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Introduction

Let N denote the set of natural numbers, including 0. A semigroup S is an additive submonoid of (N,+), that
is 0 ∈ S and if a, b ∈ S, then a+ b ∈ S. A numerical semigroup S is a submonoid of N of finite complement,
i.e., N \ S is a finite set. It can be shown that a submonoid of N is a numerical semigroups if and only if the
group generated by S in Z (namely the set of elements

∑s
i=1 λiai, λi ∈ Z, ai ∈ S) is Z.

There are many invariants associated to a numerical semigroup S. The Apéry set of S with respect to an
element a ∈ S is defined as

Ap(S, a) = {s ∈ S; s− a /∈ S}.

The elements of N \ S are called the gaps of S. The largest gap is denoted by

f = f(S) = max(N \ S)

and is called the Frobenius number of S. The number f(S)+1 is known as the conductor of S and denoted
by c or c(S).The number of gaps

g = g(S) = |N \ S|

is known as genus of S. The smallest non zero element m = m(S) of S is called the multiplicity of S and
the set {s ∈ S; s < f(S)} is denoted by n(S). Every numerical semigroup S is finitely generated, i.e., S is of
the form

S =< g1, . . . , gν >= Ng1 + . . .+ Ngν
for suitable unique coprime integers g1, . . . , gν . The number of minimal set of generators of S is denoted by

ν = ν(S)

and is called the embedding dimension of S. An integer x ∈ N\S is called a pseudo-Frobenius number
if x + S \ 0 ⊆ S. The type of the semigroup, denoted by t(S) is the cardinality of set of pseudo-frobenius
numbers. We have formulas linking these invariants.

Frobenius in his lectures proposed the problem of giving a formula for the largest integer that is not repre-
sentable as a linear combination with nonnegative integer coefficients of a given set of positive integers whose
greater common divisor is one. He also threw the question of determining how many positive integers do
not have such a representation. This problem is known as Diophantine Frobenius Problem. Using the
terminology of numerical semigroups, the problem is to give a formula, in terms of the elements in a minimal
system of generators of a numerical semigroup S, for the greatest integer not in S. This problem, introduced
and solved by Sylvester for the case ν = 2 (see [21]), has been widely studied. For ν = 3, in 1962 Brauer
and Shockly (see [6]) found a formula for the Frobenius number but their solution was not a polynomial in
the generators and it involved magnitudes which could not be expressed by the generators. Later on, more
solutions to this case were found by using different methods (for example see [20]). However, all of these
methods do not give explicit formula of the Frobenius number in terms of the generators. Generally, it has
been proved in [15] that f(S) is not algebraic in the set of generators of S.

In [22] 1978 H. S. Wilf proposed a conjecture suggesting a regularity in the set N \ S. It says the following :

f(S) + 1 ≤ ν(S)n(S).

Although the problem has been considered by several authors (cf. [2], [4], [9], [10], [11], [14], [19], [23] ), only
special cases have been solved and it remains wide open. In [9], D. Dobbs and G. Matthews proved Wilf’s
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Introduction

conjecture for ν ≤ 3. In [14], N. Kaplan proved it for c ≤ 2m and in [10] S. Eliahou extended Kaplan’s work
for c ≤ 3m.

In Chapter 1, we recall some basics about numerical semigroups that will be used through the thesis.

In Chapter 2, we generalize the case covered by A. Sammartano in [19], who showed that Wilf’s conjecture
holds for 2ν ≥ m, and m ≤ 8, based on the idea of counting the elements of S in some intervals of length m.
We use different intervals in order to get an equivalent form of Wilf’s conjecture and then we prove it in some
relevant cases. In particular our calculations cover the case where 2ν ≥ m, proved by Sammartano in [19].
Here are few more details on the contents of this Chapter. Section 2.1 is devoted to give some notations that
will enable us in the same Section to give an equivalent form of Wilf’s conjecture. In Section 2.2, we give
some technical results needed in the Chapter. Let Ap(S,m) = {0 = w0 < w1 < · · · < wm−1}. In Section
2.3, first, we show that Wilf’s conjecture holds for numerical semigroups that satisfy wm−1 ≥ w1 + wα and
(2 + α−3

q )ν ≥ m for some 1 < α < m− 1 where c = qm− ρ for some q ∈ N, 0 ≤ ρ ≤ m− 1. Then, we prove
Wilf’s conjecture for numerical semigroups with m−ν ≤ 4 in order to cover the case where 2ν ≥ m. We also
show that a numerical semigroup with m−ν = 5 verify Wilf’s conjecture in order to prove the conjecture for
m = 9. Finally, we show in this Section, using the previous cases, that Wilf’s conjecture holds for numerical
semigroups with (2 + 1

q )ν ≥ m. In Section 2.4, we prove Wilf’s conjecture for numerical semigroups with
wm−1 ≥ wα−1 + wα and (α+3

3 )ν ≥ m for some 1 < α < m − 1. In Section 2.5, we show Wilf’s conjecture

holds for numerical semigroups with wm−1−m ≥ wx+wy and
(
2+ b

wx
m
c(y−x−1)+(y−2)+bwy

m
c(x−1)

bwx
m
c+bwy

m
c+2

)
ν ≥ m. The

last Section 2.6 aims to verify the conjecture in the case m− ν > (n−2)(n−3)
2 and also in the case n ≤ 5.

Exact determination of Ap(S,m), f(S), g(S) and PF (S) is a difficult problem. When S is generated by an
arithmetic sequence < m,m + 1, . . . ,m + l >, Brauer [5] gave a formula for f(S). Roberts [17] extended
this result to generators in arithmetic progression (see also [3], [24]). Selmer [20] and Grant [13] generalized
this to the case S =< m,hm + d, hm + 2d, . . . , hm + ld >. In [16], it has been considered the case of
semigroups generated by {m,m+ d, . . . ,m+ ld, c} (called almost arithmetic semigroups) where it has been
given a method to determine Ap(S,m) and also symmetric almost arithmetic semigroups. In [12], pseudo
symmetric almost arithmetic semigroups have been characterized. In Chapter 3, we focus our attention on
numerical semigroup consisting of all non-negative integer linear combinations of relatively prime positive
integers m,m+ 1, . . . ,m+ l, k(m+ l) + r where k,m, l, r are positive integers and r ≤ (k + 1)l+ 1. We give
formulas for Ap(S,m), f(S), g(S) and PF (S). We also determine the symmetric and the pseudo symmetric
numerical semigroups of this form. Note that our semigroups < m,m+1, . . . ,m+ l, k(m+ l)+r > are almost
arithmetic semigroups. The advantage is that we are able for this class of semigroups to determine all the
invariants with simple formulas.

Good references on numerical semigroups are [18] and [1].
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1
Basics and notations

Definition 1.0.1. Let S be a subset of N. We say that S is a submonoid of (N,+) if the following holds :

• 0 ∈ S.

• If a, b ∈ S, then a+ b ∈ S.

�

Remark 1.0.2. All semigroups considered in this thesis are submonoids of (N,+), hence commutative, that
is, a+ b = b+ a for all a, b ∈ S. �

Example 1.0.3. Consider the following examples :

• {0} and N are trivially submonoids of N.

• Let d be an element of N, the set dN = {da : a ∈ N} is a submonoid of N.

�

Definition 1.0.4. Let S be a submonoid of N. If N \ S is a finite set, then S is said to be a numerical
semigroup. �

We have the following characterization of numerical semigroups :

Proposition 1.0.5. (See Lemma 2.1 in [18]) Let S 6= {0}, and S 6= N be a semigroup of N and let G be
the subgroup of Z generated by S, i.e., (G = {

∑s
i=1 λiai, s ∈ N, λi ∈ Z, ai ∈ S}). Then, S is a numerical

semigroup if and only if G = Z, i.e., (gcd(S)=1). �

Proposition 1.0.6. (See Proposition 2.2 in [18]) Let S be a semigroup of N. Then, S is isomorphic to a
numerical semigroup. �

Definition 1.0.7. Let S be a numerical semigroup and let A ⊆ S. We say that S is generated by A and
we write S =< A > if for all s ∈ S, there exist a1, . . . , ar ∈ A and λ1, . . . , λr ∈ N such that a =

∑r
i=1 λiai.

We say that S is finitely generated if S =< A > with A ⊆ S and A is a finite set. �

Remark 1.0.8. Through this thesis X∗ will stand for X \ {0}. �

Next, we introduce an important tool associated to a numerical semigroup.
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CHAPITRE 1. BASICS AND NOTATIONS

Definition 1.0.9. Let n ∈ S∗. We define the Apéry set of S with respect to n, denoted by Ap(S, n), to
be the set

Ap(S,n) = {s ∈ S : s− n /∈ S}.

�

Remark 1.0.10. Given a non zero integer n and two integers a and b, we write a ≡ b mod (n) to denote
that n divides a− b. We denote by b mod n the remainder of the division of b by n. �

From Definition 1.0.9, we can easily see the following.

Lemma 1.0.11. Let S be a numerical semigroup and let n ∈ S∗. For all 1 ≤ i ≤ n, let w(i) be the smallest
element of S such that w(i) ≡ i mod (n). We have the following :

Ap(S, n) = {0,w(1), . . . ,w(n− 1)}.

�

Proposition 1.0.12. Let S be a numerical semigroup. Let n ∈ S∗ and let Ap(S, n) = {w0 < w1 . . . < wn−1}
be the Apéry set of S with respect to n. We have the following :

• w0 = w(0) = 0.

• |Ap(S, n)| = n.

�

Proposition 1.0.13. (See Lemma 2.6 in [18]) Let S be a numerical semigroup and let n ∈ S∗. For all s ∈ S,
there exists a unique (k,w) ∈ N×Ap(S,n) such that s = kn+ w. �

As a consequence of Proposition 1.0.13, we obtain the following property.

Corollary 1.0.14. (Theorem 2.7 in [18]) Let S be a numerical semigroup. Then, S is finitely generated. �

Definition 1.0.15. Let S be a numerical semigroup and let A ⊆ S∗. We say that A is a minimal set
of generators of S if S =< A > and for all x ∈ A, x cannot be written as a linear combination with
nonnegative integer coefficients of other elements in A. �

Corollary 1.0.16. (See Corollary 2.8 in [18]) Let S be a numerical semigroup. Then, S has a minimal set
of generators. This set is finite and unique. �

Definition 1.0.17. Let S be a numerical semigroup. We define the following invariants :

• The embedding dimension of S denoted by ν(S), or ν for simplicity, is the cardinality of the
minimal set of generators of S.

• The multiplicity of S denoted by m(S), or m for simplicity, is the smallest non zero element of S.

�

Lemma 1.0.18. (See Proposition 2.10 in [18]) Let S be a numerical semigroup with multiplicity m and
embedding dimension ν. We have ν ≤ m. �

Let us recall some basic and important invariants of numerical semigroups.

Definition 1.0.19. Let S be a numerical semigroup. We introduce some invariants associated to a numerical
semigroup S :

• We define the Frobenius number of S, denoted by f or f(S) to be max (Z \ S).

• We define the conductor of S, denoted by c or c(S) to be f(S) + 1.
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CHAPITRE 1. BASICS AND NOTATIONS

• We define the set of gaps of S, denoted by G(S) to be N \ S.

• We define the genus of S, denoted by g(S) to be the cardinality of G(S).

• We denote by n(S), the cardinality of {s ∈ S : s ≤ f(S)}.

�

Remark 1.0.20. Note that f(S) ≥ 1 for all non trivial numerical semigroups. �

Lemma 1.0.21. (See in [6], [20]) Let S be a numerical semigroup and let n ∈ S. Then,

• f(S) = max(Ap(S, n))− n.

• g(S) = 1
n

∑
w∈Ap(S,n)

w − 1
2(n− 1).

�

Definition 1.0.22. Let S be a numerical semigroup. We say that x ∈ N is a pseudo-Frobenius number
if x /∈ S and x + s ∈ S for all s ∈ S∗. We denote by PF (S) the set of all pseudo-Frobenius numbers of S.
We denote the cardinality of PF (S) by t(S) and we call it the type of S. It results from the definition of

f(S) that f(S) ∈ PF (S), and also f(S) = max (PF (S)). �

Corollary 1.0.23. (See Theorem 20 in [11]) Let S be a numerical semigroup with Frobenius number f(S),
type t(S) and n(S) = |{s ∈ S : s < f(S)}|. Then, we have

f(S) + 1 ≤ (t(S) + 1)n(S).

�

Wilf’s conjecture : Let the notations be as before. The problem whether f(S) + 1 ≤ n(S)ν(S) is known
as Wilf conjecture [22]. For some families of numerical semigroups this conjecture is known to be true, but
the general case remains unsolved.

Remark 1.0.24. By Corollary 1.0.23, if t(S) ≤ ν(S)− 1, then S satisfies Wilf’s conjecture. �

Definition 1.0.25. Let a, b ∈ N. We define ≤S as follows : a ≤S b if and only if b− a ∈ S. �

Remark 1.0.26. As S is a numerical semigroup, it easily follows that ≤S is an order relation over S
(reflexive, transitive and anti symmetric). �

Definition 1.0.27. Let S be a numerical semigroup and n ∈ S∗. Let Ap(S, n) = {w0 = 0 < w1 < w2 <
. . . < wn−1} be the Apéry set of S with respect to n. Then, define the following sets :

min≤S (Ap(S, n)) = {w ∈ Ap(S, n)∗ such that w is minimal with respect to ≤S}.

max≤S (Ap(S, n)) = {w ∈ Ap(S, n)∗ such that w is maximal with respect to ≤S}.

�

Lemma 1.0.28. (See Lemma 6 in [11]) Let S be a numerical semigroup, n ∈ S∗ and Ap(S, n) be the Apéry
set of S with respect to n. Let w ∈ Ap(S, n) and u ∈ S. If there exist v ∈ S such that w = u+ v, then u ∈
Ap(S, n). �

Corollary 1.0.29. Let x ∈ Ap(S, n)∗. We have the following :

• x ∈ min≤S (Ap(S, n)) if and only if x 6= wi + wj for all wi, wj ∈Ap(S, n)∗.

• x ∈ max≤S (Ap(S, n)) if and only if wi 6= x+ wj for all wi, wj ∈Ap(S, n)∗.

Proof. Let x ∈ Ap(S, n)∗.
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CHAPITRE 1. BASICS AND NOTATIONS

• Let x ∈ min≤S (Ap(S, n)). Suppose by the way of contradiction that x = wi + wj for some wi, wj ∈
Ap(S, n)∗. Then, x = wi+wj with wi ∈ Ap(S, n) and wj ∈ S which implies that x /∈ min≤S (Ap(S, n))
and we get a contradiction.
Conversely, suppose that x 6= wi + wj for all wi, wj ∈Ap(S, n)∗. Suppose by the way of contradiction
that x /∈ min≤S (Ap(S, n)), then there exist wi ∈ Ap(S, n) and s ∈ S such that x = wi + s. By
Lemma 1.0.28, it follows that s ∈ Ap(S, n). Thus, x = wi + s such that wi, s ∈ Ap(S, n) which gives a
contradiction.

• Let x ∈ max≤S (Ap(S, n)). Suppose by the way of contradiction that wi = x + wj for some wi, wj ∈
Ap(S, n)∗. Then, wi = x+wj with wi ∈ Ap(S, n) and wj ∈ S which implies that x /∈ max≤S (Ap(S, n))
and we get a contradiction.
Conversely, suppose that wi 6= x+ wj for all wi, wj ∈ Ap(S, n)∗. Suppose by the way of contradiction
that x /∈ max≤S (Ap(S, n)), then there exist wi ∈ Ap(S,m) and s ∈ S such that wi = x + s. By
Lemma 1.0.28, it follows that s ∈ Ap(S, n). Thus, wi = x+ s such that wi, s ∈ Ap(S, n) which gives a
contradiction.

Thus, the proof is complete. �

Proposition 1.0.30. (See Lemma 3.2 in [7] ) Let S be a numerical semigroup with multiplicity m and
embedding dimension ν and let n ∈ S∗. Let Ap(S, n) be the Apéry set of S with respect to n and let
{g1 < g2 < . . . < gν} be the minimal set of generators of S. We have the following :

• g1 = m.

• min≤S (Ap(S, n))={g2, ..., gν}.

• max≤S (Ap(S, n))={w ∈ Ap(S, n) such that w − n is a pseudo-Frobenius number of S}.

�

From Proposition 1.0.30, it follows Corollary 1.0.31.

Corollary 1.0.31. Let S be a numerical semigroup with multiplicity m, embedding dimension ν and
{g1 = m, g2, . . . , gν} the minimal system of generators of S. Let n ∈ S∗ and Ap(S, n) be the Apéry set of S
with respect to n. We have the following :

• | min≤S (Ap(S, n))| = ν − 1.

• |Ap(S, n)∗\min≤S (Ap(S, n))| = n− ν.

• | max≤S (Ap(S, n))| = t(S).

�

We introduce in Definitions 1.0.32 and 1.0.33 special kind of numerical semigroups and give some properties
of this kind in Lemma 1.0.34.

Definition 1.0.32. A numerical semigroup is said to irreducible if and only if S cannot be expressed as
the intersection of two numerical semigroups S1, S2 such that S ⊂ S1, S ⊂ S2. �

Definition 1.0.33. Let S be a numerical semigroup. We have the following :

• S is said to be symmetric if and only if S is irreducible and f(S) is odd.

• S is said to be pseudo-symmetric if and only if S is irreducible and f(S) is even.

�

Lemma 1.0.34. (See Corollary 4.5 in [18]) Let S be a numerical semigroup with Frobenius number f(S)
and genus g(S). We have the following :

6



CHAPITRE 1. BASICS AND NOTATIONS

• S is symmetric if and only if g(S) = f(S) + 1
2 .

• S is pseudo-symmetric if and only if g(S) = f(S) + 2
2 .

�

Remark 1.0.35. Consider the following notation that will be used throug this thesis :

• We denote by floor (x) = bxc the largest integer less than or equal to x.

• We denote by ceil (x)= dxe the smallest integer greater than or equal to x.

�

7





2
Wilf’s conjecture

In this chapter, we give an equivalent form of Wilf’s conjecture in terms of the elements of the Apéry set
of S, embedding dimension and the multiplicity. We also give an affirmative answer to Wilf’s conjecture in
some cases.

2.1 Equivalent form of Wilf’s conjecture

Let the notations be as in the introduction. For the sake of clarity we shall use the notations ν, f, n, c... for
ν(S), f(S), n(S), c(S).... In this Section, we will introduce some notations and family of numbers that will
enable us to give an equivalent form of Wilf’s conjecture at the end of this Section.

Notation. Let S be a numerical semigroup with multiplicity m and conductor c = f + 1. Denote by

q = d c
m
e.

Thus, qm ≥ c and c = qm− ρ with 0 ≤ ρ < m.

Given a non negative integer k, we define the kth interval of length m,

Ik = [km− ρ, (k + 1)m− ρ[= {km− ρ, km− ρ+ 1, . . . , (k + 1)m− ρ− 1}.

We denote by
nk = |S ∩ Ik|.

For j ∈ {1, . . . ,m− 1}, we define ηj to be the number of intervals Ik with nk = j.

ηj =
∣∣{k ∈ N; nk = j}

∣∣.
�

Let 0 ≤ k ≤ q − 2. If s ∈ S ∩ Ik then s + m ∈ S ∩ Ik+1. This implies that nk ≤ nk+1. Let for example
S = 〈4, 6, 13〉. We have c(S) = c = 16 = 4 · 4, hence Ik = [km, (k + 1)m[ for all k ≥ 0. Moreover,
n0 = 1, n1 = 2, n2 = 2, n3 = 3, and nk = 4 for all k ≥ 4. We also have η1 = 1, η2 = 2, η3 = 1.

Proposition 2.1.1. Under the previous notations, we have :

i) 1≤ nk ≤ m− 1 for all 0 ≤ k ≤ q − 1.

ii) nk = m for all k ≥ q.

9



CHAPITRE 2. WILF’S CONJECTURE

iii)
q−1∑
k=0

nk = n(S) = n.

iv)
m−1∑
j=1

ηj = q.

v)
m−1∑
j=1

jηj =
q−1∑
k=0

nk = n.

Proof.

i) We can easily verify that if S contains m consecutive elements a, a + 1, . . . a + m − 1, then for all
n ≥ a + m, n ∈ S. Since (q − 1)m − ρ < f < qm − ρ, then it follows that nk ≤ m − 1 for all
0 ≤ k ≤ q − 1. Moreover, km ∈ S ∩ Ik for all 0 ≤ k ≤ q − 1, thus nk ≥ 1.

ii) We have f = qm− ρ− 1 ∈ Iq−1. From the definition of the Frobenius number, it follows that nk = m
for all k ≥ q.

iii)
∑q−1
k=0 nk is nothing but the cardinality of {s ∈ S; s < f} which is n(S) by definition.

iv) We have 1 ≤
∣∣S ∩ Ik∣∣ ≤ m− 1 if and only if 0 ≤ k ≤ q − 1. This implies our assertion.

v) The sum
∑m−1
j=1 jηj is nothing but the cardinality of | ∪q−1

k=0 S ∩ Ik| = n. This proves our assertion.

Thus, the proof is complete. �

Next, we will express ηj in terms of th Apéry set.

Proposition 2.1.2. Let Ap(S,m) = {w0 = 0 < w1 < w2 < . . . < wm−1}. Under the previous notations, for
all 1 ≤ j ≤ m− 1, we have

ηj = bwj + ρ

m
c − bwj−1 + ρ

m
c.

Proof. Fix 0 ≤ k ≤ q − 1 and let 1 ≤ j ≤ m − 1. We will show that the interval Ik contains exactly j
elements of S if and only if wj−1 < (k + 1)m− ρ ≤ wj .

Suppose that Ik contains j elements. Suppose, by contradiction, that wj−1 ≥ (k + 1)m − ρ. We have
wm−1 > . . . > wj−1 ≥ (k + 1)m− ρ, thus

wm−1, . . . , wj−1 ∈ ∪qt=k+1It.

Hence, Ik contains at most j−1 elements of S (namely w0 +km = km,w1 +k1m,w2 +k2m, . . . , wj−2 +kj−2m
for some k1, . . . , kj−2 ∈ {0, . . . , k − 1}). This contradicts the fact that Ik contains exactly j elements of S.
Hence, wj−1 < (k + 1)m− ρ.
If wj < (k + 1)m− ρ, then w0 < . . . < wj < (k + 1)m− ρ, thus

w0, . . . , wj ∈ ∪kt=0It.

Then, Ik contains at least j+ 1 elements of S which are : w0 + km = km,w1 + k1m,w2 + k2m, . . . , wj + kjm
for some k1, . . . , kj ∈ {0, . . . , k − 1}, which contradicts the fact that Ik contains exactly j elements of S.
Hence, wj ≥ (k+1)m−ρ. Consequently, if Ik contains exactly j elements of S, then wj−1 < (k+1)m−ρ ≤ wj .

Conversely, wj−1 < (k + 1)m− ρ implies that w0 < . . . < wj−1 < (k + 1)m− ρ, then

w0, . . . , wj−1 ∈ ∪kt=0It.

Hence, Ik contains at least j elements of S which are w0 +km = km,w1 +k1m,w2 +k2m, . . . , wj−1 +kj−1m
for some k1, . . . , kj−1 ∈ {0, . . . , k − 1}. On the other hand, wj ≥ (k + 1)m − ρ implies that wm−1 > . . . >
wj ≥ (k + 1)m− ρ, then

wm−1, . . . , wj ∈ ∪qt=k+1It.

10
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Thus, Ik contains at most j elements of S which are : w0 +km = km,w1 +k1m,w2 +k2m, . . . , wj−1 +kj−1m
for some k1, . . . , kj−1 ∈ {0, . . . , k − 1}. Hence, if wj−1 < (k + 1)m − ρ ≤ wj , then Ik contains exactly j
elements of S and this proves our assertion. Consequently,

ηj = |{k ∈ N such that |Ik ∩ S| = j}|

= |{k ∈ N such that wj−1 < (k + 1)m− ρ ≤ wj}|

= |{k ∈ N such that wj−1+ρ
m < (k + 1) ≤ wj+ρ

m }|

= |{k ∈ N such that wj−1+ρ
m − 1 < k ≤ wj+ρ

m − 1}|

= |{k ∈ N such that bwj−1+ρ
m c ≤ k ≤ bwj+ρm c − 1}|

= bwj+ρm c − bwj−1+ρ
m c.

Thus, the proof is complete. �

Proposition 2.1.3 gives an equivalent form of Wilf’s conjecture using Propositions 2.1.1 and 2.1.2.

Proposition 2.1.3. Let S be a numerical semigroup with multiplicity m, embedding dimension ν and
conductor f + 1 = qm− ρ for some q ∈ N and 0 ≤ ρ ≤ m− 1. Let w0 = 0 < w1 < w2 < . . . < wm−1 be the
elements of Ap(S,m). Then, S satisfies Wilf’s conjecture if and only if

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ ≥ 0.

Proof. By Proposition 2.1.1, we have

f + 1 ≤ nν ⇔ qm− ρ ≤ ν
q−1∑
k=0

nk ⇔
q−1∑
k=0

m− ρ ≤
q−1∑
k=0

nkν ⇔
q−1∑
k=0

(nkν −m) + ρ ≥ 0.

Equivalently, we obtain
m−1∑
j=1

ηj(jν −m) + ρ ≥ 0.

By applying Proposition 2.1.2, we get

m−1∑
j=1

ηj(jν −m) + ρ ≥ 0⇔
m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ ≥ 0.

Thus, the proof is complete. �

2.2 Technical results

Let S be a numerical semigroup and let the notations be as in Section 2.1. In this Section, we give some
technical results will be used through the Chapter.

Remark 2.2.1. Let Ap(S,m) = {w0 = 0 < w1 < . . . < wm−1}. The following technical remarks will be
used through the Chapter :

i) bw0 + ρ

m
c = 0.

ii) For all 1 ≤ i ≤ m− 1, we have bwi + ρ

m
c ≥ 1.

11
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iii) For all 1 ≤ i ≤ m− 1, we have either bwi + ρ

m
c = bwi

m
c or bwi + ρ

m
c = bwi

m
c+ 1.

iv) If bwi + ρ

m
c = bwi

m
c+ 1, then bwi + ρ

m
c ≥ 2 and ρ ≥ 1.

v) For all 0 ≤ i < j ≤ m− 1, we have bwi + ρ

m
c ≤ bwj + ρ

m
c.

vi) bwm−1 + ρ

m
c = q.

Proof.

i) This is because w0 = 0 and 0 ≤ ρ < m.

ii) We have m < wi for all 1 ≤ i ≤ m− 1. This implies the result since ρ ≥ 0.

iii) For all 1 ≤ i ≤ m−1, let wi = qim+ri such that qi, ri ∈ N and ri < m. We have bwim c = qi. Therefore,

bwi + ρ

m
c = bqim+ ri + ρ

m
c = bqi + ri + ρ

m
c = qi + bri + ρ

m
c = bwi

m
c+ bri + ρ

m
c.

Since 0 ≤ ρ, ri < m, it follows that 0 ≤ ri+ρ
m < 2. Consequently, 0 ≤ b ri+ρm c ≤ 1. Hence,

bwi
m
c ≤ bwi + ρ

m
c ≤ bwi

m
c+ 1.

Equivalently,
bwi + ρ

m
c = bwi

m
c or bwi + ρ

m
c = bwi

m
c+ 1.

iv) Suppose that bwi+ρm c = bwim c+ 1. By using part ii), we get bwi+ρm c ≥ 2. In this case ρ ≥ 1 (as ρ ≥ 0).

v) By definition, we have wi < wj for all 0 ≤ i < j ≤ m − 1. Thus, wi+ρ
m <

wj+ρ
m . Consequently,

bwi+ρm c ≤ bwj+ρm c.

vi) By Lemma 1.0.21, we have f = max(Ap(S,m)) −m = wm−1 −m. Hence, bwm−1+ρ
m c = bf+m+ρ

m c =
b qm−ρ−1+m+ρ

m c = q.

Thus, the proof is complete. �

Let 1 < α < m − 1. Using Remark 2.2.1, we get the following inequalities which will be used later in the
Chapter :

α∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

=
α∑
j=1
bwj + ρ

m
c(jν −m)−

α∑
j=1
bwj−1 + ρ

m
c(jν −m)

=
α∑
j=1
bwj + ρ

m
c(jν −m)−

α−1∑
j=0
bwj + ρ

m
c
(
(j + 1)ν −m

)

=
α−1∑
j=1
bwj + ρ

m
c(jν −m) + bwα + ρ

m
c(αν −m)−bw0 + ρ

m
c(ν −m)−

α−1∑
j=1
bwj + ρ

m
c
(
(j + 1)ν −m

)

= bwα + ρ

m
c(αν −m)− bw0 + ρ

m
c(ν −m)−

α−1∑
j=1
bwj + ρ

m
cν

= bwα + ρ

m
c(αν −m)− bw0 + ρ

m
c(ν −m)− bw1 + ρ

m
cν−

α−1∑
j=2
bwj + ρ

m
cν

12
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= bwα + ρ

m
c(αν −m)− bw1 + ρ

m
cν −

α−1∑
j=2
bwj + ρ

m
cν (as bw0 + ρ

m
c = 0).

From Remark 2.2.1 (v), we have bwj+ρm c ≤ bwα+ρ
m c ∀ 2 ≤ j ≤ α− 1. Hence,

α∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

≥ bwα + ρ

m
c(αν −m)− bw1 + ρ

m
cν −

α−1∑
j=2
bwα + ρ

m
cν

= bwα + ρ

m
c(αν −m)− bw1 + ρ

m
cν − bwα + ρ

m
c(α− 2)ν

= −bw1 + ρ

m
cν + bwα + ρ

m
c(2ν −m).

