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Abstract:

Hierarchical image representations have been widely used in the image classification context. Such

representations are capable of modeling the content of an image through a tree structure, where

objects-of-interest (represented by the nodes of the tree) can be revealed at various scales, and where

the topological relationship between objects (e.g. A is part of B, or B consists of A) can be easily

captured thanks to the edges of the tree. However, for fully benefiting from this key information,

dedicated machine learning methods that can directly learn on hierarchical representations and

handle the induced structured data need to be developed. In this thesis, we investigate kernel-based

strategies that make possible taking input data in tree-structured and capturing the topological

patterns inside each structure through designing structured kernels. We apply the designed kernel

to remote sensing image classification tasks, allowing the discovery of complex cross-scale patterns

in hierarchical image representations.

We develop a structured kernel dedicated to unordered tree and path (sequence of nodes) struc-

tures equipped with numerical features, called Bag of Subpaths Kernel (BoSK). BoSK is an instance

of a convolution kernel relying on subpath substructures, more precisely a bag of all paths and sin-

gle nodes. It is formed by summing up kernels computed on all pairs of subpaths of the same length

between two bags. The direct computation of BoSK can be done through an iterative scheme, yield-

ing a quadratic complexity w.r.t. both structure size (number of nodes) and amount of data (train-

ing size). However, such complexity prevents BoSK to be used on real world large-scale problems,

where the tree can have more than hundreds of nodes and the available training data can consist

in more than ten thousands samples. Therefore, we propose a fast version of the algorithm, called

Scalable BoSK (SBoSK for short), using Random Fourier Features to map the structured data in a

randomized finite-dimensional Euclidean space, where inner product of the transformed feature

vector approximates BoSK. It brings down the complexity from quadratic to linear w.r.t. structure

size and amount of data, making the kernel compliant with the large-scale machine learning context.

Thanks to (S)BoSK, we can learn from cross-scale patterns in hierarchical image representations.

(S)BoSK operates on paths, thus allowing modeling the context of a pixel (leaf of the hierarchi-

cal representation) through its ancestor regions at multiple scales. Such a model is used within

pixel-based image classification. (S)BoSK also deals with trees, making the kernel able to capture

the composition of an object (top of the hierarchical representation) and the topological relation-

ships among its subparts. This strategy allows tile/sub-image classification. Further relying on

(S)BoSK, we introduce a novel multi-source classification approach that performs classification di-

rectly from a hierarchical image representation built from two images of the same scene taken at

different resolutions, possibly with different modalities. Evaluations on several publicly available

datasets illustrate the superiority of (S)BoSK compared to state-of-the-art remote sensing classifi-

cation methods in terms of classification accuracy, and experiments on a urban classification task

show the effectiveness of the proposed multi-source classification approach.

Keywords: structured kernel; image classification; hierarchical representations; Random Fourier

Features; kernel approximation; large-scale machine learning; remote sensing



Résumé:

La représentation d’image sous une forme hiérarchique a été largement utilisée dans un contexte

de classification. Une telle représentation est capable de modéliser le contenu d’une image à travers

une structure arborescente, où les objets d’intérêt (représentés par les nœuds de l’arbre) peuvent être

appréhendés à différentes échelles et où la relation topologique entre les objets (par exemple “A fait

partie de B”, ou “B se compose de A”) peut être facilement décrite grâce aux arêtes de l’arbre. Cepen-

dant, pour bénéficier pleinement de ces informations-clés, des méthodes d’apprentissage statis-

tiques doivent être développées pour traiter directement les données structurées sous leur forme

hiérarchique. Dans cette thèse, nous considérons les méthodes à noyaux qui permettent de prendre

en entrée des données sous une forme structurée et de tenir compte des informations topologiques

présentes dans chaque structure en concevant des noyaux structurés. Nous appliquons le noyau

que nous avons développé aux tâches usuelles de classification des images de télédétection, perme-

ttant ainsi de découvrir des modèles complexes dans les représentations hiérarchiques des images.

Nous présentons un noyau structuré dédié aux structures telles que des arbres non ordonnés et

des chemins (séquences de nœuds) équipés d’attributs numériques. Le noyau proposé, appelé Bag

of Subpaths Kernel (BoSK), est une instance du noyau de convolution et s’appuie sur l’extraction

de sous-structures de sous-chemins, plus précisement un sac de tous les chemins et des nœuds

simples. Il est formé en sommant les noyaux calculés sur toutes les paires de sous-chemins de

même longueur entre deux sacs. Le calcul direct de BoSK peut se faire selon un schéma itératif,

amenant à une complexité quadratique par rapport à la taille de la structure (nombre de nœuds)

et la quantité de données (taille de l’ensemble d’apprentissage). Cependant, une telle complexité

ne permet pas d’utiliser BoSK pour résoudre des problèmes à grande échelle, où la structure peut

contenir des centaines de nœuds et les données d’apprentissage disponibles peuvent comporter

plus de dix milliers d’échantillons. Par conséquent, nous proposons également une version rapide

de notre algorithme, appelé Scalable BoSK (SBoSK), qui s’appuie sur les Random Fourier Features

pour projeter les données structurées dans un espace euclidien, où le produit scalaire du vecteur

transformé est une approximation de BoSK. Cet algorithme bénéficie d’une complexité non plus

quadratique mais linéaire par rapport aux tailles de la structure et de l’ensemble d’apprentissage,

rendant ainsi le noyau adapté aux situations d’apprentissage à grande échelle.

Grâce à (S)BoSK, nous sommes en mesure d’effectuer un apprentissage à partir d’informations

présentes à plusieurs échelles dans les représentations hiérarchiques d’image. (S)BoSK fonctionne

sur des chemins, permettant ainsi de tenir compte du contexte d’un pixel (feuille de la représenta-

tion hiérarchique) par l’intermédiaire de ses régions ancêtres à plusieurs échelles. Un tel modèle

est utilisé dans la classification des images au niveau pixel. (S)BoSK fonctionne également sur les

arbres, ce qui le rend capable de modéliser la composition d’un objet (racine de la représentation

hiérarchique) et les relations topologiques entre ses sous-parties. Cette stratégie permet la classifica-

tion des tuiles ou parties d’image. En poussant plus loin l’utilisation de (S)BoSK, nous introduisons

une nouvelle approche de classification multi-source qui effectue la classification directement à par-

tir d’une représentation hiérarchique construite sur deux images de la même scène prises à dif-

férentes résolutions, éventuellement selon différentes capteurs. Les évaluations sur plusieurs jeux

de données de télédétection disponibles dans la communauté illustrent la supériorité de (S)BoSK

par rapport à l’état de l’art en termes de précision de classification, et les expériences menées sur une

tâche de classification urbaine montrent la pertinence de l’approche de classification multi-source



proposée.

Mots clés: Noyau structuré; Classification d’image; Représentations hiérarchiques; Random

Fourier Features; Approximation du noyau; Apprentissage à grande échelle; Télédétection
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2 ❈❤❛♣$❡& ✶ – Introduction

1.1 Context: classification of remotely-sensed images

1.1.1 Classification in remote sensing: objectives and challenges

Remote sensing is considered as one of the most effective ways for Earth observation. It is

generally defined as the technology that measures the surface of Earth from remote, where

the acquisition of images can be obtained with some satellite or airborne sensors. Through

remote sensing image analysis, we can achieve an accurate identification of materials or even

complex objects on the surface of the Earth. Therefore, it provides valuable information for

various applications, which include but are not limited to:

• precision agriculture — remote sensing images are used to identify different types of

crops and monitor different changes of these crops;

• disaster management — affected areas can be quickly accessed with remote sensing

images, providing the possibilities for a rapid damage assessment;

• Urban planning — urban development can be monitored through the remote sensing

image archives acquired at different times, with applications like road map updating,

or change detection in urban areas.

Although we can acquire a large amount of remote sensing archives every day, images

without processing can hardly provide any useful information. One of the most important

tasks is image classification, whose goal is to summarize the image into a predefined (ac-

cording to some specific applications) list of classes, thus providing fundamental resources

that can be easily reused in the next steps of a decision making process. Techniques able to

automatically classify images have attracted the attention of researchers for several decades

[62, 15, 78]. An example of remote sensing image classification is given in Fig. 1.1.

In the context of remote sensing image classification, several new challenges have

emerged because of the recent development of remote sensing sensors:

• High resolution. The challenges raised by high resolution in digital images came from

both spectral and spatial domains. In the spectral domain, the hyperspectral image

sensors allow the acquisition of the signal in hundreds of spectral wavelengths for each

image pixel, which can later provide high discrimination capabilities towards iden-

tification of different species or material. However, the resulting images have large

correlated dimensions, which induce problems related to the high dimensionality of

data especially in the case of limited availability of training samples [15]. Techniques

able to effectively exploit the high dimensionality of the images still need to be inves-

tigated. Another challenge is related to high spatial resolution. The recent availability
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(a) False color image (b) Ground truth (c) Training samples (d) Classification map

Figure 1.1: An example of pixel-wise remote sensing image classification. The false color compo-

sition of hyperspectral image Indian Pines is given in Fig. 1.1a, together with its associated ground

truth (mostly unknown for real-world applications) for reference in Fig. 1.1b. After selecting a small

number of pixels for training like in Fig. 1.1c, we obtain the classification map given in Fig. 1.1d.

of Very High Spatial Resolution (VHSR) images provides submetric resolution, allow-

ing the exploitation of the fine details of the observed scene. Thanks to new sensors,

additional information such as texture, shape of complex objects or even structure of

the object composition can be better revealed. However, the way to take into account

these information remains challenging [62].

• Multi-modal. We face nowadays a large number of sensors with different spatial res-

olutions. For instance, we can rely on high resolution sensors such as Quickbird with

0.6 m per pixel, Pleiades with 0.5 m, while low and medium resolution sensors are still

in use, e.g. SPOT-4. Multiple remote sensing image sources are available for the same

geographical region, and these sources can be fused to improve classification accuracy.

In this context, data fusion techniques that can make better use of various source still

need to be elaborated [78].

• Large volume. Another challenge is related to the big volume of remote sensing image

archives raised by the latest generation of remote sensing sensors. For instance, the

average volume of data acquired from a single satellite is about more than 500 GB every

day [126]. These data make it possible to monitor Earth at a global scale. However, the

efficient processing of such data remains largely unexploited [37, 118].

In this thesis, we address the above mentioned challenges. Readers are referred to [15, 29,

192] for other challenges faced in the field, such as limited availability of training samples,

mixed pixels in low spatial resolution images, or domain adaptation. These challenges have

not been addressed in this manuscript.

1.1.2 Principles of remote sensing classification

In the context of machine learning, supervised classification aims to find a “rule” based on

available data together with their class labels, and use the constructed “rule” to assign new
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data to one of the classes. The available data are called training data, which can be repre-

sented as (x1, y1), (x2, y2), . . . , (xn, yn) ∈ X × Y , where xi is the data instance and yi is the

associated class label.

The process of remote sensing image classification is composed of data representation,

feature extraction, classifier training and prediction. The final quality of the classification

depends on the performance of each single step.

The first step is data representation, whose goal is to define what kind of element will

be classified and how it will be described (i.e. with which features). In remote sensing, input

data can take various forms: image pixels (leading to the so-called pixel-wise classification);

regions, commonly used in the object-based image analysis paradigm [36]; or complex struc-

tures such as those obtained with hierarchical image representations [17].

Feature extraction step depends highly on data representation. For instance, in

pixel-wise classification, a pixel is described by its spectral information encoded in a d-

dimensional vector, while region-based classification uses more complex features such as

size, shape of the region, or even texture information. In this thesis, we focus on hierarchical

representations, where not only the features of regions that are used, but also the hierar-

chical relationships among the regions are encoded through complex structured data. We

especially focus on tree-based structures i.e. tree and sequence of nodes.

Then we feed the data into a classifier. Various classifiers have been applied for remote

sensing classification, which includes K-nearest neighbors [42], Support Vector Machines

[139], Random Forests [11, 150], Neural Networks [10] and Deep Neural Networks [94].

SVM is a popular kernel-based method in the remote sensing community and has been in-

vestigated for the past 20 years, as its efficiency and capacities to provide high classification

accuracies, especially when only limited training samples are available [139]. In addition, it

is able to handle complex structured data.

The outputs of classifier (predictions) are generally used directly as the classification

map. However, in real world applications, manually editing or automatized post-processing

techniques might be applied for generating “smoother” classification maps [13, 183].

Following the standard classification scheme, different research topics are brought into

the literature for improving the classification accuracies. The following section gives a brief

review of main trends for remote sensing image classification.

1.1.3 Main trends for remote sensing image classification

In this section, we give a brief review of several main trends in remote sensing image classi-

fication that are highly related to the problems addressed in this thesis.
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Pixel-wise classification using contextual information

In most of conventional approaches in pixel-wise classification, each pixel is treated inde-

pendently. However it is not appropriate, as neighboring pixels are highly correlated and

are more likely belong to the same class. This is particular true for very high spatial resolu-

tion remote sensing imagery. Due to the recent advances in sensor technology that enable

submetric resolution, the spectral variance inside same classes has been highly increased.

Conventional techniques that only use spectral information often produce high ratio of clas-

sification errors [208]

In the literature, integrating contextual information is considered as one of the key solu-

tions to the aforementioned issue. As pointed out in several recent survey papers [62, 76],

including spatial contextual information can reduce the labeling uncertainty by exploiting

additional discriminant information e.g. the shape and size of different structures formed

by neighboring pixels. Moreover, with contextual information, more spatially “smoother”

classification maps can be produced.

Contextual information associated with each pixel can be modeled through the neighbor-

ing pixels. For instance, in [61], the pixel contextual information is represented as the median

of spectral features of the region the pixel belongs to. Another representative example are

attribute profiles [76]. They integrate spatial contextual information using morphological

filtering around pixels with different attributes, e.g. size, spectral standard deviation, and

produce a high dimension feature vector that encodes the changes of each pixel under dif-

ferent filterings.

Due to the importance of taking into account contextual information, various pixel-wise

classification methods have been adapted in the different steps of the classification scheme:

spatial-spectral features extraction [76, 188], classifier that incorporates pixel spatial neigh-

borhood [204, 165], and post-processing of the final classification maps [183, 197]. Exploiting

efficiently the contextual information is one hot research topic for pixel-wise remote sensing

image classification.

Content-based tile classification with spatial decomposition patterns

In the remote sensing community, a large number of applications are related to land-use

classification of high resolution images. Current approaches concentrate in splitting the ob-

served scene taken from large Earth surface into small tiles, and process each tile indepen-

dently [95]. Therefore, the data instances are represented as single images (or tiles), where

the objective is to assign each image one of the predefined labels.

In these applications, labels are commonly associated with some semantics e.g. in the

land-use classification context, where the observed scene contains various types of complex
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objects and the spatial organization of these objects reveals semantic information on the sur-

face. For instance, sparse, medium, dense residential areas, mobile home are defined as

different classes in one standard land-use remote sensing dataset [213]. All these classes

share common objects such as roads, trees and buildings, but the difference in the density

and spatial distribution of these objects might serve as discriminative information in dif-

ferent classes. Therefore, it is still challenging to model such complex patterns for various

land-use classification applications.

One of the key solutions is to exploit the spatial arrangement of objects and structural

patterns present within the image. At a local scale, the structural patterns can be interpreted

as the textural information within a small patch or region and can be captured by local de-

scriptors such as SIFT [123] or Local Pattern Spectra [23]. Structural patterns can also be

described at a global scale, revealing spatial relationships among complex objects/regions.

Following this direction, a large number of works rely on patch/region-based local fea-

ture extraction and quantification into an orderless organized histogram [95], commonly

known as “bag-of-words”, one of the most successful approaches in the computer vision

community [33]. Taking into account the spatial relationships among patches/subregions

has been proved to be effective in many applications [213, 214]. More recently, some tech-

niques relying on hierarchical spatial decomposition of the observed scene into several sub-

regions demonstrate promising performances in land-use classification [35].

Multimodal classification of remote sensing images

Multimodal classification is becoming an important topic in the remote sensing community,

thanks to the recent technologies that make the multiple and heterogeneous image sources

available for the same geographical Earth surface area. The research in remote sensing data

fusion becomes very active in the recent years. Indeed, data fusion contest is held annually

by IEEE Geoscience and Remote Sensing Society in order to encourage the development of

new methods [50, 190].

Facing the challenges brought by the large amount of images coming with different res-

olutions (spatial, spectral, temporal) and from heterogeneous sources (SAR, LiDAR), data

fusion techniques have demonstrated the interest of exploiting the complementary informa-

tion of the observed scene carried by the different modalities. Techniques able to fuse data

from multiple sources and multiple resolutions have been proved to be effective for improv-

ing classification accuracy [218]. As each sensor provides some unique spatial details from

the observed scene, exploring and combining these information becomes crucial. In order

to tackle the challenges raised by image classification with multiple sources and multiple

resolutions, various methods have been proposed in the literature. They actually occur in

different steps of the classification process, which includes feature extraction [51], kernel
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combination [194, 28] or fusion inside the classifier [174, 135], or even merging the outputs

of each classifier [60].

Large-scale remote sensing image classification

Recent technologies make possible the acquisition of massive amounts of remote sensing

images. Indeed, it has been reported that the volume of data acquired only in one data

center (among many) could sum up to about 2 TB per day [126]. In the near future, the con-

tinuously increasing amount of data and variety of applications relying on remote sensing

classification will bring new challenges and require more adaptive machine learning meth-

ods. From a research point of view, the availability of large-scale remote sensing data will

certainly modify the development of remote sensing image classification algorithms. For ex-

ample, the SpaceNet Challenge 1 includes more than 60 millions of labeled high-resolution

images available for training. Such a publicly available large-scale benchmark requires the

majority of current state-of-the-art methods adapting their scalability in order to be assessed

in large-scale conditions. Techniques able to scale up machine learning methods have gained

increasing attention recently in various domains, including image classification [4]. Recently,

an increasing number of research papers concentrate on large-scale remote sensing image

classification [127, 130, 134].

1.2 Hierarchical image representations and applications

1.2.1 Motivation for hierarchical representations

Different image representations exist in order to adapt to various applications. As the initial

step of remote sensing image classification, data representation has a direct impact on the

next steps. For such a reason, we can observe an evolution in the representation adopted,

ranging from conventional pixel-based representation [208] to, more recently, hierarchical

representation [17].

In the early stage of remote sensing image classification, pixel-based representation has

been largely used. As the pixel represents the basic unit in an image, it is natural to represent

an image as a set of pixels. However, in such a representation, each pixel is considered as an

individual data instance and the dependence between neighboring pixel can not be revealed.

Indeed, ignoring spatial relationship often produces higher ratio of classification errors [183,

197, 208].

In order to take into account the spatial information and consider the dependence of

neighboring pixels, region-based representation has been proposed. A region is considered

1more details at ❤!!♣✿✴✴❡①♣❧♦)❡✳❞✐❣✐!❛❧❣❧♦❜❡✳❝♦♠✴2♣❛❝❡♥❡!
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Figure 1.2: An illustration of hierarchy of image objects (left), revealing the spatial context of objects

(middle), and objects spatial decomposition (right).

as a group of neighboring pixels that share some similar characteristics. It can be obtained by

segmentation algorithms that partition image into different regions upon certain similarity

criterion. In many applications, such as the GEOBIA (GEOgraphic Based Image Analysis)

framework, image regions are considered as the processing units, called objects, and var-

ious characteristic can be extracted, e.g. shape, size, texture. However, the quality of the

region might have a significant impact of underlying results. One challenge is related to

the scale issue: various objects-of-interest might appear at different scales and segmentation

scale parameters are difficult to be determined in advance without prior knowledge about

the next analyses. For example, an analysis of individual buildings might require smaller re-

gion size than urban residential area. For this reason, common solutions use only empirical

parameters, which often result in sub-optimal segmentations and degrade the classification

accuracy.

Many researchers have dealt with hierarchical representations of digital images. Such

representations highlight objects-of-interest at different scales, where the topological rela-

tionship between objects (e.g. A is part of B, or B consists of A) can be easily modeled. How-

ever, fully exploiting the key concepts of hierarchical representation, including incorporat-

ing contextual information through multiscale analysis, modeling the complex topological

information revealed from hierarchical relationships among objects, is still considered as an

open challenge [17].

In this work, we rely on hierarchical representations of images. More precisely, we aim at

fully exploiting the key advantages of such representations, and especially including them

in the conventional classification scheme in order to improve the quality of automated land

cover/land use mapping results. More specifically, we concentrate on incorporating the

different types of topological information across the scales from a hierarchical representa-

tion: contextual information and object spatial decomposition information, as illustrated in

Fig. 1.2.
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1.2.2 Construction of hierarchical representation

In this section, we recall the principles of hierarchical representations and the most popular

algorithms to build them from digital images. We give a special attention to Hseg multiscale

segmentation algorithm, one successful implementation of open-source segmentation tool

for remote sensing image processing [185] 2, as it is used as the hierarchical representation

generation tool in this thesis.

Hierarchical representations can be categorized into two classes[22]: inclusion trees and

partition trees.

• Inclusion trees aim at representing bright and/or dark structures of the image. Leaves

in inclusion trees are often image extrema, e.g. the minimum intensity value in the

image, and inner nodes are formed by region growing from the leaves until the root

which covers the whole image. In general, any cut of an inclusion tree does not form a

complete partition of the underlying image. Typical examples are Max- and Min- tree

[142], Tree of Shapes [74]. Both have been successfully used in remote sensing [30, 49].

• Partitioning trees, on the other side, are initialized from an image partition. Then they

rely on iterative merges of small regions at finer scale into larger regions at coarser

levels. Among typical examples, we can cite Binary Partition Trees (BPT) [164], α-

tree [148], ω-tree [173]. Partitioning trees are commonly used in object-based remote

sensing image representation, as the nodes in the tree correspond in general to the

objects-of-interest.

Hseg can generate partitioning trees of arbitrary form according to some user definitions

e.g. number of regions for each level. It relies on a BPT construction and outputs multiscale

segmentation maps at various levels through thresholding. It starts with an initial partition

to form leaves, e.g. pixels, flat zones, or pre-segmented regions. The algorithm then itera-

tively computes the similarity between all pairs of spatially adjacent nodes, and merges the

two most similar ones until whole image being a single region. The computation of similar-

ity is related to two key concepts: region model and merging criterion. The region model

measures the characteristics of each region, while the merging criterion is the value of the

difference or dissimilarity between the region models.

In Hseg, various region models based on spectral information have been proposed, al-

lowing Hseg to handle multispectral or even hyperspectral images in a native way. One of

the most basic region models is based on averaging the spectral information of pixels that

compose the region:

2an open source software of NASA, which can be downloaded at ❤!!♣#✿✴✴♦♣❡♥#♦✉*❝❡✳❣#❢❝✳♥❛#❛✳❣♦✈✴♣*♦❥❡❝!#✴❍❙❊●✴
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Figure 1.3: An illustration of multiscale segmentation on hyperspectral image captured at Pavia

University. Original false color image is shown at beginning (top left), followed by 11 differ-

ent segmentation maps generated using Hseg with dissimilarity criterion set respectively as α =

[0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512].

Rb =
1

Area(R) ∑
Pixeli∈R

Pixelb
i , (1.1)

where Rb is the spectral band b of region R and its average Rb, Area(R) is the size of the

region and Pixeli is one pixel in the region R with its spectral information of band b written

as Pixelb
i .

As far as the merging criterion is concerned, “Band Sum Mean Squared Error (MSE)” is

used for evaluating the dissimilarity of one region versus another. It is defined as:

MSE(Ri, Rj) =
Area(Ri)Area(Rj)

Area(Ri) + Area(Rj)

B

∑
b=1

(Rb
i − Rb

j )
2 . (1.2)

Such a dissimilarity measures the distance between two regions, and is used to deter-

mine the merging order at each iteration step. Relying on the predefined dissimilarity crite-

rion, Hseg can output multiscale segmentation maps, forming a partitioning tree in arbitrary

form. Fig. 1.3 shows an example on multiscale segmentation maps using Hseg for hyper-

spectral remote sensing image, where the dissimilarity criterion α =
√

MSE(Ri, Rj) is set as

α = [0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512].
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1.2.3 Applications in remote sensing

Spatial-spectral classification

Spatial-spectral classification, which incorporates spatial information to improve the clas-

sification results, has became one of the most popular approaches for remote sensing clas-

sification [62, 76, 157, 25], especially when the image spatial resolution is high. In these

approaches, spatial information is extracted at the image region level rather than at the con-

ventional pixel level.

