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Résumé

Cette thése est consacrée a ’étude des problémes de transport optimal en géométrie
sous-Riemannienne. Plus précisément, notre but est d’étendre le caractére bien-posé
du probléme de Monge aux cas des structures sous-Riemanniennes admettant des
géodésiques minimisantes singuliéres. Dans une premiére partie, on traite le cas
des distributions analytiques de rang 2 en dimension 4. On montre l'existence et
I'unicité de solutions pour le cotit quadratique sous-Riemannien, tant que la dis-
tribution satisfait une certaine condition de croissance. La stratégie de la preuve
combine la technique de Figalli-Rifford basée sur la régularité de la distance sous
Riemannienne en dehors de la diagonale en absence de géodésiques minimisantes
singuliéres, avec une propriété de contraction de la mesure pour les courbes sin-
gulieres dans l'esprit d’un résultat de Cavalletti et Huesmann. Dans une deuxiéme
partie, on s’intéresse aux problémes de régularité de la distance sous-Riemannienne
et on définit sur les groupes de Carnot, les structures sous-Riemanniennes h-idéales
sur lesquelles la distance sous-Riemannienne est h-semiconcave. Sous une certaine
hypothése de la distribution, on prouve heuristiquement la propriété MCP sur les
groupes de Carnot. On prévoit que cette propriété MCP est une condition suffisante
pour appliquer la méthode de Cavalletti-Huesmann afin de prouver que le probléme
de Monge est bien-posé.

Mots clés : probleme de Monge, géométrie sous-Riemannienne, singuliéres min-
imisantes.

Abstract

This thesis is devoted to the study of mass transportation on sub-Riemannian ge-
ometry. More precisely, our aim is to extend previous results on the well-posedness
of the Monge problem to cases of sub-Riemannian structures admitting singular
minimizing geodesics. In the first part, we show that, in the case of rank-two ana-
lytic distributions in dimension four, we have existence and uniqueness of solutions
for the sub-Riemannian quadratic cost, as soon as the distribution satisfies some
growth condition. Our strategy to prove it, combines the technique used by Figalli-
Rifford which is based on the regularity of the sub-Riemannian distance outside the
diagonal in absence of singular minimizing curves, together with a localized con-
traction property for singular curves in the spirit of the previous work by Cavalletti
and Huesmann. In the second part, we deal with regularity issues of the sub-
Riemannian distance and we define a class of sub-Riemannian structures on Carnot
groups, called h-ideal sub-Riemannian structures, on which the sub-Riemannian
distance is h-semiconcave. Together with an assumption on the distribution, we
prove heuristically the MCP property on Carnot groups. Anyway, we attempt to
prove that MCP property defined on this class of Carnot groups is sufficient to apply
the Cavalletti-Huesmann method to prove the well-posedness of the Monge problem.

Keywords : Monge problem, sub-Riemannien geometry, singular minimizers.
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Chapter 1

Introduction

This thesis, running from 2014 to 2017, was an occasion to discover the Theory of
Optimal Transportation and sub-Riemannian Geometry. The mass transportation
theory found its roots through the French geometer Monge and became a popular
subject in various areas of sciences including economics, optic such as the reflector
problem, meteorology and oceanography. On the other hand, important motivations
from the field of thermodynamics involving hyperbolic geometry, analysis of hyper
elliptic operators etc, made the first steps towards sub-Riemannian geometry. This
is a natural geometry in mechanics to study systems with nonholonomic constraints
like skates, wheels, rolling balls etc, for reference see the book | |. The aim of
this thesis is to present some of the recent progress in solving the Monge problem
on sub-Riemannian manifolds.

Optimal mass transportation theory was born in the XV III¢ century. It was
raised by the French mathematician and physicist Gaspard Monge through one of
his remarkable writings | |, Mémoire sur la théorie des déblais et des remblais,
published in 1781. He has formulated a mathematical problem of "Excavations and
enbankements", concerning with the transport of a pile of soil to completely fill up
an excavation with minimal transport expenses.

Figure 1.1
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We shall model the pile of soil by a measure p and the excavation by a measure
v, both defined on some measured space X. Obviously, the transport involves
a conservation of mass, that is why in the sequel, we only consider probability
measures. We also model the transportation by a measurable cost function c(x,y),
which denotes the cost of transporting a unit of mass from a position x to some
position y. Thus, the Monge problem can be formulated as follows:

Definition 1. (The Monge Problem) Let X be a measured space, and ¢ : X x X —
[0, +00] be the cost function. Let p, v be two probability measures on X. Then, the
Monge problem consists in minimizing the transportation cost

/X (. T()) du(x),

among all the measurable maps T : X — X pushing forward p to v (we denote it by
Tip=v).

I v
Figure 1.2 — The Monge transportation problem

When T satisfies the transport condition Ty = v and minimizes the cost, we call
it an optimal transport map. Monge proposed a method to construct an optimal
transport map without proving it. And the Monge problem has stayed with no so-
lution for centuries. For this purpose, the Academy of Paris offered the Bordin prize
[ | in 1884. However, a rigorous proof of the subject was claimed by Appell
[ | in 1887. Studied by many other researchers, Sudakov | | showed in
1979 solutions for the Monge problem as mappings from R"™ to R™.

The Russian mathematician and economic Leonid Kantorovich, who received a
Nobel prize in 1975 in economics, drew an attention to the Monge problem and
saw a way to connect it to his work which gave the possibility to find solutions and
to study them. In particular, we turn to his work | | in 1942. He introduced
a relaxation form of the Monge problem by representing the transportation as a
probability measure.



Definition 2. (The Kantorovich Problem) Let X be a measured space, and c :
X X X — [0,400] be the cost function. Let p, v be two probability measures on X .
Then, the Kantorovich problem consists in minimizing the transportation cost

/QxXC@ay)da@zyL

among all the probability measures o on X x X such that Pﬁl(a) = u and Pf(a) =v
(with P*: X x X — X the projection map into the i-th component).

Moreover, Kantorovich shows that the minimization problem introduced in Def-
inition 2 is equivalent to the following maximization problem:

Definition 3. (The Dual Problem) Let X be a measured space, and ¢ : X x X —
[0, +00] be the cost function. Let p, v be two probability measures on X. Then, the
dual problem consists in mazximizing the following quantity

/¢@@@—/W@M@,
b b
among all the functions (p,v) € L*(u) x L*(v) such that

Y(y) — e(x) < c(z,y).

Since that time, the transport problem is known as the "Monge-Kantorovich
transport problem". This formulation allows to highlight the concept of c-convexity,
where c is the given cost function. A way to see that a function ¢ is c-convex, is to
show that for each point we can put under the function ¢ a support function of the
form x — —c(z,y) + constant.

Again, the work of Yann Brenier | | in 1991, gave a new birthdate for the
Monge problem. He showed existence and uniqueness of solution for the quadratic
Monge problem for a quadratic Euclidean cost. Then, McCann | | provided the
solution for the Riemannian case where the cost is given by the quadratic geodesic
distance. These types of results are based on the local Lipschitzness of the cost
function. In case the probability measures are compactly supported, regularity
properties of the solutions for the dual problem are obtained from the regularity
of the cost. Recently, Cavalletti and Huesmann | | develop a new technic to
solve the Monge problem, based on a contraction property on proper non-branching
measured metric spaces. This contraction property concerns the behavior of the
measure under the shrinking of sets to points. The non-branching condition is
necessary to get some consequences of the contraction property. In particular, their
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proof covers spaces enjoying the (k,n)-measure contraction property, abbreviated
MCP(k,n). The notion of MCP has been introduced by Ohta | |, and Sturm
[ |. For sake of simplicity, we proceed to define the notion of measure contraction
property on measured metric spaces with negligible cut locus.

Definition 4. A measured metric space (X, d, p) is said to be with negligible cut
locus if for every x € X, there exists a measurable set C'(x) C X with

uC(z)) =0

such that Yy € X\C(x), there is a unique minimizing geodesic vy, : [0,1] — X
connecting x to y.

According to the Ohta definition | | (see also | |), we have the following
definition:

Definition 5. Let (X, d, 1) be a measured metric space with negligible cut locus and
keR, n>1 be fired. We say that (X,d, ) satisfies MCP(k,n) if for every x € X
and every measured set A C X (provided that A C B(x,m\/n — 1/k) if k > 0) with
0 < pu(A) < oo,

sp(sd(x, 2)//n — 1) n-1
(A) > / S| S:(;((x 72))//¢F11)>] du(z)

where As, 1s the s-interpolation of A from x defined by

A = {7e(5)] 7%(0) = 7,7 (1) € A\C(x) ), Vs € [0.1].

Figure 1.3



and the function s : [0, +oo[— [0, 400 (si : [0,7/VE[—= [0, +oo[ if & > 0) is
defined by
sin(v/kt)

—_— if k>0
Vk
sinh(v/—kt) k<0

vk

For example, R equipped with a constant Riemannian metric satisfies MCP(0,n).
The MCP(k,n) can be regarded as a generalized notion of the lower curvature bound
on Riemannian manifolds. Let (X, d, ) be a complete Riemannian manifold, the
condition MCP(k,n) is equivalent to require that X has Ricci curvature bounded
from below by k& € R (see Theorem 3.2 in | |), and n > 1 is the upper bound of
the dimension of the space. Recently, it has been studied on Heisenberg groups by

Juillet | | (see also Rifford | | and Rizzi | | for other MCP type results
on Carnot groups).

This thesis is concerned with the study of the Monge problem in sub-Riemannian
cases. The sub-Riemannian geometry is defined on a manifold M, on which every
trajectory has velocity contained in a subbundle A of the tangent bundle T'M,
called "horizontal" distribution. Such trajectories are called "horizontal" paths.
Riemannian manifolds appear as a special case of sub-Riemannian geometry on
which A = TM. Roughly speaking, in sub-Riemannian geometry, we cannot move
in all directions. We always have a kind of "hidden" or "forbidden" directions.
Let us describe a simple model. We consider in R?® with coordinates (z,v,2),
the distribution A generated by the two smooth vector fields X' := 9, — y0, and
X?:= 0, + x0,. In this case, horizontal paths ¢ — (z(t),y(t), 2(t)) are those paths
satisfying 2(t) = x(t)y(t) — y(t)x(t). The study of horizontal curves is useful in
determining the sub-Riemannian distance between two points. The latter is defined
as the infimum of the lengths of all horizontal paths joining these two points. In
the bracket generating case, the Chow-Rashevsky Theorem (see | Il 1)
guarantees us that the sub-Riemannian distance between two points is finite. One
can ask what is the shortest path one should consider to transport a mass from one
position to another. It is relevant to concentrate on developing similarities between
Riemannian and sub-Riemannian geometries. However, there are major differences.
In particular, the space of horizontal curves joining two points can have singularities.
A minimizing geodesic is defined as a horizontal curve which minimizes the distance
between its endpoints. The existence of "singular" paths is of central importance to
sub-Riemannian geometry because singular paths can be minimizers.
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The study of the Monge problem in the sub-Riemannian geometry has been
concerned with the sub-Riemannian quadratic cost (given by the square of the sub-
Riemannian distance). It began with a paper by Ambrosio and Rigot | | about
the transportation problem in Heisenberg groups, seen as the prototype of the sub-
Riemannian geometry. However, Agrachev and Lee | | proved that the local Lip-
schitzness of the squared sub-Riemannian distance is sufficient to guarantee existence
and uniqueness of solutions for the Monge problem. Then, Figalli and Rifford | |
removed the assumption of Lipschitzness on the diagonal. Their proof considered
on the diagonal was based on a Pansu-Rademacher Theorem. Furthermore, Rifford
[ | proved the local semiconcavity of the sub-Riemannian distance in absence of
singular minimizing curves. The semiconcavity brings us closer to a smooth regular-
ity: it can be seen locally as the sum of a smooth function and a concave function.
Such result shows that, in absence of singular minimizing paths, sub-Riemannian
distances enjoy the same kind of regularity as Riemannian distances. For example,
in the case of a two-rank distribution A on a three-dimensional manifold M, we
have existence and uniqueness of solutions for the sub-Riemannian quadratic cost
because non-trivial singular horizontal paths are included in the Martinet surface
given by X = {z € M|A(z) + [A,A](z) # T, M} which has Lebesgue measure
zero. In general, we do not know if the Monge problem (for the sub-Riemannian
quadratic cost) has solutions.

Our aim is to extend previous results on existence and uniqueness of optimal
transport maps to cases of sub-Riemannian structures which admits many singular
minimizing geodesics. The first relevant case to consider is the one of rank-two
distributions in dimension four. In this case, as shown by Sussman | |, singular
horizontal paths can be seen (locally) as the orbits of a smooth vector field, at least,
outside a set of Lebesgue measure zero. Our aim is to show that, in the case of
rank-two analytic distribution in dimension four, we have existence and uniqueness of
solutions for the sub-Riemannian quadratic cost, as soon as the distribution satisfies
some growth condition.

Theorem 1. Let M be a real analytic manifold of dimension 4 and (A, g) be a
complete analytic sub-Riemannian structure of rank 2 on M such that

Ve e M, A(x) + [A,A](x) has dimension 3, (1.1)

where

[A,A] := Span{[X,Y] | X,Y sections of A}.

Let p, v be two probability measures with compact support on M such that p is
absolutely continuous with respect to the Lebesgue measure.



Then, there is existence and uniqueness of an optimal transport map from u to v
for the sub-Riemannian quadratic cost ¢ : M x M — [0, +oo[ defined by:

C([lf,y) = d%’R<x>y)v V(:v,y) € M x M.

This theorem is proved in chapter 3. Our strategy to prove it, is twofold. It com-
bines the technique used by Figalli-Rifford | | (see also the paper by Agrachev-
Lee | |) which is based on the regularity of the distance function outside the
diagonal in absence of singular minimizing curves, together with a localized contrac-
tion property for singular curves in the spirit of the previous work by Cavalletti and
Huesmann | |.

As we saw before, in order to obtain existence and uniqueness for optimal
transport maps, it is convenient to be able to show that MCP is satisfied to ap-
ply Cavalletti-Huesmann’s method. So we deal with regularity issues of the sub-
Riemannian distance and we define a class of sub-Riemannian structures on Carnot
groups, called h-ideal sub-Riemannian structures, on which the sub-Riemannian
distance dgg is h-semiconcave. Such regularity is fundamental. Together with an
assumption on the distribution (see ASSUMPTION 1 (6.10)), we prove the MCP
property on Carnot groups as a consequence of the upper bound of the horizontal
symmetrical Hessian of dgg.

Proposition 1. Let G be a Carnot group whose first layer is h-ideal and satisfies AS-
SUMPTION 1. Then , there is N > 0 such that (G, dsgr, L") satisfies MCP(0, N).

The differentiability of an h-semiconcave function is the consequence of a sub-
Riemannian version of the famous theorem of Alexandrov | | (see also | )
which states that an h-semiconcave function is two times differentiable a.e. with re-
spect to the horizontal directions whenever its second order horizontal derivatives
are Radon measures.

After the detailed presentation and explanation of our research work, we now
proceed to the structure of this thesis.

Chapter 2 can be seen as a general introduction of the optimal mass trans-
portation problem. It concerns the study of the Monge-Kantorovich problem. We
investigate a powerful duality formulation due to Kantorovich. The main purpose
is to prove existence and uniqueness of an optimal transport map solution for this
mass transportation problem. The chapter ends with the statement of preliminary
results of existence and uniqueness of solutions for the Monge problem, in the case

7
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of quadratic Euclidean cost and the quadratic Riemannian cost which refer respec-
tively to Theorems by Brenier | | and McCann | |.

Chapter 3 presents the basics of the sub-Riemannian geometry. We refer to the
distribution as the horizontal space, and objects tangent to it as horizontal. We
introduce the Hérmander condition as a bracket generating condition under which
the Chow-Rashevsky is true. The Chow-Rashevsky Theorem gives us a license to
search for minimizing geodesics, i.e. shortest horizontal curves. We study the End-
point map on a sub-Riemannian manifold and its singularities. This End-point map
yields a horizontal path passing through a fixed point to its endpoint. Its critical
points are called singular paths for the distribution. They play a major role in this
thesis.

In chapter 4, we turn our attention to the optimal transport problem on sub-
Riemannian manifolds where the cost function is given by the square of the sub-
Riemannian distance. Under regularity assumptions for the sub-Riemannian dis-
tance, Figalli and Rifford generalized the Brenier-McCann Theorem. We also give
an introduction to Cavalletti- Huesmann’s method to prove existence and unique-
ness of the optimal transport map, using a measure contraction assumption.

Chapter 5 is devoted entirely to the proof of the theorem 1. This section is the
subject of an article to appear | |-

Then, we define in chapter 6 the class of h-ideal sub-Riemannian structures on
Carnot groups. We present some analytic tools necessary to the understanding of
the h-semiconcavity. The chapter ends by establishing the MCP on Carnot groups
under suitable regularity assumptions. Unfortunately, this chapter is prospective.
Until now, there are no obvious examples of Carnot groups satisfying these hypothe-
ses.

Finally, in chapter 7, we make some comments about this work and try to sketch
some research perspectives that may lead to some interesting results.



Chapter 2

Optimal Transport Theory

In the sequel, M denotes a smooth connected manifold without boundary of dimen-
sion n > 2.

2.1 The Monge Problem

The transport problem considered by Monge, was to transport some mass from one
place to another with minimal cost. A current formulation of the Monge problem is
the following;:

Definition 6 (Transport map). Let u, v be two probability measures on M, and
c: M x M — [0,+00[ be the cost function. We call transport map from p to v, any
p-measurable application T : M — M such that Ty = v.

The condition Ty = v means that T' is pushing forward p to v, i.e. for any
v-measurable set B in the target space M,

Therefore, the Monge problem is modeled as an optimal transport problem
mainimaizing the transportation cost

/ c(x,T(z))du(x), among all the transport maps T : M — M.
M

We check that Tiu = v is equivalent to a change of variables formula. In fact,
consider M = R™ and p, v two probability measures on M absolutely continuous
with respect to the Lebesgue measure. We take p = fdxr and v = gdy, with
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f,g € LYR™ R). Then, for any v-measurable set B in the target space, the condition

Typ = v yields
/ f(z)de = / 9(y)dy.
T-1(B) B

If T is a diffeomorphism, we perform the change of variable y = T'(z), that leads to

/’ ﬂmuzf §(T (2))|det(D,T)|dz,
T-1(B) T-1(B)

we deduce

f(x)
9(T(x))

|det(D,T)| = , —ae xR

called the Monge-Ampére equation.

Several difficulties arise in solving the Monge problem.
First of all, transport maps may not exist.

Example 1. We consider in R™ the two probability measures u, v given by

1 1
_5?/1 + _53/2

:5$7 =
H V=3 2

where x,y; # yo € R™ and 0, denotes the Dirac mass at point a € R™. There are no
transport maps from p to v. If such a map T exists, then

5 = v({md) = u(T ([ }) =0 or 1

which s impossible.

Secondly, minimizers of the Monge problem may not be unique.

Example 2. Let p,v be two probability measures given by

n = X[0,1]£17 V= X[1,2]£1,

the restrictions of the Lebesque measure L' on the intervals [0,1] and [1,2] respec-
tively. There are two maps T1(z) = v + 1 and Ty(x) = 2 — x, pushing forward p to
v for the cost function c(x,y) := |z —y|, Vx,y € R.

The fact that the constraint Typ = v is highly non linear with respect to 7" is the
main difficulty to deal with the Monge problem. That is why, Kantorovich proposed
a relaxed form of the problem.

10



2.2 The Kantorovich Problem

We denote by P*: M x M — M the projection map into the i-th component.

Definition 7 (Transport plan). Let u, v be two probability measures on M. We
denote by I(u,v) the set of probability measures « in the product space M x M with

Pﬁl(a) = and PﬁQ(a) =v.

Any measure o € TI(p, v) is called transport plan between p and v.

The set II(p, v) of transport plans between p and v is a convex set which can not
be empty (it always contains the product g x v). The property Pj(a) = p means
that the first marginal of « is equal to u, i.e.

for any p-measurable set A C M, we have a(A x M) = u(A).
The definition Pf(a) = v is similar with the second marginal of a, i.e.
for any v-measurable set B C M, we have a(M x B) = v(DB).

This is also equivalent to have for every (¢, ) € L'(u) x L*(v),
| Je@+vwlaaten = [ @t + [ vty
MxM M

The Kantorovich problem consists in minimizing the transportation cost

/ c(x,y)da(z,y), among all transport plans o € II(p, v).
MxM

We notice that by considering a transport map 7' : M — M from p and v, we
can define a transport plan o € II(p, ) as follows

= ([d X T)ﬁ,u

We say that the transport plan « is induced by a transport map 7'. This shows that
the Kantorovich problem is more general that the Monge problem: it is a relaxation
form of the Monge problem.

Practically, the Monge problem consists in transporting each mass as it is, while
the Kantorovich problem allows to separate the starting mass and send the differ-
ent parts to different places. The difference between the Monge problem and the
Kantorovich problem can be seen through the following example:

11
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Example 3. Returning to Example 1, consider the two probability measures on R™
given by

1 1
on = 5;13, Vv = §5y1 -+ §5y2'

In contrary to transport maps, there is a transport plan « between p and v, solution
of the Kantorovich problem, given by

1 1
@ = S0y T 50u)-

The Kantorovich problem comes down to a linear minimization problem (with
respect to ) on a set of constraints I1(yu, ) which is convex and weakly compact.
The existence of optimal transport plans becomes easy.

We recall that the support of a measure u, denoted by supp u, refers to the
smallest closed set I C M of full mass u(F) = pu(M) = 1.

Theorem 2 (Existence of optimal transport plans). Let u, v be two probability
measures compactly supported on M. Assume that the cost function ¢ : M x M —
[0, +00] is continuous. Then, there is at least one optimal transport plan o € I1(p, v)
solving the Kantorovich problem.

Proof of Theorem 2. We notice easily that the product p x v is a transport plan.
Moreover, all the transport plans are concentrated on supp p X supp v which is
compact (because by assumption, supp p , supp v are compact). Without loss of
generality, we can assume that M is compact. The existence of optimal transport
plans is a consequence of the weak closure of II(u, ) together with the continuity
of the cost function c. O

We now introduce the concept of c-cyclically monotonicity.

Definition 8. (c-cyclically monotone) A subset X C M x M is said to be c-
cyclically monotone if for every N € N and every (x1,11), ..., (zn,yn) € X it holds

Z (i, yi) < Z (i1, Yi)

i=1 i=1

with xn11 = 2.

The following proposition shows a specific property of optimal transport plans.
We refer the reader to Theorem 3.2.5 in | | and Chapter 5 in | .

12



Proposition 2. Let p,v be two probability measures compactly supported on M,
and let the cost function ¢ : M x M — [0,4o00[ be continuous. Then, there is a
c-cyclically monotone set S C supp p X supp v such that for any optimal transport
plan o € (p,v),

supp o C S.

Optimal conditions to establish the equality between the infimum of the Monge
problem and the infimum of the Kantorovich have been proved by Pratelli | |:
transport maps do exist as soon as the initial measure is assumed to be non-atomic.
It can be seen through examples 1 and 3. Since transport plans can be approxi-
mated by plans coming from transport maps, it is predicted that the infimum of the
Kantorovich problem coincides with the infimum of the Monge problem.

2.3 The Dual Problem

The dual problem is a basic concept in the optimal transport theory, considered as
another face of the original Kantorovich problem.

In the textbook | |, Villani explains the concept of Kantorovich duality in
an informal way and illustrate how the Monge problem can be reformulated from
an economic viewpoint. Consider a large consortium of bakeries and cafés, there
is a company which has in charge of the transportation of productions, by buying
bread at the bakeries and selling them to the cafés. The original Monge-Kantorovich
problem starts with the notion of cost, while in the dual problem, the central notion
is the price. Let us denote by ¢(z) the price at which bread is bought at bakery z
and ¢ (y) the price at which it is sold at café y. So the transportation cost becomes
¥(y) — p(z) instead of the original cost c¢(x,y). As to be competitive, the company
needs to set up prices in such a way that

U(y) — elz) < clz,y), Yo,y
and the problem becomes to maximize the profits.

This approach leads to a dual formulation (see chapter 5 | |) given by

inf {/ 0($,y)da(x,y)} =
a€ll(p,v) MxM

13
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This leads to find a pair of integrable functions (¢, %) optimal on the right-hand
side, and a transport plan « optimal on the left-hand side. The pair of functions
(p, 1) should satisty ¥ (y) — p(z) < ¢(z,y). Then, for a given y, ¥(y) will be the
infimum of ¢(z) + ¢(x,y) among all x. For a given z, ¢(x) will be the supremum
of ¥(y) — ¢(z,y) among all y. So it makes sense to describe a pair of integrable
functions (g, 1)) as follows

plx) = sup{w(y) —c(a.y) }, Vo€ M

yeM

and
¥(y) = inf {so(:z:) + c(:c,y)}, Yy € M.

zeM

We may now introduce the concept of c-convexity which turns out later to be an
indispensable tool for existence of optimal transport maps.

