figure 1.2.
The failure threshold corresponds to the minimum amount of energy required for the node to
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Figure 1.2 � Energy Bu�er thresholds.

Source Source Power Harvested Power
Ambient light

Indoor 0.1mW/cm2
10µW/cm2

Outdoor 100mW/cm2
10mW/cm2

Vibration/Motion
Human 0.5 m at 1 Hz

1 m/s2 at 50 Hz 4 µW/cm2

Industrial 1 m at 5 Hz
10 m/s2 at 1 kHz 100 µW/cm2

Thermal Energy

Human 20mW/cm2
30µW/cm2

Industrial 100mW/cm2
1´ 10mW/cm2

RF

GSM Base Station 0.3µW/cm2
0.1µW/cm2

Table 1.1 � Characteristics of various energy sources (from [9]).

operate, and a power failure arises if the residual energy drops below this threshold. The capacity
Emaxr is the maximum amount of energy that the energy bu�er can store, and the �nite capacity of
the energy bu�er is the origin of energy waste. Indeed, if the harvested energy is not immediately
used after it has been harvested, it will be stored in the energy bu�er by the energy �ow controller
shown in Figure 1.1. However, if the energy bu�er is full, then the harvested energy will not be
stored, and therefore it will be wasted leading to energy ine�ciencies.

A handful of energy sources can be considered, according to the environment in which the nodes
are deployed, and the energy required by the application. The harvested power strongly depends
on the energy source type, as well as on the e�ciency of the harvester, i.e. the ratio between the
power extracted from the source by the harvester and the source power. Table 1.1 shows some
characteristics of various energy sources (from [9]). As one may see, the power harvested from
outdoor ambient light is 105 higher than the power available from Radio Frequency (RF) harvesting,
showing the strong variation in the available energy from one source to the other. Moreover, typical
sources present strong time variations. This behavior motivates the need for online adaptation of
the performance of nodes forming an EH-WSN. Indeed, increasing the quality of service of a WSN
application (e.g. sensing rate, throughput. . . ), requires higher power consumption. A naive solution
to achieve sustainable EH-WSN is to set the nodes to deliver a constant poor quality of service,
that incurs a low enough power consumption to avoid power failure. This solution has two main
drawbacks: (i) it leads to poor performance as a signi�cant amount of energy is wasted and (ii)
precise knowledge of the energy source is required to guarantee that no power failure will happen.
Another solution is to perform online adaptation of the performance, which enables quality of
service maximization while avoiding power failure.

Formally, if we denote by Phptq the harvested power at time t P R`, and by Pcptq the consumed



24

Execution of the EM

Figure 1.3 � Periodic execution of the EM.

power at time t, the residual energy at time t is de�ned by:

erptq “ erp0q `

ż t

0

Phpτqdτ ´

ż t

0

Pcpτqdτ ´

ż t

0

Pwpτqdτ, (1.1)

where erp0q P r0, Emaxr s is the initial residual energy, and Pw is the wasted power, i.e. the power
wasted because of the saturated energy bu�er. The �nite size of the energy bu�er constrains the
residual energy:

@t, erptq ď Emaxr . (1.2)

Assuming that the application performance can be measured by a utility metric UpPcq, which is a
function of the power consumption (e.g. packet rate, energy e�ciency. . . ), the energy management
problem can be expressed as follows:

maximize
Pc

UpPcq

subject to: erptq ď Emaxr , @t

erptq ě Efailr , @t

(1.3)

In this problem, the last constraint corresponds to power failure avoidance, and satisfying this
last constraint is sometimes referred to as achieving Energy Neutral Operation (ENO) [18] in the
literature. In order to maximize the energy e�ciency, Pc should be chosen such that no energy is
wasted, or formally:

@t, Pwptq “ 0. (1.4)

Satisfying this constraint is sometimes referred to as achieving ENO-MAX [19].
In practice, the EM is a software component that is part of the program embedded on each

node as shown in Figure 1.1, and that is periodically executed, as illustrated in Figure 1.3. The
duration between two executions of the EM is denoted by Ts. Therefore, (1.1) is discretized as
follows:

errks “ err0s `
k´1
ÿ

i“0

ehris ´
k´1
ÿ

i“0

ecris ´
k´1
ÿ

i“0

ewris, k “ 1, 2, . . . (1.5)

where errks is the residual energy at time step k, and ehrks, ecrks and ewrks are respectively the
harvested energy, consumed energy and wasted energy during time step k. The energy management
problem in discrete form is:

maximize
ecr0s,ecr1s,...

Upecr0s, ecr1s, . . . q

subject to: errks ď Emaxr , k “ 1, 2, . . .

errks ě Efailr , k “ 1, 2, . . .

(1.6)

and ENO-MAX is achieved if:
ewrks “ 0, k “ 1, 2, . . . (1.7)

However, in some applications, achieving ENO-MAX is not an appropriate objective. In multi-hop
networks for example, in which each node both generates packets and relays packets from other
nodes, a node can have its packet generation rate limited because its relays cannot forward the
packets it generates, and not by the amount of energy it harvests. In such a scenario, wasting
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energy may be necessary if the energy bu�er is not large enough to store the harvested energy in
excess. In this thesis, the focus is put on star networks, and in such scenarios the energy e�ciency,
i.e. the ability of an EM to minimize the wasted energy, is relevant to evaluate the EM. Therefore,
the energy e�ciency, formally de�ned by:

ξ “ 1.0´

ř

k ewrks
ř

k ehrks ` err0s
, (1.8)

is used as a metric to evaluate energy management strategies. In addition to the energy e�ciency,
the dead ratio DR is also considered, which is de�ned as the ratio of time spent in power failure
state over the total application duration. The multi-hop scenario is however considered in the
Appendix A.

A challenge of energy management in EH-WSNs is due to the lack of knowledge of the harvested
energy eh. As we will see in the related work on EMs (Chapter 2), some approaches tackle this
problem by using predictors which aim to guess the future harvested energy over a �nite time
window. However, using predictors requires measurements of the amount of harvested energy in
the previous time slots ehrk´1s, ehrk´2s, . . . , which is di�cult to get in practice. Therefore, some
approaches, such as the one proposed in Chapter 4, rely only on the residual energy to take decision
about energy management. Another di�culty of energy management in EH-WSNs is the accurate
control of the node power consumption. Indeed, some tasks executed by a WSN node do not
have deterministic energy costs. Communication tasks for example have energy cost that strongly
depends on the channel quality, as error in packet transmissions generally leads to retransmissions.
Some EMs do not consider this problem as they compute an energy budget ebrks, which corresponds
to the amount of energy that the node should spend during the time slot k, and do not focus on
how this energy budget is allocated among the di�erent tasks executed by the node. These EMs
therefore do not directly set the quality of service, but indirectly control it via the energy budget.
Another software component is in charge of setting the quality of service (e.g. sensing rate) from
the energy budget. Other approaches directly set some quality of service parameter, and therefore
indirectly control the energy consumption of the node. Another challenge of energy management in
EH-WSNs comes from the highly constrained systems that are WSN nodes. Indeed, such devices
usually provide only very few computational power (frequency typically less than 16 MHz), memory
(typically 2 KB) and storage (typically less than 100 KB), and the proposed algorithms should
therefore be suited to these kinds of platforms.

1.2 MAC Protocols in Wireless Sensor Networks

Communication is usually one of the most energy consuming task in WSNs due to the high power
consumption of radio transceivers [10]. Therefore, signi�cant e�orts were devoted to the design
of energy e�cient communication protocols, and especially MAC protocols [12]. MAC protocols
play a critical role in the energy e�ciency of communications as they control the transceiver. The
aim of MAC protocols is to allow point-to-point communication between two neighboring nodes.
Pseudo-asynchronous approaches are based on the idea of duty-cycling, and common in low packet
rate networks such as EH-WSNs. In these schemes, each node periodically wakes up to check for
incoming packets. If no packet is pending, the node goes back to the sleep state. Otherwise, it stays
active to receive the incoming packet. Pseudo-asynchronous protocols require a rendez-vous scheme
to ensure that two nodes can meet to exchange packets, and designing energy e�cient rendez-vous
schemes is critical to achieve energy e�cient communications. Pseudo-asynchronous protocols
can be classi�ed in two types according to their rendez-vous approach: transmitter-initiated or
receiver-initiated.

In transmitter-initiated protocols, a packet transmission is initiated by the transmitter (obvi-
ously), as illustrated in Figure 1.4a. This �gure shows a packet transmission using the TICER
protocol [1], a representative protocol of this category. Using TICER, the receiver periodically
wakes up to listen the channel, in order to check for incoming packets. The time between two
periodical wake-ups is called the wake-up interval, and denoted by TWI . When a node needs to
send a packet, it starts by sending Ready To Send (RTS) frames to express the willingness to com-
municate. Each RTS frame is followed by a channel listening. The periodic listening of the receiver
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Figure 1.4 � TICER and RICER illustration.
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Figure 1.5 � TICER and RICER power breakdown, from [1]. TX: transceiver transmitting, RX: transceiver
receiving, MN: transceiver sensing, T is the wake-up interval, denoted by TWI in this thesis.

must be long enough to ensure that RTS frames will be detected. If the receiver detects an RTS
frame, it sends a Clear To Send (CTS) frame to inform the transmitter that it is ready to receive
a packet. Finally the data packet exchange takes place, which is followed by an Acknowledgment
(ACK) to ensure that the data packet is correctly received.

In receiver-initiated protocols, a packet transmission is initiated by the receiver as illustrated in
Figure 1.4b with the RICER protocol [1]. Using RICER, each node periodically wakes up and sends
a wake-up beacon to inform its neighbors that it is ready to receive a packet. Each wake-up beacon
sending is preceded by a Clear Channel Assessment (CCA) to avoid collisions, and is followed by a
channel listening to check for incoming packets. When a node needs to transmit a packet, it starts
by listening the channel until a wake-up beacon is received. Once the beacon is received, it sends
its data packet. The transmission ends with the transmission of an ACK, to ensure that the data
packet is correctly received.

While pseudo-asynchronous approaches enable signi�cant power consumption reduction in low
packet rate networks, the rendez-vous scheme incurs signi�cant overhead. Moreover, these ap-
proaches do not eliminate idle listening, i.e. useless channel listening during which no data is
received. Figure 1.5 (from [1]) shows TICER and RICER power breakdown, in which TX cor-
responds to the transceiver being transmitting, RX to the transceiver being receiving, and MN
(MoNitor) to idle listening. These results show that there exists an optimal wake-up interval TWI

(denoted by T in Figure 1.5) for which the power consumption is minimal. However, this optimal
wake-up interval depends on the hardware and the tra�c load, and the authors showed that by
adjust the wake-up interval to the tra�c load, most power saving can be obtained. In practice,
this requires predicting the tra�c load, which is not trivial in WSNs.

Recently, ultra low power WuRx circuit have emerged. These devices enable continuous moni-
toring of the wireless channel, while achieving power consumption orders of magnitude lower than
traditional WSN transceivers. Moreover, these devices are able to wake up the rest of the node
using interrupts. However, ultra low power consumption comes at the cost of signi�cantly lower
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Figure 1.7 � Comparison of some WuRx in terms of power consumption, latency and sensitivity (from [2]).
WUR 1, WUR 2 and WUR 3 correspond to various designs proposed in [2]. Marinkovic WUR corresponds
to [3]. Oller14 and Oller13 respectively correspond to [4] and [5]. Roberts WUR corresponds to [6]. Milosiu
WUR corresponds to [7].

bit-rate and lower sensitivity (and therefore range) compared to traditional transceivers, which
make these devices ine�cient to transmit long frames. Therefore, WuRx typically does not re-
place traditional WSN radio receivers, but comes as an extra device used to reduce the power
consumption of communications.

Using these devices, no rendez-vous is required to perform a packet transmission, as illustrated
in Figure 1.6. Indeed, when a node needs to transmit a packet, it �rst transmits a speci�c signal,
called WuC, intended to the receiver node WuRx. Some WuRx have address matching capabilities,
which makes possible to wake up only the addressed node and not all the neighboring nodes.
When the receiver WuRx detects the WuC, it generates a hardware interrupt to wake up the main
microcontroller, which can then put the main transceiver in the receive mode to receive the data
packet. As the data packet is typically large compared to the WuC, it is more e�cient to send it
using the main transceiver. Indeed, state of the art WuRx achieve lower sensitivity and bitrate
than traditional transceivers. In this thesis, the WuRx from [2] was used for experimentations and
simulations, and Figure 1.7 shows its performance compared to other state of the art WuRx. It can
be seen that current WuRx achieves sensitivity around ´55 dBm, which is signi�cantly lower than
usual WSN transceiver, that achieves sensitivity around ´115 dBm (e.g. of the Texas Instruments
CC1120). Therefore, WuC are transmitted at higher transmission power than the other frames.
Moreover, the bitrates of WuRx is typically of a few kbps (1 kbps for the WuRx used in this work),
leading to higher latencies, especially when the address of the node to wake up is transmitted in
the WuC, as shown in Figure 1.7. Therefore, WuC needs to be transmitted at higher transmission
power and for longer time, which make their sending energetically expensive. As a consequence, the
potential bene�ts brought by WuRx need to be studied, and communication protocols leveraging
these emerging devices must be carefully designed.

WuRx have the potential of improving the e�ciency of wireless communications, which is
critical in WSNs. Moreover, WuRx remove the need for time synchronization between the node
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MAC layers, or �nding optimal wake-up intervals. This is especially important in EH-WSNs, as
dynamic quality of service adaptation may lead to dynamic packet rates, unsuitable in networks
in which the MAC layers need time-synchronization.

1.3 Contributions and Thesis Outline

This thesis is divided into two parts. The �rst part deals with energy management in EH-WSNs,
while the second part is dedicated to MAC protocols and WuRx.

1.3.1 Contributions

The three main contributions of this thesis in the �eld of energy management in EH-WSNs are:

• A �rst EM, named Fuzzyman, and based on model-free fuzzy control theory, is proposed to
deal with the variability of the energy sources. The strategy of Fuzzyman is implemented as
a set of fuzzy inference rules, through which an intuitive energy management policy can be
formally expressed. Fuzzyman requires as an input the current residual energy, as well as the
amount of energy harvested in the last time slot.

• A second EM, named RLMan, and based on Reinforcement Learning (RL) theory, is intro-
duced. RL is concerned with getting an agent to take actions in an environment so as to
maximize a cumulative reward, which is a scalar feedback from the environment. Contrary
to Fuzzyman, RLMan requires as an input the residual energy only. Indeed, RLMan was in
part motivated by the di�culty of measuring the amount of harvested energy accurately in
practice.

• A distributed algorithm was proposed to tackle the problem of packet generation rate assign-
ment in multi-hop EH-WSNs. In multi-hop networks, each sensor node is also a relay for the
network, and when setting the packet generation rate of a given node, the energy states of the
nodes that serve as a relay for it must also be considered. Packet generation rate assignment
is therefore a network-scale problem in multi-hop EH-WSNs.

In the �eld of MAC protocols and WuRx, the main contributions of this thesis are:

• A generic analytical framework for modeling MAC protocols was designed and used to eval-
uate the bene�ts of WuRx. Using the proposed framework, a simple MAC leveraging WuRx
was compared to state of the art MAC. Experimentations were realized to support the ob-
tained results.

• An opportunistic forwarding MAC scheme named OPWUM and leveraging WuRx was de-
signed. It is based on timer-based contention, and was compared to other opportunistic
forwarding schemes using network simulations.

• WuRx are combined with the recent LoRaTMlong-range communication scheme for the In-
ternet of things in a new heterogeneous communication network architecture. The proposed
network architecture enables low latency and low energy communication both from the sensor
nodes to the sink and from the sink to the sensor nodes.

Energy harvesting and WuRx were combined experimentally in the context of star networks:

• An EM inspired by Fuzzyman but that is more practical to implement as it does not require
the amount of energy harvested as an input was designed and implemented, as well as a
MAC protocol leveraging WuRx that achieves energy e�cient communications in the context
of data gathering star networks.

I realized part of this thesis at the Eidgenössische Technische Hochschule Zürich (ETHZ - Swiss
Federal Institute of Technology in Zurich), were I stayed from September 2015 to March 2016. I
was hosted by the Integrated Systems Laboratory (IIS), working with Dr. Michele Magno and
Prof. Luca Benini. The work presented in Chapters 5, 6, 8 and in the Appendix B were done in
collaboration with ETHZ.
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1.3.2 Thesis outline

Part I � Energy Harvesting for Wireless Sensor Networks

Chapter 2 � Related Work The Chapter 2 presents the related work on energy management
in EH-WSNs. Energy management schemes can be organized as prediction-based or prediction-
free. Prediction-based schemes require a predictor, which provides guesses of the harvested energy
in the near future. At the opposite, prediction-free algorithms do not require predictions. This
chapter provides the state of the art on energy prediction algorithms, prediction based EMs, and
prediction-free EMs.

Chapter 3 � Fuzzyman: an Energy Manager Based on Fuzzy Control Theory The
Chapter 3 introduces the �rst contribution of this thesis in the �eld of EH-WSNs, which is an EM
based on fuzzy control theory. The chapter starts by giving the background on fuzzy sets, fuzzy
logic and fuzzy control required to understand the design of the proposed EM. The proposed EM
is called Fuzzyman and relies on model-free fuzzy control theory. Fuzzyman is compared to state
of the art algorithms using simulations, and details on the tuning of Fuzzyman and comparison
results are given in this chapter.

Chapter 4 � RLMan: an Energy Manager Based on Reinforcement Learning The
Chapter 4 presents a new EM based on RL theory called RLMan. This chapter starts by giving
the background on RL theory, before describing RLMan's algorithm. In order to achieve low
computation and memory overhead, linear function approximators were used to deal with the
continuous state and action spaces, and the required background on this kind of approximators is
also introduced. RLMan is compared to state of the art EMs using simulations, and the results
are presented in this chapter.

Part II � MAC Protocols leveraging Wake-up Receivers

Chapter 5 � A Generic Framework For Modeling MAC Protocols The Chapter 5
presents a generic analytical framework based on Absorbing Markov Chains (AMCs) for mod-
eling MAC protocols. The proposed framework evaluates the average power consumption, the
average latency, and the probability of a successful transmission. In order to illustrate how it can
be used to model a protocol, the chapter shows in detail the modeling of PW-MAC [20], a state of
the art receiver-initiated protocol. To achieve high accuracy, the parameters of the model are set
using micro-benchmarks measurements. The accuracy of the model is validated by experimental
measurements.

Chapter 6 � Bene�ts of Wake-up Receivers The Chapter 6 starts by introducing the state of
the art on WuRx circuits and MAC protocols leveraging WuRx devices. The analytical framework
introduced in Chapter 5 is then used to show the bene�ts enabled by WuRx by comparing simple
MAC protocols leveraging WuRx devices to several state of the art pseudo-asynchronous MAC
protocols. Experimental measurements are used to support the analytical comparison results.

Chapter 7 � OPWUM: OPportunistic Wake-Up Mac The Chapter 7 presents OPWUM,
an opportunistic forwarding protocol leveraging WuRx. OPWUM relies on the timer-based con-
tention method to enable "on-the-�y" selection of the next-hop relay node according to an arbitrary
metric that is application dependent. OPWUM is evaluated using network simulations regarding
energy consumption and Packet Delivery Ratio (PDR). Energy harvesting is studied as an appli-
cation case of OPWUM, when the next-hop selection metric is calculated according to the energy
state of each node.

Chapter 8 � Combining Wake-up Receivers and Energy Harvesting in Star Networks
In Chapter 8, energy harvesting and WuRx are experimentally combined in the case of data gath-
ering star networks. As it was found out that getting the amount of harvested energy is not easy
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in practice and incurs signi�cant energy overhead, another EM (Rules Based EM � REM), in-
spired by Fuzzyman, was designed and implemented (RLMan was not yet designed when this work
was done). Moreover, a protocol for data gathering star network was designed and implemented.
Implementation details and experimentation results are available in this chapter.

Appendices

Appendix A � Packet Rate Assignment in Multi-hop Energy Harvesting Wireless
Sensor Networks The problem of packet generation rate assignment in multi-hop EH-WSNs is
tackled in this appendix in the case of network with a tree topology. Packet generation rate assign-
ment is formulated as a convex optimization problem, with the objective to achieve proportionally
fair assignment. A distributed algorithm was designed using the fast Alternating Direction Method
of Multipliers (ADMM).

Appendix B � Long-Short Range Communication with LoRaTMand Wake-up Re-
ceivers In Appendix B, WuRx were combined with LoRaTM, an emerging long-range and low
bitrate communication technology for the Internet of things. A new network architecture is pro-
posed, as well as a MAC protocol to leverage it. In collaboration with ETHZ, a platform was
designed and evaluated that includes a WuRx in addition to a transceiver that can handle both
LoRaTMand IEEE 802.15.4.

1.4 Timeline of the PhD

Figure 1.8 shows the organization of the PhD. After �ve months of full-time bibliography, the
�rst two contributions were proposed: GRAPMAN [21], which was the �rst EM designed during
this PhD, but which is not presented in this thesis, and OPWUM (Chapter 7), an opportunistic
forwarding MAC protocol leveraging WuRx.

The next few months, the emphasis was put on the study of fuzzy control theory and on the
design and evaluation of Fuzzyman (Chapter 3). The �rst half of the second year was carried out at
ETHZ, in collaboration with Dr. Michele Magno and Prof. Luca Benini, who designed the WuRx
used in this PhD. The �rst three months were devoted to the implementation of a Fuzzyman-based
EM, on a node leveraging WuRx (Chapter 8). It was initially planned to implement Fuzzyman as
it is presented in this thesis, but it was found out to be di�cult to get precise measurements of the
harvested energy. This observation motivated the latter design of RLMan (Chapter 4).

The experience of working with WuRx triggered the willingness to study in details the potential
bene�ts enabled by WuRx, and in that aim to compare di�erent MAC protocols based on di�erent
paradigms. The analytical framework presented in Chapter 5 was designed to ful�ll this objective,
and was used to evaluate simple protocols leveraging WuRx. As this framework was established
after the design of OPWUM, it was not used to evaluate the latter even if it is introduced in this
dissertation before OPWUM.

The next months, RLMan, an EM that requires only the residual energy to operate, was
designed using RL theory. At the same time, a new network topology relying on the combination
of recent long-range radio technologies for WSNs and WuRx was investigated, in collaboration with
ETHZ (Appendix B). In the last six months of my PhD, while writing this dissertation, the problem
of setting the packet generation rates in multi-hop EH-WSNs was addressed (Appendix A).
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Chapter 2

Related Work on Energy Managers

Many energy management schemes were proposed in the last years to address the non trivial
challenge of designing e�cient adaptation algorithms, suitable for the limited resources provided
by sensor nodes in terms of memory, computation power, and energy storage. EM schemes can
be classi�ed based on their requirement of predicted information about the amount of energy that
can be harvested in the future, i.e. prediction-based and prediction-free. This chapter exposes
a comprehensive overview of the state of the art in EMs for EH-WSNs. First, prediction-based
schemes are presented. Then, we show how energy management can be achieved without any
predictions of the harvested energy.

2.1 Prediction-Based Energy Management

Energy
Predictor

Energy
Manager

Figure 2.1 � Prediction-based energy management scheme architecture. A predictor supplies the energy
management algorithm with forecasts of the harvested energy.

As the name implies, prediction-based schemes require that an energy predictor supplies the
EM with predictions of the energy that can be harvested in the future. The general architecture
of a prediction-based EM is shown in Figure 2.1. The time is divided into equal length time slots
of duration Ts, and the EM is executed at the beginning of every time slot. It is assumed that the
residual energy at the beginning of any time slot k, i.e. the amount of energy stored in the energy
bu�er, can be measured, as well as the amount of energy harvested during the pk´1qth slot. These
quantities are respectively denoted errks and ehrk´1s. The energy predictor is fed with ehrk´1s at
the beginning of every slot k, and uses these values to compute predictions of the harvested energy
pehrks . . . pehrk`K ´ 1s over a window of K time slots. The EM then uses these predictions, as well
as the current residual energy, to take decision about the energy budget ebrks, i.e. the amount of
energy that the node can use at the next time slot. Thus, the EM indirectly sets the quality of
service of the node, as the quality of service depends on the energy budget. In this section, we
�rst present an overview of energy prediction algorithms, before exposing prediction-based energy
management schemes.

2.1.1 Energy Prediction Algorithms

Energy harvesting modeling and prediction is a hot topic, and great e�orts were devoted over the
last decade to the design of energy forecasting models [22]. Typically, the energy source is assumed
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to be dynamic, non-controllable, and predictable. Most of the proposed forecasting schemes are
speci�c to a type of source, such as RF, solar, wind. . .

Regarding RF harvesting, performing prediction is similar to predicting the link quality. In [23],
the authors modeled the link as a Markov chain, with parameters discovered on-the-�y, and com-
bined this model with a classi�er system. Genetic algorithms were used to dynamically adapt the
classi�ers according to rewards computed from the quality of predictions. In [24], the authors pro-
posed the Oriented Birth-Death model, a modi�ed version of the Birth-Death prediction scheme in
which the notion of orientation was added to represent a tendency in the link future state, i.e. if
the link tends to increase or decrease the signal strength. Liu et al. proposed in [25] a data-driven
approach to predict link features, named 4C, suited for static networks. The algorithm consists
of three steps: data collection, o�ine modeling and online predictions. The data collection phase
involves gathering link quality data, such as Received Signal Strength Indication (RSSI), Link
Quality Indicator (LQI) and Signal to Noise Ratio (SNR). The modeling step consists of training
prediction models. Three methods were evaluated by the authors: Bayes classi�ers, logistic regres-
sion and neural networks, and they concluded that logistic regression works well among the three
models with small computational cost. The last step involves the implementation of the proposed
scheme of the trained predictor for online prediction.

In their seminal work on EH-WSN [18], Kansal et al. proposed a forecasting scheme based on
Exponentially Weighted Moving-Average (EWMA) targeting solar energy. It was assumed that the
amount of harvested energy at a particular time slot is similar to the amount of harvested energy
the previous days at the same time slot. The prediction is done for each time slot by averaging
the energy observed the previous day at the same time slot, with an exponential decrease of the
old data. A drawback of the EWMA predictor is that it does not suit well to environment in
which the weather frequently changes. To overcome this de�ciency, Piorno et al. proposed in [26]
the Weather-Conditioned Moving Average (WCMA) predictor, which considers both the current
and past-day weather conditions for computing predictions, as opposite to EWMA which only
considers past-day conditions. The authors introduced the GAP factor, which measures the solar
conditions in the present day relative to the previous days, and makes the predictor more reactive
in frequently changing weather conditions. Moser et al. further enhanced the WCMA algorithm
in [27], by using a phase displacement regulator. The so obtained algorithm, called WCMA-PDR,
reduces the average error. In [28], the authors used a method similar to EWMA but that considers
both the energy available in the past time slots and the energy available in the current time slot.
Moreover, a scaling factor was introduced by the authors to overcome short-term varying weather
conditions.

Di�erent solar energy prediction algorithms were compared in [29], that incur a small memory
footprint and computational overhead, and are thus well-suited for implementation of WSNs. The
authors also introduced a prediction scheme based on neural networks with two hidden layers, and
which was trained using supervised learning and error back propagation. Results show that WCMA
outperforms in term of prediction error EWMA, the scheme from [28] as well as the neural network
solution, however at the cost of higher memory and computational overhead than EWMA and [28].
Still focusing on solar energy prediction, Lu et al. proposed SunCast in [30]. SunCast uses a three-
stage process. First, it calculates the similarity of the current sunlight level with all historical data
traces previously observed. This step involves computing the squared error between the real-time
data stream and the historical data stream for a given time window, and then ranking all the
historical traces by normalizing the di�erent values. The second step applies regression analysis to
all the historical traces to map the trends in historical data to match pattern of the current day.
The last stage applies the regression model to the future time window to produce predictions.

In [31], Petrioli et al. proposed Pro-Energy, which targets both solar and wind energy. Pro-
Energy keeps a pool of �typical� energy pro�les observed in the past as well as the current day
pro�le. At every time slot, Pro-Energy chooses the typical pro�le which is the most similar to the
current day stream, and uses it to make forecast about the harvested energy. Pro-Energy is made
up of three components: i) the pro�le analyzer, which selects among the stored pro�les the most
similar one to the current-day stream, ii) the prediction module, which delivers predictions, and iii)
the pro�le pool refresh, which updates the typical pro�le pool, according to their age and similarity.
Pro-Energy with Variable-Length Time slots (Pro-Energy-VLT), an enhancement of Pro-Energy,
was proposed in [32], which �ne-tune the time slots duration to achieve better accuracy while
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reducing the memory overhead compared to the original algorithm. In contrast with previous
schemes, Renner proposed to consider global knowledge in terms of fractional sky cloudiness in
addition to local knowledge to achieve accurate prediction of solar energy intake [33]. The general
idea is to compute the harvested energy under clear sky, and then to scale this value using cloud
cover forecast. The scaling is done using well-studied meteorological models, and prediction relies
on the EWMA algorithm. More recently, Kosunalp proposed to combine EWMA Q-Learning for
Solar Energy Prediction [34] with QL-SEP. Q-Learning is a reinforcement learning approach, which
aims to maximize the discounted cumulative rewards de�ned according to the prediction error in
the case of QL-SEP. Using simulations, the author showed that QL-SEP can outperform EWMA
and Pro-Energy.

Focusing on energy harvesting from wind sources, Porcarelli et al. proposed in [35] to use linear
regression to forecast the availability of the power source, and the expected energy intakes in near
future. The prediction variable is the time and the response variable the estimated power at the
given time, and the aim of the predictor is to �nd the equation of the straight line which would
provide the best �t to the observed data points. In [36], the authors compared three di�erent
methods for predicting the harvested energy from wind sources. In the �rst one, harvested energy
is considered to be almost constant for two consecutive time slots, and the predicted amount of
harvested energy in a time slot is equal to the amount of energy harvested in the previous time slot.
In the second approach, the Adaptive Response Rate Single Exponential Smoothing (ARRSES)
method [37], a variation of EWMA, is used. ARRSES either increases the smoothing factor during
periods of high �uctuations or decreases it during periods of low �uctuations. In the last approach,
an extension of the ARRSES method is introduced, called ARRSES 2nd order, in which longest
periods are considered for forecasting. Results show that the ARRSES 2nd order method enables
better quality of service and lower power outages compared to the other approaches when used with
the same EM. Fan et al. focused on modeling and predicting harvested energy for self-powered
Wireless Body Area Network (WBAN) in [38], particularly on indoor light and thermoelectric
sources. The proposed prediction scheme is a Kalman �lter, and the state of the system, predicted
by the Kalman �lter, is de�ned by the amount of solar energy harvested at the current time slot,
the amount of thermoelectric energy harvested, the light intensity, the temperature di�erence, and
the amount of human motion. The authors show using measurements that their approach enables
better precision than moving average, exponential smoothing and linear regression for various
activities such as walking, working at desk. . .

2.1.2 Prediction-Based Energy Management

As shown in Figure 2.1, the task of the energy predictor is to feed the EM with forecasts of the
harvested energy for time window of K slots. Prediction-based EMs then use these forecasts, as
well as the residual energy er, to set an energy budget eb, which corresponds to the amount of
energy that the node can use in the next time slot, before the next execution of the EM routine.

The �rst EM using the prediction-based approach was introduced in 2007 by Kansal et al. [18].
In their approach, the energy source is assumed to be pseudo-periodic, and EWMA is used to
predict the future amount of harvested energy. Then, the duty-cycle is computed by taking into
account the di�erence between predicted and observed energy inputs. This scheme su�ers from
the poor performance of EWMA during high-�uctuations weather. Moreover, a drawback of this
approach is that it aims to maximize the duty-cycle, without balancing it over a pseudo-period of
the energy source, leading to high quality of service during periods of energy availability, and poor
quality of service during periods of energy scarcity. A distinctive feature of this scheme is that it
only considers the predicted harvested energy to take decision about the duty-cycle, without using
the residual energy, which can lead to frequent power failures.

Moser et al. [28, 39] formulated the problem of energy management as a linear program which
objective is to maximize the minimal execution rate of the sensor node task over the horizon win-
dow, which guarantees some balance of the quality of service with regard to time. The optimization
problem is reformulated as a multi-parameter linear program, which is partially solved o�ine to
reduce the computational power required by the EM, and the resulting control pro�le can be seen
as a piecewise a�ne function of the state vector. Indeed, after having solved the optimization
problem in advance, a set of polyhedrons with the associated control laws has to be stored and
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evaluated at each time step, which can still lead to a large computational e�ort if the number of
critical regions is big. In [40, 41], this approach was extended by decoupling the control problem
into two independent subproblems. Each subproblem is solved by an independent subcontroller and
energy predictor. The �rst subcontroller works at a daily time scale, and receives forecasts of the
energy, with the aim to ensure long-term sustainability, i.e. with a horizon of several weeks. The
second subcontroller works with hourly estimates of the harvested energy, and ensures short-term
adaptation. The �rst subcontroller sets an energy allowance, i.e. the amount of energy that the
system should use in the current day, and therefore the �rst subcontroller sets the energy budget
of the second subcontroller. The authors of [39, 42, 43] formulated the EM problem as a reward
maximization problem, in which the reward associated with a service increases with the amount of
computation required to provide the service. The authors explored how to exploit energy harvested
from the environment to maximize the system performance for applications with di�erent concave
reward functions, and derived a polynomial-time algorithm for optimal assignments to maximize an
overall reward. A proof of the algorithm optimality is provided, and the algorithm was evaluated
using simulations against an adversary scheme. Results show that the proposed algorithm achieves
better balancing of the energy budget over time slots compared to the adversary scheme.

Castagnetti et al. introduced in [44] two EMs, the Open-Loop Power Manager (OL-PM) and
the Closed-Loop Power Manager (CL-PM). It is assumed that a node embeds an energy harvesting
sensor, which is used to estimate the current level of harvested energy. A recharge rate is estimated,
based on the energy harvested sensor readings as well as on a battery recharge model. The OL-PM
uses only the recharge rate to take decision about the duty-cycle, i.e. to set the wake-up interval,
and aims to achieve ENO. CL-PM is more sophisticated and tries to predict the durations of
energy scarcity periods, called Zero Energy Intervals (ZEIs), and de�ned as periods during which
the recharge rate is below a �xed threshold. CL-PM uses two distinct energy management schemes:
one for ZEIs, which aims to avoid power failures by using the ZEI duration estimation from a ZEI
predictor, and one for non-ZEIs, which is the same as OL-PM. Le et al. proposed Wake up Variation
Reduction Power Manager (WVR-PM) in [45,46] which aims to achieve balanced quality of service
with regard to time. Similarly to [44], WVR-PM uses two distinct energy management schemes,
called Positive Energy Power Manager (PE-PM) and Negative Energy Power Manager (NE-PM),
and one of this two schemes is used according to the current amount of harvested energy. Indeed,
if the current energy intake is higher than a �xed threshold, then PE-PM is used, otherwise NE-
PM is used. During ZEIs, the NE-PM uses ZEI duration predictions to compute the wake-up
interval in the aim to avoid power failures. During non-ZEI periods, the PE-PM uses predictions
of the harvested energy, calculated using an EWMA �lter, to take decision about the duty-cycle.
A distinctive feature of WVR-PM compared to CL-PM is that during non-ZEI periods, it aims
to store enough energy to prevent power failures during non-ZEIs periods, instead of achieving
neutrality. Moreover, a quantizer is used to reduce �uctuations of the wake-up interval, by �ltering
small variations.

