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Synopsis

Comprendre le lien entre la sensorialité et l’acte moteur est à la fois un point de départ et un
point d’arrivé pour comprendre la cognition humaine. Le robot est par là-même l’outil idéal pour
étudier ces différents aspects. Cela nécessite à la fois de comprendre le niveau microscopique et
macroscopique des modèles neuronaux et cérébraux, comprendre la biomécanique du corps et
le traitement de l’information fait par les cellules sensorielles et musculaires, ainsi que toute la
chaîne de processus pour apprendre, s’adapter dynamiquement face à l’imprévu. Ces questions
rebouclent sans cesse dans ma recherche pour définir les mécanismes de l’Intelligence Encor-
porée.

J’y explore trois axes de recherche qui sont la génération du mouvement, le développement
cognitif, l’apprentissage sensorimoteur. Il s’agit de comprendre comment le corps est constitué,
quelle est sa structure bio-mécanique, comment un système agissant peut apprendre sur le long-
terme et arrive à apprendre à apprendre de ses propres actions. Ce qui lie mes recherches est
une vision complexe et encorporée de l’intelligence, transversale, dont les mots-clefs sont les
processus itératifs, émergents, auto-associatifs, génératifs.
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Introduction

Motivation and Objective

For the last decade, the perspective to make robots based on a new AI, embodied, enactive and
bio-inspired, has been the central motivation of my research activity. I attempted to deepen my
understanding in search of the very general principles of intelligent autonomous systems from
the micro-scale of the neurons, of the muscles, to the macro-scale of learning and development.
Such interdisciplinary research faces the problem of complexity and requires a systemic ap-
proach to model interaction at all levels in order to have a system capable to learn as an infant
does and capable to deal with the unexpected as most mahines fail to do.

The new fields of cognitive and bio-inspired robotics aligned with cognitive researchers,
neuroscientics urge to find design principles explaining cognitive development, autonomous
behavior, learning and to replicate them in robots. These are complex scientific objects, bio-
inspiration may unveil some findings capable to be replicated in robots but also to understand
from a developmental aspect, neural architectures capable to explain and replicate human normal
as well as abnormal cognition development from birth.

My research aims at answering these questions from various angles in order to find from
the most general to the most specific design principles on AI, Physics and Biology. I try to
look at how cognitive and motor development of infants perception arise and human biological
organization of the musculo-skeletal system and of the brain structures is made for intelligent
behaviors.

In this area, from a complex system approach of intelligent systems, my research work has
mainly focused for the last 9 years on three main tracks :

1. Complex system approach to Motor Synergies and Soft Robotics

2. Neural mechanisms for Multimodal Integration and Embodied Cognition

3. Cognitive Architectures for a Working Memory

I try to follow these three directions. To do so, I modeled different brain areas and neural
mechanisms involved in multimodal integration toward the learning and development of a body
image in robots.
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1302, 9 articles. [nearly 20.000 views]

9 sep. 2012 Workshop on “Developmental and bio-inspired approaches for social cognitive ro-
botics” at Ro-Man 2012, 21st IEEE Int. Symp. on Robot and Human Interactive Comm.,
France.
Main organizer and chairman, 6 invited renowned researchers on cognitive science, dev.
psy., social robotics, 60 participants.
http://www-etis.ensea.fr/WorkshopRoMan2012/Home.html

july 2011 Workshop on Coordination Dynamics and Social Robotics at Dynamic Brain Forum
@ICCN conference, Hokkaido, Japan.
Co-organizer & chairman, reviewer of the workshop’ papers. 20 participants

Invited Talks

Sept 2017 Selected Talk, Workshop on Development of Self, IEEE Conference on ICDL EPI-
ROB, Lisbon.

July 2017 Invited Talk, Waseda University, Tokyo, Japan.

Jun 2017 Conférence Human Brain Project “Soft Bodies for Brains, Soft Brains for Bodies”,
Université de Genève, Suisse.

Mars 2017 Conférence UNESCO “Machines Ethiques et Morales”, Université de Laval, Qué-
bec, Canada.

Dec 2016 Auto-invitation Workshop Touch for Brains, Body, and Babies, Cergy-Pontoise.

May 2016 Conférence Débat “Machines Morales”, UNESCO, Paris.

Apr 2016 Invited Talk, Centre Recherche Inter-disciplinaire, Paris, France.

Mar 2016 Invited Talk, “Etique des Nouvelles Technologies”, CHU Reims, Reims, France.

Feb 2016 TedX, Arts&Metiers ParisTech, Lille

Jan 2016 Invited Talk, BabyLab, Nanterre University, Nanterre, France.

July 2015 Invited Talk ASSC Workshop on Sensorimotor Theory, Paris.
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1.5. TEACHING ACTIVITY

July 2015 Invited Talk, Journées NeuroSTIC, Paris

Jan 2015 Frontiers of Science CNRS-JSPS joint symposium, Kyoto [general scientist]

Jan 2015 Invited Talk, Asada Laboratory, Osaka University, Osaka, Japon.

June 2014 Invited Keynote Talk, part of IPAC seminars, LORIA, Nancy, France. (http://
ipac.loria.fr)

May 2014 Keynote on Embodiment, Spring School “Robots and Social Cognition”, Landes,
France.

Mar 2014 Invited Talk special session for M2H Seminar, EuroMov Center, Montpellier, France.

2012 Invited Talk, Dynamic Brain Forum, Carmona, Spain, “spatial mapping in parietal cortex”

2010 Invited presentation to LPP Laboratory university Paris Descartes, on “Developmental
Robotics”

2009 Invited seminar for ShanghAI Lectures, at ETH Zurich on “Cognitive Robotics”

2009 Keynote oral presentation, workshop NeuroComputing (NC2009), University of Sapporo

Vulgarisation Scientifique

March, 2017 interview for “Machine Morale”, radio Canada.

January, 2017 Student interview for Bio-inspired Robots, radio France.

Dec, 2016 - March 2017 CNRS Fresque BioInspired Robotics, Métro Montparnasse, Paris.

October, 2016 interview for webTV, “Esprit Sorcier”, Fete de la Science, Cité de la Science, la
Villette, Paris.

April, 2015 interview for regional magazine “Onze comme Une”.

June 2015 National Event on NewTech, Futur-en-Seine, Cergy-Pontoise. [200 persons]

April 2015 2 pages Interview for the popular science magazine « Thinkovery » (number #3,
may/june 2015) on the new Artificial Intelligence and Bio-Inspired Robotics.

October 2014 National Scientific Event “Fête de la science”, Polytechnique, Palaiseau. [pré-
sentation orale devant 4 classes de lycéens et de collégiens].

May 2013 Forum des sciences cognitives, École de médecine, Paris.

June 2012 #MQRF Mais que Re-faire, au 104, le Cent-Quatre, Paris. [1000 persons]

May 2012 Forum des sciences cognitives, École de médecine, Paris.

May 2011 Forum des sciences cognitives, École de médecine, Paris.
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2012 Rolf Pfeifer et A. Pitti. La révolution de l’intelligence du corps. Manuella Editions 2012,
196 pages.

2009 Audio Interview for ROBOT PODCAST website on “Chaos Control and Bio-inspired
Robots”

Scientific Expertize

December 2017 Rapporteur (PhD Evaluator), Université Paris-Orsay, Orsay, France.

February 2017 Examinateur (PhD Evaluator), ENSTA, Palaiseau, France.

January 2016 Examinateur (PhD Evaluator), Ecole Centrale de Nantes, France.

July 2014 Examinateur (PhD Evaluator), LIRMM, Montpellier, France.

March 2014 Project Grant reviewer, ANR, France. Reviewer of the scientific content of a 5-
year project.

February 2014 Project Grant reviewer, NWO div. Earth and Life Sciences, Netherlands.

Reviewer of the scientific content of a 3-year project.

Januray 2014 Review Panel Member, Human Brain Project, Sc. of Pharmacy, UK. Evaluation
of 50 european projects.

December 2013 Examinateur (PhD Evaluator), University of Versailles, France.

Reviewer

Conferences CogSci 2015 / IEEE ICDL-EPIROB 2011, 2012, 2013, 2014, 2015 / IROS 2012,
2013 / IJCNN 2012

Journals 2015 Bio-signal / 2015 Frontiers in Psychology / 2012 IEEE Trends in Autonomous
Mental Developmental / 2012 & 2013 Frontiers in NeuroRobotics / 2011 RSTI - RIA

Associate editor for conferences and journals Frontiers in Psychology & in NeuroRobotics /
Conférence IEEE ICDL-EPIROB 2013, 2014, 2015, 2016/ Conférence IEEE SII 2015

Collaborations and Projects

Local Collaborations

from 2016 Spectral Methods for Tactile Devices, Olivier Romain, ENSEA. [Joint PhD Thesis
in 2017, financed by VEDECOM Consortium]

from 2016 project on AI tools for Learning in ASD infants, Institut Medico Educatif de Cergy-
Pontoise. [création d’une application éducative basée sur une IA pour enfants avec handi-
cap]

National Collaborations
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from 2016 Neuromorphic computing, IRCICA, Université de Lille. [ANR 2017 submitted]

from 2016 Multimodal Integration in Robots and Babies, Université de Nanterre. [Fondation
de France Grant 2016, ANR 2017 submitted]

international Collaborations

2016-2017 Generative Adversal Networks for Robot Control, Hiroki Mori, Osaka University
Assistant Professor. [Invited Professor, stayed one year at Cergy-Pontoise]

from 2016 Touch and Grasping in Robots and Babies, University of Tenesse, Daniella Corbetta.
[Joint Robotic and Developmental research]

from 2014 Rubber-hand Illusion and Self-Perception Modeling, Sotaro Shimada, University of
Meiji. [invitation in 2015, one paper in Scientific reports 2017 JOUR11]

Projects

from 2016 Multimodal Integration in Robots and Babies, Université de Nanterre. [Fondation
de France Grant 2016, 2 stages de M2 Recherche]

2011–2012 Participation au projet ANR INTERACT laboratoire ETIS, ENSEA, UCP, CNRS.

2007–2011 Participation au projet JST-ERATO Synergistic Intelligence entre les laboratoires
de l’université de Tokyo, Osaka et Kyoto. Professeurs Minoru Asada, Hiroshi Ishiguro,
Yasuo Kuniyoshi, Toshio Inui, Koh Hosada.

2010 Marie Curie International Reintegration Grants Call : FP7-PEOPLE-2010-RG
Le Projet CogPlexity a accepté avec l’unviversité Pierre et Marie Curie mais je l’ai refusé
volontairement pour obtenir la chaire d’excellence
CNRS-UCP.

Full List of Publications (2005-2017)

Book

BOOK03 Frontiers in NeuroRobotics, Research Topic of « Body Representations, Peripersonal
Space, and the Self : Humans, Animals, Robots », (2018, to appear).
http://journal.frontiersin.org/researchtopic/6865/ body-representations-peripersonal-space-
and-the-self-humans-animals-robots

BOOK02 Frontiers in NeuroRobotics, topic of « Social Behaviour and Neural Control », (2012).
http://www.frontiersin.org/Neurorobotics/researchtopics/Social_
Behaviour_and_Neural_Co/1302, 9 articles. [nearly 20.000 views]

BOOK01 Rolf Pfeifer & Alex Pitti, (2012), “la Révolution de l’Intelligence du Corps”, Manuella
Editions. 196 pages A popular science book on design principles for new AI and Em-
bodied Robotics, Cognitive Science, Material Science, Complex Systems, Biomechanics,
Developmental Psychology and Neuroscience.
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Journal Articles

(13 publications, asterisk * : 2 publications are co-authored under PhD supervision, underlined :
4 publications are co-authored with my students)

JOUR13 Braud, R. Pitti, A. Gaussier, P. (2017). A modular Dynamic Sensorimotor Model for af-
fordances learning, sequences planning and tool-use. IEEE Trends in Cognitive and De-
velopmental Systems (previously IEEE TAMD [IF 2.17]). (to appear)

JOUR12 Pitti A., Gaussier P. & Quoy M. (2017) Incremental Free-Energy Optimization for Recur-
rent Neural Networks (INFERNO). PLoS ONE. 12(3) : e0173684

JOUR11 Pitti, A., Pugach, G., Gaussier, P., and Shimada, S. (2017). Spatio-temporal tolerance of
visuo-tactile illusions in artificial skin by recurrent neural network with spike-timing-
dependent plasticity. Scientific Reports, 7 :41056.

Novel EIT topographic map reconstruction of a tactile skin based on self-organizing neural
networks.

JOUR10 Pugach G., Pitti A. & Gaussier P. (2015), Neural Learning of the Topographic Tactile
Sensory Information of an Artificial Skin through a Self-Organizing Map, Journal of Ad-
vanced Robotics, Oct 2015, vol.29, no. 21, pp.1393-1409. Special Issue on Artificial Skins
in Robotics. [IF 0.5]

Robotic design principles applied to explain infant learning motor skills and neonate imi-
tation.

JOUR09 Mahé S., Braud R., Quoy M., Gaussier P & Pitti A. (2015), Exploiting the gain-modulation
mechanism in parieto-motor neurons : Application to visuomotor transformations and em-
bodied simulation. Neural Networks, 62 :102–111. J’ai supervisé la recherche, l’analyse
des résultats et sa rédaction, je suis le correspondant pour ce manuscript.

JOUR08 Pitti A., Braud R., Mahé S., Quoy M. & Gaussier P. (2013) Neural Model for Learning-
to-Learn of Novel Task Sets in the Motor Domain. Frontiers in Psychology, 4 :771, 1–14.
[IF 2.4]

JOUR07 Pitti A., Kuniyoshi Y., Quoy M. & Gaussier P. (2013) Modeling the Minimal Newborn’s
Intersubjective Mind : The Visuotopic-Somatotopic Alignment Hypothesis in the Superior
Colliculus. PLoS ONE, 8 :7, e69474.

Chaotic controllers applied toward the control of motor synergies and central pattern ge-
nerators.

JOUR06 Pitti A., Niiyama R. & Kuniyoshi Y. (2010) Creating and modulating rhythms by control-
ling the physics of the body. Autonomous Robots, 28 :3, 317-329.

JOUR05 Pitti A., Lungarella M. & Kuniyoshi Y. (2009) Generating Spatiotemporal Joint Torque
Patterns from Dynamical Synchronization of Distributed Pattern Generators. Frontiers in
NeuroRobotics, 3 :2, 1-14.

Spiking neural networks applied to multimodal integration modelling the Mirror Neurons
system
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JOUR04 Pitti A., Mori H., Kouzuma S. & Kuniyoshi Y. (2009) Contingency Perception and Agency
Measure in Visuo-Motor Spiking Neural Networks. IEEE Trans. on Autonomous Mental
Development, 1 :1, 86-97. [IF : 2.17]

JOUR03 Pitti A., Alirezaei H. & Kuniyoshi Y. (2009) Cross-modal and scale-free action representa-
tions through enaction. Neural Networks. Special issue "What it means to communicate",
22 :2, 144-154. [IF : 2.70]

We modeled an original scale-based causality measure for the study of complex systems

JOUR02 *Pitti A., Lungarella M. & Kuniyoshi Y. (2008) Metastability and functional integration
in anisotropically coupled map lattices. Eur. Phys. J. B, 63, 239-243. [IF : 1.28]

JOUR01 *Lungarella M., Pitti A. & Kuniyoshi Y. (2007) Information transfer at multiple scales.
Physical Review E, 76, 056117. [IF : 2.31]

Selection of Proceedings of International Conferences with Peer Reviews

(10 publications, 3 publications are co-authored under PhD supervision, 4 publications are co-
authored with my students)

CONF10 Pugach, Melnyk, Tolochko, Pitti, & Gaussier. (2016) Touch-Based Admittance Control of
a Robotic Arm Using Neural Learning of an Artificial Skin, IEEE IROS 2016, 3374-3380.

CONF09 Pugach G., Khomenko V., Pitti A., Melnyk A., Henaff P. & Gaussier P. (2013) Electro-
nic hardware design of a low cost tactile sensor device for physical Human-Robot In-
teractions. IEEE XXXIII Inter. Conference on Electronics and NanoTechnology, Kiev :
Ukraine, 1-6.

A neural model of the gain-field mechanism applied for multi-modal integration in robots

CONF08 Pitti A., Blanchard A., Cardinaux, M. & Gaussier P. (2012) Gain-Field Modulation Me-
chanism in Multimodal Networks for Spatial Perception. IEEE HUMANOIDS Conf., 297-
302.

CONF07 Pitti A., Blanchard A., Cardinaux, M. & Gaussier P. (2012) Distinct Mechanisms for
Multi-modal integration and unimodal representation in spatial development. IEEE ICDL-
EPIROB, 1-6.

Model of hippocampal memory development triggered by the neuromodulator Acetylcho-
line

CONF06 Pitti A. & Kuniyoshi Y. (2011) Modeling the Cholinergic Innervation in the Infant Cortico-
Hippocampal System and its Contribution to Early Memory Development and Attention.
Proc. of the Int. Joint Conference on Neural Networks IJCNN 2011, 1409-1416.

CONF05 Pitti A. & Kuniyoshi Y. (2011) Contribution of the Cholinergic Innervation to Early Me-
mory Development in the Neonate Para-Hippocampal System. Proc. of the 3rd Int. Conf.
on Cognitive Neurodynamics ICCN 2011, 1-8. [Poster Award, 5% selection out of 100
papers]
Model of the Mirror Neurons Systems development for spatial skills in multi-DOF infant-
like robot
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CONF04 Pitti A., Mori H., Yamada Y. & Kuniyoshi Y. (2010) A Model of Spatial Development
from Parieto-Hippocampal Learning of Body-Place Associations. Proc. of the 10th Int.
workshop on Epigenetic Robotics, pp.89-96.

Design central pattern generators & motor synergies for locomotion and control of multi-
DOF robots

CONF03 *Pitti A., Lungarella M. & Kuniyoshi Y. (2006) Synchronization : adaptive mechanism
linking internal and external dynamics. Proc. 5th Int. Work. on Epigenetics Rob., 127-
134.

CONF02 *Pitti A., Lungarella M. & Kuniyoshi Y. (2006) Exploration of natural dynamics through
resonance and chaos. Proc. 9th Int. Conf. on Intell. Autonomous Systems, 558-565.

CONF01 *Pitti A., Lungarella M. & Kuniyoshi Y. (2005) Quantification of emergent behaviors
induced by feedback resonance of chaos. Recent Advances in Artificial Life : Advances
in Natural Computation, vol.3, chap.15, 199-213.

Book Chapters

CHAP05 Pitti A. (2017) the Alignment Hypothesis for Modeling the Self. The Development of Self
Workshop. to appear

CHAP04 Pitti A. (2017) Ideas from Developmental Robotics and Embodied AI on the Questions of
Ethics in Robots. Report for UNESCO Symposium, Marie-Hélène Parizeau. to appear

CHAP03 Pitti A. & Gaussier P. (2017) Reaching and Grasping : what we can learn from psychology
and robotics. Book Chapter, Editors Daniella Corbetta. to appear

review chapters on my research to model the Mirror Neurons System

CHAP02 Pitti A. & Kuniyoshi Y. (2012) Neural Models For Social Development In Shared Parieto-
Motor Circuits. Book Chapter 11 in "Horizons in Neuroscience Research. Volume 6",
Nova Science Publishers, 247-282.

CHAP01 Pitti A., Alirezaei H. & Kuniyoshi Y. (2008) Mirroring Maps and Action Representation
through Embodied Interactions. Book Chapter in Connectionist Models of Behaviour and
Cognition II, World Scientific, 27-37.
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CHAPITRE 2

Summary of My Research Activities
(2007-2016)

Introduction

Recalls on my PhD work

I have started my Ph.D. research in computational neuroscience and bio-inspired robotics on
the modelling of the motor synergies and the motor control at the spinal cords level. The motor
control was made by the neuromodulation of chaotic oscillators that phase synchronize their ac-
tivities to the body dynamics toward emergence of rhythmical motion patterns. I have exploited
various embodied morphologies with quadruped, biped, or highly redundant robot architectures,
in simulation as well as in real with muscle-like McKibben pneumatic actuators. I follow this
research toward achieving low-cost, ecological, bio-inspired, soft and multi-articulated robotic
designs.

The aim of my thesis was to propose a constructive approach to study the mechanisms un-
derlying the intelligent processes arising between the body, its internal dynamics, with the envi-
ronment. The body and nervous system are inseparable interacting constituents of an organism,
and it is a mistake to think of the former passively obeying the commands of the latter : they
operate in complex and subtle harmony.

Our claim is that synchronization may provide a coherent and unified framework to model
how people learn, control their body, interact and develop themselves. More precisely, I contri-
buted to a methodology to explore, quantify and categorize the natural dynamics of a given
robotic system by exploiting the property in nonlinear oscillators to match (to synchronize) the
resonant frequencies of any driving force (feedback resonance) ; see Fig 2.1.

The mechanism of phase synchronization in dynamical systems may be exploited to control
the system’s global dynamics, and can be applied to high dimensional system and to the “tuning”
of its material property and morphology. At reverse, the design of the robot’s body requires to
have some constrains on its geometry, its material properties in order to process morphological
computations Pfeifer et al. [2007a]; Pfeifer and Pitti [2012].

We pursue further the idea of a network of chaotic units used as a model for exploration
of body dynamics. One of the core features of our model is that it allows to switch between
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FIGURE 2.1 – Presentation of the chaos control framework for modeling central pattern generators in
robots. Chaotic systems are returning maps with an infinite frequencies. For certain coupling parameters
with a passive or under-actuated system, it can perturb and triggers its resonant frequencies through
feedback. Chaotic oscillators are prety much like ’energy’ pumps that move one system ack and forth
along homoclinic lines for one amount of energy furnished. We propose that chaos control is similar to
energy-shaping control of under-actuated systems toward the discovery of stable/unstable equilibrium
points as well as dynamical regimes near homoclinic energy lines.

different attractors while maintaining adaptation. In the following section, we will present the
three pillars on which our augmented model rests : (a) dynamical systems approach, in particular
the notions of global dynamics and interaction dynamics ; (b) mechanism of feedback resonance
thanks to which the neural system tunes into the natural frequencies of the intrinsic dynamics
of the mechanical system ; and (c) concept of coupled chaotic fields which is responsible for
exploration of the neural dynamics.

Neural Models and Physical Design for Motor Synergies in Robots

Traditionally, motion control strategies have revolved around trajectory planning, inverse kine-
matics and inverse dynamics modeling, or adaptive methodologies such as reinforcement lear-
ning or genetic algorithms. Alas, if movements are generated by some fixed control structure or
by optimization of some evaluation function it is not clear how the system can adapt to unpre-
dicted dynamic changes. Rather than on control or optimization, we suggest that the emphasis
should be put on exploiting the coherent patterns of motor activity which emerge from the in-
teraction dynamics between brain, body, and environment. Nikolaus Bernstein was probably
the first to address in a systematic way the question of how humans purposefully exploit the
interaction between neural and body-environment dynamics to solve the complex equations of
motion involved in the coordination of the large number of mechanical degrees of freedom of
our bodies. In the last decade or so, Bernstein’s degrees of freedom problem has been tackled
many times through the framework of dynamical systems. Such research has three important
implications which are relevant in this part. First, movements are dynamically soft-assembled
by the continuous and mutual interaction between the neural and the body-environment dyna-
mics. Second, embodiment and task dynamics impose consistent and invariant (i.e. learnable)
structure on sensorimotor patterns. Third, when the neural dynamics of a system is coupled with
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a) b)

c)

FIGURE 2.2 – The structure of the body helps a lot for morphological computation and postural control.
the necessary files to compile. Wh(a) Elasticity of tendons and muscles serve for energy saving and release
durng dynamical motion. (b) posture serves for tension distribution thanks to the geometry features of its
morphology. (c) tensegrity principle to understand the compliance of the body based on muscles prestress
and bones compression.

its natural intrinsic dynamics, even a complicated body can exhibit very robust and flexible be-
havior, mainly as a result of mutual entrainment (e.g. neural oscillator based biped walking and
pendulation).

Feedback Resonance of Chaos for Discovering Motor Synergies

Related papers :

- Pitti A., Lungarella M. & Kuniyoshi Y. (2005). Quantification of emergent behaviors in-
duced by feedback resonance and chaos. Recent Advances in Artificial Life : Advances in

- 31 -



2.3. NEURAL MODELS AND PHYSICAL DESIGN FOR MOTOR SYNERGIES IN ROBOTS

a) b) c)

FIGURE 2.3 – Ring-shape mass-spring structure driven by a network of coupled chaotic pattern genera-
tors (called coupled chaotic fields). b) Spectral Bifurcation Diagram. Inset shows spectral peaks for low
values of neural chaoticity. The control parameter is α. (Arrow) second harmonics.

Natural Computation, vol.3, chap.15, 199-213.

- Pitti A., Lungarella M. & Kuniyoshi Y. (2006) Exploration of natural dynamics through
resonance and chaos. Proc. 9th Int. Conf. on Intell. Autonomous Systems, 558-565.

- Pitti A., Lungarella M. & Kuniyoshi Y. (2006) Synchronization : adaptive mechanism
linking internal and external dynamics. Proc. 5th Int. Work. on Epigenetics Rob., 127-
134.

We address the issue of how an embodied system can autonomously explore and discover the
action possibilities inherent to its body. Our basic assumption is that the intrinsic dynamics of a
system can be explored by perturbing the system through small but well-timed feedback actions
and by exploiting a mechanism of feedback resonance. We hypothesize that such perturbations,
if appropriately chosen, can favor the transitions from one stable attractor to another, and the
discovery of stable postural configurations. To test our ideas, we realize an experimental system
consisting of a ring-shaped mass-spring structure driven by a network of coupled chaotic pattern
generators (called coupled chaotic fields), see Fig. 2.3. We study the role played by the chaoticity
of the neural system as the control parameter governing phase transitions in movement space.
Through a frequency-domain analysis of the emergent behavioral patterns, we show that the
system discovers regions of its state space exhibiting notable properties.

Our analysis was mainly focused on understanding how the body dynamics evolution in
time is related to the chaoticity of the neural units that is varied. The initial value of α is zero.
For this value the output of the neural system is a constant, and the system doesn’t move. The
”ring” starts to vibrate almost unperceivably at a very small spatial scale by increasing by a
small amount the chaoticity of the neural units (α ∈]0.0, 0.1]). After a certain amount of time,
the seemingly random movements converge to a slow rhythmical rocking movement, that is, the
system’s dynamics have found a stable attractor.

Up to a very specific level of chaoticity (α = 0.097477), the system strikes a perfectly poised
balanced posture, and does not have sufficient energy to start rolling. By slightly increasing the
control parameter (α = 0.1), a phase transition occurs, and the system starts to roll. Interestingly,
for values of α < 0.15, the system oscillates quite unpredictably between rolling and balancing.
The corresponding phase diagrams suggest that the emergence of particular movement patterns
depends on the presence or absence of entrainment between neural and body-environment dyna-
mics because coupled logistic maps for these particularly weak values of the control parameter
α cannot produce a state transition (the first period doubling occurs at α = 0.4).
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For levels of neural chaoticity α ∈ [0.15 ; 0.4], novel behaviors and patterns of locomotion
emerges. The neural system seems to exploit the natural dynamics of the ring-shaped body to
balance, rock, roll, accelerate and decelerate, and in rare occasions, even to jump. The instability
of the movement patterns are mainly caused by micro-scale perturbations acting on the neural
dynamics with a consequent disruption of the entrainment between neural and body-environment
dynamics and the emergence of new locomotion patterns (relying on evidences that we will
explain in the next section).

The Spectral Bifurcation Diagram for varying levels of chaoticity in the chaotic units is re-
produced in Figure 2.3 c). Low levels of chaoticity at the output of the chaotic units (α < 0.05)
are characterized by sharp peaks in the power spectral density of the force sensors located in
the joints, and given a particular value of α the resonance response is close to the one of a dam-
ped oscillator. The low frequency component around 2 Hz dominates the interaction dynamics
between the neural system and the ring. This frequency corresponds to the fundamental mode
of the coupled system, that is, its eigen-frequency. For this frequency, the joints are highly syn-
chronized and the system displays a high degree of coordination. A minimal amount of energy
is required to move the system and to transfer energy to the different parts of the body.

When the chaoticity increases higher harmonics appear introducing discontinuities in the re-
sonance response. The main resonance persists for all values of but we observe abrupt changes
and bifurcations in the magnitude of other peaks. The new harmonic peaks are located at integer
and fractional multiples of the first eigen-frequency. The latter peaks are caused by small dam-
ped actions of the chaotic system and affect the joint properties, in the sense that a change of
chaoticity of the neural system can induce a change in the stiffness of the springs in the joints.
As a result the system is able to generate a large variety of patterns (stable, weakly stable, and
unstable).

When the amplitude of the harmonics is too large, it negatively affects the groups formed
in different regions of the body generating decoherence and destroying stable activity patterns.
Note that the harmonic states are intrinsic to the coupling between neural, body, and environ-
mental dynamics, and even if the spectral patterns seem complex, they should not be considered
to be the outcome of yet another kind of neural noise.

We have previously suggested that behavioral changes are a complex function of the cou-
pling between neural and body-environment dynamics. By using the Spectral Bifurcation Dia-
gram we can now shed light on the patterns of neural activity leading to such changes. For
example for a level of chaoticity α = 0.097477 (that is, when the ring starts to roll) the power
spectrum has a second harmonic (arrow) which disappears in the interval [0.1, 0.13] (that is,
when the system presents difficulties to roll again). The more harmonics there are, the more
complex the behavior, despite preservation of coherence of behavior.

Similar results are found for a dog-like 2D robot with two actuators on the hip joints and
passive dynamics at the knee-joints, see Fig. 2.4. Below a threshold for the coupling parameter
α < 1.0, no synchronization occurs between the internal logistic maps and the body dynamics
and very random motions are seen as a vibrating mode. From the value α = 1.0, small hops
are triggered as the coupling between internal and external dynamics starts, see Fig. 2.4 top a).
This corresponds to the fundamental resonant mode of the dog-like musculo-skeletal system.
Above this value, more harmonics are found and the robot is capable to perform higher bumps
and hops till the forces kick higher the robot The higher the harmonics, the faster the strokes
on the body dynamics while the motor controllability looses precision to make higher jumps but
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FIGURE 2.4 – Chaos control on a Quadruped underactuated robot. Experiments are based on energy-
shaping with chaotic controllers for which we control the coupling parameters to the torques. Energy
injected and synchronized to the body dynamics thanks to the phase synchronisation, permits to generate
many dynamical behaviors corresponding to various regimes in the phase space and in the sprectal space.

less controllable.

Emergence of Rhythmical Patterns of McKibben Pneumatic Actuators

Related papers :

- Pitti A., Niiyama R. & Kuniyoshi Y. (2010). Creating and modulating rhythms by control-
ling the physics of the body. Autonomous Robots, 28 :3, 317-329.

- Pitti A., Lungarella M. & Kuniyoshi Y. (2009) Generating Spatiotemporal Joint Torque
Patterns from Dynamical Synchronization of Distributed Pattern Generators. Frontiers in
NeuroRobotics, 3 :2, 1-14.

The motion behaviors of vertebrates require the correct coordination of the muscles and of
the body limbs even for the most stereotyped ones like the rhythmical patterns. It means that
the neural circuits have to share some part of the control with the material properties and the
body morphology in order to rise any of these motor synergies. To this respect, the chemical
downward neuromodulators that supervise the pattern generators in the spinal cord create the
conditions to merge (or to disrupt) them by matching the phase of the neural controllers to the
body dynamics. In this paper, we replicate this control based on phase synchronization to imple-
ment neuromodulators and investigate the interplay between control, morphology and material.
We employ this mechanism to control three robotic setups of gradual complexity and actuated
by McKibben type air muscles : a single air muscle, an elbow-like system and a frog leg-like
articulation, see Fig. 2.5. We show that for specific values, the control parameters modulate the
internal dynamics to match those of the body and of the material physics to either the rhythmical
and non-rhythmical gait patterns.
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FIGURE 2.5 – Frog-like robot with co-articulated muscles. For certain coupling regimes, the McKibben
air muscles are co-activated synchronously with the good amount of pressure in the valves for generating
energy efficient hops.

Multimodal Integration and Sensory-motor Predictive Coding

After my PhD, I then expanded my field of scientific research as a Research Fellow extending
it to multimodal integration by the modeling of the parieto-motor neurons at the cortical level
with the so-called mirro-neurons and by modeling of the superior colliculus at subcortical le-
vel. These structures encode useful multimodal information (tactile, visual, proprioceptive and
sound) however differently and for different purposes. While the cortical layer is found important
for spatial perception and for the generation of purposeful actions, the more primitive subcortical
layer is found crucial for rapid reactions stimulus-response rules. The cortical layer represents
the physical space occupied by the body and objects nearby (i.e., the peri-personal space) and
the possible actions to be performed depending on the context (i.e. affordances). The multimodal
information is encoded with associative neurons recurrently connected in parallelized networks
that bind information based on contingency prediction only in a unified fashion rather than sepa-
ratedly. The parieto-motor network is sensitive to timing and robust to some points to prediction
errors at the order of hundred of milliseconds, see section 2.4.1. The subcortical layer instead
is a more reactive structure that has to be faster and represents unimodal information in layers
organized topologically, whereas multimodal binding is done in an intemediate layer with no
recursive feedback to each modality, see section 3.1 in section 3. Multimodal integration is im-
portant for the development of social cognition in babies, and similarly important for the future
of social robotics.

Considering the modeling part, most of my models are based on discharge pulse models
or spiking neurons because they exploit timing integration to shape the functional organization
of complex networks such as small-world networks, see Fig. 2.6. Timing integration based on
Spike Timing-Dependent Plasticty is useful for detecting the spatial and temporal contingency
in multimodal signals, see section 2.4.1. I am currently pursuing this research to the advent of
body-awared robots for social and physical interactions, with the development of an artificial
skin for tactile perception and the study of audition and langage also, see section 2.4.2.

Cross-modal and Scale-free action representation in Spiking Neural Networks

Related papers :

- Pitti A., Alirezai H. & Kuniyoshi Y. (2009). Cross-modal and Scale-free action represen-
tation through enaction. Neural Networks, vol.22 (2), 144-154.
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FIGURE 2.6 – A scale-free model of multimodal integration in the cortex for emergence of mirror-like
neurons ased on timing contingency learning.

- Pitti A., Mori H., Kouzuma S. & Kuniyoshi Y. (2009) Contingency Perception and Agency
Measure in Visuo-Motor Spiking Neural Networks. IEEE Trans. on Autonomous Mental
Development, 1 :1, 86-97.

