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Cette thèse est consacrée à l'étude des problèmes de transport optimal en géométrie sous-Riemannienne. Plus précisément, notre but est d'étendre le caractère bien-posé du problème de Monge aux cas des structures sous-Riemanniennes admettant des géodésiques minimisantes singulières. Dans une première partie, on traite le cas des distributions analytiques de rang 2 en dimension 4. On montre l'existence et l'unicité de solutions pour le coût quadratique sous-Riemannien, tant que la distribution satisfait une certaine condition de croissance. La stratégie de la preuve combine la technique de Figalli-Rifford basée sur la régularité de la distance sous Riemannienne en dehors de la diagonale en absence de géodésiques minimisantes singulières, avec une propriété de contraction de la mesure pour les courbes singulières dans l'esprit d'un résultat de Cavalletti et Huesmann. Dans une deuxième partie, on s'intéresse aux problèmes de régularité de la distance sous-Riemannienne et on définit sur les groupes de Carnot, les structures sous-Riemanniennes h-idéales sur lesquelles la distance sous-Riemannienne est h-semiconcave. Sous une certaine hypothèse de la distribution, on prouve heuristiquement la propriété MCP sur les groupes de Carnot. On prévoit que cette propriété MCP est une condition suffisante pour appliquer la méthode de Cavalletti-Huesmann afin de prouver que le problème de Monge est bien-posé.

Chapter 1 Introduction

This thesis, running from 2014 to 2017, was an occasion to discover the Theory of Optimal Transportation and sub-Riemannian Geometry. The mass transportation theory found its roots through the French geometer Monge and became a popular subject in various areas of sciences including economics, optic such as the reflector problem, meteorology and oceanography. On the other hand, important motivations from the field of thermodynamics involving hyperbolic geometry, analysis of hyper elliptic operators etc, made the first steps towards sub-Riemannian geometry. This is a natural geometry in mechanics to study systems with nonholonomic constraints like skates, wheels, rolling balls etc, for reference see the book [START_REF] Montgomery | A tour of sub-Riemannian geometries, their geodesics and applications[END_REF]. The aim of this thesis is to present some of the recent progress in solving the Monge problem on sub-Riemannian manifolds.

Optimal mass transportation theory was born in the XV III e century. It was raised by the French mathematician and physicist Gaspard Monge through one of his remarkable writings [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF], Mémoire sur la théorie des déblais et des remblais, published in 1781. He has formulated a mathematical problem of "Excavations and enbankements", concerning with the transport of a pile of soil to completely fill up an excavation with minimal transport expenses. We shall model the pile of soil by a measure µ and the excavation by a measure ν, both defined on some measured space X. Obviously, the transport involves a conservation of mass, that is why in the sequel, we only consider probability measures. We also model the transportation by a measurable cost function c(x, y), which denotes the cost of transporting a unit of mass from a position x to some position y. Thus, the Monge problem can be formulated as follows:

Definition 1. (The Monge Problem) Let X be a measured space, and c : X × X → [0, +∞[ be the cost function. Let µ, ν be two probability measures on X. Then, the Monge problem consists in minimizing the transportation cost X c(x, T (x)) dµ(x), among all the measurable maps T : X → X pushing forward µ to ν (we denote it by T µ = ν).

Figure 1.2 -The Monge transportation problem

When T satisfies the transport condition T µ = ν and minimizes the cost, we call it an optimal transport map. Monge proposed a method to construct an optimal transport map without proving it. And the Monge problem has stayed with no solution for centuries. For this purpose, the Academy of Paris offered the Bordin prize [START_REF] Darboux | [END_REF] in 1884. However, a rigorous proof of the subject was claimed by Appell [START_REF] Appell | Mémoire sur les déblais et les remblais des systèmes continus ou discontinus[END_REF] in 1887. Studied by many other researchers, Sudakov [START_REF] Sudakov | Geometric problems in the theory of infinite dimensional distributions[END_REF] showed in 1979 solutions for the Monge problem as mappings from R n to R n . The Russian mathematician and economic Leonid Kantorovich, who received a Nobel prize in 1975 in economics, drew an attention to the Monge problem and saw a way to connect it to his work which gave the possibility to find solutions and to study them. In particular, we turn to his work [START_REF] Kantorovitch | On the translocation of masses, C.R. (Docklady)[END_REF] in 1942. He introduced a relaxation form of the Monge problem by representing the transportation as a probability measure.

Definition 2. (The Kantorovich Problem) Let X be a measured space, and c : X × X → [0, +∞[ be the cost function. Let µ, ν be two probability measures on X. Then, the Kantorovich problem consists in minimizing the transportation cost X×X c(x, y) dα(x, y), among all the probability measures α on X × X such that P 1 (α) = µ and P 2 (α) = ν (with P i : X × X → X the projection map into the i-th component).

Moreover, Kantorovich shows that the minimization problem introduced in Definition 2 is equivalent to the following maximization problem: Definition 3. (The Dual Problem) Let X be a measured space, and c : X × X → [0, +∞[ be the cost function. Let µ, ν be two probability measures on X. Then, the dual problem consists in maximizing the following quantity X ψ(y)dν(y) -X ϕ(x)dµ(x), among all the functions (ϕ, ψ) ∈ L 1 (µ) × L 1 (ν) such that ψ(y) -ϕ(x) ≤ c(x, y).

Since that time, the transport problem is known as the "Monge-Kantorovich transport problem". This formulation allows to highlight the concept of c-convexity, where c is the given cost function. A way to see that a function φ is c-convex, is to show that for each point we can put under the function φ a support function of the form x → -c(x, y) + constant.

Again, the work of Yann Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] in 1991, gave a new birthdate for the Monge problem. He showed existence and uniqueness of solution for the quadratic Monge problem for a quadratic Euclidean cost. Then, McCann [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF] provided the solution for the Riemannian case where the cost is given by the quadratic geodesic distance. These types of results are based on the local Lipschitzness of the cost function. In case the probability measures are compactly supported, regularity properties of the solutions for the dual problem are obtained from the regularity of the cost. Recently, Cavalletti and Huesmann [START_REF] Cavalletti | Existence and uniqueness of optimal transport maps[END_REF] develop a new technic to solve the Monge problem, based on a contraction property on proper non-branching measured metric spaces. This contraction property concerns the behavior of the measure under the shrinking of sets to points. The non-branching condition is necessary to get some consequences of the contraction property. In particular, their Chapter 1 : Introduction proof covers spaces enjoying the (k,n)-measure contraction property, abbreviated MCP(k,n). The notion of MCP has been introduced by Ohta [START_REF] Ohta | On the measure contraction property of metric measure spaces[END_REF], and Sturm [START_REF] Sturm | On the geometry of metric measures spaces II[END_REF]. For sake of simplicity, we proceed to define the notion of measure contraction property on measured metric spaces with negligible cut locus. Definition 4. A measured metric space (X, d, µ) is said to be with negligible cut locus if for every x ∈ X, there exists a measurable set C(x) ⊂ X with µ(C(x)) = 0 such that ∀y ∈ X\C(x), there is a unique minimizing geodesic γ x : [0, 1] → X connecting x to y.

According to the Ohta definition [START_REF] Ohta | On the measure contraction property of metric measure spaces[END_REF] (see also [START_REF] Rifford | Ricci curvature in Carnot groups[END_REF]), we have the following definition: Definition 5. Let (X, d, µ) be a measured metric space with negligible cut locus and k ∈ R, n > 1 be fixed. We say that (X, d, µ) satisfies MCP(k, n) if for every x ∈ X and every measured set A ⊂ X (provided that A ⊂ B(x, π n -

1/k) if k > 0) with 0 < µ(A) < ∞, µ A s,x ≥ A s s k (sd(x, z)/ √ n -1) s k (d(x, z)/ √ n -1) n-1 dµ(z)
where A s,x is the s-interpolation of A from x defined by A s,x := γ x (s)| γ x (0) = x, γ x (1) ∈ A\C(x) , ∀s ∈ [0, 1]. 

•x A A s,x
s k (t) :=            sin( √ kt) √ k if k > 0 t if k = 0 sinh( √ -kt) √ -k if k < 0 .
For example, R n equipped with a constant Riemannian metric satisfies MCP(0,n). The MCP(k,n) can be regarded as a generalized notion of the lower curvature bound on Riemannian manifolds. Let (X, d, µ) be a complete Riemannian manifold, the condition MCP(k,n) is equivalent to require that X has Ricci curvature bounded from below by k ∈ R (see Theorem 3.2 in [START_REF] Ohta | On the measure contraction property of metric measure spaces[END_REF]), and n ≥ 1 is the upper bound of the dimension of the space. Recently, it has been studied on Heisenberg groups by Juillet [START_REF] Juillet | Geometric inequalities and generalized Ricci bounds on the Heisenberg group[END_REF] (see also Rifford [Rif13] and Rizzi [START_REF] Rizzi | Measure contraction property of Carnot groups[END_REF] for other MCP type results on Carnot groups). This thesis is concerned with the study of the Monge problem in sub-Riemannian cases. The sub-Riemannian geometry is defined on a manifold M , on which every trajectory has velocity contained in a subbundle ∆ of the tangent bundle T M , called "horizontal" distribution. Such trajectories are called "horizontal" paths. Riemannian manifolds appear as a special case of sub-Riemannian geometry on which ∆ = T M . Roughly speaking, in sub-Riemannian geometry, we cannot move in all directions. We always have a kind of "hidden" or "forbidden" directions. Let us describe a simple model. We consider in R 3 with coordinates (x, y, z), the distribution ∆ generated by the two smooth vector fields X 1 := ∂ x -y∂ z and X 2 := ∂ y + x∂ z . In this case, horizontal paths t → (x(t), y(t), z(t)) are those paths satisfying ż(t) = x(t) ẏ(t) -y(t) ẋ(t). The study of horizontal curves is useful in determining the sub-Riemannian distance between two points. The latter is defined as the infimum of the lengths of all horizontal paths joining these two points. In the bracket generating case, the Chow-Rashevsky Theorem (see [START_REF] Chow | Über systeme von linearen partiellen Differentialgleichungen ester ordnung[END_REF], [START_REF] Rashevsky | About connecting two points of a completely nonholonomic space by admissible curve[END_REF]) guarantees us that the sub-Riemannian distance between two points is finite. One can ask what is the shortest path one should consider to transport a mass from one position to another. It is relevant to concentrate on developing similarities between Riemannian and sub-Riemannian geometries. However, there are major differences. In particular, the space of horizontal curves joining two points can have singularities. A minimizing geodesic is defined as a horizontal curve which minimizes the distance between its endpoints. The existence of "singular" paths is of central importance to sub-Riemannian geometry because singular paths can be minimizers.

Chapter 1 : Introduction

The study of the Monge problem in the sub-Riemannian geometry has been concerned with the sub-Riemannian quadratic cost (given by the square of the sub-Riemannian distance). It began with a paper by Ambrosio and Rigot [START_REF] Ambrosio | Optimal transportation on the Heisenberg group[END_REF] about the transportation problem in Heisenberg groups, seen as the prototype of the sub-Riemannian geometry. However, Agrachev and Lee [START_REF] Agrachev | Optimal transportation under nonholonomic constraints[END_REF] proved that the local Lipschitzness of the squared sub-Riemannian distance is sufficient to guarantee existence and uniqueness of solutions for the Monge problem. Then, Figalli and Rifford [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF] removed the assumption of Lipschitzness on the diagonal. Their proof considered on the diagonal was based on a Pansu-Rademacher Theorem. Furthermore, Rifford [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF] proved the local semiconcavity of the sub-Riemannian distance in absence of singular minimizing curves. The semiconcavity brings us closer to a smooth regularity: it can be seen locally as the sum of a smooth function and a concave function. Such result shows that, in absence of singular minimizing paths, sub-Riemannian distances enjoy the same kind of regularity as Riemannian distances. For example, in the case of a two-rank distribution ∆ on a three-dimensional manifold M , we have existence and uniqueness of solutions for the sub-Riemannian quadratic cost because non-trivial singular horizontal paths are included in the Martinet surface given by Σ ∆ := {x ∈ M |∆(x) + [∆, ∆](x) = T x M } which has Lebesgue measure zero. In general, we do not know if the Monge problem (for the sub-Riemannian quadratic cost) has solutions.

Our aim is to extend previous results on existence and uniqueness of optimal transport maps to cases of sub-Riemannian structures which admits many singular minimizing geodesics. The first relevant case to consider is the one of rank-two distributions in dimension four. In this case, as shown by Sussman [START_REF] Sussmann | A cornucopia of abnormal sub-Riemannian minimizers[END_REF], singular horizontal paths can be seen (locally) as the orbits of a smooth vector field, at least, outside a set of Lebesgue measure zero. Our aim is to show that, in the case of rank-two analytic distribution in dimension four, we have existence and uniqueness of solutions for the sub-Riemannian quadratic cost, as soon as the distribution satisfies some growth condition.

Theorem 1. Let M be a real analytic manifold of dimension 4 and (∆, g) be a complete analytic sub-Riemannian structure of rank 2 on M such that ∀x ∈ M, ∆(x) + [∆, ∆](x) has dimension 3, (1.1)

where [∆, ∆] := Span [X, Y ] | X, Y sections of ∆ .
Let µ, ν be two probability measures with compact support on M such that µ is absolutely continuous with respect to the Lebesgue measure.

Then, there is existence and uniqueness of an optimal transport map from µ to ν for the sub-Riemannian quadratic cost c : M × M → [0, +∞[ defined by: c(x, y) := d 2 SR (x, y), ∀(x, y) ∈ M × M.

This theorem is proved in chapter 3. Our strategy to prove it, is twofold. It combines the technique used by Figalli-Rifford [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF] (see also the paper by Agrachev-Lee [START_REF] Agrachev | Optimal transportation under nonholonomic constraints[END_REF]) which is based on the regularity of the distance function outside the diagonal in absence of singular minimizing curves, together with a localized contraction property for singular curves in the spirit of the previous work by Cavalletti and Huesmann [START_REF] Cavalletti | Existence and uniqueness of optimal transport maps[END_REF].

As we saw before, in order to obtain existence and uniqueness for optimal transport maps, it is convenient to be able to show that MCP is satisfied to apply Cavalletti-Huesmann's method. So we deal with regularity issues of the sub-Riemannian distance and we define a class of sub-Riemannian structures on Carnot groups, called h-ideal sub-Riemannian structures, on which the sub-Riemannian distance d SR is h-semiconcave. Such regularity is fundamental. Together with an assumption on the distribution (see ASSUMPTION 1 (6.10)), we prove the MCP property on Carnot groups as a consequence of the upper bound of the horizontal symmetrical Hessian of d SR .

Proposition 1. Let G be a Carnot group whose first layer is h-ideal and satisfies AS-SUMPTION 1. Then , there is

N > 0 such that (G, d SR , L n ) satisfies M CP (0, N ).
The differentiability of an h-semiconcave function is the consequence of a sub-Riemannian version of the famous theorem of Alexandrov [START_REF] Magnani | Lipschitz continuity, Alexandrov theorem and characterizations for H-convex functions[END_REF] (see also [START_REF] Danielli | The theorem of Busemann-Feller-Alexandrov in Carnot groups[END_REF]) which states that an h-semiconcave function is two times differentiable a.e. with respect to the horizontal directions whenever its second order horizontal derivatives are Radon measures.

After the detailed presentation and explanation of our research work, we now proceed to the structure of this thesis.

Chapter 2 can be seen as a general introduction of the optimal mass transportation problem. It concerns the study of the Monge-Kantorovich problem. We investigate a powerful duality formulation due to Kantorovich. The main purpose is to prove existence and uniqueness of an optimal transport map solution for this mass transportation problem. The chapter ends with the statement of preliminary results of existence and uniqueness of solutions for the Monge problem, in the case Chapter 1 : Introduction of quadratic Euclidean cost and the quadratic Riemannian cost which refer respectively to Theorems by Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] and McCann [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF].

Chapter 3 presents the basics of the sub-Riemannian geometry. We refer to the distribution as the horizontal space, and objects tangent to it as horizontal. We introduce the Hörmander condition as a bracket generating condition under which the Chow-Rashevsky is true. The Chow-Rashevsky Theorem gives us a license to search for minimizing geodesics, i.e. shortest horizontal curves. We study the Endpoint map on a sub-Riemannian manifold and its singularities. This End-point map yields a horizontal path passing through a fixed point to its endpoint. Its critical points are called singular paths for the distribution. They play a major role in this thesis.

In chapter 4, we turn our attention to the optimal transport problem on sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under regularity assumptions for the sub-Riemannian distance, Figalli and Rifford generalized the Brenier-McCann Theorem. We also give an introduction to Cavalletti-Huesmann's method to prove existence and uniqueness of the optimal transport map, using a measure contraction assumption.

Chapter 5 is devoted entirely to the proof of the theorem 1. This section is the subject of an article to appear [START_REF] Badreddine | Mass transportation on sub-Riemannian structures of rank 2 in dimension 4, to appear[END_REF].

Then, we define in chapter 6 the class of h-ideal sub-Riemannian structures on Carnot groups. We present some analytic tools necessary to the understanding of the h-semiconcavity. The chapter ends by establishing the MCP on Carnot groups under suitable regularity assumptions. Unfortunately, this chapter is prospective. Until now, there are no obvious examples of Carnot groups satisfying these hypotheses.

Finally, in chapter 7, we make some comments about this work and try to sketch some research perspectives that may lead to some interesting results.

Chapter 2 Optimal Transport Theory

In the sequel, M denotes a smooth connected manifold without boundary of dimension n ≥ 2.

The Monge Problem

The transport problem considered by Monge, was to transport some mass from one place to another with minimal cost. A current formulation of the Monge problem is the following: Definition 6 (Transport map). Let µ, ν be two probability measures on M , and c : M × M → [0, +∞[ be the cost function. We call transport map from µ to ν, any µ-measurable application T : M → M such that T µ = ν.

The condition T µ = ν means that T is pushing forward µ to ν, i.e. for any ν-measurable set B in the target space M ,

ν(B) = µ(T -1 (B)).
Therefore, the Monge problem is modeled as an optimal transport problem minimizing the transportation cost M c(x, T (x))dµ(x), among all the transport maps T : M → M.

We check that T µ = ν is equivalent to a change of variables formula. In fact, consider M = R n and µ, ν two probability measures on M absolutely continuous with respect to the Lebesgue measure. We take µ = f dx and ν = gdy, with Chapter 2 : Optimal Transport Theory f, g ∈ L 1 (R n , R). Then, for any ν-measurable set B in the target space, the condition T µ = ν yields

T -1 (B) f (x)dx = B g(y)dy.
If T is a diffeomorphism, we perform the change of variable y = T (x), that leads to

T -1 (B) f (x)dx = T -1 (B) g(T (x))|det(D x T )|dx, we deduce |det(D x T )| = f (x) g(T (x))
, µ -a.e. x ∈ R n , called the Monge-Ampère equation.

Several difficulties arise in solving the Monge problem. First of all, transport maps may not exist.

Example 1. We consider in R n the two probability measures µ, ν given by

µ = δ x , ν = 1 2 δ y 1 + 1 2 δ y 2
where x, y 1 = y 2 ∈ R n and δ a denotes the Dirac mass at point a ∈ R n . There are no transport maps from µ to ν. If such a map T exists, then

1 2 = ν({y 1 }) = µ(T -1 ({y 1 })) = 0 or 1 which is impossible.
Secondly, minimizers of the Monge problem may not be unique.

Example 2. Let µ,ν be two probability measures given by

µ = χ [0,1] L 1 , ν = χ [1,2] L 1 ,
the restrictions of the Lebesgue measure L 1 on the intervals [0, 1] and [1, 2] respectively. There are two maps T 1 (x) = x + 1 and T 2 (x) = 2 -x, pushing forward µ to ν for the cost function c(x, y) := |x -y|, ∀x, y ∈ R.

The fact that the constraint T µ = ν is highly non linear with respect to T is the main difficulty to deal with the Monge problem. That is why, Kantorovich proposed a relaxed form of the problem.

The Kantorovich Problem

We denote by P i : M × M → M the projection map into the i-th component.

Definition 7 (Transport plan). Let µ, ν be two probability measures on M . We denote by Π(µ, ν) the set of probability measures α in the product space M × M with P 1 (α) = µ and P 2 (α) = ν.

Any measure α ∈ Π(µ, ν) is called transport plan between µ and ν.

The set Π(µ, ν) of transport plans between µ and ν is a convex set which can not be empty (it always contains the product µ × ν). The property P 1 (α) = µ means that the first marginal of α is equal to µ, i.e.

for any µ-measurable set A ⊆ M, we have α(A × M ) = µ(A).

The definition P 2 (α) = ν is similar with the second marginal of α, i.e.

for any ν-measurable set B ⊆ M, we have α(M × B) = ν(B). This is also equivalent to have for every

(ϕ, ψ) ∈ L 1 (µ) × L 1 (ν), M ×M ϕ(x) + ψ(y) dα(x, y) = M ϕ(x)dµ(x) + M ψ(y)dν(y).
The Kantorovich problem consists in minimizing the transportation cost M ×M c(x, y)dα(x, y), among all transport plans α ∈ Π(µ, ν).

We notice that by considering a transport map T : M → M from µ and ν, we can define a transport plan α ∈ Π(µ, ν) as follows

α := (Id × T ) µ.
We say that the transport plan α is induced by a transport map T . This shows that the Kantorovich problem is more general that the Monge problem: it is a relaxation form of the Monge problem.

Practically, the Monge problem consists in transporting each mass as it is, while the Kantorovich problem allows to separate the starting mass and send the different parts to different places. The difference between the Monge problem and the Kantorovich problem can be seen through the following example:

Chapter 2 : Optimal Transport Theory Example 3. Returning to Example 1, consider the two probability measures on R n given by

µ = δ x , ν = 1 2 δ y 1 + 1 2 δ y 2 .
In contrary to transport maps, there is a transport plan α between µ and ν, solution of the Kantorovich problem, given by

α = 1 2 δ (x,y 1 ) + 1 2 δ (x,y 2 ) .
The Kantorovich problem comes down to a linear minimization problem (with respect to α) on a set of constraints Π(µ, ν) which is convex and weakly compact. The existence of optimal transport plans becomes easy.

We recall that the support of a measure µ, denoted by supp µ, refers to the smallest closed set

F ⊂ M of full mass µ(F ) = µ(M ) = 1.
Theorem 2 (Existence of optimal transport plans). Let µ, ν be two probability measures compactly supported on M . Assume that the cost function c : M × M → [0, +∞[ is continuous. Then, there is at least one optimal transport plan α ∈ Π(µ, ν) solving the Kantorovich problem.

Proof of Theorem 2. We notice easily that the product µ × ν is a transport plan. Moreover, all the transport plans are concentrated on supp µ × supp ν which is compact (because by assumption, supp µ , supp ν are compact). Without loss of generality, we can assume that M is compact. The existence of optimal transport plans is a consequence of the weak closure of Π(µ, ν) together with the continuity of the cost function c.

We now introduce the concept of c-cyclically monotonicity.

Definition 8. (c-cyclically monotone) A subset X ⊂ M × M is said to be ccyclically monotone if for every N ∈ N and every (x 1 , y 1 ), . . . ,

(x N , y N ) ∈ X it holds N i=1 c(x i , y i ) ≤ N i=1 c(x i+1 , y i ) with x N +1 = x 1 .
The following proposition shows a specific property of optimal transport plans. We refer the reader to Theorem 3.2.5 in [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF] and Chapter 5 in [START_REF] Villani | Optimal transport, Old and New[END_REF].

Proposition 2. Let µ,ν be two probability measures compactly supported on M , and let the cost function c : M × M → [0, +∞[ be continuous. Then, there is a c-cyclically monotone set S ⊂ supp µ × supp ν such that for any optimal transport plan α ∈ Π(µ, ν), supp α ⊂ S.

Optimal conditions to establish the equality between the infimum of the Monge problem and the infimum of the Kantorovich have been proved by Pratelli [START_REF] Pratelli | On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation[END_REF]: transport maps do exist as soon as the initial measure is assumed to be non-atomic. It can be seen through examples 1 and 3. Since transport plans can be approximated by plans coming from transport maps, it is predicted that the infimum of the Kantorovich problem coincides with the infimum of the Monge problem.

The Dual Problem

The dual problem is a basic concept in the optimal transport theory, considered as another face of the original Kantorovich problem.

In the textbook [START_REF] Villani | Optimal transport, Old and New[END_REF], Villani explains the concept of Kantorovich duality in an informal way and illustrate how the Monge problem can be reformulated from an economic viewpoint. Consider a large consortium of bakeries and cafés, there is a company which has in charge of the transportation of productions, by buying bread at the bakeries and selling them to the cafés. The original Monge-Kantorovich problem starts with the notion of cost, while in the dual problem, the central notion is the price. Let us denote by ϕ(x) the price at which bread is bought at bakery x and ψ(y) the price at which it is sold at café y. So the transportation cost becomes ψ(y) -ϕ(x) instead of the original cost c(x, y). As to be competitive, the company needs to set up prices in such a way that ψ(y) -ϕ(x) ≤ c(x, y), ∀x, y and the problem becomes to maximize the profits. This approach leads to a dual formulation (see chapter 5 [START_REF] Villani | Optimal transport, Old and New[END_REF]) given by

inf α∈Π(µ,ν) M ×M c(x, y)dα(x, y) = sup (ϕ, ψ) ∈ L 1 (µ) × L 1 (ν) ψ(y) -ϕ(x) ≤ c(x, y) M ψ(y)dν(y) - M ϕ(x)dµ(x) . (2.1)
Chapter 2 : Optimal Transport Theory This leads to find a pair of integrable functions (ϕ, ψ) optimal on the right-hand side, and a transport plan α optimal on the left-hand side. The pair of functions (ϕ, ψ) should satisfy ψ(y) -ϕ(x) ≤ c(x, y). Then, for a given y, ψ(y) will be the infimum of ϕ(x) + c(x, y) among all x. For a given x, ϕ(x) will be the supremum of ψ(y) -c(x, y) among all y. So it makes sense to describe a pair of integrable functions (ϕ, ψ) as follows

ϕ(x) = sup y∈M ψ(y) -c(x, y) , ∀x ∈ M and ψ(y) = inf x∈M ϕ(x) + c(x, y) , ∀y ∈ M.
We may now introduce the concept of c-convexity which turns out later to be an indispensable tool for existence of optimal transport maps.

Definition 9 (c-convexity). We say that a function ϕ : 

M → R ∪ {+∞} not identically +∞, is c-convex if there exists a function ψ : M → R ∪ {±∞} such that ϕ(x) = sup y∈M ψ(y) -c(x, y) , ∀x ∈ M.
Γ ϕ := (x, y) ∈ M × M | ϕ c (y) -ϕ(x) = c(x, y) ,
which is a closed convex set.

For every x ∈ M , we define the c-subdifferential of ϕ at x by

Γ ϕ (x) := y ∈ M |(x, y) ∈ Γ ϕ .
We may indeed assume that the dual problem can be reduced to find a c-convex

function ϕ ∈ L 1 (µ) such that inf α∈Π(µ,ν) M ×M c(x, y)dα(x, y) = M ϕ c (y)dν(y) - M ϕ(x)dµ(x) (2.2)
where, by definition of c-convex functions, the constraint of the dual problem ϕ c (y) -ϕ(x) ≤ c(x, y) is satisfied.

