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Résumé

Cette thèse est consacrée à l’étude des problèmes de transport optimal en géométrie
sous-Riemannienne. Plus précisément, notre but est d’étendre le caractère bien-posé
du problème de Monge aux cas des structures sous-Riemanniennes admettant des
géodésiques minimisantes singulières. Dans une première partie, on traite le cas
des distributions analytiques de rang 2 en dimension 4. On montre l’existence et
l’unicité de solutions pour le coût quadratique sous-Riemannien, tant que la dis-
tribution satisfait une certaine condition de croissance. La stratégie de la preuve
combine la technique de Figalli-Rifford basée sur la régularité de la distance sous
Riemannienne en dehors de la diagonale en absence de géodésiques minimisantes
singulières, avec une propriété de contraction de la mesure pour les courbes sin-
gulières dans l’esprit d’un résultat de Cavalletti et Huesmann. Dans une deuxième
partie, on s’intéresse aux problèmes de régularité de la distance sous-Riemannienne
et on définit sur les groupes de Carnot, les structures sous-Riemanniennes h-idéales
sur lesquelles la distance sous-Riemannienne est h-semiconcave. Sous une certaine
hypothèse de la distribution, on prouve heuristiquement la propriété MCP sur les
groupes de Carnot. On prévoit que cette propriété MCP est une condition suffisante
pour appliquer la méthode de Cavalletti-Huesmann afin de prouver que le problème
de Monge est bien-posé.

Mots clés : problème de Monge, géométrie sous-Riemannienne, singulières min-
imisantes.

Abstract

This thesis is devoted to the study of mass transportation on sub-Riemannian ge-
ometry. More precisely, our aim is to extend previous results on the well-posedness
of the Monge problem to cases of sub-Riemannian structures admitting singular
minimizing geodesics. In the first part, we show that, in the case of rank-two ana-
lytic distributions in dimension four, we have existence and uniqueness of solutions
for the sub-Riemannian quadratic cost, as soon as the distribution satisfies some
growth condition. Our strategy to prove it, combines the technique used by Figalli-
Rifford which is based on the regularity of the sub-Riemannian distance outside the
diagonal in absence of singular minimizing curves, together with a localized con-
traction property for singular curves in the spirit of the previous work by Cavalletti
and Huesmann. In the second part, we deal with regularity issues of the sub-
Riemannian distance and we define a class of sub-Riemannian structures on Carnot
groups, called h-ideal sub-Riemannian structures, on which the sub-Riemannian
distance is h-semiconcave. Together with an assumption on the distribution, we
prove heuristically the MCP property on Carnot groups. Anyway, we attempt to
prove that MCP property defined on this class of Carnot groups is sufficient to apply
the Cavalletti-Huesmann method to prove the well-posedness of the Monge problem.

Keywords : Monge problem, sub-Riemannien geometry, singular minimizers.
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Chapter 1

Introduction

This thesis, running from 2014 to 2017, was an occasion to discover the Theory of
Optimal Transportation and sub-Riemannian Geometry. The mass transportation
theory found its roots through the French geometer Monge and became a popular
subject in various areas of sciences including economics, optic such as the reflector
problem, meteorology and oceanography. On the other hand, important motivations
from the field of thermodynamics involving hyperbolic geometry, analysis of hyper
elliptic operators etc, made the first steps towards sub-Riemannian geometry. This
is a natural geometry in mechanics to study systems with nonholonomic constraints
like skates, wheels, rolling balls etc, for reference see the book [Mont02]. The aim of
this thesis is to present some of the recent progress in solving the Monge problem
on sub-Riemannian manifolds.

Optimal mass transportation theory was born in the XV IIIe century. It was
raised by the French mathematician and physicist Gaspard Monge through one of
his remarkable writings [Mon81], Mémoire sur la théorie des déblais et des remblais,
published in 1781. He has formulated a mathematical problem of "Excavations and
enbankements", concerning with the transport of a pile of soil to completely fill up
an excavation with minimal transport expenses.

Figure 1.1
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Chapter 1 : Introduction

We shall model the pile of soil by a measure µ and the excavation by a measure
ν, both defined on some measured space X. Obviously, the transport involves
a conservation of mass, that is why in the sequel, we only consider probability
measures. We also model the transportation by a measurable cost function c(x, y),
which denotes the cost of transporting a unit of mass from a position x to some
position y. Thus, the Monge problem can be formulated as follows:

Definition 1. (The Monge Problem) Let X be a measured space, and c : X ×X →
[0,+∞[ be the cost function. Let µ, ν be two probability measures on X. Then, the
Monge problem consists in minimizing the transportation cost∫

X

c(x, T (x)) dµ(x),

among all the measurable maps T : X → X pushing forward µ to ν (we denote it by
T]µ = ν).

Figure 1.2 – The Monge transportation problem

When T satisfies the transport condition T]µ = ν and minimizes the cost, we call
it an optimal transport map. Monge proposed a method to construct an optimal
transport map without proving it. And the Monge problem has stayed with no so-
lution for centuries. For this purpose, the Academy of Paris offered the Bordin prize
[Dar85] in 1884. However, a rigorous proof of the subject was claimed by Appell
[App87] in 1887. Studied by many other researchers, Sudakov [Sud79] showed in
1979 solutions for the Monge problem as mappings from Rn to Rn.

The Russian mathematician and economic Leonid Kantorovich, who received a
Nobel prize in 1975 in economics, drew an attention to the Monge problem and
saw a way to connect it to his work which gave the possibility to find solutions and
to study them. In particular, we turn to his work [Ka42] in 1942. He introduced
a relaxation form of the Monge problem by representing the transportation as a
probability measure.

2



Definition 2. (The Kantorovich Problem) Let X be a measured space, and c :
X ×X → [0,+∞[ be the cost function. Let µ, ν be two probability measures on X.
Then, the Kantorovich problem consists in minimizing the transportation cost∫

X×X
c(x, y) dα(x, y),

among all the probability measures α on X×X such that P 1
] (α) = µ and P 2

] (α) = ν
(with P i : X ×X → X the projection map into the i-th component).

Moreover, Kantorovich shows that the minimization problem introduced in Def-
inition 2 is equivalent to the following maximization problem:

Definition 3. (The Dual Problem) Let X be a measured space, and c : X ×X →
[0,+∞[ be the cost function. Let µ, ν be two probability measures on X. Then, the
dual problem consists in maximizing the following quantity∫

X

ψ(y)dν(y)−
∫
X

ϕ(x)dµ(x),

among all the functions (ϕ, ψ) ∈ L1(µ)× L1(ν) such that

ψ(y)− ϕ(x) ≤ c(x, y).

Since that time, the transport problem is known as the "Monge-Kantorovich
transport problem". This formulation allows to highlight the concept of c-convexity,
where c is the given cost function. A way to see that a function φ is c-convex, is to
show that for each point we can put under the function φ a support function of the
form x 7→ −c(x, y) + constant.

Again, the work of Yann Brenier [Br91] in 1991, gave a new birthdate for the
Monge problem. He showed existence and uniqueness of solution for the quadratic
Monge problem for a quadratic Euclidean cost. Then, McCann [Mc01] provided the
solution for the Riemannian case where the cost is given by the quadratic geodesic
distance. These types of results are based on the local Lipschitzness of the cost
function. In case the probability measures are compactly supported, regularity
properties of the solutions for the dual problem are obtained from the regularity
of the cost. Recently, Cavalletti and Huesmann [CH15] develop a new technic to
solve the Monge problem, based on a contraction property on proper non-branching
measured metric spaces. This contraction property concerns the behavior of the
measure under the shrinking of sets to points. The non-branching condition is
necessary to get some consequences of the contraction property. In particular, their

3



Chapter 1 : Introduction

proof covers spaces enjoying the (k,n)-measure contraction property, abbreviated
MCP(k,n). The notion of MCP has been introduced by Ohta [Oh07], and Sturm
[St06]. For sake of simplicity, we proceed to define the notion of measure contraction
property on measured metric spaces with negligible cut locus.

Definition 4. A measured metric space (X, d, µ) is said to be with negligible cut
locus if for every x ∈ X, there exists a measurable set C(x) ⊂ X with

µ(C(x)) = 0

such that ∀y ∈ X\C(x), there is a unique minimizing geodesic γx : [0, 1] → X
connecting x to y.

According to the Ohta definition [Oh07] (see also [Rif13]), we have the following
definition:

Definition 5. Let (X, d, µ) be a measured metric space with negligible cut locus and
k ∈ R, n > 1 be fixed. We say that (X, d, µ) satisfies MCP(k, n) if for every x ∈ X
and every measured set A ⊂ X (provided that A ⊂ B(x, π

√
n− 1/k) if k > 0) with

0 < µ(A) <∞,

µ
(
As,x

)
≥
∫
A

s
[sk(sd(x, z)/

√
n− 1)

sk(d(x, z)/
√
n− 1)

]n−1

dµ(z)

where As,x is the s-interpolation of A from x defined by

As,x :=
{
γx(s)| γx(0) = x, γx(1) ∈ A\C(x)

}
,∀s ∈ [0, 1].

•x

A

As,x

Figure 1.3
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and the function sk : [0,+∞[→ [0,+∞[ (sk : [0, π/
√
k[→ [0,+∞[ if k > 0) is

defined by

sk(t) :=


sin(
√
kt)√
k

if k > 0

t if k = 0

sinh(
√
−kt)√
−k

if k < 0

.

For example, Rn equipped with a constant Riemannian metric satisfies MCP(0,n).
The MCP(k,n) can be regarded as a generalized notion of the lower curvature bound
on Riemannian manifolds. Let (X, d, µ) be a complete Riemannian manifold, the
condition MCP(k,n) is equivalent to require that X has Ricci curvature bounded
from below by k ∈ R (see Theorem 3.2 in [Oh07]), and n ≥ 1 is the upper bound of
the dimension of the space. Recently, it has been studied on Heisenberg groups by
Juillet [Ju09] (see also Rifford [Rif13] and Rizzi [Riz16] for other MCP type results
on Carnot groups).

This thesis is concerned with the study of the Monge problem in sub-Riemannian
cases. The sub-Riemannian geometry is defined on a manifold M , on which every
trajectory has velocity contained in a subbundle ∆ of the tangent bundle TM ,
called "horizontal" distribution. Such trajectories are called "horizontal" paths.
Riemannian manifolds appear as a special case of sub-Riemannian geometry on
which ∆ = TM . Roughly speaking, in sub-Riemannian geometry, we cannot move
in all directions. We always have a kind of "hidden" or "forbidden" directions.
Let us describe a simple model. We consider in R3 with coordinates (x, y, z),
the distribution ∆ generated by the two smooth vector fields X1 := ∂x − y∂z and
X2 := ∂y + x∂z. In this case, horizontal paths t 7→ (x(t), y(t), z(t)) are those paths
satisfying ż(t) = x(t)ẏ(t) − y(t)ẋ(t). The study of horizontal curves is useful in
determining the sub-Riemannian distance between two points. The latter is defined
as the infimum of the lengths of all horizontal paths joining these two points. In
the bracket generating case, the Chow-Rashevsky Theorem (see [Cho39],[Ras38])
guarantees us that the sub-Riemannian distance between two points is finite. One
can ask what is the shortest path one should consider to transport a mass from one
position to another. It is relevant to concentrate on developing similarities between
Riemannian and sub-Riemannian geometries. However, there are major differences.
In particular, the space of horizontal curves joining two points can have singularities.
A minimizing geodesic is defined as a horizontal curve which minimizes the distance
between its endpoints. The existence of "singular" paths is of central importance to
sub-Riemannian geometry because singular paths can be minimizers.

5



Chapter 1 : Introduction

The study of the Monge problem in the sub-Riemannian geometry has been
concerned with the sub-Riemannian quadratic cost (given by the square of the sub-
Riemannian distance). It began with a paper by Ambrosio and Rigot [AR04] about
the transportation problem in Heisenberg groups, seen as the prototype of the sub-
Riemannian geometry. However, Agrachev and Lee [AL09] proved that the local Lip-
schitzness of the squared sub-Riemannian distance is sufficient to guarantee existence
and uniqueness of solutions for the Monge problem. Then, Figalli and Rifford [FR10]
removed the assumption of Lipschitzness on the diagonal. Their proof considered
on the diagonal was based on a Pansu-Rademacher Theorem. Furthermore, Rifford
[Rif14] proved the local semiconcavity of the sub-Riemannian distance in absence of
singular minimizing curves. The semiconcavity brings us closer to a smooth regular-
ity: it can be seen locally as the sum of a smooth function and a concave function.
Such result shows that, in absence of singular minimizing paths, sub-Riemannian
distances enjoy the same kind of regularity as Riemannian distances. For example,
in the case of a two-rank distribution ∆ on a three-dimensional manifold M , we
have existence and uniqueness of solutions for the sub-Riemannian quadratic cost
because non-trivial singular horizontal paths are included in the Martinet surface
given by Σ∆ := {x ∈ M |∆(x) + [∆,∆](x) 6= TxM} which has Lebesgue measure
zero. In general, we do not know if the Monge problem (for the sub-Riemannian
quadratic cost) has solutions.

Our aim is to extend previous results on existence and uniqueness of optimal
transport maps to cases of sub-Riemannian structures which admits many singular
minimizing geodesics. The first relevant case to consider is the one of rank-two
distributions in dimension four. In this case, as shown by Sussman [Sus96], singular
horizontal paths can be seen (locally) as the orbits of a smooth vector field, at least,
outside a set of Lebesgue measure zero. Our aim is to show that, in the case of
rank-two analytic distribution in dimension four, we have existence and uniqueness of
solutions for the sub-Riemannian quadratic cost, as soon as the distribution satisfies
some growth condition.

Theorem 1. Let M be a real analytic manifold of dimension 4 and (∆, g) be a
complete analytic sub-Riemannian structure of rank 2 on M such that

∀x ∈M, ∆(x) + [∆,∆](x) has dimension 3, (1.1)

where
[∆,∆] := Span

{
[X, Y ] | X, Y sections of ∆

}
.

Let µ, ν be two probability measures with compact support on M such that µ is
absolutely continuous with respect to the Lebesgue measure.

6



Then, there is existence and uniqueness of an optimal transport map from µ to ν
for the sub-Riemannian quadratic cost c : M ×M → [0,+∞[ defined by:

c(x, y) := d2
SR(x, y), ∀(x, y) ∈M ×M.

This theorem is proved in chapter 3. Our strategy to prove it, is twofold. It com-
bines the technique used by Figalli-Rifford [FR10] (see also the paper by Agrachev-
Lee [AL09]) which is based on the regularity of the distance function outside the
diagonal in absence of singular minimizing curves, together with a localized contrac-
tion property for singular curves in the spirit of the previous work by Cavalletti and
Huesmann [CH15].

As we saw before, in order to obtain existence and uniqueness for optimal
transport maps, it is convenient to be able to show that MCP is satisfied to ap-
ply Cavalletti-Huesmann’s method. So we deal with regularity issues of the sub-
Riemannian distance and we define a class of sub-Riemannian structures on Carnot
groups, called h-ideal sub-Riemannian structures, on which the sub-Riemannian
distance dSR is h-semiconcave. Such regularity is fundamental. Together with an
assumption on the distribution (see ASSUMPTION 1 (6.10)), we prove the MCP
property on Carnot groups as a consequence of the upper bound of the horizontal
symmetrical Hessian of dSR.

Proposition 1. Let G be a Carnot group whose first layer is h-ideal and satisfies AS-
SUMPTION 1. Then , there is N > 0 such that (G, dSR,Ln) satisfies MCP (0, N).

The differentiability of an h-semiconcave function is the consequence of a sub-
Riemannian version of the famous theorem of Alexandrov [Mag05] (see also [DGNT04])
which states that an h-semiconcave function is two times differentiable a.e. with re-
spect to the horizontal directions whenever its second order horizontal derivatives
are Radon measures.

After the detailed presentation and explanation of our research work, we now
proceed to the structure of this thesis.

Chapter 2 can be seen as a general introduction of the optimal mass trans-
portation problem. It concerns the study of the Monge-Kantorovich problem. We
investigate a powerful duality formulation due to Kantorovich. The main purpose
is to prove existence and uniqueness of an optimal transport map solution for this
mass transportation problem. The chapter ends with the statement of preliminary
results of existence and uniqueness of solutions for the Monge problem, in the case

7



Chapter 1 : Introduction

of quadratic Euclidean cost and the quadratic Riemannian cost which refer respec-
tively to Theorems by Brenier [Br91] and McCann [Mc01].

Chapter 3 presents the basics of the sub-Riemannian geometry. We refer to the
distribution as the horizontal space, and objects tangent to it as horizontal. We
introduce the Hörmander condition as a bracket generating condition under which
the Chow-Rashevsky is true. The Chow-Rashevsky Theorem gives us a license to
search for minimizing geodesics, i.e. shortest horizontal curves. We study the End-
point map on a sub-Riemannian manifold and its singularities. This End-point map
yields a horizontal path passing through a fixed point to its endpoint. Its critical
points are called singular paths for the distribution. They play a major role in this
thesis.

In chapter 4, we turn our attention to the optimal transport problem on sub-
Riemannian manifolds where the cost function is given by the square of the sub-
Riemannian distance. Under regularity assumptions for the sub-Riemannian dis-
tance, Figalli and Rifford generalized the Brenier-McCann Theorem. We also give
an introduction to Cavalletti- Huesmann’s method to prove existence and unique-
ness of the optimal transport map, using a measure contraction assumption.

Chapter 5 is devoted entirely to the proof of the theorem 1. This section is the
subject of an article to appear [Bad17].

Then, we define in chapter 6 the class of h-ideal sub-Riemannian structures on
Carnot groups. We present some analytic tools necessary to the understanding of
the h-semiconcavity. The chapter ends by establishing the MCP on Carnot groups
under suitable regularity assumptions. Unfortunately, this chapter is prospective.
Until now, there are no obvious examples of Carnot groups satisfying these hypothe-
ses.

Finally, in chapter 7, we make some comments about this work and try to sketch
some research perspectives that may lead to some interesting results.

8



Chapter 2

Optimal Transport Theory

In the sequel, M denotes a smooth connected manifold without boundary of dimen-
sion n ≥ 2.

2.1 The Monge Problem
The transport problem considered by Monge, was to transport some mass from one
place to another with minimal cost. A current formulation of the Monge problem is
the following:

Definition 6 (Transport map). Let µ, ν be two probability measures on M , and
c : M ×M → [0,+∞[ be the cost function. We call transport map from µ to ν, any
µ-measurable application T : M →M such that T]µ = ν.

The condition T]µ = ν means that T is pushing forward µ to ν, i.e. for any
ν-measurable set B in the target space M ,

ν(B) = µ(T−1(B)).

Therefore, the Monge problem is modeled as an optimal transport problem
minimizing the transportation cost∫

M

c(x, T (x))dµ(x), among all the transport maps T : M →M.

We check that T]µ = ν is equivalent to a change of variables formula. In fact,
consider M = Rn and µ, ν two probability measures on M absolutely continuous
with respect to the Lebesgue measure. We take µ = fdx and ν = gdy, with

9



Chapter 2 : Optimal Transport Theory

f, g ∈ L1(Rn,R). Then, for any ν-measurable set B in the target space, the condition
T]µ = ν yields ∫

T−1(B)

f(x)dx =

∫
B

g(y)dy.

If T is a diffeomorphism, we perform the change of variable y = T (x), that leads to∫
T−1(B)

f(x)dx =

∫
T−1(B)

g(T (x))|det(DxT )|dx,

we deduce
|det(DxT )| = f(x)

g(T (x))
, µ− a.e. x ∈ Rn,

called the Monge-Ampère equation.

Several difficulties arise in solving the Monge problem.
First of all, transport maps may not exist.

Example 1. We consider in Rn the two probability measures µ, ν given by

µ = δx, ν =
1

2
δy1 +

1

2
δy2

where x, y1 6= y2 ∈ Rn and δa denotes the Dirac mass at point a ∈ Rn. There are no
transport maps from µ to ν. If such a map T exists, then

1

2
= ν({y1}) = µ(T−1({y1})) = 0 or 1

which is impossible.

Secondly, minimizers of the Monge problem may not be unique.

Example 2. Let µ,ν be two probability measures given by

µ = χ[0,1]L1, ν = χ[1,2]L1,

the restrictions of the Lebesgue measure L1 on the intervals [0, 1] and [1, 2] respec-
tively. There are two maps T1(x) = x + 1 and T2(x) = 2− x, pushing forward µ to
ν for the cost function c(x, y) := |x− y|, ∀x, y ∈ R.

The fact that the constraint T]µ = ν is highly non linear with respect to T is the
main difficulty to deal with the Monge problem. That is why, Kantorovich proposed
a relaxed form of the problem.

10



2.2 The Kantorovich Problem
We denote by P i : M ×M →M the projection map into the i-th component.

Definition 7 (Transport plan). Let µ, ν be two probability measures on M . We
denote by Π(µ, ν) the set of probability measures α in the product space M ×M with

P 1
] (α) = µ and P 2

] (α) = ν.

Any measure α ∈ Π(µ, ν) is called transport plan between µ and ν.

The set Π(µ, ν) of transport plans between µ and ν is a convex set which can not
be empty (it always contains the product µ × ν). The property P 1

] (α) = µ means
that the first marginal of α is equal to µ, i.e.

for any µ-measurable set A ⊆M,we have α(A×M) = µ(A).

The definition P 2
] (α) = ν is similar with the second marginal of α, i.e.

for any ν-measurable set B ⊆M,we have α(M ×B) = ν(B).

This is also equivalent to have for every (ϕ, ψ) ∈ L1(µ)× L1(ν),∫
M×M

[
ϕ(x) + ψ(y)

]
dα(x, y) =

∫
M

ϕ(x)dµ(x) +

∫
M

ψ(y)dν(y).

The Kantorovich problem consists in minimizing the transportation cost∫
M×M

c(x, y)dα(x, y), among all transport plans α ∈ Π(µ, ν).

We notice that by considering a transport map T : M → M from µ and ν, we
can define a transport plan α ∈ Π(µ, ν) as follows

α := (Id× T )]µ.

We say that the transport plan α is induced by a transport map T . This shows that
the Kantorovich problem is more general that the Monge problem: it is a relaxation
form of the Monge problem.

Practically, the Monge problem consists in transporting each mass as it is, while
the Kantorovich problem allows to separate the starting mass and send the differ-
ent parts to different places. The difference between the Monge problem and the
Kantorovich problem can be seen through the following example:

11
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Example 3. Returning to Example 1, consider the two probability measures on Rn

given by

µ = δx, ν =
1

2
δy1 +

1

2
δy2 .

In contrary to transport maps, there is a transport plan α between µ and ν, solution
of the Kantorovich problem, given by

α =
1

2
δ(x,y1) +

1

2
δ(x,y2).

The Kantorovich problem comes down to a linear minimization problem (with
respect to α) on a set of constraints Π(µ, ν) which is convex and weakly compact.
The existence of optimal transport plans becomes easy.

We recall that the support of a measure µ, denoted by supp µ, refers to the
smallest closed set F ⊂M of full mass µ(F ) = µ(M) = 1.

Theorem 2 (Existence of optimal transport plans). Let µ, ν be two probability
measures compactly supported on M . Assume that the cost function c : M ×M →
[0,+∞[ is continuous. Then, there is at least one optimal transport plan α ∈ Π(µ, ν)
solving the Kantorovich problem.

Proof of Theorem 2. We notice easily that the product µ×ν is a transport plan.
Moreover, all the transport plans are concentrated on supp µ × supp ν which is
compact (because by assumption, supp µ , supp ν are compact). Without loss of
generality, we can assume that M is compact. The existence of optimal transport
plans is a consequence of the weak closure of Π(µ, ν) together with the continuity
of the cost function c.

We now introduce the concept of c-cyclically monotonicity.

Definition 8. (c-cyclically monotone) A subset X ⊂ M ×M is said to be c-
cyclically monotone if for every N ∈ N and every (x1, y1), . . . , (xN , yN) ∈ X it holds

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi+1, yi)

with xN+1 = x1.

The following proposition shows a specific property of optimal transport plans.
We refer the reader to Theorem 3.2.5 in [Rif14] and Chapter 5 in [Vil08].
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Proposition 2. Let µ,ν be two probability measures compactly supported on M ,
and let the cost function c : M ×M → [0,+∞[ be continuous. Then, there is a
c-cyclically monotone set S ⊂ supp µ× supp ν such that for any optimal transport
plan α ∈ Π(µ, ν),

supp α ⊂ S.

Optimal conditions to establish the equality between the infimum of the Monge
problem and the infimum of the Kantorovich have been proved by Pratelli [Pra07]:
transport maps do exist as soon as the initial measure is assumed to be non-atomic.
It can be seen through examples 1 and 3. Since transport plans can be approxi-
mated by plans coming from transport maps, it is predicted that the infimum of the
Kantorovich problem coincides with the infimum of the Monge problem.

2.3 The Dual Problem
The dual problem is a basic concept in the optimal transport theory, considered as
another face of the original Kantorovich problem.

In the textbook [Vil08], Villani explains the concept of Kantorovich duality in
an informal way and illustrate how the Monge problem can be reformulated from
an economic viewpoint. Consider a large consortium of bakeries and cafés, there
is a company which has in charge of the transportation of productions, by buying
bread at the bakeries and selling them to the cafés. The original Monge-Kantorovich
problem starts with the notion of cost, while in the dual problem, the central notion
is the price. Let us denote by ϕ(x) the price at which bread is bought at bakery x
and ψ(y) the price at which it is sold at café y. So the transportation cost becomes
ψ(y)− ϕ(x) instead of the original cost c(x, y). As to be competitive, the company
needs to set up prices in such a way that

ψ(y)− ϕ(x) ≤ c(x, y), ∀x, y

and the problem becomes to maximize the profits.

This approach leads to a dual formulation (see chapter 5 [Vil08]) given by

inf
α∈Π(µ,ν)

{∫
M×M

c(x, y)dα(x, y)

}
=

sup
(ϕ, ψ) ∈ L1(µ)× L1(ν)
ψ(y)− ϕ(x) ≤ c(x, y)

{∫
M

ψ(y)dν(y)−
∫
M

ϕ(x)dµ(x)

}
. (2.1)

13
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This leads to find a pair of integrable functions (ϕ, ψ) optimal on the right-hand
side, and a transport plan α optimal on the left-hand side. The pair of functions
(ϕ, ψ) should satisfy ψ(y) − ϕ(x) ≤ c(x, y). Then, for a given y, ψ(y) will be the
infimum of ϕ(x) + c(x, y) among all x. For a given x, ϕ(x) will be the supremum
of ψ(y) − c(x, y) among all y. So it makes sense to describe a pair of integrable
functions (ϕ, ψ) as follows

ϕ(x) = sup
y∈M

{
ψ(y)− c(x, y)

}
, ∀x ∈M

and
ψ(y) = inf

x∈M

{
ϕ(x) + c(x, y)

}
, ∀y ∈M.

We may now introduce the concept of c-convexity which turns out later to be an
indispensable tool for existence of optimal transport maps.

Definition 9 (c-convexity). We say that a function ϕ : M → R ∪ {+∞} not
identically +∞, is c-convex if there exists a function ψ : M → R∪ {±∞} such that

ϕ(x) = sup
y∈M

{
ψ(y)− c(x, y)

}
, ∀x ∈M.

The c-transform of ϕ, denoted by ϕc, is the function given by

ϕc(y) = inf
x∈M

{
ϕ(x) + c(x, y)

}
, ∀y ∈M.

Definition 10. Let ϕ : M → R ∪ {+∞} be a c-convex function. We call contact
set of the pair (ϕ, ϕc) the set defined by

Γϕ :=
{

(x, y) ∈M ×M | ϕc(y)− ϕ(x) = c(x, y)
}
,

which is a closed convex set.

For every x ∈M , we define the c-subdifferential of ϕ at x by

Γϕ(x) :=
{
y ∈M |(x, y) ∈ Γϕ

}
.

We may indeed assume that the dual problem can be reduced to find a c-convex
function ϕ ∈ L1(µ) such that

inf
α∈Π(µ,ν)

{∫
M×M

c(x, y)dα(x, y)

}
=

∫
M

ϕc(y)dν(y) −
∫
M

ϕ(x)dµ(x) (2.2)
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where, by definition of c-convex functions, the constraint of the dual problem
ϕc(y)− ϕ(x) ≤ c(x, y) is satisfied.

The pair of functions (ϕ, ϕc) solution of the dual problem (2.2), is called the
Kantorovich potentials.

We give here a characterization of the supports of optimal transport plans which
are c-cyclically monotone sets (see Theorem 3.2.13 in [Rif14]).

Proposition 3. Let S ⊂ M ×M be a c-cyclically monotone compact set. Then,
there is a c-concave function ϕ valued in R, such that

ϕ(x) = sup
y∈M

{
ϕc(y)− c(x, y)

}
, ∀x ∈M

ϕc(y) = inf
x∈M

{
ϕ(x) + c(x, y)

}
, ∀y ∈M

and
S ⊂ Γϕ.

The fact that the infimum and supremum are attained is straigthforward from
the continuity of ϕ, ϕc and the compactness of S.

Theorem 3. Let µ,ν be two probability measures compactly supported on M , and
let the cost function c : M ×M → [0,+∞[ be continuous. Let (ϕ, ϕc) be the Kan-
torovich potentials, solution of the dual problem (2.2). Then,

any transport plan α ∈ Π(µ, ν) is optimal if and only if supp α ⊆ Γϕ.

We say that α is concentrated on Γϕ.

Proof of Theorem 3. Let (ϕ, ϕc) be the Kantorovich potentials, solution of the
dual problem and let α ∈ Π(µ, ν) be an optimal transport plan. So, we have∫

M×M
c(x, y)dα(x, y) =

∫
M

ϕc(y)dν(y)−
∫
M

ϕ(x)dµ(x).

Since α ∈ Π(µ, ν),∫
M×M

c(x, y)dα(x, y) =

∫
M×M

[
ϕc(y)− ϕ(x)

]
dα(x, y)

15
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⇒
∫
M×M

[
c(x, y)− ϕc(y) + ϕ(x)

]
dα(x, y) = 0.

As c(x, y) ≥ ϕc(y)− ϕ(x),∀x, y ∈M , then

c(x, y) = ϕc(y)− ϕ(x) for almost every (x, y) ∈ supp α.

This shows that
supp α ⊆ Γα.

Reciprocally, let α ∈ Π(µ, ν) such that supp α ⊆ Γϕ. Then, for any transport plan
β ∈ Π(µ, ν), we have∫

M×M
c(x, y)dα(x, y) =

∫
M

ϕc(y)dν(y)−
∫
M

ϕ(x)dµ(x)

≤
∫
M×M

c(x, y)dβ(x, y)

which implies that α is optimal.

Theorem 4. Let µ,ν be two probability measures compactly supported on M , and let
the cost function c : M×M → [0,+∞[ be continuous. Let (ϕ, ϕc) be the Kantorovich
potentials, solution of the dual problem (2.2). Assume that for µ-a.e. x ∈M , Γϕ(x)
is a singleton. Then, there is a unique transport map T : M →M from µ to ν such
that

Γϕ(x) =
{
T (x)

}
, µ− a.e. x ∈M.

Proof of Theorem 4. By assumption, there is a Borel set N such that µ(N) = 0
and for every x /∈ N , there is yx ∈ M such that Γϕ(x) = {yx}. Hence, for every
x ∈ M\N , and every y ∈ Γϕ(x), we have y = yx. We set T (x) := yx for µ-a.e.
x ∈M and the conclusion follows.