- Pitti A., Mori H., Yamada Y. & Kuniyoshi Y. (2010) A Model of Spatial Development
from Parieto-Hippocampal Learning of Body-Place Associations. Proc. of the 10th Int.
workshop on Epigenetic Robotics, pp.89-96.

Embodied action representation and action understanding are the first steps to understand
what it means to communicate. We present a biologically plausible mechanism to the repre-
sentation and the recognition of actions in a neural network with spiking neurons based on
the learning mechanism of spike-timing-dependent plasticity (STDP). We show how grasping
is represented through the multi-modal integration between the vision and tactile maps across
multiple temporal scales. The network evolves into a small-world network.

We reproduce the experimental series conducted by Rizzolatti et al. (1996) illustrating the
qualitative aspects of mirror neurons and of canonical neurons : inter-modal binding, action
representation and action understanding with temporal constraint, see Fig. 2.7. These neurons
combine visuo-motor properties to represent one action sequence and to fire at precise timing.
In our experiments, we investigate the conditions for such situation to arise in a network of
spiking neurons that would lead from the temporal linkage between the visuo-tactile maps to
actions representation. We count, to this end, on the regulating roles of STDP and of the body
(embodiment) to coordinate the neuron dynamics to the timing integration among the maps.

In the first part, we conduct some repeated experiences of visually perceived acts (i.e., seeing
and touching one object) to be mapped in the neural system in the form of linked visuo-tactile
representations (encoding both vision and tactile information).

Over time, the network acquires the direct matching from behaviors to neural dynamics. As
the representation of physical actions is fetched into the network as multi-modal patterns, it is
possible then to access one modality from the activation of the other, see Fig. 2.8. The functional
integration within the network permits to access one missing modality from the activation of
another one for instance to the understanding of actions performed by others, when no tactile
information is received.
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FIGURE 2.7 – STDP-based visuo-tactile integration with spiking recurrent neural networks. a) The expe-
riencing of co-occurrent visuo-tactile perception during grasping (in the upper-left corner) by the network
(bottom-right corner) is done by receiving the incoming information from the camera and from the pres-
sure sensitive device. b) Neural dynamics of the visuo-tactile maps during physical interactions. In red
(resp. in cyan) the synaptic activation from the neurons of the vision map (resp. the tactile map). At
time-to-contact (t = t 1 ), the retina anticipates only the temporal changes about the hand motion in the
direction of the cup : the spatial information about the cup is filtered. When grasping the object (t = t 2
), joint detection of hand motion contingent to the cup motion and the haptic activity corresponding to a
coordination in the neural dynamics (synchronization among the maps). Temporal rules about the sequen-
tial order of the event are then associated to a neural representation into the network. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Neural Modeling of Tactile Perception for Body Image

Related papers :

- Pugach G., Khomenko V., Pitti A., Melnyk A., Henaff P. & Gaussier P. (2013) Electro-
nic hardware design of a low cost tactile sensor device for physical Human-Robot In-
teractions. IEEE XXXIII Inter. Conference on Electronics and NanoTechnology, Kiev :
Ukraine, 1-6.

- Pugach G. , Pitti A. & Gaussier P. (2015), Neural Learning of the Topographic Tactile
Sensory Information of an Artificial Skin through a Self-Organizing Map, Adv. Robotics.
Oct 2015, vol.29, no. 21, pp.1393-1409. Special Issue on Artificial Skins in Robotics.

- Pugach G., Melnyk A., Pitti A., Tolochko, O. & Gaussier P. (2016) Touch-based Ad-
mittance Control of a Robotic Arm using Neural Learning of an Artificial Skin. Touch-
Based Admittance Control of a Robotic Arm Using Neural Learning of an Artificial Skin
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon,
2016, 3374 – 3380.

- Pitti A., Pugach G., Gaussier P. & Shimada, S. (2017) Visuo-Tactile Illusions in Artificial
Skin from Fake Synchronization of Spiking Neurons. Scientific Reports (7) :41056

Touch perception is an important sense to model in humanoid robots to interact physically
and socially with humans. These years, we have developed an artificial skin based on a large area
piezoresistive tactile device (ungridded) that changes its electrical properties in the presence of
the contact. The localization of contact force on its surface is based on inverse transform of
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FIGURE 2.8 – Neural dynamics of the visuo-tactile maps during physical interactions. In red (resp. in
cyan) the synaptic activation from the neurons of the vision map (resp. the tactile map). At time-to-
contact (t = t1 ), the retina anticipates only the temporal changes about the hand motion in the direction of
the cup : the spatial information about the cup is filtered. When grasping the object (t = t2 ), joint detection
of hand motion contingent to the cup motion and the haptic activity corresponding to a coordination in
the neural dynamics (synchronization among the maps). Temporal rules about the sequential order of the
event are then associated to a neural representation into the network. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.).

the Electrical Impedance Tomography (EIT), which is a well-known technic used in medical
application for non-invasive signal detection.

Despite to be classic, this technic is interesting combined with machine learning algorithms
as it generates lot of raw sensory data that Neural Networks and AI methods can exploit to learn
new information such as the topology of the surface, the precision of contact force, see Fig. 2.9.
Furthermore, once the learning process is done, the pattern reconstruction of the signal can be
done in a very fast manner. We made several robotic experiments using self-organizing maps
for learning the topology of the tactile map used alone. By doing so, each neuron of the self-
organizing map learns a tactile receptive field sensitive to localization and pressure, which is
similar to the slow adaptive Merkel cells in human skin, see Fig. 2.9.

Put in a robotic arm, a neural controller can adapt its compliance in four directions of its
2 DOFs using as input the tactile information taken from an artificial skin and as output the
estimated torque for admittance control-loop reference. This adaption is done in a self-organized
fashion with a neural system that learns first the topology of the tactile map when we touch it
and associates a torque vector to move the arm in the corresponding direction. The neural system
associates each tactile receptive field with one direction and the correct force. These methods
can be used in the future for humanoid adaptive interaction with a human partner.
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FIGURE 2.9 – Schematic diagram to estimate the resistivity distribution on the tactile sheet by a Kohonen
map based on the EIT method. The input current I is injected at 16 different locations, which give the
voltage matrix U, the input of the Kohonen map of 32 × 32 units.

FIGURE 2.10 – Neural activity of the Kohonen map for multi-touch task for one, two or three weights of
100, 50 and 20 g ; resp (a), (b) and (c). The neurons are able to estimate correctly and simultaneously the
objects of different location and weights.
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CHAPITRE 3

Contributions to Multimodal Integration
and Sensorimotor Predictive Coding

Action and perception are so deeply intertwined in the brain that the sensory and motor systems
are continuously learning from each other an expectation of their complementary activity. We
introduce here our modeling on multimodal integration considering neural mechanisms that may
be involved during birth and early infancy and that we implement in robots. I have particularly
studied developmental trajectory of multimodal integration based on temporal integration me-
chanisms like spike timing-dependent plasticity, found over the whole cortex and particularly in
the Post Parietal Cortex (PPC), or other mechanisms based on topolographically organized maps
as found in the Superior Colliculus (SC). Multimodal integration is found important for the spa-
tial representation of the body and for the learning of sensorimotor rules in order to locate objects
in space and to reach them. Although the SC is more attuned to ego-centred representations of
each modality anchored on the head, the PPC is more complex spatio-temporal transformations
toward body-centered maps (shoulder-, hand-, eye-, objects, etc...).

We present first in section 3.1 a development hypothesis of neonatal imitation, its neural
mechanism involved at birth and during the feotal stage. Based on anatomical studies on the
different brain areas that mature at birth and on the behavioral studies ofon this period, we
focused our attention on the interesting structure of the superior colliculus, to give rise at birth
to automatic social abilities, like facial preferences or imitation.

In second we present in section 3.2 some robotic works on the mechanism of gain-modulation
found in parietal neurons for head-, arm-centered transformation that we used for body repre-
sentation as well as reaching and grasping. We investigated largely on these bio-inspired mecha-
nisms to serve on Audio - Motor - Visual - Tactile integration. We ommit on ppurpose our works
on multimodal integration using spiking neurons due to space, although we beleive they are an
important aspect for describing in details contingency detection.

Although not mentionned specifically, these different models of multimodal integration ai-
med at understanding the underlying the construction of the Mirror Neurons System, the deve-
lopment of social cognition and of sensorimotor predictive coding.
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Sensory Alignments in Superior Colliculus

A growing number of developmental studies raise that the newborn infant is prepared, evolutio-
narily and physiologically, to be born intersubjective Nagy [2010]; Porges and Furman [2010];
Trevarthen [2010]. Here, social cognition is thought to start at the very beginning of infant deve-
lopment Rochat [2011], Reddy [2008], Johnson [2005], instead of at its achievement as Piaget
proposed it Piaget [1954]. The unmatured brain of the fetus is argued to be socially prepared to
recognize human faces at birth, to make eye contact with others Rigato et al. [2010], to respond
emotionally to biological motion and to imitate others with limited abilities. In this nature ver-
sus nurture debate, we propose to investigate what could be the minimal neural core responsible
for the development of the neonate social brain. This work pursues some other investigations
in which we modeled different aspects of fetal and infant development features with compu-
ter simulations Kuniyoshi et al. [2003]; Kuniyoshi and Sangawa [2006]; Mori and Kuniyoshi
[2007]; Kinjo et al. [2008]; Mori and Kuniyoshi [2010]; Yamada et al. [2010]; Pitti et al. [2010];
Boucenna et al. [2010].

Perhaps the most famous experiment in favor of neonate social engagement is the one
conducted by Meltzoff, who showed that newborns are capable of imitating facial gestures off-
the-shelf Meltzoff and Moore [1977].

Although still under debate, neonate imitation suggests that the bonding of human newborns
is either innate or acquired from an early imprinting of the body image. Whether these neural
circuits are pre-wired or not, they necessarily influence the normal cognitive development of
neonates to guide the spontaneous interactions in the physical world and in the social world.
Meltzoff suggests that neonates interact with others because they are capable of goal-directed
actions and because they recognize this genuine characteristic in others. He summarized this
idea in his “like-me” theory Meltzoff [2007b] where he proposes that this mirroring mechanism
between self and others could be based on a supra-modal representation of the body construc-
ted from intra-uterine motor babbling experiences. Accordingly, this supramodal body image is
supposed to identify organs and their configural relations that will serve him later for the cross-
modal equivalence underlying imitation Meltzoff [1997]. The successful replicating of neonatal
imitation in monkeys by Ferrari argues further for the commonality of an early recognition me-
chanism in mammals’ development, which may be based on “mouth mirror neurons” for facial
and ingestive actions Ferrari et al. [2009]; Lepage and Théoret [2007] . Although the visual and
motor cortices seem mature enough to support such system at birth, a subcortical scenario is
more probable Valenza et al. [1996]; Simion et al. [1998], in which the subcortical units shape
the cerebral cortex. This scenario may explain how a primitive body image could be accessible
at an early age for sensorimotor coordination.

Consequently, the early functioning of the subcortical structures from the fetal stage ap-
pears very important for cortical development and therefore for the development of the social
brain de Haan et al. [2002]; Johnson [2005, 2007]. Considering further the case of neonate face
recognition, Johnson argues that the visual cortex is not mature enough before two months to
support this function Senju and Johnson [2009]. He proposes that a fasttrack modulation model
that includes the superior colliculus (SC), the pulvinar and the amygdala is at work in new-
borns for face detection, mood recognition and eye contact. He suggests also that this midbrain
structure –dubbed as the CONSPEC model–includes an innate face-like visual pattern, nonplas-
tic, that influences gradually the learning of a separate plastic cortical system, dubbed as the
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CONLERN model Morton and Johnson [1991]; Johnson et al. [1991] ; a variant of this model
has been given by de Schonen and Mathivet [1989]; Acerra et al. [2002].

In so far, despite their appealling layouts, Meltzoff’s and Johnson’s models have been cri-
ticized for lacking evidence that (i) the visual motor pathway has feature detectors that would
cause faces to be attractive Nelson [2001]; Turati [2004] and that (ii) motor outputs look actually
the same from a third party perspective Heyes [2003], which refers to the so-called correspon-
dence problem Brass and Heyes [2005]; Ray and Heyes [2011]. We propose nonetheless that a
framework consistent with both viewpoints can be drawn based on the neural functioning of the
SC. More precisely, the SC presents three relevant features that are potentially determinant for
the building of a social brain Johnson [2005].

First, SC supports unisensory processing in the visual, auditory and somatosensory domains
accessible in a topographically- ordered representation to orient the animal to the source of sen-
sory stimuli. Just as visual cues orient the eyes for tracking behaviors Kalesnykas and Sparks
[1996], somatosensory cues extend the motor repertoire for full-body representation, including
the neck and the face Stein and Meredith [1993]; Ferrell [1996]; Crish et al. [2006] ; the SC
is coextensive with the pons, which is concerned with facial sensation, movement and vibro-
acoustic sensation Joseph [2000] and the face is represented in a magnified fashion with recep-
tive fields Stein and Meredith [1993]. Although the SC is a structure late to mature, the soma-
tosensory modality is the first modality to be mapped in the third trimester of pregnancy B.E.
et al. [2009], followed by vision with observations of occular saccades behaviors Stanojevic and
Kurjak [2008]. These aspects are important since some developmental studies attribute to SC a
role in fetal learning using some form of vibro-acoustic stimulation to explain how the fetus is
capable to sense and to learn through the body skin James [2010] and that SC is well-known
as an important pathway for gaze shifting and saccade control Groh and Sparks [1996]; Mo-
schovakis [1996]. Second, the SC supports sensory alignment of each topographic layer. That
is, the somatotopic organization (in the deeper layers) is not only topographic but also follows
the design of the visual map (in the superficial layers) Stein and Meredith [1993]; Stein et al.
[1975]; Dräger and Hubel [1976]; King [2004]. Third, the intermediate layers exhibit ‘multisen-
sory facilitation’ to converging inputs from different sensory modalities within the same region
in space. As expressed by King, “multisensory facilitation is likely to be extremely useful for
aiding localization of biologically important events, such as potential predators and prey, (...)
and to a number of behavioral phenomena” King [2004]. Stein and colleagues underline also the
importance of the multimodal alignment between visuotopic and the somatotopic organizations
for seizing or manipulating a prey and for adjusting the body Stein et al. [1975].

Collectively, these aligned colliculus layers suggest that the sensorimotor space of the animal
is represented in ego-centered coordinates Ferrell [1996] as it has been proposed by Stein and
Meredith Stein and Meredith [1993] [38] and others Dominey et al. [1995] ; the SC is made
up not of separate visual, auditory, and somatosensory maps, but rather of a single integrated
multisensory map. Although comparative research in cats indicate that multimodal integration in
SC is protracted during postnatal periods after considerable sensory experiences Stein [1984];
Wallace [2004]; Stein et al. [2010b], multisensory integration is present at birth in the rhesus
monkey Wallace and Stein [2001] and has been suggested to play a role for neonatal orientation
behaviors in humans. Moreover, while the difficulty to compare human development with other
species has been acknowledged, “some human infant studies suggest a developmental pattern
wherein some low-level multisensory capabilities appear to be present at birth or emerge shortly
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thereafter” Stein et al. [2010a].
Considering these points about SC functionalities and develop- mental observations, we

make the hypothesis that SC supports some neonatal social behaviors like facial preference
and simple facial mimicry as a multimodal experience between the visual and somatosensory
modalities, not just as a simple visual processing experience as it is commonly understood (see
Fig. 3.1. We argue that, in comparison to standard visual stimuli, face-like visual patterns could
correspond to unique types of stimuli as they overlap almost perfectly the same region in the
visual topographic map and in the somatotopic topographic map. We propose therefore that the
alignment of the external face-like stimuli in the SC visual map (some others’ face) with the
internal facial representation in the somatotopic map (one’s own face) may accelerate and inten-
sify multisensory binding between the visual and the somatosensory maps. Occular saccades to
the correct stimulus may furtherly facilitate the fine tuning of the sensory alignment between the
maps.

Moreover, in comparison with unimodal models of facial orientation, which support a phy-
logenetic ground of social development Ray and Heyes [2011]; Bednar and Miikulainen [2003];
Balas [2010], this scenario would have the advantage to explain from a constructivist viewpoint
why neonates may prefer to look at configurational patterns of eyes and mouth rather than other
types of stimuli Johnson [2005]; Pascalis et al. [2002] [25,58]. Stated like this, the ego-centric
and multimodal representation in the SC has many similarities with Meltzoff’s suggestion of
an inter- but not supra-modal representation of the body responsible for neonate imitation. In
this paper, we model the perinatal period starting from the maturation of unisensory layers to
multisensory integration in the SC. This corresponds to the fetal maturation of the deep layers
(somatosensory only) and of the superficial layer (vision only) at first, then to the post-natal
visuo-somatosensory integration in the intermediate layers when the neonate perceives face-like
patterns. Nonetheless, we make the note to the reader that we do not model the map formation in
SC at the molecular level although there is some evidence that activity-independent mechanisms
are used to establish topographic alignment between modalities such as the molecular gradient-
matching mechanism studied in Triplett et al. [2012]. Instead, we focus at the epigenetic level,
on the experience-driven formation of the neural maps during sensorimotor learning, in which
we model the adaptation mechanisms in multisensory integration that occurs when there is a
close spatial and temporal proximity between stimuli from different senses Benedetti [1995];
Perrault Jr et al. [2005]; Benedetti [2006]; Wallace and Stein [2000, 2007]. In computer simu-
lations with realistic physiological properties of a fetus face, we simulate how somatosensory
experiences resulting from distortions of the soft tissues (e.g., during the motion of the mouth or
the contraction of the eyes’ muscles) contribute to the construction of a facial representation. We
use, to this end, an original implementation of feed-forward spiking neural networks to model
the topological formation that may occur in neural tissues. Its learning mechanism is based on
the rank order coding algorithm proposed by Thorpe and colleagues Van Rullen et al. [1998];
Thorpe et al. [2001], which transforms one input’s amplitude into an ordered temporal code.
We take advantage of this biologically-plausible mechanism to preserve the input’s temporal
structure on the one hand and to transpose it into its corresponding spatial topology on the other
hand.

In comparison to other topological algorithms Kohonen [1982]; Sirosh and Miikulainen
[1994]; Casey and Pavlou [2008]; Pavlou and Casey [2010]; Glasër and Joublin [2010], the
synaptic weights of each neuron inform about the vicinity to other neurons based on their rank
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FIGURE 3.1 – Proposal for a minimal network in SC for an inter-subjective mind. In comparison to
normal stimuli, we propose that faces are particular patterns because the visual and somatic maps in the
superior colliculus are perfectly aligned topologically in the intermediate layer. We suggest that the spatial
distribution of the neurons in the somatotopic map is preserved in the intermediate map, which makes the
multimodal neurons salient to visual patterns with a similar spatial configuration of eyes and mouth. We
hypothesize that this feature potentially influence the social skills in neonates, for detecting faces and
reproducing facial movements.

order : that is, neurons with similar rank codes are spatially near. First, we study how the sensory
inputs shape the sensory mapping and how multimodal integration occurs between the two maps
within an intermediate layer that learns information from both. We propose that the registration
of the somatosensory neural image aligned with the visual coordi- nates, as it could occur in the
SC at birth, may give an easy solution to the correspondence problem, for instance, to recognize
and to mimic the raw configuration of other people’s facial expressions at birth. This scenario
is in line with Boucenna and colleagues who showed how social referencing can emerge from
simple sensorimotor systems Boucenna et al. [2010].

Methods

Face Modeling

In order to simulate the somatosensory information on the skin, we use a physical simulation
that verifies the average character- istics of a 7–9 months-old fetus’ face. In our experiments,
the whole face can move freely so that its motion can generate weak displacements at the skin
surface and strong amplitude forces during contact. The face tissue is modeled as a mass-spring
network and local stretches are calculated with the Hook’s spring law (see below) representing
the forces that a spring exerts on two points. The resulting forces on each node of the mesh simu-
late tactile receptors like the Meissner’s corpuscles, which detect facial vibro-acoustic pressures
and distortions during facial actions Tsunozaki and Bautista [2009], see Fig.. 3.2.
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FIGURE 3.2 – Face mesh of the fetus model. The distorsion of the facial tissue is simulated as a mass-
spring network of 354 tactile points and 1039 springs. Stress and displacement of the facial tissue are
rendered by the actions of group muscles around the mouth and the eyes. In A, the front view of the face,
the warm colors indicate the position of the segments in depth. The plot in B, the profile view, indicate
the action limits of the face mesh in Z axis.

The facial tissue is modeled with 354 vertices and 1039 edges, and the mouth and the eyes
apertures represent concave sets forming non-contiguous ensembles. The collision detection
between two points or two springs is activated depending on the relative distance between the
nodes and whether they are connected or not. On the one hand, for the case of contiguous points
–that is, for the points connected with a spring– force collision is proportionnal to the local spring
stiffness, to which no ad hoc force is added ; this physical model corresponds to the behavior of
the Meissner’s corpuscles.

On the other hand, for the case of non-contiguous points –that is, unconnected points– virtual
springs are added at the contact points to model the softness of the tissue material jonction and
the stress in the radial direction ; this physical model corresponds to the behavior of the Merkel
cells, which are tactile receptors that detect pressure at localized points Boot et al. [1992]. The
radial force is added when the nodes’ spatial location is below a certain minimal distance d
equals to 1mm.

For the sake of simplicity, we model the mouth motor activity and the eyes motor activity
with virtual springs on the two lips of the mouth and on the two lids of the eyes. The contractions
of these fictuous links control either the closure or the opening of the aperture of the mouth or
of the eyes. In addition, we define as a prior choice that the two eyes move together (no eye
blinking).

Results

Development of Unisensory Maps

Our experiments with our fetus face simulation were done as follows. We make the muscles
from the eyelids and from the mouth to move at random periods of time, alternating rapid and
slow periods of contraction and relaxation. The face model simulates the tension lines, which
propagate across the whole facial tissue, producing characteristic strain patterns mostly localized
around the organ contours, see Fig. 3.3. Here, the stress induced by the mouth’s displacement
is distributed to all the neighbouring regions. During the learning process, the nodes from each
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FIGURE 3.3 – Strain/stress evolution of the facial tissue during the opening and the closing of the mouth.
The figures highlight the propagation of the strain/stress lines on the facial tissue around the mouth during
its opening. The color intensity indicates the variation on each edge of the relative stress, which is propa-
gated from neighbouring points to neighbouring points. The tension lines permits to draw the functional
connectivity of each region on the facial tissue.

map encode one specific temporal pattern and the most frequent patterns get over-represented
with new nodes added.

We reconstruct in Figures 3.4 and 3.5 the final configuration of the visuotopic and somatopic
maps using the Fruchterman-Reingold (FR) layout algorithm Fruchterman and Reingold [1991],
which is a force-directed graph based on the a measure distance between the nodes. Although
very caricatural, the FR algorithm has been used for molecular placement simulations and can
serve here to some extent to simulate the competition within the SC maps during ontogeny. We
compute the euclidean distance between the weights distribution to evaluate the nodes’ similarity
and the attraction/ repulsion forces between them. The color code used for plotting the visual
neurons follows a uniform density distribution displayed in Fig. 3.4. Here, the units deploy in a
retinotopic manner with more units encoding the center of the image than the periphery. Hence,
the FR algorithm models well the logarithmic transformation found in the visual inputs.

Parallely, the topology of the face is well reconstructed by the somatic map as it preserves
well the location of the Merkel cells, see Fig. 3.4. The neurons’ position respects the neighbou-
ring relation between the tactile cells and the characteristic regions like the mouth, the nose and
the eyes : for instance, the neurons colored in green and blue are encoding the upper-part of the
face, and are well separated from the neurons colored in pink, red and orange tags correspon-
ding to the mouth region. Moreover, the map is also differentiated in the vertical plan, with the
green/yellow regions for the left side of the face, and the blue/red regions for its right side.

Multisensory Integration

The unisensory maps have learnt somatosensory and visual receptive fields in their respective
frame of reference. However, these two layers are not in spatial register. According to Groh Groh
and Sparks [1996], the spatial registration between two neural maps occur when one receptive
field (e.g., somatosensory) lands within the other (e.g., vision). Moreover, cells in true regis-
try have to respond to the same visuo-tactile stimuli’s spatial locations. Regarding how spatial
registration is done in the SC, clinical studies and meta-analysis indicate that multimodal in-
tegration is done (1) in the intermediate layers, and (2) later in development after unimodal
maturation Stein et al. [2010b].
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FIGURE 3.4 – Visuotopic reconstruction using the Fruchterman-Reingold layout algorithm. This graphic
layout (right) displays spatially in a 2D map the distance between neurons computed in the weights space
on the principle of attraction/repulsion forces. The layout models grossely the molecular mechanisms
of map formation. The graph shows that the visual neural network represents well the fovea-centered
distribution of its visual input represented on the left with the same color code.

FIGURE 3.5 – Somatopic reconstruction using the Fruchterman-Reingold layout algorithm. As in the
previous figure, the Fruchterman- Reingold graphic layout (right) displays spatially in a 2D map the dis-
tance between neurons computed in the weights space for the tactile neurons, based on the principle of
attracting and repelling forces. In accordance with the previous figure, the graph shows that the tactile
neural network respects quite well the topology of the face (left) with the same color code for the neu-
rons connected to their respective somatic area : the neural clusters respects the vertical and horizontal
symmetries of the face with the orange-red-pink regions corresponding to the lower part of the face, the
green-cyan-blue regions to the higher part of the face, the green and orange regions to left-side of the face
and the blue-pink regions to the right- side of the face.

To simulate the transition that occurs in cognitive development, we introduce a third map
that models this intermediate layer for the somatic and visual registration between the superficial
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and the deep-layers in SC ; see Figs. 3.1 and 3.6. We want to obtain through learning a relative
spatial bijection or one-to-one correspondence between the neurons from the visual map and
those from the somatopic map. Its neurons receive synaptic inputs from the two unimodal maps
and are defined with the rank-order coding algorithm as for the previous maps. Furthermore,
this new map follows a similar maturational process with at the beginning 30 neurons initialized
with a uniform distribution, the map containing at the end one hundred neurons.

We present in Fig. 3.7 the raster plots for the three maps during tactual-visual stimulation
when the hand skims over the face, in our case the hand is replaced by a ball moving over the
face. One can observe that the spiking rates between the vision map and the tactile map are
different, which shows that there is not a one-to-one relationship between the two maps and that
the multimodal map has to combine partially their respective topology. The bimodal neurons
learn over time the contingent visual and somatosensory activity and we hypothesize that they
associate the common spatial locations between a eye-centered reference frame and the face-
centered reference frame. To study this situation, we plot a connectivity diagram in Fig. 3.8 A
constructed from the learnt synaptic weights between the three maps. For clarity purpose, the
connectivity diagram is created from the most robust visual and tactile links. We observe from
this graph some hub-like nodes in the bimodal map (the blue segment), which correspond to
converging neurons from the two unimodal maps. Here, the intermediate neurons binds the two
modalities. As an example, we color four links from the visual and tactile maps (resp. cyan, green
and magenta, red segments) converging to two neurons from the bimodal map. We transcribe
the associated visual and tactile patterns location at the top figures with the same color code. In
these figures, on the left, the green dots in the visual map (resp. cyan and blue) indicate where
the neurons trigger in visual coordinates and on the right, the red dots in the tactile map (resp.
magenta and blue) indicate where the neurons trigger in tactile coordinates. Thus, the congruent
spatial locations are mostly in registration from each others, and the bimodal map matches up
with the two topologies.

In B, we reproduce the histogram distribution of the inter-modal connection weights taken
from the tactile and visual maps to the bimodal map. The weights are uniformly distributed for
the two modalities in blue and green with in average an equal number of weak connections (low
values) and of strong connections (high values). However, for the neurons having necessarily
strong links from both modalities (the red histogram), their number dramat- ically diminishes.
For these neurons, only 18% of the neurons population (i.e., eighteen neurons) have their sy-
naptic weights above 0 :4 from the two unimodal populations. For neurons having their synaptic
weights above 0 :5, their number decreases to 8% of the neurons population (i.e., eight neu-
rons). Although the global nework is not fully recurrent, the probability distribution describes
a log-curve distribution very similar to small-world and to complex networks Sporns and Ho-
ney [2006]. Complex networks are well-known structures for efficient information processing,
locally within the sub-parts and globally over the whole system Pitti et al. [2008].

The histogram in C draws a similar probability distribution for the spatial congruence bet-
ween the visual mapping and the tactile mapping. This histogram displays the spatial error bet-
ween the associated receptive fields taken from their respective barycentre (e.g., Fig. 3.8) and
normalized. It shows that the unimodal receptive fields linked by the intermediate neurons over-
lap mostly their spatial location with 10% error only. Besides, the spatial distance decreases
drastically above this value. As a result, most of the neurons from the two maps (90%) are in
spatial registry.
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FIGURE 3.6 – Multimodal integration schema in SC between vision and tactile information. Integration is
done as follows, the visual signals in the superfical layer and the somatosensory signals in the deep layer
converge to the intermediate multimodal map (no reentrance) in which bimodal neurons align pair-wise
visuo-tactile associations. In certain cases, the synaptic links from different neurons in the unisensory
maps converge to the same bimodal neurons whereas in other cases the synaptic links from the same
neurons in the unisensory maps diverge to different bimodal neurons.

Sensitivity to Configuration of Eyes and Mouth

In order to investigate the functional properties of the global network, we replicate the three dots
experiment tested on the newborns by Mark Johnson Rigato et al. [2010]; Johnson [2005]. This
test aims at demonstrating facial imitation and facial perception in newborns.

We analyze the networks’ activity response for different configurations of an iconified face-
like pattern exemplified by three large dots corresponding to the two eyes and the mouth, see the
framed figure in Fig. 3.9 on the top-left.

For this, we rotate this pattern between [0,2pi] and collect the neural activation responses
from the vision map (in blue) and from the intermediate map (in red). When the pattern is
modulated by 2pi/3 radians (120°), we can observe a strong response activation taken from the
visual map as the face-like stimuli is well-aligned with the visual neurons, which have encoded
this spatial distribution. Concerning the multimodal map, its neural response presents a similar
activity pattern but two time stronger and shifted by pi/6 radians (30°). This slight difference
in response between the two maps indicates that they share some common features in their
respective receptive fields but do not completely overlap from each other. Although visual and
somatosensory maps are not organized in the same manner due to the skin-based or retinotopic
reference frames.

Furthermore, we can observe cross-modal enhancement as the activity in the multimodal
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FIGURE 3.7 – Raster plots from the visual, the tactile and the bimodal maps, during visuo-tactual stimu-
lation when the hand skims over the face. The activity of the visual, tactile and bimodal maps is drawn
respectively at the bottom, the middle and at the top frame. At a given time, the spikes contingency across
the neurons in the three different maps creates the conditions for reinforcing their synaptic links from the
neurons of the unisensory maps to the neurons of the bimodal map. The difference of spiking rates bet-
ween the maps show that there is not a bijective connection between the neurons and that some bimodal
neurons may associate groups of visual neurons to groups of tactile neurons.

map is higher than from its visual input. The face-like stimulation pattern boosts the neurons
activity when they are presented in the correct orientation coinciding with the facial topology.
Thus, activity in the intermediate layer is stronger despite it does not receive any information
from the tactile map. That is, thanks to the sensory alignment between the two modalities, the
intermediate layer is able to simulate the neural activity of the tactile map.

Detection of Mouth and Eyes Movements

Our next experiment studied the influence of facial expressions on the multimodal system. A
sequence of facial expression images, which alternated stare and smile, is presented to the visual
map at regular timing period. First, the images were pre-processed with a motion detection filter,
which simply subtracts two consecutive images, see Fig. 3.10 on the top. As a result, the static
regions between the two consecutive images are filtered (e.g., the background and the cheeks)
whereas its dynamical parts (i.e., the eyelids, the eyes, the nose and the mouth) are strongly
emphasized when a strong facial expression is established. In this situation, the salient regions
match well the three dots icon in Fig. 3.9.

At the network level, not all the neurons are active but some are very receptive to certain
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FIGURE 3.8 – Networks analysis of visuo-tactile integration and connectivity. A Connectivity circle
linking the visual and tactile maps (resp. green and red) to the bimodal map (blue). The graph describes
the dense connectivity of synaptic links starting from the visual and tactile maps and converging to the
multimodal map. The colored links correspond to localized visuo-tactile stimuli on the nose (green/red
links) and on the right eye (cyan/magenta links), see the patterns on the upper figure. The links show the
correct spatial correspondance between the neurons of the two maps. B Weights density distribution from
the visual and tactile maps to the bimodal map relative to their strength. These histograms show that the
neurons from both modalities have only few strong connections from each others. This suggest a bijection
between the neurons of each map. C Normalized distance error between linked visual and tactile neurons.
When looking at the pairwise neurons of the two maps (red histogram in B for weights w0 :5), the spatial
distortion between the neurons from the two maps is weak : vision neurons coding one location on the
eyes receptive fields are strongly linked to the tactile neurons coding the same region on the face.

facial expressions and to the dynamic activation of certain spatial regions. We display a neuron
dynamics in Fig. 3.10 for different facial expressions presented at periodic time from staring to
surprise, and then from surprise to staring.

Here, the visuo-tactile neuron in the intermediate map is visually highly receptive to the
regions that characterize the face because of sensory alignment and that its distribution is corre-
lated to the tactile distribution of its own face. Therefore, whenever a transition occurs in facial
expression, the neuron fires. One can imagine then that if the intermediate cells feed-forward
this activity to the corresponding facial motor activity, then imitation will occur.

- 54 -



CHAPITRE 3. CONTRIBUTIONS TO MULTIMODAL INTEGRATION AND SENSORIMOTOR PREDICTIVE CODING

FIGURE 3.9 – Sensitivity to face-like patterns for certain orientations. This plot presents the sensitivity
of the neural network to face-like patterns, with an experimental setup similar to the three-dots test done
in newborns Johnson et al. [1991]. When rotating the three dots pattern centered on the eye, the neural
activity within the visual map and the bimodal map gets higher only to certain orientations, 0 and p=6,
when the three dots align correctly to the caricatural eyes and mouth configurational topology.