Therefore, one of the key application of hierarchical representation is the modeling of the

context of a pixel. Through the hierarchy, the context models the evolution of a pixel and

describes it at different scales [55, 25]. One of the most popular examples is attribute profiles,

relying on Max- and Min- tree [48], or Tree of Shapes [30].

The Attribute Profile built on the image I can be written as:

AP(I) = {φλL(I), φλL−1(I), . . . , φλ1(I), I, γλ1(I), . . . , γλL−1(I), γλL(I)} , (1.3)

where the φ and γ stands for the thickening and thinning operator respectively, λL is the

scale parameter at the level L. In such a setting, each pixel in the image can be represented

as its corresponding values in AP(I), a stacked vector of dimension 2L + 1.

In addition to attribute profiles, other techniques have also been proposed to model con-

textual information with hierarchical representations. In [25], the authors state that given a

hierarchical image representation, it is possible to exploit the relationships between pixels

and regions at different levels to extract an effective set of features that describes each pixel

and its adaptive context at each level. In [113], a similar multiscale context feature extraction

strategy is proposed, but with a different hierarchical image representation called α-tree.

All the previous methods discussed so far share similar strategy when using the multi-

scale features. Once extracted, these features are concatenated into a long raw (i.e. flat, un-

structured) vector, on which is applied a conventional vector-based machine learning tech-

nique (e.g. SVM with the Gaussian kernel). Such stacked vectors are usually sets of highly

dimensional features. Consequently, as mentioned in [76], they should be properly handled

in order to make full exploitation of the discriminative information, and avoid issues raised

by very large dimensionality (Hughes phenomenon) and high redundancy [152].

Spatial pyramid matching model

The Spatial Pyramid Matching (SPM) model [109, 209] is the most common strategy to con-

sider the object spatial decomposition based on a hierarchical representation. The idea is to

segment the image in 4 regions at successive scales (through a quad-tree representation), and
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to concatenate all the region features into a long vector. With such a hierarchical represen-

tation, objects and their subparts can be revealed in various scales, and the relative spatial

arrangement of the objects and the object decomposition information can be also modeled.

These features play a significant role in classification of complex patterns [214].

However, the matching strategy of SPM limits its application to quad-tree representa-

tions, preventing it to benefit from advanced multiscale segmentation techniques that lead

to meaningful but mostly irregular hierarchical representation. In addition, SPM only al-

lows matching image regions at the same spatial position. Therefore, applying SPM to re-

mote sensing image classification is not optimal since SPM hardly adapts to images with no

predefined location or orientation [221, 35, 213].

GEOBIA

GEOgraphic-Object-Based Image Analysis (GEOBIA) framework has gained increasing in-

terest and is today a paradigm for remote sensing image processing [16, 17] beyond conven-

tional pixel-based analysis. In this framework, hierarchical image representation is the key

concept — meaningful objects are obtained from multiscale image segmentation, and spatial

relationships among objects are encoded in a tree structure.

The main trends of GEOBIA have shifted from choosing the correct scale for analyz-

ing objects [56], recognizing the different changes occurring at different scale for different

type of objects [83], and also understanding the mutual relations between image objects [17].

Within the hierarchical representation, each object is characterized not only by segment-

related characteristics, which are its spectral, shape or texture features, but also with the

topological information (e.g. A is part of B, or B consists of A). In addition, semantic rela-

tionships between objects at different levels revealed from hierarchical representation allow

effective multiscales analysis. For instance, building and tree species at finer level can form

residential blocks at intermediary level, and groups of residential blocks can form urban area

at coarse scale.

The first commercial object-based image analysis software is eCognition and triggered

the major trend of object-based remote sensing image analysis. Most applications have em-

ployed this software with a rule set based classification framework. In [36], hierarchical rule-

sets have been designed to incorporate the expert knowledge, e.g. thresholding the NDVI

information is used for distinguish vegetation and non-vegetation, and height information,

ratio of width and length of object, are further included to divide the non-vegetation into

building, vacant land, and road. A similar rule-set based scheme can be found in [170] for

mapping gully extraction using high spatial resolution imagery. In [121], the authors pro-

pose to rely on the object features and the spatial relations between objects to extract roads

and moving vehicles from remote sensing imagery. Object features such as size, shape can
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differentiate road and vehicle, and spatial relations between objects, i.e. moving vehicles are

surrounded by a road, help to refine classification results and extract particularly moving

vehicles.

The knowledge-based subjective rule-set strategy commonly used in GEOBIA is highly

relying on human involvement and interpretation, which makes it difficult to adapt to new

locations and datasets, and makes the processing of data in large remote sensing archives

practically impossible. Advanced machine learning techniques are thus required for learn-

ing automatically properties of the objects and the relationships among them.

1.3 Kernel-based machine learning

1.3.1 Kernel definition

Kernels are popular in machine learning, thanks to their capability of capturing non-linear

patterns in the data. They have been introduced to map data in a new feature space, where

it becomes possible to separate linearly the transformed data.

Following the kernel definition in [166], let us define a kernel as a function k(·) that for

x, x
′ ∈ X satisfies:

k(x, x
′) = 〈 φ(x), φ(x

′) 〉H ,

φ : x ∈ X 7−→ φ(x) ∈ F ,
(1.4)

where φ is a mapping from the original input space X to a feature space F , and the inner

product of two mapping 〈φ(x), φ(x
′)〉H can be directly computed using kernel function on

their original space k(x, x
′).

A well known example is the polynomial kernel. Let x = [x1, x2] ∈ R
2 a two dimensional

vector, and the mapping function is defined as φ : x 7−→ φ(x) = [x2
1, x2

2,
√

2x1x2] ∈ R
3.

Fig. 1.5 shows an example of such a mapping, non-linearly separable data in original space

R
2 can become linearly separable in the feature space R

3.

Further, we can compute the inner product between the projections of data without ex-

plicitly evaluating them in the feature space. Following the previous example, we have

k(x, x
′) =< φ(x), φ(x

′) >

= [x2
1, x2

2,
√

2x1x2]
T [x′21, x′22,

√
2x′1x′2]

= x2
1x′21 + x2

2x′22 + 2x1x2x′1x′2

= (x1x′1 + x2x′2)
2 = (x

T
x
′)2

(1.5)



14 – Introduction

(a) Decision boundary with linear SVM (b) Decision boundary with kernel SVM

Figure 1.4: Illustration of non linear separable case with linear SVM and kernel SVM.

(a) Data in the input space x ∈ R
2 (b) Data in the feature space φ(x) ∈ R

3

Figure 1.5: Illustration of data in the original input space and feature space.

where the kernel function k(x, x
′) = (x

T
x
′)2 can be computed directly in the original

data input space. This is known as the “kernel trick” and it is very helpful since the high

dimensional feature space does not need to be projected firstly. In other cases, φ(·) might be

unknown, such as with the Gaussian kernel.

1.3.2 A kernel method example: Support Vector Machine (SVM)

We briefly introduce SVM in this section, interested readers are referred to [67] for a detailed

description.

Linear SVM

Let us assume a binary classification problem that consists of N pairs

(x1, y1), (x2, y2)..., (xN , yN), with xi ∈ R
d and yi ∈= {−1,+1}. The decision function
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of SVM is defined as f (x) = x
T β + β0 such that if f (xi) < 0, yi = −1 , yi = 1 otherwise.

In short, we have yi f (xi) ≥ 0, where β, β0 are the parameters of the model and need to be

learned.

In order to learn the parameters β, β0, SVM minimizes the following objective function

‖ β ‖2 +C
N

∑
i=1

max(0, 1 − yi f (xi)) (1.6)

where ‖ β ‖2 is the L2 regularization on the parameters of the model, and the function

max(0, 1 − yi f (xi)) is the hinge loss function. C is a hyper-parameter that controls the bal-

ance between the loss (how well the model fits on training data) and the regularization (the

complexity of the model).

The geometric interpretation of SVM can be seen as the margin maximization problem,

where the decision boundary is defined as a hyperplane x
T β + β0 = 0, and the distance

from the decision surface to the closest data point is called margin and is defined as 2
‖β‖ , as

shown in Fig. 1.6. While maximizing the margin, SVM can be rephrased into a constrained

optimization problem:

min
β

‖ β ‖

s.t. yi(x
T
i β + β0) ≥ 1 − ξi

ξi ≥ 0; ∑ ξi ≤ Constant

(1.7)

where ξi is called slack variable that allows the violation of the margin at the non-negative

cost of ξi. The sum of all costs ξi is bounded by a constant, which limits the total number of

predictions on the wrong side of its margin.

One might notice that the optimization problem of Eq. (1.6) and Eq. (1.7) leads to the

same solution, and they can be further rewritten in an equivalent form, often called primal

form:

min
β

1

2
‖ β ‖2 +C

N

∑
i=1

ξi

s.t. yi(x
T
i β + β0) ≥ 1 − ξi; ξi ≥ 0

(1.8)

The above constrained optimization problem can be rewritten in its dual form (see [67]

for detailed derivation):
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max
α

N

∑
i=1

αi −
1

2

N

∑
i=1

N

∑
i
′=1

αiαi
′ yiyi

′ xT
i xi

′

s.t. 0 ≤ αi ≤ C;
N

∑
i=1

αiyi = 0

(1.9)

The decision function derived from dual formulation can be written as:

f (x) =
N

∑
i=1

αiyi(x
T
i x) + β0 (1.10)

Figure 1.6: The geometric interpretation of a linear SVM.

Non-linear SVM with kernel

The SVM described so far allows finding linear boundaries in the input space. However, we

can make the procedure more flexible by enlarging the original input space. The representa-

tion in feature space is obtained by the application of an appropriate function φ : x ∈ X 7−→
φ(x) ∈ F . Consequently, we work with the samples: (φ(x1), y1), (φ(x2), y2)..., (φ(xN), yN) ∈
F × Y .

We can represent the optimization problem (primal form) as following:

min
β

1

2
‖ β ‖2 +C

N

∑
i=1

ξi

s.t. yi(φ(xi)
T β + β0) ≥ 1 − ξi; ξi ≥ 0

(1.11)

and its dual form as:
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max
α

N

∑
i=1

αi −
1

2

N

∑
i=1

N

∑
i
′=1

αiαi
′ yiyi

′ 〈φ(xi)
Tφ(xi

′ )〉H

s.t. 0 ≤ αi ≤ C;
N

∑
i=1

αiyi = 0

(1.12)

The optimization solution α requires the computation of 〈φ(xi)
Tφ(xi

′ )〉H for each pair of

data in the set. One can use the kernel function k(x, x
′) = 〈φ(x), φ(x

′)〉H to compute the

inner product in feature space F directly from input space X . One example of such “trick” is

given in Eq. (1.5).

By solving the dual optimization problem, one obtains the nonlinear decision function

f (x) =
N

∑
i=1

αiyi〈φ(xi), φ(x)〉+ β0 , (1.13)

and in kernel function form, one obtains

f (x) =
N

∑
i=1

yiαik(xi, x) + β0 . (1.14)

Using kernel allows avoiding the computation of mapping φ(x) and the inner product

in higher dimension space. In addition, the mapping function φ(x) is not always known

e.g. Gaussian kernel, and the kernel trick allows one to compute implicitly the inner product

without knowing the mapping function.

1.3.3 Large-scale learning for kernel methods

The kernel trick can compute implicitly the inner product in the feature space without map-

ping the data, which has been successful applied in a large range of problems from different

domains. However it shows some limitations in the context of large-scale machine learning:

methods operating on kernel matrix can hardly scale up w.r.t. training sample size, because

of the calculation of kernel matrix (at least quadratic w.r.t. training sample size as shown in

Eq. 1.12). This prevents them to be applied on large-scale learning problems [160].

Recently, techniques for kernel value approximation have been well investigated in the

context of accelerating the training time in kernel methods [212], e.g., the Nyström method

and the Random Fourier features (RFF) technique. The Nyström method approximates the

full kernel matrix by a low rank matrix computed with a subset of training examples, while

the RFF technique [160, 161] is a data-independent method which is widely applied due

to its efficient computation and approximation quality. The rational is to approximate the

kernel by explicitly mapping the data (with basis functions as cosine and sine) into a low
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dimensional Euclidean space, in which the inner product of the explicit features vector ap-

proximates the kernel value.

The advantages of RFF come with the fact that linear machine learning methods can

be directly applied on the resulting vectors. While non-linear SVM using kernel yields a

quadratic complexity w.r.t. training samples, linear SVM with efficient solver can reduce the

complexity to linear. By adopting such a strategy, the empirical study in [125] shows the

capability of training on large-scale image recognition problems.

1.3.4 Structured kernel

Nowadays, data are represented in a structured form in many real-world applications such

as natural language processing [219], bioinformatics [128], chemoinformatics [81], XML trees

in web mining [39, 41] and image processing [87]. Among the popular solutions to process

such data are kernel methods, e.g. Support Vector Machine (SVM) [166]. Applying SVM

on structured data requires either to vectorize the input data, or to define structured kernels.

The latter option is to be preferred to benefit from the rich structure brought by strings, trees,

or graphs.

For learning on structured data, various kernels have been proposed, which includes

optimal assignment kernel [68, 105], alignment kernel [47], match kernel [19] and others [71].

However, the most standard way to construct a structured kernel is to follow the convolution

kernel framework [88]. According to this framework, a kernel on a complex structure can be

formed by tailoring simple kernels computed on its substructures.

Following the definition of the convolution kernel in [88, 169], let us define x ∈ X as a

complex structure and x′ as the parts of x by a relation R on the set X ′ ×X , where R(x′, x) is

true if and only if x′ are the parts of x. Given such a relation, we can define the decomposition

R−1 = {x′ : R(x′, x)}. Suppose we have a kernel k on X ′ that measures the similarity k(x′, y′)

between the part x′ and the part y′ (note that x′ and y′ are often called substructures that can

be extracted from complex structures x and y respectively). Then the convolution kernel is

defined as:

K(x, y) = ∑
{x′}∈R−1(x)

∑
{y′}∈R−1(y)

k(x′, y′) , (1.15)

where if the kernel k : X ′ ×X ′ → R is a positive semidefinite kernel, K : X ×X → R is

also positive semidefinite.

Following such a definition, the key idea is to define the appropriate substructures that

can decompose the complex structure. However, there is no universal substructure for struc-

tured data, and the available options are numerous (see [168] for the case of trees). The se-

lection of the appropriate substructure thus depends on the kind of data and application
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that are considered. To drive this selection, one can keep in mind that according to [98],

a “good” kernel depends on both its effectiveness and expressiveness power. The former

refers to how good a substructure can represent the whole structure, while the later refers

to the computational complexity required when calculating such a kernel. Most often the

appropriate kernel is the result of a trade-off between expressiveness and effectiveness. If

the substructure is too simple, the kernel might not be able to capture the characteristics of

the underlying data. Conversely, complicated substructures might lead to intractable kernel

computation schemes.

Nevertheless, the capabilities of taking directly into account structured data have mo-

tivated various attempts to define new kernels, e.g. in bioinformatics [131], physics [63],

language processing [175], or even image analysis. Indeed, many solutions have been intro-

duced recently to perform machine learning on graph-based image representations [8, 87,

200, 65, 177, 179, 57]. Such representations are usually based on region-adjacency graphs

that are built from a prior segmentation of the input image, where the vertices of the graph

encode the regions while the edges encode the relations between neighboring regions [8, 87,

200].

Inspired by the literature in kernel design for various types of structures, especially for

graph-based image representation, we explore in this thesis how to design a structured ker-

nel that make possible learning from hierarchical image representations.

1.4 Conclusion and organization of the manuscript

1.4.1 Motivations and contributions

In this chapter, we first briefly reviewed the trends in remote sensing image classification in

Sec. 1.1, where one may notice that including the spatial information is one of the key con-

cepts for improving classification accuracy. It can help increasing smoothness for pixel-wise

classification, and providing crucial patterns for tile classification. One way to reveal spatial

information relies on hierarchical image representations, where objects-of-interest can be re-

vealed at various scales and topological relationships among them are modeled through the

hierarchy. Indeed, such representations have been adopted with various applications in the

remote sensing community, as reviewed in Sec. 1.2.

This thesis aims to link machine learning techniques and hierarchical image representa-

tions. Our goal is to take into account spatial information presented in an image through a

hierarchical organization of objects. Such a hierarchy of objects can be represented with a

tree structure, where the nodes represent the objects-of-interest and edges model the hierar-

chical relationships among them. Our objective is to exploit machine learning techniques to

take into account these specific representations of data and discover the meaningful patterns
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that can lead to good classification results.

In the literature, one of the most standard ways to learn on structured data is to design

a structured kernel. It can directly take the structures as input and benefit from various suc-

cessful kernel-based machine learning methods. Such a scheme is especially well-adopted

in the domain of bioinformatics, natural language processing and chemistry, where the data

to be handled are often coming in a structured form. In addition, the kernel methods, espe-

cially SVM, have been well established in remote sensing [27]. These various aspects motive

us for exploring kernel-based learning on hierarchical image representations.

In addition, we often face a large amount of data in the remote sensing community.

Meanwhile, advanced techniques such as RFF enable us to apply kernel methods in a large-

scale context. This motivate us to develop scalable methods to enable the application of

proposed kernels to remote sensing image classification.

We introduce in this thesis a structured kernel called (S)BoSK (Bag of Subpath Kernel and

its Scalable version) for capturing the hierarchical relationships between nodes of a tree. It

can be viewed as an instance of the convolution kernel relying on the extraction of subpath

substructures. The main applications focus on remote sensing image classification: (S)BoSK

operates on paths, thus allowing modeling the context of a pixel (leaf of the hierarchical

representation) through its ancestor regions at multiple scales; (S)BoSK also works on trees,

that makes the kernel able to capture the composition of an object (top of the hierarchical

representation) and the topological relationships among its subparts; relying on (S)BoSK,

we also introduce a novel multi-source classification approach that performs classification

directly from a hierarchical image representation built from two images of the same scene

taken at different resolutions, possibly with different modalities.

1.4.2 Organization

The rest of the thesis is organized as follows:

• Chapter 2 starts introducing the main contributions of this thesis from a methodologi-

cal point of view. We present a structured kernel called Bag of Subpaths kernel (BoSK)

for data with an unordered tree or path structure, and equipped with numerical fea-

tures. Both exact computation based on iterative scheme and approximated computa-

tion based on Random Fourier Features are provided in different contexts: while BoSK

can be efficiently computed for small structures and small training data size, its scal-

able version SBoSK is more suitable to large-scale learning context with a large number

of available training samples or/and large structures.

• Chapter 3 presents the first application of (S)BoSK on the path structure for pixel-wise

image classification. The path structure represents the spatial context of a pixel in the
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hierarchical representations, where the nodes in each path start from the pixel and

continue with its ancestral regions at multiple scales from fine to coarse. Relying on

such a structure, (S)BoSK can take into account the contextual information for each

pixel by exploiting the regions from different scales and the hierarchical relationships

among them. Evaluations on different datasets indicate the superiority of (S)BoSK over

other spatial spectral pixel-wise classification techniques.

• Chapter 4 introduces the second application of (S)BoSK on the tree structure for sub-

image/tile classification. The root of a tree structure is the tile and rest of the nodes

are the subregions at multiple scales organized hierarchically. Assessing inputs as tree

structures, (S)BoSK allows considering spatial decomposition of a tile through its sub-

regions and relationships among them. Evaluations on different datasets show that

(S)BoSK can surpass other state-of-the-art decomposition-based techniques.

• Chapter 5 presents a novel multi-source and multi-resolution image classification

method that combines (through a hierarchical representation) two images taken from

different resolutions and sensors over the same area. The coarser levels of the hierar-

chy built from the lower resolution image can reveal contextual information, while the

finer levels are constructed from the higher resolution image and are used to model

the spatial decomposition. Two (S)BoSK are then employed to perform machine learn-

ing directly on the constructed hierarchical representation, aiming at combining both

contextual and decomposition information into a unique classification scheme.

• Chapter 6 provides some conclusions from the work presented herein, along with con-

sidered improvements closely related to the proposed methods, as well as some per-

spectives on future research directions.

1.4.3 List of publications

The following publications are based on the research presented in this thesis:

1. Yanwei Cui, Laetitia Chapel, and Sébastien Lefèvre. “A subpath kernel for learning

hierarchical image representations”. In: International Workshop on Graph-Based Repre-

sentations in Pattern Recognition. 2015, pp. 34–43. DOI: ✶✵✳✶✵✵✼✴✾✼✽✲✸✲✸✶✾✲✶✽✷✷✹✲✼❴✹

2. Yanwei Cui, Laetitia Chapel, and Sébastien Lefèvre. “Combining multiscale features

for classification of hyperspectral images: a sequence based kernel approach”. In: In-

ternational Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote

Sensing. 2016. URL: ❤--♣✿✴✴❛1①✐✈✳♦1❣✴❛❜8✴✶✻✵✻✳✵✹✾✽✺
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tiple resolutions into hierarchical representations for kernel-based image classifica-

tion”. In: International Conference on Geographic Object-Based Image Analysis. University

of Twente, Enschede, The Netherlands, 2016. DOI: ✶✵✳✸✾✾✵✴✷✳✸✼✷
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()✾✵✸✵✶✾✻



23

Chapter 2

Scalable Bag of Subpaths Kernel

(SBoSK) for numerical features
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In the previous chapter, we have presented why learning on hierarchical image represen-

tations was an open challenge that we address in this thesis.

This chapter describes our main contributions from a methodological point of view. We

present a structured kernel dedicated to unordered trees with numerical features. This chap-

ter concentrates on presenting the mathematical details of the proposed kernel. Its applica-

tions to machine learning on hierarchical image representations are further detailed in the

following chapters.
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2.1 Introduction

Data are often represented in a structured form in many real-world applications. The struc-

ture helps encoding the internal relations among elements. For instance, an XML tree en-

codes the hierarchical relationships among different elements presented in a document. A

molecule can be analyzed as a graph structure that represents the structural formula of

atoms. In image processing, it is popular to describe the content of an image through struc-

tured data, where image regions are presented in a set, and are organized through structures

linking different regions together. Successful examples of such representations are region

adjacency graph [87], or tree structures [17].

In the context of machine learning, conventional techniques often require the data to be in

a vector form. In order to learn on structured data, one popular strategy consists in design-

ing meaningful structured kernels (i.e. kernels built on structured data), and feed them into

kernel-based machine learning methods such as SVM. Such kernels have been successfully

applied in various domains as they are capable to extract discriminative features directly

from the structures. Among popular approaches for designing kernels, the most standard

way to construct a structured kernel is to follow the convolution kernel framework [88]. Ac-

cording to this framework, computing a kernel on a complex structure can be achieved by

summing up the kernels built on its substructures. In the literature, various substructures

have been used (see [168] for the case of trees) and the selection of the appropriate substruc-

ture depends on the kind of data and application that are considered.

In our context i.e. designing a kernel that can learn on hierarchical image representations,

several critical aspects have to be taken into account.The importance of these aspects will be

illustrated in the following chapters with concrete examples.

• Unordered tree: we concentrate on kernels that can handle unordered trees (through

which hierarchical image representations are often modeled). Such kernels should be

able to capture the hierarchical relationships (i.e. parent-children relation) among the

nodes.

• Numerical features: another important property in hierarchical image representations

is that each node represents a region, and that attributes of a region, e.g. color or

size, are in general numerical features. This actually differs from many other domains

where nodes are labeled by a fixed number of symbols.

• Robustness to structure distortion and noise: hierarchical representations heavily rely

on the adopted construction techniques. These techniques build the tree in an unsu-

pervised way, which tree structure might vary due to complexity of image contents,

presence of the noise, or undesired regions grouped together. Thus the resulting struc-
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tures are less strict than the one in other domains such as chemoinformatics. This

should be taken into account when designing the kernel.