In other words, the problem of existence and uniqueness of optimal transport
maps can be reduced to prove that Γϕ is concentrated on a graph, that is to show
that for µ-a.e. x ∈M , the set Γϕ(x) is a singleton.

2.4 Previous results for the Monge problem

2.4.1 Euclidean case

Brenier [Br91] showed solutions for the Monge problem for the quadratic Euclidean
cost.
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Theorem 5 (Brenier Theorem). Let M = Rn. Let µ,ν be the two probability
measures compactly supported on Rn such that µ is absolutely continuous with respect
to the Lebesgue measure. Let c : Rn × Rn → [0,+∞[ be the quadratic cost function
given by

c(x, y) :=
|x− y|2

2
, ∀(x, y) ∈ Rn × Rn.

Then, there is a unique transport map T : Rn → Rn. In fact, there is a convex
function ϕ ∈ L1(Rn) such that

T (x) = x+∇ϕ(x), µ-a.e. x ∈ Rn.

Proof of Theorem 5. We recall that, by the dual problem (2.2) and by Theorem
2, there is a convex function ϕ ∈ L1(Rn) such that

inf
α∈Π(µ,ν)

{∫
M×M

|x− y|2

2
dα(x, y)

}
=

∫
M

ϕc(y)dν(y)−
∫
M

ϕ(x)dµ(x).

Note that ϕ is convex on Rn. Thanks to the Rademacher Theorem (see Appendix
B.1), since µ is absolutely continuous with respect to the Lebesgue measure, ϕ is
differentiable almost everywhere on Rn.

Expanding |x− y|2/2 into |x|2/2 + |y|2/2− x.y yields

x.y ≤
[
ϕ(x) +

|x|2

2

]
+
[ |y|2

2
− ϕc(y)

]
, ∀x, y ∈ Rn.

Let (x, y) ∈ supp α be fixed. Thanks to Theorem 3, for any optimal plan
α ∈ Π(µ, ν), we have supp α ⊆ Γϕ. Hence,

(x, y) ∈ Γϕ ⇔ ϕc(y)− ϕ(x) =
|x− y|2

2

⇔ ϕc(y) = ϕ(x) +
|x− y|2

2
≤ ϕ(z) +

|z − y|2

2
, ∀z ∈ Rn

⇔
[
ϕ(x) +

|x|2

2

]
− x.y ≤

[
ϕ(z) +

|z|2

2

]
− z.y, ∀z ∈ Rn

This means that the mapping z 7→ ϕ(z) + |z|2/2 − z.y admits a minimum at x.
Hence, its differential at x is equal to zero, that is

∇ϕ(x) + x− y = 0⇒ y = x+∇ϕ(x).

Thus, there is a unique transport map T : M →M such that

T (x) = x+∇ϕ(x), µ-a.e. x ∈ Rn.
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2.4.2 Riemannian case

McCann [Mc01] proved solutions for the Monge problem in the Riemannian case
with the cost given by the quadratic geodesic distance. We start with some basic
definitions and preliminaries in the Riemannian settings.

Let (M, g) be a Riemannian manifold where M is a real smooth manifold of
dimension n equipped with the inner product gx on the tangent space TxM at each
point x ∈M .

We define the geodesic distance, denoted dg, between two points x, y in M by:

dg(x, y) := inf
{
lg(γ)| γ : [0, 1]→M s.t. γ(0) = x, γ(1) = y

}
where lg(γ) is the length of the curve γ given by

lg(γ) :=

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt.

For any x ∈M , we define the exponential map at x by

expx : TxM −→ M
v 7−→ expx(v) := γ(1)

where γ : [0, 1] → M is the unique minimizing geodesic with initial conditions
γ(0) = x and γ̇(0) = v.

Assume that the Riemannian manifold (M, g) is equipped with the Levi-Civita
connection and for every smooth curve γ : [0, 1] → M , we denote by ∇γ̇ the asso-
ciated covariant derivative along γ. We recall that γ is said to be a geodesic if and
only if ∇γ̇(t)γ̇(t) vanishes. Here, we study geodesics using the Lagrangian approach.
It seems easier to apply the Euler-Lagrange equations than calculate the coefficients
of the Levi-Civita connection.

Definition 11 (Lagrangian action). Let L : TM → R be a Lagrangian function.
The cost c : M ×M → [0,+∞[ associated to L is given by

c(x, y) := min
{∫ 1

0

L(γ(t), γ̇(t))dt| γ : [0, 1]→M

with γ(0) = x, γ(1) = y
}
,∀x, y ∈M.
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The Lagrangian which associates L(x, v) = gx(v, v),∀(x, v) ∈ TM leads to the
quadratic geodesic cost c = d2

g. Let x, y ∈ M be fixed, the goal is to find a path
γ : [0, 1]→M from x to y that minimizes the functional

F (γ) :=

∫ 1

0

L
(
γ(t), γ̇(t)

)
dt.

We recall the Euler-Lagrange equation.

Lemma 1. Let x, y be two distinct points of M and let γ : [0, 1] → M be a mini-
mizing path such that γ(0) = x and γ(1) = y. Then, it satisfies

∇γ(0)L =
d

dt

(
∇γ̇(0)L

)
Proof of Lemma 1. Let ε > 0 , we define

γε(t) = γ(t) + εh(t),∀t ∈ [0, 1]

where h : [0, 1]→M is a random funtion such that h(0) = h(1) = 0.

We set

F (γε) :=

∫ 1

0

L
(
γε(t), γ̇ε(t)

)
dt. (2.3)

At the extremum ε = 0, that is γ0(t) = γ(t), ∀t ∈ [0, 1], we have

∂F

∂ε
|ε=0 = 0.

Derivating (2.3) with respect to ε yields

∂F

∂ε
=

∫ 1

0

∂

∂ε
L
(
γε(t), γ̇ε(t)

)
dt

=

∫ 1

0

(
∇γε(t)L ·

∂γε
∂ε

+∇γ̇ε(t)L ·
∂γ̇ε
∂ε

)
dt

=

∫ 1

0

(
∇γε(t)L · h(t) +∇γ̇ε(t)L · ḣ(t)

)
dt

By the integration by parts formula, we obtain:

∂F

∂ε
=

∫ 1

0

∇γε(t)L · h(t)dt−
∫ 1

0

d

dt

(
∇γ̇ε(t)L

)
· h(t)dt+

[
∇γ̇ε(t)L · h(t)

]1

0
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The fact that h(0) = h(1) = 0 gives

∂F

∂ε
=

∫ 1

0

[
∇γε(t)L−

d

dt

(
∇γ̇ε(t)L

)]
· h(t)dt

Since the derivative of the functional F with respect to ε is equal to zero at ε = 0,
we obtain

0 =

∫ 1

0

[
∇γε(0)L−

d

dt

(
∇γ̇ε(0)L

)]
· h(t)dt

Since h is an arbitrary function, we get

∇γε(0)L =
d

dt

(
∇γ̇ε(0)L

)
.

Another lemma is needed.

Lemma 2. For every (x, v) ∈ TM , we have

1

2
∇vL = v.

Proof of Lemma 2. Let x ∈ M . In a system of local coordinates on M given by
n-real valued functions x1, . . . , xn, the vector fields ∂x1 , . . . , ∂xn form an orthonormal
basis of TxM . A vector v ∈ TxM is given by

v =
n∑
i=1

vi∂xi

and the components of the metric tensor at a point x ∈M are of the form

gij(x) = gx(∂xi , ∂xj).
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Therefore, we obtain

1

2
∇vL =

1

2

n∑
i=1

∂L

∂vi
(x, v) ∂xi

=
1

2

n∑
i=1

∂gx
∂vi

(v, v) ∂xi(x)

=
1

2

n∑
i=1

∂

∂vi

(
gij(x)vi(x)vj(x)

)
∂xi(x)

=
n∑
i=1

gij(x) vj(x) ∂xi(x)

=
n∑
i=1

vi(x) ∂xi(x)

= v.

We state now the McCann Theorem.

Theorem 6 (McCann Theorem). Let (M, g) be a complete Riemannian manifold.
Let µ,ν be two probability measures compactly supported on M such that µ is abso-
lutely continuous with respect to the Lebesgue measure. Let c : M ×M → [0,+∞[
be the quadratic cost function given by

c(x, y) :=
1

2
d2
g(x, y), ∀x, y ∈M.

Then, there is a unique transport map T : M →M solution for the Monge problem.
Moreover, there is a Lipschitz function ϕ ∈ L1(µ) such that

T (x) = expx(−∇xϕ), µ-a.e. x ∈M.

Proof of Theorem 6. By the dual formulation (2.2) of the Monge problem and
by Theorem 3, there is a c-convex function ϕ ∈ L1(µ) such that for any optimal
transport plan α ∈ Π(µ, ν), we have supp α ⊆ Γϕ. By the Kantorovich potentials
definition, the function ϕ is the supremum of a family of functions x 7→ ϕc(y)−c(x, y)
with y ∈ M , which are Lipschitz with respect to the variable x (because the Rie-
mannian distance dg is Lipschitz). Therefore, ϕ is Lipschitz on M . Since µ is
absolutely continuous with respect to the Lebesgue measure, the Rademacher the-
orem (see Appendix B.1) implies that ϕ is differentiable almost everywhere on M .
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Let α ∈ Π(µ, ν) be optimal and (x, y) ∈ supp α be fixed. Then,

(x, y) ∈ Γϕ ⇔ ϕc(y)− ϕ(x) = c(x, y)

⇔ ϕc(y) = ϕ(x) + c(x, y) ≤ ϕ(z) + c(z, y), ∀z ∈M

⇔ c(z, y) ≥ ϕ(x)− ϕ(z) + c(x, y), ∀z ∈M. (2.4)

Define the function ψ : M −→ R by

ψ(z) = ϕ(x)− ϕ(z) + c(x, y), ∀z ∈M.

Since ψ depends on z, it is differentiable at almost every z ∈ M . Moreover, using
inequality (2.4), we get

ψ(z) ≤ c(z, y),∀z ∈M, and c(x, y) = ψ(x). (2.5)

The following lemma is crucial to conclude.

Lemma 3. Let x̄ 6= ȳ in M and let ψ : M → R be a differentiable function at x̄
such that

ψ(z) ≤ 1

2
d2
g(z, ȳ),∀z ∈M and equality for z = x̄.

Then, there is a unique minimizing geodesic γ : [0, 1]→M between x̄ and ȳ. More-
over, ȳ = expx̄(∇x̄ψ), where expx̄ is the exponential map at x̄.

Proof of Lemma 3. Let x̄ 6= ȳ be fixed in M and γ : [0, 1] → M be a path such
that γ(0) = x̄ and γ(1) = ȳ. By hypothesis, for ε > 0 given, and h : [0, 1] → M
such that h(1) = 0, we have

ψ
(
γ(0) + εh(0)

)
≤ 1

2
d2
g

(
γ(0) + εh(0), γ(1) + εh(1)

)
. (2.6)

By the definition of the Lagrangian action, we have

1

2
d2
g

(
γ(0) + εh(0), γ(1) + εh(1)

)
≤ 1

2

∫ 1

0

gγ(t)

(
γ̇(t) + εḣ(t), γ̇(t) + εḣ(t)

)
dt

≤ 1

2

∫ 1

0

L
(
γ(t) + εh(t), γ̇(t) + εḣ(t)

)
dt (2.7)
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Thus, by (2.6) and (2.7),

1

2

∫ 1

0

L
(
γ(t) + εh(t), γ̇(t) + εḣ(t)

)
dt − ψ

(
γ(0) + εh(0)

)
≥ 0. (2.8)

The derivative of (2.8) with respect to ε yields

1

2

∫ 1

0

∇γ(0)L · h(t)dt+
1

2

[
∇γ̇(0)L · h(t)

]1

0

−1

2

∫ 1

0

d

dt

(
∇γ̇(0)L

)
· h(t)dt−∇x̄ψ · h(0) = 0

⇒ 1

2

∫ 1

0

[
∇γ(0)L−

d

dt

(
∇γ̇(0)L

)]
· h(t)dt

−
[1

2
∇γ̇(0)L−∇x̄ψ

]
· h(0) = 0.

Using the Euler-Lagrange equation (see Lemma 1) and by Lemma 2, we obtain

∇x̄ψ =
1

2
∇γ̇(0)L = γ̇(0)

This implies that
ȳ = expx̄(∇x̄ψ).

Returning to (2.5) and thanks to the above Lemma, there is a unique optimal
transport map T : M →M such that

T (x) = expx(∇xψ) = expx(−∇xϕ), µ-a.e. x ∈M.

We refer the reader to the result of Bernard and Buffoni [BB05] who proved
existence of an optimal transport map, solution for the Monge problem when the
cost is the action associated to a Lagrangian function on a compact manifold.
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Sub-Riemannian Geometry

3.1 Sub-Riemannian structure

3.1.1 Horizontal distribution

Let M be a smooth connected manifold without boundary of dimension n ≥ 2. A
vector field X on M is a smooth map from M into TM that assigns a vector X(x)
at the point x ∈M . We denote by χ∞(M) the set of all smooth vector fields.

Definition 12 (Horizontal Distribution). A smooth distribution ∆ of rank m ≤
n (m ≥ 1) on M is a rank m subbundle of the tangent bundle TM . In other terms,
for each x ∈ M , we assign a m-dimensional linear subspace ∆(x) of the tangent
space TxM in such a way that for an open neighborhood Vx of x in M , there is m
smooth vector fields X1

x, . . . , X
m
x linearly independent on Vx such that

∆(y) = Span
{
X1
x(y), . . . , Xm

x (y)
}
,∀y ∈ Vx.

Such family of smooth vector fields {X1
x, . . . , X

m
x } is called a local frame for the

distribution ∆ in Vx.

Given a smooth vector field X on M , it is said to be "horizontal" with respect
to ∆ if it is a section of the distribution ∆, that is

∀x ∈M, X(x) ∈ ∆(x).

A set of smooth vector fields {X1, . . . , Xm} is said to be a global generating
family for the distribution ∆ on M if

∀x ∈M,∆(x) = Span
{
X1(x), . . . , Xm(x)

}
.
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In [Sus08], Sussmann proved that we can always construct a global generating
family for ∆ (see also Proposition 1.1.8 [Rif14]).

Proposition 4. Let ∆ be a smooth distribution of rank m on the n-dimensional
manifold M (m ≤ n). Then, there are k = m(n+1) smooth vector fields X1, . . . , Xk

such that
∀x ∈M,∆(x) = Span

{
X1(x), . . . , Xk(x)

}
.

Remark 1. If m = n, then the distribution ∆ will be tangent to the manifold M ,
that is ∆(x) = TxM, ∀x ∈M .

Example 4. (Heisenberg group in R3) In R3 with coordinates (x, y, z), the dis-
tribution ∆ given by

∆(x, y, z) = Span
{
X(x, y, z), Y (x, y, z)

}
, ∀(x, y, z) ∈ R3

with
X = ∂x −

y

2
∂z and Y = ∂y +

x

2
∂z

is a distribution of rank 2 on R3.

Example 5. (Heisenberg group in R2n+1) More generally, in R2n+1 with co-
ordinates x = (x1, . . . , xn, y1, . . . , yn, z), we consider the n smooth vector fields
X1, . . . , Xn, Y 1, . . . , Y n given by

X i = ∂xi −
yi
2
∂z and Y i = ∂yi +

xi
2
∂z,∀i = 1, . . . , n.

The distribution ∆ given by

∆(x) = Span
{
X1(x), . . . , Xn(x), Y 1(x), . . . , Y n(x)

}
,∀x ∈ R2n+1

is a distribution of rank 2n on R2n+1.

3.1.2 Totally nonholonomic distribution

Definition 13. Given two smooth vector fields X, Y on M , the Lie bracket assigns
to X and Y a third vector field , denoted by [X, Y ], such that

[X, Y ](x) = DY (x)X(x)−DX(x)Y (x), ∀x ∈M (3.1)

where DX and DY are the Jacobian matrices of X and Y , respectively.
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In local coordinates x = (x1, . . . , xn), for any smooth vector fields X, Y on M
given by

X(x) =
n∑
i=1

ai(x)∂xi , Y (x) =
n∑
i=1

bi(x)∂xi

with ai, bi : M → R smooth functions, the Lie Bracket of X, Y defined by the
formula above (3.1) is given by

[X, Y ](x) =
n∑
i=1

ci(x)∂xi ,

where ci =
n∑
j=1

(∂xjbi)aj − (∂xjai)bj, ∀i = 1, . . . , n.

Let O be an open set in M . For any family {X1, . . . , Xm} of smooth vector
fields defined on O, we denote by Lie(X1, . . . , Xm) the Lie algebra of vector fields
generated by {X1, . . . , Xm}. It is the smallest vector subspace of χ∞(M) containing
{X1, . . . , Xm} and that also satisfies

[X i, Y ] ∈ Lie(X1, . . . , Xm), ∀i = 1, . . . ,m, ∀Y ∈ Lie(X1, . . . , Xm).

It can be construct as follows. We denote by

Lie1(X1, . . . , Xm) = Span
{
X1, . . . , Xm

}
the space spanned by

{
X1, . . . , Xm

}
in χ∞(M).

Then, for k ≥ 1, we define recursively the spaces Liek+1(X1, . . . , Xm) by

Liek+1(X1, . . . , Xm) = Span
{
Liek(X1, . . . , Xm)∪

{[X i, X] |i = 1, . . . ,m, X ∈ Liek(X1, . . . , Xm)}
}
.

This defines an increasing sequence of subspaces of χ∞(M) given by

Lie(X1, . . . , Xm) =
⋃
k≥1

Liek(X1, . . . , Xm).

In general, Lie
(
X1, . . . , Xm

)
is an infinite-dimensional subspace in χ∞(M).

For any point x ∈ O, Lie(X1, . . . , Xm)(x) = {X(x)|X ∈ Lie(X1, . . . , Xm)}.
It follows that Lie(X1, . . . , Xm)(x) is a linear subspace of TxM , hence of finite
dimension.

27



Chapter 3 : Sub-Riemannian Geometry

Definition 14 (Hörmander condition). Considerm smooth vector fields X1, . . . , Xm

on an open subset O ofM . We say that X1, . . . , Xm satisfy the Hörmander condition
if and only if

Lie(X1, . . . , Xm)(x) = TxM, ∀x ∈ O.

Definition 15 (Totally nonholonomic distribution). Any distribution ∆ on M
is called totally nonholonomic or bracket generating on M , if for each x ∈M , there
are an open neighborhood Vx of x inM and a local frame

{
X1
x, . . . , X

m
x

}
on Vx which

satisfies the Hörmander condition on Vx.

Example 6. Consider the distribution given in example 4 by

∆(x, y, z) = Span
{
X(x, y, z), Y (x, y, z)

}
,∀(x, y, z) ∈ R3

where
X = ∂x −

y

2
∂z and Y = ∂y +

x

2
∂z.

Since [X, Y ] = ∂z, it follows that X, Y and [X, Y ] are linearly independent at every
point of R3. Hence, ∆ is totally nonholonomic on R3.

Example 7. Consider in R3 with coordinates (x, y, z) the distribution given by

∆(x, y, z) = Span
{
X(x, y, z), Y (x, y, z)

}
,∀(x, y, z) ∈ R3

where
X = ∂x and Y = ∂y + zx ∂z.

Computing the Lie brackets of X, Y , we get

[X, Y ] = [∂x, ∂y + zx∂z] = z∂z.

[
X, [X, Y ]

]
= [∂x, z∂z] = 0.

[
Y, [X, Y ]

]
= [∂y + zx∂z, z∂z] = 0.

The distribution ∆ is totally nonholonomic on R3\{z = 0}.
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Example 8. Not all distributions are totally nonholonomic. Consider in R4 with
coordinates (x, y, z, t) the distribution given by

∆(x, y, z, t) = Span
{
X(x, y, z, t), Y (x, y, z, t)

}
,∀(x, y, z, t) ∈ R4

where
X = ∂x − y∂y + t∂t and Y = ∂y + z∂z − t∂t.

A computation shows
[X, Y ] = ∂y.

[
X, [X, Y ]

]
= ∂y.

[
Y, [X, Y ]

]
= 0.

All the iterated brackets of X, Y provide either 0 or ∂y, so the brackets of X, Y
do not generate R4.

This definition does not depend of the choice of the local frame. It is a con-
sequence of the following result whose proof is taken from Proposition 1.1.16 in
[Rif14].

Proposition 5. Let
{
X1, . . . , Xm

}
and

{
Y 1, . . . , Y m

}
be two family of m smooth

vector fields on an open subset O of M such that

Span
{
X1(x), . . . , Xm(x)

}
= Span

{
Y 1(x), . . . , Y m(x)

}
, ∀x ∈ O.

Then, for every x ∈ O,

Lie(X1, . . . , Xm)(x) = Lie(Y 1, . . . , Y m)(x).

Definition 16 (Sub-Riemannian structure). LetM be a smooth connected man-
ifold of dimension n. A sub-Riemannian structure on M is a pair (∆, g) where ∆
is a totally nonholonomic distribution of rank m (m ≤ n) endowed with a smooth
Riemannian metric g; that is for every x ∈M , gx(., .) is a scalar product on ∆(x).
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Figure 3.1 – Horizontal path

3.2 Horizontal path and End-Point mapping
Definition 17 (Horizontal path). An absolutely continuous path γ : [0, 1] → M
is said to be horizontal with respect to ∆ if its derivative is square-integrable on the
interval [0, 1] and satisfies

γ̇(t) ∈ ∆(γ(t)), a.e. t ∈ [0, 1].

We recall now the Chow-Rashevsky Theorem ([Cho39], [Ras38]).

Theorem 7 (Chow-Rashevsky Theorem). Let M be a smooth connected man-
ifold equipped with a sub-Riemannian structure (∆, g). Then, for every two points
x, y ∈M , there is an horizontal path joining x and y.

Given k = m(n + 1), let
{
X1, . . . , Xk

}
be a global generating family for ∆ on

M . There is a correspondence between horizontal paths and an open subset of
L2([0, 1],Rk).

Proposition 6. Given a point x ∈M , there exists an open subset Ux ⊂ L2([0, 1],Rk)
such that for every function u ∈ Ux, the solution to the following Cauchy problem:

γ̇u(t) =
k∑
i=1

ui(t)X
i(γu(t)), a.e. t ∈ [0, 1]

γu(0) = x

(3.2)
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is well-defined on [0, 1].

The function u is called a control and the corresponding solution of the system
(3.2) is called the trajectory starting at x and associated with the control u. Any
horizontal path can be viewed as a trajectory associated to a control system like
(3.2).

We refer the reader to the textbook [Rif14] for further details and proofs.

Definition 18 (End-Point mapping). Given a point x ∈M , the End-point map-
ping at x assigns to each curve starting at x its endpoint. It is defined by

Endx : Ux ⊂ L2([0, 1],Rk) −→ M
u 7−→ γu(1)

where γu : [0, 1] → M is the unique solution to (3.2) associated to the control
u ∈ Ux ⊂ L2([0, 1],Rk).

Proposition 7. Given a point x ∈ M , the End-point mapping Endx is of class C1

on the open subset Ux ⊂ L2([0, 1],Rk).

Given x ∈M and an open subset Ux ⊂ L2([0, 1],Rk). For every control u ∈ Ux,
we denote by

DuEndx : L2([0, 1],Rk)→ TEndx(u)
M

the differential of the End-point mapping Endx at u.

Remark 2. If M = Rn, the differential of Endx at u is given by

DuEndx(v) = S(1)

∫ 1

0

S(t)−1B(t)v(t)dt,

where S : [0, 1]→Mn(R) is the solution to the Cauchy problem

Ṡ(t) = A(t)S(t), a.e. t ∈ [0, 1], and S(0) = In

and where the matrix A(t) ∈Mn(R), B(t) ∈Mn,k(R) are defined by

A(t) :=
k∑
i=1

ui(t)JXi(γu(t)), a.e. t ∈ [0, 1]

with γu(t) given by (3.2) and JXi the Jacobian matrix of X i at γu(t)
and

B(t) =
(
X1(γu(t)), . . . , X

k(γu(t))
)
.
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We set
Imx(u) := DuEndx(L2([0, 1],Rk)) (3.3)

which is a vector space contained in TEndx(u)
M , hence of dimension smaller than

or equal to n.

The following proposition shows that the dimension of Imx(u) is larger or equal
to k (k is the dimension of the global frame generating ∆.)

Proposition 8. Given x ∈ M and an open subset Ux of L2([0, 1],Rk). For every
u ∈ Ux, we have

X i(Endx(u)) ∈ Imx(u), ∀i = 1, . . . , k.

3.3 Regular and singular horizontal paths

Definition 19. Given x ∈ M , we say that a control u is singular with respect to x
if and only if it is a critical point of the End-point mapping Endx, that is, if Endx
is not a submersion at u.
Otherwise, we shall say that u is regular.

Definition 20. A horizontal path γ : [0, 1]→M is said to be singular (resp. regular)
if and only if any control u associated to γ (i.e. γ = γu) is singular (resp. regular).

The property of being singular does not depend upon the choice of the frame
{X1, . . . , Xm} of the distribution.

Singular controls can be characterized as follows (see section 1.3 in [Rif14]).

Proposition 9. In local coordinates, a control u ∈ L2([0, 1],Rk) is singular if and
only if there exists an absolutely continuous arc p : [0, 1]→ (Rn)∗\{0} satisfying ṗ(t) = −

k∑
i=1

ui(t)p(t) ·Dγu(t)X
i, a.e. t ∈ [0, 1]

p(t) ·X i(γu(t)) = 0 ∀t ∈ [0, 1], ∀i = 1, . . . , k

(3.4)

Proof of Proposition 9. Given x ∈ M , let u be a singular control with respect
to x. There exists an open subset Ux ⊂ L2([0, 1],Rk) such that Endx is not a
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submersion at u. It means that the differential DuEndx of the End-point mapping
at u is not surjective. So there exists p ∈ (Rn)∗\{ 0} such that

p ·DuEndx(v) = 0, ∀v ∈ L2([0, 1],Rk). (3.5)

By remark 2, the identity (3.5) can be written as∫ 1

0

p · S(1)S(t)−1B(t)v(t)dt = 0, ∀v ∈ L2([0, 1],Rk).

By choosing v ∈ L2([0, 1],Rk) defined as

v(t) =
(
p · S(1)S(t)−1B(t)

)∗
,∀t ∈ [0, 1],

we obtain ∫ 1

0

|
(
p · S(1)S(t)−1B(t)

)∗ |2dt = 0.

Note that t 7→ p · S(1)S(t)−1B(t) is continuous, then

p · S(1)S(t)−1B(t) = 0,∀t ∈ [0, 1].

We define
p(t) := p · S(1)S(t)−1, ∀t ∈ [0, 1].

By construction, p : [0, 1]→ (Rn)∗ is an absolutely continuous arc such that p(t)
does not vanish on [0, 1] (because p 6= 0 and S(t) is invertible for any t ∈ [0, 1]).
Moreover, by the definition of S(t) (see remark 2), we have

d

dt
S(t)−1 = −S(t)−1A(t), a.e. t ∈ [0, 1].

Recalling the definition of A and B in remark 2, it follows that p satisfies ṗ(t) = −p(t)A(t) a.e. t ∈ [0, 1]

p(t)B(t) = 0 ∀t ∈ [0, 1]
.

Conversely, we assume that there is an absolutely continuous arc p : [0, 1] →
(Rn)∗\{0} satisfying (3.4). It implies

−ṗ(t) = A(t)p(t), a.e. t ∈ [0, 1]

and
p(t)∗B(t) = 0,∀t ∈ [0, 1].
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We put p := p(1) 6= 0, and we get

p(t) := p.S(1)S(t)−1,∀t ∈ [0, 1].

Hence,

p.S(1)S(t)−1B(t) = 0

which implies

p.DuEndx(v) = 0,∀v ∈ L2([0, 1],Rk).

Remark 3. If k = n (Riemannian case), then any non-trivial path is horizontal
and regular. In fact, given any x ∈ M and an open subset Ux of L2([0, 1],Rk), it
means that for any u ∈ Ux, Imx(u) is of dimension n (see (3.3) and Proposition 8).
This implies that the End-Point map Endx is a submersion.

Example 9. (The Heisenberg group in R3)
Returning to examples 4 and 6, consider the totally nonholonomic distribution ∆ in
R3 given by

∆(x, y, z) = Span
{
X1(x, y, z), X2(x, y, z)

}
, ∀(x, y, z) ∈ R3

where
X1 = ∂x −

y

2
∂z and X2 = ∂y +

x

2
∂z.

We claim that there are no non-trivial singular paths. Let x ∈ R3 and u = (u1, u2) ∈
L2([0, 1],R2) be a singular control. We denote by γ : [0, 1]→ R3 the horizontal path
associated to u such that

γ̇(t) = u1(t)X1
(
γ(t)

)
+ u2(t)X2

(
γ(t)

)
, a.e. t ∈ [0, 1], and γ(0) = x. (3.6)

By Proposition 9, there exists an absolutely continuous arc p : [0, 1] → (R3)∗\{0}
satisfying

ṗ(t) = −u1(t)p(t) ·Dγ(t)X
1 − u2(t)p(t) ·Dγ(t)X

2, a.e. t ∈ [0, 1] (3.7)

and
p(t) ·X1(γ(t)) = p(t) ·X2(γ(t)) = 0, ∀t ∈ [0, 1]. (3.8)
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Derivating (3.8) yields

ṗ(t) ·X i(γ(t)) + p(t) ·Dγ(t)X
i(γ̇(t)) = 0.

By (3.6) and (3.7), we get for a.e t ∈ [0, 1]

− u1(t)p(t) ·Dγ(t)X
1X i(γ(t))− u2(t)p(t) ·Dγ(t)X

2X i(γ(t))

+ p(t) ·Dγ(t)X
i
(
u1(t)X1(γ(t)) + u2(t)X2(γ(t))

)
= 0

⇒ u1(t)p(t) ·
(
Dγ(t)X

1X i(γ(t))−Dγ(t)X
iX1(γ(t))

)
+ u2(t)p(t) ·

(
Dγ(t)X

2X i(γ(t))−Dγ(t)X
iX2(γ(t))

)
= 0

⇒ u1(t)p(t) · [X i, X1](γ(t)) + u2(t)p(t) · [X i, X2](γ(t)) = 0.

Taking i = 1 and i = 2, we obtain

u1(t)p(t) · [X2, X1](γ(t)) = u2(t)p(t) · [X1, X2](γ(t)) = 0

⇒ |u(t)|2
(
p(t) · [X1, X2](γ(t))

)2

= 0, a.e. t ∈ [0, 1].

Note that [X1, X2] = ∂z. Since X1, X2 and [X1, X2] generate R3 and, p(t) 6≡
0, ∀t ∈ [0, 1], it follows that u ≡ 0.

Example 10. (The Martinet distribution in R3)
Consider in R3 with coordinates (x, y, z), the distribution ∆ given by

∆(x, y, z) = Span
{
X1(x, y, z), X2(x, y, z)

}
, ∀(x, y, z) ∈ R3

with

X1 = ∂x, and X2 = ∂y +
x2

2
∂z.
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The first Lie bracket of X, Y gives [X1, X2] = x∂z. Then, the distribution ∆ is
totally nonholonomic on R3\{ x = 0}. We claim that non-trivial singular paths are
contained in the Martinet surface given by

Σ∆ :=
{

(x, y, z) ∈ R3| x = 0
}
.