Discussion

We have introduced a developmental model of SC starting from the fetal stage in the context of
social primitive behaviors. In comparison to normal stimuli, we propose that faces are particular
patterns as the visual and somatic maps in SC are perfectly aligned topologically. We suggest that
multimodal alignment may influence neonates for social skills, to recognize faces and to generate
mimicry. The model consists of two unisensory layers, receiving the raw tactile information from
the facial mechano- receptors simulated with a mass-spring mesh network and the raw visual
information from the not-yet matured eyes. We make the note that the SC is comprised of two
hemispheres and a unilateral SC lesion produces contralateral sensory (visual, somatosensory
and auditory) deficits Sprague and Meikle [1965]. Although we could have modeled only one
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FIGURE 3.10 – Neural activity taken from the intermediate visuo-tactile map during observation of a
facial expression : surprise (red frame) and stare (green frame). We present a sequence of facial expres-
sions from surprise to stare and vice-versa. The selected bimodal neuron taken from the intermediate map
triggers to the characteristic visual configurational patterns of the face during rapid changes, which per-
mits to detect the mouth and eyes movements. This behavior is due to the sensory alignment and of the
high correlation with the tactile distribution of its own face. Note : the subject has given written informed
consent to publication of his photograph.

hemisphere and given to the system only half of the contralateral sensory information, we think
our system would have learnt the same. The two circuits are initialized in a primitive stage
starting with few neurons with randomized synaptic connections. We simulate the developmental
aspects of the map formations during the third trimester of pregrancy through the mechanisms of
activity-dependent neural growth Pellegrini et al. [2007] and synaptic plasticity. Over time, the
two maps evolve into topographic networks and a third map is introduced, which corresponds
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to the intermediate layer in SC that aligns the visual and tactile sensory modalities from each
other. The neurons are modeled with the rank-order coding algorithm proposed by Thorpe and
colleagues Thorpe et al. [2001] [66], which defines a fast integrate-and-fire neuron model that
learns the discrete phasic information of the input vector.

The major finding of our model is that minimal social features, like the sensitivy to confi-
guration of eyes and mouth, can emerge from the multimodal integration operated between the
topo- graphic maps built from structured sensory information Lungarella and Sporns [2005,
2006]. A result in line with the plastic formation of the neural maps built from sensorimotor ex-
periences Benedetti [2006]; Wallace and Stein [2000, 2007]. We acknowledge however that this
model does not account for the fine-tuned discrimination of different mouth actions and imita-
tion of the same action. We believe that this can be done only to some extent due to the limitation
of our experimental setup. In our predictions, however, we believe that a more accurate facial
model which includes the gustative motor system can account to represent the somatopic map
with more fine-tuned discrimination of mouth movements with throat-jaws and tongue motions
(tongue protrusion) against jaw and cheeks actions (mouth opening). Moreover, our model of
the visual system is rudimentary and does not show sensitivity in the three dots experiments of
dark components against light background as observed in infants Farroni et al. [2005]. A more
accurate model integrating the retina and V1 area may better fit this behavior.

Although it is not clear whether the human system possesses inborn predisposition for social
stimuli, we think our model could provide a consistent computational framework on the inner
mechanisms supporting that hypothesis. This model may explain also some psychological fin-
dings in newborns like the preference to face-like patterns, contrast sensitivity to facial patterns
and the detection of mouth and eyes movements, which are the premise for facial mimicry. Fur-
thermore, our model is also consistent with fetal behavioral and cranial anatomical observations
showing on the one hand the control of eye movements and facial behaviors during the third tri-
mester Kurjak et al. [2005], and on the other hand the maturation of specific sub-cortical areas ;
e.g. the substantia nigra, the inferior-auditory and superior-visual colliculi, responsible for these
behaviors Stanojevic and Kurjak [2008].

Although neonate imitation is only a marker that disappears after 2–3 months in human, we
propose that the SC is at the root of this behavior for enabling automatic social interactions. This
hypothesis has been also suggested by Nagy [2010]; Neil et al. [2006]; Salihagic Kadic et al.
[2008] who emphasized the central place that occupies the SC for fusioning the senses with res-
pect to other brain regions not yet matured. Anatomical studies on collicular cells show that the
eye neurons go forward to the deep layers without recurrent synaptic connections, which has to
confer to SC a strong computational power due to alignment ; e.g., the easy and rapid construc-
tion of a primitive body image. This primitive body image may correspond to the first-stage of
Piaget’s spatial and motor development landscape characterized by an egocentric representation
and sensorimotor coordination before the apparition of a more complex spatial representation of
the body in allocentric metric Piaget [1954]; Bremner et al. [2008], mapped into the cortex. The
multimodal cells in SC, along with the other forebrain structures such as the hippocampus and
the amygdala, may help the construction of such body schema in the parieto-motor cortices.
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Learning Multimodal Co-Variation Rules with Gain-Field Neurons

We propose in this section some models based on gain-modulation of the parietal neurons for
sensorimotor transformation between reference frames centered on the eye-, head- or arm- spa-
tial locations. Gain-modulation is a neural mechanism found in the network organization of
parietal areas based on multiplicative neurons. Its properties are interesting as it combines as-
pects of radial-basis functions, sigma-pi networks and the recently proposed gated networks.
We develop our study of this mechanism on three different transformations realizing eye-to-arm
transformation for reaching and grasping based on visuo-motor integration, see section 3.2.1,
audio- and visual integration for eye-to-head integration, resp. section 3.2.2 and visuo-tactile
integration for body representation, see section 3.2.3.

Spatial Perception in Multimodal Co-Variation Rules with Gain-Field Neurons
Perceiving objects in space is one of the first tasks babies have to deal with during infancy. It

is a rather difficult problem since infants have to represent one object with multiple sensory mo-
dalities (vision, sound, tactile) encoded in different reference frames (e.g., eye-centered, head-
centered or hand-centered). This curse of dimensionality corresponds to the so-called binding
problem across the modalities and requires at least to construct one amodal and unified reference
frame relying on coordinates transformation between the senses or to form a network of partially
inter-connected reference frames to represent one stimulus in each modality Heed et al. [2015].
Our aim in this review is to present some underlying neuro-computational mechanisms that can
serve for such multimodal integration in infants in order to reach and grasp objects.

According to Bremner, the way infants perceive the space around them (i.e., infants’ spa-
tial representation) relies on two different mechanisms that mature separately during the first
year Bremner et al. [2008]. One is ego-centric and achieves a spatial correspondence of the de-
fault body parts and the other is allocentric and helps to localize dynamically the position of the
limbs. For instance, infants find hard to locate their own hands when their arms are crossed.

It is assumed that the infant brain exploits strongly Hebbian learning to acquire those spatial
maps Del Giudice et al. [2009]; Heyes [2010]; Keysers et al. [2014]. Hebbian learning can pro-
vide to neurons the ability to correlate the contingent events, even across multiple modalities.
For instance, infants even at birth can connect the modulation of a sound (from low pitch to high
pitch) with the modulation of a light intensity (from low brightness to high luminosity Lewko-
wicz and Turkewitz [1980]), they can relate the contingency between their legs motion and their
visual location displayed on a TV monitor Rochat [1998]; Shimada et al. [2005] or between the
texture of a pacifier on mouth and its visual shape Meltzoff and Borton [1979].

Tenants of the embodied system approach suggest that infants learn the regularities in the
structure of sensorimotor information to shape the neural activity in the brain. In this line, sen-
sorimotor neurons become sensitive to the geometrical features of objects in space (their posi-
tion, their orientation) relative to their bodily gestures and postures ; what we call sensorimotor
primitives. In return, these neurons would guide and constrain the baby behaviours toward its
affordances on the environment ; e.g., to orient oneself in the environment or to grasp one object
in the correct orientation relative to the body.

All-in-all, we propose that the contingency found across the body signals during sensory-
motor exploration –, coming from the arms muscles spindles, the joint angles from the shoulder-
elbow-wrist system, the tactile information from the hand, the sound of a noisy object in the
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hand and the eye’s vision cells as well as their orientation,– may organize the cortical memory
into a map of “reachable regions” cells via Hebbian learning. Following this, we can propose
that the parietal cortex –, which is acknowledged as the center for multi-modal integration and
body representation,– learns body-place associations by creating parieto-motor “reaching cells”
for manipulation tasks Graziano and Cooke [2006] in a similar fashion the hippocampus learns
“place cells” for navigation purpose Gaussier et al. [2007], see Fig. 3.11 respectively a) and b).

Visual and Motor Integration with Gain-Field Neurons for Arm Control

FIGURE 3.11 – Infant holding a toy in his hand. Reaching, grasping and holding objects are non trivial
tasks. In a), they require to coordinate one’s own actions relative to the objects’ relative spatial location
and orientation in eye-, hand-, or body-centered reference frames. In b), Reaching and grasping with the
hand are similar in essence to a navigation task in a third-person perspective toward a place. In c), it
requires to integrate information through time to perform homing Gaussier et al. [2007].

We suppose that the learning of reach cells is presumably done by discovering the correct
binding that relates each stimulus in its correct reference frame with others in different reference
frames ; for example this would help for locating the hand in eye coordinates (self-recognition),
one object in hand-centered coordinates (relative distance) or one object in shoulder-centered
coordinates (body-centered distance).

Those reach cells require to combine contextually or conditionally different sensory signals
to represent one location, even if they change dynamically ; e.g., if an object is placed at a
relative distance of the arm independent of the arm location. For instance, tactile information
is dependent on the fingers in the hands, but also on the wirst orientation and arm location,
see Fig. 3.12 a) and b). The visual information is dependent of the eye angle in its orbit (eye-
centered) and to the head orientation (body-centered), for which the later is only valid for audi-
tory signals.

Considering the neural mechanisms involved in the construction of reach cells, visuomotor
neurons have been found to encode the Preferential visual movement Direction (PD) in extrin-
sic coordinates (likely shoulder-centered) in 3D space Blohm et al. [2008]; Blohm and Craw-
ford [2012]. Kakei and colleagues for instance found some muscle-like neurons based on the
composition of cosine functions tuned to visual PD and modulated monotically with the limb
posture, see the neuron’s activity in Fig. 3.12 a). When the wrist rotates, the extrinsic neurons
discharge proportionally to the preferred visual direction in order to compensate the muscles
displacement Kakei et al. [2003]. Other researchers like Scherberger and colleagues found some
hand-centered cells whose activity depends both on the object features like the size and the orien-
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tation and on the grip type (pronation or suppination) Gail et al. [2009]; Fluet et al. [2010], see
Fig. 3.12 b). These reach neurons are multimodal and context-dependent. They compute where
an object is located with respect to the hand position and how it is oriented with respect to the
hand posture. They are called also in the literature Gain-Field neurons (GF), because their gain-
level or amplitude is varying depending on multiple inputs to represent the current object-body
relation Salinas and Thier [2000]; Salinas and Sejnowski [2001] as shown in Fig. 3.12.

FIGURE 3.12 – Principle of gain-modulation in parieto-motor neurons (gain-field neurons) for the arm
reaching and orientation. Gain-field neurons combine visuo-motor features to encode one prefered direc-
tion (PD) or one prefered orientation (PO). In a), exemplar activity of one GF neuron with visual PD and
when the arm moves on the left. In b), exemplar activity of one GF neuron with some visual PO and when
the wirst is on pronation.

The gain-field modulation mechanism describes the phenomenon where the motor and the
sensor signals (resp.A andB) mutually influence the amplitude activity of their afferent parietal
neurons (resp.C) Andersen and Mountcastle [1983]; Andersen et al. [1985]. As an example, one
possible modulation is the multiplicative effect across the unimodal neurons,A andB, so that the
afferent multimodal neuron C possesses the activity C = A×B. Following this, these neurons
encode stimulus location simultaneously in more than one reference frame using basis function
or ’gain fields’ Pouget and Snyder [1997, 2000]. For instance, there is a non-linear dependency
on eye position for certain visual neurons in posterior parietal neurons (PPNs) whose reference
frame is centered on the head, whilst others are found to be influenced more by the coding of
somatic information into hand/arm-centered reference frame. The same is found for audio-visual
signals integration Deneve and Pouget [2004]; Pitti et al. [2012].

Gain modulation contributes therefore as a major computational mechanism for coordinates
transformation and for the compensating of distortions caused by movements Salinas and Sej-
nowski [2001]. Its role is even broader as PPNs are found also important for reaching targets,
goal-directed movements Chang et al. [2009] and even for intentional acts Cui and Andersen
[2009]. Pouget and Deneve suggest that the parietal neurons behave as a population of basis
functions that are continuously adapting their dynamics to the current coordinate frame relative
to the task Pouget and Snyder [1997]; Deneve et al. [2002].

Kakei’s and colleagues Kakei et al. [2003] proposed a three stages architecture to explain the
extrinsic-to-intrinsic transformation necessary for hand reaching using visual directional cells. It
is inspired from the model of directional motor cells discovered by Georgopoulos Georgopoulos
et al. [1982]; A.P. et al. [2007]. Its schematic is plotted in Figure 3.13 and can be explained as
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FIGURE 3.13 – A simple model that derives muscles-like shifts in PD C from activity of two types of
extrinsic-like neurons A andB, replicated from Kakei et al. [2003]. The neuronsA′ andB′ is the product
between gain posture λa and λb with the extrinsic-like neurons. This model can be used for ebow-shoulder
co-ordination, wrist-object relative position and alignment.

follows.
At the first stage, extrinsic-like neurons A and B encode some preferred directions (PD) of

the movement orientation toward θA and θB respectively for the neuron A and B in the form of
cosine-like functions : A = cos(θ − θA), B = cos(θ − θB).

At a second stage, the gain levels λA and λB receive incoming signals from various mo-
dalities (e.g., visual, somatopic, proprioceptive or auditory) and modulate the amplitude of the
extrinsic neurons proportionally to it, so that we have the gain-modulated extrinsic neurons A′

and B′ equal to : A′ = λA cos(θ − θA), B′ = λB cos(θ − θB).
At the third stage, the gain-modulated extrinsic-like eurons A′ and B′ are combined linearly

to produce the generation of muscle-like neurons C and the encoding of the motor angle into
C = A′ +B′.

In this motor scheme, the input activity of the gain-levels λA and λB are connected to the
preferred direction in the visual space toward objects so that the motor responses of these neurons
are linked to the goal-directed actions toward these objects. The muscle response C, will be
either (1) the shoulder-elbow-hand articular system in the reaching task, (2) the wrist muscle in
the close reaching posture of the hand, or (3) the wrist muscle in the close wrist/object relative
orientation task Mahe et al. [2015].

Shoulder-elbow co-ordination – visuomotor directional cells

Our first experiment corresponds to the modeling of the shoulder-elbow co-variation for which
Georgopoulos discovered that a majority of cells demonstrated gain changes across posture fol-
lowing a cosine function Georgopoulos et al. [1993]; Ajemian et al. [2001]. Cosine neurons are
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defined as the preferred direction of motion of the hand wPD computed from the shoulder and
elbow joint angles, resp. ϕ1 and ϕ2. An M1 cell’s directional tuning curve, as derived from the
standard center-out task Georgopoulos et al. [1982] relates the average movement-related cell
activity to the hand movement direction :

V = rH cos(wH − wPD),
wH = ϕ1 + ϕ2,
rH = RMS(XO, XH),

(3.1)

wherewH is the current direction of the hand calculated as the sum of the shoulder and elbow
angles, rH the relative euclidean distance of the hand position XH to the shoulder X0 so that
the the neural activity at the population-level corresponds to a vector that possesses a magnitude
in addition to a direction, rH , which scales the directional component of a cell activity Ajemian
et al. [2001]. As explained by Ajemian, the direction of a spatial pd vector represents the di-
rection to which a cell is tuned and the magnitude of a spatial pd vector represents the degree
to which the cell is tuned. A cell’s gain at any given posture is directly proportional to the ma-
gnitude of the spatial pd vector at that posture. The spatial PD and the vector magnitude cell
modulation scales with the biomechanical advantage of the ’action’ controlled by the cell.

For instance, for 20 directional neurons with PD equally distributed, we have the following
neural activity plotted in Fig. 3.14 when the arm is exploring fully its working space for various
elbow configurations, back and forth starting from concentric semi-circles trajectories and fini-
shing by excentric semi-circles trajectories, between the two static points A and B. In Fig. 3.14
at the top chart, we plot the activity level of the neural population on a timeline for which the
color code indicates the amplitude of the neurons ; see Fig. 3.14 the subplot in the middle. The
2D plot of the arm trajectory is displayed in Fig. 3.14 on the bottom chart on which we super-
imposed the color of the most activated neurons, which corresponds to the tuning of each neuron
depending on their location.

The circular motion patterns of the arm trajectory in these plots permit to understand better
the function of the gain-field neurons. In this plot, each GF neuron encodes a stable pseudo-radial
distribution relative to the location on the shoulder reference frame during the arm’s motion –
i.e, the prefered orientation of the hand, which is stable,– whereas at the two static points A
and B, the various GF neurons contribute altogether to encode the different possible orientions
to reach them. That is, the sensitivity of each GF neuron to the end-effector orientation during
motion reduces the complexity of the control of the hand’s trajectory, which corresponds to a
stable neural field or a motor synergy (top chart). Instead, the encoding of one specific location
requires the correct combination of many GF neurons. Seen at the unit level or at the population
level, GF neurons can provide information about position and velocity at the same time Hwang
et al. [2003].

For instance, Fig. 3.15 plots the basis function for 4 gain-modulated neurons with respect to
the joint angle variables ϕ1 and ϕ2. The functions are nonlinear and depend on both variables.
Moreover, each GF neuron is sensitive to one prefered direction, theϕ2 angle, which corresponds
to the elbow joint, whereas ϕ1 modulates almost linearly the gain level relative to it. Thus, GF
neurons encode an information specific about the neural architecture’s embodiment.

Using these motor GF neurons, it is possible then to learn a desired motor command for a
reaching task similar to Baraduc et al. [2001]. The desired motor command corresponds to a
motor synergy, which is the weight product of a posture with a desired visual activity. After a
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FIGURE 3.14 – Simulation of the gain-field neurons activity during full exploration of a two-link arm.
(top) Raster plot of the gain-fields neural population during hand motion and amplitude level (middle).
Plot of the arm trajectory on which we super-imposed the location of the most active gain-field neurons
(bottom).

a) b) c) d)

FIGURE 3.15 – Plots of four gain-fields basis functions. The X-Y axis are the shoulder and elbow va-
riables, ϕ1 and ϕ2 and the Z axis the amplitude level of the neurons. These graphs show the support
functions are bi-dimensional although they are more sensistive to one prefered direction with respect the
shoulder-elbow co-variation.

learning stage, for a reaching task from the position A to the ending position B, it is possible to
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select the desired visual component that will trigger the correct motor primitives using the gain-
modulated network, see Figs. 3.16 a-c). The selection of the currently best motor primitive for
the planning strategy is seen in Figs. 3.16 b-d) in the bottom chart, which changes with respect to
the visual direction and current posture. The quadratic error to the targetted goal is plotted in the
upper chart, which shows a linear decreasing when the motor synergy is continuously selected.

a) b) c)

d)

FIGURE 3.16 – Motor control for a reaching task from posture A to posture B using a GF network
combining Posture X desired Visual Direction to provide a desired Motor Command.

Hand Orientation based on the Shape of the Object – visuomotor directional cells

Using the visuo-motor framework presented before, it is possible to learn the alignment between
the robotic hand with the visual features of an object (e.g., its shape, its orientation) using the
same neural framework exposed above with multiplicative neurons for different forearm muscle
configurations.

Here, the wrist muscle activity is multiplied with the density probability of the four orienta-
tions found in the image, which means four Gabor cells aligned to 0◦, 45◦, 90◦ and 135◦. The
product activity is then feeded to one LMS regression model that learns to predict the object
relative orientation with respect to the wrist angle ; see Fig. 3.13.

To understand better how the gain-field neurons intervene in the control, we display in
Fig. 3.17 a) the LMS neural activity for five particular wrist motor angles in abscisse with the
LMS activity colored with respect to the global visual orientation of the stick (colormap hsv,
resp. 0◦ to 180◦). This graph shows how the LMS neuron amplitude modulates its activity level
depending on the wrist orientation (intrinsic coordinates) and to the stick orientation (extrin-
sic coordinates) ; it corresponds to a muscle-like neural activity that makes the transformation
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from intrinsic to extrinsic coordinates. The shift in PO of the neuron corresponds to te graded
contribution fo the GF neurons.

Fig. 3.17 b) presents the same data of the neural activity but this time the color code (co-
lormap jet) corresponds to different angles of the motor activity and we plot in the abscisse
the global orientation of the stick in radian. The oblique graded lines shifted with respect to
the visual orientation shows the visuomotor transformation that the output neuron is capable to
perform. The graded activity of the neuron is salient for each motor angle to one visual orienta-
tion. It indicates a linear relationship between the wrist and the object orientation that the LMS
learned.

By extension, we believe that we can learn the inter-dependence between elbow and wrist
orientations. Therefore, the forearm has a PO with respect to the wrist posture ; for wrist values
under 0.5, we have the prefered orientation of the forearm in its pronation mode (red dots)
whereas for wrist values above 0.7, the forearm’s prefered orientation is at its suppination posture
(blue dots). For a wrist angle around 0.6, in between, the forearm is at its intermediate mode
(green dots).

During the test phase, the experimenter removes the stick and moves it in front of the robot
vision eye-field by varying the stick orientation from 0◦ to 125◦.

a) b)

FIGURE 3.17 – Gain-modulation of one visuomotor neuron with respect to Object Visual Direction and
Wrist Motor Orientation. After a learning phase, the GF neuron aligns its activity level to the visual
direction of the object with the motor angle of the wrist so that for each Orientation of the robotic Wrist,
the neuron is selective to one specfic Object Direction.

Hand-centered relative position – visuomotor directional cells
This experiment aims at reproducing Kakei’s observation of hand-centered cells sensitive

to the relative position of an object with respect to the hand. The activity level of these cells
depends both on the hand posture (proprioceptive feedback) and the object location in the eye-
field, as presented in Fig. 3.12 a). Again, the underlying mechanism observed in parietal neurons
is based on multiplicative activity of GF neurons exposed earlier in Fig. 3.13.

First, the extrinsic input is the object positionO, resp. (XO, YO), in eye-centered coordinate,
which uses the color detection in the image. The location of the object on the image is translated
into log-polar coordinates with a particular angle ϕO projected into four receptive fields as in
eq. ??, which are four extrinsic-like Gabor neurons {A, B, C, D} respectively 0◦, 45◦, 90◦,
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135◦ sensitive to four different orientations ϕ∗ = {ϕA, ϕB, ϕC , ϕD} : cos(ϕO − ϕ∗).

a) b) c) d)

FIGURE 3.18 – Gain-field neurons’ activity (eight neurons) in their respective receptive fields for different
Hand-Object alignments when the robot wrist has the angles 0◦, 45◦, 90◦, 135◦ in the eight directions
around the hand, resp. a-d). The experiment reproduces the results of Scherberger and colleagues on gain-
field neurons that are sensitive to wrist posture and object orientation. Depending on the object orientation
and the pronation or suppination of the robot wrist, the neurons dynamically update their alignment.

Second, the intrinsic input is the postural command of the hand, resp. (Mhand), which moves
the forearm on its axis of rotation with the motor angle θ∗, replacing the antagonist and protago-
nist muscles. The gain-field neurons multiply these two variables to encode a PD modulated by
the motor activity.

Finally, these GF neurons are used to interpolate a hand-centered representation : eight out-
put cells encode the relative position vector (XOH , YOH) = (XO − XH , YO − YH) in hand-
centered coordinates. These cells compute the linear combination of the GF neurons weighted
by coefficients ω to be learned :

Ok∈[0,...,7] =
∑
i=0

ωij [cos(ϕ− ϕ∗) ∗ cos(θ − θ∗)], (3.2)

which corresponds to a coordinate transform. For optimal ω, each output neuron can re-
present a particular location relative to the hand. They represent the extrinsic-like neurons from
Kakei’s model, see Fig. 3.13.

Their synaptic weights have been learned during a babbling period in a supervised manner
in which we move the robot wrist in front of the eye-field with the object in the hand (centered-
location), and on the eight locations described above. We plot the result of the learning process
with the neural activity of these eight output neurons in Fig. 3.18 a-d), when an object is moved
around the hand for different orientation of the hand : respectively when the hand is at its central
posture, in pronation on the left-side, in suppination on the right-side or at its maximum rotation
angle on the left-side. The red color corresponds to a high activity of the neurons and the green
color corresponds to a low activity of the neurons. The X-Y axis represent the position of the
object in front of the eye-field.

For example, in the situation of Fig. 3.18 a), the output neuron located at the top corresponds
to the case where the object is presented in front of the hand. In this situation, the neuron will
be the more active. However, when the hand moves, say by 45◦ on the left as in Fig. 3.18 b), the
neural activity will shift to another perceived receptive field with neurons on the left-side of the
arm, which is the most active for this particular configuration.

When the wrist is rotated again by 45◦ to the left as in Fig. 3.18 c), we observe one more
time the shifting patterns of the cell’s activity : the cell in the top center of the figure triggers the
most for a position of the object in the upper-left visual field. Thus, the cell still has its maximum
activity for a position of the object that is located in front of the hand whereas the other cells
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show an adjusted activity in the same way. During a grasping task, we will privilege the GF
neuron (i) plotted in Fig. 3.18 a) for motor control in order to have centered objects in front of
the hand. See for a relative spatial representation the plots in Fig. 3.19.

The synaptic weights have learned a trigonometric function so that the wrist orientation
modulated by the object position produces a rotation-like transformation independent to the
hand orientation. As in the previous experiment, the output cells are only perceptual and serve
to maintain a stable internal representation of the body relative to dynamical changes in its
environment Wolpert et al. [1998]. It is possible then to add an inverse kinematic model to it for
moving the hand in the desired orientation Wolpert and Kawato [1998].

FIGURE 3.19 – Output cells encode a relative position centered on the hand (reach cells). This behaviour
is learned from multiplicative neurons combining the wrist motion (intrinsic activity) with the direction
of motion in the eye-field (extrinsic activity) and replicate the reach cells circuit proposed by Kakei Kakei
et al. [2001].
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Audio-Visual Integration for Head-Centered Representation

In this section, we study the eye-to-head spatial transformation based on audio-visual integration
using gain-field neurons. For this purpose, we use a robot-head with a unique eye and two bionic
ears to model visual, audio and proprioceptive integration for objects spatial localization and
coordinate transformation. This work pursues several models of the parieto-motor system on
which we studied the contributions of motor and spatial development to social cognition Pitti
et al. [2009c].

In this previous research, we emphasized the role of contingency with the use of spiking
neural networks for the detection and learning of synchrony based on the mechanism of spike
timing-dependent plasticity, either in robotic experiments or in computer simulations. Here we
focus more on the mechanism for spatial transformation across different modalities.

Our robot head locates visual and audio stimuli relative to their respective reference frame,
even during motion. The objective is to replicate the gain-field effect of parietal neurons for
different spatial locations from audio, visual and proprioceptive pairings. Using a re-entrant me-
chanism, the processed information is then fed back to the unisensory maps. It follows that the
assembled audio-visual signal can then estimate back the position of a stimulus in each moda-
lity. We can observe then phenomena such as multimodal enhancement of spatial perception,
which can serve for audio-visual speech perception ; i.e., correlations between dynamical face
and acoustic cues.

FIGURE 3.20 – Overall framework based on the gain-field modulation of parietal neurons for coordinate
transform and multimodal integration ; adapted from Pouget et al. ?. Parietal neurons translate and coor-
dinate the stimuli information from the visual, the auditory and the proprioceptive signals in eye-, head-,
body-reference frame, by varying their gain levels.

Modeling Gain-Field Modulation

Gain-field neurons receive the activity-dependent information from two neural population by
multiplying unit by unit their value to each other, see Fig.3.21 (blue lines). The multiplication
between afferent sensory signals from the two population codes, N1 and N2 , generates the signal
activity η to the n gain-field neurons, n ∈ N1 x N2 : η = vn1 × vn2 .

As expressed in the previous sections, the key information here is the specific amplitude
modulation between the two neurons. Note that this is a little more subtle than Hebb’s law or
spiking-or-not activity where neurons are selected only when they have both a high value above
a certain threshold. Then, downward efferent neurons can learn the neural activity from the gain-
field neurons. By doing so, they realize the encoding of a bimodal information based on the two
unisensory signals. The computed mutual information is used next to re-estimate the unisensory
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signals through a reentry processing stage ; see Fig.3.21 (red lines). The reentry mechanism is
as follows. The triggered pre- synaptic gain-field neurons reinforce their links with the post-
synaptic downward neurons ; their activity is updated in consequence to have η = vn1 × vn2 +
vn. This reentry mechanism is similar to the one proposed by Roelfsema and van Ooyen [2005]
for mutimodal integration, which can serve then for coordinates transform from one reference
frame to another ; e.g., auditory or tactile information in eye- or head-centered reference frame.

FIGURE 3.21 – Reentrant mechanism. The unimodal neurons fed univocal sensory signals to the gain-
field neurons and to the downward neurons, and receive back the multimodal response.

Hardware and Experimental Setup

Our head-robot consists of a box-shaped device mounted on a servo-motor, the neck turns on
the sagittal plane and a camera, which is fixed on its eye axis, rolls on the horizontal plane. We
plug on the device two bionic ears on which microphones are attached on the eardrums, see Fig..
Although the whole system has only two degrees of freedom, the sensory-motor information
flow that it can generate (with

visual and auditory signals) is already complex enough for modeling difficult coordinate
transform problems. The bionic ears have been designed with a 3D-printer based on a 3D model
of a human-ear in order to replicate its bio-mechanical characteristics. The microphones can
receive an audio signal in the range [200Hz; 30kHz]. Moreover, the box-like shape of the head
has also a function, it creates a sound shadow that eases the discriminating between the left
and the right ear. The auditory channel conveys a bank-filter of 40 frequencies selected in the
interval [300Hz; 20kHz] following a logarithmic scale to respect the auditory discrimination.
Considering the visual inputs, we chose an analogic cam- era to transmit the video signal with a
pixels’ resolution reduced to [40×30]. The motors are moving within the interval [60; +60], and
their resolution is discretized to correspond to a 20 bins vector so that each index is associated to
one motor angle with a linear scale. Finally, learning is done online in an unsupervised manner
with no offline training data.
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FIGURE 3.22 – Our head-robot consists of a head-neck-eye device with ears. The head rotates on its
neck and the eye on its axis (left). The 3D-printed bionic ears replicate the shape of human’s ears for
mimicking human-like spatial localization of audio sources and a similar bandwith filtering of sound’s
envelope (right).

Experiments – Saccadic Eye-Movement

Our first experiment consists of modeling the visuomotor features of parietal neurons to encode
retinal coordinates into a head-centered reference frame using the eye motor signal.

In this setup, we take into account the eye motion only with the visual information, which
means that we purposefully ommit the neck and the auditory inputs. The neural population
dedicated to the motor-eye signal has respectively 20 neurons (e.g., modality 1 in Fig.3.21) and
the neural population dedicated to the retina signal has 50 neurons (e.g., modality 2 in Fig.3.21)
receiving the pixels’ activity from the camera. The parietal neurons count therefore 20× 50
= 1000 units (see the gain-field map in Fig.3.21). We add an efferent downward network of
150 units that learns the visuo-motor associations from the afferent parietal neurons activity.
Furthermore, each map is initialized with random connections so that all the neurons are at the
beginning unspecific to any stimuli.

During the learning stage, at each iteration, the winner neuron of each map (the most salient
neuron) sees its synap- tic weights updated to shape the receptive field salient to the current entry
code. Over time, the neural nets self-organize themselves to map the retina and the eye motor
signals. Figure 3.23 shows the activity of an eye-motor neuron during motion. The neuron’s
activity describes its selectivity to a specific eye angle, and the firing events occur when the
motor response reach a posture close to the neuron’s receptive field. At the population level, the
neurons responsive to similar visuo-motor signals produce identified activity patterns in the three
maps while the cross-product of the visual and motor neural patterns feeds the posterior head-
centered neurons, see the snapshots activity in Figures 3.24. The gain-field effect is observed in
Figure 3.25 for one downward neuron only.

The visual receptive fields #69 encodes one retina coordinate in head-centered reference
frame so that its position in space is independent of where the eye is fixating (the color index
is assigned to one particular motor angle). The neuron is tuned to position pixel 190 and motor
angle 20 . Its amplitude combines therefore two information at once ; a code response similar
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to ventral intraparietal (VIP) neurons. The linear combination of the downward neurons can be
used for tracking behaviours (e.g., for correcting the distance to the eye center) or for translation
purpose with other modalities.

FIGURE 3.23 – Neural activity of one eye motor neuron for 250 seconds. Over time, each neuron learns
to be selective to one specific motor angle, whose sensitivity is translated as a gain-modulated activity.

Auditory Mapping in Head and Body Reference Frames

Although sound information is naturally mapped into a head coordinate system, a consistent
proportion of auditory neurons in the parietal cortex exhibits eye-centered and body- centered
remapping. That is, the magnitude of the responses for these neurons is modulated respectively
by the eye position and the neck movement. For instance, some observations showed that an
intended eye movement influences the mapping of the auditory space, and reversely, a perceived
sound can influence where to foveate. It is suggested that these behaviours exploit transformation
mechanisms such as the one modeled in the previous part.

The neural population of the auditory map receives the vector signal of 2× 40 frequencies.
Then, the sound shadow produced by the head permits the rapid self-organizing of the auditory
neurons to two distinct receptive fields that discriminate accurately the left and right sides rela-
tive to the head horizontal plan, their appropriate reference frame ; see the neural activity in Fig.
3.26 a). The remapping of the auditory signals into a body-centered coordinate system is compu-
ted as for the retina/eye-motor transformation in the previous section : here, the auditory signals
and the neck-motor signals modulate a gain-field map that computes the spatial estimation of
the sound localization, and this estimation is irrespective to the head motion, see the gain-field
effect for one downward neuron in Fig. 3.26 b). As we can observe, the neuron’s gain level
correlates almost linearly with the sound location. The result is that the referential for sounds is
now changed into body-centered coordinates. The neuron is now tuned to a fixed position 40 on
the left side of the head. Moreover, in comparison to the head-centered profiles in Fig. 3.26 a),
the neural fields in body-centered coordinates are now enhanced with sharper sound profiles.
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FIGURE 3.24 – Snapshot of the vision, eye-motor neural fields and the visuo- motor parietal neurons. A
specific parietal neuron (top) is selective to one particular visuo-motor neural pair. Here, the most salient
downward parietal neuron (top) is tuned to a motor angle and retina position, resp. the most active motor
(middle) and vision neurons (bottom).