• Complexity: the adopted kernel should be efficient and scalable. Unlike other do-

mains, such as chemoinformatics, or nature language processing, where the data struc-

tures are relatively small, hierarchical representations often have a large number of

nodes, and attribute of each node might be up to thousands of dimension. In addi-

tion, some image classification problems in literature might possess a large number of

available training samples, complexity issues are then critical.

To address all the aspects mentioned above, we propose a structured kernel based on

the concept of subpath. It works on vertical hierarchical relationships among nodes in the

structured data, with nodes equipped with numerical features.

For its computation, we propose an iterative approach with a quadratic complexity w.r.t.

the size (i.e. number of nodes) of structured data, and a quadratic complexity w.r.t. number

of training samples. It is efficient when dealing with small structure size and limited number

of training samples, and we call it BoSK (for Bag of Subpaths Kernel).

In addition, when running on large-scale datasets, we propose to compute the kernel ap-

proximately by explicit mapping the kernel into randomized low dimensional feature spaces

using Random Fourier Features. This approximation yields a linear complexity w.r.t. size of

structured data, and a linear complexity w.r.t. number of training samples. Therefore, the

resulting approximation scheme makes the kernel applicable for large-scale real world prob-

lems. We call it Scalable Bag of Subpaths Kernel (SBoSK).

The chapter is organized as follows: we give a brief review in Sec. 2.2 on learning on

structured data, with a particular focus on convolution kernels and large-scale structured

kernels. Then we introduce BoSK in Sec. 2.3, with its scalable version SBoSK in Sec. 2.4. In

the end, we summarize the chapter in Sec. 2.5.

2.2 Related work

2.2.1 Learning on structured data

Various approaches have been proposed in order to perform machine learning on structured

data. In this section, we give a brief review of different directions that can be found in the

literature.

Defining distance measures has already existed for a long time for learning on structured

data [182, 163, 69, 187]. Among various distances, the edit distance is considered as one of

the most well established frameworks in pattern recognition and classification [14, 69]. It
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is defined as the minimum cost of operations needed to transform one structure into an-

other. Such operations include insertion, deletion, or substitution, where each of them is

associated with a cost. Making two structures isomorphic with a minimum cost provides an

intuitive way of defining the similarity between two structures. Various methods have been

successfully used for different structure types, e.g. sequence [163], tree [14] and graph [69].

However, it is still difficult to be applied in our context for the following reasons.

The first challenge is to define a reasonable cost for each type of edit operations. As the

edit distance is computed based on these costs, only appropriate cost definition can lead to

a good performance in recognition and classification tasks. However, the definition of cost

depends highly on the particular problems at hand and it is in general fixed empirical [69].

In addition, the computed distances are commonly used in the distance-based classi-

fication framework, such as K-nearest neighbors algorithm. Other powerful classification

frameworks such as kernel methods can not be applied [57]. An attempt has been made to

apply SVM with kernel function based on edit distance in [144], it achieved higher classifica-

tion accuracy compared to the traditional nearest-neighbor classifier. However, the validity

of the kernel using edit distance cannot be established.

Finally, the computation of edit distance requires finding the minimum cost, and it is in

general computationally expensive for complex structures such as for trees or graphs [14, 69,

6]. In case of unordered tree, such a computation becomes NP-hard [14, 6].

In order to learn on structured data, another direction is to define kernels and apply

kernel-based machine learning algorithms. In this direction, the most standard way to con-

struct valid kernels is to follow the convolution kernel framework [88]. It states that com-

puting a kernel on a complex structure could be achieved by summing up kernels on its

substructures. Following this framework, a large number of structured kernels have been

proposed under different decompositions [201]. As most works in the literature focus on

designing structured kernels under the well-established convolution kernel framework, we

will briefly review them in the following section.

Before going to the details of convolution kernels, let us note that there exists another

class of kernels based on decomposing structured data into substructures, called optimal

assignment kernel [68, 105]. Instead of adding up all pairwise similarities between all their

parts, it is computed on optimal bijection between the substructures, meaning that only the

optimal matches (the highest similarity values) will contribute to the overall kernel value.

Thanks to this aspect of assigning the parts of one objects to the parts of the other, experi-

ments with some symbolic structured datasets in [105] show an improvement of classifica-

tion accuracy compared to their convolution-based counterparts relying on the same sub-

structures. However, its relevance for structured data with numerical features, especially

for images, remains to be demonstrated. Besides, the derived similarities are not necessarily

positive definite [105, 199], thus not a valid kernel. One recent study has shown its valid
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condition can be achieved with pairing with a particular class of atomic kernels [105], while

in the case of Gaussian kernel, the optimal assignment kernel is, unfortunately, not positive

definite [199]. Due to the aforementioned reasons, we follow the mainstream of designing

kernel in the convolution kernel framework.

2.2.2 Convolution kernels

Various types of convolution kernel have been proposed to cope with tree structures [168],

differing in the selection of substructures for specific problems. The subtree kernel [202]

counts the common subtree between two trees, while the subset tree kernel [39] relies on

the richer substructure of the subset of subtree. Some extensions for the subset tree kernel

have been proposed with partial matching [137] and elastic matching [99] strategies. Kernels

coping with relative nodes positions have been also proposed in [2, 1]. The reader will find

additional kernels and appropriate references in a survey from [168]. While these existing

works are numerous, it is important to notice that most of them deal with ordered trees.

In the case of unordered trees, the most popular solution is to rely on the concept of

subpath [102, 101] that has been identified as an appropriate substructure to ensure satisfy-

ing levels of expressiveness and effectiveness. Furthermore, the survey on tree kernels from

[168] was considering it as the only suitable substructure for unordered trees. Although

more expressive substructures such as subtrees have been proposed for specific constrained

unordered tree [85, 92], their adaptation to arbitrary unordered trees still faces computa-

tional issues [98].

In fact, path substructures are popular when dealing with complex structures such as

graphs [3, 100, 20], mainly because of the good balance between the effectiveness and the

computational complexity [72]. Many successful graph kernels have been proposed in the

literature using paths, including the marginalized graph kernel [100] using all possible paths,

the shortest path graph kernel [20], or the graph kernel using paths with maximum consid-

ered lengths [21].

Moreover, let us recall that we focus here on structured data equipped with numerical

features. It requires the definition of a kernel on substructures capable of taking into ac-

count numerical values. The above mentioned kernels and their efficient computational al-

gorithms rely on structured data containing symbolic attributes, while structured data where

elements are described with numerical features have motivated various attempts to define

new kernels or adapting the existing ones to their numerical version in various domains e.g.

in bioinformatics [131], physics [63], language processing [175], or even image analysis [87].

In the domain of image analysis, region-adjacency graphs can be built from a prior seg-

mentation of the input image to reveal detailed content of image, where the nodes of the

graph encode the regions and the edges encode the relations between neighboring regions.
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With such a representation, the marginalized graph kernel with numerical features version

has been proposed in [8], and several walk-based graph kernel were used in [87, 200, 65,

110]. Another graph structure commonly adopted when dealing with image data is the

skeleton graph used for shape recognition. Similarly, dedicated graph kernels such as the

marginalized graph kernel [177, 179] or other graph kernel based on paths [57] have been

proposed.

2.2.3 Large-scale structured kernel

The major issue of structured kernels is their computational complexity. This limits their ap-

plication to small data volume, and small structure size. Previous works successfully bring

down the kernel computational complexity to be linear such as [202, 101], with symbolic

data type. However, in case of data equipped with numerical features, it is often reported

as quadratic complexity such as [47] for sequence data, and even worse for graph kernel

which yields polynomial time with higher order [87, 128, 20]. Although some of the struc-

tured kernels are entitled scalable kernel in the literature, such as [63], their complexity is

still polynomial, preventing them to be used in the context of large structures. As each pair

of nodes between two structures has to be at least compared once to compute the overall ker-

nel value, structured kernels on numerical data always yield at least a quadratic complexity.

Such high complexity techniques for structured kernels are still in use nowadays [70].

A recent survey of graph kernel [104, 106] indicates that recent graph kernels do not

employ the kernel trick anymore but rather compute an explicit feature map. Although im-

plicit kernel computation is considerably faster than explicit computation when dealing with

rather small structure size, recent successes on scalable structured kernel suggests that ex-

plicit feature vector is the key concept of scalability [167]. Indeed, such a strategy enables the

efficient computation of structured kernel, allowing handling thousands of nodes. Success-

ful examples e.g. graphlet kernel [167], treelet kernel [73] are based on explicitly counting the

common predefined unlabeled substructures, and [104] derives efficient explicit mapping for

several well known graph kernels with symbolic node features.

In case of numerical features, the strategy of using explicit feature maps for structured

kernels begins to be adopted. One possible direction is to pass the numerical features into

symbolic ones, so that the previous proposed scalable kernels on symbolic node features can

be applied. Following this direction, binning [145] and hashing function [136] have been

proposed for structured kernels. Very recently, approximated kernel computation based on

explicit feature maps has been proposed in [106].

Meanwhile, in the context of large-scale machine learning, techniques for kernel value

approximation have been well investigated in order to reduce the training time in kernel

methods [212] The two main techniques are Nyström method and Random Fourier Fea-
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tures. Nyström method approximates the full kernel matrix by a low rank matrix computed

with a subset of training examples. Although it has been successfully applied in large-scale

machine learning context, it still requires the kernel matrix computation and this might be

time consuming if a large number of subsamples is needed or pairwise kernel value compu-

tation is slow, such as in the case of structured kernels. RFF technique [160, 161], however,

is a data independent method, which is widely applied due to its efficient computation and

approximation quality. The idea is to approximate the kernel by explicitly mapping the data

(with basis functions as cosine and sine) into a low dimensional Euclidean space, in which

the inner product of explicit features vector approximate the kernel value. By adopting such

a strategy, empirical study in [125] shows the capability of training on large-scale image

recognition problems. In addition, RFF have been applied in order to reduce the computa-

tional complexity for match kernel that is computed between two sets of local descriptors

(e.g. SIFT) extracted from images [19].

To sum up, the literature related to learning on structured kernels is very rich, among

which convolution kernel framework is the most standard way to design kernels for struc-

tured data. Under this framework, path substructures have been successfully considered for

complex structures such as trees and graphs due to their satisfying levels of expressiveness

and effectiveness. The subpath kernel, which relies on paths and nodes, can be considered

as one successful example for unordered tree. While it has been originally proposed for

symbolic node features, its numerical version can be inspired by numerous successful adap-

tations in the case of graph kernels, especially for image analysis. In addition, the recent

attempts on structured kernel computation using explicit feature maps motivate us to adopt

kernel approximation strategy to ensure the scalability of the kernel.

2.3 Bag of Subpaths Kernel

2.3.1 Basic definitions and notations

Before going through the details of the bag of subpaths kernel, let us first establish some

basic definitions and notations.

A graph G is defined by the tuple G = (N, E), where nodes N are a finite set of elements,

and edges E are the pairwise relationships between those nodes. The structure size |G| is

the number of nodes in G. A node ni ∈ N is described by its features, which can be either

symbolic, or numerical. In case of numerical, they can be defined as a d-dimensional vector

xni
∈ R

d. An edge eni ,nj
is the connection between ni and nj. If such connection in graph has

a direction eni ,nj
6= enj,ni

, we call it directed graph, otherwise, it is defined as an undirected

graph.

A path P in G is a sequence of nodes P = (n(1), n(2), . . . , n(p)), where n(i) ∈ G and each
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consecutive pair {n(i), n(i+1)} is linked by an edge in G, (i) denotes the relative position of

nodes in a path and p being the length of path. A cycle is a path where n(1) = n(p) and other

nodes {n(2), . . . , n(p−1)} are distinct.

A graph G is connected if every pair of nodes has a path between them, and is acyclic

when G does not contain any cycle. If the graph is connected and acyclic, it is defined as a

tree T .

We refer a tree T as a directed rooted tree with one designated node called root and all

edges are directed away from root. Regarding the pairwise relationship in a tree T , if there

is an edge eni ,nj
connecting two nodes ni and nj, we call ni the parent of nj, and nj a child of

ni. The leaves of tree are the nodes without any child. An ordered tree is one in which the

children of each node follow a specified ordering, otherwise it is called an unordered tree.

In this thesis, G is used for representing a hierarchical representation, where nodes stand

for the image regions (objects-of-interest) in the hierarchy, and edges encode the pairwise

relationships among regions. Depending of the orientation of the edges, we will refer to G
as a directed rooted unordered tree T (or tree for short) when it is read away from the root

(top-down); when read from the leaves towards the root (bottom-up), it can be decomposed

as a set of paths P . In such region hierarchy, given two regions: ni at higher level and nj at

lower level i.e. nj ⊆ nj, we call ni an ancestor of nj (or an ancestral region of nj), and nj a

descendant of ni (or a subregion of ni). See Fig. 2.1 for an example of T and P .

2.3.2 Kernel definition

In order to capture the vertical hierarchical relationships between the nodes, we decompose

either T or P as a set of substructures called subpaths. A subpath is defined as the path con-

necting a node to one of its descendants (resp. ancestors) in T (resp. P); the set of subpaths

also includes individual nodes. Let us denote a subpath by sp = (n(1), n(2) ..., n(p)), sp ∈ G
with length p. Examples of a tree and a path, together with their sets of subpaths, are shown

in Fig. 2.1.

Subpath substructure has been proposed in [102, 101] for unordered tree with nodes

equipped with symbolic features. It has been proved to be one of the most effective sub-

structures for building tree kernels, and is considered as one suitable substructures in terms

of complexity when applied on unordered trees [168]. However, the concept and the kernel

computation algorithms proposed in [102, 101] are based on counting common substructures

between two trees, which are only applicable for symbolic data.

For numerical features, the concept of counting common subpaths is required to be

changed since strict identity between subpaths (and their respective node features) does

not generally occur. BoSK replaces it by using a kernel that measures the similarity between
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Figure 2.1: Examples of structured data that can be extracted from hierarchical image representations,

a tree T , a path P and their subpaths.

two bags of subpaths embedded in two structures G,G ′. More specifically, the definition of

BoSK between G and G ′ is written as:

K(G,G ′) =
P

∑
p=1

µp ∑
sp∈G

∑
s′p∈G ′

K(sp, s′p) , (2.1)

where the first sum is defined over the different lengths of subpaths, with P being the max-

imum subpath length extracted from G. The second and third sums allow the computation

of the kernel over all pairs of subpaths in G and G ′ (note that only the matching of sub-

paths of the same length is permitted), which is further weighted by µp (different options of

weighting are proposed and analyzed in the next section). The kernel K(sp, s′p) between two

subpaths sp and s′p is defined as the product of atomic kernels computed on pairs of nodes

k(n(t), n′
(t)) of the subpaths:

K(sp, s′p) =
p

∏
t=1

k(n(t), n′
(t)) . (2.2)

One might notice that if k(n(t), n′
(t)) = δn(t),n

′
(t)

, the Kronecker delta function that measures

the identicalness of n(t), n′
(t), then K(sp, s′p) = 1 iff the two subpaths sp, s′p are identical,

otherwise K(sp, s′p) = 0. BoSK in Eq. (4.1) will then count the common subpaths between

two structures. Therefore, we can state that BoSK is a generalization of the subpath kernel

proposed in [102, 101].
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2.3.3 Kernel weighting and normalization

The definition of the subpath kernel given in Eq. (4.1) involves a parameter µp that weights

the different subpath lengths. Such weights can change the contribution of kernels computed

on each individual subpath length, allowing one to incorporate prior knowledge into kernel

construction e.g. limit the contributions of longer subpaths by setting a smaller weight on

larger length p. Several weighting schemes can be found in the literature [101, 39, 87, 202]:

• Constant weights: µp = 1 for all p, leading to a constant weighting for all lengths of

subpaths. It is a common strategy of weighting equally among different lengths.

• Exponential weights: µp = λp with λ ∈ (0, 1), an exponentially decaying weight w.r.t.

the length of the subpaths. This will downweight the contributions of larger subpaths.

The strategy is commonly adopted in recursive computation, as only λ needs to be

multiplied by the atomic kernel in Eq. (2.2) [39, 87].

• Maximum considered length: µp = 1 for all 1 ≤ p ≤ q, considering only a limited

number of subpath patterns. This also limits the contributions of larger subpaths, and

has been commonly adopted when dealing with an enumeration of all possible sub-

structures, as less substructures need to be considered [101, 202].

A well known issue of structured kernels is that their value highly depends on the size

of the structure. This comes from the fact that the overall kernel value relies on summing

up all the kernel values on substructures (see in Eq. (4.1)): the more substructures one can

extract, the larger the kernel value is. In the literature, this problem can be mitigated using

kernel normalization strategy [39, 166]:

K∗(G,G ′) =
〈

φ(G)
‖φ(G)‖ ,

φ(G ′)
‖φ(G ′)‖

〉

=
〈φ(G), φ(G ′)〉

√

〈φ(G), φ(G)〉
√

〈φ(G ′), φ(G ′)〉

=
K(G,G ′)

√

K(G,G)
√

K(G ′,G ′)
,

(2.3)

where φ(G) is the mapping introduced in Sec. 1.3.1. By adopting such kernel normalization,

we ensure the overall kernel value being always in (0, 1], with K∗(G,G) = 1.

2.3.4 Efficient computation for BoSK

We propose here an unified algorithm for computing BoSK on tree and path structures. The

basic idea is to iteratively compute the kernel on subpaths K(sp, s′p) of length p using pre-

viously computed kernels on the subpaths K(sp−1, s′p−1) of length p − 1. The atomic kernel

k(ni, n′
j) between each pair of nodes (ni ∈ G, n′

j ∈ G ′) thus needs to be computed only once.
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We define a three-dimensional matrix M of size |G| × |G ′| × P, where each element Mi,j,p

is computed iteratively as:

Mi,j,p = k(ni, n′
j, p)(Mparent(ni),parent(n′

j),p−1) , (2.4)

where M0,0,0 = Mi,0,0 = M0,j,0 = 1 by default, parent(ni) refers as parent index of the node

ni. The parent index of each node can be constructed by presenting the tree as a sequence of

nodes with a pre-order depth-first traversal algorithm [93]. By convention, the parent index

of the root of a tree is 0. In case of the path structure P , the parent index parent(ni) is simply

the index of the node ni−1.

The overall kernel value is then computed as the sum of all the matrix elements:

K(G,G ′) =
|G|
∑
i=1

|G ′|
∑
j=1

P

∑
p=1

Mi,j,p . (2.5)

The overall complexity of BoSK is bounded by the computation of the three-dimensional

matrix M, which yields O(|G| |G ′| d).

2.4 Scalable Bag of Subpaths Kernel

2.4.1 Implicit v.s. explicit computation

Computing kernel using explicit feature maps allows the use of kernel methods in the large-

scale machine learning context [155, 140], thanks to some recent developments that make

it possible to train a linear method with a linear complexity w.r.t. training sample size n,

instead of a quadratic one in kernel methods [59]. As nonlinear kernel computation can be

seen as an inner product operation in the feature space, explicit kernel computation has been

extensively studied [160, 161, 198].

Such an explicit kernel computation strategy has also been used in the convolution kernel

framework. Many of the recent proposed kernels compute the feature maps explicitly to

ensure the scalability of kernel [167, 73, 104, 106].

[106, 104] have summarized and illustrated the advantages of using explicit computa-

tion in the context of structured kernel. Given a kernel matrix of n × n to be computed using

structured kernel, let us define TK the pairwise implicit kernel computation time, Tφ the com-

putation time for explicit feature map and Tdot the computation time for dot product between

two vectors. Then we have O(n2Tk) for implicit kernel matrix computation, while explicit

kernel computation on feature space needs O(nTφ + n2Tdot) to compute the same kernel ma-

trix — it maps each structured data into a low dimensional Euclidean space with O(nTφ),

then computes the dot product between two embedded vector with O(n2Tdot). It should be
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noted that, in general, when dealing with large-scale training samples n, one rather chooses

linear learning algorithms such as [59] instead of kernel methods. In this case, the kernel

matrix no longer needs to be computed, so that n2Tdot can be avoided.

In the previous section, we introduced an efficient algorithm that can compute the Tk in

O(|G| |G ′| d). Therefore, the overall computation needs quadratic complexity w.r.t. structure

size, and w.r.t. number of training samples n. Such a computation scheme is efficient for

small-scale datasets.

In order to address complexity issue in the large-scale context, computation based on

explicit feature maps appears attracting. By adopting an explicit computation, the overall

complexity mainly depends on the embedding of the structured data i.e. O(nTφ).

We present here the explicit computation for BoSK. The conventional choice of the atomic

kernel k(·) is the Gaussian kernel. In that case, the kernel K(sp, s′p) can be written as:

K(sp, s′p) =
p

∏
t=1

exp(−γ||xn(t)
− xn′

(t)
||2)

= exp(−γ||xsp − xs′p ||2)
= 〈φ(xsp) , φ(xs′p)〉H ,

(2.6)

where xsp = [xT
n(1)

, x
T
n(2)

, · · · , x
T
n(p)

]T ∈ R
pd is the numerical feature of subpath sp, being the

concatenation of the features of the nodes. Following the definition of a kernel function, one

can write K(sp, s′p) in the inner product form in a Hilbert space H as 〈φ(xsp), φ(xs′p)〉H, where

φ(·) is the mapping function for the Gaussian kernel [166].

By using the explicit mapping function for the Gaussian kernel, BoSK can be rewritten

as follows:

K(G,G ′) =
P

∑
p=1

∑
sp∈G

∑
s′p∈G ′

〈φ(xsp), φ(xs′p)〉H

=
P

∑
p=1

〈 ∑
sp∈G

φ(xsp), ∑
s′p∈G ′

φ(xs′p)〉H .

(2.7)

The explicit mapping function φ(·) hence brings down the quadratic computational com-

plexity of K(G,G ′) to a simple inner product computation with a linear complexity, as the

double sum operation changes to a simple sum computed independently for each subpath.

In the following section, we adopt Random Features Features for approximation of map-

ping function φ(·) of atomic Gaussian kernel, then derive the scalable version of BoSK (called

SBoSK) that computes the structured kernel in a linear time w.r.t. structure size and w.r.t.

number of training samples n.
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2.4.2 Ensuring scalability using Random Fourier Features

The definition of the explicit mapping function φ(·) is crucial for bringing down the com-

plexity for structured kernel but it is unknown. Approximations have been well investigated

in the context of accelerating the training of kernel machines [212]. Here, we consider Ran-

dom Fourier Features (RFF) [160, 161]: the idea is to approximate the kernel by explicitly

mapping the data into a low dimensional Euclidean space, where the inner product of the

mapping function z(·) approximates the kernel value:

k(x, x
′) = 〈φ(x), φ(x

′)〉H ≈ z(x)Tz(x
′) . (2.8)

The approximation function z(·) [180] for the Gaussian kernel can be written as:

z(x) =

√

2

D



















cos(ω1x)

sin(ω1x)

· · ·
cos(ω D

2
x)

sin(ω D
2

x)



















, ωi
iid∼ N (0, 2γ) , (2.9)

where D is the dimension of the RFF vector, and the weight vector ωi is drawn from a Gaus-

sian distribution of mean 0 and variance 2γ, γ being the bandwidth parameter of the Gaus-

sian kernel. By using z(·) to approximation the Gaussian kernel, one can obtain an expo-

nentially fast convergence with D [160]. This means that the higher the RFF dimension D,

the better the kernel approximation quality. However, a larger D increases the computa-

tional complexity. Therefore, in general, D is fixed empirically (depending on the problem

at hand) as a trade-off between the quality of kernel approximation and computational com-

plexity [160, 125].

However, the trade-off between the quality of kernel approximation and computational

complexity.

We can then write:

K(G,G ′) = τ(s)Tτ(s′) , (2.10)

where the set of vectors encoded into the feature space for each subpath sp are aggregated

inside a single vector τ(s) = [∑s1∈G z(xs1
)T, · · · , ∑sP∈G z(xsP

)T]T.