Let x̄ = (x, y, z) ∈ R3 and u = (u1, u2) ∈ L2([0, 1],R2) be a control. We denote by
γ : [0, 1]→ R3 the horizontal path associated to u given by

γ(t) =
(
x(t), y(t), z(t)

)
,∀t ∈ [0, 1]

such that

γ̇(t) = u1(t)X1
(
γ(t)

)
+ u2(t)X2

(
γ(t)

)
, a.e. t ∈ [0, 1], and γ(0) = x̄. (3.9)

Assume that u is singular. By Proposition 9, there exists an absolutely continuous
arc p : [0, 1]→ (R3)∗\{0} satisfying

ṗ(t) = −u1(t)p(t).Dγ(t)X
1 − u2(t)p(t).Dγ(t)X

2, a.e. t ∈ [0, 1] (3.10)

and
p(t) ·X1(γ(t)) = p(t) ·X2(γ(t)) = 0, ∀t ∈ [0, 1]. (3.11)

By derivating (3.11) and by (3.9) and (3.10), we obtain

|u(t)|2
(
p(t).[X1, X2](γ(t))

)2

= 0, a.e. t ∈ [0, 1].

Since u(t) 6≡ 0 and p(t) 6≡ 0, for a.e. t ∈ [0, 1], we deduce that

x(t) = 0, ∀t ∈ [0, 1].

Hence, for every t ∈ [0, 1], γ(t) ∈ Σ∆.

3.4 Minimizing geodesics
Given two points x, y ∈ M , we introduce the sub-Riemannian distance between x
and y as the infimum of the length of horizontal curves joining them.

Definition 21 (Sub-Riemannian distance). Let x, y be two points on M . The
sub-Riemannian distance between x and y is defined by

dSR(x, y) := inf
{
l(γ)| γ : [0, 1]→M horizontal curve, γ(0) = x, γ(1) = y

}
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where the length of an horizontal path γ : [0, 1]→M is given by

l(γ) :=

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

We also call dSR the Carnot-Carathéodory distance of the sub-Riemannian structure.

An horizontal path γ : [0, 1]→M between x and y is said to be minimizing if it
minimizes the sub-Riemannian distance between x and y.

We introduce the sub-Riemannian energy between x and y by

eSR(x, y) := inf
{
e(γ)| γ : [0, 1]→M horizontal path γ(0) = x, γ(1) = y

}
where the energy of the curve γ is given by

e(γ) :=

∫ 1

0

gγ(t)(γ̇(t), γ̇(t))dt.

Like in the Riemannian case, an horizontal path between x and y is called minimiz-
ing geodesic if it minimizes the sub-Riemannian energy between x and y.

The following result whose proof is based on the Cauchy-Schwartz inequality (see
Proposition 2.1.1 in [Rif14]), is fundamental.

Proposition 10. For any x, y ∈M , eSR(x, y) = d2
SR(x, y).

We recall that we have equality in the Cauchy-Schwartz inequality if and only if
γ has constant speed. Thanks to the proposition 10, we obtain the following result.

Proposition 11. Let x, y be two points in M . A path γ between x and y is a mini-
mizing geodesic if and only if it is an horizontal path minimizing the sub-Riemannian
distance between x and y with constant speed.

We introduce now the sub-Riemannian version of the classical Riemannian Hopf-
Rinow Theorem (see Theorem 2.1.5 in [Rif14] and Theorem 7.1 in [Stri86], see also
[HR31], [C-V59] for the classical Theorem).

Theorem 8 (Sub-Riemannian Hopf-Rinow Theorem). Assume that the metric
space (M,dSR) is complete. Then, there is at least a minimizing geodesic between
any pair of points in M .
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3.5 Normal and abnormal extremals
Throughout all this section, we will assume that (M,dSR) is a complete metric space.

Let x̄, ȳ ∈ M and γ̄ : [0, 1] → M be a minimizing geodesic joining x̄ and ȳ
be fixed. Since γ̄ minimizes the distance between x̄ and ȳ, it can not have self-
intersection. Hence, there are an open neighborhood V of γ̄

(
[0, 1]

)
in M and an

orthonormal family of m smooth vector fields X1, . . . , Xm such that

∆(z) = Span
{
X1(z), . . . , Xm(z)

}
,∀z ∈ V .

Moreover, by Proposition 6, there is an open subset Ux ⊂ L2([0, 1],Rm) and a
control ū ∈ Ux such that

˙̄γ(t) =
m∑
i=1

ūi(t)X
i
(
γ̄(t)

)
, a.e. t ∈ [0, 1].

Since γ̄ is a minimizing geodesic between x̄ and ȳ, it minimizes the energy among
all horizontal paths joining x̄ to ȳ. This means that γ̄ minimizes the following
quantity

∫ 1

0

gγu(t)

(
γ̇u(t), γ̇u(t)

)
dt =

∫ 1

0

gγu(t)

( m∑
i=1

ui(t)X
i(γu(t)),

m∑
i=1

ui(t)X
i(γu(t))

)
dt

=

∫ 1

0

m∑
i=1

(
ui(t)

)2
dt,

among all controls u ∈ Ux ⊂ L2([0, 1],Rm).

Considering the End-point mapping Endx̄ given by

Endx̄ : U x̄ ⊂ L2([0, 1],Rm) −→ M
u 7−→ Endx̄(u) = γu(1)

and setting

C(u) :=

∫ 1

0

m∑
i=1

(
ui(t)

)2
dt,

we note that ū is a solution of the following optimization problem:

ū minimizes C(u) among all u ∈ U x̄ with Endx̄(u) = ȳ.

Thanks to the Lagrange Multiplier Theorem (see Theorem B.1.5 in [Rif14]), there
exist λ0 ∈ {0, 1} and p ∈ T ∗ȳM with (λ0, p) 6= (0, 0) such that

p ·DūEndx̄ = λ0DūC. (3.12)
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3.5.1 Case λ0 = 0

Minimizers that arise with λ0 = 0 correspond to singular minimizers. In fact, when
λ0 = 0, the Lagrange Multiplier equation is reduced to

p ·DūEndx̄(v) = 0,∀v ∈ L2([0, 1],Rm). (3.13)

This means that some linear form p 6= 0 annihilates the image of the differential of
Endx̄. Then, ū is a critical of Endx̄ and equivalently, the curve γ̄ associated to ū is
a singular minimizing geodesic.

Proposition 12. The fact that λ0 = 0 yields the existence of an absolutely contin-
uous arc p : [0, 1]→ (Rn)∗\ {0} with p(1) = p which satisfies ṗ(t) = −

m∑
i=1

ūi(t)p(t) ·Dγ(t)X
i , a.e. t ∈ [0, 1]

p(t).X i(γ(t)) = 0 , ∀t ∈ [0, 1]

(3.14)

Such curve ψ : [0, 1] → T ∗M given by ψ(t) =
(
γ̄(t), p(t)

)
,∀t ∈ [0, 1], with

ψ(1) = (ȳ, p) is an abnormal extremal lift of γ̄ .

Definition 22. We say that a γ : [0, 1]→ M is a normal minimizing geodesic if it
admits a normal extremal lift.

3.5.2 Case λ0 = 1

Definition 23. The sub-Riemannian Hamiltonian is a function on T ∗M given by

H : T ∗M −→ R

(x, p) 7−→ H(x, p) := max
u∈Rm

( m∑
i=1

ui p ·X i(x)− 1

2

m∑
i=1

u2
i

)
.

(3.15)

Moreover, the Hamiltonian H can be written as follows

H(x, p) :=
1

2

m∑
i=1

(
p ·X i(x)

)2
. (3.16)

In fact, differentiating (3.15) with respect to ui yields

p ·X i(x)− ui = 0,∀i = 1, . . . , k,
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that is, the Hamiltonian defined in (3.15) attains its maximum for
p ·X i(x) = ui, from which formula (3.16) is obtained.

Proposition 13. The fact that λ0 = 1 yields, in the local coordinates, the existence
of a smooth arc p : [0, 1]→ T ∗ȳM with p(1) = p/2 such that

˙̄γ(t) =
∂H

∂p
(γ̄(t), p(t)) =

m∑
i=1

(
p(t) ·X i(γ̄(t))

)
X i(γ̄(t))

ṗ(t) = −∂H
∂x

(γ̄(t), p(t)) = −
m∑
i=1

(
p(t) ·X i(γ̄(t))

)(
p(t) ·Dγ̄(t)X

i
) (3.17)

with
ūi(t) = p(t) ·X i(γ̄(t)), ∀t ∈ [0, 1],∀i = 1, . . . ,m.

Proof of Proposition 13. Thanks to the Lagrange Multiplier Theorem with λ0 =
1 (see (3.12)), there exists p ∈ T ∗ȳM satisfying

p ·DūEndx̄(v) = DūC(v), ∀v ∈ L2([0, 1],Rm) (3.18)

where C(v) =

∫ 1

0

m∑
i=1

(vi(t))
2dt, and the differential of C at ū is given by

DūC(v) = 2 < ū, v >L2([0,1],Rm),∀v ∈ L2([0, 1],Rm).

By remark 2, the differential of Endx̄ at ū is given by

DūEnd
x̄(v) = S(1)

∫ 1

0

S(t)−1B(t)v(t)dt,∀v ∈ L2([0, 1],Rm),

where A,B, S were defined in remark 2. Hence, (3.18) yields∫ 1

0

[
p · S(1)S(t)−1B(t)− 2ū(t)

]
v(t)dt = 0,∀v ∈ L2([0, 1],Rm)

which implies

ū(t) =
1

2

[
p · S(1)S(t)−1B(t)

]
, a.e. t ∈ [0, 1].

We define p : [0, 1]→ T ∗ȳM by

p(t) :=
1

2
p · S(1)S(t)−1, ∀t ∈ [0, 1].
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Then, by construction, we have

ū(t) = p(t)B(t), a.e. t ∈ [0, 1]

with B(t) =
(
X1(γ̄(t)), . . . , Xm(γ̄(t))

)
.

Moreover,
ṗ(t) = −p(t)A(t),∀t ∈ [0, 1]

with A(t) =
m∑
i=1

ūi(t)Dγ̄(t)X
i.

A curve ψ given by ψ(t) =
(
γ̄(t), p(t)

)
,∀t ∈ [0, 1], which is solution of the

Hamiltonian system

ψ̇(t) =
(∂H
∂p

(ψ(t)),−∂H
∂x

(ψ(t))
)
,∀t ∈ [0, 1] with ψ(1) =

(
γ̄(1), p/2

)
(3.19)

is a normal extremal lift of γ̄.

Definition 24. We say that γ is a normal minimizing geodesic if it admits a normal
extremal lift.

Proposition 14. Let γ : [0, 1]→M be a minimizing geodesic joining two points of
M . Then, γ verifies one of the two following properties:

1. γ is singular

2. γ is normal

Note that γ can be singular and normal at the same time.
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Chapter 4

Optimal transport problem on
sub-Riemannian structures

4.1 Statement of the problem

Let M be a smooth connected manifold without boundary of dimension n ≥ 2.
Let (∆, g) be a complete sub-Riemannian structure on M of rank m (m < n). We
will be concerned with the study of the Monge problem for the quadratic geodesic
sub-Riemannian cost.

Let µ,ν be two probability measures compactly supported on M .

Minimize

T 7−→
∫
M

c(x, T (x))dµ(x)

over all transport maps T : M →M from µ to ν,

where
c(x, y) = d2

SR(x, y), ∀(x, y) ∈M ×M.

Monge quadratic sub-Riemannian Formulation

The following result is taken from problem (2.2) and Theorem 3 in Chapter 2.
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Theorem 9. Let µ,ν be two probability measures compactly supported on M , and
the cost function c : M ×M → [0,+∞[ be continuous. Then, there is a c-convex
function ϕ : M → R such that

ϕ(x) := sup
y∈M

{
ϕc(y)− c(x, y)

}
, ∀x ∈M,

ϕc(y) := inf
x∈M

{
ϕ(x) + c(x, y)

}
, ∀y ∈M,

and

∀α ∈ Π(µ, ν), α is optimal ⇔ α(Γϕ) = 1

where
Γϕ :=

{
(x, y) ∈M ×M ; ϕc(y)− ϕ(x) = c(x, y)

}
.

Unlike the Riemannian case, the quadratic sub-Riemannian cost is not locally
Lipschitz. Here appears the main difficulty in solving the Monge quadratic sub-
Riemannian problem. Under regularity properties for dSR, Figalli and Rifford [FR10]
generalize the Brenier-McCann theorem ([Br91], [Mc01]) proving existence and unique-
ness of an optimal transport map.

4.2 The sub-Riemannian version of the Brenier-McCann
Theorem

The main issue in the Brenier-McCann result is the regularity of the c-convex func-
tion ϕ provided by Theorem 9. In particular, the regularity properties of ϕ are
consequences of regularity assumptions made on the cost function. The method
developed by Figalli and Rifford [FR10], for the sub-Riemannian case, requires local
semiconcavity property for the sub-Riemannian distance outside the diagonal. We
will see later that this regularity property made on dSR holds as soon as there is
no singular minimizing geodesic joining two distinct points in M . On the diago-
nal, the existence of a unique optimal transport map is a consequence of a Pansu-
Rademacher Theorem [MS01] (see Appendix B.2) without any assumption on the
sub-Riemannian distance.

In the sequel, we denote by D the diagonal of M ×M , that is the set of all pairs
of the form (x, x) with x ∈M .

The above discussion motivates the following definition.
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Definition 25. Let ϕ : M → R be the c-convex function provided by Theorem 9.
We define the "static" set Sϕ and "moving" setMϕ as follows

Sϕ :=
{
x ∈M | x ∈ Γϕ(x)

}
,

Mϕ :=
{
x ∈M | x /∈ Γϕ(x)

}
.

Note that we can easily check thatMϕ coincides with the set{
x ∈M | ϕ(x) 6= ϕc(x)

}
=
{
x ∈M | ϕ(x) > ϕc(x)

}
which is open by the continuity of ϕ and ϕc.

We state now the result of Figalli and Rifford [FR10].

Theorem 10. Let µ,ν be two probability measures compactly supported on M such
that µ is absolutely continuous with respect to the Lebesgue measure. Let ϕ : M → R
be the c-convex function provided by Theorem 9. Assume that the cost function d2

SR

is locally semiconcave on (M ×M)\D.
Then, there is a unique optimal transport map T : M → M from µ to ν such that
for µ-almost every x ∈M ,

T (x) =

 expx

(
1

2
dxϕ

)
, x ∈Mϕ

x , x ∈ Sϕ
.

Proof of Theorem 10. 1. In a first step, we prove that

µ-a.e. x ∈ Sϕ,Γϕ(x) = {x}.

It is sufficient to prove the result for x contained in an open set V ⊆ M such
that there is an orthonormal family of m vector fields X1, . . . , Xm generating ∆(z),
∀z ∈ V . Let x ∈ Sϕ be fixed. By a change of coordinates if necessary, we can write
the vector fields as follows

X i =
∂

∂xi
+

n∑
j=1

aij
∂

∂xj
, ∀i = 1, . . . ,m.

We remark that the function z ∈ M 7→ ϕc(y) − d2
SR(z, y) is locally Lipschitz with

respect to the sub-Riemannian distance when y varies on a compact set. Then,
ϕ is also locally Lipschitz with respect to the sub-Riemannian distance. By the
Pansu-Rademacher theorem (see Appendix B.2), since µ is absolutely continuous
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Chapter 4 : Optimal transport problem on sub-Riemannian structures

with respect to the Lebesgue measure, ϕ is differentiable with respect to the vector
fields X1, . . . , Xm µ-almost everywhere on V . Hence, we have:

ϕ(y)− ϕ(x) =
m∑
i=1

X iϕ(x)(yi − xi) + o(dSR(x, y)), ∀y ∈ V .

Let γxi : [0, 1] → M , i = 1, . . . ,m be the integral flow associated to X i starting at
x. Then, we denote by

li = lim
t→0

ϕ(γxi (t))− ϕ(x)

t
,∀i = 1, . . . ,m.

Recall that g(γxi (t), γxi (t)) = g(X i(γxi (t)), X i(γxi (t))) = 1, ∀t ∈ [0, 1].

It follows
dSR(x, γxi (t)) ≤ |t|,∀t ∈ [0, 1].

Then,

x ∈ Γϕ(x)⇒ ϕ(x)− ϕ(z) ≤ d2
SR(x, z), ∀z ∈ V .

In particular,
ϕ(x)− ϕ(γxi (t)) ≤ d2

SR(x, γxi (t)) ≤ t2.

This implies that li = 0. Hence,

X iϕ(x) = 0,∀i = 1, . . . ,m. (4.1)

Assume now that there exists y ∈ Γϕ(x) such that y 6= x. So we have

ϕ(x)− ϕ(z) ≤ d2
SR(x, z)− d2

SR(x, y),∀z ∈ V .

Let γx,y : [0, 1]→M be a minimizing geodesic joining x to y. Then, ∀t ∈ [0, 1],

ϕ(x)− ϕ(γx,y(t)) ≤ d2
SR(x, γx,y(t))− d2

SR(x, y),

⇒ −o(dSR(x, γx,y(t))) ≤ d2
SR(x, γx,y(t))− d2

SR(x, y),

⇒ −o(t dSR(x, y)) ≤ (1− t)2d2
SR(x, y)− d2

SR(x, y),

⇒ −o(t dSR(x, y)) ≤ −2t d2
SR(x, y) + t2 d2

SR(x, y),

⇒ o(t dSR(x, y)) ≥ 2t d2
SR(x, y)− o(t dSR(x, y)),
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⇒ o(t dSR(x, y)) ≥ t d2
SR(x, y).

For t small enough,
o(t dSR(x, y))

t
tends to zero which implies that d2

SR(x, y) = 0.

This contradicts the fact that x 6= y.

2. Let us now prove that

µ-a.e. x ∈Mϕ,Γϕ(x) =
{
expx(

1

2
dxϕ)

}
.

Fix x̄ ∈Mϕ. It follows that there is k ∈ N such that

dSR(x̄, y) ≥ 1/k, ∀y ∈ Γϕ(x̄).

Since Γϕ is a closed set in M ×M , there exists an open neighborhood Vx̄ of x̄ in
Mϕ such that

dSR(z, w) ≥ 1/k, ∀z ∈ Vx̄, ∀w ∈ Γϕ(z).

We define the function ϕ̃ : M → R as follows

ϕ̃(z) := sup
y∈M

{
ϕc(y)− d2

SR(z, y)| dSR(z, y) ≥ 1/k
}
.

Since d2
SR is locally semiconcave on M ×M\D, the function ϕ̃ is also locally semi-

concave onM . The fact that, by construction, ϕ and ϕ̃ coincide on Vx̄ implies that ϕ
is locally semiconcave onMϕ. Thanks to the Rademacher Theorem (see Appendix
B.1), ϕ is almost everywhere differentiable onMϕ.

Let ȳ ∈ Γϕ(x̄) be given. By the definition of the Kantorovich potentials (see
Theorem 9), we have

ϕc(ȳ) = inf
z∈M

{
ϕ(z) + d2

SR(z, ȳ)
}

= ϕ(x̄) + d2
SR(x̄, ȳ)

⇒ ϕ(x̄) + d2
SR(x̄, ȳ) ≤ ϕ(z) + d2

SR(z, ȳ), ∀z ∈M.

We define the function

ψ : M −→ R
z 7−→ ψ(z) := ϕ(x̄) + d2

SR(x̄, ȳ)− ϕ(z)
(4.2)

such that
ψ(z) ≤ d2

SR(z, ȳ), ∀z ∈M and equality for z = x̄.
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To conclude, we need the following lemma.

Lemma 4. Let x 6= y ∈ M be fixed and ψ : M → R be a differentiable function at
x such that

ψ(z) ≤ d2
SR(z, y), ∀z ∈M and equality for z = x.

Then, there exists a unique minimizing geodesic γ : [0, 1] → M joining x to y such
that y = expx(−dxψ/2).

Proof of Lemma 4. Let x 6= y ∈ M . Since eSR(z, y) = d2
SR(z, y), ∀z ∈ M , there

is a neighborhood Vx of x on M such that

ψ(z) ≤ eSR(z, y),∀z ∈ Vx and ψ(x) = eSR(x, y).

Without loss of generality, we can assume that there are m smooth vector fields
X1, . . . , Xm on Vx such that

∆(z) = Span
{
X1(z), . . . , Xm(z)

}
, ∀z ∈ Vx.

By the sub-Riemannian version of the Hopf-Rinow Theorem (see Theorem 8), there
exists a minimizing geodesic γ : [0, 1] → M joining y to x, associated to control
uγ ∈ L2([0, 1],Rm). By construction, uγ minimizes the following quantity

C(u) =

∫ 1

0

m∑
i=1

(ui(t))
2dt, ∀u ∈ L2([0, 1],Rm) such that Endy(uγ) = x.

Let u be a control in L2([0, 1],Rm) such that Endy(u) ∈ Vx. Hence,

C(u) ≥ eSR(Endy(u), y) ≥ ψ(Endy(u)),

and
C(uγ) = eSR(x, y) = ψ(x) = ψ(Endy(uγ)).

It means that uγ minimizes

D : L2([0, 1],Rm) −→ R
u 7−→ D(u) = C(u)− ψ(Endy(u))

.

Then,
duγC − dxψ · duγEndy = 0

⇒ duγC = dxψ · duγEndy.
Setting p = dxψ and by the Lagrange Multiplicators Theorem (see Theorem

B.1.5 in [Rif14]) with λ0 = 1, there exists a normal extremal ψ : [0, 1] → T ∗M
satisfying

ψ(1) =
(
x, dxψ/2

)
.
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Hence, there is a unique minimizing geodesic γ : [0, 1], projection of the normal
extremal ψ : [0, 1]→ T ∗M , such that

y = expx(−dxψ/2).

Returning to our proof, the function ψ defined in (4.2) depends of z. As ϕ is
almost everywhere differentiable onMϕ, then ψ is also differentiable a.e. onMϕ, in
particular, at x̄ ∈ Mϕ. Thanks to the Lemma 4, there exists a unique minimizing
geodesic joining x̄ to ȳ. Moreover,

ȳ = expx̄(−dx̄ψ/2) = expx̄(dx̄ϕ/2).

In conclusion, there is a unique transport map T : M →M from µ to ν such that

for µ-a.e. x ∈Mϕ, T (x) = expx(dxϕ/2).

Proposition 15. Assume that the distribution ∆ has no non-trivial singular mini-
mizing geodesics. Then, the sub-Riemannian distance dSR is locally semiconcave on
(M ×M)\D.

Proof of Proposition 15 . Fix (x, y) ∈ (M ×M)\D. For sake of simplicity, let
us first assume that there is a unique minimizing geodesic γ : [0, 1] → M steering
x to y. There exist an open neighborhood V of γ([0, 1]) on M and an orthonormal
family (with respect to g) of m vector fields X1, . . . , Xm such that

∆(z) = Span
{
X1(z), . . . , Xm(z)

}
, ∀z ∈ V .

According to a change of coordinates if necessary, we can assume that V is an open
subset of Rn. Moreover, there is a control uγ ∈ L2([0, 1],Rm) associated to γ, ie.

γ̇(t) =
m∑
i=1

uγi (t)X
i(γ(t)), ∀t ∈ [0, 1]

and
||uγ||L2 = length(γ) = dSR(x, y).

Assume now that there is a sequence {γk}k of minimizing geodesics between x and
y. We denote by K the set of minimizing geodesics between x and y. By [FR10] (see
also [Rif14]), K is compact with respect to the uniform topology. So we can repeat
the above by covering K by a finite number of open tubes admitting orthonormal
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frames. Up to taking a subsequence, the bounded sequence of controls {uk} in
L2([0, 1],Rm) associated to γk such that

||uk||L2 = length(γk)

converges to some uγ in L2([0, 1],Rm). By the lower semicontinuity of the norm, we
have

||uγ||L2 = length(γ).

Since by assumption, γ is regular, there exist n controls v1, . . . , vn ∈ L2([0, 1],Rm)
such that the linear operator

Rn −→ TyM

α 7−→
n∑
i=1

αiDuγEndx(vi)
(4.3)

is invertible.

Recall that C∞(Rm) is dense in L2([0, 1],Rm), we can assume that we have
ṽ1, . . . , ṽn in C∞(Rm) close to v1, . . . , vn satisfying the property (4.3). By abuse of
notation, we set vi = ṽi,∀i = 1, . . . , n.

Define locally

H : M × Rn → M ×M

(z, α) 7→ (z,Endx(uγ +
n∑
i=1

αiv
i)).

This mapping is well-defined and of class C2 in the neighborhood of (x, 0). It
satisfies H(x, 0) = (x, y) and its differential at (x, 0) is invertible.
By the Local Inverse Function Theorem, there exist an open set B ofM×M centered
at (x, y) and a function G : B →M × Rn of class C2 such that

H ◦ G(z, w) = (z, w),∀(z, w) ∈ B.

Denote by ζ the second component of G. For any (z, w) ∈ B,

dSR(x, z) ≤ ||uγ +
n∑
i=1

(ζ(z, w))i v
i||L2 .

Define

φx,y(z, w) := ||uγ +
n∑
i=1

(ζ(z, w))iv
i||L2 ,∀z ∈ B.
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Then,
φx,y(z, w) ≥ dSR(z, w),∀(z, w) ∈ B and φx,y(x, y) = dSR(x, y).

For every (z, w) ∈ B, we put a C2 function φx,y on the graph of dSR at (z, w)
with a uniform control of C2 norm of φx,y. Hence, dSR is locally semiconcave on
(M ×M)\D.

Example 11. (Rank two in dimension three)
Consider a totally nonholonomic distribution ∆ of rank 2 on a manifold M of di-
mension 3. We define the Martinet surface of ∆ as the set defined by

Σ∆ :=
{
x ∈M | ∆(x) + [∆,∆](x) 6= TxM

}
where

[∆,∆](x) := Span
{

[X, Y ](x)| X, Y sections of ∆
}
.

By the same argument as in example 9, we prove that singular horizontal paths are
contained in Σ∆. We claim that Σ∆ is a closed subset of M which is countably
2-rectifiable. Let us prove our claim. By a change of coordinates if necessary, we
assume that we work in R3 with coordinates (x1, x2, x3). Let X1, X2 be two smooth
vector fields generating the distribution, that is

∆(x) = Span
{
X1(x), X2(x)

}
, ∀x ∈ R3.

By a change of coordinates if necessary, we can assume that for i = 1, 2

X i = ∂xi + αi(x)∂x3

with αi : R3 → R smooth functions.
We set I = (i1, . . . , ik) ∈ {1, 2} and we denote by XI the vector field given by

XI =
[
X i1 ,

[
X i2 , . . . [X ik , X ik−1 ] . . .

]]
.

Since ∆ is totally nonholonomic, there exists a positive integer r such that

R3 = Span
{
XI(x); length(I) ≤ r

}
,∀x ∈ R3.

For any I of length(I) ≥ 2, there exists a function gI : R3 → R such that

XI(x) = gI(x)∂x3 .

We set
Ak :=

{
x ∈ R3| gI(x) = 0,∀I, length(I) ≤ k

}
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and

Σ∆ :=
r−1⋃
k=2

(
Ak\Ak+1

)
.

By the Implicit Function Theorem, each set Ak\Ak+1 I can be covered by a countable
union of smooth hyper surfaces. Assume that there is x ∈ Ak\Ak+1. There is
J = (j1, . . . , jk+1) of length k + 1 such that

gJ(x) 6= 0,∀x ∈ R3.

We set I = (j2, . . . , jk+1). Since gI(x) = 0,∀x ∈ R3, we have

XJ =
[
Xj1 , XI

]
=
[
∂xj1 + αxj1∂x3 , gI(x)∂x3

]
=
(
∂xj1gI(x) + αxj1 (x)∂x3gI(x)

)
∂x3 .

So we have
∂xj1gI(x) 6= 0 or ∂x3gI(x) 6= 0.

Hence, we deduce that

Ak\Ak+1 ⊂
⋃

length(I)=k

{
x ∈ R3; ∃ i ∈ {1, 2, 3} s.t. ∂xigI(x) 6= 0

}
.

It follows that Σ∆ has Lebesgue measure zero. For any x 6= y ∈M such that x /∈ Σ∆

or y /∈ Σ∆, any minimizing geodesic joining x and y is nonsingular. By Theorem 15,
the sub-Riemannian distance is locally semiconcave. Set Ω := M\Σ∆ a subset of full
Lebesgue measure. By Theorem 10, for any two probability measure µ, ν compactly
supported on M such that

supp(µ) ⊂ Ω or supp(ν) ⊂ Ω

there is existence and uniqueness of optimal transport maps from µ to ν.

Example 12. (Rank two in dimension four)
In R4 with coordinates (x1, x2, x3, x4), we consider the distribution given by

∆(x) = Span
{
X1(x), X2(x)

}
,∀x ∈ R4

with
X1 = ∂x1 and X2 = ∂x2 + x1∂x3 + x3∂x4 .
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Let γ : [0, 1] → M be a singular horizontal curve associated to a control u ∈
L2([0, 1],R2). By Proposition 9, there exists an absolutely continuous arc p : [0, 1]→
(R4)∗\{0} satisfying

ṗ(t) = −u1(t)p(t) ·Dγ(t)X
1 − u2(t)p(t) ·Dγ(t)X

2, a.e.t ∈ [0, 1] (4.4)

and
p(t) ·X1(γ(t)) = p(t) ·X2(γ(t)) = 0,∀t ∈ [0, 1]. (4.5)

A computation gives

[X1, X2] = ∂x3 ,
[
X1, [X1, X2]

]
= 0,

[
X2, [X1, X2]

]
= −∂x4 .

From (4.5), we get

p1(t) = p2(t) + x1(t)p3(t) + x3(t)p4(t) = 0,∀t ∈ [0, 1].

From (4.4), we get

ṗ(t) = −u2(t)p3(t)∂x1 − u2(t)p4(t)∂x3 .

Hence, 

ṗ1(t) = −u2(t)p3(t)

ṗ2(t) = 0

ṗ3(t) = −u2(t)p4(t)

ṗ4(t) = 0

(4.6)

It implies p1 and p3 are constants on [0, 1]. Assume that p4 = 0. Then, p3 is a
constant on [0, 1] which means that x1 is constant or p2 = p3 = 0. As p 6≡ 0, then
x1 is constant on [0, 1] and u1 ≡ 0. Or, we have u2(t)p3(t) = 0 then p3 = 0 (because
|u(t)| = 1 a.e. t ∈ [0, 1]) which contradicts the fact that p 6≡ 0. Hence, p4 6= 0 and
we deduce that

0 = u2(t)p3(t) =
(
− ṗ3(t)

p4(t)

)
p3(t), a.e. t ∈ [0, 1].

It follows that p3 is a constant on [0, 1] and then, u2 ≡ 0. Thus, γ satisfies

γ̇(t) = u1(t)X1(γ(t))

and is of the form

γ(t) =
(
γ1(t), γ2(0), γ3(0), γ4(0)

)
, a.e. t ∈ [0, 1].
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Up to a parameterization by arc-length, singular horizontal curves with respect to ∆
satisfy

γ̇(t) = X1(γ(t)), a.e. t ∈ [0, 1].

We denote by Ω the subset of M given by

Ω :=
{

(x, y) ∈ R4 × R4| (y − x) /∈ Span{e1}
}
,

where e1 denotes the first vector in the canonical basis of R4. The sub-Riemannian
distance function dSR is locally semiconcave on the interior of Ω. For any two
probability measure µ, ν compactly supported on M such that

supp(µ× ν) ⊂ Ω,

there is existence and uniqueness of optimal transport maps from µ to ν.

4.3 Method of Cavalletti and Huesmann
In [CH15], Cavalletti and Huesmann proved existence and uniqueness of the opti-
mal transport maps on metric measured non-branching spaces using a new technique
based on a localized contraction property.