Audio-Visual Speech Perception

Using the reentry mechanism, mutimodal information can leverage the perceptual processing of
unimodal maps in their respective frame of reference to infer spatial location of noisy signals.
In our framework, audio-visual information in head-centered reference frame can be transferred
back into retinal coordinates within the proper eye-centered reference

frame for the visual input, in retinal coordinates. We plot in Figure 3.27 a) and b) the per-
ceptual processing for audio-visual temporal coherence in retinal coordinates, for facial gestures
and acoustic cues. The tuning across the modalities can serve then for locating salient onset and
offset signals such as for speech processing in different sensory modalities. In comparison to
visuomotor only receptive fields in Fig. 3.25, and audio only neural fields in Fig. 3.26, audio- vi-
sual mapping takes a position in-between, mixing both information : the center and the variance
of the tuning curves.

In a), multimodal information is exploited to estimate the position of the unitary visual sti-
mulus. Here, we super- impose the audiovisual receptive fields in the same abscisse coordinates
of the image with a color set ’jet’, from the most salient one in red to lowest in blue. The black
line indicates the visual stimulus. We observe that the reddest neural fields, whose bubbles are
centered on retinal location X = 10 in a), are well aligned with the person’s face location. In
b), during the person’s vocalization in a different location relative to the robot’s head, the later
receives audiovisual stimuli, which are combined to produce a spatial decision. In this situation,
the probability distribution of the neural fields are grossly centered on the person.The perceptual
system combines each modality in a common shared space to estimate the speech information.
By doing so, it shifts the attentional focus to multimodal stimuli, which are understood to be part
of the same entity.

We perform statistical analysis from ten minutes data ; 10.000 samples. The visual and audio-
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FIGURE 3.25 – Gain-field effect relative to visual stimuli localization on the retina for downward neurons
#69 (a) and #127 (b). The downward neurons are tuned to certain retinal coordinates, their amplitude is
modulated by the motor angles.

visual receptive fields overlap for mostly 80% of the time when a visual stimulus is seen in front
of the eye field. Thus, we can strictly measure the performance of the system only when the two
neural maps differ their estimations. When there is a conflict between the two maps to locate
audio-visual stimuli, we observe that audio-visual receptive fields perform two third time better
than the visual population, the ratio is 68.75% versus 31.25%. Having audio-visual receptive
fields, the performance level of correct location is globally increased by 10% in comparison to
the sole retina system with visual receptive fields.

Discussion

Seeing engages all our senses. Perceiving one object in space requires to compute its distance
relative to our gaze, to our head, or to our hand from multiple sensory types that are not in
the same reference frame. Neurobiological observations locate the superior colliculus and the
parietal area as the two brain regions where this unified conception of the world could be built.

Accordingly, it is interesting to note that these two regions exploit both the same neural me-
chanism of gain-field modu- lation. In gain fields, various kinds of combinations of multimodal
sensors are represented. In order to organize a reference frame, it is theoretically necessary to
bind all possible singleton from all modalities by a multiplicative function. However, only cer-
tain combinations of retina and motor are learned, but they are sufficient enough to map the most
pertinent sensorimotor experiences.

The gain-field effect is hypothesized to serve for trans- lating the unisensory signals to whi-
chever reference frame, possibly making each modality aligned to another. Thus, the gain-field
modulatory mechanism may give some hints on the organizational principle for optimal sensory
arrangement ; e.g., for compensating the relative motion from the body posture to targets. For
instance, it may serve for the construction of the peripersonal space as it is found for the VIP
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mirror neurons, which integrate many modalities. Although its implication to infant social tasks
has not been proposed yet, it may furnish a framework for a coordinate transform mechanism to
retranscribe one’s body posture to someone else postural configuration, which is a possible link
to imitation.

Our robotic experiments are preliminary results and we propose to search for more robust
solutions within our framework. Also, we will investigate its impact in more complex robot tasks
using this time a robot torso with an arm.
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FIGURE 3.26 – Sound localization in head- and body-centered reference frames. In a), sounds are natu-
rally mapped into the head-centered reference frame, neurons easily discriminate left and right sides from
sound energy intensity. In b), gain-field effect for a downward neuron relative to the neck-motor signals.
The auditory stimuli localization from the left and right ears are modulated by the head amplitude signals.
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FIGURE 3.27 – Super-imposed audio-visual receptive fields in eye-centered coordi- nates from reentrant
signals. The most salient receptive fields are aligned on the top of the camera image ; the reddest dots
represent the most active retina neurons. In a), the visual information only provides enough information
for locating the face correctly. In b), speech vocalization drives the reestimating of the location of the
stimulus in space using audio-visual information.
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Tactile-Proprioceptive Integration for Body-Centered Representation

Touch is often neglected when we consider reaching and grasping tasks. However, these actions
are goal-directed toward manipulating objects. Although tactile information is acquired at the
very end of these tasks, it has an influence on the whole action sequence from the beginning till
its end, by anticipating the orientation of the hand with respect to the object to be manipulated
and touched. The predictive coding done by the somatosensory neurons, combined with other
senses (vision, proprioception), may give rise to the emerging capabilities of the so-called mirror
neurons, invisible to the eyes like body image Maravita et al. [2003]; Rizzolatti and Craighero
[2004]; Caggiano et al. [2009]; Pitti et al. [2013b], anticipatory touch Keysers [2004]; Pitti et al.
[2008], action observation Keysers et al. [2014], social cognition Keysers et al. [2010] as well
as tool-use Maravita and Iriki [2004] and language Rizzolatti and Arbib [1998].

Touching objects permits to discover the physical limits of the body and to construct its
spatial representation with the use of vision and proprioception Pitti et al. [2017]; Braud et al.
[2017]. This spatial representation is however non-linear, the same tactile stimulus can corres-
pond to different visuo-motor pairs. However, the tactile stimuli can serve to learn the relative
locations of these different visuo-motor pairs with respect to the hand motion as in Fig. 3.11.
Over time, the tactile cells can develop extended visual receptive fields with anticipatory ef-
fect Graziano et al. [1997]; Graziano and Cooke [2006]; Pitti et al. [2009a], see Fig. 3.28 right
graph. These effects have been attributed also to the so-called mirror neurons in the premotor
area that integrate multisensory information for action purposes Rizzolatti and Gallese [1997];
Keysers [2004]; Caggiano et al. [2009].

These visuo-tactile receptive fields can be learned from the same gain-modulation mecha-
nism introduced in the previous sections. The output motor neuron C, which combines visuo-
motor information for hand position/orientation, is here replaced by the tactile neuron T an-
chored in one location on the skin and relative to the arm posture. An example of the body
schema-like representation done by visuomotor neurons anchored to the tactile map of a robotic
arm following the GF network described above is shown in Fig. 3.29.

FIGURE 3.28 – Tactile information is important for calibrating and anticipating spatial locations for
reaching and grasping tasks. On the left, one task that reach cells have to resolve is to link the same tactile
cell with different visuo-motor pairs. On the right, when spatial locations have been learned by reach cells
with the mechanisms of multimodal integration explained above, they can serve for anticipating visually
one touch ; acquisition of body image.
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a) b)

c) d)

FIGURE 3.29 – visuotactile neurons anchored in arm-centered reference frame toward body schema.
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Contributions to Neural Architectures for
Cognitive Development and Working

Memory

After my PhD, I started working on computational theories based on the theory of dynamical
systems on the normal or abnormal cognitive development in children, cognitive architectures
on learning and brain development. This work led me to study the role of acetylcholine in the
neuro-modulator in the development of memory and its influence in the functional structure of
the hippocampus and cortex enthorinal, the pre-natal stage to stage post native. I have started
then to design other neural models that behave like working memories to learn internal models
and to plan action sequences based on reinforcement learning. One of the goals that I pursue
with these models is to understand better normal and abnormal developmental mechanisms for
the scientific community and to design for robotics new neuromorphic architectures that mimick
the plasticity of human cognition.

Infant cognition starts before birth with the developing of the neocortex and of its subcortical
areas. The neonate behaviors are mostly reactive at this period and it is only at the end of the first
year that working memories are mostly blown for more adaptive behaviors. The prefrontal cor-
tex along with the parietal cortex is one of these working memories. The hippocampal prefrontal
coupled structure also as well as the cortico-basal coupling. Each of these working memories de-
velop at different periods depending on their maturation, the level of neuromodulator receptors,
the synaptic plasticity, the number of neurons.

WMs are involved in manipulating old and new information for memory consolidation or
novelty detection, problem solving under uncertainties, and the generation of neural chains for
actions or for processes.

In this line, the development of the hippocampus is interesting because it is a structure that
is rapid to develop but long to mature due to changes in proportion of chemical receptors, like
the neuromodulator acetylcholine (ACh), changing its functional properties during the first year
from a responsive associative memory to a working memory, salient to novelty, and growing
in complexity. Following observations done in the neonates rat on the developping of learning
capabilities, we propose that the dynamical change in distribution of two species of chemical
receptors of acetylcholine necessary for reinforcement learning on the one hand and for detecting
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novelty on the other hand changes the functional structure of the hippocampus very early in life.
As emerging behavior, our hipppocampal model attempts to learn new things while not to forget
old ones, which induce some complex patterns of organization, synchronous activity, with a
increase of the complexity of the model. The hippocampal memory is hypothesized to serve for
cnsolidated the new memory and is therefore associated to novelty or curiosity-driven behaviors
as it is found that HP is very active during new episodes. At reverse, its dysfunctioning may
underly the shift found in certain developmental trajectories for loss of memory consolidation
in abnormal developments. We will explain its neural modeling in sec. 4.1 based on dynamical
systems approach and attractor learning.

This coupled mechanism between excitation and inhibition, absorption dissipation,precision-
generalization, is a hallmark of self-organized systems in evolution and development d’Arcy
[1917]; Nicolis and Prigogine [1977]. It characterizes some general principles of WMs with
links to complex networks Strogatz [2003], dissipative systems, as well as chaos and attrac-
tors Tsuda [2015], or the free-energy principle Friston et al. [2009].

This last decade has seen the development of new neural networks, such as Echo-State Net-
works, Dynamic Neural Fields, Deep Networks, Long-Short Terms Memories, Neural Turing
Machines Graves [2016] or Coupled Adversial Networks. These breakthroughs have achieved
to surpass conventional neural networks in supervised learning and are capable to deal with a
huge amount of data to refine their learning.

Nonetheless, most of these models still lack the capabilities of working memories to deal
with uncertainties, to be attentional, to learn multiple tasks set or to produce long temporal
signals. Differently said, they are still missing the capability of open systems to self-organize
themselves in an open manner, to be self-directed, curiosity-driven.

Although the design principles for creating neural machines capable of learning-to-learn
are not fully understood, specific concepts and techniques have been characterized such as ar-
tificial curiosity Kaplan and Oudeyer [2007], goal-directed behaviors Chersi et al. [2013], rein-
forcement learning Barto and Sutton [1997], active inference or predictive coding Pezzulo et al.
[2014]; Pezzulo and Cisek [2016]. These concepts presented in section 4.2 put forward the idea
that instead of learning model categories of the sensory inputs from raw data, the brain learns
to predict the probability distribution of those that he can generate. The brain is seen here as
an inference machine that can compare predicted signals with the real ones that in turn elicit
or favorish one category among others as seen in the activity level of the neurons. Instead of
learning solely the sensory patterns, the active motor neurons learn the underlying causes that
diminish the error prediction of these data. Relative error is then a salient information tramsitted
to the higher level brain structures to be processed.

This viewpoint can be seen as a brain theory of embodied causation based on Bayesian
theory because the causes are infering to which class the samples of the sensory distribution are
belonging with. This Bayesian hypothesis of the brain has become highly popular this decade by
reknown scientists like Schultz et al. [1997]; Schultz [2000]; Friston [2009] with neural models
of Bolztman machines, auto-encoders, free-energy based neural processes. Predictive coding is
also a theory of enaction popularized by authors in cognitive science like Clark [2015]; Pezzulo
and Cisek [2016] in which affordances – the capability to select one action based on sensory
information– and active inference – estimating sensory input from one motor activity (throb-
bing the finger on a texture, eye-saccades or the processing of the visual receptor fields)– are
a byproduct of it. We develop this idea in section 4.3 in which we present a working memory
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for recurrent neural networks based on the free-energy principle and predictive coding. Further-
more, cognitive development appears to be marked also by Bayesian processes early in life as
it is supported by Gopnik et al. [2000, 2004]; Meltzoff [2007a]; Tenenbaum et al. [2011] who
showed how infants develop very rapidly statistical abilities to infer qualitative and structured
information from sensorimotor information. We present our attempts to deal with such behaviors
with the modeling of different cognitive architectures.
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Hippocampal Model for Incremental Learning

Among the principal neuromodulators, acetylcholine (ACh) plays a particular role on the human
developing brain and thus, on the acquisition of cognitive capabilities. During early postnatal
development, ACh regulates critical aspects of maturation and plasticity of the neocortex, hip-
pocampus and cerebellum for memory and learning Lauder and Schambra [1999]; Descarries
et al. [2004]; Hasselmo [2006].

For instance, prenatal choline suppletion, which is a precursor of acetylcholine, causes long-
lasting improvements in spatial memory whereas choline deficiency is associated with poor per-
formance in certain cognitive tasks Matsukawa et al. [1997]; Meck et al. [1989]. Although the
mechanism by which choline influences learning and memory remains unclear, converging evi-
dences attribute a developmental role to ACh and suggest that it may involve changes to the
hippocampal cholinergic system. In this section, we propose that ACh operates as a kind of “or-
der parameter” for memory development that reorganizes functionally the cortico-hippocampal
system into a working memory.

The cholinergic system is composed of two chemical families with different genes expres-
sions that have high affinity either with nicotine or muscarine via nicotinic acetylcholine recep-
tors (nAChRs) and muscarinic acetylcholine receptors (mAChRs). Current researches in phar-
macology focus their attention especially on nAChRs because of its high sensitivity with nicotine
which can exert neurotoxic effects on development Dwyer et al. [2009]. Prenatal and early post-
natal exposures to tobacco smoke can result in altered morphological features in the developing
hippocampus and cortex that can impact long-term cognitive deficits Court et al. [1993]. This
is particularly detrimental because acetylcholine modulates brain development during critical
periods when brain maturation is most sensitive to perturbation.

FIGURE 4.1 – Structural and functional changes in the hippocampal system and its contribution for early
memory development and attention. The graph a) retranscribes the cholinergic changes in the entorhinal
cortex and in the hippocampus (CA3 and CA1), adapted from Court and al. [1997]. Figure b) presents our
hypothesis on the functional activation of the hippocampal structure after maturation of the cholinergic
system during the first year, period (ii).

Innervation of nicotinic receptors nAChRs in the cerebral cortex and hippocampus is very
early and rapid as it falls within the first six months of life Hasselmo and Stern [2006]; Court
and al. [1997]; Dwyer et al. [2009]. Their roles however are found important as they regulate sy-
naptic transmission and plasticity Gold [2003]. Besides, abnormalities in nicotinic acetylcholine
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receptors may relate to disruptions in cerebral circuitry development while their genetic dysfunc-
tions have been implicated as a major feature in the neurochemical pathology of autism Dwyer
et al. [2009]. In contrast, the binding of muscarinic acetylcholine receptors mAChRs tends to
rise significantly after birth till the first year and particularly in the entorhinal cortex – which
is the gating pathway to hippocampus– to reach 80% density corresponding to the childhood
period Hasselmo and Stern [2006]; Court and al. [1997]. Their roles differ from nAChRs but
are equally important since mAChRs regulate the maturing entorhinal system to detect and to
support the encoding of novel signals into the hippocampus Doya [2002]. Taken together, these
findings suggest that the understanding of the innervation timeline of the cholinergic system
into the various brain regions, more marked in the hippocampal system, can provide us a better
comprehension of the developmental changes occurring during the first year.

From a cognitive viewpoint, the cholinergic system is known to regulate the balance between
memory storage and renewal depending on its concentration level and the brain regions where it
is released. In the cerebral cortex, ACh modulates the synaptic plasticity by enhancing long-term
potentiation depending on its concentrate rate Hasselmo and McGaughy [2004]. In the hippo-
campal system, ACh acts as a working memory for novel information Hasselmo [2006]; Doya
[2002] ; high concentration level of ACh sets the circuit dynamics for attention and encoding of
new memory whereas low level of ACh regulates the consolidation of older memories Knight
[1996]. More precisely, mAChRs are involved in the persistent firing of individual entorhinal
neurons for the maintenance of novel information Klink and Alonso [1997]; Kumaran and Ma-
guire [2009]; Adolph and Joh [2009] and nAChRs are involved in synaptic plasticity of the
hippocampal cells for learning memory patterns.

Interestingly, the period of cholinergic maturation in the hippocampal system coincides with
the period when infants enrich their motor repertoire with novel actions Smith and Samuelson
[1997], categorize novel objects into new classes Quinn et al. [2006]; Newcombe and Hutten-
locher [2006], shift from an egocentric represention of space to an allocentric one [20] which
are all features attributed to hippocampal processing. Furthermore, this chronology agrees with
Nelson’s proposal and others that the brain systems responsible for adult-like explicit memory,
including the hippocampus and surrounding cortex, do not come online until the second half of
the first year of life Yu and Dayan [2002] and that infants rely on different types of learning
systems during the first year Piaget [1954]; Smith and Samuelson [1997]. One might envision
therefore the cholinergic system to activate rapidly the learning capabilities of the hippocam-
pal system (i.e., fast nAChRs binding) while it regulates slowly the filtering capabilities of the
entorhinal system for novelty detection (i.e., slow mAChRs binding), see Fig. 4.1. We think
that these two parallel processes change the functionality of the hippocampus into an efficient
working memory dealing with novelty, which is not at birth.

The section is organized as follows. In the first part we define the networks architecture
of the para-hippocampal system and the neuromodulatory mechanism of the cholinergic sys-
tem that regulates learning and attention. The good balance between these rules controls the
overall stability and plasticity of the system to maintain top-down hippocampal signals and to
sustain the novel ones coming from the entorhinal system (i.e., novelty detection and support of
bottom-up signals). It follows that, without ACh, the cortico-hippocampal system behaves as a
classical associative memory that extracts the statistical features from the inputs ; e.g., a proba-
bilistic network based on statistical learning. In contrast, the gradual activation of ACh changes
the cortico-hippocampal system into a self-organizing map that rewards the novel signals over
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the familiar patterns ; e.g., a hierarchical memory map such as a Bayesian tree. The new system
acquires the emerging functionalities of a working memory dealing with novelty by categorizing
the novel patterns and by maintaining them active during encoding. Hasselmo suggests that this
feature could underlie the intrinsic mechanism for delayed-response tasks for novel stimuli in
the para-hippocampal cortices even over 810 sec whereas other brain regions seem to be suffi-
cient for normal delayed matching function with small numbers of highly familiar stimuli Doya
[2002].

Neuromodulators and neural circuits models

We describe in this section the models defined for the hippocampus and the entorhinal cortex
with their respective networks architecture and regulatory mechanisms.

Stellate Cells of Entorhinal Neurons

In comparison with the most common types of neurons in the neo-cortex, the stellate cells of
entorhinal neurons possess some specific internal currents, cholinergic-dependent, which permit
them to sustain long-lasting bursting even if inputs fade away Kumaran and Maguire [2009];
Cuevas and Bell [2011]. Moreover, the entorhinal neurons possess very few recurrent connec-
tions so that the entorhinal cortex can be modeled as a segregated network of isolated neurons
with no synaptic connections between them. According to Hasselmo, it is the muscarinic cho-
linergic receptors that enable persistent spiking to continue after the sample stimulus Hasselmo
[2006]; Doya [2002]. We formalize them with the neuron model proposed by Izhikevich Izhi-
kevich [2003, 2007] which is a resonator cell whose bursting frequency increases depending on
the input current I :

Cv′ = k(v − vr)(v − vt)− u+ I (4.1)

u′ = ab(v − vr)− u (4.2)

where I is the external input bound in the interval [0; 2000µA], v represents the membrane
potential of the neuron and u represents a membrane recovery variable (c.f. Diamond [1985];
Munakata [1998]) ; v′ and u′ their temporal derivate. The voltage threshold level vt is set to
−45mV and the resetting voltage level Vr to −60mV . We set also the constants C = 2.000
and k = 0.75. The after-spike resetting is done with

if v ≥ +vpeak, then (4.3)

v ← c (4.4)

u← u+ d (4.5)

with vpeak = 30mV . The variables set {a, b, c, d} defines the neurons attributes (a; b) =
(0.01; 15.0) and (c; d) = (−50; 200).
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Hippocampal Neurons

We define the hippocampal neurons with the model proposed by Colliaux Colliaux et al. [2009]
that realizes a up- and down-states where up-states are associated with firings and down-states
with silences. Up- and down-states occur at each theta cycle – which is the natural rhythm of the
hippocampal neurons betwen 610 Hz– and the up-state firings trigger in advance or in retard to
it. The phasic (temporal) information from all the neurons represent then one memory pattern.
The model consists of two coupled variables, S and ϕ, such that an oscillation component cosϕ
produces the intrinsic oscillation of the membrane potential S for which the phase ϕ depends
on its level of depolarization. In a network of N units, the state of the cell i is defined by
{Si, ϕi} ∈ R× [0, 2π[, for (i ∈ [1, N ]) and evolves according to the dynamics :

S′i = −Si +
1

N

N∑
j=1

WijR(Sj) + γ(Φi) + Ii (4.6)

Φ′i = ω + (β −∆(Si))sinΦi (4.7)

with wij , the synaptic weight between cells i and j. R(Sj) is the spike density of the cell j
and Ii represents the driving stimulus which enables to selectively activate a cell. In the second
equation, ω and β are respectively the frequency and the stabilization coefficient of the internal
oscillation. The spike density is defined by a sigmoid function :

R(x) =
1

2
(tanh(g(x− 0.5)) + 1). (4.8)

The coupling between the two equations, γ and ∆ appear as follows :

γ(Φi) = σ(cos Φi − cos Φ0)∆(Si) = ρSi (4.9)

where ρ and σ modulates the coupling between the internal oscillation and the membrane
potential, and ϕ0 is the equilibrium phase obtained when all cells are silent (Si = 0) ; i.e.,
ϕ0 = arcsin(−ω/β). We used the following parameters in our experiments : ω = 1, β = 1.2
and g = 10. Accordingly, cosϕ ≈ −0.55. ρ, σ are adjusted respectively to 1 and 0.96, and
external voltages I are normalized below 0.1 to not saturate the hippocampal dynamics.

The coupling to the entorhinal system is done as follows. The entorhinal neurons receive the
membrane voltage S from their respective hippocampal neurons, which is originally comprised
between [−0.5V ; 1.5V ] and renormalized to [0mA; 2000mA], such that any up-state oscilla-
tion entrains the entorhinal neuron to increase its firing rate. The system behaves as follows.
For a hippocampal network of eighty units (N = 80) regrouped into ten clusters with initial
synaptic weights, the system transits freely from one pattern to another without external inputs,
see the raster plot in Fig. 4.2 ; same conditions as in Smith and Samuelson [1997]. The small
perturbations pull up one pattern (up-state) and pull down the others (down state) at each theta
cycle. Under these conditions, the coupled system has a poor stability-plasticity trade-off as it
can recall rapidly its already learnt patterns but cannot maintain easily the new ones.
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FIGURE 4.2 – Raster plot of the hippocampal dynamics without external drive. The network dynamics
stabilize or switch from one cluster to another at each theta cycle.

Hebbian Learning

Memory patterns in the hippocampal system are associated with the respective up-state of the
active cells, see Fig. 4.2. The robustness of one particular neural pattern depends then on the
strength of the neurons’ synaptic weights. The regulation of these weights are done by the clas-
sical hebbian rule that strengthens the links of two contingent neurons i and j by a small fraction
δw (long-term potentiation) computed by

∆wεIiIj , (4.10)

with learning rate ε = 10−5. The weights’ updating rule is then :

wij(t+ 1) = wij(t) + ∆w. (4.11)

The hippocampal system behaves as a classical associative memory which follows the pro-
bability distribution of the imposed external inputs. The exposure to random inputs –e.g., a
Poisson distribution of 1 spike per millisecond– will drive slowly the hippocampal weights from
their initial configurations to follow the inputs’ probability distribution (not plotted here). Hence,
without any attentional mechanism to sustain novel information, the network is too weak to learn
novel inputs in one-shot exposure but it is robust enough to persevere to familiar dynamics

Cholinergic Neuromodulation

Acetylcholine levels control the balance between memory storage and memory update at both
the cellular and circuits levels Doya [2002]. In the hippocampus, nAChRs modulate the synap-
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ses’ plasticity at the circuit level whereas mAChRs modulate the neurons firing at the cells level
in the entorhinal cortex : on the one hand, when a novel input is exposed, high cholinergic levels
make the entorhinal cells to generate spikes and favor hippocampal plasticity ; i.e., plasticity
to afferent input, on the other hand, when a familiar input is exposed, low cholinergic levels
unaffect the entorhinal cells and consolidate the hippocampal network ; i.e., robustness against
afferent input. This mechanism could be very important for maintaining responsiveness to sen-
sory input in attentional tasks and for encoding new memories. The concentration level of ACh
can be defined then as the relative novelty index of one input pattern I to the embedded hip-
pocampal patterns. The novelty distance can be computed from the hippocampal weights w of
dimension N2 (wi,j ∈ [1, .., N ] × [1, ..., N ]). For an input I of N elements (Ii∈[1,...,N ]), the
novelty index ACh_level is defined as :

Ach_level = 1− 1

N(N − 1)
∑

i

∑
j Ii.Wij

, for i 6= j. (4.12)

with ACh_level comprised between [0, 1] for which a low value corresponds to a familiar
pattern and a high value corresponds to a novel one. Its action on the networks is as follows.
In the entorhinal network, input currents are sustained for any concentration rates above a spe-
cified level novelty_threshold. One simple rule to relate the entorhinal neurons’ resonance to
ACh_level is : if ACh_level > novelty_threshold, then sustain input current intensity I .

This condition applies for the first time the input is above the threshold and its value stays
fixed during the whole period whenACh_level > novelty_threshold. In the hippocampal net-
work, the plasticity of the hippocampal weights is adjusted proportionally to ACh_level which
functions as a variable learning rate Klink and Alonso [1997]. The updating rule in eq. 4.11 is
changed in : wij(t+ 1) = wij(t)+ ACh_level ∆w.

To understand better the effect of neuromodulation on the networks, we reconduct a priming
task experiment when the networks EC-HP are exposed to a novel input, see Fig. 4.3. The phy-
siological mechanism responsible for the recognition of novelty and stabilization of input pattern
in EC has been identified as the ACh dependent’s intracellular Alonso current Doya [2002]. We
simulate its effect on the HP-EC networks. We recall that HP and EC have eigthy units each with
intramap connections for HP (not for EC) and that EC units have unidirectional connections to
their respective HP units.

The presentation of a novel input to the entorhinal cortex at t = 186.25 s (see Fig. 4.3
b) automatically rises ACh_level to a high value (see the blue crosses in Fig.4.3 a). ACh’s
increasing has for net effect to keep the entorhinal neurons firing for several seconds and to
enhance the hippocampal encoding of the novel memory with respect to eq. 4.12, see the black
line in Fig. 4.3 a). Therefore, the more novel a pattern is, the higher ACh_level (ascending
phase). In return, the hippocampus strengthens more its synaptic links to the novel pattern, which
makes it less novel and reduces accordingly < δw > and ACh_level (descending phase).

Thus, this process produces a temporal cost that depends on the variables ACh_level,
novelty_threshold, δw and I . In other words, it plays the role of a retainer that can be used
further for attentional purposes, either for learning one novel memory or assessing one old me-
mory. The cholinergically-enhanced network operates therefore very differently from its normal
regime showed in Section II-C.

We think that the neural development of acetylcholine into the hippocampal system is related
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to the cognitive development in memory and categorization tasks observed during the postnatal
period.

Experiments

Develpomental timeline of cholinergic innervation

In the previous section, we presented how the hippocampal network behaves with and without
cholinergic neuromodulation. Here we design the progressive cholinergic innervation into the
hippocampal system. Muscarinic binding in the entorhinal cortex –responsible for sustaining
novel signals– is slow to mature and reaches its highest level at one year-old period Court and al.
[1997]. Besides, nicotinic binding in the hippocampus –responsible for reinforcement learning–
is very fast to mature as it drastically falls with age during the fetal and post-natal period Court
and al. [1997]; Court et al. [1993]. We model the gradual mAChRs binding in EC with the
variable activation ratio that grows continuously within the range [0, 1] : activ._ratio = 0
corresponds to the fetal period when there is no muscarinic binding and activ._ratio = 1
corresponds roughly to the period when the infant reaches its first year.

To simplify our experimental setup, the growing parameter is set to augment linearly with
a step of 10−4 per iteration (1 ms), starting at t = 50 sec. The variables ACh_level and
novelty_threshold are weighted to it so that they reach progressively their maximal value when
activation_ratio = 1. The initial level of novelty_threshold is set to 0.85 to filter as much
as possible novel signals in the beginning. During the transitory period, we decrease its value to
allow more novel signals to pass. This is the unique ad hoc rule that we impose to the system to
simulate the functional acceleration observed during cholinergic innervation. The equations set
for the cholinergic activation is then :

Ach_level(t+ 1) = activ_ratio×ACh_level(t) (4.13)

novelty_threshold(t+ 1) = activ_ratio× (0.85− 0.25activ_ratio), (4.14)

where activ._ratio stands for activation ratio. We present in Fig. 4.4 the results of this
developmental scenario when the hippocampal system is exposed to random inputs, starting at
t = 50 sec, when activ. ratio increases linearly to 1.

Fig. 4.4 a) plots the weights modification< δw > averaged over all the weights at each time
step, Fig. 4.4 b) plots the evolution of ACh_level during cholinergic activation and Fig. 4.4
c) displays the overall complexity inside the hippocampal network computed from the synap-
tic weight matrix. The complexity measure C(w) of the system’s weight matrix w is defined
as the difference between the integration level I(w) considered as a whole and the average in-
tegration for small subsets within, following : CN (w) =

∑n
k=1[(k/n)I(w)− < I(wkj ) >].

Low complexity levels reflect a poorly organized network with low memory capacity (a uniform
distribution) whereas high levels reflect functional connectivity within the network and higher
memory capacity.

The situation before ACh activation when activ._ratio = 0 (t < 50 sec) corresponds to
the case described in Section II-C when the learning system encodes continuously the external
inputs and converges to its probabilistic distribution. The weights rapidly stabilize themselves
within a minimal fluctuation regime and the system behaves as a classical associative memory.
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Parallely, the complexity measure decreases continuously indicating the hippocampal structure
always adapt itself to the novel inputs but do not retain them for a long period.

At contrary, the activation of the cholinergic variables when activ._ratio > 0 at t = 50 sec
reverses the process and generates a phase transition within the neural dynamics. Here, the va-
riableACh_level starts to oscillate between low and high states with bigger amplitudes as activ.
ratio augments : the learning system becomes more and more sensitive to the inputs’ novelty and
scaffolds its memory capacity by embedding one at a time a novel input. The ascending phases
(i.e., the crests) correspond to the encoding periods and the descending phases (i.e., the troughs)
correspond to the consolidation periods.

Moreover, the capability to detect and to encode novel inputs creates some new emergent
functionalities within the system. For instance, since the new patterns do not overlap with the
old memories, the hippocampal system tends to be sparsely organized, which rise in fine its
complexity level. In line with Hasselmo’s proposal Hasselmo and McGaughy [2004], this me-
chanism could prevent interference from previously stored patterns during the learning of new
patterns. In other words, it enables the hippocampal system to categorize on the fly new me-
mories while preserving the old ones. The result is the emergence of a ’working memory’ that
scaffolds over time, the memory organization is kept motivated for novelty and reaches a high
complexity level.

When the learning system reaches its fullest capacity (i.e., its highest complexity level), it
attains the so-called plasticity/stability limit where it cannot embed new memories without era-
sing old ones. Despite this unavoidable trade-off, ACh mechanism slows down memory decays
in comparison to the situation without, see Fig. 4.5. From a system theory viewpoint, ACh acts
therefore as a kind of low-pass filter that retains information.

Moreover, ACh plays a similar function during memory encoding as it slows down the scat-
tering of one novel pattern by sustaining its trace in EC ; the memory retention of one novel
signal depends then indirectly on activ. ratio, see Fig. 4.6. The time duration for holding one
novel pattern augments with activation ratio to reach 6 or 7 seconds when ACh is fully active.
As a result, these two mechanisms permit to create a working memory (i.e., an attentional sys-
tem) that can serve advantegeously when the system is dealing with delays or with unexpected
events ; e.g., to sustain object continuity during objects’ rotation and occlusion.

Memory retention, transfer and consolidation into the neo-cortex

ACh creates the conditions for the rapid formation of memory traces in the hippocampus and
allows the retention of specific episodes while preventing as much as possible interferences. Ho-
wever, in order to avoid memory decay, the hippocampus has to reinstantiate the short-term me-
mories into the neo-cortical maps, which are performing at a slower learning rate Piaget [1954].
When the later structures finish to consolidate the memory patterns, they can start manipulate
them ad libitum without the need of the hippocampus. The role of acetyholine is however not
impotent in this scheme. For instance, Peinado demonstrated that ACh mediates the propagation
of slow waves of electrical activity in the developing neocortex Izhikevich [2003]. We propose
to model the memory remapping from short-term hippocampal memories to long-term cortical
memories. Cortical maps are commonly defined as networks with recurrent connections. We use
as neuron model a variant of the stellate cell defined in eq. 4.5, also proposed by Izhikevich
[2003] :
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v′ = 0.004v2 + 5v + 140− u+ I (4.15)

u′ = a(bv − u) (4.16)

where I is the external input. The auxiliary after-spike resetting equation is the same as
eq. 4.5 with vpeak = 30mV such as the variables v and u represent also the membrane potential
of the neuron and the membrane recovery variable. The variables set a, b, c, d defines the neurons
attributes whether excitatory (a; b) = (0.02; 0.2) and (c; d) = (65; 8), or inhibitory ; (a; b) =
(0.02; 0.25) and (c; d) = (65; 2).