2.4.3 Kernel normalization

We propose to adopt a L2 normalization strategy dedicated to structured kernel using RFF as

it is commonly used as a preprocessing step in computer vision community before applying
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linear kernel [154, 186]. To do so, we perform L2 normalization on the RFF vector for each

subpath length before concatenating the normalized vectors together:

τ(s) =
1

P

[

∑s1∈G z(xs1
)T

∥

∥∑s1∈G z(xs1
)
∥

∥

2

, · · · ,
∑sP∈G z(xsP

)T

∥

∥∑sP∈G z(xsP
)
∥

∥

2

]T

. (2.11)

In our case, the L2 normalization strategy has several advantages: i) the overall kernel

value is in (0, 1] with the kernel K(G,G) = 1; ii) the kernel value of each length p contributes

equally to the overall kernel value; iii) the normalization strategy maintains the vector form

of the set of subpaths, which is suitable for large-scale classification tasks based on linear

machine learning algorithms. Note that the inner product τ(s)Tτ(s′) is a valid kernel as it is

equivalent to a sum of kernels computed on each length p then divided by P2.

Further, in SBoSK, we propose to use the maximum considered subpath lengths in

Eq. (2.11) instead of using all lengths. This leads to a smaller vector size to be fed into ma-

chine learning algorithms, and further reduces the computational time as smaller patterns

are needed to be considered.

2.4.4 Algorithm and complexity

The proposed approximation, SBoSK, defined in Algorithm 1 yields a linear complexity of

O(n |G| dD), while the exact computation maintains a quadratic complexity of O(n2 |G| d).

Fig. 2.2 illustrates BoSK computed on a pair of trees T , T ′ and its scalable SBoSK extension.

The advantage of the RFF embedding can be easily derived from here: i) instead of pair-

wise kernel computing with O(|G|2 d), the proposed algorithm computes RFF embedding in

O(|G| dD), which is linear w.r.t. the structure size |G|, thus allowing the use of the proposed

structured kernel in real world application of large structure size; ii) the embedded vector

can be fed into a linear machine for training (see in Algorithm. 2 with linear SVM previously

presented in Sec. 1.3.2), which yields a linear dependence w.r.t. size of training samples of

O(n), instead of a non-linear kernel machine that needs to compute a complete kernel matrix

with a quadratic complexity of O(n2).
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Algorithm 1: SBoSK embedding using Random Fourier Features
Input: a structured data instance G. i.e. a path P or a tree T
Extract subpaths sp for length p = 1 : P from G
for each length p = 1 : P do

Draw the weights ω from Gaussian distribution ω ∈ R
pd×D/2

for each subpath sp do

Construct subpath features xsp as the concatenation of the features of each node

Compute z(xsp) according to Eq. (2.9)

end

Compute
∑sp∈G z(xsp)

T

∥

∥

∥∑sp∈G z(xsp)
∥

∥

∥

2

end

Output: embedded vector τ(s) as defined in Eq. (2.11)

Algorithm 2: SBoSK with linear SVM for training and testing

Input: training data set {G train
i }, training labels {Ytrain

i } and testing data set {G test
j }

Training phase:

for each training data instance G train
i do

Compute embedded vector τtrain
i using Algorithm. 1

end

Train a linear SVM using {τtrain
i } and {Ytrain

i }
Prediction phase:

for each testing data instance G test
j do

Compute embedded vector τtest
j using Algorithm. 1

Predict the label Ytest
j using τtest

j and the learned SVM model

end

Output: Predicted labels {Ytest
j }
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(a) A pair of trees T (left) and T ′(right).
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(d) SBoSK

Figure 2.2: Illustration of a pair of trees T and T ′ (Fig. 2.2a) with their subpaths sp, s′p (Fig. 2.2b), the

computation of BoSK (Fig. 2.2c according to Eq.(4.1)) and SBoSK (Fig. 2.2d according to Eq.(2.10)

and Eq.(2.11)). BoSK requires the computation of pairwise kernel value for all training samples,

yielding a quadratic complexity w.r.t. structure size O(|G||G ′|) and training sample size O(n2), while

SBoSK only needs the computation of the RFF embedded vector τ(s) for each structure, yielding a

linear complexity w.r.t. structure size O(|G|+ |G|′) and training sample size O(n).
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2.5 Conclusion

In this chapter, we developed a structured kernel dedicated to unordered tree and path (se-

quence of nodes) structures equipped with numerical features, called Bag of Subpaths Ker-

nel (BoSK). The kernel is an instance of a convolution kernel defined on a complex structure

by summing up kernels computed on its substructures. BoSK considers the subpaths as

relevant substructures, that is to say — a bag of all paths and single nodes, allowing cap-

turing the vertical hierarchical relationships among nodes in the structured data. The direct

computation of BoSK can be done with an iterative scheme, yielding a quadratic complex-

ity w.r.t. structure size (number of nodes), and w.r.t. volumes of data (training size). Such

computation is efficient for small structures and small training data size.

For large-scale problems where the structure can have hundreds of nodes and the avail-

able training data can be dozens of thousands or more, we proposed a scalable version of

the algorithm (called Scalable BoSK – SBoSK for short) using Random Fourier Features tech-

nique. Such a technique maps the structured data in a randomized finite-dimensional Eu-

clidean space, where inner product of the transformed feature vector approximates BoSK. It

brings down the complexity from quadratic to linear w.r.t. structure size and w.r.t. volumes

of data, making the kernel compliant with the large-scale machine learning context.

In the following chapters, we consider different applications of (S)BoSK on remote sens-

ing image classification problems under various scenarios.
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Chapter 3

Multiscale context-based pixel-wise

classification
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In the previous chapter, we presented, from a methodological point of view, the struc-

tured kernel (S)BoSK that can be applied for tree and path structures with nodes equipped

with numerical features. In the following chapters, we introduce its applications for incor-

porating the different types of topological information across the scales from a hierarchical

representation.

We begin this chapter with the first application of (S)BoSK on path structure, allowing

us to take into account the spatial context of a pixel (leaf of the hierarchical representation)

through its ancestral regions at multiple scales.
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3.1 Introduction

Pixel-wise image classification is a popular topic in the computer vision and in the remote

sensing community [29, 15, 139]. The objective of such a classification task is to associate to

each pixel in the image one label from a list of predefined classes.

In the standard way to perform pixel-wise classification, each pixel is represented by

its spectral information, for instance r-g-b color information, or hyperspectral information

in the hyperspectral remote sensing imagery. The spectral feature can be written as a d-

dimensional vector and fed directly into a classifier [133]. In such way, each pixel is treated

independently, thus the spatial relationships among them are not preserved. However, un-

like conventional assumption in machine learning technique where data instances are inde-

pendent and identically distributed random variables, neighboring pixels have strong corre-

lations [62, 76]. Spatially closed pixels often share similar spectral information and are more

likely to belong to the same class. Without taking this image domain specification into ac-

count in the classification scheme, the resulting classification maps are often noisy and suffer

from the “salt-and-pepper” effect [62].

In order to consider this specific aspect of images, integrating the contextual informa-

tion has been identified as one of the key solutions for pixel-based classification systems

[25, 157, 62, 76]. This information is often revealed through the neighborhood of each pixel,

e.g. median spectral value within a region generated by morphological area filtering [61].

Neighborhoods are often defined at multiple levels through a hierarchical representation for

providing richer information [25, 76, 113]. Spatial context of a pixel at bottom scale (leaf of

the hierarchical representation) can be modeled by its ancestral regions at multiple scales as

in Fig. 3.1. The multiscale contextual information helps disambiguating similar regions dur-

ing the classification phase [25]. For instance, individual tree species at the bottom scale can

be classified into residential area instead of forest zone given surrounding regions (extracted

from a coarser scale in the hierarchical representation) being buildings and roads. Integrat-

ing such information leads to classification accuracy improvement and produces spatially

smoother classification maps [25, 113].

The hierarchy from a pixel to the whole image can be modeled by a path structure, where

the nodes encode the feature of the regions and the edges model the hierarchical relation-

ships among them. SBoSK applied on path structure allows explicitly taking into account the

hierarchical relationships among ancestral regions from different scales, providing a power-

ful tools for multiscale context-based pixel-wise image classification.

The chapter is organized as follows: a brief review of related work considering contextual

information is provided in Sec. 4.2. In Sec. 4.3, we describe the proposed pixel-wise classifi-

cation approach using (S)BoSK. Then we provide a detailed analysis on a synthetic dataset

in Sec. 4.4, followed by evaluations on a multispectral remote sensing image in Sec. 3.5, on
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Figure 3.1: Illustration of a hierarchy of objects generated from hierarchical image representation,

where the spatial context of the region at bottom scale can be defined through its ancestral regions.

various hyperspectral datasets in Sec. 3.6, and on a large-scale remote sensing dataset in

Sec. 3.7.The last section is devoted to conclusion and discussion.

3.2 Related work

In the literature, various methods have been proposed for integrating the spatial contextual

information. In this section, we briefly review two main research directions: spatial regular-

ization and spatial feature extraction.

Spatial regularization

Spatial regularization has been successfully applied for guiding the neighboring pixels to

produce the same class label for improving the classification accuracy and smoothing the

classification map. For instance, pixels in the same region (obtained with image segmenta-

tion) are associated to the dominant class label within the region [183], or in [197] neighbor-

ing pixels regularization is defined on a hierarchical representation.

In the remote sensing community, especially within the GEOBIA framework [17], incor-

porating contextual information is commonly achieved through constructing regularization

rule-sets for classifying objects and refining classification results. For instance, in [121], the
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authors propose to construct rule-sets to classify objects such as roads and vehicles, and to

refine the classification results using the spatial relations between classified objects: such

contextual information can help distinguishing the moving vehicles from the ones in the

parking lots, as they are often surrounded by a road. In [5, 159], spatial relationships among

objects are also taken into account with rule-sets. Although designing the knowledge-based

rule-set is straightforward to integrate contextual information into classification, it often re-

quires human involvement and interpretation, which is subjective and hard to adapt to new

locations and datasets.

A common way to automatically achieve spatial regularization is through Conditional

Random Fields technique (CRF) [146]. The CRF defines an energy model containing two

terms: the unary potential that measures likelihood of an object belonging to certain classes

based on its appearance, and the pairwise potentials that model the pairwise relationships

between objects. However, training of a complex model to encode the interaction among

classes as in [204] is extremely costly, and it often requires manual annotation of full scenes.

Therefore, most of remote sensing applications use a simplified version of CRF only to penal-

ize the neighboring pixels being classified into different classes, thus enforcing smoothness

over adjacent regions and increasing the classification accuracy (as known as Potts model)

[53, 165, 184]. But the regularization parameters inside these models need to be carefully

tuned to avoid under or over smoothness [138, 165], and such parameters are often set em-

pirically and manually by checking the produced classification maps.

Spatial feature extraction

Another interesting research direction for incorporating contextual information is done

through spatial feature extraction step. Spatial features can be extracted at the image region

level obtained by image segmentation techniques, while the spectral features are extracted

at the conventional pixel level. In the end, both spatial and spectral features are combined

together and fed into the classifier. For instance, in [61], spatial features are computed as the

median spectral information of the segmented region that covers the pixel.

Extracting the contextual information can also be done with hierarchical representation

of images [25]. Through the hierarchy, contextual information can be modeled with the fea-

tures of its ancestral regions at different scales. One of the most popular examples is the

Attribute Profile relying on Max- and Min- tree [48], or Tree of Shapes [30]. Integrating con-

textual information leads to classification accuracy improvement w.r.t. using only spectral

information [113, 96]. Since the spatial position is also implicitly taken into account, it often

produces a spatially smoother classification map avoiding “salt and pepper” effect [25, 96,

113].

Conventional methods such as Attribute Profile [76] or other multiscale features [25, 96,
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113] concatenate the features of each ancestral region into a unique (long) stacked vector,

before feeding them into a classifier. Therefore, the stacked vector is a set of highly dimen-

sional features. Consequently, as mentioned in [76], it should be properly handled in order

to a make full exploitation of the discriminative information, due to the issues raised by the

very large dimensionality (Hughes phenomenon) and high redundancy [152].

The hierarchy of objects from a pixel to the whole image can be modeled by a path struc-

ture. In the next section, we introduce our proposed (S)BoSK on such path structures for

better exploiting the contextual information. We also illustrate the similarities and differ-

ences between (S)BoSK and kernel built on stacked vector.

3.3 (S)BoSK on path for multiscale contextual information

We illustrate how (S)BoSK can be applied on ancestral regions that model the spatial context

of each pixel through hierarchical image representation. In this case, each pixel is considered

as the elementary unit to be classified. It is represented as the leaf of the tree and is described

by features of the set of regions linking it to the root. We call this structured type of data a

path P , or a sequence of nodes. As illustrated in Fig. 3.2, through the hierarchy, the ancestral

regions encode the evolution of pixel from finer to coarser level, thus contextual information

can be revealed.
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Figure 3.2: Contextual information extracted from a hierarchical image representation. Each pixel

(leaf of the hierarchical representation) is considered as a data instance to be classified, and is de-

scribed by features extracted from the set of ancestral regions on the path P linking it to the root.

Formally speaking, let n1 be a pixel of the image. Through a hierarchical image represen-

tation, we write ni the nested image regions at level i = 2, ..., P, with region at lower levels

always being included in higher levels i.e. n1 ⊆ n2 . . . ⊆ nP. The contextual information of a

pixel n1 can then be described by its ancestral regions ni at multiple levels i = 2, ..., P. More

specifically, one can define the contextual information as a path or sequence P = (n1, ..., nP)

that encodes the evolution of the pixel n1 through the different levels of the hierarchy. Each

node ni is described by a d-dimensional feature xni
that encodes the region characteristics
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e.g. spectral information, size, shape, etc.
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Figure 3.3: A path P and its subpaths sp.

In order to capture the vertical hierarchical relationships between the nodes, we decom-

pose the path P as a set of subpath substructures. A subpath can be defined as contiguous

subsequences on a path, as illustrated in Fig. 3.3. BoSK between P and P ′ can be computed

as:

KBoSK(P ,P ′) =
P

∑
p=1

µp ∑
sp∈P

∑
s′p∈P ′

K(sp, s′p) , (3.1)

where µp is a weighting parameter allowing one to vary the contributions of overall

kernel value of each subpath lengths (see Sec.2.3.3), and K(sp, s′p) is the kernel between two

subpaths sp and s′p, which is defined as the product of atomic kernels computed on pairs of

nodes k(n(t), n′
(t)) of the subpaths, following an ascending order 1 ≤ t ≤ p:

K(sp, s′p) =
p

∏
t=1

k(n(t), n′
(t)) . (3.2)

We can see here that the kernel computed on the stacked vector i.e. concatenation of the

nodes features (denoted as KSV(·)) is actually a special case of (S)BoSK when using Gaussian

kernel for the atomic kernel:

KSV(P ,P ′) = exp(−γ‖HP − HP ′‖2) = exp

(

P

∑
i=1

(−γ‖xni
− xn′

i
‖2)

)

=
P

∏
i=1

exp(−γ‖xni
− xn′

i
‖2) = K(sP, s′P) ,

(3.3)

where HP = [xn1
, xn2 , · · · , xnP

] is the concatenation of the nodes features xni
. When

using the Gaussian kernel with HP , it corresponds to BoSK computed on the subpath with

maximum length sP only, with |sP| = |P|.
Let us recall that the stacked vector is commonly used for multiscale context feature rep-

resentation in remote sensing, representative examples of this framework including attribute
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Figure 3.4: Example of similar paths P ,P ′ with a certain level transformation.

profiles [76], as well as other multiscale features [25, 113, 96]. However, we argue that, com-

pared to the kernel built on stacked vector, BoSK can better take into account the specific

nature of the data generated from hierarchical image representation. We illustrate such a

superiority as follows with two straightforward examples.

We construct two paths P and P ′ extracted from a hierarchical representation with region

feature been defined as gray level (in Fig. 3.4). To compare KBoSK and Gaussian kernel on

stacked vector KSV , we use the atomic kernel in KBoSK and KSV with high gamma value i.e.

γ = 10000 for the sake of illustration, which ensures that kernel value equals to 1 when

two region have the same gray level, otherwise close to 0. Note that we have self-similarity

equals to 1 for both kernels: KSV(P ,P) = 1, KBoSK(P ,P) = 1, (resp. P ′).

In the first example (as in Fig. 3.4a), P and P ′ are the same except at the last level. This is

a common situation using multi-scale segmentation algorithms on real world images, where

regions at coarser levels of the hierarchy are large and often consists of several classes, thus

are more likely to be inconsistent. We have KBoSK(P ,P ′) = 0.6, as P and P ′ share most of the

parts. However, due to the different nodes at last level, we have KSV(P ,P ′) = 0, indicating

that the two paths are completely different.

In the second example (as in Fig. 3.4b), P and P ′ are similar as they share certain cross-

scale patterns. This might happen when objects-of-interest lay at different scales. We have

KBoSK(P ,P ′) = 0.6, as P and P ′ share majority of the parts across different scales. However,

for Gaussian kernel on stacked vector, we have KSV(P ,P ′) = 0. Again it indicates that the

two paths are completely different.
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3.4 Experiments on a synthetic dataset

We study here the behavior of the proposed (S)BoSK on path structures though the follow-

ing scenario using an artificial dataset. In Fig. 3.5, two classes consist of similar types of

leaves (data instances to be classified) at bottom level (type A and B), which can not be

distinguished using only bottom scale. Such a scenario can be found in the pixel-wise re-

mote sensing classification context, where pixels with different spectral information might

be defined as the same class, corresponding to the intra-class diversity, or pixels sharing the

similar spectral information might belong to different classes, referring as inter-class correla-

tion. However, due to the different spatial arrangement of image contents, it might generate

new different nodes at intermediary level, also affecting vertical relationships between these

nodes. Therefore, the evolution of pixels in the hierarchy changes between different classes,

providing discriminative contextual information.

3.4.1 Dataset description and experimental setup

We use two types of leaves, A and B, that are described by a 1-D feature generated according

to a uniform distribution, with non overlapping intervals, A ∼ U(0, 5) and B ∼ U(5, 10).

Number of leaves and node merging parameters are defined randomly to produce various

shapes of trees within each class. In our evaluation, we have for each tree about 400 leaves

and the maximum depth is 15. The features of each node are average and variance features

of the leaves that compose the nodes. We then generate two classes as shown in Fig. 3.5 with

different multiscale merging configurations by forcing type A leaves to merge with type B

leaves in ❈❧❛## ✶, while in ❈❧❛## ✷, type A (resp. B) leaves always merge with type A (resp.

B).

Class 1

A B A B

Class 2

A A B B

Figure 3.5: Synthetic concept for experimental evaluations. Each leaf of the tree is considered as a

data instance to be classified, and is described by features extracted from the set of regions on the path

linking it to the root.

We consider a one-against-one SVM classifier (using the Python implementation of Lib-

SVM [31]) with the Gaussian kernel as the atomic kernel. All free parameters are determined

by five-fold cross-validation, which include: the bandwidth γ of Gaussian kernel and the



3.4 – Experiments on a synthetic dataset 49

SVM regularization parameter C over potential values.

The Gaussian kernel on stacked vector and BoSK with different weighting strategies are

compared. We considered three weighting schemes with different µp in Eq. (3.1): i) BoSK

with constant weights; ii) limitation of the maximum length of substructures [39]; iii) the use

of exponential weighting [101, 39]. BoSK weighting parameters are determined by five-fold

cross-validation: the exponential parameter λ ∈ (0, 1) and the maximum considered sub-

path length P ∈ {1, 2, . . . 15} with 15 being the maximum length of the path in the dataset.

Accuracies (and standard deviations) of each setup are computed after 10 repetitions of

each experiment, choosing randomly 100 data instances of each class as training samples

and another set of 100 data instances for testing.

We observe in Tab. 3.1 that the use of a Gaussian kernel with only leaves attribute at

bottom scale provides an accuracy about 50%, because of the non discriminative leaves of

the two classes. The contextual information, especially the one revealed by discriminative

nodes at intermediary levels, can be easily captured by the Gaussian kernel on stacked vector

and BoSK, leading to a 100% accuracy.

Table 3.1: Mean (and standard deviation) of overall accuracies (OA) computed over 10 repetitions.

Method OA[%]

Gaussian kernel on leaf 50.0 (2.8)

Gaussian kernel on stacked vector 100.0 (0.0)

BoSK on path 100.0 (0.0)

3.4.2 Overall evaluation of BoSK and Gaussian kernel on stacked vector

We study the behavior of BoSK and compare it with the Gaussian kernel computed on the

stacked vector by adding some confusion or noise inside the two classes. Two particular

behaviors have been studied as follows:

(1) Robustness to outliers. We modify the scenario to introduce outliers at bottom scale

that take values outside ranges of type A and type B leaves. In our experiments, we choose

outliers ∼ U(10, 30). The ratio of such leaves varies from 0% to 100%.

(2) Robustness to mislabeled leaves. We introduce some mislabeled leaves in the trees.

To do so, a given percentage of leaves of type A (randomly chosen) are changed into type

B, and vice versa. In the binary classification setup considered here, the ratio of mislabeled

leaves in each class varies from 0 % to 50 %, leading to a more confusing structure between

the two classes.

Fig. 3.6 and 3.7 present the accuracies obtained in these two settings. We notice that in

both scenarios, BoSK maintains a good performance up to a certain ratio of structure distor-
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Figure 3.6: Accuracies and standard deviations of BoSK with various weighting schemes and Gaus-

sian kernel on stacked vector in presence of outliers.
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Figure 3.7: Accuracies and standard deviations of BoSK with various weighting schemes and Gaus-

sian kernel on stacked vector in presence of mislabeled leaves.
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tion (with all three weighting strategies), yielding consistent improvements over the Gaus-

sian kernel on stacked vector. In addition, we can observe that using different weighting

strategies, such as exponential weighting and use of maximum length of subpaths consid-

ered, can affect the results and the later yields slightly better results in both scenarios.

Impact of the maximum considered subpath length

We now analyze the impact of maximum subpath length P of BoSK and illustrate the reasons

why BoSK can obtain better results compared to the Gaussian kernel on stacked vector. Note

that the exponential weighting and maximum considered subpath length work in a similar

way. They both aim at limiting the impact of subpaths with longer lengths, while analyzing

the impact of the maximum considered subpath length is more straightforward.

To do so, we compute the accuracies with different maximum subpath lengths P ∈
{1, 2, . . . , 15} using two scenarios i.e. 30% of outliers and 30% of mislabeled leaves, for ease

of analysis.

Fig. 3.8 shows that the maximal accuracies are obtained with P = 3, where we see a clear

accuracy gain compared to the Gaussian kernel on stacked vector. In addition, we observe

that the accuracies increase greatly compared to BoSK built on nodes only i.e. P = 1, then

gradually decrease when considering longer subpaths into BoSK computation.

The decrease of performance when adding longer subpath calls for a deeper analysis of

the performance on each subpath length individually. To do so, we show the accuracies

on individual subpath length p ∈ {1, 2, . . . , 15}. As we can observe in Fig. 3.9, the perfor-

mances are lower when p is large. Therefore, the classification accuracies of BoSK might

drop down when many less discriminative kernels are added [26]. This is the main reason

for which BoSK built with maximum considered subpath length performs better than BoSK

with constant weights. Such observation calls for penalization of longer subpath patterns.

In addition, we observe in Fig. 3.9 that BoSK built on only subpaths with maximum

length p = 15 yields one of the worst results among other individual subpath lengths. In

fact, this corresponds to the Gaussian kernel on stacked vector.

3.4.3 SBoSK analysis

In this section, we study the behavior of the scalable version of BoSK, called SBoSK. Follow-

ing the same configuration of class generation, we analyze SBoSK through the scenario of

30% mislabeled leaves, as this setting can lead to a reasonable confusion between the two

classes for the sake of analysis.
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Figure 3.8: Classification accuracies of BoSK using maximum considered subpath length P and Gaus-

sian kernel on stacked vector in presence of outliers and mislabeled leaves.
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Figure 3.9: Classification accuracies of BoSK using individual subpath length p and Gaussian kernel

on stacked vector in presence of outliers and mislabeled leaves.

Kernel approximation analysis

In order to analyze the quality of the approximated structured kernel SBoSK w.r.t. the di-

mension of the Random Fourier features D in Eq. (2.11), we use the matrix approximation

error computed between the approximation matrix Ǩ and the exact kernel matrix K by ma-

trix Frobenius norm, as used in [210]:

error =

∥

∥K − Ǩ
∥

∥

F

‖K‖F

(3.4)
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Figure 3.10: SBoSK approximation error w.r.t. Random Fourier Features dimension D (log scale).

