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Résumé

Logique et informatique La logique, et plus spécifiquement la théorie de la démonstra-
tion, a été particulièrement utile en informatique, en particulier en langages de programma-
tion et en vérification formelle.

D’une part, la théorie de la démonstration a profondément révolutionné le domaine des
langages de programmation via les deux paradigmes de calcul suivants: la programmation
fonctionnelle et la programmation logique. En programmation fonctionnelle, pour garan-
tir que les programmes terminent, il est usuel de considérer des langages typés. Dans ces
langages, les programmes correspondent aux preuves, les types aux formules logiques et
l’exécution à l’élimination des coupures. Cette dernière propriété est au cœur de cette cor-
respondance, appelée l’isomorphisme de Curry-Howard. En programmation logique, un pro-
gramme est un ensemble de formules logiques et un calcul consiste à décider si une formule,
appelée requête, est une conséquence logique du programme. Le paradigme de calcul est
donc la recherche de preuve. Pour que celle-ci soit efficace, le système de preuve sous-jacent
doit vérifier les deux propriétés fondamentales que sont l’admissibilité de la coupure et la
focalisation. Les deux propriété logiques fondamentales qui assurent le lien entre logique et
langages de programmation sont donc l’élimination des coupures et la focalisation. D’autre
part, en vérification formelle, la logique est utilisé comme un outil pour décrire les système
et leurs propriétés. Même si le model-checking est le paradigme dominant en vérification,
une approche, dite preuve-théorique, commence a regagner de l’intérêt. Elle consiste à
décrire à la fois le système et la propriété à vérifier par des formules S et P , puis vérifier
que le système satisfait la propriété consiste à vérifier si la formule S → F est prouvable.
L’intérêt de cette approche est que la preuve résultante de S → F peut être utilisée comme
un certificat, qui peut être indépendamment communiqué et vérifié.

Logiques à points fixes L’extension des logiques avec des points fixes est particulière-
ment intéressante en informatique. En programmation, les points fixes permettent un traite-
ment direct, générique et intuitif des types de données (co-)inductifs comme les entiers na-
turels, listes, stream, etc. En vérification, une des logiques les plus utilisée est le mu-calcul,
qui est une logique modale avec points fixes. Il est donc naturel de s’intéresser à la théorie
de la démonstration des logiques à points fixes. Systèmes de preuves pour les logiques à
points fixes Il existe deux grandes familles de systèmes de preuves pour les logiques à points
fixes: les systèmes de preuves finitaires et les systèmes de preuves infinitaires.

• Dans les Systèmes de preuve finitaires, les règles pour les points fixes reflètent les
principe de (co-)induction. Ces systèmes de preuve, quoique très largement utilisés,
représentent plusieurs inconvénients. Le premier est que la règle de coupure est in-
évitable, par conséquent ces systèmes ne sont pas adaptés à la recherche de preuve.
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Un autre inconvénient est que leur contenu calculatoire n’est souvent pas explicite et
il est en général difficile de deviner ce qu’une preuve calcule, de savoir si deux preuves
calculent la même fonction, etc.

• Dans les systèmes de preuves infinitaires, les règles pour les points fixes sont de simples
règles de “déroulages”, mais les preuves peuvent avoir une profondeur infinie. Ils sont
plus adaptés à la recherche de preuve, et les règles de déroulage ayant un comportement
calculatoire facile à analyser, le contenu calculatoire des preuves infinitaires est souvent
explicite.

Même si les systèmes infinitaires existent depuis longtemps, ils ont été utilisés principalement
comme des outils techniques et n’ont pas été considérés comme de vrai systèmes de preuves.
Ceci est dû à un manque de résultats fondamentaux (élimination des coupures, focalisation)
qui nous empêche de les voir comme tel. L’objectif de cette thèse est de pallier à cette lacune
dans l’état de l’art, en développant la théorie de la démonstration infinitaire pour les logiques
a points fixes, avec deux domaines d’application en vue: les langages de programmation avec
types de données (co-)inductifs et la vérification des systèmes réactifs.

Contributions de la thèse Cette thèse peut être résumée comme suit: Les logiques à
points fixes peuvent être équipées de systèmes preuve infinitaires qui ont un réel
statut preuve-théorique et peuvent être appliquées à d’autres domaines comme
la vérification formelle.

Naturellement, cette thèse est divisée en deux parties. Dans la première, on argumente
le fait que les preuves infinitaires ont effectivement un réel statut preuve-théorique, en
montrant qu’ils admettent les propriétés d’élimination des coupures et de focalisation. Dans
la deuxième partie, on utilise nos développements sur les preuves infinitaires pour monter
de manière constructive la complétude du mu-calcul linéaire relativement à l’axiomatisation
de Kozen. Ces deux parties sont précédées par une partie introductive qui expose 1) nos
choix de design, 2) un peu de background sur les systèmes de preuves pour les points fixes et
3) un outil technique qui sera très utile tout au long de la thèse: un résultat de traduction
entre les systèmes finitaires et infinitaires.

Partie I: Étude preuve-théorique des logiques à points fixes Comme d’habitude,
étudier les propriétés preuves théoriques dans un cadre linéaire permet de s’abstraire de
beaucoup de bruit et de se focaliser sur les vrai difficultés. Aussi nous avons décidé d’établir
les propriétés d’élimination des coupures et de focalisation dans le cadre de la logique linéaire
additive multiplicative. Dans le Chapitre 3, nous utilisons une nouvelle technique de preuve
pour établir élimination des coupures pour notre système infinitaire. A la fin du Chapitre
3, on indique comment étendre ce résultat pour la logique linéaire classique et la logique
classique. Dans le Chapitre 4, nous établissons la propriété de focalisation en analysant
les phénomènes qui apparaissent dans le cadre infinitaires comparé au cadre finitaire. Le
Chapitre 5 est dédié à un autre problème: élucider le contenu calculatoire des preuves fini-
taires. Pour ce faire, on muni la logique linéaire multiplicative additive avec une sémantique
dénotationnelle, pour laquelle on montre un résultat de complétude partiel. Chemin faisant,
on montre la décidabilité et la complétude de l’inclusion sémantique.
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Partie II: Complétude constructive pour le mu-calcul linéaire Dans son papier
fondateur, Kozen en a proposé une axiomatisation pour le mu-calcul, dont la complétude
a été montré 13 ans plus tard par Kaivola dans le cas linéaire et par Walukiewicz dans
le cas branchant. Ces preuves de complétude sont basées sur des arguments complexes et
non constructifs, qui ne donnent aucun moyen de construire une preuve pour une formule
valide. La problématique de constructivité devient centrale lorsqu’on considère les preuves
comme des certificats pour les outils de vérification formelle. Nous proposons une nou-
velle preuve de complétude pour le mu-calcul linéaire qui est constructive, càd qui construit
une preuve pour toute formule valide. Pour ce faire, nous décomposons ce problème dif-
ficile en plusieurs sous-problèmes en utilisant la correspondance entre le mu-calcul et les
automates. Plus précisément, on relève les transformations d’automates comme la déter-
minisation et l’élimination de l’alternance au niveau de la logique. Pour résoudre chacun
des sous-problèmes, on fait une recherche de preuve dans un système infinitaire, puis on
transforme chaque preuve infinitaire obtenue en une preuve dans l’axiomatisation de Kozen
en utilisant notre résultat de transformation de la partie introductive.





Abstract

The subject of this thesis is the proof theory of logics with fixed points, such as the µ-calculus,
linear-logic with fixed points, etc. These logics are usually equipped with finitary deductive systems
that rely on Park’s rules for induction. other proof systems for these logics exist, which rely
on infinitary proofs, but they are much less developped. This thesis contributes to reduce this
deficiency by developing the infinitary proof-theory of logics with fixed points, with two domains
of application in mind: programming languages with (co)inductive data types and verification of
reactive systems.

This thesis contains three parts. In the first part, we recall the two main approaches to the
proof theory for logics with fixed points: the finitary and the infinitary one, then we show their
relationships. In the second part, we argue that infinitary proofs have a true proof-theoretical
status by showing that the multiplicative additive linear-logic with fixed points admits focalization
and cut-elimination. In the third part, we apply our proof-theoretical investigations to obtain a
constructive proof of completeness for the linear-time µ-calculus w.r.t. Kozen’s axiomatization.
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Introduction

“On the unusual effectiveness of logic in computer

science”

Even if logic has its roots in Ancient Greece with Aristotle’s work, formal logic, as we
know it, was born in the early 20th century to confront the crisis in the foundations of
mathematics, brought about by the paradoxes of set theory. In his famous program, Hilbert
was intending to show that mathematics are consistent and decidable by formalizing them.
The works on logic of the time [Gö31,Tar35,Chu36,Tur36] showed that most of Hilbert’s
goals were impossible to achieve. Since then, mathematics and logic have followed their own
paths. Nowadays, logic is considered as a mature and independent research area, with many
fields of application. The most striking example of such an application is certainly computer
science, which was heavily influenced by logic’s development. We discuss in the following two
areas of computer science where logic is particularly successful: programing languages
which were influenced by the proof theoretical side of logic and formal verification which
benefited most from its model theoretical one.

Logic and programming languages. Proof theory impacted strongly the domain of
programming languages through the two following paradigms of computation: functional
programming and logic programming.

• Functional programming and the Curry-Howard approach. The prototype of
a functional programming language is λ-calculus introduced by Church [Chu32,Bar84].
A well-designed functional programming language is a language where programs should
be safe by construction. Safe means that the program does not raise an error during
its execution, due for instance to a function called with too few arguments or with
arguments with the wrong types. A way to ensure this safety property is to consider
type-based programming languages, in which well-typed programs “cannot go wrong”
as summarized by Milner’s slogan. Type systems have an intriguing similarity with
proof systems. Much more than a mere coincidence, this similarity is a general fact
known as the Curry-Howard correspondence. This correspondence exhibits an
isomorphism between a number of programming languages and various proof systems.

Let us briefly review the three main styles in which proof systems come:

– Hilbert-style systems are given by a set of axioms reflecting the properties of the
logical connectives. One can derive from these axioms new theorems using the

11



12 Introduction

modus ponens rule:
A⇒ B A

(modus ponens)
B

– Natural deduction was introduced by Gentzen in 1935, and it is the formalism
that reproduces most faithfully the mathematical reasoning (hence the attribute
“Natural”). It is not axiomatic in the sense that the properties of the connectives
are not reflected by axioms, but instead by means of inferences rules. Inference
rules for connectives can either introduce a connective or eliminate it. A proof is
a tree of formulas, where each node is justified by an introduction or elimination
rule and each leaf is called a “hypothesis”. Some leaves of the tree are discharged,
meaning that they are not to be considered as hypothesis. If all leaves are dis-
charged, then the conclusion holds without hypothesis. We call cut a pattern
formed by an introduction rule for a connective followed immediately by an elim-
ination rule for this connective. Cuts are somehow detours in the proof. To show
that cuts can be eliminated from natural deduction proofs, Gentzen introduced
another formalism of proofs: sequent calculus.

– Sequent calculus is based on the notion of sequent which generalizes that of
formula: a sequent has the form Γ ⊢ ∆ where Γ and ∆ are two lists of formulas,
and it can be understood as “the conjunction of the elements of Γ implies the
disjunction of the elements of ∆” (the symbol ⊢ can be thought of as an impli-
cation). The inference rules for connectives can either introduce a connective on
the right or on the left of the sequent; and a proof is a tree of sequents built
using inference rules. In sequent calculus, the cut is not a pattern of rules, as in
natural deduction, but it is a proper rule of the system:

∆1 ⊢ Γ1,A A, ∆2 ⊢ Γ2
(Cut)

∆1, ∆2 ⊢ Γ1, Γ2

Gentzen showed that cuts can be eliminated from sequent calculus proofs using an
effective procedure. Prawitz showed the same result for natural deduction proofs.

These results are the heart of the Curry-Howard correspondence, the latter being not
simply a mapping between proofs and programs, and between formulas and types, but
also, and more importantly, an isomorphism between the cut-elimination procedure
(or any other form of proof normalization) and the execution of programs.

The first instance of this correspondence was discovered by Curry, who established
in 1958 an isomorphism between Hilbert style proof systems and combinatorial logic,
here the use of modus ponens corresponds to the application of combinators. Later,
in 1969, Howard pointed out the correspondence between minimal logic in natural
deduction and simply-typed lambda calculus [How80]. Since then, the Curry-Howard
correspondence has been extended to other frameworks, either by enriching the logic
(for instance, Girard and Reynolds [Gir72,Rey74] discovered a correspondence between
second-order logic and polymorpism, and Griffin [Gri90] discovered that Felleisen’s
control operator C [FFKD87] can be typed with ¬¬A⇒ A, which was a stepping stone
for the Curry-Howard extension to classical logic); or by exploring other formalisms
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of proofs (for instance by considering a Curry-Howard correspondence for sequent
calculus [CH00]).

Over time, the meaning of the Curry-Howard correspondence has evolved from the
simple observation of an isomorphism between an existing proof system and an existing
programming language, to something more “productive”. Indeed, one can either start
from a typed programming language and extract its isomorphic proof system which
may have an interesting logical meaning. Conversely, one could start from a known
proof system and try to understand its computational content in order to design its
corresponding programming language, this is for instance how a number of calculi
were born [Par92,CH00,MM09].

Curry-Howard was also productive in renewing questions related to the semantics
of logic, putting an emphasis on the semantics of proofs, in contrast to tranditional
thruth or provability semantics. In this sense, linear logic [Gir87] arose from Girard’s
study of the denotational semantics of system F.

• Logic programming. This paradigm of computation orginated directly from logical
considerations. Here, a program is a set of logical formulas, and a computation is
performed by deciding whether a formula, called a query, is a logical consequence of
the program or not.

The most popular example of a logic programming language is Prolog [SS86]. Its
formulas are described using first-order Horn clauses, and its execution proceeds as
follows: to decide whether a query is a consequence of the program, it adds its nega-
tion the program, and searches for a proof of false. This proof-search uses the SLD
resolution technique [VEK76], which amounts to search for a clause that allows to con-
clude immediately the goal (initially this goal is false), in which case the proof-search
continues with the hypothesis of this clause as goals, etc.

In [MNPS91], Miller et al. characterize, in a generic way, what a Logic Programming
language is. This is done through the notion of uniform proofs. A uniform proof is one
that can be found by a goal-directed search. This generic vision of a logic program-
ming language allowed to reformulate existing languages (such as Prolog) in proof-
theoretical terms. It allowed also to design new languages such as λ-Prolog [MN12],
by going from first-order Horn clauses to higher-order hereditary Harrop formulas.

This idea of uniform proofs had another fundamental consequence: when trying to
extend it to linear logic, Andreoli came across focalization [And92]. While reversible
connectives (that is, the connectives that can be applied without risking the loss of
provability) are known to behave well in proof-search, the focalization result shows
that non-reversible connectives have also good properties. This result has had sev-
eral applications in both logic (it is at the heart of polarized linear logic [Lau02],
and ludics [Gir01, Ter11]) and programming languages much beyond logic program-
ming (it gave new insights on our understanding of evaluation order of programming
languages [DJS97], CPS translations, and pattern matching [CM10,Zei09]).

Formal verification. In programming languages, logic is a tool internal to the computa-
tion paradigm: typing rules are the building blocks to construct (safe) functional programs
and formulas are the building blocks of logic programs. In formal verification, logic is used as
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an external tool to describe existing computer systems, and make formal statements about
them.

One of the most successful approaches to verification is model checking [CE81]. In this
approach, the system is described by a mathematical structureM and the property to check
about it is represented by a formula ϕ in a certain logic. Then checking whether the system
satisfies the property amounts to check whetherM is a model of ϕ, that isM |= ϕ. In this
approach, the choice of the logical language is very crucial. On the one hand, it should be
expressive enough to describe complex behaviours of the system. On the other hand, the
problem of deciding whether a model satisfies a formula should be decidable, and preferably
with a reasonable complexity. Temporal logics [Pnu77] are one of the more widely used
specification languages in this sense, and Linear Temporal logic (LTL) and Computation
tree logic (CTL*) are cases in point.

The temporal modalities of LTL are ⊙ (in the next moment of time) G (always) and
F (eventually); formulas are built using these temporal modalities combined with proposi-
tional connectives and atomic propositions. For instance, the LTL formula FGϕ means that
“eventually, ϕ will always holds”. The models of LTL formulas are linear structures. We can
extend this interpretation to branching structures, by setting M |= ϕ if for every path p
of M, we have that p |= ϕ. Thus, there is an implicit universal quantification on paths in
LTL formulas. The logic CTL* allows both universal and existential quantification, through
the path quantifier ∀ (in all paths) and ∃ (for some path); CTL* formulas are build using
these path quantifiers combined with LTL connectives. For instance, the CTL* formula ∃Gϕ
means that “There is a branch of the model where ϕ always holds”. The use of CTL* and
LTL goes beyond the academic frame, and finds a considerable industrial success throught
tools such as SMV and VIS, FormalCheck, etc, with many applications in major software
companies (IBM, Intel, Microsoft, etc).

There is another approach to verification that lives in the shadow of the mainstream
model-checking paradigm, which we call the proof-theoretic approach, following Walu-
kiewicz [Wal94]. It consists in modeling both the system and the property to check by two
formulas ϕS and ϕP respectively, then checking whether the system meets the property is re-
duced to checking the provability of ϕP → ϕP . This approach was the prevailing paradigm
of verification at the time of the introduction of formal verification [MP81]. However, it
ran out of steam for two reasons: first the complexity of the provability problem is way
less optimal than that of the satisfiability problem, second the new logical languages intro-
duced since then simply do not admit (well-behaved) proof systems. Recently, new issues
about certification have emerged, renewing the interest on the proof-theoretical approach
to verification. Indeed, if the model-checking technique outputs a binary answer to the
verification problem (either M |= ϕ or not), the proof-theoretical one outputs a proof (of
the formula ϕP → ϕS) which can be used as a certificate, which can be communicated and
independently verified [Sha08].

Proof certificates [Mil11] are particularly promising: they are expressed in a well-established
language (that of proofs), their production can be (partially at least) mechanized through
theorem provers, and they are compositional by essence (via the cut rule).
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To sum up:
Logic, and more specifically proof-theory, has been very useful in programming lan-
guages and in formal verification.

Fixed point logics in computer science

As discussed earlier, logic has strong links with different areas of computer science. It was
therefore natural to try to extend these links to a wide range of logics. Among the most
interesting and fruitful extensions, logics with fixed points are a case in point. These
logics contain two special connectives: the connective µ and its dual ν. A formula of the
form µX.F (resp. νX.F ) can be understood as the “least (resp. greatest) fixed points of
the operator X 7→ F (X)”. In the following, we review the use of fixed points logics in the
domains of programming languages and formal verification.

Fixed point logics in functional programming. Least and greatest fixed points allow
to treat in a direct, generic and intuitive way data (natural numbers, lists, etc) and co-data
(streams, infinite trees, etc). The least fixed point operator µ allows to define finite data
types such as natural numbers, lists, finite trees, etc. For instance, in linear logic with fixed
point, the type of natural numbers can be represented by Nat := µX.1 ⊕ X, and every
natural number n can be represented by the proof n inductively defined as follows:

0 =

(1)
⊢ 1

(⊕1)
⊢ 1⊕ Nat

(µ)
⊢ Nat

n+ 1 =

n

⊢ nat
(⊕2)

⊢ 1⊕ Nat
(µ)

⊢ Nat

The type of lists of natural numbers can be represented by List = µX.1 ⊕ (Nat ⊗X), and
every list l can be represented by the proof l inductively defined as follows:

ε =

(1)
⊢ 1

(⊕1)
⊢ 1⊕ (Nat⊗ List)

(µ)
⊢ List

n :: l =

n

⊢ Nat

l

⊢ List

⊢ Nat⊗ List
(⊕2)

⊢ 1⊕ (Nat⊗ List)
(µ)

⊢ List

Dually, the greatest fixed point operator allow to define infinite data types (called co-data),
such as streams, infinite trees, etc. For instance, the type of infinite streams of integers can
be represented in linear logic with fixed points by Stream := νX.Nat⊗X, and every stream
n0 :: n1 :: n2 . . . can be represented by the following “proof”:

n0

⊢ Nat

n1

⊢ Nat

...

⊢ Stream
(⊗)

⊢ Nat⊗ Stream
(ν)

⊢ Stream
(⊗)

⊢ Nat⊗ Stream
(ν)

⊢ Stream
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Treating data and co-data in programming languages as fixed points is not the only possibil-
ity. They can either be introduced as constants of the language, as this is the case in System
T for instance [GTL89]. This has the drawback of being limited, since we can only use the
(co)data that are already provided by the syntax, and cannot declare new ones when needed.
Another possibility is to use second-order, which subsumes fixed points (See [Mat99] for an
embedding of fixed points in second-order). This has the drawback of being non-intuitive
and algorithmically non-optimal. For instance, encoding natural numbers in system F yields
Church numbers, for which a linear amount of time is required to compute the predecessor,
while this can be performed in constant time in logics with fixed points [Mat99].

Fixed points in formal verification. In terms of specifications, least fixed points corre-
spond to terminating behaviour, and are used to capture properties asserting that something
will happen, such as liveness and progress. Greatest fixed points correspond to infinite be-
haviours, and are used to capture properties asserting that something happens infinitely
often, such as safety or invariance. The most popular examples of temporal logics with
fixed points are the linear-time and the branching-time µ-calculi [Koz83], which can be seen
respectively as the extension of LTL and CTL* with least and greatest fixed points. The use
of the linear-time and the branching time µ-calculi in formal verification has been fruitful
for three reasons:

• They are well-balanced between expressiveness and complexity. Compared to their
second-order counterparts S1S (monadic second-order logic with one successor, which
is equi-expressive to the linear-time µ-calculus) and S2S (monadic second-order logic
with two successors, which is equi-expressive to the branching-time µ-calculus), the
linear-time and the branching-time µ-calculi have better algorithmic properties. For
instance, satisfiability of the linear-time µ-calculus is PSPACE-complete, and it is
EXPTIME-complete for the branching-time µ-calculus, while it is non-elementary for
S1S and S2S.

• If the balance between expressiveness and complexity is the crucial property for the
model-checking paradigm, axiomatizability is the crucial one for the proof-theoretic
paradigm. The µ-calculus was equipped with a very natural axiomatization since its in-
troduction by Kozen. This axiomatization was shown to be complete for the branching-
time µ-calculus by Walukiewicz [Wal95] and for the linear-time by Kaivola [Kai95].

• There is a fruitful relationship between the µ-calculus and automata theory, at the core
of which lies the equivalence between linear-time µ-calculus formulas and alternating
parity automata over words (APW), and between branching-time µ-calculus formulas
and alternating parity automata over trees (APT). In fact, most of the deep results
on the µ-calculus have been (can be) obtained using automata theory. Among these
results, the exact complexity of the satisfiability problem [EJ91,Mad94], the strictness
of the fixed point alternation hierarchy in the branching-time case [Bra98], the fact
that this hierarchy collapses at level 0 in the linear-time case [Lan05], the correspon-
dence with monadic second order logic [Mad94], all build on the correspondence with
automata theory.
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To sum up:
Logics with fixed points are widely used in the areas of programming languages and of
systems verification.

In this thesis, we focus on the proof-theoretical aspects of logics with fixed points. In a
proof-theoretical study, we are not only interested by provability (what are the statements
that can be established by a given proof system) but also, and more importantly, by the
structure of proofs and their interaction. This includes establishing results such as cut-
elimination and focalization. We review in the next section the state of the art for the proof
theory for logics with fixed points.

Proof systems for logics with fixed points

There are two main families of proof systems with fixed points: finitary proof systems with
explicit rules of (co)induction and infinitary proof systems.

Finitary proof systems. In these proof systems, the induction principle is reflected by
an explicit rule, called Park’s rule. Let us recall that the induction principle is based on
the characterization of the least fixed point of an operator X 7→ F (X), µX.F , as its least
pre-fixed point. This means that:

i) µX.F is a pre-fixed point, that is F (µX.F ) ≤ µX.F .

ii) µX.F is smaller than any other pre-fixed point S of F , that is:

F (S) ≤ S ⇒ µX.F ≤ S.

These two points yield respectively the following two rules for the µ connective:

∆ ⊢ F [µX.F/X], Γ
(µr)

∆ ⊢ µX.F , Γ

F [S/X] ⊢ S
(µl)

µX.F ⊢ S

Dually, the coinduction principle, based on the characterization of the greatest fixed point
of an operator as its greatest post-fixed point, yields the following two rules:

S ⊢ F [S/X]
(νr)

S ⊢ νX.F

∆,F [νX.F/X] ⊢ Γ
(νl)

∆, νX.F ⊢ Γ

The problem of these rules is that, in general, the cut rule is not admissible in the proof
systems using them. To fix that, the following variant of the rules (µl) and (νr), containing
a “hidden cut”, are usually used instead:

Γ ⊢ S, ∆ S ⊢ F [S/X]
(ν)

Γ ⊢ νX.F , ∆

F [S/X] ⊢ S Γ,S ⊢ ∆
(µr)

Γ,µX.F ⊢ ∆

Using this precise formulation of the fixed points rules, the admissibility of the cut-rule,
and more importantly the cut-elimination property have been shown in several frameworks:
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Martin-Löf has shown cut-elimination for an intuitionistic natural deduction system with
iterated inductive definitions in the framework of dependent types [ML71]. McDowell and
Miller have shown cut-elimination for an intuitionistic sequent calculus system with higher-
order quantification and definitions [MM00], then Momigliano and Tiu extended it to the
logic Linc [TM12]. Brotherston and Simpson showed the admissibility of the cut rule in
the setting of first-order classical logic with inductive definitions [BS07]. In all these re-
sults, the syntax of fixed point formulas allows only for purely inductive or coinductive
definitions, no interleaving between fixed points of distinct nature being allowed. The
first result of cut-elimination in a setting where the use of fixed points is not restricted
is due to Mendler, who shows strong normalization for second-order lambda calculus with
co-inductive types [Men91]. Baelde shows cut-elimination and focalization for the logic
µMALL (linear logic with least and greatest fixed points) [Bae12a].

The fact that the cut rule is unavoidable (either in an explicit or a hidden way), is co-
herent with the fact that, to show a statement with induction, one should usually generalize
it. But this means that proof systems with explicit rules of induction are fundamentally not
suited to proof-search, and that there is very little we can do to fix that. Another drawback
of proofs using explicit induction is that their computational meaning is usually not explicit.
Consider for instance linear logic with fixed points, equipped with explicit induction rules.
We have seen that we can express in that framework the type of lists of natural numbers
and the type of infinite streams of natural numbers. We can then define a proof (shown
below) that concatenates a list and a stream into a stream, by recursing over the list with
the invariant Stream⊸ Stream.

. . . ,(Ax)
1 ⊢ Stream⊸ Stream

. . . ,(Ax)
Nat, Stream⊸ Stream, Stream ⊢ Nat⊗Stream

Nat, Stream⊸ Stream, Stream ⊢ Stream
(⊗),(⊸)

Nat⊗(Stream⊸ Stream) ⊢ Stream⊸ Stream
(⊕)

1⊕(Nat⊗(Stream⊸ Stream)) ⊢ Stream⊸ Stream
(µ)

List ⊢ Stream⊸ Stream

It is not trivial to convince oneself that this proof does compute the concatenation
function. More generally, it is hard to tell what such proofs compute, when two proofs
compute the same function, etc.

Infinitary proof systems. These systems are obtained by using, instead of the Park’s
rules (νr) and (µl), the following unfolding rules:

Γ ⊢ F [νX.F/X], ∆
(νr)

Γ ⊢ νX.F , ∆

Γ,F [µX.F ] ⊢ ∆
(µl)

Γ,µX.F ⊢ ∆

and allowing infinite derivation trees, called pre-proofs. Clearly, these rules do not reflect
the difference in nature between µ and ν. More importantly, these pre-proofs are unsound,
since one can derive the empty sequent as follows:

...
(µr)

⊢ µX.X
(µr)

⊢ µX.X

...
(µl)

µX.X ⊢
(µl)

µX.X ⊢
(Cut)

⊢
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To get a proof system which is sound, we declare a pre-proof to be a proof if and only if
it satisfies the validity condition. This condition says, roughly speaking, that in every
infinite branch there should be either a least fixed point unfolded infinitely often in the left
or a greatest fixed unfolded infinitely often in the right.

There is a natural restriction to infinitary proofs given by regular proofs, that is, proofs
that have only finitely many sub-trees. These proofs are called circular proofs, since they
can be represented as finite trees with loops. This restricted cyclic proof system is more
suited for a computer science use, as its proofs can be finitely represented and manipulated.

Infinitary and circular proof systems have existed for a long time, but in the shadows,
and more as technical tools than as proper proof systems. Indeed, their infinitary nature
makes them suitable intermediary objects between the syntax and the semantics, so that we
usually find them in completeness proofs. This is the case, for instance, with the µ-calculus
refutations of Niwinski and Walukiewicz [NW96], which are used as an intermediary proof
system in Walukiewicz’s proof of completeness of the µ-calculus with respect to Kozen’s
axiomatization [Wal95].

In the last decades, infinitary proof systems have started to come out from the shadows
and have begun to be considered as proper proofs. For instance, Dam and Gurov [DG02] pro-
pose a complete infinitary proof system for the µ-calculus with explicit approximations. Dax
et al. proposed a complete infinitary proof system for the linear-time µ-calculus [DHL06].
Santocanale introduced a circular proof system for the purely additive linear logic with fixed
points [San02]. Brotherston came up with an infinitary and a circular proof system for first
order classical logic with inductive definitions. This increasing interest in infinitary proofs
is due to two facts. On the one hand, they are very suited to proof search, as there is no
invariant to guess in their formulation, contrarily to Park’s rules. This has been exploited
by the theorem prover QuodLibet [AKSW03], which uses the mathematical reasoning cor-
responding to infinite proofs: the infinite descent. This has also been exploited by Dax
et al. to give an optimal algorithm to check validity for the linear-time µ-calculus formulas,
using their complete infinitary proof system [DHL06]. On the other hand, by the Curry-
Howard correspondence, new reasoning methods bring new ways of programming. The
use of infinitary proofs, in particular circular ones, represents a promising new method of
writing (co)inductive programs, allowing to get rid of the cumbersome (co)inductive rules.
Another interesting feature of the infinitary proofs is that their computational meaning is
more explicit compared to finitary proof systems. For instance, it is clear that the following
circular proof computes the concatenation of a list and a stream:

(1), (Ax)
1, Stream ⊢ Stream

(Ax)
Nat ⊢ Nat

(⋆)

List, Stream ⊢ Stream
(⊗), (Ax)

Nat, List, Stream ⊢ Nat⊗Stream
(⊗), (ν)

Nat⊗List, Stream ⊢ Stream
(⊕)

1⊕(Nat⊗List), Stream ⊢ Stream
(µ)

List, Stream ⊢ Stream (⋆)
(⊸)

List ⊢ Stream⊸ Stream

Despite their compelling interest, few proof-theoretical investigations have been done
about infinitary proof theory. For instance, we do not know if the cut-elimination and focal-
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ization results hold for the infinitary proof systems mentioned before. The only exception
to that is Fortier and Santocanale’s work [FS13], in which cut-elimination is established for
the infinitary proof system for the purely additive fragment of linear logic with fixed points.

To sum up:
There are two main families of proof systems for logics with fixed points: finitary proof
systems with an explicit rule of (co)induction and infinitary proof systems. While
the first family has received much attention from the scientific community and is now
very well understood, much less work has been done to develop the second one from a
proof-theoretical viewpoint.

The aim of this thesis is to contribute to reduce this deficiency by developing the infini-
tary proof theory of fixed point logics, with two domains of application in mind: program-
ming languages with (co)inductive data types and verification of reactive systems.

Our work

Our thesis can be summarized by the following sentence:

Our thesis:
Logics with fixed points can be equipped with infinitary proof systems
having a true proof-theoretical status which can be fruitfully applied to
other domains such as formal verification.

Naturally, this thesis is split in two parts. One where we argue that infinitary proof
systems have indeed a real proof-theoretical status, by focusing on the cut-elimination and
focalization properties. In the other part, we show an application of our proof-theoretical
investigations on infinitary proofs, by showing in a constructive way, and using our develop-
ments on infinitary proofs, a completeness proof for the linear-time µ-calculus with respect
to Kozen’s axiomatization. Before developing these two parts containing our main contri-
butions, we start by an introductory part, where we expose 1) our design choices, 2) some
background on proof systems and fixed-points logics and 3) a technical tool which will be
very useful all along the thesis: a translation results between finitary and circular proofs.

Part 0: Design choices, background and technical tools

Design choices. As we aim at a proof-theoretical investigation of our logics with fixed
points, we choose to work with the formalism of sequent calculus which is the most suited
to analyze the structure of proofs and to establish technical results such as cut-elimination.
There are many variants of sequent calculus, which differ mainly by the way sequents are
presented: sequents as sets of formulas, as multisets of formulas, as lists of formulas or as
occurrences of formulas. These last two formulations are the most widely used when we
aim at a computational interpretation of proofs, we made therefore the choice to use formulas
occurrences. Although this could seem insignificant, this choice had surprising consequences.
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The most striking one is a translation result from circular proofs to finitary ones, which
relies heavily on this precise formulation of sequents.

An invaluable technical tool: the translation procedure. Usually it is not difficult to
go from proofs with explicit induction rules (we call them simply finitary proofs) to circular
ones: the induction principle is reflected by a cycle. The converse is a hard problem, that
has been conjectured by Brotherstone and Simpson in the framework of first order logic with
inductive definitions [BS07]. We do not have a full translation result from circular proofs to
finitary ones, but we provide a sufficient condition on circular proofs, that allows to translate
them into finitary ones. The translation procedure we describe relies on the presentation of
sequents as sets of formula occurrences. It is surprising how such a presentation, inspired
from proofs-as-programs considerations, has brought new insights on this difficult problem.

Here is a raodmap for this introductory part:

• Chapter 1: We recall the logics that we will be interested in along the thesis (the
propositional classical logic LK, the linear logics MALL and LL, the linear temporal
logic LTL and its fragment that contains only the next operator that we call LK⊙).
We recall the semantics and proof systems for each of these logics.

• Chapter 2: First, we give some background on lattice theory and the fundamental
fixed point theorems of the literature. Second, we show how to extend the syntax of a
logic with least and greatest fixed points, and study some properties of the resulting
formulas.

Then we show the two standard approaches, discussed earlier, to incorporate fixed
points to a proof system S (which can be any of the proof systems of Chapter 1):

– The first one consists in adding Park’s rules, and the obtained proof system is
denoted µS. For instance, the extension of the multiplication additive linear logic
MALL with fixed points is denoted µMALL.

– The second approach consists in adding to S the unfolding rules for fixed points
and allowing infinite derivations. The obtained proof system is denoted µS∞.
Then we introduce the circular proof system µSω, whose proofs are finite graphs.
This system can be seen as a fragment of µS∞ since its proofs are in correspon-
dence with the regular µS∞ proofs. For instance, µMALL∞ and µMALLω denote
respectively the infinitary and the circular proof systems for MALL extended with
fixed points.

Finally, we study the relationship between the finitary proof system µS and the circular
one µSω. For that, we show that:

– Every finitary proof can be translated into a circular one.

– Conversely, we show that if a circular proof satisfies a property that we call the
translatability criterion, then it can be translated into a finitary proof. This
translation result will be used, as a crucial step, twice in the thesis.
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Part I: Proof-theoretical study of infinitary proofs

Our goal is to study the proof-theoretical aspects of infinitary proofs, by showing in par-
ticular the two main results of cut-elimination and focalization. As usual, studying proof-
theoretical properties in a linear framework allows to get away from the noise introduced by
the other logics, and focus on the real difficulties. That is why we concentrate on µMALL∞,
the infinitary proof system for linear logic with fixed points, showing that it admits both
cut-elimination and focalization.

As mentioned before, the only known cut-elimination result in an infinitary setting is
due to Fortier and Santocanale in the restricted setting of purely additive linear logic. The
topological argument they use does not scale to richer settings such as µMALL∞, and we
had to develop new proof techniques to deal with the multiplicative connective. We hint
on how to extend this result to richer logics such as µLL∞, and µLK∞ for instance, the full
development is left to a future work.

Focalization has never been addressed in an infinitary setting. We show it in the frame-
work of µMALL∞, stressing out the phenomena that arise in the infinitary setting compared
to the finitary one.

We dedicated the rest of the part to another problem: elucidating the computational
meaning of proofs in the finitary proof system with explicite induction. As discussed earlier,
the computational meaning of proof systems with explicit induction rules is usually not
clear. For instance, it is hard to tell what such proofs compute, when two proofs compute
the same function, etc. Addressing this issue requires to step back from the finite, syntactic
proof system under consideration and to start considering its semantics. In the rest of the
part, we investigate the semantics of the finitary proof system µMALL.

As our domain of interpretation of proofs, we consider ludics [Gir01] which can be re-
garded as a variant of game semantics, where the basic objects are well-behaved strategies,
called designs. Girard introduced ludics with the aim of bringing closer together syntax and
semantics in the study of proofs and proved a full completeness result with respect to proofs
of a polarized variant of MALL. Extending this interpretation to all of linear logic, including
exponentials, has been challenging and required to deal with non-determinism [BF11]. As we
shall see, accounting for least and greatest fixed points is much easier, and can essentially be
done in Girard’s original framework. Still, we shall work in Terui’s reformulation of ludics,
computational ludics [Ter11], since it is more convenient to work with and slightly more
general, for instance the objects of computational ludics may contain cut while Girard’s
original designs are cut-free: this happens to be very handy when working with greatest
fixed point.

We provide µMALL with a denotational semantics, interpreting proofs by designs and
formulas by particular sets of designs called behaviours. Then we prove a completeness
result for the class of “essentially finite designs”, which are those designs performing a finite
computation followed by a copycat. On the way to completeness, we establish decidability
and completeness of semantic inclusion.

Here is a roadmap for Part I:
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• Chapter 3: We show that µMALL∞ admits the cut elimination property. We show this
result using an unusual semantical argument. We discuss the extension of this result
to the proof systems µLL, µLK and µLK⊙.

• Chapter 4: We show that µMALL∞ admits the focalization property.

• Chapter 5: We give a denotational semantics for µMALL in Ludics. We investigate
the problem of completeness, and give a partial result by going through an infinitary
proof system and using the translation result from Chapter 2.

Part II: Constructive completeness for the linear-time µ-calculus

We give a new proof of completeness for the linear-time µ-calculus with respect to Kozen’s
axiomatization (µLK⊙ is the sequent calculus style of this axiomatization). Our proof has
the advantage of being constructive. This means that if a formula is valid, we show how
to build in an effective way a µLK⊙ proof of it. Earlier proofs of completeness were not
constructive in the sense that they show that a valid formula must have a proof, but they
do not specify a way to obtain it. Indeed, their arguments rely on proofs by contradiction,
and it is known to be difficult, when not impossible, to extract constructive and algorithmic
content from proofs by contradiction.

To get this constructive completeness result, we generalize an idea that has being used
in earlier proofs of completeness [Wal95,Kai95], which consists in introducing a sub-class C1
of the class of µ-calculus formulas C0, and establishing the following two results:

1) For every valid formula ϕ0 in C0, there is a valid formula ϕ2 in C1 such that ϕ1 ⊢ ϕ0

is provable in µLK⊙.

2) Every valid formula of C1 is provable. This is the completeness result restricted to C1.

Completeness is proved by combining 1) and 2) via a cut rule:

2)

⊢ ϕ2

1)

ϕ2 ⊢ ϕ1
(Cut)

⊢ ϕ1

Our idea is to introduce, instead of one intermediary class, several intermediary classes. To
design these classes, we will take advantage of the correspondence between the linear-time
µ-calculus formulas and alternating parity automata over words (APW). More precisely, we
can encode every APW A by a µ-calculus formula [A]. The image of APW by this encoding
gives us our first class C1. We introduce the other classes in the same way:

• The class C2 is the image of non-deterministic parity automata (NPW).

• The class C3 is the image of non-deterministic Büchi automata (NBW).

• The class C4 is the image of deterministic Büchi automata (DBW).

Since we have DBW ⊆ NBW ⊆ NPW ⊆ APW we have also that C4 ⊆ C3 ⊆ C2 ⊆ C1. To
show completeness, we will show that:
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• For every 3 < i ≤ 0, if ϕi is a valid formula in Ci, then there is a valid formula ϕi+1 in
Ci+1 such that ϕi+1 ⊢ ϕi is provable in µLK⊙.

• Every valid formula in C4 is provable.

Using these results, and provided that they are proved in a constructive way, we obtain a
constructive completeness proof for the linear-time µ-calculus.

Let us mention that these equivalences are well-known in the automata side, since they
correspond respectively to alternation elimination, parity simplification and determinization
results. Our goal is to lift them to the provability level. To do so, we go through the circular
proof system µLK⊙ω: we perform first a proof-search in µLK⊙ω, then we transform in an
effective way the obtained circular proof into a µLK⊙ one, using our translation procedure
from Chapter 2. This yields a constructive proof for the full linear-time µ-calculus.

Here is a roadmap of Part II:

• Chapter 6: We discuss and analyze earlier proofs of completeness for the linear-time
and the branching-time µ-calculus. Then we give the roadmap for our proof of com-
pleteness for the linear-time case.

• Chapter 7: We recall the syntax and semantics for the linear-time µ-calculus. Then we
reintroduce, for clarity, the proof system µLK which is the target of the completeness
proof, and µLK⊙ω, the intermediary proof system.

• Chapter 8: We give some background on automata over infinite words, and recall the
different classes of automata that we shall work with.

• Chapter 9: We recall the correspondence between the linear-time µ-calculus formulas
and alternating parity automata over words (APW). Then we show that this equiva-
lence can be lifted to the level of provability.

• Chapter 10: we recall the correspondence between APW and NPW, and the one
between NPW and NBW. Then we show that these equivalences can also be lifted to
the provability level.

• Chapter 11: We show that Büchi language inclusions are provable in µLK⊙.

• Chapter 12: Building on the results obtained in Chapters 9-11, we show our construc-
tive completeness result.

We end up this thesis by a concluding Chapter 12.2, in which we expose the perspectives
of our work.



Chapter 1

Background on proof theory

In this chapter, we recall the syntax, the semantics and the sequent calculus for the different
logics that we will study in the course of this thesis: classical logic, linear logic and linear
temporal logic.

In Chapter 2, our goal will be to extend, in a generic way, a logic and its proof systems
with least and greatest fixed points. With this in mind, we will try to present uniformly the
aforementioned logics. This means in particular that some notions which are not strictly
necessary for the rest of the thesis will be nevertheless introduced.

We have chosen to work with sequent calculus for its elegance, and since it is an excellent
framework to study the structure of proofs. There are many presentations of sequents in
the litterature: sequents as sets of formulas, as lists of formulas, as multisets of formulas,
etc. We have chosen to introduce first our proof systems (Sections 1.2, 1.3 and 1.4) with
the formalism of sequents as lists. In Section 1.5, we discuss and compare the different
presentations of sequents that exist in the litterature. The one that meets the most our
future needs is the presentation of sequents as sets of formula occurrences, we introduce
it in details in 1.5.2 and show how to interpret the proof systems introduced earlier with
this specific presentation of sequents.

1.1 Syntax, semantics and proof systems

The syntax of a logic can be described by a signature which is a set of symbols coming with
their arities. Formulas are built inductively using these symbols.

Definition 1.1. A signature L is a pair (S, ar) of a set of symbols S and a function
ar : S → ω that assigns to every symbol an integer called its arity .

The set of formulas (ϕ,ψ, . . . ) over the signature L, denoted FL, is defined inductively
as follows:

ϕ = s(ϕ1, . . . ,ϕn) where s ∈ S and ar(s) = n.

Formulas are sequences of symbols without a particular meaning. To give them a mean-
ing, many approaches exist, but we only consider the two following in this thesis.

The first one is a semantical approach. It is based on a set U of mathematical structures
called models, and a relation |=⊆ U ×FL which links models to formulas, we usually write
M |= ϕ, and say that ϕ is true in the model M. When a formula is true in every model,
we say that it is valid.

25
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The second approach is syntactic. It associates the meaning of formulas with the roles
that they can play in inferences rules. Inference rules come in different styles, but we will
focus only in the sequent calculus presentation. The specificity of sequent calculus is to
generalize the notion of formula into a richer notion which is that of a sequent.

Definition 1.2. A sequent is given by two lists of formulas Γ and ∆ and is denoted Γ ⊢ ∆.

A sequent Γ ⊢ ∆ can be understood as follows: the conjunction of the formulas of Γ
implies the disjunction of the formulas of ∆.

Depending on use, sequents may be defined in a different way. We discuss this later in
Section 1.5.

A proof system in sequent calculus is given by a set of inference rules. The latter are
the building blocks of sequent calculus proofs , which are the well formed trees obtained
using inference rules.

Since we are carrying out a proof-theoretical study of logics in this thesis, we will focus
in this chapter on the proof systems for the logics we are interested in and simply recall
their semantics.

1.2 Propositional classical logic

1.2.1 LK formulas

The formulas of propositional classical logic are given by the following syntax:

Definition 1.3. Let P = {p, q, . . . } be a set of atoms. LK formulas are given by:

ϕ,ψ ::= p | p
⊥ | ⊥ | ⊤ | ϕ ∨ ψ | ϕ ∧ ψ

In other words, the signature of propositional classical logic is LLK = (SLK, arLK) where
SLK = {p, p⊥,∨,∧ | p ∈ P} and:

arLK(∨) = arLK(∧) = 2, arLK(⊤) = arLK(⊥) = 0, ∀p ∈ P , arLK(p) = arLK(p
⊥) = 0.

The signature of a logic being trivially inferable from the syntax of its formulas, we will not
explicitly show it for the upcoming logics.

Definition 1.4. Negation is the involution on LK formulas written ϕ⊥ and satisfying:

(ϕ ∨ ψ)⊥ = ψ⊥ ∧ ϕ⊥ ⊤⊥ = ⊥ (p)⊥ = p⊥

1.2.2 Semantics of LK formulas

Let ({t, f},∨,∧,¬} be the boolean lattice, whose top is t, whose bottom is f, and ∨, ∧ and ¬
are respectively the usual join, meet and complement operations. We interpret LK formulas
in this boolean lattice as follows:
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Definition 1.5. A model is a subset M⊆ P of atoms. The interpretation ‖ϕ‖M of an
LK formula ϕ under a modelM is a boolean defined by induction on ϕ as follows:

‖ϕ ∨ ψ‖M = ‖ϕ‖M ∨ ‖ψ‖M ‖⊤‖M = t

‖ϕ ∧ ψ‖M = ‖ϕ‖M ∧ ‖ψ‖M ‖⊥‖M = f

‖p⊥‖M = ¬‖p‖M ‖p‖M = t if p ∈M
= f otherwise

We say that a formula ϕ is true in a model M and we write M |= ϕ if ‖ϕ‖M = t. A
formula is said to be valid if for every modelM, we have ϕ |=M.

We generalize the notion of validity to a sequent as follows: we say that a sequent Γ ⊢ ∆
is valid if the formula (∧Γ)⊥ ∨ (∨∆) is.

1.2.3 The proof systems LK, LKrev and LKos

Definition 1.6. LK is the proof system whose rules are shown in Figure 1.1.

The rules of LK can be classified into three categories: the logical rules, which are
the rules decomposing the top-level connective of a formula in their conclusion sequent,
the identity rules, which are the axiom and cut rules, these rules aim at recognizing two
formulas as being identical, and ensure that the deductive relation is reflexive and transitive.
Finally, the structural rules, which are contraction, weakening and exchange, and which
restructure the sequent.

Admissibility of the cut rule. One of the most fundamental properties of LK is the
admissibility of the cut rule, which means that the sequents which are provable in LK can
be also proved without using the cut rule.

Theorem 1.1 (Gentzen [Gen35]). A sequent Γ ⊢ ∆ is provable in LK if and only if it is
provable in the system LK without the cut rule.

An immediate consequence of this result is the coherence of LK. Indeed, if for a formula
F , both F and F⊥ where provable, then the empty sequent would be also provable by
combing the proofs of F and F⊥ via a cut. Since the empty sequent has no cut free proof,
this contradicts Theorem 1.1.

Corollary 1.1. In LK we cannot prove both a formula and its negation.

The proof of the admissibility of the cut rule, due to Gentzen, shows more than that: not
only the classical sequent calculus with and without the cut rule prove the same theorems,
but on top of that, we can transform, via an effective procedure, every proof in the
calculus with the cut rule into a proof of the same conclusion without cuts. This procedure
is described by a set of rewriting rules, which can be found for example in [Gen35]. Figure 1.2
shows the example of the (∨l)− (∧r) rewriting rule. This discovery is at the heart of what
we call the Curry-Howard correspondence: the proof of a formula ϕ can be seen as
a program of type ϕ, the cut elimination steps can be seen as the execution steps of this
program and the cut-free proof obtained after cut elimination corresponds to the result of
the program.
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Identity rules

(Ax)
ϕ ⊢ ϕ

(Ax)
⊢ ϕ,ϕ⊥

(Ax)
ϕ,ϕ⊥ ⊢

Γ1 ⊢ ϕ, ∆1 Γ2 ⊢ ϕ
⊥, ∆2

(Cut)
Γ1, Γ2 ⊢ ∆1, ∆2

Γ1,ϕ ⊢ ∆1 Γ2,ϕ
⊥ ⊢ ∆2

(Cut)
Γ1, Γ2 ⊢ ∆1, ∆2

Γ1 ⊢ ϕ, ∆1 Γ2,ϕ ⊢ ∆2
(Cut)

Γ1, Γ2 ⊢ ∆1, ∆2

Γ1,ϕ ⊢ ∆1 Γ2 ⊢ ϕ, ∆2
(Cut)

Γ1, Γ2 ⊢ ∆1, ∆2

Structural rules

Γ ⊢ ∆
(Wr)

Γ ⊢ ϕ, ∆

Γ ⊢ ϕ,ϕ, ∆
(Cr)

Γ ⊢ ϕ, ∆

Γ ⊢ ∆1,ψ,ϕ, ∆2
(Exr)

Γ ⊢ ∆1,ϕ,ψ, ∆2

Γ ⊢ ∆
(Wl)

Γ,ϕ ⊢ ∆

Γ,ϕ,ϕ ⊢ ∆
(Cl)

Γ,ϕ ⊢ ∆

Γ1,ψ,ϕ, Γ2 ⊢ ∆
(Exl)

Γ1,ϕ,ψ, Γ2 ⊢ ∆

Logical rules

Γ1 ⊢ ϕ, ∆1 Γ2 ⊢ ψ, ∆2
(∧r)

Γ1, Γ2 ⊢ ϕ ∧ ψ, ∆1, ∆2

Γ ⊢ ϕ, ∆ Γ ⊢ ψ, ∆
(∧r)

Γ ⊢ ϕ ∧ ψ, ∆

Γ,ϕ,ψ ⊢ ∆
(∧l)

Γ,ϕ ∧ ψ ⊢ ∆

Γ1,ϕ ⊢ ∆1 Γ2,ψ ⊢ ∆2
(∨l)

Γ1, Γ2,ϕ ∨ ψ ⊢ ∆1, ∆2

Γ,ϕ ⊢ ∆ Γ,ψ ⊢ ∆
(∨l)

Γ,ϕ ∨ ψ ⊢ ∆

Γ ⊢ ϕ,ψ, ∆
(∨r)

Γ ⊢ ϕ ∨ ψ, ∆

Γ ⊢ ϕi, ∆
(∨r)

Γ ⊢ ϕ1 ∨ ϕ2, ∆

Γ,ϕi ⊢ ∆
(∧l)

Γ,ϕ1 ∧ ϕ2 ⊢ ∆

Γ ⊢ ∆
(⊤l)

Γ,⊤ ⊢ ∆
(⊤r)

Γ ⊢ ⊤, ∆
(⊤r)

⊢ ⊤

(⊥l)
⊥ ⊢

(⊥l)
Γ,⊥ ⊢ ∆

Γ ⊢ ∆
(⊥r)

Γ ⊢ ⊥, ∆

Figure 1.1: Inference rules for LK.

Reversible and non-reversible Rules. We can classify the rules of LK in two categoris:
the reversible and the non-reversible ones. A rule is reversible means that if its conclusion
is provable, so are its premisses. For example, the following right rule of disjunction is
reversible:

Γ ⊢ ϕ,ψ, ∆
(∨r)

Γ ⊢ ϕ ∨ ψ, ∆
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Γ1,A ⊢ ∆1 Γ1,B ⊢ ∆1
(∨l)

Γ1,A ∨B ⊢ ∆1

Γ2 ⊢ A, ∆2
(∨r)

Γ2 ⊢ A ∨ B, ∆2
(Cut)

Γ1, Γ2 ⊢ ∆1, ∆2

↓

Γ1,A ⊢ ∆1 Γ2 ⊢ A, ∆2
(Cut)

Γ1, Γ2 ⊢ ∆1, ∆2

Figure 1.2: The (∨l)− (∧r) cut-elimination rule

Indeed, we can derive its premisse from its conclusion using the following derivation:

(Ax)
Γ ⊢ ϕ⊥,ϕ

(Exr),(Wr)
Γ ⊢ ϕ⊥,ϕ,ψ, ∆

(Ax)
Γ ⊢ ψ⊥,ψ

(Exr),(Wr)
Γ ⊢ ψ⊥,ϕ,ψ, ∆

(∧r)
Γ ⊢ ϕ⊥ ∧ ψ⊥,ϕ,ψ, ∆ Γ ⊢ ϕ ∨ ψ, ∆

(Cut)
Γ ⊢ ϕ,ψ, ∆

An example of a non-reversible rule is the following right rule of disjunction:

Γ ⊢ ϕi, ∆
(∨r)

Γ ⊢ ϕ1 ∨ ϕ2, ∆

Indeed, the sequent ⊤ ⊢ ⊤ ∨ ⊥ is provable in LK, but applying the last rule (∨r), choosing
the right disjunct, leads to the sequent ⊤ ⊢ ⊥ which is not provable.

The same holds for the following right conjunction rules, where the first is reversible and
the second is not:

Γ ⊢ ϕ, ∆ Γ ⊢ ψ, ∆
(∧r)

Γ ⊢ ϕ ∧ ψ, ∆

Γ1 ⊢ ϕ, ∆1 Γ2 ⊢ ψ, ∆2
(∧r)

Γ1, Γ2 ⊢ ϕ ∧ ψ, ∆1, ∆2

Despite this, the reversible and non-reversible versions of all the rules are inter-derivable.
For instance, if the reversible version of the (∨r) is available, we can derive the non-reversible
version as follows:

Γ ⊢ ϕ2, ∆
(Wr)

Γ ⊢ ϕ1,ϕ2, ∆
(∨r)

Γ ⊢ ϕ1 ∨ ϕ2, ∆

Γ ⊢ ϕ1, ∆
(Wr)

Γ ⊢ ϕ2,ϕ1, ∆
(Exr)

Γ ⊢ ϕ1,ϕ2, ∆
(∨r)

Γ ⊢ ϕ1 ∨ ϕ2, ∆

Thus, if we are only concerned with provability, and if we are not interested in proofs
themselves and their interaction (this will be the case for example in Part II of this thesis),
it is preferable to work with a sub-system of LK, which has exactly the same expressive power
as LK (that is, it proves the same sequents), but which is more suited for proof search, we
call it LKrev. In this system, contraction and weakening are integrated to the rules, thus
they do not appear explicitly in the system. The cut rule being admissible, it disappears
also, and we keep only the logical reversible rules.
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Identity rules

(Ax)
Γ,ϕ ⊢ ϕ, ∆

(Ax)
Γ ⊢ ϕ,ϕ⊥, ∆

(Ax)
Γ,ϕ,ϕ⊥ ⊢ ∆

Structural rules

Γ1,ψ,ϕ, Γ2 ⊢ ∆
(Exl)

Γ1,ϕ,ψ, Γ2 ⊢ ∆

Γ ⊢ ∆1,ψ,ϕ, ∆2
(Exr)

Γ ⊢ ∆1,ϕ,ψ, ∆2

Logical rules

Γ,ϕ ⊢ ∆ Γ,ψ ⊢ ∆
(∨l)

Γ,ϕ ∨ ψ ⊢ ∆

Γ ⊢ ϕ, ∆ Γ ⊢ ψ, ∆
(∧r)

Γ ⊢ ϕ ∧ ψ, ∆

Γ ⊢ ϕ,ψ, ∆
(∨r)

Γ ⊢ ϕ ∨ ψ, ∆

Γ,ϕ,ψ ⊢ ∆
(∧l)

Γ,ϕ ∧ ψ ⊢ ∆

Γ ⊢ ∆
(⊤l)

Γ,⊤ ⊢ ∆
(⊤r)

Γ ⊢ ⊤, ∆

(⊥l)
Γ,⊥ ⊢ ∆

Γ ⊢ ∆
(⊥r)

Γ ⊢ ⊥, ∆

Figure 1.3: Inference rules for LKrev.

Definition 1.7. LKrev is the proof system whose rules are shown in Figure 1.3.

We can give yet another presentation of the proof system LK, this time restricting the
shape of sequents. In this presentation, we allow only sequents of the form ε ⊢ Γ, where ε is
the empty list, which we write simply as ⊢ Γ, and adapt the LK rules accordingly. We call
the obtained proof system LKos, for one-sided LK.

Definition 1.8. LKos is the proof system whose rules are shown in Figure 1.4.

This system is equivalent to LK in the sense that if ⊢ Γ is provable in LKos then it is also
provable in LK. Conversely, if Γ ⊢ ∆ is provable in LK, then ⊢ Γ⊥, ∆ is provable in LK. The
advantage of LKos is that is has half as many rules as LK.

The proof systems for propositional classical logic presentend above are all sound and
complete, this means that:

Theorem 1.2. A sequent is valid if and only if it is provable in LK (resp. LKrev, resp.
LKos).

Lafont’s critical pair. The cut elimination procedure for LK is non-deterministic in a
strong sense: a proof may be reduced to two different proofs which are completely different,
we say that it is non-confluent. An example of such situation is given by the following
derivation, called Lafont’s critical pair. This proof will reduce either to π1 or π2 depending
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Identity rules

(Ax)
⊢ ϕ,ϕ⊥

⊢ ϕ⊥, ∆1 ⊢ ϕ, ∆2
(Cut)

⊢ ∆1, ∆2

Structural rules

⊢ ∆
(W)

⊢ ϕ, ∆

⊢ ϕ,ϕ, ∆
(C)

⊢ ϕ, ∆

⊢ ∆1,ψ,ϕ, ∆2
(Ex)

⊢ ∆1,ϕ,ψ, ∆2

Logical rules

⊢ ϕi, ∆
(∨)

⊢ ϕ1 ∨ ϕ2, ∆

⊢ ϕ, ∆ ⊢ ψ, ∆
(∧)

⊢ ϕ ∧ ψ, ∆

⊢ ϕ,ψ, ∆
(∨)

⊢ ϕ ∨ ψ, ∆

⊢ ϕ, ∆1 ⊢ ψ, ∆2
(∧)

⊢ ϕ ∧ ψ, ∆1, ∆2

(⊤)
⊢ ⊤, ∆

(⊤)
⊢ ⊤

⊢ ∆
(⊥)

⊢ ⊥, ∆

Figure 1.4: Inference rules for LKos.

on the direction we choose to reduce cuts.

π1

⊢ Γ
(W)

⊢ Γ, Γ
(C)

⊢ Γ

⋆ ←

π1

⊢ Γ
(W)

⊢ ϕ⊥, Γ

π2

⊢ Γ
(W)

⊢ ϕ, Γ
(Cut)

⊢ Γ, Γ
(C)

⊢ Γ

→⋆

π2

⊢ Γ
(W)

⊢ Γ, Γ
(C)

⊢ Γ

If we think about cut elimination as a computational process transforming a proof into a
result, this last observation is problematic since it means that a computation does not give
a unique result. One way to get rid of such critical pairs and to retrieve more determinism
is to control the use of structural rules. This is one of the innovations of linear logic, which
we introduce in the next section.

1.3 Linear Logic

In LKos, some rules require identical contexts in all their premises, which they supperpose
in the conclusion sequent, we call them additive rules. This is the case of the following
rules for instance:

⊢ ϕ, ∆ ⊢ ψ, ∆
(∧)

⊢ ϕ ∧ ψ, ∆

⊢ ϕi, ∆
(∨)

⊢ ϕ1 ∨ ϕ2, ∆
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Other rules on the contrary juxtapose the different contexts coming from their premises; we
call them multiplicative rules. This is the case of the following rules for instance:

⊢ ϕ, ∆1 ⊢ ψ, ∆2
(∧)

⊢ ϕ ∧ ψ, ∆1, ∆2

⊢ ϕ,ψ, ∆
(∨)

⊢ ϕ ∨ ψ, ∆

It turns out that the additive and the multiplicative rules of every LKos connective are inter-
derivable. But these rules are inter-derivable only through the weakening and contraction
rules. If we remove these structural rules from LK, the additive and multiplicative versions
of LKos rules are not equivalent anymore, and it becomes necessary to reflect this distinction
in the syntax, by providing an additive and a multiplicative version for each connective.
For conjunction, the additive version is denoted & and the multiplicative one is denoted ⊗.
For disjunction, the additive version is denoted ⊕ and the multiplicative one is denoted `.
Finally, each unit comes also in two versions: ⊤ and 0 are the additive versions of ⊤ and ⊥
respectively, and 1 and ⊥ are their multiplicative versions. The proof system obtained from
LK by removing contraction and weakening, and by providing an additive and multiplicative
version for each connective is called the multiplicative additive linear logic, and it is
denoted MALL.

1.3.1 MALL formulas

Definition 1.9. Let P = {p, q, . . . } be a set of atoms. MALL formulas are given by:

ϕ,ψ ::= p | p
⊥ | 0 | ⊥ | ⊤ | 1 | ϕ⊕ ψ | ϕ` ψ | ϕ& ψ | ϕ⊗ψ

To define negation in LK, we relied on the De Morgan laws, which set the dual of
conjunction to be the disjunction, and the dual of true to be false. Now that we have two
versions for each connective, we have to figure out which version of a connective is dual to
a given version. For that purpose, we make use of the cut elimination rule, our goal being
to have a proof system that admits cut-elimination. If we set for instance the dual of & to
be `, the following cut-elimination step (&)− (`) would imply the use of structural rules,
which are not available in MALL.