The non-branching condition plays a crucial role. We recall its definition.

Definition 26. Two distinct geodesics γ1, γ2 : [0, 1] → M branch if there exists
t ∈]0, 1[ such that

γ1(s) = γ2(s) for all s ∈ [0, t].

•γ1(0) = γ2(0) •
γ1(t) = γ2(t)

•γ1(1)

•γ2(1)

A space where there are no branching geodesics is called non-branching.

In our setting, the assumption of Cavalletti and Huesmann amounts to ensure
that M is equipped with a complete sub-Riemannian structure (∆, g) together with
a measure η onM such that the metric measured space (M,dSR, η) is non-branching
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and satisfies the following property:

For every compact set K ⊂M , there exists a measurable function
f : [0, 1]→ [0, 1] with

lim
t→0

sup f(t) >
1

2

and a positive constant δ ≤ 1 such that

η(At,x) ≥ f(t)η(A), ∀0 ≤ t ≤ δ (4.7)

for any compact set A ⊂ K and any base point x ∈ K with

At,x :=
{
γ(t)| γ : [0, 1]→M minimizing geodesic s.t. γ(0) ∈ A, γ(1) = x

}
.

•x

A

At,x

Figure 4.1

The condition (4.7) on measure η means that when we contract a set towards a
point, its measure does not shrink too fast.

We recall that there exists a c-convex function ϕ provided by Theorem 9 such
that any optimal transport plan α is concentrated on

Γϕ :=
{

(x, y) ∈M ×M | ϕc(y)− ϕ(x) = c(x, y)
}
.

Moreover, Γϕ is a c-cyclically monotone set on M ×M (see Proposition 2).

We start by showing that branching at starting points belonging to the support
of optimal transport plans does not happen almost everywhere.
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Lemma 5. Let (M,dSR, η) be a non-branching metric measured space. Let (x0, y0)
and (x1, y1) be two distinct points of Γϕ. Then, for any i = 1, 2 and every minimizing
geodesics γi : [0, 1]→M joining xi to yi, we have

γ0(t) 6= γ1(t),∀t ∈]0, 1[.

Proof of Lemma 5. Assume by contradiction that there is t̄ ∈]0, 1[ such that

γ0(t̄) = γ1(t̄).

For i = 0, 1, we have

dSR
(
xi, γi(t̄)

)
= t̄ dSR

(
xi, yi

)
and dSR

(
γi(t̄), yi

)
= (1− t̄) dSR

(
xi, yi

)
.

Case1: dSR(x0, y0) 6= dSR(x1, y1)

d2
SR(x0, y1) + d2

SR(x1, y0)

≤
(
dSR(x0, γ0(t̄)) + dSR(γ1(t̄), y1)

)2

+
(
dSR(x1, γ1(t̄)) + dSR(γ0(t̄), y0)

)2

≤
(
t̄ dSR(x0, y0) + (1 − t̄)dSR(x1, y1)

)2

+
(
t̄dSR(x1, y1) + (1 − t̄)dSR(x0, y0)

)2

≤
(
t̄2 + (1− t̄)2

)
d2
SR(x0, y0)

+
(
t̄2 + (1− t̄)2

)
d2
SR(x1, y1) + 4t̄(1− t̄)dSR(x0, y0)dSR(x1, y1)

≤ d2
SR(x0, y0) + d2

SR(x1, y1)− 2t̄d2
SR(x0, y0) + 2t̄2d2

SR(x0, y0)− 2t̄d2
SR(x1, y1)

+ 2t̄2d2
SR(x1, y1) + 4t̄dSR(x0, y0)dSR(x1, y1)− 4t̄2dSR(x0, y0)dSR(x1, y1)

< d2
SR(x0, y0) + d2

SR(x1, y1).

The last inequality is obtained from 0 < t̄ < 1 which contradicts the c-cyclically
monotonicity of Γϕ.
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Case2: dSR(x0, y0) = dSR(x1, y1)

We define the curve γ : [0, 1]→M by

γ(s) =

{
γ0(s) s ∈ [0, t̄ ]

γ1(s) s ∈ [ t̄, 1]

Then, γ coincides with γ0 on the interval [0, t̄] which contradicts the fact that M is
non-branching.

We denote by P 1 : M ×M → M the projection map into the first component.
The following proposition is a main consequence of Assumption (4.7).

Proposition 16. For any compact set Λ of Γϕ, the following inequality holds

η(At,Λ) ≥ f(t)η(A), ∀t ∈ [0, 1], for any A ⊂ P 1(Λ)

where

At,Λ :=
{
γ(t)| γ : [0, 1]→M minimizing geodesic s.t. γ(0) ∈ A, γ(1) ∈ P 2(Λ)

}
.

P 1(Λ)

A P 2(Λ)

At,Λ

Proof of Proposition 16. We will proceed in two steps.
1. Let {yi}i∈N be a dense set in P 2(Λ). For n ∈ N and i ≤ n, we consider the
following family of sets
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En(i) :=
{
x ∈ P 1(Λ)| ϕc(yi)− ϕ(x) = c(x, yi)

}
=
{
x ∈ P 1(Λ)| yi ∈ Γϕ(x)

}
.

We set for i ∈ N, Λn :=
n⋃
i=1

En(i)× {yi} such that

P 1(Λn) = P 1(Λ).

By Assumption (4.7), it holds that for any compact A ⊂ P 1(Λ),

η
(

(A ∩ En(i))t,yi

)
≥ f(t) η

(
A ∩ En(i)

)
, ∀t ∈ [0, δ]

where f : [0, 1]→ [0, 1] is independent of {yi}i∈N and of n, and satisfies

lim
t→0

sup f(t) > 1/2.

Since A =
n⋃
i=1

A ∩ En(i), it follows

At,Λn :=
{
γ(t)|γ : [0, 1]→M minimizing geodesic s.t. γ(0) ∈ A, γ(1) ∈ P 2(Λn)

}
=

n⋃
i=1

{
γ(t)|γ : [0, 1]→M minimizing geodesic s.t.

γ(0) ∈ A ∩ En(i), γ(1) = yi
}

=
n⋃
i=1

(
A ∩ En(i)

)
t,yi
.

Thanks to Lemma 5, we have for all t ∈ [0, 1],(
A ∩ En(i)

)
t,yi
∩
(
A ∩ En(j)

)
t,yj

= ∅.

Then it holds for all t ∈ [0, δ]:

η
(
At,Λn

)
≥ η
( n⋃
i=1

(A ∩ En(i))t,yi

)
≥

n∑
i=1

η
(

(A ∩ En(i))t,yi

)
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≥ f(t)
n∑
i=1

η
(
A ∩ En(i)

)
≥ f(t) η

( n⋃
i=1

A ∩ En(i)
)

≥ f(t) η(A).

2. For all n ∈ N, we have Λn ⊂ supp(µ)× supp(ν) a compact set . Then, there
exists a subsequence {Λnk}k∈N of {Λn}n∈N converging to a compact space K with
the Hausdorff metric. Let (x, y) ∈ K. By the definition of Enk(i), we get

ϕc(y)− ϕ(x) = c(x, y), x ∈ P 1(Λ) and y ∈ P 2(Λ).

So we have K ⊂ Λ. Hence,

η(At,Λ) ≥ η(At,K) ≥ lim
k→+∞

sup η(At,Λnk ) ≥ f(t) η(A).

Lemma 6. Let Λ1,Λ2 ⊂ Γϕ be two compact sets such that

(i) P 1(Λ1) = P 1(Λ2)

(ii) P 2(Λ1) ∩ P 2(Λ2) = ∅

Then, η(P 1(Λ1)) = η(P 1(Λ2)) = 0.

Proof of Lemma 6. We set A = P 1(Λ1) = P 1(Λ2) and we define the following
sets for i = 1, 2 :

At,Λi :=
{
γ(t)|γ : [0, 1]→M minimizing geodesic s.t.γ(0) ∈ A, γ(1) ∈ P 2(Λi)

}
.
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A = P 1(Λ1) = P 1(Λ2)

P 2(Λ1)

P 2(Λ2)

At,Λ1

At,Λ2

Since P 2(Λ1) ∩ P 2(Λ2) = ∅, by lemma 5, we have

At,Λ1 ∩ At,Λ2 = ∅, ∀t ∈ [0, 1].

For δ > 0 fixed, we define Aδ :=
{
x| dSR(A, x) ≤ δ

}
.

Hence,

η(A) = lim
δ→0

sup η(Aδ)

≥ lim
t→0

sup η(At,Λ1 ∩ At,Λ2)

= lim
t→0

sup
[
η(At,Λ1) + η(At,Λ2)

]
≥ 2 lim

t→0
sup f(t) η(A).

By hypothesis, we have
lim
t→0

sup f(t) > 1/2.

Then, it follows
η(A) = 0.
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Theorem 11. Let (M,dSR, η) be a non-branching metric space verifying assumption
(4.7). Let µ,ν be two probability measures compactly supported on M such that µ is
absolutely continuous with respect to η. Then, there is existence and uniqueness of
an optimal transport map T : M →M solution for the Monge problem.

Proof of Theorem 11. We consider the set

E :=
{
x ∈M | Γϕ(x) is not a singleton

}
and we assume by contradiction that

η(E) > 0.

It follows that there is k ∈ N such that the set given by

Ek :=
{
x ∈ E| diam Γϕ(x) > 1/k

}
has positive measure with respect to η. Without loss of generality, we can assume
that the manifold M can be covered finitely by many open balls (Ui)i∈I of diameter
less or equal to 1/k. From (Ui)i∈I , we construct a finite family of open sets (Vi)i∈I
pairwise disjoint covering M by proceeding as follows

V1 = U1

V2 = U2\U1

V3 = U3\(U1 ∪ U2)

...
Vn = Un\(U1 ∪ U2 ∪ . . .Un−1)

...

such that ⋃
i∈I

Ui =
⋃
i∈I

Vi.

Therefore, for any x ∈ Ek, there are ix, jx ∈ I with ix 6= jx such that

Γϕ(x) ∩ Vix 6= ∅ and Γϕ(x) ∩ Vjx 6= ∅.

Denote by
Ek,i :=

⋃
x∈Ek

{x} ×
(
Γϕ(x) ∩ Vix

)
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and
Ek,j :=

⋃
x∈Ek

{x} ×
(
Γϕ(x) ∩ Vjx

)
.

We notice that P 1(Ek,i) = P 1(Ek,j) = Ek such that

η(Ek) > 0. (4.8)

We also have P 2(Ek,i)∩P 2(Ek,j) = ∅ since for any x ∈ Ek, Vix ∩Vjx = ∅, for ix 6= jx.
Using Lemma 6,

η(Ek) = 0

which contradicts (4.8).

We conclude that for a.e. x ∈ M , Γϕ(x) is a singleton. Thus, any optimal
transport plan α ∈ Π(µ, ν) such that supp α ⊂ Γ, is concentrated on a graph.
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Chapter 5

Mass Transportation on
sub-Riemannian structures of rank 2
in dimension 4

5.1 Introduction and main result

For a two-rank distribution ∆ on a three-dimensional manifoldM (see Example 11),
we have existence and uniqueness of optimal transport maps for the sub-Riemannian
quadratic cost because non-trivial singular horizontal paths are included in the Mar-
tinet surface Σ∆ given by Σ∆ := {x ∈ M | ∆(x) + [∆,∆](x) 6= TxM} which has
Lebesgue measure zero. The first relevant case to consider is the one of rank-two
distributions in dimension four. In this case, as shown by Sussmann [Sus96], singu-
lar horizontal paths can be seen (locally) as the orbits of a smooth vector field, at
least, outside a set of Lebesgue measure zero.

The definition of a real analytic manifold is similar to that of a smooth mani-
fold. We begin by recalling that an analytic function f is an infinitely differentiable
function such that the Taylor series at any point x0 in its domain, converges to f(x)
for x in a neighborhood of x0. We say that a manifold M of dimension n is real
analytic if transition maps are analytic. We provide M with a real analytic distri-
bution ∆ of rank m (m < n), that is for each x ∈M , there is an open neighborhood
U containing x and m analytic vector fields X1, . . . , Xm on U such that

∆(y) = Span
{
X1(y), . . . , Xm(y)

}
, ∀y ∈ U .

In this case, for analytic functions ui : [0, 1]→ R, i = 1, . . . ,m, the Cauchy problem

63



Chapter 5 : Mass Transportation on sub-Riemannian structures of rank 2 in
dimension 4

given by  γ̇u(t) =
m∑
i=1

ui(t)X
i(γu(t)), a.e. t ∈ [0, 1]

γu(0) = x

has a real analytic solution on M for t ∈ [0, 1].

Our main result is the following:

Theorem 12. Let M be a real analytic manifold of dimension 4 and (∆, g) be a
complete analytic sub-Riemannian structure of rank 2 on M such that

∀x ∈M, ∆(x) + [∆,∆](x) has dimension 3, (5.1)

where

[∆,∆] := Span
{

[X, Y ] | X, Y sections of ∆
}
.

Let µ, ν be two probability measures compactly supported on M such that µ is ab-
solutely continuous with respect to the Lebesgue measure. Then, there is existence
and uniqueness of an optimal transport map from µ to ν for the sub-Riemmannian
quadratic cost c : M ×M → [0,+∞[ defined by:

c(x, y) := d2
SR(x, y), ∀(x, y) ∈M ×M.

Since both supp(µ) and supp(ν) are compact and the metric space (M,dSR) is
complete, there are x0 ∈M and a constant L > 0 such that

supp µ ∪ supp ν ⊂ BSR(x0, L/4) (5.2)

where BSR(x0, L/4) is the sub-Riemannian ball in R4 centered at x0 of radius L/4.

As a consequence, any minimizing geodesic γ : [0, 1] → M from x ∈ supp µ to
y ∈ supp ν is contained in BSR(x0, L/2).
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BSR(x0, L/2)

supp µ supp ν

From now on, we work in the compact set BSR(x0, L/2) of diameter L and so,
we proceed as if M were a compact manifold.

We recall that there exists a c-convex function ϕ : M → R provided by Theorem
9 such that any optimal transport plan α ∈ Π(µ, ν) is concentrated on

Γϕ :=
{

(x, y) ∈M ×M | ϕc(y)− ϕ(x) = c(x, y)
}
.

Following [FR10], let us consider the following definition:

Definition 27. We call "static" set S and "moving" set M respectively the sets
defined as follows:

S :=
{
x ∈M | x ∈ Γϕ(x)

}
,

M :=
{
x ∈M | x /∈ Γϕ(x)

}
.

As in [FR10], we shall show that "static" points do not move, i.e. almost every
x ∈ S is transported to itself. For sake of completeness, the proof of the following
lemma is given in Theorem 10.

Lemma 7. For µ-a.e. x ∈ S , we have Γϕ(x) = {x}.

We need now to show that almost every moving point is sent to a singleton. For
this aim, we need to distinguish between two types of moving points. For every
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x ∈M and every T > 0, we denote by ΩR
x,T the set of regular minimizing geodesics

γ : [0, T ]→M starting at x. We also denote by ΩS
x,T the set of singular minimizing

geodesics γ : [0, T ]→M starting at x.

Definition 28. Let T > 0. For every x ∈M, we set

ΓS(x) :=
{
y ∈ Γϕ(x) | ∃γ ∈ ΩS

x,T s.t. γ(T ) = y
}

and
ΓR(x) :=

{
y ∈ Γϕ(x) | ∃γ ∈ ΩR

x,T s.t. γ(T ) = y
}
.

Moreover, we let

MS :=
{
x ∈M| ΓS(x) 6= ∅

}
and MR :=

{
x ∈M| ΓR(x) 6= ∅

}
.

Note that, by construction, for every x ∈ M, Γϕ(x) = ΓR(x) ∪ ΓS(x). Further-
more, if there are no non-trivial singular minimizing curves thenMS = ∅.

First, using techniques reminiscent to the previous works by Agrachev-Lee [AL09]
and Figalli-Rifford [FR10], we prove that

Proposition 17. For L4-a.e. x ∈MR, ΓR(x) is a singleton.

Then, using a localized contraction property for singular curves which holds
thanks to (5.1), the technique developed by Cavalletti and Huesmann [CH15] allows
to show that

Proposition 18. For L4-a.e. x ∈MS, ΓS(x) is a singleton.

It remains to show that for almost every x ∈M , Γϕ(x) is a singleton. Again this
will follow from a local contraction property together with the approach of Cavalletti
and Huesmann [CH15], see Section 5.4.

5.2 Proof of Proposition 17

Argue by contradiction, by assuming that there is a compact set A ⊂MR of positive
Lebesgue measure such that

∀x ∈ A, ΓR(x) is not a singleton. (5.3)
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Without loss of generality, we may assume that we work in R4.

For every k ∈ N, we define the set

Wk :=
{
x ∈M|∃px ∈ R4; |px| ≤ k and

ϕ(x) ≤ ϕ(z)− 〈px, x− z〉+ k |x− z|2, ∀z ∈ B̄(x, 1/k)
}
, (5.4)

where B̄(x, 1/k) denotes the closed ball in R4 centered at x with radius 1/k.
The set Wk is well-defined, up to a change of coordinates, for k large enough.

Lemma 8. MR ⊂
⋃
k∈N

Wk.

Proof of Lemma 8. Let x̄ ∈ MR and ȳ ∈ ΓR(x̄). By the same argument used
in the proof of Proposition 15, we may assume that there are a regular minimizing
geodesic γ̄ : [0, 1] → M steering ȳ to x̄, and an open neighborhood V of γ̄([0, 1])
admitting an orthonormal family (with respect to g) F of two vector fields X1, X2

such that

∆(z) = Span
{
X1(z), X2(z)

}
, ∀z ∈ V .

According to a change of coordinates if necessary, we can assume that V is an
open subset of R4. Moreover, there is a control ū ∈ L2([0, 1],R2) associated to γ̄, ie.

˙̄γ(t) =
2∑
i=1

ūi(t)X
i(γ̄(t)), ∀t ∈ [0, 1].

Since γ̄ is regular, there exist v1, v2, v3, v4 ∈ L2([0, 1],R2) such that the linear
operator

R4 → R4

α 7→
4∑
i=1

αiDūEnd
ȳ(vi)

(5.5)

is invertible. Recall that C∞([0, 1],R2) is dense in L2([0, 1],R2), we can assume that
we have v1, v2, v3, v4 in C∞([0, 1],R2).

Define locally
F x̄ : R4 → R4

α 7→ Endȳ(ū+
4∑
i=1

αiv
i)
.
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This mapping is well-defined and of class C2 in the neighborhood of zero. It satisfies
F x̄(0) = x̄ and its differential at 0 is invertible.
By the Local Inverse Function Theorem, there exist an open ball B of R4 centered
at x̄ and a function Gx̄ : B → R4 of class C2 such that

F x̄ ◦ Gx̄(z) = z, ∀z ∈ B.

∀z ∈ B, d2
SR(z, ȳ) ≤ ||ū+

4∑
i=1

(Gx̄(z))iv
i||2L2 .

V

•
x̄

• ȳγ̄ ↔ ū
= Endȳ(ū)

B

•z

ū+
4∑
i=1

(Gx̄(z))iv
i

Define

φx̄,ȳ(z) := ||ū+
4∑
i=1

(Gx̄(z))iv
i||2L2 ,∀z ∈ B.

Then, we conclude that there is a C2 function φx̄,ȳ : B → R4 such that

φx̄,ȳ(z) ≥ d2
SR(z, ȳ), ∀z ∈ B and φx̄,ȳ(x̄) = d2

SR(x̄, ȳ).

Recall that, by the definition of the Kantorovitch potentials, for every z ∈ M ,
we have {

ϕ(z) ≥ ϕc(ȳ)− d2
SR(z, ȳ)

ϕ(x̄) = ϕc(ȳ)− d2
SR(x̄, ȳ)

.

Then, ∀z ∈ B, {
ϕ(z) ≥ ϕc(ȳ)− φx̄,ȳ(z)
ϕ(x̄) = ϕc(ȳ)− φx̄,ȳ(x̄)

.
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Define
ψx̄,ȳ(z) := ϕc(ȳ)− φx̄,ȳ(z), ∀z ∈ B.

Hence, we put locally a C2 function under the graph of ϕ with a uniform control
on the C2 norm of ψx̄,ȳ. Then, for x̄ ∈ MR, we can find k ∈ N such that there is
px̄ ∈ R4 with |px̄| ≤ k verifying

ϕ(x̄) ≤ ϕ(y)− 〈px̄, x̄− y〉+ k |x̄− y|2, ∀y ∈ B̄(x̄, 1/k).

We are ready to complete the proof of Proposition 17.

SinceMR ⊂
⋃
k∈N

Wk (by Lemma 8), there exists k ∈ N such that

Ak := A ∩Wk is of positive Lebesgue measure.

Let x̄ be a density point of Ak and ȳ ∈ ΓR(x̄). By the definition of the Kantorovitch
potentials, we have that

ϕ(x̄) + d2
SR(x̄, ȳ) ≤ ϕ(z) + d2

SR(z, ȳ),∀z ∈M

⇒ ϕ(x̄) + d2
SR(x̄, ȳ)− ϕ(z) ≤ d2

SR(z, ȳ),∀z ∈M.

We define the function

ρx̄ : M → R
z 7→ ρx̄(z) := ϕ(x̄) + d2

SR(x̄, ȳ)− ϕ(z)

verifying
ρx̄(z) ≤ d2

SR(z, ȳ), ∀z ∈M and equality for z = x̄. (5.6)

Let Ãk := Ak ∩B(x̄, 1/2k). For every y ∈ Ãk, there is py ∈ R4, |py| ≤ k such
that

ϕ(y) ≤ ϕ(z)− 〈py, y − z〉+ k |y − z|2, ∀z ∈ B(y, 1/k).

We define the function ϕ̃ : B(x̄, 1/2k)→ R as follows
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ϕ̃(x) = sup
y∈Ãk

Ψy(x), ∀y ∈ B(x̄, 1/2k)

where
∀y ∈ Ãk, Ψy(x) := ϕ(y) + 〈py, y − x〉 − k |y − x|2.

We claim that for every x ∈ Ãk, ϕ̃(x) = ϕ(x). Let us prove our claim.
In fact, for every x ∈ Ãk,we have

ϕ̃(x) ≥ Ψy(x), ∀y ∈ Ãk,

that is

ϕ̃(x) ≥ ϕ(y) + 〈py, y − x〉 − k |y − x|2, ∀y ∈ Ãk.

In particular, for y = x ∈ Ãk, we obtain

ϕ(x) ≤ ϕ̃(x).

Assume that there is x ∈ Ãk such that ϕ(x) < ϕ̃(x).
Then, there is y ∈ Ãk, y 6= x such that

ϕ(x) < Ψy(x)

that is

ϕ(x) < ϕ(y) + 〈py, y − x〉 − k |y − x|2. (5.7)

Since x, y ∈ Ãk, we have x ∈ B(y, 1/k).
So,

ϕ(y) ≤ ϕ(x)− 〈py, y − x〉+ k|x− y|2

⇒ ϕ(y) + 〈py, y − x〉 − k |x− y|2 ≤ ϕ(x)

which contradicts inequality (5.7). And the conclusion follows.

Moreover, let y ∈ Ãk be fixed. There exists a neighborhood B(y, 1/k) of y
contained in B(x̄, 1/2k) such that for every x ∈ B(y, 1/k), there is p̃x ∈ R4 such
that ∀x′ ∈ B(y, 1/k), we have
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Ψy(x)−Ψy(x
′) = 〈py, x′ − x〉+ k(|x′ − y|2 − |x− y|2)

≤ 〈py, x′ − x〉+ k|x′ − x|2 − 2k〈y − x, x′ − x〉

≤ 〈py − 2k(y − x), x′ − x〉+ k|x′ − x|2

Take p̃x := py − 2k(y − x), we obtain

Ψy(x) ≤ Ψy(x
′)− 〈py − 2k(y − x), x′ − x〉+ k|x′ − x|2.

This means that for every y ∈ Ãk, Ψy is locally semiconvex on B(x̄, 1/2k). Ac-
cording to Lemma 21 in Appendix A, since ϕ̃ is the supremum of local semiconvex
functions Ψy among all y ∈ Ãk, then ϕ̃ is locally semiconvex on B(x̄, 1/2k). By the
Rademacher Theorem (see Appendix B.1), ϕ̃ is differentiable almost everywhere on
B(x̄, 1/2k).

We also define the function

ρ̃x̄ : B(x̄, 1/2k) → R
z 7→ ρ̃x̄(z) := ϕ̃(x̄) + d2

SR(x̄, ȳ)− ϕ̃(z)

such that
ρ̃x̄ = ρx̄ on Ãk. (5.8)

Here, x̄ is fixed and ρ̃x̄ is a function of z. By the definition of ρ̃x̄, as ϕ̃ is differ-
entiable at almost every z ∈ B(x̄, 1/2k), ρ̃x̄ is also differentiable almost everywhere
on B(x̄, 1/2k).

On the other hand, following the proof of Lemma 8, for x̄ ∈MR and ȳ ∈ ΓR(x̄),
there are an open set Bx̄ in R4 containing x̄ and a C2 function φx̄,ȳ : Bx̄ → R such
that

φx̄,ȳ(z) ≥ d2
SR(z, ȳ),∀z ∈ Bx̄ and equality for z = x̄. (5.9)

Consequently, by (5.6), (5.8), (5.9), we obtain

ρ̃x̄(z) ≤ d2
SR(z, ȳ) ≤ φx̄,ȳ(z), ∀z ∈ Bx̄ ∩ Ãk

and
equality for z = x̄.
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Note that φx̄,ȳ is a C2 function and ρ̃x̄ is differentiable almost everywhere on
B(x̄, 1/2k). Then,

dx̄φ
x̄,ȳ = dx̄ρ̃

x̄.

It means that there is a unique ȳ ∈ ΓR(x̄) such that ȳ is characterized by

ȳ = expx̄(dx̄ρ̃
x̄) = expx̄(−dx̄ϕ̃),

with expx̄ : T ∗x̄M → M the sub-Riemannian exponential map from x̄. This contra-
dicts assumption (5.3) and the conclusion follows.

Remark 4. The above argument can be used to prove the required result in the
general case, with M a smooth connected manifold of dimension n equipped with a
complete sub-Riemannian structure (∆, g) of rank m(m < n).

5.3 Proof of Proposition 18
Our aim is to prove that

for almost every x ∈MS, ΓS(x) is a singleton.

First, we need to construct a line field, defined on a set of full Lebesgue measure,
whose orbits correspond to the singular curves.

The following holds (see [Sus96], [Rif14], [LS95]) :

Lemma 9. There is an open set H of full Lebesgue measure on M such that:

∀x ∈ H, TxM = ∆(x) + [∆,∆](x) + [∆, [∆,∆]](x). (5.10)

Proof of Lemma 9. We denote by S the set given by

S =
{
x ∈M |∆(x) + [∆,∆](x) + [∆(x), [∆,∆]](x) 6= TxM

}
.

Assume by contradiction that S is of positive Lebesgue measure on M . It is
sufficient to work locally. Taking a sufficiently small open neighborhood V of the
origin in M and doing a change of coordinates if necessary we may assume that
there are a set of coordinates (x1, x2, x3, x4) and two vector fields X1, X2 on V of
the form
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X1 = ∂x1 , X2 = ∂x2 + A∂x3 +B∂x4

where A,B : M → R are smooth functions such that A(0) = B(0) = 0
and

∆(x) = Span
{
X1(x), X2(x)

}
, ∀x ∈ V .

So we have
[X1, X2] = Ax1∂x3 +Bx1∂x4 on V .

By hypothesis (5.1) in Theorem 12, we have

∀x ∈M,∆(x) + [∆,∆](x) has dimension 3.

We may assume
Ax1 6= 0 on V .

We denote by X3 the vector field given by

X3 :=
1

Ax1
[X1, X2] = ∂x3 + C∂x4

where C := Bx1/Ax1 is smooth.

A computation gives

[X1, X3
]

= [∂x1 , ∂x3 + C∂x4 ] = Cx1∂x4 (5.11)

and

[X2, X3
]

= [∂x2 + A∂x3 +B∂x4 , ∂x3 + C∂x4 ] (5.12)

=
(
− Ax3 − CAx4

)
∂x3

+
(
Cx2 + ACx3 +BCx4 −Bx3 − CBx4

)
∂x4

Let x ∈ S ∩ V . It follows

∆(x) + [∆,∆](x) + [∆(x), [∆,∆]](x) 6= TxM.

Since ∆ + [∆,∆] is of dimension 3, it means that
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det
(
X1, X2, [X1, X2],

[
X1, [X1, X2]

])
= 0 (5.13)

and,

det
(
X1, X2, [X1, X2],

[
X2, [X1, X2]

])
= 0 (5.14)

which is equivalent to

det
(
X1, X2, [X1, X2],

[
X1, X3

])
= 0 (5.15)

and,

det
(
X1, X2, [X1, X2],

[
X2, X3

])
= 0 (5.16)

that is,
Cx1 = 0 (5.17)

and
Cx2 + ACx3 +BCx4 −Bx3 − CBx4 + CAx3 + C2Ax4 = 0. (5.18)

For every k-tuple I = (i1, . . . , ik−1, 3) s.t. (i1, . . . , ik−1) ∈ {1, 2}k−1, we denote
by ZI the smooth vector field constructed by the Lie brackets of X1, X2 as follows

ZI =
[
X i1 ,

[
X i2 , . . . , [X ik−1 , X3]

]
. . .
]
.

Note l(I) the length of the Lie brackets ZI . By totally nonholonomicity, for every
x ∈ V , there exists an integer r(x) ≥ 2 such that

TxM = Span
{
ZI(x)| l(I) ≤ r(x)

}
.

For every I of l(I) ≥ 2,

ZI(x) = ZI
3 (x) ∂x3 + ZI

4 (x) ∂x4 .

We define the following set

Ak :=
{
x ∈ V| ZI

4 (x)− C(x)ZI
3 (x) = 0 ∀I s.t. l(I) ≤ k

}
and
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S ∩ V =
r−1⋃
k=2

Ak\Ak+1 where r = max
x∈V

r(x). (5.19)

Recall that S is supposed to be of positive Lebesgue measure. By (5.19), there
is 2 ≤ k̄ ≤ r− 1 such that Ak̄\Ak̄+1 has positive Lebesgue measure. Fix x̄ a density
point in Ak̄\Ak̄+1. There exists some J ′ = (i1, . . . , ik̄, 3) of length k̄ + 1 such that
on a neighborhood Vx̄ of x̄,

ZJ ′

4 − CZJ ′

3 6= 0 on Vx̄. (5.20)

From J ′, we take J = (i2, . . . , ik̄, 3) of length k̄, so that ZJ
4 −CZJ

3 = 0. And, we
compute ZJ ′ in terms of ZJ :

ZJ ′ =



[X1, ZJ ] = (ZJ
3 )x1∂x3 + (ZJ

4 )x1∂x4

[X2, ZJ ] =
(

(ZJ
3 )x2 + A(x̄)(ZJ

3 )x3 +B(ZJ
3 )x4 − ZJ

3 Ax3 − ZJ
4 Ax4

)
∂x3

+
(

(ZJ
4 )x2 + A(ZJ

4 )x3 +B(ZJ
4 )x4 − ZJ

3 Bx3 − ZJ
4 Bx4

)
∂x4

Replacing ZJ ′
3 and ZJ ′

4 in (5.20), it follows that on V , we have

(ZJ
4 )x1 − C(ZJ

3 )x1 6= 0 (5.21)

or

(ZJ
4 )x2 + A(ZJ

4 )x3 +B(ZJ
4 )x4 − ZJ

3 Bx3 − ZJ
4 Bx4

− C
(
(ZJ

3 )x2 + A(ZJ
3 )x3 +B(ZJ

3 )x4 − ZJ
3 Ax3 − ZJ

4 Ax4
)
6= 0, (5.22)

We recall that ZJ
4 − CZJ

3 is a smooth function such that

ZJ
4 − CZJ

3 = 0 on Ak̄\Ak̄+1. (5.23)

Since x̄ is a density point on Ak̄\Ak̄+1, we have(
ZJ

4 − CZJ
3

)
xi

(x̄) = 0,∀i = 1, 2, 3, 4.