Consequently, we have
α∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) ≥ −bw1 + ρ

m
cν + bwα + ρ

m
c(2ν −m). (2.2.1)

Therefore,

m−1∑
j=α+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

≥
m−1∑
j=α+1

(
bwj + ρ

m
c − bwj−1 + ρ

m
c
)(

(α+ 1)ν −m
)

(as j ≥ α+ 1 and bwj + ρ

m
c ≥ bwj−1 + ρ

m
c)

=
(
(α+ 1)ν −m

) m−1∑
j=α+1

(
bwj + ρ

m
c − bwj−1 + ρ

m
c
)

=
(
(α+ 1)ν −m

)( m−1∑
j=α+1

bwj + ρ

m
c −

m−1∑
j=α+1

bwj−1 + ρ

m
c
)

=
(
(α+ 1)ν −m

)( m−1∑
j=α+1

bwj + ρ

m
c −

m−2∑
j=α
bwj + ρ

m
c
)

=
(
(α+ 1)ν −m

)( m−2∑
j=α+1

bwj + ρ

m
c+ bwm−1 + ρ

m
c−bwα + ρ

m
c −

m−2∑
j=α+1

bwj + ρ

m
c
)

=
(
bwm−1 + ρ

m
c − bwα + ρ

m
c
)(

(α+ 1)ν −m
)
.

Hence, we obtain
m−1∑
j=α+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) ≥

(
bwm−1 + ρ

m
c − bwα + ρ

m
c
)(

(α+ 1)ν −m
)
. (2.2.2)

The following technical Lemma will be used through the Chapter :

Lemma 2.2.2. Let Ap(S,m) = {w0 = 0 < w1 < . . . < wm−1} and suppose that wi ≥ wj + wk. We have
the following :

i) bwi + ρ

m
c ≥ bwj + ρ

m
c+ bwk + ρ

m
c − 1.

ii) If bwi + ρ

m
c − bwj + ρ

m
c − bwk + ρ

m
c = −1, then

bwj + ρ

m
c = bwj

m
c+ 1, bwk + ρ

m
c = bwk

m
c+ 1 and ρ ≥ 1.

13
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In particular,
bwj + ρ

m
c ≥ 2, bwk + ρ

m
c ≥ 2 and ρ ≥ 1.

Proof.

i) Assume that wi ≥ wj + wk. Then, wi + ρ ≥ wj + wk + ρ. Consequently,

wi + ρ

m
≥ wj + wk + ρ

m
⇒ bwi + ρ

m
c ≥ bwj + wk + ρ

m
c.

Therefore, we have
bwi + ρ

m
c ≥ bwj + ρ

m
c+ bwk

m
c.

By Remark 2.2.1 (iii), bwkm c ≥ b
wk+ρ
m c − 1. Hence,

bwi + ρ

m
c ≥ bwj + ρ

m
c+ bwk + ρ

m
c − 1.

ii) Suppose that wi ≥ wj + wk and that bwi+ρm c − bwj+ρm c − bwk+ρ
m c = −1. Suppose by the way of

contradiction that bwj+ρm c 6= bwjm c+ 1 or bwk+ρ
m c 6= bwkm c+ 1 or ρ < 1. By Remark 2.2.1 (iii) and that

ρ ≥ 0, it follows that
bwj + ρ

m
c = bwj

m
c or bwk + ρ

m
c = bwk

m
c or ρ = 0.

Since wi ≥ wj + wk, we have

bwi + ρ

m
c ≥ bwj + wk + ρ

m
c.

Since bwj+ρm c = bwjm c or b
wk+ρ
m c = bwkm c or ρ = 0, it follows that

bwi + ρ

m
c ≥ bwj + ρ

m
c+ bwk + ρ

m
c,

which contradicts the hypothesis. Hence,

bwj + ρ

m
c = bwj

m
c+ 1, bwk + ρ

m
c = bwk

m
c+ 1 and ρ ≥ 1.

Using Remark 2.2.1 (ii), we get that bwj+ρm c = bwjm c+ 1 ≥ 2, bwk+ρ
m c = bwkm c+ 1 ≥ 2 and ρ ≥ 1.

Thus, the proof is complete. �

2.3 Numerical semigroups with wm−1 ≥ w1 + wα and (2 + α−3
q )ν ≥ m

In this Section, we show that Wilf’s conjecture holds for numerical semigroups in the following cases :

1. wm−1 ≥ w1 + wα and (2 + α−3
q )ν ≥ m for some 1 < α < m− 1.

2. m − ν ≤ 5. (Note that the case m − ν ≤ 3 results from the fact that Wilf’s conjecture holds for
2ν ≥ m. This case has been proved in [19]), however we shall give a proof in order to cover it through
our techniques).

Then, we deduce the conjecture for m = 9 and for (2 + 1
q )ν ≥ m. �

Next, we will show that Wilf’s conjecture holds for numerical semigroups with

wm−1 ≥ w1 + wα and (2 + α− 3
q

)ν ≥ m.

14
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Theorem 2.3.1. Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conduc-
tor f + 1 = qm− ρ for some q, ρ ∈ N ; 0 ≤ ρ ≤ m− 1. Let w0 = 0 < w1 < w2 < . . . < wm−1 be the elements
of Ap(S,m). Suppose that wm−1 ≥ w1 + wα for some 1 < α < m − 1. If (2 + α−3

q )ν ≥ m, then S satisfies
Wilf’s conjecture.

Proof. We are going to use the equivalent form of Wilf’s conjecture given in Proposition 2.1.3. Since
wm−1 ≥ w1 + wα, by Lemma 2.2.2, it follows that

bwm−1 + ρ

m
c ≥ bw1 + ρ

m
c+ bwα + ρ

m
c − 1.

Let x = bwm−1+ρ
m c − bw1+ρ

m c − bwα+ρ
m c. Then, x ≥ −1 and bw1+ρ

m c + bwα+ρ
m c = bwm−1+ρ

m c − x = q − x (by
Remark 2.2.1 (vi)). Now, using (2.2.1) and (2.2.2), we have

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

=
α∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) +

m−1∑
j=α+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ −bw1 + ρ

m
cν + bwα + ρ

m
c(2ν −m)+

(
bwm−1 + ρ

m
c − bwα + ρ

m
c
)(

(α+ 1)ν −m
)

+ ρ (by (2.2.1) and (2.2.2))

= bw1 + ρ

m
c
(
− ν +

(
(α+ 1)ν −m

)
−
(
(α+ 1)ν −m

))
+bwα + ρ

m
c(2ν −m)

+
(
bwm−1 + ρ

m
c − bwα + ρ

m
c
)(

(α+ 1)ν −m
)
+ρ

= bw1 + ρ

m
c(αν −m) + bwα + ρ

m
c(2ν −m)+

(
bwm−1 + ρ

m
c − bwα + ρ

m
c − bw1 + ρ

m
c
)(

(α+ 1)ν −m
)
+ρ

= (bw1 + ρ

m
c+ bwα + ρ

m
c)(2ν −m) + bw1 + ρ

m
c(α− 2)ν

+
(
bwm−1 + ρ

m
c − bwα + ρ

m
c − bw1 + ρ

m
c
)(

(α+ 1)ν −m
)
+ρ

= (q − x)(2ν −m) + bw1 + ρ

m
c(α− 2)ν+x

(
(α+ 1)ν −m

)
+ ρ.

Consequently,

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ ≥ (q − x)(2ν −m) + bw1 + ρ

m
c(α− 2)ν+x

(
(α+ 1)ν −m

)
+ ρ.

(2.3.1)
Since

x = bwm−1 + ρ

m
c − bw1 + ρ

m
c − bwα + ρ

m
c ≥ −1,

then we have two cases :

• If x = −1, then by Lemma 2.2.2 (ii), we have bw1+ρ
m c ≥ 2. From (2.3.1), it follows that

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ (q + 1)(2ν −m) + 2(α− 2)ν −
(
(α+ 1)ν −m

)
+ ρ

= ν(2q + 2 + 2α− 4− α− 1)− qm+ ρ

= ν(2q + α− 3)− qm+ ρ

15
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= q
(
ν(2 + α− 3

q
)−m

)
+ ρ

≥ 0 (by hypothesis).

• If x ≥ 0. By Remark 2.2.1 (ii), we have bw1+ρ
m c ≥ 1. From (2.3.1), it follows that

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ (q − x)(2ν −m) + (α− 2)ν + x
(
(α+ 1)ν −m

)
+ ρ

= ν
(
2q + (α− 2)(x+ 1) + x

)
− qm+ ρ

> ν(2q + α− 3)− qm+ ρ (as x ≥ 0)

= q
(
ν(2 + α− 3

q
)−m

)
+ ρ

≥ 0 (by hypothesis).

Using Proposition 2.1.3, we get that S satisfies Wilf’s conjecture. Thus, the proof is complete. �

Example 2.3.2. Consider the following numerical semigroup

S = < 19, 21, 23, 25, 27, 28 > .

Note that 3ν < m. We have w1 = 21, w14 = 56 and wm−1 = 83 that is wm−1 ≥ w1 + w14. In addition,
(2 + α−3

q )ν = (2 + 14−3
4 )6 ≥ 19 = m. Thus, the conditions of Theorem 2.3.1 are valid. �

In the following we shall deduce some cases where Wilf’s conjecture holds. We start with the following
technical Lemma.

Lemma 2.3.3. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let
w0 = 0 < w1 < w2 < . . . < wm−1 be the elements of Ap(S,m). If m − ν > (α2 ) = α(α−1)

2 for some α ∈ N∗,
then wm−1 ≥ w1 + wα.

Proof. Suppose by contradiction that wm−1 < w1 + wα. Let

w ∈ Ap(S,m)∗ \min≤S (Ap(S,m)).

Thus, w ≤ wm−1 and w = wi + wj for some wi, wj ∈ Ap(S,m)∗ this follows from Corollary 1.0.29. Hence,
w ≤ wm−1 < w1 +wα. Thus, the only possible values for w are included in {wi +wj ; 1 ≤ i ≤ j ≤ α− 1}. By
Corollary 1.0.31, we have m− ν = |Ap(S,m)∗\min≤S (Ap(S,m))|. Therefore, m− ν ≤ (α2 ) = α(α−1)

2 , which
is impossible. Hence,

wm−1 ≥ w1 + wα.

Thus, the proof is complete. �

Next, we will deduce Wilf’s conjecture for numerical Semigroups with

m− ν > α(α− 1)
2 and (2 + α− 3

q
)ν ≥ m.

It will be used later to show that the conjecture holds for those with (2 + 1
q )ν ≥ m, and in order also to

cover the result in [19] saying that the conjecture is true for 2ν ≥ m.

Corollary 2.3.4. Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conduc-
tor f+1 = qm−ρ for some q ∈ N, 0 ≤ ρ ≤ m−1. Suppose thatm−ν > (α2 ) = α(α−1)

2 for some 1 < α < m−1.
If (2 + α−3

q )ν ≥ m, then S satisfies Wilf’s conjecture.

16



CHAPITRE 2. WILF’S CONJECTURE

Proof. It follows from Lemma 2.3.3 that if m−ν > α(α−1)
2 , then wm−1 ≥ w1 +wα. Now, use Theorem 2.3.1.

Thus, the proof is complete. �

As a direct consequence of Theorem 2.3.1, we get the following Corollary.

Corollary 2.3.5. Let S be a numerical semigroup with a given multiplicity m and conductor f+1 = qm−ρ
for some q ∈ N, 0 ≤ ρ ≤ m − 1. Let w0 = 0 < w1 < . . . < wm−1 be the elements of Ap(S,m). If
wm−1 ≥ w1 + wα for some 1 < α < m− 1 and m ≤ 8 + 4(α−3

q ), then S satisfies Wilf’s conjecture.

Proof. By Theorem 2.3.1, we may assume that (2 + α−3
q )ν < m. Therefore,

ν <
qm

2q + α− 3 ≤
8q + α− 12
2q + α− 3 .

Hence, ν < 4. Consequently, S satisfies Wilf’s conjecture (see [9]). Thus, the proof is complete. �

In the following Lemma, we will show that Wilf’s conjecture holds for numerical semigroups with m−ν ≤ 3.
This will enable us later to prove the conjecture for numerical semigroups with (2 + 1

q )ν ≥ m and cover the
result in [19] saying that the conjecture is true for 2ν ≥ m.

Lemma 2.3.6. Let S be a numerical Semigroup with multiplicitym and embedding dimension ν. Ifm−ν ≤
3, then S satisfies Wilf’s conjecture.

Proof. We may assume that ν ≥ 4 (ν ≤ 3 is solved [9]). We are going to show that S satisfies Wilf’s
conjecture by means of Proposition 2.1.3.

Case 1. If m − ν = 0 (S is said to be a numerical semigroup with maximal embedding dimension). Then,
t(S) = m− 1 = ν − 1 (Corollary 3.2 [18]). Consequently, S satisfies Wilf’s conjecture ( [9] Proposition 2.3).

Case 2. If m− ν = 1, then we may assume that m = ν + 1 ≥ 5 (ν ≥ 4). By taking α = 1 in (2.2.2), we get

m−1∑
j=2

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) ≥ (bwm−1 + ρ

m
c − bw1 + ρ

m
c)(2ν −m). (2.3.2)

Hence, we have

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

=
1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)+

m−1∑
j=2

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

= (bw1 + ρ

m
c − bw0 + ρ

m
c)(ν −m) +

m−1∑
j=2

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

= bw1 + ρ

m
c(ν −m) +

m−1∑
j=2

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ (as bw0+ρ

m c = 0)

≥ bw1 + ρ

m
c(ν −m) + (bwm−1 + ρ

m
c − bw1 + ρ

m
c)(2ν −m) + ρ (by (2.3.2))

= bw1 + ρ

m
c
(
ν −m+ (2ν −m)− (2ν −m)

)
+ (bwm−1 + ρ

m
c − bw1 + ρ

m
c)(2ν −m) + ρ

= bw1 + ρ

m
c(3ν − 2m) + (bwm−1 + ρ

m
c − bw1 + ρ

m
c − bw1 + ρ

m
c)(2ν −m) + ρ

= bw1 + ρ

m
c(m− 3) + (bwm−1 + ρ

m
c − bw1 + ρ

m
c − bw1 + ρ

m
c)(m− 2) + ρ (as m− ν = 1).
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Therefore, we get

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ ≥

bw1 + ρ

m
c(m− 3) + (bwm−1 + ρ

m
c − bw1 + ρ

m
c − bw1 + ρ

m
c)(m− 2) + ρ.

(2.3.3)

Since m−ν = 1 > 0 = 1(0)
2 , then by Lemma 2.3.3, it follows that wm−1 ≥ w1 +w1. Consequently, by Lemma

2.2.2 (i), we have
bwm−1 + ρ

m
c ≥ bw1 + ρ

m
c+ bw1 + ρ

m
c − 1.

• If bwm−1+ρ
m c−bw1+ρ

m c−bw1+ρ
m c = −1. By Lemma 2.2.2 (ii), we have bw1+ρ

m c ≥ 2. From (2.3.3), we obtain

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bw1 + ρ

m
c(m− 3) + (bwm−1 + ρ

m
c − bw1 + ρ

m
c − bw1 + ρ

m
c)(m− 2) + ρ

≥ 2(m− 3)− (m− 2) + ρ (as bw1 + ρ

m
c ≥ 2)

≥ 0 (as m ≥ 5).

• If bwm−1+ρ
m c − bw1+ρ

m c − bw1+ρ
m c ≥ 0. From (2.3.3), we get

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bw1 + ρ

m
c(m− 3) + (bwm−1 + ρ

m
c − bw1 + ρ

m
c − bw1 + ρ

m
c)(m− 2) + ρ

≥ (m− 3) + ρ

≥ 0 (as m ≥ 5).

Using Proposition 2.1.3, we get that S satisfies Wilf’s conjecture if m− ν = 1.

Case 3. If m− ν ∈ {2, 3}. We have m− ν > 1 = 2(1)
2 . If (2− 1

q )ν ≥ m, then by Corollary 2.3.4 S satisfies
Wilf’s conjecture. Now, suppose that (2− 1

q )ν < m. Since Wilf’s conjecture holds for q ≤ 3 (see [14], [10]),
we may assume that q ≥ 4.

• If m− ν = 2. Then, (2− 1
q )ν < ν + 2. Hence, ν < 2( q

q−1) ≤ 8
3 . By [9], S satisfies Wilf’s conjecture.

• If m− ν = 3. Then, (2− 1
q )ν < ν + 3. Hence, ν < 3( q

q−1) ≤ 4. By [9], S satisfies Wilf’s conjecture.

Thus, Wilf’s conjecture holds if m− ν ≤ 3. Thus, the proof is complete. �

The next Corollary covers the result of Sammartano for numerical semigroups with 2ν ≥ m ( [19]) using
Corollary 2.3.4 and Lemma 2.3.6.

Corollary 2.3.7. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If
2ν ≥ m, then S satisfies Wilf’s conjecture.

Proof. If m− ν > 3 = 3(2)
2 and 2ν ≥ m, then by Corollary 2.3.4 Wilf’s conjecture holds. If m− ν ≤ 3, by

Lemma 2.3.6, S satisfies Wilf’s conjecture. Thus, the proof is complete. �

In the following Corollary we will deduce Wilf’s conjecture for numerical semigroups with m− ν = 4. This
will enable us later to prove the conjecture for those with (2 + 1

q )ν ≥ m.
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Corollary 2.3.8. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If
m− ν = 4, then S satisfies Wilf’s conjecture.

Proof. Since Wilf’s conjecture holds for ν ≤ 3 (see [9]), then we may assume that ν ≥ 4. Therefore,
ν ≥ m− ν. Consequently, 2ν ≥ m. Hence, S satisfies Wilf’s conjecture. Thus, the proof is complete. �

The following technical Lemma will be used through the paper.

Lemma 2.3.9. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let
w0 = 0 < w1 < . . . < wm−1 be the elements of Ap(S,m). If m − ν ≥ (α2 ) − 1 = α(α−1)

2 − 1 for some
3 ≤ α ≤ m− 2, then wm−1 ≥ w1 + wα or wm−1 ≥ wα−2 + wα−1.

Proof. Suppose by the way of contradiction that wm−1 < w1 + wα and wm−1 < wα−2 + wα−1. Let

w ∈ A(S,m)∗ \min≤S (Ap(S,m)).

Then, w ≤ wm−1 and w = wi + wj for some wi, wj ∈Ap(S,m)∗ (Corollary 1.0.29). In this case, the only
possible values of w are included in {wi+wj ; 1 ≤ i ≤ j ≤ α−1}\{wα−2 +wα−1, wα−1 +wα−1}. Consequently,
m− ν = |Ap(S,m)∗ \min≤S (Ap(S,m))| ≤ α(α−1)

2 − 2. But α(α−1)
2 − 2 < α(α−1)

2 − 1, which contradicts the
hypothesis. Hence,

wm−1 ≥ w1 + wα

or
wm−1 ≥ wα−2 + wα−1.

�
In the next theorem, we will show that Wilf’s conjecture holds for numerical semigroups with m− ν = 5.

Theorem 2.3.10. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If
m− ν = 5, then S satisfies Wilf’s conjecture.

Proof. Let m − ν = 5. Since Wilf’s conjecture holds for 2ν ≥ m, then we may assume that 2ν < m. This
implies that ν < m

2 = ν+5
2 i.e., ν < 5. Since the case ν ≤ 3 is known [9], then we shall assume that ν = 4.

This also implies that
m = ν + 5 = 9.

Since m− ν = 5 = 4(3)
2 − 1, by Lemma 2.3.9, it follows that

w8 ≥ w2 + w3

or
w8 ≥ w1 + w4.

Case 1. If w8 ≥ w2 + w3. By taking α = 3 in (2.2.2) (m = 9, ν = 4), we get

8∑
j=4

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) ≥ (bw8 + ρ

9 c − bw3 + ρ

9 c)(7). (2.3.4)

Hence,

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

=
8∑
j=1

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ (m = 9)

=
3∑
j=1

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) +
8∑
j=4

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ
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= (bw1 + ρ

9 c − bw0 + ρ

9 c)(−5)+(bw2 + ρ

9 c − bw1 + ρ

9 c)(−1)+(bw3 + ρ

9 c − bw2 + ρ

9 c)(3)

+
8∑
j=4

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ

= bw1 + ρ

9 c(−4) + bw2 + ρ

9 c(−4)+bw3 + ρ

9 c(3) +
8∑
j=4

(bwj + ρ

9 c−bwj−1 + ρ

9 c)(4j − 9) + ρ (bw0+ρ
m c = 0)

≥ bw1 + ρ

9 c(−4) + bw2 + ρ

9 c(−4)+bw3 + ρ

9 c(3)+(bw8 + ρ

9 c − bw3 + ρ

9 c)(7) + ρ (Using (2.3.4)).

On the other hand, as bw1+ρ
9 c ≤ b

w2+ρ
9 c and b

w1+ρ
9 c ≤ b

w3+ρ
9 c, then

4bw1 + ρ

9 c ≤ 3bw2 + ρ

9 c+ bw3 + ρ

9 c.

Consequently, we have

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥
(
bw2 + ρ

9 c
(
(−3

4 )4
)

+ bw3 + ρ

9 c
(
(−1

4 )4
))

+bw2 + ρ

9 c(−4)+bw3 + ρ

9 c(3) +(bw8 + ρ

9 c − bw3 + ρ

9 c)(7) + ρ

= bw2 + ρ

9 c(−7) + bw3 + ρ

9 c(2) + (bw8 + ρ

9 c − bw3 + ρ

9 c)(7) + ρ

= bw3 + ρ

9 c(2) + (bw8 + ρ

9 c − bw2 + ρ

9 c − bw3 + ρ

9 c)(7) + ρ.

Then,

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ ≥ bw3 + ρ

9 c(2) + (bw8 + ρ

9 c − bw2 + ρ

9 c − bw3 + ρ

9 c)(7) + ρ.

(2.3.5)
Since w8 ≥ w2 + w3, by Lemma 2.2.2, it follows that bw8+ρ

9 c ≥ b
w2+ρ

9 c+ bw3+ρ
9 c − 1.

• If
bw8 + ρ

9 c − bw2 + ρ

9 c − bw3 + ρ

9 c ≥ 0,

then (2.3.5) gives
8∑
j=1

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ ≥ 0.

• If
bw8 + ρ

9 c − bw2 + ρ

9 c − bw3 + ρ

9 c = −1.

By Lemma 2.2.2, we have ρ ≥ 1. Since for q ≤ 3 Wilf’s conjecture is solved (see [10], [14]), then may
assume that q ≥ 4. Since

bw2 + ρ

9 c ≤ bw3 + ρ

9 c and bw2 + ρ

9 c+ bw3 + ρ

9 c = bw8 + ρ

9 c+ 1 = q + 1,

in this case, it follows that

bw3 + ρ

9 c+ bw3 + ρ

9 c ≥ bw2 + ρ

9 c+ bw3 + ρ

9 c = q + 1 ≥ 5.
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Hence,
bw3 + ρ

9 c ≥ 3.

Now, (2.3.5) gives

8∑
j=1

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j −m) + ρ ≥ 3(2)− 7 + 1 ≥ 0.

Using Proposition 2.1.3, we get that S satisfies Wilf’s conjecture in this case.

Case 2. If w8 ≥ w1 +w4. We may assume that w8 < w2 +w3, since otherwise we are back to case 1. Hence,
the possible values of w ∈ Ap(S, 9)∗\min≤S (Ap(S, 9)) are {w1 + wj ; 1 ≤ j ≤ 7} ∪ {w2 + w2}.

• If Ap(S, 9)∗\min≤S (Ap(S, 9)) ⊆ {w1 + wj ; 1 ≤ j ≤ 7}. We have

5 = m− ν = |Ap(S, 9)∗ \min≤S (Ap(S, 9))|.

Then, there exist five elements in Ap(S, 9)∗ included in {w1 +wj ; 1 ≤ j ≤ 7}. By Corollary 1.0.29, an
element x of the Apéry set of S belongs to max≤S (Ap(S,m)) if and only if wi 6= x+wj for all wi, wj ∈
Ap(S,m)∗, then there exists at least five elements in Ap(S, 9)∗ that are not maximal (five elements
from {w1 . . . , w7}), hence,

t(S) = |{max≤S (Ap(S, 9))− 9}| ≤ 3 = ν − 1.

Consequently, S satisfies Wilf’s conjecture (Proposition 2.3 [9]).

• If
w2 + w2 ∈ Ap(S, 9)∗ \min≤S (Ap(S, 9)),

then
w2 + w2 ∈ Ap(S, 9)

namely w8 ≥ w2 + w2. By Lemma 2.2.2, we have

bw8 + ρ

9 c ≥ 2bw2 + ρ

9 c − 1.

In particular,
bw2 + ρ

9 c ≤ q + 1
2 . (2.3.6)

By taking α = 4 in (2.2.2) (m = 9, ν = 4), we get

8∑
j=5

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) ≥ (bw8 + ρ

9 c − bw4 + ρ

9 c)(11). (2.3.7)

We have

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

=
8∑
j=1

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ (m = 9)

=
4∑
j=1

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9)+
8∑
j=5

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ

= (bw1 + ρ

9 c − bw0 + ρ

9 c)(−5)+(bw2 + ρ

9 c − bw1 + ρ

9 c)(−1)+(bw3 + ρ

9 c − bw2 + ρ

m
c)(3)

21



CHAPITRE 2. WILF’S CONJECTURE

+(bw4 + ρ

9 c − bw3 + ρ

9 c)(7) +
8∑
j=5

(bwj + ρ

9 c −bwj−1 + ρ

9 c)(4j − 9) + ρ

= bw1 + ρ

9 c(−4) + bw2 + ρ

9 c(−4)+bw3 + ρ

9 c(−4) + bw4 + ρ

9 c(7)

+
8∑
j=5

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ (as bw0+ρ
m c = 0)

≥ bw1 + ρ

9 c(−4) + bw2 + ρ

9 c(−4)+bw3 + ρ

9 c(−4) + bw4 + ρ

9 c(7)

+(bw8 + ρ

9 c − bw4 + ρ

9 c)(11) + ρ (by (2.3.7))

≥ bw1 + ρ

9 c(−4) + (q + 1
2 )(−4)+bw4 + ρ

9 c(−4) + bw4 + ρ

9 c(7)+(bw8 + ρ

9 c

−bw4 + ρ

9 c)(11) + ρ (by using (2.3.6) and bw3+ρ
9 c ≤ b

w4+ρ
9 c)

= bw1 + ρ

9 c(−4)− 2(q + 1) + bw4 + ρ

9 c(3)+(bw8 + ρ

9 c − bw4 + ρ

9 c)(11) + ρ

= bw1 + ρ

9 c(−4 + 11− 11)− 2(q + 1)+bw4 + ρ

9 c(3) +(bw8 + ρ

9 c − bw4 + ρ

9 c)(11) + ρ

= bw1 + ρ

9 c(7)− 2(q + 1) + bw4 + ρ

9 c(3)+(bw8 + ρ

9 c − bw4 + ρ

9 c − bw1 + ρ

9 c)(11) + ρ

= (bw1 + ρ

9 c+ bw4 + ρ

9 c)(3) + bw1 + ρ

9 c(4)− 2(q + 1) + (bw8 + ρ

9 c − bw1 + ρ

9 c − bw4 + ρ

9 c)(11) + ρ.

Therefore,
m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ (bw1 + ρ

9 c+ bw4 + ρ

9 c)(3) + bw1 + ρ

9 c(4)− 2(q + 1) + (bw8 + ρ

9 c − bw1 + ρ

9 c − bw4 + ρ

9 c)(11) + ρ.

(2.3.8)
We have w8 ≥ w1 + w4, then by Lemma 2.2.2 (i)

bw8 + ρ

9 c ≥ bw1 + ρ

9 c+ bw4 + ρ

9 c − 1.

• If bw8+ρ
9 c − b

w1+ρ
9 c − b

w4+ρ
9 c ≥ 0. Let x = bw8+ρ

9 c − b
w1+ρ

9 c − b
w4+ρ

9 c. Hence, x ≥ 0 and
bw1+ρ

9 c+ bw4+ρ
9 c = bw8+ρ

9 c − x = q − x (Remark 2.2.1 (vi)). Then, (2.3.8) gives

8∑
j=1

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ

≥ (q − x)(3) + 4− 2(q + 1) + 11x+ ρ

= q + 8x+ 2 + ρ ≥ 0.

• If bw8+ρ
9 c − b

w1+ρ
9 c − b

w4+ρ
9 c = −1. Then, bw1+ρ

m c+ bw4+ρ
9 c = bw8+ρ

9 c+ 1 = q+ 1 (Remark 2.2.1
(vi)). By Lemma 2.2.2, we have bw1+ρ

9 c ≥ 2 and ρ ≥ 1. Since q ≥ 1 (S 6= N i.e., f ≥ 1), then
(2.3.8) gives

8∑
j=1

(bwj + ρ

9 c − bwj−1 + ρ

9 c)(4j − 9) + ρ

≥ (q + 1)(3) + 8− 2(q + 1)− 11 + 1
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= q − 1 ≥ 0.

Using Proposition 2.1.3, we get that S satisfies Wilf’s conjecture in this case.

Thus, Wilf’s conjecture holds if m− ν = 5. Thus, the proof is complete. �

In the next corollary, we will deduce the conjecture for m = 9.

Corollary 2.3.11. If S is a numerical Semigroup with multiplicity m = 9, then S satisfies Wilf’s conjecture.

Proof. By Lemma 2.3.6, Corollary 2.3.8 and Theorem 2.3.10, we may assume that m − ν > 5, hence,
ν < m− 5 = 4. By [9], S satisfies Wilf’s conjecture. Thus, the proof is complete. �

The following Lemma will enable us later to show that Wilf’s conjecture holds for numerical semigroups
with (2 + 1

q )ν ≥ m.

Lemma 2.3.12. Let S be a numerical Semigroup with multiplicitym, embedding dimension ν and conductor
f + 1 = qm − ρ for some q ∈ N, 0 ≤ ρ ≤ m − 1. If m − ν = 6 and (2 + 1

q )ν ≥ m, then S satisfies Wilf’s
conjecture.

