
HAL Id: tel-01673531
https://hal.science/tel-01673531

Submitted on 30 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigating decomposition methods for the maximum
common subgraph and sum colouring problems

Maël Minot

To cite this version:
Maël Minot. Investigating decomposition methods for the maximum common subgraph and sum
colouring problems. Other [cs.OH]. Université de Lyon, 2017. English. �NNT : 2017LYSEI120�. �tel-
01673531�

https://hal.science/tel-01673531
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de l’INSA de Lyon

École doctorale no 512
InfoMaths

Spécialité de doctorat :
Informatique

Soutenue publiquement le 19/12/2017, par

Maël MINOT

Investigating decomposition methods
for the maximum common subgraph

and sum colouring problems

Devant le jury composé de :

M. Simon DE GIVRY · Centre de recherches de Toulouse, INRA Rapporteur
M. Christophe LECOUTRE · IUT de Lens Examinateur
M. Chu Min LI · Université de Picardie Jules VERNE Rapporteur
M. Samba Ndojh NDIAYE · Université Lyon 1, LIRIS Examinateur (Encadrant)
Mme Christine SOLNON · INSA Lyon, LIRIS Directrice de thèse

Département FEDORA – INSA Lyon – Écoles doctorales
Quinquennal 2016–2020

SIGLE ÉCOLE DOCTORALE NOM ET COORD. RESPONSABLE
CHIMIE CHIMIE DE LYON

http://www.edchimie-lyon.fr

Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr
INSA : R. GOURDON

M. Stéphane DANIELE
Institut de recherches sur la catalyse et l’environnement de
Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 Avenue Albert EINSTEIN
69 626 Villeurbanne CEDEX
directeur@edchimie-lyon.fr

E.E.A ÉLECTRONIQUE, ÉLECTROTECHNIQUE,
AUTOMATIQUE
http://edeea.ec-lyon.fr

Sec. : M.C. HAVGOUDOUKIAN
ecole-doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
École Centrale de Lyon
36 Avenue Guy DE COLLONGUE
69 134 Écully
T 04.72.18.60.97 v 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,
MICROBIOLOGIE, MODÉLISATION
http://e2m2.universite-lyon.fr

Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
T 04.72.44.83.62
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Fabrice CORDEY
CNRS UMR 5276 Lab. de géologie de Lyon
Université Claude Bernard Lyon 1
Bât. Géode
2 Rue Raphaël DUBOIS
69 622 Villeurbanne CEDEX
T 06.07.53.89.13
cordey@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE SCIENCES-SANTÉ
http://www.ediss-lyon.fr

Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
T 04.72.44.83.62
INSA : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Emmanuelle CANET-SOULAS
INSERM U1060, CarMeN lab, Univ. Lyon 1
Bâtiment IMBL
11 Avenue Jean CAPELLE INSA de Lyon
69 621 Villeurbanne
T 04.72.68.49.09 v 04.72.68.49.16
emmanuelle.canet@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET MATHÉMATIQUES
http://edinfomaths.universite-lyon.fr

Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
T 04.72.43.80.46 v 04.72.43.16.87
infomaths@univ-lyon1.fr

M. Luca ZAMBONI
Bât. Braconnier
43 Boulevard du 11 novembre 1918
69 622 Villeurbanne CEDEX
T 04.26.23.45.52
zamboni@maths.univ-lyon1.fr

MATÉRIAUX MATÉRIAUX DE LYON
http://ed34.universite-lyon.fr

Sec. : Marion COMBE
T 04.72.43.71.70 v 04.72.43.87.12
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIÈRE
INSA de Lyon
MATEIS
Bât. Saint-Exupéry
7 Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
T 04.72.43.71.70 v 04.72.43.85.28
ed.materiaux@insa-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE, GÉNIE CIVIL,
ACOUSTIQUE
http://edmega.universite-lyon.fr

Sec. : Marion COMBE
T 04.72.43.71.70 v 04.72.43.87.12
Bât. Direction
mega@insa-lyon.fr

M. Philippe BOISSE
INSA de Lyon
Laboratoire LAMCOS
Bâtiment Jacquard
25 bis Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
T 04.72.43.71.70 v 04.72.43.72.37
philippe.boisse@insa-lyon.fr

SCSO SCSO *
http://ed483.univ-lyon2.fr

Sec. : Viviane POLSINELLI
Brigitte DUBOIS
INSA : J.Y. TOUSSAINT
T 04.78.69.72.76
viviane.polsinelli@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 Rue Pasteur
69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

* ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie.

http://www.edchimie-lyon.fr
mailto:secretariat@edchimie-lyon.fr
mailto:directeur@edchimie-lyon.fr
http://edeea.ec-lyon.fr
mailto:ecole-doctorale.eea@ec-lyon.fr
mailto:gerard.scorletti@ec-lyon.fr
http://e2m2.universite-lyon.fr
mailto:secretariat.e2m2@univ-lyon1.fr
mailto:cordey@univ-lyon1.fr
http://www.ediss-lyon.fr
mailto:secretariat.ediss@univ-lyon1.fr
mailto:emmanuelle.canet@univ-lyon1.fr
http://edinfomaths.universite-lyon.fr
mailto:infomaths@univ-lyon1.fr
mailto:zamboni@maths.univ-lyon1.fr
http://ed34.universite-lyon.fr
mailto:ed.materiaux@insa-lyon.fr
mailto:ed.materiaux@insa-lyon.fr
http://edmega.universite-lyon.fr
mailto:mega@insa-lyon.fr
mailto:philippe.boisse@insa-lyon.fr
http://ed483.univ-lyon2.fr
mailto:viviane.polsinelli@univ-lyon2.fr
mailto:christian.montes@univ-lyon2.fr

3

Thanks (Version française plus bas)
I am not really used to thanking people. I think that I perceive as some kind of
weakness the feeling of owing something to someone. Truth be told, there are quite a
lot of things that I see as weaknesses – even the ability to forgive, for example. And
when you start showing weaknesses to the world, you expose yourself to judgement.
Yet another thing that I hate. It would be far easier to address my thanks to my stuffed
animals, or even to my gaming consoles; it sure would prove to be less hazardous. But
there it is: sometimes, one needs to put his beliefs and habits aside, especially the bad
ones.

Facing the eventuality of making this section predictable, I will start by thanking
my advisers: Christine, who seemed to agree to take me as her student without real
concern despite the lack of information. She always knew how to make sure we went
forward, even when a few painful detours were required in order to eventually provide
some rigorous and thorough work. Samba, then, who first chose me as his intern at
the end of my master’s degree, even though I felt like I was just some random person,
with my doubts for only luggage. More than once, he put me back on track – often as
if involuntarily or by nature – when I was feeling down due to some particular task
happening to be more challenging than the others.

I should also thank the other members of my jury. Having spent long and painful
nights proofreading my thesis, I cannot help but be surprised at the thought that
people actually volunteered to do such a thing.

Additional thanks go to my colleagues, even though I have always felt that this
term seems oddly inappropriate to designate PhD students. Bearing with my contin-
ued presence in the office must have been hard, sometimes. Thanks, too, to all those
people I kept running into while walking the corridors, even though I never could
remember most of your names.

Thanks to these friends that I see far from often enough but that definitely still
exist, somewhere.

Thanks to my family that offers me some kind of vital drop point. It was nice being
able to spend my Sundays baking cakes for my colleagues for a change of pace.

Thanks to my flatmates, past and present, who help me explore the real and social
world, with its assets as well as its bad aspects. Six years living on my own was
probably too much.

Thanks to those people of all kinds that I started meeting a few months ago. I still
think that gathering in noisy places to chat is utterly absurd and blatantly suboptimal,
but at least it helps me to clear my mind, and maybe to become someone better.

Ultimately, I think that these three years can be considered the most eventful of
the beginning of my existence. I learned as much about the world and myself than
about computer science. More than ever, I am eager to find out what lies in my future,
even if, undoubtedly, a few ordeals will come to rise now and then.

Maël MINOT, October 2017

4

Remerciements
Je n’ai pas vraiment l’habitude de remercier des gens. Je crois que je vois comme une
faiblesse le fait d’avoir le sentiment de devoir quelque chose à qui que ce soit. À vrai
dire, je vois beaucoup de choses comme des faiblesses – même la faculté de pardonner
à quelqu’un, par exemple. Et lorsque l’on commence à montrer des faiblesses, on
prend le risque d’être jugé. Encore une chose que je déteste. Il me serait plus facile de
remercier mes animaux en peluche ou même ma console de jeux ; cela serait moins
dangereux. Mais voilà : il faut parfois mettre de côté ses croyances et ses habitudes,
surtout les mauvaises.

Au risque de rendre cette section banale, je commencerai par remercier mes deux
encadrants : Christine, qui semble avoir accepté sans trop hésiter de me prendre en
charge en ne disposant pas de tant d’information que ça. Elle a toujours su veiller à ce
que les choses aillent de l’avant, quitte à devoir faire quelques détours difficiles mais
nécessaires pour présenter un travail rigoureux et complet. Samba, enfin, qui m’a
tout d’abord pris comme stagiaire alors que j’avais le sentiment de sortir un peu de
nulle part, avec mes doutes pour seuls bagages. Il m’a maintes fois remis moralement
d’aplomb, bien souvent en semblant ne pas le faire vraiment exprès, lorsque je me
posais les mauvaises questions face à des tâches plus ardues que d’ordinaire.

Merci également à mes rapporteurs. Après avoir peiné des nuits durant pour relire
cette thèse, je suis assez étonné à l’idée que des gens se portent volontaires pour de
telles choses.

Merci à mes collègues, bien que ce terme me semble toujours étrangement inadapté
pour désigner des thésards. Supporter ma présence dans un bureau à longueur de
journée n’a pas dû être toujours facile. Merci même à tous ces gens que je croisais
dans les couloirs et dont je n’ai jamais réussi à retenir le nom.

Merci à mes amis, que je ne vois plus du tout assez souvent, mais qui existent
encore bel et bien.

Merci à ma famille, qui m’offre un point de chute parfois capital. J’ai ainsi pu
passer mes dimanches à me concentrer sur les gâteaux que je préparais pour mes
collègues.

Merci à mes colocataires, anciens comme actuels, qui m’aident à explorer le monde
réel et social, avec ses avantages comme ses inconvénients. Six ans à vivre seul, c’était
probablement un peu trop.

Merci à ces gens variés et étonnants que j’ai commencé à rencontrer il y a quelques
mois. Je trouve toujours que se retrouver dans des lieux bruyants pour parler est
complètement absurde et sous-optimal, mais ça me change les idées et m’aide à me
construire.

En définitive, je crois que ces trois années ont été les plus riches en événements
de ce début d’existence. J’en ai appris autant sur le monde et sur moi-même que sur
l’informatique. Plus que jamais, je suis curieux de découvrir de quoi l’avenir sera fait,
quitte à affronter quelques épreuves au passage.

Maël MINOT, octobre 2017

5

d

Abstract
The objective of this thesis is, from a general standpoint, to design and evaluate
decomposition methods for solving constrained optimisation problems. Two
optimisation problems in particular are considered: the maximum common
induced subgraph problem, in which the largest common part between two
graphs is to be found, and the sum colouring problem [KS89], where a graph
must be coloured in a way that minimises a sum of weights induced by the
employed colours.

The maximum common subgraph (MCIS) problem is notably difficult, with
a strong applicability in domains such as biology, chemistry and image pro-
cessing, where the need to measure the similarity between structured objects
represented by graphs may arise. The outstanding difficulty of this prob-
lem makes it strongly advisable to employ a decomposition method, possibly
coupled with a parallelisation of the solution process. However, existing de-
composition methods are not well suited to solve the MCIS problem: some lead
to a poor balance between subproblems, while others, like tree decomposition,
are downright inapplicable.

To enable the structural decomposition of such problems, CHMEISS et al.
proposed an approach, TR-decomposition, acting at a low level: the micro-
structure of the problem. This approach had yet to be applied to the MCIS
problem. We evaluate it in this context, aiming at reducing the size of the
search space while also enabling parallelisation. Moreover, we introduce a
post-decomposition step that focuses on alleviating redundancies between
subproblems. Our experiments show that the time employed to decompose the
initial problem eventually proves to be profitable.

The second problem that caught our interest is the sum colouring problem.
It is anNP-hard variant of the widely known classical graph colouring problem.
As in most colouring problems, it basically consists in assigning colours to the
vertices of a given graph while making sure no neighbour vertices use the same
colour. In the sum colouring problem, however, each colour is associated with a
weight. The objective is to minimise the sum of the weights of the colours used
by every vertex. This leads to generally harder instances than the classical
colouring problem, which simply requires to use as few colours as possible.

Only a few exact methods have been proposed for this problem. Among
them stand notably a constraint programming (CP) model, a branch and bound
approach, as well as an integer linear programming (ILP) model.

We led an in-depth investigation of CP’s capabilities to solve the sum col-
ouring problem, while also looking into ways to make it more efficient. These
experiments proved that even though CP seems, at first glance, to be at a
disadvantage, it still has some assets, notably its reduced memory needs.

6

Additionally, we evaluated a combination of integer linear programming
and constraint programming, with the intention of conciliating the strong
points of these highly complementary approaches. We took inspiration from
the classical backtracking bounded by tree decomposition (BTD) approach [JT03].
We employ a tree decomposition with a strictly bounded height. Constraint
programming is used to enumerate consistent assignment of the root cluster.
For each of these assignments, one subproblem is trivially obtained for each
leaf cluster. Subproblems are then independently solved to optimality using
ILP. This combination of CP and ILP yields interesting results and offers
interesting improvement perspectives, notably by computing partial solutions
during a preprocessing step in order to obtain bounds.

We then derive profit from the complementarity of our approaches by
developing a portfolio approach. The resulting solver is able to choose one of
the considered approaches automatically by relying on a number of features
extracted from each instance. This approach gives encouraging results.

Résumé
L’objectif de cette thèse est, d’un point de vue général, de concevoir et d’évaluer
des méthodes de décomposition applicables à des problèmes d’optimisation sous
contraintes. Deux problèmes d’optimisation, en particulier, ont été considérés :
le problème du plus grand sous-graphe commun, qui consiste à trouver la
plus grande partie commune entre deux graphes, et le problème de la somme
coloration, dans lequel un graphe doit être colorié d’une façon minimisant une
somme de poids.

Le problème du plus grand sous-graphe commun est connu pour être par-
ticulièrement difficile à résoudre. Il survient dans de nombreux domaines
applicatifs tels que la biologie, la chimie, ou encore le traitement d’images,
où il est parfois nécessaire de mesurer le degré de similarité entre des objets
structurés pouvant être représentés par des graphes.

La programmation par contraintes se montre compétitive pour résoudre
ce problème, de même que des approches basées sur une reformulation du
problème en instance du problème de la recherche d’une clique maximum.
Cependant, la difficulté considérable du problème du plus grand sous-graphe
commun rend fortement souhaitable d’employer une méthode de décomposi-
tion, couplée à une parallélisation de l’étape de résolution, sous peine de ne
pas pouvoir traiter des instances d’une taille significative.

Une telle approche a été proposée par DEPOLLI et MCCREESH pour le
problème de la clique maximum, tandis que RÉGIN et al. ont œuvré pour
décomposer les problèmes de satisfaction de contraintes d’un point de vue
plus général en subdivisant de manière répétée les domaines de certaines
variables. Cette dernière approche est connue pour sa grande efficacité, mais
se trouve être peu adaptée au problème du plus grand sous-graphe commun.

7

En effet, elle traite toutes les valeurs de la même manière, et le modèle de
programmation par contraintes du problème qui nous intéresse comprend une
valeur spéciale qui, lorsqu’elle est utilisée, marque le fait qu’un sommet ne
figure pas dans le sous-graphe commun en cours de construction. Il en résulte
des sous-problèmes de tailles très peu équilibrées lorsqu’une technique de
division de domaines classique est employée.

Une manière alternative de décomposer un problème consiste à exploiter sa
structure. Les problèmes de satisfaction de contraintes ou d’optimisation sous
contraintes, en particulier, peuvent être traités au moyen d’une décomposition
arborescente de leur graphe de contraintes. Cependant, dans de nombreux
contextes dont celui du problème du plus grand sous-graphe commun, cette
technique n’est pas applicable, car l’une des contraintes englobe l’intégralité
des variables du problème. Dans de tels cas, toute tentative de décomposition
arborescente ne donnera qu’un unique groupe de variables dont le traitement
sera équivalent à la résolution du problème initial, ce qui rend une telle
décomposition complètement inutile.

Afin de contourner ce problème et de permettre une certaine forme de
décomposition dans ces cas problématiques, CHMEISS et al. ont proposé une
approche alternative, qui agit à un plus bas niveau. Plus précisément, l’objet
de la décomposition n’est plus le graphe de contraintes mais la microstructure
du problème, plus grande et plus détaillée. De plus, cette méthode produit des
sous-problèmes parfaitement indépendants, facilitant ainsi la parallélisation
du processus de résolution.

Cette approche n’avait encore jamais été employée pour résoudre le pro-
blème du plus grand sous-graphe commun. Nous l’avons de ce fait évaluée dans
ce contexte, en tentant de réduire la taille de l’espace de recherche global et de
résoudre les sous-problèmes en parallèle. Nous avons également ajouté, après
la phase de décomposition, une étape visant à réduire l’impact des redondances
existant entre certains des sous-problèmes générés par cette méthode.

Notre évaluation confirme que cette approche est adaptée à ce problème,
notamment lorsque croît la difficulté des instances considérées, car le temps
dépensé pour décomposer le problème est alors mieux rentabilisé. Nous propo-
sons également de décomposer récursivement les plus gros sous-problèmes afin
d’obtenir des sous-problèmes encore plus équilibrés et ainsi de mieux répartir
la charge de travail sur les unités de calcul disponibles. Nos résultats sont
comparés à ceux pouvant être obtenus avec la méthode de division de domaines
de RÉGIN et al. Il est apparu que notre approche rentabilisait mieux l’usage
de nombreuses unités de calcul.

Le second problème sur lequel nous avons travaillé est celui de la somme
coloration. Il s’agit d’une variante NP-difficile du très classique problème de
coloration de graphe. Comme dans la plupart des problèmes de coloration,
il s’agit d’affecter des couleurs aux sommets d’un graphe en s’assurant que
les sommets voisins ne partagent pas la même couleur. Dans le problème de
somme coloration, cependant, chaque couleur est associée à un poids. L’objectif

8

n’est plus de minimiser le nombre total de couleurs employées mais d’obtenir la
plus petite somme de poids possible sur l’ensemble des sommets. Il en résulte
que, pour un même graphe, ce problème est généralement bien plus difficile à
résoudre que le problème de coloration classique.

Ce problème trouve des échos dans des situations concrètes d’allocation de
ressources et de planifications, dans lesquelles le voisinage des sommets dénote
certaines incompatibilités et conflits, et où les poids associés aux couleurs
introduisent une notion de coûts associés aux ressources.

Le problème de somme coloration n’a pas encore été largement étudié. En
partie pour cette raison, la plupart des approches proposées jusqu’à maintenant
sont des heuristiques, inaptes à assurer l’optimalité d’une solution dans le cas
général. Parmi les rares approches complètes présentées dans la littérature, on
notera notamment l’existence d’un modèle de programmation par contraintes
et d’une approche homologue utilisant la programmation linéaire, ainsi que
d’une méthode basée sur le principe du branch and bound (séparation et
évaluation).

Le modèle de programmation par contraintes existant s’est avéré être
assez élémentaire, ce qui menait à un certain manque de compétitivité. Nous
avons entrepris de le rendre plus efficace tout en menant une évaluation assez
poussée de ses facultés à résoudre le problème de somme coloration.

Nous avons pu prouver que bien que la programmation par contraintes
semble désavantagée dans ce contexte, elle possède certains avantages, en
particulier ses faibles besoins en mémoire, notamment par rapport à la pro-
grammation linéaire. Un solveur tel que Gecode peut ainsi mener une longue
recherche et trouver des solutions de qualité, même sur de très grandes ins-
tances.

La compétitivité d’un tel solveur peut être fortement améliorée en procédant
à un paramétrage minutieux, comme par exemple en instaurant une politique
de restarts ou en déterminant quelles heuristiques sont les plus adaptées pour
décider quelles valeurs et variables seront traitées en priorité. De plus, calculer
des bornes de qualité peut permettre de supprimer des branches de l’arbre de
recherche.

En complément de ces travaux, nous avons développé et évalué une méthode
combinant la programmation par contraintes et la programmation linéaire,
dans le but de concilier la robustesse et l’efficacité. Cette approche s’inspire du
backtracking bounded by tree decomposition (BTD, retour sur trace borné par
une décomposition arborescente) de JÉGOU et TERRIOUX, qui tire partie de
l’indépendance de certaines parties du problème identifiées lors d’une phase
de décomposition préalable.

Nous employons, de même, une décomposition arborescente, mais nous
bornons fortement sa hauteur, afin de forcer chaque groupe de variables à être
soit la racine de l’arbre, soit une de ses feuilles. Nous utilisons ensuite la pro-
grammation par contraintes pour énumérer toutes les affectations cohérentes
de la racine. De chacune de ces affectations découle de manière triviale un

9

sous-problème par feuille de la décomposition. Ces sous-problèmes sont en-
suite indépendamment résolus à l’optimum via un modèle de programmation
linéaire.

Cette combinaison de méthodes donne des résultats plus satisfaisants que
l’emploi systématique de la programmation par contraintes ou de la program-
mation linéaire, et surpasse également, dans ce contexte, l’application classique
de BTD. De plus, elle offre d’intéressantes perspectives d’amélioration. Nous
explorons en particulier la possibilité de calculer des solutions partielles sur les
différentes parties désignées par la décomposition. Nous en tirons des bornes
locales aidant à la résolution, puis nous combinons ces solutions partielles afin
d’obtenir une première solution globale. Ces nouvelles données permettent de
faciliter la résolution proprement dite.

Après avoir constaté une grande complémentarité parmi les principales mé-
thodes étudiées pour cette thèse, nous avons entrepris d’en combiner certaines
au sein d’une approche portfolio. Le solveur qui en résulte est capable, après
une phase d’apprentissage, de choisir automatiquement l’une des méthodes du
portfolio en fonction d’attributs extraits de chaque instance considérée.

Cette approche a donné des résultats encourageants, en obtenant des so-
lutions d’une qualité comparable à celle offerte par les bornes fournies par
la programmation par contraintes et en menant à bien autant de preuves
d’optimalité qu’une approche basée sur la programmation linéaire, et ce sans
rencontrer de problèmes dus à un manque de mémoire.

Contents

I Context 16

1 Graphs 18
1.1 Basic definitions . 18
1.2 Hypergraphs . 21
1.3 Triangulated graphs . 22
1.4 Tree decompositions . 25

2 Constraint programming 29
2.1 Constraint satisfaction problems 30
2.2 Generic algorithms . 34
2.3 Structural decomposition . 42
2.4 Parallelisation . 50

3 Integer linear programming 54
3.1 Linear programming . 54
3.2 Integer linear programming . 56

4 Portfolio approaches 58
4.1 Algorithm selection principle . 58
4.2 Supervised classification . 59
4.3 Classification for algorithm selection 60

II The maximum common subgraph problem 62

5 Background and definitions 64
5.1 Graph comparisons . 64
5.2 CP model for the MCIS . 66
5.3 Reformulation of the MCIS problem 68

6 Decomposing the MCIS problem 70
6.1 Binary domain decomposition . 70
6.2 Structural decomposition . 73

10

11

7 Experimental evaluation 79
7.1 Experimental setup . 79
7.2 Benchmark . 80
7.3 Results . 83

8 Discussion 93

III The sum colouring problem 95

9 The sum colouring problem 97
9.1 Definitions . 97
9.2 Existing bounds . 100
9.3 Existing approaches . 104

10 Improving the existing models 108
10.1 Reduction of initial domains . 108
10.2 Adding allDifferent constraints . 109
10.3 Lower bound from a clique partition 113
10.4 Combining sum and allDifferent constraints 115
10.5 Heuristic choices . 122
10.6 Hybrid strategies . 123
10.7 Results . 124

11 Backtracking bounded by flower decomposition 133
11.1 Motivation and principle . 134
11.2 Building a flower decomposition 134
11.3 Aiming for a good flower decomposition 137
11.4 BFD summary . 139
11.5 Experimental results . 139

12 Computing local and global bounds using partial solutions 144
12.1 Local bounds . 144
12.2 First solution and global bound 145
12.3 Allotted time for bounds . 148
12.4 Results . 148

13 Portfolio approach 155
13.1 Methods . 155
13.2 Feature extraction . 156
13.3 Selection model . 157
13.4 Results . 157

14 Discussion 164

Introduction

MANY of the research problems considered by the artificial intelligence
and operational research communities are NP-hard optimisation
problems. For most of them, the sheer number of possibilities that

must be evaluated in order to find the optimal solution and to prove its optim-
ality makes it mandatory to employ more elaborate methods in order to speed
up the solution process.

Among the most common ways to alleviate this difficulty, decomposition
methods are especially appealing. Following the classical concept of “divide
and conquer”, they allow to split a given problem into subproblems. Desirable
properties for these subproblems include independence – so that they can be
solved in parallel – and a somewhat lower difficulty with regards to the initial
problem.

Several approaches following these ideas have been recently proposed in
the context of constraint satisfaction and constrained optimisation problems.
Two in particular are worth mentioning:

Backtracking bounded by tree decomposition (BTD) The BTD approach
consists, firstly, in decomposing the constraint graph of the problem into
a set of variable clusters organized in the shape of a tree. Its efficiency
is strongly tied with the inherent structure of the problem: the more
structured an instance is, the better the tree decomposition. The tree
decomposition is then used to guide the search and to derive profit from
the independence of certain parts of the problem, identified during the
decomposition step.

Embarrassingly parallel search (EPS) EPS is a domain splitting technique
developed for constraint satisfaction problems in general. It pre-assigns
values to a subset of the problem’s variables, each different assignment
then being subject to constraint propagation and leading to a separate,
independent subproblem. It can be employed to generate a very large
number of subproblems, thus making it easier to balance the workload
between processing units during a parallel resolution.

The objective of this thesis is, from a general standpoint, to design and
evaluate decomposition methods for solving constrained optimisation problems.
Two optimisation problems in particular have been considered: the maximum
common induced subgraph problem, in which the largest common part between
two objects is to be found, and the sum colouring problem [KS89], where a

12

13

graph must be coloured in a way that minimises a sum of weights. Indeed, the
aforementioned existing decomposition methods appear to be rather inefficient
for these problems.

The maximum common subgraph problem
The maximum common subgraph (MCIS) problem is notably difficult, with
a strong applicability in domains such as biology, chemistry and image pro-
cessing, where the need to measure the similarity between structured objects
represented by graphs may arise.

Even though EPS is known to be highly efficient in general, it adapts poorly
to the MCIS problem, due to one peculiarity of the constraint programming (CP)
model commonly used for this problem: each variable can take a special value
meaning that the corresponding vertex does not belong to the current common
subgraph. EPS handles every value and subproblem in the same way, and this
results in a very unsatisfying workload balance for the MCIS problem.

Moreover, BTD cannot even be applied to the MCIS problem to begin with.
Indeed, in the constraint programming model designed to solve the MCIS prob-
lem, one of the constraints affects every single variable. In such occurrences,
any tree decomposition attempt will only yield a decomposition comprised of
a sole large cluster, meaning that the resulting problem will be completely
equivalent to the initial one, rendering this decomposition method useless.

To enable the structural decomposition of such problems despite this pe-
culiarity, CHMEISS et al. proposed an alternative approach acting at a lower
level. It is based on the microstructure of the constraint satisfaction problem
rather than on its constraint graph [CJK03]. The subproblems generated by
this technique are perfectly independent, and can thus be solved in parallel
without particular precautions.

This approach had yet to be applied to the MCIS problem. We evaluate it in
this context, aiming at reducing the overall size of the search space that must
be explored during the solution process, while also enabling parallelisation.
Moreover, we added a post-decomposition step that focuses on alleviating
redundancies between subproblems.

This work has been subject to the following publications:

• Workshop “Bridging the gap between theory and practice in constraint
solvers” at CP 2014 [MN14];

• JFPC 2015 [MNS15B] (in French);
• ICTAI 2015 [MNS15A].

The sum colouring problem
The sum colouring problem is anNP-hard variant of the widely known classical
graph colouring problem. As in most colouring problems, it basically consists

14

in assigning colours to the vertices of a given graph while making sure no
neighbour vertices use the same colour. In the sum colouring problem, however,
each colour is associated with a weight. The objective is to minimise the sum of
the weights of the colours used by every vertex. This leads to generally harder
instances than the classical colouring problem, which simply requires to use
as few colours as possible.

This problem is amply reminiscent of concrete situations occurring in do-
mains such as resource allocation problems or scheduling. Colouring problems,
in general, have a tight relationship with timetabling problems and the like.
The weights introduced by the sum colouring problem add a notion of costs
and preferences to such contexts.

The sum colouring problem has not been extensively studied yet. Moreover,
most of the approaches suggested in the literature are heuristics and metaheur-
istics – methods that cannot guaranty the optimality of a solution in the general
case. Only a few exact methods have been proposed. Among them stand not-
ably a constraint programming model, a branch and bound approach [LEC+15A],
as well as an integer linear programming (ILP) model [WAN+12].

The existing sum colouring CP model appeared to be a rather straight-
forward one, and its performances were not as convincing as one could have
expected. Moreover, it had yet to be evaluated at a reasonable scale. We
therefore lead an in-depth investigation of its capabilities to solve the sum
colouring problem, while also looking into ways to make it more efficient.

BTD can be used to solve the sum colouring problem. However, since this is
an optimisation problem, tedious enumerations must take place within each
non-leaf cluster of the employed tree decomposition. This leads to significant
losses of time and prevents BTD from being competitive for this problem.

We investigate in this thesis ways to make all these approaches more ef-
ficient to solve the sum colouring problem. In particular, we design a new
decomposition approach, BFD (for “backtracking bounded by flower decompos-
ition”), inspired by them. BFD employs a tree decomposition, just like BTD.
However, the decomposition we use has a strictly bounded height, forcing every
cluster of the tree to be either the root itself or a leaf cluster. During the solu-
tion process, constraint programming is used to enumerate every consistent
assignment of the root cluster. For each of these assignments, one subproblem
is trivially obtained for each leaf cluster. Subproblems are then independently
solved to optimality using integer linear programming techniques. BFD thus
conciliates the strong points of these highly complementary approaches and
provides a middle ground between robustness and speed.

The set of approaches comprised of CP strategies, ILP ones and BFD ex-
hibited great complementarity, with various strong points as well as distinct
weaknesses. We derive profit from these aspects by developing a portfolio ap-
proach. The resulting solver is able to chose one of the considered approaches
automatically by relying on a number of features extracted within reasonable
time from each instance.

15

Our work on the sum colouring problem was published in the following
conferences:

• JFPC 2016 [MNS16A] (in French);
• Doctoral program in CP 2016 [MNS16B];

• CPAIOR 2017 [MNS17].

Outline
This thesis will start with a part providing information on the context, with
important definitions and concepts. Part II covers everything related to the
first problem at hand, namely the maximum common subgraph problem, while
Part III is concerned with the sum colouring problem. For each of these
problems, existing approaches will be discussed, and improvements as well as
new techniques will be presented. Lastly, a global conclusion will recapitulate
the contents of this thesis.

Y Part I Z

Context

16

17

This part introduces all the notions that are needed to fully apprehend this
thesis.

It begins with presenting the basics of graph theory in Chapter 1, since the
two problems addressed in this thesis both involve graphs. We will of course
also present more advanced concepts that are closely related to the problems
that will be introduced later on.

The main formalisms, namely constraint programming (CP) and integer
linear programming (ILP), that we used to solve the considered problems will
be described in details through Chapters 2 and 3.

Lastly, in Chapter 4, the subject of portfolio approaches will be discussed,
while giving a few necessary notions of classification.

GraphsGraphsChapter 1
Chapter 1

Contents
1.1 Basic definitions . 18
1.2 Hypergraphs . 21
1.3 Triangulated graphs . 22
1.4 Tree decompositions . 25

1.4.1 Definitions . 25
1.4.2 Construction . 25

Graphs are extensively used in both mathematics and computer sciences.
They can be used to represent various structured objects, or networks of
entities. Moreover, many properties hold on such objects and enable useful
computations.

This chapter presents an array of definitions related with graph theory in
order to make it easier for the reader to grasp the principles behind the two
mains problems addressed in this thesis.

We start by giving a few basic definitions in Section 1.1. We then define
hypergraphs in Section 1.2, triangulated graphs in Section 1.3, and finally tree
decompositions in Section 1.4.

1.1 Basic definitions
Graphs are widely used mathematical objects with many applications. They
can be employed to model structured entities such as, for example, molecules,
documents, road networks. . . They basically correspond to binary relations
(called edges) defined over a given set of objects (the vertices, or nodes).

Definition 1.1. An undirected graph G = (V,E) is defined by a finite set of
vertices (or nodes) V and a set of edges E. Each edge {x,y} ∈ E is a set of two
vertices of V , which defines an undirected couple of nodes.
In a directed graph, E ⊆V ×V , and each edge (x,y) ∈ E is a directed couple
of nodes.

Figure 1.1 shows examples of graphs.
In the following definitions, we will only be considering undirected graphs.

However, most of these notions may be applied to directed graphs as well.
An edge can theoretically use the same vertex as both of its extremities;

it is then called a loop. However, in this thesis, the graphs we consider do
not have loops. Moreover, we will only use simple graphs, meaning that there
cannot be more than a single edge between two given vertices. Many of the
presented notions, however, can rather easily be adapted to such cases.

18

1.1. BASIC DEFINITIONS 19

a
b c d

ef
a

b c d

ef

Figure 1.1 – On the left, an undirected graph G = (V,E), with V = {a,
b,c,d,e, f} and E =

{
{a,b},{b,c},{c,d},{d,e},{c,e},{e, f},{ f ,b}

}
. On the

right, a directed graph G′ = (V ′,E ′), with V ′ = {a,b,c,d,e, f} and E ′ ={
(a,b),(c,b),(c,d),(d,e),(e,c),(e, f),(f ,b)

}
.

a b

cd e

f

g

Figure 1.2 – A disconnected, simple, undirected graph.

Definition 1.2. The density of a graph is the ratio of the number of edges
it actually contains and the maximal number of edges it could contain
according to its number of vertices. In a simple undirected graph, it is given
by the following formula:

2 · |E|
|V | · (|V |−1)

Definition 1.3. A path is a sequence of edges connecting a sequence of
vertices. The length of a path is the number of edges it contains.

In the left graph from Figure 1.1, (a,b,c,e) is a path. Its length amounts
to 3. In the directed graph on the right of this same figure, (d,e, f ,b) is a
directed path.

Definition 1.4. A graph G = (V,E) is connected if and only if for every
pair {x,y} of vertices of V , there is a path in G linking x to y.

For example, the graph on the left of Figure 1.1 is connected while the one
in Figure 1.2 is not.

Definition 1.5. G′ = (V ′,E ′) is an induced subgraph of G = (V,E) if V ′ ⊆ V
and E ′ = E ∩

{
{x,y}

∣∣ x,y ∈V ′
}

. G′ is called the subgraph of G induced by V ′,
and will be denoted by G↓V ′.

In other words, the induced subgraph G′ = G↓V ′ is obtained from G by
removing all nodes of G which are not in V ′ and keeping only edges whose
extremities are both in V ′.

On the other hand, a partial subgraph is obtained by considering a subset V ′

of V and a subset of edges in G whose extremities are both in V ′.

20 CHAPTER 1. GRAPHS

a
b c d

ef

b c d

e

b c d

e

Figure 1.3 – A graph (on top), the subgraph induced by the set of ver-
tices {b,c,d,e} (bottom left graph), and a partial subgraph containing
edges

{
{b,c},{c,d},{c,e}

}
(bottom right graph).

Definition 1.6. G′ = (V ′,E ′) is a partial subgraph of G = (V,E) if V ′ ⊆ V
and E ′ ⊆ E ∩ (V ′×V ′). A partial subgraph G′ of G can be derived from any
subset E ′ of E by defining G′ as (V ′,E ′), where V ′ =

⋃
{x,y}∈E ′{x,y}.

Figure 1.3 shows examples of induced and partial subgraphs.

Definition 1.7. A connected component G′ of G is an induced subgraph
of G that is connected and maximal (G′ is a subgraph of no other connected
induced subgraph of G).

The example graph from Figure 1.2 is composed of two connected compon-
ents: one containing a, b, c and d, the other containing e, f and g.

Definition 1.8. A cycle is a path in which the first and last vertices are the
same.

In the graph seen in Figure 1.2, (a,b,c,d,a) is a cycle.

Definition 1.9. A chord of a cycle C is an edge linking two non-consecutive
vertices of C.

For example, in the graph from Figure 1.2, {a,c} is a chord of the cycle (a,b,
c,d,a).

Definition 1.10. A tree is a connected graph in which there is no cycle.
Any vertex with a degree of 1 in a tree is called a leaf.

Alternative definitions exist. Saying that a graph G = (V,E) is a tree is
equivalent to stating that:

• it has no cycle and has exactly |V |−1 edges;
• it is connected and has exactly |V |−1 edges;
• it has no cycle and adding one edge would create exactly one;

1.2. HYPERGRAPHS 21

• it is connected but would get disconnected if any edge were to be removed;
• for every pair {x,y} of vertices of G, there is only one path linking x to y.

Also, note that a forest is a graph in which every connected component is a
tree.

Definition 1.11. The neighbourhood N(v) of a vertex v is the set of vertices
that are linked to v by edges:

N(v) = {x ∈V | {x,v} ∈ E}

The degree of a vertex v is its number of neighbours, |N(v)|.

For example, in Figure 1.2, a has a degree of 3, while e only has a degree
of 1.

Definition 1.12. A clique in a graph G = (V,E) is a subset of V in which
nodes are all linked pairwise (i.e., it induces a complete subgraph).
A clique is maximal if it is not strictly included in any other clique, and it
is maximum if it is the biggest clique of a given graph, with respect to the
number of vertices.

For example, in the undirected graph on the left of Figure 1.1, the ver-
tices {c,d,e} induce a maximal and maximum clique, while {b, f} induces a
maximal clique that is not maximum due to its smaller number of vertices.

Computing a maximal clique is an easy problem that can be solved in
polynomial time by a simple greedy algorithm. Computing a maximum clique,
however, is NP-hard [GJ02].

Definition 1.13. A stable set of vertices S within a graph (V,E) is a subset
of V such that there does not exist an edge {x,y} in E such that x and y are
both in V .

In other words, it is a set of vertices within which no pair is linked by an
edge.

The concept of stable sets is closely related to cliques, since a clique in a
graph G corresponds to a stable set in the corresponding complementary graph,
where two vertices are connected by an edge if and only if it is not the case
in G.

1.2 Hypergraphs
Graphs have been generalized into the concept of hypergraphs, which are used
to model relations of arbitrary arities.

Definition 1.14. A hypergraph H = (V,C) is a couple holding a set V of
vertices and a set C of hyperedges. Each hyperedge is a subset of V .

22 CHAPTER 1. GRAPHS

a b

c

d e

f g

a b

c

d e

f g

Figure 1.4 – A hypergraph and its 2-section. This hypergraph is defined
by H =

(
{a,b,c,d,e, f ,g},

{
{a,b,c},{b,d},{d,e, f ,g}

})
.

In other words, what makes a hyperedge different from an edge is its arity:
it can link more than two vertices. Edges can be seen as a particular case of
hyperedges.

In some cases, it is more convenient to represent a hypergraph as a graph,
by replacing each hyperedge by a clique made of binary edges. This is called
the 2-section of the hypergraph.

Definition 1.15. [BER73] The 2-section of a hypergraph H = (V,C) is a
graph G = (V,E) such that E is the set of all edges {x,y} such that at least
one hyperedge in C contains both x and y:

E =
{
{x,y}

∣∣ ∃c ∈C
∣∣ {x,y} ⊆ c

}
Figure 1.4 shows a hypergraph example, along with its 2-section.

1.3 Triangulated graphs
Definition 1.16. A graph is triangulated (or chordal) if and only if every
cycle of length 4 or more that can be found in it has a chord.

Triangulated graphs have several remarkable properties (see [GOL80] for
a more complete overview) and were extensively studied. Several NP-com-
plete and NP-hard problems can be solved with polynomial algorithms for
triangulated graphs.

Definition 1.17. A vertex v of G is simplicial if the subgraph induced by its
neighbourhood is complete, i.e., if N(v) is a clique of G.

Theorem 1.1. [DIR61; LB62] A triangulated graph always has at least one
simplicial vertex.

Theorem 1.2. Removing a simplicial vertex from a triangulated graph yields
another triangulated graph. [GOL80]

FULKERSON and GROSS used Theorems 1.1 and 1.2 to design an efficient
recognition method for triangulated graphs [F+65]. It simply consists in recurs-
ively looking for a simplicial vertex in the considered graph and to remove it. If

1.3. TRIANGULATED GRAPHS 23

1 5 6

9 10 11 12

7 8 13 14

2 4 3

Figure 1.5 – A simplicial order (corresponding to the numeric order
among the integer values associated with vertices) for the triangulated
graph from Figure 1.6. The 8th vertex, for example, has vertices {2,4,7,
9,10} as its neighbourhood. This set does not induce a clique. But the
ulterior neighbourhood provided by the chosen order to this vertex is only
comprised of the 9th and 10th vertices. These two vertices are linked by
an edge and therefore constitute a clique.

the graph can be reduced to zero vertices by this procedure, it was triangulated;
if at some point no simplicial vertex can be found, it was not. The order used to
eliminate every vertex in such a way was named “perfect elimination scheme”.

Definition 1.18. Let < be a total order defined over the set of vertices of
a graph. The ulterior neighbourhood N+

<(vi) of a vertex vi according to < is
defined as follows:

N+
<(vi) = {v j ∈ N(vi) | vi < v j}

Definition 1.19. An order < on the vertices of G is a simplicial order (or
perfect elimination scheme) if, for each vertex v of G, the graph induced by
N+
<(v) is complete, i.e., if N+

<(v) is a clique of G. It is also equivalent to stating
that v is simplicial in the graph induced by {v}∪N+

<(v).