Gorlatova et al. [47, 48] presented the results of a 16 month-long indoor radiant energy mea-
surements campaign, and a mobile outdoor light energy study. The authors showed that in indoor
environment, the energy models are mostly partially predictable. Also, the resource allocation
problem for energy harvesting was formulated, and algorithms were proposed to solve this problem
online for deterministic energy pro�le and stochastic environmental energy models. In the �rst
case, lexicographic maximization and utility maximization framework were used. In the second
case, the harvested energy was modeled by i.i.d random variables, and the problem was formulated
as an MDP. In [49], the authors focused on kinetic (motion) energy harvesting. They presented a
dataset of long-term human motion and a study of the corresponding energy generation process,
as well as an energy allocation algorithm. The energy allocation problem was formulated as an
NP-hard integer optimization problem, and proposed an o�ine dynamic programming algorithm
for solving the energy allocation problem, an o�ine fully polynomial time approximation scheme
for cases where the dynamic programming algorithm is unpractical, and an online greedy algorithm
that is optimal in particular scenarios. In [50], Yang et al. introduced AutoSP-WSN framework,
which combines a routing protocol (SP-BCP) and a rate control scheme (PEA-DLEX) for solar
powered EH-WSNs. The algorithms use forecasts of the harvested energy computed using a pre-
dictor introduced by the authors called WC-EWMA, which is, as the name suggests, based on the
EWMA scheme, and uses both long-term seasonal and short-term daily solar pro�les, as well as a
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prede�ned cloudiness degree threshold to �lter the in�uence of bad weather days over the seasonal
stable reference power. The problem of local power management is formulated as a linear problem,
and solved locally by the nodes. Two adaptive network protocols are proposed, named SP-BCP
and PEA-DLEX. The �rst one is an extension of the BCP protocol [51], and is an energy-aware
back-pressure routing protocol. The second is an extension of the DLEX algorithm [52]. Jushi et al.
focused on wind energy harvesting in [36] and proposed a wake-up interval adaptation scheme that
uses harvested energy forecasts provided by various predictors type, as well as consumed energy
predictions and the current residual energy.

2.2 Prediction-Free Energy Management

Energy
Manager

Figure 2.2 � Prediction-free energy management scheme architecture. No predictor is required.

In contrast with prediction-based energy management schemes, prediction-free approaches do
not rely on forecasts of the harvested energy to take decision about the energy budget, as shown in
Figure 2.2. The motivation of these approaches is the fact that the amount of energy that a sensor
can harvest shows large �uctuations and is hard to predict. As a consequence, energy predictors
can su�er from signi�cant errors, which would incur overuse or underuse of the harvested energy.

The �rst prediction-free EM was LQ-Tracker [19], proposed in 2007 by Vigorito et al.. This
scheme relies on linear quadratic tracking, a technique from control theory, to adapt the duty-
cycle according the the current state of charge of the energy bu�er. In this approach, the energy
management problem is modeled as a �rst order discrete time linear dynamical system with colored
noise, in which the system state is the state of charge of the energy bu�er, the control is the duty-
cycle and the colored noise the moving average of state of charge increments produced by the
harvested energy. The objective is to minimize the average squared tracking error between the
current state of charge and a target residual energy level. The authors used classical control theory
results to get the optimal control, which does not depend on the colored noise, and the control
law coe�cients are learned online using gradient descent. Finally, the outputs of the control
system are smoothed by an exponential weighting scheme to reduce the duty-cycle variance. Using
simulations, the authors showed that the proposed algorithm can outperform the EM by Kansal
et al. from [18]. Hsu et al. [53] considered energy harvesting WSNs with throughput requirement,
and used Q-Learning, a well-known RL algorithm, to meet the throughput constraints. In this
approach, states and actions are discretized, and a reward is de�ned according to the satisfaction
of the throughput constraints. The aim of the algorithm is to maximize the overall rewards, by
learning the Q-values, i.e. the accumulative reward associated with a given state-action pair. The
proposed EM requires the tracking of the harvested energy and the energy consumed by the node
in addition to the state of charge. Moreover it uses two dimensional look-up tables to store the
Q-values, which incurs signi�cant memory footprint. At each execution of the EM, the action is
chosen according to the Q-values using soft-max function, and the Q-value of the last state-action
pair observed is updated using the corresponding last observed reward.

In [54], the authors focus on energy harvesting nodes on which control is done by setting two
actions: measurement and transmission action, and storage action. They used fuzzy rule based
systems to generate two di�erent controllers, one for each action. The state of the system was made
of the energy bu�er level and state of the data bu�er, and the fuzzy rule based system covered
each of the two dimensions with �ve triangular membership functions. The membership functions
were related using twenty �ve automatically generated rules which were then weighted using one of
the �ve membership function for each of the two possible action dimensions. The fuzzy rules were
weighted by trial and error, speci�cally for a precise energy source. Indeed, the authors considered
two di�erent locations for solar light energy harvesting, and control surfaces were generated for each
location and for each controller using energy traces of each location. The surfaces produced where
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then discretized and stored as look-up tables in the device memory. Storing discretized version
of the control surfaces in the device memory incurs a signi�cant memory footprint. Moreover, as
speci�c tuning was done for each energy source using recordings, the proposed scheme is hard to
generalize.

With P-FREEN [55], Peng et al. proposed an EM that maximizes the duty-cycle of a sensor
node in the presence of battery storage ine�ciencies. The authors formulated the average duty-
cycle maximization problem as a non-linear programming problem, and as solving this kind of
problem directly is computationally intense, they proposed a set of budget assigning principles
that maximizes the duty-cycle by only using the current observed energy harvesting rate and the
residual energy. The proposed algorithm requires the current state of charge of the energy bu�er as
well as the harvested energy to take decision about the energy budget. If the state of charge of the
energy bu�er is below a �xed threshold or if the amount of energy harvested at the previous time
slot is below the minimum required energy budget, then the node is operating with the minimum
energy budget. Otherwise, the energy budget is set to a value that is a function of both the amount
of energy harvested at the previous time slot and the energy storage e�ciency.

2.3 Summary

EH-WSNs have received increasing attention in the last decade, and designing e�cient and low
overhead EMs for achieving energy neutrality is a hot topic. The EM task is to set the energy
budget or, equivalently, the duty-cycle of the node, with the aim to maximize the quality of service
while avoiding power failures. Therefore, it is a critical component. The majority of proposed
algorithms assume the availability of forecasts of the harvested energy, and therefore designing
accurate predictors is an active research �eld. Typically, predictors are speci�c to one type of
energy source. Prediction-based EMs assume the presence of such a predictor and uses the energy
harvesting forecasts to take decision about the energy budget. On the other hand, motivated by
the di�culty of getting accurate forecasts of the harvested energy, prediction-free schemes do not
require forecasts of the harvested energy.

Prediction-free approaches such as LQ-Tracker or P-FREEN proved that it is possible to achieve
e�cient energy management without requiring the overhead incurred by prediction mechanisms
in terms of memory and computational power. Therefore, we focus on this thesis on prediction-
free schemes. The recent EM P-FREEN is similar to a "all-or-nothing" policy, i.e. the energy
budget is either the minimum energy budget, or an energy budget computed from the harvested
energy to avoid energy waste. This approach leads to abrupt variations of the energy budgets,
which is usually not suited for WSNs applications. In the next chapter, Fuzzyman, an EM based
on fuzzy control theory, is presented and evaluated, which unlike P-FREEN achieves soft energy
management.

However, Fuzzyman requires the amount of harvested energy at the previous time slots to take
decisions about the energy budget. Even if it is assumed that this value is available in the majority
of energy management schemes, this value is in practice hard to measure. Therefore, in Chapter 4,
an EM based on reinforcement learning in continuous state and action spaces is introduced, which
requires only the residual energy as an input. The proposed scheme was compared to LQ-Tracker,
in addition to P-FREEN and Fuzzyman, as it is also a prediction-free scheme that requires only
the residual energy as an input.



Chapter 3

Fuzzyman: an Energy Manager

Based on Fuzzy Control Theory

Fuzzy control theory aims to extend the existing conventional control system techniques and meth-
ods for a class of ill-modeled systems, i.e. fuzzy systems [56]. Because of the unstable and hard to
predict behavior of the harvested energy, EH-nodes are usually hard-to-model systems, and fuzzy
control theory therefore constitutes an appropriate framework to design EMs for these systems.
Accordingly, we introduce Fuzzyman [57], a new EM for EH-nodes that relies on fuzzy control
theory. This chapter starts by presenting background on fuzzy control theory in Section 3.1, be-
fore introducing the design of Fuzzyman in Section 3.2. In Section 3.3, the parameterization of
Fuzzyman is discussed in the case of EH-nodes powered by indoor ambient light using exhaustive
trace-driven network simulations. Section 3.4 exposes the results of Fuzzyman evaluation, which
was compared to P-FREEN [55] using exhaustive trace-driven simulations. Finally, Section 3.5
concludes this chapter.

3.1 Background on Fuzzy Control Theory

Fuzzy control relies on the concept of fuzzy logic for which truth values can be any real numbers
between 0 and 1, as opposite to Boolean logic. Similarly, in fuzzy set theory, elements can have
partial membership to a given set, as opposite to classical set theory in which an individual is
either a member or not a member of a set. These concepts are detailed in Section 3.1.1. Next, in
Section 3.1.2, the relevant background of fuzzy control theory required for understanding Fuzzyman
design is exposed.

3.1.1 Fuzzy Set and Fuzzy Logic

Let A be a classical set, and let us de�ne IA its characteristic function de�ned by:

IApxq “

#

0, if x R A
1, if x P A

(3.1)

which is an indication of membership to A. In fuzzy set theory, an element can be not fully in a
set, but only partially. This can be formally expressed by extending the characteristic function.
If we consider partial membership, the associated characteristic function needs to be generalized
to describe the membership grade of a given element. The so-obtained generalized characteristic
function maps any element x to a real in the range r0, 1s, where 0 can be interpreted "not a member
at all" and 1 can be interpreted "full member". It can be seen that the characteristic function of
a classical set is a particular case of this generalized characteristic function.

To motivate the concept of partial membership, let's consider the example of outdoor temper-
ature and H be the set of temperatures for which the day is considered to be hot. As there is
no precise threshold above which a day is considered as hot, the set H is not well-de�ned. For
example, if the temperature is 25 0C, it is not clear if it is a hot day or not. A solution to make
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H well-de�ned is to not classify a day as being absolutely hot or not hot at all, but to be partially
hot depending on the temperature, which can be formally expressed as partial membership to the
set H. An example of partial membership function is shown in Figure 3.1. On this example, the
day is considered to be absolutely not hot for temperature of 10 0C or less, and absolutely hot for
temperature of 50 0C or more. The day hotness is 0.5 if the temperature is 25 0C. The curve shown
in Figure 3.1 is called the membership function of H.

Membership

Temperature
(°C)

Figure 3.1 � An example of a membership function.

Once the membership function associated with a set has been chosen, the set along with the
membership function associated to it is called a fuzzy set. A fuzzy set is thus made of two elements:
a set and a membership function. If A is a fuzzy set, its membership function is denoted by µA.

The ultimate goal of fuzzy logic is to provide foundations for approximate reasoning using im-
precise propositions based on fuzzy set theory, in the same way that the classical logic provides
foundation for reasoning using precise propositions. In classical logic, every proposition is assumed
to be either true or false. However, it is now well understood that many propositions are both
partially true and partially false, and multi-valued logics were developed to generalize the classi-
cal two-valued logic. As a consequence, several three-valued logics are now well-established, and
n´valued logics were further developed, and in particular the n´valued logic of Lukasiewicz allows
n “ 8. Moreover, in the same way that there exists an isomorphism between the two-valued
logic and the classical set theory, there is an isomorphism between Lukasiewicz logic and fuzzy set
theory [56].

In order to work with fuzzy reasoning, we �rst need to introduce fuzzy logic operations, which
are extensions of the classical logic operations, i.e. and, or, not, implication and equivalence, to
the concepts of fuzzy reasoning. If A is a fuzzy set and if µApxq P r0, 1s represents the truth value
of proposition "x is a", we will denote µApx is aq “ µpxq. We have:

µApx̄q “ 1´ µApxq

µApx^ yq “ min pµpxq, µpyqq

µApx_ yq “ max pµpxq, µpyqq

µApx ñ yq “ min p1, 1` µApyq ´ µApxqq

µApx ðñ yq “ 1´ |µApxq ´ µApyq|

where x̄ denotes "x is not a". We now focus on the implication relation x ñ y as it plays an
important role in fuzzy control. The fuzzy implication relation xñ y is de�ned in linguistic terms
as:
"IFx P A with a truth value µApxq THEN y P A with a truth value of µApyq"
has a truth value µApx ñ yq “ minp1, 1 ` µApyq ´ µApxqq, assuming that x and y take values in
the same set A. In the general case, a fuzzy IF-THEN rule has the form:

IF px1 is A1q ^ px2 is A2q . . . pxN is AN q THEN y is B,

and is implemented by the following evaluation formula: µA1px1q^¨ ¨ ¨^µAN pxN q ñ µBpyq, where:

µA1px1q ^ µA2px2q . . . µAN pxN q “ minpµA1px1q, µA2px2q, . . . , µAN pxN qq.
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One may notice the absence of NOT or OR logical operations in this rule. The NOT operation can
be easily incorporated as "IF x is not A" is equivalent to "IF x̄ is A". Regarding the OR operation,
any IF-THEN rule containing OR statements can be turned into a set of IF-THEN containing only
AND statements. For example, the following rule:

IF px1 is A1 _ x2 is A2q ^ px3 is A3 _ x4 is A4q

THEN . . .

is equivalent to:

IF px1 is A1 ^ x3 is A3q _ px1 is A1 ^ x4 is A4q _ px2 is A2 ^ x3 is A3q_

px2 is A2 ^ x4 is A4q

THEN . . .

which can be expressed as:

IF px1 is A1 ^ x3 is A3q

THEN . . .

IF px1 is A1 ^ x4 is A4q

THEN . . .

IF px2 is A2 ^ x3 is A3q

THEN . . .

IF px2 is A2 ^ x4 is A4q

THEN . . .

removing the need for explicit OR operators. Such a set of fuzzy IF-THEN rules is called a fuzzy
rules base, and plays an essential role in fuzzy control.

An important practical consideration is how fuzzy IF-THEN rules are evaluated. A handful of
options are available for evaluated the rule µAñBpx, yq “ µApxq ñ µBpyq:

• µAñBpx, yq “ minpµApxq, µBpyqq

• µAñBpx, yq “ µApxqµBpyq

• µAñBpx, yq “ minp1, 1` µBpyq ´ µApxqq

• µAñBpx, yq “ max pminpµApxq, µBpyqq, 1´ µApxqq

• µAñBpx, yq “ maxp1´ µApxq, µBpyqq

• Goguen's formula:

µAñBpx, yq “

#

1 if µApxq ď µBpyq
µBpyq
µApxq

if µApxq ą µBpyq

For the purpose of fuzzy logic inference, all these evaluation formulas are valid provided that
the same formula for the implication relation is used. However, di�erent formulas give di�erent
resulting values. In the next section, fuzzy control theory is introduced.

3.1.2 Fuzzy Control

In this section, the background on fuzzy control theory required to understand the design of
Fuzzyman is exposed. This section focuses on the model-free approach of fuzzy control, which
relies on the fuzzy set and fuzzy logic theories introduced in the previous section.

A signi�cant part of fuzzy control systems are knowledge-based, in that their fuzzy controllers
are described by fuzzy sets and fuzzy IF-THEN rules, which have been prede�ned from "expert"
knowledge about the system. The basic architecture of a fuzzy logic controller consists of four



42

Fuzzification
Inference

Engine

Rule
Base

Defuzzification
Crisp input Crisp output

Fuzzy input Fuzzy output
Figure 3.2 � Fuzzy logic controller architecture.

components: a fuzzi�cation unit, an inference engine, a rule base and a defuzzi�cation unit as
shown in Figure 3.2. The crisp inputs of the controller are denoted by e1, . . . , eN where N is the
number of inputs. The task of the fuzzi�cation unit is to convert the "crisp" input signals into
a normalized fuzzy set consisting of a set for the range of the input values, and an associated
membership function. The aim of the fuzzi�cation unit is to make the controller input signals
compatible with the fuzzy inference engine. The rule base is made of a set of fuzzy IF-THEN rules,
where the ith rule is of the form:

IF controller input e1 is Ei,1 ^ ¨ ¨ ¨ ^ controller input eN is Ei,N
THEN controller output ui is Ui

where Ei,j is a fuzzy set associated to the ith rule and jth input. The fuzzy inference engine is
responsible for applying these fuzzy rules to the controller inputs, and implements the fuzzy logic
operators. The outputs of the inference engine are the controller outputs expressed in fuzzy terms,
and are therefore incompatible with the system to control. The aim of the defuzzi�cation unit is
to convert those fuzzy outputs into crisp outputs, that the system can use.

Takagi and Sugeno proposed a modi�ed version of IF-THEN rules in [58], in which the conse-
quence of a rule is a function of the input variables. In this mode of reasoning, the ith controller
rule is of the form:

IF controller input e1 is Ei,1 ^ ¨ ¨ ¨ ^ controller input eN is Ei,N
THEN controller output ui “ fipe1, . . . , eN q

The defuzzi�cation process calculates the crisp output by performing a weighted average on the
output of each rule:

u “

ř

i αRifipe1, . . . , eN q
ř

i αRi
, (3.2)

where the weight αRi associated to the ith rule is the �ring strength which measures the contribution
of the rule:

αRi “ min
`

µEi,1pe1q, . . . , µEi,N peN q
˘

. (3.3)

Fuzzyman is a Takagi-Sugeno controller type, and is introduced in the next section. Details on
each unit (fuzzi�cation, rule base/inference engine, defuzzi�cation) will be given while describing
the design of Fuzzyman.

3.2 Design of Fuzzyman

The task of Fuzzyman is to compute the energy budget ebrks that the node should use during the
slot k regarding the residual energy errks and the energy harvested during the previous time slot
ehrk ´ 1s. Therefore, Fuzzyman is executed at the beginning of every time slot. As a fuzzy logic
controller, Fuzzyman is made of four units as shown in Figure 3.2. The inputs of the controller at
the time slot k are ehrk ´ 1s and errks, while the output is ebrks. We next describe in details the
design of each unit.
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(a) Membership functions for the harvested en-
ergy.

(b) Membership functions for the residual en-
ergy.

Figure 3.3 � Membership functions used by the fuzzi�cation module.

3.2.1 Fuzzi�cation of the Controller Inputs

The �rst module of Fuzzyman is the fuzzi�cation unit, which converts each crisp input value, i.e.
errks and ehrk ´ 1s, into fuzzy sets.

Harvested Energy Fuzzi�cation

To describe the harvested energy physical value eh ě 0, two fuzzy sets named "WEAK" and
"STRONG" are considered. They are associated to the following normalized membership functions,
shown in Figure 3.3a:

µweakpxq “

$

’

’

&

’

’

%

1, if x ď Eweakh
´x`Estrongh

Estrongh ´Eweakh

, if Eweakh ă x ă Estrongh

0, if x ě Estrongh

(3.4)

µstrongpxq “

$

’

’

&

’

’

%

0, if x ď Eweakh
x´Eweakh

Estrongh ´Eweakh

, if Eweakh ă x ă Estrongh

1, if x ě Estrongh

(3.5)

where Eweakh is equal to the amount of energy required to ensure the minimum quality of service
for one time slot, when the power conversion e�ciency and the leakage are taken into account, i.e.:

Eweakh “
Eminb

η
` PLTs, (3.6)

where PL is the leakage power, and Ts is a time slot duration. Thus, if the source is fully "WEAK",
then the amount of harvested energy is not enough to provide the minimum energy budget Eminb .
Estrongh is the threshold at which the harvested energy is considered to be fully "STRONG".

Residual Energy Fuzzi�cation

Three fuzzy sets are used to describe the residual energy er, which is within the range r0, Emaxr s.
These fuzzy sets, named "FAIL", "EMPTY" and "FULL", are associated to the following mem-
bership functions:

µfailpxq “

$

’

&

’

%

1, if x ď Efailr
´x`Eemptyr

Eemptyr ´Efailr
, if Efailr ă x ă Eemptyr

0, if x ě Eemptyr

(3.7)

µemptypxq “

$

’

’

’

’

&

’

’

’

’

%

0, if x ď Efailr
x´Efailr

Eemptyr ´Efailr
, if Efailr ă x ď Eemptyr

fκpxq, if Eemptyr ă x ă Efullr

0, if x ě Efullr

(3.8)
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µfullpxq “

$

’

&

’

%

0, if x ď Eemptyr

1´ fκpxq, if Eemptyr ă x ă Efullr

1, if x ě Efullr

(3.9)

where

fκpxq “

ˆ

´x` Efullr

Efullr ´ Eemptyr

˙κ

, (3.10)

where κ ě 0. The membership functions are shown in Figure 3.3b. The fuzzy set "FULL" indicates
if the node has stored a su�cient amount of energy to survive a period of energy scarcity. Once the
node is completely "FULL", then the controller should be careful to avoid waste of energy. The
fuzzy set "EMPTY" indicates how close the node is from emptying its energy stock. The "FAIL"
fuzzy set serves as a safety to avoid power failures. If the "FAIL" set is activated, then the node
is in energy distress state, and the priority of the controller is to avoid a power failure.

The parameter κ controls the shapes of the membership functions µfull and µempty. The higher
κ is, the faster µfull tends to 1 and µempty tends to 0 when the residual energy increases. Therefore,
choosing high values of κ makes Fuzzyman more tolerant about the fullness of the energy storage
device. We denote Eres the amount of energy that is needed to be reserved in order for the node to
ensure the minimum quality of service when no harvested energy is available. Efullr indicates that
the node has reserved su�cient energy Eres. Eemptyr indicates that all the reserved energy Eres
was used up. Thus, Eres “ Efullr ´ Eemptyr . Having Eemptyr ą Efailr avoids power failure when
all the reserved energy has been used. When the amount of residual energy falls below Eemptyr ,
the node enters the energy distress state. Finally, having Efullr ă Emaxr avoids wasting energy by
over�ow of the storage device.

The output of the fuzzi�cation unit is the tuple pµweakpehq, µstrongpehq, µfailperq, µemptyperq, µfullpetqq,
which forms the fuzzy inputs of the inference engine.

3.2.2 Inference Engine

The task of the inference engine is to create the control actions in fuzzy terms from the inputs
provided by the fuzzi�cation module. The inference engine strategy is described by a set of 6 fuzzy
IF-THEN rules Ri with i P t1 . . . 6u shown by the Table 3.1. For each slot k, the output of the rule
i is denoted eibrks. The output of the rules R2 and R3 are given by (3.11), and the rule R6 output
is the energy budget used at the previous slot.

eh

er
FAIL EMPTY FULL

STRONG Eedsb (R1) (3.11) (R2) (3.11) (R3)

WEAK Eedsb (R4) Eminb (R5) ebrk ´ 1s (R6)

Table 3.1 � Rule base used by the inference engine.

eibrks “ Eminb ` µfull perrksq

ˆ

ehrk ´ 1s ´
Eminb

η
´ PLTs

˙

η. (3.11)

In (3.11), it is assumed that the energy harvesting rates for two consecutive time slots are similar.
This assumption is reasonable for su�ciently small time slot duration. Energy prediction schemes
can be used for better estimation of the energy harvesting rate in near future [26].

All rules share the following multi-input single-output form:

IF errks is Xi
r ^ ehrk ´ 1s is Xi

h

THEN ebrks “ eibrks,

where Xi
r can be either FAIL, EMPTY or FULL and Xi

h can be either STRONG or WEAK. It
is important to notice that up to four rules can be activated at one run of Fuzzyman. The power
strategy implemented by Table 3.1 corresponds to �ve di�erent scenarios:
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1. R1 and R4: If the residual energy is FAIL, then the node is in energy distress. In that case,
the energy budget is set to the prede�ned value Eedsb .

2. R5: If the amount of harvested energy is WEAK and the energy storage device is EMPTY,
then the energy budget is set to the amount of energy required to ensure minimum quality
of service, i.e. Eminb .

3. R6: If the amount of harvested energy is WEAK and the energy storage device is FULL,
then the energy budget is unchanged.

4. R2: If the amount of harvested energy is STRONG and the energy storage device is not yet
fully charged, i.e. µfullperrksq ă 1, then part of the harvested energy is used to power the
node, while the rest is stored. The fraction of the harvested energy used to power the node
will be at least Eminb , and depends on µfull as shown by (3.11). Therefore, κ controls the
energy allocation policy of Fuzzyman.

5. R3: If the amount of harvested energy is STRONG and the energy storage device is fully
charged, i.e. µfullperrksq “ 1, then only the amount of energy required to compensate for
the leakage is stored, while the rest is used to power the node, thus minimizing the risk of
energy waste.

The fuzzy AND operator is implemented by the min function, as de�ned in the previous section,
and the activation value αRirks ě 0 for each rule Ri corresponds to its �ring strength, and is de�ned
following the Takagi-Sugeno approach:

αRirks “ min
´

µXir perrksq , µXih pehrk ´ 1sq
¯

. (3.12)

The rule Ri is activated if its activation value is strictly positive. If the rule is not activated, then
its output value eibrks is simply set to 0. At every run of Fuzzyman, at least one rule is activated,
and thus:

6
ÿ

i“1

αRirks ą 0. (3.13)

The activation value of each rule is interpreted as the membership value of the energy budget to
the output of the rule. The importance of κ can be seen here. Indeed, the κ parameter controls the
membership functions of the FULL and EMPTY fuzzy sets, and therefore impacts the activation
values of the rules. The highest κ is, the more tolerant is Fuzzyman about the fullness of the energy
storage device, and therefore the less prudent it is. In Section 3.3, the choice of the adequate value
of κ in the context of indoor ambient light harvesting is considered.

3.2.3 Defuzzi�cation of the Energy Budget

The last unit of Fuzzyman is the defuzzi�cation unit, which computes a physical value of the en-
ergy budget from the outputs of the inference engine. Following the Takagi-Sugeno approach, the
"center-of-gravity" scheme is used, which is the most common formula [56] to perform defuzzi�ca-
tion. Thus, the physical value of the energy budget is computed by:

ebrks “

ř6
i“1 αRirkse

i
brks

ř6
i“1 αRirks

, (3.14)

which is always de�ned according to (3.13).
Finally, the algorithm of Fuzzyman is shown by Algorithm 1. The complexity of the proposed

algorithm is Op1q, and incurs very few computations and memory overhead. Therefore, it is well-
adapted to wireless sensor nodes.
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Algorithm 1 Fuzzyman algorithm

Input: errks, ehrk ´ 1s
1: iÐ 1
2: while i ď 6 do
3: αRirks Ð mintµXir perrksq, µXihpehrk ´ 1squ

4: if αRirks ą 0 then
5: Set eibrks according to Table 3.1
6: else
7: eibrks Ð 0

8: iÐ i` 1

9: ebrks Ð
ř6
i“1 αRi rkse

i
brks

ř6
i“1 αRi rks

10: return ebrks

3.3 Tuning Fuzzyman

The κ parameter is the control parameter of Fuzzyman. Choosing κ inappropriately may lead to
power failures or energy waste. The adequate value of κ depends on both the energy source and
the energy storage device capacity Emaxr . We focus on the PowWow platform [59], which embeds
a 0.9 F supercapacitor. Moreover, EH-nodes powered by indoor ambient light are considered in
this work. Ambient light is the most common and mature among the di�erent forms of energy
harvesting. Indoor ambient light is usually a diurnal energy source, and the typical illumination
level varies from 1W/m2 [60] to 10W/m2 [61]. Simulations are used to �nd the adequate value of
κ when indoor ambient light is harvested.

3.3.1 Simulation Setup

Simulations were done using GreenCastalia [62], an open-source energy harvesting simulation
framework for the Castalia/OMNeT++ simulator [63]. The simulated network consists of one
sink that uses batteries as energy supply, and four EH-nodes powered by solar cells. The solar
panel area is set to 30 cm2, and the panel e�ciency to 15%, which is a realistic value regarding
current photovoltaic technologies [64]. The simulated platform embeds a TI CC1000 radio chip,
which consumes 22.2mW in receive state, 80.1mW in transmit state and 0.0006mW in sleep state.
Because we want to evaluate the performance of the EM, only the energy waste due to energy
storage device saturation i.e. harvested energy that cannot be stored because the energy storage
device is full, is considered. Therefore, the power conversion e�ciency η is set to 1 and the leakage
power PL is set to 0 W. Moreover, Ts is set to 300 s, and each simulation lasts 31 days (simulated
time).

The energy consumption of EH-nodes is controlled by duty-cycling. As communication is
usually the most consuming task, the idea of duty-cycling is to allow the node to switch its radio
between the sleep state and the active state according to a schedule. At each wake up, the sensor
node performs a measurement and sends the so-obtained value to the sink. Environmental power
sources provide energy that varies with time and space, leading to decoupled and individual duty-
cycle among EH-nodes. This makes synchronous MAC protocols unsuitable to EH-WSNs as they
require synchronized duty-cycle [65]. In this work, the well-known Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol is used.

3.3.2 Energy Traces

GreenCastalia needs energy traces to simulate the harvested energy. The Algorithm 2 is used
to generate light power traces, with a time granularity of one second. The purpose of the trace
generator is to allow the evaluation of the EMs in regard to energy source characteristics that
in�uence signi�cantly their behaviors, and which can be set by the user using input parameters in
the proposed model. These characteristics are the average harvested power during daytime, the
di�erence of harvested power from one day to another and the night-to-day duration ratio. The
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Figure 3.4 � Examples of generated power traces using Algorithm 2 with di�erent values of PENV and σD.

input parameters allow the user to set up these characteristics. More precisely, PENV controls the
average daytime power density and ϕ P r0, 1s is the night-to-day duration ratio. The di�erence of
harvested power from one day to another is simulated using a coe�cient (m in the Algorithm 2)
that follows a normal distribution with a mean equal to one and a variance of σ2

D. Moreover,
L is the trace length in seconds, and small disturbances of the harvested energy are considered
as noise (n in the Algorithm 2) and are simulated using a normal distribution with a zero mean
and a variance of σ2

N . Also, in real power traces, these variations do not occur as fast as every
second. Therefore, we use the parameter NW to set the duration between two variations of the
noise variable.

Algorithm 2 Trace generation

Input: L, PENV , ϕ, σD, σN , NW
1: TraceÐ Empty Trace
2: tÐ 0
3: loop
4: dÐ t % H
5: if d “ 0 then
6: mÐ RandomGaussp1, σDq
7: if d ă p1´ ϕqH then
8: if t % NW “ 0 then
9: nÐ RandomGaussp0, σN q

10: y Ð mPENV

´

sin
´

πd
T p1´ϕq

¯

` n
¯

11: if y ă 0 then
12: y Ð 0

13: else
14: y Ð 0

15: Trace[t]Ð y
16: tÐ t` 1
17: if t “ L then
18: break

In the case of ambient light harvesting, typical power densities range from 1 W/m2 [60] to
10 W/m2 [61]. Therefore, using the trace generation algorithm, two pairs of energy traces were
generated, one with PENV set to 1 W/m2 and one with PENV set to 10 W/m2. Each pair is
made of two energy traces, one with important �uctuations generated with σD set to 0.4, and one
with low �uctuations generated with σD set to 0.1. Figure 3.4 shows part of the traces using the
Algorithm 2.
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Figure 3.5 � Simulation results for tuning Fuzzyman.

3.3.3 Simulations Results

Two metrics are considered for the choice of κ: the dead ratio DR and the energy e�ciency ξ,
that were both introduced in Chapter 1. The downtime ratio is de�ned as the ratio of time spent
in power failure state over the total application duration, while the energy e�ciency is de�ned as
follows:

ξ “ 1.0´

ř

k ewrks
ř

k ehrks ` err0s
. (3.15)

Figure 3.5a and Figure 3.5b show respectively ξ and DR for values of κ ranging from 0 to
10. We can see that for values of κ higher than 0.4, the energy e�ciency is higher than 0.99 for
the four scenarios, while for smaller values of κ the energy e�ciency is signi�cantly lower when
PENV “ 10 W/m2. These results reveal that using low values of κ prevent Fuzzyman from taking
advantage of all the harvested energy. Nonetheless, using too high values of κ causes Fuzzyman to
incur power failures. Indeed, Figure 3.5b shows that for values of κ greater than 1.1 the downtime
ratio stops being null and rapidly increases. According to these results, κ “ 1.1 is the value that
maximizes ξ while achieving a null downtime ratio for the four traces introduced in Section 3.3.2.
Therefore, this value of κ is chosen for the evaluation of Fuzzyman presented in Section 3.4.
Figure 3.3 shows the membership functions when κ “ 1.1.
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3.4 Evaluating Fuzzyman

We compared Fuzzyman to P-FREEN [55], a recent model-free EM that outperforms the reference
scheme proposed by Kansal et al. [18]. The simulation setup is the same as in Section 3.3.1.
Simulations were done with energy traces generated by the model introduced in Section 3.3.2. Two
metrics in addition to DR and ξ are considered: the wasted energy EW , i.e. the harvested energy
that could not be stored because the energy storage device was full, and the average energy budget
ĎEb. Simulations were run for values of PENV ranging from 1W/m2 to 10W/m2, and values of σD
ranging from 0.1 to 0.4. Both Fuzzyman and P-FREEN achieve downtime ratio lower than 0.2 %
in all the simulation scenarios. Therefore, we focus on the energy e�ciency, the wasted energy and
the average energy budget in the rest of this section.

Figure 3.6a exposes the impact of PENV and σD on ξ. If ξ is similar for both EMs when
PENV “ 1 W/m2, Fuzzyman outperforms P-FREEN for higher values of PENV . σD has no
impact on the performance of the EMs, whereas high values of PENV lead to lower values of ξ for
P-FREEN, but do not in�uence the performance of Fuzzyman. As we will see below, these results
are explained by the larger waste of energy incurred by P-FREEN.

Figure 3.6b shows the wasted energy EW when PENV and σD vary. As we can see, Fuzzyman
incurs signi�cantly less energy waste than P-FREEN. As previously, σD does not impact the
performance of the EMs. When PENV increases, the amount of wasted energy increases when
P-FREEN is used, but stays low when Fuzzyman is used. This result explains the values of ξ
exposed in Figure 3.6a.

In order to evaluate the impact of the more e�cient harvested energy management achieved by
Fuzzyman, the average packet generation rate Ďχg is considered. Figure 3.6c shows the impact of
PENV and σD on Ďχg. If the average energy budget is similar for both EMs for low values of PENV ,
Fuzzyman outperforms P-FREEN for high values of PENV . Moreover, the advantage of Fuzzyman
over P-FREEN increases when PENV increases. Indeed, Fuzzyman achieves up to 25 % higher Ďχg
than P-FREEN (when PENV “ 10 mW and σD “ 0.4).

3.5 Conclusion

Fuzzy control theory applies fuzzy reasoning concepts from fuzzy logic to control, in the aim to
extend conventional control techniques for a class of ill-modeled systems. As EH-nodes are usually
hard-to-model systems because of the unstable and hard to predict behavior of the harvested energy,
fuzzy control constitutes an appropriate framework for these systems. Fuzzyman was accordingly
proposed in this chapter. Fuzzyman is a Takagi-Sugeno type of fuzzy controller, that is able to
provide high harvested energy e�ciency, while avoiding power failures. Fuzzyman was compared
to P-FREEN, a recent EM using extensive trace-driven simulations, and the results showed that
the proposed approach outperforms P-FREEN by allowing a higher energy e�ciency, leading to
better quality of service.

Fuzzyman does not relies on any forecasts of the harvested energy to operate, similarly to P-
FREEN. However, it still needs measures of the harvested energy. In Chapter 8, an EM inspired
by Fuzzyman was designed and implemented on the PowWow platform, but that uses the residual
energy variation instead of the harvested energy as this latter value is hard to measure precisely
in practice. Moreover, this consideration motivated the design of RLMan, presented in the next
section, an EM for EH-nodes which is based on RL theory.
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Figure 3.6 � Simulation results for tunning Fuzzyman.



