
HAL Id: tel-01676983
https://hal.science/tel-01676983v1

Submitted on 7 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cyclic operads: syntactic, algebraic and categorified
aspects

Jovana Obradovic

To cite this version:
Jovana Obradovic. Cyclic operads: syntactic, algebraic and categorified aspects. Category Theory
[math.CT]. Université Paris Diderot - Paris 7 - Sorbonne Paris Cité, 2017. English. �NNT : �. �tel-
01676983�

https://hal.science/tel-01676983v1
https://hal.archives-ouvertes.fr

Université Paris Diderot – Paris VII

Sorbonne Paris Cité

École Doctorale des Sciences Mathématiques de Paris Centre

THÈSE
en vue d’obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS DIDEROT

en Informatique Fondamentale

Cyclic operads: syntactic, algebraic and
categorified aspects

Présentée et soutenue par

Jovana Obradović

le 1 septembre 2017

devant le jury composé de:

Pierre-Louis CURIEN Directeur de thèse CNRS, Université Paris Diderot, Paris 7
Marcelo FIORE Rapporteur University of Cambridge
Joachim KOCK Rapporteur Universitat Autònoma de Barcelona

Muriel LIVERNET Présidente Université Paris Diderot, Paris 7

Paul-André MELLIÈS Examinateur CNRS, Université Paris Diderot, Paris 7

Zoran PETRIĆ Examinateur Mathematical Institute, SASA
Tarmo UUSTALU Examinateur Tallinn University of Technology

http://www.univ-paris-diderot.fr/sc/site.php?bc=accueil&np=accueil

iii

Université Paris Diderot – Paris VII

Sorbonne Paris Cité

École Doctorale des Sciences Mathématiques de Paris Centre

Résumé

Opérades cycliques : aspects syntaxiques, algébriques et catégorifiés

par Jovana Obradović

Dans cette thèse, nous examinons différents cadres pour la théorie générale des opérades cy-
cliques de Getzler et Kapranov. Comme le suggère le titre, nous établissons des fondements
théoriques de natures syntaxiques, algébriques et catégorifiées pour la notion d’opérade cy-
clique.

Dans le traitement syntaxique, nous proposons un langage formel à la manière du λ-calcul,
appelé µ-syntaxe, en tant que représentation légère de la structure ≪ entries-only ≫ d’opérades
cycliques. Contrairement à la caractérisation originale des opérades cycliques, appelée la car-
actérisation ≪ exchangeable-output ≫ , selon laquelle les opérations d’une opérade cyclique ont
des entrées et une sortie qui peut être ≪ échangée ≫ avec une entrée, les opérades cycliques
≪ entries-only ≫ sont présentées comme des généralisations d’opérades pour lesquelles une
opération n’a plus des entrées et une sortie, mais seulement des entrées (c’est-à-dire pour les-
quelles la sortie est ≪au même niveau≫ que les entrées). Grâce aux méthodes de réécriture
derrière le formalisme, nous donnons une preuve pas-à-pas complète de l’équivalence entre les
définitions biaisées et non biaisées des opérades cycliques.

Guidés par le principe du microcosme de Baez et Dolan et par les définitions algébriques
des opérades de Kelly et Fiore, dans l’approche algébrique, nous définissons les opérades cy-
cliques à l’intérieur de la catégorie des espèces de structures de Joyal. De cette façon, la car-
actéristique originale ≪ exchangeable-output ≫ de Getzler et Kapranov, et la caractérisation al-
ternative ≪ entries-only ≫ des opérades cycliques de Markl, sont toutes les deux incarnées
comme ≪ monoı̈des ≫ dans une catégorie ≪ monoı̈dale ≫ des espèces de structures. (À propre-
ment parler, les deux produits sur les espèces, qui captent les deux façons de définir les opérades
cycliques, ne sont pas monoı̈daux, car ils ne sont pas associatifs, mais les structures induites ap-
paraissent selon le même principe que celui qui reflète une spécification d’un monoı̈de dans une
catégorie monoı̈dale. En particulier, ils sont tous les deux soumis à des isomorphismes qui com-
pensent le défaut d’associativité.) En s’appuyant sur un résultat de Lamarche sur la descente
pour les espèces, nous utilisons ces définitions ≪ monoı̈dales ≫ pour prouver l’équivalence en-
tre les points de vue ≪ exchangeable-output ≫ et ≪ entries-only ≫ pour les opérades cycliques.

Enfin, nous établissons une notion d’opérade cyclique catégorifiée pour les opérades cy-
cliques avec symétries, définies dans la catégorie des ensembles en termes de générateurs et re-
lations. Les catégorifications que nous introduisons sont obtenues en remplaçant des ensembles
d’opérations de la même arité par des catégories, en relâchant certains axiomes de la structure,
comme l’associativité et la commutativité, en isomorphismes, tout en laissant l’équivariance
stricte, et en formulant des conditions de cohérence pour ces isomorphismes. Le théorème de
cohérence que nous prouvons a la forme ≪ tous les diagrammes d’isomorphismes canoniques
commutent ≫ . Pour les opérades cycliques ≪ entries-only ≫ , notre preuve a un caractère syntax-
ique et s’appuie sur la cohérence des opérades non symétriques catégorifiées, établie par Došen
et Petrić. Nous prouvons la cohérence des opérades cycliques ≪ exchangeable-output ≫ , en
≪ relevant au cadre catégorifié ≫ l’équivalence entre les définitions ≪ entries-only ≫ et ≪ exchangeable-
output ≫ , mise en place précédemment dans l’approche algébrique.

http://www.univ-paris-diderot.fr/sc/site.php?bc=accueil&np=accueil

v

Université Paris Diderot – Paris VII

Sorbonne Paris Cité

École Doctorale des Sciences Mathématiques de Paris Centre

Abstract

Cyclic operads: syntactic, algebraic and categorified aspects

by Jovana Obradović

In this thesis, we examine different frameworks for the general theory of cyclic operads of
Getzler and Kapranov. As suggested by the title, we set up theoretical grounds of syntactic,
algebraic and categorified nature for the notion of a cyclic operad.

In the syntactic treatment, we propose a λ-calculus-style formal language, called µ-syntax,
as a lightweight representation of the entries-only cyclic operad structure. As opposed to the
original exchangeable-output characterisation of cyclic operads, according to which the oper-
ations of a cyclic operad have inputs and an output that can be “exchanged” with one of the
inputs, the entries-only cyclic operads have only entries (i.e. the output is put on the same level
as the inputs). By employing the rewriting methods behind the formalism, we give a complete
step-by-step proof of the equivalence between the unbiased and biased definitions of cyclic op-
erads.

Guided by the microcosm principle of Baez and Dolan and by the algebraic definitions of
operads of Kelly and Fiore, in the algebraic approach we define cyclic operads internally to
the category of Joyal’s species of structures. In this way, both the original exchangeable-output
characterisation of Getzler and Kapranov, and the alternative entries-only characterisation of
cyclic operads of Markl are epitomised as “monoid-like” objects in “monoidal-like” categories
of species. (Strictly speaking, the two products on species, which capture the two ways of defin-
ing cyclic operads, are not monoidal, as they are not associative, but the induced structures arise
in the same way as the one reflecting a specification of a monoid in a monoidal category. In par-
ticular, they are both subject to isomorphisms which fix the lack of associativity.) Relying on a
result of Lamarche on descent for species, we use these “monoid-like” definitions to prove the
equivalence between the exchangeable-output and entries-only points of view on cyclic oper-
ads.

Finally, we establish a notion of categorified cyclic operad for set-based cyclic operads with
symmetries, defined in terms of generators and relations. The categorifications we introduce
are obtained by replacing sets of operations of the same arity with categories, by relaxing cer-
tain defining axioms, like associativity and commutativity, to isomorphisms, while leaving the
equivariance strict, and by formulating coherence conditions for these isomorphisms. The co-
herence theorem that we prove has the form “all diagrams of canonical isomorphisms com-
mute”. For entries-only categorified cyclic operads, our proof is of syntactic nature and relies on
the coherence of categorified operads established by Došen and Petrić. We prove the coherence
of exchangeable-output categorified cyclic operads by “lifting to the categorified setting” the
equivalence between entries-only and exchangeable-output cyclic operads, set up previously in
the algebraic approach.

http://www.univ-paris-diderot.fr/sc/site.php?bc=accueil&np=accueil

vii

Acknowledgements
Dearest Pierre-Louis, without you, I would probably never move to Paris, see a concert of Ceca,
do snorkeling in the Galápagos, do rafting while on heavy injections, and meet Branimir. This
means the world to me. I would probably not even finish my PhD, but this is less important.
Thank you for being the best advisor, co-author, life coach, critic, fellow traveler, comrade and
rival. I hope I did well, too. Thank you from the bottom of my heart.

Dear Joachim and Marcelo, thank you so much for kindly accepting to be the referees for
my dissertation. I am particularly indebited to you Joachim, for your meticulous examination
of this manuscript, which led to my deeper understanding of certain parts of it.

Dear Zoran, thank you for all the enjoyable discussions and private talks we had in Belgrade.
In particular, thank you for insisting that the proof of the coherence theorem for categorified
cyclic operads lacks a prologue and an epilogue. I hope that Chapter 4 gives a satisfactory answer
to your remarks. I am very glad to have you as a member of my defense committee.

Dear Muriel and Paul-André, during the last three years, I have greatly benefited from your
useful feedback and insightful comments on my work. I am honored that you also accepted to
be members of my defense committee. Thank you so very much!

Special thanks goes to you Tarmo, for being willing to participate in my defense committee
without knowing much about my research work. I hope that I will justify your trust!

Dear Étienne, little things make a big difference. Thank you for taking care of my nourri-
ture, hydration and caffeine levels. Even in complete silence, just seeing you across the room
trying to figure out your little abstract world, kept me finding the way in my own. Thank you
for always being there.

Dear Nicolas, thank you for making the extra effort to really get to know me. Now that you
know how conservative and politically incorrect I am, and you understand my sense of humor
- and you still chose to like me - I can finally admit that I don’t like you that much at all. All those
classes we skipped didn’t mean a thing.

Dear Juliusz, thank you for pouring your heart and soul into the thousands of stories you
shared with me. It was such a pleasure spending time with you! IRIF would be lonely without
you.

What a difference a prayer can make when it’s offered up in faith... Dear Matthieu, thank you for
praying for me in the time of my need. No one has ever warmed my heart in the way you did.

Dear Cyrille, thank you for being a living example that a PhD student can also enjoy tennis,
read Dostoyevski, do ironing and not drink alcohol. Dear Maxime, thank you for for keeping
an eye on Cyrille. Thank you both for being the best conference buddies ever!

Thanks to all of you who have invested time and effort to explain me the subtleties of the
French language, to prepare me mentally and emotionally for dealing with the French bureau-
cracy, and to interpret me the episodes from the French political scene. Special thanks go to
Nicolas, for translating my French to other French people, to Étienne, for taking upon himself
the job of my identification as Clarabelle, to Pierre-Louis, for taking the risk of being my apart-
ment guarantor, and to Thibaut, for explaining me why Marine le Pen is a villain.

To all my other fellow coleagues at IRIF, thank you all for all your encouragement! These
three years have been a truly challenging and yet such an amazing and rewarding experience.

Mama, tata, Lado, Branimire, vi ste moja najveća snaga. Beskrajno sam vam zahvalna što ste
mi čuvali strah i bili vetar u leda. Ne postoje reči kojima bih mogla da opišem koliko vas volim.
Ovu disertaciju posvećujem vama.

ix

Contents

Abstract v

Acknowledgements vii

Introduction 1

1 Preliminaries 9

1.1 Notation and conventions . 9
1.1.1 About finite sets and bijections . 9
1.1.2 Type-theoretical notions . 10

1.2 Operads . 10
1.3 Cyclic operads . 11

2 A formal language for cyclic operads 15

2.1 Simultaneous entries-only composition . 15
2.2 Biased definition of cyclic operads: combinator syntax 16
2.3 Unbiased definition: a syntax for the monad of unrooted trees 18

2.3.1 Graphs and unrooted trees . 18
2.3.2 The monad of unrooted trees . 22
2.3.3 The free cyclic operad structure implicit in (M, µ, η) 29

2.4 µ-syntax . 30
2.4.1 The language and the equations . 30
2.4.2 µ-syntax as a rewriting system . 33
2.4.3 The interpretation of the µ-syntax in an arbitrary cyclic operad 34
2.4.4 µ-syntax does the job! . 36

2.5 The equivalence established . 43

3 Monoid-like definitions of cyclic operads 47

3.1 The category of species of structures . 48
3.1.1 Definition of species of structures . 48
3.1.2 Operations on species of structures . 48

3.2 Algebraic definitions of operads . 51
3.2.1 Kelly-May definition . 51
3.2.2 Fiore-Markl definition . 52

3.3 Algebraic definitions of cyclic operads . 54
3.3.1 Entries-only . 54
3.3.2 Exchangeable-output . 63
3.3.3 The equivalence of algebraic definitions of cyclic operads 71

4 Categorified cyclic operads 79

4.1 Categorified entries-only cyclic operads . 80
4.1.1 The definition and properties . 80
4.1.2 Canonical diagrams and the coherence theorem 85
4.1.3 The first reduction: getting rid of symmetries 88

x

4.1.4 The second reduction: getting rid of the cyclicity 96
4.1.5 The third reduction: establishing skeletality 105
4.1.6 The proof of the coherence theorem . 111

4.2 Categorified exchangeable-output cyclic operads 112
4.2.1 The exchangeable-output non-skeletal categorified cyclic operads 112
4.2.2 The exchangeable-output skeletal categorified cyclic operads 118

Future Work 119

A Skeletal vs. Non-skeletal operadic framework 121

A.1 The equivalence . 121
A.2 The good side of non-skeletality . 125

B Disjoint union vs. Union of disjoint sets 127

Bibliography 131

xi

To my family

1

Introduction

The notion of operad initially arose in the framework of algebraic topology, as a tool for char-
acterising topological spaces that have the homotopy type of a k-fold loop space: it was shown
by May in [May72] that these spaces are endowed with algebraic structure encoded by the little
k-disc operad. Even though it was May who actualised the notion, thereby also creating the port-
manteau operad by combining the words operation and monad, the same concept appeared earlier
in the work [BV68] of Boardman and Vogt, under the name operators in normal form. The list of
ancestors goes on: from PROPs and PACTs of Adams and Mac Lane [ML63], via associahedronK
of Stasheff [Sta63] and systems with compositions of Lazard [Laz55], all the way back to the year
1898 and complete algebraic systems of Whitehead [Whi98].

The evolution that led to operads was all about studying composition of functions subject
to some kind of associativity. In particular, it aimed at finding a language in which the related
structures, which might be combinatorially cumbersome, can be presented in a way that clari-
fies their global configuration and allows to compare a priori different concepts. Here lies the
importance of operads: they make a compact meta-algebraic setting convenient for material-
ising what is understood as the “type of algebras” and treating uniformly various algebraic
problems. That an operad encodes a certain class of algebras means that its data consists of
all operations with several arguments made of structure operations on such an algebra, which
themselves form an analogous algebraic structure. In turn, the relations among operadic oper-
ations imply relations on the elements of an algebra. The way operads govern algebras in the
same as the way theories govern their models.

The concept of an operad has been formalised in various ways, summarised in Table 1,
whereby most of the characterisations admit themselves several flavours.

Biased

Classical Partial Unbiased Algebraic Categorified

Operads
Boardman,
Vogt, May

Markl Getzler, Jones Kelly
Day, Street,

Došen, Petrić,
Dehling, Vallette

Table 1: Various definitions of operads

The biased approach characterises an operad in terms of spaces of abstract operations of
different arities, equipped with a notion of how to compose these operations and, if the operad
is symmetric, an action of permuting their inputs. The composition structure is biased towards
2-fold operadic compositions, in the sense that the only explicitly defined concepts are “local”
compositions of two operations. The various ways to derive k-fold operadic composition (i.e.
a “global” composition of an assortment of k operations) are then equated by the appropriate
associativiy axioms.

An n-ary operation f should be thought of as a single-node rooted tree, whose node is dec-
orated with the symbol f and has n inputs, labeled either by natural numbers from 1 to n (in
which case the operad is characterised as skeletal), or, equivalently, by elements of an arbitrary
finite set of cardinality n (in which case the operad is non-skeletal).

Formally, in the skeletal approach, the space O(n) of n-ary operations of a symmetric operad
is determined by a functor O : Σop → C, where Σ is the skeleton of the category Bij of finite

2 Introduction

sets and bijections, formed by the sets [n] = {1, 2, . . . , n}, n ∈ N, and C is an arbitrary symmet-
ric monoidal category. Then, for any permutation σ of [n], the induced map O(σ) determines a
permutation of inputs of an operation

f

1 2 · · · n

and this constitutes the action of the symmetric group Sn on O(n).
As for the formal description of operadic composition, the classical and partial characterisa-

tions provide two ways to complete the biased definition of an operad.
In the original definition of an operad, given by May in [May72], the operadic composition

structure is specified by morphisms

γn,k1,...,kn : O(n)⊗ O(k1)⊗ · · · ⊗ O(kn)→ O(k1 + · · ·+ kn)

and the unit id ∈ O(1), defined for all n ≥ 1 and ki ≥ 0, which are subject to associativity,
equivariance and unit axioms. We refer to this kind of composition as simultaneous, since the
morphisms γn,k1,...,kn are to be thought of as simultaneous insertions of outputs of n operations
into the n inputs of an n-ary operation.

The presence of operadic units allows for an equivalent biased approach for introducing
operadic composition. Instead of working with simultaneous composition, one can introduce
it by formulas

f ◦i g = γm,1,...,1,n,1,...,1(f, id , . . . , id , g, id , . . . , id)

where g appears as the i-th argument of f , which specify individual compositions

◦i : O(m)⊗ O(n)→ O(m+ n− 1)

for all 1 ≤ i ≤ m. This definition of operadic composition, which was first formalised by Markl
in [Mar96], is called partial, since the morphisms ◦i are to be thought of as insertions of only one
operation’s output into the input i of another operation.

The non-skeletal variant of the symmetric operad structure is obtained by passing from Σ

to Bij, i.e. by building operadic composition over a functor O : Bijop → C.

Biased descriptions of an operad are the most explicit, but not the most compact ones.

In the unbiased (or combinatorial) framework, the operadic composition of an assortment of k
operations, or, a k-fold operadic composition, is treated evenhandedly for all k, by defining an
operad as an algebra over a monad of rooted trees. These trees act as pasting schemes for operations
of an operad, and the operations decorating their nodes are “composed in one shot” through
the structure morphism of the algebra. Operads were first described in these terms in [GJ94].

The algebraic (or monoidal) definition is another elegant characterisation of operads. The ref-
erence “algebraic” is there to indicate that such a definition most closely indicates the anal-
ogy between algebras and operads: in the algebraic framework, operads and algebras are both
seen as monoids, but in a different monoidal category. While algebras are monoids in the
monoidal category (Set,⊗,K), operads are monoids in the monoidal category (SetBijop , ◦, I),
whose monoidal product ◦, called the substitution product, arises as an instance of the Day
convolution product [Day70]. In turn, the algebraic approach allows to extend various con-
structions inherent to algebraic homotopy theory, as are Koszul duality theory [GK94] and bar
construction [GJ94], to the level of operads. The biased operad structure was assimiliated for
the first time in the form of a monoid by Kelly in [Kel05] (the initial version of the paper dating
from 1972). Independently, Joyal [Joy81] has studied the substitution product on the category
of species of structures, which makes the context for the monoidal definition of Set-based op-
erads.

3

Last but certainly not least, for the purposes of higher-dimensional category theory and ho-
motopy theory, categorification recently also emerged in operad theory, where at least three
definitions of categorified operads have been proposed. In [DS01], Day and Street define pseudo-
operads by categorifying the original “monoidal” definition of operads of Kelly [Kel05], which
led to an algebraic, “one-line” characterisation of the form: a pseudo-operad is a pseudo-monoid
in a certain monoidal 2-category. In [DP15], Došen and Petrić introduce the notion of weak Cat-
operad by categorifying the biased definition of non-symmetric operads, which led them to an
equational axiomatic definition, in the style of Mac Lane’s definition of a monoidal category
[ML98, Section XI.1]. Another analogy with their approach to categorification is given by bicat-
egories of Bénabou [Bén67], in which the usual associativity and unit laws for composition of
morphisms

(f ◦ g) ◦ h = f ◦ (g ◦ h), 1A ◦ f = f and f ◦ 1B = f

are replaced by the existence of coherent 2-isomorphisms

β : (f ◦ g) ◦ h→ f ◦ (g ◦ h), il : 1A ◦ f → f and ir : f ◦ 1B → f.

In [DV15], Dehling and Vallette, through curved Koszul duality theory, obtain higher homotopy
symmetric operads, for which the equivariance (ensuring that the symmetric structure agrees well
with the composition structure) is also relaxed.

Each of these points of view on operads provides a particular approach to the treatment of
algebras encoded by operads. The categories of algebras associated to operads are identified
with categories of algebras whose operations have multiple inputs and one output (associative
algebras, commutative algebras, Lie algebras).

The interest in encoding more general algebraic structures (for example, those acting on
several underlying spaces, or those equipped with several algebraic operations, or those with
multiple outputs), arising in areas as diverse as homological algebra, complex geometry, cate-
gory theory and mathematical physics, led to the renaissance of operads in the early nineties of
the last century. As an outcome, a wealth of examples and generalisations of operads came
into existence. The latter include cyclic operads [GK95], modular operads [GK98], properads
[Val04], dioperads [Gan03], etc. The earliest chronicle of the renaissance is given in [Lod94].

This thesis is about cyclic operads.

The formalism of cyclic operads was originally introduced by Getzler and Kapranov in
[GK95], after ideas of Kontsevich [Kon94]. The motivation came from the framework of cyclic
homology: in their paper, Getzler and Kapranov show that, in order to define cyclic homology
for algebras encoded by an operad O, O has to be what they call a cyclic operad. More precisely,
the cyclic structure is exactly what is necessary for an operad O in order to obtain the frame-
work in which invariant bilinear forms on algebras encoded by O can be handled. The cyclic
homology of an algebra encoded by a cyclic operad then is defined as the non-abelian derived
functor of the universal bilinear form.

Intuitively speaking, the endowment of the operad structure determined by the definition
of a cyclic operad is provided by adding to the action of permuting the inputs of an operation
an action of interchanging its output with one of the inputs. This feature essentially makes the
distinction between the inputs and the output no longer visible, which is adequately captured
by unrooted trees as pasting schemes for operations of a cyclic operad.

As it is the case for operads, the concept of cyclic operads comes in different flavours, as
outlined by Table 2, which also gives a hint about the contents of this thesis.

The notion of a cyclic operad was originally given in the unbiased manner in [GK95, Def-
inition 2.1], over the structure of a monad of unrooted trees. The advantage of the unbiased
approach is reflected precisely in the transition from operads to cyclic operads: the definitions

4 Introduction

of various generalisations of operads can be obtained simply by shifting from rooted trees to
other kinds of graphs.

Biased

Classical Partial Unbiased Algebraic Categorified

Exchangeable- Entries-

§3 §4
output only

Cyclic

Operads

Getzler,
Kapranov

Getzler,
Kapranov, Markl

Markl
§2

Getzler,
Kapranov

Table 2: Various definitions of cyclic operads

Like operads, biased cyclic operads can be defined by means of classical simultaneous com-
position [GK95, Theorem 2.2] or of partial composition [Mar08, Proposition 42]. In both of these
definitions, the action of the symmetric group Sn (given by the symmetric operad structure) is
extended with the cycle τn = (0, 1, . . . , n), whose action includes making the output of an oper-
ation (denoted now with 0) to be the first input and the input indexed with n to be the output,
in a way that is compatible with operadic composition and preserves units. The action of τn
can be visualised as the clockwise rotation of all “wires” of a tree, such that each wire takes the
position of its right-hand side neighboring wire:

0

f

1 2 · · · n

τn−−−−→
f

1 2 · · · n

0

The exchangeable-output feature of cyclic operads intuitively means that two operations can
be composed along inputs that “used to be outputs” and outputs that “used to be inputs”. This
leads to another biased point of view on cyclic operads, in which they are seen as generalisations
of operads for which an operation, instead of having inputs and an (exchangeable) output, now
has only “entries”, and it can be composed with another operation along any of them. Such
an entries-only definition was first formalised by Markl in [Mar16, Definition 48], although the
concept of partial compositions x◦y, where x and y are the entries selected for composition, was
already briefly introduced in [MSS02, Section 5.1]. By contrast, we refer to the definitions based
on describing cyclic operads as operads with extra structure (accounting for the input-output
interchange) as exchangeable-output ones.

What this thesis brings

This thesis follows the main line of the evolution of cyclic operads, summarises and relates
different points of view for this notion, and most importantly, further furnishes the general
theory of cyclic operads by introducing new means of describing them, from the syntactic (§2),
algebraic (§3) and categorified (§4) standpoints, as indicated in the title and Table 2. It is outlined
by the three main parts, each corresponding to a different foundational approach.

§2 Syntactic approach

In the spirit of recent years’ movement in bringing closer mathematics and computer science
communities through formalisation of mathematics, in the syntactic approach, we propose a λ-
calculus-style formal language, called the µ-syntax, as a lightweight representation of the cyclic
operad structure.

The name and the language of the µ-syntax formalism were motivated by another formal

What this thesis brings 5

syntactical tool, the µµ̃-subsystem of the λµµ̃-calculus, presented by Curien and Herbelin in
[CH00]. In their paper, programs are described by means of expressions called commands, of
the form

〈µβ.c1 | µ̃x.c2〉,

which exhibit a computation as the result of an interaction between a term µβ.c1 and an evalu-
ation context µ̃x.c2, together with a symmetric reduction system

c2[µβ.c1/x]←− 〈µβ.c1 | µ̃x.c2〉 −→ c1[µ̃x.c2/β],

reflecting the duality between call-by-name reduction strategy (which evaluates the program
first) and call-by-value reduction strategy (which evaluates the argument of the program first).
In our syntactical approach, we follow this idea and view operadic composition as such a pro-
gram, i.e. as an interaction between two operations f and g, where f , considered as a context
for g, provides an input x (selected with µ̃) for the output β of g (marked with µ). By moving
this concept to the entries-only framework of cyclic operads, the input/output distinction of the
µµ̃-subsystem goes away, leading to the existence of a single binding operator µ, whose purpose
is to select the entries of two operations which are to be connected in this interaction.

The advantage of the µ-syntax over the usual “mathematical” definitions of cyclic operads is
tangible from two perspectives. On one hand, if one lays down the two usual ways of defining
cyclic operads, the biased way ([GK95, Theorem 2.2], [Mar16, Definition 48], [Mar08, Proposi-
tion 42]), and the unbiased way ([GK95, Definition 2.1]), one would argue that these look quite
formidable. This is due to the underlying intricate combinatorial structure of unrooted trees.
The commands of the µ-syntax play the role of trees, but with the benefit of being rather simple
in-line formulas. Accordingly, the equations of the µ-syntax make a crisp representation of the
cumbersome laws defining the structure of cyclic operads. Summed up, the µ-syntax makes the
long story short(er).

On the other hand, in the spirit of Leibniz’s characteristica universalis and calculus ratiocinator,
the usefulness of the µ-syntax arises when the question about the completeness, rigour and for-
malisability of mathematical proofs is asked. This especially concerns long and involved proofs,
which are common in operad theory. Such a proof is, for example, the proof of the equivalence
between the biased and unbiased definitions of cyclic operads, which is a well-known result.
The above requirements, typically asked for in computer science, reflect through this proof as
follows. Firstly, in the operadic literature, incorporated in the structure of cyclic operads and
similar definitions, one can find two formalisms of unrooted trees: in [GK95, Definition 2.1],
the usual formalism of trees with “indivisible” edges is used, while in [Get09], [JK11], [KW17],
trees with half-edges (or flags), due to [KM94], are used in the context of modular operads and
Feynman categories. As there exist more than one tree formalism, there are also several proofs
of the biased-unbiased equivalence (cf. [GK95, Theorem 2.2], [KW17, Section 5], [Man99, Sec-
tion 4.2]). The formalisability property requires fixing a universal syntactic language in which the
proof will be presented. The internal structural patterns of this language should be convenient
for describing in a step-by-step fashion the transitions involved in this proof. In order to meet
the rigour requirement, all the involved structures must be spelled out in detail. In particular,
the correct treatment of the identities of the appropriate monad structure must be given, which
is usually not the case in the literature. Finally, as required by the completeness property, the
proof that the laws satisfied by an algebra over the monad indeed come down to the axioms
from the biased definition, must be explicitly given. In order to illustrate how one gets closer to
fulfilling these three requirements, we make a syntactic reformulation of the monad of unrooted
trees figuring in the unbiased definition, which, together with the µ-syntax, makes a syntactic
framework well-suited for a complete step-by-step proof of the equivalence.

6 Introduction

§3 Algebraic approach

In our next approach, we exhibit cyclic operads within the algebraic framework of species of
structures. A species of structures S associates to each finite set X a set S(X) of combinatorial
structures on X that are invariant under renaming the elements of X , in a way consistent with
composition of such renamings. The notion, introduced in combinatorics by Joyal in [Joy81], has
been set up to provide a description of discrete structures that is independent from any specific
format these structures could be presented in. For example, S(X) could be the set of graphs
whose vertices are given by X , the set of all permutations of X , the set of all subsets of X , etc.
Categorically speaking, a species of structures is simply a functor S : Bij→ Set. Species can be
combined in various ways into new species and these “species algebras” provide the category of
species with different notions of “tensor product”. Some of these products, like the substitution
product we mentioned earlier, allow to redefine operads internally to the category of species,
as monoids.

The algebraic definition of symmetric operads of Kelly [Kel05] corresponds to the original
biased definition of operads with simultaneous composition of May [May72]. This definition
is, moreover, referred to as the monoidal definition of operads, since the substitution product
constitutes a monoidal structure. The second algebraic definition, which characterises operads
with partial composition, has been recently established by Fiore in [Fio14]. The pre-Lie product of
Fiore’s definition is not monoidal, but the inferred structure arises by the same kind of principle
as the one reflecting a specification of a monoid in a monoidal category (which is why we call
this definition the monoid-like definition of operads). This is an example of what has been called
the microcosm principle by Baez and Dolan in [BD98]. The principle tells that

certain algebraic structures can be defined in any category equipped with a categorified ver-
sion of the same structure,

and the instance with monoids, presented in Table 3 below, can serve as a guide when seeking
the most general way to internalize different algebraic structures.

Monoidal category M Monoid M ∈M

product ⊗ : M×M→M µ :M ⊗M →M

unit 1 ∈M η : 1→M

associativity αx,y,z : (x⊗y)⊗z→x⊗ (y⊗z)

(x⊗ x)⊗ x x⊗ (x⊗ x)

x⊗ xx⊗ x

x

αx,x,x

id ⊗ µµ⊗ id

µ µ

left unit

right unit

λx : 1⊗ x→ x

ρx : x⊗ 1→ x

1⊗ x x⊗ x x⊗ 1

x

η⊗id id⊗η

λx ρx
µ

Table 3: A monoid in a monoidal category

In our algebraic approach, we follow the microcosm principle in order to give two alge-
braic (and, more suggestively, monoid-like) definitions of cyclic operads, one for exchangeable-
output cyclic operads, and the other for entries-only cyclic operads. This results in one-line
conceptual descriptions, of the form

a cyclic operad is a monoid-like object in a certain monoidal-like category.

What this thesis brings 7

Given that the monoidal-like categories in which cyclic operads “live” in these two definitions
are built over the category of species, and, therefore, are of non-skeletal nature, we first propose
a non-skeletal version of the biased definition of cyclic operads [Mar08, Proposition 42].

The main correspondence that we establish is the equivalence between these two algebraic
definitions, which consolidates the equivalence between the entries-only and exchangeable-
output points of view on cyclic operads.

§4 Categorified approach

In our categorified approach, we propose categorifications of entries-only and exchangeable-
output cyclic operads with symmetries. With respect to the established notions of categorified
operads, the style of our definitions corresponds to the one of [DP15], except that we also con-
sider the action of the symmetric group. Yet, our categorified cyclic operads are not cyclic operads
up to the first level of homotopy in the language of [DV15], as we keep equivariance strict.

Our process of categorification, like the one of [DP15], is the most common one: we replace
sets (of operations of the same arity) with categories, obtaining in this way the intermediate no-
tion of cyclic operad enriched over Cat, followed by relaxing certain defining axioms of cyclic
operads from equalities to isomorphisms, and exhibiting the conditions which make these iso-
morphisms coherent. In particular, the coherence theorem has the form “all diagrams made of
canonical isomorphisms commute”.

Concretely, for entries-only cyclic operads, the associativity and commutativity axioms

(f x◦x g) y◦y h = f x◦x (g y◦y h) and f x◦y g = g y◦x f

become the associator and commutator isomorphims, with instances

β
x,x;y,y

f,g,h : (f x◦x g) y◦y h→ f x◦x (g y◦y h) and γx,yf,g : f x◦y g → g y◦x f,

respectively. At first glance, thanks to the (non-skeletal) equivariance axiom which “distributes”
the action of the symmetric group from the composite of two operations to operations them-
selves, the coherence of the obtained notion seems easily reducible to the coherence of symmet-
ric monoidal categories of Mac Lane (see [ML98, Section XI.1]): all diagrams made of instances
of associator and commutator are required to commute. However, in the setting of cyclic oper-
ads, where the existence of operations is restricted, these instances do not exist for all possible
indices, as opposed to the framework of symmetric monoidal categories. As a consequence, the
coherence conditions that Mac Lane established for symmetric monoidal categories do not solve
the coherence problem of categorified entries-only cyclic operads. In particular, the hexagon of
Mac Lane is not well-defined in the setting of categorified entries-only cyclic operads. The co-
herence conditions that we do take from Mac Lane are the pentagon and the requirement that
the commutator isomorphism is involutive. However, we need much more than this in order to
ensure coherence. Borrowing the terminology from [DP15], we need two more mixed coherence
conditions (i.e. coherence conditions that involve both associator and commutaor), a hexagon
(which is not the hexagon of Mac Lane) and a decagon, as well as three more conditions which
deal with the action of the symmetric group on morphisms of categories of operations of the
same arity.

The approach we take to treat the coherence problem is of syntactic, term-rewriting spirit,
as in [ML98] and [DP15], and relies on the coherence result of [DP15]. The proof of the co-
herence theorem consists of three faithful reductions, each restricting the coherence problem
to a smaller class of diagrams, in order to finally reach diagrams that correspond exactly to di-
agrams of canonical isomorphisms of categorified non-symmetric skeletal operads, i.e. weak
Cat-operads of [DP15]. Intuitively speaking, the first reduction excludes the action of the sym-
metric group, the second (and the most important) one removes “cyclicity”, and the last one

8 Introduction

replaces non-skeletality with skeletality.

For exchangeable-output cyclic operads, the two associativity axioms of the underlying op-
erad O become the sequential associator and parallel associator isomorphisms, with instances

βx,yf,g,h : (f ◦x g) ◦y h→ f ◦x (g ◦y h) and θx,yf,g,h : (f ◦x g) ◦y h→ (f ◦y h) ◦x g,

respectively. Therefore, the operadic part of the obtained structure is the non-skeletal and sym-
metric counterpart of a weak Cat-operad of [DP15]. However, in order to carry over the equiva-
lence between the entries-only and exchangeable-output cyclic operads, set up previously in our alge-
braic approach, to the categorified setting (and, therefore, obtain, in the appropriate sense, the
correct notion of categorified exchangeable-output cyclic operads), an axiom of the extra struc-
ture (accounting for the input-output exchange) must additionally be weakened. This leads to
a third isomorphism, called the exchange, whose instances are

δz,x;vf,g : Dz(f ◦x g)→ Dzv(g) ◦v Dxz(f),

where Dz(X) : O(X) → O(X) is the endofunctor that “exchanges the input z ∈ X with the
output”, and Dzy(X) : O(X)→ O(X\{z} ∪ {y}) is the functor that “exchanges the input z ∈ X
with the output and then renames it to y”. We establish the coherence of this notion by “lifting”
the proof of the equivalence (between the entries-only and exchangeable-output cyclic operads)
of the algebraic treatment, thanks to the coherence of categorified entries-only cyclic operads.

The non-skeletal notion of exchangeable-output categorified cyclic operad described above
can be straightforwardly coerced to a skeletal notion. In this way, a categorification of [Mar08,
Proposition 42] is obtained. The coherence of the latter notion follows by “lifting” to the cate-
gorified setting the equivalence between non-skeletal and skeletal operads, established in
[MSS02, Theorem 1.61], and extending it to the corresponding structures of categorified cyclic
operads. In Appendix A.1, we provide details for the proof of [MSS02, Theorem 1.61].

Related to the coherence of skeletal exchangeable-output categorified cyclic operads, the
skeletality requirement, combined with the presence of symmetries, causes an interesting is-
sue, pointed to us by Petrić, which arises if one tries to give a coherence proof by means of
rewriting. Namely, as opposed to non-skeletal equivariance, for skeletal equivariance it is not
possible to “distribute” the action of the symmetric group from the composite of two opera-
tions to operations themselves. This makes the exclusion of symmetries (i.e. the first reduction
mentioned earlier), at the very least, problematic. Therefore, as far as we can tell, the proof of
skeletal coherence requires the transition to the non-skeletal framework (i.e. the equivalence of
[MSS02, Theorem 1.61]), which shows that, when it comes to coherence with symmetries, the
choice of non-skeletal framework is no longer a matter of convenience, but a matter of necessity.
We illustrate this issue in Appendix A.2, where we also point out certain other merits of the
non-skeletal operadic framework.

9

Chapter 1

Preliminaries

The purpose of this chapter is to recall the concepts from operad theory on which the rest of the
thesis is built. This primarily means that we shall take a closer look at the axiomatics of biased
definitions presented in Table 1 and Table 2. Nothing in this chapter is genuinely new: it serves
merely to fix the vocabulary of these essential definitions, which slightly varies in the literature.
Our main references are [GK95], [MSS02], [LV12] and [Mar16].

But before that, a few words on terminology are needed.

1.1 Notation and conventions

As we shall be mainly concerned with non-skeletal cyclic operads, we first focus on set-theoretical
conventions. Then we give a glossary of key terms from type and rewriting theory.

1.1.1 About finite sets and bijections

Conforming to the computer science practice, in this thesis we assume that a sufficiently large
universe of finite sets is fixed (countable is enough).

We shall use two different notions of union. In the category Set of sets and functions, for sets
X and Y ,X+Y will denote the coproduct (disjoint union) ofX and Y (constructed in the usual
way by tagging X and Y , by, say, 1 and 2) and we shall use the notation Σi∈IXi (resp. Πi∈IXi)
for the coproduct (resp. the Cartesian product) of the family of sets {Xi | i ∈ I}. In order to
avoid making distinct copies of X and Y before taking the union, we take the usual convention
of assuming that they are already disjoint. In the category Bij of finite sets and bijections, we
shall denote the ordinary union of already disjoint sets X and Y with X ∪ Y . In Appendix B,
we compare these two ways of treating union, with a focus on what each of them brings in the
context of (cyclic) operads.

If f1 : X1 → Z1 and f2 : X2 → Z2 are functions such that X1 ∩ X2 = ∅ and Z1 ∩ Z2 = ∅,
f1 ∪ f2 : X1 ∪ X2 → Z1 ∪ Z2 will denote the function defined as f1 on X1 and as f2 on X2.
If Z1 = Z2 = Z, we shall write [f1, f2] : X1 ∪ X2 → Z for the function defined in the same
way. Accordingly, for the corresponding functions between disjoint unions, we shall write
f1 + f2 : X1 +X2 → Z1 + Z2 and [f1, f2] : X1 +X2 → Z.

For a bijection σ : X ′ → X and Y ⊆ X , we denote with σ|Y the restriction of σ on σ−1(Y).

For a bijection σ : Y → X , we say that σ renames the variables of X to the appropriate vari-
ables of Y . In particular, if σ : X\{x} ∪ {y} → X is the identity on X\{x} and σ(y) = x, we say
that σ renames x to y, and if τ : X → X is identity on X\{x, z} and τ(x) = z and τ(z) = x, we
say that τ exchanges x and z.

We shall sometimes use the cycle notation for specifying permutations. For example, for
σ : {x, y, z, u, v} → {x, y, z, u, v}, defined by σ(x) = y, σ(y) = x, σ(z) = z, σ(u) = v and
σ(v) = u, the cycle notation presents σ as the product of its three disjoint cycles, i.e. as σ =
(x y)(u v)(z). We shall always omit the cycles of length 1 from this representation, i.e. we shall
write σ = (x y)(u v).

10 Chapter 1. Preliminaries

A decomposition of a finite set X is an ordered family {Xi}i∈I of (possibly empty) pairwise
disjoint subsets of X such that their (ordinary) union is X . The attribute ordered is meant to
indicate that the indexing set I is totally ordered, i.e. that, for example, the sets {{x1}, {x2, x3}}
and {{x2, x3}, {x1}} constitute different decompositions of the set {x1, x2, x3}.

1.1.2 Type-theoretical notions

Throughout the thesis, and notably during the syntactic and categorified treatement, we shall
use basic notions and methods of type theory and rewriting theory. For a comprehensive ac-
count on these subjects, we refer to [Pie02] and [BN99]. We list here the essentials.

We assume given an infinite set V of variables, or names (countable is enough). We denote
the variables of V by x, y, z, etc., possibly with indices and possibly underlined. We say that a
variable x is fresh with respect to a set X if x 6∈ X . The existence of V ensures that, for any finite
set, there exists a variable which is fresh with respect to that set.

A multi-sorted formal theory is a formal theory for which variables, constant symbols and
function symbols, as well as all the terms built from them, have a property called sort or type.
Types serve to control the formation of terms and to classify them. A model of a multi-sorted
formal theory, i.e. of a typed formal language, is a model in the usual sense, which additionally
takes into account sorts of the symbols of the signature of the theory. In other words, the do-
main of such a model is a collection of sets {M(si)}i∈I , indexed by all sorts of the theory, and
the interpretation function maps constant symbols of sort si to the setM(si), for all i ∈ I , and
function symbols of sort (s1, . . . , sn; s) to functions of the formM(s1)× · · · ×M(sn)→M(s).

An abstract rewriting system (a rewriting system for short) is a pair (A,→), whereA is a set and
→ is a binary relation onA. The name is supposed to indicate that an element (a, b) of→ should
be seen as a rewriting of a into b. We write a→ b to denote that (a, b) ∈→. An element a ∈ A is a
normal form for→ if there does not exist a′ ∈ A, such that a→ a′. We say that a rewriting system
(A,→) is terminating if there does not exist an infinite sequence a1 → a2 → · · · → an → · · ·

of elements of A. We denote with
∗
−−→ the reflexive and transitive closure of →. A rewriting

system (A,→) is confluent if, for any triple (a, a1, a2) of elements of A, such that a
∗
−−→ a1 and

a
∗
−−→ a2, there exists a′ ∈ A, such that a1

∗
−−→ a′ and a2

∗
−−→ a′. A rewriting system (A,→) is

locally confluent if, for any triple (a, a1, a2) of elements of A, such that a→ a1 and a→ a2, there

exists a′ ∈ A, such that a1
∗
−−→ a′ and a2

∗
−−→ a′.

Fact 1. If (A,→) is terminating, then it is normalising, i.e. for any a ∈ A, there exists a normal

form a′, such that a
∗
−−→ a′.

Fact 2. If (A,→) is terminating and confluent, then for a ∈ A, there exists a unique normal form

a′, such that a
∗
−−→ a′.

Fact 3. If (A,→) is terminating, then it is confluent if and only if it is locally confluent.

1.2 Operads

The monographs [MSS02] and [LV12] both contain precise definitions of skeletal operads, in all
variants presented in Table 1, except the categorified ones. Categorified skeletal operads in this
thesis are the ones of [DP15].

We shall, however, mainly consider non-skeletal operads.

As our principal characterisation of operads we fix the non-skeletal biased definition involving
the symmetric group action and units, with operadic composition given in partial manner. Moreover,
we shall consider only Set-based operads. Whenever there is no risk of confusion, we shall

1.3. Cyclic operads 11

refer to operads characterised in this way simply as operads. We shall speak of non-symmetric
operads if we want to emphasise the absence of symmetries. Likewise, we shall speak of non-
unital operads if we want to emphasise the absence of units.

We give now the precise definition, by transferring Markl’s skeletal definition [Mar08, Propo-
sition 42] to the non-skeletal framework. Below, for a functor O : Bijop → Set, a bijection
σ : Y → X and an element f ∈ O(X), we write fσ for O(σ)(f).

Definition 1.1. An operad is a functor O : Bijop → Set, together with a distinguished element
idx ∈ O({x}), called the identity or unit (indexed by x), that exists for each singleton {x}, and a
partial composition operation

◦x : O(X)× O(Y)→ O(X\{x} ∪ Y),

defined for arbitrary non-empty finite set X , an arbitrary finite set Y and an element x ∈ X ,
such that X\{x} ∩ Y = ∅. These data satisfy the axioms given below.

Associativity. For f ∈ O(X), g ∈ O(Y) and h ∈ O(Z), the following two equalities hold:

[A1] (f ◦x g) ◦y h = f ◦x (g ◦y h), where x ∈ X and y ∈ Y .

[A2] (f ◦x g) ◦y h = (f ◦y h) ◦x g, where x, y ∈ X , and

Equivariance. For bijections σ1 : X ′ → X and σ2 : Y ′ → Y , and f ∈ O(X) and g ∈ O(Y), the
following equality holds:

[EQ] fσ1 ◦σ−1
1 (x) g

σ2 = (f ◦x g)
σ, where σ = σ1|

X\{x} ∪ σ2.

Unitality. For f ∈ O(X) and x ∈ X , the following two equalities hold:

[U1] idy ◦y f = f , and

[U2] f ◦x idx = f .

Moreover, the unit elements are preserved under the action of O(σ), i.e.

[UP] idx
σ = idu, for any two singletons {x} and {u}, and a bijection σ : {u} → {x}.

For f ∈ O(X), we say that the elements of X are the inputs of f . An operad O is constant-free
if O(∅) = ∅ �

For each of the axioms from Definition 1.1, we also (implicitly) assume the set disjointness
conditions which ensure that all the partial compositions involved are a priori well-defined. We
shall continue to omit mentioning explicitly these conditions whenever possible.

Remark 1.2. Using [EQ] and [UP], it can be easily shown that, for f ∈ O(X) and a renaming σ :
X\{x} ∪ {y} → X of x to y, we have f ◦x idy = fσ.

Remark 1.3. A non-symmetric operad is a collection of sets O(X), indexed by totally ordered finite
setsX , equipped with a partial composition operation as in Definition 1.1, subject to the associativity and
unitality axioms of Definition 1.1, all adapted naturally in a way which takes into account the ordering
on indexing sets. See the proof of Theorem A.1 in Appendix A for details.

A non-unital operad structure is obtained from Definition 1.1 simply by forgetting the units and
the unitality axioms.

1.3 Cyclic operads

Given that cyclic operads originally emerged as operads with extra structure, they are typically
presented in the skeletal exchangeable-output manner in the literature. Such a definition is
[Mar08, Proposition 42]. The original unbiased definition [GK95, Definition 2.1] is of skeletal
nature as well.

12 Chapter 1. Preliminaries

Our approach to cyclic operads will be the non-skeletal one, like for operads. In the lit-
erature, it is only the entries-only characterisation of cyclic operads that can be found in the
non-skeletal presentation. The non-skeletal exchangeable-output definition of cyclic operads
will be introduced for the first time in this thesis (in Chapter 3).

Therefore, the definition which links us with the literature, and the most important prelim-
inary definition of this thesis, is the one of entries-only cyclic operads. Every approach to the
treatment of cyclic operads in this thesis will have something to do with this definition. When-
ever we say entries-only cyclic operads, it should be understood that we speak about non-skeletal
biased cyclic operads with the symmetric group action and units, whose composition structure is given
in the entries-only manner and which are defined in Set.

We give the precise definition below, by recalling Markl’s definition [Mar16, Definition 48]
for the particular case when the underlying functor is C : Bijop → Set, and adapting it further
by also demanding units.

Definition 1.4. An entries-only cyclic operad is a functor C : Bijop → Set, together with a dis-
tinguished element idx,y ∈ C({x, y}) for each two-element set {x, y}, called the identity or unit
(indexed by {x, y}), and a partial composition operation

x◦y : C(X)× C(Y)→ C(X\{x} ∪ Y \{y}),

defined for arbitrary non-empty finite sets X and Y and elements x ∈ X and y ∈ Y , such that
X\{x} ∩ Y \{y} = ∅. These data satisfy the axioms given below.

Sequential associativity. For f ∈ C(X), g ∈ C(Y), h ∈ C(Z), x ∈ X , x, y ∈ Y and y ∈ Z, the
following equality holds:

(A1) (f x◦x g) y◦y h = f x◦x (g y◦y h).

Commutativity. For f ∈ C(X), g ∈ C(Y), x ∈ X and y ∈ Y , the following equality holds:

(CO) f x◦y g = g y◦x f .

Equivariance. For bijections σ1 : X
′ → X , σ2 : Y

′ → Y and σ = σ1|
X\{x}∪σ2|

Y \{y}, and f ∈ C(X)
and g ∈ C(Y), the following equality holds:

(EQ) fσ1 σ−1
1 (x)◦σ−1

2 (y) g
σ2 = (fx◦y g)

σ.

Left unitality. For f ∈ C(X), x ∈ X and a bijection σ that renames x to z, the following equality
holds:

(U1) idy,z y◦x f = fσ.

Moreover, the unit elements are preserved under the action of C(σ), i.e.

(UP) idx,y
σ = idu,v,

for any two two-element sets {x, y} and {u, v}, and a bijection σ : {u, v} → {x, y}.

For f ∈ C(X), we say that the elements of X are the entries of f . An entries-only cyclic
operad C is constant-free if C(∅) = C({x}) = ∅, for all singletons {x}. �

Note that we impose a slightly weaker condition on the sets X and Y and elements x ∈ X
and y ∈ Y involved in partial composition than in [Mar16, Definition 48]: instead of requiring
X and Y to be disjoint, as Markl does, we allow the possibility that they intersect, provided that
their intersection is a subset of {x, y}. This also means that we allow the possibility that x =
y. Nevertheless, the characterizations of Definition 1.4 and [Mar16, Definition 48] (with units
added), are equivalent. More precisely, all partial compositions allowed by [Mar16, Definition
48] are obviously covered by the Definition 1.4. As for the other direction, if f x◦y g is such that,
say, x ∈ X ∩ (Y \{y}), then we can define f x◦y g as fσ x′◦y g, where x′ is chosen outside of Y ,
and σ : (X\{x}) ∪ {x′} → X is identity everywhere except on x′, which is sent to x, obtaining

1.3. Cyclic operads 13

in this way a valid definition in the sense of [Mar16, Definition 48]. As for the units, here is a
notational remark.

Notation 1.5. It is understood that idx,y = idy,x. We reserve the notation id{x,y} for the identity
bijection on the two-element set {x, y}.

The lemma below gives basic properties of the partial composition operation.

Lemma 1.6. The partial composition operation from Definition 1.4 satisfies the following laws.

Parallel associativity. For f ∈ C(X), g ∈ C(Y), h ∈ C(Z), x, y ∈ X , x ∈ Y and y ∈ Z, the following
equality holds:

(A2) (f x◦x g) y◦y h = (f y◦y h) x◦x g.

Right Unitality. For f ∈ C(X), x ∈ X and a bijection σ that renames x to z, the following two equalities
hold:

(U2) f x◦y idy,z = fσ.

Proof. In order to prove (A2), we combine (CO) and (A1), as follows:

(f x◦x g) y◦y h = (g x◦x f) y◦y h = g x◦x (f y◦y h) = (f y◦y h) x◦x g.

For (U2), we combine (CO) and (U1) in the obvious way. �

It is easy to show that the axiom (EQ) can be expressed in the way presented in the following
lemma.

Lemma 1.7. Let f ∈ C(X), g ∈ C(Y), x ∈ X and y ∈ Y be such that X\{x} ∩ Y \{y} = ∅,
and let σ : Z → X\{x} ∪ Y \{y} be an arbitrary bijection. If τ1 : X ′ → X, τ2 : Y ′ → Y and
τ : Z → X ′\{τ−1

1 (x)} ∪ Y ′\{τ−1
2 (y)} are bijections, such that σ = (τ1|

X\{x} ∪ τ2|
Y \{y}) ◦ τ , then the

following equality holds:
(fx◦y g)

σ = (f τ1x◦y g
τ2)τ .

In the following two remarks, we point out to an axiomatisation for partial composition
operations x◦y alternative to the one of Definition 1.4 and we discuss the axiomatisations of
cyclic operads without units.

Remark 1.8. Related to the implication (A1)∧(CO)⇒(A2) proved in Lemma 1.6, it is also true (and
easily checked) that (A2)∧(CO)⇒(A1). Moreover, we also have that (A2)∧(U1)⇒(CO):

f x◦y g = (idx,y y◦x f) x◦y g = (idx,y x◦y g) y◦x f = g y◦x f .

These observations show that the equalities

(A2), (EQ), (U1) and (UP)

provide an equivalent and smaller axiomatisation for x◦y. It is precisely this axiomatisation that we
shall use in Chapter 3, for the algebraic approach to cyclic operads. For the syntactic treatment of Chapter
2, will shall use the axiomatisation of Definition 1.4.

Remark 1.9. Although the axiomatisations of the partial composition operation x◦y from Definition 1.4
and Remark 1.8 are equivalent, when it comes to non-unital cyclic operads, it is not the case that both of
them are adapted simply by forgetting the structure of units (and omitting the unitality axioms). This is
true only for Definition 1.4, whose non-unital modification, therefore, contains the following axioms:

(A1), (CO) and (EQ).

14 Chapter 1. Preliminaries

As for the axiomatisation from Remark 1.8, if one excludes the unitality axioms (U1) and (UP), the
commutativity (CO) must be put back as a primitive axiom, in order to be able to derive the sequential
associativity (A1), indispensable for the structure of a cyclic operad. Therefore, in this case, the non-unital
axiomatisation is given by

(A2), (CO) and (EQ).

The two non-unital axiomatisations are clearly equivalent. As our primary definition of non-unital
entries-only cyclic operads, whose categorification we introduce in Chapter 4, we fix the one obtained
by removing units from Definition 1.4.

Although we do not encounter non-symmetric cyclic operads in this thesis, in the remark
below we point out to their definition as well. This will be usefull at some point in Chapter 4,
where a nonexample arises by depriving cyclic operads completely from the action of the sym-
metric group.