Figure 1.5 shows an example of a simplicial order.
Simplicial orders were used to give an alternate definition for triangulated

graphs.

Theorem 1.3. [F+65] A graph is triangulated if and only if a simplicial order
can be found on its vertices.

Using these properties, along with others not mentioned here, triangulated
graphs can be recognized in linear time [LUE74; RTL76], using for example the
maximum cardinality search (MCS) algorithm.

In most domains, for a given graph, the probability that it is naturally
triangulated is fairly low, since the conditions to belong to this class are strong.
Most of the time, when an algorithm – no matter its goal – makes use of

24 CHAPTER 1. GRAPHS

Figure 1.6 – A graph on the left, and a way to make it triangulated
by adding three edges. The cycles of length 4 or more that prevent
the original graph from being triangulated are highlighted in red. The
suggestions of edge additions are shown in dashed lines.

triangulated graph properties, a given graph is actually forcefully turned into
a triangulated graph in order to be able to derive profit from said properties.

The operation consisting in adding edges to a non-triangulated graph in
order to turn it into a triangulated one will be referred to as triangulation from
here onwards.

Definition 1.20. The term triangulation is used to refer to the process of
adding a set of edges to a given graph in order to turn it into a triangulated
graph. It also sometimes describe in the literature the set of these additional
edges.
The additional edges themselves are called fill edges.

Figure 1.6 shows a graph along with a way to triangulate it.
Many approaches can be adopted to find an appropriate set of fill edges

to perform a triangulation. In most cases, it is preferable to have as few
fill edges as possible. However, finding the minimal set is NP-hard. A good
approximation can generally be found with the simple – and yet efficient and
widely used – MinFill algorithm [KJA90].

MinFill is a greedy algorithm that consists in building a simplicial order <
by adding fill edges. This order is built incrementally from its first vertex to
the last, adding one vertex at a time.

Each time a vertex v is selected to be the next one in the order <, its ulterior
neighbourhood N+

<(v) is turned into a clique by adding all the necessary edges.
Note that N+

<(v) is comprised of the neighbours of v that have yet to be placed in
the order, since they will necessarily be placed after v (i.e., unordered vertices
are seen as ulterior to ordered ones). The vertices are selected in a greedy way,
according to the number of fill edge additions that their selection would cause:
priority is given to vertices that need the fewest fill edges to become simplicial.
Once every vertex has been placed in the order <, the graph has become

1.4. TREE DECOMPOSITIONS 25

triangulated, according to Theorem 1.3, and < is ensured to be a simplicial
order in the new graph.

1.4 Tree decompositions
1.4.1 Definitions
A tree decomposition is a hierarchical set of clusters of vertices. It has many
uses, and can make the inner structure of a graph easier to grasp and to
exploit.

Definition 1.21. [RS86] For a graph G = (V,E), a tree decomposition of G is
a couple (C,T), where:

• T = (VT ,ET) is a tree;
• C is a set holding one element Cv for each node v of VT ;
• Each element of C is a subset of V ; these subsets are called clusters;
• The union of the clusters of C equals V ;
• For each edge {x,y} of G, there exists a cluster Cv of C such that both x

and y are in Cv;
• For each x,y,z ∈VT , if y is on a path linking x to z in T , then Cx∩Cz ⊆ Cy.

Definition 1.22. The width of a tree decomposition (C,T) of a graph G is
the value given by max

Cv∈C
{|Cv|}−1.

Intuitively, it corresponds to a length that no path would be able to exceed
in G by remaining in a single cluster of the decomposition and using vertices
only once, even if the clusters were cliques.

Definition 1.23. The treewidth w of a graph is the minimal width among
its possible tree decompositions.

Definition 1.24. A separator between two adjacent clusters of a tree de-
composition is the intersection of these clusters.

Figure 1.7 shows an example of tree decomposition.

1.4.2 Construction
For a given graph, many different tree decompositions may be computed, and
some of them might be more helpful than others. The main goal is generally to
allow a faster resolution by providing high quality decompositions to solvers
that are able to use such decompositions. This quality is generally estimated

26 CHAPTER 1. GRAPHS

1 2 3

4 5 6 7

8 9 10 11

12 13 14

2,3,5

4,5,9 1,2,5 3,5,6

4,8,9 6,7,10,11

8,9,13 10,11,14

9,12,13

Figure 1.7 – A tree decomposition of width 3 for the initial graph from
Figure 1.6. The separator between {2,3,5} and {3,5,6} is {3,5}.

beforehand using the width w of the decomposition, which has a significant
impact on the theoretical complexity of numerous problems.

Computing a tree decomposition of minimal width, however, is an NP-hard
problem in itself. For this particular reason, the optimal width is very seldom
sought in practice, and approximate solutions are heuristically computed
instead [BOD96; HHR03].

Computing a tree decomposition commonly involves a triangulation step.
Indeed, every triangulated graph can be used to obtain a tree decomposition by
using the set of its maximal cliques as clusters. More precisely, one can follow
a simplicial order < of the triangulated graph and, for each vertex v in this
order, use N+

<(v)∪{v} – which is a clique by definition – as one of the clusters
of the tree decomposition.

In the context of tree decompositions, the main quality criterion for the tri-
angulation is generally not be the number of fill edges but rather the maximal
size of the cliques that it yields, since it is directly linked to the size of the
generated clusters and thus to the theoretical complexity bound. Still, MinFill
is widely used even in this context, due to its good performances and relatively
short execution time.

The next step consists in checking intersections to find out which clusters
can be made adjacent in the future tree decomposition. This is done by building
the clique graph of the triangulated graph. In the clique graph, each vertex
corresponds to one of the computed cliques. These vertices are linked by an
edge if and only if the corresponding cliques intersect (i.e., if they have at least
one vertex in common). Moreover, these edges are weighted according to the
size of these intersections.

The shape of the tree decomposition is eventually determined by Prim’s
algorithm ([PRI57]; originally developed by Vojtěch JARNÍK in 1930). Using
as its input an undirected graph with weights associated to its edges, this
algorithm builds a tree spanning each of these vertices, with a maximal sum
of edge weights. It starts with a tree comprising a single, arbitrarily chosen

1.4. TREE DECOMPOSITIONS 27

2

1

1

1

2
1

1

2

1

1

2

1

2

2

4,5,9

2,3,5

1,2,5

3,5,6
6,7,10,11

10,11,14

4,8,99,12,13

8,9,13
6

4

5

3
2

1

79

8

1
2

3

4

5
678

Figure 1.8 – On the left, the clique graph that can be computed from
the triangulated graph of Figure 1.5. The numbers displayed on each
edge correspond to the number of vertices comprised in each non-empty
clique intersection. On the right, a tree spanning every vertex of this
clique graph, built using Prim’s algorithm by prioritizing edges with great
weights. The numbers on vertices correspond to the order in which they
were integrated to the tree; the same goes for the edges. Note that the
arrows simply show which vertex was already in the tree and which was
not when each edge was added to the current tree – the resulting tree is
not a directed graph. Using this tree to build a tree decomposition would
yield precisely the one shown in Figure 1.7.

vertex, and greedily adds edges, one at a time, choosing at each step an edge
having the highest possible weight among edges that connect the current tree
to vertices that are not yet in the tree.

Note that Prim’s algorithm is usually used to produce trees with low
weights, but in this context, choosing great weights (i.e., large intersections
between cliques) ensures that a defining trait of tree decompositions is re-
spected: the intersection between two clusters must be included in every path
existing between these clusters (as stated in Definition 1.21).

Figure 1.8 shows how this algorithm would proceed when confronted with
the clusters suggested on the left-hand side of Figure 1.7.

Additionally, a noteworthy property of triangulated graphs makes them
particularly interesting for the construction of tree decompositions, as stated
by the next theorem.

Theorem 1.4. A triangulated graph (V,E) cannot contain more than |V | max-
imal cliques.

In a triangulated graph, the number of maximal cliques is thus linear,
whereas it can be exponential in other graphs. This makes it possible to build

28 CHAPTER 1. GRAPHS

tree decompositions with a reasonable number of clusters, in addition to the
aforementioned fact that these maximal cliques are easy to find (by following
a simplicial order) once the graph is triangulated.

Triangulation is often the most costly step in a tree decomposition al-
gorithm. MinFill’s time complexity bound is O

(
|V | · (|V |+ |E|)

)
, while imple-

mentations of Prim’s algorithm in O
(
|E| · log(|V |)

)
and O

(
|E|+ |V | · log(|V |)

)
are

possible.
Note that the fill edges added during the triangulation step are merely

temporary tools to build the tree decomposition more easily. As such, they
get removed once the decomposition phase is over. What matters is that the
decomposition should reflect the strong connections between some sets of
variables and the independence of some other sets, and fill edges generally do
not add too much noise in these aspects.

Constraint
programming

Constraint
programming

Chapter 2
Chapter 2

Contents
2.1 Constraint satisfaction problems 30

2.1.1 Formalism . 30
2.1.2 Global constraints . 33
2.1.3 Optimisation problems 34

2.2 Generic algorithms . 34
2.2.1 Chronological backtracking 35
2.2.2 Local consistency . 35
2.2.3 Variable-ordering heuristics 38
2.2.4 Nogoods . 39
2.2.5 Solving constrained optimisation problems 40
2.2.6 Restarts . 40

2.3 Structural decomposition 42
2.3.1 Structure . 42
2.3.2 Using a tree decomposition 44
2.3.3 BTD and optimisation problems 45
2.3.4 The hierarchy of structural decomposition methods . . 48
2.3.5 Decomposing the microstructure 49

2.4 Parallelisation . 50

Creating an ad hoc solver for each new problem that surfaces is not always
a viable solution, especially when time is of the essence or when numerous
different experiments must be carried out for the purpose of testing. Therefore,
various frameworks and formalisms have been proposed in the literature in
order to easily define and solve instances of many problems.

This chapter begins by presenting the constraint programming framework
in Section 2.1. Both satisfaction and optimisation problems will be addressed
in this context. Tools and notions necessary to solve such problems will be
listed through Section 2.2. The important topic of decomposition applied to
such problems will then be discussed in Section 2.3. Finally, parallelisation
methods will be described in Section 2.4.

29

30 CHAPTER 2. CONSTRAINT PROGRAMMING

2.1 Constraint satisfaction problems
2.1.1 Formalism
Constraint programming (CP) is a generic framework used to model and solve
constraint satisfaction problems (CSPs). CSPs allow to easily express numerous
problems, simply by stating variables (the unknowns of the problem) and
constraints that link some of those variables together or prevent them from
taking certain values.

Unknowns, which are concerned with choices that must be made to solve
the problem, are represented by variables. A constraint is a relation defined
over one or several variables that forbid the conjoint use of certain values for
these variables.

Several CP modelling languages were developed during the past decades,
and large numbers of constraints exist. When using CP, the user can focus
on modelling the problem, leaving the solution process entirely to the solver,
which remains amply generic. There is no necessity to tell the solver how to
find solutions to the problem; one must simply describe the problem by stating
as explicitly as possible what the variables and constraints are.

These fairly simple concepts appear to be sufficient to model a large array
of real-life and academic problems, either for optimization or to determine the
existence of a solution.

CSPs may be discrete or continuous, depending on whether variables may
draw their values from discrete or continuous sets of possibilities. This thesis
only addresses the case of discrete CSPs.

Definition 2.1. [MON74] A CSP P = (X ,D,C) is defined by:

• A set of variables X = {x1, . . . ,xn};
• A set of finite, discrete domains D = {Dx1, . . . ,Dxn};
• A set of constraints C = {C1, . . . ,Cm}, each constraint Ci being defined

over a subset of X (the scope of the constraint); the size of the scope is
the arity of the constraint.

A CSP is binary if none of its constraints have an arity greater than 2. It is
n-ary otherwise.

Each constraint defines restrictions on the combinations of values for the
variables of its scope. These restrictions can be expressed by a set of rela-
tions R = {R1, . . . ,Rm}, where Ri is the set of combinations of values satisfying
the constraint Ci. Thus, if Ci is defined over variables {y1, . . . ,yk}, Ri will be a
subset of Dy1× . . .×Dyk .

Constraints can be stated either in intention (by expressing the constraint
with a formula) or in extension (by explicitly enumerating every allowed com-
bination of values). Stating relations in extension usually uses up a consequent
amount of memory, depending on the number of necessary tuples. Further-
more, checking whether an assignment is consistent with the constraints of

2.1. CONSTRAINT SATISFACTION PROBLEMS 31

Table 2.1 – An example of a constraint given in extension. The considered
constraint is x1 6= x2. This relation states every acceptable combination of
values for the variables in the constraint’s scope.

x1 1 1 1 2 2 2 3 3 3 4 4 4

x2 2 3 4 1 3 4 1 2 4 1 2 3

the problem is often significantly faster when using formulas rather than lists
of tuples.

A commonly given example of CSP is the n-queens problem, which consists
in placing chess queens on a chess board of a given size (generally n× n) in
such a way that none threatens another. More formally, there should not be
any pair of queens a and b such that a and b share a same diagonal, line or row.

The following example shows how to model the 4-queens problem on a board
of size 4×4 as a simple CSP.

Example 2.1. Basic CSP for the 4-queens problem:

X = {x1,x2,x3,x4}
∀x ∈ X , Dx = {1,2,3,4}

C =
{

“xi 6= x j”
∣∣ i, j ∈ {1,2,3,4}∧ i < j

}
(Columns)

∪
{

“|i− j| 6= |xi− x j|”
∣∣ i, j ∈ {1,2,3,4}∧ i < j

}
(Diagonals)

Giving the “x1 6= x2” constraint in extension would mean building the rela-
tion given in Table 2.1.

Definition 2.2. Given a CSP (X ,D,C), an assignment A of a set X ′ ⊆ X of
variables is a function defined on X ′ such that, for each x ∈ X ′, A(x) ∈ Dx. It
is complete for a given CSP if X ′ = X (X ′ is then the full set of the variables
of this CSP); otherwise, it is partial.

For convenience, we also use the notation x← v to state that x is assigned
the value v.

Less formally, building an assignment consists in associating to variables
values from their respective domains. In our 4-queens example, {x1 ← 3,
x3← 2} would be a partial assignment, while {x1← 3, x2← 1, x3← 2, x4← 1}
would be a complete one.

Definition 2.3. The projection on X ′ of an assignment of a set X ⊃ X ′ of
variables is a smaller assignment defined only on X ′ and using the same
values.

32 CHAPTER 2. CONSTRAINT PROGRAMMING

q ← x1 = 3

q ← x2 = 1

q ← x3 = 4

q ← x4 = 2

Figure 2.1 – A solution to the 4-queens problem.

Definition 2.4. Given a constraint c and an assignment A defined at least
on all the variables of c’s scope, c is:

• satisfied by A if the projection of A on c’s scope belongs to the relation
corresponding to c (i.e., the combination of values imposed by A is
allowed by c);
• violated otherwise.

An assignment that does not violate any constraint is said to be consistent.
A solution to a CSP is a consistent complete assignment of its variables.

Depending on the context, the CSP may be solved in different ways. Among
the most common tasks, we find:

• Checking for the existence of at least one solution;
• Counting existing solutions;
• Finding every solution;
• Finding the best solution with regards to a particular objective function

defined over the variables.

These tasks are generally NP-complete or NP-hard [GJ02].
A solution to the 4-queens example could be x1 = 3, x2 = 1, x3 = 4 and x4 = 2.

It corresponds to the layout described in Figure 2.1.
The 4-queens problem model proposed earlier uses the fact that there will

necessarily be exactly one queen on each row to reduce the complexity of
the model. Indeed, it makes the problem simpler to solve: only the columns
on which queens are placed must be chosen, instead of two coordinates for
each of them. As a matter of fact, most problems can be modelled with many
different CSPs, leading to varying resolution speeds. Regarding the n-queens
problem, one could even pre-compute permutations of {1, . . . ,n} to make sure
the queens do not share a column, and then use explicit constraints only for
the diagonals. However, such an approach would not be scalable, since the
number of permutations grows exponentially with the dimensions of the board.

Yet another way to model this problem is to rely on a set of binary variables
associated with each square of the board. These variables are assigned a value
of 1 if any queen sits on the corresponding square, and 0 if the square is vacant.

2.1. CONSTRAINT SATISFACTION PROBLEMS 33

Constraints based on sums then allow to easily check whether multiple queens
lie in a same row, column or diagonal.

Basic structure

The structure of a CSP can be roughly represented by using a constraint
hypergraph.

Definition 2.5. The constraint hypergraph of a CSP P is a hypergraph G =
(V,C) where V is comprised of one vertex vxi per variable xi of P, and C is a
set of hyperedges holding one hyperedge for each constraint of the CSP. Each
hyperedge links the variables that are in the scope of the corresponding
constraint.

In a binary CSP, this constraint network can be represented by simply using
a graph, each edge corresponding to a constraint.

This definition of constraint graphs was primarily designed for binary CSPs.
When the CSP contains constraints that have an arity greater than 2, the
2-section of the constraint hypergraph might be useful. This 2-section is by
definition a normal graph, in which there is an edge linking vxa and vxb if and
only if there is a constraint in the CSP that is defined over both xa and xb.

2.1.2 Global constraints
Some possible alternative 4-queens problem models involve global constraints.
Global constraints are an extension to constraint programming, consisting
of new primitive constraints with heavier semantics and sometimes specific
consistency algorithms which help speed up the solution process.

A common example of global constraint is the allDifferent constraint [RÉG94].
It arises naturally in many academic and real life problems, and will be
extensively used in this thesis. It states that each variable in its scope must use
a distinct value. Enforcing the constraint allDifferent(a,b,c) is thus equivalent
to the conjunction of the three constraints a 6= b, b 6= c and a 6= c.

Several consistency algorithms were designed for this constraint, each
with its own level of consistency and complexity [RÉG94]. These algorithms
commonly use concepts such as Hall intervals and establish a connection with
the maximum matching problem, using bipartite graphs in which variables
must be associated with values [COS94].

Using the allDifferent constraint to model the 4-queens problem, one could
replace the constraints pertaining to the columns in the previously described
model with the constraint allDifferent(x1,x2,x3,x4).

34 CHAPTER 2. CONSTRAINT PROGRAMMING

2.1.3 Optimisation problems
Constraint satisfaction problems, as defined previously, basically involve find-
ing a solution that satisfies, by definition, all the constraints, or proving that
none exists. However, in some contexts, given parameters have to be optimized,
thus inducing preferences between existing solutions. This can be done for
example by introducing an objective function into the model.

Definition 2.6. A constrained optimization problem (COP) is a CSP that
includes, as an additional element, an objective function, which is defined
over some of the variables of the problem. The goal of a COP might be either
to find the solution that maximizes the objective function or the one that
minimizes it.

On the other hand, some problems do not have any solution that can satisfy
every single constraint. Such problems can be turned into maximization prob-
lems, where the goal is to maximize constraint satisfaction. These techniques
led to weighted CSPs.

A weighted constraint satisfaction problem (WCSP), also referred to as cost
function network, is a generalisation of CSPs in which some constraints may
be violated, given a certain cost. This allows to express preferences among
solutions.

Definition 2.7. A WCSP is defined like a COP in every respect, except for
two aspects:

• Each constraint is defined as a cost function associating a numeric
cost with each possible assignment of the variables in the constraint’s
scope. Costs can be infinite.
• The objective function is implicit and corresponds to the sum of the

effective costs of every constraint. It must always be minimized.

Definition 2.8. Constraints associating only infinite or null costs to assign-
ments are described as hard, as opposed to soft constraints.

An assignment with an infinite cost cannot be part of a valid solution. Also,
note that a CSP can be modelled using the WCSP formalism, simply by using
only hard constraints.

2.2 Generic algorithms
Solving a CSP involves finding a complete consistent assignment. Since this
problem is NP-complete, a multitude of techniques have been developed over
the years to widen the scope of instances that can be solved with reasonable
material and temporal resources.

2.2. GENERIC ALGORITHMS 35

2.2.1 Chronological backtracking
A trivial way to solve a CSP is to enumerate every assignment. This is called the
chronological backtracking method, since it goes back on its choices whenever
it runs out of possibilities. This enumeration is achieved by exploring the
search space in a depth-first search (DFS) fashion: starting from an empty
assignment, we recursively extend it by choosing a non-assigned variable x
and a value v ∈ Dx and adding x← v to the current assignment. Whenever
the resulting assignment becomes inconsistent, a backtrack is performed: the
search goes back to the last choice point and an alternative value is used
to extend the assignment. If every value for this choice point has already
been tested, we backtrack a step further. On the other hand, if the current
assignment happens to be a solution, the search may stop.

The worst case complexity of the backtracking algorithm is exponential with
respect to the number of variables. A major drawback of this method is the om-
nipresence of redundancies encountered during the search. It can be improved
in several ways, for example by using variable- and value-ordering heurist-
ics [PUR83; DM94; MOS+01; BOU+04], or by backtracking in a non-chronological
way [SS77; GAS79]. Such backtracking techniques can rely on a variety of things,
such as conflicts [PRO93; BAK94] or the constraint graph [DEC90].

The enumeration process implied by a backtracking approach can be visu-
alized as a tree, commonly referred to as the search tree, in which:

• The root node corresponds to an empty assignment, where no variable
has a value yet. This is generally where the search starts from;
• Leaves are either consistent complete assignments (solutions) or incon-

sistent assignments that are not necessarily complete (failures);
• Internal nodes are consistent partial assignments.

Thus, the edges that link these nodes corresponds to the assignment of a
value to a variable. A variant involves edges which semantically mean either
x = value or x 6= value, each non-leaf node thus having two children.

Figure 2.2 shows a simple example of a search tree.
Several different search trees can be produced for a same CSP model. The

shape of the tree depends for example on the heuristics used to choose the next
variable that will be assigned, and on the use of many other strategies, some
of which will be detailed further in this section.

2.2.2 Local consistency
Constraint propagation

Local consistencies are properties that can be applied to a CSP or to some of
its constraints in order to remove inconsistent values. This process, which
can be seen as a kind of filtering method, reduces the size of the search tree,

36 CHAPTER 2. CONSTRAINT PROGRAMMING

∅

{x = 1}

{
x = 1
y = 6

{
x = 1
y = 8

{x = 2}

{
x = 2
y = 6

{
x = 2
y = 8

{x = 3}

{
x = 3
y = 6

{
x = 3
y = 8

Dx = {1, 2, 3}
Dy = {6, 8}
C = {“x+ y≤ 8”}

Figure 2.2 – The concept of a search tree, graphically explained for a
simple problem with two variables and one constraint. Leaves are marked
either as solutions or failures.

thus making the problem easier to solve. Removing a value from a domain
generally involves proving that the current assignment cannot be extended to
a solution when this value is used. This ultimately eliminates branches that
would otherwise have been explored.

Different degrees of filtering have been proposed, each with its own cost
and aggression level with regards to the number of values it is likely to be able
to remove. When the filtering is only made with regards to a subset of the
variables of the problem, it is referred to as a local consistency method.

Constraint propagation consists in repeatedly removing every value that
are proved to violate constraints. Since a removal can sometimes allow for
further deductions, the process starts again with each value deletion, until a
fixed point is reached (i.e., until no more suppressions can be performed).

Most global constraints have their own consistency algorithms. This is
one of the major appeals of these constraints, as these ad-hoc algorithms are
generally more efficient than the general ones.

The act of exploring the search space by repeatedly assigning values to
variables and propagating constraints by means of filtering is a method called
branch and propagate.

Forward checking
The first and most straightforward filtering algorithm was forward checking
(FC), which was defined for binary CSPs. It has a low computational cost due
to the fact that it avoids performing several passes over the variables.

2.2. GENERIC ALGORITHMS 37

When a variable gets assigned, FC checks whether variables linked to it by
constraints still have compatible values in their domains. In the meantime, it
removes incompatible values from those domains.

FC can be used as a look ahead technique: when trying to evaluate an
assignment A : x← v, it starts by extending the current partial assignment
with A; it then considers every variable x′ such that x′ is still unassigned and is a
neighbour of x in the constraint graph, and checks whether its domain contains
at least one value that is consistent with the extended partial assignment.

Though FC was primarily designed for binary CSPs, n-ary variants (nFC1,
nFC2. . .) were eventually defined [LM98; BES+99].

Arc consistency
Arc consistency is the most commonly used type of local consistency, due to a
good balance between its computational cost and filtering abilities.

Definition 2.9. Given a variable x, a value v ∈ Dx and a constraint c in-
volving x, an assignment A of the variables in c’s scope is a support of v with
regards to c if A does not violate c and if A assigns v to x.

Definition 2.10. A constraint c is arc consistent if and only if, for every
variable x in its scope, for every value v ∈ Dx, v has a support with regards
to c. [WAL75]

Definition 2.11. A CSP is said to be arc consistent when all its constraints
are arc consistent. [WAL75]

Figure 2.3 shows the successive steps of an arc consistency enforcement.
Arc consistency was designed for binary constraints but can be generalized

to n-ary cases. It is then called generalized arc consistency (GAC), or hyper-arc
consistency.

Arc consistency can be used both as a preprocessing technique and during
the search. Numerous arc consistency algorithms were proposed [MAC77; MH86;
BES94; BR01; ZY01]. One of the most used ones, AC-3 [MAC77], has a worst-case
time complexity of O

(
m ·d3) and a space complexity of O

(
m
)
, m being the num-

ber of edges in the constraint graph and d the maximal size among domains.
It maintains a list of constraints that need to be checked again for consistency,
thus reducing the computational cost implied by the repeated executions of
the consistency procedure. Its main appeal, though, is its simplicity. Slightly
more elaborate algorithms, such as AC-3.1 (also known as AC-2001) are even
more widely used [BES+05].

To make the filtering step shorter, one can use bound consistency instead
of the default domain consistency. Bound consistency consists in only scan-
ning the bounds of domains (i.e., the minimal and maximal values currently
available) when checking whether every value has a support [PUG98].

38 CHAPTER 2. CONSTRAINT PROGRAMMING

Removal of x2← 1 because this
value has no support in Dx1 for c1:

x1 x2 x3
1

2

3
c1 c2

Removal of x3← 2 because this
value has no support anymore
in Dx2 for c2:

x1 x2
x3

1

2

3
c1 c2

Figure 2.3 – The enforcement of arc consistency on a problem with three
variables and two constraints. Edges represent supports (compatible
values with regards to a constraint). The first removal makes c2 non-arc
consistent and occasions another removal.

The strategy consisting in making sure a CSP is arc consistent at all times
is called maintaining arc consistency (MAC).

All these algorithms are widely used in practice [SF94; FRE95], but do
not completely suppress the problems posed by the theoretically prohibitive
complexity of backtracking algorithms.

2.2.3 Variable-ordering heuristics
Numerous heuristics can be employed in order to decide which variable should
be assigned next at each step of the search. Here is a short presentation of
some heuristics that had a significant impact on research.

Deg and Ddeg The Deg heuristic selects the variable that has the highest
degree in the constraint graph [DM94]. Its dynamic version, Ddeg, only con-
siders constraints that have unassigned variables in their scopes.

Dom The Dom heuristic selects the variable that has the fewest values in
its current domain, thus creating less branching perspectives [HE80]. This
heuristic has been extensively used since it was proposed in 1980.

Dom / Ddeg Dom and Ddeg can be combined by computing the ratio between
the size of the current domain and the dynamic degree of a variable. Lowest

2.2. GENERIC ALGORITHMS 39

ratios are generally preferred over large ones. This heuristic is simply called
Dom/Ddeg [BR96; SG97].

Wdeg Some heuristics are based on conflicts: each constraint is attributed
a weight which is increased every time this constraint causes a domain to
be completely emptied during propagation. Each variable x also has weights,
called weighted degrees, that correspond to the sum of the weights of the
constraints whose scopes contain x. Variables with highest weighted degrees
are selected first by the Wdeg heuristic [BOU+04].

Dom / Wdeg The heuristic Dom/Wdeg is implemented in the same way as
Dom/Ddeg: ratios are computed using both the Dom and Wdeg heuristics, and
lowest ratios are favoured [BOU+04].

Activity Activity-based heuristics attach an activity value to each variable.
This value is increased every time the variable is involved in a backtrack-
inducing conflict. After such conflicts, the activity of every variable is decayed
by means of a multiplication by a constant lower than 1. Generally, variables
with a higher level of activity are favoured by the variable-ordering heuristics
of this type. These approaches stem from SAT solvers development [MOS+01].

2.2.4 Nogoods
Definition 2.12. A nogood g is a partial assignment that cannot possibly
be extended to obtain a solution: there exists no consistent complete assign-
ment that includes all assignments from g.

In the 4-queens problem shown in Figure 2.1, placing the first queen in
the upper left corner of the board (i.e., assigning 1 to x1) is a nogood, since no
solution can be found using this placement.

In a decision problem, when a branch of the search tree is found to contain
no solution, it can be interesting to record the conflicting set of assignments
that caused this absence of solutions [DEC90]. This set is by definition a nogood.
A trivial one is made of the whole set of assignments that were performed up to
the beginning of the fruitless branch. However, since the main goal of nogoods
is to avoid exploring a part of the search space several times, it is generally
better to compute a smaller set of assignments to obtain a more useful nogood,
since it will then describe a situation that is more likely to occur again: it is
more general and less restrictive.

For this reason, much effort can be directed at circumscribing the cause
of failures. Each time such a failure occurs, constraints may be analysed in
order to determine which of them is at the source of this failure, and variables
may be removed from the nogood depending on their implication [SV94; PRO93;
BAK94].

40 CHAPTER 2. CONSTRAINT PROGRAMMING

2.2.5 Solving constrained optimisation
problems

Most of the aforementioned techniques can be extended or adapted to an
optimisation context. A few remarks should be made on some techniques,
however.

Branch and bound
When using a backtracking approach, each time a branch is considered for
exploration, one can compute estimates (bounds) of the objective function’s
future values. If it can be proven that a branch does not contain any solution
which is better than the best one found to this point, this branch can be pruned.
This approach is called branch and bound.

Furthermore, lower bounds computed on subproblems can be used in order
to know whether the current branch is worth exploring further. A branch and
bound approach also generally involves adding a constraint to the problem
whenever a new global solution is found. This constraint simply states that
from this point on, only solutions that are of greater quality than the last one
are to be sought.

Branch and bound is usually combined with constraint propagation.

Consistency for WCSPs
Consistency cannot always be enforced in a WCSP exactly as it is in a CSP.
Indeed, in a WCSP, it is allowed to violate some constraints as long as the
associated cost is acceptable, so removing every value that would induce a
non-null cost is not an option. What must be checked instead is whether
these values would prevent the search algorithm from finding a solution whose
quality is higher than that of the current best solution. Therefore, consistency
algorithms had to be adapted, and the concept of local consistency itself has
been redefined [LAR02; LS03; DE +05].

2.2.6 Restarts
Motivation and principle

Researchers observed extremely high variability in the runtime needed to solve
some problems [S+93; GW94]. This uncertainty can be exploited as a positive
trait by starting the search anew after some time. More precisely, if the search
does not end after a given number of backtracks (the cutoff), it is restarted
with a new random seed, leading to different choices if the ordering heuristics
in use comprise stochastic elements [G+98].

2.2. GENERIC ALGORITHMS 41

This technique bears the straightforward name of restart, and has been
heavily studied. For this approach to be even more profitable, a few inform-
ations can be retained: the search generally does not restart exactly from
scratch. These informations, such as upper and lower bounds, may contribute
in pushing the search along more interesting branches than during previous
tries. Nogoods can also be recorded to make the subsequent search sessions
more fruitful [LEC+07A; LEC+07B].

Restart strategies were initially designed for decision problems and in-
complete approaches, but has also been popular for a long time for complete
approaches. One could intuitively think that restarting the search every now
and then would not be a good idea when the search space must be checked in
its entirety. However, experience showed that restarts are, in practice, very
profitable in optimization and decision problems alike [G+98]. The same applies
to proofs of inconsistency (to show that a problem does not have any solution).

When dynamic ordering heuristics such as Wdeg are used, any related
information (weights attributed to variables and so on) may also be kept
during restarts.

Strategies
The restart method can be declined into numerous strategies. These strategies
mainly differ in the way the successive restarts are spaced and how this
spacing evolves. More precisely, a cutoff is set. It can corresponds either to
a number of backtracks or to a number of explored nodes in the search tree.
When the cutoff is reached, a restart is performed, and the cutoff might then
be modified according to the chosen strategy.

A geometric restart strategy, as its name implies, make the cutoff grow
geometrically at each restart. It is thus parametrized by two values: an initial
cutoff and a factor.

The Luby strategy, named after Michael LUBY, was designed to offer good
performances when information on the estimated runtime necessary to solve
a problem is lacking [LSZ93]. Is relies on a somewhat surprising sequence of
cutoffs of the following form:

1,1,2, 1,1,2,4, 1,1,2, 1,1,2,4,8, 1, . . .

The authors describe it more formally by stating that “all run lengths are
powers of two, and that each time a pair of runs of a given length has been
completed, a run of twice that length is immediately executed”. More precisely
still, cutoffs = (t1, t2, . . .), where:

ti =

{
2k−1 if ∃k ∈ N, i = 2k−1
ti−2k−1+1 if ∃k ∈ N, 2k−1 ≤ i < 2k−1

In those definitions, a factor of 2 is used, but the authors explain that any
other value can be used. This is the sole parameter of the Luby restart strategy.

42 CHAPTER 2. CONSTRAINT PROGRAMMING

2.3 Structural decomposition
Let us consider a constraint network with a set C of constraints. The theoretical
time complexity of a simple backtrack approach visiting every possible node of
the search tree is in O

(
a · r · |C| ·dn), where:

• a is the maximal arity found among the constraints of C;
• r is the maximal size (number of tuples) among the relations associated

with the constraints of C;
• d is the maximal domain size among the variables;
• n is the number of variables.

The necessity to improve these theoretical bounds to solve real-life CSPs
quickly arose, and persisted even after filtering algorithms were introduced.
Indeed, CP approaches sometimes lack scalability.

The basic idea of decomposition is to split the problem into several subprob-
lems, that may even be independent depending on the applied decomposition
method.

Many problems have an inherent structure, and being aware of it generally
helps solving them. To this avail, structural decomposition methods were
proposed to derive profit from the structural information contained in the
constraint network. The main approaches use either a tree decomposition or a
hypertree decomposition in order to divide the variables of the problem among
several clusters, which can be defined as sets of variables.

2.3.1 Structure
Once a problem has been modelled as a CSP, its structure can be extracting
rather easily using a few formalisms. As explained in Section 2.1.1, one way to
represent the structure of a CSP is to compute its constraint graph. Depending
on the situation, though, this might not be sufficient. Another method to
capture this overall structure is offered by the notion of microstructure.

Definition 2.13. [JÉG93] The microstructure of a binary CSP P = (X ,D,C,R)
is a graph µ(P) = (V,E) such that:

• V =
{
(x,a) | x ∈ X and a ∈ Dx

}
;

• E =
{
{(xi,a), (x j,b)}

∣∣ (a,b) ∈ Ri j
}

, where Ri j corresponds to the binary
constraint linking xi to x j. If there is no such constraint, a relation
allowing every tuple (“universal constraint”) is considered.

Less formally, the microstructure comprises one vertex for each (variable,
value) couple that is worth considering with regards to the domains of the
variables. Edges depict compatibilities between the assignments corresponding
to the vertices. This describes the problem at a much lower level than the
constraint graph, at the cost of a greater size.

2.3. STRUCTURAL DECOMPOSITION 43

Da = {1,2}
Db = {2}
Dc = {1,2,4,5}
Dd = {2,4}

b+ c < 5 •
2 ·a = c •

c+1≥ d •
3 ·a < 2 ·b •

a b

c d

a,1
a,2

b,2

d,2

d,4

c,5c,4

c,2

c,1

Figure 2.4 – The domains of four variables (from a to d), along with four
example binary constraints that link some of them. The graph in the top
right corner is the constraint graph, while the graph just below it is the
microstructure of the problem. For the sake of readability, each constraint
has been associated with a colour. In the microstructure, the colour edges
mean that the constraint that links the considered variables does not
forbid to simultaneously make the two corresponding assignments. The
black edges stand where only the universal constraint holds. There is an
edge between (a,1) and (c,2) because 2×1 equals 2, as required by the
blue constraint. However, no edge stands between (a,1) and (c,4) since
2×1 is not equal to 4: assigning simultaneously 1 to a and 4 to c would
violate the constraint 2 ·a = c.

Since there is an edge between two vertices of the microstructure if and
only if the corresponding assignments are compatible, each clique in this graph
depicts a set of compatible assignments. Consequently, a clique having as
many vertices that there are variables in the problem yields a solution to the
CSP [JÉG93]. Note that it is actually impossible to find a clique with even more
vertices, since there is no edge between vertices that represent assignments of
a same variable.

Figure 2.4 shows a set of variables, domains and constraints, as well as the
resulting constraint graph and microstructure.

44 CHAPTER 2. CONSTRAINT PROGRAMMING

2.3.2 Using a tree decomposition
To use a tree decomposition to decompose a CSP, the decomposition must be
computed on the constraint graph (or, if some constraints are not binary, on
the 2-section of the constraint hypergraph). Any fill edge added during the
triangulation step must of course be removed at the end of the process, since
they do not correspond to real constraints of the problem. Still, the clusters
of decompositions obtained this way are generally heavily connected sets of
vertices, i.e., variables that are linked by numerous constraints.

Once such a decomposition is computed, it can be used in several ways:

• The order in which variables are assigned can be constrained by the
decomposition. When a backtrack is performed, the assignments that
get undone are generally more related to the failure than if the variables
had been assigned in an order that was not constrained by a structural
decomposition;
• Since a tree decomposition has, by definition, a tree structure, assign-

ing all the variables of an internal cluster disconnects the graph, thus
creating independent subproblems;
• Information can be recorded on the separators between clusters, in order

to avoid exploring the same region of the search space twice.

One of the first methods that were proposed to derive profit from a tree
decomposition computed on the constraint graph of a CSP was tree cluster-
ing [DP89]. It basically consists in solving the clusters independently and
keeping all their solutions in memory as relations. This latter point unfortu-
nately makes it impractical for most problems. Moreover, solving the clusters
is no easy task as well. However, once this step is complete, the problem can
be solved in polynomial time by combining the stored partial solutions.

As hinted before, a tree decomposition can be employed to guide the search,
especially while using a backtracking approach. This combination is called
backtracking bounded by (or on) tree decomposition (BTD) [JT03].

We designate as the root of the tree decomposition the cluster that is
explored first during the search.

Given a tree decomposition (C,T) of a CSP (X ,D,C) and a root node r ∈VT ,
BTD identifies independent subproblems which are solved separately. More
precisely, each subproblem only contains a subset of the initial set of variables.

We will now describe in more details this procedure, also outlined in Al-
gorithm 2.1.

BTD first assigns the variables of the root cluster Cr (lines 1–2). If there
is no assignment of these variables which satisfies the constraints, then the
problem is declared inconsistent (line 14). Otherwise, if r has k children v1,
. . . , vk in the tree T , BTD recursively solves the k corresponding independent
subproblems.

Each subproblem is associated with a child vi of r and contains all vari-

2.3. STRUCTURAL DECOMPOSITION 45

ables that occur in the clusters associated with the nodes of the subtree of T
rooted in vi (lines 5–6). These k subproblems are independent because, due
to the definition of a tree decomposition, no constraint is shared by different
subproblems (once the variables of the root cluster have been assigned).

For example, if the decomposition shown in Figure 1.7 were to be used for
BTD, assigning the three variables of the cluster {2,3,5} would create three
independent subproblems, corresponding to the subtrees rooted respectively at
the clusters {4,5,9}, {1,2,5}, and {3,5,6}.

The notion of nogoods that was discussed in Section 2.2.4 can be applied in
an improved version when a tree decomposition is used. As before, the main
goal is to avoid exploring some parts of the search space twice.

Definition 2.14. A structural good (respectively, nogood) is an assignment
of the variables of a separator such that the subproblem associated with the
underlying subtree is consistent (respectively, inconsistent).

Indeed, when looking for the source of a failure, the separators between
clusters can be readily used as nogoods. Their counterpart, structural goods,
are used to remember that a subproblem contains at least one consistent full
assignment of its variables.

Tree decompositions can also serve as a framework for more complex meth-
ods, such as hybrid search strategies [ALL+15].

2.3.3 BTD and optimisation problems
To be able to use a resolution method such as BTD on an optimisation problem,
it must first be demonstrated that the problem at hand has a decomposable
objective function. This condition is met if and only if, when the root cluster Cr
of the tree decomposition is fully assigned, it can be ensured that the optimal
global solution for this partial assignment can be obtained simply by solving
to optimality the subproblems stemming from the children of Cr. This is the
case, for example, in weighted constraint satisfaction problems, but many
optimisation problems do not meet this condition and thus cannot be solved
using BTD.

In the context of optimization problems, the adaptation of BTD requires that
we only record valued goods instead of structured goods. Valued goods give
bounds (a lower bound as well as an upper one) for the subproblems according
to the values assigned to the variables of the above separator [DSV06].

More precisely, in an optimization context (let us assume here, without
loss of generality, that it is a minimisation problem), every subproblem has
its own lower and upper bounds. Before solving a subproblem p, a maximal
acceptable cost c for p may be computed by combining the lower bounds of
sibling subproblems and subtracting them to the current global upper bound.
Then, this cost can be used in a number of ways:

46 CHAPTER 2. CONSTRAINT PROGRAMMING

Algorithm 2.1: BTD
(
(X ,D,C), (C,T), r

)
Input: A CSP instance (X ,D,C);

A tree decomposition (C,T);
The root node r from T .

Output: success if there exist consistent domains D′ ⊆ D which assign all
variables in all clusters associated with nodes of T ;
failure otherwise.