The pair of functions (ϕ, ϕ c ) solution of the dual problem (2.2), is called the Kantorovich potentials.

We give here a characterization of the supports of optimal transport plans which are c-cyclically monotone sets (see Theorem 3.2.13 in [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]).

Proposition 3. Let S ⊂ M × M be a c-cyclically monotone compact set. Then, there is a c-concave function ϕ valued in R, such that

ϕ(x) = sup y∈M ϕ c (y) -c(x, y) , ∀x ∈ M ϕ c (y) = inf x∈M ϕ(x) + c(x, y) , ∀y ∈ M and S ⊂ Γ ϕ .
The fact that the infimum and supremum are attained is straigthforward from the continuity of ϕ, ϕ c and the compactness of S.

Theorem 3. Let µ,ν be two probability measures compactly supported on M , and let the cost function c : M × M → [0, +∞[ be continuous. Let (ϕ, ϕ c ) be the Kantorovich potentials, solution of the dual problem (2.2). Then, any transport plan α ∈ Π(µ, ν) is optimal if and only if supp α ⊆ Γ ϕ .

We say that α is concentrated on Γ ϕ .

Proof of Theorem 3. Let (ϕ, ϕ c ) be the Kantorovich potentials, solution of the dual problem and let α ∈ Π(µ, ν) be an optimal transport plan. So, we have

M ×M c(x, y)dα(x, y) = M ϕ c (y)dν(y) - M ϕ(x)dµ(x). Since α ∈ Π(µ, ν), M ×M c(x, y)dα(x, y) = M ×M ϕ c (y) -ϕ(x) dα(x, y) Chapter 2 : Optimal Transport Theory ⇒ M ×M c(x, y) -ϕ c (y) + ϕ(x) dα(x, y) = 0.
As c(x, y) ≥ ϕ c (y) -ϕ(x), ∀x, y ∈ M , then c(x, y) = ϕ c (y) -ϕ(x) for almost every (x, y) ∈ supp α.

This shows that

supp α ⊆ Γ α .

Reciprocally, let α ∈ Π(µ, ν) such that supp α ⊆ Γ ϕ . Then, for any transport plan β ∈ Π(µ, ν), we have

M ×M c(x, y)dα(x, y) = M ϕ c (y)dν(y) - M ϕ(x)dµ(x) ≤ M ×M c(x, y)dβ(x, y)
which implies that α is optimal.

Theorem 4. Let µ,ν be two probability measures compactly supported on M , and let the cost function c : M ×M → [0, +∞[ be continuous. Let (ϕ, ϕ c ) be the Kantorovich potentials, solution of the dual problem (2.2). Assume that for µ-a.e. x ∈ M , Γ ϕ (x) is a singleton. Then, there is a unique transport map T : M → M from µ to ν such that Γ ϕ (x) = T (x) , µ -a.e. x ∈ M.

Proof of Theorem 4. By assumption, there is a Borel set N such that µ(N ) = 0 and for every x / ∈ N , there is y x ∈ M such that Γ ϕ (x) = {y x }. Hence, for every x ∈ M \N , and every y ∈ Γ ϕ (x), we have y = y x . We set T (x) := y x for µ-a.e.

x ∈ M and the conclusion follows.

In other words, the problem of existence and uniqueness of optimal transport maps can be reduced to prove that Γ ϕ is concentrated on a graph, that is to show that for µ-a.e. x ∈ M , the set Γ ϕ (x) is a singleton.

Previous results for the Monge problem

Euclidean case

Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] showed solutions for the Monge problem for the quadratic Euclidean cost.

Theorem 5 (Brenier Theorem). Let M = R n . Let µ,ν be the two probability measures compactly supported on R n such that µ is absolutely continuous with respect to the Lebesgue measure. Let c : R n × R n → [0, +∞[ be the quadratic cost function given by c(x, y)

:= |x -y| 2 2 , ∀(x, y) ∈ R n × R n .
Then, there is a unique transport map T : R n → R n . In fact, there is a convex

function ϕ ∈ L 1 (R n ) such that T (x) = x + ∇ϕ(x), µ-a.e. x ∈ R n .
Proof of Theorem 5. We recall that, by the dual problem (2.2) and by Theorem 2, there is a convex function

ϕ ∈ L 1 (R n ) such that inf α∈Π(µ,ν) M ×M |x -y| 2 2 dα(x, y) = M ϕ c (y)dν(y) - M ϕ(x)dµ(x).
Note that ϕ is convex on R n . Thanks to the Rademacher Theorem (see Appendix B.1), since µ is absolutely continuous with respect to the Lebesgue measure, ϕ is differentiable almost everywhere on R n .

Expanding |x -y| 2 /2 into |x| 2 /2 + |y| 2 /2 -x.y yields x.y ≤ ϕ(x) + |x| 2 2 + |y| 2 2 -ϕ c (y) , ∀x, y ∈ R n .
Let (x, y) ∈ supp α be fixed. Thanks to Theorem 3, for any optimal plan α ∈ Π(µ, ν), we have supp α ⊆ Γ ϕ . Hence,

(x, y) ∈ Γ ϕ ⇔ ϕ c (y) -ϕ(x) = |x -y| 2 2 ⇔ ϕ c (y) = ϕ(x) + |x -y| 2 2 ≤ ϕ(z) + |z -y| 2 2 , ∀z ∈ R n ⇔ ϕ(x) + |x| 2 2 -x.y ≤ ϕ(z) + |z| 2 2 -z.y, ∀z ∈ R n
This means that the mapping z → ϕ(z) + |z| 2 /2 -z.y admits a minimum at x. Hence, its differential at x is equal to zero, that is

∇ϕ(x) + x -y = 0 ⇒ y = x + ∇ϕ(x).
Thus, there is a unique transport map T : M → M such that

T (x) = x + ∇ϕ(x), µ-a.e. x ∈ R n .
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Riemannian case

McCann [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF] proved solutions for the Monge problem in the Riemannian case with the cost given by the quadratic geodesic distance. We start with some basic definitions and preliminaries in the Riemannian settings.

Let (M, g) be a Riemannian manifold where M is a real smooth manifold of dimension n equipped with the inner product g x on the tangent space T x M at each point x ∈ M .

We define the geodesic distance, denoted d g , between two points x, y in M by:

d g (x, y) := inf l g (γ)| γ : [0, 1] → M s.t. γ(0) = x, γ(1) = y
where l g (γ) is the length of the curve γ given by

l g (γ) := 1 0 g γ(t) ( γ(t), γ(t)) dt.
For any x ∈ M , we define the exponential map at x by

exp x : T x M -→ M v -→ exp x (v) := γ(1)
where γ : [0, 1] → M is the unique minimizing geodesic with initial conditions γ(0) = x and γ(0) = v.

Assume that the Riemannian manifold (M, g) is equipped with the Levi-Civita connection and for every smooth curve γ : [0, 1] → M , we denote by ∇ γ the associated covariant derivative along γ. We recall that γ is said to be a geodesic if and only if ∇ γ(t) γ(t) vanishes. Here, we study geodesics using the Lagrangian approach. It seems easier to apply the Euler-Lagrange equations than calculate the coefficients of the Levi-Civita connection.

Definition 11 (Lagrangian action). Let L : T M → R be a Lagrangian function. The cost c : M × M → [0, +∞[ associated to L is given by c(x, y) := min

1 0 L(γ(t), γ(t))dt| γ : [0, 1] → M with γ(0) = x, γ(1) = y , ∀x, y ∈ M.
The Lagrangian which associates L(x, v) = g x (v, v), ∀(x, v) ∈ T M leads to the quadratic geodesic cost c = d 2 g . Let x, y ∈ M be fixed, the goal is to find a path γ : [0, 1] → M from x to y that minimizes the functional

F (γ) := 1 0 L γ(t), γ(t) dt.
We recall the Euler-Lagrange equation.

Lemma 1. Let x, y be two distinct points of M and let γ : [0, 1] → M be a minimizing path such that γ(0) = x and γ(1) = y. Then, it satisfies

∇ γ(0) L = d dt ∇ γ(0) L Proof of Lemma 1. Let > 0 , we define γ (t) = γ(t) + εh(t), ∀t ∈ [0, 1]
where h : [0, 1] → M is a random funtion such that h(0) = h(1) = 0.

We set

F (γ ε ) := 1 0 L γ ε (t), γε (t) dt.
(2.3)

At the extremum = 0, that is γ 0 (t) = γ(t), ∀t ∈ [0, 1], we have

∂F ∂ | =0 = 0.
Derivating (2.3) with respect to ε yields

∂F ∂ = 1 0 ∂ ∂ L γ (t), γ (t) dt = 1 0 ∇ γ (t) L • ∂γ ∂ + ∇ γ (t) L • ∂ γ ∂ dt = 1 0 ∇ γ (t) L • h(t) + ∇ γ (t) L • ḣ(t) dt
By the integration by parts formula, we obtain:

∂F ∂ = 1 0 ∇ γ (t) L • h(t)dt - 1 0 d dt ∇ γ (t) L • h(t)dt + ∇ γ (t) L • h(t) 1 0
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The fact that h(0) = h(1) = 0 gives

∂F ∂ = 1 0 ∇ γ (t) L - d dt ∇ γ (t) L • h(t)dt
Since the derivative of the functional F with respect to is equal to zero at = 0, we obtain

0 = 1 0 ∇ γ (0) L - d dt ∇ γ (0) L • h(t)dt
Since h is an arbitrary function, we get

∇ γ (0) L = d dt ∇ γ (0) L .
Another lemma is needed.

Lemma 2. For every (x, v) ∈ T M , we have

1 2 ∇ v L = v.
Proof of Lemma 2. Let x ∈ M . In a system of local coordinates on M given by n-real valued functions x 1 , . . . , x n , the vector fields ∂ x 1 , . . . , ∂ xn form an orthonormal basis of

T x M . A vector v ∈ T x M is given by v = n i=1 v i ∂ x i
and the components of the metric tensor at a point x ∈ M are of the form

g ij (x) = g x (∂ x i , ∂ x j ).
Therefore, we obtain

1 2 ∇ v L = 1 2 n i=1 ∂L ∂v i (x, v) ∂ x i = 1 2 n i=1 ∂g x ∂v i (v, v) ∂ x i (x) = 1 2 n i=1 ∂ ∂v i g ij (x)v i (x)v j (x) ∂ x i (x) = n i=1 g ij (x) v j (x) ∂ x i (x) = n i=1 v i (x) ∂ x i (x) = v.
We state now the McCann Theorem.

Theorem 6 (McCann Theorem). Let (M, g) be a complete Riemannian manifold. Let µ,ν be two probability measures compactly supported on M such that µ is absolutely continuous with respect to the Lebesgue measure. Let c : M × M → [0, +∞[ be the quadratic cost function given by c(x, y) := 1 2 d 2 g (x, y), ∀x, y ∈ M.

Then, there is a unique transport map T : M → M solution for the Monge problem. Moreover, there is a Lipschitz function ϕ ∈ L 1 (µ) such that

T (x) = exp x (-∇ x ϕ), µ-a.e. x ∈ M.
Proof of Theorem 6. By the dual formulation (2.2) of the Monge problem and by Theorem 3, there is a c-convex function ϕ ∈ L 1 (µ) such that for any optimal transport plan α ∈ Π(µ, ν), we have supp α ⊆ Γ ϕ . By the Kantorovich potentials definition, the function ϕ is the supremum of a family of functions x → ϕ c (y)-c(x, y) with y ∈ M , which are Lipschitz with respect to the variable x (because the Riemannian distance d g is Lipschitz). Therefore, ϕ is Lipschitz on M . Since µ is absolutely continuous with respect to the Lebesgue measure, the Rademacher theorem (see Appendix B.1) implies that ϕ is differentiable almost everywhere on M .

Chapter 2 : Optimal Transport Theory Let α ∈ Π(µ, ν) be optimal and (x, y) ∈ supp α be fixed. Then,

(x, y) ∈ Γ ϕ ⇔ ϕ c (y) -ϕ(x) = c(x, y) ⇔ ϕ c (y) = ϕ(x) + c(x, y) ≤ ϕ(z) + c(z, y), ∀z ∈ M ⇔ c(z, y) ≥ ϕ(x) -ϕ(z) + c(x, y), ∀z ∈ M. (2.4) Define the function ψ : M -→ R by ψ(z) = ϕ(x) -ϕ(z) + c(x, y), ∀z ∈ M.
Since ψ depends on z, it is differentiable at almost every z ∈ M . Moreover, using inequality (2.4), we get ψ(z) ≤ c(z, y), ∀z ∈ M, and c(x, y) = ψ(x).

(2.5)

The following lemma is crucial to conclude.

Lemma 3. Let x = ȳ in M and let ψ : M → R be a differentiable function at x such that ψ(z) ≤ 1 2 d 2 g (z, ȳ), ∀z ∈ M and equality for z = x.
Then, there is a unique minimizing geodesic γ : [0, 1] → M between x and ȳ. Moreover, ȳ = exp x(∇ xψ), where exp x is the exponential map at x.

Proof of Lemma 3. Let x = ȳ be fixed in M and γ : [0, 1] → M be a path such that γ(0) = x and γ(1) = ȳ. By hypothesis, for ε > 0 given, and h : [0, 1] → M such that h(1) = 0, we have

ψ γ(0) + εh(0) ≤ 1 2 d 2 g γ(0) + εh(0), γ(1) + εh(1) . (2.6)
By the definition of the Lagrangian action, we have

1 2 d 2 g γ(0) + εh(0), γ(1) + εh(1) ≤ 1 2 1 0 g γ(t) γ(t) + ε ḣ(t), γ(t) + ε ḣ(t) dt ≤ 1 2 1 0 L γ(t) + εh(t), γ(t) + ε ḣ(t) dt (2.7)
Thus, by (2.6) and (2.7),

1 2 1 0 L γ(t) + εh(t), γ(t) + ε ḣ(t) dt -ψ γ(0) + εh(0) ≥ 0. (2.8)
The derivative of (2.8) with respect to ε yields

1 2 1 0 ∇ γ(0) L • h(t)dt + 1 2 ∇ γ(0) L • h(t) 1 0 - 1 2 1 0 d dt ∇ γ(0) L • h(t)dt -∇ xψ • h(0) = 0 ⇒ 1 2 1 0 ∇ γ(0) L - d dt ∇ γ(0) L • h(t)dt - 1 2 ∇ γ(0) L -∇ xψ • h(0) = 0.
Using the Euler-Lagrange equation (see Lemma 1) and by Lemma 2, we obtain

∇ xψ = 1 2 ∇ γ(0) L = γ(0)
This implies that ȳ = exp x(∇ xψ).

Returning to (2.5) and thanks to the above Lemma, there is a unique optimal transport map T : M → M such that

T (x) = exp x (∇ x ψ) = exp x (-∇ x ϕ), µ-a.e. x ∈ M.
We refer the reader to the result of Bernard and Buffoni [START_REF] Bernard | Optimal mass transportation and Mather theory[END_REF] who proved existence of an optimal transport map, solution for the Monge problem when the cost is the action associated to a Lagrangian function on a compact manifold.
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Sub-Riemannian Geometry 3.1 Sub-Riemannian structure

Horizontal distribution

Let M be a smooth connected manifold without boundary of dimension n ≥ 2. A vector field X on M is a smooth map from M into T M that assigns a vector X(x) at the point x ∈ M . We denote by χ ∞ (M ) the set of all smooth vector fields.

Definition 12 (Horizontal Distribution). A smooth distribution ∆ of rank m ≤ n (m ≥ 1) on M is a rank m subbundle of the tangent bundle T M . In other terms, for each x ∈ M , we assign a m-dimensional linear subspace ∆(x) of the tangent space T x M in such a way that for an open neighborhood V x of x in M , there is m smooth vector fields X 1

x , . . . , X m x linearly independent on V x such that

∆(y) = Span X 1 x (y), . . . , X m x (y) , ∀y ∈ V x .
Such family of smooth vector fields {X 1 x , . . . , X m x } is called a local frame for the distribution ∆ in V x .

Given a smooth vector field X on M , it is said to be "horizontal" with respect to ∆ if it is a section of the distribution ∆, that is

∀x ∈ M, X(x) ∈ ∆(x).
A set of smooth vector fields {X 1 , . . . , X m } is said to be a global generating family for the distribution ∆ on M if ∀x ∈ M, ∆(x) = Span X 1 (x), . . . , X m (x) .
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In [START_REF] Sussmann | Smooth distributions are globally finitely spanned[END_REF], Sussmann proved that we can always construct a global generating family for ∆ (see also Proposition 1.1.8 [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]).

Proposition 4. Let ∆ be a smooth distribution of rank m on the n-dimensional manifold M (m ≤ n). Then, there are k = m(n + 1) smooth vector fields X 1 , . . . , X k such that ∀x ∈ M, ∆(x) = Span X 1 (x), . . . , X k (x) .

Remark 1. If m = n, then the distribution ∆ will be tangent to the manifold M , that is

∆(x) = T x M, ∀x ∈ M .
Example 4. (Heisenberg group in R 3 ) In R 3 with coordinates (x, y, z), the distribution ∆ given by

∆(x, y, z) = Span X(x, y, z), Y (x, y, z) , ∀(x, y, z) ∈ R 3 with X = ∂ x - y 2 ∂ z and Y = ∂ y + x 2 ∂ z is a distribution of rank 2 on R 3 .
Example 5. (Heisenberg group in R 2n+1 ) More generally, in R 2n+1 with coordinates x = (x 1 , . . . , x n , y 1 , . . . , y n , z), we consider the n smooth vector fields X 1 , . . . , X n , Y 1 , . . . , Y n given by

X i = ∂ x i - y i 2 ∂ z and Y i = ∂ y i + x i 2 ∂ z , ∀i = 1, . . . , n.
The distribution ∆ given by

∆(x) = Span X 1 (x), . . . , X n (x), Y 1 (x), . . . , Y n (x) , ∀x ∈ R 2n+1
is a distribution of rank 2n on R 2n+1 .

Totally nonholonomic distribution

Definition 13. Given two smooth vector fields X, Y on M , the Lie bracket assigns to X and Y a third vector field , denoted by [X, Y ], such that

[X, Y ](x) = DY (x)X(x) -DX(x)Y (x), ∀x ∈ M (3.1)
where DX and DY are the Jacobian matrices of X and Y , respectively.

In local coordinates x = (x 1 , . . . , x n ), for any smooth vector fields X, Y on M given by

X(x) = n i=1 a i (x)∂ x i , Y (x) = n i=1 b i (x)∂ x i with a i , b i : M → R smooth functions, the Lie Bracket of X, Y defined by the formula above (3.1) is given by [X, Y ](x) = n i=1 c i (x)∂ x i , where c i = n j=1 (∂ x j b i )a j -(∂ x j a i )b j , ∀i = 1, . . . , n.
Let O be an open set in M . For any family {X 1 , . . . , X m } of smooth vector fields defined on O, we denote by Lie(X 1 , . . . , X m ) the Lie algebra of vector fields generated by {X 1 , . . . , X m }. It is the smallest vector subspace of χ ∞ (M ) containing {X 1 , . . . , X m } and that also satisfies

[X i , Y ] ∈ Lie(X 1 , . . . , X m ), ∀i = 1, . . . , m, ∀Y ∈ Lie(X 1 , . . . , X m ).
It can be construct as follows. We denote by Lie 1 (X 1 , . . . , X m ) = Span X 1 , . . . , X m the space spanned by X 1 , . . . , X m in χ ∞ (M ). Then, for k ≥ 1, we define recursively the spaces Lie k+1 (X 1 , . . . , X m ) by

Lie k+1 (X 1 , . . . , X m ) = Span Lie k (X 1 , . . . , X m )∪ {[X i , X] |i = 1, . . . , m, X ∈ Lie k (X 1 , . . . , X m )} .
This defines an increasing sequence of subspaces of χ ∞ (M ) given by

Lie(X 1 , . . . , X m ) = k≥1 Lie k (X 1 , . . . , X m ).
In general, Lie X 1 , . . . , X m is an infinite-dimensional subspace in χ ∞ (M ).

For any point

x ∈ O, Lie(X 1 , . . . , X m )(x) = {X(x)|X ∈ Lie(X 1 , . . . , X m )}. It follows that Lie(X 1 , . . . , X m )(x) is a linear subspace of T x M , hence of finite dimension.
Chapter 3 : Sub-Riemannian Geometry Definition 14 (Hörmander condition). Consider m smooth vector fields X 1 , . . . , X m on an open subset O of M . We say that X 1 , . . . , X m satisfy the Hörmander condition if and only if

Lie(X 1 , . . . , X m )(x) = T x M, ∀x ∈ O.
Definition 15 (Totally nonholonomic distribution). Any distribution ∆ on M is called totally nonholonomic or bracket generating on M , if for each x ∈ M , there are an open neighborhood V x of x in M and a local frame X 1 x , . . . , X m x on V x which satisfies the Hörmander condition on V x . Example 6. Consider the distribution given in example 4 by

∆(x, y, z) = Span X(x, y, z), Y (x, y, z) , ∀(x, y, z) ∈ R 3 where X = ∂ x - y 2 ∂ z and Y = ∂ y + x 2 ∂ z .
Since [X, Y ] = ∂ z , it follows that X, Y and [X, Y ] are linearly independent at every point of R 3 . Hence, ∆ is totally nonholonomic on R 3 .

Example 7. Consider in R 3 with coordinates (x, y, z) the distribution given by

∆(x, y, z) = Span X(x, y, z), Y (x, y, z) , ∀(x, y, z) ∈ R 3 where X = ∂ x and Y = ∂ y + zx ∂ z .
Computing the Lie brackets of X, Y , we get

[X, Y ] = [∂ x , ∂ y + zx∂ z ] = z∂ z . X, [X, Y ] = [∂ x , z∂ z ] = 0. Y, [X, Y ] = [∂ y + zx∂ z , z∂ z ] = 0.
The distribution ∆ is totally nonholonomic on R 3 \{z = 0}.

Example 8. Not all distributions are totally nonholonomic. Consider in R 4 with coordinates (x, y, z, t) the distribution given by

∆(x, y, z, t) = Span X(x, y, z, t), Y (x, y, z, t) , ∀(x, y, z, t) ∈ R 4
where

X = ∂ x -y∂ y + t∂ t and Y = ∂ y + z∂ z -t∂ t .
A computation shows

[X, Y ] = ∂ y . X, [X, Y ] = ∂ y . Y, [X, Y ] = 0.
All the iterated brackets of X, Y provide either 0 or ∂ y , so the brackets of X, Y do not generate R 4 . This definition does not depend of the choice of the local frame. It is a consequence of the following result whose proof is taken from Proposition 1.1.16 in [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF].

Proposition 5. Let X 1 , . . . , X m and Y 1 , . . . , Y m be two family of m smooth vector fields on an open subset O of M such that

Span X 1 (x), . . . , X m (x) = Span Y 1 (x), . . . , Y m (x) , ∀x ∈ O. Then, for every x ∈ O, Lie(X 1 , . . . , X m )(x) = Lie(Y 1 , . . . , Y m )(x).
Definition 16 (Sub-Riemannian structure). Let M be a smooth connected manifold of dimension n. A sub-Riemannian structure on M is a pair (∆, g) where ∆ is a totally nonholonomic distribution of rank m (m ≤ n) endowed with a smooth Riemannian metric g; that is for every x ∈ M , g x (., .) is a scalar product on ∆(x). 

Horizontal path and End-Point mapping

Definition 17 (Horizontal path). An absolutely continuous path γ : [0, 1] → M is said to be horizontal with respect to ∆ if its derivative is square-integrable on the interval [0, 1] and satisfies

γ(t) ∈ ∆(γ(t)), a.e. t ∈ [0, 1].
We recall now the Chow-Rashevsky Theorem ([Cho39], [START_REF] Rashevsky | About connecting two points of a completely nonholonomic space by admissible curve[END_REF]).

Theorem 7 (Chow-Rashevsky Theorem). Let M be a smooth connected manifold equipped with a sub-Riemannian structure (∆, g). Then, for every two points x, y ∈ M , there is an horizontal path joining x and y.

Given k = m(n + 1), let X 1 , . . . , X k be a global generating family for ∆ on M . There is a correspondence between horizontal paths and an open subset of

L 2 ([0, 1], R k ). Proposition 6. Given a point x ∈ M , there exists an open subset U x ⊂ L 2 ([0, 1], R k )
such that for every function u ∈ U x , the solution to the following Cauchy problem:

       γu (t) = k i=1 u i (t)X i (γ u (t)), a.e. t ∈ [0, 1] γ u (0) = x (3.2) is well-defined on [0, 1].
The function u is called a control and the corresponding solution of the system (3.2) is called the trajectory starting at x and associated with the control u. Any horizontal path can be viewed as a trajectory associated to a control system like (3.2).

We refer the reader to the textbook [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF] for further details and proofs.

Definition 18 (End-Point mapping). Given a point x ∈ M , the End-point mapping at x assigns to each curve starting at x its endpoint. It is defined by

End x : U x ⊂ L 2 ([0, 1], R k ) -→ M u -→ γ u (1)
where

γ u : [0, 1] → M is the unique solution to (3.2) associated to the control u ∈ U x ⊂ L 2 ([0, 1], R k ). Proposition 7. Given a point x ∈ M , the End-point mapping End x is of class C 1 on the open subset U x ⊂ L 2 ([0, 1], R k ). Given x ∈ M and an open subset U x ⊂ L 2 ([0, 1], R k ). For every control u ∈ U x , we denote by D u End x : L 2 ([0, 1], R k ) → T End x (u) M the differential of the End-point mapping End x at u. Remark 2. If M = R n , the differential of End x at u is given by D u End x (v) = S(1) 1 0 S(t) -1 B(t)v(t)dt, where S : [0, 1] → M n (R) is the solution to the Cauchy problem Ṡ(t) = A(t)S(t), a.e. t ∈ [0, 1],
and S(0) = I n and where the matrix

A(t) ∈ M n (R), B(t) ∈ M n,k (R) are defined by A(t) := k i=1 u i (t)J X i (γ u (t)), a.e. t ∈ [0, 1]
with γ u (t) given by (3.2) and J X i the Jacobian matrix of

X i at γ u (t) and B(t) = X 1 (γ u (t)), . . . , X k (γ u (t)) .
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We set Im x (u) := D u End x (L 2 ([0, 1], R k )) (3.3)
which is a vector space contained in T End x (u) M , hence of dimension smaller than or equal to n.

The following proposition shows that the dimension of Im x (u) is larger or equal to k (k is the dimension of the global frame generating ∆.)

Proposition 8. Given x ∈ M and an open subset U x of L 2 ([0, 1], R k ). For every u ∈ U x , we have X i (End x (u)) ∈ Im x (u), ∀i = 1, . . . , k.

Regular and singular horizontal paths

Definition 19. Given x ∈ M , we say that a control u is singular with respect to x if and only if it is a critical point of the End-point mapping End x , that is, if End x is not a submersion at u. Otherwise, we shall say that u is regular.

Definition 20. A horizontal path γ : [0, 1] → M is said to be singular (resp. regular) if and only if any control u associated to γ (i.e. γ = γ u ) is singular (resp. regular).