Chapter 4

RLMan: an Energy Manager Based

on Reinforcement Learning

Most of the EMs introduced in Chapter 2 and Chapter 3 require an accurate control of the spent
energy, as well as detailed tracking of the previously harvested and previously consumed energies
to operate properly. However, in practice, such mechanisms are di�cult to implement and incur
signi�cant overhead [66]. Considering these practical issues, we propose in this chapter RLMan [67],
a novel EM scheme based on Reinforcement Learning (RL) theory, that requires only the state of
charge of the energy storage device to operate. RLMan objective is to maximize the quality of
service, de�ned as the packet generation rate, i.e. the frequency at which packets are generated
(e.g. by performing measurements) and sent, while avoiding power failure. RLMan aims to set the
packet generation rate by both exploiting the current knowledge of the environment and exploring
it. The problem of maximizing the quality of service in EH-WSNs is formulated as a Markovian
Decision Process (MDP), and a novel EM scheme based on RL theory is introduced. RLMan uses
function approximation to minimize the memory footprint and computational overhead. RLMan
as well as three state of the art EMs (P-FREEN, Fuzzyman and LQ-Tracker) that aim to maximize
the quality of service were evaluated using extensive simulations with real measurements of both
indoor light and outdoor wind.

The rest of this chapter is organized as follows: Section 4.1 presents the required background
on RL theory. RLMan is introduced in Section 4.2. In Section 4.3, RLMan is evaluated. First,
preliminary results are presented to show the behavior of RLMan, focusing on the learning phase
(�rst few days). Next, the results of the comparison of RLMan with three other EMs are exposed.
Finally, Section 4.4 concludes this chapter.

4.1 Background on Reinforcement Learning

RL is a framework for optimizing the behavior of an agent, or controller, that interacts with its
environment. More precisely, RL algorithms can be used to solve optimization problems that can
be formulated as MDPs. First, MDPs in continuous state and action spaces are introduced. Then,
Temporal-Di�erence (TD) learning, an important method for online policy evaluation, is presented,
focusing on the case where linear function approximators are used.

4.1.1 MDPs in Continuous State-Action Spaces

A MDP is a tuple xS,A, T ,Ry where S is the state space, A is the action space, T : S ˆAˆ S Ñ
r0, 1s is the state transition probability density function and R : SˆAÑ R is the reward function.
In discrete time MDPs, which are considered in this work, at each time step k, the agent is in a
state Srks P S and takes an action Arks P A according to a policy π. In response to this action,
the environment provides a scalar feedback, called reward and denoted by Rrk` 1s, and the agent
is, at the next time slot k ` 1, in the state Srk ` 1s. This process is illustrated in Figure 4.1. The
aim of the RL algorithm is to �nd a policy which maximizes the accumulated reward called return.
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In this work, MDPs are assumed to be stationary, i.e. the elements of the tuple xS,A, T ,Ry do
not change over time.

{
{

Policy - 

- Environment 

AGENT

Figure 4.1 � Markovian decision process illustration.

Continuous state and action spaces are considered in this work, however in Figure 4.1, an
illustration of a discrete state and action spaces MDP is shown for clarity. The stochastic process
to be controlled is described by the transition probability density function T , which models the
dynamics of the environment. The probability of reaching a state Srk`1s in the region Srk`1s Ď S
after taking the action Arks from the state Srks is therefore:

Pr pSrk ` 1s P Srk ` 1s | Srks, Arksq “

ż

Srk`1s

T pSrks, Arks, Sq dS. (4.1)

When taking an action Arks in a state Srks, the agent receives a scalar reward Rrk ` 1s assumed
to be bounded. The reward function is de�ned as the expected reward given a state and action
pair:

RpS,Aq “ E rRrk ` 1s | Srks “ S, Arks “ As . (4.2)

The aim of the agent is to �nd a policy which maximizes the total discounted accumulated reward
de�ned by:

Jpπq “ E

«

8
ÿ

k“1

γk´1Rrks

ˇ

ˇ

ˇ

ˇ

ρ0, π

ff

, (4.3)

where γ P r0, 1q is the discount factor, and ρ0 the initial state distribution. From this last equation,
it can be seen that choosing values of γ close to 0 leads to "myopic" evaluation as immediate rewards
are preferred, while choosing a value of γ close to 1 leads to "far-sighted" evaluation.

Policies in RL can be either deterministic or stochastic. A deterministic policy π maps each
state to an action: π : S Ñ A in a unique way. When using a stochastic policy, actions are chosen
randomly according to a distribution of actions given states:

π pA | Sq “ Pr pArks “ A | Srks “ Sq . (4.4)

Using stochastic policies allows exploration of the environment, which is fundamental. Indeed,
RL is similar to trail-and-error learning, and the goal of the agent is to discover a good policy
from its experience with the environment, while minimizing the amount of reward "lost" while
learning. This leads to a dilemma between exploration (learning more about the environment)
and exploitation (maximizing the reward by exploiting known information). The initial state
distribution is denoted by ρ0 : S Ñ r0, 1s, and the discounted accumulated reward can be de�ned
by:

Jpπq “

ż

S
ρπpSq

ż

A
πpA|SqRpS,AqdAdS, (4.5)

where:

ρπpSq “

ż

S
ρ0pS

1q

8
ÿ

k“1

γk´1 Pr
“

Srks “ S | S0 “ S1, π
‰

dS1 (4.6)

is the discounted state distribution under the policy π.
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During the learning, the agent evaluates a given policy π by estimating the J function (4.5).
This estimate is called the value function of π and comes in two �avors. The state value function,
denoted by V π, is a function that gives for each state S P S the expected return when the policy
π is used:

V πpSq “ E

«

8
ÿ

i“1

γi´1Rrk ` is

ˇ

ˇ

ˇ

ˇ

Srks “ S, π

ff

. (4.7)

This function aims to predict the future discounted reward if the policy π is used to walk through
the MDP from a given state S P S, and thus evaluates the "goodness" of states. Similarly, the
state-action value function, denoted by Qπ, evaluates the "goodness" of state-action couples when
π is used:

QπpS,Aq “ E

«

8
ÿ

i“1

γi´1Rrk ` is

ˇ

ˇ

ˇ

ˇ

Srks “ S,Arks “ A, π

ff

. (4.8)

These two value functions relate to each other as follows:

V πpSq “

ż

A
πpA | SqQπpS,AqdA. (4.9)

Moreover, (4.7) and (4.8) can be written in a recursive form:

V πpSq “ E rRrk ` 1s ` γV πpSrk ` 1sq | Srks “ S, πs , (4.10)

and

QπpS,Aq “ E rRrk ` 1s ` γQπpSrk ` 1s, Ark ` 1sq | Srks “ S,Arks “ A, πs , (4.11)

which form the Bellman Expectation Equations. The intuition behind the Bellman Expectation
Equations is that the value functions can be decomposed into immediate reward plus discounted
value of the successor state.

The optimal state value function gives for each state S P S the best possible return over all
policies, and is formally de�ned by:

V ˚pSq “ max
π

V πpSq. (4.12)

Similarly, the optimal state-action value function is the maximum state-action value function over
all the policies:

Q˚pS,Aq “ max
π

QπpS,Aq. (4.13)

The optimal value functions specify the best achievable performance in an MDP.
A partial ordering is de�ned over policies as follows:

π ě π1 if @S P S, V πpSq ě V π
1

pSq.

An important result in RL theory is that there exists an optimal policy π˚ that is better than or
equal to all the other policies, i.e. π˚ ě π, @π. Moreover, all optimal policies achieve the optimal
state value function, i.e. V π

˚

“ V ˚, and the optimal state-action value function, i.e. Qπ
˚

“ Q˚.
One can see that if Q˚ is known, a deterministic optimal policy can be found by maximizing
over Q˚: π˚pSq “ argmaxAQ

˚pS,Aq. The optimal value functions are recursively related by the
Bellman Optimality Equations, which intuitively express that a value from a state under an optimal
policy must equal the expected return of the best action from the state. Formally:

V ˚pSq “ max
APA

Q˚pS,Aq. (4.14)

For the optimal state value function, we have:

V ˚pSq “ max
APA

E rRrk ` 1s ` γV ˚pSrk ` 1sq | Srks “ S,Arks “ A, πs (4.15)

“ max
APA

ż

S
T pS,A, S1q

`

Rrk ` 1s ` γV ˚pS1q
˘

dS1, (4.16)
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and for the optimal state-action value function:

Q˚pS,Aq “ E

„

RpS,Aq ` γ max
A1PA

Q˚pSrk ` 1s, A1q | Srks “ S,Arks “ A, π



(4.17)

“

ż

S
T pS,A, S1q

ˆ

Rrk ` 1s ` γ max
A1PA

Q˚pS1, A1q

˙

dS1. (4.18)

An agent uses its experience to evaluate a given policy by estimating its value function. The goal
of the controller is to optimize the value function by �nding an optimal policy. We next discuss a
well-known approach for on-line policy evaluation, TD learning. Moreover, as continuous spaces
are considered in this work, we focus on the case where function approximators are used.

4.1.2 Temporal-Di�erence Learning with Linear Function Approxima-
tion

When considering continuous state and action spaces MDPs, it is impossible to store the exact
value for each state or state-action pair, and therefore function approximation is used to cover
the full range of states and actions. There exist many function approximators [68], such as linear
combination of features, neural networks, decision tree, Fourier or wavelet bases. . . However, lin-
ear function approximators are considered in this work, as they are simple to compute, which is
important in the context of WSNs, and a number of convergence guarantees exists.

It is assumed that a feature-extraction function φ : S Ñ Φ is given, and maps the states into
a feature vector in the feature space Φ. A feature vector is a representation of the state space
which facilitates the processing. The feature vector corresponding to the state S P S is denoted by
φpSq. We denote by fθ the function approximator of parameter vector θ, which approximates the
function f . f can be the state value function V , the state-action value function Q or the policy π.
fθ is de�ned by:

fθpSq “ θᵀφpSq. (4.19)

where θᵀ is the transpose of θ. The function fθ is linear in the parameters, and therefore is referred
to as a linear function approximator. However, it may not be linear in state variable.

Let us now focus on how to approximate V π by a function approximator Vθ. To do so, let us
consider the Mean Square Error (MSE) objective function:

MSEpθq “ E
”

pV πpSrksq ´ VθpSrksqq
2
ı

. (4.20)

A very popular method to adjust the parameter θ is following the gadient-descent method, by
which the parameter is adjusted along the steepest direction of the MSE:

´
1

2
MSE

´

5θ pθq
¯

“ ´
1

2
5θ

´

E
”

pV πpSrksq ´ VθpSrksqq
2
ı¯

“ E rpV πpSrksq ´ VθpSrksqq5θ VθpSrksqs .
(4.21)

Because the value of V π is unknown, and we do not have access to the MDP transition probabilities,
it is not possible to compute this value in practice. The idea of TD learning in continuous spaces is
to get around the unavailability of V π by bootstraping, which intuition is to update a guess towards
a guess, by approximating the target value:

V πpSq « E rRrk ` 1s ` γVθpSrk ` 1sq | Srks “ S, πs . (4.22)

As the agent does not have access to MDP transition probabilities, stochastic approximation is
used: at every time step, direct sampling of equation (4.21) is performed, and the parameters are
updated along the direction of:

pV πpSrksq ´ VθpSrksqq5θ VθpSrksq.

The TD algorithm for continuous spaces, is obtained by putting these all together: at every time
step k, the parameter θrks is updated:

θrk ` 1s “ θrks ` αrksδrks5θ VθrkspSrksq, (4.23)



55

where δrks is the TD-error de�ned by:

δrks “ Rrk ` 1s ` γVθrkspSrk ` 1sq ´ VθrkspSrksq. (4.24)

These methods have been extensively studied, e.g. [69]. An important result is the stability problem
of this algorithm. Indeed, in the case of discrete state and action spaces, no function approximator
is used, and the estimation of the value function is stored in a look-up table. In this case, TD is
guaranteed to converge [70] under both on-policy training, i.e. when the agent follows the policy it
tries to evaluate, and under o�-policy training, i.e. when the agent follows a di�erent policy that
the one(s) it tries to evaluate. O�-policy learning enables a greater variety of exploration strategies
by freeing the behavior policy from the evaluated policy. It also allows learning from training data
generated by unrelated controllers, or learning multiple target policy.

It has been shown that the TD algorithm with function approximation, presented above, does
not converge in general [71, 72]. However, it converges under standard assumptions when linear
function approximator is used with on-policy training [71], in which case, if VθpSrksq “ θᵀφpSrksq,
equation (4.23) can be written:

θrk ` 1s “ θrks ` αrksδrksφpSrksq. (4.25)

The TD method presented previously only uses one-step back-up to update the value function.
Eligibility traces allow to look further ahead, and to assign credit to states (or state-action pairs)
visited several steps earlier. The eligibility trace vector at time k is denoted by νrks and its update
equation is:

νrks “ λγνrk ´ 1s `5θVθrkspSrksq, (4.26)

where λ P r0, 1s is the trace decay rate. The use of eligibility traces makes the recently used features
more eligible for receiving credit. The update of the state value function approximator becomes:

θrk ` 1s “ θrks ` αrksδrksνrks, (4.27)

which forms the TD(λ) algorithm. It has been shown that if linear approximator is used and
on-policy training, TD(λ) algorithm converges [71]. More recently, Maei et al. proposed the
GTD2 and TDC algorithms [73] which provide convergence guarantees when non-linear function
approximators are used. These algorithms perform gradient descent on the projected Bellman error,
and theoretical results guarantee convergence to a local optimum under standard assumptions.

In the next section, the energy management problem for EH-WSN is formulated using the RL
framework presented in this section. Then, RLMan, an energy manager based on RL, is introduced.

4.2 Derivation of RLMan

It is assumed that time is divided into equal length time slots of duration Ts, and that the EM
is executed at the beginning of every time slot. The amount of residual energy, i.e. the amount
of energy stored in the energy storage device, is denoted by er and the energy storage device is
assumed to have a �nite capacity denoted by Emaxr . The hardware failure threshold, i.e. the
minimum amount of residual energy required for the node to operate, is denoted by Efailr . It is
assumed that the job of the node is to periodically send a packet at a packet generation rate denoted
by χg P rXmin, Xmaxs, and that the goal of the EM is to dynamically adjust the performance of
the node by setting χg. The goal of the EM is to maximize the packet generation rate χg while
keeping the node sustainable, i.e. avoiding power failure.

In RL, it is assumed that all goals can be described by the maximization of expected cumulative
reward. Formally, the problem is formulated as an MDP xS,A, T ,Ry, detailed hereunder.

The set of states S

The state of a node at time slot k is de�ned by the current residual energy er. Therefore, S “
rEminr , Emaxr s.
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Figure 4.2 � Global architecture of RLMan.

The set of actions A

An action corresponds to setting the packet generation rate χg at which packets are sent. Therefore,
A “ rXmin, Xmaxs.

The transition function T

The transition function gives the probability of a transition to errk`1s when action χg is performed
in state errks.

The reward function R

The reward is computed as a function of both χg and er:

R “ φχg, (4.28)

where φ is the feature, which corresponds to the normalized residual energy:

φ “
er ´ E

fail
r

Emaxr ´ Efailr

. (4.29)

Therefore, maximizing the reward involves maximizing both the packet generation rate and the
state of charge of the energy storage device. However, because the residual energy depends on
the consumed energy and the harvested energy, and as these variables are stochastic, the reward
function is de�ned by:

Rper, χgq “ E rRrk ` 1s | Srks “ er, Arks “ χgs . (4.30)

Energy management can be seen as a multiple reward functions system, in which both the
normalized residual energy φ and the packet generation rate χg need to be maximized. These two
rewards are combined by multiplication to form a single reward and to reduce to a single reward
system. Exploring other approaches to combined the two rewards [74, 75] is considered as further
work.

The EM scheme proposed in this work is an actor-critic algorithm, a class of RL techniques well-
known for being capable to search for optimal policies using low variance gradient estimates [76].
This class of algorithms requires storing both a representation of the value function and the policy
in memory, as opposite to other techniques such as critic-only or actor-only methods, which require
only storing the value function or the policy respectively. Critic-only schemes require at each step
deriving the policy from the value function, e.g. using a greedy method. However, this involves
solving an optimization problem at each step, which may be computationally intensive, especially
in the case of continuous action space and when the algorithm needs to be implemented on limited
resource hardware, such as WSN nodes. On the other hand, actor-only methods work with a
parameterized family of policies over which optimization procedure can be directly used, and a
range of continuous action can be generated. However, these methods su�er from high variance,
and therefore slow learning [76]. Actor-critic methods combine actor-only and critic-only methods
by storing both a parameterized representation of the policy and a value function.

Figure 4.2 shows the relation between the actor and the critic. The actor updates a parame-
terized policy πψ, where ψ is the policy parameter, by gradient ascent on the objective function



57

J de�ned in (4.3). A fundamental result for computing the gradient of J is given by the policy
gradient theorem [77]:

5ψJpπψq “
ż

S
ρπψ perq

ż

A
Qπψ per, χgq5ψ πψpχg | erqdχgder

“ E

„

Qπψ per, χgq5ψ log πψpχg | erq

ˇ

ˇ

ˇ

ˇ

ρπψ , πψ



.

(4.31)

This result reduces the computation of the performance objective gradient to an expectation, and
allows deriving algorithms by forming sample-based estimates of this expectation. In this work, a
Gaussian policy is used to generate χg:

πψpχg | eRq “
1

σ
?

2π
exp

˜

´
pχg ´ µq

2

2σ2

¸

, (4.32)

where σ is �xed and controls the amount of exploration, and µ is linear with the feature:

µ “ ψφ. (4.33)

De�ning µ as a linear function of the feature enables minimal memory footprint as only one �oating
value, ψ, needs to be stored. Moreover, the computational overhead is also minimal as 5ψµ “ φ,
leading to:

5ψ log πψpχg | erq “
pχg ´ µq

σ2
φ. (4.34)

It is important to notice that other ways of computing µ from the feature can be used, e.g. arti�cial
neural networks, in which case ψ is a vector of parameters, e.g. the weight of the neural network.
However, these approaches incur higher memory usage and computational overhead, and might
thus not be suited for WSN nodes.

Using the policy gradient theorem as formulated in (4.31) may lead to high variance and slow
convergence [76]. A way to reduce the variance is to rewrite the policy gradient theorem using the
advantage function Aπψ per, χgq “ Qπψ ´ V πψ . Indeed, it can be shown that [77]:

5ψJpπψq “ E

„

Aπψ per, χgq5ψ log πψpχg | erq

ˇ

ˇ

ˇ

ˇ

ρπψ , πψ



. (4.35)

This can reduce the variance, without changing the expectation. Moreover, the TD-error, de�ned
by:

δ “ Rrk ` 1s ` γV πψ perrk ` 1sq ´ V πψ perrksq, (4.36)

is an unbiased estimate of the advantage function, and therefore can be used to compute the policy
gradient [76]:

5ψJpπψq “ E

„

δ5ψ log πψpχg | erq

ˇ

ˇ

ˇ

ˇ

ρπψ , πψ



. (4.37)

The TD error can be intuitively interpreted as a critic of the previously taken action. Indeed,
a positive TD error suggests that this action should be selected more often, while a negative TD
error suggests the opposite. The critic computes the TD error (4.36), and, to do so, requires the
knowledge of the value function V πψ . As the state space is continuous, storing the value function
for each state is not possible, and therefore function approximation is used to estimate the value
function. Similarly to what was done for µ (4.33), linear function approximation was chosen to
estimate the value function, as it requires very few computational overhead and memory:

Vθperq “ θφ, (4.38)

where φ is the feature (4.29), and θ is the approximator parameter. The critic, which estimates
the value function by updating the parameter θ, is implemented using the well-known TD(λ)
algorithm [70] introduced in the previous section:

νrks “ γλνrk ´ 1s ` φrks (4.39)

θrks “ θrk ´ 1s ` αδrksνrks (4.40)
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Algorithm 3 Reinforcement learning based energy manager.

Input: errks, Rrks

1: φrks “
errks´E

fail
r

Emaxr ´Efailr
Ź Feature (4.29)

2: δrks “ Rrks ` γθrk ´ 1sφrks ´ θrk ´ 1sφrk ´ 1s Ź TD Error (4.36), (4.38)

3: Ź Critic: update the value function estimate (4.39), (4.40):

4: νrks “ γλνrk ´ 1s ` φrks

5: θrks “ θrk ´ 1s ` αδrksνrks

6: Ź Actor: updating the policy (4.33), (4.34), (4.37):

7: ψrks “ ψrk ´ 1s ` βδrks pfrk´1s´ψrk´1sφrk´1sq
σ2 φrk ´ 1s

8: Clamp µt to rXmin, Xmaxs

9: Ź Generating a new action:

10: χgrks „ N pψrksφrks, σq
11: Clamp χgrks to rXmin, Xmaxs

12: return χgrks

where α P r0, 1s is a step-size parameter.
Algorithm 3 shows the proposed EM scheme. It can be seen that the algorithm has low memory

footprint and incurs low computational overhead, and therefore is suitable for execution on WSN
nodes. At each run, the algorithm is fed with the current residual energy errks and the reward Rrks
computed using (4.28). First, the feature and the TD-error are computed (lines 1 and 2), and then
the critic is updated using the TD(λ) algorithm (lines 4 and 5). Next, the actor is updated using
the policy gradient theorem at line 7, where β P r0, 1s is a step-size parameter. The expectancy
of the Gaussian policy is clamped to the range of allowed values at line 8. Finally, a frequency
is generated using the Gaussian policy at line 10, which will be used in the current time slot. As
the Gaussian distribution is unbounded, it is required to clamp the generated value to the allowed
range (line 11).

4.3 Evaluation of RLMan

RLMan was evaluated and compared to three state of the art EMs using exhaustive simulations.
The energy storage device was a supercapacitor with a maximum voltage of 5.2 V and a failure
voltage of 2.8V. The task of the node consists of acquiring data by sensing, performing computation
and then sending the data to a sink. However, in practice, the amount of energy consumed by one
execution of this task varies, e.g. due to multiple retransmissions. Therefore, the amount of energy
required to run one execution was simulated by a random variable which follows a beta distribution,
with the mode of the distribution set to the energy consumed if only one transmission attempt
is required, denoted by Etypc , and the maximum set to the energy consumed if �ve transmission
attempts are necessary, denoted by Emaxc . Table 4.1 shows the values of Etypc and Emaxc , as well
as the parameter values used when implementing the EMs. The rest of this section is organized
as follows. First, preliminary results detail the behavior of the learning phase of the proposed
algorithm, focusing on the �rst few days. Next, the comparison results of the proposed EM with
three state of the art schemes are exposed.

4.3.1 Energy traces used for simulation

Indoor ambient light and wind were considered to evaluate the EMs as (i) they present very di�erent
behavior, as it can be seen in Figure 4.3, (ii) they correspond to many real applications and (iii)
long energy traces from measurement campaigns are available, as opposite to other energy sources
such as thermal energy and vibration/motion.

Regarding wind energy, an energy trace lasting 180 days from the National Renewable Energy
Laboratory (NREL) available online [79] was used. However, the provided data are wind speed, in
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All

Etyp
c 8.672mJ

Emax
c 36.0mJ

Xmin 1
300

Hz

Xmax 5Hz

Ts 60 s

RLMan

α 0.1

β 0.01

σ 0.1

γ 0.9

λ 0.9

P-FREEN [55]
BOFL 0.95Emax

r

η 1.0

Fuzzyman

K 1.0

η 1.0

Eeds
b FminTsE

typ
c

Emin
b FminTsE

typ
c

Estrong
h FmaxTsE

typ
c

Eweak
h FminTsE

typ
c

LQ-Tracker [19]

µ 0.001

B˚ 0.70Emax
r

α 0.5

β 1.0

Table 4.1 � Parameter values used for simulations. For details about the parameters of P-FREEN, Fuzzy-
man and LQ-Tracker, the reader can refer to the respective literature.
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(a) Typical indoor ambient light power trace (from
EnHANTs [78]).
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(b) Typical wind power trace (from NREL [79]).

Figure 4.3 � Example of indoor ambient light power trace and wind power trace.

m/s, from which the corresponding extracted power by a turbine must be computed. Given the
wind speed v, the power available from the wind kinetic energy is:

Pwind “
1

2
ρAv3, (4.41)

where ρ is the air density (typically 1.25 kg/m3) and A is the swept area of the turbine. The power
actually harvested from the wind Ph is a fraction of Pwind:

Ph “ CPPwind, (4.42)

where CP is the performance coe�cient of the turbine. Albert Betz demonstrated in 1919 that
no turbine can convert more than 19

27 (« 59.3%) of the kinetic energy of the wind into mechanical
energy turning the rotor [80]. This is known as the Betz Limit, which provides a theoretical
maximum power e�ciency of any design of wind turbine:

CP ď
19

27
. (4.43)

Wind turbine cannot operate at this maximum limit, and real-world turbine has limit below the
Betz Limit. Small turbine used in EH-WSNs, with typical blades of 5 cm diameter, achieve
e�ciency less than 10% [80]. In this thesis, for simulations, blades of 5 cm diameter and e�ciency of
10% were considered, which matches typical values [80]. However, these values lead to unreasonably
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Figure 4.4 � Behavior of the EM scheme the �rst 30 days.

large amount of harvested energy, that will not be achieved in practice. Therefore, in order to keep
the dynamic of wind sources while having consistent harvested energy values, a scaling factor of
10´2 was applied to these measurements. The trace shown in Figure 4.3b was generated using
these settings.

Regarding indoor ambient light, the traces were obtained from the EnHANTs measurement
campaign [47], during which continuous long-time measurements (up to a year) were performed
in di�erent locations of an o�ce building. The provided data are irradiance measurements (in
W/m2), and the harvested power is given by:

Ph “ ηIA, (4.44)

where η is the photovoltaic cell e�ciency, I is the irradiance and A is the cell area. To perform
simulations, the cell area was set to 30 cm2, and the e�ciency to 15%, which is realistic regarding
current photovoltaic technologies [64]. The trace shown in Figure 4.3a was generated using these
values.

4.3.2 Behavior of RLMan

Figure 4.4 shows the behavior of the proposed EM during the �rst 30 days of simulation using
the indoor light energy trace. The capacitance of the energy storage device was set to 0.5 F.
Figure 4.4a shows the harvested power, and Figure 4.4b shows the feature (φ), corresponding to
the normalized residual energy. Figure 4.4c exposes the expectancy of the Gaussian distribution
used to generate the packet generation rate (χg), and Figure 4.4d shows the reward (R), computed
using (4.28). It can be seen that the �rst day the energy storage device was saturated (Figure 4.4b),
as the average packet generation rate was progressively increasing (Figure 4.4c), leading to higher
rewards (Figure 4.4d). As during the second and third days the amount of harvested energy was
low, the residual energy dropped, causing a decrease of the rewards while the policy expectancy
was stable. Starting the fourth day, energy was harvested again, enabling the node to increase its
activity, as it can be seen on Figure 4.4c. Finally, it can be noticed that if a lot of energy was
wasted by saturation of the energy storage device the �rst 5 days, this is no longer true once this
period of learning is over.
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(a) Indoor light: Average packet generation rate.
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(b) Outdoor wind: Average packet generation rate.
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(d) Outdoor wind: Energy e�ciency.

Figure 4.5 � Average packet generation rate and energy e�ciency for di�erent capacitance values, in the
case of indoor light and outdoor wind.

4.3.3 Comparison to State of the Art Schemes

RLMan was compared to P-FREEN, Fuzzyman, and LQ-Tracker, three state of the art EM schemes
that aim to maximize the packet generation rate. P-FREEN and Fuzzyman require the tracking of
the harvested energy in addition to the residual energy, and were therefore executed with perfect
knowledge of this value. RLMan and LQ-Tracker were only fed with the value of the residual energy.
Both the indoor light and the wind energy traces were considered. The EMs were evaluated for
di�erent values of capacitances, ranging from 0.5F to 3.5F, as it strongly impacts the behavior of
the EMs, but also both the cost and form factor of WSN nodes. In addition to the average packet
generation rate, the energy e�ciency denoted by ξ and introduced in Chapter 1 is also evaluated.
ξ is de�ned as follows:

ξ “ 1.0´

ř

k ewrks
ř

k ehrks ` err0s
. (4.45)

Each data point is the average of the results of ten simulations, each performed using di�erent
seeds for the random number generators.

All the EMs successfully avoid power failure when powered by indoor light or outdoor wind.
Figure 4.5 exposes the comparison results. As it can be seen on Fig 4.5c and Figure 4.5d, both
RLMan and LQ-Tracker achieve more than 99.9% e�ciency, for indoor light and outdoor wind, for
all capacitance values, and despite the fact that they require only the residual energy as an input.
In addition, when the node is powered by outdoor wind, RLMan always outperforms the other
EMs in terms of average packet generation rate for all capacitance values, as shown in Figure 4.5b.
When the node is powered by indoor light, RLMan also outperforms all the other EMs, except
LQ-Tracker when the values of the capacitance are higher than 2.8 F. The advantage of RLMan
over the other EMs is more signi�cant for small values of the capacitance. Especially, the average
packet generation rate is more than 20 % higher compared to LQ-Tracker in the case of indoor
light, and almost 70 % higher in the case of outdoor wind, when the capacitance value is set to



62

0.5 F. This is encouraging as using small capacitance leads to lower cost and lower form factor.
Regarding Fuzzyman, results similar to the ones obtained in the previous chapter were expected,

at least for a capacitance value of 0.9 F, as it was the one used previously. However, these results
show that Fuzzyman does not behave on real traces as well as on the generated traces used in
the previous chapter. Indeed, in this evaluation, the Fuzzyman parameters were set to the same
values as in the previous chapter because (i) it allows fair comparison regarding to the previously
presented results and (ii) the energy sources are in the same range as the generated traces. A better
tuning may lead to higher e�ciencies. These results highlight one of the drawback of Fuzzyman: it
requires �ne tuning to achieve high e�ciency, as opposite to RLMan which can adapt to di�erent
sources with almost no tuning.

4.4 Conclusion

In this chapter, the problem of maximizing the quality of service in energy harvesting node is
formulated using RL theory, and a novel EM scheme, named RLMan, is presented. RLMan requires
only the state of charge of the energy storage device as an input, and uses function approximation
to minimize the memory footprint and the computational overhead, which makes it practical to
implement and suitable for WSN nodes. Exhaustive simulations showed the bene�ts enabled by
RLMan in terms of packet generation rate and energy e�ciency compared to three state of the
art energy managers, in the case of both indoor light energy harvesting and outdoor wind energy
harvesting. The advantage of RLMan is more signi�cant when small energy storage devices are
used.

As further work, it is intended to investigate other rewarding systems. Indeed, instead of
reducing a multi-reward problem into a single-reward problem at is was done in this work, using
multi-objective reinforcement learning approaches [74,75] may lead to better results.

Also, increasing the number of inputs may also lead to better results as more information will
be given to the controller. For example, in addition to the residual energy er, the residual energy
variation ∆errks “ errks ´ errk ´ 1s could also be considered as an input of the controller. This
will however increase the complexity of the function approximators, and exploring approaches such
as tile coding [81] seems promising. To reduce the memory footprint of such approximators, hash
table could be used.

The next part of this dissertation is dedicated to Wake-up Receivers (WuRx) in WSNs. As
communication is typically one of the most energy consuming task in WSNs, achieving energy
e�cient communications is important, and WuRx form a promising lead to tackle this challenge.
Indeed, WuRx enable low power listening of the channel, as well as asynchronous communications,
which is especially important in EH-WSNs as dynamic adaptation of the packet generation rate
can lead to ine�cient communications if the MAC layer require time synchronization.
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Chapter 5

A Generic Framework for Modeling

MAC Protocols

Great e�orts are made to design network protocols that ful�ll the requirements of WSNs, espe-
cially regarding the MAC layer [12]. The aim of the MAC layer is to provide mechanisms to
allow several wireless nodes to share the wireless channel medium and access the network. The
MAC layer fundamental tasks are to avoid collisions and to provide fair medium allocation among
the nodes. Moreover, as the MAC layer controls the transceiver, it plays an important role in
the energy e�ciency of communication, and in the trade-o� between power consumption and la-
tency [82]. Because WSNs have many di�erent applications with di�erent requirements, and as the
choice of an appropriate protocol strongly depends on the application requirements, the amount
of proposed MAC protocols is large and multiple MAC protocols categories were de�ned over the
last decade [12]. As a consequence, it is di�cult to choose and tune the most appropriate MAC
protocol given a speci�c application context or to compare new MAC schemes to state of the art,
especially because of the lack of generic analytical models. Indeed, analytical models are required
to investigate the performance of di�erent schemes, to characterize their fundamental limitations
and to optimize their parameters.

In this chapter, a generic framework for modeling MAC protocols is presented [83, 84]. The
proposed framework is based on AMCs [85] and focuses on energy consumption, latency and
reliability. Markov Chain (MC)s have already proved to be useful for modeling communications
protocols, especially to study speci�c MAC protocols [86] and cross-layer designs [87]. The purpose
of this generic framework is to permit the modeling of a wide range of MAC layer schemes to
explore their parameters space and to compare them. To illustrate how to apply the proposed
framework to model a speci�c MAC protocol, the state of the art PW-MAC [20] protocol, which
is an improvement of RI-MAC [88], is modeled using the proposed framework, and the di�erent
modeling steps are explained. PW-MAC focuses on low energy consumption for both the receiver
and the sender. Moreover, experimental measurements using real hardware were performed to set
the model parameters using realistic and accurate energy consumption and latencies values and to
validate the framework.

The rest of this chapter is organized as follows. Section 5.1 exposes previous works that aim
to model MAC protocols for WSNs. In Section 5.2, the generic framework is presented. Finally,
Section 5.3 exposes the modeling of PW-MAC using the framework and the experimental validation
of the model.

5.1 Previous Works Related to Modeling MAC Protocols

The most widespread communication scheme for WSNs is the standard IEEE 802.15.4, which
de�nes both a physical layer and a MAC protocol. Consequently, many dedicated models were
proposed for characterizing and evaluating this scheme [89�93]. In [89], the authors evaluated
the energy e�ciency of the IEEE 802.15.4 MAC layer in dense networks, and concluded that this
standard can be used to support communication in dense data-gathering networks. Ramachandran
et al. [90] evaluated the throughput and energy consumption of the contention access period of
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the IEEE 802.15.4 MAC layer by modeling it as a non-persistent Carrier Sense Multiple Access
(CSMA) with backo�, and showed that shutting down the radio between transmissions improves
the energy e�ciency of the MAC layer in some applications. In [91], the IEEE 802.15.4 MAC
protocol was modeled using MCs, assuming perfect channel conditions, to capture the perfor-
mance of the scheme in terms of throughput and energy consumption, and in the case of saturated
and unsaturated networks. Similarly, Park et al. [92] modeled the reliability, delay and energy
consumption of the IEEE 802.15.4 MAC layer using MCs, and analyzed the impact of the MAC
parameters on the performance metrics analyzed. More recently, Vilajosana et al. [93] proposed an
energy consumption model for the time-slotted channel hopping scheme, which is at the heart of
the IEEE 802.15.4e-2012 amendment of the IEEE 802.15.4-2011 standard. Experimental validation
on real devices was done, and the model was applied to di�erent network scenarios, to understand
the potential e�ects of several network optimizations.

These previous works focus on modeling the IEEE 802.15.4 standard, and therefore do not
aim to provide generic analytical frameworks. To the best of our knowledge, only a few generic
models were proposed in the literature. Vuran et al. [94] proposed a theoretical framework to
exploit spatial correlation of observed events between sensor nodes on the MAC layer to reduce
unnecessary data transmissions. In [95], the authors analyzed the duty-cycle, energy e�ciency and
latency of a handful of MAC protocols in the context of low data rate WSNs regarding various
network parameters such as the network density and the transceiver. If the proposed tra�c and
radio models are generic, the latency and energy models are speci�c to each MAC, making the
proposed approach hard to extend to new protocols. Asudeh et al. [96] proposed a selection
framework to choose the appropriate protocol that satis�es the requirements for a given context
de�ned by a set of input parameters. Three categories of protocols (preamble sampling, common
active period and scheduled) are de�ned and it is assumed that protocols in the same category have
similar performance characteristics. The authors de�ned a combined performance function that
relates di�erent metrics (delay, energy consumption. . . ) into a single scalar measure by scaling
appropriately each metric. The aim of this performance function is to quantify the performance
of each protocol to choose the most appropriate one regarding particular context and application
requirements. However, the purpose of our work is not to provide a selection algorithm, but an
analytical framework to evaluate di�erent MAC schemes.