1 Let P be the CSP (X ,D,C) reduced to the subset of variables from Cr
2 foreach solution S of P do
3 foreach child i of r in T do
4 Let Ai be the tuple of values assigned to the separator Cr∩Ci in S

5 while @ a child j of r such that A j is a nogood and ∃ a child i of r such
that Ai is not a good do

6 Let i be a child of r such that Ai is not a good and Ti be the subtree
of T rooted in i

7 Let newD be the current domains
8 if BTD

(
(X ,newD,C), (C,Ti), i

)
= success then

9 Record Ai as a good
10 else
11 Record Ai as a nogood

12 if for every child i of r, Ai is a good then
13 return success

14 return failure

1. Before even attempting to solve p, we check whether it has a valued good
for the current assignment on its separator. If it does have one, the lower
bound of this good is considered. If this bound is higher than the maximal
cost c that we are ready to pay for p, it becomes obvious that solving p
would be useless and a backtrack is performed.

2. During p’s solution process, if it can be proved that there is no solution
for p that has an objective value better than c, the resolution of p can be
stopped altogether, and c yields a new lower bound for p.

3. Conversely, if the resolution of p is successful, both p’s lower and upper
bounds are updated by using the solution’s objective value.

Thus, at least one of the two bounds is shifted each time a subproblem is
considered. This ensures each of them is solved a finite number of times, since
the lower bound and the upper one will eventually meet.

Figure 2.5 shows an example of these techniques on the previously described
tree decomposition.

Another important point is that when solving a problem to optimality using

2.3. STRUCTURAL DECOMPOSITION 47

2,3,5

4,5,9 1,2,5 3,5,6

4,8,9 6,7,10,11

8,9,13 10,11,14

9,12,13

Figure 2.5 – An example on using a tree decomposition. Once the red
cluster (comprised of x2, x3 and x5, designated by their numbers), chosen
as the root, is fully assigned, the three underlying subtrees become
completely independent. Then, if we consider for example the first of
these subtrees, rooted at the orange cluster (x4, x5, x9), we notice that
the separator between it and the original root is {x5}. If, for example, x5
has been assigned the value 1 and this subtree has already been explored
in these conditions (x5 being equal to 1), the solver will be able to simply
reuse the previous results and immediately proceed to the next subtree.

BTD, consistent assignments of non-leaf clusters must be enumerated. For
each of them, the underlying subtree must be recursively solved to optimality.
This can prove to be very costly.

In decision problems, structural goods and nogoods bring the time com-
plexity of BTD down to O

(
n ·m ·dw+1), n being the number of variables, m the

number of constraints, d the maximum domain size and w the width of the
decomposition. The space complexity is O

(
n · s · ds), s being the size of the

largest separator.
When it comes to the optimisation extension of BTD, however, a same

subproblem can be solved several times.
Since each new solution phase unavoidably betters the bounds associated

with this subproblem, this number of resolutions is bounded by the maximal
violation cost k for a WCSP model [DSV06]. This ensures that the number of
nodes in the search tree is in O

(
k ·dw+1).

An overview of the application of BTD to optimisation problems is offered
by Algorithm 2.2.

Note that a valued good (Ai,LB,UB) comprised both a lower and an up-
per bound. These bounds are concerned with the optimal objective value
for Pdesc(i)− f (Ai), where Pdesc(i) is the initial COP (X ,D,C, f) reduced to the vari-
ables belonging to the subtree rooted in i. This ensures that bounds do not
redundantly include the values assigned on the separator.

48 CHAPTER 2. CONSTRAINT PROGRAMMING

2.3.4 The hierarchy of structural
decomposition methods

Tree decomposition makes interesting resolution methods available, with bet-
ter theoretical complexities. BTD can solve CSPs in O

(
|P|w+1) time, where

|P| denotes the size of the problem and w the treewidth of the tree decomposi-
tion. On the other hand, hypertree decomposition (a kind of tree decomposition
where each cluster has its own set of constraints [GLS99]) brings this bound to
O
(
|P|h
)
, where h is the width of the decomposition, given by the largest number

of constraints in a cluster. Note that h is lower or equal to w.
A few other decomposition methods are worth mentioning for the current

section:

Hinge decomposition is based on a tree structure with additional proper-
ties [GP82]. It was later combined with tree clustering [GJC94].

Biconnected components is a method using sets of vertices formed in such
a way that the subgraph they induce in the constraint network cannot be
disconnected by removing only one other vertex [FRE85].

Cycle cutset and hypercutset are methods relying on sets of vertices (or,
respectively, hyperedges) whose removal breaks cycles [DEC92].

Figure 2.6 shows a theoretical hierarchy proposed in 2000. It sorts the main
decomposition methods according to their respective time complexities [GLS00].
To fully understand this hierarchy, the following concepts are necessary:

Definition 2.15.
• A decomposition method D1 is said to generalize a method D2 when

every problem that is tractable (i.e., solvable in polynomial time) us-
ing D2 is also tractable using D1.
• A method D1 is said to beat a method D2 if there exists a class of

problems that is tractable using D1 but not using D2.
• A method D1 strongly generalizes another method D2 if it generalizes

and beats it.
• Two methods D1 and D2 are considered equivalent if they generalize

each other.

This hierarchy places hypertree decomposition above the other methods,
and tree decomposition alongside tree clustering. However, in practice, hyper-
tree decomposition did not prove as efficient as tree decomposition. Among the
explanations that have been put forward regarding this lack of efficiency, a
notable point is that the constraints must be expressed by means of relations
given in extension for such a decomposition to be employed. When applied
to CSPs, this generally leads to prohibitively large tables. This is especially
problematic when joins operation must be performed.

To obtain complexity bounds that fit observations better, JÉGOU et al.
expressed the complexity of the main decomposition methods with respect to

2.3. STRUCTURAL DECOMPOSITION 49

Hypertree decomposition
[GLS99]

Tree clustering +
Hinge decomposition

[GJC94]

Hinge decomposition
[GP82]

Tree clustering
≡ w* ≡ Treewidth

[DP89]

Biconnected components
[FRE85]

Cycle cutset
[DEC92]

Cycle hypercutset
[DEC92]

Figure 2.6 – The hierarchy proposed by GOTTLOB, LEONE and SCAR-
CELLO [GLS00]. Arrows mean “is a strong generalisation of”.

the size of the relations corresponding to the constraints of the problem [JNT08].
These new complexity bounds allowed them to revise the previously established
hierarchy (see Figure 2.7), obtaining a new classification in which hypertree
decomposition no longer dominates every other method. According to this new
hierarchy, hypertree decomposition is equivalent (see Definition 2.15) to tree
decomposition when it comes to solving constraint networks.

Actually, while hypertree decomposition tries hard to minimize, for each
cluster, the number of constraints that must be taken into account, JÉGOU
et al. proved theoretically as well as experimentally that it is more profitable
to use every constraint whose scope contains at least one variable of the
considered cluster, in order to filter more efficiently [JNT08]. As it happens, this
is exactly what is done with tree decomposition. Since tree decomposition does
not rely on join operations or relations given in extension, it can easily handle
a larger set of constraints. Thus, tree decomposition is the most interesting
decomposition method among those, when it comes to solving CSPs and COPs,
and this thesis heavily relies on it.

2.3.5 Decomposing the microstructure
A different approach that still relies on the structure of problems consists in
using the microstructure of a CSP as the base for the decomposition [JÉG93].

As explained in Section 2.3.1, since edges in the microstructure denote the
fact that two assignments can be performed simultaneously without violating

50 CHAPTER 2. CONSTRAINT PROGRAMMING

Hypertree decomposition
≡ Tree clustering

≡ Tree-decomposition methods
[DP89; GLS99; JT03]

Hinge decomposition
[GP82]

Biconnected components
[FRE85]

Cycle hypercutset
[DEC92]

Cycle cutset
[DEC92]

Figure 2.7 – The revised hierarchy, as proposed in [JNT08]. Arrows mean
“is a strong generalisation of”.

any constraint, a clique in this graph is by definition a valid assignment. It
follows that when this assignment is complete, it corresponds to a solution to
the problem.

As searching for cliques of a given size is an NP-complete problem in the
general case, dividing the microstructure into several graphs can be interesting.
When doing so, however, one has to be careful not to split up an existing
maximum clique (i.e., a solution).

This approached will be explored in more details when we discuss a concrete
case later on.

2.4 Parallelisation
A decomposition does not necessarily have to rely on the structure of the
problem. Some techniques, for example, simply split the domains of variables
into several subsets, using constraint propagation after each splitting step
in order to remove trivially inconsistent subproblems. This allows simple
parallelisation approaches to be implemented, as subproblems generated in
such a way are independent. Furthermore, the problem can be split in a large
number of subproblems, thus making it easier to balance the workload on the
available computing units. An approach of this type is proposed, for example,
in [MP14; DEP+13; MP13] for the maximum clique problem, or in [RRM13; RRM14]
for constraint satisfaction problems in general.

The decomposition into subproblems is computed by selecting a subset of
variables and by enumerating the combinations of values of these variables
that are not detected as being inconsistent by the propagation mechanism of a
CP solver. More precisely, a depth-bounded depth-first search (DBDFS) is used

2.4. PARALLELISATION 51

Initial problem

x = 1

y = 1 y = 2 y = 3

x = 2

y = 1 y = 2 y = 3

x = 3

y = 1 y = 2 y = 3

#1 #2 #3 #4 #5 #6
Figure 2.8 – An example of domain splitting for a simple problem. Every
variable here has a domain equal to {1,2,3}, and an allDifferent constraint
is applied to the full set of variables. Red nodes indicate an inconsistency
and will not be visited by the DBDFS. The first generated subproblem
comprises the two forced assignments x← 1 and y← 2, the second x← 1
and y← 3, and so on.

to compute subproblems.
A DBDFS is a depth-first search that never visits nodes located at a depth

greater than a given value. First, we consider a static ordering of the variables
(usually, by non decreasing domain sizes). Then, the main step of the algorithm
is applied: a DBDFS is performed, with a chosen depth p as its limit. This search
triggers the constraint propagation mechanism each time a modification occurs.
For each leaf of the DBDFS search tree that is not a failure, the first p variables
are assigned and so the subproblem defined by this assignment is consistent
with the propagation. Thus the set of leaves defines a set S of subproblems.
Next, if S is large enough, the decomposition is complete. Otherwise, the main
step is applied again until the expected number of subproblems is reached.

Figure 2.8 shows an example of how subproblems can be generated via
domain splitting.

In order to balance the workload on the available processing units, the
embarrassingly parallel search technique (EPS, [RRM13; RRM14]) splits the
initial problem as explained, aiming for a very large number of subproblems.
The solution time of these subproblems can then be shared by workers: all
subproblems are put in a queue and workers take a subproblem from this
queue whenever they need work.

Experiments in [RRM13; RRM14] show us that a good decomposition is
generally obtained, with EPS, by generating about 30 subproblems per worker.
In [RRM14], the average speedup reported with EPS is close to k/2, where k is
the number of workers, on a large benchmark of instances. This is much better
than the speedup obtained with a work stealing approach, where subproblems
are dynamically generated by splitting the subproblem currently solved by a
worker, whenever another worker has finished its own work. Indeed, work
stealing induces more communication between workers, and this can lead to a

52 CHAPTER 2. CONSTRAINT PROGRAMMING

significant slow-down. However, even when decomposing the initial problem
into 30 subproblems per worker, it may happen that one subproblem is much
more difficult than the others and becomes a bottleneck for the speedup.
Denoting by tmax the time needed to solve the hardest subproblem and by t0
the time needed to solve the initial problem, it can be stated that the speedup
cannot possibly exceed t0/tmax.

2.4. PARALLELISATION 53

Algorithm 2.2: BTDoptim
(
(X ,D,C, f), (C,T), r, maxcost

)
Input: A COP instance (X ,D,C, f);

A tree decomposition (C,T);
The root node r from T ;
A maximum acceptable cost maxcost.

Output: The optimal value for (X ,D,C, f) if it is at most maxcost;
maxcost+1 otherwise.

1 Let P be the CSP (X ,D,C) reduced to the subset of variables from Cr
2 best← maxcost+1
3 Let Ch be the set of children of r in T
4 foreach solution S of P do
5 foreach child i ∈ Ch do

/* Initialize bounds with values (theoretical, etc.)
computed during preprocessing. */

6 LBi← initLBi
7 UBi← initUBi
8 Let Ai be the tuple of values assigned in S to the separator

between Cr and Ci
9 if a valued good (Ai,LB,UB) exists for Ai then

10 LBi← LB from (Ai,LB,UB)
11 UBi← UB from (Ai,LB,UB)

12 if f (S)+∑i∈Ch LBi < best then
13 while f (S)+∑i∈Ch LBi < best and there is a child i ∈ Ch such that

no optimal valued good exists for the assignment Ai of Ci’s separator
in S do

/* Either Ai is not a valued good, either it is a valued
good with LB < UB. */

14 Let i be a child of r such that Ai is not an optimal valued good
15 Let Ti be the subtree of T rooted in i
16 Let newD be the current domains
17 maxcosti←min{best−1− f (S)−∑ j∈Ch,i 6= j LB j, UBi−1}
18 besti← BTDoptim

(
(X ,newD,C, f), (C,Ti), i, maxcosti

)
19 if besti ≤ maxcosti then
20 Record the valued good (Ai,besti,besti)
21 else
22 Record the valued good (Ai,besti,UBi)

23 bestr← f (S)+∑i∈Ch LBi
24 if bestr < best then
25 best← bestr

26 return best

Integer linear
programming
Integer linear
programming

Chapter 3
Chapter 3

Contents
3.1 Linear programming . 54

3.1.1 Simplex algorithm . 55
3.1.2 Column generation . 55

3.2 Integer linear programming 56
3.2.1 Continuous relaxation 56
3.2.2 Cutting plane algorithm 57
3.2.3 Branch and cut . 57

3.1 Linear programming
Linear programming may be viewed as a subset of CP. It allows to define
constrained optimisation problems but is restricted to linear relationships
between variables when it comes to expressing constraints. Furthermore, the
objective function must be linear as well. Terms like x2 or x · y, where x and y
are variables, are for example prohibited in linear programs. These conditions
ensure that a linear program can be represented in canonical form:

Maximize cT x

Subject to Ax≤ b

and x≥ 0

where x is a vector of variables, c and b are vectors of known coefficients and
A a matrix of known coefficients.

Note that any equality constraint a = b can be expressed by the conjunction
of the two constraints a ≤ b and b ≤ a. On the other hand, disequality con-
straints a 6= b are prohibited as they would make the search space non-convex,
thus preventing the use of linear programming’s dedicated algorithms.

The linearity precondition is used to design efficient resolution algorithms.
As a result, a linear program can be solved in polynomial time provided that
the domains are continuous. This is achieved using, for example, some interior
point methods [KAR84].

Linear programs that only have two variables can easily be represented
on two-dimensional graphs, as shown in Figure 3.1. This figure also clearly
demonstrates that linear constraints can be perceived as cuts applied to the

54

3.1. LINEAR PROGRAMMING 55

x

y

Feasible
solutions

Maximize:
x+2y

Subject to:
(c1) 3x+2y ≤ 20
(c2) 3y ≥ 12

x, y ≥ 0

Figure 3.1 – A simple linear program and its graphical representation.

search space, each removing a part of it. The set of feasible solutions, in which
the best values will have to be found, corresponds to the intersection of the
spared parts of the search space.

On the downside, the fact that constraints have to be linear obviously
prevents linear programming from being as expressive as constraint program-
ming.

3.1.1 Simplex algorithm
The simplex algorithm has been widely used for decades to solve linear pro-
grams. It relies on a matrix representation (called a “simplex tableau”) of
the problem, using columns to hold the coefficients of variables and one line
per constraint. Various operations (“pivots”) are performed on the tableau in
order to find the optimal solution by gradually eliminating the occurrences of
variables.

Even though this algorithm generally performs well in practice, its worst-
case complexity is exponential, and efficiency may be extremely poor on some
families of linear programs [KM72].

3.1.2 Column generation
When a problem is too large for a solver to handle it (typically, when it has an
exponential number of variables), the approach known as column generation
may be more suitable than the traditional techniques. This notion of columns
refers to the simplex tableau previously mentioned.

When using this approach, the initial problem is split into two problems,
respectively labelled “master problem” and “subproblem”. The master problem
is a copy of the initial one, but with less variables: only a subset of them are

56 CHAPTER 3. INTEGER LINEAR PROGRAMMING

x

y

Feasible solution

Figure 3.2 – An ILP representation of the problem from Figure 3.1. There
are only nineteen valid solutions this time, instead of an infinity.

considered. The subproblem is entirely new and is used to identify variables
that will be progressively added to the master problem.

3.2 Integer linear programming
Integer linear programming (ILP), often referred to in the literature simply as
“integer programming”, is a subset of linear programming in which every vari-
able is required to use an integer value for a solution to be valid (Figure 3.2).

While a linear program with continuous domains may be solved in polyno-
mial time, solving an ILP problem is NP-hard.

3.2.1 Continuous relaxation
The continuous relaxation of an ILP problem is the corresponding linear pro-
gram, with the same constraints, objective function and variables, but without
the constraint stating that variables must take integer values. Relaxations are
often used as a means to obtain an approximate solution and to deduce proper-
ties that can be applied to the problem. The key point is that every solution of
the initial ILP problem is still a valid solution in its relaxed counterpart. This
ensures that the optimal solution of the relaxed version is a valid upper bound
for the initial problem when maximizing the objective function, and a lower
bound when minimizing it.

An ILP problem is called pure when all coefficients in constraints and in the
objective function are integers.

A problem where only a subset of variables must be integers falls within
the larger scope of mixed integer programming. Another field of research only
considers binary variables, which are actually integers with a domain equal

3.2. INTEGER LINEAR PROGRAMMING 57

to {0,1}.

3.2.2 Cutting plane algorithm
To solve a pure ILP problem, a common basic approach is to apply the following
algorithm:

1. Solve the continuous relaxation of the problem.
2. If the optimal solution only uses integer values, stop: the problem has

been solved.
3. Generate a cut: a constraint that is sure to be satisfied by every integer

solution to the problem but that is violated by the optimal solution just
found for the relaxation.

4. Add this constraint to the problem and start over from step 1.

When using this algorithm, convergence may be achieved at a more or less
fast pace, depending on the cuts that are computed. With improper cuts, an
infinite number of steps might even be needed. Fortunately, methods to ensure
that this does not happen were found. The first one was described in the 1990s,
several decades after GOMORY first proposed using cutting planes [GOM60].
This allowed integer programming to gain popularity by making it more
efficient and appealing.

3.2.3 Branch and cut
The branch and cut method consists in a combination of branch and bound
(see Section 2.2.5) and cutting planes. The branch and bound aspect of this
approach consists in splitting the problem into several (usually two) versions
by adding complementary inequality constraints. This is done at various points
of the search. For example, we may split a problem into two subproblems by
stating in the first that x must be strictly greater than 3 while stating in the
other that x must be lower or equal to 3. The full extent of the initial problem
is thus divided between the two subproblems, without any solution loss.

Furthermore, the relaxation of the ILP model is used to obtain bounds for
the optimal value of the objective function.

Portfolio approachesPortfolio approachesChapter 4
Chapter 4

Contents
4.1 Algorithm selection principle 58
4.2 Supervised classification . 59
4.3 Classification for algorithm selection 60

4.1 Algorithm selection principle
When several resolution methods show complementary strengths – each
method having a particular set of instances on which it performs well –, it
can be interesting to combine them by devising an automatic method selection
system. Such an approach falls within the scope of the per-instance algorithm
selection problem.

More precisely, given a list of solvers (called a portfolio) [HLH97; GS01] and
an instance i, the per-instance algorithm selection problem consists in picking
from the portfolio the solver (or a subset of the portfolio) which can be expected
to outperform the others on i [RIC76].

Algorithm selection systems usually build machine learning models to fore-
cast which solver should be used in a particular context. Using the predictions,
one or more solvers from the portfolio may be selected to be run sequentially
or in parallel.

One of the most prominent and successful systems that employ this ap-
proach is SATzilla [XU+08], which defined the state of the art in SAT solving for a
number of years. Other application areas include constraint solving [OMA+08],
the travelling salesman problem [KOT+15], subgraph isomorphism [KMS16] and
AI planning [SEI+12]. The reader is referred to a survey [KOT14] for additional
information on algorithm selection.

The selection process generally comprises two steps: given an instance i to
be solved, features are extracted from i in order to obtain a global idea of its
characteristics; then, algorithm selection is run to choose a solver. The chosen
solver can finally be run to try solving the instance i.

As briefly stated before, complementarity is a key point in portfolio ap-
proaches. Performances are greatly tied to the chosen set of solvers, as demon-
strated by repeated experiments from the literature [KAD+10; XU+08; XHL10].

58

4.2. SUPERVISED CLASSIFICATION 59

4.2 Supervised classification
Assigning a solver to each instance in the context of the algorithm selection
problem is actually a supervised classification problem. Classification rules
must be learned in order to be able to perform these choices.

Supervised classification is a very classical task of machine learning. It
consists in associating given examples to classes. The list of existing classes is
known beforehand.

Definition 4.1. Let I be the representation space of instances, and C =
{c1, . . . ,ck} a finite set of classes. An example is a couple (i,c) ∈ I×C.

A training set allows a learning algorithm to build classification rules by
using already labelled examples.

Definition 4.2. A training set is a set of examples T ⊆ I×C such that for
every pair of examples e = (i,c) and e′ = (i′,c′) taken from T, if i = i′, then
c = c′. In other words, identical instances must belong to the same class.

A validation set, on the other hand, is employed to assess the results of
a classification model by providing instances and comparing the predicted
classes with the real ones, that are not known to the model beforehand.

Definition 4.3. A validation set is a set of examples V ⊆ I×C following the
same rules as the training set. Training and validation sets must be disjoint
(no example can be in both sets).

It is generally advisable to use a training set that is representative with
regards to the validation set, especially when classes are not well balanced in
terms of sizes.

Definition 4.4. A learning algorithm takes a learning set as its input and
returns a classification rule.

Note that running a learning algorithm generally takes a significant
amount of time.

Definition 4.5. A classification rule is an algorithm able to return a pre-
dicted class for any given element of the validation set.

The error rate of a classification rule, useful to assess its quality, corres-
ponds to the proportion of examples (i,c) for which the predicted class differs
from the actual class c.

Running a classification rule on a validation example is generally signific-
antly faster than the learning step just mentioned.

In some domains or contexts, there are not many examples to work on to
begin with. Among the techniques that were designed to enable a successful

60 CHAPTER 4. PORTFOLIO APPROACHES

learning process in such occurrences, the method known as cross-validation is
especially noteworthy.

Cross-validation is a technique used to generate several couples made of a
training set and a validation set, using a single example dataset.

More precisely, n-fold cross-validation, n being a natural integer, creates
n such couples. It proceeds as follows:

1. The initial dataset D is randomly partitioned into n subsets d1, . . . , dn.
Since it is a partition, these subsets are disjoint and their union equals
the full initial set.

2. For each subset dk, a couple is created by using dk as the training set and
D\dk as the validation set.

In this thesis, we will be using the leave-one-out approach. As its name
implies, it consists in having a number of folds that exactly matches the
number of examples in the initial dataset. Each validation set is thus a
singleton. It helps having large training sets while guaranteeing the validity
of experiments.

4.3 Applying supervised classification
to algorithm selection

In the context of the per-instance algorithm selection problem, the examples
are couples formed by at instance and a solver. The solvers correspond to
classes, and the class to which a given example belongs is the one associated
with the solver that gave the best results on the considered instance.

While in many classification tasks the results are heavily discretized (the
example being either assigned to the correct class or to another one), this
is not the case when performing automatic algorithm selection: choosing a
solver that is not the best suited to solve a given instance might still allow
the end-user to get satisfying results and to solve the instance. Choices can
thus be evaluated according to degrees of quality. There might even be several
criteria to take into account: the time needed to solve the instance, the quality
of the best solution found within a given time limit, and so on.

The representation of instances may contain a large variety of features:

• Number of variables, size of domains, number and arity of constraints;
• Features derived from the constraint graph, such as its size and density;
• Results obtained with solvers run for a short amount of time to probe the

instance;
• . . .

Some numerical features can be enhanced and turned into several features
by using statistical tools such as means, medians, minimal and maximal

4.3. CLASSIFICATION FOR ALGORITHM SELECTION 61

values.
Tools have been developed specifically for algorithm portfolio and selection

approaches, for example to simplify the task of implementing such approaches
and evaluating different techniques. One of them is LLAMA, a “modular and
extensible toolkit implemented as an R package” aiming at making it easier
to explore a wide array of classification and regression techniques, among
other things [KOT13]. LLAMA supports the most common algorithm selection
approaches used in the literature.

Additionally, LLAMA can train a regression model instead of a classification
one if asked to. This approach trains a model that predicts the performance
difference between every pair of solvers in the portfolio, similarly to what is
done in [XU+08]: if the first solver is better than the second, the difference
is positive, otherwise negative. The solver with the highest cumulative per-
formance difference (i.e., the most positive difference over all other solvers) is
chosen to be run.

Y Part II Z

The maximum common
subgraph problem

62

63

In many applicative domains, graphs are used to model various structured
objects. In such cases, comparing these objects and measuring the similarity
between them often amounts to matching the corresponding graphs together.
Among the different types of matching problems, a very classical and highly
difficult one is the maximum common subgraph problem, where the goal is to
identify the largest common part between two considered graphs. This is an
NP-hard problem, and complete approaches often struggle to solve instances
in which the graphs have more than a few hundred vertices.

This problem will be defined in a more detailed fashion in Chapter 5, along
with the existing solution methods.

In this part, we investigate the benefits offered by decomposing instances
of this challenging problem into independent subproblems in order to speed up
the solution process.

Chapter 6 presents our two new decomposition methods.
The first presented method (Section 6.1) relies on domain splitting. Its

aim is to provide a better workload balance for this particular problem than
more generic methods, but also to highlight some issues that domain splitting
methods often run into when it comes to solving the MCIS problem.

The second method, described through Section 6.2, is a structural approach
based on a decomposition of the microstructure of the problem. This provides
greater per-instance adaptability faculties. Furthermore, this approach could
theoretically be employed for other problems as well.

These new methods will be thoroughly evaluated and compared with the
state of the art in Chapter 7. Finally, our contributions, observations and
conclusions will be listed in Chapter 8, as a way to close this part relative to
the MCIS problem.

Background and
definitions

Background and
definitions

Chapter 5
Chapter 5

Contents
5.1 Graph comparisons . 64
5.2 CP model for the MCIS . 66
5.3 Reformulation of the MCIS problem 68

In this chapter, we define the maximum common subgraph problem (Sec-
tion 5.1), before describing two of the state-of-the-art complete approaches
for this particular problem: Section 5.2 addresses a constraint programming
model, while Section 5.3 explains how the maximum common subgraph prob-
lem can be reformulated into a maximum clique problem.

5.1 Graph comparisons
When trying to compare graphs, a common approach is to search for a large
common part between these graphs. Graph isomorphisms can be used to define
such parts.

Definition 5.1. Let G = (V,E) and G′ = (V ′,E ′) be graphs. G is isomorphic
to G′ if there exists a bijective function (called isomorphism) f : V →V ′ which
preserves edges, i.e.:

∀(u,v) ∈V ×V, {u,v} ∈ E⇔{ f (u), f (v)} ∈ E ′

Figure 5.1 shows an example of a pair of isomorphic graphs.

Definition 5.2. A common induced subgraph (respectively, partial sub-
graph) of two graphs G and G′ is a graph isomorphic to induced (respectively,
partial) subgraphs of G and G′ (see Definitions 1.5 and 1.6).

a
b c d

ef

1

2

3

4

5

6

Figure 5.1 – Two isomorphic graphs. An isomorphism function can be
defined as follows: a↔ 1, b↔ 2, c↔ 3, d↔ 4, e↔ 5, f ↔ 6.

64

5.1. GRAPH COMPARISONS 65

88
a b

c d

1 2

3 4 5

MCIS:
a1

c3 d4

MCPS:
a1 b2

c3 d4

Figure 5.2 – Two graphs, along with a corresponding MCIS and an MCPS.
The vertex b cannot be integrated into the MCIS since, in the other graph,
there is no node that is linked to both 1 and 4 (vertices matched with
neighbours of b).

In many applications, we are mostly interested in finding the largest pos-
sible common subgraphs. This can be used for example to define a similarity
measure based on the size of these subgraphs (the larger the common sub-
graphs, the more similar the two graphs). This, however, deserves a discussion:
while the size of an induced subgraph can easily be evaluated with its number
of vertices, partial subgraphs cannot be considered in the same way. Indeed,
given two graphs (V,E) and (V ′,E ′), there always exists a common partial
subgraph with min(|V |, |V ′|) vertices (a trivial one having no edge). Therefore,
when considering partial subgraphs, their number of edges is usually used to
compute their size instead.

Definition 5.3. A maximum common induced subgraph (MCIS) is a common
induced subgraph which has the maximal number of nodes among existing
common induced subgraphs.

Definition 5.4. A maximum common partial subgraph (MCPS) is a common
partial subgraph which has the maximal number of edges among existing
common partial subgraphs.

Figure 5.2 shows examples of MCIS and MCPS.
The maximum common induced and partial subgraph problems consist in

finding, for two given graphs, an MCIS or an MCPS, respectively.
Searching for a maximum common subgraph has many applications, for ex-

ample, in chemoinformatics, bioinformatics, or image processing where it gives
a measure of the similarity between objects represented by graphs [RGW02;
RW02].

In addition to the fact that it is an NP-hard problem, the number of sub-
graphs that must be considered is doubly exponential, since we must explore
the two graphs simultaneously. In comparison, the similar problem called

66 CHAPTER 5. BACKGROUND AND DEFINITIONS

subgraph isomorphism is far easier because the subgraph that must be looked
for (the “pattern” graph) is known from the very beginning. Thus, the graphs
that can be reasonably considered in maximum common subgraph instances
rarely exceed a size of a hundred nodes. This limit can be pushed further if
the instance uses labels on the nodes or edges, since this reduces the number
of possibilities that it makes sense to consider. On the other hand, in the
subgraph isomorphism problem, patterns of several hundreds of nodes can
be searched for in target graphs of several thousands of nodes [KMS16]. Some
other approaches are also very efficient but need certain hypothesis to hold on
the instance. For example, when one of the two graphs of the considered pair
is very close to the MCIS, dedicated algorithms can find the MCIS must faster
than in the general case by proceeding in a way reminiscent of the subgraph
isomorphism problem [HMR17].

There exist two main approaches for solving the MCIS problem:

• The first approach explores the search space by branch and bound. This
may be achieved by using constraint programming;
• The second approach is based on a reformulation of the MCIS problem

into a maximum clique problem.

Details will now be given on those two approaches.

5.2 CP model for the MCIS

One of the first approaches proposed to solve the MCIS problem was to apply
branch and bound (see Section 2.2.5) [BB76; MCG82]. Solutions are then built
incrementally, by starting from a trivial common subgraph of a single vertex
and making it grow one vertex at a time. Backtracks are performed whenever
the common subgraph cannot be extended this way, and new branches are
explored by cancelling any required number of recent choices.

The branch and bound approach can be enhanced by using CP as its frame-
work: less branches will be explored thanks to constraint propagation.

A CSP model for solving MCIS was envisioned and introduced in 2011 [VIS11;
NS11]. Given two graphs G and G′, this CSP defines:

• A variable xu for each node u of G;
• Equal domains for each variable, containing all nodes of G′, with the

addition of a special value, called ⊥ (“bottom”).

Assigning a value v to a variable xu means matching vertices u and v. On
the other hand, using the value ⊥ for a variable xu means that xu is not used in
the common subgraph currently being built: u is not matched with any node
of G′.

Moreover, a set of edge constraints have to be introduced in order to
ensure that variable assignments preserve edges between matched nodes. This

5.2. CP MODEL FOR THE MCIS 67

way, every consistent assignment defines a common induced subgraph.
The simplest way to do this is to make sure that, for every pair of ver-

tices {u,v} from G:

• Either one of them is not matched to any vertex of G′ (then edge preser-
vation is not a concern),
• or they are respectively matched to vertices u′ and v′ of G′ and there is an

edge between u and v if and only if there is also one between u′ and v′.

This can be formalized by the following constraints:

∀{u,v} ⊆VG, (xu =⊥)∨ (xv =⊥)∨ ({u,v} ∈ EG⇔{xu,xv} ∈ EG′)

MCIS being an optimization problem aiming at maximizing the number of
matched nodes, elements must be added to guide solvers towards this goal:

• A variable x⊥ whose domain is D(x⊥) = {⊥} (it is forced to be assigned
the value ⊥);
• A variable cost which has its value fixed by the constraint presented in

the following item. This will be essential to define the objective function
of the CSP;
• A soft constraint softAllDifferent({xu,u ∈ VG} ∪ {x⊥},cost). Generally

speaking, the softAllDifferent constraint has to be given a set of vari-
ables as well as an additional variable x. It forces the x variable to be
equal to the number of pairs of variables in the given set that use the
same value. Therefore, the constraint softAllDifferent({xu,u ∈ VG}∪{x⊥},
cost) ensures that all xu variables are assigned to values different from ⊥
whenever it is possible, and that the cost variable is equal to the number
of binary difference constraints that are violated within the given set of
variables.

When a solution of cost c is found, it is always possible to derive from it
a valid matching where c variables are assigned the value ⊥. For example,
the CSP might have a solution comprised of the following assignments: x1← 1,
x2 ← 1, and x3 ← 2. This does not correspond to a valid matching, since x1
and x2 use the same value. Still, a common subgraph can easily be deduced
from such a solution, simply by choosing a single variable between these
two conflicting variables and assigning it the value ⊥. This could yield, for
example, a solution made of the assignments x1← 1, x2←⊥, and x3← 2. It can
be noticed that the cost of this solution is the same as the original one (cost = 1,
because x2 = x⊥) [NS11].

The objective of this CSP is to minimize the value of the cost variable. It
follows from the explanations just given that this is equivalent to maximizing
the size of the common subgraph.

The x⊥ variable ensures that if every other variable can be assigned values
different from ⊥, this will necessarily happen. Indeed, since the softAllDifferent
constraint counts the number of violated binary difference constraints within

68 CHAPTER 5. BACKGROUND AND DEFINITIONS

its scope, if the x⊥ variable was absent, it would be possible to obtain a null
cost even with one variable using the value ⊥.

Different constraint propagation techniques for this CSP model of the MCIS
problem were experimentally evaluated [NS11]. The combination “MAC+Bound”
generally obtains very good results and outperforms the branch and bound ap-
proach [MCG82]: maintaining arc consistency (MAC) [SF94] is used to propagate
hard constraints, while Bound checks whether it is possible to assign distinct
values to enough xu variables to surpass the best cost found so far. Bound
is a weaker version of the generalized arc consistency for the softAllDifferent
constraint [PRB01] which computes the maximal number of variables that can
be assigned distinct values.

5.3 Reformulation of the MCIS
problem as a maximum clique
problem

We may solve the MCIS problem for two graphs G and G′ by introducing their
compatibility graph and searching for cliques in it [BY86; DUR+99; RGW02].

Definition 5.5. The compatibility graph of two graphs G and G′ is an
undirected graph GC whose set of nodes is NGC =VG×VG′ and whose set of
edges is:

NGE =
{
{(u,u′), (v,v′)} ⊆ NGC

∣∣ (u,u′) and (v,v′) are compatible
}

where two nodes (u,u′) and (v,v′) of NGC are compatible if u 6= v and u′ 6= v′,
and if the corresponding assignments, when applied together, preserve
edges (i.e. {u,v} ∈ EG⇔{u′,v′} ∈ EG′).

Intuitively, a compatibility graph outlines, for each pair of variable as-
signments, whether these two assignments can be performed simultaneously
without violating the constraints enforced by the nature of the MCIS problem.

As illustrated in Figure 5.3, a clique in GC corresponds to a set of compatible
matchings of nodes in G and G′. Therefore, such a clique corresponds to a
common induced subgraph, and a maximum clique of GC is a MCIS of G and G′.
It follows that any method able to find a maximum clique in a graph can be
used to solve the MCIS problem. This yields similar results than a branch and
bound approach [MCC+16], but with notable difference depending on whether
labels are used.

In the case of the MCIS problem, the compatibility graph corresponds to
the problem’s microstructure when using the CP model previously introduced,
provided that the special ⊥ value as well as the cost and x⊥ variables are
ignored. Therefore, the observations made on the compatibility graph hold

5.3. REFORMULATION OF THE MCIS PROBLEM 69

a b

c

1 2

3

a,1

a,2

a,3

b,1
b,2

b,3

c,1

c,2

c,3

Figure 5.3 – Two graphs and their compatibility graph GC. For example,
since the edge {a,c} is not present while {1,3} exists, a cannot be matched
to 1 when c is matched to 3. Thus, the edge {(a,1), (c,3)} is not added
to GC. One of the many maximum cliques in GC is {(a,3), (b,2)} and it
corresponds to an MCIS.

for the microstructure: each clique in the microstructure yields a consistent
assignment. In the MCIS problem’s context, this means that each clique can
be used to build a common subgraph, and that the maximum cliques in the
microstructure correspond to solutions of the MCIS problem.

This approach was primarily intended for decision problems. To solve them,
one has to find a clique of a given size in the microstructure. In the context
of the MCIS, however, the optimal solution corresponds to the largest clique
in this graph. To find it, a possibility is to extract every maximal clique from
the graph and keep the largest, since the maximum cliques of a graph are
necessarily also maximal cliques.

Decomposing the MCIS
problem

Decomposing the MCIS
problem

Chapter 6
Chapter 6

Contents
6.1 Binary domain decomposition 70

6.1.1 Principle . 70
6.1.2 Complexity of BIN and DOM 72

6.2 Structural decomposition 73
6.2.1 TR-decomposition principle 73
6.2.2 Balancing the size of subproblems 75
6.2.3 Mitigating redundancies 77

The previous chapter introduced the maximum common subgraph problem
and explained that it is an especially challenging NP-hard problem. This
new chapter aims at providing the reader with ways to speed up the solution
process by decomposing instances of this problem.

Section 6.1 describes a domain-splitting strategy. It is derived from the
EPS method from Section 2.4 but takes into account the peculiarities of the
MCIS problem.

Section 6.2 discusses a structural decomposition method able to use the
inherent structure of instances to create more balanced subproblems.

6.1 Binary domain decomposition
6.1.1 Principle
In Section 2.4, we described a decomposition approach allowing one to de-
compose a CSP into numerous independent CSPs [RRM13]. This decomposition
being based on a splitting of the domains of variables, it will be referred to as
DOM from here onwards.

The DOM decomposition approach creates subproblems by assigning some
variables while removing inconsistent subproblems. When applying this de-
composition method to the CP model of the MCIS problem (see Section 5.2),
we obtain subproblems by assigning a subset of variables X ′ ⊆ {xu,u ∈ NG} to
nodes of G′ or to ⊥. First experiments have shown us that this decomposition
leads to very unbalanced subproblems, and therefore very low speedups when
solving these subproblems in parallel, even with numerous processing units.

Actually, assigning a variable xu to a node v ∈ NG′ often strongly reduces
variable domains, as the propagation of edge constraints removes from the

70

6.1. BINARY DOMAIN DECOMPOSITION 71

Initial problem

x = 1

y = 1 . . . y =⊥

. . .

y = 1 . . . y =⊥

x =⊥

y = 1 . . . y =⊥
Hard Hard

Hard
Figure 6.1 – The domain splitting method, applied to an MCIS instance.
Subproblems in which variables get assigned the special value ⊥ will
generally be harder to solve due to poor domain-filtering opportunities.

Initial problem

x 6=⊥

y 6=⊥ y =⊥

x =⊥

y 6=⊥ y =⊥

Figure 6.2 – The binary domain splitting method BIN for the MCIS
problem.

domains of the variables associated with neighbours of u all nodes of NG′ which
are not neighbours of v. However, assigning a variable xu to ⊥ (i.e., deciding
that u will not be matched) never reduces the domains of the other variables.
The only exception is when the number of variables assigned to ⊥ becomes
equal to a cost bound: ⊥ is then removed from all other domains, in order to
prevent the common subgraph built to be smaller that the best one found to
this point. This behaviour explains why some subproblems are rather easy to
solve whereas others (where ⊥ is used) are much harder, even though they all
have the same search space size. Figure 6.1 shows this issue in a more visual
way.

In order to try to generate more balanced subproblems, we introduce an-
other way of decomposing domains, called BIN hereafter. It is a straightforward
adaptation of the decomposition of [RRM13]. We perform a DBDFS (see Sec-
tion 2.4), but instead of creating |NG′|+1 branches at each node (one for each
possible value in the domain of the variable), we only create two branches:
one where the variable is assigned ⊥, and one where ⊥ is removed from the
variable’s domain. This approach is outlined in Figure 6.2.

72 CHAPTER 6. DECOMPOSING THE MCIS PROBLEM

Additionally, Algorithm 6.1 shows in a more detailed manner how to carry
out a BIN decomposition.

Algorithm 6.1: BIN decomposition
Input: A CSP model P for an MCIS instance with graphs of nbv vertices,

as described in Section 5.2;
A target number goal of subproblems;
A lower bound lb on the size of an MCIS for the considered
instance.

Output: A set S of about goal subproblems, with a global optimal
solution corresponding to that of the initial problem.

1 S← P
2 depth← 0
3 while

∣∣2 · |S|−goal
∣∣< ∣∣|S|−goal

∣∣ and depth < nbv− lb−1 do
4 Snew←∅
5 foreach s ∈ S do
6 Let x be the unassigned variable in s with the smallest domain
7 Add to Snew two subproblems: one corresponding to s with the

additional constraint “x =⊥” and one with “x 6=⊥
8 S← Snew
9 depth← depth+1

10 return S

The condition of the outer loop, line 3, aims at finding the appropriate depth
for the decomposition, i.e. the number of variables that should be subject to
a preprocessing in order to obtain a number of subproblem close to the goal.
This is done by making sure an additional splitting phase would not bring
us further away from the goal than our current situation. Note that we also
ensure that the number of variables assigned to ⊥ in a subproblem never
gets large enough to prevent us from building a subgraph that would beat the
initial lower bound (depth < nbv− lb−1).