The property of being singular does not depend upon the choice of the frame {X 1 , . . . , X m } of the distribution.

Singular controls can be characterized as follows (see section 1.3 in [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]).

Proposition 9. In local coordinates, a control u ∈ L 2 ([0, 1], R k ) is singular if

and only if there exists an absolutely continuous arc

p : [0, 1] → (R n ) * \{0} satisfying      ṗ(t) = - k i=1 u i (t)p(t) • D γu(t) X i , a.e. t ∈ [0, 1] p(t) • X i (γ u (t)) = 0 ∀t ∈ [0, 1], ∀i = 1, . . . , k (3.4)
Proof of Proposition 9. Given x ∈ M , let u be a singular control with respect to x.

There exists an open subset

U x ⊂ L 2 ([0, 1], R k ) such that End x is not a submersion at u. It means that the differential D u End x of the End-point mapping at u is not surjective. So there exists p ∈ (R n ) * \{ 0} such that p • D u End x (v) = 0, ∀v ∈ L 2 ([0, 1], R k ). (3.5)
By remark 2, the identity (3.5) can be written as

1 0 p • S(1)S(t) -1 B(t)v(t)dt = 0, ∀v ∈ L 2 ([0, 1], R k ). By choosing v ∈ L 2 ([0, 1], R k ) defined as v(t) = p • S(1)S(t) -1 B(t) * , ∀t ∈ [0, 1],
we obtain

1 0 | p • S(1)S(t) -1 B(t) * | 2 dt = 0. Note that t → p • S(1)S(t) -1 B(t) is continuous, then p • S(1)S(t) -1 B(t) = 0, ∀t ∈ [0, 1].
We define p(t)

:= p • S(1)S(t) -1 , ∀t ∈ [0, 1].
By construction, p : [0, 1] → (R n ) * is an absolutely continuous arc such that p(t) does not vanish on [0, 1] (because p = 0 and S(t) is invertible for any t ∈ [0, 1]). Moreover, by the definition of S(t) (see remark 2), we have

d dt S(t) -1 = -S(t) -1 A(t), a.e. t ∈ [0, 1].
Recalling the definition of A and B in remark 2, it follows that p satisfies

   ṗ(t) = -p(t)A(t) a.e. t ∈ [0, 1] p(t)B(t) = 0 ∀t ∈ [0, 1]
.

Conversely, we assume that there is an absolutely continuous arc p :

[0, 1] → (R n ) * \{0} satisfying (3.4). It implies -ṗ(t) = A(t)p(t), a.e. t ∈ [0, 1] and p(t) * B(t) = 0, ∀t ∈ [0, 1].
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We put p := p(1) = 0, and we get

p(t) := p.S(1)S(t) -1 , ∀t ∈ [0, 1].
Hence,

p.S(1)S(t) -1 B(t) = 0 which implies p.D u End x (v) = 0, ∀v ∈ L 2 ([0, 1], R k ).
Remark 3. If k = n (Riemannian case), then any non-trivial path is horizontal and regular. In fact, given any x ∈ M and an open subset

U x of L 2 ([0, 1], R k ), it means that for any u ∈ U x , Im x (u) is of dimension n (see (3.
3) and Proposition 8). This implies that the End-Point map End x is a submersion.

Example 9. (The Heisenberg group in R 3 )

Returning to examples 4 and 6, consider the totally nonholonomic distribution ∆ in R 3 given by

∆(x, y, z) = Span X 1 (x, y, z), X 2 (x, y, z) , ∀(x, y, z) ∈ R 3 where X 1 = ∂ x - y 2 ∂ z and X 2 = ∂ y + x 2 ∂ z .
We claim that there are no non-trivial singular paths. Let x ∈ R 3 and u = (u 1 , u 2 ) ∈ L 2 ([0, 1], R 2 ) be a singular control. We denote by γ : [0, 1] → R 3 the horizontal path associated to u such that

γ(t) = u 1 (t)X 1 γ(t) + u 2 (t)X 2 γ(t) , a.e. t ∈ [0, 1], and γ(0) = x. (3.6)
By Proposition 9, there exists an absolutely continuous arc p :

[0, 1] → (R 3 ) * \{0} satisfying ṗ(t) = -u 1 (t)p(t) • D γ(t) X 1 -u 2 (t)p(t) • D γ(t) X 2 , a.e. t ∈ [0, 1] (3.7) and p(t) • X 1 (γ(t)) = p(t) • X 2 (γ(t)) = 0, ∀t ∈ [0, 1]. (3.8) Derivating (3.8) yields ṗ(t) • X i (γ(t)) + p(t) • D γ(t) X i ( γ(t)) = 0.
By (3.6) and (3.7), we get for a.e t ∈ [0, 1]

-u 1 (t)p(t) • D γ(t) X 1 X i (γ(t)) -u 2 (t)p(t) • D γ(t) X 2 X i (γ(t)) + p(t) • D γ(t) X i u 1 (t)X 1 (γ(t)) + u 2 (t)X 2 (γ(t)) = 0 ⇒ u 1 (t)p(t) • D γ(t) X 1 X i (γ(t)) -D γ(t) X i X 1 (γ(t)) + u 2 (t)p(t) • D γ(t) X 2 X i (γ(t)) -D γ(t) X i X 2 (γ(t)) = 0 ⇒ u 1 (t)p(t) • [X i , X 1 ](γ(t)) + u 2 (t)p(t) • [X i , X 2 ](γ(t)) = 0.
Taking i = 1 and i = 2, we obtain

u 1 (t)p(t) • [X 2 , X 1 ](γ(t)) = u 2 (t)p(t) • [X 1 , X 2 ](γ(t)) = ⇒ |u(t)| 2 p(t) • [X 1 , X 2 ](γ(t)) 2 = 0, a.e. t ∈ [0, 1]. Note that [X 1 , X 2 ] = ∂ z . Since X 1 , X 2 and [X 1 , X 2 ] generate R and, p(t) ≡ 0, ∀t ∈ [0, 1], it follows that u ≡ 0. Example 10. (The Martinet distribution in R 3 ) Consider in R 3 with coordinates (x, y, z), the distribution ∆ given by ∆(x, y, z) = Span X 1 (x, y, z), X 2 (x, y, z) , ∀(x, y, z) ∈ R with X 1 = ∂ x , and X 2 = ∂ y + x 2 2 ∂ z .
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The first Lie bracket of X, Y gives [X 1 , X 2 ] = x∂ z . Then, the distribution ∆ is totally nonholonomic on R 3 \{ x = 0}. We claim that non-trivial singular paths are contained in the Martinet surface given by

Σ ∆ := (x, y, z) ∈ R 3 | x = 0 . Let x = (x, y, z) ∈ R 3 and u = (u 1 , u 2 ) ∈ L 2 ([0, 1], R
2 ) be a control. We denote by γ : [0, 1] → R 3 the horizontal path associated to u given by

γ(t) = x(t), y(t), z(t) , ∀t ∈ [0, 1] such that γ(t) = u 1 (t)X 1 γ(t) + u 2 (t)X 2 γ(t) , a.e. t ∈ [0, 1],
and γ(0) = x.

(3.9)

Assume that u is singular. By Proposition 9, there exists an absolutely continuous arc p :

[0, 1] → (R 3 ) * \{0} satisfying ṗ(t) = -u 1 (t)p(t).D γ(t) X 1 -u 2 (t)p(t).D γ(t) X 2 , a.e. t ∈ [0, 1] (3.10) and p(t) • X 1 (γ(t)) = p(t) • X 2 (γ(t)) = 0, ∀t ∈ [0, 1]. (3.11)
By derivating (3.11) and by (3.9) and (3.10), we obtain

|u(t)| 2 p(t).[X 1 , X 2 ](γ(t)) 2 = 0, a.e. t ∈ [0, 1].
Since u(t) ≡ 0 and p(t) ≡ 0, for a.e. t ∈ [0, 1], we deduce that

x(t) = 0, ∀t ∈ [0, 1].
Hence, for every t ∈ [0, 1], γ(t) ∈ Σ ∆ .

Minimizing geodesics

Given two points x, y ∈ M , we introduce the sub-Riemannian distance between x and y as the infimum of the length of horizontal curves joining them.

Definition 21 (Sub-Riemannian distance). Let x, y be two points on M . The sub-Riemannian distance between x and y is defined by

d SR (x, y) := inf l(γ)| γ : [0, 1] → M horizontal curve, γ(0) = x, γ(1) = y
where the length of an horizontal path γ : [0, 1] → M is given by

l(γ) := 1 0 g γ(t) ( γ(t), γ(t))dt.
We also call d SR the Carnot-Carathéodory distance of the sub-Riemannian structure.

An horizontal path γ : [0, 1] → M between x and y is said to be minimizing if it minimizes the sub-Riemannian distance between x and y.

We introduce the sub-Riemannian energy between x and y by

e SR (x, y) := inf e(γ)| γ : [0, 1] → M horizontal path γ(0) = x, γ(1) = y
where the energy of the curve γ is given by e(γ) :=

1 0 g γ(t) ( γ(t), γ(t))dt.
Like in the Riemannian case, an horizontal path between x and y is called minimizing geodesic if it minimizes the sub-Riemannian energy between x and y.

The following result whose proof is based on the Cauchy-Schwartz inequality (see Proposition 2.1.1 in [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]), is fundamental.

Proposition 10. For any x, y ∈ M , e SR (x, y) = d 2 SR (x, y).

We recall that we have equality in the Cauchy-Schwartz inequality if and only if γ has constant speed. Thanks to the proposition 10, we obtain the following result.

Proposition 11. Let x, y be two points in M . A path γ between x and y is a minimizing geodesic if and only if it is an horizontal path minimizing the sub-Riemannian distance between x and y with constant speed.

We introduce now the sub-Riemannian version of the classical Riemannian Hopf-Rinow Theorem (see Theorem 2.1.5 in [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF] and Theorem 7.1 in [START_REF] Strichartz | Sub-Riemannian geometry[END_REF], see also [START_REF] Hopf | Ueber den Begriff der vollständigen differentialgeometrischen Flächen[END_REF], [C-V59] for the classical Theorem).

Theorem 8 (Sub-Riemannian Hopf-Rinow Theorem). Assume that the metric space (M, d SR ) is complete. Then, there is at least a minimizing geodesic between any pair of points in M .
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Normal and abnormal extremals

Throughout all this section, we will assume that (M, d SR ) is a complete metric space. Let x, ȳ ∈ M and γ : [0, 1] → M be a minimizing geodesic joining x and ȳ be fixed. Since γ minimizes the distance between x and ȳ, it can not have selfintersection. Hence, there are an open neighborhood V of γ [0, 1] in M and an orthonormal family of m smooth vector fields X 1 , . . . , X m such that

∆(z) = Span X 1 (z), . . . , X m (z) , ∀z ∈ V.
Moreover, by Proposition 6, there is an open subset

U x ⊂ L 2 ([0, 1], R m ) and a control ū ∈ U x such that γ(t) = m i=1 ūi (t)X i γ(t) , a.e. t ∈ [0, 1].
Since γ is a minimizing geodesic between x and ȳ, it minimizes the energy among all horizontal paths joining x to ȳ. This means that γ minimizes the following quantity

1 0 g γu(t) γu (t), γu (t) dt = 1 0 g γu(t) m i=1 u i (t)X i (γ u (t)), m i=1 u i (t)X i (γ u (t)) dt = 1 0 m i=1 u i (t) 2 dt, among all controls u ∈ U x ⊂ L 2 ([0, 1], R m ).
Considering the End-point mapping End x given by End

x : U x ⊂ L 2 ([0, 1], R m ) -→ M u -→ End x(u) = γ u (1)
and setting

C(u) := 1 0 m i=1 u i (t) 2 dt,
we note that ū is a solution of the following optimization problem:

ū minimizes C(u) among all u ∈ U x with End x(u) = ȳ.
Thanks to the Lagrange Multiplier Theorem (see Theorem B.1.5 in [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]), there exist λ 0 ∈ {0, 1} and p ∈ T * ȳ M with (λ 0 , p) = (0, 0) such that p • D ūEnd x = λ 0 D ūC.

(3.12)

3.5.1 Case λ 0 = 0

Minimizers that arise with λ 0 = 0 correspond to singular minimizers. In fact, when λ 0 = 0, the Lagrange Multiplier equation is reduced to

p • D ūEnd x(v) = 0, ∀v ∈ L 2 ([0, 1], R m ). (3.13)
This means that some linear form p = 0 annihilates the image of the differential of End x. Then, ū is a critical of End x and equivalently, the curve γ associated to ū is a singular minimizing geodesic.

Proposition 12. The fact that λ 0 = 0 yields the existence of an absolutely continuous arc p :

[0, 1] → (R n ) * \ {0} with p(1) = p which satisfies      ṗ(t) = - m i=1 ūi (t)p(t) • D γ(t) X i , a.e. t ∈ [0, 1] p(t).X i (γ(t)) = 0 , ∀t ∈ [0, 1] (3.14) Such curve ψ : [0, 1] → T * M given by ψ(t) = γ(t), p(t) , ∀t ∈ [0, 1], with ψ(1) = (ȳ, p) is an abnormal extremal lift of γ .
Definition 22. We say that a γ : [0, 1] → M is a normal minimizing geodesic if it admits a normal extremal lift.

Case λ 0 = 1

Definition 23. The sub-Riemannian Hamiltonian is a function on T * M given by

H : T * M -→ R (x, p) -→ H(x, p) := max u∈R m m i=1 u i p • X i (x) - 1 2 m i=1 u 2 i .
(3.15)

Moreover, the Hamiltonian H can be written as follows

H(x, p) := 1 2 m i=1 p • X i (x) 2 . (3.16)
In fact, differentiating (3.15) with respect to u i yields

p • X i (x) -u i = 0, ∀i = 1, . . . , k,
that is, the Hamiltonian defined in (3.15) attains its maximum for p • X i (x) = u i , from which formula (3.16) is obtained.

Proposition 13. The fact that λ 0 = 1 yields, in the local coordinates, the existence of a smooth arc p :

[0, 1] → T * ȳ M with p(1) = p/2 such that            γ(t) = ∂H ∂p (γ(t), p(t)) = m i=1 p(t) • X i (γ(t)) X i (γ(t)) ṗ(t) = - ∂H ∂x (γ(t), p(t)) = - m i=1 p(t) • X i (γ(t)) p(t) • D γ(t) X i (3.17) with ūi (t) = p(t) • X i (γ(t)), ∀t ∈ [0, 1], ∀i = 1, . . . , m.
Proof of Proposition 13. Thanks to the Lagrange Multiplier Theorem with λ 0 = 1 (see (3.12)), there exists

p ∈ T * ȳ M satisfying p • D ūEnd x(v) = D ūC (v), ∀v ∈ L 2 ([0, 1], R m ) (3.18)
where

C(v) = 1 0 m i=1 (v i (t)
) 2 dt, and the differential of C at ū is given by

D ūC (v) = 2 < ū, v > L 2 ([0,1],R m ) , ∀v ∈ L 2 ([0, 1], R m ).
By remark 2, the differential of End x at ū is given by

D ūEnd x(v) = S(1) 1 0 S(t) -1 B(t)v(t)dt, ∀v ∈ L 2 ([0, 1], R m ),
where A, B, S were defined in remark 2. Hence, (3.18) yields

1 0 p • S(1)S(t) -1 B(t) -2ū(t) v(t)dt = 0, ∀v ∈ L 2 ([0, 1], R m ) which implies ū(t) = 1 2 p • S(1)S(t) -1 B(t) , a.e. t ∈ [0, 1]. We define p : [0, 1] → T * ȳ M by p(t) := 1 2 p • S(1)S(t) -1 , ∀t ∈ [0, 1].
Then, by construction, we have

ū(t) = p(t)B(t), a.e. t ∈ [0, 1] with B(t) = X 1 (γ(t)), . . . , X m (γ(t)) .
Moreover,

ṗ(t) = -p(t)A(t), ∀t ∈ [0, 1] with A(t) = m i=1 ūi (t)D γ(t) X i .
A curve ψ given by ψ(t) = γ(t), p(t) , ∀t ∈ [0, 1], which is solution of the Hamiltonian system

ψ(t) = ∂H ∂p (ψ(t)), - ∂H ∂x (ψ(t)) , ∀t ∈ [0, 1] with ψ(1) = γ(1), p/2 (3.19)
is a normal extremal lift of γ.

Definition 24. We say that γ is a normal minimizing geodesic if it admits a normal extremal lift.

Proposition 14. Let γ : [0, 1] → M be a minimizing geodesic joining two points of M . Then, γ verifies one of the two following properties:

1. γ is singular 2. γ is normal
Note that γ can be singular and normal at the same time.

Chapter 4

Optimal transport problem on sub-Riemannian structures

Statement of the problem

Let M be a smooth connected manifold without boundary of dimension n ≥ 2. Let (∆, g) be a complete sub-Riemannian structure on M of rank m (m < n). We will be concerned with the study of the Monge problem for the quadratic geodesic sub-Riemannian cost.

Let µ,ν be two probability measures compactly supported on M .

Minimize

T -→ M c(x, T (x))dµ(x)
over all transport maps T : M → M from µ to ν,

where c(x, y) = d 2 SR (x, y), ∀(x, y) ∈ M × M.

Monge quadratic sub-Riemannian Formulation

The following result is taken from problem (2.2) and Theorem 3 in Chapter 2. 

∀α ∈ Π(µ, ν), α is optimal ⇔ α(Γ ϕ ) = 1
where

Γ ϕ := (x, y) ∈ M × M ; ϕ c (y) -ϕ(x) = c(x, y) .
Unlike the Riemannian case, the quadratic sub-Riemannian cost is not locally Lipschitz. Here appears the main difficulty in solving the Monge quadratic sub-Riemannian problem. Under regularity properties for d SR , Figalli and Rifford [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF] generalize the Brenier-McCann theorem ([Br91], [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF]) proving existence and uniqueness of an optimal transport map.

The sub-Riemannian version of the Brenier-McCann Theorem

The main issue in the Brenier-McCann result is the regularity of the c-convex function ϕ provided by Theorem 9. In particular, the regularity properties of ϕ are consequences of regularity assumptions made on the cost function. The method developed by Figalli and Rifford [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF], for the sub-Riemannian case, requires local semiconcavity property for the sub-Riemannian distance outside the diagonal. We will see later that this regularity property made on d SR holds as soon as there is no singular minimizing geodesic joining two distinct points in M . On the diagonal, the existence of a unique optimal transport map is a consequence of a Pansu-Rademacher Theorem [START_REF] Monti | Surface measures in Carnot-Caratheodory spaces[END_REF] (see Appendix B.2) without any assumption on the sub-Riemannian distance.

In the sequel, we denote by D the diagonal of M × M , that is the set of all pairs of the form (x, x) with x ∈ M .

The above discussion motivates the following definition.

Definition 25. Let ϕ : M → R be the c-convex function provided by Theorem 9. We define the "static" set S ϕ and "moving" set M ϕ as follows

S ϕ := x ∈ M | x ∈ Γ ϕ (x) , M ϕ := x ∈ M | x / ∈ Γ ϕ (x) .
Note that we can easily check that M ϕ coincides with the set

x ∈ M | ϕ(x) = ϕ c (x) = x ∈ M | ϕ(x) > ϕ c (x)
which is open by the continuity of ϕ and ϕ c .

We state now the result of Figalli and Rifford [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF].

Theorem 10. Let µ,ν be two probability measures compactly supported on M such that µ is absolutely continuous with respect to the Lebesgue measure. Let ϕ : M → R be the c-convex function provided by Theorem 9. Assume that the cost function

d 2 SR is locally semiconcave on (M × M )\D.
Then, there is a unique optimal transport map T : M → M from µ to ν such that for µ-almost every x ∈ M ,

T (x) =    exp x 1 2 d x ϕ , x ∈ M ϕ x , x ∈ S ϕ .
Proof of Theorem 10. 1. In a first step, we prove that

µ-a.e. x ∈ S ϕ , Γ ϕ (x) = {x}.
It is sufficient to prove the result for x contained in an open set V ⊆ M such that there is an orthonormal family of m vector fields X 1 , . . . , X m generating ∆(z), ∀z ∈ V. Let x ∈ S ϕ be fixed. By a change of coordinates if necessary, we can write the vector fields as follows

X i = ∂ ∂x i + n j=1 a ij ∂ ∂x j , ∀i = 1, . . . , m.
We remark that the function z ∈ M → ϕ c (y) -d 2 SR (z, y) is locally Lipschitz with respect to the sub-Riemannian distance when y varies on a compact set. Then, ϕ is also locally Lipschitz with respect to the sub-Riemannian distance. By the Pansu-Rademacher theorem (see Appendix B.2), since µ is absolutely continuous with respect to the Lebesgue measure, ϕ is differentiable with respect to the vector fields X 1 , . . . , X m µ-almost everywhere on V. Hence, we have:

ϕ(y) -ϕ(x) = m i=1 X i ϕ(x)(y i -x i ) + o(d SR (x, y)), ∀y ∈ V. Let γ x i : [0, 1] → M , i = 1, .
. . , m be the integral flow associated to X i starting at x. Then, we denote by

l i = lim t→0 ϕ(γ x i (t)) -ϕ(x) t , ∀i = 1, . . . , m.
Recall that g(γ x i (t),

γ x i (t)) = g(X i (γ x i (t)), X i (γ x i (t))) = 1, ∀t ∈ [0, 1]. It follows d SR (x, γ x i (t)) ≤ |t|, ∀t ∈ [0, 1]. Then, x ∈ Γ ϕ (x) ⇒ ϕ(x) -ϕ(z) ≤ d 2 SR (x, z), ∀z ∈ V. In particular, ϕ(x) -ϕ(γ x i (t)) ≤ d 2 SR (x, γ x i (t)) ≤ t 2 .
This implies that l i = 0. Hence,

X i ϕ(x) = 0, ∀i = 1, . . . , m.
(4.1)

Assume now that there exists y ∈ Γ ϕ (x) such that y = x. So we have

ϕ(x) -ϕ(z) ≤ d 2 SR (x, z) -d 2 SR (x, y), ∀z ∈ V. Let γ x,y : [0, 1] → M be a minimizing geodesic joining x to y. Then, ∀t ∈ [0, 1], ϕ(x) -ϕ(γ x,y (t)) ≤ d 2 SR (x, γ x,y (t)) -d 2 SR (x, y), ⇒ -o(d SR (x, γ x,y (t))) ≤ d 2 SR (x, γ x,y (t)) -d 2 SR (x, y), ⇒ -o(t d SR (x, y)) ≤ (1 -t) 2 d 2 SR (x, y) -d 2 SR (x, y), ⇒ -o(t d SR (x, y)) ≤ -2t d 2 SR (x, y) + t 2 d 2 SR (x, y), ⇒ o(t d SR (x, y)) ≥ 2t d 2 SR (x, y) -o(t d SR (x, y)), ⇒ o(t d SR (x, y)) ≥ t d 2 SR (x, y).
For t small enough, o(t d SR (x, y)) t tends to zero which implies that d 2 SR (x, y) = 0.

This contradicts the fact that x = y.

Let us now prove that

µ-a.e. x ∈ M ϕ , Γ ϕ (x) = exp x ( 1 2 d x ϕ) . Fix x ∈ M ϕ . It follows that there is k ∈ N such that d SR (x, y) ≥ 1/k, ∀y ∈ Γ ϕ (x). Since Γ ϕ is a closed set in M × M , there exists an open neighborhood V x of x in M ϕ such that d SR (z, w) ≥ 1/k, ∀z ∈ V x, ∀w ∈ Γ ϕ (z).
We define the function φ : M → R as follows

φ(z) := sup y∈M ϕ c (y) -d 2 SR (z, y)| d SR (z, y) ≥ 1/k .
Since d 2 SR is locally semiconcave on M × M \D, the function φ is also locally semiconcave on M . The fact that, by construction, ϕ and φ coincide on V x implies that ϕ is locally semiconcave on M ϕ . Thanks to the Rademacher Theorem (see Appendix B.1), ϕ is almost everywhere differentiable on M ϕ . Let ȳ ∈ Γ ϕ (x) be given. By the definition of the Kantorovich potentials (see Theorem 9), we have Without loss of generality, we can assume that there are m smooth vector fields X 1 , . . . , X m on V x such that

ϕ c (ȳ) = inf z∈M ϕ(z) + d 2 SR (z, ȳ) = ϕ(x) + d 2 SR (x, ȳ) ⇒ ϕ(x) + d 2 SR (x, ȳ) ≤ ϕ(z) + d 2 SR (z, ȳ), ∀z ∈ M. We define the function ψ : M -→ R z -→ ψ(z) := ϕ(x) + d 2 SR (x, ȳ) -ϕ(z) (4.2) such that ψ(z) ≤ d 2 SR (z,
∆(z) = Span X 1 (z), . . . , X m (z) , ∀z ∈ V x .
By the sub-Riemannian version of the Hopf-Rinow Theorem (see Theorem 8), there exists a minimizing geodesic γ : [0, 1] → M joining y to x, associated to control

u γ ∈ L 2 ([0, 1], R m ).
By construction, u γ minimizes the following quantity

C(u) = 1 0 m i=1 (u i (t)) 2 dt, ∀u ∈ L 2 ([0, 1], R m ) such that End y (u γ ) = x.
Let u be a control in L 2 ([0, 1], R m ) such that End y (u) ∈ V x . Hence, C(u) ≥ e SR (End y (u), y) ≥ ψ(End y (u)), and

C(u γ ) = e SR (x, y) = ψ(x) = ψ(End y (u γ )).
It means that u γ minimizes

D : L 2 ([0, 1], R m ) -→ R u -→ D(u) = C(u) -ψ(End y (u)) .
Then,

d u γ C -d x ψ • d u γ End y = 0 ⇒ d u γ C = d x ψ • d u γ End y .
Setting p = d x ψ and by the Lagrange Multiplicators Theorem (see Theorem B.1.5 in [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]) with λ 0 = 1, there exists a normal extremal ψ :

[0, 1] → T * M satisfying ψ(1) = x, d x ψ/2 .
Hence, there is a unique minimizing geodesic γ : [0, 1], projection of the normal extremal ψ : [0, 1] → T * M , such that

y = exp x (-d x ψ/2).
Returning to our proof, the function ψ defined in (4.2) depends of z. As ϕ is almost everywhere differentiable on M ϕ , then ψ is also differentiable a.e. on M ϕ , in particular, at x ∈ M ϕ . Thanks to the Lemma 4, there exists a unique minimizing geodesic joining x to ȳ. Moreover,

ȳ = exp x(-d xψ/2) = exp x(d xϕ/2).
In conclusion, there is a unique transport map T : M → M from µ to ν such that for µ-a.e. x ∈ M ϕ , T (x) = exp x (d x ϕ/2).

Proposition 15. Assume that the distribution ∆ has no non-trivial singular minimizing geodesics. Then, the sub-Riemannian distance d SR is locally semiconcave on (M × M )\D.