Kernel normalization strategy is used here for analysis of approximation errors, similarly

as proposed for BoSK (see Sec. 2.3.3, Eq. (2.3)). In addition, we use the constant weighting

scheme for both BoSK and SBoSK with the same γ for atomic Gaussian kernel. In such set-

tings, the results depend only on the quality of Random Fourier Features approximation,

without being affected by other hyperparameters. Fig. 3.10 shows the relation between ker-

nel approximation error and Random Fourier Features dimension D. We can observe that

the approximation error decreases faster at beginning, then error gradually tends to zero

when a larger dimension is considered. This corresponds to the theoretical analysis on the

boundary of approximation error in [160, 180].

Classification accuracy

We compare the classification accuracies of BoSK and SBoSK following the same setting as

the previous analysis. As we can see in Fig. 3.11, when the Random Fourier Features di-

mension D increases, the accuracy of SBoSK also increases until it converges to the accuracy

obtained by BoSK. This is consistent with previous observation shown in Fig. 3.10: the kernel

approximation error tends to zero when a larger dimension D is used. Since kernel matri-

ces obtained by BoSK and SBoSK are similar, both kernels achieve a similar classification

accuracy.

Secondly, we considered the L2 normalization strategy on SBoSK as in Sec. 2.4.3, Eq. 2.11.

We observe in Fig. 3.12 that the accuracies improve greatly improve (i.e. more than 10%)

when using subpaths with various lengths w.r.t. using BoSK built using only nodes (P = 1).

However, accuracies decrease when adding longer subpath patterns, calling for a penaliza-

tion of these longer subpaths. We thus propose to set a maximum subpath length for SBoSK

so that classification accuracy can be kept as high as possible, while leading to a smaller

vector size to be fed into machine learning algorithms, which can further reduce the compu-
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Figure 3.11: Classification accuracy w.r.t. Random Fourier Features dimension D (log scale).
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Figure 3.12: Classification accuracy of SBoSK and BoSK w.r.t. maximum considered subpath lengths

P.

tation time as smaller patterns are being considered.

Note that the L2 normalization used in SBoSK promotes an equivalent contribution of

each subpath length, thus may result in different accuracies obtained by BoSK using maxi-

mum considered subpath length. However, such a choice allows benefiting the large-scale

classification tasks based on linear machine learning algorithms, as the normalization is done

on each data instance individually and as the Random Fourier Features embedding main-

tains a vector form representation of data.
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Complexity analysis

Complexity w.r.t. Random Fourier Features dimension

Here we analyze the computation complexity of SBoSK w.r.t. Random Fourier Features di-

mension D. Fig. 3.13a shows that the computation time increases linearly w.r.t. dimension

O(D). Such a complexity calls for a trade-off between the quality of the kernel approxi-

mation and the computational complexity, as the computation time increases linearly with

the dimension, while approximation errors decrease slowly when the dimension is large (as

shown previously in Fig. 3.10).
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Figure 3.13: Computational time of SBoSK w.r.t. Random Fourier Features dimension D (Fig. 3.13a)

and w.r.t. training samples size n (Fig. 3.13b).

Complexity w.r.t. training sample size

We compare here the computation time of BoSK and SBoSK w.r.t. training sample size n

(we compute here SBoSK with D = 2048 for illustration as it yields a similar computational

time as BoSK for n = 100). Fig. 3.13b shows that the time for BoSK increases quadratically

w.r.t. training sample size O(n2), because of the quadratic increase of the number of pairwise

BoSK to be computed in the Gram matrix. However, for SBoSK, only a linear increase of O(n)

can be observed. The computation of SBoSK is dominated by the Random Fourier Features

embedding algorithm, which computes each data instance independently. The Gram matrix

can be formed later by computing the inner product of resulting vectors, whose computation

time is negligible. Therefore, we observe a linear complexity of O(n).
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3.5 Strasbourg Spot-4 image classification

3.5.1 Dataset and design of experiments

In this section, we focus on urban land-use classification in the South of Strasbourg city,

France, using Spot-4 satellite image with 20 m resolution. The image is composed of 326 ×
135 pixels with 4 spectral bands: Green, Red, NIR (near infrared), MIR (middle infrared).

We consider 8 thematic classes of urban patterns as shown in Tab. 3.2 (class details) and in

Fig. 3.14b (ground truth image). For more information, see [107] for a detailed description

of the dataset.

(a) Spot-4 image (b) Ground truth image

Figure 3.14: Urban scene taken over South of Strasbourg, France: (a) false color image of Spot-4

( c© CNES 2012) with 20 m resolution and (b) the associated ground truth ( c© LIVE UMR 7362,

adapted from OCSOL CIGAL 2012) with eight thematic classes.

Table 3.2: List of classes, their color, and number of pixels in ground truth in Fig. 3.14b.

Class Color Nb of pixels

Water surfaces Blue � 1,653

Forest areas Dark green � 9,315

Urban vegetation Light green � 1,835

Road Grey � 3,498

Industrial blocks Pink � 8,906

Individual housing blocks Dark orange � 9,579

Collective housing blocks Light orange � 1,434

Agricultural zones Yellow � 7,790

Total 44,010

Each pixel is considered as one data instance to be classified. In order to extract the

contextual information, we generate, from the bottom level consisting of single pixels, 7

additional levels of hierarchical segmentation by increasing the region dissimilarity criterion

α = [2−2, 2−1, ..., 24] (segmentation maps for different scales are shown in Fig. 3.15). We

observe that with such parameters, the number of segmented regions is roughly decreasing
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(a) L1 (b) L2

(c) L3 (d) L4

(e) L5 (f) L6

(g) L7

Figure 3.15: Hierarchical segmentation maps of Strasbourg Spot-4 dataset. All levels of segmentation

are illustrated here by using dissimilarity criterion α = [2−2, 2−1, 20, 21, 22, 23, 24].
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by a factor of 2 between each level.

Each region in the hierarchical representation is described by a 8-dimensional feature

vector x, which includes the region average of the 4 original multi-spectral bands, Soil

Brightness index (BI) and NDVI (the normalized difference vegetation index), as well as

two Haralick texture measurements computed with gray level co-occurrence matrix homo-

geneity and standard deviation. These features are considered as standard ones in the urban

analysis context [66].

We consider a one-against-one SVM classifier (using the Python implementation of Lib-

SVM [31]) with Gaussian kernel as the atomic kernel. All free parameters are determined

by 5-fold cross-validation, which include: the bandwidth γ of Gaussian kernel and the SVM

regularization parameter C over potential values, the maximum considered subpath length

P ∈ {1, 2, . . . , 8}. The RFF dimension D is chosen empirically as a trade-off between the

computational complexity and the classification accuracy (and will be further analyzed in

Sec. 3.5.2). Henceforth, in this section, all reported the results are averaged over 10 repeti-

tions.

3.5.2 SBoSK analysis

In this section, we compare, in terms of classification accuracy and computation time, BoSK

and its scalable version SBoSK.

We analyze firstly the impact of the number of RFF dimensions on the accuracies. To do

so, we compute BoSK and SBoSK with D = {21, 22, . . . , 213} using 400 training samples per

class and the rest for testing. As we can observe in Fig. 3.16, when RFF dimension increases,

the accuracy increases until it converges to the accuracy obtained with BoSK using the exact

computation scheme.

Secondly, we analyze the impact of the RFF dimension in terms of computation time.

To do so, we follow the previous setting and use differing training samples per class n =

{50, 100, . . . , 1600} (except when n = 1600, we use all 1434 available samples for collective

housing blocks). As we can see in Fig. 3.17, the computation time increases linearly w.r.t.

n for SBoSK, while for its exact computation, it increases quadratically. This illustrates the

potential of the proposed RFF embedding in SBoSK to be applied in the context of large-scale

machine learning. In addition, we observe that the computation time increases linearly w.r.t.

dimension D, while the accuracy shown in Fig. 3.16 improves only slightly when D is large.

Therefore, one might have to find a trade-off between the quality of the approximation and

the computation time. Hereafter, we empirically fix the RFF dimension to be D = 4096.

In addition, we analyze the impact of the maximum considered subpath length P using

the proposed L2 normalization strategy for SBoSK (Eq.2.11). Fig. 3.18 shows that the accu-

racies improve when considering subpaths with different lengths w.r.t. using only nodes i.e.
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Figure 3.16: Classification accuracy of BoSK and SBoSK with different dimensions D on the Stras-

bourg Spot-4 image (log scale). Reported accuracies and standard deviation are computed over 10

repetitions with 400 training samples per class.
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Figure 3.17: Computation time of BoSK and SBoSK with D = {2048, 4096, 8192} w.r.t. n number

of training samples per class.

P = 1. However, the accuracies might decrease when adding longer subpaths P > 5, thus

calling for a penalization of longer subpath patterns. Besides, we propose to set a maximum

subpath length for SBoSK, leading to a smaller vector size to be fed into machine learning

algorithms, which can further reduce the computation time as smaller patterns are being

considered.

3.5.3 Results and analysis

For comparison, we consider the Gaussian kernel computed at the pixel level (without any

contextual/spatial information) as the baseline, and compare our work with several well-



60 ❈❤❛♣$❡& ✸ – Multiscale context-based pixel-wise classification

 ! " # $ % & '

%%

%'

&(

&!

&#

&%

 
!
!
"
#
$
!
%
&
'
(
)

 

  !" #

Figure 3.18: Classification accuracy w.r.t. different maximum considered subpath lengths P. SBoSK

is computed on the Strasbourg Spot-4 image with D = 4096.

known techniques for spatial/spectral remote sensing image classification. Spatial-spectral

kernel [61] has been introduced to take into account pixel spectral value and spatial infor-

mation through accessing the nesting region. We thus implement spatial-spectral kernel

based on the multiscale segmentation commonly used in this paper, and select the best level

(determined by a cross-validation strategy) to extract spatial information. Attribute profile

[48] is considered as one of the most powerful techniques to describe image content through

context feature. We use full multi-spectral bands with automatic level selection for the area

attribute and standard deviation attribute as detailed in [75]. Stacked vector was adopted

in [96, 25, 113], and relies on features extracted from a hierarchical representation. We use a

Gaussian kernel with stacked vector that concatenates all nodes from ascending paths gen-

erated from our multiscale segmentation. The comparison is done by randomly choosing

n = [50, 100, 200, 400] samples for training and the rest for testing. The classification accu-

racies with different methods are shown in Tab. 3.3. Three common accuracy assessment

measures in the remote sensing community [15, 40] are reported here: overall accuracy, av-

erage accuracy, Kappa statistic. We also give the per-class accuracies using n = 400 training

samples in Fig. 3.19.

When compared to the Gaussian kernel computed at pixel level using only spectral in-

formation, SBoSK can greatly improve the classification accuracies. We observe about 20%

consistent accuracy improvement for different training sample sizes. Per-class accuracies

indicate that this improvement concentrates on all classes except two: water surface and

forest areas for which classification accuracies remain similar since contextual information

extracted from ancestral regions through the hierarchy are not very useful in these mostly

homogeneous regions.
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SBoSK achieves about 5% improvement over spatial-spectral kernel and attribute profiles

for various training sample sizes. For these two state-of-the-art methods considering spatial

information, the results actually depend on the selected scales. However, for spatial-spectral

kernel relying on a single scale, it is hard to define such a single scale that fits all objects, as

objects are often revealed through various scales. Therefore, for certain classes, e.g. urban

vegetation, it might yield good results with the selected scale. However, it is difficult to

generalize for all classes. On the other hand, attribute profiles require to set the thresholds for

different attributes in order to achieve good classification results. However, as indicated in

[76], generic strategies for filter parameters selection for different attributes are still lacking.

Compared to the Gaussian kernel with stacked vector, SBoSK achieves about 8% clas-

sification accuracy improvement for various training sample sizes. Since both kernels rely

on the same paths, it demonstrates the superiority of SBoSK for taking into account contex-

tual information extracted from a hierarchical representation. In fact, the Gaussian kernel

with the stacked vector is actually a special case of BoSK with the subpath length equal to

the maximum, However, BoSK built only on the largest subpath are usually not robust. In

our experiment, this superiority is presented in the per-class accuracies for all except two

homogeneous classes: water surface and forest areas.

Table 3.3: Mean (and standard deviation) of overall accuracies (OA), average accuracies (AA) and

Kappa statistics (κ) computed over 10 repetitions for Strasbourg MSR image with different training

data size n. Best results (with a statistical significance less than 0.01% w.r.t. others considering the

Wilcoxon signed-rank test for matched samples) are boldfaced.

n Pixel Spatial-spectral Attribute profile Stacked vector SBoSK

50 OA 45.3 (2.3) 53.2 (1.0) 51.9 (2.1) 49.8 (1.8) 57.8 (1.3)

AA 43.9 (1.0) 53.7 (1.4) 51.7 (1.4) 48.4 (1.1) 57.9 (0.8)

κ 32.2 (2.1) 45.1 (1.1) 43.6 (2.4) 41.2 (1.9) 50.2 (1.4)

100 OA 47.9 (1.3) 57.7 (0.9) 57.1 (1.4) 54.3 (1.4) 63.3 (0.7)

AA 46.2 (0.5) 59.2 (0.7) 57.3 (0.7) 52.9 (1.0) 64.0 (0.7)

κ 39.1 (1.3) 49.7 (1.0) 49.5 (1.5) 46.3 (1.6) 56.5 (0.8)

200 OA 51.4 (0.8) 63.1 (0.9) 61.7 (0.5) 59.0 (0.5) 68.4 (0.7)

AA 48.1 (0.4) 64.6 (0.6) 62.2 (0.2) 57.5 (0.6) 69.7 (0.5)

κ 42.6 (0.8) 56.3 (1.0) 54.7 (0.5) 51.6 (0.5) 62.3 (0.7)

400 OA 52.2 (0.4) 67.3 (0.8) 65.0 (0.5) 62.7 (0.6) 73.0 (0.4)

AA 49.1 (0.2) 68.5 (0.5) 66.3 (0.4) 62.6 (0.4) 74.8 (0.4)

κ 43.5 (0.4) 61.0 (0.9) 58.4 (0.5) 55.8 (0.7) 67.6 (0.5)
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Figure 3.19: Per-class accuracies on Strasbourg MSR image.

3.6 Hyperspectral images classification

3.6.1 Datasets and design of experiments

We conduct experiments on 6 standard hyperspectral image datasets: Indian Pines, Salinas,

Pavia Centre and University, Kennedy space center (KSC) and Botswana 1, considering a

one-against-one SVM classifier [31].

Figure 3.20: Indian Pines dataset. From left to right: ground truth, false-color image, fine level (2486

regions), intermediary level (278 regions), coarse level (31 regions).

We randomly pick n = {10, 25, 50} samples per class for training, and the rest for testing.

In the case of small number of pixels per class in Indian Pines dataset (total sample size for

a class less than 2n), we use half of the samples for training.

1 The datasets descriptions and the associated ground truth are available at ❤!!♣✿✴✴✇✇✇✳❡❤✉✳❡✉)✴❝❝✇✐♥!❝♦✴✐♥❞❡①✳♣❤♣❄

!✐!❧❡❂❍②♣❡5)♣❡❝!5❛❧❴❘❡♠♦!❡❴❙❡♥)✐♥❣❴❙❝❡♥❡)
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We use the exact computation of BoSK in this section, as it is efficient when the train-

ing sample size is small. For its computation, we use Gaussian kernel as the atomic kernel

k(·, ·). Free parameters are determined by 5-fold cross-validation over potential values: the

bandwidth γ and the SVM regularization parameter C. We also cross-validate the differ-

ent weighting scheme parameters: P ∈ {1, 2, . . . , P} for the maximum considered subpath

length and λ ∈ (0, 1) for the decaying factor in exponential weighting. All results are ob-

tained by averaging the performances over 10 runs of (identical among the algorithms) ran-

domly chosen training and test sets.

Hierarchical image representations are generated with Hseg by increasing the region

dissimilarity criterion α. It is empirically chosen as α = [2−2, 2−1, ..., 28], leading to a tree

that covers the whole scales from fine to coarse (top levels of whole image are discarded

as they do not provide any additional information). Hierarchical levels α = {22, 24, 26} of

Indian Pines are shown in Fig. 3.20 as the fine, intermediary, and coarse levels for illustration.

Features xni
that describe each region are set as the average spectral information of the pixels

that compose the region.

3.6.2 Results and analysis

We compare BoSK with state-of-the-art algorithms as done in the previous section: i) spatial-

spectral kernel [61]; ii) attribute profiles [48], using 4 first principal components with auto-

matic level selection for the area attribute and standard deviation attribute; iii) hierarchical

features stored on a stacked vector [25, 113, 96]. For comparison purposes, we also report

the overall accuracies of pixel-wise classification using only spectral information.

First of all, in Tab. 3.4, we can see that the overall accuracies are highly improved when

contextual information is included. Using hierarchical features computed over a tree (i.e.

stacked vector) yields competitive results compared with state-of-the-art methods. By ap-

plying BoSK on the same contextual information rather than the Gaussian kernel on stacked

vector, the results are further improved: best results for Indian Pines, Salinas, Pavia Centre,

KSC and Botswana datasets are obtained with BoSK. We observe that attribute profiles per-

form better for Pavia University. This might be due to the kind of hierarchical representation

used, i.e. min and max-trees in the case of attribute profiles instead of Hseg in our case. Be-

sides, the popularity of these profiles as well as the Pavia dataset result in optimizations of

the scale parameters for years.

As far as the different weighting strategies are concerned, we see a further accuracy im-

provement using the exponential weighting or the maximum considered length weight-

ing w.r.t. the constant weighting strategy. This observation on real world remote sens-

ing datasets is consistent with the previous analyses on the synthetic dataset conducted in

Sec. 3.4.2.
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Fig. 3.21 shows the results of BoSK built on individual subpath length p. As one might

notice, building the kernel on the longest subpath (corresponding to the Gaussian kernel on

stacked vector) does not lead to the best performances, but yields one of the worst results in

most cases.

Table 3.4: Mean (and standard deviation) of overall accuracies (OA) computed over 10 repetitions us-

ing n training samples per class for 6 hyperspectral image datasets. c stands for the constant weighting,

λ for the exponential decaying weight, and P for the maximum considered length. Best results are

boldfaced.

Indian Pines

n pixel only Spatial-spectral Attribute profile Stacked vector BoSK-c BoSK-λ BoSK-P

10 54.89 (2.10) 72.03 (2.52) 64.37 (2.87) 73.21 (2.60) 78.70 (4.88) 80.19 (3.40) 81.43 (2.39)

25 66.04 (1.59) 84.02 (1.31) 76.71 (2.60) 84.90 (2.42) 89.16 (2.89) 89.46 (3.61) 91.10 (1.84)

50 72.99 (0.10) 90.82 (2.07) 84.57 (1.45) 92.19 (0.86) 94.12 (1.18) 94.48 (1.20) 94.98 (1.01)

Salinas

n pixel only Spatial-spectral Attribute profile Stacked vector BoSK-c BoSK-λ BoSK-P

10 83.87 (1.96) 87.72 (1.88) 91.89 (1.73) 89.17 (2.95) 93.18 (1.70) 91.44 (2.71) 93.84 (2.49)

25 88.13 (1.22) 92.93 (0.98) 95.99 (1.11) 94.86 (1.58) 97.28 (1.62) 97.02 (1.57) 98.22 (0.63)

50 88.86 (1.22) 94.34 (0.81) 97.39 (0.45) 96.71 (0.70) 98.51 (0.89) 97.93 (1.22) 99.00 (0.48)

Pavia Centre

n pixel only Spatial-spectral Attribute profile Stacked vector BoSK-c BoSK-λ BoSK-P

10 93.37 (3.59) 95.69 (0.73) 96.03 (0.91) 95.94 (1.01) 96.14 (1.61) 96.71 (0.97) 96.57 (1.02)

25 96.13 (0.48) 96.99 (0.48) 97.59 (0.27) 97.85 (0.53) 97.93 (0.55) 97.93 (0.57) 97.95 (0.52)

50 96.98 (0.52) 98.10 (0.34) 98.59 (0.24) 98.59 (0.48) 98.83 (0.39) 99.04 (0.31) 99.00 (0.30)

Pavia University

n pixel only Spatial-spectral Attribute profile Stacked vector BoSK-c BoSK-λ BoSK-P

10 69.00 (5.68) 76.74 (5.26) 88.69 (4.06) 83.30 (3.75) 84.34 (5.14) 85.10 (6.65) 84.87 (5.01)

25 79.81 (1.42) 87.92 (3.36) 95.17 (1.84) 92.95 (3.29) 93.70 (2.56) 93.98 (2.22) 94.70 (2.17)

50 84.72 (1.32) 93.27 (1.29) 97.52 (0.86) 96.62 (1.06) 97.20 (0.97) 96.66 (1.84) 97.24 (1.03)

KSC

n pixel only Spatial-spectral Attribute profile Stacked vector BoSK-c BoSK-λ BoSK-P

10 86.56 (1.33) 90.96(2.12) 90.61 (0.63) 92.75 (1.71) 93.98 (1.29) 94.01 (1.15) 94.72 (1.18)

25 91.27 (0.84) 97.16 (0.16) 95.53 (0.71) 97.32 (0.45) 97.85 (0.63) 97.82 (0.66) 98.11 (0.64)

50 93.67 (0.58) 98.46 (0.29) 97.41 (0.49) 98.26 (0.37) 99.13 (0.34) 99.15 (0.23) 99.16 (0.32)

Botswana

n pixel only Spatial-spectral Attribute profile Stacked vector BoSK-c BoSK-λ BoSK-P

10 87.72 (2.42) 92.62 (1.40) 92.17 (1.32) 94.16 (1.41) 94.66 (1.62) 94.63 (1.54) 94.94 (1.56)

25 91.89 (0.67) 96.65 (0.69) 95.35 (0.91) 97.71 (0.72) 97.99 (0.48) 97.90 (0.79) 98.00 (0.80)

50 94.03 (0.60) 97.74 (0.52) 96.83 (0.64) 98.95 (0.53) 99.10 (0.50) 98.99 (0.45) 99.28 (0.19)
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Figure 3.21: The overall accuracies of BoSK built on individual subpath length p using n = 50

training samples per class.
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3.7 Large-scale image classification on Zurich summer dataset

In this section, we evaluate SBoSK on one large-scale publicly available dataset: “Zurich

Summer v1.0” [204]. The dataset is a collection of 20 images, taken from a Quickbird ac-

quisition of the city of Zurich with pansharpened resolution of about 0.62 cm. The images

are composed of 4 channels (NIR, R, G, B), with an average image size of ca. 1000 × 1150

pixels. Examples of the dataset (images 16 − 20 with associated ground truth in 8 different

annotated urban classes) are shown in Fig. 3.22.

The term large-scale refers to a large number of training samples (each pixel in the image

is considered as a data instance to be classified) for Zurich summer dataset with more than

ten thousands data instances for training, and several millions for testing. These numbers

are considered as large-scale in the context of classification using structured kernel, where

evaluated datasets are normally made of thousands of data instances [128]. For this dataset,

SBoSK is be applied with RFF dimension being empirically set at D = 4096.

For each image, we generate from the bottom level of each single pixel 6 additional levels

of hierarchical segmentation with the Hseg segmentation tool using the region dissimilarity

criterion α = [20, 21, . . . , 25]. Each region in the hierarchical representation is described by a

24-dimensional feature vector: the min, max, average and standard deviation values of the

pixels included in the region for each spectral band and two derived channels: NDVI and

NDWI (the Normalized Difference Water Index). As such, we use the same feature set as in

[196].

Image 16 Image 17 Image 18 Image 19 Image 20

Figure 3.22: Examples of images 16 − 20 (top row) in Zurich dataset. The associated ground truth

(bottom row) with 8 different annotated urban classes: roads �, buildings �, trees �, grass �, bare

soil �, water �, railways � and swimming pools �.
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(a) L2 (b) L4 (c) L6

Figure 3.23: Hierarchical segmentation maps of image 20 in Zurich summer dataset. 3 different levels

of segmentation, L2,L4,L6, are illustrated here by using dissimilarity criterion α = [21, 23, 25].