The inner loop at lines 5–7 creates the required subproblems each time a
splitting phase is deemed necessary, and replaces the old set of subproblems
with the new ones.

6.1.2 Complexity of BIN and DOM
Let S be the set of subproblems computed by BIN. Computing all these sub-
problems is done in O

(
|S| · log(|S|)

)
time. The logarithmic part stems from the

DBDFS algorithm, used in both DOM and BIN. Indeed, the number of steps
needed to obtain |S| subproblem is logarithmically bounded, since each time a
variable is chosen to become subject to a split, every current subproblem gets
divided. In BIN, the complexity of each of these logarithmically numbered steps

6.2. STRUCTURAL DECOMPOSITION 73

is bounded by |S|, since it corresponds to the largest number of subproblems
that might be generated at a given time (the last step, actually).

Once the subproblems have been generated, each of them is solved using
MAC+Bound. Since the subproblems define a partition of the search space,
MAC+Bound explores the whole search space once while solving all subprob-
lems.

All this considered, the overall time complexity of BIN is in O
(
|S| · log(|S|)+

d3 · n2 · dn)
)
, where d is the size of the largest domain in the CSP and n its

number of variables.
On the other hand, DOM uses a MAC+Bound bounded at depth p to compute

its set of subproblems S in O
(
|S| ·d3 ·n2) while ensuring consistency. Subprob-

lems are then solved using the standard MAC+Bound, bringing the overall
time complexity bound of DOM to O

(
|S| ·d3 ·n2 +d3 ·n2 ·dn−p). The d3 ·n2 factors

come from the use of MAC. The n− p exponent reflects the fact that descending
deeper during the DBDFS reduces the number of variables that will have to be
actually handled during the resolution of the subproblems.

6.2 Structural decomposition

6.2.1 TR-decomposition principle
We now introduce a new way to decompose the MCIS problem into independent
subproblems while taking into account the structure of the problem. This
method, called STR, is an adaptation of a decomposition devised in 1993 called
TR-decomposition [JÉG93]. We apply it to the CP model proposed in 2011 for the
maximum common subgraph problem [NS11].

TR-decomposition is a decomposition method based on the microstructure
of the CSP. As explained in Section 5.3, the MCIS problem can be reformulated
into an instance of the maximum clique problem when considering the micro-
structure. TR-decomposition builds up on this idea. To make it easier to find
maximum cliques, the microstructure is triangulated, much like in the process
described in Section 1.4.2 for building a tree decomposition. Once again, the
main interests of this triangulation step are the linear number of maximal
cliques that it yields and the fact that these cliques are easy to enumerate
(using the simplicial order created by the triangulation algorithm MinFill).

TR-decomposition for the MCIS problem

While TR-decomposition was initially defined for binary CSP instances, the
CP model of [NS11] is a soft CSP. Nevertheless, TR-decomposition can still be
employed to solve the MCIS problem by considering the compatibility graph
instead of the microstructure. Like JÉGOU ([JÉG93]), we propose to use the

74 CHAPTER 6. DECOMPOSING THE MCIS PROBLEM

a,1

a,2
a,3

b,1

b,2

b,3

c,1

c,2

c,3

Figure 6.3 – A triangulated version of the compatibility graph of Fig-
ure 5.3. The edges that were added (“fill edges”) are drawn with dashed
lines.

class of triangulated graphs to take advantage of their property to have a few
maximal cliques.

Let n be the number of variables in the CSP instance. JÉGOU proved that
a solution of the problem corresponds to an n-clique in the microstructure
and that, conversely, an n-clique in the microstructure gives a solution of the
problem. Since finding an n-clique in a given graph is anNP-complete problem,
it is customary to use particular classes of graphs that are known to have only
a limited, polynomial number of maximal cliques [JÉG93; CJK03].

More precisely, we triangulate the compatibility graph with the MinFill
algorithm [KJA90]. As explained in Section 1.3, this algorithm adds edges, called
fill edges. The fill edges add erroneous compatibilities. Therefore, a maximum
clique in the triangulated version of the microstructure is not invariably the
best solution anymore, but simply is a subproblem in which we might find
solutions – or no solution at all, depending on the subproblem.

Figure 6.3 shows an example of a triangulated compatibility graph.
Actually, a maximum clique of the original compatibility graph is still a

clique (though not necessarily maximum or even maximal) in the triangulated
graph. Moreover, it is bound to appear in at least one maximal clique of the
triangulated compatibility graph. This ensures that we cannot possibly miss a
solution [JÉG93; CJK03].

Resulting subproblems
Each maximal clique of the triangulated graph defines a subproblem (actually
an induced subgraph of the compatibility graph) in which we may find a
maximum clique of the original compatibility graph. Such a subproblem can
be seen as an MCIS instance, involving a pair of smaller graphs, that can be
solved using the CP model of [NS11].

More precisely, given a maximal clique K of the triangulation of the compat-

6.2. STRUCTURAL DECOMPOSITION 75

b,1

b,2

c,3

Da = {⊥}
Db = {1, 2, ⊥}
Dc = {3, ⊥}

b

c

1

3

Figure 6.4 – A clique of the triangulated compatibility graph and a
common subgraph that can be found in it by solving the corresponding
CSP. Since no vertex in the clique involves the vertex a from the first
of the two compared graphs, the domain for a in the corresponding CSP
only contains ⊥, and a therefore has no way to appear in this common
subgraph since it cannot be matched with any node of the second graph
involved in the comparison.

ibility graph associated with G and G′, we define a subproblem which has the
same variables and constraints as the initial problem. However, the domain of
every variable xu is restricted to:

D(xu) = {v ∈ NG′ | (u,v) ∈ K}∪{⊥}

The domains of x⊥ and cost remain unchanged. For example, in Figure 6.3,
the subset of nodes {(b,1), (b,3), (c,2)} is a maximal clique of the triangu-
lated graph. In the associated subproblem, D(xb) = {1,3,⊥}, D(xc) = {2,⊥},
and D(xa) = {⊥}. Every solution of every subproblem corresponds to a maximal
clique of the compatibility graph, and therefore to a common induced subgraph.
In our example, the subproblem has two solutions of cost 1, namely {xa←⊥,
xb← 1, xc← 2} and {xa←⊥, xb← 3, xc← 2}. These solutions are optimal, and
correspond to two maximal cliques of the compatibility graph: {(b,1), (c,2)}
and {(b,3), (c,2)}. The edge linking (b,1) to (b,3) cannot be used as it is a fill
edge, added during the triangulation step.

Figure 6.4 shows an alternative concrete example of a constraint program-
ming subproblem stemming from a TR-decomposition, along with a solution.

A final note on this topic should be made with regards to the order in which
subproblems are considered. As pointed out in the literature, when solving an
optimization problem such as the MCIS problem with a parallel approach, a
key point is to solve the most promising subproblems first. They are likely to
contain solutions offering a good objective value, and finding such solutions will
allow to prune more branches of the search tree when solving the remaining
subproblems [MP14].

6.2.2 Balancing the size of subproblems
STR may generate subproblems with very unbalanced sizes. In order to gen-
erate better balanced subproblems while also exerting some control over the

76 CHAPTER 6. DECOMPOSING THE MCIS PROBLEM

number of generated subproblems, we propose to recursively decompose the
largest subproblems by running TR-decomposition on them again. This proced-
ure is described in Algorithm 6.2:

1. We first triangulate the compatibility graph GC and store all its maximal
cliques in a set S (lines 1–3).

2. Then, while |S| is lower than the required number n of subproblems, we
remove from it its largest clique K, triangulate the subgraph of GC induced
by K and compute the set SK of all its maximal cliques (lines 6–10).

3. If there is only one maximal clique in the triangulation of the subgraph
of GC induced by K, it means that K could not be decomposed any more.
We store this information in order to avoid trying to decomposing K again
(lines 11–12).

4. If the decomposition yielded several cliques (stored in SK), we then con-
sider them. Some of these cliques may actually be subsets of cliques that
already are in S. These non-maximal cliques are not added to S; all other
cliques of SK, however, are stored in S alongside the others (lines 13–16).

5. Finally, once S contains enough cliques (or no decomposable clique re-
mains in S), we build a subproblem for each clique, and return this set of
subproblems (line 17).

Algorithm 6.2: STR decomposition
Input: Two graphs G and G′;

The wanted number n of subproblems.
Output: A set of subproblems.

1 GC← compatibility graph for G and G′

2 GT ←MINFILL(GC)
3 S← set of all maximal cliques of GT
4 Mark all cliques of S as “decomposable”
5 while |S|< n and S contains “decomposable” cliques do
6 K← largest “decomposable” clique from S
7 Remove K from S
8 GC↓K ← subgraph of GC induced by K
9 GT↓K ←MINFILL(GC↓K)

10 SK ← set of all maximal cliques of GT↓K
11 if SK = {K} then
12 Mark K as “non decomposable”
13 foreach clique K′ ∈ SK do
14 if ∀K′′ ∈ S, K′ * K′′ then
15 Add K′ to S
16 Mark K′ as “decomposable”

17 return the set of all subproblems associated with cliques of S

6.2. STRUCTURAL DECOMPOSITION 77

A limit is set on the number of subproblems. Experiments showed that
each of these multiple TR-decompositions creates a reasonable number of
subproblems, thus enabling us to get very close to the chosen limit. Overall,
our structural decomposition gives a satisfying control of the final number of
subproblems.

On a side note, applying TR-decomposition on a subproblem corresponding
to n nodes in the compatibility graph cannot lead to the creation of more than
n subproblems, according to the properties already mentioned regarding the
maximal cliques of a triangulated graph.

6.2.3 Mitigating redundancies
Due to the sheer number of generated subproblems and to the way STR de-
composition was designed, numerous redundancies might appear within this
set of subproblems. The resolution may be facilitated by sorting out these
redundancies using a few simple techniques.

Filtering
If a given subproblem has enough variables with a domain containing only
the value ⊥, it can be proven that it does not contain any worthwhile solution.
More precisely, one can compute a lower bound lb of the size of a maximum
clique in the microstructure in order to determine a minimal number of node
for the MCIS. Such bounds can be obtained in reasonable time, using heur-
istics such as ant colony optimisation algorithms [SF06]. Once this bound is
found, subproblems in which less than lb+1 variables have a domain different
from {⊥} can be discarded, since there is no way for such a subproblem to
allow a solver to build a common subgraph larger than the one provided by the
approximate algorithm run beforehand.

Fusion
Some maximal cliques may have large intersections. In such cases, the cor-
responding subproblems have comparably large intersections, meaning that
we might basically end up solving a same part of the problem several times.
In order to reduce these redundancies, some subproblems can be fused, i.e.
they are replaced by a new subproblem obtained by merging their variables’
domains (see Figure 6.5 for an example). Note that any solution will still
be present in the resulting subproblem, since domains can only grow bigger
during this process.

To prevent subproblems from growing back to the size of the initial problem,
we introduce the notion of gain, which expresses the evolution of the global
problem size during a tentative fusion.

78 CHAPTER 6. DECOMPOSING THE MCIS PROBLEM

Subproblem Sa{
Dx = {1,2,⊥}
Dy = {1,⊥}

Subproblem Sb{
Dx = {1,2,3,⊥}
Dy = {2,⊥}

FUSION(Sa,Sb){
Dx = {1,2,3,⊥}
Dy = {1,2,⊥}

Figure 6.5 – The fusion of two subproblems. Since available values are
combined, every solution of both initial problems are preserved.

Definition 6.1. Let Sa and Sb be two distinct subproblems. The gain offered
by the fusion of Sa with Sb is given by the following quotient:

gain(Sa,Sb) =
size(Sa)+ size(Sb)

size(Sa∪Sb)

where size(Si) is the product of the sizes of variable domains of Si, and Sa∪Sb
represents the subproblem that would be created if Sa and Sb were to be
merged.

We proceed to merge two subproblems only if the corresponding gain is
greater than 1. When multiple suitable fusions can be found, priority is given
to pairs offering the largest gains.

Experimental
evaluation

Experimental
evaluation

Chapter 7
Chapter 7

Contents
7.1 Experimental setup . 79

7.1.1 Initial lower bound . 80
7.2 Benchmark . 80

7.2.1 Overview . 80
7.2.2 Labels . 82
7.2.3 Classes . 82

7.3 Results . 83
7.3.1 Decomposition time and reduction of the search space . 83
7.3.2 Speedup bounds . 84

7.1 Experimental setup
Programs were written in C, compiled using GCC with -O3 optimisation, and
run on an Intel® Xeon® CPU E5-2670 at 2.6GHz processor, with 20 480KB of
cache memory and 4GB of RAM.

The subproblems, for every method, were solved using the CP model intro-
duced in 2011 by NDIAYE and SOLNON for the MCIS [NS11], with the MAC+
Bound consistency level.

In the experimental study that is to follow, one of our goals is to evaluate
the capability of DOM, BIN and STR to generate balanced independent subprob-
lems. As we want to avoid introducing biases, we did not use any particular
ordering heuristics regarding the choices of the most promising subproblems.
Furthermore, it is worth noting that heuristic algorithms are able to find
optimal or near-optimal solutions to the MCIS problem very quickly. However,
proving the optimality of such solutions with our baseline sequential approach
(MAC+Bound [NS11]) remains challenging.

For each instance, we began by evaluating STR. This method aims to gen-
erate a number of subproblems close to a parameter k by means of iterative
clique decompositions. In the following experiments, k has been set to 1 500.
This set of cliques is then cut down to a new number of k′ by fusing some
subproblems, as explained in Section 6.2.3. To keep our study as fair as pos-
sible, BIN and DOM are then specifically asked to generate the same number k′

of subproblems, thus solving about as many subproblems as STR. Once the
number of subproblems is fixed in this way (with a possibly different number

79

80 CHAPTER 7. EXPERIMENTAL EVALUATION

for each instance), we try to solve those instances with different numbers of
subproblems per workers by altering the number of available workers while
keeping the total number of subproblems unchanged.

7.1.1 Initial lower bound
For each instance, the solution process begins with a run of an ant colony
optimisation algorithm ([SF06]) on the microstructure of the problem in order
to find a large maximal clique. This clique provides a lower bound on the
size of the MCIS. This bound is then used both to speed up the search and
to discard trivially uninteresting subproblems. For 90% of the instances we
deemed interesting in the initial benchmark, it found solutions that eventually
appeared to be optimal. Therefore, the main task addressed here is proving
the optimality of solutions rather than finding new ones.

7.2 Benchmark

7.2.1 Overview
Our experiments for the MCIS problem were run on 109 instances taken from
the benchmark created by CONTE, FOGGIA and VENTO in 2007 [CFV07].
The full original benchmark is comprised of 81 400 instances, divided into a
hundred qualitatively equivalent sets. We used several criteria to bring this
huge number of instances down to a number that would allow more extensive
experiments:

1. We picked four of those hundred sets (those bearing the numbers 2, 3, 4
and 5);

2. Since instances are grouped according to the relative sizes of their MCIS,
we only considered those in which the common subgraph represented
from 10 to 30% of the graphs to be compared;

3. Instances that could be solved in less than a hundred seconds by our
baseline method (CP solver without decomposition) were deemed to easy
and removed;

4. Conversely, we removed instance that could not be solved by the baseline
in less than three hours.

5. Since the ant colony optimisation algorithm used to obtain an initial
bound was very efficient, we decided to focus on performing proofs of
optimality and selected the instances for which this heuristic was able to
find the optimal solution.

Only 109 instances remained after this selection process. They are listed in
Table 7.1.

7.2. BENCHMARK 81

Table 7.1 – Instances used for the maximum common subgraph problem.
The name mcs10_m3D_s60.04, for example, means that the instance has an
MCIS including ten per cent of the vertices of the graphs, is a three-
dimensional mesh, has 60 vertices per graph, and belongs to the fourth
series of the benchmark.

bvg mesh rand

mcs10_b03m_s40.02 mcs10_m2Dr4_s40.02 mcs10_r01_s50.02

mcs10_b03m_s40.03 mcs10_m2Dr4_s40.03 mcs10_r01_s50.03

mcs10_b03m_s40.04 mcs10_m2Dr4_s60.03 mcs10_r01_s50.05

mcs10_b03m_s40.05 mcs10_m2Dr6_s40.02 mcs10_r01_s60.04

mcs10_b03_s40.02 mcs10_m2Dr6_s50.05 mcs10_r01_s60.05

mcs10_b03_s40.03 mcs10_m2Dr6_s60.02 mcs10_r01_s70.02

mcs10_b03_s40.04 mcs10_m2Dr6_s60.05 mcs10_r01_s70.03

mcs10_b03_s40.05 mcs10_m2D_s40.02 mcs10_r01_s70.04

mcs30_b03m_s35.02 mcs10_m2D_s40.04 mcs10_r01_s70.05

mcs30_b03m_s40.02 mcs10_m2D_s40.05 mcs10_r01_s80.05

mcs30_b03m_s40.03 mcs30_m2Dr4_s50.03 mcs10_r02_s90.02

mcs30_b03m_s40.04 mcs30_m2Dr6_s50.03 mcs10_r02_s100.02

mcs30_b03m_s40.05 mcs30_m2Dr6_s60.03 mcs10_r02_s100.03

mcs30_b03_s30.03 mcs30_m2Dr6_s60.04 mcs10_r02_s100.04

mcs30_b03_s40.04 mcs10_m3D_s60.04 mcs10_r02_s100.05

mcs30_b06m_s50.02 mcs30_m3Dr2_s40.02 mcs10_r005_s30.05

mcs30_b06m_s50.03 mcs30_m3Dr2_s40.03 mcs10_r005_s35.05

mcs30_b06m_s50.05 mcs30_m3Dr2_s40.04 mcs10_r005_s40.02

mcs30_b06m_s60.02 mcs30_m3Dr4_s40.04 mcs10_r005_s40.04

mcs30_b06m_s60.03 mcs30_m3Dr4_s40.05 mcs10_r005_s60.05

mcs30_b06_s50.02 mcs30_m3Dr4_s70.04 mcs30_r01_s70.02

mcs30_b06_s50.03 mcs30_m3Dr6_s40.02 mcs30_r01_s70.03

mcs30_b06_s50.04 mcs30_m3Dr6_s70.03 mcs30_r01_s70.04

mcs30_b06_s60.02 mcs30_m4Dr2_s50.03 mcs30_r01_s70.05

mcs30_b06_s60.04 mcs30_m4Dr6_s60.02 mcs30_r01_s80.02

mcs30_b06_s60.05 mcs30_m4D_s50.03 mcs30_r01_s80.03

mcs30_b06_s70.05 mcs30_r01_s80.04

mcs30_b09m_s50.03 mcs30_r01_s80.05

mcs30_b09m_s50.04 mcs30_r01_s90.02

mcs30_b09m_s60.02 mcs30_r01_s90.03

mcs30_b09m_s60.03 mcs30_r01_s90.04

mcs30_b09m_s70.02 mcs30_r01_s90.05

mcs30_b09m_s70.04 mcs30_r01_s100.02

mcs30_b09m_s70.05 mcs30_r01_s100.03

mcs30_b09_s50.02 mcs30_r01_s100.04

mcs30_b09_s60.04 mcs30_r01_s100.05

mcs30_b09_s70.02 mcs30_r005_s30.03

mcs30_b09_s70.03 mcs30_r005_s40.02

mcs30_b09_s70.04 mcs30_r005_s40.04

mcs30_b09_s70.05 mcs30_r005_s60.03

mcs30_b09_s80.02 mcs30_r005_s60.04

mcs30_r005_s60.05

82 CHAPTER 7. EXPERIMENTAL EVALUATION

7.2.2 Labels
This benchmark proposes optional labels for edges and vertices alike. Basically,
a vertex having a certain label can only be matched with a vertex bearing the
exact same label. As for edges, those that stand between matched pairs of
vertices must have the same label in both graphs. Since these labels make
instances easier to solve by providing straightforward domain-filtering oppor-
tunities, we applied these labels in order to be able to include instances of more
varied sizes to our benchmark.

These labels can be parametrized with a percentage p. Given an instance
where two graphs G = (V,E) and G′ = (V ′,E ′) must be searched for an MCIS,
the number of different label types is computed so as to be equal to |V |× p%.
Note that, in this benchmark, the two graphs of any given instance always
have the same number of nodes; thus, in our example, |V |= |V ′|. Therefore, for
a pair of graphs in which each have 50 vertices and a p value of 15%, there
will be 7.5 (rounded down to 7) different kinds of labels for vertices and edges.

To ease comprehension, labels can be seen as colours or natural integers.
As briefly explained before, a vertex with a label l can only be matched with
vertices bearing the label l. Regarding edge labels, the basic idea is that for a
node x to be matchable with a node x′ when a node y is matched with y′, the
label on the edge {x,y} must be the same as the one on the edge {x′,y′} [NS11].

Vertex labels provide a way to cut initial domains with little to no effort,
while edge labels allow additional filtering to be performed every time new
couples of linked vertices are matched, thus gradually speeding up the search.

7.2.3 Classes
Three different classes of graphs can be found in the benchmark, each divided
into subclasses according to the value of a few parameters.

Bounded valence graphs (bvg)

In this class, every node has a degree lower than a given threshold, counting
both inbound and outbound edges. This threshold is called valence. The
authors used three different values for the valence: 3, 6, and 9.

This class also includes instances with introduced irregularities (irregular
bounded valence graphs). These are created by first computing a standard
bounded valence graph and then by moving some of its edges to other vertices,
thus keeping the average valence unchanged by allowing vertices to go beyond
the initially fixed limit.

7.3. RESULTS 83

Randomly connected graphs (rand)
Graphs from this class do not have a particular structure by design. This class
has been introduced to model applications in which each entity can establish
relations with any other entity, independently of their relative positions: the
probability of an edge connecting two nodes is independent from the nodes
themselves. Note that this is highly reminiscent of what is known as the
Erdős–Rényi models.

In this benchmark, the edge-existence probability is fixed for the whole
graph through a chosen edge density η . The authors considered three different
values for η : 0.05, 0.1 and 0.2.

Meshes (mesh)
Some applications involve graphs with an especially regular structure (for
example, in the lower levels of a vision task). Furthermore, it is generally
agreed that graphs with a regular structure are difficult to solve using general
graph matching algorithms, since many parts look alike while only leading to
suboptimal solutions [ULL76].

This benchmark includes mesh connected graphs, in two, three and four
dimensions. In two dimensions, each node (save for those standing at the
edge of the mesh) is connected with its four neighbours. In three-dimensional
meshes (respectively, four-dimensional), this number of neighbours rises up to
six (respectively, eight).

Alongside these regular meshes, the benchmark contains irregular mesh-
connected graphs, obtained by adding distortions to regular meshes. The
authors added edges between randomly selected nodes according to a uniform
distribution. For a pair of graphs in which each have N nodes, ρ×N edges are
added, ρ being a constant greater than zero. The ρ values that have been used
to generate instances for the initial benchmark are 0.2, 0.4 and 0.6.

7.3 Results
7.3.1 Decomposition time and reduction of the

search space
When the initial instance gets decomposed into subproblems, some inconsistent
values are filtered out, either by propagating constraints during the DBDFS
(for DOM and BIN) or when generating subproblems with new domains from
the maximal cliques of the STR decomposition method.

To be beneficial, our decomposition should be performed in a reasonable
amount of time while still providing a significant reduction of the search space.
Table 7.2 show that these conditions are generally met by STR, which results

84 CHAPTER 7. EXPERIMENTAL EVALUATION

Table 7.2 – Reduction of the search space on average on the benchmark
using STR decomposition, along with the decomposition time given rel-
atively to the baseline’s resolution time without decomposition. s0 is the
size of the instance (the product of the domains’ sizes), sall is the sum of
the sizes of every subproblem for a given instance, tdec is the time needed
to decompose the instance, and t0 is the time used by the baseline to solve
the instance without decomposition.

bvg mesh rand All
s0
sall

tdec
t0

s0
sall

tdec
t0

s0
sall

tdec
t0

s0
sall

tdec
t0

DOM 3e2 2e−4 1e2 1e−4 1e3 6e−4 6e2 4e−4

BIN 1 3e−5 1 3e−5 1 1e−4 1 7e−5

STR 5e8 2e−2 6e5 3e−2 1e6 8e−2 2e8 5e−2

in a stronger reduction of the search space than with DOM, but at a higher
cost. BIN, on the other hand, cannot provide any search space reduction due to
the way it was defined, but its computational cost is null.

DOM reduces the search space by a factor of 600 on average for all instances
in all classes, while STR boasts a factor of 200 millions in the same context.

This factor varies depending on the instance class considered. In particu-
lar, for DOM, the search space reduction is lower on bvg and mesh instances,
whereas it is higher on rand instances. A similar phenomenon can be observed
regarding STR, which provides a lesser reduction on mesh and rand instances,
with better performances mostly confined to the bvg instance class.

Search space reduction should obviously be considered together with the
time tdec actually spent to perform the considered decomposition. The decom-
position times registered for DOM and BIN appear to be very similar, repres-
enting less than 0.04% of t0 (on average for the whole benchmark) for DOM and
even 0.007% for BIN. Not surprisingly, decomposition times of STR tend to be
significantly higher, resulting in an average time of 5% of t0.

7.3.2 Speedup bounds
Ignoring decomposition times

We will first examine the resolution times by ignoring the time needed to per-
form any decomposition step involved in the solution process. More precisely,
we compare the speedups of the different methods.

The ratio t0/tmax between the time needed to solve the initial problem and
the time needed to solve the hardest subproblem provides a first upper bound
on the speedup.

7.3. RESULTS 85

Table 7.3 – The minimal, average and maximal speedups obtained on
each class of instance by each method, by ignoring the decomposition
time.

bvg mesh rand All
Min Avg Max Min Avg Max Min Avg Max Avg

DOM 1.6 4.9 45 1.4 4.9 15.2 1.3 2.9 15.5 4.1

BIN 1.1 4 8 0.7 4.6 10.5 0.5 3.7 11.6 4

STR 1.5 11.1 54.3 1.5 9.1 25.1 2.4 5.5 30.2 8.4

 1

 10

 1 10

bvg
meshes

rand

Figure 7.1 – Theoretical speedups of DOM (horizontal axis) and STR
(vertical axis), each with 30 subproblems generated per available worker,
with ignored decomposition times. Each mark corresponds to an instance.

Table 7.3 shows the resulting theoretical speedups through minimal, max-
imal and average values for the three considered methods.

On average for instances of all classes, the highest speedup bound is ob-
tained with STR (8.4), the second highest by DOM (4.1), and the lowest by
BIN (4). STR clearly outperforms the other two methods in this context.

Regardless, all these speedup bounds remain rather low, considering the
fact that each instance has been decomposed into 470 subproblems in average,
with a minimum of 192 subproblems and a maximum topping at 1 053.

Once more, we observe differences in the considered data depending on the
instance classes. Both DOM and STR obtain speedup bounds higher than their
respective means on bvg and mesh instances, while offering lower bounds on
the rand class.

The plots in Figures 7.1, 7.2 and 7.3 show these theoretical speedup bounds
in a more detailed manner, from a per-instance point of view.

For a majority of instances, the speedup bound is more appealing with STR

86 CHAPTER 7. EXPERIMENTAL EVALUATION

 1

 10

 1 10

bvg
meshes

rand

Figure 7.2 – Theoretical speedups of DOM (horizontal axis) and BIN
(vertical axis), each with 30 subproblems generated per available worker,
with ignored decomposition times. Each mark corresponds to an instance.

 1

 10

 1 10

bvg
meshes

rand

Figure 7.3 – Theoretical speedups of BIN (horizontal axis) and STR (ver-
tical axis), each with 30 subproblems generated per available worker,
with ignored decomposition times. Each mark corresponds to an instance.

7.3. RESULTS 87

Table 7.4 – Speedup values observed when taking into account the time
needed to decompose the instance.

bvg mesh rand All
Min Avg Max Min Avg Max Min Avg Max Avg

DOM 1.6 4.8 44.6 1.4 4.9 15.2 1.3 2.9 15.4 4.1

BIN 1.1 4 8 0.7 4.6 10.5 0.5 3.7 11.5 4

STR 1.5 8.6 28.9 1.4 8.2 24.1 1.2 4 13.1 6.7

than with DOM. However, on some instances (mainly standing in the bvg and
mesh classes), this trend is reversed. This remark holds for the two other plots
of this section (DOM / BIN and BIN / STR) too. BIN, though not very impressive,
still has better theoretical bounds than DOM on 67 instances out of the 109
that were considered.

With decomposition times
Though the time tdec spent completing the decomposition step is rather small
for DOM and BIN, it cannot be overlooked when it comes to our STR method.
Consequently, a tighter upper bound on the speedup is worth considering if we
are to provide the reader with a fair experimental evaluation.

We compute these new speedup bounds by dividing t0 by the sum of the
decomposition time tdec and the largest subproblem solution time tmax. This
sum reflects the shortest actual solution time that can reasonably be expected
even when using numerous processing units.

Speedups thus obtained are listed in Table 7.4.
Obviously, taking into account the decomposition times disadvantages STR,

whose results are brought down in a significant way, while DOM and BIN’s
results remain practically unchanged since their decomposition process has
a negligible cost. Still, STR’s results remain attractive despite this change:
it still obtains the largest average speedup bounds, though DOM gets close
results.

Additionally, Figures 7.4, 7.5 and 7.6 display these results from a per-
instance point of view.

We observe that DOM strongly dominates STR on rand instances, obtaining
better speedups on all but two of the 42 instances of this class. The results
are tighter on other classes: 21 against 20 on bvg instances in favour of DOM,
and 16 against 10 on meshes. We notice that STR fares generally better when
speedups are greater. In other words, it performs well on instances that offer a
better potential for parallelisation.

In practice, BIN appears to be rather inefficient, and is clearly outperformed
by DOM and STR alike. This is rather disappointing considering the promising
theoretical speedup bounds it offered and its short decomposition time.

88 CHAPTER 7. EXPERIMENTAL EVALUATION

 1

 10

 1 10

bvg
meshes

rand

Figure 7.4 – Speedups of DOM (horizontal axis) and STR (vertical axis),
each with 30 subproblems generated per available worker. Each mark
corresponds to an instance.

 1

 10

 1 10

bvg
meshes

rand

Figure 7.5 – Speedups of DOM (horizontal axis) and BIN (vertical axis),
each with 30 subproblems generated per available worker. Each mark
corresponds to an instance.

7.3. RESULTS 89

 1

 10

 1 10

bvg
meshes

rand

Figure 7.6 – Speedups of BIN (horizontal axis) and STR (vertical axis),
each with 30 subproblems generated per available worker. Each mark
corresponds to an instance.

Time needed to solve subproblems
As explained previously, a major bottleneck in the currently studied context
lies in the time needed to solve the hardest subproblem. However, the hardness
of the rest of the subproblems cannot be overlooked, as they evidently play a
significant part in the speedup eventually obtained by the different methods.

To obtain some insight over this hardness, we considered:

• The solution time ratio between the easiest subproblem and the initial
instance: tmin/t0;
• The average solution time ratio between a subproblem and the initial

instance: tall/(k′× t0);
• The solution time ratio between the hardest subproblem and the initial

instance: tmax/t0.

Note that these are computed on average for all instances of each class. Fur-
thermore, the “easiest” and “hardest” subproblems are designated once the
solution process is complete, according to the time it took to solve each sub-
problem.

The corresponding results are displayed in Table 7.5.
It can be observed that, on average, STR generates harder subproblems

than DOM:

• On bvg, they appear to take four times as much time to be solved;
• On mesh, this factor is lower but still amounts to two;
• Lastly, on rand, subproblems are ten times harder.

On the other hand, the hardest subproblem for each instance is easier to

90 CHAPTER 7. EXPERIMENTAL EVALUATION

Table 7.5 – Subproblem solving time: minimal (tmin/t0), average (tall/(k′×
t0)) and maximal (tmax/t0) values.

bvg mesh rand

Min Avg Max Min Avg Max Min Avg Max

DOM 0.05e−3 4e−3 320e−3 0.1e−3 7e−3 293e−3 0.1e−3 4e−3 491e−3

BIN 6 e−3 48e−3 273e−3 2 e−3 44e−3 317e−3 14 e−3 78e−3 306e−3

STR 0.1 e−3 15e−3 175e−3 0.1e−3 12e−3 179e−3 0.3e−3 38e−3 265e−3

solve when decomposing with STR than when decomposing with DOM. This
significantly helps broadening the aforementioned speedup bottleneck, while
also making workload balancing slightly easier.

These observations match our expectancies regarding the STR approach:
the difficulty is more balanced between the generated subproblems, whereas
DOM creates numerous trivial subproblem and a few very hard ones.

Speedup with 30 subproblems per worker
To observe the behaviour of the three considered methods when confronted with
a number of subprobems of about 30 times the number of workers, we first ran
STR on every instance i, recording the resulting numbers of subproblems si, and
then ran DOM and BIN with si/30 workers, aiming for a number of si subproblems.

Table 7.6 displays the speedup observed with 30 subproblems per worker,
for each decomposition method, and each class of instances (minimum, average
and maximum speedups).

This particular number of subproblems per worker was used in these
experiments because it was described as generally efficient in the literature
when DOM was first described and evaluated [RRM14]. Note, however, that
each worker might not actually get to solve exactly 30 subproblems; we simply
generate a number of subproblems corresponding to 30 times the number of
available workers. What subsequently happens along the solution process
depends on actual resolution times.

Let treal be the time elapsed until the last worker is done with its last
subproblem. The resulting speedup is then given by the ratio t0/(tdec + treal).

We note that, overall, BIN offers very low speedups. On these grounds, STR
outperforms DOM on both bvg and mesh instance classes, whereas it results
in lower speedups on rand instances. These rankings essentially correspond
to the observations we made earlier on theoretical speedup bounds for DOM
and STR. Additionally, actual speedups appear to be closer to their theoretical
bounds for STR than for the two other considered approaches.

Let us finally note that these speedups are quite low, even for the best
decomposition method STR. This can be emphasized by comparing those results
with those found in the literature for other problems. In particular, RÉGIN et

7.3. RESULTS 91

Table 7.6 – Speedups obtained when generating a number of subproblems
corresponding to 30 times the number of available workers.

bvg mesh rand All
Min Avg Max Min Avg Max Min Avg Max Avg

DOM 1.5 3.2 9.2 0.8 3.5 6.4 1.3 2.5 11.9 3

BIN 0.2 1 2.2 0.1 0.9 2.2 0.1 0.6 3.2 0.8

STR 0.3 4.8 25.4 0.6 4 14.8 0.3 1.5 8.1 3.3

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45 50O
b
se

rv
e
d
 s

p
e
e
d
u
p
 o

n
 a

ll
in

st
a
n
ce

s

Number of subproblems per worker

DOM
STR

Figure 7.7 – Evolution of the speedups obtained – in average on the
whole benchmark – by DOM and STR according to the ratio between the
number of generated subproblems and the number of workers.

al. reported positive results on 20 CSPs, with many different instances for each
of those CSPs. With 40 workers and 30 subproblems per worker (for a total of
1 200 subproblems per instance), the average speedup value was 21.3, with the
lowest value, 8.6, still being rather satisfying [RRM13].

Using different numbers of workers
We investigated the effects of a change in the number of available workers on
the speedups of both DOM and STR. The corresponding results are outlined in
Figure 7.7.

This figure shows quite clearly that STR offers greater speedups when the
number of workers is sufficiently high for them to have less than 35 subprob-
lems each to solve in average. It can thus be said that STR makes better use of
spare workers than DOM, which, on the other hand, performs better than STR

92 CHAPTER 7. EXPERIMENTAL EVALUATION

when there are more subproblems per worker.

DiscussionDiscussionChapter 8
Chapter 8

In the maximum common subgraph problem, a subgraph of the largest possible
size must be found in two compared graphs. Common exact solution methods
include:

• Branch and bound, building subgraphs incrementally;
• Constraint programming, possibly with generic domain decomposition;
• Reformulation as a maximum clique problem by exploring the micro-

structure of the corresponding CSP.

In this part, we investigated decomposition methods aiming at facilitating
the resolution of the maximum common subgraph problem. To this aim, two
new approaches, BIN and STR, were described and evaluated against an already
existing method designed for generic CSP solving, DOM.

The conclusions of our observations, thoughts and experiments can be
summarized as follows.

Reduction of the search space
Obviously, a more costly decomposition method can offer better theoretical
advantages by reducing the size of the search space that the subsequently used
solver will have to go through. STR, by means of successive decompositions that
take into account the structure of the problem, followed by a step of fusions
aiming at reducing redundancies, offers a significant reduction of this space.
However, such a decomposition needs far more time to complete than a simple
domain splitting that takes less information into account and proceeds in a
more systematic fashion.

Issues encountered with BIN

Our earliest experiments quickly showed that BIN was, in practice, tremend-
ously hindered by numerous hard subproblems. In addition to making it
harder to balance the workload, they obviously made the overall solution
process longer.

However, it is worth noting that BIN’s hardest subproblem for each instance
tends to be lower that DOM’s on two of the three considered instance classes.
Therefore, the subproblems generated by BIN have a well-balanced difficulty,
but they are challenging overall.

After conducting more in-depth evaluations, we had to conclude that BIN
was not competitive for this problem, especially when compared with STR
and DOM.

93

94 CHAPTER 8. DISCUSSION

Efficiency according to the number of subproblems
per worker
When trying to make the number of subproblems per worker vary, it appeared
that every method did not fare as well in each situation. On our benchmark,
when generating less than 35 subproblems per available worker, STR showed a
higher efficiency in terms of effective speedup. On the other hand, when using
a larger number of subproblems per worker, DOM will generally appear to be
better suited.

Overall impressions on efficiency
What eventually transpired through all these experiments was that, overall,
all those methods were still insufficiently adapted and efficient for the MCIS
problem. Speedups remained rather low and results were quite disappointing.
This serves to prove once more how exceptionally hard the MCIS problem is, as
the instances we considered were still generally small (no more than a hundred
vertices, which is actually a limit in the benchmark they were taken from).

Y Part III Z

The sum colouring problem

95

96

This part is concerned with the sum colouring problem, a variant of the
classical graph colouring problem. We will begin by defining this problem in
Chapter 9, while also presenting the existing approaches.

The sum colouring problem is outstandingly difficult to solve to optimality.
A few complete approaches have been proposed, but overall results remain
disappointing. This part looks into ways to cope with this difficulty, to a certain
extent.

Firstly, we investigate ways to improve existing methods: most of them
had only been proposed recently, and the models, notably, were still quite
simple. Moreover, partly due to the nonexistence of dedicated benchmarks and
relative lack of research directed towards this problem, some methods were
not intensively evaluated or compared. The improvements and alterations we
proposed are described within Chapter 10.

Secondly, we capitalize on the knowledge offered by these existing methods
and our improvements in order to devise a new approach, whose workings are
given in Chapter 11. This approach employs a tree decomposition in order to
derive profit from any structural information the instances may contain. It also
has the peculiarity of combining two different models: one using constraint
programming and a second one based on integer linear programming. These
different models obviously have to be handled using different solvers, but
combining them holds certain advantages.

As in many optimization problems, bounds are particularly useful to a
solver. The sum colouring problem being a minimisation problem, upper
bounds are especially interesting to reduce the scope of the search, since they
allow the solver to discard any part of the search space that cannot possibly
hold a solution beating this bound. A way to obtain such bounds in the context
of our main new approach is investigated in Chapter 12.

After introducing all these elements, we research ways to combine a set of
methods. This is done by means of a portfolio approach, which automatically
chooses one of the available resolution method for each instance, according to
a set of features that get extracted from it. This idea is detailed in Chapter 13.

Finally, Chapter 14 will provide a discussion on the contents of this part in
order to suitably bring it to a close.

The sum colouring
problem

The sum colouring
problem

Chapter 9
Chapter 9

Contents
9.1 Definitions . 97

9.1.1 Graph colouring . 97
9.1.2 Sum colouring . 98

9.2 Existing bounds . 100
9.2.1 Bounds for the chromatic sum 100
9.2.2 Bounds for the chromatic strength 101

9.3 Existing approaches . 104
9.3.1 Incomplete approaches 104
9.3.2 Constraint programming 105
9.3.3 Integer linear programming 105
9.3.4 Boolean satisfiability . 106

This chapter discusses the sum colouring problem in details, with the
first necessary definitions presented in Section 9.1, and ways to compute
various bounds compiled in Section 9.2. Existing approaches are then listed in
Section 9.3, starting with the incomplete ones. We then describe the constraint
programming and integer linear programming models, with a few words on
boolean satisfiability models.

9.1 Definitions
9.1.1 Graph colouring
Before defining the sum colouring problem, we must make sure to be familiar
with the notion of colouring and the classical graph colouring problem, from
which sum colouring originated.

Definition 9.1. Given a positive integer k and a graph G=(V,E), a colouring
(or, more precisely, k-colouring) of G is a function c : V →{1,2, . . . ,k}. k is the
number of colours of c.

Definition 9.2. A colouring c of a graph G = (V,E) is said to be valid (or
proper) if and only if for every edge {x,y} ∈ E, c(x) 6= c(y).

Intuitively, it means that neighbour vertices do not share the same colour.

97

98 CHAPTER 9. THE SUM COLOURING PROBLEM

Definition 9.3. For a given graph G, the smallest number k such that a
proper k-colouring of G exists is called the chromatic number χ(G) of G.

The classical graph colouring problem consists in finding a colouring of a
graph G with χ(G) colours. Such problems find various concrete applications,
notably in timetabling processes, where colours represent time slots, vertices
stand for activities that must be matched with such slots, and edges denote
conflicts between activities (human resources, objects that cannot be in two
places at the same time. . .). In such a case, finding a valid colouring with few
colours will yield a usable timetable spanning fewer time slots.

9.1.2 Sum colouring
In some contexts, there might be additional notions of costs or preferences
between some tasks or time slots. The sum colouring problem aims at providing
a more complex framework for such occurrences [KUB04].