Proof of Proposition 15 . Fix (x, y) ∈ (M × M )\D. For sake of simplicity, let us first assume that there is a unique minimizing geodesic γ : [0, 1] → M steering x to y. There exist an open neighborhood V of γ([0, 1]) on M and an orthonormal family (with respect to g) of m vector fields X 1 , . . . , X m such that

∆(z) = Span X 1 (z), . . . , X m (z) , ∀z ∈ V.
According to a change of coordinates if necessary, we can assume that V is an open subset of R n . Moreover, there is a control

u γ ∈ L 2 ([0, 1], R m ) associated to γ, ie. γ(t) = m i=1 u γ i (t)X i (γ(t)), ∀t ∈ [0, 1] and ||u γ || L 2 = length(γ) = d SR (x, y).
Assume now that there is a sequence {γ k } k of minimizing geodesics between x and y. We denote by K the set of minimizing geodesics between x and y. By [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF] (see also [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]), K is compact with respect to the uniform topology. So we can repeat the above by covering K by a finite number of open tubes admitting orthonormal frames. Up to taking a subsequence, the bounded sequence of controls {u k } in L 2 ([0, 1], R m ) associated to γ k such that

||u k || L 2 = length(γ k ) converges to some u γ in L 2 ([0, 1], R m ).
By the lower semicontinuity of the norm, we have

||u γ || L 2 = length(γ).
Since by assumption, γ is regular, there exist n controls v 1 , . . . , v n ∈ L 2 ([0, 1], R m ) such that the linear operator

R n -→ T y M α -→ n i=1 α i D u γ End x (v i ) (4.3) is invertible. Recall that C ∞ (R m ) is dense in L 2 ([0, 1], R m ),
we can assume that we have ṽ1 , . . . , ṽn in C ∞ (R m ) close to v 1 , . . . , v n satisfying the property (4.3). By abuse of notation, we set v i = ṽi , ∀i = 1, . . . , n.

Define locally

H : M × R n → M × M (z, α) → (z, End x (u γ + n i=1 α i v i )).
This mapping is well-defined and of class C 2 in the neighborhood of (x, 0). It satisfies H(x, 0) = (x, y) and its differential at (x, 0) is invertible. By the Local Inverse Function Theorem, there exist an open set B of M ×M centered at (x, y) and a function G :

B → M × R n of class C 2 such that H • G(z, w) = (z, w), ∀(z, w) ∈ B.
Denote by ζ the second component of G. For any (z, w) ∈ B,

d SR (x, z) ≤ ||u γ + n i=1 (ζ(z, w)) i v i || L 2 . Define φ x,y (z, w) := ||u γ + n i=1 (ζ(z, w)) i v i || L 2 , ∀z ∈ B.
Then, φ x,y (z, w) ≥ d SR (z, w), ∀(z, w) ∈ B and φ x,y (x, y) = d SR (x, y).

For every (z, w) ∈ B, we put a C 2 function φ x,y on the graph of d SR at (z, w) with a uniform control of C 2 norm of φ x,y . Hence, d SR is locally semiconcave on (M × M )\D.

Example 11. (Rank two in dimension three) Consider a totally nonholonomic distribution ∆ of rank 2 on a manifold M of dimension 3. We define the Martinet surface of ∆ as the set defined by

Σ ∆ := x ∈ M | ∆(x) + [∆, ∆](x) = T x M where [∆, ∆](x) := Span [X, Y ](x)| X, Y sections of ∆ .
By the same argument as in example 9, we prove that singular horizontal paths are contained in Σ ∆ . We claim that Σ ∆ is a closed subset of M which is countably 2-rectifiable. Let us prove our claim. By a change of coordinates if necessary, we assume that we work in R 3 with coordinates (x 1 , x 2 , x 3 ). Let X 1 , X 2 be two smooth vector fields generating the distribution, that is

∆(x) = Span X 1 (x), X 2 (x) , ∀x ∈ R 3 .
By a change of coordinates if necessary, we can assume that for i = 1, 2

X i = ∂ x i + α i (x)∂ x 3
with α i : R 3 → R smooth functions. We set I = (i 1 , . . . , i k ) ∈ {1, 2} and we denote by X I the vector field given by

X I = X i 1 , X i 2 , . . . [X i k , X i k-1 ] . . . .
Since ∆ is totally nonholonomic, there exists a positive integer r such that

R 3 = Span X I (x); length(I) ≤ r , ∀x ∈ R 3 .
For any I of length(I) ≥ 2, there exists a function g I : R 3 → R such that

X I (x) = g I (x)∂ x 3 .
We set

A k := x ∈ R 3 | g I (x) = 0, ∀I, length(I) ≤ k and Σ ∆ := r-1 k=2 A k \A k+1 .
By the Implicit Function Theorem, each set A k \A k+1 I can be covered by a countable union of smooth hyper surfaces. Assume that there is x ∈ A k \A k+1 . There is J = (j 1 , . . . , j k+1 ) of length k + 1 such that

g J (x) = 0, ∀x ∈ R 3 .
We set I = (j 2 , . . . , j k+1 ). Since g I (x) = 0, ∀x ∈ R 3 , we have

X J = X j 1 , X I = ∂ x j 1 + α x j 1 ∂ x 3 , g I (x)∂ x 3 = ∂ x j 1 g I (x) + α x j 1 (x)∂ x 3 g I (x) ∂ x 3 . So we have ∂ x j 1 g I (x) = 0 or ∂ x 3 g I (x) = 0.
Hence, we deduce that

A k \A k+1 ⊂ length(I)=k x ∈ R 3 ; ∃ i ∈ {1, 2, 3} s.t. ∂ x i g I (x) = 0 .
It follows that Σ ∆ has Lebesgue measure zero. For any x = y ∈ M such that x / ∈ Σ ∆ or y / ∈ Σ ∆ , any minimizing geodesic joining x and y is nonsingular. By Theorem 15, the sub-Riemannian distance is locally semiconcave. Set Ω := M \Σ ∆ a subset of full Lebesgue measure. By Theorem 10, for any two probability measure µ, ν compactly supported on M such that supp(µ) ⊂ Ω or supp(ν) ⊂ Ω there is existence and uniqueness of optimal transport maps from µ to ν.

Example 12. (Rank two in dimension four)

In R 4 with coordinates (x 1 , x 2 , x 3 , x 4 ), we consider the distribution given by

∆(x) = Span X 1 (x), X 2 (x) , ∀x ∈ R 4 with X 1 = ∂ x 1 and X 2 = ∂ x 2 + x 1 ∂ x 3 + x 3 ∂ x 4 .
Let γ : [0, 1] → M be a singular horizontal curve associated to a control u ∈ L 2 ([0, 1], R 2 ). By Proposition 9, there exists an absolutely continuous arc p : [0, 1] → (R 4 ) * \{0} satisfying

ṗ(t) = -u 1 (t)p(t) • D γ(t) X 1 -u 2 (t)p(t) • D γ(t) X 2 , a.e.t ∈ [0, 1] (4.4) and p(t) • X 1 (γ(t)) = p(t) • X 2 (γ(t)) = 0, ∀t ∈ [0, 1]. (4.5) A computation gives [X 1 , X 2 ] = ∂ x 3 , X 1 , [X 1 , X 2 ] = 0, X 2 , [X 1 , X 2 ] = -∂ x 4 .
From (4.5), we get

p 1 (t) = p 2 (t) + x 1 (t)p 3 (t) + x 3 (t)p 4 (t) = 0, ∀t ∈ [0, 1].
From (4.4), we get

ṗ(t) = -u 2 (t)p 3 (t)∂ x 1 -u 2 (t)p 4 (t)∂ x 3 . Hence,              ṗ1 (t) = -u 2 (t)p 3 (t) ṗ2 (t) = 0 ṗ3 (t) = -u 2 (t)p 4 (t) ṗ4 (t) = 0 (4.6)
It implies p 1 and p 3 are constants on [0, 1]. Assume that p 4 = 0. Then, p 3 is a constant on [0, 1] which means that x 1 is constant or p 2 = p 3 = 0. As p ≡ 0, then x 1 is constant on [0, 1] and u 1 ≡ 0. Or, we have u 2 (t)p 3 (t) = 0 then p 3 = 0 (because |u(t)| = 1 a.e. t ∈ [0, 1]) which contradicts the fact that p ≡ 0. Hence, p 4 = 0 and we deduce that

0 = u 2 (t)p 3 (t) = - ṗ3 (t) p 4 (t) p 3 (t), a.e. t ∈ [0, 1].
It follows that p 3 is a constant on [0, 1] and then, u 2 ≡ 0. Thus, γ satisfies

γ(t) = u 1 (t)X 1 (γ(t))
and is of the form

γ(t) = γ 1 (t), γ 2 (0), γ 3 (0), γ 4 (0) , a.e. t ∈ [0, 1].
Up to a parameterization by arc-length, singular horizontal curves with respect to ∆ satisfy γ(t) = X 1 (γ(t)), a.e. t ∈ [0, 1].

We denote by Ω the subset of M given by

Ω := (x, y) ∈ R 4 × R 4 | (y -x) / ∈ Span{e 1 } ,
where e 1 denotes the first vector in the canonical basis of R 4 . The sub-Riemannian distance function d SR is locally semiconcave on the interior of Ω. For any two probability measure µ, ν compactly supported on M such that

supp(µ × ν) ⊂ Ω,
there is existence and uniqueness of optimal transport maps from µ to ν.

Method of Cavalletti and Huesmann

In [START_REF] Cavalletti | Existence and uniqueness of optimal transport maps[END_REF], Cavalletti and Huesmann proved existence and uniqueness of the optimal transport maps on metric measured non-branching spaces using a new technique based on a localized contraction property.

The non-branching condition plays a crucial role. We recall its definition.

Definition 26. Two distinct geodesics γ 1 , γ 2 : [0, 1] → M branch if there exists

t ∈]0, 1[ such that γ 1 (s) = γ 2 (s) for all s ∈ [0, t]. • γ 1 (0) = γ 2 (0) • γ 1 (t) = γ 2 (t) •γ 1 (1) •γ 2 (1)
A space where there are no branching geodesics is called non-branching.

In our setting, the assumption of Cavalletti and Huesmann amounts to ensure that M is equipped with a complete sub-Riemannian structure (∆, g) together with a measure η on M such that the metric measured space (M, d SR , η) is non-branching and satisfies the following property:

For every compact set K ⊂ M , there exists a measurable function

f : [0, 1] → [0, 1] with lim t→0 sup f (t) > 1 2 and a positive constant δ ≤ 1 such that η(A t,x ) ≥ f (t)η(A), ∀0 ≤ t ≤ δ (4.7)
for any compact set A ⊂ K and any base point x ∈ K with The condition (4.7) on measure η means that when we contract a set towards a point, its measure does not shrink too fast.

A t,x := γ(t)| γ : [0, 1] → M minimizing geodesic s.t. γ(0) ∈ A, γ(1) = x . •x A A t,x
We recall that there exists a c-convex function ϕ provided by Theorem 9 such that any optimal transport plan α is concentrated on

Γ ϕ := (x, y) ∈ M × M | ϕ c (y) -ϕ(x) = c(x, y) .
Moreover, Γ ϕ is a c-cyclically monotone set on M × M (see Proposition 2).

We start by showing that branching at starting points belonging to the support of optimal transport plans does not happen almost everywhere.

Lemma 5. Let (M, d SR , η) be a non-branching metric measured space. Let (x 0 , y 0 ) and (x 1 , y 1 ) be two distinct points of Γ ϕ . Then, for any i = 1, 2 and every minimizing geodesics γ i : [0, 1] → M joining x i to y i , we have

γ 0 (t) = γ 1 (t), ∀t ∈]0, 1[. Proof of Lemma 5. Assume by contradiction that there is t ∈]0, 1[ such that γ 0 ( t) = γ 1 ( t).
For i = 0, 1, we have

d SR x i , γ i ( t) = t d SR x i , y i and d SR γ i ( t), y i = (1 -t) d SR x i , y i . Case1: d SR (x 0 , y 0 ) = d SR (x 1 , y 1 ) d 2 SR (x 0 , y 1 ) + d 2 SR (x 1 , y 0 ) ≤ d SR (x 0 , γ 0 ( t)) + d SR (γ 1 ( t), y 1 ) 2 + d SR (x 1 , γ 1 ( t)) + d SR (γ 0 ( t), y 0 ) 2 ≤ t d SR (x 0 , y 0 ) + (1 -t)d SR (x 1 , y 1 ) 2 + td SR (x 1 , y 1 ) + (1 -t)d SR (x 0 , y 0 ) 2 ≤ t2 + (1 -t) 2 d 2 SR (x 0 , y 0 ) + t2 + (1 -t) 2 d 2 SR (x 1 , y 1 ) + 4 t(1 -t)d SR (x 0 , y 0 )d SR (x 1 , y 1 ) ≤ d 2 SR (x 0 , y 0 ) + d 2 SR (x 1 , y 1 ) -2 td 2 SR (x 0 , y 0 ) + 2 t2 d 2 SR (x 0 , y 0 ) -2 td 2 SR (x 1 , y 1 ) + 2 t2 d 2 SR (x 1 , y 1 ) + 4 td SR (x 0 , y 0 )d SR (x 1 , y 1 ) -4 t2 d SR (x 0 , y 0 )d SR (x 1 , y 1 ) < d 2 SR (x 0 , y 0 ) + d 2 SR (x 1 , y 1 ).
The last inequality is obtained from 0 < t < 1 which contradicts the c-cyclically monotonicity of Γ ϕ .

Case2: d SR (x 0 , y 0 ) = d SR (x 1 , y 1 )
We define the curve γ :

[0, 1] → M by γ(s) = γ 0 (s) s ∈ [0, t ] γ 1 (s) s ∈ [ t, 1]
Then, γ coincides with γ 0 on the interval [0, t] which contradicts the fact that M is non-branching.

We denote by P 1 : M × M → M the projection map into the first component. The following proposition is a main consequence of Assumption (4.7).

Proposition 16. For any compact set Λ of Γ ϕ , the following inequality holds

η(A t,Λ ) ≥ f (t)η(A), ∀t ∈ [0, 1], for any A ⊂ P 1 (Λ) where A t,Λ := γ(t)| γ : [0, 1] → M minimizing geodesic s.t. γ(0) ∈ A, γ(1) ∈ P 2 (Λ) . P 1 (Λ) A P 2 (Λ) A t,Λ
Proof of Proposition 16. We will proceed in two steps. 1. Let {y i } i∈N be a dense set in P 2 (Λ). For n ∈ N and i ≤ n, we consider the following family of sets Chapter 4 : Optimal transport problem on sub-Riemannian structures

E n (i) := x ∈ P 1 (Λ)| ϕ c (y i ) -ϕ(x) = c(x, y i ) = x ∈ P 1 (Λ)| y i ∈ Γ ϕ (x) .
We set for i ∈ N,

Λ n := n i=1 E n (i) × {y i } such that P 1 (Λ n ) = P 1 (Λ).
By Assumption (4.7), it holds that for any compact A ⊂ P 1 (Λ),

η (A ∩ E n (i)) t,y i ≥ f (t) η A ∩ E n (i) , ∀t ∈ [0, δ]
where f : [0, 1] → [0, 1] is independent of {y i } i∈N and of n, and satisfies

lim t→0 sup f (t) > 1/2. Since A = n i=1 A ∩ E n (i), it follows A t,Λn := γ(t)|γ : [0, 1] → M minimizing geodesic s.t. γ(0) ∈ A, γ(1) ∈ P 2 (Λ n ) = n i=1 γ(t)|γ : [0, 1] → M minimizing geodesic s.t. γ(0) ∈ A ∩ E n (i), γ(1) = y i = n i=1 A ∩ E n (i) t,y i .
Thanks to Lemma 5, we have for all t ∈ [0, 1],

A ∩ E n (i) t,y i ∩ A ∩ E n (j) t,y j = ∅.
Then it holds for all t ∈ [0, δ]:

η A t,Λn ≥ η n i=1 (A ∩ E n (i)) t,y i ≥ n i=1 η (A ∩ E n (i)) t,y i ≥ f (t) n i=1 η A ∩ E n (i) ≥ f (t) η n i=1 A ∩ E n (i) ≥ f (t) η(A).
2. For all n ∈ N, we have Λ n ⊂ supp(µ) × supp(ν) a compact set . Then, there exists a subsequence {Λ n k } k∈N of {Λ n } n∈N converging to a compact space K with the Hausdorff metric. Let (x, y) ∈ K. By the definition of E n k (i), we get ϕ c (y) -ϕ(x) = c(x, y), x ∈ P 1 (Λ) and y ∈ P 2 (Λ).

So we have

K ⊂ Λ. Hence, η(A t,Λ ) ≥ η(A t,K ) ≥ lim k→+∞ sup η(A t,Λn k ) ≥ f (t) η(A). Lemma 6. Let Λ 1 , Λ 2 ⊂ Γ ϕ be two compact sets such that (i) P 1 (Λ 1 ) = P 1 (Λ 2 ) (ii) P 2 (Λ 1 ) ∩ P 2 (Λ 2 ) = ∅ Then, η(P 1 (Λ 1 )) = η(P 1 (Λ 2 )) = 0.
Proof of Lemma 6. We set A = P 1 (Λ 1 ) = P 1 (Λ 2 ) and we define the following sets for i = 1, 2 :

A t,Λ i := γ(t)|γ : [0, 1] → M minimizing geodesic s.t.γ(0) ∈ A, γ(1) ∈ P 2 (Λ i ) .
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A = P 1 (Λ 1 ) = P 1 (Λ 2 ) P 2 (Λ 1 ) P 2 (Λ 2 ) A t,Λ 1 A t,Λ 2 Since P 2 (Λ 1 ) ∩ P 2 (Λ 2 ) = ∅, by lemma 5, we have A t,Λ 1 ∩ A t,Λ 2 = ∅, ∀t ∈ [0, 1].
For δ > 0 fixed, we define A δ := x| d SR (A, x) ≤ δ . Hence,

η(A) = lim δ→0 sup η(A δ ) ≥ lim t→0 sup η(A t,Λ 1 ∩ A t,Λ 2 ) = lim t→0 sup η(A t,Λ 1 ) + η(A t,Λ 2 ) ≥ 2 lim t→0 sup f (t) η(A).
By hypothesis, we have lim

t→0 sup f (t) > 1/2.
Then, it follows η(A) = 0.

Theorem 11. Let (M, d SR , η) be a non-branching metric space verifying assumption (4.7). Let µ,ν be two probability measures compactly supported on M such that µ is absolutely continuous with respect to η. Then, there is existence and uniqueness of an optimal transport map T : M → M solution for the Monge problem.

Proof of Theorem 11. We consider the set

E := x ∈ M | Γ ϕ (x)
is not a singleton and we assume by contradiction that

η(E) > 0.
It follows that there is k ∈ N such that the set given by

E k := x ∈ E| diam Γ ϕ (x) > 1/k
has positive measure with respect to η. Without loss of generality, we can assume that the manifold M can be covered finitely by many open balls (U i ) i∈I of diameter less or equal to 1/k. From (U i ) i∈I , we construct a finite family of open sets (V i ) i∈I pairwise disjoint covering M by proceeding as follows

                       V 1 = U 1 V 2 = U 2 \U 1 V 3 = U 3 \(U 1 ∪ U 2 ) . . . V n = U n \(U 1 ∪ U 2 ∪ . . . U n-1 ) . . . such that i∈I U i = i∈I V i .
Therefore, for any x ∈ E k , there are i x , j x ∈ I with i x = j x such that

Γ ϕ (x) ∩ V ix = ∅ and Γ ϕ (x) ∩ V jx = ∅.
Denote by E k,i :=

x∈E k {x} × Γ ϕ (x) ∩ V ix and E k,j := x∈E k {x} × Γ ϕ (x) ∩ V jx .
We notice that P

1 (E k,i ) = P 1 (E k,j ) = E k such that η(E k ) > 0. (4.8)
We also have

P 2 (E k,i ) ∩ P 2 (E k,j ) = ∅ since for any x ∈ E k , V ix ∩ V jx = ∅, for i x = j x . Using Lemma 6, η(E k ) = 0
which contradicts (4.8).

We conclude that for a.e. x ∈ M , Γ ϕ (x) is a singleton. Thus, any optimal transport plan α ∈ Π(µ, ν) such that supp α ⊂ Γ, is concentrated on a graph.

Chapter 5

Mass Transportation on sub-Riemannian structures of rank 2 in dimension 4

Introduction and main result

For a two-rank distribution ∆ on a three-dimensional manifold M (see Example 11), we have existence and uniqueness of optimal transport maps for the sub-Riemannian quadratic cost because non-trivial singular horizontal paths are included in the Martinet surface Σ ∆ given by Σ ∆ := {x ∈ M | ∆(x) + [∆, ∆](x) = T x M } which has Lebesgue measure zero. The first relevant case to consider is the one of rank-two distributions in dimension four. In this case, as shown by Sussmann [START_REF] Sussmann | A cornucopia of abnormal sub-Riemannian minimizers[END_REF], singular horizontal paths can be seen (locally) as the orbits of a smooth vector field, at least, outside a set of Lebesgue measure zero.

The definition of a real analytic manifold is similar to that of a smooth manifold. We begin by recalling that an analytic function f is an infinitely differentiable function such that the Taylor series at any point x 0 in its domain, converges to f (x) for x in a neighborhood of x 0 . We say that a manifold M of dimension n is real analytic if transition maps are analytic. We provide M with a real analytic distribution ∆ of rank m (m < n), that is for each x ∈ M , there is an open neighborhood U containing x and m analytic vector fields X 1 , . . . , X m on U such that ∆(y) = Span X 1 (y), . . . , X m (y) , ∀y ∈ U.

In this case, for analytic functions u i : [0, 1] → R, i = 1, . . . , m, the Cauchy problem Chapter 5 : Mass Transportation on sub-Riemannian structures of rank 2 in dimension 4

given by

     γu (t) = m i=1 u i (t)X i (γ u (t)), a.e. t ∈ [0, 1] γ u (0) = x
has a real analytic solution on M for t ∈ [0, 1].

Our main result is the following:

Theorem 12. Let M be a real analytic manifold of dimension 4 and (∆, g) be a complete analytic sub-Riemannian structure of rank 2 on M such that

∀x ∈ M, ∆(x) + [∆, ∆](x) has dimension 3, (5.1)
where

[∆, ∆] := Span [X, Y ] | X, Y sections of ∆ .
Let µ, ν be two probability measures compactly supported on M such that µ is absolutely continuous with respect to the Lebesgue measure. Then, there is existence and uniqueness of an optimal transport map from µ to ν for the sub-Riemmannian quadratic cost c : M × M → [0, +∞[ defined by:

c(x, y) := d 2 SR (x, y), ∀(x, y) ∈ M × M.
Since both supp(µ) and supp(ν) are compact and the metric space (M, d SR ) is complete, there are x 0 ∈ M and a constant L > 0 such that

supp µ ∪ supp ν ⊂ B SR (x 0 , L/4) (5.2)
where B SR (x 0 , L/4) is the sub-Riemannian ball in R 4 centered at x 0 of radius L/4.

As a consequence, any minimizing geodesic

γ : [0, 1] → M from x ∈ supp µ to y ∈ supp ν is contained in B SR (x 0 , L/2). B SR (x 0 , L/2) supp µ supp ν
From now on, we work in the compact set B SR (x 0 , L/2) of diameter L and so, we proceed as if M were a compact manifold.

We recall that there exists a c-convex function ϕ : M → R provided by Theorem 9 such that any optimal transport plan α ∈ Π(µ, ν) is concentrated on

Γ ϕ := (x, y) ∈ M × M | ϕ c (y) -ϕ(x) = c(x, y) .
Following [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF], let us consider the following definition: Definition 27. We call "static" set S and "moving" set M respectively the sets defined as follows:

S := x ∈ M | x ∈ Γ ϕ (x) , M := x ∈ M | x / ∈ Γ ϕ (x) .
As in [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF], we shall show that "static" points do not move, i.e. almost every x ∈ S is transported to itself. For sake of completeness, the proof of the following lemma is given in Theorem 10.

Lemma 7. For µ-a.e. x ∈ S , we have Γ ϕ (x) = {x}.

We need now to show that almost every moving point is sent to a singleton. For this aim, we need to distinguish between two types of moving points. For every Chapter 5 : Mass Transportation on sub-Riemannian structures of rank 2 in dimension 4

x ∈ M and every T > 0, we denote by Ω R x,T the set of regular minimizing geodesics γ : [0, T ] → M starting at x. We also denote by Ω S x,T the set of singular minimizing geodesics γ : [0, T ] → M starting at x. Definition 28. Let T > 0. For every x ∈ M, we set

Γ S (x) := y ∈ Γ ϕ (x) | ∃γ ∈ Ω S x,T s.t. γ(T ) = y and Γ R (x) := y ∈ Γ ϕ (x) | ∃γ ∈ Ω R x,T s.t. γ(T ) = y .
Moreover, we let

M S := x ∈ M| Γ S (x) = ∅ and M R := x ∈ M| Γ R (x) = ∅ .
Note that, by construction, for every x ∈ M, Γ ϕ (x) = Γ R (x) ∪ Γ S (x). Furthermore, if there are no non-trivial singular minimizing curves then M S = ∅.

First, using techniques reminiscent to the previous works by Agrachev-Lee [START_REF] Agrachev | Optimal transportation under nonholonomic constraints[END_REF] and Figalli-Rifford [START_REF] Figalli | Mass transportation on sub-Riemannian manifolds[END_REF], we prove that Proposition 17. For L 4 -a.e. x ∈ M R , Γ R (x) is a singleton.

Then, using a localized contraction property for singular curves which holds thanks to (5.1), the technique developed by Cavalletti and Huesmann [START_REF] Cavalletti | Existence and uniqueness of optimal transport maps[END_REF] allows to show that Proposition 18. For L 4 -a.e. x ∈ M S , Γ S (x) is a singleton.

It remains to show that for almost every x ∈ M , Γ ϕ (x) is a singleton. Again this will follow from a local contraction property together with the approach of Cavalletti and Huesmann [START_REF] Cavalletti | Existence and uniqueness of optimal transport maps[END_REF], see Section 5.4.

Proof of Proposition 17

Argue by contradiction, by assuming that there is a compact set A ⊂ M R of positive Lebesgue measure such that ∀x ∈ A, Γ R (x) is not a singleton.

(5.3) Without loss of generality, we may assume that we work in R 4 .

For every k ∈ N, we define the set

W k := x ∈ M | ∃p x ∈ R 4 ; |p x | ≤ k and ϕ(x) ≤ ϕ(z) -p x , x -z + k |x -z| 2 , ∀z ∈ B(x, 1/k) , (5.4)
where B(x, 1/k) denotes the closed ball in R 4 centered at x with radius 1/k. The set W k is well-defined, up to a change of coordinates, for k large enough.

Lemma 8. M R ⊂ k∈N W k .
Proof of Lemma 8. Let x ∈ M R and ȳ ∈ Γ R (x). By the same argument used in the proof of Proposition 15, we may assume that there are a regular minimizing geodesic γ : [0, 1] → M steering ȳ to x, and an open neighborhood V of γ([0, 1]) admitting an orthonormal family (with respect to g) F of two vector fields X 1 , X 2 such that

∆(z) = Span X 1 (z), X 2 (z) , ∀z ∈ V.
According to a change of coordinates if necessary, we can assume that V is an open subset of R 4 . Moreover, there is a control ū ∈ L 2 ([0, 1], R 2 ) associated to γ, ie.