The hebbian learning is based on the mechanism of spike timing-dependent plasticity intro-
duced in Izhikevich [2006] and each neuron receives the external current I from their respective
entorhinal neurons Ient (Ient = 20mA when the neuron fires) and pre-synaptic neurons i :
I =

∑
i∈pre Ii.wi + Ient. The cortical map is composed of 800 excitatory neurons and 200

inhibitory neurons with a coupling probability distribution of 0.1 (10 connections per neuron)
for all the neurons. Therefore, the cortical map is ten time bigger than the entorhinal system
–which has only eighty neurons– and each entorhinal cell is exactly connected to only one ex-
citatory cortical neuron with index corresponding to the entorhinal neuron index multiplied by
10. The other cortical neurons are therefore inter-neurons that receive indirect signals from their
recurrent connections.

During memory consolidation, we evaluate the rate of cortical encoding with the Victor-
Purpura metric distance (VP) that quantifies the similarity between two spike trains Victor and
Purpura [1997] ; e.g., the signal/noise ratio of one pattern. We use this measure because probabi-
listic methods are more approximative as they require to average the signals into spike rates. The
V P distance computes the minimal costDV of transforming x to x’ using two basic operations :
the event insertion or deletion with a cost equals 1 and the event movement for which the cost is
proportional to the distance (constance CV ) ; the time constant is defined as τV = 1/CV ; here
CV = 1. In the case that the two spike trains are identical, then we will have DV = 0.

We define the memory retention inside the cortical map as the inverse of D V renormalized
between 0 to 100%, calculated from the hippocampal and the cortical dynamics. Under this
condition, the more the cortico-hippocampal spike trains are synchronous, the more the cortical
map is accurate and the higher is the memory retention.

We present in Fig. 4.7 the retention score of the cortical map when exposed to hippocampal
dynamics and a raster plot of cortico-hippocampal synchronization during memory consolida-
tion/retrieval in Fig. 4.8. In comparison with the performance of the hippocampus for learning
one memory in one-shot and very rapidly [see Fig. 4.3 a)], the cortical map is much slower for
encoding one memory pattern as it takes one hundred seconds to converge (10 5 iterations). Mo-
reover, the cortical map performs worse than HP as it reaches 70 75% retention score whereas
the hippocampus can learn a very precise pattern without interference. The reason for this be-
havior comes from the recurrent connections that amplify the neural activity inside the cortical
map, which performs then as an associative memory. Moreover, memory consolidation gene-
rates the theta/gamma rhythm synchronization : the rhythmic activity corresponds here to the
formation of coherent clusters that can be used for memory retrieval or for other tasks such as
memory association and/or anticipation.

The temporal durations of hippocampal decay (Fig. 4.5) and cortical encoding (Fig. 4.7)
are therefore critical as they delineate the interval length during which a memory pattern in
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the hippocampus is available for cortical encoding, before being lost permanently. Like for the
hippocampus, the cortical map has a trade-off in terms of plasticity and stability for consolidating
the short-term memories into long-term memories that depends on the learning rates of both
systems.

Discussion

In this section, we proposed to model the cholinergic system innervation in the hippocampal
system and its influence for learning, attention and memory development. Acetylcholine is in-
volved in the structural and functional adjustments of the hippocampus, transforming it into an
attentional system ; i.e., a working memory for novel information. Under its action, the entorhi-
nal cortex sustains and facilitates the learning of novel stimuli relative to the old patterns already
present in the hippocampus. We show in our experiments how this dual mechanism may generate
simply some emergent properties necessary for cognitive development. For instance, it limits the
interference between memories which has for effect to scaffold the memory organization and to
discretize the memory space into separated categories in the same time.

Our cholinergic hypothesis may give some partial answers to the paradoxes that pose the
hippocampus and other subcortical structures that appear to function at birth but show some
evidence of slow development and/or functional reorganization. Here, we propose that the neu-
rotransmitter acetylcholine may play the role of a “catalyst” that activates the functional orga-
nization of the cortico-hippocampal system (i.e., detecting and holding stimuli, preserving and
acquiring memories).

Although ACh is generally known to regulate the structural maturation of the central ner-
vous system Lauder and Schambra [1999]– e.g., the growth, differentiation, and plasticity of the
neurons– the precise timing of cholinergic innervation to the cortex appears to be crucial also for
the normal development of cognitive functions. Its action is even broader since ACh has been
identified for mediating the propagation of slow waves of electrical activity in the developing
neocortex Descarries et al. [2004]; Izhikevich [2003], which are associated with long-term me-
mory and categorization performances Quinn et al. [2006]; Newcombe and Huttenlocher [2006].
In our model, we show how theta waves could slowly shape the neocortical maps into coherent
patterns (rhythmical theta/gamma activity). Hence, the modeling of the cholinergic system in
the para-hippocampal system is not only critical for understanding development during the first
year but also for understanding memory transfer, attention processes and retrieval task Hasselmo
[2006].

- 91 -



4.1. HIPPOCAMPAL MODEL FOR INCREMENTAL LEARNING

FIGURE 4.3 – Effect of cholinergic activation on the hippocampal and entorhinal dynamics after presen-
tation of a novel input. The exposure of a novel input rises ACh_level to its highest value [blue crosses
in a)], which contributes to sustain the dynamics in both networks and to enhance its learning. While the
pattern is being learnt, ACh_level slowly decreases as a counter-effect.
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FIGURE 4.4 – Weight modication for Hebbian learning with gradual activation of ACh modulation star-
ting at t = 50 sec resp. a) and b). Complexity measures computed from the connection matrix of the
hippocampal network relative to cholinergic activation rate (c).
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FIGURE 4.5 – Hippocampal memory retention and decay. Without cholinergic activation, the newly ac-
quired memories in the hippocampus vanish asymptotically and are replaced by other memories whereas
the ACh mechanism augments the retention time with a slow decay.

FIGURE 4.6 – Time duration relative to activation ratio. It shows the performance of the working memory
in terms of time duration to hold novel information. The spike duration correlates almost linearly with the
values of the activation parameter.
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FIGURE 4.7 – Memory consolidation in the cortical map. Memory retention is estimated from the signal
per noise ratio between the hippocampal items and the cortical map activity with the Victor and Purpura
distance between two spike trains Victor and Purpura [1997]. The cortical map learns the hippocampal
patterns at a very slow rate compared with the hippocampus.

FIGURE 4.8 – Cortico-hippocampal synchronization. The raster plots of the cortico-hippocampal maps
present the /-bands synchronization of the cortical neurons to the hippocampal rhythm for a familiar
pattern, the gamma waves enhance selectivity to the input patterns.
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FIGURE 4.9 – A-not-B experiment with a protocol similar to ?. The localized peaks of activation in
the neural system respect the spatial topology of the environment such that location A is represented by
neurons of low-ranked indices and location B by those of high rank.
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FIGURE 4.10 – A-not-B task before and after cholinergic activation, resp. (a) and (b). Without cholinergic
neuromodulation, the short exposure of an object placed at a novel location B for several hundreds of
milliseconds does not influence the dynamics of the entorhino-hippocampal system whereas the novel
pattern is sustained for several seconds for the situation with cholinergic activation ?.
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ACC Negative Reward for Cortical Task-Set Selection and Learning

The design of a multi-tasks robot that can cope with novelty and evolve in an open-ended man-
ner is still an open challenge for robotics. It is however an important goal (1) for conceiving
per- sonal assistive robots that are adaptive (e.g., to infants, the elderly and to the handicapped
people) and (2) for studying from an inter-disciplinary viewpoint the intrinsic mechanisms un-
derlying decision making, goal-setting and the ability to respond on the fly and adaptively to
novel problems. For instance, robots cannot yet reach the level of infants for exploring alter-
native ways to surmount an obstacle, searching for a hidden toy in a new environment, finding
themselves the proper way to use a tool, or solving a jigsaw puzzle. All these tasks require to
be solved within boundaries of their given problem space, with- out exploring it entirely. Thus,
robots lack this ability to detect and explore new behaviors and action sequences oriented toward
a goal ; i.e., what is called a task set Harlow [1949]; Collins and Koechlin [2012]. The ability
to manipulate dynamically task sets is however a fundamental aspect of cognitive development.
Early in infancy, infants are capable to perform flexible decision- making and dynamic execu-
tive control even at a simple level in order to deal with the unexpected Tenenbaum et al. [2011].
Later on, when they are more mature, they learn to explore the tasks space, to select goals and
to focus progressively on tasks of increasing complexity. One example in motor development
is the learning of different postural configurations. Karen Adolph explains for instance how in-
fants progressively differentiate their motor behaviors into task sets (i.e., the motor repertoire)
and explore thoroughly the boundaries of each postural behavior till becoming expert on what
they discover Adolph and Joh [2005, 2009]. Adolph further argues that the building of a motor
repertoire is not preprogrammed with a specific developmental timeline but that each postural
behavior can be learned indepen- dently as separated tasks without pre-ordered dependencies
to the other ones (crawling, sitting, or standing). This viewpoint is also shared by neurobiolo-
gists who conceive the motor system to structure the actions repertoire into “internal models”
for each goal to achieve. Each novel contextual cue (e.g., handling a novel object) promotes the
acquisition and the use of a dis- tinct internal model that does not modify the existing neural
representations used to control the limb on its own. Moreover, each task set is evaluated depend-
ing on the current dynamics and on the current goal we want to perform Orban and Wolpert
[2011]. For instance, we switch dynamically from different motor strategies to the most appro-
priate one depending on the context ; e.g., tilting the racket to the correct angle in order to give
the desired effect on the ball, or for executing the proper handling of objets with respect to
their estimated masses Cothros et al. [2006]. From a developmental viewpoint, the capability for
flexible decision-making gradually improves in 18 months-old infants Tenenbaum et al. [2011].
Decision-making endows infants to evaluate the different alternatives they have for achieving
one goal with respect to the ongoing sequence and to select the correct one(s) among different
alternatives. It owes them also the possibility to inhibit some previously learned strategies in
order to explore new ones never seen before Yokoyama et al. [2005]. IN AI, this craving to ex-
plore, to test and to embed new behaviors is known as intrinsic motivation Kaplan and Oudeyer
[2007].

In Kaplan and Oudeyer’s words : “The idea is that a robot (...) would be able to autono-
mously explore its environment not to fulfill predefined tasks but driven by some form of in-
trinsic motivation that pushes it to search for situations where learning happens efficiently”. In
this section, we focus more on the idea that the rewards are self-generated by the machine it-
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self Singh et al. [2010] and that the function of intrinsic motivation is mainly to regulate the
exploration/exploitation problem, driving exploratory behavior and looking for different suc-
cessful behaviors in pursuing a goal. In that context, we propose that the ability to choose whe-
ther or not to follow the same plan or to create a novel one out of nothing—in regard to the
current situation—is an intrinsic motivation. We studied for instance the role of the neuromo-
dulator acetylcholine in the hippocampus for novelty detection and memory formation Pitti and
Kuniyoshi [2011b].

Meanwhile, the capability to make decision and to select between many options is one im-
portant aspect of intrinsic motivation because otherwise the system would be only passive and
would not be able to select or encourage one particular behavior. Taking decisions in deadlock
situations requires therefore some problem-solving capabilities like means-end reasoning Koe-
chlin et al. [2003] and error-based learning capabilities Adolph and Joh [2009]. For instance,
means-end reasoning and error-based learning are involved in some major psychological tests
such as the Piagetian “A-not-B error test” Diamond [1985], Harlow’s learning set test Harlow
[1949] and tool-use.

The A-not-B error test describes a decision-making problem where a 9-month old infant
still pertains to select an automatic wrong response (e.g., the location A) and cannot switch
dynamically from this erronous situation to the correct one (e.g., the location B). Above this
age, however, infants do not make the error and switch rapidly to the right location. A similar
observation is found in Harlow’s experiments on higher learning Harlow [1949] where Rhesus
monkeys and humans have to catch the pattern of the experiment in a series of learning expe-
riences. Persons and monkeys demonstrate that they learn to respond faster when facing a novel
and similar situation by switching to the correct strategy, by catching the pattern to stop making
the error : they show therefore that they do not master isolated tasks but, instead, they grasp the
relation between the events. In one situation, if the animal guessed wrong on the first trial, then
it should switch directly to the other solution. In another situation, if it guessed right on the first
trial, then it should continue. This performance seems to require that the monkey, the baby or
the person use an abstract rule and solve the problem with an apparent inductive reasoning Te-
nenbaum et al. [2011]. In line with these observations on the development of flexible behaviors,
researchers focused on tool-use : when infants start to use an object as a means to an end, they
serialize their actions toward a specific goal, as for example reaching a toy with a stick.

Tool-use requires also finding patterns like the shape of grasping, order and sequentiality
of patterns Cothros et al. [2006]. Considering the mechanisms it may involve, Karen Adolph
emphasizes the ability of learning-to-learn Adolph and Joh [2005], a process akin to Harlow
[1949]. Harlow coined the expression to distinguish the means for finding solutions to novel
problems from simple associative learning and stimulus generalization Adolph [2008].

Adolph reinterprets this proposal and suggests that two different kinds of thinking and lear-
ning are at work in the infant brain, governing the aspects of exploration and of generaliza-
tion Adolph and Joh [2009]. On the one hand, one learning system is devoted to the learning of
task sets from simple stimulus-response associations. For instance, when an infant recognizes
the context, he selects his most familiar strategy and reinforces it within his delimiting parameter
ranges. On the other hand, a second learning is devoted to detect a new situation as is and to find
a solution dynamically in a series of steps. Here, the acceptance of uncertainty gradually leads
for making choices and decisions in situation never seen before. However, which brain regions
and which neural mechanisms this framework underlies ?
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Among the different brain regions, we emphasize that the post-parietal cortex (PPC) and the
pre-frontal cortex (PFC) are found important (1) for learning context-dependent behavior and
(2) for evaluating and selecting these behaviors relative to their uncertainty and error prediction.
Regarding the PPC, different sensorimotor maps co-exist to represent structured information
like spatial information or the reaching of a target, built on coordinate transform mechanisms.
Furthermore, recent studies acknowledge the existence of context-specific neurons in the parieto-
motor system for different grasp movements. Regarding the PFC, Johnson identifies the early
development of the pre-frontal cortex as an important component for enabling executive func-
tions Johnson [2012] while other studies have demonstrated difficulty in learning set formation
following extensive damage of the prefrontal cortex.

The PFC manipulates information on the basis of the current plan, and it is active when new
rules need to be learned and other ones rejected. Besides, its behavior is strongly modulated
by the anterior cingulate cortex (ACC) which plays an active role for evaluating task sets and
for detecting errors during the current episode. If we look now at the functional organization of
these brain structures, many authors emphasize the interplay between an associative memory of
action selection in the temporal and parietal cortices (i.e., an integrative model) and a working
memory for actions prediction and decision making in the frontal area (i.e., a serial model). All-
in-all, these considerations permit us to draw a scenario based on a two complementary learning
systems. More precisely, we propose to model a dual system based on (1) the learning of task
sets and on (2) the evaluation of these task sets relative to their uncertainty, and error prediction.
Accordingly, we design a two-level based neural system for context-dependent behavior (PPC)
and task exploration and prediction (ACC and PFC) ; see Fig. 4.11.

In our model, the task sets are learned separately by reinforcement learning in the post pa-
rietal cortex after their evaluation and selection in the prefrontal cortex and anterior cyngulate
cortex. On the one hand, the learner or agent stores and exploits its familiar knowledge through
a reinforcement learning algorithm into contextual patterns called and collected from all its dif-
ferent modalities. On the other hand, the learner evaluates and compares the way it learns, and
selects the useful strategies while it discards others or tests new ones on the fly if no relevant
strategy is found. We perform two different experimental setups to show the sensorimotor map-
ping and switching between tasks, one in a neural simulation for modeling cognitive tasks and
another with an arm-robot for motor task learning and switching. We use neural networks to
learn simple sensorimotor mapping for different tasks and compute their variance and error for
estimating the sensorimotor prediction. Above a certain threshold, the error signal is used to
select and to valuate the current strategy. If no strategy is found pertinent for the current situa-
tion, this corresponds to a novel motor schema that is learned independently by a different map.
In a cognitive experiment similar to Diamond [1990], we employ this neural structure to learn
multiple spatio-temporal sequences and switch between different strategies if an error has oc-
curred or if a reward has been received (error-learning). In a psycho-physic experiment similar
to Wolpert and Flanagan [2010], we show how a robotic arm learns the visuomotor strategies
for stabilizing the end-point of its own arm when it moves it alone and when it is holding a long
stick. Here, the uncertainty on the spatial location of the end-point triggers the decision-making
from the two strategies by selecting the best one given the proprioceptive and visual feedback
and the error signal delivered.
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FIGURE 4.11 – Framework for task set selection. The whole system is composed of three distinct neural
networks, inspired from Khamassi et al. [2011]. The PPC network conforms to an associative network. It
binds the afferent sensory inputs from each other and map them to different motor outputs with respect
to a task set. The ACC system is a error-based working memory that processes the incoming PPC signals
and feeds back an error to them with respect to current task. This modulated signal is used to tune the
population of neurons in PPC by reinforcement learning, it is also conveyed to the PFC map, which is
a recurrent network that learns dynamically the spatio-temporal patterns of the ongoing episodes with
respect to the task.

FIGURE 4.12 – Task sets mapping, the mechanism of gain-fields. (A) Gain-fields neurons are units used
for sensorimotor transformation. They transform the input activity into another base, which is then fed
forward to various outputs with respect to their task. Gain-fields can be seen as meta-parameters that
decrease the complexity of the sensory-motor problem into a linear one. (B) example of GF neurons
sensorimotor transformation for two modalities projecting to three different task sets ; each GF neuron
contributes to one particular feature of the tasks Pouget and Snyder [2000]; Orban and Wolpert [2011].

Materials and Methods

In this section, we present the neural architecture and the mechanisms that govern the dynamics
of the neurons, of reinforcement learning and of decision-making. We describe first the bio-
inspired mechanism of rank-order coding from which we derive the activity of the parietal and
of the pre-frontal neurons. In second, we describe the reinforcement learning algorithm, the error
prediction reward and the decision-making rules.

PPC—Gain-Field Modulation And Sensorimotor Mapping

We employ the rank-order coding neurons to model the sensorimotor mapping between input and
output signals with an architecture that we have used in a previous research Pitti et al. [2012].
This architecture implements multiplicative neurons, called gain-field neurons, that multiply unit
by unit the value of two or more incoming neural populations, see Fig. 4.12. Its organization is
interesting because it transforms the incoming signals into a basis functions’ representation that
could be used to simultaneously represent stimuli in various reference frames Salinas and Thier
[2000]. The multiplication between afferent sensory signals in this case from two population
codes,Xm1 andXm2 , {m1 ,m2 ∈M1,M2 }, produces the signal activityXn to the n gain-field
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neurons, n ∈ N :

XGF = XM1 ×XM2 (4.17)

The key idea here is that the gain-field neurons encode two information at once and that the
amplitude of the gain-field neurons relates the values of one modality conditionally to the other ;
see Fig. 4.12 A. The task is therefore encoded into a space of lower dimension Braun et al.
[2009, 2010]. We exploit this feature to model the parietal circuits for different contextual cues
and internal models, which means that, after the encoding, the output layers learn the receptive
fields of the gain-field map and translates this information into various gain levels. In Fig. 4.12
B, we give a concrete example of one implementation, here delineated to two modalities, with
N gain-fields projecting to three different tasks set of different size. We explain thereinafter (1)
how the gain fields neurons learn the associations between various modalities and (2) how the
neurons of the output map learn from the gain fields neurons for each desired task.

Rank-Order Coding Algorithm

We implement a hebbian-like learning algorithm proposed by Van Rullen et al. [1998] called
the Rank-Order Coding (ROC) algorithm. The ROC algorithm has been proposed as a discrete
and faster model of the derivative integrate-and-fire neuron Van Rullen and Thorpe [2002]. ROC
neurons are sensitive to the sequential order of the incoming signals ; that is, its rank code, see
Fig. 4.13 A. The distance similarity to this code is transformed into an amplitude value. A scalar
product between the input’s rank code with the synaptic weights furnishes then a distance mea-
sure and the activity level of the neuron. More precisely, the ordinal rank code can be obtained
by sorting the signals’ vector relative to their amplitude levels or to their temporal order in a
sequence. We use this property respectively for modeling the signal’s amplitude for the parietal
neurons and the spatio-temporal patterns for the prefrontal neurons. If the rank code of the input
signal matches perfectly the one of the synaptic weights, then the neuron fully integrates this
activity over time and fires, see Fig. 4.13 A. At contrary, if the rank order of the signal vector
does not match properly the ordinal sequence of the synaptic weights, then integration is weak
and the neuron discharges proportionally to it, see Fig. 4.13 B.

The neurons’ output X is computed by multiplying the rank order of the sensory signal
vector I , rank(I), by the synaptic weights w ; w ∈ [0, 1]. For a vector signal of dimension M
and for a population of N neurons (M afferent synapses), we have for the GF neurons and for
the output PPC neurons :

EQ2

XGF
n =

∑
m∈M

1

rank(Im)
wGF−Modality
n,m (4.18)

XPPC
n =

∑
m∈M

1

rank(Im)
wPPC−Modality
n,m (4.19)

The updating rule of the neurons’ weights is similar to the winner-takes-all learning algo-
rithm of Kohonen’s self-organizing maps Kohonen [1982]. For the best neuron s ∈ N and for
all afferent signals m ∈M , we have for the neurons of the output layer :
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FIGURE 4.13 – Rank-Order Coding principle Thorpe et al. [2001]. This type of neuron encodes the rank
code of an input signal. Its amplitude is translated into an ordered sequence and the neuron’s synaptic
weights are associated to this sequence. The neural activity is salient to this particular order only, see (A),
and otherwise not, see (B).

EQ3

wPPC−GFs,m = wPPC−GFs,m + ∆wPPC−GFs,m (4.20)

∆wPPC−GFs,m =
1

rank(Im)
− wPPC−GFs,m (4.21)

the equations are the same for GF neurons (not reproduced here). We make the note that
the synaptic weights follow a power-scale density distribution that makes the rank-order coding
neurons similar to basis functions. This attribute permits to use them as receptive fields so that
the more distant the input signal is to the receptive field, the lower is its activity level ; e.g.,
Fig. 4.13 B.

Reinforcement Learning And Error Reward Processing

The use of the rank-order coding algorithm provides an easy framework for reinforcement lear-
ning and error-based learningBarto [1995]. For instance, the adaptation of the weights in Equa-
tion 3 can be modified simply with a variable α ∈ [0, 1] that can ponder w ; see Equation 4. If
α = 0, then the weights are not reinforced : Wt+1 = Wt. If α = 1, then the weights are rein-
forced in the direction of W : Wt+1 = Wt +αW . In addition, conditional learning can be made
simply by summing an external bias β to the neurons output X . By changing the amplitude of
the neurons, we change also the rank-order to be learned and influence therefore the long-term
the overall organization of the network ; see Equation 5.

EQ 4 5

∆w ← α∆w, α ∈ [0, 1] (4.22)

X ← X + β, β ∈ [= 1,+1] (4.23)

(4.24)
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Cortical Plasticity in PPC

For modeling the cortical plasticity in the PPC output maps, we implement an experience-driven
plasticity mechanism. Observations done in rats show that during the learning of novel motor
skills the synapses rapidly spread in the neocortex immediately as the animal learns a new task.
Rougier and Boniface proposed a dynamic learning rule in self-organizing maps to combine both
the stability of the synapses’ population to familiar inputs and the plasticity of the synapses’
population to novel patterns Rougier and Boniface [2011]. In order to model this feature in our
PPC map, we redefine the coefficient in Equation 5 and we rearrange the formula proposed by
Rougier and Boniface :

EQ 6

α = e1/η
2/||max(XPPC)−XPPC

S || ∈ [0, 1] (4.25)

where η is the elasticity or plasticity parameter that we set to 1 andmax(XPPC) is the upper
bound of the neural activity, its maximal value, whereas max(XPPC) is the current maximum
value within the neural population, with α = 0 when XsPPC = max(XPPC). In this equation,
the winner neuron learns the data according to its own distance to the data. If the winner neuron
is close enough to it, it converges slowly to represent the data. At contrary, if the winner neuron
is far from the data, it converges rapidly to it.

Error-reward function in ACC

For modeling ACC, we implement an error-reward function similar to Khamassi et al. [2011]
and to Q-learning based algorithms. The neurons’ value is updated afterwards only when an
error occurs, then a ihnibitory feedback error signal is sent to the winning neuron to diminish its
activity Xwin : ACC(Xwin) = 1 ; the neurons equation X is updated as follows :

EQ7

XPPC =
∑
m∈M

1

rank(Im)
wn,m +ACC(XPPC

n ). (4.26)

The neurons activity in ACC is cleared everytime the system responds correctly or provides
a good answer. ACC can be seen then as a contextual working memory, a saliency buffer ex-
tracted from the current context when errors occur inhibiting the wrong actions performed. Its
activity may permit to establish an exploration-based type of learning by trial and errors and an
attentional switch signal from automatic responses, in order to deal with the unexpected when a
novel situation occurs.

PFC—Spatio-Temporal Learning In a Recurrent Network

We can employ the rank-order coding for modeling spike-based recurrent neural network in
which the amplitude values of the incoming input signals are replaced by its past spatio-temporal
activity pattern. Although the rank-order coding algorithm has been used at first to model the
fast processing of the feed-forward neurons in V1, its action has been demonstrated to replicate
also the hebbian learning mechanism of Spike Timing-Dependent Plasticity (STDP) in cortical
neurons Bi and Poo [1998]; Abbott and Nelson [2000]; Izhikevich et al. [2004]. For a population
of N neurons, we arbitrarily choose to connect each neuron to a buffer of size 20 × N so that
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FIGURE 4.14 – Protocol setup in task sets learning. This simple protocol explains how the experimental
setup is done for acquiring different contexts incrementally and for selecting them.

they encode the rank code of the neurons amplitude value over the past 20 iterations. At each
iteration, this buffer is shifted to accept the new values of the neurons.

EQ 8

XPFC
n =

∑
m∈M

1

rank(bufferm)
wn,m +XPPC

n . (4.27)

Recurrent networks can generate novel patterns on the fly based on their previous activity
pattern while, at each iteration, a winning neuron gets its links reinforced. Over time, the system
regulates its own activity whereas coordinated dynamics can be observed. These behaviors can
be used for anticipation and predictive control.

Results

We propose to study the overall behavior of each neural system during the learning of task sets
and the dynamics of the ensemble working together. The first three experiments are performed
in a computer simulation only. They describe the behavior of the PPC maps working solely,
working along the ACC system and working along the ACC and PFC systems for learning and
selecting context-dependent task set.

Experiment 1—Plasticity vs Stability In Learning Task Sets

In this first experiment, we test the capabilities of our network to learn incrementally novel
contexts without forgetting the older ones, which corresponds to the so-called plasticity/stability
dilemma of a memory system to retain the familiar inputs as well as to incorporate flexibly the
novel ones. Our protocol follows the diagram in Fig. 4.14 in which we show gradually four
different contexts for two input modalities with vectors of ten indices. The input patterns are
randomly selected from an area in the current context chosen randomly and for a period of time
also variable. In this experiment, the PPC output map has 50 neurons that receive the activity of
twenty gain-fields neurons, see Fig. 4.12 B.

We display in Fig. 4.15 A the raster plot of the PPC neurons’ dynamics with distinct colors
with respect to the context. Contexts are given gradually, one at a time, so that some neurons
have to unlearn their previous cluster first in order to fit the new context. It is important to note
that categorization is unsupervised and decided due to the experience-driven plasticity rule in
Equation 6. In order to demonstrate the plasticity of the PPC network during the presentation of
a new context, we present the context number four, plotted in magenta and never seen before, at
t = 11500. Here, the new cluster is rapidly formed and stable over time due again to the cortical
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FIGURE 4.15 – Raster plot of the PPC output map and plasticity vs. stability within the map. (A) the
graph displays the neural dynamics during task switch among four different contexts. (B) Convergence
rate of the PPC network with respect to each task. (C) The degree of plasticity and stability within the
PPC output map is represented as the probability distribution of the neurons membership to the cluster
relative to a context. This histogram shows two behaviors within the system. On the one hand, one third
of the neurons present very stable dynamics with membership to one context only. On the other hand,
two third of the neurons are part of different clusters and therefore to different contexts. The later neurons
follow a power law distribution showing very plastic dynamics.

plasticity mechanism from Equation 6. The graph displays therefore not only the plasticity of
the clusters in the PPC network but also their robustness.

This property is also shown in Fig. 4.15 B where the convergence rates of the PPC weights
vary differently for each task. This result explains how the PPC self-organizes itself into different
clusters that specialize flexibly with respect to the task. The ratio between stability and plasticity
in shown in Fig. 4.15 C within the network with the histogram of the neuron’s membership over
a certain time interval. The stability of one neuron is computed as its probability distribution
relative to each context. The higher values correspond to very stable neurons, which are set to
one context only and do not deviate from it, whereas the lower values correspond to very flexible
neurons that change frequently context from one to another.

The histogram shows two probability distributions within the system and therefore two be-
haviors. For the neurons corresponding to values near the strong peak at 1.0, their activity is very
stable and strongly identified to one context. This shows that for one third of the neurons, the
behavior of the neural population is very stable. At reverse, the power law curve centered on 0.0
shows the high variability of certain neurons, which are very dynamic for one third of the neural
population.

We study now the neurons’ activity during a task switch in Fig. 4.16. In graph (A), the blue
lines correspond to the neurons’ dynamic belonging to the context before the switch and the red
lines correspond to the neurons’ dynamic belonging to the context after the switch. The activity

- 106 -



CHAPITRE 4. CONTRIBUTIONS TO NEURAL ARCHITECTURES FOR COGNITIVE DEVELOPMENT AND WORKING
MEMORY

FIGURE 4.16 – Cluster dynamics at the time to switch. (A) Neural dynamics of the active clusters before
and after the switch ; resp. in blue and in red. (B) Histogram of the neural population at the time to switch
with respect to the active clusters before and after the switch.

level in each cluster is very salient for each context. The probability distribution of the neurons’
dynamic, with respect to each context is plotted in Fig. 4.16 B. It shows a small overlap between
the contexts before and after the switch.

Experiment 2 — Learning Task Sets with a Reinforcement Signal

In this second experiment, we reproduce a decision-making problem similar to those done in
monkeys and humans with multiple choices and rewards Churchland and Ditterich [2012]. The
rules are not given in advance and the tasks switch randomly after a certain period of time
with no regular pattern. The goal of the experiment is to catch the input-output correspondence
pattern to stop making the error. The patterns are learned dynamically by reinforcement learning
within each map and should ideally be done without interference from each other. The error
signal indicates when an input-output association is erronous with respect to a hidden policy,
however, we make the note that it does not provide any hint about how to minimize the error.
To understand how the whole system works, we focus our experiment on the PPC network with
the ACC error processing system first, then with the PFC network. We choose to perform a two-
choices experiment, with two output PPC maps initialized with random connections from the
PPC map. The PPC network consists therefore of the gain-field architecture with the two output
maps for modeling the two contexts. The two maps are then bidirectionally linked to the ACC
system ; the input signals for modality 1 and 2 are projected to the PPC input vectors of twenty
units each ; map1 has twelve output units and map2 has thirteen output units and project to ACC
of dimension twenty-five units.

The hidden context we want the PPC maps to learn is to have output signals activated for
specific interval range of the inputs signals, namely, the first output map has to be activated when
input neurons of indices below ten are activated, and reciprocally, the second output map has to
be activated when input neurons of indices above ten are activated—this corresponds to the two
first contexts in Fig. 4.14. The error prediction signal is updated anytime a mistake has been
done on the interval range to learn. As expressed in the previous section, the ACC error signal
resets always its activity when the PPC maps start to behave correctly.

We analyze the performance of the PPC-ACC system in the following. We display in Fig. 4.17
A,B the raster plots of the PPC and ACC dynamics with respect to the context changes for dif-
ferent periods of time. The chart on the top displays the timing for context switch, the chart on
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FIGURE 4.17 – Experiment on two-choices decision making and task switching. (A) Neural dynamics
of PPC neurons and ACC error system during task switch. We plot in the chart in the top the temporal
interval for each task. Below the, neural dynamics of the PPC maps and in the middle, its erronous activity
retranscribed in the ACC system. ACC works as a working memory that keep tracks of the erronous
outputs, which is used during the learning stage. ACC is reset each time the PPC system gives a correct
answer. Through reinforcement learning, the PPC maps converge gradually to the correct probability
distribution. (B) Snapshot of the PPC maps in blue modulated negatively by ACC in red.

the middle plots the ACC system working memory and the chart below plots the output of the
PPC units. The Fig. 4.17 A is focusing on the beginning of the learning phase and the Fig. 4.14
B when the system has converged. We observe from these graphs that the units of the output
maps self-organize very rapidly to avoid the error. ACC modulates negatively the PPC signals.
We make the note that the error signal does not explicitly inhibit one map or the other but only
the wrongly actived neuron of the map. As it can be observed, over time, each map specializes
to its task. As a result, learning is not homogenous and depends also to the dimension of the
context ; that is, each map learns with a different convergence rate. ACC error rapidly reduces
its overall activity for the learning of task1 with respect to map1, although the error persists for
the learning of task2 with respect to map2 where some neurons still fires wrongly.

We propose to study the convergence of the two maps and the confidence level of the overall
system for the two tasks. We define a confidence level index as the difference of amplitude
between the most active neurons in map1 and map2. We plot its graph in Fig. 4.18 where the
blue color corresponds to the confidence level for task1 with vsmap1 vsmap2 and the color red
corresponds to the confidence level for task2 with vsmap2 vsmap1 during the learning phase.
The dynamics reproduce similar trends from Fig. 4.17 where the confidence level constantly
progresses till convergence to a stable performance rate, with a threshold around 0.4 above
which a contextual state is recognized or not. Before 1000 iterations, the maps are very plastic
so the confidence level fluctuates rapidly and continuously between different values but at the
end of the learning phase, the maps are more static so the confidence level appears more discrete.

This state is clearly observable from the histogram of the confidence level plotted on the right
in Fig. 4.18 B for the case where the ACC error signal is injected to the associative network. The
graph presents a probability distribution with two bell-shaped centred on 0.1 and 0.7, which
corresponds to the cases of recognition or not of the task space. In comparison, the probability
distribution for the associative learning without error-feedback is uniform, irrespective to the
task ; see Fig. 4.18 B in blue.
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FIGURE 4.18 – Confidence Level of PPC maps during task switch, dynamics and histogram. (A) The
confidence level is the difference between the amplitude of most activated neuron and the second one
within each map. After one thousand iterations, the two maps rapidly specialize their dynamics to its
associated task. This behavior is due to the ACC error-based learning. (B) histogram of the probability
distribution of the confidence level with and without ACC. With ACC, we observe a clear separation in
two distributions, which correspond to a decrease of uncertainty with respect to the task. In comparison,
the confidence level in an associative network without an error feedback gives a uniform distribution.