Definition 9 (c-convexity). We say that a function ¢ : M — R U {+o0} not
identically +00, is c-convez if there exists a function 1 : M — R U {400} such that

p(x) = sup {¥(y) — c(z,y) }, Yo € M.
yeM
The c-transform of p, denoted by ¢, is the function given by
#°(y) = inf {p() +c(x,y)}, Vy € M.
Definition 10. Let ¢ : M — R U {400} be a c-convex function. We call contact
set of the pair (¢, ¢°) the set defined by

Ly = {(:v,y) € M x M| ¢*(y) — () = C(w,y)},

which s a closed convex set.

For every x € M, we define the c-subdifferential of ¢ at x by
Po(z) = {y € Ml(z,y) € T, }.

We may indeed assume that the dual problem can be reduced to find a c-convex
function ¢ € L'(u) such that

it [ e} = [ cwwn) - [ o e

14



where, by definition of c-convex functions, the constraint of the dual problem
©(y) — o(x) < c(z,y) is satisfied.

The pair of functions (¢, ¢°) solution of the dual problem (2.2), is called the
Kantorovich potentials.

We give here a characterization of the supports of optimal transport plans which
are c-cyclically monotone sets (see Theorem 3.2.13 in | ])-

Proposition 3. Let S C M x M be a c-cyclically monotone compact set. Then,
there is a c-concave function ¢ valued in R, such that

olx) = sup{¢*(y) — c(ay) }, Yo € M

yeM

o) = inf {p(@) +clay) . vy e M

zeM

and
Scly.

The fact that the infimum and supremum are attained is straigthforward from
the continuity of ¢, ¢° and the compactness of S.

Theorem 3. Let pu,v be two probability measures compactly supported on M, and
let the cost function ¢ : M x M — [0, +oo[ be continuous. Let (v, ¢°) be the Kan-
torovich potentials, solution of the dual problem (2.2). Then,

any transport plan o € II(p, v) is optimal if and only if supp o C I'y,.

We say that o is concentrated on T',.

Proof of Theorem 3. Let (p,¢¢) be the Kantorovich potentials, solution of the
dual problem and let « € II(j, ) be an optimal transport plan. So, we have

/MXMC(CE’WdO‘(%y):/ch(y)dV(y)—/ o(z)du(z).

M

Since a € I(p, v),

/]W y C(l', y)da(x, y) = / [gpc(y) . @(ﬁ)}d&(l’, y)

MxM

15
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= | Jelw.y) — ) + olo)]daley) =0

As c(z,y) > ¢°(y) — p(z),Vx,y € M, then
c(x,y) = ¢°(y) — p(z) for almost every (x,y) € supp a.

This shows that
supp a C T'y,.

Reciprocally, let o € II(y, v) such that supp a C I',. Then, for any transport plan
f € (u,v), we have

/MxMC(ﬂf,y)da(x,y)Z/ch(y)du(y)—/ o(z)du(z)

sLmew@w

which implies that « is optimal. ]

Theorem 4. Let p,v be two probability measures compactly supported on M, and let
the cost function ¢ : M x M — [0, +00[ be continuous. Let (¢, ¢°) be the Kantorovich
potentials, solution of the dual problem (2.2). Assume that for p-a.e. v € M, I',(x)
is a singleton. Then, there is a unique transport map T : M — M from p to v such
that

Iy(z)={T(2)}, p—ae zeM.

Proof of Theorem 4. By assumption, there is a Borel set N such that pu(N) =0
and for every ¢ N, there is y, € M such that I',(z) = {y,}. Hence, for every
r € M\N, and every y € I',(z), we have y = y,. We set T'(x) := y, for p-a.e.
x € M and the conclusion follows. ]

In other words, the problem of existence and uniqueness of optimal transport
maps can be reduced to prove that I', is concentrated on a graph, that is to show
that for p-a.e. x € M, the set I',(z) is a singleton.

2.4 Previous results for the Monge problem

2.4.1 Euclidean case

Brenier | | showed solutions for the Monge problem for the quadratic Euclidean
cost.
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Theorem 5 (Brenier Theorem). Let M = R". Let p,v be the two probability
measures compactly supported on R™ such that p is absolutely continuous with respect
to the Lebesque measure. Let ¢ : R™ x R™ — [0, +o00[ be the quadratic cost function
given by

a2
c(x,y) = %,V(m,y) € R" x R".

Then, there is a unique transport map T : R™ — R™. In fact, there is a convex
function p € L*(R™) such that

T(x) =2+ Ve(x), p-ae veR"

Proof of Theorem 5. We recall that, by the dual problem (2.2) and by Theorem
2, there is a convex function ¢ € L'(R™) such that

ae}%ﬁ,u){/MxM lx_zypdo‘(‘”’y)} :/MSDC(?J)dV(w—/MgD(x)du(x).

Note that ¢ is convex on R™. Thanks to the Rademacher Theorem (see Appendix
B.1), since p is absolutely continuous with respect to the Lebesgue measure, ¢ is
differentiable almost everywhere on R".

Expanding |z — y|?/2 into |z|*/2 + |y|*/2 — z.y yields

|z|” 17— n
.y < 80($)+T Tl (Y)|,Vz,y € R".
Let (z,y) € supp a be fixed. Thanks to Theorem 3, for any optimal plan

a € II(p, v), we have supp a C T',,. Hence,

2
c r—Yy
(z,y) €Ty, & so(y)—w(x)z%
—_ 2 2
& soc(y)zw(:cwr%ggo(zwr |2 2y| VzeR”
|z |2[? n
Py < =,
& [(p(:c)—l— 2] :Cy_[@(z)—i— 2] zy, Vz e R

This means that the mapping z — ¢(2) + |2]?/2 — 2.y admits a minimum at z.
Hence, its differential at z is equal to zero, that is

Vo)+z—y=0=y=x+ Vy(z).
Thus, there is a unique transport map 7" : M — M such that
T(x) =z + Vp(zr), pae xeR"
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2.4.2 Riemannian case

McCann | | proved solutions for the Monge problem in the Riemannian case
with the cost given by the quadratic geodesic distance. We start with some basic
definitions and preliminaries in the Riemannian settings.

Let (M,g) be a Riemannian manifold where M is a real smooth manifold of
dimension n equipped with the inner product g, on the tangent space T, M at each

point x € M.

We define the geodesic distance, denoted d,, between two points x,y in M by:

dy(z,y) := inf {19(7)| v :10,1] = M s.t. v(0) = z,v(1) = y}

where [9(7) is the length of the curve 7 given by

pa) = [ \fnolo40)

For any x € M, we define the exponential map at = by

exp,: I,M — M
v exp,(v) = (1)

where v : [0,1] — M is the unique minimizing geodesic with initial conditions
~7(0) =z and %(0) = v.

Assume that the Riemannian manifold (M, g) is equipped with the Levi-Civita
connection and for every smooth curve 7 : [0,1] — M, we denote by V. the asso-
ciated covariant derivative along v. We recall that ~ is said to be a geodesic if and
only if V44¥(t) vanishes. Here, we study geodesics using the Lagrangian approach.
It seems easier to apply the Euler-Lagrange equations than calculate the coefficients
of the Levi-Civita connection.

Definition 11 (Lagrangian action). Let L : TM — R be a Lagrangian function.
The cost ¢ : M x M — [0, +o0[ associated to L is given by

c(x,y) := min {/0 L(y(t),~(t))dt| v:10,1] - M

with v(0) = z,v(1) = y},V:v,y e M.

18



The Lagrangian which associates L(z,v) = ¢,(v,v),V(z,v) € TM leads to the
quadratic geodesic cost ¢ = dﬁ. Let x,y € M be fixed, the goal is to find a path

v :[0,1] = M from x to y that minimizes the functional

We recall the Euler-Lagrange equation.
Lemma 1. Let x,y be two distinct points of M and let v : [0,1] — M be a mini-
mizing path such that v(0) = x and v(1) = y. Then, it satisfies

Vil = %(V*/(O)L>

Proof of Lemma 1. Let € > 0 , we define
Ve(t) = (t) +eh(t), vt € [0, 1]

where h : [0,1] — M is a random funtion such that h(0) = k(1) = 0.

We set )
F(ye) = / L(7=(t),7:(t))dt. (2.3)
0
At the extremum € = 0, that is yo(t) = v(t), V¢ € [0, 1], we have
oF
—le=0 = 0.
Oe =0

Derivating (2.3) with respect to ¢ yields

aa_f:/o %L<’ye(t)”ys(t))dt

! 07e 0Ye
- LS4 V- St
/0 (Ve L+ 5+ Vi L 57)

1
= / (V%(t)L . h(lf) + V"ye(t)L . h(t))dt
0

By the integration by parts formula, we obtain:

oF (! td
| V..oL - h(t)dt — O E(VW)L) -h(t)dt + [V%(t)L'h(t)]o

1
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The fact that h(0) = h(1) = 0 gives

OF ! d
5= | [Tl = 5(Tron)] - heyat

Since the derivative of the functional F' with respect to € is equal to zero at € = 0,
we obtain

1 d
0 :/0 [V%(O)L - E(V&E(O)L)} - h(t)dt

Since h is an arbitrary function, we get

d
Vool = %(V%(O)L)'

Another lemma is needed.
Lemma 2. For every (xz,v) € TM, we have
1
=V,L = .
5 v

Proof of Lemma 2. Let x € M. In a system of local coordinates on M given by
n-real valued functions z1, ..., x,, the vector fields 0,,, ..., 0,, form an orthonormal
basis of T, M. A vector v € T, M is given by

n
v = Z V'O,
i=1
and the components of the metric tensor at a point x € M are of the form

gij(x) = 936(8902‘7 8%)
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Therefore, we obtain

1 1« 0L

-V,L = = — N

QV” 5 2 5y (x,v) Oy,
1 <~ 99,

= 23 2 (@ @) o)

We state now the McCann Theorem.

Theorem 6 (McCann Theorem). Let (M, g) be a complete Riemannian manifold.
Let p,v be two probability measures compactly supported on M such that p is abso-
lutely continuous with respect to the Lebesque measure. Let ¢ : M x M — [0, +o0|
be the quadratic cost function given by

1
cw,y) = 5dy(w,y), Yo,y € M.

Then, there is a unique transport map T' : M — M solution for the Monge problem.
Moreover, there is a Lipschitz function p € L*(p) such that

T(x) = exp,(—Vap), p-a.e. x € M.

Proof of Theorem 6. By the dual formulation (2.2) of the Monge problem and
by Theorem 3, there is a c-convex function ¢ € L'(u) such that for any optimal
transport plan o € II(y,v), we have supp a C I',. By the Kantorovich potentials
definition, the function ¢ is the supremum of a family of functions x — ¢°(y)—c(z, y)
with y € M, which are Lipschitz with respect to the variable x (because the Rie-
mannian distance d, is Lipschitz). Therefore, ¢ is Lipschitz on M. Since p is
absolutely continuous with respect to the Lebesgue measure, the Rademacher the-
orem (see Appendix B.1) implies that ¢ is differentiable almost everywhere on M.
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Let a € II(p, ) be optimal and (x,y) € supp « be fixed. Then,

(z,y) €Ty & ©(y) — p(z) = c(z,y)
S 0(y) = p(x) +c(z,y) < 9(2) +c(z,y), Vz2e M

< ce(z,y) > o) —@(2) + c(z,y), Vz € M. (2.4)
Define the function ¢ : M — R by

U(z) = p(z) — @(2) + c(z,y), V2 € M.

Since ¢ depends on z, it is differentiable at almost every z € M. Moreover, using
inequality (2.4), we get

U(z) <c(z,y),Vz € M, and c(x,y) = ¥(x). (2.5)

The following lemma is crucial to conclude.
Lemma 3. Let & # y in M and let ¢ : M — R be a differentiable function at T

such that

1
P(z) < §d§(z,g),Vz € M and equality for z = Z.

Then, there is a unique minimizing geodesic v : [0,1] — M between T and y. More-
over, § = exp;(Vz1), where exp. is the exponential map at T.

Proof of Lemma 3. Let & # g be fixed in M and « : [0,1] — M be a path such
that v(0) = z and (1) = y. By hypothesis, for ¢ > 0 given, and h : [0,1] — M
such that A(1) = 0, we have

0 (3(0) + 2h(0)) < 22 (+(0) + £h(0), 7(1) + =h(1)). (2.6)

By the definition of the Lagrangian action, we have

%dg (7(0) +¢eh(0),~(1) + 5h(1)>

Gr(t) <ﬁ(t) +eh(t),4(t) + sh(t))dt

[N
N | —

0

1

INA
N —

L(y(t) +eh(t), 5(t) + 5h(t)>dt (2.7)

0
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Thus, by (2.6) and (2.7),

% /0 1 L(3(0) +eh(t), 4(8) + £h(t) )at — 6 ((0) +eh(0)) = 0. (28)

The derivative of (2.8) with respect to ¢ yields
1

1! 1
= /0 VW(O)L-h(t)dtJr§[Vﬁ(O)L~h(t)]o

1
- bv,-y(o)L — V.| - h(0) =0.

Using the Euler-Lagrange equation (see Lemma 1) and by Lemma 2, we obtain

V) = %V&(O)L =(0)
This implies that
y = expz(Vz1)).
]

Returning to (2.5) and thanks to the above Lemma, there is a unique optimal
transport map 1" : M — M such that

T(x) = exp,(V,y) = exp, (= V), p-ae x € M.

]

We refer the reader to the result of Bernard and Buffoni | | who proved
existence of an optimal transport map, solution for the Monge problem when the
cost is the action associated to a Lagrangian function on a compact manifold.
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Chapter 3

Sub-Riemannian Geometry

3.1 Sub-Riemannian structure

3.1.1 Horizontal distribution

Let M be a smooth connected manifold without boundary of dimension n > 2. A
vector field X on M is a smooth map from M into T'M that assigns a vector X (x)
at the point x € M. We denote by x*>°(M) the set of all smooth vector fields.

Definition 12 (Horizontal Distribution). A smooth distribution A of rank m <
n (m > 1) on M is a rank m subbundle of the tangent bundle TM. In other terms,
for each x € M, we assign a m-dimensional linear subspace A(x) of the tangent
space T, M in such a way that for an open neighborhood V, of x in M, there is m
smooth vector fields X},..., X™ linearly independent on V, such that

Ay) = Spcm{X;(y), . ,X;"(y)},Vy eV,.

Such family of smooth vector fields {X}, ..., X™} is called a local frame for the
distribution A\ in V,.

Given a smooth vector field X on M, it is said to be "horizontal" with respect
to A if it is a section of the distribution A, that is

Ve e M, X(z) € A(x).

A set of smooth vector fields {X!, ..., X™} is said to be a global generating
family for the distribution A on M if

Vo € M, A(z) = Span{X*(z),..., X™(2)}.
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In | |, Sussmann proved that we can always construct a global generating
family for A (see also Proposition 1.1.8 | ).

Proposition 4. Let A be a smooth distribution of rank m on the n-dimensional
manifold M (m < n). Then, there are k = m(n+1) smooth vector fields X!, ..., X*
such that

Vo € M,A(z) = Span{X'(z),..., X" (2)}.

Remark 1. If m = n, then the distribution A will be tangent to the manifold M,
that is A(x) =T, M, Yz € M.

Example 4. (Heisenberg group in R?) In R3 with coordinates (x,vy, z), the dis-
tribution A given by

Az, y,2) = Span{X(x,y, 2),Y (z,y, Z)}7 V(z,y,2) € R

with .
Xz@x—g(()z and Y:3y+§ 0,

is a distribution of rank 2 on R3.

Example 5. (Heisenberg group in R*"™') More generally, in R*"™ with co-

ordinates © = (T1,...,Tp,Y1,---,Yn,2), we consider the n smooth vector fields
XYoo, XYL Y™ given by

Xi:&ri—% 0, and Yi:(?yi—l—% d.,,Vi=1,...,n.
The distribution A given by
A(z) = Spcm{Xl(x), XM (2), YN 2), . .. ,Y"(m)},‘v’x c R¥*H!

is a distribution of rank 2n on R*"*1,

3.1.2 Totally nonholonomic distribution

Definition 13. Given two smooth vector fields X,Y on M, the Lie bracket assigns
to X and 'Y a third vector field , denoted by [X,Y], such that

[X,Y](z) = DY (2)X(z) — DX (2)Y (z), Yo € M (3.1)

where DX and DY are the Jacobian matrices of X and Y, respectively.
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In local coordinates © = (x1,...,x,), for any smooth vector fields X,Y on M
given by

n

X(z) =) ai(x)ds,, Y(z }:b

i=1
with a;,b; : M — R smooth functions, the Lie Bracket of X, Y defined by the
formula above (3.1) is given by

n

X,Y](0) = 3 cil@)d,

i=1
where ¢; = Z(@iji)aj — (Op;ai)bj, Vi=1,...,n

J=1

Let O be an open set in M. For any family {X' ... X™} of smooth vector
fields defined on O, we denote by Lie(X!, ..., X™) the Lie algebra of vector fields
generated by { X', ..., X™}. Tt is the smallest vector subspace of x*°(M) containing
{X*', ..., X™} and that also satisfies

[X'Y] € Lie(X*,...,X™), Vi=1,...,m,VY € Lie(X" ..., X™).
It can be construct as follows. We denote by
Lie' (X', ..., X™) = Span{X",..., X"}

the space spanned by {X*, ..., X™} in x> (M).
Then, for k > 1, we define recursively the spaces Lie®t1(X?!, ... X™) by

LieFt (X, .., X™) = Span{Lz'ek(Xl, L X™MU
{MﬂXﬂﬁ:L”wm,XGLwWXR”meﬂ}

This defines an increasing sequence of subspaces of x> (M) given by

Lie(X* U Liek( ,X™).
k>1
In general, Lie (X Voo X m) is an infinite-dimensional subspace in x> (M).

For any point z € O, Lie(X',...,X™)(z) = {X(2)|X € Lie(X*',...,X™)}.
It follows that Lie(X*,..., X™)(z) is a linear subspace of T, M, hence of finite
dimension.
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Definition 14 (Hormander condition). Consider m smooth vector fields X1, ... X™
on an open subset O of M. We say that X',..., X™ satisfy the Hérmander condition
iof and only if

Lie(X',..., X™)(x) = T,M, Yz € O.

Definition 15 (Totally nonholonomic distribution). Any distribution A on M
18 called totally nonholonomic or bracket generating on M, if for each x € M, there
are an open neighborhood V, of x in M and a local frame {X%, . ,X;”} on V, which
satisfies the Hormander condition on V,.

Example 6. Consider the distribution given in example J by
Ay, 2) = Span{ X (2,,2), Y (2,9,2) }, ¥(@,, 2) € B

where .
X:&;—%@ and Y =0, +5 ..

Since [X,Y] = 0., it follows that X,Y and [X,Y] are linearly independent at every
point of R3. Hence, A is totally nonholonomic on R3.

Example 7. Consider in R? with coordinates (z,y,2) the distribution given by
Ay, 2) = Span{ X (2., 2), Y (2,9,2) }, ¥(@,, 2) € B

where
X =0, and Y =0, + zx 0,.

Computing the Lie brackets of XY, we get

(X,Y]| = [0,,0, + 220,] = 20,.

(X, [X,Y]] = [0, 20.] = 0.

Y, [X,Y]] = [9, + 220., 20.] = 0.

The distribution A is totally nonholonomic on R*\{z = 0}.
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Example 8. Not all distributions are totally nonholonomic. Consider in R* with
coordinates (x,y, z,t) the distribution given by

Az, y,z,t) = Sp(m{X(m,y,z,t),Y(x,y,z,t)},V(:v,y,z,t) cR*

where
X =0, —yoy, +t0 and Y = 0y + 20, — t0;.

A computation shows

X,Y] =0,
(X, [X.Y]] =9,
[Y,[X,Y]] = 0.

All the iterated brackets of X,Y provide either O or 0,, so the brackets of X,Y
do not generate R*.

This definition does not depend of the choice of the local frame. It is a con-
sequence of the following result whose proof is taken from Proposition 1.1.16 in

[Rif14].

Proposition 5. Let {X',...,X™} and {Y',...,Y™} be two family of m smooth
vector fields on an open subset O of M such that

Span{X*(z),..., X" (z)} = Span{Y'(z),...,Y™(z)}, Vz € O.
Then, for every x € O,

Lie(X', ..., X™)(x) = Lie(Y"',...,Y™)(x).

Definition 16 (Sub-Riemannian structure). Let M be a smooth connected man-
ifold of dimension n. A sub-Riemannian structure on M is a pair (A, g) where A
is a totally nonholonomic distribution of rank m (m < n) endowed with a smooth
Riemannian metric g; that is for every x € M, g.(.,.) is a scalar product on A(zx).
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/

Figure 3.1 — Horizontal path

3.2 Horizontal path and End-Point mapping

Definition 17 (Horizontal path). An absolutely continuous path ~ : [0,1] — M
18 said to be horizontal with respect to A if its derivative is square-integrable on the
interval [0, 1] and satisfies

A1) € A(y(t)), ace. t € [0,1].

We recall now the Chow-Rashevsky Theorem (| |, [ D-

Theorem 7 (Chow-Rashevsky Theorem). Let M be a smooth connected man-
ifold equipped with a sub-Riemannian structure (A, g). Then, for every two points
x,y € M, there is an horizontal path joining x and y.

Given k = m(n + 1), let {Xl, o ,Xk} be a global generating family for A on
M. There is a correspondence between horizontal paths and an open subset of
L*([0, 1], R¥).

Proposition 6. Given a point x € M, there exists an open subset U* C L2([0, 1], R¥)
such that for every function u € U, the solution to the following Cauchy problem:

k

() = S wuOX (u0), ae t 0,1

=1

7%(0) = =

(3.2)
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is well-defined on [0, 1].

The function w is called a control and the corresponding solution of the system
(3.2) is called the trajectory starting at = and associated with the control u. Any
horizontal path can be viewed as a trajectory associated to a control system like

(3.2).
We refer the reader to the textbook | | for further details and proofs.

Definition 18 (End-Point mapping). Given a point x € M, the End-point map-
ping at x assigns to each curve starting at x its endpoint. It is defined by

End™: U C LX([0,1,RF) — M
U — Y. (1)

where v, : [0,1] — M is the unique solution to (3.2) associated to the control
u € U C L*([0, 1], RF).

Proposition 7. Given a point x € M, the End-point mapping End® is of class C*
on the open subset U™ C L*([0, 1], R¥).

Given z € M and an open subset U* C L?([0, 1], R¥). For every control u € U?,
we denote by
T . 72 k
D,End” : L2(0, 1], R) = Ty e M

the differential of the End-point mapping End” at w.

Remark 2. If M = R", the differential of End® at u is given by
1
Dy End®(v) = S(1) / () B(t)u(t)dt,
0

where S : [0, 1] — M, (R) is the solution to the Cauchy problem
S(t) = A(t)S(t), a.e. t €[0,1], and S(0) = I,
and where the matriz A(t) € M, (R), B(t) € M, x(R) are defined by

k
At) == Zul‘(t)in(')/u(t)), a.e. t €[0,1]
with v, (t) given by (3.2) and Jx: the Jacobian matriz of X' at ~,(t)
and
B(t) = (Xl(’}/u(t))v e ’Xk<7u(t)))'
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We set
Im*(u) := D, End®(L*([0, 1], R*)) (3.3)

which is a vector space contained in T, g4 (u)M , hence of dimension smaller than
or equal to n.

The following proposition shows that the dimension of Im®(u) is larger or equal
to k (k is the dimension of the global frame generating A.)

Proposition 8. Given z € M and an open subset U of L*([0,1],R*). For every
u € U*, we have

X' (End*(u)) € Im*(u), Vi=1,... k.

3.3 Regular and singular horizontal paths

Definition 19. Given z € M, we say that a control u is singular with respect to x
if and only if it is a critical point of the End-point mapping End”, that is, if End”
s not a submersion at u.

Otherwise, we shall say that u is reqular.

Definition 20. A horizontal path~ : [0,1] — M is said to be singular (resp. reqular)
if and only if any control u associated to ~y (i.e. v = y,) is singular (resp. regular).

The property of being singular does not depend upon the choice of the frame
{X* ..., X™} of the distribution.

Singular controls can be characterized as follows (see section 1.3 in | ])-

Proposition 9. In local coordinates, a control u € L*([0,1],R*) is singular if and
only if there exists an absolutely continuous arc p : [0, 1] — (R™)*\{0} satisfying

pt) = _Z u;(t)p(t) - D’Yu(t)Xi7 a.e. t € [0,1] (3.4)

i=1

p(t) - Xi(1a(t)) = 0 Vie 0], Vi=1,... .k

Proof of Proposition 9. Given x € M, let u be a singular control with respect
to z. There exists an open subset U* C L?([0,1],R¥) such that End” is not a
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submersion at u. It means that the differential D,End® of the End-point mapping
at u is not surjective. So there exists p € (R™)*\{ 0} such that

p- D,End”(v) =0, Yo € L*([0,1],R*). (3.5)

By remark 2, the identity (3.5) can be written as
/Olp -S()S(t) ' B(t)v(t)dt = 0,Yv € L*([0,1],R").
By choosing v € L%([0, 1], R*) defined as
o(t) = (p- 5(1)s<t>—13(t))*,\ﬁ e [0.1],
we obtain

/ | (p- S(1)S(t)"'B(t))" [*dt = 0.

0
Note that ¢ — p-S(1)S(¢)"'B(t) is continuous, then

p-S(1)S(t)'B(t) =0,vt € [0,1].