Note that by (5.17), Cx1 = 0. And, by computing the partial derivatives of
(5.23), we obtain
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(
ZJ

4

)
x1

(x̄)− C(x̄)
(
ZJ

3

)
x1

(x̄) = 0 (5.24)(
ZJ

4

)
xi

(x̄)− C(x̄)
(
ZJ

3

)
xi

(x̄) = Cxi(x̄)ZJ
3 (x̄), ∀i = 2, 3, 4 (5.25)

Using (5.25), we can check that the left-hand side of (5.22) evaluated at the point
x̄ is equal to

(ZJ
4 )x2 + A(ZJ

4 )x3 +B(ZJ
4 )x4 − ZJ

3 Bx3 − ZJ
4 Bx4

− C
(
(ZJ

3 )x2 + A(ZJ
3 )x3 +B(ZJ

3 )x4 − ZJ
3 Ax3 − ZJ

4 Ax4
)

=
(

(ZJ
4 )x2 − C(ZJ

3 )x2

)
+ A

(
(ZJ

4 )x3 − C(ZJ
3 )x3

)
+B

(
(ZJ

4 )x4 − CZJ
3 )x4

)
− ZJ

3

(
Bx3 − CAx3

)
− ZJ

4

(
Bx4 − CAx4

)

= Cx2Z
J
3 + ACx3Z

J
3 + BCx4Z

J
3 − ZJ

3

(
Bx3 − CAx3

)
− ZJ

4

(
Bx4 − CAx4

)
=
(
Cx2 + ACx3 +BCx4 −Bx3 + CAx3

)
ZJ

3 − ZJ
4

(
Bx4 − CAx4

)
=

by(5.18)

(
CBx4 − C2Ax4

)
ZJ

3 − ZJ
4

(
Bx4 − CAx4

)
= −

(
Bx4 − CAx4

)(
ZJ

4 − CZJ
3

)
= 0

This and (5.24) imply that

ZJ ′

4 (x̄)− C(x̄)ZJ ′

3 (x̄) = 0

which contradicts (5.21) and (5.22),i.e. the fact that x̄ /∈ Ak̄+1.

We need another lemma.
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Lemma 10. There exists a line subbundle L of ∆ such that the singular horizontal
curves defined on H are exactly the trajectories described on L.

Proof of Lemma 10. It is sufficient to prove the result in a neighborhood of each
point in H. So, let us consider a local frame {X1, X2} such that

∆(z) = Span
{
X1(z), X2(z)

}
, ∀z ∈M.

Let γ : [0, 1] → M be a trajectory associated to some control u ∈ L2([0, 1],R2). In
local coordinates, singular curves can be characterized as follows (see Proposition
1.3.3 [Rif14]):

γ is singular with respect to ∆ if there is p : [0, 1]→ (R4)∗\{0} satisfying :

ṗ(t) = −
2∑
i=1

ui(t)p(t).Dγ(t)X
i, a.e. t ∈ [0, 1] (5.26)

p(t).X i(γ(t)) = 0,∀t ∈ [0, 1], ∀i = 1, 2 (5.27)

Derivative (5.27) two times yields for almost every t ∈ [0, 1] such that u(t) 6= 0

p(t).
[
X1(t), X2(t)

]
(γ(t)) = 0, (5.28)

and

u1(t)p(t).
[
X1, [X1, X2]

]
(γ(t)) + u2(t)p(t).

[
X2, [X1, X2]

]
(γ(t)) = 0. (5.29)

Since M has dimension four and ∆ +
[
∆,∆

]
has dimension three, there is locally a

smooth non-vanishing 1-form α such that

αx.v = 0, ∀v ∈ ∆(x) +
[
∆,∆

]
(x), ∀x ∈ H.

Then, by (5.27), (5.28)-(5.29), we infer that for almost every t ∈ [0, 1] such that
u(t) 6= 0, we have:

u1(t)αγ(t).
[
X1, [X1, X2]

]
(γ(t)) + u2(t)αγ(t).

[
X2, [X1, X2]

]
(γ(t)) = 0.

By above assumption, for every x ∈ H, the linear form

(λ1, λ2) 7→
(
αx.
[
X1, [X1, X2]

]
(x)
)
λ1 +

(
αx.
[
X2, [X1, X2]

]
(x)
)
λ2

has a kernel of dimension one. This shows that there is a smooth line field (a
distribution of rank one) L ⊂ ∆ on M such that the singular horizontal curves are
exactly the integral curves of L.
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We are ready now to prove Proposition 18. Without loss of generality, it is
sufficient to prove the result locally. We can assume that (x1, x2, x3, x4) denotes the
coordinates in an open neighborhood V in M and consider {X1, X2} a local frame
of ∆ such that

∆(x) = Span
{
X1(x), X2(x)

}
,∀x ∈ V .

Doing a change of coordinates if necessary, we can assume that

X1 = ∂x1 , X2 = ∂x2 + A(.)∂x3 +B(.)∂x4

where A,B : V → R are smooth functions.

For the upcoming results, it is important to keep in mind the following notations.

Notation 1. We denote by Axi , Bxi the partial derivative with respect to the variable
xi, and Axixj , Bxixj the second partial derivative with respect to the variable xi and
xj, of A and B respectively.

We compute the Lie brackets of X1 and X2 :

[
X1, X2

]
= Ax1∂x3 +Bx1∂x4 (5.30)[

X1, [X1, X2]
]

= Ax1x1∂x3 +Bx1x1∂x4[
X2, [X1, X2]

]
= E∂x3 + F∂x4

with

 E = Ax2x1 + AAx3x1 +BAx1x4 − Ax1Ax3 −Bx1Ax4 ,

F = Bx2x1 + ABx3x1 +BBx1x4 − Ax1Bx3 −Bx1Bx4 .

By hypothesis (5.1) and (5.30), we can assume that

Ax1(x) 6= 0, ∀x ∈ V . (5.31)

We denote by Hc the complementary set of H on M given by

Hc =
{
x ∈M | ∆(x) +

[
∆,∆

]
(x) +

[
∆, [∆,∆]

]
(x) 6= TxM

}
.
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Thus, Hc is a closed set of Lebesgue measure zero on M .

The above discussion implies indeed the following lemma.

Lemma 11. There exists an analytic horizontal vector field X given by

X = α1X
1 + α2X

2

with α1, α2 : V → R smooth functions given by{
α1 = EBx1 − FAx1
α2 = Bx1x1Ax1 − Ax1x1Bx1

(E and F : V → R smooth functions defined in Notation 1).

The vector field X vanishes on Hc and any solution of the Cauchy problem
ẋ(t) = X(x(t)) is analytic and singular.

Proof of Lemma 11. Let T > 0 and let u ∈ L2([0, 1],R2) be a singular control
and
x : [0, T ]→M be a solution to the Cauchy problem

ẋ(t) = u1(t)X1(x(t)) + u2(t)X2(x(t)), a.e. t ∈ [0, T ].

There exists an absolutely continuous arc p : [0, T ]→ (R4)∗\{0} such that

ṗ(t) = −u1(t)p(t).Dx(t)X
1 − u2(t)p(t).Dx(t)X

2, a.e. t ∈ [0, T ] (5.32)

p(t).X1(x(t)) = p(t).X2(x(t)) = 0,∀t ∈ [0, T ] (5.33)

Taking the derivatives in (5.33) gives

p(t).[X1, X2](x(t)) = 0, ∀t ∈ [0, T ] (5.34)

which implies that ∀t ∈ [0, T ],
p1(t) = 0

p2(t) + A(x(t))p3(t) +B(x(t))p4(t) = 0

Ax1(x(t))p3(t) +Bx1(x(t))p4(t) = 0
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Assume that condition (5.31) is true, then we obtain

p(t) =
(

0, [A(x(t))
Bx1

Ax1
(x(t))−B(x(t))]p4(t),−Bx1

Ax1
(x(t))p4(t), p4(t)

)
, ∀t ∈ [0, T ].

By taking the derivatives in (5.34), we obtain for every t ∈ [0, T ]

u1(t)p(t).[X1, [X1, X2]](x(t)) + u2(t)p(t).[X2, [X1, X2]](x(t)) = 0

⇒ u1(t)(p3(t)Ax1x1 + p4(t)Bx1x1) + u2(t)(p3(t)E + p4(t)F ) = 0.

We can write
u1(t) = −(p3(t)E + p4(t)F ) = −p4(t)(F − Bx1

Ax1
E)

u2(t) = p3(t)Ax1x1 + p4(t)Bx1x1) = p4(t)(Bx1x1 − Ax1x1
Bx1

Ax1
)
.

Assume that p4(t) = 1,∀t ∈ [0, 1], we obtain{
α1(x) = EBx1 − FAx1
α2(x) = Ax1Bx1x1 −Bx1Ax1x1

(5.35)

Lemma 12. There is a positive constant C > 0 such that

divxX ≥ −C|X(x)|, ∀x ∈ V .

Proof of Lemma 12. Let us compute the divergence of X. For every x ∈ V ,

divxX = α1(x)divxX
1 + α2(x)divxX

2 +X1(α1) +X2(α2)

= α2(x)divxX
2 +Bx1(Ax1x2x1 + Ax1Ax3x1 + AAx1x3x1 +Bx1Ax1x4

+BAx1x1x4 − Ax3Ax1x1 − Ax1Ax1x3 −Bx1x1Ax4 −Bx1Ax1x4)

−Ax1(Bx1x2x1 + Ax1Bx3x1 + ABx1x3x1 +Bx1Bx1x4 +BBx1x1x4

−Bx3Ax1x1 − Ax1Bx1x3 −Bx1x1Bx4 −Bx1Bx1x4) + EBx1x1

−FAx1x1 + Ax2x1Bx1x1 + Ax1Bx2x1x1 −Bx2x1Ax1x1 −Bx1Ax2x1x1
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+AAx3x1Bx1x1 + AAx1Bx3x1x1 − ABx3x1Ax1x1 − ABx1Ax3x1x1

+BAx4x1Bx1x1 +BAx1Bx4x1x1 −BBx4x1Ax1x1 −BBx1Ax4x1x1

= α2(x)divxX
2 + EBx1x1 − FAx1x1

+Bx1x1(BAx4x1 + AAx3x1 + Ax2x1 + Ax1Bx4 −Bx1Ax4)

+Ax1x1(−BBx4x1 − ABx3x1 −Bx2x1 + Ax1Bx3 −Bx1Ax3)

= α2(x)divxX
2 + EBx1x1 − FAx1x1

+Bx1x1Ax1Bx4 +Bx1x1(E + Ax1Ax3)− Ax1x1Bx1Ax3 − Ax1x1(F +Bx1Bx4)

= α2(x)divxX
2 + 2EBx1x1 − 2FAx1x1

+Bx1x1(Ax1Bx4 + Ax1Ax3)− Ax1x1(Bx1Ax3 +Bx1Bx4)

= α2(x)divxX
2 + 2EBx1x1 − 2FAx1x1

+(Bx1x1Ax1 − Ax1x1Bx1)(Ax3 +Bx4)

= 2 Bx1x1E − 2 Ax1x1F + 2 α2(x)divxX
2.

By (5.35), we can write Bx1x1 =
α2 +Bx1Ax1x1

Ax1
and F =

EBx1 − α1

Ax1
.

Hence, divxX = 2 α2
E

Ax1
+ 2 α1

Ax1x1
Ax1

+ 2 α2divxX
2

= 2 α2(
E

Ax1
+ divxX

2) + 2 α1
Ax1x1
Ax1

As we noticed before, without loss of generality, we proceed as ifM is a compact
manifold. Then, the functions

(
E/Ax1 + divxX

2
)
and

(
Ax1x1/Ax1

)
are bounded on

M . There exist c1, c2 > 0 such that

| Ax1x1
Ax1(x)

| ≤ c1 and | E
Ax1

(x) + divxX
2| ≤ c2, ∀x ∈ V .

Thus,
divxX ≥ −c1|α1| − c2|α2|, ∀x ∈ V
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≥ −C|X(x)|,∀x ∈ V

with C = max{c1, c2} > 0 positive constant.

The following process is equivalent to the process introduced by Belotto and
Rifford [BR16] to set the contraction property.

Let ε ∈ {1,+1} and T > 0, we denote by (ϕXεt)0≤t≤T the analytic flow of the
vector field X generating locally singular minimizing geodesics.

For every subset A in V , we set

ASt = ϕXεt(A), ∀t ∈ [0, T ] and AS0 = A.

We denote by l(A,ASt ) := sup
x∈A

length ϕXεt(A) = sup
x∈A

∫ t

0

|X(ϕXεs(x))|ds,

where |X(ϕXεs(x))| stands for the norm of X(ϕXεs(x)) with respect to g.

We recall that there is L > 0, by (5.2), such that for every x ∈ A, we have∫ t

0

|X(ϕXεs(x))|ds ≤ L, ∀t ∈ [0, T ]. (5.36)

We state now divergence formulas, one of the main tool of the present paper (see
[BR16], Proposition B.1).

Lemma 13. For every compact A in M , there is a smooth function
J : [0, T ]× A→ [0,+∞[ such that for every t ∈ [0, T ], we have:

J (0, z) = 1 and
∂J
∂t

(t, z) = div X(ϕXεt(z)) J (t, z) (5.37)

∀x ∈ A, L4(ASt ) =

∫
ASt

dz =

∫
A

J (t, z) dz (5.38)

and

L4(ASt ) =

∫
A

exp
(∫ t

0

div X(ϕXεs(z)) ds
)
dz (5.39)

The following result is an immediate corollary of Lemma 13.
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Lemma 14. Let T > 0. For every subset A in V, we have

L4(ASt ) ≥ exp(−C l(A,ASt )) L4(A), ∀t ∈ [0, T ]. (5.40)

Proof of Lemma 14. Let A be a subset in V . By Lemma 12, there is a constant
C > 0 such that

div X(z) ≥ −C|X(z)|, ∀z ∈ A.

Therefore, by (5.39), we infer that, ∀t ∈ [0, T ],

L4(ASt ) ≥
∫
A

exp
(
−C

∫ t

0

|X(ϕXεs(z))| ds
)
dz

≥
∫
A

exp
(
−C l(A,ASt )

)
dz

≥ exp
(
−C l(A,ASt )

)
L4(A).

The following result whose proof is based on the local contraction property (5.40),
is fundamental.

Lemma 15. Let T > 0. The closed set given by{
x ∈M| ∃γ ∈ ΩS

x,T such that γ(T ) ∈ Hc
}

is of Lebesgue measure zero on M .

Proof of Lemma 15. Let A be a subset ofM of positive Lebesgue measure. With-
out loss of generality, we can assume that A is contained in an open set V in M .
We argue by contradiction by assuming that

L4
({
x ∈ A| ∃γ ∈ ΩS

x,T such that γ(T ) ∈ Hc
})

> 0.

By Lemma 11, there is an analytic horizontal vector field X defined on V gener-
ating singular minimizing geodesic defined on V .
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A

•
x

Hc

ASt

•
ϕXεt(x)

Moreover, X vanishes on Hc. Then, for every x ∈ A, the flow of X starting at x
requires an infinite time to reach Hc, that is

ASt = ϕXεt(A) −→
t→∞

S ⊂ Hc.

By Lemma (14), we have

L4(ASt ) ≥ exp(−C l(A,ASt ))L4(A), ∀t ∈ [0, T ].

By (5.36), we obtain
l(A,ASt ) ≤ L,∀t ∈ [0, T ].

Hence,
L4(ASt ) ≥ exp(−CL)L4(A), ∀t ∈ [0, T ].

Since M is assumed to be compact and all the orbits ϕZεt(x) with x ∈ A tends to S
as t tends to ∞, by the Dominated Convergence Theorem, we deduce that

lim
t→∞
L4(ASt ) = 0.

So we obtain
L4(A) = 0,

which implies the contradiction.

In the spirit of [CH15], we have the following result.

Lemma 16. Let Λ1, Λ2 be two subsets of Γϕ such that
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(i) P 1(Λ1) = P 1(Λ2) and P 1(Λi) ⊂MS,∀i = 1, 2.

(ii) P 2(Λ1) ∩ P 2(Λ2) = ∅.

Then, L4(P 1(Λ1)) = L4(P 1(Λ2)) = 0.

Proof of Lemma 16. Set A = P 1(Λ1) = P 1(Λ2). We can assume that A is con-
tained in an open set V in M . Let T > 0. For every i = 1, 2, we define

AS,Λit :=
{
ϕXεt(x)| ϕX0 (x) ∈ A and ϕXεT (x) ∈ P 2(Λi)

}
, ∀t ∈ [0, T ].

Since P 2(Λ1) ∩ P 2(Λ2) = ∅, we have

AS,Λ1
t ∩ AS,Λ2

t = ∅,∀t ∈ [0, T ].

For δ > 0 fixed, we define Aδ = {x : dSR(x,A) ≤ δ}.

A

P 2(Λ2)
P 2(Λ1)

AS,Λ1
t

AS,Λ2
t

Aδ

L4(A) = lim
δ→0

supL4(Aδ)

≥ lim
t→0

supL4(AS,Λ1
t ∪ AS,Λ2

t )

= lim
t→0

sup[L4(AS,Λ1
t ) + L4(AS,Λ2

t )]

≥ exp
(
−C l(A,AS,Λ1

t )) + exp
(
−C l(A,AS,Λ2

t ))
)
L4(A).

Since t→ 0, we have AS,Λit very close to A. So we can choose
l(A,AS,Λit )) > 0 sufficiently small, that is

exp
(
−C l(A,AS,Λit ))

)
>

1

2
.

Hence, we obtain L4(A) = 0.
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We are ready to complete the proof of Proposition 18.

Consider the following set

E :=
{
x ∈MS : ΓS(x) is not a singleton

}
and assume that E has positive measure.

It follows that there is k ∈ N such that the set given by

Ek :=
{
x ∈ E : diam ΓS(x) >

1

k

}
has positive Lebesgue measure.

Without loss of generality, we can assume that the manifold M can be covered
by finitely many open balls (Ui)i∈I of diameter less or equal to 1/k. From (Ui)i∈I ,
we construct a finite family of open sets (Vi)i∈I pairwise disjoint covering M by
proceeding as follows

V1 = U1

V2 = U2\U1
...

Vn = Un\(U1 ∪ U2 ∪ · · · ∪ Un−1)
...

such that ⋃
i∈I

Ui =
⋃
i∈I

Vi.

Therefore, for any x ∈ Ek, there are ix, jx ∈ I with ix 6= jx such that

ΓS(x) ∩ Vix 6= ∅ and ΓS(x) ∩ Vjx 6= ∅.

Denote by
Ek,i :=

⋃
x∈Ek

{x} × (ΓS(x) ∩ Vix)

and
Ek,j :=

⋃
x∈Ek

{x} × (ΓS(x) ∩ Vjx).

86



We notice that P 1(Ek,i) = P 1(Ek,j) = E such that

L4(E) > 0. (5.41)

We also have P 2(Ek,i)∩P 2(Ek,j) = ∅ since for any x ∈ Ek, Vix ∩Vjx = ∅, for ix 6= jx.
Using lemma 16, we obtain

L4(P 1(Ek,i)) = L4(P 1(Ek,j)) = L4(E) = 0,

which contradicts assumption (5.41).

We conclude that for a.e. x ∈MS,ΓS(x) is a singleton.

5.4 End of the proof of Theorem 12
In the previous sections, we have shown that

a.e. x ∈MR, ΓR(x) is a singleton (see section 5.2),

and
a.e. x ∈MS, ΓS(x) is a singleton (see section 5.3).

To complete the proof of Theorem 12, it remains to prove that

MS ∩MR has Lebsgue measure zero.

For this purpose, we will use again the technique introduced by Cavalletti and
Huesmann [CH15]. First, we will show a localized contraction property for regular
horizontal curves.

Lemma 17. There is a positive constant C̃ such that for T > 0 and for every set
A inMR,

L4(ARt ) ≥ C̃L4(A), ∀t ∈ [0, T ] (5.42)

with
ARt :=

{
γ(t)| γ ∈ ΩR

x,T ; x ∈ A and γ(T ) ∈ ΓR(x)
}
.

Proof of Lemma 17. Let A be a compact set ofMR of positive measure. Since
MR ⊂

⋃
k∈N

Wk (by Lemma 8), for every point x of A, there exists k = k(x) ∈ N such

that
x ∈ Ak := A ∩Wk,

87



Chapter 5 : Mass Transportation on sub-Riemannian structures of rank 2 in
dimension 4

so there is px ∈ R4 with |px| ≤ k verifying

ϕ(x) ≤ ϕ(z)− 〈px, x− z〉+ k|x− z|2, ∀z ∈ B(x, 1/k).

Let Ãk := Ak ∩B(x, 1/2k). As in section 5.2, we define the function

ϕ̃(z) =


ϕ(z) if z ∈ Ãk

sup
y∈Ãk
{ϕ(y) + 〈py, y − z〉 − k |y − z|2} if not

For any x ∈ A, ϕ̃ is locally semiconvex on B(x, 1/2k). By the Alexandrov Theorem,
ϕ̃ is twice differentiable at a.e. z ∈ B(x, 1/2k). Moreover, there exists a constant
Ck > 0 such that

Hesszϕ̃ ≥ −CkI4, a.e. z ∈ B(x, 1/2k) (5.43)

where I4 is the 4× 4 identity matrix.

We notice that A =
⋃
k∈N

Ãk. Denote by C̃ > 0 the constant given by

C̃ := sup
k∈N

Ck.

Then,
Hessxϕ̃ ≥ −C̃I4, a.e. x ∈ A.

By section 5.2, for almost every x ∈ A ⊂ MR, there exists a unique y ∈ ΓR(x)
given by

y := expx(−dxϕ̃).

Then, the curve γx(t) : [0, T ]→M defined by

γx(t) := expx(−tdxϕ̃), a.e. x ∈ A

is the unique regular minimizing geodesic joining x to y.

For every t ∈ [0, T ], we define the function

Tt : M → M
x 7→ Tt(x) = γx(t) = expx(−tdxϕ̃)

.

Note that, ∀t ∈ [0, T ], ARt = {Tt(z) : z ∈ A} then we have

L4(ARt ) =

∫
ARt

dx =

∫
{Tt(z);z∈A}

dx =

∫
A

det(Jac Tt(x))dx. (5.44)
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However, the function Tt results from the composition of the two following func-
tions

f : x ∈M → dxϕ̃ ∈ T ∗xM, and g : p ∈ T ∗M → expx(−tp) ∈M.

By computing the Jacobien of Tt, we obtain

Jac Tt(x) = Jac g(f(x))×Hessxϕ̃ .

Here, g is smooth on T ∗M and by (5.43), there is a constant C̃ > 0 such that

Jac Tt(x) ≥ −C̃ I4, a.e. x ∈ A.

By (5.44), this implies

L4(ARt ) ≥ C̃L4(A),∀t ∈ [0, T ].

We conclude with the following lemma.

Lemma 18. MR ∩MS has Lebesgue measure zero on M .

Proof of Lemma 18. Assume that there is a set A ofMR ∩MS such that

L4(A) > 0. (5.45)

Let T > 0 and ε ∈ {−1,+1}. For every t ∈ [0, T ], we define the two following
intermediate subsets by

ARt :=
{
γx(t)| γx ∈ ΩR

x,T with x ∈ A and γRx (T ) ∈ ΓR(x)
}
,

and
ASt := ϕXεt(A).

We claim that for every x ∈ A, there is t = t(x) ∈]0, T [ such that

ϕXεs(x) 6= γx(s),∀s ∈]t, T [.

As a matter of fact, regular minimizing geodesics are analytic as projections of
the analytic sub-Riemannian Hamiltonian system and singular minimizing geodesic
are analytic as the analytic flow ofX. Assume that ϕXεT (x) = γx(T ). By the principle
of isolated zeros for analytic functions, there is t = t(x) ∈]0, T [ such that

ϕXεs(x) 6= γx(s),∀s ∈]t, T [.
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Without loss of generality, we can assume that there is t̄ ∈]0, T [ such that for every
x ∈ A

t = t(x) ≤ t̄ and ARs ∩ ASs = ∅, ∀s ∈]t̄, T [

and
ARt̄ ∩ ASt̄ 6= ∅.

We denote by
Ā := ARt̄ ∪ ASt̄ .

We may assume that Ā has positive Lebesgue measure. Notice that for s ≥ t̄, when
s→ t̄, ARs and ASs converge to Ā, then one has

L4(Ā) = lim
δ→0

supL4(Āδ) ≥ lim
s→t̄+

supL4(AΛ1
s ∪ AΛ2

s )

= lim
s→t̄+

supL4(ARs ∪ ASs )

= lim
s→t̄+

sup[L4(ARs ) + L4(ASs )]

≥ lim
s→t̄+

(
C̃ + exp

(
−C l(Ā, ASt )

))
L4(Ā). (5.46)

where Āδ := {x; dSR(x, Ā) ≤ δ}, for a given δ > 0.

The inequality (5.46) follows from Lemmas 14 and 17 according to which we
have

L4(ARs ) ≥ C̃L4(Ā) and L4(ASs ) ≥ exp
(
−Cl(Ā, ASt )

)
L4(Ā),∀s ∈]t̄, T [.

As s → t̄, l(Ā, ASt ) tends to zero. So we can choose l(Ā, ASt ) > 0 sufficiently small
such that

C̃ + exp
(
−C l(Ā, ASt )

)
+ C̃ > 1.

It implies that L4(Ā) = 0. And the conclusion follows.
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Chapter 6

The study of h-concavity,
h-semiconcavity and MCP on Carnot
groups

A method introduced by Cavalletti and Huesmann [CH15] shows that we are able to
prove existence and uniqueness of optimal transport maps on spaces satisfying the
MCP. We recall that a sub-Riemannian structure is said to be ideal if it is complete
and has no non-trivial singular minimizing curves. In [Rif13], Rifford proved that
ideal sub-Riemannian structures on Carnot groups satisfy such property and this
follows from the semiconcavity of the sub-Riemannian distance outside the diagonal.
The aim of this section is to study suitable regularity assumptions guaranteeing
the validity of the Cavalletti-Huesmann method for more general Carnot groups.
Unfortunately, the content is prospective. We showed the MCP property on Carnot
groups when the sub-Riemannian distance is assumed to be h-semiconcave. But
until now, we have no examples of Carnot groups which are h-semiconcave.

6.1 Preliminaries on Carnot groups
We recall some basic facts on Carnot groups. For further details on Carnot groups,
we refer the reader to [LeDo17].

A Carnot group G of step r is a simply connected Lie group whose Lie algebra g
admits a nilpotent stratification of step r. It means that g = V1 + · · ·+ Vr with

[V1, Vj] = Vj+1,∀1 ≤ j ≤ r, Vr 6= {0}, Vr+1 = {0}.

We assume that a scalar product <.,.> is given on g for which the Vj’s are mutually
orthogonal. The assumption that G is simply connected and nilpotent ensures that
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the exponential map exp : g → G is a global diffeomorphism (see [Var74]). This
allows to define the inverse of the exponential map given by the mapping

ξ : G −→ g
g 7−→ ξ(g) = ξ1(g) + · · ·+ ξr(g)

such that ξi : G → Vi, for i = 1, . . . , r.
The identification of G and its Lie algebra g is justified by the Baker-Campbell-
Hausdorff formula

exp(Z)exp(Z ′) = exp(Z + Z ′ +
1

2
[Z,Z ′] + . . . ), Z, Z ′ ∈ g (6.1)

where the dots indicate a finite linear combination of terms containing commutators
of order two and higher.

A Carnot group of step r is naturally equipped with a family of dilations defined
by

δλ(g) = exp ◦∆λ ◦ exp−1(g), ∀g ∈ G

where exp : g→ G is the exponential map and ∆λ : g→ g is defined by
∆λ(v1 + · · ·+ vr) = λv1 + · · ·+ λrvr.

The first layer V1 plays a key role. We denote exp(V1) = He, where e is the unit
element of the group G. Assume that V1 is of dimension m, we fix {X1, . . . , Xm} an
orthonormal basis of V1. The first layer V1 behaves as a sub-Riemannian structure
on G: we call horizontal directions its elements, and any metric on it provides a
sub-Riemannian metric by translation. The homogeneity of the first layer implies
the homogeneity of the sb-Riemannian distance, that is for every λ > 0,

dSR(0, δλ(g)) = λdSR(0, g), ∀g ∈ G.

In particular, this yields the invarinace of the sub-Riemannian balls by dilations,
that is for every λ > 0,

δλ(BSR(0, r)) = BSR(0, λr),∀r > 0

where BSR(0, r) denotes the sub-Riemannian ball centered at the origin with radius
r.

We say that an absolutely continuous curve γ : [0, 1] → G is horizontal if
γ̇(t) ∈ THγ(t), a.e. t ∈ [0, 1].
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Given g ∈ G, we denote the horizontal plane Hg by the m-dimensional subman-
ifold of G passing through g given by

Hg =
{
g′ ∈ G : g′ = gh with h ∈ exp(V1)

}
.

We define another kind of curve joining two points g, g′ ∈ G.

Definition 29. Given g, g′ ∈ G, for λ ∈ [0, 1], we denote by

gλ := gδλ(g
−1g′)

the twisted "convex combination" of g and g′ based at g.

Given g ∈ G, and g′ ∈ Hg, the map given by

λ ∈ [0, 1] 7−→ gλ ∈ G

is said to be a horizontal segment, and in particular, a geodesic.

Proposition 19. Given g, g′ ∈ G, one has

1. g′ ∈ Hg ⇔ g−1g′ ∈ He

2. g′ ∈ Hg ⇔ g ∈ Hg′

3. g′ ∈ Hg ⇒ gλ ∈ Hg,∀λ ∈ [0, 1]

Proof of Proposition 19. 1. g′ ∈ Hg ⇔ g′ = gh with h ∈ exp(V1) = He which
means that g−1g′ = h ∈ He.

2. g′ ∈ Hg ⇔ g−1g′ ∈ He ⇔ g′−1g ∈ He ⇔ g ∈ Hg′ .

3. For λ ∈ [0, 1], gλ = gδλ(g
−1g′)⇔ g−1g′ = δλ(g

−1g′).
If g′ ∈ Hg, then g−1g′ ∈ He ⇒ δλ(g

−1g′) ∈ He ⇒ gλ ∈ Hg.

We denote by Ω an open subset of G. Given i = 1, . . . ,m, the action of X i on a
function f : Ω→ R is given by

X if(g) = lim
t→0

f(g exp(tX i))− f(g)

t
=

d

dt
f
(
gexp(tX i)

)
|t=0.

Let k be a positive integer. We denote by Ck
h(Ω) the space of functions f : Ω→ R

which have continuous derivatives up to order k with respect to the horizontal vector
fields X1, . . . , Xm.
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Definition 30. Let f : Ω→ R be a function of class C2
h on Ω.

1. The horizontal gradient of f at a point g ∈ Ω is the horizontal vector given by

∇hf(g) =
m∑
i=1

X if(g)X i.