Experiment 3—Adaptive Learning On a Temporal Sequence Based On Error Pre-
diction Reward

We attempt to replicate now Harlow’s experiments on adaptive learning, but, in comparison to
the previous experiments, it is the temporal sequence of task sets that is taken into account for
the reward. We employ our neural system in a cognitive experiment first to learn multiple spatio-
temporal sequences and then to predict when a change of strategy has occurred based on the
error or on the reward received. With respect to the previous section also, we add the PFC-like
recurrent neural network to learn the temporal sequence from the PPC and ACC signals, see
Fig. 4.11. The experiment is similar to the previous two-choices decision-making task, expect
that the inputs follow now a temporal sequence within each map. When the inputs reach a parti-
cular point in the sequence–, a point to switch,– we proceed to a random choice between one or
the two trajectories. As in the previous section, the learning phase for the PPC rapidly converges
to the specialization of the two maps thanks to the ACC error-learning processing. Meanwhile,
the PFC learns the temporal organization of the PPC outputs based on their sequential order,
Fig. 4.19 A. We do not give to the PFC any information about length, the number of patterns or
the order of the sequence. Besides, each firing neuron reinforces its links with the current pre-
synaptic neurons ; see the raster plot in Fig. 4.19 B. After the learning phase, each PFC neuron
has learned to predict some portion of the sequence based on the past and current PFC activity.

Their saliency to the current sequence is retranscribed in their amplitude level. We plot the
activity level of the neurons #10 and #14 respectively in black and red in the second chart.
This graph shows that their activity level gradually increases for period intervals of at least ten
iterations till their firing. The points to switch are also learned by the network and they are
observable when the variance of the neurons’ activity level becomes low, which is also seen
when the confidence level goes under 0.4 ; which corresponds to the dashed black line in the
first chart. For instance, we plot the dynamics of the PPC neurons and of the PFC neurons
during such situation in Fig. 4.20 A at time t = 1653. The neural dynamics of each map display
different patterns and therefore, different decisions. The PPC activates more the neurons of the
first map (the neurons with indices below thirteen in blue) whereas the PFC activates more
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FIGURE 4.19

FIGURE 4.20 – Raster plot for PFC neurons. In (A), the PFC learns the particular temporal sequence
from PPC outputs and it is sensitive to the temporal order of each unit in the sequence. In (B) on the
top chart, the confidence level on the incoming signals from the PPC is plotted. The char in the middle
displays the neural activity for two neurons from the two distinct clusters. The neuron #10 in black (resp.
cluster #1) and the neuron #14 in red (resp. cluster #2). The raster plot of the whole system is plotted in
the chart below.

the neurons of the second map (the neurons with indices above thirteen in dashed red). This
shows that the PFC is not a purely passive system driven by the current activity in PPC/ACC.
Besides, it learns also to predict the future events based on its past activity. The PFC fuses the
two systems in its dynamics, and this is why it generates here a noisy output distribution due to
the conflicting signals. We plot in Fig. 4.20 B the influence of PPC on the PFC dynamics. In 60%
of the cases, the two systems agree to predict the current dynamics. This corresponds to the case
of an automatic response when familiar dynamics are predicted. During conflicts, a prediction
error is done by one of the two systems and in more cases the PPC dynamics, modulated by
ACC, overwrite the values of the PFC units (blue bar). This situation occurs during a task switch
for instance. At reverse, when PFC elicites its own values with respect to PPC (red bar), this
situation occurs more when there is ambiguous sensory information that can be overpassed.

In order to understand better the decision-making process within the PFC map, we display
in Fig. 4.21 A,B the temporal integration done dynamically at each iteration within the network.
Temporal integration means the process of summing the weights in Equation 2 at each iteration
with respect to the current order. If the sequence order is well recognized, then the neuron’s va-
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FIGURE 4.21 – PFC neuron’s integration at time t = 604 and t = 2400. (A) Depending on the current
situation, a neuron will be more selective to one part of the sequence or to another. The earlier a sequence
is detected, the farther the prediction of the trajectory. (B) At bifurcation points, the trajectories are fuzzier
and several patterns are elicited.

lue goes high very rapidly, otherwise its value remains to a low value. As we explained it in the
previous paragraph, each neuron is sensitive to certain patterns in the current sequence based on
the synaptic links within the recurrent network. This is translated in the graph by the integration
of bigger values. The spatio-temporal sequences they correspond to are darkened proportionally
to their activation level. The higher is the activation level integration during the integration per-
iod, the faster is the anticipation of the sequence. We present the cases for a unambiguous pattern
in Fig. 4.21 A and for an ambiguous sequence activity in Fig. 4.21 B. The case for a salient se-
quence recognition in Fig. 4.21 A indicates that the current part of the sequence is well estimated
by at least one neuron, the winning neuron, which predicts well the sequence over twenty steps
in advance, see the chart below. In comparison, the dynamics in Fig. 4.21 B show a more uniform
probability distribution. This situation arises when a bifurcation point is near in the sequence, it
indicates that the system cannot predict correctly the next steps of the sequence. Considering the
decision-making process per se, there is not a strict competition between the neurons, however,
each neuron promotes one spatio-temporal sequence and one probability distribution. There-
fore, we have within the system 25 spatio-temporal trajectories embedded. Based on the current
situation, some neurons will detect better one portion of the sequence than others and the pro-
bability distribution will be updated in consequence to chain the actions sequentially, whereas
other portions will collapse. The decision-making looks therefore similar to a self-organization
process. At this point, no inhibitory system has been implemented directly in PFC that would
avoid a conflict in the sequence order. Instead, the PFC integrates the PPC signals with the ACC
error signals. The temporal sequences done in the PPC to avoid the errors at the next moves
are learned little by little by reinforcement in the PFC. These sequences become strategies for
error avoidance and explorative search. Over time, they learn the prediction of reward and the
prediction of errors Schultz et al. [1997], Schultz [2000].

We perform some functional analysis on the PFC network in Figure 12. The connectivity
circle in Fig. 4.22 A can permit to visualize the functional organization of the network at the
neurons’ level. We subdivide the PFC network into two submaps corresponding to the task dy-
namics in blue and red. We draw the strong intra-map connections between the neurons in the
same color to their corresponding sub-maps as well as the strong inter-map connections between
neurons of each map. Each neuron has a different connectivity in the network and the more it
has connection the more it is central in the network. These neurons propagate information within

- 111 -



4.2. ACC NEGATIVE REWARD FOR CORTICAL TASK-SET SELECTION AND LEARNING

FIGURE 4.22 – PFC network analysis. (A) Connectivity circle for the neurons of the PFC map. In blue
are displayed the neurons belonging to cluster 1 and in red are displayed the neurons belonging to cluster
2. The number of links within each cluster (intra-map connectivity) is higher than the number of links
between them (inter-map connectivity). Moreover, the number of highly connected neurons is also weak.
these charateristic replicate the ones of complex systems and of small-world networks in particular. (B)
Task switch is done through these hub-like neurons which can direct the trajectory from one or the other
task. (C) The connectivity level per neurons within the network follows a logarithmic curve typical of
complex networks, where the mostly connected neurons are also the fewer and the most critical with 4
distant connections. (D) The PFC network contributes to enhance the decision-making process in compa-
rison to the PPC-ACC system due to the learning of the temporal sequence and to its better organization.

and between the sub-maps, see Fig. 4.22 B. In complex systems terms, they are hub-like neurons
from which different trajectories can be elicited. In decision-making, they are critical points for
changing task. The density probability distribution plotted in Fig. 4.22 C shows that the maxi-
mum number of connections per neuron with strong synaptic weights reaches the number of four
connections.

Their number drastically diminishes with respect to the number of connections and their
trend follows a logarithmic curve. These characteristics correspond the properties of small-world
and scale-free networks. In Fig. 4.22 D, we analyze the performance of the overall system when
the PFC is added. The decision-making done in the PFC permits to decrease the error by a factor
two : ten percents error in comparison to experiment 2. The prediction done in the recurrent map
shows that the PFC is well organized to anticipate rewards and also task switch.

Discussion

The ability to learn the structure of actions and to select on the fly the proper one given the cur-
rent task is one great leap in infants cognition. During development, infants learn to differentiate
their motor behaviors relative to various contexts by exploring and identifying the correct struc-
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tures of causes and effects that they can perform by trial and errors. This behavior corresponds
to an intrinsic motivation, a mechanism that is argued to drive cognitive development. Besides,
Karen Adolph emphasizes the idea of “learning-to-learn” in motor development, an expression
akin to Harlow that appears in line with the one of intrinsic motivation. She proposes that two
learning mechanisms embody this concept during the development of the motor system—, res-
pectively an associative memory and a category-based memory,– and that the combination of
these two learning systems is involved in this capacity of learning-to-learn. Braun et al. [2010]
foster a similar concept and suggest that motor categorization requires 1) a critic for learning
the structure, i.e., an error-based system, and 2) a learning system that will learn the conditional
relationships between the incoming variables ; which means, the parameters of the task. They
argue that once these parameters are found, it is easier to transfer knowledge from one initial
task to many others. All-in-all, we believe that these different concepts on structural learning are
important to scaffold motor development and to have intrinsic motivation in one system. Thus
the question arises what are the neural mechanisms involved in structural learning and in flexible
behaviors ?

To investigate this question, we have modeled an architecture that attempts to replicate the
functional organization of the fronto-parietal structures, namely, a sensorimotor mapping sys-
tem, an error-processing system and a reward predictor Platt and Glimcher [1999], Westendorff
et al. [2010]. The fronto-parietal cortices are involved in activities related to observations of alter-
natives and to action planning, and the anterior cyngulate cortex is a part of this decision-making
network. Each of these neural systems contribute to one functional part of it. The ACC system
is processing the error-negativity reward to the PPC maps for specialization and to the PFC net-
work for reward prediction. The PPC network organizes the sensorimotor mapping for different
tasks whereas the PFC learns the spatio-temporal patterns during the act. In particular, the PPC
is organized around the mechanism of gain-modulation where the gain-fields neurons combine
the sensory inputs from each other. We suggest that the mechanism of gain-modulation can im-
plement the idea of structural learning in motor tasks proposed by Braun and Wolpert Braun
et al. [2009], Braun et al. [2010]. In their framework, the gain-field neurons can be seen as ba-
sis functions and as the parameters of the learning problem. It is interesting to note that Braun
and al. make a parallel with the bayesian framework, which has been also proposed to describe
the gain-field mechanism. For instance, Deneve explains the computational capabilities of gain-
fields in the context of the bayesian framework to efficiently represent the joint distribution of a
set of random variables Deneve and Pouget [2004].

Parallely, we used three specific intrinsic mechanisms for enhancing structural learning :
the rank-order coding algorithm, the cortical plasticity and an error-based reward. For instance,
the rank-order coding algorithm was used to emulate efficiently the so-called spike timing-
dependent plasticity to learn spatio-temporal sequences in a recurrent network Bi and Poo
[1998], Abbott and Nelson [2000]. The PFC system exploits their properties for self-organizing
itself by learning the sequences of each task as well as the switch points. PFC neurons learn spe-
cific trajectories and at each iteration, a competition process is at work to promote the new steps
of the ongoing sequence. Besides, cortical plasticity was modeled in PPC maps with an activity-
dependent learning mechanism that promotes the rapid learning of novel (experienced-based)
tasks and the stabilization of the old ones. An advantageous side-effect of this mechanism is
that PPC neurons become context-dependent, which is a behavior observed also in the reaching
neurons of the parieto-motor system, the so-called mirror neurons Gallese et al. [1996], Bro-
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zovic et al. [2007]. The results found on cortical plasticity are in line with observations on the
rapid adaptation of the body image and of the motor control. Wolpert observed that the motor
system incorporates a slow learning mechanism along a fast one for the rapid formation of task
sets Wolpert and Flanagan [2010]. The cortical plasticity is also influenced by an error-based
system in ACC that reshape the PPC dynamics with respect to the task. The negative reward per-
mits to inhibit the wrong dynamics but not to elicite the correct ones. Those ones are gradually
found by trial and errors, which replicate an exploration process.

We believe that these different mechanisms are important for incremental learning and intrin-
sic motivation. However, many gaps remain. For instance, a truly adaptive system should show
more flexibility during familiar situations than during unfamiliar ones. Retranscribed from Adolph
and Joh [2005], a key to flexibility is (1) to refrain from forming automatic responses and (2)
to identify the critical features that allow online problem solving to occur. This ability is still
missing in current robots. In the context of problem solving in tool-use, Fagard and O’Regan
emphasizes the similar difficulty for infants to use a stick for reaching a toy. They also observe
that below a certain age, attention is limited to one object only as they just cannot “hold in
mind” the main goal in order to perform one subgoal Fagard et al. [2012], Rat-Fischer et al.
[ress]. Above this period, however, Fagard and O’Regan observe an abrupt transition in their
behaviors when they became capable to relate two actions at a time, to plan consecutive actions
and to use recursion. They hypothesize that after 16 months, infants are able to enlarge their
focus of attention to two objects simultaneously and to “bufferize” the main goal. We make a
parallel with the works of Koechlin and colleagues Koechlin et al. [2003], Collins and Koechlin
[2012] who attribute a monitoring role to the frontal cortex for maintaining the working me-
mory relative to the current tasks and for prospecting the different action sequences or episodic
memories Koechlin and Summerfield [2007], which will be our next steps.
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Free-Energy Optimization for Generating and Retrieving Long-Range
Spatio-Temporal Patterns in Recurrent Networks

Introduction

In the motor domain, Wolpert and colleagues propose that the brain learns the causal structure in
sensorimotor circuits (e.g., the hidden parameters of a sensorimotor task) to perform then action
sequences assembled online based on contextual signals from the environment e.g. for coordi-
nate transform or embodied simulation Kording and Wolpert [2006]; Orban and Wolpert [2011].
For these examples, it is argued that the causal structure is encoded directly within the neural re-
presentations of cognitive chunks or motor primitives that a working memory can access further
to explore and construct off-the-shelf satisfying neuronal chains with respect to the context. This
adaptivity in the adult brain and human behavior is hypothesized to be constructed slowly during
infant development as Piaget and the tenants of the embodied approach of cognition proposed
it Thelen and Smith [1995]. This rises difficult questions on how to learn low-level sensorimotor
neuronal rules with causal reasoning capabilities ? How to explore the different alternatives in
the perceptuo-motor space given a specific context ? How to initiate flexible yet goal-directed
chains of causation (active causation) van Hateren [2015] ?

One candidate mechanism for flexible neural coordination is synchrony. At the neural level,
experimental and modelling studies have shown that spiking recurrent neural networks (RNN)
can encode temporal relationships by strengthening the synaptic connections between neurons.
However, the control of the neurons’ spikes at the millisecond order to propagate information
is non-trivial : the spontaneous activity within the network rapidly perturbs the neural dynamics
and it is rather difficult then to maintain any stability for controlling long-range synchrony. As
a novel idea, we envision the coordination of the spikes’ trains as an optimization problem and
instead of controlling directly the firing time of the neurons (i.e., the probability of the neuron to
fire or not at a specific timing), we propose to control rather the neurons’ sub-threshold activity
(i.e., to find which input value can generate a spike at a specified time). Making an analogy with
the butterfly effect in chaos theory, we propose that the tiny control of the neurons’ sub-threshold
activity can permit to drive at the mesoscopic scale the spikes’ synchrony ; Tsuda et al. [2004];
Kelso [1995]; Rabinovich et al. [2006].

For this, we propose to use an optimization technique (a reinforcement signal) to drive the
neurons’ sub-threshold activity toward a targeting goal ; by looping this process several time,
we expect the emergence of long-range neural sequences from largely unstructured spiking re-
current neural networks ; see Fig 4.23 a). This idea is in line with recent proposals, Rajan et al.
[2016] and Rueckert et al. [2016], that use also semi-structured recurrent network models for
planning. In comparison to them, we extend their results by adding a second structure along
with the recurrent network, an associative map (AM), that will recursively and timely control
it ; see Fig 4.23 b). We will show that our coupled system can generate long temporal sequences
of spikes in a dynamic and robust way recursively. We introduce our model as a neural me-
chanism based on Iterative Free-Energy Optimization for Recurrent Neural Networks, which is
the anagram of INFERNO. Moreover, this architecture is supported by several proposals and
observations that consider the functional organization between the cortex with the sub-cortical
regions (the basal ganglia) ; c.f. Seger and Miller [2010]; Guthrie et al. [2013]; Topalidou and
Rougier [2015]; Miller [2015]; Benedek et al. [2016]; Koechlin [2016].
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FIGURE 4.23 – Optimization technique used to control a recurrent spiking neural network. a)
Model-free reinforcement signal controls the input vector Isearch of RNN by comparing its output vector
Vn at time t = n with respect to a goal vector V ∗ : as E is diminishing, the descent gradient stochasti-
cally converges to the optimal input vector Isearch = I∗ that generates V ∗. b) Model-based reinforcement
signal, Isearch = I∗ is learned by an associative map and reinjected for any specific V0.
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FIGURE 4.24 – Neural architecture INFERNO for Iterative Free-Energy Optimization of Recurrent
Neural Networks. This architecture is a model-free reinforcement learning for exploratory behaviors in a
recurrent working memory (WM) of spiking neurons and model-based reinforcement learning in a short-
term memory (STM) with reward signal. The former memory model corresponds to the Inferior Parietal
Lobe (IPL) where motor chains are assembled dynamically. The later memory model corresponds to
the Basal Ganglia (BG) where simple signal-responser rules are learned by an associative map (AM) to
trigger one spatio-temporal sequence into the working memory. The frontal cortex (PFC) provides the
targeting signal to the IPL and BG. The dopaminergic signal supervises both the exploratory search in the
WM and the learning in the STM when the goal has been retrieved. RNNs, once unfolded in time, can be
seen as a virtually deep feedforward network in which all the layers share the same weights LeCun et al.
[2015]. The reinforcement signal on the output dynamics can serve to control the input dynamics with
noise to search stochastically the inputs that diminish the error to the output dynamics.
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For instance, Miller [2015] proposes that the flexible processing of contextual situation done
in the neo-cortex (CX) is driven by a sub-cortical controller, the basal gangial (BG), toward a
targeting goal provided by the prefrontal cortex (PFC). We will discuss about the revelance of
our model based on neurobiological considerations in the next section.

In order to demonstrate the capabilities of our model for recursivity and boot-strapping ca-
pabilities, we will design several experimental setups for habit learning (top-down control) and
retrieval phases (bottom-up self-organization) of spiking neurons sequences, and its applica-
tion to sequential planning of arm movements. We will discuss then the relevance of our model
with respect to neurobiological data, its computational power for robotics and AI, neuromorphic
hardware implementations, and its affiliation to certain computational principles of the brain
proposed by Friston et al. [2009]; Eliasmith et al. [2012]; Graves et al. [2014]; LeCun et al.
[2015].

Neurocomputational considerations and other models

The computational architecture that we have briefly described in Figs 4.23 and 4.24 has some
neurobiological fundations. At the brain level, one cortical area found important for proces-
sing neural chains is the Parietal cortex that includes the Post-Parietal Cortex (PPC) and the
Intra-Parietal Lobe (IPL). These structures are hypothesized to form a working memory of
action-perception rules Pezzulo and Cisek [2016]. For instance, some experiments show that
they serve for embodied simulation like mental rotation or coordinate transformation Andersen
and Buneo [2002]; Cohen and Andersen [2002] and for retrieving/generating spatio-temporal
sequences Chang et al. [2009]; Cui and Andersen [2009]. Recently, they have been identified to
serve for sequence generation Rajan et al. [2016] and for self-generated thought Benedek et al.
[2016].

In line with these proposals, we see the spiking RNN in our framework to play the role of
the IPL working memory, the associative map to play the role of BG, the PFC to provide the
goal task and the reinforcement signal to correspond to a dopaminergic signal ; see Fig 4.24.
Following this, the IPL cortical neuronal chains can be assembled dynamically and recursively
toward higher-level actions and functions depending on the targeting goal furnished by other
brain structures, supposedly the Pre-Frontal Cortex (PFC) and the Basal Ganglia (BG). This ar-
chitecture appears important for reaching and grasping Andersen and Cui [2009]; Chersi et al.
[2011], arithmetic operations Miller [2015]; Buschman and Miller [2014] as well as language
formation. For instance, in the language domain, lexical chains are hypothesized to be construc-
ted dynamically based on a global context and a set of grammatical rules.

Our computational model of IPL-PFC-BG loop captures some of the features of Daw’s mo-
del for the representation of complex tasks Daw et al. [2005]; Miller [2015], which embeds
in turn some ideas found in classical symbolic AI about tree-search algorithms. As explained
by Miller [2015], “at each state, one can choose between one of many different responses, each
of which leads to a new state : In this view, behaviour can be modelled as starting at the top-
most ‘node’ in the tree, choosing a response ‘branch’, entering a new state, choosing another
response, and so on until one has completed the task (hopefully resulting in a reward)”. Here,
branching is done by BG, entering a new state in the cortical working memory until completion
of the task given by PFC using a Dopaminergic reinforcement signal.

Moreover, our model is greatly in line with recurrent spiking neural network models using
reinforcement signals for sequential planning Rueckert et al. [2016] and Rajan et al. [2016]. Its
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capabilities to boot-strap clusters recursively and to retrieve ordinal sequences make it compa-
tible also with reservoir computing methods Verstraeten et al. [2007]; Mannella and Baldassare
[2015] such as the echo-state networks Hinaut et al. [2013], RNNPB Tani et al. [2004] or the
dynamical neural fields Sandamirskaya and Schoner [2010]. Its properties to assemble dynami-
cally neural chunks remind further Genetic Programming optimization of neural networks like
NEAT and others Stanley and Miikkulainen [2009].

Interestingly, once unfolded in time, its structure can be seen also as a virtually deep feed-
forward network in which all the layers share the same weights LeCun et al. [2015]. Rolfe and
LeCun proposed an architecture similar called DrSAE, in which auto-encoders evaluate and
minimize the function given by the recurrent map Rolfe and LeCun [2013]. The INFERNO ar-
chitecture combines a self-organized structure (IPL) with a supervised one (BG) as the DrSAE
architecture. Here, the reinforcement signal on the output dynamics can serve to control the input
dynamics to search stochastically the inputs that diminish the error.

This stochastic descent gradient that we employed in RNN can remind the accumulation of
evidences process sampled continuously over time of the LIP neurons Gold and Shadlen [2001,
2007]; Rorie et al. [1997]. These neurons show ramping responses infering latent decision ma-
king so that the better the evidence, the larger the amplitude. The decision making can be seen as
a random fluctuation Wiener process pressured by time constraints and decision thresholds Die-
derich and Oswald [2014].

Methods

Neural Units and STDP-like Algorithm

We used in the recurrent neural network a variant of the Hebbian equations, the Rank-Order Co-
ding (ROC) algorithm, which grasps well the structure of the Spike Timing-Dependent Plasticity
algorithm and of the classical Delta rule in the spatio-temporal domain Thorpe et al. [2001].

STDP has been discovered to modulate the neural activity of temporally related neurons
in many brain regions by reinforcing their links. The Rank-Order Coding algorithm has been
proposed by Thorpe and colleagues as a discrete and faster model of the derivative integrate-
and-fire neuron and of the standard STDP reinforcement learning algorithm Van Rullen and
Thorpe [2002]. The rationale is that ROC neurons are sensitive to the sequential order of the
incoming signals ; that is, their rank code. The distance similarity to this code, say rank(x) –,
which corresponds to the argsort function in Matlab,– is transformed into an amplitude value by
the function f(x) = 1

rank(x) .
A scalar product between the input’s rank code with the synaptic weights furnishes then

a distance measure and the activity level of the neuron. If the rank code of the input signal
matches perfectly the one of the synaptic weights, then the neuron fully integrates this activity
over time and fires. At contrary, if the rank coding of the signal vector does not match properly
the ordinal sequence of the synaptic weights, then integration is weak and the neuron discharges
proportionally to it. To this respect, this mechanism captures the intrinsic property of cortical
spiking neurons.

The neurons’ output V is computed by multiplying the rank order of the sensory signal
vector x, f(x) = 1

rank(x) , by the synaptic weights w ; w ∈ [0, 1]. For an input vector signal I of
dimension M and for a population of N neurons (M afferent synapses), we have :
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Vn∈N =
∑
m∈M

1

rank(Im)
wm,n (4.28)

The updating rule of the neurons’ weights is similar to the winner-takes-all learning algo-
rithm of Kohonen’s self-organizing maps Kohonen [1982]. For the best neuron win and for each
element m of the current input signal I with m ∈M , we have :

wm,win(t+ 1) = wm,win(t) + ε∆wm,win, (4.29)

∆wm,win =
1

rank(Im)
− wm,win.

with ε the learning rate equals to 0.01 in our experiments.
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FIGURE 4.25 – Spike optimization. We can consider the control of the amplitude level V of one neuron
as an optimization problem. a) For one input vector I for which a neuron is the most responsive, we have
I = I∗ and V = V ∗. b) Controlling the amplitude level V of that neuron requires to find for any input I ,
the input error vector Isearch that satisfies Isearch = I∗ − I . The exploration of Isearch can be done by
stochastic gradient descent and meta-heuristics methods. This optimization technique can be applied and
extended at a neural population-level.

Free-Energy Optimization Mechanism

Viewed as an optimization problem, the control of the RNN dynamics consists on retrieving
the most salient inputs that will trigger the neural units to specific amplitude values. This is
an inverse problem and can be solved with a gradient descent. In order to explain better the
mechanism behind, we can reduce the control of the RNN dynamics to its simplest case with the
controlling of one neuron solely, see Fig 4.23 a) and Fig 4.25 a-b).

If we consider I∗ to be the optimal input signal from which one neuron will fire the most at
V = V ∗ using eq. 4.28, one heuristic will consist on searching the term Isearch to be added to
the current input dynamics I so that we can have I + Isearch = I∗ and the neuron will reach
V = V ∗, see Fig 4.25 b) with Isearch shaded in light red. As a meta-heuristic method, retrieving
Isearch can be done with a stochastic gradient descent (greedy search) by injecting some noise
to I while using V as a metric distance : any intrinsic noise that diminishes the error E to the
desired goal V ∗ is reinforced and kept (exploitation), or otherwise forgotten to select another
random vector Ie (exploration). This optimization technique can be extended to a population of
neurons and applied to distant rewards, in these cases the terms I , Isearch, E and V are vectors.
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The number of iterations necessary for the WM to converge is not taken into account, there-
fore the recurrent map will explore several solutions in an unlimited amount of time till conver-
gence. One common solution is to use a threshold value to stop the search. This problem is
known in neuroscience as the credit assignement problem Izhikevich [2007] : to which particu-
lar past event shall we assign credit for the current reward received ?

In its present form, the reinforcement signal algorithm corresponds in AI to a classical meta-
heuristic method with random walks, which does no prevent from local minima. It may corres-
pond in neurocomputational theory to dopaminergic modulation and to model-free reinforce-
ment learning Barto and Sutton [1997]. However, it does not take into account more sophisti-
cated types of signals, which could be given further by other types of neuromodulators Doya
[2002].

TABLE 4.1 – Free-energy optimization based on stochastic gradient descent to minimize prediction
error.

Code Stochastic optimization as
Lines Accumulation Evidences Process

#01 At time t = 0, initialize V, V ∗, I
#02 choose randomly Isearch
#03 compute Vsearch(t) from V (t), I + Isearch
#04 While t ≤ horizon_time, repeat :
#05 compute Vsearch(t+ 1) from Vsearch(t)
#06 If V ∗ − V ≥ V ∗ − Vsearch(t+ 1) :
#07 I = I + Isearch
#08 V = Vsearch
#09 break
#10 t = t+ 1
#11 Goto #02

Prediction error E on the output vector

V is used as a reinforcement signal to control the level of noise Isearch to inject in the input
dynamics I in order to explore local or global minima toward V ∗.

Recurrent Network Model

The neural architecture consists of one recurrent neural network arranged as in Fig 4.23 a).
The neurons in the recurrent map (N = 25 neurons) encode a temporal sequence directly from
their feeded back activity. The temporal horizon H for each synaptic link is defined to be of
H = 20 iterations max ( 1ms corresponds to 1 cycle), which is therefore the maximum possible
time length to be encoded by any synaptic link. Its value is chosen with respect to the average
synaptic time found in the neurons of the cortical maps, about 50ms Abbott and Nelson [2000].
The network is implemented as a buffer of dimension [H ×N ] = [20× 25] so that each neuron
n integrates with the synaptic weights wm,n and the function f(BUFFER[m]) with m ∈ M
andM = [HN ] to generate the output value Vn. To force the network to be recursive, we update
at each iteration the buffer by shifting at each iteration the rows to have h(x + 1) ← h(x) and
by adding to the first row of the buffer at h = 0, the latest update of the neural activity Vn. Now,
in order to inject external inputs I to the recurrent network, the neural population Vn receives
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an input vector of same dimension In added to the first row of the buffer and only at h = 0 and
weighted by 0.5 ; Vn =

∑
f(BUFFER)wm,n+0.5∗In. The function f is the inverse function

as explained in section 4.3.2.

TABLE 4.2 – Description of the buffer algorithm used to simulate integration over a temporal hori-
zon.

Code Recurrent Map
Lines Buffer to compute temporal horizon

#01 Compute Vn,
Vn =

∑
m f(BUFFER)wm,n + 0.5 ∗ In

#02 Shift the buffer with h ∈ [0, H − 1],
BUFFER[h+ 1, n] := BUFFER[h, n]

#03 Add to the first row h = 0,
BUFFER[0, n] := V

The buffer is used to model the recurrent

activity of the neural network over time. After each iteration, the buffer that retranscribes the
neural activity over time is shifted and presented again to the neural population.

Associative Network Model

The previous section explains how our optimization technique serves to retrieve the optimal
I∗search to be added to the current input vector I using the reinforcement signal E, the error
signal, in order to reach the desired amplitude value V ∗. The optimal signal I∗search found can
be learned by an associative layer with perceptrons with all-to-one and one-to-all connections
that link the input value I to the associative neurons Va and these to the output value I∗search, see
Fig ?? b). The neurons’ equation is similar to the equation of Kohonen neurons with Va∈A =∑

m∈M g(Im, wm,a) (all-to-one connectivity) and I∗search =
∑

m∈M g(Va, wm,a) (one-to-all
connectivity), where

g(x, y) =
1

1 +RMS(x, y)
, (4.30)

RMS(x, y) =
√∑

(x− y)2.

The weights of the associative neurons are updated with respect to the reinforcement signal
∆E in RNN, similar to eq. 4.30 :

w(t+ 1) = w(t) + ε∆E∆w, (4.31)

∆w = I(t)− w(t),

∆E = E(t)− E(t− 1).

Results

We resume in the table below the different experiments that we have done to present our model.
The first experiment corresponds to the study of the RNN optimization along with the stochastic
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descent gradient toward goal-driven control. The second experiment presents its application to
a 3 degrees-of-freedom robotic arm control. The third experiment shows the AM-RNN coupled
system and its capabilities for habit learning ; e.g., for arm postures. The fourth and fifth experi-
ments describe the ability of AM-RNN working memory to generate long-range spatio-temporal
learnt sequences, in a flexible way (resp. experiment 4) or in forced fashion (resp. experiment
5).

TABLE 4.3 – Table of the different experimental setups.

Section Exp. Architectures
4.3.3 3.1 1 RNN, Optimization control
4.3.3 3.2 2 RNN, Arm control
4.3.3 3.4.1 3 AM↔ RNN, Habit learning
4.3.3 3.4.2 4 AM↔ RNN, Bottom-up
4.3.3 3.4.3 5 PFC→AM↔RNN, Top-down

Description of the different experiments

done on their corresponding section.

RNN goal-driven control

In this section, we study solely the RNN, decoupled from the associative map, in order to study
its behavior during goal-driven control. We make the recurrent map to learn at first some spatio-
temporal rules till convergence of its dynamics for several iterations using the reinforcement
mechanism presented in last section. When the neurons’ synaptic weights become stable enough
after one thousand iterations, the network is ready to be used for testing.

For this, we define a desired output V ∗ as goal vector and we let the reinforcement signal
to drive the search of the input vector Ie from a fixed input vector I chosen arbitrarily and
only for the first iteration. We plot in Fig 4.26 the euclidean distance of RNN’s output V to the
desired output vector V ∗ for one hundred trials starting with different initial conditions. This
first graph shows how well all trajectories of the network are converging to a global minima.
This convergence is also rapid as it requires at most 20 iterations to reach to it. We display in
Fig 4.27 the raster plot of the neurons’ dynamics for the input vector in the top chart and for the
output vector. After initial conditions, the input and output vectors converge both rapidly to a
stable pattern, for which the neuron 24 is the most active neuron (indicated arrow).

The goal-directed behavior of the working memory is also exemplified in Fig 4.29 a) and b)
in which the neurons dynamics at several time step is plotted for the input and output vectors
respectively. The super-imposed activity level in black for the input and output vectors corres-
ponds to small variation of the input vector controlled by the reinforcement signal in a) (red
line) that induce the convergence of the output dynamics to the desired vector in b) (plain line).
We observe that small amplitude variation in the input dynamics are well sufficient to make big
amplitude variation in RNN as the output dynamics in blue gradually converges to the desired
goal. This shows that the working memory can be controlled as a dynamical system or a chaotic
system and its sensitivity to initial conditions can be used to retrieve any spatio-temporal pattern
as it would be for an attractor Tsuda [1991].

In Fig 4.29 we present four raster plots taken from the recurrent map, which all converge to
the same neuron spiking, neuron #14 in red at time t = 20 iterations, and for a different goal
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FIGURE 4.26 – RMS convergence to one targeted goal by the RNN for one hundred trials. The
amplitude level of the neurons in the RNN converges rapidly to the desired output vector rapidly in dozen
iterations ; some solutions found are more precise than others due to local minima.

FIGURE 4.27 – Raster plots of the input vectors injected to the RNN and its respective output vector for
the first 60 iterations toward a target solution. Following a hill-climbing random walk, we obverse the
rapid retrieving by the input controller of the desired RNN’s spatio-temporal pattern (a different example
of such desired pattern is presented in Fig 4.29).

than in the previous figure. The amplitude level of the recurrent map dynamics for the four maps
are different yet they converge all to the triggering of the same neuron. We make the note that the
neural activity at the population level is sub-threshold till the activation of the desired neuron at
the end. Although the network and the learning process is based on spikes, the inter-dependency
among the neurons is enough to produce parallely weak coordinated dynamics, which can have
a strong effect.