⊢ A,B, Γ
(`)

⊢ A`B, Γ

⊢ A⊥, ∆ ⊢ B⊥, ∆
(&)

⊢ A⊥ &B⊥, ∆
(Cut)

⊢ Γ,∆
↓

⊢ A,B, Γ ⊢ A⊥, ∆
(Cut)

⊢ B, Γ,∆ ⊢ B⊥, ∆
(Cut)

⊢ Γ,∆,∆
(C),(Ex)

⊢ Γ,∆

The choice of dual connectives which permits us to write the cut elimination rules without
invoking structural rules is the one that sets the dual of & to be ⊕, and the dual of ` to be
⊗. If we apply this analysis to all the other connectives, we get the following definition of
negation:
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Identity and structural rules

(Ax)
⊢ ϕ,ϕ⊥

⊢ ϕ⊥, ∆1 ⊢ ϕ, ∆2
(Cut)

⊢ ∆1, ∆2

⊢ ∆1,ψ,ϕ, ∆2
(Ex)

⊢ ∆1,ϕ,ψ, ∆2

Logical rules

⊢ ϕi, ∆
(⊕i)

⊢ ϕ1 ⊕ ϕ2, ∆

⊢ ϕ, ∆ ⊢ ψ, ∆
(&)

⊢ ϕ& ψ, ∆

⊢ ϕ,ψ, ∆
(`)

⊢ ϕ` ψ, ∆

⊢ ϕ, ∆1 ⊢ ψ, ∆2
(⊗)

⊢ ϕ⊗ψ, ∆1, ∆2

(⊤)
⊢ ⊤, ∆

(1)
⊢ 1

⊢ ∆
(⊥)

⊢ ⊥, ∆

Figure 1.5: Inference rules for MALL.

Definition 1.10. Negation is the involution on formulas written ϕ⊥ and satisfying

(ϕ` ψ)⊥ = ψ⊥⊗ϕ⊥ ⊥⊥ = 1 0⊥ = ⊤ (ϕ⊕ ψ)⊥ = ψ⊥ & ϕ⊥ (p)⊥ = p⊥

1.3.2 The proof system MALL

Definition 1.11. MALL is the proof system whose rules are shown in Figure 1.5.

The logic MALL is a very weak logic, but it has a bunch of good properties. Its simplicity
makes it a very good nucleus for many different extensions. For instance, by adding second
order variables and ∀ and ∃ quantification on them, we get a very powerful logic: MALL2
( [Gir01]). Later in this thesis (Part II), we will focus on another extension of MALL,
obtained by adding least and greatest fixed points.

1.3.3 LL formulas

Another well-known extension of MALL is the full linear logic, denoted LL. In LL, we will
reintroduce weakening and contraction, but in a very controlled way. More precisely, these
rules can be applied in LL only on formulas marked by exponential connectives ? and !.
Thus, the syntax of LL is the following:

Definition 1.12. Let P = {p, q, . . . } be a set of atoms. LL formulas are given by:

ϕ,ψ ::= p | p
⊥ | 0 | ⊥ | ⊤ | 1 | ϕ⊕ ψ | ϕ` ψ | ϕ& ψ | ϕ⊗ψ | !ϕ | ?ψ

We define negation of LL formulas by extending that of MALL with the equation (?ϕ)⊥ =!ϕ⊥.
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1.3.4 The proof system LL

Definition 1.13. LL is the proof system whose rules are those shown in Figure 1.5 together
with the following rules, called exponential rules :

⊢?ϕ, ?ϕ, ∆
(C)

⊢?ϕ, ∆

⊢ ∆
(W)

⊢?ϕ, ∆

⊢ ϕ, ∆
(?)

⊢?ϕ, ∆

⊢ ϕ, ?∆
(!)

⊢!ϕ, ?∆

Exponential rules allow to recover the expressive power of LK: LL proofs can be embed-
ded in LK by erasing the exponential connectives and identifying the two versions of each
connective by the original LK connective. Conversely, LK proofs can be encoded by LL ones
( [Lau02]), and this encoding is sound and complete for provability.

With LL we recover the expressivity of LK, in addition we earn the confluence of the
calculus.

1.3.5 Semantics of MALL and LL formulas

If we are seeking for a complete semantics for linear logic, the one that we used for LK is
not appropriate. For instance, the sequent ⊢ 1 ` 1, which would be valid if we interpret 1
and ` by their corresponding classical connectives, is not provable in MALL. We present a
semantics for linear logic, called phase semantics, which is sound and complete for MALL.

Definition 1.14. A phase space is given by a tuple (M , ., 1M ,⊥), where (M , ., 1M) is
commutative monoid and ⊥ ⊆M .

Let X,Y ⊆M . We define X.Y and X⊥ as follows:

X.Y = {x.y | x ∈ X and y ∈ Y } and X⊥ = {y | X.{y} ⊆ ⊥}

A subset X ⊆M is called a fact if X⊥⊥ = X.
A phase model is a tuple (M , ., 1M ,⊥, v) where (M , ., 1M ,⊥) is a phase space and v is

a valuation that maps atoms to facts of (M , ., 1M ,⊥).

A typical example of phase models is the syntactic phase space, we recall it in the
following.

Example 1.1. Let M be the set of finite multisets of MALL formulas. Let . be the operation
of concatenation of two multisets and 1 be the empty multiset, and let ⊥ be the set of
provable multisets. The phase space (M , ., 1,⊥) is called the syntactic phase space of
MALL.

Definition 1.15. LetM = (M , ., 1M ,⊥, v) be a phase model. The interpretation ‖ϕ‖M

of a formula ϕ underM is defined by:

‖ϕ⊗ ψ‖M = (‖ϕ‖M.‖ψ‖M)⊥⊥ ‖p‖M = v(p)

‖ϕ& ψ‖M = ‖ϕ‖M ∩ ‖ψ‖M ‖ϕ⊥‖M = (‖ϕ‖M)⊥

‖⊥‖M = ⊥ ‖⊤‖M =M

A formula ϕ is true in M, and we write M |= ϕ, if and only if 1M ∈ ‖ϕ‖M. It is said to
be valid if for every modelM, we haveM |= ϕ.
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The interpretation of a formula in the syntactic phase model provides us with insight
into the meaning of phase semantics interpretation. Morally, the interpretation of a formula
in this space is the set of contexts that make it provable. Here, we can see clearly the
difference between the two versions of conjunction for example. In the interpretation of ⊗,
we find this idea of juxtaposition that we addressed while introducing multiplicatives, which
is reflected by the use of composition operation of the monoid. The additive nature of &,
which superposes contexts, is reflected by the operation of intersection used to interpret it.

Phase semantics interpretation is correct and complete for MALL, as stated by the fol-
lowing theorem.

Theorem 1.3 (Girard [Gir87]). A MALL formula is valid if and only if it is provable in
MALL.

To interpret the exponentials, we have to enrich the notion of a model as follows.

Definition 1.16. Let (M , ., 1M ,⊥) be a phase space. A submonoid J of M is weakly
idempotent if:

∀a ∈ J , {a}⊥⊥ ⊆ {a.a}⊥⊥

An enriched phase model M is given by a phase model (M , ., 1M ,⊥, v) and a set I =
⊥⊥ ∩ J where J is a submonoid of M satisfying the weak idempotency property.

We extend the definition of the interpretation under an enriched phase model to LL

formulas by:
‖?ϕ‖M = (I ∩ ‖ϕ‖M)⊥⊥

A formula ϕ is true inM and we writeM |= ϕ if and only if 1M ∈ ‖ϕ‖M. It is said to be
valid if for every enriched phase modelM we have thatM |= ϕ.

This semantics is sound and complete for LL.

Theorem 1.4 (Girard [Gir87]). A LL formula is valid if and only if it is provable in LL.

1.4 Linear temporal logic

We have seen that we can associate to each LK formula one of the two truth values t (for
true) or f (for false). This universal aspect of truth is sometimes very poor, in the situations
where we want to be more specific about the characteristics of truth. For instance, for a
proposition such as “life is good”, we may want to express that “Tomorrow, life is good” or
“Alexis thinks that life is good”. By adding expressiveness to classical logic in this way, we get
what we call a modal logic, and expressions such as “Tomorrow” or “Amina thinks that” are
called modalities. When the modal operators express properties about time, we call them
temporal modalities. We can then add to classical logic modal operators to represent and
reason about the temporal dimension. The obtained logics are particularly suited to describe
the behaviour of reactive systems, which are open systems constantly in interaction with
their environment. With temporal modalities, we can express for instance accessibility
properties, such as “the system will eventually reach a good state”, safety properties such
as “The system will never be in a bad state” and many other properties such as invariance
and progress.
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The Linear Temporal Logic (LTL) is among the most studied temporal logics, we
present its syntax in the following.

1.4.1 LTL formulas

Definition 1.17. Let P = {p, q, . . . } be a set of atoms. LTL formulas are given by:

ϕ,ψ := p | p
⊥ | ⊥ | ⊤ | ϕ ∨ ψ | ϕ ∧ ψ | ⊙ϕ | Fϕ | Gϕ | ϕUψ | ϕRψ

The negation of LTL formulas is the involution extending that of LK with the following
equations:

(⊙ϕ)⊥ = ⊙ϕ⊥ (Fϕ)⊥ = Gϕ⊥ (ϕUψ)⊥ = ϕ⊥Rψ⊥

Let us briefly outline the informal meaning of each temporal operator of LTL:

• ⊙ϕ: ϕ in true in the next moment in time.

• Fϕ: ϕ will eventually become true.

• Gϕ: ϕ will always be true.

• ψUϕ: ψ has to hold at least until ϕ, which holds at the current or a future position.

• ψRψ: ϕ has to be true until and including the point where ψ first becomes true, if ψ
never becomes true, ϕ must remain true forever.

Further in this thesis, we will consider a fragment of LTL, which we call LK⊙. This logic
extends LK only with the modality ⊙. We introduce it below:

Definition 1.18. Let P = {p, q, . . . } be a set of atoms. LK⊙ formulas are given by:

ϕ,ψ := p | p⊥ | ⊥ | ⊤ | ϕ ∨ ψ | ϕ ∧ ψ | ⊙ϕ

1.4.2 Semantics of LTL formulas

The models of LTL formulas are the ω-words over the alphabet Σ = 2P . Intuitively, every
position of such a word corresponds to an instant of time, and a letter at some position
represents the set of atoms which are true at the corresponding instant of time. In the
example below, the atoms p, q are true at instant 0, the atoms q, r are true at instant 1,
etc.

p, q q, r p . . .

Definition 1.19. A model M is an infinite word over Σ := 2P , ieM∈ Σω. The interpre-
tation ‖ϕ‖M of an LTL formula ϕ over a modelM is a set of integers defined by induction
on ϕ as follows:

‖p‖u = {i ∈ ω | p ∈ ui} ‖ϕ ∨ ψ‖u = ‖ϕ‖u ∪ ‖ψ‖u ‖ϕ⊥‖
u

= ω \ ‖ϕ‖u
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‖ ⊙ ϕ‖u = {i ∈ ω | i+ 1 ∈ ‖ϕ‖uρ}

‖Fϕ‖u = {i ∈ ω | ∃j ≥ i, j ∈ ‖ϕ‖u}

‖ψUϕ‖u = {i ∈ ω | ∃j ≥ i, j ∈ ‖ϕ‖u ∧ ∀i ≤ k ≤ j, k ∈ ‖ψ‖u}

We say that a formula ϕ is true in a model M and we write M |= ϕ if 0 ∈ ‖ϕ‖M. A
formula is said to be valid if ∀M, M |= ϕ.

The interpretation of an LTL formula with respect to a model is the set of instants of
time where it is true in this model. A formula is valid in a model, if it is true at the instant
0 of this model. For instance, the formula ⊙r is true in the previous model.

The semantics of LK can be seen as a particular case of the semantics of LTL. Indeed,
every model of LK can be seen as a word of length 1, in other words, we have only one
instant of time in LK.

1.4.3 Proof systems for LTL

The logic LTL does not have a well established proof theory. Many proof systems for LTL

exist, but they do not fulfil the conditions prescribed to be satisfactory in a Curry-Howard
approach: they either use a proof theoretic artifacts in the form of an ω-rule, have no cut-
elimination or only for fragments of the logic [Bor09] or have cut-admissibility proved by
semantic methods but without syntactic cut-elimination [BL08].

We introduce below the proof system LK⊙. This proof system enjoys all the expected
good properties: soundness, completeness and cut-elimination. We will not establish formaly
all these properties about it, since its main interest in this thesis will be to serve as nucleus
for the futur extensions with fixed points.

Definition 1.20. LK⊙ is the proof system whose rules are those shown in Figure 1.3 together
with the following rule:

∆ ⊢ Σ
(⊙)

Γ,⊙∆ ⊢ ⊙Σ,Θ

The logic LK⊙ is obviously much weaker that LTL, since it can speak only about what
could happen in a fixed number of instants of time. Further in this thesis, we will enrich
LK⊙ formulas with least and greatest fixed points operators, which yields a logic called the
linear-time µ-calculus. This enriched logic is not only much more expressive than LTL,
but it will have a very beautiful proof theory.

1.5 On the shape of sequents

In the previous sections, we have presented our proof systems with sequents which are lists
of formulas. This presentation is not the only one, and many other alternative definitions
exist in the literature. We review some of them in the following.

1.5.1 Review on the shape of sequents

We discuss in the following some of the most used presentations of sequents:
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1. Sequents as lists of formulas: This is the original definition of Gentzen and the one
that we used in the previous sections. Its main drawback is its rigidity, since we have
to use constantly the exchange rule. Since this original definition, other alternative
presentations of sequents have been proposed to avoid the use of this rule.

2. Sequents as multi-sets of formulas: When we quotient the order of formulas in
the previous presentation of sequents, we get sequents which are multi-sets of formu-
las. Doing so, we obviously do not need the exchange rule. If both presentations
are perfectly equivalent from the provability point of view, they are not at the level
of proofs. Indeed, from a Curry-Howard perspective where proofs correspond to pro-
grams, the multi-sets presentation of sequents induces a quotient on proofs, identifying
some of them which correspond to programs having completely incomparable compu-
tational content. For instance, the following two proofs correspond respectively to
the λ-terms λxy.x and λxy.y, they will be nevertheless identified in the sequents as
multi-sets presentation (we have annotated formulas with the variables x and y so
that the correspondence with λ-terms is clearer).

(Ax)
Ax ⊢ A

(Wl)
Ax,Ay ⊢ A

(Ax)
Ay ⊢ A

(Wl)
Ay,Ax ⊢ A

(Exl)
Ax,Ay ⊢ A

The same observations hold for the presentation of sequents as sets of formulas. Note
that these two presentations do not require to adapt the inference rules, but only to
interpret them differently, that is the contexts Γ,∆, . . . appearing in the rules should
be thought of as multi-sets (resp. sets) of formulas, not as lists of formulas.

3. Sequents as sets of named formulas: In this presentation, we will also not have
an ordering on the formulas of a sequent, but we will distinguish two occurrences of
the same formula by giving them distinct names, sequents become then sets of named
formulas. More precisely, given a set of names N , a sequent is defined to be a set
of pairs (ϕ, x) where ϕ is a formula and x a name. Every pair (ϕ, x), denoted ϕx, is
called a named formula or a formula occurrence . This presentation requires an
adaptation of the inference rules. Identity rules should be applied when the underlying
formulas are equal:

(Ax)
⊢ ϕx,ϕ

⊥
y

⊢ ϕx, Γ ⊢ ϕ⊥y , ∆
(Cut)

⊢ Γ,∆

And every inference rule of the following form, where ϕ is the principal formula of (r)
and ϕj the sub-formulas of ϕ:

{⊢ [ϕj]j∈Ii , Γi}i∈I
(r)

⊢ ϕ, Γ

becomes as follows, where Γ and Γi are sets of formulas occurrences, and the names
xj should not appear in Γi and ∆i:

{⊢ {ϕj
xj
}j∈Ii , ∆i}i

(r,x→ [[xj ]j ]i)
⊢ ϕx, ∆
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The mention (x → [[xj]j]i) that appears next to the name of the rule is here to
remember that the causality link between the name x and the names xj. This is
essential to define unambiguously the cut-elimination steps. For instance, the following
rules:

⊢ ϕ,ψ, Γ
(`)

⊢ ϕ` ψ, Γ

⊢ ϕ, Γ ⊢ ψ, Γ
(&)

⊢ ϕ& ψ, Γ

become:

⊢ ϕy,ψz, Γ
(`,x→ [[y, z]])

⊢ (ϕ` ψ)x, Γ

⊢ ϕy, Γ ⊢ ψz, Γ
(&,x→ [[y], [z]])

⊢ (ϕ& ψ)x, Γ

This last presentation is equivalent to the original one that uses lists of formulas, at the
level of provability as well as the level of proofs. It is the most commonly used since it
correponds to the way proofs are annotated by variables, in order to obtain λ-terms, but
it is usually treated in an implicit way. It will be also of special importance in our work.
Indeed, if in finitary proof systems (that is proof systems in which proofs are finite trees)
the well-formation of a proof is simply guaranteed by the well-application of the inference
rules, this is not the case anymore for the infinitary proof systems we will deal with further
in this thesis. More precisely, they rely on the future and the transformation it undergoes
all along the proof.

This presentation, although useful, is heavy to manipulate. This is the reason why we
will present in the next section a concrete implementation of it, by choosing an appropriate
set of names. This will allow us to work with formula occurrences in an easy and transparent
way.

1.5.2 Sequents as sets of formula occurrences

Our treatment of occurrences relies on the choice of a specific set of names, which is the set
of words over the alphabet {l, r, i}.

Definition 1.21. Let Σ be the alphabet {l, r, i}. An address is a word over the alphabet
Σ. The empty word is denoted by ε. A formula occurrence, we say simply occurrence , is
given by a formula ϕ and an address α, and written ϕα.

The letters l, r and i stands for “left”, “right” and “inside” respectively. Whenever we
will decompose a formula in an inference rule, the address of each of its subformulas will be
extended by r if it its the right subformula, by l if it its the left subformula and by i if its
is the immediate subformula when the connective of the original formula is unary.

The alphabet Σ is enough for our needs since we focus only on signatures having symbols
of at most arity 2. But if we have more than binary symbols, the alphabet Σ should be
enriched by as many directions as needed.

Convention 1.1. We reserve the symbols ϕ,ψ, . . . to formulas and G,H, . . . to occurrences.

To treat in a transparent way occurrences in our proof systems, we have to extend the
operations on formulas to occurrences. We define in the following the negation of occurrences
and show how to apply the connectives of the logic to occurrences.
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Definition 1.22. We define a duality over Σ∗ as the morphism (•)⊥ satisfying:

l⊥ = r, r⊥ = l and i⊥ = i.

Negation of occurrences is defined by:

(ϕα)
⊥ = (ϕ⊥)α⊥

Connectives are extended to occurrences as follows:

• For any binary symbol ⋆, we set F ⋆ G = (ϕ ⋆ ψ)α if F = ϕαl and G = ψαr.

• For any unary symbol △ we set △ϕ = (△ϕ)α if ϕ = ϕαi.

The inference rules seen in earlier sections can be interpreted in this setting of sequents
as sets of occurrences without any need of adaptation. For instance, in the following rules,
instead of seeing F `G, Γ as a list of formulas whose head is the formula F `G, we can see
it as a set containing an occurrence of the form F `G, etc.

⊢ F ,G, Γ
(`)

⊢ F `G, Γ

⊢ F , Γ ⊢ G, Γ
(&)

⊢ F &G, Γ

These two rules actually denote the following rules, where we explicited the addresses of the
occurrences F and G by setting F = ϕαl and G = ψαr:

⊢ ϕαl,ψαr, Γ
(`)

⊢ (ϕ` ψ)α, Γ

⊢ ϕαl, Γ ⊢ ψαr, Γ
(&)

⊢ (ϕ` ψ)α, Γ

The cut rule stays also unchanged since we have defined the operation of negation on
occurrences. We need to be more specific about the axiom rule, since we want to apply
it to occurrences as soon as their underlying formulas are equal, but not necessarily their
addresses. For that we introduce the following useful notation.

Definition 1.23. Two occurrences F = ϕα and G = ψβ are said to be structurally
equivalent , and we write F ≡ G if ϕ = ψ.

Axiom rules have to be exchanged against these two “up-to relocating” versions:

F ≡ G
(Ax)

F ⊢ G

F ≡ G
(Ax)

⊢ F ,G⊥
F ≡ G

(Ax)
F ,G⊥ ⊢

The idea behind the use of named formulas is to guarantee that every formula appearing
in a proof can be traced back in a unique way to a conclusion formula or to a cut formula.
In other words, we do not want two occurrences to generate the same occurrence. This can
happen if the addresses of the occurrences appearing in a sequent are extensions one of the
other, as for the following example, where the occurrence ϕl of the premise comes both from
the occurrence (ϕ⊕⊤)ε and the occurrence ϕl of the conclusion:

⊢ ϕl
(⊕1)

⊢ (ϕ⊕⊤)ε,ϕl

To prevent that, we impose a disjointness condition on our sequents.
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Definition 1.24. If α,α′ are two addresses such that α is a prefix of α′, then we write
α ⊑ α′ and we say that α′ is a sub-address of α. We say that two addresses α and β
are disjoint if α 6⊑ β and β 6⊑ α. We say that two occurrences are disjoint when their
addresses are. A sequent is a pair of two sets of pairwise disjoint occurrences.

Proviso 1.1. From now on, the sequents of the inference rules of LK, LKrev, LKos, MALL,
LL and LK⊙ are seen as (pairs of two) sets of pairwise disjoint occurrences, and the axiom
rule is replaced by the axiom rule up to renaming.

Example 1.2. We show in the following an example of a LKos proof with our formalism of
sequents, where α is an address.

(Ax)
⊢ pαll, p

⊥
αrr

(W)
⊢ pαll, qαrl, p

⊥
αrr

(Ax)
⊢ q⊥αlr, qαrl

(W)
⊢ q⊥αlr, qαrl, p

⊥
αrr

(∧)
⊢ (p ∧ q⊥)αl, qαrl, p

⊥
αrr

(∨)
⊢ (p ∧ q⊥)αl, (q ∨ p⊥)αr

(∨)
⊢ ((p ∧ q⊥) ∨ (q ∨ p⊥))α

We show an other example in MALL, where α and β⊥ are two disjoint addresses:

(Ax)
⊢ pβl, p

⊥
rβ

(`)
⊢ (p` p⊥)β

(Ax)
⊢ (p` p⊥)α, (p` p⊥)⊥

β⊥

(Cut)
⊢ (p` p⊥)α

Remark 1.1. Note that all the addresses appearing in a proof are the sub-addresses of the
addresses of the conclusion occurrences or the cut occurrences.

We state in the following an easy condition that guarantees the disjointness condition in
sequents. If not otherwise stated, we assume that this condition is satisfied.

Proviso 1.2. All along this thesis, we suppose that the addresses of the conclusion occur-
rences together with the addresses of cut occurrences are all pairwise disjoint.

By Remark 1.1, every proof satisfying the proviso satisfies automatically the disjointness
condition on sequents. Proviso 1.2 is always achievable, since we have an infinite supply of
disjoint addresses, for instance { rnl : n > 0 }. One may thus pick addresses from that
supply for the conclusion sequent of the derivation, and then carry the remaining supply
along proof branches, splitting it on branching rules, and consuming a new address for cut
rules. Clearly, every proof satisfying the proviso satisfies also the disjointness condition on
sequents.

This proviso is practical and easy to state, but it is sometimes too rigid. In particular, it
is not always stable by the transformations that we will perform on our proofs, for example
cut-elimination and focalization. In these specific situations, we will relax it into a condition
which is preserved by these transformations.

We introduce the last definition concerning occurrences, which is the operation of sub-
stitution. It will be helpful to keep the same transparency when we will deal with the rules
of fixed points, since they use substitution.
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Definition 1.25. Substitution of occurrences is defined as follows:

(ϕα)[ψβ/X] = (ϕ[ψ/X])α

We end up this section by a last convention, which allows us to be flexible in our use of
occurrences.

Definition 1.26. Let F = ϕα be a formula occurrence and β be an address. We define Fβ
to be Fβ := ϕβ. We say that we relocated F in β. We define F to be F := ϕ. The function
. is called the forgetful function .

Convention 1.2. All along this thesis, whenever we define a notion N(F ) over occurrences,
if we write N(ϕ) one should read N(ϕε). Conversely, if we define a notion N(ϕ) over
formulas, if we write N(F ) one should read N(F ).



Chapter 2

Fixed-points in proof theory

This chapter is dedicated to the extension of various logics and the associated proof systems
with fixed points.

We start in Section 2.1 by recalling some background on lattice theory and the funda-
mental fixed point theorems of the literature. These theoretical results are important for
two reasons. On the one hand, we will use them several times in our technical proofs. On
the other hand, they will give us good intuitions about fixed point, which will guide the
design of proof systems for fixed points.

The first step towards conceiving these proof systems is to extend the syntax of a logic
with fixed points statements. We show how to perform such extensions in Section 2.2.
The formulas of those logics enjoy, beside the usual notion of subformula, another form of
subformula called Fischer-Ladner subformulas. We discuss and compare these two notions
in Section 2.3.

In Section 2.4, we show how to enrich a proof system S with rules for fixed points.
We focus on two approaches. The first one consists in using Park’s rules, which are rules
directly inspired by the (co)-induction principle. The obtained proof system is called µS
and its proofs are finite trees, just as the proof system we have seen in Chapter 1. The
second approach is inspired by the infinite descent proof technique. It consists in adding
to S the unfolding rules for fixed points and allowing infinite derivations. To get a sound
proof system, these derivations are equipped with a validity condition, and the infinite trees
satisfying it are called infinite proofs. The obtained proof system is denoted by µS∞. If an
infinite proof is regular, we can represent it by a finite graph. We call these graphs circular
proofs, and the corresponding proof system µSω, the circular proof system. We relate the
finitary and the circular proof systems at the end of the chapter, by showing that every µS
proof can be translated into a µSω proof. Conversely, we show that if a µSω proof satisfies
a condition that we call the translatability criterion, we can translate it into a µS proof.

2.1 Fixed points theorems

The least and greatest fixed points of an operator F over a set E do not always exist. The
Knaster-Tarski theorem states a condition on the set E (being a complete lattice) and
the operator F (monotonicity), so that the existence of extremal fixed points is guaranteed.
We introduce these notions and the Knaster-Tarski theorem in the following.

43
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Definition 2.1. A complete lattice is given by a set U and a partial order relation ≤ on
U , such that every subset A of U has a supremum (meet) and an infimum (join) with
respect to ≤, denoted respectively

∨

A and
∧

A.

Taking the meet and the join of the empty set, one gets the bottom and top elements
of the lattice, that is the least and greatest elements of the lattice.

Example 2.1. A common example of a complete lattice is the powerset 2X of a set X, that
is the set of all subsets of X, ordered by the inclusion relation ⊆. The supremum of a set C
of subsets of X is their union ∪C and the infimum of C is their intersection ∩C.

Definition 2.2. Let (U ,≤) be a complete lattice and F : U → U an operator on U .

• The operator F is monotonic if ∀x, y ∈ U , x ≤ y implies F (x) ≤ F (y).

• An element x ∈ U is a pre-fixed point of F if F (x) ≤ x.

• An element x ∈ U is a post-fixed point of F if x ≤ F (x).

• An element x ∈ U is a fixed point of F if F (x) = x.

Theorem 2.1 (Knaster-Tarski [Tar55]). Let (U ,≤) be a complete lattice and F a monotonic
operator on it. The set of fixed points of F , equipped with ≤ forms a complete lattice.
Moreover, the least element of this set, called the least fixed point of F and denoted
lfp(F ), is the meet of the set of pre-fixed points of F .

lfp(F ) =
⋂

{S |F (S) ≤ S}

Dually, the greatest element of the set of fixed points of F , called the greatest fixed point
of F and denoted gfp(F ), is the join of the set of post-fixed points of F .

gfp(F ) =
⋃

{S |S ≤ F (S)}

The Knaster-Tarski theorem guarantees the existence of extremal fixed points, but it does
not give any concrete way to construct them. For that, we usually use a more “constructive”
theorem, due to Kleene [Kle52], where we relax the condition on the order relation, and
strengthen that of the operator.

Definition 2.3. Let (U ,≤) be an ordered set. A subset S of U is said to be directed if it is
nonempty and if for every elements a and b in S there is a c in S such that a ≤ c and b ≤ c.
We say that (U ,≤) is a complete partial order (cpo) if each of its directed subsets has
a supremum.

Definition 2.4. Let (U ,≤) be an ordered set and F an operator on U . We say that F is
Scott-continuous if it preserves all directed suprema, that is if for every directed subset S
of U with supremum in U its image has a supremum in U , and that supremum is the image
of the supremum of S.

Remark 2.1. Every Scott-continuous operator is monotonic.
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Theorem 2.2 (Kleene [Kle52]). Let (U ,≤) be a cpo and F a Scott-continuous operator on
U . Let ⊥ be the bottom of U .

The ascending Kleene chain of F is the chain

⊥ ≤ F (⊥) ≤ F (F (⊥)) ≤ · · · ≤ F n(⊥) ≤ . . .

obtained by iterating F starting from ⊥. The least fixed point of F is obtained by taking the
meet of this chain:

lfp(F ) =
∨

n∈ω

F n(⊥)

In practice, Scott-continuity is not always guaranteed or it is hard to prove. We present
below a theorem due to Cousot and Cousot [CC79] which has the same flavour as Kleene’s
theorem, but with the hypothesis of Knaster-Tarski one. The idea is that, to obtain the
least fixed point of a monotonic operator on a complete lattice, one should iterate it starting
from ⊥, not always ω times as it is the case for Kleene’s theorem, but up to an ordinal which
is “big enough” for the lattice.

Definition 2.5. Let U be a set. The ordinal associated to U , λU , is the least ordinal
whose cardinality is strictly greater than the cardinality card(U).

Definition 2.6. Let (U ,≤) be a complete lattice and F a monotone operator on it. We
define the ascending iterations F ↑δ(⊥) of F starting from ⊥ as follows:

• F ↑0(⊥) = ⊥;

• F ↑δ(⊥) = F (F ↑λ(⊥)) for every successor ordinal δ = λ+ 1;

• F ↑δ(⊥) =
∨

λ<δ

F ↑λ(⊥) for every limit ordinal δ.

Dually, we define the descending iterations F ↓δ(⊤) of iterations of F starting from ⊤ as
follows:

• F ↓0(⊤) = ⊤;

• F ↓δ(⊤) = F (F ↓λ(⊤)) for every successor ordinal δ = λ+ 1;

• F ↓δ(⊤) =
∧

λ<δ

F ↓λ(⊤) for every limit ordinal δ.

Theorem 2.3 (Cousot and Cousot [CC79]). Let (U ,≤) be a complete lattice and F be a
monotonic operator on U . The sequence (F ↑δ(⊥))δ∈λU is a stationary increasing chain, its
limit f ↑λU (⊤) is the least fixed point of F . Dually, the sequence (F ↓δ(⊤))δ∈λU is a stationary
decreasing chain, its limit F ↓λU (⊤) is the greatest fixed point of F .
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2.2 Formulas with fixed points

In this section we will see how to extend the formulas of a given logic with least and greatest
fixed points. This requires to consider a set of variables V that will help to construct these
fixed points statements.

Definition 2.7. Let L = (S, ar) be a signature. The signature µL is defined as follows:

• The symbols of µL are S ∪ {µX., νX.|X ∈ V} ∪ {X,X⊥|X ∈ V}.

• The arity function extends that of L by setting:

ar(µX.) = ar(νX.) = 1 and ar(X) = ar(X⊥) = 0.

Intuitively, the formula µX.ϕ denotes the least fixed point of the operator “X 7→ ϕ(X)”,
and the formula νX.ϕ denotes the greatest fixed point of this operator.

We usually write σX.ϕ when we do not want to be specific about the nature of the fixed
point.

The symbols µX. and νX. are variable binders. The notions of free variables, bound
variables and capture free substitution are as usual.

In the Knaster-Tarski theorem, the monotonicity of the operator is crucial. We reflect
this semantical condition by a syntactic constraint on formulas as follows.

Definition 2.8. Let µL be a signature. A formula of µL is said to be monotonic if no
negation of a variable X⊥ is under the scope of a binder µX or νX.

Note that the abscence of implication in the logics we are considering is important for
this definition of monotonicity.

We will show in further semantical investigations (Chapter 5, Chapter 7), that this
syntactic condition of monotonicity indeed guaranties the monotonicity of the operator that
will be associated to the formula. In the rest of this thesis, we work only with monotonic
formulas and simply call them formulas.

In all the logics presented in Chapter 1 (LK, LL, MALL, LK⊙), we defined negation as
an involution satisfying a number of equations. We extend these definitions in the presence
of fixed points as follows.

Definition 2.9. Let L be a signature in {LK, LL,MALL, LK⊙}. Negation is the involution
on formulas written ϕ⊥ and satisfying the conditions of Chapter 1 together with:

(µX.F )⊥ = νX.F⊥ (X)⊥ = X

Example 2.2. Negation of the µLK⊙ formula µX.(X ∨ ⊙Y ⊥) ∧ p is νX.(X ∧ ⊙Y ⊥) ∨ p⊥.

Remark 2.2. Notice that negation does not dualize the fixed point variables. Doing so,
the negation of a (monotonic) formula is a (monotonic) formula.

Remark 2.3. This definition of negation is practical when we are concerned only with closed
formulas, which will be the case most of the time in this thesis. If we are also interested by
open formulas, the two equations of Definition 2.9 should be replaced by the following one:

(µX.F )⊥ = νX.F⊥[X/X⊥]

This alternative definition dualizes only free variables, and keeps unchanged the bound ones.
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2.3 On the notion of subformula

Formulas with fixed points support two notions of subformula. The first notion is the usual
one: a formula ψ is the subformula of ϕ, and we write ϕ ≤ ψ, if the syntactic tree of ψ is
a sub-tree of the syntactic tree of ϕ. In general, the subformula of a closed formula may
contain free variables. The second one is specific to formulas with fixed points, it is a sort of
subformula up to unfolding, so that the subformulas of a closed formula w.r.t. this notion
are also closed, we call it Fischer-Ladner subformula. In the following, we introduce these
two kinds of subformula, taking advantage of the notion of occurrence.

2.3.1 The usual notion of subformula

We first define the syntactic tree of a formula, then we introduce the sub-occurrences of a
formula. This notion is finer-grained than that of a sub-formula. For instance, the variable
X is a sub-formula of ϕ = (νX.X)⊗X, but in ϕ there are two appearences or occurrences
of this variable, one is bound and the other is free in ϕ. We want to be able to distinguish
these two occurrences of X, and the notion of occurrence, introduced in Definition 1.21 is
well-suited for that purpose.

Definition 2.10. The tree of a formula ϕ is the labelled tree τ(ϕ) defined inductively
as follows, where ⋆ is a binary symbol, △ is a unary symbol and ◦ is a nullary symbol.

τ(ϕ ⋆ ψ) = ⋆

τ(ϕ)

l

τ(ψ)

r τ(△ϕ) = △

τ(ϕ)
i

τ(◦) = ◦

Example 2.3. The trees of the µMALL formula Φ = (νX.X) ⊗ X and the µLK formula
Ψ = µX.νY .⊙X ∧ ⊙Y are the following:

τ(Φ) = ⊗

νX.

X
i

l

X

r
τ(Ψ) = µX.

νY .

∧

⊙

X
i

l

⊙

Y
i

r

i

i

We will use Φ and Ψ in the upcoming examples of this section without recalling their
definitions.

Definition 2.11. We define the relation ⇀ on occurrences as follows, where ⋆ and ∆ are
respectively a binary and a nullary symbols:
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(ϕ ⋆ ψ)α ⇀ ϕαl

(ϕ ⋆ ψ)α ⇀ ψαr

(△ϕ)α ⇀ ϕαi

A sub-occurrence of an occurrence F is any occurrence G such that F ⇀∗ G, where ⇀∗

is the reflexive transitive closure of ⇀. The sub-formulas of an occurrence F are the
formulas obtained by forgetting the addresses of the sub-occurrences of F . We denote by ≤
the subformula ordering on formulas, that is ψ ≤ ϕ if the formula ψ is a subformula of
ϕ. We denote by Sub(F ) (resp. Subo(F )) the set of sub-formulas (resp. sub-occurrences)
of F .

We use the expression “ψβ is an occurrence of ψ in ϕα” to say that ψβ is a sub-occurrence
of ϕα.

Example 2.4. We have Φε ⇀ Xr and Φε ⇀ (νX.X)l ⇀ Xli. In particular Φε has two
occurrences of the variable X which are Xr and Xli, the first one is free the other is bound.

Proposition 2.1. Let F = ϕα be an occurrence. The following holds:

i) If ψβ is a sub-occurrence of F , then β = α.p, where p is a path in τ(ϕ) from the root
to some node n.

ii) The sub-tree of τ(ϕ) rooted in n is τ(ψ). As a consequence, any sub-occurrence G of
F can be mapped in a unique way to a node of τ(ϕ), we denote it NF (G).

iii) Conversely, any node n of τ(ϕ) defines a unique sub-occurrence ψβ of F : the subtree
rooted in n is the tree of the formula ψ and β = α.p where p is the path from the root
of τ(ϕ) to the node n. We denote by SF (n) the occurrence ψβ.

iv) One has SF (NF (G)) = G and NF (SF (n)) = n.

Remark 2.4. As a consequence of Proposition 2.1, for any occurrence F , the sets Sub(F )
and Subo(F ) are finite.

Definition 2.12. Let F be an occurrence and let Xβ be a sub-occurrence of F . We say
that Xα is a free occurrence of X in F if the path between the root of τ(F ) and NF (Xα)
does not contain a node labelled σX. It is called a bound occurrence otherwise. We denote
by fvo(F ) the set of free variable occurrences in F .

Let Xα be a bound occurrence of X in F , we call the binder of Xβ the closest node of
τ(F ) to NF (Xα), which is labelled σX. If n is the binder of Xα, we call definition of Xα

the occurrence SF (n) and we denote it DF (Xα).

Remark 2.5. The underlying formula of DF (Xα) is of the form σX.ψ.

Example 2.5. The definition of the variable occurrenceXli in Φε is (νX.X)l. The definition
of Xiili in Ψε is Ψε and that of Yiiri is (νY .⊙X ∧ ⊙Y )i
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2.3.2 Fischer-Ladner subformulas

We have seen that the usual notion of sub-formula is obtained by traversing the tree of
a formula. In the same way, the notion of Fischer-Ladner subformula can be obtained by
traversing the graph of the formula, that is the graph obtained by identifying the nodes of
bound variable occurrences with their binders.

Definition 2.13. The graph of a formula ϕ, denoted G(ϕ), is the graph obtained from
τ(ϕ) by identifying the nodes of bound variable occurrences with their binders.

Example 2.6. The graphs of the formulas Φ and Ψ of example 2.3 are the following:

G(Φ) = ⊗

XνX.

rl

i

G(Ψ) = µX.

νY .

∧

⊙⊙

i

i

rl

i

i

Remark 2.6. The graph G(ϕ) has the structure of a tree with “back-edges”.

Terminology 2.1. When we speak about the relative positions of two nodes of G(ϕ) (above,
below, closer to the root, . . . ) it is relatively to its underlying tree structure. For example,
a node n is above a node m in G(F ), if n is the ancestor of m in τ(ϕ).

Definition 2.14. We define the relation → on occurrences as follows:

(ϕ ⋆ ψ)α → ϕαl

(ϕ ⋆ ψ)α → ψαr

(△ϕ)α → ϕαi if △ 6= σX

(σX.ϕ)α → (ϕ[σX.ϕ/X])αi

A FL-suboccurrence of an occurrence F is any occurrence G such that F →∗ G, where→∗

is the reflexive transitive closure of →. The FL-subformulas of an occurrence F are the
formulas obtained by forgetting the addresses of the FL-suboccurrences of F . The Fischer-
Ladner closure of an occurrence, denoted FL(F ), is the set of its FL-subformulas.

Example 2.7. We set Θ = νY .⊙Ψ ∨ ⊙Y . One has:

Ψε → Θi → (⊙Ψ ∨ ⊙Θ)ii → (⊙Ψ)iil → Ψiili → Θiilii → (⊙Ψ ∨ ⊙Θ)iiliii

The Fischer-Ladner closure of Ψ is {Ψ,Θ,⊙Ψ ∨ ⊙Θ,⊙Θ,⊙Ψ}. We use Θ in the next
examples without recalling its definition.

Proposition 2.2. Let ϕα be an occurrence. If ψβ is a FL-suboccurrence of ϕα, then β = α.p,
where p is a path in G(ϕ) from the root to some node n, we denote this node by NF (ψβ).

Example 2.8. The node of the FL-suboccurrence (⊙Ψ∨⊙Θ)iiliii of Ψε is the node labelled
∧ in G(Ψ).
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We can relate the two notions of subformula and FL-subformula as follows: for every
FL-subformula G of F , the node of G in G(F ) is also a node of τ(F ), and we have seen
that we can associate to every node of τ(F ) a sub-occurrence H of F . In this way, we can
associate to every FL-subformula G of F the subformula H, which will be called the body of
G.

Definition 2.15. Let G be a FL-suboccurrence of F . The node n = NF (G) is also a node of
τ(F ). The body of G, denoted BodyF (G), is the occurrence SF (n), that is the suboccurrence
corresponding to the node n of τ(F ).

Example 2.9. The body of (⊙Ψ ∧ ⊙Θ)iiliii is the occurrence (⊙X ∧ ⊙Y )ii because the
sub-occurrence corresponding to the node ∧ in τ(Ψ) is (⊙X ∧ ⊙Y )ii.

Definition 2.16. Let F be an occurrence and G be a sub-occurrence of F . The recursive
substitution of G, denoted by JGKF , is defined inductively as follows:

JGKF = G[JDF (Xα)KF/X]Xα∈fvo(G)

The recursive substitution takes a sub-occurrence G and replaces its free variables by
their definitions, that is to say the subformulas of F that bind them, but these subformulas
contain potentially free variables themselves, then the recursive substitution replaces these
free variables by their definitions, and it continues this way. This definition is well-formed
because it is inductive on the distance of NF (G) to the root: clearly the node of the defi-
nition of a free variable Xα of G, NF (DF (Xα)), is closer to the root than NF (G) because
NF (DF (Xα)) is in the path between the root and NF (G).

Example 2.10. The recursive substitution of the sub-occurrence (⊙Y )iir is (⊙Θ)iir. Indeed,
the definition of Yiiri is (νY .(⊙X) ∨ (⊙Y ))i which contains in its turn the free variable
Xiili. The definition of Xiili is Ψε, which is closed. Hence the recursive substitution of
(νY .(⊙X) ∨ (⊙Y ))i is Θ.

The following proposition shows the exact relation between a FL-suboccurrence G of F
and its body: when we perform a recursive substitution on the body of G, we get exactly
G, up to relocation.

Proposition 2.3. Let G be a FL-suboccurrence of an occurrence F . We have that:

JBodyF (G)KF ≡ G

Proof. The proof is by induction on the distance from the node NF (G) to the root of
G(F ). If NF (G) is the root itself, then the equality is trivial since BodyF (G) = F and
JF KF = F . Suppose that we have proved the property for G and suppose that G = H ⋆ K.
If the node nH := NF (H) is above nG := NF (G), that is the edge (nG,nH) is a back-
edge, then the property is already proved for H since nH is closer to the root than nG.
Otherwise, ie. when nH is under nG, this means that BodyF (G) is of the form BodyF (G) =
BodyF (H) ⋆ T (notice that we do not have necessarily BodyF (G) = BodyF (H) ⋆ BodyF (K)
since the node of K in G(K) may be above nG, hence T is some variable occurrence Yγ and
BodyF (K) is the definition of Yγ). One then has JBodyF (G)KF = JBodyF (H)KF ⋆ JT KF . By
induction hypothesis one has JBodyF (G)KF ≡ G, then JBodyF (H)KF ⋆ JT KF ≡ H ⋆K, hence
JBodyF (H)KF ≡ H. The same reasoning applies for unary and nullary symbols.
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Since BodyF (G) ranges over sub-occurrences of F , which is a finite set, a consequence of
Proposition 2.3 is the following corollary:

Corollary 2.1. The Fischer-Ladner closure of a formula is finite.

2.3.3 Comparing FL-subformulas

Further in this thesis, we shall compare the subformulas or the FL-subformulas of a given
formula w.r.t. the subformula ordering ≤. For the first problem, that is comparing two
elements G,H of Sub(F ) w.r.t. ≤, one can rely on some graphical observations: if the node
of G is under the node of H in the tree of F , one can conclude that G ≤ H. Since the
elements of FL(F ) correspond to the nodes of the graph of F , one may wonder if the same
property happens for the FL-subformulas of F , but this is not the case. Indeed, in the graph
of the formula Ψ of Example 2.6 shown below, the node of the FL-suboccurrence Θi, which
is labelled νY ., is under the node of Ψε which is the root, however, Ψ ≤ Θ.

G(Ψ) = µX.

νY .

∧

⊙⊙

i

i

rl

i

i

One cannot even say that ≤ and the graph ordering are inverted, indeed, in the graph of
the formula Φ, the node of (νX.X)i, which is the node labelled νX. is under the node of
Φε which is the root, and one has νX.X ≤ Φ.

G(Φ) = ⊗

XνX.

rl

i

In Proposition 2.4, given two FL-suboccurrences G and H of F , we show some situations
when we can assert that G ≤ H or H ≤ G using only the relative positions of the nodes of
H and G in the graph of F .

Terminology 2.2. In the following, if n is a node in G(F ), we use the expression sub-tree
of n to speak about the sub-tree of τ(F ) rooted in n, from which the nodes labelled with
variables are deleted. This sub-tree is obviously also a sub-tree of G(F ). For instance, the
sub-tree of the node labelled ∧ in G(Ψ) in the above example is the sub-graph of G(Ψ)
containing the node labelled ∧ and the two nodes labelled ⊙.

Proposition 2.4. Let G,H be two FL-suboccurrences of F , let n = NF (G) and m = NF (H)
be their respective corresponding nodes in G(F ). Suppose that m is under n.

• If there is no back-edge going from the sub-tree of m to a node between n and m,
including n (in other words, all the back-edges starting from the subtree of m can only
stay in this subtree or point to nodes strictly above n), then one has H ≤ G.
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•m
•n

• There is a back edge starting from the subtree of m and pointing to the node n. In this
case, one has G ≤ H.

•m
•n

Proof. Let B = BodyF (G) and C = BodyF (H). Since m is under n, we have that C ≤ B.

• Consider the case where all the back-edges going out of the subtree of m point to
nodes strictly above n. This means that fvo(C) ⊆ fvo(B). By Proposition 2.3, we
have:

G ≡ JBKF = B[JDF (Xα)KF/X]Xα∈fvo(B)

and

H ≡ JCKF = C[JDF (Xα)KF/X]Xα∈fvo(C) = C[JDF (Xα)KF/X]Xα∈fvo(B)

Since C ≤ B we have also that H ≤ G.

• If there is a back edge starting form the subtree of m and pointing n, this means
that B is of the form σY .D, and that there is an occurrence Yβ free in C and bound
by this σY . note that the definition of Yβ, DF (Yβ), is B. By proposition 2.3, H =
C[JDF (Xα)KF/X]Xα∈fvo(C) and G = JBKF = JDF (Xα)KF , thus G ≤ H.

Now, instead of comparing two FL-subformulas of a given formula, we address the prob-
lem of finding the minimum of a whole set of its FL-subformulas. The existence of the
minimum is not always guaranteed, but in Proposition 2.5 and 2.6, we show two sufficient
conditions for the minimum to exist.

Definition 2.17. A thread of F is a sequence t = (Fi)i∈o, where o ∈ ω + 1, F0 = F and
∀i ∈ o such that i+ 1 ∈ o either Fi → Fi+1 or Fi = Fi+1.
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Definition 2.18. Let F be an occurrence and t = (Fi)0≤i≤k be a finite thread starting from
F . For all 0 ≤ i ≤ k, we set ni = NF (Fi). The thread t is said to be straight if ni+1 is the
son of ni in τ(F ).

Example 2.11. The thread (Ψε, Θi, (⊙Ψ∧⊙Θ)ii, (⊙Θ)iir) is straight while (Ψε, Θi, (⊙Ψ∧
⊙Θ)ii, (⊙Θ)iir, Θiiri) is not.

Proposition 2.5. If t is a straight thread then it admits a minimum w.r.t. ≤.

Proof. We set t = (Fi)0≤i≤k and for all 0 ≤ i ≤ k we set ni = NF (Fi). We construct a
sequence of nodes (nki)0≤i≤l starting from nk i.e., k0 = k, and by applying the following
algorithm:

• If there is no back-edge from the subtree of nki to a node strictly above nki , then halt.

• Otherwise, there is a back-edge pointing to a node strictly above nki , call it nki+1
.

This algorithm always halts because we cannot go beyond n0. We show first by a decreasing
induction on ki that Fkl ≤ Fki , for every 0 ≤ i ≤ l.

• The base case is when ki = kl, the result is obvious since Fkl ≤ Fkl .

• Suppose that Fkl ≤ Fki for some 0 < i ≤ l and let us show that Fkl ≤ Fki−1
. Note

that by construction, there is a back-edge from the sub-tree of nki−1
pointing to nki .

We are then in the second case of Proposition 2.4, thus we have that Fki ≤ Fki−1
. We

conclude this case using transitivity of the relation ≤.

Let us show now that Fkl ≤ Fi for every 0 ≤ i ≤ n. There are two cases to analyse:

• If 0 ≤ i < kl, then ni is above nkl and by construction there is no back-edge starting
from the subtree of nkl and pointing to a node above nkl , in particular there is no
back-edge pointing to a node above i (including ni), thus we are in the fisrt case of
Proposition 2.4, thus Fkl ≤ Fi.

• If kl ≤ i ≤ n, then by construction there is j such that ni is a node between nkj and
nkj+1

. By construction, there is a back-edge from the sub-tree of nkj pointing to nkj+1
.

Since the subtree of ni contains that of nkj , there is a back-edge from the subtree of
ni pointing to nkj+1

. Thus we are in the second case of Proposition 2.4, and we have
Fkj+1

≤ Fi. Since we have Fkl ≤ Fkj+1
, and by transitivity of ≤, we have also that

Fkl ≤ Fi.

The other situation where the minimum of a set of FL-subformulas of F exists is when
the set of their corresponding nodes in G(F ) forms a strongly connected subgraph of G(F ).

Proposition 2.6. Let {Fi}i∈I be a set of FL-suboccurrences of the occurrence F and for
all i ∈ I, let ni = NF (Fi) be the node of Fi in G(F ). If the subgraph of G(F ) restricted to
the set of nodes {ni}i∈I forms a strongly connected graph, then {Fi}i∈I admits a minimum
w.r.t. ≤.
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Proof. The first observation is that among the nodes {ni}i∈I , there is a node nk which is the
nearest one to the root. Indeed, the underlying tree structure of G(F ) prevents two distinct
nodes to be nearest to the root. If this were the case, these two nodes being co-accessible,
there would be a third node, nearer to the root, which allows them to be co-accessible,
contradiction.

Let us first show the proposition in the particular case where the nodes {ni}i∈I form an
elementary cycle, we depict this situation below, where nm is the predecessor of nk in this
cycle.

nk

ni

nm

Let us show that Fk ≤ Fi, for every i ∈ I. Since there is a back-edge from nm to nk, and
since nm is a node of the subtree of ni for every i ∈ I, then there is a back-edge from the
subtree of ni to nk. We are then in the case 2) of Proposition 2.4, thus we have that Fk ≤ Fi.

We generalize this result to every cycle. More precisely, we show that if {ni}i∈J⊆I forms
a cycle C = nk, . . . ,nk where nk is the nearest node of C to the root, then Fk ≤ Fi for
every i ∈ J . We proceed by induction on the number of elementary cycles of C. The case
where C is itself an elementary cycle was treated above. Suppose that C is of the form
C = nk . . .m,C ′,m′, . . . ,nk, where C ′ = nm . . . nm is an elementary cycle and where nm is
the nearest node to the root among its elements. Let C ′′ be the cycle obtained from C by
collapsing the cycle C ′ to the node nm, that is C ′ = nk, . . . ,m,nm,m

′, . . . ,nk. The cycles C ′

and C ′′ have strictly less elementary cycles than C, thus by induction hypothesis we have
that:

∀ni ∈ C
′, Fm ≤ Fi

∀ni ∈ C
′′, Fk ≤ Fi (⋆)

Since nm ∈ C ′′, we have that Fk ≤ Fm, thus by transitivity of ≤, we have also that:

∀ni ∈ C
′, Fk ≤ Fi (†)

Since for every n ∈ C, either n ∈ C ′ or n ∈ C ′′, we conclude using (⋆) and (†).

Definition 2.19. Let t = (Fi)i∈ω be a thread. We denote by t the sequence (Fi)i∈ω, that
is the sequence obtained by forgetting the addresses of the occurrences of t. We denote by
Inf(t) the elements of t that appears infinitely often in t.

Remark 2.7. The elements of t are in the Fischer-Ladner closure of F0, hence they are
finitely many.

A thread starting from an occurrence F can be seen as a path in the graph G(F ). The
nodes of this path that occur infinitely often form a connected component.
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Proposition 2.7. Let F be an occurrence and t = (Fi)i∈ω be a thread starting from F .
For all i ∈ ω, let ni = NF (Fi) be the node corresponding to the occurrence Fi in G(F ).
The sequence p = (ni)i∈ω forms a path in G(F ). Let Inf(p) be the set of nodes that occurs
infinitely often in p. The following facts hold:

• The set Inf(p) contains a node n such that n is in the path from the root to any other
element of Inf(p), in other words n is the closest element of Inf(p) to the root, we
denote it min(Inf(p)).

• The set Inf(t) admits a minimum w.r.t. the subformula ordering ≤, we denote it by
min(Inf(t)).

• Moreover, if k ∈ ω is such that nk = min(Inf(p)), then Fk = min(Inf(t)).

Proof. This proposition follows immediately from Proposition 2.6, by observing that the
elements of Inf(p) forms a cycle. We have seen in the proof of Proposition 2.6 that the
formulas corresponding to the nodes of the cycle admit a minimum, and that this minimum
is the formula of the node which is the nearest to the root.

Example 2.12. Consider the thread starting from Ψε that goes always to the right:

t = Ψε → Θi → (⊙Ψ ∧ ⊙Θ)ii → (⊙Θ)iir → Θiiri → (⊙Ψ ∧ ⊙Θ)iirii → (⊙Θ)iiriir . . .

One has:

t = Ψ→ Θ→ (⊙Ψ ∧ ⊙Θ)→ (⊙Θ)→ Θ→ (⊙Ψ ∧ ⊙Θ)→ (⊙Θ) . . .

and Inf(t) = {Θ, (⊙Ψ ∧ ⊙Θ),⊙Θ}. The minimum of Inf(t) w.r.t. ≤ is Θ.

The thread t describes the path nµ(nνn∧n⊙r)
ω, where nµ,nν ,n∧ are respectively the

nodes labelled µX., νY .,∧, and n⊙r is the right node labelled ⊙. Inf(p) is the set of nodes
{nν ,n∨,n⊙r}, and the closest node of Inf(p) to the root is the node nν which is the node of
Θi.

2.4 Proof systems for logics with fixed points

We have seen in Section 2.2 how to extend the signature L of a logic with least and greatest
fixed points. This allows us to write inductive and coinductive definitions over L. Now we
want to reason about these definitions, that is to enrich a proof system S for this logic, to
get one which is able to manipulate least and greatest fixed points formulas.

We will consider two ways to obtain such proof systems. The standard one, is to add
to S Park’s fixed point rules, which are rules for fixed points directly inspired by Knaster-
Tarski’s characterisation of extremal fixed points, we denote the resulting system µS. The
proof system µS is close to the proof systems we deal with usually in proof theory, in
particular its proofs are finite trees. The advantage of this extension is that we can apply
to it the well established tools and methods of reasoning of finitary proof theory. But the
drawback of µS, as we shall see, is that it is not suitable for proof search in practice.

Another alternative is to use rules for fixed points which are weaker than Park’s rules,
and to admit, as a counterpart to this simplification, infinitary proof structures. To get a
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⊢ F [µX.F/X], Γ
(µ)

⊢ µX.F , Γ

⊢ S⊥,F [S/X]
(ν)

⊢ S⊥, νX.F

Figure 2.1: Park’s rules for least and greatest fixed point
in a one-sided sequent calculus.

∆ ⊢ F [µX.F/X], Γ
(µr)

∆ ⊢ µX.F , Γ

S ⊢ F [S/X]
(νr)

S ⊢ νX.F

F [S/X] ⊢ S
(µl)

µX.F ⊢ S

∆,F [νX.F/X] ⊢ Γ
(νl)

∆, νX.F ⊢ Γ

Figure 2.2: Park’s rules for least and greatest fixed point
in a two-sided sequent calculus.

proof system which is sound, this proof system should be equipped with a validity condition
which will ensure the well-foundedness of inductive reasoning, and only infinitary derivations
satisfying this condition can be declared as proper proofs. The obtained proof system is
denoted by µS∞. We will be also interested in a restriction of this system to proofs which are
finitely representable: we call these proofs circular proofs and the obtained proof system
µSω.

In this section, we treat generically the extension of the proof systems introduced in
Chapter 1 with least and greatest fixed points along the two approaches discussed above.
A system S will then denote any proof system in {MALL, LL, LK, LK⊙}, but the approaches
shown later can be adapted to many other proof systems.

2.4.1 Finitary proof system

The first possibility to extend a proof system with least and greatest fixed points is to add
Park’s fixed point rules. The obtained proof system is called finitary because its proofs are
finite trees.

Definition 2.20. If S is a one-sided (resp. two-sided) proof system over a signature L, we
denote by µcS the proof system over the signature µL, whose rules are obtained by adding
to S the rules of Figure 2.1 (resp. Figure 2.2).

We comment on the two-sided rules of Figure 2.1, but the same observations hold dually
for the one-sided ones. Park’s rules reflect the Knaster-Tarski characterization of the least
fixed point of an operator as its least pre-fixed point, and dually for the greatest fixed point.
Indeed, the rule (µl) can be understood along the common interpretation of implication as
inclusion as:

"If F (S) ⊆ S then µX.F ⊆ S"
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⊢ Γ,S ⊢ S⊥,F [S/X]
(ν)

⊢ Γ, νX.F

⊢ F [µX.F ], Γ
(µ)

⊢ µX.F , Γ

Figure 2.3: Rule for fixed points with an integrated cut.

Which means that µX.F is smaller than any pre-fixed point S of F . The rule (µr) completes
this characterisation by reflecting the fact that µX.F is itself a pre-fixed point.

Remark 2.8. From now on we will consider only the one-sided formulation of our proof
systems since this presentation is perfectly equivalent to the two-sided one for the systems
we are considering.

All the systems we are considering here (MALL, LL, LK, LK⊙) enjoy the cut elimination
property. Is this property preserved by adding Park’s rules? The answer is no, at least with
this precise formulation of the rules. Actually, the cut rule is not even admissible in these
proof systems. Indeed, consider the sequent ⊢ 0, 0, νX.X which is provable in µcMALL using
the following derivation:

(⊤)
⊢ 0, 0,⊤

(⊤)
⊢ 0,⊤

(ν)
⊢ 0, νX.X

(Cut)
⊢ 0, 0, νX.X

If we remove the cut rule from µcMALL, we cannot derive it anymore: the rule (ν) cannot be
applied because the context around νX.X contains more than a single formula, and no rule
on 0 is available. Similar examples can be developed for the other systems. To get proof
systems which admit the cut-elimination property, we have to consider a rule for greatest
fixed points (Figure 2.3) obtained by aggregating the former rule with a cut as follows:

⊢ Γ,S

⊢ S⊥,F [S/X]
(ν)

⊢ S⊥, νX.F
(Cut)

⊢ Γ, νX.F

Definition 2.21. If S is a proof system over a signature L, we denote by µS the proof system
over the signature µL, whose rules are obtained by adding to S the rules of Figure 2.3.

Remark 2.9. In µS, the rule (ν) of µcS is still derivable. Indeed, when we take Γ to be S⊥

in the rule (ν) of µS, we can close the left premise using an axiom rule, the right one being
the premise of the rule (ν) in µcS.

Before discussing the cut-elimination property for µS, we show some proof constructions
that will be useful later on, in particular to properly define the cut-elimination rules. The
first construction is functoriality, which is a construction used to derive the following rule:

⊢ F ,G⊥
(FB)

⊢ B[F/X],B⊥[G⊥/X]

In functional programming terms, it corresponds to a map function: its type is (G→ F )→
(B(G) → B(F )). To derive this construction in µS, the original proof system S should
admit all the finite η-expansions, we define this property in the following:
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Definition 2.22. A proof system S admits finite η-expansions if for every n-ary connec-
tive c the following rule, denoted ηc, is derivable:

{⊢ Fi,Gi}1≤i≤n
(ηc)

⊢ c[F1, . . . ,Fn], c
⊥[G1, . . . ,Gn]

Example 2.13. We show below how to derive η⊗ in MALL.

⊢ F1,G1 ⊢ F2,G2
(⊗)

⊢ F1 ⊗ F2,G1,G2
(`)

⊢ F1 ⊗ F2,G1 `G2

It is easy to show that all the proof systems we are considering admit finite η-expansions.

Proposition 2.8. The proof systems MALL, LL, LK and LK⊙ admit finite η-expansions.

Now we can define the functoriality construction in µS, which can be seen as a general-
isation of finite η-expansions:

Definition 2.23. Let B be an occurrence and π be a proof of ⊢ F ,G. We define the
proof FB(π) of conclusion ⊢ B[F/X],B⊥[G/X] by induction on the maximum depth of the
occurrences of X in B, as follows:

• If X /∈ fv(B) then B⊥[G/X] = (B[F/X])⊥ and FB(π) is an instance of the axiom rule.

• If B ≡ X then FB(π) is π up to relocation of F and G in the addresses of B and B⊥

respectively.

• If B = c(B1, . . . ,Bn) where c /∈ {µ, ν} we perform an η-expansion on c and conclude
by induction hypothesis.

FB(π) =

{

FBi
(π)

⊢ Bi[F/X],B⊥i [G/X]

}

1≤i≤n
(ηc)

⊢ c[B1[F/X], . . . ,Fn[F/X]], c⊥[B⊥1 [G/X], . . . ,B⊥n [G/X]]

• IfB = µY .C, then FB(π) is the following derivation, where S stands for (µY .C[F/X])⊥.