The generic framework proposed in this work can be used to model a wide range of MAC
protocols and focuses on energy consumption, latency and reliability. It is based on AMCs, and
using experimental measurements, we have proved that the model provides accurate estimations
in the context of low throughput applications, typical for WSNs [97].

5.2 Modeling MAC Protocols using Absorbing Markov Chains

The proposed analytical framework for modeling the energy consumption, the latency and the
reliability of MAC protocols is introduced in this section. For a given protocol, a MC describing
the functioning of the protocol is established. The typical modeling of a MAC protocol by a MC is
illustrated in Figure 5.1a. The �standby state� (STDBY) is de�ned as the state of the MAC when
it is neither receiving nor transmitting a packet. The reception of a packet is usually preceded
by a step such as the periodic check for incoming packets in preamble sampling protocols, or the
asynchronous reception of a WuC when using WuRx. This step is called a receive wake-up and
can lead to the reception of a packet. It corresponds to the R-WUP state in Figure 5.1a. We call
transmission process the procedure de�ned by the protocol to transmit a packet, and reception
process the procedure de�ned by the protocol to receive a packet. Each of these processes consists
of one or more basic steps, e.g. the transmission of a beacon, the transmission of a data frame,
the reception of an ACK. Some steps can possibly succeed or fail, e.g. the reception of an ACK
may fail because of interference. When transmitting a packet, more than one attempt are typically
allowed, and the number of allowed attempts is denoted by NA P N˚. The failing of an attempt
leads either to the starting of a new attempt, or to the failing of the transmission process if it was
the last authorized attempt. The success of an attempt leads to the success of the transmission
process.

In the proposed approach, the transmission and reception processes are individually modeled by
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(a) Markov chain of the entire protocol.
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Figure 5.1 � Markov chain models. States names of the transmission and reception processes are not
indicated for clarity reason, as they are speci�c to each protocol.

two AMCs. These AMCs are constructed by extracting for each process the corresponding sub-MC
of the MC modeling the entire protocol, and by de�ning two absorbing states, i.e. states which
are impossible to leave, denoted �Success� and �Fail� and representing the two possible outcomes
of the process. The AMC is termed to be �absorbed� by an absorbing state when it steps into an
absorbing state. A success of the process leads to the absorption of the chain by the �Success�
state and a failure of the process leads to the absorption of the chain by the �Fail� state. The
modelings of the transmission and reception processes by AMCs are illustrated in Figure 5.1b and
Figure 5.1c respectively. Three typologies of states are de�ned to build an AMC: protocol states,
transition states and �nal states. Protocol states are de�ned by the protocol itself, and represent
the steps that constitute the processes. However, to correctly evaluate the energy consumption
and latency incurred by the protocol, transition states, which do not a�ect the behavior of the
protocol, are needed to model the energy and latency cost of state transitions. The �nal states
are the �Success� and �Fail� states that represent the possible outcomes of a packet transmission
or reception process. All the states except the �nal ones are transient, i.e. can be left. In the rest
of this chapter, mathematical objects (AMC, matrix, vector or scalar) associated to the packet
transmission process are denoted with a �t� subscript, while mathematical objects associated to
the packet reception process are denoted with a �r� subscript. When referring indi�erently to both
processes, the �¨� subscript is used.

Let C¨ be an AMC modeling a packet transmission or reception process, and P¨ be its associ-
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ated transition matrix de�ned by:

P¨ “

¨

˚

˚

˚

˚

˚

˝

s1 ¨ ¨ ¨ sM¨ s f

s1 p1,1 ¨ ¨ ¨ p1,M¨ p1,s p1,f

...
...

...
...

...
...

sM¨ pM¨,1 ¨ ¨ ¨ pM¨,M¨ pM¨,s pM¨,f
s 0 ¨ ¨ ¨ 0 1 0
f 0 ¨ ¨ ¨ 0 0 1

˛

‹

‹

‹

‹

‹

‚

, (5.1)

where M¨ is the number of transient states si, i P t1, . . . ,M¨u, s is the �nal �Success� state, f is
the �nal �Fail� state, pi,j P r0, 1s is the transition probability from the transient state si to the
transient state sj , pi,s is the transition probability from the transient state si to the �nal state s
and pi,f is the transition probability from the transient state si to the �nal state f. As s and f are
absorbing states, the transition probabilities ps,s and pf,f take the value 1.

Applying classical AMC results, P¨ can be written without loss of generality as follows [85]:

P¨ “

¨

˝

Q¨ R¨
02ˆM¨ I2

˛

‚, (5.2)

where Q¨ is a M¨´by´M¨ matrix, R¨ is a M¨´by´2 matrix, I2 is the identity matrix of size 2
and 02ˆM¨ is the 2´by´M¨ null matrix. The fundamental matrix of C¨ is [85]:

N¨ “ pIM¨ ´Q¨q
´1. (5.3)

The ij´entry of N¨, denoted by ni,j , is the expected number of times the chain was in the transient
state sj if it started in the transient state si before being absorbed. It is assumed without loss of
generality that the initial state of C¨ is si0 with i0 P t1, . . . ,M¨u, i.e. si0 is the initial state of the
transmission or reception process. Thus, only the ith0 row of the N¨ matrix is considered, and the
vector of size M¨ corresponding to this row is denoted by n¨.

5.2.1 Probability of a Successful Packet Transmission or Reception

To evaluate the reliability of a protocol, the probability that a packet transmission or reception
succeeds, i.e. that C¨ is absorbed by the �nal state s, is considered. The absorption probability
matrix denoted by B¨ is a M¨´by´2 matrix in which the ij´entry, denoted by bi,j , is the proba-
bility that the matrix will be absorbed by the jth absorbing state, which is either s or f, if it starts
in the ith transient state si, and can be computed as follows [85]:

B¨ “ N¨R¨. (5.4)

As the initial state is si0 , only the ith0 row is considered and the vector of size 2 corresponding
to this row is denoted by b¨. We denote by b¨,s the entry of this vector corresponding to the
probability that the chain C¨ is absorbed by the �nal state s, i.e. that the process successfully
terminates. b¨,s is given by:

b¨,s “
M
ÿ̈

j“1

ni0,jpj,s. (5.5)

5.2.2 Energy Cost of a Packet Transmission/Reception Process

Let c¨ be the energy cost vector, i.e. the vector of size M¨ in which the ith entry is the energy cost
incurred by the MAC protocol when traversing the transient state si. Hence, the average energy
cost of a packet transmission or reception modeled by C¨ is the scalar product of n¨ and c¨:

sc¨ “ n¨ ¨ c¨. (5.6)

In (5.6), n¨ is related to the protocol, while c¨ is related to application and hardware speci�cs,
i.e. transmission or reception time of frames and transceiver power consumption.
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5.2.3 Average Number of Transmission Attempts

Let a be the vector of size Mt in which the ith entry takes the value 1 if si corresponds to the
initial state of an attempt in the AMC modeling the transmission process, 0 otherwise. Then, the
expected number of transmission attempts denoted by sa, without considering the outcome of the
transmission process, is given by:

sa “ nt ¨ a. (5.7)

5.2.4 Latency of a Packet Transmission Process

We de�ne the latency costs vector denoted by l¨ as the vector of sizeM¨ in which the i
th entry is the

latency incurred by the MAC protocol when traversing the transient state si. The same reasoning
as in (5.6) can not be applied for computing the packet transmission latency, as the scalar product
of nt and lt gives the average duration of a packet transmission process without regard to its
outcome. However, when the latency is evaluated, we are interested in the packet transmission
duration when the transmission process succeeds. Therefore, the conditional fundamental matrix
denoted by N|a,t is introduced as the matrix in which the ij´entry, denoted by n|a,i,j , is the
expected number of times the chain was in the transient state sj if it started in the transient state
si and knowing that the chain was absorbed by the state a P ts, fu. Moreover, it can be proved
that:

n|a,i,j “
bj,a
bi,a

ni,j . (5.8)

Proof. Let Xpmqi,j be the random variable that takes the value 1 if the chain is at the transient state
sj at the step m if it started at the transient state si, and 0 otherwise. Then:

Pr
´

X
pmq
i,j “ 1

¯

“ q
pmq
i,j , (5.9)

where qpmqi,j is the ij´entry of the matrix Qt raised to the power m denoted by Qm
t . Let Ai be

the random variable corresponding to the state, which will absorb the chain if it started at the
transient state si. According to Bayes' theorem:

Pr
´

X
pmq
i,j “ 1|Ai “ a

¯

“
Pr

´

Ai “ a|X
pmq
i,j “ 1

¯

Pr
´

X
pmq
i,j “ 1

¯

Pr pAi “ aq
. (5.10)

Because of the Markov property:

Pr
´

Ai “ a|X
pmq
i,j “ 1

¯

“ Pr pAj “ aq , (5.11)

hence, we have:

Pr
´

X
pmq
i,j “ 1|Ai “ a

¯

“
Pr pAj “ aq

Pr pAi “ aq
Pr

´

X
pmq
i,j “ 1

¯

“
bj,a
bi,a

q
pmq
i,j , (5.12)

using the notation of the absorption probabilities matrix B¨. The expected number of times the
chain was in the transient state sj in the �rst m steps given that it started in the transient state
si and that it was absorbed by the state a is:

E
´

X
p0q
i,j ` ¨ ¨ ¨ `X

pmq
i,j |Ai “ a

¯

“
bj,a
bi,a

´

q
p0q
i,j ` ¨ ¨ ¨ ` q

pmq
i,j

¯

, (5.13)

because of the linearity of the expectancy. Hence, when m goes to in�nity:

n|a,i,j “ lim
mÑ`8

E
´

X
p0q
i,j ` ¨ ¨ ¨ `X

pmq
i,j |Ai “ a

¯

“ lim
mÑ`8

bj,a
bi,a

´

q
p0q
i,j ` ¨ ¨ ¨ ` q

pmq
i,j

¯

“
bj,a
bi,a

ni,j . (5.14)

where the last equality holds because [85]:

N “

8
ÿ

k“0

Q¨
k, (5.15)

where Q¨
0
“ IM¨ .
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The conditional fundamental matrix N|s,t is such that the ij´entry is the expected number
of times the chain was in the transient state sj if it started in the transient state si knowing
that the packet transmission succeeds. As the initial state is assumed to be si0 , only the vector
corresponding to the ith0 row and denoted by n|s,t is considered. Hence, the expected latency
incurred by the transmission of a packet is:

slt “ n|s,t ¨ lt, (5.16)

where lt is the latency cost vector of the transmission process.

5.2.5 Average Power Consumption

Knowing the expected energy costs of a packet transmission and a packet reception, respectively
denoted by sct and scr and computed using (5.6), the average power consumption, denoted by ĎPC ,
incurred by communications can be computed as follows:

ĎPC “ saχr scr`pχg ` bt,sχrq sct`χueu`
´

1´saχr pnr ¨ lrq´pχg ` bt,sχrq pnt ¨ ltq´χulu

¯

PSBY , (5.17)

assuming that a node forwards all packets that are successfully received. In (5.17), χr and χg are
respectively the average packet reception and local packet generation rate. bt,s is the probability
that a packet transmission succeeds and is given by (5.5). χu is the wake-up receive rate, and
eu and lu are respectively the energy cost and the duration of a single receive wake-up operation.
The scalar products nr ¨ lr and nt ¨ lt correspond to the duration of a packet reception and packet
transmission process respectively, without regard to the outcome of the processes. Finally, PSBY
corresponds to the power consumption of the node when the MAC is in the STDBY state.

In (5.17), the �rst term corresponds to the power consumption due to packets reception, and
the second term to the power consumption incurred by packets transmission. The third term
accounts for the power consumption due to the receive wake-up operation (periodic listening to the
channel or beacon transmission, WuCs reception. . . ), and the �nal term accounts for the power
consumption of the node in sleep state.

5.2.6 Constructing the AMCs Transition Matrices

The construction of the AMCs requires the calculation of the transition probabilities, which de-
pend both on the protocol functioning and on the frame failure probabilities. In order to compute
the frame failure probabilities, analytical models which focus on the wireless channel and interfer-
ences [98] can be used. Combining the framework proposed in this work with such models allows
the evaluation of the MAC protocols regarding the scalability and channel quality. In the rest
of this work, the frame failure probability is denoted by pf , which can take di�erent values for
di�erent frames. Hence, when constructing an AMC modeling a packet transmission or reception
process, the states corresponding to a frame transmission or reception lead to a failure with a
probability pf , and to a success with a probability 1´ pf .

5.3 Case Study: Modeling PW-MAC using the Proposed
Framework

In this section, PW-MAC [20], a receiver-initiated protocol that focuses on low energy consumption
for both the sender and the receiver, is modeled using the proposed framework. As a receiver-
initiated protocol, PW-MAC is similar to RICER presented in Chapter 1, but aims to reduce the
energy cost of rendez-vous. PW-MAC was proposed by the same authors that introduced RI-
MAC [88], to reduce the power consumption of the latter. Through this case study, the di�erent
stages required to apply the proposed framework to a particular MAC are illustrated. First,
the AMCs modeling the transmission and reception processes are established. Then, the energy
and latency cost vectors are set. Two di�erent approaches are presented to set the energy and
latency cost vectors. The �rst one solely relies on analytical estimations, while the second combines
analytical estimations with measurements obtained by microbenchmarks to obtain accurate values
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of the energy and latency overhead incurred by the software and hardware. By comparing the
accuracy of the model achieved by each approach, the bene�ts enabled by the second approach are
shown.

5.3.1 Building the AMCs

DATA (TD)
Sender

Receiver

t

t

Frame
transmission

Frame
reception

B (TB) ACK (TA)

B (RB) ACK (RA)

DATA (RD)

Sender starts listening

(a) Packet transmission using PW-MAC. For each frame transmission or reception, the corresponding state
name is indicated in brackets: RB: Receive Beacon; TB: Transmit Beacon; RD: Receive Data; TD: Transmit
Data; RA: Receive ACK; TA: Transmit ACK.
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protocol state
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(b) AMC modeling the transmission process of PW-MAC.

RD

TA

S-RD

F-RD

S-TA

F-TA

Success

Fail

(c) AMCmodeling the recep-
tion process of PW-MAC.

Figure 5.2 � Packet transmission using PW-MAC and AMCs modeling the transmission and reception
processes of this protocol.

The �rst step for modeling a particular MAC protocol using the proposed framework is to build
the two AMCs describing the packet transmission and the packet reception processes. PW-MAC
is based on the duty-cycling approach, in which the node keeps its transceiver in sleep state most
of the time, and regularly switches it on to check for incoming packet. The proportion of time
during which the node is active is called the duty-cycle. Because PW-MAC is a receiver-initiated
protocol, each node regularly sends a beacon indicating that it is ready to receive. After each
beacon sending, it listens to the channel for incoming data packet. If no packet is detected on the
channel, the node goes back to sleep. The time interval between two beacon sendings is computed
using a pseudo-random generator, avoiding nearby nodes to wake up at the same time repeatedly.
A node learns the wake-up schedule of its forwarders, and when it needs to send a packet, it wakes
up just before the receiving node sends a scheduled beacon. After receiving the beacon from the
forwarder, it sends the data frame, and then listens to the ACK frame. A packet transmission
using PW-MAC is shown in Figure 5.2a, in which the protocol state names associated to each
frame sending or receiving are indicated in brackets.
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Packet Transmission Process AMC

The transmission process of PW-MAC is modeled by the AMC shown in Figure 5.2b. Each protocol
state corresponds to the transmission or reception of a frame. When a node needs to transmit a
packet, it �rst listens to the channel until it receives a beacon. Therefore, the protocol states
corresponding to this operation, named RB i where i P t1, . . . , Nu is the attempt number, only
has one outcome as opposite to the other protocol states TD i and RA i, which possibly �nish by
a success or a failure. Transition states were added to take into account the energy and latency
costs incurred by each possible outcome (success or failure) of the TD i and RA i protocol states.
For example, if the TD i state fails, i.e. the transmission of the data frame fails at the ith attempt,
then the node will continue to listen for an ACK, which will incur energy consumption and latency.
These energy and latency costs are accounted by the F-TD i transition state. As there are Mt “ 7
transient states, the associated transition matrix is the p7N ` 2q´by´p7N ` 2q matrix is de�ned
by:

Pt “

Qt Rt
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

A B 07ˆ7 ¨ ¨ ¨ C

07ˆ7
. . .

. . .
...

...
. . . A B C

07ˆ7 ¨ ¨ ¨ 07ˆ7 A D

02ˆ7 ¨ ¨ ¨ ¨ ¨ ¨ 02ˆ7 I2

,

where A is the 7´by´7 matrix corresponding the to the intra-attempt transitions:

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

RB i TD i RA i S-TD i F-TD i S-RA i F-RA i

RB i 0 1 0 0 0 0 0
TD i 0 0 0 1´ pf pf 0 0
RA i 0 0 0 0 0 1´ pf pf
S-TD i 0 0 1 0 0 0 0
F-TD i 0 0 0 0 0 0 0
S-RA i 0 0 0 0 0 0 0
F-RA i 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where i P t1, . . . , Nu. Similarly, B is the 7´by´7 matrix corresponding to the transitions between
an attempt and the next attempt:

B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

RB i` 1 TD i` 1 ¨ ¨ ¨ F-RA i` 1

RB i 0 0 ¨ ¨ ¨ 0
TD i 0 0 ¨ ¨ ¨ 0
RA i 0 0 ¨ ¨ ¨ 0
S-TD i 0 0 ¨ ¨ ¨ 0
F-TD i 1 0 ¨ ¨ ¨ 0
S-RA i 0 0 ¨ ¨ ¨ 0
F-RA i 1 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where i P t1, . . . , N ´ 1u. C is the matrix corresponding to the transitions between the non-last
attempts and the �nal states:

C “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

s f

RB i 0 0
TD i 0 0
RA i 0 0
S-TD i 0 0
F-TD i 0 0
S-RA i 1 0
F-RA i 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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where i P t1, . . . , N ´ 1u. Finally, D is the matrix corresponding to the transitions between the
last attempt and the �nal states:

D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

s f

RB N 0 0
TD N 0 0
RA N 0 0
S-TD N 0 0
F-TD N 0 1
S-RA N 1 0
F-RA N 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Packet Reception Process AMC

PW-MAC requires each node to wake up regularly to send a beacon indicating that it is ready to
receive a packet. The node then listens to the medium for incoming packet, and if no preamble is
detected, it returns to sleep after a short time. Otherwise, it continues to listen for the incoming
packet. This operation is modeled by the R-WUP state of the MC modeling the protocol, and is
therefore not considered by the AMC modeling the packet reception process. The initial state of the
AMC modeling the packet reception process is the state corresponding to a data frame reception,
as shown in Figure 5.2c. In this AMC, the state RD corresponds to a data frame reception, and the
state TA to an acknowledgment transmission. Transition states were added to take into account
the energy and latency costs incurred by each state possible outcome (success or failure). The
corresponding transition matrix is the following 8´by´8 matrix:

Pr “

¨

˝

Qr Rr

02ˆ6 I2

˛

‚,

where Qr is the 6´by´6 matrix that corresponds to transitions between non-�nal states:

Qr “

¨

˚

˚

˚

˚

˚

˚

˝

RD TA S-RD F-RD S-TA F-TA
RD 0 0 1´ pf pf 0 0
TA 0 0 0 0 1´ pf pf
S-RD 0 1 0 0 0 0
F-RD 0 0 0 0 0 0
S-TA 0 0 0 0 0 0
F-TA 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

,

and Rr is the 6´by´2 matrix that corresponds to transitions between the non-�nal states and the
two �nal states:

Rr “

¨

˚

˚

˚

˚

˚

˚

˝

s f

RD 0 0
TA 0 0
S-RD 0 0
F-RD 0 1
S-TA 1 0
F-TA 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

5.3.2 Setting the Energy and Latency Cost Vectors

The proposed framework requires the energy cost and latency cost vectors, respectively denoted
by c¨ and l¨, to be set carefully. When a node has to transmit a packet using PW-MAC, it �rst
listens continuously until it receives a beacon. This operation corresponds to the RB i states of
the AMC modeling the packet transmission process. It is assumed that the probability of a frame
failure is pf , therefore the number of failures before a beacon is successfully received, denoted by
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X, is a discrete random variable that follows a geometric distribution of parameter 1 ´ pf . The
expected number of beacon reception failures before the �rst beacon reception success is thus:

ErXs “
pf

1´ pf
. (5.18)

The average rate of beacon sending by a node is χu, and the expected listening time before a
successful beacon reception starts, denoted by ErLs, is therefore:

ErLs “
pf

χu p1´ pf q
, (5.19)

which was accounted in the latency cost of the RB i state of the transmission process.
Focusing on the energy and latency costs incurred by the transmission and reception of frames

(beacon, data and ACK), the size of a frame in bits is denoted by S, and the transmission bit rate
in bps is denoted by R. When a protocol is implemented on a real platform, energy and latency
overhead due to hardware and software overhead can incur as a consequence of radio setup, turn
around. . . Therefore, the latency incurred by a frame transmission/reception is:

l “
S

R
` lovh. (5.20)

where lovh is the hardware/software overhead. Moreover, the energy cost incurred by a frame
transmission/reception is:

e “
S

R
PC ` eovh, (5.21)

where PC is the power consumed by the node, and takes di�erent values depending on whether
the node is transmitting or receiving, and eovh is the hardware/software energy overhead. The
energy cost and latency cost incurred by the transmission/reception of each frame (beacon, data
and ACK) were calculated using the appropriate values of S, R and PC .

Microbenchmarks were performed to measure accurately the energy and latency costs (includ-
ing the overhead) of a packet transmission, a packet reception, and a scheduled wake-up. The
measurement results are shown in Figure 5.3a for the packet transmission process. These measure-
ments were done using a Keysight N6705B DC power analyzer, with the PowWow platform [99].
The measurements were done using the Texas Instrument CC1120 transceiver, which consumes
34mA when transmitting at `10dBm, and 22mA when receiving, according to the datasheet. On
Figure 5.3a, the di�erent steps of the packet transmission process can be seen, and the correspond-
ing states are indicated. This �gure shows that hardware and software overhead is introduced at
the beginning and at the end of the processes, as well as between frames sendings and reception.
These additional energy and latency costs were taken into account when setting the energy and
latency cost vectors, and similar measurements were done for the reception process and the regular
wake-ups.

To illustrate the importance of considering the hardware and software overhead when setting
the cost vectors, measurements were done for di�erent average values of χu, and compared to the
analytical estimation obtained using the proposed framework. For both the latency and the power
consumption, two analytical estimations were realized: one using cost vectors that do not take into
account the hardware and software overhead, i.e. eovh and lovh were set to zero, quali�ed as �naive�,
and one that considers this overhead using the microbenchmark measurements quali�ed as �hybrid�,
as it uses both analytical estimation and experimental measurements from the microbenchmarks,
as in [100, 101]. Figure 5.3b shows the two estimations as well as the obtained measurements. As
it can be seen, the proposed framework is accurate regarding the latency both using the �naive�
and the �hybrid� approaches. However, regarding the power consumption, the �hybrid� approach
performs signi�cantly better than the �naive� one. This is because most of the power consumption
of PW-MAC is due to the scheduled wake-ups. Therefore having accurate measurement of the
energy cost of this operation is essential to achieve accurate estimation of the power consumption.
These results show the bene�ts of the �hybrid� approach compared to the �naive� one to achieve
accurate estimation using the proposed framework.
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(a) Power consumption trace of a packet transmission using PW-MAC.
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Figure 5.3 � Microbenchmarks and comparison of the "naive" and "hybrid" approaches.

5.4 Conclusion

In this chapter, a new generic framework for modeling MAC protocols was presented. This frame-
work is based on AMCs, and focuses on energy consumption, latency and reliability. The steps
required to model a speci�c MAC protocol using the proposed framework were illustrated using the
PW-MAC protocol, which aims to improve energy e�ciency for both the receiver and the sender.
Moreover, experimental measurements were performed to accurately set the energy and latency
parameters required by the model, and to validate the framework.

While using the proposed framework to evaluate novel schemes, several lessons were learned
about the potential and the limitations of the framework. Firstly, the energy and latency strongly
depend on the hardware and the implementation, and therefore measurements are required if high
accuracy is desired. In this work, microbenchmarks were used to get accurate values of both the
latency and energy consumption incurred by each state. This can be seen as a limitation of the
proposed framework as it requires measurements on real hardware. However, if one is interested
only by the trends of the protocols, highly accurate estimation of the energy and latency is not
necessary.

Another potential issue is the construction of the transition matrices, which requires the calcu-
lation of the transition probabilities. These probabilities depend on both the protocol algorithm
and the frame failure probability. Computing realistic value of the frame failure probability for a
given precise context may be di�cult, as it depends on the channel state. However, as suggested
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previously, the framework proposed in this work can be combined with other models focusing on
the wireless channel. Also, letting the frame failure probability be a variable allows the exploration
of the behaviors of MAC schemes under di�erent channel conditions.

In the next chapter, the proposed generic framework combined with the "hybrid" approach
are used to evaluate MAC protocols leveraging WuRx, compared to traditional approach, i.e. not
using WuRx.



Chapter 6

Bene�ts of Wake-up Receivers

Traditional WSNMAC protocols switch on and o� the transceiver according to a schedule, to reduce
the energy consumption of communications. When two nodes need to communicate, preamble
sampling is used to perform a rendez-vous between the two nodes, prior to the data packet exchange.
In these approaches, each node is most of the time in sleep state, and regularly wakes up to check
the channel for incoming packets. As energy is typically the limiting factor of long-term WSN
applications, substantial e�orts were devoted in the last decades to design energy e�cient MAC
protocols [12]. However, as nodes frequently wake-up while no incoming packets are pending, idle
listening is usually an unavoidable and signi�cant source of energy waste. Moreover, reducing the
duty-cycle is not always a feasible solution, as it incurs higher expected latencies. Indeed, when
setting the wake-up rate, i.e. the rate at which nodes wake up to check for incoming packets, a
compromise is made between power consumption and latency. Therefore, decreasing the duty-cycle
to reduce the energy cost of communications is not always a possible solution, as it can lead to
unacceptable latencies.

In the recent years, Ultra Low Power (ULP) WuRx have emerged as a possible solution
to achieve both energy e�cient communications and low latencies. Indeed, these devices allow
continuous channel monitoring while consuming orders of magnitude less power than traditional
transceivers [13], therefore enabling "pure-asynchronous" communications. ULP WuRx wake up
the node MCU or other sleeping subsystems using interrupts when a WuC is detected, thus remov-
ing the need for rendez-vous schemes [102]. In the rest of this thesis, we called ULP WuRx simply
WuRx, to make the notation less cluttered.

The framework proposed in the previous chapter is used to evaluate the bene�ts enabled by
WuRx, by modeling two simple MAC protocols that leverage these devices: TI-WuR and RI-WuR,
both from [102]. These schemes are compared to PW-MAC, X-MAC [103], a popular transmitter-
initiated protocol, and to the IEEE 802.15.4 standard in its beaconless mode, which is based on the
well-known Carrier Sense Multiple Access with Collision Avoidance (CSMACA) scheme. Moreover,
experimental measurements were realized to validate the presented results.

The rest of this chapter is organized as follows. Section 6.1 exposes the a state of the art of
WuRx, focusing on both the hardware and the MAC protocols. Next, in Section 6.2, the latency-
power consumption trade-o� and the reliability of various MAC protocols, including two that
leverage WuRx, are evaluated.

6.1 State of the Art of Wake-up Receivers

This section exposes the state of the art of WuRx. The �rst part focuses on the hardware of WuRx,
while the second part concentrates on MAC protocols leveraging these devices.

6.1.1 Wake-up Radio Hardware

WuRx developed in the literature can be classi�ed into two kinds: passive and active. Passive WuRx
are entirely powered by the energy from incoming signals, and therefore incur almost no energy
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Figure 6.1 � OOK modulation and WuRx architecture [2].

consumption overhead. However, this kind of devices su�ers from a signi�cant lower sensitivity
than active WuRx, which require to be power supplied.

To the best of our knowledge, the �rst wireless sensor node that integrated a passive WuRx
is the Wireless Identi�cation and Sensing Platform (WISP) from Sample et al. [104]. WISP is a
fully programmable platform which integrates a 16 bit MCU as part of a passive Radio Frequency
IDenti�cation (RFID) tag, as well as di�erent kinds of sensors. WISP can operate only from
the energy harvested from the input wireless signal, and achieves a range of 4.5 m. In [105],
the WISP has been combined with the Tmote Sky mote as a passive WuRx, and the WISP-to-
reader communication was disabled to permit a range of 5 m. Moreover, ID-based wake-up are
supported by this device, as the WISP MCU is used to trigger the Tmote Sky MCU. Chen et
al. proposed to combine the WISP with a RF energy harvesting circuit to enhance its wake-up
ability in [106], forming the EH-WISP-Mote. This latter device bene�ts from a 20% higher wake-up
range, while maintaining ID-based wake-up capabilities. Moreover, a trigger generator circuit has
been developed which consumes less energy than the WISP, to wake up the MCU embedded in
the WISP. The RF energy harvesting circuit and the trigger generator were combined to form the
REACH-Mote, which achieves a wake-up range of 11 m. However, it su�ers from a high wake-up
latency, 235 ms at 1.5 m.

Regarding active WuRx, the �rst circuit proposed was PicoRadio, by Rabaey et al. [107] in
2002. PicoRadio is a very low power transceiver, designed to be always active, and which can be
used either as a main radio or as a WuRx. This device achieves a sensitivity of ´75 dBm, and
consumes 1.6 mW in transmit mode and 380 µW in receive mode at 1 V. In [108], Kolinko et al.
proposed a design that works in the 916 MHz band, consumes 20 µW and achieves a sensitivity
of ´69 dBm, enabling a range of 200 m when transmitting at `30 dBm. However, both these
works do not permit selective wake-up without waking up the main MCU. In [109], the authors
proposed to combine a front-end analog circuit with an ULP MCU, the PIC12F683, to form a
WuRx able to �lter the wake-up signals and to perform address matching. The WuRx MCU is
responsible for waking up the main MCU. The proposed device operates in the 868MHz band, and
receives signals with On-O� Keying (OOK) modulation, the simplest form of amplitude shift keying
modulation in which data is represented by the presence or absence of a carrier, as illustrated in
Figure 6.1a. The proposed device consumes 171 µW, including the 48 µW consumed by the MCU,
and achieves a maximum range of 3 m. Gamm et al. proposed in [110] a device which integrates
16bit address coding for selective wake-up, using a low frequency wake-up signal that is modulated
on a high frequency carrier in the main radio of the transmitting node. The WuRx provides a
passive demodulation circuit which regains the low frequency signal and feds it to a low power low
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frequency wake-up integrated circuit. This devices operates in the 868 MHz band, and consumes
2.78µA. It achieves a ´52dBm sensitivity, which resulted in a wake-up range of 40m at an output
power of `10dBm. An improved version was proposed in [111], which consumes 3.5µA but achieves
a wake-up range of 90 m in an open �eld when the wake-up signal is transmitted at `20 dBm.

In [112], Sanchez et al. proposed a WuRx which consumes 8.7µW and can operate at 433MHz,
868MHz or 2.4GHz. This device receives signal in OOK, and achieves a range of 15m. An energy
e�cient addressing scheme was proposed in [113] by Oller et al., called Time-Knocking (TicK).
TicK uses the time intervals between WuCs to encode addresses, while putting the MCU in sleep
state during these time intervals. This approach enables early detection of address mismatch,
and the authors showed that this scheme outperforms MCU-based mechanism and correlation
based mechanism in term of energy consumption. However, addressing duration is longer, varying
between 48 ms and 68 ms. In [5], this TicK was integrated to a WuRx, which achieves a current
consumption of 1 µW and a wake-up range of 10 m. A WuRx intended for WBAN was proposed
in [3], which consumes a current of 270 nW at 1.5 V, and achieves a sensitivity of ´51 dBm in
the 433.92 MHz band. WuCs are sent using OOK modulation, and a preamble detection scheme
is used to reduce false wake-ups due to interference sources. Moreover, the receiver integrates a
Serial Peripheral Interface (SPI) to communicate with the MCU. In [6], a WuRx solution which
uses a custom Complementary Metal Oxide Semiconductor (CMOS) recti�er and a comparator was
proposed, and achieves a sensitivity of ´41 dBm and a power consumption of 98 nW. Takahagi et
al. proposed in [114] a WuRx that uses a recti�er, a high-band baseband ampli�er and a wake-up
signal recognition circuit that achieves a sensitivity of ´47.2 dBm, but with a power consumption
of 6 µW. A CMOS chip including external RF �lter, antenna matching, reference generation and
SPI interface to form a WuRx was proposed in [115]. This device achieves a sensitivity of ´71dBm
at 868 MHz, a power consumption of 2.4 µW (1 V) and a latency of 7 ms.

Wake-up Receiver Used in this Work More recently, Magno et al. proposed in [2] a WuRx
that was used in this thesis for experimentations, and which receives WuCs in OOK. The block
architecture of the WuRx is shown in Figure 6.1b, and it can be seen that the WuRx is made up
of four main blocks: the matching network, the envelope detector, the interrupt generator and the
ULP MCU that provides computational resources to the WuRx and serial interface with the main
node. The matching network guarantees maximum power transfer between the antenna and the
rest of the circuit, and is optimized to work in the 868 MHz band. The second stage is a passive
demodulation circuit, which consists of a passive envelope detector that discards the frequency and
phase content and only detects amplitude. Once the signal is recti�ed, the third block performs
interrupt generation by �rst reconstructing the bits of the WuC using a nano-power comparator,
and a passive adaptive threshold circuit. The interrupt generator block also provides a preamble
detector to avoid unwanted awakening due to noise. Finally, the PIC12LF1552 from Microchip
provides computational capabilities. This on board processor is awaken by the interrupt generator
when a WuC is detected, and can be programmed to partially incorporate the MAC layer, and in
particular address matching, allowing nodes to wake up only a speci�c node and not all neighbors.
The used version of the WuRx is optimized to work at a bit rate of 1 kbps, and the sensitivity in
these conditions was measured to be ´55 dBm. The power consumption of the whole WuRx was
measured to be 1.83 µW in always-on listening mode and 284 µW when receiving and processing
data with the MCU of the WuRx active.

The WuRx from [2] was chosen as it is a state of the art device that achieves competitive
performances. Moreover, it embeds a programmable MCU that can implement some parts of MAC
protocols, such as address matching. Finally, it is a device that we can easily acquire from the
authors for experimentations.

6.1.2 Wake-up Radio MAC Protocols

We focus now on MAC schemes leveraging WuRx [116]. Oller et al. proposed in [102] two protocols,
TI-WuR and RI-WuR, which are respectively transmitter and receiver initiated schemes. A packet
reception using TI-WuR and the WuRx from [2] is illustrated in Figure 6.2. As a transmitter
initiated protocol, the sender initiates the communication by sending a WuC containing the address
of the target node. The analog front-end of the WuRx of its neighbors detects the activity on the
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Figure 6.2 � Illustration of a packet transmission using TI-WuR.

channel, and trigger an interrupt to wake-up the MCU embedded in the WuRx. The WuRx MCU
then reads the incoming data, and performs address matching. If the address embedded in the
WuC matches the node address, the WuRx MCU triggers an interrupt to wake up the main MCU.
The main MCU then switches on the main transceiver to receive the data frame from the sender.
The data frame is sent using standard modulation schemes and bit rates. Finally, an ACK frame
is sent by the receiver to acknowledge the reception of the data frame. Using RI-WuR, each node
periodically broadcasts a WuC containing its address to inform its neighbors that it is ready to
receive, and then listens for a data packet with its main radio. When a node receives a WuC, two
scenarios are possible. If the node has no packet to send to the node that broadcasts the WuC, its
WuRx simply ignores the WuC. Otherwise, the node is awaken, and the data transmission starts
using the main transceiver in the same way that with TI-WuR.