Remark 1.10. In view of (and in contrast to) Remark 1.3, one should have in mind that non-symmetric
cyclic operads still contain cyclic actions and the appropriate equivariance axiom. For their precise def-
inition, we refer to [CGR14, Section 3.2] (exchangeable-output, skeletal) and [Mar16, Sections 1,2,3]
(entries-only, non-skeletal).

Finally, a morphism of (cyclic) operads is a natural transformation between the underlying
functors, which preserves the structure of partial compositions and units. Cyclic operads and
morphisms between them form a category COen (the “en” indicating their entries-only nature).

15

Chapter 2

A formal language for cyclic operads

Now that the entries-only definition of cyclic operads is settled, the intuition about the µ-syntax,
which we present in this chapter, can be made more tangible. Referring to Definition 1.4 and
the foresight made in the Introduction, the pattern 〈µx. |µy. 〉, inherent to the µ-syntax, is
crafted in order to encode the partial composition operation (−)x◦y(−). Thus, from the tree-
wise perspective, 〈µx. |µy. 〉 describes the procedure of constructing an unrooted tree by
grafting two unrooted trees along entries (or half-edges, or flags) x and y. From a more general
combinatorial point of view, this construction (and, in particular, the syntactic concept of bind-
ing) can also be understood in terms of differentiation of species, as a mapping ∂S · ∂S → S,
where ∂S is the derivative of the species S and · denotes the product of species. In fact, it is pre-
cisely this mapping that we shall use in Chapter 3, in order to define cyclic operads internally
to the category of species. In addition to commands of the form 〈µx. |µy. 〉, which describe
partial grafting of two unrooted trees, the µ-syntax features another kind of commands, whose
shape is (−){µx. , . . . , µy. }, and which describe simultaneous grafting of unrooted trees. Such
a command encodes the procedure of constructing an unrooted tree by grafting to all the entries
of the corolla (−) the unrooted trees within the brackets, along their respective entries bound
by µ. Therefore, the command (−){µx. , . . . , µy. } is to the command 〈µx. |µy. 〉what the
original notion of simultaneous operadic composition of [May72] is to the notion of partial op-
eradic composition of [MSS02], but in the framework of cyclic operads. Finally, the equations
of the µ-syntax identify different constructions on unrooted trees that should be regarded the
same.

This chapter develops as follows. In Section 2.1, we extract, from the structure of partial
compositions of Definition 1.4, the notion of simultaneous composition. In Section 2.2, we re-
cast cyclic operads of Definition 1.4 as models of the equational theory whose syntax of terms
describes the free cyclic operad generated by a collection of operations. Note that this still does
not involve the µ-syntax. This straightforward reformulation puts Definition 1.4 in the syntac-
tic context in which it can get formally related to the µ-syntax. In Section 2.3, we move to this
context the unbiased definition [GK95, Definition 2.1]. In particular, this involves a syntactic
reformulation and a detailed description of the monad of unrooted trees. This section finishes
with the theorem that expresses the equivalence between biased and unbiased cyclic operads.
Section 2.4 will be devoted to the introduction and analysis of the µ-syntax. We conclude this
section by exhibiting the correspondence between the µ-syntax formalism and the unbiased
characterisation of cyclic operads. In Section 2.5, we employ the µ-syntax in crafting the proof
of the equivalence stated in Section 2.3.

In the remainder of the chapter, merely for the sake of simplicity, we restrict ourselves to
constant-free cyclic operads, to which we shall refer simply as cyclic operads.

2.1 Simultaneous entries-only composition

A cyclic operad C : Bijop → Set, specified by Definition 1.4, naturally incorporates the concept
of simultaneous composition, as a sequence of partial compositions of the form as in the law (A2)

16 Chapter 2. A formal language for cyclic operads

from Lemma 1.6, that is, in which the entry involved in the next instance of a composition
always comes from a fixed operation f ∈ C(X) and which, moreover, ends when all the entries
of f ∈ C(X) are exhausted. In order to avoid writing explicitly such sequences, we introduce
the following notation. For f ∈ C(X), let

ϕ : x 7→ (Yx, gx, x)

be an assignment that associates to each x ∈ X a finite set Yx, an operation gx ∈ C(Yx) and an
element x ∈ Yx, in such a way that

⋂

x∈X

Yx\{x} = ∅.

Let, moreover, σ : X ′ → X be an arbitrary bijection such that for all x ∈ X ,

X ′\{σ−1(x)} ∩ Yx\{x} = ∅.

Under these assumptions, the composite assignment

ϕ ◦ σ : x′ 7→ (Yσ(x′), gσ(x′), σ(x
′)),

defined for all x′ ∈ X ′, together with fσ ∈ C(X ′), determines the composition

((fσ x′◦σ(x′) gx) y′◦σ(y′) gy) z′◦σ(z′) gz · · · ,

consisting of a sequence of partial compositions indexed by the entries of fσ. We will use the
abbreviation fσ(ϕ◦σ) to denote such a composition. Thanks to (A2), fσ(ϕ◦σ) does not depend
on the order in which the partial compositions were carried out. We finally set

f(ϕ) = fσ(ϕ ◦ σ), (2.1.1)

and refer to f(ϕ) as the simultaneous composition determined by f and ϕ. That f(ϕ) does not de-
pend on the choice of σ is a consequence of (EQ).

Notice that without the renaming role of σ, f(ϕ) is not necessarily well-defined. For exam-
ple, f(ϕ) = (f x◦x gx) y◦y gy, where f ∈ C({x, y}), gx ∈ C({x, y}) and gy ∈ C({y, v}), is not
well-defined, although ϕ satisfies the required disjointness condition.

In relation to the above construction, the statements of the following lemma are easy conse-
quences of (EQ).

Lemma 2.1. The simultaneous composition f(ϕ) has the following properties.

1. Let ψ : Z →
⋃

x∈X(Yx\{x}) be a bijection such that for all x ∈ X , x 6∈ ψ−1(Yx\{x}). Denote

with ψx the extension on Yx of the bijection ψ|Yx\{x}, which is identity on x, and let ϕψ be defined

as ϕψ : x 7→ (g
ψx
x , x), for all x ∈ X . Then f(ϕ)ψ = f(ϕψ).

2. Let ψ : y 7→ (hy, y) be an assignment that associates to each y ∈
⋃

x∈X(Yx\{x}) an operation
hy ∈ C(Zy) and y ∈ Zy, in such a way that f(ϕ)(ψ) is defined. If ϕψ is the assigment defined

as ϕψ : x 7→ (g
ψx
x , x), where ψx denotes the extension on Yx of the assignment ψ|Yx\{x}, which is

identity on x, then f(ϕ)(ψ) = f(ϕψ).

2.2 Biased definition of cyclic operads: combinator syntax

The generators-and-relations nature of Definition 1.4 allows us to easily formalise cyclic operads
as models of the multi-sorted equational theory which we now introduce.

The signature of this theory is determined by taking as sorts all finite sets (of cardinality at

2.2. Biased definition of cyclic operads: combinator syntax 17

least 2, when modelling constant-free cyclic operads), while, having denoted with s the sort of
a variable or a constant symbol and with (s1, . . . , sn; s) the sort of an n-ary function symbol, as
constant symbols we take the collection consisting of

idx,y : {x, y}

and, as function symbols, we take the collection consisting of

σ : (Y ;X) (of arity 1) and x◦y : (X,Y ;X\{x} ∪ Y \{y}) (of arity 2),

where x, y ∈ V and σ ranges over all bijections of finite sets. Here, V is the infinite set of variables
whose existence we postulated in the Introduction.

Fixing a collection of sorted variables, or parameters P , and denoting with P (X) the collection
of parameters whose sort is X , the terms of the theory are built in the usual way:

s, t ::= a | idx,y | s x◦y t | t
σ

whereas the assignment of sorts to terms is done by the rules given in Figure 2.1.

a ∈ P (X)

a : X

x 6= y

idx,y : {x, y}

t : X σ : (Y ;X)

tσ : Y

s : X t : Y x ∈ X y ∈ Y X\{x} ∩ Y \{y} = ∅

s x◦y t : X\{x} ∪ Y \{y}

Figure 2.1: Typing rules for the terms of the equational theory modeled by cyclic
operads

The equations of the theory are derived from the axioms of Definition 1.4, and there are two
additional equations, namely

idσx,y = idu,v and (tσ)τ = tσ◦τ , (2.2.1)

where, in the first equation, σ : ({u, v}; {x, y}).

We can now reformulate the entries-only definition of cyclic operads as follows:

A cyclic operad is a model of the equational theory from above.

That this characterisation indeed describes the same structure as does Definition 1.4 is clear
from the requirements that models of multi-sorted theories fulfill. The domain of such a model
is a collection of sets C(X), arising by interpreting all sorts X , and the interpretation of the
remaining of the signature in this universe exhibits the cyclic operad structure in the obvious
way. Observe that the equations (2.2.1) ensure that the assignment C : Bijop → Set, induced
by the model, is functorial.

Let C : Bijop → Set be a functor and let

PC = {a ∈ C(X) |X is a finite set} (2.2.2)

be the collection of parameters of C. Observe that PC can be considered as a collection of sorted
variables for the equational theory introduced above. In this regard, we call the syntax of terms
built over PC the combinator syntax generated by C and we refer to terms as combinators. We shall
denote the set of all combinators induced by C by cTermC, and, for a finite setX , cTermC(X) will
be used to denote the set of all combinators of type X .

18 Chapter 2. A formal language for cyclic operads

We finish this part with a notational remark. If C is a cyclic operad (and, hence, a model of
the equational theory from above), and if C is the underlying functor of C, we shall denote with
[]C : cTermC → C the induced interpretation of the combinator syntax.

2.3 Unbiased definition: a syntax for the monad of unrooted trees

In this part, we syntactically reformulate the unbiased definition [GK95, Definition 2.1]. The
adaptations we make also include translating it to the non-skeletal setting, and reconstructing
it within a formalism of unrooted trees that incorporates edges as pairs of half-edges, due to
[KM94]. As it will be clear in Section 2.4, the formal language of unrooted trees that we present
here is crafted in a way which reflects closely the formal language of the µ-syntax.

2.3.1 Graphs and unrooted trees

Let C : Bijop → Set be a functor such that C(∅) = C({x}) = ∅, for all singletons {x}, and let PC

be as in (2.2.2). The syntax of unrooted trees generated by PC is synthesised as follows.

An ordinary corolla is a term
a(x1, . . . , xn),

where a ∈ C(X) and X = {x1, . . . , xn}. We refer to a as the head symbol of a(x1, . . . , xn). We call
the elements of X the free variables of a(x1, . . . , xn), and we write FV (a) = X to denote this set.
Whenever the set of free variables is irrelevant, we shall refer to an ordinary corolla only by its
head symbol.

In addition to ordinary corollas, we define special corollas to be terms of the shape

(x, y),

i.e. terms which do not have a parameter as a head symbol and which consist only of two distinct
variables x, y ∈ V. For a special corolla (x, y), we define FV ((x, y)) = {x, y}.

Remark 2.2. In both ordinary and special corollas, the order of appearance of free variables in the terms
is irrelevant. In other words, we consider equal the terms, say, a(x, y, z) and a(z, x, y), as well as (x, y)
and (y, x).

Definition 2.3. A graph V is a finite set of (ordinary and special) corollas with mutually disjoint
free variables, together with an involution σ on the set

V (V) =
k
⋃

i=1

FV (ai) ∪

p
⋃

j=1

FV ((uj , vj))

of all variables occuring in V . We write

V = {a1(x1, . . . , xn), . . . , ak(y1, . . . ym), . . . , (u1, v1), . . . , (up, vp);σ}.

We denote with Cor(V) the set of all corollas of V . The set of edges Edge(V) of V consists of pairs
of variables x and y, such that x 6= y and σ(x) = y (and, therefore, also σ(y) = x). We denote
the egdes by (xy). Naturally, it is understood that (xy) and (yx) are the same edges. Finally, we
refer to the fixpoints of σ as the free variables of V , the set of which we shall denote with FV (V).

�

Remark 2.4. The set of variables of a graph in our formalism corresponds to the set of flags (or half-edges)
in the formalism of [KM94]. Such a formalism is inherent to operad theory. In graph theory in general,
one does not usually encounter graphs with half-edges: graphs typically feature “indivisible” edges. The

2.3. Unbiased definition: a syntax for the monad of unrooted trees 19

graphs considered here can be viewed as graphs with an interface, provided by the half-edges which are
not paired to form edges (see [FDC13]).

Remark 2.5. The condition C(∅) = C({x}) = ∅, imposed on C : Bijop → Set, corresponds to the
convention to consider only constant-free cyclic operads. For the general case, the syntax of graphs is
straightforwardly supplemented with appropriate corollas: ordinary corollas will additionally contain
terms of the form a(x), corresponding to elements a ∈ C({x}), and there will be another kind of corollas,
corresponding to elements a ∈ C(∅), denoted simply with a. If a graph contains only corollas of the latter
kind, the involution of the graph is set to be the empty function.

Here is an example.

Example 2.6. The graph {a(x1, x2, x3, x4, x5), b(y1, y2, y3, y4};σ},whereσ = (x4 y3)(x5 y4), should
be depicted as

a b

x1

x2

x3

y1

y2

x4 y3

x5 y4

This graph has two corollas, a(x1, x2, x3, x4, x5) and b(y1, y2, y3, y4), two edges, (x4, y3) and
(x5, y4), and five free variables, x1, x2, x3, y1, y2. �

And here is another example, this time with more exotic graphs, in the sense that they do not
contain ordinary corollas.

Example 2.7. The simplest example of a graph without ordinary corollas is a graph with a single
special corolla and the identity involution, say {(x, y); id{x,y}}. We depict it as

x

y

By changing the identity involution to σ(x) = y, we obtain an ordinary-corolla-free loop:

x
y

Finally, the graph {(x1, y1), (x2, y2), σ}, where σ(x1) = x2 and σ(y1) = y2 is the simplest
example of an ordinary-corolla-free wheel (i.e. an ordinary-corolla-free cycle):

x1

y1

x2

y2

�

Graphs do not need to be connected. Connected graphs are distinguished by the following
recursive definition:

⋄ for any finite set X , a ∈ C(X) and involution σ on X , {a(x1, . . . , xn);σ} is connected,

⋄ for any two-element set {x, y} and involution σ on {x, y}, {(x, y);σ} is connected,

⋄ if graphs V1 and V2, with involutions σ1 and σ2, respectively, are connected, and if V (V1)∩
V (V2) = ∅, then, for any x ∈ FV (V1) and y ∈ FV (V2), the graph V , determined by
Cor(V) = Cor(V1) ∪ Cor(V2) and the involution σ on V (V), defined by

σ(v) =

σ1(v), if v ∈ V (V1)\{x}
σ2(v), if v ∈ V (V2)\{y}
y, if v = x

is connected.

20 Chapter 2. A formal language for cyclic operads

Remark 2.8. Returning to Remark 2.5, if one allows corollas of the form a, where a ∈ C(∅), then a graph
containing such a corolla is connected only if it does not contain any other corollas.

For a graph V with involution σ and corollas c, d ∈ Cor(V), a path from c to d is a finite
sequence of variables (v1, . . . , v2n), n ≥ 1, such that vi ∈ V (V), for all 1 ≤ i ≤ 2n, v1 ∈ FV (c),
v2n ∈ FV (d), and there exist corollas c1, . . . , c2n−2 ∈ Cor(V), such that vj+1, vj+2 ∈ FV (ci), for
all 1 ≤ j ≤ 2n− 2, and σ(v2k−1) = v2k, for all 1 ≤ k ≤ n (for n = 1, there are trivially zero such
corollas). The length of the path (v1, . . . , v2n) is 2n and v1 and v2 are its ending variables.

The set of subgraphs of a graph V (with involution σ) is obtained by the following recursive
definiton:

⋄ if a(x1, . . . , xn) ∈ Cor(V), then {a(x1, . . . , xn); idX}, where X = {x1, . . . , xn}, is a sub-
graph of V ,

⋄ if (x, y) ∈ Cor(V), then {(x, y); id{x,y}} is a subgraph of V ,

⋄ if graphs V1 and V2, with involutions σ1 and σ2, respectively, are subgraphs of V , and if

E(V1,V2) = {(xy) |x ∈ FV (V1), y ∈ FV (V2) and σ(x) = y }

is the set of all edges of V “between V1 and V2”, then, for any subset E ⊆ E(V1,V2),
E = {(xiyi) | i ∈ I}, the graph WE , determined by Cor(WE) = Cor(V1) ∪ Cor(V2) and
the involution τE on V (WE), defined by

τE(v) =

σ1(v), if v ∈ V (V1)\{xi | i ∈ I}
σ2(v), if v ∈ V (V2)\{yi | i ∈ I}
σ(v), otherwise

if Cor(V1) ∩ Cor(V2) = ∅, and by

τ(v) =

σ1(v), if v ∈ V (V1)\({x} ∪ {xi | i ∈ I})
σ2(v), if v ∈ V (V2)\({y} ∪ {yi | i ∈ I}

⋃

a∈Cor(V2)∩Cor(V1)
FV (a))

σ(v), otherwise

if Cor(V1) ∩ Cor(V2) 6= ∅, where x ∈ FV (V1) and y ∈ V (V2)\FV (V2) are (the unique
variables) such that σ(x) = y, is a subgraph of V .

Observe that, just as graphs do not have to be connected, so do not subgraphs of an arbitrary
graph.

Starting from this notion of graph, an extended unrooted tree is defined as a connected graph
without loops, multiple edges and cycles. As the latter three requirements are standard in the ter-
minology of graphs, we omit their formal definition and illustrate them with examples instead.

Example 2.9. The graph from example 2.6 is not an extended unrooted tree, since it has two
edges between corollas a and b.

The graph {a(x1, x2, x3), b(y1, y2, y3);σ}, where σ = (x3 y3)(y1 y2), is not an extended un-
rooted tree either, since the edge (y1, y2) connects the corolla b with itself, i.e. it is a loop:

a b

x1

x2

y2

y1

x3 y3

Exceptionally, but for the same reason, the graph {(x, y);σ}, where σ(x) = y, from Example 2.7,
is not an extended unrooted tree.

2.3. Unbiased definition: a syntax for the monad of unrooted trees 21

The graph {a(x1, x2, x3, x4, x5), b(y1, y2, y3, y4), c(z1, z2, z3);σ}, with σ = (x4 y2)(y1 z2)
(z3 x5), is another example of a graph which is not an extended unrooted tree, this time be-
cause of the presence of a cycle that connects its three corollas:

a

b

c

x1

x3

x2

y4 y3

x5 z3

x4

y2 y1
z2

z1

In particular, for the same reason, the graph {(x1, y1), (x2, y2);σ}, where σ = (x1 x2)(y1 y2),
from Example 2.7, is not an extended unrooted tree. �

Example 2.10. We get an example of a graph which is an extended unrooted tree by changing
the involution σ of the graph {a(x1, x2, x3, x4, x5), b(y1, y2, y3, y4), c(z1, z2, z3);σ} from Example
2.9, to, say, σ′ = (x4 y2)(y1 z2), producing in this way the extended unrooted tree with graphical
representation

a

b

c

x1

x3

x2

y4 y3

x5

x4

y2 y1
z2

z1

z3
�

In moving from graphs to trees, we shall additionally differentiate the classes of extended
unrooted trees with respect to the shape of corollas they contain. Let T be a connected graph
with no loops, multiple edges and cycles.

• If Cor(T) consists only of ordinary corollas, then T is an ordinary unrooted tree.

• If Cor(T) is a singleton with a special corolla, then T is an exceptional unrooted tree.

• An unrooted tree is either an ordinary unrooted tree or an exceptional unrooted tree.

Example 2.11. The graph from Example 2.10 is an ordinary unrooted tree.

The graph {(x, y); id{x,y}} (see also Example 2.7) is an exceptional unrooted tree.

The graph {a(x1, x2, x3), b(y1, y2), (z1, z2);σ}, where σ = (x3 y2)(y1 z1), depicted as

a b

x1

x2

y1x3 y2 z1 z2

is an extended unrooted tree. It is neither ordinary, nor exceptional. �

Remark 2.12. Observe that, for an ordinary unrooted tree T and any two corollas a, b ∈ Cor(T), there
exists a unique path from a to b.

22 Chapter 2. A formal language for cyclic operads

A subtree of an (extended) unrooted tree T is a connected, non-empty subgraph of T . We
say that a subtree S of T is proper if Cor(S) 6= Cor(T). We say that two subtrees S1 and S2 of T
are adjacent, and we write aT (S1,S2) = 1, if there exist u ∈ FV (S1) and v ∈ FV (S2), such that
σ(u) = v. If S1 and S2 are not adjacent, we write aT (S1,S2) = 0.

A decomposition of an (extended) unrooted tree T (with involution σ) is a set of subtrees of T
defined recursively as follows:

⋄ {T } is a decomposition of T ,

⋄ if T1 and T2 are subtrees of T with involutions σ1 and σ2, respectively, such that Cor(T1)∩
Cor(T2) = ∅, Cor(T) = Cor(T1) ∪ Cor(T2) and there exist x ∈ FV (T1) and y ∈ FV (T2)
such that

σ(v) =

σ1(v), if v ∈ V (T1)\{x}
σ2(v), if v ∈ V (T2)\{y}
y, if v = x,

and if {T11, . . . , T1n} is a decomposition of T1 and {T21, . . . , T2m} is a decomposition of T2,
then {T11, . . . , T1n, T21, . . . , T2m} is a decomposition of T . In particular, we shall write

T = {T1 (xy) T2} (2.3.1)

to indicate that {T1, T2} is a decomposition of T (“along” the edge (xy)).

We now define α-equivalence on extended unrooted trees. Suppose first that

T = {a(x1, . . ., xn), . . .;σ}

is an ordinary unrooted tree, with a ∈ C(X), xi ∈ FV (a)\FV (T) andσ(xi) = yj . Let τ : X ′ → X
be a bijection that renames xi to z, where z is fresh with respect to V (T)\{xi}. Theα-equivalence
(for ordinary unrooted trees) is the smallest equivalence relation generated by equalities

{a(x1, . . . , xi−1, xi, xi+1, . . . , xn), . . .;σ} =α {a
τ (x1, . . ., xi−1, z, xi+1, . . . , xn), . . .;σ

′}, (2.3.2)

where σ′ = σ on V (T)\{xi, yj} and σ′(z) = yj . This definition generalises in a natural way to
extended unrooted trees: to the set of generators given by (2.3.2), we add the clauses

{(x, y), . . . ;σ} =α {(x, z), . . . ;σ
′},

where, for some variable xi ∈ V ({(x, y), . . . ;σ}), σ(y) = xi (i.e. y is not a free variable of
{(x, y), . . . ;σ}), z is fresh in the same sense as earlier, and σ′ is the obvious modification of σ. In
simple terms, we consider α-equivalent any two trees such that we can obtain one from another
only by renaming variables which are not fixed points of the corresponding involutions.

We shall denote with [T]α the α-equivalence class determined by an (extended) unrooted
tree T . Finally, we shall denote with TC(X) (resp. eTC(X)) the set of all α-equivalence classes of
unrooted trees (resp. extended unrooted trees) whose parameters belong to PC and whose free
variables are given by the setX . IfX is a two-element set, this definition includes the possibility
that an unrooted tree has 0 parameters, in which case the corresponding equivalence class is
determined by the appropriate exceptional unrooted tree. We shall write TC (resp. eTC) for the
collection of all unrooted trees (resp. extended unrooted trees) generated by PC.

2.3.2 The monad of unrooted trees

The monad of unrooted trees is the monad (M, µ, η) on the functor category SetBijop , defined
as follows. The endofunctor M is defined by

M(C)(X) = TC(X).

2.3. Unbiased definition: a syntax for the monad of unrooted trees 23

The component ηCX : C(X) → M(C)(X) of the monad unit associates to a ∈ C(X) the
isomorphism class of the unrooted tree {a(x1, . . . , xn), idX}, where X = {x1, . . . , xn}:

C(X) ∋ a
ηCX a

x1 x2

x3

x4

x5

∈M(C)(X)

The action of the monad multiplication, typically (and incompletely) described as “flatten-
ing” in the literature, which could be imagined as illustrated in the picture below

b

c
d

a

x6x5

x4

x3

y3

y2

z1

z3
z4

u2

u3x1z5
z2
u1

y1
x2

µCX

b

c
d

a x1 z5
z2
u1

y1
x2

x6
x5

x4

x3

y3

y2

z1

z4
z3

u2

u3

deserves more attention if one wants to make a proper treatment of units of cyclic operads.
In order to obtain its complete description, we first build a rewriting system on eTC. The

rewriting relation → on classes of eTC is canonically induced by the reflexive and transitive
closure of the union of the following reductions, defined on their representatives:

{a(x1, . . . , xi−1, xi, xi+1, . . . , xn), (y, z), . . . ;σ} → {a
τ (x1, . . . , xi−1, z, xi+1, . . . , xn), . . . ;σ

′},
(2.3.3)

where σ(xi) = y, τ renames xi to z, and σ′ is the obvious restriction of σ, and

{(x, y), (u, v), . . . ;σ} → {(x, v), . . . ;σ′}, (2.3.4)

where σ(y) = u, and σ′ is again the obvious restriction of σ.

Lemma 2.13. The rewriting system (eTC,→) is confluent and terminating.

Proof. The termination of the system is obvious: in an arbitrary reduction sequence, each sub-
sequent tree has one special corolla less, and the sequence finishes either when all of them are
exhausted (in the case when the initial tree has at least one ordinary corolla), or when there is
only one special corolla left (in the case when the initial tree consists only of special corollas).
Due to the connectedness of unrooted trees, all special corollas (except one in the latter case)
will indeed be exhausted. Clearly, the normal forms are precisely the unrooted trees of TC.

If T1 and T2 are reduced from T in one step, and if s1 and s2 are the special corollas involved
in the respective reductions, the local confluence is proved by case analysis, with respect to
whether s1 and s2 are equal or not. Let c1 ∈ Cor(T1) and c2 ∈ Cor(T2) be the corollas adja-
cent to s1 and s2, respectively, which were also affected by the reduction step, and let σ be the
involution of T .

• Suppose that s1 = s2 = (x, y). Notice that, if x, y ∈ FV (T), then (x, y) is the only corolla
of T , i.e. T is already a normal form. Also, if we have σ(x) = x, σ(y) = xi (or σ(y) = y,
σ(x) = xi), then c1 = c2, and T1 and T2 are trivially equal. Let us, therefore, assume
that x, y 6∈ FV (T). Let σ(x) = xi and σ(y) = yj , where xi ∈ FV (c1) and yj ∈ FV (c2).
Since extended unrooted trees contain no cycles, c1 and c2 must be different corollas. We
proceed by analysing the shapes of c1 and c2.

24 Chapter 2. A formal language for cyclic operads

– If c1 = a(x1, . . . , xi, . . . , xn) and c2 = b(y1, . . . , yj , . . . , ym), i.e. if

T = {a(x1, . . . , xi, . . . , xn), (x, y), b(y1, . . . , yj , . . . , ym), . . . ;σ},

then both reductions arise by the reduction rule (2.3.3), leading to

T1 = {a
τ1(x1, . . . , xi−1, y, xi+1, . . . , xn), b(y1, . . . , yj , . . . , ym), . . . ;σ

′
1},

where σ′1(y) = yj , on one hand, and

T2 = (a(x1, . . . , xi, . . . , xn), b
τ2(y1, . . . , yj−1, x, yj+1, ym), . . . ;σ

′
2},

where σ′2(x) = xi, on the other hand. The trees T1 and T2 are clearly bothα-equivalent
with the tree

T3 = (aτ1(x1, . . . , xi−1, y, xi+1, . . . , xn), b
τ2(y1, . . . , yj−1, x, yj+1, ym), . . . ;σ

′
3),

where σ′3 = σ′1 = σ′2 on V (T1)\{y, yj} = V (T2)\{x, xi} and σ′3(x) = y. Therefore,
T1 =α T2.

– Suppose now that c1 = a(x1, . . . , xi, . . . , xn) and c2 = (yj , zj), i.e. that

T = {a(x1, . . . , xi, . . . , xn), (x, y), (yj , zj), . . . ;σ}.

In this case, by the reduction arising by (2.3.3), we get

T1 = {a
τ (x1, . . . , xi−1, y, xi+1, . . . , xn), (yj , zj), . . . ;σ

′
1},

where σ′1(y) = yj , and, by the reduction arising by (2.3.4), we get

T2 = {a(x1, . . . , xi, . . . , xn), (x, zj), . . . ;σ
′
2},

where σ′2(x) = xi. The trees T1 and T2 can be reduced again, the respective reductions
leading to

T ′
1 = {(aτ)τ1(x1, . . . , xi−1, zj , xi+1, . . . , xn), . . . ;σ

′′
1},

and
T ′
2 = {aτ2(x1, . . . , xi−1, zj , xi+1, . . . , xn), . . . ;σ

′′
2}.

It is easy to verify that τ1 ◦τ = τ2 and σ′′1 = σ′′2 , from which we conclude that T ′
1 = T ′

2 ,
i.e., by the reflexivity of =α, that T ′

1 =α T
′
2 .

– If c1 = (wi, xi) and c2 = (yj , zj), i.e. if

T = {(wi, xi), (x, y), (yj , zj), . . . ;σ},

then
T1 = {(wi, y), (yj , zj), . . . ;σ

′
1},

with σ1(y) = yj , and
T2 = {(wi, xi), (x, zj), . . . ;σ

′
2},

with σ′2(x) = xi. The conclusion follows since, by the reduction rule (2.3.4), both T1
and T2 can now be reduced to the tree

T3 = {(wi, zj), . . . ;σ
′
3}.

• If s1 = (x, y) and s2 = (u, v), we proceed by comparing c1 and c2, which now might be
the same corollas.

2.3. Unbiased definition: a syntax for the monad of unrooted trees 25

– If c1 = c2 = a(x1, . . . , xi, . . . , xj , . . . , xn), and if σ(x) = xi and σ(u) = xj , then the
corresponding reductions of

T = {a(x1, . . . , xi, . . . , xj , . . . , xn), (x, y), (u, v), . . . ;σ}

lead to
T1 = {a

τ1(x1, . . . , y, . . . , xj , . . . , xn), (u, v), . . . ;σ1}

and
T2 = (aτ2(x1, . . . , xi, . . . , v, . . . , xn), (x, y), . . . ;σ2},

where σ1(u) = xj and σ2(x) = xi. This configuration of T1 and T2 is analogous to the
one of the second item from the first case of the proof and the conclusion follows by
the same argument.

– If c1 = c2 = (z, w), σ(x) = z and σ(u) = w, the reasoning is the same as in the third
item from the first case of the proof.

– Finally, if c1 6= c2, then T1 arises by the reduction involving c1 and s1, while c2 and s2
remain unchanged, and, symmetrically, T2 arises by the reduction involving c2 and
s2, while c1 and s1 remain unchanged. By reducing T1 with respect to c2 and s2 and
T2 with respect to c2 and s2, we clearly obtain the same tree.

�

By Lemma 2.13, an arbitrary normal form nf (T) of an extended unrooted tree T , with re-
spect to the rewriting relation→, determines a unique α-equivalence class [nf (T)]α in TC. It is
easily seen that, for every finite setX , this assignment gives rise to the function nf X : eTC(X)→
TC(X), determined by

nf X : [T]α 7→ [nf (T)]α. (2.3.5)

Next, we formally define the flattening of two-level unrooted trees (which is still not the monad
multiplication), i.e. of the representatives of the isomorphism classes of

MM(C)(X) = M(TC)(X) = TTC(X).

Observe that, syntactically, a two-level unrooted tree can be either

⋄ an exceptional unrooted tree {(x, y); id{x,y}}, or

⋄ an ordinary unrooted tree

{[{a(x1, x2, . . .), b(y1, . . .), . . . ;σ1}]α(x1, x2, y1, . . .), . . . , [{(z1, z2); id{z1,z2}}]α(z1, z2), . . . ;σ},

whose parameters can beα-equivalence classes of both ordinary and exceptional unrooted
trees of TC.

Remark 2.14. Let T be a two-level unrooted tree. Suppose that, for 1 ≤ i ≤ n, [Ti]α ∈ TC(Yi) are
the parameters of T and let Ci be their corresponding corollas. We then have FV (Ci) = FV (Ti) = Yi.
The fact that the set of free variables of each corolla is recorded by the data of the corresponding parameter
allows us to shorten the notation by writing Ti without listing explicitly the elements of FV (Ti). For
example, for the tree from the latter case above, we shall write

{[{a(x1, x2, . . .), b(y1, . . .), . . . ;σ1}]α, . . . , [{(z1, z2); id{z1,z2}}]α, . . . ;σ}.

We shall extend this abbreviation to trees of eTeTC , and when the form of the parameters of a two-level tree
is irrelevant, we shall write {[T1]α, . . . , [Tn]α, s1, . . . , sm;σ}, where si are special corollas.

The flattening of two-level unrooted trees is a familly of functions

flatX : TTC(X)→ eTC(X),

26 Chapter 2. A formal language for cyclic operads

indexed by finite sets, defined by the following two clauses:

• flat{x,y}([{(x, y); id{x,y}}]α) = [{(x, y); id{x,y}}]α, and

• if T = {[{a(x1, x2, . . .), b(y1, . . .), . . . ;σ1}]α, . . . , [{(z1, z2); id{z1,z2}}]α, . . . ;σ}, then

flatX([T]α) = [{a(x1, x2, . . .), b(y1, . . .), . . . , (z1, z2), . . . ;σ}]α,

where, having denoted with Ti, 1 ≤ i ≤ n, the corollas of T , and with σi the corresponding
involutions,

σ(x) =

{

σ(x) if x ∈
⋃n
i=1 FV (Ti)

σi(x) if x ∈ V (Ti)\FV (Ti) .

Observe that α-equivalence of two-level unrooted trees also occurs on two levels. Therefore,
a comment about the validness of the definition of flatX is not superfluous. The proof of the
following fact is nonetheless straightforward.

Lemma 2.15. The function flatX : TTC(X)→ eTC(X) is well-defined.

Observe that flatX([T]α) is an α-equivalence class of an extended unrooted tree whenever
T contains at least two corollas, one of which is special. These are the cases that make a gap be-
tween the flattening function and the action of the monad multiplication (which always results
in an ordinary unrooted tree). In the same style as we presented the functions nf X by (2.3.5), in
what follows, we shall often denote the class flatX([T]α) simply by [flat(T)]α.

The complete characterisation of the monad multiplication

µC : TTC → TC

is given by
µCX = nf X ◦ flatX .

Therefore, for [T]α ∈ TTC(X), we have

µCX : [T]α 7→ [nf (flat(T))]α.

Hence, in the presence of units, the action of the monad multiplication is indeed more than just
“flattening”, as commonly stated.

We now prepare the grounds for the proof that (M, µ, η) is indeed a monad.

We first extend naturally the domain of flattening to M′M′(C), where M′(C)(X) = eTC(X).
The clause that needs to be added to encompass the classes of eTeTC(X) concerns two-level trees
of the form

{[{a(x1, x2, . . .), b(y1, . . .), (z1, z2) . . . ;σ1}]α, . . . , [{(u1, u2); id{u1,u2}}]α, . . . , (v1, v2), . . . ;σ},

i.e. extended unrooted trees whose set of corollas allows special corollas and the classes of
extended unrooted trees. Let us denote with T the above tree, and let Cor s(T) be the set of its
special corollas. The flattening of [T]α is defined simply as

flatX([T]α) = [{a(x1, x2, . . .), b(y1, . . .), (z1, z2), . . . , (u1, u2), . . . , (v1, v2), . . . ;σ}]α,

with σ being defined exactly like before for the variables coming from Cor(T)\Cor s(T), while
we set σ(x) = σ(x) for all variables x ∈

⋃

s∈Cors(T) FV (s).

For [T1]α, [T2]α ∈ eTeTC(X), the following two lemmas give conditions which ensure that
flatX([T1]α)→ flatX([T2]α) in the rewriting system (eTC,→).

Lemma 2.16. For [T1]α, [T2]α ∈ eTeTC(X), if [T1]α → [T2]α in (eTeTC ,→), then flatX([T1]α) →
flatX([T2]α) in (eTC,→).

2.3. Unbiased definition: a syntax for the monad of unrooted trees 27

Proof. By case analysis relative to the shapes of corollas involved in the reduction [T1]α → [T2]α.
�

Lemma 2.17. For [{[T1]α, . . . , [Tn]α, s1, . . . , sm;σ}]α ∈ eTeTC(X) and 1 ≤ j ≤ n, if [Tj]α → [T ′
j]α

in (eTC,→), then

flatX([{[T1]α, . . . , [Tj]α, . . . , [Tn]α, s1, . . . , sm;σ}]α)→ flatX([{[T1]α, . . . , [T
′
j]α, . . . , [Tn]α, s1, . . . , sm;σ}]α)

in (eTC,→)

Proof. By case analysis relative to the shapes of corollas involved in the reduction [Tj]α → [T ′
j]α.
�

Relying on Lemma 2.16 and Lemma 2.17, we obtain the following two equivalent character-
isations of the monad multiplication.

Lemma 2.18. For [T]α = [{[T1]α, . . . , [Tn]α, s1, . . . , sm;σ}]α ∈ eTeTC(X) the following claims hold:

1. nf (flat(T)) =α nf (flat(nf (T))),

2. nf (flat(T)) =α nf (flat({[nf (T1)]α, . . . , [nf (Tn)]α, s1, . . . , sm;σ})).

Proof. By the termination of (eTeTC ,→), we have that T → nf (T), and then, by Lemma 2.16 and
the termination of (eTC,→), we get the following sequence of reductions in (eTC,→),

flat(T)→ flat(nf (T))→ nf (flat(nf (T))).

On the other hand, by the termination of (eTC,→), we also have that flat(T) → nf (flat(T)).
Therefore, the first claim follows by the confluence of (eTC,→).

As for the second claim, by the termination of (eTC,→), we have Ti → nf (Ti), for all i ∈ I .
Hence, by Lemma 2.17, and then again by the termination of (eTC,→), we get that

flat(T) → flat({[nf (T1)]α, . . . , [nf (Tn)]α, s1, . . . , sm;σ})
→ nf (flat({nf (T1), . . . ,nf (Tn), s1, . . . , sm;σ}))

is a reduction sequence of (eTC,→). The conclusion follows as in the previous claim. �

On the other hand, by the very definition of flattening on extended unrooted trees, we have
the following property.

Lemma 2.19. For T = {[T1]α, . . . , [Tn]α;σ} ∈ TeTeT
C
, the following equality holds:

flat(flat(T)) = flat({[flat(T1)]α, . . . , [flat(Tn)]α;σ}).

We now finally verify the laws of the monad (M, µ, η).

Lemma 2.20. For natural transformations µ : MM → M and η : 1 → M, the following diagrams
commute for every functor C : Bijop → Set and finite set X :

MMM(C)(X) MM(C)(X)

MM(C)(X) M(C)(X)

MµCX

µMCX
µCX

µCX

M(C)(X) MM(C)(X)

M(C)(X)

MηCX

idCX
µCX

M(C)(X) MM(C)(X)

M(C)(X)

ηMCX

idCX
µCX

Proof. We begin with the left diagram. Chasing the associativity of multiplication includes treat-
ing several cases, relative to the shape of the unrooted tree of

28 Chapter 2. A formal language for cyclic operads

MMM(C)(X) = TTT
C
(X)

that we start from. The most interesting is the one starting from (a class determined by) an or-
dinary unrooted tree with corollas given by ordinary unrooted trees built over TC and we prove
the associativity only for this case. Let, therefore, T = {[T1]α, . . . , [Tn]α;σ}.

By chasing the diagram to the right-down, the action of MµCX corresponds to corolla-per-
corolla flattening of T , followed by taking the respective normal forms. Then µ flattens addi-
tionally the resulting tree and reduces it to a normal form. These actions make the following
sequence of steps:

T 7→ {[flat(T1)]α, . . . , [flat(Tn)]α;σ}
7→ {[nf (flat(T1))]α, . . . , [nf (flat(Tn))]α;σ}
7→ flat({[nf (flat(T1))]α, . . . , [nf (flat(Tn))]α;σ})
7→ nf (flat({[nf (flat(T1))]α, . . . , [nf (flat(Tn))]α;σ})) = R.

The action µMCX
on the left-down side of the diagram corresponds to the action of µ on the

tree T in whole, which flattens it and reduces it to a normal form. Followed by µ again, this
gives us the following sequence:

T 7→ flat(T)
7→ nf (flat(T))
7→ flat(nf (flat(T)))
7→ nf (flat(nf (flat(T)))) = L.

Let R′ = nf (flat({[flat(T1)]α, . . . , [flat(Tn)]α;σ})) and L′ = nf (flat(flat(T))). By Lemma
2.18, we have that R = R′ and L = L′, and, by Lemma 2.19, we have that R′ = L′.

We now verify the unit laws for the case when [T]α ∈M(C)(X) is determined by an ordinary
unrooted tree. Let, therefore, T = {a1(x1, . . . , xk), . . . , an(y1, . . . , yr);σ}.

By going to the right-down in the first unit diagram (i.e. the diagram in the middle), the
action of MηCX

turns each corolla ai into a single-corolla unrooted tree Ti, leading to a two-
level unrooted tree, which is then flattened and reduced to a normal form by µ. Therefore, the
right-down side sequence is as follows:

T 7→ {[{a1(x1, . . . , xk), id}]α, . . . , [{an(y1, . . . , yr); id}]α;σ}

7→ {a1(x1, . . . , xk), . . . , an(y1, . . . , yr);σ}

7→ {a1(x1, . . . , xk), . . . , an(y1, . . . , yr);σ
′}

the resulting tree being exactly T , since

σ′(x) = σ(x) =

{

σ(x) if x ∈
⋃n
i=1 FV (Ti)

x if x ∈ V (Ti)\FV (Ti)
=

{

σ(x) if x ∈ V (T)

x if x ∈ V (Ti)\FV (Ti)
= σ(x),

wherein the last equality holds since V (Ti)\FV (Ti) = ∅, for all 1 ≤ i ≤ n.
By chasing the second unit diagram to the right, T will first be turned, by the action of ηMCX

,
into a single-corolla two-level tree, which will then be flattened and reduced to a normal form
by the action of µ. Therefore, we have the sequence

T 7→ {[{a1(x1, . . . , xk), . . . , an(y1, . . . , yr);σ}]α, idX}

7→ {a1(x1, . . . , xk), . . . , an(y1, . . . , yr); idX}

7→ {a1(x1, . . . , xk), . . . , an(y1, . . . , yr); idX
′}

For the resulting involution idX
′ we have

2.3. Unbiased definition: a syntax for the monad of unrooted trees 29

idX
′(x) = idX(x) =

{

x if x ∈ FV (T)

σ(x) if x ∈ V (T)\FV (T)
= σ(x).

Therefore, the resulting tree is exactly T . �

Finally, here is the original definition [GK95, Definition 2.1] of a cyclic operad, recasted in
the new syntactic framework.

Definition 2.21. A cyclic operad is an algebra over the monad (M, µ, η).

And, under these syntactic glasses, the well-known result about the equivalence of the bi-
ased and unbiased definitions tells that a functor C : Bijop → Set carries a cyclic operad structure
(as described by Definition 1.4) if and only if it is endowed with a structure morphism of an M-algebra
structure on C. Formally, denoting with AlgM(SetBijop) the category of M-algebras in SetBijop ,
the following theorem holds.

Theorem 2.22. The categories COen and AlgM(SetBijop) are isomorphic.

Before we introduce the µ-syntax in the following section, and ultimatelly prove Theorem
2.22, we indicate the biased cyclic operad structure “hiding” in the monad approach we just
formalised. As we shall see, the exceptional unrooted trees will be used as pasting schemes of
identities of cyclic operads. The reason to go for exceptional unrooted trees (instead of taking
explicit corollas, i.e. parameters, for identities), is that, otherwise, in the definition of the free
cyclic operad overPC that follows, eTC(X)would have to be quotiented by more than the corolla-
preserving isomorphisms, as the validation of the unit laws would involve the identification of
trees which are not α-equivalent.

2.3.3 The free cyclic operad structure implicit in (M, µ, η)

In the unbiased approach of §2.3.2, the monad M actually arises from the adjunction F ⊢ U ,
where F : SetBijop → COen is the free cyclic operad functor and U : COen → SetBijop is the
obvious forgetful functor. For a functor C, we now reveal the definition of the free cyclic operad
over C, which was implicit in §2.3.2.

The functor F (C) : Bijop → Set, underlying the free cyclic operad, is defined by F (C)(X) =
TC(X). Before we spell out the biased free cyclic operad structure in the style of Definition 1.4,
we fix some notation.

Notation 2.23. For an unrooted tree T , a finite set V and a bijection ϑ : V → V (T), we shall denote with
T ϑ the unrooted tree obtained from T by renaming its variables in a way dictated by ϑ and adapting its
corollas accordingly. More precisely, if a ∈ Cor(T) is an ordinary corolla, T ϑ will, instead of a, contain

the corolla aϑ|
FV (a)

, and, if (x, y) ∈ Cor(T) is a special corolla, T ϑ will, instead of (x, y), contain the
corolla (ϑ−1(x), ϑ−1(y)). The involution σϑ of T ϑ is defined as σϑ(v) = ϑ−1(σ(ϑ(v))), for v ∈ V .

For a bijection κ : X ′ → X , the image [T]κα of [T]α ∈ TC(X) under TC(κ) : TC(X) → TC(X
′)

is the equivalence class [T κ∪ε]α, where ε : V → V (T)\X is an arbitrary bijection, such that
X ′ ∩ V = ∅.

LetX and Y be non-empty finite sets such that for some x ∈ X and y ∈ Y we haveX\{x}∩
Y \{y} = ∅, and let [T1]α ∈ TC(X), [T2]α ∈ TC(Y). The partial composition operation

x•y : TC(X)× TC(Y)→ TC(X\{x} ∪ Y \{y})

is given as
[T1]α x•y [T2]α = [nf (T)]α,

where Cor(T) is obtained by taking the union of the sets of corollas of T1 and T2, after having
previously adapted them in a way that makes this union disjoint with respect to the variables

30 Chapter 2. A formal language for cyclic operads

occuring in it. More precisely, if ϑ1 : V1 → (V (T1)\X) ∪ {x} and ϑ2 : V2 → (V (T2)\Y) ∪ {y} are
bijections such that V1 ∩ V2 = ∅, then

Cor(T) = {C(ϑ1∪idX\{x})|
FV (C)

|C ∈ Cor(T1)} ∪ {D
(ϑ2∪idY \{y})|

FV (D)
|D ∈ Cor(T2)}.

If σi is the involution of Ti, i = 1, 2, the involution σ of T is defined as follows:

σ(v) =

ϑ−1
1 (σ1(ϑ1(v))) if v ∈ V1\ϑ

−1
1 (x)

ϑ−1
2 (y) if v = ϑ−1

1 (x)

ϑ−1
2 (σ2(ϑ2(v))) if v ∈ ϑ−1

2 (y)

ϑ−1
1 (x) if v = ϑ−1

2 (y)

v if v ∈ X\{x} ∪ Y \{y} .

For an arbitrary two-element set {y, z}, we set idy,z = [{(y, z); id{y,z}}]α.

Remark 2.24. Observe that the partial composition structure on classes of unrooted trees does not violate
the constant-freeness requirement. The condition C({x}) = ∅ plays an indispensable role here: requiring
that C(∅) = ∅, but allowing the possibility that C({x}) 6= ∅, is inconsistent. Consider, for example,
a ∈ C({x}), b ∈ C({y}) and their composition [a(x)]α x•y [b(y)]α.

2.4 µ-syntax

Backed up with the graphical intuition of the free cyclic operad structure on classes of unrooted
trees described in §2.3.3, in this section we introduce the µ-syntax.

2.4.1 The language and the equations

For a functor C : Bijop → Set, such that C(∅) = C({x}) = ∅, the language of the µ-syntax is built
over the collection of parametersPC (see (2.2.2)) and the set of variables V. Unlike the combinator
syntax cTermC specified in §2.2, which has only one kind of expressions, the µ-syntax features
two different kinds of typed expressions, as shown in Figure 2.2, where a ∈ PC and x ∈ V.

commands terms

c ::= 〈s | t〉 | a{t1, . . . , tn} s, t ::= x | µx.c

Figure 2.2: Commands and terms of the µ-syntax

We denote the typing judgments for commands and terms with c : X and X | s, respectively,
where X ranges over finite sets. In expressions c : X and X | s, the set X is the type of the
command c and of the term s, respectively, and the backward typing judgment X | s is used
merely to further distinguish the representation of terms and commands. We say that a is the
head symbol of a command a{t1, . . . , tn}.

The assignment of types to commands and terms is done by the rules listed in Figure 2.3.

{x} |x

a ∈ C({x1, . . . , xn})

Yi pairwise disjoint for all i ∈ {1, . . . , n}

Yi | ti for all i ∈ {1, . . . , n}

a{t1, . . . , tn} :
⋃n
i=1 Yi

X ∩ Y = ∅
X | s Y | t

〈s | t 〉 : X ∪ Y

c : X x ∈ X

X\{x} |µx.c

Figure 2.3: Typing rules of the µ-syntax

2.4. µ-syntax 31

Remark 2.25. Observe that, thanks to the disjointness assumptions in the two rules for typing com-
mands, for each term µx.c, where c : X , the variable x bound by µ has a unique occurence among the
variables of X .

Intuitively, commands mimick operations of the free cyclic operad over the functor C, and,
thereby, a judgement c : X should be thought of as an unrooted tree whose free variables are
precisely the elements of X . On the other hand, terms represent operations with one selected
entry and the role of the set X in a judgement X | s is to label all entries except the selected
one. From the tree-wise perspective, this is represented by an unrooted tree whose set of free
variables is X ∪ {x}, where x is precisely the variable bound by µ (i.e. the variable placed
immediatelly on the right of the symbol µ).

Remark 2.26. It is easily seen that, for any command c : X , the set X contains at least two elements.
Related to this is the fact that an expression of the form µy.(µx.c) is not allowed by the typing rules. This
reflects the constant-freeness requirement we imposed for cyclic operads.

Notation 2.27. We shall sometimes denote the commands introduced by the second typing rule as
a{tx |x ∈ X} (for a ∈ C(X)), or as a{σ}, where σ assigns to every x ∈ X a term tx. The order of
appearance of the tx’s in a{tx |x ∈ X} is irrelevant. Whenever we use the notation, say a{t, s}, for
a ∈ C({x, y}), it will be clear from the context whether we mean a{t, s} = a{σ}, with σ(x) = t and
σ(y) = s, or with σ defined in the other way around.

The way commands are constructed is motivated by the action of the simultaneous and
partial grafting of unrooted trees, formally defined through the composition operation x•y from
§2.3.3. The command a{tx |x ∈ X}, introduced by the second rule, should be imagined as the
simultaneous grafting of the corolla a and the “surrounding” trees tx, one for each free variable
x of a, along the variables bound by µ in each tx. In the special case when, for some x ∈ X ,
the corresponding term tx is a variable, say u, this process of grafting reduces to the renaming
of the variable x of the corolla a to u. Therefore, if all the terms corresponding, by the second
typing rule in Figure 2.3, to the elements of X are variables from the set, say, V = {u, v, w, ...},
then the appropriate command is a{σ}, where σ : V → X is the bijection determined by that
correspondence, and it describes the unrooted tree {aσ(u, v, w, . . .); idV }. The command 〈s | t〉
describes the grafting of unrooted trees represented by the terms s and t along their variables
bound by µ. Therefore, the pattern 〈µx. |µy. 〉 corresponds to the composition (−)x•y(−) on
classes of unrooted trees.

The equations of the µ-syntax are given in Figure 2.4.

(MU1) 〈s | t〉 = 〈t | s〉 (MU3) µx.c = µy.c[y/x]

(MU2) 〈µx.c | s〉 = c[s/x] (MU4) a{tx |x ∈ X} = aσ{tσ(y) | y ∈ Y }

Figure 2.4: The equations of the µ-syntax

In Figure 2.4, in (MU2), c[s/x] denotes the command c in which the unique occurrence of the
variable x in X (see Remark 2.25) has been replaced by the term s, in (MU3), y is fresh with
respect to all variables of c except x, and, in (MU4), σ : Y → X is an arbitrary bijection.

The equation (MU1) stipulates the symmetry of grafting of unrooted trees, i.e. the commu-
tativity of composition operations x•y.

The equations (MU3) and (MU4) are α-conversions, capturing the same intuition as does α-
conversion in λ-calculus. Intuitively, α-conversion tells that the name of the entry selected for
the composition does not matter, which reflects the equivariance of composition operations x•y.
Put in an very simple context, α-conversion tells that the function f(x) is the same as the func-
tion f(y).

32 Chapter 2. A formal language for cyclic operads

The substitution c[s/x], figuring in the equation (MU2) (as well as the substitution c[y/x]
from (MU3)), must be performed in the capture-avoiding manner. This means that the variables
which were originally “free” (i.e. not bound by µ) in c cannot become “captured” (i.e. bound by
µ) after the substitution is made. This is achieved by renaming, prior to the substitution, all the
bound variables in c and s, so that they are all turned mutually distinct, and then performing
the appropriate substitution. For example,

µx.a{x, y}[x/y] 6= µx.a{x, x}, but µx.a{x, y}[x/y] = µz.aσ{z, y}[x/y] = µz.aσ{z, x},

where σ renames x to z.
The equation (MU2) is quite evidently reminescent of the β-reduction of λ-calculus, when

considered as a rewriting rule 〈µx.c | s〉 → c[s/x], and it essentially captures the same idea of
function application as λ-calculus. The intuition becomes more tangible from the point of view
of trees: the commands 〈µx.c | s〉 and c[s/x], equated with (MU2), describe two ways to build
(by means of grafting) the same unrooted tree. Here is an example.