(Ax)
⊢ S⊥,S

FC[S⊥/Y](π)

⊢ C[S⊥/Y ][F/X],C⊥[S/Y ][G/X⊥]
(µ)

⊢ S⊥,C⊥[S/Y ][G/X⊥]
(ν)

⊢ µY .C[F/X], νY .C⊥[G/X]

• The case where B = νX.C is treated symmetrically.
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⊢ Γ,C

⊢ ∆,C⊥,S ⊢ S⊥,F [S/X]
(ν)

⊢ C⊥, ∆, νX.F
(Cut)

⊢ Γ,∆, νX.F

→

⊢ Γ,C ⊢ ∆,C⊥,S
(Cut)

⊢ Γ,∆,S ⊢ S⊥,F [S/X]
(ν)

⊢ Γ,∆, νX.F

⊢ Γ,C

⊢ C⊥, ∆,F [µX.F/X]
(µ)

⊢ C⊥, ∆,µX.F
(Cut)

⊢ Γ,∆,µX.F

→

⊢ Γ,C ⊢ C⊥, ∆,F [µX.F/X]
(Cut)

⊢ Γ,∆,F [µX.F/X]
(µ)

⊢ Γ,∆,µX.F

Figure 2.4: Auxiliary reduction rules (µ)/(Cut) and (ν)/(Cut) in µS.

Remark 2.10. We usually write the functoriality construction as a rule named (FB). Indeed,
FB(π) starts with a derivation that decomposes B and B⊥ using η-expansions until reaching
the occurrences of X where it plugs π up to some renamings. This part of the derivation
does not depend on π, that is why we write FB(π) as follows, where ⊢ F ,G is the conclusion
of π:

FB(π) :=

π

⊢ F ,G
(FB)

⊢ B[F/X],B⊥[G/X]

Another useful rule, derivable in µS, is the unfolding of greatest fixed points.

Proposition 2.9. The following rule is derivable in µS:

⊢ F [νX.F/X], Γ
(νu)

⊢ νX.F , Γ

Proof. It suffices to apply the rule (ν) and to take F [νX.F/X] as its invariant, then we can
derive the following:

⊢ F [νX.F/X], Γ

(Ax)
⊢ F⊥[(νX.F )⊥/X],F [νX.F/X]

(µ)
⊢ (νX.F )⊥,F [νX.F/X]

(FF)
⊢ F⊥[(νX.F )⊥/X],F [F [νX.F/X]/X]

(ν)
⊢ νX.F , Γ

Let us go back to the cut-elimination property for µS. Given a proof system S admitting
the cut-elimination property, with rewriting rules R, we show how to extend R to get a
rewriting system for µS. For that, we need three new rewriting rules: the auxiliary reduction
rules (µ)/(Cut) and (ν)/(Cut) shown in Figure 2.4 and the principal (µ)/(ν) reduction rule
shown in Figure 2.5. Notice that this last reduction makes use of the functoriality construct.
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ΠL

⊢ Γ,B[(µX.B)/X]
(µ)

⊢ Γ,µX.B

ΠR

⊢ ∆,S

Θ

⊢ S⊥,B⊥[S/X]
(ν)

⊢ ∆, (µX.B)⊥
(Cut)

⊢ Γ,∆

↓

ΠR

⊢ ∆,S

Θ

⊢ S⊥,B⊥[S/X]

(Ax)
⊢ S⊥,S

Θ

⊢ S⊥,B⊥[S/X]
(ν)

⊢ S⊥, (µX.B)⊥
(FB)

⊢ B[S⊥/X],B⊥[(µX.B)⊥/X]

ΠL

⊢ B[(µX.B)/X], Γ
(Cut)

⊢ B[S⊥/X], Γ
(Cut)

⊢ S⊥, Γ
(Cut)

⊢ Γ,∆

Figure 2.5: Principal cut-elimination rule (µ)/(ν) in µS.

A candidate of reducibility argument has been used to show that µMALL equipped with
these cut-elimination rules, enjoys cut elimination [Bae12b]. This argument can be adapted
to obtain the same result for the other logics considered in this thesis.

From the Curry-Howard viewpoint, this cut-elimination result allows us see the proof
systems presented above as programming languages, handling inductive and coinductive
definitions.

Usually, in a proof search perspective, proving the cut-elimination property, in particular
the admissibility of the cut rule, is a very big step toward reducing the non-determinism
of the proof search. This is not really the case when we consider the proof system µS
introduced above. Indeed, one has to figure out the invariant S of the (ν) rule, and in
general there is no hint on how to choose it. We present in the next section a proof system
which is better-suited for proof-search in the presence of least and greatest fixed points.

2.4.2 Infinitary proof system

If we replace in µS the rule (ν) by the unfolding rule (νu) (Proposition 2.9), we get a proof
system where proof search is easier. The obtained proof system is however much weaker
than µS. For instance, νX.X which is derivable in µS, is no longer derivable. To offset the
weakness of the unfolding rules, we allow in this new system infinite derivations, which we
call µS∞ pre-proofs.

Definition 2.24. A µS∞ pre-proof is a possibly infinite tree, coinductively generated by
the rules of S and the rules of Figure 2.6.

The problem of pre-proofs is that they are unsound. For example, it is easy to derive
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⊢ F [νX.F/X], Γ
(ν)

⊢ νX.F , Γ

⊢ F [µX.F/X], Γ
(µ)

⊢ µX.F , Γ

Figure 2.6: Fixed point rules for the µS∞ proof system.

the empty sequent using the following pre-proof.

...
(ν)

⊢ (νX.X)i
(ν)

⊢ (νX.X)ε

...
(µ)

⊢ (µX.X)i
(µ)

⊢ (µX.X)ε
(Cut)

⊢

In order to obtain proper proofs from pre-proofs, we add a validity condition that reflects
the nature of our two fixed points.

Definition 2.25. A thread t (Definition 2.19) is said to be a ν-thread (we say sometimes
that it is valid) if min(Inf(t)) is a ν-formula. Let γ = (⊢ Γi)i∈ω be an infinite branch in a
µS∞ pre-proof. We say that γ is valid if there is a ν-thread t = (Fi)i>j where j ∈ ω which
is not stationary, and such that ∀i > j, Fi ∈ Γi.

Definition 2.26. The proofs of µS∞ are those pre-proofs in which every infinite branch
is valid.

Remark 2.11. Note that a thread that validates a branch can start at any point of this
branch. In particular, it can start from a cut formula.

This validity condition has its roots in parity games and is very natural for infinitary
proof systems with fixed points. It is commonly found in deductive systems for modal µ-
calculi, for instance in the proof system introduced by Dax et al. in [DHL06], which yields a
sound and complete sequent calculus for the linear-time µ-calculus. We find a dual condition
in the refutations for the modal µ-calculus [Wal95]. A refutation of a formula ϕ can be
seen as infinite proof of ¬ϕ, it is therefore natural that the validity condition for refutations
is the dual of our validity condition. Santocanale uses the same condition for his circular
proofs [San02], but his formulation is simpler due to the restriction to purely additive logic.
Indeed, his sequents have exactly two formulas, one on the right and one on the left. Thus,
every infinite branch has exactly two threads: a right thread and a left one.

Let us give an intuition on this validity condition. We can think about greatest fixed
points as objects that we can iterate infinitely many times and about least fixed points as
objects that can be iterated only finitely many times. The validity condition says that an
infinite branch cannot be supported by the unfolding of least fixed points only, but there
should be at least a greatest fixed point formula that is unfolded there infinitely many times.
Actually, the condition is more complicated than that because of the interleaving of fixed
points. Let us take for instance the formula ϕ = µX.νY .X ⊕ Y and the following µMALL∞
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pre-proof, where ψ = νY .ϕ⊕ Y :

...
(⊕1)

⊢ (ϕ⊕ ψ)iilii
(ν)

⊢ ψiili
(µ)

⊢ ϕiil
(⊕1)

⊢ (ϕ⊕ ψ)ii
(ν)

⊢ ψi
(µ)

⊢ ϕε

In the (unique) branch of this pre-proof, there is a (unique) thread that unfolds infinitely
often the ν-formula ψ. But in this same thread, we unfold also the µ-formula ϕ which
“dominates” the formula ψ: the µ-connective is more external than the ν-connective in ϕ.
That is why, in the validity condition of a thread, we ask the minimal formula, among
those occurring infinitely often, to be a ν-formula.

Remark 2.12. The above validity is interpreted in the two-sided case as follows. A thread
t is said to be a µ-thread if min(Inf(t)) is a µ-formula. Let γ = (∆i ⊢ Γi)i∈ω be an infinite
branch in a µS∞ pre-proof. A thread t = (Fi)i>j is a right (resp. left) thread of γ if ∀i > j,
Fi ∈ Γi (resp. Fi ∈ ∆i). The branch γ is said to be valid if it either contains a right
ν-thread or a left µ-thread, which is not stationary.

Sometimes, we will need to compare two infinitary proofs. Due to our explicit treatment
of occurrences, the syntactic equality is too restrictive. What we need actually is an equality
up-to renaming which we define in the following. But first, let us first introduce the notion
of renamings and some useful operations on them.

Definition 2.27. A renaming is a bijection b : A → A′ between two sets of pairwise
disjoint addresses.

Let b be a renaming. We define b↑ : Σ⋆ → Σ⋆ to be the partial function on addresses
defined by:

b↑(α) = b(β).γ if α = β.γ where β ∈ Dom(b)

Let b, b′ be two renamings. We define b•b′ to be the b↑◦b′, where ◦ is function composition.
Let Γ be a sequent, and b be a renaming. We define Γ • b to be the sequent obtained

from Γ by replacing every occurrence ϕα by ϕb↑(α).

Remark 2.13. Let b be a renaming of domain A. Notice that if no address from A
extends strictly an address appearing in Γ, then for every µS∞ rule (r) of conclusion Γ and
of premises Γ1, . . . , Γn, the following is still an occurrence of the rule (r):

Γ1 • b . . . Γn • b
(r)

Γ • b

Note that one may break a µS∞ rule by applying a renaming b if an address in the domain
of b extends an address in the conclusion sequent. For instance, if b = {i 7→ ε} and if we
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consider the following instance of the rule (µ), then applying b to both the conclusion and
the premise will not yield a licit rule (µ), since both occurrences will have the address ε.

⊢ (ϕ[µX.ϕ])i
(µ)

⊢ (µX.ϕ)ε

Definition 2.28. Let Π be a µS∞ pre-proof. We define the base addresses of Π to be
the set of addresses of the conclusion occurrences together with the cut occurrences of Π,
we denote it by A(Π). Due to our Proviso 1.2, A(Π) is a set of pairwise disjoint addresses.

Let b : A(Π) → A′ be a renaming. We define Π • b to be the pre-proof obtained by
replacing the address of every conclusion occurrence and every cut occurrences by its image
by b, and propagating this substitution all along the proof, that is to say, by replacing every
sequent Γ in Π by Γ • b.

Two µS∞ proofs Π,Π′ are said to be equal up-to renaming and we write Π ≡ Π′, if
there is a renaming b : A(Π)→ A(Π′) such that Π • b = Π′.

By Remark 2.13, and since no address in A(Π) extends strictly an address in Π (all the
addresses of Π are extensions of the addresses of A(Π)), Π • b is indeed a µSω proof.

2.4.3 Circular proof system

As we aim to see proofs as programs, in particular as objects that can be effectively ma-
nipulated and stored in a finite memory, we will be interested in a system whose proofs
are finitely representable, but when unfolded they yield µS∞ proofs. We call this system
the circular proof system µSω. Concretely, µSω proofs have the shape of finite graphs,
extending the tree shape of usual finitary proofs by the possibility of cycling, hence the
name circular for this system.

Due to our explicit treatment of occurrences, we will need a renaming rule, which will
permit us to come back to a sequent already seen, but with the right addresses. We define
this rule as follows:

Definition 2.29. Let b = {αi 7→ βi}
n
i=1 be a renaming. We call renaming rule the

following rule:
⊢ (ϕ1)β1 , . . . (ϕn)βn

(b)
⊢ (ϕ1)α1

, . . . (ϕn)αn

As for µS∞, we will define first an unsound proof structures called µSω pre-proofs. In
a second step we will equip them with a validity condition.

Definition 2.30. We call the arity of an inference rule r the number of its premises, we
denote it by Ar(r). A tuple (G,λ, ρ, σ), where:

• G is a finite set of vertices,

• λ is a labeling of vertices by sequents,

• ρ is a labeling of vertices by inference rules of µS∞ and the renaming rule,

• σg : Ar(ρ(g))→ G is a successor function associated to each g ∈ G,
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(⋆)
(b)

⊢ ϕililil,ϕililir
(ν),(∨)

⊢ ϕilil
(W)

(⋆) ⊢ ϕilil,ϕilir
(ν),(∨)

⊢ ϕil

(⊤)
⊢ ⊤irl

(†)
(b′)

⊢ ψirr
(∧)

⊢ (⊤ ∧ ψ)ir
(ν),(∧)

(†) ⊢ ψε

Figure 2.7: Example of a circular pre-proof

is said to be well-typed if the following typing constraint holds:

• For every g ∈ G, if r = ρ(g), Γ = λ(g) and Γi = λ(σg(i)), then the following inference

{⊢ Γi}1≤i≤Ar(r)
(r)

⊢ Γ

is an instance of either a µS∞ rule or of the renaming rule.

• For every g ∈ G, if ρ(g) is a renaming rule and g′ = σg(1), then ρ(g′) is not a renaming
rule.

A µSω pre-proof (also called circular pre-proof ) is a tuple (G,λ, ρ, σ, c) of a well-typed
tuple (G,λ, ρ, σ) and a distinguished vertex c ∈ G of P called its conclusion .

Remark 2.14. The first condition of well-typedness ensures that we are applying licit µS∞

rules. The second condition prevents us in particular from having a loop of renaming rules.

There is a natural graph that can be associated to a circular pre-proof, which is the
graph induced by the successor relation:

Definition 2.31. Let Π = (G,λ, ρ, σ, c) be a circular pre-proof. We define the graph of
Π to be the graph G(Π) = (G,→), whose vertices are the elements of G and g → g′ iff
g′ = σg(i) for some 1 ≤ i ≤ Ar(ρ(g)). The pre-proof Π is said to be sourced if c is a source
of G, that is, for every vertex g, c→⋆ g.

We assume that all our circular pre-proofs are sourced. We are going to draw them as
in the usual way: vertices are represented by the sequents labeling them, the inference rule
of a vertex is indicated to the right of a horizontal bar above this vertex, and its successors
are above the horizontal bar.

Example 2.14. Let ϕ = νX.X ∨X, and ψ = νY .ϕ∧ (⊤∧ Y ). Let us consider the circular
pre-proof of Figure 2.7, where b = {ililil 7→ ilil, ililir 7→ ilir} and b′ = {irl 7→ ε}. In
this pre-proof, the (⋆) appearing in the premise of the renaming rule (b) means that the
successor of the sequent ⊢ ϕililil,ϕililir is ⊢ ϕilil,ϕilir, also marked by (⋆). Similarly, the (†)
means that the successor of ⊢ ψirr is ⊢ ψε. One can imagine that there is a loop between
the two symbols (⋆) and (†) respectively. We call it sometimes a back-edge.

Notice that this circular pre-proof has the shape of a tree, built using the inference rules
of the system, except that there is a loop, or a back-edge from some leafs labeled by a
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renaming rule to inner nodes of the derivation. Most of the time, our circular proofs will
have this particular shape of trees with back-edges.

Circular pre-proofs can be seen as a sub-class of infinitary proofs. Indeed, if we unfold
a circular pre-proof, applying the right renamings when encountering a renaming rule, then
we get a µS∞ pre-proof. There is a subtlety with the cuts, due to our disjointness condition,
which requires the base addresses A(Π) of a pre-proof Π to be pairwise disjoint (see Pro-
viso 1.2). Thus, when unfolding a cut rule, we have to attribute to the cut occurrences fresh
addresses. To perform this, we will use during the unfolding an infinite supply of disjoint
addresses S, splitting it on branching rules, and consuming a new address for cut rules. We
define precisely in the following this operation of unfolding.

Definition 2.32. Let Π = (G,λ, ρ, σ, c) be a circular pre-proof. Let g ∈ G, b be a renaming
and S be an infinite set of disjoint addresses.

We set Γ = λ(g). We define the pre-proof U(g, b,S) coinductively as follows:

• If ρ(g) = r where r is a µS∞ inference rule of arity n which is not a cut rule, and if
gi = σc(i), we decompose S into n infinite sets S1, . . . ,Sn such that S = ⊎iSi and we
set:

U(g, b,S) =
U(g1, b,S1) . . . U(gn, b,Sn)

(r)
⊢ Γ • b

• If ρ(g) = (Cut), gi = σg(i) where i = 1, 2, then λ(g1) = ∆1,ϕα and λ(g2) = ∆2,ϕ
⊥
α⊥ .

Let f ∈ S and let S1, S2 be two infinite sets such that S \ {f} = S1 ⊎ S2. We set:

U(g, b,S) =
U(g1, b :: {α 7→ f},S1) U(g2, b :: {α

⊥ 7→ f⊥},S2)
(Cut)

⊢ Γ • b

• If ρ(g) = (b′) is a renaming rule and g′ = σg(1), then:

U(g, b,S) = U(g′, b • (b′)−1,S)

Let {αi}1≤i≤n be the set of addresses of the conclusion occurrences of Π. Let b0 be the
renaming {αi 7→ rli}1≤i≤n and let S0 = {rl

i | i > n}. We define the unfolding of Π to be
U(c, b0,S0), we denote it by U(Π).

Thanks to the second condition on well-typedness of circular proofs, the coinductive
definition of U(g, b,S) is productive, since we cannot loop in a sequence of renaming rules,
which is the case where the definition does not produce anything. The produced object is
indeed a µSω pre-proof thanks to the first condition on well-typedness.

Morally, U(g, b,S) is the unfolding of Π starting from the vertex g, to which we apply
the renaming b, and when the addresses of the cut occurrences are chosen among those of
the supply S. In particular, U(Π) is the unfolding of Π starting from the conclusion c, in
which the addresses of the conclusion occurrences were renamed by the addresses rli and
the cut occurrences are chosen among the supply S0, in order to guarantee the disjointness
condition on sequents.
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...

⊢ ϕilililil,ϕilililir
(ν),(∨)

⊢ ϕililil
(W)

⊢ ϕililil,ϕililir
(ν),(∨)

⊢ ϕilil
(W)

⊢ ϕilil,ϕilir
(ν),(∨)

⊢ ϕil

(⊤)
⊢ ⊤irl

...

⊢ ϕirrilil
(W)

⊢ ϕirrilil,ϕirrilir
(ν),(∨)

⊢ ϕirril

(⊤)
⊢ ⊤irl

...

⊢ ψirrirr
(∧)

⊢ (⊤ ∧ ψ)irrir
(ν),(∧)

⊢ ψirr
(∧)

⊢ (⊤ ∧ ψ)ir
(ν),(∧)

⊢ ψε

Figure 2.8: Unfolding of the circular pre-proof of Figure 2.7

Example 2.15. The unfolding of the circular proof of Figure 2.7 is the µLK∞ pre-proof
that starts as shown in Figure 2.8.

Note the importance of the renaming rule, which allowed us to unfold unambiguously
the circular pre-proof of Example 2.14: with this precise renaming rule of the left loop, we
obtained a leftmost branch that weakens always the right occurrence produced by the ∨. If
the renaming rule of the left loop where instead {ililil 7→ ilir, ililir 7→ ilil}, the unfolding of
the leftmost branch would weaken alternatively the right and the left occurrences produced
by the ∨.

Remark 2.15. We will usually not write the bijection b in the renaming rule when it is
inferable from the context. This situation holds when the conclusion c (hence the premise)
of the renaming rule contains occurrences with distinct underlying formulas, that is, for
every F ,G ∈ c we have F 6≡ G.

Just as µS∞ pre-proofs, µSω pre-proofs are unsound. To fix that defect, we introduce
a validity condition on circular pre-proofs, similar to the one used for infinitary pre-proofs.
We relate these two validity conditions by showing that a circular proof is valid if and only
if its unfolding is valid.

Definition 2.33. Let Π be a circular pre-proof of conclusion c and let G be its graph. Let
p = (gi)i∈ω be an infinite path in G. A trace on p is a sequence of occurrences t = (Fi)i≥k
where k ∈ ω, such that for every i ≥ k, we have that Fi ∈ λ(gi) and either:

• ρ(gi) is not a renaming rule, then Fi → Fi+1 or Fi = Fi+1;

• or ρ(gi) is a renaming rule (b) and Fi = ϕα, then Fi+1 = ϕb(α).

A trace t on an infinite path is said to be valid when min(Inf(t)) is a ν-formula. An infinite
path is valid if it has a valid trace. A circular pre-proof is valid when all its infinite
paths are valid. A µSω proof is a valid µSω pre-proof.

Proposition 2.10. A µSω pre-proof Π is valid if and only if U(Π) is valid.
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Proof. Note that the infinite paths of Π are in a one-to-one correspondence with the infinite
branches of U(Π). Moreover, for every trace tr = (Fi)i∈ω of an infinite path of Π, there is an
infinite thread th = (Gi)i∈ω in its corresponding branch such that Fi = Gi, and conversely.
Thus min(Inf(tr)) = min(Inf(th)) and we can conclude that Π is valid if and only if U(Π)
is.

We have seen that every circular pre-proof can be unfolded into an infinitary one. It
is however not true that every infinitary pre-proof is the unfolding of a circular pre-proof.
This holds only for a subset of infinitary pre-proof called regular, we define them below.

Definition 2.34. Let Π be a µS∞ pre-proof and let S be the set of its sub-trees. We say
that Π is regular if S|≡ (the quotient set of S by ≡) is finite.

In other words, Π is regular if it contains only finitely many sub-trees up-to renaming.

Proposition 2.11. If Π is a regular µS∞ pre-proof, then there is a µSω pre-proof Θ such
that U(Θ) ≡ Π. We say that Θ is a circular representation of Π.

Proof. Let Π be a µS∞ pre-proof of conclusion c. Let us construct the subtree T of Π as
follows: at the beginning T contains only the conclusion c of Π. Suppose that we have just
added a sequent to T , and let s be one of its successors. If there is a sequent s′ ∈ T such
that the sub-preproofs of Π rooted respectively in s and s′ are equal up to renaming, then
we add s to T and stop processing s. If this is not the case, we add s to T and continue
with its successors.

Since Π is regular, it cannot contain a branch such that the sub-preproofs rooted in
the sequents of this branch are all pairwise not equal up-to renaming. Thus the process
described above that constructs T will always halt, and yields a finite sub-derivation of Π
rooted in c, such that for every leaf ⊢ ∆ of T , either ⊢ ∆ is the conclusion of 0-ary rule,
or there is an inner node ⊢ ∆′ (that is, a node which is not a leaf) of T , such that the
sub-preproofs of Π rooted respectively in ⊢ ∆ and ⊢ ∆′ are equal up to the renaming, in
particular there is a renaming b such that ∆′ = ∆ • b.

We construct a circular proof Θ from T , by applying to each leaf of this second kind the
renaming rule (b), and setting ⊢ ∆′ to be the successor of ⊢ ∆.

Using a bisimulation, we can show that Π and U(Θ) are equal up-to renaming.

Remark 2.16. Note that the representation of a regular pre-proof by a circular one is not
unique.

Remark 2.17. Notice that in general, we cannot strengthen Proposition 2.11 into a syn-
tactic equality between U(Θ) and Π, since the base addresses of U(Θ) are chosen from the
particular supply {rln | n ∈ ω}, and may not be equal to those of Π.

Decidability of the validity condition. Even if circular proofs are finitely representable,
their validity condition concerns their infinite paths, which can be generated by any combi-
nation of elementary cycles of their graphs. In particular, checking the validity of elementary
cycles is not enough to check the validity of the whole proof as illustrated by the following
example.
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Example 2.16. Let ϕ = νX.µY .(Y ∨X), ψ = µY .(Y ∨ϕ) its unfolding and ⊥ = µX.X∧X.
Consider the following circular pre-proof.

(⋆)
({αil 7→ β,αiri 7→ α})

⊢ ψαil,ψαiri,⊥γil
(ν)

⊢ ψαil,ϕαir,⊥γil
(µ), (∨)

⊢ ψα,⊥γil
(W)

⊢ ψα,ψβ,⊥γil

(⋆)
({βil 7→ α,βiri 7→ β})

⊢ ψβil,ψβiri,⊥γir
(ν)

⊢ ψβil,ϕαir,⊥γir
(µ), (∨)

⊢ ψβ,⊥γ.ir
(W)

⊢ ψα,ψβ,⊥γir
(µ), (∧)

(⋆) ⊢ ψα,ψβ,⊥γ

If γr and γl denote the right and left cycles respectively, the paths (γr)ω and (γl)
ω are valid,

but the path (γr.γl)
ω that alternates the two cycles is not valid.

Despite this, we show that the validity of a circular proof is decidable, more precisely
that it is in PSPACE. For that, we adapt the proof used by Dax et al. [DHL06] to show that
their validity condition is decidable. We fix in the rest of this section a circular pre-proof
Π = (P , c), where P = (G,λ, ρ, σ). Let G be the graph of Π.

The idea is to design two word automata, the first one is a Büchi automaton that
accepts all the paths of G and the other is a parity automaton that accepts only the valid
ones. Then checking the validity of Π is reduced to verifying the language inclusion of these
two automata. For an introduction to automata over infinite words, see Chapter 8.

Let us first define the parity automaton A whose language is the set of valid paths of G.

Definition 2.35. We define the parity automaton A = (Σ,Q, c, δ,QI) as follows.

• The alphabet Σ is the set of vertices of G.

• The set of states Q is the set of occurrences appearing in the sequents labeling the
vertices of G, together with a new state w. That is, Q = ∪

g∈G
λ(g) ⊎ {w}.

• The priority function c : Q→ ω is a function such that:

• If F is a µ-occurrence (resp. ν-occurrence), then c(F ) is odd (resp. even).

• If F ≤ G then c(F ) ≤ c(G).

• c(w) is odd.

The function c is not uniquely defined, but we fix one arbitrarily.

• The initial states QI are the conclusion occurrences and the state w, that is QI =
λ(c) ∪ {w}.

• The transition relation δ is defined as follows. Let g ∈ Σ and q ∈ Q.

• If q ∈ λ(g) and if ρ(g) is a µSω rule of arity n, then for every i ≤ n and every
occurrence q′ ∈ λ(σg(i)) which is a sub-occurrence of q, we set (q, g, q′) ∈ ∆.

• If q := ϕα ∈ λ(g) and if ρ(g) is a renaming rule (b), then we set (q, g,ϕb(α)) ∈ ∆.
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• If q = w, then we set (w, g,w) ∈ ∆. If moreover, λ(g) = (Cut), we have that
λ(σg(1)) = Γ,F and λ(σg(2)) = Γ′,F⊥, and we set (w, g,F ), (w, g,F⊥) ∈ ∆.

In this automaton, the state w means “wait”. It is a state waiting for a trace to start.
We use it here because our traces are not required to start from the conclusion, but may
start from cut occurrences.

Lemma 2.1. For every infinite path p of G, p ∈ L(A) if and only if p is valid.

Proof. We show that if p is valid then it belongs to the language of L(A). The other
direction can be shown in the same way.

Let t = (Fi)i≥k be a valid trace on p. Let ρ = (Gi)i∈ω where Gi = w for every i < k and
Gi = Fi otherwise. Notice that ρ is a run of A over p. By assumption, the minimal formula
of Inf(t) is a ν-formula. Since the priority function of A is compatible with the subformula
ordering, and since the priority of a ν-formula is even, the minimal priority seen infinitely
often is even. Thus, p ∈ L(A).

Let us now define the Büchi automaton B that accepts all the infinite paths of G.

Definition 2.36. Let B = {Σ,Σ, δ, qI , Σ} be the Büchi automaton whose set of states is
the alphabet Σ itself. Its transition relation δ is defined as follows: for every g ∈ Σ, and for
every g′ such that g → g′, we set (g, g, g′) ∈ δ. The initial state qI is the conclusion vertex
c, and the set of final states is Σ.

The following proposition is a direct consequence of Lemma 2.1.

Proposition 2.12. The circular pre-proof Π is valid if and only if L(B) ⊆ L(A).

This shows that validity can be decided in PSPACE.

Theorem 2.4. Deciding whether a circular proof is valid is in PSPACE.

Proof. By Proposition 2.12 it suffices to check the non-emptiness of the language L(B) ∩
L(A). Using well-known automata-theoretic constructions and Savitch’s theorem, this prob-
lem can be reduced to checking the emptiness of an automaton of the form B′ ×A′, which
can be done in PSPACE.

Cut-elimination. As for the finitary system µS, one can extend the rewriting rules of S
to handle the interaction between the least and greatest fixed points with the cut rule, by
adding the auxiliary reduction rule (σ)/(Cut) (Figure 2.9) and the principal reduction rule
(µ)/(ν) (Figure 2.10). The question now is to know whether the proof system µSω, equipped
with this rewriting rules admits the cut elimination property. But first we need to be more
precise about what we call the cut-elimination property. Indeed, as we are dealing with
infinitary proofs, it is clear that we cannot eliminate cuts in a finite number of steps. Thus
we have to consider infinite reduction sequences, and the notion of termination of the cut
elimination procedure in the finitary case should be replaced by the notion of productivity,
which ensures that infinite reduction sequences eliminate cuts at the limit. Furthermore, as
µSω is equipped with a validity condition, one should ensure that the pre-proof produced
by the cut-elimination process is indeed a proof. Hence, the cut elimination property in an



70 CHAPTER 2. FIXED-POINTS IN PROOF THEORY

⊢ Γ,C

⊢ C⊥, ∆,F [σX.F/X]
(σ)

⊢ C⊥, ∆, σX.F
(Cut)

⊢ Γ,∆,µX.F

→

⊢ Γ,C ⊢ C⊥, ∆,F [σX.F/X]
(Cut)

⊢ Γ,∆,F [σX.F/X]
(σ)

⊢ Γ,∆, σX.F

Figure 2.9: Auxiliary reduction rule (σ)/(Cut) in µSω.

Π

⊢ Γ,B[(µX.B)/X]
(µ)

⊢ Γ,µX.B

Θ

⊢ ∆,B⊥[(µX.B)⊥/X]
(ν)

⊢ ∆, (µX.B)⊥
(Cut)

⊢ Γ,∆

↓

Π

⊢ Γ,B[(µX.B)/X]

Θ

⊢ ∆,B⊥[(µX.B)⊥/X]
(Cut)

⊢ Γ,∆

Figure 2.10: Principal cut-elimination rule (µ)/(ν) in µSω.

infinitary setting means that the infinite cut elimination procedure is productive, and that
the produced pre-proof is valid. Little work has been done in this direction, and the only
known result of cut-elimination in an infinitary setting is for µALL∞ (the additive linear logic
with least and greatest fixed points) due to Fortier and Santocanale [FS13]. We dedicate
Chapter 3 to the cut-elimination result for µMALL and discuss its extension to µLL, µLK
and µLK⊙.

Derivable rules. In finitary proof theory, when we derive a rule, we can use it as a proper
rule of the system. For infinitary proofs, one should be more careful when using a derived
rule, since the derivation may hide the minimum of the thread linking an occurrence of the
conclusion to an occurrence of some premise of the rule. When considering the validity of
an infinitary proof using such a derived rule, one has to look inside the derivation of this
rule to compute the minimum of the threads of a branch using it infinitely often. Thus, we
use derived rules in this thesis as a shortcut/ abbreviation for a derivation, not as a proper
rule of the infinitary system under consideration.

2.4.4 From finitary to circular proofs

We show in this section how to transform effectively every µS proof into a µSω proof of
the same conclusion. For that, we need to introduce the functoriality construction in µSω.
This construction is the infinitary counterpart of functoriality in µS, in the sense that it
transforms every proof π of ⊢ F ,G, into a proof of ⊢ B[F/X],B⊥[G/X], by applying
coinductively η-expansions on the connectives of B, and plugging the derivation π when the
variable X is reached. To define properly the functoriality in µSω, we need to generalize it
to handle multiple variables.
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Definition 2.37. Let B be an occurrence, ~X = (Xi)1≤i≤n be a family of variables and let
~Π = (Πi)1≤i≤n be a collection of µSω pre-proofs of respective conclusions ⊢ Fi,Gi. We define
coinductively the pre-proof F∞B (~Π) of conclusion ⊢ B[~F/ ~X],B⊥[ ~G/ ~X], where ~F = {Fi}i
and ~G = {G}i, as follows:

• If for every 1 ≤ i ≤ n, we have Xi /∈ fv(B) then we set F∞B (π) to be an instance of the
axiom rule on B.

• If B ≡ Xi for some 1 ≤ i ≤ n, then F∞B (π) is πi up to relocation of Fi and Gi in the
addresses of B and B⊥ respectively.

• If B = c( ~C), where c /∈ {µ, ν} then F∞B (~Π) is:
{

⊢ F∞C (~Π)

⊢ C[~F/ ~X],C⊥[ ~G/ ~X]

}

C∈ ~C
(ηc)

⊢ c( ~C)[~F/ ~X], c⊥( ~C⊥)[ ~G/ ~X]

• If B = µX.C then F∞B (~Π) is obtained from applying functoriality on C with B(~Π) as
the derivation for the new free variable Xn+1 := X:

F∞B (~Π) =

F∞C (~Π,B(~Π))

⊢ C[(µX.C)/X][~F/ ~X],C⊥[(νX.C⊥)/X][ ~G/ ~X]
(ν)

⊢ C[(µX.C)/X][~F/ ~X], (νX.C⊥)[ ~G/ ~X]
(µ)

⊢ (µX.C)[~F/ ~X], (νX.C⊥)[ ~G/ ~X]

• The case where B = νX.C is treated symmetrically.

The derivation F∞B (Π) is regular, we denote by FωB(Π) the least circular representation of it.

Example 2.17. Let B = (µY .X ⊗ Y )ε and let Π be a µMALLω proof of conclusion ⊢ F ,G.
The derivation FωB(Π) is the following:

Π

⊢ F ,G

(⋆)

⊢ B[F/X],B⊥[G/X]
(`), (⊗)

⊢ F `B[F/X],G⊗ B⊥[G/]
(ν)

⊢ F `B[F/X], νY .G⊗ Y
(µ)

(⋆) ⊢ µY .F ` Y , νY .G⊗ Y

Remark 2.18. As for the finitary functoriality, the infinitary functoriality on B can be
written as the following rule named (FωB) since it is entirely guided by B.

⊢ F ,G
(Fω

B )
⊢ B[F/X],B⊥[G/X]

Proposition 2.13. If ~Π is a collection of µSω proofs, then FωB(
~Π) is also a µSω proof.
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Proof. An infinite path of FωB(~Π) either has an infinite path of some Πi as a suffix, or is only
visiting sequents of FωB(~Π) that are not sequents of the input derivations ~Π. In the former
case, the path is valid provided that the input derivations are valid. In the latter case, the
path contains exactly two dual traces, one of which must be valid. Thus, FωB(~Π) is valid
provided that the input derivations are.

We now make use of functoriality to translate finitary µS proofs into circular derivations.

Definition 2.38 (Translation from µS to µSω). Given a µS proof π of ⊢ Γ, we define
inductively the µSω pre-proof Π of ⊢ Γ, as follows:

• If π starts with an inference that is present in µSω, that is an inference in S or the
rule (µ), then we use the same inference for Π and proceed recursively. For instance,

π =

θ

⊢ Γ,F [µX.F/X]
(µ)

⊢ Γ,µX.F

yields Π =

Θ

⊢ Γ,F [µX.F/X]
(µ)

⊢ Γ,µX.F

where Θ is the translation of θ.

• Otherwise, π starts with an instance of the ν rule of µS:

π =

π1

⊢ Γ,S

π2

⊢ S⊥,F [S/X]
(ν)

⊢ Γ, νX.F

We transform it as follows, where Π1 and Π2 are the translations of π1 and π2 respec-
tively:

Π =
Π1

⊢ Γ,S

Π2

⊢ S⊥,F [S/X]

(⋆)

⊢ S⊥, νX.F
(Fω

F )
⊢ F⊥[S⊥/X],F [(νX.F )/X]

(Cut)
⊢ S⊥,F [νX.F/X]

(ν)
(⋆) ⊢ S⊥, νX.F

(Cut)
⊢ Γ, νX.F

Remark 2.19. The infinite paths of the µSω pre-proof Π constructed above are either infi-
nite paths of the functoriality construct or come from the loop on the sequent ⊢ S⊥, νX.F .

Proposition 2.14. For any µS derivation π, its translation Π is a µSω proof.

Proof. We have to check that all infinite paths of Π are valid. Consider one such infinite
path. After a finite prefix, the path must be contained in the pre-proof obtained from
the translation of a coinduction rule (second case in the above definition). If the path
is eventually contained in a functoriality construct, then it is valid by Proposition 2.14.
Otherwise, the path visits infinitely often the sequent ⊢ S⊥, νX.F corresponding to our
translated coinduction rule. This path is validated by the trace that contains the successive
sub-occurrences of νX.F in those sequents. Indeed, in this trace, νX.F is principal infinitely
often, moreover it is minimal among formulas that appear infinitely often: this simply follows
from the fact that all formulas encountered along the trace inside the functoriality construct
(FωF) contain νX.F as a subformula.
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(⋆)

⊢ ϕβl,ψαi
(⊤)

⊢ ψα.i⊤βr
(&)

⊢ ψαi,ψβ
(ν)

(⋆) ⊢ ϕα,ψβ

...

⊢ ϕβl,ψαi

⊢ ψαi,ψβ

⊢ ϕα,ψβ

⊢ ϕβl,ψαi

⊢ ψαi,ψβ

⊢ ϕα,ψβ

Figure 2.11: A circular proof which is not translatable and its infinite path.

(⋆)

⊢ ϕαil,ψβli
(⊤)

⊢ ψβli,⊤αir
(&)

⊢ ψβli,ψαi
(ν)

⊢ ϕβl,ψαi
(⊤)

⊢ ψαi,⊤βr
(&)

⊢ ψαi,ψβ
(ν)

(⋆) ⊢ ϕα,ψβ

...

⊢ ϕα,ψβ

⊢ ϕαil,ψβli

⊢ ψβli,ψαi

⊢ ϕβl,ψαi

⊢ ψαi,ψβ

⊢ ϕα,ψβ

Figure 2.12: A translatable circular proof and its infinite path.

2.4.5 From circular to finitary proofs

Going from circular to finitary proofs is much more involved, since one has to extract from
circular proofs the right invariants for Park’s rule (ν). Unfortunately, we do not have a
general algorithm to translate circular proofs into finitary ones. Instead, we give a sufficient
condition on µSω proofs which guarantees that they can be translated into µS ones, we call
it the translatability criterion.

The translatability criterion

Definition 2.39. Let Π be a circular pre-proof and p = (gi)i∈ω be an infinite path of G(Π).
A trace t = (Fi)i∈ω of p is said to be strongly valid if t is valid and if there is k ∈ ω such
that ∀i, j ≥ k, if gi = gj then Fi = Fj.

A circular proof Π is said to be translatable if every infinite path of G(Π) has a strongly
valid trace.

The strong validity condition for the trace t means that, at some point in the path p, for
every vertex g, whenever the trace t meets g, it meets it at the level of the same occurrence.

Example 2.18. Let ϕ = νX.X & ⊤ and ψ = ϕ & ⊤ be its unfolding. Consider the
circular proof of Figure 2.11. This proof is not translatable, since its infinite path (shown
in Figure 2.11) is not strongly valid. Indeed, the red trace meets the sequent ⊢ ϕα,ψβ
alternatively at the level of the occurrences ϕα and ψβ. The same holds for the blue trace.
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Let us consider the circular proof of Figure 2.12, which is an other circular representa-
tion of the unfolding of the circular proof of Figure 2.11. This time, this circular proof is
translatable. Its infinite path (shown in Figure 2.12) is strongly valid, thanks to the red
trace for instance.

Remark 2.20. As shown by Example 2.18, even if two circular proofs represent the same
infinitary proof, one of them may be translatable and the other not. The property of being
translatable is not inherent to µS∞ proofs, but depends strongly on their representation as
circular proofs.

The invariant property

Our translation result relies on a geometric condition on circular proofs, which we called the
translatability criterion. But it relies also on a property on the source and the target proof
systems for the translation. We call this property, the invariant property. It consists in
showing that a number of rules can be derived in µSω and µS, which will be helpful during
the translation.

Definition 2.40. The proof systems µS and µSω have the invariant property if for every
occurrence νX.F and for every set of occurrences ∆ there is an occurrence I, called the
invariant of (νX.F , ∆), such that the following rules are derivable in µS:

⊢ Σ[νX.F/X]
(Subst)

⊢ Σ[I/X]

⊢ ψ[I/X], Σ
(Unfold)

⊢ I, Σ
(Close)

⊢ I, ∆

⊢ ∆,F [I/X]
(Replace)

⊢ I⊥,F [I/X]

And the following rules are derivable in µSω:

⊢ Σ[νX.F/X]
(Substω)

⊢ Σ[I/X]

⊢ F [I/X], Σ
(Unfoldω)

⊢ I, Σ

In the rules (Subst), (Unfold), (Substω) and (Unfoldω), I behaves as if it was νX.F . It
behaves as if it was (∨∆)⊥ in the rules (Close) and (Replace).

Proposition 2.15. For every S ∈ {MALL, LL, LK, LK⊙}, the proof systems µS and µSω

have the invariant property.

Proof. When S is LK or LK⊙, we set I = νX.F ∨ κ where κ = (∨∆)⊥. In µLK and µLK⊙,
we derive the rule (Subst) as follows.

⊢ Σ[νX.F/X]
(∨)

⊢ (∨Σ)[νX.F/X]

(Ax)
⊢ (νX.F )⊥, νX.F

(Ax)
⊢ F⊥[(νX.F )⊥/X],F [νX.F/X],κ

(∨)
⊢ F⊥[(νX.F )⊥/X],F [νX.F/X] ∨ κ

(µ)
⊢ (νX.F )⊥,F [νX.F/X] ∨ κ

(ν)
⊢ (νX.F )⊥, I

(∧), {(FF), F ∈ Σ}
⊢ (∨Σ)⊥[(νX.F )⊥/X], Σ[I/X]

(Cut)
⊢ Σ[I/X]
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In µLKω and µLK⊙ω, we derive the rule (Substω) in the same way as (Subst), except that
we use the infinitary version of the functoriality (FωF) instead of (FF).
In µLK and µLK⊙, the rule (Unfold) can be derived as follows:

⊢ F [I/X], Σ
(W)

⊢ F [I/X],κ, Σ
(∨)

⊢ F [I/X] ∨ κ, Σ
(ν)

⊢ I, Σ

In µLKω and µLK⊙ω, the rule (Unfoldω) can be derived in the same way as (Unfold).
For the rule (Close) we proceed as follows:

(∨), (∧), (Ax)
⊢ F ∨ (∨∆)⊥, ∆

(νu)
⊢ I, ∆

Finally, for the rule (Replace), we use the following derivation:

(Ax)
⊢ F⊥[I⊥/X],F [I/X]

⊢ ∆,F [I/X]
(∨)

⊢ κ⊥,F [I/X]
(∧)

⊢ F⊥[I⊥/X] ∧ κ⊥,F [I/X]
(µ)

⊢ I⊥,F [I/X]

If S is MALL or LL we set I = νX.F ⊕ κ where κ = (`∆)⊥. In µMALL and µLL, we
derive the rule (Subst) as follows.

⊢ Σ[νX.F/X]
(`)

⊢ (`Σ)[νX.F/X]

(Ax)
⊢ (νX.F )⊥, νX.F

(Ax)
⊢ F⊥[(νX.F )⊥/X],F [νX.F/X]

(⊕1)
⊢ F⊥[(νX.F )⊥/X],F [νX.F/X]⊕ κ

(µ)
⊢ (νX.F )⊥,F [νX.F/X]⊕ κ

(ν)
⊢ (νX.F )⊥, I

(⊗), {(FF), F ∈ Σ}
⊢ (`Σ)⊥[(νX.F )⊥/X], Σ[I/X]

(Cut)
⊢ Σ[I/X]

In µMALLω and µLLω, we derive the rule (Substω) in the same way as (Subst), except that
we use the infinitary version of the functoriality (FωF) instead of (FF).
In µMALL and µLL, the rule (Unfold) can be derived as follows:

⊢ F [I/X], Σ
(⊕1)

⊢ F [I/X]⊕ κ, Σ
(νu)

⊢ I, Σ

In µMALLω and µLLω, the rule (Unfoldω) can be derived in the same way as (Unfold).
For the rule (Close) we proceed as follows:

(⊕2), (⊗), (Ax)
⊢ F ⊕ (`∆)⊥, ∆

(νu)
⊢ I, ∆
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Finally, for the rule (Replace), we use the following derivation:

(Ax)
⊢ F⊥[I⊥/X],F [I/X]

⊢ ∆,F [I/X]
(`)

⊢ κ⊥,F [I/X]
(&)

⊢ F⊥[I⊥/X] & κ⊥,F [I/X]
(µ)

⊢ I⊥,F [I/X]

We neglected the addresses in these derivations since they are easily inferable from the
context.

We will use (Subst), (Unfold), (Close) and (Replace) as proper rules of µS, and (Substω)
and (Unfoldω) as proper rules of µSω.

Some surgery on circular proofs

To translate a circular proof, we will proceed inductively, cutting it into smaller pieces,
translating each piece into a finitary proof and gathering the translated proofs into one
finitary proof which will be the translation of the initial circular proof.

We introduce in this section these different operations. The first one consists in cutting
a circular proof into smaller pieces. At the level of the vertex on which we cut the proof,
the well-typedness condition is not satisfied anymore since the successors of this vertex are
gone with the other parts of the proof. To fix that, we replace the rule of the vertex at
the level of which we cuted the proof by a new 0-ary rule which we call the assumption
rule and which we denote by (A). Therefore, during our transformation steps, we will step
out of the proof system µSω, and fall in the extension of µSω that contains the rule (A),
which we denote by µSA

ω. The translations of µSA
ω proofs will also contain the rule (A), we

denote by µSA the finitary proof system that extends µS with the rule (A). We introduce
the assumption rule (A) and the proof systems µSA

ω and µSA in the following.

Definition 2.41. SA is the proof system obtained from S by adding the following rule of
arity 0, called assumption rule :

(A)
⊢ Γ

The finitary and the circular extensions of SA with least and greatest fixed points are re-
spectively µSA and µSA

ω. If Π is a µSA or a µSA
ω proof, we denote by AΠ the sequents

conclusion of an assumption rule in Π.

We introduce now three operations on proofs. The first two are operations on circular
proofs, they consist respectively in adding a new assumption and taking the reachable part.
Put together, they will allow us in the translation procedure to cut a circular proof into
smaller pieces. The third operation glues finitary proofs at the level of an assumption. This
operation will be used to gather the translations of the smaller pieces of a circular proof.

Addition of new assumptions.

Definition 2.42. Let Π = (P , c) be a circular proof, where P = (G,λ, ρ, σ), and let v ∈ G.
We define Πv to be the circular proof ((G,λ, ρ′, σ), c), where

ρ′(g) = ρ(g) if g ∈ G \ {v}
= (A) if v ∈ A
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We draw this operation as follows:

⊢ ∆1 . . . ⊢ ∆n

⊢ Γ  

⊢ ∆1
. . . ⊢ ∆n

(A)
⊢ Γ

Taking the reachable part.

Definition 2.43. Let Π = (P , c) be a circular proof, where P = (G,λ, ρ, σ). Let g ∈ G.
We define Π, g to be the circular proof (P ′, g) where P ′ = (H,λ′, ρ′, σ′) and h ∈ H if and
only if g →⋆ h in G(Π); λ′, ρ′, σ′ are the restrictions of λ, ρ, σ respectively to H.

Gluing two proofs

Definition 2.44. Let Π1 be a µSA proof of conclusion s and let Π2 be a µSA proof where
the sequent s appears as the conclusion of an assumption rule. We define Glue(Π1, Π2, s) to
be the µSA proof obtained from Π1 by replacing the assumption on s by the proof Π2. We
draw this operation as follows:

⊢ Γ
(A)

⊢ Γ

Π1

Π2

 ⊢ Γ

Π1

Π2

The procedure

The main result of this section is the following.

Theorem 2.5. Let Π be a µSω proof of a sequent s. If Π is translatable and if µS and µSω

satisfy the invaiant property, then we can construct effectively a proof of s in µS.

The proof of this result is inspired by a proof technique used by Santocanale in [San02].
In this paper, Santocanale defines a categorical semantics for his calculus (which is the
circular proof system for additive linear logic: µALLω). For that, he associates to every
circular proof of his calculus a system of equations, then he shows that every such system
admits a unique solution. To prove this last result, he proceeds by induction on what he
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calls the “complexity” of his circular proof: he decomposes it into proofs having smaller
complexity, the system of equations associated to each of these proofs admits a unique
solution by induction hypothesis, he gathers these to solutions together and shows that the
obtained object is a solution of the initial system of equations. We can see his proof as a
translation procedure from circular proofs into his semantics. Our idea was to follow the
same proof schema, but instead of translating towards semantics, we translate our circular
proofs towards the finitary proof system. His calculus being purely additive, his technique
does not scale as it is in a more general setting where multiplicative rules may occur. For
instance his measure of complexity does not work in general.

Let us define now our measure of complexity. As said earlier, we will step out the system
µSω during this induction, thus we define below the complexity for µSA

ω proofs.

Definition 2.45. Let Π be a µSA
ω proof. We define the set VΠ to be the set of vertices of

Π not labeled by an assumption rule. We define CΠ to be the set of elementary cycles of
G(Π). The complexity of Π, denoted #Π is the pair (card CΠ, card VΠ), of the cardinal of
CΠ and the cardinal of VΠ.

Definition 2.46. The set ω × ω is naturally equipped with the lexicographic order �
defined by: (n,m) � (n′,m′) if and only if n ≤ n′ and if n = n′ then m ≤ m′. We denote
by ≺ the strict order arising from �.

Since ≺ is a well-founded relation, we will show our result by induction on #Π, providing
a base case if card CΠ = 0 and an induction step when card CΠ > 0.
We introduce the last definition before showing our main result. In the inductive case, we
will need to consider two situations: when the proof is strongly connected and when it
is not.

Definition 2.47. A µSA
ω proof Π is said to be strongly connected , if, for each pair

g1, g2 ∈ VΠ, we can find paths from g1 to g2, and from g2 to g1 in G(Π).

To show Theorem 2.5, We establish the following strengthened result:

Proposition 2.16. If µS and µSω satisfy the invariant property, and if Π is a translatable
µSA

ω proof of ⊢ Γ, then there is a µSA proof π of ⊢ Γ such that Aπ ⊆ AΠ.

Proof. The proof is by induction on the complexity of Π. When

card CΠ = 0

This means that the graph of Π has the shape of a tree. The rules used in Π are of three
kinds: either 1) µS∞ rules, 2) Assumption rule 3) One of the rules (Substω) or (Unfoldω).
The translation of Π is the µSA proof π obtained from Π by keeping the rules of kind 1)
and 2) unchanged and by replacing the rules (Substω) or (Unfoldω) by their finitary versions
(Subst) or (Unfold). We have obviously that Aπ ⊆ AΠ.
Otherwise:

card CΠ > 0

and Π is either strongly connected or not. Therefore, it is possible to argue as follows.
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If Π is not strongly connected. Let g1, g2 ∈ VΠ and suppose that there is no path from
g1 to g2 in G(Π). Let Π1 be the reachable part of Π from g1:

Π1 = Π, g1

and let Π2 be the proof obtained from Π by adding an assumption on g1 and taking the
reachable part from the conclusion c of Π:

Π2 = Πg1 , c

Let ⊢ ∆ be the label of g1, Π1 is thus a proof of ⊢ ∆ and Π2 a proof of ⊢ Γ. Note that
AΠ1
⊆ AΠ and AΠ2

⊆ AΠ ∪ {⊢ ∆}.
Since g2 is not reachable from g1, Π1 does not contain g2 as a vertex, thus card VΠ1

<
card VΠ. Since g1 is an assumption in Π2, card VΠ2

< card VΠ. Thus by induction hypothesis,
there are two µSA proofs π1 and π2, respectively of conclusion ⊢ ∆ and ⊢ Γ, such that
Aπ1 ⊆ AΠ1

and Aπ2 ⊆ AΠ2
.

Let π = Glue(Π1, Π2,⊢ ∆). We have that Aπ = (Aπ1 ∪ Aπ1 \ {⊢ ∆}) ⊆ AΠ, which
concludes this case.

If Π is strongly connected. There is an infinite path p that visits all the vertices of G(Π).
Since Π is translatable, this path is validated by a strongly valid trace t. Let g be a vertex
where the minimal formula of t has been unfolded, that is ρ(g) = (ν), λ(g) = (⊢ νX.F , ∆),
where νX.F ≡ min(Inf(t)) and the successor of g, that we denote by g′, is labeled by the
sequent ⊢ F [νX.F/X], ∆.

We suppose without loss of generality that g is the conclusion of Π. Let Π′ be the proof
of conclusion g′ obtained from Π by adding an assumption on g:

Π′ = Πg, g′

Graphically, Π′ is of the following shape:

⊢ F [νX.F/X], ∆

(A)
⊢ νX.F , ∆

Let I be the invariant of (νX.F , ∆) (Definition 2.40). We construct the circular proof Θ
from Π′ by replacing the label ⊢ F [νX.F/X], ∆ of its conclusion g′ by ⊢ F [I/X], ∆, and
simply propagating that substitution along the trace t, unfolding I when the corresponding
ϕ is unfolded by using the rule (Unfold). Let us show how to propagate this substitution
only along the trace t whilst preventing it from affecting other occurrences.
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By strong validity, if the trace t meets a vertex v, it meets it always at the level of the
same occurrence that we denote by t(v). Since νX.F is the minimal formula of the trace t,
every occurrence t(v) is of the form G[νX.F/X]. We apply the following transformation on
the labels of Π′ vertices starting from the conclusion:

Let v be a vertex of Π′ and let {vi}i∈I be the set of its successors. Each vi is either
touched by the trace, or it is not (it is an assumption then). Let {vj}j∈J be the successors
of v of the first category and {vk}k∈K be its successors of the second one.

The label of v is of the form G[νX.F/X], Σ where G[νX.F/X] = t(v). For every j ∈ J ,
the label of vj is of the form Gj[νX.F/X], ~Hj[νX.F/X], Σj where Gj[νX.F/X] = t(vj) and
~Hj[νX.F/X] are sub-occurrences of G[νX.F/X]. For every k ∈ K, the label of vk is of the
form ~Hk[νX.F/X], Σk where ~Hk[νX.F/X] are sub-occurrences of G[νX.F/X]. We show
below the inference rule corresponding to the vertex v:

{⊢ Gj[νX.F/X], ~Hj[νX.F/X], Σj}j∈J ∪ {⊢ ~Hk[νX.F/X], Σk}k∈K
ρ(v)

⊢ G[νX.F/X], Σ

When we substitute νX.F by I in t(v), we want this substitution to reach only t(vj) and
not ~Hj[νX.F/X], nor ~Hj[νX.F/X]. We use for that the rule (Subst) as follows:

{

⊢ Gj[I/X], ~Hj[νX.F/X], Σj
(Subst)

⊢ Gj[I/X], ~Hj[I/X], Σj

}

j∈J

⋃

{

⊢ ~Hk[νX.F/X], Σk
(Subst)

⊢ ~Hk[I/X], Σk

}

k∈K
ρ(v)

⊢ G[I/X], Σ

Note that the occurrence νX.F in the vertex g will become I in Θ, we depict the proof Θ
as follows:

⊢ F [I/X], ∆

(A)
⊢ I, ∆

The complexity of the proof Θ is strictly less than that of Π, since it contains strictly less
elementary cycles. Note also that Θ is still translatable, thus we can apply the induction
hypothesis to Θ, and get a µSA proof θ of the sequent ⊢ F [I/X], ∆ such that Aθ ⊆ AΘ.

The proof Θ has one more assumption than Π which is the assumption on ⊢ I, ∆, thus
θ may also contain this assumption. We adapt θ to get rid of this assumption in order to
obtain a µSA derivation β such that Aβ ⊆ AΠ. For that we replace the assumption on
⊢ I, ∆ by the rule (Close). The obtained µSA proof β satisfies Aβ ⊆ AΠ and its conclusion
is ⊢ F [I/X], ∆. We are now ready to conclude by constructing a µSA proof π of conclusion
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⊢ νX.F , ∆ such that Aπ ⊆ AΠ. The derivation starts with a (ν) rule on νX.F , using I as
invariant.

π = (Close)
⊢ ∆, I

β

⊢ F [I/X], ∆
(Replace)

⊢ F [I/X], I⊥
(ν)

⊢ νX.F , ∆

Remark 2.21. From the proof of Proposition 2.16, we can extract an algorithm that
transforms a circular proof into a finitary one, provided that we have an algorithm that
returns for every regular path a strongly valid trace for it. Indeed, the “strongly connected
case” of the procedure requires to find a strongly valid trace for the path that visits all the
sequents. This should be done in an effective way to get a translation algorithm.

We state in the following a sufficient condition on circular proofs, which allows to trans-
form the procedure of the proof of Proposition 2.16 into an effective algorithm.

Proposition 2.17. Let Π be a µSω proof of s. If every valid trace of Π is strongly valid,
then we can transform effectively Π into a µS proof of s.

Proof. By Remark 2.21, to turn the translation procedure described in the proof of Propo-
sition 2.16 into an effective algorithm, one should provide an algorithm that returns for
every regular path a strongly valid trace. Since all the traces of Π are strongly valid, it is
enough to provide an algorithm that returns a valid trace for every regular path. For that,
we design for every regular path p a parity word automaton Ap whose language is the set
of all valid traces of p. Then we check Ap for emptiness, using for example Ramsey based
techniques [FL12]. These emptiness tests either answer that the automaton is empty, or
returns a regular word in its language if this is not the case. In our situation, the emptiness
test will always return a word which is a valid tarce for p.

Example 2.19. Let us consider the following µMALLω proof, where we have:

ϕ = νX.ψ ψ = κ` ξ
κ = µY .X ⊗ Y ξ = σ ⊕⊤
σ = νZ.Z ⊕⊥

G(Π, a) =

(⋆)

⊢ ϕ, ξ

(†)

⊢ κ[ϕ/X], σ
(⊕1)

⊢ κ[ϕ/X], σ ⊕⊥
(ν)

(†) ⊢ κ[ϕ/X], σ
(⊗)

⊢ ϕ⊗ κ[ϕ/X], ξ, σ
(µ)

⊢ κ[ϕ/X], ξ, σ
(`)

⊢ ψ[ϕ/X], σ
(⊕1)

⊢ ψ[ϕ/X], ξ
(ν)

(⋆) ⊢ ϕ, ξ
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In this example, we will neglect the use of addresses since they are unambiguously inferable
from the context.

We show the different steps of the algorithm described above when applied to this proof.
The proof Π is not strongly connected, we cut it into the following two proofs:

Π1 =

(†)

⊢ κ[ϕ/X], σ
(⊕1)

⊢ κ[ϕ/X], σ ⊕⊥
(ν)

(†) ⊢ κ[ϕ/X], σ

Π2 =

(⋆)

⊢ ϕ, ξ
(A)

⊢ κ[ϕ/X], σ
(⊗)

⊢ ϕ⊗ κ[ϕ/X], ξ, σ
(µ)

⊢ κ[ϕ/X], ξ, σ
(`)

⊢ ψ[ϕ/X], σ
(⊕1)

⊢ ψ[ϕ/X], ξ
(ν)

(⋆) ⊢ ϕ, ξ

Now we will translate each of these proofs.

Translation of Π1. The proof Π1 is strongly connected and it has only one infinite path
with exactly one strongly valid trace (drawn in blue), whose minimal formula is σ. The
derivation Π′1 is the immediate unfolding of Π1, where we added an assumption on the
vertex labeled ⊢ κ[ϕ/X], σ.

Π′1 =

(A)
⊢ κ[ϕ/X], σ

(⊕1)
⊢ κ[ϕ/X], σ ⊕⊥

Let I1 be the invariant of (σ, {κ[ϕ/X]}). The proof Θ1 is obtained by replacing σ by I1 in
the conclusions of Π′1 and propagating this substitution along the strongly valid trace:

Θ1 =

(A)
⊢ κ[ϕ/X], I1

(⊕)
⊢ κ[ϕ/X], I1 ⊕⊥

Since G(Θ1) is a tree, we have that CΘ1
= 0, thus its translation θ1 is Θ1 itself. Now,

we eliminate the assumption from θ1 using the rule (Close), doing so we get the following
µMALL proof β1:

β1 =

(Close)
⊢ κ[ϕ/X], I1

(⊕)
⊢ κ[ϕ/X], I1 ⊕⊥

Now we can construct π1, the translation of Π1, by applying a rule (ν) on σ using I1 as
invariant.

π1 = (Close)
⊢ κ[ϕ/X], I1

β1

⊢ κ[ϕ/X], I1 ⊕⊥
(Replace)

⊢ I⊥1 , I1 ⊕⊥
(ν)

⊢ κ[ϕ/X], σ
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Translation of Π2. The proof Π2 is strongly connected and it has only one infinite path,
with exactly one strongly valid trace (drawn in red), whose minimal formula is ϕ.

The derivation Π′2 is the immediate unfolding of Π2, where we added an assumption on
the vertex labeled ⊢ ϕ, ξ.

Π′2 =

(A)
⊢ ϕ, ξ

(A)
⊢ κ[ϕ/X], σ

(⊗)
⊢ ϕ⊗ κ[ϕ/X], ξ, σ

(µ)
⊢ κ[ϕ/X], ξ, σ

(`)
⊢ ψ[ϕ/X], σ

(⊕1)
⊢ ψ[ϕ/X], ξ

Let I2 be the invariant of (ϕ, {ξ}). The proof Θ2 is obtained by replacing ϕ by I2 in the
conclusions of Π′2 and propagating this substitution all along the strongly valid trace:

Θ2 =

(A)
⊢ I2, ξ

(A)
⊢ κ[ϕ/X], σ

(Subst)
⊢ κ[I2/X], σ

(⊗)
⊢ I2 ⊗ κ[I2/X], ξ, σ

(µ)
⊢ κ[I2/X], ξ, σ

(`)
⊢ ψ[I2/X], σ

(⊕1)
⊢ ψ[I2/X], ξ

Since Θ2 is a tree, its translation θ2 is Θ2 itself. The proof θ2 has one more assumption than
Π2, which is ⊢ I2, ξ. We eliminate this additional assumption using the rule (Close). Doing
so, we obtain the derivation β2:

β2 =

(Close)
⊢ I2, ξ

(A)
⊢ κ[ϕ/X], σ

(Subst)
⊢ κ[I2/X], σ

(⊗)
⊢ I2 ⊗ κ[I2/X], ξ, σ

(µ)
⊢ κ[I2/X], ξ, σ

(`)
⊢ ψ[I2/X], σ

(⊕1)
⊢ ψ[I2/X], ξ

Now we can construct π2, the translation of Π2, by applying a rule (ν) on ϕ using I2 as
invariant.