Focusing on target tracking in dense wireless sensor networks, Song et al. proposed Low Energy
Self Organizing Protocol (LESOP) in [117]. Using this scheme, the transport and network layer
are excluded, and the MAC layer communicates directly with the application layer, making LESOP
a cross layer protocol. Each node embeds a WuRx in addition to its main transceiver that is able
to detect busy tones. When a node detects a target, it broadcasts a busy tone to wake up all its
neighbors, and is labeled as the "leader". All the informations gathered by the nodes are sent to
the leader which merges them. As the target moves, a new leader is elected and receives the target
information from the former leader. In the context of critical infrastructure monitoring, Ullah et
al. proposed a MAC protocol leveraging WuRx in [118]. In this approach, nodes are organized in a
star topology, and communicate using a slotted Aloha approach. Nodes are equipped with WuRx,
and the coordinator sends WuCs carrying synchronization information according to a schedule.
After receiving a WuC, a node starts transferring its data after having chosen randomly a slot in
the current frame. The authors extended their work to multi-hop networks in [119], where nodes
are organized in clusters around a cluster head, which is the only node in the cluster to embed
a WuRx. Focusing on WBAN, Le et al. proposed AWD-MAC [120], a receiver initiated scheme
that uses WuRx to reduce collisions and power consumption. Nodes are assumed to be organized
in a star topology, and cannot start a communication until the coordinator wakes them up. The
coordinator performs nodes discovery at the network setup phase, and gathers all nodes addresses
and data rate. Then, the coordinator is able to wake up each node when it is available, as it is
aware of its data rate. Another MAC protocol for WBAN was proposed in [121] by Ameen et
al.. The authors motivate the use of WuRx by a reduction of the power consumption, as well as
by a reduction of the latency, which can be critical in emergency situations. For periodic non-
urgent tra�c, TDMA is used, and communications are initiated by the coordinator, which wakes
up nodes according to a schedule which is established regarding the data rate requirement of each
node. When a node has an urgent packet to send, it initiates the communication by sending a WuC
to the coordinator, which responds by an ACK, followed by a beacon for resource allocation. The
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node that initiated the communication then sends its urgent packet. Focusing on bats tracking
and monitoring, Dressler et al. proposed in [122] a low power MAC protocol. Low power is an
important constraint in bats tracking, as these animals cannot carry sensor heavier than 2g, which
forbids the use of big batteries. The authors focus on bat to ground communication, and the WuRx
activates the mobile node only when it is in the communication range of the ground nodes. The
bat-mounted system then starts transmitting information to the ground nodes.

Ravichandran et al. proposed in [123] to reduce the acquisition time of Ultra Wide Band (UWB)
multi-hop sensor networks using passive WuRx. Indeed, UWB in WSNs enables very high data
rates, but at the cost of high acquisition time which leads to energy waste. The authors proposed
to use a passive WuRx in conjunction to the UWB radio to achieve fast channel control signaling.
In [124], Jurdak et al. combined RFID to the IEEE 802.15.4 MAC standard beaconless mode, in a
multi-hop context. In the proposed scheme, the IEEE 802.15.4 transceiver acts as a RFID reader,
to avoid the extra cost of integrating such a device in each node. By using the RFID as passive
WuRx, the overheads of periodic wake-ups required by the standard IEEE 802.15.4 were removed,
increasing the energy e�ciency of this protocol. Radio Triggered sensor MAC (RTM) [125] is
another multi-hop MAC protocol leveraging passive WuRx. In this approach, the WuRx and the
main radio operate on the same channel. When a node needs to transmit a packet, it �rst senses
the channel, and, if the channel is found free, transmits a WuC which carries no information but
serves only to energize the receiver WuRx. When a WuRx is energized by a WuC, it generates
an interrupt to wake up the MCU, which switches on the main radio. The sender then transmits
a frame containing the address of the target node, which responds to indicate that it is ready to
receive. Finally, the data exchange takes place. Ullah et al. proposed Very Low Power MAC
(VLPM) in [126] for WBAN, in which each node, including the coordinator, is assumed to be
equipped with a passive WuRx. Moreover, it is assumed that WuCs embed the address of the
target node, which can be processed by the nodes MCU to allow non-targeted nodes to go back in
sleep state immediately after having performed address matching. The coordinator sends WuCs
messages to a speci�c node containing synchronization information, as well as channel resources
allocated to it. Combining passive WuRx and energy harvesting was proposed with WuR-TICER
in [127]. WuR-TICER is a transmitter initiated protocol, and therefore when a node needs to send
a packet, it �rst broadcasts a WuC embedding its address. Upon receiving the WuC, the receiver
switches on its main radio to receive the data frame.

PicoRadio [128] is considered as the �rst MAC protocol for WSNs leveraging active WuRx. It
is a multichannel approach, in which the frequency band is partitioned into multiple channels, and
each node is assigned to a locally unique frequency. Spread spectrum Code Division Multiple Access
(CDMA) is used for channel access, and a heuristic distributed solution is proposed to solve the
NP-complete problem of channel assignment. Each node listens to a common control channel for a
random period of time, and periodically broadcasts a channel assignment packet containing their
own channel as well as their one-hop neighbors channels. Nodes keep a local channel assignment
table which records channel usage by their one-hop and two-hop neighbors, and make sure its own
channel is di�erent from all its one-hop and two-hop neighbors. When a node gets a packet to
be sent, it �rst sends a WuC addressed to the receiver on its channel. Then, it sends the data
after a wake-up period on the receiver channel. Another multichannel protocol leveraging WuRx
is CMAC [129]. Using CMAC, the WuRx of each node is tuned to the node speci�c channel, and
is assumed to have transmission capabilities. When a node needs to send a packet, it �rst listens
to the targeted node WuRx channel for a short time, and if the channel is found free, it sends a
WuC containing the its channel number. If the targeted node can receive the data, it answers by
another WuC on the sender WuRx channel, and then switches its main radio to the sender channel
to receive the data. Otherwise, it answers by a WuC informing the sender that it cannot receive
the data. In [130], Nosovic et al. proposed WuRx for WSNs in which nodes have a low power
RFID in addition to their regular transceiver, and which are organized in a star topology where
nodes communicate with each other through a base station. When data packets arrive at the base
station destined for an embedded node, the base station �rst broadcast a WuC to prevent all the
nodes from accessing the channel. Then, a unicast WuC addressed to the target node is sent to
wake up it, followed by the data packet. When a node detects a unicast WuC, received by its RFID
and attended to it, it turns on its main radio to receive the data packet at high speed.

Ansari et al. [131] proposed RTWAC, a simple MAC protocol that leverages WuRx with ad-
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dressing capabilities. In this scheme, each node is equipped with a WuRx, and when a node needs
to transmit a packet, it �rst performs a CCA, and, if the channel is found clear, sends a WuC which
contains the target node address and some command. When a WuC is detected, an interrupt is
generated by the WuRx using the energy from the received signal to wake up the MCU, which pro-
cesses the data embedded in the WuC. More precisely, it performs address matching and eventually
executes the command. ZeroMAC [132] is based on the 802.11 DFC standard [133], but unlike
DFC, a node using ZeroMAC broadcasts a WuC before transmitting a packet, which signi�cantly
reduces the power consumption and latency of communications. When a node needs to send a
packet, it �rst broadcasts a WuC, which wakes up all its neighbors as WuRx are assumed to not
have address matching capabilities. The sender then transmits a packet containing the address if
the target node. All the sender neighbors receive this packet, and all expect the target node go
back to sleep mode after having performed address matching. Next, the target node sends a WuC
to wake up all its neighbors, followed by a packet indicating the address of the sender. Finally, the
data transfer takes place. A scheme based on clustering has been proposed in [134], in which nodes
are organized around repeaters. Clusters creations are initiated by the repeaters. First, a repeater
broadcasts a WuC to wake up all the neighboring nodes, followed by a binding request. Each node
that receives the request responds by a con�rmation containing its address, after a backo� time.
All sensor nodes report their information to the repeater to which they are bind.

To evaluate the bene�ts of WuRx, TI-WuR and RI-WuR were chosen as they represent the
two big categories of protocols, receiver-initiated and transmitter-initiated, and most of the MAC
protocols for WuRx rely on these schemes. Moreover, they do not focus on speci�c applications,
and are compatible with the WuRx device used in this work.

6.2 Comparison of MAC Protocols

6.2.1 Evaluation Setup

TI-WuR and RI-WuR are compared to the PW-MAC, X-MAC and CSMA/CA protocols using the
framework introduced in the previous chapter and experimentations. PW-MAC is an improvement
of RI-MAC, proposed by the same authors, which focuses on low energy consumption. The details
of PW-MAC modeling using the proposed framework are given in the previous chapter. X-MAC is
a well-known transmitter-initiated protocol in which the receiver periodically wakes up to listen to
the channel for a short time. When a node needs to send a packet, it �rst sends short preambles
containing the target address. Once the receiver detects a short preamble frame with its address,
it sends an early ACK, and the transmitter then sends the data frame. The CSMA/CA scheme
was also evaluated. CSMA/CA is used by the IEEE 802.15.4 MAC standard in beaconless mode,
and requires the node to be continuously listening to the channel. Therefore, when a node needs to
send a data frame, it sends the data frame directly to the addressee node, possibly after a random
backo�. The reception of the data frame is acknowledged by an ACK frame. If this approach incurs
high power consumption, it provides benchmark values for latency. Similarly to PW-MAC, TI-
WuR, RI-WuR, CSMA/CA and X-MAC were modeled using the proposed framework and following
the procedure illustrated in the previous chapter.

These �ve protocols were implemented on a testbed of PowWow platforms (Figure 8.6). Each
PowWow node was equipped with a Texas Instrument CC1120 transceiver, which is able to handle
OOK modulation and therefore can send WuC. When TI-WuR or RI-WuR were evaluated, each
node was also equipped with an instance of the WuRx presented in Section 6.1.1. The transmission
power of the WuCs was `10 dBm, allowing a range up to 25 m using +3 dBi antennas for both
transmitters and receivers, while the transmission power of the non-WuC frames was ´6dBm as it
was found experimentally to be the minimal power required to achieve the same range. Moreover,
the size of the data payload frame was 14 B. Each measurement was done on a node that was
receiving packets at the rate χr “ 0.10 Hz (not considering the outcome of the reception process),
locally generating packets at the rate χg “ 0.10 Hz, and transmitting both the generated and the
received packets.
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Figure 6.3 � Power consumption and latency of the �ve evaluated protocols.
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6.2.2 Beyond the Latency-Power Consumption Trade-o�

Figure 6.3 exposes the latency and the power consumption incurred by the evaluated protocols.
Both analytical and experimental results are shown. For the analytical evaluation, pf was set
to 0 as this value leads to the closest �t with the experimental measurements. Concerning RI-
WuR, PW-MAC and X-MAC, latency and power consumption were computed with the proposed
framework for values of the average wake-up rate χu in the range r1, 20sHz. Moreover, experimental
measurements of these two quantities are shown for values of χu of 1, 1.3, 2, 4 and 10 Hz. In the
case of TI-WuR, results for di�erent values of the bit rate at which WuCs are sent, denoted by Ru,
and di�erent values of WuCs size, denoted by Lu, are exposed. Regarding CSMA/CA, only one
couple of points (analytical and experimental) is shown as the protocol has no tuning parameters.
It can be seen that the model �ts well the numerical results for the �ve evaluated protocols.

These results show that a trade-o� between the latency and the power consumption must
be made when using RI-WuR and PW-MAC, and this trade-o� is set by the wake-up rate χu.
Indeed, high values of χu incur low power consumption at the cost of high latency, while low
values of χu lead to low latency at the cost of high power consumption. Therefore, minimizing
both latency and power consumption using this approach is not straightforward. Regarding X-
MAC, an optimal value of χu permits the minimization of the power consumption. However, this
optimal value depends on both χr and χg, which makes this optimization process di�cult. When
using X-MAC, choosing low values of χu allows low latencies at the cost of high power consumption,
similarly to PW-MAC and RI-WuR. However, as X-MAC sends short preambles before each packet
transmission, using high values of χu incurs high power consumption as the overhead incurred by
the preamble sending becomes signi�cant. PW-MAC and RI-WuR do not su�er from this drawback.
Indeed, with PW-MAC the transmitter is synchronized with the receiver, and RI-WuR uses WuRx
to avoid the need of preamble sending. CSMA/CA minimizes the latency as nodes are always
listening: no synchronization nor WuC sending is required. However, this comes at the cost of high
power consumption.

TI-WuR allows signi�cantly lower latency and power consumption compared to the other con-
sidered protocols as it can be seen on Figure 6.3. As WuCs are sent at higher transmission power
and lower bit rate than the other frames, decreasing the WuCs transmission time leads to lower
latency and power consumption. Therefore, for Ru “ 1 kbps, smaller WuC sizes lead to better
performance, as shown in Figure 6.3 for WuCs sizes ranging from 1 B to 8 B. However, reducing
the WuCs size is not always a solution as it implies reducing the amount of information that WuCs
embed. Therefore, a more promising solution is to increase the bit rate of WuRx. As the WuRx
device used for experimentation is optimized for a bit rate of 1 kbps, the evaluation of TI-WuR
for values of Ru higher than 1 kbps was only done analytically, and Figure 6.3 shows the latency
and power consumption incurred by TI-WuR when Lu “ 8 B and Ru equals 10 kbps and 20 kbps.
TI-WuR achieves a latency of 25.9 ms when Ru “ 10 kbps, and 22.0 ms when Ru “ 20 kbps, while
CSMA/CA achieves a latency of 16.2ms, but at the cost of a power consumption 130 times higher.

These results show the bene�ts of the pure-asynchronous approach enabled by WuRx when TI-
WuRx is used. Trade-o�s between the power consumption and the latency are no longer required
in the context of low data rate WSNs, as packet exchanges are done without requiring regular
wake-ups as with preamble sampling protocols, or continuous listening of the main transceiver as
with CSMA/CA. Performance of current schemes can be improved by increasing the bit rate of
WuRx, however this comes at the cost of a trade-o� with the range and the power consumption of
the WuRx device [2].

6.2.3 Reliability Evaluation

This section focuses on the impact of the frame failure probability pf on the performance of
three MAC protocols, TI-WuR, PW-MAC and CSMA/CA. TI-WuR and PW-MAC were chosen
as they present the best performance as shown in Section 6.2.2, while CSMA/CA was chosen as
it gives benchmark values for the latency. High values of pf can be caused by interferences or
collisions, e.g. due to dense networks or poor channel quality. As it is di�cult to control the frame
failure probability experimentally, the impact of this parameter was only analytically evaluated.
Figure 6.4a shows the impact of pf on ĎPc when χu “ 4 Hz, Ru “ 1 kbps and Lu “ 1 B. It can
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be seen that while pf has a low impact on the average power consumption incurred by TI-WuR
and CSMA/CA, it has a strong impact on the average power consumption incurred by PW-MAC.
Indeed, when a node sends a packet using PW-MAC to a forwarder node, the sending node �rst
wakes up just before the forwarder sends its scheduled beacon. If no beacon is received, then
the sending node assumes that the synchronization with the forwarder node was lost, keeping its
transceiver active until a beacon from the forwarder node is received to resynchronize. Therefore, a
high frame failure probability causes frequent resynchronization activities and therefore signi�cantly
increases the power consumption. This unwanted e�ect also leads to high transmission latency
when pf becomes high as shown in Figure 6.4b, as the sending node waits for a valid beacon
from the forwarder node. On the other hand, when an attempt to transmit a packet fails with
TI-WuR or CSMA/CA, the sending node makes a new attempt until the transmission succeeds
or exceeds a prede�ned number of re-transmissions (set to 4 in this work), each re-transmission
being preceded by a random backo�. The functioning of PW-MAC leads to higher probability
of successfully delivering the packet compared to TI-WuR as shown in Figure 6.4c. However,
the di�erence becomes signi�cant only when the probability of frame failure is higher than 20 %.
CSMA/CA is the more reliable protocol, as only two frames must successfully be transmitted for
the communication to be successful (the data frame and the ACK), while three frames must be
successfully transmitted for TI-WuR and PW-MAC.

6.3 Conclusion

The proposed framework was used in this chapter to evaluate pure-asynchronous approaches en-
abled by emerging WuRx. In addition to evaluate these emerging schemes, this work illustrates
how the framework introduced in the previous chapter can be used to explore new MAC paradigms.
Five MAC schemes were modeled using the proposed framework, two leveraging emerging WuRx
(TI-WuR and RI-WuR), and three traditional protocols (PW-MAC, X-MAC and CSMA/CA used
by IEEE 802.15.4 beaconless). In addition to analytical evaluation of the pure-asynchronous ap-
proach, experimental measurements were conducted to support our conclusions. Results show the
bene�ts enabled by emerging pure-asynchronous schemes, especially when a transmitter-initiated
approach is used, in terms of both power consumption and latency as no more trade-o� between
these two critical quantities is required.

However, a drawback of many state of the art WuRx is the sensitivity, which is typically
signi�cantly lower than with traditional transceivers, and allows only a few tens of meters of range.
If this range is su�cient for many applications, such as WBAN, this can be a critical limiting
factor.

The rest of this part presents diverse approaches for leveraging WuRx. A new opportunistic
MAC protocol leveraging WuRx is proposed in Chapter 7. In chapter 8, a modi�ed version of
Fuzzyman, introduced in Chapter 3 combined with a new MAC protocol leveraging WuRx are
implemented on a star network. Finally, in Appendix B, WuRx were combined with emerging
long-range communication schemes in a new network architecture.



Chapter 7

An opportunistic MAC protocol

Leveraging Wake-up Receivers

In WSNs, traditional routing schemes prede�ne �xed paths before transmissions. Then, at each
hop, a �xed neighbor is used to forward a packet. These schemes do not suit well to dynamic
environment with lossy, unreliable and varying link qualities as they incur excessive retransmissions
and thus waste network resources [135]. Opportunistic forwarding [136, 137] has emerged as a
promising approach to tackle the problem of varying link qualities. The basic idea of this technique
is to take advantage of the broadcast nature of the wireless medium to choose the next forwarding
node at every hop instead of taking one prede�ned path to the destination. Therefore, this approach
allows intermediate nodes to collaborate on packet forwarding in a localized manner. However,
cross-layer MAC protocols must be carefully designed to achieve e�cient collaboration.

Research in opportunistic forwarding is a hot topic and many solutions were proposed [138�147]
In traditional approaches, neighborhood knowledge is achieved by periodic packets exchange called
Hello packets, which leads to out of date information and is usually very costly in terms of energy.
Another approach is formed by timer-based contention [144�147], which is a promising technique
to allow opportunistic next relay selection while minimizing information exchange between nodes
and their neighbors. With timer-based contention mechanism, information is encoded in time
di�erence, avoiding Hello packets exchanges between a node and its neighbors. When a node
wants to send a packet, it sends an RTS frame. Then, a contention window begins, during which
a subset of the sender neighbors, called potential receivers, answers by sending a CTS frame using
a backo�, called contention backo�, computed from a state metric (e.g. the remaining energy).
The better a potential receiver behaves according to the state metric, the smaller its contention
backo� should be. The receiver which answers �rst is chosen by the sender to receive its packet,
and therefore the best next hop relay with respect to the chosen state metric is selected.

The main drawback of this technique is that it can be exceedingly energy costly as it requires
the sender to keep its transceiver in the receive state for an arbitrary long period during the next
hop relay election process, incurring high idle listening. Many applications such as environmental
monitoring, home automation and assisted living require long-term sustainability, especially when
the nodes are deployed in harsh environments. A severe bottleneck for many long-term applications
is the limited lifetime of WSNs due to the �nite amount of embedded energy in each node. As
wireless communications are usually the most power consuming tasks over all other nodes activities
such as sensing and computing [148], we proposed to use WuRx to reduce the energy consumption
incurred by communications in the context of timer-based contention.

In this chapter, we present OPportunistic Wake-Up MAC (OPWUM) [149], a novel MAC
protocol for WSNs in which each node embeds a WuRx. OPWUM uses timer-based contention
to allow nodes to opportunistically select a receiver among their potential receivers at each packet
sending. Potential receivers are chosen using a routing algorithm not addressed in this work [150].
By doing all the next hop relay election phase using WuCs only, OPWUM enables timer-based
contention to become an energetically interesting solution. This chapter presents the design of
OPWUM and presents comparison of OPWUM and 1-hopMAC [147], a state of the art protocol
also based on timer-based contention, using exhaustive network simulations.
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The remainder of this chapter is organized as follows: Section 7.1 presents the related work. The
design of OPWUM is detailed in Section 7.2. In Section 7.3, OPWUM is compared to 1-hopMAC
using exhaustive simulations. An application case is shown in Section 7.4 in order to demonstrate
the e�ectiveness of OPWUM. Finally, Section 7.5 concludes this chapter.

7.1 Related Work

Opportunistic forwarding solutions can be classi�ed according to the selection metric of relay [151]:
geographical information [138], delivery rate [139], hop count [140] or not restricted to a speci�c
kind of metric [141]. Some protocols code the packets when they are emitted [142]. However, most
of these proposals do not consider the MAC layer, and assume the existence of a MAC protocol on
which they rely. In this work, we focus on the MAC layer and assume the existence of a routing
protocol that realizes a preselection of the forwarders among the neighboring nodes. The result of
this preselection constitutes the set of potential receivers.

Zhang et al. proposed Reservation-based OPportunistic forwarding MAC (ROP-MAC) [143],
in which each node keeps two synchronization tables, one mapping destination nodes to their
reserved time (the transmitting table) and one mapping source nodes to their reserved time (the
receiving table). When a node needs to transmit a packet, it �rst checks if the destination ID
of the packet is present in the destination table. If it is, the node transmits the packet at the
reserved time. Otherwise, a synchronization process is launched to synchronize the node with
its potential receivers. During this process, a reservation is made for the following transmissions
from the source node. Multiple transmissions from the same source node can pro�t from one
synchronization. Moreover, the reservation tables of each node are used to avoid collisions of
simultaneous transmissions from di�erent source nodes.

Timer-based contention has been mainly addressed at the network layer [144�146]. Watteyne
et al. proposed to use this approach in the MAC layer with 1-hopMAC [147], which is a semi-
asynchronous transmitter initiated protocol. Using this scheme, nodes periodically wake up to
listen the channel to check for forwarding requests. When a node needs to send a packet, it �rst
sends a preamble long enough for neighboring nodes to receive it. The preamble must therefore
lasts at least as long as the wake-up period. The preamble is made of micro-frames, each containing
the instant at which the contention window begins. The node that initiated the communication,
i.e. the sender, must keep its transceiver in the receive state from the beginning of the contention
window until the �rst CTS frame is received. At the end of the contention window, all potential
receivers, which have sent a CTS frame during the contention window, put their transceiver in the
receive state to receive a small header from the sender containing the address of the selected next
hop relay, i.e. the node that �rst sent a CTS. Then, all the receivers but the selected one turn
their radio o�, and the data exchange takes place between the selected node and the sender.

As OPWUM is also using timer-based contention, 1-hopMAC is the closest work to ours. How-
ever, 1-hopMAC su�ers from high energy consumption caused by idle listening. With OPWUM,
we propose to exploit emerging WuRx technologies to make timer-based contention energetically
interesting.

7.2 Design of OPWUM

Timer-based contention enables the node to select a next hop relay according to a given metric
without having any knowledge about its neighbors. When a node u wants to transmit a packet,
it �rst broadcasts an RTS beacon. Then, each node v that received the RTS and is a potential
receiver of u sets a backo� of duration Bpvq P r0, Dcs where Dc is the contention window duration.
Bpvq is function of a state metric Mpvq: Bpvq “ f pM pvqq. The better v behaves according to
Mpvq, the shorter Bpvq is. For example, if Mpvq is the remaining energy of v, the larger Mpvq is,
the smaller Bpvq should be. When the backo� expires, a CTS is sent by v. u selects as the next hop
relay the node which answered the �rst, and thus which has the best status according to the state
metric. Thus, the next hop forwarder is opportunistically selected, and without requiring from the
sender to have any knowledge about its neighbors. The choice of the metric is not discussed in this
work, as it is application dependent.
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Figure 7.1 � Packet forwarding using OPWUM. Red color is used to represent WuCs transmission, gray
color is used to represent data and ACK frames transmission, and white color is used to represented
reception. The main transceiver channel is represented by a solid time line and the WuRx channel is
represented by a dashed time line. CCA are represented by dark gray rectangles located under the time
line.

Using OPWUM, it is assumed that each node is equipped with both a WuRx and a main
transceiver that o�ers CCA capabilities. Figure 7.1 shows an example of packet forwarding using
OPWUM. In this case, the sender has four potential receivers. After receiving an RTS WuC
from the sender, each receiver sets a backo� computed from a state metric. In this example, the
receiver 1 computes the shortest backo�, and thus is the �rst node to answer by sending a CTS
WuC. Therefore, it is chosen by the sender to become the next hop relay. The receiver 2 also
received the CTS sent by the receiver 1, causing the interruption of its backo�. Yet, the receivers 3
and 4 did not receive the CTS, for example because the receiver 1 is out of range of their WuRx,
and must be informed that they have lost the contention. The receiver 3 backo� expires while
the receiver 1 is sending a CTS WuC. Before each CTS sending, a CCA operation is performed to
avoid CTS collisions. The receiver 3 CCA detects the activity on the channel, and thus cancels the
CTS sending. Because the main transceivers usually have a much higher sensitivity than WuRx,
it is possible that the CCA operation detects the CTS sending even if the CTS was not detected
by the WuRx. When the sender receives the CTS from the �rst receiver, it sends an About To
Send (ATS) WuC to inform the remaining nodes still competing that a next hop relay was already
chosen. In this example, the receiver 4 receives the ATS and thus cancels its backo�. Finally, the
data exchange takes place between the sender and the �rst receiver using the main transceiver.

WuC structure When using state of the art WuRx with data processing capabilities, only a
few bytes of data can be embedded in the WuC. Moreover, because of the low sensitivity and
bit rates of current WuRx, sending long WuC is energetically costly. Indeed, WuCs must be sent
at high power to cope with the low sensitivity of WuRx, and at relatively low data rates (few
kbps), incurring longer transmission time. Therefore, reducing the size of WuCs is an important
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Figure 7.2 � Structure of WuC with OPWUM.
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Figure 7.3 � Network used to compare OPWUM and 1-hopMAC. Arrows show the potential receivers of
each node.

consideration when designing MAC protocols exploiting WuRx. The structure shared by the three
WuCs types de�ned in OPWUM (RTS, CTS and ATS) is shown in Figure 7.2. The length of a
WuC is 18`H bits, where H is the length of the hardware preamble required by the WuRx (2 to
8 bits usually). The �rst �eld after the hardware preamble is the WuC type (RTS, CTS or ATS),
which is indicated by a 2 bits �eld. Finally, the WuRx addresses of the sender and receiver are
indicated, each using a 8 bits �eld. Allowing only 8 bits addresses may seem limiting regarding
scalability, but WuRx addresses do not have to be similar to network addresses used by higher
network layers. Indeed, as they are only used for one hop communications, they can be reused by
nodes which do not share neighbors, while network addresses must be unique across the network.

Collisions and retransmission Collisions may lead to retransmissions, and therefore reducing
collisions is an important issue when designing energy e�cient sensor networks. Current semi-
asynchronous MAC protocols use rendez-vous schemes to synchronize the source and destination
nodes, increasing the risk of collisions when two nodes want to transmit to a same destination at
the same time. OPWUM uses WuRx to achieve pure-asynchronous communication. Moreover, a
node captures all the RTS, CTS and ATS WuCs sent by its neighbors allowing it to be informed
when a transmission in which it is not involved is about to happen. In that case, the node enters a
silent state for a prede�ned period during which it will not respond to RTS WuCs and postpones
the sending of all packets to the end of the silent period. When the silent period expires, if there
are packets to send, the node will wait for a random backo� before starting a transmission process
to avoid collisions between multiple nodes leaving the silent state at the same time. Finally, to
reduce the risk of collision between WuCs, a CCA is done before sending RTS or CTS WuCs.

Nevertheless, collisions can still occur when multiple nodes wake up at the same time and
perform a CCA simultaneously. Wireless channel interference may also lead to the need of packet
retransmission. When retransmission is needed, backo� strategy such as binary exponential backo�
is used to e�ciently resolve collisions.

7.3 Performance Evaluation

In this section, OPWUM and 1-hopMAC [147] are compared using exhaustive network simulations.
1-hopMAC is a state of the art MAC protocol using timer-based contention and described in
Section 7.1. A converge-cast tree network shown in Figure 7.3, which is a common scenario in
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Power consumed in the sleep state 0.6 µW

Power consumed in the receive state 22.2 mW

Power consumed when transmitting WuCs 80.1 mW

Power consumed when transmitting regular data frames 26.7 mW

Power consumed by the WuRx 196 nW

Table 7.1 � Values used for simulations.

WSN literature, is used.

7.3.1 Node Modeling and Simulation Settings

OPWUM and 1-hopMAC were implemented in GreenCastalia [62], an open-source simulation
framework for the Castalia/OMNeT++ simulator [63] that focuses on energy modeling. A Green-
Castalia module to model the WuRx from [2] was also implemented. All results were obtained by
averaging the outcomes of a number of simulations large enough to obtain 95% con�dence interval
and 5 % accuracy. Each run lasted 3600 s (simulated time). The WuRx considered presents data
passing capabilities, a minimal power consumption of 1.83 µW and a sensitivity of ´55 dBm. The
hardware preamble length of WuCs was set to 1 byte, leading to a total WuC size of 26 bits. The
main radio chip was a Texas Instrument CC1000, and the transmission powers were set to 10 dBm
for WuCs and ´5 dBm for non-WuC frames. WuCs were transmitted at a bit rate of 5 kbps and
non-WuC frames were transmitted at 19.2 kbps. The size of the data frames was set to 30 bytes
and the size of ACK frames to 8 bytes using the IEEE 802.15.4 physical layer. In these conditions,
the power consumption of the radio chip and the transmission durations of the di�erent frames are
shown by Table 7.1.

7.3.2 Evaluated Scenario

The network shown in Figure 7.3 was considered. It is a static multi-hop network, with multiple
sinks, which is widely used in monitoring applications. Given that it is a multi-hop network,
intermediate nodes are in charge of forwarding packets from their immediate predecessors, and
their immediate children do so for them. Moreover, every node, except the sinks, generates packets
periodically. The packet generation period is denoted by Tg and is equal for all the nodes. Three
sinks were used to avoid saturation of these when the packet generation period was set to low
values. Because opportunistic routing is considered in this work, each node has multiple potential
forwarders, shown by the arrows on Figure 7.3. By using timer-based contention, OPWUM and
1-hopMAC choose the next hop relay among these potential forwarders at each packet transmission
attempt. For the latter, di�erent wake-up periods, denoted by Tw, ranging from 100 ms to 400 ms
are considered. Moreover, as we do not make any assumption about the state metric from which
the contention backo� is computed, we assume that the contention backo� has no other constraint
that being in the interval r0, Dcs. Therefore, it is chosen uniformly within this interval. OPWUM
and 1-hopMAC are evaluated with respect to the following metrics:

• The total energy consumed by the network.

• The PDR.

7.3.3 Simulations Results: Energy Consumption

Figure 7.4 depicts the energy consumed by OPWUM and 1-hopMAC as a function of the packet
generation period Tg, when the contention window Dc is set to 50ms. We observe that the energy
consumption of 1-hopMAC depends on the value of Tw. Indeed, in typical WSN scenarios, with
relatively low tra�c, high values of Tw tend to reduce the energy consumption of 1-hopMAC.
OPWUM allows signi�cant improvement on energy consumption, spending up to 5 times less
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Figure 7.4 � Energy spent by the network as a function of packet generation period Tg. The contention
window Dc is set to 50ms.
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Figure 7.5 � Energy spent by the network as a function of the contention window duration Dc. Tg is set
to 30 s.

energy than 1-hopMAC. The only exception is for high tra�c, i.e. when Tg is less than 5 s. But,
as we will see later, the PDR of 1-hopMAC collapses to almost 0 % when the tra�c is high. In
order to minimize the power consumption of 1-hopMAC, the optimal value of the TWI needs to
be computed for each node, and depends on both Tg and the packet arrival rate. As the packet
arrival rate is usually not stationary, especially in the context of opportunistic routing, minimizing
the power consumption of 1-hopMAC is not easy in practice, and the wake-up period is �xed once
for all at the deployment of the network.

Figure 7.5 shows the energy spent by the network as a function of the contention window
duration, when the packet generation period is set to 30 s. We can see that the contention window
duration does not a�ect the power consumption of OPWUM, because all the next hop relay selection
phase is done using WuCs only. Regarding 1-hopMAC, the consumed energy slowly increases with
the contention window duration. Indeed, during the next hop relay selection phase, the sender
must keep its transceiver in the receive state until it receives a CTS from a potential next hop
relay. As higher contention window duration increases the average waiting time, it leads to higher
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Figure 7.7 � Packet delivery ration as a function of contention period duration Dc. The packet generation
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energy consumption.

7.3.4 Simulation Results: Packet Delivery Ratio

The PDRs of OPWUM and 1-hopMAC are shown in Figure 7.6 as a function of Tg, whenDc is set to
50ms. For relatively high tra�c, i.e. when Tg is less than 10 s, OPWUM outperforms 1-hopMAC.
Moreover, the PDR never falls bellow 40 % with OPWUM, while it can reach almost 0 % with
1-hopMAC. For small tra�c rates, i.e. when Tg is higher than 10 s, OPWUM performs similarly to
1-hopMAC with Tw set to 100 ms. But as shown in Figure 7.4, this con�guration of 1-hopMAC is
highly energy expensive. The other con�gurations of 1-hopMAC perform signi�cantly worse, even
when low tra�c is considered. Figure 7.7 shows the PDR as a function of Dc, when Tg is set to 30s.
We can see that the PDR decreases when Dc increases for both protocols, but the decay rate is
more signi�cant for 1-hopMAC with high TWI values. Indeed, longer contention windows increases
the chances that neighboring nodes initiate a communication during the contention period, leading
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Figure 7.8 � Study case showing the e�ectiveness of OPWUM.

to collisions that can cause both communications to fail. Because of the silent state feature of
OPWUM, presented in Section 7.2, this scenario is less likely to happen.

7.4 Application Case: Energy Harvesting Wireless Sensor
Networks

To illustrate the e�ectiveness of OPWUM, the context of energy harvesting WSNs is considered,
the grid network presented in Figure 7.8 was implemented in GreenCastalia. In this study case,
the nodes of the upper row generate packets at an average frequency of one packet every 10 s (the
source nodes), while one node gathers the generated packets (the sink node). All the other nodes
only serve as relays. Every node, except the sink, is equipped with an energy harvesting device,
e.g. a solar panel. The nodes located under the clouds (a) and (b) harvest less energy than the
other nodes, and the cloud (a) is �thinner� than the cloud (b), meaning that energy harvesting
rate of nodes located under the cloud (a) is higher than these of nodes under the cloud (b). The
state metric Mp¨q used to compute contention backo�s is the energy harvesting rate, and thus
the contention backo� is inversely proportional to the energy harvesting rate, i.e. high energy
harvesting rate incurs small contention backo�. The simulation lasted 10000 s (simulated time).
The set of potential receivers of each node is set using static routing tables, while OPWUM is
used to opportunistically choose a forwarder among this set every time a packet needs to be sent.
Potential receivers are neighboring nodes on the grid, located either on the same row or on the
lower row.

Figure 7.8 shows the used links. In this �gure, thicker arrows show the most used links. As
we can see, only a few routing paths contain nodes from the area (a), while no routing paths
contain nodes from the area (b). OPWUM enables the nodes to choose the potential receivers
which harvest the most energy. As a result, the routing paths bypass the cloudy areas to reach the
sink, thus allowing nodes to survive periods of energy scarcity.