We define
p(t) :=p-S(1)S(t)"*, Vvt €[0,1].

By construction, p : [0, 1] — (R™)* is an absolutely continuous arc such that p(¢)
does not vanish on [0,1] (because p # 0 and S(t) is invertible for any t € [0, 1]).
Moreover, by the definition of S(t) (see remark 2), we have

d -1 __ -1
%S(t) =—=S(t)A(t), a.e. t €0,1].

Recalling the definition of A and B in remark 2, it follows that p satisfies
p(t) = —p(t)A(t) a.e. t €]0,1]
p(t)B(t) =0 vt € [0, 1]

Conversely, we assume that there is an absolutely continuous arc p : [0,1] —
(R™)*\{0} satisfying (3.4). It implies

—p(t) = A(t)p(t),a.e. t €[0,1]

and
p(t)*B(t) =0,Vt € [0, 1].
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We put p := p(1) # 0, and we get

Hence,

p.S(H)S(t)'B(t) =0

which implies

p.D,End”(v) = 0,Vv € L*([0,1],R¥).

Remark 3. If k = n (Riemannian case), then any non-trivial path is horizontal
and reqular. In fact, given any x € M and an open subset U* of L?([0,1],R¥), it
means that for any u € U*, Im*(u) is of dimension n (see (3.3) and Proposition 8).
This implies that the End-Point map End® is a submersion.

Example 9. (The Heisenberg group in R?)
Returning to examples 4 and 6, consider the totally nonholonomic distribution A in
R3 given by

A(z,y, z) = Span{ X' (z,y, 2), X*(2,y,2) },¥(z,y,2) € R®

where .
Xlzax—% 0 and X* =0, +3 0.

We claim that there are no non-trivial singular paths. Let x € R? and u = (u1,us) €
L*(]0,1],R?) be a singular control. We denote by v : [0,1] — R3 the horizontal path
associated to u such that

Y(t) = ur (6) X (v(t)) + ua(t) X*((¢)), ae. t € [0,1], and 7(0) = z. (3.6)

By Proposition 9, there exists an absolutely continuous arc p : [0,1] — (R*)*\{0}
satisfying

p(t) = —ur(O)p(t) - Dyy X' — ua(D)p(t) - Dy X?, ace. t € [0,1] (3.7)

and

p(t) - X (v(t) = p(t) - X*(7(t)) =0, Yt € [0,1]. (3-8)
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Derivating (3.8) yields

B(t) - X (1(8)) + (1) - Dy X*((t)) = 0.
By (3.6) and (3.7), we get for a.e t € [0, 1]

= wr(p(t) - Dy X' X' (1(1)) = ua(t)p(t) - Dy XX (5(1))
+p(t) - Dy X' (w ()X (4(8) + () X3(1(2))) = 0

= w(Op(t) - Dy X' X (1(8) = Dy XX (1(1)))

Fua(p(t) - Dy X2X (0(0) = Dy XX (1(1))) = 0
= w(t)p(t) - [X, X2 (0) + us(0)p(t) - [X', X2 ((1) = 0.

Taking © = 1 and i = 2, we obtain

ui(O)p(t) - [X7% X (v (1) = ua()p(t) - [X, X (7(1)) = 0

= fu(t)(p(1) - [Xl,Xz](y(t))f —0, ae te0,1].

Note that (X', X?] = 0,. Since X', X? and [X', X?] generate R® and, p(t) #
0,vt € [0,1], it follows that u = 0.

Example 10. (The Martinet distribution in R3)
Consider in R with coordinates (x,y,2), the distribution A given by

A(z,y, z) = Span{ X" (z,y, 2), X*(z,y,2) },¥(z,y, ) € R®
with

2
X'=0,, and X2 =0, + %az.
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The first Lie bracket of X,Y gives [ X', X?| = 20,. Then, the distribution A is
totally nonholonomic on R3\{ x = 0}. We claim that non-trivial singular paths are
contained in the Martinet surface given by

YA = {(:L‘,y,z) ER} z= 0}.

Let 7 = (z,y,2) € R® and u = (uy,us) € L*([0,1],R?) be a control. We denote by
v :10,1] = R3 the horizontal path associated to u given by

¥(t) = (2(t),y(t), 2(1)), ¥t € [0,1]
such that
Y(t) = ur (1) X (v(t)) +ua(t) X*(y(t)), ae. t € [0,1], and 7(0) = z. (3.9)

Assume that u is singular. By Proposition 9, there exists an absolutely continuous
arc p: [0,1] = (R3)*\{0} satisfying

p(t) = —ur(O)p(t).Dyy X' — ua(t)p(t).Dyy X2, ace. t € [0,1] (3.10)
and

p(t) - X (y(8)) = p(t) - X*(7(t)) = 0, ¥t € [0,1]. (3.11)

By derivating (3.11) and by (3.9) and (3.10), we obtain
2 1 32 2
u(®)(p0).X7, X2(6)) =0, ace. 1€ [0,1]
Since u(t) # 0 and p(t) Z 0, for a.e. t € [0, 1], we deduce that
x(t) =0,Vt € [0,1].

Hence, for every t € [0, 1],v(t) € Xa.

3.4 Minimizing geodesics

Given two points z,y € M, we introduce the sub-Riemannian distance between x
and y as the infimum of the length of horizontal curves joining them.

Definition 21 (Sub-Riemannian distance). Let z,y be two points on M. The
sub-Riemannian distance between x and y is defined by

dsr(z,y) ;= inf {l(7)| v :[0,1] = M horizontal curve,y(0) = z,v(1) = y}
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where the length of an horizontal path ~ : [0,1] — M is given by

1
1) = [ oG
0
We also call dsg the Carnot-Carathéodory distance of the sub-Riemannian structure.

An horizontal path v : [0, 1] — M between x and y is said to be minimizing if it
minimizes the sub-Riemannian distance between x and y.

We introduce the sub-Riemannian energy between z and y by
esr(x,y) := inf {e(fy)| v :[0,1] — M horizontal path v(0) = x,v(1) = y}

where the energy of the curve v is given by

e(y) == / 0oy (1 (), A (1)),

Like in the Riemannian case, an horizontal path between x and y is called minimiz-
ing geodesic if it minimizes the sub-Riemannian energy between z and y.

The following result whose proof is based on the Cauchy-Schwartz inequality (see
Proposition 2.1.1 in | |), is fundamental.

Proposition 10. For any x,y € M, egr(z,y) = dig(z,y).

We recall that we have equality in the Cauchy-Schwartz inequality if and only if
~ has constant speed. Thanks to the proposition 10, we obtain the following result.

Proposition 11. Let z, y be two points in M. A path v between x and y is a mini-
mazing geodesic if and only if it is an horizontal path minimizing the sub-Riemannian
distance between x and y with constant speed.

We introduce now the sub-Riemannian version of the classical Riemannian Hopf-
Rinow Theorem (see Theorem 2.1.5 in | | and Theorem 7.1 in | |, see also
[ I, 1 | for the classical Theorem).

Theorem 8 (Sub-Riemannian Hopf-Rinow Theorem). Assume that the metric

space (M,dsg) is complete. Then, there is at least a minimizing geodesic between
any pair of points in M.
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3.5 Normal and abnormal extremals

Throughout all this section, we will assume that (M, dsg) is a complete metric space.

Let z,y € M and % : [0,1] — M be a minimizing geodesic joining Z and g
be fixed. Since 4 minimizes the distance between z and 3, it can not have self-
intersection. Hence, there are an open neighborhood V of 7([0, 1]) in M and an
orthonormal family of m smooth vector fields X!, ..., X™ such that

A(z) = Span{Xl(z), . ,Xm(z)},v,z cV.

Moreover, by Proposition 6, there is an open subset U® C L?([0,1],R™) and a
control u € U* such that

=Y mHX(3(1), e t€[0,1]

Since ¥ is a minimizing geodesic between z and g, it minimizes the energy among
all horizontal paths joining Z to y. This means that 4 minimizes the following
quantity

/0g%(t)(%(t),%(t))dtz/g% Z“l )X (Yt Zul X ((t)))dt
/ Z(ui(t))2dt,

among all controls u € U* C L*( 0 1] R™).

Considering the End-point mapping End” given by

End”: U* C L*([0,1],R™) — M
u —  End”(u) = 7,(1)

and setting

/ZU, t

we note that @ is a solution of the following optimization problem:

@ minimizes C'(u) among all u € U with End”(u) = .

Thanks to the Lagrange Multiplier Theorem (see Theorem B.1.5in | |), there
exist Ag € {0,1} and p € T; M with (Ao, p) # (0,0) such that
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3.5.1 Case \p=0

Minimizers that arise with \g = 0 correspond to singular minimizers. In fact, when
Ao = 0, the Lagrange Multiplier equation is reduced to

p - DzEnd®(v) = 0,Yo € L*([0,1],R™). (3.13)

This means that some linear form p # 0 annihilates the image of the differential of
End®. Then, u is a critical of End® and equivalently, the curve 4 associated to u is
a singular minimizing geodesic.

Proposition 12. The fact that \g = 0 yields the existence of an absolutely contin-
uous arc p : [0,1] — (R™)*\ {0} with p(1) = p which satisfies

m

p(t) = —Zﬂi(t)p(t)-Dw)Xi yae. t €[0,1] (3.14)

p(t). X (y(t) = 0 ,Vt € 10,1]

Such curve ¢ : [0,1] — T*M given by ¥(t) = (3(¢),p(t)),Vt € [0,1], with
(1) = (g, p) is an abnormal extremal lift of 7 .

Definition 22. We say that a v : [0,1] — M is a normal minimizing geodesic if it
admits a normal extremal lift.

3.5.2 Case \j=1

Definition 23. The sub-Riemannian Hamiltonian is a function on T*M given by

H: T"M — R

; 1« (3.15)
(x,p) — H(z,p) —gé%%(z:u,p XY —§;u>
Moreover, the Hamiltonian H can be written as follows
1« ;
= 52 p- X (3.16)
=1

In fact, differentiating (3.15) with respect to u; yields
p-X'(z)—u; =0,Vi=1,...,k,
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that is, the Hamiltonian defined in (3.15) attains its maximum for
p- X%(x) = u;, from which formula (3.16) is obtained.

Proposition 13. The fact that \yg = 1 yields, in the local coordinates, the existence
of a smooth arc p : [0,1] — Ty M with p(1) = p/2 such that

St = %—fww(t)) = 3 (1) - X0 X (7(1))
. . (3.17)
50 = 20 G0p0) = =3 (0 XG0 E0) - DX

with
u;(t) = p(t) - X'(3(t)),vt € [0,1],Vi=1,...,m.

Proof of Proposition 13. Thanks to the Lagrange Multiplier Theorem with Ay =
1 (see (3.12)), there exists p € Ty M satisfying

p- DzEnd”*(v) = DyC(v), Yv € L*([0,1],R™) (3.18)
1 m
where C(v) = / Z(vi(t)fdt, and the differential of C' at u is given by
0 =1

DyC(v) =2 < @,v > 2o, rm), Yo € L*([0, 1], R™).
By remark 2, the differential of End® at @ is given by
DyEnd*(v) = S(1) /01 S(t)"'B(t)v(t)dt, Yv € L*([0,1],R™),
where A, B, S were defined in remark 2. Hence, (3.18) yields
/01 [p-S(1)St)"'B(t) — 2a(t)]v(t)dt = 0,Vv € L*([0,1], R™)

which implies

alt) = %[p S(S(H) " B(t)], ae. t € [0,1].

We define p : [0,1] — Ty M by



Then, by construction, we have

Moreover,
p(t) = —p(t)A(t), vt € [0, 1]
with A(t) = Y ;(t) Dy X'
i=1

]

A curve ¢ given by ¥(t) = (3(t),p(t)),Vt € [0,1], which is solution of the
Hamiltonian system

0(0) = (G (00), =5 (W), e € 0.1 with w(1) = (1).p/2) (319

is a normal extremal lift of 7.

Definition 24. We say that v is a normal minimizing geodesic if it admits a normal
extremal lift.

Proposition 14. Let v : [0,1] — M be a minimizing geodesic joining two points of
M. Then, v verifies one of the two following properties:

1. v is singular
2. v 1s normal

Note that v can be singular and normal at the same time.
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Chapter 4

Optimal transport problem on
sub-Riemannian structures

4.1 Statement of the problem

Let M be a smooth connected manifold without boundary of dimension n > 2.
Let (A, g) be a complete sub-Riemannian structure on M of rank m (m < n). We
will be concerned with the study of the Monge problem for the quadratic geodesic
sub-Riemannian cost.

Monge quadratic sub-Riemannian Formulation

Let p,v be two probability measures compactly supported on M.
Minimize
T+— / c(x, T(z))dp(x)
M
over all transport maps 7' : M — M from p to v,

where

c(x,y) = dgg(z,y), V(z,y) € M x M.

The following result is taken from problem (2.2) and Theorem 3 in Chapter 2.
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Theorem 9. Let pu,v be two probability measures compactly supported on M, and
the cost function ¢ : M x M — [0,400[ be continuous. Then, there is a c-convex
function ¢ : M — R such that

p(x) = sup {e(y) — clz,y)}, Vo e M,

#°(y) = inf {p(z) +c(w,y)}, Vy € M,

and

Va € II(p, v), o is optimal < a(l'y) =1

where
Do i= {(0.y) € M x M; ¢(y) = olw) = () }.

Unlike the Riemannian case, the quadratic sub-Riemannian cost is not locally
Lipschitz. Here appears the main difficulty in solving the Monge quadratic sub-
Riemannian problem. Under regularity properties for dgg, Figalli and Rifford | |
generalize the Brenier-McCann theorem (| | [ |) proving existence and unique-
ness of an optimal transport map.

4.2 The sub-Riemannian version of the Brenier-McCann
Theorem

The main issue in the Brenier-McCann result is the regularity of the c-convex func-
tion ¢ provided by Theorem 9. In particular, the regularity properties of ¢ are
consequences of regularity assumptions made on the cost function. The method
developed by Figalli and Rifford | |, for the sub-Riemannian case, requires local
semiconcavity property for the sub-Riemannian distance outside the diagonal. We
will see later that this regularity property made on dggr holds as soon as there is
no singular minimizing geodesic joining two distinct points in M. On the diago-
nal, the existence of a unique optimal transport map is a consequence of a Pansu-
Rademacher Theorem | | (see Appendix B.2) without any assumption on the
sub-Riemannian distance.

In the sequel, we denote by D the diagonal of M x M, that is the set of all pairs
of the form (z,z) with z € M.

The above discussion motivates the following definition.
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Definition 25. Let ¢ : M — R be the c-convex function provided by Theorem 9.
We define the "static” set S and "moving" set M¥ as follows

S¥ = {x e M|zxe F¢<x)}7

M?={z e M|z ¢Ty(z)}.

Note that we can easily check that M¥ coincides with the set

{v € Ml p(x) # ¢*(x) } = {2 € M| p(x) > p*(x) }

which is open by the continuity of ¢ and ¢°.

We state now the result of Figalli and Rifford | |.

Theorem 10. Let u,v be two probability measures compactly supported on M such
that p is absolutely continuous with respect to the Lebesque measure. Let p : M — R
be the c-convex function provided by Theorem 9. Assume that the cost function d%p
is locally semiconcave on (M x M)\D.

Then, there is a unique optimal transport map T : M — M from p to v such that
for p-almost every x € M,

1
- "
T(z) = exp, (dego) , TEM ‘
z , r€S8¥

Proof of Theorem 10. 1. In a first step, we prove that
pa.e. x € S? T'y(x) = {x}.

It is sufficient to prove the result for z contained in an open set V C M such
that there is an orthonormal family of m vector fields X*, ..., X™ generating A(z),
Vz € V. Let x € S¥ be fixed. By a change of coordinates if necessary, we can write
the vector fields as follows

- 0 - 0
X' = ii—, Yi=1,...,m.
3%—’_].21&]3% Vi m

We remark that the function z € M +— ¢°(y) — d%x(2,y) is locally Lipschitz with
respect to the sub-Riemannian distance when y varies on a compact set. Then,
@ is also locally Lipschitz with respect to the sub-Riemannian distance. By the
Pansu-Rademacher theorem (see Appendix B.2), since p is absolutely continuous
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with respect to the Lebesgue measure, ¢ is differentiable with respect to the vector

fields X!, ..., X™ p-almost everywhere on V. Hence, we have:
o(y) —elx) =Y X'o(x)(y; — 1) + o(dsr(x,y)), Yy € V.
i=1

Let ¥ : [0,1] — M, i = 1,...,m be the integral flow associated to X* starting at
x. Then, we denote by
PE (D) ~ o(a) .,

[; = lim i1=1,...,m.

t—0 t ’

Recall that g(v}'(t), 7} (t)) = g(X*(37 (1)), X' (77 (1)) = 1, vt € [0,1].

It follows
dSR(ZL',’}/f(t)) < |t|7Vt € [07 1]'

Then,

z €T (x) = ¢(x) — p(2) < dip(z,2),V2 € V.

In particular,
p(z) — (77 () < dip(z, 77 (1) < t°.
This implies that [; = 0. Hence,

Xo(x)=0,Vi=1,...,m. (4.1)

Assume now that there exists y € I',(x) such that y # . So we have

p(x) — p(2) < dég(e, 2) — dip(e,y),Vz € V.
Let 7,4 : [0,1] = M be a minimizing geodesic joining = to y. Then, V¢ € [0, 1],

p(2) = (1 (t) < dip(@, Yuy (1) — dip(2,y),
= —0(dsr(T, Ye,y(1))) < dég(@, 72,y (1)) — d5g(2,y),
= —o(t dsr(z,y)) < (1 —t)*d2p(x,y) — d2p(2,y),
= —o(t dgr(z,y)) < =2t dip(w,y) + 1 dip(z,y),

= o(t dsr(x,y)) > 2t dgp(x,y) — oft dsr(z,y)),
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= o(t dsgr(z,y)) >t dig(z,y).

o(t dsr(x,y))

h tends to zero which implies that d%,(z,y) = 0.

For ¢ small enough,
This contradicts the fact that x # y.
2. Let us now prove that

1
p-a.e. v € M? T'y(x) = {expx(ﬁdxgp)}.

Fix £ € M¥. It follows that there is £ € N such that
dSR(a_jay> Z 1/k7 \V/y € F@(‘f)

Since I'y, is a closed set in M x M, there exists an open neighborhood V; of Z in
M?¥ such that
dsr(z,w) > 1/k, Yz € Vi, Yw € T',(2).

We define the function ¢ : M — R as follows

P(2) == sup {e°(y) — dér(z,9)| dsr(z,y) > 1/k}.

Since d%p is locally semiconcave on M x M\ D, the function ¢ is also locally semi-
concave on M. The fact that, by construction, ¢ and ¢ coincide on V; implies that ¢
is locally semiconcave on M¥. Thanks to the Rademacher Theorem (see Appendix
B.1), ¢ is almost everywhere differentiable on M?¥.

Let y € I',(Z) be given. By the definition of the Kantorovich potentials (see
Theorem 9), we have

#°(7) = inf {¢(2) + dip(2,9)} = #(7) + dip(7,7)
= () + deg(z,9) < (2) + dig(z,9), Vz € M.
We define the function

v: M — R
2 = Y(2) = @(T) + digr(T, §) — p(2) (4.2)

such that
V(2) < dip(z,7), Y2 € M and equality for z = 7.
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To conclude, we need the following lemma.

Lemma 4. Let x # y € M be fized and ¢ : M — R be a differentiable function at
x such that
V(2) < dip(z,y), V2 € M and equality for z = x.

Then, there exists a unique minimizing geodesic 7y : [0, 1] — M joining x to y such
that y = exp,(—d,Y/2).

Proof of Lemma /. Let v #y € M. Since esp(z,y) = dag(z,y), V2 € M, there
is a neighborhood V, of x on M such that

W(2) < esr(z,y),Vz €V, and ¥(z) = esr(x,y).

Without loss of generality, we can assume that there are m smooth vector fields
Xt ..., X™onV, such that

A(z) = Span{ X' (2),...,X™(2)}, Vz € V,.

By the sub-Riemannian version of the Hopf-Rinow Theorem (see Theorem 8), there
exists a minimizing geodesic v : [0,1] — M joining y to z, associated to control
u? € L*([0,1],R™). By construction, v” minimizes the following quantity

Clu) = /01 i(ui(t))th, vu € L*([0, 1], R™) such that EndY(v) = .

Let u be a control in L*([0, 1], R™) such that EndY(u) € V,. Hence,
C(u) > esr(End’(u), y) = ¢(End’(u)),
and
C(u") = egr(z,y) = ¥(z) = ¢ (End?(u)).
It means that «” minimizes
D: L*][0,1],R™") — R
u — D(u) = C(u) — ¢(End?(u))

Then,
dy-C —dy - dyxEnd? =0

= dyC = dyt) - dy Endv.

Setting p = d,1¢ and by the Lagrange Multiplicators Theorem (see Theorem
B.1.5 in | |) with A\g = 1, there exists a normal extremal ¢ : [0,1] — T*M
satisfying

¥(1) = (2,ds1/2).
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Hence, there is a unique minimizing geodesic « : [0, 1], projection of the normal
extremal ¢ : [0, 1] — T*M, such that

y = exp,(—d.1/2).
O

Returning to our proof, the function ¢ defined in (4.2) depends of z. As ¢ is
almost everywhere differentiable on M¥, then v is also differentiable a.e. on M¥, in
particular, at * € M¥. Thanks to the Lemma 4, there exists a unique minimizing
geodesic joining T to y. Moreover,

y = expy(—dz/2) = expy(dzp/2).
In conclusion, there is a unique transport map 7' : M — M from u to v such that
for p-a.e. v € M¥, T'(z) = exp,(d.p/2).
O

Proposition 15. Assume that the distribution A has no non-trivial singular mini-

mizing geodesics. Then, the sub-Riemannian distance dgg is locally semiconcave on
(M x M)\D.

Proof of Proposition 15 . Fix (z,y) € (M x M)\D. For sake of simplicity, let
us first assume that there is a unique minimizing geodesic v : [0,1] — M steering
x to y. There exist an open neighborhood V of ¥([0,1]) on M and an orthonormal
family (with respect to g) of m vector fields X!, ..., X™ such that

A(z) = Span{X'(2),...,X™(2)}, Vz € V.

According to a change of coordinates if necessary, we can assume that V is an open
subset of R". Moreover, there is a control u” € L?([0, 1], R™) associated to v, ie.

m

() =Y ul ()X (1(t)), ¥t €[0,1]
i=1
and
||u”|[r2 = length(y) = dsr(z,y).
Assume now that there is a sequence {7*}, of minimizing geodesics between x and
y. We denote by K the set of minimizing geodesics between = and y. By | | (see

also | |), K is compact with respect to the uniform topology. So we can repeat
the above by covering K by a finite number of open tubes admitting orthonormal
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frames. Up to taking a subsequence, the bounded sequence of controls {u*} in
L*([0, 1], R™) associated to v* such that

||uk| |2 = length(yk)

converges to some u” in L*([0, 1], R™). By the lower semicontinuity of the norm, we
have
|[u”|| L2 = length(7).

Since by assumption, 7 is regular, there exist n controls v, ... v™ € L*([0, 1], R™)
such that the linear operator

R —s T,M

" , 4.3
a ZaiDmEnd””(vl) (43)
i=1

is invertible.

Recall that C°(R™) is dense in L?([0,1],R™), we can assume that we have
o, ..., 0" in C®°(R™) close to vl ..., 0" satisfying the property (4.3). By abuse of
notation, we set v* = vi,Vi = 1,...,n.

Define locally
H: MxR* — MxM
(z,a) (z,Endz(u7+Zaivi)).
i=1

This mapping is well-defined and of class C? in the neighborhood of (z,0). Tt
satisfies H(z,0) = (x,y) and its differential at (z,0) is invertible.
By the Local Inverse Function Theorem, there exist an open set B of M x M centered
at (z,y) and a function G : B — M x R" of class C? such that

HoG(z,w) = (z,w),¥(z,w) € B.
Denote by ¢ the second component of G. For any (z,w) € B,

dsr(w, 2) < |[[u” + Z (¢(z,w)); v'| 2.

i=1
Define .
(5, w) 1= a7 + 3 (¢ w))ivlln, V= € B.
i=1
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Then,
¢I7y(27 U)) > dSR(Z7 w),V(Z, U)) € B and Qﬁx’y(I?y) = dSR(I,y)-

For every (z,w) € B, we put a C? function ¢®¥ on the graph of dsr at (z,w)
with a uniform control of C? norm of ¢*¥. Hence, dgp is locally semiconcave on
(M x M)\D.

[]

Example 11. (Rank two in dimension three)
Consider a totally nonholonomic distribution A of rank 2 on a manifold M of di-
mension 3. We define the Martinet surface of A as the set defined by

Sa={z e M| Alx)+ [A Al(z) £ T, M}

where
(A, Al(z) := Span{[X,Y](z)| X,Y sections of A}.