π2 = (Close)
⊢ ξ, I2

β2

⊢ ψ[I2/X], ξ
(Replace)

⊢ ψ[I2/X], I⊥2
(ν)

⊢ ϕ, ξ

Translation of Π. Now that we have the translation π1 of Π1 and π2 of Π2, we can glue
them at the level of the assumption ⊢ κ[ϕ/X], σ, to get the following proof, which is the
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translation of Π.

(Close)
⊢ ξ, I2

(Close)
⊢ I2, ξ

(Close)
⊢ κ[ϕ/X], I1

(Close)
⊢ κ[ϕ/X], I1

(⊕)
⊢ κ[ϕ/X], I1 ⊕⊥

(Replace)
⊢ I⊥1 , I1 ⊕⊥

(ν)
⊢ κ[ϕ/X], σ

(Subst)
⊢ κ[I2/X], σ

(⊗)
⊢ I2 ⊗ κ[I2/X], ξ, σ

(µ)
⊢ κ[I2/X], ξ, σ

(`)
⊢ ψ[I2/X], σ

(⊕1)
⊢ ψ[I2/X], ξ

(Replace)
⊢ ψ[I2/X], I⊥2

(ν)
⊢ ϕ, ξ



Part I

Linear logic with least and greatest fixed
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Chapter 3

Cut-elimination for µMALL
∞

In this Chapter we establish the cut-elimination result for the infinitary proof system
µMALL∞.

Why cut-elimination for µMALL∞ instead of µMALLω? Of course, from a Curry-
Howard perspective, we are interested in the cut-elimination result for the circular proof
system µMALLω, but we cannot expect to achieve such a result. Indeed, in Section 3.6
we will show that we can encode in µMALLω the function that takes a natural number n
as an argument and returns the stream Sn = n :: (n + 1) :: n + 2 :: . . . . When we cut
the encoding of this function against the µMALLω proof encoding a natural number n, the
cut-elimination procedure yields the infinitary proof encoding the stream Sn. Thus, the
cut-elimination for circular proofs does not preserve circularity. This is the reason why we
do not restrict ourselves to µMALLω, and show the more general result of cut-elimination
for µMALL∞.

This remark on the loss of circularity should not be viewed as a weakness, quite the
contrary: if circularity was preserved we would not be able to encode in µMALLω the
function n 7→ Sn.

Peculiarity of cut-elimination in an infinitary setting. In a finitary setting, the
cut-elimination result is usually stated as follows: “Every proof can be reduced after a finite
number of steps to a cut-free proof”. In an infinitary setting such as µMALLω, this result
obviously does not hold. Returning to the example of the µMALLω encoding of n 7→ Sn, we
cannot hope to reduce this proof into a the cut-free proof encoding Sn in a finite number
of steps, simply because the result is not regular. Actually, what we need to establish it
not the termination of the cut-elimination procedure, but its productivity. This property
means that every finite prefix of the result can be computed in a finite number of steps.
This allows us for example to inspect the stream Sn at any depth we need.

The other particularity of cut-elimination in an infinitary setting comes from the validity
condition. If productivity guarantees that we obtain a pre-proof at the limit of the cut-
elimination procedure, nothing says that it is indeed a proof. We will show in this chapter
that the pre-proof obtained by cut elimination satisfies the validity condition, we call the
result the validity preservation. The productivity being strongly based on the validity of
the proof, the validity preservation result is of great importance when we consider higher-
order functions, since the result of cut-elimination may be itself used as a function.
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Finally, as usual with infinitary reductions it is not the case that all reduction sequences
converge: for instance, one could reduce only deep cuts in a proof, leaving a cut untouched
at the root. We avoid this problem by reducing bottom-most cuts only, that is we consider
a form of head reduction.

About the proof. It seems difficult to lift the standard arguments used to show cut elim-
ination in the finitary setting (for example induction on formulas and proofs or reducibility
candidates) to the infinitary setting, since they rely strongly on the finiteness of the proofs.
The only known cut-elimination result in an infinitary setting is the one concerning µALL∞

by Fortier and Santocanale [FS13]. To show this result, the authors use a topological argu-
ment on µALL∞ proofs which works only for the additive framework. No simple adaptation
of this argument seems to be possible when multiplicative rules are also considered.

Let us sketch coarsely our argument. We proceed by contradiction, and suppose that
there is a non productive sequence of cut-elimination reductions, starting from a µMALL∞

proof Π. The sequents of Π that participated to this reduction are called its trace, and form
a sub-derivation of Π. Pruned correctly, this trace yields a proof of the empty sequent, in
a proof system very close to µMALL∞ which we call the truncated proof system µMALL∞τ .
We equip µMALL∞ formulas with a natural thruth semantics and show that µMALL∞τ is
sound with its respect. This yields a contradiction with the fact that the empty sequent is
derivable in µMALL∞τ .

This argument is unusual when we know that the soundness of a proof system is usually
obtained as a corollary of the cut-elimination result (the admissibility of the cut rule to be
more precise), this is perfectly the opposite of our approach.

The validity preservation result is obtained using a similar argument.

Organization of the chapter. In Section 3.1, we introduce the cut-elimination reduction
rules for µMALL∞ and specify our strategy to eliminate cuts. We define in Section 3.2 the
trace of a reduction sequence, and show that we can see it as a proper proof of a proof system
that we call µMALL∞τ . A coarse thruth semantics for µMALL formulas proofs is introduced
in Section 3.3, and shown to be sound for µMALL∞τ . The productivity of the cut-elimination
procedure and the preservation of validity are shown respectively in Sections 3.4 and 3.5,
using the technical tools introduced in earlier sections and following the proof sketch above.
In Section 3.6, we show some examples of µMALL∞ proofs and their cut-elimination. Finally,
we discuss in Section 3.7 the extension to the cut-elimination result to µLL, µLK and µLK⊙.

3.1 Reduction rules

In this section we define the cut-elimination reduction rules for µMALL∞ (Sections 3.1.1 3.1.2).
These rules extend the well-known reduction rules for MALL with the auxiliary rule (µ)/(ν)
and the principal rules (ν)/(Cut) and (µ)/(Cut). In order to get our cut-elimination re-
sult, we cannot apply these rules any how. As already mentioned, the first constraint is a
head-reduction strategy, imposed by the infinitary setting. To make our argument work, we
also need another constraint called fairness, we introduce it formally in Section 3.1.3. In
Section 3.1.4, we state our cut-elimination result and give a blueprint of the proof.



3.1. REDUCTION RULES 89

3.1.1 The multicut rule

Before giving the reduction rules for µMALL∞, we need to solve a technicality relative to
the commutation of cut rules. Indeed, what happens in the situation where the cut we are
trying to reduce (the bottom-most) encounters another cut rule? If we just try to permute
the two cuts (see reduction below), then the (Cut)2 which is now the bottom most, is under
the cut rule (Cut)1 we should then permute them, and we will loop in this (Cut)/(Cut)
reduction sequence which is obviously not productive.

To overcome this problem, instead of permuting the two cuts, we merge them into one
rule called multicut .

Definition 3.1. Given two sequents s and s′, we say that they are cut-connected on an
occurrence F when F ∈ s and F⊥ ∈ s′. We say that they are cut-connected when they
are cut-connected for some F . We call cut net any non-empty set of sequents {si}i such
that:

• Any sequents si and sj are cut-connected on at most one occurrence.

• If si and sj are cut-connected on F , and if sj and sk are cut-connected on G, then F
and G are disjoint.

• The set {si}i is connected and acyclic with respect to the cut-connection relation.

The conclusion of a cut net {si}i is the sequent smade of all the occurrences F appearing
in some si but such that no sj is cut-connected to si on F .
We define the multicut rule (mcut) as shown below with conclusion s and premisses {si}i,
where the set {si}i is a cut net and s its conclusion.

s1 . . . sn
(mcut)s

Example 3.1. Let s be any sequent, then the following rule is a valid multicut rule:

s
(mcut)s

Let F ,G,H,K and L be pairwise disjoint occurrences. We define M to be the follwoing
cut net: {⊢ F ,G, ⊢ F⊥,H,K, ⊢ H⊥, ⊢ K⊥, ⊢ G⊥,L}. The conclusion of M is L, thus
its corresponding rules is:

⊢ F ,G ⊢ F⊥,H,K ⊢ H⊥ ⊢ K⊥ ⊢ G⊥,L
(mcut)

⊢ L

We now give examples of sets which are not cut nets. The empty set is not a multicut net.
If F and G are two disjoint occurrences then {⊢ F ,G, ⊢ F⊥,G⊥} is not a cut net, since its
two sequents are cut-connected on both F and G, thus it does not satisfy the first condition.
If H is another occurrence disjoint from F , the set {⊢ F⊥, ⊢ F ,G, ⊢ F ,H} not a cut net
either since it does not satisfy the second condition. Finally {⊢ F , ⊢ G} is not a cut net
because it is not connected, nor is {⊢ F ,H, ⊢ F⊥,G, ⊢ G⊥,H⊥} because it is cyclic.

From now on we shall work with a new proof system µMALL∞m , that extends µMALL∞

with the multicut rule:
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Definition 3.2. A µMALL∞m derivation , is a µMALL∞ derivation in which the multicut
rule may occur, though only at most once per branch. The notions of thread and validity
are unchanged for µMALL∞m .

In µMALL∞m , we will only reduce multicuts, using the rules that we introduce in the next
section.

3.1.2 Reduction rules

In Chapter 1, we defined our sequents as sets of disjoint occurrences. To guarentee this
disjointness condition on sequents, we stated a simple condition saying that the addresses of
the conculusion occurrences together with the cut occurrences should be pairwise disjoint.
Althougt easy to state, this condition is too rigid. In particular, it is not stable by the
cut-elimination reductions that we will show in this section. We need to relax it into
the following condition, which guarantees that the proofs produced by the cut-elimination
reductions (and also by the proof transformationss that we will introduce in Chapter 4)
satisfy the disjointness condition on sequents as well:

Proviso 3.1. All along this Part, we suppose that our proofs satisfy the following conditions:

• Any two occurrences appearing in different branches must be disjoint except if the
branches first differ right after a (&) inference.

• If ϕα and ψα⊥ occur in a proof, they must be the respective sub-occurrences of the
formula occurrences F and F⊥ introduced by a (Cut) rule.

Before introducing the reduction rules for µMALL∞m , we need to introduce a few pre-
liminary definitions, in order to treat well the principal reduction rule (⊗)/(Cut). Given
a sequent ⊢ Γ,∆,F⊗G that is a premise of a multicut, we need to define which part of
the multicut is connected to Γ and which part is connected to ∆. These two sub-nets,
respectively called CΓ and C∆, will be split apart in the (⊗)/(Cut) reduction.

Definition 3.3. Let M be a cut net, and F be an occurrence appearing in some s ∈ M.
We define CF ⊆ M as follows. If F⊥ ∈ s′ for some s′ ∈ M, then CF is the connected
component of M\ {s} containing s′. Otherwise, CF = ∅. If ∆ is a set of occurrences, we
define C∆ :=

⊎

F∈∆ CF .

Example 3.2. LetM = {⊢ F ,G,H, I, ⊢ F⊥,K, ⊢ K⊥, ⊢ G⊥,L,M ⊢ L⊥, ⊢ H⊥,O,P , ⊢
O⊥, ⊢ P⊥} be a cut net. We have CF = {⊢ F⊥,K, ⊢ K⊥}, CG = {⊢ G⊥,L,M ⊢ L⊥} and
C{F ,G} = CF ∪ CG.

Proposition 3.1. Let s = ⊢ F , ∆, Γ be a sequent, and M = {s}
⊎

C be a cut net of
conclusion ⊢ F , Σ. One has C = C∆

⊎

CΓ. Moreover, {⊢ Γ} ∪ CΓ and {⊢ ∆} ∪ C∆ are cut
nets and, if ΣΓ and Σ∆ are their respective conclusions, we have Σ = Σ∆

⊎

ΣΓ.

Proof. Since M is a tree, we have that C =
⊎

G∈s CG. We have also that CF = ∅ as F is in
the conclusion ofM. Thus, C = C∆

⊎

CΓ. Moreover, every CG where G ∈ Γ is a tree, whose
root is cut-connected to Γ, thus {⊢ Γ} ∪ CΓ is a cut net. The same holds for {⊢ ∆} ∪ C∆. It
is easy to see that Σ = Σ∆

⊎

ΣΓ.



3.1. REDUCTION RULES 91

C

⊢ ∆,F ⊢ Γ,G
(⊗)

⊢ ∆,Γ,F⊗G
(mcut)

⊢ Σ∆, ΣΓ,F⊗G

−→
r

C∆ ⊢ ∆,F
(mcut)

⊢ Σ∆,F

CΓ ⊢ Γ,G
(mcut)

⊢ ΣΓ,G
(⊗)

⊢ Σ∆, ΣΓ,F⊗G

C

⊢ ∆,F ,G
(`)

⊢ ∆,F `G
(mcut)

⊢ Σ,F `G

−→
r

C ⊢ ∆,F ,G
(mcut)

⊢ Σ,F ,G
(`)

⊢ Σ,F `G

C

⊢ ∆,F ⊢ ∆,G
(&)

⊢ ∆,F &G
(mcut)

⊢ Σ,F &G

−→
r

C ⊢ ∆,F
(mcut)

⊢ Σ,F

C ⊢ ∆,G
(mcut)

⊢ Σ,G
(&)

⊢ Σ,F &G

C

⊢ ∆,Fi
(⊕i)

⊢ ∆,F1 ⊕ F2
(mcut)

⊢ Σ,F1 ⊕ F2

−→
r

C ⊢ ∆,Fi
(mcut)

⊢ Σ,Fi
(⊕i)

⊢ Σ,F1 ⊕ F2

C
(⊤)

⊢ ∆,⊤α
(mcut)

⊢ Σ,⊤α
−→
r

(⊤)
⊢ Σ,⊤α

C

⊢ ∆
(⊥)

⊢ ∆,⊥α
(mcut)

⊢ Σ,⊥α

−→
r

C ⊢ ∆
(mcut)

⊢ Σ
(⊥)

⊢ Σ,⊥α

(1)
⊢ 1α

(mcut)
⊢ 1α

−→
r

(1)
⊢ 1α

Figure 3.1: External reduction rules, where r = (ext,F ) and F is the occurrence that is
principal after the rule application.

We are now ready to introduce our reduction rules. Cut reduction rules are of two kinds,
principal reductions and auxiliary ones. In the infinitary setting, principal cut reductions
do not immediately contribute to producing a cut-free pre-proof. On the contrary, auxiliary
cut reductions are productive in that sense. In other words, principal rules are seen as
internal computations of the cut elimination process, while auxiliary rules are seen as a
partial output of that process. Accordingly, the former will be called internal rules and the
latter external rules.

Definition 3.4. External reductions are defined in Figure 3.1. The sets Σ∆, ΣΓ, C∆ and
CΓ used for the (⊗)/(mcut) external reduction rule are those defined in Proposition 3.1.

Remark 3.1. Notice that the (⊗)/(mcut) and (&)/(mcut) external reduction cases yield
multiple multicuts, though always on disjoint sub-trees. Thus µMALL∞m is stable by external
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reductions.

Remark 3.2. In external reductions, we pushed away the multicut rule above a logical rule.
If we start from a multicut at the root, and perform only external rules, we will produce
at the limit a cut-free proof. This is the reason why we say that external reductions are
productive . This is not the case for the internal reduction rules that we shall see next.

Definition 3.5. Merge reduction is defined as follows, with r = (merge, {F ,F⊥}):

C

⊢ ∆,F ⊢ Γ,F⊥
(Cut)

⊢ ∆,Γ
(mcut)

⊢ Σ

−→
r

C ⊢ ∆,F ⊢ Γ,F⊥
(mcut)

⊢ Σ

Principal reductions are defined in Figure 3.2.
Internal reductions are the union of merge and principal reductions.

Remark 3.3. Notice that µMALL∞m is also stable by internal reductions.

Remark 3.4. In internal reductions, the multicut stays at the same level. Thus, if after
some point of the cut-elimination procedure we perform only internal reduction rules, we
will not produce a cut-free proof. Actually, we will show later that, at every moment of
the reduction, some external redex will be available eventually. This result will ensure the
productivity of cut-elimination, provided that we are sufficiently fair when reducing cuts.

3.1.3 Reduction sequences

We can now provide more explicit notions of reduction sequences and fairness.

Definition 3.6. A multicut reduction sequence is a finite or infinite sequence σ =
(πi, ri)i∈λ, with λ ∈ ω + 1, where the πi are µMALL∞m proofs, the ri are labels identifying a
multicut reduction rule and, whenever i+ 1 ∈ λ, πi −→

ri
πi+1.

We have seen that external rules may generate several multicuts. In a multicut reduction
sequence, we are allowed to reduce all these multicuts, in any order. Later on, we will be
interested in tracing the evolution of one single multicut, selecting only one sibling in the
case of (⊗)/(mcut) and (&)/(mcut) external reductions. For that, we define the notion of
reduction paths:

Definition 3.7. A reduction path is a finite or infinite sequence σ = (θi, ri)i∈λ, with
λ ∈ ω + 1, where the θi are µMALL∞m proofs ending with a multicut rule, ri are labels
identifying a multicut reduction rule and, whenever i + 1 ∈ λ, either ri is an internal
reduction label and then θi −→

ri
θi+1, or ri is an external reduction label, in this case, if πi

is the proof such that θi −→
ri

πi then θi+1 should be a premise of πi.

Remark 3.5. If a muticut reduction sequence is infinite, then by König’s lemma, we can
extract from it an infinite reduction path.
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C

⊢ ∆,F ⊢ Γ,G
(⊗)

⊢ ∆,Γ,F⊗G

⊢ Θ,G⊥,F⊥
(`)

⊢ Θ,G⊥ ` F⊥
(mcut)

⊢ Σ

−→
r

C ⊢ ∆,F ⊢ Γ,G ⊢ Θ,G⊥,F⊥
(mcut)

⊢ Σ

C

⊢ ∆,F2 ⊢ ∆,F1
(&)

⊢ ∆,F2 & F1

⊢ Γ,F⊥i
(⊕i)

⊢ Γ,F⊥1 ⊕ F
⊥
2

(mcut)
⊢ Σ

−→
r

C ⊢ ∆,Fi ⊢ Γ,F⊥i
(mcut)

⊢ Σ

C

⊢ ∆,F [µX.F/X]
(µ)

⊢ ∆,µX.F

⊢ Γ,F⊥[νX.F⊥/X]
(ν)

⊢ Γ, νX.F⊥
(mcut)

⊢ Σ

−→
r

C ⊢ ∆,F [µX.F/X] ⊢ Γ,F⊥[νX.F⊥/X]
(mcut)

⊢ Σ

C

⊢ Γ
(⊥)

⊢ Γ,⊥
(1)

⊢ 1
(mcut)

Σ

−→
r

C ⊢ Γ
(mcut)

Σ

Figure 3.2: Principal reductions, where r = (principal, {F ,F⊥}) with {F ,F⊥} the
principal occurrences that have been reduced.

We will be interested in a particular kind of multicut reduction sequences, the fair ones,
which are sequences such that any redex which is available at some point of the sequence will
eventually have disappeared from the sequence (being reduced or erased). The following
definition of fair reduction is standard from rewriting theory (see for instance chapter 9
of [Ter03]):

Definition 3.8. A multicut reduction sequence (πi, ri)i∈λ is fair if for every i ∈ λ and
r such that πi −→

r
π′, there is some j ≥ i, j ∈ λ, such that πj cannot be reduced using r,

in other words there is no proof θ such that πj −→
r
θ.

Fairness is defined in the same way for a reduction path rather than a reduction sequence.
In that case, fairness can be rephrased in a simpler way: A multicut reduction path
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(πi, ri)i∈λ is fair if for every i ∈ λ and r such that πi −→
r

π′, there is some j ≥ i, j ∈ λ,

such that r has disappeared from πj+1, that is, either rj is r or rj erases r.

Remark 3.6. Note that reduction paths extracted from a fair reduction sequence are always
fair.

3.1.4 Statement of the cut-elimination theorem and proof sketch

The main result of this chapter is that fair reductions eliminate multicuts:

Theorem 3.1. Fair multicut reduction sequences on µMALL∞m proofs produce µMALL∞

proofs.

Additionally, if all cuts in the initial derivation are above multicuts, the resulting µMALL∞

derivation must actually be cut-free: indeed, multicut reductions never produce a cut. Thus
Theorem 3.1 gives a way to eliminate cuts from any µMALL∞ proof π of conclusion ⊢ Γ: we
start by forming a multicut with conclusion ⊢ Γ and π as unique sub-derivation (by applying
the first multicut rule of Example 3.1), then we eliminate multicuts (and cuts) from that
µMALL∞m proof.

The proof of Theorem 3.1 is in two parts. We first prove that fair internal multicut
reductions cannot diverge (Proposition 3.5), hence fair multicut reductions are productive,
i.e., reductions of µMALL∞m proofs converge to µMALL∞ pre-proofs. We then establish that
the obtained pre-proof is a valid proof (Proposition 3.8).

Regarding productivity, assuming that there exists an infinite fair sequence σ of internal
cut-reductions from a given proof π of conclusion Γ, we obtain a contradiction by extracting
from π a proof of the empty sequent in a suitably defined proof-system. More specifically,
we start by defining the subtree πσ of π, which is the subtree visited by σ (Section 3.2).
Since σ is fair, this means that no principal redex was available during the reduction, thus
no occurrence from Γ is principal in πσ. Hence, by erasing every occurrence in Γ from πσ,
local correctness of the proof is preserved, resulting in a tree deriving the empty sequent.
This tree can be viewed as a proof in a new proof-system µMALL∞τ which is shown to be
sound (Proposition 3.3) with respect to the traditional Boolean semantics of the µ-calculus,
thus the contradiction.

The proof of validity of the produced pre-proof is done in a similar way.

3.2 Extracting proofs from reduction paths

We define now a key notion to analyze the behaviour of multicut-elimination: given a
reduction path starting from π, we extract a (slightly modified) subderivation of π which
corresponds to the part of the derivation that has been explored by the reduction. More
precisely, given a reduction path σ starting with π, we consider the subtree of π whose
sequents occur in the reduction path as premises of some multicut, and we call it the trace
of σ. This subtree is obviously not always a µMALL∞ derivation since some of its nodes may
have missing premises, we call such sequent useless sequents We will provide an extension
of µMALL∞ where traces can be viewed as proper derivations, but first let us characterize
the situations where useless sequents arise.
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Definition 3.9. Let R = (θi, ri)i be a fair reduction path starting with π. A sequent
s = (⊢ Γ,F ) of π is said to be useless with distinguished occurrence F in one of the
following cases:

1. The sequent s eventually occurs as a premise of all multicuts of R and F is the
principal occurrence of s in π. Note that the distinguished occurrence F of a useless
sequent s of sort (1) must be a sub-occurrence of a cut occurrence in π. Otherwise, the
fair reduction path R would eventually have applied an external rule on s. Moreover,
F⊥ never becomes principal in the reduction path, otherwise by fairness the internal
rule reducing F and F⊥ would have been applied.

2. The sequent s is a premise of a rule (&) whose principal occurrence is of the form
F & G or G & F , and such that, at some point in the reduction, s is erased in an
internal (&)/(⊕) multicut reduction. In other words, there is an index i such that
either:

θi = C

⊢ Γ,F ⊢ Γ,G
(&)

⊢ Γ,F &G

⊢ ∆,G⊥
(⊕i)

⊢ ∆,F⊥ ⊕G⊥
(mcut)

⊢ Σ
or

θi = C

⊢ Γ,G ⊢ Γ,F
(&)

⊢ Γ,G& F

⊢ ∆,G⊥
(⊕i)

⊢ ∆,G⊥ ⊕ F⊥
(mcut)

⊢ Σ

and

θi+1 =
C ⊢ Γ,G ⊢ ∆,G⊥

(mcut)
⊢ Σ

3. The sequent s is a premise of a rule ⋆ ∈ {(⊗), (&)} whose principal occurrence is of
the form F ⋆G or G⋆F , and such that s is ignored at some point in the reduction path
because it is not present in the selected multicut after a branching external reduction
⋆/(mcut). In other words, there exists an index i such that either :

θi = C

⊢ Γ,F ⊢ Γ,G
(&)

⊢ Γ,F &G
(mcut)

⊢ Σ,F &G

and θi+1 =
C ⊢ Γ,G

(mcut)
⊢ Σ,G

or

θi = C

⊢ Γ,F ⊢ ∆,G
(⊗)

⊢ Γ,∆,F⊗G
(mcut)

⊢ ΣΓ, Σ∆,F⊗G

and θi+1 =
C∆ ⊢ ∆,G

(mcut)
⊢ Σ∆,G

4. The sequent s is ignored at some point in the reduction path because a (⊗)/(mcut)
external reduction distributes it to the multicut that is not selected in the path. In
other words, there exists an index i such that:

θi = C

⊢ Θ,G ⊢ ∆,H
(⊗)

⊢ Θ,∆,G⊗H
(mcut)

⊢ ΣΘ, Σ∆,G⊗H

and θi+1 =
CΘ ⊢ Θ,G

(mcut)
⊢ ΣΘ,G
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and such that s ∈ C∆. Note that all the sequents of C∆ are useless of sort (4). To
define the distinguished occurrences of an element t of C∆, in particular that of s, we
proceed by induction on the distance of t to the sequent ⊢ ∆,H with respect to the
cut-connexion relation, as follows:

• If a sequent t is cut-connected to ⊢ ∆,H on the occurrence I ∈ t, we choose I to
be the distinguished occurrence of t.

• If the distinguished occurrence of a sequent t has been defined, and if t′ is cut-
connected to t on G ∈ t′, we choose G as the distinguished occurrence of t′.

Note that, although the external reduction for ⊤ erases sequents, we do not need to
consider such sequents as useless: indeed, we will only need to work with useless sequents
in infinite reduction paths, and the external reduction associated to ⊤ terminates a path.

Remark 3.7. Note that two dual cut occurrences F and F⊥ can never both be distinguished.
Moreover, if F is distinguished, then every occurrence G extending F , i.e., F ⊑ G, is not
distinguished.

Example 3.3. Let ϕ = νX.X and F Let α, β and γ be three disjoint addresses and
ϕ = νX.X. Consider the following µMALL∞m proof, where F = ϕα, F ′ = ϕα.i, G = ϕβ,
G′ = ϕβ.i and H = ψγ. There is only one possible reduction sequence starting from this
proof, which performs external reductions on G and its sub-occurrences.

(†)
(ν)

⊢ F ′,H
(ν)

(†) ⊢ F ,H

(⋆)
(ν)

⊢ F⊥,G′
(ν)

(⋆) ⊢ F⊥,G
(mcut)

⊢ H,G

The sequent ⊢ F ,H is useless of sort (1) for the reduction sequence starting from this proof.
Its distinguished occurrence is F .

Definition 3.10. Let π be a µMALL∞m proof of ⊢ Γ and R = (θi, ri)i be a reduction path
starting with π. The trace of R, denoted TR(R), is the subtree of π containing, for every
i, the premises of θi.

Example 3.4. The trace of the reduction sequence starting from the proof of Example 3.3
is the following:

⊢ F ,H

(⋆)
(ν)

⊢ F⊥,G′
(ν)

(⋆) ⊢ F⊥,G
(mcut)

⊢ H,G

Notice that if s and t are two sequents of TR(R), appearing in the same branch of π,
then all the sequents between s and t in π belong also to TR(R). Thus, TR(R) is indeed a
tree, more precisely an open µMALL∞m derivation of conclusion ⊢ Γ. Moreover, the infinite
branches of TR(R) are also infinite branches of π, hence they satisfy the validity condition.
Note also that the open sequents of TR(R) are exactly the useless sequents of R. The
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derivation TR(R) is then almost a µMALL∞m derivation, one needs only to close it on useless
sequents. This is done by replacing distinguished occurrences by ⊤, through what we call
truncations .

Definition 3.11. A truncation τ is a partial function from Σ∗ to {⊤, 0} such that:

• For any α ∈ Σ∗, if α ∈ Dom(τ), then α⊥ ∈ Dom(τ) and τ(α) = τ(α⊥)⊥.

• If α ∈ Dom(τ) then for any β ∈ Σ+, α.β /∈ Dom(τ).

Definition 3.12. Let R be a reduction path. The truncation τ associated to R is
defined by setting τ(α) = ⊤ and τ(α⊥) = 0 for every occurrence ϕα that is distinguished in
some useless sequent of R.

The above definition is justified thanks to Remark 3.7.

Example 3.5. The truncation associated to the reduction path of the proof of Example 3.3
is defined by τ(α) = ⊤ and τ(α⊥) = 0, where α is the address of the useless occurrence F .

We now introduce a proof system where we can see the trace of a reduction path as a
proper proof. This proof system is parametrized by a truncation τ , we denote it µMALL∞τ .
In µMALL∞τ , we are allowed to replace an occurrence by its image by τ .

Definition 3.13. Given a truncation τ , the infinitary proof system µMALL∞τ is obtained
by taking all the rules of µMALL∞, with the proviso that they only apply when the address
of their principal occurrence is not in the domain of τ , otherwise the following rule has to
be applied:

⊢ τ(α)αi, ∆
(τ)

⊢ ϕα, ∆
if α ∈ Dom(τ)

The notions of thread and validity is the same as in µMALL∞.

The address α.i associated with τ(α) in the rule (τ) forbids loops on a (τ) rule. Indeed
if α ∈ Dom(τ) then α.i /∈ Dom(τ).

Definition 3.14. Let R be a fair infinite reduction path starting with π and τ be the
truncation associated to it. We define πR to be the µMALL∞τ proof obtained from the trace
TR(R), by closing every useless sequent ⊢ ϕα, Γ, with distinguished occurrence ϕα, using
the following derivation:

(⊤)
⊢ ⊤αi, Γ

(τ)
⊢ ϕα, Γ

Example 3.6. The trace of the reduction sequence starting from the proof of Example 3.3
is the following:

(⊤)
⊢ ⊤α.i,H

(τ)
⊢ F ,H

(⋆)
(ν)

⊢ F⊥,G′
(ν)

(⋆) ⊢ F⊥,G
(mcut)

⊢ H,G
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Actually, we have to justify that Definition 3.14 is always correct. Indeed, one can
imagine that the dual ϕ⊥

α⊥ of a distinguished occurrence ϕα, is principal in TR(R). Since
we have that α⊥ ∈ Dom(τ), and since in µMALL∞τ we apply rule (τ) as soon as possible, we
will have to replace the rule applied to ϕ⊥

α⊥ by the rule (τ) which will yield an occurrence of
the formula 0. Thus, embeding TR(R) in µMALL∞τ would break its shape, while our goal is
just to close the open useless sequents. Actually, we show that this situation never happens:
if an occurrence is distinguished, then its dual is never principal in TR(R).

Proposition 3.2. Let R be a fair reduction path. If F is distinguished then F⊥ is not
principal in TR(R).

Proof. Notice that the dual F⊥ of a distinguished occurrence F may only occur in R for
distinguished occurrences of type (1) and (4). We show that in both cases, F⊥ cannot be
principal in TR(R). Let R = (θi, ri)i be a fair reduction path and F be a distinguished
occurrence appearing in a useless sequent s.

Suppose that F is distinguished of type (1), i.e., there exists j such that for all k ≥ j,
the sequent s is the premise of θk, and F is the principal occurrence of s in π. Suppose by
contradiction that F⊥ is the principal occurrence of a sequent t in TR(R). Since t appears
in TR(R), thus there exists k ≥ j such that t is the premise of θk. Hence in θk, F and F⊥

form a redex, which by fairness should be eventually reduced. But if we reduce this redex,
this means that s is not a useless sequent of type (1) anymore, contradiction.

Now suppose that F is distinguished of type (4). Thus, s is cut-connected to a useless
sequent t (of type (3) or (4)) on F , hence F⊥ ∈ t. Since F⊥ belongs to a useless sequent, it
cannot be principal in TR(R).

3.3 Truncated truth semantics

3.3.1 Truncated semantics

We fix a truncation τ and define a truth semantics with respect to which µMALL∞τ will
be sound. The semantics is classical, assigning a boolean value to each occurrence. For
convenience, we take (B := {0,⊤},≤) as our Boolean lattice, with ∧ and ∨ being the
usual meet and join operations on it. The following interpretation assigns to every µMALL

occurrence ϕα the boolean value τ(α), if its address α is in the domain of τ . Otherwise, it
is interpreted as a µ-calculus formula, by forgetting the linearity of the connectives i.e., by
interpreting the connectives ` and ⊕ as the classical disjunction ∨, and the connectives ⊗
and & as the classical conjunction ∧.

Definition 3.15. We define the set E to be Σ∗ → B, that is the set of total functions
mapping addresses to booleans. Let ≤ be the pointwise order on E. The set E equipped
with ≤ forms a complete lattice. We denote by

∨

E the supremum of E and by
∧

its
infimum.

Definition 3.16. Let ϕα be an occurrence. We call environment any function E mapping
free variables of ϕ to elements of E. We define JϕαK

E ∈ B, the interpretation of ϕα in the
environment E , by:

• If α ∈ Dom(τ) then JϕαK
E = τ(α).
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• Otherwise:

– JXαK
E = E(X)(α).

– J⊤αK
E = J1αK

E = ⊤.

– J0αK
E = J⊥αK

E = 0.

– J(ϕ? ψ)αK
E = Jϕα.lK

E ∧ Jψα.rK
E , for ? ∈ {&,⊗}.

– J(ϕ> ψ)αK
E = Jϕα.lK

E ∨ Jψα.rK
E , for > ∈ {⊕,`}.

– J(µX.ϕ)αK
E = lfp(f)(α) and J(νX.ϕ)αK

E = gfp(f)(α),

where f : E → E is defined by:

f : h 7→ β 7→

{

τ(β) if β ∈ Dom(τ)

Jϕβ.iK
E,X 7→h otherwise.

When F is closed, we simply write JF K for JF K∅.

The least and greatest fixed point of f are guaranteed to exist in the above definition
because JϕKE is a monotonic operator in the complete lattice E. The monotonicity of JϕKE

is inherited from that of operators and can easily be proved by induction on ϕ.
We show now that µMALL∞τ is sound with respect to the truncated truth semantics, that

is:

Proposition 3.3. If ⊢ Γ is provable in µMALL∞τ , then JF K = ⊤ for some F ∈ Γ.

We first give a sketch of the proof of soundness, which proceeds by contradiction. As-
suming we are given a proof π of an occurrence F such that JF K = 0, we exhibit a branch β
of π containing only occurrences interpreted by 0. A validating thread of β unfolds infinitely
often some formula νX.ϕ. Since the interpretation of νX.ϕ is defined as the greatest fixed
point of a monotonic operator f we have, for each occurrence (νX.ϕ)α in β, an ordinal λ
such that J(νX.ϕ)αK = f ↓λ(

∨

E)(α), where f ↓λ(
∨

E) is the descending iteration of f start-
ing from

∨

E (Definition 2.6). We show that this ordinal can be forced to decrease along β
at each fixed point unfolding, contradicting the well-foundedness of the class of ordinals.

3.3.2 Soundness w.r.t. truncated semantics

Marked formulas

In order to develop a formal proof of soundness, we need to work with a slightly enriched
notion of formula. We thus introduce below a generalization of formulas, occurrences and
of their interpretations (generalising Definition 3.16).

Definition 3.17. Marked formulas are built over the following syntax, where θ is an
ordinal:

ϕ,ψ ::= 0 | ⊤ | ϕ⊕ ψ | ϕ& ψ | ⊥ | 1 | ϕ` ψ | ϕ⊗ψ | µX.ϕ | νθX.ϕ | X with X ∈ V .

A marked occurrence is given by a marked formula ϕ and an address α and is written ϕα.
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We define the interpretation of a marked occurrence as follows, generalizing Defini-
tion 3.16:

Definition 3.18. Let ϕα be a marked occurrence and E be an environment, i.e., a function
mapping every free variable of ϕ to an element of E. We define [ϕα]

E ∈ B, the interpreta-
tion of ϕα in the environment E as follows: if α ∈ Dom(τ) then [ϕα]

E = τ(α); otherwise:

• [Xα]
E = E(X)(α).

• [⊤α]
E = [1α]

E = ⊤.

• [0α]
E = [⊥α]

E = 0.

• [(ϕ? ψ)α]
E = [ϕα.l]

E ∧ [ψα.r]
E , for ? ∈ {&,⊗}.

• [(ϕ> ψ)α]
E = [ϕα.l]

E ∨ [ψα.r]
E , for > ∈ {⊕,`}.

• [(µX.ϕ)α]
E = lfp(f)(α) and [(νθX.ϕ)α]

E = f ↓θ(
∨

E)(α),

where f : E → E is defined by:

f : h 7→ β 7→

{

τ(β) if β ∈ Dom(τ)

[ϕβ.i]
E,X 7→h otherwise.

and where fθ(
∨

E) is the descending iteration of f starting from
∨

E (see Definition 2.6).
We denote by O(ϕ,X, E) the operator f and we set [ϕ]E := (α 7→ [ϕα]

E).

As for Definition 3.16, the existence of the least fixed point of f relies on the monotonicity
of [ϕ]E , which can be shown easily by induction on ϕ.

The interpretation [_] of a marked occurrence proceeds exactly as the interpretation J_K
of µMALL occurrences, but instead of defining the semantics of a ν-formula as the greatest
fixed point of the associated operator, it iterates this operator up to θ, starting from the
supremum

∨

E of E, where θ is the ordinal marking this ν-formula.
To relate the interpretations J_K and [_], recall that Theorem 2.3 states that the greatest

fixed point of a monotonic operator f over E is obtained by iterating down f starting from
∨

E, λE many times where λE is the ordinal associated to E (Definition 2.5). Hence, if an
occurrence is marked only with the ordinal λE, then its interpretation by [_] is exactly its
interpretation by J_K if we forget its marking.

Definition 3.19. Let λE be the ordinal associated to E (Definition 2.5) and let F be a

µMALL occurrence. We define F to be the marked occurrence, obtained from F by marking
every ν binder of F by the ordinal λE.

By earlier remark, we have the following:

Proposition 3.4. Let F be a µMALL occurrence. We have:

JF K = [F ]
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Technical lemmas

Let us now show some lemmas that will help us to prove soundness.

Lemma 3.1. Let ϕ,ψ be marked formulas such that X /∈ fv(ψ). One has:

[ϕα]
E,X 7→[ψ]E = [(ϕ[ψ/X])α]

E .

Proof. The proof is by induction on ϕ. We treat only the cases where ϕ is a fixed point
formula, the other cases are immediate.

Suppose that ϕ = νθY .ξ and let f = O(ξ,Y , E :: X 7→ [ψ]E) and g = O(ξ[ψ/X],Y , E).
By induction hypothesis one has f ↓θ(

∨

E) = g↓θ(
∨

E), which concludes this case.
Suppose now that ϕ = µY .ξ, then we have:

[(µY .ξ)α]
E,X 7→[ψ]E = lfp(O(ξ,Y , E :: X 7→ [ψ]E))(α)

∗
= lfp(O(ξ,Y , E :: X 7→ [ψ]E,Y 7→h))(α)

IH
= lfp(O(ξ[ψ/X],Y , E))(α)

= [(µY .ξ[ψ/X])α]
E

(*) We are considering capture-free substitutions, hence Y /∈ fv(ψ) and [ψ]E,Y 7→f = [ψ]E .

An immediate consequence of this proposition is that the interpretation of a least fixed
point occurrence is equal to the interpretation of its unfolding:

Lemma 3.2. If α /∈ Dom(τ), [(µX.ϕ)α]
E = [(ϕ[µX.ϕ/X])α.i]

E

Proof. We set f = O(ϕ,X, E). Let us first notice that for all α ∈ Σ∗, one has [(µX.ϕ)α]
E =

lfp(f)(α). Indeed, one has the equality by definition when α /∈ Dom(τ) and it is easy to prove
it when α ∈ Dom(τ) since both sides are equal to τ(α).

[(µX.ϕ)α]
E = lfp(f)(α)

⋆
= [ϕα.i]

E,X 7→lfp(f)

= [ϕα.i]
E,X 7→[µX.ϕ]E

= [(ϕ[µX.ϕ/X])α.i]
E

(*) Since α /∈ Dom(τ).

Lemma 3.3. If [(νθX.ϕ)α]
E = 0 and α /∈ Dom(τ) then there is an ordinal γ < θ such that

[(ϕ[νγX.ϕ/X])α.i]
E = 0.

Proof. We set f = O(ϕ,X, E). If θ is a successor ordinal δ + 1, then:

[(νθX.ϕ)α]
E = f ↓δ+1(

∨

E)(α)

= [ϕα.i]
E,X 7→f↓δ(

∨
E)

= [ϕα.i]
E,X 7→[νδX.ϕ]E

= [(ϕ[νδX.ϕ/X])α.i]
E

We take γ to be the ordinal δ and we have obviously that [(ϕ[νγX.ϕ/X])α.i]
E = 0.
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If θ is a limit ordinal, then:

[(νθX.ϕ)α]
E = f ↓θ(

∨

E)(α)

=
⋂

β<θ

f ↓β(
∨

E)

=
⋂

δ+1<θ

f ↓δ+1(
∨

E)

Hence there is a successor ordinal δ + 1 such that [(νθX.ϕ)α]
E = f ↓δ+1(

∨

E)(α) and we
continue as before.

We prove easily the following lemma by induction on F :

Lemma 3.4. Let F be an (unmarked) occurrence. One has JF⊥K = JF K⊥.

Proof of soundness

We can finally establish our soundness result:

Proof of Proposition 3.3. If F is a marked occurrence, we denote by F ∗ the occurrence
obtained by forgetting the marking information.

Suppose that ⊢ Γ has a µMALL∞τ proof π and that JF K = 0 for all F ∈ Γ. We will
construct a branch γ = (si)i∈ω of π and a sequence of functions (fi)i∈ω where fi maps
every occurrence G of si to a marked occurrence fi(G) such that [fi(G)] = 0, and such that
(fi(G))

∗ = G unless G = ϕα.i with α ∈ Dom(τ).

We set s0 = Γ and for every F ∈ Γ, f0(F ) = F . By proposition 3.4, we have [F ] =

JF K = 0. Moreover, we have that (F )⋆ = F .
Suppose that for i ∈ ω, we have constructed si and fi. We construct now si+1 depending

on the rule applied to si in π:

• If the rule is a logical rule, G being principal in si, we set Gm := fi(G), we have the
following cases:

– If G = H `K, then Gm is of the form Gm = Hm `Km. We set si+1 to be the
unique premise of si, fi+1(H) = Hm and fi+1(K) = Km. Since [Gm] = 0 and
[Gm] = [Hm]∨ [Km], one has [Gm] = 0 and [Km] = 0. For every other occurrence
L of si+1 we set fi+1(L) = fi(L).

– If G = H ⊕K, we proceed exactly in the same way as above.

– If G = H⊗K, then Gm is of the form Gm = Hm⊗Km. Since [Gm] = 0 and
[Gm] = [Hm] ∧ [Km], one has [Hm] = 0 or [Km] = 0. Suppose w.l.o.g. that
[Hm] = 0. We set si+1 to be the premise of si that contains H and fi+1(H) = Hm.
For every other occurrence L of si+1 we set fi+1(L) = fi(L).

– If G = H &K, we proceed exactly in the same way as above.

– If G = µX.K, then Gm is of the form Gm = µX.Km. We set si+1 to be the
premise of si and fi+1(K[G/X]) = Km[Gm/X]. By Corollary 3.2 and since
[Gm] = 0, one has [Km[Gm/X]] = 0. For every other occurrence L of si+1, we set
fi+1(L) = fi(L).
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– If G = νX.H, then Gm is of the form Gm = νθX.Km. Let si+1 be the unique
premise of si. By corollary 3.3 and since [Gm] = 0, there is an ordinal δ < θ such
that [Km[ν

δX.Km/X]] = 0. We set fi+1(H[G/X]) = Km[νX
δ.Km/X] and for

every other occurrence L of si+1, we set fi+1(L) = fi(L).

• Suppose that the rule applied to si is a cut on the occurrence G. By Lemma 3.4,
either JGK = 0 or JG⊥K = 0, suppose w.l.o.g. that [G] = 0. We set si+1 to be the

premise of si containing G, fi+1(G) = G and for every other occurrence L of si+1,
fi+1(L) = fi(L).

• If the rule applied to si is the rule (τ) with a principal occurrence G = ϕα, then
α ∈ Dom(τ) and the address of fi(G) is also α. By definition of the interpretation [_],
we have [fi(G)] = τ(α) and by construction [fi(G)] = 0, thus τ(α) = 0. We set si+1

to be the unique premise of si, fi+1(τ(α)α.i) = τ(α)α.i and for every other occurrence
L of si+1, fi+1(L) = fi(L).

Since π is a valid pre-proof, its branch γ must contain a valid thread t = (Fi)i∈ω. Let
νX.ϕ be the minimal formula of t and (ik)k∈ω be the sequence of indices where νX.ϕ gets
unfolded. By construction, for all k > 0 one has fik(Fik) = νθkX.Gk and the sequence of
ordinals (θk)k is strictly decreasing, which contradicts the well-foundedness of ordinals.

3.4 Productivity of the cut-elimination process

We show that fair reduction sequences are productive.

Lemma 3.5. Let π be a µMALL∞ proof of ⊢ Γ. If R is an infinite sequence of internal
reductions starting from π, then the occurrences of Γ are never principal in πR.

Proof. Suppose by contradiction that an occurrence F of Γ is principal in πR and let s be
the sequent of πR where F is principal. Since s ∈ πR, then there is a proof θ of R such that
s is a premise of θ. Since F is a conclusion occurrence of π, the proof θ has r = (ext,F ) as
redex. Since the premises of s also belong to πR, this means that r has been reduced in R,
which contradicts the fact that R is a sequence of internal reductions only.

Proposition 3.5. Any fair reduction sequence produces a µMALL∞ pre-proof.

Proof. By contradiction, consider a fair infinite sequence of internal reductions starting from
π. By Remark 3.5, we can extract from it an infinite reduction path R, which is also fair by
Remark 3.6. Let τ and πR be the truncation and the µMALL∞τ proof associated to R. By
Lemma 3.5, the conclusion occurrences Γ of π, which are also the conclusion occurrences
of πR, are never principal in πR. We can then erase the occurrences of Γ from πR without
breaking its local and global validity. This yields a µMALL∞τ proof of the empty sequent,
which contradicts soundness of µMALL∞τ .

3.5 Preservation of validity by cut-elimination

We show that the cut-free pre-proof resulting from a fair reduction sequence is actually
a valid proof. We proceed by contradiction and suppose that the pre-proof obtained by
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Proposition 3.5 is not valid. Thus, it must have an invalid branch, and this branch was pro-
duced by a reduction path R. To get a contradiction, we consider as before, the truncation
τ and the µMALL∞τ proof πR associated to R, but instead of extracting from it a µMALL∞τ
proof of the empty sequent as we did for the proof of Proposition 3.5, we extract from it a
proof of a sequent whose occurrences are all interpreted by 0, which, again, contradicts the
soundness of µMALL∞τ .

Definition 3.20. A truncation τ is compatible with an occurrence ϕα if α /∈ dom(τ) and,
for any α ⊑ β.d ∈ Dom(τ) where d ∈ {l, r, i}, we have that ϕα admits a sub-occurrence ψβ
with ⊗ or & as the top-level connective of ψ, d ∈ {l, r}, and α.d′ /∈ Dom(τ) for any d 6= d′.

In other words, a truncation τ is compatible with an occurrence F if it truncates only
sons of ⊗ or & nodes in the tree of F and at most one son of each such node.

Proposition 3.6. If F is an occurrence compatible with τ and containing no ν binders, no
⊤ and no 1, then JF K = 0.

To show this proposition we need to generalize it as follows:

Proposition 3.7. Let ϕα be an occurrence compatible with τ and containing no ν binders,
no ⊤ and no 1 sub-formulas. Let E be an environment such that for all β /∈ Dom(τ),
E(X)(β) = 0. We have JϕαK

E = 0.

Proof. The proof is by induction on ϕ.

• The cases when ϕ = 0 or ⊥ are trivial.

• If ϕ = X, then JXαK
E = E(X)(α) = 0 by hypothesis on E and since α /∈ Dom(τ) by

compatibility with τ .

• If ϕ = ξ > ψ, where > ∈ {⊕,`}, then J(ξ > ψ)αK
E = Jξα.lK

E ∨ Jψα.rK
E . Since (ξ > ψ)α

is compatible with τ , one has α.l /∈ Dom(τ) and α.r /∈ Dom(τ). Indeed, if a formula
is compatible with a truncation τ , then τ cannot truncate a son of ⊕ or a ` node.
We can thus apply our induction hypothesis, obtaining Jξα.lK

E = Jψα.rK
E = 0, hence

J(ξ > ψ)αK
E = 0.

• If ϕ = ξ ? ψ, where ? ∈ {&,⊗}, then J(ξ ? ψ)αK
E = Jξα.lK

E ∧ Jψα.rK
E . Since (ξ ? ψ)α

is compatible with τ , one has α.l /∈ Dom(τ) or α.r /∈ Dom(τ). Indeed, if a formula is
compatible with a truncation τ , then τ cannot truncate both sons of a & or a ⊗ node.
We conclude by induction as before on the sub-formula that is not truncated, and
which is thus still compatible with τ .

• If ϕ = µX.ψ, then JµX.BKE = lfp(f)(τ) where f is as in Definition 3.16. By Theo-
rem 2.3, J(µX.B)αK

E =
∨

δ<λ ϕ
δ(
∧

E)(α). We show by an easy transfinite induction
that for all δ < λ and β /∈ Dom(τ), we have ϕδ(

∧

E)(β) = 0. This concludes the proof.

Proposition 3.8. Any fair reduction produces a µMALL∞ proof.
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Proof. Let π be a µMALL∞m proof of conclusion ⊢ Γ, and π′ the cut-free pre-proof obtained
by Proposition 3.5. Any branch of π′ corresponds to a multicut reduction path. For the
sake of contradiction, assume that π′ is invalid. It must thus have an invalid infinite branch,
corresponding to an infinite reduction path R. Let τ and θ := πR be the truncation and
the µMALL∞τ truncated proof associated to R.

We first observe that formulas of Γ cannot have sub-occurrences of the form 1α or ⊤α
that are principal in π′. Indeed, this could only be produced by an external rule (⊤)/(mcut)
in the reduction path R, but that would terminate the path, contradicting its infiniteness.

Next, we claim that all threads of θ starting from occurrences in Γ are invalid. Indeed,
all rules applied to those formulas are transferred (by means of external rules) to the branch
produced by the reduction path. The existence of a valid thread starting from the conclusion
sequent in θ would thus imply the existence of a valid thread in our branch of π′.

By the first observation, we can replace all 1 and ⊤ subformulas of Γ by 0 without chang-
ing the derivation, and obviously without breaking its validity. By the second observation,
we can further modify Γ by changing all ν combinators into µ combinators. We call Γ′ the
obtained sequent. The derivation θ is easily adapted (using rule (µ) instead of (ν)) and it
remains valid, since the validity of θ is not due to a valid thread starting from the root. We
thus obtain a valid pre-proof θ′ of ⊢ Γ′ in µMALL∞τ , where Γ′ contains no ν, 1 and ⊤.

We finally show that τ is compatible with any occurrence from Γ. Indeed, if τ(β) is
defined for some sub-occurrence ψβ of an occurrence ϕα ∈ Γ, then it can only be because
of a useless sequent of sort (3), i.e., a truncation due to the fact that the reduction path
has selected only one sibling after a branching external rule. We thus conclude, by Propo-
sition 3.6, that all formulas of Γ are interpreted as 0 in the truncated semantics associated
to τ , which contradicts the validity of θ′ and Proposition 3.3.

3.6 Examples

The type of natural numbers can be expressed by the formula nat := µX.1⊕X. We
give below a few examples of proofs/computations on natural numbers, shown using two
sided sequents for clarity: any sequent of the form F1, . . . ,Fn ⊢ Γ should be read as ⊢
Γ,F⊥1 , . . . ,F⊥n as usual.

We define π(n,α), the representation of the natural number n in µMALL∞, localized at
the address α, by induction on n:

π(0,α) =
(1)

⊢ 1αil
(µ),(⊕1)

⊢ natα

π(n+ 1,α) =

π(n,αir)

⊢ natαir
(µ),(⊕2)

⊢ natα
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The proof πsucc(α, β), shown below, computes the successor on natural numbers:

πsucc(α, β) =

(Ax)
natα ⊢ natβir

(⊕)
natα ⊢ (1⊕nat)βi

(µ)
natα ⊢ natβ

If we cut πsucc(α, β) against a π(n,α), we obtain after a finite number of cut-elimination
steps the proof π(n+ 1, β).

Consider now the following pre-proof, called πdup(α, β):

π(0, βl)

⊢ natβl

π(0, βr)

⊢ natβr
(⊥),(⊗)

1αil ⊢ (nat⊗nat)β

(⋆)

natαir ⊢ (nat⊗nat)γ

πsucc(γl, βl)

natγl ⊢ natβl

πsucc(γr, βr)

natγr ⊢ natβr
(`),(⊗)

(nat⊗nat)γ ⊢ (nat⊗nat)β
(Cut)

natαir ⊢ (nat⊗nat)β
(ν),(&)

(⋆) natα ⊢ (nat⊗nat)β

The pre-proof πdup(α, β) is indeed a proof: it has exactly one infinite branch, validated by
the thread starting with natα. If we cut that proof against the proof π(n,α), and perform
cut-elimination steps, we obtain in finite time the following cut-free proof of (nat⊗nat)β
which consists of two copies (up-to addresses) of the original proof π(n,α).

π(n, βl)

⊢ natβl

π(n, βr)

⊢ natβr
(⊗)

⊢ (nat⊗nat)β

Now let stream = νX.nat⊗X be the formula representing infinite streams of natural num-
bers. Let us consider the derivation πInfStr(α, β) shown below:

πdup(α, γ)

natα ⊢ (nat⊗nat)γ

(Ax)
natγl ⊢ natβil

πsucc(γr, σ)

natγr ⊢ natσ

(⋆)

natσ ⊢ streamβir
(Cut)

natγr ⊢ streamβir
(⊗)

natγl, natγr ⊢ (nat⊗stream)βi
(`)

(nat⊗nat)γ ⊢ (nat⊗stream)βi
(Cut)

natα ⊢ (nat⊗stream)βi
(ν)

(⋆) natα ⊢ streamβ

It is a valid proof thanks to the validity of πdup(α, γ) and that of the thread starting on
streamβ. When we cut πInfStr(α, β) against the proof π(n,α), we obtain the proof that starts
as follows:

π(n, βil)

⊢ natβil

π(n+ 1, βiril)

⊢ natβiril

...

⊢ streamβirir
(⊗)

⊢ (nat⊗stream)βiri
(ν)

⊢ streamβir
(⊗)

⊢ (nat⊗stream)βi
(ν)

⊢ streamβ
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This proof represents the stream n :: (n + 1) :: (n+ 2) :: . . .. This proof although obtained
by the cut-elimination from a circular proof is not circular itself. As discussed earlier, this
is not problematic, on the contrary it shows the strength of our proof system.

3.7 Extensions of the cut-elimination result

3.7.1 Treatment of atoms

We neglected atoms in our proof of cut-elimination, not because their treatment is funda-
mentally difficult, but because they would simply have burdened the presentation. Indeed,
our axioms introduce a relocation, and we would be obliged to track these relocations along
the reduction. To circumvent this problem, we can work additive slice by additive slice,
relocate the axioms in such a way that they apply to dual occurrences and use the same
argument as before.

3.7.2 Extension to µLLω, µLKω and µLK⊙ω

In this section we hint at how to obtain the extension of the infinitary cut-elimination result
to other proof systems. We proceed essentially by encoding the proof system for which we
desire to get the cut-elimination into the proof system that already enjoys it, then show
that the cut-elimination steps can be simulated using this encoding.

To extend the cut-elimination result from µMALL to µLL, we encode the exponential
connectives using fixed points as follows:

?•ϕ = µX.ϕ⊕ ((X `X)⊕⊥)
!•ϕ = νX.ϕ& ((X ⊗X) & 1)

The exponential rules can be simulated in µMALL as follows:

Dereliction :
⊢ F , ∆

(µ), (⊕1)
⊢?•F , ∆

Contraction :
⊢?•F , ?•F∆

(µ), (⊕2), (⊕1), (`)
⊢?•F , ∆

Weakening :
⊢ ∆

(µ), (⊕2), (⊕2), (⊥)
⊢?•F , ∆

We denote these derivable rules by ?•,C• and W• respectively. The promotion rule is deriv-
able using the following circular proof:

⊢ F , ?•∆

(⋆)

⊢!•F , ?•∆

(⋆)

⊢!•F , ?•∆
(⊗)

⊢!•F⊗!•F , ?•∆, ?•∆
(C•)

⊢!•F⊗!•F , ?•∆

(1)
⊢ 1

(W•)
⊢ 1, ?•∆

(ν), (&)
(⋆) ⊢!•F , ?•∆
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We denote this derivable rule by !•. Now we have to show that the cut-elimination rules of
µLL can be simulated by this encoding. For instance, the following reduction can be simu-
lated by applying the extrenal reduction rule (µ)/(Cut) followed by the external reduction
rule (⊕)/(Cut).

⊢ F ,G, Γ
(?•)

⊢?•F ,G, Γ ⊢ G⊥, ∆
(Cut)

⊢?•F , Γ,∆

−→

⊢ F ,G, Γ ⊢ G⊥, ∆
(Cut)

⊢ F , Γ,∆
(?•)

⊢?•F , Γ,∆

The challenge is to show that this also holds for the reductions implying (!•) since this rule
hides an infinite derivation.

We hope that the extention from µLL to µLK can be made using the usual encoding of
LK into LL. Finally, if the result of cut-elimination is obtained for µLK , the extention to
µLK⊙ does not seem to pose a significant problem, since the reduction rules for ⊙ do not
seem to introduce more complexity than the other connectives.



Chapter 4

Focalization of µMALL
∞ proofs

Focalization for MALL. Focalization is a result coming from Andreoli’s work in the early
90s [And92], whose aim was to provide an algorithm for proof search in linear logic. While
exploiting reversibility of inferences in proof search is an old idea, Andreoli noticed that
duals of reversible connectives also had a good property.

The idea of focalization is to classify the connectives in two categories: the negative
and the positive ones.

The negative connectives are those having reversible inferences, meaning that if the con-
clusion of the inference is provable, so are its premises. The negative connectives of MALL
are `, &,⊤,⊥. In a proof search strategy, one can then apply safely negative inferences
without losing provability.

The positive connectives are those having non-reversible inferences, that is, applying such
inference may lead to a loss of provability. For instance, the formula ⊤ ⊕ ⊥ is provable in
MALL, but applying the rule ⊕2 leads to ⊥ which is not provable. In general, non-reversible
inferences require to make some choices, for example splitting the context in (⊗) or choosing
between (⊕1) and (⊕2) rules, and a bad choice may lead to a loss of provability.

Even if it does not give a concrete way to make the right choices when dealing with
positive formulas, Andreoli’s result was to show that we can reduce very much the non-
determinism induced by the positive formulas, showing that they satisfy the focalization
property [And92]: in any provable sequent containing only positive formulas, some formula
can be chosen as a focus , hereditarily selecting its positive subformulas as principal formulas
until a negative subformula is reached. This induces the following complete proof search
strategy, called the focalization discipline :

• Negative phase: If the sequent contains a negative formula N , then decompose N .

• Positive phase: If the sequent contains only positive formulas, then select one and
decompose it, and its subformulas, hereditarily until getting to atoms or negative
subformulas.

Focalization is now recognized as one of the deep outcomes of linear logic, putting to the
foreground the role of polarity in logic. Besides its deep impact on proof search and logic
programming [AP91, Mil96], focalization resulted in important advances in all aspects of

109
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computational proof theory: in the game-semantical analysis of logic [Lau04a,MT10], the
understanding of evaluation order of programming languages [DJS97], CPS translations, or
semantics of pattern matching [CM10, Zei09] and the space compression in computational
complexity [BST11]. More fundamentally, focalization is at the heart of polarized linear
logic [Lau02], and ludics [Gir01,Ter11] which we shall treat in Chapter 5.

What is a focalization result in general? There are many ways to answer this ques-
tion. We choose to say that a proof system admits the focalization result if we can classify
its connectives in two categories, positive and negative ones such that the focalization disci-
pline described earlier is a complete proof-search algorithm. In MALL, the classification of
connectives into positive and negative ones coincides with their classification into reversible
and non-reversible inferences. We shall see that this identification is not relevant in the
setting of infinitary proofs.

Proof of focalization. Focalization for MALL can be proved by means of proof trans-
formations [Lau04b, MS07, BST11]: one starts from a linear proof and shows that it can
be transformed into a focused proof, that is a proof respecting the focalization discipline
described earlier. As these transformations preserve the denotation of the proof, we get
as a byproduct of this proof technique, that focused proofs are complete for proofs, not
only provability: any linear proof is equivalent to a focused proof, up to cut-elimination.
We will be interested more specifically on a very elegant and modular proof by Miller and
Saurin [MS07] which relies on inference permutations and focalization graphs. It is carried
out in two steps:

I. Reversibility of negatives. This step is based on the fact that negative inferences
permute down with any inference. Permuting down all the negative inferences, one
can transform a linear proof into a proof having a layer of negative inference rules, the
frontier of this layer being positive sequents, that is sequent containing only positive
formulas.

II. Focalization of positives. This step relies on the fact that the positive inferences,
while not reversible, all permute with each other. As a consequence, if the positive
layer of some positive formula is completely decomposed within the lowest part of the
proof, below any negative inference, then it can be taken as a focus. Focalization
graphs ensure that it is always possible: their acyclicity provides a source which can
be taken as a focus.

Focusing infinitary proofs. Our goal in this chapter is to adapt the proof technique
of [MS07] to get a focalization result for µMALL∞. This means that we have to classify
our connectives into negative and positive ones, and show that the proof search algorithm
described earlier is complete for µMALL∞. Of course, this algorithm should be interpreted
coinductively since we are dealing with infinitary proofs. The infinitary nature of our proofs
interferes with focalization in several ways:

• For an infinitary proof system, being negative for a connective is not equivalent to
its rule being reversible. For instance, the rule of the connective µ is reversible, but
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we will see that if µ is classified as negative, the focalization discipline will not be
complete. The classification of µMALL∞ connectives is treated in Section 4.1.