Proof. Since m− ν = 6 ≥ 4(3)
2 − 1, by Lemma 2.3.9, it follows that

wm−1 ≥ w1 + w4

or
wm−1 ≥ w2 + w3.

Case 1. If wm−1 ≥ w1 +w4. By hypothesis (2 + 1
q )ν ≥ m and Theorem 2.3.1 Wilf’s conjecture holds in this

case.

Case 2. If wm−1 ≥ w2 + w3. We may assume that wm−1 < w1 + w4, since otherwise we are back to
case i. Hence, Ap(S,m)∗\min≤S (Ap(S,m)) = {w1 + w1, w1 + w2, w1 + w3, w2 + w2, w2 + w3, w3 + w3} (as
6 = m− ν = |Ap(S,m)∗\min≤S (Ap(S,m))|). Consequently,

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

=
3∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) +

m−1∑
j=4

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

= (bw1 + ρ

m
c − bw0 + ρ

m
c)(ν −m)+(bw2 + ρ

m
c − bw1 + ρ

m
c)(2ν −m)+(bw3 + ρ

m
c − bw2 + ρ

m
c)(3ν −m)

+
m−1∑
j=4

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

= bw1 + ρ

m
c(−ν)+bw2 + ρ

m
c(−ν) + bw3 + ρ

m
c(3ν −m)+

m−1∑
j=4

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

+ρ (as bw0+ρ
m c = 0)

≥ bw1 + ρ

m
c(−ν)+bw2 + ρ

m
c(−ν)+bw3 + ρ

m
c(3ν −m)+(bwm−1 + ρ

m
c − bw3 + ρ

m
c)(4ν −m)+ρ (by (2.3.4)).

On the other hand, as bw1+ρ
m c ≤ bw2+ρ

m c and bw1+ρ
m c ≤ bw3+ρ

m c, then

2bw1 + ρ

m
c ≤ bw2 + ρ

m
c+ bw3 + ρ

m
c.

Consequently, we have
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m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥
(
bw2 + ρ

m
c(−ν2 ) + bw3 + ρ

m
c(−ν2 )

)
+bw2 + ρ

m
c(−ν)+bw3 + ρ

m
c(3ν −m)

+(bwm−1 + ρ

m
c − bw3 + ρ

m
c)(4ν −m) + ρ

= bw2 + ρ

m
c(−3ν

2 ) + bw3 + ρ

m
c(5ν

2 −m)+(bwm−1 + ρ

m
c − bw3 + ρ

m
c)(4ν −m) + ρ

= bw2 + ρ

m
c
(−3ν

2 + (4ν −m)− (4ν −m)
)
+bw3 + ρ

m
c(5ν

2 −m)+(bwm−1 + ρ

m
c − bw3 + ρ

m
c)(4ν −m) + ρ

= bw2 + ρ

m
c(5ν

2 −m) + bw3 + ρ

m
c(5ν

2 −m) + (bwm−1 + ρ

m
c − bw2 + ρ

m
c − bw3 + ρ

m
c)(4ν −m) + ρ

= bw2 + ρ

m
c(3ν

2 − 6)+bw3 + ρ

m
c(3ν

2 − 6)+(bwm−1 + ρ

m
c − bw2 + ρ

m
c − bw3 + ρ

m
c)(3ν − 6)+ρ (as m−ν = 6).

Hence,

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bw2 + ρ

m
c(3ν

2 − 6) + bw3 + ρ

m
c(3ν

2 − 6) + (bwm−1 + ρ

m
c+ ρ−bw2 + ρ

m
c − bw3 + ρ

m
c)(3ν − 6).

(2.3.9)

We have wm−1 ≥ w2 + w3, by Lemma 2.2.2, it follows that

bwm−1 + ρ

m
c ≥ bw2 + ρ

m
c+ bw3 + ρ

m
c − 1.

• If
bwm−1 + ρ

m
c − bw2 + ρ

m
c − bw3 + ρ

m
c ≥ 0,

using ν ≥ 4 in (2.3.9) (ν ≤ 3 is solved [9]), we get

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ ≥ 0.

• If
bwm−1 + ρ

m
c − bw2 + ρ

m
c − bw3 + ρ

m
c = −1,

then
bw2 + ρ

m
c+ bw3 + ρ

m
c = bwm−1 + ρ

m
c+ 1,

that is
bw2 + ρ

m
c+ bw3 + ρ

m
c = q + 1. (2.3.10)

We have w3 + w3 ∈ Ap(S,m)∗\min≤S (Ap(S,m)) namely w3 + w3 ∈Ap(S,m), then wm−1 ≥ w3 + w3.
By Lemma 2.2.2, we have bwm−1+ρ

m c ≥ 2bw3+ρ
m c − 1. In particular,

bw3 + ρ

m
c ≤ q + 1

2 . (2.3.11)

Since Wilf’s conjecture holds for q ≤ 3 ( [10], [14]), then we may assume that q ≥ 4. Since bw2+ρ
m c ≤

bw3+ρ
m c, by (2.3.10) and (2.3.11), it follows that bw2+ρ

m c = bw3+ρ
m c = q+1

2 , in particular q is odd, then
we have to assume that q ≥ 5. Now, using (2.3.10), q ≥ 5 and the hypothesis (2 + 1

q )ν ≥ m = ν + 6
in (2.3.9), we get
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m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ (bw2 + ρ

m
c+ bw3 + ρ

m
c)(3ν

2 − 6)+
(
bwm−1 + ρ

m
c − bw2 + ρ

m
c−bw3 + ρ

m
c
)(

3ν − 6) + ρ

= (q + 1)(3ν
2 − 6)− (3ν − 6) + ρ

= ν(3q
2 + 3

2 − 3)− 6q + ρ

≥ ν(3q
2 −

3
2)− qν − ν + ρ (as 6q ≤ qν + ν)

= ν(q2 −
5
2) + ρ ≥ 0 (as q ≥ 5).

Using Proposition 2.1.3, we get that S satisfies Wilf’s conjecture in this case.

Therefore, Wilf’s conjecture holds if m− ν = 6 and (2 + 1
q )ν ≥ m. Thus, the proof is complete. �

Next, we will generalize a result for Sammartano ( [19]) and show that Wilf’s conjecture holds for numerical
semigroups satisfying (2+ 1

q )ν ≥ m, using Lemma 2.3.6, Corollary 2.3.8, Theorem 2.3.10, Lemma 2.3.12 and
Corollary 2.3.4.

Theorem 2.3.13. Let S be a numerical semigroup with multiplicitym, embedding dimension ν and conduc-
tor f + 1 = qm− ρ for some q ∈ N, 0 ≤ ρ ≤ m− 1. If (2 + 1

q )ν ≥ m, then S satisfies Wilf’s conjecture.

Proof.

• If m− ν ≤ 3, then by Lemma 2.3.6 Wilf’s conjecture holds.

• If m− ν = 4, then by Corollary 2.3.8 Wilf’s conjecture holds.

• If m− ν = 5, then by Theorem 2.3.10 Wilf’s conjecture holds.

• If m− ν = 6 and (2 + 1
q )ν ≥ m, then by Lemma 2.3.12 Wilf’s conjecture holds.

• If m− ν > 6 and (2 + 1
q )ν ≥ m, then by Corollary 2.3.4 Wilf’s conjecture holds.

Thus, the proof is complete. �

Example 2.3.14. Consider the following numerical semigroup

S =< 13, 15, 17, 19, 21, 27 > .

Note that 2ν < m. We have (2 + 1
q )ν = (2 + 1

4)6 ≥ 13 = m. Thus, the conditions of Theorem 2.3.13 are
valid. �

Corollary 2.3.15. Let S be a numerical semigroup with multiplicity m and conductor f + 1 = qm− ρ for
some q ∈ N, 0 ≤ ρ ≤ m− 1. If m ≤ 8 + 4

q , then S satisfies Wilf’s conjecture.

Proof. If ν < 4, then S satisfies Wilf’s conjecture (see [9]). Hence, we can suppose that ν ≥ 4. Thus,

(2 + 1
q

)ν ≥ (2 + 1
q

)4 ≥ m.

By using Theorem 2.3.13 S satisfies Wilf’s conjecture. Thus, the proof is complete. �
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2.4 Numerical semigroups with wm−1 ≥ wα−1 + wα and (α+3
3 )ν ≥ m

In this Section, we will show that if S is a numerical semigroup such that

wm−1 ≥ wα−1 + wα and (α+ 3
3 )ν ≥ m,

then S satisfies Wilf’s conjecture.

Theorem 2.4.1. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let
w0 = 0 < w1 < w2 < . . . < wm−1 be the elements of Ap(S,m). Suppose that wm−1 ≥ wα−1 + wα for some
1 < α < m− 1. If (α+3

3 )ν ≥ m, then S satisfies Wilf’s conjecture.

Proof. We may assume that ρ ≥ (3−q)αm
2α+6 . Indeed, if 0 ≤ ρ < (3−q)αm

2α+6 , then q < 3 and Wilf’s conjecture
holds for this case (see [14]). We are going to show that S satisfies Wilf’s conjecture by means of Proposition
2.1.3. We have

α∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

=
α∑
j=1
bwj + ρ

m
c(jν −m)−

α∑
j=1
bwj−1 + ρ

m
c(jν −m)

=
α∑
j=1
bwj + ρ

m
c(jν −m)−

α−1∑
j=0
bwj + ρ

m
c
(
(j + 1)ν −m

)

= bwα + ρ

m
c(αν −m)− bw0 + ρ

m
c(ν −m)−

α−1∑
j=1
bwj + ρ

m
cν

= bwα + ρ

m
c(αν −m)− bwα−1 + ρ

m
cν −

α−2∑
j=1
bwj + ρ

m
cν (as bw0+ρ

m c = 0)

≥ bwα + ρ

m
c(αν −m)− bwα−1 + ρ

m
cν −

α−2∑
j=1

1
2

(
bwα + ρ

m
c+ bwα−1 + ρ

m
c
)
ν (by Remark 2.2.1 (v))

= bwα + ρ

m
c(αν −m)− bwα−1 + ρ

m
cν−

(
bwα + ρ

m
c+ bwα−1 + ρ

m
c
)((α− 2)ν

2

)
.

Hence,
α∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

≥ bwα + ρ

m
c
(
(α+ 2

2 )ν −m
)
− bwα−1 + ρ

m
c(αν2 ).

(2.4.1)

By (2.2.2), we have

m−1∑
j=α+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) ≥ (bwm−1 + ρ

m
c − bwα + ρ

m
c)
(
(α+ 1)ν −m

)
.

Since wm−1 ≥ wα−1 + wα, by Lemma 2.2.2, it follows that

bwm−1 + ρ

m
c ≥ bwα−1 + ρ

m
c+ bwα + ρ

m
c − 1.

Let x = bwm−1+ρ
m cbwα−1+ρ

m c − bwα+ρ
m c. Then, x ≥ −1 and bwα−1+ρ

m c + bwα+ρ
m c = bwm−1+ρ

m c − x = q − x (by
Remark 2.2.1 vi). Now, using ρ ≥ (3−q)αm

2α+6 and (α+3
3 )ν ≥ m, we get
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m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

=
α∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)+

m−1∑
j=α+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bwα + ρ

m
c
(
(α+ 2

2 )ν −m
)
− bwα−1 + ρ

m
c(αν2 )

+
(
bwm−1 + ρ

m
c − bwα + ρ

m
c
)(

(α+ 1)ν −m
)

+ ρ (by (2.4.1) and (2.2.2))

= bwα−1 + ρ

m
c
(−αν

2 + (α+ 1)ν −m−
(
(α+ 1)ν −m

))
+ bwα + ρ

m
c
(
(α+ 2

2 )ν −m
)

+
(
bwm−1 + ρ

m
c − bwα + ρ

m
c
)(

(α+ 1)ν −m
)

+ ρ

=
(
bwα−1 + ρ

m
c+ bwα + ρ

m
c
)(

(α+ 2
2 )ν −m

)
+
(
bwm−1 + ρ

m
c − bwα−1 + ρ

m
c − bwα + ρ

m
c
)(

(α+ 1)ν −m
)
+ρ

≥
(
q − x

)(
(α+ 2

2 )ν −m
)

+ x
(
(α+ 1)ν −m

)
+ ρ

= ν(q + qα

2 + xα

2 )− qm+ ρ

≥ ν(q + qα

2 −
α

2 )− qm+ (3− q)αm
2α+ 6 (as ρ ≥ (3−q)αm

2α+6 )

= ν(q + qα

2 −
α

2 )−m
(q(2α+ 6) + (q − 3)α

2α+ 6
)

= ν(q + qα

2 −
α

2 )−m
( 3q
α+ 3 + 3qα

2(α+ 3) −
3α

2(α+ 3)
)

=
(
q + qα

2 −
α

2
)( 3
α+ 3

)(
(α+ 3

3 )ν −m
)
≥ 0 (by hypothesis).

Using Proposition 2.1.3, we get that S satisfies Wilf’s conjecture. Thus, the proof is complete. �

Example 2.4.2. Consider the following numerical semigroup

S =< 22, 23, 25, 27, 29, 31, 33 > .

Note that 3ν < m. We have w6 = 33, w7 = 46 and wm−1 = 87 i.e., wm−1 ≥ w6 + w7. Moreover, (α+3
3 )ν =

(7+3
3 )7 ≥ 22 = m, thus the conditions of Theorem 2.4.1 are valid. �

The following Corollary 2.4.3 is an extension for Corollary 2.3.4 using Theorems 2.3.1 and 2.4.1.

Corollary 2.4.3. Let S be a numerical semigroup with multiplicitym and embedding dimension ν. Suppose
that m− ν ≥ α(α−1)

2 − 1 for some 7 ≤ α ≤ m− 2. If (2 + α−3
q )ν ≥ m, then S satisfies Wilf’s conjecture.

Proof. Since m− ν ≥ α(α−1)
2 − 1, then by Lemma 2.3.9, we have wm−1 ≥ w1 +wα or wm−1 ≥ wα−2 +wα−1.

Suppose that wm−1 ≥ w1 + wα. Since (2 + α−3
q )ν ≥ m, by applying Theorem 2.3.1, S satisfies Wilf’s

conjecture. Now, suppose that wm−1 ≥ wα−2 +wα−1. We may assume that q ≥ 4 (q ≤ 3 is solved [14], [10]).
Then, for α ≥ 7, we have (α−1+3

3 )ν ≥ (2 + α−3
q )ν. Consequently, (α−1+3

3 )ν ≥ m. Next, by applying Theorem
2.4.1, S satisfies Wilf’s conjecture. Thus, the proof is complete. �
As a direct consequence of Theorem 2.4.1, we get the following Corollary.

Corollary 2.4.4. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let
w0 = 0 < w1 < w2 < . . . < wm−1 be the elements of Ap(S,m). Suppose that wm−1 ≥ wα−1 + wα for some
1 < α < m− 1. If m ≤ 4(α+3)

3 , then S satisfies Wilf’s conjecture.
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Proof. If ν < 4, then S satisfies Wilf’s conjecture (see [9]). Hence, we can suppose that ν ≥ 4. Thus,
(α+3

3 )(ν) ≥ 4(α+3)
3 ≥ m. By applying Theorem 2.4.1 S satisfies Wilf’s conjecture. Thus, the proof is complete.

�

2.5 Numerical semigroups with
(
2 + bwx

m
c(y−x−1)+(y−2)+bwy

m
c(x−1)

bwx
m
c+bwy

m
c+2

)
ν ≥ m and wm−1 −m ≥ wx +wy

In this Section, we will show that if S is a numerical Semigroup such that

wm−1 −m ≥ wx + wy and
(
2 +
bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1)

bwxm c+ bwym c+ 2
)
ν ≥ m,

then S satisfies Wilf’s conjecture.

Theorem 2.5.1. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let
w0 = 0 < w1 < . . . < wm−1be the elements of Ap(S,m). Suppose that wm−1 − m ≥ wx + wy for some
0 < x < y < m− 1. If (

2 +
bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1)

bwxm c+ bwym c+ 2
)
ν ≥ m,

then S satisfies Wilf’s conjecture.

Proof. We are going to show that S satisfies Wilf’s conjecture by means of Proposition 2.1.3. We have

x∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

=
x∑
j=1
bwj + ρ

m
c(jν −m)−

x∑
j=1
bwj−1 + ρ

m
c(jν −m)

=
x∑
j=1
bwj + ρ

m
c(jν −m)−

x−1∑
j=0
bwj + ρ

m
c
(
(j + 1)ν −m

)

=
x−1∑
j=1
bwj + ρ

m
c(jν −m) + bwx + ρ

m
c(xν −m)− bw0 + ρ

m
c(ν −m)−

x−1∑
j=1
bwj + ρ

m
c
(
(j + 1)ν −m

)

= bwx + ρ

m
c(xν −m)− bw0 + ρ

m
c(ν −m)−

x−1∑
j=1
bwj + ρ

m
cν

= bwx + ρ

m
c(xν −m)−

x−1∑
j=1
bwj + ρ

m
cν (as bw0+ρ

m c = 0)

≥ bwx + ρ

m
c(xν −m)−

x−1∑
j=1
bwx + ρ

m
cν (by Remark 2.2.1 (v))

= bwx + ρ

m
c(xν −m)− bwx + ρ

m
c(x− 1)ν

= bwx + ρ

m
c(ν −m).

Therefore,
x∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) ≥ bwx + ρ

m
c(ν −m). (2.5.1)

In addition,
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y∑
j=x+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

=
y∑

j=x+1
bwj + ρ

m
c(jν −m)−

y∑
j=x+1

bwj−1 + ρ

m
c(jν −m)

=
y∑

j=x+1
bwj + ρ

m
c(jν −m)−

y−1∑
j=x
bwj + ρ

m
c
(
(j + 1)ν −m

)

=
y−1∑
j=x+1

bwj + ρ

m
c(jν −m) + bwy + ρ

m
c(yν −m)−bwx + ρ

m
c
(
(x+ 1)ν −m

)
−

y−1∑
j=x+1

bwj + ρ

m
c
(
(j + 1)ν −m

)

= bwy + ρ

m
c(yν −m)− bwx + ρ

m
c
(
(x+ 1)ν −m

)
−

y−1∑
j=x+1

bwj + ρ

m
cν

≥ bwy + ρ

m
c(yν −m)− bwx + ρ

m
c
(
(x+ 1)ν −m

)
−

y−1∑
j=x+1

bwy + ρ

m
cν (using Remark 2.2.1 (v))

= bwy + ρ

m
c(yν −m)− bwx + ρ

m
c
(
(x+ 1)ν −m

)
−bwy + ρ

m
c(y − x− 1)ν

= bwy + ρ

m
c
(
(x+ 1)ν −m

)
− bwx + ρ

m
c
(
(x+ 1)ν −m

)
.

Hence,
y∑

j=x+1
(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) ≥ bwy + ρ

m
c
(
(x+ 1)ν −m

)
− bwx + ρ

m
c
(
(x+ 1)ν −m

)
. (2.5.2)

Moreover, we have

m−1∑
j=y+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

≥
m−1∑
j=y+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)
(
(y + 1)ν −m

)
(using Remark 2.2.1 (v))

=
(
(y + 1)ν −m

)( m−1∑
j=y+1

bwj + ρ

m
c −

m−1∑
j=y+1

bwj−1 + ρ

m
c
)

=
(
(y + 1)ν −m

)( m−1∑
j=y+1

bwj + ρ

m
c −

m−2∑
j=y
bwj + ρ

m
c
)

=
(
bwm−1 + ρ

m
c − bwy + ρ

m
c
)(

(y + 1)ν −m
)
.

Therefore,

m−1∑
j=y+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) ≥

(
bwm−1 + ρ

m
c − bwy + ρ

m
c
)(

(y + 1)ν −m
)
. (2.5.3)

Consequently,

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ
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=
x∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) +

y∑
j=x+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m)

+
m−1∑
j=y+1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bwx + ρ

m
c(ν −m)+bwy + ρ

m
c
(
(x+ 1)ν −m

)
−bwx + ρ

m
c
(
(x+ 1)ν −m

)
+(bwm−1 + ρ

m
c − bwy + ρ

m
c)
(
(y + 1)ν −m

)
+ ρ (using (2.5.1), (2.5.2) and (2.5.3))

= bwx + ρ

m
c(−xν)+bwy + ρ

m
c
(
(x+ 1)ν −m

)
+
(
bwm−1 + ρ

m
c − bwy + ρ

m
c
)(

(y + 1)ν −m
)

+ ρ

= bwx + ρ

m
c
(
− xν +

(
(y + 1)ν −m

)
−
(
(y + 1)ν −m

))

+bwy + ρ

m
c
(
(x+ 1)ν −m

)
+
(
bwm−1 + ρ

m
c − bwy + ρ

m
c
)(

(y + 1)ν −m
)

+ ρ

= bwx + ρ

m
c
(
(y − x+ 1)ν −m

)
+ bwy + ρ

m
c
(
(x+ 1)ν −m

)
+
(
bwm−1 + ρ

m
c − bwy + ρ

m
c − bwx + ρ

m
c
)(

(y + 1)ν −m
)
+ρ.

Consequently,
m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bwx + ρ

m
c
(
(y − x+ 1)ν −m

)
+ bwy + ρ

m
c
(
(x+ 1)ν −m

)
+
(
bwm−1 + ρ

m
c − bwy + ρ

m
c − bwx + ρ

m
c
)(

(y + 1)ν −m
)
+ρ.

(2.5.4)

Since wm−1 −m ≥ wx + wy, it follows

bwm−1 + ρ

m
c > bwx + wy + ρ

m
c. (2.5.5)

Consider the following cases :

Case 1. If bwx+ρ
m c = bwxm c+ 1 and bwy+ρ

m c = bwym c+ 1, then (2.5.5) gives

bwm−1 + ρ

m
c ≥ bwx + ρ

m
c+ bwy + ρ

m
c.

Then, from (2.5.4) and the hypothesis, we have
m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bwx + ρ

m
c
(
(y − x+ 1)ν −m

)
+ bwy + ρ

m
c
(
(x+ 1)ν −m

)
+ ρ

= (bwx
m
c+ 1)

(
(y − x+ 1)ν −m) + (bwy

m
c+ 1)

(
(x+ 1)ν −m

)
+ ρ

=
(
bwx
m
c+ bwy

m
c+ 2

)(
(2 +

bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1)
bwxm c+ bwym c+ 2

)ν −m
)

+ ρ

≥ 0.
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By Proposition 2.1.3, we get that Wilf’s conjecture holds in this case.

Case 2. If bwx+ρ
m c = bwxm c and b

wy+ρ
m c = bwym c+ 1, then (2.5.5) gives

bwm−1 + ρ

m
c > bwx + ρ

m
c+ bwy + ρ

m
c.

Then, from (2.5.4) and the hypothesis, we have

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bwx + ρ

m
c
(
(y − x+ 1)ν −m

)
+ bwy + ρ

m
c
(
(x+ 1)ν −m

)
+
(
(y + 1)ν −m

)
+ ρ

= bwx
m
c
(
(y − x+ 1)ν −m

)
+
(
bwy
m
c+ 1

)(
(x+ 1)ν −m

)
+
(
(y + 1)ν −m

)
+ ρ

=
(
bwx
m
c+ bwy

m
c+ 2

)(
(2 +

bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1) + x

bwxm c+ bwym c+ 2
)ν −m

)
+ ρ

>

(
bwx
m
c+ bwy

m
c+ 2

)(
(2 +

bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1)
bwxm c+ bwym c+ 2

)ν −m
)

+ ρ

≥ 0.

By Proposition 2.1.3, we get that Wilf’s conjecture holds in this case.

Case 3. If bwx+ρ
m c = bwxm c+ 1 and bwy+ρ

m c = bwym c, then (2.5.5) gives

bwm−1 + ρ

m
c > bwx + ρ

m
c+ bwy + ρ

m
c.

Then, from (2.5.4) and the hypothesis, we have

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bwx + ρ

m
c
(
(y − x+ 1)ν −m

)
+ bwy + ρ

m
c
(
(x+ 1)ν −m

)
+
(
(y + 1)ν −m

)
+ ρ

=
(
bwx
m
c+ 1

)(
(y − x+ 1)ν −m

)
+ bwy

m
c
(
(x+ 1)ν −m

)
+
(
(y + 1)ν −m

)
+ ρ

= Pxy

(
(2 +

bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1) + (y − x)
bwxm c+ bwym c+ 2

)ν −m
)

+ ρ

≥ Pxy

(
(2 +

bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1)
bwxm c+ bwym c+ 2

)ν −m
)

+ ρ

≥ 0,

where
Pxy =

(
bwx
m
c+ bwy

m
c+ 2

)
.

By Proposition 2.1.3, we get that Wilf’s conjecture holds in this case.

Case 4. If bwx+ρ
m c = bwxm c and b

wy+ρ
m c = bwym c, then (2.5.5) gives

bwm−1 + ρ

m
c > bwx + ρ

m
c+ bwy + ρ

m
c.
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Then, from (2.5.4) and the hypothesis, we have

m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥ bwx + ρ

m
c
(
(y − x+ 1)ν −m

)
+ bwy + ρ

m
c
(
(x+ 1)ν −m

)
+
(
(y + 1)ν −m

)
+ ρ

= bwx
m
c
(
(y − x+ 1)ν −m

)
+ bwy

m
c
(
(x+ 1)ν −m

)
+
(
(y + 1)ν −m

)
+ ρ.

Hence,
m−1∑
j=1

(bwj + ρ

m
c − bwj−1 + ρ

m
c)(jν −m) + ρ

≥
(
bwx
m
c+ bwy

m
c+ 1

)(
(2 +

bwxm c(y − x− 1) + (y − 1) + bwym c(x− 1)
bwxm c+ bwym c+ 1

)ν −m
)

+ ρ

=
(
bwx
m
c+ bwy

m
c+ 1

)(
(2 +

bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1)
bwxm c+ bwym c+ 2

)ν −m
)

+ ρ

≥ 0.

By Proposition 2.1.3, we get that Wilf’s conjecture holds in this case.
Thus, Wilf’s conjecture holds in all cases. Thus, the proof is complete. �
As a direct consequence of Theorem 2.5.1, we get the following Corollaries.

Corollary 2.5.2. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let
w0 = 0 < w1 < . . . < wm−1 be the elements of Ap(S,m). Suppose that wm−1 −m ≥ wx + wy, x ≥ α + 1,
y − x ≥ α+ 1 for some α ∈ N. If (2 + α)ν ≥ m, then S satisfies Wilf’s conjecture.

Proof. We have(
2 +
bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1)

bwxm c+ bwym c+ 2

)
ν ≥

(
2 +
bwxm cα+ 2α+ bwym cα
bwxm c+ bwym c+ 2

)
ν

≥ (2 + α)ν ≥ m.

By Theorem 2.5.1, S satisfies Wilf’s conjecture. Thus, the proof is complete. �

Corollary 2.5.3. Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let
w0 = 0 < w1 < . . . < wm−1 be the elements of Ap(S,m). Suppose that wm−1 − m ≥ wx + wy, for some
x ≥ α+ 1, y − x ≥ α+ 1 and α ∈ N. If m ≤ 4(2 + α), then S satisfies Wilf’s conjecture.

Proof. We may assume that ν ≥ 4 (ν ≤ 3 is solved [9]), then (2 + α)ν ≥ (2 + α)4 ≥ m. By applying
Corollary 2.5.2, S satisfies Wilf’s conjecture. Thus, the proof is complete.

�

Example 2.5.4. Consider the following numerical semigroup

S =< 19, 21, 23, 25, 27, 28 > .

Note that 2ν < m. We have w4 = 27, w5 = 28 and wm−1 −m = 64 i.e., wm−1 −m ≥ w4 + w5. Moreover,(
2 +
bwxm c(y − x− 1) + (y − 2) + bwym c(x− 1)

bwxm c+ bwym c+ 2

)
ν = (2 + 0 + 3 + 3

1 + 1 + 2)6 ≥ 19 = m.

Thus, the conditions of Theorem 2.5.1 are valid. �
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2.6 Numerical semigroups with m− ν > (n−2)(n−3)
2

In this Section, we show that Wilf’s conjecture holds for numerical semigroups with m− ν > (n−2)(n−3)
2 and

also the conjecture holds for those with n ≤ 5.

Lemma 2.6.1. Let S be a numerical semigroup with multiplicity m, embedding dimension ν, Frobenius
number f and n = |{s ∈ S; s < f}|. If m− ν > α(α−1)

2 for some 0 ≤ α ≤ m− 2, then wα < f . In particular,
n ≥ α+ 2.

Proof. We claim that wα < f . Suppose by the way of contradiction that wα > f (wα 6= f), and let
w ∈ Ap(S,m)∗\min≤S (Ap(S,m)). Then, there exists wi, wj ∈ Ap(S,m)∗ such that w = wi + wj (Corollary
1.0.29). Suppose that at least one of the two indicies, let’s say i, is greater than or equal to α. Then, w =
wi+wj ≥ wα+m ≥ f+1+m. Hence, w−m ∈ S which contradicts the fact that w ∈ Ap(S,m). Consequently,
the two indicies are necessarly less than or equal to α − 1. Since |Ap(S,m)∗\min≤S (Ap(S,m))| = m − ν
(Corollary 1.0.31), we deduce that m − ν ≤ α(α−1)

2 which is impossible. Consequently, wα < f . Therefore,
we get that {0,m,w1, w2, . . . , wα} ⊆ {s ∈ S; s < f}. Hence, n ≥ α+ 2. �

Theorem 2.6.2. Let S be a numerical semigroup with multiplicity m, embedding dimension ν and n =
|{s ∈ S; s < f}|. If m− ν > (n−2)(n−3)

2 with 2 ≤ n ≤ m, then S satisfies Wilf’s conjecture.