7.5 Conclusion

In this chapter, WuRx and timer-based contention approach were combined to achieve energy e�-
cient opportunistic forwarding. Indeed, the timer-based contention approach enables opportunistic
relay selection without the requirement of extensive information exchange between a node and its
neighbors. However, this is at the cost of high energy consumption in traditional implementation
of this scheme. If reducing the contention window duration leads to lower energy consumption,
this is at the cost of a signi�cant drop of the PDR. The proposed cross-layer protocol, OPWUM,
leverages WuRx to make timer-based contention energetically interesting. Indeed, OPWUM en-
ables signi�cantly lower power consumption that state of the art traditional approaches. Moreover,
OPWUM leads to more reliable communications (higher PDR) when the tra�c is dense.
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In the context of energy harvesting, opportunistic forwarding is especially interesting to choose
the most promising paths in the network, i.e. the ones that enable high quality of service while
avoiding power outage of nodes. Further work includes studying OPWUM more deeply in this
context and implementing this protocol on real hardware to perform more extensive evaluation.



96



Chapter 8

Combining Wake-up Receivers and

Energy Harvesting in Star Networks

The �rst part of this thesis focuses on energy harvesting in WSNs, and two EMs were proposed
to tackle the challenge of achieving energy neutrality in EH-WSNs. The aim of this chapter is to
combine energy harvesting and WuRx in the context of data gathering star networks, in which a
central sink to which all the other nodes are connected collects the data.

Our �rst goal was to implement Fuzzyman as it is presented in chapter 3. However, it was
quickly found that the amount of harvested energy, required by Fuzzyman as an input, cannot be
accurately estimated on the considered hardware. This led to the design of a novel EM inspired by
Fuzzyman, called Rule-based EM (REM), which unlike most state of the art EMs, requires only
the residual energy as an input.

As we focus on data gathering star networks, a novel MAC protocol, called Star NetWork
MAC (SNW-MAC) leveraging WuRx is proposed [152]. SNW-MAC enables asynchronous com-
munications, minimizes the cost of packet transmissions, and allows error corrections. SNW-MAC
signi�cantly reduces the energy cost variability of packet transmissions allowing accurate control
of the consumed energy by the EM. The scalability of SNW-MAC is analytically studied in this
chapter.

In addition to the new EM, SNW-MAC as well as PW-MAC and X-MAC were implemented
on a testbed using the WuRx from [2] for evaluation. Experimentations were done in the context
of indoor light, and the Energy Utilization Coe�cient (EUC), is de�ned and used as an evaluation
metric.

The remainder of this chapter is organized as follows. Section 8.1 presents REM, and introduces
the EUC metric. Section 8.2 details the design of SNW-MAC, and presents an analytical study
of its scalability. Section 8.3 exposes the experimental setup used to evaluate our approach, and
Section 8.4 presents the experimental results. Finally, Section 8.5 concludes this chapter.

8.1 Design of REM

The design of REM is presented in this section. The task of the EM is to dynamically adjust the
performance of the node, evaluated in this work by the packet generation rate, according to the
current residual energy. REM can be used in collaboration with various MAC protocols. Later, we
show the bene�ts of combining REM with the SNW-MAC protocol leveraging WuRx introduced
in Section 8.2.

We assume that the time is divided into time slots of equal duration Ts, and that the EM is
executed at the beginning of each slot to set the packet generation rate of the node for the current
slot k. At each execution, REM measures the current residual energy denoted by er, and computes
the wake-up interval for the next slot denoted by TWI , i.e. the time between the sending of two
packets. Two submodules compose REM as shown in Figure 8.1. The Energy Budget Computation
(EBC) module evaluates the energy that the node should consume in the next time slot k to remain
sustainable. This amount of energy is the energy budget and is denoted by ebrks. The inputs to
the EBC are the current residual energy and the variation of residual energy, respectively denoted
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Figure 8.1 � Software architecture with detailed view of REM structure. The design of the propSNW-
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Figure 8.2 � Energy storage device levels.

by errks and ∆errks de�ned by:

∆errks “ errks ´ errk ´ 1s. (8.1)

The second module is the Throughput Computation (TC) module, which calculates the wake-
up interval TWI rks according to the energy budget ebrks. When the topology is a star network, the
only task of a node is to perform a measurement and to send the so generated data to the sink. In
multi-hop networks, each node must also relay packets sent by other nodes.

8.1.1 EBC Design

Most of the EMs presented in the literature assume the availability of the harvested and consumed
energy values [18,44]. However, precise tracking of these values is di�cult and their implementation
incurs high overhead [66], which motivates the design of an EM that only requires the residual
energy. The aim of the EBC is to keep the device in the ENO-MAX state, i.e. the amount
of consumed energy equals the amount of harvested energy over long period of time [19], by
dynamically adapting the energy budget. Four residual energy levels of the energy storage device
are de�ned and shown in Figure 8.2. Emaxr is the energy storage capacity, and Efailr is the hardware
failure threshold, which identi�es the minimal energy level ensuring the correct supply of the device.
Efailr and Emaxr are hardware dependent. An Energy Neutral Interval (ENI) is de�ned by two
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∆er

er
rEfailr , EdownENI s rEdownENI , E

up
ENI s rEupENI , E

max
r s

ă 0 µD perq∆er ´∆eb 0

“ 0 ´∆eb 0 ∆eb

ą 0 µC perq∆er ∆eb ∆eb

Table 8.1 � Energy storage levels and rule base used to compute δeb.

energy thresholds EupENI and EdownENI such that Efailr ă EdownENI ă EupENI ă Emaxr as illustrated in
Figure 8.2. If the stored energy falls below Efailr , a power outage occurs. On the other hand,
if the energy storage device is full, i.e. the amount of stored energy is Emaxr , then the excess
of harvested energy is wasted, as it cannot be stored. This situation is called a saturation of the
energy storage device. To avoid saturation, EupENI should be chosen such that E

up
ENI ă Emaxr , which

allows the EBC to avoid waste of energy by over�ow of the storage device. Moreover, the energy
stock Es “ EdownENI ´E

fail
R is de�ned as the amount of energy required to ensure the operating of the

device during periods without intake energy from the harvester, and depends on the application
and the energy source characteristics. Therefore, Es is the amount of energy that should be stored
in the energy storage device to avoid power outage in case of energy scarcity periods. The aim
of the EBC is to keep the state of charge of the energy storage device in the ENI rEdownENI , E

up
ENI s

when environmental energy is available, thus avoiding waste of energy by saturation of the storage
device, while storing enough energy to survive periods during which no energy is harvested.

Ensuring the minimum quality of service required by the application necessitates a minimum
energy budget per slot denoted by Eminb . At each execution of the EBC, the energy budget of the
next slot k is computed as follows:

ebrks “ max
´

Eminb , ebrk ´ 1s ` δebrks
¯

, (8.2)

where δebrks is the energy budget correction, which is calculated according to the current values of
er and ∆er. Table 8.1 summarizes the EBC strategy. In this table, ∆eb is a positive parameter
of the EM and corresponds to the energy budget correction when the amount of stored energy is
either in the ENI interval or in the risk of saturation interval. As most applications do not perform
well under strong variations of the allocated energy budget, choosing ∆eb requires a compromise
between the reactiveness of the EBC and the variability of the allocated energy budget. Four
scenarios can be considered from Table 8.1 and are detailed thereafter.

Risk of saturation A risk of saturation occurs when er ą EupENI . To avoid waste of energy
by over�ow of the energy storage device, the EBC increases the energy budget until the residual
energy decreases to bring it to a value belonging to the ENI.

Energy neutral interval If the amount of residual energy belongs to the energy neutral interval,
the EBC goal is to keep the node in the ENO-MAX state. The ENO-MAX state is achieved when
the residual energy is kept constant with regard to time, and the EBC thus corrects the energy
budget regarding the sign of ∆er to keep the node in the ENO-MAX state.

Charging State The node is considered to be in charging state when er ă EdownENI and ∆er is
positive. The node is thus re-�lling its energy stock. In these conditions, the goal of the EBC is to
keep the residual energy increasing for the amount of stored energy to be greater or equal than Es,
i.e. for the residual energy to reach the ENI in a reasonable time, while allocating a high enough
energy budget to ensure a good quality of service. A trade-o� must be made between the charging
time and the quality of service. Indeed, at one extreme, a conservative policy is to allocate the
minimal energy budget while the energy storage device is not fully charged, leading to a quick re�ll
of the storage device at the cost of a low quality of service during the charging phase. On the
other hand, allocating almost all the harvested energy will lead to a slow charging rate, but to a
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good quality of service, regarding the currently available environmental energy, during the charging
phase. As the choice of an appropriate strategy is dependent on the application, a tunable strategy
is proposed. The energy budget correction δeb is set to a value proportional to the residual energy
variation ∆er and the proportionality factor is a function of er denoted by µC perq:

µC perq “ κ1C

˜

1´

˜

1´
er ´ E

fail
r

EdownENI ´ E
fail
r

¸κC¸

, (8.3)

where κ1C and κC are positive parameters allowing the tuning of the charging strategy. µC increases
with er as the more energy is stored, the less conservative we need to be. While κ1C sets the
maximum value of the proportionality factor, κC sets the growth rate of µC . If κC “ 1, δeb
increases linearly with er. For values of κC lower than one, the growth rate increases when the
residual energy increases, while for values of κC higher than one, the growth rate decreases when
er increases.

Discharging State The node is considered to be in discharging state when er ă EdownENI and ∆er
is negative. The node is thus using its energy stock. In this scenario, a trade-o� must be made
between the allocated energy budget and the lifetime of the node, i.e. the time it can last before
running into a power outage. A conservative policy is to set the energy budget to the minimum
required, hence maximizing the lifetime at the cost of a low quality of service. On the other hand,
setting the energy budget to an arbitrary high value leads to high quality of service at the cost
of short lifetime. Similarly to what has been done for the charging state, a customizable energy
management, that can be tuned according to the need of an application, is proposed. The energy
budget correction δeb is set at a value proportional to the residual energy variation ∆er and the
proportionality factor is a function of er denoted by µD perq:

µD perq “ κ1D

˜

1´
er ´ E

down
ENI

EdownENI ´ E
fail
r

¸κD

, (8.4)

where κ1D and κD are positive parameters allowing the tuning of the discharging strategy. µD
decreases with er as the less energy is stored, the more conservative we must be, and the impact
of κD and κ1D on the discharging strategy are similar to the ones of κC and κ1C on the charging
strategy.

8.1.2 TC Design

The TC aims to compute the packet generation rate of the node over a time slot to consume
the amount of energy speci�ed by the EBC. As wireless communications are usually the most
consuming task over all the other tasks such as sensing and computing [10], the packet generation
rate of the node given an energy budget strongly depends on the MAC protocol.

To transmit a single packet, a given MAC protocol typically requires many steps, such as
receiving/sending a beacon frame, sending a data frame, receiving an ACK. . . The number of states
in which the node can be when communicating using a given protocol is denoted by NS . Each
state is de�ned by the state of the MCU (typically sleeping or active) and the state of the radio
chip (typically sleeping, idle, receiving, transmitting). The time spent in the state i P t1, . . . , NSu
during a single packet transmission is denoted by τi, and the corresponding power consumption of
the node is denoted by Pi. The energy cost of the whole process to send a single packet is therefore:

ct “
NS
ÿ

i“1

τiPi, (8.5)

and the energy consumed by the node over one time slot k is:

ecrks “
T

TWI rks
ct `

ˆ

T ´
T

TWI rks
τt

˙

PS , (8.6)

where PS is the power consumption of the node when both the MCU and the radio chip are sleeping,
and τt is the total time required to send a packet and is equal to τt “

řNS
i“1 τi. Therefore, in order
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for the consumed energy ecrks to be equal to the energy budget ebrks, the wake-up interval is set
to the following value:

TWI rks “
ct ´ τtPS
ebrks
T ´ PS

. (8.7)

This equation is obtained by replacing ecrks by ebrks in (8.6). The associated packet generation
rate, in packets per minute, is thus 60

TWI rks
.

If we assume low data-rate application, typical in EH-WSNs, usual MAC protocols are based on
pseudo-asynchronous approaches, which make the estimation of the τi values challenging. Indeed,
rendez-vous schemes incur high variability of the time spent in the idle state and receive state
for di�erent packet transmissions. As a consequence of an inaccurate estimation of these values,
the energy consumed by the node can be signi�cantly di�erent from the energy budget calculated
by the EBC, which can lead to power failures or energy wastes. Therefore, in Section 8.2, a new
protocol reducing the energy consumption variability of packet transmission is proposed.

8.1.3 Energy Utilization Coe�cient

To evaluate the energy e�ciency of di�erent MAC protocols, the EUC, denoted by ζ, is de�ned as
the ratio of the packet generation rate to the energy budget:

ζpebq “
Packet rate in packets per minute

eb
“

60

ebTWI
. (8.8)

It is expressed in packets per minute and per Joule. For notational simplicity, the slot number
indication �rks� is omitted in the rest of this section, and all the following equations refer to a single
time slot. The EUC quanti�es the achieved packet generation rate of a MAC protocol regarding
the available energy budget, and is similar to other energy e�ciency metrics e.g. [153,154].

By combining (8.7) and (8.8) we obtain:

ζpebq “
1

HT
´
PS
H

1

eb
, (8.9)

where H (in Joule) is de�ned by:
H “ ct ´ τtPS . (8.10)

H is a constant particular to a given hardware and MAC protocol. Indeed, the τi values depend
on the MAC protocol while the Pi and PS values depend on the hardware. Two remarks can be
done regarding (8.9). First, the EUC is not constant for a given hardware and MAC but increases
with the energy budget eb. Secondly, the EUC is bounded, as:

ζ8 “ lim
ebÑ8

ζpebq “
1

HT
. (8.11)

From (8.11) it can be observed that the maximum EUC ζ8 is higher for small values of H.
Therefore, the smaller H is, the better it is. For the rest of this work, the Pi values are assumed
to be �xed and the power consumption in sleep state PS is supposed to be much smaller than the
power consumption of the other states Pi. This assumption holds true for all the WSN platforms.
Hence, minimizing H is done by minimizing the τi values. In order for H to be minimal, only
the data frame should be sent at each packet transmission. However, most of the MAC protocols
introduce an overhead to synchronize the nodes (e.g. rendez-vous process in pseudo-asynchronous
MAC protocols) or for error control (e.g. ACK frames). As we will see in the next section, using
WuRx allows the minimization of H, and hence the maximization of the EUC.

8.2 Leveraging Wake-up Receivers in Star Networks

SNW-MAC leverages WuRx to enable asynchronous communication, minimizing the energy re-
quired to transmit a packet and making collisions impossible between packets sent by nodes be-
longing to a same SNW-MAC-based network. It is assumed that a physical layer providing an error
detection mechanism is used. For example, the widespread IEEE 802.15.4 physical layer provides
a Cyclic Redundancy Check (CRC) error detecting code.
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Figure 8.3 � SNW-MAC packet transmission illustration and WuC format.

8.2.1 Design of SNW-MAC

SNW-MAC is an asynchronous scheme that uses the receiver-initiated approach to minimize the
energy consumption of WSN nodes. As the power consumption of WuRx has to be orders of
magnitude less than the main radio, these devices are usually characterized by low sensitivity and
low data rate [2, 155], as seen in Chapter 6. For this reason, sending WuCs to a WuRx can be
energy-wise costly as it is done at low bit rate and high transmission power to achieve the same
range as the main radio.

Packet transmission using SNW-MAC is illustrated in Figure 8.3a. The sink initializes a com-
munication by sending a WuC containing the address of a speci�c sensor node, and then listens
to the channel to receive the data packet. The targeted sensor node is awaken by its WuRx, and
starts sending the data packet. Each sensor node piggybacks its wake-up interval in data packets.
The sink keeps an updated table that associates for each node its wake-up interval, and polls each
node at the right time. Compared to traditional receiver-initiated protocols, this approach reduces
the energy consumption of the sink and the nodes as no rendez-vous process is required. The sink
energy consumption is further reduced as useless periodic WuCs sendings are avoided. Because the
wake-up interval is typically a 16 bit integer, minimal overhead is incurred by the piggybacking of
this information. Moreover, the sink can use it to monitor the sensor node activity.

Error control and retransmission By coordinating data packet transmission at the sink,
SNW-MAC cancels the risk of collisions compared to traditional pseudo-asynchronous schemes
as each node is speci�cally polled. However, wireless channel interferences may lead to corrupted
frames, and energy-e�cient error control and packet retransmission is therefore an important issue.
As the sink is entirely in charge of coordinating the packet transmission, it is responsible for
detecting transmission errors and scheduling another attempt. Each WuC embeds an 8bit sequence
number of the expected data packet in addition to the 8bit address of the wireless sensor node to be
polled and 3 synchronization bits (imposed by the hardware) as shown in Figure 8.3b. Therefore,
a WuC is 19 bit long. The sink keeps an updated table that associates for each node the next
packet sequence number to poll. When a sensor node WuRx acquires a WuC, it reads both the
address and the sequence number. The WuRx is assumed to embed data processing capabilities,
as explained in Section 6.1, and it wakes up the node MCU only if the address is valid, and then
sends to it the sequence number. All the packets, which have sequence number lower than the one
received are considered as either successfully received or dropped because of a too high number
of transmission attempts, and are erased from the transmission bu�er. The packet which has the
sequence number asked by the sink is then sent. Using this mechanism, when the sink detects
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a transmission failure, e.g. the received data packet is corrupted, it sets a random backo� and,
when the backo� expires, it initiates a new communication using the same sequence number, as
illustrated in Figure 8.3a. Compared to traditional error-control schemes that require ACK frames,
the energy overhead is signi�cantly reduced for sensor nodes as they do not need to listen to ACK
frames after each data packet transmission. On the sink side, as no ACK frame is sent, energy is
also saved. Nonetheless, this energy saving is counterbalanced by longer WuCs sent by the sink
due to the sequence number.

Using SNW-MAC, only the data frame is sent by the nodes, thus minimizing the per-packet
energy consumption and the H value introduced in Section 8.1.2. Moreover, the per-packet energy
consumption variability is also minimized if the data frame length does not change. Indeed, the
only possible cause of energy consumption variability is due to retransmissions. Having a low
energy consumption variability is important to allow the EM to accurately control the energy
consumption of the node.

8.2.2 Analytical Study of the Scalability

In this section, the scalabilities of SNW-MAC and traditional pseudo-asynchronous MAC protocols
are evaluated in the context of star networks. The number of nodes that compose the network is
denoted by NN (not including the sink), and the packet generation rate is modeled by a Poisson
distribution of parameter λ packets per minute. Next, expressions of the packet arrival rate at
the sink are derived for SNW-MAC and pseudo-asynchronous MAC protocols when it is assumed
that the only cause of packet loss is collisions, and that all collisions are destructive, i.e. lead to
corrupted packets.

SNW-MAC Packets collisions are impossible SNW-MACas the sink speci�cally polls each node.
Nonetheless, as receiving a packet requires a non-null duration, the receiving rate is still bounded.
The total time required to receive a packet is denoted by τr and is de�ned by:

τr “ τd ` τo, (8.12)

where τd is the time required to receive the data payload and τo is the overhead incurred by the
hardware and the protocol at each packet reception (WuC sending, radio setup, turn-around time,
software overhead). The maximum receiving rate in packets per minute is thus:

Γ “
Y60

τr

]

, (8.13)

where t¨u is the �oor function. We assume that the packet generation rates of the nodes are
independent from each other and are modeled by Poisson distributions of mean λ packets per
minute, and we denote by A the aggregate rate. As Poisson distributions are stable by sum, A
follows a Poisson distribution of mean λNN packets per minute. However, because the maximum
receiving rate of the sink is Γ, the receiving rate of the sink, denoted by R, is modeled by the
following distribution:

Pr pR “ kq “

$

’

&

’

%

Pr pA “ kq “ pλNN q
k

k! e´λNN if 0 ď k ă Γ
ř8

i“Γ Pr pA “ iq “
ř8

i“Γ
pλNN q

i

i! e´λNN if k “ Γ

0 if k ą Γ

(8.14)

Indeed, the sink saturates when the receiving packet generation rate reaches Γ, and therefore higher
receiving packet generation rates are impossible as the sink cannot poll the nodes quickly enough.
The average packet generation rate is thus:

χr,SNW´MAC “ E rRs “
8
ÿ

k“0

kPr pR “ kq “
Γ´1
ÿ

k“1

k
pλNN q

k

k!
e´λNN ` Γ

8
ÿ

k“Γ

pλNN q
k

k!
e´λNN . (8.15)

As:
8
ÿ

k“Γ

pλNN q
k

k!
“ eλNN ´

Γ´1
ÿ

k“0

pλNN q
k

k!
, (8.16)
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we �nally have:

χr,SNW´MAC “ e´λNN
Γ´1
ÿ

k“0

k
pλNN q

k!
`

˜

1´ e´λNN
Γ´1
ÿ

k“0

pλNN q
k

k!

¸

Γ. (8.17)

Pseudo-asynchronous MAC Using traditional pseudo-asynchronous MAC, the sink periodi-
cally wakes up to receive data packets, and the sink wake-up interval is denoted by Tu. The time
is thus divided into equal length time slots of duration Tu. When a node generates a packet, it
typically tries to send it at the sink next wake-up. The number of packets, denoted by X, gener-
ated by a given node over a time slot can be modeled by a Poisson distribution of parameter λTu

60 .
Therefore, the probability that a node generates packets in a time slot is:

pg “ Pr pX ě 1q “ 1´ Pr pX “ 0q “ 1´ e´
λTu
60 . (8.18)

Let Y be the number of nodes that have generated packets over a time slot. Y can be modeled
by a binomial distribution of parameter pg. As the Y nodes will try to send a packet at the
next sink wake-up, and if we assume that all the collisions are destructive, the number of packets
received by the sink during a time slot is a function of Y denoted by R1 pY q and de�ned by:

R1 pY q “

$

’

&

’

%

0 if Y “ 0

E rX|X ě 1s if Y “ 1

0 if Y ą 1

(8.19)

the last case being the collision scenario. Also:

E rX|X ě 1s “
8
ÿ

k“1

kPr pX “ k|X ě 1q , (8.20)

and for k ě 1:

Pr pX “ k|X ě 1q “
Pr pX “ k,X ě 1q

Pr pX ě 1q
“

Pr pX “ kq

pg
, (8.21)

leading to:

E rX|X ě 1s “
E pXq
pg

“
λTu
60pg

. (8.22)

Therefore, the average number of packets received during a time slot is:

E
“

R1 pY q
‰

“

n
ÿ

i“1

R1 pY “ iqPr pY “ iq “ E rX|X ě 1sPr pY “ 1q “
NNλTu

60
e´pN´1qλTu60 , (8.23)

and the average receiving rate χr,PAM in packets per minute is thus:

χr,PAM “
60E rR1 pY qs

Tu
“ NNλe

´pN´1qλTu60 . (8.24)

Figure 8.4 shows χr,SNW´MAC and χr,PAM for values of NN ranging from 0 to 100 and values
of λ ranging from values of 0 to 300 packets per minute. Both τr and Tu where set to 40 ms for
fairness, leading to Γ “ 1500 packets per minute for SNW-MAC. As we can see, χr,SNW´MAC

increases until reaching Γ. The sink then saturates and the receiving packet generation rate stops
increasing. On the other hand, χr,PAM �rst increases with λ and NN , but decreases after reaching
a maximum because of collisions, limiting its scalability. Moreover, the maximum reached by
χr,PAM is more than twice smaller than the maximum reached by χr,SNW´MAC . These numerical
results show the better scalability of SNW-MAC. Finally, it is important to notice that Tu was
set to the same value as τr when plotting Figure 8.4 for fairness. However, in real scenario, the
sink wake-up interval is usually set to a much higher value than the packet reception duration to
achieve low duty cycles and save energy, reducing moreover the scalability of pseudo-asynchronous
MAC protocols.
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Figure 8.4 � χr,SNW´MAC and χr,PAM as a function of n and λ when Tu “ τr “ 40ms.
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Figure 8.5 � Hardware architecture of a WSN node using the MESC architecture and a WuRx.

8.3 Experimental Setup

8.3.1 Node Architecture

Multiple EH-WSN platforms have been proposed by academia and industry over the last decade [156,
157]. In this work, we consider a single-path architecture version of the Multiple Energy Source
Converter (MESC) architecture proposed in [158]. In single-path architecture, there is only one
energy storage device and all the harvested energy is used to charge the storage device which di-
rectly powers the node through a DC-DC converter. Figure 8.5 shows the block architecture of
MESC that can be used with a variety of energy harvesters (photo-voltaic cells, thermoelectric
generators and wind turbines) using the appropriate energy adapter to normalize the output en-
ergy. Supercapacitors were chosen as storage devices as they are more durable and o�er a higher
power density than batteries [159]. In this work, the PowWow platform [99], based on the MESC
architecture and equipped with a Texas Instrument CC1120 radio chip, is used as testbed. The
energy storage device is a 0.9F supercapacitor with a maximum voltage of 5.0V, and the minimum
voltage required to power the node is 2.8 V. PowWow embeds a voltage measurement chip, the
INA3221 from Texas Instrument, which allows measurement of the supercapacitor voltage, denoted
by Vc, with a precision of 0.1mV. The residual energy er can thus easily be computed as follows:

er “
1

2
CVc

2, (8.25)

where C is the supercapacitor capacitance. When SNW-MAC is evaluated, the WuRx is added to
the node, and the so-obtained mote is shown in Figure 8.6. REM, introduced in Section 8.1, was
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Figure 8.6 � PowWow node equipped with an ULP WuRx.
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Figure 8.7 � Power consumption of the node when (i) the MCU is active and the radio is listening and
when (ii) the MCU is active and the radio is sleeping for di�erent input voltages of the DC-DC converter.

implemented on PowWow, as well as SNW-MAC introduced in Section 8.2 and two other state of
the art MAC protocols presented in Section 6.2. The parameters used for experimentations are
shown by Table 8.2.

As the supercapacitor supplies the node via a DC-DC converter as shown in Figure 8.5 and
the e�ciency of the DC-DC converter varies with the input voltage, the power consumed by the
node depends on the charge of the supercapacitor. Therefore, the power consumption of each of
the NS states (introduced in section 8.1.2) was measured for di�erent input voltages of the DC-DC
converter ranging from 2.8 V to 5.0 V, and piecewise linear interpolation was used to get the Pi
values as functions of the supercapacitor voltage. The considered states were: MCU active and
transceiver sleeping, MCU active and transceiver idle, MCU active and transceiver listening, MCU
active and transceiver transmitting data frame and MCU active and transceiver transmitting WuC
frames. Figure 8.7 shows the so obtained measures and the corresponding interpolated functions for
two states of the node. As we can see, piecewise linear interpolation permits an accurate modeling
of the node power consumption. This model is used by the nodes, and more precisely by the TC
unit, to achieve accurate control of the energy consumed.

One of the requirements of a WuRx is the very low power consumption as it is always active,
even when all the other components are in sleep state. The power consumption of the WuRx
was measured to be 1.83 µW when the radio front-end is active and the PIC is in sleep state and
284 µW when the PIC is active at 3.3 V and is parsing the received data at 2 MHz. Therefore,
the WuRx power consumption becomes signi�cant when the PIC is active. At each wake-up, the
PIC is active for 19 ms to perform address matching. Hence, the energy consumed by the WuRx
at each wake-up of the PIC is 5.40 µJ. If we consider a typical node, not using a WuRx, but using
the duty-cycling approach with a duty-cycle set to a typical value of 0.05% and consuming 100mW
when the transceiver is active, then the total energy consumed by this node over a period of 24h is
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Parameters Values

MAC
Sink wake-up interval
(X-MAC and PW-MAC) 250 ms

Maximum number of retransmissions 2

Physical layer

WuB bit rate 1 kbps

Data/ACK/beacon bit rate 20 kbps

WuB transmission power 12.5 dBm

Data/ACK/beacon transmission power ´6 dBm

EBC

κ1C 0.01

κC 2.0

κ1D 0.5

κD 2.0

∆eb 5 mJ

Efailr 3.528 J

EdownENI 12.40 J

EupENI 12.45 J

Emaxr 12.50 J

Table 8.2 � Parameters used for the experimentations.
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Figure 8.8 � False wake-ups of the PIC over a 24 h period in an indoor environment.
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4.32 J. This amount of energy corresponds to more than 8ˆ 105 wake-ups of the PIC. The number
of �false� PIC wake-ups, i.e. wake-ups not caused by WuCs but by the wireless channel noise, was
measured over a period of 24 h in an indoor environment. Figure 8.8 shows the total cumulative
number of false wake-ups according to time. It is not surprising to observe that most of the false
wake-ups happen during daytime. In total, 3110 false wake-ups were accounted over a 24h period,
which is two orders of magnitude below the previously considered scenario assuming a typical
0.05% duty-cycle. Moreover, no false wake-ups of the main MCU happened. These results show
the importance of the ULP MCU embedded in the WuRx. Indeed, performing address matching
by a ULP MCU avoids numerous false wake-ups of the node MCU, which power consumption is
signi�cantly higher.

8.4 Experimental Results

This section starts by exposing the results of the microbenchmarks realized to provide detailed
insights on the energy cost of the transmission and reception of a packet using the evaluated
protocols, and to compute theH and ζ8 values related to the EUC metric introduced in Section 8.1.
Next, the bene�ts of SNW-MAC are shown by comparing it to the two state of the art MAC
protocols. Finally, our scheme is evaluated under variable energy harvesting conditions to show
the bene�ts of the EM in collaboration with the MAC protocols, and the higher performance of
the proposed approach.

8.4.1 Energy Microbenchmarks

To evaluate the energy e�ciency of a MAC protocol, it is important to measure the energy con-
sumption of the transmission and the reception of a single packet. Therefore, the energy traces of
both operations were measured for the three evaluated protocols, by capturing the voltage drop
across a 10.2 Ω resistor in series with a 3.5 V power supply using an Agilent Technologies MSO-
X-3024A oscilloscope. In addition to allow detailed analysis of the energy consumption, these
microbenchmarks were used to set the τi values introduced in Section 8.1.2, and to compute the
H and ζ8 values related to the EUC metric.

The results of the measurements are exposed in Figure 8.9, in which Pc is the power consumption
of the node. Figure 8.9a shows that sending a data packet using the proposed SNW-MAC protocol
achieves the lowest power consumption compared with the other protocols, as it requires only the
sending of the data frame (B). Moreover, the energy cost of sending a packet is constant if the data
payload length is �xed. Regarding the sink on Figure 8.9b, the two stages of a packet reception,
sending the WuB (A) then receiving the data frame (B), can be seen on this �gure. As sending the
WuC is done at lower bit rate and higher transmission power than for non-WuC frames, polling a
node is energetically expensive for the sink. This result motivates the piggybacking of the wake-up
interval of each node in data packets, allowing the sink to poll them only at the right time (see
Section 8.2).

Figure 8.9c and Figure 8.9d show respectively the energy cost of a packet transmission and
reception using PW-MAC. Sending a packet with this protocol requires the receiving of a beacon
(A) and an ACK (C) frame, making the energy cost of sending a packet higher than with SNW-
MAC. Moreover, the sender wakes up a short time before the sink transmits a beacon to prevent
prediction errors. This time interval varies at each transmission, leading to a non-constant energy
cost per packet transmission. The prediction error becomes signi�cant due to the clock drift, and
when it exceeds a �xed threshold an update of the prediction state is triggered leading to even
higher energy consumption. Regarding the sink, receiving a data packet does not require the
sending of a WuC, and is thus less energetically expensive than with SNW-MAC. Nonetheless,
SNW-MAC does not require the transmission of an ACK frame, which partially counterbalances
the energy overhead incurred by the WuB transmission when compared to PW-MAC.

Figure 8.9e shows the energy cost of sending a packet for a node using X-MAC. In this case, the
packet was successfully received by the sink at the sixth attempt. For each attempt, the two stages,
sending the data packet (B) and listening for an ACK (C), can be seen. As shown in Figure 8.9f,
the sink woke up during the �fth attempt (B), and thus did not receive the complete data packet.
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(B)

(a) SNW-MAC transmission.

(A) (B)

(b) SNW-MAC reception.

(A) (C)(B)

(c) PW-MAC: transmission.
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(d) PW-MAC: reception.
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(f) X-MAC: reception.

Figure 8.9 � Microbenchmarks of the MAC protocols. (A), (B) and (C) respectively correspond to the
transmission/reception of a beacon/WuC, data frame and ACK.
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Protocol H (Joule)
ζ8

(packets per minute and per Joule)

X-MAC 0.0125 0.666

PW-MAC 0.00313 2.660

SNW-MAC 0.00135 6.156

Table 8.3 � Best values of H and ζ8 for the di�erent MAC protocols.
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Figure 8.10 � Setup of the star network.

It stayed awake to receive it at the next attempt (B) and sent an ACK (C). The cost of sending
one packet with X-MAC greatly varies for di�erent transmissions because of the randomness of the
sink wake-up time relatively to the node transmission starting time. In average, a node has to wait
half of the wake-up interval of the sink before a data packet is successfully received. This makes
the sending of a packet with this protocol energetically more expensive than with SNW-MAC or
PW-MAC. On the sink side, the energy cost of a packet reception is also highly variable, and
requires in average the listening of one and a half data packets in addition to the transmission of
an ACK frame.

Using these microbenchmarks, the τi values introduced in Section 8.1.2 were measured and H
and ζ8 were calculated for the di�erent MAC protocols using the lowest measured values of the
Pi, leading to the best achievable values of H and ζ8. Table 8.3 presents the obtained results.
It can be observed that using SNW-MAC allows a signi�cantly better use of the energy budget.
Indeed, SNW-MAC permits values of H (resp. ζ8) more than twice smaller (resp. bigger) than
with PW-MAC, and more than nine times smaller (resp. bigger) than with X-MAC.

Energy overhead of the EM The EM is periodically executed by each node, and therefore
incurs an energy overhead. Using micro-benchmarks, it was measured that each execution of the
EM consumes 207.41 µJ at most. For the rest of this work, the duration between two executions
of the EM Ts is set to 120 s and the power consumption overhead incurred by the EM is thus
equivalent to a constant power draw of 1.73 µW, which is similar to the power consumption of
state of the art electronic components for WSN nodes in sleep state.
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(a) Average throughput achieved by each node.
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(b) EUC achieved by each node.
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(c) Average energy budget allocated by the EM
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Figure 8.11 � Results of the experimentations on a star network.

8.4.2 Evaluation on a Star Network

The proposed EM and the evaluated MAC protocols were implemented on a testbed made of 6
PowWow nodes including one sink, in a star topology. The nodes were exclusively powered by
indoor �uorescent light, allowing reproducibility of the experiments. Moreover, the nodes were
deployed under di�erent lighting conditions, as shown in Figure 8.10. Nodes 1, 2 and 5 were
located on desks, directly under the ceiling lights while node 3 was deployed in a more shadowed
area and node 4 was located on a bookcase, close to the ceiling, thus receiving less light than the
others. Each experiment lasted for 3 hours, and the PowWow nodes have been equipped with a
WuRx only when the SNW-MAC protocol was evaluated. Figure 8.11 shows the obtained results,
where Figure 8.11a presents the packet generation rate, in packets per minute, achieved with the
di�erent MAC protocols. SNW-MAC signi�cantly outperforms the two other protocols, allowing
up to twice higher packet generation rate than PW-MAC for the node 2 due to the lower energy cost
of packet transmissions. The performance of SNW-MAC is con�rmed by the Figure 8.11b, which
shows that the EUC is much higher for SNW-MAC, revealing a better use of the energy budget. It
is not surprising to notice that the results obtained for each node are strongly linked to the average
energy budget allocated by the EBC shown in Figure 8.11c. As the amount of harvested energy
varies for di�erent nodes, the average allocated energy budget also di�ers. Finally, Figure 8.11d
shows the PDR achieved by the three protocols. SNW-MAC is the only protocol to achieve a 100%
PDR on all the nodes.

8.4.3 Evaluation Under Variable Light Conditions

The bene�ts in terms of achievable packet generation rate of the proposed approach have been
evaluated under variable light conditions. The residual energy of a node was tracked when the
node was exposed to �uorescent lighting, typical from an indoor environment, then without any
available environmental energy (the lights were o�) for 2hours, and �nally exposed to indoor light
again. The whole experiment lasted for 5 hours, starting with the storage fully charged, and the
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Figure 8.12 � Behavior of the EM and achievable packet generation rate with variable lighting conditions.

results are shown in Figure 8.12. This �gure shows the residual energy and the throughput. In this
evaluation, only PW-MAC has been compared to SNW-MAC, as it allows higher packet generation
rate than X-MAC as we have previously seen.