Example 2.28. Consider the unrooted tree

T = {a(x1, x2, x3, x4), b(y1, y2, y3, y4), c(z1, z2);σ},

where σ = (x3 y1)(x4 z1). One way to build T is to graft along x4 and z1 unrooted trees T1 =
{a(x1, x2, x3, x4), b(y1, y2, y3, y4);σ1}, where σ1 = (x3 y1), and T2 = {c(z1, z2); id{z1,z2}}, singled
out with dashed lines in the left picture below:

a

b

c

x1

z2

x2

y2
y3

y4x3
y1

x4

z1

a

b

c

x1

z2

x2

y2
y3

y4
x3

y1

x4

z1

The unrooted tree T1 (in the upper part of the left picture) can itself be seen as a grafting, namely
the simultaneous grafting of the corolla a and its surrounding trees: in this case this involves
explicit grafting only with the corolla b (along the free variables x3 and y1). This way of con-
structing T is described by the command

〈µx4.a{x1, x2, µy1.b{y1, y2, y3, y4}, x4} |µz1.c{z1, z2}〉 (*)

that witnesses the fact that T1 and T2 are connected along their selected free variables x4 and
z1, respectively: x4 and z1 are bound with µ in the terms corresponding to these two trees. The
subterm a{x1, x2, µy1.b{y1, y2, y3, y4}, x4} on the left-hand side is the command that accounts
for the simultaneous grafting of the corolla a and its surrounding trees, while c{z1, z2} on the
right-hand side stands for the corolla c. On the other hand, we could have chosen to build the
tree T simply by making the simultaneous grafting of the corolla a and its surrounding trees,
as indicated on the picture on the right. This way of building T is described with the command
a{x1, x2, µy1.b{y1, y2, y3, y4}, µz1.c{z1, z2}}, which is, up to substitution, exactly the command

a{x1, x2, µy1.b{y1, y2, y3, y4}, x4}[µz1.c{z1, z2}/x4]

to which (*) reduces by applying the rewriting rule 〈µx.c | s〉 → c[s/x]. �

2.4. µ-syntax 33

We shall denote with µExp
C

the set of all expressions of the µ-syntax induced by PC, and
we shall use µTermC and µCommC to denote the subsets of terms and commands of µExp

C
, re-

spectively. As in the case of the combinator syntax, the set of expressions (resp. terms and
commands) of type X will be denoted by µExp

C
(X) (resp. µTermC(X) and µCommC(X)).

2.4.2 µ-syntax as a rewriting system

Let be the rewriting relation defined on µExp
C

as the reflexive and transitive closure of the
union of rewriting rules

〈s | t〉 〈t | s〉 and 〈µx.c | s〉 c[s/x]

obtained by orienting from left to right the equations (MU1) and (MU2), respectively, which is,
moreover, congruent with respect to (MU3), (MU4) and substitution1.

The non-confluence of the rewriting system (µExp
C
,) shows up immediately: for reduc-

tions
c2[µx.c1/y] 〈µx.c1 |µy.c2〉 c1[µy.c2/x]

arising due to (MU1) (which makes the whole reduction system symmetric), we do not have a
way to exhibit a command c, such that c2[µx.c1/y] c and c1[µy.c2/x] c. Nevertheless, all
three commands above describe the same unrooted tree.

However, modulo the trivial commuting conversion, this rewriting system is terminating:
as a consequence of the fact that an element x ∈ X appears only once in a command c : X , the
number of µ-binders in an expression is strictly decreasing at each reduction step of the form

〈µx.c | s〉 c[s/x]. It is straightforward to prove that the set µExpnf
C

= µCommnf
C
∪ µTermnf

C
of

normal forms is generated by the following rules:

x ∈ µTermnf
C

a ∈ C(X) tx ∈ µTerm
nf
C

for all x ∈ X

a{tx |x ∈ X} ∈ µComm
nf
C

c ∈ µCommnf
C

µx.c ∈ µTermnf
C

In the next example, we examine the shape of normal forms in relation with unrooted trees.

Example 2.29. Let T be the unrooted tree from Example 2.28. Here is the list of commands in
normal form that describe T :

a{x1, x2, µy1.b{y1, y2, y3, y4}, µz1.c{z1, z2}},

b{µx3.a{x1, x2, x3, µz1.c{z1, z2}}, y2, y3, y4}, b{µx3.c{µx4.a{x1, x2, x3, x4}, z2}, y2, y3, y4},

c{µx4.a{µy1.b{y1, y2, y3, y4}, x2, x3, x4}, z2}, c{µx4.b{µx3.a{x1, x2, x3, x4}, y2, y3, y4}, z2}.

Each of the commands records the free variables and corollas of T : free variables are the vari-
ables not bound with µ (x1, x2, y2, y3, y4 and z2), and the corollas correspond to the underlined
parameters (a, b and c). The variables involved in edges of T (x3, y1, x4 and z1) can also be re-
covered from the list, as the variables bound with µ. For example, in the first command we see
that y1 and z1 are explicitly bound by µ, while for x3 and x4 we could say that they are implicitly
bound, given that they are replaced with a non-variable term.

In general, the set µCommnf
C

describes decompositions of unrooted trees of the following kind:
pick a corolla a of a tree, and then proceed recursively so in all the connected components of
the graph resulting from the removal of a. (We provide in §2.4.4 an algorithmic computation of

1 Since the precautionary renaming which ensures that the substitution c[s/x] is done in the capture-free manner
is non-deterministinc, the rewriting relation is formally defined on the equivalence classes of expressions of the
µ-syntax with respect to (MU3) and (MU4), just as the usual rewriting systems in λ-calculus are actually defined on
α-conversion classes.

34 Chapter 2. A formal language for cyclic operads

these connected components).
Amusingly, one can show that, if (MU1) gets oriented in the other way around, the normal

forms of the resulting rewriting system will be in one-to-one correspondence with the combi-
nators of Section 2.2, and thus describe decompositions of unrooted trees of the following kind:
pick an edge e of the tree, and then proceed recursively so in the two connected components of
the graph resulting from the removal of e.

These two extremes substantiate our informal explanation of the µ-syntax as a mix of partial
composition and simultaneous composition styles.

2.4.3 The interpretation of the µ-syntax in an arbitrary cyclic operad

We next consider the semantic aspect of the µ-syntax relative to unrooted trees that we intu-
itively brought up in §2.4.1 and §2.4.2, by defining an interpretation of the µ-syntax in an arbi-
trary cyclic operad characterised as in Section 2.2. We ascribe meaning to the µ-syntax by first
translating it to the combinator syntax.

The translation function

[[−]] : µExp
C
→ cTermC

is defined recursively as follows, wherein the assignment of a combinator to a term t ∈ µTermC
is indexed by a variable that is fresh relative to all the variables which appear in t:

⋄ [[x]]y = idx,y,

⋄ if, for each x ∈ X , [[tx]]x is a translation of the term tx, then

[[a{tx |x ∈ X}]] = a(ϕ),

where a(ϕ) denotes the combinator corresponding to the simultaneous composition de-
termined by a ∈ C(X) and ϕ : x 7→ ([[tx]]x, x) (see (2.1.1)),

⋄ [[µx.c]]y = [[c[y/x]]], and

⋄ [[〈s | t〉]] = [[s]]x x◦y [[t]]y .

In order to show that [[−]] preserves the equalities from Figure 2.4, we introduce the follow-
ing notational conventions. For a command c : X (resp. term X | t) and a bijection σ : X ′ → X ,
we define

cσ := c[. . . , σ−1(x)/x, . . .] (resp. tσ := t[. . . , σ−1(x)/x, . . .])

as a simultaneous substitution (i.e. renaming) of the variables from the set X (guided by σ).
One of the basic properties of the introduced substitution is the equality

(µa.c)σ = µa.cσa

(for the definition of σa, see the paragraph Notation and conventions in the Introduction).

The way cσ is defined indicates that its translation should be the combinator [[c]]σ : X ′.
The following lemma ensures that this is exactly the case. In its statement, [[−]]X denotes the
restriction of [[−]] on µExp

C
(X). Furthermore, for a bijection σ : X ′ → X , (−)σ : cTermC(X) →

cTermC(X
′) will be the mapping of combinators canonically induced by C(σ) : C(X)→ C(X ′).

Lemma 2.30. For a bijection σ : X ′ → X , t ∈ µTermC(X) and c ∈ µCommC(X), the following two
equalities hold:

[[tσ]]y = [[t]]
σy
y and [[cσ]] = [[c]]σ.

Proof. By structural induction on t and c. �

2.4. µ-syntax 35

In order to verify that [[−]] is sound, we shall also need the following result.

Lemma 2.31 (Substitution lemma). Let X ∩ Y = ∅, t ∈ µTermC(Y) and x ∈ X . Then, for s ∈
µTermC(X) and c ∈ µCommC(X), the following two equalities hold:

[[s[t/x]]]u = [[s]]u x◦v [[t]]v and [[c[t/x]]] = [[c]] x◦v [[t]]v.

Proof. By structural induction on t.

If t is a variable, say y, then, by (U2) and (EQ), we get

[[s[y/x]]]u = [[sid
y/x
X]]u = [[s]]u

id
y/x
X = [[s]]u x◦v idv,y = [[s]]u x◦v [[y]]v ,

and, analogously,

[[c[y/x]]] = [[cid
y/x
X]] = [[c]]id

y/x
X = [[c]] x◦z idz,y = [[c]] x◦z [[y]]z.

If t = µy.c1, we proceed by induction on the structure of s, i.e. c.

• If s = x, then, again by (U2) and (EQ), we get

[[x[µy.c1/x]]]u = [[µy.c1]]u = [[c1[u/y]]] = [[c
id

u/y
Y

1]]

= [[c1]]
id

u/y
Y = [[c1]] y◦x idx,u = [[c1]] y◦x [[x]]u = [[c1[u/y]]] u◦x [[x]]u.

• Next, assume that c : X ∪ {z} satisfies the equality and let s = µz.c. Denote U = X\{x} ∪
{z} ∪ Y . By (U2) and (EQ), we have

[[µz.c[µy.c1/x]]]u = [[µz.(c[µy.c1/x])]]u = [[c[µy.c1/x][u/z]]] = [[c[µy.c1/x]
id

u/z
U]]

= [[c[µy.c1/x]]]
id

u/z
U = ([[c]] x◦y [[c1]])

id
u/z
U = [[c]]id

u/z
U x◦y [[c1]]

= [[c[u/z]]] x◦v [[c1[v/y]]] = [[µv.c]]u x◦v [[c1[v/y]]].

• Let X = X1 ∪X2 and suppose that c = 〈t1 | t2〉, where X1 | t1 and X2 | t2 satisfy the claim.
Without loss of generality, we can assume that x ∈ X2. By (A1), we have

[[〈t1 | t2〉[µy.c1/x]]] = [[〈t1 | t2[µy.c1/x]〉]] = [[t1]]u u◦v [[t2[µy.c1/x]]]v

= [[t1]]u u◦v ([[t2]]v x◦w [[µy.c1]]w) = ([[t1]]u u◦u [[t2]]u) x◦w [[µy.c1]]w

= [[〈t1 | t2〉]] x◦v [[µy.c1]]v.

• Finally, let X =
⋃

z∈Z Yz and suppose that c = a{tz | z ∈ Z}, where for all z ∈ Z, Yz | tz
satisfy the claim. Suppose, moreover, that for u ∈ Z, x ∈ Yu. Then, on one hand, we have

[[a{tz | z ∈ Z}[µy.c1/x]]] = [[a{{tz | z ∈ Z\{u}} ∪ {tu[µy.c1/x]}}]] = a(ϕ),

where ϕ : z 7→ ([[tz]]z, z), for all z ∈ Z\{u}, and ϕ : u 7→ ([[tu[µy.c1/x]]]u, u). On the other
hand,

[[a{tz | z ∈ Z}]] x◦v [[µy.c1]]v = a(ψ1) x◦v [[µy.c1]]v,

where ψ1 : z 7→ ([[tz]]z, z), for all z ∈ Z. By Lemma 2.1,

a(ψ1) x◦v [[µy.c1]]v = a(ψ2),

where ψ2 = ψ1 on Z\{a}, and ψ2 : u 7→ ([[tu]]u x◦v [[µy.c1]]v, u). Hence, we need to prove
that

[[tu[µy.c1/x]]]u = [[tu]]u x◦v [[µy.c1]]v,

but this equality is exactly the induction hypothesis for the term tu.

36 Chapter 2. A formal language for cyclic operads

�

Let =µ (resp. =) be the smallest equivalence relation on µExp
C

(resp. cTermC) generated by
the equations of µ-syntax (resp. by the equations of Definition 1.4).

Theorem 2.32. The translation function [[−]] : µExp
C
→ cTermC is well-defined, i.e., it induces a map

from µExp
C
/=µ to cTermC/=. Moreover, the induced map is a bijection.

Proof. The equation (MU1) is valid in the world of combinators, as it gets translated to (CO). As
for (MU2), for a command c : X , by Lemma 2.31, we get:

[[〈µx.c | t〉]] = [[µx.c]]u u◦v [[t]]v = [[c[u/x]]] u◦v [[t]]v = [[c]]id
u/x
X

u◦v [[t]]v = [[c]] x◦v [[t]]v = [[c[t/x]]].

For (MU3) and (MU4), we have

[[µx.c]]u = [[c[u/x]]] = [[c[y/x][u/y]]] = [[µy.c[y/x]]]u

and
[[aσ{tσ(y) | y ∈ Y }]] = aσ(ϕ′) = aσ(ϕ ◦ σ) = a(ϕ) = [[a{tx |x ∈ X}]],

where ϕ′ : y 7→ ([[tσ(y)]]σ(y), σ(y)) and ϕ : σ(y) 7→ ([[tσ(y)]]σ(y), σ(y)), respectively.

The inverse translation is obtained via the correspondence (−)x◦y(−) 7→ 〈µx. |µy. 〉.
�

We define the interpretation of the µ-syntax in an arbitrary cyclic operad C as the composi-
tion

[[[−]]]C : µExp
C
→ C, (2.4.1)

where the interpretation [−]C : cTermC → C arises as explained in Section 2.2.

2.4.4 µ-syntax does the job!

The theorem below puts the µ-syntax in line with already established frameworks for defining
a cyclic operad.

Theorem 2.33. The correspondence ΦX : µCommC(X)/=µ → TC(X), canonically induced from the
interpretation

[[[−]]]TC : µExp
C
→ TC,

of the µ-syntax in the free cyclic operad TC (defined in §2.3.3), is a bijection.

The proof of Theorem 2.33 goes through a new equality=′ onµCommnf
C
(X), as well as suitably

tailored decompositions of unrooted trees, necessary for establishing the injectivity of ΦX . We
first describe these decompositions and the equality =′ and then prove the theorem.

“Pruning” of unrooted trees

We describe an algorithm that takes an ordinary unrooted tree T , a corolla a ∈ Cor(T) and a
variable v ∈ FV (a)\FV (T), and returns a proper subtree Tv of T , the subtree “plucked” from
a at the junction of v and σ(v), where σ is the involution of T . In the sequel, for an arbitrary
corolla b ∈ Cor(T) andw ∈ FV (b)\FV (T), Sw(b) will denote the corolla adjacent to b along the
edge (w, σ(w)) (if such a corolla exists).

We first specify how to generate the set Cor(Tv)
+ of pairs of a corolla of Tv and one of its

free variables, by the following formal rules:

(Sv(a), σ(v)) ∈ Cor(Tv)
+

(b, u) ∈ Cor(Tv)
+ w ∈ FV (b)\(FV (T) ∪ {u})

(Sw(b), σ(x)) ∈ Cor(Tv)
+

2.4. µ-syntax 37

This formal system has the following properties.

Remark 2.34. Each element (Sw(b), σ(w)) ∈ Cor(Tv)
+ is such that Sw(b) is adjacent to b in T . For

each (b, u) ∈ Cor(Tv)
+, we have b 6= a. Intuitively, by iterative application of the second rule, a way to

traverse a branch of the tree T is determined.

We obtain the set of corollas of Tv by erasing from the elements of Cor(Tv)
+ the data about

the distinguished free variables, i.e. we define

Cor(Tv) = {b | (b, u) ∈ Cor(Tv)
+ for some u ∈ FV (b)}.

The involution σTv of Tv is defined as

σTv(z) =

{

σ(z) if z ∈
(
⋃

b∈Cor(Tv)
FV (b)

)

\σ(v)

z if z = σ(v) .

We shall denote the algorithm with P, and the result P(T , a, v) of instatiating P on a tree T ,
a corolla a ∈ Cor(T), and a variable v ∈ FV (a)\FV (T) will often be denoted as Tv, as we have
just done above. The following claim guarantees that P is correct.

Lemma 2.35. For an unrooted tree T , a ∈ Cor(T) and v ∈ FV (a)\FV (T), Tv is a proper subtree of
T .

Proof. By the construction, we have that Cor(Tv) ⊆ Cor(T) and that Tv is connected. By Re-
mark 2.34, it follows that Cor(Tv) is a proper subset of Cor(T). Finally, since σTv = σ on
V (Tv)\FV (Tv), we can conclude that Tv is indeed a subtree of T . �

Lemma 2.36. For an unrooted tree T and a ∈ Cor(T), the set of unrooted trees P(T , a), defined by

P(T , a) = {{a(y1, . . . , yn); idY }} ∪ {Tv | v ∈ Y \FV (T)},

where Y = {y1, . . . , yn}, is a decomposition of T .

Proof. The proof goes by induction on the cardinality of Y \FV (T). �

From the point of view of the appropriate composition of classes of trees, Lemma 2.36 gives
us the following result.

Corollary 2.37. Let T be an unrooted tree and let a ∈ Cor(T). Suppose that FV (T) = X and
FV (a) = Y , where Y = {y1, . . . , yn}. Let I = {i1, . . . ik} = {i ∈ {1, . . . , n} | yi ∈ FV (a)\X}.
Then, if P(T , a) = {{a(y1, . . . , yn); idY }} ∪ {Tyi | i ∈ I}, we have that

[T]α = (([{a(y1, . . . , yn); idY }]α yi1•σ(yi1) [Tyi1]α) · · ·) yik•σ(yik) [Tyik]α .

Proof. Given that the trees from P(T , a) have mutually disjoint sets of corollas and variables,
the equality holds since the composition on the right-hand can be “calculated” without any
“precautionary” renaming. �

Lemma 2.38. If an unrooted tree T has at least two corollas, then there exists c ∈ Cor(T), such that
FV (c)\FV (T) is a singleton.

Proof. Suppose that FV (T) = X and let σ be the involution of T . We proceed by induction on
the number n of corollas of T .

For the base case, suppose that Cor(T) = {a, b}. Then there exist x ∈ FV (a) and y ∈ FV (b)
such that σ(x) = y, while all other variables of T are fixpoints of σ. Hence,FV (a)\FV (T) = {x}
and FV (b)\FV (T) = {y}, i.e. a and b both satisfy the claim.

Assume now that T has n corollas, where n > 2. Let a ∈ Cor(T), FV (a) = Y = {y1, . . . , yn},

38 Chapter 2. A formal language for cyclic operads

be such that there exists v ∈ Y \X . If v is the unique such variable, we are done. If not, consider
the P(T , a) = {{a(y1, . . . , yn); idY }} ∪ {Tu |u ∈ Y \X} of T . If Cor(Tv) = {Sv(a)}, by the
definition of P, we know that FV (Sv(a))\X = {σ(v)}. Therefore, since Cor(Tv) ⊆ Cor(T),
Sv(a) is a corolla that satisfies the claim. If Tv contains more than one corolla, by the induction
hypothesis on Tv, we get b ∈ Cor(Tv) such that FV (b)\FV (Tv) = {w}. Since FV (b)\X ⊆
FV (b)\FV (Tv), we know that either FV (b)\X = {w}, or FV (b)\X = ∅. The latter is impossible
because b would be the only corolla of T . �

Let T and c be as in Lemma 2.38 and let FV (c)\FV (T) = {v}. We shall denote with T/c
the unrooted tree determined by Cor(T/c) = Cor(T)\{c} and its involution σ/c, which agrees
with the involution σ of T everywhere, except on σ(v), which is a fixpoint of σ/c. Lemma 2.38
guarantees that T/c is well-defined.

We now establish a non-inductive characterisation of the output of the algorithm P.

Lemma 2.39. Let T be an unrooted tree with involution σ and let a ∈ Cor(T) and v ∈ FV (a)\FV (T).
The following properties are equivalent for a subtree T ′ of T :

1. T ′ = P(T , a, v),

2. σ(v) ∈ FV (T ′) and FV (T ′)\{σ(v)} ⊆ FV (T).

Proof. That (1) implies (2) is clear.

We prove that (2) implies (1) by induction on the number n of corollas of T ′.

If n = 1, then, as σ(v) ∈ FV (T ′), we have that Sv(a) is the only corolla of T ′, and the
conclusion follows since, by the assumption, FV (T ′)\{σ(v)} = FV (Sv(a))\{σ(v)} ⊆ X , i.e.
FV (Sv(a))\{X ∪ {σ(v)}} = ∅.

Suppose that n ≥ 2, and let, by Lemma 2.38, c ∈ Cor(T ′) be such that FV (c)\FV (T ′) is
a singleton, say {yi}, wherein FV (c) = Y = {y1, . . . , yn}. If c = Sv(a), then it follows easily
that T ′ = Tv. If not, by applying the induction hypothesis on T ′

/c, we get that T ′
/c = P(T/c, a, v).

Observe that (Syi(c), w) ∈ Cor(T ′
/c)

+, for some w ∈ FV (Syi(c)) different from σ(u). By in-

stantiating P on (Syi(c), w) and σ(u), we get the pair (c, yi), and the claim follows because
Y \(FV (T) ∪ {yi}) = ∅ (i.e. the algorithm stops) and because T ′

/c ∪ {c(y1, . . . , yn); idY } is a

decomposition of T ′. �

For the following two lemmas, recall the definition of the simultaneous composition (2.1.1)
for entries-only cyclic operads. We shall instantiate it on the cyclic operad of classes of unrooted
trees, described in §2.3.3.

Lemma 2.40. Let a ∈ C(X), where X = {x1, . . . , xn}, and let, for all xi ∈ X , γ : xi 7→ ([Txi]α, xi)
be an assignment for which the simultaneous composition [{a(x1, . . . , xn); idX}]α(γ) is well-defined.
Then the following properties hold.

a) The α-equivalence class [{a(x1, . . . , xn); idX}]α(γ) admits a representative T, such that a ∈
Cor(T).

b) If T is a representative of [{a(x1, . . . , xn); idX}]α(γ), such that a ∈ Cor(T), and if σ is the invo-
lution of T, then each class [Txi]α admits the unrooted tree P(T, a, xi)

ρi , where ρi renames σ(xi)
to xi, as a representative.

Proof. Observe that there are two stages of renaming involved in forming the simultaneous com-
position [{a(x1, . . . , xn); idX}]α(γ). By (2.1.1), we first rename the free variables of the corolla a,
obtaining in this way the composition

(· · · ([{aσ(x′1, . . . , x
′
n); idX′}]α x′1•x1 [Tx1]α) · · ·) x′n•xn [Txn]α,

2.4. µ-syntax 39

where X ′ = {x′1, . . . , x
′
n} and σ : X ′ → X is defined by σ(x′i) = xi, which is then “calculated”

by the definition of x•y from §2.3.3. This calculation involves the renaming of variables of all the
trees from the above composition, in such a way that the resulting trees have mutually disjoint
sets of variables, i.e. it goes though the simultaneous composition

(· · · ([{aσ◦τ (y1, . . . , yn); idY }]α y′1• y1 [T
τ1∪idFV (Txi)\{xi}

x1]α) · · ·) y′n• yn [T
τn∪idFV (Txn)\{xn}
xn]α,

whereY = {y1, . . . , yn}, τ : Y → X ′ is defined by τ(yi) = x′i and each τi : Vi → (V (Txi)\FV (Txi))
∪ {xi} is such that τi(yi) = xi. The resulting class now has as a representative the tree T′, such
that

Cor(T′) = {aσ◦τ (y1, . . . , yn)} ∪
⋃

1≤i≤n

Cor(Tτixi)

and whose involution σ′ is defined in the obvious way.

The first claim holds, since, thanks to the equivariance axiom (EQ) for x•y, we can turn T′

into an unrooted tree T that has a as a corolla, by “undoing” the renaming σ ◦τ . Clearly, if some
variable xi appears in T′, but did not originally come from the corolla a, this variable has to be
renamed too, in order to ensure that all the variables of T are distinct. Therefore,

Cor(T) = {a(x1, . . . , xn)} ∪
⋃

1≤i≤n

Cor((Tτixi)
κi∪idFV (Txi)\{xi}),

where κi : Ui ∪{zi} → Vi ∪{yi} is such that κi(zi) = yi and the distinctness requirement for the
variables of T is satisfied. The involution σ of T is defined from σ′ in the obvious way.

For the second claim, fix an i ∈ {1, . . . , n}. Observe that we have that

(Tτixi)
νi
xi =α Txi ,

where νi renames yi to xi. Also, we have that

T
τi
xi =α ((Tτixi)

κi∪idFV (Txi)\{xi})πi ,

where πi renames zi to yi. Therefore,

(((Tτixi)
κi∪idFV (Txi)\{xi})πi)νi =α Txi ,

i.e. each class [Txi]α admits as a representative ((Tτixi)
κi∪idFV (Txi)\{xi})ρi , where ρi renames zi =

σ(xi) to xi. Observe that (Tτixi)
κi∪idFV (Txi)\{xi} is a subtree of T . That we indeed have that

(Tτixi)
κi∪idFV (Txi)\{xi} = P(T, a, xi)

is clear by considering the non-inductive criterion from Lemma 2.39: σ(xi) is a free variable of
the tree on the left-hand side, and all the remaining free variables of that tree are free variables
of T . �

Lemma 2.41. Let a ∈ C(X), where X = {x1, . . . , xn}, and let, for all xi ∈ X , γ : xi 7→ ([Txi]α, xi)
and τ : xi 7→ ([T ′

xi]α, x̃i) be assignments for which the simultaneous compositions

[{a(x1, . . . , xn); idX}]α(γ) and [{a(x1, . . . , xn); idX}]α(τ)

are well-defined. Then, if [{a(x1, . . . , xn); idX}]α(γ) = [{a(x1, . . . , xn); idX}]α(τ), we have that
[Txi]

κ
α = [T ′

xi]α for all xi ∈ X, where κ renames xi to x̃i.

40 Chapter 2. A formal language for cyclic operads

Proof. By Lemma 2.40(a), for

[{a(x1, . . . , xn); idX}]α(γ) = [{a(x1, . . . , xn); idX}]α(τ) = [T]α,

we can assume that the representative T is such that it has a ∈ Cor(T). Let σ be the involution
of T. By applying twice Lemma 2.40(b), we get that

[Txi]
κ
α = [P(T, a, xi)

ρi]κα = [T ′
xi]α,

where ρi renames σ(xi) to xi, which proves the claim. �

The equivalence relation =′ on µCommnf
C

Let a ∈ C(X) and let σ : x 7→ tx be an association of terms to variables from X , such that the
command a{σ} is well-typed. The equivalence relation =′ is the smallest equivalence relation
generated by equalities

a{σ} =′ c[µx.a{σ[x/x]}/y]

where σ(x) = µy.c and σ[x/x] denotes the same association as σ, except for x, to which it as-
sociates x itself. We, moreover, assume that =′ is congruent with respect to (MU3), (MU4) and
substitution.

Remark 2.42. Observe that, if a{σ} =′ c[µx.a{σ[x/x]}/y], and if a{σ} is a normal form, then this is

also true for the command c[µx.a{σ[x/x]}/y]. Therefore, =′ is well-defined on µCommnf
C

.

The intuition behind these equalities is again about equating commands that reflect two
ways to build the same unrooted tree.

Example 2.43. Consider the unrooted tree T = {a(x1, x2, x3, x4), b(y1, y2, y3, y4, y5);σ}, where
σ = (x1 y2), represented pictorially as

a

bx2

x4

x3

y1 y3

y4

y5
x1
y2

The commands equated by=′ reflect the two possible ways to build T by means of simultaneous
grafting: we could pick either the corolla a and graft to it the surrounding trees, or we can do
the same by choosing first the corolla b. In the language of the µ-syntax, the two constructions
are described by the left hand side and the right hand side of the equality

a{µy2.b{y1, y2, y3, y4, y5}, x2, x3, x4} =
′ b{y1, µx1.a{x1, x2, x3, x4}, y3, y4, y5},

respectively. Observe that, from the tree-wise perspective, =′ enables us to “move between two
adjacent corollas”, i.e. it enables us to “move along a path in a tree”. As we shall see, this feature
will be crucial for the proof of injectivity of Theorem 2.33. �

The proof of the following lemma shows that =′ is a “macro” derivable from =µ.

Lemma 2.44. For any c1, c2 ∈ µComm
nf
C

, if c1 =
′ c2, then c1 =µ c2.

Proof. If a{σ} =′ c[µx.a{σ[x/x]}/y], then σ(x) = µy.c, which justifies the following sequence of
equalities:

a{σ} =µ 〈µx.a{σ[x/x]} |µy.c〉 =µ 〈µy.c |µx.a{σ[x/x]}〉 =µ c[µx.a{σ[x/x]}/y].
�

2.4. µ-syntax 41

The equality =′ (denoted differently) appears in the work [Lam07] of Lamarche, where it is
called Adjunction and used in the context of the so-called reversible terms. Although the Adjunc-
tion rule materialises the same intuition about unrooted trees, there, unlike in this thesis, it is
not derived from a more primitive notion of equality.

The proof of Theorem 2.33

We first “unfold” the definition of the interpretation function [[[−]]]TC , denoted from now on
simply with Φ:

• Φ y(x) = [{(x, y); id{x,y}}]α,

• if, for each xi ∈ {x1, . . . , xn}, Φ xi(txi) = [Txi]α, then

Φ(a{tx1 , . . . , txn}) = [{a(x1, . . . , xn); idX}]α(ϕ),

where ϕ : xi 7→ ([Txi]α, xi) (see (2.1.1)),

• Φ y(µx.c) = (Φ(c))κ, where κ renames x to y, and

• if Φ x(s) = [Ts]α and Φ y(t) = [Tt]α, then Φ(〈s | t〉) = [Ts]α x•y [Tt]α,

where the assignment of an α-equivalence class of unrooted trees to a term t ∈ µTermC is in-
dexed by a fresh variable y involved in the corresponding interpretation [[t]]y.

By Theorem 2.32, Φ is well-defined. We prove that it is both injective and surjective.

Surjectivity. Suppose given an α-equivalence class [T]α ∈ TC(X). If T = {(x, y); id{x,y}},
then Φ(〈x | y〉) = [{(x, y); id{x,y}}]α.

Suppose now that T is an ordinary unrooted tree. We proceed by induction on the number
k of corollas of T. Let a ∈ Cor(T) be such that FV (a) = Y , where Y = {y1, . . . , yn}.

If a is the only corolla of T , then Φ(a{y1, . . . , yn}) = [{a(y1, . . . , yn); idY }]α.
Suppose that a is not the only corolla of T , i.e. that k ≥ 2, and let σ be the involution of T .

Let I = {i ∈ {1, . . . , n} | yi ∈ FV (a)\X} and J = {1, . . . , n}\I . By the induction hypothesis for
each P(T , a, yi) = Tyi (recall from §2.4.4 that P is the “pruning” algorithm), for i ∈ I , we get a
set

{ci ∈ µCommC | i ∈ I and Φ(ci) = [Tyi]α}.

We now set for all i ∈ I , tyi = µσ(yi).ci, and for all j ∈ J , tyj = yj , and we claim that
Φ(a{ty1 , . . . , tyn}) = [T]α. By the definition of Φ, we have

Φ(a{tyk | k ∈ {1, . . . , n}}) = [{a(y1, . . . , yn); idX}]α(ϕ),

where

ϕ : yk 7→

{

([Tyi]
κi
α , zi) if k = i for some i ∈ I

([{(yj , yj); id{yj ,yj}}]α, xj) if k = j for some j ∈ J

with [Tyi]
κi
α = Φ zi(µσ(yi).ci) being the class associated to the term µσ(yi).ci with respect to the

interpretation under the fresh variable zi. Therefore, if I = {i1, . . . , imI} and J = {j1, . . . , jmJ},
by the axiom (U1), Φ(a{tyk | k ∈ {1, . . . , n}}) is equal to

(· · · ([{a(y1, . . . , yn); idY }]
κj1κj2 ···κjmJ
α yi1

•zi1 [Tyi1]
κi1
α) · · ·) yimI

•zimI
[TyimI

]
κimI
α

where each κjm , 1 ≤ m ≤ mJ is the renaming of yjk to yjk , i.e. the identity on Y , and each κim ,
1 ≤ m ≤ mI , is the renaming of zik to σ(xik). Finally, by (EQ), we have

Φ(a{tyk | k ∈ {1, . . . , n}}) = (([{a(y1, . . . , yn); idY }]α yi1•σ(yi1) [Tyi1]α) · · ·) yimI
•σ(yimI)

[TyimI
]α,

42 Chapter 2. A formal language for cyclic operads

and, consequently, by Corollary 2.37, that Φ(a{tyk | k ∈ {1, . . . , n}}) = [T]α.

Injectivity. Notice that, in order to establish the injectivity of Φ, it suffices to prove it for

commands c1, c2 ∈ µCommnf
C

. Indeed, since for an arbitrary command c, by Theorem 2.32, we

know that [[c]] = [[nf (c)]], and consequently that Φ(c) = Φ(nf (c)), then, from the equality

Φ(nf (c1)) = Φ(c1) = Φ(c2) = Φ(nf (c2)),

by the injectivity for commands that are normal forms, we can conclude that

c1 =µ nf (c1) =µ nf (c2) =µ c2.

By Lemma 2.44, the injectivity for normal forms follows if we show that, if Φ(c1) = Φ(c2), then
c1 =

′ c2. We continue by comparing the head symbols of c1 and c2.

If c1 and c2 have the same head symbol, we proceed by induction on the structure of c1 and
c2. Suppose that a ∈ C(X), where X = {x1, . . . , xn}, and that c1 = a{s1, . . . , sn} = a{σ} and
c2 = a{t1, . . . , tn} = a{σ′}. The assumption Φ(c1) = Φ(c2) means that

[{a(x1, . . . , xn); idX}]α(ϕ) = [{a(x1, . . . , xn); idX}]α(ψ),

where ϕ : xi 7→ (Φ x̃i(si), x̃i) and ψ : xi 7→ (Φ xi(ti), xi), and consequently, by Lemma 2.41,
that for all xi ∈ X , (Φ x̃i(si))

κi = Φ xi(ti), where κi renames x̃i to xi. The claim holds by the
reflexivity of =′ if all si and ti are variables: if si = u and ti = v, then

[{(u, xi); id{u,xi}}]α = (Φ x̃i(u))
κi = Φ xi(v) = [{(v, xi); id{v,xi}}]α,

and, therefore, it must be the case that u = v.
Suppose, therefore, that si = µu.ci and ti = µv.c′i. We then have

[[cτ1i]] = [[ci]]
τ1 = [[si]]

κi
x̃i

= [[ti]]x = [[c′i]]
τ2 = [[c′τ2i]],

and consequently Φ(cτ1i) = Φ(c′τ2i), where τ1 renames u to xi and τ2 renames v to xi. By the
induction hypothesis, we now have cτ1i =′ c′τ2i and, consequently, we get that

a{t1, . . . , tn} =′ ci[µxi.a{σ[xi/xi]}/u] = cτ1i [µxi.a{σ[xi/xi]}/xi]

=′ c′τ2i [µxi.a{σ[xi/xi]}/xi] = c′i[µxi.a{σ[xi/xi]}/v] =′ a{s1, . . . , sn}.

Suppose now that c1 and c2 have different head symbols, i.e. that for some a ∈ C(X) and
b ∈ C(Y), where X = {x1, . . . , xn} and Y = {y1, . . . , ym}, we have c1 = a{s1, . . . , sn} = a{σ1}
and c2 = b{t1, . . . , tm} = b{σ2}, and let Φ(c1) = [Tc1]α and Φ(c2) = [Tc2]α. Let T be a represen-
tative of [Tc1]α = [Tc2]α. Observe that two groups of renamings feature in the transitions from
c1 and c2 to T: the first one contains the renamings specified by the definitions of the simulta-
neous compositions Φ(c1) and Φ(c2), and the second one contains the renamings given by the
α-equivalence of Tc1 and T, and Tc2 and T. However, by (MU4), all the renamings of parameters
and variables of c1 and c2 made in defining T can be also performed on c1 and c2 themselves,
leading to commands c′1 =µ c1 and c′2 =µ c2, such that Φ(c′1) = Φ(c′2) = [T]α and such that T
shares the same sets of parameters and variables with both c′1 and c′2. Hence, we can assume that
T already shares the same sets of parameters and variables with c1 and c2. This, in particular,
means that a, b ∈ Cor(T).

Let x ∈ X be such that b ∈ Cor(P(T, a, x)). By the construction of T, the parameter b ap-
pears in σ1(x) = µu.c. We define the distance between a and b in c1 as the natural number dc1(a, b)
determined as follows.

• If b is the head symbol of c, then dc1(a, b) = 1.

2.5. The equivalence established 43

• If h is the head symbol of c, h 6= b, then dc1(a, b) = dc(h, b) + 1.

We prove that c1 =′ c2 by induction on dc1(a, b). If dc1(a, b) = 1, then, for some y ∈ FV (b), we
have that σ1(x) = µy.b{σ2[y/y]}. Therefore,

a{σ1} =′ b{σ2[y/y]}[µx.a{σ1[x/x]}/y]

= b{σ2[µx.a{σ1[x/x]}/y]}

=′ b{σ2}.

If dc1(a, b) ≥ 2, then, since dc1(a, h) = 1 (where h is as above), we have that c1 =′

c[µx.a{σ1[x/x]}/u]. On the other hand, by the induction hypothesis for dc(h, b) < n, we have
that c2 =

′ c[µx.a{σ1[x/x]}/u], and the conclusion follows by the transitivity of =′. The iterative
application of the equality =′, implicit in the induction argument, which reduces the distance
between a and b, can be illustrated as follows

a

b

h
c

···

a

=′

b

h
c

···

a

=′

b

h
c

···

a

=′

b

h
c

···

This completes the proof of Theorem 2.33.

Note that we have in fact two bijections: µCommC(X)/=µ ≃ µCommnf
C
(X)/=′ ≃ TC(X), the

first one being induced via normal forms of : we have that nf (c1) =
′ nf (c2) implies c1 =µ c2,

and conversely, if c1 =µ c2, then Φ(nf (c1) = Φ(nf (c2)) implies nf (c1) =
′ nf (c2).

2.5 The equivalence established

We finally show how the µ-syntax, together with the syntactic formalism of unrooted trees
suited to it, allows us to prove Theorem 2.22.

Suppose that (C, δ) is an M-algebra. We build a cyclic operad, as described by Definition 1.4,
as follows.

We distinguish the identities, by setting idx,y = δ{x,y}([{(x, y); id{x,y}}]α).
The definition of the partial composition operation x◦y is derived by considering restrictions

of δ to unrooted trees with two corollas:

a

bx1x2

x3

x4
x5

x6

y4
y3

y1

y2
x

y
α
7−→ a x◦y b

Formally, for a ∈ C(X) and b ∈ C(Y), the partial composition operation

x◦y : C(X)× C(Y)→ C(X\{x} ∪ Y \{y})

is characterised via δX\{x}∪Y \{y} : M(C)(X\{x} ∪ Y \{y})→ C(X\{x} ∪ Y \{y}) as

a x◦y b = δX\{x}∪Y \{y}([{a(x, . . .); idX}]α x•y [{b(y, . . .); idY }]α),

where x•y is the operation on (classes of) unrooted trees defined in §2.3.3.
As a structure morphism of M-algebra (C, δ), δ satisfies the coherence conditions given by

commutations of the following two diagrams:

44 Chapter 2. A formal language for cyclic operads

MM(C) M(C)

M(C) C

Mδ

µC δ

δ

C M(C)

C

ηC

idC δ

called the multiplication and the unit law for δ, which allows us to verify the axioms from Def-
inition 1.4 as follows.

For the proof of (A1), let a and b be like above, let c ∈ C(Z), z ∈ Z and u ∈ Y . Suppose
that a, b and c are all different from identity and that X , Y and Z are mutually disjoint (only to
avoid the renaming technicalities). We will chase the multiplication diagram above two times,
starting with two-level unrooted trees

T1 = {[{a(x, . . .), b(y, u, . . .);σ
′
1}]α, [{c(z, . . .); idZ}]α;σ1}

and
T2 = {[{a(x, . . .); idX}]α, [{b(y, u, . . .), c(z, . . .);σ

′
2}]α;σ2},

where σ′1 = (x y), σ1 = (u z), σ′2 = (u z) and σ2 = (x y). If we start with T1, then, by
chasing the diagram to the right-down, the action of Mδ corresponds to the action of δ on
[{a(x, . . .), b(y, u, . . .);σ′1}]α and [{c(z, . . .); idZ}]α separately. Followed by the action of δ again,
we get the following sequence

T1
Mδ
7−→ [{(a x◦y b)(u, . . .), c(z, . . .);σ}]α

δ
7−→ (a x◦y b) u◦z c.

In the other direction, the action of the monad multiplication flattens T1, the resulting tree al-
ready being in normal form. Followed by the action of δ, we obtain the sequence:

T1
µC
7−→ [{a(x, . . .), b(y, u, . . .), c(z, . . .);σ}]α

δ
7−→ δ([{a(x, . . .), b(y, u, . . .), c(z, . . .);σ}]α).

Hence,
(a x◦y b) u◦z c = δ([{a(x, . . .), b(y, u, . . .), c(z, . . .);σ}]α).

The associativity follows since the diagram chasing with respect to T2 results in

a x◦y (b u◦z c) = δ([{a(x, . . .), b(y, u, . . .), c(z, . . .);σ}]α).

The axiom (CO) follows directly by the commutativity of x•y.

The axiom (EQ) holds by the equivariance of x•y and the naturality of η and δ. For σ1, σ2
and σ as in (EQ), and denoting Z = X ′\{σ−1

1 (x)} ∪ Y ′\{σ−1
2 (y)}, we have

aσ1 σ−1
1 (x)◦σ−1

2 (y) b
σ2 = δZ(ηCX′(aσ1) σ−1

1 (x)•σ−1
2 (y) ηCY ′(bσ2))

= δZ(ηX(a)
σ1

σ−1
1 (x)•σ−1

2 (y) ηY (b)
σ2)

= δZ((ηX(a) x•y ηY (b))
σ)

= δZ(ηX(a) x•y ηY (b))
σ

= (a x◦y b)
σ.

To prove (U1), we chase the multiplication law of δ, starting from the two-level tree

T = {[{(y, z); idy,z}]α, [{a(x, . . .); idX}]α;σ},

where σ = (x y). By going to the right-down, we get the sequence

T
Mδ
7−→ [{idy,z(y, z), a(x, . . .);σ}]α

δ
7−→ idy,z y◦x a,

2.5. The equivalence established 45

and, in the other direction, denoting X ′ = X\{x} ∪ {z}, we get

T
µC
7−→ [{aκ(z, . . .); idX′}]α

δ
7−→ δ([{aκ(z, . . .); idX′}]α),

where κ renames x to z. The equality idy,z y◦x a = aκ follows, since, by the definition of the unit
of the monad M, and by the unit law of δ, for the result of the second sequence, we have

δ([{aκ(z, . . .); idX′}]α) = δ(ηCX′(a
κ)) = aκ.

For (UP), by the naturality of δ, for σ : {u, v} → {x, y}we have

idσx,y = δ{x,y}([{(x, y); id{x,y}}]α)
σ

= δ{u,v}([{(x, y); id{x,y}}]
σ
α)

= δ{u,v}([{(u, v); id{u,v}}]α)

= idu,v.

In the other direction, we define δ : M(C) → C as the map induced by the interpretation
of the µ-syntax in the cyclic operad C, i.e. by the composition of [[]] : µExpC → cTermC and
[]C : cTermC → C. Therefore, with Φ being defined as in the proof of Theorem 2.33, we set

δX([T]α) = [[[c]]]C, where c is any command of µExp
C

such that Φ(c) = T .

Note that this definition is valid by Theorem 2.33. We verify that δ satisfies the equations of an
M-algebra on simple examples. The general case follows naturally. Let

T = {[{a(x1, . . . , xn), b(y1, . . . , ym);σ1}]α, [{d(z1, . . . , zp); idZ}]α;σ}

be a two-level unrooted tree such that σ1(xi) = yj , and σ(yk) = zl, and suppose, say, that

Φ(a{t1, . . . , tn}) = [{a(x1, . . . , xn), b(y1, . . . , ym);σ1}]α

and
Φ(d{s1, . . . , sp}) = [{d(z1, . . . , zp); idZ}]α.

By chasing the multiplication diagram to the right-down, the action of Mδ provides the
interpretations of the commands that correspond to each of the corollas of T . Thus, setting
[[a{t1, . . . , tn}]] = a(ϕ) and [[d{s1, . . . , sp}]] = d(τ), we get that

Mδ([T]α) = {[a(ϕ)]C(x1, . . . , xi−1, xi+1, . . . , xn, y1, . . . , yj−1, yj+1, . . . , ym), [d(τ)]C(z1, . . . , zp);σ}.

If now
Φ([a(ϕ)]C{k1, . . . , kn+m−2}) = Mδ([T]α),

then, by setting [[[a(ϕ)]C{k1, . . . , kn+m−2}]] = [a(ϕ)]C(ψ), we get

δ(Mδ([T]α)) = [a(ϕ)(ψ)]C.

By chasing the multiplicaiton diagram to the down-right, we first get

µC([T]α) = [{a(x1, . . . , xn), b(y1, . . . , ym), d(z1, . . . , zp);σ}]α

We shall construct a command c, such that Φ(c) = µC(T), in the way guided by the choices
we made in chasing the diagram to the right-down. More precisely, in that direction, a was the
corolla of {a(x1, . . . , xn), b(y1, . . . , ym);σ1} chosen in constructing the corresponding command,
and d was the one for {d(z1, . . . , zp); idZ}, and then, in the next step, [a(ϕ)]C was the chosen

46 Chapter 2. A formal language for cyclic operads

corolla of Mδ([T]α). Therefore, we set c = a{σ}, where

σ(xi) = µyj .b{y1, . . . , yk−1, µzl.d{z1, . . . , zp}, yk+1, . . . , ym}.

Thus, setting [[a{σ}]] = a(ξ), we get

δ(µC(T)) = [a(ξ)]C

as a result of chasing the diagram to the down-right. The equality a(ϕ)(ψ) = a(ξ) follows by
Lemma 2.1.(b).

As for the unit diagram, if a ∈ C(X), where X = {x1, . . . , xn}, then ηCX(a) =
{a(x1, . . . , xn); idX}, and, since [{a(x1, . . . , xn); idX}]α = Φ(a{x1, . . . , xn}), we have that

δX(ηCX(f)) = [[[a{x1, . . . , xn}]]]C = a.

This completes the proof.

47

Chapter 3

Monoid-like definitions of cyclic
operads

In this chapter, we transform the two biased definitions of cyclic operads, Definition 1.4 (with
the alternative axiomatisation presented in Remark 1.8) and [Mar08, Proposition 42], into two
algebraic definitions of the form

a cyclic operad is a monoid-like object in a certain monoidal-like category,

by following the microcosm principle behind the algebraic definitions of operads, established
by Kelly [Kel05] and Fiore [Fio14]. Therefore, by the end of the chapter, we shall synthesise two
tables of the same kind as Table 3 from the Introduction, which accompany and describe more
explicitly the conceptual descriptions of the two algebraic definitons.

Residing in the category of Joyal’s species of structures of the form C : Bijop → Set, the alge-
braic definitions that we deliver are crafted for non-skeletal characterisations of cyclic operads.
Therefore, we first propose a non-skeletal version of [Mar08, Proposition 42]. We additionally
give two proofs of the equivalence between the entries-only and exchangeable-output defini-
tions (which, to the author’s knowledge, has been taken for granted in the literature): one by
comparing the usual biased definitions (Theorem 3.30), and the other by comparing two new
algebraic definitions (Theorem 3.35). Together with the proof of the equivalence between biased
and algebraic definitions of entries-only cyclic operads (Theorem 3.24), this makes a sequence of
equivalences that also justifies the algebraic definition of exchangeable-output cyclic operads.
An overview of the algebraic definitions that we introduce and the correspondences that we
make is given in Table 4 below.

Entries-only Exchangeable-output

Biased Definition 1.4 ⇐============⇒
Theorem 3.30

Definition 3.25

Theorem 3.24

~

w

w

�

Algebraic Definition 3.19
Theorem 3.35

⇐============⇒ Definition 3.31

Table 4: Algebraic definitions of cyclic operads

The plan of the chapter is as follows. Section 3.1 is an overview of the basic elements from
the theory of species of structures. In Section 3.2, we recall the existing algebraic definitions of
operads and indicate the microcosm principle behind them. Section 3.3 will be devoted to the
introduction of the algebraic definitions of cyclic operads (Definition 3.19 and Definition 3.31)
and of the biased non-skeletal version of [Mar08, Proposition 42] (Definition 3.25). Here we also
prove the three theorems from Table 4.

Throughout this chapter, we shall work to a large extent with compositions of multiple
canonical natural isomorphisms between functors. In order for such compositions not to look
too cumbersome, we shall often omit their indices.

48 Chapter 3. Monoid-like definitions of cyclic operads

3.1 The category of species of structures

The content of this section is to a great extent a review and a gathering of material coming from
[BLL08]. Certain isomorphisms, whose existence has been claimed in [BLL08], will be essential
for subsequent sections and we shall construct them explicitely.

3.1.1 Definition of species of structures

The notion of species of structures that we fix as primary corresponds to functors underlying
non-skeletal cyclic operads.

Definition 3.1. A species (of structures) is a functor S : Bijop → Set. �

In the remaining of the chapter, we shall refer to the functor category SetBijop as the category
of species and we shall denote it with Spec. For an arbitrary finite set X , an element f ∈ S(X)
will be referred to as an S-structure.

Notice that if S is a species and σ : Y → X is a bijection, then S(σ) : S(X) → S(Y) is
necessarily a bijection (with the inverse S(σ−1)).

The following family of species will be essential for the treatement of operadic units in the
subsequent sections.

Example 3.2. The species En, where n ≥ 0, called the cardinality n species, is defined by setting

En(X) =

{

{X} if X has n elements,

∅ otherwise.
�

An isomorphism between species is simply a natural isomorphism between functors. If
there exists an isomorphism from S to T , we say that they S and T are isomorphic and we write
S ≃ T .

3.1.2 Operations on species of structures

We now recall operations on species and their properties. Categorically speaking, every binary
operation is a bifunctor of the form Spec×Spec→ Spec, every unary operation is a functor of
the form Spec→ Spec and every property of an operation holds up to isomorphism of species.

We start with the analogues of the arithmetic operations of addition and multiplication.

Definition 3.3. Let S and T be species, X an arbitrary finite set and σ : Y → X a bijection. The
sum-species of S and T is the species S + T , defined by

(S + T)(X) = S(X) + T (X)

and

(S + T)(σ)(f) =

{

S(σ)(f) if f ∈ S(X)

T (σ)(f) if f ∈ T (X) .

The product-species of S and T is the species S · T defined by

(S · T)(X) =
∑

(X1,X2)

S(X1)× T (X2),

where the sum is taken over all binary decompositions (X1, X2) of X . The action of S · T on σ
is given as

(S · T)(σ)(f, g) = (S(σ1)(f), T (σ2)(g)),

where σi = σ|Xi , i = 1, 2. �

3.1. The category of species of structures 49

The isomorphisms from the following lemma are constructed straightforwardly.

Lemma 3.4. The addition and multiplication of species have the following properties.

1. The operation of addition is associative and commutative.

2. The product of species is associative and commutative. The cardinality 0 species E0 is neutral
element for the product of species. Therefore, for all species S, S · E0 ≃ E0 · S ≃ S.

Notation 3.5. We extend the notation f1+f2 and [f1, f2] (see the paragraph “Notations and conventions”
in Introduction) from functions to natural transformations. For natural transformations ψi : Si → Ti,
i = 1, 2,ψ1+ψ2 : S1+S2 → T1+T2 will denote the natural transformation determined by (ψ1+ψ2)X =
ψ1X + ψ2X . For natural transformations κi : Si → U , i = 1, 2, [κ1, κ2] : S1 + S2 → U will denote the
natural transformation defined as [κ1, κ2]X = [κ1X , κ2X]. With il and ir we shall denote the insertion
natural transformations il : S → S + T and ir : T → S + T , respectively.

We recall next the operation corresponding to the operation of substitution.

Definition 3.6. Let S and T be species and X an arbitrary finite set. The substitution product of
S and T is the species S ◦ T defined by

(S ◦ T)(X) =
∑

P

∑

φ:X→P

(

S(P)×
∏

p∈P

T (φ−1(p))

)/

≃

,

where P ranges over finite sets, φ : X → P ranges over (arbitrary) functions (fromX to P), and
≃ is the smallest equivalence relation generated by

(P, φ, f, (gp)p∈P) ≃ (P ′, τ ◦ φ, S(τ)(f), (gτ−1(p′))p′∈P ′),

where τ : P → P ′ is an arbitrary bijection. Note that φ is not surjective in general, i.e. that
a fiber φ−1(p) may be the empty set for some p ∈ P . For a bijection σ : Y → X and h =
(P, φ, f, (gp)p∈P) ∈ (S ◦ T)(X), the action of S ◦ T on σ is defined by

(S ◦ T)(σ)(h) = (P, φ ◦ σ, f, (gp)p∈P),

where gp = T (σ|φ
−1(p))(gp). �

Basic properties of the substitution product are given in the following lemma.

Lemma 3.7. The substitution product of species is associative and has the cardinality 1 species E1 as
neutral element.

Next comes the analogue of the operation of derivation.

Definition 3.8. The derivative of S is the species ∂S, defined by

(∂S)(X) = S(X ∪ {∗X}),

where ∗X 6∈ X . The action of ∂S on σ is defined by

(∂S)(σ)(f) = S(σ+)(f),

where σ+ : Y ∪ {∗Y } → X ∪ {∗X} is such that σ+(y) = σ(y) for y ∈ Y and σ+(∗Y) = ∗X . We
shall refer to σ+ as the ∂-extension of σ. �

We now introduce a natural isomorphism that will be used for the algebraic version of the
associativity axiom for entries-only cyclic operads. Let f ∈ ∂∂S(X) and let

εX : X ∪ {∗X , ∗X∪{∗X}} → X ∪ {∗X , ∗X∪{∗X}}

50 Chapter 3. Monoid-like definitions of cyclic operads

be the bijection which acts as the identity onX and such that εX(∗X) = ∗X∪{∗X} (and εX(∗X∪{∗X}) =
∗X). We define a natural transformation exS : ∂(∂S)→ ∂(∂S) by setting

exSX(f) = S(εX)(f).

We shall refer to exS as the exchange isomorphism, since its components exchange the two distin-
guished elements arising from the two-fold application of the operation of derivation.

The following lemma exibits isomorphisms between species that correspond to the rules of
the derivative of a sum and the derivative of a product of the classical differential calculus.

Lemma 3.9. For arbitrary species S and T , the following properties hold:

1. ∂(S + T) ≃ ∂S + ∂T , and

2. ∂(S · T) ≃ (∂S) · T + S · (∂T).

Proof. The isomorphism ς : ∂(S + T)→ ∂S + ∂T , establishing the first property, is the identity
natural transformation.