Proof. By Lemma 2.6.1, the condition m− ν > (n−2)(n−3)
2 , gives that

{0,m,w1, w2, . . . , wn−2} ⊆ {s ∈ S; s < f}.

Therefore, {0,m,w1, w2, . . . , wn−2} = {s ∈ S; s < f}. Hence, 2m > f . By [14], it follows that S satisfies
Wilf’s conjecture. �

In [9], D. Dobbs and G. Matthews proved Wilf’s conjecture for n ≤ 4 in a long technical proof. In [10], S.
Eliahou showed Wilf’s conjecture has a positive answer for n ≤ 6. We are going to introduce a simpler proof
for n ≤ 5 using the previous theorem (note that If n ≤ 5, then we can assume 2 ≤ n ≤ 5).

Corollary 2.6.3. Let S be a numerical semigroup with multiplicity m, embedding dimension ν and
n = |{s ∈ S; s < f}|. If n ≤ 5, then S satisfies Wilf’s conjecture.

Proof. By Theorem 2.3.6 and Theorem 2.3.10, we will assume that m− ν > 5 which is strictly greater than
α(α−1)

2 for α ∈ {0, 1, 2, 3}. Hence, by applying Theorem 2.6.2 for n = α + 2 ∈ {2, 3, 4, 5} Wilf’s conjecture
holds. �
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3
Numerical semigroup of the form < m,m + 1, . . . ,m + l, k(m + l) + r >

Throughout this chapter we suppose that S is a numerical semigroup minimally generated by m,m +
1, . . . ,m+ l, k(m+ l)+r with k, l,m, r ∈ N∗ and r ≤ (k+1)l+1. The aim of this chapter is to determine the
Frobenius number f(S) and the genus g(S). Also, it aims to characterize those numerical semigroups which
are symmetric (resp. pseudo-symmetric) and to determine the set of pseudo-Frobenius numbers PF (S).

Definition 3.0.1. Let k, l,m, r ∈ N∗. For every 1 ≤ i ≤ m − 1, write, by the euclidean division, i =
αi(kl + r) + βil + ti with 0 ≤ βil + ti < kl + r and 0 ≤ ti < l. In particular

αi = b i

kl + r
c, βi = b i− αi(kl + r)

l
c

and
ti = i− αi(kl + r)− βil.

For the convenience of the statement we will use the following notation :

i = αi(kl + r) + βil + εiti

where
εi =

{
1 if ti 6= 0,
0 if ti = 0.

Clearly εiti = ti but we shall use εi later in the notations. �

Proposition 3.0.2 and 3.0.3 give some properties that will be used in this Chapter using the notations used
in Definition 3.0.1.

Proposition 3.0.2. Let the notations be as in Definition 3.0.1 and suppose that r ≤ (k + 1)l+ 1, we have

βi + εi ≤ 2k + 1.

Proof. By using Definition 3.0.1 and r ≤ (k + 1)l + 1, it follows that

βil + εiti ≤ kl + r − 1 ≤ kl + (k + 1)l = (2k + 1)l.

Case 1. If εi = 0. We have βil = βil + εiti ≤ (2k + 1)l. Consequently, βi ≤ 2k + 1. Hence, βi + εi ≤ 2k + 1.

Case 2. If εi = 1. We have βil + εiti ≤ (2k + 1)l and ti ≥ 1 (as εi = 1). If βi ≥ 2k + 1, then βil + εiti ≥
(2k + 1)l + 1, which gives a contradiction. Consequently, βi ≤ 2k. Then, βi + εi ≤ 2k + 1.

�
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Proposition 3.0.3. Let the notations be as in Definition 3.0.1 and suppose that r ≤ (k + 1)l + 1, we may
assume that

r ≤ min((k + 1)l + 1,m+ l − 1).

Proof. We claim that we may assume that r < m+ l. Indeed, if r ≥ m+ l, then there exist q′, r′ ∈ N such
that r = q′(m+ l)+r′ with r′ < m+ l. Let k′ = k+q′, then k(m+ l)+r = (k+q′)(m+ l)+r′ = k′(m+ l)+r′

with r′ < m + l and r′ = r − q′(m + l) ≤ (k + 1)l + 1 ≤ (k + q′ + 1)l + 1 = (k′ + 1)l + 1. Hence, S is a
numerical semigroup generated by

m,m+ 1, . . . ,m+ l, k′(m+ l) + r′ with r′ ≤ (k′ + 1)l + 1.

Consequently, we may assume that r ≤ m + l − 1. By hypothesis, we have r ≤ (k + 1)l + 1. Hence, we get
our assumption. Thus, the proof is complete.

�

3.1 Apéry set of S

Let Ap(S,m) = {0, w(1), . . . , w(m− 1)} be the Apéry set of S with respect to m, where w(i) is the smallest
element of S which is congruent to i mod m. The following theorem gives a formula for the Apéry set of S.

Theorem 3.1.1. Let S be a numerical semigroup minimally generated by

m,m+ 1, . . . ,m+ l, k(m+ l) + r with r ≤ (k + 1)l + 1.

For all 1 ≤ i ≤ m− 1 where i is written as in Definition 3.0.1, we have :

w(i) = m(kαi + βi + εi) + i.

Proof. Let λi = m(kαi + βi + εi) + i where i is written as in Definition 3.0.1. We are going to show that
λi = w(i) for all 1 ≤ i ≤ m − 1. To this end, we will show that λi ∈ S, λi is congruent to i mod m and
λi −m /∈ S.
• We have λi ∈ S and λi is congruent to i mod m. It follows from

λi = m(kαi + βi + εi) + i

= m(kαi + βi + εi) + αi(kl + r) + βil + εiti

= αi(k(m+ l) + r) + βi(m+ l) + εi(m+ ti).

(3.1.1)

• We will prove that λi−m /∈ S by the way of contradiction. From (3.1.1), we have λi−m = αi(k(m+ l) +
r) + βi(m+ l) + (εi − 1)m+ εiti. Suppose by the way of contradiction that λi −m ∈ S. By Definition 1.0.7,
there exist x, xl, . . . , x0 ∈ N such that

λi −m = x(k(m+ l) + r) + xl(m+ l) + . . .+ x1(m+ 1) + x0m.

Thus,
αi(k(m+ l) + r) + βi(m+ l) + (εi − 1)m+ εiti =

x(k(m+ l) + r) + xl(m+ l) + . . .+ x1(m+ 1) + x0m.

In particular,
m(kαi + βi + εi − 1) + αi(kl + r) + βil + εiti =

m(kx+ xl + . . .+ x1 + x0) + x(kl + r) + xll + xl−1(l − 1) + . . .+ x1.
(3.1.2)

To show that λi−m /∈ S, we are going to show first that x−αi > 0, then we will show that x−αi ≥ 2 and
conclude our assertion from (3.1.2). Since 1 ≤ i ≤ m− 1 and i = αi(kl + r) + βil + εiti, it follows that

αi(kl + r) + βil + εiti ≤ m− 1. (3.1.3)
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We claim that
kαi + βi + εi − 1 ≥ kx+ xl + xl−1 + . . .+ x1 + x0.

Suppose by the way of contradiction that

kαi + βi + εi − 1 < kx+ xl + xl−1 + . . .+ x1 + x0.

Then, from (3.1.3), we get

m(kαi + βi + εi − 1) + αi(kl + r) + βil + εiti

≤ m(kx+ xl + xl−1 + . . .+ x1 + x0 − 1) +m− 1

= m(kx+ xl + xl−1 + . . .+ x1 + x0)− 1

≤ m(kx+ xl + . . .+ x1 + x0) + x(kl + r) + xll + xl−1(l − 1) + . . .+ x1 − 1.

This contradicts (3.1.2). Consequently,

kαi + βi + εi − 1 ≥ kx+ xl + xl−1 + . . .+ x1 + x0. (3.1.4)

From (3.1.2) and (3.1.4), it follows that

αi(kl + r) + βil + εiti ≤ x(kl + r) + xll + xl−1(l − 1) + . . .+ x1. (3.1.5)

If we multiply (3.1.4) by l, we get

αikl + βil ≥ (kx+ xl + xl−1 + . . .+ x1 + x0)l + (1− εi)l. (3.1.6)

Using (3.1.6) and (3.1.5), it follows that

xkl + (x− αi)r + xll + xl−1(l − 1) + . . .+ x1 − εiti ≥ αikl + βil ≥ xkl + (xl + . . .+ x0)l + (1− εi)l.

Consequently,
(x− αi)r ≥ x0l + x1(l − 1) + . . .+ xl−1 + (1− εi)l + εiti.

Since x0, . . . , xl−1, r ∈ N, l ∈ N∗ and εi ∈ {0, 1}, we get that

x− αi > 0. (3.1.7)

Next, we aim to show that x− αi ≥ 2. From (3.1.2), we have

m(βi) = m(k(x− αi) + 1− εi + xl + . . .+ x1 + x0)

+
(
(x− αi)(kl + r)− βil − εiti

)
+ xll + xl−1(l − 1) + . . .+ x1.

(3.1.8)

Then,
(
(x − αi)(kl + r) − βil − εiti

)
+ xll + xl−1(l − 1) + . . . + x1 is divisible by m. Since x − αi > 0 (by

(3.1.7)), βil + εiti < kl + r (by definition) and x1, . . . , xl ∈ N, then there exists p ∈ N∗ such that(
(x− αi)(kl + r)− βil − εiti

)
+ xll + xl−1(l − 1) + . . .+ x1 = pm. (3.1.9)

By substituting (3.1.9) in (3.1.8), we get

m(βi) = m(k(x− αi) + 1− εi + xl + . . .+ x1 + x0 + p).

Consequently,
βi = k(x− αi) + 1− εi + p+ xl + . . .+ x1 + x0. (3.1.10)

From (3.1.9), it follows that

βil = (x− αi)(kl + r)− εiti + xll + xl−1(l − 1) + . . .+ x1 − pm. (3.1.11)
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By multiplying (3.1.10) by l and using (3.1.11), we get the following :

(x− αi)r = p(m+ l) + (1− εi)l + εiti + xl−1 + . . .+ x1(l − 1) + x0l.

Since εi ∈ {0, 1}, xl−1, . . . , x0 ∈ N, p ∈ N∗ and 0 < r < m+ l (Proposition 3.0.3), we get that

x− αi ≥ 2.

From (3.1.2), we have

m(βi + εi − 1) + βil + εiti =

m
(
(x− αi)k + xl + . . .+ x1 + x0

)
+
(
(x− αi)(kl + r) + xll + xl−1(l − 1) + . . .+ x1

)
.

Since x− αi ≥ 2 and xl, . . . , x0 ∈ N, it follows that

m(βi + εi − 1) + βil + εiti ≥ 2km+ 2(kl + r). (3.1.12)

On the other hand, Since βil+ εiti < kl+ r (by definition) and βi+ εi−1 ≤ 2k (Proposition 3.0.2), it follows
that

m(βi + εi − 1) + βil + εiti < 2km+ kl + r. (3.1.13)

From (3.1.12) and (3.1.13) we get a contradiction. Consequently, λi −m /∈ S.
Hence, w(i) = λi = m(kαi + βi + εi) + i. Thus, the proof is complete. �

Example 3.1.2. Consider the following numerical semigroup

S =< 19, 20, 21, 22, 52 > .

Note that m = 19, l = 3, k = 2 and r = 8. Let Ap(S,m) = {0, w(1), . . . , w(m − 1)} be the Apéry basis of
S. By using GAP [8], we obtain

Ap(S,m) = {0, 20, 21, 22, 42, 43, 44, 64, 65, 66, 86, 87, 88, 108, 52, 72, 73, 74, 94}

and they verify the formula given in Theorem 3.1.1. �

3.2 Frobenius number of S

Definition 3.2.1. Let the notations be as above. Let

q = br − 1
l
c.

Thus, ql ≤ r − 1 and r − 1 = ql + t with q, t ∈ N and t < l. Let εt ∈ N defines as in 3.0.1

εt =
{ 1 if t ≥ 1,

0 if t = 0.

�

Proposition 3.2.2 and 3.2.3 give some properties that will be used in this Chapter using the notations used
in Definition 3.2.1.

Proposition 3.2.2. Under the above notations, we have

βi ≤ k + q.
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Proof. By definition, we have

βil + εiti ≤ kl + r − 1 = (k + q)l + t with t < l.

Consequently,
βil + εiti < (k + q + 1)l.

Suppose by the way of contradiction that βi > k + q. Hence, βil + εiti ≥ (k + q + 1)l, which is impossible.
Consequently, βi ≤ k + q. Thus, the proof is complete. �

Proposition 3.2.3. Under the above notations, we have

q + εt ≤ k + 1.

Proof. By definition, we have r−1 ≤ (k+1)l and r−1 = ql+t with q, t ∈ N and t < l. Thus, ql+t ≤ (k+1)l.

Case 1. If εt = 0, then t = 0. Hence, ql ≤ (k + 1)l, which implies that q ≤ k + 1. Thus, q + εt ≤ k + 1.

Case 2. If εt = 1, then t ≥ 1. Hence, ql + t ≤ (k + 1)l with t ≥ 1, it follows that q ≤ k. Therefore,
q + εt ≤ k + 1. Thus, the proof is complete. �

Next, we shall focus on the determination of the Frobenius number of S. We shall start with the following
proposition that will enable us to determine the Frobenius number and will help us later in determining the
Pseudo frobenius number of S.

Proposition 3.2.4. Let S be a numerical semigroup minimally generated by

m,m+ 1, . . . ,m+ l, k(m+ l) + r with r ≤ (k + 1)l + 1.

For all 1 ≤ i < j ≤ m− 1 where i and j are written as in Definition 3.0.1, we have :

• If αi = αj − 2, βj = εj = 0 and βi + εi = 2k + 1, then

w(i)− w(j) > 0.

• If αi = αj − 1, βi + εi > k + βj + εj and βj + εj ≤ k, then

w(i)− w(j) > 0.

• Otherwise,
w(i)− w(j) < 0.

Proof. Let 1 ≤ i < j ≤ m− 1, where

i = αi(kl + r) + βil + εiti and j = αj(kl + r) + βjl + εjtj

be as defined in Definition 3.0.1. By Theorem 3.1.1, we have

w(i) = m(kαi + βi + εi) + i and w(j) = m(kαj + βj + εj) + j.

We claim that αi ≤ αj . In fact, since i < j, then i
kl+r <

j
kl+r , which implies that b i

kl+rc ≤ b
j

kl+rc. Hence,
αi ≤ αj .

Case 1. If αi = αj . We aim to show that βi ≤ βj . Indeed, suppose by the way of contradiction that βi > βj ,
then i = αi(kl + r) + βil + εiti = αj(kl + r) + βil + εiti ≥ αj(kl + r) + βil ≥ αj(kl + r) + (βj + 1)l. Since
εjtj < l, we get that i > αj(kl + r) + βjl + εjtj = j which is a contradiction with i < j. Hence, βi ≤ βj .
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• If βi < βj . Then,

w(j)− w(i) = m(kαj + βj + εj) + j −m(kαi + βi + εi)− i

= m((αj − αi)k + (βj − βi) + (εj − εi)) + j − i

= m((βj − βi) + (εj − εi)) + j − i.

Since βi < βj , i < j and εi, εj ∈ {0, 1}, it follows that w(j)− w(i) > 0.

• If βi = βj . We aim to show that εiti < εjtj , in particular εi ≤ εj . Suppose by the way of contradiction
that εiti ≥ εjtj , then

i = αi(kl + r) + βil + εiti = αj(kl + r) + βjl + εiti ≥ αj(kl + r) + βjl + εjtj = j,

which is a contradiction with i < j. Hence, εiti < εjtj . As εi, εj ∈ {0, 1}, we get that εi ≤ εj . Therefore,

w(j)− w(i) = m((αj − αi)k + (βj − βi) + (εj − εi)) + j − i

= m((εj − εi)) + j − i.

Since εi ≤ εj and i < j, we obtain w(j)− w(i) > 0.

Consequently, if i < j and αi = αj , then
w(i)− w(j) < 0.

Case 2. If αi < αj .

• If αi ≤ αj − 3. By Proposition 3.0.2, we have εi + βi ≤ 2k + 1. Then,

w(j)− w(i) = m((αj − αi)k + (βj − βi) + (εj − εi)) + j − i

≥ m(3k + (βj − βi) + (εj − εi)) + j − i

≥ m(3k − 2k − 1 + βj + εj) + j − i.

Since k ≥ 1 and i < j, it follows that w(j)− w(i) > 0. Consequently, if i < j and αi ≤ αj − 3, then

w(i)− w(j) < 0.

• If αi = αj − 2.

◦ If βj + εj > 0. By Proposition 3.0.2, we have εi + βi ≤ 2k + 1. Then,

w(j)− w(i) = m((αj − αi)k + (βj − βi) + (εj − εi)) + j − i

= m(2k + (βj − βi) + (εj − εi)) + j − i

≥ m(2k + βj + εj − 2k − 1) + j − i

≥ m(2k + 1− 2k − 1) + j − i.

Since i < j, we get w(j)− w(i) > 0.
◦ If βj = εj = 0. Then,

w(j)− w(i) = m((αj − αi)k + (βj − βi) + (εj − εi)) + j − i

= m(2k − βi − εi) + j − i.

By Proposition 3.0.2, we have εi + βi ≤ 2k + 1.
· If βi + εi ≤ 2k. Since i < j, we obtain w(j)− w(i) > 0.
· If βi + εi = 2k + 1. Since j ≤ m− 1, it follows that w(j)− w(i) < 0.
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Consequently, if i < j and αi = αj − 2, then

w(i)− w(j) < 0

unless in the case where βj = εj = 0 and βi + εi = 2k + 1.

• If αi = αj − 1.

◦ If βi + εi ≤ k + βj + εj . Then,

w(j)− w(i) = m((αj − αi)k + (βj − βi) + (εj − εi)) + j − i

= m(k + (βj − βi) + (εj − εi)) + j − i

≥ m(k − k) + j − i.

Since i < j, we get w(j)− w(i) > 0.
◦ If βi + εi > k + βj + εj . Then,

w(j)− w(i) = m((αj − αi)k + (βj − βi) + (εj − εi)) + j − i

= m(k + (βj − βi) + (εj − εi)) + j − i

≤ m(k − k − 1) + j − i.

Since j < m, it follows that w(j)−w(i) < 0. Note that if βi + εi > k+ βj + εj , then βj + εj ≤ k
it follows from βi + εi ≤ 2k + 1 (Proposition 3.0.2).

Consequently, if i < j and αi = αj − 1, then

w(i)− w(j) < 0

unless in the case where βi + εi > k + βj + εj and βj + εj ≤ k.

In conclusion, if i < j, we have
w(i)− w(j) > 0,

in the case
αi = αj − 2, βj = εj = 0 and βi + εi = 2k + 1,

or
αi = αj − 1, βi + εi > k + βj + εj and βj + εj ≤ k,

and in the other cases
w(i)− w(j) < 0.

Thus, the proof is complete. �

The following theorem gives a formula for the Frobenius f(S).

Theorem 3.2.5. Let S be a numerical semigroup minimally generated by

m,m+ 1, . . . ,m+ l, k(m+ l) + r with r ≤ (k + 1)l + 1.

The Frobenius number f(S) of S is given by :

f(S) =
{
m(kαm−1 + q + εt − 1) + αm−1(kl + r)− 1 if S satisfies condition (H),

m(kαm−1 + βm−1 + εm−1)− 1 otherwise,

where
(H) : m− 1 = αm−1(kl+ r) + βm−1l+ εm−1tm−1, with αm−1 ≥ 1, βm−1 + εm−1 ≤ k, q + εt > βm−1 + εm−1
and r > 1.
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Proof. By Lemma 1.0.21, we have f(S) = max(Ap(S,m))−m. We are going to show that

max(Ap(S,m)) =
{
w((αm−1 − 1)(kl + r) + kl + r − 1) if S satisfies condition (H)

w(m− 1) otherwise.

By applying Proposition 3.2.4, we get

max(Ap(S,m)) =

max
{
w
(
(αm−1 − 2)(kl + r) + kl + r − 1

)
,w
(
(αm−1 − 1)(kl + r) + kl + r − 1

)
, w(m− 1)

}
.

Recall that r − 1 = ql + t with t < l, εt = 0 if t = 0 and εt = 1 if t 6= 0. We have

w
(
(αm−1 − 1)(kl + r) + kl + r − 1

)
− w

(
(αm−1 − 2)(kl + r) + kl + r − 1

)
= m

(
k(αm−1 − 1) + k + q + εt

)
+ (αm−1 − 1)(kl + r) + kl + r − 1

− m
(
k(αm−1 − 2) + k + q + εt

)
−
(
(αm−1 − 2)(kl + r) + kl + r − 1

)
= m(k) + kl + r > 0.

Consequently,

max(Ap(S,m)) = max
{
w
(
(αm−1 − 1)(kl + r) + kl + r − 1

)
, w(m− 1)

}
.

Case 1. If αm−1 = 0, then i = (αm−1 − 1)(kl + r) + kl + r − 1 < 0. Hence,

max(Ap(S,m)) = w(m− 1) = m(kαm−1 + βm−1 + εm−1) +m− 1.

Case 2. If αm−1 ≥ 1.

• If r = 1. Thus, r − 1 = 0 and so are q and εt. Therefore,

w
(
m− 1

)
− w

(
(αm−1 − 1)(kl + r) + kl + r − 1

)
= w(m− 1)− w

(
(αm−1 − 1)(kl + 1) + kl

)
= m

(
kαm−1 + βm−1 + εm−1

)
+ αm−1(kl + 1) + βm−1l + εm−1tm−1

− m
(
k(αm−1 − 1) + k

)
− (αm−1 − 1)(kl + 1)− kl

= m(βm−1 + εm−1) + βm−1l + εm−1tm−1 + 1 > 0.

Consequently,

max(Ap(S,m)) = w(m− 1) = m(kαm−1 + βm−1 + εm−1) +m− 1.

• If r > 1 (r − 1 = ql + t where t < l, εt = 1 if t ≥ 1 and εt = 0 if t = 0). Then,

w(m− 1)− w
(
(αm−1 − 1)(kl + r) + kl + r − 1

)
= m(kαm−1 + βm−1 + εm−1) + αm−1(kl + r) + βm−1l + εm−1tm−1

− m
(
k(αm−1 − 1) + k + q + εt

)
−
(
(αm−1 − 1)(kl + r) + kl + r − 1

)
= m(βm−1 + εm−1 − q − εt) + βm−1l + εm−1tm−1 + 1.

◦ If q + εt > βm−1 + εm−1. We have βm−1 + εm−1 ≤ k in this case this follows from Proposition
3.2.3. Since αm−1 ≥ 1 in this case, we get

βm−1l + εm−1tm−1 + 1 ≤ αm−1(kl + r) + βm−1l + εm−1tm−1 = m− 1.

Consequently,
w(m− 1)− w

(
(αm−1 − 1)(kl + r) + kl + r − 1

)
= m(βm−1 + εm−1 − q − εt) + βm−1l + εm−1tm−1 + 1

≤ m(−1) +m− 1

< 0.
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Hence,
max(Ap(S,m)) = w

(
(αm−1 − 1)(kl + r) + kl + r − 1

)
= m(kαm−1 + q + εt) + αm−1(kl + r)− 1.

◦ If q + εt ≤ βm−1 + εm−1. Then,

w(m− 1)− w
(
(αm−1 − 1)(kl + r) + kl + r − 1

)
= m(βm−1 + εm−1 − q − εt) + βm−1l + εm−1tm−1 + 1 > 0.

Therefore,

max(Ap(S,m)) = w(m− 1) = m(kαm−1 + βm−1 + εm−1) +m− 1.

Hence, if S satisfies condition (H), we get

max(Ap(S,m)) = w((αm−1 − 1)(kl + r) + kl + r − 1)

= m(kαm−1 + q + εt) + αm−1(kl + r)− 1.

Otherwise, we obain

max(Ap(S,m)) = w(m− 1) = m(kαm−1 + βm−1 + εm−1) +m− 1.

By applying Lemma 1.0.21, if S satisfies condition (H), we obtain

f(S) = m(kαm−1 + q + εt − 1) + αm−1(kl + r)− 1,

otherwise, we obtain
f(S) = m(kαm−1 + βm−1 + εm−1)− 1.

Thus, the proof is complete. �

Example 3.2.6. Consider the following numerical semigroups.

• S =< 19, 20, 21, 22, 52 >. By using GAP [8], we get that f(S) = 89. Note that k = 2, l = 3 and r = 8.
In addition, m − 1 = 18 = 1(14) + 1(3) + 1 = αm−1(kl + r) + βm−1l + εm−1tm−1 with αm−1 = 1,
βm−1 = 1, εm−1 = 1, tm−1 = 1 and r− 1 = 7 = 2(3) + 1 = ql+ t with q = 2, t = 1 , εt = 1. We have S
verifies condition (H) and verifies the formula given in Theorem 3.2.5 as 89=19(2(1)+2+1-1)+1(14)-1.

• S =< 11, 12, 13, 14, 36 >. By using GAP [8], we obtain that f(S) = 43. Note that k = 2, l = 3 and
r = 8. In addition, m− 1 = 10 = 0(14) + 3(3) + 1 = αm−1(kl+ r) +βm−1l+ εm−1tm−1 with αm−1 = 0,
βm−1 = 3, εm−1 = 1, tm−1 = 1 and r − 1 = 7 = 2(3) + 1 = ql + t with q = 2, t = 1 , εt = 1. We
have S does not verify condition (H) as αm−1 = 0 and verifies the formula given in Theorem 3.2.5 as
43 = 11(2(0) + 3 + 1)− 1.

�

3.3 Genus of S

The following theorem gives a formula for the genus g(S).

Theorem 3.3.1. Let S be a numerical semigroup minimally generated by m,m+ 1, . . . ,m+ l, k(m+ l) +
r with r ≤ (k + 1)l + 1. The genus g(S) of S is given by :

g(S) =
(
kαm−1 + βm−1 + 1

)( l(kαm−1 + βm−1)
2 + εm−1tm−1

)
+kαm−1(αm−1 + 1)r

2 + (q + 1)(r − 1 + t)αm−1
2 .
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Proof. By using Lemma 1.0.21 and Theorem 3.1.1, we get

g(S) = 1
m

∑
w∈Ap(S,m)

w − m− 1
2 = 1

m

m−1∑
i=0

(m(kαi + βi + εi) + i)− m− 1
2

=
m−1∑
i=0

(kαi + βi + εi) + 1
m

m−1∑
i=0

i− m− 1
2 =

m−1∑
i=0

(kαi + βi + εi).

Now, we are going to divide the set {0 ≤ i ≤ m− 1} into subsets and calculate the value of kαi + βi + εi in
each subset. We have

{0 ≤ i ≤ m− 1} = {j(kl + r) ≤ i ≤ j(kl + r) + kl + (r − 1); 0 ≤ j ≤ αm−1 − 1}

∪ {αm−1(kl + r) ≤ i ≤ αm−1 + βm−1l + εm−1tm−1}

= ∪7
`=1A`,

where
A1 = {j(kl + r); 0 ≤ j ≤ αm−1 − 1},
A2 = {j(kl + r) + yl + 1 ≤ i ≤ j(kl + r) + (y + 1)l; 0 ≤ j ≤ αm−1 − 1 and 0 ≤ y ≤ k − 1},
A3 = {j(kl + r) + (k + y)l + 1 ≤ i ≤ j(kl + r) + (k + y + 1)l; 0 ≤ j ≤ αm−1 − 1 and 0 ≤ y ≤ q − 1},
A4 = {j(kl + r) + (k + q)l + 1 ≤ i ≤ j(kl + r) + (k + q)l + t; 0 ≤ j ≤ αm−1 − 1},
A5 = {αm−1(kl + r)},
A6 = {αm−1(kl + r) + yl + 1 ≤ i ≤ αm−1(kl + r) + (y + 1)l; 0 ≤ y ≤ βm−1 − 1},
A7 = {αm−1(kl + r) + βm−1l + 1 ≤ i ≤ αm−1(kl + r) + βm−1l + εm−1tm−1}.

Next, we will calculate the value of kαi + βi + εi on each subset A`.

If i ∈ A1, then kαi + βi + εi = kj.
If i ∈ A2, then kαi + βi + εi = kj + y + 1.
If i ∈ A3, then kαi + βi + εi = kj + k + y + 1.
If i ∈ A4, then kαi + βi + εi = kj + k + q + 1.
If i ∈ A5, then kαi + βi + εi = kαm−1.
If i ∈ A6, then kαi + βi + εi = kαm−1 + y + 1.
If i ∈ A7, then kαi + βi + εi = kαm−1 + βm−1 + 1.

Therefore,

g(S) =
m−1∑
i=0

(kαi + βi + εi) =
7∑
`=1

∑
i∈A`

(kαi + βi + εi)

=
αm−1−1∑
j=0

(
kαj(kl+r) + βj(kl+r) + εj(kl+r) +

k−1∑
y=0

j(kl+r)+(y+1)l∑
i=j(kl+r)+yl+1

(kαi + βi + εi)

+
q−1∑
y=0

j(kl+r)+(k+y+1)l∑
i=j(kl+r)+(k+y)l+1

(kαi + βi + εi) +
j(kl+r)+(k+q)l+t∑
i=j(kl+r)+(k+q)l+1

(kαi + βi + εi)
)

+
(
kααm−1(kl+r) + βαm−1(kl+r) + εαm−1(kl+r)

)
+
βm−1−1∑
y=0

αm−1(kl+r)+(y+1)l∑
i=αm−1(kl+r)+yl+1

(kαi + βi + εi)

+
αm−1(kl+r)+βm−1l+εm−1tm−1∑

i=αm−1(kl+r)+βm−1l+1
(kαi + βi + εi).