By the same argument as in example 9, we prove that singular horizontal paths are
contained in Xan. We claim that XA is a closed subset of M which is countably
2-rectifiable. Let us prove our claim. By a change of coordinates if necessary, we
assume that we work in R® with coordinates (x1,z2,x3). Let X', X? be two smooth
vector fields generating the distribution, that is

A(z) = Span{X'(z), X*(z)},Vz € R
By a change of coordinates if necessary, we can assume that for i =1,2
X' =0y, + ()0,

with o; : R? — R smooth functions.
We set I = (iy,...,i) € {1,2} and we denote by X! the vector field given by

X! = [X [XiQ,...[X"k,Xikfl]...H.
Since A is totally nonholonomic, there exists a positive integer r such that
R* = Span{ X' (z);length(I) < r},Vz € R®.
For any I of length(I) > 2, there exists a function gr : R®> — R such that
X' (x) = gr(x)0u,-

We set
Ay = {x € R gi(x) = 0,¥1,length(I) < k}

51



CHAPTER 4 : Optimal transport problem on sub-Riemannian structures

and

r—1

EA = U (Ak\Ak+1)

k=2

By the Implicit Function Theorem, each set Ax\Ayy1 I can be covered by a countable
union of smooth hyper surfaces. Assume that there is x € A\ Agy1. There is
J=(j1,--,Jke1) of length k + 1 such that

gs(x) #0,Vx € R®.
We set I = (Ja,...,7k41). Since gr(x) = 0,V € R3, we have
X7 =[x, X']
= [8% + ozlef)xg,gj(x)axs]

= (00,,91(2) + i, (2)00,91(2)) Do

So we have
8xj1g1(x) # 0 or Op,gr(z) # 0.

Hence, we deduce that

A\ A1 C U {z €eR* Fie{1,2,3} s.t. Oy,91(x) #0}.

length(I)=k
It follows that X a has Lebesgue measure zero. For any x # y € M such that x ¢ Y a
ory & XA, any minimizing geodesic joining x and y is nonsingular. By Theorem 15,
the sub-Riemannian distance is locally semiconcave. Set Q) := M\XA a subset of full

Lebesgue measure. By Theorem 10, for any two probability measure u,v compactly
supported on M such that

supp(p) C Q or supp(v) C 2
there is existence and uniqueness of optimal transport maps from p to v.

Example 12. (Rank two in dimension four)
In R* with coordinates (x1, T2, x3,14), we consider the distribution given by

A(z) = Span{X'(z), X*(z)},Vx € R*

with
X! = Oy, and X2 = Oy + 1045 + 230,
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Let v : [0,1] — M be a singular horizontal curve associated to a control u €
L%([0,1],R?). By Proposition 9, there exists an absolutely continuous arc p : [0,1] —

(RH*\{0} satisfying
p(t) = —ur(O)p(t) - Dy X' — ua(t)p(t) - Dy X%, ae.t € [0, 1] (4.4)

and
p(t) - X (y(t)) = p(t) - X*(v(t)) = 0,¥¢ € [0, 1]. (4.5)

A computation gives
(X' X% =0y, [XL[X'X?]=0, [X*[X"X*]=-0,.
From (].5), we get
p1(t) = p2(t) + z1(V)ps(t) + z3(t)pa(t) = 0,V¢ € [0, 1].
From (}.4), we get

p(t) = _u2(t)p3(t)a$1 - UQ(t)p4<t>a:v3'

Hence,
(i(t) = —ua(t)ps(t)
pa(t) = 0
Blt) = —u(p) 48)
\ pa(t) = 0

It implies p; and p3 are constants on [0,1]. Assume that py = 0. Then, p3 is a
constant on [0, 1] which means that xy is constant or py = p3 = 0. As p £ 0, then
xy is constant on [0,1] and uy = 0. Or, we have uy(t)ps(t) = 0 then ps = 0 (because
lu(t)| =1 a.e. t €[0,1]) which contradicts the fact that p # 0. Hence, py # 0 and
we deduce that

0 = us(t)ps(t) = ( - ];i22>p3(t), ae. tel0,1].

It follows that ps is a constant on [0, 1] and then, us = 0. Thus, vy satisfies

Y(t) = ur ()X (7(1))

and is of the form
1(8) = (15 72(0),75(0), 1(0) ) ace. € [0,1]
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Up to a parameterization by arc-length, singular horizontal curves with respect to A

satisfy
A(t) = XH(y(t)), a.e. t €]0,1].

We denote by €2 the subset of M given by
Q= {(x,y) ER* xR (y—x) ¢ Span{el}},

where e, denotes the first vector in the canonical basis of R*. The sub-Riemannian
distance function dggr is locally semiconcave on the interior of . For any two
probability measure j, v compactly supported on M such that

supp(p X v) C €,

there is existence and uniqueness of optimal transport maps from u to v.

4.3 Method of Cavalletti and Huesmann

In | |, Cavalletti and Huesmann proved existence and uniqueness of the opti-
mal transport maps on metric measured non-branching spaces using a new technique
based on a localized contraction property.

The non-branching condition plays a crucial role. We recall its definition.

Definition 26. Two distinct geodesics v',~v* : [0,1] — M branch if there exists
t €]0,1[ such that

7H(s) = v*(s) for all s € [0,1].

A space where there are no branching geodesics is called non-branching.

In our setting, the assumption of Cavalletti and Huesmann amounts to ensure
that M is equipped with a complete sub-Riemannian structure (A, g) together with
a measure 1 on M such that the metric measured space (M, dsg,n) is non-branching
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and satisfies the following property:

For every compact set K C M, there exists a measurable function
f:[0,1] — [0, 1] with

N | —

lim sup f(t) >
and a positive constant § < 1 such that
N(Ave) = f(t)n(A), V0 <t <6 (4.7)

for any compact set A C K and any base point x € K with

Ay = {7(t)| 7 :[0,1] = M minimizing geodesic s.t. v(0) € A, (1) = m}

Figure 4.1

The condition (4.7) on measure 1 means that when we contract a set towards a
point, its measure does not shrink too fast.

We recall that there exists a c-convex function ¢ provided by Theorem 9 such
that any optimal transport plan « is concentrated on

Dy 1= {(@.y) € M x M| ¢°(y) - p() = cla,y) }.

Moreover, I, is a c-cyclically monotone set on M x M (see Proposition 2).

We start by showing that branching at starting points belonging to the support
of optimal transport plans does not happen almost everywhere.
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Lemma 5. Let (M, dsg,n) be a non-branching metric measured space. Let (xq, yo)
and (x1,11) be two distinct points of I'y. Then, for anyi = 1,2 and every minimizing
geodesics y; : [0,1] — M joining x; to y;, we have

Yo(t) # m(t), vt €]0,1].
Proof of Lemma 5. Assume by contradiction that there is ¢ €]0, 1] such that
Yo(t) = 1 (t).
For i = 0,1, we have

dsr(2:,7(1)) =t dsp(zi, yi) and dsgp(i(), 1) = (1 — 1) dsr(zi, yi)-
Casel: dsr(vo,Y0) # dsr(1,1)
deg(zo, 1) + dég(21,90)

< (dSR(xoﬁo@) + dSR(%(f),yl)>2 + (dSR(xl,%(f)) + dw(%(ﬂ,yo))Q

(f dsr(To,y0) + (1 — ??>d5112(901ayl)>2 + (fng(xl,yl) + (1 — 2?>dSR<950aiUO)>2

IN

IN

(? +(1- 5)2>d?9R(x0, Yo)

+ (7?2 +(1— 732)61%3(351,91) + 4t(1 — t)dsr(@o, yo)dsr(x1, Y1)

< dgp(wo, yo) + dig(z1, y1) — 2td (o, yo) + 28°d% g (0, yo) — 2tde (1, y1)
+ 28%d% 5 (w1, y1) + 4tdsr (o, Yo)dsr(z1, y1) — 4°dsr(zo, yo)dsr(T1, Y1)

< d%R('rOa Z/O) + d%R(xlu yl)

The last inequality is obtained from 0 < ¢ < 1 which contradicts the c-cyclically
monotonicity of I',.
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Case?2: dsr(xo,y0) = dsr(x1,y1)

We define the curve v : [0, 1] — M by

{ Y0(s) s€[0,t]

s) = 1(s) se[t1]

Then, v coincides with 7y on the interval [0, ] which contradicts the fact that M is
non-branching. O

We denote by P! : M x M — M the projection map into the first component.
The following proposition is a main consequence of Assumption (4.7).

Proposition 16. For any compact set A of I'y,, the following inequality holds
n(Aia) = f(t)n(A), Yt € [0,1], for any A C P'(A)
where

App = {7(t)] 7:[0,1] = M minimizing geodesic s.t. v(0) € A,~v(1) € P*(A)}.

Proof of Proposition 16. We will proceed in two steps.
1. Let {y;}ien be a dense set in P*(A). For n € N and 7 < n, we consider the
following family of sets

57



CHAPTER 4 : Optimal transport problem on sub-Riemannian structures

En(i) = {z € P'(A)| ¢“(y:) — p(a) = ez, 4:) §
= {z € PY(A)| y; € Ty(2)}.
We set for i € N, A, := O E,(i) x {y} such that
P'(A,) = P'(A).
By Assumption (4.7), it holds that for any compact A C P*(A),
n((AN By, ) = £ n(ANEL(0)). Ve € [0,0]

where f :[0,1] — [0, 1] is independent of {y; };en and of n, and satisfies
11_1)1(%supf(t) > 1/2.
Since A = U AN E,(i), it follows

i=1

= {7(¢)]7: [0,1] = M minimizing geodesic s.t. 7(0) € A,~(1) € P*(A,)}

{~(#)|y : [0,1] = M minimizing geodesic s.t.

-

.
Il
—

1(0) € AN By (i), (1) = i}

C§

(ANE ),

t,yi

i=1
Thanks to Lemma 5, we have for all t € [0, 1],

<AﬂEn(i)> m(AmEn(j)) = 0.

t’yi tzy]

Then it holds for all ¢ € [0, d]:

n

1) = (AN B0y

=1

>Z (AmE tyz.)
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n

> 70 3 n(An Ba(0)

> £ n(JAn BaG)

i=1

= f(t) n(A).

2. For all n € N, we have A,, C supp(u) X supp(v) a compact set . Then, there
exists a subsequence {A,, }ren of {A),}nen converging to a compact space K with
the Hausdorff metric. Let (z,y) € K. By the definition of E,, (i), we get

©“(y) —o(x) = c(z,y), = € PI(A) and y € P2(A).
So we have K C A. Hence,

N(Ara) 2 n(Ank) = lim sup n(Ag,,) = f(t) n(A).

—+o00

Lemma 6. Let Ay, Ay C Ty, be two compact sets such that
(i) P'(A1) = P1(A2)
(ii) P*(Ay) N P2(Ay) =0

Then, n(P'(A1)) = n(P'(Az)) = 0.

Proof of Lemma 6. We set A = P'(A;) = P'(A;) and we define the following
sets for i = 1,2 :

App, = {7(®)| : [0,1] = M minimizing geodesic s.t.7(0) € A,~(1) € P*(A;)}.

99



CHAPTER 4 : Optimal transport problem on sub-Riemannian structures

A == Pl(Al) - Pl(Ag)

Since P?(A;) N P?(Ay) = 0, by lemma 5, we have

Ain, NAp, =0, Yt €[0,1].
For § > 0 fixed, we define A° := {z| dsp(A, z) < §}.
Hence,

n(A) = lim sup n(A‘S)

6—0

> limsup 7(Aea, N Ara,)

= limsup |n(Aia,) + U(At,Az)]

t—0

> 2 ligsup f(0) n(A).

By hypothesis, we have
1ir%sup f(t) >1/2.
—

Then, it follows
n(4) =0.
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Theorem 11. Let (M, dgr,n) be a non-branching metric space verifying assumption
(4.7). Let p,v be two probability measures compactly supported on M such that p is
absolutely continuous with respect to . Then, there is existence and uniqueness of
an optimal transport map T : M — M solution for the Monge problem.

Proof of Theorem 11. We consider the set
E :={xz € M| T',(x) is not a singleton}
and we assume by contradiction that
n(E) > 0.
It follows that there is £ € N such that the set given by
By, = {z € E| diam Ty(z) > 1/k}

has positive measure with respect to n. Without loss of generality, we can assume
that the manifold M can be covered finitely by many open balls (U;);c; of diameter
less or equal to 1/k. From (U;),cr, we construct a finite family of open sets (V;);er
pairwise disjoint covering M by proceeding as follows

(Vi = U

Vo = U\U

V3 = Z/{j\(z/{l UZ/{Q)

V, = UNUUUU... Uy 1)

such that

Uu =Jv:

i€l el

Therefore, for any x € E}, there are i,, j, € I with i, # j, such that
Lo(x)NV;, #0 and Ty(x) NV, # 0.

Denote by

E]m' = U {l‘} X (Fw($) N Vzm)

el
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and

Epj = | J{z} x (To(z) N V).

el
We notice that P!'(Ey;) = P'(E} ;) = E) such that
n(Ep) > 0. (4.8)

We also have P?(Ey;) N P*(Ey ) = 0 since for any = € Ey, V;,NV;, = 0, for iy # j,.
Using Lemma 6,
n(Ex) =0

which contradicts (4.8).

We conclude that for a.e. z € M, I',(z) is a singleton. Thus, any optimal
transport plan « € II(p, v) such that supp o C I, is concentrated on a graph. [
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Chapter 5

Mass Transportation on
sub-Riemannian structures of rank 2
1in dimension 4

5.1 Introduction and main result

For a two-rank distribution A on a three-dimensional manifold M (see Example 11),
we have existence and uniqueness of optimal transport maps for the sub-Riemannian
quadratic cost because non-trivial singular horizontal paths are included in the Mar-
tinet surface Xa given by YA = {x € M| A(x) + [A, A](z) # T, M} which has
Lebesgue measure zero. The first relevant case to consider is the one of rank-two
distributions in dimension four. In this case, as shown by Sussmann | |, singu-
lar horizontal paths can be seen (locally) as the orbits of a smooth vector field, at
least, outside a set of Lebesgue measure zero.

The definition of a real analytic manifold is similar to that of a smooth mani-
fold. We begin by recalling that an analytic function f is an infinitely differentiable
function such that the Taylor series at any point xq in its domain, converges to f(z)
for  in a neighborhood of x;. We say that a manifold M of dimension n is real
analytic if transition maps are analytic. We provide M with a real analytic distri-
bution A of rank m (m < n), that is for each x € M, there is an open neighborhood
U containing = and m analytic vector fields X!,..., X™ on U such that

Ay) = Spcm{Xl(y), . ,Xm(y)}, Yy eU.

In this case, for analytic functions u; : [0,1] — R,7 =1,...,m, the Cauchy problem
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given by
Yu(t) = Zui(t)Xi(%(t)), a.e. t €10,1]
(0) = =

has a real analytic solution on M for ¢ € [0, 1].

Our main result is the following:

Theorem 12. Let M be a real analytic manifold of dimension 4 and (A, g) be a
complete analytic sub-Riemannian structure of rank 2 on M such that

Ve e M, Ax) + [A,A](x) has dimension 3, (5.1)

where

(A, A] := Span{[X,Y] | X,Y sections of A}.

Let pu, v be two probability measures compactly supported on M such that p is ab-
solutely continuous with respect to the Lebesque measure. Then, there is existence
and uniqueness of an optimal transport map from p to v for the sub-Riemmannian
quadratic cost ¢ : M x M — [0, +oo| defined by:

c(z,y) = dgp(z,y), ¥(z,y) € M x M.

Since both supp(u) and supp(v) are compact and the metric space (M, dgg) is
complete, there are zop € M and a constant L > 0 such that

supp pu U supp v C Bgg(wo, L/4) (5.2)

where Bggr(wo, L/4) is the sub-Riemannian ball in R* centered at xq of radius L/4.

As a consequence, any minimizing geodesic v : [0,1] — M from = € supp p to
y € supp v is contained in Bgg(zo, L/2).
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BSR(JI(], L/2)

supp / supp v

From now on, we work in the compact set Bsgr(zo, L/2) of diameter L and so,
we proceed as if M were a compact manifold.

We recall that there exists a c-convex function ¢ : M — R provided by Theorem
9 such that any optimal transport plan « € II(u, v) is concentrated on

Dy i={(@.y) € M x M| ¢°(y) = p(@) = cla,y) }.

Following | |, let us consider the following definition:

Definition 27. We call "static" set S and "moving” set M respectively the sets
defined as follows:

S = {x € M| a:GI’w(a:)},

M = {a: eM|zd r@(w)}.

Asin | |, we shall show that "static" points do not move, i.e. almost every
x € § is transported to itself. For sake of completeness, the proof of the following
lemma is given in Theorem 10.

Lemma 7. For p-a.e. € S , we have I'y(x) = {z}.

We need now to show that almost every moving point is sent to a singleton. For
this aim, we need to distinguish between two types of moving points. For every
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x € M and every T > 0, we denote by Qf’T the set of regular minimizing geodesics
v :[0,T] = M starting at x. We also denote by QF ;. the set of singular minimizing
geodesics v : [0,T] — M starting at .

Definition 28. Let T' > 0. For every x € M, we set

[%(2) i= {y € T(2) |37 € Q1 5.t 9(T) =y}

and
TR () = {y € Ty(z)|Fy € QR st A(T) = y}
Moreover, we let

M i={z e M|T?(x) #0} and M":={ze M| T"(z)+#0}.

Note that, by construction, for every x € M, T',(z) = I'*(z) UT®(x). Further-

more, if there are no non-trivial singular minimizing curves then M~ = (.

First, using techniques reminiscent to the previous works by Agrachev-Lee | |
and Figalli-Rifford | |, we prove that

Proposition 17. For £L*-a.e. x € ME, T'T(z) is a singleton.

Then, using a localized contraction property for singular curves which holds
thanks to (5.1), the technique developed by Cavalletti and Huesmann | | allows
to show that

Proposition 18. For £*-a.e. x € M®, I'S(z) is a singleton.

It remains to show that for almost every z € M, I',(z) is a singleton. Again this
will follow from a local contraction property together with the approach of Cavalletti
and Huesmann | |, see Section 5.4.

5.2 Proof of Proposition 17

Argue by contradiction, by assuming that there is a compact set A C M® of positive
Lebesgue measure such that

Va € A, I'(z) is not a singleton. (5.3)
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Without loss of generality, we may assume that we work in R*.

For every k € N, we define the set

Wy = {x € M| 3p, € RY|p,| <k and
P(2) < 9(2) = (porw —2) +k o — 2%, V2 € Bla,1/k) |, (54)

where B(z,1/k) denotes the closed ball in R* centered at x with radius 1/k.
The set Wy, is well-defined, up to a change of coordinates, for £ large enough.

Lemma 8. M” c U W.

keN

Proof of Lemma 8. Let 2 € MP and j € T'®(z). By the same argument used
in the proof of Proposition 15, we may assume that there are a regular minimizing
geodesic 7 : [0,1] — M steering y to z, and an open neighborhood V of (][0, 1])
admitting an orthonormal family (with respect to g) F of two vector fields X, X2
such that

A(z) = Span{Xl(z),X2(z)}, VzeV.

According to a change of coordinates if necessary, we can assume that V is an
open subset of R*. Moreover, there is a control @ € L*([0, 1], R?) associated to 7, ie.

2
50 = Y (XG0, Ve 0,1
=1
Since 7 is regular, there exist v*,v2 v3, v € L?([0,1],R?) such that the linear
operator
R* — RY
4
a Z a; Dy End’ (v') (5:5)
i—1
is invertible. Recall that C°°(]0, 1], R?) is dense in L*(]0, 1], R?), we can assume that
we have vl v2 v3, v* in C*°([0, 1], R?).

Define locally
Fr: R* — R4

4
a Endg(ﬂ—i-Zozivi) '

=1
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This mapping is well-defined and of class C? in the neighborhood of zero. It satisfies
F*(0) = = and its differential at 0 is invertible.

By the Local Inverse Function Theorem, there exist an open ball B of R?* centered
at 7 and a function G¥ : B — R? of class C? such that

F*o0G"(2) =2z Vz €B.

4
Vz € B, dyp(2.9) < lla+ ) (G (2)iv'|[7e.
=1

Define A
$"(2) = |la+ Y (G ()| [f2. V2 € B.
i=1
Then, we conclude that there is a C? function ¢™? : B — R* such that
¢£,§(2) Z ng<z7g)a VZ € B and ¢j’g(i‘) = d%’R(i’7g)

Recall that, by the definition of the Kantorovitch potentials, for every z € M,
we have

{ p(2) > ¢°(§) — dep(z,9)
p(7) = ¢(y) — dég(z,7)
Then, Vz € B,
{ p(z) = y) — o"(z) .
() = ¢(y) — ¢™(2)



Define
VY(z) = (y) — ¢"9(2),Vz € B.
Hence, we put locally a C? function under the graph of ¢ with a uniform control

on the C? norm of ¥%Y. Then, for z € M, we can find k¥ € N such that there is
pz € R* with |p;| < k verifying

o(T) < (y) — (ps, T —y) + k |z —yl*, Vye B(z,1/k).

We are ready to complete the proof of Proposition 17.

Since M C U Wy (by Lemma 8), there exists k& € N such that
keN

Ay := AN W, is of positive Lebesgue measure.

Let Z be a density point of A; and i € I'(z). By the definition of the Kantorovitch
potentials, we have that

0(2) + dep(z,7) < @(z) + dig(2,9), V2 € M

= ¢(7) + dgp(7,7) — o(2) < dip(2,9), ¥z € M.

We define the function

pPfr M — R
z = pf(2) = 0(@) + dig(T,7) — o(2)

verifying
p*(2) < dip(2,9),Vz € M and equality for z = 7. (5.6)

Let Ay := Ay N B(%,1/2k). For every y € Ay, there is p, € R*, |p,| < k such
that

o(y) < @(z) = (py,y — 2) + k ly — 2°, Vz € By, 1/k).

We define the function ¢ : B(z,1/2k) — R as follows
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¢(x) = sup ¥, (), Vy € B(z,1/2k)

yEAg

where
Vy € Ap, y(a) = o(y) + (py,y — ) — k |y — z|”.

We claim that for every x € A, p(z) = ¢(z). Let us prove our claim.
In fact, for every = € Aj,we have

P(z) > W, (x), Yy € Aka
that is
P(x) = @(y) + (pyy — x) — k [y — 2|?, Vy € A4
In particular, for y =z € Ay, we obtain
p(r) < ().

Assume that there is x € Ay, such that ¢(z) < @(z).
Then, there is y € A, y # x such that

90@) < \I’y(x)
that is

o(x) < oY)+ (pyy —x) —k ly — z]”. (5.7)

Since z,y € Ay, we have 2 € B(y, 1/k).
So,

p(y) < () = (py,y — ) + klz —y/?

= oY) + (py,y — ) —k |z —y|* < p(z)

which contradicts inequality (5.7). And the conclusion follows.

Moreover, let y € A, be fixed. There exists a neighborhood B(y,1/k) of y
contained in B(Z,1/2k) such that for every x € B(y,1/k), there is p, € R* such
that Va2’ € B(y, 1/k), we have
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Uy (z) =W, (2") = (py, 2" —x) +k(]2" —y[* = [z —y[?)
< Apy, 2’ —x) + k|2’ — z]* = 2k(y — x, 2 — )
< (py—2k(y —xz),2' —z) + k|l2/ — z|?

Take p, := p, — 2k(y — x), we obtain

Uy (2) < Wy () — (py — 2k(y — z),2" — 2) + k|2’ — 2.

This means that for every y € A, ¥, is locally semiconvex on B(%,1/2k). Ac-
cording to Lemma 21 in Appendix A, since ¢ is the supremum of local semiconvex
functions ¥, among all y € Ay, then ¢ is locally semiconvex on B(&,1/2k). By the
Rademacher Theorem (see Appendix B.1), ¢ is differentiable almost everywhere on
B(z,1/2k).

We also define the function

p° . B(Z,1/2k)
z

R

%
= p7(2) = @(Z) + dER(T,7) — P(2)

such that
p° = p® on Ay. (5.8)

Here, 7 is fixed and p” is a function of z. By the definition of 5%, as ¢ is differ-
entiable at almost every z € B(Z, 1/2k), p® is also differentiable almost everywhere
on B(z,1/2k).

On the other hand, following the proof of Lemma 8, for z € M and j € T'(z),
there are an open set Bz in R* containing Z and a C? function ¢*? : B; — R such
that

¢"Y(2) > dip(2,7),Vz € B and equality for z = 7. (5.9)

Consequently, by (5.6), (5.8), (5.9), we obtain

p7(2) < dip(2,9) < 9™(2), V2 € B N A

and
equality for z = 7.
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Note that ¢™¥ is a C? function and p% is differentiable almost everywhere on
B(z,1/2k). Then,
0™ = dy".

It means that there is a unique 3 € I'*(Z) such that § is characterized by
Y= expi(da’cﬁf) = expz(—dz9),

with expz : Ty M — M the sub-Riemannian exponential map from z. This contra-
dicts assumption (5.3) and the conclusion follows.

Remark 4. The above argument can be used to prove the required result in the
general case, with M a smooth connected manifold of dimension n equipped with a
complete sub-Riemannian structure (A, g) of rank m(m < n).

5.3 Proof of Proposition 18

Our aim is to prove that
for almost every z € M?, I'(z) is a singleton.

First, we need to construct a line field, defined on a set of full Lebesgue measure,
whose orbits correspond to the singular curves.