Table 3.5: Mean (and standard deviation) of overall accuracies (OA), average accuracies (AA) and

Kappa statistics (κ) computed over 10 repetitions for Zurich summer dataset images 16− 20. Best re-

sults (with a statistical significance less than 0.01% w.r.t. others considering the Wilcoxon signed-rank

test for matched samples) are boldfaced, and numbers with ∗ indicate that no statistically significant

conclusions can be driven when compared with best results.

image Pixel CRF Spatial-spectral Attribute profile Stacked vector SBoSK

16 OA 71.8 (0.8) 82.8 81.6 (0.9) 78.5 (0.6) 83.4 (0.6)* 83.9 (0.5)

AA 63.7 (2.1) - 62.6 (1.1) 62.3 (0.8) 68.3 (1.1) 70.8 (0.4)

κ 62.4 (0.8) 76.0 74.7 (1.2) 71.0 (0.6) 77.0 (0.9)* 77.7 (0.7)

17 OA 75.1 (0.7) 82.6 80.3 (0.6) 80.7 (0.9) 82.1 (0.6) 83.2 (0.6)

AA 61.2 (3.6) - 66.3 (1.8) 60.8 (1.9) 65.3 (1.6) 67.7 (3.3)

κ 68.1 (1.0) 77.0 74.4 (0.8) 74.8 (1.2) 76.6 (0.8) 78.1 (0.8)

18 OA 81.1 (0.8) 73.0 85.1 (0.7) 83.1 (1.4) 85.7 (0.6) 87.5 (0.3)

AA 74.0 (3.1) - 78.6 (1.2) 74.5 (3.5) 78.6 (1.6) 82.4 (0.6)

κ 72.4 (1.2) 62.0 77.8 (1.0) 74.7 (2.2) 78.5 (1.0) 81.2 (0.5)

19 OA 69.7 (0.7) 67.5 72.1 (1.8) 78.4 (1.2) 74.8 (0.6) 76.0 (0.6)

AA 71.5 (0.9) - 77.2 (1.5) 80.4 (2.3) 76.2 (2.9) 79.6 (1.4)*

κ 61.1 (0.9) 57.0 64.0 (2.2) 71.7 (1.6) 67.1 (0.8) 68.8 (0.8)

20 OA 76.9 (1.1) 80.2 83.6 (0.9) 81.2 (1.2) 82.2 (1.2) 84.0 (1.3)

AA 74.2 (1.2) - 74.8 (1.4) 72.7 (2.1) 75.3 (4.8) 77.4 (2.4)

κ 70.4 (1.3) 74.0 78.6 (1.2) 75.5 (1.6) 77.0 (1.5) 79.3 (1.6)

avg OA 74.9 (0.6) 77.2 80.5 (0.5) 80.4 (0.7) 81.7 (0.4) 82.9 (0.3)

AA 68.9 (1.8) - 71.8 (0.6) 70.1 (1.5) 72.7 (1.2) 75.6 (0.8)

κ 66. (0.8) 69.2 73.9 (0.7) 73.5 (0.9) 75.2 (0.5) 77.0 (0.3)

Figure 3.24: Classification maps of Images 16 to 20 of the Zurich summer dataset using SBoSK.
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To allow a fair comparison with the state-of-the-art, we follow the experimental setup

provided in [196]: we use the images 1 − 15 solely for training (with a stratified selection of

0.1% available training samples per class, which corresponds to 12 , 263 pixels chosen from

all training images), and the images 16 − 20 only for evaluation. The final classification re-

sults are computed over 10 repetitions for random dataset splits into training and evaluation

sets.

The overall accuracies, average accuracies and kappa index κ are shown in Tab. 3.5 for

individual images 16 − 20. We can see that the kernel computed at the single pixel using

only spectral information yields the worst results w.r.t. methods taking into account con-

textual information. Comparing to the state-of-the-art method using Conditional Random

Fields [196], building kernels on a hierarchical representation (i.e. spatial-spectral, attribute

profiles, stacked vector) can provide a better result. As expected, SBoSK further improves

the results achieved with stacked vector relying on the same paths, leading to the overall

best results. Classification maps obtained with SBoSK are given in Fig. 3.24. As we can

see, SBoSK produces spatially smooth classification maps, with most of the compact regions

being correctly predicted.

3.8 Chapter summary

In this chapter, we presented the first application of (S)BoSK on the path structure for pixel-

wise image classification. The path structure allows taking into account the spatial context

of a pixel (leaf of the hierarchical representation) through its ancestral regions at multiple

scales. (S)BoSK can take path structures as inputs and then exploit the regions at different

scales and the hierarchical relationships among them. We also show that the Gaussian kernel

on stacked vector is actually a special case of (S)BoSK i.e. considering only the maximal

length of subpath.

The analysis has been done firstly with a synthetic dataset in order to illustrate the su-

periority of BoSK when compared to the Gaussian kernel on stacked vector, and also the

performance of its scalable version SBoSK. Experimental results clearly show that BoSK per-

forms better than the Gaussian kernel on stacked vector in all settings. In fact, the Gaussian

kernel on stacked vector yields one of the worst performances among BoSK using other

subpath lengths. As far as the scalability is concerned, we observed that the classification

accuracy of SBoSK approximates the exact computation when using a reasonable Random

Fourier Features dimension D, while the computation time reduces from quadratic to linear

w.r.t. training data size.

We also used a real-world urban remote sensing classification task to further illustrate

the superiority of BoSK and the advantages of using its scalable version SBoSK. Evaluations
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show that SBoSK outperforms several state-of-the-art pixel-wise classification methods con-

sidering contextual information.

Such superiority of (S)BoSK is further confirmed with experiments on 6 standard pub-

licly available hyperspectral image datasets. With Gaussian kernel on stacked vector, we

achieved similar results w.r.t. state-of-the-art methods using context features extracted from

hierarchical representation (i.e. spatial-spectral kernel and attribute profiles). SBoSK further

improves the results achieved with stacked vector, yielding the best results in 5 out of 6

publicly available hyperspectral image datasets.

Finally, we evaluated the SBoSK in a large-scale classification context using a recent pub-

licly available dataset. The classification accuracy obtained by SBoSK outperformed state-

of-the-art methods using context features, as well as one recent proposed method that relies

on Conditional Random Fields.
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Spatial decomposition-based

sub-image/tile classification
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In the previous chapter, we presented (S)BoSK for path structured data that encodes

contextual information through ancestral regions, allowing one to perform the pixel-based

classification.

We introduce in this chapter the second application of (S)BoSK for tree structured data.

It classifies the root node that represents sub-image/tile image, and takes input of the tree

structure that reveals the object spatial decomposition.



72 ❈❤❛♣$❡& ✹ – Spatial decomposition-based sub-image/tile classification

4.1 Introduction

Sub-image/tile images classification has been intensively studied over the last decades in

the domain of computer vision [109, 147, 97] and remote sensing [213, 143, 220, 221, 216].

Due to the large covering of image content, especially in the context of remote sensing, cur-

rent approaches concentrate on splitting the observed scene taken from large Earth surface

into small tiles, and process the image of each tile independently. These methods focus on

developing the sub-image/tile image classification strategies, and refer them using the gen-

eral term of image classification instead [220, 216]. In this chapter, we follow this convention

and use the term image classification.

The main objective of image classification is to assign each image to one of a list of pre-

defined classes according to its content. Global image features such as image texture [89,

172, 86] or color histogram [84, 153] are popular thanks to their simplicity. However, they

do not always achieve good results. This is due to their coarse description of image, which

might be sensible to viewpoint and lighting changes, scales, clutter and occlusions [217, 34].

Instead, local features such as SIFT [123] have received increasing attention during the last

decade and are probably the main trend for image classification. The basic pipeline of image

classification using local features is generally called “Bag of visual Words (BoW)” [33], which

includes: local features extraction, local features quantization, and histogram representation

of quantized local features (also known as feature encoding). Although various studies have

been proposed for improving the classification accuracy by using advanced feature encod-

ing methods e.g. Fisher vector [154] or VLAD [54], one fundamental limitation of the BoW is

the orderless organization of extracted local features, where the spatial relationships among

the local features are no longer preserved. Another limitation is related to its description ca-

pability, as these extracted local features are often considered as low-level features e.g. image

gradient orientation over a small size window.

Instead of using low-level interest point-based features, region-based image classifica-

tion have been proposed [112, 8, 200, 111, 87]. In this framework, regions are constructed

by grouping together the similar pixels according to some homogeneity measure. In order

to generate perceptually meaningful entities inside an image, advanced image segmentation

techniques are often used [132, 80]. After construction, regions are described by a rich set

of features, i.e. shape, color, texture and even group of local features such as SIFT [221].

Moreover, the spatial relationships among regions can be also preserved [77], reflecting the

inner structure of the images. However, the segmentation into meaningful and precise re-

gions is very difficult, as the regions definition is highly subjective to the classification prob-

lem at hand. For instance, the “ideal” segmentation for a urban area classification task (e.g.

residential area or industrial area) must be very different than the classification of road net-

work, vehicle or building, the later requiring smaller regions that can cover potential objects.
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Figure 4.1: Illustration of a hierarchy of objects generated from a hierarchical image representation,

and the spatial decomposition of root node through its subregions and the topological relationships

among them.

Therefore, there is no optimal solution for segmentation that can fit for various classification

tasks. In addition, objects-of-interest might appear at different scales (level of detail). This is

even harder to define the scale parameter for segmentation.

An emerging paradigm for image classification advocates the idea of relying on hierar-

chical representations [17], which are built using series of nested partitions or segmentations,

rather than on the usual flat representation. Regions at different scales are generated using

multiscale segmentation tools and represented through a tree structure, where the root node

represents the whole image and the leaves stand for the finest scale of segmentation. Re-

gions are the nodes of the tree described by a set of features as the nodes attributes, and the

relationships among regions are modeled through the edges, as illustrated in Fig. 4.1.

In a hierarchical representation, spatial decomposition information can be revealed. It

models the composition of an object and the topological relationships among its subparts.

Including such information can improve the classification rate, for instance, a residential

area is much easier to be identified when knowing it is composed of houses and roads. It

is especially true in high resolution remote sensing imagery cases where decomposition of

objects can be better revealed [35, 221].

In this chapter, we propose an image classification approach based on object spatial de-

composition. Such information is modeled through hierarchical representations and is rep-

resented as a tree structured data, on which (S)BoSK can be directly applied. The chapter

is organized as follows: a brief review of related work is provided in Sec. 4.2. In Sec. 4.3,
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we describe the proposed classification method using (S)BoSK, which is followed by de-

tailed analysis on a synthetic dataset in Sec. 4.4, and evaluations on remote sensing dataset

in Sec. 4.5 and Sec. 4.6.

4.2 Related work

Image classification approaches using topological information of image regions are the main

focus in this chapter. In order to position our proposed method in literature, we first give a

brief review of the methods using structured kernel for capturing the topological informa-

tion, then focus on the approaches learning on hierarchical representations.

4.2.1 Capturing topological information using structured kernel

Several methods that represent image regions and relationships among them as a structured

data and rely on structured kernel to perform classification have been proposed in literature.

In [124], the images are firstly segmented into a regular grid with each block being quantized

into one of the visual keywords, then the images are represented as a 2D sequence of sym-

bolic blocks. Mismatch string kernels dedicated to symbolic data [115, 207] are applied in

order to capture the spatial dependencies of the generated blocks across an image.

Graph kernel is also used for considering the layout of regions within an image. Such

topological information is revealed through region adjacency graph (RAG), where the re-

gions are generated using an image segmentation method and are represented as the nodes,

and relationships among regions are modeled in the edges. Path [8, 200, 111, 110] and sub-

tree patterns [87] inside RAG are extracted and learned with graph kernel for considering

the high-level topological information. Similarly, these graph kernels have also been applied

in skeleton graph for shape recognition [57, 177, 179].

The aforementioned graph kernels are closely related to our context. However, their

application to tree structures is not straightforward. From a structured kernel construction

point of view, the graph kernel might use a complex substructures such as subtree pattern

[87], while it might yield computational issues with unordered trees. Other kernels such

as marginal graph kernel [177, 179] rely strongly on the properties of the graph, and their

selection of substructures and computation scheme can not be directly applied.

From an application point of view, the major differences come with the fact that image

graphs are most often rootless, undirected, and bring a flat representation of the image (i.e.,

with a single spatial scale). The classification accuracy based on planar region might be

limited by the quality of the segmentation, as meaningful and highly precise regions are

required.
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4.2.2 Topological information in hierarchical image representations

An emerging paradigm for image classification advocates the idea of relying on hierarchical

representations [17] and has gained increasing attention in the remote sensing community.

However, the hierarchical relationships among objects are often captured through manual

semantic modeling, which requires prior knowledge based on human interpretation to de-

rive proper classification rules [58, 9].

Among studies that use machine learning techniques to learn on regions and their hi-

erarchical relationships, [82] relies on regions that are generated from multiscale segmenta-

tion, and applies discriminative max-margin framework to learn the region weights repre-

senting the importance of each region w.r.t. classes. Hierarchical spatial structure patterns

extracted from cross-scale regions are modeled in [7, 211, 156, 215] within a probabilistic

graphical model framework, where the pairwise relationships between regions is modeled

through the definition of the potentials, allowing one to model hierarchical relationships

among regions. The previous methods tend to learn the importance of the regions or spa-

tial structures through various learning algorithms. However, in order to guarantee a good

classification performance, correct weights need to be learned and this might require a large

amount of training data. In addition, the complexity of modeling hierarchical structures

limits the methods to small substructures.

The Spatial Pyramid Matching (SPM) model [109, 209] is the most common strategy to

consider the object spatial decomposition. It often relies on a kernel based machine learn-

ing algorithm to perform image classification tasks. The idea is to segment the image in

4 regions at successive scales (quad-tree representation as illustrated in Fig. 4.3a), and to

concatenate all the region features into a long vector. However, SPM only allows matching

image regions at the same spatial position. Therefore, applying SPM in remote sensing im-

age classification tasks raises some severe issues since SPM hardly adapts to images with no

predefined location or orientation [221, 35, 213]. Recently, methods such as the pyramid of

spatial relatons [35] have been proposed for tackling these issues. However, the matching

strategy of SPM limits its application to quad-tree representations only, thus preventing the

benefits of available advanced multiscale segmentation techniques able to produce a wide

range of tree topologies.

In this chapter, we use (S)BoSK on an unordered tree structure for performing spatial

decomposition-based image classification. It can be applied for arbitrary hierarchical repre-

sentations, and it is robust to image rotation and translation. We describe our approach in

more details in the following sections.
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4.3 (S)BoSK on object spatial decomposition

We rely on (S)BoSK to classify images. Each image is represented hierarchically, where the

top level stands for the whole image and finer levels reveal the detailed information of the

image. An example of such a hierarchical organization of objects-of-interest is shown in

Fig. 4.2, where larger regions are iteratively divided into smaller ones across the levels.

The constructed hierarchical representation can be expressed as a tree structure T , where

objects-of-interest are the nodes in the tree and the hierarchical relationships among them

are modeled through the edges (Fig. 4.3). (S)BoSK can be thus applied on the induced tree

structures.

The hierarchical image representations can be constructed either by iteratively segment-

ing the image in 4 regions at successive scales (quad-tree representation as in Fig. 4.3a), or

by multiscale segmentation algorithms (as shown in Fig. 4.2 and Fig. 4.3b).

(a) Image (b) level 0 (c) level 1 (d) level 2 (e) level 3 (f) level 4

Figure 4.2: Illustration of multiscale image segmentation from level 0 (whole image) to level 4.

L0

L1

L2

(a) Quad-tree representation used in the Spa-

tial Pyramid Matching Model

L0

L1

L2

(b) Hierarchical representation generated

with a multiscale segmentation algorithm

Figure 4.3: Illustration of a quad-tree representation and an arbitrary hierarchical representation.

From the constructed hierarchical representation, object spatial decomposition can be

easily revealed. It is modeled by the composition of objects and the topological relationships
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Figure 4.4: An example of a tree T and its subpaths sp.

among their subparts. For instance, an image of a harbor area is composed of water and

group of boats at coarse levels, and the group of boats is divided into individual boats at

intermediary levels, which is further separated in different parts of boat at finer scales. An

example of such an object decomposition through a hierarchical representation is shown in

Fig. 4.2.

The object spatial decomposition can be represented as a tree structure, and can be fur-

ther taken into account by (S)BoSK. Indeed, (S)BoSK operates on subpaths, allowing one to

capture the nodes and vertical hierarchical relationships between the nodes. An example of

a tree and its set of subpaths is shown in Fig. 4.4, where we can see that the regions, pairwise

parent-child region pairs, and even longer patterns of the hierarchical relationships among

regions are all included in the subpath set. By matching all the subpath structures repre-

senting the object decomposition patterns, (S)BoSK computes the similarity between two

hierarchical representations. More specifically, (S)BoSK between two tree structures T , T ′ is

written as:

K(T , T ′) =
P

∑
p=1

µp ∑
sp∈T

∑
s′p∈T ′

K(sp, s′p) , (4.1)

where K(sp, s′p) is computed over all pairs of subpaths of same length extracted from two

hierarchical representations and µp associates a weight for different subpath lengths.

Applying (S)BoSK on hierarchical image representations offers several advantages, since

(S)BoSK is

• invariant to image rotation, since the subpaths pairs can be extracted from different

spatial locations of images;

• robust to image scale change, since the matching of subpath pairs from different scales

of hierarchy is also allowed;

• robust to image partial changes, since the sum operations of (S)BoSK can yield a simi-

larity that is proportional to the number of similar subpath pairs.

We now illustrate the advantages of (S)BoSK using two straightforward examples. We

construct two quad-tree representations T and T ′ with region feature being the gray level (in
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L0

L1

L2

(a) Two similar quad-tree representations with

rotation.

L0

L1

L2

(b) Two similar quad-tree representations with

partial changes.

Figure 4.5: Example of similar quad-tree representations with a certain level transformation.

Baseball diamond Harbor

(a) Two similar images with rotation.

Run way Storage tanks

(b) Two similar images with partial changes.

Figure 4.6: Example of intra-class similar images with a certain level transformation.

Fig. 4.5). To compare BoSK and Spatial Pyramid Matching (SPM) kernel, we use a Gaussian

kernel with high gamma value i.e. γ = 10000 that equals to 1 when two region gray levels

are similar, otherwise close to 0. SPM is computed using a Gaussian kernel between two

vectors KSPM(T , T ′) = k(HT , HT ′), where HT (resp. HT ′) is the concatenation of all region

features for tree T (resp. T ′) . Note that we have self-similarity equals to 1 for both kernels:

KSPM(T , T ) = 1, KBoSK(T , T ) = 1, (resp. T ′).

In the first example (in Fig. 4.5a), T and T ′ are almost identical but the order of the

children is different. This corresponds to image rotation (an example in the remote sensing

context is shown in Fig. 4.6a). After applying SPM and BoSK, we have KBoSK(T , T ′) = 1,

as T and T ′ are identical orderless trees. However, for SPM, we have KSPM(T , T ′) = 0,

indicating that the two trees are completely different.

In the second example (Fig. 4.5b), T and T ′ are similar as they share some certain parts
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of similar content (an example in the remote sensing context is shown in Fig. 4.6). After

applying the SPM and BoSK, we have KBoSK(T , T ′) = 0.79, as T and T ′ share a majority

of their parts. However, for SPM, we have KSPM(T , T ′) = 0. Again it indicates that the

two trees are completely different, which is obviously against the intuitive understanding of

similarity.

4.4 Experiments on a synthetic dataset

We study here the behavior of the proposed (S)BoSK as a tree structured kernel though the

following scenario using an artificial dataset. In Fig. 4.7, two classes consist of similar leaves

at the bottom level. However, the spatial arrangement of these leaves generates new differ-

ent nodes at intermediary level, also affecting vertical relationships between these nodes.

Such a scenario can be found in the remote sensing image classification context, espe-

cially when the classes correspond to complex (non-uniform) patterns. For instance, given

two classes as individual residential area and collective residential area, they are both com-

posites of tree species and buildings. However, in the individual residential area class, tree

species are more likely to be merged with building at intermediary level, which will form

the new regions of mixed tree species and buildings, while for collective residential area, tree

species and building are more likely to be merged together separately at intermediary level,

then the group of tree species and buildings are joined in the end. In this configuration, the

two classes share the similar objects at bottom level and root at the top level, but the interme-

diary level objects and vertical relationships among the subparts reveal the discriminative

features between the two classes.

4.4.1 Dataset description and experimental setup

To simulate the concept described so far and generate the aforementioned two classes using

similar strategy as in Sec. 3.4.1. We generate two classes as shown in Fig. 4.7 by forcing type

A leaves to merge with type B leaves in ❈❧❛## ✶, while in ❈❧❛## ✷, type A (resp. B) leaves

always merge with type A (resp. B). In our evaluation, we have for each tree about 80 ∼ 120

leaves and the depth is about 4 ∼ 7.

We consider a one-against-one SVM classifier with the Gaussian kernel as the atomic

kernel. Three BoSK weighting strategies are considered: i) BoSK with constant weights;

ii) the limit on the maximum length of substructures with P ∈ {1, 2, . . . 7}; iii) the use of

exponential weighting.

Accuracies (and standard deviations) of each setup are computed after 10 repetitions of

each experiment, choosing randomly 20 data samples from each class as training samples,

using 80 data samples for testing.
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Class 1

A B A B

Class 2

A A B B

Figure 4.7: Synthetic concept for experimental evaluations.

When using directly the Gaussian kernel on the root nodes, we obtain an accuracy of

about 50%, because of the non discriminative root of the two classes. However, the tree

structure information, such as the discriminative nodes at intermediary levels and the hier-

archical relationships between nodes through different levels of the tree, can be easily cap-

tured by BoSK (with all three weighting schemes), leading to a 100% accuracy.

4.4.2 BoSK analysis

Overall evaluation of BoSK

We study the behavior of BoSK by adding some confusion or noise inside the two classes.

The same two particular behaviors have been studied as in Sec. 3.4.2: robustness to outliers

and robustness to mislabeled leaves.

Fig. 4.8 and 4.9 present the accuracies obtained in these two settings. We can notice that

in both scenarios, BoSK maintains a good performance up to a certain ratio of structure

distortion (with all three weighting strategies). In addition, we observe that using different

weighting strategies, such as exponential weighting and the use of maximum length for

subpaths, can affect the results and that the later yields the best results in both scenarios.

Impact of the maximum considered subpath length

The impact of the maximum considered subpath length is analyzed here by using different

P ∈ {1, 2, . . . 7}. We consider BoSK in both scenarios with a certain ratio of structure distor-

tion: 60 %, 65 %, 70 % being chosen in case of outliers, and 25 %, 30 %, 35 % being chosen in

case of mislabeled leaves, for ease of analysis.
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Figure 4.8: Accuracies and standard deviations of BoSK using different weighting strategies in pres-

ence of outliers.
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Figure 4.9: Accuracies and standard deviations of BoSK using different weighting strategies in pres-

ence of mislabeled leaves.
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Figure 4.10: Impact of maximum considered

subpath length in the case of outliers.
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Figure 4.11: Impact of maximum considered

subpath length in the case of mislabeled leaves.

Fig. 4.10 and Fig. 4.11 show that in case of outliers, the maximal accuracies are obtained

for a combination of subpaths of length equal to 2, then the performances gradually decrease

when adding longer subpaths to the global kernel value computation; while in case of misla-

beled leaves, the maximal accuracies are obtained with longer subpaths (e.g. P = 3, P = 4),

and performances drop down slightly with increasing length of subpaths. The observation

of maximum accuracies being obtained within a limited number of lengths confirms again

for penalization of longer subpath patterns.

4.4.3 SBoSK analysis

In this section, we study the behavior of the scalable version of BoSK. We consider the sce-

nario of 30% mislabeled leaves, since this setting leads to a reasonable ratio of structure

distortion between the two classes for the sake of analysis. The SBoSK analysis follows the

same organization as in Sec. 3.4.3

Approximation error

Fig. 4.12 shows the relation between the kernel approximation error and the Random Fourier

Features dimension D: when the dimension increases, the approximation will tend to zero

with exponential convergence.

Classification accuracy

Fig.4.13 shows the classification accuracies of BoSK and SBoSK When the Random Fourier

Features dimension D increases, the accuracy also increases until it converges to the accuracy
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Figure 4.12: SBoSK approximation error w.r.t. Random Fourier Features dimension D (log scale).
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Figure 4.13: Classification accuracy w.r.t. Random Fourier Features dimension D (log scale).

obtained by BoSK. This agrees with the kernel error analysis shown in Fig. 4.12.