Equivalently,
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g(S) =
αm−1−1∑
j=0

(
kj +

k−1∑
y=0

j(kl+r)+(y+1)l∑
i=j(kl+r)+yl+1

(kj + y + 1) +
q−1∑
y=0

j(kl+r)+(y+1)l∑
i=j(kl+r)+yl+1

(kj + k + y + 1)

+
j(kl+r)+(k+q)l+t∑
i=j(kl+r)+(k+q)l+1

(kj + k + q + 1)
)

+kαm−1 +
βm−1−1∑
y=0

αm−1(kl+r)+(y+1)l∑
i=αm−1(kl+r)+yl+1

(kαm−1 + y + 1)

+
αm−1(kl+r)+βm−1l+εm−1tm−1∑

i=αm−1(kl+r)+βm−1l+1
(kαm−1 + βm−1 + 1)

=
αm−1−1∑
j=0

(
kj +

k−1∑
y=0

(kj + y + 1)l +
q−1∑
y=0

(kj + k + y + 1)l + (kj + k + q + 1)t
)

+kαm−1 +
βm−1−1∑
y=0

(kαm−1 + y + 1)l+(kαm−1 + βm−1 + 1)εm−1tm−1

=
αm−1−1∑
j=0

(
kj + k(kj + 1)l + k(k − 1)l

2 + (kj + k + 1)ql + (q − 1)ql
2 + (kj + k + q + 1)t

)

+kαm−1 + (kαm−1 + 1)βm−1l+
βm−1(βm−1 − 1)l

2 + (kαm−1 + βm−1 + 1)εm−1tm−1

=
αm−1−1∑
j=0

(
k(kl + 1 + ql + t)j + (k + 1)(kl + 2ql + 2t) + 2qt+ q(q − 1)l

2

)

+kαm−1 + (kαm−1 + 1)βm−1l + βm−1(βm−1 − 1)l
2 +(kαm−1 + βm−1 + 1)εm−1tm−1

= k(kl + 1 + ql + t)αm−1(αm−1 − 1)
2 + kαm−1 + (kαm−1 + 1)βm−1l

+
(
(k + 1)(kl + 2ql + 2t) + 2qt+ q(q − 1)l

)
αm−1

2 + βm−1(βm−1 − 1)l
2

+(kαm−1 + βm−1 + 1)εm−1tm−1

= (kαm−1 − k)(klαm−1)
2 + kαm−1(αm−1 − 1)

2 + (ql + t)(kαm−1 − k)αm−1
2

+(k + 1)klαm−1
2 + (ql + t)(2k + 2)αm−1

2 +
(
2qt+ q(q − 1)l

)
αm−1

2

+kαm−1 + (kαm−1 + 1)βm−1l

2 + βm−1(klαm−1)
2 + βm−1(βm−1l)

2

+(kαm−1 + βm−1 + 1)εm−1tm−1

= (kαm−1 + βm−1 + 1)
( l(kαm−1 + βm−1)

2 + εm−1tm−1
)

+ kαm−1(αm−1 + 1)
2

+(ql + t)(kαm−1 + k + 2)αm−1
2 +

(
2qt+ q(q − 1)l

)
αm−1

2 .
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Finally,

g(S) = (kαm−1 + βm−1 + 1)
( l(kαm−1 + βm−1)

2 + εm−1tm−1
)

+ kαm−1(αm−1 + 1)
2

+
(k + kαm−1 + 2)αm−1(r − 1) +

(
2qt+ q(q − 1)l

)
αm−1

2

= (kαm−1 + βm−1 + 1)
( l(kαm−1 + βm−1)

2 + εm−1tm−1
)

+ kαm−1(αm−1 + 1)r
2

+(q + 1)(r − 1 + t)αm−1
2 .

Thus, the proof is complete. �

Example 3.3.2. Consider the examples in Example 3.2.6.

• S =< 19, 20, 21, 22, 52 >. By using GAP [8], we get that g(S) = 50. Note that k = 2, l = 3 and r = 8.
In addition, m − 1 = 18 = 1(14) + 1(3) + 1 = αm−1(kl + r) + βm−1l + εm−1tm−1 with αm−1 = 1,
βm−1 = 1, εm−1 = 1, tm−1 = 1 and r − 1 = 7 = 2(3) + 1 = ql + t with q = 2, t = 1. We have
50 =

(
2(1) + 1 + 1

)(3(2(1)+1)
2 + 1

)
+ 2(1)(1+1)8

2 + (2+1)(8−1+1)(1)
2 . Hence, S verifies the formula given in

Theorem 3.3.1.

• S =< 11, 12, 13, 14, 36 >. By using GAP [8], we get that g(S) = 22. Note that k = 2, l = 3 and r = 8.
In addition, m − 1 = 10 = 0(14) + 3(3) + 1 = αm−1(kl + r) + βm−1l + εm−1tm−1 with αm−1 = 0,
βm−1 = 3, εm−1 = 1, tm−1 = 1 and r − 1 = 7 = 2(3) + 1 = ql + t with q = 2, t = 1. We have
22 =

(
2(0) + 3 + 1

)(3(2(0)+3)
2 + 1

)
+ 2(0)(0+1)8

2 + (2+1)(8−1+1)(0)
2 . Hence, S verifies the formula given in

Theorem 3.3.1.

�

3.4 Determination of symmetric and pseudo-symmetric numerical semigroups

Next, we shall focus on the determination of symmetric and pseudo-symmetric numerical semigroups. We
shall start with a technical Lemma.

Lemma 3.4.1. Let the notation be as defined in Definition 3.0.1 and in Definition 3.2.1, we have the
following :

2g(S)−
(
f(S) + 1

)
=
{
F1 if S satisfies condition (H),

F2 otherwise,

where
F1 = αm−1

(
(1− εt)(kl + r) + kt+ (q + 1)(t− 1)

)
+βm−1l

(
kαm−1 + βm−1 + 1− q + 1− εt

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 2− q + 1− εt

)
+ 1− εt − q,

F2 = αm−1
(
− εm−1(kl + r) + (k + q − βm−1)r + k(l − 1) + r + (q + 1)(t− 1)

)
+βm−1l

(
1− εm−1

)
+ εm−1tm−1

(
kαm−1 + βm−1 + 2− εm−1

)
− εm−1 − βm−1

and

(H) : m− 1 = αm−1(kl+ r) + βm−1l+ εm−1tm−1, with αm−1 ≥ 1, βm−1 + εm−1 ≤ k, q+ εt > βm−1 + εm−1
and r > 1.
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Proof. By Theorem 3.2.5, we have f(S) = m(kαm−1 + q+ εt− 1) +αm−1(kl+ r)− 1 if S satisfies condition
(H) and f(S) = m(kαm−1 + βm−1 + εm−1) − 1 otherwise. Now, we use the formulas in Theorem 3.2.5 and
Theorem 3.3.1.

Case 1. If f(S) = m(kαm−1 + q + εt − 1) + αm−1(kl + r)− 1. Then,

2g(S)−
(
f(S) + 1

)
= (kαm−1 + βm−1 + 1)

(
l(kαm−1 + βm−1) + 2εm−1tm−1

)
+ k(αm−1 + 1)αm−1r

+(q + 1)(r − 1)αm−1 + (q + 1)tαm−1 −m(kαm−1 + q + εt − 1)− αm−1(kl + r)

= αm−1
(
k2lαm−1 + klβm−1 + 2kεm−1tm−1 + klβm−1 + kl + k(αm−1 + 1)r

+(q + 1)(r − 1) + (q + 1)t− km− kl − r
)

+ βm−1l
(
βm−1 + 1

)
+εm−1tm−1

(
2βm−1 + 2

)
−m(q + εt − 1)

= αm−1
(
kql + kt+ qr + (q + 1)(t− 1)

)
+ βm−1l

(
kαm−1 + βm−1 + 1

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 2

)
− αm−1(kl + r)(q + εt − 1)− βm−1l(q + εt − 1)

−εm−1tm−1(q + εt − 1)− (q + εt − 1)

= αm−1
(
(1− εt)(kl + r) + kt+ (q + 1)(t− 1)

)
+ βm−1l

(
kαm−1 + βm−1 + 1− q + 1− εt

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 2− q + 1− εt

)
+ 1− εt − q.

Case 2. If f(S) = m(kαm−1 + βm−1 + εm−1)− 1. Then,

2g(S)−
(
f(S) + 1

)
= (kαm−1 + βm−1 + 1)

(
l(kαm−1 + βm−1) + 2εm−1tm−1

)
+ k(αm−1 + 1)αm−1r

+(q + 1)(r − 1)αm−1 + (q + 1)tαm−1 −m(kαm−1 + βm−1 + εm−1)

= αm−1
(
k2lαm−1 + klβm−1 + 2kεm−1tm−1 + klβm−1 + kl + k(αm−1 + 1)r

+(q + 1)(r − 1) + (q + 1)t− km
)

+ βm−1l
(
βm−1 + 1

)
+εm−1tm−1

(
2βm−1 + 2

)
−m(βm−1 + εm−1).

Therefore,

2g(S)−
(
f(S) + 1

)
= αm−1

(
klβm−1 + kl + kr + (q + 1)(r − 1) + (q + 1)t− k

)
+ βm−1l

(
βm−1 + 1

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 2

)
− αm−1(kl + r)(βm−1 + εm−1)

−βm−1l(βm−1 + εm−1)− εm−1tm−1(βm−1 + εm−1)− (βm−1 + εm−1)

= αm−1
(
− εm−1(kl + r) + (k + q − βm−1)r + k(l − 1) + r + (q + 1)(t− 1)

)
+βm−1l

(
1− εm−1

)
+ εm−1tm−1

(
kαm−1 + βm−1 + 2− εm−1

)
− εm−1 − βm−1.

Thus, the proof is complete. �

3.4.1 Determination of symmetric numerical semigroup

The following theorem gives the set of symmetric numerical semigroups.

Theorem 3.4.2. Let S be a numerical semigroup minimally generated by

m,m+ 1, . . . ,m+ l, k(m+ l) + r with r ≤ (k + 1)l + 1.

Then, S is symmetric if and only if it satisfies one of the following :
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1. S =< 2k + 3, 2k + 4, k(2k + 4) + k + 2 > .

2. S =< 2kl + 3, 2kl + 4, . . . , (2k + 1)l + 3, k((2k + 1)l + 3) + kl + 2 > with l ≥ 2.

3. S =< βm−1 + 1, βm−1 + 2, k(βm−1 + 2) + r > with βm−1 ≥ 1.

4. S =< (αm−1 + 1)(k + q + 1), (αm−1 + 1)(k + q + 1) + 1, k((αm−1 + 1)(k + q + 1) + 1) + q + 1 > .

5. S =< βm−1l + 2, . . . , (βm−1 + 1)l + 2, k((βm−1 + 1)l + 2) + ql + t+ 1 > with t ≥ 1 and l ≥ 2.

6. S =< (αm−1 +1)((k+q)l+2), . . . , (αm−1 +1)((k+q)l+2)+ l, k((αm−1 +1)((k+q)l+2)+ l)+ql+2 >
with l ≥ 2.

7. S =< βm−1l + 2, . . . , (βm−1 + 1)l + 2, k((βm−1 + 1)l + 2) + ql + 1 > with l ≥ 2.

8. S =< αm−1(kl+ 1) + (k− 1)l+ 2, . . . , αm−1(kl+ 1) +kl+ 2, k(αm−1(kl+ 1) +kl+ 2) + 1 > with l ≥ 2.

Proof. By Lemma 1.0.34, we have

S is symmetric if and only if 2g(S)−
(
f(S) + 1

)
= 0.

Case 1. If S satisfies condition (H). By Theorem 3.2.5,

f(S) = m(kαm−1 + q + εt − 1) + αm−1(kl + r)− 1

with
αm−1 > 0, βm−1 + εm−1 ≤ k, q + εt > βm−1 + εm−1 and r > 1.

By using Lemma (3.4.1), S is symmetric if and only if

αm−1
(
(1− εt)(kl + r) + kt+ (q + 1)(t− 1)

)
+βm−1l

(
kαm−1 + βm−1 + 1− q + 1− εt

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 2− q + 1− εt

)
+ 1− εt = q.

• If εt = 0 (t = 0 and r = ql + 1 in this case). Then, S is symmetric if and only if

αm−1
(
kl + q(l − 1)

)
+ βm−1l

(
kαm−1 + βm−1 + 2− q

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 3− q

)
+ 1 = q.

(3.4.1)

Since l ≥ 1, αm−1 ≥ 1 and q ≤ k + 1 (Proposition 3.2.3), it follows that kl + q(l − 1) ≥ kl, kαm−1 +
βm−1 + 2− q ≥ 1 and kαm−1 + 2βm−1 + 3− q ≥ 2. Consequently, (3.4.1) implies that

αm−1kl + βm−1l + εm−1tm−1(2) + 1 ≤ q. (3.4.2)

As αm−1 ≥ 1, l ≥ 1 and q ≤ k + 1 (Proposition 3.2.3), then (3.4.2) implies that l = 1, αm−1 = 1,
βm−1 = 0, εm−1tm−1 = 0 and q = k + 1. As r = ql + 1 in this case (as εt = t = 0), we get r = k + 2.
Therefore, S is symmetric in this case if and only if

αm−1 = 1, βm−1 = 0, tm−1 = 0, l = 1, r = k + 2. (3.4.3)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.3) in S, we obtain

S =< 2k + 3, 2k + 4, k(2k + 4) + k + 2 > .

• If εt = 1 (t ≥ 1). Then, S is symmetric if and only if

αm−1
(
kt+ (q + 1)(t− 1)

)
+ βm−1l

(
kαm−1 + βm−1 + 1− q

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 2− q

)
= q.

(3.4.4)
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Since t ≥ 1, αm−1 ≥ 1 and q ≤ k (by Proposition 3.2.3 as εt = 1), it follows that kt+ (q+ 1)(t− 1) ≥
kt, kαm−1 +βm−1 + 1− q ≥ βm−1 + 1 and kαm−1 + 2βm−1 + 2− q ≥ 2βm−1 + 2. Consequently, (3.4.4)
implies that

αm−1(kt) + βm−1l(βm−1 + 1) + εm−1tm−1(2βm−1 + 2) ≤ q. (3.4.5)

As αm−1 ≥ 1, t ≥ 1 and q ≤ k (by Proposition 3.2.3 as εt = 1), then (3.4.5) implies that αm−1 =
1, t = 1, βm−1 = 0, εm−1tm−1 = 0 and q = k. As r = ql + t+ 1, we get r = kl + 2. Since t ≥ 1, then
l ≥ 2. Therefore, S is symmetric in this case if and only if

αm−1 = 1, βm−1 = 0, tm−1 = 0, r = kl + 2, l ≥ 2. (3.4.6)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.6) in S, we obtain

S =< 2kl + 3, 2kl + 4, . . . , (2k + 1)l + 3, k((2k + 1)l + 3) + kl + 2 > with l ≥ 2.

Case 2. If S does not satisfy condition (H). By Theorem 3.2.5,

f(S) = m(kαm−1 + βm−1 + εm−1)− 1

with
αm−1 = 0 or βm−1 + εm−1 > k or βm−1 + εm−1 ≥ q + εt or r = 1. (3.4.7)

By using Lemma 3.4.1, S is symmetric if and only if

αm−1
(
− εm−1(kl + r) + (k + q − βm−1)r + k(l − 1) + r + (q + 1)(t− 1)

)
+βm−1l

(
1− εm−1

)
+ εm−1tm−1

(
kαm−1 + βm−1 + 2− εm−1

)
= βm−1 + εm−1.

• If εm−1 = 0 (tm−1 = 0). We have r = ql + t+ 1, then S is symmetric if and only if

αm−1
(
(k + q − βm−1)r + k(l − 1) + q(l − 1) + (q + 2)t

)
+ βm−1(l − 1) = 0. (3.4.8)

◦ If βm−1 = 0. Since εm−1 = 0 and m 6= 1 (S 6= N), it follows that αm−1 ≥ 1. Since βm−1 =
0, εm−1 = 0, and αm−1 ≥ 1, by using (3.4.7), we get r = 1 in particular q = 0 and εt = t = 0.
In this case by using (3.4.8), we obtain S is symmetric if and only if αm−1(k+ k(l− 1)) = 0. As
αm−1 ≥ 1, it follows that kl = 0 which is impossible (as k > 0 and l > 0).

◦ If βm−1 ≥ 1. Since l ≥ 1 and βm−1 ≤ k + q (Proposition 3.2.2), it follows that αm−1
(
(k + q −

βm−1)r + k(l − 1) + q(l − 1) + (q + 2)t
)
≥ 0 and βm−1(l − 1) ≥ 0. By using (3.4.8), we get

βm−1(l − 1) = 0 (3.4.9)

and
αm−1

(
(k + q − βm−1)r + k(l − 1) + q(l − 1) + (q + 2)t

)
= 0. (3.4.10)

Since βm−1 ≥ 1, then (3.4.9) implies that l = 1. By substituting l = 1 in (3.4.10), we get

αm−1
(
(k + q − βm−1)r + (q + 2)t

)
= 0. (3.4.11)

Now, (3.4.11) implies that
αm−1 = 0 (3.4.12)

or
(k + q − βm−1)r + (q + 2)t = 0. (3.4.13)

Since βm−1 ≤ k + q (Proposition 3.2.2), r > 0 and q + 2 > 0, then (3.4.13) implies that
βm−1 = k + q and t = 0. As r = ql+ t+ 1 (with l = 1 proved above), then r = ql+ 1 = q + 1 in
this case. Therefore, S is symmetric in this case if and only if

αm−1 = 0, βm−1 ≥ 1, εm−1 = 0, l = 1 (3.4.14)
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or
βm−1 = k + q, εm−1 = 0, l = 1, r = q + 1. (3.4.15)

We have m− 1 = αm−1(kl+ r) + βm−1l+ εm−1tm−1. By substituting (3.4.14) and (3.4.15) in S,
we get that S is symmetric if and only if

S =< βm−1 + 1, βm−1 + 2, k(βm−1 + 2) + r > with βm−1 ≥ 1

or
S =< (αm−1 + 1)(k + q + 1), (αm−1 + 1)(k + q + 1) + 1,

k((αm−1 + 1)(k + q + 1) + 1) + q + 1 > .

• If εm−1 = 1 (tm−1 ≥ 1). Then, S is symmetric if and only if

αm−1
(
(k + q − βm−1)r + (q + 1)(t− 1)

)
+(tm−1 − 1)

(
kαm−1 + βm−1 + 1

)
= 0. (3.4.16)

◦ If t ≥ 1. Since βm−1 ≤ k + q (Proposition 3.2.2) and t ≥ 1, it follows that

αm−1
(
(k + q − βm−1)r + (q + 1)(t− 1)

)
≥ 0.

We have kαm−1 + βm−1 + 1 > 0 and tm−1 ≥ 1. By using (3.4.16), we get

tm−1 = 1 (3.4.17)

and
αm−1

(
(k + q − βm−1)r + (q + 1)(t− 1)

)
= 0. (3.4.18)

Since tm−1 = 1, it follows that l ≥ 2 (εm−1tm−1 < l). Now, (3.4.18) gives αm−1 = 0 or (k + q −
βm−1)r+(q+1)(t−1) = 0. If (k+q−βm−1)r+(q+1)(t−1) = 0, since βm−1 ≤ k+q (Proposition
3.2.2), r > 0, q + 1 > 0 and t ≥ 1, it follows that t = 1 and βm−1 = k + q. Consequently, S is
symmetric if and only if tm−1 = 1 with αm−1 = 0, l ≥ 2 or tm−1 = 1 with t = 1, βm−1 = k + q,
l ≥ 2. Since r = ql + t+ 1 and t ≥ 1 in this case, it follows that S is symmetric if and only if

αm−1 = 0, tm−1 = 1, t ≥ 1 with l ≥ 2 (3.4.19)

or
βm−1 = k + q, tm−1 = 1, r = ql + 2 with l ≥ 2. (3.4.20)

We have m− 1 = αm−1(kl+ r) + βm−1l+ εm−1tm−1. By using (3.4.19) and (3.4.20), we get S is
symmetric if and only if

S =< βm−1l + 2, . . . , (βm−1 + 1)l + 2, k((βm−1 + 1)l + 2) + ql + t+ 1 >

with t ≥ 1 and l ≥ 2

or

S =< (αm−1 + 1)((k + q)l + 2), . . . , (αm−1 + 1)((k + q)l + 2) + l,

k((αm−1 + 1)((k + q)l + 2) + l) + ql + 2 > with l ≥ 2.

◦ If t = 0. We have r = ql + 1, then (3.4.16) implies that S is symmetric if and only if

αm−1
(
(k + q − 1− βm−1)r + q(l − 1)

)
+(tm−1 − 1)

(
kαm−1 + βm−1 + 1

)
= 0. (3.4.21)

We have r = ql+1 and 1 ≤ εm−1tm−1 ≤ l−1 in this case. On the other hand, βm−1l+εm−1tm−1 ≤
kl+r−1 = kl+ql. Hence, βm−1 ≤ k+q−1 (as εm−1tm−1 ≥ 1). Since l ≥ 1 and βm−1 ≤ k+q−1
in this case, it follows that αm−1

(
(k + q − 1 − βm−1)r + q(l − 1)

)
≥ 0. We have tm−1 ≥ 1 and

kαm−1 + βm−1 + 1 > 0. By using (3.4.21), we get

tm−1 = 1 (3.4.22)
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and
αm−1

(
(k + q − 1− βm−1)r + q(l − 1)

)
= 0. (3.4.23)

Since tm−1 = 1, it follows that l ≥ 2 (εm−1tm−1 < l). Now, (3.4.23) gives αm−1 = 0 or (k + q −
1−βm−1)r+q(l−1) = 0. If (k+q−1−βm−1)r+q(l−1) = 0, since βm−1 ≤ k+q−1 in this case
(proved above), r > 0 and l ≥ 1, it follows that βm−1 = k+q−1 and q(l−1) = 0. Since tm−1 = 1,
it follows that l ≥ 2, in particular q(l − 1) = 0 gives q = 0. Thus, in the second case, we have
βm−1 = k + q − 1 with q = 0 (r = 1 in this case as t = 0). Consequently, S is symmetric if and
only if tm−1 = 1 with αm−1 = 0, l ≥ 2 or tm−1 = 1 with q = 0 (r = 1), βm−1 = k+ q− 1 = k− 1,
l ≥ 2. As r = ql + 1 in this case, it follows that S is symmetric if and only if

αm−1 = 0, tm−1 = 1, r = ql + 1 with l ≥ 2 (3.4.24)

or
βm−1 = k − 1, tm−1 = 1, r = 1 with l ≥ 2. (3.4.25)

We have m− 1 = αm−1(kl+ r) + βm−1l+ εm−1tm−1. By using (3.4.24) and (3.4.25), we get S is
symmetric if and only if

S =< βm−1l + 2, . . . , (βm−1 + 1)l + 2, k((βm−1 + 1)l + 2) + ql + 1 >

with l ≥ 2
or

S =< αm−1(kl + 1) + (k − 1)l + 2, . . . , αm−1(kl + 1) + kl + 2,

k(αm−1(kl + 1) + kl + 2) + 1 > with l ≥ 2.

Thus, the proof is complete. �

Example 3.4.3. Consider the following numerical semigroups.
1. S =< 9, 10, 35 >. By using GAP [8], we get that S is symmetric. Note that m = 9 = 2k + 3 with

k = 3. In addition, l = 1 and r = 5 = k + 2. Hence, S verifies the formula in Theorem 3.4.2.

2. S =< 15, 16, 17, 18, 44 >. By using GAP [8], we get that S is symmetric. Note that l = 3 and
m = 15 = 2kl + 3 with k = 2. Moreover, r = 8 = kl + 2. Hence, S verifies the formula in Theorem
3.4.2.

3. S =< 8, 9, 48 >. By using GAP [8], we get that S is symmetric. Note that l = 1. Moreover, m = 8 =
7(1) + 1 where αm−1 = 0, βm−1 = 7 ≥ 1 and tm−1 = 0. In addition, k = 5 and r = 3. Hence, S verifies
the formula in Theorem 3.4.2.

4. S =< 10, 11, 35 >. By using GAP [8], we get that S is symmetric. Note that l = 1. In addition,
m = 10 = 1(3 + 1 + 1) + 3 + 1 + 1 = (1 + 1)(3 + 1 + 1) where αm−1 = 1, βm−1 = 3 + 1 = k + q such
that k = 3 and q = 1, tm−1 = 0 and r = 2 = q + 1. Hence, S verifies the formula in Theorem 3.4.2.

5. S =< 18, 19, 20, 21, 22, 54 >. By using GAP [8], we get that S is symmetric. Note that l = 4 ≥ 2
and m = 18 = 4(4) + 1 + 1 where αm−1 = 0, βm−1 = 4 and tm−1 = 1. In addition k = 2 and
r = 10 = 2(4) + 1 + 1 = ql+ t+ 1 such that t = 1 ≥ 1. Hence, S verifies the formula in Theorem 3.4.2.

6. S =< 16, 17, 18, 40 >. By using GAP [8], we get that S is symmetric. Note that l = 2 ≥ 2, k = 2,
q = 1 and r = 4 = ql+ 2. In addition, m = 16 = 1((2 + 1)2 + 2) + (2 + 1)2 + 2 = (1 + 1)((2 + 1)2 + 2) =
αm−1((k + q)l+ 2) + (k + q)l+ 2 where αm−1 = 1, βm−1 = k + q = 3 and tm−1 = 1. Hence, S verifies
the formula in Theorem 3.4.2.

7. S =< 18, 19, 20, 21, 22, 75 >. By using GAP [8], we get that S is symmetric. Note that l = 4 ≥ 2
and m = 18 = 4(4) + 1 + 1 where αm−1 = 0, βm−1 = 4 and tm−1 = 1. In addition k = 3 and
r = 9 = 2(4) + 1 = ql + 1. Hence, S verifies the formula in Theorem 3.4.2.

8. S =< 89, 90, 91, 92, 93, 94, 565 >. By using GAP [8], we get that S is symmetric. Note that l = 5 ≥ 2,
k = 6 and r = 1. In addition, m = 2(5(6) + 1) + (6 − 1)(5) + 2, where αm−1 = 2, βm−1 = 5 = k − 1
and tm−1 = 1. Hence, S verifies the formula in Theorem 3.4.2.

�

51



CHAPITRE 3. NUMERICAL SEMIGROUP OF THE FORM < M,M + 1, . . . ,M + L,K(M + L) +R >

3.4.2 Determination of pseudo-symmetric numerical semigroup

Now, we shall characterize the set of pseudo-symmetric numerical semigroups.

Theorem 3.4.4. Let S be a numerical semigroup minimally generated by

m,m+ 1, . . . ,m+ l, k(m+ l) + r with r ≤ (k + 1)l + 1.

Then, S is pseudo-symmetric if and only if it satisfies one of the following :

1. S =< 9, 10, 13 > .

2. S =< 2k + 2, 2k + 3, k(2k + 3) + k + 1 > .

3. S =< (2k − 1)l + 3, . . . , 2kl + 3, k(2kl + 3) + (k − 1)l + 2 > with l ≥ 2.

4. S =< 2(2l + 2) + 1, . . . , 2(2l + 2) + 1 + l, (2(2l + 2) + 1 + l) + l + 2 > with l ≥ 2.

5. S =< 2k + 1, 2k + 2, k(2k + 2) + 1 > with k ≥ 2.

6. S =< 3, 4, 5 > .

7. S =< 2kl + 5, . . . , (2k + 1)l + 5, k((2k + 1)l + 5) + 3 > with l ≥ 3.

8. S =< (2k − 2)l + 3, . . . , (2k − 1)l + 3, k((2k − 1)l + 3) + 1 > with l ≥ 2.

9. S =< 4k + 5, 4k + 6, 4k + 7, k(4k + 7) + 3 > .

Proof. By Lemma 1.0.34, we have

S is pseudo-symmetric if and only if 2g(S)−
(
f(S) + 1

)
= 1.

Case 1. If S satisfies condition (H). By Theorem 3.2.5,

f(S) = m(kαm−1 + q + εt − 1) + αm−1(kl + r)− 1

with
αm−1 > 0, βm−1 + εm−1 ≤ k, q + εt > βm−1 + εm−1 and r > 1.

By using Lemma 3.4.1, S is pseudo-symmetric if and only if

αm−1
(
(1− εt)(kl + r) + kt+ (q + 1)(t− 1)

)
+βm−1l

(
kαm−1 + βm−1 + 1− q + 1− εt

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 2− q + 1− εt

)
+ 1− εt = q + 1.

• If εt = 0 (t = 0, r = ql + 1). Since r = ql + 1, it follows that S is pseudo-symmetric if and only if

αm−1
(
kl + q(l − 1)

)
+ βm−1l

(
kαm−1 + βm−1 + 2− q

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 3− q

)
= q.

(3.4.26)

Since αm−1 ≥ 1 and q ≤ k + 1 (Proposition 3.2.3), it follows that kαm−1 + βm−1 + 2− q ≥ βm−1 + 1
and kαm−1 + 2βm−1 + 3− q ≥ 2βm−1 + 2. Consequently, (3.4.26) implies that αm−1(kl + q(l − 1)) +
βm−1l(βm−1 + 1) + εm−1tm−1(2βm−1 + 2) ≤ q. As αm−1 ≥ 1, k ≥ 1, l ≥ 1 and q ≤ k + 1 (Proposition
3.2.3), it follows that

l = 1, βm−1 = 0, εm−1tm−1 = 0, αm−1 ∈ {1, 2}. (3.4.27)

◦ If αm−1 = 2. By substituting (3.4.27) in (3.4.26), it follows that S is pseudo-symmetric if and
only if 2k = q. As q ≤ k + 1 (Proposition 3.2.3), we get k = 1 and q = 2k = 2. As r = ql + 1
with l = 1 in this case, we obtain r = 3. Thus, we have

αm−1 = 2, βm−1 = 0, tm−1 = 0, l = 1, r = 3, k = 1. (3.4.28)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.28) in S, we get

S =< 9, 10, 13 > .
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◦ If αm−1 = 1. By substituting (3.4.27) in (3.4.26), it follows that k = q. As r = ql + 1 with l = 1
in this case, we obtain r = k + 1. Thus, we have

αm−1 = 1, βm−1 = 0, tm−1 = 0, l = 1, r = k + 1. (3.4.29)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.29) in S, we get

S =< 2k + 2, 2k + 3, k(2k + 3) + k + 1 > .