Definition 9.4. The sum colouring for a given colouring c of a graph G =
(V,E) is the number ∑(c) = ∑

x∈V
c(x).

Definition 9.5. For a graph G, the number

min{∑(c′) | c′ is a valid colouring of G}

is the chromatic sum of G, denoted by ∑(G).

The minimum sum colouring (MSC) problem consists in finding, for a given
graph G, a valid colouring c minimizing ∑(c) (finding the value of ∑(G) in the
process, since ∑(c) = ∑(G)). It is an NP-hard problem [KS89].

This problem holds a close relationship with the classical colouring prob-
lem, which consists in finding a valid colouring with the minimal number of
colours and is also NP-hard [GJ79]. However, it is important to note that for
a given graph G, the optimal solutions generally differ. An example of such a
divergence is shown in Figure 9.1.

One of the numerous reasons why the MSC problem is harder to solve than
the colouring problem is that simply finding a solution that uses k colours does
not allow the solver to start ignoring solutions that use k or more colours. The
search space thus generally shrinks significantly slower.

Major colourings
As in many graph problems, symmetries can be found in the MSC problem’s
search space. The notion of major colourings can help breaking some of them.

A colouring c of G can be seen as an ordered partition of the vertices of G
into stable sets. Indeed, for each colour k, the set of all vertices xi such that
c(xi) = k constitutes a stable set.

9.1. DEFINITIONS 99

1

1

1

2 1 2

2

2

1

1

1

2 3 1

1

1

Figure 9.1 – A graph with, on the left, an optimal solution for the classical
colouring problem (χ(G) = 2), and, on the right, an optimal solution for
the MSC problem (∑(G) = 11). Introducing a third colour allows us to
obtain a lower sum of weights (11 instead of 12).

Intuitively, the order of these sets (which are more specifically referred to as
colour classes) can be changed without impairing the validity of the considered
colouring. We can define a new valid k-colouring c′ from an initial k-colouring c
by means of a permutation p defined on the set {1, . . . ,k} simply by stating
c′(x) 7→ p(c(x)). Applying such a substitution to a colouring is equivalent to
swapping the colours around without altering the contents of the stable sets
themselves.

The set of colourings that can be obtained by such exchanges from a given
initial colouring are symmetrical and form an equivalence class. Within such a
class, all colourings share the same number of colours. However, the sum of
weights they induce can vary greatly. To extract the colourings that yield the
best sums from these equivalence classes, the notion of major colourings has
been introduced [LLL16].

Definition 9.6. A major (or dominant) k-colouring c is a colouring for which
|c1| ≥ |c2| ≥ . . .≥ |ck|, where ci is the set of vertices that use the colour i in c.

In other words, in such a colouring, the cheapest colours are used on the
largest stable sets, while the ones with larger weights are preserved for sets
that do not hold many vertices.

Figure 9.2 shows a dominated (i.e., non-major) colouring and a correspond-
ing major colouring.

A direct consequence of the definition of a major colouring is that such a
colouring c has a lower sum colouring than every colouring that belongs to the
same equivalence class as c. It naturally follows that every optimal solution
of an instance of the MSC problem is a major colouring, and that only these
particular colourings are worth considering when solving this problem.

From here onwards, the technique consisting in reordering the colour
classes by size in order to tentatively improve each solution found during a
search will be referred to as colour swapping.

It is important to note that solvers can still be allowed to look for a colouring
that is not a major one in order to find upper bounds more easily. Such a

100 CHAPTER 9. THE SUM COLOURING PROBLEM

3

3

3

2 1 3

3

3

∑(c) = 1+2+6×3 = 21

1

1

1

2 3 1

1

1

∑(c′) = 6×1+2+3 = 11

Figure 9.2 – A 3-colouring c (on the left), and a dominant 3-colouring c′

(on the right) that uses the same sets of vertices as its colour classes, but
reordered so as to obtain a lower sum of weights.

colouring might then be used to build a major one and further improve the
bound, since the appropriate colour permutation is trivial to compute and is
only based on the sizes of the colour classes.

9.2 Existing bounds
9.2.1 Bounds for the chromatic sum
Several theoretical bounds have been found for the MSC problem.

A lower and an upper bound for the chromatic sum can be derived from the
number |E| of edges in the considered graph G = (V,E).

Theorem 9.1.
⌈√

8|E|
⌉
≤ ∑(G)≤

⌊
3(|E|+1)

2

⌋
[THO+89]

In addition, another upper bound is the sum of the numbers of vertices and
edges.

Theorem 9.2. ∑(G)≤ |V |+ |E| [KUB04]

From here onwards, the maximal degree found among the vertices of a
graph G will be denoted by ∆(G).

Theorem 9.3. An optimal sum colouring of a graph G will never employ more
than ∆(G)+1 colours. [KUB04]

Using cliques
Given a valid partial colouring c of the considered graph, a lower bound on the
cost of full colourings that can be obtained by extending c can be computed
in order to get better insights on the usefulness of the branch currently being

9.2. EXISTING BOUNDS 101

explored. A recently proposed method, primarily designed in a branch and
bound context, computes such a bound by relying on clique partitions built
from the set of vertices that have yet to be coloured [LEC+15B].

Definition 9.7. A clique partition of a graph G is a set C of cliques of G such
that each vertex of G appears in exactly one clique of C.

Using cliques partitions to compute bounds for the chromatic sum is a
rather common thing. It has been demonstrated for example that given a
clique decomposition C of G, we have:

∑(G)≥ ∑
Ci∈C

|Ci| · (|Ci|+1)
2

as all vertices within each clique must use different colours [MOU+10].
Such a lower bound basically corresponds to a relaxation of the problem:

every edge standing between two different cliques is ignored, thus allowing
vertices to use cheaper colours than normally possible.

9.2.2 Bounds for the chromatic strength
The number of colours that should be considered is not an actual concern in
the classical colouring problem: there are as many allowed colours as there
are vertices, and the amount that will effectively be in use gets naturally
minimised through the solution process itself, since it is the sole objective.

This ceases from being true for the sum colouring problem, however. Indeed,
a solution a can be less profitable than a solution b even when b needs more
colours than a. We thus need be more permissive, and cannot for example
disregard colourings that use n colours on the grounds that one such colouring
has already been found. The formal conclusion of this observation is that the
initial sets of colours made available to each vertex, which were of no real
importance in the classical colouring problem, must be defined explicitly and
with care when modelling the sum colouring problem. Using a trivial model
that acknowledges as many colours as there are vertices would lead to poor
performances due to a tremendously increased search space size.

Considering a graph G = (V,E), the most naive way of defining the initial
sets of available colours consists in providing every vertex with the possibility
to use any colour from 1 to |V |: in the worst case, a graph will need one new
colour for each vertex in order to be coloured in a valid way. However, this case
is only met if the instance is a complete graph, which is both very unlikely
and very easy to check before attempting any kind of resolution. We thus need
more precise ways of estimating the number of colours that will be needed to
solve the instance. Alternatively, a different set of available colours could of
course be defined for each vertex instead of allowing the exact same colours for
every vertex.

102 CHAPTER 9. THE SUM COLOURING PROBLEM

A slightly better bound that can be applied to every vertex is ∆(G)+1, where
∆(G) is the largest degree that can be found among the vertices of G [KUB04].
It can be rather easily explained using a few notions and intuitions. In an
optimal sum colouring solution, a given vertex always uses the lowest available
colour, otherwise it would be possible to lower the global sum and the solution
would not be optimal. Furthermore, for a colour to be unavailable to a vertex v,
it has to be used by a neighbour of v. Therefore, the largest colour that might
be useful in the graph cannot exceed ∆(G)+1: one colour per neighbour and
one for the vertices having a degree of ∆(G) themselves.

A notion that can help reducing the number of allowed colours is the
chromatic strength of the considered graph.

Definition 9.8. The minimal number of colours found among optimal solu-
tions of the MSC problem for a graph G is called the chromatic strength (or
simply strength) of G, and denoted by s(G).

From this definition, it naturally follows that obtaining an upper bound
of s(G) allows us to globally reduce the number of colours that are worth
considering while looking for an optimal sum colouring of G, and to cut the
sets of allowed colours for all variables accordingly.

To obtain bounds for the strength of a graph, it has been proposed to explore
an abstraction of the set of solutions of the MSC problem [LLL16; LLL17]. This
abstraction is based on the concept of motifs (“patterns”) [BV09; BV14].

Definition 9.9. A motif is a representation of a major colouring c (see
Section 9.1.2) by means of a non-increasing sequence of positive integers p =
(|c1|, . . . , |ck|), where ci is the set of vertices that use the colour i when c is
applied.
The i-th integer of p is denoted by p[i], which is equal to |ci|.
The length |p| of p corresponds to the number k of colours used by c.

Motifs thus bind together sets of colourings that result in the same sum
of weight. Moreover, they only represent major colourings and help reducing
the scope of the problem, since optimal sum colourings are necessarily major
colourings.

Definition 9.10. The set φ(n) contains all the motifs that can be defined on
a graph with n vertices:

φ(n) = {p |
|p|

∑
i=1

p[i] = n}

Definition 9.11. The set φ(n,k) is defined for each strictly positive integer k
as the subset of φ(n) containing only motifs that use k colours:

φ(n,k) = {p ∈ φ(n) | |p|= k}

9.2. EXISTING BOUNDS 103

It follows from these definitions that the motif of a k-colouring c contains
sufficient data to compute the sum colouring of c:

∑(c) = ∑(p) =
k

∑
i=1

(i× p[i])

Several different colourings can share the same motif. Consequently, con-
sidering motifs instead of major colourings reduces the search space.

By introducing a notion of dominance between motifs, the authors depicted
ways to remove some motifs from the search space whenever a valid colouring
is found, while obtaining bounds on the chromatic strength of the graph.

Definition 9.12. A motif p is said to dominate another motif q, if and only
if the following holds:

∀t such that 1≤ t ≤min{|p|, |q|},
t

∑
i=1

p[i]≥
t

∑
i=1

q[i]

This relation is denoted by p� q.

This notion is interesting as a motif p dominating a motif q will necessarily
correspond to a colouring offering a lower sum of weights than q.

Motifs are used to bound s(G) using Algorithm 9.1 [LLL16]. Note that the
function BUILDMAJORMOTIF(λ , k) computes a major motif p from φ(n,k) such
that p[1] = λ . Such a motif is defined as follows:

Definition 9.13. Let n and k be positive integers representing, respectively,
a number of vertices and a number of colours. Let λ be an integer such
that

⌈n
k

⌉
≤ λ ≤ n− k+1. Let β be a shorthand for the value

⌊
n−k
λ−1

⌋
. A major

motif p in φ(n,k) is formed as follows:

p[i] =

λ if 1≤ i≤ β

n−β ×λ − (k−β −1) if i = β +1
1 if β +1 < i≤ k

Strictly speaking, in a major motif, the β first colour classes hold λ ver-
tices each, the k−β −1 last classes contain only one vertex each, and the
intermediate class (at the index β +1) receives the remaining vertices.

Major motifs have several interesting properties.

Theorem 9.4. Let p and q be two motifs of φ(n,k). Then:

• If p is major and p[1] = q[1], then p� q;
• If both p and q are major and p[1]> q[1], then p� q.

104 CHAPTER 9. THE SUM COLOURING PROBLEM

Algorithm 9.1: Computational upper bound for s(G)

Input: The number of vertices n of G;
The cardinality of a maximum stable set α(G);
A valid colouring c.

Output: An upper bound of s(G).
1 k← |c|
2 λ ← α(G)
3 do
4 k← k+1
5 λ = min{λ , n− k+1}
6 p← BUILDMAJORMOTIF(λ , k)
7 while ∑(p)≤ ∑(c)
8 return k−1

Whenever a valid colouring c is found, Algorithm 9.1 can be used to find
the smallest k such that the motif obtained from φ(n,k) with the properties
described in Definition 9.13 has a sum colouring that exceeds that of c. It was
proved that no colouring using k or more colours can be better than c with
regards to the MSC problem [LLL16]. Therefore, every solution using these
numbers of colours can be eliminated from the search space.

This approach brought a significant improvement over the existing bounds
for the chromatic strength [LLL16] and was subsequently employed to compute
bounds directly for the MSC problem itself [LLL17].

9.3 Existing approaches
9.3.1 Incomplete approaches
Most of the work directed towards the MSC problem consists in approximate
methods. A review of most of these approaches may be found in [JHH16]. It
classifies main contributions in three classes:

• Greedy algorithms [WH12; WH13];

• Local search heuristics [BH12; HC11];

• Evolutionary algorithms [JHH14; MOU+; JH16].

Most of these algorithms provide upper bounds, while some also yield
lower bounds. As one would expect though, none of them are able to reach
all best known bounds on the commonly considered instances. The percent-
age of instances on which the best known upper bound is reached ranges
from 46% ([WH12; WH13]) to 90% ([JH16]) on tested graphs, depending on the
heuristic.

9.3. EXISTING APPROACHES 105

Such approaches can still prove the optimality of a solution if the lowest
upper bound happens to reach the highest lower bound. However, such proofs
can only be achieved on 21 instances out of 94, even when combining all the
bounds found by the methods mentioned in [JHH16].

9.3.2 Constraint programming
The first CP model proposed in the literature for the sum colouring problem is
rather straightforward [LEC+15B]:

• The variables simply correspond to the vertices of the considered graph;
• The values that these variables may take correspond to the available

colours (1, 2, . . .);
• A difference constraint xa 6= xb is added for each edge {a,b} of the graph;
• The objective function asks for the minimization of the sum of all

variables.

More formally, for a graph G = (V,E):

X = {x1, . . . ,x|V |}
∀i ∈ {1, . . . , |V |}, D(xi) = {1, . . . ,∆(G)+1}
C =

⋃
{a,b}∈E

{xa 6= xb}

Minimize ∑
xi∈X

xi

In the literature, this model was shown to be rather inefficient, especially
when it comes to making proofs of optimality [LEC+15B].

9.3.3 Integer linear programming
The MSC problem can be modelled through ILP as follows [WAN+12]:

• For each vertex of the considered graph, a boolean variable is defined
for each colour that this vertex is allowed to use. This number of colours
can be bounded, for example, by ∆(G)+1.
Intuitively, if a variable xuk is set to true, it serves to represent the fact
that the vertex u is using the colour k.
• Two different kinds of constraints are used:

1. For a solution to be valid, each vertex must only use a single colour;
2. For each edge e of the graph and each colour c, at most one extremity

of e can use c at any time. This effectively prevents neighbour
vertices from using the same colour.

106 CHAPTER 9. THE SUM COLOURING PROBLEM

• The objective is to minimize a weighted sum, in which each variable
occurs once, with a weight corresponding to the colour it represents.

The formal representation of this model is as follows:

Minimize:

f (x) =
|V |

∑
u=1

K

∑
k=1

k · xuk

Under the constraints:
K

∑
k=1

xuk = 1, u ∈ {1, . . . , |V |} (1)

xuk + xvk ≤ 1, ∀(u,v) ∈ E, ∀k ∈ {1, . . . ,K} (2)

Where K = ∆(G)+1

The main problem that arose with this model is the extensive memory needs
inherent to most ILP approaches. These needs quickly become prohibitive when
the instances grow larger [WAN+12].

9.3.4 Boolean satisfiability
The MSC problem has been modelled as several boolean satisfiability (SAT)
problems [LEC+15B]. This consists in encoding the instance into an equivalent
propositional formula. Both weighted partial MinSAT and MaxSAT encodings
were proposed.

A set of hard clauses is defined, as well as soft clauses. Hard clauses, as
their name implies, have to be satisfied by every solutions. On the other hand,
soft clauses, much like the soft constraints of WCSPs, can be left unsatisfied,
resulting in a cost given by a specific weight associated to each clause. The
goal is either to minimize (“MinSAT”) or to maximize (“MaxSAT”) the sum of
these costs.

In a way similar to what is done in the ILP model presented in Section 9.3.3,
a boolean variable is instantiated for each pair formed by a vertex of the graph
and a colour that it might need to use.

The hard clauses stem directly from the classical graph colouring problem,
and ensure that:

• Each vertex should be assigned at least one colour;
• Each vertex should be assigned at most one colour;
• Adjacent vertices use different colours.

Each soft clause of these models is comprised of a single literal (a variable
or its negation), with a weight determined by the colour corresponding to the

9.3. EXISTING APPROACHES 107

involved variable.
The best results were obtained with a dual encoding of the MaxSAT model,

using the ISAC solver [KAD+10].
The results were rather encouraging. However, due to the overall similarity

between these SAT encodings and the ILP model and to a lack of time, this
thesis focuses on CP and ILP approaches. Moreover, the results shown in the
literature demonstrated that SAT had for example issues solving instances like
queen5_5, which is almost instantly solved to optimality using CPLEX with an
ILP model.

Improving the existing
models

Improving the existing
models

Chapter 10

Chapter 10

Contents
10.1 Reduction of initial domains 108
10.2 Adding allDifferent constraints 109
10.3 Lower bound from a clique partition 113
10.4 Combining sum and allDifferent constraints 115

10.4.1 Description . 116
10.4.2 Adaptation to sum colouring 120

10.5 Heuristic choices . 122
10.6 Hybrid strategies . 123

10.6.1 Restarts . 123
10.6.2 Variable-ordering heuristics 124

10.7 Results . 124
10.7.1 Experimental setup and benchmark 124
10.7.2 Comparison of CP models 127
10.7.3 Comparison of ILP models 128

This chapter presents several improvement for the existing approaches
previously described.

The first two improvements, detailed in Sections 10.1 and 10.2, can be
applied to both constraint programming and integer linear programming. On
the other hand, the latter improvements, described in Sections 10.3 to 10.6,
were specifically used in the constraint programming context.

Lastly, Section 10.7 will present the results obtained with those improve-
ments.

10.1 Reduction of initial domains
In Section 9.2.2, we stressed the importance of considering less colours, and
recalled a few ways to do so in a global fashion.

We saw that a trivial global bound can be defined by ∆(G)+1 for all vertices.
This reasoning can be pushed a little further when there is no particular need
to provide the same initial set of allowed colours to every variable: instead of
using the maximal degree found in the graph, the degree of each vertex can be
considered individually. Indeed, the rules mentioned in the ∆(G) approach still
hold when considering each vertex separately: if the maximal degree is 5, there
is still no need for a vertex of degree 3 to have more than 3+1 = 4 available
colours, since its neighbours will never be able to use every colour in the

108

10.2. ADDING ALLDIFFERENT CONSTRAINTS 109

a

b

c

d e f

g

h

(∆(G) + 1 = 5)

Without reduction:
CP: 8 variables with 5 colours

⇒ 58 = 390625
ILP: 8×5 binary variables

⇒ 240 ' 1.1×1012

With reduction (deg(v)+1):
CP: 6 variables with 2 colours and 2 with 5

⇒ 26×52 = 1600
ILP: 6×2 + 2×5 binary variables

⇒ 26×2+2×5 ' 4194304

Figure 10.1 – The impact of a reduction of the number of considered
colours when considering each vertex independently. The size of the
search space for both CP and ILP models is given. Note that in ILP’s case,
there would also be less constraints. For example, in the reduced version,
there is no need to prevent a and d from using the colour 3 simultaneously,
since a cannot even use this colour anymore.

set {1,2,3,4}, and the colour 5 is of no use whatsoever as long as there is a
lower colour available. This leads us to the following simple theorem:

Theorem 10.1. For any vertex v of a graph (V,E), the initial set of available
colours can be reduced to {1, . . . ,deg(v)+1} without changing the resulting set
of optimal sum colourings.

Proof. To prove this property, let us suppose that it does not hold for a given
optimal colouring c of a graph (V,E). It follows that there exists a vertex v
in V such that c(v)> deg(v)+1. In such a case, there has to exist a colour x ∈
{1, . . . ,deg(v)+1} such that every neighbour of v has a colour different from x
(since v only has deg(v) neighbours). As a consequence, a colouring yielding
a lower sum than c can be obtained by colouring v with x instead of c(v).
Therefore, c is not optimal, which contradicts our initial claim.

When using the ILP model outlined in the first part of this thesis, reducing
the number of considered colours for a vertex has a slightly different effect:
since additional variables and constraints have to be introduced for each
considered colour, these entities become unnecessary and can be removed from
the model altogether.

Figure 10.1 shows the effects of reducing the number of considered colours
for both CP and ILP models.

10.2 Adding allDifferent constraints
The allDifferent global constraint forces the variables {x1, . . . ,xk} in its scope
to use different values. It is thus semantically equivalent to a set of dis-

110 CHAPTER 10. IMPROVING THE EXISTING MODELS

a

b c

d

a 6= b
b 6= c
a 6= d
b 6= d
c 6= d

a

b

d

b c

d

a

b

d

b c

d
c

Figure 10.2 – Different ways to introduce allDifferent constraints in the
sum colouring CP model for a given graph (on the left). The first version
(in the uppermost right corner) only uses allDifferent constraints and
enforces the disequality of b and d twice, while the second (just below)
still comprises two binary disequality constraints (“b 6= c” and “d 6= c”) and
has no redundancies.

equality constraints linking all these variables pairwise: {x1 6= x2, x1 6= x3,
. . . , xk−1 6= xk}. Modelling a problem using allDifferent constraints instead of
such sets of binary constraints, however, is generally beneficial. As explained
in Section 2.1.2, global constraints allow solvers to get a better grasp of the
problem and use more specific tools. A CP solver, for example, will employ a
dedicated propagator in order to eliminate more values from the domains of the
involved variables. The time complexity can be improved as well: allDifferent’s
propagators may for example enforce global consistency in polynomial time.

For these reasons, we decided to introduce allDifferent constraints in sum
colouring problem models. Of course, this cannot be done in a systematic way
as in the n-queens problem: the number of disequality constraints and their
scopes are determined by each instance individually, since they stem directly
from the graph’s structure.

In the sum colouring context, a set of disequality constraints can be safely
replaced with an allDifferent constraint only if they form a clique. Note that
this clique can be found either in the constraint graph or in the graph that
must be coloured, since they are equivalent for this particular problem.

Since the set of solutions of a CP model remains unchanged whether we
state once or n times that two variables must take different values, the scopes
of allDifferent constraints can safely intersect, leading to redundancies that
can be useful to a certain extent, especially when propagators specific to
allDifferent constraints are used. It follows that there are numerous ways to
apply allDifferent constraints to a same given graph. The only imperative is
to cover the entirety of the original disequality constraints. This is shown by
Figure 10.2.

To fully cover the graph with constraints (with a combination of allDifferent

10.2. ADDING ALLDIFFERENT CONSTRAINTS 111

constraints and, for remaining edges, binary disequality constraints), one
must compute a set of cliques {C1, . . . ,Ck} such that every edge of the graph is
found in at least one of these cliques. Note that binary disequality constraints
correspond to cliques of two vertices in this set.

Such a clique set can be computed in many different ways, and many of
them are not that costly. We investigated several ways to build them, with
different levels of redundancies.

Low redundancy version
A way to avoid introducing too many redundancies into the model while repla-
cing sets of disequality constraints by allDifferent constraints is to proceed as
follows:

1. Initialize a graph G as a copy of the graph that must be coloured for the
considered sum colouring instance. Create an empty set of cliques S.

2. Find the vertex with the highest degree in G. This vertex will be the first
of a new clique C.

3. Add to C the vertex that has the highest degree in the subgraph of G
induced by vertices that are linked to every single vertex of C. Repeat
until the clique becomes maximal.

4. Remove from G every edge that links vertices of C, and store C in S.
5. Repeat steps 2–4 until every edge of G has been removed.

Note that all along this procedure, ties are randomly broken.
At the end of this algorithm, each clique of S can be used as the scope of an

allDifferent constraint. However, cliques of only two vertices should obviously be
used to create basic disequality constraints rather than allDifferent constraints
to avoid unnecessary computations during constraint propagation.

Note that using this method, cliques are not necessarily maximal with
respect to the whole initial graph, since edge removals may prevent some of
them to grow to their full initial potential.

Random version
We developed an alternate version, which comprises stochastic aspects and
induces an average level of redundancies between the cliques.

1. We start by building a clique of one vertex for each vertex of the graph.
2. Then, each of these cliques is made maximal by iteratively adding to it

as many vertices as possible.

The main peculiarity of this approach is that at each step during the
maximisation phase of each clique, the additional vertex is selected completely
randomly.

112 CHAPTER 10. IMPROVING THE EXISTING MODELS

Once all the cliques have been maximized in this fashion, some may have
become equal. The simplest possible example is a graph of two vertices a
and b, with an edge between them. A first clique would be created for a, and b
would be added to it, while another clique would start from b and would be
extended with a. The two resulting cliques would then both be comprised of the
vertices {a,b}. Since stating several times the exact same allDifferent constraint
cannot possibly speed-up the solution process, duplicates are discarded. Note
that since these cliques get maximized, there is no inclusion possible between
cliques; only equalities may happen.

Finally, we must make sure every initial disequality constraint is repres-
ented in at least one of the computed cliques. Missing constraints are added
(in the form of binary disequality constraints) to make sure that the resulting
problem accepts the same solutions as the initial one.

Greedy version
Finally, we employed a greedy version, with a higher level of redundancies.
It proceeds just as the random version does, but instead of maximising the
cliques in a random fashion, we choose, at each step, the vertex with the
highest degree in the subgraph induced by the set of vertices that are linked
to every vertex already in the clique.

This is actually the maximisation heuristic used in the low redundancy
version. The difference here is that edges belonging to the built cliques are not
removed from the graph, thus allowing redundancies to appear between the
cliques.

To spread redundancies in a more balanced way, we break ties by selecting
vertices that appear in the fewest cliques.

Observations
Early experiments showed us quite clearly that there was no significant dif-
ference between the improvements brought in results by the allDifferent con-
straints built using these three methods. We eventually settled for the greedy
version, which was marginally better and more consistent in the provided
results.

Adaptation to the ILP model
allDifferent constraints do not actually exist as such in integer linear program-
ming. Furthermore, the ILP model we use for the sum colouring problem
contains several variables for each vertex of the graph (one per colour). Still,
allDifferent constraints can be simulated rather easily in this context.

For each computed clique C and for every colour col allowed for at least two
vertices of the considered graph:

10.3. LOWER BOUND FROM A CLIQUE PARTITION 113

1. We generate the set Vars of binary variables of the original ILP model that
correspond to a vertex of C and to the colour col.

2. Then, if the Vars set holds at least two variables, we add to the model
the constraint ∑x∈Vars x≤ 1. In other words, we make sure no more than a
single vertex in C uses the colour col at any given time.

3. Once this constraint has been introduced, we can remove those (of the
initial model) that state x+ y≤ 1 for any pair of variables x and y of Vars.

10.3 Deriving a cheap lower bound
from a clique partition

The contents of this section are concerned with improving the CP approaches.
The described tools were not applied to our ILP approaches.

As explained in Section 9.2.1, lower bounds can be derived at any node
of the search tree from a clique partition built from the set of uncoloured
vertices. However, we noticed that the cost of building such partitions is far
from negligible and that the abusive use of such a method generally has a
negative impact on the resolution time. Since the idea of such bounds is still
an interesting point, we aimed at finding a better balance between the time
allotted to the computation of these lower bounds and their quality.

Instead of computing a new clique partition at each node of the search tree,
we suggest to cut down the associated cost by computing such a partition only
once, with an acceptable loss in the precision of bounds. This is done before
the actual beginning of the search. In such a case, the partition is obviously
computed on the whole graph, since “the set of uncoloured vertices” is actually
the full set of vertices.

When deriving lower bounds from cliques, the most straightforward method
consists in using the trivial fact that a clique of n vertices will need at least
n colours to be coloured in a valid way, since all its vertices are linked pairwise.
This method can be improved by taking into account the current domains
of the variables corresponding to the clique’s vertices. These domains get
progressively reduced during the search by the propagation of inter-clique
difference constraints, and such reductions will necessarily make the sum of
weights rise within the cliques by forcing some vertices to use more costly
colours.

For a clique of n vertices, the naive lower bound of n · (n+1)/2 can be raised
to the smallest possible sum of n distinct values from the n variables’ domains.
However, updating this bound with an exact value after each domain reduction
would be too costly. Therefore, we introduce an approximate, easier to compute
version of this bound.

For each clique C, we maintain the union u of the domains of the variables
corresponding to the vertices of C. Then, we use the sum of the |C| smaller

114 CHAPTER 10. IMPROVING THE EXISTING MODELS

Dx = {1, 4 }
Dy = { 2, 5}
Dz = { 2 }

u = {1, 2, 4, 5}

Naive bound: 1+2+3 = 6
Three minimal values: 1, 2, 4
Resulting bound: 1+2+4 = 7
Optimal lower bound: 1+2+5 = 8

Figure 10.3 – A lower bound example for a clique of three vertices. In this
case, two values used to compute the bound (1 and 4) can only be found
in the same variable’s domain: x. Therefore, this does not correspond to
a real solution, since x obviously cannot take a second value in another
variable’s stead. This shows how merging domains and forgetting about
the origin of each value can be used as a means to obtain a better balance
between the computational cost and the quality of lower bounds.

values found in u. This indeed corresponds to a lower bound, since even in
optimal conditions no lower sum could be achieved. Actual sums encountered
when building valid solutions will generally be higher, because among the
values employed to obtain such a lower bound, several might be only found in
the domain of a same single variable (see Figure 10.3 for an example).

The complexities of the operations necessary to obtain these bounds appear
to be reasonable:

• Every time a value val is removed from the domain of a variable in a
clique C, a linear time is needed to check whether at least one variable
of C still holds val in its domain;
• The union u of the domains of the clique’s variables is updated accord-

ingly;
• Then, if val is not available in this clique anymore and was one of the
|C| lowest values in u, the bound is updated by subtracting val from it and
adding the new |C|-th lowest value in u.

The global complexity of such an update is thus linear with respect to the
size of the considered clique.

Usage restrictions
Such a bound is generally not very useful when only a few vertices are coloured:
the bound might not be precise enough to prune the current branch (which is
the only goal of such a lower bound). Conversely, when almost all vertices have
been coloured, updating a lower bound might take longer than completing the
exploration of the current branch of the search tree. For these reasons, we
decided to add two parameters to this method.

10.4. COMBINING SUM AND ALLDIFFERENT CONSTRAINTS 115

The gap parameter This first parameter aims at preventing lower bounds
from being computed when not enough information on the current partial
colouring is available. To be able to prune a branch, we need the lower bound
to reach the current global upper bound (which means that the current partial
solution cannot be extended into an interesting solution). These bounds are
more likely to meet when the sum of assigned variables gets closer to the upper
bound. Therefore, we only compute this lower bound if the sum of assigned
variables is at a distance of at most gap % of the current upper bound (which
generally corresponds to the best known solution). Our experiments showed
that a value of 20% is typically a good choice.

The unc parameter To prevent spurious computations, we stop using this
lower bound when only unc or less vertices are still uncoloured. After a few
experiments, we settled for a value of 5.

10.4 Combining sum and allDifferent
constraints

This section is concerned with constraint programming, and more precisely
with the interactions between constraints.

In 2012, BELDICEANU et al. published a paper on the interactions between
a constraint consisting in bounding the sum of a set of variables (sum) and
an allDifferent constraint enforced on the same variables [BEL+12]. Capturing
interesting properties of constraint associations allows to develop specific
propagators that do less computations or provide more information and prune
more values from the domains of variables.

More formally, the sum+allDifferent(C,cost) constraint ensures that all vari-
ables in C use different values, while also preventing their sum from exceeding
the given cost value.

When using a CP model to solve the sum colouring problem, instead of just
using a clique partition of a graph to obtain lower bounds and prune branches
(as explained in Section 10.3), we can see such bounds as a sum constraint.
Indeed, we must make sure the sum of every variables does not exceed the
current global upper bound. Since, in the sum colouring context, we can
define allDifferent constraints on the same cliques without changing the set of
solutions of the problem, this conjunction of constraints deserved our interest.
As a matter of fact, by using sum+allDifferent constraints whose scopes define a
partition of the whole graph, the sum of those partial lower bounds will give a
global lower bound.

We propose to investigate in further details this conjunction’s relevance in
the context of the sum colouring problem.

116 CHAPTER 10. IMPROVING THE EXISTING MODELS

10.4.1 Description
Usage

For any given clique C in the graph that must be coloured, applying the sum+
allDifferent consistency algorithm allows to tighten the domains of the variables
corresponding to the vertices of C. In the process, a lower bound LBC can be
obtained for the sum of these variables.

At the beginning of the solution process, a set of cliques {C1, . . . ,Ck} must
be computed in such a way that they define a partition of the graph: every
vertex must appear in exactly one of those cliques. This ensures that the sum
LBC1 + . . .+LBCk yields a valid lower bound for the whole graph.

Using allDifferent (or sum+allDifferent) constraints only on cliques that define
a partition of the graph’s vertices is rather restrictive, but nothing pre-
vents the model from containing regular allDifferent constraints alongside the
sum+allDifferent constraints. This way, large cliques that might be somewhat
neglected by the sum+allDifferent constraints may benefit from the regular
allDifferent consistency algorithm.

The sum+allDifferent consistency algorithm relies on a few additional ele-
ments that will now be presented.

Minimal cost matchings
The lower bound for the sum of the variables in the scope of an sum+allDifferent
constraint is obtained by means of a matching computation. This matching, or
more precisely minimal cost matching, associates a value with each variable
involved in C. The minimal cost matching is a bipartite graph, which means
that it contains two distinct types of vertices:

• Some vertices (set Variables) represent every variable of C;
• The others (set Values) represent the values that appear in the union of

these variables’ domains.

The minimal cost matching observes the following conditions:

• By definition of a bipartite graph, edges necessarily have one extremity
in each on these sets;
• Each vertex of the Variable set is linked to a Value vertex;
• For each variable v in C, the corresponding vertex from the Variables set

must be linked to a Values vertex that corresponds to a value belonging to
v’s domain;
• Each value in the matching can only be used once, i.e. vertices of the

Values set cannot be linked to more than a single vertex.

All these properties ensure that a minimal cost matching for a set C of
variables describes an assignment of C in which every variable uses a different
value picked from its own domain.

10.4. COMBINING SUM AND ALLDIFFERENT CONSTRAINTS 117

The paper that introduced this approach ([BEL+12]) provides an algorithm
to compute a minimal cost matching for a given sum+allDifferent constraint
while ensuring that the sum of all values used in this matching is minimized.
An imperative condition for this algorithm to be applicable, however, is that
the variables’ domains must not contain holes. In other words, if two values a
and b such that a < b are in a variable v’s domain, any value i such that a < i < b
must be in this domain too.

Additionally, the order in which edges are incorporated into the matching
matters:

• The available values are considered one at a time, starting with the
lowest ones;
• Priority is then given to variables whose maximal values (from their

respective domains) are lower.

This ensures that they are assigned a value if possible before all the values of
their domains are used by other variables. Figure 10.4 shows an example of a
minimal cost matching computed in such a way:

1. The first considered value is 1 (the lowest in the union of domains); it is
assigned to a because the maximal value in Da (4) is smaller than those
of Db and Dc (5);

2. Then, 2 is considered, and assigned to the only unassigned variable that
has 2 in its domain: c;

3. Lastly, 3 is assigned to b following the same rules.

The computation of this matching yields a lower bound through the sum of
the values linked to variables by its edges. It is important to understand that
these values have nothing to do with the actual CP model solution process: this
matching is only a temporary hypothetical assignment used as a tool to obtain
this bound (and, as we will see later, to tighten domains).

Variable blocks
Even with an efficient implementation (the original paper proposes one in
O
(
n logn

)
time), computing a minimal cost matching is a process which is too

costly to be run at each node of the search tree, or even when the search conduc-
ted by the CP solver leads to the actual assignment of a variable belonging to
the scope of the considered sum+allDifferent constraint. To prevent unnecessary
computations, BELDICEANU et al. designed a convenient workaround, based
of groups of variables called blocks.

For each sum+allDifferent(C,cost) constraint, blocks of variables must be
defined. A block is a subset of the variables corresponding to the vertices of C.
Furthermore, the blocks of C define a partition of the variables of C: every
variable involved in C appears in exactly one block. The main idea behind this
approach is that variables of a same block are considered as playing the same

118 CHAPTER 10. IMPROVING THE EXISTING MODELS

XC = {a,b,c}

Da = {1, 2, 3, 4 }
Db = { 3, 4, 5}
Dc = { 2, 3, 4, 5}

Da∪Db∪Dc = {1,2,3,4,5}

a

b

c

1

2

3

4

5

1

3

2

Figure 10.4 – A simple minimal cost matching example for a clique of
three vertices. The edges are numbered according to the order in which
they were added to the matching. a was given a value first because its
domain’s maximal value, 1, is the lowest. The sum of used values – and
thus the lower bound – is 6. Dotted edges are those that could have been
added to the matching with regards to the variables’ domains but were
not selected.

role in the computed minimal cost matching and are thus interchangeable.
A block is more formally defined as a set of (variable,value) edges from the

previously computed minimal cost matching. Within any given block, the edges
must have been added consecutively to the matching. Blocks are built in such
a way that certain properties hold:

• Variables corresponding to every edge past the end of the block have a
domain with a minimal value which is strictly greater than the value
corresponding to the last edge of the block;
• There must not be an index j greater than that of the beginning of the

block such that for every index i between j and the end of the block, the
minimal value of the variable of the i-th edge is greater or equal than the
used value of the j-th edge.

The first of those properties simply ensures that blocks are maximal with
regards to the number of edges they contain. The second one prevents a block
from being included into another [BEL+12].

To list blocks, one should start with the first one, which has the very first
edge of the matching as its starting point, and then look for an end point that
satisfies the aforementioned conditions. Candidate end points are considered
starting with the farthest one (the last edge of the matching), towards the
beginning of the matching, until a suitable one is found. The next block can
then be built in much the same way, starting with the edge of the matching

10.4. COMBINING SUM AND ALLDIFFERENT CONSTRAINTS 119

placed just after the last edge of the previously computed block. This process
is repeated until a block reaching the last edge of the matching is found.

Basically, blocks form groups of variables that have similar domains and
that can be indifferently swapped when computing the lower bound associ-
ated with the considered clique. This provides a way to quickly update the
previously computed bound depending on the assignments that were actually
performed by the solver. This particular point will now be addressed.

Updating the matching’s bound

For a variable v in a block b, if v actually gets assigned a value n by the CP
solver:

• If, in the computed matching, n is linked to a variable v′ of b, then the
previously computed lower bound is still valid: v and v′ are considered
swappable and this assignment has no particular effect on the perspect-
ives offered by the current partial assignment. This, of course, also
applies if v = v′;
• If, on the other hand, n is outside the boundaries of b according to the

values that the variables of b use in the computed matching, v is expelled
from the block b and constitutes a new block on its own. Furthermore,
the lower bound has to be updated by substituting a new value for the
one that used to be linked to v in the matching. This new value, which
can be found in linear time, is the smallest unmatched value greater than
or equal to n.

Therefore, overheads only occur when the lower bound actually needs to
be updated, and even so, these computations are fast compared with a new
matching computation.

Bound consistency

Apart from providing a lower bound for the sum of the variables in the scope
of a sum+allDifferent constraint, the consistency algorithm of this conjunction
tighten the domains of variables: it is a bound consistency condition, where
only the extreme values of the domains are considered for deletion.

This filtering algorithm works by identifying, for each block b of variables
(starting with the last), the lowest value v such that it can be proven that if a
variable of the block b is assigned the value v, the minimal cost of the matching
will exceed the maximal acceptable cost for this sum+allDifferent constraint.

120 CHAPTER 10. IMPROVING THE EXISTING MODELS

10.4.2 Adaptation to sum colouring

Obtaining a global lower bound

To obtain a lower bound on the sum of every variable of the problem using
sum+allDifferent constraints, we would need an instance of such a constraint
spanning all the variables. Obviously, this is not the case: we cannot force
every single variable to use a different value and must respect the initial
structure of the problem.

A convenient workaround is to define a partition into cliques of the vertex of
the considered graph. Then, by applying separate sum+allDifferent constraints
to the set of variables corresponding to these cliques, we can obtain local lower
bounds whose sum yields a global lower bound for the sum of every variable of
the problem.

The validity of this technique is ensured by the fact that the sum constraint
is decomposable: the sum of lower bounds computed on parts of the problem
corresponds to a valid global lower bound.

On a side note: when using such a partition, the maximal acceptable cost
for a sum+allDifferent constraint required for its bound consistency filtering
algorithm can be easily obtained in our context by subtracting the sum of the
lower bounds of the other sum+allDifferent constraints from the global upper
bound.

Matchings and holes

As stated before, a minimal cost matching can only be computed safely when
the domains of the considered variables do not have holes. In sum colouring
instances, domains often have such holes, especially when considered partway
through the search led by the CP solver. A simple workaround is to behave
as if holes did not exist when computing the matchings. However, this will of
course degrade the quality of the resulting lower bounds, since we allow the
algorithm to use values that are not actually available.

Usage restrictions

As explained in Section 10.3, using bounds in inappropriate contexts may lead
to unfruitful repetitive computations. We thus provided this method with
the same two parameters used by the previously presented bound algorithm.
However, experiments showed us that the optimal values were different. For
the gap parameter, the value 50% appeared to be a good choice for the sum+
allDifferent bound computation algorithm, while unc was brought to 0.

10.4. COMBINING SUM AND ALLDIFFERENT CONSTRAINTS 121

Blocks and sum colouring
As briefly explained earlier, the blocks computed from the matchings used by
this approach are closely related to the domains of variables: variables with
similar domains will tend to be gathered into a block.

In the sum colouring problem’s context, most variables have very similar
initial domains. In particular, most domains have the same minimal value.
We observed during early experiments that, for almost every instance of
our benchmark, each clique of the computed partition gave birth to a single
monolithic block. This appeared to lower the quality of the resulting lower
bounds: too many abstractions were being made, since every variable within
the scope of each allDifferent constraint was considered to play the exact same
role.