• Step I of Miller and Saurin’s proof is based on local inference permutations. We
show that in µMALL∞, these local inferences are not sufficient anymore. We give a
new global inference permutations and adapt Step I to our setting. This is done in
Section 4.2.

• Step II of Miller and Saurin’s proof is based on focalization graphs, whose acyclicity
relies on the finiteness of maximal positive sub-trees of a proof: this invariant must
be preserved in µMALL∞, as we shall prove in Section 4.3.

• Contrarily to MALL where showing Step I and II gives immediately the focalization
result, showing them for µMALL∞ is not enough. Indeed, combining them shows only
that any µMALL∞ proof can be transformed into a focused pre-proof. It remains to
show that this pre-proof satisfies the global validity condition of µMALL∞. That is
what we will do in Section 4.4.

We restrict our attention to cut-free proofs. This is not a restriction in a proof search
perspective, as long as the the cut rule is admissible, which is the case for µMALL∞.

4.1 Polarity of connectives

Let us first consider the question of polarizing µMALL∞ connectives. The polarities of MALL

connectives are well-known [And92]: `, &,⊤,⊥ are negative and ⊕,⊗, 1, 0 are positive.
Now we need to assign polarities to the connectives µ and ν. Assigning opposite po-

larities to dual connectives is an invariant necessary to define properly cut-elimination in
focused proof systems, that is to get focused proofs that are stable by cut elimination. This
constraint leaves us with only two possibilities to polarize µ and ν.

We show that considering µ as negative as ν as positive is a bad choice. Indeed, let Γ
be the sequent ⊢ µX.X, νY .Y , which is provable in µMALL∞ by unfolding νY .Y infinitely
often. Now, if we consider µ as positive and ν as negative, and since the focalization
discipline tells us to decompose negative formulas whenever we see them, the focalization
algorithm will output the pre-proof which always unfolds µ, which is obviously not a (valid)
proof. Thus, the focalization algorithm would not be complete with this classification of
connectives. We are left with only one choice of polarities: µ positive and ν negative. We
will show in the rest of this chapter that the focalization algorithm is complete for provability
with this choice.

Definition 4.1. Negative formulas are formulas of the form νX.F , F ` G, F & G, ⊥
and ⊤. Positive formulas are formulas of the form µX.F , F⊗G, F ⊕G, 1 and 0.

A µMALL∞ sequent containing only positive formulas is said to be positive . Otherwise,
it is said to be negative .

The following proposition will be useful in the following:

Proposition 4.1. An infinite branch of a pre-proof containing ultimately only negative
(resp. positive) rules is valid (resp. not valid).
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π =

(⋆)

⊢ F ,P `Q

θ

⊢ F ,P ,Q
(`)

⊢ F ,P `Q
(&)

⊢ F & F ,P `Q
(⊕1)

⊢ (F & F )⊕ 0,P `Q
(ν)

(⋆) ⊢ F ,P `Q

Figure 4.1: Example of a proof where negative inferences cannot be permuted down
locally

Proof. An infinite negative branch cannot unfold µ-formulas, since they are positive, but
only ν-formulas. Among its threads, some are not eventually constant and their minimal
formulas are ν-formulas: they are valid threads.

An infinite positive branch unfolds only µ-formulas, thus the minimal formula of any
non-constant thread t is a µ-formula, thus it is not valid.

4.2 Reversibility of negative inferences

Step I of Miller and Saurin’s proof relies on the fact that negative rules permute down with
any rule. These permutations are defined as local proof transformations. For instance, the
following transformation shows how to permute down the ` rule below the & rule.

⊢ ∆,F ,P ,Q
(`)

⊢ ∆,F ,P `Q

⊢ ∆,F ,P ,Q
(`)

⊢ ∆,G,P `Q
(&)

⊢ Γ,F &G,P `Q

−→

⊢ ∆,F ,P ,Q ⊢ ∆,F ,P ,Q
(&)

⊢ ∆,F &G,P ,Q
(`)

⊢ Γ,F &G,P `Q

This rule requires the two ` formulas to be principal in the premises of the & rule. In a
finitary proof, in particular in a MALL proof, if one wants to permute down a ` under a
& it is always possible to permute down the ` inferences of the two occurrences of P ` Q
in order to get the redex of the above transformation. But this is not always the case for
infinite proofs. For instance, let F = νX.(X &X)⊕ 0 and P , Q any formulas such that the
sequent ⊢ F ,P ,Q has a proof θ. Consider the proof π of Example 4.1. In this proof, no
occurrence of the rule (`) on P `Q can be permuted below a (&) since it is never available
in the left premise. We introduce in the following a global proof transformation, which turns
every µMALL∞ proof of conclusion Γ into a proof where all the negative occurrences of Γ,
and their negative sub-occurrences have being decomposed, which will fix this issue.

Definition 4.2. All negative rules have the following uniform structure:

(⊢ Γ,NN
i )1≤i≤n

(rN)
⊢ Γ,N

We define the sub-occurrence family of N by N (N) := (NN
i )1≤i≤n. We define the slicing

index of N to be sl(N) = #N (N). The following table summarizes the sub-occurrence
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families of µMALL occurrences:

N F1 ` F2 ⊥ F1 & F2 ⊤ νX.F
N (N) {1 7→ {F1,F2}} {1 7→ ∅} {1 7→ {F1}, 2 7→ {F2}} ∅ {1 7→ {F [νX.F/X]}}

We can now define, in two steps, how to transform any proof π into a proof rev(π) where
all negative inferences are reversed. The first step is to define π(i,N) for every proof π.
The effect of this transformation on π is to substitute everywhere the occurrence N by NN

i ,
while keeping a well-formed µMALL∞ proof.

Definition 4.3. Let π be a proof of ⊢ Γ of last rule (r) and premises π1, . . . , πn. If
1 ≤ i ≤ sl(N), we define π(i,N) coinductively:

• If N does not occur in ⊢ Γ, then π(i,N) = π.

• If r is the inference on N , then π(i,N) = πi (which is legal since in this case n = sl(N)).

• If Γ is of the form ∆ ∪ {N} and r is not the inference on N , then we set:

π(i,N) =
π1(i,N) . . . πn(i,N)

(r)
⊢ ∆,NN

i

Example 4.1. The proof π(1,P `Q), where π is the proof in Example 4.1 is the following:

π(1,N) =

(⋆)

⊢ F ,P ,Q

θ

⊢ F ,P ,Q
(&)

⊢ F & F ,P ,Q
(⊕1)

⊢ (F & F )⊕ 0,P ,Q
(ν)

(⋆) ⊢ F ,P ,Q

Definition 4.4. Let π be a µMALL∞ proof of ⊢ Γ. Then rev(π) is a pre-proof non-
deterministically defined as π if ⊢ Γ is positive and, otherwise, when N ∈ Γ and n = sl(N),
as:

rev(π) =
rev(π(1,N)) . . . rev(π(n,N))

(rN)
⊢ Γ

Reversed proofs formalize the requirement for the whole negative layer to be reversed:

Definition 4.5. Reversed pre-proofs are defined to be the largest set of pre-proofs such
that: ( i) every pre-proof of a positive sequent is reversed; ( ii) a pre-proof of a negative
sequent is reversed if it ends with a negative inference and if each of its premises is reversed.

Example 4.2. The transformation rev is illustrated below on the proof of Example 4.1,
where we suppose that P and Q are positive.

rev(π) =
π(1,P `Q)

(`)
⊢ F ,P `Q

=

(⋆)

⊢ F ,P ,Q

θ

⊢ F ,P ,Q
(&)

⊢ F & F ,P ,Q
(⊕1)

⊢ (F & F )⊕ 0,P ,Q
(ν)

(⋆) ⊢ F ,P ,Q
(`)

⊢ F ,P `Q
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⊢ Ai,B, Γ ⊢ C, ∆
(⊗)

⊢ Ai,B ⊗ C, Γ,∆
(⊕i)

⊢ A1 ⊕ A2,B ⊗ C, Γ,∆

←→

⊢ Ai,B, Γ
(⊕i)

⊢ A1 ⊕ A2,B, Γ ⊢ C, ∆
(⊗)

⊢ A1 ⊕ A2,B ⊗ C, Γ,∆

⊢ Ai,Bj, Γ
(⊕j)

⊢ Ai,B1 ⊕ B2, Γ
(⊕i)

⊢ A1 ⊕ A2,B1 ⊕ B2, Γ

←→

⊢ Ai,Bj, Γ
(⊕i)

⊢ A1 ⊕ A2,Bj, Γ
(⊕j)

⊢ A1 ⊕ A2,B1 ⊕ B2, Γ,∆

⊢ A,C, Γ ⊢ D, ∆
(⊗)

⊢ A,C ⊗D, Γ,∆ ⊢ B, Σ
(⊗)

⊢ A⊗ B,C ⊗D, Γ,∆,Σ

←→

⊢ A,C, Γ ⊢ B, Σ
(⊗)

⊢ A⊗ B,C, Γ, Σ ⊢ D, ∆
(⊗)

⊢ A⊗ B,C ⊗D, Γ,∆,Σ

⊢ Ai,C[µX.C/X], Γ
(µ)

⊢ Ai,µX.C, Γ
(⊕i)

⊢ A1 ⊕ A2,µX.C, Γ

←→

⊢ Ai,C[µX.C/X], Γ
(⊕i)

⊢ A1 ⊕ A2,C[µX.C/X], Γ
(µ)

⊢ A1 ⊕ A2,µX.C, Γ

⊢ A,C[µX.C/X], Γ ⊢ B, ∆
(⊗)

⊢ A⊗ B,C[µX.C/X], Γ,∆
(µ)

⊢ A⊗ B,µX.C, Γ,∆

←→

⊢ A,C[µX.C/X], Γ
(µ)

⊢ A,µX.C, Γ ⊢ B, ∆
(⊗)

⊢ A⊗ B,µX.C, Γ,∆

Figure 4.2: Permutations of positive µMALL∞ inferences

Theorem 4.1. If π be a µMALL∞ proof then rev(π) is a reversed proof of the same sequent.

Proof. rev is obviously productive: each recursive call is guarded. Inferences of rev(π) are
locally valid: if π is a pre-proof, so is rev(π).

If moreover π is a proof, infinite branches of rev(π) are valid: indeed, infinite branches
of rev(π) are either fully negative (and therefore valid) or after a certain point they coincide
with inferences of an infinite branch of π and their validity follows from that of π.

The resulting proof is obviously shown to be reversed: we do not find any positive
inference on any branch of rev(π), until the first positive sequent is reached.

4.3 Focalization of positives

In this section, we show that any proof of a positive sequent Γ, can be transformed into a
proof of the same sequent which chooses one of the occurrences of Γ and starts by decompos-
ing it hereditarily until reaching its negative sub-occurrences. This transformation is based
on permutations of positive rules, shown in Figure 4.2. These rules are the one presented
in [MS07], together with the rules permuting µ with the other positive inferences. Now, we
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π =

(⋆)

⊢ I ′,L′
(ν)

(⋆) ⊢ I,L′

(†)

⊢ G′, J
(ν)

(†) ⊢ G, J

(‡)

⊢ H ′,K
(ν)

(‡) ⊢ H,K
(⊗)

⊢ G⊗H, J ,K
(`)

⊢ G⊗H, J `K
(⊗)

⊢ G⊗H, I ⊗ (J `K),L′
(⊕)

⊢ F ⊕ (G⊗H), I ⊗ (J `K),L′
(µ)

⊢ F ⊕ (G⊗H), I ⊗ (J `K),L
(1)

⊢M
(⊗)

⊢ F ⊕ (G⊗H), I ⊗ (J `K),L⊗M

π+ =

⊢ I,L′ ⊢ G⊗H, J `K
(⊗)

⊢ G⊗H, I ⊗ (J `K),L′
(⊕)

⊢ F ⊕ (G⊗H), I ⊗ (J `K),L′
(µ)

⊢ F ⊕ (G⊗H), I ⊗ (J `K),L
(1)

⊢M
(⊗)

⊢ F ⊕ (G⊗H), I ⊗ (J `K),L⊗M

Figure 4.3: Example of a µMALL∞ proof of a positive sequent and its positive trunk.

will see how and to which inferences we should apply these permutations to get our result.
For that purpose, we generalize will use focalization graphs [MS07] to our setting.

Definition 4.6. Let π be a µMALL∞ proof of S. The positive trunk π+ of π is the tree
obtained by cutting (finite or infinite) branches of π at the first occurrence of a negative rule.
The positive border of π is the collection of lowest sequents in π which are conclusions of
negative rules. P-active occurrences of π are those occurrences of S which are principal
formulas of an inference in π+.

Example 4.3. Let α, β and γ be three disjoint addresses. In Figure 4.3, we show a proof
π of the positive sequent ⊢ F ⊕ (G⊗H), I ⊗ (J `K),L⊗M where:

F = 0α.l I = (νX.X)β.l L = (µX.X)γ.l I ′ = (νX.X)β.l.i
G = (νX.X)α.r.l J = 1β.r.l M = 1γ.r G′ = (νX.X)α.r.l.i
H = (νX.X)α.r.r K = 0β.r.r L′ = (µX.X)γ.l.i H ′ = (νX.X)α.r.r.i

and its positive trunk π+. The positive border of π is {⊢ I,L′ ; ⊢ G ⊗H, J `K} and its
P-active occurrences are F ⊕ (G⊗H), I ⊗ (J `K) and L⊗M .

Proposition 4.2. The positive trunk of a µMALL∞ proof is always finite.

Proof. The positive trunk of a proof cannot have infinite branches, because they would be
infinite positive branches of the original proof, thus necessarily invalid by proposition 4.1.

Definition 4.7. Given a µMALL∞ proof π, we define its focalization graph G(π) to be
the graph whose vertices are the P-active formulas of π and such that there is an edge from
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F to G iff there is a sequent S ′ in the positive border containing a negative sub-occurrence
F ′ of F and a positive sub-occurrence G′ of G.

Example 4.4. The focalization graph of the proof of Figure 4.3 is the following:

L⊗M ←− I ⊗ (J `K) −→ F ⊕ (G⊗H)

Proposition 4.3. Focalization graphs are acyclic.

Proof. We prove the result by reductio ad absurdum. Let S be a positive sequent with a
proof π. Let π+ be the corresponding positive trunk and G the associated focalization graph.
Suppose that G has a cycle and consider such a cycle of minimal length (F1 → F2 → · · · →
Fn → F1) in G and let us consider S1, . . . ,Sn sequents of the border justifying the arrows
of the cycle.

These sequents are actually uniquely defined for the exact same reason as in MALL [MS07].
With the same idea we can immediately notice that the cycle is necessarily of length n ≥ 2
since two ≺-subformulas of the same formula can never be in the same sequent in the border
of the positive trunk.

Let S0 =
∧n
i=1 Si be the highest sequent in π such that all the Si are leaves of the tree

rooted in S0. We will obtain the contradiction by studying S0 and we will reason by case
on the rule applied to this sequent S0:

• The rule cannot be the rule (1) since this rule produces no premise and thus we would
have an empty cycle which is non-sense. Any rule with no premise would lead to the
same contradiction.

• If the rule is one of (⊕i) or (µ), then the premise S ′0 of the rule would also satisfy
the condition required for S0 (all the Si would be part of the proof tree rooted in
S ′0) contradicting the maximality of S0. If the rule is any other non-branching rule,
maximality of S0 would also be contradicted.

• Thus the rule shall be branching: it shall be a (⊗). Write SL and SR for the left and
right premises of S0. Let G = GL⊗GR be the principal formula in S0 and let F be
the active formula of the trunk such that F ≺ G.

There are two possibilities:

(i) either F ∈ {F1, . . . ,Fn} and F is the only formula of the cycle having at the
same time ≺-subformulas in the left premise and in the right premise,

(ii) or F /∈ {F1, . . . ,Fn} and no formula of the cycle has ≺-subformulas in both
premises.

Let thus IL (resp. IR) be the sets of indices of the active formulas of the root S
having (≺-related) subfomulas only in the left (resp. right) premise. Clearly neither
IL nor IR is empty since it would contradict the maximality of S0 . Indeed if IL = ∅,
then SR satisfies the condition of being dominated by all the Si, 1 ≤ i ≤ n and S0
is not maximal anymore. By definition of the two sets of indices we have of course
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IL ∩ IR = ∅ and the only formula of the cycle possibly not in IL ∪ IR is F if we are in
the case (i): all other formulas in the cycle have their index either in IL or in IR.

As a consequence there must be an arrow in the cycle (and thus in the graph) from
a formula in IL to a formula in IR (or the opposite). Let i ∈ IL and j ∈ IR be
such indices (say for instance Fi → Fj in G) and let S ′ be the sequent of the border
responsible for this edge. S ′ contains F ′i and F ′j and by definition of the sets IL and
IR, S ′ cannot be in the tree rooted in S0 which is in contradiction with the way we
constructed S0.

Then there cannot be any cycle in the focalization graph.

Acyclicity of the focalization graph implies in particular that it has a source, that is a
formula P of the conclusion sequent such that whenever one of its subformulas F appears
in a border sequent, F is negative. This remark, together with the fact that the trunk is
finite ensures that the positive layer of P is completely decomposed in the positive trunk.

Definition 4.8. Let π be a µMALL∞ proof of ⊢ Γ,P with P a source of π’s focalization
graph. One defines foc(π,P ) as the µMALL∞ proof obtained by permuting down all the
positive inferences on P and its positive sub-occurrences (all occurring in π+).

Example 4.5. Let us consider again the proof π of Figure 4.3. Its focalization graph
(Example 4.4) is indeed acyclic and has a single source I ⊗ (J `K), which we pick as focus.
By permuting down the positive inferences on I ⊗ (J `K), we arrive at:

π1

⊢ I,L⊗M

π2

⊢ F ⊕ (G⊗H), J `K
(⊗)

⊢ F ⊕ (G⊗H), I ⊗ (J `K),L⊗M

with:

π1 =

(⋆)

⊢ I ′,L′
(ν)

(⋆) ⊢ I,L′
(µ)

⊢ I,L
(1)

⊢M
(⊗)

⊢ I,L⊗M

π2 =

(†)

⊢ G′, J
(ν)

(†) ⊢ G, J

(‡)

⊢ H ′,K
(ν)

(‡) ⊢ H,K
(⊗)

⊢ G⊗H, J ,K
(`)

⊢ G⊗H, J `K
(⊕)

⊢ F ⊕ (G⊗H), J `K

Proposition 4.4. Let S be a lowest sequent of foc(π,P ) which is not the conclusion of a
rule on a positive subformula of P . Then S contains exactly one subformula of P , which is
negative.

Proof. The proof foc(π,P ) is such that the maximal prefix containing only rules applied to
P and its positive subformulas decomposes P up to its negative subformulas. Uniqueness
of the subformula in the case of MALL, treated in [MS07], can be directly adapted here.
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4.4 Productivity and validity of the focalization process

Reversibility of the negative inferences and focalization of the positive inferences allow to
consider the following (non-deterministic) proof transformation process:

Focalization Process: Let π be a µMALL∞ proof of S. Define Foc(π) as follows:

• Negative phase: If S is negative, transform π into rev(π).At least one negative
inference has been brought to the root of the proof. Apply (corecursively) the positive
phase to the proofs rooted in the lowest positive sequents of rev(π).

• Positive phase: If S is positive, let P ∈ S be a source of the associated focalization
graph. Transform π into the proof foc(π,P ). At least one positive inference on P has
been brought to the root of the proof. Apply (corecursively) the negative phase to the
proofs rooted in the lowest negative sequents of foc(π,P ).

Each of the above phases produces a non-empty derivation, the above process is thus
productive:

Proposition 4.5. If π be a µMALL∞ proof, then Foc(π) is a pre-proof.

It remains to show that the resulting pre-proof is actually a proof. The following property
is easily seen to be preserved by both transformations foc and rev and thus holds for Foc(π):

Proposition 4.6. Let π be a µMALL∞ proof, let r be a positive rule occurring in π and r′

be a negative rule occurring below r in π. If r occurs in Foc(π), then r′ occurs in Foc(π),
below r.

Proof. The proposition amounts to the simple remark that none of the transformation we
perform to obtain Foc(π) will ever permute a positive below a negative one. Indeed, in the
negative phase we permute negative rules below positive ones, and in the positive phase we
permute positive rules with each other.

Lemma 4.1. For any infinite branch γ of Foc(π) containing an infinite number of positive
rules, there exists an infinite branch in π containing infinitely many positive rules of γ.

Proof. The lemma results from a simple application of König’s lemma.

Theorem 4.2. If π is a µMALL∞ proof then Foc(π) is also a µMALL∞ proof.

Proof. Let γ be an infinite branch of Foc(π). If, at a certain point, γ is obtained by
reversibility only, then it contains only negative rules and is therefore valid.

Otherwise, γ has been obtained by alternating infinitely often focalization phases foc and
reversibility phases rev as described above. It therefore contains infinitely many positive
inferences. By Lemma 4.1, there exists an infinite branch δ of π containing an infinite
number of positive rules of γ. Since δ is valid, it contains a valid thread t.
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Let Fm be the minimal formula of thread t, a ν-formula, and (ri)i∈ω the rules of δ in
which Fm is the principal formula.

For any i, there exists a positive rule r′i occurring in γ which is above ri and ri therefore
also appears in γ by Proposition 4.6, which is therefore valid.

4.5 Example

We conclude this chapter by presenting the whole focalization process on the proof π of
Example 4.3.

Example 4.6. In Example 4.5, we performed the first positive phase on the proof π. Now,
we enter a negative phase for the proofs π1 and π2. For that, we compute rev(π1) and
rev(π2):

rev(π1) =

(⋆)

(⋆) ⊢ I ′,L⊗M
(ν)

⊢ I,L⊗M

rev(π2) =

(†)

⊢ G′, J
(ν)

(†) ⊢ G, J

(‡)

⊢ H ′,K
(ν)

(‡) ⊢ H,K
(⊗)

⊢ G⊗H, J ,K
(⊕)

⊢ F ⊕ (G⊗H), J ,K
(`)

⊢ F ⊕ (G⊗H), J `K

Actually, rev(π1) and rev(π2) are already focused, thus Foc(π) is:

(⋆)

(⋆) ⊢ I ′,L⊗M
(ν)

⊢ I,L⊗M

⊢ I,L⊗M

(†)

⊢ G′, J
(ν)

(†) ⊢ G, J

(‡)

⊢ H ′,K
(ν)

(‡) ⊢ H,K
(⊗)

⊢ G⊗H, J ,K
(⊕)

⊢ F ⊕ (G⊗H), J ,K
(`)

⊢ F ⊕ (G⊗H), J `K

⊢ F ⊕ (G⊗H), J `K
(⊗)

⊢ F ⊕ (G⊗H), I ⊗ (J `K),L⊗M

Remark 4.1. In Example 4.6, we have seen that the focused proof of the circular proof π
is also circular. Actually, this is not always the case. For insance, let α, β be two disjoint
addresses, let ϕ = νX.X ` X and ψ = µX.X⊗X and consider the proof θ below, where
F = ϕα, G = ψβ, F ′ = ϕα.i.l, G′ = ψβ.i.l, F ′′ = ϕα.i.r and G′′ = ψβ.i.r. The proof Foc(θ) is
not circular since the size of its sequents is unbounded.

θ =

(†)

⊢ F ′′,G′′
(†)

⊢ F ′,G′
(µ), (ν), (`), (⊗)

(†) ⊢ F ,G

Foc(θ) =

...
(ν),(`)

⊢ F ′,F ′′,G
(ν), (`)

⊢ F ,G





Chapter 5

Ludics for linear logic with fixed points

In this chapter, we carry out a semantical investigation for µMALL, the finitary proof sys-
tem for linear logic with least and greatest fixed points. Our domain of interpretation is
computational ludics [Ter11], a framework built around the notion of design, which can be
seen as an analogue of the strategies of game semantics. The infinitary nature of designs
makes them particularly well suited for representing computations over infinite data.

We work with the system µMALLP, which is a polarized version of µMALL. Going
through a polarized syntax is a requirement when the domain of interpretation is ludics,
but it is not a serious restriction as we shall discuss later.

The first contribution is a denotational semantics for µMALLP: we interpret every proof
as a design and every formula as a well-behaved set of designs, then we show that if π is a
proof of a formula ϕ, then the interpretation of π belongs to the interpretation of ϕ, this is
called a soundness result. We show also that the interpretation of a proof is stable under
cut-elimination steps, that is why we say that our semantics is denotational.

Completeness is the converse of soundness: every design belonging to the interpretation
of a formula ϕ is the interpretation of a proof of ϕ. Stated this way, completeness obviously
does not hold in our setting. A weaker form of completeness is completeness relatively to
a condition C on designs: if a design satisfying C belongs to the interpretation of ϕ then it is
the interpretation of a proof of ϕ. The condition we came with is being essentially finite:
essentially finite designs (EFD) are designs performing a finite computation followed by a
copycat, which is the design interpreting η-expansions. To prove completeness relatively to
EFD, we investigate semantic inclusions for arbitrary formulas showing that: If ϕ and ψ
are two formulas such that the interpretation of ϕ is a subset of that of ψ, then ϕ ⊢ ψ is
provable in µMALLP. This last result relies on a circular proof system, as a stepping stone
between infinite designs and finite proofs.

This chapter is organized as follows. We introduce µMALLP, the polarized variant of
µMALL, in Section 5.1 followed by ludics in Section 5.2. We then define the interpretation
of µMALLP proofs and formulas in ludics in Section 5.3, then we prove that it is a sound
and denotational interpretation. Finally, we establish completeness for EFD in Section 5.4,
building on the result on semantic inclusions in µMALLP.

121
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5.1 Polarized linear logic with fixed points

As usual when aiming at interpretations in ludics [Gir01,BF11,Ter11] we will actually be
working with a polarized version of µMALL [Bae12b], µMALLP, to which the present section
is dedicated.

5.1.1 Formulas

We assume two infinite and disjoint sets VP and VN , whose elements are respectively called
positive and negative variables and denoted by XP and XN , or simply X when their polarity
is irrelevant or can be inferred from the context.

Definition 5.1. The sets of positive formulas ϕ,ψ, . . . and of negative formulas
Φ,Ψ, . . . are inductively defined by the following grammar:

ϕ, ψ ::= XP | X
⊥
N | 1 | 0 | Ψ⊕Φ | Ψ⊗Φ | ↓Ψ | µXN .ϕ

Ψ,Φ ::= XN | X
⊥
P | ⊥ | ⊤ | ϕ& ψ | ϕ` ψ | ↑ϕ | νXP .Ψ

Where XN ∈ VN and XP ∈ VP . Free and bound variables, capture-free substitution and
monotonicity of formulas are defined as usual. A positive occurrence (resp. negative
occurrence) is given by a positive (resp. negative) formula α and an address α and it is
written ϕα. We use P ,Q, . . . for positive occurrences and M ,N , . . . for negative ones.

Our syntax classifies µ as positive and ν as negative, this is consistent with the observa-
tions made in the study of focusing for µMALL∞ in Chapter 4.

Remark 5.1. Note that due to our polarity constraint, the µMALLP fixed point formulas
cannot alternate immediately two different fixed points, in other words, every fixed point
formula is of the form σX1, . . . σXn.c(ϕ1, . . . ,ϕn) where σ is either µ or ν and c a MALLP

connective. This is not a real constraint, since the interleaving of fixed points can be obtained
by using shifts between two blocks of different fixed points. To simplify the presentation at
some points, we will suppose that every layer of fixed points contains only one connective.

Definition 5.2. Negation is the involutive operation mapping positive to negative formu-
las, and vice versa, such that:

(ϕ` ψ)⊥ = ψ⊥⊗ϕ⊥ (ϕ& ψ)⊥ = ψ⊥⊕ϕ⊥ (↑ϕ)⊥ = ↓ϕ⊥

(νXN .ϕ)
⊥ = µYP .(ϕ

⊥[Y ⊥P /X]) (XN)
⊥ = X⊥N ⊤⊥ = 0 ⊥⊥ = 1

When considering a substitution F [ ~G/ ~X], we always assume implicitly that the polarities
of ~G are adequate to those of ~X.

5.1.2 The proof system µMALLP

Definition 5.3. The proof system µMALLP is given in Figure 5.1. It is a focused sequent
calculus over our polarized syntax, meaning that its sequents must contain at most one neg-
ative occurrence. A sequent is said to be negative when it contains a negative occurrence,
and it is positive otherwise. In Figure 5.1, Γ and ∆ always denote positive sequents.
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Identity rules

(Ax)
⊢ P ,P⊥

⊢ Γ,P⊥ ⊢ ∆,P
(Cut)

⊢ Γ,∆

Logical rules

(⊤)
⊢ Γ,⊤

⊢ Γ
(⊥)

⊢ Γ,⊥
(1)

⊢ 1

⊢ Γ,P
(↑)

⊢ Γ, ↑P

⊢ Γ,N
(↓)

⊢ Γ, ↓N

⊢ Γ,P1 ⊢ Γ,P2
(&)

⊢ Γ,P1 & P2

⊢ Γ,Ni
(⊕)

⊢ Γ,N1 ⊕N2

⊢ Γ,P1,P2
(`)

⊢ Γ,P1 ` P2

⊢ ∆,N1 ⊢ Γ,N2
(⊗)

⊢ Γ,∆,N1 ⊗N2

Fixed points rules

⊢ Γ,P [µX.P/X]
(µ)

⊢ Γ,µX.P

⊢ Γ,M ⊢ N⊥,N [M/X]
(ν)

⊢ Γ, νX.N

In these rules, Γ and ∆ denote positive sequents.

Figure 5.1: The µMALLP sequent calculus proof system.

Reading proofs in a proof search (bottom-up) fashion, the polarity restriction on sequents
means that negative rules must be applied eagerly, i.e., as soon as the sequent contains a
negative formula. This constraint on the shape of proofs is a very mild form of focusing.

Relating µMALL and µMALLP. Note that we can simply translate between µMALL and
µMALLP, in the same way as is done between MALL and MALLP: µMALLP formulas and
proofs can be embedded into µMALL by erasing shifts. In the other direction, µMALL for-
mulas are translated into µMALLP formulas by inserting shift connectives, and any µMALL

proof can be turned into a µMALLP proof of the translated conclusion sequent by inserting
shift rules. This translation essentially cancels the focusing constraint of the µMALLP proof
system by inserting shifts. A more demanding task would be to establish completeness of
the focused µMALLP proof system given here with respect to an unfocused proof system for
µMALLP. We do not address this (unrelated) issue, but expect that it would be possible
along the lines of the focusing result for µMALL [Bae12b].

Cut elimination for µMALLP. Cut elimination holds for µMALLP: the cut reduction sys-
tem given in [Bae12b] can straightforwardly be adapted to the polarized setting of µMALLP.
The only non-trivial case is the one involving least and greatest fixed points. This cut re-
duction step, shown in Figure 5.2, relies on the functoriality, a proof construction that is
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ΠL

⊢ Γ,N⊥[(νX.N)⊥/X⊥]
(µ)

⊢ Γ, (νX.N)⊥

ΠR

⊢ ∆,M

Θ

⊢M⊥,N [M/X]
(ν)

⊢ ∆, νX.N
(Cut)

⊢ Γ,∆

↓

ΠR

⊢ ∆,M

Θ

⊢M⊥,N [M/X]

(Ax)
⊢M⊥,M

Θ

⊢M⊥,N [M⊥/X]
(ν)

⊢M⊥, νX.N
(FN)

⊢ N⊥[M⊥/X⊥],N [νX.N/X]

ΠL

⊢ N⊥[(νX.N)⊥/X⊥], Γ
(Cut)

⊢ N⊥[M⊥/X⊥], Γ
(Cut)

⊢M⊥, Γ
(Cut)

⊢ Γ,∆

Figure 5.2: Cut-elimination step (µ)/(ν).

used to derive the following rule:

⊢ P ,N
(FB)

⊢ B[P/X],B⊥[N/X⊥]

In the cut reduction step of Figure 5.2, functoriality on P has the effect of making the
sub-occurrence νX.N of N [νX.N/X] appear at top level, so that we can apply the (ν) rule
on it. To adapt the reduction rules of µMALL to the case of µMALLP, we have to show
that the functoriality construction is also derivable in µMALLP, that is what we do in the
following.

Definition 5.4. Let B be a µMALLP occurrence and X be a variable. Let G (resp. H) be
an occurrence with the same (resp. opposite) polarity as X and let Π be a proof of ⊢ G,H.
We define FB(Π) to be the µMALLP proof of conclusion ⊢ B[G/X],B⊥[H/X⊥], defined by
induction on the maximum depth of the free occurrences of X in B as follows.

• If X is not free in B then we define FB(Π) to be the axiom rule on B.

• If B = Xα, then FB(Π) is obtained from Π by relocating G in α and H in α⊥.

Otherwise, we perform an η-expansion based on the top-level connective of B and conclude
by induction hypothesis. We only show half of the connectives, because dual connectives
are treated symmetrically.

• If B = B1 ⊗ B2, we define FB(Π) to be:

FB1
(Π)

⊢ B1[G/X],B⊥1 [H/X
⊥]

FB2
(Π)

⊢ B2[G/X],B⊥2 [H/X
⊥]

(⊗)
⊢ B1[G/X]⊗ B2[G/X],B⊥1 [H/X

⊥],B⊥2 [H/X
⊥]

(`)
⊢ B1[G/X]⊗ B2[G/X],B⊥1 [H/X

⊥]`B⊥2 [H/X
⊥]
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• If B = B1 ⊕ B2, we define FB(Π) to be:

FB1
(Π)

⊢ B1[G/X],B⊥1 [H/X
⊥]

(⊕)
⊢ B1[G/X]⊕ B2[G/X],B⊥1 [H/X

⊥]

FB2
(Π)

⊢ B2[G/X],B⊥2 [H/X
⊥]

(⊕)
⊢ B1[G/X]⊕ B2[G/X],B⊥2 [H/X

⊥]
(&)

⊢ B1[G/X]⊕ B2[G/X],B⊥1 [H/X
⊥] & B⊥2 [H/X

⊥]

• If B = µY .C, where C = C1 ⊗ C2, we set S = µY .C[G/X] and FB(Π) to be:

(Ax)
⊢ S,S⊥

Θ

⊢ S,C⊥[S⊥/Y ⊥][H/X⊥]
(ν)

⊢ µY .C[G/X], νY .C⊥[Y/Y ⊥][H/X⊥]

where Θ is defined by:

FC1[S/Y](Π)

⊢ C1[S/X][G/X],C⊥1 [S
⊥/Y ⊥][H/X⊥]

FC2[S/Y](Π)

⊢ C2[S/Y ][G/X],C⊥2 [S
⊥/Y ⊥][H/X⊥]

(µ),(⊗)
⊢ S,C⊥1 [S

⊥/Y ⊥][H/X⊥],C⊥2 [S
⊥/Y ⊥][H/X⊥]

(`)
⊢ S,C⊥[S⊥/Y ⊥][H/X⊥]

• If B = µY .C, where C = C1 ⊕ C2, we set S = µY .C[G/X] and FB(Π) to be:

(Ax)
⊢ S,S⊥

Θ

⊢ S,C⊥[S⊥/Y ⊥][H/X⊥]
(ν)

⊢ µY .C[G/X], νY .C⊥[Y/Y ⊥][H/X⊥]

where Θ is the proof defined by:

FC1[S/Y](Π)

⊢ C1[S/Y ][G/X],C⊥1 [S
⊥/Y ⊥][H/X⊥]

(µ),(⊕)
⊢ S,C⊥1 [S

⊥/Y ⊥][H/X⊥]

FC2[S/Y](Π)

⊢ C2[S/Y ][G/X],C⊥2 [S
⊥/Y ⊥][H/X⊥]

(µ),(⊕)
⊢ S,C⊥2 [S

⊥/Y ⊥][H/X⊥]
(&)

⊢ S,C⊥[S⊥/Y ⊥][H/X⊥]

Remark 5.2. Notice that the derivation FB(Π) is of the following form:

Π

⊢ G,H

⊢ B[G/X],B⊥[H/X⊥]

where the rules applied between the sequents ⊢ B[G/X],B⊥[H/X⊥] and ⊢ G,H do not
depend on Π. That is why we usually write functoriality on B as a rule named B.
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Remark 5.3. The main difference between the above construction of functoriality and the
one introduced in Definition 2.23 is that, since we are in a polarized proof system, we cannot
apply a µ rule to the blue sequents in the last two cases, so we were obliged to decompose
the top level connective of C⊥ before. We do not have such constraint in µMALL, thus to
two last cases mege in a single one, since we do not need to figure out the shape of C.

The proof of cut-elimination given in [Bae12b] can be adapted in an easy way to µMALLP.

5.2 Computational ludics

Ludics is an interactive framework reminiscent from and somehow intermediate between
game semantics [HO00] and realizability [Kri09]. We recall, in the setting of computational
ludics [Ter11], the necessary definitions and properties of:

• designs (§ 5.2.1), which correspond to strategies,

• orthogonality (§ 5.2.2), which corresponds to interaction, and

• behaviours (§ 5.2.3), which correspond to arenas or interactive types.

In game semantics, arenas are defined first and strategies are defined as sets of plays (or
as sets of views) compatible with these arenas. However, in ludics, arenas are a secondary
notion, derived from that of designs since behaviours are obtained from designs by orthog-
onality; we develop this comparison in § 5.2.4.

5.2.1 Designs

Designs are built over a signature A = (A, ar), where A is a set of names a, b, c, . . . and
ar : A → N is a function which assigns to each name a its arity ar(a). Let V be a set of
variables V = {x, y, z, . . . }.

Definition 5.5. For a fixed signature A, the class of positive designs p, q, . . . and neg-
ative designs n,m, . . . are coinductively defined as follows (with ar(a) = card(~xa) = k):

p ::= Ω | z | (n0 | a〈n1, . . . ,nk〉)

n ::= x |
∑

a(~xa).pa

The formal sum
∑

a(~xa).pa is the A-indexed family {a(~xa).pa}a∈A.

Notation 5.1. We introduce in the following some useful notations.

• We write
∑

K⊆A a(~xa).pa to denote the design
∑

a(~xa).qa where qa = pa if a ∈ K
and qa = Ω otherwise.

• We denote by Ω− the design
∑

a(~xa).Ω.
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In a negative design
∑

a(~xa).pa, a(~xa) binds the variables ~xa appearing in pa. Variables
which are not under the scope of a binder are free. The free variables of a design d are
denoted by fv(d). We identify two designs which are α-equivalent, i.e., which are equal
up to renaming of their bound variables. We denote by d[~n/~x] the design obtained by a
simultaneous and capture-free substitution of the variables ~x by the negative designs ~n. The
reader is referred to [Ter11] for precise definitions.

Definition 5.6.

• A design of the form n0 | a〈n1, . . . ,nk〉 where n0 is not a variable is called a cut .

• An occurrence of a variable x is called an identity if it occurs as n0 | a〈n1, . . . , x, . . . ,nk〉.

• We call a design identity-free (resp. cut-free) if it does not contain an identity
(resp. a cut) as a subdesign.

• A design d is called linear if for every positive subdesign n0 | a〈n1, . . . ,nk〉 of d, the
sets fv(n0), . . . , fv(nk) are pairwise disjoint.

• An l-design is a design d which is linear, identity-free and such that fv(d) is finite.

• A standard design is a cut-free l-design.

In order to interpret µMALLP proofs, the following signature, and associated notations,
are useful:

Definition 5.7. The MALL signature is given by the set of names A = {⊥, ↑, &1, &2,`}
whose arities are:

ar(⊥) = 0, ar(↑) = ar(&1) = ar(&2) = 1 ar(`) = 2

When considering this signature, we write 1 rather than ⊥, ↓ rather than ↑, ⊕i rather than
&i and ⊗ rather than `.

We define in the following the design ηF , the infinitary η-expansion of the axiom over
F , called also a copycat design:

Definition 5.8. Let F be a µMALLP occurrence. The design ηF is coinductively defined
as follows:

ηF1⊗F2
= ηF1`F2

= `(x1, x2).(x0 | ⊗〈ηF1
[x1/x0], ηF2

[x2/x0]〉)

ηF1⊕F2
= ηF1&F2

=
∑

i=1,2 &i(xi).(x0 | ⊕i〈ηFi
[xi/x0]〉)

η↓F = η↑F = ↑(x1).(x0 | ↓〈ηF [x1/x0]〉)

ησY .F = ηF [σY .F/Y ] for σ ∈ {µ, ν}

Example 5.1. The following two designs are examples of designs defined on the MALL

signature:
d1 = &1(x1).(x1 | 1) + &2(x2).(x2 | ⊕1〈↑(y).(y | 1)〉)

d2 = `(x1, x2).(x2 | ↓〈d2〉)



128 CHAPTER 5. LUDICS FOR LINEAR LOGIC WITH FIXED POINTS

Remark 5.4. Designs on the MALL signature can be viewed as abstractions of µMALLP

proofs. For instance d1 abstracts the (unique) cut-free proof of ⊢ 1 & (↑1⊕⊥).

The previous remark is the basis of the usual interpretation of MALL in ludics that we
will extend, in the rest of the chapter, into an interpretation of µMALLP. But first, as ludics
is all about interaction, we turn to cut-elimination and orthogonality.

5.2.2 Cut-elimination and Orthogonality

Cuts can be reduced by the relation → defined as follows:

Definition 5.9. The relation → is defined on positive designs as follows:

(
∑

a(~xa).pa) | b〈~n〉 → pb[~n/~xb].

The reflexive and transitive closure of → is denoted →⋆.
We write p ⇓ q if p→⋆ q and q is neither a cut, nor the design Ω. If such a design q does

not exist, we write p ⇑.
We define ‚ to be the least set of positive designs containing z and closed by anti-

reduction: ‚= {d : d→⋆
z}.

To eliminate cuts from a design, we coinductively propagate the relation ⇓ to it sub-
designs, in a way much reminiscent to Böhm trees. The obtained design is called its normal
form, we define this operation as follows:

Definition 5.10. The function L.M on designs is coinductively defined by:

LpM = z if p ⇓ z,

= Ω if p ⇑,

= x | a〈Ln1M, . . . , LnkM〉 if p ⇓ x | a〈n1, . . . ,nk〉,

LxM = x,

L
∑

a(~x).paM =
∑

a(~x).LpaM.

The normal form LdM enjoys a weak form of Church-Rosser property, called associativ-
ity. We recall it in the following:

Proposition 5.1 ( [Ter11]). Let d be a design and n1, . . . ,nk be negative designs. We have:

Ld[n1/x1, . . . ,nk/xk]M = LLdM[Ln1M/x1, . . . , LnkM/xk]M

We finally define an orthogonality relation on so-called atomic designs.

Definition 5.11. A positive standard design p is atomic if it has at most one free variable,
that variable will be called x0 in the rest of the paper.

A negative standard design n is atomic if it is closed, i.e., fv(n) = ∅.
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Definition 5.12. Let p be a positive atomic design and n a negative atomic design. The
designs p and n are said to be orthogonal (written p ⊥ n) if p[n/x0] ∈‚.

Given a set X of atomic designs of the same polarity, we define its orthogonal X⊥ as
follows:

X⊥ = { e | ∀d ∈ X, d ⊥ e }

The orthogonality relation enjoys the following useful properties:

Proposition 5.2 ( [Ter11]). Let X, Y be sets of atomic designs of the same polarity. We
have that:

1) X ⊆ X⊥⊥ 2) X ⊆ Y ⇒ Y⊥ ⊆ X⊥

3) X⊥ = X⊥⊥⊥ 4) (X ∪Y)⊥ = X⊥ ∩Y⊥

5.2.3 Behaviours, Sets of Designs

We define in the following behaviours, which are those sets of atomic designs closed by
bi-orthogonality:

Definition 5.13. A behaviour is a set X of atomic designs of the same polarity such that
X = X⊥⊥. We denote by CP (resp. CN) the set of all positive (resp. negative) behaviours.

The set CP , ordered by set inclusion, forms a complete lattice: using Proposition 5.2,
we prove easily that every collection of positive behaviours ~S has (

⋃ ~S)⊥⊥ as a least upper
bound and (

⋂ ~S)⊥⊥ =
⋂ ~S as a greatest lower bound. Thus the Knaster-Tarski theorem

guarantees the existence of least and greatest fixed points of monotonic operators on CP .
We generalize the relation d ∈ C between atomic designs and behaviours into the relation

d |= Γ between designs with arbitrary free variables and contexts of behaviours:

Definition 5.14. A positive context Γ is a set of pairs x1 : P1, . . . , xk : Pk where
x1, . . . , xk are distinct variables and P1, . . . ,Pk are positive behaviours.

A negative context Γ,N is a positive context Γ together with a negative behaviour N,
to which no variable is associated.

Definition 5.15. Let Γ = x1 : P1, . . . , xk : Pk be a positive context, Γ,N be a negative
context and p (resp. n) be a positive (resp. negative) standard design. We define the relation
|= between designs and contexts of the same polarity as follows:

p |= Γ iff p[n1/x1, . . . ,nk/xk] ∈‚ for any n1 ∈ P1
⊥, . . . ,nk ∈ Pk

⊥,

n |= Γ,N iff p[n[n1/x1, . . . ,nk/xk]/x0] ∈‚ for any p ∈ N⊥,n1 ∈ P1
⊥, . . . ,nk ∈ Pk

⊥.

Remark that p |= x0 : P if and only if p ∈ P and n |= N if and only if n ∈ N.
More generally, the following closure principle [Gir01,Ter11] will be useful in the following
sections.

Proposition 5.3 (Closure principle).

d |= Σ, z : P iff ∀m ∈ P⊥, Ld[m/z]M |= Σ where Σ is a positive or negative context.

n |= Γ,N iff ∀q ∈ N⊥, Lq[n/x0]M |= Γ where Γ is a positive context.
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5.2.4 Designs as Strategies

We end this background section on ludics by providing some more details on the comparison
between HO game semantics [HO00] and ludics.

In HO game semantics, one first defines arenas which specify the moves of the game
and which induce plays. In a second step, strategies are defined, as sets of plays satisfying
various conditions (such as totality, determinism, innocence, etc.) depending on what is
modeled. While arenas interpret formulas (or types), strategies will interpret proofs (or
programs).

In ludics, the construction proceeds in the other direction, more akin to realizability
models: a notion of abstract proof (design) serves as our notion of strategy while arenas are
replaced by behaviours, that are sets of designs closed under bi-orthogonality. Strategies
and interaction thus come first and only afterwards comes the notion of arena: the moves
of the game are defined as a by-product of the way the objects interact.

The comparison can be made more precise when comparing innocent game semantics
and ludics [FH02,BF11]. Indeed, with innocent strategies, a player’s move does not depend
on the full play that precedes it but only on a restriction of the play, its view. A view
typically excludes the part of the play which corresponds to intermediate computations of
the opponent, retaining only opponent’s results and not how the results were obtained. As
a consequence, innocent strategies can be presented as sets of views with some conditions.
Ludics fits this presentation as designs can be seen as sets of views: each branch of a design
is a view.

To conclude this comparison, let us stress that on the one hand, game semantics puts
constraints on the way arenas are built but it is then rather flexible on the definition of
strategies (by enforcing or relaxing various constraints on the structure of strategies). On
the other hand, ludics puts constraints on the design of strategies (for instance to preserve
analytical theorems on which internal completeness depends) and is quite flexible on how
arenas are defined. This difference explains why it revealed to be much more difficult to
model LL exponentials in ludics than in HO game semantics. The very same reason explains
why it will be smoother to interpret fixed points in ludics than in HO game semantics [Cla09].

5.3 Interpretation of µMALLP in Ludics

We now define a semantics for our system in ludics, extending the usual interpretation
of MALL in computational ludics [Ter11]: formulas will be interpreted by behaviours and
proofs by designs. From now on, we restrict to the MALL signature from Definition 5.7.

5.3.1 Interpretation of Formulas

Definition 5.16. Let θ be a formula and E an environment mapping each free variable
of θ to a behaviour of the same polarity. We define by induction on θ a behaviour called
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the interpretation of θ under E and denoted by JθKE .

JXKE = E(X), J0KE = ∅⊥⊥, J1KE = {(x0 | 1)}
⊥⊥,

J↓ϕKE = {x0 | ↓〈r〉 | r ∈ JϕKE}⊥⊥,

Jϕ1⊗ϕ2K
E = {(x0 | ⊗〈r1, r2〉) | ri ∈ JϕiK

E}⊥⊥,

Jϕ1⊕ϕ2K
E = {(x0 | ⊕i〈ri〉) | i ∈ {1, 2}, ri ∈ JϕiK

E}⊥⊥,

JµX.ΦKE = lfp(f) where f : CP −→ CP ,

C 7−→ JΦKE,X 7→C

JϕKE = (Jϕ⊥KE)⊥ for all other cases.

The interpretation of a formula θ in the empty environment is simply written JθK. As usual,
the interpretation of an occurrence F = θα in the environment E is the interpretation of its
underlying formula ϕ, we write it JF KE .

The well-definedness of the interpretation of µX.Φ relies on the monotonicity of f , which
is easily proved by induction on formulas. Our interpretation of formulas enjoys the usual
substitution property, which entails that the interpretation of fixed points is stable under
unfolding.

Proposition 5.4. JF [G/X]KE = JF KE,X 7→JGKE and JµX.P KE = JP [µX.P/X]KE .

The interpretation of MALL formulas relies on closure by orthogonality or by biorthog-
onality depending on their polarity. As a result, the shape of the elements of the resulting
sets is not obvious. Nevertheless, the internal completeness theorem of ludics allows to
characterize them. This is the role of Proposition 5.5, which can be shown in the same way
as in [Ter11].

Proposition 5.5. Let ϕ1, ϕ2 be two negative formulas and p = x0 | a〈~n〉 a positive l-design.

p ∈ Jϕ1⊗ϕ2K iff a = ⊗,~n = (n1,n2) and each ni ∈ JϕiK,

p ∈ Jϕ1⊕ϕ2K iff a = ⊕i,~n = ni and ni ∈ JϕiK for some i,

p ∈ J↓ϕ1K iff a = ↓,~n = n1 and n1 ∈ Jϕ1K,

p ∈ J1K iff a = 1,~n = ∅.

Let Φ1, Φ2 be two positive formulas and n =
∑

a(~xa).pa a negative l-design.

n ∈ JΦ1 ` Φ2K iff ~x` = (x1, x2) and p` |= x1:JΦ1K, x2:JΦ2K,

n ∈ JΦ1 & Φ2K iff ~x&i
= xi and p&i

|= xi:JΦiK for all i∈{1, 2},

n ∈ J↑Φ1K iff ~x↑ = x1 and p↑ |= x1 :JΦ1K,

n ∈ J⊥K always holds.

Note that these conditions constrain at most two designs in the sum, all others are arbitrary.
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Similarly, the interpretation of a ν-formula is defined as the orthogonal of a least fixed
point, but that is equivalent to the following more direct description as a greatest fixed
point.

Proposition 5.6. JνX.ϕKE = gfp(f) where f : CN → CN is such that f(C) = JϕKE,X 7→C.

5.3.2 Interpretation of µMALLP Proofs

We interpret proofs compositionally, each rule corresponding to a construction on designs.
Again, this extends the interpretation of MALL rules by Terui and Basaldella [BT09]. Proofs
of positive sequents are interpreted by positive designs, and negative sequents by negative
designs. In order to do so, we need to assign distinct name variables to positive occurrences.

Definition 5.17. We associate to every µMALLP positive occurrence P , a design variable
denoted xP , in such a way that xP = xQ if and only if P is the unfolding of Q.

We first give the structure of the interpretation, in order to fix the ideas. Then we define
the design construction GF ,d that is needed to interpret rule (ν).

Definition 5.18. Let π be a proof of a sequent Γ. The interpretation of π, written JπK,
is defined by the rules of Figure 5.3. Each of these rules has the following form:

{di ⊢ Γi}i∈I
(r)

d ⊢ Γ
and stands for the following implication: If a proof π is obtained from the proofs (πi)i∈I by
applying rule (r), and if JπiK = di, then JπK = d.

This interpretation may be understood by thinking of designs as proof terms, in the
same way that, in intuitionistic logic, hypotheses are annotated by variables and proofs by
λ-terms.

The interpretation of rules (Ax) and (Cut) is quite natural. The axiom over P is in-
terpreted by the copycat design ηP and cut is interpreted by the normal form of the cut
between the interpretations of the two sub-proofs. The interpretation of MALL rules is the
same as in [BT09]. The interpretation of the (µ) rule is trivial, based on the fact that fixed
point unfolding is transparent in our interpretation.

The main difficulty lies in the interpretation of the (ν) rule. Our goal is to interpret
proofs by designs that reflect the computational behaviour of these proofs, thus we will
derive the interpretation of rule (ν) from the cut reduction rule between µ and ν formulas
presented in Figure 5.2. More precisely, our interpretation of rule (ν) is a design defined
by an equality which expresses that the interpretation of the two proofs in Figure 5.2 are
equal.

As this reduction rule involves the functoriality construction, we show first a construction
which is the counterpart of functoriality in Ludics. More precisely, the construction FQ,d

is the functoriality of Q applied to a design d, and it is the counterpart in ludics of the
construction FQ(Π), the functoriality of Q applied to a proof Π.

Definition 5.19. Let d be a negative l-design and F an occurrence such that fv(d) ⊆ {x}
and fv(F ) ⊆ {X}. The functoriality of F applied to d is the negative l-design FF ,d
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Identity rules

(Ax)
ηP [xP/x0] ⊢ P ,P

⊥

n ⊢ Γ,P⊥ d ⊢ ∆,P
(Cut)

Ld[n/xP ]M ⊢ Γ,∆

Logical rules

(⊤)
Ω− ⊢ Γ,⊤

p1 ⊢ Γ,P p2 ⊢ Γ,Q
(&)

&1(xP ).p1 +&2(xQ).p2 ⊢ Γ,P &Q

n ⊢ Γ,N
(↓)

x↓N | ↓〈n〉 ⊢ Γ, ↓N

p ⊢ Γ
(⊥)

⊥.p ⊢ Γ,⊥

p ⊢ Γ,P ,Q
(`)

`(xP , xQ).p ⊢ Γ,P `Q

p ⊢ Γ,P
(↑)

↑(xP ).p ⊢ Γ, ↑P

(1)
(x | 1) ⊢ x : 1

n1 ⊢ ∆,N1 n2 ⊢ Γ,N2
(⊗)

x | ⊗〈n1,n2〉 ⊢ Γ,∆,N1 ⊗N2

n ⊢ Γ,Ni
(⊕)

x | ⊕i〈n〉 ⊢ Γ,N1⊕N2

Fixed point rules

p ⊢ Γ,P [µX.P/X]
(µ)

p ⊢ Γ,µX.P

n ⊢M⊥,N [M/X] m ⊢ Γ,M
(ν)

LGN ,n[m/xM⊥ ]M ⊢ Γ, νX.N

Where x = xN1⊗N2
in the ⊗ rule and x = xN1⊕N2

in the ⊕ rule.

Figure 5.3: Interpretation of µMALLP proofs.

coinductively defined by FF ,d = ηF when fv(F ) = ∅, and otherwise:

FX,d = FX⊥,d = d[x0/x],

FF1⊗F2,d = FF1`F2,d = `(x1, x2).(x0 | ⊗〈FF1,d[x1/x0],FF2,d[x2/x0]〉),

FF1⊕F2,d = FF1&F2,d =
∑

i=1,2 &i(xi).(x0 | ⊕i〈FFi,d[xi/x0]〉),

F↓F ,d = F↑F ,d = ↑(x1).(x0 | ↓〈FF ,d[x1/x0]〉),

FσY .F ,d = FF [σY .F/Y ],d for σ ∈ {µ, ν}.

Example 5.2. Let d be a negative design with fv(d) = x0 and F = (µY .X ` Y )ε. The
functoriality of F applied to d is the design defined by the following equation:

FF ,d = `(x, y).(x0 | ⊗〈d[x/x0],FF ,d[y/x0]〉)

The definition of functoriality in ludics naturally expresses the intended computational
behaviour of that operation: FQ,d is a modified η-expansion which behaves as d on occur-
rences of X in Q. This should be contrasted with the very involved formulation of FQ(Π) in
sequent calculus 5.4, which notably uses the (ν) rule to deal with fixed points encountered
in Q.
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Actually, the rule (ν) is obtained by agregating the cut rule to the following rule:

⊢M⊥,N [M/X]
(ν)

⊢M⊥, νX.N

If n is the interpretation of ⊢M⊥,N [M/X], we set GN ,n to be the (unknown) interpretation
of ⊢M⊥, νX.N , in other words, we have the following derivation:

n ⊢M⊥,N [M/X]
(ν)

LGN ,nM ⊢M
⊥, νX.N

Thus the interpretation of the rule (ν) is the following:

n ⊢M⊥,N [M/X] m ⊢ Γ,M
(ν)

LGN ,n[m/xM⊥ ]M ⊢ Γ, νX.N

When we interpret the proofs of Figure 5.2, the equality between to the resulting designs
yields the following equation, which defines entirely GN ,n.

Definition 5.20. Let n be a negative design and N a negative occurrence such that fv(n) ⊆
{x}, fv(N) ⊆ {X} and N 6≡ X.

The action of N on n is the design GN ,n coinductively defined by the following (pro-
ductive) equation: GN ,n = FN ,GN ,n

[n/x0].

Since the (ν) rule is obtained by agregating a cut to the above simplified rule, we interpret
it as in Figure 5.3.

5.3.3 Soundness and Invariance by Cut Elimination

We now show that the interpretation given above is sound, that is, if π is a proof of an
occurrence F then the interpretation of π belongs to the interpretation of F . Before formally
stating and proving this theorem, we generalize its statement to proofs of arbitrary sequents.

Definition 5.21. If Γ = P1, . . . ,Pn is a positive sequent, we interpret it by the positive
context JΓK = xP1

: JP1K, . . . , xPn : JPnK.
If Γ,N is a negative sequent, its interpretation is the negative context JΓ,NK = JΓK, JNK.

Theorem 5.1. If π is a proof of Γ, then JπK |= JΓK.

The theorem is proved by induction on π, and case analysis on its last rule. Soundness
of rule (Ax) follows from the fact that ηP |= x0 : JP K, JP K⊥. Soundness for (Cut) follows
from the closure principle 5.3. The cases of MALL rules easily follow from the definition of
formula interpretations. Soundness for rule (µ) is a direct consequence of Proposition 5.4.
The difficulty lies in the (ν) rule, whose soundness relies on the following lemma, stating
that FF ,d is sound.

Lemma 5.1. Let d be a negative design, P,N be two behaviours and F be a negative
occurrence such that fv(d) ⊆ {x}, fv(F ) ⊆ {X} ⊆ VN and d |= x : P,N. Then we have:

LFF ,dM |= x0 : JF⊥KX 7→P⊥

, JF KX 7→N
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Proof. We shall prove a generalized form of the proposition. Fix d, P and N as in the above
statement. We say that a list of occurrences ~G is adequate to a list of variables ~X if they
have the same length and, for all i, Gi and Xi have the same polarity.

Let F be a negative occurrence such that fv(F ) ⊆ ~Y , and ~U be a list of occurrences that
is adequate to ~Y and such that fv(~U) ⊆ {X}. Finally, let ~C and ~E be lists of behaviours
respectively adequate to ~Y and ~Y ⊥ such that, for all Ui ∈ ~U ,

LFUi,dM |= x0 : Ci,Ei if Ci is positive
LFUi,dM |= x0 : Ei,Ci if Ci is negative

We shall establish that:

LFF [~U/~Y ],dM |= x0 : JF⊥K
~Y 7→~C⊥

, JF K
~Y 7→~E

We proceed by induction on F . We show the only difficult case, which is when F = νZ.G.
We set V = F [~U/~Y ], and set out to show that:

LFV ,dM |= x0 : JF⊥K
~Y 7→~C⊥

, JF K
~Y 7→~E

Let us consider the behaviour S defined by:

S := { L(FV ,d)[m/x0]M : m ∈ (JF⊥K
~Y 7→~C⊥

)⊥ }⊥⊥

By the closure principle, it suffices to prove S ⊆ JF K
~Y 7→~E. By Proposition 5.6, JF K

~Y 7→~E is
the greatest post-fixed point of ϕ := C 7→ JGK

~Y 7→~E,Z 7→C. Thus, it suffices to show that S is
a post-fixed point of ϕ, which finally amounts, by the closure principle, to prove that:

LFV ,dM |= x0 : JF⊥K
~Y 7→~C⊥

, JGK
~Y 7→~E,Z 7→S

Or equivalently, by unfolding in the functoriality and interpretation:

LFG[~U/~Y ,V/Z],dM |= x0 : JG⊥K
~Y 7→ ~

C⊥,Z 7→JF⊥K
~Y 7→~C⊥

,JGK
~Y 7→~E,Z 7→S

This is obtained by induction hypothesis on G, since by definition of S we have that:

LFV ,dM |= x0 : JF⊥K
~Y 7→~C⊥

,S

Which concludes the proof.

Let us show now the soundness of the rule (ν).

Proposition 5.7. Let νX.F be an occurrence, d be a design and S be a behaviour such that
d |= x0 : S, JF KX 7→S⊥

. We have that:

LGF ,dM |= x0 : S, JνX.F K
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Proof. By closure principle, we have that:

LGF ,dM |= x0 : S, JνX.F K

⇔ ∀m ∈ S⊥, LGF ,d[m/x0]M |= JνX.F K

⇔ S1 := { LGF ,d[m/x0]M : m ∈ S⊥ }⊥⊥ ⊆ JνX.F K

But JνX.F K = gfp(ϕ) where ϕ = C 7→ JF KX 7→C, thus it suffices to establish that S1 is a
post-fixed point of ϕ, i.e., S1 ⊆ JF KX 7→S1 . This is equivalent to:

∀m ∈ S⊥, LGF ,dM[m/x0] |= JF KX 7→S1

and by closure principle to:
LGF ,dM |= x0 : S, JF KX 7→S1

Remark that by definition of S1 we have LGF ,dM |= x0 : S,S1. By Proposition 5.1, this gives
us

LFF ,GF ,d
M |= x0 : JF⊥KX 7→S⊥

, JF KX 7→S1

By hypothesis, d |= x0 : S, JF KX 7→S⊥

so by the closure principle we have, as expected:

LGF ,dM = LFF ,GF ,d
[d/x0]M |= x0 : S, JF KX 7→S1

As a second soundness result, we show that our semantics is denotational, i.e., the
interpretation is invariant by cut elimination. The proof of this theorem relies on the
following lemma, which expresses that ludics functoriality FF ,d is the semantical counterpart
of the functoriality in sequent calculus (Definition 5.4).