For the second property, we define an isomorphism ϕ : ∂(S · T) → (∂S) · T + S · (∂T). For
a finite set X , we have

∂(S · T)(X) =
∑

(X1,X2)
{(f, g) | f ∈ S(X1) and g ∈ T (X2)},

(∂S · T)(X) =
∑

(X′
1,X

′
2)
{(f, g) | f ∈ (∂S)(X ′

1) and g ∈ T (X ′
2)}, and

(S · ∂T)(X) =
∑

(X′
1,X

′
2)
{(f, g) | f ∈ S(X ′

1) and g ∈ (∂T)(X ′
2)},

where (X1, X2) is an arbitrary binary decomposition of the set X ∪ {∗X}, and (X ′
1, X

′
2) is an

arbitrary binary decomposition of the set X .

If (f, g) ∈ ∂(S · T)(X), where f ∈ S(X1) and g ∈ T (X2), and if ∗X ∈ X1, then (X ′
1, X

′
2) =

(X1\{∗X}, X2) is a binary decomposition of the set X and we set

ϕX(f, g) = (S(σ)(f), g),

where σ : X1\{∗X} ∪ {∗X′
1
} → X1 renames ∗X to ∗X′

1
. We do analogously if ∗X ∈ X2.

To define the inverse of ϕX , suppose that (f, g) ∈ (∂S · T)(X), where f ∈ (∂S)(X ′
1) and

g ∈ T (X ′
2). The pair (X ′

1 ∪ {∗X′
1
}, X ′

2) is then a binary decomposition of the set X ∪ {∗X′
1
}. Let

τ : X ′
1 ∪{∗X} → X ′

1 ∪{∗X′
1
} be the renaming of ∗X′

1
to ∗X . The pair (X1, X2) = (X ′

1 ∪{∗X}, X
′
2)

is now a binary decomposition of the set X ∪ {∗X} and we set

ϕ−1
X (f, g) = (S(τ)(f), g) ∈ ∂(S · T)(X).

We proceed analogously for (f, g) ∈ (S · ∂T)(X). �

We shall also need the family of isomorphisms from the following lemma.

Lemma 3.10. For all n ≥ 1, ∂En ≃ En−1.

Proof. For a finite set X we have

∂En(X) =

{

{X ∪ {∗X}} if |X| = n− 1,

∅ otherwise,

and

En−1(X) =

{

{X} if |X| = n− 1,

∅ otherwise.

3.2. Algebraic definitions of operads 51

The isomorphism ǫn : ∂En → En−1 is defined by ǫnX(X∪{∗X}) = X, for |X| = n−1. Otherwise,
ǫnX is the empty function. �

Finally, we shall also use the following pointing operation on species.

Definition 3.11. Let S be a species. The species S•, spelled S dot, is defined as follows

S•(X) = S(X)×X.

For a pair (f, x) ∈ S(X)×X , the action of S• on a bijection σ : Y → X is given by

S•(σ)((f, x)) = (S(σ)(f), σ−1(x)).
�

Remark 3.12. Observe that the distinguished element of an S•-structure belongs to the underlying set
X , as opposed to the distinguished element of a ∂S-struture, which is always outside of X .

To summarise, we list in Table 5 the isomorphisms between species that we shall use in the
remaining of the chapter.

Name Reference Description

associativity of · αS,T,U : (S · T) · U → S · (T · U) ((f, g), h) 7→ (f, (g, h))

commutativity of · γS,T : S · T → T · S (f, g) 7→ (g, f)

left unitor for · λS : E0 · S → S ({∅}, f) 7→ f

right unitor for · ρS : S · E0 → S (f, {∅}) 7→ f

exchange exS : ∂(∂S) → ∂(∂S) f 7→ S(ε)(f)

derivative of a sum ςS,T : ∂(S + T) → ∂S + ∂T Lemma 3.9 (1)

Leibniz rule ϕS,T : ∂(S · T) → (∂S) · T + S · (∂T) Lemma 3.9 (2)

ǫn-isomorphism ǫn : ∂En → En−1 Lemma 3.10

Table 5: Canonical isomorphisms between species

3.2 Algebraic definitions of operads

This part is a reminder on algebraic definitions of operads. Our emphasis is on the use of the
microcosm principle of Baez and Dolan, which we illustrate by reviewing Fiore’s definition in
§3.2.2 below.

3.2.1 Kelly-May definition

Kelly’s monoidal definition [Kel05, Section 4] is the algebraic version of the original definition
of an operad [May72] of May. In the non-skeletal setting, the operadic composition of May’s
definition is given by morphisms

γX,Y1,...,Yn : S(X)× S(Y1)× · · · × S(Yn)→ S(Y1 ∪ · · · ∪ Yn) , (3.2.1)

defined for a finite setX and pairwise disjoint finite sets Y1, . . . , Yn, where n = |X|, and the unit
idx ∈ S({x}), defined for all singletons {x}, which are subject to associativity, equivariance and
unit axioms.

In order to arrive to Kelly’s definition, one first observes that Lemma 3.7 can easily be rein-
forced to a stronger claim:

52 Chapter 3. Monoid-like definitions of cyclic operads

(Spec, ◦, E1) is a monoidal category.

A monoid in this category is a triple (S, µ, η), where S is a species and the natural transfor-
mations µ : S ◦ S → S and η : E1 → S, called the multiplication and the unit of the monoid,
respectively, satisfiy the coherence conditions given by the commutation of the following two
diagrams

(S ◦ S) ◦ S S ◦ (S ◦ S) S ◦ S

S ◦ S S

α◦ id ◦ µ

µ ◦ id

µ

µ

E1 ◦ S S ◦ S S ◦ E1

S

η ◦ id id ◦ η

λ◦ ρ◦
µ

in which α◦, λ◦ and ρ◦ denote the associator, left and right unitor of (Spec, ◦, E1), respectively.
Note that an element (f, g1, . . . , gn) ∈ S(X)× S(Y1)× · · · × S(Yn) determines the element

[(X,φ : Y1 ∪ · · · ∪ Yn → X, f, (gi)1≤i≤n)]≃ ∈ (S ◦ S)(Y1 ∪ · · · ∪ Yn).

By defining the simultaneous composition operation (3.2.1) as

γX,Y1,...Yn(f, g1, . . . , gn) = µ([(X,φ, f, g1, . . . , gn)]≃),

and idx as η{x}({x}), the operadic axioms are easily verified by the naturality of µ and laws of
the monoid. This gives a crisp alternative to the somewhat cumbersome biased definition:

An operad is a monoid in the monoidal category (Spec, ◦, E1).

The steps to derive the monoidal definition from above and, more generally, a monoid-
like definition of an arbitrary operad-like structure, starting from its biased characterisation,
can be summarised as follows. One first has to exhibit a product ⋄ on Spec that captures
the type of operadic composition that is to be formalised (in the same way as the represen-
tative (X,φ, f, (gi)1≤i≤n) of the appropriate (S ◦ S)-structure corresponds to the configuration
(f, g1, . . . , gn) of operadic operations). One then has to examine the properties of this product,
primarily by comparing species (S ⋄ T) ⋄U and S ⋄ (T ⋄U), in order to exhibit an isomorphism
whose commutation with the multiplication µ : S ⋄ S → S expresses axioms of the operad-like
structure in question. Analogously, an appropriate isomorphism of species is needed for each
of the remaining axioms of such a structure (for example, the isomorphims λ◦S and ρ◦S account
for the unit axioms of an operad), except for the equivariance axiom, which holds by the natu-
rality of µ. The operad-like structure is then introduced as an object S of Spec, together with
the multiplication µ (and possibly other natural transformations, like the unit η in the previous
definition) that commutes in the appropriate way with established isomorphisms.

3.2.2 Fiore-Markl definition

We now recover Fiore’s algebraic definition (see [Fio12] and [Fio14]), established for operads
with partial composition of Definition 1.4, by following the steps described in the last paragraph
of §3.2.1.

Regarding Definition 1.4, the data out of which the composition f ◦x g is obtained consists
of the ordered pair (f, g), together with a chosen input x of f . This indicates that the product
of species that is supposed to capture partial composition operation should involve the product
· : Spec× Spec→ Spec introduced by Definition 3.3, whereby the structures arising from the
left component of the product should have a distinguished element among the elements of the
underlying set. Hence, a priori, there are two possible candidates for the new product:

S• · S and (∂S) · S.

3.2. Algebraic definitions of operads 53

However, the first one does not work: for (f, g) ∈ (S• · S)(X), the multiplication (S• · S)(X)→
S(X) produces an element of S(X), whereas the composition f ◦xg should belong to S(X\{x}).
On the other hand, the elements of the set (∂S ·S)(X) are pairs (f, g) such that f ∈ S(X1∪{∗X1})
and g ∈ S(X2), where (X1, X2) is a decomposition of the setX . From the operadic perspective,
the composition of f ◦∗X1

g belongs to S(X), which agrees with the form of the multiplication
νX : (∂S ·S)(X)→ S(X). Therefore, as a tentative product of species we take the pre-Lie product
S ⋆ T , defined as

S ⋆ T = ∂S · T.

The next step is to compare the species (S ⋆ T) ⋆ U and S ⋆ (T ⋆ U). Chasing the associativity
fails in this case. However, there is a canonical natural pre-Lie isomorphism

βS,T,U : (S ⋆ T) ⋆ U + S ⋆ (U ⋆ T)→ S ⋆ (T ⋆ U) + (S ⋆ U) ⋆ T

determined by the isomorphisms

β1 : (∂∂S · T) · U → (∂∂S · U) · T β1 = α−1 ◦ (ex · γ) ◦ α,

β2 : (∂S · ∂T) · U → ∂S · (∂T · U) β2 = α,

β3 : ∂S · (∂U · T)→ (∂S · ∂U) · T β3 = α−1,

whereα, γ and ex stand for appropriate instances of isomorphisms given in Table 5. The pre-Lie
isomorphism is the “smallest” isomorphism that captures both associativity axioms for operads
(β1 accounts for [A1] and β2 for [A2]).

For the algebraic account on operadic units, we shall use the isomorphisms exhibited in the
following lemma.

Lemma 3.13. For an arbitrary species S, E1 ⋆ S ≃ S and S ⋆ E1 ≃ S
•.

Proof. The isomorphism λ⋆S : E1 ⋆ S → S arises as

E1 ⋆ S = ∂E1 · S ≃ E0 · S ≃ S,

i.e. as λ⋆S = λ·S ◦ (ǫ1 · idS). We postpone the definition of the isomorphism ρ⋆S : S ⋆ E1 → S• for
Remark 3.18. �

By following the microcosm principle heuristics, from these data Fiore induced the follow-
ing definition, in which we write β for βS,S,S .

Definition 3.14. An operad is a triple (S, ν, η1) of a speciesS, a natural transformation ν : S⋆S →
S, called the multiplication, and a natural transformation η1 : E1 → S, called the unit, such that

[OA1] ν2 ◦ β = ν1, where ν1 and ν2 are induced by ν as follows:

- ν1 : (S ⋆ S) ⋆ S + S ⋆ (S ⋆ S)→ S is determined by

ν11 : (∂∂S · S) · S
il·id−−−−→ (∂∂S · S + ∂S · ∂S) · S

ϕ−1·id
−−−−−−→ ∂(∂S · S) · S

∂ν·id
−−−−−→ ∂S · S

ν
−−→ S,

ν12 : (∂S · ∂S) · S
ir·id−−−−−→ (∂∂S · S + ∂S · ∂S) · S

ϕ−1·id
−−−−−−→ ∂(∂S · S) · S

∂ν·id
−−−−−→ ∂S · S

ν
−−→ S,

ν13 : ∂S · (∂S · S)
id·ν

−−−−→ ∂S · S
ν

−−→ S,

- ν2 : S ⋆ (S ⋆ S) + (S ⋆ S) ⋆ S → S is determined by ν21 = ν11, ν22 = ν13 and
ν23 = ν12, and

[OA2] η1 satisfies coherence conditions given by the commutation of the following diagram

54 Chapter 3. Monoid-like definitions of cyclic operads

E1 ⋆ S S ⋆ S S ⋆ E1

S S•

η1 ⋆ id id ⋆ η1

λ⋆
ρ⋆ν

π1

�

Indeed, it can be shown that [OA1] acounts for [A1] and [A2]1, the naturality of ν ensures
[EQ], [OA2] proves [U1] and [U2], are the naturality of η ensures [UP].

3.3 Algebraic definitions of cyclic operads

This section contains the algebraic treatment of cyclic operads. The first part deals with the
algebraic counterpart of Definition 1.4, i.e., strictly speaking, of its equivalent specification, de-
termined by axioms

(A2), (EQ), (U1) and (UP)

(see Remark 1.8). In the second part, we first set up the non-skeletal exchangeable-output defi-
nition of cyclic operads, and then deliver its algebraic counterpart.

3.3.1 Entries-only

Applying the microcosm principle starting from Definition 1.4 begins with the observation that
the data out of which the composition fx◦y g is obtained consists of the pair (f, g) and chosen
entries x and y of f and g, respectively. The discussion we had for operads in §3.2.2 makes it
easy to guess which combination of the product and derivative of species is the right one in this
case.

Definition 3.15. Let S and T be species. The triangle product (or, shorter, the N-product) of S and
T is the species SNT defined by

SNT = ∂S · ∂T.
�

By “unfolding” the definition of the triangle product, we see that, for a finite set X ,

(SNT)(X) =
∑

(X1,X2)

{(f, g) | f ∈ S(X1 ∪ {∗X1}), g ∈ T (X2 ∪ {∗X2})},

and, for (f, g) ∈ (SNT)(X) and a bijection σ : Y → X ,

(SNT)(σ)(f, g) = (S(σ+1)(f), T (σ
+
2)(g)),

where σ1 = σ|X1 , σ2 = σ|X2 , and σ+i are the ∂-extensions of σi, i = 1, 2.

Remark 3.16. The isomorphism γ∂S,∂T : ∂S ·∂T → ∂T ·∂S (see Table 5) witnesses the commutativity
of N-product.

The next step is to exhibit an isomorphism that equates various ways to derive a N-product
of three species. Intuitively, in the language of species, the associativity axiom (A2) can be
stated as the existence of an isomorphism of the form (∂∂S ·∂T) ·∂U → (∂∂S ·∂U) ·∂T. It turns
out that the “smallest” isomorphism that compares (SNT)NU and SN(TNU) and includes the
above isomorphism is

θS,T,U : (SNT)NU + TN(SNU) + (TNU)NS → SN(TNU) + (SNU)NT + UN(SNT)

1Actually, the equalities ν21 ◦ β = ν11 and ν22 ◦ β = ν12 are enough to prove associativity.

3.3. Algebraic definitions of cyclic operads 55

whose explict description is the following. By “unfolding” the definition ofN, we see that θS,T,U
connects a sum of 6 species on the left with a sum of 6 species on the right. Here is the list of
the 6 constituents of θS,T,U , together with their explicit definitions:

θ1 : (∂∂S · ∂T) · ∂U → (∂∂S · ∂U) · ∂T θ1 = α−1 ◦ (ex · γ) ◦ α,

θ2 : (∂S · ∂∂T) · ∂U → ∂S · (∂∂T · ∂U) θ2 = γ ◦ θ1 ◦ (γ · id),

θ3 : ∂T · (∂∂S · ∂U)→ ∂U · (∂∂S · ∂T) θ3 = γ ◦ θ1 ◦ γ,

θ4 : ∂T · (∂S · ∂∂U)→ ∂S · (∂T · ∂∂U) θ4 = (id · γ) ◦ γ ◦ θ1 ◦ (γ · id) ◦ γ,

θ5 : (∂∂T · ∂U) · ∂S → ∂U · (∂S · ∂∂T) θ5 = (id · γ) ◦ γ ◦ θ1, and

θ6 : (∂T · ∂∂U) · ∂S → (∂S · ∂∂U) · ∂T θ6 = γ ◦ (id · γ) ◦ γ ◦ θ1 ◦ (γ · id).

Notice that, having fixed θ1, the pairing given by θ3 is also predetermined, but there are other
ways to pair the remaining 4 summands from the left with the 4 summands from the right.
We made this particular choice in order for all θi to represent “parallel associativity modulo
commutativity” (see Lemma 1.6), but a different pairing could have been chosen as well.

What remains is to exhibit the structure on species that will account for operadic units. The
following lemma is essential.

Lemma 3.17. For an arbitrary species S, E2NS ≃ S
• and SNE2 ≃ S

•.

Proof. By the definition of the N-product and of the species E2, we have

(E2NS)(X) =
∑

x∈X

{({x, ∗{x}}, f) | , f ∈ S(X\{x} ∪ {∗X\{x}})}. (3.3.1)

We define λNS : E2NS → S• as

λNSX : ({x, ∗{x}}, f) 7→ (S(σ)(f), x),

where σ : X → X\{x} ∪ {∗X\{x}} renames ∗X\{x} to x. For X = ∅, λNSX is the empty function.
The isomorphism κNS : SNE2 → S• is defined by κNS = λNS ◦ γ∂S,∂E2 . �

Remark 3.18. Since ∂E2 ≃ E1, we also have that E1 · ∂S ≃ S
•. The isomorphism ζS : S• → E1 · ∂S

is defined as (ǫ−1
2 · id∂S)

−1 ◦ (λNS)
−1, i.e. for f ∈ S(X) and x ∈ X , we have

ζSX(f, x) = ({x}, S(σ)(f)),

where σ : X\{x}∪ {∗X\{x}} → X renames x to ∗X\{x}. Going back to the proof of Lemma 3.13, for the

definition of ρ⋆S we take preciesly ζ−1
S ◦ γ∂S,E1 .

These data are assembled by the microcosm principle as follows. In the definition below
(and further on in this chapter), we shall denote θS,S,S simply with θ.

Definition 3.19. An entries-only cyclic operad is a triple (S, ρ, η2) of a species S, a natural trans-
formation ρ : SNS → S, called the multiplication, and a natural transformation η2 : E2 → S,
called the unit, such that

(CA1) ρ2 ◦ θ = ρ1, where ρ1 and ρ2 are induced from ρ as follows:

- ρ1 : (SNS)NS + SN(SNS) + (SNS)NS → S is determined by

ρ11 : (∂∂S · ∂S) · ∂S
il·id−−−→ (∂∂S · ∂S + ∂S · ∂∂S) · ∂S

ϕ−1·id
−−−−−→ ∂(∂S · ∂S) · ∂S

∂ρ·id
−−−−→ ∂S · ∂S

ρ
−→ S

ρ12 : (∂S · ∂∂S) · ∂S
ir·id−−−→ (∂∂S · ∂S + ∂S · ∂∂S) · ∂S

ϕ−1·id
−−−−−→ ∂(∂S · ∂S) · ∂S

∂ρ·id
−−−−→ ∂S · ∂S

ρ
−→ S

ρ13 : ∂S · (∂∂S · ∂S)
id·il−−−→ ∂S · (∂∂S · ∂S + ∂S · ∂∂S)

id·ϕ−1

−−−−−→ ∂S · ∂(∂S · ∂S)
id·∂ρ
−−−−→ ∂S · ∂S

ρ
−→ S

ρ14 : ∂S · (∂S · ∂∂S)
id·ir−−−→ ∂S · (∂∂S · ∂S + ∂S · ∂∂S)

id·ϕ−1

−−−−−→ ∂S · ∂(∂S · ∂S)
id·∂ρ
−−−−→ ∂S · ∂S

ρ
−→ S

ρ15 = ρ11 and ρ16 = ρ12

56 Chapter 3. Monoid-like definitions of cyclic operads

- ρ2 : SN(SNS) + (SNS)NS + SN(SNS)→ S is determined by ρ21 = ρ11,
ρ22 = ρ23 = ρ13, ρ24 = ρ25 = ρ14 and ρ26 = ρ12, and

(CA2) η2 satisfies the coherence condition given by the commutation of the diagram

E2NS SNS

S• S

η2Nid

λNS ρ

π1S

where λNS is the isomorphisms from Lemma 3.17, and π1SX is the first projection. �

In the following lemma we prove the equality that represents the algebraic analogue of the
commutativity law (CO), which would follow anyhow after we prove the equivalence between
Definition 1.4 and Definition 3.19. Nevertheless, we do this directly since it shortens signifi-
cantly the proof of that equivalence.

Lemma 3.20. For an arbitrary entries-only cyclic operad (S, ρ, η2), the equality ρ ◦ γ = ρ holds.

Proof. In Diagram 1 below,Dl andDr commute by (CA2),Dt andDm commute by the naturality
of θ1, and Db commutes as it represents the equality ρ21 ◦ θ1 = ρ11.

For a finite set X , let (f, g) ∈ (∂S · ∂S)(X), where f ∈ ∂S(X1), y ∈ ∂S(X2) and (X1, X2)
is an arbitrary decomposition of X . Starting with (f, g), we chase Diagram 1 from the top left
node ∂S ·∂S to the bottom left node ∂S ·∂S, by going through the left “border” of the diagram,
i.e. by applying the composition

(∂π1 ◦ ∂λ
N ◦ ϕ−1 ◦ il ◦ (∂ǫ

−1
2 · id) ◦ λ

⋆−1) · id . (3.3.2)

(∂∂E2 · ∂S) · ∂S (∂∂E2 · ∂S) · ∂S

(∂∂S · ∂S) · ∂S (∂∂S · ∂S) · ∂S

∂(∂E2 · ∂S) · ∂S ∂(∂E2 · ∂S) · ∂S

∂(S•) · ∂S ∂(S•) · ∂S∂S · ∂S ∂S · ∂SS

∂S · ∂S ∂S · ∂S

Dl Dr

Dm

Dt

Db

θ1

γ

((∂ǫ−1

2
· id) ◦ λ⋆−1) ·id ((∂ǫ−1

2
· id) ◦ λ⋆−1) ·id

(ϕ−1◦ il)·id (ϕ−1◦ il)·id

(∂∂η2 · id) · id

∂λN · id ∂λN · id

∂π1 · id ∂π1 · id

(∂∂η2 · id) · id

θ1

(∂ρ ◦ ϕ−1 ◦ il) · id

ρ ρ

(∂ρ ◦ ϕ−1 ◦ il) · id

Diagram 1

We get the sequence

(f, g) 7→ (({∗∅}, f), g) 7→ (({∗∅, ∗∗∅}, f), g) 7→ (({∗∅, ∗X1}, f), g) 7→ ((f, ∗X1), g) 7→ (f, g) .

Hence, (3.3.2) is the identity on ∂S·∂S. By the equalities behind the commutations ofDl, Db, Dm, Dt

and Dr, we get the sequence of equalities

ρ = ρ ◦ id

= ρ ◦ ((∂π1 ◦ ∂λ
N ◦ ϕ−1 ◦ il ◦ (∂ǫ

−1
2 · id) ◦ λ

⋆−1) · id)

= ρ ◦ ((∂ρ ◦ ϕ−1 ◦ il ◦ (∂∂η2 · id) ◦ (∂ǫ
−1
2 · id) ◦ λ

⋆−1) · id)

3.3. Algebraic definitions of cyclic operads 57

= ρ ◦ ((∂ρ ◦ ϕ−1 ◦ il) · id) ◦ θ1 ◦ (((∂∂η2 · id) ◦ (∂ǫ
−1
2 · id) ◦ λ

⋆−1) · id)

= ρ ◦ ((∂ρ ◦ ϕ−1 ◦ il ◦ (∂∂η2 · id)) · id) ◦ θ1 ◦ (((∂ǫ
−1
2 · id) ◦ λ

⋆−1) · id)

= ρ ◦ ((∂ρ ◦ ϕ−1 ◦ il ◦ (∂∂η2 · id) ◦ (∂ǫ
−1
2 · id) ◦ λ

⋆−1) · id) ◦ γ

= ρ ◦ ((∂π1 ◦ ∂λ
N ◦ ϕ−1 ◦ il ◦ (∂ǫ

−1
2 · id) ◦ λ

⋆−1) · id) ◦ γ

= ρ ◦ γ ,

which proves the claim. �

As a consequence of Lemma 3.20, the verification of the axiom (CA1) comes down to the
verification of its instance ρ21 ◦ θ1 = ρ11.

Corollary 3.21. The equality ρ2 ◦ θ = ρ1 holds if and only if the equality ρ21 ◦ θ1 = ρ11 holds.

Together with the equality κNS = λNS ◦γ∂S,∂E2 , Lemma 3.20 is also used to prove the algebraic
analogue of the right unitality law (U2).

Corollary 3.22. The morphism η2 : E2 → S satisfies the coherence condition given by the commutation
of the diagram

SNE2SNS

S•S

idNη2

κNSρ

π1S

The following theorem ensures that Definition 3.19 does the job. In order to make its state-
ment concise (as well as the statements of Theorem 3.30 and Theorem 3.35 later), we adopt the
following convention.

Convention 3.23. We say that two definitions are equivalent if, given a structure specified by the first
definition, one can construct a structure specified by the second definition, and vice-versa, in such a way
that going from one structure to the other one, and back, leads to a structure isomorphic to the starting
one. If the latter transformations results exactly in the initial structure, we say that the corresponding
definitions are strongly equivalent. Categorically speaking, the equivalence and the strong equivalence
of definitions are nothing but the equivalence and the isomorphism of the categories of appropriate struc-
tures, respectively.

Theorem 3.24. Definition 1.4 (entries-only, biased) and Definition 3.19 (entries-only, algebraic) are
strongly equivalent.

Proof. We define functors in both directions and show that going from one structure to the other
one, and back, leads to the same structure.

Biased to Algebraic. Let C : Bijop → Set be an entries-only cyclic operad defined in biased
manner. The algebraic cyclic operad structure over the speciesC is derived as follows. For a finite
set X , a decomposition (X1, X2) of X , f ∈ ∂C(X1) and g ∈ ∂C(X2), ρX : (∂C · ∂C)(X) → C(X)
is defined by setting

ρX(f, g) = f ∗X1
◦∗X2

g .

For a two-element set, say {x, y}, the morphism η : E2 → C is defined as η{x,y} : {x, y} 7→ idx,y.
Otherwise, ηX is the empty function. We now verify the axioms.

(CA1) We prove the equality ρ21 ◦ θ1=ρ11 by chasing Diagram 2, obtained by unfolding the
definitions of the three morphisms involved. The axiom (CA1) then follows by Corollary 3.21.

(∂∂S · ∂S) · ∂S ∂∂S · (∂S · ∂S) ∂∂S · (∂S · ∂S) (∂∂S · ∂S) · ∂S

∂(∂S · ∂S) · ∂S ∂(∂S · ∂S) · ∂S∂S · ∂S ∂S · ∂SS

α ex · γ α−1

(ϕ−1 ◦ il) · id

∂ρ · id ρ ρ

(ϕ−1 ◦ il) · id

∂ρ · id

Diagram 2

58 Chapter 3. Monoid-like definitions of cyclic operads

Let ((f, g), h) ∈ ((∂∂S · ∂S) · ∂S)(X), and suppose that

f ∈ ∂∂S(X ′
1), g ∈ ∂S(X

′′
1), h ∈ ∂S(X2), (f, g) ∈ (∂∂S · ∂S)(X1),

where (X ′
1, X

′′
1) is a decomposition of X1 and (X1, X2) is a decomposition of X .

By chasing the diagram to the down-right starting from ((f, g), h), we traverse the following
sequence of elements:

((f, g), h) 7→ ((f τ
+
1 , g), h)

7→ (f τ
+
1 ∗X′

1∪{∗X1
}
◦∗X′′

1
g, h)

7→ (f τ
+
1 ∗X′

1∪{∗X1
}
◦∗X′′

1
g) ∗X1

◦∗X2
h .

The first step here corresponds to the application of (ϕ−1 ◦ il) · id on ((f, g), h), and, therefore,
it involves the renaming τ1 : X

′
1 ∪ {∗X1} → X ′

1 ∪ {∗X′
1
} of ∗X′

1
to ∗X1 , i.e. the action of ∂S(τ1) =

S(τ+1) on
f ∈ ∂S(X ′

1 ∪ {∗X′
1
}) = S(X ′

1 ∪ {∗X′
1
} ∪ {∗X′

1∪{∗X′
1
}}),

where τ+1 is the ∂-extension of τ1 (see Definition 3.8). Therefore,

f τ
+
1 ∈ ∂S(X ′

1 ∪ {∗X1}) = S(X ′
1 ∪ {∗X1} ∪ {∗X′

1∪{∗X1
}}) ,

and
(f τ

+
1 , g) ∈ ∂(∂S · ∂S)(X1) = (∂S · ∂S)(X1 ∪ {∗X1}).

The action of ∂ρ on (f τ
+
1 , g) composes f τ

+
1 and g along the corresponding distinguished entries

∗X′
1∪{∗X1

} and ∗X′′
1

(while carrying over the distinguished element ∗X1 from the pair to the com-

posite of its components), and, finally, the action of ρ on (f τ
+
1 ∗X′

1∪{∗X1
}
◦∗X′′

1
g, h) results in the

partial composition of the two components along ∗X1 and ∗X2 .

The sequence on the right-down-left side consists of the sequence

((f, g), h) 7→ (f, (g, h)) 7→ (f ε, (h, g)) 7→ ((f ε, h), g),

arising from the action of θ1 = α−1 ◦ (ex · γ) ◦ α, where

ε : X ′
1 ∪ {∗X′

1
, ∗X′

1∪{∗X′
1
}} → X ′

1 ∪ {∗X′
1
, ∗X′

1∪{∗X′
1
}}

exchanges ∗X′
1

and ∗X′
1∪{∗X′

1
}, followed by the sequence

((f ε, h), g) 7→ (((f ε)τ
+
2 , h), g)

7→ (((f ε)τ
+
2 ∗X′

1∪{∗
X′

1∪X2
}
◦∗X2

h), g)

7→ ((f ε)τ
+
2 ∗X′

1∪{∗
X′

1∪X2
}
◦∗X2

h) ∗X′
1∪X2
◦∗X′′

1
g ,

corresponding to the action of ρ21. Similarly as before, the action of (ϕ−1 ◦ il) · id on ((f ε, h), g)
involves the renaming τ2 : X ′

1 ∪ {∗X′
1∪X2
} → X ′

1 ∪ {∗X′
1
} of ∗X′

1
to ∗X′

1∪X2
, i.e. the action of

∂S(τ2) = S(τ+2) on

f ε ∈ ∂S(X ′
1 ∪ {∗X′

1
}) = S(X ′

1 ∪ {∗X′
1
} ∪ {∗X′

1∪{∗X′
1
}}),

where τ+2 is the ∂-extension of τ2. This results in

(f ε)τ
+
2 ∈ ∂S(X ′

1 ∪ {∗X′
1∪X2
}) = S(X ′

1 ∪ {∗X′
1∪X2
} ∪ {∗X′

1∪{∗X′
1∪X2

}}),

3.3. Algebraic definitions of cyclic operads 59

i.e.
((f ε)τ

+
2 , h) ∈ ∂(∂S · ∂S)(X ′

1 ∪X2) = (∂S · ∂S)(X ′
1 ∪X2 ∪ {∗X′

1∪X2
}).

The application of ∂ρ on ((f ε)τ
+
2 , h) composes (f ε)τ

+
2 and h along ∗X′

1∪{∗X′
1∪X2

} and ∗X2 (and

carries over the distinguished element ∗X′
1∪X2

to the composition). Finally, the application of ρ

on ((f ε)τ
+
2 ∗X′

1∪{∗
X′

1∪X2
}
◦∗X2

h, g) composes the two components along ∗X′
1∪X2

and ∗X′′
1
.

The axiom (CA1) follows thanks to the axioms (A2) and (EQ) of the biased structure, which
prove the sequence of equalities

(f τ
+
1 ∗X′

1∪{∗X1
}
◦∗X′′

1
g) ∗X1

◦∗X2
h = (f τ

+
1 ∗X1

◦∗X2
h) ∗X′

1∪{∗X1
}
◦∗X′′

1
g

= (((f τ
+
1)σ ∗X′

1∪{∗
X′

1∪X2
}
◦∗X2

h) ∗X′
1∪X2
◦∗X′′

1
g

= ((f ε)τ
+
2 ∗X′

1∪{∗
X′

1∪X2
}
◦∗X2

h) ∗X′
1∪X2
◦∗X′′

1
g,

where σ : X ′
1 ∪ {∗X′

1∪X2
, ∗X′

1∪{∗X′
1∪X2

}} → X ′
1 ∪ {∗X1 , ∗X′

1∪{∗X1
}} renames ∗X1 to ∗X′

1∪{∗X′
1∪X2

}

and ∗X′
1∪{∗X1

} to ∗X′
1∪X2

. The last equality in the sequence holds by the equality τ+1 ◦σ = τ+2 ◦ε.

(CA2) The commutation of the diagram

(E2NS)(X) (SNS)(X)

S(X)S•(X)

(ηNid)X

λNSX ρX

π1SX

for X = ∅ follows since (E2NS)(∅) = ∅ and since there is a unique empty function with
codomain S(X). If X 6= ∅, then for ({x, ∗{x}}, f) ∈ (E2NS)(X) (see (3.3.1)), by chasing the
down-right side of the diagram, we get

({x, ∗{x}}, f) 7→ (fσ, x) 7→ fσ,

where σ renames ∗X\{x} to x. By going to the right-down, we get

({x, ∗{x}}, f) 7→ (idx,∗{x} , f) 7→ idx,∗{x} ∗{x}◦∗X\{x}
f .

The equality fσ = idx,∗{x} ∗{x}◦∗X\{x}
f follows easily by (U1) and (EQ).

Algebraic to Biased. Suppose that S : Bijop → Set is an algebraic entries-only cyclic operad,
letX and Y be non-empty finite sets, let x ∈ X and y ∈ Y be such thatX\{x}∩Y \{y} = ∅, and
let f ∈ S(X) and g ∈ S(Y). Then (f, x) ∈ S•(X) and (g, y) ∈ S•(Y). Therefore, for

({x}, fσ1) = ζ(f, x) ∈ E1 · ∂S(X) and ({y}, gσ2) = ζ(g, y) ∈ E1 · ∂S(Y),

where ζ is the isomorphism from Remark 3.18, we have that fσ1 ∈ ∂S(X\{x}) and gσ2 ∈
∂S(Y \{y}). We define the partial composition x◦y : S(X)× S(Y)→ S(X\{x} ∪ Y \{y}) as

f x◦y g = ρ(fσ1 , gσ2).

For a two-element set, say {x, y}, the distinguished element idx,y ∈ S({x, y}) is η{x,y}({x, y}).
We move on to the verification of the axioms.

(A2) Let f and g be as above, and let u ∈ X\{x}, h ∈ S(Z) and z ∈ Z. We use the naturality
of ρ and the commutation of Diagram 2 to prove the equality (f x◦y g) u◦z h = (fu◦z h) x◦y g.
Since it is not evident by which element we should start the diagram chasing in order to reach
(f x◦y g) u◦z h, we shall first express this composition via the multiplication ρ, and then reshape

60 Chapter 3. Monoid-like definitions of cyclic operads

the expression we obtained towards an equal one, “accepted” by the diagram.
Firstly, we have that

(f x◦y g, u) = (ρ(fσ1 , gσ2), u) ∈ S•(X\{x} ∪ Y \{y}) and (h, z) ∈ S•(Z).

By applying the isomorphism ζ from Remark 3.18 on these two elements, we get

({u}, (f x◦y g)
κ1) = ζ(f x◦y g, u) and ({z}, hκ2) = ζ(h, z),

where κ1 : X\{x, u}∪Y \{y}∪ {∗X\{x,u}∪Y \{y}} → X\{x}∪Y \{y} renames u to ∗X\{x,u}∪Y \{y}

and κ2 : Z\{z} ∪ {∗Z\{z}} → Z renames z to ∗Z\{z}. Therefore,

(f x◦y g)
κ1 ∈ ∂S(X\{x, u} ∪ Y \{y}) and hκ2 ∈ ∂S(Z\{z}),

and the left hand side of the equality (A2) becomes

(f x◦y g) u◦z h = ρ(ρ(fσ1 , gσ2)κ1 , hκ2).

Next, notice that the shape of

ρ(fσ1 , gσ2)κ1 ∈ S(X\{x, u} ∪ Y \{y} ∪ {∗X\{x,u}∪Y \{y}})

makes the element ρ(ρ(fσ1 , gσ2)κ1 , hκ2)not explicitely reachable in Diagram 2. However, ρ(fσ1 , gσ2)κ1

is the result of chasing to the down-left the diagram below

(SNS)(X\{x} ∪ Y \{y}) (SNS)(X\{x} ∪ Y ′\{y})

S(X ′\{x} ∪ Y \{y})S(X ′\{x} ∪ Y \{y})

(SNS)(κ1)

ρX\{x}∪Y \{y} ρX′\{x}∪Y \{y}

S(κ1)

where X ′ = X\{u} ∪ {∗X\{x,u}∪Y \{y}}, starting with (fσ1 , gσ2). This diagram commutes as an
instance of the naturality of ρ. Let us chase it to the right. Firstly, we have that

(SNS)(κ1)(f
σ1 , gσ2) = ((∂S)(ν1)(f

σ1), (∂S)(ν2)(g
σ2)) = (S(ν+1)(f

σ1), S(ν+2)(g
σ2)) ,

where ν+1 and ν+2 are the ∂-extensions of ν1 : X\{x, u}∪{∗X\{x,u}∪Y \{y}} → X\{x}, which
renames u to ∗X\{x,u}∪Y \{y}, and the identity ν2 : Y \{y} → Y \{y}, respectively. Therefore, the

result of chasing the diagram on the right is ρ((fσ1)ν
+
1 , gσ2). Consequently, we have that

(f x◦y g) u◦z h = ρ(ρ((fσ1)ν
+
1 , gσ2), hκ2).

On the other hand, chasing Diagram 2 in order to reach (f x◦y g) u◦z h will certainly in-

clude considering the element ({u}, (fσ1)α
+
) = ς(fσ1 , u), where α+ is the ∂-extension of α :

X\{x, u} ∪ {∗X\{x,u}} → X\{x}, which renames u to ∗X\{x,u}. Therefore,

(fσ1)α
+
∈ ∂∂S(X\{x, u}),

and, consequently,

((fσ1)α
+
, gσ2) ∈ (∂S · ∂∂S)(X\{x, u} ∪ Y \{y}).

Furthermore, this chasing will include the element

ϕ−1((fσ1)α
+
, gσ2) = (((fσ1)α

+
)τ

+
, gσ2) ∈ ∂(∂S · ∂S),

3.3. Algebraic definitions of cyclic operads 61

where τ+ is the ∂-extension of τ : X\{x, u} ∪ {∗X\{x,u}∪Y \{y}} → X\{x, u} ∪ {∗X\{x,u}}, which
renames ∗X\{x,u} to ∗X\{x,u}∪Y \{y}.

As a consequence of the equality ν+1 = α+ ◦ τ+, we get the equality

(f x◦y g) u◦z h = ρ(ρ(((fσ1)α
+
)τ

+
, gσ2), hκ2),

in which the right hand side is the result of chasing Diagram 2 to the down-left, starting with

(((fσ1)α
+
, gσ2), hκ2) ∈ ((∂∂S · ∂S) · ∂S)(X\{x, u} ∪ Y \{y} ∪ Z\{z}).

The remaining of the proof of (A2) now unfolds easily: the sequence obtained by chasing

Diagram 2 to the right-down, starting with (((fσ1)α
+
, gσ2), hκ2), consists of

(((fσ1)α
+
, gσ2), hκ2) 7→ ((fσ1)α

+
, (gσ2 , hκ2))

7→ (((fσ1)α
+
)ε, (hκ2 , gσ2))

7→ ((((fσ1)α
+
)ε, hκ2), gσ2),

arising from the action of θ1 = α−1 ◦ (ex · γ) ◦ α, where

ε : X\{x, u} ∪ {∗X\{x,u}, ∗X\{x,u}∪{∗X\{x,u}}} → X\{y, u} ∪ {∗X\{x,u}, ∗X\{x,u}∪{∗X\{x,u}}}

exchanges ∗X\{x,u} and ∗X\{x,u}∪{∗X\{x,u}}, followed by

((((fσ1)α
+
)ε, hκ2), gσ2) 7→ (((((fσ1)α

+
)ε)ω

+
, hκ2), gσ2)

7→ (ρ((((fσ1)α
+
)ε)ω

+
, hκ2), gσ2)

7→ ρ(ρ((((fσ1)α
+
)ε)ω

+
, hκ2), gσ2) ,

where ω+ is the ∂-extension of the renaming ω : X\{x, u} ∪ {∗X\{x,u}∪Z\{z}} → X\{x, u} ∪
{∗X\{x,u}} of ∗X\{x,u} to ∗X\{x,u}∪Z\{z}. Similarly as we did for the left side of (A2), it can be
shown that

ρ(ρ((((fσ1)α
+
)ε)ω

+
, hκ2), gσ2) = f x◦y (g u◦z h),

which completes the proof of (A2).

(EQ) Let f and g be as above and suppose that σ1, σ2 and σ are as in (EQ). Then

(fσ1 , σ−1
1 (x)) ∈ S•(X ′) and (gσ2 , σ−1

2 (y)) ∈ S•(Y ′),

and we have
fσ1 σ−1

1 (x)◦σ−1
2 (y) g

σ2 = ρ((fσ1)τ1 , (gσ2)τ2),

where τ1 renames σ−1
1 (x) to ∗X′\{σ−1

1 (x)} and τ2 renames σ−1
2 (y) to ∗Y ′\{σ−1

2 (y)}. On the other

hand, we have that
(f x◦y g)

σ = ρ(fκ1 , gκ2)σ,

where κ1 renames x to ∗X\{x} and κ2 renames y to ∗Y \{y}. The equality ρ((fσ1)τ1 , (gσ2)τ2) =
ρ(fκ1 , gκ2)σ follows easily by chasing the diagram

(SNS)(X\{x} ∪ Y \{y}) (SNS)(X ′\{ν−1
1 (x)} ∪ Y ′\{ν−1

2 (y)})

S(X ′\{ν−1
1 (x)} ∪ Y ′\{ν−1

2 (y)})S(X\{x} ∪ Y \{y})

(SNS)(σ)

ρX\{x}∪Y \{y} ρ
X′\{ν−1

1
(x)}∪Y ′\{ν−1

2
(y)}

S(σ)

which is an instance of the naturality of ρ, starting with (fκ1 , gκ2).

62 Chapter 3. Monoid-like definitions of cyclic operads

(U1) For f ∈ S(X) and x, y ∈ X we have

idx,y y◦x f = ρ(id τ1x,y, f
τ2) = ρ(id∗{z},z, f

τ2),

where τ1 renames y to ∗{x} and τ2 renames x to ∗X\{x}. The right hand side of the previous
equality is the result of chasing to the right-down the diagram

(E2NS)(X) (SNS)(X)

S(X)S•(X)

(η2Nid)X

λNSX ρX

π1SX

which commutes by (CA2), starting with ({x, ∗{x}}, f
τ2). By chasing it to the down-right we get

exactly f , which completes the proof of (U1) .

(UP) The preservation of units follows directly by the naturality of η2.

Both transitions clearly leave the underlying functor unchanged and preserve units. As for
the transition of the partial compostion operation, we have

f x◦y g 7−→ ρ(fσ1 , gσ2) 7−→ fσ1 ∗X\{x}
◦∗Y \{y}

gσ2

and the conclusion follows by (EQ), while, for the transition of the multiplication, we have

ρX(f, g) 7−→ f ∗X1
◦∗X2

g 7−→ ρX(f
τ1 , gτ2),

where τ1 and τ2 are identities. This completes the proof. �

Reflecting once more the microcosm principle philosophy, given a categoryC equipped with
a bifunctor ⋄ : C × C → C that does not bear a monoidal structure, a question of finding the
“minimal” associativity-like and unit-like isomorphisms can be asked, which leads to categori-
fications of monoid-like algebraic structures in a way analogous to the one illustrated in Table 1
in Introduction. If such isomorphisms (and unit-like objects) are established, we could say that
C is a monoidal-like category and define in a natural way a monoid-like object in C. In this sec-
tion we exhibited one such monoidal-like category: (Spec,N, E2), which, thanks to Theorem
3.24, allowes us to give the following algebraic description of entries-only cyclic operads:

A cyclic operad is a monoid-like object in the monoidal-like category (Spec,N, E2),

the exact meaning of which can be read from Table 6.

Monoidal-like category Spec Monoid-like object S ∈ Spec

product N : Spec× Spec→ Spec ρ : SNS → S

unit E2 ∈ Spec η2 : E2 → S

associativity2 γS,T,U : (SNT)NU + TN(SNU) + (TNU)NS

→ SN(TNU) + (SNU)NT + UN(SNT)

(CA1)

left unit3 λNS : E2NS → S• (CA2)

right unit3 κNS : SNE2 → S• Corolary 3.22

Table 6: A cyclic operad defined internally to the monoidal-like category of
species

2Actually, the “minimal” associativity-like isomorphism.
3Analogously, the “minimal” unit-like isomorphism.

3.3. Algebraic definitions of cyclic operads 63

3.3.2 Exchangeable-output

In this part, we first transfer Markl’s skeletal exchangeable-output definition [Mar08, Propo-
sition 42] to the non-skeletal setting, by introducing a non-skeletal version of the cycle τn =
(0, 1, . . . , n) that enriches the operad structure to the structure of cyclic operads. We then de-
liver the algebraic counterpart of the obtained non-skeletal definition.

Non-skeletal biased exchangeable-output definition

The symmetric group Sn, whose action (in the skeletal operad structure) formalizes the permu-
tations of the inputs of an n-ary operation, together with the action of τn, generates all possible
permutations of the set {0, 1, . . . , n}. Hence, they constitute the action of Sn+1, which involves
the action of exchanging the output of an operation (now denoted with 0) with one of the inputs.
Observe that Sn+1 can equivalently be generated by extending the action Sn with transpositions
of the form (i 0), for 1 ≤ i ≤ n. In the non-skeletal setting, where the inputs of an operation are
labeled with arbitrary letters, rather than with natural numbers, we mimick these transpositions
with actions of the form Dx : O(X) → O(X), where x ∈ X denotes the input of an operation
chosen to be exchanged with the output. Here is the resulting definition.

Definition 3.25. An exchangeable-output cyclic operad is a symmetric operad O, enriched with
actions

Dx : O(X)→ O(X),

defined for all x ∈ X and subject to the axioms given below, wherein, for each of the axioms,
we assume that f ∈ O(X).

Preservation of units.

[DID] Dx(idx) = idx.

Inverse. For x ∈ X ,

[DIN] Dx(Dx(f)) = f .

Equivariance. For x ∈ X and an arbitrary bijection σ : Y → X ,

[DEQ] Dx(f)
σ = Dσ−1(x)(f

σ).

Exchange. For x, y ∈ X and a bijection σ : X → X that renames x to y and y to x,

[DEX] Dx(f)
σ = Dx(Dy(f)).

Compatibility with operadic compositions. For g ∈ O(Y), the following equality holds:

[DC1] Dy(f ◦x g) = Dy(f) ◦x g, where y ∈ X\{x}, and

[DC2] Dy(f ◦x g) = Dy(g)
σ1 ◦v Dx(f)

σ2 , where y ∈ Y , σ1 : Y \{y} ∪ {v} → Y is a
bijection that renames y to v and σ2 : X\{x} ∪ {y} → X is a bijection that
renames x to y. �

Notation 3.26. For f ∈ O(X), x ∈ X and y 6∈ X\{x}, we write Dxy(f) for Dx(f)
σ, where σ :

X\{x} ∪ {y} → X renames x to y.

In the following two lemmas, we present some simple properties of actions Dxy.

Lemma 3.27. For f ∈ O(X) and x ∈ X , the following equalities hold:

1. Dxx(f) = Dx(f),

2. DO
xy(idx) = idy, where y 6∈ X\{x},

3. DO
yx(D

O
xy(f)) = f , where y 6∈ X\{x},

64 Chapter 3. Monoid-like definitions of cyclic operads

4. DO
yx(f

σ) = DO
xy(f)

σ−1
, where σ : X\{x} ∪ {y} → X renames x to y, and

5. DO
yu(f ◦x g) = DO

yu(f) ◦x g, where y ∈ X , g ∈ O(Y) and u 6∈ X\{y}.

Lemma 3.28. For f ∈ O(X), x, y ∈ X and z 6∈ X\{x, y}, the following equality holds

(DCO) DO
xy(D

O
yz(f)) = DO

xz(f).

Proof. Since DO
xz(f) = Dx(f)

σ = (Dx(f)
σ1)σ2 , where σ : X\{x} ∪ {z} → X renames x to z,

σ1 : X → X exchanges x and y, and σ2 : X\{x} ∪ {z} → X renames y to z and x to y, by [DEX],
we have

DO
xz(f) = (DO

x (D
O
y (f)))

σ2 .

For the left side of the above equality, we have

DO
xy(D

O
yz(f)) = (DO

x (D
O
y (f)

τ1))τ2 ,

where τ1 : X\{y} ∪ {z} → X renames y to z and τ2 : X\{x} ∪ {z} → X\{y} ∪ {z} renames x to
y. Therefore, by [DEQ], we get that

DO
xy(D

O
yz(f)) = (DO

x (D
O
y (f))

τ1)τ2 = (DO
x (D

O
y (f)))

τ1◦τ2 .

The conclusion follows from the equality σ2 = τ1 ◦ τ2. �

We make necessary preparations for the proof of equivalence of Definition 3.25 and Defini-
tion 1.4 (see Convention 3.23).

For an exchangeable-output cyclic operad O and a finite setX , we introduce an equivalence
relation≈ on the set

∑

x∈X O(X\{x}) of (ordered) pairs (x, f), where x ∈ X and f ∈ O(X\{x}):
≈ is the reflexive closure of the familly of equalities

(x, f) ≈ (y,Dyx(f)), (3.3.3)

where y ∈ X\{x} is arbitrary. Observe that, by Lemma 3.27(3) and (DCO), for each x ∈ X , an
equivalence class

[(x, f)]≈ ∈
∑

x∈X

O(X\{x})/≈

has a unique representative of the form (x,). In other words, if (x, f) ≈ (x, g), then f = g.
In the next remark we exhibit a property of ≈ that we shall also need for the proof of the

equivalence.

Remark 3.29. By Lemma 3.27(5) and (DCO), we have that (y,Dyx(f) ◦x g) ≈ (z,Dzx(f) ◦x g).

Finally, here is the equivalence theorem.

Theorem 3.30. Definition 1.4 (entries-only, biased) and Definition 3.25 (exchangeable-output, biased),
restricted to constant-free cyclic operads, are equivalent.

Proof. We define functors in both directions and show that going from one structure to the other
one, and back, leads to a structure isomorphic to the initial one.

Entries-only to Exchangeable-output. Let C : Bijop → Set be an entries-only cyclic operad.
For a finite set X and a bijection σ : Y → X , the species OC : Bijop → Set, underlying the
corresponding exchangeable-output cyclic operad, is defined by

OC(X) = ∂C(X) and OC(σ) = ∂C(σ) = C(σ+). (3.3.4)

3.3. Algebraic definitions of cyclic operads 65

For f ∈ OC(X) and g ∈ OC(Y), the partial composition operation ◦x : OC(X) × OC(Y) →
OC(X\{x} ∪ Y) is defined by setting

f ◦x g = fσ x◦∗Y g, (3.3.5)

where σ : X ∪ {∗X\{x}∪Y } → X ∪ {∗X} renames ∗X to ∗X\{x}∪Y . The distinguished element
idx ∈ OC({x}) is defined as idx,∗{x} . Finally, for f ∈ OC(X) and x ∈ X ∪ {∗X}, the action
Dx : OC(X)→ OC(X) is defined by setting

Dx(f) = C(σ)(f), (3.3.6)

where σ : X ∪ {∗X} → X ∪ {∗X} exchanges x and ∗X . We verify the axioms.

[A2] Let f and g be as above and let y ∈ X and h ∈ OC(Z). Thanks to the axioms (EQ) and
(A2) of C, the sequence of equalities

(f ◦x g) ◦y h = (fσ x◦∗Y g)τ y◦∗Z h

= ((fσ)τ1 x◦∗Y gτ2) y◦∗Z h

= ((fσ)τ1 y◦∗Z h) x◦∗Y g

= (fκ y◦∗Z h) x◦∗Y g

= (f ◦y h) ◦x g

where

• σ : X ∪ {∗X\{x}∪Y } → X ∪ {∗X} renames ∗X to ∗X\{x}∪Y ,

• τ : X\{x}∪Y ∪{∗X\{x,y}∪Y ∪Z} → X\{x}∪Y ∪{∗X\{x}∪Y } renames ∗X\{x}∪Y to ∗X\{x,y}∪Y ∪Z ,

• τ1 = τ |X\{x}∪{∗X\{x}∪Y } ∪ id{x},

• τ2 = τ |Y = idY ∪{∗Y }, and

• κ : X ∪ {∗X\{x}∪Z} → X ∪ {∗X} renames ∗X to ∗X\{x}∪Z ,

verifies [A2] for OC. The axiom [A1] follows similarily, by using the (derived) equality (A1) of
C (see Remark 1.8).

[EQ] For arbitrary bijections σ1 : X ′ → X and σ2 : Y ′ → Y , thanks to the axiom (EQ) of C,
as well as its variant from Lemma 1.7, we obtain the following sequence of equalities:

fσ
+
1 ◦σ−1

1 (x) g
σ+
2 = (fσ

+
1)τ

σ+
1

−1
(x)
◦∗Y ′ g

σ+
2

= (fσ
+
1)τ

τ−1(σ+
1

−1
(x))
◦∗Y ′ g

σ+
2

= (f x◦∗Y g)
κ

= (fν x◦∗Y g)σ
+

= (f ◦x g)
σ+

where

• τ : X ′ ∪ {∗X′\{σ−1
1 (x)}∪Y ′} → X ′ ∪ {∗X′} renames ∗X′ to ∗X′\{σ−1

1 (x)}∪Y ′ ,

• ν : X ∪ {∗X\{x}∪Y } → X ∪ {∗X} renames ∗X to ∗X\{x}∪Y ,

• κ = (σ+1 ◦ τ)|
X\{x}∪{∗X} ∪ σ+2 |

Y , and

• σ = σ1|
X\{x} ∪ σ2,

66 Chapter 3. Monoid-like definitions of cyclic operads

which proves [EQ]. Observe that

κ = (ν|X\{x}∪{∗X} ∪ idY) ◦ σ
+,

which justifies the application of Lemma 1.7 to get the equality (f x◦∗Y g)
κ = (fν x◦∗Y g)σ

+
.

[U1] By the axioms (UP) and (U1) for C, for f ∈ OC(X) we have

idy ◦y f = idσy,∗{y} y◦∗X f = idy,∗X y◦∗X f = f,

where σ : {y, ∗X} → {y, ∗{y}} renames ∗{y} to ∗X .
Similarily, the axioms [U2] and [UP] for OC follow thanks to the law (U2) (see Lemma 1.6)

and the axiom (UP) of C.

Concerning the axioms of the actions Dx, [DID], [DIN], [DEQ], and [DEX] follow easily by
functoriality of C. The axioms [DC1] and [DC2] require more.