2. The horizontal symmetrical hessian of f at a point g ∈ Ω is the matrix given
by (

∇2
hf
)∗

(g) =
1

2

[
X iXjf(g) +XjX if(g)

]
i,j=1,...,m

.

According to [CP10] and [DGS03], we introduce the following:

Definition 31. Let f : Ω→ R be a function. We call the Pansu differential of f at
g ∈ Ω the map Df(g) : Ω→ R given by

Df(g)(h) = lim
λ→0+

f
(
gδλ(h)

)
− f(g)

λ
,∀h ∈ Ω.

If f ∈ C1
h(Ω), then the Pansu differential Df(g) is given by

Df(g)(h) =< ∇hf(g), ξ1(h) >,∀h ∈ Ω.

6.2 h-concavity on Carnot groups
Several notions of convexity on Heisenberg groups, and more generally in Carnot
groups, have been introduced and compared as the horizontal convexity (see [DGN03],
[CP10]) and the viscosity convexity (see [LMS04]). These definitions are proved to
be equivalent on Carnot groups (see [BR03], [JLMS07], [Mag05] and [Wan05]).

Definition 32. We say that a function f : G → R is h-concave on G if it is concave
on every horizontal segment, that is,

λf(g′) + (1− λ)f(g) ≤ f
(
gδλ(g

−1g′)
)
,

∀g ∈ G,∀g′ ∈ Hg, ∀λ ∈ [0, 1].

Proposition 20. Let f : G → R be a function of class C2
h on G.
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1. f is h-concave on G if and only if

f(g′) ≤ f(g)+ < ∇hf(g), ξ1(g′)− ξ1(g) >, ∀g ∈ G,∀g′ ∈ Hg. (6.2)

2. f is h-concave on G if and only if(
∇2
hf
)∗

(g) ≤ 0, ∀g ∈ G. (6.3)

Proof of Proposition 20. 1. Since f is h-concave on G, we have

λf(g′) + (1− λ)f(g) ≤ f
(
gδλ(g

−1g′)
)
,

∀g ∈ G,∀g′ ∈ Hg,∀λ ∈ [0, 1].

It follows that

f(g′)− f(g) ≤
f
(
gδλ(g

−1g′)
)
− f(g)

λ
.

By making λ tends to zero, we obtain

f(g′)− f(g) ≤ Df(g)(g−1g′)

⇒ f(g′) ≤ f(g)+ < ∇hf(g), ξ1(g−1g′) >

⇒ f(g′) ≤ f(g)+ < ∇hf(g), ξ1(g′)− ξ1(g) >,

∀g ∈ G,∀g′ ∈ Hg.

2. If f is twice differentiable with respect to X i, i, . . . ,m, then for any g ∈ G,
g′ ∈ Hg, we have

f(g′) = f(g)+ < ∇hf(g), ξ1(g′)− ξ1(g) > +

1

2
<
(
∇2
hf
)∗

(g).(ξ1(g′)− ξ1(g)), ξ1(g′)− ξ1(g) > +o(|ξ1(g′)− ξ1(g)|2).

Since f is h-concave, we have by (6.2) for every g ∈ G, g′ ∈ Hg

f(g′) ≤ f(g)+ < ∇hf(g), ξ1(g′)− ξ1(g) > .

Hence, ∀g ∈ G,∀g′ ∈ Hg,

<
(
∇2
hf
)∗

(g) · (ξ1(g′)− ξ1(g)), ξ1(g′)− ξ1(g) > ≤ 0
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Remark 5. Let f : G → R be an h-concave function on G. We claim that the
convolution of f by a mollifier sequence (ϕε)ε>0, defined by

fε(g) := ϕε ∗ f(g) =

∫
G
f(z−1g)ϕε(z)dz,∀g ∈ G

is a sequence of smooth and h-concave functions on G. In fact, for any g ∈ G,
g′ ∈ Hg, and any λ ∈ [0, 1], we have:

fε
(
gδλ(g

−1g′)
)

= ϕε ∗ f
(
gδλ(g

−1g′)
)

=

∫
G
f
(
z−1gδλ(g

−1g′)
)
ϕε(z)dz

=

∫
G
f
(
z−1gδλ

(
(z−1g)−1z−1g′

))
ϕε(z)dz

≥
∫
G
ϕε(z)

[
λf(z−1g) + (1− λ)f(z−1g′)

]
dz

≥ λ

∫
G
ϕε(z)f(z−1g)dz + (1− λ)

∫
G
ϕε(z)f(z−1g′)dz

≥ λfε(g
′) + (1− λ)fε(g).

6.2.1 First-order horizontal derivative of h-concave functions

Theorem 13. An h-concave function f : G → R is Lipschitz with respect to the
sub-Riemannian distance.

∇hf ∈ L∞loc(G).

Proof of Theorem 13. We denote by fε := ϕε ∗ f the convolution of f by the
mollifier sequence (ϕε)ε>0. By remark 5, (fε)ε is a sequence of smooth functions on
G which are h-concave. Moreover, (fε)ε converges uniformly to f on every compact
subset of G. By inequality (6.2), we have for any g ∈ G, g′ ∈ Hg,

fε(g
′) ≤ fε(g)+ < ∇hfε(g), ξ1(g′)− ξ1(g) > . (6.4)

Let g0 ∈ G. Fix BSR(g0, R) ⊂ BSR(g0, 3R).
For every g ∈ BSR(g0, R), and g′ ∈ Hg\{0}, we have

96



fε(g
′)− fε(g)

dSR(g, g′)
≤ < ∇hfε(g), ξ1(g′)− ξ1(g) >

dSR(g, g′)
.

Let us take now g′ ∈ ∂BSR(g,R) ∩Hg such that 0 < ε < R/2 :

< ∇hfε(g), ξ1(g)− ξ1(g′) >

dSR(g, g′)
≤ fε(g)− fε(g′)

R

≤ 2

R
||fε||L∞(BSR(g0,2R))

≤ 2

R
||f ||L∞(BSR(g0,3R)).

By taking the supremum over all g′ ∈ ∂BSR(g,R) ∩Hg, we have

|∇hfε(g)| ≤ 2

R
||f ||L∞(BSR(g0,3R)).

Since g is arbitrary,

||∇hfε ||L∞(BSR(g0,R)) ≤
2

R
||f ||L∞(BSR(g0,3R)).

We denote by Lip(f) =
2

R
||f ||L∞(BSR(g0,3R)). Hence, for any g, g′ ∈ B̄SR(g0, R),

we have

|fε(g′)− fε(g)| ≤ Lip(f)dSR(g, g′).

Let ε tends to zero,

|f(g′)− f(g)| ≤ Lip(f) dSR(g, g′), ∀g, g′ ∈ B̄SR(g0, R).

Thanks to the Pansu-Rademacher Theorem (see Appendix B.2 ), an h-concave
function is differentiable a.e. with respect to X i, i = 1, . . . ,m.

6.2.2 Second-order horizontal derivative of h-concave func-
tions

We deal with the existence almost everywhere of the second order horizontal deriva-
tive of h-concave functions (see [Mag05] and [GM04]).
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Definition 33. (BV 2
h functions) We say that a function f ∈ L1(G) has h-bounded

second variation in G and we denote f ∈ BV 2
h (G) if for any

i = 1, . . . ,m,

sup
{∫
G
X if div ϕ dx | ϕ ∈ C1

c (G), |ϕ| < 1
}
<∞.

The following theorem extends a well-known property of concave functions. For
sake of completeness, its proof is given in Appendix B.4.

Theorem 14. Let f : G → R be an h-concave function. Then, f belongs to the
class BV 2

h (G).

The following theorem corresponds to Theorem 3.9 in [AM03].

Theorem 15. Let f ∈ BV 2
h (G). Then for a.e. g ∈ G, there exists a polynomial Pg

of homogeneous degree less than or equal to 2 such that

lim
r→0+

1

r2|BSR(g, r)|

∫
BSR(g,r)

|f(y)− Pg(y)|dy = 0.

The following theorem has been proved in [DGN03], [JLMS07] and [LMS04].

Theorem 16. Let f : G → R be an h-concave function. Then, for every g ∈ G
there exist δ > 0 with B̄SR(g, δ) and a constant C = C(g) > 0 such that for every
r < δ/15 the following estimates hold

sup
y∈BSR(g,r)

|f(y)| ≤ C

|BSR(g, r)|

∫
BSR(g,r)

|f(y)|dy

and
||∇hf ||L∞(BSR(g,r)) ≤

C

r|BSR(g, r)|

∫
BSR(g,r)

|f(y)|dy.

We give now the sub-Riemannian version of the Alexandrov-Busemann-Feller
Theorem ([BF36], [Alex39]).

Theorem 17. Let f : G → R be an h-concave function. Then for a.e. g ∈ G there
exists a unique polynomial Pg of homogeneous degree less than or equal to 2 such
that the following holds

lim
y→g

|f(y)− Pg(y)|
dSR(g, y)2

= 0. (6.5)
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Proof of theorem 17. We recall by Theorem 14, that the h-concave function f is
BV 2

h (G). Then, by Theorem 15, for a.e. g ∈ G, there exists a unique polynomial Pg
of homogeneous degree ≤ 2 such that

lim
r→o+

1

r2

1

|BSR(g, r)|

∫
BSR(g,r)

|f − Pg|dy = 0. (6.6)

Let g0 ∈ G be fixed such that (6.6) is satisfied. We set v(y) = f(y)− Pg0(y).
The polynomial Pg0 can be of the form L+R, that is the sum of a polynomial L of
homogeneous degree ≤ 1 and a polynomial R of homogeneous degree equal to 2 or
R ≡ 0. Moreover, we can write L of the form

L(g) = c+
m∑
j=1

αjgj, with c, αj ∈ R, j = 1, . . . ,m.

We note that L et −L are both h-concave. Hence, w = f −L is also h-concave. We
now have v = f − Pg0 = f − L−R = w −R.
There exist c1 > 0 such that ∀r > 0,

sup
BSR(g0,r)

|∇hR| ≤ c1r and sup
BSR(g0,r)

|R| ≤ c1r
2

As w is h-concave, then v +R is h-concave.
By Theorem 16, there exists r0 > 0 such that

||∇hv||L∞(BSR(g0,r)) ≤
C

r

1

|BSR(g0, 15r)|

∫
BSR(g0,15r)

|w(y)|dy + sup
BSR(g0,r)

|∇hR|

for any 0 < r < r0 such that BSR(g0, 15r0) ⊂ G.

It follows that

||∇hv||L∞(BSR(g0,r)) ≤
C

r

1

|BSR(g0, 15r)|

∫
BSR(g0,15r)

|v(y)|dy + sup
BSR(g0,r)

|∇hR|

+
C

r

1

|BSR(g0, 15r)|

∫
BSR(g0,15r)

|R(y)|dy

≤ C

r

1

|BSR(g0, 15r)|

∫
BSR(g0,15r)

|v(y)|dy + c1r + Cc1r

=
C

r

1

|BSR(g0, 15r)|

∫
BSR(g0,15r)

|v(y)|dy + c1r(1 + C).

Let Q be the Hausdorff dimension of the Carnot groups G. We may choose an
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arbitrary ε ∈]0, 1/2[ and τ ∈]0, εQ[ such that

|{y ∈ B(g0, r) : |v(y)| ≥ εr2}| ≤ (εr2)−1

∫
B(g0,r)

|v(y)|dy −→
r→0+

ε−1o(rQ).

Fix r1 < r0 depending on ε and τ such that

|{y ∈ BSR(g0, r) : |v(y)| ≥ εr2}| < τ |B(x, r)|,∀ 0 < r < r1.

We take y ∈ BSR(g0,
r
2
) and BSR(y, τ

1
Q r) ⊂ BSR(g0,

r
2
). There is

zr ∈ B(y, τ
1
Q r) such that |v(zr)| < εr2,∀ r < r1.

It implies for y ∈ B(g0,
r
2
) and zr ∈ B(y, τ

1
Q r)

|v(y)| < εr2 + |v(zr)− v(y)|.

Hence, for r2 < r1/3 such that

||∇hv||L∞(BSR(g0,3r)) ≤ Cr + 3(1 + C)c1r = c2r,∀ r < r2.

We obtain for y ∈ B(g0,
r
2
),

|v(y)| < εr2 + c2rd(zr, y) < εr2 + c2τ
1
Q r2 < ε(1 + c2)r2.

As ε is arbitrary,

lim
r→0

|v(y)|
r2

= 0.

And the conclusion follows.

6.3 h-semiconcavity on Carnot groups
Definition 34. We say that a function f : G → R is h-semiconcave on G if it is
semiconcave on every horizontal segment, that is, there exists C > 0 such that

λf(g′) + (1− λ)f(g) ≤ f
(
gδλ(g

−1g′)
)

+ λ(1− λ)C|ξ1(g′)− ξ1(g)|2,

∀g ∈ G,∀g′ ∈ Hg, ∀λ ∈ [0, 1].

The constant C is called h-semiconcavity constant for f in Ω.

The following proposition is fundamental (see [DGN03]).
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Proposition 21. Let g ∈ G. Then for any g′ ∈ Hg, one has

ξ1(gλ) = (1− λ)ξ1(g) + λξ1(g′) (6.7)

with gλ := gδλ(g
−1g′), for every λ ∈ [0, 1].

Proof of Proposition 21. Via the Baker-Campbell-Hausdorff formula (see (6.1)),
one has

gλ = gδλ(g
−1g′)

= exp
(
ξ(g)

)
exp
(
ξ(δλ(g

−1g′))
)

= exp
(
ξ(g)+ ξ(δλ(g

−1g′))+
1

2

[
ξ(g), ξ(δλ(g

−1g′))
]

+ . . .
)
.

Since gλ ∈ Hg, we have δλ(g−1g′) ∈ He which means that

ξi(δλ(g
−1g′)) = 0,∀i = 2, . . . , r.

Then,

gλ = exp
(
ξ1(g) + · · ·+ ξr(g) + ξ1(δλ(g

−1g′)) +
1

2

[
ξ(g), ξ1(δλ(g

−1g′))
]

+ . . .
)
.

Hence,
ξ1(gλ) = ξ1(g) + ξ1(δλ(g

−1g′))

= ξ1(g) + λξ1(g−1g′)

= ξ1(g) + λ
(
ξ1(g′)− ξ1(g)

)
.

From Proposition 21, we remark that an h-semiconcave function as given in
Definition 34 can be regarded as a smooth perturbation of an h-concave function,
that is it can be written as the sum of an h-concave function and a smooth one.
More precisely,

f(g) =
(
f(g)− C|ξ1(g)|2

)
+ C|ξ1(g)|2

with g 7→ f(g)− C|ξ1(g)|2 an h-concave function.

Therefore, the h-semiconcave functions share all the regularity enjoyed by the
h-concave functions.

Theorem 18. Let f : G → R be an h-semiconcave function.
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(i) The function f is Lipschitz with respect to the sub-Riemannian distance. Thanks
to the Pansu-Rademacher Theorem, f is differentiable a.e. with respect to
X i, i = 1, . . . ,m.

(ii) (The sub-Riemannian version of the Alexandrov Theorem)
The function f is twice differentiable almost everywhere on G with respect to
X i, i = 1, . . . ,m.

We also have the following properties that relate the h-semiconcavity property
of a function to its derivatives.

Proposition 22. Let f : G → R be an h-semiconcave function with C as h-
semiconcavity constant. Then, f satisfies the following properties:

1. For any g ∈ G, g′ ∈ Hg ,

f(g′) ≤ f(g)+ < ∇hf(g), ξ1(g′)− ξ1(g) > +C|ξ1(g′)− ξ1(g)|2. (6.8)

2. For any g ∈ G, (
∇2
hf
)∗

(g) ≤ C Im (6.9)

where Im denotes the m×m identity matrix.

6.4 MCP on Carnot groups
Let G be a Carnot group of dimension n whose first layer V1 has dimension m.

We define a class of sub-Riemannian structures, called h-ideal sub-Riemannian
structures on Carnot groups.

Definition 35. We say that a sub-Riemannian structure is h-ideal if it is complete
and the sub-Riemannian distance dSR is h-semiconcave on (G × G)\D, where D
denotes the diagonal of G × G.

As in [Rif13], we define the horizontal cut-locus at a given g ∈ G as

cuth(g) := Σh(dSR(g, .))

where Σh(dSR(g, .)) denotes the set of points g′ ∈ G such that the pointed distance
dSR(g, .) is not differentiable at g′ with respect to X i, i = 1, . . . ,m.

Without loss of generality, we proceed as if we work in Rn where (x1, . . . , xn)
denotes the local coordinates. Moreover, we fix {X1, . . . , Xm} an orthonormal basis
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of V1. Up to a change of coordinates, we can assume that the vector fields X i are of
the form

X1 = ∂x1 , and X
i = ∂xi +

n∑
j=m+1

αji∂xj ,∀i = 2, . . . ,m

with αji ∈ C∞(M).

For any horizontal vector fieldX :=
m∑
i=1

aiX
i, we define the horizontal divergence

of X, denoted by divhX, as follows

divhX :=
m∑
i=1

X i(ai).

We make the following assumption.

ASSUMPTION 1 For every i = 2, . . . ,m,

X i(αji ) = 0,∀j = m+ 1, . . . , n. (6.10)

As the sub-Riemannian structure is invariant by translation, it is sufficiant to
prove the result at the origin 0.

Proposition 23. Let G be a Carnot group whose first layer is h-ideal and satisfies
ASSUMPTION 1. Then, there is N > 0 such that for every measurable set

A ⊆ BSR(0, 1)\BSR(0, 1/2)

with 0 < Ln(A) < +∞, we have

Ln(As) ≥ sNLn(A), ∀s ∈ [1/2, 1]

where

As :=
{
γ(s)| γ : [0, 1]→ G minimizing geodesic with γ(0) = 0, γ(1) ∈ A\cuth(0)

}
.

Proof of Proposition 23. Without loss of generality, we may assume that we
work in Rn. We denote by f the sub-Riemannian distance pointed at the origin
0, such that

f : G → [0,+∞[
g 7→ f(g) := dSR(0, g).
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Let fε = φε ∗ f be the convolution of f and the mollifier sequence (φε)ε. We may
note that f is h-semiconcave on G outside cuth{0}. By remark 5, for ε > 0 given, fε
is smooth and h-semiconcave on G outside cuth{0}. It follows that, by Proposition
22, there is a constant C > 0 such that(
∇2
hfε
)∗

(g) ≤ CIm, for a.e. g ∈
(
G\cuth{0}

)
∩
(
BSR(0, 1)\BSR(0, 1/2)

)
(6.11)

where Im denotes the m×m identity matrix.

We denote by Zε the horizontal vector field defined by

Zε(g) := −∇hfε(g), (6.12)

for a.e. g ∈
(
G\cuth{0}

)
∩
(
BSR(0, 1)\BSR(0, 1/2)

)
.

Let g ∈ G be fixed, and ϕZεt be the flow of Zε from g. For every measurable set
A ⊆ BSR(0, 1)\BSR(0, 1/2), we denote by

Aεt := ϕZε1−t(A1), ∀t ∈ [1/2, 1]

where A1 = A\cuth{0}.

To measure the variation of the volume along the trajectories of the flow (ϕZεt )t,
we have by the definition of the divergence

d

dt

{
Ln
(
ϕZεt (A1)

)}
=

∫
ϕZεt (A1)

divZε(g) dg, ∀t ∈ [0, 1/2]. (6.13)

We compute now the divergence of Zε, for a.e. g ∈ A1

divZε(g) = div
(
∇hfε(g)

)
= −div (

m∑
i=1

X ifε(g) X i(g)

= −
m∑
i=1

X i
(
X ifε

)
(g)−

m∑
i=1

X ifε(g) div X i(g)

= −divh∇hfε(g)−
m∑
i=1

X ifε(g) div X i(g)

We claim that for a.e. g ∈ A1, divh∇hfε(g) is bounded from below. In fact, we
have
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∇hfε =
m∑
i=1

(
X ifε

)
X i =

(
∂x1fε

)
X1 +

m∑
i=2

(
X ifε

)
X i

=
(
∂x1fε

)
X1 +

m∑
i=2

(
∂xifε +

n∑
i=m+1

αji∂xjfε
)
X i

Then,

divh∇hfε =
m∑
i=1

X i
(
X ifε

)
= ∂2

x1x1
fε +

m∑
i=2

X i
(
X ifε

)
= ∂2

x1x1
fε +

m∑
i=2

(
∂xi +

n∑
j=m+1

αji∂xj
)(
∂xifε +

n∑
l=m+1

αli∂xlfε
)

= ∂2
x1x1

fε +
m∑
i=2

∂2
xixi

fε +
m∑
i=2

n∑
l=m+1

(∂xiα
l
i)∂xlfε + 2

m∑
i=2

n∑
l=m+1

αli∂
2
xixl

fε

+
m∑
i=2

n∑
j=m+1

n∑
l=m+1

αji (∂xjα
l
i)∂xlfε +

m∑
i=2

n∑
j=m+1

n∑
l=m+1

αjiα
l
i∂

2
xjxl

fε

= E + F

where

E = ∂2
x1x1

fε +
m∑
i=2

∂2
xixi

fε + 2
m∑
i=2

n∑
l=m+1

αli∂
2
xixl

fε +
m∑
i=2

n∑
j=m+1

n∑
l=m+1

αjiα
l
i∂

2
xjxl

fε

and

F =
m∑
i=2

n∑
l=m+1

(∂xiα
l
i)∂xlfε +

m∑
i=2

n∑
j=m+1

n∑
l=m+1

αji (∂xjα
l
i)∂xlfε.

By (6.11), there is a constant C > 0 such that

E(g) ≤ C, a.e. g ∈ A1.

On the other hand, we have

105



Chapter 6 : The study of h-concavity, h-semiconcavity and MCP on Carnot
groups

F =
m∑
i=2

n∑
j=m+1

(∂xiα
j
i )∂xjfε +

m∑
i=2

n∑
j=m+1

n∑
l=m+1

αji (∂xjα
l
i)∂xlfε

=
m∑
i=2

( n∑
l=m+1

(∂xiα
l
i)∂xlfε +

n∑
l=m+1

n∑
j=m+1

αji (∂xjα
l
i)
)
∂xlfε

=
m∑
i=2

n∑
l=m+1

(
(∂xiα

l
i) +

n∑
j=m+1

αij(∂xjα
l
i)
)
∂xlfε

=
m∑
i=2

n∑
l=m+1

X i(αli)∂xlfε.

By ASSUMPTION 1 (6.10), we have

∀i = 2, . . . ,m, X i(αli) = 0, ∀l = m+ 1, . . . , n.

It means that F = 0.

Thus, we get
divh ∇hfε(g) ≤ C, a.e. g ∈ A1.

And the claim follows.

Furthermore, fε is Lipschitz with respect to the sub-Riemannian distance. So
there is a constant C ′ > 0 such that

m∑
i=1

X ifε(g) div X i(x) ≤ C ′, a.e. g ∈ A1.

It follows that there is a constant C̄ > 0 such that

divZε(g) ≥ −C̄, a.e. g ∈ A1.

Thanks to (6.13), we obtain

d

dt

{
Ln(Aε1−t)

}
≥ −

∫
ϕZεt (A1)

C̄dx = −C̄Ln(Aε1−t).

Using the Gronwall Lemma, it follows that there is N > 0 such that

Ln(Aε1−t) ≥ tNLn(A1), ∀t ∈ [0, 1/2].
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Making ε tends to zero yields

Ln(A1−t) ≥ tNLn(A1), ∀t ∈ [0, 1/2]

with
At = ϕZ1−t(A1).

Lemma 19. Let G be a Carnot group whose first layer is h-ideal and satisfies AS-
SUMPTION 1. Then, there is N > 0 such that for every k ∈ N and for every
measurable set

A ⊂ BSR(0,
1

2k
)\BSR(0,

1

2k+1
)

with 0 < Ln(A) < +∞, we have

Ln(As) ≥ sNLn(A), ∀s ∈ [0, 1]

where

As :=
{
γ(s)| γ : [0, 1]→ G minimizing geodesic with γ(0) = 0, γ(1) ∈ A\cuth(0)

}
.

Proof of Lemma 19. Let us take a measurable setA ⊂ BSR(0, 1/2k)\BSR(0, 1/2k+1).
By dilations properties, for every k ∈ N, we have

δ2k(A) ⊂ BSR(0, 1)\BSR(0, 1/2)

and
δ2k(As) =

(
δ2k(A)

)
s
, ∀s ∈ [0, 1].

So It is sufficient to prove our property for a measurable set A such that

A ⊂ BSR(0, 1)\BSR(0, 1/2).

Given s ∈]
1

4
,
1

2
[, we set

B := δ(2s)−1(A2s) ⊂ BSR(0, 1)\BSR(0, 1/2)

where δ(2s)−1 is the dilation of factor 1/2s.
Hence,

B 1
2

:=
(
δ(2s)−1(A2s)

)
1
2

.
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And we note that
B 1

2
= δ(2s)−1

(
(A2s) 1

2

)
= δ(2s)−1(As).

By Proposition 23, there is N > 0 such that for any s ∈]
1

4
,
1

2
[

Ln(B 1
2
) ≥

(1

2

)NLn(B)

⇒ Ln
(
δ(2s)−1(As)

)
≥

(1

2

)NLn(δ(2s)−1(A2s)
)

⇒ (2s)−QLn(As) ≥ 1

2N
(2s)−QLn(A2s)

⇒ Ln(As) ≥ 1

2N
Ln(A2s)

where Q is the homogeneous dimension of G.

We repeat the above recursively and we obtain for any k ∈ N

Ln(As) ≥
( 1

2N
)k Ln(A2ks), ∀s ∈]

1

2k+1
,

1

2k
[.

Let s ∈ [0, 1], there is k ∈ N such that

s ∈]
1

2k+1
,

1

2k
[ and 2ks ∈]

1

2
, 1[.

Then, by Proposition 23, for any measurable set A ⊂ BSR(0, 1)\BSR(0, 1/2), we get

Ln(As) ≥
( 1

2N
)k Ln(A2ks) ≥

( 1

2N
)k

(2ks)NLn(A) = sNLn(A).

We claim that MCP defined on Carnot groups provides the non-branching con-
dition so we can apply the Cavalletti-Huesmann method to prove existence and
uniqueness of optimal transport maps.
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Conclusion and Perspectives

In this thesis, we were interested in the study of the Monge problem on sub-
Riemannian structures, that is to prove existence and uniqueness for optimal trans-
port maps. We restricted our attention to transportation problems between com-
pactly supported probability measures from a smooth manifold into itself where the
cost is given by the square of the sub-Riemannian distance. Two different meth-
ods enable to prove existence and uniqueness of optimal transport maps in sub-
Riemannian geometry: the sub-Riemannian version of the Brenier-McCann the-
orems which requires regularity properties for dSR and, the Cavalletti-Huesmann
method covering, in particular, spaces satisfying the measure contraction property
(MCP). Combining these two methods leads to prove existence and uniqueness of op-
timal transport maps on some sub-Riemannian structures admitting many singular
minimizing geodesics. As seen in chapter 5, we treated the case of sub-Riemannian
structures of rank two in dimension four. In chapter 6, we studied the concept of
h-semiconcavity and MCP on Carnot groups. This study makes possible to apply
the Cavalletti-Huesmann method on h-ideal sub-Riemannian structures on Carnot
Groups.

Our framework raises many questions and perspectives, let us present them.

7.1 Influence of the cost

The regularity of the sub-Riemannian distance is central. In particular, in the proof
of Proposition 23, the h-semiconcavity of dSR plays a crucial role to establish the
MCP on Carnot groups. The fact that dSR is h-semiconcave provides a lower bound
on its horizontal symmetrical hessian. We suggested to study such kind of regularity
for dSR on more general sub-Riemannian structures.
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Theorem 19. Let M be a manifold of dimension n equipped with a sub-Riemannian
structure (∆, g) of dimension m. Let f : M → R be the squared sub-Riemannian
distance pointed at the origin 0, given by

f(x) := d2
SR(0, x), ∀x ∈M.

For any x ∈M , there is a submanifold Sx tangent to the distribution at x such that
f is semiconcave on Sx.

Proof of Theorem 19. Let x ∈ M and γ : [0, 1] → M be a minimizing geodesic
joining o and x. There exists an open neighborhood V of γ([0, 1]) in M . Without
loss of generality, we can assume that V is an open subset of Rn and that there is
an orthonormal family F of m smooth vector fields X1, . . . , Xm such that

∆(z) = Span
{
X1(z), . . . , Xm(z)

}
, ∀z ∈ V .

Moreover, there is a control function uγ ∈ L2([0, 1],Rm) such that

γ̇(t) =
m∑
i=1

uγi (t)X
i(γ(t)), a.e.t ∈ [0, 1].

The End-point map associated to F at the origin is given by

Endo : L2([0, 1],Rm) −→ G
u 7−→ Endo(u) = γu(1).

The End-point mapping Endo is of class C1.

By Proposition 8, we have

X i
(
End0(uγ)

)
∈ DuγEnd

0
(
L2([0, 1],Rm)

)
.

There exit v1, . . . , vm ∈ L2([0, 1],Rm) such that

DuγEnd
o(vi) = X i(Endo(uγ)), ∀i = 1, . . . ,m.

We define the application L : Rm →M by

Lx : Rm → M

α 7→ Lx(α) := Endo
(
uγ +

m∑
i=1

αiv
i
)
.

(7.1)
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Here, Lx is of class C1 in a neighborhood of the origin and Lx(0) = x. Its
differential at o is given by :

DLx |α=0 : Rm −→ TEnd0(uγ)M

β 7−→
m∑
i=1

βiDuγEnd
o(vi) =

m∑
i=1

βiX
i(Endo(uγ)).

As its differential at 0 is injective, then Lx is an immersion at α = 0. Hence,
the rank of the linear application DLx |α=0 is m, equal to the dimension of Rm. It
means that the image of a ball in the neighborhood of α = 0 by the application
Lx is a submanifold Sx of Rn of dimension m. Moreover, the tangent space to this
submanifold at the point x = Lx(α = 0) is the image of the differential of DLx |α=0 .
Thus, we obtain a submanifold Sx contained in End0(L2([0, 1],Rm) and tangent to
the distribution at x.

For every z in Sx, there is α ∈ Rm such that

Lx(α) = z. (7.2)

Since
{
X i(Endo(uγ))

}m
i=1

form an orthonormal basis of the distribution ∆
(
Endo(uγ)

)
,

we may assume that DLx |α=0 is an invertible linear application. Thanks to the Lo-
cal Inverse Theorem, there are a ball B centered at x in Sx and an application
Jx : B → Rm of class C2 such that Lx ◦ Jx(z) = z, ∀z ∈ B.

Hence, for any z ∈ B,

d2
SR(o, z) = eSR(o, z) ≤ ||uγ +

m∑
i=1

(Jx(z))iv
i||2L2

and
d2
SR(o, x) = eSR(o, x) = ||uγ||2L2 .

We set

φo,x(z) := ||uγ +
m∑
i=1

(Jx(z))iv
i||2L2 , ∀z ∈ B.

Then, there exists a function φo,x of class C2 such that

f(z) ≤ φo,x(z),∀z ∈ B and f(x) = φo,x(x). (7.3)

In fact, for any x ∈ M , we can construct a submanifold Sx tangent to the
distribution at x such that for any point y ∈ Sx, we can put a support function φ0,x

of class C2 on the graph of the function f . It means that f is semiconcave on the
submanifold Sx tangent to ∆(x).
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With this type of regularity, it might be possible to have informations on the
horizontal symmetrical Hessian of dSR in order to obtain a contraction measure
property similarly to the proof of Proposition 23 (see also [Rif13]).