• If εt = 1 (t ≥ 1). Then, S is pseudo-symmetric if and only if

αm−1
(
kt+ (q + 1)(t− 1)

)
+ βm−1l

(
kαm−1 + βm−1 + 1− q

)
+εm−1tm−1

(
kαm−1 + 2βm−1 + 2− q

)
= q + 1.

(3.4.30)

Since αm−1 ≥ 1 and q ≤ k (by Proposition 3.2.3 as εt = 1), it follows that kαm−1 + βm−1 + 1 − q ≥
βm−1 + 1 and kαm−1 + 2βm−1 + 2− q ≥ 2βm−1 + 2. Consequently, (3.4.30) implies that

αm−1(kt+ (q + 1)(t− 1)) + βm−1l(βm−1 + 1)

+εm−1tm−1(2βm−1 + 2) ≤ q + 1.
(3.4.31)

Since t ≥ 1, it follows that l ≥ 2. As αm−1 ≥ 1, t ≥ 1, l ≥ 1 and q ≤ k (by Proposition 3.2.3 as εt = 1),
then (3.4.31) implies that

αm−1 ∈ {1, 2}, βm−1 = 0, εm−1tm−1 = 0, t = 1, l ≥ 2. (3.4.32)

◦ If αm−1 = 1. By substituting (3.4.32) in (3.4.30), it follows that k = q+ 1. As r = ql+ t+ 1 and
t = 1, then r = (k − 1)l + 2 in this case. Thus, we have

αm−1 = 1, βm−1 = 0, tm−1 = 0, r = (k − 1)l + 2, l ≥ 2. (3.4.33)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.33) in S, we get

S =< (2k − 1)l + 3, . . . , 2kl + 3, k(2kl + 3) + (k − 1)l + 2 > with l ≥ 2.

◦ If αm−1 = 2. By substituting (3.4.32), in (3.4.30), it follows that 2k = q + 1. As q ≤ k (by
Proposition 3.2.3 as εt = 1) in this case, we obtain k = 1 and q = 1. Since r = ql + t + 1 with
t = 1 and q = 1 we get r = l + 2. Therefore, we have

αm−1 = 2, βm−1 = 0, tm−1 = 0, k = 1, r = l + 2, l ≥ 2. (3.4.34)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.34) in S, we obtain

S =< 2(2l + 2) + 1, . . . , 2(2l + 2) + 1 + l, (2(2l + 2) + 1 + l) + l + 2 > with l ≥ 2.

Case 2. If S does not satisfy condition (H). By Theorem 3.2.5,

f(S) = m(kαm−1 + βm−1 + εm−1)− 1

with
αm−1 = 0 or βm−1 + εm−1 > k or βm−1 + εm−1 ≥ q + εt or r = 1. (3.4.35)

By using Lemma 3.4.1, S is pseudo-symmetric if and only if

αm−1
(
− εm−1(kl + r) + (k + q − βm−1)r + k(l − 1) + r + (q + 1)(t− 1)

)
+βm−1l

(
1− εm−1

)
+ εm−1tm−1

(
kαm−1 + βm−1 + 2− εm−1

)
= βm−1 + εm−1 + 1.

• If εm−1 = 0. We have r = ql + t+ 1, then S is pseudo-symmetric if and only if

αm−1
(
(k + q − βm−1)r + k(l − 1) + q(l − 1) + (q + 2)t

)
+ βm−1(l − 1) = 1. (3.4.36)
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◦ If βm−1 ≥ 1. Since βm−1 ≤ k + q (Proposition 3.2.2) and l ≥ 1, it follows that αm−1
(
(k + q −

βm−1)r + k(l− 1) + q(l− 1) + (q + 2)t
)
≥ 0 and βm−1(l− 1) ≥ 0. By using (3.4.36), we get that

l ≤ 2.
· If l = 2. From (3.4.36), as βm−1 ≥ 1 and βm−1 ≤ k + q (Proposition 3.2.2), it follows that
αm−1 = 0 and βm−1 = 1. In this case as εm−1 = 0, we get that m = 3. Since l = 2, then
ν = 4 > m which is impossible (ν ≤ m).
· If l = 1. By using (3.4.36), we get S is pseudo-symmetric if and only if αm−1

(
(k + q −

βm−1)r + (q + 2)t
)

= 1. Hence, αm−1 = 1 and (k + q − βm−1)r + (q + 2)t = 1. Since
βm−1 ≤ k+ q (Proposition 3.2.2), r > 0 and q + 2 > 1, we get that t = 0, βm−1 = k+ q − 1
and r = 1 (in particular q = 0). Thus, βm−1 = k− 1. We have βm−1 ≥ 1, then k ≥ 2. Thus,
we have

αm−1 = 1, βm−1 = k − 1, tm−1 = 0, r = 1, l = 1 (3.4.37)
with k ≥ 2. We have m − 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.37)
in S, we obtain

S =< 2k + 1, 2k + 2, k(2k + 2) + 1 > with k ≥ 2.
◦ If βm−1 = 0. Since εm−1 = 0 and m 6= 1 (S 6= N), it follows that αm−1 ≥ 1. As αm−1 ≥ 1,
βm−1 = 0 and εm−1 = 0, then (3.4.35) implies that r = 1 in particular q = 0 and εt = t = 0.
Then, (3.4.36) implies that S is pseudo-symmetric if and only if αm−1

(
k+k(l−1)

)
= 1. Therefore,

αm−1 = 1 and kl = 1. Thus, we have

αm−1 = 1, βm−1 = 0, tm−1 = 0, k = 1, l = 1, r = 1. (3.4.38)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.38) in S, we get

S =< 3, 4, 5 > .

• If εm−1 = 1 (tm−1 ≥ 1). Then, S is pseudo-symmetric if and only if

αm−1
(
(k + q − βm−1)r + (q + 1)(t− 1)

)
+ (tm−1 − 1)

(
kαm−1 + βm−1 + 1

)
= 1. (3.4.39)

◦ If t ≥ 1. Since tm−1 ≥ 1, βm−1 ≤ k + q (Proposition 3.2.2) and t ≥ 1, it follows that αm−1
(
(k +

q−βm−1)r+ (q+ 1)(t−1)
)
≥ 0 and (tm−1−1)

(
kαm−1 +βm−1 + 1

)
≥ 0. From (3.4.39), it follows

that 
αm−1

(
(k + q − βm−1)r + (q + 1)(t− 1)

)
= 0,

(tm−1 − 1)
(
kαm−1 + βm−1 + 1

)
= 1

(3.4.40)

or 
αm−1

(
(k + q − βm−1)r + (q + 1)(t− 1)

)
= 1,

(tm−1 − 1)
(
kαm−1 + βm−1 + 1

)
= 0.

(3.4.41)

From (3.4.40) as (tm−1 − 1)
(
kαm−1 + βm−1 + 1

)
= 1, it follows that αm−1 = 0, βm−1 = 0 and

tm−1 = 2. Thus, m = 3 but ν ≤ m = 3, then l = 1 for must. On the other hand, t < l = 1 which
implies that t = 0 which is impossible as t ≥ 1 in this case. Thus, we do not have case (3.4.40).
Now, consider (3.4.41). As kαm−1 +βm−1 +1 > 0, then (3.4.41) implies that tm−1 = 1, αm−1 = 1
and

(k + q − βm−1)r + (q + 1)(t− 1) = 1. (3.4.42)
Since t ≥ 1, r > 0, q + 1 > 0 and βm−1 ≤ k + q (Proposition 3.2.2), then (3.4.42) implies that
q = 0, t = 2 and βm−1 = k + q = k (the case where βm−1 = k + q − 1, r = 1 and t = 1 is
impossible as r = 1 implies that t = 0 and we get a contradiction). As r = ql + t + 1, we get
r = 3. In addition, as t = 2, it follows that l ≥ 3. Thus, we have

αm−1 = 1, βm−1 = k, tm−1 = 1, r = 3, l ≥ 3. (3.4.43)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By substituting (3.4.43) in S, we obtain

S =< 2kl + 5, . . . , (2k + 1)l + 5, k((2k + 1)l + 5) + 3 > with l ≥ 3.
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◦ If t = 0. We have r = ql + 1, from (3.4.39), it follows that S is pseudo-symmetric if and only if

αm−1
(
(k + q − 1− βm−1)r + q(l − 1)

)
+(tm−1 − 1)

(
kαm−1 + βm−1 + 1

)
= 1. (3.4.44)

We have r = ql+1 and 1 ≤ εm−1tm−1 ≤ l−1. On the other hand, βm−1l+εm−1tm−1 ≤ kl+r−1 =
kl+ ql. Hence, βm−1 ≤ k+ q−1 (as εm−1tm−1 ≥ 1). Since l ≥ 1, tm−1 ≥ 1 and βm−1 ≤ k+ q−1,
it follows that αm−1

(
(k+ q− 1−βm−1)r+ q(l− 1)

)
≥ 0 and (tm−1− 1)

(
kαm−1 +βm−1 + 1

)
≥ 0.

From (3.4.44), it follows that
αm−1

(
(k + q − 1− βm−1)r + q(l − 1)

)
= 0,

(tm−1 − 1)
(
kαm−1 + βm−1 + 1

)
= 1,

(3.4.45)

or 
αm−1

(
(k + q − 1− βm−1)r + q(l − 1)

)
= 1,

(tm−1 − 1)
(
kαm−1 + βm−1 + 1

)
= 0.

(3.4.46)

From (3.4.45), as kαm−1 +βm−1 + 1 ≥ 1, it follows that αm−1 = βm−1 = 0 and tm−1 = 2. In this
case, we have m = 3. As ν ≤ m = 3, it follows that l = 1 which contradicts tm−1 = 2 ≤ l − 1.
Thus, we do not have case (3.4.45).
Now, from (3.4.46), as kαm−1 + βm−1 + 1 ≥ 1, it follows that tm−1 = 1. Since tm−1 = 1
(tm−1 ≤ l − 1), we get l ≥ 2. In addition, (3.4.46) implies that αm−1 = 1, and

(k + q − 1− βm−1)r + q(l − 1) = 1. (3.4.47)

Since βm−1 ≤ k + q − 1 in this case as stated above, r ≥ 1 and l ≥ 1, then (3.4.47) implies that

r = 1 (q = 0), βm−1 = k + q − 2 = k − 2 (3.4.48)

or
l = 2, q = 1, βm−1 = k + q − 1 = k. (3.4.49)

Since r = ql + 1 in this case, from αm−1 = 1, tm−1 = 1, l ≥ 2, (3.4.48) and (3.4.49), it follows
that

αm−1 = 1, βm−1 = k − 2, tm−1 = 1, r = 1, l ≥ 2 (3.4.50)

or
αm−1 = 1, βm−1 = k, tm−1 = 1, l = 2, r = 3. (3.4.51)

We have m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. By (3.4.50) and (3.4.51), we get

S =< (2k − 2)l + 3, . . . , (2k − 1)l + 3, k((2k − 1)l + 3) + 1 > with l ≥ 2

or
S =< 4k + 5, 4k + 6, 4k + 7, k(4k + 7) + 3 > .

Thus, the proof is complete. �

Example 3.4.5. Consider the following numerical semigroups.

1. S =< 9, 10, 13 > . By using GAP [8], we get that S is pseudo-symmetric. Moreover, S verifies the
formula in Theorem 3.4.4.

2. S =< 32, 33, 511 >. By using GAP [8], we get that S is pseudo-symmetric. Note that l = 1, k = 15
and r = 16 = k+ 1. In addition, m = 32 = 2(15) + 2. Hence, S verifies the formula in Theorem 3.4.4.

3. S =< 15, 16, 17, 18, 19, 44 >. By using GAP [8], we get that S is pseudo-symmetric. Note that l = 4,
k = 2 and r = 6 = (k−1)l+ 2. In addition, m = 15 = (2(2)−1)4 + 3 = (2k−1)l+ 3. Hence, S verifies
the formula in Theorem 3.4.4.

55



CHAPITRE 3. NUMERICAL SEMIGROUP OF THE FORM < M,M + 1, . . . ,M + L,K(M + L) +R >

4. S =< 17, 18, 19, 20, 25 >. By using GAP [8], we get that S is pseudo-symmetric. Note that l = 3,
k = 1, r = 5 = l+ 2. Moreover, m = 17 = 2(2(3) + 2) + 1 = 2(2l+ 2) + 1. Hence, S verifies the formula
in Theorem 3.4.4.

5. S =< 9, 10, 41 >, By using GAP [8], we get that S is pseudo-symmetric. Note that l = 1, r = 1 and
k = 4 ≥ 2. Moreover, m = 9 = 2(4) + 1 = 2k + 1. Hence, S verifies the formula in Theorem 3.4.4.

6. S =< 3, 4, 5 >. By using GAP [8], we get that S is pseudo-symmetric. Moreover, S verifies the formula
in Theorem 3.4.4.

7. S =< 45, 46, 47, 48, 49, 50, 203 >. By using GAP [8], we get that S is pseudo-symmetric. Note that
l = 5 ≥ 2, r = 3 and k = 4. Moreover, m = 45 = 2(4(5)) + 5 = 2kl + 5. Hence, S verifies the formula
in Theorem 3.4.4.

8. S =< 19, 20, 21, 22, 23, 70 >. By using GAP [8], we get that S is pseudo-symmetric. Note that l = 4 ≥
2, r = 1 and k = 3. Moreover, m = 19 = (2(3)− 2)4 + 3 = (2k− 2)l+ 3. Hence, S verifies the formula
in Theorem 3.4.4.

9. S =< 9, 10, 11, 14 >. By using GAP [8], we get that S is pseudo-symmetric. Note that l = 2, k = 1
and r = 3. Moreover, m = 9 = 4(1) + 5 = 4k + 5. Hence, S verifies the formula in Theorem 3.4.4.

�

3.5 Pseudo-Frobenius Numbers

The aim of this Section, is to determine the set of pseudo-Frobenius Numbers of S. We are going to introduce
some Lemmas that will help us in determining the set of pseudo-Frobenius Numbers of S.

Lemma 3.5.1. (see [6]) Let S be a numerical semigroup and n ∈ S∗. Let Ap(S, n) = {w(i); w(i) ≡
i mod n, 0 ≤ i ≤ n − 1} be the Apéry set of S with respect to n and let PF (S) be the set of pseudo-
Frobenius numbers of S. Then, w(x)− n ∈ PF (S) if and only if

w(x+ y) + n ≤ w(x) + w(y) for all 1 ≤ y ≤ n− 1 where x+ y = x+ y mod n.

Proof. Let w(x)−n ∈ PF (S). By definition of PF (S), we have w(x)−n+S∗ ⊆ S. Then, w(x)+w(y)−n ∈ S
(as w(y) ∈ S∗). On the other hand, both w(x) +w(y)−n and w(x+ y) are congruent to x+ y mod n, then
by definition of the elements of the Apéry set of S, we get

w(x+ y) ≤ w(x) + w(y)− n, ∀ 1 ≤ y ≤ n− 1.

Conversely, suppose that w(x+ y) + n ≤ w(x) + w(y), ∀ 1 ≤ y ≤ n − 1. By definition of the elements
of the Apéry set of S, we have w(x) − n /∈ S, then it is left to show that w(x) − n + S∗ ⊆ S to get that
w(x)−n ∈ PF (S). Indeed, we have w(x)−n+w(y) ≥ w(x+ y) for all 1 ≤ y ≤ n−1 and both w(x)−n+w(y)
and w(x+ y) are congruent to x+ y mod n. Consequently, from the definition of the elements of the Apéry
set of S, it follows thatw(x)− n+ w(y) ∈ S, ∀ 1 ≤ y ≤ n− 1 which implies that

w(x)− n+ S∗ ⊆ S.

The later follows from the fact that for all s ∈ S, there exists (k,w) ∈ N × Ap(S, n) such that s = kn + w
and that n ∈ S (Proposition 1.0.13). Hence, our assertion holds. Thus, the proof is complete. �

By applying Lemma 3.5.1 on our numerical semigroup, we get Proposition 3.5.2. Proposition 3.5.2, mainly
equation (3.5.1), will be used later in determining PF (S).

Proposition 3.5.2. Let S be a numerical semigroup minimally generated by m,m + 1, . . . ,m + l, k(m +
l) + r with r ≤ (k + 1)l + 1. Then,

w(x)−m ∈ PF (S) if and only if ∀ 1 ≤ y ≤ m− 1,

m(kαx+y + βx+y + εx+y + 1) + x+ y ≤ m(k(αx + αy) + βx + βy + εx + εy) + x+ y. (3.5.1)
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Proof. By Lemma 3.5.1, we have w(x)−m ∈ PF (S) if and only if

w(x+ y) +m ≤ w(x) + w(y), ∀ 1 ≤ y ≤ m− 1

where x+ y = x+ y mod m. By applying Theorem 3.1.1, we get w(x)−m ∈ PF (S) if and only if

m(kαx+y + βx+y + εx+y + 1) + x+ y ≤ m(k(αx + αy) + βx + βy + εx + εy) + x+ y

for all 1 ≤ y ≤ m− 1. Thus, the proof is complete. �

In Lemma 3.5.3, we give cases where (3.5.1) does not hold. This will allow us to determine some elements
that are not in PF (S).

Lemma 3.5.3. Let S be a numerical semigroup minimally generated by m, . . . ,m+ l, k(m+ l)+r with r ≤
(k + 1)l + 1. Let x = αx(kl + r) + βxl + εxtx,

y1 = kl + r, y2 = 1 and y3 = l + 1− εxtx.

We have the following :

1. Suppose that x+ y1 ≤ m− 1. For all r ∈ N, x does not satisfy (3.5.1) for y1.

2. Suppose that x+ y2 ≤ m− 1 and εxtx = 0. If one of the following conditions holds :

• r − 1 = ql + t with t > 0;
• r − 1 = ql with q > 0 and βx 6= k + q;
• r = 1 and βx 6= k,

then x does not satisfy (3.5.1) for y2.

3. Suppose x+ y3 ≤ m− 1. If one of the following conditions holds :

• r − 1 = ql + t with t > 0 and βx 6= k + q ;
• r − 1 = ql with q > 0, βx 6= k + q − 1 and βx 6= k + q;
• r = 1, βx 6= k − 1 and βx 6= k,

then x does not satisfy (3.5.1) for y3.

Proof.

1. We have m(kαy1 + βy1 + εy1) = m(k). Thus,

m(k(αx + αy1) + βx + βy1 + εx + εy1) + x+ y1

= m
(
k(αx + 1) + βx + εx

)
+ (αx + 1)(kl + r) + βxl + εxtx.

(3.5.2)

Since x+ y1 ≤ m− 1, it follows that x+ y1 = x+ y1. For all r ∈ N, we have x+ y1 = (αx + 1)(kl +
r) + βxl + εxtx. Hence,

m(kαx+y1 + βx+y1 + εx+y1 + 1) + x+ y1

= m
(
k(αx + 1) + βx + εx + 1

)
+ (αx + 1)(kl + r) + βxl + εxtx.

(3.5.3)

By using (3.5.2) and (3.5.3), it follows that x does not satisfy (3.5.1) for y1.

2. If εx = 0, then x = αx(kl + r) + βxl. We have m(kαy2 + βy2 + εy2) = m. Therefore,

m(k(αx + αy2) + βx + βy2 + εx + εy2) + x+ y2

= m
(
kαx + βx + 1

)
+ αx(kl + r) + βxl + 1.

(3.5.4)

Since x+ y2 ≤ m− 1, it follows that x+ y2 = x+ y2. If one of the following conditions holds :
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• r − 1 = ql + t with t > 0;
• r − 1 = ql with q > 0 and βx 6= k + q;
• r = 1 and βx 6= k,

then x+ y2 = αx(kl + r) + βxl + 1. We have

m(kαx+y2 + βx+y2 + εx+y2 + 1) + x+ y2

= m
(
kαx + βx + 2

)
+ αx(kl + r) + βxl + 1.

(3.5.5)

By using (3.5.4) and (3.5.5), it follows that x does not satisfy (3.5.1) for y2.

3. We have m(kαy3 + βy3 + εy3) = m(2) if εx = 0 and m(kαy3 + βy3 + εy3) = m if εx = 1. Therefore,

m(k(αx + αy3) + βx + βy3 + εx + εy3) + x+ y3

= m(kαx + βx + 2) + αx(kl + r) + (βx + 1)l + 1.
(3.5.6)

Since x+ y3 ≤ m− 1, it follows that x+ y3 = x+ y3. If one of the following conditions holds :

• r − 1 = ql + t with t > 0 and βx 6= k + q ;
• r − 1 = ql with q > 0, βx 6= k + q − 1 and βx 6= k + q;
• r = 1, βx 6= k − 1 and βx 6= k,

then x+ y3 = αx(kl + r) + (βx + 1)l + 1. We have

m(kαx+y3 + βx+y3 + εx+y3 + 1) + x+ y3

= m
(
kαx + βx + 3

)
+ αx(kl + r) + (βx + 1)l + 1.

(3.5.7)

By using (3.5.6) and (3.5.7), it follows that x does not satisfy (3.5.1) for y3.

Thus, the proof is complete. �

Theorem 3.5.4 will determine the elements that do not belong to PF (S).

Theorem 3.5.4. Let S be a numerical semigroup minimally generated by m,m+ 1, . . . ,m+ l, k(m+ l) +
r with r ≤ (k+ 1)l+ 1. For all 1 ≤ x ≤ m− 1, write x = αx(kl+ r) + βxl+ εxtx as in Definition 3.0.1 and
w(x) = m(kαx + βx + εx) + x as in Theorem 3.1.1. We have the following :

Case 1. If r − 1 = ql + t for some q, t ∈ N with t < l and t 6= 0.

Case 1.1. If m− 1 = αm−1(kl + r) (i.e., βm−1 = εm−1 = 0), then

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + (k + q)l + 1 ≤ x ≤ m− 1}.

Case 1.2. If m− 1 = αm−1(kl + r) + βm−1l (i.e., βm−1 > 0, εm−1 = 0), then

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l}.

Case 1.3. If m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1 (i.e., εm−1 = 1), then

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l + εm−1tm−1}.

Case 2. If r − 1 = ql for some q ∈ N∗.
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Case 2.1. If m− 1 = αm−1(kl + r) (i.e., βm−1 = εm−1 = 0), then

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + (k + q − 1)l + 1 ≤ x ≤ m− 1}.

Case 2.2. If m− 1 = αm−1(kl + r) + βm−1l (i.e., βm−1 > 0, εm−1 = 0), then

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l}.

Case 2.3. If m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1 (i.e., εm−1 = 1), then

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l + εm−1tm−1}.

Case 3. If r = 1.

Case 3.1. If m− 1 = αm−1(kl + 1) (i.e., βm−1 = εm−1 = 0), then

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + 1) + (k − 1)l + 1 ≤ x ≤ m− 1}.

Case 3.2. If m− 1 = αm−1(kl + 1) + βm−1l (i.e., βm−1 > 0, εm−1 = 0), then

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l}.

Case 3.3. If m− 1 = αm−1(kl + 1) + βm−1l + εm−1tm−1 (i.e., εm−1 = 1), then

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l + εm−1tm−1}.

Proof. Case 1. If r − 1 = ql + t for some q, t ∈ N with t < l and t 6= 0.

Case 1.1. If m− 1 = αm−1(kl + r) (i.e., βm−1 = εm−1 = 0). We have

(αm−1 − 1)(kl + r) + (kl + r) ≤ αm−1(kl + r)

and (
(αm−1 − 1)(kl + r) + 1

)
+ (kl + r) > αm−1(kl + r).
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Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + r).

Since x does not satisfy (3.5.1) for y1 if x+y1 ≤ m−1 (Lemma 3.5.3), we deduce that if x ≤ (αm−1−1)(kl+r),
then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + 1 ≤ x ≤ m− 1}. (3.5.8)

Moreover, (
(αm−1 − 1)(kl + r) + (k + q − 1)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + r)

and (
(αm−1 − 1)(kl + r) + (k + q)l

)
+
(
l + 1

)
> αm−1(kl + r).

Consequently,
x+ y3 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + r) + (k + q − 1)l + l − 1.

Since x does not satisfy (3.5.1) for y3 if x+ y3 ≤ m− 1 and βx 6= k + q (Lemma 3.5.3), by using (3.5.8), we
get that if x ≤ (αm−1 − 1)(kl + r) + (k + q − 1)l + l − 1, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + (k + q)l ≤ x ≤ m− 1}. (3.5.9)

In addition, if x = (αm−1 − 1)(kl + r) + (k + q)l, then εx = 0 and x+ y2 ≤ m− 1. Since x does not satisfy
(3.5.1) for y2 if x + y2 ≤ m − 1 and εx = 0, we deduce that if x = (αm−1 − 1)(kl + r) + (k + q)l, then
w(x)−m /∈ PF (S) (Lemma 3.5.3). By using (3.5.9), we obtain

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + (k + q)l + 1 ≤ x ≤ m− 1}. (3.5.10)

Case 1.2. If m− 1 = αm−1(kl + r) + βm−1l (i.e., βm−1 > 0, εm−1 = 0). We have(
(αm−1 − 1)(kl + r) + βm−1l

)
+ (kl + r) ≤ αm−1(kl + r) + βm−1l

and (
(αm−1 − 1)(kl + r) + βm−1l + 1

)
+ (kl + r) > αm−1(kl + r) + βm−1l.

Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + r) + βm−1l.

Since x does not satisfy (3.5.1) for y1 if x+ y1 ≤ m− 1, we deduce that if x ≤ (αm−1 − 1)(kl + r) + βm−1l
(Lemma 3.5.3), then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}. (3.5.11)

Moreover, (
αm−1(kl + r) + (βm−1 − 2)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + r) + βm−1l

and (
αm−1(kl + r) + (βm−1 − 1)l

)
+
(
l + 1

)
> αm−1(kl + r) + βm−1l.

Consequently,
x+ y3 ≤ m− 1 iff x ≤ αm−1(kl + r) + (βm−1 − 2)l + l − 1.

Since x does not satisfy (3.5.1) for y3 if x+ y3 ≤ m− 1 and βx 6= k+ q (Lemma 3.5.3), by using (3.5.11) we
deduce that if x ≤ αm−1(kl + r) + (βm−1 − 2)l + l − 1 and x 6= (αm−1 − 1)(kl + r) + (k + q)l + εxtx with
(k + q)l + εxtx > βm−1l, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m;αm−1(kl + r) + (βm−1 − 1)l ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with (k + q)l + εxtx > βm−1l}.

(3.5.12)
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In addition, if x = αm−1(kl+r)+(βm−1−1)l, then εx = 0 and x+y2 ≤ m−1. Since x does not satisfy (3.5.1)
for y2 if x+y2 ≤ m−1 and εx = 0, it follows that if x = αm−1(kl+r)+(βm−1−1)l, then w(x)−m /∈ PF (S)
(Lemma 3.5.3). By the same argument we have if x = (αm−1− 1)(kl+ r) + (k+ q)l+ εxtx such that εx = 0,
then w(x)−m /∈ PF (S). By using (3.5.12) we deduce that

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l}.

(3.5.13)

Case 1.3. If m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1, i.e., (εm−1 = 1). We have(
(αm−1 − 1)(kl + r) + βm−1l + εm−1tm−1

)
+ (kl + r) ≤ αm−1(kl + r) + βm−1l + εm−1tm−1

and (
(αm−1 − 1)(kl + r) + βm−1l + εm−1tm−1 + 1

)
+ (kl + r) > αm−1(kl + r) + βm−1l + εm−1tm−1.

Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + r) + βm−1l + εm−1tm−1.

Since x does not satisfy (3.5.1) for y1 if x+ y1 ≤ m− 1, we deduce that if x ≤ (αm−1− 1)(kl+ r) + βm−1l+
εm−1tm−1, then w(x)−m /∈ PF (S) (Lemma 3.5.3). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + βm−1l + εm−1tm−1 + 1 ≤ x ≤ m− 1}. (3.5.14)

Moreover,(
αm−1(kl + r) + (βm−1 − 1)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + r) + βm−1l + εm−1tm−1

and (
αm−1(kl + r) + βm−1l

)
+
(
l + 1

)
> αm−1(kl + r) + βm−1l + εm−1tm−1.

Consequently,
x+ y3 ≤ m− 1 iff x ≤ αm−1(kl + r) + (βm−1 − 1)l + l − 1.

Since x does not satisfy (3.5.1) for y3 if x+ y3 ≤ m− 1 and βx 6= k+ q (Lemma 3.5.3), by using (3.5.14) we
deduce that if x ≤ αm−1(kl + r) + (βm−1 − 1)l + l − 1 and x 6= (αm−1 − 1)(kl + r) + (k + q)l + εxtx with
(k + q)l + εxtx > βm−1l + εm−1tm−1, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + βm−1l ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with (k + q)l + εxtx > βm−1l + εm−1tm−1}.

(3.5.15)

In addition, if x = αm−1(kl + r) + βm−1l, then εx = 0 and x+ y2 ≤ m− 1. Since x does not satisfy (3.5.1)
for y2 if x+ y2 ≤ m− 1 and εx = 0, we deduce that if x = αm−1(kl + r) + βm−1l, then w(x)−m /∈ PF (S)
(Lemma 3.5.3). By the same argument we have if x = (αm−1− 1)(kl+ r) + (k+ q)l+ εxtx such that εx = 0,
then w(x)−m /∈ PF (S). By using (3.5.15), we deduce that

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l + εm−1tm−1}.

(3.5.16)

Case 2. If r − 1 = ql for some q ∈ N∗.