[DC1] Let f ∈ OC(X), g ∈ OC(Y), x ∈ X and y ∈ X\{x}. We shall use the following bijec-
tions:

• σ : X\{x} ∪ Y ∪ {∗X\{x}∪Y } → X\{x} ∪ Y ∪ {∗X\{x}∪Y }, that exchanges y and ∗X\{x}∪Y ,

• ν : X ∪ {∗X\{x}∪Y } → X ∪ {∗X}, that renames ∗X to ∗X\{x}∪Y ,

• σ′ : X ∪ {∗X\{x}∪Y } → X ∪ {∗X\{x}∪Y }, that exchanges y and ∗X\{x}∪Y , and

• τ : X ∪ {∗X} → X ∪ {∗X}, that exchanges y and ∗X .

Observe that
τ ◦ ν = ν ◦ σ′ and σ = σ′|X\{x}∪{∗X\{x}∪Y } ∪ idY .

Thanks to the axiom (EQ) of C, this gives us

Dy(f ◦x g) = (fν x◦∗Y g)σ = (fν)σ
′

x◦∗Y g = (f τ)ν x◦∗Y g = Dy(f) ◦x g .

[DC2] Let f, g and x be as in the proof of [DC1] and let y ∈ Y instead. Let σ1 and σ2 be as in
Definition 3.25. We shall use the following bijections:

• τ1 : Y \{y} ∪ {v, ∗Y \{y}∪{v}} → Y ∪ {∗Y }, that renames y to ∗Y \{y}∪{v} and ∗Y to v,

• τ2 : X\{x} ∪ {y, ∗X\{x}∪{y}} → X ∪ {∗X}, that renames x to ∗X\{x}∪{y} and ∗X to y,

• τ : Y \{y}∪{v, ∗X\{x}∪Y } → Y \{y}∪{v, ∗Y \{y}∪{v}}, that renames ∗Y \{y}∪{v} to ∗X\{x}∪Y ,

• κ1 : X\{x}∪{y, ∗X\{x}∪{y}} → X∪{∗X\{x}∪Y }, that renames x to ∗X\{x}∪{y} and ∗X\{x}∪Y

to y,

• κ2 : Y \{y} ∪ {v, ∗X\{x}∪Y } → Y ∪ {∗Y }, that renames y to ∗X\{x}∪Y and ∗Y to v,

• σ : X\{x}∪Y ∪{∗X\{x}∪Y } → X\{x}∪Y ∪{∗X\{x}∪Y }, that exchanges y and ∗X\{x}∪Y , and

• ν : X ∪ {∗X\{x}∪Y } → X ∪ {∗X}, that renames ∗X to ∗X\{x}∪Y .

Observe that

τ2 = ν ◦ κ1, κ2 = τ1 ◦ τ and σ = κ1|
X\{x}∪{∗X\{x}∪Y } ∪ κ2|

Y .

Thanks to the axiom (EQ) and the derived law (CO) of C, this gives us

DO
y (g)

σ1 ◦v D
O
x (f)

σ2 = gτ1 ◦v f
τ2

= (gτ1)τ v◦∗X\{x}∪{y}
f τ2

3.3. Algebraic definitions of cyclic operads 67

= f τ2 ∗X\{x}∪{y}
◦v (gτ1)τ

= (fν)κ1 ∗X\{x}∪{y}
◦v g

κ2

= (fν x◦∗Y g)σ

= DO
y (f ◦x g).

Exchangeable-output to Entries-only. Suppose that O : Bijop → Set is an exchangeable-output
cyclic operad. The species CO : Bijop → Set, underlying the cyclic operad in the entries-only
fashion, is defined by

CO(X) =
∑

x∈X

O(X\{x})/≈ (3.3.7)

(see (3.3.3)). Accordingly, for [(x, f)]≈ ∈ CO(X) and a bijection σ : Y → X , we set

CO(σ)([(x, f)]≈) = [(σ−1(x),O(σ|X\{x})(f))]≈.

For [(u, f)]≈ ∈ CO(X) and [(v, g)]≈ ∈ CO(Y), the partial composition operation x◦y : CO(X) ×
CO(Y)→ CO(X\{x} ∪ Y \{y}) is defined as follows:

[(u, f)]≈x◦y[(v, g)]≈ =

[(z,Dzx(f) ◦x g)]≈, if u = x and v = y,

[(z,Dzx(f) ◦x Dyv(g))]≈, if u = x and v 6= y,

[(u, f ◦x g)]≈, if u 6= x and v = y,

[(u, f ◦x Dyv(g))]≈, if u 6= x and v 6= y,

(3.3.8)

where z ∈ X\{x} is arbitrary. To illustrate that x◦y is well-defined, suppose, say, that (u, f) and
(v, g) are such that u = x and v 6= y and let s ∈ X\{x} and w ∈ Y \{v} be arbitrary. Then, if,
say, w = y, we have

[(s,Dsx(f))]≈ x◦y [(y,Dyv(g))]≈ = [(s,Dsx(f) ◦x Dyv(g))]≈,

and (z,Dzx(f) ◦x Dyv(g)) ≈ (s,Dsx(f) ◦x Dyv(g)) by Remark 3.29. If w 6= y, then

[(s,Dsx(f))]≈ x◦y [(w,Dwv(g))]≈ = [(s,Dsx(f) ◦x Dyw(Dwv(g)))]≈,

and, by (DCO) and Remark 3.29, we have

(s,Dsx(f) ◦x Dyw(Dwv(g))) = (s,Dsx(f) ◦x Dyv(g)) ≈ (z,Dzx(f) ◦x Dyv(g)).

From Remark 3.29 it also follows that different choices of z ∈ X\{x} from the first two cases
in the definition of [(u, f)]≈x◦y[(v, g)]≈ lead to the same result. In the remaining of the proof,
we shall assume that (x, f) and (v, g) satisfy the conditions u 6= x and v = y. Finally, for a two-
element set, say {x, y}, the distinguished element idx,y ∈ CO({x, y}) will be the equivalence
class [(x, idy)]≈. Notice that, by [DID], we have that (x, idy) ≈ (y, idx). We check the axioms.

(A2) Let [(u, f)]≈ ∈ CO(X), [(y, g)]≈ ∈ CO(Y), [(w, h)]≈ ∈ CO(Z), x ∈ X , y ∈ Y and w ∈ Z.
We prove the instance of associativity that requires the use of [DC2] and [DID], namely

([(u, f)]≈ x◦y [(y, g)]≈) u◦w [(w, h)]≈ = ([(u, f)]≈ u◦w [(w, h)]≈) x◦y [(y, g)]≈.

Since O(∅) = ∅ and g ∈ O(Y \{y}) (resp. h ∈ O(Z\{w})), we have that Y \{y} 6= ∅ (resp.
Z\{w} 6= ∅). Suppose that X\{x, u} = ∅. For the expression on the left side of the above
equality we then have

([(u, f)]≈ x◦y [(y, g)]≈) u◦w [(w, h)]≈ = [(z,Dzu(f ◦x g) ◦u h)]≈,

68 Chapter 3. Monoid-like definitions of cyclic operads

where we chose z ∈ Y \{y}. On the other hand, we have

([(u, f)]≈ u◦w [(w, h)]≈) x◦y [(y, g)]≈ = [(v,Dvx(Dxu(f) ◦u h) ◦x g)]≈,

where we chose v ∈ Z\{w}. The associativity follows if we prove that

Dvz(Dzu(f ◦x g) ◦u h) = Dvx(Dxu(f) ◦u h) ◦x g.

For this we use [DC2], followed by [DID], on both sides of the equality. We get

Dv(h) ◦v Duz(Dzu(f ◦x g)) = Dv(h) ◦v (f ◦x g)

on the left side and

(Dv(h) ◦v Dux(Dxu(f))) ◦x g = (Dv(h) ◦v f) ◦x g

on the right side, and the conclusion follows by the axiom [A2] of O. If X\{x, u} 6= ∅ and
z ∈ X\{x, u}, the associativity follows more directly by [DC1], by choosing v = z.

(EQ) Let [(u, f)]≈ ∈ CO(X), [(y, g)]≈ ∈ CO(Y), and let σ1 : X ′ → X and σ2 : Y ′ → Y be
bijections. Suppose that σ−1

1 (x) = x′, σ−1
1 (u) = u′ and σ−1

2 (y) = y′. We prove that

CO(σ1)([(u, f)]≈) x′◦y′ CO(σ2)([(y, g)]≈) = CO(σ)([(u, f)]≈x◦y [(y, g)]≈),

where σ = σ1|
X\{x} ∪ σ2|

Y \{y}. Let σ′ = σ|X\{x,u}∪Y \{y}. Thanks to the axiom [EQ] of O, we get

([(u, f)]≈x◦y [(y, g)]≈)
σ = [(u, f ◦x g)]

σ
≈

= [(u′, (f ◦x g)
σ′
)]≈

= [(u′, f τ1 ◦x′ g
τ2)]≈

= [(u′, fσ1|
X\{u}

◦x′ g
σ2|Y \{y}

)]

= [(u′, fσ1|
X\{u}

)]≈ x′◦y′ [(y
′, gσ2|

Y \{y}
)]≈

= [(u, f)]σ1≈ x′◦y′ [(y, g)]
σ2
≈ ,

where τ1 = σ|X\{u} ∪ σ1|
x and τ2 = σ|Y \{y} = σ2|

Y \{y}.

(U1) For [(u, f)]≈ ∈ CO(X), by [U1], we have

[(y, idx)]≈ y◦u [(u, f)]≈ = [(x,Dxy(idx) ◦y f)]≈ = [(x, idy ◦y f)]≈ = [(x,Dxu(f))]≈ = [(u, f)]≈.

(UP) For [(y, idx)]≈ ∈ CO({x, y}), and a renaming σ : {u, v} → {x, y} of x to u and y to v,
thanks to [UP], we have

CO(σ)(idx,y) = CO(σ)([(y, idx)]≈) = [(σ−1(y),O(σ|{x})(idx))]≈ = [(v, idu)]≈ = idu,v.

The isomorphism of cyclic operads C and COC
(and O and OCO

). The isomorphism-of-species part,
which is the same as in the proof of the equivalence of algebraic definitions, will be formally
established by Lemma 3.33, as a consequence of the categorical equivalence indicated to us by
Lamarche. Nevertheless, we give now the definitions of the components φCX : COC

(X)→ C(X)
and ψOX : O(X)→ OCO

(X) of the isomorphisms φC : COC
→ C and ψO : O→ OCO

, respectively:

• φCX([(u, f)]≈) = fκ, where κ : X → X\{u} ∪ {∗X\{u}} renames ∗X\{u} to u, and,

• ψOX(f) = [(∗X , f)]≈.

3.3. Algebraic definitions of cyclic operads 69

As for the corresponding partial composition translations, for [(u, f)]≈ ∈ COC
(X), [(y, g)]≈ ∈

COC
(Y) and x ∈ X\{u}, we have

[(u, f)]≈ x◦y [(y, g)]≈ = [(u, f ◦x g)]≈ = [(u, fσ x◦∗Y \{y}
g)]≈ = [(u, fσ x◦y g

τ2)]≈,

where σ : X\{u}∪ {∗X\{u,x}∪Y \{y}} → X\{u}∪ {∗X\{u}} renames ∗X\{u} to ∗X\{u,x}∪Y \{y} and
τ2 : Y → Y \{y} ∪ {∗Y \{y}} renames ∗Y \{y} to y. Notice that for the last equality above we use
the axiom (EQ) of both COC

and C. The claim follows since

φCX([(u, f
σ
x◦y g

τ2)]≈) = (fσ x◦y g
τ2)κ = f τ1 x◦y g

τ2 ,

where κ : X\{x} ∪ Y \{y} → X\{x, u} ∪ Y \{y} ∪ {∗X\{x,u}∪Y \{y}} renames ∗X\{x,u}∪Y \{y} to u
and τ1 : X → X\{u} ∪ {∗X\{u}} renames u to ∗X\{u}, wherein the last equality above holds by
the axiom (EQ) of C.

For f ∈ O(X) and g ∈ O(Y), we have

ψOX(f) ◦x ψOY (g) = [(∗X , f)]≈ ◦x [(∗Y , g)]≈

= [(∗X , f)]
σ
x◦∗Y [(∗Y , g)]

= [(∗X\{x}∪Y , f)] x◦∗Y [(∗Y , g)]≈

= [(∗X\{x}∪Y , f ◦x g)]≈

= ψOX(f ◦x g),

where σ : X ∪ {∗X\{x}∪Y } → X ∪ {∗X} renames ∗X to ∗X\{x}∪Y .

For the unit elements, thanks to the axioms (UP) and [UP], respectively, we have

φC{x,y}([(x, idy,∗{y})]≈) = idκy,∗{y} = idx,y,

where κ : {x, y} → {y, ∗{y}} renames ∗{y} to x, and

ψO{x}(idx) = [(∗{x}, idx)]≈ = [(x, id∗{x})]≈,

which completes the proof of the theorem. �

Algebraic definition

If we think about the algebraic variant of Definition 3.25, it is clear that its cornerstone should
be an ordinary operad, i.e. a triple (S, ν, η1) specified by Definition 3.14, and that the goal is
to enrich this structure by a natural transformation which “glues together” the actions Dx :
S(X) → S(X) and encompasses the coherence conditions these actions satisfy. We give the
definition below.

Definition 3.31. A cyclic operad is a quadruple (S, ν, η1, D), such that (S, ν, η1) is an operad,
and the natural transformation D : ∂S → ∂S satisfies the following laws:

(D0) D ◦ η∂S = η∂S ,

(D1) D ◦D = id∂S ,

(D2) (∂D ◦ ex) ◦ (∂D ◦ ex) ◦ (∂D ◦ ex) = id∂∂S ,

as well as the coherence conditions given by the commutations of the following two diagrams:

70 Chapter 3. Monoid-like definitions of cyclic operads

(D3)

∂(∂S) · S ∂(∂S) · S

∂S ∂S

(ex ◦ ∂D ◦ ex) · id

ν3 ν3

D

(D4)

∂S · ∂S ∂S · ∂S

∂S ∂S · ∂S∂S

D ·D

ν4 γ

D ν4

in which ν3 and ν4 are induced from ν as follows:

ν3 : ∂∂S · S
il−−−→ ∂∂S · S + ∂S · ∂S

ϕ−1

−−−−→ ∂(∂S · S)
∂ν
−−−→ ∂S, and

ν4 : ∂S · ∂S
ir−−−→ ∂∂S · S + ∂S · ∂S

ϕ−1

−−−−→ ∂(∂S · S)
∂ν
−−−→ ∂S. �

That Definition 3.31 is indeed equivalent to Definition 3.25 will follow after the proof of
the equivalence between Definition 3.31 and Definition 3.19 in the next section (see Table 4).
As for a direct evidence, we content ourselves by showing the correspondence between the
natural transformation D and the individual actions Dx. Given D : ∂S → ∂S, one defines
Dx : S(X)→ S(X) as

Dx = S(σ−1) ◦DX\{x} ◦ S(σ), (3.3.9)

where σ : X\{x} ∪ {∗X\{x}} → X renames x to ∗X\{x}. In the opposite direction, we define
DX : ∂S(X)→ ∂S(X) via Dx as

DX = D∗X .

The correspondence between the axioms ofD and the ones ofDx is given in Table 7. In particu-
lar, the axiom (D2) corresponds exactly to the law (DCO) (that holds thanks to [DEQ] and [DEX],
by Lemma 3.28).

D Dx

(D0) [DID]

(D1) [DIN]

(D2) [DEQ], [DEX]

(D3) [DC1]

(D4) [DC2]

Table 7: Algebraic and biased axiomatisations of the non-skeletal input-output
interchange

Remark 3.32. Notice that the axiom (D2) can be read as the equality

ex ◦ ∂D ◦ ex = ∂D ◦ ex ◦ ∂D.

Therefore, the diagram obtained from (D3) by replacing (ex ◦ ∂D ◦ ex) · id with (∂D ◦ ex ◦ ∂D) · id
also commutes.

To summarise, we obtained the algebraic definition of exchangeable-output cyclic oper-
ads (Definition 3.31), by first upgrading the structure (Spec, ⋆), exhibited by Fiore, into the

3.3. Algebraic definitions of cyclic operads 71

monoidal-like category (Spec, ⋆, E1), and then by endowing the monoid-like objects of this
category, i.e. operads (see Table 8), with a natural transformation that accounts for the “input-
output interchange”.

Monoidal-like category Spec Monoid-like object S ∈ Spec

product ⋆ : Spec× Spec→ Spec ν : S ⋆ S → S

unit E1 ∈ Spec η1 : E1 → S

associativity4 βS,T,U : (S ⋆ T) ⋆ U + S ⋆ (U ⋆ T)

→ S ⋆ (T ⋆ U) + (S ⋆ U) ⋆ T

(OA1)

left unit

right unit

λ⋆S : E1 ⋆ S → S

ρ⋆S : S ⋆ E1 → S•
(OA2)

Table 8: An operad defined internally to the monoidal-like category of species

3.3.3 The equivalence of algebraic definitions of cyclic operads

This section deals with the proof of the equivalence between the two algebraic definitions of
cyclic operads, Definition 3.19 and Definition 3.31. Based on the equivalence between the cat-
egory of species which are empty on the empty set and the category of species with descent data,
which was communicated to us by Lamarche, this equivalence holds for constant-free cyclic
operads, i.e. cyclic operads for which the underlying species S is such that S(∅) = S({x}) = ∅,
for all singletons {x} (in the entries-only characterisation), and S(∅) = ∅ (in the exchangeable-
output characterisation). Recall that the constant-freeness requirement was also necessary for
the corresponding biased equivalence, given in Theorem 3.30. The reason will soon become
clear.

Descent theory for species

The equivalence of Lamarche comes from the background of descent theory. In the case of
species, one starts with the question

Can we “reconstruct” a species T , given ∂T?

Intuitively, given the morphism ∂+ : Bijop → Bijop in Cat, defined by ∂+(X) = X ∪ {∗X},
the idea is to recover a morphism T : Bijop → Set from S = ∂T by “descending” along ∂+, as
indicated in the following diagram:

Bijop Set

Bijop Set

∂T

∂+ idSet

T

Such a reconstruction is clearly not possible without additional data, usually referred to as the
descent data, that compensates the loss of information caused by the action of the functor ∂ :
Spec→ Spec.

Lamarche defines a descent data as a pair (S,D) of a species S and a natural transformation
D : ∂S → ∂S, such that D2 = id∂S , and (∂D ◦ exS)

3 = id∂∂S , and he proves that

the assignment ∂ : Spec/∅ → Spec+, defined by T 7→ (∂T, exT), is an equivalence of
categories5.

4Actually, the “minimal” associativity-like isomorphism.
5Lamarche proves this equivalence in a skeletal setting, by considering functors of the form S : Σop → Set. The

non-skeletal version that we present is an easy adaptation of his result.

72 Chapter 3. Monoid-like definitions of cyclic operads

Here, Spec/∅ denotes the category of species S such that S(∅) = ∅ and Spec+ denotes the
category of descent data. For an object (S,D) of Spec+, the inverse functor

∫

: Spec+ → Spec/∅

is defined by
∫

(S,D)(X) =
∑

x∈X

S(X\{x})/≈,

where ≈ is defined as in (3.3.3), whereby the actions Dx are defined via D as in (3.3.9).

The main theorem

LetSpec/∅,{∗} be the subcategory ofSpec/∅, determined by speciesS such thatS(∅) = S({x}) =
∅, for all singletons {x}, and let Spec+/∅ be the subcategory of Spec+, determined by descent
data with species S for which S(∅) = ∅. The following result is a direct consequence of the
equivalence of Lamarche.

Lemma 3.33. The assignment ∂ : Spec/∅,{∗} → Spec/+∅ , defined byT 7→ (∂T, exT), is an equivalence
of categories.

Let COen(Spec/∅,{∗}) be the category of entries-only cyclic operads (S, ρ, η2) such that S is

an object of Spec/∅,{∗}, and let COex(Spec/
+
∅) be the category of exchangeable-output cyclic

operads (S, ν, η1, D) such that (S,D) is an object of Spec+/∅. In both of these categories, the
(iso)morphisms are natural transformations (natural isomorphisms) between underlying species
which preserve the cyclic-operad structure.

The main result of this chapter is the proof that the equivalence of Lamarche carries over, via
Lemma 3.33, to an equivalence between the two algebraic definitions of cyclic operads, formally
given as the categorical equivalence between the two categories introduced above.

Remark 3.34. The reason for restricting the equivalence of Lamarche to the one of Lemma 3.33 (and,
therefore, to the equivalence of constant-free cyclic operads) lies in the fact that, given a species S from
Spec/∅, the constraint S(∅) = ∅ makes the component ρ∅ : (∂S · ∂S)(∅)→ S(∅) of the multiplication
ρ : ∂S · ∂S → S the empty function, in which case the condition S({∗∅}) = ∅ is needed in order for
the domain of ρ∅ to also be the empty set. Therefore, in the context of cyclic operads, we have to consider
Spec/∅,{∗} instead of Spec/∅, and, consequently, Spec/+∅ instead of Spec+.

Theorem 3.35. The categories COen(Spec/∅,{∗}) and COex(Spec/
+
∅) are equivalent.

Proof. We follow the same steps as we did in the proofs of Theorem 3.24 and Theorem 3.30. The
precise definitions of the functors and natural trasformations that constitute the equivalence are
cumbersome, but easy to derive from the transitions we make below.

Exchangeable-output to Entries-only. Given a cyclic operad O = (T, νT , η1T , DT) from
COex(Spec/

+
∅), by Lemma 3.33, we know that (T,DT) ≃ (∂S, exS), for some species S from

Spec/∅,{∗}. Together with the definitions of νT and ηT , this equivalence gives rise to an operad
(∂S, ν∂S , η1∂S , exS), such that O ≃ (∂S, ν∂S , η1∂S , exS). Since

∫

(∂S, exS) ≃ S, defining a cyclic
operad over the species

∫

T amounts to defining a cyclic operad CO = (S, ρνS , η2S) over the
species S. We define CO below, whereby we shall write ρ for ρνS and η2 for η2S .

For X = ∅, we set ρX : (∂S · ∂S)(X) → S(X) to be the empty function. For X 6= ∅, observe
that defining ρX amounts to defining ρ′X : ∂(∂S ·∂S)(X)→ ∂S(X). Indeed, in the end, we shall
define

ρX = S(σ−1) ◦ ρ′X\{x} ◦ (∂S · ∂S)(σ),

3.3. Algebraic definitions of cyclic operads 73

where x ∈ X is arbitrary and σ : X\{x}∪{∗X\{x}} → X renames x to ∗X\{x}. For the definition
of ρ′, we take

ρ′ = [ρ′1, ρ
′
2] ◦ ϕ,

where ρ′1 : ∂∂S · ∂S → ∂S and ρ′2 : ∂S · ∂∂S → ∂S are determined by

ρ′1 : ∂∂S · ∂S
ex·id
−−−−−→ ∂∂S · ∂S

ν3−−−→ ∂S and ρ′2 = ρ′1 ◦ γ,

where ν3 is as in the axiom (D3), the definition of [ρ′1, ρ
′
2] is set up by Notation 3.5 and ϕ is the

isomorphism from Lemma 3.9(2).
Similarly, defining η2 amounts to defining ∂η2 : ∂E2 → ∂S, for which we set

∂η2 = η1∂S ◦ ǫ2

(for the definition of the isomorphism ǫ2, as well as for the definitions of ex and γ above, see
Table 5). We verify the axioms.

(CA1) By Corollary 3.21, the axiom (CA1) for CO comes down to the equality ρ21 ◦ θ1 = ρ11,
whereas the equality ρ21 ◦θ1 = ρ11 clearly follows from the equality ∂ρ21 ◦∂θ1 = ∂ρ11. We prove
the latter equality.

In Diagram 4, the triangle T is the diagram whose commutation we aim to prove and the
diagrams L and R are obtained by unfolding the definitions of ∂ρ11 and ∂ρ21. Finally, the two
bottom triangles are obtained by expressing ∂(ρ′ · id) in L and R as ∂([ρ′1, ρ

′
2] · id) ◦ ∂(ϕ · id).

∂(∂S · ∂S)

∂((∂∂S · ∂S + ∂S · ∂∂S) · ∂S)

∂((∂∂S · ∂S) · ∂S) ∂((∂∂S · ∂S) · ∂S)

∂((∂∂S · ∂S + ∂S · ∂∂S) · ∂S)∂((∂∂S · ∂S + ∂S · ∂∂S) · ∂S)

∂(∂(∂S · ∂S) · ∂S) ∂(∂(∂S · ∂S) · ∂S)

∂S

T

RL

∂θ1

∂ρ11 ∂ρ21

∂(i · id)∂(i · id)

∂(ϕ−1 · id) ∂(ϕ−1 · id)

∂(ρ′ · id)∂(ρ′ · id)

∂(ϕ · id)∂(ϕ · id)

ρ′

∂([ρ′
1
, ρ′

2
] · id)

Diagram 4

Snce ∂(ϕ · id) ◦ ∂(ϕ−1 · id) = id and ∂([ρ′1, ρ
′
2] · id) ◦ ∂(i · id) = ∂(ρ′1 · id), Diagram 4 can be

transformed into Diagram 5, in which the triangles L′ and R′ commute.

∂((∂∂S · ∂S) · ∂S) ∂((∂∂S · ∂S) · ∂S)

∂S

∂(∂S · ∂S)

L′ R′

T

∂θ1

∂(ρ′
1
· id) ∂(ρ′

1
· id)

∂ρ11 ∂ρ21

ρ′

Diagram 5.

Therefore, the equality that needs to be proven is

A ◦ ∂θ1 = A, (3.3.10)

whereA = ρ′ ◦∂(ρ′1 · id). By implementing ρ′ = [ρ′1, ρ
′
2] ◦ϕ inA and then by using the equalities

[∂ρ′1 · id , ρ
′
1 · ∂id] ◦ϕ = ϕ ◦ ∂(ρ′1 · id) and ∂id = id , A gets reformulated as A = [B,C] ◦ϕ, where

74 Chapter 3. Monoid-like definitions of cyclic operads

B = ρ′1 ◦ (∂ρ
′
1 · id) and C = ρ′2 ◦ (ρ

′
1 · id). By setting θ = ϕ ◦ ∂θ1 ◦ ϕ

−1, the equality (3.3.10)
reformulates as

[B,C] = [B,C] ◦ Γ . (3.3.11)

SinceΓ can be expressed by the commutation of Diagram 6.6, by settingD = B◦(ϕ−1 ·id)◦(il ·id)
and E = B ◦ (ϕ−1 · id) ◦ (ir · id), the equality 3.3.11 is proven if the following three equalities
hold:

D = D◦ (α−1 ◦ (∂ex ·γ)◦α), E = C ◦ (α−1 ◦ (ex ·γ)◦α) and C = E ◦ (α−1 ◦ (ex ·γ)◦α).

(∂∂∂S · ∂S + ∂∂S · ∂∂S) · ∂S + (∂∂S · ∂S) · ∂∂S

(∂∂∂S · ∂S) · ∂S + (∂∂S · ∂∂S) · ∂S + (∂∂S · ∂S) · ∂∂S

(∂∂∂S · ∂S + ∂∂S · ∂∂S) · ∂S + (∂∂S · ∂S) · ∂∂S

(∂∂∂S · ∂S) · ∂S + (∂∂S · ∂∂S) · ∂S + (∂∂S · ∂S) · ∂∂S

∂∂∂S · (∂S · ∂S) + ∂∂S · (∂∂S · ∂S) + ∂∂S · (∂S · ∂∂S) ∂∂∂S · (∂S · ∂S) + ∂∂S · (∂∂S · ∂S) + ∂∂S · (∂S · ∂∂S)

∂(∂∂S · ∂S) · ∂S + (∂∂S · ∂S) · ∂∂S∂(∂∂S · ∂S) · ∂S + (∂∂S · ∂S) · ∂∂S

ς + id

α + α + α

∂ex · γ + ex · γ + ex · γ

ς−1 + id

α−1 + α−1 + α−1

Γ

ϕ · id + id ϕ−1 · id + id

Diagram 6

Therefore, the first equality that needs to be proven is

ρ′1 ◦ (∂ρ
′
1 · id) ◦ (ϕ

−1 · id) ◦ (il · id) = ρ′1 ◦ (∂ρ
′
1 · id) ◦ (ϕ

−1 · id) ◦ (il · id) ◦ (α
−1 ◦ (∂ex · γ) ◦ α),

and the outer part of Diagram 7 corresponds exactly to this equality once the definition of ρ′

(via ν) is unfolded.

(∂∂∂S · ∂S) · ∂S

Il Ir

∂(∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂∂S · ∂S

∂∂S · ∂S

∂∂∂S · (∂S · ∂S) ∂∂∂S · (∂S · ∂S) (∂∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂∂S · ∂S

∂∂S · ∂S

∂S

K

L

M

Jl Jr

(∂∂∂S · ∂S) · ∂S

(∂∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

(∂∂∂S · ∂S) · ∂S

(∂∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

α

(∂
ex

· i
d)

· i
d

(ϕ−1 ◦ il)·id

∂(ex · id) · id

∂ν · id

ex · id

ν

(ϕ−1 ◦ il)·id

∂(ex · id) · id

∂ν · id

ex · id

ν

∂ex · γ α−1

(ϕ−1 ◦ il)·id (ϕ−1 ◦ il)·id

(∂ex ◦ ex ◦ ∂ex) · id

(ϕ−1 ◦ il) · id

α· -1◦(∂ex · c)◦α·

∂ν · id

(ex ◦ ∂ex ◦ ex) · id

(ϕ−1 ◦ il) · id

∂ν · id

α· -1◦(ex · c)◦α·

(∂
ex · id) · id

Diagram 7.

The rest of the arrows show that the outer part indeed commutes. Notice that

6 In the top horizontal arrow of Diagram 6, the first ex · γ maps the second summand on the left to the third one
on the right, and the second ex · γ maps the third summand on the left to the second one on the right.

3.3. Algebraic definitions of cyclic operads 75

• Jl and Jr commute, since they become the commuting squares of Remark 3.32 and (D3),
respectively, once the two sequences of morphisms defining ν3 are “wrapped up” and D
is set to be ex,

• K commutes, as it represents the equality ν21 ◦ β1 = ν11 of the axiom [OA1], and

• Il, Ir, L and M commute as instances of the naturality conditions for ϕ and α.

The second equality is

ρ′1 ◦ (∂ρ
′
1 · id) ◦ (ϕ

−1 · id) ◦ (ir · id) = ρ′2 ◦ (ρ
′
1 · id) ◦ α

−1 ◦ (ex · γ) ◦ α,

and the corresponding diagram is (the outer part of) Diagram 8. This diagram commutes be-
cause

• I becomes the commuting pentagon of (D4), once the two sequences of morphisms defi-
nition of ν4 are “wrapped up” and D is set to be ex, and

• J commutes, as it corresponds to the equality ν22 ◦ β2 = ν12 of the axiom [OA1].

(∂∂S · ∂∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂∂S · ∂S

∂∂S · ∂S

∂∂S · (∂∂S · ∂S) ∂∂S · (∂S · ∂∂S) (∂∂S · ∂S) · ∂∂S

(∂∂S · ∂S) · ∂∂S

∂S · ∂∂S

∂∂S · ∂S

∂∂S · ∂S

∂S

(∂∂S · ∂∂S) · ∂S

I

J

(∂∂S · ∂∂S) · ∂S

∂∂S · (∂∂S · ∂S)(∂∂S · ∂∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂∂S · (∂∂S · ∂S)

(∂∂S · ∂∂S) · ∂S

∂∂S · (∂S · ∂∂S)

∂∂S · (∂∂S · ∂S)

γ · id

α

α·

α

id · γ α·−1

γ

id · ν

(ϕ−1 ◦ ir) · id

∂(ex · id) · id

∂ν · id

ex · id

ν

(ex · id)·id

ν · id

γ

ex · id

ν

ex · γ

(ex · id) · id

(ϕ−1 ◦ ir)·id

∂ν ·id

(ex · ex)·id

γ ·id

(ϕ−1 ◦ ir)·id

α

ex · id

id · ν

α·−1

Diagram 8

The last equality is

ρ′2 ◦ (ρ
′
1 · id) = ρ′1 ◦ (∂ρ

′
1 · id) ◦ (ϕ

−1 · id) ◦ (ir · id) ◦ α
−1 ◦ (ex · γ) ◦ α,

and it follows from the second one, since (ex · γ)−1 = ex · γ.

(CA2) By an analysis similar to the one we made for (CA1), it can be shown that (CA2)
follows from the equalities

ρ′1 ◦ (∂∂ηC · id) = ∂π1 ◦ ∂λ
N ◦ (ϕ−1 ◦ il) : ∂∂E2 · ∂S → ∂S (3.3.12)

and
ρ′2 ◦ (∂ηC · id) = ∂π1 ◦ ∂λ

N ◦ (ϕ−1 ◦ ir) : ∂E2 · ∂∂S → ∂S. (3.3.13)

In Diagram 9, the inner triangle represents the equation (3.3.12). It commutes by the com-
mutations of the three diagrams that surround it (easy to check) and from the commutation of
the outer triangle, which represents the left triangle from the axiom [OA2]. The equality (3.3.13)
is verified by a similar diagram, whose outer part will commute as the right triangle from [OA2].

76 Chapter 3. Monoid-like definitions of cyclic operads

∂∂E2 · ∂S

∂E1 · ∂S

∂∂S · ∂S

∂∂S · ∂S

∂(∂E2 · ∂S)

∂S

D1

∂S•

∂∂ηC · id
∂ǫ2 · id

ϕ−1 ◦ il

∂λN ρ1

ν

ex · id

ηO · id

λ⋆

∂π1

Diagram 9

Entries-only to Exchangeable-output. Given an entries-only cyclic operad C = (S, ρS , η2S), we
the corresponing exchangeable-output cyclic operad OC = (∂S, νρ∂S , η1∂S , exS) is defined by
introducing νρ∂S : ∂S ⋆ ∂S → ∂S (ν for short) as

ν : ∂∂S · ∂S
ex·id
−−−−−→ ∂∂S · ∂S

il−−−→ ∂∂S · ∂S + ∂S · ∂∂S
ϕ−1

−−−−→ ∂(∂S · ∂S)
∂ρ
−−−→ ∂S,

and η1∂S : E1 → ∂S (η1 for short) as η1 = ∂η2S ◦ ǫ
−1
2 . Recall that the isomorphism exS arises a

priori by Lemma 3.33, and therefore, it automatically satisfies the axioms (D1) and (D2). The
axiom (D3) is then verified easily by using (D2), naturality of ϕ and naturality of exS, and the
axiom (D4) follows essentially by Lemma 3.20. We now indicate how to verify the remaining
axioms.

[OA1] The outer part of Diagram 10 represents the equality ν21◦β1 = ν11 (once the definition
of ν via ρ is unfolded). The proof that it commutes uses

• the commutation of the diagram E, where

ψ = (ϕ−1 ◦ il) ◦ ((ϕ
−1 ◦ il) · id) ◦ ((ex · id) · id) ◦ ((∂ex · id) · id),

which follows by the equality ∂ex ◦ ex ◦ ∂ex = ex ◦ ∂ex ◦ ex,

• the commutation of the diagramG, representing the equality ∂ρ21 ◦∂θ1 = ∂ρ11, which, in
turn, holds by (CA1),

• the commutations of F1 and F2, which follow by the naturality of ϕ, and

• the commutations of R1 and R2, which follow by the naturality of ρ.

The outer part of Diagram 11, which represents the equality ν22 ◦ β2 = ν12, commutes by

• the commutation of the diagram E, where

φ1 = ϕ−1 ◦ il ◦ (ϕ
−1 ◦ il ◦ (ex · id)) · id and φ2 = ϕ−1 ◦ il ◦ (ex · id),

which follows by the naturality of θ2 (notice that θ2 = (id · (ex · id)) ◦ α),

• the commutation of G, representing the equality ∂ρ22 ◦ ∂θ2 = ∂ρ12, which, in turn, holds
by (CA1), and

• the commutations of F1, F2, R1 and R2, which are of the same kind as in Diagram 10.

Notice that the equality ν23 ◦ β3 = ν13 also follows by the commutation of Diagram 11.

3.3. Algebraic definitions of cyclic operads 77

(∂∂∂S · ∂S) · ∂S

∂∂S · ∂S

∂(∂S · ∂S)

∂(∂(∂S · ∂S) · ∂S) ∂(∂(∂S · ∂S) · ∂S)

∂((∂∂S · ∂S) · ∂S) ∂((∂∂S · ∂S) · ∂S)

∂(∂S · ∂S)

∂∂(∂S · ∂S) · ∂S

∂∂(∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂∂∂S · (∂S · ∂S) ∂∂∂S · (∂S · ∂S) (∂∂∂S · ∂S) · ∂S

∂∂S · ∂S

∂∂(∂S · ∂S) · ∂S

∂∂(∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂S

E

G

F1 F2

R1 R2

α·

(ϕ−1 ◦ il) · id

ψ ψ

∂∂ρ · id

ϕ−1 ◦ il

∂((ϕ−1 ◦ il) · id)

∂((ϕ−1 ◦ il) · id)

∂θ1

∂(∂
ρ · id)

∂(∂ρ · id)

ϕ−1 ◦ il

ϕ−1
◦ il

∂(ϕ−1 ◦ il) · id

∂(ex · id) · id

∂ρ ∂ρ

(ϕ−1 ◦ il) · id

∂∂ρ · id

ex · idex · id

ϕ
−1 ◦ il

∂(ϕ−1 ◦ il) · id

∂(ex · id) · id

ex · γ α·−1

Diagram 10

(∂∂S · ∂∂S) · ∂S

∂(∂(∂S · ∂S) · ∂S)

∂(∂S · (∂∂S · ∂S))

∂(∂S · ∂(∂S · ∂S))

∂((∂S · ∂∂S) · ∂S)

∂∂S · ∂S

∂(∂S · ∂S)

∂∂(∂S · ∂S) · ∂S

∂∂(∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂(∂∂S · ∂S) · ∂S

∂∂S · (∂∂S · ∂S)

∂(∂S · ∂S)

∂∂S · ∂S

∂∂S · ∂(∂S · ∂S)

∂∂S · ∂(∂S · ∂S)

∂∂S · (∂∂S · ∂S)

∂S

E

G

F1 F2

R1

R2

∂(∂
ρ · id)

∂θ2

∂(id · ∂ρ)

∂(id · (ϕ−1 ◦ il))

φ1

φ2

∂((ϕ−1 ◦ ir) · id)

α

(ϕ−1 ◦ ir) · id

∂∂ρ · id

ϕ−1 ◦ il
∂ρ

∂ρ

∂(ϕ−1 ◦ il) · id

∂(ex · id) · id

id · (ex · id)

ϕ−1 ◦ il

id · ∂ρ

ϕ
−
1 ◦ i l

ex · id

ex · id

ϕ−1
◦ il

id · (ϕ−1 ◦ il)

Diagram 11

[OA2] The commutation of the left triangle from [OA2] follows by replacing ν in Diagram 9
with its definition via ρ and by setting ρ1 = ∂ρ ◦ϕ−1 ◦ il. The commutation of the right triangle
follows analogously, relative to the diagram that arises in the proof of the equality (3.3.13).

The isomorphism of cyclic operads C and COC
(and O and OCO

). As it was the case in the proof
of Theorem 3.30, the isomorphism at the level of the underlying species exists by Lemma 3.33.
The first isomorphism of cyclic operads follows from the equalities7

∂η2S = ∂η2S ◦ ǫ
−1
2 ◦ ǫ2 and ∂ρS = ρ′

ν∂Sρ
.

7These would be isomorphisms (rather than equalities) if we considered the sequence S → ∂S →
∫

∂S instead
of S → ∂S → S.

78 Chapter 3. Monoid-like definitions of cyclic operads

The first equality is obvoiusly trivial, while, since ρ′
ν∂Sρ
◦ϕ−1 = [ρ′1ν∂Sρ , ρ′2ν∂Sρ], the second equality

follows from the equalities

∂ρS ◦ ϕ−1 ◦ il = ρ′1ν∂Sρ and ∂ρS ◦ ϕ−1 ◦ ir = ρ′2ν∂Sρ .

These latter two equalities are verified as follows:

ρ′1ν∂Sρ = ν∂Sρ ◦ (ex · id∂S)

= ∂ρS ◦ ϕ−1 ◦ il ◦ (ex · id∂S) ◦ (ex · id∂S)

= ∂ρS ◦ ϕ−1 ◦ il

and
ρ′2ν∂Sρ = ν∂Sρ ◦ (ex · id∂S) ◦ γ

= ∂ρS ◦ ϕ−1 ◦ il ◦ (ex · id∂S) ◦ (ex · id∂S) ◦ c

= ∂ρS ◦ ϕ−1 ◦ il ◦ c

= ∂ρS ◦ ∂γ ◦ ϕ−1 ◦ ir

= ∂ρS ◦ ϕ−1 ◦ ir .

The second isomorphism follows from the equalities8

∂η∂S1 = ∂(η∂S1 ◦ ǫ2) ◦ ǫ
−1
2 and ν = νρν .

The equality ν = νρν is verified as follows:

νρν = ∂ρν ◦ ϕ
−1 ◦ il ◦ (ex · id)

= [ν ◦ (ex · id∂S), ν ◦ (ex · id∂S) ◦ γ] ◦ ϕ ◦ ϕ
−1 ◦ il ◦ (ex · id)

= ν ◦ (ex · id∂S) ◦ (ex · id)

= ν.

This completes the proof. �

8Like before, these would be isomorphisms if we considered the sequence S →
∫

S → ∂
∫

S.

79

Chapter 4

Categorified cyclic operads

In the last chapter of this thesis, we make a leap from cyclic operads defined in set-theoretic
terms, which we considered up to now, to their categorifications. The process of categorification
that we carry out is outlined by the replacement of set-theoretic concepts from Definition 1.4
(entries-only) and Definition 3.25 (exchangeable-output) of cyclic operads with their category-
theoretic analogues, as indicated in the Introduction.

For the sake of simplicity, we shall not consider units in neither of these definitions. For
both of them, the removal of units is made simply by forgetting their structure and omitting the
unitality axioms (see Remark 1.3 and Remark 1.9). Therefore, in the remaining of this chapter,
we shall work with the following non-unital axiomatisations of cyclic operads:

(A1), (CO) and (EQ),

for entries-only cyclic operads, and

[A1], [A2], [EQ], [DIN], [DEQ], [DEX], [DC1] and [DC2],

for exchangeable-output cyclic operads.

This chapter is organised as follows. In Section 4.1, we introduce categorified entries-only
cyclic operads by relaxing the axioms (A1) and (CO) to isomorphisms, while leaving equivari-
ance strict, and by formulating conditions which ensure the coherence of the obtained isomor-
phisms. We examine the “operadic” properties of the obtained categorification, essential for
reducing the coherence problem to the coherence of weak Cat-operads of [DP15]. The largest
part of the section will be devoted to the proof of the coherence theorem, whose statement
“all canonical diagrams commute” we make precise by introducing the syntax of canonical di-
agrams. As we indicated in the Introduction, the proof is obtained by restricting the coher-
ence problem from the class of all canonical diagrams to the class of canonical diagrams of
[DP15], by three consecutive faithful reductions: we first “remove” symmetries, then “cyclic-
ity” and, finally, we pass from the non-skeletal to the skeletal framework. Section 4.2 deals
with (non-skeletal) exchangeable-output categorified cyclic operads. The choice of the axioms
which should be weakened in this case is predetermined by the proof of Theorem 3.30: if we
want to preserve the equivalence of entries-only and exchangeable-output cyclic operads in the
categorified setting, then these axioms must be [A1], [A2] and [DC2]. By using the proof of
Theorem 3.30 as a “dictionary” from entries-only to exchangeable-output cyclic operads, the
coherence conditions for the three obtained isomorphisms are established by translating to the
exchangeable-output language the coherences of the entries-only categorification, which is not
trivial. Finally, by adapting the proof of Theorem 3.30 for the non-unital and categorified set-
ting, we give a proof of the equivalence between the exchangeable-output and the entries-only
categorified cyclic operads, which guarantees the coherence of the former notion. We round up
the chapter with a comment on skeletal exchangeable-output categorified cyclic operads.

In the remainder of the chapter, we shall use latin letters for operations of a categorified
cyclic operad, and greek letters for morphisms between them.

80 Chapter 4. Categorified cyclic operads

4.1 Categorified entries-only cyclic operads

This section deals with categorified entries-only cyclic operads. In the first part of the section, we
introduce the categorified notion and exhibit important properties. The second one is dedicated
to the proof of the coherence theorem.

4.1.1 The definition and properties

Chasing coherence of sequential associativity (A1) and commutativity (CO), relaxed to isomor-
phisms, led us to the following definition.

Definition 4.1. A categorified entries-only cyclic operad is a functor C : Bijop → Cat, together with

• a family of bifunctors

x◦y : C(X)× C(Y)→ C(X\{x} ∪ Y \{y}),

called partial composition operations of C, indexed by arbitrary non-empty finite sets X and
Y and elements x ∈ X and y ∈ Y , such that X\{x} ∩ Y \{y} = ∅, which are subject to the
equivariance axiom (EQ), and

• two natural isomorphisms, β and γ, called the associator and the commutator, whose re-
spective components

β
x,x;y,y

f,g,h : (f x◦x g) y◦y h→ f x◦x (g y◦y h) and γx,yf,g : f x◦y g → g y◦x f ,

are natural in f , g and h, and are subject to the following coherence conditions:

- (β-pentagon)

((f x◦x g) y◦y h) z◦z k

(f x◦x (g y◦y h)) z◦z k (f x◦x g) y◦y (h z◦z k)

f x◦x ((g y◦y h) z◦z k) f x◦x (g y◦y (h z◦z k))

β
x,x;y,y

f,g,h z◦z 1k β
y,y;z,z

fx◦xg,h,k

β
x,x;z,z
f,gy◦yh,k β

x,x;y,y

f,g,hz◦zk

1f x◦x β
y,y;z,z

g,h,k

- (βγ-hexagon)

(f x◦x g) y◦y h f x◦x (g y◦y h) (g y◦y h) x◦x f

(g x◦x f) y◦y h h y◦y (g x◦x f) (h y◦y g) x◦x f

β
x,x;y,y

f,g,h
γ
x,x
f,gy◦yh

γ
x,x
f,g y◦y 1h γ

y,y

g,h x◦x 1f

γ
y,y

gx◦xf,h β
y,y;x,x

h,g,f

4.1. Categorified entries-only cyclic operads 81

- (βγ-decagon)

((f x◦x g) y◦y h) z◦z k

(h y◦y (f x◦x g)) z◦z k h y◦y ((f x◦x g) z◦z k)

((f x◦x g) z◦z k) y◦y h

(f x◦x (g z◦z k)) y◦y h(f x◦x (g y◦y h)) z◦z k

f x◦x ((g y◦y h) z◦z k)

f x◦x ((h y◦y g) z◦z k) f x◦x (h y◦y (g z◦z k))

f x◦x ((g z◦z k) y◦y h)

γ
y,y

fx◦xg,h z
◦z 1k

β
y,y;z,z

h,fx◦xg,k

γ
y,y

h,(fx◦xg)z◦zk

β
x,x;z,z
f,g,k y◦y 1hβ

x,x;y,y

f,g,h z◦z 1k

β
x,x;y,y

f,gz◦zk,h
β
x,x;z,z
f,gy◦yh,k

1f x◦x (γ
y,y

g,h z◦z 1k)
1f x◦x β

y,y;z,z

h,g,k

1f x◦x γ
y,y

h,gz◦zk

- (γ-involution)

f x◦x g

f x◦x g f x◦x g

γ
x,x
f,g

1fx◦xg

γ
x,x
g,f

where 1(−) denotes the identity morphism for (−), as well as the following conditions
which involve the action of C(σ), where σ : Y → X , on the morphisms of C(X):

- (βσ) if the equality ((f x◦x g) y◦y h)
σ = (fσ1 x′◦x′ g

σ2) y′◦y′ h
σ3 holds by (EQ), then

(β
x,x;y,y

f,g,k)σ = β
x′,x′;y′,y′

fσ1 ,gσ2 ,hσ3 ,

- (γσ) if the equality (f x◦y g)
σ = fσ1 x′◦y′ g

σ2 holds by (EQ), then

(γx,yf,g)
σ = γx

′,y′

fσ1 ,gσ2 ,

- (EQ-mor) if the equality (f x◦y g)
σ = fσ1 x′◦y′ g

σ2 holds by (EQ), and if ϕ : f → f ′ and
ψ : g → g′, then

(ϕ x◦y ψ)
σ = ϕσ1 x′◦y′ ψ

σ2 .
�

Remark 4.2. The nodes of the diagrams of Definition 4.1 can be viewed as formal expressions built over
operations f, g, . . . and their entries x, x, y, y, For each diagram, the rules for assembling correctly
these expressions are determined by the “origin of entries”, i.e. by the uniquely determined relation
between the involved operations and entries, whose instances have the form “x is an entry of f”. For
example, in (βγ-decagon), the legitimacy of all the nodes in the diagram witnesses that x is entry of f ,
x, y and z are entries of g, y is the entry of h and z is the entry of k. From the tree-wise perspective, these
data can be encoded by the unrooted tree

82 Chapter 4. Categorified cyclic operads

f

g

k

h
x

x
y
y

z
z

This tree also illustrates the fact that the morphism, say,

β
x,x;y,y

g,f,h : (g x◦x f) y◦y h→ g x◦x (f y◦y h)

does not exist (for these particular f , g and h), since its codomain is not well-formed, which exemplifies
the difference between the setting of symmetric monoidal categories, where an instance of the associator
exists for any (ordered) triple of objects. The trees corresponding to (β-pentagon), (βγ-hexagon)
and (γ-involution) are

f

g

h

k

x

x

y

y

z

z

f

g

h

x
x y y and

f

g
x

x

respectively. In §4.1.4, we shall introduce a formal tree-wise representation of the operations of a cate-
gorified cyclic operads, based on this intuition. Until then, we shall continue to omit the data about the
“origin of entries” whenever possible.

Remark 4.3. Observe that, for a categorified cyclic operad C and a finite set X , both the objects and the
morphisms of C(X) enjoy equivariance: at the level of objects, this is ensured by (EQ), and at the level of
morphisms, by (EQ-mor).

In the remainder of the section, we shall work with a fixed categorified entries-only cyclic
operad C. In the remark that follows, we list the equalities on objects and morphisms of C(X)
which are implicitly imposed by the structure of C.

Remark 4.4. For an arbitrary finite set X , the following equalities hold in C(X):

1. the categorical equations:

a) ϕ ◦ 1f = ϕ = 1g ◦ ϕ, for ϕ : f → g,

b) (ϕ ◦ φ) ◦ ψ = ϕ ◦ (φ ◦ ψ),

2. the equations imposed by the bifunctoriality of x◦x:

a) 1f x◦x 1g = 1f x◦x g,

b) (ϕ2 ◦ ϕ1) x◦x (ψ2 ◦ ψ1) = (ϕ2 x◦x ψ2) ◦ (ϕ1 x◦x ψ1),

3. the naturality equations for β and γ:

a) β
x,x;y,y

f2,g2,h2
◦ ((ϕ x◦x φ) y◦y ψ) = (ϕ x◦x (φ y◦y ψ)) ◦ β

x,x;y,y

f1,g1,h1
,

b) γx,yf2,g2 ◦ (ϕ x◦y φ) = (φ y◦x ϕ) ◦ γ
x,y
f1,g1

,

where ϕ : f1 → f2, φ : g1 → g2 and ψ : h1 → h2,

5. the equations imposed by the functoriality of C:

4.1. Categorified entries-only cyclic operads 83

a) C(1X) = 1C(X),

b) (fσ)τ = fσ◦τ ,

c) (ϕσ)τ = ϕσ◦τ

6. the equations imposed by the functoriality of C(σ):

a) 1σf = 1fσ ,

b) (ϕ ◦ ψ)σ = ϕσ ◦ ψσ.

Parallel associativity

We define a natural isomorphism ϑ, called parallel associativity, by taking

ϑ
x,x;y,y

f,g,h = γ
x,x
g,fy◦yh

◦ β
x,x;y,y

g,f,h ◦ (γx,xf,g y◦y 1h) : (f x◦x g) y◦y h −→ (f y◦y h) x◦x g (4.1.1)

for its components. The parallel associativity ϑ clearly represents the categorification of the
homonymous law (A2). Here are some first observations about ϑ.

Remark 4.5. The natural isomorphism ϑ appears in (βγ-hexagon) and (βγ-decagon).

1. An isomorphism with the same source and target as ϑ
x,x;y,y

f,g,h could be introduced as the composition

(γ
y,y

h,f x◦x 1g) ◦ (β
y,y;x,x

h,f,g)−1 ◦ γ
y,y

fx◦xg,h

which is as ”natural” as the composition which we have fixed to be the definition of ϑ
x,x;y,y

f,g,h . With
this in mind, (βγ-hexagon) can be read as: the two possible (and equally natural) definitions of
ϑ
x,x;y,y

f,g,h are equal.

2. Also, ϑ appears twice in (βγ-decagon), turning it into a hexagon by using explicilty the abbre-
viations ϑ

y,y;z,z

fx◦xg,h,k
(for the top horizontal sequence of arrows) and 1f x◦x ϑ

y,y;z,z

g,h,k (for the bottom

horizontal sequence of arrow).

In the following two lemmas we show that ϑ is subject to certain nice (read: operadic) coher-

ence conditions. We first show that the isomorphism ϑ
x,x;y,y

f,g,h has ϑ
y,y;x,x

f,h,g as inverse.

Lemma 4.6. The equality ϑ
y,y;x,x

f,h,g ◦ ϑ
x,x;y,y

f,g,h = 1(fx◦x g)y◦y h holds.

Proof. The equality follows by the commutation of the (outer part of) diagram

(f x◦x g) y◦y h

(g x◦x f) y◦y h g x◦x (f y◦y h)

(f y◦y h) x◦x g

h y◦y (f x◦x g) (h y◦y f) x◦x g

(g x◦x f) y◦y h g x◦x (f y◦y h)

γ
x,x
f,g y◦y 1h

β
x,x;y,y

g,f,h

γ
x,x
g,fy◦yh

γ
x,x
fy◦yh,g(β

x,x;y,y

g,f,h)−1γ
x,x
g,f y◦y 1h

γ
y,y

f,h y◦y 1g

β
y,y;x,x

h,f,g

γ
y,y

h,fx◦xg

in which the upper hexagon commutes by (γ-involution) and the lower hexagon commutes
as an instance of (βγ-hexagon). �

The following lemma shows two more laws satifsied by ϑ.

