Méthodes numériques pour la résolution d'EDP sur des surfaces. Application dans l'embryogenèse - Archive ouverte HAL
Thèse Année : 2016

Numerical methods for the resolution of surface PDE.Application to embryogenesis

Méthodes numériques pour la résolution d'EDP sur des surfaces. Application dans l'embryogenèse

Résumé

We develop a novel finite element approach for linear elasticity or Stokes-type PDEs set on a closed surface of mathbb{R} 3. The surface we consider is described as the zero of a sufficiently smooth level-set function. The problem can be written as the minimisation of an energy function over a constrained velocity field. Constraints areof two different types: (i) the velocity field is tangential to the surface, (ii) the surface is inextensible. This second constraint is equivalent to surface incompressibility of the velocity field. We address thisproblem in two different ways: a penalty method and a mixed method involving two Lagrange multipliers. This latter method allows us to solve the limiting case of incompressible surface flow, for which we present a novel theoretical and numerical analysis. Error estimates for the discrete solution are given andnumerical tests shows the optimality of the estimates. For this purpose, several approaches for the numerical computation of the normal and curvature of the surface are proposed. The implementation relies on the Rheolef open-source finite element library. We present numerical simulations for a biological application: the morphogenesis of Drosophila embryos, duringwhich tangential flows of a cell monolayer take place with a low surface-area variation. This phenomenon is known as germ-band extension.
Nous développons une nouvelle approche éléments finis pour des équations aux dérivées partielles elliptiques de type élasticité linéaire ou Stokes sur une surface fermée de R3. La surface considérée est décrite par le zéro d'une fonction de niveau assez régulière. Le problème se ramène à la minimisation d'une fonctionnelle énergie pour le champ de vitesse sous contraintes. Les contraintes sont de deux types : (i) la vitesse est tangentielle à la surface, (ii) la surface est inextensible. Cette deuxième contrainte équivaut à l'incompressibilité surfacique du champ de vitesse. Nous abordons ce problème de deux façons : la pénalisation et l'introduction de deux multiplicateurs de Lagrange. Cette dernière méthode a l'avantage de traiter le cas de la limite incompressible d'un écoulement en surface dont nous présentons pour la première fois l'analyse théorique et numérique. Nous montrons des estimations d'erreurs sur la solution discrète et les tests numériques confirment l'optimalité des ces estimations. Pour cela, nous proposons plusieurs approches pour le calcul numérique de la normale et la courbure de la surface. L'implémentation utilise la librairie libre d'éléments finis Rheolef. Nous présentons aussi des résultats de simulations numériques pour une application en biologie : la morphogenèse de l'embryon de la drosophile, durant laquelle des déformations tangentielles d'une monocouche de cellules avec une faible variation d'aire. Ce phénomène est connu sous le nom de l'extension de la bande germinale.
Fichier principal
Vignette du fichier
DICKO_2016_archivage.pdf (6.82 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01679260 , version 1 (09-01-2018)

Identifiants

  • HAL Id : tel-01679260 , version 1

Citer

Mahamar Dicko. Méthodes numériques pour la résolution d'EDP sur des surfaces. Application dans l'embryogenèse. Mathématiques générales [math.GM]. Université Grenoble Alpes, 2016. Français. ⟨NNT : 2016GREAM024⟩. ⟨tel-01679260⟩
434 Consultations
999 Téléchargements

Partager

More