Lemma 5.2. Let Π be a proof of ⊢ P ,N and Q a negative occurrence such that fv(Q) ⊆
{X} ⊆ VN . We have:

JFQ(Π)K = LFQ,JΠKM

The proof of this lemma relies on a bisimulation between the two designs . It can be
found in [BDS15].

Theorem 5.2. If Π′ is obtained from Π by µMALLP cut elimination rules, then JΠK = JΠ′K.

Proof. The auxiliary cases together with the main cases for MALL are easy to treat and
follow essentially from the associativity of design normalization. The only technical case is
the one of Figure 5.2. Let us show how to treat one such reduction. We set that Π1 to be
the upper proof in Figure 5.2(the redex), and Π2 the lower one (the reduct). We set also
that:

d := JΠLK, n := JΘK and m := JΠRK,

and:
x = x(νX.N)⊥ , y = xM⊥ .

Notice first that GP⊥,n = GP ,n. We have by definition that:

JΠ1K = Ld[LGP ,n[m/x0]M/x]M
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By Lemma 5.2, we have that:

JΠ2K = Ld[FP ,LGP ,nM[n[m/y]/x0]/x]M

But by definition of GP ,n we have that:

GP ,n[y/x0] = FP ,GP ,n
[n/x0]

Thus:
LGP ,n[y/x0]M = LFP ,LGP ,nM[n/x0]M

The result follows from this remark and from associativity of designs normalization.

5.4 On Completeness

Clearly, not all designs are interpretations of proofs, since some designs are not even com-
putable. More generally, it is highly non-trivial whether (or when) one can recover coin-
variants from a design in order to finitely express it as a proof. Indeed, coinvariants are
completely hidden in the process of normalizing the interpretation of the (ν) rule. This is
essentially the same difficulty that Girard encounters with second-order existential quantifi-
cation in ludics [Gir01], and which lead him to give a completeness result for Π1 formulas
only. In our setting, that would correspond to handle least fixed points only, which would be
rather weak. Fortunately, we can do better thanks to our direct treatment of fixed points in
the semantics, by showing completeness with respect to class of designs called essentially
finite designs (EFD). These designs perform a finite computation followed by a copycat,
we introduce them below.

5.4.1 Essentially finite designs

Definition 5.22. Essentially finite designs (EFD) are inductively defined by:

p ::= (x | 1) | (x | ⊕i〈n〉) | (x | ⊗〈n1,n2〉) | (x | ↓〈n〉)

n ::= ⊥.p0 | &1(x1).p1 +&2(x2).p2 | `(x1, x2).p | ↑(x1).p1 | ηF | Ω
−

with x1 ∈ fv(p1), x2 ∈ fv(p2) and x1, x2 ∈ fv(p).

Even though they are inductively defined, EFDs can be infinite, due to the presence of
the copycat designs. The main theorem of this section is the following:

Theorem 5.3 (Completeness for EFD). Let d be an EFD and Γ be a sequent. If d |= JΓK
there is a µMALLP proof π of conclusion Γ such that d = JπK.

Proof. The proof of this theorem is by induction on the structure of the EFD, using internal
completeness. We treat only the case where d is the design to give an example. Suppose that
d |= JΓK. Since d is negative, Γ is also negative, that is Γ = ∆,N . It is easy to check that
N has necessarily the form P1 & P2. Using internal completeness and the closure principle,
pi |= J∆,PiK, for i = 1, 2. By induction hypothesis, there is a proof πi of ∆,Pi for i = 1, 2.
Let π be the proof of conclusion ⊢ ∆,N ending by an application of the rule (&) on N , and
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whose premises are π1 and π2. All the other cases are treated in the same way, except the
one where d is an η-expansion: one needs to prove that if ηF |= x0 : Q,P⊥ then there is a
proof π of ⊢ Q,P⊥ such that ηF = JπK. We dedicate the rest of the section to the proof of
this result, by reducing it to a new statement.

Definition 5.23. Let F and G be two closed formulas. We define the relation ≈ between
occurrences inductively as follows: F ≈ G if and only if

F = σX.c(F1, . . . ,Fn) and G = σY .c(G1, . . . ,Gn)

Moreover, if we set F → c(H1, . . . ,Hn) and G → c(I1, . . . , In) then Hi ≈ Ii for every
1 ≤ i ≤ n.

In other words, F ≈ G if and only if F and G have the same infinite unfolding. The
following proposition is easy to show.

Proposition 5.8. Let P ,Q and F be three occurrences: then the following holds:

• If ηF |= x0 : Q,P
⊥ then P ≈ Q ≈ F .

• If ηF |= x0 : Q,P
⊥ then ηF = ηP = ηQ.

• ηF |= x0 : Q,P
⊥ if and only if JP K ⊆ JQK.

Proof. The first point is obtained by applying recursively the closure principle and internal
completeness. The second points is a consequence of the first one, it simply follows from the
remark that the η-expansion of a formula correspond to its infinite unfolding. Since F , P
and Q share the same unfolding by the first point, they have also the same η-expansion. The
third point is a direct consequence of the closure principle and the fact that LηF [d/x0]M = LdM
for every d ∈ JGK for every G ≈ P , which can be verified easily.

As a consequence, we only need to prove the following theorem, to obtain the last
inductive case of the proof of Theorem 5.3.

Theorem 5.4 (Completeness for semantic inclusion). If P , Q are two positive occurrences
such that JP K ⊆ JQK, then there is a proof π of ⊢ Q,P⊥ satisfying JπK = ηP .

The remainder of this section is dedicated to the proof of this result.

5.4.2 Semantics inclusions in µMALLP

In order to show the provability of semantic inclusions in µMALLP, we shall use as an inter-
mediate proof system: the circular proof system µMALLPω. This proof system is obtained
by adding the unfolding rules for fixed points, allowing derivations having the shape graphs
and equipping them with a validity condition (See Section 2.4.3). The proof of Theorem 5.4
is made in three steps:

i) We show first that semantic inclusions are provable in µMALLω using translatable
proofs. In other words we show that if JP K ⊆ JQK, then there is a µMALLω proof Π of
⊢ Q,P⊥ satisfying the translatability criterion (See Section 2.4.5, Definition 2.39).



5.4. ON COMPLETENESS 139

ii) We show that the proof systems µMALLP and µMALLPω have the invariant property
(Definition 2.40). By i) and ii), we are in the domain of applicability of the translation
procedure (Theorem 2.5), that is to say, we can translate Π into a µMALLP proof π
using the procedure described in the proof of Theorem 2.5.

iii) We finally show that π has the same interpretation as ηP , that is JπK = ηP . This
concludes the proof of Theorem 5.4.

Semantic inclusions in µMALLPω

We show in this section that semantic inclusions are provable in µMALLPω. For that, we
need a few technical definitions, which we introduce in the following.

Definition 5.24. Let F , H be two occurrences. Let X0 be a variable of the same polarity
as H, not occurring in F nor H.

We define OX0

H (F ) as the unique occurrence such that:

OX0

H (F )[H/X0] = F and H 6≤ OX0

H (F )

We shall simply write OH(F ) instead of OX0

H (F ) when there is no ambiguity.

This operator commutes with µMALL connectives. Further, it commutes with unfolding
under some subformula condition, as shown by the following proposition.

Lemma 5.3. Let F , H be two formulas such that H < F . For every MALL connective s
and σ ∈ {µ, ν}, one has:

• If F = s(F1, . . . ,Fn) then OH(s(F1, . . . ,Fn)) = s(OH(F1), . . . ,OH(Fn)).

• If F = σY .G then OH(σY .G) = σY .OH(G).

• If F = σY .G then OH(G[(σY .G)/Y ]) = OH(G)[OH(σY .G)/Y ].

Proof. Let F , H be two formulas such that H < F .

• If F = s(F1, . . . ,Fn) then E := s(OH(F1), . . . ,OH(Fn)) verifies that E[H/X0] = F .
We have that H 6≤ E, otherwise we would have either H = E and then:

H = H[H/X0] = s(OH(F1)[H/X0], . . . ,OH(Fn)[H/X0]) = F

which is not possible, otherwise H ≤ OH(Fi) for some i which is not possible neither
by definition.

• If F = σY .G, we apply the same argument to E := σY .OH(G).

• We check that the right-hand side E := OH(G)[OH(σY .G)/Y ] verifies the two condi-
tions of Definition 5.24. The first one is obvious: E[H/X0] = G[σY .G/Y ]. It remains
to check that H 6≤ E. Since we obviously have H 6≤ OH(G) and H 6≤ OH(σY .G),
it only remains to consider the case where OH(σY .G) ≤ H. But, since X0 does not
occur free in H, this would mean that X0 is not free in OH(σY .G), which is equivalent
to H 6≤ σY .G, contradicting our hypothesis.
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Now we state and show our result of semantic inclusions inµMALLPω:

Proposition 5.9. If JP K ⊆ JQK then there is a translatable µMALLPω proof Π of ⊢ P⊥,Q.

Proof. By Proposition 5.8, we have that P ≈ Q. Thus

P = µX.c(I1, . . . , In) and Q = µY .c(J1, . . . , Jn)

And if we set P → c(M1, . . . ,Mn) and G→ c(N1, . . . ,Nn) then Mi ≈ Ni for every 1 ≤ i ≤ n.
Let Θ(P⊥,Q) be the µMALLP∞ pre-proof coinductively as follows:

• If c = ⊗:
Θ(N1,M

⊥
1 )

⊢M⊥
1 ,N1

Θ(N2,M
⊥
2 )

⊢M⊥
2 ,N2

(⊗)
⊢M⊥

1 ,M
⊥
2 ,N1 ⊗N2

(µ)
⊢M⊥

1 ,M
⊥
2 ,Q

(`)
⊢M⊥

1 `M⊥
2 ,Q

(ν)
⊢ P⊥,Q

• If c = ⊕:
Θ(N1,M

⊥
1 )

⊢M⊥
1 ,N1

(⊕1)
⊢M⊥

1 ,N1 ⊕N2
(µ)

⊢M⊥
1 ,Q

Θ(N2,M
⊥
2 )

⊢M⊥
2 ,N2

(⊕2)
⊢M⊥

1 ,N1 ⊕N2
(µ)

⊢M⊥
2 ,Q

(`)
⊢M⊥

1 &M⊥
2 ,Q

(ν)
⊢ P⊥,Q

• If c = ↓:
Θ(N1,M

⊥
1 )

⊢M⊥
1 ,N1

(↓)
⊢M⊥

1 , ↓N1
(µ)

⊢M⊥
1 ,Q

(↑)
⊢↑M⊥

1 ,Q
(ν)

⊢ P⊥,Q

In all these cases, the proof Θ(P⊥,Q) has the following form:

Θ(N1,M
⊥
1 ) . . . Θ(Nn,M

⊥
n )

⊢ P⊥,Q

Let us show that Θ(P⊥,Q) satisfies the validity condition. We proceed by contradiction, and
suppose that Θ(P⊥,Q) has an infinite branch γ = (γk)0≤k which is not valid. Note that the
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branch γ has exactly two infinite threads, one starting from P⊥ we denote it by t = (F⊥i )i∈ω
and the other from Q we denote it by t′ = (Gi)i∈ω. Let L⊥ = µX.K⊥ = min(Inf(t)). To get
a contradiction we will construct a design d such that d ∈ JP K and d /∈ JQK.

We set γk = (⊢ F⊥k ,Gk) and we associate to every γk a design dk coinductively defined
by the following equations:

• If F⊥k →
⋆ F⊥k+1 ⊗ E

⊥ and Gk →
⋆ Gk+1 `H then dk = `(x1, x2).dk+1[x1/x0].

• If F⊥k →
⋆ E⊥ ⊗ F⊥k+1 and Gk →

⋆ H `Gk+1 then dk = `(x1, x2).dk+1[x2/x0].

• If F⊥k →
⋆ F⊥k+1 & E⊥ and Gk →

⋆ Gk+1 ⊕H then dk = x0 | ⊕1〈dk+1〉.

• If F⊥k →
⋆ E⊥ & F⊥k+1 and Gk →

⋆ H ⊕Gk+1 then dk = x0 | ⊕2〈dk+1〉.

• We proceed similarly for ⊗, & and shifts.

For every k, the design dk “follows” the branch starting from γk. In particular, d0 can be
seen as a design representing the branch γ. In the following, we will show that:

(P1) d0 ∈ JP K

(P2) d0 6∈ JQK

Let us show (P1). Since P = F0, (P1) amounts to show that d0 ∈ JF0K. Let I be the
following set of indices:

I = {m | Fm ≡ L}

First remark that by applying internal completeness iteratively, we have that:

∀k ∈ ω d0 ∈ JF0K⇔ d1 ∈ JF1K⇔ · · · ⇔ dk ∈ JFkK

In particular for every i ∈ I, we have that d0 ∈ JP K if and only if di ∈ JFiK = JLK.
But JLK = gfp(ϕ) where ϕ : C 7→ JKKX 7→C. Hence, to prove that di ∈ JLK for i ∈ I it
suffices to find a post-fixed point A of ϕ such that di ∈ A. We shall establish this for
A = { dm | m ∈ I }

⊥⊥. This follows from the two following facts that we shall prove next:

1) If n,m are two consecutive indices in I, then for every i ∈]n,m] we have that:

di ∈ JOL(Fi)K
X 7→A

2) If n ∈ I, then dn+1 ∈ JOL(Fn+1)K
X 7→A ⇒ di ∈ JKKX 7→A.

To show the result 1) we proceed by a decreasing induction on i.

• Base case. If i = m, we have that Fi = L thus OL(Fi) = X0, from which di ∈
JX0K

X0 7→A immediately follows.
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• Inductive case. Let us treat the case where F⊥i →
⋆ F⊥i+1⊗E

⊥, the other ones being
similar. For simplicity of the presentation, we assume that Fi = νX.I`I ′, thus Fi+1 =
I[Fi/X] and E = I ′[Fi/X]. By construction, we have that di = `(x1, x2).di+1[x1/x0].
By induction hypothesis, we have that di+1 ∈ JOL(Fi+1)K

X0 7→A. Therefore, for every
formula H such that fv(H) ⊆ {X0}, we ave that:

`(x0, x1).di+1 ∈ JOL(Fi+1)`HKX0 7→A

In particular we set H = OL(E). Which gives us that:

di ∈ JOL(Fm+1)`OL(E)K
X 7→A

⋆
= JOL(Fm+1 ` E)KX 7→A

= JOL((I ` I ′)[Fi/X])KX 7→A

⋆⋆
= JOL(I ` I ′)[OL(Fi)/X]KX 7→A

†
= JOL(I ` I ′)[νX.OL(I ` I ′)/X]KX 7→A

‡
= JνX.OL(I ` I ′)KX 7→A

†
= JFiK

X 7→A

(⋆) First item of Lemma 5.3.
(⋆⋆) Third item of Lemma 5.3.
(†) Second item of Lemma 5.3.
(‡) The interpretation of a fixed point is equal to the interpretation of its unfolding.

The result 2) is shown in a similar way as to the inductive case of 1., using Lemma 5.3.
Now that we have shown that d ∈ JP K, we show that d /∈ JQK.

Let us show P2. We show now that d0 /∈ JQK. To do so, we construct a design d′0 such
that d′0 ∈ JGK⊥ and d0 6⊥ d′0. Let us consider the branch γ′ of Θ(Q,P⊥) that follows the
same occurrences as γ. We can thus construct as before a design d′0 such that d′0 ∈ JQ⊥K. It
is easy to verify that the interaction between d0 and d′0 diverges and therefore that d0 6⊥ d′0.

The proof Θ(P⊥,Q) being regular and having exactly two threads that do not “commu-
nicate”, we can represent it by a translatable circular proof Π.

From µMALLPω to µMALLP

To make the translation procedure from Section 2.4.5 work, a condition on the origin and
the target proof systems, called the invariant property (Definition 2.40), should be satisfied.
We show in the following that µMALLP and µMALLPω satisfy the invariant property.

Proposition 5.10. The proof systems µMALLP and µMALLPω satisfy the invariant prop-
erty.
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Proof. Let ∆ be a positive sequent. We define P(∆) as follows:

• If ∆ = {P} then P(∆) = P .

• If ∆ = {P} ∪∆′ then ↓(P ` P(∆′))

P(∆) is the ` of ∆ where we inserted some ↓ to adjust the polarities.
Let νX.F be an occurrence and ∆ be a set of positive occurrences. We choose the in-
variant of (νX.F , ∆) to be I = νX.↓(F ⊕ (P(∆))⊥) if ∆ is non-empty and I = νX.F
otherwise. We derive the rules (Subst), (Unfold), (Close) and (Replace) in µMALLP and the
rules (Substω) and (Unfoldω) in µMALLPω exactly as we did in µMALL and µMALLω in the
proof of Proposition 2.15, by adding the following minor modifications:

• We insert the rules ↓ and ↑ coming from P(∆) and I.

• We use the polarized functoriality introduced in Definition 5.4.

As a consequence, we can apply the translation procedure to the proof Π obtained by
Proposition 5.9 to get a µMALLP proof π of ⊢ P⊥,Q.

The interpretation of π is ηP .

Proposition 5.11. Let π be the proof obtained by applying the translation procedure to the
proof Π obtained by Proposition 5.9. The interpretation of π is η.

The proof of this result is given in [BDS15] and relies on a bisimulation between π
and Π. Actually, we hope to prove a more general result, saying that the interpretation
of a µMALLPω proof and its translation have the same interpretation. In other words, our
translation result preserves the computational behaviour of proofs. To state this conjecture,
we need to define the interpretation of a µMALLPω proof.

Definition 5.25. The interpretation JΠK of a µMALLP∞ proof Π is obtained by reading
coinductively the rules of Figure 5.3, and by replacing the interpretation of the rule (ν) by
the following one:

n ⊢ Γ,N [µX.N/X]
(ν)

n ⊢ Γ, νX.N

The interpretation of a µMALLPω proof is the interpretation of its unfolding.

Conjecture 5.1. Let Π be a translatable µMALLPω proof and let π be the µMALLP proof
obtained by the translation procedure of Section 2.4.5. We have that JΠK = JπK.
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Chapter 6

The completeness problem for the

linear-time µ-calculus

Verification and the µ-calculus. The linear-time µ-calculus [Koz83] is a temporal logic
that extends Pnueli’s Linear Temporal Logic (LTL) [BKP] with least and greatest fixed
points. This increases considerably its expressive power while keeping the decidability prop-
erties of LTL, which makes it a very suitable logic for verification. The linear-time µ-calculus
has infinite words as models, thus it can be used to express trace properties of reactive sys-
tems.

There exist, among others, two approaches to verification using temporal logics [Wal94].
The first one, called “model-theoretic”, describes both the system S and the property P to
check as formulas ϕS and ϕP ; then verifying whether S satisfies P is reduced to checking
the validity of the formula ϕS → ϕP . The other approach, called “proof-theoretic” reduces
the verification problem to the provability of the formula ϕS → ϕP .

The advantage of the second approach is that it gives, besides the boolean answer to the
verification problem, a certificate that supports the decision of the verification tool, which
is the proof of the formula ϕS → ϕP .

The completeness problem and constructiveness. To make the proof-theoretic ap-
proach to verification work with the linear-time µ-calculus, two conditions should be satis-
fied: the first is the existence of a sound and complete deductive system for the linear-time
µ-calculus; the second is the existence of algorithms that produce proofs for valid formu-
las. The first condition is satisfied, since the linear-time µ-calculus enjoys a deductive
system, that we call µLK⊙, which is the restriction of Kozen’s axiomatization [Koz83] for
the modal µ-calculus to the linear time. This system was proved to be sound and complete
by Kaivola [Kai95]. But the second condition is not really met, since the only existing
algorithm is the naive one, that enumerates all µLK⊙ proofs.

A proof of completeness is a mathematical argument showing that every valid formula
is provable, but it is not always possible to extract from such an argument an algorithm
that produces proofs for valid formulas. Indeed, completeness proofs may involve complex,
non-constructive arguments yielding no method for actually constructing a proof. On the
contrary, a constructive proof of completeness, specifying a proof search method, would
readily provides a realistic algorithm.

147
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Analyzing earlier proofs. None of the existing proofs of completeness for the µ-calculus
with respect to Kozen’s axiomatization ( [Kai95], [Wal95]) is constructive in this sense.
Walukiewicz showed in [Wal93] that the branching-time µ-calculus is complete w.r.t. an
axiomatization tha he introduced there, which is different from Kozen’s, and his argument
exhibits proofs for valid formulas. However, this axiomatization is much less natural than
Kozen’s, the later being, to use his terms, “as natural as the notion of Kripke structures”.

In this part of the thesis, we provide a constructive proof for the full linear-time µ-
calculus with respect to µLK⊙. To do so, we go back to the earlier proofs of completeness,
and try to understand where constructiveness is lost, to better solve this problem.

Existing proofs of completeness for the µ-calculus rely schematically on the following
idea. Find a subset C2 of the set of µ-calculus formulas C1 such that:

1) For every valid formula ϕ1 in C1, there is a valid formula ϕ2 in C2 such that ϕ2 ⊢µLK⊙ ϕ1.

2) Every valid formula of C2 is provable. This is the completeness result restricted to C2.

Completeness is proved by combining 1) and 2) via a cut rule:

2)

⊢ ϕ2

1)

ϕ2 ⊢ ϕ1
(Cut)

⊢ ϕ1

C1C2

The complexity of problems 1) and 2) depends on the class C2: the larger it is, the more
difficult problem 2) becomes, since it gets close to the original completeness problem. On the
contrary, when C2 gets smaller, problem 1) becomes difficult. Kaivola’s proof uses the class
of banan form formulas, and Walukiewicz’ one uses the class of negatitions of disjunctive
formulas. These classes are very small and problem 2) is easy to prove, but problem 1) is
much more involved, and this is where constructiveness is lost in both proofs.

Our solution. Instead of splitting the difficulty in two by introducing one intermediate
class, we introduce several classes Cn ⊆ · · · ⊆ C1 and generalize the proof scheme used
earlier:

1) For all i ∈ [1,n[ and for every valid formula ϕi ∈ Ci, there is a valid formula ϕi+1 ∈ Ci+1

such that ϕi+1 ⊢µLK⊙ ϕi.

2) Every valid formula of Cn is provable.

As before, we combine these results to get completeness. The interest of this approach is
to split the difficult problem of completeness into several easier problems, for which we can
hope to construct effectively a proof.
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⊢ ϕn ϕn ⊢ ϕn−1 . . . ϕ2 ⊢ ϕ1
(Cut)

⊢ ϕ1

C1C2
. . .Cn

Now the question is how to find these classes. For that, we identified three sources of
complexity that make a valid formula hard to prove:

i) The alternation of disjunctions and conjunctions.

ii) The interleaving of least and greatest fixed points.

iii) The presence of disjunctions.

In automata theory, these sources of complexity also exist with different names:

i) Alternation (of universal and existential non-determinism).

ii) The use of parity conditions.

iii) Non-determinism.

In automata over infinite words, all these difficulties can be reduced through effective algo-
rithms, transforming automata with one of these features into others without. For example,
one has algorithms to eliminate alternation, to reduce the number of priorities for a par-
ity condition or to get rid of non-determinism. The correspondence between linear-time
µ-calculus formulas and alternating parity word automata (APW) is now very well estab-
lished. This is fortunate since our idea is to import these techniques from the automata side
to the logical one. Concretely, it is known that we can encode every APW A by a formula
[A] such that the language of A equals the set of models of [A]. The intermediate classes we
will use are the following: The largest class, denoted [APW], is the image of APW by this
encoding; this class embodies all the difficulties indicated above. The next class is [NPW],
the image of non-deterministic parity automata (NPW) by this encoding. The formulas of
this class do not contain the first level of complexity which is the alternation ∨,∧. The third
class is [NBW], the encoding of non-deterministic Büchi automata (NBW). Büchi automata
are particular cases of parity automata where only the two priorities 0 and 1 are allowed.
We can say then that in this class we simplified the two difficulties i) and ii). The smallest
class is [DBW], the image of deterministic Büchi automata, where the three difficulties are
eliminated. The proof will be carried out in the following 5 steps:

I. ∀ϕ ∈ C1, ∃A ∈ APW such that L(A) =M(ϕ) and [A] ⊢µLK⊙ ϕ.

II. ∀A ∈ APW, ∃P ∈ NPW such that L(P) = L(A) and [P ] ⊢µLK⊙ [A].

III. ∀P ∈ NPW, ∃B ∈ NBW such that L(B) = L(P) and [B] ⊢µLK⊙ [P ].
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IV. ∀B ∈ NBW, if L(B) = Σω then ∃D ∈ DBW L(D) = Σω and [D] ⊢µLK⊙ [B].

V. ∀D ∈ DBW, if L(D) = Σω then ⊢µLK⊙ [D].

Step IV is a bit special because NBW cannot in general be determinized into DBW. But
if a NBW B recognizes the universal language Σω, there is obviously a DBW D with the
same language: for instance the complete Büchi automaton with exactly one (accepting)
state. This is enough for our needs, since we start in the proof of completeness from a valid
formula ϕ (i.e.,M(ϕ) = Σω), hence the automata A,P and B constructed in steps I-III all
recognize the language Σω. To show that [D] ⊢µLK⊙ [B] in step IV, we use a more general
result from:

IV′. ∀B1,B2 ∈ NBW, if L(B2) ⊆ L(B1) then [B2] ⊢µLK⊙ [B1].

The proof of this result will rely on determinization of NBW into deterministic parity
automata, but contrarily to steps I-III where automata transformations are used to build
an automaton, determinization is used in this step as a proof-search algorithm.

We now give a general idea of how to prove the sequents of these steps. Actually, what
makes the proof search difficult in µLK⊙, is Park’s rule (shown below) where S should be
guessed.

Γ ⊢ ∆,S S ⊢ F [S/X]
(ν)

Γ ⊢ ∆, νX.F

To circumvent this problem, we go through an intermediate proof system where the rule (ν)
just unfolds the ν-formula:

Γ ⊢ ∆,F [νX.F/X]
(ν)

Γ ⊢ ∆, νX.F

Two examples of such proof systems are the one introduced in [DHL06] which we call
µLKωDHL, and the one introduced in Chapter 2, Section 2.4.3, called µLK⊙ω. The idea is to
first find a proof for the sequent to prove in the intermediate system, then to transform this
proof into a µLK⊙ one.

The advantage of µLKωDHL is that it is completely invertible and the proof search is a
trivial task. However, no algorithm is known to transform effectively µLKωDHL proofs into
µLK⊙ ones.

In contrast, we have given in Chapter 2, Section 2.4.5 a strong translation result for
µLK⊙ω, based on a general geometric condition on proofs. Building on this, we shall work
with µLK⊙ω. To get this stronger translatability criterion, µLK⊙ω uses sequents of a par-
ticular shape. Indeed, sequents are not sets of formulas, as it is the case for µLKωDHL, but
are rather sets of occurrences. The difficulty of using such sequents is that the proof system
is not invertible and proving the sequents of steps I-V in µLK⊙ω is not immediate.

Let us finally emphasize that the implications appearing in steps I-V are well known at
the semantical level, but lifting them to the provability level is not immediate and strongly
depends on the encoding [_] and the shape of automata obtained by the different automata
transformations. To illustrate this by an extrem example, any valid formula ϕ is semantically
equivalent to ⊤ and to itself, but proving ⊤ ⊢ ϕ is as difficult as proving ⊢ ϕ, while proving
ϕ ⊢ ϕ is immediate. In general, given a formula ψ semantically equivalent to ϕ, the closer ψ
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is to ϕ, the easier ψ ⊢ ϕ will be to prove. That is why we will provide for our development
an encoding of automata that follows closely their structure, and automata transformations
that do not change brutally the input automaton (or the input formula for step I). That is
also why we cannot treat these transformations as black boxes and will recall them in detail.

Organization of Part II. This Part is organized as follows. In Chapter 7 we introduce
the linear-time µ-calculus and its semantics, and recall the proof systems µLK⊙ and µLK⊙ω.
In Chapter 8, we present the different models of automata (alternating, non-determinsitc,
deterministic) over words that we shall work with, equipped with various acceptance con-
ditions (parity, Büchi, etc). Then we discuss the links between these different kinds of
automata. We present in Chapter 9 the encoding [_] of APW automata into linear-time
µ-calculus formulas. Conversely, we give a way to build for every µ-calculus formula ϕ an
APW Aϕ that recognizes the set of its models. The main result of this chapter is that
[Aϕ] ⊢µLK⊙ ϕ. In Chapter 10, we recall the automata transformations that turn an APW A
into an NPW P , and P into an NBW B, all having the same language. The main results
of this chapter are [B] ⊢µLK⊙ [P ] and [P ] ⊢µLK⊙ [A]. In Chapter 11, we show that Büchi
inclusions can be reflected in the logic µLK⊙, that is, for every Büchi automata B1 and B2,
we can construct a µLK⊙ proof of [B1] ⊢µLK⊙ [B2]. Using this last result, we show in Chap-
ter 12 that for every NBW B recognizing the language Σω, there is a DBW D recognizing
also Σω, such that [D] ⊢µLK⊙ [B] and ⊢µLK⊙ [D]. We finally bring these pieces together to
get a constructive proof of completeness.





Chapter 7

The linear-time µ-calculus

Linear-time temporal logics were introduced to express trace properties of reactive programs.
This paradigm, first proposed by Pnueli in [Pnu77], is based on viewing an execution of a
reactive program as a sequence of states, then describing each individual state by some
means, specific to the temporal logic under consideration. For instance, in a propositional
logic such as the linear-time µ-calculus, each state is described by a set of propositional
atoms. This abstraction of an execution sequence into a sequence of sets of propositional
atoms yields a model. Models are structures on which linear temporal formulas can be
interpreted, thus, these formulas can be used to specify properties of the executions of a
program. We have seen in Chapter 1 an example of such a propositional linear-time logic:
the logic LTL (Definition 1.17). Although commonly used in practice, the logic LTL cannot
capture some useful properties such as at every even moment ϕ. The linear-time µ-calculus
was introduced by Barringer, Kuiper and Pnueli in [BKP84,BKP] to make up for this lack
of expressivity. Contrarily to LTL, the linear-time µ-calculus contains only but one modal
operator next, but the addition of fixed point operators ν and µ increases considerably its
expressive power, allowing in particular to encode all other temporal operators of LTL.

Another way to model the execution of a program is to use a tree of states. A branching
of such a tree represents the points where non-deterministic choices between various courses
of execution are made. If we represent a state by a set of propositional atoms as before,
we get structures which are the models of branching-time temporal logic formulas. While
linear-time formulas describe one execution at time, the branching-time formulas permit to
reason about all executions simultaneously. The branching-time µ-calculus, introduced by
Kozen in [Koz83] is the branching-time version of the aforementioned linear-time µ-calculus.
The study of this logic is beyond the scope of this thesis, but we will sometimes import
some tools and ideas used in the branching-time setting to the linear-time one (Section 9.1,
Section 10.1.1).

Since the introduction of the linear and the branching-time µ-calculus, the problem
of the existence of a complete deductive system has emerged. For the branching-time µ-
calculus, the best-known axiomatization is the one introduced by Kozen [Koz83], which
relies on Park’s rules (Section 2.4.1). It was shown to be complete by Walukiewicz [Wal95]
ten years later. For the linear-time µ-calculus, Kaivola specialized Kozen’s axiomatization
to the linear-time case and showed completeness in [Kai95]. We will be interested in this
last deductive system in the rest of the part, but we will write it in the formalism of sequent
calculus. We call the obtained proof system µLK⊙.

153
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More recently, Dax et al. introduced another deductive system for the linear-time µ-
calculus, based on circular proofs [DHL06]. We will use later a similar system that we call
µLK⊙ω. Contrarily to Dax et al., we will not use µLK⊙ω as an axiomatization, but rather
as an intermediate proof system for the proof of completeness w.r.t. µLK⊙.

This Chapter is devoted to the introduction of the linear-time µ-calculus and its proofs
systems.

Organization of the chapter. In Section 7.1 we introduce the linear-time µ-calculus
and its semantics. We recall in Section 7.2 the proof systems µLK⊙ and µLK⊙ω. Then we
compare µLK⊙ω to the proof system of Dax et al., emphasizing the difficulty of the proof
search in the former compared to the latter. Finally, we show a sufficient condition that
ensures the translatability of µLK⊙ω proofs into µLK⊙ ones.

7.1 Syntax and semantics

We have seen in Chapter 2, Section 2.2, how to extend the syntax of a logic L with least and
greatest fixed points, to get a logic µL. The linear-time µ-calculus is obtained by such an
extension, form the logic LK⊙ (Definition 1.18), that is, the propositional classical logic with
the modality next (⊙). We recall below the syntax of the linear-time µ-calculus formulas
for clarity:

Definition 7.1. Let V = {X,Y , . . . } be a set of variables and P = {p, q, . . . } a set of
atoms. The linear-time µ-calculus formulas ϕ,ψ, . . ., called here LK⊙ formulas, are given
by:

ϕ ::= p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ⊙ϕ | µX.ϕ | νX.ϕ

The connectives µ and ν bind the variable X in ϕ. From there, bound variables, free
variables and capture-avoiding substitution are defined in a standard way. The sub-formula
ordering is denoted ≤ and fv(•) denotes free variables. Atoms and their negations are called
literals. We shall use σ to denote either µ or ν.

Note that we do not allow negations on variables. This is not a restriction since we are
mostly interested in closed formulas. All the results presented here extend to the general
case, where negations are allowed under a positivity condition on bound variables.

We do not consider the Boolean constants ⊤,⊥ as they can be encoded by ⊤ := νX.⊙X
and ⊥ := µX.⊙X.

As for LK⊙, the models of our formulas are the ω-words over the alphabet Σ := 2P . We
extend the interpretation of LK⊙ formulas (Definition 1.19) to handle least and greatest
fixed points.

Definition 7.2. The semantics ‖ϕ‖uρ of a formula ϕ w.r.t. a word u ∈ Σω and a valuation
ρ : V 7→ 2ω is a subset of natural numbers inductively defined as follows:

‖p‖uρ = {i ∈ ω | p ∈ ui} ‖¬p‖uρ = {i ∈ ω | p /∈ ui}

‖X‖uρ = ρ(X) ‖ ⊙ ϕ‖uρ = {i ∈ ω | i+ 1 ∈ ‖ϕ‖uρ}

‖ϕ ∨ ψ‖uρ = ‖ϕ‖uρ ∪ ‖ψ‖
u
ρ ‖ϕ ∧ ψ‖uρ = ‖ϕ‖uρ ∩ ‖ψ‖

u
ρ
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‖νX.ϕ‖uρ =
⋃

{ W ⊆ ω | W ⊆ ‖ϕ‖uρ[X←W ] }

‖µX.ϕ‖uρ =
⋂

{ W ⊆ ω | ‖ϕ‖uρ[X←W ] ⊆ W }

Suppose that ϕ is a closed formula. We write ‖ϕ‖u instead of ‖ϕ‖uρ , since the semantics of
ϕ does not depend on ρ. We say that ϕ is true in u, and we write u |= ϕ, if 0 ∈ ‖ϕ‖u. The
set of models of ϕ is defined by M(ϕ) = {u ∈ Σω | u |= ϕ}. A formula is valid if it is
true in every model, ie. M(ϕ) = Σω.

Remark 7.1. The interpretation ‖µX.ϕ‖uρ of the least fixed point formula µX.ϕ can be
seen as the least fixed point of the operator Φ over the complete lattice (2ω,⊆) defined by:

Φ := W 7→ ‖ϕ‖uρ::[X→W ]

Indeed, one can prove by induction on the formula ϕ that Φ is monotonic, hence by Knaster-
Tarski theorem, one has that lfp(Φ) is the least pre-fixed point of Φ. Since the least element
of a subset S ⊆ 2ω in the lattice (2ω,⊆) is

⋂

S, one has:

‖µX.ϕ‖uρ = lfp(Φ)

Similarly, one can show that the interpretation of a ν-formula is the greatest fixed point of
Φ:

‖νX.ϕ‖uρ = gfp(Φ)

Remark 7.2. A way of understanding the meaning of the fixed point operators is viewing
the least fixed points as finite iterations, and the greatest fixed points as infinite loopings.
This intuition is made clear when we translate LTL operators into the µ-calculus. For
example, the operators F, G and U be encoded as follows:

Fϕ = µX.ϕ ∨ ⊙X
Gϕ = νX.ϕ ∧ ⊙X
ψUϕ = µX.ϕ ∨ (ψ ∧ ⊙X)

This understanding of fixed points as finite and infinite loopings is useful when we deal with
simple examples. When it comes to understand the meaning of a formula with multiple
interleavings of fixed points of different natures, the actual definition of the semantics is
not very helpful. We present in Section 9.1 an alternative definition of the semantics of a
formula, which is more operational and more enlightening.

7.2 Proof systems for the linear-time µ-calculus

Given a proof system S over a signature L, we have shown in Chapter 2, Section 2.4, two
ways to extend it, in order to get a proof system over the signature µL. We apply that to
the proof system LK⊙ (Definition 1.20 or Figure 7.1).

The first way to extend LK⊙ is to add Park’s rules for the µ and ν connectives (Fig-
ure 7.2), inspired by the Knaster-Tarski characterization, yielding a finitary proof system
denoted by µLK⊙ (see Section 2.4.1). This proof system is the sequent calculus version
of Kaivola’s axiomatization [Kai95]. The second way to extend LK⊙ with extremal fixed
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F ≡ G
(Ax)

F ⊢ G

F ≡ G
(Ax)

⊢ F⊥,G

F ≡ G
(Ax)

F⊥,G ⊢

Γ,F ⊢ ∆ Γ ⊢ F , ∆
(Cut)

Γ ⊢ ∆

Γ ⊢ ∆
(⊙)

Σ,⊙Γ ⊢ Θ,⊙∆

Γ ⊢ ∆
(Wl)

Γ,F ⊢ ∆

Γ ⊢ ∆
(Wr)

Γ ⊢ F , ∆

Γ ⊢ F , ∆ Γ ⊢ G, ∆
(∧r)

Γ ⊢ F ∧G, ∆

Γ,F ⊢ ∆ Γ,G ⊢ ∆
(∨l)

Γ,F ∨G ⊢ ∆

Γ ⊢ F ,G, ∆
(∨r)

Γ ⊢ F ∨G, ∆

Γ,F ,G ⊢ ∆
(∧l)

Γ,F ∧G ⊢ ∆

Figure 7.1: Inference rules for LK⊙.

F [S/X] ⊢ S S ⊢ Γ
(µl)

µX.F ⊢ Γ

Γ ⊢ F [µX.F/X], ∆
(µr)

Γ ⊢ µX.F , ∆

Γ,F [νX.F/X] ⊢ ∆
(νl)

Γ, νX.F ⊢ ∆

Γ ⊢ S S ⊢ F [S/X]
(νr)

Γ ⊢ νX.F

Figure 7.2: Fixed point rules for the µLK⊙ proof system.

Γ,F [σX.F/X] ⊢ ∆
(σl)

Γ, σX.F ⊢ ∆

Γ ⊢ F [σX.F/X], ∆
(σr)

Γ ⊢ σX.F , ∆

Figure 7.3: Fixed point rules for the µLK⊙∞ proof system.

points is to add unfolding rules for µ and ν (Figure 7.3) to LK⊙, and to allow infinitary
derivations (see Section 2.4.3). These infinitary derivations are called pre-proofs. To get a
sound proof system, we have equipped these pre-proofs with a validity condition, requiring
that in every branch, there is either a minimal ν-formula that gets unfolded infinitely often
in the right hand-side of the branch, or a minimal µ-formula that gets unfolded infinitely
often in the left-hand side of it. The obtained proof system is called µLK⊙∞. The regular
proofs of µLK⊙∞ can be represented as graphs, called circular proofs. The corresponding
proof system is called µLK⊙ω.

All the technical material for this part has been introduced in Chapters 1 and 2. Namely,
the notion of an occurrence (of a formula) (Definition 1.21), the Fischer-Ladner closure
(Definition 2.14), that od a thread (Definition 2.19), the existence of the minimum of a
thread in some situations (Proposition 2.5, Proposition 2.7), will not be recalled here. It
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π =

...

⊢ ϕ ∨ ψ
(µ),(ν),(ν)

⊢ ϕ,ψ
(∨)

⊢ ϕ ∨ ψ

θ =

...

⊢ (ϕ ∨ ψ)lii, (ϕ ∨ ψ)ri
(µ),(ν),(ν)

⊢ ϕl,ψr
(∨)

⊢ (ϕ ∨ ψ)ε

θ1 =

(⋆)

⊢ (ϕ ∨ ψ)lii
(µ),(ν)

⊢ ϕl
(W)

⊢ ϕl,ψr
(∨)

(⋆) ⊢ (ϕ ∨ ψ)ε

θ2 =

(⋆)

⊢ (ϕ ∨ ψ)ri
(ν)

⊢ ψr
(W)

⊢ ϕl,ψr
(∨)

(⋆) ⊢ (ϕ ∨ ψ)ε

Figure 7.4: µLKωDHL, µLK⊙
∞ and µLK⊙ω derivations of ϕ ∨ ψ

is strongly advised to begin with the reading of these two introductory chapters. We have
simply recalled the rules of µLK⊙ and µLK⊙ω for clarity.

Notation 7.1. We sometimes write sequents of the form ϕε ⊢ ψε simply as ϕ ⊢ ψ. This is
in line with the convention 1.2 announced in the beginning of the thesis.

Definition 7.3. In any proof system, we call open derivation any derivation that contains
a leaf sequent which is not justified by any rule. We call such a leaf a premise of the open
derivation.

Comparison of µLK⊙ω with Dax et al. proof system. The proof system µLK⊙ω is
very close to the one introduced by Dax et al. in [DHL06], that we call here µLKωDHL. In
µLKωDHL, the sequents are sets of formulas, the rules are the same as those of µLK⊙ω, the
proofs as infinite derivations build using these rules and equipped with the same validity
condition as µLK⊙ω. Althought infinite, µLKωDHL proofs are circular in the spirit, since a
µLKωDHL proof contains only finitely many sequents. The main difference between µLKωDHL

and µLK⊙ω is then the shape of sequents, and this is not a minor difference. Indeed, in
µLKωDHL the proof search is trivial, and this is not the case for µLK⊙ω. For instance, let
ϕ = µX.νY .X ∨ Y and ψ = νY .ϕ ∨ Y its unfolding. A µLKωDHL proof π of ϕ ∨ ψ (Fig. 7.4)
can be obtained by applying bottom up all the possible logical rules. If we apply the same
rules in µLK⊙ω, we get the µLK⊙∞ proof θ (Fig. 7.4), which is not regular since the size
of its sequents is unbounded. To get a regular proof, we have to apply some weakenings.
But the choice of which formula to weaken is crucial, since a bad choice may lead to a non
valid proof. For instance, if we weaken the formula ψr, the obtained derivation θ1 (Fig. 7.4)
is regular but does not satisfy the validity condition. The good choice of weakening is the
one that fires ϕl, yielding the proof θ2 (Fig. 7.4). Proving a valid sequent in µLK⊙ω is not
trivial, since we have to do some clever choices to get derivations which are regular and
valid.
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Restriction on the syntax of formulas. In the rest of this part, we will restrict our
attention to a specific class of formulas, the guarded formulas. This restriction simplifies
the proofs at some places (for instance in Definition 9.2), but it is not a restriction since
every formula is provably equivalent to a guarded formula.

Definition 7.4. A formula ϕ is said to be guarded if every bound variable of ϕ appears
under the scope of a ⊙ connective.

In [Koz83], it is shown that every formula if provably equivalent to a guarded formula
in µLK⊙ω, and this proof is constructive.

Proposition 7.1 (Kozen [Koz83]). For every closed formula ϕ there is a semantically equiv-
alent guarded formula ψ, that is M(ϕ) = M(ψ), such that we can construct effectively a
proof of the sequent ψ ⊢ ϕ in µLK⊙.

Proviso 7.1. Unless otherwise stated, all formulas are assumed to be closed, guarded, ⊤
and ⊥ free. By earlier observations and by Proposition 7.1, this is not a restriction.

Relating the infinitary and the finitary proof systems. As announced in the in-
troduction, we will use the circular proof system µLK⊙ω as an intermediary step to prove
sequents in µLK⊙. That is, to show a sequent s in µLK⊙, we will build first a proof of s in
µLK⊙ω, then we will transform this proof into a µLK⊙ proof. We have seen that the proof
search in µLK⊙ω is already not trivial, but the situation gets more complicated since we do
not have a general algorithm that translates all µLK⊙ω proofs into µLK⊙ ones. We only
have a sufficient condition on µLK⊙ω proofs, the translatability criterion (Definition 2.39),
which guarantees their translatability into µLK⊙ ones (Theorem 2.5). Thus, the proof
search should take this parameter into account, and output circular proofs that satisfy this
condition.

The translatability condition is much involved and sometimes we do not need it in all
its generality. A weaker condition, presented below, will be used instead in some cases.

Definition 7.5. A µLK⊙ω (resp. µLK⊙∞) derivation is meager if all the occurrences of
(σr) and (σl) are of the following form, i.e., there is no context around the unfolded formulas:

F [σX.F/X] ⊢ ∆
(σl)

σX.F ⊢ ∆

Γ ⊢ F [σX.F/X]
(σr)

Γ ⊢ σX.F

Proposition 7.2. If π is a meager proof of a sequent s, then it can be transformed effectively
into a µLK⊙ proof of s.

Proof. First, note that in a meager proof, every infinite branch contains at most one right
trace and one left trace. Each of these traces is strongly valid, since whenver the trace
meets a sequent, it meets it at the level of the same formula. Using Proposition 2.17, we
can translate it effectively into a µLK⊙ proof.



Chapter 8

Automata over infinite words

Both the branching and the linear-time µ-calculus enjoy close and deep relationships with
automata theory. Any formula can be compiled into an automaton which accepts exactly
the models of this formula, and conversely. This correspondence turned out to be a valuable
tool to investigate these logics. In fact, most of the deep results on the µ-calculus have been
(can be) obtained using automata theory. Among these results, the exact complexity of the
satisfiability problem [EJ91,Mad94], the strictness of the fixed point alternation hierarchy
in the branching-time case [Bra98], the fact that this hierarchy collapses at level 0 in the
linear-time case [Lan05], the correspondence with the monadic second order logic [Mad94],
all build on the correspondence with automata theory.

As announced previously, we are going to use in our turn the correspondence between
the µ-calculus and automata to get a constructive completeness result. This chapter is
dedicated to the introduction of the different models of automata which we shall use for
that purpose.

Organization of the chapter. We introduce in Section 8.1 the different models of au-
tomata, equipped with various acceptance conditions. Then we discuss in Section 8.2 the
relationships between these different kinds of automata.

8.1 Alternating and (non-)deterministic automata

Automata over infinite words, also called ω-automata, are finite sate machines that run over
infinite words, and depending on their models, accept or reject some of these words. For
that purpose, when an ω-automaton reads a word, it outputs at the same time a structure
usually called a run over this word. To assess whether this run is accepting or not, the
ω-automaton is also equipped with an acceptance condition . Thus, one can classify ω-
automata according to two dimensions. The first one is the shape of their runs: if an
automaton outputs runs which are trees, then it is called alternating ; when these runs are
words, it is called non-deterministic. The second dimension is the type of their acceptance
condition, which can be more or less permissive.

In this section, we first introduce alternating automata with various acceptance condi-
tions, and then we present non-deterministic automata as special cases of alternating ones.
It is more usual and perhaps more progressive to start by introducing non-deterministic
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automata which are conceptually easier, and then generalize them to alternating ones; we
did here the opposite choice since it shortens the presentation and makes the notations more
homogeneous and compact.

8.1.1 Alternating automata

Before going to the formal definitions, let us describe informally how an alternating automa-
ton works. The computation of an APW over an infinite word proceeds in rounds. At the
beginning of every round, there are several copies of the APW in some position of the word,
each of them in its own state. During a round, each copy splits up in several new copies,
which are sent to the successor of the current position, and change their states, all this is
done according to the transition function. Initially, there is only one copy of the APW, it
resides in the first position of the word, and starts in the initial state of the automaton.
Every computation induces a tree, labelled with the states through which the copies of
the automaton went during the computation; this tree is called a run and it witnesses the
causality between a copy of the automaton and the new copies it yields.

To determine acceptance or rejection of a computation of an APW over an infinite
word, the entire run is inspected; acceptance is then defined via path conditions for the
infinite branches of the run. Namely, an infinite branch of the run will be accepting if it
satisfies the acceptance condition; a run will be accepting if each of its infinite branches is
accepting. Thus, the branching of the run can be thought of as a universal non-determinism.
Alternating automata support also the other kind of non-determinism which is existential
non-determinism. For example, during a round, a copy of the automaton may have the
choice to split to different sets of copies. Hence an automaton may have many possible runs
over a single word.

Formally, an alternating automaton is defined as follows.

Definition 8.1. An alternating automaton A is given by a transition structure
(Σ,Q, ∆, qI), where:

• Σ is an alphabet,

• Q is a finite set of states,

• ∆ : Q× Σ× 2Q is the transition relation,

• qI ∈ Q is the initial state

Together with an acceptance condition Acc ⊆ Qω.

The transition structure is the part of the alternating automaton that reads the words
and outputs runs. The acceptance condition will help to determine which runs are accepting.

Remark 8.1. Notice that the transition structure is specified in a finite way, while the
acceptance condition is a possibly infinite set. We will present later some acceptance con-
ditions that can be specified in a finite way.
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Example 8.1. Let Σ0 = {a, b} and let A0 = (Σ0, {p, q}, ∆, p,Acc0) be the alternating
automaton such that:

∆ = {(p, a, {p, q}), (p, a, {q}), (p, b, {p}), (q, a, {q}), (q, a, {p})}

and Acc0 = ({p, q}⋆.q)ω. We will use the alphabet Σ0, the automaton A0 and its acceptance
condition Acc0 in the example of this section without recalling their definitions.

We give a graphical presentation of the transition structures of alternating automata by
representing every transition (q, a, {q1, . . . , qn}) as follows:

q

∧

q1 . . . qn

a

and by marking the initial state with an incoming edge without source.

Example 8.2. The transition structure of A0 is represented as follows:

p

∧ ∧ ∧

q

∧ ∧

b a
a

a a

Definition 8.2. Let A = (Σ,Q, ∆, qI ,Acc) be an alternating automaton and let u =
u0u1 . . . be an infinite Σ-word. A run of A over u is a Q-labelled tree τ = (T , l) satis-
fying the following conditions:

• l(r) = qI where r is the root of T .

• Let v be a node of T at level n and v1, . . . , vk be the sons of v. If we set q = l(v) and
∀i ≤ k, qi = l(vi), then (q, un, {q1, . . . , qk}) ∈ ∆.

Example 8.3. The trees τ0 and τ1 are two runs of the automaton A0 over the word u = aω.

u = a

a

a

a
...

τ0 = p

qp

qqp

qqqp
...

...
...

...

τ1 = p

q

q

q
...
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Sometimes we want to talk about runs without mentioning the words, this is the role of
the following definition:

Definition 8.3. A labelled tree τ is a run of an alternating automaton A if there is a word
u such that τ is the run of A over u.

Later in this thesis, we will need to consider the branches of runs, we define them below.

Definition 8.4. Let A be an alternating automaton with a set of states Q. A Q-word ρ is
a run-branch of A if there is a run τ of A such that ρ is a branch of τ .

Definition 8.5. Let A = (Σ,Q, ∆, qI ,Acc) be an alternating automaton, τ be a run of A
over a word u and let ρ = q0q1 . . . be a run-branch of τ . Let Inf(ρ) be the set of states that
occur infinitely often in ρ.

• The run-branch ρ is accepting if ρ ∈ Acc.

• A run is accepting if all its run-branches are.

• The word u is accepted by A if there is an accepting run over it.

• The language of the automaton A, denoted L(A), is the set of words accepted by
A.

• A language L is recognized by A if L = L(A).

Example 8.4. In Example 8.3, the run τ0 is not accepting since the path pω /∈ Acc0. On
the contrary the run τ1 is accepting. It is easy to check that L(A0) = (b⋆.a.a+)ω.

To remain within the scope of finite automata, acceptance conditions have to be specified
in a finite way. Various such finitary acceptance conditions exist and we give in the following
some of them, together with the way they are specified:

Definition 8.6. Let T = (Q, ∆, qI) be a transition structure.

• A Büchi condition over T is given by a set F ⊆ Q of accepting states . An infinite
Q-word ρ satisfies the Büchi condition if it contains infinitely many occurrences of
states from F . The Büchi acceptance condition is then Acc = {ρ ∈ Qω | Inf(ρ) ∩
F 6= ∅}, where Inf(ρ) is the set of states that appear infinitely often in ρ. A Büchi
automaton is given by (T ,F ) instead of (T ,Acc).

• A Rabin condition over T is given by a set P = {(E1,F1), . . . , (Ek,Fk)} of pairs of
sets of states. An infinite Q-word ρ satisfies the Rabin condition if there is an index i
such that ρ contains only finitely many states from Ei and infinitely many occurrences
of states from Fi. The Rabin acceptance condition is then:

Acc =
⋃

1≤i≤k

{ρ ∈ Qω | Inf(ρ) ∩ Ei = ∅ and Inf(ρ) ∩ Fi 6= ∅}.

A Rabin automaton is given by (T ,P).
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• A Streett condition over T is given by a set P = {(E1,F1), . . . , (Ek,Fk)} of pairs
of set states. An infinite Q-word ρ satisfies the Streett condition if for all index i, if ρ
contains infinitely many occurrences of states from Ei then it contains also infinitely
many occurrences of states from Fi. The Streett acceptance condition is then:

Acc =
⋂

1≤i≤k

{ρ ∈ Qω | Inf(ρ) ∩ Ei 6= ∅ ⇒ Inf(ρ) ∩ Fi 6= ∅}.

A Streett automaton is given by (T ,P).

• A parity condition over T is given by a priority function {c : Q→ ω} that assigns
to every state a natural number called its priority . An infinite Q-word ρ satisfies
the parity condition if the minimal priority that appears infinitely often is even. The
parity acceptance condition is then Acc = {ρ ∈ Qω | min(Inf(c(ρ))) is even}, where
c(ρ) is the sequence c(ρ0)c(ρ1) . . . . A parity automaton is given by (T , c).

Even though these acceptance conditions may look very different, they actually capture
the same set of languages. Indeed, a language is recognized by an alternating Büchi automa-
ton iff it is recognized by an alternating Rabin (resp. Streett, resp. Parity) automaton [?].
We will come back to the issue of comparing acceptance conditions in Section 8.2.

Example 8.5. The acceptance condition of the automaton A0 can be expressed either as
a:

• Büchi condition where F = {q}.

• Parity condition where c(p) = 1, c(q) = 0.

Remark 8.2. What happens in the previous example is a general fact: every Büchi au-
tomaton B = (T ,F ) can be seen as the parity automaton P = (T , c), where c(q) = 0 if
q ∈ F and c(q) = 1 otherwise. It is indeed easy to check that L(B) = L(P).

Remark 8.3. Notice that the validity condition on threads (Definition 2.19) has the flavour
of a parity condition: the formulas of the thread can be seen as states of an automaton,
the least (resp. greatest) fixed point formulas as the odd (resp. even) states and the sub-
formula ordering corresponds to the priority ordering. This analogy between formulas and
alternating parity automata will be explored later.

8.1.2 Non-deterministic automata

Non-deterministic automata are particular cases of alternating automata where the existen-
tial non-determinism is allowed but not the universal one. This is reflected by the fact that
when a state processes a word, it reads its first letter and sends the rest of the word to at
most one state, while in the alternating case, it was allowed to send it to many states. This
restriction affects also the shape of the runs which become words instead of trees. Formally,
non-deterministic automata are defined as follows:

Definition 8.7. An alternating automaton A = (Σ,Q, ∆, qI ,Acc) is said to be non-
deterministic if the elements of ∆ are of the form (p, a, {q}).
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Remark 8.4. If there is no ambiguity, we consider ∆ as a subset of Q × Σ × Q. Notice
that the runs of non-deterministic automata can be seen as infinite words over Q.

Example 8.6. LetN = (T ,Acc0) be the non-deterministic automaton where T = ({p, q}, ∆N , {p})
and ∆N = {(p, a, p), (p, b, p), (p, a, q), (q, a, q)}.

We simplify our graphical presentation of transition structures in the case of non-
deterministic automata, by representing every transition (p, a, q) by an edge labelled a
between the nodes p and q. The transition structure of N is then represented as follows:

p

q

a, b

a

a

We show in the following two runs of N over u = aω:

u = a a a a . . .

ρ0 = p p p p . . .

ρ1 = p q q q . . .

The run ρ0 is not valid while ρ1 is. It is easy to see that the language of N is {a, b}⋆.{a}ω.
Notice that we can specify N as the Büchi automaton (T , {q}).

In the case of Büchi automata, the graphical representation of the transition structure
becomes a graphical representation of the whole automaton by double-circling the accepting
states. For example, the Büchi automaton (T , {q}) is displayed as follows:

p

q

a, b

a

a

One can equip the transition structure T with other acceptance conditions, for example
with the parity condition c(p) = 2 and c(q) = 1, the resulting automaton has Σω

0 as a
language.

8.1.3 Deterministic automata

For a non-deterministic automaton, one may have many possible runs over a single word, as
shown in the previous example. A deterministic automaton is a non-deterministic automaton
for which there is only one possible run over a given word.

Definition 8.8. A non-deterministic automaton (Σ,Q, ∆, qI ,Acc) is said to be determin-
istic if and only if for every transitions (q, a, q1), (q, a, q2) ∈ ∆ we have that q1 = q2.
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Remark 8.5. It is easy to check that for a deterministic automaton, every word has at
most one run.

Example 8.7. Let Σ be an alphabet. The following Büchi automaton, denoted UΣ, is
deterministic:

p a ∈ Σ

Notation 8.1. We denote automata over infinite words by three letters:

• The first one (D, N or A) indicates if the automaton is deterministic, non-deterministic
or alternating,

• the second one (B, R, S or P ) specifies the acceptance condition: Büchi, Rabin,
Streett or Parity,

• the third one (W or T ) precises the nature of the input: word or tree. In this thesis
we only deal with automata over words.

For example, we denote the class of non-deterministic Büchi automata by NBW , that of
deterministic Rabin automata by DRW and that of alternating parity automata by APW .

8.2 Comparing ω-automata

Every class C of automata defines a class of languages LC which is the set of languages
that can be recognized by the automata of this class. We can compare the power of two
classes of automata by comparing their corresponding classes of languages. It turns out that
all the models of automata presented before (alternating, deterministic, non-deterministic)
with the various acceptance conditions (Büchi, Parity, Streett and Rabin) are equivalent,
that is, they define the same class of languages, except for DBW which is strictly less
powerful. Indeed, one can show that the language {a, b}⋆{a}ω which is recognized by the
non-deterministic Büchi automaton N of Example 8.6 is not recognized by any deterministic
Büchi automaton.

Proposition 8.1. The language {a, b}⋆{a}ω is not recognized by any deterministic Büchi
automaton.

Proof. ( [Var95]) Assume by contradiction that there is a DBW D = (Σ,Q, ∆, qI ,F ) recog-
nizing this language. If w is an infinite word, ρ a run of D over w and u a finite prefix of w
of length k, we denote by ρ(u) the kth element of ρ.

Consider the infinite word w0 = aω. Clearly, w0 is accepted by D , so D has an accepting
run ρ0 on w0 . Thus, w0 has a finite prefix u0 such that ρ0(u0) ∈ F . Consider now the
infinite word w1 = u0.b.a

ω. Clearly, w1 is also accepted by D , so D has an accepting
run ρ1 on w1. Thus, w1 has a finite prefix u0.b.u1 such that ρ1(u1) ∈ F . In a similar
way, we can continue to find a word wi, a run ρi and finite prefix ui of wi such that
ρi(u0.b.u1.b . . . .ui) ∈ F . Since Q is finite, there are i and j , where 0 ≤ i < j, such that
ρi(u0.b.u1 . . . .ui) = ρi(u0.b.u1 . . . .ui.b . . . uj). It follows that the word u0.b.u1 . . . .ui.(b . . . uj)ω
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has an accepting run over D. But this word contains infinitely many b’s, so it is not in our
initial language.

The set of languages recognized by these different (yet equivalent) classes of automata
are called ω-regular languages. These languages enjoy a bunch of nice stability proper-
ties: stability by union, intersection, complementation, etc. Moreover, they can be defined
independently from any notion of machine or automata [GTW02a].

The equivalences between these different classes of ω-automata are usually established
by showing automata transformations that convert an automaton of a given model into an
automaton in the other models, by preserving the language. We will be interested, in the
proof of completeness, in the following three equivalence results:

Theorem 8.1. For every APW we can construct a NPW recognizing the same language.

Theorem 8.2. For every NPW we can construct a NBW recognizing the same language.

Theorem 8.3. For every NBW we can construct a DRW recognizing the same language.

The first result is called non-determinization. It expresses the fact that when we deal
with infinite words, the universal branching is unnecessary, and we can restrict the shape of
runs to be simply words.

The second result can be considered as part of a wider problem: the Motskowski-Rabin
index problem, which for a given ω-regular language of infinite trees or words, asks about
the minimal number of priorities needed to recognise this language with a non-deterministic
parity automaton. This minimal index orders regular languages into a hierarchy called
Motskowski-Rabin hierarchy. For tree languages, whether this problem can be answered
effectively is a long-standing open problem, solved so far only for languages recognisable by
deterministic automata. For word languages, the answer is much more easier, and we can
reformulate Theorem 8.2 as: the Motskowski-Rabin hierarchy of non-deterministic automata
collapses at the level of Büchi automata, that is at index 2, since we have seen that Büchi
automata can be viewed as Parity automata with the two priorities 0 and 1 (Remark 8.2).

The third result is called a determinization result. Compared to the two previous the-
orems, it has a particular shape: when we determinize a Büchi automaton, we fall out the
class of Büchi automata, and we cannot do better because of the language of Proposition 8.1.
Note that this is particular to the Büchi condition, since the other acceptance condition can
be determinized internally: for every NRW (NPW) we can construct effectively a DRW
(DPW) recognizing the same language.

Automata have a certain similarity with formulas. The language of an automaton, which
is a set of words over an alphabet Σ can be compared with the semantics of a formula which
is a set of words over the alphabet 2P . If we consider automata over this last alphabet, we
can really compare automata and formulas. In the next chapter, we will do this by encoding
every automaton A by a formula [A] such that L(A) =M([A]).