Case 2.1. If m− 1 = αm−1(kl + r), (i.e., βm−1 = εm−1 = 0). We have

(αm−1 − 1)(kl + r) + (kl + r) ≤ αm−1(kl + r)
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and (
(αm−1 − 1)(kl + r) + 1

)
+ (kl + r) > αm−1(kl + r).

Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + r).

Since x does not satisfy (3.5.1) for y1 if x+y1 ≤ m−1 (Lemma 3.5.3), we deduce that if x ≤ (αm−1−1)(kl+r),
then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + 1 ≤ x ≤ m− 1}. (3.5.17)

Moreover, (
(αm−1 − 1)(kl + r) + (k + q − 1)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + r)

and (
(αm−1 − 1)(kl + r) + (k + q)l

)
+
(
l + 1

)
> αm−1(kl + r).

Consequently,
x+ y3 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + r) + (k + q − 1)l + l − 1.

Since x does not satisfy (3.5.1) for y3 in the case x+y3 ≤ m−1, βx 6= k+q−1 and βx 6= k+q (Lemma 3.5.3),
by using (3.5.17) we deduce that if x ≤ (αm−1 − 1)(kl + r) + (k + q − 2)l + l − 1, then w(x)−m /∈ PF (S).
In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + (k + q − 1)l ≤ x ≤ m− 1}. (3.5.18)

In addition, if x = (αm−1 − 1)(kl + r) + (k + q − 1)l, then εx = 0, βx 6= k + q and x+ y2 ≤ m− 1. Since x
does not satisfy (3.5.1) for y2 in the case x+ y2 ≤ m− 1, εx = 0 and βx 6= k + q (Lemma 3.5.3), we deduce
that if x = (αm−1 − 1)(kl + r) + (k + q − 1)l, then w(x)−m /∈ PF (S). By using (3.5.18), we obtain

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + (k + q − 1)l + 1 ≤ x ≤ m− 1}. (3.5.19)

Case 2.2. If m− 1 = αm−1(kl + r) + βm−1l (i.e., βm−1 > 0, εm−1 = 0). We have(
(αm−1 − 1)(kl + r) + βm−1l

)
+ (kl + r) ≤ αm−1(kl + r) + βm−1l

and (
(αm−1 − 1)(kl + r) + βm−1l + 1

)
+ (kl + r) > αm−1(kl + r) + βm−1l.

Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + r) + βm−1l.

Since x does not satisfy (3.5.1) for y1 if x + y1 ≤ m − 1 (Lemma 3.5.3), we deduce that if x ≤ (αm−1 −
1)(kl + r) + βm−1l, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}. (3.5.20)

Moreover, (
αm−1(kl + r) + (βm−1 − 2)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + r) + βm−1l

and (
αm−1(kl + r) + (βm−1 − 1)l

)
+
(
l + 1

)
> αm−1(kl + r) + βm−1l.

Consequently,
x+ y3 ≤ m− 1 iff x ≤ αm−1(kl + r) + (βm−1 − 2)l + l − 1.

Since x does not satsify (3.5.1) for y3 in the case x + y3 ≤ m − 1, βx 6= k + q − 1 and βx 6= k + q
(Lemma 3.5.3), by using (3.5.20) we deduce that if x ≤ αm−1(kl + r) + (βm−1 − 2)l + l − 1 such that
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x 6= (αm−1−1)(kl+r)+(k+q−1)l+εxtx with (k+q−1)l+εxtx > βm−1l and x 6= (αm−1−1)(kl+r)+(k+q)l
with (k + q)l > βm−1l, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with (k + q − 1)l + εxtx > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l}.

(3.5.21)

If x = αm−1(kl + r) + (βm−1 − 1)l, then εx = 0, βm−1 − 1 6= k + q (as βm−1 ≤ k + q) and x + y2 ≤ m− 1.
Since x does not satsify (3.5.1) for y2 in the case x+ y2 ≤ m− 1, εx = 0 and βx 6= k + q (Lemma 3.5.3), we
deduce that if x = αm−1(kl+ r) + (βm−1 − 1)l, then w(x)−m /∈ PF (S). By the same argument we have if
x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx such that εx = 0, then w(x)−m /∈ PF (S). By using (3.5.21),
we get

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l}.

(3.5.22)

Case 2.3. If m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1, i.e., (εm−1 = 1). We have

(
(αm−1 − 1)(kl + r) + βm−1l + εm−1tm−1

)
+ (kl + r) ≤ αm−1(kl + r) + βm−1l + εm−1tm−1

and (
(αm−1 − 1)(kl + r) + βm−1l + εm−1tm−1 + 1

)
+ (kl + r) > αm−1(kl + r) + βm−1l + εm−1tm−1.

Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + r) + βm−1l + εm−1tm−1.

Since x does not satisfy (3.5.1) for y1 if x + y1 ≤ m − 1 (Lemma 3.5.3), we deduce that if x ≤ (αm−1 −
1)(kl + r) + βm−1l + εm−1tm−1, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + r) + βm−1l + εm−1tm−1 + 1 ≤ x ≤ m− 1}. (3.5.23)

Moreover,(
αm−1(kl + r) + (βm−1 − 1)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + r) + βm−1l + εm−1tm−1

and (
αm−1(kl + r) + βm−1l

)
+
(
l + 1

)
> αm−1(kl + r) + βm−1l + εm−1tm−1.

Consequently,
x+ y3 ≤ m− 1 iff x ≤ αm−1(kl + r) + (βm−1 − 1)l + l − 1.

Since x does not satisfy (3.5.1) for y3 in the case x + y3 ≤ m − 1, βx 6= k + q − 1 and βx 6= k + q
(Lemma 3.5.3), by using (3.5.23) we deduce that if x ≤ αm−1(kl + r) + (βm−1 − 1)l + l − 1 such that
x 6= (αm−1−1)(kl+r)+(k+q)l with (k+q)l > βm−1l+εm−1tm−1 and x 6= (αm−1−1)(kl+r)+(k+q−1)l+εxtx
with (k + q − 1)l + εxtx > βm−1l + εm−1tm−1, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + βm−1l ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with (k + q − 1)l + εxtx > βm−1l + εm−1tm−1}.

(3.5.24)
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If x = αm−1(kl + r) + βm−1l, then εx = 0, βx = βm−1 6= k + q ( if βm−1 = k + q, then m − 1 =
αm−1(kl+ r) + (k+ q)l+ εm−tm−1 as εm−1 = 1 and r = ql+ 1, we get a contradiction) and x+ y2 ≤ m− 1.
Since x does not satisfy (3.5.1) for y2 in the case x + y2 ≤ m − 1, εx = 0 and βx 6= k + q (Lemma 3.5.3),
we deduce that if x = αm−1(kl + r) + βm−1l, then w(x) −m /∈ PF (S). By the same argument we have if
x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx such that εx = 0, then w(x)−m /∈ PF (S). By using (3.5.24),
we obtain

PF (S) ⊆ {w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l + εm−1tm−1}.

(3.5.25)

Case 3. If r = 1.

Case 3.1. If m− 1 = αm−1(kl + 1) (i.e., βm−1 = εm−1 = 0). We have

(αm−1 − 1)(kl + 1) + (kl + 1) ≤ αm−1(kl + 1)

and (
(αm−1 − 1)(kl + 1) + 1

)
+ (kl + 1) > αm−1(kl + 1).

Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + 1).

Since x does not satisfy (3.5.1) for y1 if x+y1 ≤ m−1 (Lemma 3.5.3), we deduce that if x ≤ (αm−1−1)(kl+1),
then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + 1) + 1 ≤ x ≤ m− 1}. (3.5.26)

Moreover, (
(αm−1 − 1)(kl + 1) + (k − 1)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + 1)

and (
(αm−1 − 1)(kl + 1) + kl

)
+
(
l + 1

)
> αm−1(kl + 1).

Consequently,
x+ y3 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + 1) + (k − 1)l + l − 1.

Since x does not satisfy (3.5.1) for y3 in the case x + y3 ≤ m − 1, βx 6= k − 1 and βx 6= k (Lemma 3.5.3),
by using (3.5.26) we deduce that if x ≤ (αm−1 − 1)(kl + 1) + (k − 2)l + l − 1, then w(x)−m /∈ PF (S). In
particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + 1) + (k − 1)l ≤ x ≤ m− 1}. (3.5.27)

If x = (αm−1 − 1)(kl + 1) + (k − 1)l, then εx = 0, βx 6= k and x + y2 ≤ m − 1. Since x does not
satisfy (3.5.1) for y2 in the case x + y2 ≤ m − 1, εx = 0 and βx 6= k (Lemma 3.5.3), we deduce that if
x = (αm−1 − 1)(kl + 1) + (k − 1)l, then w(x)−m /∈ PF (S). Hence,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + 1) + (k − 1)l + 1 ≤ x ≤ m− 1}. (3.5.28)

Case 3.2. If m− 1 = αm−1(kl + 1) + βm−1l (i.e., εm−1 = 0). We have(
(αm−1 − 1)(kl + 1) + βm−1l

)
+ (kl + 1) ≤ αm−1(kl + 1) + βm−1l

and (
(αm−1 − 1)(kl + 1) + βm−1l + 1

)
+ (kl + 1) > αm−1(kl + 1) + βm−1l.

Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + 1) + βm−1l.
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Since x does not satisfy (3.5.1) for y1 if x + y1 ≤ m − 1 (Lemma 3.5.3), we deduce that if x ≤ (αm−1 −
1)(kl + 1) + βm−1l, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + 1) + βm−1l + 1 ≤ x ≤ m− 1}. (3.5.29)

Moreover, (
αm−1(kl + 1) + (βm−1 − 2)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + 1) + βm−1l

and (
αm−1(kl + 1) + (βm−1 − 1)l

)
+
(
l + 1

)
> αm−1(kl + 1) + βm−1l.

Consequently,
x+ y3 ≤ m− 1 iff x ≤ αm−1(kl + 1) + (βm−1 − 2)l + l − 1.

Since x does not satisfy (3.5.1) for y3 in the case x+y3 ≤ m−1, βx 6= k−1 and βx 6= k (Lemma 3.5.3), by using
(3.5.29) we deduce that if x ≤ αm−1(kl+1)+(βm−1−2)l+l−1 such that x 6= (αm−1−1)(kl+1)+(k−1)l+εxtx
with (k− 1)l+ εxtx > βm−1l and x 6= (αm−1 − 1)(kl+ 1) + kl with kl > βm−1l, then w(x)−m /∈ PF (S). In
particular,

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + (βm−1 − 1)l ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + εxtx with (k − 1)l + εxtx > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl with kl > βm−1l}.

(3.5.30)

If x = αm−1(kl + 1) + (βm−1 − 1)l, then εx = 0, βx = βm−1 − 1 6= k (as βm−1 ≤ k + q = k in this case as
r = 1) and x + y2 ≤ m − 1. Since x does not satisfy (3.5.1) for y2 in the case x + y2 ≤ m − 1, εx = 0 and
βx 6= k, we deduce that if x = αm−1(kl+ 1) + (βm−1− 1)l, then w(x)−m /∈ PF (S). By the same argument
we have if x = (αm−1 − 1)(kl + 1) + (k − 1)l + εxtx such that εx = 0, then w(x) −m /∈ PF (S). By using
(3.5.30), we get

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + εxtx

with εx = 1 and (k − 1)l + εxtx > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl with kl > βm−1l}.

(3.5.31)

Now, let x = (αm−1−1)(kl+1)+(k−1)l+εxtx. Suppose that εxtx ≥ 2. If we take y′ = l, then x does not satisfy
(3.5.1) for y′. Indeed, we have x+y′ = αm−1(kl+1)+(εxtx−1) with εxtx−1 ≥ 1. We have x+y′ ≤ m−1 which
gives x+ y′ = x+y′. In addition,m(kαx+y′+βx+y′+εx+y′+1)+x+y′ = m(kαm−1+1+1)+x+y′. On the other
hand,m(k(αx+αy′)+βx+βy′+εx+εy′)+x+y′ = m(k(αm−1−1)+k−1+1+1)+x+y′ = m(kαm−1+1)+x+y′.
Consequently, x does not satisfy (3.5.1) for y′ if εxtx ≥ 2. Therefore, if x = (αm−1−1)(kl+1)+(k−1)l+εxtx
with εxtx ≥ 2, then w(x)−m /∈ PF (S). By using (3.5.31), we get

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with kl > βm−1l}.

(3.5.32)

Next, let x = (αm−1 − 1)(kl + 1) + kl. Suppose that l ≥ 2. If we take y′′ = 2, then x does not satisfy
(3.5.1) for y′′. Indeed, x + y′′ = αm−1(kl + 1) + 1. We have x + y′′ ≤ m − 1 which gives x+ y′′ = x + y′′.
In addition, m(kαx+y′′ + βx+y′′ + εx+y′′ + 1) + x + y′′ = m(kαm−1 + 1 + 1) + x + y′′. On the other hand,
m(k(αx +αy′′) + βx + βy′′ + εx + εy′′) +x+ y′′ = m(k(αm−1− 1) + k+ 1) +x+ y′′ = m(kαm−1 + 1) +x+ y′′.
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Hence, x does not satisfy (3.5.1) for y′′ if l ≥ 2. Consequently, if x = (αm−1− 1)(kl+ 1) + kl and l ≥ 2, then
w(x)−m /∈ PF (S). By using (3.5.32), we get

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l}.

(3.5.33)

Case 3.3 If m− 1 = αm−1(kl + 1) + βm−1l + εm−1tm−1, i.e., (εm−1 = 1). We have(
(αm−1 − 1)(kl + 1) + βm−1l + εm−1tm−1

)
+ (kl + 1) ≤ αm−1(kl + 1) + βm−1l + εm−1tm−1

and (
(αm−1 − 1)(kl + 1) + βm−1l + εm−1tm−1 + 1

)
+ (kl + 1) > αm−1(kl + 1) + βm−1l + εm−1tm−1.

Consequently,
x+ y1 ≤ m− 1 iff x ≤ (αm−1 − 1)(kl + 1) + βm−1l + εm−1tm−1.

Since x does not satisfy (3.5.1) for y1 if x + y1 ≤ m − 1 (Lemma 3.5.3), we deduce that if x ≤ (αm−1 −
1)(kl + 1) + βm−1l + εm−1tm−1, then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; (αm−1 − 1)(kl + 1) + βm−1l + εm−1tm−1 + 1 ≤ x ≤ m− 1}. (3.5.34)

Moreover,(
αm−1(kl + 1) + (βm−1 − 1)l + l − 1

)
+
(
l + 1− (l − 1)

)
≤ αm−1(kl + 1) + βm−1l + εm−1tm−1

and (
αm−1(kl + 1) + βm−1l

)
+
(
l + 1

)
> αm−1(kl + 1) + βm−1l + εm−1tm−1.

Consequently,
x+ y3 ≤ m− 1 iff x ≤ αm−1(kl + 1) + (βm−1 − 1)l + l − 1.

Since x does not satisfy (3.5.1) for y3 in the case x+y3 ≤ m−1, βx 6= k−1 and βx 6= k (Lemma 3.5.3), by using
(3.5.34) we deduce that if x ≤ αm−1(kl+1)+(βm−1−1)l+l−1 such that x 6= (αm−1−1)(kl+1)+(k−1)l+εxtx
with (k − 1)l + εxtx > βm−1l + εm−1tm−1 and x 6= (αm−1 − 1)(kl + 1) + kl with kl > βm−1l + εm−1tm−1,
then w(x)−m /∈ PF (S). In particular,

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + βm−1l ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + εxtx

with (k − 1)l + εxtx > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with kl > βm−1l + εm−1tm−1}.

(3.5.35)

If x = αm−1(kl + 1) + βm−1l, then εx = 0, x+ y2 ≤ m− 1 and βx = βm−1 6= k (if βm−1 = k, then m− 1 =
αm−1(kl+1)+kl+εm−1tm−1, as εm−1 = 1 and r = 1, we get a contradiction). Since x does not satisfy (3.5.1)
for y2 in the case x+y2 ≤ m−1, εx = 0 and βx 6= k (Lemma 3.5.3), we deduce that if x = αm−1(kl+1)+βm−1l,
then w(x) −m /∈ PF (S). By the same argument we have if x = (αm−1 − 1)(kl + 1) + (k − 1)l + εxtx such
that εx = 0, then w(x)−m /∈ PF (S). By using (3.5.35) we deduce that

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + εxtx

with εx = 1 and (k − 1)l + εxtx > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with kl > βm−1l + εm−1tm−1}.

(3.5.36)
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Now, let x = (αm−1 − 1)(kl + 1) + (k − 1)l + εxtx. Suppose that εxtx ≥ 2. If we take y′ = l, then x does
not satisfy (3.5.1) for y′. Indeed, we have x + y′ = αm−1(kl + 1) + (εxtx − 1) with εxtx − 1 ≥ 1. We have
x+ y′ ≤ m− 1 which gives x+ y′ = x+ y′. In addition,

m(kαx+y′ + βx+y′ + εx+y′ + 1) + x+ y′ = m(kαm−1 + 1 + 1) + x+ y′.

On the other hand, m(k(αx + αy′) + βx + βy′ + εx + εy′) + x + y′ = m(k(αm−1 − 1) + k − 1 + 1 + 1) +
x + y′ = m(kαm−1 + 1) + x + y′. Consequently, x does not satisfy (3.5.1) for y′ if εxtx ≥ 2. Therefore, if
x = (αm−1 − 1)(kl + 1) + (k − 1)l + εxtx with εxtx ≥ 2, then w(x)−m /∈ PF (S). By using (3.5.36), we get

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with kl > βm−1l + εm−1tm−1}.

(3.5.37)

Next, let x = (αm−1 − 1)(kl+ 1) + kl. Suppose that l ≥ 2. If we take y′′ = 2, then x does not satisfy (3.5.1)
for y′′. Indeed, x+ y′′ = αm−1(kl+ 1) + 1. We have x+ y′′ ≤ m− 1 which gives x+ y′′ = x+ y′′. In addition,

m(kαx+y′′ + βx+y′′ + εx+y′′ + 1) + x+ y′′ = m(kαm−1 + 1 + 1) + x+ y′′.

On the other hand,

m(k(αx + αy′′) + βx + βy′′ + εx + εy′′) + x+ y′′ = m(k(αm−1 − 1) + k + 1) + x+ y′′

= m(kαm−1 + 1) + x+ y′′.

Hence, x does not satisfy (3.5.1) for y′′. Consequently, if x = (αm−1 − 1)(kl + 1) + kl and l ≥ 2, then
w(x)−m /∈ PF (S). By using (3.5.37), we get

PF (S) ⊆ {w(x)−m; αm−1(kl + 1) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l + εm−1tm−1}.

(3.5.38)

Thus, the proof is complete. �

Lemmas 3.5.5 and 3.5.6 give cases where (3.5.1) holds. This will allow us to determine later some numbers
that belong to PF (S).

Lemma 3.5.5. Let S be a numerical semigroup minimally generated by m,m + 1, . . . ,m + l, k(m + l) +
r with r ≤ (k + 1)l + 1. If m− 1 = αm−1(kl + r), then m− 1 satisfies (3.5.1) for all 1 ≤ y ≤ m− 1.

Proof. Let 1 ≤ y ≤ m− 1 and write y = αy(kl + r) + βyl + εyty as in Definition 3.0.1. Let x = m− 1. For
1 ≤ y ≤ m− 1, we have x+ y > m− 1 which gives x+ y = x+ y +m, i.e., m− 1 + y = x+ y +m. Hence,
x+ y = y − 1 = αy(kl + r) + βyl + εyty − 1. Therefore,

m(kαx+y + βx+y + εx+y + 1) + x+ y ≤ m(kαy + βy + εy + 1) + x+ y

= m(kαy + βy + εy) + x+ y.

On the other hand, m(kαx + βx + εx) = m(kαm−1). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) + x+ y = m(k(αm−1 + αy) + βy + εy) + x+ y.

Therefore,

m(kαx+y + βx+y + εx+y + 1) + x+ y ≤ m(k(αx + αy) + βx + βy + εx + εy) + x+ y.

Hence, x = m− 1 satisfies (3.5.1) for all 1 ≤ y ≤ m− 1. Thus, the proof is complete.
�
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Lemma 3.5.6. Let S be a numerical semigroup minimally generated by m,m + 1, . . . ,m + l, k(m + l) +
r with r ≤ (k+ 1)l+ 1. Let 1 ≤ x, y ≤ m− 1 such that x+ y > m− 1 and x = αx(kl+ r) + βxl+ εxtx with
βx + εx > 0. Then, x satisfies (3.5.1) for y.

Proof. Suppose by the way of contradiction that x does not satisfy (3.5.1) for y. Consequently,

w(x+ y) +m > w(x) + w(y).

We have x + y > m − 1 and 1 ≤ x, y ≤ m − 1, thus x + y = x+ y + m, x+ y < x and x+ y < y. Since
w(x)+w(y) and w(x+ y) are both elements in S that are congruent to x+y modm, then from the definition
of the element of the Apéry set of S, it follows that w(x) + w(y) = w(x+ y) + x0m for some x0 ∈ N. On
the other hand, w(x+ y) +m > w(x) + w(y). Thus, x0 = 0 and

w(x+ y) = w(x) + w(y). (3.5.39)

As x ≥ 1 and y ≥ 1 , it follows that w(y) > 0 and w(x) > 0.Then, (3.5.39) implies that w(x+ y) > w(x) with
x+ y < x and w(x+ y) > w(y) with x+ y < y. By Proposition 3.2.4, we have if i < j, then w(i) > w(j) if
and only if it satisfies one of the following :

1. αi = αj − 2, βj = εj = 0 and βi + εi = 2k + 1.

2. αi = αj − 1, βi + εi > k + βj + εj and βj + εj ≤ k.

In particular, if i < j such that w(i) > w(j), then αi ≤ αj−1. Write x+ y = αx+y(kl+r)+βx+yl+εx+ytx+y
and y = αy(kl+ r) +βyl+ εyty. Since w(x+ y) > w(x) with x+ y < x and w(x+ y) > w(y) with x+ y < y,
it follows that αx+y ≤ αx−1 and αx+y ≤ αy−1. By proposition 3.0.2, we have βx+y + εx+y ≤ 2k+1. Hence,

w(x+ y) = m(kαx+y + βx+y + εx+y) + x+ y

≤ m(kαx+y + 2k + 1) + x+ y

= m(kαx+y + 2k) + x+ y.

(3.5.40)

On the other hand, w(y) = m(kαy + βy + εy) + y ≥ m(k(αx+y + 1)) + y. By using βx + εx > 0 (hypothesis)
and αx ≥ αx+y + 1, we get w(x) = m(kαx + βx + εx) + x ≥ m(k(αx+y + 1) + 1) + x. Consequently,

w(x) + w(y) ≥ m(kαx+y + 2k + 1) + x+ y. (3.5.41)

But (3.5.41) and (3.5.40) contradicts (3.5.39). Therefore, x satisfies (3.5.1) for y. �

Now, we are ready to determine the set of pseudo-Frobenius Numbers of S.

Theorem 3.5.7. Let S be a numerical semigroup minimally generated by m,m+ 1, . . . ,m+ l, k(m+ l) +
r with r ≤ (k+ 1)l+ 1. For all 1 ≤ x ≤ m− 1, write x = αx(kl+ r) + βxl+ εxtx as in Definition 3.0.1 and
w(x) = m(kαx + βx + εx) + x as in Theorem 3.1.1. We have the following :

Case 1. If r − 1 = ql + t for some q, t ∈ N with t < l and t 6= 0.

Case 1.1. If m− 1 = αm−1(kl + r) (i.e., βm−1 = εm−1 = 0), then

PF (S) = {w(x)−m; (αm−1 − 1)(kl + r) + (k + q)l + 1 ≤ x ≤ m− 1}.

Case 1.2. If m− 1 = αm−1(kl + r) + βm−1l (i.e., βm−1 > 0, εm−1 = 0), then

PF (S) = {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l}.

68



CHAPITRE 3. NUMERICAL SEMIGROUP OF THE FORM < M,M + 1, . . . ,M + L,K(M + L) +R >

Case 1.3. If m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1 (i.e., εm−1 = 1), then

PF (S) = {w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l + εm−1tm−1}.

Case 2. If r − 1 = ql for some q ∈ N∗.

Case 2.1. If m− 1 = αm−1(kl + r) (i.e., βm−1 = εm−1 = 0), then

PF (S) = {w(x)−m; (αm−1 − 1)(kl + r) + (k + q − 1)l + 1 ≤ x ≤ m− 1}.

Case 2.2. If m− 1 = αm−1(kl + r) + βm−1l (i.e., βm−1 > 0, εm−1 = 0), then

PF (S) = {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l}.

Case 2.3. If m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1 (i.e., εm−1 = 1), then

PF (S) = {w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l + εm−1tm−1}.

Case 3. If r = 1.

Case 3.1. If m− 1 = αm−1(kl + 1) (i.e., βm−1 = εm−1 = 0), then

PF (S) = {w(x)−m; (αm−1 − 1)(kl + 1) + (k − 1)l + 1 ≤ x ≤ m− 1}.

Case 3.2. If m− 1 = αm−1(kl + 1) + βm−1l (i.e., βm−1 > 0, εm−1 = 0), then

PF (S) = {w(x)−m; αm−1(kl + 1) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l}.

Case 3.3. If m− 1 = αm−1(kl + 1) + βm−1l + εm−1tm−1 (i.e., εm−1 = 1), then

PF (S) = {w(x)−m; αm−1(kl + 1) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l + εm−1tm−1}.
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Proof. Case 1. If r − 1 = ql + t for some q, t ∈ N with t < l and t 6= 0.

Case 1.1. Ifm−1 = αm−1(kl+r) (i.e., βm−1 = εm−1 = 0). We claim that if (αm−1−1)(kl+r)+(k+q)l+1 ≤
x ≤ m− 1, then x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1. In fact,

• If x = m− 1, then by using Lemma 3.5.5 x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1.

• If (αm−1− 1)(kl+ r) + (k+ q)l+ 1 ≤ x ≤ m− 2 = (αm−1− 1)(kl+ r) + (k+ q)l+ t. Since βx + εx > 0,
then from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that x+ y = x + y. In
particular

(αm−1 − 1)(kl + r) + (k + q)l + 2 ≤ x+ y ≤ m− 1.

If (αm−1−1)(kl+ r)+(k+ q)l+2 ≤ x+y ≤ m−2, then m(kαx+y +βx+y + εx+y) = m(kαm−1 + q+1)
and m(kαx+y + βx+y + εx+y) = m(kαm−1) if x+ y = m− 1 = αm−1(kl + r). Hence,

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + q + 1). (3.5.42)

Since x + y ≤ m − 1, it follows that 1 ≤ y ≤ t. Then, m(kαy + βy + εy) = m. In addition, we have
m(kαx + βx + εx) = m(kαm−1 + q + 1). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + q + 2). (3.5.43)

By using (3.5.43) and (3.5.42), we get that x satisfies (3.5.1) for all y.

Therefore,
{w(x)−m; (αm−1 − 1)(kl + r) + (k + q)l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.44)

By using (3.5.10) and (3.5.44), we get

PF (S) = {w(x)−m; (αm−1 − 1)(kl + r) + (k + q)l + 1 ≤ x ≤ m− 1}.

Case 1.2. If m − 1 = αm−1(kl + r) + βm−1l (i.e., βm−1 > 0, εm−1 = 0). We claim that if αm−1(kl + r) +
(βm−1 − 1)l + 1 ≤ x ≤ m − 1, x satisfies (3.5.1) for all 1 ≤ y ≤ m − 1. Indeed, since βx + εx > 0, then
from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that x+ y = x + y. In particular,
αm−1(kl + r) + (βm−1 − 1)l + 2 ≤ x+ y ≤ m− 1 = αm−1(kl + r) + βm−1l. Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βm−1). (3.5.45)

Since x + y ≤ m − 1, it follows that 1 ≤ y ≤ l − 1. Then, m(kαy + βy + εy) = m. In addition, we have
m(kαx + βx + εx) = m(kαm−1 + βm−1). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + βm−1 + 1). (3.5.46)

By using (3.5.46) and (3.5.45), we get that x satisfies (3.5.1) for all y. Consequently,

{w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.47)

Furthermore, if x = (αm−1− 1)(kl+ r) + (k+ q)l+ εxtx such that εx = 1 and (k+ q)l+ εxtx > βm−1l, then x
satisfies (3.5.1) for all 1 ≤ y ≤ m− 1. In fact, write y = αy(kl+ r) +βyl+ εyty. Since βx + εx > 0, then from
Lemma 3.5.6 we may assume that x+ y ≤ m− 1 and this implies that x+ y = x+ y. Since x+ y ≤ m− 1
and (k + q)l + εxtx > βm−1l, it follows that y = βyl + εyty. Thus, m(kαy + βy + εy) = m(βy + εy). Since
x = (αm−1−1)(kl+ r) + (k+ q)l+ εxtx such that εx = 1, we get that m(kαx+βx+ εx) = m(kαm−1 + q+ 1).
Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + q + 1 + βy + εy). (3.5.48)

We have 1 ≤ εxtx ≤ t (as βx = k+q and x = (αm−1−1)(kl+r)+(k+q)l+εxtx). If 1 ≤ βyl+εyty+εxtx ≤ t,
then x + y = (αm−1 − 1)(kl + r) + (k + q)l + βyl + εyty + εxtx with 1 ≤ βyl + εyty + εxtx ≤ l − 1 and if
t+1 ≤ βyl+εyty+εxtx, then x+y = αm−1(kl+r)+(βyl+εxtx+εyty−(t+1)) with 0 ≤ βyl+εyty+εxtx−(t+1) ≤
βyl + εyty (as εxtx ≤ t). Since βy + εy ≥ 1 (as y ≥ 1), it follows that

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + q + βy + εy). (3.5.49)
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By using (3.5.48) and (3.5.49), we get that x satisfies (3.5.1) for 1 ≤ y ≤ m− 1. Therefore,

{w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l} ⊆ PF (S).
(3.5.50)

By using (3.5.13), (3.5.50) and (3.5.47), we obtain

PF (S) = {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l}.