Matching delay
Since the initial domains’ nature seemed to be the cause of this lack of efficiency
in our context, we considered the possibility of waiting before computing the
blocs and matchings.

We therefore wait until the condition gap is reached to compute the match-
ings and corresponding blocks. Here, however, the main idea is not to prevent
unnecessary computations, but rather to build the matchings – and their asso-
ciated sets of blocks – later, when the variables’ domains have already been
subject to some filtering. We expected this to allow more blocks to coexist
within each clique than when building them at the beginning of the solution
process.

It is important to observe, though, that since these blocks become dependant
of a certain state during the search, they must be scrapped when we backtrack
above the level at which they were created. For example, if matchings and
blocks are computed at a node of the search tree where a variable x is assigned
the value 1 and y the value 3, these matchings and blocks become invalid as
soon as a backtrack undoes one of those assignments. Later during the search,
if the activation conditions are met again, new matchings and blocks will be
computed. These might be discarded again, and so on. Therefore, the cost to
pay is significantly higher than with the standard use of this approach.

Observations regarding this thesis Due to a lack of time, we could not
fine-tune the approach consisting in computing the matching after a certain
delay. It appeared during the few experiments regarding this technique that
most of the time, most domains fell into one of the two following categories:
some domains were almost unreduced and thus looked very much alike each
other, and the others were reduced to a single value (which is equivalent to an
assignment). The overall results thus obtained were indistinguishable from
those stemming from a regular use of the sum+allDifferent conjunction (by com-

122 CHAPTER 10. IMPROVING THE EXISTING MODELS

puting matchings once, at the very beginning of the search, and without ever
scrapping them). This does not mean, however, that this delaying technique is
of no value whatsoever. Further research would be needed in order to be able
to pronounce a definitive conclusion on this matter.

Issues regarding filtering
When using the bound consistency filtering algorithm of the sum+allDifferent
constraint, the trick consisting in acting as if the holes in domains did not exist
cannot be used anymore. More precisely, this filtering algorithm cannot be run
on a block in which at least one variable has a hole in its domain. Indeed, the
value chosen as a new maximum to cut the higher part of domains is computed
on the assumption that the minimal cost matchings can indeed be realized by
the CP solver. Since we fill holes in domains in order to compute this matching,
it often remains purely fictional, with values that could not be used in the
actual search process.

This, however, does not render the filtering algorithm completely unex-
ploitable in the sum colouring context. We simply have to check whether a
block has holes in one of its variables’ domain before attempting to tighten
these domains. If holes are indeed detected, we can only compute the lower
bound discussed earlier. This is somewhat problematic and makes this part of
the approach less beneficial for the sum colouring problem. Our experiments
showed us that virtually every domain that does not have holes during the
solution of a sum colouring instance is actually a singleton (meaning that the
variable was already assigned).

10.5 Heuristic choices
In CP approaches, choosing appropriate heuristics to order values and variables
is a very important point.

As the goal of the sum colouring problem is to minimize the sum of the
variables, we kept the trivial value ordering heuristic choosing the smallest
value available.

We have designed and compared different variable ordering heuristics,
including well-known ones such as Activity and Dom/Wdeg (see Section 2.2.3).
The most interesting results generally involve what we called the MinElim
heuristic. MinElim chooses the variable that has the smallest minimal value
in its domain, and break ties by choosing the variable for which this value
would be removed from the fewest domains.

Example 10.1. Let us consider three variables x, y and z with the following
respective current domains:

Dx = {1,2} Dy = {1,3} Dz = {2,3}

10.6. HYBRID STRATEGIES 123

A tie would occur between x and y, who both have 1 as their lowest available
value. Let nx be the number of neighbours of x that currently have 1 in their
domains and that would therefore lose it were x to be chosen, and ny the
number of neighbours of y that would be in a similar situation in the event
of an assignment of 1 to y. Eventually, x would be chosen if the nx value were
lower than ny, and vice versa.

10.6 Hybrid strategies
Thanks to the flexibility of CP solvers, it is possible to bring changes to the
search strategy partway through the search. This can be done, for example, to
intensify researches after an initial exploration phase, thus making it easier
to prove the optimality of a solution of high quality.

10.6.1 Restarts
During our experiments, we noticed that some strategies were more suited for
exploration (improvement of the global upper bound) while others made proofs
of optimality more easy to perform. However, trying to prove the optimality of
the current upper bound right from the very beginning of the solution process
is generally an inefficient option, as true optimal bounds tend to be discovered
later. This duality within the search process is actually a common concern in
constraint programming.

In an endeavour to get CP solvers to perform more proofs of optimality,
we decided to combine restarts strategies. More specifically, starting with an
exploratory strategy before switching to a proof-oriented strategy after a while
may intuitively lead to better results with regards to proofs of optimality. The
first strategy is Luby [LSZ93], while the second is a geometric one.

When appending strategies in such a manner, an additional thing to decide
is when to switch from the first to the second strategy. A time limit is an
obvious solution, but would not take into account the actual progress of the
search, which could vary. Indeed, it is more profitable to wait until a good
solution (that has a high probability of being the optimal one) is found before
switching strategies.

Considering this, we opted for another approach, consisting in setting a
limit nbRest representing a number of restarts. If a total of nbRest successive
restarts are performed with, in the meantime, no global upper bound improve-
ment whatsoever, the solver will assume that the probability that the current
solution is the optimal one is high enough for a change of strategy to be carried
out in order to favour proof-making.

This combination hence needs four parameters:

• The base value for the geometric phase. 2 is generally a good choice;

124 CHAPTER 10. IMPROVING THE EXISTING MODELS

• The corresponding factor for this phase. 100 leads to satisfying results;
• A second factor reserved to the Luby phase. Using our usual value

of 500 is advisable;
• The number of successive unsuccessful restarts that must be reached

for the strategy to change. 50 appeared to be a good value.

10.6.2 Variable-ordering heuristics
Variable-ordering heuristics, just like restart strategies, can favour different
aspects of the search, especially diversification (to find good solutions) and
intensification (to tentatively prove the optimality of the current best solu-
tion). Therefore, alongside the scheduled change of restart strategy, we allow
the CP solver to go from MinElim to Dom/Ddeg when this change occurs.
While MinElim is better suited for diversification, Dom/Ddeg offers better
capabilities when it comes to proving optimality.

10.7 Results
10.7.1 Experimental setup and benchmark
Programs were written in C / C++, compiled using GCC with -O3 optimisation,
and run on an Intel® Xeon® CPU E5-2670 at 2.6GHz processor, with 20 480KB
of cache memory and 4GB of RAM.

We considered 126 instances which are classically used for sum colour-
ing [WAN+12; JHH16]. Some are from COLOR02/03/04,1 but most of them are
DIMACS instances designed for the classical colouring problem.2 The size of
these instances is detailed in Tables 10.1 and 10.2.

The time limit was set to 24 hours. Note that this still proves to be insuffi-
cient for some of the hardest instances, regardless of the employed resolution
method.

Each instance has an associated reference solution, which is the best known
upper bound, either available in the literature (notably [WAN+12; JHH16]), or
computed by one of our approaches prior to experiments shown in this thesis.
Actually, many instances in our benchmark did not have any bound in the
literature. These reference bounds give a good overview of the state of the art
for our benchmark.

Some tables include distances to reference bounds. The distance between an
upper bound b and a reference solution r is a percentage given by the ratio b−r

r ,
meaning that finding the reference solution leads to a null distance while a
distance of 100% means that b is twice as large as r.

1http://mat.gsia.cmu.edu/COLOR02
2ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

http://mat.gsia.cmu.edu/COLOR02
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

10.7. RESULTS 125

Table 10.1 – (1 / 2) For each instance: its numbers of vertices, edges, and
the resulting density (“D.”).

Inst. |V | |E| D.
1-FullIns_3 30 100 23.0

1-FullIns_4 93 593 13.9

1-FullIns_5 282 3247 8.2

1-Insertions_4 67 232 10.5

1-Insertions_5 202 1227 6.0

1-Insertions_6 607 6337 3.4

2-FullIns_3 52 201 15.2

2-FullIns_4 212 1621 7.2

2-FullIns_5 852 12201 3.4

2-Insertions_3 37 72 10.8

2-Insertions_4 149 541 4.9

2-Insertions_5 597 3936 2.2

3-FullIns_3 80 346 10.9

3-FullIns_4 405 3524 4.3

3-FullIns_5 2030 33751 1.6

3-Insertions_3 56 110 7.1

3-Insertions_4 281 1046 2.7

3-Insertions_5 1406 9695 1.0

4-FullIns_3 114 541 8.4

4-FullIns_4 690 6650 2.8

4-FullIns_5 4146 77305 0.9

4-Insertions_3 79 156 5.1

4-Insertions_4 475 1795 1.6

5-FullIns_3 154 792 6.7

5-FullIns_4 1085 11395 1.9

DSJC125.1 125 736 9.5

DSJC125.5 125 3891 50.2

DSJC125.9 125 6961 89.8

DSJC250.1 250 3218 10.3

DSJC250.5 250 15668 50.3

DSJC250.9 250 27897 89.6

DSJC500.1 500 12458 10.0

Inst. |V | |E| D.
DSJC500.5 500 62624 50.2

DSJC500.9 500 112437 90.1

DSJC1000.1 1000 49629 9.9

DSJC1000.5 1000 249826 50.0

DSJC1000.9 1000 449449 90.0

DSJR500.1 500 3555 2.8

DSJR500.1c 500 121275 97.2

DSJR500.5 500 58862 47.2

anna 138 493 5.2

ash331GPIA 662 4181 1.9

ash608GPIA 1216 7844 1.1

ash958GPIA 1916 12506 0.7

david 87 406 10.9

flat300_20_0 300 21375 47.7

flat300_26_0 300 21633 48.2

flat300_28_0 300 21695 48.4

flat1000_50_0 1000 245000 49.0

flat1000_60_0 1000 245830 49.2

flat1000_76_0 1000 246708 49.4

fpsol2.i.1 496 11654 9.5

fpsol2.i.2 451 8691 8.6

fpsol2.i.3 425 8688 9.6

games120 120 638 8.9

homer 561 1628 1.0

huck 74 301 11.1

inithx.i.1 864 18707 5.0

inithx.i.2 645 13979 6.7

inithx.i.3 621 13969 7.3

jean 80 254 8.0

latin_square_10 900 307350 76.0

le450_5a 450 5714 5.7

le450_5b 450 5734 5.7

126 CHAPTER 10. IMPROVING THE EXISTING MODELS

Table 10.2 – (2 / 2) For each instance: its numbers of vertices, edges, and
the resulting density (“D.”).

Inst. |V | |E| D.
le450_5c 450 9803 9.7

le450_5d 450 9757 9.7

le450_15a 450 8168 8.1

le450_15b 450 8169 8.1

le450_15c 450 16680 16.5

le450_15d 450 16750 16.6

le450_25a 450 8260 8.2

le450_25b 450 8263 8.2

le450_25c 450 17343 17.2

le450_25d 450 17425 17.2

miles250 128 387 4.8

miles500 128 1170 14.4

miles750 128 2113 26.0

miles1000 128 3216 39.6

miles1500 128 5198 64.0

mug88_1 88 146 3.8

mug88_25 88 146 3.8

mug100_1 100 166 3.4

mug100_25 100 166 3.4

mulsol.i.1 197 3925 20.3

mulsol.i.2 188 3885 22.1

mulsol.i.3 184 3916 23.3

mulsol.i.4 185 3946 23.2

mulsol.i.5 186 3973 23.1

myciel3 11 20 36.4

myciel4 23 71 28.1

myciel5 47 236 21.8

myciel6 95 755 16.9

myciel7 191 2360 13.0

qg.order30 900 26100 6.5

qg.order40 1600 62400 4.9

Inst. |V | |E| D.
qg.order60 3600 212400 3.3

queen5_5 25 160 53.3

queen6_6 36 290 46.0

queen7_7 49 476 40.5

queen8_8 64 728 36.1

queen8_12 96 1368 30.0

queen9_9 81 1056 32.6

queen10_10 100 1470 29.7

queen11_11 121 1980 27.3

queen12_12 144 2596 25.2

queen13_13 169 3328 23.4

queen14_14 196 4186 21.9

queen15_15 225 5180 20.6

queen16_16 256 6320 19.4

r125.1 125 209 2.7

r125.1c 125 7501 96.8

r125.5 125 3838 49.5

r250.1 250 867 2.8

r250.1c 250 30227 97.1

r250.5 250 14849 47.7

r1000.1 1000 14378 2.9

school1 385 19095 25.8

school1_nsh 352 14612 23.7

wap05a 905 43081 10.5

wap06a 947 43571 9.7

wap07a 1809 103368 6.3

wap08a 1870 104176 6.0

will199GPIA 701 6772 2.8

zeroin.i.1 211 4100 18.5

zeroin.i.2 211 3541 16.0

zeroin.i.3 206 3540 16.8

10.7. RESULTS 127

10.7.2 Comparison of CP models
Implementation

We implemented CP models using Gecode (version 4.2.1) [TEA08].
We cannot reasonably report results for all the possible combinations of the

different improvements described in the previous sections. Instead, we chose a
few configurations highlighting the changes brought about in the results by
each improvement.

Base The basic model, only using binary disequality constraints. It uses a
basic lower bound defined as the sum of the smallest values from each
domain. Bound consistency is ensured during the search.

AllDiff+Bound A model that uses allDifferent constraints, as defined in Sec-
tion 10.2. A lower bound is defined by using a clique partition and
computing for each clique C the sum of its |C| smallest values in the
union of its variables’ domains. Bound consistency is ensured. The
parameters gap and unc governing the activation and deactivation of the
lower bound computation algorithm are set to 20% and 5, respectively.

AllDiff+Bound+Swap Same as AllDiff+Bound, but with colour swapping
(see Section 9.1.2).

AllDiff+Bound+Swap+Dom Same as AllDiff+Bound+Swap, but with do-
main consistency instead of bound consistency.

AllDiff+SumBound+Swap Same as AllDiff+Bound+Swap, but lower bound
computation is carried out using the bound consistency algorithm de-
scribed in Section 10.4 ([BEL+12]), using blocks of variables. The para-
meters gap and unc are respectively set to 50% and 0 (the best settings
for this configuration).

A few other parameters are worth listing:

• For all these five configurations, the branch and bound (BAB) search
engine was selected;
• When used, allDifferent constraints were represented by Gecode’s “distinct”

constraint;
• The consistency level used for domain consistency was GAC (“ICL_DOM”),

while bound consistency corresponds to “ICL_BND”;
• Gecode uses restarts by default. We chose the Luby policy, with a scale

of 500.

Results
Table 10.3 compares the selected CP models on ten representative instances,
while Table 10.4 gives a summary of global results obtained on the whole
benchmark.

128 CHAPTER 10. IMPROVING THE EXISTING MODELS

AllDiff+Bound outperforms Base on six instances out of these ten. Adding
colour swapping (+Swap) allows an overall improvement of bounds, and proofs
are generally performed faster. Replacing bound consistency (in AllDiff+
Bound+Swap) with domain consistency (AllDiff+Bound+Swap+Dom) pays off
on some instances, but hinders the solution process on some others.

Finally, using the softAllDifferent conjunction of constraints improves the
solution process on a few instances, but also often degrades it. As explained in
the dedicated section, we noticed that, in many cases, all variables within the
scope of each allDifferent constraint used to compute bounds have very similar
domains. Therefore, the bound computed and applied to their sum is very close
to the sum of the smallest values found in the union of the domains.

As a conclusion, none of the proposed CP models appear to be competitive
with state-of-the-art incomplete approaches, as even the best model (AllDiff+
Bound+Swap) is able to reach the reference solution for only 49 instances.

Making proofs with CP None of the considered configurations appeared to
be suitable to make proofs of optimality, as proofs were only made for eleven
instances. The variable ordering heuristic, MinElim, is most probably at fault.
It aims in priority at quickly finding good solutions, extensively exploring the
search space. No focus is given whatsoever on demonstrating that a previously
found solution is the optimal one.

To make our study more complete in this regard, we conducted experiments
with a new CP configuration, designed to prioritize proof-making. It employs
the hybrid restart policy hinted at back in Section 10.6, coupled with the
aforementioned scheduled heuristic change.

This configuration uses the same settings as AllDiff+Bound+Swap+Dom,
except that, as explained in the dedicated section, we change the variable
ordering heuristic partway through the search: as soon as the search endured
50 consecutive restarts (the nbRest parameter) without having improved the
global upper bound, MinElim is replaced by a heuristic that aims at prov-
ing optimality, namely Dom/Ddeg. When the variable ordering heuristic is
changed, we also begin using a geometric restart policy, with a scale value
of 100 and a base of 2.

Using this configuration, we are able to prove optimality for 15 instances
instead of 11. Even though this makes up for an improvement of 36%, this
is still far from the state of the art. For reference, using all known bounds
computed with heuristic approaches from the literature, optimality was proven
for 21 of the 94 considered instances (some of these instances are also used in
the present study) [JHH16].

10.7.3 Comparison of ILP models
We evaluated the impact of the two improvements that can be adapted to ILP
in addition to being usable in CP solvers: the reduction of the set of colours

10.7. RESULTS 129

Ta
bl

e
10

.3
–

D
et

ai
le

d
re

su
lt

s
of

C
P

ap
pr

oa
ch

es
on

te
n

in
st

an
ce

s
ch

os
en

to
hi

gh
li

gh
t

th
e

pe
cu

li
ar

it
ie

s
of

ou
r

m
et

ho
ds

.T
he

im
pr

ov
em

en
ts

ha
ve

be
en

ad
de

d
gr

ad
ua

lly
to

ou
tl

in
e

th
e

as
so

ci
at

ed
di

ff
er

en
ce

s
in

re
su

lt
s.

Fo
r

ea
ch

m
et

ho
d,

fr
om

le
ft

to
ri

gh
t,

th
e

di
st

an
ce

to
th

e
re

fe
re

nc
e

bo
un

d
is

gi
ve

n,
as

w
el

la
s

th
e

ti
m

e
ne

ed
ed

to
fin

d
th

e
be

st
up

pe
r

bo
un

d
re

tu
rn

ed
by

th
e

m
et

ho
d,

an
d

th
e

ti
m

e
ne

ed
ed

to
pr

ov
e

it
s

op
ti

m
al

it
y

if
su

ch
an

ev
en

t
oc

cu
rr

ed
.

T
im

es
ar

e
gi

ve
n

in
se

co
nd

s.

B
as

e
A

llD
if

f+
B

ou
nd

A
llD

if
f+

B
ou

nd
+S

w
ap

A
llD

if
f+

B
ou

nd
+S

w
ap

+D
om

A
llD

if
f+

Su
m

B
ou

nd
+S

w
ap

In
st

an
ce

D
is

t.
t U

B
t p

ro
of

D
is

t.
t U

B
t p

ro
of

D
is

t.
t U

B
t p

ro
of

D
is

t.
t U

B
t p

ro
of

D
is

t.
t U

B
t p

ro
of

D
S
J
C
2
5
0
.
5

12
.1

24
82

3
11

.5
16

17
9

11
.9

84
0

10
.3

51
07

6
11

.4
9

50
5

D
S
J
C
1
0
0
0
.
1

14
.8

84
00

1
15

29
57

0
14

.9
3

34
0

14
.7

66
58

1
14

.5
61

92
1

a
s
h
3
3
1
G
P
I
A

0.
3

14
43

9
0.

6
55

54
3

0.
4

30
12

2
0.

3
6

75
5

0.
7

14
25

8

l
e
4
5
0
_
5
b

12
.4

46
68

5
11

.9
63

36
1

11
.8

8
81

9
10

.1
6

43
9

7.
9

3
82

7

3
-
I
n
s
e
r
t
.
_
3

0
0

0
0

18
65

0
0

0
17

83
8

0
0

19
54

2
0

0

q
g
.
o
r
d
e
r
6
0

0
40

4
0

59
2

59
3

0
20

3
20

3
0

13
8

13
9

0
21

8
21

8

r
1
2
5
.
1

0.
4

4
0

1
47

2
4

19
3

0
1

56
1

4
79

7
0

1
57

0
4

71
3

0.
4

0

i
n
i
t
h
x
.
i
.
3

0.
1

17
57

1
0.

1
84

04
3

0
14

2
0

46
3

0.
1

4

s
c
h
o
o
l
1

36
.3

77
58

1
36

.3
52

11
4

32
75

51
9

36
.3

48
43

4
36

.4
1

07
2

s
c
h
o
o
l
1
_
n
s
h

28
.2

1
32

9
31

.2
42

73
7

26
.7

1
04

7
26

.7
2

60
4

25
.1

13
58

1

130 CHAPTER 10. IMPROVING THE EXISTING MODELS

Table 10.4 – A summary of the global results obtained by our CP ap-
proaches. The columns represent, from left to right: the average distance
to reference bounds (Dist.); the number of times the reference bound was
reached (Ref.); the number of proofs of optimality performed (Proofs); the
number of times a memory out occurred (Mem.).

Dist. Ref. Proofs Mem.

Base 5.57 43 5 0

AllDiff+Bound 5.58 45 11 0

AllDiff+Bound+Swap 5.32 49 11 0

AllDiff+Bound+Swap+Dom 5.44 48 11 0

AllDiff+SumBound+Swap 5.34 45 8 0

initially considered for each vertex initial domain (represented by a decrease
in the number of variables and constraints), and the introduction of allDifferent
constraints (using constraints involving larger sums of variables, as explained
in Section 10.2).

Implementation
We used ILOG’s CPLEX solver (version 12.6.2) [CPL05]. To help CPLEX to avoid
running out of memory, the two following adjustments were made:

• Depth-first search (DFS) was forced as a node selection strategy;
• The cuts factor was set to 1.5.

Previous experiments showed us that these parameters did not significantly
lessen CPLEX’s ability to solve the instances we use.

Results
Table 10.5 compares results of the initial ILP model as proposed in [WAN+12],
simply denoted ILP, with a version that includes the two improvements, ILP+.

The overall amelioration observed in the results can be attributed, for the
most part, to domain reduction, since reducing domains for ILP also removes a
significant number of variables and constraints.

Fine-tuning the ILP approach allowed us to increase the number of optim-
ality proofs from 61 to 65, and the number of times the reference solution has
been found from 66 to 73. Besides, the number of memory outs goes down
from 28 to 23, still being the weakest point of this approach, but to a lesser
extent.

When comparing ILP+ with CP, we note that they perform very differently.
For four of the highlighted instances (the DSJC* and school* classes), ILP+ ran
out of memory. Therefore, the best solution if could find remains far from the

10.7. RESULTS 131

Table 10.5 – Detailed results of ILP approaches on ten instances chosen
to highlight the peculiarities of our methods. For each method, from left
to right, the distance to the reference bound is given (Dist.), as well as the
time tUB needed to find the best upper bound returned by the method, and
the time tproof needed to prove its optimality if such an event occurred. A
“#M#” mark means that the search was aborted due to a lack of memory.
Times are given in seconds.

ILP ILP+
Instance Dist. tUB tproof Dist. tUB tproof

DSJC250.5 42.9 795 42.9 2457 #M#

DSJC1000.1 43.4 1 #M# 43.4 8138 #M#

ash331GPIA 1.8 7066 0 29870

3-Insert._3 0 0 1 0 0 0

le450_5b 7.4 53963 3.6 22554

qg.order60 96.7 0 #M# 6.1 86393

r125.1 0 0 0 0 0 0

inithx.i.3 27 1 #M# 0 9 20

school1 114 7962 #M# 115.7 1 #M#

school1_nsh 111.9 3573 108.2 7990 #M#

reference solution, as well as from the best solution found with CP models. For
qg.order60, the best solution found by ILP is far from optimality, whereas every
single CP model was able to reach the optimum, with two of them even proving
optimality. However, for the five remaining instances, ILP either finds better
solutions (ash331GPIA, le450_5b), proves optimality quicker (3-Insertions_3, r125.1),
or proves optimality while CP cannot (inithx.i.3).

Global results (on the whole benchmark) for ILP models are presented in
Table 10.6. When considering these, it appears quite clearly that ILP+ is able
to find reference solutions and to prove optimality much more often than CP,
but the average distance to reference solutions is much larger, mostly because
of the times it ran out of memory.

More generally, ILP+ ran out of memory for 23 instances, and for these
instances it found solutions very far from reference solutions (and from the
solutions found with CP). Over the 103 remaining instances, ILP found the
reference solution 73 times, and proved optimality for 65 instances – more
than one half of the benchmark.

132 CHAPTER 10. IMPROVING THE EXISTING MODELS

Table 10.6 – A summary of the global results obtained by the basic and
improved ILP approaches. The columns represent, from left to right: the
average distance to reference bounds (Dist.); the number of times the
reference bound was reached (Ref.); the number of proofs of optimality
performed (Proofs); the number of times a memory out occurred (Mem.).

Dist. Ref. Proofs Mem.

ILP 73.36 66 61 28

ILP+ 63.89 73 65 23

Backtracking bounded
by flower

decomposition

Backtracking bounded
by flower

decomposition

Chapter 11

Chapter 11

Contents
11.1 Motivation and principle . 134
11.2 Building a flower decomposition 134
11.3 Aiming for a good flower decomposition 137

11.3.1 Size of the separators . 137
11.3.2 Size of the leaves . 137
11.3.3 CP model to choose separators 138

11.4 BFD summary . 139
11.5 Experimental results . 139

11.5.1 Configurations . 139
11.5.2 Results . 140

The set of improvements described in Chapter 10 allowed CP and ILP
to perform better. However, results are still disappointing, for CP (which
is not as fast as one could expect) as well as for ILP (which uses extensive
amounts of memory). This led us to research into ways to decompose sum
colouring instances into subproblems in order to make these approaches more
competitive still. A way to perform such a decomposition is to use backtracking
bounded by tree decomposition.

As explained in the first part, BTD can be used on optimisation problems,
provided that the objective function is decomposable: the global optimal as-
signment for a given assignment on the root must be obtainable by combining
the optimal solutions of the subproblems. As a matter of fact, the sum colour-
ing problem’s CP model has a decomposable objective function: lowering the
sum of the weights on a part of the graph always goes towards the global goal
consisting in bringing the total sum down. Note that, for the classical colouring
problem, a few adjustments would have to be made: the valued goods should
be associated with equivalence classes rather than with precise assignments,
and the colours should be arranged into a definite order so that the number of
used colours can be deduced from the highest value found in an assignment.

We decided to take advantage of the straightforward decomposability of the
sum colouring problem in order to design a BTD-inspired structural decompos-
ition well suited to solve this problem.

133

134 CHAPTER 11. BACKTRACKING BOUNDED BY FLOWER DECOMP.

11.1 Motivation and principle
When using BTD to solve an optimisation problem, a major drawback is that
consistent assignments must be enumerated on each cluster that is not a leaf
of the tree decomposition, as explained in Section 2.3.3. These enumerations
occur recursively at each level of the tree and induce a large computational
overhead, mostly to compute uninteresting partial solutions.

To alleviate this issue, we propose to significantly reduce the number of
non-leaf clusters, since enumeration only takes place on these. More precisely,
we use a tree decomposition having only one non-leaf cluster, corresponding to
the root, for a resulting height of 1.

The idea of the backtracking bounded by flower decomposition (BFD) ap-
proach is to better exploit the structure of the instance. Besides, it is worth
recalling that in the context of the sum colouring problem, the constraint graph
corresponds to the graph that must be coloured.

More precisely, we aim at splitting V \Cr into k subsets C1, . . . ,Ck, so that,
for each colouring of Cr, the problems associated with these subsets may be
solved independently. Furthermore, this offers a great opportunity to derive
profit from the complementarity of CP and ILP approaches for this problem:
CP is well suited to enumerate consistent assignments on the root (CP solvers
like Gecode can provide one solution at a time on demand), and ILP can quickly
solve subproblems to optimality.

During the search, lower and upper bounds can be recorded for the different
leaf clusters: before attempting to solve a subproblem, if we know that we will
have to pay at least a certain cost on the following subproblems, we can easily
deduce a maximal acceptable cost for the cluster we are about to handle.

Moreover, we used a slight improvement in our implementation: if the
maximal acceptable cost c computed for a subproblem p happens to be higher
than UBp−1, where UBp is the upper bound computed for p, then we updated c
to the value UBp−1. It follows that in such conditions, no matter what happens
during the solution of p, the upper and lower bounds of p will meet, and the
optimal cost will be found.

11.2 Building a flower decomposition
This new method consists in computing a tree decomposition while bounding
its height to 1. This basically means that apart from the root cluster Cr, every
other cluster belongs to a set of leaves which are all children of Cr, as shown in
Figure 11.1.

We build flower decompositions as follows:

1. Build a tree decomposition
(
C, T = (VT ,ET)

)
of the graph G = (V,E), using

for example MinFill;

11.2. BUILDING A FLOWER DECOMPOSITION 135

Cr

Ca Cb

Cc Cd

Cr

C1

C2 C3

Figure 11.1 – Example shapes of classical tree decomposition (on the
left) and flower decomposition (on the right).

2. Gather all separators of the decomposition into a set S:

S = {Cx∩Cy | x,y ∈VT ∧ Cx∩Cy 6=∅}

3. Select a subset S′ of S to define a flower decomposition whose root is the
cluster C′r =

⋃
S′;

4. Compute the subgraph of G induced by V \ C′r and find its connected
components C′1, . . . ,C′k. The connected components of this subgraph will
serve as a base to define the leaves of the flower decomposition;

5. Extend each leaf cluster C′i by adding to it any vertex of C′r that is adjacent
to at least one vertex of C′i in G. Note that since the fill edges of the initial
tree decomposition cease to exist as soon as this initial decomposition is
complete (i.e., at the end of the first step), they do not interfere here;

6. The obtained flower decomposition is
(
C′, T ′ = (VT ′,ET ′)

)
, where:

• C′ = {C′r, C′1, . . . , C′k}
• VT ′ = {vr, v1, . . . , vk}
• ET ′ =

{
{vr,v} | v ∈ {v1, . . . ,vk}

}
An example of this procedure is shown in Figure 11.2.
This process is, overall, similar to a method recently employed by JÉGOU,

KANSO and TERRIOUX [JKT15], who also demonstrated that it yields valid tree
decompositions.

Handling poorly structured instances
For instances that are poorly structured, tree decomposition might result in the
creation of a single monolithic cluster holding all the variables of the problem.
In such a case, the decomposition process itself goes to waste and the problem
does not get any easier to solve.

Building on BFD’s idea though, we can handle such cases in a slightly better
way, forcefully decomposing them to a certain extent.

When a tree decomposition only contains one cluster, we may decompose its
set V of vertices into two subsets: Cr and V \Cr. We then use CP to enumerate

136 CHAPTER 11. BACKTRACKING BOUNDED BY FLOWER DECOMP.

1 2 3

4 5 6 7

8 9 10 11

12 13 14

2,3,5

4,5,9 1,2,5 3,5,6

4,8,9 6,7,10,11

8,9,13 10,11,14

9,12,13

•∩•: {5}

•∩•: {2,5}

•∩•: {3,5}

•∩•: {4,9}

•∩•: {8,9}

•∩•: {9,13}

•∩•: {6}

•∩•: {10,11}

Using {4,9}∪{6}
as the new root:

4,6,9

1,2,3,5 +4,6,9

8,12,13 +4,9

7,10,11,14 +6

Figure 11.2 – The tree decomposition of Figure 1.7, the corresponding
set of separators, and a flower decomposition resulting from the selection
of an example subset of these separators to build the new root cluster.
The vertices that form this new root are highlighted in black in the initial
graph. In the final decomposition, the vertices listed after the “+” sign are
those that were subsequently introduced into the different leaf clusters
in order to form new separators: they are vertices from the root that are
linked to at least one vertex of the considered leaf cluster.

11.3. AIMING FOR A GOOD FLOWER DECOMPOSITION 137

all proper colouring of Cr. For each of these colourings, we use ILP to find the
optimal sum colouring of V \Cr, taking into account the assignments performed
on Cr. Each solution is thus extended to the whole problem in an optimal
fashion. It follows that the best global solution found during this enumeration
and optimisation process is the optimal solution for the initial considered
problem.

11.3 Aiming for a good flower
decomposition

In the building process outlined in the previous section, no information was
given on the way the subset of separators has to be chosen at step 3. We will
now cover this particular topic.

11.3.1 Size of the separators
In BTD, a limit is also enforced on the size of the separators between the
clusters of the tree decomposition. This is usually done by merging clusters
whose separators contain too many variables.

Regarding BFD, a similar approach is used. In BFD’s case, however, we keep
the clusters untouched. Instead, if a separator s exceeds the size limit, the
only effect is that no valued good will be recorded on s during the search, since
doing so would consume a large amount of memory. Moreover, if a separator
happens to correspond to the full root cluster, there is no need to record any
valued good on it, since assignments on such a separator cannot occur twice.

11.3.2 Size of the leaves
To obtain an advantageous flower decomposition, the key point is to build Cr in
such a way that the generated leaves are small enough to be properly solved to
optimality with ILP. To this end, we introduce a parameter l, that enforces a
limit on the size of the leaves in terms of a percentage of the total number of
vertices. More precisely, for each leaf cluster Ci, we ensure that |Ci \Cr| ≤ l×|V |.
Besides, we also carefully favour decompositions offering small root clusters,
since we have to enumerate every proper colouring on this cluster.

Our goal is to find the subset S′ such that the resulting flower decomposition
satisfies the size limit l on the leaf clusters while keeping the size of C′r at a
minimum. We use Gecode to look for a subset of separators satisfying those
criteria. As it is an NP-hard problem, we only allot limited time to this
optimisation phase, and use the best flower decomposition computed within
this limit. More details on this topic follow.

138 CHAPTER 11. BACKTRACKING BOUNDED BY FLOWER DECOMP.

11.3.3 CP model to choose separators
To choose a suitable set of separators from the original tree decomposition
in order to form the root of the flower decomposition, a simple constrained
optimisation model can be built:

• A variable is created for each existing separator. The domains of these
variables are all equal to {0,1}: a separator will be used as part of the new
root if and only if the considered solution assigns 1 to the corresponding
variable;
• A single major constraint is defined. It ensures that removing from the

graph every separator whose variable is set to 1 does not create connected
components with a size exceeding the limit fixed through the l parameter
of BFD. Naturally, CP solvers do not provide any propagator for such
a constraint, and it has to be implemented by the user. Furthermore,
it is strongly advised to run this propagator only once every variable
is assigned. Indeed, aside from the fact that this propagator is rather
costly to run, we must be aware that at the beginning of the search, since
no separator is marked for removal, there would be only a single, large
connected component.
For a set of variables X , a graph G and a limit l, this constraint can be
written as LimLeaf (X , G, l).
• The objective function aims at minimizing the size of the future root,

i.e. the number of distinct vertices in the union of the separator whose
variables are set to 1.

The heuristics we used are also rather straightforward:

• The variables prioritized for assignment are those corresponding to the
largest available separators;
• The value 1 is favoured over 0.

We chose to run the CP solver Gecode for 15 minutes on this model and use
the best solution found within this time.

If this CSP turns out to be inconsistent (or if no solution could be found fast
enough, although this is rather unlikely), we built the decomposition using
a greedy algorithm instead as a fallback. This algorithm iteratively selects
individual vertices, starting with those having the highest degree. It stops
when the removal of the set of selected vertices from the considered graph
generates connected components observing the limit stemming from BFD’s
usual l parameter.

To alleviate the computations throughout the run of this greedy algorithm,
several vertices are selected at each step before checking whether the resulting
connected components fit the requirements. The algorithm starts with one ver-
tex, and proceeds by adding nbSelect new ones at each step. This nbSelect value
is computed through the ratio maxSizeRoot/maxNbSteps, where:

11.4. BFD SUMMARY 139

• maxSizeRoot is simply the maximal number of vertices that can possibly
be in the final root: it is computed by considering a case in which the
decomposition has only two clusters and where the sole leaf cluster has
the maximal number of vertices allowed by the l parameter. It is thus
equal to |V |× (1− l) for a graph (V,E);
• maxNbSteps is an additional parameter aiming at making sure the total

number of steps performed by this algorithm does not exceed a certain
number. Intuitively, it corresponds to the number of steps that will be
needed in the worst case, leading to a trivial decomposition of only two
clusters.

After some experiments, we decided to set maxNbSteps to a value of 50.
Computing the connected components resulting from the removal of a

given set of vertices has a time complexity of O
(
|V |+ |E|

)
. Therefore, the

complexity of the whole greedy algorithm, which performs such computations
a parameter-bounded number of times, is O

(
|V |+ |E|

)
as well.

11.4 BFD summary
Putting together all the information given so far on BFD, we can summarize
the way we use this approach as written in Algorithm 11.1. This algorithm is
largely reminiscent of the Algorithm 2.2, which was provided earlier for the
optimization case of BTD. The main difference is, obviously, that the recursive
call has been replaced with a conversion of the subproblem into an ILP model,
followed by a call to the CPLEX ILP solver.

Solutions for the root cluster are enumerated by the outer loop (line 4).
For each of these consistent assignments, bounds are computed for the corres-
ponding subproblems (lines 5–11). Then, any subproblem that is not trivially
useless is solved as an ILP model (lines 14–19). The bounds associated with the
considered subproblem are then updated according to the ILP solver’s results
(lines 20–23). Throughout the algorithm, values goods are represented by
tuples containing an assignment on the relevant separator, a lower bound, as
well as an upper bound for the underlying subproblem.

11.5 Experimental results
This experimental section aims at comparing the standard BTD approach with
the new BFD decomposition method in the context of sum colouring.

11.5.1 Configurations
The classical approach will be referred to simply as BTD. A few precisions on
this configuration ought to be given:

140 CHAPTER 11. BACKTRACKING BOUNDED BY FLOWER DECOMP.

• The tree decomposition is built using the MinFill algorithm;
• CP is used to solve subproblems;
• Leaf clusters are solved with the Gecode configuration AllDiff+Bound+

Swap, that uses restarts;
• On the other hand, non-leaf clusters are solved with the same configura-

tion, but without restarts, as we need to enumerate all solutions.

We also consider two configurations that employ the newly presented flower
decomposition. These methods will be referred to as BFD l, where l will be
replaced by the value of the parameter setting a limit on the size of leaf
clusters, as seen in the previous sections. Here are a few configuration details:

• Constraint programming (AllDiff+Bound+Swap without restarts) is used
to enumerate the solutions of the non-leaf clusters (in BFD’s context, this
only concerns the root);
• In BFD, ILP+ is used to solve the subproblems induced by the leaves for

each assignment of the separators, once a complete consistent assignment
of the root cluster has been found;
• The maximal size for the separators is set to 30;
• Two different values are used for the l parameter: 75% and 90%. The

resulting methods will thus be referred to as BFD 75 and BFD 90, respect-
ively.

11.5.2 Results
Table 11.1 reports experimental results of BTD, BFD 90 and BFD 75 on the ten
highlighted instances from previous experimental sections of this part.

When looking into these detailed results on our ten representative in-
stances, one can notice that they have complementary results:

• BTD is better than BFD 90 and BFD 75 on DSJC250.5 and school1;
• BFD 90 is better on ash331GPIA, 3-Insertions_3, inithx.i.3, school1_nsh and

r125.1;
• BFD 75 obtains the best results on DSJC1000.1, le450_5b, qg.order60 and r125.1.

Moreover, for two of these instances (namely, r125.1 and school1_nsh), the best
results, over all the approaches considered in this section, are actually obtained
by BFD 90.

Table 11.2 shows a summary of the global results for these same methods.
When looking at those results, we note that BTD is able to find the reference
solution for only 17 instances (instead of 46 and 48 for BFD 90 and BFD 75
respectively), and proves optimality for only 13 instances, when BFD 90 and
BFD 75 perform 39 and 26 proofs respectively. Actually, most of the considered
instances do not show any particular structure, or only a very poor one, and BTD
is generally outperformed on them by the CP approaches that were evaluated

11.5. EXPERIMENTAL RESULTS 141

in Section 10.7.2.
BFD 90 and BFD 75 are able to find reference solutions and to prove optimal-

ity for much more instances than BTD. Actually, on 40 of the 126 instances, we
noticed that the graph’s structure is so poor that there is only one single cluster
in the resulting tree decomposition. In such situations, BFD is still able to build
a flower decomposition by creating a root cluster that contains |V |×(1− l) nodes
along with a leaf cluster comprised of the remaining |V | × l variables. This
often allows BFD to behave much better than BTD.

Still, BFD suffers from a relatively high average distance to reference
solutions. A partial explanation for this issue is that, on some instances, BFD
spends a lot of time enumerating valid colourings of the root cluster, while
many of these partial colourings cannot be extended to obtain good solutions.
BFD has no trivial way of noticing such occurrences and wastes a lot of time
solving to optimality useless subproblems.

Comparing BFD 90 and BFD 75 proves that allowing larger leaf clusters to be
created increases the memory needs, but also eases the computation of upper
bounds. Indeed, it makes the root cluster smaller (alleviating the enumeration
steps) and gives ILP a more global view of the problem, preventing it in some
cases to spend too much time solving a useless subproblem to optimality.

When comparing BFD with the CP approaches of Section 10.7.2, we note
an increase in the number of proofs (39 and 26 instead of 11), but the average
distance to reference solutions is significantly larger.

Similarly, BFD reaches the reference bound less often than ILP+, and per-
forms fewer optimality proofs. However, BFD’s lower memory needs allowed it
to have its solution process aborted more rarely than ILP+.

Putting these observations together, one can conclude that BFD and ILP+
have complementary performance. BFD 90 performs strictly better than CPLEX
on 21 instances, and strictly worse on 91 instances. BFD 75 offers marginally
better results, beating CPLEX on 28 instances while performing worse on
85 instances.

142 CHAPTER 11. BACKTRACKING BOUNDED BY FLOWER DECOMP.

Algorithm 11.1: BFDCPLEX
(
(X ,D,C, f), (C,T), r, maxcost

)
Input: A COP instance (X ,D,C, f);

A tree decomposition (C,T);
The root node r from T ;
A maximum acceptable cost maxcost.