With this encoding, Theorems 8.1 and 8.2 give us, for every APW (resp. NPW) A1, a
NPW (resp. NBW) A2 such that |= [A1]⇔ A2. To get the steps II and III of our proof of
completeness, we have to go further and prove that this equivalence can be established at the
provability level as well, that is ⊢µLK⊙ [A1]⇔ A2. This is what we shall do in Chapter 10.
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We can relate the particular shape of Theorem 8.3 compared to the two other theorems
to the particular shape of Step IV compared to Steps II-III.

As announced in the introduction, we will establish a different result (we called it Step
IV’), from which Step IV will follow easily: if B1,B2 are NBW such that L(B1) ⊆ L(B2),
then one can construct a µLK⊙ proof of [B1] ⊢ [B2].

One can wonder what this result has to do with Theorem 8.3, since there is no DRW
automaton in its statement. Actually, we will use the algorithm that generates the states of
the DRW of Theorem 8.3, called Safra’s construction, as a guide to perform a proof search.
This is will be made clear in Chapter 11.





Chapter 9

Alternating parity automata and the

µ-calculus

As said before, there is a fruitful relationship between the µ-calculus and automata theory, at
the core of which lies the equivalence between linear-time µ-calculus formulas and alternating
parity automata (APW). This equivalence is always shown at a semantical level: every APW
A can be encoded by a formula [A] such that M([A]) = L(A), and conversely for every
formula ϕ, there is an APW Aϕ such that M(ϕ) = L(Aϕ). We show in this section that
beyond this semantical equivalence, there is also an equivalence at the level of provability,
that is, ϕ and [Aϕ] are provably equivalent in µLK⊙. Lifting this semantical equivalence to
the provability level relies very precisely on the encoding and the shape of the automatonAϕ.
That is why we introduce our own encoding of automata in the µ-calculus, that respects the
shape of the input automaton; and our construction of Aϕ, which yields an automaton that
sticks the most to the structure of ϕ. This last construction relies heavily on operational
semantics , which is an alternative definition of formula semantics, introduced by Janin and
Walukiewicz in [JW95], which makes us look at formulas as automata-like devices, which is
precisely what we need.

Organization of the chapter. We recall in Section 9.1 the operational semantics for the
linear-time mu-calculus formulas. Then we define in Section 9.2 our encoding of APW in
the the µ-calculus, and conversely we construct in Section 9.3 for every µ-calculus formula
an APW. We finally show in Section 9.4 that the encoding of this automaton is provably
equivalent to the original formula in µLK⊙.

9.1 Operational semantics

Definition 7.2 of semantics is not very convenient to compute the models of a formula or to
compare the models of two formulas, namely because the interpretation of fixed points uses
arbitrary intersections and unions. We recall an alternative presentation of the semantics of
µ-calculus, introduced by Walukiewicz and Janin in [JW95] under the name of operational
semantics , which is equivalent to the original definition. Their definition being introduced
for the modal µ-calculus, we specialize it to the linear-time case.

169



170 CHAPTER 9. ALTERNATING PARITY AUTOMATA AND THE µ-CALCULUS

Definition 9.1. We call constraint any set of literals. The constraint of a letter a ∈ Σ,
denoted c(a), is the constraint a ∪ {p⊥ | p /∈ a}. A letter a satisfies a constraint c, and
we write a |= c, iff c ⊆ c(a).

Definition 9.2. Let F be an occurrence. The F -derivation is a µLK⊙∞ derivation of
conclusion F ⊢ obtained by applying all the possible logical rules (µ, ν,∨,∧), except for the
⊙ rule, to F and its sub-occurrences, until reaching sequents of the form C,⊙∆ ⊢, where
the set C obtained by forgetting the addresses of C, is a constraint. The set of successors
of F , denoted S(F ), is the set of premises of the F -derivation.

Remark 9.1. Notice that the F -derivation is finite, because F is guarded.

Remark 9.2. There are many possible F -derivations for a given occurrence F , differing
only by the order of application of the logical rules. They all share the same set of premises
and the same structure of threads. We choose any representative of this class of derivations
to be the F -derivation.

Example 9.1. Let F = νX.p ∧ ((⊙X)α ∨ G) ∧ (⊙X)β, where G = µY .q ∧ (⊙Y )γ. The
F -derivation is the following:

p, (⊙F )α, (⊙F )β ⊢

p, q, (⊙G)γ, (⊙F )β ⊢
(µ),(∧l)

p,G, (⊙F )β ⊢
(∨)

p, (⊙F )α ∨G, (⊙F )β ⊢
(ν),(∧),(∧)

F ⊢

We sometimes write an F -derivation as a rule named F :

p, (⊙F )α, (⊙F )β ⊢ p, q, (⊙G)γ, (⊙F )β ⊢
(F )

F ⊢

Recall that if F is an occurrence and β is an address, Fβ is the relocation of F in β
(Definition 1.26). Recall also that we made the choice not to write explicitly the addresses
of atoms.

Definition 9.3. Let ∆ := {Fi}1≤i≤n be a set of occurrences. The ∆-derivation is a µLK⊙∞

open derivation of conclusion ∆ ⊢ obtained by applying successively, and for all 1 ≤ i ≤ n,
the Fi-derivations until reaching sequents of the form C,⊙∆ ⊢ where C is a constraint. The
set of successors of ∆, denoted S(∆), is the set of premises of the ∆-derivation.

Remark 9.3. Here again, there are many possible ∆-derivations but they differ only by
the order in which Fi-derivations are applied. They all share the same structure of threads
and the same set of premises.

Example 9.2. Let F be the occurrence introduced in Example 9.1 and H = νX.r∧ (⊙X)δ.
The {F ,H}-derivation is the following:

p, r, (⊙F )α, (⊙F )β, (⊙H)δ ⊢
(H)

p, (⊙F )α, (⊙F )β,H ⊢

p, q, r, (⊙G)γ, (⊙F )β, (⊙H)δ ⊢
(H)

p, q, (⊙G)γ, (⊙F )β,H ⊢
(F )

F ,H ⊢
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We sometimes write a ∆-derivation as a rule named ∆:

p, r, (⊙F )α, (⊙F )β, (⊙H)δ ⊢ p, q, r, (⊙G)γ, (⊙F )β, (⊙H)δ ⊢
({F ,H})

F ,H ⊢

Definition 9.4. We define Π(∆) to be the µLK⊙∞ pre-proof of conclusion ∆ ⊢, obtained
by applying coinductively the following scheme:

Π(∆) =

Π(∆1)
(⊙)

C1,⊙∆1 ⊢ . . .

Π(∆n)
(⊙)

Cn,⊙∆n ⊢
(∆)

∆ ⊢

Example 9.3. Let ϕ = µX.νY .⊙((p∧Y )∨X), ψ = νY .⊙((p∧Y )∨ϕ) and δ = (p∧ψ)∨ϕ.
The derivation Π(δ) is:

(†)

δlrii ⊢
(⊙)

p, (⊙δ)lri ⊢

(†)

δriii ⊢
(⊙)

(⊙δ)rii ⊢
(δε)

(†) δε ⊢

Remark 9.4. Notice that Π(F ) is not a µLK⊙∞ proof in general, because it does not always
satisfy the validity condition. This is not a problem, since the goal is to use it only as a
support to compute the set of models of F .

Definition 9.5. Let β be a branch of Π(F ) and ((Ci,⊙∆i))i∈ω be the sequence of the
conclusions of the ⊙ rules in β. A word u = (ai)i∈ω is said to be induced by β iff ∀i,
ai |= Ci. The branch β is said to be accepting if it contains no µ-thread. The language
of F , denoted L(F ), is the set of words induced by the accepting branches of Π(F ).

Example 9.4. If P = {p} then Σ = {a, b} where a = ∅ and b = {p}. The language of δ
from Example 9.3 is {a, b}⋆.bω.

Remark 9.5. The use of automata-theoretic vocabulary is due to the fact that we can
see an occurrence F as a sort of APW. Indeed, when we put F in the left-hand side of
the sequent, the left disjunction rules become branching, and we can see each branch as a
non-deterministic choice of a run, while the conjunction rule is non branching and we can
see the application of the conjunction rule as constructing an alternating run. Hence, every
infinite branch of Π(F ) can be seen as a run of an alternating automaton. Moreover, the
acceptance condition of a branch of Π(F ) recalls the parity condition for APW. We will
make this remark more precise in the next sections.

Proposition 9.1 (Janin and Walukiewicz [JW95]). For every formula F , L(F ) =M(F ).

9.2 From APW automata to formulas

The linear-time µ-calculus contains all the ingredients to encode APW : disjunction and
conjunction to simulate existential and universal non-determinism; least and greatest fixed
points to encode odd and even states.
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To get a match between the language of an automaton and the models of the formula
encoding it, we will consider automata over the alphabet Σ = 2P where P is the set of
atoms, whose elements will simply be denoted by a, b, etc.

9.2.1 The encoding

We first show our encoding of the letters of Σ in the µ-calculus.

Definition 9.6. Let a ∈ Σ. The encoding of a, denoted [a], is the following formula:

[a] := (∧p∈ap) ∧ (∧q 6∈aq
⊥)

We eventually simply write a for [a] if there is no ambiguity.

Remark 9.6. The encoding of a letter a corresponds to the conjunction of the elements of
c(a), the constraint of a (Definition 9.1).

Definition 9.7. Let A = (Σ,Q, ∆, qI , c) be an APW. A run-section is a sequence Γ =
((qi, ti))0≤i≤n of pairs in Q × ∆ s.t. q0 = qI and ∀i ≤ n, ∃ai,Ei st. ti = (qi, ai,Ei) and
∀i < n, qi+1 ∈ Ei. We say that Γ enables a state q if q ∈ En.

Definition 9.8. Let A = (Q, qI , ∆, c) be an APW . We assume a collection of variables
(Xq)q∈Q. We define the formula [q]Γ encoding the state q ∈ Q under the run-section Γ,
as follows:

[q]Γ = Xq if











(1) Γ = Γ′, (q, t), (q1, t1), . . . , (qn, tn) and

(2) qi 6= q, c(qi) ≥ c(q) for all 1 ≤ i ≤ n,

[q]Γ = σXq.
∨

a∈Σ,t=(q,a,E)∈∆

[a] ∧
∧

p∈E

⊙ [p]Γ,(q,t) otherwise

with σ = ν iff c(q) is even.

We finally set [A] = [qI ]
∅.

The encoding starts from the initial state and traverses the automaton, encoding every
state q by a fixed point µXq, if q is a state with an odd priority and νXq otherwise. The
environment Γ remembers the states that have been visited from the initial state to the
current state. If the current state q has been seen before (and if the states seen since the
last time q was visited have bigger priorities) then we encode it by its corresponding variable
Xq, which ensures that the encoding algorithm will halt at some point.

Example 9.5. Let A = (T , c) be the APW automaton where T is the transition structure
shown in Figure 9.1 and c is the priority function defined by c(p) = 1 and c(q) = 2. The
encoding of A is the formula:

[A] = µXp.([a] ∧ ⊙Xp) ∨ ([a] ∧ ⊙(νXq.[b] ∧ ⊙Xq ∧ ⊙Xp) ∧ ⊙Xp)

whose tree is presented next to the transition structure T to stress the similarities between
the automaton and its encoding. We omitted the edge labels in the tree of the formula for
clarity. To simplify the presentation, we merged the chain of nodes of the following shape
into one n-ary node labelled [a] ∧ ⊙ as follows:
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p

∧ ∧

q

∧

a a

b

µXp

∨

[a] ∧ ⊙

Xp

[a] ∧ ⊙

XpνXq

[b] ∧ ⊙

Xq Xp

Figure 9.1: The automaton A and its encoding.
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We adopt this simplification for the rest of this section.

Remark 9.7. Our encoding works also for NPW automata since they are special cases
of APW automata. We have seen in Section 8 (Remark 8.2) that every Büchi automaton
B = (T ,F ) can be transformed into as Parity automaton PB = (T , c) where c is the priority
function that assigns 0 to final states and 1 to non-final ones. We set that the encoding of
a Büchi automaton B is the encoding of PB.

Remark 9.8. In automata, there is a possibility of sharing, in the sense that two different
states can have the same successor. In formulas there is no such possibility since formulas
have the shape of trees with back edges. What the encoding morally does, is to duplicate
some states of the automaton in order to get a transition structure having the shape of a
tree with back-edges. This transformation yields a bisimilar automaton, thus it preserves
the language. For example, consider the Büchi automaton B1 below. Its encoding is the
formula:

[B1] = µXp.([a] ∧ ⊙νXr.[a] ∧ ⊙µXq.[a] ∧ ⊙Xq) ∨ ([b] ∧ ⊙µXq.[a] ∧ ⊙Xq)

which is exactly the encoding of the automaton B2, obtained by duplicating the state q in
B1.
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B1: p

q

r
a

a

a

b

p

q q′

r
a

a

b

a a

B2:

A key ingredient in this encoding is the side condition of the first case of the definition.
The aim of this condition is to bridge the gap between the acceptance condition on runs of
the automaton and the validity condition on threads. The latter is almost a parity condition,
but with a parity ordering corresponding to the subformula ordering. To obtain a match
between the two orderings, we need to control the creation of cycles.

Let us discuss now why a naive encoding of APW cannot work, and why do we need such
a complicated side condition in our encoding. A naive encoding traverses the automaton and
encodes states with odd priorities with least fixed point formulas, states with even priorities
with greatest fixed point formulas exactly as our encoding does, but when it encounters a
state that has been visited before, it encodes it by its corresponding variable. Formally, one
can define the naive encoding of APW as follows:

Definition 9.9. Let A = (Q, qI , ∆, c) be an alternating parity automaton. We assume a
collection of variables (Xq)q∈Q. We define the formula ⌊q⌋Γ, the naive encoding of the
state q ∈ Q under the environment Γ consisting of a list of states, as follows:

⌊q⌋Γ = Xq if q ∈ Γ,

⌊q⌋Γ = σXq.
∨

a∈Σ,(q,a,E)∈∆

[a] ∧
∧

p∈E

⊙ ⌊p⌋Γ,q

otherwise, with σ = ν iff c(q) is even.

When unspecified, Γ is taken to be empty. We finally set ⌊A⌋ = ⌊qI⌋.

Consider the following Büchi automaton A1. Its naive encoding is the formula ⌊A1⌋ =
µXp.(a ∧ ⊙(νXq.a ∧ ⊙Xp)), whose graph is drawn next to the graph of A1.

A1: p

q

a a

µXp

[a] ∧ ⊙

νXq

[a] ∧ ⊙

⌊A1⌋:

The problem is that the language of A1 is {aω} while the set of models of ⌊A1⌋ is ∅. This
is problematic since our goal is to have an encoding [.] that preserves the language of the
automaton, that is L(A) = M([A]). We will show in Proposition 9.5 that our encoding
satisfies this property, but for the moment let us try to understand why there is a gap
between the language of the automaton A1 and the models of its naive encoding. To
compute the models of the formula ⌊A1⌋, we will use the operational semantics. We show
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below the derivation Π(⌊A1⌋), where ϕp = ⌊p⌋ and ϕq = νXq.[a] ∧ ⊙⌊p⌋. We omitted the
formulas addresses in this derivation for clarity.

(†)

ϕp ⊢
(⊙)

c(a),⊙ϕp ⊢
(ϕq)

ϕq ⊢
(⊙)

c(a),⊙ϕq ⊢
(ϕp)

(†) ϕp ⊢

The unique branch of Π(⌊A1⌋) induces the word aω, but this branch is not accepting because
the unique thread t of this branch is a µ-thread. Indeed, the thread t correspond to the graph
traversal of ⌊A1⌋ that visits infinitely often the nodes µXp and νXq, hence by Proposition 2.7
the minimum of t is the formula whose node is the nearest to the root, which is ϕp. On the
other hand, in the unique run of A1 over aω which is (pq)ω, the state with the minimal color
is q whose node is not the closest to the root.

Let us see now our encoding of A1. The graph of the formula [A1] is shown below.
Morally, what our encoding does is to encode A1 exactly as the automaton A2, which is an
unfolding of A1. One has:

[A1] = [A2] = ⌊A2⌋ = µXp. a ∧ ⊙(νXq. a ∧ ⊙(µXp′ . a ∧ ⊙Xq))

A2: p

q

p′

a a

a

[A1]: µXp

[a] ∧ ⊙

νXq

[a] ∧ ⊙

µXp′

[a] ∧ ⊙

Actually, what our encoding does is to first rewrite the graph of the automaton as a tree
with back edges (Remark 9.8), then thanks to the side conditions 1) and 2), it unfolds this
graph in such way that for every loop q0q1 . . . qnq0 where q0 is the nearest node to the root
in this loop, the states qi have bigger priorities than q0. This ensures that in an infinite
run, the state that occurs infinitely often and has the minimal priority is the nearest one to
the root among those appearing infinitely often in the run. This transformation yields an
automaton which is bisimilar to the original one, hence it preserves the language. We denote
this transformation τ(.). Even though we did not define formally this transformation, one
can be convinced easily that our encoding of the original automaton can be seen as the
naive encoding for the transformed automaton, that is [A] = ⌊τ(A)⌋.
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9.2.2 Fischer-Ladner subformulas of the encoding

The µLK⊙ω proofs involving a formula of the form [A], that we will deal with later, will not
decompose [A] into its subformulas but will rather decompose it into its FL-suboccurrences.
To simplify the manipulation of these FL-suboccurrences, we introduce in this section some
handy notation, then we relate the threads of [A], which are sequences of FL-suboccurrences
of [A], to the runs of the automaton A.

Definition 9.10. Let Γ = ((qi, ti))0≤i≤n be a run-section of the APW A, and q a state
enabled by Γ. Let p be the path in the graph of [A] that visits successively the nodes
labelled σXqi , according to the transitions ti, and ends with the node labelled σXq. The
address of (Γ, q), denoted αΓ,q, is the label of p.

Example 9.6. Let A be the APW of Example 9.5. The graph of the encoding of A is the
following:

νXp

∨

[a] ∧ ⊙ [a] ∧ ⊙

µXq

[a] ∧ ⊙

i

l r

ri

lri

ri

i
lri

ri

The run-section Γ = (p, t2), (q, t3) enables the state q, its path is the dashed one. The
address αΓ,q is irlriilri.

Definition 9.11. Let Γ be a run-section of A, and q a state enabled by Γ. We denote by
JqKΓ the FL-suboccurrence of [A] at the address αΓ,q, i.e., the occurrence ϕαΓ,q

such that:
[A]ε →

⋆ ϕαΓ,q
.

Example 9.7. Let Γ be the run-section of Example 9.6. We have JqKΓ = (µXq.[b]∧⊙Xq ∧
⊙[A])αΓ,q

.

Remark 9.9. We have chosen the notation JqKΓ because of the proximity between these
FL-suboccurrences and the formulas [q]Γ. Indeed, one can show that JqKΓ is obtained by
substituting iteratively the free variables of [q]Γ by their bindings in [A].

Remark 9.10. The formulas JqKΓ are fixed point formulas. Conversely, all the fixed point
FL-subformulas of [A] are of the form JqKΓ where Γ, q is a run-section.

The following proposition will be very useful for further proofs. It shows that contrarily
to [q]Γ, no case analysis on Γ and q is required to figure out the shape of JqKΓ.

Proposition 9.2. Let A be an APW and JqKΓ a FL-suboccurrence of [A]. The top-level
connective of JqKΓ is σXq. and we have:

JqKΓ →
∨

t=(q,a,E)∈∆

[a] ∧
∧

p∈E

⊙ JpKΓ,(q,t)
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Using Proposition 9.2, we can derive the following rule, which mimics automata transi-
tions in the proof system µLK⊙∞.

Proposition 9.3. Let A be an APW of transition relation ∆, q be state of A and Γ a
run-section. For every set of occurrences Θ, the following rule is derivable using a meager
derivation:

{[a],⊙{JpKΓ,(q,t)}p∈E ⊢ Θ}t=(q,a,E)∈∆

JqKΓ ⊢ Θ

Proof. Since JqKΓ →
∨

t=(q,a,E)∈∆

[a] ∧
∧

p∈E

⊙ JpKΓ,(q,t) , one can derive the following:







[a], {⊙JpKΓ,(q,t)}p∈E ⊢ Θ
(∧l)

[a] ∧
∧

p∈E

⊙ JpKΓ,(q,t) ⊢ Θ







t=(q,a,E)∈∆
(∨l)

∨

t=(q,a,E)∈∆

[a] ∧
∧

p∈E

⊙ JpKΓ,(q,t) ⊢ Θ

(σl)
JqKΓ ⊢ Θ

Notice that this is a meager derivation.

Now we relate the threads of the formula encoding an automaton A to the run branches
of A. For that, we define the run-branch corresponding to a thread starting from [A] as
follows:

Definition 9.12. Let A be an APW and t be a thread starting from [A]. Let (JqiK
Γi)i∈ω

be the sequence of the fixed-point occurrences appearing in t. The run-branch of t is
ρ(t) := (qi)i∈ω.

It is easy to see that the run-branch of a thread is indeed a branch in a run of A.

Proposition 9.4. Let A be an APW, c be its priority function. A thread t of [A] is a
ν-thread iff ρ(t) is accepting.

To prove that result, we first show the following lemma:

Lemma 9.1. Let A be an APW automaton and let {JqiK
Γi}i∈I be a collection of FL-

suboccurrences of [A]. For every i ∈ I, let ni be the node of the occurrence JqiK
Γi in the

graph G([A]) of [A].
Suppose that there is an elementary cycle C of G([A]) whose fixed-point nodes are the

nodes {ni}i∈I . Let k ∈ I be the index such that nk is the nearest node of C to the root of
G([A]). We have that for every i ∈ I, c(q0) ≤ c(qi).

Proof. Notice first that for every i ∈ I, the node ni has a label of the form σiXqi . Notice
also that all the nodes of the cycle C are also nodes of the tree τ([A]) of the [A], but in
τ([A]), instead of the back-edge, we have a node n labelled Xqk .

There exist two environments Γ and ∆, such that:

• The subformula of [A] corresponding to the node nk is of the form [qk]
Γ.
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• The subformula of [A] corresponding to the node n is of the form [qk]
Γ,∆.

Due to the side condition of the first case of the encoding, ∆ is of the form (p1, t1), . . . , (pl, tl)
where p1 = qk, {pj}j∈[1,l] = {qi}i∈I and for every j ∈ [1, l] we have c(qk) ≤ c(pj), which
concludes the proof.

Lemma 9.1 generalizes easily to the case where C is an arbitrary cycle. We now prove
Proposition 9.4.

Proof of Proposition 9.4. Let (JqiK
Γi)i∈ω be the sequence of the fixed-point occurrences ap-

pearing in t, and let ρ = ρ(t) be the run-branch of t. There is a set of indices I such that
Inf(t) = {JqiKΓi}i∈I . Note that Inf(ρ) = {qi}i∈I . Let ni be the node of JqiK

Γi in G([A]). There
is a cycle C of G([A]) such that:

• The cycle C contains all the nodes {ni}i∈I .

• There is an index k such that the nearest node of C to the root of G([A]) is nk.

By Proposition 2.7, one has: min(Inf(t)) = JqkKΓk . By Lemma 9.1, one has that for every
i ∈ I we have c(qk) ≤ c(qi). Thus, one has: min(c(Inf(ρ))) = c(qk). Since c(qk) is even if and
only if JqkKΓk is a ν-formula, we conclude that t is a ν-thread if and only if ρ is accepting.

Now, we show that the language of an automaton and the models of its encoding are
equal.

Proposition 9.5. For any APW A, M([A]) = L(A).

Proof. We show that the automaton A and the formula [A] have the same language that is
L(A) = L([A]). We show first that L([A]) ⊆ L(A).

Let u ∈ L([A]) and let β be an accepting branch of Π([A]) that induces u. Let (si)i∈ω be
the sequence of conclusions of ⊙ rules in β. Every si is of the form Ci,⊙{JqkK

Γk}k∈Ii where
Ci = C(ui). This branch induces easily a run ρ of A over u, where at every level i of ρ, the
set of nodes labels is {qk}k∈Ii . Every branch of ρ is a run-branch of a thread t of β. Since
β is accepting, every thread t of β is a ν-thread, thus by Proposition 9.4 every branch of ρ
is accepting, hence ρ is accepting.

We show the other direction L(A) ⊆ L([A]) by using a similar argument: to every
accepting run of A over a word u, one can find an accepting branch of Π([A]) that induces
the word u.

By Proposition 9.1, L([A]) =M([A]), which concludes the proof.

9.3 From formulas to APW automata

In this section, we exploit the intuitions and tools developed in Section 9.1 to extract from
every µ-calculus formula ϕ an APW Aϕ.

Let us give an outline of the construction of the APW Aϕ corresponding to a formula ϕ.
Definition 9.5 suggests that we can see the FL-subformulas of ϕ as the states of an APW,
whose transitions are given by the F -derivations. Indeed, if we consider an F -derivation, as
the one shown below:

C1,⊙∆1 ⊢ . . . Cn,⊙∆n ⊢
(F )

F ⊢
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we can think of the branching of this F -derivation as a form of non-determinism, meaning
that every premise yields a possible transition of the automaton when it is in the state F ; and
we can think of the commas in each premise as conjunction or universal non-determinism,
meaning that if the automaton is in the state F and reads a letter a which satisfies some
constraint Ci, then the automaton goes to the states corresponding to the formulas of ∆i.
For example, the derivation Π(δ) of Example 9.3 suggests that the set of states of Aδ is {δ}
and its transition relation is {(δ, a, δ), (δ, b, δ)}, where we recall that a = ∅ and b = {p}.

To assign priorities to the states of the automaton of a formula in a way that preserves
its semantics, one has to look at the formulas hidden in the F -derivations. For instance, if
we consider again the derivation Π(δ) of Example 9.3, what makes the leftmost branch of
Π(δ) accepting is the formula ψ hidden in the δ-derivation. Even if we want to consider δ
as the state of Aϕ, we want the priority of δ to be that of ψ, at least in the leftmost run.
One solution would be, for every F -derivation as above, to set the priority of a formula G
appearing in some ∆i to be the priority of the minimum of the thread linking G to F . The
problem is that we may have two different occurrences of G in the F -derivation, linked to
F with two threads having different minimal formulas. For instance, in Example 9.3, the
minimum of the thread linking δε to δriii is ϕ, while the minimum of the thread linking
δε to δlii is ψ. Thus, in Aδ, one should have two copies of the state δ, one with priority
corresponding to ϕ and the other with priority corresponding to ψ.

More generally, the states of the alternating automaton corresponding to a formula will
be pairs of formulas, written as δψ, where δ is morally the state and ψ is a formula containing
the priority information.

To make this construction work, we have to ensure that in an F -derivation, every thread
linking F to a formula occurrence appearing in a premise of this F -derivation admits a
minimal formula. This is what the following proposition shows.

Proposition 9.6. Let s be a successor of F and G ∈ s. The thread of the F -derivation,
linking F to G, has a minimal formula ψ.

We write F
s,ψ
→ G as a shortcut for: “The minimum of the thread linking F to G in the

F -derivation is ψ”.

Proof. It suffices to notice that the thread t linking F to G is a straight thread. By Propo-
sition 2.5 it admits a minimal formula.

The following proposition is straightforward. It shows that the minimum of the thread
linking F to an occurrence G appearing in one of its successors does not change if we relocate
F .

Proposition 9.7. Let ϕα be an occurrence and s ∈ S(ϕα). We have:

• The sequent s is of the form s = {(ϕi)α.αi
}0≤i≤n.

• For every address β, s′ := {(ϕi)β.αi
}0≤i≤n ∈ S(ϕβ),

• and ∀i ≤ n if ϕα
s,ψ
→ (ϕi)α.αi

then ϕβ
s,ψ
→ (ϕi)β.αi

.

We define in the following, for every formula ϕ, a function pϕ that assigns to every
FL-subformula of ϕ an integer, in a way that respects the subformula ordering and that is
compatible with the nature of fixed-point formulas.
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Definition 9.13. Let ϕ be a formula and let pϕ : FL(ϕ)→ ω be a function such that:

• For all ψ ∈ FL(ϕ), ψ is a ν-formula if and only if pϕ(ψ) is even.

• If ψ ≤ δ then pϕ(ψ) ≤ pϕ(δ).

The function pϕ is not unique but we can fix one arbitrarily.

The function pϕ will be used to assign priorities to the states of the APW corresponding
to the formula ϕ.

Definition 9.14. The APW associated to ϕ, denoted Aϕ, is the tuple (Σ,Q, qI , ∆ϕ, c)
where the set of states is Q = {δγ | δ, γ ∈ FL(ϕ)}, the initial state is qI = ϕϕ, the priority
function is defined by c(δγ) = pϕ(γ) and the transition relation ∆ϕ is defined as follows:
(ψδ, a,E) ∈ ∆ϕ iff there is s = (C,⊙∆) ∈ S(ψε) such that a |= C and:

γσ ∈ E ↔ ∃(⊙γβ) ∈ s such that ψε
s,σ
→ ⊙γβ

Remark 9.11. The choice of qI as ϕϕ is arbitrary, one could choose any state of the form
ϕδ.

Example 9.8. We consider the formula δ of Example 9.3 and we construct its corresponding
automaton Aδ. We recall that a = ∅ and b = {p}. The Fischer-Ladner closure of δ
is FL(δ) = {δ,ϕ,ψ,⊙δ, p ∧ ψ}. We fix pδ to be pδ(ϕ) = 1, pδ(ψ) = 2 and pδ(γ) = 3
for every other formula γ of FL(δ). The accessible states of Aδ are {δδ, δϕ, δψ} and its
initial state is δδ. The coloring function c of Aδ is c(δϕ) = 1, c(δψ) = 2 and c(δδ) = 3.
Now we construct the transition structure of Aδ. The δε derivation has two premises:

s1 = p, (⊙δ)lri and s2 = (⊙δ)rii. We have δε
s1,ψ
→ (⊙δ)lri. Since only the letter b satisfies

the constraint {p} of s1, the transition relation of Aδ contains the following transitions:
{(δγ, b, δψ) | γ ∈ FL(δ)}. We have also that δε

s2,ϕ
→ (⊙δ)rii. Since both a and b satisfy the

(empty) constraint of s2, the transition relation of Aδ contains also the following transitions:
{(δγ, a, δϕ), (δγ, b, δϕ) | γ ∈ FL(δ)}.

Proposition 9.8. We have L(Aϕ) =M(ϕ).

Proof. We show that the automaton Aϕ and the formula ϕ have the same language ie.
L(Aϕ) = L(ϕ). We first show that L(ϕ) ⊆ L(Aϕ). Let u ∈ L(ϕ) and let β be an accepting
branch of Π(ϕ) that induces u. Let (si)i∈ω be the sequence of conclusions of ⊙ rules in β.
For every i ∈ ω, si is of the form Ci,⊙∆i where Ci is a constraint. We construct in the
following a run ρ of Aϕ over u, level by level, starting from the root. In this construction,
we keep the following invariant: for every i ∈ ω, if ∆i = {(δj)αj

}1≤j≤n, then there exists a

set of formulas {ψj}1≤j≤n such that the set of nodes labels at level i in ρ is {δψj

j }1≤j≤n.
Level 1: We label the root of ρ by ϕϕ. The sequent ∆1 is of the form {(δj)αj

}1≤j≤n.

For every j ≤ n, there exists ψj such that ϕε
s1,ψj
→ (⊙δj)αj

, we add then to the root a son

labelled δψj

j . Our invariant is satisfied for level 1.
Level i → Level i+1: If ∆i = ((δk)αk

)1≤k≤n then si+1 is of the form si+1 = ∪
1≤k≤n

vk,

where vk ∈ S((δk)αk
), for every k ≤ n. Let w be a node of level i, labelled δψk

k . For every
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occurrence (⊙γ)α in vk, there exists a formula ψ such that (δk)αk

vk,ψ→ (⊙γ)α, we add to w a
son labelled γψ. Here again, our invariant is satisfied for level i+ 1.

The run ρ is valid. Indeed, let b = (δψi

i )i∈ω be a branch of ρ. We will show that b is
valid using the validity of the branch β of Π(ϕ). By construction one has that δψ0

0 = ϕϕ and
there exists a sequence of addresses (αi)i∈ω such that for every i ∈ ω we have (δi)αi

∈ ∆i.
Moreover, the thread linking (δi)αi

to (δi+1)αi+1
in Π(ϕ), that we denote ti, satisfies the

following property: min(ti) = ψi+1. Let t = t0t1 . . . be the thread of Π(ϕ) obtained by
the concatenation of the threads {ti}i∈ω. Let k, l ∈ ω such that the sub-thread tk . . . tl of
t contains all the elements of Inf(t). One has also that the sub-sequence δψk

k , . . . , δ
ψl+1

l+1 of b
contains all the elements of Inf(b). One has:

min(Inf(t)) = min(tk . . . tl)
= min(min(ti))k≤i≤l
= min(ψi)k≤i≤l

Since the branch β is accepting, min(ψi)k≤i≤l is a ν-formula. Moreover, if c is the priority
function of Aϕ and pϕ the auxiliary function used to define it (Definition 9.13), then we
have:

min(c(Inf(b))) = min(c(δψk

k ), . . . , c(δ
ψl+1

l+1 ))
= min(pϕ(ψk), . . . , pϕ(ψl+1))
†
= pϕ(min(ψi)k≤i≤l)

(†) Since the function pϕ is monotonic.
Since min(ψi)k≤i≤l is a ν-formula, one has that pϕ(min(ψi)k≤i≤l) is even, hence the branch

b is valid. We conclude that ρ is valid and u ∈ L(Aϕ).
We show the other direction L(Aϕ) ⊆ L(ϕ) using a similar argument: to every valid run

of Aϕ over a word u, we can find an accepting branch of Π(ϕ) that induces u.
By Proposition 9.1, L(ϕ) =M(ϕ), which concludes the proof.

9.4 A formula and the encoding of its automaton are

equivalent in µLK⊙

We show that there is a proof of [Aϕ] ⊢ ϕ in µLK⊙. The idea is to construct a meager
proof of this sequent in µLK⊙ω, and using Proposition 7.2, to transform it into a proof in
µLK⊙. Since ϕϕ is the initial state of Aϕ, we have that [Aϕ]ε = JϕϕK∅, hence our goal is to
show that the sequent JϕϕK∅ ⊢ ϕε has a meager µLK⊙ω proof. To get this result, we need
to generalize our statement and to look for proofs of sequents having the form JψδKΘ ⊢ ψα,
where ψδ is a state of Aϕ, Θ a run-section and α an address. Using Proposition 9.3, we
decompose the left-hand side of such sequents and get the following derivation:

{[a], {⊙JγσKΘ,(ψδ ,t)}γσ∈E ⊢ ψα}t=(ψδ ,a,E)∈∆ϕ

JψδKΘ ⊢ ψα

Each premise of this derivation corresponds to a transition in ∆ϕ, and by construction of ∆ϕ,
every such transition corresponds to a successor s ∈ S(ψε). To get a proof of such premise
which is meager, we have to apply weakenings at some points, so that when unfolding the
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fixed points, their context will be empty. The choice of these weakenings will be guided by
this successor s in a sense that we will clarify in the following. But first, let us look closely
into the notion of the successor of a formula.

If s is the successor of ψε, then for every F ∈ s, the address of F induces a path in the
tree of ψ. When we collect all the paths induced by the formula occurrences of s, we get a
sub-tree τ(s) of τ(ψ), as illustrated by the following example.

Example 9.9. Let ψ = µX.((⊙X ∧ p) ∨ ⊙δ) ∧ (q ∨ ⊙δ) where δ = νY . ⊙ Y . Let s =
p, (⊙ψ)α, (⊙δ)β be the successor of ψε where α = illl and β = irr. The paths of τ(ψ)
induced by the formula occurrences of s form a tree τ(s) indicated by the dashed lines
below:

τ(ψ) = µX

∧

∨ ∨

⊙

∧

p

⊙

X

τ(δ)

q ⊙

τ(δ)

i

l r

l r

l r
i

rl

i

i

Any node n of τ(s) satisfies the following properties:

• If n is labelled ⊙, the son of n does not belong to τ(s).

• If n is labelled ∧, the two sons of n belong also to τ(s).

• If n is labelled ∨, exactly one son of n belongs to τ(s).

A successor s ∈ S(F ) induces a function that chooses, for every suboccurrence of F
which is a disjunction, one of its disjuncts; we call this function Cs.

Definition 9.15. Let s = {(δi)αi
}1≤i≤n be the successor of an occurrence F = ϕα. For all

αi, there is pi st. αi = α.pi.
The choice of s is a partial function on occurrences defined as follows. For all i, and

for every address a ⊑ pi such that the node of τ(ϕ) at the address a is labelled ∨, we set:

Cs((ϕ ∨ ψ)a) = ϕa.l if a.l ⊑ pi,

= ψa.r otherwise.

Example 9.10. In Example 9.9, we have: Cs((⊙ψ ∧ p) ∨⊙δ)il) = (⊙X ∧ p)ill and Cs((q ∨
⊙δ)ir) = (⊙δ)irr.

Using this function, we define the derivation Πs(Γ ⊢ F ). In this derivation of conclusion
Γ ⊢ F , we apply only right rules, and whenever we meet a right formula which is a disjunc-
tion, we apply (∨r) rule followed immediately by a weakening, that keeps only the formula
chosen by Cs. Doing so, we obtain a derivation which is meager, since we keep the invariant
that we have exactly one right formula along the derivation.
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Definition 9.16. Let F be an occurrence, s ∈ S(F ) and Γ be a set of occurrences. The
derivation Πs(Γ ⊢ F ) is the finite µLK⊙∞ derivation of conclusion Γ ⊢ F obtained by
applying only the following rules:

Γ ⊢ F Γ ⊢ G
(∧r)

Γ ⊢ F ∧G

Γ ⊢ F [σX.F/X]
(σr)

Γ ⊢ σX.F

Γ ⊢ Cs(F ∨G)
(Wr)

Γ ⊢ F ,G
(∨r)

Γ ⊢ F ∨G

Example 9.11. We show in the following the derivation Πs(⊢ ψε), where s and ψ are
defined in Example 9.9.

⊢ (⊙ψ)illl ⊢ p
(∧r)

⊢ (⊙ψ ∧ p)ill
(∨r),(Wr)

⊢ ((⊙ψ ∧ p) ∨ ⊙δ))il

⊢ (⊙δ)irr
(∨r),(Wr)

⊢ (q ∨ ⊙δ)ir
(∧r)

⊢ ((⊙ψ ∧ p) ∨ ⊙δ) ∧ (q ∨ ⊙δ))i
(µr)

⊢ ψε

The following proposition is straightforward.

Proposition 9.9. Let F be an occurrence, s ∈ S(F ) and Γ be a set of occurrences.

• Πs(Γ ⊢ F ) is a meager derivation.

• The premises of Πs(Γ ⊢ F ) are {Γ ⊢ G | G ∈ s}.

• If Γ ⊢ G is a premise of Πs(Γ ⊢ F ) and if F
s,ψ
→ G then the minimum of the thread

linking F to G in Πs(Γ ⊢ F ) is ψ.

Proposition 9.10. Let ϕ be a formula and ψδ be a state of Aϕ. The following rule is
derivable in µLK⊙ω using a meager derivation:

{JγσKΘ,(ψδ ,t) ⊢ γα.β}s∈S(ψε),γβ∈s,ψε
s,σ
→⊙(γ)β

(◦)
JψδKΘ ⊢ ψα

And the minimum of the thread linking ψα to γα.β is σ.

Proof. We already noticed that the following rule is derivable:

{[a], {⊙JγσKΘ,(ψδ ,t)}γσ∈E ⊢ ψα}t=(ψδ ,a,E)∈∆ϕ

JψδKΘ ⊢ ψα

By definition of ∆ϕ, we have that (ψδ, a,E) ∈ ∆ϕ iff there is s = (C,⊙∆) ∈ S(ψε) s.t.
a |= C and if the following holds:

γσ ∈ E ↔ ∃(⊙γβ) ∈ s such that ψε
s,σ
→ ⊙γβ

To justify a premise corresponding to a transition t = (ψδ, a,E), we set Γ = [a], {⊙JγσKΘ,(ψδ ,t)}γσ∈E
and apply the derivation Πs(Γ ⊢ ψα):

{Γ ⊢ pη}pη∈C {Γ ⊢ ⊙(γ)α.β}⊙(γ)β∈s
(Πs(Γ ⊢ ψα))

Γ ⊢ ψα
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To justify a premise Γ ⊢ pη, we notice that since a |= C, we have C ⊆ a, thus [a] is of the
form [a] = p ∧G. We then apply the following derivation:

(∧l), (Ax)
[a] ⊢ F

(Wl)
Γ ⊢ F

Now we want to justify a premise Γ ⊢ ⊙(γ)α.β. If ψε
s,σ
→ γβ, then γσ ∈ E, we can thus apply

the following:
JγσKΘ,(ψδ ,t) ⊢ γα.β

(⊙)

⊙JγσKΘ,(ψδ ,t) ⊢ ⊙(γ)α.β
(Wl)

Γ ⊢ ⊙(γ)α.β
The obtained derivation is meager and by Proposition 9.9, the minimum of the thread
linking ψα to γα.β is σ.

The premises of the derived rule (◦) have the same shape as its conclusion. If we iterate
this derivation starting from [Aϕ] ⊢ ϕ (which is JϕϕK∅ ⊢ ϕε) we obtain a meager µLK⊙∞

pre-proof. We show in the following that this pre-proof is actually a proof. Moroever, this
derivation is trivially regular, thus it can be represented by a circular µLK⊙ω pre-proof.
Using Proposition 7.2, we can transform it into a µLK⊙ proof of [Aϕ] ⊢ ϕ.

Theorem 9.1. We can construct a µLK⊙ proof of [Aϕ] ⊢ ϕ.

Proof. Let c be the priority function of Aϕ and pϕ (Definition 9.13) the function used to
define c. Recall that [Aϕ]ε = JϕϕK∅. Let π be the µLK⊙∞ pre-proof obtained by applying
coinductively the derivation (◦) of Proposition 9.10. It is not difficult to see that π is a
meager. We show now that π is µLK⊙∞ proof, i.e., that is satisfies the validity condition.

Let γ be an infinite branch of π and (Jψδii KΘi ⊢ (ψi)αi
)i∈ω be the sequence made of the

conclusions of the derivation ◦. In γ, there is exactly one right thread tr and one left thread
tl. The thread tl is a thread of [A]. Let ρ(tl) be the run-branch of tl (Definition 9.12). Let
v = (δi)i∈ω, we have that ψδ ∈ Inf(ρ(tl))⇔ δ ∈ Inf(v). Hence we have that:

(⋆)
min({c(ψδ) | ψδ ∈ Inf(ρ(tl))})

= min({pϕ(δ) | ψ
δ ∈ Inf(ρ(tl))})

= min({pϕ(δ) | δ ∈ Inf(v)})

On the other hand, since the minimum of the thread linking ψi to ψi+1 in γ is δi, we have:

(†)
min({ψ | ψ ∈ Inf(tr)})

= min({δ | δ ∈ Inf(v)})

There are two possible cases: either tl is a µ-thread, thus γ is valid; or tl is a ν-thread then
by Proposition 9.4 the run-branch ρ(tl) is accepting, then, by (⋆), min({pϕ(δ) | δ ∈ Inf(v)})
is even. By definition of pϕ, min({δ | δ ∈ Inf(v)}) is a ν-formula, thus by (†), tr is a ν-thread,
which means that γ is valid.

It is not difficult to see that π is regular, thus it can be represented by a circular µLK⊙ω

proof θ. Using Proposition 7.2, we can transform θ into a µLK⊙ proof of [Aϕ] ⊢ ϕ.

Theorem 9.1 is the step I of our proof of completeness. Actually, we can show also that
ϕ ⊢µLK⊙ [Aϕ] in the same way.



Chapter 10

Alternation elimination and parity

simplification

We have seen in Chapter 8 that APW, NPW and NBW are three equivalent models of
automata. This result is usually shown by exhibiting automata transformations that convert
an automaton of a given model into an automaton in the other models, by preserving the
language. In this chapter, we recall the automata transformations that turn an APW into
a NPW, and a NPW into a NBW, then we show that the transformations provide, via the
encoding, provably equivalent formulas. Doing so wo prove Steps II and III of our proof of
completeness.

10.1 From APW to NPW

We recall the construction that transforms an APW A into an NPW P such that L(P) =
L(A). In a second step, we show that the sequent [P ] ⊢ [A] in provable µLK⊙.

10.1.1 Non-determinization

We recall in this section the operation of non-determinization, that transforms an APW into
a NPW with the same language. In [Tho97] this construction is presented for automata over
trees, we specialize it here for automata over words. We fix an APW A = (Σ,Q, ∆, qI , c).

The key ingredient to non-determinize APW is to simplify their runs. Runs of APW
may be non-uniform in the sense that two nodes at the same level and labelled with the
same state, may have different sets of successors. Let us consider the following example.

Example 10.1. Let A = ({a},Q, ∆, p, c) be the APW where Q = {p, q}, ∆ = {t1, t2, t3}
where t1 = (p, a, {p}), t2 = (p, a, {p, q}), t3 = (q, a, {p, q}) and c(p) = 1, c(q) = 2. ρ1 and ρ2
are the beginning of two runs of A over aω.

185
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ρ1 = p

pq

ppq

qppq
...

...
...

...

ρ2 = p

pq

ppq

ppqpq
...

...
...

...
...

For instance, in the run ρ2 of Example 10.1, the two nodes at level 2 and labelled p have
as sets of successors {p} and {p, q} respectively. On the contrary, we call uniform a run such
that: all nodes at the same level and with the same labels have the same set of successors.
For example, the beginning of the run ρ1 is uniform. Uniform runs are sufficient to compute
the languages of APW [Tho97]: u ∈ L(A) iff there is a valid uniform run of A over u.

In a uniform run, every level can be described by a function that maps a state to the set of
its successors: uniform runs can be described by sequences of such functions. For instance,
the run ρ1 of Example 10.1 can be seen as a sequence f0f1f2 . . . where f0(p) = {p, q},
f1(p) = {p, q}, f1(q) = q, f2(p) = {p, q}, f2(q) = q, etc. We call these functions choice
functions . The interest of using uniform runs instead of arbitrary runs is that we went
from runs having a tree structure to runs with a structure of words (sequences of choice
functions), that we will be able to synchronize with Σ-words.

Definition 10.1. A choice function is a function σ : Q→ 2Q. The set of choice functions
is denoted S. Notice that S is finite. The auxiliary alphabet of A is Σaux = {(a, σ) ∈
Σ× S | (p, a, σ(p)) ∈ ∆}.

Two sequences can be extracted from a word U over Σaux: the first is a word u over Σ
obtained by projection on the first components of U , and the second is a sequence of choice
functions obtained by projection on the second components of U . This latter sequence
describes a uniform run of A over u.

Definition 10.2. Let U = ((ai, σi))i∈ω ∈ (Σaux)ω. The run associated to U is a labelled
tree such that: the root is labelled qI ; and for every node v at level n, if q is the label of v
then each son of v is labelled with one of the sates of σn(q). Notice that τ is a uniform run
of U over the word (ai)i∈ω.

Definition 10.3. The language L ⊆ (Σaux)ω is the auxiliary language of A iff ∀U ∈ L,
the run associated to U is accepting (w.r.t. the acceptance condition of A). We denoted it
by Laux(A).

The idea of the non-determinization is to exhibit a deterministic parity automaton
(DPW) recognizing the auxiliary language of A. Intuitively, this is possible since all the
information of alternation is explicit in the Σaux-words, hence we do not need an alternat-
ing automaton to recognize it. Once this is done, we erase the choice functions from the
transition structure of this automaton, to get an NPW recognizing the language of A.

Proposition 10.1. For every APW we can construct effectively a NPW recognizing the
same language.
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Proof. Let A = (Σ,Q, ∆, qI , c) be an APW. We construct a NPW recognizing the language
of A in two steps.

I. Construct a DPW D = (Σaux,Qd, qdI , ∆
d, cd) such that L(D) = Laux(A). Even though

the details of the construction of the automaton D are not needed for the proof of
completeness, we recall them below:

a) Construct an APW recognizing Laux(A).

Let A1 = (Γ,Q, ∆1, qI , c) be the APW where:

∆1 = {(p, (a, σ),E) | (p, a,E) ∈ ∆ and σ(p) = E}

The language of A1 is Laux(A). Notice that for every Σaux-word, there is only
one possible run over A1.

b) Construct a NPW recognizing the complement of Laux(A).

Let A2 = (Γ,Q, ∆2, qI , c2) be the APW where c2(q) = c(q) + 1 and:

∆2 = {(p,A, q) | ∃E, (p,A,E ∪ {q}) ∈ ∆1}.

The language of A2 is the complement of Laux(A). Indeed, R is a run of A2 over
U iff R is a path in the unique run of A1 over U . Since we shifted the priorities
in A2, R is a valid run of A2 over U iff R seen as a path in the run of A1 over U
is not valid. Thus, U ∈ L(A2) iff U /∈ L(A1).

c) Construct a DPW recognizing the complement of Laux(A).

Determinize A2 to get a DPW A3 = (Γ,Q3, ∆3, pI , c3), using a determinization
technique (Safra’s construction for example).

d) Construct a DPW recognizing Laux(A).

Let A4 = (Γ,Q3, ∆3, pI , c4) where c4(q) = c3(q) + 1. One has L(A4) = L
aux(A).

II. Let P = (Σ,Qd, qdI , ∆
′, cd) where ∆′ = {(d, a, d′) | ∃σ, (d, (a, σ), d′) ∈ ∆d}. One has

L(P) = L(A).

10.1.2 Non-determinization in the logic

Let A be an APW automaton and P be the NPW obtained in the proof of Proposition 10.1.
In this section we show that [P ] ⊢ [A] has a proof in µLK⊙. For that purpose, we build
a meager µLK⊙ω proof of this sequent, which gives us a µLK⊙ proof by Proposition 7.2.
We use in this section the notations of the proof of Proposition 10.1. Since qI and qdI are
the initial states of A and P respectively, we have that [A]ε = JqIK

∅ and [P ]ε = JqdI K
∅. Our

goal is then to show that JqdI K
∅ ⊢ JqIK

∅ is provable with a meager µLK⊙ω proof. To do so,
we need to generalize this statement, and to look for proofs of sequents having the form
JdKΘ ⊢ JqKΥ, where d and Θ (resp. q and Υ) are a state and a run-section for P (resp. A).
This is what we do in the following lemma:
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Lemma 10.1. The following rule is derivable in µLK⊙∞ using a finite meager derivation:

{Jd′KΘ,(d,t) ⊢ Jq′KΥ,(q,T )}(d,(a,σ),d′)∈∆d,q′∈σ(q)
(→)

JdKΘ ⊢ JqKΥ

Where t = (d, a, d′) and T = (q, a, σ(q)).

Proof. We have t = (d, a, d′) ∈ ∆′ iff ∃(a, σ) ∈ Σaux such that (d, (a, σ), d′) ∈ ∆d. Using
Proposition 9.3, we can derive the following, where t = (d, a, d′):

{[a],⊙Jd′KΘ,(d,t) ⊢ JqKΥ}(q,(a,σ),d′)∈∆d

JdKΘ ⊢ JqKΥ

Now we have to justify every premise of this derivation corresponding to a transition
(q, (a, σ), d′) ∈ ∆d. By Proposition 9.2:

JqKΥ →
∨

a∈Σ,(q,a,E)∈∆

[a] ∧
∧

q′∈E

⊙ Jq′KΥ,q

Since (a, σ) ∈ Σaux, then T := (q, a, σ(q)) ∈ ∆. If we set Γ := [a],⊙Jd′KΘ,(d,t), we can the
derive the following:

{

Jd′KΘ,(d,t) ⊢ Jq′KΥ,(q,T )

(⊙)
Γ ⊢ ⊙Jq′KΥ,(q,T )

}

q′∈σ(q)

(Ax)
Γ ⊢ [a]

(∧r)
Γ ⊢ [a] ∧

∧

q′∈σ(q)

⊙ Jq′KΥ,(q,T )

(σr), (∨r),(Wr)
Γ ⊢ JqKΥ

The premises of the derivation (→) have the same shape as its conclusion. If we iterate
coinductively (→) starting from [P ] ⊢ [A], which is JqdI K

∅ ⊢ JqIK
∅, we get a meager µLK⊙ω

pre-proof. We show that this pre-proof is actually a µLK⊙ω proof.

Proposition 10.2. Let π be the µLK⊙∞ pre-proof of conclusion [P ] ⊢ [A] obtained by
applying coinductively the rule (→). We have that π is a meager and regular µLK⊙∞ proof.

Proof. It is easy to see that π is regular. Let us show that it is valid. Let β be a branch
of π and (JdiK

Θi ⊢ JqiK
Υi)i∈ω be the sequence made of the conclusions of the derivation (→)

in β. The branch β has only one infinite right thread tr and one infinite left thread tl. The
run-branch of tl (Definition 9.12) is ρl = (di)i∈ω and the run-branch of tr is ρr = (qi)i∈ω.
For all i ∈ ω, ∃(ai, σi) ∈ Σaux such that (di, (ai, σi), di+1) ∈ ∆d, we set U = ((ai, σi))i∈ω and
u = (ai)i∈ω. The sequence ρl is a run of P over u; and it is also the run of the DPW D
(proof of Proposition 10.1) over U , since P and D have the same set of states. Let R be the
run of A associated to the Σaux word U . The sequence ρr is a branch of R. There are two
possible cases:
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• If U /∈ Laux(A). Then the run ρl of D is not accepting. Hence ρl seen as a run of P is
also not accepting, since P and D have the same priority function. By Proposition 9.4,
tl is a µ-thread, hence β is valid.

• If U ∈ Laux(A). Then the run R associated to U is accepting. In particular, its branch
ρr is accepting. By Proposition 9.4, tr is a ν-thread, hence β is valid.

Using Proposition 7.2, we get the following theorem, which is step II of our completeness
proof. [A] ⊢µLK⊙ [P ] can be shown in the same way.

Theorem 10.1. One can construct a µLK⊙ proof of [P ] ⊢ [A].

10.2 From NPW to NBW

We recall the construction that transforms an NPW P into an NBW B such that L(B) =
L(P). In a second step, we show that the sequent [B] ⊢ [P ] is provable in µLK⊙.

10.2.1 Parity simplification

Proposition 10.3. For very NPW we can construct effectively a NBW recognizing the same
language.

Proof. Let P = (Σ,Q, ∆, qI , c) be a NPW and let Qev be the set of its even states. The
idea is to create for every even state p, a copy of the automaton P where the state p
will be accepting and where all the states with smaller priority will be dropped. We keep
also a copy of P where no state is accepting. A run will stay in this copy for some time
and will choose one of the copies where an even state is accepting. Formally, let B =
(Σ,Q⊥ ∪

⋃

p∈Qev

Qp, (qI ,⊥),∆⊥ ∪ ∆t ∪
⋃

p∈Qev

∆p,F ) be the NBW such that ∀i ∈ {⊥} ∪ Qev,

Qi = {(q, i) | q ∈ Q}. The relations ∆⊥, ∆t and ∆p where p ∈ Qev are defined by:

∆⊥ = {((q,⊥), a, (r,⊥)) | (q, a, r) ∈ ∆}

∆t = {((q,⊥), a, (r, r)) | (q, a, r) ∈ ∆ and r ∈ Qev}

∆p = {((q, p), a, (r, p)) | (q, a, r) ∈ ∆ and c(q), c(r) ≥ c(p)}

The set of accepting states is F = {(p, p) | p ∈ Qev}
The states Q⊥ and the relation ∆⊥ correspond to the copy of P without any accepting

state, and for every p ∈ Qev, the states Qp and the relation ∆p correspond to the copy where
p is accepting. The relation ∆t serves as a transition between the non-accepting copy and
the other copies. It is easy to show that L(P) = L(B).

10.2.2 Parity simplification in the logic

Let P be an NPW and B be the NBW obtained in the proof of Proposition 10.3. We show
that [B] ⊢ [P ] has a proof in µLK⊙. For that purpose, we build a meager µLK⊙ω proof
of this sequent, which gives us a µLK⊙ proof by Proposition 7.2. We use the notations
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introduced in the proof of Proposition 10.3. Since qI and (qI ,⊥) are the initial states of
P and B respectively, we have that [P ] = JqIK

∅ and [B] = J(qI ,⊥)K
∅. Our goal is then to

show that J(qI ,⊥)K
∅ ⊢ JqIK

∅ has a meager µLK⊙ω proof. To do so, we need to generalize
this statement, and to look for proofs of sequents having the form J(q, r)ΘK ⊢ JqKΥ where
q ∈ Q, r ∈ Qev ∪ {⊥} and Θ, Υ are environments of B and P respectively. We show in the
following lemma.

Lemma 10.2. The following rule is derivable in µLK⊙∞ using a finite meager derivation,
where t = (q, a, q′):

{J(q′, r′)KΘ,((q,r),T ) ⊢ Jq′KΥ,(q,t)}T=((q,r),a,(q′,r′))∈∆B

(→֒)
J(q, r)KΘ ⊢ JqKΥ

Proof. We start by decomposing the left-hand side of the sequent using Proposition 9.3:

{[a],⊙J(q′, r′)KΘ,((q,r),T ) ⊢ JqKΥ}T=((q,r),a,(q′,r′))∈∆B

J(q, r)KΘ ⊢ JqKΥ

Now we have to justify every premise of this derivation. Let T = ((q, r), a, (q′, r′)) ∈ ∆B.
By construction of ∆B, we have that t = (q, a, q′) ∈ ∆. We have also that:

JqKΥ →
∨

t=(q,a,q′)∈∆

[a] ∧ ⊙Jq′KΥ,(q,t)

We set Γ = [a],⊙J(q′, r′)KΘ,((q,r),T ).

(Ax)
Γ ⊢ [a]

J(q′, r′)KΘ,((q,r),T ) ⊢ Jq′KΥ,(q,t)

(⊙)
Γ ⊢ ⊙Jq′KΥ,(q,t)

(∧r)
Γ ⊢ [a] ∧ ⊙Jq′KΥ,(q,t)

(σr), (∨r), (Wr)
Γ ⊢ JqKΥ

The premises of the derivation →֒ have the same shape as its conclusion. If we iterate
coinductively →֒ starting from [B] ⊢ [P ], which is J(qI ,⊥)K

∅ ⊢ JqIK
∅, we get a meager µLK⊙∞

pre-proof. We show that this pre-proof is a µLK⊙∞ proof.

Proposition 10.4. Let θ be the µLK⊙∞ pre-proof obtained by applying coinductively →֒.
One has that θ is a meager and regular µLK⊙∞ proof.

Proof. It is easy to see that θ is regular. Let us show that it is valid. Let β be a branch
of θ and (J(qi, ri)K

Θi ⊢ JqiK
Υi)i∈ω be the sequence of conclusions of the derivation →֒ in

β. We have that ∀i ∈ ω, ∃ai such that (qi, ai, qi+1) ∈ ∆. Let u = (ai)i∈ω. The sequence
ρB = ((qi, ri))i∈ω is a run of B over u and ρP = (qi)i∈ω is a run of P over u. There are two
possible cases:

• The run ρB is not accepting. Then by Proposition 9.4 the left thread of β is a µ-thread,
hence β is a valid branch.
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• The run ρB is accepting. This means that there is r ∈ Qev and j ∈ ω such that ∀i ≥ j
we have ri = r and c(qi) ≥ c(r) and qi = r infinitely many times. Hence the run ρP is
also accepting. By Proposition 9.4, the right thread of β is a ν-thread, hence β is a
valid branch.

Using Proposition 7.2, we get the following theorem, which is step III of our completeness
proof. The other implication can be show in the same way.

Theorem 10.2. One can construct a µLK⊙ proof of [B] ⊢ [P ].





Chapter 11

Büchi inclusions in µLK⊙

In this chapter, we show that we can reflect language inclusions of Büchi automata in the
logic. More precisely, given two NBW B1 and B2 such that L(B1) ⊆ L(B2), we show that
we can construct effectively a µLK⊙ proof of [B1] ⊢ [B2]. As we did in Chapter 10, we will
go through the circular proof system µLK⊙ω, but in a different way. Indeed, during our
investigations, we were able to construct a µLK⊙ω proof of [B1] ⊢ [B2], unfortunately the
proof we obtained does not satisfy the translatability criterion. We had to think about a
new approach. Our idea was then to construct a µLK⊙ proof of [B1] ⊢ [B2] by induction
on a measure that we call the level of non-determinism of B2. During this induction, we
step out of the class of Büchi automata, and the base case of the induction consists on
constructing a µLK⊙ proof of [A1] ⊢ [A2], for every NPW A1 and A2 such that the level of
non-determinism of A2 is zero, and such that L(A1) ⊆ L(A2). To construct such a proof,
we search for a µLK⊙ω proof of [A1] ⊢ [A2] satisfying the translatability criterion. In fact,
we will show a more general result: for every NPW A1 and A2 such that L(A1) ⊆ L(A2),
we can construct a µLK⊙ω proof of [A1] ⊢ [A2]. In the particular case where the level of
non determinism of A2 is zero, we show that the obtained proof satisfies the translatability
criterion, which gives us the base case of the induction.

For presentational purposes, we will not work directly with automata but rather with
two classes of formulas, slightly more general then the encoding of automata: the class of
disjunctive formulas, roughly corresponding to the encoding of NPW, and the class of Büchi
formulas corresponding to the encoding of NBW. We show then the following results:

1. If ϕ is a Büchi formula and ψ a disjunctive one such that L(ϕ) ⊆ L(ψ) then we can
construct a µLK⊙ω proof of ϕ ⊢ ψ.

2. If in addition, the level of non-determinism of ψ is zero, then the obtained proof
satisfies the translatability criterion.

3. We finally show that for every Büchi formulas ϕ and ψ such that L(ϕ) ⊆ L(ψ), we
can construct effectively a µLK⊙ proof of ϕ ⊢ ψ.

To show Point 1, we use Safra’s construction, a construction commonly used to determinize
parity automata (but also Rabin, Streett and Büchi automata), as a proof search algorithm
in µLK⊙ω, in a way that we make clear in Section 11.2. To obtain Point 3, we genralize it
as follows: for every disjunctive formulas ϕ and ψ such that the level of non-determinism of
ψ is n, we can construct a µLK⊙ proof of ϕ ⊢ ψ. We show this result by induction on the
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level of non-determinism of ψ. Finally, let us note that the level of non-determinism is not
well defined for every disjunctive formula. Thus, the last result does not easily genralize to
every disjunctive formula ψ.