γ(t) = 2 i=1 ūi (t)X i (γ(t)), ∀t ∈ [0, 1]. Since γ is regular, there exist v 1 , v 2 , v 3 , v 4 ∈ L 2 ([0, 1], R 2 ) such that the linear operator R 4 → R 4 α → 4 i=1 α i D ūEnd ȳ(v i ) (5.5) is invertible. Recall that C ∞ ([0, 1], R 2 ) is dense in L 2 ([0, 1], R 2 ), we can assume that we have v 1 , v 2 , v 3 , v 4 in C ∞ ([0, 1], R 2 ).

Define locally

F x : R 4 → R 4 α → End ȳ(ū + 4 i=1 α i v i ) .
Chapter 5 : Mass Transportation on sub-Riemannian structures of rank 2 in dimension 4

This mapping is well-defined and of class C 2 in the neighborhood of zero. It satisfies F x(0) = x and its differential at 0 is invertible. By the Local Inverse Function Theorem, there exist an open ball B of R 4 centered at x and a function G x : B → R 4 of class C 2 such that

F x • G x(z) = z, ∀z ∈ B. ∀z ∈ B, d 2 SR (z, ȳ) ≤ ||ū + 4 i=1 (G x(z)) i v i || 2 L 2 . V • x • ȳ γ ↔ ū = End ȳ(ū) B • z ū + 4 i=1 (G x(z)) i v i Define φ x,ȳ (z) := ||ū + 4 i=1 (G x(z)) i v i || 2 L 2 , ∀z ∈ B.
Then, we conclude that there is a C 2 function φ x,ȳ : B → R 4 such that

φ x,ȳ (z) ≥ d 2 SR (z, ȳ), ∀z ∈ B and φ x,ȳ (x) = d 2 SR (x, ȳ).
Recall that, by the definition of the Kantorovitch potentials, for every z ∈ M , we have

ϕ(z) ≥ ϕ c (ȳ) -d 2 SR (z, ȳ) ϕ(x) = ϕ c (ȳ) -d 2 SR (x, ȳ) . Then, ∀z ∈ B, ϕ(z) ≥ ϕ c (ȳ) -φ x,ȳ (z) ϕ(x) = ϕ c (ȳ) -φ x,ȳ (x) . Define ψ x,ȳ (z) := ϕ c (ȳ) -φ x,ȳ (z), ∀z ∈ B.
Hence, we put locally a C 2 function under the graph of ϕ with a uniform control on the C 2 norm of ψ x,ȳ . Then, for x ∈ M R , we can find k ∈ N such that there is

p x ∈ R 4 with |p x| ≤ k verifying ϕ(x) ≤ ϕ(y) -p x, x -y + k |x -y| 2 , ∀y ∈ B(x, 1/k).
We are ready to complete the proof of Proposition 17.

Since M R ⊂ k∈N W k (by Lemma 8), there exists k ∈ N such that

A k := A ∩ W k is of positive Lebesgue measure.
Let x be a density point of A k and ȳ ∈ Γ R (x). By the definition of the Kantorovitch potentials, we have that

ϕ(x) + d 2 SR (x, ȳ) ≤ ϕ(z) + d 2 SR (z, ȳ), ∀z ∈ M ⇒ ϕ(x) + d 2 SR (x, ȳ) -ϕ(z) ≤ d 2 SR (z, ȳ), ∀z ∈ M.
We define the function

ρ x : M → R z → ρ x(z) := ϕ(x) + d 2 SR (x, ȳ) -ϕ(z) verifying ρ x(z) ≤ d 2 SR (z, ȳ)
, ∀z ∈ M and equality for z = x.

(5.6)

Let Ãk := A k ∩ B(x, 1/2k). For every y ∈ Ãk , there is p y ∈ R 4 , |p y | ≤ k such that ϕ(y) ≤ ϕ(z) -p y , y -z + k |y -z| 2 , ∀z ∈ B(y, 1/k).
We define the function φ : B(x, 1/2k) → R as follows We claim that for every x ∈ Ãk , φ(x) = ϕ(x). Let us prove our claim. In fact, for every x ∈ Ãk ,we have

φ(x) ≥ Ψ y (x), ∀y ∈ Ãk , that is φ(x) ≥ ϕ(y) + p y , y -x -k |y -x| 2 , ∀y ∈ Ãk .
In particular, for y = x ∈ Ãk , we obtain

ϕ(x) ≤ φ(x).
Assume that there is x ∈ Ãk such that ϕ(x) < φ(x). Then, there is y ∈ Ãk , y = x such that

ϕ(x) < Ψ y (x) that is ϕ(x) < ϕ(y) + p y , y -x -k |y -x| 2 .
(5.7)

Since x, y ∈ Ãk , we have x ∈ B(y, 1/k). So, ϕ(y) ≤ ϕ(x) -p y , y -x + k|x -y| 2 ⇒ ϕ(y) + p y , y -x -k |x -y| 2 ≤ ϕ(x)
which contradicts inequality (5.7). And the conclusion follows.

Moreover, let y ∈ Ãk be fixed. There exists a neighborhood B(y, 1/k) of y contained in B(x, 1/2k) such that for every x ∈ B(y, 1/k), there is px ∈ R 4 such that ∀x ∈ B(y, 1/k), we have

Ψ y (x) -Ψ y (x ) = p y , x -x + k(|x -y| 2 -|x -y| 2 ) ≤ p y , x -x + k|x -x| 2 -2k y -x, x -x ≤ p y -2k(y -x), x -x + k|x -x| 2
Take px := p y -2k(y -x), we obtain

Ψ y (x) ≤ Ψ y (x ) -p y -2k(y -x), x -x + k|x -x| 2 .
This means that for every y ∈ Ãk , Ψ y is locally semiconvex on B(x, 1/2k). According to Lemma 21 in Appendix A, since φ is the supremum of local semiconvex functions Ψ y among all y ∈ Ãk , then φ is locally semiconvex on B(x, 1/2k). By the Rademacher Theorem (see Appendix B.1), φ is differentiable almost everywhere on B(x, 1/2k).

We also define the function

ρx : B(x, 1/2k) → R z → ρx (z) := φ(x) + d 2 SR (x, ȳ) -φ(z)
such that ρx = ρ x on Ãk .

(5.8)

Here, x is fixed and ρx is a function of z. By the definition of ρx , as φ is differentiable at almost every z ∈ B(x, 1/2k), ρx is also differentiable almost everywhere on B(x, 1/2k).

On the other hand, following the proof of Lemma 8, for x ∈ M R and ȳ ∈ Γ R (x), there are an open set B x in R 4 containing x and a C 2 function φ x,ȳ : B x → R such that

φ x,ȳ (z) ≥ d 2 SR (z, ȳ), ∀z ∈ B
x and equality for z = x.

(5.9)

Consequently, by (5.6), (5.8), (5.9), we obtain

ρx (z) ≤ d 2 SR (z, ȳ) ≤ φ x,ȳ (z), ∀z ∈ B x ∩ Ãk and equality for z = x. dimension 4
Note that φ x,ȳ is a C 2 function and ρx is differentiable almost everywhere on B(x, 1/2k). Then,

d xφ x,ȳ = d x ρx .
It means that there is a unique ȳ ∈ Γ R (x) such that ȳ is characterized by

ȳ = exp x(d x ρx ) = exp x(-d x φ),
with exp x : T * x M → M the sub-Riemannian exponential map from x. This contradicts assumption (5.3) and the conclusion follows.

Remark 4. The above argument can be used to prove the required result in the general case, with M a smooth connected manifold of dimension n equipped with a complete sub-Riemannian structure (∆, g) of rank m(m < n).

Proof of Proposition 18

Our aim is to prove that for almost every x ∈ M S , Γ S (x) is a singleton. First, we need to construct a line field, defined on a set of full Lebesgue measure, whose orbits correspond to the singular curves.

The following holds (see [START_REF] Sussmann | A cornucopia of abnormal sub-Riemannian minimizers[END_REF], [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]

, [LS95]) :

Lemma 9. There is an open set H of full Lebesgue measure on M such that:

∀x ∈ H, T x M = ∆(x) + [∆, ∆](x) + [∆, [∆, ∆]](x).
(5.10)

Proof of Lemma 9. We denote by S the set given by

S = x ∈ M |∆(x) + [∆, ∆](x) + [∆(x), [∆, ∆]](x) = T x M .
Assume by contradiction that S is of positive Lebesgue measure on M . It is sufficient to work locally. Taking a sufficiently small open neighborhood V of the origin in M and doing a change of coordinates if necessary we may assume that there are a set of coordinates (x 1 , x 2 , x 3 , x 4 ) and two vector fields X 1 , X 2 on V of the form

X 1 = ∂ x 1 , X 2 = ∂ x 2 + A∂ x 3 + B∂ x 4
where A, B : M → R are smooth functions such that A(0) = B(0) = 0 and ∆(x) = Span X 1 (x), X 2 (x) , ∀x ∈ V.

So we have

[X 1 , X 2 ] = A x 1 ∂ x 3 + B x 1 ∂ x 4 on V.
By hypothesis (5.1) in Theorem 12, we have

∀x ∈ M, ∆(x) + [∆, ∆](x) has dimension 3.
We may assume

A x 1 = 0 on V.
We denote by X 3 the vector field given by

X 3 := 1 A x 1 [X 1 , X 2 ] = ∂ x 3 + C∂ x 4
where C := B x 1 /A x 1 is smooth.

A computation gives

[X 1 , X 3 = [∂ x 1 , ∂ x 3 + C∂ x 4 ] = C x 1 ∂ x 4 (5.11) and [X 2 , X 3 = [∂ x 2 + A∂ x 3 + B∂ x 4 , ∂ x 3 + C∂ x 4 ]
(5.12)

= -A x 3 -CA x 4 ∂ x 3 + C x 2 + AC x 3 + BC x 4 -B x 3 -CB x 4 ∂ x 4 Let x ∈ S ∩ V. It follows ∆(x) + [∆, ∆](x) + [∆(x), [∆, ∆]](x) = T x M. Since ∆ + [∆, ∆] is of dimension 3, it means that
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det X 1 , X 2 , [X 1 , X 2 ], X 1 , [X 1 , X 2 ] = 0 (5.13) and, det X 1 , X 2 , [X 1 , X 2 ], X 2 , [X 1 , X 2 ] = 0 (5.14) which is equivalent to det X 1 , X 2 , [X 1 , X 2 ], X 1 , X 3 = 0 (5.15) and, det X 1 , X 2 , [X 1 , X 2 ], X 2 , X 3 = 0 (5.16) that is, C x 1 = 0 (5.17) and C x 2 + AC x 3 + BC x 4 -B x 3 -CB x 4 + CA x 3 + C 2 A x 4 = 0.
(5.18)

For every k-tuple I = (i 1 , . . . , i k-1 , 3) s.t. (i 1 , . . . , i k-1 ) ∈ {1, 2} k-1 , we denote by Z I the smooth vector field constructed by the Lie brackets of X 1 , X 2 as follows

Z I = X i 1 , X i 2 , . . . , [X i k-1 , X 3 ] . . . .
Note l(I) the length of the Lie brackets Z I . By totally nonholonomicity, for every x ∈ V, there exists an integer r(x) ≥ 2 such that

T x M = Span Z I (x)| l(I) ≤ r(x) .
For every I of l(I) ≥ 2,

Z I (x) = Z I 3 (x) ∂ x 3 + Z I 4 (x) ∂ x 4 .
We define the following set

A k := x ∈ V| Z I 4 (x) -C(x)Z I 3 (x) = 0 ∀I s.t.

l(I) ≤ k and

Lemma 10. There exists a line subbundle L of ∆ such that the singular horizontal curves defined on H are exactly the trajectories described on L.

Proof of Lemma 10. It is sufficient to prove the result in a neighborhood of each point in H. So, let us consider a local frame {X 1 , X 2 } such that

∆(z) = Span X 1 (z), X 2 (z) , ∀z ∈ M.
Let γ : [0, 1] → M be a trajectory associated to some control u ∈ L 2 ([0, 1], R 2 ). In local coordinates, singular curves can be characterized as follows (see Proposition 1.3.3 [START_REF] Rifford | Sub-Riemannian Geometry and optimal transport[END_REF]):

γ is singular with respect to ∆ if there is p : [0, 1] → (R 4 ) * \{0} satisfying :

ṗ(t) = - 2 i=1 u i (t)p(t).D γ(t) X i , a.e. t ∈ [0, 1] (5.26) p(t).X i (γ(t)) = 0, ∀t ∈ [0, 1], ∀i = 1, 2 (5.27) 
Derivative (5.27) two times yields for almost every t ∈ [0, 1] such that u(t) = 0 p(t). X 1 (t), X 2 (t) (γ(t)) = 0, (5.28) and

u 1 (t)p(t). X 1 , [X 1 , X 2 ] (γ(t)) + u 2 (t)p(t). X 2 , [X 1 , X 2 ] (γ(t)) = 0.
(5.29)

Since M has dimension four and ∆ + ∆, ∆ has dimension three, there is locally a smooth non-vanishing 1-form α such that

α x .v = 0, ∀v ∈ ∆(x) + ∆, ∆ (x), ∀x ∈ H.
Then, by (5.27), (5.28)-(5.29), we infer that for almost every t ∈ [0, 1] such that u(t) = 0, we have:

u 1 (t)α γ(t) . X 1 , [X 1 , X 2 ] (γ(t)) + u 2 (t)α γ(t) . X 2 , [X 1 , X 2 ] (γ(t)) = 0.
By above assumption, for every x ∈ H, the linear form

(λ 1 , λ 2 ) → α x . X 1 , [X 1 , X 2 ] (x) λ 1 + α x . X 2 , [X 1 , X 2 ] (x) λ 2
has a kernel of dimension one. This shows that there is a smooth line field (a distribution of rank one) L ⊂ ∆ on M such that the singular horizontal curves are exactly the integral curves of L.
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We are ready now to prove Proposition 18. Without loss of generality, it is sufficient to prove the result locally. We can assume that (x 1 , x 2 , x 3 , x 4 ) denotes the coordinates in an open neighborhood V in M and consider {X 1 , X 2 } a local frame of ∆ such that

∆(x) = Span X 1 (x), X 2 (x) , ∀x ∈ V.
Doing a change of coordinates if necessary, we can assume that

X 1 = ∂ x 1 , X 2 = ∂ x 2 + A(.)∂ x 3 + B(.)∂ x 4
where A, B : V → R are smooth functions.

For the upcoming results, it is important to keep in mind the following notations.

Notation 1. We denote by A x i , B x i the partial derivative with respect to the variable x i , and A x i x j , B x i x j the second partial derivative with respect to the variable x i and x j , of A and B respectively.

We compute the Lie brackets of X 1 and X 2 :

X 1 , X 2 = A x 1 ∂ x 3 + B x 1 ∂ x 4 (5.30) X 1 , [X 1 , X 2 ] = A x 1 x 1 ∂ x 3 + B x 1 x 1 ∂ x 4 X 2 , [X 1 , X 2 ] = E∂ x 3 + F ∂ x 4 with    E = A x 2 x 1 + AA x 3 x 1 + BA x 1 x 4 -A x 1 A x 3 -B x 1 A x 4 , F = B x 2 x 1 + AB x 3 x 1 + BB x 1 x 4 -A x 1 B x 3 -B x 1 B x 4 .
By hypothesis (5.1) and (5.30), we can assume that

A x 1 (x) = 0, ∀x ∈ V.
(5.31)

We denote by H c the complementary set of H on M given by

H c = x ∈ M | ∆(x) + ∆, ∆ (x) + ∆, [∆, ∆] (x) = T x M . +AA x 3 x 1 B x 1 x 1 + AA x 1 B x 3 x 1 x 1 -AB x 3 x 1 A x 1 x 1 -AB x 1 A x 3 x 1 x 1 +BA x 4 x 1 B x 1 x 1 + BA x 1 B x 4 x 1 x 1 -BB x 4 x 1 A x 1 x 1 -BB x 1 A x 4 x 1 x 1 = α 2 (x)div x X 2 + EB x 1 x 1 -F A x 1 x 1 +B x 1 x 1 (BA x 4 x 1 + AA x 3 x 1 + A x 2 x 1 + A x 1 B x 4 -B x 1 A x 4 ) +A x 1 x 1 (-BB x 4 x 1 -AB x 3 x 1 -B x 2 x 1 + A x 1 B x 3 -B x 1 A x 3 ) = α 2 (x)div x X 2 + EB x 1 x 1 -F A x 1 x 1 +B x 1 x 1 A x 1 B x 4 + B x 1 x 1 (E + A x 1 A x 3 ) -A x 1 x 1 B x 1 A x 3 -A x 1 x 1 (F + B x 1 B x 4 ) = α 2 (x)div x X 2 + 2EB x 1 x 1 -2F A x 1 x 1 +B x 1 x 1 (A x 1 B x 4 + A x 1 A x 3 ) -A x 1 x 1 (B x 1 A x 3 + B x 1 B x 4 ) = α 2 (x)div x X 2 + 2EB x 1 x 1 -2F A x 1 x 1 +(B x 1 x 1 A x 1 -A x 1 x 1 B x 1 )(A x 3 + B x 4 ) = 2 B x 1 x 1 E -2 A x 1 x 1 F + 2 α 2 (x)div x X 2 .
By (5.35), we can write

B x 1 x 1 = α 2 + B x 1 A x 1 x 1 A x 1 and F = EB x 1 -α 1 A x 1 . Hence, div x X = 2 α 2 E A x 1 + 2 α 1 A x 1 x 1 A x 1 + 2 α 2 div x X 2 = 2 α 2 ( E A x 1 + div x X 2 ) + 2 α 1 A x 1 x 1 A x 1
As we noticed before, without loss of generality, we proceed as if M is a compact manifold. Then, the functions

E/A x 1 + div x X 2 and A x 1 x 1 /A x 1 are bounded on M . There exist c 1 , c 2 > 0 such that | A x 1 x 1 A x 1 (x) | ≤ c 1 and | E A x 1 (x) + div x X 2 | ≤ c 2 , ∀x ∈ V. Thus, div x X ≥ -c 1 |α 1 | -c 2 |α 2 |, ∀x ∈ V
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≥ -C|X(x)|, ∀x ∈ V with C = max{c 1 , c 2 } > 0 positive constant.
The following process is equivalent to the process introduced by Belotto and Rifford [START_REF] Belotto Da Silva | The sub-Riemannian Sard conjecture on Martinet surfaces[END_REF] to set the contraction property.

Let ε ∈ {1, +1} and T > 0, we denote by (ϕ X εt ) 0≤t≤T the analytic flow of the vector field X generating locally singular minimizing geodesics.

For every subset A in V, we set

A S t = ϕ X εt (A), ∀t ∈ [0, T ] and A S 0 = A.
We denote by l(A, A S t ) := sup

x∈A length ϕ X εt (A) = sup x∈A t 0 |X(ϕ X εs (x))|ds,
where |X(ϕ X εs (x))| stands for the norm of X(ϕ X εs (x)) with respect to g.

We recall that there is L > 0, by (5.2), such that for every x ∈ A, we have (5.36)

We state now divergence formulas, one of the main tool of the present paper (see [START_REF] Belotto Da Silva | The sub-Riemannian Sard conjecture on Martinet surfaces[END_REF], Proposition B.1).

Lemma 13. For every compact A in M , there is a smooth function J : [0, T ] × A → [0, +∞[ such that for every t ∈ [0, T ], we have:

J (0, z) = 1 and ∂J ∂t (t, z) = div X(ϕ X εt (z)) J (t, z) (5.37) ∀x ∈ A, L 4 (A S t ) = A S t dz = A J (t, z) dz (5.38) and L 4 (A S t ) = A exp t 0 div X(ϕ X εs (z)) ds dz (5.39)
The following result is an immediate corollary of Lemma 13.

Lemma 14. Let T > 0. For every subset A in V, we have

L 4 (A S t ) ≥ exp(-C l(A, A S t )) L 4 (A), ∀t ∈ [0, T ].
(5.40)

Proof of Lemma 14. Let A be a subset in V. By Lemma 12, there is a constant

C > 0 such that div X(z) ≥ -C|X(z)|, ∀z ∈ A.
Therefore, by (5.39), we infer that, ∀t ∈ [0, T ],

L 4 (A S t ) ≥ A exp -C t 0 |X(ϕ X εs (z))| ds dz ≥ A exp -C l(A, A S t ) dz ≥ exp -C l(A, A S t ) L 4 (A).
The following result whose proof is based on the local contraction property (5.40), is fundamental.

Lemma 15. Let T > 0. The closed set given by

x ∈ M| ∃γ ∈ Ω S x,T such that γ(T ) ∈ H c
is of Lebesgue measure zero on M .

Proof of Lemma 15. Let A be a subset of M of positive Lebesgue measure. Without loss of generality, we can assume that A is contained in an open set V in M . We argue by contradiction by assuming that

L 4 x ∈ A| ∃γ ∈ Ω S x,T such that γ(T ) ∈ H c > 0.
By Lemma 11, there is an analytic horizontal vector field X defined on V generating singular minimizing geodesic defined on V.

Chapter 5 : Mass Transportation on sub-Riemannian structures of rank 2 in dimension 4

A • x H c A S t • ϕ X εt (x)
Moreover, X vanishes on H c . Then, for every x ∈ A, the flow of X starting at x requires an infinite time to reach H c , that is

A S t = ϕ X εt (A) -→ t→∞ S ⊂ H c .
By Lemma (14), we have

L 4 (A S t ) ≥ exp(-C l(A, A S t ))L 4 (A), ∀t ∈ [0, T ].
By (5.36), we obtain

l(A, A S t ) ≤ L, ∀t ∈ [0, T ]. Hence, L 4 (A S t ) ≥ exp(-CL)L 4 (A), ∀t ∈ [0, T ].
Since M is assumed to be compact and all the orbits ϕ Z εt (x) with x ∈ A tends to S as t tends to ∞, by the Dominated Convergence Theorem, we deduce that

lim t→∞ L 4 (A S t ) = 0.
So we obtain L 4 (A) = 0, which implies the contradiction.

In the spirit of [CH15], we have the following result.

Lemma 16. Let Λ 1 , Λ 2 be two subsets of Γ ϕ such that (i) P 1 (Λ 1 ) = P 1 (Λ 2 ) and P 1 (Λ i ) ⊂ M S , ∀i = 1, 2.

(ii) P 2 (Λ 1 ) ∩ P 2 (Λ 2 ) = ∅.
Then, L 4 (P 1 (Λ 1 )) = L 4 (P 1 (Λ 2 )) = 0.

Proof of Lemma 16. Set A = P 1 (Λ 1 ) = P 1 (Λ 2 ). We can assume that A is contained in an open set V in M . Let T > 0. For every i = 1, 2, we define

A S,Λ i t := ϕ X εt (x)| ϕ X 0 (x) ∈ A and ϕ X εT (x) ∈ P 2 (Λ i ) , ∀t ∈ [0, T ]. Since P 2 (Λ 1 ) ∩ P 2 (Λ 2 ) = ∅, we have A S,Λ 1 t ∩ A S,Λ 2 t = ∅, ∀t ∈ [0, T ].
For δ > 0 fixed, we define

A δ = {x : d SR (x, A) ≤ δ}. A P 2 (Λ 2 ) P 2 (Λ 1 ) A S,Λ 1 t A S,Λ 2 t A δ L 4 (A) = lim δ→0 sup L 4 (A δ ) ≥ lim t→0 sup L 4 (A S,Λ 1 t ∪ A S,Λ 2 t ) = lim t→0 sup[L 4 (A S,Λ 1 t ) + L 4 (A S,Λ 2 t )] ≥ exp -C l(A, A S,Λ 1 t )) + exp -C l(A, A S,Λ 2 t )) L 4 (A). Since t → 0, we have A S,Λ i t very close to A. So we can choose l(A, A S,Λ i t )) > 0 sufficiently small, that is exp -C l(A, A S,Λ i t )) > 1 2 .
Hence, we obtain L 4 (A) = 0.
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We are ready to complete the proof of Proposition 18.

Consider the following set

E := x ∈ M S : Γ S (x)
is not a singleton and assume that E has positive measure.

It follows that there is k ∈ N such that the set given by

E k := x ∈ E : diam Γ S (x) > 1 k
has positive Lebesgue measure.

Without loss of generality, we can assume that the manifold M can be covered by finitely many open balls (U i ) i∈I of diameter less or equal to 1/k. From (U i ) i∈I , we construct a finite family of open sets (V i ) i∈I pairwise disjoint covering M by proceeding as follows

             V 1 = U 1 V 2 = U 2 \U 1 . . . V n = U n \(U 1 ∪ U 2 ∪ • • • ∪ U n-1 ) . . . such that i∈I U i = i∈I V i .
Therefore, for any x ∈ E k , there are i x , j x ∈ I with i x = j x such that

Γ S (x) ∩ V ix = ∅ and Γ S (x) ∩ V jx = ∅.
Denote by

E k,i := x∈E k {x} × (Γ S (x) ∩ V ix ) and E k,j := x∈E k {x} × (Γ S (x) ∩ V jx ).
We notice that P

1 (E k,i ) = P 1 (E k,j ) = E such that L 4 (E) > 0.
(5.41)

We also have

P 2 (E k,i ) ∩ P 2 (E k,j ) = ∅ since for any x ∈ E k , V ix ∩ V jx = ∅, for i x = j x .
Using lemma 16, we obtain

L 4 (P 1 (E k,i )) = L 4 (P 1 (E k,j )) = L 4 (E) = 0,
which contradicts assumption (5.41).

We conclude that for a.e. x ∈ M S , Γ S (x) is a singleton.

End of the proof of Theorem 12

In the previous sections, we have shown that

a.e. x ∈ M R , Γ R (x) is a singleton (see section 5.2),
and a.e. x ∈ M S , Γ S (x) is a singleton (see section 5.3).

To complete the proof of Theorem 12, it remains to prove that M S ∩ M R has Lebsgue measure zero.

For this purpose, we will use again the technique introduced by Cavalletti and Huesmann [START_REF] Cavalletti | Existence and uniqueness of optimal transport maps[END_REF]. First, we will show a localized contraction property for regular horizontal curves.

Lemma 17. There is a positive constant C such that for T > 0 and for every set

A in M R , L 4 (A R t ) ≥ CL 4 (A), ∀t ∈ [0, T ] (5.42) with A R t := γ(t)| γ ∈ Ω R x,T ; x ∈ A and γ(T ) ∈ Γ R (x) . Proof of Lemma 17. Let A be a compact set of M R of positive measure. Since M R ⊂ k∈N W k (by Lemma 8), for every point x of A, there exists k = k(x) ∈ N such that x ∈ A k := A ∩ W k ,
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p x ∈ R 4 with |p x | ≤ k verifying ϕ(x) ≤ ϕ(z) -p x , x -z + k|x -z| 2 , ∀z ∈ B(x, 1/k).
Let Ãk := A k ∩ B(x, 1/2k). As in section 5.2, we define the function

φ(z) =        ϕ(z) if z ∈ Ãk sup y∈ Ãk {ϕ(y) + p y , y -z -k |y -z| 2 } if not
For any x ∈ A, φ is locally semiconvex on B(x, 1/2k). By the Alexandrov Theorem, φ is twice differentiable at a.e. z ∈ B(x, 1/2k). Moreover, there exists a constant

C k > 0 such that Hess z φ ≥ -C k I 4 , a.e. z ∈ B(x, 1/2k) (5.43)
where I 4 is the 4 × 4 identity matrix.