The following holds (see | |, | |, | D) :
Lemma 9. There is an open set H of full Lebesque measure on M such that:
VeeH, T,M = A(x) + [A,Al(z) + [A, [A, A]](x). (5.10)
Proof of Lemma 9. We denote by . the set given by
S = {:r e M|A(z) + [A, A () + [A(z), [A, A])(z) # TxM}.

Assume by contradiction that . is of positive Lebesgue measure on M. It is
sufficient to work locally. Taking a sufficiently small open neighborhood V of the
origin in M and doing a change of coordinates if necessary we may assume that
there are a set of coordinates (z1,x2,x3,z4) and two vector fields X 1'X?2 on V of
the form
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X' =0,, X?=0,,+ A0,, + Bo,,

where A, B : M — R are smooth functions such that A(0) = B(0) =0

and
Az) = Span{Xl(a:),XQ(x)}, Vr e V.

So we have
(X', X% = A, 0, + By 0y, on V.

By hypothesis (5.1) in Theorem 12, we have

Vo e M, A(z) + [A, A](z) has dimension 3.

We may assume

A, #0 on V.
We denote by X3 the vector field given by

1
X3 .= E[Xl, X% =0, +C0,,

where C' := B,, /A,, is smooth.

A computation gives

[X17 Xg} = [8217 aa?3 + 08274] = C(9018904

and

[XQ, X3] = [0py + AODpy + BOyy, Opy + COy,]
= (— A, — CA,,) 0,
+(Ch, + ACy, + BC,, — By,

Let x €  NYV. It follows

Alz) +[A, Al(x) + [Al2), [A, All(x) # T, M.

Since A + [A, A] is of dimension 3, it means that
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det(Xl,X2, X', X7, [x [Xl,XQ]D — 0 (5.13)
and,

det(Xl,XQ, X', X7, (X2, [Xl,XQ]D — 0 (5.14)

which is equivalent to

det<X1,X2, X1, X2, [Xl,XSD — 0 (5.15)
and,
det(Xl,Xz, X1, X2, [XZ,X?’D —0 (5.16)
that is,
Cyy =0 (5.17)
and
C,, + AC,, + BC,, — B,, — OB,, + CA,, + C*A,, = 0. (5.18)

For every k-tuple I = (iy,...,i5_1,3) s.t. (i1,...,i-1) € {1,2}F71 we denote
by Z! the smooth vector field constructed by the Lie brackets of X', X? as follows

7l — [X (X2, X, X)) ]

Note [(I) the length of the Lie brackets Z. By totally nonholonomicity, for every
x € V, there exists an integer r(x) > 2 such that

.M = Span{ZI(x)| I(I) < r(x)}.
For every I of I(I) > 2,
ZI(:(:) = Z?{(x) Oy + Zi(a:) Or, -
We define the following set
Ay = {:c e V| Zl(z) - Cla)ZL(x) = 0 VI s.t. I(I) < k}
and
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r—1
SNY = U A\ A1 where r = max r(x). (5.19)

ey
k=2

Recall that .7 is supposed to be of positive Lebesgue measure. By (5.19), there
is 2 < k <r—1 such that Aj;\Aj,, has positive Lebesgue measure. Fix 7 a density
point in A;\Aj,. There exists some J' = (iy,...,iz,3) of length k + 1 such that
on a neighborhood V; of 7,

z] —Cz] #0on V;. (5.20)

From J', we take J = (ia, ..., 15, 3) of length k, so that Z/ — CZ] = 0. And, we
compute Z7" in terms of Z7:

(X127 = (Z])0,00s + (22,00,
g ) XA 2] = ((Z)ay+ A (2 )es + B2}y — 24 Auy — Z{ Av, )00,

+((Z)as + AZ])as + B(ZY)s, = 24 By = 21 Bu, ) 00,

\
Replacing Z¢" and Z{" in (5.20), it follows that on V, we have

or

(ZZL])M + A(Zj{)m + B(ZZLI)M - Zé]Bms - Zij
- C(<Z§])x2 + A(ZZ{)IS + B(Zé])m - ZQ{Als - ZZLIAM) 7é 07 (5'22>

We recall that Z/ — C'Z{ is a smooth function such that
Z] —CZ] =0 on A\ Az, (5.23)
Since Z is a density point on Aj\ Az, we have

(z]{-Ccz)) (z)=0,vi=1,234.

T

Note that by (5.17), C,, = 0. And, by computing the partial derivatives of
(5.23), we obtain
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(2i),,@) - C(@)(Z),,(@) =0

i (5.24)
(Z]),.(@) = C(2)(Z]),.(2) = Co,(2) 23 (z), Vi=2,3,4 (5.25)

Using (5.25), we can check that the left-hand side of (5.22) evaluated at the point
Z is equal to

(ZZL])M + A<Zi])903 + B(Zj{)m - Zf’)]Bxs - Zz{Bu

- C((Zf’)])w2 + A(Zéj)rs + B(ZSJ)M - Zf’)]Aws - ZZAM)

= (212 = C(Z) + A((Z)sy = C(Z)e) + B((2Ds = C )

—z] (Bm _ CAm) — 7! (BM — (JAM)

C., 7 + AC,,Z! + BC,, 7] — 7! <Bw3 - CAx3> ~ 7! <BM - CAM)

= (Coa + ACy, + BCy, = By + CA) 2 = 2] (Be, - CAL, )

by(5.18) (OBz4 B CQA“)Z:;’] - % (B”“ B OA“)

S (Bm - C’AM) (Z;{ - C’Zg’)

=0

This and (5.24) imply that

z{(z) - C(2)Z3 () = 0
which contradicts (5.21) and (5.22),i.e. the fact that = ¢ Az,

We need another lemma.
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Lemma 10. There exists a line subbundle L of A such that the singular horizontal
curves defined on H are exactly the trajectories described on L.

Proof of Lemma 10. 1t is sufficient to prove the result in a neighborhood of each
point in H. So, let us consider a local frame { X', X?} such that

A(z) = Span{X'(2), X*(2)}, Vz € M.

Let v: [0,1] — M be a trajectory associated to some control v € L*([0, 1], R?). In
local coordinates, singular curves can be characterized as follows (see Proposition

1.3.3 [Rif14]):

7 is singular with respect to A if there is p : [0, 1] — (R*)*\{0} satisfying :

p(t) = — Zui(t)p(t).Dw(t)Xi, a.e. t €[0,1] (5.26)
p(t). X' (y(t)) =0,Vt € [0,1], Vi=1,2 (5.27)

Derivative (5.27) two times yields for almost every ¢ € [0, 1] such that u(t) # 0

p(t).[X'(0), X2 ()] (2(1) = 0, (5:28)
and

w (Op(t). [ X", X, X7 (1) + wa(0p(0). [ X2 (XL X3| (1) =0, (5.29)

Since M has dimension four and A + [A, A] has dimension three, there is locally a

smooth non-vanishing 1-form « such that
Qv =0, Vo € A(z) + [A, A} (), Vo € H.

Then, by (5.27), (5.28)-(5.29), we infer that for almost every t € [0,1] such that
u(t) # 0, we have:

w (| X1 (X1 X3 (9(0) + waltaney | X2 (X1, X2 (2(8)) = 0.
By above assumption, for every x € H, the linear form
(A, Ao) (ax. (XX, X7 (x)>/\1 n <oz$.[X2, X!, X7] (:p)) Ao

has a kernel of dimension one. This shows that there is a smooth line field (a
distribution of rank one) L C A on M such that the singular horizontal curves are
exactly the integral curves of L. O]
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We are ready now to prove Proposition 18. Without loss of generality, it is
sufficient to prove the result locally. We can assume that (z;, 29, x3, 24) denotes the
coordinates in an open neighborhood V in M and consider {X', X?} a local frame
of A such that

A(z) = Span{X'(z), X*(z)},Vz € V.

Doing a change of coordinates if necessary, we can assume that
X' =0y, X?=0,,+ A()0y + B(.)0s,

where A, B : V — R are smooth functions.

For the upcoming results, it is important to keep in mind the following notations.

Notation 1. We denote by A,,, B,, the partial derivative with respect to the variable
x;, and Aij, Byx; the second partial derivative with respect to the variable x; and
zj, of A and B respectively.

We compute the Lie brackets of X' and X? :

[Xl, Xﬂ = A, 8y, + By, 0, (5.30)
[Xl, [Xl,Xﬂ = Apr2yOry + Bay, On,y
[X2, X1, XQ]] — E8,, + FO,,

E = A332xl + AAxsm + BAI1I4 - AIles - Ba:lAmv
with
F = Bmw1 + ABmel + BBx1x4 — AxleS — Bw1BI4'

By hypothesis (5.1) and (5.30), we can assume that

Ay, (z) £0, Vo € V. (5.31)

We denote by H¢ the complementary set of H on M given by

He = {x e M| Az) + [A,A] () + [A, [A,A]} (z) # TxM}.
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Thus, H¢ is a closed set of Lebesgue measure zero on M.

The above discussion implies indeed the following lemma.

Lemma 11. There exists an analytic horizontal vector field X given by
X =X+ aX?
with aq, a9 : V — R smooth functions given by

i = EB, — FA,
Qo = lexlAzl - A:plxlel

(E and F :V — R smooth functions defined in Notation 1).

The vector field X wvanishes on H¢ and any solution of the Cauchy problem
t(t) = X(xz(t)) is analytic and singular.

Proof of Lemma 11. Let T > 0 and let u € L*([0,1],R?) be a singular control
and
z:[0,T] — M be a solution to the Cauchy problem

@(t) = u ()X (z(t)) + ua () X2 (2(t)), a.e. t €[0,T).
There exists an absolutely continuous arc p : [0, 7] — (R*)*\{0} such that

Pt) = —wr (Op(t) Duy X" — uat)p(t). Doy X, ace. t € [0,T)  (5.32)
p(t). X (2(t)) = p(t) X2 (x(t)) = 0,¥¢ € [0, T] (5.33)

Taking the derivatives in (5.33) gives
p(t).[ X, X?)(z(t) =0, Vt € [0, T] (5.34)
which implies that V¢ € [0, T],
pi(t) =0
pa(t) + A(x(t))ps(t) + B(2(t))pa(t) = 0
Agy (2(8))ps(t) + Bay (x(8))pa(t) =0
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Assume that condition (5.31) is true, then we obtain

() = (0, AV T2 6(0) — BEOn(0),~ 22 a0, p(0), Ve € 0.7

By taking the derivatives in (5.34), we obtain for every ¢ € [0, 7T

un (B)p(t).[X, [XF, X2 (2 (1)) + ua(t)p(2).[X7, [XT, X2])(2 (1) = 0

= w1 (1) (P3(t) Azyay + Pa(t) Buywy) + ua(t) (ps(t) E + pa(8) F) = 0.
We can write

wlt) = —OE+p@F) = —p(F -3

UQ(t) = pB(t)Axlm +p4(t)B$1SC1) = p4(t)(B$1a?1_A

1E)

B,
171 A_ml)

Assume that ps(t) = 1,Vt € [0, 1], we obtain

(5.35)

ay(z) = EB,, —FA,,
042(37) = AxlBZ‘11‘1 - Bl?lAZ'll’l

Lemma 12. There is a positive constant C > 0 such that
div, X > —C|X(x)|, Vz € V.
Proof of Lemma 12. Let us compute the divergence of X. For every x € V,
divg, X = oy (2)divg X + an(2)div, X? + X (ay) + X?(ag)
= a(2)div, X* + By, (Asiaan, + Awi Avsar + Aluiasz, + Boy Az,
+BAsierzs — AwgAviey — Avy Avizy — Bayey Ay — Bey Aviay)
— Ay (Bayasay + Az, Bryz, + ABuryagay + Bey Beyoy + BBayaya,
—BoyAsyey — AeyBayos — Bayey Bey — Bay Baywy) + EBoya,

_FAxlxl + Ax2x1BI1I1 + A:rlezzmm - BIQCElelflil - BJE1AI2I1$1
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+AAzs0, Boizy + AAg, Brseyoy — ABuyay Avyey — ABgy Avyaia
+BAza1 Boiwy + BAg, Beyaroy — BBryoy Azyey — BBey Agyoyan
= ay(2)div, X* + EBy 0y — FAp 4,
+Bayay (BAgye, + Alpge; + Avyay + Ay Boy — By Asy)
+Az12, (—BBayay — ABaye, — Buagay + Agy Boy — Br, Asy)
= y(2)div, X* + EBy 0, — FAu
+Bayay Awy Bry + Buyay (B + Agy Avy) — Auyey By Avg — Auyay (F + By, By,
= ay(7)div, X* + 2EB,,0, — 2F A, 4,
+Bayay (Azy Buy + Azy Asy) — Avyay (Byy Auy + Byy By)
= ay(2)div, X* + 2E By o, — 2F Ay o,
+(Bayay Aey — Avyoy By ) (Aes + Bay)

=2 Bpo, B —2 Ap o, F + 2 ao(x)div, X2

By (5.35), we can write By, = a2 + Doy Auray and F = Z2n — A
Axl ACC1
. A:plxl . 2
Hence, div, X =2 as 4+ 2 ay—— + 2 asdiv, X
A$1 Aml
:2a(E+divX2)+2a st
A, v YA,

As we noticed before, without loss of generality, we proceed as if M is a compact
manifold. Then, the functions <E JAz, + div, X 2) and (Axlxl /Am) are bounded on
M. There exist ¢q, ¢y > 0 such that

A E
L)< d|— div, X?| < :
Azl(x)l < ¢ and |— () + div, X*| < g, Yz €V

| a

Thus,
div, X > —ci|laq| — ||, Yo €V

81



CHAPTER 5 : Mass Transportation on sub-Riemannian structures of rank 2 in
dimension 4

> _C|X(x)|,Vz € V

with C' = max{c;, o} > 0 positive constant. O

The following process is equivalent to the process introduced by Belotto and
Rifford | | to set the contraction property.

Let € € {1,+1} and T > 0, we denote by (¢2X)o<;<r the analytic flow of the
vector field X generating locally singular minimizing geodesics.

For every subset A in V, we set

A7 = @3 (A), Yt €]0,T] and A = A.

t
We denote by I(A, AY) :=sup length ¢X(A) = sup/ | X (¢ (2))|ds,
z€EA zcA Jo

where | X (o2 (2))] stands for the norm of X (o2 (z)) with respect to g.

We recall that there is L > 0, by (5.2), such that for every x € A, we have

/t X (0¥ (2))[ds < L, ¥t € [0,7]. (5.36)

We state now divergence formulas, one of the main tool of the present paper (see
[ |, Proposition B.1).

Lemma 13. For every compact A in M, there is a smooth function
J [0, T] x A— [0, +00] such that for every t € [0,T], we have:

J(0,2) =1 and aa—{(t,z) = div X(p2%(2)) T(t, 2) (5.37)
Vo e A, LYAY) = /Sdz:/j(t, z) dz (5.38)

and
LY(AP) :/Aexp</ div X (¢X(2)) ds) dz (5.39)

0

The following result is an immediate corollary of Lemma 13.
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Lemma 14. Let T' > 0. For every subset A in )V, we have
LYAS) > exp(—C 1(A, AS)) L*(A), Vt € [0,T). (5.40)

Proof of Lemma 14. Let A be a subset in V. By Lemma 12, there is a constant
C' > 0 such that

div X(z) > —C|X(2)|, Vz € A.

Therefore, by (5.39), we infer that, V¢ € [0, T],

LYAY) > /Aexp(—C/Dt\X(gpgi(z)ﬂ ds) dz

> /exp(—C l(A,Af)) dz
A

> exp(—C' Z(A,Af))ﬁ(A).

The following result whose proof is based on the local contraction property (5.40),
is fundamental.

Lemma 15. Let T' > 0. The closed set given by
{a: € M| 3y € QF ; such that v(T) € "HC}
18 of Lebesque measure zero on M.

Proof of Lemma 15. Let A be a subset of M of positive Lebesgue measure. With-
out loss of generality, we can assume that A is contained in an open set V in M.
We argue by contradiction by assuming that

£4({x €Al Iye QiT such that v(T') € HC}> > 0.

By Lemma 11, there is an analytic horizontal vector field X defined on V gener-
ating singular minimizing geodesic defined on V.
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N

HC

Moreover, X vanishes on H¢. Then, for every x € A, the flow of X starting at x
requires an infinite time to reach H¢, that is

AS = X (A) = S C H"
By Lemma (14), we have
CUAS) > eap(~C (A, AD)LY(A), Vi € 0,7,

By (5.36), we obtain
(A, A7) < LVt € [0,T).

Hence,

LYA) > exp(—CL)LY(A), Vt € [0,T].

Since M is assumed to be compact and all the orbits ¢Z(x) with x € A tends to S
as t tends to oo, by the Dominated Convergence Theorem, we deduce that

lim £(A7) = 0.

t—o00

So we obtain

which implies the contradiction. O]

In the spirit of | |, we have the following result.

Lemma 16. Let Ay, Ay be two subsets of I', such that
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(i) P*(Ay) = PY(Ay) and PY(A;) € M® Vi=1,2.
(ii) P?(A1) N P%(Ay) = 0.
Then, LY(PY(Ay)) = LY(P'(Ay)) = 0.

Proof of Lemma 16. Set A = P'(A;) = P'(A;). We can assume that A is con-
tained in an open set V in M. Let T' > 0. For every i = 1,2, we define

AP = {el ()] ¢ () € A and pl(x) € P*(Ay)}, Vt € [0,T].
Since P%(A1) N P?(Ay) = 0, we have
AP N AP — g vt e [0, T).
For 6 > 0 fixed, we define A° = {z : dsp(z, A) < §}.

N \S:AZ
Af’Al At

LYA) = lim sup LA
—>
> limsup £4(AZM U APA2)
t—0
= limsup[C*(A;M) + £1(47™)]
> e:vp(—C I(A, APM)) + ea:p(—C l(A,Af’AQ)))£4(A).

Since t — 0, we have A7 A very close to A. So we can choose
I(A, A?*)) > 0 sufficiently small, that is

, 1
exp(—C l(A,AtS’AZ))> > 5
Hence, we obtain £*(A) = 0. O
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We are ready to complete the proof of Proposition 18.

Consider the following set
E:={z e M®:T5() isnot a singleton}
and assume that E has positive measure.

It follows that there is & € N such that the set given by
: s 1
Ey:={x € E: diamT (x)>E}
has positive Lebesgue measure.

Without loss of generality, we can assume that the manifold M can be covered
by finitely many open balls (U;);c; of diameter less or equal to 1/k. From (U;);er,
we construct a finite family of open sets (V;);cr pairwise disjoint covering M by
proceeding as follows

(Vo = U
Vo = Up\Us

V, = U\NUUUU---UU,—q)

\

such that

Uu =Jv:

i€l el

Therefore, for any x € Ej, there are 1., j, € I with i, # j, such that
¥(x) NV, #0and I¥(z) NV, # 0.

Denote by

Epi = | {z} x (T%(x) N V)

reFy

and

Brj= |J{a} x M5 (x)nVy,).

el
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We notice that P!(Ey;) = P'(E};) = E such that
LYE) > 0. (5.41)

We also have P%(E};) N P*(Ey ) = 0 since for any = € Ey, V;,NV;, = 0, for iy # j,.
Using lemma 16, we obtain

LYPY(Bry)) = LY (P (Ery)) = LYE) =0,
which contradicts assumption (5.41).

We conclude that for a.e. x € M® T'¥(z) is a singleton.

5.4 End of the proof of Theorem 12

In the previous sections, we have shown that
a.e. v € M® TH(zx) is a singleton (see section 5.2),

and
a.e. v € M®, T9(z) is a singleton (see section 5.3).

To complete the proof of Theorem 12, it remains to prove that
M N M?® has Lebsgue measure zero.

For this purpose, we will use again the technique introduced by Cavalletti and
Huesmann | |. First, we will show a localized contraction property for regular
horizontal curves.

Lemma 17. There is a positive constant C such that for T > 0 and for every set
A in M,

LYHARY > CLY(A), Yt e [0,T] (5.42)
with
Al ={y) v € Q' v € A and y(T) € T (z)}.

Proof of Lemma 17. Let A be a compact set of MF of positive measure. Since

MEC U Wi, (by Lemma 8), for every point x of A, there exists k = k(z) € N such

kEN
that

r € A Z:AﬂWk,
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so there is p, € R* with |p,| < k verifying
(1) < o(2) — (po, & — 2) + k|l — 2|?, V2 € B(z,1/k).
Let Ay := A, N B(z,1/2k). As in section 5.2, we define the function

©o(2) if z € Ay

sup {o(y) + (py,y —2) — k [y — 2’} if not
yEAg

For any x € A, ¢ is locally semiconvex on B(z,1/2k). By the Alexandrov Theorem,
¢ is twice differentiable at a.e. z € B(x,1/2k). Moreover, there exists a constant
C} > 0 such that

Hess,p > —Cyly, a.e. z € B(z,1/2k) (5.43)

where I is the 4 x 4 identity matrix.
We notice that A = U Apx. Denote by C' > 0 the constant given by

keN

C :=sup Cy.
keN

Then, .
Hess,p > —Cly, a.e. x € A.

By section 5.2, for almost every x € A C M, there exists a unique y € T'¥(z)
given by
Y = expy(—d. Q).
Then, the curve v,(t) : [0,7] — M defined by

Ve (t) := exp,(—td,p), a.e. z € A
is the unique regular minimizing geodesic joining x to y.
For every t € [0, 7], we define the function

Ttl M —- M
o= Ty(x) = 7(t) = exps(—tdep) -

Note that, Vt € [0,T], AR = {T}(z) : z € A} then we have
LHAf :/ dx :/ doe = / det(Jac T)(x))dz. (5.44)
AR {T;(2);2€ A} A
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However, the function 7} results from the composition of the two following func-
tions
fixeM—dpeTiM, and g:p e T*M — exp,(—tp) € M.

By computing the Jacobien of T}, we obtain

Jac Ty(x) = Jac g(f(z)) x Hess, @ .
Here, g is smooth on 7*M and by (5.43), there is a constant C' > 0 such that

Jac Tiy(z) > —C Iy, ae. z € A.
By (5.44), this implies

LYHARY > CLA(A), vt € [0,T].

O
We conclude with the following lemma.
Lemma 18. M% N M? has Lebesque measure zero on M.
Proof of Lemma 18. Assume that there is a set A of M N M such that
LY(A) > 0. (5.45)

Let T > 0 and € € {—1,+1}. For every ¢t € [0,T], we define the two following
intermediate subsets by

Al = {7 (t)] 7. € Q¥ with z € A and yJ(T) € T"(z)},

and

A7 =X (A).

We claim that for every z € A, there is t = t(z) €]0, T such that

X (x) # 7a(s), Vs €]t T1.

As a matter of fact, regular minimizing geodesics are analytic as projections of
the analytic sub-Riemannian Hamiltonian system and singular minimizing geodesic
are analytic as the analytic flow of X. Assume that ¢X.(z) = 7,(T). By the principle
of isolated zeros for analytic functions, there is t = t(z) €]0,T[ such that

p2a(7) # 7a(5), Vs €L, T.
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Without loss of generality, we can assume that there is ¢ €]0, T such that for every
reA
t=t(xr)<tand ABNAS =0, Vs €], T|

and

ARNAZ £

We denote by B
A:=ARU A7
We may assume that A has positive Lebesgue measure. Notice that for s > t, when
s —t, AF and A converge to A, then one has

L4(A) = limsup £*(A°) > lim sup £L*(AM U A%2)

6—0 s—tt

= lim sup £*(A% U A%)

s—tt

= lim sup[£*(AF) + £*(A7)]
s—tt

> lim (é + ea:p(—C’ I(A, Af)>>£4(A). (5.46)

s—tt

where A° := {x;dsgr(z, A) < §}, for a given § > 0.

The inequality (5.46) follows from Lemmas 14 and 17 according to which we
have

LYARY > CLYA) and £4(AS) > exp(—cm, Af))ﬁ‘*(fl),Vs Sa
As s — t, [(A, A?) tends to zero. So we can choose [(A, A7) > 0 sufficiently small
such that . B )
C+ exp(—C I(A, Af)) 10> 1.

It implies that £*(A) = 0. And the conclusion follows. O
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Chapter 6

The study of h-concavity,
h-semiconcavity and MCP on Carnot
groups

A method introduced by Cavalletti and Huesmann | | shows that we are able to
prove existence and uniqueness of optimal transport maps on spaces satisfying the
MCP. We recall that a sub-Riemannian structure is said to be ideal if it is complete
and has no non-trivial singular minimizing curves. In | |, Rifford proved that
ideal sub-Riemannian structures on Carnot groups satisfy such property and this
follows from the semiconcavity of the sub-Riemannian distance outside the diagonal.
The aim of this section is to study suitable regularity assumptions guaranteeing
the validity of the Cavalletti-Huesmann method for more general Carnot groups.
Unfortunately, the content is prospective. We showed the MCP property on Carnot
groups when the sub-Riemannian distance is assumed to be h-semiconcave. But
until now, we have no examples of Carnot groups which are h-semiconcave.

6.1 Preliminaries on Carnot groups

We recall some basic facts on Carnot groups. For further details on Carnot groups,
we refer the reader to | |.