The causal chaining in the neural network is not straightfoward to observe. We propose
therefore to plot the spatio-temporal trajectory within the working memory for ten solutions
found ; see Fig4.30. We plot the neural trajectory till reaching the goal vector by selecting at
each iteraction the most active neuron. In our example, the goal to reach is the neuron #25
ordered from the time-to-trigger= 0 at the most-right of the plot. We make the note that the
most active neuron at each iteration is also the most influential for driving the neural activity for
the next steps. We can observe from the graph that all trajectories have different lengths, although
in average they converge after ten iterations. At the same time, the spatio-temporal trajectories
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FIGURE 4.28 – Snapshot of the explored input and output’s RNN dynamics for the first 10th itera-
tions and their convergence to the desired output values (in black) ; resp. a) and b). The small amplitude
variations added in the input dynamics (red line) achieve to induce big output changes in RNN with the
triggering of the desired spikes (plain black line).

present some similar patterns within their dynamics placed coherently at the beginning, middle
and end of the sequence that we retrieve in different trials. These patterns come from the short-
range synaptic rules learned and represent one chunk or one unit that is combined with others to
constitute a longer chain, up to sixteen elements in our case. We make the note that these chunks
are dynamically assembled and not predefinedly learned, although they present one stable shape.

RNN Arm Control

We use the RNN as a working memory for controlling the motion of a three joint robotic arm
in a 2D space, see Fig 4.31 a). We exploit the goal-directed behavior of the recurrent network
for sequential planning and for the reaching of five positions in space. The three angles of the
robotic arm are coupled to the dynamics of three neurons of the recurrent network with same
properties than the one presented in the previous section and the reinforcement signal is simply
the euclidean distance of the end-effector to the goal. The neural activity between [0; 0.1] for
the three neurons (sub-threshold activity) were renormalized between [0; 2π] in radians for each
joint angle. The result of the arm trajectory is presented in Fig 4.31 a) and the output dynamics
of the neural network is shown respectively in Fig 4.31 b). The network easily retrieves the
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FIGURE 4.29 – Raster plots of four strategies found by the RNN to trigger the firing of neuron #14
in twenty iterations. The four trajectories show some similar sub-threshold patterns although they exhbit
also high variabilities, in the temporal delays as well as in the amplitude level.

FIGURE 4.30 – Ten trajectories found till triggering of neuron #25. The trajectories are created by
picking up at each iteration the most active neuron. The ten trajectories present a mix of neural chunks
found in all of them and of novel patterns found solely in them. Each trajectory is retrieved dynamically
(novelty) although the solutions appear similar (redundancy) due to the constraint dynamics in RNN.

different positions in several iterations and updates its dynamics exploiting the reinforcement
signal.

Spiking Recurrent Network analysis

In order to understand better the organization of the spiking recurrent network, we analyze its
functional properties at the population level and its dynamics at the neuron level. First, we ana-
lyze the redundant clusters found within the optimal sequences and the processing time neces-
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FIGURE 4.31 – Arm control by the recurrent network with a reinforcement signal. a) The three d.o.f.
planar robot is controlled by the spiking recurrent neural network for which the amplitude level of three
neurons control the three joint angles. b) The euclidian distance to the goal location furnishes a reward to
the motor neurons.

sary to discover them as those presented in the previous section, resp. Figs 4.32 a) and b). In
Fig 4.32 a), we have counted the occurrence of clusters (neural pairs, triplets, etc...) retrieved for
a long period of time during spontaneous activity with respect to their size. These clusters are not
orthogonal from each other but are combined into longer-range patterns so that their frequency is
inversely proportional to their length ; ordinal neural pairs and triplets are proportionally easier
to be triggered and retrieved than longer clusters. Meanwhile, the log-curve histogram and clus-
ter coefficients indicate the hierarchical structure of the sequences, which corresponds to scale-
free dynamics and small-world properties of the recurrent network Watts and Strogatz [1998].
Thus, the reaction time necessary to retrieve one goal depends on the problem complexity (e.g.,
the locking into a local minimum or not) and requires around a dizain of iterations in order to
converge.

In Fig 4.32 b), the reaction time depends mostly on the initial conditions of the recurrent
network and of the explorative search. For solutions difficult to retrieve, the map requires an
explorative search above a dizain of iterations. This variance can be compared with the density
probability found in the real IPL neurons during visual search, which show similar trends Gold
and Shadlen [2007].

At the neurons level, we measure the probability distribution of the neurons’ variance till
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FIGURE 4.32 – Cluster analysis in RNN. In a), number of clusters found within an optimal sequence
with respect to their length. This histogram shows that for any optimal sequences, repetitive clusters are
found, which are more often present when they are small than big ; this shows some hierarchies within
RNN and the property of scale-free dynamics. In b), the average processing time necessary for the RNN
to retrieve the goal dynamics. For one hundred trials, it requires in average a dozen of iterations till
convergence.

convergence to a desired goal since variance is a hallmark of cognitive activity and of decision
maker Gold and Shadlen [2007]. The histogram presents a log-curve distribution with two-third
of the neurons with low or weak amplitude variability and one third of the neurons high am-
plitude variation, see Fig 4.32. This results indicates how exploration is done, having one third
of the neurons really effective for the neural map to converge to the output dynamics and to
generate a spatio-temporal pattern, whereas the rest of the neurons is not.

It indicates also the neurons’ connectivity level within the RNN, or its sparsity. One-third
of the neurons interact with each other so that weak amplitude variations in a small set of neu-
rons is enough to interact with another subset and to control its activity. This feature has been
emphasized in nonlinear mixed selective neurons Rigotti et al. [2013].

BG-IPL coordination : Recursivity and Bootstrapping

In the previous section, we have investigated the control of a recurrent network by a reinforce-
ment signal mechanism to drive its output dynamics to a desired goal as in Fig 4.23 a). Here,
we make to learn this signal by another learning system, an associative memory AM as shown

- 127 -



4.3. FREE-ENERGY OPTIMIZATION FOR GENERATING AND RETRIEVING LONG-RANGE SPATIO-TEMPORAL
PATTERNS IN RECURRENT NETWORKS

FIGURE 4.33 – Histogram of the neurons variability measured during exploration and their relative
position found within the sequence for hundred trials. These graphs attempts to explain how explo-
ration is done. In a) and b), during the solution-search, the two third of the neurons are rapidly placed
within the optimal sequence and one third of the neurons are highly variable and can change positions up
to twelve locations within the sequence.

in Fig 4.23 b). By learning directly the inputs that produce a high-valued reinfocement signal,
we can reduce the exploration phase and boot-strap at the same time the working memory dy-
namics to the goal trajectory. By doing so, we expect the two interacting learning systems to
generate longer spatio-temporal sequences of sub-goals. This schema is assumed to be played
by the Basal Ganglia, which learns rapidly simple stimulus-response rules, and the IPL-like
RNN, working at a slower temporal rate Daw et al. [2005]. As an analogy with reinforcement
learning, it corresponds to learn the rewarding Q-values associated to an action Doya [2002]. In
our framework, the Q-values correspond to the activity-level of the AM neurons. This optimi-
zation technique in our case can be viewed as model-based reinforcement learning Sutton and
Barto [1998].

To resume, we propose here to complete our architecture and to add an associative map
AM that learns the RNN’s input-output association with respect to the reinforcement signal
already used for explorative purpose. The bi-directional coupling between the two systems can
be done in two ways to generate longer spatio-temporal sequences : in a self-driven fashion
when it is the RNN that controls the AM or in a controlled fashion, when the AM controls
tighly the RNN’s activity. In our example, this second memory contains twenty neurons so that
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each neuron can trigger a specific spatio-temporal sequence of the RNN. These two ways are
explained thereinafter.

Habit learning of arm sequence

We propose to re-use the experiment done on arm control in section 4.3.3 but this time for lear-
ning the targeting goals with an associative memory during exploration of the IPL-like recurrent
network.

We present in Fig 4.34 the averaged learning rate and convergence time when the BG-like
associative network is exposed to several presentation of the same goals ; respectively in a) and
b). We can observe that the average time interval required by the associative map to make the IPL
map to convergence is decreasing for each exposure of the targetting goal : as the BG network is
learning, the explorative search done on the IPL dynamics is diminishing over time, see Fig 4.34
a). Sometime however, the error level appears not related to the number of exposure as for the
blue curve around iteration 500 for example because we might be in a local minima, which
makes the error correction to be slow. Nonetheless, the recurrent network trains the associative
network faster and the response time to retrieve any sequence is quicker, see Fig 4.34 b). Without
the BG network, the response level would have been slower and similar to the level found at its
slowest performance as during the first exposure.

FIGURE 4.34 – BG training by the IPL neural network and convergence rate with respect to the
number of exposure of targetting goals. In a), time duration and error rate for the IPL network to reach
the assigned goals iteratively (arm posture). In b), as the associative map learns the recurren map inputs,
the convergence rate decreases on average with the number of exposure of the goals.
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IPL→BG→IPL bottom-up associative recall

When we let the two coupled systems work in an autonomous fashion –, which means that we
do not force the activity of one specific BG neuron for example,– the RNN’s output activates the
most salient neuron in the BG-like network, which recursively controls the RNN’s dynamics in
return, see Fig 4.35 a). The result is the autonomous recall in a self-organized fashion of spatio-
temporal patterns by the BG-like neurons of the exact RNN ordinal sequence –, in our case of
thirty steps,– so that when one BG neuron is activated, its corresponding sequence is observed ;
e.g., the two same sequences reactivated are super-imposed in red.

As similar to the RNN neurons, the BG-like neurons can form also spatio-temporal se-
quences to create longer patterns. When the same pair is activated as in Figs 4.35 b) and c)
in red and green traces, the slightly same sequences in RNN are reproduced. The activation of
these two chunks can be considered as part of one integrated sequence over an interval span of
forty steps.

In certain situations, when the two maps have a very stable bi-directional coupling, the cou-
pled systems can generate even longer sequences above 190 iterations, see Fig 4.36. In this
figure, the raster plots taken at two different period of time are almost aligned from each other
within the black dashed lines. The associative map has generated a sequence over ten neurons.

PFC→BG↔IPL top-down control, forced bootstrapping

Self-driven activity shown in the previous section can generate long range episodes, but can we
generate even longer ones by forcing the temporal order of AM neurons activation ? This expe-
riment differs from the previous one in the sense that we externally force the activation of BG-
like neurons to fire in a specific order : i.e., we bypass the spontaneous activty of AM neurons
and we control the one selected till convergence of RNN to the desired output dynamics, which
means till the AM neuron activity is satisfyingly high above a threshold. This role is supposed
to be played by the PFC, which can learn the sequential order of the AM BG-like neurons. This
feature will not be investigated in this section. At each retrieval of one RNN episodic memory,
which can be more or less rapid, the next BG neuron is selected in the sequence when its activity
level reaches a threshold value, therefore the temporal interval can fluctuate for each episode.
Fig 4.37 presents the forced RNN spatio-temporal sequences at two different temporal intervals
for the same serial order activation of the BG neurons. In this figure, the spatio-temporal patterns
produced are spaning a very long interval range, over several hundred iterations, which is higher
in comparison to the self-driven activity presented previously.

Fig 4.37 presents the activity control of the AM neurons at two different time interval (bot-
tom and top charts). This result shows how the spiking order can be stabilized over long spatio-
temporal patterns (200 iterations) even within a recurrent map for the generating of neural chains
proper to the configuration of the RNN. The similarity measure computed above is based on a
covariation measure to detect the relative temporal displacements between patterns of the two
intervals. The BG-like neural system ’replays’ or reenacts the neural chains proper to the one
learned during action, as described in simulation theory of action representation Gallese [2005].

We can compare the two behaviors of the IPL-BG system by measuring the density proba-
bility distribution of the number of clusters found with respect to the clusters’ length, when the
two maps are bidirectionally coupled and self-driven (section 4.3.3) or when the activity of the
BG map is supervised (section 4.3.3).
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FIGURE 4.35 – Interactive coupling between the recurrent map and the associative map. Each neu-
ron of the BG-like associative memory learns a stimulus-response pattern that triggers a specific spatio-
temporal pattern in the IPL-like working memory. In a), we super-imposed in red the RNN dynamics
when the AM neuron #10 triggers. Stable spatio-temporal clusters as long as 28 iterations can be retrie-
ved. The BG-like network can bootstrap dynamically the neural population of the IPL-like network. In
b) and c), when two consecutive BG pairs are formed –, here the neurons #10 and #3,– the IPL network
can form longer sequences although they possess some variability within it ; these longer sequences (40
iterations) are above the temporal horizon of each neuron, which is of 20 iterations.

The Fig 4.38 presents this result with the density probability of the number of clusters found
during the self-driven case plotted in blue using the left axis and found during the controlled
case plotted in green using the right axis. The two densities present a logarithmic curve of dif-
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FIGURE 4.36 – Self-driven interaction between RNN and AM. Presentation of the amplitude dynamics
of the recurrent map for a sequence length of two hundred iterations between 3420 and 3600 in a), and
4280 and 4460 in b). The amplitude level of the recurrent map is almost similar within the interval of the
two dashed lines in black.

ferent magnitude order, the self-organized case in blue can generate long range sequences at
most of 180 iterations (below 10−2%). In comparison, during the controlled case, for which the
order magnitude is ten times higher, the probability of occurrence of one sequence of 180 ite-
rations achieved to be reproduced is below 1%. Although robust, the working memory in the
self-driven case present more variability and flexiblity, which is more advantageous in unexpec-
ted situations. Besides, the external control of the associative map (green line) limits strongly
the variability of RNN dynamics and induces the reproduction of long-range spatio-temporal
sequences as noise is reduced.

Discussion

We propose a framework based on a coupled recurrent spiking neuronal system that achieves
to perform long sequential planning by controlling the amplitude level of the spiking neurons
through reinforcement signals. The coupled system models the cortical and subcortical interac-
tion found between IPL and BG networks for neuronal chaining Chersi et al. [2011] Buschman
and Miller [2014]. The control done is weak so that the propagated reinforced signals let the
working memory plastic enough to converge to the desired internal states from various trajec-
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FIGURE 4.37 – Open-loop IPL control by the BG-like neurons following an ordinal sequence.
Every twenty iterations corresponding to the temporal horizon of the IPL buffer, the IPL dynamics are
bootstrapped from the AM neurons activity. In our example, the same BG sequence is injected to the IPL
dynamics for the two raster plots at different period of time. The comparison between the two dynamical
systems shows an extreme stability to drive the RNN dynamics over long period of time, even without
feedback, see the similarity measure at top.

FIGURE 4.38 – Sequence length retrieval during self-driven and forced conditions. We counted
the number of temporal sequences found over time and we computed their probability distribution with
respect to their length. In the self-driven condition (in blue, left axis) as done in section 4.3.3, the working
memory can repeat spatio-temporal sequences of maximum length of 200 iterations, which is already
above the limits of a conventional spiking RNN. In the controlled condition (in green, right axis) as done
in section 4.3.3, the coupled system can retrieve even longer sequences, ten times more.

tories. Used in a robotic simulation, the neural dynamics can drive a three d.o.f. arm to reach
online different locations.

The neural control is done below the neurons’ spikes and the sub-threshold amplitude va-
riations injected into the recurrent network can iteratively change its dynamics to make it to
converge to attractors or to make it to diverge from repellors. To this respect, our framework em-
bodies some aspects of the free-energy optimization principle proposed by Friston et al. [2009]
as an optimization technique and some aspects of chaos control of neural dynamics, like chaos
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itinerancy Tsuda et al. [2004], in which small feeded back perturbations can give rise to big
amplitude variations and permit to go from one memory to another Rabinovich and Varona
[2011] Varona and Rabinovich [2016]. At another degree, it conveys also ideas in line with belief
propagation and inference in spiking recurrent networks within the Bayesian framework Deneve
[2008] in which the iterated computation embedding the exploration/exploitation stages can be
seen as an inference process using reinforcement learning. The free energy optimization process
has been proposed to drive flexible neural dynamics in a seemingly coherent manner following
the Bayesian paradigm Friston [2009]; Pezzulo and Cisek [2016].

The functioning of our architecture is partially similar also to recent proposals for sequence
generation by Rajan et al. [2016] and Rueckert et al. [2016], reservoir computing methods
by Verstraeten et al. [2007]; Mannella and Baldassare [2015] and to DrSAE model used for
classification where auto-encoders iterate a recurrent map using gradient descent Rolfe and Le-
Cun [2013].

The original distinction of our approach with these techniques resides (1) on the control of
the neurons’ amplitude to indirectly control the spikes timing, and (2) on the use of an extra me-
mory (BG) that learns to associate the correct input vector to inject to the working memory with
respect to its output from a reinforcement signal ; these two features permit to drive the working
memory into a desired state. Its computation can be viewed also as a neural ’router’ Zylberberg
et al. [2011] that makes the recurrent network virtually deep : i.e., using the output of the recur-
rent network as its own entry for processing the next stage LeCun et al. [2015]; Rolfe and LeCun
[2013] ; e.g., over 200 iterations of virtual layers in Fig 4.37. For these reasons, the INFERNO
compound system has the features of a recurrently deep spiking neural network.

Computational Power. Taking account of the computational power of Rank-Order Coding
spiking neurons Thorpe et al. [2001], each neuron can encode 2N different representations with
N their input dimension, in our case N = M ∗ O, with M = 25 the size of the neurons’
population and O = 20 the temporal horizon of each neuron (i.e., fixed by the buffer length).
Besides, each neuron of the associative memory encodes virtually only one trajectory of the
recurrent map as a stimulus-response rule ; in our case the number of neurons in the associative
map isL = 20. Therefore, the maximum theoretical length for a spatio-temporal pattern possible
to retrieve is equal to L ∗ O, which is in our case of 400 iterations (or layers). These orders
are empirical, however, adding more AM neurons should highly increase the length of RNN
sequences produced and the number of possible combinations.

Subsumed and complementary systems. As there is evidence that suggests that although
single actions can be selected without basal ganglia involvement, chains of actions seem to
require the basal ganglia Jaeger et al. [1993]. The BG with the parietal cortex are found both
complementary for action planning Chersi et al. [2011]; Mannella and Baldassare [2015]; Platt
and Glimcher [1999], motor simulation Gallese [2005] and thought generation Benedek et al.
[2016]. The parietal cortex, involved in implementing complex predictive models as multi-step
state-action-state maps (model-based RL), and BG (model-free RL) form a cooperative system
driving online behavior Topalidou and Rougier [2015]; Gershman et al. [2014]; Koechlin [2016].
The BG network in our model helps to create long neuronal chains dynamically in the IPL
working memory while the IPL working memory trains the BG network.

The numerical limit to subsume new memory maps, one layer at the top of another, is not
clear in our model but a third complementary memory, the PFC, can play this role by learning
and directing the BG sequences at a higher-level. In our model, we have limited the function
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of PFC to provide one goal at a time so that AM sequences can be formed dynamically in a
self-organized fashion along with RNN, see section 4.3.3. Learning this temporal sequence by a
top layer can permit to generate an even longer plan execution as done in section 4.3.3 for one
sequence only and without any learning. Hence, our model can be extended to a more elaborated
PFC model as it is known that PFC contributes to sequential planning over seconds Sakai et al.
[2002] and to the selection of neural ’programs’.

Multi-Step computation. While the IPL working memory provides, stores, and manipulates
representations ; the basal ganglia model map current states to courses of action Alexander et al.
[1986]. BG can serve for selection of complex, sequenced actions at the cortical map level Seger
and Miller [2010]. Thus, it can be interpreted as a repertoire of if-then rules or a set of stimulus-
response associations to select appropriate cortical chains. In section 4.3.3, we used our cognitive
architecture for iterating a long sequential pattern of 200 steps, a serial WM task, which is a
feature that can be used for computational purposes (e.g., arithmetic counter). Here, the BG
rules can be seen as ’pointers’ of cortical ’programs’. This kind of cortical architecture has been
emphasized to be used possibly for multi-step computation ; i.e., for implementing neuronal
Turing machines Eliasmith [2013]; Zylberberg et al. [2013]; Graves et al. [2014].

Making an analogy with Turing machines, we can see AM as an instruction table, its opera-
tions as the injected inputs into RNN, RNN as the infinite tape and their respective neural activity
as symbols and states. In our framework, IF current activity (symbol) in RNN (tape) is j AND
current activity (state) in AM (instruction table) is i, THEN inject the signal k to j (replacing
operation).

Furthermore, the reinforcement signal used here as a heuristic function makes a link with
more classical AI algorithms using meta-heuristics like the A∗ tree search, as proposed by
Daw Daw et al. [2005]. These meta-heuristics are optimization technics that make to converge
the recurrent spiking neural network to specific trajectories with some flexibility, see the schema
in Fig 4.39, which are directly taken from the trajectories found in Fig 4.30. On the one hand,
all the trajectories derive from the spatio-temporal primitives learned by the RNN. On the other
hand, they are assembled flexibly to reach one goal. Therefore, for each specific goal, the tra-
jectories found in each structure possess roughly the same structure and prototype (global cohe-
rence), see Fig 4.39 a) while the structure within each sub-cluster is however different (internal
variability), see Fig 4.39 b).

This shows the capabilities of the RNN to produce hierarchical plans and tree structures,
which are found important for human language and cognition Dehaene et al. [2015]. Its struc-
tural organization follows also a complex network topology as the log-curve distribution of the
clusters’ size demonstrate it with scale-free dynamics.

Gain modulatory control. Our optimization technique is based on the control of the sub-
threshold activity of the neurons. We propose that this mechanism can be one candidate for
flexible neural coordination, along with phase synchrony and spike timing-dependent plasticity.

For instance, sub-threshold activity optimization is similar with the phenomenon known as
gain-modulation Salinas and Sejnowski [2001]; Botvinick and Watanabe [2007]. This mecha-
nism describes how the activity level of gain-field neurons can be modulated by the amplitude-
level of several neurons sensitive to different variables, which is therefore interesting for neural
control Gabbiani et al. [2002]. Gain-modulation is found important for the neural processing in
the parieto-motor cortices Blohm and Crawford [2009] and may provide a hint how generative
causal chains are formed in a neural population for planning in PFC as proposed by Dehaene
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FIGURE 4.39 – Abstract model explaining the IPL working memory. Our model stores a repertoire
of motor primitives and assemble them online with respect to a desired goal. a) We super-impose with
different colors the clusters of four optimal trajectories found in Fig ??. b) Each trajectory possesses a
hierarchical structure dependent on its higher and lower levels, stable enough to embed same clusters
at particular locations (top-down constraints), plastic enough to have slight variations for each cluster
(bottom-up).

et al. [2015].
Gain-modulation has been proposed recently to control the amplitude-level of a neural po-

pulation (its local field potential). It conveys contextual information in a complex form of pro-
pagated neural activity ; a mechanism coined as nonlinear mixed selectivity Rigotti et al. [2013].
Furthermore, Botvinick and Watanabe proposed a prefrontal model based on gain-field neurons
showing their ability to recall serial order information Botvinick and Watanabe [2007]. Their
model assumes that abstract ordinal information is conjoined with item-specific information
through a gain-field mechanism.

Dopaminergic optimization. The neurons in the recurrent network have sparse connections
from each other so that the system possesses a high number of spatio-temporal patterns and
requires several steps to reach the desired configuration ; this behavior corresponds to the cha-
racteristics of one working memory. Therefore, in order to retrieve one desired spatio-temporal
sequence, a reinforcement signal (presumably dopaminergic neuromodulation) evaluates the ex-
ploratory search of the working memory to the desired goal ; depending on the reward value,
the sensory input dynamics are strengthened to hill-climb the gradient or elicited to search for
another solution. This is similar to model-based reinforcement learning for which the internal
primitives of the RNN corresponds to the model. Thus, the neural sequences found in Fig 4.30
are not completely random but depends on the synaptic organization of the RNN so that the later

- 136 -



CHAPITRE 4. CONTRIBUTIONS TO NEURAL ARCHITECTURES FOR COGNITIVE DEVELOPMENT AND WORKING
MEMORY

plastically self-organizes to generate the beginning, middle and end of one complete sequence,
see Fig 4.39 on which we super-imposed colours for each stable clusters, as well as cliques and
loops found.

Neurocomputation and AI. As proposed by Doya, different concepts of AI can be applied
to the modeling and understanding of the functional organization of the brain Doya [2002]. No-
netheless, their use in large scale recurrent spiking neural networks may not be trivial. Our work
and others from our lab are attempts to make to converge some distinct concepts found in classic
AI and robotics with current computational neuroscience to model the functional organization of
different brain areas. For instance, we have shown how self-organization of associate maps can
occur in an unsupervised fashion from contingent visuo-tactile signals using the Hebbian Spike
Timing-Dependent Plasticity rule Pitti et al. [2009a], we have employed also a novelty-detection
mechanism for cumulative learning in a hippocampus model Pitti and Kuniyoshi [2011a,b], and
finally how a tabou greedy search may model the anterior cingulate cortex for error-based ex-
ploration Pitti et al. [2013a]. The combination of these different AI techniques may reveal with
few principles how to model the brain in neuromorphic machines.
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Contribution to Synergistic Models for
Soft Robotics

The complex neural dynamics presented in the previous sections allowing body representation
from multimodal integration or incremental learning based on error regulation and anticipation
in cognitive memories would not been complete without the same investigations done on the
motor synergies on a complex body. On the one hand, roboticists still have difficulties to harness
the way to control a high-degrees of freedom system or the nonlinearities of soft robots. On the
other hand, a bio-inspired control is mostly underactuated and energy-efficient, which requires
to design also a complex body following some architectural principles.

Since an adaptive controller is fitted to work with a compliant robot. I have started to de-
velop an extension of my research themes at the material level and at the structural level for
rich perception and soft actuation. Pursuing my work on central pattern generators and motor
synergies from my PhD, I have started to work on tensegrity structures for the modeling of a soft
and compliant vertebral column, some snake-like robots and foot architecture to be compatible
with nonlinear controllers replicating central pattern generators, see section 5.2. Not described
here, I have started to work on the design of tactile sensors, an artificial skin, to endow robots
with the capability to sense their environment through their own actions with the replication of
some mechano-receptors.

Morphological Computation based on Tensegrity for Bio-Inspired
Robots

In comparison to classical robots that have few degrees of freedom per articulation, biological
systems have so many muscles in comparison to their number of bones. Because of this ratio, our
body is always in situation of dynamical stress and strain (i.e., pre-stress) which confers to the
body its flexibility. One architectural design that resumes well this moprhological computation
are tensegrity structures. Tensegrity structures can be seen as physical networks of stress and
loads so that they have an inner stress and plasticity in their structure that make them resilient,
adaptive and robust to some external loads. In comparison to most robotic designs, tensegrity
structures don’t follow the newton-law of rigid bodies as they have no joints but the hookean
laws of elastic bodies in the sense that they have no momentum or torque since the motors are
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FIGURE 5.1 – Snake inspired architecture based on tensegrity. The compliance of the multi-articulated
body and the big number of muscles make such kind of robots difficult to control without bio-inspired
models of central pattern generators as nonlinear oscillators for energy-shaping control.

not in the axis of articulation. Tensegrity structures distribute all the mechanical tension on their
morphology. This mechanical property confers them to be very light and very robust in theory
in comparison with the kinematic chain of joint-manipulators.

In this research, we get inspiration of the human musculo-skeleton system to model a dorsal
spine robot based on tensegrity paradigm, see Fig 5.1. We present a tensile self-replicative struc-
ture composed of ten 3D printed elements and of eight motors distributed over all the structure to
control it. We get feedback from the structure from an accelerometer positioned at its bottom.Its
structure shows a large spectrum of behaviors from very soft dynamics that produce rhythmical
oscillations to very rigid static postures up to 45 degrees inclination. with co-contraction of the
motor activity.

We develop three experiments. In a first experiment, we define the dynamics in open loop
control for various modes of coordination by varying the phase and the duration of the PWM
control and by analyzing the resonant frequencies of the system and its rhythmical patterns. In
a second experiment, we analyze the system statically from a postural viewpoint, in an inverse
pendulum configuration, and study its controllability as well as the maximum weight to be put
at the end-point to study its robustness. In the third experiment, we propose to explain feedback
for close-loop control of the structure in order to model the biological control done by the cen-
tral pattern generators (CPGs) of the spinal cords and the motor synergies associated with the
Kuramoto model.

The scalability of tensegrity structures fulfill the requirements for testing ideas about low-
cost platforms for multi-purposes in Research, Art and Education. Tensile robots can be 3D
printed and can be highly replicative. Their overall robustness and lightweight can be really put
forward in comparison to most robots, which are still fragile and expensive products to design
and repair. The ecology of the body morphology changes also the way control in force and in
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precision is done and requires to rethink biological control for robots.
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Morphological Computation based on Tensegrity for Bio-Inspired
Robots

Animal’s musculo-squeletal system is based on a complex network of muscles, bones, nerves,
tissues and soft-bodies which are hard to replicate accurately in robots Pfeifer et al. [2007b];
McEvoy and Correll [2007]. This dense architecture is however well-ordered so that we can rea-
lize soft dynamics, sensorimotor coordination, as well as postural balance at a very low energy
cost thanks to the dynamic grouping of the muscles ; a.k.a. motor synergies Todorov [2004];
Bizzi et al. [1995]. The well-distribution of stress and strain throughout the body warranties its
ecological control so that when we are exposed to a violent shock, we can still stand or ply and
bend our knees or stiffen (or soften) our body and joints, just as a building would absorb an ear-
thquake wave and to balance itself, or as a bridge would lean into the wind. Since the muscles
are always in tension, the musculo-squeletal system is always soft and elastic and positioned in
a stable or neutral posture. If one effort is made on one particular point and direction, the whole
structure complies and takes in charge the exerted tension. When the effort is elicited then, the
morphology returns back to its original configuration. This property releases motor control from
computing a time costly precise plan and is specific to tensile structures, which most biological
systems possess as attribute Ingber et al. [2014]; Turvey and Fonseca [2014]; Levin [2002].

In comparison to classical joint articulation robots, biological systems have an impressi-
vely high ratio between the number of muscles (joints) with respect to the number of bones
(articulations). Because of this ratio, our body is always in situation of dynamical stress and
strain (i.e., pre-stressed) which confers it its flexibility. When we are standing upward, groups
of muscles are dynamically selected to contribute to our stability Ting [2007]; Allen and Ting
[2016]. One architectural design that explains well this type of morphological computation Pfei-
fer et al. [2007b]; Pfeifer and Gomez [2009]; Nakajima et al. [2015] are tensegrity structures Ful-
ler [1975]; Snelson [1965]. Tensegrity structures can be seen as physical networks of stress and
loads so that they have an inner stress and plasticity in their structure that make them resilient,
adaptive and robust to some external loads. In comparison to most robotic designs, they do not
follow the newton-law of rigid bodies as they have no joints and no momentum or torque since
the motors are not in the axis of articulation. Instead, they follow the hookean laws of elastic
bodies.

Hence, tensegrity structures are mechanical transducers in the sense that they distribute all
the mechanical tension on their morphology Ingber et al. [2014]. This mechanical property per-
mits them to be very light and very robust with dynamic gaits in comparison with the kinematic
chain of joint-manipulators.

From a robotic viewpoint, tensegrity systems have other advantages in terms of ecology
and scalability as their structure and their physics can be replicated at different scales. These
features provide them a promising paradigm for integrating structure and control design Paul
et al. [2006]; Bliss et al. [2008]; Tietz et al. [2013]. For instance, we can easily formalize a
tensegrity system as a network of tension (muscles and soft tissues) and compression (bones),
or as a network of springs and masses Hauser et al. [2011, 2012]. Therefore, they can be viewed
as complex dynamical systems with many degrees of freedom Caluwaerts et al. [2014]. The
redundancy and nonlinearity within such dynamical system might be considered at first as an
obstacle to control, however, the symmetries of the overall structure and the many resonant
modes generated can serve to decrease the dimensionality of the control problem. For instance,
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one way to have an adaptive control is to exploit phase synchronization of these modes pretty
much like for coupled chaotic maps Strogatz [2003]; Kelso and Haken [1995].

In previous works, we have showed how we can control such high degrees-of-freedom sys-
tem with chaotic controllers that sync dynamically to the resonant frequencies of several robotic
devices Pitti et al. [2005, 2006, 2009b, 2010] and to human partners [Melnyk2016]. We be-
lieve that this type of control is simple/archetypal enough to convey the important features of
controlling the human musculo-squeletal system control as done in the spinal cords by the cen-
tral pattern generators Ijspeert et al. [2003]; Ijspeert [2008]; Bizzi et al. [2008] as of controlling
tensegrity structures.

Furthermore, the scalability of tensegrity structures fulfills the requirements for testing ideas
with low-cost and multi-disciplinary platforms at the community level for exploration and ex-
perimentation in robotics for Research, as well as in Art and Education. For instance, tensile
structures can be 3D printed and can be highly replicative, which can be interesting for the Do-
It-Yourself community. In complement of this paper, we provide a website of the project with
links for downloading freely the tensegrity modules for building it and to inspire and iterate on
the project to one’s own. Their overall robustness and lightweight can be really put forward in
comparison to most robots, which are still fragile and expensive products to design and repair.
The ecology of the body morphology changes also the way control in force and in precision is
done and requires to understand biological control and to rethink it for robots. Furthermore, as
educational tool, tensegrity robots convey many principles behind control, matter, cybernetics
and complex systems in biological systems.

In this paper, we get inspiration of the human musculo-skeletal system to model a dorsal
spine robot Ly et al. [2011] based on tensegrity paradigm Flemons [2012], which is also re-
miniscent to the functional organization of snakes Liljeback et al. [2009]. We present a tensile
self-replicative structure composed of ten 3D printed elements and of several motors distributed
over all the structure to control it. We get feedback from the structure from an accelerometer
positioned at its extremity. In our experiments, its structure shows a large spectrum of behaviors
from very soft dynamics that produce rhythmical oscillations to very rigid static postures up
to 45 degrees inclination, with co-contraction of the motor activity. We propose three setups to
display the capabilities of our system. In the first setup, we define the dynamics in open-loop
control for various modes of coordination by varying the phase and the duration of the PWM
control and by analyzing the resonant frequencies of the system and its rhythmical patterns. In
the second experiment, we analyze the system statically from a postural viewpoint and study its
robustness in the upward postion. In the third experiment, we propose to exploit feedback for
closed-loop control of the structure using central pattern generators (CPGs) Taga [1995]. De-
pending on the values of the internal and external coupling parameters, we can self-synchronize
non-linear oscillators modeled with Kuramoto units to the resonant modes of the structure and
entrain it freely to specific directions. These privileged modes of synchrony represent the natural
motor synergies that are possible to generate and control in the multi-segmented structure Der
et al. [2005].