We notice that A = k∈N Ãk . Denote by C > 0 the constant given by

C := sup k∈N C k .
Then, Hess x φ ≥ -CI 4 , a.e. x ∈ A.

By section 5.2, for almost every x ∈ A ⊂ M R , there exists a unique y ∈ Γ R (x) given by y := exp x (-d x φ).

Then, the curve γ x (t) : [0, T ] → M defined by γ x (t) := exp x (-td x φ), a.e. x ∈ A is the unique regular minimizing geodesic joining x to y.

For every t ∈ [0, T ], we define the function

T t : M → M x → T t (x) = γ x (t) = exp x (-td x φ) . Note that, ∀t ∈ [0, T ], A R t = {T t (z) : z ∈ A} then we have L 4 (A R t ) = A R t dx = {Tt(z);z∈A} dx = A det(Jac T t (x))dx.
(5.44) However, the function T t results from the composition of the two following functions f :

x ∈ M → d x φ ∈ T *
x M, and g : p ∈ T * M → exp x (-tp) ∈ M. By computing the Jacobien of T t , we obtain

Jac T t (x) = Jac g(f (x)) × Hess x φ .
Here, g is smooth on T * M and by (5.43), there is a constant C > 0 such that Jac T t (x) ≥ -C I 4 , a.e. x ∈ A.

By (5.44), this implies

L 4 (A R t ) ≥ CL 4 (A), ∀t ∈ [0, T ].
We conclude with the following lemma.

Lemma 18. M R ∩ M S has Lebesgue measure zero on M .

Proof of Lemma 18. Assume that there is a set A of M R ∩ M S such that L 4 (A) > 0.

(5.45)

Let T > 0 and ε ∈ {-1, +1}. For every t ∈ [0, T ], we define the two following intermediate subsets by

A R t := γ x (t)| γ x ∈ Ω R x,T with x ∈ A and γ R x (T ) ∈ Γ R (x) , and 
A S t := ϕ X εt (A).
We claim that for every x ∈ A, there is

t = t(x) ∈]0, T [ such that ϕ X εs (x) = γ x (s), ∀s ∈]t, T [.
As a matter of fact, regular minimizing geodesics are analytic as projections of the analytic sub-Riemannian Hamiltonian system and singular minimizing geodesic are analytic as the analytic flow of X. Assume that ϕ X εT (x) = γ x (T ). By the principle of isolated zeros for analytic functions, there is

t = t(x) ∈]0, T [ such that ϕ X εs (x) = γ x (s), ∀s ∈]t, T [.
Without loss of generality, we can assume that there is t ∈]0, T [ such that for every

x ∈ A t = t(x) ≤ t and A R s ∩ A S s = ∅, ∀s ∈] t, T [ and A R t ∩ A S t = ∅.
We denote by

Ā := A R t ∪ A S t .
We may assume that Ā has positive Lebesgue measure. Notice that for s ≥ t, when s → t, A R s and A S s converge to Ā, then one has

L 4 ( Ā) = lim δ→0 sup L 4 ( Āδ ) ≥ lim s→ t+ sup L 4 (A Λ 1 s ∪ A Λ 2 s ) = lim s→ t+ sup L 4 (A R s ∪ A S s ) = lim s→ t+ sup[L 4 (A R s ) + L 4 (A S s )] ≥ lim s→ t+ C + exp -C l( Ā, A S t ) L 4 ( Ā). (5.46) 
where Āδ := {x; d SR (x, Ā) ≤ δ}, for a given δ > 0.

The inequality (5.46) follows from Lemmas 14 and 17 according to which we have

L 4 (A R s ) ≥ CL 4 ( Ā) and L 4 (A S s ) ≥ exp -Cl( Ā, A S t ) L 4 ( Ā), ∀s ∈] t, T [.
As s → t, l( Ā, A S t ) tends to zero. So we can choose l( Ā, A S t ) > 0 sufficiently small such that

C + exp -C l( Ā, A S t ) + C > 1.
It implies that L 4 ( Ā) = 0. And the conclusion follows.

Chapter 6

The study of h-concavity, h-semiconcavity and MCP on Carnot groups

A method introduced by Cavalletti and Huesmann [START_REF] Cavalletti | Existence and uniqueness of optimal transport maps[END_REF] shows that we are able to prove existence and uniqueness of optimal transport maps on spaces satisfying the MCP. We recall that a sub-Riemannian structure is said to be ideal if it is complete and has no non-trivial singular minimizing curves. In [START_REF] Rifford | Ricci curvature in Carnot groups[END_REF], Rifford proved that ideal sub-Riemannian structures on Carnot groups satisfy such property and this follows from the semiconcavity of the sub-Riemannian distance outside the diagonal. The aim of this section is to study suitable regularity assumptions guaranteeing the validity of the Cavalletti-Huesmann method for more general Carnot groups.

Unfortunately, the content is prospective. We showed the MCP property on Carnot groups when the sub-Riemannian distance is assumed to be h-semiconcave. But until now, we have no examples of Carnot groups which are h-semiconcave.

Preliminaries on Carnot groups

We recall some basic facts on Carnot groups. For further details on Carnot groups, we refer the reader to [START_REF] Donne | Lecture notes on sub-Riemannian geometry, enrico.ledonne.googlepages.com[END_REF].

A Carnot group G of step r is a simply connected Lie group whose Lie algebra g admits a nilpotent stratification of step r. It means that g

= V 1 + • • • + V r with [V 1 , V j ] = V j+1 , ∀1 ≤ j ≤ r, V r = {0}, V r+1 = {0}.
We assume that a scalar product <.,.> is given on g for which the V j 's are mutually orthogonal. The assumption that G is simply connected and nilpotent ensures that Chapter 6 : The study of h-concavity, h-semiconcavity and MCP on Carnot groups the exponential map exp : g → G is a global diffeomorphism (see [START_REF] Varadarajan | Lie groups, Lie Algebras, and Their Representations[END_REF]). This allows to define the inverse of the exponential map given by the mapping

ξ : G -→ g g -→ ξ(g) = ξ 1 (g) + • • • + ξ r (g) such that ξ i : G → V i , for i = 1, . . . , r.
The identification of G and its Lie algebra g is justified by the Baker-Campbell-Hausdorff formula

exp(Z)exp(Z ) = exp(Z + Z + 1 2 [Z, Z ] + . . . ), Z, Z ∈ g (6.1)
where the dots indicate a finite linear combination of terms containing commutators of order two and higher.

A Carnot group of step r is naturally equipped with a family of dilations defined by

δ λ (g) = exp • ∆ λ • exp -1 (g), ∀g ∈ G
where exp : g → G is the exponential map and ∆ λ : g → g is defined by

∆ λ (v 1 + • • • + v r ) = λv 1 + • • • + λ r v r .
The first layer V 1 plays a key role. We denote exp(V 1 ) = H e , where e is the unit element of the group G. Assume that V 1 is of dimension m, we fix {X 1 , . . . , X m } an orthonormal basis of V 1 . The first layer V 1 behaves as a sub-Riemannian structure on G: we call horizontal directions its elements, and any metric on it provides a sub-Riemannian metric by translation. The homogeneity of the first layer implies the homogeneity of the sb-Riemannian distance, that is for every λ > 0,

d SR (0, δ λ (g)) = λd SR (0, g), ∀g ∈ G.
In particular, this yields the invarinace of the sub-Riemannian balls by dilations, that is for every λ > 0,

δ λ (B SR (0, r)) = B SR (0, λr), ∀r > 0
where B SR (0, r) denotes the sub-Riemannian ball centered at the origin with radius r.

We say that an absolutely continuous curve γ :

[0, 1] → G is horizontal if γ(t) ∈ T H γ(t) , a.e. t ∈ [0, 1].
Given g ∈ G, we denote the horizontal plane H g by the m-dimensional submanifold of G passing through g given by

H g = g ∈ G : g = gh with h ∈ exp(V 1 ) .
We define another kind of curve joining two points g, g ∈ G.

Definition 29. Given g, g ∈ G, for λ ∈ [0, 1], we denote by g λ := gδ λ (g -1 g ) the twisted "convex combination" of g and g based at g. Given g ∈ G, and g ∈ H g , the map given by

λ ∈ [0, 1] -→ g λ ∈ G
is said to be a horizontal segment, and in particular, a geodesic.

Proposition 19. Given g, g ∈ G, one has 1. g ∈ H g ⇔ g -1 g ∈ H e 2. g ∈ H g ⇔ g ∈ H g 3. g ∈ H g ⇒ g λ ∈ H g , ∀λ ∈ [0, 1] Proof of Proposition 19. 1. g ∈ H g ⇔ g = gh with h ∈ exp(V 1 ) = H e which means that g -1 g = h ∈ H e . 2. g ∈ H g ⇔ g -1 g ∈ H e ⇔ g -1 g ∈ H e ⇔ g ∈ H g . 3. For λ ∈ [0, 1], g λ = gδ λ (g -1 g ) ⇔ g -1 g = δ λ (g -1 g ). If g ∈ H g , then g -1 g ∈ H e ⇒ δ λ (g -1 g ) ∈ H e ⇒ g λ ∈ H g .
We denote by Ω an open subset of G. Given i = 1, . . . , m, the action of X i on a function f : Ω → R is given by

X i f (g) = lim t→0 f (g exp(tX i )) -f (g) t = d dt f gexp(tX i ) | t=0 .
Let k be a positive integer. We denote by C k h (Ω) the space of functions f : Ω → R which have continuous derivatives up to order k with respect to the horizontal vector fields X 1 , . . . , X m .

Chapter 6 : The study of h-concavity, h-semiconcavity and MCP on Carnot groups Definition 30. Let f : Ω → R be a function of class C 2 h on Ω.

1. The horizontal gradient of f at a point g ∈ Ω is the horizontal vector given by

∇ h f (g) = m i=1 X i f (g)X i .
2. The horizontal symmetrical hessian of f at a point g ∈ Ω is the matrix given by

∇ 2 h f * (g) = 1 2 X i X j f (g) + X j X i f (g) i,j=1,...,m
.

According to [START_REF] Calogero | c horizontal convexity on Carnot groups[END_REF] and [START_REF] Danielli | Variational inequalities with lack of ellipticity. I. optimal interior regularity and non-degeneracy of the free boundary[END_REF], we introduce the following:

Definition 31. Let f : Ω → R be a function. We call the Pansu differential of f at g ∈ Ω the map Df (g) : Ω → R given by

Df (g)(h) = lim λ→0 + f gδ λ (h) -f (g) λ , ∀h ∈ Ω. If f ∈ C 1 h (Ω), then the Pansu differential Df (g) is given by Df (g)(h) =< ∇ h f (g), ξ 1 (h) >, ∀h ∈ Ω.

h-concavity on Carnot groups

Several notions of convexity on Heisenberg groups, and more generally in Carnot groups, have been introduced and compared as the horizontal convexity (see [START_REF] Danielli | Notions of convexity in Carnot groups[END_REF], [START_REF] Calogero | c horizontal convexity on Carnot groups[END_REF]) and the viscosity convexity (see [START_REF] Lu | Convex functions on the Heisenberg group[END_REF]). These definitions are proved to be equivalent on Carnot groups (see [START_REF] Balogh | Regularity of convex functions on Heisenberg groups[END_REF], [START_REF] Juutinen | Convex functions in Carnot groups[END_REF], [START_REF] Magnani | Lipschitz continuity, Alexandrov theorem and characterizations for H-convex functions[END_REF] and [START_REF] Wang | Viscosity convex functions on Carnot groups[END_REF]).

Definition 32. We say that a function f :

G → R is h-concave on G if it is concave on every horizontal segment, that is, λf (g ) + (1 -λ)f (g) ≤ f gδ λ (g -1 g ) , ∀g ∈ G, ∀g ∈ H g , ∀λ ∈ [0, 1]. Proposition 20. Let f : G → R be a function of class C 2 h on G. 1. f is h-concave on G if and only if f (g ) ≤ f (g)+ < ∇ h f (g), ξ 1 (g ) -ξ 1 (g) >, ∀g ∈ G, ∀g ∈ H g . (6.2) 2. f is h-concave on G if and only if ∇ 2 h f * (g) ≤ 0, ∀g ∈ G. (6.3) Proof of Proposition 20. 1. Since f is h-concave on G, we have λf (g ) + (1 -λ)f (g) ≤ f gδ λ (g -1 g ) , ∀g ∈ G, ∀g ∈ H g , ∀λ ∈ [0, 1].
It follows that

f (g ) -f (g) ≤ f gδ λ (g -1 g ) -f (g) λ .
By making λ tends to zero, we obtain

f (g ) -f (g) ≤ Df (g)(g -1 g ) ⇒ f (g ) ≤ f (g)+ < ∇ h f (g), ξ 1 (g -1 g ) > ⇒ f (g ) ≤ f (g)+ < ∇ h f (g), ξ 1 (g ) -ξ 1 (g) >, ∀g ∈ G, ∀g ∈ H g .
2. If f is twice differentiable with respect to X i , i, . . . , m, then for any g ∈ G, g ∈ H g , we have

f (g ) = f (g)+ < ∇ h f (g), ξ 1 (g ) -ξ 1 (g) > + 1 2 < ∇ 2 h f * (g).(ξ 1 (g ) -ξ 1 (g)), ξ 1 (g ) -ξ 1 (g) > +o(|ξ 1 (g ) -ξ 1 (g)| 2 ).
Since f is h-concave, we have by (6.2) for every

g ∈ G, g ∈ H g f (g ) ≤ f (g)+ < ∇ h f (g), ξ 1 (g ) -ξ 1 (g) > .
Hence, ∀g ∈ G, ∀g ∈ H g ,

< ∇ 2 h f * (g) • (ξ 1 (g ) -ξ 1 (g)), ξ 1 (g ) -ξ 1 (g) > ≤ 0
Chapter 6 : The study of h-concavity, h-semiconcavity and MCP on Carnot groups Remark 5. Let f : G → R be an h-concave function on G. We claim that the convolution of f by a mollifier sequence (ϕ ε ) ε>0 , defined by

f ε (g) := ϕ ε * f (g) = G f (z -1 g)ϕ ε (z)dz, ∀g ∈ G
is a sequence of smooth and h-concave functions on G. In fact, for any g ∈ G, g ∈ H g , and any λ ∈ [0, 1], we have:

f ε gδ λ (g -1 g ) = ϕ ε * f gδ λ (g -1 g ) = G f z -1 gδ λ (g -1 g ) ϕ ε (z)dz = G f z -1 gδ λ (z -1 g) -1 z -1 g ϕ ε (z)dz ≥ G ϕ ε (z) λf (z -1 g) + (1 -λ)f (z -1 g ) dz ≥ λ G ϕ ε (z)f (z -1 g)dz + (1 -λ) G ϕ ε (z)f (z -1 g )dz ≥ λf ε (g ) + (1 -λ)f ε (g).

First-order horizontal derivative of h-concave functions

Theorem 13. An h-concave function f : G → R is Lipschitz with respect to the sub-Riemannian distance.

∇ h f ∈ L ∞ loc (G).
Proof of Theorem 13. We denote by f ε := ϕ ε * f the convolution of f by the mollifier sequence (ϕ ε ) ε>0 . By remark 5, (f ε ) ε is a sequence of smooth functions on G which are h-concave. Moreover, (f ε ) ε converges uniformly to f on every compact subset of G. By inequality (6.2), we have for any g ∈ G, g ∈ H g ,

f ε (g ) ≤ f ε (g)+ < ∇ h f ε (g), ξ 1 (g ) -ξ 1 (g) > . (6.4) Let g 0 ∈ G. Fix B SR (g 0 , R) ⊂ B SR (g 0 , 3R).
For every g ∈ B SR (g 0 , R), and g ∈ H g \{0}, we have

f ε (g ) -f ε (g) d SR (g, g ) ≤ < ∇ h f ε (g), ξ 1 (g ) -ξ 1 (g) > d SR (g, g ) .
Let us take now g ∈ ∂B SR (g, R) ∩ H g such that 0 < ε < R/2 :

< ∇ h f ε (g), ξ 1 (g) -ξ 1 (g ) > d SR (g, g ) ≤ f ε (g) -f ε (g ) R ≤ 2 R ||f ε || L ∞ (B SR (g 0 ,2R)) ≤ 2 R ||f || L ∞ (B SR (g 0 ,3R)) .
By taking the supremum over all g ∈ ∂B SR (g, R) ∩ H g , we have

|∇ h f ε (g)| ≤ 2 R ||f || L ∞ (B SR (g 0 ,3R)) .
Since g is arbitrary,

||∇ h f ε || L ∞ (B SR (g 0 ,R)) ≤ 2 R ||f || L ∞ (B SR (g 0 ,3R)) .
We denote by Lip(f

) = 2 R ||f || L ∞ (B SR (g 0 ,3R))
. Hence, for any g, g ∈ BSR (g 0 , R), we have

|f ε (g ) -f ε (g)| ≤ Lip(f )d SR (g, g ). Let ε tends to zero, |f (g ) -f (g)| ≤ Lip(f ) d SR (g, g ), ∀g, g ∈ BSR (g 0 , R).
Thanks to the Pansu-Rademacher Theorem (see Appendix B.2 ), an h-concave function is differentiable a.e. with respect to X i , i = 1, . . . , m.

Second-order horizontal derivative of h-concave functions

Chapter 6 : The study of h-concavity, h-semiconcavity and MCP on Carnot groups Definition 33. (BV 2 h functions) We say that a function f ∈ L 1 (G) has h-bounded second variation in G and we denote f ∈ BV 2 h (G) if for any i = 1, . . . , m, sup

G X i f div ϕ dx | ϕ ∈ C 1 c (G), |ϕ| < 1 < ∞.
The following theorem extends a well-known property of concave functions. For sake of completeness, its proof is given in Appendix B.4. Theorem 14. Let f : G → R be an h-concave function. Then, f belongs to the class BV 2 h (G).

The following theorem corresponds to Theorem 3.9 in [START_REF] Ambrosio | Weak differentiability of BV functions on stratified groups[END_REF].

Theorem 15. Let f ∈ BV 2 h (G). Then for a.e. g ∈ G, there exists a polynomial P g of homogeneous degree less than or equal to 2 such that

lim r→0 + 1 r 2 |B SR (g, r)| B SR (g,r)
|f (y) -P g (y)|dy = 0.

The following theorem has been proved in [START_REF] Danielli | Notions of convexity in Carnot groups[END_REF], [START_REF] Juutinen | Convex functions in Carnot groups[END_REF] and [START_REF] Lu | Convex functions on the Heisenberg group[END_REF].

Theorem 16. Let f : G → R be an h-concave function. Then, for every g ∈ G there exist δ > 0 with BSR (g, δ) and a constant C = C(g) > 0 such that for every r < δ/15 the following estimates hold

sup y∈B SR (g,r) |f (y)| ≤ C |B SR (g, r)| B SR (g,r)
|f (y)|dy

and ||∇ h f || L ∞ (B SR (g,r)) ≤ C r|B SR (g, r)| B SR (g,r)
|f (y)|dy.

We give now the sub-Riemannian version of the Alexandrov-Busemann-Feller Theorem ([BF36], [START_REF] Alexandrov | Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it[END_REF]).

Theorem 17. Let f : G → R be an h-concave function. Then for a.e. g ∈ G there exists a unique polynomial P g of homogeneous degree less than or equal to 2 such that the following holds lim y→g |f (y) -P g (y)| d SR (g, y) 2 = 0. (6.5)

Proof of theorem 17. We recall by Theorem 14, that the h-concave function f is BV 2 h (G). Then, by Theorem 15, for a.e. g ∈ G, there exists a unique polynomial P g of homogeneous degree ≤ 2 such that

lim r→o + 1 r 2 1 |B SR (g, r)| B SR (g,r)
|f -P g |dy = 0. (6.6)

Let g 0 ∈ G be fixed such that (6.6) is satisfied. We set v(y) = f (y) -P g 0 (y).

The polynomial P g 0 can be of the form L + R, that is the sum of a polynomial L of homogeneous degree ≤ 1 and a polynomial R of homogeneous degree equal to 2 or R ≡ 0. Moreover, we can write L of the form

L(g) = c + m j=1
α j g j , with c, α j ∈ R, j = 1, . . . , m.

We note that L et -L are both h-concave. Hence, w = f -L is also h-concave. We

now have v = f -P g 0 = f -L -R = w -R.
There exist c 1 > 0 such that ∀r > 0, sup

B SR (g 0 ,r) |∇ h R| ≤ c 1 r and sup B SR (g 0 ,r) |R| ≤ c 1 r 2 As w is h-concave, then v + R is h-concave.
By Theorem 16, there exists r 0 > 0 such that

||∇ h v|| L ∞ (B SR (g 0 ,r)) ≤ C r 1 |B SR (g 0 , 15r)| B SR (g 0 ,15r)
|w(y)|dy + sup B SR (g 0 ,r)

|∇ h R| for any 0 < r < r 0 such that B SR (g 0 , 15r 0 ) ⊂ G.

It follows that

||∇ h v|| L ∞ (B SR (g 0 ,r)) ≤ C r 1 |B SR (g 0 , 15r)| B SR (g 0 ,15r) |v(y)|dy + sup B SR (g 0 ,r) |∇ h R| + C r 1 |B SR (g 0 , 15r)| B SR (g 0 ,15r) |R(y)|dy ≤ C r 1 |B SR (g 0 , 15r)| B SR (g 0 ,15r) |v(y)|dy + c 1 r + Cc 1 r = C r 1 |B SR (g 0 , 15r)| B SR (g 0 ,15r) |v(y)|dy + c 1 r(1 + C).
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arbitrary ε ∈]0, 1/2[ and τ ∈]0, ε Q [ such that |{y ∈ B(g 0 , r) : |v(y)| ≥ εr 2 }| ≤ (εr 2 ) -1 B(g 0 ,r) |v(y)|dy -→ r→0 + ε -1 o(r Q ).
Fix r 1 < r 0 depending on and τ such that

|{y ∈ B SR (g 0 , r) : |v(y)| ≥ εr 2 }| < τ |B(x, r)|, ∀ 0 < r < r 1 .
We take y ∈ B SR (g 0 , r 2 ) and B SR (y, τ

1 Q r) ⊂ B SR (g 0 , r
2 ). There is

z r ∈ B(y, τ 1 Q r) such that |v(z r )| < εr 2 , ∀ r < r 1 .
It implies for y ∈ B(g 0 , r 2 ) and z r ∈ B(y, τ

1 Q r) |v(y)| < εr 2 + |v(z r ) -v(y)|.
Hence, for r 2 < r 1 /3 such that

||∇ h v|| L ∞ (B SR (g 0 ,3r)) ≤ Cr + 3(1 + C)c 1 r = c 2 r, ∀ r < r 2 .
We obtain for y ∈ B(g 0 , r 2 ),

|v(y)| < εr 2 + c 2 rd(z r , y) < εr 2 + c 2 τ 1 Q r 2 < ε(1 + c 2 )r 2 .
As ε is arbitrary, lim r→0 |v(y)| r 2 = 0. And the conclusion follows.

h-semiconcavity on Carnot groups

Definition 34. We say that a function f : G → R is h-semiconcave on G if it is semiconcave on every horizontal segment, that is, there exists C > 0 such that

λf (g ) + (1 -λ)f (g) ≤ f gδ λ (g -1 g ) + λ(1 -λ)C|ξ 1 (g ) -ξ 1 (g)| 2 , ∀g ∈ G, ∀g ∈ H g , ∀λ ∈ [0, 1]. The constant C is called h-semiconcavity constant for f in Ω.
The following proposition is fundamental (see [START_REF] Danielli | Notions of convexity in Carnot groups[END_REF]).

Proposition 21. Let g ∈ G. Then for any g ∈ H g , one has ξ 1 (g λ ) = (1 -λ)ξ 1 (g) + λξ 1 (g ) (6.7)

with g λ := gδ λ (g -1 g ), for every λ ∈ [0, 1].

Proof of Proposition 21. Via the Baker-Campbell-Hausdorff formula (see (6.1)), one has

g λ = gδ λ (g -1 g ) = exp ξ(g) exp ξ(δ λ (g -1 g )) = exp ξ(g) + ξ(δ λ (g -1 g )) + 1 2 ξ(g), ξ(δ λ (g -1 g )) + . . . .
Since g λ ∈ H g , we have δ λ (g -1 g ) ∈ H e which means that ξ i (δ λ (g -1 g )) = 0, ∀i = 2, . . . , r.

Then,

g λ = exp ξ 1 (g) + • • • + ξ r (g) + ξ 1 (δ λ (g -1 g )) + 1 2 ξ(g), ξ 1 (δ λ (g -1 g )) + . . . . Hence, ξ 1 (g λ ) = ξ 1 (g) + ξ 1 (δ λ (g -1 g )) = ξ 1 (g) + λξ 1 (g -1 g ) = ξ 1 (g) + λ ξ 1 (g ) -ξ 1 (g) .
From Proposition 21, we remark that an h-semiconcave function as given in Definition 34 can be regarded as a smooth perturbation of an h-concave function, that is it can be written as the sum of an h-concave function and a smooth one. More precisely,

f (g) = f (g) -C|ξ 1 (g)| 2 + C|ξ 1 (g)| 2 with g → f (g) -C|ξ 1 (g)| 2 an h-concave function.
Therefore, the h-semiconcave functions share all the regularity enjoyed by the h-concave functions.

Theorem 18. Let f : G → R be an h-semiconcave function. groups (i) The function f is Lipschitz with respect to the sub-Riemannian distance. Thanks to the Pansu-Rademacher Theorem, f is differentiable a.e. with respect to X i , i = 1, . . . , m.

(ii) (The sub-Riemannian version of the Alexandrov Theorem)

The function f is twice differentiable almost everywhere on G with respect to X i , i = 1, . . . , m.

We also have the following properties that relate the h-semiconcavity property of a function to its derivatives.

Proposition 22. Let f : G → R be an h-semiconcave function with C as hsemiconcavity constant. Then, f satisfies the following properties:

1. For any g ∈ G, g ∈ H g , f (g ) ≤ f (g)+ < ∇ h f (g), ξ 1 (g ) -ξ 1 (g) > +C|ξ 1 (g ) -ξ 1 (g)| 2 . (6.8) 2. For any g ∈ G, ∇ 2 h f * (g) ≤ C I m (6.9)
where I m denotes the m × m identity matrix.

MCP on Carnot groups

Let G be a Carnot group of dimension n whose first layer V 1 has dimension m.

We define a class of sub-Riemannian structures, called h-ideal sub-Riemannian structures on Carnot groups.

Definition 35. We say that a sub-Riemannian structure is h-ideal if it is complete and the sub-Riemannian distance d SR is h-semiconcave on (G × G)\D, where D denotes the diagonal of G × G.

As in [START_REF] Rifford | Ricci curvature in Carnot groups[END_REF], we define the horizontal cut-locus at a given g ∈ G as

cut h (g) := Σ h (d SR (g, .))
where Σ h (d SR (g, .)) denotes the set of points g ∈ G such that the pointed distance d SR (g, .) is not differentiable at g with respect to X i , i = 1, . . . , m.