A Carnot group G of step r is a simply connected Lie group whose Lie algebra g
admits a nilpotent stratification of step r. It means that g =V; +--- 4+ V, with

[‘/17‘/] = ‘/}+1,V1 S] <, ‘/T’ 7& {O}’ ‘/;"4'1 - {O}

We assume that a scalar product <.,.> is given on g for which the V;’s are mutually
orthogonal. The assumption that G is simply connected and nilpotent ensures that
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the exponential map exp : g — G is a global diffeomorphism (see | ]). This
allows to define the inverse of the exponential map given by the mapping

§: G — g
g — &g) =&+ -+&(9)

such that & : G — V;, forte=1,...,7r.
The identification of G and its Lie algebra g is justified by the Baker-Campbell-
Hausdorff formula

1
exp(Z)exp(Z') = exp(Z + Z' + 5[2’ Z'+...), Z,Z" e g (6.1)
where the dots indicate a finite linear combination of terms containing commutators
of order two and higher.

A Carnot group of step r is naturally equipped with a family of dilations defined
by
dx(g9) =expoAyoexp '(g), Vg €G

where exp : g — G is the exponential map and A, : g — g is defined by
Ax(vp+ - 4v.) =Avy + -+« + N'o,..

The first layer V; plays a key role. We denote exp(V;) = H., where e is the unit
element of the group G. Assume that V; is of dimension m, we fix {X! ..., X™} an
orthonormal basis of V;. The first layer V; behaves as a sub-Riemannian structure
on G: we call horizontal directions its elements, and any metric on it provides a
sub-Riemannian metric by translation. The homogeneity of the first layer implies
the homogeneity of the sb-Riemannian distance, that is for every A > 0,

dSR(Ov(S)\(g)) - /\dSR(07g)7 \V/g € g

In particular, this yields the invarinace of the sub-Riemannian balls by dilations,
that is for every A > 0,

(S)\(BSR<O,’I“)) = BSR(O, /\T),\V/’f‘ >0

where Bgsgr(0,7) denotes the sub-Riemannian ball centered at the origin with radius
r.

We say that an absolutely continuous curve v : [0,1] — G is horizontal if
F(t) € THy ), ae. t €0,1].
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Given g € G, we denote the horizontal plane H, by the m-dimensional subman-
ifold of G passing through ¢ given by

Hy={g' €G: ¢ = gh with h € exp(V})}.
We define another kind of curve joining two points g, ¢’ € G.
Definition 29. Given g,¢9' € G, for A € [0,1], we denote by
gx = gox(g7"g")

the twisted "convex combination” of g and ¢’ based at g.
Given g € G, and ¢’ € H,, the map given by

Ae[0,1]—gr€G

15 said to be a horizontal segment, and in particular, a geodesic.

Proposition 19. Given g,q € G, one has
1. g eH, =g € He
2.9 ety geHy
3. g €Hy= g\ € Hy, VA €[0,1]
Proof of Proposition 19. 1. ¢ € H, < ¢ = gh with h € exp(V1) = H. which
means that ¢~ '¢' = h € H,.
2. e, g YetH. g 'geH. g€ Hy,.

3. For A €[0,1], g» = gox(97'9") & g7 tg = o\(9719).
If ¢ € Hy, then g7'¢g' € Ho = 0\(97'¢) € He = gp € H,.
L]

We denote by € an open subset of G. Given i = 1,...,m, the action of X? on a
function f : Q — R is given by

X f(g) = lim LY exp(tX")) — f(9)

t—0 t

d i
= Ef(gexp(tX )) |i=0-

Let k be a positive integer. We denote by C¥(€2) the space of functions f : 2 — R

which have continuous derivatives up to order k£ with respect to the horizontal vector
fields X1, ..., X™,
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Definition 30. Let f: Q — R be a function of class C} on Q.

1. The horizontal gradient of f at a point g € § is the horizontal vector given by
Viflg) = X'f(g)X".
i=1

2. The horizontal symmetrical hessian of f at a point g € Q) is the matriz given
by
* LT iy i i
(Vif) (9) = §[X X' f(9) +X7X"f(g)

2,7=1,....m

According to | | and | |, we introduce the following:

Definition 31. Let f : Q0 — R be a function. We call the Pansu differential of f at
g € Q the map Df(g) : Q@ — R given by

Df(g)(h) = lim f(g0x(h) — f(9)

A—0t A

,Vh € Q.

If f € CL(R), then the Pansu differential D f(g) is given by

Df(g)(h) =< Vif(g),&(h) >,Vh € Q.

6.2 h-concavity on Carnot groups

Several notions of convexity on Heisenberg groups, and more generally in Carnot
groups, have been introduced and compared as the horizontal convexity (see | |,
| |) and the viscosity convexity (see | |). These definitions are proved to
be equivalent on Carnot groups (see | I, | I, | | and | D).

Definition 32. We say that a function f : G — R is h-concave on G if it is concave
on every horizontal segment, that is,

M)+ L= flg) < fgor(g7'd)),

Vg€ G,Vy € H, VA€ 0,1].

Proposition 20. Let f : G — R be a function of class C} on G.
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1. f is h-concave on G if and only if

f(d) < flg)+ < Vinf(g),&(9) —&(g) >, Vg€ G, Vg € H,.

2. f is h-concave on G if and only if
(Vif)'(9) <0, Vg eg.

Proof of Proposition 20. 1. Since f is h-concave on G, we have

Mg+ @ =XN)flg) < fgor(g7'd)),
Vg € G,Vg € H,, VA €[0,1].
It follows that

fg6r(g7g) — f (9)

flg) = flg) < 3

By making A tends to zero, we obtain

f(d) = f(g) <Df(g)g g
= flg") < fl9)+ < Vaf(g),&(g'd) >

= f(9") < fl9)+ < Vuflg),&(d) — &ilg) >,
Vg € G, Vg € H,.

2. If f is twice differentiable with respect to X%, i,...,m, then for any g € G,

g € H,, we have
f(g") = flg)+ < Vif(g),&(g) —&ilg) > +

1
2
Since f is h-concave, we have by (6.2) for every g € G, ¢ € H,

f(g") < flg)+ < Vif(g).&(g") —&(g) > .
Hence, Vg € G,Vq¢' € H,,

< (Vif)(9)- (&(d) — &(9),&(g) — &(g) > <0
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Remark 5. Let f : G — R be an h-concave function on G. We claim that the
convolution of f by a mollifier sequence (pe)eso, defined by

fo(g) = * f(g) = /gf(z‘lg)soa(Z)dz’Vg €g

18 a sequence of smooth and h-concave functions on G. In fact, for any g € G,
g € Hgy, and any X € [0,1], we have:

f-(90:(9719)) = ¢e = f(96r(97"9))
= /g F(z7g6\(g7"9))p-(2)dz
= /gf(z‘ g0\ ((z"rg) e g))soa(Z)dZ
> / () M=) + (1= A f(= )] e
g
>\ /g () g)dz + (1 - ) /g oe(2)f (27 )

> Afe(g) + (L= A)fe(9).

6.2.1 First-order horizontal derivative of h-concave functions

Theorem 13. An h-concave function f : G — R is Lipschitz with respect to the
sub-Riemannian distance.

Vil € Lig(9).

Proof of Theorem 13. We denote by f. := ¢. * f the convolution of f by the
mollifier sequence (p.).~o. By remark 5, (f.). is a sequence of smooth functions on
G which are h-concave. Moreover, (f.). converges uniformly to f on every compact
subset of G. By inequality (6.2), we have for any g € G, ¢’ € H,,

f-(9') < fe(g)+ < Viflg),&(9) — &ulg) > . (6.4)

Let go € g. Fix BSR(go,R) - BSR(g0,3R>.
For every g € Bsr(go, R), and ¢’ € H,\{0}, we have
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f(9) = [-(9) o < Vile(9),&1(g) = &i(g) >
dsr(9,9") dsr(9,9') .

Let us take now ¢’ € 0Bsgr(g, R) N H, such that 0 <e < R/2:

< Vinfe(9).61(9) = &i(g) > _ fe(g) = fe(9)
dsr(g,9') N R

<

[ fellzo (Bsr(go.2R))

=]

< S|z Bsr(go3R))-

By taking the supremum over all ¢’ € 0Bgg(g, R) N H,, we have

2
Vi f(g)] < EI\fIIm(BSR(go,SR))-

Since g is arbitrary,

9
UV nfe |l (Bsr(go.r) < §||f||L°°(BSR(go,3R))'

‘ 2 _
We denote by Lip(f) = E||f||Loo(BSR(gO73R)). Hence, for any g,¢9" € Bsgr(go, R),

we have

|fo(9') = fo(9)| < Lip(f)dsr(g,d)-
Let e tends to zero,
1£(g") — f(9)| < Lip(f) dsr(9,9), ¥9,9" € Bsr(go, R).
m

Thanks to the Pansu-Rademacher Theorem (see Appendix B.2 ), an h-concave
function is differentiable a.e. with respect to X¢,i =1,...,m.

6.2.2 Second-order horizontal derivative of h-concave func-
tions

We deal with the existence almost everywhere of the second order horizontal deriva-
tive of h-concave functions (see | | and | ).
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Definition 33. (BV}? functions) We say that a function f € L'(G) has h-bounded

second variation in G and we denote f € BV;2(G) if for any
1=1,...,m,

sup{/gXif div ¢ dz | ¢ € CHG), || < 1} < o0.

The following theorem extends a well-known property of concave functions. For
sake of completeness, its proof is given in Appendix B.4.

Theorem 14. Let f : G — R be an h-concave function. Then, f belongs to the
class BV;A(G).

The following theorem corresponds to Theorem 3.9 in | |-

Theorem 15. Let f € BV2(G). Then for a.e. g € G, there exists a polynomial P,
of homogeneous degree less than or equal to 2 such that

1
lim ————— Fy) = By(y)ldy = 0.
r—0*t T2|BSR(97T)’ BSR(g,r)’ ( ) 9( )‘
The following theorem has been proved in | I, | | and | |.

Theorem 16. Let f : G — R be an h-concave function. Then, for every g € G
there exist § > 0 with Bsr(g,0) and a constant C = C(g) > 0 such that for every
r < 0/15 the following estimates hold

sup  |f(Y)] £ 57— |f(y)|dy
yEBsr(gr) |Bsr(g,7)| Bsr(g,r)
and
C
||vhf||L°°(BSR(9ﬂ“)) < |f(y)|dy

T|BSR<97 T)l Bsr(g,r)

We give now the sub-Riemannian version of the Alexandrov-Busemann-Feller

Theorem (| |, 1 D-

Theorem 17. Let f : G — R be an h-concave function. Then for a.e. g € G there

exists a unique polynomial P, of homogeneous degree less than or equal to 2 such
that the following holds

i @) = Bo()]

= 0. 6.5
v—g  dsr(g,y)? (6.5)
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Proof of theorem 17. We recall by Theorem 14, that the h-concave function f is
BV2(G). Then, by Theorem 15, for a.e. g € G, there exists a unique polynomial P,
of homogeneous degree < 2 such that

I 1 1

im —————

r—ot 12 |BSR(97 7”>| Bsr(g,r)
Let go € G be fixed such that (6.6) is satisfied. We set v(y) = f(y) — Py (y)-

The polynomial P, can be of the form L + R, that is the sum of a polynomial L of
homogeneous degree < 1 and a polynomial R of homogeneous degree equal to 2 or

R = 0. Moreover, we can write L of the form

f ~ Byldy = 0. (6.6)

L(g) = c—l—Zajgj, with c,a; e R, j=1,...,m.
j=1
We note that L et —L are both h-concave. Hence, w = f — L is also h-concave. We
now havev=f - P =f—-L—-R=w—-R.
There exist ¢; > 0 such that Vr > 0,
sup |VuR| <cirand sup |R| < cr?
Bsr(go,r) Bsr(go,r)

As w is h-concave, then v + R is h-concave.
By Theorem 16, there exists 7y > 0 such that

C 1
lw(y)|dy + sup |VLR|

NI S TR TR
(Bsr(gor) r ‘BSR(QOal’ST)‘ Bsr(g0,157) Bsr(g07)

for any 0 < r < rq such that Bgr(go, 1579) C G.

It follows that

C 1
IVroll Lo Bsr(gor) < — T 7= [v(y)ldy + sup ViR
( SR(QO )) r |BSR<907 15’]”)| BSR(90715T) BSR(QO,T‘)

C 1
- | R(y)|dy
7 |Bsr(go, 157)|] Bsr(go,157)

C 1

P S o(y)ldy + ar + Cenr
r |BSR(90a 15T‘)| Bsr(go,157)
C 1

- - [v(y)|dy + car(l + C).
7 |Bsr(90, 157)| J Bgn(gosr)

Let Q be the Hausdorff dimension of the Carnot groups G. We may choose an
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arbitrary € €]0,1/2[ and 7 €]0, %[ such that
{y € Blgo,r) : Ju(y)] = er’}| < (87‘2)_1/ o(y)ldy — e o(r9).
B(go,r) r=0t
Fix r; < rg depending on € and 7 such that
{y € Bsr(go,7) : [v(y)| > er?}| < 7|B(x,r),V 0<r <71
We take y € Bsr(go, 5) and BSR(y,Tér) C Bsr(go, 5). There is
1 2
2, € B(y,7@r) such that |v(z,)| <er®,Vr <r;.
It implies for y € B(go, 5) and z. € B(y, T%T)
o(y)| < er’ + Ju(z) —v(y)l.
Hence, for r9 < r1/3 such that
IV av|| Lo (Bsn(go,sry) < Cr+3(14+ C)eyr = cor,V r < ra.
We obtain for y € B(go, 5),
lv(y)| < er® + cord(z,,y) < er* + T ar? < e(1+ co)r.
As ¢ is arbitrary,
)l
r—0 12 '
And the conclusion follows. O

6.3 h-semiconcavity on Carnot groups

Definition 34. We say that a function f : G — R is h-semiconcave on G if it is
semiconcave on every horizontal segment, that is, there exists C' > 0 such that

M)+ X=X f(g9) < fgor(g7' ) + A1 = N)Cl&(g) — &lg)f,

Vg€ G,Vg € H, VA e0,1].

The constant C' is called h-semiconcavity constant for f in Q.

The following proposition is fundamental (see | ).
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Proposition 21. Let g € G. Then for any ¢’ € H,, one has

&i(gn) = (1= N&i(g) + () (6.7)
with gx == gox(g7g'), for every X € [0, 1].

Proof of Proposition 21. Via the Baker-Campbell-Hausdorff formula (see (6.1)),
one has

g =96x(97'9")
zp(&(9)) exp(£(6x(9"9")))
wp(

E(0)+E6r(07 ) + 5 600). EGA T ]+,

Since gy € H,, we have 0)(g7'g') € H. which means that

&0\ g) =0,Vi=2,...,7

Then,

gr = exp(&(g) + -+ &(9) +&0a(g7'g) + % [€(9), &(Ox(g7 g )] +...).
Hence,
&i(gn) = &i(9) +&(oa(g7"g")
=&i(9) +X2alg™'9)
=&(9) + M&(9) —&(9).
]

From Proposition 21, we remark that an h-semiconcave function as given in
Definition 34 can be regarded as a smooth perturbation of an h-concave function,
that is it can be written as the sum of an h-concave function and a smooth one.
More precisely,

1(9) = (£(9) = Cl&a(@)?) + Cléa(9)

with g — f(g) — C|&1(g)|* an h-concave function.

Therefore, the h-semiconcave functions share all the regularity enjoyed by the
h-concave functions.

Theorem 18. Let f: G — R be an h-semiconcave function.
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groups
(i) The function f is Lipschitz with respect to the sub-Riemannian distance. Thanks

to the Pansu-Rademacher Theorem, f is differentiable a.e. with respect to
Xii=1,...,m.

(i) (The sub-Riemannian version of the Alexandrov Theorem)
The function f is twice differentiable almost everywhere on G with respect to
X i=1,...,m.

We also have the following properties that relate the h-semiconcavity property
of a function to its derivatives.

Proposition 22. Let f : G — R be an h-semiconcave function with C' as h-
semiconcavity constant. Then, [ satisfies the following properties:

1. Foranyge G, ¢ € H, ,
F(9) < o)+ < Vaf(9),&(9") — &(g) > +Cla(d) — &(9) . (6.8)

2. For any g € G,
(Vif)(9) < C I, (6.9)

where I, denotes the m x m identity matrix.

6.4 MCP on Carnot groups

Let G be a Carnot group of dimension n whose first layer V; has dimension m.

We define a class of sub-Riemannian structures, called h-ideal sub-Riemannian
structures on Carnot groups.

Definition 35. We say that a sub-Riemannian structure is h-ideal if it is complete
and the sub-Riemannian distance dgg is h-semiconcave on (G x G)\D, where D
denotes the diagonal of G X G.

Asin | |, we define the horizontal cut-locus at a given g € G as

cuty(g) :== Sh(dsr(g,.))

where ¥ (dsr(g,.)) denotes the set of points ¢’ € G such that the pointed distance
dsr(g,.) is not differentiable at ¢’ with respect to X*,i =1,...,m.

Without loss of generality, we proceed as if we work in R™ where (z1,...,x,)
denotes the local coordinates. Moreover, we fix {X!,..., X™} an orthonormal basis
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of V1. Up to a change of coordinates, we can assume that the vector fields X* are of
the form

X'=0,,, and X" = 9,, + Z af@zj,wzl...?m

j=m+1

with of € C(M).

For any horizontal vector field X := Z a; X", we define the horizontal divergence

i=1
of X, denoted by div, X, as follows

divp X = Z X(ay).

=1

We make the following assumption.

ASSUMPTION 1 For every i = 2,...,m,

Xi(ad)=0,Yj=m+1,...,n. (6.10)

As the sub-Riemannian structure is invariant by translation, it is sufficiant to
prove the result at the origin 0.

Proposition 23. Let G be a Carnot group whose first layer is h-ideal and satisfies
ASSUMPTION 1. Then, there is N > 0 such that for every measurable set

A C Bsr(0,1)\Bggr(0,1/2)
with 0 < L"(A) < 400, we have
LM(Ag) > sNLM(A), Vs € [1/2,1]
where
A = {7(5)] v :[0,1] = G minimizing geodesic with v(0) = 0,~(1) € A\cuth(O)}.

Proof of Proposition 23. Without loss of generality, we may assume that we
work in R™. We denote by f the sub-Riemannian distance pointed at the origin
0, such that
f: G — [0,400]
g = [f(g):=dsr(0,9).
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groups

Let f. = ¢. * f be the convolution of f and the mollifier sequence (¢.).. We may
note that f is h-semiconcave on G outside cut,{0}. By remark 5, for € > 0 given, f.

is smooth and h-semiconcave on G outside cut,{0}. It follows that, by Proposition
22, there is a constant C' > 0 such that

(V2£.)"(g) < ClI,, for ace. g € (Q\cuth{0}> N (BSR(O, 1\ Bsz (0, 1/2)) (6.11)

where [,,, denotes the m x m identity matrix.
We denote by Z. the horizontal vector field defined by
Z.(9) == —Vif(9), (6.12)
for ae. g € (g\cuth{O}) N <BSR(0, 1\ Bsr(0, 1 /z)).

Let g € G be fixed, and ¢;* be the flow of Z. from g. For every measurable set
A C Bsgr(0,1)\Bsr(0,1/2), we denote by

A7 = oy (A), VEe [1/2,1]
where A; = A\cut,{0}.

To measure the variation of the volume along the trajectories of the flow (7<),,
we have by the definition of the divergence

d(.. .
Lo (er(a)} = /Z o, feZd) g e D1 (619
We compute now the divergence of Z., for a.e. g € A;

divZ.(g) = div (Vi f-(9))
= —div (Z X'f-(9) X'(g
:_le Xf) (g ZXZfe div X'(g)

= —div, Vi f-(g ZX f-(9) div X'(g)

We claim that for a.e. g € Al, dwhvhfg(g) is bounded from below. In fact, we
have
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m

Vife=Y (X' f) X' = (O f) X"+ (X)X
=1 1=2

= (aanf&)Xl + Z (axlfe + Z afaxﬂfa)X
=2

1=m+1

Then,
divp Vi fo =Y X(X'f.)
=1
_ 8§1$1fa + Z X (Xifa)
i=2

n

=P Lot Y Ont+ D 0l0n)(0nft Y 0l f)
=2

jm—l—l l=m+1
_a§1x1f5+z fﬁz Z (02, 04)Or, f- + 2 Z Z 050} 5, -
1=2 l=m+1 z2lm+1
35 S Wi+ 30 ST ST adali?
=2 j=m+1l=m+1 =2 j=m+1Il=m-+1
“E + F

where

= S 2 Y eSS S el
1=2

=2 [=m+1 =2 j=m+1Il=m+1

and

=Z Z (D} %fﬁz Z Z (D, 01)0, f-.

1=2 l=m 1=2 j=m+1Il=m+1

By (6.11), there is a constant C' > 0 such that
E(g) < C, ae. g€ A;.

On the other hand, we have
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25D MCRCTNES S S S (ORI

=2 j=m+1 =2 j=m+1Il=m+1

- Z ( Z (aaclo% 8$lfe Z Z )azlfe
=2 l=m+1 l=m+1 j=m+1

=3 Y () + D2 ai(@s,0h))onf.
=2 l=m+1 j=m+1

By ASSUMPTION 1 (6.10), we have
Vi=2,...,m, X{(a)=0,Vi=m+1,...,n
It means that F' = 0.

Thus, we get
divy, Vife(g) < C, a.e. g € A;.

And the claim follows.

Furthermore, f. is Lipschitz with respect to the sub-Riemannian distance. So
there is a constant C’ > 0 such that

ZXifE(g) div X'(z) < C',a.e. g € Ay.

It follows that there is a constant C' > 0 such that
divZ.(g) > —C,a.e. g € A;.

Thanks to (6.13), we obtain
{cn(Ai )} > —/ Odr = —CL"(A_).
dt t @fs (Al) t
Using the Gronwall Lemma, it follows that there is N > 0 such that
LA ) >tV L(A), vt e [0,1/2].
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Making ¢ tends to zero yields
LM(A_) >tV L (Ay), Yt €0,1/2]

with
Ay = Spf—t (Al)-

Lemma 19. Let G be a Carnot group whose first layer is h-ideal and satisfies AS-
SUMPTION 1. Then, there is N > 0 such that for every k € N and for every

measurable set )

1
AC BSR(O, ﬁ)\BSR(Oa W)

with 0 < L"(A) < +o0, we have
L"(Ag) > sV LM(A), Vs €[0,1]
where

A = {7(S)| v :[0,1] = G minimizing geodesic with (0) = 0,~(1) € A\cuth(())}.

Proof of Lemma 19. Let us take a measurable set A C Bggr(0,1/2%)\ Bsr(0,1/2k+1).
By dilations properties, for every k € N, we have

5y (A) C Bgr(0,1)\Bsz(0,1/2)

and

52k<A5) = (52k(14))s, Vs € [0, 1].

So It is sufficient to prove our property for a measurable set A such that

AC BSR(O, 1)\BSR<O, 1/2)
11
Given s E]z_l’ 5[, we set

B = 5(25)*1 (Ags) C BSR(O, 1)\BSR(O, 1/2)

where 0(25)-1 is the dilation of factor 1/2s.
Hence,

B1 = (5(25)*1 (A2s))

1-
2 2
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And we note that

By = (5)"L(B)
= L(0py1(A)) > (%)Nﬁ"(é@s)—l(%s))
S (@) OLNA) 2 op(25)0L (s
S L) 2 g £

where () is the homogeneous dimension of G.

We repeat the above recursively and we obtain for any £ € N

LA > (QLN)’“ LAy, Vs €]

11
2T il

Let s € [0, 1], there is k € N such that

s €]

11 L1
2k+1,?[ and 2 56]5,1[.

Then, by Proposition 23, for any measurable set A C Bgsg(0,1)\Bggr(0,1/2), we get

LA > (2" £7(Ag) > (o )F(2F)V L (A) = VL7 (A).

[]

We claim that MCP defined on Carnot groups provides the non-branching con-
dition so we can apply the Cavalletti-Huesmann method to prove existence and
uniqueness of optimal transport maps.
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Chapter 7

Conclusion and Perspectives

In this thesis, we were interested in the study of the Monge problem on sub-
Riemannian structures, that is to prove existence and uniqueness for optimal trans-
port maps. We restricted our attention to transportation problems between com-
pactly supported probability measures from a smooth manifold into itself where the
cost is given by the square of the sub-Riemannian distance. Two different meth-
ods enable to prove existence and uniqueness of optimal transport maps in sub-
Riemannian geometry: the sub-Riemannian version of the Brenier-McCann the-
orems which requires regularity properties for dsr and, the Cavalletti-Huesmann
method covering, in particular, spaces satisfying the measure contraction property
(MCP). Combining these two methods leads to prove existence and uniqueness of op-
timal transport maps on some sub-Riemannian structures admitting many singular
minimizing geodesics. As seen in chapter 5, we treated the case of sub-Riemannian
structures of rank two in dimension four. In chapter 6, we studied the concept of
h-semiconcavity and MCP on Carnot groups. This study makes possible to apply
the Cavalletti-Huesmann method on h-ideal sub-Riemannian structures on Carnot
Groups.

Our framework raises many questions and perspectives, let us present them.