In addition, we analyze the L2 normalization strategy on SBoSK. Fig. 4.14 shows that the

accuracies improve greatly when considering subpath with different lengths w.r.t. SBoSK

using only nodes (P = 1). However, the accuracies might decrease when adding the fea-

tures extracted from longer subpath patterns, thus calling for penalization of longer subpath

patterns. Note that the L2 normalization used in SBoSK may result in a different accuracy

plot than the one obtained by BoSK. However, they both achieved similar optimal accuracies

using a maximum considered subpath length set to P = 3.
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Figure 4.14: Classification accuracy of SBoSK w.r.t. maximum considered subpath lengths P.

Complexity analysis

Fig. 4.15 shows that the computational time increase linearly w.r.t. dimension of the Ran-

dom Fourier Features O(D) and Fig. 4.16a shows that the time for BoSK increases quadrat-

ically w.r.t. training sample size O(n2). In addition, we show here the advantage of SBoSK

when dealing with a large tree size. Fig. 4.16b shows that the computational time increases

quadratically O(|T |2) for BoSK, while for SBoSK, it increases linearly O(|T |). This linear

complexity makes SBoSK relevant for real-world applications with a large number of re-

gions in the hierarchical representation.
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Figure 4.15: Computational time of SBoSK w.r.t. Random Fourier Features dimension D.
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Figure 4.16: Computational time of BoSK and SBoSK w.r.t. training samples size n (Fig. 4.16a) and

w.r.t. tree size |T | (Fig. 4.16b).

4.5 Strasbourg Pleiades image classification

4.5.1 Datasets and design of experiments

In this section, we focus on urban land-use classification using VHSR image of 13040 × 5400

pixels with 0.5 m spatial resolution. The image has been acquired by the Pleiades satellite

and is made of 4 spectral bands i.e. Red, Green, Blue, NIR. The image and it associated

ground truth are shown in Fig.4.17. Note that we use the same ground truth as the evaluation

in Strasbourg Spot-4 dataset, the 8 thematic classes of urban patterns are thus the same.

Readers can find the full details of image description in [107].

On the Strasbourg Pleiades dataset, we generate the data instance to be classified as

square regions of size 40 × 40 pixels. Two types of hierarchical representations are used: i) a

pyramid representation with L2 level as the finest level, which corresponds to subregions of

size 10 × 10 pixels. ii) a hierarchical segmentation generated using Hseg, where 4 additional

levels are constructed by decreasing the region dissimilarity criterion α = [24, 23, 22, 21]. Us-

ing such parameters, we observe an average of 16 leaves (the number of segmented regions

at bottom level is then similar to Pyramid representation with the L2 level) and 30 nodes.

Each region in the hierarchical representation is described exactly as with Strasbourg

Spot-4 dataset in Sec. 3.5, which includes the region average of the 4 original multi-spectral

bands, Soil Brightness index (BI) and NDVI, as well as two Haralick texture measurements

(homogeneity and standard deviation). Similarly, we use the Gaussian kernel as the atomic

kernel to compute the similarity within a pair of nodes.

We consider a one-against-one SVM classifier with Gaussian kernel as the atomic kernel.
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(a) Pleiades image (b) Ground truth image

Figure 4.17: Urban scene taken over South of Strasbourg, France. From left to right: false color

image of Pleiades ( c© CNES 2012, distribution Airbus DS / Spot Image) with 50 cm resolution and

the associated ground truth ( c© LIVE UMR 7362, adapted from OCSOL CIGAL 2012) with eight

thematic classes.

All free parameters are determined by 5-fold cross-validation. The RFF dimension D is cho-

sen empirically as a trade-off between computational complexity and classification accuracy

(and will be further analyzed in Sec. 4.5.2). Henceforth, in this section, all reported results

are averaged over 10 repetitions.

4.5.2 SBoSK analysis

The analysis of SBoSK in terms of classification accuracy and computation time follows the

previous settings in Sec. 3.5.2.

Figure 4.18: Classification accuracy comparison of BoSK and SBoSK with different dimension D

(log scale). Reported accuracies and standard deviations are computed over 10 repetitions with 400

training samples per class.



4.5 – Strasbourg Pleiades image classification 87

 ! "!! #!! $!! %!! "&!!

!

"!!!!

#!!!!

'!!!!

$!!!!

 !!!!

&!!!!

 
!
"
#
$
%
&
'

 

 ()*+

 *()*+,-./0,!,1,%"2#

 *()*+,-./0,!,1,$!2&

 *()*+,-./0,!,1,#!$%

Figure 4.19: Computation time comparison of BoSK and SBoSK with D = {2048, 4096, 8192} w.r.t.

different number of training samples per class n
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Figure 4.20: Classification accuracy w.r.t. different maximum considered subpath lengths P. SBoSK

is computed on the VHSR image considering a kernel on trees with D = 4096.

As we can observe in Fig. 4.18, when RFF dimension increases, the accuracy increases

till converging to the accuracy obtained with the exact computation scheme. However, such

convergence rate is problem–dependent, and the number of RFF dimension is commonly set

empirically [160].

Fig. 4.19 shows that the computation time increases linearly w.r.t. n for SBoSK, while for

its exact computation, it increases quadratically. In addition, we can also observe for SBoSK

that the computation time increases linearly w.r.t. dimension D. This calls for finding a good

trade-off between the quality of approximation and the time consumption. Henceforth, in
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this section, we empirically fix the RFF dimension to be D = 4096 as a trade-off between the

approximation quality and the complexity.

As far as the maximum considered subpath P in SBoSK is concerns, we observe in

Fig. 4.20 that the accuracies improve when considering subpaths with different lengths com-

pared to using only nodes i.e., P = 1. However, the accuracies might decrease when adding

the features extracted from longer subpath patterns, calling for penalization of longer sub-

path.

4.5.3 Results and discussion

For the sake of comparison, we consider the Spatial Pyramid Matching (SPM) model [209],

which is well known in computer vision community for taking into account the spatial rela-

tionship between a region and its subregions. The SPM relies on a quad-tree image segmen-

tation, which split each image region iteratively into 4 square regions. In this representation,

the pyramid level 0 (root) corresponds to the whole image, and the level 2 (L2) segments

the image into 16 squared regions. For a fair comparison, we build SBoSK on the same spa-

tial pyramid representation. However, let us recall that SBoSK can rely on any hierarchical

representation. We thus also report the results computed on a hierarchical representation

generated using Hseg. The comparison is done by randomly choosing n = [50, 100, 200, 400]

samples for training and the rest for testing. All reported results are computed over 10 rep-

etitions of each run.

The classification accuracies obtained with different methods are shown in Tab. 4.1. We

also provide per-class accuracies using n = 400 training samples in Fig. 4.21.

When compared to the Gaussian kernel computed on root regions, SBoSK consistently

improves the classification results for various numbers of training samples. Furthermore,

the improvements increase when more training samples are added, i.e. from 2.1% OA /

1.2% AA improvement with 50 training samples per class to 4.9% OA / 3.9% AA with 400

training samples per class. Analysis of the per-class accuracies leads to observing that indus-

trial blocks and individual housing blocks, two semantically similar classes, benefit from the

highest improvement among all classes. This is due to the SBoSK ability to consider object

spatial decomposition and spatial relationship among its subparts.
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Table 4.1: Mean (and standard deviation) of overall accuracies (OA), average accuracies (AA) and

Kappa statistics (κ) computed over 10 repetitions for Strasbourg VHSR image with different training

data sizes n. Best results (with a statistical significance less than 0.01% w.r.t. others considering the

Wilcoxon signed-rank test for matched samples) are boldfaced, and numbers with ∗ indicate that no

statistically significant conclusions can be driven when compared with best results.

n Root SPM (L2) SBoSK (L2) SBoSK (Hseg)

50 OA 52.2 (0.9) 48.3 (1.8) 53.2 (1.2) 54.3 (0.9)

AA 51.2 (0.7) 46.9 (1.4) 51.7 (0.4) 52.4 (1.2)

κ 44.4 (0.9) 39.9 (2.0) 45.4 (1.2) 46.6 (1.1)

100 OA 54.2 (0.6) 50.5 (1.3) 56.0 (1.1)* 56.5 (1.4)

AA 53.6 (0.4) 49.3 (0.7) 54.5 (0.7)* 54.9 (1.1)

κ 46.7 (0.6) 42.3 (1.3) 48.5 (1.0)* 49.1 (1.5)

200 OA 55.7 (0.6) 52.4 (0.8) 57.7 (0.7) 59.2 (0.9)

AA 55.1 (0.3) 51.3 (0.3) 56.5 (0.5) 57.8 (0.9)

κ 48.3 (0.6) 44.5 (0.8) 50.4 (0.8) 52.0 (1.0)

400 OA 56.5 (0.5) 54.7 (0.5) 59.9 (0.7) 61.4 (0.3)

AA 56.4 (0.2) 53.7 (0.3) 59.0 (0.6) 60.3 (0.3)

κ 49.4 (0.5) 47.0 (0.5) 52.8 (0.8) 54.4 (0.3)
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Figure 4.21: Per-class accuracies using SBoSK on spatial decomposition on Strasbourg VHSR image.

As far as the SPM model is concerned, we can see that it performs poorly with various

training samples: the results drop down 3% to 4% w.r.t. kernel on the root region. Although

SPM has been proven to be effective in computer vision domain due to its capacity of coping
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with subregions and spatial arrangement betweens subregions, its one-to-one region match-

ing strategy with exact spatial location constraint seems overstrict for remote sensing image

classification. Indeed, it lacks of image orientation invariance that is required when dealing

with nadir observation. To illustrate, in both individual and collective housing block classes,

the orientation and absolute location of objects such as the houses in each image (40× 40 pix-

els region) are not discriminant and thus not helpful for improving classification accuracy.

However, such irrelevant features cannot be excluded in the SPM model due to its matching

strategy. Therefore, two images with similar content but with different spatial locations and

orientations might be classified into two different classes.

We also compare SBoSK applied on different hierarchical representations. Results show

that SBoSK on Hseg segmentation leads to better results than when computed on the spatial

pyramid representation. From per-class accuracies, we can see that the industrial blocks,

individual housing blocks and collective housing blocks, i.e. semantically similar classes, are

better classified. This can be easily explained by the shapes of the segmented regions: while

the spatial pyramid representation splits the image into 4 squared regions independently

of the actual image content, the Hseg segmentation provides a more accurate segmentation

since similar regions are naturally merged together into larger regions.

4.6 Large-scale image classification on UC Merced dataset

In this section, we evaluate SBoSK on a large-scale publicly available dataset. The term

large-scale refers here to large structure size (more than 300 nodes for each structured data).

This number is considered as large-scale in the context of classification using structured

kernel, where evaluated datasets are normally made of a few dozens of nodes each [128].

For this dataset, due to the quadratic complexity, BoSK cannot be computed, so only SBoSK

is applied. RFF dimension has been empirically set to 4096.

The “UC Merced land-use” dataset (UC Merced) [213] consists of 2100 images with 256×
256 pixels and 0.3-m resolution. Those images are equally distributed in 21 land-use classes,

with examples from each class being shown in Fig. 4.22.

We evaluate SBoSK taking into account object spatial decomposition through hierarchical

representations built on the dataset. Each image of 256 × 256 pixels is considered as a data

instance to be classified, and is represented as a tree that can be handled with SBoSK.

In our experiment, we use two different hierarchical image representations: for the spa-

tial pyramid representation, we define 5 levels in the pyramid that segment the image into

{1, 4, 16, 64, 256} regions. The bottom level L4 corresponds to image regions of size 16 × 16

pixels. For the hierarchical representation generated with Hseg segmentation, we define 5

levels of hierarchy, by empirically setting the dissimilarity criterion α = [25, 24, 23, 22]. Such
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Agricultural Airplane Baseball diamond Beach Buildings Chaparral Dense residential

Forest Freeway Golf course Harbor Intersection Medium residential Mobile home

Overpass Parking lot River Runway Sparse residential Storage tanks Tennis court

Figure 4.22: Examples of the 21 land-use classes contained in the UC Merced dataset.

Table 4.2: Mean (and standard deviation) of overall accuracies (OA) computed over 10 repetitions

and 5-fold cross validation results for UC Merced dataset with different codebook sizes and SIFT

descriptors. Best results (with a statistical significance less than 0.01% w.r.t. others considering the

Wilcoxon signed-rank test for matched samples) are boldfaced, and numbers with ∗ indicate that no

statistically significant conclusions can be driven when compared with best results.

K Root SPM (L2) SPM (L4) Spatial relatons SBoSK (L2) SBoSK (L4) SBoSK (Hseg)

50 64.7 (0.7) 76.4 (0.5) 69.0 (0.3) 75.3 80.2 (0.3) 85.6 (0.3) 87.2 (0.4)

100 71.7 (0.4) 79.8 (0.4) 72.5 (0.4) 79.6 84.0 (0.3) 87.2 (0.3) 88.1 (0.3)

300 78.3 (0.3) 83.6 (0.3) 75.5 (0.3) 83.4 86.3 (0.2) 88.1 (0.3)* 88.5 (0.3)

500 79.8 (0.4) 84.2 (0.2) 75.9 (0.2) 85.8 87.5 (0.3) 88.7 (0.2)* 88.7 (0.3)

1000 81.6 (0.4) 85.1 (0.3) 75.9 (0.2) 87.6 87.9 (0.3) 88.9 (0.3)* 88.9 (0.3)

parameters yield a similar number of segmented regions at bottom level between both hier-

archical representations, thus easing comparison between the different methods. The region

feature is generated from dense SIFT descriptors with a fixed window size of 8 × 8 pixels

and a step size of 1 pixel. It is characterized with a quantized histogram of size (also known

as codebook size) K = {50, 100, 300, 500, 1000} with K-means algorithm and Max-pooling

strategy, as used in [35]. Finally, we use the Gaussian kernel computed on the square-rooted

histogram [155] for each region of the SPM model and SBoSK.

All reported experiments are conducted consistently with previous evaluation proce-

dures on this dataset [213, 35]: we randomly split the dataset to allow five-fold cross-

validation and return averaged results over 10 repetitions for each randomly split dataset.

The results are shown in Tab. 4.2. We can see that SBoSK outperforms other methods for

different codebook sizes, and the improvement is especially significant when the codebook
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size is small.

We can see that the SPM model improves the Gaussian kernel on the root region when

using two levels of pyramid (L2). However, the results drop down dramatically when four

levels of pyramid (L4) are considered. This is due to the overstrict one-to-one region match-

ing strategy adopted in SPM model (as previously discussed). On the other side, SBoSK can

further improve the results when adding more pyramid representation levels from L2 to L4.

This demonstrates the superiority of the proposed matching strategy relying on bags of sub-

paths. From the per-class accuracies shown in Fig. 4.23, we can observe the buildings, dense

residential, medium residential, mobile home park, sparse residential classes, i.e. semantic

similar classes, achieve significantly better results compared to the Gaussian kernel on the

root region and the SPM model. Among these classes, the object spatial decomposition is

considered as a discriminant pattern. While the SPM model fails to cope with this informa-

tion, SBoSK can better incorporate this information captured from the vertical hierarchical

relationships between the regions, leading to an improved accuracy. Moreover, the use of a

larger hierarchical representation (i.e. SBoSK (L4)) leads to a further accuracy improvement

for these semantically similar classes, indicating that SBoSK can benefit from better revealed

object decomposition with finer details of regions and richer topological relationships among

regions.

The pyramid of spatial relatons [35] is a recently proposed method tackling the issues

raised when applying the SPM kernel on remote sensing images. However, we can see

that SBoSK yields better results with various codebook sizes K, and the gap is significant

especially when K is small. Indeed, the pyramid of spatial relatons performs similarly as the

SPM kernel for 100 bins, i.e., about 4% less than SBoSK using L2 and 8% less than SBoSK

using L4.

Finally, when comparing SBoSK with different underlying hierarchical representations,

we can notice that Hseg segmentation improves the results when the codebook size K is

small. This indicates that classification results can benefit from a better hierarchical repre-

sentation when region features are less discriminant. Since the object decomposition are bet-

ter revealed with Hseg segmentation, we claim that such topological features are especially

useful when the region appearance feature is not discriminative enough.
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4.7 Chapter summary

An image classification approach based on object spatial decomposition is proposed in this

chapter. The decomposition can be expressed as a tree structure T , where objects-of-interest

are the nodes of the tree and the hierarchical relationships among them are modeled through

the edges. We thus suggest to apply (S)BoSK on the induced tree structures. The proposed

(S)BoSK working on hierarchical representations is closely related to the Spatial Pyramid

Matching (SPM) kernel, one of the most standard way to consider object spatial decompo-

sition. However, (S)BoSK can be applied for arbitrary hierarchical representations, and is

robust to image rotation and translation.

A rigorous experimental plan based on an artificial dataset is used to evaluate (S)BoSK,

in which we analyzed the kernel with different weighting schemes, as well as SBoSK approx-

imation results using Random Fourier Features. Results indicate that BoSK can maintain a

good performance up to a certain ratio of structure distortion, among which the weighting

strategy imposing a maximum length of subpaths yields a better results compared to other

weighting strategies. The analysis of SBoSK confirms that it gives similar results than BoSK,

both in term of Gram matrix similarity and classification accuracies. Moreover, SBoSK has

clear advantages in the context of large tree sizes and large number of training data size.

We also carried out experiments on two remote sensing datasets, including one pub-

licly accessible dataset: UC Merced dataset. Results confirmed the effectiveness of (S)BoSK

for taking into account object spatial decomposition. Comparing to related state-of-the-art

methods, including SPM and its variant dedicated to geographic images, we observed a clear

gain in terms of classification accuracy.
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In the previous two chapters, we have illustrated how (S)BoSK kernel was able to take

into account the contextual and the spatial decomposition information, respectively. Mean-

while, we have classified so far only the leaves (corresponding to the pixels in the image) or

the roots (corresponding to the image tiles) separately.

We propose in this chapter a novel multi-source and multi-resolution image classification

method. It relies on the combination of (S)BoSK operating on a hierarchical image represen-

tation built from multi-source and multi-resolution images, allowing one to benefit from

both contextual and spatial decomposition information simultaneously.
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5.1 Introduction

Data fusion approaches have gained increasing interest recently in the remote sensing com-

munity [78, 114, 119], thanks to the recent technologies that make multiple and heteroge-

neous image sources available for the same geographical Earth surface area. Facing the

challenges of the acquisition of large amounts of different resolutions (spatial, spectral, tem-

poral) images and heterogeneous sources (Optical, SAR, LiDAR), data fusion techniques

have demonstrated the interests of exploiting complementary information of the observed

scene carried with different imaging modalities. For instance, combining high-resolution

imagery and LIDAR data allows better accuracy achievements in a urban area classification

task [36, 52]. As the availability of multi-resolution remote sensing data is rapidly increasing,

methods able to fuse data from multiple sources and at multiple resolutions are becoming

an important research topic in remote sensing [218, 78].

Meanwhile, hierarchical image representations are becoming more and more popular in

the remote sensing community thanks to their capability of revealing objects-of-interest at

various scales and modeling their topological relationships [17]. Their use for multi-source

and multi-resolution image classification remains however to be demonstrated and is the

main objective of this chapter.

We propose here a novel multi-source and multi-resolution classification approach rely-

ing on (S)BoSK and operating on a hierarchical image representation built from two images

at different resolutions, possibly with different modalities. Both images capture the same

scene with different sensors and are joined together through the hierarchical representation,

where, for instance, coarser levels are built from a Low Spatial Resolution (LSR) or Medium

Spatial Resolution (MSR) image while finer levels are generated from a High Spatial Resolu-

tion (HSR) or Very High Spatial Resolution (VHSR) image. Therefore, we assume an integer

scale ratio between the resolutions of LSR/MSR and of HSR/VHSR, requiring both images

to be perfectly overlapping. In addition, as two images at different resolutions provide finer

and coarser levels of the hierarchical representation respectively, their resolution must differ

enough to allow complementary viewpoints over the same area.

Building the hierarchical representation of two images at different resolutions allows one

to benefit from the contextual information thanks to the coarser levels, and from the object

spatial decomposition thanks to the finer levels. Two (S)BoSK are then used to perform

machine learning directly on the constructed hierarchical representation and are combined

together. This strategy overcomes the limits of conventional remote sensing image classifica-

tion procedures that can handle only one or very few pre-selected scales of hierarchical rep-

resentation. Experiments run on a urban classification task show that the proposed approach

can highly improve the classification accuracy w.r.t. conventional approaches working on a

single scale.
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The chapter is organized as follows: a brief review of related work is provided in Sec. 5.2.

We then describe in Sec. 5.3 the proposed multisource classification method, which is fol-

lowed by a concrete example and its evaluation in Sec. 5.4. The chapter ends with conclusion

and discussion in Sec. 5.5.

5.2 Related work

5.2.1 Data fusion in remote sensing

Data fusion aims to combine data from various sources and to provide more detailed infor-

mation. This covers a large range of applications and research directions, e.g. image fusion

such as pan–sharpening approaches [129], image classification using multisource data [194],

and multiangular, multitemporal image analysis [149]. Here we concentrate on the tech-

niques that allow fusing data from multiple sources and captured at multiple resolutions.

As each sensor provides some unique spatial details of the observed scene, exploring and

combining such information is important. Methods that can fuse multi-source and multi-

resolution data have been proved to be effective for improving classification accuracy [218].

Among famous remote sensing fusion strategies, two main directions can be found in litera-

ture: decision level fusion and feature level fusion.

Fusion at the decision level involves mostly defining a strategy to combine results ob-

tained with multiple classifiers. In general, each data source is classified separately and the

classification outputs are fused together to produce the final classification map. For instance,

[60] propose to use a set of SVM classifiers, with each of them classifies one data source

separately, and the final class label is chosen with a majority voting scheme. In [205], the

output values in the decision function of SVM classifiers (learned on each data source) are

trained again with another SVM classifier in order to determine the final class label. Other

approaches consisting of combining multiple classifiers, e.g. bagging and boosting strate-

gies, have been evaluated [24, 12] in the context of classification using multi-source remote

sensing images.

Fusion can also be achieved at the feature level. Among popular techniques, feature

vector extraction with different image sources and concatenation of the extracted vectors

can be considered as the most straightforward way to combine multi-source information

[191, 189, 78]. Other strategies such as including different data sources directly inside the

classification methods have also been used. In [195], relevant features of various modalities

are learned and combined into a single classifier. These features are added by iteratively

checking whether including them can maximize the separating margin in SVM. In [174, 135],

different sources of information are represented as separate feature vectors, and are joined

together in a probabilistic Markov model in the unary energy term through combining their
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conditional probabilities w.r.t. related class labels.

Among techniques that are capable of performing data fusion at feature level, kernel

methods have been identified as one of the most studied research directions in a recent sur-

vey paper [78], as they offer a general framework allowing one to fuse different sources

of information easily in a classification problem. In this framework, kernels are computed

from different data sources and all the source-specific kernel matrices are combined into a

final one before using kernel-based classification methods. Such techniques have been used

for combining spectral and spatial information extracted from multi-source remote sensing

images [194], as well as multi-temporal remote sensing images [28].

In [194, 28], kernels are computed from different image sources and fused through a

linear kernel combination before using a SVM. Their importance is coped with a weighting

parameter and is determined by cross-validatition. Such weights can also be learned through

a multiple kernel learning framework [120, 79], which is especially useful when the number

of kernels increases and weighting parameters become hard to tune [188].

5.2.2 Fusion with multiple spatial resolution images

The aforementioned data fusion methods have been categorized from a theoretical point

of view. We pay here a special attention to methods that able to exploit multiple spatial

resolution images from the same geographical area.

In [176], two different resolution images are used. The higher resolution image provides

fine details of image content, on which class labels are defined, while lower resolution allows

exploiting richer spectral information. Two complementary information are modeled within

a Bayesian framework, to affine the prediction and to produce a more accurate classification

map.