Figure 8.12 shows that the EM successfully adapts the packet generation rate of the node to
keep it sustainable. Indeed, when few or no energy is harvested, a decrease of the residual energy
leads the EM to reduce the energy budget, incurring a reduction of the packet generation rate,
both with SNW-MAC and PW-MAC, demonstrating how the EM and the MAC protocol work
together to keep the node sustainable. It can be observed that during periods of harvested energy
availability, and when the residual energy is in the ENI, the EM successfully keeps the node in the
ENO-MAX state, avoiding waste of energy by saturation of the storage device.

From this evaluation, we observe that the packet generation rate using SNW-MAC is in all con-
ditions higher than with PW-MAC, showing the better energy e�ciency of SNW-MAC. Especially,
the packet generation rate of the proposed approach is up to 2.5 times higher than PW-MAC in
periods during which harvesting energy is possible.

These results demonstrate the ability of the EM to achieve energy neutrality with di�erent
MAC protocols and the bene�ts of its combination with the highly e�cSNW-MACprotocol, which
exploits a WuRx to enable asynchronous communication.

8.5 Conclusion

In this chapter, an EM was combined with an asynchronous MAC protocol leveraging WuRx in
the context of WSN organized in a star topology and with energy harvesting capabilities. The
proposed scheme has been implemented on real hardware, and experimental results have shown
that the proposed approach enables up to 2.5 times higher packet generation rate compared to
PW-MAC and even more compared to X-MAC.

These experimental results show the bene�ts of combining EH and WuRx in the context of
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star networks, which form an important application case in practice (smart buildings, body area
networks, etc.). Moreover, if the monitoring area may be limited due to the low sensitivity of
current WuRx compared to traditional transceivers for WSNs, new network topologies, formed of
multiple clusters each organized in a star network and leveraging WuRx, and connected together
using emerging long-range radio technologies for the IoT such as LoRaTM, can be considered (see
Appendix B).



114



Chapter 9

Conclusions and Perspectives

9.1 Conclusions

Energy is the main bottleneck of long-term wireless sensor networks applications, as typical wire-
less sensor nodes are battery-powered and batteries can only store a �nite amount of energy. A
promising solution is to enable each node to harvest energy directly from its environment. As the
energy sources are dynamic and uncontrolled, it is required to perform online adaptation of the
nodes performance in order to maximize the application quality of service, while avoiding power
failures.

In this thesis, two new energy management approaches were proposed. The �rst one, called
Fuzzyman, is based on fuzzy control theory. Fuzzyman is a model-free scheme, i.e. it does not
require predictions of the future harvested energy. With Fuzzyman, an intuitive strategy is for-
mally expressed as a set of fuzzy IF-THEN rules. Fuzzyman requires as an input both the residual
energy and the amount of harvested energy since the previous execution of the energy manager.
Fuzzyman was compared to P-FREEN, a state of the art energy manager, using extensive simula-
tions, and it was found that Fuzzyman achieves higher energy e�ciency and no power failure. The
main drawbacks of Fuzzyman are that it requires the amount of energy harvested which can be
unpractical to measure, and the lack of objective way to set the parameters, such as the rule base
and fuzzy membership functions.

The second energy manager that was proposed is called RLMan, and relies on reinforcement
learning theory. In RLMan, linear function approximators are used to reduce the computational
and memory overheads, even if continuous state and action spaces are considered. Moreover,
RLMan requires only the residual energy as an input, as opposite to Fuzzyman, which makes it
more practical to implement as this value may be di�cult and energy costly to measure in practice.
Using simulations, RLMan was compared to three other state of the art energy managers, including
Fuzzyman, in the case of both energy harvesting from indoor light and outdoor wind. Results show
that RLMan outperforms other state of the art approaches with regard both to energy e�ciency
and average packet generation rate, while incurring no power failure.

Achieving e�cient energy management is not su�cient to attain sustainable energy harvest-
ing wireless sensor networks. As communication is typically one of the most, if not the most,
consuming task in a wireless sensor node, enabling energy e�cient communication is also criti-
cal. Medium Access Control (MAC) protocols are especially important as they are responsible for
point-to-point communications and control the transceiver. A popular way to reduce the power
consumption of communications is duty-cycling, which allow signi�cant power savings, but still
incur non-negligible energy waste. Recent advances have made possible the realization of ultra-low
power wake-up receivers, able to listen to the wireless channel while having a power consumption
similar to the other wireless node components in sleep state. These devices are capable of waking-
up the microcontroller when a wake-up command is detected. Some wake-up receivers are able to
decode and process information embedded in the wake-up commands. The cost of ultra low power
consumption is signi�cantly lower sensitivity and bitrate than traditional wireless sensor network
transceivers, and as a consequence the wake-up commands must be transmitted at higher power
and lower bitrates than the other frames, making their transmission energetically expensive.
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In this thesis, we proposed a generic analytical framework based on absorbing Markov chain to
model MAC protocols. This model enables the studying and comparison of the power consumption,
latency and reliability of di�erent MAC protocols. To show practically how the proposed framework
can be used to model MAC protocols, PW-MAC, a receiver-initiated pseudo-asynchronous scheme,
was modeled and the details were exposed. To achieve high accuracy, experimental measurements
were performed to feed to analytical model, and to support our results.

The proposed framework was used to compare traditional pseudo-asynchronous schemes to
a simple MAC leveraging wake-up receivers in order to show the potential bene�ts that such
approaches can enable. Using traditional pseudo-asynchronous schemes, a trade-o� exists between
latency and power consumption, and this tradeo� is controlled by the wake-up interval. Analytical
results, supported by experimental measurements, show that using wake-up receivers allows going
beyond this tradeo�, as both low power and low latency communications can be achieved.

An opportunistic MAC protocol was also proposed in this thesis, called OPportunistic Wake-
Up Mac (OPWUM). OPWUM relies on the timer-based contention mechanism in order to enable
"on-the-�y" packet forwarding according to some application metric. If such a mechanism was
already present in the literature, OPWUM leverages wake-up receiver to make them energetically
interesting. Using network simulation, it was shown that OPWUM outperforms other opportunistic
MAC schemes.

Finally, energy harvesting and wake-up receivers were put together in the context of data
gathering star networks. In star networks, each wireless sensor node can send directly its data
packets to the sink, without the need of relays. An energy manager inspired by Fuzzyman and
which require as an input only the residual energy was implemented on a testbed of PowWow nodes
equipped with a state of the art wake-up receivers. Moreover, a MAC protocol for data gathering
star networks and leveraging wake-up receivers was designed and implemented. Results show how
wake-up receivers combined with the proposed scheme enable energy e�ciency communications
and sustainable energy harvesting networks.

To conclude, the results of this thesis encourage us to believe that achieving energy neutral
operation while e�ciently using the harvested energy is a feasible goal. High energy e�ciency
requires careful design of adaptation algorithms as well as communication protocols. Moreover,
wake-up receivers, enabled by the progress of microelectronics, have the potential to signi�cantly
reduce the energy consumption and the latency of communication tasks in some applications that
do not require high range such as smart buildings or body are networks.

9.2 Perspectives

Many doors were opened by this thesis, and this section presents the issues that in our opinion are
worthwhile subjects for future works.

9.2.1 Fuzzyman: self adaption

A drawback of Fuzzyman is the lack of objective method for establishing the controller parameters,
e.g. the rule-base and the membership functions. A solution may be to use adaptive control, in
which an adaptation mechanism is used to dynamically tune the controller parameters. In this
approach, the adaptation mechanism algorithm observes both the inputs and the outputs of the
control system, and adapts the parameter of the controller in the aim to achieve the required
performance.

9.2.2 RLMan: considering other rewarding systems

In RLMan, the reward is the product between the normalized residual energy (feature) and the
packet generation rate. However, other rewarding systems can be considered. In particular, multi-
objective reinforcement learning seems to be an interesting lead to follow, where for example the
normalized residual energy and the packet generation rate are two distinct rewards to maximize.
Moreover, adopting a multi-objective approaches can enable the adding of other quality of service
metrics, each one associated with a distinct reward, making the algorithm more �exible.
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9.2.3 RLMan: Multiple inputs

RLMan requires only one input, which is the residual energy. An interesting extension can be to
give additional inputs to RLMan, such as the variation of the residual energy between the current
and previous time slots. The intuition is that having additional information available may lead
to better results. However, additional inputs means more complex function approximators, such
as tile coding. In tile coding, the input space is divided into multiple tiles, each tile taking only
one value. Moreover, to make generalization easier and speed-up learning, multiple overlapping
tile layers can be considered. In order to reduce the memory requirement, which is critical in
wireless sensor networks, a hash table, possibly mapping multiple tiles to the same value, can
be considered. Investigating this approach as well as the impact on a hash table on the memory
overhead and approximator performance in the context of energy management in energy harvesting
wireless sensor networks seems to be an interesting lead.

9.2.4 Multi-source energy harvesting

In this thesis, when evaluating the energy managers by simulations or experimentations, the nodes
were powered by one energy source at the time. However, it is possible to equip each node with
multiple energy harvesters [157,160], and therefore to power the nodes with multiple energy sources
simultaneously. If the energy managers presented in this thesis are model-free and do not make
assumptions on a particular kind of energy source, they were not evaluated in this context, which
could be an interesting lead to explore.

9.2.5 MAC analytical framework

The proposed MAC analytical framework only considers the MAC layer, but not the topology of
the network which could also a�ect the performance of the MAC protocol. An improvement of the
proposed framework would be to extend it to incorporate such network-level considerations. Indeed,
MAC protocols typically incorporate collision avoidance mechanism (e.g. RTS-CTS handshake),
and considering network level knowledge will enable more realistic modeling of such mechanisms.

Incorporating analytical model of the wireless channel in the model is also an open problem,
to set the transition probabilities in a more realistic manner. A software is currently under devel-
opment for making the modeling of MAC protocols using the proposed framework easy, as well as
the incorporation of additional analytical models, e.g. for the physical layer.

9.2.6 Energy management in multi-hop networks

Multi-hop network, in which each node is both a sensor that generates packets and a relay for the
network, where not tackled in this thesis. In such network, when setting the packet generation
rate of a sensor node, the energy conditions of its relays should also be considered, as well as
the network-level fairness. Therefore, energy e�ciency as de�ned in this thesis is not anymore a
relevant metric. Designing distributed energy managers for such network is a �eld worth being
investigated. Appendix A shows an approach that we propose to tackle this challenge, using
convex optimization and the alternate direction of multipliers method. Other approaches, such as
multi-agent reinforcement learning, can be considered.

9.2.7 Combining wake-up receiver and long-range technologies

In recent years, a handful technologies enabling long-range communication of several kilome-
ters with power consumption similar to usual wireless sensor node transceivers, have emerged.
LoRaTMand SIGFOXTMare example of such technologies. The cost of long-range is low bitrate,
of typically a few kbps. Using LoRaTM, communication from the nodes to the gateway, is done
with low latency, as the gateway is always listening to the channel, while communication from the
gateway to the nodes requires a trade-o� between the latency and the power consumption of the
nodes. Wake-up receivers and LoRaTMpresent orthogonal features and combining them into novel
network architectures could be interesting. The Appendix B explores this track in more details,
focusing on MAC protocols.
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9.2.8 Energy Traces

An issue when evaluating energy management algorithms using simulations is the lack of energy
traces. If many meteorological data sets, such as solar irradiance and wind speed, are available
from meteorological laboratories such as the National Renewable Energy Laboratory (NREL), they
typically do not correspond to many realistic environments in which sensor nodes of the Internet
of Things are expected to be deployed. For example, the sunlight or wind received by a sensor
node located in a city is strongly impacted by the surrounding buildings, whereas the irradiance
data sets available from meteorological laboratories are typically recored in clear spaces.

Moreover, other energy sources are considered for powering sensor nodes such as human heat,
motion, indoor light. . . If a few data sets are available for indoor light from the EnHANTs project [161],
to the best of our knowledge, there is in general a real lack of energy traces for exhaustive simula-
tions.
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Appendix A

Distributed Computation of Fair

Packet Rates in Energy Harvesting

Wireless Sensor

In multi-hop networks, in addition to perform measurements and send the so-obtained data to
a sink, each node is also a relay that forwards packets from other nodes. Therefore, the energy
consumed by each node is shared between packet generation, i.e. performing sensing to produce
new data and sending the so-obtained data, and relaying, i.e. forwarding packets from other nodes.
An important consideration in multi-hop networks is the fairness of the packet generation rates
of the nodes given the amount of energy harvested by each node. To illustrate the idea of packet
generation rate fairness, we consider the toy example shown in Figure A.1. In this example, each
node i has a given amount of available resources Ri, and the cost of generating a packet and
relaying a packet are both equal to 1 for convenience. Both A and B are feasible allocations, as
none of them require more resources than the ones available for each node. However, it can be seen
that the allocation B is more fair than the allocation A, given the amount of resources available
for each node. Indeed, with the allocation B, the nodes 1 and 2 have the same packet generation
rates, whereas with the allocation A the node 1 is clearly favored. In both cases, the node 3 is
limited as it has much less available resources.

Sink

Node
1

Node
2

Node
3

(a) Toy example of a multi-hop sensor net-
work.

Allocations A B

x1 5 3

x2 1 3

x3 1 1

x1 ` x2 ` x3 7 7

log utility 1.6 2.2

(b) Two di�erent packet generation rate al-
locations.

Figure A.1 � Illustration of packet generation rate fairness in multi-hop sensor networks. The cost of
generating a packet and the cost of relaying a packet are both 1 for all the nodes.

In order to maximize packet generation rates while achieving a fair allocation, the proportional
fairness metric is used and maximized. Proportional fairness [162, 163] is widely used in wire-
less networks to balance fairness and packet rate sum. Formally, an allocation x is said to be
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Figure A.2 � Tree topology network. Apnq is the set of all nodes for which the node n serves as a relay,
and Spnq is the set of all nodes that relay the packets sent by n.

proportionally fair if for any other feasible allocation x1 we have:

ÿ

i

x1ris ´ xris

xris
ď 0, (A.1)

which states that any change in the solution must have a negative average change. Proportional
fairness can be achieved by maximizing logarithmic utility function de�ned by

ř

i log xris, over the
set of feasible allocations. Indeed, it is proved that if the set of feasible allocations is convex, then
the allocation that maximizes the logarithmic utility is proportionally fair [162]. Fig A.1 gives for
each allocation its associated logarithmic utility, and, unsurprisingly, allocation A achieves a less
good utility than allocation B. Actually, allocation B maximizes the logarithmic utility over the
convex set of feasible allocations, and is therefore optimal in the sense of proportional fairness.

The main contribution of this appendix is the design of a distributed algorithm for setting
the packet generation rates of sensor nodes forming a multi-hop EH-WSN [164]. Routing is not
considered, and it is assumed to be either imposed by the network topology, or established by a
routing algorithm [150]. The nodes are supposed to be organized in a routing tree, where each node
has a one-hop successor to which it forwards packets, as illustrated in Figure A.2. No assumption is
made on the energy source type. The problem of energy management was formulated as a convex
optimization problem, with logarithmic utility function. The problem was then reformulated such
that, using the ADMM [165], it can be decomposed into smaller subproblems that can be solved in
parallel. More precisely, a variation of the ADMM is used in this work, called fast ADMM [166],
which enables higher convergence rates.

The rest of this appendix is organized as follows. First, the energy management problem
formulation and the derivation of the proposed distributed algorithm are presented in Section A.1.
Next, the proposed approach was validated by simulations of a network of 15 nodes powered by
real measurements of indoor light in Section A.2.

A.1 Distributed and Fair Optimization

This section starts by formulating the packet generation rate assignment problem as a convex
optimization problem. Then, the derivation of a distributed algorithm is presented, which is based
on the fast ADMM.

A.1.1 Problem Formulation

As in the previous chapters, time is divided into equal length time slots of duration Ts, and the EM
is executed at the beginning of every time slot. An energy predictor (e.g. [8]) provides predictions
of the harvested energy over a window of K time slots, and the number of nodes forming the
network is denoted by NN . For convenience, the sets K “ t1, . . . ,Ku and N “ t1, . . . , NNu are
de�ned. The current time slot is denoted by t, and the predicted harvested energy for the time
slot t ` k is denoted by pehrn, ks, n P N , k P K. Each node embeds an energy bu�er of �nite
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capacity denoted by Brns. The energy failure threshold, i.e. the minimum energy level required
by the node n to operate, is denoted by brns. At each execution of the EM, each node n measures
the residual energy denoted by errn, 0s. The energy cost for the node n of a packet generation is
denoted by CLrns, while the energy cost of relaying a packet is denoted by CRrns. For each node
n, the sets Apnq and Spnq are respectively de�ned as the set of all nodes for which n is a relay, and
the set of all nodes that serve as a relay for n, as illustrated in Figure A.2. Formally:

Apnq :“ tm P N | Dm nu (A.2)

Spnq :“ tm P N | Dn mu , (A.3)

where m n designates a path from m to n in the routing tree. The energy variation during the
time slot t` k for the node n is de�ned by:

∆epn, k,χgq :“ pehrn, ks ´ CLrnsχgrn, ks ´ CRrns
ÿ

mPApnq

χgrm, ks, (A.4)

where χg is the packet generation rate vector and χgrn, ks corresponds to the packet generation
rate of the node n at the time slot t ` k. The residual energy of the node n and at the time slot
t` k is denoted by errn, ks and is de�ned by:

erpn, k,χgq :“

$

&

%

errn, 0s, n P N , k “ 0

min tBrns, erpn, k ´ 1,χgq `∆epn, k,χgqu , n P N , k P K
(A.5)

The energy management problem is formulated as follows:

minimize
χg

f0pχgq :“ ´
NN
ÿ

n“1

K
ÿ

k“1

logχgrn, ks

subject to: erpn, k,χgq ě brns, n P N , k P K

(P0)

where the constraint requires no power failure.
While (P0) is quite intuitive to formulate, it is not easy to work with because of the min operator

present in the constraint. Therefore, in order to make (P0) more tractable, the energy waste vector
ew is introduced and the energy management problem is re-formulated as a convex optimization
problem de�ned as follows:

minimize
χg,ew

f0pχgq

subject to: ewrn, ks ě 0, n P N , k P K pCW q

fpn, k,χg, ewq ď Brns, n P N , k P K pCSq (P1)

fpn, k,χg, ewq ě brns, n P N , k P K pCF q

where f is de�ned by:

fpn, k,χg, ewq :“

$

&

%

errn, 0s, n P N , k “ 0

errn, 0s `
řk
i“1 ∆epn, i,χgq ´

řk
i“1 ewrn, is, n P N , k P K

(A.6)

In (P1), the �rst constraint requires positive wasted energy, the second constraint represents the
energy bu�er capacity and the last constraint requires no power failure. (P1) is convex, and the
logarithmic utility function f0 leads to proportional fairness [162] with regard to nodes and time,
i.e. if χg is an optimal solution of (P1), then for any feasible solution χ111g of (P1) we have:

NN
ÿ

n“1

K
ÿ

k“1

χ1grn, ks ´ χgrn, ks

χgrn, ks
ď 0. (A.7)

In the rest of this section, it is shown than (P1) is equivalent to (P0), in the sense that they have
the same optimal solution. Moreover, this optimal solution is unique.
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The set of feasible points of (P0) is denoted by F0:

F0 :“
 

χg
ˇ

ˇ χg P domf0, erpn, k,χgq ě brns, n P N , k P K
(

.

where domf is the domain of function f , and the set of feasible points of (P1) is denoted by F :

F :“ tχg ‘ ew

ˇ

ˇ

ˇ
χg P domf0, ewrn, ks ě 0, fpn, k,χg, ewq ď Brns,

fpn, k,χg, ewq ě brns, n P N , k P Ku.
(A.8)

where ‘ is the concatenation operator, i.e. if a “ par1s, . . . , arnsqᵀ and b “ pbr1s, . . . , [
	
msqᵀ, then

a ‘ b “ par1s, . . . , arns, br1s, . . . , brmsqᵀ. Moreover, the projection of F onto the χg components:
Fχg :“

 

χg
ˇ

ˇ χg ‘ ew P F
(

is convex, as the projection of a convex set onto some of its coordinates
is convex [167].

De�nition 1. A point (not necessarily feasible) χg ‘ ew is said to be realistic if the energy waste
vector is such that:

ewrn, ks “ max t0, fpn, k ´ 1,χgq `∆epn, k,χgq ´Brnssu , n P N , k P K, (A.9)

Intuitively, a realistic point is such that the wasted energy is exactly the energy that could not
be stored because the energy bu�er is saturated. We can see that, if χg ‘ ew is realistic, then:

ewrn, ks ą 0 Ñ fpn, k,χg, ewq “ Brns. (A.10)

For every packet generation vector χg, a corresponding realistic point χg ‘erw can be constructed
using the de�nition of a realistic solution. The vector denoted by erw and constructed such that
χg‘e

r
w is a realistic point is called the realistic energy waste vector associated to χg and χg‘erw

is called the realistic point associated to χg. Moreover, this realistic point is unique for each packet
generation vector by construction. It can be seen that if χg ‘ erw is a realistic solution, then the
constraints pCW q and pCSq of (P1) are checked by construction.

The set of feasible realistic solutions of (P1) is denoted by Fr, which is a subset of F . The projec-
tion of Fr onto the χg components is denoted by Frχg and is de�ned as: F

r
χg

:“
 

χg
ˇ

ˇ χg ‘ e
r
w P Fr

(

.

Proposition 1. For any χg P Fχg , its associated realistic energy waste vector erw is such that, for
any other energy waste vector such that χg ‘ ew P F :

k
ÿ

i“1

erwrn, is ď
k
ÿ

i“1

ewrn, is, n P N , k P K. (A.11)

Proof. Indeed, let us assume that for some n P N and k P K, we have:

k
ÿ

i“1

erwrn, is ą
k
ÿ

i“1

ewrn, is. (A.12)

As χg ‘ ew is feasible and from (A.6):

fpn, k,χg, e
r
wq ă fpn, k,χg, ewq ď Brns,

and therefore from (A.10): erwrn, ks “ 0. We de�ne:

k1 :“ argmaxi ti ď k : erwrn, is ą 0u , (A.13)

and, if such k1 exists, it is necessarily such that k1 ă k. Two cases can now be distinguished:

• If k1 does not exist, i.e. erwrn, is “ 0 for all i P t1, . . . , ku, then
řk
i“1 e

r
wrn, is “ 0 which

contradicts (A.12) as χg ‘ ew is feasible.
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• If k1 exists, then:

k1
ÿ

i“1

ewrn, is ď
k
ÿ

i“1

ewrn, is ă
k
ÿ

i“1

erwrn, is “
k1
ÿ

i“1

erwrn, is,

and hence:
fpn, k1,χg, ewq ą fpn, k1,χg, e

r
wq “ Brns,

where the equality stands from (A.10). This contradicts the feasibility of χg ‘ ew.

In conclusion, (A.12) being true for some n P N and k P K always leads to a contradiction, and
therefore (A.11) stands for all n P N and k P K.

Proposition 2. The sequence perpn, k,χgqqn,k de�ned in (A.5) and associated to a packet gener-
ation rate vector χg and the sequence pfpn, k,χg, e

r
wqqn,k de�ned in (A.6) and associated to the

realistic point χg ‘ e
r
w are equal, i.e.:

erpn, k,χgq “ fpn, k,χg, e
r
wq, n P N , k P K. (A.14)

Proof. Indeed, if it is assumed that for some n and k ´ 1, with n P N and k P t2, . . . ,Ku the
equality (A.14) holds, then:

fpn, k,χg, e
r
wq “ fpn, k ´ 1,χg, e

r
wq `∆epn, k,χgq ´ e

r
wrn, ks

“ erpn, k ´ 1,χgq `∆epn, k,χgq ´ e
r
wrn, ks.

Two cases can be distinguished:

• If erpn, k´1,χgq`∆epn, k,χgq ď Brns, then erwrn, ks “ 0, as χg‘erw is realistic. Therefore:

fpn, k,χg, e
r
wq “ erpn, k ´ 1,χgq `∆epn, k,χgq.

In this case, from (A.5):

erpn, k,χgq “ erpn, k ´ 1,χgq `∆epn, k,χgq,

leading to: erpn, k,χgq “ fpn, k,χg, e
r
wq.

• If erpn, k´ 1,χgq`∆epn, k,χgq ą Brns, and from the de�nition of a realistic solution (A.9):

erwrn, ks “ erpn, k ´ 1,χgq `∆epn, k,χgq ´Brns, (A.15)

and:
fpn, k,χg, e

r
wq “ Brns. (A.16)

Moreover, from (A.5):
erpn, k,χgq “ Brns, (A.17)

and therefore: erpn, k,χgq “ fpn, k,χg, e
r
wq.

As erpn, 0,χgq “ fpn, 0,χg, e
r
wq “ errn, 0s by de�nition, it can be concluded by induction that for

all n P N and k P K, erpn, k,χgq “ fpn, k,χg, e
r
wq.

We now give the last proposition of this section, which allows us to conclude that solving (P1)
is equivalent to solving (P0).

Proposition 3. F0 “ Frχg “ Fχg .

Proof. For any χg P Frχg , the realistic solution χg ‘ e
r
w associated to χg is feasible by de�nition

of Frχg , i.e. χg ‘ e
r
w P Fr Ă F , and therefore χg P Fχg . Hence: Frχg Ă Fχg .

Let χg be an element of Fχg , and erw be its associated realistic energy waste vector. Because
χg P Fχg , there exists ew such that χg ‘ ew is feasible. Therefore, for all n P N and k P K:

fpn, k,χg, ewq ě brns,
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and from Proposition 1, for all n P N and k P K:

fpn, k,χg, e
r
wq ě fpn, k,χg, ewq ě brns, (A.18)

which means that χg ‘ erw checks the constraint pCF q. Moreover, as this point also checks the
constraints pCW q and pCSq by construction, then χg ‘ erw is feasible, and χg P Frχg . It can be
concluded that Fχg Ă Frχg . As we already seen that Frχg Ă Fχg , we �nally have Frχg “ Fχg .

Let χg be an element of F0, and erw its associated realistic vector. Then, because χg is feasible
for (P0) and from Proposition 2, then χg ‘ erw veri�es the condition pCF q. Moreover, as it also
checks the conditions pCW q and pCSq by construction, we have χg ‘ erw P Fr, and thus F0 Ă Frχg .
If we now choose χg P Frχg , then from Proposition 2, and because χg ‘ erw checks the constraint
pCF q, then χg is feasible for (P0), i.e. χg P F0. Hence, Frχg Ă F0. Therefore we have Frχg “ F0.
Finally, F0 “ Frχg “ Fχg .

The sets F0, Frχg , and Fχg are hence the same convex set. Because the utility function f0 only
depends on χg, for any optimal solution of (P1) denoted by χ˚g‘e

˚
w, χ

˚
g is also an optimal solution

of (P0). Moreover, as the utility function f0 is strictly convex, it admits a unique minimum on
F0 (“ Fχg “ Frχg ) [167], and all the optimal solutions χ˚g ‘ e

˚
w therefore share the same packet

generation rate vector χ˚g (which is an optimal solution of (P0)). It is therefore enough to solve
(P1) in order to solve (P0). The rest of this section is dedicated to the derivation of a distributed
algorithm in that purpose.

A.1.2 Decomposition of (P1)

To decompose (P1), each node n keeps a local copy of the packet generation rate of its predecessors,
denoted by cn, and (P1) is reformulated as follows:

minimize
χg,ew,tcnu

f0pχgq

subject to: ewrn, ks ě 0, n P N , k P K
gpn, k,χg, ew, cnq ď Brns, n P N , k P K
gpn, k,χg, ew, cnq ě brns, n P N , k P K
cnrm, ks “ χgrm, ks, n P N , k P K, m P Apnq

(P2)

where tcnu denotes the set of vectors tc1, . . . , cNu, and cnrm, ks is the local copy of the packet
generation rate of the node m at the time slot t` k stored by the node n for any m P Apnq, and g
is similar to f :

gpn, k,χg, ew, cnq :“ errn, 0s `
k
ÿ

i“1

∆epn, i,χgq ´
k
ÿ

i“1

ewrn, is. (A.19)

Let C be the convex set of feasible solutions of (P2), de�ned by:

C :“

"

pχg, ew, tcnuq | n P N , k P K, ewrn, ks ě 0,

gpn, k,χg, ew, cnq ď Brns, gpn, k,χg, ew, cnq ě brns

*

. (A.20)

The indicator function of C denoted by IC is de�ned by:

ICpχg, ew, tcnuq :“

#

0, if pχg, ew, tcnuq P C
8, otherwise

(A.21)

Using IC , (P2) can be reformulated as:

minimize
χg,ew,r,tcnu

f0pχgq ` ICpχg, ew, tcnuq

subject to: χgrm, ks “ cnrm, ks, n P N , k P K, m P Apnq
(P3)
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Algorithm 4 Original ADMM applied to (P4).

1: for i “ 1, . . . do
2: χi`1

g rrrnsss Ð arg minχg
Lρpχg, r

i, ei
w, tc

i
nu, tu

i
nu,v

iq

3: ri`1,wi`1, tci`1
n u Ð arg minr,w,tcnu

Lρpχ
i`1
g , r, ew, tcnu, tu

i
nu,v

iq

4: ui`1
n rms Ð ui

nrms ` χ
i`1
g rrrmsss ´ ci`1

n rms, m P Apnq, n P N
5: vi`1 Ð vi ` χi`1

g ´ ri`1

In order to make (P3) suitable for the ADMM, the variable χg is replicated by a variable r, and
(P3) is equivalent to:

minimize
χg,ew,r,tcnu

f0pχgq ` ICpr, ew, tcnuq

subject to: χgrm, ks “ cnrm, ks, n P N , k P K, m P Apnq

χgrn, ks “ rrn, ks, n P N , k P K

(P4)

The augmented Lagrangian of (P4) in the scaled form is:

Lρpχg, r, ew, tcnu, tunu,vq :“ f0pχgq ` ICpr, ew, tcnuq `
ρ

2

NN
ÿ

n“1

´

‖χgrrrnsss ´ rrns ` vrns‖22

`
ÿ

mPApnq

‖χgrrrmsss ´ cnrms ` unrms‖22
¯

, (A.22)

where ρ ą 0 is the penalty parameter, and v, u1, . . . ,uN are the scaled dual variables. For a
vector y, the notation yrns denotes the sub-vector pyrn, 1s, . . . , yrn,Ksqᵀ.

A.1.3 Derivation of a Distributed Algorithm

The original ADMM applied to (P4) consists of the iterations shown in Algorithm 4. In Algorithm 4,
yi denotes the value of the vector y at the ith iteration. One common way to measure how far the
iterates are from the optimal allocation is to de�ne the primal and dual residuals, respectively:

pi :“

ˆ

‘
NN
n“1‘mPApnq

`

χigrrrmsss ´ cinrms
˘

˙

‘
`

χig ´ ri
˘

, (A.23)

di :“ ρ

ˆ

‘
NN
n“1

`

cin ´ ci´1
n

˘

˙

‘
`

ei
w ´ ei´1

w

˘

‘
`

ri ´ ri´1
˘

, (A.24)

where ‘
N
n“1yi “ y1 ‘ y2 ¨ ¨ ¨ ‘ yN. It is proved that the utility value of the ADMM iterates

approaches the optimal value and that limiÑ8 pi “ limiÑ8 di “ 0 [165]. In [166], two fast ADMM
algorithms were proposed to enable quicker decay of these residuals compared to the original
ADMM. The �rst algorithm is proved to achieve the following rates:

‖pi‖22 ď Op
1

i2
q, (A.25)

‖di‖22 ď Op
1

i2
q, (A.26)

but requires both the objective functions to be strongly convex, which is not the case of (P4). The
second scheme introduced in [166] does not require strong convexity of the objective functions,
but does not guarantee any global convergence rate. This algorithm applied to (P4) is shown in
Algorithm 5. The fast ADMM is similar to the original ADMM, but introduces an acceleration
step (lines 8�13) which requires additional variables α, r̄, ēw, tc̄nu, tūnu, v̄. To enforce stability, a
"restart" rule is used (lines 15�21) which relies on a combined residual de�ned by Ci :“

ř

n C
i
n
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Algorithm 5 Fast ADMM for weakly convex problems applied to (P4).

1: for i “ 1, . . . do
2: χig Ð arg minχg

Lρpχg, r̄
i, ēw

i, tc̄n
iu, tūi

nu, v̄
iq

3: ri,wi, tcinu Ð arg minr,w,tcnu
Lρpχ

i`1
g , r, ew, tcnu, tū

i
nu, v̄

iq

4: ui
nrms Ð ūi

nrms ` χ
i
grrrmsss ´ cinrms, m P Apnq, n P N

5: vi Ð v̄i ` χig ´ ri

6: Compute the combined residual Ci

7: if Ci ă ηCi´1 then

8: αi`1 Ð
1`
?

1`pαiq2

2

9: r̄i`1 Ð ri ` αi´1
αi`1 pr

i ´ ri´1q

10: ēi`1
w Ð ei

w `
αi´1
αi`1 pe

i
w ´ ei´1

w q

11: c̄i`1
n Ð cin `

αi´1
αi`1 pc

i
n ´ ci´1

n q, n P N
12: ūi`1

n Ð ui
n `

αi´1
αi`1 pu

i
n ´ ui´1

n q, n P N
13: v̄i`1 Ð vi ` αi´1

αi`1 pv
i ´ vi´1q

14: else
15: Ci “ Ci´1

ρ

16: αi`1 Ð 1
17: r̄i`1 Ð ri´1

18: ēi`1
w Ð ei´1

w

19: c̄i`1
n Ð ci´1

n , n P N
20: ūi`1

n Ð ui´1
n , n P N

21: v̄i`1 Ð vi´1

that measures both the primal and dual residuals and where:

Cin :“
1

ρ

˜

‖ui
n ´ ūi

n‖
2
2 ` ‖v

irns ´ v̄irns‖22

¸

` ρ

˜

‖rirns ´ r̄irns‖22 ` ‖e
i
wrns ´ ēw

irns‖22 ` ‖c
i
n ´ c̄in‖

2
2

¸

. (A.27)

The "restart" rule throws up the most recent iteration and "restarts" the algorithm if the combined
residual has not decreased by a factor of at least η P p0, 1q. It is proved that limiÑ8 C

i “ 0 [166].
Indeed, each "restart" iteration, i.e. iteration that triggered a "restart", is followed by an original
ADMM iteration (αi “ 1), and it is proved that the original ADMM decreases the combined
residual monotonically [168]. Also, for each "accelerated" iteration, i.e. iteration with αi ą 1
and that did not triggered a "restart", the combined residual decreases by a factor of at least η.
Therefore, if the number of "accelerated" iterations is in�nite, it is clear that limiÑ8 C

i “ 0. In
the case that the number of "restart" iterations is �nite, then each pair of "restart" and original
ADMM iteration is equivalent to a single original ADMM iteration, for which convergence of the
combined residual is known.