Output: The optimal value for (X ,D,C, f) if it is at most maxcost;
maxcost+1 otherwise.

1 Let P be the CSP (X ,D,C) reduced to the subset of variables from Cr
2 best← maxcost+1
3 Let Ch be the set of children of r in T
4 foreach solution S of P provided by Gecode do
5 foreach child i ∈ Ch do

/* Initialize bounds with values (theoretical, etc.)
computed during preprocessing. */

6 LBi← initLBi
7 UBi← initUBi
8 Let Ai be the tuple of values assigned in S to the separator

between Cr and Ci
9 if a valued good (Ai,LB,UB) exists for Ai then

10 LBi← LB from (Ai,LB,UB)
11 UBi← UB from (Ai,LB,UB)

12 if f (S)+∑i∈Ch LBi < best then
13 while f (S)+∑i∈Ch LBi < best and there is a child i ∈ Ch such that

no optimal valued good exists for the assignment Ai of Ci’s separator
in S do

/* Either Ai is not a valued good, either it is a valued
good with LB < UB. */

14 Let i be a child of r such that Ai is not an optimal valued good
15 Let Ti be the subtree of T rooted in i
16 Let newD be the current domains

/* Convert to ILP the subproblem rooted in i, assigning
the separator’s variables according to Ai. */

17 (X ′,C′, f ′)← CONVERTCPTOILP
(
(X ,newD,C, f), i

)
18 maxcosti←min{best−1− f (S)−∑ j∈Ch,i 6= j LB j, UBi−1}
19 besti← CPLEX

(
(X ′,C′, f ′), maxcosti

)
20 if besti ≤ maxcosti then
21 Record the valued good (Ai,besti,besti)
22 else
23 Record the valued good (Ai,besti,UBi)

24 bestr← f (S)+∑i∈Ch LBi
25 if bestr < best then
26 best← bestr

27 return best

11.5. EXPERIMENTAL RESULTS 143

Table 11.1 – Detailed results of BTD and our two selected BFD configura-
tions on the usual ten highlighted instances. For each method, from left
to right, the distance to the reference bound is given, as well as the time
needed to find the best upper bound returned by the method, and the time
needed to prove its optimality if such an event occurred. A “#M#” mark
means that the search was aborted due to a lack of memory. Times are
given in seconds.

BTD BFD 90 BFD 75

Instance Dist. tUB tproof Dist. tUB tproof Dist. tUB tproof

DSJC250.5 36.4 1 51.2 86400 395.9 0 #M#

DSJC1000.1 43.2 62 463.1 0 #M# 38.7 86400

ash331GPIA 23.4 13 1.1 86400 6.7 1894

3-Insert._3 0 25 1796 0 261 331 0 857 1007

le450_5b 65 16237 41.8 86400 39.5 86400

qg.order60 0.6 4193 5 86400 0.4 86400

r125.1 0 0 1 0 0 0 0 0 0

inithx.i.3 1.2 5 0 106 686 230.3 10907

school1 107.8 82466 628.5 0 #M# 628.5 0 #M#

school1_nsh 98.2 10747 6.1 86400 67.1 86400

Table 11.2 – A summary of the global results of our decomposition ap-
proaches, with BTD for comparison purposes. The columns represent,
from left to right: the average distance to reference bounds (Dist.); the
number of times the reference bound was reached (Ref.); the number of
proofs of optimality performed (Proofs); the number of times a memory
out occurred (Mem.).

Dist. Ref. Proofs Mem.

BTD 24.42 17 13 6

BFD 90 83.4 46 39 18

BFD 75 85.05 48 26 16

Computing local and
global bounds using

partial solutions

Computing local and
global bounds using

partial solutions

Chapter 12

Chapter 12

Contents
12.1 Local bounds . 144
12.2 First solution and global bound 145
12.3 Allotted time for bounds . 148
12.4 Results . 148

An issue frequently encountered during our experiments with BFD is that
it might take a long time to find the first good solutions, which are essential to
prune branches during the search and to avoid spending too much time solving
uninteresting subproblems.

As explained in Section 11.1, lower bounds computed on the different
clusters can be used to detect trivially useless subproblems. However, this
proved to be insufficient when using only simple theoretical lower bounds, due
to the overall low quality of such bounds. We thus investigated ways to obtain
better bounds at an affordable cost.

Similar goals were pursued in different contexts in the literature, for ex-
ample when applying a BTD approach to a WCSP [DSV06; SAN+09].

12.1 Local bounds
To improve our approach in this regard, we designed an improvement that can
be used as a preprocessing step for BFD, plugged between the computation
of the flower decomposition and the actual beginning of the resolution. We
simply use ILP models and CPLEX to find good sum colourings on the clusters
of the decomposition, taken independently, including the root cluster.

To be able to combine and use the resulting bounds more easily, we make
sure every vertex of the graph is considered only once. On account of this,
when we compute bounds for the leaf clusters, the separator is not included.
On the other hand, the bound computed on the root cluster does indeed take
the underlying separators into consideration. This ensures that the sum of the
lower bounds computed for each cluster provide a valid global lower bound.

The ILP solver is thus run on each of these parts of the graph, with a given
time limit.

144

12.2. FIRST SOLUTION AND GLOBAL BOUND 145

• If, for a given cluster, the time imparted to compute the partial colouring
proves to be enough to obtain the optimal local solution, a bound is
directly given by the sum s associated with this colouring. Indeed, we
know that, even without the constraints coming from an already coloured
separator, it would still cost s to fully colour this cluster.
• If, on the other hand, a timeout occurs when computing this local

bound, we cannot use the current upper bound of the ILP solver as a
lower bound for the cluster, since it might be too high to be a correct
bound. In such a case, we use instead the current lower bound of the ILP
solver and pass it on as a lower bound for the cluster.

These lower bounds can be employed during the solution process to avoid
solving some subproblems: since they give a minimal cost that will necessarily
be paid to colour a part of the graph, the algorithm can tell whether the
subproblem is worth solving depending on the cost already paid on the rest
of the instance. Of course, this “cost already paid” may involve other lower
bounds from the next subproblems. Details on how bounds are used can be
found in Chapter 11.

12.2 First solution and global bound
These ILP solver runs do not only provide lower bounds, but also partial
colourings (colourings computed independently on the different parts, namely
each leaf cluster without its separator, and the root cluster). Some might be
optimal with regards to the subgraph on which they were computed; some
might simply correspond to the best solution the ILP solver could find before a
timeout occurred.

Theoretically, it could happen that the ILP solver does not find any solution
fast enough on at least one of the considered subgraphs. However, it is worth
remarking that this never actually occurred during our many experiments,
except on instances where ILP ran out of memory, thus compromising not only
the bound computations, but also the solution process itself.

If at least one valid colouring has been found on each of the considered
subgraphs, these partial solutions can easily be stitched together to form a
global solution. We simply reintroduce the constraints that stand between
clusters and that were ignored when the partial colourings were computed.
Once these constraints are put back in effect though, conflicts appear: some
vertices using the same colour in distinct partial solutions become neighbours.
We solve these conflicts by first unassigning the variables corresponding to
conflicting vertices (i.e., we uncolour these vertices).

More formally, for each edge u,v of the graph, if the variables corresponding
to u and v have the same value, these variables are unassigned. Note that in
our current implementation the edges are considered in an arbitrary order
during this phase.

146 CHAPTER 12. BOUNDS FROM PARTIAL SOLUTIONS

Once there are no conflicts left, we build a problem P whose objective
amounts to reassigning every variable that has just been unassigned. The
values of other variables will remain unchanged during this recolouring step
– actually, these variables are not even included in the problem P.

More precisely, P is defined as follows:

• The improved ILP model from previous sections (see, in particular, Sec-
tions 9.3.3 and 10) is used;
• The considered vertices (those that will be represented by variables of P)

are those that were uncoloured during the conflict-resolution phase;
• The considered colours for each involved vertex v are those from the

set {1, . . . ,deg(v)+1}, from which we remove every colour that is used by
at least one coloured neighbour of v.

Since the number of considered vertices and colours is fairly reduced, the
number of constraints needed by the model is also lower than in most ILP sum
colouring models.

This recolouring problem could actually be solved using any kind of model
and solver. We chose to use an ILP model and to solve it using CPLEX, mostly
because these subproblems very seldom grow to sizes that CPLEX cannot
handle. We also performed experiments using Gecode instead, but the results
were marginally less interesting.

Moreover, regarding the conflict-resolution phase, we considered unassign-
ing only one of the two conflicting variables for each problematic edge, instead
of the variables corresponding to both extremities. However, it appeared that
giving slightly more liberty to whichever solver has to recolour the vertices
afterwards was generally beneficial (to a minor extent).

By using the combination of partial solutions and overriding the colours of
conflicting vertices with the solution of the recolouring problem, we obtain a
global solution, which offers an upper bound which is generally significantly
better than theoretical ones.

Figure 12.1 depicts the whole process described in this section, using a
basic example.

A few details have to be checked upon before actually using the constructed
global solution:

1. Firstly, the repairing process might have introduced suboptimalities
in the colour choices of certain nodes. It can occur that a variable x
eventually uses a colour c while actually having the opportunity of using
a cheaper colour c′ (c′ < c) unused by the neighbouring variables. To cope
with this, we simply scan every variable of the problem and lower their
values whenever it is possible to do so without generating any spurious
conflict. The computational cost of this operation is, of course, negligible.

2. Finally, we check that no colour swap can improve the obtained solution
(see Section 9.1.2). If the global solution appears to be a dominated
colouring, we apply the necessary colour swaps in order to lower the

12.2. FIRST SOLUTION AND GLOBAL BOUND 147

a

b cd

e

f

g

(a)

a

b cd

e

f

g

(b)

a

b cd

e

f

g
=

(c)

b

e

← Not red nor green

← Not red

(d)

b

e

(e)
Figure 12.1 – A flower decomposition with three clusters (a); the res-
ulting subproblems coloured to obtain initial bounds (b); the tentative
combination of the partial solutions obtained, with a conflict between
b and e (c); the subproblem defined to resolve this conflicting situation,
in which initial domains are reduced by removing values already used
by the respective neighbours of the involved vertices (d); and finally, the
chosen colours for these two vertices (e).

148 CHAPTER 12. BOUNDS FROM PARTIAL SOLUTIONS

global cost.

12.3 Allotted time for bounds
The partial colourings necessary for those bounds are built while observing a
given time limit tLB. Therefore, they might be suboptimal in some cases. The
limit tLB is computed as a fraction of the global time limit imposed on the full
solution process. Quick experiments showed us that allotting 5% of our total
time of 24 hours was enough to obtain good results. Going beyond this fraction
of time allowed for no significant improvements, either in the quality of the
resulting local colourings (which remained practically unchanged) or in the
global results themselves.

Since there are several bounds (one per cluster) to compute, the allotted
time must be shared between them. The approach we adopted consists in
sorting the clusters according to their number of variables and starting with
the smallest ones. A reference time limit of tLB/nbc is used, nbc being the total
number of clusters. If, for a given cluster, the optimal local sum colouring is
found in a time t lower than tLB/nbc, the remaining time tLB/nbc− t is equally
shared between the clusters that have not been considered yet. Therefore, if
the smaller clusters are easy to handle, more time will be available to tackle
the more complex cases, towards the end of the process.

A simple way to perceive and to implement this method is to consider
a common time pool, initialized at tLB. Each time a new cluster has to be
processed, we allot it a portion of 1/(nbc−n) of the pool, where n is the number
of clusters already processed. If the optimal solution is found, the remaining
time is stored in the pool.

On the other hand, the step consisting in repairing the resulting global
solution by uncolouring a few vertices and recolouring them can generally be
completed within a reasonable amount of time. Even in cases where it takes
more time, it can be considered an acceptable cost since it is still necessarily
easier than solving the whole problem and it yields a first solution. Therefore,
we did not set any particular time limit for this step and always seek the
optimal way to recolour the set of uncoloured vertices.

12.4 Results
The general setup for these experiments was the same as for the previously
described ones (see Section 10.7.1).

Table 12.1 details the experiments we conducted in order to settle for a time
portion to allot to the lower bound computation phase. It shows that spending
too much time on this particular step prevents the solver from performing one
of the proofs of optimality made in the traditional context. Furthermore, the

12.4. RESULTS 149

Table 12.1 – A summary of the results we observed when trying to
figure out which portion of our 24h time limit to allot to initial bound
computations. We show the minimal, average and maximal distance to
reference upper bounds, followed by the number of proofs of optimality,
of errors due to a lack a memory. “Found best” denotes the number of
times the reference bound was reached, and “Times best” the number of
times the considered approach was the best among those presented in
this table.

3% 5% 7% 10%

Min −0.1 −0.1 0 −0.1

Dist Avg 80.6 80.6 76.6 80.5

Max 1119.5 1119.5 1119.5 1119.5

Proofs 43 43 42 42

Mem. out 18 18 17 18

Found best 57 58 57 58

Times best 62 49 44 46

upper bound value at the end of the solving process does not appear to get
significantly lower when allotting more time to the initial computations. We
thus settled for a portion of 5%, which seemed to bring a good balance. On
a side note, three versions out of the considered four could beat a reference
bound, hence the negative minimal distances showcased in the table.

Tables 12.2 to 12.5 show in details the bounds obtained on most instances
and compare them with the reference and theoretical bounds. These bounds
correspond to the approach consisting of allotting 5% of the total time of 24h
to bound computations, with a flower decomposition where leaves are limited
to 90% of the problem’s variables. Only the 105 instances comprised of a
single connected component are shown in order to ensure that the comparisons
– especially with the reference bounds – are relevant.

We note that the overall quality of these bounds is satisfying. The cost of the
first solution often corresponds to less than half of the theoretical upper bound,
and the distance to reference bounds is often brought below 10%. On 24 of
these 105 instances, the first solution even reaches the reference bound. It can
also be noticed that the improvement is generally stronger when a significant
amount of time was needed to find the first solution. This proves that spending
five percent of the global time limit on this phase can be worthwhile. Still, we
cannot overlook the 13 instances on which the search was aborted due to a lack
of memory. It can be noted, however, that this occurs – as one could expect –
on rather difficult instances.

Table 12.6 shows a comparison of the standard version of BFD with versions
using either just the new lower bounds, or this as well as the global solution

150 CHAPTER 12. BOUNDS FROM PARTIAL SOLUTIONS

Table 12.2 – Details of the bounds obtained by combining partial colour-
ings to obtain a first global solution (part 1 of 4). “Ref.” is the reference
upper bound, “LB” and “UB” are the theoretical bounds, “FS” the cost of
the first solution, “Imp.” the improvement, in percentage, between UB
and FS, “Dist.” the distance, in percentage, remaining between FS and
the reference bound, and “t” the number of seconds used to compute the
partial colourings and get the first solution. A “#M#” mark means that
CPLEX ran out of memory when computing the bounds. Note that for the
sake of simplicity, only instances with only one connected component are
shown (105 out of 126).

Instance Ref. LB UB FS Imp. Dist. t

1-FullIns_3 54 45 130 54 58 0 0

1-FullIns_4 166 135 686 166 76 0 11

1-FullIns_5 499 389 3529 500 86 0 316

1-Insertions_4 119 92 299 119 60 0 0

1-Insertions_5 357 271 1429 361 75 1 50

1-Insertions_6 1068 801 6944 1096 84 3 2165

2-FullIns_3 93 79 253 94 63 1 1

2-FullIns_4 363 298 1833 374 80 3 32

2-FullIns_5 1433 1151 13053 1475 89 3 2164

2-Insertions_3 62 52 109 62 43 0 0

2-Insertions_4 249 200 690 259 62 4 7

2-Insertions_5 996 790 4533 996 78 0 996

3-FullIns_3 145 124 426 145 66 0 1

3-FullIns_4 683 572 3929 696 82 2 224

3-FullIns_5 3335 2771 35781 4032 89 17 2306

3-Insertions_3 92 78 166 93 44 1 1

3-Insertions_4 459 383 1327 470 65 2 46

3-Insertions_5 2289 1884 11101 2320 79 1 2321

4-FullIns_3 205 184 655 205 69 0 0

4-FullIns_4 1138 977 7340 1140 84 0 2162

4-FullIns_5 6679 5667 81451 #M#

4-Insertions_3 127 111 235 130 45 2 2

4-Insertions_4 761 654 2270 768 66 1 561

5-FullIns_3 280 247 946 283 70 1 1

5-FullIns_4 1776 1535 12480 1948 84 9 2207

DSJC125.1 326 208 861 349 59 7 2161

DSJC125.5 1012 412 4016 1404 65 28 2165

12.4. RESULTS 151

Table 12.3 – Details of the bounds obtained by combining partial colour-
ings to obtain a first global solution (part 2 of 4). “Ref.” is the reference
upper bound, “LB” and “UB” are the theoretical bounds, “FS” the cost of
the first solution, “Imp.” the improvement, in percentage, between UB
and FS, “Dist.” the distance, in percentage, remaining between FS and
the reference bound, and “t” the number of seconds used to compute the
partial colourings and get the first solution. A “#M#” mark means that
CPLEX ran out of memory when computing the bounds. Note that for the
sake of simplicity, only instances with only one connected component are
shown (105 out of 126).

Instance Ref. LB UB FS Imp. Dist. t

DSJC125.9 2503 1405 7086 2974 58 16 2167

DSJC250.1 970 474 3468 1208 65 20 2164

DSJC250.5 3210 930 15918 4309 73 26 2187

DSJC250.9 8277 3171 28147 #M#

DSJC500.1 2836 987 12958 3871 70 27 2167

DSJC500.5 10886 2111 63124 #M#

DSJC500.9 29862 8082 112937 #M#

DSJC1000.1 8991 2116 50629 12773 75 30 2964

DSJC1000.5 37575 4642 250826 #M#

DSJC1000.9 103445 19221 450449 #M#

DSJR500.1 2156 1822 4055 2187 46 1 2166

DSJR500.1c 16286 13441 121775 #M#

DSJR500.5 25440 19202 59362 30427 49 16 2185

anna 276 270 631 276 56 0 0

ash331GPIA 1432 1061 4843 1467 70 2 2178

ash608GPIA 2600 1942 9060 2767 69 6 3068

ash958GPIA 4172 3090 14422 4478 69 7 3074

david 237 226 493 237 52 0 0

flat300_20_0 3150 1126 21675 5770 73 45 2183

flat300_26_0 3966 1166 21933 6107 72 35 2179

flat300_28_0 4238 1145 21995 5717 74 26 2177

flat1000_50_0 25500 4564 246000 #M#

flat1000_60_0 30100 4603 246830 #M#

flat1000_76_0 37164 4680 247708 #M#

games120 443 412 758 448 41 1 3

latin_square_10 41444 35547 308250 #M#

152 CHAPTER 12. BOUNDS FROM PARTIAL SOLUTIONS

Table 12.4 – Details of the bounds obtained by combining partial colour-
ings to obtain a first global solution (part 3 of 4). “Ref.” is the reference
upper bound, “LB” and “UB” are the theoretical bounds, “FS” the cost of
the first solution, “Imp.” the improvement, in percentage, between UB
and FS, “Dist.” the distance, in percentage, remaining between FS and
the reference bound, and “t” the number of seconds used to compute the
partial colourings and get the first solution. A “#M#” mark means that
CPLEX ran out of memory when computing the bounds. Note that for the
sake of simplicity, only instances with only one connected component are
shown (105 out of 126).

Instance Ref. LB UB FS Imp. Dist. t

le450_5a 1350 928 6164 1403 77 4 2165

le450_5b 1350 952 6184 1787 71 24 2164

le450_5c 1350 992 10253 1350 87 0 102

le450_5d 1350 987 10207 1350 87 0 2162

le450_15a 2632 1818 8618 2895 66 9 2167

le450_15b 2632 1871 8619 2945 66 11 2162

le450_15c 3487 1809 17130 5053 71 31 2235

le450_15d 3505 1821 17200 5261 69 33 2389

le450_25a 3153 2622 8710 3332 62 5 2169

le450_25b 3365 2836 8713 3533 59 5 2165

le450_25c 4515 2627 17793 5628 68 20 2896

le450_25d 4544 2431 17875 5748 68 21 2522

miles500 705 579 1298 709 45 1 16

miles750 1173 1025 2241 1186 47 1 515

miles1000 1666 1399 3344 1703 49 2 90

miles1500 3354 3151 5326 3362 37 0 11

mug88_1 178 156 220 179 19 1 0

mug88_25 178 150 220 178 19 0 0

mug100_1 202 175 250 202 19 0 1

mug100_25 202 175 250 202 19 0 1

myciel3 21 15 31 22 29 5 0

myciel4 45 31 94 46 51 2 0

myciel5 93 61 283 93 67 0 2

myciel6 189 122 850 189 78 0 10

myciel7 381 246 2551 382 85 0 760

qg.order30 13950 13950 27000 13953 48 0 305

12.4. RESULTS 153

Table 12.5 – Details of the bounds obtained by combining partial colour-
ings to obtain a first global solution (part 4 of 4). “Ref.” is the reference
upper bound, “LB” and “UB” are the theoretical bounds, “FS” the cost of
the first solution, “Imp.” the improvement, in percentage, between UB
and FS, “Dist.” the distance, in percentage, remaining between FS and
the reference bound, and “t” the number of seconds used to compute the
partial colourings and get the first solution. A “#M#” mark means that
CPLEX ran out of memory when computing the bounds. Note that for the
sake of simplicity, only instances with only one connected component are
shown (105 out of 126).

Instance Ref. LB UB FS Imp. Dist. t

qg.order40 32800 32800 64000 33110 48 1 2279

qg.order60 109800 109800 216000 #M#

queen5_5 75 69 185 75 59 0 0

queen6_6 138 107 326 142 56 3 3

queen7_7 196 138 525 201 62 2 49

queen8_8 291 194 792 292 63 0 2160

queen8_12 624 624 1464 632 57 1 1

queen9_9 409 346 1137 423 63 3 2162

queen10_10 553 384 1570 595 62 7 2161

queen11_11 733 476 2101 802 62 9 2162

queen12_12 943 699 2740 1021 63 8 2164

queen13_13 1191 715 3497 1343 62 11 2161

queen14_14 1482 935 4382 1655 62 10 2160

queen15_15 1814 1370 5405 2026 63 10 2161

queen16_16 2193 1446 6576 2426 63 10 2167

r125.1c 2249 2108 7626 2475 68 9 2193

r125.5 1825 1275 3963 1925 51 5 341

r250.1 704 637 1117 709 37 1 1

r250.1c 5951 5339 30477 #M#

r250.5 6712 5391 15099 7333 51 8 2161

r1000.1 7204 5470 15378 8198 47 12 2528

wap05a 13656 10128 43986 16422 63 17 2189

wap06a 13773 10442 44518 16572 63 17 2235

wap07a 28617 18716 105177 35785 66 20 3135

wap08a 28885 19395 106046 35664 66 19 3127

will199GPIA 1940 1583 7473 1943 74 0 2222

154 CHAPTER 12. BOUNDS FROM PARTIAL SOLUTIONS

Table 12.6 – The original BFD version, along with a version that com-
putes lower bounds on the clusters (BLB, for “Better Lower Bounds”),
and, finally, a version that instead of just computing lower bounds also
combine the associated partial colourings to obtain a first solution (FS).
Each is presented with several limits set for the size of leaf clusters.
The columns represent, from left to right: the average distance to ref-
erence bounds (Dist.); the number of times the reference bound was
reached (Ref.); the number of proofs of optimality performed (Proofs); the
number of times a memory out occurred (Mem.).

Dist. Ref. Proofs Mem.

BFD 90 83.4 46 39 18

BLB 90 83.3 49 42 18

FS 90 80.6 58 43 18

BFD 75 85.1 48 26 16

BLB 75 80.4 31 29 15

FS 75 65.4 42 29 14

BLB 50 80.1 16 16 13

FS 50 65.5 34 14 13

computation technique previously described. 5% of the total time of 24h
were used to compute partial sum colourings on the clusters of the flower
decomposition.

We note that the improvements brought to BFD allow it to perform a few
additional proofs of optimality. This is not exactly true, however, for the
versions using a limit of 50% for the size of the leaf clusters. An hypothesis is
that smaller leaves lessen the impact of bounds computed on them.

Overall, the average quality of the upper bounds returned at the end of the
solution process is increased, with an even more notable gap between BLB and
FS, proving how important it can be to quickly obtain a good global solution.

An important point is that the number of memory out remained very stable.
This shows us that instances that cause a memory issue during lower bound
computations generally cause the very same issues during the classical search
process; BLB and FS thus cannot really be blamed for running into such issues
themselves. Actually, in the case of FS 75, we can even see that starting
the actual search with a better global upper bound may allow to avoid a few
memory issues, as FS 75 was terminated 14 times instead of 16 for BFD 75.

Portfolio approachPortfolio approachChapter 13

Chapter 13

Contents
13.1 Methods . 155
13.2 Feature extraction . 156
13.3 Selection model . 157
13.4 Results . 157

As explained in Chapter 4, a portfolio approach can be used to combine
several resolution methods by building a selector that automatically chooses
the most fitting approach on a per-instance basis.

The approaches already described in this thesis for the sum colouring
problem appear to be highly complementary: CP models offer a robust way to
find bounds on many instances, almost without any regard to their sizes; ILP
models are fast and efficient, but cannot be used safely on larger instances due
to their memory requirements; BFD provides methods that fit in between the
pure CP and ILP approaches, by decomposing the problem, even when it is not
particularly well structured.

We thus thought that automatically choosing a resolution method among
these subsets of approaches would make for an interesting meta-solver. After
considering seven approaches to build a portfolio, we brought this number
down to five, removing some that were dominated by others and did not allow
any significant improvement (or any improvement at all) in the final results.

13.1 Methods
We initially considered a total of seven methods, stemming from the experi-
ments detailed in the previous sections:

AllDiff+SumBound+Swap Gecode with the conjunction of the constraints
sum and allDifferent, with the same parameters as in previous experiments
(see Section 10.7.2).

AllDiff+Bound+Swap Improved Gecode with bound consistency.
AllDiff+Bound+Swap+Dom Improved Gecode with domain consistency.
Gecode hybrid Improved Gecode with the hybrid restart policy and heuristic

change described in Section 10.6, with domain consistency.
ILP+ Improved ILP model, as used previously.
BFD 90 BFD with a limit of 90% on the size of leaf clusters, as used before.
BFD 75 Same as above, with a limit of 75%.

155

156 CHAPTER 13. PORTFOLIO APPROACH

It subsequently appeared that, in the context of such a portfolio, Gecode
hybrid and BFD 75 were virtually always dominated by at least one other
member of the portfolio, and did not bring any significant improvement to the
overall results. Running the learning process with or without them gave the
same results. These two methods were therefore removed from the portfolio,
leading to a new total of five methods.

13.2 Feature extraction
Given a graph G = (V,E) for which we consider looking for the chromatic
sum, we compute the following features (a “(+)” mark denoting the use of the
minimum value, maximum value, mean and standard deviation):

• Number of nodes |V | and edges |E|;
• Degrees of the vertices in V ; (+)
• Number of connected components in G;
• Size of the connected components in G; (+)
• Number of constraints and variables in the ILP+ model;
• Number of allDifferent constraints (with an arity greater than 2) in the

AllDiff+Bound CP model;
• Arity of these allDifferent constraints; (+)
• Features computed from the largest connected component G′ of G:

– Density;
– Theoretical upper and lower bounds of ∑(G′);
– Number of clusters in the tree decomposition computed with MinFill.

Moreover, the tree decomposition just mentioned is used to compute a flower
decomposition of the largest connected component (with a limit of 90% on the
sizes of leaves, as it is done for BFD 90), which gives a large array of additional
features:

• Size of the root cluster;
• Cartesian product of the sizes of the domains in the root cluster;
• Number of clusters;
• Distance between the theoretical upper and lower bounds of the root

cluster;
• Density of the root cluster;
• Density of leaf clusters; (+)
• Number of proper variables in clusters; (+)
• Separator density; (+)
• Separator sizes; (+)
• Distance between theoretical upper and lower bounds on leaf clusters; (+)

13.3. SELECTION MODEL 157

• Number of binary variables and constraints in the ILP+ models associated
with leaf clusters. (+)

This set of features is computed in 5.4 minutes in average, with 110 of
our instances actually requiring less than 5 minutes to be processed. Some
instances, such as latin_square_10, DSJC1000.9 or flat1000_50_0 make this feature-
extraction phase prohibitively long, mostly because of the decompositions
needed.

13.3 Selection model
We use LLAMA [KOT13] to build our solver selection model. We performed a
set of preliminary experiments to determine the approach that works best
here, i.e., a pairwise regression approach with random forest regression (see
Section 4.3).

Since there are few instances, we chose to perform the learning step in a
leave-one-out fashion (see Section 4.2): for each instance i, a new selector is
trained on the 125 remaining instances in order to classify i. The definition
of the selector is internally also done using the leave-one-out cross-validation
approach, by performing 125 rounds. In each of these rounds, the set of the
125 remaining instances is partitioned by creating a testing set of a single
instance and a training set consisting of the 124 others.

As this approach already performs well, we did not tune the parameters of
the random forest machine learning algorithm. Opportunities to improve it by
doing so may very well exist, and we make no claims that the particular solver
selection approach we use here is the best possible.

13.4 Results
The general setup for these experiments was the same as for the previously
described ones (see Section 10.7.1).

Tables 13.1 to 13.4 give detailed results for both the portfolio approach
and the virtual best solver (VBS). The VBS is an imaginary selector always
choosing the best approach for each instance, with a null decision time as well
as no time requirements to compute features. Note that the “best results” are
designated following these rules: making the proof of optimality is the most
important aspect, then the upper bound is used to break ties, followed by the
time needed to obtain it.

In these detailed tables, the five resolution methods comprising the portfolio
are designated through the following abbreviated names:

Gs Gecode with the sum+allDifferent conjunction of constraints.
Gb Gecode with bounds consistency.

158 CHAPTER 13. PORTFOLIO APPROACH

Gd Gecode with domain consistency.
C CPLEX.
B BFD 90.

These detailed results highlight the fact that the choices made by the
selector are generally satisfying. Even when the chosen method differs from
that of the VBS, the loss in efficiency is almost always negligible: the chosen
method is not utterly inapt at providing interesting results on the considered
instance.

An overview of these results is offered in Table 13.5, allowing to confirm
the previously made observations.

The portfolio approach performs 65 proofs of optimality (more than one
half of the benchmark), out of a total of 66 possible proofs for the considered
portfolio, as demonstrated by the VBS. This number rivals with the proofs
that can be made by using ILP+ (65 as well) as a systematic solver on this
benchmark.

The average distance to reference solutions amounts to 5.49 for the se-
lector. This value is strongly reminiscent of the results obtained with our CP
approaches (from 5.32 to 5.44), which proved to be the best suited when trying
to obtain solutions of great quality in almost every circumstances, even when
instances grow larger.

Regarding the number of times the reference upper bound is reached, the
selector approach displays a satisfying 77 – a number higher than the values
offered by any of the five solvers comprising the portfolio (the best one among
them being CPLEX, with 73 bounds reached).

When it comes to the number of times a lack of memory cut the search short,
both the VBS and our selector stayed completely clear of such occurrences.

Overall, the results obtained by using our selector approach are very in-
teresting: it successfully combines the proof-making abilities of ILP+ with the
general bound quality of CP approaches, while avoiding memory problems by
detecting instances that could cause such issues. BFD 90 can be employed by
the portfolio as an in-between approach or to derive profit from an apparent
structure overseen in an instance.

As the attentive reader may notice, these experiments do not involve the
“first solution” (FS) version of our BFD approach. Actually, we developed FS
later than the first portfolio approach of this thesis. We then tried, however, to
integrate FS to such portfolios, but it appeared that the learning process gave
FS slightly too much credit, leading to selectors that tend to use FS on very
large instances. Because of this, these new portfolio approaches tend to suffer
from a lack of memory on a few instances, as shown in Table 13.6. Further
work would be needed to obtain better results using FS within a portfolio
approach.

13.4. RESULTS 159

Table 13.1 – Detailed results of the portfolio approach, compared with
the virtual best solver (part 1 of 4). “Ref.” is the reference upper bound.
Then, for both the VBS and the selector, “A” is the chosen algorithm,
UB the upper bound found, tUB the time that was needed to find it, and
tproof the time needed to prove its optimality if such a thing occurred.
Finally, tfea is the time imparted to feature computation. Times are given
in seconds. Yellow cells indicate that the reference bound was equalled,
while green ones highlight bounds that beat the reference ones.

VBS Selector
Instance Ref. A UB tUB tproof tfea A UB tUB tproof

DSJC125.1 326 Gs 337 29041 0 C 347 40376
DSJC125.5 1012 Gs 1064 9649 0 C 1342 65906
DSJC125.9 2503 Gs 2559 35482 1 Gd 2566 63964
DSJC250.1 970 Gb 1046 33564 1 C 1112 53546
DSJC250.5 3210 Gd 3540 51076 6 Gs 3577 9062
DSJC250.9 8277 Gb 8762 18986 28 Gd 8992 2162
DSJC500.1 2836 Gd 3136 11108 10 C 4025 42546
DSJC500.5 10886 Gb 12525 23074 136 Gs 12589 8665
DSJC500.9 29862 Gs 32455 26271 563 Gs 32455 26835
DSJC1000.1 8991 Gs 10295 66842 126 Gs 10295 66968
DSJC1000.5 37575 Gb 44431 47807 2165 Gb 44431 49972
DSJC1000.9 103445 Gb 119347 14 8223 Gs 119347 8237
DSJR500.1 2156 C 2142 49745 4 C 2142 49749
DSJR500.1c 16286 Gb 16927 15720 942 Gd 17218 1907
DSJR500.5 25440 Gb 28179 2876 34 Gd 28315 6830
flat300_20_0 3150 Gb 4304 6407 12 Gb 4304 6419
flat300_26_0 3966 Gb 4843 3536 12 Gb 4843 3549
flat300_28_0 4238 Gd 4808 540 13 Gd 4808 552
flat1000_50_0 25500 Gs 43378 7542 2209 Gs 43378 9752
flat1000_60_0 30100 Gs 43723 22197 2084 Gb 43751 45186
flat1000_76_0 37164 Gd 43990 37747 2057 Gb 44149 3254
1-FullIns_3 54 Gd 54 0 0 0 B 54 0 2
1-FullIns_4 166 C 166 3 4 0 C 166 3 4
1-FullIns_5 499 C 499 110 704 0 C 499 110 704
2-FullIns_3 93 C 93 0 0 0 C 93 0 0
2-FullIns_4 363 C 363 25 26 0 C 363 25 26
2-FullIns_5 1433 Gs 1433 4 15 C 1450 85644
3-FullIns_3 145 C 145 1 1 0 C 145 1 1
3-FullIns_4 683 C 683 665 686 1 C 683 666 687
3-FullIns_5 3335 Gd 3335 49 279 Gb 3335 334
4-FullIns_3 205 C 205 0 0 0 C 205 0 0

160 CHAPTER 13. PORTFOLIO APPROACH

Table 13.2 – Detailed results of the portfolio approach, compared with
the virtual best solver (part 2 of 4). “Ref.” is the reference upper bound.
Then, for both the VBS and the selector, “A” is the chosen algorithm,
UB the upper bound found, tUB the time that was needed to find it, and
tproof the time needed to prove its optimality if such a thing occurred.
Finally, tfea is the time imparted to feature computation. Times are given
in seconds. Yellow cells indicate that the reference bound was equalled,
while green ones highlight bounds that beat the reference ones.

VBS Selector
Instance Ref. A UB tUB tproof tfea A UB tUB tproof

4-FullIns_4 1138 C 1138 3636 3717 5 C 1138 3641 3722
4-FullIns_5 6679 Gs 6679 1112 2079 Gs 6679 3191
5-FullIns_3 280 C 280 2 3 0 C 280 2 3
5-FullIns_4 1776 C 1776 1218 32972 62 C 1776 1280 33034
games120 443 C 443 1 5 0 C 443 1 5
ash331GPIA 1432 C 1432 29870 20 C 1432 29890
ash608GPIA 2600 C 2600 83844 917 C 2600 84761
ash958GPIA 4172 C 4172 71761 961 C 4172 72722
will199GPIA 1940 C 1940 19670 69 C 1940 19738
1-Insertions_4 119 C 119 1 1 0 C 119 1 1
1-Insertions_5 357 C 357 88 318 0 C 357 88 318
1-Insertions_6 1068 Gd 1068 1 4 C 1070 44493
2-Insertions_3 62 C 62 0 0 0 B 62 5 8
2-Insertions_4 249 C 249 4 8 0 C 249 4 8
2-Insertions_5 996 C 996 12096 24673 2 C 996 12098 24676
3-Insertions_3 92 C 92 0 0 0 C 92 0 0
3-Insertions_4 459 C 459 48 49 0 C 459 48 50
3-Insertions_5 2289 Gd 2289 8 274 C 2293 13682
4-Insertions_3 127 C 127 0 1 0 C 127 0 1
4-Insertions_4 761 C 761 368 411 1 C 761 369 412
latin_square_10 41444 Gb 44641 4095 8639 Gs 44863 9389
le450_5a 1350 C 1380 37342 3 C 1380 37345
le450_5b 1350 C 1398 22554 4 C 1398 22558
le450_5c 1350 C 1350 3362 14719 5 C 1350 3367 14724
le450_5d 1350 C 1350 1568 9165 5 C 1350 1573 9170
le450_15a 2632 Gb 2852 3448 5 C 2894 6181
le450_15b 2632 C 2841 5172 5 C 2841 5177
le450_15c 3487 Gb 4387 18734 11 Gd 4404 9861
le450_15d 3505 Gs 4377 57066 10 Gs 4377 57076
le450_25a 3153 C 3157 58795 10 C 3157 58805
le450_25b 3365 C 3349 56318 6 C 3349 56324
le450_25c 4515 Gs 4992 7640 9 C 5237 77900

13.4. RESULTS 161

Table 13.3 – Detailed results of the portfolio approach, compared with
the virtual best solver (part 3 of 4). “Ref.” is the reference upper bound.
Then, for both the VBS and the selector, “A” is the chosen algorithm,
UB the upper bound found, tUB the time that was needed to find it, and
tproof the time needed to prove its optimality if such a thing occurred.
Finally, tfea is the time imparted to feature computation. Times are given
in seconds. Yellow cells indicate that the reference bound was equalled,
while green ones highlight bounds that beat the reference ones.

VBS Selector
Instance Ref. A UB tUB tproof tfea A UB tUB tproof

le450_25d 4544 Gs 5042 4837 10 Gs 5042 4847
mug88_1 178 B 178 0 3 0 C 178 0 3
mug88_25 178 C 178 0 1 0 C 178 0 1
mug100_1 202 C 202 0 3 0 C 202 0 3
mug100_25 202 C 202 0 4 0 B 202 0 5
myciel3 21 Gd 21 0 0 0 B 21 0 0
myciel4 45 Gb 45 0 0 0 C 45 0 0
myciel5 93 C 93 1 2 0 C 93 1 2
myciel6 189 C 189 18 81 0 C 189 18 81
myciel7 381 C 381 9538 12698 0 C 381 9538 12698
qg.order30 13950 Gs 13950 1 1 42 Gd 13950 44 44
qg.order40 32800 Gd 32800 5 5 314 Gd 32800 319 319
qg.order60 109800 Gd 109800 138 139 4866 Gb 109800 5070 5070
r125.1 257 B 257 0 0 0 B 257 0
r125.1c 2249 Gb 2249 1058 2 Gb 2249 1060
r125.5 1825 C 1825 41150 0 C 1825 41150
r250.1 704 C 704 1 1 0 C 704 1 1
r250.1c 5951 Gb 5951 314 75 Gd 5951 4314
r250.5 6712 B 6712 86411 3 Gs 7389 760
r1000.1 7204 B 7204 86543 464 C 7391 77866
fpsol2.i.1 3403 B 3403 9 9 3 B 3403 11
fpsol2.i.2 1668 B 1668 8 8 2 C 1668 7 11
fpsol2.i.3 1636 B 1636 8 8 2 C 1636 6 10
inithx.i.1 3676 C 3676 13 29 10 B 3676 42
inithx.i.2 2050 C 2050 7 19 8 B 2050 29
inithx.i.3 1986 C 1986 9 20 8 B 1986 114 694
mulsol.i.1 1957 C 1957 1 1 0 C 1957 1 2
mulsol.i.2 1191 C 1191 1 1 0 C 1191 1 2
mulsol.i.3 1187 C 1187 1 1 0 C 1187 1 2
mulsol.i.4 1189 C 1189 1 1 0 C 1189 1 2
mulsol.i.5 1160 C 1160 1 1 0 C 1160 1 2

162 CHAPTER 13. PORTFOLIO APPROACH

Table 13.4 – Detailed results of the portfolio approach, compared with
the virtual best solver (part 4 of 4). “Ref.” is the reference upper bound.
Then, for both the VBS and the selector, “A” is the chosen algorithm,
UB the upper bound found, tUB the time that was needed to find it, and
tproof the time needed to prove its optimality if such a thing occurred.
Finally, tfea is the time imparted to feature computation. Times are given
in seconds. Yellow cells indicate that the reference bound was equalled,
while green ones highlight bounds that beat the reference ones.