7.2 The Cauchy problem for BV functions
The concept of the Cauchy problem for BV functions appears in the proof of Propo-
sition 23. It seems unlikely that an h-semiconcave function is BV 2

h (see Definition
33 for the definition of BV 2

h ).

Let G be a Carnot group and f : G → R an h-semiconcave function. If we
consider the horizontal vector field Z := −∇hf , we don’t know if the flow of Z
exists. That is why, we proceed by creating a subsequence (fε)ε of smooth and
h-semiconcave functions approximating f .

For instance, we thought it would be interesting to extend to the case of BVh
vector fields the method of Ambrosio [Amb04] (see Appendix C). For this purpose,
an interesting work would be to extend the Diperna-Lions theory [DL89] to the case
of BVh vector fields.
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Appendix A

Local semiconvexity

Let (∆, g) be a sub-Riemannian structure of rank m ≤ n on the manifold M .

We recall here the definition of local semiconvexity of a given function.

Definition 36. A function f : Ω → R, defined on the open set Ω ⊂ M , is called
locally semiconvex on Ω if for every x ∈ Ω there exist a neighborhood Ωx of x and
a smooth diffeomorphism ϕx : Ωx → ϕx(Ωx) such that f ◦ ϕ−1

x is locally semiconvex
on the open subset Ω̃x = ϕx(Ωx) ⊂ Rn.

By the way, we recall that the function f̃ : Ω̃ → R is locally semiconvex on the
open subset Ω̃ ⊂ Rn if for every x̄ ∈ Ω̃, there exist C, δ > 0 such that

f
(
λy + (1− λ)x

)
≤ λf(y) + (1− λ)f(x) + λ(1− λ)C|x− y|2,

∀λ ∈ [0, 1], ∀x, y ∈ B(x̄, δ)

where B(x̄, δ) is the open ball in Rn centered at x̄ with radius δ.

The following result is useful to prove the local semiconvexity of a given function.

Lemma 20. Let f : Ω→ R be a function defined on an open set Ω ⊂ Rn. Assume
that for every x̄ ∈ Ω, there exist a neighborhood V ⊂ Ω of x̄ and a positive real
number σ such that, for every x ∈ V, there is px ∈ Rn such that

f(x) ≤ f(y)− 〈px, x− y〉+ σ|x− y|2, ∀y ∈ V .

Then, the function f is locally semiconvex on Ω.
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Proof of Lemma 20. Let x̄ ∈ Ω be fixed and V be the neighborhood given by
assumption. Without loss of generality, we can assume that V is an open ball B.
Let x, y ∈ B and λ ∈ [0, 1]. The point x̂ := λy + (1 − λ)x belongs to B. By
assumption, there exists p̂ ∈ Rn such that

f(x̂) ≤ f(z)− 〈p̂, x̂− z〉+ σ|x̂− z|2, ∀z ∈ B.

Hence, we easily get f(x̂) ≤ f(x)− λ〈p̂, y − x〉+ σλ|x− y|2

f(x̂) ≤ f(y)− (1− λ)〈p̂, x− y〉+ σ(1− λ)|x− y|2

⇒

 (1− λ)f(x̂) ≤ (1− λ)f(x)− λ(1− λ)〈p̂, y − x〉+ σλ(1− λ)|x− y|2

λf(x̂) ≤ λf(y) + λ(1− λ)〈p̂, y − x〉+ σλ(1− λ)|x− y|2

⇒ f(x̂) ≤ λf(x) + (1− λ)f(y) + 2σλ(1− λ)|x− y|2

and the conclusion follows.

Remark 6. Thanks to Lemma 20, a way to prove that a given function f : Ω→ R
is locally semiconvex on Ω is to show that for every x ∈ Ω, we can put a support
function φ of class C2 under the graph of f at x with a uniform control of C2 norm
of φ.

Let us derive another important consequence of the definition of semiconvexity.

Lemma 21. Let Ω be a subset of Rn and {uα}α∈A be a family of functions defined
on Ω and locally semiconvex with Cα the semiconvexity constant. Then, the function
u := sup

α∈A
uα is also locally semiconvex on Ω.

Proof of Lemma 21. Take x, y ∈ Ω and λ ∈ [0, 1] such that λy + (1− λ)x ∈ Ω.
Given any ε > 0, we can find α such that

u(λy + (1− λ)x) ≤ uα(λy + (1− λ)x) + ε.

Then we have δα > 0 such that ∀y ∈ B(x, δα)

u(λy + (1− λ)x)− λu(y)− (1− λ)u(x)
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≤ uα(λy + (1− λ)x) + ε− λuα(y)− (1− λ)uα(x)

≤ λ(1− λ)Cα|x− y|2 + ε.

Since ε > 0 is arbitrary, we obtain the assertion.

More details of local semiconvexity of a given function are given in [CS04].
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Appendix B

Geometric analysis

B.1 The Rademacher Theorem
The Rademacher Theorem [Rad20] states that real valued Lipschitz functions on Rn

are differentiable almost everywhere with respect to the Lebesgue measure.

Theorem 20. Let f : Ω→ R be a Lipschitz function, where Ω ⊆ Rn be open. Then,
f is differentiable at a.e. x ∈ Ω. That is the partial derivatives exist a.e. and

∇f(x) =
( ∂f
∂x1

(x), . . . ,
∂f

∂xn
(x)
)

satisfies

lim
y→x

f(y)− f(x)−∇f(x).(y − x)

|y − x|
= 0, a.e. x ∈ Ω.

Lemma 22. Let g : Rn → R be a smooth function such that∫
Rn
g(x)ϕ(x)dx = 0, ∀ϕ ∈ C∞c (Rn).

Then, g(x) = 0, a.e. x ∈ Rn.

Proof of Lemma 22. We set

E = {x ∈ Rn; g(x) 6= 0}

and we assume by contradiction that E has positive Lebesgue measure.
For l ∈ N, we define

E+
l = {x ∈ Rn; g(x) ≥ 1

l
}
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and
E−l = {x ∈ Rn; g(x) ≤ −1

l
}

such that
E =

⋃
l∈N

E+
l ∪ E

−
l .

Since Ln(E) > 0, it follows that either Ln(E+
l ) > 0 or Ln(E−l ) > 0. Assume that

Ln(E−l ) > 0.

Let a ∈ Rn be fixed. Thanks to the Lebesgue density Theorem, we have

lim
r→0

Ln
(
B(a, r) ∩ E−l

)
Ln
(
B(a, r)

) = 1.

We may assume that there is r̄ > 0 such that for any r̄ < r,

∣∣∣1− Ln
(
B(a, r) ∩ E−l

)
Ln
(
B(a, r)

) ∣∣∣ < 1

100
.

Let 0 ≤ µ ≤ r̄ and ϕ ∈ C∞c (Rn) be the test function given by

ϕ(x) :=


1 x ∈ B(a, µ)

0 ≤ ϕ(x) ≤ 1 x ∈ B(a, r̄)
0 else

Hence, we get

∫
Rn
g(x)ϕ(x)dx =

∫
B(a,µ)

g(x)ϕ(x)dx+

∫
Rn\B(a,r̄)

g(x)ϕ(x)dx

+

∫
B(a,r̄)\B(a,µ)

g(x)ϕ(x)dx

≤
∫
B(a,µ)

g(x)dx+

∫
B(a,r̄)\B(a,µ)

g(x)dx

≤ −1

l
Ln(B(a, µ))− 1

l
Ln(B(a, r̄)\B(a, µ)).
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When µ tends to 0, we obtain∫
Rn
g(x)ϕ(x)dx ≤ −1

l
Ln(B(a, r̄)).

Making l tends to ∞ yields ∫
Rn
g(x)ϕ(x)dx = 0.

We are now ready to prove Theorem 20.

For each v ∈ Rn with |v| = 1, we define the directional derivative in the direction
v at x ∈ Ω by

Dvf(x) = lim
t→0

f(x+ tv)− f(x)

t
.

Let us prove that Dvf(x) exists at a.e. x ∈ Ω. We consider

Dvf(x) = lim
t→0

sup
f(x+ tv)− f(x)

t

and
Dvf(x) = lim

t→0
inf

f(x+ tv)− f(x)

t
.

Let Av be the set of points x ∈ Ω such that Dvf(x) does not exist

Av = {x ∈ Rn|Dvf(x) 6= Dvf(x)}.

Since f is continuous, Av is a measurable set. We claim that Av has Lebesgue
measure zero. Let us prove our claim. Let v ∈ Rn with |v| = 1. For any x ∈ Ω, we
define the function

ϕ : R → R
t → ϕ(t) = f(x+ tv).

As f is Lipschitz on Ω, then ϕ is also Lipschitz on R. It follows that ϕ is differentiable
a.e. t ∈ R. Hence, L1(Av ∩ L) = 0, for any line L parallel to the direction v.
Thanks to the Fubini Theorem, we obtain

Ln(Av) = 0

which implies that f est differentiable a.e. x ∈ Ω in the direction v.
We denote by

Bv = {x ∈ Ω|Dvf(x) exists }.
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Let {e1, . . . , en} be the canonical basis of Rn, and let

Bv = Bv ∩ Be1 ∩ · · · ∩ Ben .

It is easy to check that Bv is of full Lebesgue measure in Rn. Let us show that

∀x ∈ Bv, Dvf(x) = v.∇f(x).

Let ϕ ∈ C∞c (Rn). For any x ∈ Bv, we have∫
Ω

Dvf(x)ϕ(x)dx = −
∫

Ω

f(x)Dvϕ(x)dx

= −
n∑
i=1

vi

∫
Ω

f(x)
∂ϕ

∂xi
(x)dx

=
n∑
i=1

vi

∫
Ω

∂f

∂xi
(x)ϕ(x)dx

=

∫
Rn

(v.∇f(x))ξ(x)dx.

This and Lemma 22 imply that

Dvf(x) = v.∇f(x) a.e. x ∈ Ω.

We choose now a countable dense subset in Rn such that |vk| = 1, and let

Ak = {x ∈ Ω;∇f(x) exists and Dvkf(x) = vk.∇f(x)}.

For any k ∈ N, each subset Ω\Ak has Lebesgue measure zero. It means that

A =
∞⋂
k=1

Ak satisfies Ln(Ω\A) = 0.

Let us prove that f is differentiable a.e. x ∈ A. For any x ∈ A and any v ∈ Rn with
|v| = 1, we set

Q(x, v, t) :=
f(x+ tv)− f(x)

t
− v.∇f(x).

By a density argument, for ε > 0, there is N ≥ 0 such that

∀k ≥ N, |v − vk| ≤ ε.
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We recall that Q(x, vk, t) −→
t→0

0, that is ∃δ > 0 such that for 0 < |t| < δ,

|Q(x, vk, t)| ≤
ε

2
.

Assume that f is C-Lipschitz. Then, we have

| ∂f
∂xi
| ≤ C which means that |∇f(x)| ≤

√
nC a.e.

Hence, we get for x ∈ A

|Q(x, v, t)| ≤ |Q(x, vk, t)|+ |Q(x, v, t)−Q(x, vk, t)|

≤ ε

2
+
∣∣∣f(x+ vt)− f(x+ vkt)

t
− (v − vk).∇f(x)

∣∣∣
≤ ε

2
+ C|v − vk|+ |(v − vk).∇f(x)|

≤ ε

2
+ C(1 +

√
n)|v − vk|

We can choose k sufficiently large such that

|v − vk| <
2

2(1 +
√
n)C

.

Then, |Q(x, v, t)| < ε and the conclusion follows.

B.2 The Pansu-Rademacher Theorem
[MS01] gave an extension of the Rademacher Theorem.

Theorem 21. (The Pansu-Rademacher Theorem)
Let X1, . . . , Xm be m smooth vector fields satisfying the Hörmander condition and
of the following form

Xj = ∂j +
n∑

i=m+1

aij(x)∂i, j = 1, . . . ,m
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where aij ∈ C∞(Rn). Let (Rn, d) be a Carnot-Caratheodory space induced by X1, . . . , Xm.
Assume that f : Rn → R is a Lipschitz function. Then, for a.e. x ∈ Rn

lim
y→x

f(y)− f(x)−
m∑
j=1

Xjf(x)(yj − xj)

d(x, y)
= 0.

Proof of Theorem 21. For any j = 1, . . . ,m, let x ∈ Rn such that Xj(x) 6= 0.
We denote by Oj the orbit of x under Xj, that is

Oj := {ϕXjx (t)| t ∈ [0, 1]}

where ϕXjx (.) is solution of the Cauchy problem

ẋ(t) = Xj(x(t)); x(0) = x.

Let f/Oj : R → R be the restriction of f to Oj. The function f/Oj is Lipschitz,
then it is differentiable at a.e. x ∈ R. This means that Xjf(x) exists a.e. x ∈ Rn,
∀j = 1, . . . ,m. Moreover, assume that f is L-Lipschitz, we get

|∇hf(x)| ≤ L, a.e. x ∈ Rn.

Hence, |∇hf | ∈ Lploc(Rn),∀p ≥ 1 and thanks to the Lebesgue differentiation Theo-
rem, we have:

lim
r→o+

1

|B(x, r)|

∫
B(x,r)

| |∇hf |p(x)− |∇hf |p(y) |dy = 0

⇒ lim
r→o+

1

|B(x, r)|

∫
B(x,r)

| ∇hf(x)−∇hf(y) |pdy = 0. (B.1)

Let Ω ⊂ Rn be a bounded open set with homogeneous dimension Q and fix
p > Q. Let x ∈ Ω, we set

g(y) = f(y)−
m∑
j=1

Xjf(x)(yj − xj) such that g(x) = f(x)

and
∀j = 1, . . . ,m, Xjg(y) = Xjf(y)−Xjf(x).

By the Morrey inequality, ∃C = C(Ω, X,Q, p) > 0 such that

| g(y)− g(x) | ≤ Cr(
1

B(x, r)

∫
B(x,r)

| ∇hg(z) |p|)
1
p , ∀y ∈ B(x, r).
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We choose r = 2d(x, y) such that

| f(y)− f(x)−
m∑
j=1

Xjf(x)(yj − xj) |

d(x, y)

≤ 2C(
1

B(x, 2d(x, y))

∫
B(x,2d(x,y))

| ∇hf(z)−∇hf(x) |p|)
1
p .

By (B.1), the conclusion follows.

B.3 The Alexandrov Theorem

The classical thorem of Alexandrov ([BF36], [Alex39], see also [How98]) states that
a concave function in Rn admits a second-order derivative almost everywhere.

Theorem 22. (The Alexandrov Theorem) Let f : Rn → R be a convex function.
Then, f is twice differentiable a.e. x ∈ Rn.

Proof of Theorem 22. We recall that the convex function f is locally Lipschitz.
By the Rademacher Theorem (see Theorem 20), f is differentiable a.e. x ∈ Rn. We
denote the subdifferential of f by:

∂f(x) = {Dxf}, a.e. x ∈ Rn

where Dxf is the classical differential of f at x.

We define the function

F : Rn → Rn

x 7→ F (x) = x+ ∂f(x).

Lemma 23. F is onto.

Proof of Lemma 23. Let y ∈ Rn be fixed. We define

ϕ :

{
Rn −→ R

x 7−→ ϕ(x) =
1

2
||x||2 + f(x)− x.y
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We note that ϕ is convex and satisfies

lim
||x||→+∞

ϕ(x) = +∞.

Then, ϕ admis a global minimum at some point x0. It follows that

0 ∈ ∂ϕ(x0) = x0 + ∂f(x0)− y = F (x0)− y

⇒ y ∈ F (x0).

Lemma 24. Let y0 ∈ F (x0) and y1 ∈ F (x1) such that

y0 = x0 + b0, y1 = x1 + b1

with b0 ∈ ∂f(x0), b1 ∈ ∂f(x1). Then, we have

||y1 − y0|| ≥ ||x1 − x0|| (B.2)

Proof of Lemma 24. We recall that

(y1 − y0).(x1 − x0) = ||x1 − x0||2 + (b1 − b0).(x1 − x0).

Since f is convex, we have

(b1 − b0).(x1 − x0) ≥ 0.

Then,
(y1 − y0).(x1 − x0) ≥ ||x1 − x0||2.

By the Cauchy-Schwartz inequality, we get

||y1 − y0|| ||x1 − x0|| ≥ (y1 − y0).(x1 − x0) ≥ ||x1 − x0||2

⇒ ||y1 − y0| ≥ ||x1 − x0||.

The inequality (B.2) shows that F is injective. This and Lemma 23 imply that
F est bijective. Thus, F is invertible. We define G : Rn → Rn such that

G(y) = x⇔ y ∈ F (x).

By (B.2), we have for y0 ∈ F (x0), y1 ∈ F (x1)

||y1 − y0| ≥ ||x1 − x0||.

⇒ ||G(y1)−G(y0)| ≤ ||y1 − y0||
G is 1-Lipschitz, then by the Rademacher Theorem, G is differentiable a.e.
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Lemma 25. Let G : Rn → Rn be a Lipschitz function. Then, the set

E = {G(y) ∈ Rn| DyG exists and is invertible}

is of full Lebesgue measure.

Proof of Lemma 25. By the Approximation of Lipschitz functions (see Theorem
6.6.1 in [EG92]), for ε < 0, there is a function h : Rn → R of class C1 such that

Ln{y ∈ Rn| h(y) 6= G(y) or Dyh 6= DyG} ≤ ε.

Thanks to the Sard Lemma, the image by h of the set

H = {y ∈ Rn| G is not differentiable at y or DyG is not invertible}

has Lebesgue measure zero. We denote by E = Hc, the complementary set of H.
And the conclusion follows.

Fix y0 ∈ Rn with G(y0) = x0 such that G is differentiable at y0 and Dy0G is
inversible. Hence,

G(y)−G(y0) = Dy0G.(y − y0) + o(||y − y0)

⇒ x− x0 = Dy0G.(y − y0) + o(||y − y0||)

⇒ y − y0 = (Dy0G)−1.(x− x0) + o(||y − y0||).

As o(||y − y0||) = o(||x− x0||), we get

⇒ y − y0 = (Dy0G)−1.(x− x0) + o(||x− x0||). (B.3)

We have y ∈ F (x) and y0 ∈ F (x0), so (B.3) shows that F is differentiable a.e. We
recall that by definition we have

F (x) = x+ ∂f(x)⇒ ∂f(x) = F (x)− x.

Thus, f is twice differentiable almost everywhere.
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B.4 The sub-Riemannian version of the Alexandrov
Theorem

In this section, our aim is to prove Theorem 14. In the spirit of Gutierrez and
Montanari [GM04] and [GM05], we show that any locally h-concave function is
BV 2

h,loc.

B.4.1 Tools from matrix analysis

Let A = (aij)ij be an m×m symmetric matrix with eigenvalues λ1, . . . , λm.

The second elementary symmetric function of A is defined by

σ2(A) = s(λ) =
∑
j<k

λjλk, with λ = (λ1, . . . , λm).

We can check that

s(λ) =
1

2

{
(
m∑
j=1

λj)
2 −

m∑
j=1

λ2
j

}
(B.4)

and
∂s

∂λj
(λ) =

∑
k 6=j

λk.

Lemma 26. If σ2(A) ≥ 0 and trace(A) ≥ 0, then

∂s

∂λj
(λ) ≥ 0, ∀j = 1, . . . ,m.

Proof of Lemma 26. We recall that

trace(A) =
m∑
j=1

λj.

Hence,

trace(A) =
∑
j 6=k

λk + λj =
∂s

∂λj
(λ) + λj. (B.5)

This implies that

λj ≥ 0 or
∂s

∂λj
(λ) + λj ≥ 0.
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Assume that λj ≥ 0. We have, by hypothesis, σ2(A) = s(λ) ≥ 0.

Then, by (B.4)

m∑
k=1

λk ≥ (
m∑
k=1

λ2
k)

1/2 ≥ λj, (B.6)

By (B.5) and (B.6), we get

∂s

∂λj
(λ) =

∑
k 6=j

λk =
m∑
k=1

λk − λj ≥ 0.

Proposition 24. If σ2(A) ≥ 0 and trace(A) ≥ 0, then

m∑
i,j=1

∂σ2

∂aij
(A)xixj ≥ 0, ∀x ∈ Rm.

Proof of Proposition 24. Let C be a non-negative definite Hermitian matrix. Let
ν = (ν1, . . . , νm) be the eigenvalues of the matrix A+ C such that

σ2(A+ C)− σ2(A) = s(ν)− s(λ).

Since C ≥ 0, we get νj ≥ λj, for any j = 1, . . . ,m.

Moreover, by lemma 26, we have

δ =
1

2
min

{ ∂s

∂λj
(λ1, . . . , λm), j = 1, . . . ,m

}
≥ 0.

Choose C sufficiently small such that

σ2(A+ C)− σ(A) =

∫ 1

0

d

dτ
s(λ+ τ(ν − λ))dτ

=
m∑
j=1

∫ 1

0

∂s

∂λj
(λ+ τ(ν − λ))dτ(νj − λj)

≥ δ

m∑
j=1

(νj − λj)
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= δ
(
trace(A+ C)− trace(A)

)
= δ trace(C) ≥ 0 since C ≥ 0.

We take now C = tx.xT = t(xixj), x ∈ Rm and t > 0 sufficiently small. We
obtain

σ2(A+ tx.xT )− σ2(A) ≥ δtrace(C) = δt|x|2.
Thus, for every x ∈ Rm

d

dt
σ2(A+ tx.xT )|t=0 =

m∑
i,j=1

∂σ2

∂aij
(A)xixj ≥ δ|x|2 ≥ 0.

B.4.2 Proof of Theorem 14

Let Ω be an open subset of the Carnot group G.

Theorem 23. Let u : Ω→ R be an h-concave function. Then,

X iXju+XjX iu

2
is a Radon measure for i, j = 1, . . . ,m.

Proof of Theorem 23. We denote by uε = φε∗u the convolution of u by a mollifier
sequence (φε)ε>0. We recall, by remark 5, (uε)ε is a sequence of smooth functions on
M which are h-concave on M . Moreover, by Proposition 20, the m×m symmetric
matrix

(∇2
hu(x))∗ is negative semidefinite on Ω. (B.7)

For some ρ = (ρ1, . . . , ρm) ∈ Rm, we define Lε by

Lε(ψ) = −
m∑

i,j=1

∫
Ω

uε(x)
(X iXj +XjX i

2

)
ψ(x)ρi(x)ρj(x)dx, ∀ψ ∈ C∞c (Ω).

Integrating by parts yields

Lε(ψ) = −
m∑

i,j=1

∫
Ω

ψ(x)
(X iXj +XjX i

2

)
uε(x)ρi(x)ρj(x)dx.
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We deduce by (B.7) that

Lε(ψ) ≥ 0, ∀ψ ≥ 0.

We define now

L(ψ) := −
m∑

i,j=1

∫
Ω

u(x)
(XiXj +XjXi

2

)
ψ(x)ρi(x)ρj(x)dx, ψ ∈ C∞c (Ω).

Since (uε)ε converges uniformly to u, we get

L(ψ) = lim
ε→0

Lε(ψ) ≥ 0.

Thanks to the Riesz Representation Theorem (see section 1.8, [EG92]), there
exists a Radon Theorem µρ on Ω such that

L(ψ) =

∫
Ω

ψdµρ,∀ψ ∈ C∞c (Ω).

If we take ρ = ei then ∫
Ω

u(p)X2
i ψ(x)dx =

∫
Ω

ψdµii.

Let us choose now ρ =
ei + ej√

2
, we obtain

−
∫

Ω

u(x)(
XiXj +XjXi +X2

i +X2
j

2
)ψ(x)dx =

∫
Ω

ψdµij

⇒ −
∫

Ω

u(x)(
XiXj +XjXi

2
)ψ(x)dx =

∫
Ω

ψ(dµij − dµii − dµjj).

This implies

XiXju+XjXiu

2
= −

(
dµij − dµii − dµjj

)
= dνij.

Let u : Ω→ R a function of class C2
h on Ω. We denote by

H(u) =
XiXju+XjXiu

2
.
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Definition 37. A function u ∈ C2
h(Ω) is said to be σ2(h)-concave on Ω if

1. the trace of the symmetric matrix H(u) is non negative,

2. the second elementary symmetric function in the eigenvalues of H(u) given by

σ2

(
H(u)

)
=
∑
i<j

{
X iX iuXjXju−

(X iXju+XjX iu

2

)2
}

is non negative.

We pick a local frame {Y 1, . . . , Y n} of the tangent space of M such that

Y i = X i,∀i = 1, . . . ,m.

We denote by

[X i, Xj] =
n∑
k=1

αij,kY
k, ∀i, j = 1, . . . ,m

where αij,k are constants.

Theorem 24. Let u, v be two functions in C2(Ω) such that u + v is σ2(h)-convex
in Ω satisfying u = v on ∂Ω et v < u sur Ω. Then,∫

Ω

{
σ2(H(u)) +

3

4

m∑
i,j=1

n∑
k=1

(αij,k)
2(Y ku)2

}
dz

≤
∫

Ω

{
σ2(H(v)) +

3

4

m∑
i,j=1

n∑
k=1

(αij,k)
2(Y kv)2

}
dz.

Proof of Theorem 24. We set

S(u) = σ2

(
H(u)

)
=
∑
i<j

{
X iX iuXjXju−

(X iXju+XjX iu

2

)2
}
.

Setting rij =
X iXju+XjX iu

2
, we obtain:

∂S

∂rii
(u) =

∑
j 6=i

XjXju,
∂S

∂rij
(u) = −X

iXju+XjX iu

2
.

We recall that, by section B.4.1, since u is σ2(h)− convex,

∂S

∂rij
(u) is non-negative definite.
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(we apply the result of Proposition 24 with A = H(u), where u is a σ2(h)-convex
function.)

Let 0 ≤ s ≤ 1 and ϕ(s) = S(v + sw) where w = u− v. We get∫
Ω

{S(u)− S(v)} dz =

∫ 1

0

∫
Ω

ϕ̇(s) dz ds

=

∫ 1

0

∫
Ω

{ m∑
i,j=1

∂S

∂rij
(v + sw)(z)(X iXj)w(z)

}
dz ds

=

∫ 1

0

∫
Ω

{ m∑
i,j=1

X i(
∂S

∂rij
(v + sw)(z)Xjw(z))

−X i(
∂S

∂rij
(v + sw)(z))Xjw(z)

}
dz ds.

As w = 0 on ∂Ω and w > 0 on Ω, then the normal to ∂Ω is given by

νX = − Xw

|Dw|
, with Xw = (X1w, . . . , Xmw). By an integration par parts, we get

A =

∫ 1

0

∫
Ω

m∑
i,j=1

X i
( ∂S
∂rij

(v + sw)(z)Xjw(z)
)
dzds

=

∫ 1

0

∫
∂Ω

m∑
i,j=1

∂S

∂rij
(v + sw)(z)Xjw(z)νXidσ(z)ds

= −
∫ 1

0

∫
∂Ω

m∑
i,j=1

∂S

∂rij
(v + sw)(z)Xjw(z)

X iw

|Dw|
dσ(z)ds

= −
∫ 1

0

∫
∂Ω

m∑
i,j=1

{ ∂S
∂rij

(v) + s
∂S

∂rij
(w)(z)}Xjw(z)

X iw

|Dw|
dσ(z)ds

= −
∫ 1

0

∫
∂Ω

m∑
i,j=1

{ ∂S
∂rij

(v) + s
∂S

∂rij
(u)(z)

− s ∂S
∂rij

(v)(z)}Xjw(z)
X iw

|Dw|
dσ(z)ds
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= −1

2

∫
∂Ω

m∑
i,j=1

{ ∂S
∂rij

(v) +
∂S

∂rij
(u)(z)}Xjw(z)

X iw

|Dw|
dσ(z)

= −1

2

∫
∂Ω

m∑
i,j=1

∂S

∂rij
(u+ v)Xjw(z)

X iw

|Dw|
dσ(z) ≤ 0.

On the other hand, we remark that for j = 1, . . . ,m fixed, we have:

m∑
i=1

X i(
∂S

∂rij
w) = Xj(

∂S

∂rjj
w) +

∑
i 6=j

X i(
∂S

∂rij
w)

= Xj
(∑
k 6=j

XkXkw
)
−
∑
i 6=j

X i
(X iXjw +XjX iw

2

)

=
∑
i 6=j

(
XjX iX iw −X i(

X iXjw +XjX iw

2
)
)

=
∑
i 6=j

( [Xj, X i]X iw

2
+

[Xj, X i]X iw

2
+
X i[Xj, X i]w

2

)

= 3
∑
i 6=j

(
X i[Xj, X i]w

2
)

=
3

2

∑
i 6=j

X i[Xj, X i]w.

Hence,

B =

∫ 1

0

∫
Ω

m∑
i,j=1

X i(
∂S

∂rij
(v + sw)(z))Xjw(z)dzds

=
3

2

∫ 1

0

∫
Ω

m∑
i 6=j

X i[Xj, X i](v + sw)(z)Xjw(z)dzds
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=
3

2

∫ 1

0

∫
∂Ω

m∑
i 6=j

[Xj, X i](v + sw)(z)Xjw(z)νXidσ(z)ds

−3

2

∫ 1

0

∫
Ω

m∑
i 6=j

[Xj, X i](v + sw)(z)X iXjw(z)dz ds

=
3

2

∫ 1

0

∫
∂Ω

m∑
j 6=1

[Xj, X1](v + sw)(z)Xjw(z)νX1dσ(z)ds

+ · · ·+ 3

2

∫ 1

0

∫
∂Ω

m∑
j 6=m

[Xj, Xm](v + sw)(z)Xjw(z)νXmdσ(z)ds

−3

2

∫ 1

0

∫
Ω

∑
i 6=j

[Xj, X i](v + sw)(z)X iXjw(z)dzds

= −3

2

∫ 1

0

∫
Ω

∑
i 6=j

[Xj, X i](v + sw)(z)X iXjw(z)dzds

= −3

2

∫ 1

0

∫
Ω

m∑
j 6=1

[Xj, X1](v + sw)(z)X1Xjw(z)dzds

−3

2

∫ 1

0

∫
Ω

m∑
j 6=2

[Xj, X2](v + sw)(z)X2Xjw(z)dzds

− . . .−3

2

∫ 1

0

∫
Ω

m∑
j 6=m

[Xj, Xm](v + sw)(z)XmXjw(z)dzds

= −3

2

∫ 1

0

∫
Ω

{
[X2, X1](v + sw)(z)X1X2w(z) + · · ·+

[Xm, X1](v + sw)(z)X1Xmw(z) + [X1, X2](v + sw)(z)X2X1w(z) + · · ·+
[X1, Xm](v + sw)(z)XmX1w(z) + · · ·+ [X1, Xm](v + sw)(z)XmX1w(z)

+ · · ·+ [Xm−1, Xm](v + sw)(z)XmXm−1w(z)
}
dzds

= −3

2

∫ 1

0

∫
Ω

∑
j 6=i

[Xj, X i](v + sw)(z)[X i, Xj]w(z)dzds
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=
3

2

∫ 1

0

∫
Ω

m∑
j 6=i

[X i, Xj](v + sw)(z)[X i, Xj]w(z)dzds

=
3

2

∫ 1

0

∫
Ω

m∑
j 6=i

n∑
k=1

αij,kY
k(v + sw)(z)αij,kY

kw(z)dzds

=
3

2

∫ 1

0

∫
Ω

m∑
j 6=i

n∑
k=1

(αij,k)
2
(
Y kv(z) + sY kw(z)

)
Y kw(z)dzds

=
3

2

∫
Ω

m∑
j 6=i

n∑
k=1

(αij,k)
2
(∫ 1

0

(Y kv(z) + sY kw(z))ds
)
Y kw(z)dz

=
3

2

∫
Ω

m∑
j 6=i

n∑
k=1

(αij,k)
2
(
sY kv(z) +

s2

2
Y kw(z)

)
|10 Y kw(z)dz

=
3

2

∫
Ω

m∑
j 6=i

n∑
k=1

(αij,k)
2
(
Y kv(z) +

1

2

(
Y ku(z)− Y kv(z)

))(
Y ku(z)− Y kv(z)

)
dz

=
3

2

∫
Ω

m∑
j 6=i

n∑
k=1

(αij,k)
2 1

2

(
Y ku(z) + Y kv(z)

)(
Y ku(z)− Y kv(z)

)
dz

=
3

4

∫
Ω

m∑
j 6=i

n∑
k=1

(αij,k)
2
(

(Y ku)2(z)− (Y kv)2(z)
)
dz.