84 Chapter 4. Categorified cyclic operads

Lemma 4.7. The following two equalities hold:

- (βϑ-pentagon)

ϑ
y,y;xx

f,h,gz◦zk
◦ βx,x;z,zfy◦yh,g,k

◦ (ϑ
x,x;y,y

f,g,h z◦z 1k) = (β
x,x;z,z
f,g,k y◦y 1h) ◦ ϑ

y,y;z,z

fx◦xg,h,k
,

-(ϑ-hexagon)

ϑ
x,x;y,y

f z◦z k,g,h
◦ (ϑx,x;z,zf,g,k y◦y 1h) ◦ ϑ

y,y;z,z

fx◦xg,h,k
= (ϑ

y,y;z,z

f,h,k x◦x 1g) ◦ ϑ
x,x;z,z
fy◦yh,g,k

◦ (ϑ
x,x;y,y

f,g,h z◦z 1k).

Proof. For the first equality, consider the diagram

((f x◦x g) y◦y h) z◦z k

(h y◦y (f x◦x g)) z◦z k

((f y◦y h) x◦x g) z◦z k ((f x◦x g) z◦z k) y◦y h

(f y◦y h) x◦x (g z◦z k) (f x◦x (g z◦z k)) y◦y h

h y◦y ((f x◦x g) z◦z k)((h y◦y f) x◦x g) z◦z k

(h y◦y f) x◦x (g z◦z k) h y◦y (f x◦x (g z◦z k))

γ
y,y

(fx◦xg)z◦zk,h
(γ
y,y

f,h x◦x 1g) z◦z 1k

γ
y,y

fx◦xg,h z
◦z 1k

ϑ
x,x;y,y

f,g,h z◦z 1k ϑ
y,y;z,z

fx◦xg,h,k

β
x,x;z,z
fy◦yh,g,k β

x,x;z,z
f,g,k y◦y 1h

ϑ
y,y;xx

f,h,gz◦zk

γ
y,y

h,f x◦x 1gz◦zk

β
x,x;z,z
hy◦yf,g,k

γ
y,y

h,fx◦x(gz◦zk)

β
y,y;x,x

h,f,gz◦zk

1h y◦y β
x,x;z,z
f,g,k

β
y,y;x,x

h,f,g z◦z 1k β
y,y;z,z

h,fx◦xg,k

whose “inner” pentagon is (βϑ-pentagon) and whose “outer” pentagon commutes as an in-
stance of (β-pentagon). The equality follows by the commutations of all the diagrams “be-
tween” the two pentagons (two naturality squares for β and three squares expressing the defi-
nition of ϑ).

We have an analogous diagram for the second equality. The “inner” hexagon in the diagram

((f x◦x g) y◦y h) z◦z k

((g x◦x f) y◦y h) z◦z k (g x◦x (f y◦y h)) z◦z k

((g x◦x f) z◦z k) y◦y h g x◦x ((f y◦y h) z◦z k)

((f y◦y h) x◦x g) z◦z k

((f y◦y h) z◦z k) x◦x g((f x◦x g) z◦z k) y◦y h

((f z◦z k) x◦x g) y◦y h

(g x◦x (f z◦z k)) y◦y h

((f z◦z k) y◦y h) x◦x g

g x◦x ((f z◦z k) y◦y h)

ϑ
x,x;y,y

f,g,h z◦z 1k

(γ
x,x
f,g y◦y 1h) z◦z 1k

ϑ
y,y;z,z

gx◦xf,h,k

β
x,x;y,y

g,f,h z◦z 1k

γ
x,x
g,fy◦yh z

◦z 1k

β
x,x;z,z
g,fy◦yh,k

(γ
x,x
f,g z◦z 1k) y◦y 1h

1g x◦x ϑ
y,y;z,z

f,h,k

ϑ
x,x;z,z
fy◦yh,g,kϑ

y,y;z,z

fx◦xg,h,k
γ
x,x
(fy◦yh)z◦zk,g

ϑ
y,y;z,z

f,h,k x◦x 1gϑ
x,x;z,z
f,g,k y◦y 1h

ϑ
x,x;y,y

f z◦z k,g,h

γ
x,x
g,fz◦zk y◦y 1h

β
x,x;z,z
g,f,k y◦y 1h

γ
x,x
(fz◦zk)y◦yh,g

β
x,x;y,y

g,fz◦zk,h

4.1. Categorified entries-only cyclic operads 85

is (ϑ-hexagon) from the claim, and the “outer” hexagon is an instance of (βγ-decagon), and
the equality follows by the commutations of all the diagrams “between” the two hexagons (these
are the four naturality squares for ϑ and two squares which express the definition of ϑ). �

4.1.2 Canonical diagrams and the coherence theorem

The coherence theorem that we shall prove has the form: all diagrams of canonical arrows commute
in C(X). In order to formulate it rigorously, we shall first specify what a diagram of canonical
arrows is exactly. Denoting with C the underlying functor of C, in this part we essentially intro-
duce a syntax for the free categorified entries-only cyclic operad without units generated by C.
However, since the purpose of the syntax is solely to distinguish the canonical arrows of C(X),
the formalism will be left without any equations.

The syntax FreeC

Let PC be as in (2.2.2) and let Σ range over bijections of finite sets. Recall that V is the set of
variables whose existence is assumed throughout the thesis.

The syntax FreeC of canonical diagrams (or, of βγσ-arrows) of C, contains two kinds of typed
expressions, the object terms and the arrow terms (as all the other formal systems that we shall
introduce in the remaining of the section).

The syntax of object terms is obtained from raw (i.e. not yet typed) object terms

W ::= a | Wx�yW | W
σ

where a ∈ PC, x, y ∈ V, and σ ∈ Σ, by typing them asW : X , where X ranges over finite sets.
The assignment of types is done by the following rules:

a ∈ C(X)

a : X

W1 :X W2 :Y x ∈ X y ∈ Y X\{x} ∩ Y \{y} = ∅

W1 x�yW2 : X\{x} ∪ Y \{y}

W :X σ : Y → X

Wσ : Y

Observe that the object terms of FreeC are exactly the combinators of §2.2, except that they do
not incorporate terms idx,y that encode units of (categorified) cyclic operads.

Remark 4.8. The notation x�y (rather then x◦y) for the syntax of partial composition operations is chosen
merely to avoid confusion with the symbol ◦, used to denote the (usual) composition of morphisms in a
category.

To the syntax of object terms we add the syntax of arrow terms, obtained from raw arrow
terms

Φ ::=

1W | β
x,x;y,y

W1,W2,W3
| β

x,x;y,y −1

W1,W2,W3
| γx,yW1,W2

ε1
σ
a | ε1

σ−1

a | ε2W | ε2
−1

W | ε3
σ,τ
W | ε3

σ,τ −1

W | ε4
x,y;x′,y′

W1,W2;σ
| ε4

x,y;x′,y′ −1

W1,W2;σ

Φ ◦ Φ | Φ x�y Φ | Φ
σ,

by assigning them types in the form of ordered pairs (W1,W2) of object terms, denoted by
W1 →W2, as shown in Figure 4.1, where it is also (implicitly) assumed that all the object terms
that appear in the types of the arrow terms are well-formed. Given an arrow termΦ :W1 →W2,
we call the object termW1 the source of Φ and the object termW2 the target of Φ.

Remark 4.9. Observe that, for all well-typed arrow terms Φ :W1 →W2 of FreeC, the object termsW1

andW2 have the same type.

86 Chapter 4. Categorified cyclic operads

1W :W →W

β
x,x;y,y

W1,W2,W3
: (W1x�xW2)y�yW3 →W1x�x(W2y�yW3)

β
x,x;y,y −1

W1,W2,W3
:W1x�x(W2y�yW3)→ (W1x�xW2)y�yW3

γx,yW1,W2
:W1 x�yW2 →W2 y�xW1

ε1σa : aσ → aσ ε1σ
−1

a : aσ → aσ

ε2W :W idX →W ε2
−1

W :W →W idX

ε3
σ,τ
W : (Wσ)τ →Wσ◦τ ε3

σ,τ −1

W :Wσ◦τ → (Wσ)τ

σ :Z →X\{x}∪Y \{y}

σ1:σ
−1[X\{x}]∪{x′}→X σ1|

X\{x}=σ|X\{x} σ1(x
′)=x

σ2 :σ−1[Y \{y}]∪{y′}→Y σ2|
Y \{y}=σ|Y \{y} σ2(y

′)=y

ε4
x,y;x′,y′

W1,W2;σ
: (W1 x�yW2)σ →W

σ1

1 x′�y′Wσ2

2

σ1 :X′ →X σ1(x
′)=x

σ2 :Y ′ →Y σ2(y
′)=y

σ :X′\{x′}∪Y ′\{y′}→X\{x}∪Y \{y} σ=σ1|
X′\{x′}∪σ2|

Y ′\{y′}

ε4
x,y;x′,y′ −1

W1,W2;σ
:Wσ1

1 x′�y′Wσ2

2 → (W1 x�yW2)σ

Φ1 :W1 →W2 Φ2 :W2 →W3

Φ2 ◦ Φ1 :W1 →W3

Φ1 :W1 →W
′
1 Φ2 :W2 →W

′
2

Φ1 x�y Φ2 :W1 x�yW2 →W ′
1 x�yW ′

2

Φ :W1 →W2 σ : Y → X

Φσ :Wσ
1 →W

σ
2

Figure 4.1: Typing rules for the arrow terms of FreeC

The collection of object terms of type X , together with the collection of arrow terms whose
source and target have type X , will be denoted by FreeC(X).

The interpretation of FreeC in C

The semantics of FreeC in C is what distinguishes canonical arrows (or βγσ-arrows) of C(X):
they will be precisely the interpretations of the arrow terms of FreeC(X). Given that the axiom
(EQ) remains strict in the transition from Definition 1.4 to Definition 4.1, the interpretations of
the arrow terms whose denotations contain the symbol ε (and which all encode the properties
of the action of the symmetric group) will be identities.

The interpretation function [[−]]X : FreeC(X)→ C(X) is defined recursively, as follows:

[[a]]X = a, [[W1 x�yW2]]X = [[W1]]X1 x◦y [[W2]]X2 , [[Wσ]]X = ([[W]]Y)
σ,

and

⋄ [[1W]]X = 1[[W]]X ,

⋄ [[β
x,x;y,y

W1,W2,W3
]]X = β

x,x;y,y

[[W1]]X1
,[[W2]]X2

,[[W3]]X3
,

4.1. Categorified entries-only cyclic operads 87

⋄ [[β
x,x;y,y −1

W1,W2,W3
]]X = β

x,x;y,y −1

[[W1]]X1
,[[W2]]X2

,[[W3]]X3
,

⋄ [[γx,yW1,W2
]]X = γx,y[[W1]]X1

,[[W2]]X2
,

⋄ [[ε1
σ
a]]X = 1[[aσ]]X , [[ε1

σ−1

a]]X = 1[[aσ]]X ,

⋄ [[ε2W]]X = 1[[W idX]]X
, [[ε2

−1

W]]X = 1[[W]]X ,

⋄ [[ε3
σ,τ
W]]X = 1[[(Wσ)τ]]X , [[ε3

σ,τ −1

W]]X = 1[[Wσ◦τ]]X

⋄ [[ε4
x,y;x′,y′

W1,W2;σ
]]X = 1[[(W1x�yW2)σ]]X , [[ε4

x,y;x′,y′ −1

W1,W2;σ
]]X = 1[[Wσ1

1 x′
�
y′W

σ2
2]]X

,

⋄ [[Φ2 ◦ Φ1]]X = [[Φ2]]X ◦ [[Φ1]]X ,

⋄ [[Φ1x�yΦ2]]X = [[Φ1]]X1x◦y[[Φ2]]X2 , and

⋄ [[Φσ]]X = ([[Φ]]Y)
σ.

Lemma 4.10. The interpretation function [[−]]X : FreeC(X)→ C(X) is well-defined, in the sense that,
for an arrow term Φ :W1 →W2 of FreeC(X), we have that

[[Φ]]X : [[W1]]X → [[W2]]X .

Proof. The proof goes by easy structural induction on the (object and arrow) terms of FreeC(X).
For arrow terms whose denotations contain ε, the claim holds thanks to the equivariance axiom
(EQ) for C. We show this only for the arrow term

ε4
x,y;x′,y′

W1,W2;σ
: (W1 x�yW2)

σ →Wσ1
1 x′�y′W

σ2
2 ,

where W1 : X , W2 : Y , and σ, σ1 and σ2 are as in the appropriate typing rule of Figure 4.1.
Denote U = X\{x} ∪ Y \{y}. We then have

[[ε4
x,y;x′,y′

W1,W2;σ
]]U = 1[[(W1 x�yW2)σ]]U : [[(W1 x�yW2)

σ]]U → [[(W1 x�yW2)
σ]]U

and, by the axiom (EQ) for C, we have

[[(W1 x�yW2)
σ]]Z = ([[W1 x�yW2]]U)

σ

= ([[W1]]X x◦y [[W2]]Y)
σ

= ([[W1]]X)
σ1

x′◦y′ ([[W2]]Y)
σ2

= [[Wσ1
1]]σ−1[X\{x}]∪{x′} x′◦y′ [[W

σ2
2]]σ−1[Y \{y}]∪{y′}

= [[Wσ1
1 x′�y′W

σ2
2]]σ−1[X\{x}]∪σ−1[Y \{y}]

= [[Wσ1
1 x′�y′W

σ2
2]]Z . �

Relying on Lemma 4.10, we define a canonical diagram in C(X) as a pair of parallel morphisms (i.e.
morphisms that share the same source and target) arising as interpretations of two arrow terms of the
same type of FreeC.

The coherence theorem

We can now state precisely the coherence theorem for C.

Coherence Theorem. For any finite set X and for any pair of arrow terms Φ,Ψ : W1 → W2 of the
same type in FreeC(X), the equality [[Φ]]X = [[Ψ]]X holds in C(X).

In the remainder of Section 4.1, we prove the coherence theorem.

88 Chapter 4. Categorified cyclic operads

4.1.3 The first reduction: getting rid of symmetries

Intuitively, the first reduction cuts down the coherence problem of C to the problem of commu-
tation of all diagrams of βγ-arrows of C. We introduce first the syntax of these diagrams.

The syntax FreeC

The syntax that we are about to introduce is obtained by removing the term constructor (−)σ

from the list of raw object and raw arrow terms of FreeC, as well as all the arrow terms of FreeC
whose denotation contains ε.

The βγ-reduction of FreeC, denoted by FreeC, is specified as follows. The collection of object
terms of FreeC is determined by raw object terms

W ::= a |W x�yW

where a ∈ PC and x, y ∈ V, and typing rules

a ∈ C(X)

a : X

W1 :X W2 :Y x ∈ X y ∈ Y (X\{x}) ∩ (Y \{y}) = ∅

W1 x�yW2 : X\{x} ∪ Y \{y}

The collection of arrow terms of FreeC is obtained from the raw arrow terms

ϕ ::= 1W | β
x,x;y,y

W1,W2,W3
| β

x,x;y,y −1

W1,W2,W3
| γx,yW1,W2

| ϕ ◦ ϕ | ϕ x�y ϕ

by typing them with pairs of object terms as shown in Figure 4.2.

1W :W →W

β
x,x;y,y

W1,W2,W3
: (W1x�xW2)y�yW3 →W1x�x(W2y�yW3)

β
x,x;y,y −1

W1,W2,W3
:W1x�x(W2y�yW3)→ (W1x�xW2)y�yW3

γx,yW1,W2
:W1x�yW2 →W2 y�xW1

ϕ1 :W1 →W2 ϕ2 :W2 →W3

ϕ2 ◦ ϕ1 :W1 →W3

ϕ1 :W1 →W ′
1 ϕ2 :W2 →W ′

2

ϕ1 x�y ϕ2 :W1 x�yW2 →W ′
1 x�yW ′

2

Figure 4.2: Typing rules for the arrow terms of FreeC

Analogously as before, we shall denote the collection of object terms of typeX , together with
the collection of arrow terms whose source and target are object terms of type X , by FreeC(X).

Remark 4.11. Notice that the type of an arrow term ϕ of FreeC is determined completely by ϕ only, that
is, by the indices of ϕ and their order of appearance in ϕ. This allows us to write Ws(ϕ) and Wt(ϕ)
for the source and target of ϕ, respectively.

Furthermore, observe that, for an arbitrary arrow term ϕ : W1 → W2, the parameters and variables
that appear in W1 are exactly the parameters and variables that appear in W2.

4.1. Categorified entries-only cyclic operads 89

The interpretation of FreeC in C

The semantics of FreeC in C is what distinguishes βγ-arrows of C(X) from all other canonical
arrows of C(X).

The interpretation function [−]X : FreeC(X)→ C(X) is defined recursively, as follows:

[a]X = a, [W1 x�yW2]X = [W1]X1 x◦y [W2]X2 ,

and

⋄ [1W]X = 1[W]X ,

⋄ [β
x,x;y,y

W1,W2,W3
]X = β

x,x;y,y

[W1]X1
,[W2]X2

,[W3]X3
,

⋄ [β
x,x;y,y −1

W1,W2,W3
]X = β

x,x;y,y −1

[W1]X1
,[W2]X2

,[W3]X3
,

⋄ [γx,yW1,W2
]X = γx,y[W1]X1

,[W2]X2
,

⋄ [ϕ2 ◦ ϕ1]X = [ϕ2]X ◦ [ϕ1]X , and

⋄ [ϕ1 x�y ϕ2]X = [ϕ1]X1 x◦y [ϕ2]X2 .

Lemma 4.12. The interpretation function [−]X : FreeC(X)→ C(X) is well-defined, in the sense that,
for an arrow term ϕ :W1 →W2 of FreeC(X), we have that

[ϕ]X : [W1]X → [W2]X .

Proof. This is a direct consequence of Lemma 4.10. �

An auxiliary typing system for the raw arrow terms of FreeC

In this part, we introduce a slightly more permissive typing system for the raw arrow terms of
FreeC, by “relaxing” the rule for typing the composition ϕ2 ◦ϕ1. More precisely, the new formal
system, which we shall denote with

✿✿✿✿✿

FreeC, will be the same as FreeC, except for the composition
rule for arrow terms, where we add a degree of freedom by allowing the composition not only
“along” the same typed object term, but also “along” the α-equivalent ones.

In order to define α-equivalence on object terms of FreeC, we introduce some terminology.
For a parameter a ∈ C(X) of PC, we say that X is the set of free variables of a, and we write
FV (a) = X . For an object term W : Y , we shall denote with PC(W) the set of all parameters
of PC that appear in W . The α-equivalence on object terms of FreeC is the smallest equivalence
relation ≡ generated by the rule

W1:X W2:Y x∈X y∈Y X\{x}∩Y \{y}=∅ x′,y′ 6∈X\{x}∪Y \{y} x′ 6=y′

a∈PC(W1) FV (a)=X1 x∈X1∩X

b∈PC(W2) FV (b)=Y1 y∈Y1∩Y

τ1:X1\{x}∪{x′}→X1 τ1|X1\{x}
=idX1\{x}

τ1(x′)=x

τ2:Y1\{y}∪{y′}→Y1 τ2|Y1\{y}=idY1\{y} τ2(y′)=y

W1 x�yW2 ≡W1[aτ1/a] x′�y′ W2[bτ2/b]
(4.1.2)

where W1[a
τ1/a] (resp. W2[b

τ2/b]) denotes the result of the substitution of the parameter aτ1

(resp. bτ2) for the parameter a (resp. b) in W1 (resp. W2), which is, moreover, congruent with
respect to x�y. The intuition is simpler than it might seem: the rule defining ≡ formalises a
particular case of equivariance on objects (see Remark 4.3). Here is an example.

90 Chapter 4. Categorified cyclic operads

Example 4.13. Returning to the syntax FreeC, which encompases terms of the formWσ, observe
that, fixing σ = idX\{x}∪Y \{y}, by (EQ), we have

[[a x�y b]]X\{x}∪Y \{y} = ([[a]]X x�y [[b]]Y)
idX\{x}∪Y \{y}

X\{x}∪Y \{y}

= [[a]]τ1X\{x}∪{x′} x
′�y′ [[b]]

τ2
Y \{y}∪{y′}

= [[aτ1]]X\{x}∪{x′} x′�y′ [[b
τ2]]Y \{y}∪{y′}

= [[aτ1 x′�y′ b
τ2]]X\{x}∪Y \{y}.

The first and the last object term in this sequence of equalities of interpretations are object terms
of FreeC and they are α-equivalent. From the tree-wise perspective, the equivalence relation ≡
corresponds exactly to the α-equivalence of unrooted trees (see §2.3.1).

The substitution of parameters of object terms canonically induces substitution of param-
eters of arrow terms of FreeC. For an arrow term ϕ : W1 → W2 of FreeC, a ∈ PC(U) and
aτ 6∈ PC(U), such thatW1[a

τ/a] (and thus alsoW2[a
τ/a]) is well-typed, the arrow term ϕ[aτ/a] :

W1[a
τ/a]→W2[a

τ/a] is defined straightforwardly by modifying the indices of ϕ as dictated by
the substitution W1[a

τ/a].

Example 4.14. If ϕ = β
x,x;y,y

W1,W2,W3
, where x ∈ X1, a ∈ C(X1) and a ∈ PC(W1), then

β
x,x;y,y

W1,W2,W3
[aτ/a] = β

x′,x;y,y

W1[aτ/a],W2,W3
,

where x′ = τ−1(x). �

We shall need the following property of the “interpretation of substitution”.

Lemma 4.15. Let W be an object term of FreeC(X) and let x ∈ X . Let a ∈ PC(W) be such that
x ∈ FV (a), and suppose that τ : FV (a)\{x} ∪ {x′} → FV (a) renames x to x′. We then have

[W [aτ/a]] = [W]σ,

where σ : X\{x} ∪ {x′} → X renames x to x′. Additionally, for any arrow term ϕ of FreeC(X) such
that Ws(ϕ) =W , we have

[ϕ[aτ/a]] = [ϕ]σ.

Proof. By easy structural induction, thanks to (EQ), (βσ), (γσ), (EQ-mor) and Remark 4.4.6. �

Lemma 4.16. If W1 ≡W2, then [W1]X = [W2]X .

Proof. By induction on the proof of W1 ≡W2 and Lemma 4.15. �

We now specify the syntax
✿✿✿✿✿

FreeC. The object terms and the raw arrow terms of
✿✿✿✿

FreeC are
exactly the object terms and the raw arrow terms of FreeC. The type of an arrow term ϕ of

✿✿✿✿✿

FreeC
is again a pair of object terms, which we shall now denote with ⊢ ϕ : U → V . The typing rules
for arrow terms are the same as the typing rules for arrow terms of FreeC, given in Figure 4.2,
except for the composition rule, for which we now take the rule given in Figure 4.3.

⊢ ϕ1 :W1 →W2 ⊢ ϕ2 :W ′
2 →W3 W2 ≡W

′
2

⊢ ϕ2 ◦ ϕ1 :W1 →W3

Figure 4.3: Typing rule for the composition of arrow terms in
✿✿✿✿

FreeC

As usual,
✿✿✿✿✿

FreeC(X) shall denote the collection of object terms of type X , together with the
collection of arrow terms whose source and target are objects terms of type X , of

✿✿✿✿✿

FreeC.

4.1. Categorified entries-only cyclic operads 91

The interpretation of
✿✿✿✿✿

FreeC(X) in C(X), is defined (and denoted) exactly as the interpreta-
tion [−]X . In particular, the interpretation of the “relaxed” composition is defined by [ϕ2◦ϕ1]X =
[ϕ2]X ◦ [ϕ1]X . The following lemma is a direct consequence of Lemma 4.16.

Lemma 4.17. The interpretation function [−]X :
✿✿✿✿

FreeC(X)→ C(X) is well-defined.

The purpose of the syntax
✿✿✿✿✿

FreeC in the proof of the coherence theorem is to be a natural
“intermedium” in the transition from FreeC to FreeC. As we shall see,

✿✿✿✿✿

FreeC is more suitable as
an immediate environment for the removal symmetries from FreeC. The following lemma then
enables us to complete the transition to FreeC.

Lemma 4.18. If ⊢ ϕ : U → V is an arrow term of
✿✿✿✿✿

FreeC(X) and if U ≡ U ′, then there exists an arrow

term ϕU
′
: U ′ →Wt(ϕ

U ′
) of FreeC(X), such that

Wt(ϕ
U ′
) ≡ V and [ϕ]X = [ϕU

′
]X .

Proof. By induction on the structure of ϕ.

• If ϕ = 1U , then ϕU
′
= 1U ′ . We conclude by (EQ) and Remark 4.4.6(a), for σ = idX .

• Suppose that ϕ = β
x,x;y,y

W1,W2,W3
. The source of ϕ is then U = (W1 x�xW2) y�yW3. If the

parameters a1 ∈ PC(W1), a21, a22 ∈ PC(W2) and a3 ∈ PC(W3) are such that x ∈ FV (a1),
x, y ∈ FV (a2) and y ∈ FV (a3), then U ′ = (W ′

1x′�x′W
′
2)y′�y′W

′
3, where

W1[a
τ1
1 /a1] ≡W

′
1, W2[a

τ21
21 /a21][a

τ22
22 /a22] ≡W

′
2 and W3[a

τ3
3 /a3] ≡W

′
3

and τ1, τ21, τ22 and τ3 rename x to x′, x to x′, y to y′ and y to y′. We set

ϕU
′
= β

x′,x′;y′,y′

W ′
1,W

′
2,W

′
3
.

We conclude by (EQ) and (βσ), for σ = idX .

• If ϕ = β
x,x;y,y −1

W1,W2,W3
, then U ′ has the shapeW ′

1 x′�x′ (W
′
2 y′�y′ W

′
3) (whereW ′

i and x′, x′, y′ and

y′ are as in the previous case), and we set

ϕU
′
= β

x′,x′;y′,y′ −1

W ′
1,W

′
2,W

′
3

.

We conclude by (EQ), (βσ) and Remark 4.4.6(a), for σ = idX .

• Suppose that ϕ = γx,yW1,W2
. The source of ϕ is then U = W1 x�yW2. If the parameters a1 ∈

PC(W1) and a2 ∈ PC(W2) are such that x ∈ FV (a1) and y ∈ FV (a2), thenU ′ =W ′
1x′�y′W

′
2,

where,
W1[a

τ1
1 /a1] ≡W

′
1 and W2[a

τ2
2 /a2] ≡W

′
2

and τ1 and τ2 rename x to x′ and y to y′, respectively. We set

ϕU
′
= γx

′,y′

W ′
1,W

′
2

and conclude by (EQ) and (γσ), for σ = idX .

• Suppose that ⊢ ϕ1 : U → W , ⊢ ϕ2 : W ′ → V and that W ≡ W ′, and let ϕ = ϕ2 ◦ ϕ1. By
the induction hypothesis for ϕ1 and U ′, there exist an arrow term

ϕU
′

1 : U ′ →Wt(ϕ
U ′

1),

such that Wt(ϕ
U ′

1) ≡ W and [ϕ1]X = [ϕU
′

1]X . Since W ≡ W ′, by the transitivity of ≡, we
get Wt(ϕ

U ′

1) ≡W ′. By the induction hypothesis for ϕ2 and Wt(ϕ
U ′

1), there exists an arrow

term

ϕ
Wt(ϕU

′

1)
2 :Wt(ϕ

U ′

1)→Wt(ϕ
Wt(ϕU

′

1)
2),

92 Chapter 4. Categorified cyclic operads

such that Wt(ϕ
Wt(ϕU

′

1)
2) ≡ V and [ϕ2]X = [ϕ

Wt(ϕU
′

1)
2]X . We define

ϕU
′
= ϕ

Wt(ϕU
′

1)
2 ◦ ϕU

′

1 .

• Suppose that ⊢ ϕ1 : U1 → V1, ⊢ ϕ2 : U2 → V2, and let ϕ = ϕ1 x�y ϕ2. In this case, the
source of ϕ is U = U1 x�y U2 and we have two possibilities for the shape of U ′.

– U ′ = U ′
1 x′�y′ U

′
2, where, assuming that a1 ∈ PC(U1) and a2 ∈ PC(U2) are such that

x ∈ FV (a1) and y ∈ FV (a2), U1[a
τ1
1 /a1] ≡ U ′

1 and U2[a
τ2
2 /a2] ≡ U ′

2. Since aτ11 ∈

PC(U
′
1) and aτ22 ∈ PC(U

′
2), this means that, symmetrically, we have U ′

1[a1/a
τ1
1] ≡ U1

and U ′
2[a2/a

τ2
2] ≡ U2. By the induction hypothesis for ϕ1 and U ′

1[a1/a
τ1
1], as well as

ϕ2 and U ′
2[a2/a

τ2
2], we get arrow terms

ϕ
U ′
1[a1/a

τ1
1]

1 : U ′
1[a1/a

τ1
1]→Wt(ϕ

U ′
1[a1/a

τ1
1]

1)

and

ϕ
U ′
2[a2/a

τ2
2]

2 : U ′
2[a2/a

τ2
2]→Wt(ϕ

U ′
2[a2/a

τ2
2]

2),

such that

Wt(ϕ
U ′
1[a1/a

τ1
1]

1) ≡ V1, and [ϕ1]X = [ϕ
U ′
1[a1/a

τ1
1]

1]X

and

Wt(ϕ
U ′
2[a2/a

τ2
2]

2) ≡ V2 and [ϕ2]X = [ϕ
U ′
2[a2/a

τ2
2]

2]X .

By means of substitution on arrow terms, we define

ϕU
′
= ϕ

U ′
1[a1/a

τ1
1]

1 [aτ11 /a1] x′�y′ ϕ
U ′
2[a2/a

τ2
2]

2 [aτ22 /a2].

– U ′ = U ′
1 x�y U

′
2, where U1 ≡ U

′
1 and U2 ≡ U

′
2. In this case, we define

ϕU
′
= ϕ

U ′
1

1 x�y ϕ
U ′
2

2 .

We conclude by Lemma 4.16.
�

The first reduction

We make the first reduction in two steps. We first define a (non-deterministic) rewriting algo-
rithm on FreeC(X) with outputs in

✿✿✿✿✿

FreeC, in such a way that the interpretation of a term of
FreeC matches the interpretations of (all) its normal forms relative to . We then use Lemma
4.18 to move from

✿✿✿✿

FreeC(X) to FreeC, while preserving the equality of interpretations from the
first step. This allows us to reduce the proof of the coherence theorem, which concerns all βγσ-
diagrams, to the consideration of parallel βγ-arrows in C(X) only.

We first define the rewriting algorithm on object terms of FreeC. The algorithm takes
an object termW of FreeC and returns (non-deterministically) an object termW of

✿✿✿✿✿

FreeC, which
we denote byW W , in the way specified in Figure 4.41.

The formal system defined in Figure 4.4 is obviously terminating, in the sense that for all
object termsW of FreeC there exists an object term W of

✿✿✿✿

FreeC, such thatW W . Notice also
that the last rule is non-deterministic, as it involves a choice of x′ and y′. In what follows,

1Strictly speaking, the formal system that we define is a term rewriting system on FreeC(X), since the object
terms of

✿✿✿✿

FreeC are clearly contained in FreeC(X). We use the word algorithm to further emphasise that the normal
forms (i.e. the outputs of the algorithm) themselves determine a different syntax, and, thereby, to stress the reduction
process encoded by the formal system.

4.1. Categorified entries-only cyclic operads 93

a a

W1 W1 W2 W2

W1 x�yW2 W1 x�yW2

aσ aσ
W W

W idX W

Wσ◦τ
 W

(Wσ)τ W

σ :Z →X\{x}∪Y \{y} x′,y′ 6∈X\{x}∪Y \{y} x′ 6=y′

σ1:σ
−1[X\{x}]∪{x′}→X σ1|

X\{x}=σ|X\{x} σ1(x
′)=x

σ2 :σ−1[Y \{y}]∪{y′}→Y σ2|
Y \{y}=σ|Y \{y} σ2(y

′)=y

Wσ1

1 W1 Wσ2

2 W2

(W1 x�yW2)σ W1 x′�y′ W2

Figure 4.4: The rewriting algorithm on the object terms of FreeC

for an arbitrary object termW of FreeC, we shall say that the outputs of the algorithm applied
onW are normal forms ofW and we shall denote with NF(W) the collection of all normal forms
ofW .

The formal system (FreeC,) satisfies the following confluence-like property.

Lemma 4.19. If W1,W2 ∈ NF(W), then W1 ≡W2.

Proof. Suppose that (W1 x�yW2)
σ
 W1 x′�y′ W2 is obtained fromWσ1

1 W1 andWσ2
2 W2,

and (W1 x�yW2)
σ
 W ′

1 x′′�y′′ W
′
2 fromWτ1

1 W ′
1 andWτ2

2 W ′
2.

Let a ∈ PC(W1) and b ∈ PC(W2) be such that FV (a) = X1, FV (b) = Y1, x ∈ X1 and y ∈ Y1,
and let κ1 : X1\{x

′} ∪ {x′′} → X1 be the renaming of x′ to x′′ and κ2 : Y1\{y
′} ∪ {y′′} → Y1 the

renaming of y′ to y′′. It is then easy to show thatWτ1
1 W1[a

κ1/a] andWτ2
2 W2[a

κ2/a].
By the definition of ≡, and the induction hypothesis forWτ1

1 (that reduces to both W ′
1 and

W1[a
κ1/a]) andWτ2

2 (that reduces to both W ′
2 and W2[b

κ2/b]), we then have

W1 x′�y′ W2 ≡W1[a
κ1/a] x′′�y′′ W2[b

κ2/b] =W ′
1 x′′�y′′ W

′
2.

�

Lemma 4.20. For an arbitrary object termW : X of FreeC and an arbitrary W ∈ NF(W), the equality
of interpretations [[W]]X = [W]X holds in C(X).

Proof. By induction on the structure ofW .

• IfW = a, we trivially have [[a]]X = a = [a]X .

• If W = W1x�yW2, where W1 : X and W2 : Y , then, for any W1 ∈ NF(W1) and W2 ∈
NF(W2),W1 x�yW2 ∈ NF(W). Hence, by Lemma 4.19, we have thatW ≡W1 x�yW2. By the
induction hypothesis forW1 andW2, we have that [[W1]]X = [W1]X and [[W2]]Y = [W2]Y ,
and, by Lemma 4.16, we get

[[W1x�yW2]]X\{x}∪Y \{y} = [[W1]]X x◦y [[W2]]Y

= [W1]X x◦y [W2]Y

= [W1 x�yW2]X\{x}∪Y \{y}

= [W]X\{x}∪Y \{y}.

• Suppose thatW = Vσ, where V : X and σ : Y → X . We proceed by case analysis relative
to the shape of V (and σ).

– If V = a, for some a ∈ PC, then

[[aσ]]Y = [[a]]σX = [a]σX = aσ = [aσ]Y .

94 Chapter 4. Categorified cyclic operads

– If σ = idX , and if V ∈ NF(V), then V ∈ NF(W), and, by Lemma 4.19, we have that
W ≡ V . By the induction hypothesis for V and Lemma 4.16, we get

[[V idX]]X = [[V]]idXX = [[V]]X = [V]X = [W]X .

– If V = V1x�yV2, and if V1 ∈ NF(Vσ11) and V2 ∈ NF(Vσ22), then V1x′�y′V2 ∈ NF(W), and,
by Lemma 4.19, W ≡ V1x′�y′V2. By the induction hypothesis for Vσ11 and Vσ22 and
Lemma 4.16, we get

[[(V1 x�y V2)
σ]]Y = [[V1 x�y V2]]

σ
X

= ([[V1]]X1 x�y [[V2]]X2)
σ

= [[V1]]
σ1
X1 x

′�y′ [[V2]]
σ2
X2

= [[Vσ11]]Y1 x′�y′ [[V
σ2
2]]Y2

= [V1]Y1 x′�y′ [V2]Y2
= [V1 x′�y′ V2]Y

= [W]Y

– If V = Uτ , and if U ∈ NF(Uτ◦σ), then U ∈ NF(W), and, by Lemma 4.19, W ≡ U . By
the induction hypothesis for Uτ◦σ and Lemma 4.16, we get

[[(Uτ)σ]]Y = ([[U]]τX)
σ = [[U]]τ◦σX = [[Uτ◦σ]]Y = [U]Y = [W]Y . �

We move on to the first step of the first reduction of arrow terms of FreeC: in Figure 4.5, we
define a (non-deterministic) rewriting algorithm , which “normalises” arrow terms of FreeC.

We make first observations about this rewriting algorithm.

Remark 4.21. Notice that, if Φ : W1 → W2 and if Φ ϕ, then ⊢ ϕ : W1 → W2, for some W1 ∈
NF(W1) and W2 ∈ NF(W2). Also, in the rule defining (Φ2 ◦Φ1)

σ
 ϕ2 ◦ϕ1, the arrow term ϕ2 ◦ϕ1 is

not well-typed in FreeC in general.

As it was the case for the algorithm on object terms, this formal system is terminating. There-
fore, the algorithm gives us, for each arrow term Φ :W1 →W2, the set NF(Φ) of normal forms of
Φ, which are arrow terms of Free

✿✿✿✿
C. Here is the most important property of these normal forms.

Lemma 4.22. For arbitrary arrow term Φ of FreeC(X) and ϕ ∈ NF(Φ), the equality of interpretations
[[Φ]]X = [ϕ]X holds in C(X).

Proof. By induction on the structure of Φ and Lemma 4.20. �

Suppose that, for all object termsW of FreeC, a normal form red1(W) ∈ NF(W) in Free
✿✿✿✿

C has

been fixed, and that, independently of that choice, for all arrow terms Φ of FreeC a normal form
red1(Φ) ∈ NF(Φ) in Free

✿✿✿✿
C has been fixed.

We define the first reduction function Red1 : FreeC → FreeC by

Red1(W) = red1(W) and Red1(Φ) = red1(Φ)
red1(W1),

where Φ : W1 → W2. Observe that, in the definition of Red1(Φ), we used the construction of
Lemma 4.18, which indeed turns red1(Φ) (which is an arrow term of Free

✿✿✿✿
C) into an arrow term

of FreeC. Also, for an arrow term Φ : W1 → W2 of FreeC, we have that Red1(Φ) : Red1(W1) →
W2, where, in general, W2 6= Red1(W2). However, the following important property holds.

4.1. Categorified entries-only cyclic operads 95

U ∈ NF(U)

1U 1U

Wi ∈ NF(Wi) i ∈ {1, 2, 3}

β
x,x;y,y

W1,W2,W3
 β

x,x;y,y

W1,W2,W3

Wi ∈ NF(Wi) i ∈ {1, 2, 3}

β
x,x;y,y −1

W1,W2,W3
 β

x,x;y,y −1

W1,W2,W3

Wi ∈ NF(Wi) i ∈ {1, 2}

γx,yW1,W2
 γx,yW1,W2

ε1σa 1aσ ε1σ
−1

a 1aσ

W ∈ NF(W)

ε2W 1W

W ∈ NF(W)

ε2
−1

W 1W

W ∈ NF(Wσ◦τ)

ε3
σ,τ
W 1W

W ∈ NF(Wσ◦τ)

ε3
σ,τ −1

W 1W

W ∈ NF((W1x�yW2)
σ)

ε4
x,y;x′,y′

W1,W2;σ
 1W

W1 ∈ NF(Wσ1

1) W2 ∈ NF(Wσ2

2)

ε4
x,y;x′,y′ −1

W1,W2;σ1,σ2
 1W

Φ1 ϕ1 Φ2 ϕ2

Φ2 ◦ Φ1 ϕ2 ◦ ϕ1

Φ1 ϕ1 Φ2 ϕ2

Φ1 x�y Φ2 ϕ1 x�y ϕ2

1σa 1aσ

Wi ∈ NF(Wσi
i)

(β
x,x;y,y

W1,W2,W3
)σ β

x′,x′;y′,y′

W1,W2,W3

Wi ∈ NF(Wσi
i)

(β
x,x;y,y −1

W1,W2,W3
)σ β

x′,x′;y′,y′ −1

W1,W2,W3

Wi ∈ NF(Wσi
i) i ∈ {1, 2}

(γx,yW1,W2
)σ γx

′,y′

W1,W2

(ε1σa)
κ 1aσ◦κ (ε1σ

−1

a)κ 1aσ◦κ

W ∈ NF(Wκ)

(ε2W)κ 1W

W ∈ NF(Wκ)

(ε2
−1

W)κ 1W

W ∈ NF(Wσ◦τ◦κ)

(ε3
σ,τ
W)κ 1W

W ∈ NF(Wσ◦τ◦κ)

(ε3
σ,τ −1

W)κ 1W

W ∈ NF((W1x�yW2)
σ◦κ)

(ε4
x,y;x′,y′

W1,W2;σ
)κ 1W

W1 ∈ NF(Wσ1◦κ1

1) W2 ∈ NF(Wσ2◦κ2

2)

(ε4
x,y;x′,y′ −1

W1,W2;σ
)κ 1W

Φ ϕ

ΦidX ϕ

Φσ◦τ
 ϕ

(Φσ)τ ϕ

Φσ1

1 ϕ1 Φσ2

2 ϕ2

(Φ1 x�y Φ2)σ ϕ1 x′�y′ ϕ2

Φσ
1 ϕ1 Φσ

2 ϕ2

(Φ2 ◦ Φ1)σ ϕ2 ◦ ϕ1

Figure 4.5: The rewriting algorithm on the arrow terms of FreeC

Lemma 4.23. For any two arrow terms Φ,Ψ : W1 → W2 of the same type in FreeC, Red1(Φ) and
Red1(Ψ) are arrow terms of the same type in FreeC.

Proof. That Red1(Φ) and Red1(Ψ) have the same source is clear by the definition. We prove the
equalityWt(Red1(Φ)) =Wt(Red1(Ψ)) by induction on the proof ofWt(Red1(Φ)) ≡Wt(Red1(Ψ)).

96 Chapter 4. Categorified cyclic operads

Suppose that

Wt(Red1(Φ)) =W1 x�yW2 and Wt(Red1(Ψ)) =W1[a
τ1/a] x′�y′ W2[b

τ2/b].

If, moreover, at least one of τ1 and τ2 is not the identitiy, i.e. if, say, x′ 6= x, then, by Remark 4.11, it
cannot be the case that Red1(Φ) and Red1(Ψ) have the same source, which is a contradiction. �

The following theorem, essential for the proof of the coherence theorem, is simply an in-
stance of Lemma 4.20 and Lemma 4.22.

Theorem 4.24. For an arbitrary object termW and an arbitrary arrow term Φ of FreeC, the equalities
of interpretations

[[W]]X = [Red1(W)]X and [[Φ]]X = [Red1(Φ)]X

hold in C(X).

4.1.4 The second reduction: getting rid of the cyclicity

Intuitively, this reduction goes from “cyclic operadic” to just “operadic”, which cuts down the
problem of commutation of all βγ-diagrams of C(X) to the problem of commutation of all βϑ-
diagrams of C(X) (see (4.1.1)). As the “removal of cyclicity” is based on a transition from un-
rooted to rooted trees, we shall use a tree representation of our syntax, more convenient for
“visualising” this reduction. The latter representation builds on the formalism of unrooted
trees introduced in §2.3.1. Given that C is a non-unital categorified cyclic operad, in what fol-
lows we shall consider only ordinary unrooted trees, to which we shall refer simply as unrooted
trees. Moreover, since the purpose of the formalism is to provide a representation of the terms
of FreeC, which do not encode symmetries, the unrooted trees will not be quotiented with α-
equivalence. In this regard, we shall denote with TC (resp. TC(X)) the collection of all unrooted
trees whose corollas belong to PC (resp. whose corollas belong to PC and whose free variables
are given by the set X).

A tree-wise representation of the terms of FreeC: the syntax T+
C

We first introduce the syntax of parenthesised words generated by PC, as

w ::= a |ww

where a ∈ PC. We shall denote the collection of all terms obtained in this way by PWordsC.

For an unrooted tree T , we next introduce the T -admissibility relation on PWordsC. Recall
from §2.3.1 that we write T = {T1 (xy) T2} to denote that T1 and T2 make a decompostion of T
along the edge (xy). Intuitively, w is T -admissible if it represents a gradual composition of the
corollas of T . Formally, the predicate w is T -admissible is defined by the following two clauses:

⋄ a is T -admissible if Cor(T) = {a}, and

⋄ if T = {T1 (xy) T2},w1 is T1-admissible andw2 is T2-admissible, thenw1w2 is T -admissible.

We shall denote the set of all T -admissible terms of PWordsC with A(T).

Remark 4.25. Notice that, if w is T -admissible, then, since all the corollas of T are mutually distinct,
w does not contain repetitions of letters from PC.

A parenthesised word can be admissible with respect to more than one unrooted tree. Concretely, in
the second clause above, w1w2 is admissible with respect to any unrooted tree whose decomposition is
{T1, T2}.

4.1. Categorified entries-only cyclic operads 97

We introduce the syntax of unrooted trees with grafting data induced by C, denoted by T+
C

, as

follows. The collection of object terms of T+
C

is obtained by combining the syntax TC and the

syntax PWordsC, by means of the T -admissibility relation: we take for object terms of T+
C

all the

pairs (T , w), typed as

T ∈ TC(X) w ∈ PWordsC w ∈ A(T)

(T , w) : X

The arrow terms of T+
C

are obtained from raw terms

ϕ ::= 1(T ,w) | β
x,x;y,y

(T1,w1),(T2,w2),(T3,w3)
| β

x,x;y,y −1

(T1,w1),(T2,w2),(T3,w3)
| γx,y(T1,w1),(T2,w2)

| ϕ ◦ ϕ | ϕ x�y ϕ

by typing them as shown in Figure 4.6.

1(T ,w) : (T , w)→ (T , w)

T = {{T1 (xx) T2} (yy) T3} y ∈ FV (T2)

β
x,x;y,y

(T1,w1),(T2,w2),(T3,w3)
: (T , (w1w2)w3)→ (T , w1(w2w3))

T = {T1 (xx) {T2 (yy) T3}} x ∈ FV (T2)

β
x,x;y,y −1

(T1,w1),(T2,w2),(T3,w3)
: (T , w1(w2w3))→ (T , (w1w2)w3)

T = {T1 (xx) T2}

γx,y(T1,w1),(T2,w2)
: (T , w1w2)→ (T , w2w1)

ϕ1 : (T , w1)→ (T , w2) ϕ2 : (T , w2)→ (T , w3)

ϕ2 ◦ ϕ1 : (T , w1)→ (T , w3)

ϕ1 : (T1, w1)→ (T1, w
′
1) ϕ2 : (T2, w2)→ (T2, w

′
2)

ϕ1 x�y ϕ2 : ({T1 (xy) T2}, w1w2)→ ({T1 (xy) T2}, w′
1w

′
2)

Figure 4.6: Typing rules for the arrow terms of T+
C

We shall denote the class of object terms of T+
C

whose type is X , together with the class of

arrow terms whose types are pairs of object terms of type X , by T+
C
(X).

Lemma 4.26. The terms of T+
C
(X) are in one-to-one corresponcence with the terms of FreeC(X).

Proof. The correspondence ∆X : T+
C
(X)→ FreeC(X) is defined recursively as follows:

⋄ ∆X(({a(x1, . . . , xn); idX}, a)) = a,

⋄ if ∆X((T1, w1)) =W1 and ∆Y ((T2, w2)) =W2, and if T = {T1(xy)T2}, then

∆X\{x}∪Y \{y}((T , w1w2)) =W1 x�yW2,

⋄ ∆X(1(T ,w)) = 1∆X((T ,w)),

⋄ ∆X(β
x,x;y,y

(T1,w1),(T2,w2),(T3,w3)
) = β

x,x;y,y

∆X1
((T1,w1)),∆X2

((T2,w2)),∆X2
((T3,w3))

,

⋄ ∆X(β
x,x;y,y −1

(T1,w1),(T2,w2),(T3,w3)
) = β

x,x;y,y −1

∆X1
((T1,w1)),∆X2

((T2,w2)),∆X2
((T3,w3))

,

98 Chapter 4. Categorified cyclic operads

⋄ ∆X(γ
x,y
(T1,w1),(T2,w2)

) = γx,y∆X1
((T1,w1)),∆X2

((T2,w2))
,

⋄ ∆X(ϕ2 ◦ ϕ1) = ∆X(ϕ2) ◦∆X(ϕ1),

⋄ ∆X(ϕ1 x�y ϕ2) = ∆X1(ϕ1) x�y∆X2(ϕ2).
�

We define the interpretation function

⌊−⌋X : T+
C
(X)→ C(X)

to be the composition [−]X ◦ ∆X . The following lemma is an immediate consequence of the
definition of ⌊−⌋X .

Lemma 4.27. For arbitrary object term W and arrow term ϕ of FreeC(X), the equalities of interpreta-
tions

[W]X = ⌊∆−1
X (W)⌋X and [ϕ]X = ⌊∆−1

X (ϕ)⌋X

hold in C(X).

Lemma 4.26 and Lemma 4.27 justify the representation of terms of FreeC by means of un-
rooted trees with grafting data.

“Rooting” the syntax T+
C

: the syntax rT+
C

In this part, we introduce the syntax of rooted trees with grafting data induced by C, denoted by
rT+

C
, as follows.

For a pair (T , x) of an unrooted tree T ∈ TC(X) and x ∈ X , we first introduce the (T , x)-
admissibility relation on PWordsC. The predicatew is (T , x)-admissibile is defined by the following
two clauses:

⋄ a is (T , x)-admissibile if Cor(T) = {a}, and

⋄ if T = {T1 (zy) T2}, x ∈ FV (T1) (without loss of generality), w1 is (T1, x)-admissible and
w2 is (T2, y)-admissible, then w1w2 is (T , x)-admissible.

We shall denote the set of all (T , x)-admissible terms of PWordsC with A(T , x).

Intuitively,w is (T , x)-admissible if it is T -admissible and it is an operadic word with respect to
the rooted tree determined by considering x as the root of T , in the sense that (T , w) enjoys the
following normalisation property, inherent to (formal terms which describe) operadic operations:
all β−1-reduction sequences starting from (T , w) end with an object term (T , w′), such that all
pairs of parentheses of w′ are associated to the left.

The object terms of rT+
C

are triplets (T , x, w), typed as

T ∈ T+
C
(X) x ∈ X w ∈ A(T , x)

(T , x, w) : X

The class of arrow terms of rT+
C

is obtained from raw terms

χ ::=

1(T ,x,w) | β
z;y
(T1,x,w1),(T2,z,w2),(T3,y,w3)

| βz;y
−1

(T1,x,w1),(T2,z,w2),(T3,y,w3)

θz;y(T1,x,w1),(T2,z,w2),(T3,y,w3)
| χ ◦ χ | χ x�y χ

4.1. Categorified entries-only cyclic operads 99

by typing them as shown in Figure 4.7.

1(T ,x,w) : (T , x, w)→ (T , x, w)

T = {{T1 (zz) T2} (yy) T3} y ∈ FV (T2) x ∈ X ∩ FV (T1)

βz;y
(T1,x,w1),(T2,z,w2),(T3,y,w3)

: (T , x, (w1w2)w3)→ (T , x, w1(w2w3))

T = {T1 (zz) {T2 (yy) T3}} z ∈ FV (T2) x ∈ X ∩ FV (T1)

βz;y −1
(T1,x,w1),(T2,z,w2),(T3,y,w3)

: (T , x, w1(w2w3))→ (T , x, (w1w2)w3)

T = {{T1 (zz) T2} (yy) T3} y ∈ FV (T1) x ∈ X ∩ FV (T1)

θz;y(T1,x,w1),(T2,z,w2),(T3,y,w3)
: (T , x, (w1w2)w3)→ (T , x, (w1w3)w2)

χ1 : (T , x, w1)→ (T , x, w2) χ2 : (T , x, w2)→ (T , x, w3)

χ2 ◦ χ1 : (T , x, w1)→ (T , x, w3)

χ1 : (T1, x, w1)→ (T1, x, w
′
1) χ2 : (T2, y, w2)→ (T2, y, w

′
2) z ∈ FV (T1) z 6= x

χ1 z�y χ2 : ({T1 (zy) T2}, x, w1w2)→ ({T1 (zy) T2}, x, w′
1w′

2)

Figure 4.7: Typing rules for the arrow terms of rT+
C

We shall denote the class of object terms of rT+
C

whose type is X , together with the class of

arrow terms whose types are pairs of object terms of type X , by rT+
C
(X).

Notice that, for an object term (T , x, w) of rT+
C
(X), the choice of x ∈ X as the root of T

determines the roots of all subtrees of T , and, in particular, of all corollas of T . In other words,
this choice allows us to speak about the inputs and the output of any subtree of T .

Formally, for a subtree S of T and a variable x ∈ FV (T), we define the set inp(T ,x)(S) of
inputs of S and the output out(T ,x)(S) of S , induced by x, as follows. Let a ∈ Cor(T) be such
that x ∈ FV (a). Then,

⋄ if a ∈ Cor(S), we have inp(T ,x)(S) = FV (S)\{x} and out(T ,x)(S) = x,

⋄ if a /∈ Cor(S) and c ∈ Cor(S) is the corolla of S whose path to a (see Remark 2.12)
has the smallest length (among all paths from the corollas of S to a), then inp(T ,x)(S) =
FV (S)\{z}, where z ∈ FV (c) ∩ p, and out(T ,x)(S) = z.

Example 4.28. For the unrooted tree T from example 2.10, the choice of, say, y4 ∈ X , turns T
into a rooted tree, which can be visualised as

a

b

c

x1x2x3

y1

y4

x4

x5
y2 y3

z1

z2z3

We have inp(T ,y4)(b) = {y1, y2, y3}, out(T ,y4)(b) = y4, inp(T ,y4)(a) = {x1, x2, x3, x4},
out(T ,y4)(a) = x5 and inp(T ,y4)(c) = {z2, z3}, out(T ,y4)(c) = z1.

Observe that, among all parenthesised words admissible with respect to T , only (ba)c and
(bc)a are operadic, relative to the choice of y4 as the root of T . �

100 Chapter 4. Categorified cyclic operads

The interpretation of rT+
C

in C

The interpretation function
⌈−⌉X : rT+

C
(X)→ C(X)

is defined recursively as follows:

⋄ ⌈({a(x1, . . . , xn)}, xi, a)⌉X = a,

⋄ ⌈({T1 (zy) T2}, x, w1w2)⌉X = ⌈(T1, x, w1)⌉X1z◦y ⌈(T2, y, w2)⌉X2 ,

and

⋄ ⌈1(T ,x,w)⌉X = 1⌈(T ,x,w)⌉X ,

⋄ ⌈βz;y(T1,x,w1),(T2,z,w2),(T3,y,w3)
⌉X = β

z,z;y,y

⌈(T1,x,w1)⌉X1
,⌈(T2,z,w2)⌉X2

,⌈(T3,z,w3)⌉X3
,

⋄ ⌈βz;y −1
(T1,x,w1),(T2,z,w2),(T3,y,w3)

⌉X = β
z,z;y,y −1

⌈(T1,x,w1)⌉X1
,⌈(T2,z,w2)⌉X2

,⌈(T3,z,w3)⌉X3
,

⋄ ⌈θz;y(T1,x,w1),(T2,z,w2),(T3,y,w3)
⌉X = ϑ

z,z;y,y

⌈(T1,x,w1)⌉X1
,⌈(T2,z,w2)⌉X2

,⌈(T3,y,w3)⌉X3
(see (4.1.1)),

⋄ ⌈χ2 ◦ χ1⌉X = ⌊χ2⌋X ◦ ⌊χ1⌋X , and

⋄ ⌈χ1 z�y χ2⌉X = ⌈χ1⌉X1z◦y⌈χ2⌉X2 .