VBS Selector
Instance Ref. A UB tUB tproof tfea A UB tUB tproof

zeroin.i.1 1822 B 1822 2 2 0 B 1822 2
zeroin.i.2 1004 C 1004 1 1 0 C 1004 1 2
zeroin.i.3 998 C 998 1 1 0 C 998 1 2
school1 2674 Gb 3531 75519 18 Gs 3648 1149
school1_nsh 2392 B 2539 86908 10 Gs 2992 14166
anna 276 C 276 0 0 0 C 276 0 0
david 237 C 237 0 0 0 C 237 0 0
homer 1150 C 1150 38 42 1 C 1150 39 44
huck 243 C 243 0 0 0 C 243 0 0
jean 217 C 217 0 0 0 C 217 0 0
miles250 325 B 325 0 0 0 C 325 0 0
miles500 705 C 705 5 28 0 C 705 6 29
miles750 1173 C 1173 223 303 0 C 1173 223 304
miles1000 1666 C 1666 261 262 0 C 1666 261 262
miles1500 3354 C 3354 12 13 0 B 3492 79912
queen5_5 75 C 75 0 0 0 B 75 0 15
queen6_6 138 C 138 48 683 0 C 138 48 683
queen7_7 196 C 196 1 1 0 C 196 1 1
queen8_8 291 C 291 919 34382 0 C 291 919 34382
queen8_12 624 C 624 2 2 0 C 624 2 2
queen9_9 409 C 409 39273 0 C 409 39273
queen10_10 553 Gb 575 4560 0 C 582 59050
queen11_11 733 Gs 761 1035 0 C 767 14377
queen12_12 943 Gd 986 7710 0 C 1010 81235
queen13_13 1191 Gb 1232 65736 0 C 1270 68347
queen14_14 1482 Gb 1533 21390 1 C 1609 67092
queen15_15 1814 Gd 1883 3415 1 C 1932 50692
queen16_16 2193 Gb 2269 1204 1 C 2394 36443
wap05a 13656 C 14153 85513 93 Gb 14834 49579
wap06a 13773 C 14494 74629 130 Gs 14923 29235
wap07a 28617 Gs 31801 36955 1470 Gd 31902 17938
wap08a 28885 Gd 32082 47505 1504 Gs 32094 4792

13.4. RESULTS 163

Table 13.5 – A summary of the results obtained individually by the five
methods of the portfolio, as well as by the virtual best solver (VBS) and the
selector itself. From left to right, the columns give values for the average
distance to reference upper bounds, the number of times these reference
bounds were reached, the number of proofs of optimality, and the number
of times a memory out forced the search to abort. Additionally, we give
the number of times each method was employed by the VBS and by the
selector.

Dist. Ref. Proofs Mem. ∈ VBS ∈ Sel.

Gecode Sum 5.34 45 8 0 15 15

Gecode Bnd 5.32 49 11 0 20 9

Gecode Dom 5.44 48 11 0 14 10

CPLEX 63.89 73 65 23 67 80

BFD 90 83.4 46 39 18 10 12

VBS 4.25 83 66 0

Selector 5.49 77 65 0

Table 13.6 – Results for multiple algorithm portfolios. From left to
right: the previously presented portfolio that does not involve FS (solvers
computing a first global solution from partial colourings); a portfolio
where BFD 90 is replaced with three FS versions with different limits
for the size of the leaf clusters; a similar portfolio that is just missing
FS 50; and finally, a portfolio where BFD 90 is simply replaced with FS 90.
We show the minimal, average and maximal distance to reference upper
bounds, followed by the number of proofs of optimality, of errors due to a
lack a memory. “Found best” denotes the number of times the reference
bound was reached, and “Times best” the number of times the considered
approach was the best among those presented in this table.

No FS FS 50, 75, 90 FS 75, 90 FS 90

Min 0 0 0 0

Dist Avg 5.5 15.3 13.7 10.8

Max 70.1 628.5 628.5 628.5

Proofs 65 65 65 65

Mem. out 0 3 3 2

Found best 77 76 77 77

Times best 60 62 66 71

DiscussionDiscussionChapter 14

Chapter 14

The classical colouring problem consists in finding a colouring of a given graph
such that neighbour vertices do not share the same colour. In the sum colouring
variant, each colour has a weight and the sum of the weights of all vertices
must be minimized.

The sum colouring problem has not been extensively studied yet, and the
existing complete approaches are few in number. Still, several ways to quickly
model instances of this problem have been proposed:

• A constraint programming model, using variables to represent the ver-
tices of the considered graph and values for the available colours;
• An integer linear programming model, with binary variables for each

pair formed by a vertex of the graph and a colour that it might need to
use;
• Boolean satisfiability models, similar in essence to the ILP model men-

tioned above.

Alternatively, a branch and bound approach can be employed directly on the
problem.

This part was mostly concerned with the existing approaches aiming at
solving the sum colouring problem to optimality. We described several ways
to improve these approaches and developed a new one, which in turn gets
improved as well.

A summary of our work on these topics lies hereafter, together with
thoughts on the perspectives it offers.

Results
We put forward several improvements to help solving the sum colouring prob-
lem with CP and ILP, and demonstrated that they have complementary ad-
vantages:

• ILP is very efficient on small instances, but fails to solve larger instances
due to its large memory needs;
• CP never runs out of memory on our benchmark, even on the largest

instances, but it is seldom able to compute optimal solutions as fast as
ILP approaches do on smaller instances.

Alternatively, we proposed a combination of CP and ILP (BFD) that may
serve as a compromise between the approaches consisting in using only one of
those two techniques. Besides, this combination employs a tree decomposition,

164

165

which makes it more suited than CP or ILP used on their own to solve numerous
well-structured instances. This new approach gave encouraging results.

BFD appeared to suffer from an inability to quickly detect situations where
it is led to solve unpromising subproblems to optimality. Therefore, we focused
on this aspect of the method, and designed ways to compute bounds helping
with this task, since a good way to detect useless subproblems is to obtain
better bounds, either on the different clusters or on the problem itself.

In this regard, we investigated ways to obtain such bounds early during
the search. We implemented a preprocessing step consisting in computing
local solutions that give local bounds on the different clusters. These partial
colourings can then easily be combined to form a first global solution, yielding
an upper bound clearly surpassing the simple theoretical ones. All these
informations allowed us to obtain improved results for approaches based on
BFD.

We combined several of the approaches presented in this part of the thesis
into a portfolio approach comprised of five methods. The resulting selector
obtains results close to those of the virtual best solver for this array of al-
gorithms. It has been able to prove optimality for more than one half of the
considered instances. In the course of our experiments, it has also been able to
improve the best known upper bounds for two instances.

Perspectives
Sum colouring studies being still quite rare, there is still ample room for
improvements. The use of a dedicated decomposition algorithm, notably,
might be an interesting research subject. Building a flower decomposition
from scratch rather than resorting to an initial tree decomposition would
make it more straightforward to obtain a balanced decomposition. Being able
to automatically fine-tune BFD’s parameters (the size limit enforced on leaf
clusters, as well as the maximal size of separators) could also prove useful.

A major drawback of BFD is that some subproblems are solved to optim-
ality even if they are rendered utterly useless by poor assignments in the
root making it impossible to find interesting solutions in the current context.
Preventing the ILP solver from spending more that a set amount of time on a
leaf cluster could alleviate the associated loss of performances. Should such a
time limit be reached, the solver would ask for a new assignment on the root.
It can be seen as another form of restarts, as seen in [ALL+15].

Due to a lack of time, we could only perform a few preliminary experiment
regarding the chromatic strength and its capability to tighten the domains of
variables. It appeared that the domain reductions brought by the currently
existing tools often had a negligible impact due to the fact that the search
process generally naturally induce comparable reductions. However, we still
think that chromatic strength might hold some potential to ease the solution
of sum colouring instances.

Conclusion

With their high declarative capabilities and relative ease of use, constraint
programming and integer linear programming, among other approaches, hold
promise in the realm of challenging NP-hard optimisation problems. However,
even when they are competitive with other state-of-the-art solution methods,
they still often fail to provide truly satisfying results on a systematic basis for
some problems.

Such particularly challenging problems include the maximum common
subgraph problem as well as the sum colouring problem. To try to alleviate
this difficulty to some extent, one can invest some computational time into a
decomposition method in order to reduce the size of the search space, possibly
also enabling a resolution in parallel. Additionally, a thoughtfully enacted
decomposition can provide a better grasp of the inherent structure of an
instance, thus allowing a more enlightened exploration of the search space
while also deriving profit from the independence of some parts of the problems.

In this context, this thesis aimed at providing clues to help solving both the
maximum common induced subgraph problem and the sum colouring problem,
mainly by using decomposition approaches, but also by honing existing tools
such as constraint programming and integer linear programming in order to
make them more efficient and attractive.

The maximum common subgraph problem
To make solving the MCIS problem easier, we designed a decomposition
method, denoted throughout this thesis by STR. It is based on the struc-
ture of the instance and stems from the method known in the literature as
TR-decomposition.

When we evaluated STR, it appeared quite plainly that, as one could expect,
allotting more computational time to the decomposition step can lead to a
greater reduction of the size of the search space. Indeed, the reduction offered
by STR is orders of magnitude more important than that provided by the state-
of-the-art decomposition method called embarrassingly parallel search (EPS).
However, the time used for an STR decomposition amounts on average to 5% of
the total solution time, as opposed to the proportions of far less than 0.1% used
by EPS.

In the course of our study, we investigated the impact of a variation of the
number of processing units available to solve the subproblems generated by

166

167

the considered decomposition methods. It appeared that every method did not
fare as well in each situation. On our benchmark, when generating less than
35 subproblems per available worker, STR showed a higher efficiency in terms
of speedup. On the other hand, when using a larger number of subproblems
per worker, EPS will generally be better suited.

To our mild disappointment, the overall conclusion of this part was that,
even with high levels of fine-tuning, the speedups offered by every considered
method remained rather low. Further work will be needed for instances of
more than a hundred vertices to be systematically solved within a reasonable
time.

The sum colouring problem
The sum colouring problem is a more complex variant of the classical colouring
problem. Only a few complete approaches have been proposed to date, and the
results they offer are generally unsatisfying.

Basic constraint programming and integer linear programming models
have been suggested in the literature. We evaluated them, and researched
into ways to make them more practical: reducing the number of considered
colours, computing bounds and using global constraints, for example, proved
to be interesting options.

Additionally, our experiments revealed quite clearly that CP and ILP had
complementary strong points when confronted with sum colouring instances.
While ILP solvers are fast to find good solutions and to prove their optimality,
they often suffer from a lack of memory, especially on larger instances. Con-
versely, CP approaches allowed to find interesting solutions even on the largest
instances of our benchmark without issues, but generally need more time on
smaller instances to find solutions on a par with those obtained by ILP solvers.

Alternatively, we proposed a combination of CP and ILP, called BFD, that
may serve as a compromise between the approaches consisting in using only
one of those two techniques. Besides, this combination employs a tree decom-
position, which makes it more suited than CP or ILP used on their own to solve
numerous well-structured instances.

We combined CP and ILP approaches, as well as BFD, in a portfolio approach.
The resulting selector obtains results close to those of the virtual best solver
for this array of algorithms. It has been able to prove optimality for more than
half of the considered instances, while keeping the average quality of solutions
very high.

In the course of our experiments, our approaches could improve the best
known upper bounds for two instances. Moreover, both BFD and the improved
ILP model were able to perform a few proofs of optimality that had not been
made in the literature, for example on 2-Insertions_3 or mug100_25.

BFD appears to suffer from an inability to quickly detect situations where
it is led to solve unpromising subproblems to optimality. Therefore, we focused

168 CHAPTER 14. DISCUSSION

on this aspect of the method, and designed ways to compute bounds helping
with this task, since a good way to detect useless subproblems is to obtain
better bounds, either on the different clusters or on the problem itself.

In this regard, we investigated ways to obtain such bounds early during
the search. We implemented a preprocessing step consisting in computing
partial solutions that give local bounds on the different clusters. These partial
colourings can then easily be combined to form a first global solution, yielding
an upper bound clearly surpassing the simple theoretical ones. All these
informations allowed us to obtain improved results for approaches based
on BFD.

Since sum colouring studies are still infrequent, it seems clear that there
are still many ways to improve the different methods or to create brand new
ones. As for BFD itself, we assuredly think that it has still a lot to offer. The use
of a dedicated decomposition algorithm, in particular, might be an interesting
research subject: directly building a flower decomposition instead of using an
intermediate tree decomposition would surely help obtaining more balanced
leaf clusters. Being able to automatically choose a value for the limit set on
the size of leaf clusters according to features extracted from the instance could
also prove useful.

As stated previously, a major drawback of BFD is that some subproblems
are solved to optimality even if they are rendered utterly useless by poor
assignments in the root making it impossible to find interesting solutions
in the current context. Preventing the ILP solver from spending more that
a set amount of time on a leaf cluster could alleviate the associated loss of
performances. Should such a time limit be reached, the solver would ask for a
new assignment on the root. It can be seen as another form of restarts, as seen
in [ALL+15].

Due to a lack of time, we could only perform a few preliminary experiments
regarding the chromatic strength and its capability to tighten the domains of
variables. Interesting works have been recently published on this particular
topic, and the resulting tools might lead to significant reductions of this prob-
lem’s search space if used properly, both for CP and ILP models as well as for
approaches such as BFD.

Bibliography

[All+15] David Allouche et al. ‘Anytime Hybrid Best-First Search with Tree Decompos-
ition for Weighted CSP’. In: Proceedings of the 21st International Conference
on Principles and Practice of Constraint Programming - Volume 9255. 2015,
pp. 12–29.

[Bak94] Andrew B Baker. ‘The hazards of fancy backtracking’. In: AAAI. Vol. 94. 1994,
p. 288.

[BB76] H. G. Barrow and R. M. Burstall. ‘Subgraph isomorphism, matching relational
structures and maximal cliques’. In: Information Processing Letters 4.4 (1976),
pp. 83–84.

[Bel+12] Nicolas Beldiceanu et al. ‘An O (nlog n) Bound Consistency Algorithm for the
Conjunction of an alldifferent and an Inequality between a Sum of Variables
and a Constant, and its Generalization.’ In: ECAI. Vol. 12. 2012, pp. 145–150.

[Ber73] Claude Berge. ‘Graphes et hypergraphes’. In: (1973).

[Bes+05] Christian Bessière et al. ‘An optimal coarse-grained arc consistency algorithm’.
In: Artificial Intelligence 165.2 (2005), pp. 165–185.

[Bes+99] Christian Bessière et al. ‘On forward checking for non-binary constraint satis-
faction’. In: International Conference on Principles and Practice of Constraint
Programming. Springer. 1999, pp. 88–102.

[Bes94] Christian Bessiere. ‘Arc-consistency and arc-consistency again’. In: Artificial
intelligence 65.1 (1994), pp. 179–190.

[BH12] Una Benlic and Jin-Kao Hao. ‘A study of breakout local search for the minimum
sum coloring problem’. In: Simulated Evolution and Learning. Springer, 2012,
pp. 128–137.

[Bod96] Hans L Bodlaender. ‘A linear-time algorithm for finding tree-decompositions of
small treewidth’. In: SIAM Journal on computing 25.6 (1996), pp. 1305–1317.

[Bou+04] Frédéric Boussemart et al. ‘Boosting systematic search by weighting con-
straints’. In: ECAI. Vol. 16. 2004, p. 146.

[BR01] Christian Bessière and Jean-Charles Régin. ‘Refining the Basic Constraint
Propagation Algorithm.’ In: IJCAI. Vol. 1. 2001, pp. 309–315.

[BR96] Christian Bessiere and Jean-Charles Régin. ‘MAC and combined heuristics:
Two reasons to forsake FC (and CBJ?) on hard problems’. In: Principles and
Practice of Constraint Programming—CP96. Springer. 1996, pp. 61–75.

[BV09] Flavia Bonomo and Mario Valencia-Pabon. ‘Minimum Sum Coloring of P4-
sparse graphs’. In: Electronic Notes in Discrete Mathematics 35 (2009), pp. 293–
298.

[BV14] Flavia Bonomo and Mario Valencia-Pabon. ‘On the minimum sum coloring of p
4-sparse graphs’. In: Graphs and Combinatorics 30.2 (2014), pp. 303–314.

169

170 BIBLIOGRAPHY

[BY86] Egon Balas and Chang Sung Yu. ‘Finding a maximum clique in an arbitrary
graph’. In: SIAM Journal on Computing 15.4 (1986), pp. 1054–1068.

[CFV07] Donatello Conte, Pasquale Foggia and Mario Vento. ‘Challenging Complexity of
Maximum Common Subgraph Detection Algorithms: A Performance Analysis
of Three Algorithms on a Wide Database of Graphs.’ In: J. Graph Algorithms
Appl. 11.1 (2007), pp. 99–143.

[CJK03] Assef Chmeiss, Philippe Jégou and Lamia Keddar. ‘On a generalization of
triangulated graphs for domains decomposition of CSPs’. In: IJCAI. Citeseer.
2003, pp. 203–208.

[Cos94] Marie-Christine Costa. ‘Persistency in maximum cardinality bipartite match-
ings’. In: Operations Research Letters 15.3 (1994), pp. 143–149.

[CPL05] ILOG CPLEX. High-performance software for mathematical programming and
optimization. 2005.

[De +05] Simon De Givry et al. ‘Existential arc consistency: Getting closer to full arc
consistency in weighted CSPs’. In: IJCAI. Vol. 5. 2005, pp. 84–89.

[Dec90] Rina Dechter. ‘Enhancement schemes for constraint processing: Backjump-
ing, learning, and cutset decomposition’. In: Artificial Intelligence 41.3 (1990),
pp. 273–312.

[Dec92] Rina Dechter. Constraint networks. Information and Computer Science, Uni-
versity of California, Irvine, 1992.

[Dep+13] Matjaz Depolli et al. ‘Exact parallel maximum clique algorithm for general and
protein graphs’. In: Journal of chemical information and modeling 53.9 (2013),
pp. 2217–2228.

[Dir61] Gabriel Andrew Dirac. ‘On rigid circuit graphs’. In: Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg. Vol. 25. 1. Springer. 1961,
pp. 71–76.

[DM94] Rina Dechter and Itay Meiri. ‘Experimental evaluation of preprocessing al-
gorithms for constraint satisfaction problems’. In: Artificial Intelligence 68.2
(1994), pp. 211–241.

[DP89] Rina Dechter and Judea Pearl. ‘Tree clustering for constraint networks’. In:
Artificial Intelligence 38.3 (1989), pp. 353–366.

[DSV06] Simon De Givry, Thomas Schiex and Gerard Verfaillie. ‘Exploiting tree decom-
position and soft local consistency in weighted CSP’. In: AAAI. Vol. 6. 2006,
pp. 1–6.

[Dur+99] Paul J Durand et al. ‘An efficient algorithm for similarity analysis of molecules’.
In: Internet Journal of Chemistry 2.17 (1999), pp. 1–16.

[F+65] Delbert R Fulkerson, Oliver A Gross et al. ‘Incidence matrices and interval
graphs’. In: Pacific J. Math 15.3 (1965), pp. 835–855.

[Fre85] Eugene C Freuder. ‘A sufficient condition for backtrack-bounded search’. In:
Journal of the ACM (JACM) 32.4 (1985), pp. 755–761.

[Fre95] Eugene C Freuder. ‘Using inference to reduce arc consistency computation’.
In: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI’95, pages 592–598. Morgan Kaufmann Publishers, Inc, 1995.
23, 28, 33. 1995.

[G+98] Carla P Gomes, Bart Selman, Henry Kautz et al. ‘Boosting combinatorial search
through randomization’. In: AAAI/IAAI 98 (1998), pp. 431–437.

BIBLIOGRAPHY 171

[Gas79] John Gaschig. Performance measurement and analysis of certain search al-
gorithms. Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF
COMPUTER SCIENCE, 1979.

[GJ02] Michael R Garey and David S Johnson. Computers and intractability. Vol. 29.
wh freeman New York, 2002.

[GJ79] Michael R Garey and David S Johnson. ‘A Guide to the Theory of NP-Complete-
ness’. In: WH Freemann, New York 70 (1979).

[GJC94] Marc Gyssens, Peter G Jeavons and David A Cohen. ‘Decomposing constraint
satisfaction problems using database techniques’. In: Artificial intelligence 66.1
(1994), pp. 57–89.

[GLS00] G. Gottlob, N. Leone and F. Scarcello. ‘A Comparison of Structural CSP Decom-
position Methods’. In: Artificial Intelligence 124 (2000), pp. 343–282.

[GLS99] Georg Gottlob, Nicola Leone and Francesco Scarcello. ‘Hypertree decomposi-
tions and tractable queries’. In: Proceedings of the eighteenth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. ACM. 1999,
pp. 21–32.

[Gol80] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press.
New-York, 1980.

[Gom60] Ralph Gomory. An algorithm for the mixed integer problem. Tech. rep. RAND
CORP SANTA MONICA CA, 1960.

[GP82] Marc Gyssens and Jan Paredaens. ‘A Decomposition Methodology for Cyclic
Databases.’ In: Advances in data base theory 2 (1982), pp. 85–122.

[GS01] Carla P. Gomes and Bart Selman. ‘Algorithm Portfolios’. In: Artificial Intelli-
gence 126.1-2 (2001), pp. 43–62.

[GW94] Ian P Gent and Toby Walsh. ‘Easy problems are sometimes hard’. In: Artificial
Intelligence 70.1-2 (1994), pp. 335–345.

[HC11] Anders Helmar and Marco Chiarandini. ‘A local search heuristic for chro-
matic sum’. In: Proceedings of the 9th metaheuristics international conference.
Vol. 1101. 2011, pp. 161–170.

[HE80] Robert M Haralick and Gordon L Elliott. ‘Increasing tree search efficiency for
constraint satisfaction problems’. In: Artificial intelligence 14.3 (1980), pp. 263–
313.

[HHR03] Chris Harrelson, Kirsten Hildrum and Satish Rao. ‘A polynomial-time tree
decomposition to minimize congestion’. In: Proceedings of the fifteenth annual
ACM symposium on Parallel algorithms and architectures. ACM. 2003, pp. 34–
43.

[HLH97] Bernardo A. Huberman, Rajan M. Lukose and Tad Hogg. ‘An Economics Ap-
proach to Hard Computational Problems’. In: Science 275.5296 (1997), pp. 51–
54.

[HMR17] Ruth Hoffmann, Ciaran McCreesh and Craig Reilly. ‘Between Subgraph Iso-
morphism and Maximum Common Subgraph’. In: (2017).

[Jég93] Philippe Jégou. ‘Decomposition of domains based on the micro-structure of
finite constraint-satisfaction problems’. In: AAAI. Vol. 93. 1993, pp. 731–736.

[JH16] Yan Jin and Jin-Kao Hao. ‘Hybrid evolutionary search for the minimum sum
coloring problem of graphs’. In: Information Sciences 352 (2016), pp. 15–34.

172 BIBLIOGRAPHY

[JHH14] Yan Jin, Jin-Kao Hao and Jean-Philippe Hamiez. ‘A memetic algorithm for
the minimum sum coloring problem’. In: Computers & Operations Research 43
(2014), pp. 318–327.

[JHH16] Yan Jin, Jean-Philippe Hamiez and Jin-Kao Hao. ‘Algorithms for the minimum
sum coloring problem: a review’. In: Artificial Intelligence Review (2016), pp. 1–
28.

[JKT15] Philippe Jégou, Hanan Kanso and Cyril Terrioux. ‘An Algorithmic Framework
for Decomposing Constraint Networks’. In: Tools with Artificial Intelligence
(ICTAI), 2015 IEEE 27th International Conference on. IEEE. 2015, pp. 1–8.

[JNT08] Philippe Jégou, Samba Ndojh Ndiaye and Cyril Terrioux. ‘A new Evaluation of
Forward Checking and its Consequences on Efficiency of Tools for Decomposi-
tion of CSPs’. In: Tools with Artificial Intelligence, 2008. ICTAI’08. 20th IEEE
International Conference on. Vol. 1. IEEE. 2008, pp. 486–490.

[JT03] Philippe Jégou and Cyril Terrioux. ‘Hybrid backtracking bounded by tree-
decomposition of constraint networks’. In: Artificial Intelligence 146.1 (2003),
pp. 43–75.

[Kad+10] Serdar Kadioglu et al. ‘ISAC-Instance-Specific Algorithm Configuration.’ In:
ECAI. Vol. 215. 2010, pp. 751–756.

[Kar84] Narendra Karmarkar. ‘A new polynomial-time algorithm for linear program-
ming’. In: Proceedings of the sixteenth annual ACM symposium on Theory of
computing. ACM. 1984, pp. 302–311.

[Kja90] Uffe Kjaerulff. Triangulation of Graphs - Algorithms Giving Small Total State
Space. Tech. rep. Judex R.R. Aalborg., Denmark, 1990.

[KM72] V Klee and GJ Minty. How good is the simplex algorithm? Inequalities III.(0.
SHISHA, Ed.) pp. 159-175. 1972.

[KMS16] Lars Kotthoff, Ciaran Mccreesh and Christine Solnon. ‘Portfolios of Subgraph
Isomorphism Algorithms’. In: Learning and Intelligent OptimizatioN Confer-
ence (LION 10). Springer. 2016.

[Kot+15] Lars Kotthoff et al. ‘Improving the State of the Art in Inexact TSP Solving
using Per-Instance Algorithm Selection’. In: LION 9. 2015.

[Kot13] Lars Kotthoff. ‘LLAMA: Leveraging Learning to Automatically Manage Al-
gorithms’. In: CoRR abs/1306.1031 (2013). URL: http://arxiv.org/abs/1306.
1031.

[Kot14] Lars Kotthoff. ‘Algorithm Selection for Combinatorial Search Problems: A
Survey’. In: AI Magazine 35.3 (2014), pp. 48–60.

[KS89] Ewa Kubicka and Allen J Schwenk. ‘An introduction to chromatic sums’. In:
Proceedings of the 17th conference on ACM Annual Computer Science Confer-
ence. ACM. 1989, pp. 39–45.

[Kub04] Marek Kubale. Graph colorings. Vol. 352. American Mathematical Soc., 2004.

[Lar02] Javier Larrosa. ‘Node and arc consistency in weighted CSP’. In: AAAI/IAAI.
2002, pp. 48–53.

[LB62] C Lekkeikerker and J Boland. ‘Representation of a finite graph by a set of
intervals on the real line’. In: Fundamenta Mathematicae 51.1 (1962), pp. 45–
64.

[Lec+07a] Christophe Lecoutre et al. ‘Nogood Recording from Restarts.’ In: IJCAI. Vol. 7.
2007, pp. 131–136.

http://arxiv.org/abs/1306.1031
http://arxiv.org/abs/1306.1031

BIBLIOGRAPHY 173

[Lec+07b] Christophe Lecoutre et al. ‘Recording and minimizing nogoods from restarts’.
In: Journal on Satisfiability, Boolean Modeling and Computation 1 (2007),
pp. 147–167.

[Lec+15a] Clément Lecat et al. ‘Comparaison de méthodes de résolution pour le probleme
de somme coloration’. In: JFPC’15: Journées Francophones de Programmation
par Contraintes. 2015.

[Lec+15b] Clément Lecat et al. ‘Exact methods for the minimum sum coloring problem’. In:
DPCP-2015. Cork, Ireland, Iran, 2015, pp. 61–69. URL: https://hal.archives-
ouvertes.fr/hal-01323741.

[LLL16] Clément Lecat, Corinne Lucet and Chu-Min Li. ‘Sum Coloring: New upper
bounds for the chromatic strength’. In: (2016).

[LLL17] Clément Lecat, Corinne Lucet and Chu-Min Li. ‘New Lower Bound for the
Minimum Sum Coloring Problem.’ In: AAAI. 2017, pp. 853–859.

[LM98] Javier Larrosa and Pedro Meseguer. ‘Adding constraint projections in n-ary
csp’. In: Proceedings of the ECAI. Vol. 98. 1998, pp. 41–48.

[LS03] Javier Larrosa and Thomas Schiex. ‘In the quest of the best form of local
consistency for weighted CSP’. In: IJCAI. Vol. 3. 2003, pp. 239–244.

[LSZ93] Michael Luby, Alistair Sinclair and David Zuckerman. ‘Optimal speedup of Las
Vegas algorithms’. In: Information Processing Letters 47.4 (1993), pp. 173–180.

[Lue74] GS Lueker. ‘Structured breadth first search and chordal graphs’. In: Princeton
Univ. Tech. Rep. TR-158 (1974).

[Mac77] Alan K Mackworth. ‘Consistency in networks of relations’. In: Artificial intelli-
gence 8.1 (1977), pp. 99–118.

[McC+16] Ciaran McCreesh et al. ‘Clique and constraint models for maximum common
(connected) subgraph problems’. In: International Conference on Principles and
Practice of Constraint Programming. Springer. 2016, pp. 350–368.

[McG82] James J McGregor. ‘Backtrack search algorithms and the maximal common
subgraph problem’. In: Software: Practice and Experience 12.1 (1982), pp. 23–
34.

[MH86] Roger Mohr and Thomas C Henderson. ‘Arc and path consistency revisited’. In:
Artificial intelligence 28.2 (1986), pp. 225–233.

[MN14] Maël Minot and Samba Ndojh Ndiaye. ‘Searching for a maximum common
induced subgraph by decomposing the compatibility graph’. en. In: Bridging
the Gap Between Theory and Practice in Constraint Solvers, CP2014-Workshop.
Sept. 2014, pp. 1–17. URL: http://liris.cnrs.fr/publis/?id=6911.

[MNS15a] Maël Minot, Samba Ndojh Ndiaye and Christine Solnon. ‘A Comparison of De-
composition Methods for the Maximum Common Subgraph Problem’. In: Tools
with Artificial Intelligence (ICTAI), 2015 IEEE 27th International Conference
on. IEEE. 2015, pp. 461–468.

[MNS15b] Maël Minot, Samba Ndojh Ndiaye and Christine Solnon. ‘Recherche d’un plus
grand sous-graphe commun par décomposition du graphe de compatibilité’. In:
Onzièmes Journées Francophones de Programmation par Contraintes (JFPC).
2015.

[MNS16a] Maël Minot, Samba Ndojh Ndiaye and Christine Solnon. ‘An evaluation of
complete approaches for the sum colouring problem’. In: Douzièmes Journées
Francophones de Programmation par Contraintes (JFPC 2016). Montpellier,
France, June 2016. URL: https://hal.archives-ouvertes.fr/hal-01309350.

https://hal.archives-ouvertes.fr/hal-01323741
https://hal.archives-ouvertes.fr/hal-01323741
http://liris.cnrs.fr/publis/?id=6911
https://hal.archives-ouvertes.fr/hal-01309350

174 BIBLIOGRAPHY

[MNS16b] Maël Minot, Samba Ndojh Ndiaye and Christine Solnon. ‘Using CP and ILP
with tree decomposition to solve the sum colouring problem’. In: Doctoral
program of CP 2016. Toulouse, France, Sept. 2016. URL: https://hal.archives-
ouvertes.fr/hal-01366291.

[MNS17] Maël Minot, Samba Ndojh Ndiaye and Christine Solnon. ‘Combining CP and
ILP in a tree decomposition of bounded height for the sum colouring problem’.
In: CPAIOR 2017. Padova, Italy, June 2017. URL: https://hal.archives-
ouvertes.fr/hal-01447818.

[Mon74] Ugo Montanari. ‘Networks of constraints: Fundamental properties and applica-
tions to picture processing’. In: Information sciences 7 (1974), pp. 95–132.

[Mos+01] Matthew W Moskewicz et al. ‘Chaff: Engineering an efficient SAT solver’. In:
Proceedings of the 38th annual Design Automation Conference. ACM. 2001,
pp. 530–535.

[Mou+] A Moukrim et al. Upper and lower bounds for the minimum sum coloring
problem, submitted for publication.

[Mou+10] Aziz Moukrim et al. ‘Lower bounds for the minimal sum coloring problem’. In:
Electronic Notes in Discrete Mathematics 36 (2010), pp. 663–670.

[MP13] Ciaran McCreesh and Patrick Prosser. ‘Multi-threading a state-of-the-art max-
imum clique algorithm’. In: Algorithms 6.4 (2013), pp. 618–635.

[MP14] Ciaran McCreesh and Patrick Prosser. ‘The Shape of the Search Tree for
the Maximum Clique Problem, and the Implications for Parallel Branch and
Bound’. In: arXiv preprint arXiv:1401.5921 (2014).

[NS11] Samba Ndojh Ndiaye and Christine Solnon. ‘CP models for maximum common
subgraph problems’. In: Principles and Practice of Constraint Programming–CP
2011. Springer, 2011, pp. 637–644.

[OMa+08] Eoin O’Mahony et al. ‘Using Case-based Reasoning in an Algorithm Portfolio
for Constraint Solving’. In: Proceedings of the 19th Irish Conference on Artificial
Intelligence and Cognitive Science. Jan. 2008.

[PRB01] Thierry Petit, Jean-Charles Régin and Christian Bessière. ‘Specific filtering
algorithms for over-constrained problems’. In: Principles and Practice of Con-
straint Programming – CP 2001. Springer. 2001, pp. 451–463.

[Pri57] Robert Clay Prim. ‘Shortest connection networks and some generalizations’. In:
Bell Labs Technical Journal 36.6 (1957), pp. 1389–1401.

[Pro93] Patrick Prosser. ‘Hybrid algorithms for the constraint satisfaction problem’. In:
Computational intelligence 9.3 (1993), pp. 268–299.

[Pug98] Jean-Francois Puget. ‘A fast algorithm for the bound consistency of alldiff
constraints’. In: Aaai/Iaai. 1998, pp. 359–366.

[Pur83] Paul Walton Purdom. ‘Search rearrangement backtracking and polynomial
average time’. In: Artificial intelligence 21.1-2 (1983), pp. 117–133.

[Rég94] Jean-Charles Régin. ‘A filtering algorithm for constraints of difference in CSPs’.
In: AAAI. Vol. 94. 1994, pp. 362–367.

[RGW02] J W Raymond, E J Gardiner and P Willett. ‘RASCAL: calculation of graph
similarity using maximum common edge subgraphs’. In: The Computer Journal
45.6 (2002), pp. 631–644.

[Ric76] John R. Rice. ‘The Algorithm Selection Problem’. In: Advances in Computers 15
(1976), pp. 65–118.

https://hal.archives-ouvertes.fr/hal-01366291
https://hal.archives-ouvertes.fr/hal-01366291
https://hal.archives-ouvertes.fr/hal-01447818
https://hal.archives-ouvertes.fr/hal-01447818

BIBLIOGRAPHY 175

[RRM13] Jean-Charles Régin, Mohamed Rezgui and Arnaud Malapert. ‘Embarrassingly
Parallel Search’. In: Principles and Practice of Constraint Programming - 19th
International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013.
Proceedings. 2013, pp. 596–610. URL: http://dx.doi.org/10.1007/978-3-642-
40627-0_45.

[RRM14] Jean-Charles Régin, Mohamed Rezgui and Arnaud Malapert. ‘Improvement
of the Embarrassingly Parallel Search for Data Centers’. In: Principles and
Practice of Constraint Programming - 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings. 2014, pp. 622–635. URL:
http://dx.doi.org/10.1007/978-3-319-10428-7_45.

[RS86] N. Robertson and P.D. Seymour. ‘Graph minors II: Algorithmic aspects of tree-
width’. In: Algorithms 7 (1986), pp. 309–322.

[RTL76] D. Rose, R. Tarjan and G. Lueker. ‘Algorithmic Aspects of Vertex Elimination
on Graphs.’ In: SIAM J. Comput. 5.2 (1976), pp. 266–283.

[RW02] John W Raymond and Peter Willett. ‘Maximum common subgraph isomorphism
algorithms for the matching of chemical structures’. In: Journal of computer-
aided molecular design 16.7 (2002), pp. 521–533.

[S+93] Bart Selman, Henry A Kautz, Bram Cohen et al. ‘Local search strategies for
satisfiability testing.’ In: Cliques, coloring, and satisfiability 26 (1993), pp. 521–
532.

[San+09] Marti Sanchez et al. ‘Russian Doll Search with Tree Decomposition.’ In: IJCAI.
2009, pp. 603–608.

[Sei+12] Jendrik Seipp et al. ‘Learning Portfolios of Automatically Tuned Planners’. In:
ICAPS. 2012.

[SF06] Christine Solnon and Serge Fenet. ‘A study of ACO capabilities for solving
the maximum clique problem’. In: J. Heuristics 12.3 (2006), pp. 155–180. URL:
http://dx.doi.org/10.1007/s10732-006-4295-8.

[SF94] Daniel Sabin and Eugene C Freuder. ‘Contradicting conventional wisdom in
constraint satisfaction’. In: Principles and Practice of Constraint Programming.
Springer. 1994, pp. 10–20.

[SG97] Barbara M Smith and Stuart A Grant. ‘Trying harder to fail first’. In: Research
Report Series-University of Leeds School of Computer Studies Lu Scs Rr (1997).

[SS77] Richard M Stallman and Gerald J Sussman. ‘Forward reasoning and depen-
dency-directed backtracking in a system for computer-aided circuit analysis’.
In: Artificial intelligence 9.2 (1977), pp. 135–196.

[SV94] Thomas Schiex and Gérard Verfaillie. ‘Nogood recording for static and dy-
namic constraint satisfaction problems’. In: International Journal on Artificial
Intelligence Tools 3.02 (1994), pp. 187–207.

[Tea08] Gecode Team. Gecode: Generic constraint development environment, 2006. 2008.

[Tho+89] Carsten Thomassen et al. ‘Tight bounds on the chromatic sum of a connected
graph’. In: Journal of Graph Theory 13.3 (1989), pp. 353–357.

[Ull76] Julian R Ullmann. ‘An algorithm for subgraph isomorphism’. In: Journal of the
ACM (JACM) 23.1 (1976), pp. 31–42.

[Vis11] Philippe Vismara. ‘Programmation par contraintes pour les problemes de plus
grand sous-graphe commun’. In: JFPC’11: Journées Francophones de Program-
mation par Contraintes. 2011, pp. 327–335.

http://dx.doi.org/10.1007/978-3-642-40627-0_45
http://dx.doi.org/10.1007/978-3-642-40627-0_45
http://dx.doi.org/10.1007/978-3-319-10428-7_45
http://dx.doi.org/10.1007/s10732-006-4295-8

176 BIBLIOGRAPHY

[Wal75] David Waltz. Understanding Line Drawings of Scenes with Shadows." The
Psychology of Computer Vision. Patrick Henry Winston, ed. 1975.

[Wan+12] Yang Wang et al. ‘Solving the minimum sum coloring problem via binary
quadratic programming’. In: Optimization (2012).

[WH12] Qinghua Wu and Jin-Kao Hao. ‘An effective heuristic algorithm for sum coloring
of graphs’. In: Computers & Operations Research 39.7 (2012), pp. 1593–1600.

[WH13] Qinghua Wu and Jin-Kao Hao. ‘Improved lower bounds for sum coloring via
clique decomposition’. In: arXiv preprint 1303.6761 (2013).

[XHL10] Lin Xu, Holger Hoos and Kevin Leyton-Brown. ‘Hydra: Automatically Configur-
ing Algorithms for Portfolio-Based Selection.’ In: AAAI. Vol. 10. 2010, pp. 210–
216.

[Xu+08] Lin Xu et al. ‘SATzilla: Portfolio-based Algorithm Selection for SAT’. In: J. Artif.
Intell. Res. (JAIR) 32 (2008), pp. 565–606.

[ZY01] Yuanlin Zhang and Roland HC Yap. ‘Making AC-3 an optimal algorithm’. In:
IJCAI. Vol. 1. 2001, pp. 316–321.

FOLIO ADMINISTRATIF

THÈSE DE L’UNIVERSITÉ DE LYON OPÉRÉE AU SEIN DE L’INSA LYON

NOM : Minot DATE DE SOUTENANCE : 19 décembre 2017
PRÉNOM : Maël

TITRE : Investigating decomposition methods for the maximum common
subgraph and sum colouring problems

NATURE : Doctorat NUMÉRO D’ORDRE : 2017LYSEI120
ÉCOLE DOCTORALE : InfoMaths
SPÉCIALITÉ : Informatique

RÉSUMÉ :
Cette thèse vise, d’un point de vue général, à concevoir et éva-
luer des méthodes de décomposition applicables à des problèmes
d’optimisation sous contraintes, ainsi qu’à rendre ces méthodes le
plus compétitives possible. Deux problèmes d’optimisation connus
pour leur difficulté on été considérés en particulier : le problème
du plus grand sous-graphe commun, qui consiste à trouver la plus
grande partie commune entre deux objets, et le problème de la
somme coloration, dans lequel un graphe doit être colorié d’une
façon minimisant une somme de poids. Nous employons notam-
ment, en plus de la programmation linéaire, des techniques de
décomposition arborescentes et la programmation par contrainte,
et abordons également la sélection automatique d’algorithmes.

MOTS-CLEFS : Décomposition · Graphes · Isomorphisme · Coloration ·
Programmation par contraintes · Programmation linéaire · Optimisation
combinatoire · Portfolio

LABORATOIRE DE RECHERCHE : LIRIS

DIRECTRICE DE THÈSE : Christine SOLNON
PRÉSIDENT DE JURY : Christophe LECOUTRE
COMPOSITION DU JURY :

Sambda Ndojh NDIAYE
Simon DE GIVRY
Chu Min LI

	I Context
	Graphs
	Basic definitions
	Hypergraphs
	Triangulated graphs
	Tree decompositions

	Constraint programming
	Constraint satisfaction problems
	Generic algorithms
	Structural decomposition
	Parallelisation

	Integer linear programming
	Linear programming
	Integer linear programming

	Portfolio approaches
	Algorithm selection principle
	Supervised classification
	Classification for algorithm selection

	II The maximum common subgraph problem
	Background and definitions
	Graph comparisons
	cp model for the mcis
	Reformulation of the mcis problem

	Decomposing the mcis problem
	Binary domain decomposition
	Structural decomposition

	Experimental evaluation
	Experimental setup
	Benchmark
	Results

	Discussion

	III The sum colouring problem
	The sum colouring problem
	Definitions
	Existing bounds
	Existing approaches

	Improving the existing models
	Reduction of initial domains
	Adding allDifferent constraints
	Lower bound from a clique partition
	Combining sum and allDifferent constraints
	Heuristic choices
	Hybrid strategies
	Results

	Backtracking bounded by flower decomposition
	Motivation and principle
	Building a flower decomposition
	Aiming for a good flower decomposition
	bfd summary
	Experimental results

	Computing local and global bounds using partial solutions
	Local bounds
	First solution and global bound
	Allotted time for bounds
	Results

	Portfolio approach
	Methods
	Feature extraction
	Selection model
	Results

	Discussion