And the conclusion follows.

Lemma 27. Let u and v ∈ C2(Ω) be two σ2(h)-convex functions. Let
f : R2 → R be a convex function such that f is non-decreasing with respect to each
variable. Then,

w = f(u, v) is a σ2(h)− convex function.

Proof of Lemma 27. Assume that f is of class C2 on R2. We have

Xjw =
∂f

∂u
Xju+

∂f

∂v
Xjv
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and

XiXjw =
∂f

∂u
XiXju+

∂2f

∂v∂u
XivXju+

∂2f

∂u2
XiuXju

+
∂f

∂v
XiXjv +

∂2f

∂v2
XivXjv +

∂2f

∂u∂v
XiuXjv.

For any h = (h1, h2) ∈ R2, we have

< H(w)h, h >=
m∑

i,j=1

XiXjwhihj

=
∂f

∂u
< H(u)h, h > +

∂f

∂v
<H(v)h, h >

+
∂2f

∂u2
(
m∑
i=1

Xiuhi)(
m∑
j=1

Xjuhj) +
∂2f

∂v2
(
m∑
i=1

Xivhi)(
m∑
j=1

Xjvhj)

+
∂2f

∂u∂v
(
m∑
i=1

Xiuhi)(
m∑
j=1

Xjvhj) +
∂2f

∂v∂u
(
m∑
i=1

Xivhi)(
m∑
j=1

Xjuhj)

Since u and v are σ2(h)-convex,

∂f

∂u
≥ 0 and

∂f

∂v
≥ 0.

Moreover, the matrix 
∂2f

∂u2

∂2f

∂u∂v

∂2f

∂v∂u

∂2f

∂v2


est non negative definite. Then, w is σ2(h)-convex.

Assume now that f is a continuous function. We consider fε = φε ∗ f the
convolution of f by the mollifier sequence φε. Since f is convex, fε is also convex.
From the above , wε = fε(u, v) is σ2(h)-convex such that

wε −→
ε→0

w.

Hence, we conclude that w is σ2(h)-convex.
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Proposition 25. Let u ∈ C2(Ω) be a σ2(h)-convex function. Then, for every com-
pact K ⊂ Ω, there exists a constant C = C(K,Ω) > 0, independant of u such
that ∫

Ω

{
σ2(H(u)) +

3

4

m∑
i,j=1

n∑
k=1

(αij,k)
2(Yku)2

}
dz ≤ C(oscΩu)2.

with oscΩu the oscillation of u on Ω.

Proof of Proposition 25. We proof the result on the Heisenberg group in R2n+1

with coordinates (x1, . . . , xn, y1, . . . , yn, t) where

∆ = Span{X1, . . . , Xn, Y 1, . . . , Y n}

with
X i = ∂xi − 2yi∂t, Y i = ∂yi + 2xi∂t

and
[X i, Y j] = 4∂t,∀i, j = 1, . . . , n.

Let x̄ ∈ Ω and BR = BR(x̄) be the ball centered at x̄ of radius R such that
BR ⊂ Ω. For 0 < σ < 1, let BσR be the concentric ball centered at x̄ of radius
σR. Note that the sub-Riemannian structure is invariant by translation, so we may
assume that x̄ = 0.

Set M = max
x∈BR

u(x), we get

u−M ≤ 0 on BR.

Choose ε > 0 such that u−M−ε < −ε. By subtracting a constant, we may assume
that

u < −ε on BR.

Put
m0 = inf

x∈BR
u(x) and v(x) =

m0

(1− σ4)R4
(R4 − ||x||4).

We check easily that

v = 0 on ∂BR and v = m0 on ∂BσR.

Following the calculations in the proof of Proposition 6.2 in [GM05], we get

σ2(H(v)) = cn(|x|2 + |y|2)2(
m0

(1− σ4)R4
)2 ≥ 0,
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with cn a positive constant and, since m0 ≤ 0

trace(H(v)) = −(8n+ 4)(|x|2 + |y|2)
m0

(1− σ4)R4
≥ 0.

This implies that v is σ2(h)-convex.

Since v −m0 = 0 sur ∂BσR, we have

v ≤ m0 on BσR.

In particular,
v ≤ u on BσR.

Let ρ ∈ C∞0 (R2) such that
∫
R2

ρ(x)dx = 1 and

fh(x1, x2) = h−2

∫
R2

ρ(
x− y
h

) max{y1, y2}dy1dy2.

Put
wh = fh(u, v).

By Lemma 27, wh is σ2(h)-convex.

If y ∈ BR, we have
v(y) ≤ u(y).

Then, for h sufficiently smell, we have

• if v(y) < u(y) then, fh(u, v)(y) = u(y).

• if v(y) = u(y) then, fh(u, v)(y) = u(y) + αh.

Hence,∫
BσR

{σ2(H(u)) + 12n(∂tu)2}dz =

∫
BσR

{σ2(H(wh)) + 12n(∂twh)
2}dz

≤
∫
BR

{σ2(H(wh)) + 12n(∂twh)
2}dz (B.8)

Since fh(u, v) ≥ v on BR and fh(u, v) = 0 on ∂BR, we apply Theorem 24:

∫
BR

{σ2(H(wh)) + 12n(∂twh)
2}dz ≤

∫
BR

{σ2(H(v)) + 12n(∂tv)2}dz

= (
m0

(1− σ)
)2R2n−2

∫
B1

(cn(|x|2 + |y|2)2 + 48nt2)dz.

(B.9)
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By (B.8) and (B.9), we obtain∫
BσR

{σ2(H(u)) + 12n(∂tu)2}dz ≤ (
m0

(1− σ)
)2R2n−2

∫
B1

(cn(|x|2 + |y|2)2 + 48nt2)dz.

≤ C(m0)2R2n−2

≤ CR2n−2(oscBRu+ ε)2.

Make ε→ 0. And, the conclusion follows.

Corollary 1. Let u ∈ C2(Ω) be a σ2(h)-convex function. Then, there is a positive
constant C independent of u such that∫

Ω

(Y ku)2(z)dz ≤ C(oscΩu)2, ∀k = 1, . . . ,m2.

In other words, ∀k = 1, . . . ,m2, Y ku is L2(Ω).

Theorem 25. Let u : Ω→ R be an h-convex function. Then, u ∈ BV 2
h (Ω).

Proof of Theorem 25. Let u : Ω → R be an h-convex function. Then, u is
Lipschitz with respect to the sub-Riemannian distance and X iu exists a.e. on Ω,
i = 1, . . . ,m. Moreover, there is a Radon measure dνij such that

X iXju+XjX iu

2
= dνij, i, j = 1.

We recall that for i, j = 1, . . . ,m,

X iXj =
X iXj +XjX i + [X i, Xj]

2
=
X iXj +XjX i

2
+

n∑
k=1

αij,kY
k.

Let φ =
m∑
j=1

φjX
j be a function of class C2 with a compact support K and ||φ|| < 1.

We get
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∫
Ω

X iu(z) divXφ(z)dz

= −
∫

Ω

u(z) X idivXφ(z)dz

= −
m∑
j=1

∫
Ω

u(z) X iXjφj(z)dz

= −
m∑
j=1

∫
Ω

u(z)
(X iXjφj(z) +XjX iφj(z)

2
+

n∑
k=1

αij,kY
kφj(z)

)
dz

=
m∑
j=1

(∫
Ω

φj(z)dνij(z) +
n∑
k=1

αij,k

∫
Ω

u(z)Y k(z)φj(z)dz
)

≤
m∑
j=1

νij(K) +
n∑
k=1

αij,k

∫
Ω

u(z)Y kφj(z)dz.

Let uε = ϕε ∗ u be a sequence of smooth functions which are h-convex. Then,

uε is σ2(h)− convex and Y kuε ∈ L2(Ω), ∀k = 1, . . . , n−m.

|
∫

Ω

uεY
kφjdz| = |

∫
Ω

Y kuεφjdz| ≤ ||Y kuε||L2(K) ≤ C.

By making ε tends to 0, we get

|
∫

Ω

u(z)Y kφj(z)dz| ≤ C.

Hence, ∫
Ω

X iu(z) divXφ(z)dz < +∞

which implies that u ∈ BV 2
h (Ω).

139





Appendix C

Cauchy Problem for BV vector fields

Here, we study the Cauchy problem for BV functions.

Let b : [0, 1]× Rn → Rn be a bounded vector field such that

1. bt(x) := b(t, x) ∈ BVloc(Rn), a.e. t ∈ [0, 1]

2. D.bt << Ln such that D.bt = divbtLn

3. |D.bt|(BR) ∈ L1
loc([0, 1]), ∀R > 0

4.
∫ 1

0

||[divbt]−||L∞(BR) < +∞

In [Amb04] (see also [Amb03]), Ambrosio defined a class of Lagrangian flows,
solutions to the Cauchy problem γ̇(t) = b(t, γ(t)) for Ln-almost every initial conndi-
tion x and proved for them existence and uniqueness.

We introduce now our main notations and definitions. By abuse of notation, we
set C the space of continuous Rn-valued maps in [0, 1], i.e. C = C

(
[0, 1],Rn

)
.

Definition 38. Let x ∈ Rn. We denote by C b
x the subspace of C given by

C b
x :=

{
γ(x) ∈ C ; γ(x)(t) = x+

∫ t

0

b
(
τ, γ(x)(τ)

)
dτ, ∀t ∈ [0, 1]

}
.

It is clear that the subspace C b
x is made up by solutions of the ODE γ̇(t) =

b(t, γ(t)) starting at x.

Definition 39. Let A ⊆ Rn and γ : A→ C be a Ln-measurable map. We say that
γ is a Lagrangian flow from A, relative to b if for a.e. x ∈ A,

γ(x) ∈ C b
x .
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The main result introduced by Ambrosio [Amb04] is the following:

Theorem 26. Let b : [0, 1]× Rn → Rn be a bounded vector field such that

1. bt(x) := b(t, x) ∈ BVloc(Rn), a.e.t ∈ [0, 1]

2. D.bt << Ln such that D.bt = divbtLn

3. |D.bt|(BR) ∈ L1
loc([0, 1]), ∀R > 0

4.
∫ 1

0

||[divbt]−||L∞(BR) < +∞

Then, for any Ln-measurable set A ⊆ Rn, there is a unique Lagrangian flow starting
from A relative to b.

Its proof is based on tools borrowed from Probability and calculus of variations
together with a renormalization property.

C.1 Probability measures on C

Let P(C ) be the space of probability measures on C .

Let A be a subset of Rn and let η : A→ P(C ) be a Ln-measurable application.
For t ∈ [0, 1], we define ηtx the image of ηx by the application γ 7→ γ(t) such that
for any subset K of Rn,

ηtx(K) = ηx
(
γ : γ(t) ∈ K

)
.

Lemma 28. Let x ∈ A. Assume that for each t ∈ [0, 1], ηtx is a Dirac measure.
Then, ηx is a Dirac measure.

Proof of Lemma 28. Let γ, γ′ be two distinct functions in C . Then, there is
t0 ∈ [0, 1] such that γ(t0) 6= γ′(t0). By a continuity argument, we can choose an
open interval I containing t0 such that

γ(t) 6= γ′(t),∀t ∈ I.

We can construct two disjoint neighborhoods K and K ′ of γ(t0) and γ′(t0) respec-
tively. Let t ∈ I be fixed such that, by definition, we have

ηtx(K) = η
(
γ : γ(t) ∈ K

)
and

ηtx(K
′) = η

(
γ′ : γ′(t) ∈ K ′

)
.
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Without loss of generality, since ηtx is a Dirac measure, we may assume that ηtx is
concentrated at a point k0 inK. This means that ηx is concentrated at an application
γ ∈ C such that γ(t) = k0 ∈ K. Hence, ηx is a Dirac measure.

Theorem 27. Assume that

∀t ∈ [0, 1],
⋃
x∈A

supp ηtx ⊂ Rn (C.1)

and

∀t ∈ [0, 1], there is a negligeable subset At of A such that

ηx
(
γ : γ(t) ∈ K

)
ηx
(
γ : γ(t) ∈ K ′

)
= 0,∀x ∈ A\At (C.2)

where K,K ′ are two disjoint subsets of Rn.

Then, there is a negligible subset Ā of A such that

∀x ∈ A\Ā, ηx is a Dirac measure.

Proof of Theorem 27. By Lemma 28, it is sufficient to prove that there is a neg-
ligeable suset Ā of A such that ∀x ∈ A\Ā,

∀t ∈ [0, 1], ηtx is a Dirac measure.

Without loss of generality, we may assume that⋃
x∈A

supp ηtx ⊂ Q,where Q is a cube.

We divide Q into two disjoint parts Q1, Q2 such that Q = Q1 ∪Q2. Let t ∈ [0, 1] be
fixed. By (C.2), there is a negligeable set At ⊂ A such that

ηtx(Q1)ηtx(Q2) = 0,∀x ∈ A\At.

This involves two possibilities :

• supp ηtx 6⊂ Q1 ⇒ x /∈ A1\At :=
{
y ∈ A\At : ηty(Q1) 6= 0

}
• supp ηtx 6⊂ Q2 ⇒ x /∈ A2\At :=

{
y ∈ A\At : ηty(Q2) 6= 0

}
.

For h ∈ N fixed, we consider the canonical decomposition of Q into 2nh cubes Qh
i

of side 2−h. From {Qh
i }i, we can construct a family of sets {Q̄h

i }i pairwise disjoint
such that

Q̄h
1 = Qh

1 , Q̄h
2 = Qh

2\Qh
1 , . . . Q̄

h
i = Qh

i \(Qh
1 ∪ · · · ∪Qh

i−1)
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and
Q =

⋃
i

Q̄h
i .

By assumption (C.2), ∀t ∈ [0, 1], there is a negligeable set At of A such that

ηtx(Q̄
h
i ) ηtx(Q̄

h
j ) = 0,∀x ∈ A\At, i 6= j.

For every i, we construct the set Ahi \At such that

∀x ∈ Ahi \At, supp ηtx ⊂ Q̄h
i .

Hence, diam supp ηtx ≤
√
n2−h. Make h tends to ∞,

diam supp ηtx = 0

which implies that ηtx is a Dirac measure. It follows from Lemma 28 that there is
Ā =

⋃
t∈[0,1]

At a negligeable set such that

ηx is a Dirac measure.

C.2 Renormalization property

In this section, we proceed by extending the Diperna-Lions theory [DL89] to obtain
a renormalization property in the case of BVloc functions.

Let us recall the result introduced by Diperna-Lions in the case of Sobolev func-
tions.

Theorem 28. Let B ∈ W 1,1
loc (Rn,Rn) and w ∈ L∞loc(Rn) satisfying the transport

equation
D.∇w = cLn, for some c ∈ L1

loc(Rn). (C.3)

Then, for any h ∈ C1(Rn), we have

B.∇
(
h(w)

)
= cḣ(w)Ln.

Proof of Theorem 28. Let (ρε)ε be a mollifier sequence in Rn. From (C.3), we
get (

D.∇w
)
∗ ρε = c ∗ εLn.
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⇒ B.∇(w ∗ ρε = c ∗ ρεLn + rε (C.4)

where
rε := B.∇(w ∗ ρε)− (B.∇w) ∗ ρε.

We multiply both sides of (C.4) by ḣ(w ∗ ρε), we obtain

B.∇
(
h(w) ∗ ρε

)
= ḣ(w ∗ ρε)

[
c ∗ ρεLn + rε

]
.

We note that

rε =

∫
Rn
w(x− εy)

B(x− εy)−B(x)

ε
.∇ρ(y)dy − (x.divB) ∗ ρε(x)

≈
ε→0
−w(x)

∫
Rn

n∑
i,j=1

∂Bi

∂xj
(x)yj

∂ρ

∂yi
(y)dy − w(x)divB(x)

≈
ε→0

w(x)

∫
Rn

n∑
i,j=1

∂Bi

∂xj
(x)ρ(y)

∂yj
∂yi

dy − w(x)divB(x)

= 0 because
∫
Rn
ρ(y)

∂yj
∂i

dy = δij. (C.5)

Therefore, when ε tends to zero, using the fact that rε −→
ε→0

0 (by (C.5)), we
obtain

B.∇
(
h(w)

)
= cḣ(w)Ln.

Before we introduce the normalization property for BVloc functions, we recall
some definitions and properties for BVloc functions.

Definition 40. Let Ω ⊆ Rn. We say that B ∈ L1(Ω) has bounded variation in Ω,
and we denote B ∈ BV (Ω), if

sup
{∫

Ω

B divϕ dx | ϕ ∈ C1
c (Ω,Rn), |ϕ| ≤ 1

}
<∞.

We also define the local version of the above concept.

Definition 41. Let Ω ⊆ Rn. We say that B ∈ L1
loc(Ω) has locally bounded variation

in Ω, and we denote B ∈ BVloc(Ω), if for every open set U ⊂ Ω,

sup
{∫

U

B divϕ dx | ϕ ∈ C1
c (U,Rn), |ϕ| ≤ 1

}
<∞.
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Let B ∈ BVloc(Ω). The structure Theorem for BVloc functions (see Theorem
1, section 5.1 in [EG92]) asserts that the first derivative DB of B is a Rn-valued
measure of finite total variation |DB| with

|DB|(Ω) := sup
{∫

U

B divϕ dx | ϕ ∈ C1
c (U,Rn), |ϕ| ≤ 1,∀U ⊂ Ω

}
.

Hence, DB admits a polar decomposition

DB = N |DB|with |N(x)| = 1, a.e. x ∈ Ω.

By The Lebesgue Decomposition Theorem (Theorem 3, section 1.6.2 in [EG92]), we
may set

D.B = DaB +DsB

such that
|DaB| << Ln and |DsB| ⊥ Ln.

We may obtain DB = DaB + trace(N)|DsB|. In particular,

DB << Ln is equivalent to trace(N) = 0.

To establish the renormalization property for BVloc functions, we need the fol-
lowing property.

Definition 42. Let ρ be a convolution kernel and N be a n× n-matrix, we define

1. the anisotropic energy of ρ given by

Λ(N, ρ) :=

∫
Rn
| < Nz,∇ρ(z) > |dz.

2. the isotropic energy of ρ given by

I(ρ) :=

∫
Rn
|z| |∇ρ(z)|dz.

Proposition 26. (Optimal commutator estimates)
Let B ∈ BVloc(Rn) and w ∈ L∞loc(Rn,Rk). Let ρ be a convolution kernel such that
for some ε > 0, we set

rε := B · ∇(w ∗ ρε)− (B · ∇w) ∗ ρε.
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Then, for any compact set K ⊂ Rn,

lim
ε→0

sup

∫
K

|rε|dx ≤ ||w||∞I(ρ)|DsB|(K) (C.6)

and

lim
ε→0

sup

∫
K

|rε|dx ≤ ||w||∞
∫
K

I(N(x), ρ)d|DsB|(x)

+ ||w||∞(n+ I(ρ))|DaB|(K). (C.7)

We show that the weak solutions of the transport equations verify a renormaliza-
tion property. We present the renormalization result in the case where we suppress
the time dependance.

Proposition 27. We assume that B ∈ BVloc(Rn) such that DB << Ln. Let
w ∈ L∞loc(Rn,Rk) satisfying

B.∇wi = ciLn, i = 1, . . . , n

with c ∈ L1
loc(Rn,Rk).

Then,

B.∇h(w) =
k∑
i=1

∂h

∂zi
(w)ciLn,∀h ∈ C1(Rk).

Proof of Proposition 27. We set

σ := B.∇h(w)−
k∑
i=1

∂h

∂zi
(w)ciLn.

By (C.6), σ is a measure absolutely continuous with respect to |DsB|.
By (C.7), we have

|σ| ≤ C(h,w)Λ(N, ρ)|DsB|+ C(h,w, ρ)|DaB|

then,
|σ| ≤ C(h,w)Λ(N, ρ)|DsB|.

As σ is independant of ρ , then

|σ| ≤ C(h,w) inf
ρ

Λ(N, ρ)|DsB|.
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Thanks to the Alberti Lemma (see Theorem 2.2 in [Amb04]), we have

inf
{

Λ(N, ρ) : ρ ∈ C∞c (Rn), ρ ≥ 0,

∫
Rn
ρ = 1

}
= |trace(M)|.

Since DB << Ln, we have trace(N) = 0 and the conclusion follows.

The proposition 27 is necessary to obtain the following comparison principle.

Theorem 29. Assume that bt(x) = b(t, x) ∈ BVloc(Rn) such that

1. D.bt = divbtLn,

2. |bt|+ |divbt| ∈ L1
loc([0, 1]× Rn),

3.
∫ 1

0
||[divbt]−||L∞(BR)dt < +∞,∀R > 0.

For i = 1, 2, let wit(x) = wi(t, x) ∈ L∞loc([0, 1]× Rn) verifying the transport equation

∂wit
∂t

+ bt∇wit = −wit divbt in [0, 1]× Rn.

Then, w1
0 ≤ w2

0 implies w1
t ≤ w2

t ,∀t ∈ [0, 1].

Proof of Theorem 29. We set wt = w1
t − w2

t ,∀t ∈ [0, 1] such that, by hypothesis,
it verifies

∂wt
∂t

+ bt.∇wt = −wt div bt in [0, 1]× Rd.

For a given ε > 0, we define βε(t) =
√
ε2 + t2 − ε ∈ C1(R) such that

lim
ε→0

βε(t) = t.

Using the renormalization property (see Proposition 27), we get

∂βε
∂t

(wt) + bt.∇
(
βε(wt)

)
= −div bt β̇ε(wt)wt.

Thanks to the inequality −βε(t) ≤ βε(t)− tβ̇ε(t) ≤ 0, and since
wt ∈ L∞loc([0, 1]× Rn), there is R > 0 such that

d

dt

∫
BR

βε(wt)dx =

∫
BR

div bt βε(wt)dx−
∫
BR

divbt β̇ε(wt)wtdx

=

∫
BR

div bt

[
βε(wt)− β̇ε(wt)wt

]
dx
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= −
∫
BR

div bt[β̇ε(wt)wt − βε(wt)]dx

≤
∫
BR

[div bt]
− βε(wt)dx

≤ ||[div bt]−||L∞(BR)

∫
BR

βε(wt)dx

Hence, for a.e. x ∈ BR,

d

dt
βε(wt) ≤ ||[div bt]−||L∞(BR)βε(wt).

Let ε→ 0, we obtain

∂

∂t
wt ≤ ||[div bt]−||L∞(BR)wt.

Applying the Gronwall Lemma, we get ∀t ∈ [0, 1]

wt ≤ exp
(∫ t

0

||[div bs]−||L∞(BR)ds
)
w0. (C.8)

Since w0 = w1
0 − w2

0 ≤ 0, we deduce by (C.8)

wt = w1
t − w2

t ≤ 0.

C.3 Proof of Theorem 26

Our aim is to prove, under suitable assumptions, existence and uniqueness of solution
for the Cauchy problem fro BV vector fields.

Let A ⊂ Rn be fixed.

Proposition 28. There exists a Ln-measurable application η : A→ P(C ) such that

for a.e. x ∈ A, ηx
(
C \C b

x

)
= 0.
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Proof of Proposition 28. Let γ : A → C be a function. By a continuity argu-
ment, it is sufficient to prove that for a.e. x ∈ A,

γ(x)(t) := x+

∫ t

0

b(τ, γ(τ))dτ, ∀t ∈ [0, 1].

We denote by bh := b ∗ ρh the smooth approximation of b by convolution such that
bh : [0, 1]× Rn → Rn verifies the following conditions:

(i) bh ∈ L∞([0, 1]× Rn,Rn) and bh −→
h→∞

b in L1
loc([0, 1]× Rn,Rn).

(ii) ∇bh(t, x) ∈ L∞([0, 1]×BR,Rn), ∀r > 0.

Let γh(x)(.) be the unique solution of the Cauchy problem γ̇(t) = bh(t, γ(t)) with
initial condition γ(0) = x. We recall that (see Proposition B.1 [BR16]), for every
R > 0, there is a smooth function Jh : [0, 1] × BR → [0,∞[, which is the Jacobian
of the application x 7−→ γ(x)(t) such that for every t ∈ [0, 1], and for every x ∈ BR,
we have

∂Jh
∂t

(t, x) = div bh
(
t, γh(x)(t)

)
Jh(t, x).

Integration in time t yields:
e−CR(t) ≤ Jh(t, x) (C.9)

where

CR(t) :=

∫ 1

0

||[div bt]−||L∞(BMR )dt

and
MR = R + ||bt||∞.

In particular, for any ϕ ∈ C∞c (Rn), the changement of variables y = γh(x)(t) and
(C.9) give

|
∫
BR

ϕ
(
γh(x)(t)

)
dx| ≤ eCR(t)

∫
BR

|ϕ
(
γh(x)(t)

)
|Jh(t, x)dx

≤ eCR(t)

∫
BMR

|ϕ(y)|dy. (C.10)

Let t̄ ∈ [0, 1] be fixed. We define ∀x ∈ BR, ∀γ(x) ∈ C

φ(x, γ(x)) := |γ(x)(t̄)− x−
∫ t̄

0

b(τ, γ(x)(τ))dτ |. (C.11)
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We define now a family of measures (ηh) : BR → P(C ) by∫
BR×C

φ(x, γ(x))dηhx(γ) dx :=

∫
BR

φ(x, γh(x)) dx. (C.12)

The following theorem is crucial. We refer the reader to see [Youn69] and section
2 in [AlMu01] for its proof.

Theorem 30. (Fundamental Theorem on Young measures) Let K be a com-
pact metric space. Let A ⊂ Rn be a bounded Ln-measurable set and (ηh) be a
sequence of Ln-measurable measure-valued maps from A to P(K). Then, there exist
a Ln-measurable measure-valued map η : A → P(K) and a subsequence h(k) such
that

lim
k→∞

∫
A

∫
K

φ(x, u)dηh(k)x(u) dx =

∫
A

∫
K

φ(x, u) dηx(u)dx

for any bounded function φ(x, u) : A × K → [0,+∞[ continuous with respect to u
and Ln-measurable with respect to x.

Hence, there exist a Ln-measurable application η : A→ P(C ) and a subsequence
h(k) such that

lim
k→∞

∫
BR

∫
C

φ(x, γ(x))dηh(k)x(γ(x))dx =

∫
BR

∫
C

φ(x, γ(x))dηx(γ(x))dx. (C.13)

Then, we obtain∫
BR

∫
C

|γ(x)(t̄)− x−
∫ t̄

0

b(τ, γ(x)(τ))dτ |dηx(γ(x))dx

=

∫
BR

∫
C

φ(x, γ(x))dηx(γ(x))dx, by (C.11)

= lim
k→∞

∫
BR

∫
C

φ(x, γ(x))dηh(k)x(γ(x))dx, by (C.13)

= lim
k→∞

∫
BR

φ(x, γh(k)(x))dx, by (C.12)

= lim
k→∞

∫
BR

|γh(k)(x)(t̄)− x−
∫ t̄

0

b(τ, γh(k)(x)(τ))dτ |dx, by (C.11)
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= lim
k→∞

∫
BR

|
∫ t̄

0

(bh(k) − b)(τ, γh(k)(x)(τ))dτ |dx, (because γh ∈ C bh
x )

≤ lim
k→∞

sup

∫
BR

∫ 1

0

|bh(k) − b|(τ, γh(k)(x)(τ))dτ |dx

≤ lim
k→∞

sup

∫ 1

0

eCR(τ)

∫
BMR

|bh(k) − b|(τ, y) dy dτ , by (C.10)

= 0, because bh →
h→∞

b in L1
loc([0, 1]× Rn,Rn).

And the conclusion follows.

Proposition 29. For a.e. x ∈ A, ηx is a Dirac measure.

Proof of Proposition 29. By Lemma 28 and Theorem 27, the problem can be
reduced to prove the following condition:

∀t ∈ [0, 1], there exists a negligeable set At of A such that

ηx
(
γ(x) : γ(x)(t) ∈ K

)
ηx
(
γ(x) : γ(x)(t) ∈ K ′

)
= 0, ∀x ∈ A\At

where K,K ′ are two disjoint subsets of Rn.

We assume by contradiction that there are t0 ∈ [0, 1] and a negligeable set At0
of A such that there are two disjoint subsets K and K ′ of Rn verifying

ηx
(
γ(x) : γ(x)(t0) ∈ K

)
ηx
(
γ(x) : γ(x)(t0) ∈ K ′

)
> 0, ∀x ∈ A\At0 .

Without loss of generality, we can assume that there is a constant C > 0 such that
∀x ∈ A\At0

0 < ηx
(
γ(x) : γ(x)(t0) ∈ K

)
≤ C ηx

(
γ(x) : γ(x)(t0) ∈ K ′

)
. (C.14)

Therefore, we define the following measures

η1
x := ηx b

{
γ(x) : γ(x)(t0) ∈ K

}
and

η2
x := C ηx b

{
γ(x) : γ(x)(t0) ∈ K ′

}
.
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For i = 1, 2, and ∀t ∈ [0, 1], we associate the measure µit given by

< µit, ϕ >:=

∫
A

∫
C

ϕ(γ(t))dηix(γ)dx, ∀ϕ ∈ C∞c (Rn,R).

By Proposition 28, we have for a.e. x ∈ A, ηx(C \C b
x ) = 0.

Hence, for a.e. x ∈ A and for any γ(x) ∈ C ,

γ̇(x)(t) = b(t, γ(x)(t)) = bt(γ(x)(t)),∀t ∈ [0, 1].

Therefore, we obtain for i = 1, 2, for any ϕ ∈ C∞c (Rn,R)

d

dt
< µit, ϕ >=

d

dt

∫
A

∫
C

ϕ
(
γ(x)(t)

)
dηix(γ(x)) dx

=

∫
A

∫
C

∇ϕ
(
γ(x)(t)

)
.γ̇(x)(t) dηix(γ(x)) dx

=

∫
A

∫
C

∇ϕ
(
γ(x)(t)

)
.bt
(
γ(x)(t)

)
dηix(γ(x)) dx

= < µit , bt∇ϕ >

= < bt µ
i
t , ∇ϕ > .

This means that the measures µit, i = 1, 2 are solutions of the transport equation
∂µit
∂t

+ D.(btµ
i
t) = 0

µ1
0 = ηt0x(K)LnbA

µ2
0 = C ηt0x(K

′)LnbA

By (C.14), we note that
µ1

0 ≤ µ2
0.

Thanks to the comparison principle (see Theorem 29), we have

µ1
t ≤ µ2

t ,∀t ∈ [0, 1].

On the other hand, since K and K ′ are disjoint, we have for any t ∈ [0, 1]

µ1
t =

∫
A

ηt0xbKdx ⊥ C

∫
A

ηt0xbK ′dx = µ2
t

which implies the contradiction.
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