Without loss of generality, we proceed as if we work in R n where (x 1 , . . . , x n ) denotes the local coordinates. Moreover, we fix {X 1 , . . . , X m } an orthonormal basis of V 1 . Up to a change of coordinates, we can assume that the vector fields X i are of the form

X 1 = ∂ x 1 , and X i = ∂ x i + n j=m+1 α j i ∂ x j , ∀i = 2, . . . , m with α j i ∈ C ∞ (M ).
For any horizontal vector field X := m i=1 a i X i , we define the horizontal divergence of X, denoted by div h X, as follows

div h X := m i=1 X i (a i ).
We make the following assumption.

ASSUMPTION 1 For every i = 2, . . . , m, X i (α j i ) = 0, ∀j = m + 1, . . . , n. (6.10)

As the sub-Riemannian structure is invariant by translation, it is sufficiant to prove the result at the origin 0.

Proposition 23. Let G be a Carnot group whose first layer is h-ideal and satisfies ASSUMPTION 1. Then, there is N > 0 such that for every measurable set A ⊆ B SR (0, 1)\B SR (0, 1/2) with 0 < L n (A) < +∞, we have

L n (A s ) ≥ s N L n (A), ∀s ∈ [1/2, 1]
where

A s := γ(s)| γ : [0, 1] → G minimizing geodesic with γ(0) = 0, γ(1) ∈ A\cut h (0) .
Proof of Proposition 23. Without loss of generality, we may assume that we work in R n . We denote by f the sub-Riemannian distance pointed at the origin 0, such that f : G → [0, +∞[ g → f (g) := d SR (0, g). groups

Let f ε = φ ε * f be the convolution of f and the mollifier sequence (φ ε ) ε . We may note that f is h-semiconcave on G outside cut h {0}. By remark 5, for > 0 given, f ε is smooth and h-semiconcave on G outside cut h {0}. It follows that, by Proposition 22, there is a constant C > 0 such that

∇ 2 h f ε * (g) ≤ CI m , for a.e. g ∈ G\cut h {0} ∩ B SR (0, 1)\B SR (0, 1/2) (6.11)
where I m denotes the m × m identity matrix.

We denote by Z ε the horizontal vector field defined by

Z ε (g) := -∇ h f ε (g), (6.12) 
for a.e. g ∈ G\cut h {0} ∩ B SR (0, 1)\B SR (0, 1/2) .

Let g ∈ G be fixed, and ϕ Zε t be the flow of Z ε from g. For every measurable set A ⊆ B SR (0, 1)\B SR (0, 1/2), we denote by

A ε t := ϕ Zε 1-t (A 1 ), ∀t ∈ [1/2, 1]
where A 1 = A\cut h {0}.

To measure the variation of the volume along the trajectories of the flow (ϕ Zε t ) t , we have by the definition of the divergence

d dt L n ϕ Zε t (A 1 ) = ϕ Zε t (A 1 ) divZ ε (g) dg, ∀t ∈ [0, 1/2]. (6.13)
We compute now the divergence of Z ε , for a.e. g ∈ A

1 divZ ε (g) = div ∇ h f ε (g) = -div ( m i=1 X i f ε (g) X i (g) = - m i=1 X i X i f ε (g) - m i=1 X i f ε (g) div X i (g) = -div h ∇ h f ε (g) - m i=1 X i f ε (g) div X i (g)
We claim that for a.e. g ∈ A 1 , div h ∇ h f ε (g) is bounded from below. In fact, we have

∇ h f ε = m i=1 X i f ε X i = ∂ x 1 f ε X 1 + m i=2 X i f ε X i = ∂ x 1 f ε X 1 + m i=2 ∂ x i f ε + n i=m+1 α j i ∂ x j f ε X i Then, div h ∇ h f ε = m i=1 X i X i f ε = ∂ 2 x 1 x 1 f ε + m i=2 X i X i f ε = ∂ 2 x 1 x 1 f ε + m i=2 ∂ x i + n j=m+1 α j i ∂ x j ∂ x i f ε + n l=m+1 α l i ∂ x l f ε = ∂ 2 x 1 x 1 f ε + m i=2 ∂ 2 x i x i f ε + m i=2 n l=m+1 (∂ x i α l i )∂ x l f ε + 2 m i=2 n l=m+1 α l i ∂ 2 x i x l f ε + m i=2 n j=m+1 n l=m+1 α j i (∂ x j α l i )∂ x l f ε + m i=2 n j=m+1 n l=m+1 α j i α l i ∂ 2 x j x l f ε = E + F where E = ∂ 2 x 1 x 1 f ε + m i=2 ∂ 2 x i x i f ε + 2 m i=2 n l=m+1 α l i ∂ 2 x i x l f ε + m i=2 n j=m+1 n l=m+1 α j i α l i ∂ 2 x j x l f ε and F = m i=2 n l=m+1 (∂ x i α l i )∂ x l f ε + m i=2 n j=m+1 n l=m+1 α j i (∂ x j α l i )∂ x l f ε .
By (6.11), there is a constant C > 0 such that E(g) ≤ C, a.e. g ∈ A 1 .

On the other hand, we have
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F = m i=2 n j=m+1 (∂ x i α j i )∂ x j f ε + m i=2 n j=m+1 n l=m+1 α j i (∂ x j α l i )∂ x l f ε = m i=2 n l=m+1 (∂ x i α l i )∂ x l f ε + n l=m+1 n j=m+1 α j i (∂ x j α l i ) ∂ x l f ε = m i=2 n l=m+1 (∂ x i α l i ) + n j=m+1 α i j (∂ x j α l i ) ∂ x l f ε = m i=2 n l=m+1 X i (α l i )∂ x l f ε .
By ASSUMPTION 1 (6.10), we have ∀i = 2, . . . , m, X i (α l i ) = 0, ∀l = m + 1, . . . , n.

It means that F = 0.

Thus, we get div

h ∇ h f ε (g) ≤ C, a.e. g ∈ A 1 .
And the claim follows.

Furthermore, f ε is Lipschitz with respect to the sub-Riemannian distance. So there is a constant C > 0 such that m i=1

X i f ε (g) div X i (x) ≤ C , a.e. g ∈ A 1 . It follows that there is a constant C > 0 such that divZ ε (g) ≥ -C, a.e. g ∈ A 1 .
Thanks to (6.13), we obtain

d dt L n (A ε 1-t ) ≥ - ϕ Zε t (A 1 ) Cdx = -CL n (A ε 1-t ).
Using the Gronwall Lemma, it follows that there is N > 0 such that

L n (A ε 1-t ) ≥ t N L n (A 1 ), ∀t ∈ [0, 1/2].
Making ε tends to zero yields

L n (A 1-t ) ≥ t N L n (A 1 ), ∀t ∈ [0, 1/2] with A t = ϕ Z 1-t (A 1 ).
Lemma 19. Let G be a Carnot group whose first layer is h-ideal and satisfies AS-SUMPTION 1. Then, there is N > 0 such that for every k ∈ N and for every measurable set

A ⊂ B SR (0, 1 2 k )\B SR (0, 1 2 k+1 ) with 0 < L n (A) < +∞, we have L n (A s ) ≥ s N L n (A), ∀s ∈ [0, 1]
where

A s := γ(s)| γ : [0, 1] → G minimizing geodesic with γ(0) = 0, γ(1) ∈ A\cut h (0) .
Proof of Lemma 19. Let us take a measurable set A ⊂ B SR (0, 1/2 k )\B SR (0, 1/2 k+1 ). By dilations properties, for every k ∈ N, we have

δ 2 k (A) ⊂ B SR (0, 1)\B SR (0, 1/2) and δ 2 k (A s ) = δ 2 k (A) s , ∀s ∈ [0, 1].
So It is sufficient to prove our property for a measurable set A such that

A ⊂ B SR (0, 1)\B SR (0, 1/2). Given s ∈] 1 4 , 1 2 [, we set B := δ (2s) -1 (A 2s ) ⊂ B SR (0, 1)\B SR (0, 1/2)
where δ (2s) -1 is the dilation of factor 1/2s.

Hence, B1

2

:= δ (2s) -1 (A 2s ) 1 2 .
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Conclusion and Perspectives

In this thesis, we were interested in the study of the Monge problem on sub-Riemannian structures, that is to prove existence and uniqueness for optimal transport maps. We restricted our attention to transportation problems between compactly supported probability measures from a smooth manifold into itself where the cost is given by the square of the sub-Riemannian distance. Two different methods enable to prove existence and uniqueness of optimal transport maps in sub-Riemannian geometry: the sub-Riemannian version of the Brenier-McCann theorems which requires regularity properties for d SR and, the Cavalletti-Huesmann method covering, in particular, spaces satisfying the measure contraction property (MCP). Combining these two methods leads to prove existence and uniqueness of optimal transport maps on some sub-Riemannian structures admitting many singular minimizing geodesics. As seen in chapter 5, we treated the case of sub-Riemannian structures of rank two in dimension four. In chapter 6, we studied the concept of h-semiconcavity and MCP on Carnot groups. This study makes possible to apply the Cavalletti-Huesmann method on h-ideal sub-Riemannian structures on Carnot Groups.

Our framework raises many questions and perspectives, let us present them.

Influence of the cost

The regularity of the sub-Riemannian distance is central. In particular, in the proof of Proposition 23, the h-semiconcavity of d SR plays a crucial role to establish the MCP on Carnot groups. The fact that d SR is h-semiconcave provides a lower bound on its horizontal symmetrical hessian. We suggested to study such kind of regularity for d SR on more general sub-Riemannian structures.

Theorem 19. Let M be a manifold of dimension n equipped with a sub-Riemannian structure (∆, g) of dimension m. Let f : M → R be the squared sub-Riemannian distance pointed at the origin 0, given by f (x) := d 2 SR (0, x), ∀x ∈ M.

For any x ∈ M , there is a submanifold S x tangent to the distribution at x such that f is semiconcave on S x .

Proof of Theorem 19. Let x ∈ M and γ : [0, 1] → M be a minimizing geodesic joining o and x.

There exists an open neighborhood V of γ([0, 1]) in M . Without loss of generality, we can assume that V is an open subset of R n and that there is an orthonormal family F of m smooth vector fields X 1 , . . . , X m such that

∆(z) = Span X 1 (z), . . . , X m (z) , ∀z ∈ V.
Moreover, there is a control function

u γ ∈ L 2 ([0, 1], R m ) such that γ(t) = m i=1 u γ i (t)X i (γ(t)), a.e.t ∈ [0, 1].
The End-point map associated to F at the origin is given by

End o : L 2 ([0, 1], R m ) -→ G u -→ End o (u) = γ u (1).
The End-point mapping End o is of class C 1 .

By Proposition 8, we have

X i End 0 (u γ ) ∈ D u γ End 0 L 2 ([0, 1], R m ) . There exit v 1 , . . . , v m ∈ L 2 ([0, 1], R m ) such that D u γ End o (v i ) = X i (End o (u γ )), ∀i = 1, . . . , m.
We define the application L : R m → M by

L x : R m → M α → L x (α) := End o u γ + m i=1 α i v i . (7.1)
Here, L x is of class C 1 in a neighborhood of the origin and L x (0) = x. Its differential at o is given by :

DL x | α=0 : R m -→ T End 0 (u γ ) M β -→ m i=1 β i D u γ End o (v i ) = m i=1 β i X i (End o (u γ )).
As its differential at 0 is injective, then L x is an immersion at α = 0. Hence, the rank of the linear application DL x | α=0 is m, equal to the dimension of R m . It means that the image of a ball in the neighborhood of α = 0 by the application L x is a submanifold S x of R n of dimension m. Moreover, the tangent space to this submanifold at the point x = L x (α = 0) is the image of the differential of DL x | α=0 . Thus, we obtain a submanifold S x contained in End 0 (L 2 ([0, 1], R m ) and tangent to the distribution at x.

For every

z in S x , there is α ∈ R m such that L x (α) = z. (7.2) Since X i (End o (u γ )) m i=1
form an orthonormal basis of the distribution ∆ End o (u γ ) , we may assume that DL x | α=0 is an invertible linear application. Thanks to the Local Inverse Theorem, there are a ball B centered at x in S x and an application J

x : B → R m of class C 2 such that L x • J x (z) = z, ∀z ∈ B.
Hence, for any z ∈ B,

d 2 SR (o, z) = e SR (o, z) ≤ ||u γ + m i=1 (J x (z)) i v i || 2 L 2 and d 2 SR (o, x) = e SR (o, x) = ||u γ || 2 L 2 . We set φ o,x (z) := ||u γ + m i=1 (J x (z)) i v i || 2 L 2 , ∀z ∈ B.
Then, there exists a function φ o,x of class C 2 such that

f (z) ≤ φ o,x (z), ∀z ∈ B and f (x) = φ o,x (x). (7.3)
In fact, for any x ∈ M , we can construct a submanifold S x tangent to the distribution at x such that for any point y ∈ S x , we can put a support function φ 0,x of class C 2 on the graph of the function f . It means that f is semiconcave on the submanifold S x tangent to ∆(x).

≤ u α (λy + (1 -λ)x) + ε -λu α (y) -(1 -λ)u α (x) ≤ λ(1 -λ)C α |x -y| 2 + ε.
Since ε > 0 is arbitrary, we obtain the assertion.

More details of local semiconvexity of a given function are given in [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control[END_REF].
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E - l = {x ∈ R n ; g(x) ≤ - 1 l } such that E = l∈N E + l ∪ E - l . Since L n (E) > 0, it follows that either L n (E + l ) > 0 or L n (E - l ) > 0. Assume that L n (E - l ) > 0.
Let a ∈ R n be fixed. Thanks to the Lebesgue density Theorem, we have

lim r→0 L n B(a, r) ∩ E - l L n B(a, r) = 1.
We may assume that there is r > 0 such that for any r < r,

1 - L n B(a, r) ∩ E - l L n B(a, r) < 1 100 . Let 0 ≤ µ ≤ r and ϕ ∈ C ∞ c (R n ) be the test function given by ϕ(x) :=        1 x ∈ B(a, µ) 0 ≤ ϕ(x) ≤ 1 x ∈ B(a, r) 0 else Hence, we get R n g(x)ϕ(x)dx = B(a,µ) g(x)ϕ(x)dx + R n \B(a,r) g(x)ϕ(x)dx + B(a,r)\B(a,µ) g(x)ϕ(x)dx ≤ B(a,µ) g(x)dx + B(a,r)\B(a,µ) g(x)dx ≤ - 1 l L n (B(a, µ)) - 1 l L n (B(a, r)\B(a, µ)).
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Let {e 1 , . . . , e n } be the canonical basis of R n , and let

B v = B v ∩ B e 1 ∩ • • • ∩ B en . It is easy to check that B v is of full Lebesgue measure in R n . Let us show that ∀x ∈ B v , D v f (x) = v.∇f (x). Let ϕ ∈ C ∞ c (R n ). For any x ∈ B v , we have Ω D v f (x)ϕ(x)dx = - Ω f (x)D v ϕ(x)dx = - n i=1 v i Ω f (x) ∂ϕ ∂x i (x)dx = n i=1 v i Ω ∂f ∂x i (x)ϕ(x)dx = R n (v.∇f (x))ξ(x)dx.
This and Lemma 22 imply that

D v f (x) = v.∇f (x) a.e. x ∈ Ω.
We choose now a countable dense subset in R n such that |v k | = 1, and let

A k = {x ∈ Ω; ∇f (x) exists and D v k f (x) = v k .∇f (x)}.
For any k ∈ N, each subset Ω\A k has Lebesgue measure zero. It means that

A = ∞ k=1 A k satisfies L n (Ω\A) = 0.
Let us prove that f is differentiable a.e. x ∈ A. For any x ∈ A and any v ∈ R n with |v| = 1, we set

Q(x, v, t) := f (x + tv) -f (x) t -v.∇f (x).
By a density argument, for ε > 0, there is

N ≥ 0 such that ∀k ≥ N, |v -v k | ≤ ε. We recall that Q(x, v k , t) -→ t→0 0, that is ∃δ > 0 such that for 0 < |t| < δ, |Q(x, v k , t)| ≤ ε 2 .
Assume that f is C-Lipschitz. Then, we have

| ∂f ∂x i | ≤ C which means that |∇f (x)| ≤ √ nC a.e.
Hence, we get for

x ∈ A |Q(x, v, t)| ≤ |Q(x, vk, t)| + |Q(x, v, t) -Q(x, v k , t)| ≤ ε 2 + f (x + vt) -f (x + v k t) t -(v -v k ).∇f (x) ≤ ε 2 + C|v -v k | + |(v -v k ).∇f (x)| ≤ ε 2 + C(1 + √ n)|v -v k |
We can choose k sufficiently large such that

|v -v k | < 2 2(1 + √ n)C .
Then, |Q(x, v, t)| < ε and the conclusion follows.

B.2 The Pansu-Rademacher Theorem

[MS01] gave an extension of the Rademacher Theorem.

Theorem 21. (The Pansu-Rademacher Theorem) Let X 1 , . . . , X m be m smooth vector fields satisfying the Hörmander condition and of the following form

X j = ∂ j + n i=m+1 a ij (x)∂ i , j = 1, . . . , m
Lemma 25. Let G : R n → R n be a Lipschitz function. Then, the set

E = {G(y) ∈ R n | D y G exists and is invertible} is of full Lebesgue measure.
Proof of Lemma 25. By the Approximation of Lipschitz functions (see Theorem 6.6.1 in [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]), for ε < 0, there is a function h : R n → R of class C 1 such that

L n {y ∈ R n | h(y) = G(y) or D y h = D y G} ≤ ε.
Thanks to the Sard Lemma, the image by h of the set

H = {y ∈ R n | G is not differentiable at y or D y G is not invertible}
has Lebesgue measure zero. We denote by E = H c , the complementary set of H. And the conclusion follows. We have y ∈ F (x) and y 0 ∈ F (x 0 ), so (B.3) shows that F is differentiable a.e. We recall that by definition we have

F (x) = x + ∂f (x) ⇒ ∂f (x) = F (x) -x.
Thus, f is twice differentiable almost everywhere.

Chapter B : Geometric analysis

B.4 The sub-Riemannian version of the Alexandrov Theorem

In this section, our aim is to prove Theorem 14. In the spirit of Gutierrez and Montanari [START_REF] Guitérrez | On the second derivatives of convex functions on the Heisenberg group[END_REF] and [START_REF] Gutiérrez | Maximum and comparison principles for convex functions on the Heisenberg group[END_REF], we show that any locally h-concave function is BV 2 h,loc .

B.4.1 Tools from matrix analysis

Let A = (a ij ) ij be an m × m symmetric matrix with eigenvalues λ 1 , . . . , λ m .

The second elementary symmetric function of A is defined by σ 2 (A) = s(λ) = j<k λ j λ k , with λ = (λ 1 , . . . , λ m ).

We can check that Since C ≥ 0, we get ν j ≥ λ j , for any j = 1, . . . , m.

Moreover, by lemma 26, we have δ = 1 2 min ∂s ∂λ j (λ 1 , . . . , λ m ), j = 1, . . . , m ≥ 0.

Choose C sufficiently small such that X i ( ∂S ∂r ij (v + sw)(z)X j w(z))

-X i ( ∂S ∂r ij
(v + sw)(z))Xjw(z) dz ds.

As w = 0 on ∂Ω and w > 0 on Ω, then the normal to ∂Ω is given by ν X = -Xw |Dw| , with Xw = (X 1 w, . . . , X m w). By an integration par parts, we get

A = 1 0 Ω m i,j=1
X i ∂S ∂r ij (v + sw)(z)X j w(z) dzds (v)(z)}X j w(z) X i w |Dw| dσ(z)ds and

X i X j w = ∂f ∂u X i X j u + ∂ 2 f ∂v∂u X i vX j u + ∂ 2 f ∂u 2 X i uX j u + ∂f ∂v X i X j v + ∂ 2 f ∂v 2 X i vX j v + ∂ 2 f ∂u∂v X i uX j v.
For any h = (h 1 , h 2 ) ∈ R 2 , we have

< H(w)h, h >= m i,j=1 X i X j wh i h j = ∂f ∂u < H(u)h, h > + ∂f ∂v <H(v)h, h > + ∂ 2 f ∂u 2 ( m i=1 X i uh i )( m j=1 X j uh j ) + ∂ 2 f ∂v 2 ( m i=1 X i vh i )( m j=1 X j vh j ) + ∂ 2 f ∂u∂v ( m i=1 X i uh i )( m j=1 X j vh j ) + ∂ 2 f ∂v∂u ( m i=1 X i vh i )( m j=1
X j uh j )

Since u and v are σ 2 (h)-convex, ∂f ∂u ≥ 0 and ∂f ∂v ≥ 0.

Moreover, the matrix

     ∂ 2 f ∂u 2 ∂ 2 f ∂u∂v ∂ 2 f ∂v∂u ∂ 2 f ∂v 2     
est non negative definite. Then, w is σ 2 (h)-convex.

Assume now that f is a continuous function. We consider f = φ * f the convolution of f by the mollifier sequence φ . Since f is convex, f is also convex. From the above , w = f (u, v) is σ 2 (h)-convex such that w -→ →0 w.

Hence, we conclude that w is σ 2 (h)-convex.

Ω X i u(z) div X φ(z)dz = - Ω u(z) X i div X φ(z)dz = - m j=1 Ω u(z) X i X j φ j (z)dz = - m j=1 Ω u(z)
X i X j φ j (z) + X j X i φ j (z) 2 + By making tends to 0, we get

| Ω u(z)Y k φ j (z)dz| ≤ C.
Hence, Ω X i u(z) div X φ(z)dz < +∞ which implies that u ∈ BV 2 h (Ω).

Without loss of generality, since η tx is a Dirac measure, we may assume that η tx is concentrated at a point k 0 in K. This means that η x is concentrated at an application γ ∈ C such that γ(t) = k 0 ∈ K. Hence, η x is a Dirac measure. where K,K are two disjoint subsets of R n .

Then, there is a negligible subset Ā of A such that ∀x ∈ A\ Ā, η x is a Dirac measure.

Proof of Theorem 27. By Lemma 28, it is sufficient to prove that there is a negligeable suset Ā of A such that ∀x ∈ A\ Ā, ∀t ∈ [0, 1], η tx is a Dirac measure.

Without loss of generality, we may assume that x∈A supp η tx ⊂ Q, where Q is a cube.

We divide Q into two disjoint parts Q 1 , Q 2 such that Q = Q 1 ∪ Q 2 . Let t ∈ [0, 1] be fixed. By (C.2), there is a negligeable set A t ⊂ A such that

η tx (Q 1 )η tx (Q 2 ) = 0, ∀x ∈ A\A t .
This involves two possibilities :

• supp η tx ⊂ Q 1 ⇒ x / ∈ A 1 \A t := y ∈ A\A t : η ty (Q 1 ) = 0 • supp η tx ⊂ Q 2 ⇒ x / ∈ A 2 \A t := y ∈ A\A t : η ty (Q 2 ) = 0 .
For h ∈ N fixed, we consider the canonical decomposition of Q into 2 nh cubes Q h i of side 2 -h . From {Q h i } i , we can construct a family of sets { Qh i } i pairwise disjoint such that Before we introduce the normalization property for BV loc functions, we recall some definitions and properties for BV loc functions. Definition 40. Let Ω ⊆ R n . We say that B ∈ L 1 (Ω) has bounded variation in Ω, and we denote B ∈ BV (Ω), if

Qh 1 = Q h 1 , Qh 2 = Q h 2 \Q h 1 , . . . Qh i = Q h i \(Q h 1 ∪ • • • ∪ Q h i-
sup Ω B divϕ dx | ϕ ∈ C 1 c (Ω, R n ), |ϕ| ≤ 1 < ∞.
We also define the local version of the above concept. We show that the weak solutions of the transport equations verify a renormalization property. We present the renormalization result in the case where we suppress the time dependance. 

≤ B R [div b t ] -β ε (w t )dx ≤ ||[div b t ] -|| L ∞ (B R ) B R β ε (w t )dx
Hence, for a.e. x ∈ B R ,

d dt β ε (w t ) ≤ ||[div b t ] -|| L ∞ (B R ) β ε (w t ).
Let ε → 0, we obtain

∂ ∂t w t ≤ ||[div b t ] -|| L ∞ (B R ) w t .
Applying the Gronwall Lemma, we get ∀t ∈ [0, 1] w t ≤ exp Since w 0 = w 1 0 -w 2 0 ≤ 0, we deduce by (C.8)

w t = w 1 t -w 2 t ≤ 0.

C.3 Proof of Theorem 26

Our aim is to prove, under suitable assumptions, existence and uniqueness of solution for the Cauchy problem fro BV vector fields.

Let A ⊂ R n be fixed.

Proposition 28. There exists a L n -measurable application η : A → P(C ) such that for a.e. x ∈ A, η x C \C b x = 0.

We define now a family of measures (η h ) : B R → P(C ) by The following theorem is crucial. We refer the reader to see [START_REF] Young | Lectures on the calculus of variations and optimal control theory[END_REF] and section 2 in [START_REF] Alberti | A new approach to variational problems with scales[END_REF] for its proof.

Theorem 30. (Fundamental Theorem on Young measures) Let K be a compact metric space. Let A ⊂ R n be a bounded L n -measurable set and (η h ) be a sequence of L n -measurable measure-valued maps from A to P(K). Then, there exist a L n -measurable measure-valued map η : A → P(K) and a subsequence h(k) such that lim And the conclusion follows.

Proposition 29. For a.e. x ∈ A, η x is a Dirac measure.

Proof of Proposition 29. By Lemma 28 and Theorem 27, the problem can be reduced to prove the following condition:

∀t ∈ [0, 1], there exists a negligeable set A t of A such that η x γ(x) : γ(x)(t) ∈ K η x γ(x) : γ(x)(t) ∈ K = 0, ∀x ∈ A\A t where K, K are two disjoint subsets of R n .

We assume by contradiction that there are t 0 ∈ [0, 1] and a negligeable set A t 0 of A such that there are two disjoint subsets K and K of R n verifying η x γ(x) : γ(x)(t 0 ) ∈ K η x γ(x) : γ(x)(t 0 ) ∈ K > 0, ∀x ∈ A\A t 0 .

Without loss of generality, we can assume that there is a constant C > 0 such that ∀x ∈ A\A t 0 0 < η x γ(x) : γ(x)(t 0 ) ∈ K ≤ C η x γ(x) : γ(x)(t 0 ) ∈ K .

(C.14) Therefore, we define the following measures η 1 x := η x γ(x) : γ(x)(t 0 ) ∈ K and η 2 x := C η x γ(x) : γ(x)(t 0 ) ∈ K .
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For i = 1, 2, and ∀t ∈ [0, 1], we associate the measure µ i t given by < µ i t , ϕ >:=

A C ϕ(γ(t))dη i x (γ)dx, ∀ϕ ∈ C ∞ c (R n , R).