Remark 4.29. Notice that ⌈χ⌉X is an arrow in C(X) all of whose instances of the isomorphism γ get
“hidden” by using explicitly the abbreviation ϑ. In other words, the semantics of arrow terms of rT+

C
is

what distinguishes βϑ-arrows of C(X).

The second reduction

We define the familly of second reduction functions

Red2(X,x) : T
+
C
(X)→ rT+

C
(X),

where x ∈ X , as follows.

For the object terms of T+
C
(X), we set

Red2(X,x)((T , w)) = (T , x, w·x),

where w·x is the (T , x)-admissible parenthesised word defined recursively by the following
clauses:

⋄ if w = a, then w·x = a,

⋄ if T = {T1 (x1x2) T2}, w = w1w2, wi ∈ A(Ti), (Ti, wi) : Xi i = 1, 2, then

– if x ∈ X1, then w·x = w·x
1 w

·x2
2 ,

– if x ∈ X2, then w·x = w·x
2 w

·x1
1 .

Observe that the successive commutations which transform w into the operadic word w·x are
witnessed in T+

C
by the arrow term

κ(T ,w,x) : (T , w)→ (T , w·x),

defined recursively as follows:

⋄ if w = a, then κ(T ,w,x) = 1(T ,w),

⋄ if T = {T1(x1x2)T2}, w = w1w2, wi ∈ A(Ti) and (Ti, wi) : Xi i = 1, 2, then

4.1. Categorified entries-only cyclic operads 101

– if x ∈ X1, then κ(T ,w,x) = κ(T1,w1,x) x1
�x2 κ(T2,w2,x2),

– if x ∈ X2, then κ(T ,w,x) = (κ(T2,w2,x) x2
�x1 κ(T1,w1,x1)) ◦ γ

x1,x2
(T1,w1),(T2,w2)

.

Before we rigorously define the second reduction of arrow terms, we illustrate the idea be-
hind it with a toy example.

Example 4.30. Consider the object term (T , (a b)c) : X , where T is defined as in Example 2.10.
The arrow term

β
xi,yj1 ;yj2 ,zl
(T1,a),(T2,b),(T3,c)

: (T , (a b)c)→ (T , a(b c))

where T1, T2 and T3 are the subtrees of T determined by corollas a, b and c, respectively, is then
well-typed and, by choosing y4 ∈ X (as we did in Example 4.28), we have

Red2(X, y4)((T , (a b)c)) = (T , y4, (b a)c) and Red2(X, y4)((T , a(b c))) = (T , y4, (b c)a).

For the two reductions of object terms, the arrow term

θy2;y3(T2,y4,b),(T1,x5,a),(T3,z1,c)
: (T , y4, (b a)c)→ (T , y4, (b c)a)

is well-typed and it will be exactly the second reduction of β
xi,yj1 ;yj2 ,zl
(T1,a),(T2,b),(T3,c)

. �

Formally, for an arrow term ϕ of T+
C
(X), Red2(X,x)(ϕ) is the arrow term defined recursively,

as follows:

⋄ Red2(X,x)(1(T ,w)) = 1Red2(X,x)((T ,w)),

⋄ if ϕ = β
z,z;y,y

(T1,w1),(T2,w2),(T3,w3)
, where (T1, w1) : Xi, and

– if x ∈ X1, then Red2(X,x)(ϕ) = βz;y
Red2(X1,x)((T1,w1)),Red2(X2,z)((T2,w2)),Red2(X3,y)((T3,w3))

,

– if x ∈ X2, then Red2(X,x)(ϕ) = θ
z;y
Red2(X2,x)((T2,w2)),Red2(X1,z)((T1,w1)),Red2(X3,y)((T3,w3))

,

– if x ∈ X3, then Red2(X,x)(ϕ) = β
y;z −1

Red2(X3,x)((T3,w3)),Red2(X2,y)((T2,w2)),Red2(X1,z)((T1,w1))
,

⋄ if ϕ = β
z,z;y,y−1

(T1,w1),(T2,w2),(T3,w3)
, where (T1, w1) : Xi, and

– if x ∈ X1, then Red2(X,x)(ϕ) = βz;y
−1

Red2(X1,x)((T1,w1)),Red2(X2,z)((T2,w2)),Red2(X3,y)((T3,w3))
,

– if x ∈ X2, then Red2(X,x)(ϕ) = θ
y;z
Red2(X2,x)((T2,w2)),Red2(X3,y)((T3,w3)),Red2(X1,z)((T1,w1))

,

– if x ∈ X3, then Red2(X,x)(ϕ) = β
y;z

Red2(X3,x)((T3,w3)),Red2(X2,y)((T2,w2)),Red2(X1,z)((T1,w1))
,

⋄ if ϕ = γz,y(T1,w1),(T2,w2)
, then Red2(X,x)(ϕ) = 1Red2(X,x)(({T1(zy)T2},w1w2))

⋄ if ϕ = ϕ2 ◦ ϕ1, then Red2(X,x)(ϕ) = Red2(X,x)(ϕ2) ◦ Red2(X,x)(ϕ1),

⋄ if ϕ = ϕ1 z�y ϕ2, where ϕ1 : (T1, w1)→ (T ′
1 , w

′
1), ϕ2 : (T2, w2)→ (T ′

2 , w
′
2) and (Ti, wi) : Xi,

then

– if x ∈ X1, then Red2(X,x)(ϕ) = Red2(X1, x)(ϕ1) z�y Red2(X2, y)(ϕ2),

– if x ∈ X2, then Red2(X,x)(ϕ) = Red2(X2, x)(ϕ2) y�z Red2(X1, z)(ϕ1).

Remark 4.31. For an arrow term ϕ : (T , w1)→ (T , w2) of T+
C
(X), the type of Red2(X,x)(ϕ) is

Red2(X,x)(ϕ) : Red2(X,x)((T , w1))→ Red2(X,x)((T , w2)).

Therefore, the second reduction of a pair of arrow terms of the same type in T+
C
(X) is a pair of arrow

terms of the same type in rT+
C
(X).

102 Chapter 4. Categorified cyclic operads

The following theorem is the core of the coherence theorem. Intuitively, it says that the
coherence of non-symmetric non-skeletal cyclic operads can be reduced to the coherence of
non-symmetric non-skeletal operads2. As it will be clear from its proof, (βγ-hexagon) is the
key coherence condition that makes this reduction possible.

Theorem 4.32. For an arbitrary arrow term ϕ : (T , u)→ (T , v) of T+
C

, the equality of interpretations

⌊κ(T ,v,x)⌋X ◦ ⌊ϕ⌋X = ⌈Red2(X,x)(ϕ)⌉X ◦ ⌊κ(T ,u,x)⌋X

holds in C(X).

Proof. By the definition of the interpretation function ⌊−⌋X , the equality of interpretations of
arrow terms that we need to prove is

[∆X(κ(T ,v,x))]X ◦ [∆X(ϕ)]X = ⌈Red2(X,x)(ϕ)⌉X ◦ [∆X(κ(T ,u,x))]X . (4.1.3)

We proceed by induction on the structure of ϕ.

• If ϕ = 1(T ,w), then

[∆X(κ(T ,w,x))]X ◦ [∆X(1(T ,w))]X = [∆X(κ(T ,w,x))]X

= 1(T ,x,w·x) ◦ [∆X(κ(T ,w,x))]X

= ⌈Red2(X,x)(1(T ,w))⌉X ◦ [∆X(κ(T ,w,x))]X .

• Suppose that ϕ = β
z,z;y,y

(T1,w1),(T2,w2),(T3,w3)
, where (Ti, wi) : Xi.

– If x ∈ X1, then

κ(T ,u,x) = (κ(T1,w1,x) x
�x κ(T2,w2,z)) y�y κ(T3,w3,y)

and
κ(T ,v,x) = κ(T1,w1,x) x

�x (κ(T2,w2,z) y
�y κ(T3,w3,y)).

Denote

κ1 = [∆X1
(κ(T1,w1,x))]X1

κ2 = [∆X2
(κ(T2,w2,z))]X2

κ3 = [∆X3
(κ(T3,w3,y))]X3

f1 = [∆X1
((T1, w1))]X1

f2 = [∆X2
((T2, w2))]X2

f3 = [∆X3
((T3, w3))]X3

f•
1 = ⌈Red2(X1, x)((T1, w1))⌉X1

f•
2 = ⌈Red2(X2, z)(T2, w2)⌉X2

f•
3 = ⌈Red2(X3, y)(T3, w3))⌉X3

The left-hand side and the right-hand side of (4.1.3) then correspond exactly to the
top-right side and the left-bottom side, respectively, of the commuting diagram

(f1 z◦z f2) y◦y f3 f1 z◦z (f2 y◦y f3)

(f•1 z◦z f
•
2) y◦y f

•
3 f•1 z◦z (f

•
2 y◦y f

•
3)

β
z,z;y,y

f1,f2,f3

κ1 z◦z (κ2 y◦y κ3)(κ1 z◦z κ2) y◦y κ3

β
z,z;y,y

f•
1
,f•

2
,f•

3

which is a naturality diagram for β.

– If x ∈ X2, then

κ(T ,u,x) = ((κ(T2,w2,x) z
�z κ(T1,w1,z)) y�y κ(T3,w3,y)) ◦ (γ

z,z
(T1,w1),(T2,w2) y

�y 1(T3,w3))

and

2Although it might seem that the syntax T
+
C

encodes canonical diagrams of non-symmetric categorified cyclic
operads, this is not the case: non-symmetric cyclic operads still contain cyclic actions (see Remark 1.10).

4.1. Categorified entries-only cyclic operads 103

κ(T ,v,x) = ((κ(T2,w2,x) y
�y κ(T3,w3,y)) z�z κ(T1,w1,z)) ◦ (γ

z,z
(T1,w1),({T2(yy)T3},w2w3)

).

Denote

κ1 = [∆X1
(κ(T1,w1,z))]X1

κ2 = [∆X2
(κ(T2,w2,x))]X2

κ3 = [∆X3
(κ(T3,w3,y))]X3

f1 = [∆X1
((T1, w1))]X1

f2 = [∆X2
((T2, w2))]X2

f3 = [∆X3
((T3, w3))]X3

f•
1 = ⌈Red2(X1, z)((T1, w1))⌉X1

f•
2 = ⌈Red2(X2, x)((T2, w2))⌉X2

f•
3 = ⌈Red3(X3, y)((T3, w3))⌉X3

The left-hand side and the right-hand side of (4.1.3) then correspond exactly to the
top-right side and the left-bottom side, respectively, of the commuting diagram

(f1 z◦z f2) y◦y f3

(f2 z◦z f1) y◦y f3 (f2 y◦y f3) z◦z f1

f1 z◦z (f2 y◦y f3)

(f•2 z◦z f
•
1) y◦y f

•
3 (f•2 y◦y f

•
3) z◦z f

•
1

β
z,z;y,y

f1,f2,f3

γ
z,z
f1,f2 y◦y f3

(κ2 y◦y κ3) z◦z κ1

γ
z,z
f1,f2 y

◦y 1f3

(κ2 z◦z κ1) y◦y κ3

ϑ
z,z;y,y

f2,f1,f3

ϑ
z,z;y,y

f•
2
,f•

1
,f•

3

in which the upper square commutes by the definition of the isomorphism ϑ (see
(4.1.1)) and the lower square is a naturality diagram for ϑ.

– If x ∈ X3, then

κ(T ,u,x) = (κ(T3,w3,x) y
�y (κ(T2,w2,y) z

�z κ(T1,w1,z)))◦

(1(T3,w3) y
�y γ

z,z
(T1,w1),(T2,w2)

) ◦ γ
y,y

({T1(zz)T2},w1w2),(T3,w3)

and
κ(T ,v,x) = ((κ(T3,w3,x) y

�y κ(T2,w2,y)) z�z κ(T1,w1,z))◦

(γ(T2,w2),(T3,w3) z
�z 1(T1,w1)) ◦ γ

z,z
(T1,w1),({T2(yy)T3},w2w3)

.

Denote

κ1 = [∆X1
(κ(T1,w1,z))]X1

κ2 = [∆X2
(κ(T2,w2,y))]X2

κ3 = [∆X3
(κ(T3,w3,x))]X3

f1 = [∆X1
((T1, w1))]X1

f2 = [∆X2
((T2, w2))]X2

f3 = [∆X3
((T3, w3))]X3

f•
1 = ⌈Red2(X1, z)((T1, w1))⌉X1

f•
2 = ⌈Red2(X2, y)((T2, w2))⌉X2

f•
3 = ⌈Red2(X3, x)((T3, w3))⌉X3

The left-hand side and the right-hand side of (4.1.3) then correspond exactly to the
top-right side and the left-bottom side, respectively, of the commuting diagram

(f1 z◦z f2) y◦y f3

f3 y◦y (f1 z◦z f2)

f3 y◦y (f2 z◦z f1)

(f2 y◦y f3) z◦z f1

(f3 y◦y f2) z◦z f1

f1 z◦z (f2 y◦y f3)

f•3 y◦y (f
•
2 z◦z f

•
1) (f•3 y◦y f

•
2) z◦z f

•
1

β
z,z;y,y

f1,f2,f3

γ
z,z
f1,f2 y◦y f3

(κ3 y◦y κ2) z◦z κ1

γ
y,y

f1 z◦z f2,f3

1f3 y◦y γ
z,z
f1,f2

γ
y,y

f2,f3 z
◦z 1f1

κ3 y◦y (κ2 z◦z κ1)

β
y,y;z,z −1

f3,f2,f1

β
y,y;z,z −1

f•
3
,f•

2
,f•

1

104 Chapter 4. Categorified cyclic operads

in which the upper square commutes as an instance of (βγ-hexagon) and the bottom
square commutes by the naturality of β−1.

• The proof for the case ϕ = β
z,z;y,y−1

(T1,w1),(T2,w2),(T3,w3)
follows directly from the previous item.

• Suppose now that ϕ = γz,y(T1,w1),(T2,w2)
, where (Ti, wi) : Xi.

– If x ∈ X1, then
κ(T ,u,x) = κ(T1,w1,x) z

�y κ(T2,w2,y)

and
κ(T ,v,x) = (κ(T1,w1,z) z

�y κ(T2,w2,x)) ◦ γ
y,z
(T2,w2),(T1,w1)

.

Denote
κ1 = [∆X1

(κ(T1,w1,x))]X1
κ2 = [∆X2

(κ(T2,w2,y))]X2

f1 = [∆X1
((T1, w1))]X1

f2 = [∆X2
((T2, w2))]X2

f•
1 = ⌈Red2(X1, x)((T1, w1))⌉X1

f•
2 = ⌈Red2(X2, y)((T2, w2))⌉X2

By (γ-involution), we then have

[∆X(κ(T ,v,x))]X ◦ [∆X(γ
z,y
(T1,w1),(T2,w2)

)]X =

((κ1 z◦y κ2) ◦ γ
z,x
f2,f1

) ◦ γz,yf1,f2 =

κ1 z◦y κ2 =

1f•1 z◦yf•2 ◦ (κ1 z◦y κ2) =

⌈Red2(X,x)(γ
z,y
(T1,w1),(T2,w2)

)⌉X ◦ [∆X(κ(T ,u,x))]X .

– The proof goes symmetrically if x ∈ X2.

• If ϕ = ϕ2 ◦ϕ1, where ϕ1 : (T , u)→ (T , w) and ϕ2 : (T , w)→ (T , v), then, by the induction
hypothesis for ϕ1 and ϕ2, we get

[∆X(κ(T ,v,x))]X ◦ [∆X(ϕ2 ◦ ϕ1)]X =

[∆X(κ(T ,v,x))]X ◦ [∆X(ϕ2)]X ◦ [∆X(ϕ1)]X =

⌈Red2(X,x)(ϕ2)⌉X ◦ [∆X(κ(T ,w,x))]X ◦ [∆X(ϕ1)]X =

⌈Red2(X,x)(ϕ2)⌉X ◦ ⌈Red2(X,x)(ϕ1)⌉X ◦ [∆X(κ(T ,v,x))]X =

⌈Red2(X,x)(ϕ2 ◦ ϕ1)⌉X ◦ [∆X(κ(T ,u,x))]X .

• Finally, suppose that ϕ = ϕ1 z�y ϕ2, where ϕ1 : (T1, u1)→ (T1, v1), ϕ2 : (T2, u2)→ (T2, v2),
and (Ti, ui) : Xi.

– If x ∈ X1, then
κ(T ,u,x) = κ(T1,u1,x) z�y κ(T2,u2,y)

and
κ(T ,v,x) = κ(T1,v1,x) z�y κ(T2,v2,y).

Denote
κu1

= [∆X1
(κ(T1,u1,x))]X1

κu2
= [∆X2

(κ(T2,u2,y))]X2

κv1 = [∆X1
(κ(T1,v1,x))]X1

κv2
= [∆X2

(κ(T2,v2,y))]X2

By Remark 4.4.2(b) and the induction hypothesis for ϕ1 and ϕ2, we get

4.1. Categorified entries-only cyclic operads 105

[∆X(κ(T ,v,x))]X ◦ [∆X(ϕ1 z�y ϕ2)]X =

(κv1 z◦y κv2) ◦ ([∆X1(ϕ1)]X1 z◦y [∆X2(ϕ2)]X2) =

(κv1 ◦ [∆X1(ϕ1)]X1) z◦y (κv2 ◦ [∆X2(ϕ2)]X2) =

(⌈Red2(X1, x)(ϕ)⌉X1 ◦ κu1) z◦y (⌈Red2(X2, y)(ϕ2)⌉X2 ◦ κu2) =

(⌈Red2(X1, x)(ϕ)⌉X1 z◦y ⌈Red2(X2, y)(ϕ2)⌉X2) ◦ (κu1 z◦y κu2) =

⌈Red2(X,x)(ϕ1 z�y ϕ2)⌉X ◦ [∆X(κ(T ,u,x))]X .

– If x ∈ X2, then

κ(T ,u,x) = (κ(T2,u2,x) y�z κ(T1,u1,z)) ◦ γ
z,y
(T1,u1),(T2,u2)

and
κ(T ,v,x) = (κ(T2,v2,x) y�z κ(T1,v1,z)) ◦ γ

z,y
(T1,v1),(T2,v2)

.

Denote

κu1
= [∆X1

(κ(T1,u1,z))]X1
κu2

= [∆X2
(κ(T2,u2,x))]X2

κv1
= [∆X1

(κ(T1,v1,z))]X1
κv2

= [∆X2
([κ(T2,v2,x))]X2

fu1
= [∆X1

((T1, u1))]X1
fu2

= [∆X2
((T2, u2))]X2

f•u1
= ⌈Red2(X1, z)((T1, u1))⌉X1

f•u2
= ⌈Red2(X2, x)((T2, u2))⌉X2

fv1
= [∆X1

((T1, v1))]X1
fv2

= [∆X2
((T2, v2))]X2

f•v1 = ⌈Red2(X1, z)((T1, v1))⌉X1
f•v2 = ⌈Red2(X2, x)((T2, v2))⌉X2

By Remark 4.4.2(b), naturality of γ and the induction hypothesis for ϕ1 and ϕ2, we
get

[∆X(κ(T ,v,x))]X ◦ [∆X(ϕ1 z�y ϕ2)]X =

(κv2 y◦z κv1) ◦ γ
z,y
fv1 ,fv2

◦ ([∆X1(ϕ1)]X1 z◦y [∆X2(ϕ2)]X2) =

γz,yf•v1 ,f
•
v2
◦ (κv1 z◦y κv2) ◦ ([∆X1(ϕ1)]X1 z◦y [∆X2(ϕ2)]X2) =

γz,yf•v1 ,f
•
v2
◦ ((κv1 ◦ [∆X1(ϕ1)]X1) z◦y (κv2 ◦ [∆X2(ϕ2)]X2)) =

γz,yf•v1 ,f
•
v2
◦ ((⌈Red2(X1, z)(ϕ1)⌉X1 ◦ κu1) z◦y (⌈Red2(X2, x)(ϕ2)⌉X2 ◦ κu2)) =

((⌈Red2(X2, x)(ϕ2)⌉X2 ◦ κu2) y◦z (⌈Red2(X1, z)(ϕ1)⌉X1 ◦ κu1)) ◦ γ
x,y
fu1 ,fu2

=

(⌈Red2(X2, x)(ϕ2)⌉X2 y◦z ⌈Red2(X1, z)(ϕ1)⌉X1) ◦ (κu2 y◦z κu1) ◦ γ
z,y
fu1 ,fu2

=

⌈Red2(X,x)(ϕ1 z�y ϕ2)⌉X ◦ [∆X(κ(T ,u,z))]X .
�

The following result is a direct consequence of Theorem 4.32.

Corollary 4.33. For arrow terms ϕ1 and ϕ2 of the same type in T+
C
(X), the equality

⌊ϕ1⌋X = ⌊ϕ2⌋X

follows from the equality

⌈Red2(X,x)(ϕ1)⌉X = ⌈Red2(X,x)(ϕ2)⌉X .

4.1.5 The third reduction: establishing skeletality

Intuitively, in the third reduction we pass from the non-skeletal to the skeletal operadic frame-
work. This will reduce the problem of commutation of all βϑ-diagrams of C(X) to the problem
of commutation of all diagrams of canonical arrows of the skeletal non-symmetric categorified
operad OC, constructed from C in the appropriate way.

106 Chapter 4. Categorified cyclic operads

The skeletal non-symmetric categorified operad OC

Starting from C, we first define a skeletal non-symmetric categorified operad OC = {OC(n)}n∈N, i.e.
a weak Cat-operad in the sense of [DP15], as follows.

• The objects of the category OC(n) are quadruplets (X,x, σ, f), where |X| = n+ 1, x ∈ X ,
f ∈ C(X) and σ : [n]→ X\{x} is a bijection (inducing a total order on X\{x}).

• The morphisms of OC(n)[(X,x, σ, f), (X,x, σ, g)] are quadruplets (X,x, σ, ϕ), such that
ϕ is a morphism of C(X)[f, g] (in particular, OC(n)[(X,x, σ, f), (Y, y, τ, g)] is empty for
(X,x, σ) 6= (Y, y, τ)). The identity morphism for (X,x, σ, f) is (X,x, σ, 1f). The composi-
tion of morphisms is canonically induced from the composition of morphisms in C(X).

• The composition operation ◦i : OC(n)× OC(m)→ OC(n+m− 1) on objects is defined by

(X,x, σ1, f) ◦i (Y, y, σ2, g) = (X ∪ Y \{y}, x, σ, f σ1(i)◦y g),

and on morphisms by

(X,x, σ1, ϕ) ◦i (Y, y, σ2, ψ) = (X ∪ Y \{y}, x, σ, ϕ σ1(i)◦y ψ),

where σ : [n+m− 1]→ X\{x} ∪ Y \{y} is a bijection defined by

σ(j) =

σ1(j) for j ∈ {1, . . . , i− 1}

σ2(j − i ∪ 1) for j ∈ {i, . . . , i+m− 1}

σ1(j −m) for j ∈ {i+m, . . . , n+m− 1}.

(4.1.4)

• For f̃ = (X,x, σ1, f), g̃ = (Y, y, σ2, g) and h̃ = (Z, z, σ3, h), where σ1 : [n] → X\{x},
σ2 : [m]→ Y \{y} and σ3 : [k]→ Z\{z}, the components

β i;j
f̃ ,g̃,h̃

: (f̃ ◦i g̃) ◦j h̃→ f̃ ◦i (g̃ ◦j h̃) and θ i;k
f̃ ,g̃,h̃

: (f̃ ◦i g̃) ◦k h̃→ (f̃ ◦k h̃) ◦i h̃

of natural isomorphisms β and θ are distinguished among the morphisms of OC(n) as the
quadruplets arising from the appropriate components of β and ϑ of C, as follows:

β i;j
f̃ ,g̃,h̃

= (X∪Y \{y}∪Z\{z}, x, σ, β
σ1(i),y;σ2(j),z
f,g,h)

and
θ i;k
f̃ ,g̃,h̃

= (X∪Y \{y}∪Z\{z}, x, σ′, ϑ
σ1(i),y;σ1(k),z
f,g,h),

where σ and σ′ are the bijections induced in the appropriate way from σ1, σ2 and σ3.

In the following lemma, we show that the structureOC = {OC(n)}n∈N indeed verifies the axioms
of weak Cat-operads given in [DP15, Section 7].

Lemma 4.34. For an arbitrary n ∈ N, the following equations hold in OC(n):

1. the categorical equations:

a) ϕ ◦ 1f̃ = ϕ = 1g̃ ◦ ϕ, for ϕ : f̃ → g̃,

b) (ϕ ◦ φ) ◦ ψ = ϕ ◦ (φ ◦ ψ),

2. the bifunctoriality equations:

a) 1f̃ ◦i 1g̃ = 1f̃◦ig̃,

b) (ϕ2 ◦ ϕ1) ◦i (ψ2 ◦ ψ1) = (ϕ2 ◦i ψ2) ◦ (ϕ1 ◦i ψ1),

4.1. Categorified entries-only cyclic operads 107

3. the naturality equations:

a) βi;j
f̃2,g̃2,h̃2

◦ ((ϕ ◦i φ) ◦j ψ) = (ϕ ◦i (φ ◦j ψ)) ◦ β
i;j

f̃1,g̃1,h̃1
,

b) θi;j
f̃2,g̃2,h̃2

◦ ((ϕ ◦i φ) ◦j ψ) = ((ϕ ◦j ψ) ◦i φ) ◦ θ
i;j

f̃1,g̃1,h̃1
,

where ϕ : f̃1 → f̃2, φ : g̃1 → g̃2 and ψ : h̃1 → h̃2,

5. the equations concernig inverse isomorphisms:

a) βi;j
−1

f̃ ,g̃,h̃
◦ βi;j

f̃ ,g̃,h̃
= 1(f̃◦i g̃)◦j h̃, βi;j

f̃ ,g̃,h̃
◦ βi;j

−1

f̃ ,g̃,h̃
= 1f̃◦i(g̃ ◦j h̃),

b) θj;i
f̃ ,h̃,g̃
◦ θi;j

f̃ ,g̃,h̃
= 1(f̃◦i g̃)◦j h̃,

6. the coherence conditions:

a) (1f̃ ◦i β
j;l

g̃,h̃,k̃
) ◦ βi;l

f̃ ,g̃◦j h̃,k̃
◦ (βi;j

f̃ ,g̃,h̃
◦l 1k̃) = βi;j

f̃ ,g̃,h̃◦lk̃
◦ βj;l

f̃◦ig̃,h̃,k̃
,

b) (1f̃ ◦i θ
j;l

g̃,h̃,k̃
) ◦ βi;l

f̃ ,g̃◦j h̃,k̃
◦ (βi;j

f̃ ,g̃,h̃
◦l 1k) = βi;j

f̃ ,g̃◦lh̃,k̃
◦ (βi;l

f̃ ,g̃,k̃
◦j 1h̃) ◦ θ

j;l

f̃◦ig̃,h̃,k̃
,

c) θi;l
f̃ ,g̃◦j h̃,k̃

◦ (βi;j
f̃ ,g̃,h̃
◦l 1k̃) = βi;j

f̃◦lk̃,g̃,h̃
◦ (θi;l

f̃ ,g̃,k̃
◦j 1h̃) ◦ θ

j;l

f̃◦ig̃,h̃,k̃
,

d) θi;j
f̃◦lk̃,g̃,h̃

◦ (θi;l
f̃ ,g̃,k̃
◦j 1h̃) ◦ θ

j;l

f̃◦ig̃,h̃,k̃
= (θj;l

f̃ ,h̃,k̃
◦i 1g̃) ◦ θ

i;l

f̃◦j h̃,g̃,k̃
◦ (θi;j

f̃ ,g̃,h̃
◦l 1k̃).

Proof. The first two groups of equations, as well as the equation 3.(a), are verified straightfor-
wardly by the corresponding groups of equations for C, given in Remark 4.4. The equation 3.(b)
follows by the naturality of ϑ (see (4.1.1)). The equation 5.(a) holds by the analogous equations
for C. The equation 5.(b) holds by Lemma 4.6. The equation 6.(a) holds by (β-pentagon), 6.(b)
by (βγ-decagon) and Remark 4.5.(b), and 6.(c) and 6.(d) by Lemma 4.7. �

“Skeletalisation” of the syntax rT+
C

: the syntax skrT
+
C

In order to correctly apply the coherence result of [DP15], which is established for formal di-
agrams encoding the canonical diagrams of the skeletal non-symetric categorified operad OC,
we introduce the syntax of these diagrams. Intuitively, this syntax is a “skeletalisation” of the
syntax rT+

C
.

Let T be an unrooted tree. Suppose that FV (T) = X and let x ∈ X . For a corolla a ∈
Cor(T), such that |inp(T ,x)(a)| = n (see the end of §4.1.4), we define the set of skeletalisations of
a (relative to T and x) as

Σ(T ,x)(a) = Bij[[n], inp(T ,x)(a)].

We set
Σ(T , x) =

∏

c∈Cor(T)

Σ(T ,x)(c).

We shall denote the elements of Σ(T , x) with −→σ .

Remark 4.35. Notice that −→σ1 ∈ Σ(T1, x) and −→σ2 ∈ Σ(T2, y) determine “by concatenation” an element
of −→σ ∈ Σ({T1 (zy) T2}, x), and that, symmetrically, any −→σ ∈ Σ({T1 (zy) T2}, x) can be “split” into
−→σ1 ∈ Σ(T1, x) and −→σ2 ∈ Σ(T2, y). We shall denote this decomposition of −→σ with −−−→σ1 ·σ2.

The skeletalisation skrT
+
C

of the syntax rT+
C

is the syntax obtained as follows.

The objects terms of skrT
+
C

are quadruplets (T , x,−→σ ,w), typed by the rule

T ∈ T+
C
(X) x ∈ X −→σ ∈ Σ(T , x) w ∈ A(T , x)

(T , x,−→σ ,w) : X\{x}

The arrow terms of skrT
+
C

are obtained from raw terms

108 Chapter 4. Categorified cyclic operads

χ ::=

1(T ,x,−→σ ,w) | β
z;y
(T1,x,

−→σ1,w1),(T2,z,
−→σ2,w2),(T3,y,

−→σ3,w3)
| βz;y

−1

(T1,x,
−→σ1,w1),(T2,z,

−→σ2,w2),(T3,y,
−→σ3,w3)

θz;y
(T1,x,

−→σ1,w1),(T2,z,
−→σ2,w2),(T3,y,

−→σ3,w3)
| χ ◦ χ | χ z�y χ

by typing them as shown in Figure 4.8.

1(T ,x,−→σ ,w) : (T , x,
−→σ ,w)→ (T , x,−→σ ,w)

T ={{T1 (zz) T2} (yy) T3} y∈FV (T2) x∈X∩FV (T1)

−→σ1∈Σ(T1,x)
−→σ2∈Σ(T2,z)

−→σ3∈Σ(T3,y)

βz;y
(T1,x,

−→σ1,w1),(T2,z,
−→σ2,w2),(T3,y,

−→σ3,w3)
: (T , x,−−−−−−→σ1 ·σ2 ·σ3, (w1w2)w3)→ (T , x,−−−−−−→σ1 ·σ2 ·σ3, w1(w2w3))

T ={T1 (zz) {T2 (yy) T3}} z∈FV (T2) x∈X∩FV (T1)

−→σ1∈Σ(T1,x)
−→σ2∈Σ(T2,z)

−→σ3∈Σ(T3,y)

βz;y −1
(T1,x,

−→σ1,w1),(T2,z,
−→σ2,w2),(T3,y,

−→σ3,w3)
: (T , x,−−−−−−→σ1 ·σ2 ·σ3, w1(w2w3))→ (T , x,−−−−−−→σ1 ·σ2 ·σ3, (w1w2)w3)

T ={{T1 (zz) T2} (yy) T3} y∈FV (T1) x∈X∩FV (T1)

−→σ1∈Σ(T1,x)
−→σ2∈Σ(T2,z)

−→σ3∈Σ(T3,y)

θz;y
(T1,x,

−→σ1,w1),(T2,z,
−→σ2,w2),(T3,y,

−→σ3,w3)
: (T , x,−−−−−−→σ1 ·σ2 ·σ3, (w1w2)w3)→ (T , x,−−−−−−→σ1 ·σ2 ·σ3, (w1w3)w2)

χ1 : (T , x,−→σ ,w1)→ (T , x,−→σ ,w2) χ2 : (T , x,−→σ ,w2)→ (T , x,−→σ ,w3)

χ2 ◦ χ1 : (T , x,−→σ ,w1)→ (T , x,−→σ ,w3)

χ1 : (T1, x,
−→σ1, w1)→ (T1, x,

−→σ1, w
′
1) χ2 : (T2, y,

−→σ2, w2)→ (T2, y,
−→σ2, w

′
2) z ∈ FV (T1) z 6= x

χ1 z�y χ2 : ({T1 (zy) T2}, x,
−−−→σ1 ·σ2, w1w2)→ ({T1 (zy) T2}, x,

−−−→σ1 ·σ2, w′
1w′

2)

Figure 4.8: Typing rules for the arrow terms of skrT
+
C

As usual, we shall denote the class of object terms of skrT
+
C

with type X , together with the
class of arrow terms whose types are pairs of object terms of type X , by skrT

+
C
(X).

The interpretation of skrT
+
C

in OC

In order to define the interpretation of skrT
+
C

in OC, we first need to “order the inputs” of rooted

trees figuring in object terms (T , x,−→σ ,w) of skrT
+
C

.

For an unrooted tree T , a variable x ∈ FV (T) and an element −→σ = (σ1, . . . , σn) ∈ Σ(T ,x),
the total order of the inputs of T (relative to x) induced by −→σ is the bijection

σ : [|inp(T ,x)(T)|]→ inp(T ,x)(T)

defined recursively as follows:

⋄ if (T , x) = ({a(x1, . . . , xn); idX}, xi), then σ = −→σ ,

⋄ if (T , x) = ({T1 (zy) T2}, x), x ∈ FV (T1), |inp(T1,x)(T1)| = n, |inp(T2,y)(T1)| = m, σ1 : [n]→

inp(T1,x)(T1) is the total order induced by −→σ1 ∈ Σ(T1,x), σ2 : [m]→ inp(T2,y)(T2) is the total

order induced by −→σ2 ∈ Σ(T2,y) and σ1(i) = z, then

σ : [n+m− 1]→ FV (T)\{x}

is defined by (4.1.4).

4.1. Categorified entries-only cyclic operads 109

The interpretation function

⌈−⌉skX : skrT
+
C
(X)→ OC(|X|)

is defined recursively as follows:

⋄ ⌈ ({a(x1, . . . , xn); idX}, xi, ~σ, a) ⌉
sk

X\{xi}
= ({x1, . . . , xn}, xi, σ, a),

⋄ ⌈({T1 (zy) T2}, x,
−−−→σ1 ·σ2, w1w2)⌉

sk

X\{x} = ⌈(T1, x,
−→σ1, w1)⌉

sk

X1\{x}
◦σ−1

1 (z) ⌈(T2, y,
−→σ2, w2)⌉

sk

X2\{y}
,

and

⋄ ⌈1(T ,x,−→σ ,w)⌉
sk

X\{x} = 1⌈(T ,x,−→σ ,w)⌉sk
X\{x}

,

⋄ ⌈βz;y
(T1,x,

−→σ1,w1),(T2,z,
−→σ2,w2),(T3,y,

−→σ3,w3)
⌉skX\{x} =

β
σ−1
1 (z);σ−1

2 (y)

⌈(T1,x,
−→σ1,w1)⌉skX1\{x}

,⌈(T2,z,
−→σ2,w2)⌉skX2\{z}

,⌈(T3,y,
−→σ3,w3)⌉skX3\{y}

,

⋄ ⌈βz;y −1
(T1,x,

−→σ1,w1),(T2,z,
−→σ2,w2),(T3,y,

−→σ3,w3)
⌉skX\{x} =

β
σ−1
1 (z);σ−1

2 (y) −1

⌈(T1,x,
−→σ1,w1)⌉skX1\{x}

,⌈(T2,z,
−→σ2,w2)⌉skX2\{z}

,⌈(T3,y,
−→σ3,w3)⌉skX3\{y}

,

⋄ ⌈θz;y
(T1,x,

−→σ1,w1),(T2,z,
−→σ2,w2),(T3,y,

−→σ3,w3)
⌉skX\{x} =

θ
σ−1
1 (z);σ−1

1 (y)

⌈(T1,x,
−→σ1,w1)⌉skX1\{x}

,⌈(T2,z,
−→σ2,w2)⌉skX2\{z}

,⌈(T3,y,
−→σ3,w3)⌉skX3\{y}

,

⋄ ⌈χ2 ◦ χ1⌉
sk

X\{x} = ⌈χ2⌉
sk

X\{x} ◦ ⌈χ1⌉
sk

X\{x},

⋄ ⌈χ1 z�y χ2⌉
sk

X\{x} = ⌈χ1⌉
sk

X1\{x}
◦σ−1

1 (z) ⌈χ2⌉
sk

X2\{y}
,

where it is assumed that every total order σ (resp. σi) is induced by −→σ (resp. −→σi).

The third reduction

In what follows, we shall denote with rT+
C
(X,x, T) the subclass of rT+

C
(X) determined by the

rooted tree (T , x) (i.e. by the object terms whose first two components are given by (T , x) and
by the arrow terms among them).

We define the family of third reduction functions

Red3(X,x, T ,
−→σ) : rT+

C
(X,x, T)→ skrTC

+(X),

where x ∈ X , T is an unrooted tree such that FV (T) = X and −→σ ∈ Σ(T ,x), as follows.

For object terms of rT+
C
(X,x, T), we set

Red3(X,x, T ,
−→σ)((T , x, w)) = (T , x,−→σ ,w).

For an arrow term χ of rT+
C
(X,x, T), Red3(X,x, T ,

−→σ)(χ) is defined recursively as follows:

⋄ Red3(X,x, T ,
−→σ)(1(T ,x,w)) = 1

Red3(X,x,T ,
−→σ)((T ,x,w)),

⋄ Red3(X,x, {{T1 (zz) T2} (yy) T3},
−−−−−−→σ1 ·σ2 ·σ3)(β

z;y
(T1,x,w1),(T2,z,w2),(T3,y,w3)

) =

β
σ−1
1 (z);σ−1

2 (y)

(T1,x,
−→σ1,w1),(T2,z,

−→σ2,w2),(T3,y,
−→σ3,w3)

,

110 Chapter 4. Categorified cyclic operads

⋄ Red3(X,x, {T1 (zz) {T2 (yy) T3}},
−−−−−−→σ1 ·σ2 ·σ3)(β

z;y −1
(T1,x,w1),(T2,z,w2),(T3,y,w3)

) =

β
σ−1
1 (z);σ−1

2 (y) −1

(T1,x,
−→σ1,w1),(T2,z,

−→σ2,w2),(T3,y,
−→σ3,w3)

,

⋄ Red3(X,x, {{T1 (zz) T2} (yy) T3},
−−−−−−→σ1 ·σ2 ·σ3)(θ

z;y
(T1,x,w1),(T2,z,w2),(T3,y,w3)

) =

θ
σ−1
1 (z);σ−1

1 (y)

(T1,x,
−→σ1,w1),(T2,z,

−→σ2,w2),(T3,y,
−→σ3,w3)

,

⋄ Red3(X,x, T ,
−→σ)(χ2 ◦ χ1) = Red3(X,x, T ,

−→σ)(χ2) ◦ Red3(X,x, T ,
−→σ)(χ1),

⋄ if χ = χ1 z�y χ2, where χ1 : (T1, x, w1) → (T1, x, w
′
1) and χ2 : (T2, y, w2) → (T2, y, w

′
2),

and if −→σ1 ∈ Σ(T1,x) and −→σ2 ∈ Σ(T2,y), then

Red3(X,x, {T1 (zy) T2},
−−−→σ1 ·σ2)(χ1 z�y χ2) =

Red3(X1, x, T1,
−→σ1)(χ1) σ−1

1 (z)
�
σ−1
2 (y) Red3(X2, y, T2,

−→σ2)(χ2).

Remark 4.36. For the third reduction of an arrow term χ : (T , x, w1) → (T , x, w2) of rT+
C
(X), the

type of Red3(X,x, T ,
−→σ)(χ) is

Red3(X,x, T ,
−→σ)(χ) : Red3(X,x, T ,

−→σ)((T , x, w1))→ Red3(X,x, T ,
−→σ)((T , x, w2)).

Therefore, the third reduction of a pair of arrow terms of the same type of rT+
C
(X) is a pair of arrow terms

of the same type of skrTC
+(X). Recall that the analogous properties hold for the first two reductions

(see Lemma 4.23 and Remark 4.31).

Theorem 4.37. For an arbitrary object term (T , x, w) and an arbitrary arrow term χ of rT+
C
(X), the

equalities
⌈Red3(X,x, T ,

−→σ)((T , x, w))⌉skX\{x} = (X,x, σ, ⌈(T , x, w)⌉X)

and
⌈Red3(X,x, T ,

−→σ)(χ)⌉skX\{x} = (X,x, σ, ⌈χ⌉X)

hold, where the total order σ is induced from −→σ .

Proof. We prove the first equality by induction on the proof of the (T , x)-admissibility of w.

• If (T , x, w) = ({a(x1, . . . , xn); idX}, xi, a), then

⌈Red3(X,x, T ,
−→σ)(({a(x1, . . . , xn); idX}, xi, a))⌉

sk

X\{xi}
=

⌈({a(x1, . . . , xn); idX}, xi,
−→σ , a)⌉skX\{xi}

=

({x1, . . . , xn}, xi, σ, a) =

({x1, . . . , xn}, xi, σ, ⌈({a(x1, . . . , xn); idX}, xi, a)⌉X)

• If (T , x, w) = ({T1 (zy) T2}, x, w1w2), then, by the induction hypothesis for (T1, x, w1) : X1

and (T2, y, w2) : X2, we get

⌈Red3(X,x, {T1 (zy) T2},
−−−→σ1 ·σ2)(({T1 (zy) T2}, x, w1w2))⌉

sk

X\{x} =

⌈Red3(X1, x, T1,
−→σ1)((T1, x, w1))⌉

sk

X1\{x}
◦σ−1

1 (z) ⌈Red3(X2, y, T2,
−→σ2)((T2, y, w2))⌉

sk

X2\{y}
=

(X1, x, σ1, ⌈(T1, x, w1)⌉X1) ◦σ−1
1 (z) (X2, y, σ2, ⌈(T2, y, w2)⌉X2) =

(X,x, σ, ⌈(T1, x, w1)⌉X1 z◦y ⌈(T2, y, w2)⌉X2) =

(X,x, σ, ⌈({T1 (zy) T2}, x, w1w2)⌉X).

The second equality is proved by induction on the structure of χ, thanks to the first equality.

4.1. Categorified entries-only cyclic operads 111

• For χ = 1(T ,x,w), we have

⌈Red3(X,x, T ,
−→σ)(1(T ,x,w))⌉

sk

X\{x} = 1⌈Red3(X,x,T ,−→σ)(T ,x,w)⌉sk
X\{x}

= 1(X,x,σ,⌈(T ,x,w)⌉X)

= (X,x, σ, ⌈1(T ,x,w)⌉X).

• For χ = βz;y(T1,x,w1),(T2,z,w2),(T3,y,w3)
, T = {{T1 (zz) T2} (yy) T3},

−→σ1 ∈ Σ(T1,x),
−→σ2 ∈ Σ(T2,z),

−→σ3 ∈ Σ(T3,y) and −→σ = −−−−−−→σ1 ·σ2 ·σ3 we have

⌈Red3(X,x, T ,
−→σ)(βz;y(T1,x,w1),(T2,z,w2),(T3,y,w3)

)⌉skX\{x} =

⌈βz;y
Red3(X1,x,T1,

−→σ1)((T1,x,w1)),Red3(X2,z,T2,
−→σ2)((T2,z,w2)),Red3(X3,y,T3,

−→σ3)((T3,y,w3))
⌉skX\{x} =

β
σ−1
1 (z);σ−1

2 (y)

(X1,x,σ1,⌈(T1,x,w1)⌉X1
),(X2,z,σ2,⌈(T2,z,w2)⌉X2

),(X3,y,σ3,⌈(T3,y,w3)⌉X3
) =

(X,x, σ, β
z,z;y,y

⌈(T1,x,w1)⌉X1
,⌈(T2,z,w2)⌉X2

,⌈(T3,y,w3)⌉X3
) =

(X,x, σ, ⌈βz;y(T1,x,w1),(T2,z,w2),(T3,y,w3)
⌉X).

• We proceed similarly for χ = βz;y −1
(T1,x,w1),(T2,z,w2),(T3,y,w3)

and χ = θz;y(T1,x,w1),(T2,z,w2),(T3,y,w3)
.

• If χ = χ2 ◦ χ1, then, by the induction hypothesis for χ1 and χ2, we have

⌈Red3(X,x, T ,
−→σ)(χ2 ◦ χ1)⌉

sk

X\{x} =

⌈Red3(X,x, T ,
−→σ)(χ2)⌉

sk

X\{x} ◦ ⌈Red3(X,x, T ,
−→σ)(χ1)⌉

sk

X\{x} =

(X,x, σ, ⌈χ2⌉X) ◦ (X,x, σ, ⌈χ1⌉X) =

(X,x, σ, ⌈χ2 ◦ χ1⌉X).

• If χ = χ1 z�y χ2, where χ1 : (T1, x, w1) → (T1, x, w
′
1) and χ2 : (T2, y, w2) → (T2, y, w

′
2),

then, for −→σ = −−−→σ1 ·σ2, where −→σ1 ∈ Σ(T1,x) and −→σ2 ∈ Σ(T2,y), by the induction hypothesis for
χ1 and χ2, we have

⌈Red3(X,x, T ,
−→σ)(χ1 z�y χ2)⌉

sk

X\{x} =

⌈Red3(X1, x, T1,
−→σ1)(χ1) σ−1

1 (z)
�
σ−1
2 (y) Red3(X2, y, T2,

−→σ2)(χ2)⌉
sk

X\{x} =

⌈Red3(X1, x, T1,
−→σ1)(χ1)⌉

sk

X1\{x}
◦σ−1

1 (z) ⌈Red3(X2, y, T2,
−→σ2)(χ2)⌉

sk

X2\{y}
=

(X1, x, σ1, ⌈χ1⌉X1) ◦σ−1
1 (z) (X2, y, σ2, ⌈χ2⌉X2) =

(X,x, σ, ⌈χ1 z�y χ2⌉X).
�

The following result is a direct consequence of Theorem 4.37.

Corollary 4.38. For arrow terms χ1 and χ2 of the same type in rT+
C
(X), the equality

⌈χ1⌉X = ⌈χ1⌉X

follows from the equality

⌈Red3(X,x, T ,
−→σ)(χ1)⌉

sk

X\{x} = ⌈Red3(X,x, T ,
−→σ)(χ2)⌉

sk

X\{x}.

4.1.6 The proof of the coherence theorem

We finally assemble the three reductions in the proof of the coherence theorem. The proof is
outlined by the two invariance properties common for all three reductions: by reducing a pair of
arrow terms of the same type,

112 Chapter 4. Categorified cyclic operads

1. the result is always a pair of arrow terms of the same type, and

2. the equality of interpretations of the two resulting arrow terms implies the equality of the interpre-
tations of the respective starting arrow terms.

Coherence Theorem. For any finite set X and for any pair of arrow terms Φ,Ψ : W1 → W2 of the
same type in FreeC(X), the equality [[Φ]]X = [[Ψ]]X holds in C(X).

Proof. By Theorem 4.24 (first reduction), it is enough to prove the equality

[Red1(Φ)]X = [Red1(Ψ)]X .

By Lemma 4.26 and Lemma 4.27, the problem translates to showing that

⌊∆−1
X (Red1(Φ))⌋X = ⌊∆−1

X (Red1(Ψ))⌋X .

By Corollary 4.33 (second reduction), this equality follows from the equality

⌈Red2(X,x)(∆
−1
X (Red1(Φ)))⌉X = ⌈Red2(X,x)(∆

−1
X (Red1(Ψ)))⌉X ,

where x ∈ X is arbitrary. By Corollary 4.38 (third reduction), the above equality holds if, in OC,
we have

⌈Red3(X,x, T ,
−→σ)(Red2(X,x)(∆

−1
X (Red1(Φ))))⌉

sk

X\{x} =

⌈Red3(X,x, T ,
−→σ)(Red2(X,x)(∆

−1
X (Red1(Ψ))))⌉skX\{x},

where T is the unrooted tree figuring in ∆−1
X (Red1(Ws(Φ))). Finally, the last equality holds by

the coherence of OC, established in [DP15]. �

4.2 Categorified exchangeable-output cyclic operads

In the proof of Theorem 3.30, the equivalence between Definition 1.4 and Definition 3.25 has
been worked out in detail. In this section, by adapting that equivalence to non-unital cyclic
operads and by lifting it to the categorified setting, we set up the definition of exchangeable-output
non-skeletal categorified cyclic operads. We finish the section by indicating how the definition of
exchangeable-output skeletal categorified cyclic operads is obtained.

4.2.1 The exchangeable-output non-skeletal categorified cyclic operads

The categorification of Definition 3.25 is made by enriching the structure of a categorified non-
skeletal symmetric operad O by endofunctors Dx : O(X) → O(X) that account for the exchange of
the output with the input x, whose properties need to be such that the equivalence of Theorem
3.30 is not violated in the weakened setting. In other words, the decision whether some axiom
of Dx should be weakened or not must respect the weakening made in passing from entries-
only cyclic operads to their categorified version.

Before we give the resulting definition (with operadic units omitted), given that categorified
operads of [DP15] are skeletal and non-symmetric, we first adapt their definition into a characteri-
sation of categorified, symmetric and non-skeletal operads. As we did for categorified entries-only
cyclic operads, we shall keep the equivariance axiom strict.

Definition 4.39. A non-skeletal categorified operad is a functor O : Bijop → Cat, together with

• a family of bifunctors
◦x : O(X)× O(Y)→ O(X\{x} ∪ Y),

4.2. Categorified exchangeable-output cyclic operads 113

indexed by arbitrary non-empty finite setsX and Y and element x ∈ X such thatX\{x}∩
Y = ∅, subject to the equivariance axiom [EQ], and

• two natural isomorphisms, β and θ, called sequential associativity and parallel associativity,
respectively, whose respective components

βx;yf,g,h : (f ◦x g) ◦y h→ f ◦x (g ◦y h) and θx;yf,g,h : (f ◦x g) ◦y h→ (f ◦y h) ◦x g ,

are natural in f , g and h, and are subject to the following coherence conditions:

– [θ-involution] θy;xf,h,g ◦ θ
x;y
f,g,h = 1(f◦x g)◦yh,

– [β-pentagon] (1f ◦x β
y;z
g,h,k) ◦ β

x;z
f,g◦yh,k

◦ (βx;yf,g,h ◦z 1k) = βx;yf,g,h◦zk ◦ β
y;z
f◦xg,h,k

,

– [βθ-hexagon] (1f ◦xθ
y;z
g,h,k)◦β

x;z
f,g◦yh,k

◦(βx;yf,g,h◦z 1k) = βx;yf,g◦zh,k ◦(β
x;z
f,g,k ◦y 1h)◦θ

y;z
f◦xg,h,k

,

– [βθ-pentagon] θx;zf,g◦yh,k ◦ (β
x;y
f,g,h ◦z 1k) = βx;yf◦zk,g,h ◦ (θ

x;z
f,g,k ◦y 1h) ◦ θ

y;z
f◦xg,h,k

,

– [θ-hexagon] θx;yf◦zk,g,h ◦ (θ
x;z
f,g,k ◦y 1h) ◦ θ

y;z
f◦xg,h,k

= (θy;zf,h,k ◦x 1g) ◦ θ
x;z
f◦yh,g,k

◦ (θx;yf,g,h ◦z 1k),

– [βσ] if the equality ((f ◦x g) ◦y h)
σ = (fσ1 ◦x′ g

σ2) ◦y′ h
σ3 holds by [EQ], then

(βx;yf,g,h)
σ = βx

′;y′

fσ1 ,gσ2 ,hσ3 ,

– [θσ] if the equality ((f ◦x g) ◦y h)
σ = (fσ1 ◦x′ g

σ2) ◦y′ h
σ3 holds by [EQ], then

(θx;yf,g,h)
σ = θx

′;y′

fσ1 ,gσ2 ,hσ3 ,

– [EQ-mor] if the equality (f ◦x g)
σ = fσ1 ◦x′ g

σ2 holds by [EQ], and if ϕ : f → f ′ and
ψ : g → g′, then

(ϕ ◦x ψ)
σ = ϕσ1 ◦x′ ψ

σ2 .
�

Finally, here is the definition of non-skeletal categorified exchangeable-output cyclic oper-
ads. Recall from §3.3.2 that we write DO

xy(f) for DO
x (f)

σ, where σ renames x to y.