Let us now look at how Algorithm 5 can be distributed. The �rst step (line 2) of an iteration
is to solve:

χig “ arg min
χg

Lρpχg, r̄
i, ēi

w, tc̄
i
nu, tū

i
nu, v̄

iq. (A.28)

If it is assumed that the vector pr̄, ēw, tc̄nuq P C, then (A.28) can be written as follows:

χig “ arg min
χg

#

f0pχgq `
ρ

2

NN
ÿ

n“1

´

‖χgrrrnsss ´ r̄irns ` v̄irns‖22 `
ÿ

mPSpnq

‖χgrrrnsss ´ c̄imrns ` ūi
mrns‖

2
2

¯

+

,

(A.29)
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Root: perform the stop
test and the "restart" test

Figure A.3 � Illustration of the combined residual calculation: each node n gathers the combined residuals
calculated by its one-hop predecessors, sums these values, add to the result its own local combined residual
Ci

n, and then sends the so-obtained value to its successor.

by noticing that:

NN
ÿ

n“1

ÿ

mPApnq

‖χgrrrmsss ´ c̄nrms ` ūnrms‖22 “
NN
ÿ

n“1

ÿ

mPSpnq

‖χgrrrnsss ´ c̄mrns ` ūmrns‖22. (A.30)

To solve this problem, each node computes:

χigrrrnsss “ arg min
χgrrrnsss

#

K
ÿ

k“1

logχgrn, ks `
ρ

2

ÿ

mPSpnq

‖χgrrrnsss ´ c̄imrns ` ūi
mrns‖

2
2

`
ρ

2
‖χgrrrnsss ´ r̄irns ` v̄irns‖22

+

. (A.31)

The second step (line 3) of an iteration is to solve:
»

—

—

—

–

ri

ei
w

tcinu

fi

ffi

ffi

ffi

fl

“ arg min
r,ew,tcnu

Lρpχ
i
g, r, ew, tcnu, tū

i
nu, v̄

iq, (A.32)

which can be done if each node computes:

minimize
rrns,ewrns,cn

#

‖χigrrrnsss ´ rrns ` v̄irns‖22 `
ÿ

mPApnq

‖χigrrrmsss ´ cnrms ` ūi
nrms‖

2
2

+

subject to: ewrn, ks ě 0, k P K
gpn, k, rrns, ewrns, cnq ď Brns, k P K
gpn, k, rrns, ewrns, cnq ě brns, k P K

(A.33)

The constraints of (A.33) guarantee that the global solution of this problem pri,wi, tcinuq P C, and
therefore ICpri, ei

w, tc
i
nuq “ 0. The third step of an iteration is to update the scaled dual variables

tunu and v (lines 4�5).
The next step is the calculation of the combined residual (line 6). In order to reduce the amount

of message passing, the combined residual is computed as illustrated in Figure A.3: each node n
gathers the combined residuals calculated by its one-hop predecessors, sums these values, add to
the result its own local combined residual Cin, and sends the so-obtained value:

Cin `
ÿ

mPApnq

Cim (A.34)

to its successor. By starting from the leaf nodes, the value thus calculated by the root node
corresponds to the global combined residual. Therefore, the root node performs the "restart" test
(line 7). If the "restart" test is passed, the root node broadcasts a "restart" instruction to all
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Algorithm 6 Executed by the node n at the end of each slot.

Init:α1 “ 1, r̄1 “ r0, w̄1 “ w0, c̄1n “ c0n, ū1
n “ u0

n, v̄1 “ v0

1: for i “ 1, . . . do
2: if Apnq ‰ H then
3: Send c̄in and ūi

n to all predecessors
4: if Spnq ‰ H then
5: Wait for all c̄im and ūi

m, m P Spnq

6: Compute χigrrrnsss by solving (A.31)
7: if Spnq ‰ H then
8: Send χigrrrnsss computed at previous step to all successors

9: if Apnq ‰ H then
10: Wait for all χigrrrmsss, m P Apnq

11: Compute rirns, wirns and cin by solving (A.33)
12: ui

nrms Ð ūi
nrms ` χ

i
grrrmsss ´ cinrms, m P Apnq

13: virns Ð v̄irns ` χigrrrnsss ´ rirns

14: Compute Cin according to (A.27)
15: Wait the residuals sent by the one-hop predecessors
16: Compute Cin `

ř

mPApnq C
i
m and send it to the successor

17: αi`1 Ð
1`
?

1`pαiq2

2

18: r̄i`1rns Ð rirns ` αi´1
αi`1 pr

irns ´ ri´1rnsq

19: w̄i`1rns Ð wirns ` αi´1
αi`1 pw

irns ´wi´1rnsq

20: c̄i`1rns Ð cirns ` αi´1
αi`1 pc

irns ´ ci´1rnsq

21: ūi`1rns Ð uirns ` αi´1
αi`1 pu

irns ´ ui´1rnsq

22: v̄i`1rns Ð virns ` αi´1
αi`1 pv

irns ´ vi´1rnsq
23: if Is root then
24: Ci “

řNN
n“1 C

i
n

25: if Ci ă ε then
26: Broadcast stop instruction
27: break
28: else if Ci ě ηCi´1 then

29: Ci “ Ci´1

ρ
30: Broadcast restart instruction for slot i
31: Restart(i)
32:

33: Set the packet generation rate to χgrn, 0s
34: Ź Executed if a restart instruction is received:
35: function Restart(i)
36: αi`1 Ð 1
37: r̄i`1rns Ð ri´1rns
38: w̄i`1rns Ð wi´1rns
39: c̄i`1

n Ð ci´1
n

40: ūi`1
n Ð ui´1

n

41: v̄i`1 Ð vi´1

42: Start iteration i` 1
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its predecessors, i.e. all the other nodes in the tree. As the combined residual converges to 0, a
reasonable stop criteria is Ci ă ε, where ε ą 0 is a parameter of the algorithm. The root node is
responsible for performing the stop test, as it is aware of the global combined residual. If the stop
test is passed, the root node broadcasts a "stop" instruction to all the other nodes in the tree, to
inform them that the algorithm has converged.

The complete algorithm executed by each node n at the end of each time slot is shown in
Algorithm 6. To solve (A.31) (line 6), each node n needs the values of cm and um of all its
successors m (lines 4�5), and therefore each node that is not a leaf of the routing tree sends its
values of cn and un to its predecessors (lines 2�3). This is done before solving the local problem, to
avoid stopping the predecessors from starting solving (A.31). Solving (A.33) (line 11) requires each
node n to have the newly computed packet generation rate values χgrrrmsss of its predecessors (lines 9�
10), and therefore each node sends its value of χgrrrnsss (lines 7�8) before starting solving (A.33).
The node n then performs the residual calculation step (lines 14�16), and the acceleration steps of
fast ADMM (lines 17�22). The root, which is the only node aware of the global combined residual,
performs the stop criteria (line 25�27) and, if the stop criteria is passed, it broadcasts the "stop"
instruction. In that case, each node n sets its packet generation rate to the value of χgrn, 0s just
calculated (line 33). The root also performed the "restart" test (line 28). If the "restart" test is
passed, the root broadcasts the "restart" instruction. The function Restart is used to perform
the "restart" operation. It is called synchronously by the root (line 31), or at the reception of a
"restart" instruction by the other nodes.

A.2 Performance Evaluation

A network made of 15 PowWow [99] nodes organized in a binary tree was simulated, the root
node having as a one-hop successor the sink. To simulate the harvested energy, indoor light energy
traces from [47] were used. These traces correspond to real measurements, and each node was
powered with a di�erent trace. All the nodes were equipped with a 0.9 F capacitance, with a
maximum voltage of 5.2V and a minimum voltage of 2.8V, and therefore Brns “ 12.168 J, n P N
and brns “ 3.528 J, n P N . Moreover, the energy costs CR and CL were set to 25 mJ and 15 mJ
respectively, and these values were used for all the nodes. The EM was executed every Ts “ 2
hours, and the prediction window was K “ 12, corresponding to 24 hours. The simulated time
was 10 days. ρ and η were set to the typical values of 1.0 and 0.999 respectively [166]. In order to
accelerate the convergence of the algorithm, warm starting was used, i.e. the allocation calculated
at the iteration i was used as the start point for the iteration i` 1.

Two performance metrics were considered: the average packet generation rate, and fairness
which was measured using Jain's fairness index de�ned as follows:

Jpχg, tq :“

´

řNN
n“1 χgrn, ts

¯2

N
řNN
n“1 χgrn, ts

2
. (A.35)

The Jain's fairness index ranges from 1
N to 1, this latter value corresponding to all the nodes having

the same packet generation rate. The proposed algorithm was evaluated for di�erent values of ε in
the range r0.1, 3.0s. Moreover, (P1) was also solved by a regular solver and the so-obtained optimal
solution serves as a reference for comparison. For all the simulation runs, no power failure was
observed.

The proposed algorithm was evaluated using both perfect predictions, referred to as the "oracle
case", and the predictor from [8], referred to as "predictor case". Results are presented in Fig-
ure A.4. Figure A.4a and Figure A.4b show the cumulative relative error between the utility value
(f0) obtained by the proposed algorithm and the optimal utility for each time slot, for the predictor
case and the oracle case respectively. As expected, the higher is ε, the higher is the relative error
and therefore the less accurate is the allocation computed by the proposed scheme compared to
the optimal solution. Moreover, it can be seen that the relative error is signi�cantly higher in the
predictor case than in the oracle case.

The average packet generation rate as a function of ε is shown for in Figure A.4c for the predictor
case and in Figure A.4d for the oracle case. It can be seen that the average packet generation rate
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(a) Predictor case: utility value.

0 20 40 60 80 100 120
Time slots

0

10

20

30

40

50

Cu
m

ul
at

iv
e 

ut
ilit

y 
re

la
tiv

e 
er

ro
r

=  0.1
=  0.5
=  1.0
=  3.0

(b) Oracle case: utility value.
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(c) Predictor case: packet generation rate.
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(d) Oracle case: packet generation rate.
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(e) Predictor case: Jain's fairness.
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(f) Oracle case: Jain's fairness.
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(g) Predictor case: iteration count.
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(h) Oracle case: iteration count.

Figure A.4 � Performance evaluation with the predictor from [8] and an oracle giving perfect predictions.
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achieved in the oracle case and predictor case are very similar, as the di�erence between the optimal
packet generation rate for the predictor case and the optimal packet generation rate for the oracle
case is 2%. Moreover, in both cases, increasing ε leads to lower average packet generation rate.
However, in the oracle case, the performance decay is less strong than in the predictor case.

Regarding Jain's fairness (Figure A.4e and Figure A.4f), in both the oracle and the predictor
case, the optimal Jain's fairness is not 1. Indeed, nodes that harvest more energy will have a higher
throughput as long as it is fair to the other nodes giving the amount of energy that they harvest.
Therefore, a Jain's fairness of 1, corresponding to all the nodes having the same packet generation
rate, is generally not optimal. The achieved Jain's fairness is however close to 1, which indicates
that the nodes have similar packet generation rates. Similarly to the results obtained for the packet
generation rate, the fairness obtained in the predictor case and in the oracle case are very similar.
Moreover, increasing ε does not lead to signi�cantly worse fairness in both cases, as it stays within
a 0.5% range of the optimal Jain's fairness.

If increasing ε leads to less accurate solutions, it signi�cantly decreases the overhead of the EM.
Indeed, on constrained systems such as WSNs, the overhead incurred by the EM is not negligible.
As shown in Figure A.4g and FigureA.4h, increasing ε signi�cantly reduces the number of iterations
required by the proposed algorithm. Moreover, it can be seen that the number of iterations required
in the oracle case is signi�cantly lower than the number of iterations required in the predictor
case. This might be because using the oracle (perfect prediction), the predicted harvested energy
does not change signi�cantly from one iteration to the other, while using a predictor, the predicted
harvested energy can change signi�cantly from one iteration to the other, making the warm starting
less e�cient.

A.3 Conclusion

In this appendix, a distributed algorithm for fair packet generation rate assignment targeting multi-
hop EH-WSNs was proposed. In EH-WSNs, each node both performs measurements to produce
data to be sent to a sink, and relays data packets from other nodes. The packet rate assignment
problem was formulated as a convex optimization problem, and using the fast ADMM, the original
problem was decomposed into smaller subproblems that can be solved in parallel. Simulations
using real indoor light energy traces showed that the results obtained using a state of the art
predictor are similar to the ones obtained using perfect predictions. Moreover, simulations showed
that the algorithm enables packet generation rates and fairness close to the optimal, even with a
low number of iterations. Also, by setting the stop criteria parameter, a compromise can be set
between the accuracy of the solution and the computational overhead incurred by the algorithm.
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Appendix B

Long-Short range Communication

with LoRaTMand Wake-up Receivers

The most widely-used communication scheme for WSNs is the IEEE 802.15.4 standard, which
provides both physical layer and MAC layer speci�cations. This standard enables low-cost and low
power transceivers, but su�ers from a range of only a few tens of meters. In recent years, a handful
of wireless technologies enabling Long Range (LR) communication of several kilometers with power
consumption similar to usual WSN nodes transceivers [169] have emerged. An example of such a
technology in use is LoRaTM [170], by the LoRaTMAlliance. LoRaTMoperates in the 868{915MHz
ISM bands, allows a theoretical range up to a few tens of kilometers, and a bit rate in the range
between 0.37 and 46.9kbps [171]. Using LoRaTM, uplink communication, i.e. from the nodes to the
gateway, is done with low latency, as the gateway is always listening to the channel. On the other
hand, downlink communication, i.e. from the gateway to the nodes, requires a trade-o� between
the latency and the power consumption of the nodes [172]. However, some applications, such as
industrial machine health monitoring, require both low latency and low power consumption [173],
which motivates the network architecture proposed in this chapter.

As one can notice, WuRx and LoRaTMprovide orthogonal features that are often required
together in WSNs applications. Moreover, many application scenarios are comprised by many
nodes clustered in short range areas, but with the need to communicate with remote hosts which
can be several kilometers apart. In this chapter, we propose to combine the LoRaTMcommunication
scheme with ULP WuRx in a network architecture [174, 175], which exploits radio diversity to
achieve energy e�ciency and low latency in both uplink and downlink communications. The nodes
that form the network embed a communication module that is able to handle LoRaTMas well
as the well-known Gaussian Frequency-Shift Keying (GFSK) and OOK modulation schemes, in
combination with WuRx. The proposed network architecture achieves uplink communication by
using only the LoRaTMscheme, while downlink communication is done using the LoRaTMstack to
transmit the message to one of the sensors nodes designated as the Cluster Head (CH), which
then forwards the message to the addressee nodes by �rst waking them up using their WuRx,
and then transmitting the message using standard GFSK modulation. WuCs are sent using OOK
modulation. The LoRaTMcommunication protocol has been analytically modeled as well as the
proposed approach to evaluate the power consumption and latency. The designed architecture
was experimentally evaluated in terms of power consumption and latency, and results show that
the proposed scheme removes the required trade-o� between power consumption and latency. The
main contributions of this work are:

• A network architecture allowing low power and low latency LR communications,

• Experimental evaluation of the proposed architecture on a new platform that embeds both
a LoRaTMtransceiver and a WuRx,

• Analytical comparisons of the power consumption and latency of the proposed architecture
to LoRaTMstandard schemes.

The rest of this chapter is organized as follows: Section B.1 presents the related work. Sec-
tion B.2 exposes the proposed network architecture, as well as the MAC layer. In Section B.3, an
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analytical model is derived to compare the power consumption and latency of the proposed scheme
to the standard LoRaTM approaches. Section B.4 presents the experimental setup and the power
consumption and sensitivity measurement results of the LoRaTMscheme. Section B.5 shows results
of analytical comparisons between standard LoRaTMschemes and the proposed architecture, and
�nally, Section B.6 concludes this chapter.

B.1 Related Work

B.1.1 Long-Range Communication Schemes

LR communication schemes can be grouped according to the spectrum use, i.e. Ultra Narrow
Band (UNB) techniques, which aim to minimize the bandwidth to increase the sensitivity, or
spread spectrum schemes, which take advantage of spectral diversity.

The physical layer developed and patented by the French company SigFox achieves UNB by
broadcasting binary data using Binary Phase-Shift Keying (BPSK) modulation at very low bitrate
(100 bps), on a much larger band, typically 192 kHz in the 868 MHz or 915 MHz band. Frequency
hopping inside the band is supported to improve reliability, and medium access is done using a
modi�ed Aloha scheme, where nodes randomly access to the channel both in time and frequency
domain.

Another narrow band physical layer is proposed by Weightless, an organization which aims to
provide wireless standards for internet of things networks. Multiple standards, targeting di�er-
ent use cases, are proposed. The Weightless-N standard, based on Di�erential Binary Phase-Shift
Keying (DBPSK) modulation, is unidirectional and allows a range of 5km. Similarly to SigFox, fre-
quency hopping is used to counteract interference and fading. The Weightless-P standards is based
on the Weightless-N standard, but enables bidirectional communication and acknowledgement. It
uses Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA)
to scale to a large number of devices, but reduces the range to 2 km in urban environment. The
last proposed standard, Weightless-W is not narrow band, but is a spread spectrum scheme. It
operates in TV white space spectrum, and uses variable modulation modes coupled with spreading
codes, to enable 5 km range and bidirectional communication.

The scheme proposed by Ingenu di�ers from the other long-range communication methods as it
operates in the 2.4GHz ISM band. It is a spread spectrum technique, called Random Phase Multiple
Access (RPMA), that enables a range of 10km, using a typical channel bandwidth of 1MHz. Both
uplink and downlink transmission are allowed, and performed in a half-duplex way with a downlink
period of 2 s, followed by an uplink period of 2 s. The spreading factor is dynamically adapted
based on the received power.

Another spread spectrum technique for LR communication was patented by Cycléo, and is
based on Chirp Spread Spectrum (CSS). Named LoRaTM, this physical layer operates in the
868 MHz or 915 MHz ISM bands, and enables a range up to a few tens of kilometers. In the
LoRaTMnetwork architecture [172], all WSN nodes communicate directly with the gateway, which
serves as a bridge between the nodes and a network server. The gateway is always active listening
to the channel, while three types of classes are de�ned for end-devices: A, B and C. Class A is
the lowest power consuming class, as nodes only leave the sleep state to send their data. Each
uplink transmission is followed by two short downlink receive windows. Class B devices open
additional receive windows at scheduled time in addition to class A receive windows, and time
synchronized beacons from the gateway are used to allow the gateway to know when devices are
listening. Finally, class C devices are continuously listening, except when they are transmitting.
Therefore, using the LoRaTMnetwork architecture, a trade-o� must be made between latency and
energy consumption for downlink communications.

B.1.2 Heterogeneous Communication Networks

As many devices embed more than one radio module, exploiting radio diversity was previously
proposed to reduce energy consumption and latency for opportunistic networking [176]. The main
idea is to use a low power radio combined with a high power radio. It is expected that using
two radio modules instead of one account for higher energy expense, but exploiting the low power
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radio to save power on the high power radio can ultimately reduce power consumption of the whole
system. Some combinations of low power radio (typically Bluetooth or Zigbee) and high power
radio (typically Wi-Fi or cellular) were previously proposed [177�179].

In many devices such as smartphones, the low power radio is a Bluetooth or Zigbee module,
while the high power radio is a Wi-Fi or cellular module. Pering et al. [177] proposed to use a low
level radio to discover, con�gure and activate a high level radio link when a connection is needed.
The authors experimented on a platform that provides Bluetooth, Zigbee and Wi-Fi, and revealed
that the lower power consumption is achieved by employing Zigbee and Wi-Fi. However, using
Bluetooth and Zigbee as a low power radio is still too energy costly for WSN applications, which
is the focus of this work. Moreover, neither Bluetooth, Zigbee nor Wi-Fi allow kilometer-range
communication. Other proposals combining Wi-Fi and Zigbee for power saving purpose are present
in literature [178,179]. Di�erently from these previous works, we are using a single transceiver that
is dynamically con�gured to work in combination with LoRaTMfor the LR, and WuRx for the Short
Range (SR).

To the best of our knowledge, the closest work to ours is [180]. The authors proposed the Open-
Mote+ platform, targeting industrial applications, which combines three communication modules:
one for LR (kilometers-range) communication, one for hundreds of meters communication, and one
for contact-based communication. Each module is implemented by a speci�c hardware chip. LR
communication is implemented by the Sub-GHz EZRadioPRO radio transceiver, which provides a
sensitivity of ´133dBm and a transmission power up to 20dBm. In addition to this radio interface,
a low-energy Atmel AT86RF233 is present. This transceiver operates in the 2.4 GHz band, and
supports IEEE 802.15.4 standards. Finally, contact-based communication is implemented by the
NXP NT3H1201 chip, which operates in the 13.56 MHz band and supports the Near Field Com-
munication (NFC) standard. However, contrary to our proposal, no WuRx is used to eliminate
idle listening and perform purely asynchronous communication for SR communications. In this
work, we propose to combine the LoRaTMcommunication scheme, able to achieve kilometer-range
communication, with WuRx, which enable SR distant wake-up of the nodes with no signi�cant
power consumption increase, and low downlink latency. This work emphasizes on the network
architecture and the MAC protocols.

B.2 Long-Short Range Network Architecture

B.2.1 Communication Module Architecture

This work addresses the use of heterogeneous radio systems to enhance energy and latency of LR
communications. The block diagram of the proposed WSN node is illustrated in Figure B.1. Each
node embeds a MCU, sensors, actuators, an energy storage device and a communication module.
The communication stack allows both LR and SR communications.

LR communication relies on the LoRaTMphysical layer, which can recover data from weak
signal, even under the noise level. SR communications relies on GFSK and OOK modulations.

Figure B.1 � Long-Short range node architecture.
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Figure B.2 � Cluster-based network architecture for Long-Short range communication.

GFSK modulation is compatible with IEEE 802.15.4 frame allowing bit rate up to 300 kbps, while
OOK modulation is used to wake up the WuRx devices. Indeed, each WSN node is equipped with
a WuRx, which receives data with OOK modulation. Typically, the WuRx is continuously listening
to the wireless medium while the main transceivers (i.e. LoRaTMand GFSK) are in a power saving
state. Moreover, the WuRx embeds address matching features, which allows a node to wake up
only a speci�c subset of its neighbors.

B.2.2 Cluster-Based Network Architecture

In the proposed network architecture, WSN nodes are organized in clusters as shown in Figure B.2.
A gateway, located at a large distance (few kilometers) from the clusters, collects the sensed data,
and sends commands to the nodes, e.g. to activate actuators or to set sensing parameters. Each
cluster is organized in a star topology network composed of long-short range nodes introduced
previously. In a cluster, a CH is in charge of bidirectional LR communications with the gateway
and of SR communications with the other nodes of the clusters, referred to as End Devices (EDs).
The EDs are distributed in a range of a few tens of meters around the CH.

The gateway is assumed to have no energy constrains, and therefore operates in LoRaTMclass C.
The CHs operate in class B or C according to their energy constrains and the application require-
ments. EDs are energetically constrained, and therefore spend most of their time in the sleep state.
EDs only wake up when an interrupt occurs. This interrupt can be triggered on a timer expiration,
e.g. to perform periodic sensing or action, or on an event from the environment detected by an
embedded sensor. These interrupts may lead to the sending of a data message intended for the
gateway. To this aim, the EDs directly send the data to the gateway using LR communication, as
shown in Figure B.2. For the EDs, LoRaTMclass A is used to send the data.

Another kind of interrupts that can wake up the EDs is the reception of a WuC detected by
the WuRx. Indeed, as each ED is equipped with a WuRx, the CH can wake up one or more EDs
by sending WuCs. This interrupt occurs in the "data request" scenario when the gateway �rst
sends a command attended to one or more EDs and the EDs transmit in a second step data to the
gateway in response to the command. This scenario will be experimented in the following as it leads
to interesting performance gains (both energy and latency) compared to LR-only communication
schemes.

In this scenario, the gateway �rst transmits the command to the CHs using standard LoRaTMcommunication
schemes, the CH being in class B or C. Then, the CHs forwards the command to the addressee
EDs, by waking up the addressee EDs by sending a WuC to their WuRx. Finally, the EDs sends
the requested data to the gateway using the standard LoRaTMapproach. Hence, direct LR com-
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Figure B.3 � Long-Short range MAC protocol using WuRx.

munication is unidirectional between the EDs and the gateway (EDÑ gateway), and bidirectional
between the gateway and the CH. The protocol dedicated to this scenario is detailed in the next
section.

B.2.3 MAC Layer Design

The protocol that addresses the "data request" scenario is illustrated in Figure B.3. The gateway
�rst sends the command (Cmd) to the CH of the addressee cluster. Once the command is received,
the CH wakes up the ED by sending a 2 bytes long WuC, using OOK modulation. The WuC
consists of a 1 byte preamble, and a 1 byte address, corresponding to the address of the addressee
ED. To handle the broadcasting use case, one address is reserved for broadcasting. All the ED
WuRx receive the WuC sent by the CH, but as the WuRx performs address matching, only the
addressee ED is awaken. The addressee ED then switches-on its main transceiver to receive the
data frame. As the data frame may be signi�cantly larger than the WuC, GFSK modulation is
used as well as the standard IEEE 802.15.4 packet frame structure which provides error detection
using Cyclic Redundancy Check (CRC) code. Finally, the ED sends its requested data (Data) to
the gateway using LoRaTMclass A. The transmission is followed by two short receive windows (not
shown on the �gure).

To ensure good SR transmission, an ACK frame can be sent by the addressee ED to the CH
to indicate the successful reception of the data frame. If a transmission error occurs, e.g. due to
interferences, a new transmission attempt is initiated after a random backo�.

While with the standard LoRaTMscheme a trade-o� must be made between latency and power
consumption, the proposed architecture combined with the proposed MAC protocol allows bidirec-
tional low latency and energy e�cient communications in heterogeneous long-short range networks.
This is achieved by organizing the EDs around a CH in a star network topology, and exploiting
WuRx to allow pure-asynchronous communications between the CH and the EDs. Using this ap-
proach, the EDs do not have to periodically (class B) or continuously (class C) listen to the channel
to receive data from the gateway, and no trade-o� must be made between power consumption and
latency as with the standard LoRaTMscheme.

B.3 Power Consumption and Latency Analytical Models

Analytical models of the power consumption incurred by the downlink transmission of the EDs
are derived in this section, as well as analytical models of the packet reception latency. First, the
models of the LoRaTMapproaches are presented. Then, the models of the WuRx-based approach
proposed in this work are exposed.
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B.3.1 Models of LoRaTMCommunication Schemes

The average rate at which commands are sent by the gateway to EDs is denoted λCMD. As
previously explained, LoRaTMproposes three operating modes for the EDs, called class A, B and C.
Using the class A operating mode, commands from the gateway can only be transmitted to an ED
after an uplink transmission, and the average power consumption of an ED incurred by downlink
communication, denoted PLAC , is therefore:

PLAC “ eLCMDλCMD, with λCMD ď λSND, (B.1)

where eLCMD is the energy cost to receive a command using LoRaTMand λSND is the packet
transmission rate of EDs. At each command transmission, the gateway waits for the ED to perform
an uplink transmission before sending a command. In average, the waiting time is 1

2λSND
seconds,

and the average latency of the command transmission, denoted LLA is thus:

LLA “
1

2λSND
` lLCMD, (B.2)

where lLCMD is the time required for the command transmission using LoRaTM.
Using the class B operating mode, each ED periodically opens receive windows, called ping

slots, at a rate λPING. If no preamble is detected during a ping slot, the ED immediately returns
to sleep. If a preamble is detected the radio transceiver stays on until the frame is demodulated.
The gateway provides time reference to the EDs by periodically broadcasting beacon, at a rate
λBCN . The average power consumption incurred by downlink communication of an ED using this
operating scheme is thus:

PLBC “ λBCNeBCN ` pλPING ´ λCMDq ePING ` λCMDe
L
CMD, (B.3)

where eBCN is the cost of receiving a synchronization beacon and ePING is the cost of opening
a receiving window that leads to no preamble detection. The gateway has to wait in average

1
2λPING

seconds for the ED to open a ping slot, and the average latency of command transmission
is thus:

LLB “
1

2λPING
` lLCMD. (B.4)

The class C option is designed for EDs with su�cient available power. Using this operating
mode, EDs are always listening to the channel, except when they are transmitting. Therefore, the
average power consumption of an ED incurred by the downlink transmission is:

PLCC “ p1´ λSNDlSNDqPC,RX , (B.5)

where PC,RX is the power consumption of the transceiver when receiving, and lSND is the time
required to send a periodic uplink packet. The latency of a downlink transmission using class C
operating mode is only due to the packet transmission duration:

LLC “ lLCMD. (B.6)

B.3.2 Models of LoRaTM-WuRx Communication Scheme

The ED power consumption incurred by the proposed approach for receiving packets from the
gateway is:

PWuRx
C “ λCMDe

W
CMD ` p1´ λCMDlWuCqPWuRx, (B.7)

where eWCMD is the energy cost of receiving a packet using the SR MAC approach presented in the
previous section, lWuC is the transmission time of a WuC, and PWuRx is the power consumption of
the WuRx when only the analog font-end is active listening to the channel, while the ULP MCU is
in the sleep state. Assuming that the CH uses the class C operating mode, the latency of a packet
reception is:

LW “ lLCMD ` l
W
CMD, (B.8)

where the �rst term is the latency of the packet transmission from the gateway to the CH, while
the second term is the time required for a packet transmission using SR MAC approach presented
in the previous section.
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B.4 Experimental Measurements

This section presents power consumption and sensitivity measurements. First, the experimental
setup is exposed. Then, the measurements results are given.

B.4.1 Experimental Setup

Main transceiver
LoRa/GFSK/OOK

(SX1276)

ULP WuRx
Always on

ULP MCU
PIC

MCU
(MSP430)

Sensors
&

Actuators

Bidirectional data
(SPI, I2C...)

Interrupts

(a) Block diagram of the prototype.

(b) Picture of the prototype.

Figure B.4 � Prototype used for experimentations, developed by the Swiss Federal Institute of Technology
in Zurich.

A prototype developed by the Swiss Federal Institute of Technology in Zurich and shown in
Figure B.4, was used for experimentations. It includes a Texas Instrument MSP430FR5969 MCU,
the WuRx from [2], multiple sensors and a Semtech SX1276 transceiver, was used to evaluate the
proposed architecture. The transceiver SX1276 from Semtech provides GFSK and OOK modula-
tions, as well as the LoRaTMphysical layer. Moreover, it allows switching between the di�erent
modulation schemes, enabling coexistence between di�erent modulation approaches. LoRaTM re-
lies on CSS modulation [181], where a chirp is a sinusoidal waveform whose frequency varies with
time. SF is the spreading factor which takes value in the range between 6 and 12.

The spreading factor (SF ), bandwidth (B), coding rate (CR) and transmission power (PTx)
are critical parameters that control the trade-o� between energy consumption and the immunity
to interference in LoRaTMcommunications. The CR parameter corresponds to the additional
data overhead ratio incurred by the cyclic error coding to perform forward error detection and
correction, and takes value in the range between 4

8 . . .
4
5 . Using LoRaTM, the bit rate denoted Rb

can be calculated as follows [171]:

Rb “ SF
B

2SF
. (B.9)
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SH SD SL

CR 4
5

4
5

4
8

B (kHz) 500 125 125

SF 6 7 12

Rb (kbps) 46.9 6.84 0.367

Table B.1 � Setups use for LoRaTM energy measurement.
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Figure B.5 � LoRaTMexperimental evaluations.

Because the space de�ned by these four parameters is large, 3 setups corresponding respectively
to the highest bit rate setup (SH), the LoRaTMdefault setup (SD) and the lowest bit rate setup
(SL) were considered in this work. Table B.1 details the parameter values used for each setup.

In addition to the SX1276 transceiver, each WSN node is equipped with an instance of the
WuRx designed in [2]. Finally, the platform embeds the ultra low-power TI MSP430FR5969
micro-controller that is connected with the sensors, the actuators and the communication module.
The micro-controller executes data collection from sensors and sending data or commands with the
SX1276 module (using LoRaTMor OOK modulation).
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B.4.2 Measurements Results

Figure B.5a exposes the energy required for sending a 14 bytes payload using each setup and for
di�erent transmission powers PTx. As it can be seen, the energy required to send a packet using
the SL setup is two orders of magnitude higher than the energy required to send a packet using
the SH setup. This is due to the much lower bit rate incurred by the lower bandwidth and the
higher spreading factor, as well as the data overhead caused by a higher code rate. However, if
increasing the throughput reduces both the latency and the consumed energy, it also signi�cantly
decreases the communication range as shown in Figure B.5b. This �gure shows the packet error
rate achieved for di�erent received powers, and the sensitivity is estimated for a packet error rate
of 0%. A theoretical range was computed using the log-normal shadowing propagation model with
a path loss exponent of 3 and a power transmission of 0 dBm. These measurements were done
using two nodes connected by a variable attenuator, and radio-frequency leakages were canceled by
isolating one node in an anechoic chamber. The measured sensitivities show a 13 dBm di�erence
between the SL and SD setups and a 7 dBm di�erence between the SD and SH setups. As it
can be seen, the range is strongly impacted by the used setup, as using the SL setup theoretically
improves the range by a factor of 5.8 compared to the SH setup. Therefore, the SR, B and CR
parameters must be chosen very carefully to ful�ll the application requirements in terms of range
and energy consumption.

Figure B.6 shows the power consumption of the gateway, CH and ED when using the pro-
posed scheme. In this example, the CH is operating in class C. These measurements were obtained
using an Agilent N6705 DC analyzer. The di�erent stages of the proposed MAC protocol, de-
tailed in Section B.2.3, can be seen here, as well as the two receiving windows required by the
class A LoRaTMscheme. Moreover, the hardware and software overhead can also be seen, between
two frame transmissions/receptions. These measurements were used to compute the energy costs
needed by the analytical model.

B.5 Analytical Comparison

The communication scheme proposed in this work for transmitting commands from the gateway to
the EDs was analytically compared to the standard LoRaTMapproaches by including experimental
measurements in the models presented in Section B.3. The three setups introduced in the previous
section (SL, SD and SH) were considered. Energy values were calculated using power consumption
measurements and by taking into account the physical layer and MAC layer overheads of LoRaTM,
and the default value of λBCN was used [172].

Figure B.7 shows the power consumption and the latency of an ED node operating using the
di�erent evaluated schemes. The LoRaTMclass B was evaluated for values of λPING ranging from
0.1 to 33 Hz, and, when evaluating the proposed approach, the CH node was assumed to operate
in class C. The size of the LoRaTMframe was set to 14 bytes, λCMD to 1

90 Hz, λBCN to 1
128 Hz,

and λSND to 1
10 Hz. It can be seen that using LoRaTM, a trade-o� between power consumption

and latency is required. Indeed, the class A allows very low power consumption, but at the cost of
high latency as the gateway can send commands to an ED only after an uplink transmission. On
the other hand, if the ED operates in class C, downlink communications are performed with low
latency, as the node is always listening to the channel, but at the cost of high power consumption
preventing long-term applications. The class B allows a trade-o� between these two extremes, by
taking advantage of the well-known duty-cycled approach. When operating in class B, the ED
periodically wakes up to listen to the channel, and the trade-o� between power consumption and
latency is set using the λPING parameter. The WuRx-based approach proposed in this work, which
combines SR and LR communications, achieves a latency close to the one of the classC mode, while
incurring a low power consumption. The proposed approach requires the use of an extra hardware
device, the WuRx, which power consumption is negligible as it is 1.83µW in always-on listening
mode. Hence, no more trade-o� is required for downlink communication, as it is the case with
standard LoRaTMapproaches.
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Figure B.6 � Microbenchmarks showing the "data request" scenario. The SD setup is used.

B.6 Conclusion

This chapter presents a new network architecture exploiting radio diversity by combining LoRaTMand
wake-up receivers. Using LoRaTM, a trade-o� between latency and power consumption for packet
transmission from the gateway to the nodes must be made. Therefore, it does not suit applications
that require low latency and low power consumption in short range. We proposed in this chapter
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to combine LoRaTMwith WuRx, which enables pure-asynchronous communication, and eliminates
idle listening, but operates in the range of tens of meters. The proposed network architecture
combines these two schemes for applications where sensor and actuator nodes are deployed in a
small range area, but need to communicate with a distant gateway, to which they send data and
from which they receive commands. To this aim, nodes must be organized in clusters with a cen-
tral node in charge of bidirectional long range communications with the gateway and short range
communications with sensor and actuator nodes.

The long-short range architecture is validated with an hybrid approach that combines analyti-
cal models with experimental measurements. A dedicated platform that embeds both LoRaTMand
WuRx technologies has been prototyped for the experiments. Experimental and analytical com-
parison showed the bene�ts of the proposed scheme, as it removes the trade-o� between power
consumption and latency.
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