Case 1.3. If m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1, i.e., (εm−1 = 1). We claim that if αm−1(kl + r) +
βm−1l + 1 ≤ x ≤ m − 1, then x satisfies (3.5.1) for all 1 ≤ y ≤ m − 1. Indeed, since βx + εx > 0, then
from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that x+ y = x + y. In particular,
αm−1(kl + r) + βm−1l + 2 ≤ x+ y ≤ m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βm−1 + 1). (3.5.51)

Since x + y ≤ m − 1, it follows that 1 ≤ y ≤ εm−1tm−1 − 1. Then, m(kαy + βy + εy) = m. In addition, if
αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m − 1 = αm−1(kl + r) + βm−1l + εm−1tm−1, then m(kαx + βx + εx) =
m(kαm−1 + βm−1 + 1). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + βm−1 + 2). (3.5.52)

By using (3.5.52) and (3.5.51), we get that x satisfies (3.5.1) for all y. Consequently,

{w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.53)

Furthermore, if x = (αm−1−1)(kl+r)+(k+q)l+εxtx such that εx = 1 and (k+q)l+εxtx > βm−1l+εm−1tm−1,
then x satisfies (3.5.1) for all 1 ≤ y ≤ m−1. In fact, write y = αy(kl+r)+βyl+εyty. Since βx+εx > 0, then
from Lemma 3.5.6 we may assume that x+y ≤ m−1 and this implies that x+ y = x+y. Since x+y ≤ m−1
and (k+ q)l+ εxtx > βm−1l+ εm−1tm−1, it follows that y = βyl+ εyty. Thus, m(kαy +βy + εy) = m(βy + εy).
Since x = (αm−1−1)(kl+r)+(k+q)l+εxtx such that εx = 1, we get thatm(kαx+βx+εx) = m(kαm−1+q+1).
Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + q + 1 + βy + εy). (3.5.54)

We have and 1 ≤ εxtx ≤ t (as βx = k+q and x = (αm−1−1)(kl+r)+(k+q)l+εxtx). If 1 ≤ βyl+εyty+εxtx ≤ t,
then x + y = (αm−1 − 1)(kl + r) + (k + q)l + βyl + εyty + εxtx with 1 ≤ βyl + εyty + εxtx ≤ l − 1 and if
t+1 ≤ βyl+εyty+εxtx, then x+y = αm−1(kl+r)+(βyl+εxtx+εyty−(t+1)) with 0 ≤ βyl+εyty+εxtx−(t+1) ≤
βyl + εyty (as εxtx ≤ t). Since βy + εy ≥ 1 (as y ≥ 1), it follows that

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + q + βy + εy). (3.5.55)

By using (3.5.54) and (3.5.55), we get that x satisfies (3.5.1) for 1 ≤ y ≤ m− 1. Therefore,

{w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l + εm−1tm−1} ⊆ PF (S).
(3.5.56)

By using (3.5.16), (3.5.56) and (3.5.53), we get

PF (S) = {w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l + εxtx

with εx = 1 and (k + q)l + εxtx > βm−1l + εm−1tm−1}.

Case 2. If r − 1 = ql for some q ∈ N∗.

Case 2.1. If m− 1 = αm−1(kl+ r), (i.e., βm−1 = εm−1 = 0). We claim that if (αm−1− 1)(kl+ r) + (k+ q−
1)l + 1 ≤ x ≤ m− 1, then x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1. In fact,
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• If x = m− 1, then by using Lemma 3.5.5, it follows that x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1.

• If (αm−1 − 1)(kl + r) + (k + q − 1)l + 1 ≤ x ≤ m − 2 = (αm−1 − 1)(kl + r) + (k + q)l. Indeed,
since βx + εx > 0, then from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that
x+ y = x+ y. In particular,

(αm−1 − 1)(kl + r) + (k + q − 1)l + 2 ≤ x+ y ≤ m− 1.

If (αm−1−1)(kl+ r)+(k+ q−1)l+2 ≤ x+y ≤ m−2, then m(kαx+y +βx+y + εx+y) = m(kαm−1 + q)
and m(kαx+y + βx+y + εx+y) = m(kαm−1) if x = m− 1. Hence,

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + q). (3.5.57)

Since x + y ≤ m − 1, it follows that 1 ≤ y ≤ l. Then, m(kαy + βy + εy) = m. In addition, if
(αm−1 − 1)(kl + r) + (k + q − 1)l + 1 ≤ x ≤ m − 2, then m(kαx + βx + εx) = m(kαm−1 + q).
Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + q + 1). (3.5.58)

By using (3.5.58) and (3.5.57) , we get that x satisfies (3.5.1) for all y.

Therefore,
{w(x)−m; (αm−1 − 1)(kl + r) + (k + q − 1)l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.59)

By using (3.5.19) and (3.5.59), we get

PF (S) = {w(x)−m; (αm−1 − 1)(kl + r) + (k + q − 1)l + 1 ≤ x ≤ m− 1}.

Case 2.2. If m − 1 = αm−1(kl + r) + βm−1l (i.e., βm−1 > 0, εm−1 = 0). We claim that if αm−1(kl + r) +
(βm−1 − 1)l + 1 ≤ x ≤ m− 1, then x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1. Indeed, since βx + εx > 0, then
from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that x+ y = x + y. In particular,
αm−1(kl + r) + (βm−1 − 1)l + 2 ≤ x+ y ≤ m− 1 = αm−1(kl + r) + βm−1l. Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βm−1). (3.5.60)

Since x+ y ≤ m− 1, it follows that 1 ≤ y ≤ l − 1. Then, m(kαy + βy + εy) = m. In addition, if αm−1(kl +
r) + (βm−1 − 1)l + 1 ≤ x ≤ m − 1 = αm−1(kl + r) + βm−1l, then m(kαx + βx + εx) = m(kαm−1 + βm−1).
Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + βm−1 + 1). (3.5.61)

By using (3.5.61) and (3.5.60), we get that x satisfies (3.5.1) for all y. Consequently,

{w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.62)

Furthermore, if x = (αm−1− 1)(kl+ r) + (k+ q− 1)l+ εxtx such that εx = 1 and (k+ q− 1)l+ εxtx > βm−1l
or x = (αm−1−1)(kl+ r) + (k+ q)l such that (k+ q)l > βm−1l, then x satisfies (3.5.1) for all 1 ≤ y ≤ m−1.
In fact, write y = αy(kl + r) + βyl + εyty. Since βx + εx > 0, then from Lemma 3.5.6 we may assume that
x + y ≤ m − 1 and this implies that x+ y = x + y. Since x + y ≤ m − 1, it follows that y = βyl + εyty
(as (k + q − 1)l + εxtx > βm−1l or (k + q)l > βm−1l). Thus, m(kαy + βy + εy) = m(βy + εy). Since
x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx with εx = 1 or x = (αm−1 − 1)(kl + r) + (k + q)l, we get that
m(kαx + βx + εx) = m(kαm−1 + q). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + q + βy + εy). (3.5.63)

• If x = (αm−1 − 1)(kl + r) + (k + q)l such that (k + q)l > βm−1l. We have

x+ y = (αm−1 − 1)(kl + r) + (k + q)l + 1 + βyl + εyty − 1 = αm−1(kl + r) + βyl + εyty − 1

with βyl + εyty − 1 ≥ 0 as y = βyl + εyty ≥ 1. Then,

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + βy + εy). (3.5.64)

By using (3.5.63), (3.5.64) and q ∈ N∗, we get that x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1.

72



CHAPITRE 3. NUMERICAL SEMIGROUP OF THE FORM < M,M + 1, . . . ,M + L,K(M + L) +R >

• If x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx such that εx = 1 and (k + q − 1)l + εxtx > βm−1l.

◦ If βy ≥ 1. We have

x+ y = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx + βyl + εyty

= αm−1(kl + r) + (βy − 1)l + εyty + εxtx − 1.

Since 1 ≤ εxtx ≤ l − 1 and εyty ≤ l − 1, it follows that 0 ≤ εyty + εxtx − 1 ≤ 2l − 2. Hence,

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + βy + εy).

◦ If βy = 0. Then, y = εyty with εy = 1 (as y ≥ 1). Since 1 ≤ εxtx ≤ l − 1 and 1 ≤ εyty ≤ l − 1,
it follows that 2 ≤ εyty + εxtx ≤ 2l − 2. If 2 ≤ εyty + εxtx ≤ l, then x + y = (αm−1 −
1)(kl + r) + (k + q − 1)l + εxtx + εyty with εxtx + εyty ≤ l and if εyty + εxtx ≥ l + 1, then
x+ y = αm−1(kl + r) + (εxtx + εyty − (l + 1)) with 0 ≤ εxtx + εyty − (l + 1) ≤ l − 3. Hence,

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + q − 1 + 1).

Since q ∈ N∗ and βy + εy ≥ 1 (as y ≥ 1), it follows that

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + βy + q − 1 + εy). (3.5.65)

By using (3.5.63) and (3.5.65), we get that x satisfies (3.5.1) for 1 ≤ y ≤ m− 1.

Hence, if x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx such that εx = 1 and (k + q − 1)l + εxtx > βm−1l, or
x = (αm−1 − 1)(kl + r) + (k + q)l such that (k + q)l > βm−1l, then x satisfies (3.5.1) for 1 ≤ y ≤ m − 1.
Therefore,

{w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx with εx = 1

and (k + q − 1)l + εxtx > βm−1l} ∪ {w(x)−m;

x = (αm−1 − 1)(kl + r) + (k + q)l with (k + q)l > βm−1l} ⊆ PF (S).

(3.5.66)

By using (3.5.22), (3.5.66) and (3.5.62), we get

PF (S) = {w(x)−m; αm−1(kl + r) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l}

∪ {m(kαx + βx + εx − 1) + x; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l}.

Case 2.3. If m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1, i.e., (εm−1 = 1). We claim that if αm−1(kl + r) +
βm−1l + 1 ≤ x ≤ m − 1, then x satisfies (3.5.1) for all 1 ≤ y ≤ m − 1. Indeed, since βx + εx > 0, then
from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that x+ y = x + y. In particular,
αm−1(kl + r) + βm−1l + 2 ≤ x+ y ≤ m− 1 = αm−1(kl + r) + βm−1l + εm−1tm−1. Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βm−1 + 1). (3.5.67)

Since x + y ≤ m − 1, it follows that 1 ≤ y ≤ εm−1tm−1 − 1. Then, m(kαy + βy + εy) = m. In addition, if
αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m − 1 = αm−1(kl + r) + βm−1l + εm−1tm−1, then m(kαx + βx + εx) =
m(kαm−1 + βm−1 + 1). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + βm−1 + 2). (3.5.68)

By using (3.5.68) and (3.5.67), we get that x satisfies (3.5.1) for all y. Consequently,

{w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.69)
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In addition, if x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx such that εx = 1 and (k + q − 1)l + εxtx >
βm−1l + εm−1tm−1 or x = (αm−1 − 1)(kl + r) + (k + q)l such that (k + q)l > βm−1l + εm−1tm−1, then x
satisfies (3.5.1) for all 1 ≤ y ≤ m− 1. In fact, write y = αy(kl+ r) +βyl+ εyty. Since βx + εx > 0, then from
Lemma 3.5.6 we may assume that x+ y ≤ m− 1 and this implies that x+ y = x+ y. Since x+ y ≤ m− 1,
it follows that y = βyl + εyty (as (k + q − 1)l + εxtx > βm−1l + εm−1tm−1 or (k + q)l > βm−1l + εm−1tm−1).
Thus, m(kαy + βy + εy) = m(βy + εy). Since x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx with εx = 1 or
x = (αm−1 − 1)(kl + r) + (k + q)l, we get that m(kαx + βx + εx) = m(kαm−1 + q). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + q + βy + εy). (3.5.70)

• If x = (αm−1 − 1)(kl + r) + (k + q)l such that (k + q)l > βm−1l + εm−1tm−1. We have x + y =
(αm−1−1)(kl+ r) + (k+ q)l+ 1 +βyl+ εyty−1 = αm−1(kl+ r) +βyl+ εyty−1 with βyl+ εyty−1 ≥ 0
as y = βyl + εyty ≥ 1. Then,

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + βy + εy). (3.5.71)

By using (3.5.70), (3.5.71) and q ∈ N∗, we get that x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1.

• If x = (αm−1−1)(kl+r)+(k+q−1)l+εxtx such that εx = 1 and (k+q−1)l+εxtx > βm−1l+εm−1tm−1.

◦ If βy ≥ 1. We have

x+ y = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx + βyl + εyty

= αm−1(kl + r) + (βy − 1)l + εyty + εxtx − 1.

Since 1 ≤ εxtx ≤ l − 1 and εyty ≤ l − 1, it follows that 0 ≤ εyty + εxtx − 1 ≤ 2l − 2. Hence,

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + βy + εy).

◦ If βy = 0. Then, y = εyty with εy = 1 (as y ≥ 1). Since 1 ≤ εxtx ≤ l − 1 and 1 ≤ εyty ≤ l − 1,
it follows that 2 ≤ εyty + εxtx ≤ 2l − 2. If 2 ≤ εyty + εxtx ≤ l, then x + y = (αm−1 −
1)(kl + r) + (k + q − 1)l + εxtx + εyty with εxtx + εyty ≤ l and if εyty + εxtx ≥ l + 1, then
x+ y = αm−1(kl+ r) + (εxtx + εyty − (l+ 1)) with 0 ≤ εxtx + εyty − (l+ 1) ≤ l− 3. Since q ∈ N∗,
then

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + q − 1 + 1).

Since q ∈ N∗ and βy + εy ≥ 1 (as y ≥ 1), it follows that

m(kαx+y + βx+y + εx+y) ≤ m(kαm−1 + βy + q − 1 + εy). (3.5.72)

By using (3.5.70) and (3.5.72), we get that x satisfies (3.5.1) for 1 ≤ y ≤ m− 1.

Hence, if x = (αm−1−1)(kl+r)+(k+q−1)l+εxtx such that εx = 1 and (k+q−1)l+εxtx > βm−1l+εm−1tm−1,
or x = (αm−1 − 1)(kl + r) + (k + q)l such that (k + q)l > βm−1l + εm−1tm−1, then x satisfies (3.5.1) for
1 ≤ y ≤ m− 1. Therefore,

{w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l + εm−1tm−1}

∪{w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l}

with (k + q)l > βm−1l + εm−1tm−1} ⊆ PF (S).

(3.5.73)

By using (3.5.25), (3.5.73) and (3.5.69), we get

PF (S) = {w(x)−m; αm−1(kl + r) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q − 1)l + εxtx

with εx = 1 and (k + q − 1)l + εxtx > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + r) + (k + q)l

with (k + q)l > βm−1l + εm−1tm−1}.
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Case 3. If r = 1.

Case 3.1. Ifm−1 = αm−1(kl+1) (i.e., βm−1 = εm−1 = 0). We claim that if (αm−1−1)(kl+1)+(k−1)l+1 ≤
x ≤ m− 1, then x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1. In fact,

• If x = m− 1, then by using Lemma 3.5.5 x satisfies (3.5.1) for 1 ≤ y ≤ m− 1.

• If (αm−1− 1)(kl+ 1) + (k− 1)l+ 1 ≤ x ≤ m− 2 = (αm−1− 1)(kl+ 1) + kl. Indeed, since βx + εx > 0,
then from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that x+ y = x + y. In
particular, (αm−1 − 1)(kl + 1) + (k − 1)l + 2 ≤ x+ y ≤ m− 1 = αm−1(kl + 1). Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1). (3.5.74)

Since x + y ≤ m − 1, it follows that 1 ≤ y ≤ l. Then, m(kαy + βy + εy) = m. In addition, m(kαx +
βx + εx) = m(kαm−1). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + 1). (3.5.75)

By using (3.5.75) and (3.5.74), we get that x satisfies (3.5.1) for all y.

Consequently,

{w(x)−m; (αm−1 − 1)(kl + 1) + (k − 1)l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.76)

By using (3.5.28) and (3.5.76), we get

PF (S) = {w(x)−m; (αm−1 − 1)(kl + 1) + (k − 1)l + 1 ≤ x ≤ m− 1}.

Case 3.2. If m − 1 = αm−1(kl + 1) + βm−1l (i.e., εm−1 = 0). We claim that if αm−1(kl + 1) + (βm−1 −
1)l + 1 ≤ x ≤ m − 1, then x satisfies (3.5.1) for all 1 ≤ y ≤ m − 1. In fact, since βx + εx > 0, then
from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that x+ y = x + y. In particular,
αm−1(kl + 1) + (βm−1 − 1)l + 2 ≤ x+ y ≤ m− 1 = αm−1(kl + 1) + βm−1l. Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βm−1). (3.5.77)

Since x+ y ≤ m− 1, it follows that 1 ≤ y ≤ l − 1. Then, m(kαy + βy + εy) = m. In addition, if αm−1(kl +
1) + (βm−1 − 1)l + 1 ≤ x ≤ m − 1 = αm−1(kl + 1) + βm−1l, then m(kαx + βx + εx) = m(kαm−1 + βm−1).
Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + βm−1 + 1). (3.5.78)

By using (3.5.78) and (3.5.77), we get that x satisfies (3.5.1) for all y. Consequently,

{w(x)−m; αm−1(kl + 1) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.79)

Furthermore, if x = (αm−1−1)(kl+1)+(k−1)l+1 such that (k−1)l+1 > βm−1l or x = (αm−1−1)(kl+1)+kl
such that l = 1 and kl > βm−1l, then x satisfies (3.5.1) for all 1 ≤ y ≤ m − 1. In fact, write y =
αy(kl + 1) + βyl + εyty. Since βx + εx > 0, then from Lemma 3.5.6 we may assume that x+ y ≤ m− 1 and
this implies that x+ y = x+ y. Since x+ y ≤ m− 1, it follows that y = βyl+ εyty (as (k − 1)l+ 1 > βm−1l
or kl > βm−1l). Thus, m(kαy + βy + εy) = m(βy + εy). Since x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1 or
x = (αm−1 − 1)(kl + 1) + kl, we get that m(kαx + βx + εx) = m(kαm−1). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + βy + εy). (3.5.80)

• If x = (αm−1−1)(kl+ 1) +kl such that l = 1 and kl > βm−1l. We have εyty = 0 as l = 1, thus y = βyl
with βy > 0 (as y ≥ 1). In addition, x+y = (αm−1−1)(kl+1)+kl+1+βyl−1 = αm−1(kl+1)+(βy−1)l
as l = 1. Then,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βy − 1). (3.5.81)

By using (3.5.80), (3.5.81), we get that x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1.
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• If x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1 such that (k − 1)l + 1 > βm−1l.

◦ If βy ≥ 1. We have

x+ y = (αm−1 − 1)(kl + 1) + (k − 1)l + 1 + βyl + εyty

= αm−1(kl + 1) + (βy − 1)l + εyty.

Hence,
m(kαx+y + βx+y + εx+y) = m(kαm−1 + βy − 1 + εy). (3.5.82)

By using (3.5.80) and (3.5.82), we get that x satisfies (3.5.1) for 1 ≤ y ≤ m− 1.
◦ If βy = 0. Then, y = εyty with εy = 1 (as y ≥ 1). We have x + y = (αm−1 − 1)(kl + 1) + (k −

1)l + 1 + εyty with 1 + εyty ≤ l (as εyty < l). Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1). (3.5.83)

By using (3.5.80) and (3.5.83), we get that x satisfies (3.5.1) for 1 ≤ y ≤ m− 1.

Hence, if x = (αm−1−1)(kl+ 1) + (k−1)l+ 1 such that (k−1)l+ 1 > βm−1l, or x = (αm−1−1)(kl+ 1) +kl
such that l = 1 and kl > βm−1l, then x satisfies (3.5.1) for 1 ≤ y ≤ m− 1. Thus,

{w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l}∪

{w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l} ⊆ PF (S).

(3.5.84)

By using (3.5.33), (3.5.79) and (3.5.84), we get

PF (S) = {w(x)−m; αm−1(kl + 1) + (βm−1 − 1)l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l}.

Case 3.3. If m− 1 = αm−1(kl + 1) + βm−1l + εm−1tm−1, i.e., (εm−1 = 1). We claim that if αm−1(kl + 1) +
βm−1l + 1 ≤ x ≤ m − 1, then x satisfies (3.5.1) for all 1 ≤ y ≤ m − 1. In fact, since βx + εx > 0, then
from Lemma 3.5.6 we may assume that x + y ≤ m − 1 and this implies that x+ y = x + y. In particular,
αm−1(kl + 1) + βm−1l + 2 ≤ x+ y ≤ m− 1 = αm−1(kl + 1) + βm−1l + εm−1tm−1. Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βm−1 + 1). (3.5.85)

Since x + y ≤ m − 1, it follows that 1 ≤ y ≤ εm−1tm−1 − 1. Then, m(kαy + βy + εy) = m. In addition, if
αm−1(kl + 1) + βm−1l + 1 ≤ x ≤ m − 1 = αm−1(kl + 1) + βm−1l + εm−1tm−1, then m(kαx + βx + εx) =
m(kαm−1 + βm−1 + 1). Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + βm−1 + 2). (3.5.86)

By using (3.5.86) and (3.5.85), we get that x satisfies (3.5.1) for all y. Consequently,

{w(x)−m; αm−1(kl + 1) + βm−1l + 1 ≤ x ≤ m− 1} ⊆ PF (S). (3.5.87)

Furthermore, if x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1 such that (k − 1)l + 1 > βm−1l + εm−1tm−1 or
x = (αm−1 − 1)(kl + 1) + kl such that l = 1 and kl > βm−1l + εm−1tm−1, then x satisfies (3.5.1) for all
1 ≤ y ≤ m− 1. In fact, write y = αy(kl+ 1) + βyl+ εyty. Since βx + εx > 0, then from Lemma 3.5.6 we may
assume that x+y ≤ m−1 and this implies that x+ y = x+y. Since x+y ≤ m−1, it follows that y = βyl+εyty
(as (k−1)l+1 > βm−1l+ εm−1tm−1 or kl > βm−1l+ εm−1tm−1). Thus, m(kαy +βy + εy) = m(βy + εy). Since
x = (αm−1−1)(kl+1)+(k−1)l+1 or x = (αm−1−1)(kl+1)+kl, we get thatm(kαx+βx+εx) = m(kαm−1).
Consequently,

m(k(αx + αy) + βx + βy + εx + εy) = m(kαm−1 + βy + εy). (3.5.88)
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• If x = (αm−1− 1)(kl+ 1) + kl such that l = 1 and kl > βm−1l+ εm−1tm−1. Since l = 1, it follows that
εyty = 0, thus y = βyl with βy > 0 (as y ≥ 1). In addition, x+y = (αm−1−1)(kl+1)+kl+1+βyl−1 =
αm−1(kl + 1) + (βy − 1)l as l = 1. Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βy − 1). (3.5.89)

By using (3.5.88) and (3.5.89), we get that x satisfies (3.5.1) for all 1 ≤ y ≤ m− 1.

• If x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1 such that (k − 1)l + 1 > βm−1l + εm−1tm−1.

◦ If βy ≥ 1. We have = (αm−1−1)(kl+1)+(k−1)l+1+βyl+εyty = αm−1(kl+1)+(βy−1)l+εyty.
Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1 + βy − 1 + εy). (3.5.90)

By using (3.5.88) and (3.5.90), we get that x satisfies (3.5.1) for 1 ≤ y ≤ m− 1.
◦ If βy = 0. Then, y = εyty with εy = 1 (as y ≥ 1). We have x + y = (αm−1 − 1)(kl + 1) + (k −

1)l + 1 + εyty with 1 + εyty ≤ l (as εyty < l). Hence,

m(kαx+y + βx+y + εx+y) = m(kαm−1). (3.5.91)

By using (3.5.88) and (3.5.91), we get that x satisfies (3.5.1) for 1 ≤ y ≤ m− 1.

Consequently, if x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1 such that (k − 1)l + 1 > βm−1l + εm−1tm−1 or
x = (αm−1 − 1)(kl + 1) + kl such that l = 1 and kl > βm−1l + εm−1tm−1, then x satisfies (3.5.1) for all
1 ≤ y ≤ m− 1. Thus,

{w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l + εm−1tm−1}∪

{w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l + εm−1tm−1} ⊆ PF (S).

(3.5.92)

By using (3.5.38), (3.5.87) and (3.5.92), we get

PF (S) = {w(x)−m; αm−1(kl + 1) + βm−1l + 1 ≤ x ≤ m− 1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + (k − 1)l + 1

with (k − 1)l + 1 > βm−1l + εm−1tm−1}

∪ {w(x)−m; x = (αm−1 − 1)(kl + 1) + kl

with l = 1 and kl > βm−1l + εm−1tm−1}.

Thus, the proof is complete. �

Example 3.5.8. Consider the following numerical semigroups.

1. S =< 12, 13, 14, 15, 35 >. By using GAP [8], we get that

PF (S) = {46, 23} = {w(10)− 12, w(11)− 12}.

Note that m = 12, k = 2, l = 3 and r = 5 (αm−1 = 1, βm−1 = 0, εm−1tm−1 = 0, q = 1, t = 1). S
verifies the formula in Theorem 3.5.7.

2. S =< 18, 19, 20, 21, 47 >. By using GAP [8], we get that

PF (S) = {64, 69, 70, 71} = {w(10)− 18, w(15)− 18, w(16)− 18, w(17)− 18}.

Note that m = 18, k = 2, l = 3 and r = 5 (αm−1 = 1, βm−1 = 2, εm−1tm−1 = 0, q = 1, t = 1). S
verifies the formula in Theorem 3.5.7.
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3. S =< 16, 17, 18, 19, 43 >. By using GAP [8], we get that

PF (S) = {58, 63} = {w(10)− 16, w(15)− 16}.

Note that m = 16, k = 2, l = 3 and r = 5 (αm−1 = 1, βm−1 = 1, εm−1tm−1 = 1, q = 1, t = 1). S
verifies the formula in Theorem 3.5.7.

4. S =< 11, 12, 13, 14, 32 >. By using GAP [8], we get that

PF (S) = {29, 30, 31, 21} = {w(7)− 11, w(8)− 11, w(9)− 11, w(10)− 11}.

Note that m = 11, k =, 2 l = 3 and r = 4 (αm−1 = 1, βm−1 =, 0 εm−1tm−1 = 0, q = 1, t = 0). S
verifies the formula in Theorem 3.5.7.

5. S =< 17, 18, 19, 20, 44 >. By using GAP [8], we get that

PF (S) = {41, 42, 43, 65, 66, 67}

= {w(7)− 17, w(8)− 17, w(9)− 17, w(14)− 17, w(15)− 17, w(16)− 17}.

Note that m = 17, k = 2, l = 3 and r = 4 (αm−1 = 1, βm−1 = 2, εm−1tm−1 = 0, q = 1, t = 0). S
verifies the formula in Theorem 3.5.7.

6. S =< 15, 16, 17, 18, 40 >. By using GAP [8], we get that

PF (S) = {37, 38, 39, 59} = {w(7)− 15, w(8)− 15, w(9)− 15, w(14)− 15}.

Note that m = 15, k = 2, l = 3 and r = 4 (αm−1 = 1, βm−1 = 1, εm−1tm−1 = 1, q = 1, t = 0). S
verifies the formula in Theorem 3.5.7.

7. S =< 8, 9, 10, 11, 23 >. By using GAP [8], we get that

PF (S) = {12, 13, 14, 15} = w(4)− 8, w(5)− 8, w(6)− 8, w(7)− 8}.

Note that m = 8, k = 2, l = 3 and r = 1 (αm−1 = 1, βm−1 = 0, εm−1tm−1 = 0). S verifies the formula
in Theorem 3.5.7.

8. S =< 14, 15, 16, 17, 35 >. By using GAP [8], we get that

PF (S) = {53, 54, 55} = {w(11)− 14, w(12)− 14, w(13)− 14}.

Note that m = 14, k = 2, l = 3 and r = 1 (αm−1 = 1, βm−1 = 2, εm−1tm−1 = 0). S verifies the
formula in Theorem 3.5.7.

9. S =< 12, 13, 14, 15, 31 >. By using GAP [8], we get that

PF (S) = {47} = {w(11)− 12}.

Note that m = 12, k = 2, l = 3 and r = 1 (αm−1 = 1, βm−1 = 1, εm−1tm−1 = 1). S verifies the
formula in Theorem 3.5.7.

�
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Problèmes dans la théorie des semigroupes numériques

Problems in numerical semigroups

Résumé
Cette thèse est composée de deux parties. Nous
étudions dans la première la conjecture de Wilf pour
les semi-groupes numériques et la résolvons dans
certains cas. Dans la seconde nous considérons une
classe de semi-groupes presque arithmétiques et
donnons pour ces semi-groupes des formules
explicites pour la base d’Apéry, le nombre de
Frobenius, et les nombres de pseudo-Frobenius. Nous
caractérisons aussi ceux qui sont symétriques (resp.
pseudo-symétriques).

Abstract
The thesis is made up of two parts. We study in the
first part Wilf’s conjecture for numerical semigroups.
We give an equivalent form of Wilf’s conjecture in
terms of the Apéry set, embedding dimension and
multiplicity of a numerical semigroup. We also give an
affirmative answer for the conjecture in certain cases.
In the second part, we consider a class of almost
arithmetic numerical semigroups and give for this
class of semigroups explicit formulas for the Apéry set,
the Frobenius number, the genus and the
pseudo-Frobenius numbers. We also characterize the
symmetric (resp. pseudo-symmetric) numerical
semigroups for this class of numerical semigroups.
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Semigroupes numériques, conjecture de Wilf,
semi-groupes presque arithmétiques, nombre de
Frobenius, Problème des pièces de monnaie.
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