Definition 4.40. A non-skeletal categorified exchangeable-output cyclic operad is a (non-skeletal) cat-
egorified operad O, together with

• a family of endofunctors
Dx : O(X)→ O(X),

indexed by arbitrary finite sets X and elements x ∈ X , which are subject to the following
axioms, in which f and g denote operadic operations and ϕ and ψ morphims between
operadic operations:

[DIN] Dx(Dx(f)) = f and Dx(Dx(ϕ)) = ϕ,

[DEQ] Dx(f)
σ = Dσ−1(x)(f

σ) and Dx(ϕ)
σ = Dσ−1(x)(ϕ

σ), where σ : Y → X is a bijection,

[DEX] Dx(f)
σ = Dx(Dy(f)) and Dx(ϕ)

σ = Dx(Dy(ϕ)), where σ : X → X exchanges x
and y,

[DC1] Dy(f ◦x g) = Dy(f) ◦x g and Dy(ϕ ◦x ψ) = Dy(ϕ) ◦x ψ , where y ∈ X\{x},

[Dβ] Dz(β
x;y
f,g,h) = βx;yDz(f),g,h, where f ∈ O(X), g ∈ O(y), h ∈ O(Z), x, z ∈ X and y ∈ Y ,

[Dθ] Dz(θ
x;y
f,g,h) = θx;yDz(f),g,h, where f ∈ O(X), g ∈ O(y), h ∈ O(Z) and x, y, z ∈ X ,

114 Chapter 4. Categorified cyclic operads

• a natural isomorphism δ, called the exchange, whose components

δy,x;vf,g : Dy(f ◦x g)→ Dyv(g) ◦v Dxy(f),

are natural in f and g, and are subject to the following coherence conditions:

- [δβθ-square] for f ∈ O(X), g ∈ O(y), h ∈ O(Z), x ∈ X and y, z ∈ Y , the following
diagram commutes

Dz((f ◦x g) ◦y h)

Dz(f ◦x (g ◦y h))

Dzv(g ◦y h) ◦v Dxz(f)

Dz(f ◦x g) ◦y h

(Dzv(g) ◦v Dxz(f)) ◦y h

(Dzv(g) ◦y h) ◦v Dxz(f)

δz,x;vf,g ◦y 1h

δz,x;vf,g◦yh

Dz(β
x;y
f,g,h)

θv;yDzv(g),Dxz(f),h

- [δβ-hexagon] for f ∈ O(X), g ∈ O(y), h ∈ O(Z), x ∈ X , y ∈ Y and z ∈ Z, the following
diagram commutes

Dz((f ◦x g) ◦y h)

Dz(f ◦x (g ◦y h))

Dzv(h) ◦v Dyz(f ◦x g)

Dzv(g ◦y h) ◦v Dxz(f)

(Dzv(h) ◦v Dyv(g)) ◦v Dxz(f)(Dzv(h) ◦v Dyz(g))
σ ◦v Dxz(f)

Dzv(h) ◦v (Dyv(g) ◦v Dxy(f))
σ

Dzv(h) ◦v (Dyv(g) ◦v Dxz(f))

δz,y;vf◦xg,h

Dz(β
x;y
f,g,h)

δz,x;vf,g◦yh

(δz,y;vg,h)σ ◦v 1Dxz(f) βv;x
−1

Dzv(h),Dyz(g),Dxz(f)

1Dzv(h) ◦v (δ
y,x;v
f,g)τ

where σ renames z to v and τ renames y to z,

- [Dδ] for f ∈ O(X), g ∈ O(y) and z ∈ Y , the following diagram commutes

Dz(Dz(f ◦x g))

f ◦x g

Dz(Dzv(g) ◦v Dxz(f))

Dzu(Dxz(f)) ◦u Dvz(Dzv(g))

Dz(δ
z,x;v
f,g)

δz,v;uDzv(g),Dxz(f)

- [δσ] if the equality (f ◦x g)
σ = fσ1 ◦σ−1

1 (x) g
σ2 holds by [EQ], then

(δz,x;vf,g)σ = δ
σ−1(z),σ−1

1 (x);w
fσ1 ,gσ2 ,

where v 6∈ X\{x} ∪ Y \{z} and w 6∈ σ−1[X\{x} ∪ Y \{z}] are arbitrary variables.
�

4.2. Categorified exchangeable-output cyclic operads 115

Remark 4.41. By comparing Definition 4.40 with Definition 3.25, one sees that the only axiom of Dx

from Definition 3.25 that got weakened is [DC2]. Indeed, the proof of Theorem 3.30 testifies that all the
axioms of Dx, except [DC2], are proved by the functoriality and the equivariance of the corresponding
entries-only cyclic operad, while the proof of [DC2] requires the axiom (CO). Therefore, since (CO) gets
weakened in passing from cyclic operads to categorified cyclic operads, [DC2] has to be weakened too.

Remark 4.42. Observe that, by [δσ] for σ = id , we have that

δy,x;uf,g = δy,x;vf,g

for arbitrary variables u, v 6∈ X\{x} ∪ Y \{z}.

We now lift the proof of Theorem 3.30 to the equivalence between the categorified versions of
the (non-skeletal) entries-only and exchangeable-output of cyclic operads. The theorem that we
establish has as a consequence the coherence of the latter notion. Henceforth, we shall restrict
ourselves to constant-free categorified cyclic operads (as required by the proof of Theorem 3.30),
the notion of which is obtained naturally from its decategorified variant, by replacing the empty
set with the empty category (of operations).

Theorem 4.43. Definition 4.1 (entries-only, categorified) and Definition 4.40 (exchangeable-output, cat-
egorified), restricted to constant-free categorified cyclic operads, are equivalent.

Proof. We follow the lines of the proof of Theorem 3.30 and add the pieces of structures arising
in the categorified framework.

Entries-only to Exchangeable-output. Let C : Bijop → Cat be an entries-only categorified
cyclic operad. The functor OC : Bijop → Cat, underlying the corresponding exchangeable-
output categorified cyclic operad, is defined by (3.3.4). The partial composition operation ◦x :
OC(X) × OC(Y) → OC(X\{x} ∪ Y) is defined by (3.3.5). The action Dx : OC(X) → OC(X) is
defined by (3.3.6).

The isomorphisms βx,yf,g,h and θx,yf,g,h are defined as follows. Let f ∈ OC(X), g ∈ OC(Y),
h ∈ OC(Z) and x ∈ X . For y ∈ Y , we set

βx;yf,g,h = βx,∗Y ;y,∗Z
fκ,g,h ,

where κ : X ∪ {∗X\{x}∪Y \{y}∪Z} → X ∪ {∗X} renames ∗X to ∗X\{x}∪Y \{y}∪Z . If y ∈ X , we set

θx,yf,g,h = ϑx,∗Y ;y,∗Z
fκ,g,h ,

where κ : X ∪ {∗X\{x,y}∪Y ∪Z} → X ∪ {∗X} renames ∗X to ∗X\{x,y}∪Y ∪Z .

Finally, for f ∈ OC(X), g ∈ OC(Y), x ∈ X and y ∈ Y , we set

δy,x;vf,g = γ∗X ,vfκ,gν ,

where κ : X\{x} ∪ {y} ∪ {∗X} → X ∪ {∗X} renames x to ∗X and ∗X to y, and ν : Y \{y} ∪ {v} ∪
{∗X\{x}∪{y}} → Y ∪ {∗Y } renames ∗Y to v and y to ∗X\{x}∪Y .

The coherence conditions of OC are verified as follows. We get [θ-involution] by Lemma
4.6, [β-pentagon] by (β-pentagon), [βθ-hexagon] by (βγ-decagon), and [βθ-pentagon]
and [θ-hexagon] by Lemma 4.7. The coherence conditions [βσ], [θσ], [EQ-mor], as well as
[Dβ] and [Dθ], hold by (βσ), (γσ) and (EQ-mor). The equalities [DIN], [DEQ], [DEX] and
[DC1] hold by the functoriality of C and (EQ). The commutation of [δβθ-square] follows by
the definition of ϑ in C (see (4.1.1)). By redefining [δβ-hexagon] in the language of the cyclic op-
erad C (which is straightforward, but quite tedious), thanks to (EQ), (βσ), (γσ) and (EQ-mor),
we get exactly an instance of (βγ-hexagon). (We shall see how (βγ-hexagon) translates into
[δβ-hexagon] in the proof of the other transition below.) The condition [Dδ] follows by (γσ)

116 Chapter 4. Categorified cyclic operads

and (γ-involution), and, finally, [δσ] follows by (γσ).

Exchangeable-output to Entries-only. Let O : Bijop → Cat be an exchangeable-output cate-
gorified cyclic operad. In order to coerce the definition (3.3.7) into the definition of the functor
CO : Bijop → Cat, underlying the corresponding entries-only categorified cyclic operad, given
that

∑

x∈X O(X\{x}) is now categorical sum in Cat (rather than disjoint union of sets), we sim-
ply extend the definition (3.3.3) of the equivalence relation ≈ to the category

∑

x∈X O(X\{x}).
Unsurprisingly, to the family of generators of ≈ given by (3.3.3), we just add generators of the
form

(x, ϕ) ≈ (z,Dzx(ϕ)),

which will account for the equivalence classes of morphisms of

CO(X) =
∑

x∈X

O(X\{x})/≈.

The composition operation x◦y : CO(X)×CO(Y)→ CO(X\{x}∪Y \{y}) is defined by (3.3.8).
In what follows, given that O (and, therefore, CO) is constant-free, when calculating the compo-
sition [(u, f)]≈x◦x[(v, g)]≈, we shall always assume that u 6= x and x 6= v. Furthermore, when
considering the composite ([(u, f)]≈x◦x[(v, g)]≈)y◦y[(w, h)]≈, where g ∈ O(Y), noticing that, in
the “worst case”, the set Y could be reduced to {x}, we shall assume that v = y.

For the definition of β
x,x;y,y

[(u,f)]≈,[(v,g)]≈,[(w,h)]≈
, we calculate

([(u, f)]≈ x◦x [(y, g)]≈) y◦y [(w, h)]≈ = [(u, (f ◦x Dxy(g)) ◦y Dyw(h))]≈

and
[(u, f)]≈ x◦x ([(y, g)]≈ y◦y [(w, h)]≈) = [(u, f ◦x (Dxy(g) ◦y Dyw(h)))]≈

and we set
β
x,x;y,y

[(x,f)]≈,[(y,g)]≈,[(w,h)]≈
= [(u, βx;yf,Dxy(g),Dyw(h))]≈.

For the definition of γx,y[(u,f)]≈,[(v,g)]≈
, we calculate

[(u, f)]≈x◦y[(v, g)]≈ = [(u, f ◦x Dyv(g))]≈ and [(v, g)]≈y◦x[(u, f)]≈ = [(v, g ◦y Dxu(f))]≈.

Observe that, depending on the choice of the variable we take to be the common one for both
classes (u or v), and by using [δσ], γx,y[(u,f)]≈,[(v,g)]≈

can be defined in two ways:

γx,y[(u,f)]≈,[(v,g)]≈
= [(u,Duv(δ

u,x;y
f,Dyu(g)

))]≈ = [(v, δu,x;yf,Dyu(g)
)]≈.

We fix the definition
γx,y[(u,f)]≈,[(v,g)]≈

= [(v, δu,x;yf,Dyu(g)
)]≈.

Therefore, in calculating an instance of the commutator, for the common variable of the source
and the target we shall always choose the one of the target class.

As for the coherences of CO, (β-pentagon) holds by [β-pentagon].
We show that (βγ-hexagon) holds by [δβ-hexagon]. For the objects of (βγ-hexagon), we

have

• ([(u, f)]≈ x◦x [(y, g)]≈) y◦y [(w, h)]≈ = [(u, (f ◦x Dxy(g)) ◦y Dyw(h))]≈,

• [(u, f)]≈ x◦x ([(y, g)]≈ y◦y [(w, h)]≈) = [(u, f ◦x (Dxy(g) ◦y Dyw(h)))]≈,

• ([(y, g)]≈ y◦y [(w, h)]≈) x◦x [(u, f)]≈ = [(w,Dwx(Dxy(g) ◦y Dyw(h)) ◦x Dxu(f))]≈,

• ([(w, h)]≈ y◦y [(y, g)]≈) x◦x [(u, f)]≈ = [(w, (h ◦y g) ◦x Dxu(f))]≈,

4.2. Categorified exchangeable-output cyclic operads 117

• [(w, h)]≈ y◦y ([(y, g)]≈ x◦x [(u, f)]≈) = [(w, h ◦y (g ◦x Dxu(f)))]≈,

• ([(y, g)]≈ x◦x [(u, f)]≈) y◦y [(w, h)]≈ = [(u,Duy(g ◦x Dxu(f)) ◦y Dyw(h))]≈.

By replacing the representatives of the classes above with the ones whose first component is u,
we get

• ([(u, f)]≈ x◦x [(y, g)]≈) y◦y [(w, h)]≈ = [(u, (f ◦x Dxy(g)) ◦y Dyw(h))]≈,

• [(u, f)]≈ x◦x ([(y, g)]≈ y◦y [(w, h)]≈) = [(u, f ◦x (Dxy(g) ◦y Dyw(h)))]≈,

• ([(y, g)]≈ y◦y [(w, h)]≈) x◦x [(u, f)]≈ = [(u,Duw(Dwx(Dxy(g) ◦y Dyw(h)) ◦x Dxu(f)))]≈,

• ([(w, h)]≈ y◦y [(y, g)]≈) x◦x [(u, f)]≈ = [(u,Duw((h ◦y g) ◦x Dxu(f)))]≈,

• [(w, h)]≈ y◦y ([(y, g)]≈ x◦x [(u, f)]≈) = [(u,Duw(h ◦y (g ◦x Dxu(f))))]≈,

• ([(y, g)]≈ x◦x [(u, f)]≈) y◦y [(w, h)]≈ = [(u,Duy(g ◦x Dxu(f)) ◦y Dyw(h))]≈,

which determines the outer part of the following diagram of O:

(f ◦x Dxy(g)) ◦y Dyw(h) f ◦x (Dxy(g) ◦y Dyw(h)) Duw(Dwx(Dxy(g) ◦y Dyw(h)) ◦x Dxu(f))

Duy(g ◦x Dxu(f)) ◦y Dyw(h) Duw(h ◦y (g ◦x Dxu(f))) Duw((h ◦y g) ◦x Dxu(f))

f ◦x (Dxy(g) ◦y Dyw(h))

f ◦x Dxw(h ◦y g)

βx;y
f,Dxy(g),Dyw(h)

(δ
u,x,x−1

Dwx(Dxy(g)◦yDyw(h)),Dxu(f)
)τ

(δ
u,x;x
g,Dxu(f)

)ν ◦y 1Dyw(h)

(δ
u,x;x
Dwx(Dxy(g)◦yDyw(h)),Dxu(f)

)τ

Duw((δ
w,y;y

Dxy(g),Dyw(h))
κ ◦x 1Dxu(f))1f ◦x (δ

x,y;y −1

h,g)κ
−1

(δ
u,x;x−1

h◦yg,Dxu(f)
)τ

(δ
u,y;y −1

h,g ◦x Dxu(f)
)τ Duw(β

y;x

h,g,Dxu(f)
)

where τ renames u to w, κ renames w to x and ν renames u to y, and in which the square on the
right commutes by naturality of δ. The equality

(δ
u,x,x
Dwx(Dxy(g)◦yDyw(h)),Dxu(f)

)τ ◦ (δu,x,x
−1

Dwx(Dxy(g)◦yDyw(h)),Dxu(f)
)τ = 1f◦x(Dxy(g)◦yDyw(h)),

together with [δσ], turns the diagram above into the following instance of [δβ-hexagon]:

(f ◦x Dxy(g)) ◦y Dyw(h) f ◦x (Dxy(g) ◦y Dyw(h)) f ◦x Dxw(h ◦y g)

Duy(g ◦x Dxu(f)) ◦y Dyw(h) Duw(h ◦y (g ◦x Dxu(f))) Duw((h ◦y g) ◦x Dxu(f))

βx;y
f,Dxy(g),Dyw(h) 1f ◦x (δ

x,y;y −1

h,g)κ
−1

(δ
u,x;x
g,Dxu(f)

)ν ◦y 1Dyw(h) δ
w,x;x−1

h◦yg,Dxw(f)

δ
w,y;y −1

h,g ◦x Dxw(f)
Duw(β

y;x

h,g,Dxu(f)
)

For (βγ-decagon), we use [βθ-hexagon] together with [δβθ-square]. We illustrate the
proof by showing that the composition of the top three morphisms of (βγ-decagon) is exactly
an instance of the isomorphsm θ. The four objects figuring in the composition of those three
morphisms are:

• (([(u, f)]≈ x◦x [(y, g)]≈) y◦y [(z, h)]≈) z◦z [(w, k)]≈ = [(u, ((f ◦x Dxy(g)) ◦y Dyzh) ◦z Dzw(k))]≈,

• ([(z, h)]≈ y◦y ([(u, f)]≈ x◦x [(y, g)]≈)) z◦z [(w, k)]≈ = [(u,Duz(h ◦y Dyu(f ◦x Dxy(g))) ◦z Dzw(k))]≈,

118 Chapter 4. Categorified cyclic operads

• [(z, h)]≈ y◦y (([(u, f)]≈ x◦x [(y, g)]≈) z◦z [(w, k)]≈) = [(u,Duz(h◦y (Dyu(f ◦xDxy(g))◦zDzw(k))))]≈,

• (([(u, f)]≈ x◦x [(y, g)]≈) z◦z [(w, k)]≈) y◦y [(z, h)]≈ = [(u, ((f ◦x Dxy(y)) ◦z Dzw(k)) ◦y Dyz(h))]≈.

For the definitions of the top three morphisms of (βγ-decagon), we have:

• γ
y,y

[(u,f)]≈ x◦x [(y,g)]≈,[(z,h)]≈ z◦z 1[(w,k)]≈ = (δ
u,y;y −1

h,Dyu(f◦xDxy(g))
)σ ◦z 1Dzw(k),

• β
y,y;z,z

[(z,h)]≈,[(u,f)]≈ x◦x [(y,g)]≈,[(w,k)]≈
= Du(β

y;z

h,Dyu(f◦xDxy(g)),Dzw(k)
)σ, and

• γ
y,y

[(z,h)]≈,([(u,f)]≈ x◦x [(y,g)]≈) z◦z [(w,k)]≈
= (δ

u,y;y

h,Dyu(f◦xDxy(g))◦zDzw(k)
)σ,

where σ renames u to z. By [βσ], [δσ] and [DEQ] , we get

• (δ
u,y;y −1

h,Dyu(f◦xDxy(g))
)σ ◦z 1Dzw(k) = δ

z,y;y −1

h,Dz(f◦xDz(gτ))
◦z 1Dzw(k),

• Du(β
y;z

h,Dyu(f◦xDxy(g)),Dzw(k)
)σ = Dz(β

y;z

h,Dz(f◦xDz(gτ)),Dzw(k)
), and

• (δ
u,y;y

h,Dyu(f◦xDxy(g))◦zDzw(k)
)σ = δ

z,y;y

h,Dz(f◦xDz(gτ))◦zDzw(k))

where τ renames x to z. Finally, by [δβθ-square] and [θσ], we get that

δ
z,y;y −1

h,Dz(f◦xDz(gτ)) ◦z 1Dzw(k) ◦Dz(β
y;z

h,Dz(f◦xDz(gτ)),Dzw(k)) ◦ (δ
z,y;y −1

h,Dz(f◦xDz(gτ)) ◦z 1Dzw(k)) = θz;yf◦xg,h,k
.

For (γ-involution), observe that γy,x[(v,g)]≈,[(u,f)]≈
is defined exactly in a way which makes

the composition γy,x[(v,g)]≈,[(u,f)]≈
◦ γx,y[(u,f)]≈,[(v,g)]≈

figure favorably in [Dδ].

The isomorphism of categorified cyclic operads C and COC
(and O and OCO

). The two isomorphisms
are easily defined from their corresponding decategorified versions in the proof of Theorem
3.30. �

4.2.2 The exchangeable-output skeletal categorified cyclic operads

Given that the skeletal exchangeable-output characterisation of cyclic operads is arguably most
commonly seen in the literature (cf. [Mar08, Proposition 42.]), we round up this work by indi-
cating that the categorification of this notion is made straightforwardly by translating Definition
4.40 to the skeletal setting. The coherence of the obtained notion follows by lifting to the cat-
egorified setting the equivalence of non-skeletal and skeletal operads, established in [MSS02,
Theorem 1.61], extended naturally so that it also includes endofunctorsDx : O(X)→ O(X) (for
non-skeletal operads) andDi : O(n)→ O(n) (for skeletal operads). In Appendix A, we describe
in detail the equivalence of [MSS02, Theorem 1.61] (whose lifting, which we omit, is then easily
derived).

119

Future Work

In this thesis, we examined three different frameworks for the general theory of cyclic operads.
As cyclic operads make a relatively young concept of abstract algebra, the motivation was to set
up theoretical grounds of various flavours for that concept, which would then be starting points
for exploring perspectives of cyclic operads and finding their embodiments in different fields of
mathematics, as well as for bringing the knowledge from those fields back to abstract algebra,
in order to propose solutions to problems inherent to operad theory. Therefore, the ideas for
future investigation can be summarised as the application of the theoretical results established
by the thesis in finding the place and the use of cyclic operads “in nature”.

From the syntactic point of view, it would be natural to apply a syntactic approach similar
to the one of Chapter 2 to other variations of operads (like modular operads of [GK98]), and to
investigate the adjustments to be made in the case where symmetries (other than cyclic permu-
tations) are not present.

Prompted by the algebraic definitions of Chapter 3, it would be interesting to rephrase the
construction of invariant bilinear forms on algebras over a cyclic operad C of [GK95] in the al-
gebraic setting. More generally, Chapter 3 provides a “recipe” for redefining other variations
and generalisations of operads internally to the category of species, which aims at making their
investigation modular, so as not to repeat analysis and constructions of the same kind for each
variation of the notion of operad. Also, it would be interesting to see what would a Lie bracket
[S, T] = SNT − TNS mean in the context of cyclic operads, but in order to understand this, we
first have to give a meaning to the operation − used in its definition, which indicates that we
need to replace set-theoretical species of structures with S-modules.

As for the categorified setting, given the context in which operads and cyclic operads have
emerged, the main questions that arise are the question of exhibiting categorified cyclic operads
of Chapter 4 “in nature” and the question of determining whether they could be of some use in
applications in non-commutative geometry and algebraic topology. At this moment, there are
two tangible directions of investigation, one for each of these two questions.

The first one is about the construction of a skeletal categorified cyclic operad C : Σop → Cat

in the form of a bicategory of generalised profunctors (i.e. distributors) of [Bén73].

Task 1. Given a category D with enough colimits, which is, moreover, equipped with a duality (−)∗ :
Dop → D, a categorified cyclic operad C : Σop → Cat can be exhibited by defining the category of n-ary
operations of C as C(n) = [Dn,Set], which can be seen as a generalised form of a profunctor, and by
using a generalised form of the composition of profunctors for defining the partial composition of C. For
example, if F ∈ C(3) and G ∈ C(2), the operation

F 2◦1G : D3 → Set

is defined by

(F 2◦1G)(a, c, e) =

∫ b,d

F (a, b, c)×G(d, e)× [b, d],

where [−,−] : Dop ×Dop → Set is defined by [x, y] = D[x, y∗]. One must then define the associator
and commutatior isomorphisms and look for the possible conditions that D has to satisfy in order to be
able to verify the corresponding coherence conditions.

120 Chapter 4. Categorified cyclic operads

The second direction is about applications of categorified (cyclic) operads in proving the
Koszulness of coloured (cyclic) operads which encode (cyclic) operads, by exhibiting their
Gröbner bases.

Task 2. Show that the coherence theorem for categorified (cyclic) operads can be adapted to a generalisa-
tion of the Diamond Lemma for coloured (cyclic) operads encoding (cyclic) operads. This task requires to
consider the notion of coloured (cyclic) operad as a structure for which, apart from operadic compositions,
the action of the symmetric group also makes a part of the defining structure. In other words, the action of
the symmetric group is not introduced implicitly by building the definition over an S-module, but rather
by starting from an N-module and then modeling it explicitly, as an additional set of generators (accom-
panied by the appropriate set of relations), as done in [DV15, Definition 5]. In this way, the candidate for
the Gröbner basis is given by the set of tree-polynomials corresponding to canonical isomorphisms of a
categorified (cyclic) operad defined in the skeletal manner, for which the equivariance axiom is additionally
weakened.

Finally, motivated by the combinatorial approach to operadic polytopes made in [DP11], the
following task arises naturally in the setting of categorified cyclic operads.

Task 3. Find polytopes which describe coherences and higher coherences of categorified cyclic operads. An
initial analysis of this problem, made for the 3-dimensional setting by considering all the 2-dimensional
coherence diagrams arising from a linear tree with five nodes (which would correspond to the facets of the
appropriate polytope), shows that the number of such coherence facets is rather large.

121

Appendix A

Skeletal vs. Non-skeletal operadic
framework

There are no true winners of this battle, since the two frameworks are equivalent for Set-based
(cyclic) operads. In general, they are equivalent under fairly weak assumptions: the base sym-
metric monoidal category (C,⊗) should have small colimits, and, for an arbitrary object X of
C, the endofunctor X ⊗ (−) should preserve colimits. However, this does not mean that they
are equally good for a particular matter of investigation. Before we summarise why our winner is
the non-skeletal framework, we give details of the equivalence of the two approaches.

A.1 The equivalence

Let O : Σop → Set be a skeletal operad, defined as in [LV12, 5.3.7] (only without units). We
shall write O(n) instead of O([n]), and we shall denote the operadic composition operations of
O with ⋄i. Quoting [LV12, 5.3.7], the equivariance of O is given by the following two relations:

[EQ1] For any σ ∈ Sm, we have

f ⋄i g
σ = (f ⋄i g)

σ′
,

where σ′ ∈ Sn+m−1 is the permutation which acts by the identity, except on the
block {i, . . . , i+m− 1}, on which it acts by σ.

[EQ2] For any σ ∈ Sn, we have

fσ ⋄i g = (f ⋄σ(i) g)
σ′′
,

where σ′′ ∈ Sn+m−1 is acting like σ on the block {1, . . . , n+m−1}\{i, . . . , i+m−1}
with values in {1, . . . , n+m−1}\{σ(i), . . . σ(i)+m−1} and identically on the block
{i, . . . , i+m− 1}with values in {σ(i), . . . σ(i) +m− 1}.

As the definition of a non-skeletal operad, we fix Definition 1.1 (again, without units). For a non-
skeletal operad O : Bijop → Set, we shall continue to denote with ◦x its operadic composition
morphisms.

Theorem A.1. [LV12, 5.3.7] and Definition 1.1 are equivalent definitions of symmetric operads.

Proof. We make the transitions between the structures specified by the two definitions and we
show that they determine an isomorphism of operads.

Skeletal to Non-skeletal. Let O : Σop → Set be a skeletal operad. The functor underlying the
corresponding non-skeletal operad Ons : Bijop → Set is defined as

Ons(X) = {[(f, ϕX)]≈ | f ∈ O(n) and ϕX : X → [n] (ϕX bijective)},

where |X| = n and ≈ is the smallest equivalence relation generated by

122 Appendix A. Skeletal vs. Non-skeletal operadic framework

(f, ϕX) ≈ (fϕX◦ψ−1
X , ψX), (A.1.1)

where ψX : X → [n]. For a bijection σ : Y → X , the function Ons(σ) : Ons(X) → Ons(Y) is
defined by

[(f, ϕX)]
σ
≈ = [(f, ϕX ◦ σ)]≈.

The composition operation ◦x : Ons(X)× Ons(Y)→ Ons(X\{x} ∪ Y) is defined as follows.
Let [(f, ϕX)]≈ ∈ Ons(X) and [(g, ϕY)]≈ ∈ Ons(Y), where |X| = n and |Y | = m, and let x ∈ X .
We set

[(f, ϕX)]≈ ◦x [(g, ϕY)]≈ = [(f ⋄ϕX(x) g, ϕZ)]≈,

where Z = X\{x} ∪ Y and

ϕZ(v) =

ϕX(v) for all v ∈ X such that ϕX(v) < ϕX(x)

ϕY (v) + ϕX(x)− 1 for all v ∈ Y

ϕX(v) +m− 1 for all v ∈ X such that ϕX(v) > ϕX(x).

(A.1.2)

The equivariance axiom [EQ] of O ensures that the definition of ◦x does not depend on the
choice of ϕX and ϕY . Indeed, if ϕ′

X : X → [n] and ϕ′
Y : Y → [m] are different from ϕX and ψX ,

respectively, then

[(fϕX◦ϕ′
X

−1

, ϕ′
X)]≈ ◦x [(g

ϕY ◦ϕ′
Y

−1

, ϕ′
Y)]≈ = [(fϕX◦ϕ′

X
−1

⋄ϕ′
X(x) g

ϕY ◦ϕ′
Y

−1

, ϕ′
Z)]≈

= [((f ⋄ϕX(x) g)
ϕZ◦ϕ

′
Z
−1

, ϕ′
Z)]≈

= [(f ⋄ϕX(x) g, ϕZ)]≈

= [(f, ϕX)]≈ ◦x [(g, ϕY)]≈.

It is easily seen that the associativity axioms [A1] and [A2] of O ensure the corresponding
associativity axioms of Ons .

Finally, we show that the equivariance axiom [EQ] of Ons comes “for free”. Let [(f, ϕX)]≈ ∈
Ons(X), [(g, ϕY)]≈ ∈ Ons(Y) and x ∈ X . Then, for an arbitrary bijection σ : U → X\{x} ∪ Y
and bijections σ1 : V1 → X and σ2 : V2 → Y , such that σ = σ1|

X\{x} ∪ σ2|
Y , we have

([(f, ϕX)]≈ ◦x [(g, ϕY)]≈)
σ = [(f ⋄ϕX(x) g, ϕZ ◦ σ)]

= [(f, ϕX ◦ σ1)]≈ ◦σ−1
1 (x) [(g, ϕY ◦ σ2)]≈

= [(f, ϕX)]
σ1
≈ ◦σ−1

1 (x) [(g, ϕY)]
σ2
≈ .

the key being that ϕZ ◦σ coincides with the bijection built in the obvious way from ϕX ◦σ1 and
ϕY ◦ σ2.

Non-skeletal to Skeletal. Let now O : Bijop → Set be a non-skeletal operad. The functor
underlying the corresponding skeletal operad Os : Σ

op → Set is defined by

Os(n) = O(n) and Os(σ) = O(σ).

The composition operation ⋄i : Os(n)× Os(m)→ Os(n+m− 1) is defined by

f ⋄i g = fσ1 ◦i g
σ2 ,

where σ1 : {1, . . . , i}+ {i+m, . . . , n+m− 1} → [n] and σ2 : {i, i+ 1, . . . , i+m− 1} → [m] are
defined as follows:

σ1(j) =

{

j if j ∈ {1, . . . , i}

j −m+ 1 if j ∈ {i+m, . . . , n+m− 1}
and σ2(k) = k − i+ 1. (A.1.3)

A.1. The equivalence 123

Therefore, Os : Σ
op → Set is defined by restricting the data of O in the natural way.

Notice that the proof of associativity of Os requires both the associativity and the equivari-
ance of O.

Here is the proof of [EQ1] of Os . Let f ∈ Os(n), g ∈ Os(m), 1 ≤ i ≤ n and let τ2 : [m]→ [m]
be a permutation. We then have

f ⋄i g
τ2 = fσ1 ◦i (g

τ2)σ2

= fσ1 ◦i g
τ2◦σ2

= fσ1 ◦i g
σ2◦(σ

−1
2 ◦τ2◦σ2)

= fσ1 ◦i (g
σ2)σ

−1
2 ◦τ2◦σ2

= (fσ1 ◦i g
σ2)τ

= (f ⋄i g)
τ ,

where σ1 : {1, . . . , i} ∪ {i+m, . . . , n+m− 1} → [n] and σ2 : {i, i+ 1, . . . , i+m− 1} → [m] are
defined as in (A.1.3), τ : [n+m− 1]→ [n+m− 1] is defined as

τ = id{1,...,i−1}∪{i+m,...,n+m−1} ∪ (σ−1
2 ◦ τ2 ◦ σ2),

and the equality

fσ1 ◦i (g
σ2)σ

−1
2 ◦τ2◦σ2 = (fσ1 ◦i g

σ2)τ

holds by the equivariance axiom [EQ] of O.

We now prove [EQ2]. If τ1 : [n]→ [n] is a permutation, we have

f τ1 ⋄i g = (f τ1)σ1 ◦i g
σ2 = f τ1◦σ1 ◦i g

σ2 ,

where σ1 : {1, . . . , i} ∪ {i+m, . . . , n+m− 1} → [n] and σ2 : {i, i+ 1, . . . , i+m− 1} → [m] are
defined by (A.1.3). On the other hand, we have

f ⋄τ1(i) g = fκ1 ◦τ1(i) g
κ2 ,

where κ1 : {1, . . . , τ1(i)} ∪ {τ1(i) +m, . . . , n+m− 1} → [n] and κ2 : {τ1(i), τ1(i) + 1, . . . , τ1(i) +
m− 1} → [m] are defined as

κ1(j) =

{

j if j ∈ {1, . . . , τ1(i)}

j −m+ 1 if j ∈ {τ1(i) +m, . . . , n+m− 1}
and κ2(k) = k − τ1(i) + 1.

Let
τ2 : {i, i+ 1, . . . , i+m− 1} → {τ1(i), τ1(i) + 1, . . . , τ1(i) +m− 1}

be a bijection defined as
τ2 = κ−1

2 ◦ σ2.

We then have

f τ1◦σ1 ◦i g
σ2 = fκ1◦(κ

−1
1 ◦τ1◦σ1) ◦i g

κ2◦τ2

= (fκ1)κ
−1
1 ◦τ1◦σ1 ◦i (g

κ2)τ2

= (fκ1 ◦(κ−1
1 ◦τ1◦σ1)(i)

gκ2)τ

= (fκ1 ◦τ1(i) g
κ2)τ

= (f ⋄τ1(i) g)
τ ,

where τ : [n+m− 1]→ [n+m− 1] is defined as

τ = (κ−1
1 ◦ τ1 ◦ σ1)|

{1,...,τ1(i)−1}∪{τ1(i)+m,...,n+m−1} ∪ τ2,

124 Appendix A. Skeletal vs. Non-skeletal operadic framework

and the equality

(fκ1)κ
−1
1 ◦τ1◦σ1 ◦i (g

κ2)τ2 = (fκ1 ◦(κ−1
1 ◦τ1◦σ1)(i)

gκ2)τ

holds by the equivariance axiom [EQ] of O. Notice that, in the proofs of both equations, τ is
acting exactly like specified by the equivariance of Os. This makes the equivariance established.

The isomorphism of operadsO and (Ons)s. The bijectionφ[n] between the setsO(n) and (Ons)s(n) =
Ons(n) is defined by

φ[n] : f 7→ [(f, id [n])]≈.

The remaining of the (skeletal) operad structure transfers via φ[n] as follows:

φ[n](f
σ) = [(fσ, id)]≈ = [(fσ◦σ

−1
, σ)]≈ = [(f, σ)]≈ = [(f, id)]σ≈ = φ[n](f)

σ

and
φ[n](f ⋄i g) = [f ◦i g, id]≈ = [(f, id)]≈ ◦i [(g, id)]≈ = ψ[n](f) ◦i ψ[n](g),

which shows that the natural transformation φ : O → (Ons)s, with components ψ[n], is indeed
an isomorphism of operads O and (Ons)s.

The isomorphism of operadsO and (Os)ns . The bijectionψX between the setsO(X) and (Os)ns(X)
is defined by

ψX : f 7→ [(fϕ
−1
X , ϕX)]≈,

where, assuming that |X| = n, ϕX : X → [n] is an arbitrary bijection. To see that ψX is well-

defined, notice first that fϕ
−1
X ∈ O(n), i.e. that [(fϕ

−1
X , ϕX)]≈ is indeed an element of

(Os)ns(X) = {[(g, ϕX)]≈ | g ∈ Os(n) and ϕX : X → [n]}

= {[(g, ϕX)]≈ | g ∈ O(n) and ϕX : X → [n]},

and that, by (A.1.1), any other choice of ϕX would lead to the same equivalence class in the def-
inition of ψX . The remaining of the (non-skeletal) operad structure transfers via φX as follows:
for a bijection σ : Y → X we have

ψX(f
σ) = [((fσ)ϕ

−1
Y , ϕY)]≈

= [(fσ◦ϕ
−1
Y ◦ϕY ◦σ−1◦ϕ−1

X , ϕX ◦ σ)]≈

= [(fϕ
−1
X , ϕX ◦ σ)]≈

= [(fϕ
−1
X , ϕX)]

σ
≈

= ψX(f)
σ,

and the composition transfers as

ψX(f) ◦x ψX(g) = [(fϕ
−1
X , ϕX)]≈ ◦x [(g

ϕ−1
Y , ϕY)]≈

= [fϕ
−1
X ⋄ϕX(x) g

ϕ−1
Y , ϕZ]≈

= [(fϕ
−1
X)σ1 ◦ϕX(x) (g

ϕ−1
Y)σ2 , ϕZ]≈

= [((f ◦x g)
ϕ−1
Z , ϕZ)]≈

= ψX(f ◦x g),

where Z = X\{x} ∪ Y , ϕZ : X\{x} ∪ Y → [n + m − 1] is defined as in (A.1.2), and σ1 :
{1, . . . , i} ∪ {i+m, . . . , n+m− 1} → [n] and σ2 : {i, i+ 1, . . . , i+m− 1} → [m] are defined as
in (A.1.3). Notice that

ϕ−1
Z = (ϕX ◦ σ1)|

X\{x} ∪ (ϕ−1
Y ◦ σ2),

A.2. The good side of non-skeletality 125

which establishes the equality

(fϕ
−1
X)σ1 ◦ϕX(x) (g

ϕ−1
Y)σ2 = (f ◦x g)

ϕ−1
Z

as an instance of the equivariance of O. �

A.2 The good side of non-skeletality

We end this section with a comment on the advantages of the non-skeletal framework for cyclic
operads. As the first benefit, we point out that, as opposed to the skeletal approach, the non-
skeletal approach allows the entries-only presentation of non-symmetric cyclic operads (with-
out the action of symmetric group, there is no way to formalise commutativity with numbered
entries!). In turn, given that the entries-only definition of categorified cyclic operads is more
compact than the exchangeable-output definition (compare Definition 4.1 and Definition 4.40),
the non-skeletal approach is more economical in the categorified setting.

Also, non-skeletality turns out to be crucial for the rewriting involved in our proof of co-
herence in the presence of symmetries in Section 4.1. Namely, in the non-skeletal setting of
(cyclic) operads, an action of the symmetric group can always be “pushed” from the composite
of two operations to the operations themselves, by directing the equivariance law in the appro-
priate way. This was essential for the first reduction made in §4.1.3. For the skeletal setting of
(cyclic) operads, this distribution of actions of the symmetric group doesn’t work in general, as
we illustrate in the example below.

Example A.2. Let O : Σop → Set be a (skeletal) operad. Let f, g ∈ O(2), and let σ : [3] → [3]
be a permutation defined by σ(1) = 2, σ(2) = 1 and σ(3) = 3. Notice that there is a canonical
embedding

O(n) ∋ hτ 7→ [(h, τ)]≈ ∈ Ons(n)

and consider the term (f ◦2 g)
σ. Clearly, it is not possible to distribute σ on f and g in O(3).

However, with the above embedding, we get

O(3) ∋ (f ⋄2 g)
σ 7→ [(f ⋄2 g, σ)]≈ = [(f ⋄2 g, id [3])]

σ
≈ ∈ Ons(3).

In Ons(3), the distribution of σ works as follows:

[(f ⋄2 g, id [3])]
σ
≈ = ([(f, id [2])]≈ ◦2 [(g, τ)]≈)

σ = ([(f, id [2])]
σ1
≈ ◦2′ [(g, τ)]

σ2
≈ ,

where

• τ : {2, 3} → {1, 2} is defined by τ(2) = 1 and τ(3) = 2,

• σ1 : {2, 2
′} → {1, 2} is defined by σ1(2) = 1 and σ1(2

′) = 2,

• σ2 : {1, 3} → {2, 3} is defined by σ2(1) = 2 and σ2(3) = 3,

• the first equality holds by the definition of the composition operation ◦2 in Ons(n), and

• the second equality holds by the equivariance axiom [EQ] of Ons .

Therefore, denoting σ3 = τ ◦ σ2, we have [(f ⋄2 g, σ)]≈ = [(f, σ1)]≈ ◦2′ [(g, σ3)]≈. �

Additionally, we are not sure whether orienting the equivariance in the opposite direction
would work for the coherence proof. As a consequence, as we pointed out in §4.2.2, we prove
skeletal coherence in the presence of symmetries by reducing it to the non-skeletal one.

127

Appendix B

Disjoint union vs. Union of disjoint sets

If one gives the priority to the non-skeletal operadic framework, one should be aware of sub-
tleties concerning the choice between the disjoint union and the (ordinary) union of (already)
disjoint sets as the union employed on the objects of Bij in the definition of an operad. In the
litterature, one does not typically find definitions based on the latter kind of union, given that
it does not exist for any two finite sets, and, therefore, involves bookkeeping the disjointness
conditions, which is not the case with the coproduct. On the other hand, if one goes for co-
products, which is the practice in category theory, then one has to address the difficulties tied
to non-associativity of disjoint union. In the usual implementation of disjoint union, given by
the ”preventive tagging” of sets, the sets

(X\{x}+ Y \{y}) + Z and X\{x}+ (Y \{y}+ Z)

are not equal, which, in turn, makes the sequential associativity law

(f ◦x g) ◦y h = f ◦x (g ◦y h)

ill-typed. This issue is the reason why we prefer to work with the ordinary union in the op-
eradic context. Nevertheless, the subtlety of disjoint union is easily sorted out and the purpose
of this appendix is to illustrate a proper definition of non-skeletal operads in the framework
with coproducts.

The approach we take is inspired by the description of operads with simultaneous compo-
sition as monoids in the monoidal category of polynomial functors, given by Kock in [Koc11,
Proposition 2.5.5]. The idea for recasting Definition 1.1 in the framework with disjoint union is
to supplement the operations of an operad with an additional labeling of the inputs, as is done
when evaluating polynomial functors. Essentially, with the definition that follows, we describe
the monoidal structure corresponding to partial composition of polynomial functors, by spelling
it out in the biased manner.

For arbitrary finite sets X and Y (for which, in particular, there are no disjointness assump-
tions), the composition structure of an operad O, defined in the polynomial style, is given as
follows. For f ∈ O(X), x ∈ X and g ∈ O(Y), the composition of f and g along x is given by a triple

(U, k,Φ)

where

• U is a finite set,

• k ∈ O(U), and

• Φ = [ϕf , ϕg] : X\{x}+ Y → U is a bijection.

Denoting U = U(f, x, g), k = f ⋄x g, ϕf = ϕf (f, x, g) and ϕg = ϕg(f, x, g), as axioms we require
the following equalities.

128 Appendix B. Disjoint union vs. Union of disjoint sets

Firstly, we ask for the (adapted) associativity axioms:

<A1> (f ⋄x g) ⋄ϕg(f,x,g)(y) h = f ⋄x (g ⋄y h), where y ∈ Y

<A2> (f ⋄x g) ⋄ϕf (f,x,g)(y) h = (f ⋄y h) ⋄ϕf (f,x,g)(x) g, where y ∈ X ,

wherein, for both <A1> and <A2>, it is a priori required that, for some finite set U , the two sides
of the respective equalities both belong to O(U). This is accomplished by imposing additional
coherence conditions for the bijections figuring in the definitions of compositions involved in
these two equalities. These conditions are easily derivable. For example, for <A2>, assuming
that h ∈ O(Z), we ask that the following three equalities hold:

ϕf⋄yh(f ⋄y h, ϕf (f, y, h), g)|ϕf (f,y,h)(X\{x,y}) ◦ ϕf (f, y, h)|X\{x,y} =

ϕf⋄xg(f ⋄x g, ϕf (f, x, g)(y), h)|ϕf (f,x,g)(X\{x,y}) ◦ ϕf (f, x, g)|X\{x,y} ,

ϕf⋄xg(f ⋄x g, ϕf (f, x, g)(y), h)|ϕg(f,x,g)(Y) ◦ ϕg(f, x, g) = ϕg(f ⋄y h, ϕf (f, y, h)(x), g)

and

ϕf⋄yh(f ⋄y h, ϕf (f, y, h), g)|ϕh(f,y,h)(Z) ◦ ϕh(f, y, h) = ϕh(f ⋄x g, ϕf (f, x, g)(y), h).

Next, we require the (adapted) equivariance axiom: for the composition of fσ1 and gσ2 along
σ−1
1 (x) determined by the triple (U, fσ1 ◦σ−1

1 (x) g
σ2 ,Φ), where σ1 : X ′ → X and σ2 : Y ′ → Y ,

and the composition of f and g along x determined by the triple (V, f ⋄x g,Ψ), we have

<EQ> fσ1 ⋄σ−1
1 (x) g

σ2 = (f ⋄x g)
σ,

where the bijection σ : U → V is defined by σ = Ψ ◦ [σ1|
X\{x}, σ2] ◦ Φ

−1.

Finally, considering units, the axioms have the same form as [U1], [U2] and [UP]. Similarly
as in the case of associativity, these axioms a priori require that, for f ∈ O(X), the equalities
U(idy, y, f) = X = U(f, x, idx) hold. This is ensured by the following equalities: for [U1], we
additionally require that

ϕf (idy, y, f) = idX ,

while, for [U2], we ask that

ϕidx(f, x, idx) : X\{x}+ {x} → X

is the canonical “forgetting-the-tags” bijection.

The characterisation of operadic composition we gave above is equivalent with the one used
in Definition 1.1.

Indeed, starting from an operad O, defined in the style of Definition 1.1, the composition
structure of an operad in the polynomial style is obtained as follows. For arbitrary finite sets X
and Y and an element x ∈ X , let

iX\{x} : X\{x} → X\{x}+ Y and iY : Y → X\{x}+ Y

be the canonical injections of X\{x} and Y , respectively, into their disjoint union. Denote with
Z1 and Z2 the images of X\{x} and Y under iX\{x} and iY , respectively, and let

σ1 : Z1 ∪ {x} → X and σ2 : Z2 → Y

be the bijections defined as

σ1(1, u) = u, σ1(x) = x and σ2(2, v) = v.

Appendix B. Disjoint union vs. Union of disjoint sets 129

Then, for operations f ∈ O(X) and g ∈ O(Y), we define the composition of f and g along x as
the triple

(Z1 ∪ Z2, f
σ1 ◦x g

σ2 , [ϕf (f, x, g), ϕg(f, x, g)]),

where [ϕf (f, x, g), ϕg(f, x, g)] = idX\{x}+Y .

In the other direction, ifO is an operad with composition structure defined in the polynomial
style, and if for finite sets X and Y and an element x ∈ X we have that X\{x} ∩ Y = ∅, let

σX,x,Y : X\{x} ∪ Y → X\{x}+ Y

be the canonical “tagging” bijection. Then, for f ∈ O(X) and g ∈ O(Y), we define

f ◦x g = (f ⋄x g)
[ϕf (f,x,g),ϕg(f,x,g)]◦σX,x,Y .

131

Bibliography

[BN99] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1999.

[BD98] J. C. Baez, J. Dolan, Higher-Dimensional Algebra III: n-Categories and the Algebra of
Opetopes, Adv. Math., 135, 145-206, 1998.

[Bén67] J. Bénabou, Introduction to bicategories, Lecture Notes in Mathematics 47, Springer, pp.
1-77, 1967.

[Bén73] J. Bénabou, Les distributeurs, Université Catholique de Louvain, Institut de
Mathématique Pure et Appliquée, rapport 33, 1973.

[BLL08] F. Bergeron, G. Labelle, P. Leroux, Introduction to the Theory of Species of Structures, Uni-
versité du Québec à Montréal, Montreal, 2008.

[BV68] J. M. Boardman, R. M. Vogt, Homotopy-everything H-spaces, Bull. Amer. Math. Soc.,
74(6):1117–1122, 1968.

[CGR14] E. Cheng, N. Gurski, E. Riehl, Cyclic multicategories, multivariable adjunctions and mates,
Journal of K-Theory, 13(2):337-396, 2014.

[CH00] P. -L. Curien, H. Herbelin, The duality of computation, ACM SIGPLAN Notices, Volume
35 Issue 9, 233-243, September 2000.

[Day70] B. Day, On closed categories of functors, Reports of the Midwest Category Seminar IV,
Lecture Notes in Mathematics Vol. 137. Springer-Verlag, pp 1-38, 1970.

[DS01] B. Day , R. Street, Lax monoids, pseudo-operads and convolution, Contemporary Mathe-
matics, Vol. 318, p.75-96, 2003.

[DV15] M. Dehling, B. Vallette, Symmetric homotopy theory for operads, arXiv:1503.02701, 2015.

[DP11] K. Došen, Z. Petrić, Hypergraph polytopes, Topology and its Applications 158, pp. 1405-
1444, 2011.

[DP15] K. Došen, Z. Petrić, Weak Cat-operads, Logical Methods in Computer Science, Vol.
11(1:10), 2015.

[Fio12] M. Fiore, Lie in Logic, Invited talk at the Séminaire CHoCoLa, Lyon (France), [abstract],
2012.

[Fio14] M. Fiore, Lie Structure and Composition, CT2014, University of Cambridge, [slides],
2014.

[FDC13] M. P. Fiore, M. Devesas Campos, The Algebra of Directed Acyclic Graphs, In Computation,
Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky,
Volume 7860 of Lecture Notes in Computer Science, 2013.

[Gan03] W.L. Gan, Koszul duality for dioperads, Math. Res. Lett., 10(1):109–124, 2003.

https://arxiv.org/abs/1503.02701
http://www.cl.cam.ac.uk/~mpf23/talks/CHoCoLa2012.pdf
http://www.cl.cam.ac.uk/~mpf23/talks/CT2014.pdf

132 BIBLIOGRAPHY

[Get09] E. Getzler, Operads revisited, Algebra, arithmetics, and geometry: in honor of Yu. I.
Manin, Vol. I, volume 269 of Progr. Math. p. 675-698. Birkhäuser Boston Inc., Boston
MA, 2009.

[GJ94] E. Getzler, J.D.S. Jones, Operads, homotopy algebra, and iterated integrals for double loop
spaces, Preprint hep-th/9403055, March 1994.

[GK95] E. Getzler, M. Kapranov, Cyclic operads and cyclic homology, Geom., Top., and Phys. for
Raoul Bott, International Press, Cambridge, MA, 167-201, 1995.

[GK98] E. Getzler, M. Kapranov, Modular operads, Compositio Math., 110(1):65–126, 1998.

[GK94] V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 no. 1, 203–272,
1994.

[Joy81] A. Joyal, Une théorie combinatoire des séries formelles, Adv. Math., 42 1-82, 1981.

[JK11] A. Joyal, J. Kock, Feynman Graphs, and Nerve Theorem for Compact Symmetric Multicate-
gories (Extended Abstract), Electronic Notes in Theoretical Computer Science 270 (2)
105-113, 2011.

[KW17] R. M. Kaufmann, B. C. Ward, Feynman categories, arXiv:1312.1269v3 , 2017.

[Kel05] G. M. Kelly, On the operads of J. P. May, Repr. Theory Appl. Categ., 13 1-13, 2005.

[Koc11] J. Kock, Polynomial Functors and Trees, Int. Math. Res. Notices 2011 (3): 609-673, 2011.

[Kon94] M. Kontsevich, Feynman diagrams and low-dimensional topology, First European
Congress of Mathematics II, Progr Math , vol 120, Birkhauser, Basel, 1994.

[KM94] M. Kontsevich, Y. Manin, Gromov-Witten Classes, Quantum Cohomology, and Enumerative
Geometry, Comm. Math. Phys., 164:525-562, February 1994. Preprint, hep-th/9402147.

[Lam07] F. Lamarche, On the algebra of structural contexts, Math. Structures Comput. Sci., Cam-
bridge University Press, 51 p, 2003.

[Laz55] M. Lazard, Lois des groupes et analyseurs, Ann. Sci. Ecole. Norm. Sup., III. Ser 72 no 3,
299-400, 1955.

[Lei04] T. Leinster, Higher Operads, Higher Categories, London Mathematical Society Lecture
Note Series 298, Cambridge University Press, ISBN 0-521-53215-9, 2004.

[Lod94] J.-L. Loday, La renaissance des opérades, Séminarie Bourbaki 37, 47–74, 1994-1995.

[LV12] J.-L. Loday, B. Vallette, Algebraic operads, Springer, 2012.

[ML63] S. Mac Lane, Natural associativity and commutativity, Rice Univ. Stud., 49(1):28–46, 1963.

[ML98] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, expanded sec-
ond edition, 1998.

[Man99] Y. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, volume 47 of
AMS Colloquium Publications, American mathematical Society, Providence, RI, 1999.

[Mar96] M. Markl, Models for operads, Comm. Algebra, 24(4):1471–1500, 1996.

[Mar08] M. Markl, Operads and PROPs, Elsevier, Handbook for Algebra, Vol. 5, 87-140, 2008.

[Mar16] M. Markl, Modular envelopes, OSFT and nonsymmetric (non-Σ) modular operads, J. Non-
commut. Geom. 10, 775-809, 2016.

https://arxiv.org/abs/hep-th/9403055
https://arxiv.org/abs/1312.1269

BIBLIOGRAPHY 133

[MSS02] M. Markl, S. Schnider, J. Stasheff, Operads in Algebra, Topology and Physics, American
Mathematical Society, Providence, 2002.

[May72] J. P. May, The geometry of iterated loop spaces, volume 271 of Lectures Notes in Mathe-
matics. Springer-Verlag, Berlin, 1972.

[Pie02] B. C. Pierce, Types and Programming Languages, The MIT Press, 2002.

[Sta63] J. D. Stasheff, Homotopy associativity of H-spaces, I, II. Trans. Amer. Math. Soc.,
108:275–312, 1963.

[Val04] B. Vallette, Koszul duality for PROPs, Comptes Rendus Math., 338(12):909–914, 2004.

[Whi98] A. N. Whitehead, A treatise on universal algebra, Cambridge, 1898.

	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Notation and conventions
	About finite sets and bijections
	Type-theoretical notions

	Operads
	Cyclic operads

	A formal language for cyclic operads
	Simultaneous entries-only composition
	Biased definition of cyclic operads: combinator syntax
	Unbiased definition: a syntax for the monad of unrooted trees
	Graphs and unrooted trees
	The monad of unrooted trees
	The free cyclic operad structure implicit in (M,,)

	-syntax
	The language and the equations
	-syntax as a rewriting system
	The interpretation of the -syntax in an arbitrary cyclic operad
	-syntax does the job!

	The equivalence established

	Monoid-like definitions of cyclic operads
	The category of species of structures
	Definition of species of structures
	Operations on species of structures

	Algebraic definitions of operads
	Kelly-May definition
	Fiore-Markl definition

	Algebraic definitions of cyclic operads
	Entries-only
	Exchangeable-output
	The equivalence of algebraic definitions of cyclic operads

	Categorified cyclic operads
	Categorified entries-only cyclic operads
	The definition and properties
	Canonical diagrams and the coherence theorem
	The first reduction: getting rid of symmetries
	The second reduction: getting rid of the cyclicity
	The third reduction: establishing skeletality
	The proof of the coherence theorem

	Categorified exchangeable-output cyclic operads
	The exchangeable-output non-skeletal categorified cyclic operads
	The exchangeable-output skeletal categorified cyclic operads

	Future Work
	Skeletal vs. Non-skeletal operadic framework
	The equivalence
	The good side of non-skeletality

	Disjoint union vs. Union of disjoint sets
	Bibliography