Then, we will employ a top-down mechanism that pre-selects the coupling parameters to
the most desired motor synergy based on the magnitude of the external perturbations on the
vertebral structure. This indirect control may play the role of neuromodulators in the spinal
cords that modulate the gain of the sensory feedback on the alpha-motor neurons activity to
generate the desired synergy Bizzi [1999]; Marder and Calabrese [1996]; Calabrese [1995] ;
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which means selecting the most expected resonant modes relative to the perturbation. For a
strong external shock, the controller will set the oscillators to a certain regime producing big
oscillations, which can absorb the perturbation. At reverse, for tiny perturbations, the controller
will set the oscillators to a different regime that can dampen the perturbations.

Material & Methods

We present a tensegrity structure based on auto-replicative elements, 3D printed and similar to
the ones proposed in Frumar et al. [2009]; Flemons [2012], see Fig. 5.2 a) and b). This particular
motif reproduces the very stable structure of the tetrahedron (i.e., the pyramides) which can stand
easily upward, see Fig. 5.2 c) and d). When two structures are mounted together (two inverted
pyramids), the coupled unit structure can move in two directions and can support small sheer
torsions, which is ideal for modeling complex human joints’ movements like the ankle, the hip,
the spine or the shoulder. In comparison to other types of tensegrity motives, this one has the
advantage to require less structures and few jonctions part. Each element is connected to others
with springs, which confer to the design some visco-elastic properties of pre-stressed structures
that permit them to return back to one stable configuration after any external force pressure
applied. The whole structure possesses ten segments connected with springs and omnidirectional
joints (ping-pong balls) with eight electrical micro motors distributed over all the structure. We
used motors with a gear head and a shaft to reel up a 10 cm tendon-like wire. Theses wires
generate the local contraction and displacement of each body segment. Very-lightweight and
compliant, it presents interesting dynamical properties of oscillatory patterns when the motors
are activated in co-ordination and of postural stability when the motors are in co-contraction.
Hence, this structure is ideal to model central pattern generators and motor synergies in robots.
When each part is assembled in line, they replicate the spinal vertebres system of human beings.
As tensegrity systems possess no joints, the suspension between vertebres garanties stability and
compliance. And in order to perceive the motion, an inertial measurement unit (IMU) is placed at
the top/bottom of the vertebral column. This module permits to measure the linear acceleration
at the extremity of the structure and its angular velocity.

According to how it is mounted on the robot, the IMU coordinate system can provide dif-
ferent orientations. It is therefore important to use an appropriate coordinate system aligned with
the robot axes. Fig. 5.3 shows the coordinate system used in this article : (1) The x-axis is oppo-
site to the gravitational field and points upward so that the IMU is aligned along the longitudinal
axis of the vertebral column robot, (2) the z-axis is perpendicular to gravity and lies in the hori-
zontal plane of the robot body and (3) the y-axis is aligned in accordance to both the x- and z-
axes in order to form a right-hand three axis coordinate system.

The rotations in roll φ, yaw ψ, and pitch θ represent changes in orientation about the x, z
and y-axes respectively.

tanΘxyz =
−Gpx√
G2
py +G2

pz

(5.1)

where Gpx , Gpy and Gpz are normalized accelerometer reading corresponding to the coor-
dinate system axis x, y and z, see Fig. 5.3.

- 144 -



CHAPITRE 5. CONTRIBUTION TO SYNERGISTIC MODELS FOR SOFT ROBOTICS

FIGURE 5.2 – Vertebral column robot also viewed as a snake-like robot. This tensegrity-based robot
is very compliant and light-weight, mounted with springs in opposition. It possesses 10 segments with
motors mounted in pairs to produce co-contractions in phase or in anti-phase for generating discrete
and oscillatory patterns. An inertial measurement unit is placed at the end of the structure for posi-
tion control and acceleration feedback. Each elements are self-replicated and are freely available at
https//tinkercad.com/things/6iBMNx721aK.
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Dynamic Behavior Analysis in Passive Conditions

We make first a perturbation analysis of the whole structure and present its dynamic behavior
when pushed in one plan and when pushed on its own axis of rotation, respectively Fig. 5.3 a)
and b). Specifically, we are interested in the passive response under external stresses and the
response of the controllers.

FIGURE 5.3 – Perturbation analysis on the vertical and axial plans of rotation, resp. a) and c). The
Fourier transforms in b) and d) show the resonant frequencies of the structure. Two different fundamental
resonant frequencies are found for the two axis, respectively 0.5Hz and 2Hz. IMU units at the top or
bottom extremity depending on the experiments.

The Fourier diagrams present the resonant frequencies found for the two perturbations. The
horizontal perturbation on the structure produces a pseudo-periodic oscillation with a fundamen-
tal mode around 0.5Hz, whereas a perturbation around its axis of rotation generates an oscillation
around 1Hz.

As one can expect, the length of the structure has a direct impact on the wavelength of the
oscillations generated. The more elements are linked together, the more oscillatory patterns are
produced, which diminishes at the same time the resonant frequencies of the overall structure
below 1Hz for. The structure presents therefore the characteristics of a dissipative system, which
is important in order to have resonant modes and to develop motor synergies.

Second, it is extremely easy to produce motion from small perturbations. As the structure is
light with no joints, it has few frictions except at its fixation point and reacts as a pendulum. The
number of oscillations till stabilization for the two perturbations is very large in one direction,
above 10 oscillations in 30 seconds for horizontal perturbations, see Fig. 5.3 b). Therefore, we
can expect to generate motor synergies with higher harmonics proportional to this wavelength.

Resonant Mode Analysis in Controlled Conditions

We propose to study in this section the control of the different resonant modes and phase delays
of the structure with open-loop controllers using pulse-width modulation controllers (PWM). In
order to facilitate the analysis, we group the motors aligned symmetrically in the longitudinal
plane forming two clusters of three motors each. We control the phase delay and duration of the
PWM between the two motor groups around the fundamental frequency.

If we modulate the duration of the PWM controllers for all the motors as in Fig. 5.4 a-d)
respectively from 50 ms ,100ms, 250ms and 500 milliseconds, we can observe a sensitivity on
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the oscillatory patterns of the tensegrity structure. As we might expect, large PWM produces
large amplitude oscillations whereas small periods of the PWM generate weak perturbations.
The resonant mode occurs for 250 milliseconds period square signal with amplitude variation 3
time larger than for PWM of 50 milliseconds. Above this value, for the case of Fig. 5.4 d), new
harmonic modes are super-imposed to the speed signal, which corresponds to complex modes
of coordination with the apparition also of harmonic waves.

FIGURE 5.4 – Phase duration characterization in controlled condition with PWM. A PWM signal controls
the tensegrity structure in the vertical axis with motors aligned along the vertical axis. Modulating the
phase duration of the motors, from small durations 50ms (resp a), 100ms (resp b), 250ms (resp c) up to
500ms (resp. d), affects the level of global synchrony and the apparition of complex modes of resonance.

Robustness during Postural Co-contractions

We display the properties of robustness and stability of the spinal vertebrae and of tensegrity
structures in general. First, we set its motors in co-contraction and set its neutral postural confi-
guration respectively in the horizontal plane and in upward tension, so that the structure has a
maximum momentum and tension on its morphology horizontally and has to exploit fully its
physics to stand vertically ; see resp. Fig. 5.5 a) b) and c).

The forces distribution of each motor-driven cables on the whole structure is similar to those
of the wires acting on cable-stayed bridges. The distribution and balance of mechanical stresses
in the entire structure makes it stabilized in every positions, even for the less energetical ones
as the horizontal plane and the vertical planes in order to stand upward, which are also the most
difficult to stabilize for humans to support their own weight Turvey and Fonseca [2014]; Allen
and Ting [2016].

Results

We explain in this section the experimental setup on the biological models of central pattern
generators used and the algorithm employed to control the multi-segments structure for standing
upward (multi-d.o.f. inverted pendulum). We will perform one experiment showing the reflexive
control of synchronization based on feeded back resonance and the attributes of the coupled
system to generate oscillatory patterns and to discover motor synergies. Then, we will perform
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FIGURE 5.5 – Robustness in co-contraction in horizontal and upward postural configuration. Static pos-
tures demand to set the contraction of all the motors to specific lengths. In these situations, the motors
act as rigid tendons and loads are distributed overall the structure. Maximal efforts are delivered on the
structure when set at the horizontal in a), in the vertical plane with different directions in b), and upward
at the vertical in c).

one experiment on the active control of the CPG units and motor synergies toward standing
balance against external perturbations.

Bio-Inspired CPGs – Kuramoto oscillators

We use as bio-inspired controllers the Kuramoto model, which is a limit-cycle nonlinear oscil-
lator employed in many robotic experiments to model central pattern generators Ijspeert [2008].
Each Kuramoto oscillator ϑ is coupled with each other by the phase so that any weak interactions
alter the level of phase synchronization between each pair.

Each oscillator ϑ has its own angular momentum ω, and each one is coupled equally to
all other oscillators, see Fig. 5.6 a). We have one oscillator per motor, which corresponds to a
population of 6 units. The internal coupling is done by computing the phase difference between
the oscillators. The external coupling is done in a similar way by computing the phase difference
to the angular momentum of each oscillator. We use as external feedback the position in the Z
axis, POS Z, of the top of the structure calculated from where the accelerometer is. By doing so,
we provide to the elements the necessary feedback for its embodiment. The tensegrity structure
is similar to a spring-like system with damping. In the equations, the feedback signal is viewed as
another oscillator by the units. We add three coupling coefficients, Ki, Ke and Je corresponding
respectively to the internal coupling among the oscillators, the external coupling of the external
signal to the units and the amplitude level of the ouput signal to the motors. In order to take into
account the symmetry of the structure, the angular momentum of each co-contracting pair are
phase-shifted by π.

dϑi
dt

= ωi + Kesin(Ii − ϑi) +
Ki

N

N∑
j=1

sin(ϑj − ϑi) (5.2)

outputi = Jesin(ϑi) (5.3)

We draw one diagram of the pre-reflexive control performed by the oscillators on the verte-
bral column in Fig. 5.6 a) and b), which are the links in blue. In line with biomechanical studies
that suggest muscles are not activated independently but are grouped in modular units, the para-
meters {Ki,Ke,Je} correspond to the neuromodulators driven by the higher units that impose
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certain classes of dynamics to the motors ; i.e, the motor synergies Bizzi et al. [1995]. These pa-
rameters regulate the synchronization level between the oscillators and the tensegrity column as
follows. The internal coupling Ki synchronizes the oscillators from each others and reduce their
variability. The external coupling Ke influences the coupling to external perturbations. Beside,
the control of the amplitude signal to the motors Je is used to generate resonant modes and to
influence the level of synchronization and of perturbations to the system.

In order to achieve a task, controlling the three parameters {Ki,Ke,Je} dynamically can
permit to construct a motion pattern by combining and varying the recruitment of the motor
modules, see the green line in Fig. 5.6 b). Therefore, atop of the reflexive control done by the
oscillators, we add a higher controller that will supervise the values of the coupling paramaters
{Ki,Ke,Je}. This controller will drive indirectly the coupling to the structure by changing
the coupling parameters toward desired regimes based on feedback and perturbations ; the new
circuit is plotted in red in Fig. 5.6 b).

Such controller may be similar to the task-level commands performed by the neuromodula-
tors in the higher centers of decisions to bypass the CPGs’ reflexive activity at the spinal cords
level Marder and Calabrese [1996]; Todorov [2004]; Ting [2007]. The control task here is re-
duced to the dynamical control of the three parameters {Ki,Ke,Je} to specific regimes found.
We use a K-mean clustering method to categorize the different regimes found in section 5.2.7
with respect to the parameters set and the acceleration ACC. Depending on the most probable
regime in which the structure system should be based on acceleration ACC, the top layer will
dynamically select the variables {Ki,Ke,Je} so that :

argminj ||I − µj ||2, (5.4)

µj = {Kij ,Kej , Jej} (5.5)

where µj is the mean of the cluster j corresponding to the pair {Kij ,Kej ,Jej}.

∆Ki = α
dE

dKi
, (5.6)

∆Ke = α
dE

dKe
(5.7)∑

x+ y = Z (5.8)

(5.9)

with α = 0.1 and D represents the speed/position.

Reflexive & Bottom-Up Synchronization

Our first experiment consists on studying the interval range of the external coupling parameter
Ke and see the impact feedback on the internal dynamics of the oscillators when they are cou-
pled to it. We study first the Fourier coefficients of the Kuramoto’s units when the control is
done in a closed-loop manner without internal coupling, Ki = 0, to which we make to vary Ke

within the interval range [0; 1] Je = 1 ; see Fig. 5.7 a).
When Ke = 0.0, the oscillators drive the tensegrity stucture in a completely open-loop fa-

shion with a fundamental frequency centered on the intrinsic mode ω of the oscillators. In this
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FIGURE 5.6 – CPG-based control of the structure motor synergies based on the indirect coupling para-
meters Kij The Kuramoto oscillators are coupled internally to each other based on the parameters Ki.
The external coupling is done by the parameter Ke, which sets the influence of the position of the top
of the structure with respect to the Z axis on the internal dynamics. The reflexive synergies produced
by the oscillators can be controlled by a higher center of decision that selects the global parameters for
postural control. This corresponds to a dimensionality reduction of the controller on the robot dynamics,
to generate probabilistically stable movement behaviors.

stage, the tensegrity structure performs a strong rhythmic motion without damping and exploi-
tation of the physics of the system. At Ke = 0.2, an interesting behavior occurs in which the
oscillators bifurcate to an attractor point, an underdump postural configuration slowly entrained
by a slight feedback control till immobilization. This posture is in this plot the upward posture
with Z = 0. In this situation, the motors remain in this static posture without any feedback and
react to small perturbations are reflexes. When the structure is slightly pushed, the oscillators act
reflexively to return back to the static posture, where the point attractor is.

Above this value, say for Ke ≥ 0.4, the oscillators start to be entrained actively to the dorsal-
spine resonant frequencies with a signal per noise ratio that depends on Ke values. In this stage,
the feeded back signal generates stable cyclic motion around the upward position. The higher
the coupling ccoefficient, the higher the instabilities of the rhythmical pattern.

To understand in more details what’s going on between the point attractor behavior and the
limit cycle behavior found, we plot the dynamics of the oscillator in the interval range Ke ∈
[0.15; 0.4], see Fig. 5.7 b). We observe a birfucation diagram of the oscillator to the dynamics
of the vertebral column. We analyze below the three cases found depending on the coupling
parameters {Ke,Ki,Je}.

We display three different phase plots for the three behaviors presented earlier with respect
to Ke ∈ {0.0; 0.2; 0.4}, see Figure 5.8 resp. a), b), c). But in order to define more precisely the
behavior of the system, we add two new conditions to compare with when Je = 0.6 and when
Je = 1.0 that modulate more or less strongly the motor output.

These graphs show the plots during 10 seconds of the internal CPGs dynamics and of the
position at the tip of the structure oscillating around the Z axis for Je ∈ [0.6;1.0]. The graphs
on the right charts are the phase space plotted between POS Z and CPGs. In Fig. 5.8 a), The
tensegrity structure is totally open-loop driven and forced to follow the oscillators cycle without
any feedback. At reverse, the situation in Fig. 5.8 b) corresponds to an under-damped case for
Ke = 0.2 where the oscillators go to a point attractor centered on the neutral position of the
structure. Besides, when the coupling term Ke augments above 0.2 as it is the case in Fig. 5.8
c), the Kuramoto’s oscillators start to be entrained to the phasic regime of the structure. The
higher the coefficient Je, the stronger is the synchronization.
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FIGURE 5.7 – Influence of the external coupling parameter Ke on the resonant modes of the backbone
tensegrity structure. In a), we plot the Fourier coefficients with respect to the quantity of feeded back
signal injected into the oscillators within the interval range Ke ∈ [0.0,1.0] from open-loop control to
stable closed-loop entrainment. In b), we plot the details of the dynamics of one oscillator with respect
to Ke in the interval range [0.15,0.40] when the system bifurcates from an under-damped state to a
rhythmical regime with the resonant frequencies of the tensile structure.

FIGURE 5.8 – Phase plots for external coupling Ke corresponding to three different behavioral patterns
and for different amplitudes Je. (a) Ke = 0.0, the oscillators control in open-loop vertebral column to
their intrinsic regime different from the one of the structure. (b) Ke = 0.2, The oscilators go to a stable
point attractor that return back when perturbed. This corresponds to a stable and passive pre-reflexive
stage. (c) Ke > 0.2, the general regime of synchronization is stabilized to generate rhythmical patterns
around the center, which vary also depending on the motor force Je.

Active Top-Down Control

Based on the results found from the different coupling parameters, it is possible then to command
the vertebral column indirectly depending on the different coupling parameters with respect to
external perturbations. We can define some motor strategies that link the coupling parameters
{Ke,Ki,Je} to at least three behaviors for postural control, namely the under-damped upward
posture when no feedback is furnished, the rhythmical balance during phase synchronization
and the forced controlled with strong feedback during co-contraction. The motor strategies are :
Rule 1 : {Ke,Je} = {1,0} when |ACCZ| < 0.1
Rule 2 : {Ke,Je} = {1,1} when |ACCZ| > 0.5
Rule 3 : {Ke,Je} = f(ACCZ) when 0.1 < |ACCZ| < 0.5

Rule 1 corresponds to the standing posture of the column at the vertical, in its stable position.
The tensegrity structure is totally passive when no feedback and deviations are sensed. The
coupling parameter {Je} is set to 0 for the motor output.
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Rule 2 corresponds to the case in which a strong perturbation is given to the structure in its
axis of rotation. The rule pushes the global parameter Je to the value 1, which corresponds to a
strong feedback and then reduces it to 0.

Rule 3 corresponds to the case of a soft push on the structure and to its dynamical adaptation
to it. This situation is a subcase of the previous rule 2, which synchronizes and adapt the vertebral
column robot to a particular cyclic regime and resonant state based on feedback.

We plot in Fig. 5.9 an example of the top-down control strategy used to stabilize the tense-
grity robot based on the modulation of Je when a strong push has been applied on the structure
and for four transitory regimes. The top chart displays the variation of {Je} over time, the middle
chart displays the position of the structure in the Z axis and centered on its vertical axis at 0 and
the bottom chart corresponds to the dynamics of one oscillator. When a strong perturbation is
applied, the higher controller generates an oscillatory regime to absorb the shock. Depending
on the decreasing speed of the parameter Je, the forced oscillatory regime of the CPGs will be
under-damped (long transitory regime) or over-damped (fast transitory regime). The transitory
regime varies from an interval length of 20 seconds for the slower decays of Je, see Fig. 5.9
(a-b), to the shorter interval lengths of 5−7 seconds for quicker decays of Je, see Fig. 5.9 (c-d).
All the oscillations finish with a small vibratory mode around the vertical axis, till its return to
a static posture with the release of the motors from co-contraction. This strategy was efficient in
ninety percent of the cases, irrespective to the shock level.

FIGURE 5.9 – Feedback control of the global parameter Je on the CPG oscillatory regime for shock
absorption. When a strong perturbation is imposed on the structure, an oscillatory regime is established
by the top-down controller on the vertebral column to absorb the shock with a high amplitude till their
attenuation. This transitory regime depends on the amplitude of the shock and of velocity of the Je to
steer the oscillators and the motors till their release when the column is stable enough to return back
and stand at its upward posture. The more Je decays slowly, the longer the transition to a stable regime
(under-damped oscillations). The more Je decays fastly, the quicker the transition to a stable regime
(over-damped oscillations).

- 152 -



CHAPITRE 5. CONTRIBUTION TO SYNERGISTIC MODELS FOR SOFT ROBOTICS

Discussion

We presented a tensegrity-based model of a vertebral column controlled actively with nonlinear
oscillators and feedback for rhythmical balance and upward posture. We show that tensile struc-
tures present interesting properties for the design of soft and bio-inspired robots with the use of
replicative elements to insure a redundancy of the global behavior at the macroscale level and a
flexibility with the many degrees of freedom of each element. These structures are lightweights
and pre-tensed, which make them physically robust to shocks even passively as they distribute
their tension on all their elements. Furthermore, their stiffness can be linearly controlled with
the co-contraction of the motors to switch from a flexible behavior to a rigid one. The dimensio-
nality of the system makes it a complex system and the way to control it requires to exploit its
passive dynamics and to entrain the controllers to its resonant frequencies for upward balance or
for rhythmical motion.

Placed in the horizontal, at the vertical or in an undefined posture, the energy distribution
of stress and strain is self-sustained. In an inverse pendulum configuration, the tensile structure
can be controlled for upward balance. This physical property also observed in animals can be an
important feature for the design of energy-efficient humanoid robots for standing, moving and
manipulating objects McGeer [1990]; Collins et al. [2005]; Bliss et al. [2008]; Tietz et al. [2013].
As its elements are simple enough to be 3D printed and replicated, they make the entire tensegrity
structure easy (and fun) to construct as well as low-cost. The energy-efficiency of the physics has
an overall impact on the control design and energy consumption and its autonomy as it makes it
lightweight, with less friction and easier to move, which reduces the power consumption of the
motors and their necessary torque per Joule, which allows to have smaller, weaker, less precise
and at the end very cheap motors.

This eco-logical design makes bio-inspired tensegrity models a competitive choice for the
conception of future price- and energy-saving robots. For instance, the autonomy of current
robots is still poor as they are often over-dimensionned in term of weight and of force. They
often cannot be used for a long period of time, which is critical in situations of rescue tasks, in
uneven environments or space Caluwaerts et al. [2014].

From a control viewpoint, the physics of this complex system require to adopt a more bio-
inspired type of control with loosely and parallely distributed units for adaptation to the body
dynamics. In the end, the elastic properties of the tensegrity-based articulated trunk may ease
its control Alexander [2005] ; i.e., its morphological control Pfeifer and Bongard [1999]; Pfeifer
and Gomez [2009]; Pfeifer and Pitti [2012]. The central pattern generators in the spinal cords
are local neural units that can generate a rhythmical pattern even without any feedback. Their
activity however is always under the local feedback control of muscles spindle signals and the
global feedback control of neuromodulators at the spinal circuits level or at higher level. These
feeback loops make these units embodied to the physics of the structure and contingent to a glo-
bal co-ordination at the task level. We use Kuramato oscillators to entrain the vertebral column
to its own rhythms and to synchronize them dynamically to the structure’s resonant frequencies
thanks to of the IMU unit. This phenomenon is known as feedback resonance and is used as
a strategy to control the vertebral column to its resonant frequencies for shock absorption and
postural balance. The tensile robot presents interesting damping properties that make it easy to
stabilize at the upward configuration, either passively or actively Iida and Pfeifer [2004]. This
is in line with observations done on biological systems and humans on the importance of an
actuated head and flexible trunk to body balance Turvey and Fonseca [2014] and passive wal-
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kers Alexander [2005]; Laumond et al. [2015]. Our adaptive control will be extended in future
works with the use of feedback error for dynamical synchronization of the structure to one par-
ticular rhythm with the use of more biological models of neurons having reciprocal, inhibitory
and oscillatory modes Amrollah and Henaff [2010]; Nassour et al. [2014]; Melnyk and Henaff
[2016]; Pitti et al. [2010]. We will design a neural controller of the global parameters for the
dynamical entrainment of the resonant frequencies as well as of the phase resetting Nakanishi
et al. [2004]. At now, we have employed only one IMU unit at the top vertebral column. In fu-
ture works, we will employ more IMU units for each segment as it is known that the vestibular
system, perceiving rotational velocities and linear accelerations, uses this information to gene-
rate a unified inertial reference frame, centered in the head that allows whole-body coordinated
movements and head-oriented locomotion Berthoz [2000]; Falotico et al. [2016].

Starting from this tensegrity-based vertebral column robot, it is natural then to think to design
other body parts based on tensegrity Flemons [2012]. We will attempt to go further in that
direction with a more complex body, possibly for walking Pitti et al. [2009b]. Finally, as an
educational tool, and in order to enable experimentation in robot design, we are happy of sharing
the 3D model with videos in a website (see Supplemental Data) to make it available for a large
audience and reusable for the Do-It Yourself community and the scientific community to expand
it to new designs and shapes.
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Synthèse

I have presented an extended overview of what is constituting my research going from short-time
scales of neural dynamics to the longer time scales of body dynamics, learning and development.
These five chapters give me the opportunity to overview myself the pros and cons of my research.
Ten years after the writing of my Ph.D. thesis and of the research done in between, the writing
of this mémoire could permit me to make some scientific critics.

By looking back to my different works done in these areas, in chapter 3 on neural models
for body representation, multimodal integration and the study of the mirror neurons system,
with many models less successfull based on associative hebbian learning or with spiking timing-
dependent plasticity, the better understanding for me on the mechanisms underlying sensorimo-
tor transformation and spatial representation in the Parietal Cortex done by Gain-Field neurons
has permitted to construct more robust neural networks for multimodal integration. It served me
to understand how amplitude modulation can be an important computational mechanism present
over all the brain.

For instance, Gain-Field networks present interesting properties for modeling transformation
function, thanks to its multiplicative function and in comparison to radial basis functions and to
multilayers networks, its architecture is less complex, which may serve to aggregate efficiently
various signals into multiple reference frames. Although the results on multimodal integration
were restricted first on bimodal integration, combining visuo- and tactile stimuli, tactile and
proprioception, audio- and vision for spatial representation. I started to extend this work to three
modalities, like audio- visual and motor, or tactile visual and motor integration.

By augmenting the number of modalities, I realized that new emergent properties could be
realized off-the-shelf and more easily than I thought on tasks that were seen complicated at first
like self-other differentiation, body image, ego- versus allocentric spatial representation, speech
and person recognition, reaching and grasping tasks. This research on multimodal integration
constitutes one important aspect of my work, the results are still at their beginning and didn’t
show all their potential in the modeling of a perceiving robot throughout its senses toward spatial
moving in 2D space and toward the understanding of the construction of oneself and of others.

In chapter 4, I have presented different neural architectures that model the construction of
working memories during development. The underlying mechanisms are based on the modeling
of neuromodulators for reinforcement learning, novelty detection and noise attenuation, which
influences in return the functional integration in these structures during the learning stages. The
first neural architecture is a model of the hippocampo-cortical complex for novelty retrieving,
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and retention of information during the first year. The second model is a neural architecture of
the prefrontal and cortical interaction for decision making and sequence selection and learning.
The third model is a neural architecture of the cortico-basal loop for memory sequence learning
and retrieving. The results found in these networks are emerging properties for information
accumulation and retention, the capability to discriminate contextual networks and to learn long-
range memory sequences.

These models are to me a good step toward making a developmental cognitive architecture
similar to the human working memories with the ability to adapt to novel situations by testing
new possibilities and by learning dynamically from them. One of the goal is to make a life-long
learning system capable to apprehend new situations. I believe that this work may serve toward
the design of a future neurocognitive hardware.

In chapter 5, I have start to think about a novel robotic structure based on tensegrity in order
to have a more compliant system and more complex dynamics. I still believe that soft robotics
is our future in robotics. The vertebral column robot served me to study a more biologically
based control from my previous experiments done during my PhD on central pattern generators
and on the emergence of motor synergies. We observed that the system is very dynamic and
underactuated but it is still possible to control with nonlinear controllers and oscillators through
the exploitation of resonance and of its passive dynamics. My goal will be to expand our results
to new robotic models in order to have a theory of motor synergies and central pattern generators
for dynamical motion control, something crucially missing in my research otherwise. I would
like to adapt this to arm motion, balance and body posture, which puts forward the notions of
tensegrity.

Perspectives

All along this document, I gave a detailed overview of the research work I have been involved
in for the last 10 years in order to demonstrate my abilities to animate/supervise research acti-
vities (including the supervisions of MSc and PhD students, the writing of proposals for project
funding, the sustaining of national and international collaborations, publications, etc.).

It is now time to think about the future and give concrete elements about my scientific project
for the years to come. In this following section, I give scientific elements as well as details about
the funding strategy.

Working Memories for Life Long Learning Machines

It is still difficult for roboticists to make robots capable to learn for a long period of time and
to learn complex rules that go beyond simple reinforcement learning. Incremental learning is an
important design principle for cognitive robotics but results in our community is still harsh. In
order to have adaptive robots, one will have to design a cognitive architecture for what is termed
now Life Long Learning. I would like to exploit the different biological mechanisms used for
designing working memories based on spiking neurons for novelty discovery and habit learning.
Using these ideas from dynamic systems, I hope to make a more complex and robust version
of neurocognitive architectures for robots that can deal with the unexpected, and that can serve
for a robot to think spatially based on multimodal information and sensorimotor coordination,
which is something poorly done yet in the current state of art.
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I believe that our work on Predictive Coding and Free-Energy Minimization for sensorimotor
integration in multiple recurrent neural networks with the INFERNO model is an important step
for me that could embed aspects of Embodied AI (learning sensorimotor primitive, temporal
coding) with aspects of Old-fashioned Symbolic AI such as Active Inference and the Bayesian
probabilities.

Old fashion AI has succeeded to apply logical and inference rules on discrete and constrained
environments, graphs. Although all incoming information is asynchrone, one important step will
be for robots to think causally, sequentially and ordinally with their body and to resolve problems
dynamically through their actions, through their perceptual experience in the world.

By doing so, a developmental robot can acquire intuitive rules from Physics and the Social
environment and employing these rules toward achieving one complex goal, to acquire a biogra-
phical memory, which is still a drawback in current robotics. To some points, this should lead
to the construction of a Neural Turing Machines as coined by Alex Graves, a working memory
capable to learn sequences and solve problems dynamically, to replay them online and to ge-
neralize them into ’routines’ ; grounded to the body sensorimotor rules. Solving this problem
will have perhaps the highest impact in the near future with the development of neuromorphic
hardware.

My collaboration with the Laboratory IRCICA, Université de Lille on Neuromorphic Hard-
ware for memory sequences based on Spiking Neurons with an ANR submission is an important
step toward it.

Robot Body representation, Thinking Spatially and Socially

Another important design principle that I will consider is the ability for a robot to learn to cali-
brate its own body representation and to learn to think spatially, causally and physically relative
to it by constructing eyes-, arm-, hands- centered representations. This egocentric representation
is important in order to reach and grasp objects and to have a dynamic body image that changes
with respect to actions toward objects and toward persons. The challenge is to model the so-
called Mirror Neurons System. Further researches on neural modeling of the Parietal Cortex
will serve to have a multimodal representation, body-centered based on vision, proprioception,
tactile information.

Another direction of research will be to extend the egosphere centered on the head in order
to incorporate a facial representation, based on facial motion, sound representation, eye gaze
and tactile mapping toward joint attention, mentalizing, theory of mind. Having a robot that can
express itself through body motion and facial expression as well as speech is an important step
in order to reach another functional level of cognitive functions for social interaction.

My collaboration with Sofiane Boucenna from ETIS Laboratory and Rana Eisselly, Bahia
Guellai and Maya Gratier of the Baby Lab of Nanterre University on multimodal integration in
infants and in robots with whom an ANR project has been submitted. My other collaboration with
Philippe Gaussier from ETIS Laboratory and Daniella Corbetta from University of Tenessee on
the construction of a body image in infants and robots is an important step toward it.

Tools, Language, Ideomotor and Predictive Coding

The Ideomotor principle describes the idea that our brain exploits some sensorimotor rules, se-
lects some actions beforehands and simulates situations never occured before in order to reach
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some desired outcomes. This idea appears highly relevant to overcome recursive and complex
tasks such as tool-use and language, although the mechanisms behind and the architectures pro-
posed in the litterature are not clearly exposed and still investigated. It is in line with other
concepts such as active perception, or active inference, the ability to infer a desired perception
or to infer hidden causes linked to some effects. This principle has some links with Bayesian
Inference and the Free-Minimization Principle, or to the Predictive Coding Paradigm, which
puts forward the role of action and of embodiment to learn these rules. These properties may
serve to construct a cognitive architecture as exposed earlier that may achieve to solve hard
cognitive problems such as active perception, motion coordination, action sequence. The wor-
king memory that I proposed INFERNO and the modeling of a body representation based on
multimodal integration can serve to reach these higher cognitive skills.

My previous works with PhD students and future research with the Neurocybernetic Team
from ETIS Lab will help to reach this goal.

Smart Materials and Soft Robotics

Since the design of the body has an impact on its control and on its behaviors, thinking about its
hardware and its morphology makes sense if we want to have autonomous and adaptive robots ;
it concerns on the hardware part : the design of their artificial muscles, of their artificial skin
and of the visco-elasticity of their soft tissues. Besides, it concerns on the morphology part : the
geometrical and structural properties of their body. These different aspects cannot be neglected
for the ecology of motion and balance.

Truly autonomous robots require thus to rethink the design of robots for low-power consump-
tion and ecological concerns : how passive dynamics and compliance can serve control for so
many behaviors such as objects manipulation, postural balance, walking or social interaction.

I have made some slow advances in this part by working on a prototype of an artificial skin
and on the design of low-pow, lightweights and compliant robots. On the one hand, softness and
compliance of the body has to be incorporated ultimaly into the controller in order to have some
optimality in motion control. On the other hand, augmenting the capability to touch and to be
touched to are a prerequisite to endow robots of compliant physical and social interactions.

The way to perform one optimal control in a high-degrees of freedom system for flexible
and dynamical motion is still unknown. I believe that having an integrative view can help to
construct a complementary system between robot body and its controller. Following this, I will
pursue new principles for the control of soft robots.

In that perspective, tensegrity structures have interesting design properties, as they are highly
distributed to implement mechanically a nonlinear stiffness which is present in biological orga-
nisms ; the balance between stress and strain of these structures confers them to be robust and
compliant again external shocks. This design may serve to model complex articulations motion
like the ankle, the hip, the foot, the hand, the vertebral column or the elbow, which are impor-
tant for compliant robots. I will work toward the understanding of the mechanical design of
the human joints in order to have more biologically-inspired robots to perform energy-efficient
postural balance, walking, and grasp with the associated modeling of the motor synergies and
central pattern generators.

My collaboration with Olivier Romain from ETIS Laboratory under the french consortium
VEDECOM on the future of autonomous vehicles will serve to develop a novel version of our
current artificial skin in order to augment its spatial resolution using spectral information.
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