In [107], a hierarchical representation is built with different resolution images. The rep-

resentation is constructed iteratively, where, at each step, the segmentation map obtained

with the lower resolution image is used as an input for the higher resolution image in or-

der to generate a finer level segmentation. For extracting features of regions in a hierarchy

using multiresolution images, [206, 107] propose to characterize the regions at coarser level

with the histogram constructed from the pixel spectral information in the higher resolution

image.

In [90, 91, 203], multiresolution images are used to build a quad-tree (pyramid) represen-

tation, where the bottom of pyramid is set to the panchromatic image of higher resolution

and top level is associated to the multi-spectral image of lower resolution. A hierarchical

MRF model is further built on the constructed quad-tree representation to model the parent-

children relationships among pixels at two different resolution images.
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In this chapter, we also propose to build a hierarchical image representation using differ-

ent resolution images. However, the representation is mainly dedicated to reveal the topo-

logical information among objects at various scales i.e. contextual and object decomposi-

tion information. In order to take into account these two types of information, we fuse two

(S)BoSK that are computed from different images through linear kernel combination, with

an additional parameter controlling the importance of each kernel. The fusion of two SBoSK

can also be viewed as feature vector concatenation, since RFF embedding of SBoSK yields a

vector form.

5.3 Multi-source images classification

We introduce a novel approach i) to build a hierarchical image representation from a pair of

images with different resolutions (captured with two different sensors), and ii) to combine

two (S)BoSK to perform supervised classification directly from the constructed tree.

5.3.1 Building the hierarchical representation

We join two resolution images into a single hierarchical representation through two separate

steps: i) use a LSR/MSR image to construct the coarser levels of the hierarchy where contex-

tual information can be captured on the one side, ii) use a HSR/VHSR image to generate the

finer levels of the tree, where object spatial decomposition are modeled on the other side.

To be more specific, we firstly initialize the segmentation at the pixel level on the

LSR/MSR image and construct the coarser levels. Let n1 be a data instance to be classi-

fied. Within the LSR/MSR image, it corresponds to a pixel nl
1 and can be featured as a path

P = {nl
1, ..., nl

P} that models the evolution of the pixel nl
1 through the hierarchy. Each node

nl
i is described by a d-dimensional feature xnl

i
that encodes the region characteristics, e.g.

spectral information, size, shape, etc.

Secondly, we use the HSR/VHSR image to provide the fine details of the observed scene

for each data instance n1. Due to the pixel resolution difference, one pixel of the LSR/MSR

image nl
1 corresponds to a region of the HSR/VHSR image nh

1. Therefore, we initialize the

top level of the multiscale segmentation to be the corresponding regions, then construct

the finer levels. Through the hierarchy, the data instance n1 can be modeled as a tree T
rooted in nh

1 which encodes object decomposition and the topological relationships among

its subparts. The characteristics of a region nh
i are also described by a feature vector xnh

i
. Note

that xnl
i

and xnh
i

can be extracted with different modalities, thus the features can also have

different dimensions.

In the end, each data instance n1 can be represented by an ascending path P from the

LSR/MSR image, and a descending tree T generated from the HSR/VHSR image.



100 ❈❤❛♣$❡& ✺ – Multi-source and multi-resolution image classification

5.3.2 Fusion of (S)BoSK

To perform image classification from a hierarchical representation, we propose to combine

two (S)BoSK computed on paths P and trees T respectively. Both (S)BoSK exploit comple-

mentary information from the hierarchical representation, therefore they are combined at

the end through a kernel combination step. The final kernel between two data instances

K(n1, n′
1) is computed using a linear combination of the two (S)BoSK:

K(n1, n′
1) = ρ × K(P ,P ′) + (1 − ρ)× K(T , T ′)

= ρ × τ(s ∈ P)Tτ(s′ ∈ P ′) + (1 − ρ)× τ(s ∈ T )Tτ(s′ ∈ T ′)

=
[

√

ρ × τ(s ∈ P)T ,
√

1 − ρ × τ(s ∈ T )T
]T [√

ρ × τ(s′ ∈ P ′)T ,
√

1 − ρ × τ(s′ ∈ T ′)T
]

,

(5.1)

where K(P ,P ′) is BoSK on paths, and K(T , T ′) is BoSK on trees, τ(s ∈ P) and τ(s ∈ T )

are RFF embedding of P and T , respectively, and according to Algorithm 1, with a parame-

ter ρ ∈ [0, 1] that controls the importance ratio between the two kernels. Such an embedding

allows computing the fused kernel through inner product of concatenated feature vectors.

It computes each data instance independently, yielding a linear complexity w.r.t. training

sample size and maintaining the overall scalability of the proposed classification approach.

In the following section, we show a concrete example of the proposed multi-source image

classification method using MSR and VHSR remote sensing images.

5.4 Evaluation on Strasbourg dataset using both Spot-4 and Pleaides

images

In this section, we evaluate the proposed approach focusing on urban land-use classification

in the South of Strasbourg city, France. Two images are considered, both capturing the same

geographical area with different sources:

• a MSR image (previously introduced in Sec. 3.5.1), captured by a Spot-4 sensor, con-

taining 326 × 135 pixels at a 20 m spatial resolution, described by 4 spectral bands:

Green, Red, NIR, MIR.

• a VHSR image (previously introduced in Sec. 4.5.1), captured by a Pleiades satel-

lite, containing 13040 × 5400 pixels at a 0.5 m spatial resolution (obtained with pan-

sharpening technique), described by 4 spectral bands: Red, Green, Blue, NIR.
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Figure 5.1: Illustration of the hierarchical image representation for one data instance n1, and data

fusion with (S)BoSK. Each data instance corresponds to a pixel of the MSR image nl
1, and a 40 × 40

square region on the VHSR image nh
1. It associates the contextual information thanks to the coarser

levels of the hierarchy built from the MSR image, and the object spatial decomposition information

thanks to the finer levels constructed on the VHSR image. Both complementary information are taken

into consideration thanks to two dedicated structured kernels, then fused together providing the final

classification output.

Let us note that while the two images have here the same number of spectral bands, it

is not a required condition of our algorithm that is able to cope with very different image

types.

Each pixel on the MSR image corresponds to a square region of size 40 × 40 pixels on

the VHSR image. Both image are joined together through a hierarchical representation, as

illustrated in Fig 5.1.

For a comparison purpose, the following scenarios are considered:

• scenario 1: Gaussian kernel at single level on the MSR image vs. SBoSK taking into

account the contextual information at multiple levels on the MSR image. Recall that a

detailed analysis has been done in Sec. 3.5.3.

• scenario 2: Gaussian kernel at single level on the VHSR image vs. SBoSK taking into

account the object spatial decomposition at multiple levels on the VHSR image. Recall

that a detailed analysis has been done in Sec. 4.5.3.
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• scenario 3: combining both the contextual and object spatial decomposition informa-

tion modeled through a hierarchical representation using both MSR and VHSR images.

The classification accuracies achieved with the different methods are shown in Tab. 5.1

using various numbers of training samples n = [50, 100, 200, 400]. We also show the per-class

accuracies for the 8 different classes using n = 400 training samples in Fig. 5.3.

The classification results show that combining contextual and decomposition informa-

tion leads to a significant improvement. Indeed we observe, for various training sample

sizes, more than 4% improvement over SBoSK on a single MSR image, and more than 10%

improvement over SBoSK on a single VHSR image. From an analysis of per-class accura-

cies achieved with SBoSK, we can see that some classes (urban vegetation, industrial blocks,

individual and collective housing blocks and agricultural zones) yield higher accuracies on

the MSR image, while some other classes (water surfaces, forest areas, roads) obtained bet-

ter accuracies on the VHSR image. Nevertheless, combining both kernels allows benefiting

from the advantages of the two types of complementary information, thus yielding to the

best accuracies for all classes. Indeed, we can state that the prediction achieves a spatial

regularization for the large regions (e.g. industrial and individual housing blocks) thanks to

the contextual information, while providing precision for the small structures (such as road

networks) thanks to the detailed object spatial decomposition information.

When compared with the Gaussian kernel computed on a single image at single level,

combining both SBoSK built upon two different image sources achieves 13% OA improve-

ment when using n = 50 and 20% OA improvement when using n = 400. This demonstrates

the superiority of our proposed multi-source classification method that is able to exploit

topological information across multiple scales.

As shown in Fig. 5.2a, the predictions are very noisy with a single level analysis of the

MSR image. This is the typical “salt and pepper” problem encountered in remote sensing

image classification when the spatial information is not taken into account. Using multi-

scale information, the spatial dimension is implicitly taken into consideration by the ances-

tor regions in the hierarchy. Thus a smoother prediction map can be obtained (as shown in

Fig. 5.2b). Let us note that we did not use any post-processing technique to produce such a

classification map, relying only a structured kernel coping with context information. How-

ever, we can also observe that small structures such as road networks disappear in certain

areas, and enhance wrongly in other ones.

As far as the VHSR image is concerned, using SBoSK leads to a more precise prediction

for most of classes when compared to a single level analysis of the VHSR image (as shown

in Fig. 5.2c and Fig. 5.2d). However, the prediction maps are noisy with both single and

multiple scales.

Combing both SBoSK computed on MSR and VHSR image manages to benefit from the
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advantages brought by the two complementary information sources. We can see in Fig. 5.2f

that the prediction seems to achieve a spatial regularization for the large regions, while pro-

viding precision for the small structures such as road networks.

(a) single MSR (b) SBoSK MSR

(c) single VHSR (d) SBoSK VHSR

(e) Ground truth image (f) Combined

Figure 5.2: Classification maps for methods using single and multiple levels of a hierarchical image

representation. Scenario 1: single level on Spot-4 image (a) vs. multiple levels contextual informa-

tion on Spot-4 image (b); scenario 2: single level on Pleiades image (c) vs. multiple levels spatial

decomposition information on Pleiades image (d); scenario 3: combination of contextual and spatial

decomposition information (f). Ground truth image (e) is also given as reference.
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Table 5.1: Mean (and standard deviation) of overall accuracies (OA), average accuracies (AA) and

Kappa statistics (κ) computed over 10 repetitions for Strasbourg MSR and VHSR images with dif-

ferent training data sizes n. Best results (with a statistical significance less than 0.01% w.r.t. others

considering the Wilcoxon signed-rank test for matched samples) are boldfaced.

n Single MSR SBoSK MSR Single VHSR SBoSK VHSR Combined

50 OA 45.3 (2.3) 57.8 (1.3) 52.2 (0.9) 54.3 (0.9) 65.3 (0.6)

AA 43.9 (1.0) 57.9 (0.8) 51.2 (0.7) 52.4 (1.2) 64.3 (0.8)

κ 32.2 (2.1) 50.2 (1.4) 44.4 (0.9) 46.6 (1.1) 58.9 (0.7)

100 OA 47.9 (1.3) 63.3 (0.7) 54.2 (0.6) 56.5 (1.4) 69.8 (0.7)

AA 46.2 (0.5) 64.0 (0.7) 53.6 (0.4) 54.9 (1.1) 69.8 (0.8)

κ 39.1 (1.3) 56.5 (0.8) 46.7 (0.6) 49.1 (1.5) 64.1 (0.8)

200 OA 51.4 (0.8) 68.4 (0.7) 55.7 (0.6) 59.2 (0.9) 73.9 (0.5)

AA 48.1 (0.4) 69.7 (0.5) 55.1 (0.3) 57.8 (0.9) 74.8 (0.3)

κ 42.6 (0.8) 62.3 (0.7) 48.3 (0.6) 52.0 (1.0) 68.7 (0.3)

400 OA 52.2 (0.4) 73.0 (0.4) 56.5 (0.5) 61.4 (0.3) 77.3 (0.3)

AA 49.1 (0.2) 74.8 (0.4) 56.4 (0.2) 60.3 (0.3) 79.1 (0.4)

κ 43.5 (0.4) 67.6 (0.5) 49.4 (0.5) 54.4 (0.3) 72.7 (0.4)
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Figure 5.3: Per-class accuracies for multi-source classification using Strasbourg MSR and VHSR

images.
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5.5 Chapter summary

A novel multi-source and multi-resolution image classification method is presented in this

chapter. The proposed method joins two resolution images taken from the same area through

a hierarchical representation. In such a representation, we consider each pixel at lower reso-

lution image as the data instance to be classified. Due to the overlapping of the two images,

the data instance also corresponds to a region when projecting it on the higher resolution

image. To build the hierarchical representation, we rely on two steps: from the lower reso-

lution image are constructed the coarser levels of hierarchy where contextual information of

each data instance can be revealed; from the higher resolution image are generated the finer

levels of the tree, where spatial decomposition of data instances are modeled. Two (S)BoSK

are then used to perform machine learning directly on the constructed hierarchical represen-

tation, aiming at combining both contextual and decomposition information into a a unique,

multi-source and multi-resolution classification scheme.

This strategy overcomes the limits of conventional remote sensing image classification

procedures that can handle only one or very few pre-selected scales of hierarchical represen-

tation. Experiments run on a urban classification task show that the proposed combination

of two (S)BoSK can highly improve the classification accuracy compared to constructing ker-

nel on a single scale and on a single source.
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Chapter 6

Conclusions and perspectives
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This final chapter aims to conclude the manuscript. We first summarize our main contri-

butions arising from this work in Sec. 6.1. Then in Sec. 6.2, we highlight several directions

for future works, which can potentially improve the methods proposed in this thesis, as well

as open new perspectives for machine learning on hierarchical image representations.
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6.1 Conclusions

In this thesis, we addressed image classification problems using hierarchical image represen-

tations. These hierarchical representations can reveal objects-of-interest at different scales, as

well as their topological relationships across the scales. Their successful applications in the

spatial-spectral pixel-wise remote sensing image classification and multiscale object-based

image analysis frameworks motivate us to develop novel approaches relying on kernel-

based machine learning techniques, in order to fully exploit the topological features among

objects that are provided by hierarchical representations.

We first begin by presenting our context in Chap. 1. This chapter offers a general presen-

tation of the remote sensing classification scheme, its related challenges, as well as a general

introduction about our main context: when kernel-based machine learning meets hierarchi-

cal image representations.

Our main contributions consist of designing a new structured kernel and using it to solve

various remote sensing image classification problems.

Chap. 2 introduces our proposed kernel relying on subpath substructures under the con-

volution kernel framework, called Bag of Subpaths kernel (BoSK). It can be applied for un-

ordered tree as well as path structured data equipped with numerical features, capturing

the vertical hierarchical relationships among nodes in the structured data. An efficient iter-

ative algorithm is proposed for exact kernel computation that calculates pairwise BoSK in

a quadratic complexity w.r.t. structure size. This algorithm is efficient for small structures

and small training data size. We also proposed its scalable version, Scalable Bag of Sub-

paths kernel (SBoSK), based on applying Random Fourier Features for atomic kernel (i.e. the

Gaussian kernel) approximation. Such technique maps the structured data in a randomized

finite-dimensional Euclidean space, where inner product of the transformed feature vector

approximates BoSK. It brings down the complexity from quadratic to linear w.r.t. structure

size and w.r.t. volumes of data, making the kernel relevant even in a large-scale machine

learning context.

Following the introduction of our structured kernel (S)BoSK, we presented its first appli-

cation in Chap. 3. We took into account the contextual information for pixel-wise classifica-

tion, as the context of each pixel can be modeled as a path structure extracted from a hier-

archical representation. In Chap. 4, we presented the second application of (S)BoSK, whose

goal is to rely on the spatial decomposition for sub-image/tile-based image classification.

Indeed, such a decomposition information can be extracted from hierarchical representation

and modeled as a tree structure. Evaluations on various datasets, including several publicly

available ones, indicate the superiority of (S)BoSK w.r.t. respective state-of-the-art methods

in both scenarios.

After confirming that (S)BoSK can benefit from either contextual or decomposition infor-
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mation extracted from hierarchical image representations, we proposed a novel multiscale

classification approach in Chap. 5. It operates on a hierarchical image representation built

from two images provided with different spatial resolutions. Both images capture the same

scene but with different sensors, and thus can be naturally combined together through a

unique hierarchical representation. In such a representation, coarser levels are built from a

Low Spatial Resolution (LSR) or Medium Spatial Resolution (MSR) image, while finer levels

are generated from a High Spatial Resolution (HSR) or Very High Spatial Resolution (VHSR)

image. One can thus benefit from the contextual information thanks to the coarser levels,

and spatial decomposition information thanks to the finer levels. Two dedicated (S)BoSK

are then used to perform machine learning directly on the combined hierarchical represen-

tation. This strategy overcomes the limits of conventional remote sensing image classifica-

tion procedures that can handle only one or very few pre-selected scales. Experiments run

on an urban classification task showed that the proposed approach can highly improve the

classification accuracy w.r.t. conventional approaches working on a single scale.

6.2 Perspectives

In this section, we propose several interesting directions as a continuation of this thesis. We

first introduce new strategies for improving the proposed methods by addressing various as-

pects of proposed (S)BoSK, then we offer a selection of possible future directions in machine

learning on hierarchical image representation.

6.2.1 Improvements of the proposed methods

As the (S)BoSK is the key part for learning on hierarchical image representation, improving

(S)BoSK can have direct impact on the classification accuracy using either contextual infor-

mation presented in Chap. 3, or spatial decomposition information introduced in Chap. 4,

and even both through our proposed multiscale classification approach in Chap. 5.

Multiple Kernel Learning

The weighting strategies adopted in (S)BoSK are inspired from the literature on structured

kernels, while advanced weighting strategies, such as Multiple Kernel Learning [79] could

have been explored. (S)BoSK is built on a linear combination of weighted individual kernels,

where each individual kernel is computed using one specific subpath length. Therefore, we

can deploy an automatic procedure based on MKL to weight the different subpath lengths.

An improvement of classification performances could be expected by the optimal weight

computation.
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The multiple Kernel Learning framework has been proved to be effective for kernel meth-

ods. Its scalability is limited by kernel matrix computation, while our SBoSK is designed for

large-scale datasets. In order to maintain the scalability, vector-based group feature learn-

ing model (e.g. group lasso regularization [189]) can be applied for learning optimal weight

for each subpath length. The embedded vector (i.e. explicit feature map using Random

Fourier Features) for each subpath length can be considered as one feature group, the learned

weights can be taken into account through factorization of embedded vector, without any

change of the SBoSK algorithm.

Learning the discriminative subpath patterns

The aforementioned weighting scheme can be applied for computing an optimal weight for

each subpath length. However inside each bag of specific length, the kernel values sum up

together without any weighting scheme.

In fact, this is commonly used in the convolution kernel framework, while some studies

argue that the direct sum operation inside such framework might not be effective [57, 178]:

if the bags contain lots of substructures, the kernel tends to average the information, and the

discriminative power might thus be reduced.

Meanwhile, strategies using a weighted sum for different elements within each bags have

been largely used in the computer vision community. These strategies are proposed either

for reducing the negative effects of frequent elements (e.g. reduce burstiness effect [186];

balance the influence of frequent and rare descriptors [141, 103]), or for increasing the con-

tributions of the determinative patterns through a higher weight [82].

These weighting strategies could be useful for (S)BoSK. Instead of weighting all subpaths

constantly during aggregation (sum over all matched pairs of subpaths), the more discrimi-

native ones could be associated with higher weights.

Learning kernel approximation

Currently, the proposed SBoSK can only be applied in case of Gaussian atomic kernel, due

to the Random Fourier Features, and theoretical issues derived from convolution kernel

framework. Although Gaussian kernel is largely used, other kernels are relevant for dif-

ferent feature vector representations, e.g. χ2 kernel has been proved to be effective in case of

histograms.

Recently, the explicit maps for approximating different well-known kernels have been

analyzed in the large-scale machine learning context [117, 116, 198]. Moreover, strategies

able to learn arbitrary kernel approximations have been investigated in the literature [171].
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Therefore, application of the proposed SBoSK to other atomic kernels are sought and

using pre-existing approximation maps or learning kernel approximations could be one so-

lution to be explored.

Complexity

From a complexity point of view, dimension reduction techniques can be applied on the

resulting RFF embedded vector in order to further decrease the computation time.

As illustrated in the thesis, the RFF dimension is highly related to the kernel approxima-

tion error: the higher the RFF dimension is, the better kernel approximation can be achieved.

Therefore, the embedded vector might have thousands of dimensions. It not only slows

down the training time and prediction time, but also leads to a higher storage footprint.

In fact, the same issue occurs in the computer vision community when using “Bag of vi-

sual Words” framework: the number of visual words is normally more than one thousand,

or even ten thousands, for maintaining a good performance [33]. Dimension reduction tech-

niques, especially Principal Component Analysis (PCA), are successfully applied for post-

processing high-dimensional descriptors faced in the community [54, 154]. Such techniques

could be applied after SBoSK embedding in order to further decrease the computation time.

Effect of different hierarchical representations

In this thesis, we have provided only a limited study of the effect of the underlying hierar-

chical representation on the overall classification result. Although it has been shown that

a better hierarchical representation can result in improving the classification accuracy, such

conclusion remains fairly intuitive. A better understanding of relationships between effec-

tiveness of (S)BoSK and underlying hierarchical representations would be one of our next

steps.

6.2.2 A step further

Multiscale image analysis

We have shown through this thesis the powerfulness of image classification incorporating

multiscale topological information revealed through hierarchical representations. However,

the data instances to be classified in our proposed applications are always relying on one

single specific scale, i.e. pixels or tree leaves in Chap. 3, tiles or tree roots in Chap. 4, or

one specific intermediary level in Chap. 5. Our final goal is to classify each region in the

hierarchical representation using its contextual and decomposition information, to perform

a full multiscale image analysis, where each node of the tree is given a semantic label.
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In order to allow such a multiscale analysis, our proposed SBoSK can be used as a region

kernel descriptor [18], through Random Fourier Features embedding. The embedded vector

for each region describes both the contextual and decomposition information in a fixed size

dimension, as we proposed in Chap. 2. With such kernel descriptors for each region, we

can benefit a large number of machine learning techniques that can predict consistent labels

in trees. For instance, graphical models such as in [7, 162] employ probabilistic inference

techniques that allow labeling the nodes at multiple scales in a hierarchical representation

(tree-structured graphical models), increasing the chance to estimate accurately the object

boundaries.

In addition, in the context of multiscale image analysis, the class labels are often de-

fined at multiple scales and have certain hierarchical relations among classes. For instance,

building and tree species at finer level can form residential blocks at intermediary level,

and groups of residential blocks can form urban area at coarse scale. Such definition is es-

pecially popular in the GEOBIA community [158] and is naturally revealed in a hierarchical

image representation. A possible extension of this work to multiscale analysis could be done

through exploration of structured output learning framework [146]

Other machine learning frameworks

The proposed (S)BoSK is evaluated in a supervised learning context (mainly SVM) for re-

mote sensing image classification, while its application can be extended to other kernel

methods e.g. kernel discriminant analysis [181], or even in unsupervised learning frame-

works e.g. kernel clustering [64]. More recently, kernel clustering using Random Fourier

Features [38] has been proposed for capturing the non-linear patterns while maintaining its

scalability for large dataset. Following this direction, our proposed SBoSK can be directly

extended to perform remote sensing clustering (taken into account the spatial domain) in a

large-scale context.

Another popular unsupervised learning framework in remote sensing community is Ker-

nel Principal Component Analysis (KPCA). It can be used for target detection and anomaly

detection [32, 108]. Our proposed (S)BoSK can be extended for these tasks. In addition, re-

cent kernel approximation techniques allow large-scale applications e.g. Randomized Non-

linear PCA [122], which is also highly related to SBoSK.

Having proven the relevance of kernel-based learning of hierarchical image representa-

tions in the supervised case, i.e. a conventional paradigm, we can now explore more recent

paradigms from machine learning. Among them, active learning allows selecting the most

useful samples from unlabeled ones, and adding them into the training set to improve the

discrimination capabilities of the model. It is especially useful in real world remote sensing

image classification [193], where collecting the training samples is costly. As the spatial do-
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main has been implicitly taken into account by the proposed SBoSK, the selected samples

considered in the active learning framework are expected to be spatially well distributed.

Some further improvements of classification results can thus be expected [151].

Domain adaptation have become popular recently for real world remote sensing image

classification, as the collected training samples might be different from those needed to be

predicted [192]. As such a problem also exists when performing machine learning from

hierarchical image representations, exploring the techniques for domain adaptation could

be a future direction.
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