7.1 Influence of the cost

The regularity of the sub-Riemannian distance is central. In particular, in the proof
of Proposition 23, the h-semiconcavity of dsr plays a crucial role to establish the
MCP on Carnot groups. The fact that dgg is h-semiconcave provides a lower bound
on its horizontal symmetrical hessian. We suggested to study such kind of regularity
for dgr on more general sub-Riemannian structures.
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Theorem 19. Let M be a manifold of dimension n equipped with a sub-Riemannian
structure (A, g) of dimension m. Let f : M — R be the squared sub-Riemannian
distance pointed at the origin 0, given by

f(z) = d%p(0,7), Yo € M.

For any x € M, there is a submanifold S, tangent to the distribution at x such that
f 1is semiconcave on S,.

Proof of Theorem 19. Let x € M and ~ : [0,1] — M be a minimizing geodesic
joining o and x. There exists an open neighborhood V of ¥([0,1]) in M. Without
loss of generality, we can assume that V is an open subset of R™ and that there is
an orthonormal family F of m smooth vector fields X!, ..., X™ such that

A(z) = Span{X'(2),...,X™(2)}, VzeV.

Moreover, there is a control function u” € L*([0, 1], R™) such that

Y(t) = Zu?(t)Xi('y(t)), a.e.t € [0,1].

The End-point map associated to F at the origin is given by

End®: L([0,1,R™) —s G
u —  End°(u) = v,(1).

The End-point mapping End® is of class C!.
By Proposition 8, we have
X'(End’(u")) € Dy End (L*([0,1],R™)).

There exit v',...,v™ € L*([0, 1], R™) such that

Dy End’(v') = X' (End®(w")), Vi=1,...,m.
We define the application £ : R™ — M by

L,: R — M

a = Ly(a):=End(u + zm: a’).

=1
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Here, £, is of class C! in a neighborhood of the origin and £,(0) = =z. Its
differential at o is given by :

D/;I la=o - R™ — TEndO(uW)M

g — Zm: BiDr End®(v') = zm: B X (End’(u)).
=1 i=1

As its differential at 0 is injective, then £, is an immersion at o = 0. Hence,
the rank of the linear application DL, |,_, is m, equal to the dimension of R™. It
means that the image of a ball in the neighborhood of @ = 0 by the application
L. is a submanifold S, of R" of dimension m. Moreover, the tangent space to this
submanifold at the point # = £, (o = 0) is the image of the differential of DL, | _,.
Thus, we obtain a submanifold S, contained in End"(L*([0,1],R™) and tangent to
the distribution at x.

For every z in S, there is & € R™ such that
L,(a) =z (7.2)

Since { X*(End°(u”))}" | form an orthonormal basis of the distribution A (End®(u)),
we may assume that DL, |, is an invertible linear application. Thanks to the Lo-
cal Inverse Theorem, there are a ball B centered at z in S, and an application

Tz o B — R™ of class C? such that £, o J,(2) = 2, Vz € B.

Hence, for any z € B,

dip(0,2) = esp(0,2) < |[u? + > (Ta(2))i0'[|72
i=1
and
dzg(o,x) = egr(o,x) = ||u7[|72.
We set

o7 (2) = ||u) + Z(jw(z))iviﬂiz, Vz € B.
i=1
Then, there exists a function ¢*® of class C? such that

f(2) < ¢7(2),¥z € Band f(x) = ¢**(x). (7.3)

In fact, for any x € M, we can construct a submanifold S, tangent to the
distribution at = such that for any point y € S,, we can put a support function ¢%*
of class C? on the graph of the function f. It means that f is semiconcave on the
submanifold S, tangent to A(z). O
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With this type of regularity, it might be possible to have informations on the
horizontal symmetrical Hessian of dgg in order to obtain a contraction measure
property similarly to the proof of Proposition 23 (see also | D-

7.2 The Cauchy problem for BV functions

The concept of the Cauchy problem for BV functions appears in the proof of Propo-
sition 23. It seems unlikely that an h-semiconcave function is BV;? (see Definition
33 for the definition of BV}?).

Let G be a Carnot group and f : G — R an h-semiconcave function. If we
consider the horizontal vector field Z := —V, f, we don’t know if the flow of Z
exists. That is why, we proceed by creating a subsequence (f:). of smooth and
h-semiconcave functions approximating f.

For instance, we thought it would be interesting to extend to the case of BV},
vector fields the method of Ambrosio | | (see Appendix C). For this purpose,
an interesting work would be to extend the Diperna-Lions theory | | to the case
of BV}, vector fields.
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Appendix A

Local semiconvexity

Let (A, g) be a sub-Riemannian structure of rank m < n on the manifold M.

We recall here the definition of local semiconvexity of a given function.

Definition 36. A function f : Q — R, defined on the open set 2 C M, is called
locally semiconvexr on ) if for every x € ) there exist a neighborhood €, of x and
a smooth diffeomorphism @, : Q, — 0.(Qs) such that fo @, is locally semiconvex
on the open subset Q, = ¢,(Q,) C R™.

By the way, we recall that the function f:Q = R is locally semiconver on the
open subset 2 C R™ if for every & € €1, there exist C,6 > 0 such that

F(Qw+ (1= N)2) S Af(y) + (1= N (@) + M1 = NCle — P
VA € [0,1],Vz,y € B(Z,0)

where B(x,0) is the open ball in R™ centered at T with radius 0.

The following result is useful to prove the local semiconvexity of a given function.
Lemma 20. Let f: Q) — R be a function defined on an open set 2 C R™. Assume

that for every T € S, there exist a neighborhood V C € of T and a positive real
number o such that, for every x € V, there is p, € R™ such that

f(@) < fly) = {po,x —y) + olz—y>, Yy e V.

Then, the function f is locally semiconvex on €.
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Proof of Lemma 20. Let x € Q) be fixed and V be the neighborhood given by
assumption. Without loss of generality, we can assume that )V is an open ball B.
Let z,y € B and A € [0,1]. The point & := Ay + (1 — A)x belongs to B. By
assumption, there exists p € R" such that

f(@) < f(2) = (& —2) + ol —2|*, Vz€B.
Hence, we easily get
f(@) < flx) = XNp,y—x) + o)z —y|?

f@) < fly)—(1=Np2—y) +o(l =Nz -y

L=Nf(@) < @1=Nf(x) =AML= Ny =) +oA1 = M|z -yl
Af(2) < M)+ ML= NPy —2) + oA1 = Nz -y

= f(@) < A (@) + (1 =N f(y) + 2001 = M|z — y[?

and the conclusion follows. O]

Remark 6. Thanks to Lemma 20, a way to prove that a given function f: — R
18 locally semiconvex on €2 is to show that for every x € €, we can put a support
function ¢ of class C* under the graph of f at x with a uniform control of C* norm

of ¢.

Let us derive another important consequence of the definition of semiconvexity.

Lemma 21. Let Q be a subset of R™ and {ug}aca be a family of functions defined
on Q and locally semiconvexr with C,, the semiconvexity constant. Then, the function

U = SUp Uy 1S also locally semiconvexr on ().
acA

Proof of Lemma 21. Take z,y € Q and X € [0, 1] such that Ay + (1 — )z € Q.
Given any € > 0, we can find « such that

u( Ay + (1 = N)z) <ua(Ay+ (1= N)z) +e.

Then we have §, > 0 such that Vy € B(z,,)
u(Ay + (1 = N)z) — du(y) — (1 — Nu(x)
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< UMy + (1= N)zx) + e — M (y) — (1 — Nua(x)

<M1= N)Cylz —y|* +e.

Since € > 0 is arbitrary, we obtain the assertion.

More details of local semiconvexity of a given function are given in |
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Appendix B

(Geometric analysis

B.1 The Rademacher Theorem

The Rademacher Theorem | | states that real valued Lipschitz functions on R™
are differentiable almost everywhere with respect to the Lebesgue measure.

Theorem 20. Let f : Q2 — R be a Lipschitz function, where 2 C R™ be open. Then,
f is differentiable at a.e. x € ). That is the partial derivatives exist a.e. and

Vi@ = (L. w)

81‘1 ’ ,813”

satisfies
i £0) = 1) = V(@) ly — o)

y—e ly — x|

=0, a.e. x € Q.

Lemma 22. Let g : R" — R be a smooth function such that
[ s@ptans =0, v € o)

Then, g(x) =0, a.e. x € R
Proof of Lemma 22. We set

E={reR"g(x) # 0}

and we assume by contradiction that £ has positive Lebesgue measure.
For | € N, we define

}

1
Ef ={z eR"g(z) > 7
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and |
Ef ={rcR"g(x) < —7}
such that
E=|JE UE.
leEN

Since L"(E) > 0, it follows that either £L"(E;") > 0 or L*(E; ) > 0. Assume that
LM(E) > 0.
Let a € R™ be fixed. Thanks to the Lebesgue density Theorem, we have

. Lr <B(a, r)N Ef)

r=0 on (B(a,r)) -

We may assume that there is 7 > 0 such that for any 7 < r,
L (B(a, r)nN Ef)
L (B(a, 7“))

Let 0 < p <7 and ¢ € CX(R™) be the test function given by

L
100°

I <

1 x € B(a, p)
o(x) =48 0<p(x) <1 ze€ Bla,T)
0 else

Hence, we get

[Lo@eas= [ gedns [ s

R\ B(a,7)
+ / g(2)p(@)da
B(a,7)\B(a,u)

§/ g(x)d:c+/ g(z)dx
B(a,u) B(a,m)\B(a.u)

< —%E”(B(a,u)) - %E"(B(a,r)\B(a,u))-
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When p tends to 0, we obtain

| stohetards <~ (Bla.n),

Making [ tends to oo yields

| swotaae=o.

We are now ready to prove Theorem 20.

For each v € R™ with |v| = 1, we define the directional derivative in the direction

vat x € by
Dof(e) — iy L0 = S0)

—0 t

Let us prove that D, f(z) exists at a.e. z € Q). We consider

D, f(r) = limsup flz+tv) — f(z)

t—0 t

and

D, f(z) = ym inf flett) = f(m)

—0 t

Let A, be the set of points x € §2 such that D, f(z) does not exist

A, ={z € R"|D,f(x) # D, f(z)}.

Since f is continuous, A, is a measurable set. We claim that A, has Lebesgue
measure zero. Let us prove our claim. Let v € R™ with |v| = 1. For any = € Q, we
define the function

p: R - R

t = )= flx+1tv).

As f is Lipschitz on €2, then ¢ is also Lipschitz on R. It follows that ¢ is differentiable
a.e. t € R. Hence, L'(A, N L) =0, for any line L parallel to the direction v.
Thanks to the Fubini Theorem, we obtain

LM(A,) =0

which implies that f est differentiable a.e. € € in the direction v.
We denote by
B, ={x € Q|D,f(x) exists }.
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Let {e1,...,e,} be the canonical basis of R", and let
B,=B,NB,N---NB,,.
It is easy to check that B, is of full Lebesgue measure in R". Let us show that
Vo € B, D, f(z) =0v.Vf(z).

Let ¢ € C°(R™). For any z € B, we have

/Q D, f(z)ela)dr =~ | f(x)D(x)da

This and Lemma 22 imply that

D,f(z) =v.Vf(z) ae x € Q.
We choose now a countable dense subset in R™ such that |vg| = 1, and let
A ={z € % Vf(z) exists and D,, f(z) = vV f(z)}.

For any k € N, each subset Q\ A; has Lebesgue measure zero. It means that
A = () Ay satisfies L™(Q\A) = 0.
k=1

Let us prove that f is differentiable a.e. x € A. For any x € A and any v € R" with
lv| = 1, we set

Q(z,v,t) = fle+ tUt) — ) v.Vf(x).

By a density argument, for € > 0, there is N > 0 such that

Vk > N, v —ug| <e.
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We recall that Q(x, v, t) P 0, that is 3§ > 0 such that for 0 < || < ¢,
—

|Q(, vi, )| <

DN ™

Assume that f is C-Lipschitz. Then, we have

o1
6@»

| < C which means that |V f(z)] < v/nC a.e.
Hence, we get for x € A

|Q($,U,t)| < |Q<CL’,’U’C7t)’ + |Q($,U,t) - Q(ZE,Uk,t>|

< g+ f(x—l—vt)—tf(x—i-vkt) (0= ) V()

IN

g_|_ C|U — ’Uk| + ’(U - ?}k>Vf<5U)’

€
<5+ O+ Vn)lv — v
We can choose k sufficiently large such that

2
[P . —

2(1++/n)C”

Then, |Q(x,v,t)| < ¢ and the conclusion follows.

B.2 The Pansu-Rademacher Theorem

[ | gave an extension of the Rademacher Theorem.

Theorem 21. (The Pansu-Rademacher Theorem)

Let X1,...,X,, be m smooth vector fields satisfying the Hormander condition and
of the following form

Xj:8j—|— Z aij(:c)ai,jzl,...,m

1=m+1
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where a;; € C*°(R™). Let (R™,d) be a Carnot-Caratheodory space induced by Xy, . .., Xp,.
Assume that f : R™ — R is a Lipschitz function. Then, for a.e. x € R"

Fly) = f@) = > X f(x)(y; — )
7= = 0.

y
v d(z,y)

Proof of Theorem 21. For any j = 1,...,m, let + € R™ such that X;(z) # 0.
We denote by O; the orbit of  under X, that is

O; = {¢z’ (1) t € [0,1]}

where 37 (.) is solution of the Cauchy problem

Let f/o, : R — R be the restriction of f to O;. The function f,o, is Lipschitz,
then it is differentiable at a.e. # € R. This means that X;f(z) exists a.e. x € R",
V7 =1,...,m. Moreover, assume that f is L-Lipschitz, we get

|Vif(z)| < L, ae. z € R".

Hence, |V, f| € LT (R™),Vp > 1 and thanks to the Lebesgue differentiation Theo-

loc
rem, we have:

1
. p _ p =
Tll>I<I)1+ |B($7T)| /B(:cm) ’ |Vhf| (x) |Vhf| (y) ’dy ’

1
li \V4 f \V/ Pdy = 0. B.1
= r—>H<?*- |B([E, T)| B(z,r) | " (x) hf(y) | =y ( )

Let € C R™ be a bounded open set with homogeneous dimension () and fix
p> Q. Let x € 2, we set

9(y) = f(y) = Y _ X;f(x)(y; — x;) such that g(z) = f(x)

and
Vi=1....m, Xjg(y)=X;f(y) — X;[f(z)
By the Morrey inequality, 3C' = C (2, X, @, p) > 0 such that

1

[ 6) — 9(o) | < Crir— /B i) P) Wy € B
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We choose r = 2d(x,y) such that

[ Fy) = flo) = 3 Xif (@) (s = 5) |
d(z,y)
1 Pt
< (G / o 1Y) = V@) D
By (B.1), the conclusion follows. ]

B.3 The Alexandrov Theorem

The classical thorem of Alexandrov (| I, | |, see also | |) states that
a concave function in R” admits a second-order derivative almost everywhere.

Theorem 22. (The Alexandrov Theorem) Let f : R™ — R be a convex function.
Then, f s twice differentiable a.e. x € R™.

Proof of Theorem 22. We recall that the convex function f is locally Lipschitz.
By the Rademacher Theorem (see Theorem 20), f is differentiable a.e. x € R™. We
denote the subdifferential of f by:

Of(z) ={D.f}, ae. x e R"
where D, f is the classical differential of f at x.

We define the function

F: R* — R
r = F(z)=z+0f(x).

Lemma 23. F' is onto.

Proof of Lemma 23. Let y € R” be fixed. We define

R* — R
p: 1

v o) = gllellP + flz) -2y
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We note that ¢ is convex and satisfies

lim ¢(z) = +oo.
||z[| =00

Then, ¢ admis a global minimum at some point z(. It follows that
0 € dp(xg) =20+ 0f(x0) —y = F(x0) — ¥y
=y € F(xo). O

Lemma 24. Let yo € F(x) and y; € F(x1) such that
Yo =To + by, y1 =x1+ by
with by € Of (x0),by € Of(x1). Then, we have
1 = wol| = [[z1 — @0l (B.2)
Proof of Lemma 2. We recall that
(Y1 = yo)- (21 — o) = [Ja1 — @o|[* + (b1 — o). (21 — o).
Since f is convex, we have
(by — bo).(x1 — o) > 0.

Then,
(y1 — vo)-(z1 — o) > ||lz1 — 20|
By the Cauchy-Schwartz inequality, we get

v = ol [lz1 — zoll = (v — wo)-(z1 — 20) > ||z1 — 2o|[?
= |ly1 — yo| = [|z1 — 20]]. O

The inequality (B.2) shows that F' is injective. This and Lemma 23 imply that
F est bijective. Thus, F' is invertible. We define G : R — R" such that

Gly) =z < ye F(o).
By (B.2), we have for yg € F(x¢),y1 € F(z1)

ly1 — ol > [|71 — 20l|.

= [1G(y1) = Gyo)l < llyr = woll
G is 1-Lipschitz, then by the Rademacher Theorem, G is differentiable a.e.
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Lemma 25. Let G : R" — R"™ be a Lipschitz function. Then, the set
E ={G(y) e R"| D,G exists and is invertible}
15 of full Lebesgue measure.

Proof of Lemma 25. By the Approximation of Lipschitz functions (see Theorem
6.6.1 in | ]), for € < 0, there is a function h : R* — R of class C' such that

L{y € R"| h(y) # G(y) or D,h # D,G} < e.
Thanks to the Sard Lemma, the image by h of the set
H = {y € R"| G is not differentiable at y or D,G is not invertible}

has Lebesgue measure zero. We denote by £ = H€ the complementary set of H.
And the conclusion follows. O

Fix yo € R™ with G(yo) = wo such that G is differentiable at y, and D,,G is
inversible. Hence,

G(y) — G(yo) = Dy, G.(y — vo) + o(|ly — »o)
=z —x9 = DyG.(y — yo) + o(|ly — wol|)
=y —yo = (Dy,G) " .(x — x0) + o(|ly — wol])-

As o(|ly — woll) = o([|z — xo]]), we get

=y — Yo = (Dy,G)".(x — x0) + o]z — ol]). (B.3)

We have y € F(z) and yo € F(x9), so (B.3) shows that F is differentiable a.e. We
recall that by definition we have

F(x)=x+0f(z) = 0f(z) = F(x) — x.

Thus, f is twice differentiable almost everywhere.
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B.4 The sub-Riemannian version of the Alexandrov

Theorem
In this section, our aim is to prove Theorem 14. In the spirit of Gutierrez and
Montanari | | and | |, we show that any locally h-concave function is
th2loc'

B.4.1 Tools from matrix analysis

Let A = (ai;)ij be an m x m symmetric matrix with eigenvalues A, ...

The second elementary symmetric function of A is defined by

o2(A) = s(\) =D N, with A= (A1, ).

j<k
We can check that
1 m m
s = 5{( W=D
j=1 j=1
and P
s
—\) = Ak

Lemma 26. If 05(A) > 0 and trace(A) > 0, then

O0s
— > = . .

Proof of Lemma 26. We recall that

trace(A) = Z A

Hence,

trace(A) = Z A+ A = ;Ts()\) + A
J

i#k
This implies that

0s
)\j ZO or 8_)\](>\)+>\] ZO
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Assume that A\; > 0. We have, by hypothesis, g5(A) = s(\) > 0.

Then, by (B.4)

m

Sz (3N
k=1

k=1
By (B.5) and (B.6), we get

a m
a—)i(/\) :ZAkngk—Aj > 0.

kj k

Proposition 24. If 09(A) > 0 and trace(A) > 0, then

m
802

5= 90

(A)[EZI] > 0, Ve e R™.

9(A+ C) — 09(A) = s(v) — s(N).

Since C' > 0, we get v; > \;, for any j =1,...,m.

Moreover, by lemma 26, we have

1 0s
) Qmm{a)\j()\l,...,)\m),j 1,...,m} 0.

Choose C' sufficiently small such that

Proof of Proposition 2. Let C be a non-negative definite Hermitian matrix. Let
v = (11,...,Vm) be the eigenvalues of the matrix A + C' such that
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=6 (trace(A + C) — trace(A))

= ¢ trace(C) >0 since C' > 0.

We take now C' = tz.a” = t(zz;), © € R™ and ¢t > 0 sufficiently small. We
obtain

o9(A + tx.x’) — oy(A) > Strace(C) = ot|z|?.
Thus, for every x € R™

m
80'2

d
—oy(A+tra)|—g = (A)zz; > 8|z* > 0.

dt =1 8aij

B.4.2 Proof of Theorem 14

Let €2 be an open subset of the Carnot group G.
Theorem 23. Let u: 2 — R be an h-concave function. Then,

XXy + XXy

2
Proof of Theorem 23. We denote by u. = ¢.*u the convolution of u by a mollifier
sequence (¢.).~o. We recall, by remark 5, (u.). is a sequence of smooth functions on

M which are h-concave on M. Moreover, by Proposition 20, the m x m symmetric
matrix

is a Radon measure for i,5=1,...,m.

(Viu(z))* is negative semidefinite on (). (B.7)
For some p = (p1, ..., pm) € R™, we define L. by

L) = =Y [ wle)(FE ) ul@lp oo, Vi€ O (@),

i,j=1

Integrating by parts yields

L) = =3 [ o) ule)nalpa)ds,

ij=1
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We deduce by (B.7) that
LE(¢) >0, V¢ >0.
We define now
XX+XX N
-y / R R @) pa(@) s (), 1 € CR(Q).
7,7=1

Since (uc). converges uniformly to u, we get

L() = lim L.()) > 0.

e—0

Thanks to the Riesz Representation Theorem (see section 1.8, | ]), there
exists a Radon Theorem p” on €2 such that

L) = [ vl v € CH(0).

If we take p = e; then
[uwxzotar= [ vau
Q Q

€+ e,
Let us choose now p = ——2_ we obtain
P /2
XX + XX + X7+ X7 g
/ u(a D R
Q 2 Q
XX X, X g g g
= [ )T = [ wldu ~ du  dy).
Q Q
This implies

= —(d,uij — d,uii - d,ujj) = dvY.

2

Let u: Q — R a function of class C7 on Q. We denote by

Xinu + X]XZU

H(u) = 5
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Definition 37. A function u € C?(Q) is said to be oo(h)-concave on 2 if

1. the trace of the symmetric matriz H(u) is non negative,

2. the second elementary symmetric function in the eigenvalues of H(u) given by

XXy + Xinu)g}

o2 (H(w)) = > { X Xux/X7u — ( .

1<j

18 mon negative.

We pick a local frame {Y! ..., Y"} of the tangent space of M such that
Yi=X'Vi=1,...,m
We denote by

n
[(X*, X] = E Y Vi, g =1,...,m
k=1
where Qijr are constants.

Theorem 24. Let u, v be two functions in C*(Q) such that u + v is oo(h)-convex
in 0 satisfying u = v on O et v < u sur ). Then,

n

/Q{ Z i: (aijp)? )Q}dz

i,j=1 k=1
Proof of Theorem 2. We set
o XXy + XIX?
S(u) = o9 (H(w)) :Z{XzXZuXJXJu—( u—;— U)z}
i<j
XiX7 XXt
Setting r;; = u42— u’ we obtain:
oS X Xu+ XX
X7 Xu =— :
07“” ; aTij (U) 2

We recall that, by section B.4.1, since u is o9(h) — convex,

oS
87”“

(u) is non-negative definite.
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(we apply the result of Proposition 24 with A = H(u), where u is a oy(h)-convex
function.)

Let 0 < s <1 and ¢(s) = S(v+ sw) where w =u —v. We get

/Q{S<“> v)} dz —/ / ) dz ds

/ / 8% (v + SUJ)(Z)(Xin)w(z)} dz ds

/ / arm % (o4 sw)(:)X0w(2))

(v+ sw)(z))ij(z)} dz ds.