Organization of the chapter. We define in Section 11.1, the class of disjunctive and
Büchi formulas. In Section 11.2, we show that the circular proof system µLK⊙ω is complete
for inclusions of disjunctive formulas, using Safra’s determinization construction. We show
in Section 11.3 that the circular proof constructed in Section 11.2 satisfies the translatability
criterion when the formulas are “deterministic enough”. This yields completeness of µLK⊙
for inclusions of sufficiently deterministic disjunctive formulas. We finally establish com-
pleteness for inclusions of NBW, by gradually diminishing their level of non-determinism.

11.1 Power-set construction in the logic

We now transpose automata-theoretic notions to an appropriate class of formulas that con-
tains the image of our encoding. This will be useful since most of our work is done directly
on formulas, and it allows us to state simpler and slightly more general results.

Definition 11.1. Disjunctive formulas are defined as follows:

ϕ ::= X | σX. ∨i∈I (ai ∧ ⊙ϕi) with X ∈ X , ai ∈ Σ.

The set of disjunctive formulas is denoted by F∨. A Büchi formula is any ϕ ∈ F∨ such
that, for all µX.ψ ≤ ϕ, there is no νY .ξ ≤ ψ with X ∈ fv(νY .ξ).

We call disjunctive occurrences the occurrences of disjunctive formulas, and Büchi
occurrences the occurrences of Büchi formulas.

Remark 11.1. Notice that the set of closed disjunctive (resp. Büchi) formulas is the image
of NPW (resp. NBW) by our encoding.

Definition 11.2. Let F be a disjunctive occurrence. The set of states of F , denoted Q(F ),
is the set of disjunctive occurrences which are FL-suboccurrences of F , that is Q(F ) :=
FLo(F ) ∩ F∨. When we forget the addresses of the occurrences of Q(F ), we get the finite
set denoted Q(F ).

For G,H ∈ Q(F ) we write G
a
→ H if G = σX.∨i∈I Fi and Fi = (a∧⊙H ′) for some i ∈ I

such that H = H ′[G/X]. We set a−1G := {H : G
a
→ H}. The transition relation of F is

the function δ(F ) defined by:

δ(F ) : Q(F )× Σ → 2Q(F )

(G, a) 7→ a−1G

A priority assignment of F is any function c : Q(F )→ ω whose co-domain is finite and
satisfying the following conditions:

• G is a ν-formula iff c(G) is even.

• If G ≤ H then c(G) ≤ c(H).

• If G ≡ H then c(G) = c(H).
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Let α := (ai)i∈ω ∈ Σω. A run of F over α is a sequence (Gi)i∈ω of states of F such that
G0 = F and for all i ≥ 0, Gi

ai→ Gi+1. We say that a run ρ of F is accepting if min(Inf(c(ρ)))
is even.

For every infinite thread starting from a disjunctive occurrence F , we can associate a
run of F in a unique way, and conversely. We show in Proposition 11.1 that a thread and
its associated run have the same behaviour, this will allow us to work with the two notions
of thread and run indifferently later on.

Definition 11.3. Let F be a disjunctive occurrence and let ρ be a run of F . We define t(ρ)
to be the unique thread of F containing ρ as a sub-sequence. Conversely, If t is a thread of
F , we define ρ(t) to be the sub-sequence of t collecting the elements of Q(F ).

Proposition 11.1. Let F be a disjunctive occurrence, t be an infinite thread of F and ρ be
a run of F . The thread t is a ν-thread if and only if ρ(t) is accepting. The run ρ is accepting
if and only if t(ρ) is a ν-thread.

Proof. We show that t is a ν-thread if and only if ρ(t) is accepting. The other assertion
can be show in the same way. We set t = (Fi)i∈ω and ρ := ρ(t) = (Gk)k∈ω. Let c be
a priority assignment for F . First observe that if i, j and k are such that Fi = Gk and
Fj = Gk+1, then for every l between i and j, Fl cannot be smaller than Fi, nor than Fj,
thus min(Inf(t)) = min(Inf(ρ)). Moreover, since c respects the sub-formula order, we have
that if c(min(Inf(ρ))) = min(Inf(c(ρ))). In the left-hand side of the last equation, we used c
as a function on disjunctive formulas not on occurrences, this is possible since by definition
c(F ) = c(G) iff F ≡ G, thus c also be seen as a function on formulas. Finally, since c(G) is
even iff G is a ν-formula, we conclude that t is a ν-thread iff ρ is accepting.

Proposition 11.2. α ∈ L(F ) iff there is an accepting run of F over α.

Proof. We show that if α ∈ L(F ) then there is an accepting run of F over α. Since α ∈ L(F ),
there is an accepting branch b of Π(F ) that induces α. This means in particular that all
the threads of b a ν-threads. Let t be one of them and let ρ be the run associated to t. By
Proposition 11.1, the run ρ is accepting. Now it suffices to see that ρ is a run over α. This
is true since the premises of any G-derivation where G is disjunctive, are of the form a,⊙H
where G

a
→ H.

The following propositions shows that the powerset construction can be reflected in the
proof system µLK⊙ω. Indeed, if we neglect the left occurrence in the following rule, we
can think of sequents as set of states, and whenever we read a letter a starting from the
conclusion, we go to a premise of this rule that contains all the states accessible form the
states of the conclusion by reading a.

Proposition 11.3. For any closed disjunctive occurrences F , G1, . . . , Gn, the following
rule is derivable in µLK⊙∞ using a finite derivation:

{Fa ⊢ a
−1G1, . . . , a

−1Gn}a∈Σ,F
a
→Fa

(PwrSet)
F ⊢ G1, . . . ,Gn
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Proof. We restrict to n = 1 for clarity, but the general case is similar by applying the right-
hand side rules successively on all Gi formulas. In that case, assuming F = σX.

∨

i∈I(ai ∧
⊙Fi), we derive (→) as follows:

π1

a1,⊙F1[F/X] ⊢ G1 . . .

πn

an,⊙Fn[F/X] ⊢ G1
(σl),(∨l),(∧l)

σX.
∨

i∈I(ai ∧ ⊙Fi) ⊢ G1

with πi being defined as:

Fi[F/X] ⊢ a−1i G1
(⊙)

ai,⊙Fi[F/X] ⊢ { ⊙Gi
k }G1

ai→Gi
k

(∧r),(Ax),(Wl)
ai,⊙Fi[F/X] ⊢ { ai ∧ ⊙G

i
k }G1

ai→Gk
(σr),(∨r),(Wr)

ai,⊙Fi[F/X] ⊢ G1

Note that threads of this derived inference rule do not encounter fixed-point formulas except
the ones visible at the premise and conclusion of the rule. Therefore, one can ignore the
internal construction of the rule when checking the validity of pre-proofs.

11.2 Parity automata inclusions in µLK⊙ω

We shall establish the completeness of µLK⊙ω for automata inclusions. Here we can actually
work with the full class of parity automata, which we exploit later.

Theorem 11.1. For any disjunctive occurrences F and G one has:

If L(F ) ⊆ L(G) then F ⊢ G is derivable in µLK⊙ω.

Proposition 11.3 indicates that we can embed the powerset construction in the logic,
suggesting a natural strategy for building proofs of language inclusions. But we face a
problem here due to the fact that our sequents are not made of sets of formulas, but keep
track of distinct occurrences of formulas. This means that we are in fact considering a
“powermultiset” construction, accounting for all possible runs rather than reachable states
only. If we apply this naive construction, keeping all the copies of a state coming from
different states, we are certainly going to get a µLK⊙∞ proof, but this proof has no chance
of being regular in general, since sequents will become larger and larger. We illustrate this
in the following example.

Example 11.1. Consider the automata B1 and B2 depicted in Figures 11.1 and 11.2. We
have obviously L(B1) ⊆ L(B2) since B1 has an empty language.

In this example, we use the notations of Section 9.2.2. We simplify the notation
JqK(q1,t1),...,(qn,tn) by forgetting the transitions and simply writing JqKq1,...,qn . If we apply
coinductively the rule (PwrSet) to the sequent JeK∅ ⊢ JiK∅, we get the following µLK⊙∞
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estart

a,b,c

Figure 11.1: Automaton B1

istartp q
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c
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a

b
c

a

b

b

a

Figure 11.2: Automaton B2

proof.

(⋆)
(PwrSet)

JeKee ⊢ JpKipu, JqKips
(PwrSet)

JeKee ⊢ JuKip, JsKip

(⋆)
(PwrSet)

JeKee ⊢ JpKipr, JqKiqv
(PwrSet)

JeKee ⊢ JrKip, JvKiq

...
(PwrSet)

JeKee ⊢ JiKip, JiKiq
(PwrSet)

JeKe ⊢ JpKi, JqKi (⋆)
(PwrSet)

JeK∅ ⊢ JiK∅

This proof is not regular since the sequents of its rightmost branch get larger and larger.

Note that the infinite branches of this derivation correspond one to one to the infinite
words over the alphabet {a, b, c}. For instance, the rightmost branch of this proof correspond
to the word cω.

In order to recover regularity, we have to weaken some occurrences. The challenge is to
do so whilst preserving validity. But this is not easy to perform in general as illustrated by
the following Example.

Example 11.2. The non regularity of the proof of Example 11.1 comes from the sequent
JeKee ⊢ JiKip, JiKiq where the two right occurrences, coming both from the right occurrence
of the conclusion, will generate each in turn two other copies, etc. To get a regular proof
starting from this proof, one idea would be to weaken one of these two occurrences, JiKiq for
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instance, and close the cycle on JeK ⊢ JiKip, which would give the following derivation.

(⋆)
(PwrSet)

JeKee ⊢ JpKipu, JqKips
(PwrSet)

JeKee ⊢ JuKip, JsKip

(⋆)
(PwrSet)

JeKee ⊢ JpKipr, JqKiqv
(PwrSet)

JeKee ⊢ JrKip, JvKiq

(†)

JeKee ⊢ JiKip
(W)

JeKee ⊢ JiKip, JiKiq
(PwrSet)

JeKe ⊢ JpKi, JqKi (⋆)
(PwrSet)

JeK∅ ⊢ JiK∅ (†)

But this regular derivation is not a proof. Indeed, it is easy to check that the branch
corresponding to the word c.(b.b.c.c)ω is not valid. The same thing holds if we weaken the
occurrence JiKip, since the branch corresponding to the word c.(a.a.c.c)ω will not be valid.

We denote by PS(F ⊢ G) the infinitary proof obtained by coinductively iterating the
(PwrSet) starting from F ⊢ G. As illustrated by the previous example, using weakenings in
a naive way to turn PS(F ⊢ G) into a regular proof does not work. To solve this problem,
we will adopt an other approach.

Since the left-hand sides of the sequents PS(F ⊢ G) contain at most one formula, its the
right threads (which are the runs of G) who causes the non regularity of PS(F ⊢ G). Our
goal then is to select a bounded subset of the runs of G in a way that brings a valid and
regular proof. This problematic looks very much like the problematic of determinization
of ω-automata. To determinize these automata, the powerset constructions does not work,
or it works by keeping multiple copies of the same state, but then we fall out the scope of
finite automata. An efficient recipe to determinize ω-automata is the well-known Safra’s
construction . This construction is a refinement of the powerset construction, in the sens
that the macro-states are not simply sets of states, but they are equipped with a structure
of tree which indicates a hierarchy between these states, those trees are called Safra-trees
(or S-trees for simplicity). We will show that this is exactly what we need: our construction
(PwrSet) was too coarse, and thus led to a non-regular proof. We need to refine it into a
finer rule, inspired by Safra’s construction.

We will adapt Safra’s construction for Streett automata, introduced in [Saf92,GTW02b],
on two dimensions: first, as our disjunctive formulas correspond to parity automata, we
should specialize this construction designed for Streett automata to parity ones. Second,
this construction determinizes automata, while we are dealing with occurrences. As we are
morally determinizing the occurrence G, the labels of Safra-trees will be the states of G.

In the rest of this section, we assume a fixed occurrence G. We set Q := Q(G), δ := δ(G)
and let c be a priority assignment for G. We consider without loss of generality that the
co-domain of c is a subset of P = {0, 1, . . . , 2k, 2k + 1}.

Definition 11.4. An S-tree is a finitely branching tree whose leaves are labelled with
non-empty subsets of Q, whose edges are labelled by priorities from P , and satisfying the
following conditions:

• Descendants of a node are ordered, from left (younger) to right (older).

• Moreover, if p, q are two leaves’ labels, then the underlying formulas of p and q are
distinct, that is p 6≡ q.
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• Every internal node has at least one outgoing edge with an odd label.

• On every branch, edge labels appear in increasing order starting from the root.

• Further, only even labels can appear more than once on a branch and if two labels
occur on a branch then odd labels in between must occur too.

Each node is identified by a name from the set N := {1, . . . , 2× |Q(G)| × (2k+2)}. We say
that v ∈ N is a node in T if T contains a node of name v. We denote by eT (v) the union
of the labels of all leaves of the subtree of T rooted in node v.

Remark 11.2. If we forget the addresses of the states of an S-tree T , we get a tree that we
denote by T , whose leaves are labelled by FL-subformulas of G. We say that two S-trees T1
and T2 are equal up-to-renaming if T1 = T2, and we write T1 ≡ T2. Note that only finitely
many S-trees exist up-to-renaming.

The role of node names is to be able to track nodes through the modifications of the
trees corresponding to automata transitions.

Given an S-tree T and a letter a, we now describe the transition function ∆(T , a) by the
following procedure.

Definition 11.5. Let T be an S-tree and a a letter. The S-tree ∆(T , a) is the tree obtained
after the following steps. Whenever we create a new node in this procedure, we assume that
it is given a fresh name, i.e., one that does not yet occur in the whole tree.

(1) For any leaf node v0 of T , let 2m+ 1 be the least odd label that does not occur from
the root to v0 (skip this step if all odd labels occur). Create nodes v1, . . . , vk−m+1 such
that for each i = 0, . . . , k − m, vi+1 is the son of vi, with an edge (vi, vi+1) labelled
2(m+ i) + 1. The leaf vk−m+1 takes the label of v0.

(2) Replace each leaf label S by a−1S.

(3) For each leaf v and state G appearing in it, let (w,w′) be the edge appearing in the
path from the root to v, that is labelled by c(F ) if c(F ) is odd, c(F ) + 1 otherwise.
Remove q from the label of v and append to w a new child leaf v′, to the right, labelled
{F}, with the edge (w, v′) labelled c(F ).

(4) If two states F1 and F2 such that F1 ≡ F2 belong respectively to two distinct leaves
w1, and w2, let b1, b2 be two branches starting from the root and ending in w1,w2

respectively. Let v be the node on which these branches fork, and vi be the child of v
in bi, i ∈ {1, 2}. If the label of the edge (v, v1) is strictly greater than that of (v, v2)
then remove F1 from w1, otherwise remove F2 from w2. If they have the same label,
remove qi from wi, where wi is the rightmost leave.

(5) Remove any subtree whose leaves all have empty labels.

(6) If after the previous steps all edges going from a node v to its children are labelled by
the same even priority, make v a leaf and label it eT (v).
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Example 11.3. We develop an example of Safra’s construction illustrating the different
steps of the construction of Definition 11.5. Let us consider the disjunctive formula:

ϕ = µX.(a ∧ ⊙X) ∨ (a ∧ ⊙(νY .(a ∧ ⊙X) ∨ (a ∧ ⊙Y )))

We set ψ = νY .(a ∧ ⊙ϕ) ∨ (a ∧ ⊙Y ) and G = ϕε. Let c be the priority assignment for G
defined by: if a state F of G is of the form ϕα then c(F ) = 1, otherwise c(F ) = 2. We thus
consider the following set of priorities P = {0, 1, 2, 3}. The formula ϕ is the encoding of
the parity automaton A = ({q1, q2}, q1, δ, c) depicted below, where priorities are such that
c(qi) = i.

q1 q2

a a
a

a

Let T1 be the S-tree with a single node of name n0, labelled by G. We show Figure 11.3
the S-trees T2 := ∆(T1, a) and T3 := ∆(T2, a). We denote node names by using brackets
(e.g. [n0]) and we indicate the leaves’ labels to the right of their names (e.g. [n0] {F}). In
Figure 11.3, G1 = ϕα, H1 = ψβ where α = ilri, β = irri, and G2 = ϕα.α, H2 = ψα.β.

We also detail the construction of T3 = ∆(T2, a) in Figure 11.4, where
i
⇒ denotes the

application of Step (i) of Safra’s construction. The occurrences G3 and H3 are defined by
G3 = ϕβ.α and H3 = ψβ.β.

T1 T2
T3

[n0] {G} ⇒

[n0]

[n1] {H1}

1

[n2] {G1}

1 ⇒

[n0]

[n1] {H2}

1

[n3] {G2}

1

Figure 11.3: Example of S-trees obtained by Safra’s construction.

Remark 11.3. The following properties are invariants of our Safra construction, that is to
say, they are satisfied by the initial singleton trees and are preserved by ∆:

• If w is a leaf of an S-tree T and F appears in the label of w, then c(F ) ≥ p, where p
is any edge label from the root to w.

• If v is an internal node in an S-tree T , then there is an even priority p such that all
the outgoing edges from v in T are either labelled p or p + 1. In the following, this
even priority will be denoted by pT (v), or simply p(v) when T is obvious.

• Moreover, if T ′ = ∆(T , a) and v appears in both T and T ′ as an internal node, then
pT (v) = pT ′(v).
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T2
1+2
⇒

[n0]

[n1]

[n4] {G2,H2}

3

1
[n2]

[n5] {G3,H3}

3

1

3
⇒

[n0]

[n1]

[n4] {∅}

3

[n6] {H2}

2

1

[n2]

[n5] {∅}

3

[n7] {H3}

2

1

[n3] {G2}

1

[n8] {G3}

1

4+5
⇒

[n0]

[n1]

[n6] {H2}

2

1
[n3] {G2}

1
6
⇒

[n0]

[n1] {H2}

1

[n3] {G2}

1

Figure 11.4: Internal steps of ∆(T2, a) = T3

Proposition 11.4. Let α := (ai)i∈ω ∈ Σω and ρ := (Gi)i∈ω be a run of G over α. Let T0
be the S-tree with a single leaf node labelled {G0}, and Ti+1 := ∆(Ti, ai) for all i ∈ ω. If ρ
is accepting then there is a node v ∈ N and an index j such that for all i > j, v is a node
in Ti and v becomes a leaf infinitely often.

Proof. Let us first prove the following assertion:

Assertion: Let v ∈ N . If there is iv ∈ ω such that for all i > iv, v is a node of Ti and
Gi ∈ eTi(v), then there are two possibilities:

1. The node v becomes a leaf infinitely often.

2. There is w ∈ N and iw ∈ ω such that for all i > iw, w is a son of v in Ti and
Gi ∈ eTi(w).

Proof of the assertion: Let m be the minimal priority that appears infinitely often in ρ.
Suppose that v does not become a leaf infinitely often: let k be an index such that for all
i > k, the node v is never a leaf in Ti and c(Gi) ≥ m. By Remark 11.3, there is an even
priority p such that p = pTi(v) for all i > iv. Since Gi ∈ eTi(v) for all i > k, and again by
Remark 11.3, we have that p ≤ m. For all i > k, Gi ∈ eTi(wi) for some child wi of v; we
seek to establish that (wi)i>k is eventually constant. We distinguish two cases:

(i) If p <m. We actually have p+1 < m. Let T ′i be the tree obtained after steps (1–3)
of the construction of Ti+1 = ∆(Ti, ai). Because c(Gi+1) > p+1 we still have Gi+1 ∈ eT ′

i
(wi).

We now consider the rest of the construction, from T ′i to Ti+1. Step (4) may remove the
occurrence of Gi+1 ∈ eT ′

i
(wi) in favor of another one in eT ′i (wi+1) for wi+1 6= wi. However,
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this can only happen if (a) the edge (v,wi+1) is labelled p while (v,wi) is labelled p + 1,
or (b) the edge labels are the same but the rank of wi+1 among the children of v is less
than that of wi. Thus, this can happen only finitely many times, and the sequence (wi)i is
eventually constant. (Obviously, Step (5) is irrelevant in this argument, and Step (6) cannot
happen because v never becomes a leaf by assumption.)

(ii) Otherwise, p = m. We first show that there is some i such that (v,wi) is labelled
p. Consider any position j > k such that c(Gi) = m. If (v,wi) = p + 1 then Gi+1 will
be moved by step (3) of the construction of Ti+1 to a new child w′ of v, with an edge
(v,w′) labelled p. Then step (4) may not keep the occurrence of Gi+1 in w′, but it will
preserve an occurrence in a child w′′ with (v,w′′) labelled p too. Next we observe that, once
(v,wi) is labelled p, we have (v,wj) labelled p as well for all j ≥ i. This follows from a
simple inspection of the procedure, arguing as above. From this point on, we can only have
wj 6= wj+1 because of step (4) but, as observed before, this can only decrease the rank of
wj+1 among the children of v. This can only happen finitely often, which concludes the
proof.

To conclude, we iterate the assertion starting from the root node and iterate it as many
times as necessary to obtain the result. The iteration is bounded by the maximal height of
S-trees.

For an S-tree T , we define Φ(T ) to be the union of the labels of the leaves of T , forgetting
all the tree structure. In the following, when unambiguous, we will sometimes write T
instead of Φ(T ). The S-tree structure corresponds to a refined powerset construction, in
the sense that, if T is an S-tree and a ∈ Σ, Φ(∆(T , a)) ⊆ a−1(Φ(T )). We now observe that
Safra’s construction can be immediately adapted to proof theory, in a way that yields proofs
of inclusions for disjunctive formulas.

Proposition 11.5. Given a disjunctive occurrence F and an S-tree T , the following rule is
derivable:

{ Fa ⊢ Φ(∆(T , a)) }
a∈Σ,F

a
→Fa

(S)
F ⊢ Φ(T )

Proof. Since Φ(∆(T , a)) ⊆ a−1(Φ(T )), rule (S) can be obtained by applying rule (PwrSet) of
Proposition 11.3 and some weakenings.

Definition 11.6. Given a disjunctive occurrence F and an S-tree T , we coinductively define
Π(F ,T ) to be the following µLK⊙∞ pre-proof:

{

Π(Fa, ∆(T , a))

Fa ⊢ Φ(∆(T , a))

}

a∈Σ,F
a
→Fa

(S)
F ⊢ Φ(T )

In other words, it is the infinite derivation obtained by repeatedly applying rule (S). If G
is a disjunctive formula, we set Π(F ,G) := Π(F ,T ) where T is the single-node S-tree with
label {G}.

Note that Π(F ,T ) is a standard µLK⊙∞ pre-proof, whose sequents are sets of occur-
rences, but those sequents have been obtained by forgetting the structure of S-trees which
form the blueprint of the construction.
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Theorem 11.2. Let F ,G ∈ F∨. If L(F ) ⊆ L(G), then Π(F ,G) is a µLK⊙∞ proof.

Proof. Let us establish the validity of each infinite branch γ = (si)i∈ω of Π(F ,G). For each
such branch, there is an ω-word α = (ai)i∈ω such that, for all i, si = Fi ⊢ Φ(Ti) where
F0 = F , T0 is the tree with a single node labeled by {G}, Fi

ai→ Fi+1 and ∆(Ti, ai) = Ti+1.
Hence ρ := (Fi)i∈ω corresponds to a run of F over α.

If the run ρ is not accepting, we have by Proposition 11.1 that its corresponding thread
t(ρ) is a µ-formula and thus validates the branch γ.

Otherwise, the run ρ is accepting, thus α ∈ L(F ) by Proposition 11.2, and α ∈ L(G) by
hypothesis. By Proposition 11.4, there is a node v and an index j such that ∀i ≥ j, v is a
node of Ti and v appears as a leaf infinitely often. Now, let us extract a valid thread from
this node. To do so, we prove the following assertion:

Assertion 1: Let m > n ≥ j such that the node v is a leaf in Tn and Tm, and it is not
a leaf in Ti for all n < i < m. For every K ∈ eTm(v), there is a sequence of occurrences
Gn, . . . ,Gm satisfying the following conditions:

• Gm = K;

• for all i = n, . . . ,m− 1, Gi
ai−→ Gi+1

• min(Gn, . . . ,Gm) is a ν-formula.

We first show that the assertion allows us to conclude the main proof. Let j < i0 < i1 <
. . . such that v is a leaf in Ti where i > j iff i = in for some n ∈ ω. We define a tree T
whose set of nodes N is

N := {r} ∪ { (K,n) | n ∈ ω,K ∈ eTin (v) },

where r is a distinguished root node, with an edge from r to any node of the form (K, 0), and
an edge from (H,n) to (K,n+1) iff there is a thread GinGin+1 . . . Gin+1

such that H = Gin ,
K = Gin+1

and min(Gin ,Gin+1, . . . ,Gin+1
) is a ν-formula. By the previous assertion, every

node except r have at least a parent. The tree T is thus an infinite tree which is finitely
branching, hence by König’s lemma it has an infinite branch. It is easy to see that this
branch corresponds to a valid thread.

Before proving Assertion 1, we will establish a more precise result. By Remark 11.3,
there exists an even priority p such that for all i ≥ j, the outgoing edges from v are either
labelled p or p+ 1. We shall now prove the following, by induction on i = n, . . . ,m− 1:

Assertion 2: Let w be a child of v in Ti and K ∈ eTi(w), then there are occurrences
Fk, . . . ,Fi satisfying the following conditions:

• Fi = K;

• For all l = n, . . . , i− 1, Fl
al−→ Fl+1.

• For all l = n, . . . , i, Fl ∈ eTl(v).

• If l is the label of the edge (v,w), then min(c(Fn+1), . . . , c(Fi)) = l.
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Let us prove Assertion 2. When i = n, the result is obvious, notably because v is a leaf
in Tn. Now, suppose that the result is true for i and let us prove it for i + 1. Let w be a
child of v in Ti+1 and K ∈ eTi+1

(w). The edge (v,w) is labelled p. Notice first that c(K) ≥ l,
otherwise it would be absorbed by a parent of v.

There exists L ∈ eTi(v) such that L
ai−→ K. Actually, L should belong to one of the

children of v in Ti; call it w′ and let l′ be the label of the edge connecting v and w′ in Ti.
We distinguish two cases:

1. If w = w′ we conclude by applying the induction hypothesis.

2. If w 6= w′, that is w is a new child in Ti+1, created by Step 3, then we distinguish two
cases: if l = l′, here again we apply directly the induction hypothesis. Otherwise, the
node w has been created because c(Fi+1) = p and l′ = p+1. We then have that l = p.
Here again we apply induction hypothesis to conclude.

We finally prove Assertion 1. Let K ∈ eTm(v) and let w be a child of v in Tm−1 and L an
occurrence such that L ∈ eTm−1

(w) and L
am−1

−→ K. By the previous result instantiated for
i = m−1, we have a thread Fn, . . . Fm−1 such that Fm−1 = L and min(c(Fn), . . . , c(Fm−1)) = l
where l ∈ {p, p+1} is the label of the edge (v,w). As v is a leaf in Tm, it has been obtained
after Step 6, which means that before Step 6, the tree Tm−1 has only ongoing edges labelled
p. Let w′ be the child of Tm−1 just before Step 6 such that K is in the label of this subtree
rooted in w′. There are two possibilities:

• If w′ = w, we have l = p and, since c(Fm) ≥ p, then min(c(Fn), . . . , c(Fm−1)) = p.

• Otherwise, w′ has been created in Step 3, and c(Fm) = p. Hence we also have that:

min(c(Fn), . . . , c(Fm)) = p

Anyway, the thread Fn, . . . Fm satisfies min(c(Fn), . . . , c(Fm)) = p. Since p is even, we have
that min(Fn, . . . ,Fm) is a ν-formula.

Definition 11.7. The pre-proof Π(F ,T ) is regular. Indeed, if T ′ and T ′′ are two S-trees
equal up-to-renaming via the bijection b, then Π(F ,T ′) and Π(F ,T ′′) are also equal up-to-
renaming via the same bijection b. We denote by Θ(F ,T ) the minimal circular representa-
tion of Π(F ,T ).

11.3 Büchi automata inclusions in µLK⊙

Now, given two disjunctive formulas F and G such that L(F ) ⊆ L(G), we want to con-
struct a µLK⊙ proof of the sequent F ⊢ G. A natural idea is to build the circular proof
Θ(F ,G) introduced in the previous section, then to translate it into a µLK⊙ proof using the
translation algorithm described in Chapter 2, Section 2.4.5. Unfortunately, we are limited
by the condition of application of this algorithm, which requires the input circular proof to
be translatable (Definition 2.39), since the proof Θ(F ,G) does not satisfy this condition in
general. The difficulty to translate circular proofs into finitary ones is the “non-determinism”
of the right hand-side formulas of the conclusion sequent. For instance, if G is determin-
istic (that is, the encoding of a deterministic automaton), then Θ(F ,G) meets easily our
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translation condition. We will push this observation further, and show that if G contains a
“weak form of non-determinism” (we call this class of formulas weakly deterministic), then
Θ(F ,G) can be translated into a µLK⊙ proof.

To establish our final result (Theorem 11.3), we will not use a direct translation of
Θ(F ,G) into a µLK⊙ proof, but rather an induction on a measure that we call the “level of
non-determinism of G”. More precisely, we will define a hierarchy of formulas, whose lowest
level is the set of weakly deterministic formulas, then the highest we go in this hierarchy, the
most formulas contain “complex” form of non-determinism. The level of non-determinism of
a formula, if it exists, is the lowest index of the hierarchy to which this formula belongs. We
show, by induction on this level, that if G belongs to the hierarchy, then F ⊢ G is provable
in µLK⊙, the base case being that of weakly deterministic formulas which we will show
by a direct translation as we have discussed above. We finally show that Büchi automata
belong to our hierarchy, and this concludes the proof of Theorem 11.3. Unfortunately, not
all disjunctive formulas belong to the hierarchy, that is why our result is stated only for
Büchi formulas.

11.3.1 Weakly deterministic formulas

We define a particular class of disjunctive formulas called weakly deterministic. We show
that if G is weakly determinstic, then all the valid traces of Θ(F ,G) are strongly valid
(Definition 2.39).

Definition 11.8. A disjunctive formula is said to be deterministic if and only if, in all its
sub-formulas of the form ∨i∈I(ai ∧ ⊙ϕi), the letters ai are pairwise distinct. We define the
class of formulas I to be the set of disjunctive formulas, not containing the ν-connective.
That is:

ϕ ∈ I := X | µX. ∨i∈I (ai ∧ ⊙ϕi)

We define the class of formulas Eµ as follows:

Eµ = I ∪ {∨i∈I(ai ∧ ⊙ϕi) | ϕi ∈ I}

The set of weakly deterministic formulas H0, is the set of formulas of the form ϕ[Di/Xi]
n
i=1,

where ϕ ∈ Eµ and [Di]
n
i=1 are deterministic disjunctive formulas.

Remark 11.4. Since we consider capture-avoiding substitution, in every weakly determin-
istic formula ϕ[Di/Xi]

n
i=1, the free variables of Di cannot be bound in ϕ.

The elements of Eµ are essentially those of I, but we allow the top-level connective to
not to be the µ-connective. Weakly deterministic formulas are obtained by putting deter-
ministic formulas into an environment of Eµ formulas, such that no free variable in these
deterministic formulas is bound in the environment. In a weakly deterministic formula, the
non-determinism can come only from the Eµ part. A valid run of H0 cannot stay always in
this Eµ part, since it contains only µ-formulas, thus such a run should eventually visit one
of the deterministic components of the formula. Since the Eµ part is not accessible from the
deterministic ones, then every valid run stays eventually in one of the deterministic compo-
nents. Thus the infinitary part of every valid run comes from a deterministic automaton,
that is why we say that H0 formulas have a weak form of non-determinism.
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Now we will show that if G is weakly deterministic, then all the valid tarces Θ(F ,G) are
strongly valid.

Proposition 11.6. Let F be a disjunctive occurrence and G be a weakly deterministic
disjunctive occurrence. If L(F ) ⊆ L(G) then very valid trace of Θ(F ,G) is strongly valid.

Proof. Since G is weakly deterministic, it has the form G = N [Di/Xi]
n
i=1 where Dk are

deterministic and N is an occurrence that does not contain the ν connective. Let us denote
the set of states of Dk by Qk and those of N by QN .

The construction of Θ(F ,G) depends on the priority assignment c associated to G. Here
we choose a priority assignment c such that c(K) = 1 for all K ∈ QN , and c(K) > 1 for all
K ∈ Qi, 1 ≤ i ≤ n. Such an assignment exists since QN contains only µ-formulas and, for
all 1 ≤ i ≤ n, the states in QN and Qi are not co-accessible.

Let us first make some observation about Safra’s construction for G, with the chosen
priority assignment c. Consider the sequence (Ti)i∈ω on some word (ai)i∈ω, as in the proof
of Theorem 11.2.

Assertion: Let i ∈ ω and v be a child of the root r in Ti. One has:

• The edge (r, v) is labelled by 1.

• Either eTi(v) = {K} where K ∈ QN and v is a leaf, in this case we call v a child of
Type 1 . Otherwise, eTi(v) = {K1, . . . ,Kp} such that for all k ∈ [1, p] there exists
jk ∈ [1,n] such that Kk ∈ Qjk , and k 6= k′ implies jk 6= jk′ , in this case, we call v a
child of Type 2 .

• If v is also a node in Ti+1, then v is of Type 2 in Ti+1.

We prove this assertion by induction on i. When i = 0 it is trivial since the root has no
child. Suppose that the assertion is true for some i and let us prove it for i+ 1. Let v be a
child of the root in Ti+1. The edge (r, v) is labelled by 1: indeed the outgoing edges from
the root can only be 1 or 0. But by definition of the priority assignment we gave above, no
state has priority 0. On the other hand, the only way to create an edge of label 0 is by Step
3 when a formula has a priority 0. Hence the outgoing edges from r are labelled by 1. To
prove the second item, we separate two cases:

• If v does not exist in Ti this means that w has been created in Step 3, hence it is a
leaf labelled by a singleton {K}. We have that K ∈ QN since only occurrences from
QN have priority 1.

• Otherwise, v is a child of r in Ti. By induction hypothesis, the node v is of Type 2 in
Ti+1.

Suppose that v is also a child of r in Ti+2. There are two cases:

• If v is of Type 1 in Ti+1, let eTi+1
(v) = {K} and δ(K, ai+1) = { ~M , ~K}, ~M ⊆ QN

and ~K ⊆ ∪1≤i≤nQi. The tree structure of G implies that ~K is of the form ~K :=
{K1, . . . ,Kn} with at most one Kk per Qj, and none in QN . After Step 3, all occur-
rences of ~M will be in new child of the root in Ti+2. Hence, v will be of Type 2 in
Ti+2.
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• If v is of Type 2 in Ti+1, it is also of Type 2 in Ti+2 since Dk are deterministic.

Having proved our assertion, we now establish the result. Let v be a node and j an index
such that for all i ≥ j, v is a node in Ti and v is a leaf infinitely often. As the outgoing
edges of the root all have label 1, v cannot be the root. Indeed, to become a leaf infinitely
often, a node has to collapse in Step 6, and this is possible only when the outgoing edges
are of even priority. Hence v appears in the sub-tree of a child w of the root in Ti, for all
i > j. Since v is persistent, w is also persistent, and by the above assertion, the node w
is of Type 2 in Ti, for all i > j. Hence v is also of Type 2, that is, eTi(v) has at most one
occurrence from each Qk and no occurrence from QN .

We finally come back to the proof of Theorem 11.2, and show that each time we exhibited
a valid thread t in Π(F ,G), then the corresponding trace (which we call also t for simplicity)
in Θ(F ,G) is strongly valid. This follows from the following remarks:

(i) When the sequents of a branch contain only one occurrence in their left-hand side, any
valid thrace visiting only left-hand side occurrences is strongly valid. Since all the sequents
in Θ(F ,G) have only one formula in their left-hand side, the left-hand side thread exhibited
in the first case of the proof of Theorem 11.2 is actually strongly valid.

(ii) Consider the right-hand side trace t = (Gi)i∈ω that we extracted from the persistent
node v of the path p = (ni)i∈ω in the second case of the proof of Theorem 11.2. Let us
show that eventually, whenever t meets a node of Θ(F ,G), it meets it at the level of the
same occurrence. Since t is valid, there is l, k ∈ ω such that for every i ≥ l, Gi ∈ Dk.
By contradition, suppose that there is j,m ≥ l such that nj = nm but Gj 6= Gm. Since
the trace t has been extraxted from the persistent node v, we have that both Gj and Gm

belong to eTj(v), which means that eTj(v) contains two distinct elements from Qk and this
contradicts the last observation above.

11.3.2 Büchi inclusions

We define a hierarchy of formulas such that whenever we go high in its levels, we find more
“complex” forms of non-determinism.

Definition 11.9. We define the hierarchy (Hi)i∈ω of sets of formulas as follows:

• H0 is the set of weakly deterministic formulas.

• Hi+1 = Hi ∪ {ϕ[νXj.ψj/Yj]
n
j=1 | n ∈ ω,ϕ ∈ H0,ψj ∈ Hi}

We call level of non-determinism of a formula ϕ, if it exists, the least i such that ϕ ∈ Hi.

We show the following stability properties of our hierarchy, that will be useful in the
proofs.

Proposition 11.7. Let ψ ∈ Hi. We have:

• If ψ is a disjunctive formula and ϕ ∈ Eµ then ϕ[ψ/X] ∈ Hi.

• If D is deterministic, then ψ[D/X] ∈ Hi.
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Proof. Suppose w.l.o.g. that the level of non-determinism of ψ is i. Then ψ is of the form
γ[νXj.ψj/Yj]

n
j=1 where γ ∈ H0 and ψj ∈ Hi. Since ψ is disjunctive, the formula γ is also

disjunctive, thus it is of the form δ[Dk/Xk]k, where δ ∈ I and Dk are deterministic formulas.
The first item follows from the fact that if we pre-compose a I formula with a Eµ one, the
result is in Eµ, in particular ϕ[δ/X] ∈ Eµ.

We show the second item by induction on the level of non-determinism of ψ. The base
case is trivial. We suppose that the result is true for the level i and show it for i+ 1. Since
the level of non-determinism of ψ is i + 1, ψ is of the form ϕ[νXj.ψj/Yj]

n
j=1 where ϕ ∈ H0

and ψj ∈ Hi. By the base case, ϕ[D/X] ∈ H0 and by IH, ψj[D/X] ∈ Hi, thus ψ ∈ Hi+1.

As established by the following proposition, every Büchi formula belongs to the hierarchy.

Proposition 11.8. For every Büchi formula ϕ, there is an index k such that ϕ ∈ Hk.

Proof. We show the result by induction on ϕ. If ϕ is a variable, then it belongs to H0.
Otherwise, let ψ be the formula not containing any ν-connective such that ϕ is of the form
ϕ = ψ[νXi.ψi/Yi]i∈I . It is always possible to write a Büchi formula under this form since
no µ connective can bind a variable which is free in a ν-formula. Every formula ψi is of
the form ψi = ∨j∈Ii(aj ∧ ⊙ϕj), where ϕj are Büchi formulas. By induction hypothesis, the
formulas ϕj belong to a level Hk (the induction hypothesis may give different indices to
each ϕj, we take k to be their max). We can write ψi under the form δi[ϕj/Zj]j∈Ij , where
δj = ∨j∈Ii(aj ∧ ⊙Zj). The formula δj obviously belongs to Eµ, thus by Proposition 11.7 ψi
is in Hk. Hence, ϕ is in Hk+1.

Remark 11.5. Disjunctive formulas do not all belong to the hierarchy. For instance, the
formula µX.a ∧ ⊙(νY .(a ∧ ⊙X) ∨ (a ∧ Y )) does not belong to any Hk.

Theorem 11.3. Let F and G be two Büchi occurrences. If L(F ) ⊆ L(G) then we can
construct effectively a µLK⊙ proof of F ⊢ G.

Proof. Let us consider the following more general result:

Let F be a disjunctive occurrence and G be disjunctive occurrence of level of
non-determinism k. If L(F ) ⊆ L(G) then we can construct effectively a µLK⊙
proof of F ⊢ G.

We prove the latter by induction on the level of non-determinism of G.
Base case: When the level of non-determinism of G is 0, that is when G is weakly

deterministic, we apply Proposition 11.6 and Proposition 2.17 to get a µLK⊙ proof of
F ⊢ G.

Inductive case: Suppose that the level of non-determinism of G is k + 1. Thus, G
can be written in the form G = H[νXi.Gi/Yi]i∈I where H ∈ H0 and Gi ∈ Hk. Since G is
closed, every νXi.Gi is also closed, thus by Remark 11.1, it is the encoding of a NPW, that
we denote by Ai. Let Di be a deterministic automaton accepting the same language as Ai,
obtained by an effective construction, Safra’s construction for instance [SV14]. Let Di be
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the encoding of Di. Notice that L(G) = L(H[Di/Yi]i∈I). Consider the following derivation:

θ

F ⊢ H[Di/Yi]i∈I

{

πi

Di ⊢ νXi.Gi

}

i∈I
(FH)

H[Di/Yi]i∈I ⊢ H[νXi.Gi/Yi]i∈I
(Cut)

F ⊢ G

The derivation θ can be obtained by the base case since H[Di/Yi]i∈I is a H0 formula. For
each i ∈ I, the sub-proof πi is obtained by applying the coinduction rule (νr) with co-invariant
Di for νXi.Gi as follows.

(Ax)
Di ⊢ Di

θi

Di ⊢ Gi[Di/Xi]
(ν)

Di ⊢ νXi.Gi

The proof θi is obtained by IH. Indeed, since Di is deterministic and since Gi ∈ Hk, then by
Proposition 11.7, Gi[Di/Xi] ∈ Hk. Thus we can construct a proof θi of Di ⊢ νXi.Gi. This
concludes the inductive case.

Remark 11.6. We can adapt the algorithm described in the proof of Theorem 11.3 to get
one that takes two arbitrary Büchi occurrences F and G, and outputs either a proof of
F ⊢ G in case of L(F ) ⊆ L(G), or a counter-example otherwise, that is a word u such
that u ∈ L(F ) but u /∈ L(G). The algorithm of the proof of Theorem 11.3 can run on
arbitrary formulas independently from the hypothesis of language inclusion, the only place
where the algorithm may get stuck is the base case. In the base case, corresponding to
weakly deterministic formulas, we start by building the derivation Θ(F ,G) then we run the
algorithm of Theorem 2.5 to construct a µLK⊙ proof of F ⊢ G. In case L(F ) ⊆ L(G), this
algorithm produces a µLK⊙ proof, otherwise, it gets stuck in a "Strongly connected" phase.
This strongly connected component of Θ(F ,G) induces a word of the form vω which is in
L(F ) but not in L(G), thus can be returned as a counter-example.





Chapter 12

Constructive completeness

We have shown in Chapters 9 and 10 the steps I-III of our proof of completeness. In
Chapter 11, we have shown Step IV’. Now we are left with the steps IV and V, which we
shall establish in this Chapter. Once this is done, we show how to get the constructive
completeness from these five building blocks.

12.1 Picking up all the pieces

Step IV is an easy consequence of Theorem 11.3:

Theorem 12.1. If B is a NBW such that L(B) = Σω then there is a DBW D such that
L(D) = Σω and one can construct effectively a µLK⊙ proof of [D] ⊢ [B].

Proof. Let D be the DBW {Σ, {q}, q, ∆, {q}} where ∆ = {(q, a, q)|a ∈ Σ}. We have ob-
viously that L(D) = Σω. By Theorem 11.3, we can construct effectively a µLK⊙ proof of
[D] ⊢ [B].

Step V relies on the same idea used before: construct a meager circular proof of ⊢ [D],
then translate into a µLK⊙ proof. Contrarily to earlier steps, the search of the circular proof
is much easier.

Theorem 12.2. For every DBW D such that L(D) = Σω, one can construct effectively a
µLK⊙ proof of ⊢ [D].

We first show the following lemma:

Lemma 12.1. Let ∆ be the transition relation of D, p be a state and Θ be an environment
for D. The following rule is derivable in µLK⊙∞ using a finite meager derivation:

{⊢ JqKΘ,(p,t)}t=(p,a,q)∈∆
(→)

⊢ JpKΘ

Proof. Since D is deterministic, for every a ∈ Σ there is a unique state qa such that ta :=
(p, a, qa) ∈ ∆. We have then:

JpKΘ →
∨

a∈Σ

[a] ∧ JqaK
Θ,(p,ta)

211



212 CHAPTER 12. CONSTRUCTIVE COMPLETENESS

hence we have the following derivation:

{⊢ [a] ∧ JqaK
Θ,(p,ta)}a∈Σ

(∨r)
⊢

∨

a∈Σ

[a] ∧ JqaK
Θ,(p,ta)

(σr)
⊢ JpKΘ

To justify this premise, we apply the following derivation whenever it applies:

⊢ [a], Γ

⊢ JqaK
Θ,(p,ta)

(Wr)
⊢ JqKΘ,(p,ta), Γ

(∧r)
⊢ [a] ∧ JqaK

Θ,(p,ta), Γ

Doing so, we get the following rule:

⊢ {[a]}a∈Σ {⊢ JqaK
Θ,(qa,t)}a∈Σ

(→)
⊢ JpKΘ

Now we show that ⊢ {[a]}a∈Σ is provable. For that we notice that {[a]}a∈Σ = {p∧ [a]}a∈Σp ∪
{p⊥ ∧ [a]}a∈Σp where Σp = 2P\{p}. We apply the following scheme recursively, to obtain a
finite proof of ⊢ {[a]}a∈Σ:

(Ax)
⊢ p, p⊥ ⊢ {[a]}a∈Σp

(∧r), (Wr)
⊢ {[a]}a∈Σ

Which concludes the proof.

Proof of Theorem 12.2. Let π be the proof obtained by applying coinductively the derivation
of Lemma 12.1. This derivation is a meager µLK⊙∞ pre-proof. Note that π is a regular
derivation. To show that it π is actually a proof, notice that every infinite branch β of π
contains exactly one right thread t. The run-branch of t, ρ(t) is an accepting run, since
every run of D is accepting. By Proposition 9.4, t is a ν-thread. Thus π is a proof.

We can show now our completeness result.

Theorem 12.3. If |= ϕ, we can construct a µLK⊙ proof of ⊢ ϕ.

Proof. Let ϕ be a valid formula.

I. Let Aϕ the APW associated to ϕ (Definition 9.14). By Proposition 9.8, one has
M(ϕ) = L(Aϕ), thus L(Aϕ) = Σω. By Theorem 9.1, one can construct a µLK⊙ proof
π1 of [Aϕ] ⊢ ϕ.

II. Let P be the NPW constructed from Aϕ using the algorithm of the proof of Proposi-
tion 10.1. One has L(P) = L(A) = Σω. By Theorem 10.1, one can construct a µLK⊙
proof π2 of [P ] ⊢ [Aϕ].

III. Let B be the NBW constructed from P using the algorithm of the proof of Proposi-
tion 10.3. One has L(B) = L(P) = Σω. By Theorem 10.2, one can construct a µLK⊙
proof π3 of [B] ⊢ [P ].



12.2. DISCUSSION 213

IV. Since L(B) = Σω and using Theorem 12.1, there is DBW D such that L(D) = Σω and
such that we can build a proof π4 of [D] ⊢ [B].

V. Finally by Proposition 12.2, one can construct a proof π5 of ⊢ [D].

We gather all these pieces together to build a µLK⊙ proof of ⊢ ϕ using several cuts:
π5

⊢ [D]

π4

[D] ⊢ [B]

π3

[B] ⊢ [P ]

π2

[P ] ⊢ [Aϕ]

π1

[Aϕ] ⊢ ϕ
(Cut)

⊢ ϕ

Remark 12.1. The proof of Theorem 12.3 describes an algorithm that outputs a µLK⊙
proof for every valid formula. We can adapt it to get an algorithm that takes an arbitrary
formula ϕ and outputs either a proof of ϕ if ϕ is valid, or a word u /∈M(ϕ), as follows:

1. Build the automata Aϕ, P and B as in the proof of Theorem 12.3. By construction,
M(ϕ) = L(P) = L(B).

2. Construct a DBW D such that L(D) = Σω.

3. Run the improved algorithm of remark 11.6 on the Büchi automata B and D. This
algorithm has the ability to output either a proof of [D] ⊢ [B] if L(D) ⊆ L(B); or a
word u such that u ∈ L(D) and u /∈ L(B) otherwise.

4. If this algorithm outputs a proof of [D] ⊢ [B], we can carry on with the other steps of
the algorithm of the proof of Thereom 12.3.

5. Otherwise, the word u is a counter-example of the validity of ϕ since u ∈ L(D) = Σω

but u /∈ L(B) =M(ϕ).

12.2 Discussion

We have given a new completeness argument for the full linear-time µ-calculus with respect
to µLK⊙. Unlike earlier proofs, our argument is constructive, that is, it exhibits a proof
for every valid formula. To achieve this, we have combined techniques and tools coming
from automata theory and proof theory, two domains that have been growing apart. On the
one hand, we used the fine-grained formalism of occurrences which is widely used in proof
theory but far removed from the automata side. On the other hand, we showed that the
automata transformations can be reflected in the proof-theoretic side.

Related work. Our proof generalizes a previously used idea, which consists in introduc-
ing an intermediate class of formulas to solve the completeness problem [Koz83], [Dam92],
[Kai95], [Wal95]. The completeness statement in these proofs is generally of the form: "If
ϕ is consistent (i.e., ¬ϕ is unprovable), then ϕ is satisfiable", whose converse is: "If ¬ϕ is
valid then ¬ϕ is provable". Thus to compare our intermediate classes to the ones introduced
in these proofs, one should actually have in mind the negations of these classes. Let us give
an overview on these proofs and discuss the intermediate classes they use.

• In his seminal paper [Koz83], Kozen introduced the class of aconjunctive formulas:
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Definition 12.1. Let ϕ be a formula and ϕ′ a subformula of it. We say that a
variable X is active in ϕ′ if either there is a free occurrence of X in ϕ′ or if there is a
free occurrence Y in ϕ′ such that ϕ′ is a subformula of σY .ϕ′′, σY .ϕ′′ is a subformula
of ϕ and Y is active in σY .ϕ′′. A formula is said to be aconjunctive iff for every
subformula µX.ϕ of it, there is no subformula ψ1 ∧ ϕ2 of ϕ such that X is active in
both ϕ1 and ϕ2.

Kozen showed that every valid formula which is the negation of an aconjunctive for-
mula is provable. The proof proceeds by contradiction. To do so, he builds a tableau
(sort of circular proof) for this formula, then assigns a formula to each node of the
tableau. The role of these formulas is to record the fixed points that are regenerated,
and in which context, in such a way that if the same fixed point is regenerated in the
same context in a future node, then the formula assigned to this node will be easily
provable. He also shows that if ϕ is non provable, then there is an infinite path whose
nodes are assigned unprovable formulas. Since in this infinite path, some fixed point
formula will be eventually regenerated in the same context, this yields a contradiction.
Clearly, this argument is not constructive. Moreover, Kozen was not able to show that
for every valid formula ϕ, there is a valid formula ¬ψ where ψ is aconjunctive, such
that ¬ψ ⊢ ϕ. Although partial, this completeness result restricted to aconjunctive
formulas will be crucial in the upcoming proofs of completeness.

• Nine years later, in 1992, Dam attempted another approach by introducing an inter-
mediate class which is the class of Büchi automata’s encoding [Dam92]. His encoding
of NBW is very different from ours. Indeed, he duplicates a Büchi automaton B into
a collection of Büchi automata {Bi}i having each exactly one accepting state among
the accepting states of B. Then he encodes B as the disjunction of the encodings of
the Bi, each of these formulas having exactly one ν-connective. The consequence of
such method is that the image of NBW by this encoding forms a class of formulas less
rich than the one obtained by our encoding, since its formulas contain at most one
alternation of fixed points. Dam showed that every valid formula which is the negation
of his encoding of an NBW is provable. The proof of this result is not constructive.
He conjectured that every formula is provably equivalent to the encoding of a NBW,
and proposed some steps to show this result.

• The first proof of completeness for the full linear-time µ-calculus was given by Kaivola
in 1995 [Kai95]. The intermediate class he uses is the class of banan (bi-aconjunctive
non-alternating normal) form formulas, which are the aconjunctive formulas whose
negations are also aconjunctive, and having no alternation of fixed points. Aconjunc-
tivity here is the same notion as in Definition 12.1. Kaivola shows, using the same
non-constructive argument as Kozen and specializing it to the linear-time case, that
every valid aconjunctive (thus banan form) formula is provable. He also shows that
every formula is provably equivalent to a banan form one, using a structural induction
on the formula. Inside this induction, there is a call to the first result (aconjunctive
and valid implies provable), thus this second result is not constructive itself.

• Independently from Kaivola, Walukiewicz proposes in 1995 [Wal95] a completeness
proof for the whole branching-time µ-calculus. His argument uses the intermediate
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class of disjunctive formulas. We will not formally define disjunctive formulas, but let
us just notice that their negations are very close to deterministic alternating parity
automata over trees. Walukiewicz shows in a constructive way that every valid for-
mula which is the negation of a disjunctive formula, is provable. The second part of
the completeness, that is, every formula is provably equivalent to the negation of a
disjunctive formula, is much more involved and makes a detour by (weakly) aconjunc-
tive formulas. Actually, Walukiewicz noticed that what makes Kozen’s completeness
proof for aconjunctive formulas work, is the particular shape of the tableau associated
aconjunctive formulas. He isolated this condition, which he called thin, and showed
using the same (non-constructive) argument as Kozen, that every formula having a
thin refutation is provable. This is precisely where he loses constructivity.

The original sin. Notice that in all these proofs, except for Dam’s one, the non construc-
tivity originates from Kozen’s argument of completeness for aconjunctive formulas. If one
could find a constructive proof for this result, all the others will be constructive as well.
Unfortunately, we do not have a clue on how to proceed to make it constructive.

Possible improvement. There might be room for improvements in our argument, for
instance by attempting to build more compact circular proofs in the different steps of the
proof. In particular, the place where the constructed circular proof can be exponentially
large is Step IV, where we use Safra’s determinization algorithm. We can wonder wether all
the complexity of the S-trees is needed, and if simpler structures may work. For instance,
we can consider Piterman trees [Pit07], a structure more succint than Safra’s trees, used to
determinize NBW and NSW into DPW, with fewer states that Safra’s construction. Even
if it happens that such techniques can be leaveraged to construct circular proofs, the most
important point and maybe the less obvious, is to show that they yield translatable circular
proofs.

An other improvement channel is the relaxation of the translatability criterion. Recently,
we were able to show that every valid formula is provable in the circular proof system µLK⊙ω,
by generalizing Safra’s construction. This result, which will not be discussed further is this
thesis, is for the moment of no use to get a constructive completeness proof, since we are
limited by the translatability criterion, which is not satisfied by the circular proofs we
obtained.

Evaluation of the complexity. The complexity of our algorithm is far from being op-
timal. The main source of the complexity blow up is Step IV, where we call recursively
Safra’s construction in the induction of the proof of Theorem 11.3. A coarse estimation of
complexity yields a tour of exponentials. A clever implementation of this algorithm may
help to reduce this complexity, but the algorithm remains fundamentally under-optimal.

Extension to the branching-time case. The branhcing-time µ-calculus has infinite
trees as models, and in the same way that the linear-time µ-calculus corersponds to APW,
the branching-time µ-calculus enjoys the same relationship with alternating parity automata
over trees. It seems however difficult to lift our proof technique to show completeness for
the branching-time µ-calculus w.r.t. Kozen’s axiomatization. Indeed, automata over trees
are not as well behaved as automata over words, and they do not enjoy the equivalence
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properties that we used in our proof. Except for the non-determinization result, that is,
every APT can be transfromed into a NPT, all the other equivalences do not hold. For
instance, there is no algorithm to transform NPT into NBT automata, nor un algorithm to
determinize NPT. We hope though that the tools developed in the present work may help
to solve this problem.
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We hope that the reader in now convinced that:

Logics with fixed points can be equipped with infinitary proof systems
having a true proof-theoretical status which can be fruitfully applied to
other domains such as formal verification.

Instead of summarizing the work that has been done, let us review some perspectives of
interest in the continuation of our work.

Perspectives on Part I

Relating the finitary and the infinitary proof systems. The question of relating
the finitary and the infinitary proof systems is a hard question. It has been already set
as a conjecture in similar settings, for instance by Brotherston and Simpson [BS07] in the
framework of classical first-order logic with definitions.

We can ask this question at two levels. The first one is the provability: For a given
proof system S, does the proof systems µS and µSω prove the same theorems?

Problem 1:

Do µS and µSω have the same expressive power?

We have partially answered this question by showing that every provable sequent in µS
is also provable in µSω. The converse in more difficult, and we could only provide a sufficient
condition on the proof system µS and µSω (the invariant property Definition 2.40) and a
condition on the circular proofs to be translated (the translatability criterion Definition 2.39)
which guarantees that they can be indeed transformed into finitary proofs.

If the answer to Problem 1 happens to be positive, we see two ways to proceed:

• Either by finding a semantics of formulas, common to both µS and µSω. The idea is
to show soundness for µSω (that is, if a formula is provable in µS then it is valid w.r.t.
this semantics) and completeness for µS (that is, if a formula is valid then it is provable
in µSω). This is the approach taken by Brotherstone and Simpson [BS07], who could
only show soundness of their circular proof system but failed showing completeness.

217
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• Or by using combinatorial techniques, that is by showing a translation procedure that
transforms µSω proofs into µS ones. This is the approach adopted in this thesis. It
has the advantage of being constructive by essence.

Recently, the conjecture of Brotherston and Simpson has been been answered by Berard
and Tatsuta [BT17] and by Alex Simpson [Sim17].

Finitary and circular proof systems can be related at a second level, which is that of
the computational behaviour. By the Curry-Howard correspondence, proofs correspond
to programs. A natural question then is to know if the proofs of µS and µSω respectively
denote the same set of programs.

Problem 2:

Do µS and µSω have the same computational power?

If the answer happens to be positive, a way to proceed is by using proof semantics.
For that, we have to find a domain of interpretation for proofs, common to both µS and
µSω. If we denote by JπK, the interpretation of a µS or a µSω proof π, the question 2) can
be reformulated as follows: For every proof Π of µSω (resp. µS), is there a µS (resp. µSω)
proof π such that JΠK = JπK?

An example of such proof semantics is computational ludics, where we interpreted the
proofs of µMALLP and µMALLPω respectively (Chapter 5).

Extending the cut-elimination to richer logics. We have seen how to extend the
cut-elimination rules of a given proof system S to get cut-elimination rules for the proof
systems µS∞ and µSω. The question of cut-eliminability remains open in its generality.
We have given a positive answer to this question it in the case of µMALL∞ (Chapter 3)
and we hinted the extension to other systems such as µLL∞, µLK∞ and µLK⊙∞. As dis-
cussed earlier, it seems difficult to keep circularity after cut-elimination (this is the case
for µALL∞, µMALL∞, µLL∞, µLK∞ for instance), it is natural then to ask the question of
cut-eliminability directly in the infinitary setting rather than in the circular one. In the
same vein, another interesting question would be to characterize those circular proofs that
remain circular after cut elimination.

Problem 3:

Does the proof system µS∞ admit the cut-elimination property?

Problem 4:

Characterize those µSω proofs that remain circular after cut-elimination.
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Capturing productivity by validity condition. The cut elimination result for infini-
tary proofs says (in particular) that if a pre-proof satisfies the validity condition, then it is
productive (that is, the cut-elimination process eventually produces a part of the result).
This is interesting, since the static property of validity guarantees the dynamic property of
productivity. We can go further, and ask whether the validity condition characterizes pro-
ductivity. The answer is no since there are pre-proofs having a productive cut-elimination
but which fall out of the scope of our validity criterion. This is the case of the following
pre-proof for instance, which reduces to a (valid!) pre-proof:

(⋆)

⊢ νY .Y

(Ax)
⊢ µY .Y , νX.X

(ν)
⊢ µY .Y , νX.X

(Cut)
(⋆) ⊢ νX.X

We can wonder whether there is a static validity criterion that captures productivity:

Problem 5:

Find a validity criterion that characterizes productivity of infinitary proofs.

In general, the problem of checking the productivity of a circular proof is undecidable
(this is the case for µMALLω for instance). Thus, if we find a validity criterion characterizing
productivity (that is answering question 5), it would be necessarily undecidable in turn. But
in practice we need a validity criterion which is decidable, an alternative question is then to
approximate productivity by a decidable correctness criterion.

Problem 6:

Find decidable validity criteria that guarantee the productivity of infinitary
proofs.

Infinitary proofs in natural deduction. The translation between sequent calculus and
natural deduction is usually immediate in the finitary case. In the infinitary and the circular
setting, this is not the case anymore. Designing infinitary and circular proof systems in
natural deduction is crucial, since real-life programs are usually in correspondence with this
formalism of proofs rather than with sequent calculus.

Problem 7:

Develop infinitary proof theory in the natural deduction setting.

The following goal is not a precise scientific question, but rather a more general per-
spective. Infinitary and circular proofs have received much less attention than proofs using
induction from the scientific community. This situation is changing thanks to recent fun-
damental and applied work ??, we hope that infinitary and circular proofs will become
standard in the proof-theoretical literature.
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Perspective

Integrate circular reasoning to theorem provers. and circular programs to
programming languages.

Perspectives on Part II

Improving the complexity of the algorithm. In Part II, we have given a constructive
completeness proof for the linear-time µ-calculus w.r.t. Kozen’s axiomatization. One of our
motivations was the ability to provide proof certificates. Indeed, we can extract from our
constructive proof an algorithm that outputs a proof for every valid formula. This proof
can be used as a certificate. Unfortunately, the complexity of this underlying argument
is so big that we cannot imagine to use it in real-life applications. A natural question is to
find algorithms producing proof certificates with reasonable complexity.

Problem 8:

Find algorithms, with reasonable complexity, that output proofs for
valid formulas and counter-examples for non-valid ones.

A constructive completeness proof for the branching-time µ-calculus. This is a
natural question once constructive completeness has being established for the linear-time
case.

Problem 9:

Show, in a constructive way, completeness for the branching-time µ-
calculus w.r.t. Kozen’s axiomatization.

The model of automata corresponding to the branching-time µ-calculus is that of alter-
nating parity automata over trees. Automata over trees are not as well-behaved as automata
over words. And most of the automata equivalences that we have used to solve the linear
case do not hold in the branching one. It is necessary to develop other proof techniques.
For instance, if general translation procedures from circular to finitary proofs are found, we
could imagine to establish this result by first searching for a circular proof for every valid
formula, then translating this circular proof into a finitary one.
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