By Proposition 28, we have for a.e. x ∈ A, η x (C \C b x ) = 0. Hence, for a.e. x ∈ A and for any γ(x) ∈ C , 
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  The c-transform of ϕ, denoted by ϕ c , is the function given by ϕ c (y) = inf x∈M ϕ(x) + c(x, y) , ∀y ∈ M. Definition 10. Let ϕ : M → R ∪ {+∞} be a c-convex function. We call contact set of the pair (ϕ, ϕ c ) the set defined by
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 3 Figure 3.1 -Horizontal path

Chapter 4 :

 4 Optimal transport problem on sub-Riemannian structures Theorem 9. Let µ,ν be two probability measures compactly supported on M , and the cost function c : M × M → [0, +∞[ be continuous. Then, there is a c-convex function ϕ : M → R such that ϕ(x) := sup y∈M ϕ c (y) -c(x, y) , ∀x ∈ M, ϕ c (y) := inf x∈M ϕ(x) + c(x, y) , ∀y ∈ M, and

  ȳ), ∀z ∈ M and equality for z = x.Chapter 4 : Optimal transport problem on sub-Riemannian structuresTo conclude, we need the following lemma. Lemma 4. Let x = y ∈ M be fixed and ψ : M → R be a differentiable function at x such that ψ(z) ≤ d 2 SR (z, y), ∀z ∈ M and equality for z = x. Then, there exists a unique minimizing geodesic γ : [0, 1] → M joining x to y such that y = exp x (-d x ψ/2).Proof of Lemma 4. Let x = y ∈ M . Since e SR (z, y) = d 2 SR (z, y), ∀z ∈ M , there is a neighborhood V x of x on M such that ψ(z) ≤ e SR (z, y), ∀z ∈ V x and ψ(x) = e SR (x, y).
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Chapter 5 :

 5 Mass Transportation on sub-Riemannian structures of rank 2 in dimension 4 φ(x) = sup y∈ Ãk Ψ y (x), ∀y ∈ B(x, 1/2k) where ∀y ∈ Ãk , Ψ y (x) := ϕ(y) + p y , y -x -k |y -x| 2 .

  εs (x))|ds ≤ L, ∀t ∈ [0, T ].

Fix y 0 ∈

 0 R n with G(y 0 ) = x 0 such that G is differentiable at y 0 and D y 0 G is inversible. Hence, G(y) -G(y 0 ) = D y 0 G.(y -y 0 ) + o(||y -y 0 ) ⇒ x -x 0 = D y 0 G.(y -y 0 ) + o(||y -y 0 ||) ⇒ y -y 0 = (D y 0 G) -1 .(x -x 0 ) + o(||y -y 0 ||). As o(||y -y 0 ||) = o(||x -x 0 ||), we get ⇒ y -y 0 = (D y 0 G) -1 .(x -x 0 ) + o(||x -x 0 ||).(B.3)

  Lemma 26. If σ 2 (A) ≥ 0 and trace(A) ≥ 0, then ∂s ∂λ j (λ) ≥ 0, ∀j = 1, . . . , m.Proof of Lemma 26. We recall that trace(λ j ≥ 0 or ∂s ∂λ j (λ) + λ j ≥ 0.Assume that λ j ≥ 0. We have, by hypothesis, σ 2 (A) = s(λ) ≥ 0. λ j ≥ 0.Proposition 24. If σ 2 (A) ≥ 0 and trace(A) ≥ 0,then m i,j=1 ∂σ 2 ∂a ij (A)x i x j ≥ 0, ∀x ∈ R m .Proof of Proposition 24. Let C be a non-negative definite Hermitian matrix. Let ν = (ν 1 , . . . , ν m) be the eigenvalues of the matrix A + C such that σ 2 (A + C) -σ 2 (A) = s(ν) -s(λ).

  τ (ν -λ))dτ (ν j -λ j ) ≥ δ m j=1 (ν j -λ j )(we apply the result of Proposition 24 with A = H(u), where u is a σ 2 (h)-convex function.) Let 0 ≤ s ≤ 1 and ϕ(s) = S(v + sw) where w = u -v. We get Ω {S(u) -S(v)} dz = sw)(z)(X i X j )w(z) dz ds =

  sw)(z)X j w(z)ν X i dσ(z)ds = -

α

  ij,k Y k φ j (z) dz = m j=1 Ω φ j (z)dν ij (z) + n k=1 α ij,k Ω u(z)Y k (z)φ j (z)dz ≤ )Y k φ j (z)dz.Let u = ϕ * u be a sequence of smooth functions which are h-convex. Then,u is σ 2 (h) -convex and Y k u ∈ L 2 (Ω), ∀k = 1, . . . , n -m. | Ω u Y k φ j dz| = | Ω Y k u φ j dz| ≤ ||Y k u || L 2 (K) ≤ C.

Theorem 27 .

 27 Assume that ∀t ∈ [0, 1], x∈A supp η tx ⊂ R n (C.1)and ∀t ∈ [0, 1], there is a negligeable subset A t of A such thatη x γ : γ(t) ∈ K η x γ : γ(t) ∈ K = 0, ∀x ∈ A\A t (C.2)

  1 ) ⇒ B.∇(w * ρ ε = c * ρ ε L n + r ε (C.4) where r ε := B.∇(w * ρ ε ) -(B.∇w) * ρ ε .We multiply both sides of (C.4) by ḣ(w * ρ ε ), we obtainB.∇ h(w) * ρ ε = ḣ(w * ρ ε ) c * ρ ε L n + r ε .We note thatr ε = R n w(x -εy) B(x -εy) -B(x) ε .∇ρ(y)dy -(x.divB) * ρ ε (x) y j ∂ρ ∂y i(y)dy -w(x)divB(x) ε tends to zero, using the fact that r ε -→ ε→0 0 (by (C.5)), we obtain B.∇ h(w) = c ḣ(w)L n .

Definition 41 .

 41 Let Ω ⊆ R n . We say that B ∈ L 1 loc (Ω) has locally bounded variation in Ω, and we denoteB ∈ BV loc (Ω), if for every open set U ⊂ Ω, sup U B divϕ dx | ϕ ∈ C 1 c (U, R n ), |ϕ| ≤ 1 < ∞.Then, for any compact set K ⊂ R n ,lim ε→0 sup K |r ε |dx ≤ ||w|| ∞ I(ρ)|D s B|(K) (x), ρ)d|D s B|(x)+ ||w|| ∞ (n + I(ρ))|D a B|(K). (C.7)

Proposition 27 .

 27 We assume that B ∈ BV loc (R n ) such that DB << L n . Let w ∈ L ∞ loc (R n , R k ) satisfying B.∇w i = c i L n , i = 1, . . . , n with c ∈ L 1 loc (R n , R k ). c i L n , ∀h ∈ C 1 (R k ).Proof of Proposition 27. We setσ := B.∇h(w) -k i=1 ∂h ∂z i (w)c i L n .By (C.6), σ is a measure absolutely continuous with respect to |D s B|. By (C.7), we have|σ| ≤ C(h, w)Λ(N, ρ)|D s B| + C(h, w, ρ)|D a B| then, |σ| ≤ C(h, w)Λ(N, ρ)|D s B|.As σ is independant of ρ , then|σ| ≤ C(h, w) inf ρ Λ(N, ρ)|D s B|. = -B R div b t [ βε (w t )w t -β ε (w t )]dx

  b s ] -|| L ∞ (B R ) ds w 0 . (C.8)

B

  R ×C φ(x, γ(x))dη hx (γ) dx := B R φ(x, γ h (x)) dx.(C.12)

  k→∞ A K φ(x, u)dη h(k)x (u) dx = A K φ(x, u) dη x (u)dxfor any bounded function φ(x, u) : A × K → [0, +∞[ continuous with respect to u and L n -measurable with respect to x.Hence, there exist a L n -measurable application η : A → P(C ) and a subsequence h(k) such thatlim k→∞ B R C φ(x, γ(x))dη h(k)x (γ(x))dx = B R C φ(x, γ(x))dη x (γ(x))dx. (C.13) Then, we obtain B R C |γ(x)( t) -x -t 0 b(τ, γ(x)(τ ))dτ |dη x (γ(x))dx = B R C φ(x, γ(x))dη x (γ(x))dx, by (C.11) = lim k→∞ B R C φ(x, γ(x))dη h(k)x (γ(x))dx, by (C.13) = lim k→∞ B R φ(x, γ h(k) (x))dx, by (C.12) = lim k→∞ B R |γ h(k) (x)( t) -x -t 0 b(τ, γ h(k) (x)(τ ))dτ |dx, by (C.11) 151Chapter C : Cauchy Problem for BV vector fields(k) -b)(τ, γ h(k) (x)(τ ))dτ |dx, (because γ h ∈ C b h x ) k) -b|(τ, γ h(k) (x)(τ ))dτ |dx |b h(k) -b|(τ, y) dy dτ , by (C.10) = 0, because b h → h→∞ b in L 1 loc ([0, 1] × R n , R n ).

= 0 =

 0 γ(x)(t) = b(t, γ(x)(t)) = b t (γ(x)(t)), ∀t ∈ [0, 1]. Therefore, we obtain for i = 1, 2, for any ϕ ∈ C ∞ c (R n , R) d dt < µ i t , ϕ >= d dt A C ϕ γ(x)(t) dη i x (γ(x)) dx = A C ∇ϕ γ(x)(t) . γ(x)(t) dη i x (γ(x)) dx = A C ∇ϕ γ(x)(t) .b t γ(x)(t) dη i x (γ(x)) dx = < µ i t , b t ∇ϕ > = < b t µ i t , ∇ϕ > .This means that the measures µ i t , i = 1, 2 are solutions of the transport equation η t 0 x (K)L n A µ 2 C η t 0 x (K )L n A By (C.14), we note that µ 1 0 ≤ µ 2 0 .Thanks to the comparison principle (see Theorem 29), we haveµ 1 t ≤ µ 2 t , ∀t ∈ [0, 1].On the other hand, since K and K are disjoint, we have for any t ∈ [0, 1]µ 1 t = A η t 0 x Kdx ⊥ C A η t 0 x K dx = µ 2 twhich implies the contradiction.

We deal with the existence almost everywhere of the second order horizontal derivative of h-concave functions (see[START_REF] Magnani | Lipschitz continuity, Alexandrov theorem and characterizations for H-convex functions[END_REF] and[START_REF] Guitérrez | On the second derivatives of convex functions on the Heisenberg group[END_REF]).

(5.19)

Recall that S is supposed to be of positive Lebesgue measure. By (5.19), there is 2 ≤ k ≤ r -1 such that Ak\Ak +1 has positive Lebesgue measure. Fix x a density point in Ak\Ak +1 . There exists some J = (i 1 , . . . , ik, 3) of length k + 1 such that on a neighborhood V x of x,

(5.20)

From J , we take J = (i 2 , . . . , ik, 3) of length k, so that Z J 4 -CZ J 3 = 0. And, we compute Z J in terms of Z J :

Replacing Z J 3 and Z J 4 in (5.20), it follows that on V, we have

We recall that Z J 4 -CZ J 3 is a smooth function such that Z J 4 -CZ J 3 = 0 on Ak\Ak +1 .

(5.23) Since x is a density point on Ak\Ak +1 , we have

Note that by (5.17), C x 1 = 0. And, by computing the partial derivatives of (5.23), we obtain Chapter 5 : Mass Transportation on sub-Riemannian structures of rank 2 in dimension 4

Z J 4 x 1 (x) -C(x) Z J 3 x 1 (x) = 0 (5.24)

, ∀i = 2, 3, 4 (5.25)

Using (5.25), we can check that the left-hand side of (5.22) evaluated at the point x is equal to

= by(5.18)

This and (5.24) imply that Z J 4 (x) -C(x)Z J 3 (x) = 0 which contradicts (5.21) and (5.22),i.e. the fact that x / ∈ Ak +1 .

We need another lemma.

Thus, H c is a closed set of Lebesgue measure zero on M .

The above discussion implies indeed the following lemma.

Lemma 11. There exists an analytic horizontal vector field X given by

with α 1 , α 2 : V → R smooth functions given by

The vector field X vanishes on H c and any solution of the Cauchy problem ẋ(t) = X(x(t)) is analytic and singular.

Proof of Lemma 11. Let T > 0 and let u ∈ L 2 ([0, 1], R 2 ) be a singular control and x : [0, T ] → M be a solution to the Cauchy problem

There exists an absolutely continuous arc p : [0, T ] → (R 4 ) * \{0} such that

Taking the derivatives in (5.33) gives

Chapter 5 : Mass Transportation on sub-Riemannian structures of rank 2 in dimension 4

Assume that condition (5.31) is true, then we obtain

By taking the derivatives in (5.34), we obtain for every t ∈ [0, T ]

We can write

35)

Lemma 12. There is a positive constant C > 0 such that

Proof of Lemma 12. Let us compute the divergence of X. For every x ∈ V,

And we note that

By Proposition 23, there is N > 0 such that for any s ∈]

where Q is the homogeneous dimension of G.

We repeat the above recursively and we obtain for any k ∈ N

Then, by Proposition 23, for any measurable set A ⊂ B SR (0, 1)\B SR (0, 1/2), we get

We claim that MCP defined on Carnot groups provides the non-branching condition so we can apply the Cavalletti-Huesmann method to prove existence and uniqueness of optimal transport maps.

Chapter 7 : Conclusion and Perspectives

With this type of regularity, it might be possible to have informations on the horizontal symmetrical Hessian of d SR in order to obtain a contraction measure property similarly to the proof of Proposition 23 (see also [START_REF] Rifford | Ricci curvature in Carnot groups[END_REF]).

The Cauchy problem for BV functions

The concept of the Cauchy problem for BV functions appears in the proof of Proposition 23. It seems unlikely that an h-semiconcave function is BV 2 h (see Definition 33 for the definition of BV 2 h ).

Let G be a Carnot group and f : G → R an h-semiconcave function. If we consider the horizontal vector field Z := -∇ h f , we don't know if the flow of Z exists. That is why, we proceed by creating a subsequence (f ε ) ε of smooth and h-semiconcave functions approximating f . For instance, we thought it would be interesting to extend to the case of BV h vector fields the method of Ambrosio [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF] (see Appendix C). For this purpose, an interesting work would be to extend the Diperna-Lions theory [START_REF] Diperna | Ordinary differential equation, transport theory and Sobolev spaces[END_REF] to the case of BV h vector fields.

Appendix A Local semiconvexity

Let (∆, g) be a sub-Riemannian structure of rank m ≤ n on the manifold M .

We recall here the definition of local semiconvexity of a given function.

Definition 36. A function f : Ω → R, defined on the open set Ω ⊂ M , is called locally semiconvex on Ω if for every x ∈ Ω there exist a neighborhood Ω x of x and a smooth diffeomorphism

By the way, we recall that the function f : Ω → R is locally semiconvex on the open subset Ω ⊂ R n if for every x ∈ Ω, there exist C, δ > 0 such that

where B(x, δ) is the open ball in R n centered at x with radius δ.

The following result is useful to prove the local semiconvexity of a given function.

Lemma 20. Let f : Ω → R be a function defined on an open set Ω ⊂ R n . Assume that for every x ∈ Ω, there exist a neighborhood V ⊂ Ω of x and a positive real number σ such that, for every x ∈ V, there is

Then, the function f is locally semiconvex on Ω. 

Hence, we easily get

and the conclusion follows.

Remark 6. Thanks to Lemma 20, a way to prove that a given function f : Ω → R is locally semiconvex on Ω is to show that for every x ∈ Ω, we can put a support function φ of class C 2 under the graph of f at x with a uniform control of C 2 norm of φ.

Let us derive another important consequence of the definition of semiconvexity.

Lemma 21. Let Ω be a subset of R n and {u α } α∈A be a family of functions defined on Ω and locally semiconvex with C α the semiconvexity constant. Then, the function u := sup α∈A u α is also locally semiconvex on Ω.

Proof of Lemma 21. Take x, y ∈ Ω and λ

Given any ε > 0, we can find α such that

Then we have δ α > 0 such that ∀y ∈ B(x, δ α )

Appendix B

Geometric analysis

B.1 The Rademacher Theorem

The Rademacher Theorem [START_REF] Rademacher | Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln II[END_REF] states that real valued Lipschitz functions on R n are differentiable almost everywhere with respect to the Lebesgue measure.

Theorem 20. Let f : Ω → R be a Lipschitz function, where Ω ⊆ R n be open. Then, f is differentiable at a.e. x ∈ Ω. That is the partial derivatives exist a.e. and

Lemma 22. Let g : R n → R be a smooth function such that

Then, g(x) = 0, a.e. x ∈ R n .

Proof of Lemma 22. We set

and we assume by contradiction that E has positive Lebesgue measure. For l ∈ N, we define

When µ tends to 0, we obtain

Making l tends to ∞ yields

We are now ready to prove Theorem 20.

For each v ∈ R n with |v| = 1, we define the directional derivative in the direction v at x ∈ Ω by

Let us prove that D v f (x) exists at a.e. x ∈ Ω. We consider

Let A v be the set of points x ∈ Ω such that D v f (x) does not exist

Since f is continuous, A v is a measurable set. We claim that A v has Lebesgue measure zero. Let us prove our claim. Let v ∈ R n with |v| = 1. For any x ∈ Ω, we define the function

Thanks to the Fubini Theorem, we obtain

which implies that f est differentiable a.e. x ∈ Ω in the direction v.

We denote by

where

Proof of Theorem 21. For any j = 1, . . . , m, let x ∈ R n such that X j (x) = 0. We denote by O j the orbit of x under X j , that is

Hence, |∇ h f | ∈ L p loc (R n ), ∀p ≥ 1 and thanks to the Lebesgue differentiation Theorem, we have:

By the Morrey inequality, ∃C = C(Ω, X, Q, p) > 0 such that
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We choose r = 2d(x, y) such that

By (B.1), the conclusion follows.

B.3 The Alexandrov Theorem

The classical thorem of Alexandrov ([BF36], [START_REF] Alexandrov | Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it[END_REF], see also [START_REF] Howard | Alexandrov's theorem on the second derivatives of convex functions via Rademacher's theorem on the first derivatives of Lipschitz Functions[END_REF]) states that a concave function in R n admits a second-order derivative almost everywhere.

Theorem 22. (The Alexandrov Theorem) Let f : R n → R be a convex function. Then, f is twice differentiable a.e. x ∈ R n .

Proof of Theorem 22. We recall that the convex function f is locally Lipschitz. By the Rademacher Theorem (see Theorem 20), f is differentiable a.e. x ∈ R n . We denote the subdifferential of f by:

where D x f is the classical differential of f at x.

We define the function

Lemma 23. F is onto.

Proof of Lemma 23. Let y ∈ R n be fixed. We define ϕ :

We note that ϕ is convex and satisfies

Then, ϕ admis a global minimum at some point x 0 . It follows that

Lemma 24. Let y 0 ∈ F (x 0 ) and y 1 ∈ F (x 1 ) such that

. Then, we have

Proof of Lemma 24. We recall that

Since f is convex, we have

Then,

By the Cauchy-Schwartz inequality, we get

The inequality (B.2) shows that F is injective. This and Lemma 23 imply that F est bijective. Thus, F is invertible. We define G : R n → R n such that

By (B.2), we have for

We take now C = tx.x T = t(x i x j ), x ∈ R m and t > 0 sufficiently small. We obtain

B.4.2 Proof of Theorem 14

Let Ω be an open subset of the Carnot group G.

Theorem 23. Let u : Ω → R be an h-concave function. Then,

Proof of Theorem 23. We denote by u ε = φ * u the convolution of u by a mollifier sequence (φ ε ) ε>0 . We recall, by remark 5, (u ε ) ε is a sequence of smooth functions on M which are h-concave on M . Moreover, by Proposition 20, the m × m symmetric matrix

Integrating by parts yields

We deduce by (B.7) that L (ψ) ≥ 0, ∀ψ ≥ 0.

We define now

Since (u ε ) ε converges uniformly to u, we get

Thanks to the Riesz Representation Theorem (see section 1.8, [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]), there exists a Radon Theorem µ ρ on Ω such that

Let us choose now ρ = e i + e j √ 2 , we obtain

This implies

Chapter B : Geometric analysis Definition 37. A function u ∈ C 2 h (Ω) is said to be σ 2 (h)-concave on Ω if 1. the trace of the symmetric matrix H(u) is non negative, 2. the second elementary symmetric function in the eigenvalues of H(u) given by

We pick a local frame {Y 1 , . . . , Y n } of the tangent space of M such that

We denote by

where α ij,k are constants.

Theorem 24. Let u, v be two functions in

Proof of Theorem 24. We set

, we obtain:

We recall that, by section B.4.1, since u is σ 2 (h) -convex,

∂S ∂r ij

(u) is non-negative definite.

On the other hand, we remark that for j = 1, . . . , m fixed, we have:

Hence,

And the conclusion follows.

Lemma 27. Let u and v ∈ C 2 (Ω) be two σ 2 (h)-convex functions. Let f : R 2 → R be a convex function such that f is non-decreasing with respect to each variable. Then,

Proof of Lemma 27. Assume that f is of class C 2 on R 2 . We have

Chapter B : Geometric analysis Proposition 25. Let u ∈ C 2 (Ω) be a σ 2 (h)-convex function. Then, for every compact K ⊂ Ω, there exists a constant C = C(K, Ω) > 0, independant of u such that

with osc Ω u the oscillation of u on Ω.

Proof of Proposition 25. We proof the result on the Heisenberg group in R 2n+1 with coordinates (x 1 , . . . , x n , y 1 , . . . , y n , t) where

Let x ∈ Ω and B R = B R (x) be the ball centered at x of radius R such that B R ⊂ Ω. For 0 < σ < 1, let B σR be the concentric ball centered at x of radius σR. Note that the sub-Riemannian structure is invariant by translation, so we may assume that x = 0.

We check easily that v = 0 on ∂B R and v = m 0 on ∂B σR .

Following the calculations in the proof of Proposition 6.2 in [GM05], we get

Then, for h sufficiently smell, we have

Hence,

(B.9) By (B.8) and (B.9), we obtain

Make ε → 0. And, the conclusion follows.

Theorem 25. Let u : Ω → R be an h-convex function. Then, u ∈ BV 2 h (Ω).

Proof of Theorem 25. Let u : Ω → R be an h-convex function. Then, u is Lipschitz with respect to the sub-Riemannian distance and X i u exists a.e. on Ω, i = 1, . . . , m. Moreover, there is a Radon measure dν ij such that

We recall that for i, j = 1, . . . , m,

φ j X j be a function of class C 2 with a compact support K and ||φ|| < 1.

We get

Appendix C

Cauchy Problem for BV vector fields

Here, we study the Cauchy problem for BV functions.

Let b : [0, 1] × R n → R n be a bounded vector field such that

In [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF] (see also [START_REF] Ambrosio | Lecture notes on transport equation and Cauchy problem for BV vector fields and applications[END_REF]), Ambrosio defined a class of Lagrangian flows, solutions to the Cauchy problem γ(t) = b(t, γ(t)) for L n -almost every initial conndition x and proved for them existence and uniqueness.

We introduce now our main notations and definitions. By abuse of notation, we set C the space of continuous R n -valued maps in [0, 1], i.e. C = C [0, 1], R n . Definition 38. Let x ∈ R n . We denote by C b

x the subspace of C given by

It is clear that the subspace C b x is made up by solutions of the ODE γ(t) = b(t, γ(t)) starting at x. Definition 39. Let A ⊆ R n and γ : A → C be a L n -measurable map. We say that γ is a Lagrangian flow from A, relative to b if for a.e. x ∈ A, γ(x) ∈ C b

x .

Chapter C : Cauchy Problem for BV vector fields

The main result introduced by Ambrosio [Amb04] is the following:

Then, for any L n -measurable set A ⊆ R n , there is a unique Lagrangian flow starting from A relative to b.

Its proof is based on tools borrowed from Probability and calculus of variations together with a renormalization property.

C.1 Probability measures on C

Let P(C ) be the space of probability measures on C .

Let A be a subset of R n and let η : A → P(C ) be a L n -measurable application. For t ∈ [0, 1], we define η tx the image of η x by the application γ → γ(t) such that for any subset K of R n , η tx (K) = η x γ : γ(t) ∈ K .

Lemma 28. Let x ∈ A. Assume that for each t ∈ [0, 1], η tx is a Dirac measure. Then, η x is a Dirac measure.

Proof of Lemma 28. Let γ, γ be two distinct functions in C . Then, there is t 0 ∈ [0, 1] such that γ(t 0 ) = γ (t 0 ). By a continuity argument, we can choose an open interval I containing t 0 such that γ(t) = γ (t), ∀t ∈ I.

We can construct two disjoint neighborhoods K and K of γ(t 0 ) and γ (t 0 ) respectively. Let t ∈ I be fixed such that, by definition, we have

Chapter C : Cauchy Problem for BV vector fields and

By assumption (C.2), ∀t ∈ [0, 1], there is a negligeable set A t of A such that

For every i, we construct the set

Hence, diam supp η tx ≤ √ n2 -h . Make h tends to ∞, diam supp η tx = 0 which implies that η tx is a Dirac measure. It follows from Lemma 28 that there is

A t a negligeable set such that η x is a Dirac measure.

C.2 Renormalization property

In this section, we proceed by extending the Diperna-Lions theory [START_REF] Diperna | Ordinary differential equation, transport theory and Sobolev spaces[END_REF] to obtain a renormalization property in the case of BV loc functions.

Let us recall the result introduced by Diperna-Lions in the case of Sobolev functions.

Proof of Theorem 28. Let (ρ ε ) ε be a mollifier sequence in R n . From (C.3), we get D.∇w * ρ ε = c * εL n .

Chapter C : Cauchy Problem for BV vector fields Let B ∈ BV loc (Ω). The structure Theorem for BV loc functions (see Theorem 1, section 5.1 in [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]) asserts that the first derivative DB of B is a R n -valued measure of finite total variation |DB| with

Hence, DB admits a polar decomposition

By The Lebesgue Decomposition Theorem (Theorem 3, section 1.6.2 in [EG92]), we may set

We may obtain DB = D a B + trace(N )|D s B|. In particular, DB << L n is equivalent to trace(N ) = 0.

To establish the renormalization property for BV loc functions, we need the following property.

Definition 42. Let ρ be a convolution kernel and N be a n × n-matrix, we define 1. the anisotropic energy of ρ given by

the isotropic energy of ρ given by

Let ρ be a convolution kernel such that for some ε > 0, we set Since DB << L n , we have trace(N ) = 0 and the conclusion follows.

The proposition 27 is necessary to obtain the following comparison principle. 

(ii) ∇b h (t, x) ∈ L ∞ ([0, 1] × B R , R n ), ∀r > 0.

Let γ h (x)(.) be the unique solution of the Cauchy problem γ(t) = b h (t, γ(t)) with initial condition γ(0) = x. We recall that (see Proposition B.1 [START_REF] Belotto Da Silva | The sub-Riemannian Sard conjecture on Martinet surfaces[END_REF]), for every R > 0, there is a smooth function J h : [0, 1] × B R → [0, ∞[, which is the Jacobian of the application x -→ γ(x)(t) such that for every t ∈ [0, 1], and for every x ∈ B R , we have ∂J h ∂t (t, x) = div b h t, γ h (x)(t) J h (t, x).

Integration in time t yields: In particular, for any ϕ ∈ C ∞ c (R n ), the changement of variables y = γ h (x)(t) and (C.9) give