87"1']'
As w =0 on 002 and w > 0 on €2, then the normal to 0f2 is given by
Xw

e [Dw|’

with Xw = (X'w,..., X™w). By an integration par parts, we get

/ /ZXZ 5 (U + s0)() X w(2)) deds

4,j=1

/ /aQ orij (v + sw)(2) X w(2)vxdo(z)ds

/ /m Ir; 0+ su) () Xu: )fg o (2)ds

/ /BQ 8sz S;i; (w)(2)} X w(z) ﬁ;jj do(z)ds

/ /89 87‘” g:; (u)(2)
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On the other hand, we remark that for j = 1,...,m fixed, we have:

oS 0S8
XZ = XI(=— X
Z 3% (873] w) + Z ( ors; w)

= V(LX) - P (A
k#j i#j

N X XTw 4+ XX
=3 (i - XI(EE )
=

(X7, X Xiw (X7, X Xw XX, X|w
=> ( + - )
o 2 2 2

i

_ BZ(XZ[X;,X ]w)

i#]
3 irvi v
:§ZX[X,X]w

i#]
Hence,

_ /O /Q in(gri (v + sw)(2)) Xw(z)dzds

/ /ZX (X7, X (v + sw) (2) X w(z)dzds

i#]
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/ /m Z (X7, X7 (v + sw)(2) X w(2)vxido(z)ds

i#j
__// SO, X (0 + sw)(2) X X w(z)dz ds
= g/ol /mé[)(j,)(l](v+sw)(z)ij(z)1/X1da(z)ds
v / /m S, X7+ sw)(2) X (2)vxondo(2)ds
__/ /;XJ (0 + sw)(2) X XIw(z)dzds

:__/ / SO, X0+ sw)(2) X Xw(z)d=ds

_ 3 / /Q ;XJ (0 + sw)(2) X Xw(z)d=ds

_2 (X7, X?)(v + sw)(2) X* X w(2)dzds
Jys>

—...—g/o L;[Xj,Xm](v+sw)(z)Xijw(z)dzds

:——// X2 (v + sw)(2) X ' X?w(z) + - -+

N+ sw)(2) X' X™w(z) + [X', X (v + sw)(2) XX 'w(z) + -+ +
[Xl Xm](v+sw)( )X X w(2) + -+ [ X XM (04 sw)(2) XX w(z)
o (X XM (0 + sw)(z)Xme_lw(z)}dzds

:__/ /ZXJ (v + sw)(2)[X", X?Jw(2)dzds

JFi
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3 [ . oY b XNw(2)dzds
:5/0 /Q;[X7X](v+sw)(Z)[X,X] (2)d=d

1 m n
a ; / / Z Z ijuY (0 + sw)(2)ai; Y Fw(z)dzds
0 Ja

j#i k=1

= g/ol /Q ii(aij,k)g (ka(z) + ska(z)>ka(z)dzds

j#i k=1

- ;/ﬂii(amkf(/ol(}/kv(z) + ska(z))ds)ka(z)dz

j#i k=1

= g/ﬂzm: zn:(aim)z (ska(z) + S;ka(z)) b YFw(z)dz

j#i k=1

- g/ﬂzm: zn:(aij7k)2 (ka(z) + %(qu(z) — ka(z))> (qu(z) — ka(z)>dz

j#i k=1

= ; /sz: zn:(aijka% <qu(z) + ka(z)> (qu(z) — ka(z)>dz

j#i k=1

_ Z /Q ii(aw,k)?((yku)?(z) - (Y’“v)Q(z))dz.

j#i k=1

And the conclusion follows.

Lemma 27. Let u and v € C?(Q) be two oy(h)-convexr functions. Let
f:R? = R be a convex function such that f is non-decreasing with respect to each
variable. Then,

w = f(u,v) is a oo(h) — convex function.
Proof of Lemma 27. Assume that f is of class C? on R%2. We have

of of
Xj'LU = %X]U + %va
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and

_of 0*f o*f
X, Xjw = 90 —X; Xju + oo ——X;vXu + aU2Xiquu
af 0*f 0*f
+ %Xinv + 502 XUX U+ 8U8UX uX;v.
For any h = (hy, hy) € R?, we have
< H(w)h,h >= Y X;Xjwh;h;
ij=1
_of of
=3y < H(u)h, h > +a—<H(v)h, h >

0
+w(ZXiuhi)(Zth a — Zth Zth
8uav Z Xiuhi) Z Xjvh) 8v8u <; thi)(; Xjuhi)

Since u and v are o9(h)-convex,

of af
> =L
5y = 0 and 5 0.
Moreover, the matrix
of  Of
ou?  OJudv
2o
ovou  Ov?

est non negative definite. Then, w is o9(h)-convex.

Assume now that f is a continuous function. We consider f. = ¢, * f the
convolution of f by the mollifier sequence ¢.. Since f is convex, f. is also convex.
From the above , w. = f.(u,v) is oy(h)-convex such that

We —> W.
e—0

Hence, we conclude that w is o4(h)-convex. O
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Proposition 25. Let u € C*(Q) be a o9(h)-convex function. Then, for every com-
pact K C €, there exists a constant C = C(K,Q) > 0, independant of u such
that

3 m n
/Q {UQ(H(U)) +7 Z Z(aij7k)2(qu)2}dz < C(oscqu)?.
ij=1 k=1
with oscqu the oscillation of u on 2.

Proof of Proposition 25. We proof the result on the Heisenberg group in R?*!
with coordinates (x1,...,%n, Y1, .., Yn,t) Where

A = Span{X*', ..., X" Y .. Y"}
with
X' =0, —2y0;, Y'=0,, + 21,0,

and
[(X° Y] =40,,Vi,j=1,...,n.

Let z € Q and Br = Bgr(Z) be the ball centered at z of radius R such that
Br € Q. For 0 < o < 1, let B, be the concentric ball centered at z of radius
oR. Note that the sub-Riemannian structure is invariant by translation, so we may
assume that z = 0.

Set M = max u(z), we get
r€BR

u— M <0 on Bg.

Choose € > 0 such that u— M —e < —e. By subtracting a constant, we may assume
that
u < —e on Bp.

Put
o = g, ) and ) = R
We check easily that

v=0 on dBg and v =mg on 0B,x.

Following the calculations in the proof of Proposition 6.2 in | |, we get

72 (M) = enllo P+ PPy 2 0
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with ¢, a positive constant and, since my < 0

trace(H(v)) = —(8n + 4)(Jz|* + |y|2)<1_mﬁ > 0.

This implies that v is oq(h)-convex.

Since v — mg = 0 sur dB, g, we have
v < mg on Bypg.

In particular,
v <wuon Bypg.

Let p € C5°(R?) such that / p(z)dz =1 and
R2

x —
fr(x1,20) = h? /2 P(Ty) max{yi, y2 tdy;dy..
R

Put
Wwp = fh(u, U).

By Lemma 27, wy, is o2(h)-convex.

If y € Br, we have
v(y) < uly).
Then, for h sufficiently smell, we have

o if v(y) < u(y) then, fu(u,v)(y) = u(y).
o if v(y) = u(y) then, fi(u,v)(y) = u(y) + ah.

Hence,

/B {o2(H (1)) + 12n(Gu)?}dz — /B (o2 (H(wn)) + 12n(Dyp)?}d2

< {o2(H(wp)) + 12n(dwp,)*}dz  (B.8)

Br

Since fj(u,v) > v on Bg and f,(u,v) = 0 on dBg, we apply Theorem 24:

. {o2(H(wy)) + 12n(0awy)*}dz < [ {o2(H(v)) + 12n(0v)*}dz

Br
mo ))2R2n2/ (cn(\x|2—|—]y|2)2—|—48nt2)dz.
By

= ((1?
(B.9)
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By (B.8) and (B.9), we obtain

/ {0'2 ‘|— 12n(3tu) }dZ < (m)2R2n_2/ (Cn<|x|2 + |y’2)2 + 48nt2)dz
o‘R - B
S C<m0)2R2n—2

< OR*™ *(oscpyu +¢)*

Make ¢ — 0. And, the conclusion follows.

Corollary 1. Let u € C*(Q) be a o3(h)-convex function. Then, there is a positive
constant C' independent of u such that

/(qu)Q(z)dz < Closcqu)®,Vk =1,...,m,.
Q

In other words, Vk = 1,...,my, Y*u is L*(Q).

Theorem 25. Let u: Q — R be an h-convex function. Then, u € BV(Q).

Proof of Theorem 25. Let u : 2 — R be an h-convex function. Then, u is
Lipschitz with respect to the sub-Riemannian distance and X'u exists a.e. on €,

i =1,...,m. Moreover, there is a Radon measure dv*” such that
X Xu+ XX g
_g =dv¥,i,j = 1.

We recall that for i,j =1,...,m,

n

XX+ XIX'+ [ X, XV XZXJ+XJX’
2 X, X9 Z%ky

XX =

Let ¢ = Z ¢; X’ be a function of class C? with a compact support K and ||¢|| < 1.

j=1
We get
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/XZ ) divx¢(z)dz

= —/ u(z) X'divx¢(z)dz
Q

m

=-> /Q (2) X'X7¢,(2)dz

Jj=1

m

——Z/Q“(@(XW%( );XJX% +Z%ky 65(z )>

j=1

n

S ([ a@arie+ Y au IRERCDED

j=1 7 k=1

Let u. = ¢, * u be a sequence of smooth functions which are h-convex. Then,

uc is 09(h) — convex and Y*u, € L*(Q),Vk =1,...,n —m.
| [ utosst =1 [ Yuodel < IV hudog < C.
By making e tends to 0, we get
| [ uevsia <c.

Hence,
/XZ ) divx p(z)dz < 00

which implies that u € BV2(Q).
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Appendix C
Cauchy Problem for BV vector fields

Here, we study the Cauchy problem for BV functions.

Let b:[0,1] x R™ — R™ be a bounded vector field such that
L. by(x) :==b(t,x) € BVjoe(R"), a.e. t € [0,1]

2. D.by << L™ such that D.b, = divb L™

3. |D.b|(Bgr) € L, .([0,1]), VR > 0

loc
1
L / [divh] |l < +00
0

In | | (see also | |), Ambrosio defined a class of Lagrangian flows,
solutions to the Cauchy problem #(t) = b(¢,~v(t)) for L™-almost every initial conndi-
tion z and proved for them existence and uniqueness.

We introduce now our main notations and definitions. By abuse of notation, we
set € the space of continuous R"-valued maps in [0, 1], i.e. € = C’([O, 1},R”).
Definition 38. Let x € R". We denote by €° the subspace of € given by

t
€= {fy(;z:) EC;v(x)(t) =x +/ b(7,y(z)())dr, Vi € [0, 1]}
0
It is clear that the subspace €? is made up by solutions of the ODE (t) =
b(t,~(t)) starting at z.

Definition 39. Let ACR" andvy: A — € be a L"-measurable map. We say that
v s a Lagrangian flow from A, relative to b if for a.e. x € A,

v(x) € 6L
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The main result introduced by Ambrosio | | is the following:
Theorem 26. Let b: [0,1] x R" — R" be a bounded vector field such that

1. by(x) :=b(t,x) € BVjpe(R™),a.e.t € [0,1]

2. D.by << L™ such that D.b, = divb, L"

3. |D.b|(Bgr) € L},.([0,1]), VR > 0

loc

1
/ / [divbe] || o= (i) < +00
0

Then, for any L™-measurable set A C R"™, there is a unique Lagrangian flow starting
from A relative to b.

Its proof is based on tools borrowed from Probability and calculus of variations
together with a renormalization property.

C.1 Probability measures on &

Let P(€’) be the space of probability measures on €.

Let A be a subset of R" and let n: A — P(%) be a L"-measurable application.
For t € [0,1], we define 1, the image of n, by the application v — 7(t) such that
for any subset K of R",

N (K) = 12 (7 :7(t) € K).

Lemma 28. Let x € A. Assume that for each t € [0,1], n is a Dirac measure.
Then, n, is a Dirac measure.

Proof of Lemma 28. Let v, be two distinct functions in 4. Then, there is
to € [0,1] such that v(tg) # 7'(tp). By a continuity argument, we can choose an
open interval I containing ¢, such that

V() # (1), Vt € L.

We can construct two disjoint neighborhoods K and K’ of v(to) and +/(to) respec-
tively. Let ¢ € I be fixed such that, by definition, we have

ma(K) =n(y: 7(t) € K)

and
ma(K') =n(y": 7/(t) € K).
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Without loss of generality, since 7, is a Dirac measure, we may assume that 7, is
concentrated at a point kg in /K. This means that 7, is concentrated at an application
v € € such that v(t) = kg € K. Hence, 1, is a Dirac measure. O

Theorem 27. Assume that

vt € [0,1], U supp M C R” (C.1)

T€EA

and

Vt € [0, 1], there is a negligeable subset A, of A such that
e (7 7(t) € K) me(y:9(t) € K') =0,V € A\A, (C2)
where K,K' are two disjoint subsets of R™.
Then, there is a negligible subset A of A such that
Vo € A\A,n, is a Dirac measure.

Proof of Theorem 27. By Lemma 28, it is sufficient to prove that there is a neg-
ligeable suset A of A such that Vx € A\ A,

Vt € [0,1], ny is a Dirac measure.

Without loss of generality, we may assume that

U supp ni: C @, where @) is a cube.
z€A

We divide @ into two disjoint parts @1, Q2 such that Q@ = Q1 U Q. Let ¢t € [0,1] be
fixed. By (C.2), there is a negligeable set A; C A such that

M (Q1)1he (Q2) = 0,V € A\A,.
This involves two possibilities :
o supp niw & Q1 = x & A\A, = {y € A\A, : 1y (Q1) #0}
o supp i ¢ Q2 = o & A\A, = {y € A\A; : 1y, (Q2) # 0}

For I € N fixed, we consider the canonical decomposition of () into 2" cubes QP
of side 27", From {Q"};, we can construct a family of sets {Q"}; pairwise disjoint
such that

Qr=Q1, Q:=@Q\Q1, ... Q' =Q\(QIU--UQ)
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and

Q=Jaer
By assumption (C.2), V¢ € [0, 1], there is a negligeable set A; of A such that
N (Q7) Mha(QF) = 0,V € A\A, i # j.
For every 4, we construct the set A"\ A, such that
Vo € AM\A,, supp n. C Q.
Hence, diam supp 1, < v/n27". Make h tends to oo,
diam supp Ny =0

which implies that n;, is a Dirac measure. It follows from Lemma 28 that there is
A= U Ay a negligeable set such that
te(0,1]

1. is a Dirac measure.

C.2 Renormalization property

In this section, we proceed by extending the Diperna-Lions theory | | to obtain
a renormalization property in the case of BV, functions.

Let us recall the result introduced by Diperna-Lions in the case of Sobolev func-
tions.

Theorem 28. Let B € W (R, R™) and w € L(R™) satisfying the transport
equation
D.NVw = cL", for some ¢ € L;,.(R"). (C.3)

Then, for any h € C*(R™), we have

BV (hw)) = ch(w)L".
Proof of Theorem 28. Let (p.). be a mollifier sequence in R". From (C.3), we
get

(D.Vw) k pe = cxel”.
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= B.V(w*p. =cx p L7 + 1. (C4)

where

r. .= B.V(w* p.) — (B.Vw) * p..
We multiply both sides of (C.4) by h(w % p.), we obtain
BV (h(w) * p.) = h(w * pe)[e* p L™ +r.].
We note that
re = / w(zr — ey) Ble - 832) — Bl@) Vp(y)dy — (z.divB) * p.(x)

=, ~uta) [ 57 S o )y - w(a)dion(a

€

4,7=1
) [ 32 G o)l — uleiion(o
=0 because/ p(y)%dy:&j. (C.5)

Therefore, when ¢ tends to zero, using the fact that r. — 0 (by (C.5)), we
e—

obtain '
B.V (hMw)) = ch(w)L".
[

Before we introduce the normalization property for BVj,. functions, we recall
some definitions and properties for BV, functions.

Definition 40. Let Q C R™. We say that B € L*()) has bounded variation in €,
and we denote B € BV (Q), if

sup{/QB divp dz | o € CHQ,RY), |o| < 1} < o0.

We also define the local version of the above concept.

Definition 41. Let Q C R™. We say that B € L}, (Q) has locally bounded variation
in Q, and we denote B € BV,.(Y), if for every open set U C €,

sup{/ B dive dx | ¢ € CHU,R™), |p| < 1} < 00.
U
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Let B € BVj.(f2). The structure Theorem for BV, functions (see Theorem
1, section 5.1 in | |) asserts that the first derivative DB of B is a R"-valued
measure of finite total variation |DB| with

|DB|(Q2) := sup{/B divp dz | p € CHU,R™), |¢| < 1,VU C Q}
U

Hence, DB admits a polar decomposition
DB = N|DB|with |N(z)| = 1,a.e. z € §.

By The Lebesgue Decomposition Theorem (Theorem 3, section 1.6.2 in | ]), we
may set
D.B=D"B+ D°B

such that
|D*B| << L™ and |D*B| L L".

We may obtain DB = DB + trace(N)|D*B|. In particular,

DB << L" is equivalent to trace(N) = 0.

To establish the renormalization property for BV, functions, we need the fol-
lowing property.

Definition 42. Let p be a convolution kernel and N be a n X n-matrix, we define

1. the anisotropic energy of p given by

A(N, p) ::/ | < Nz,Vp(z) > |dz.

2. the isotropic energy of p given by
1(p) == [ 12l [Vp(2)ldz.
Rn

Proposition 26. (Optimal commutator estimates)
Let B € BVj,o(R") and w € L.(R",R*). Let p be a convolution kernel such that
for some € > 0, we set

r.:= B -V(wx*p.) — (B-Vuw) * p..
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Then, for any compact set K C R",
iy sup | r.|de < |[ul| ()| D*BI(K) (C.6)
e—0 K

and

lim sup /K refda < [fo]lo /K I(N(z), p)d| D B(x)
T flwllao(n + 1) D BI(K). (C.7)

We show that the weak solutions of the transport equations verify a renormaliza-
tion property. We present the renormalization result in the case where we suppress
the time dependance.

Proposition 27. We assume that B € BVj,.(R™) such that DB << L". Let
w € L (R™ R¥) satisfying

BNw;,=¢L"i=1,...,n
with ¢ € L}, .(R™ RF).

Then,
w)e; L, Yh € CH(R).

k
B.Vh(w Z

Proof of Proposition 27. We set

0 = B.Vh(w w)e L™,

By (C.6), ¢ is a measure absolutely continuous with respect to |D*B)|.
By (C.7), we have

o] < C(h,w)A(N, p)| D*B| + C(h, w, p)| DB

then,
o] < C(h,w)A(N, )| D*B|.

As o is independant of p , then

lo| < C(h,w)inf A(N, p)|D°B|.
p
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Thanks to the Alberti Lemma (see Theorem 2.2 in | |), we have

inf {A(N,p) cp e CXR™),p> 0,/ p= 1} = |trace(M)|.

n

Since DB << L", we have trace(N) = 0 and the conclusion follows. O

The proposition 27 is necessary to obtain the following comparison principle.
Theorem 29. Assume that b(z) = b(t,x) € BVoc.(R"™) such that

1. D.by = divb L™,

2. |be| + |divdy| € L},.([0,1] x R™),

3. [ [ divbe] || oo (Bydt < +00,¥R > 0.
Fori=1,2, let wi(z) = w'(t,z) € L([0,1] x R™) verifying the transport equation

loc

i
ow,

ot

Then, wy < wg implies w} < w?,Vt € [0, 1].

+ b, Vw, = —w} divb, in [0,1] x R".

Proof of Theorem 29. We set w, = w; — w? ¥t € [0,1] such that, by hypothesis,
it verifies

% + b Vw, = —w, div b, in [0,1] x R?,
For a given ¢ > 0, we define .(t) = V&2 + 2 — ¢ € C'(R) such that
lm 5.() = t

Using the renormalization property (see Proposition 27), we get

9.
ot

(we) + 0.V (Be(wy)) = —div by Be(wy)wy.

Thanks to the inequality —p.(t) < 5.(t) — tﬁ;(t) < 0, and since
wy € L2 ([0,1] x R™), there is R > 0 such that

loc

d

— [ B(wy)dx = / div by B-(wy)dx — / divby B.(w,)wydz
dt Br Br Br

- /B div by [55(“&) - /B'g(wt)wti| dx
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__ /B div by[Be(wy)w; — Be(wy)]de
< /B (div b~ B(wy)dz

< ||ldiv b |l / B.(wy)dz
Br

Hence, for a.e. x € Bpg,

d

a55(%) < |[[div be] ™ [| Lo (Br) Be (i)

Let ¢ — 0, we obtain

0 . _
— Wt S ||[dlU bt] ||Loo(BR)wt.

ot

Applying the Gronwall Lemma, we get Vt € [0, 1]

¢
wy < exp(/ || [div bs}_||Loo(BR)ds> wo- (C.8)
0

Since wy = wj — wi < 0, we deduce by (C.8)

1 2
wy = w, —w; < 0.

C.3 Proof of Theorem 26

Our aim is to prove, under suitable assumptions, existence and uniqueness of solution
for the Cauchy problem fro BV vector fields.

Let A C R" be fixed.
Proposition 28. There exists a L™-measurable application n: A — P(€) such that

for ae. x € A, 1, (€\%2) = 0.
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Proof of Proposition 28. Let v : A — % be a function. By a continuity argu-
ment, it is sufficient to prove that for a.e. x € A,

V@) (#) = 3+ /0 by (r))dr Ve € [0.1].

We denote by by, := b % p, the smooth approximation of b by convolution such that
by, : [0, 1] x R™ — R™ verifies the following conditions:

(i) bn € L([0,1] x R",R") and b, —» bin L}, ([0,1] x R",R").
—00

loc
(ii) Vby(t,z) € L=([0,1] x Bp, R"), Vr > 0.

Let v,(x)(.) be the unique solution of the Cauchy problem 5(t) = by(t,v(t)) with
initial condition v(0) = z. We recall that (see Proposition B.1 | |), for every
R > 0, there is a smooth function Jj : [0,1] x Bg — [0, 00[, which is the Jacobian
of the application x — ~(x)(t) such that for every ¢ € [0, 1], and for every x € Bg,
we have

%(t,x) = div by (t, () (1)) Jn(t, ).
Integration in time ¢ yields:
e~ 9r) < J(t, x) (C.9)
where )
Crlt)s= [ ldiv b o
and

Mpr = R+ ||by]|o-

In particular, for any ¢ € C°(R™), the changement of variables y = v,(x)(t) and
(C.9) give

| / o (n(x)(£))da]| < €On) / o (@) (1)) | (. )z

<0 [ fotylay. (.10)
Let t € [0,1] be fixed. We define Vz € Bg, Vy(z) € €
¢z, v(x)) = [y(2)(t) — = —/O b(7, y(x)(7))d7]. (C.11)
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We define now a family of measures (1) : Bg — P(%) by

/ O(z,y(2))dnpe(y) do = oz, v (z)) de. (C.12)
Brx¥ Br

The following theorem is crucial. We refer the reader to see | | and section
2in | | for its proof.

Theorem 30. (Fundamental Theorem on Young measures) Let K be a com-
pact metric space. Let A C R™ be a bounded L™-measurable set and (n,) be a
sequence of L™-measurable measure-valued maps from A to P(K). Then, there exist
a L"-measurable measure-valued map n : A — P(K) and a subsequence h(k) such

that
i [ [ ot iamona(o) do = [ [ ota) dn(us

for any bounded function ¢p(xz,u) : A x K — [0,+00[ continuous with respect to u
and L"-measurable with respect to x.

Hence, there exist a £™-measurable application n : A — P(%) and a subsequence

h(k) such that

k—00

i [ R | #te e tands = | R L O,y (@) dn (v(2))dz.  (C.13)

Then, we obtain

/BR / (@)#) — o - / b (@)(7))drldn, (2 ()

-/ é 6(w,())dma (1 (), by (C.11)

k—o0

= Jim [ R | ot a@)anmo (). by (C.13)

= lim O(, Yy (2))de, by (C.12)

k—o0 Bgr

= Jim [y @)® =2 = [ blr g @)r)drids, by (€11

k—o0 Br
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t
= lim / |/ (brgry — O)(T, Yhg () (7))dT|d, (because 7y, € €*)
Br 0

k—o0

1
< lim sup/ / br(ky — b|(T, Y@y () (7))dT|dz
Bgr Jo

k—o00

< hm sup/ Cr(r / bhky — b|(7,y) dy dT, by (C.10)
Bug

=0, because by = bin L}

loc

([0,1] x R™ R™).

And the conclusion follows. O

Proposition 29. For a.e. x € A, n, is a Dirac measure.

Proof of Proposition 29. By Lemma 28 and Theorem 27, the problem can be
reduced to prove the following condition:

Vt € [0, 1], there exists a negligeable set A; of A such that

e (v(2) 1 v(2)(t) € K) no(v(2) s v(x)(t) € K') = 0,V € A\A,

where K, K’ are two disjoint subsets of R".

We assume by contradiction that there are ¢y € [0,1] and a negligeable set Ay,
of A such that there are two disjoint subsets K and K’ of R™ verifying

Na (7(:5) s y()(t) € K) Na (v(x) cy(z)(to) € K’) > 0,Vr € A\Ay,.

Without loss of generality, we can assume that there is a constant C' > 0 such that

Vo € A\A,

0 <. (v(@) : v(z)(to) € K) < C nu(y(z) : v(2)(to) € K'). (C.14)

Therefore, we define the following measures

Ny =1 [{7(2) 1 v(2)(to) € K}

and
2= Cn, [{7(x) : y(2)(te) € K'}.
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For i = 1,2, and V¢ € [0, 1], we associate the measure yu! given by

< pihp > /:/ H)dr (7)dz, Vg € CX(R", R).

By Proposition 28, we have for a.e. x € A, n,(€\6?) =
Hence, for a.e. z € A and for any v(z) € €,

(@) () = b(t,v(2)(t) = be(v(2)(1)), vt € [0,1].

Therefore, we obtain for i = 1,2, for any p € C>°(R", R)

G<iie>=4 [ [ et@m) aioe) d

_ / / Vi (3(2) (1)) () (1) dn}(1()) da
AJE

_ /A /% Voo (@) ()b (v(2) (1)) dnf.(v(x)) da
=<pul, b,Vp>

=<bpu, Vo>,
This means that the measures p}, i = 1,2 are solutions of the transport equation
oul
ot
po = Mha(K)L"[A
//’(2) = C ntox(K,)En LA
By (C.14), we note that

+ D.(byy) =0

1o < -
Thanks to the comparison principle (see Theorem 29), we have

py < pi, vt e [0,1].

On the other hand, since K and K’ are disjoint, we have for any ¢ € [0, 1]

uiz/ntomLde L C /moxLK'dxzu?
A A

which implies the contradiction. O]
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