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1.1 The word problem

1.1.1 The undecidability of the word problem

Although algorithms are nowadays commonly associated with computer science, they appeared
together with mathematics as early as 1600 B.C. in Babylonia. Famous algorithms include
Euclid’s algorithm for computing the greatest common divisor, the sieve of Eratosthenes for
finding prime numbers, Newton’s method to approximate the roots of a real-valued function,
and Lovelace’s program for computing Bernoulli numbers. The word algorithm itself comes from
the latinized version of al-Khwarizmi’s name, a IXth century Persian scholar. At the beginning of
the XXth century, Hilbert’s 10th problem called for an algorithm capable of determining whether
a Diophantine equation had integer solutions.

However, it wasn’t before 1936 and the works of Church [19] [20] and Turing [84] [85] on
the Entscheidungsproblem (following the pioneering work of Godel [32]) that the first problem
provably unsolvable by algorithmic means arose. Such a problem is called undecidable. The
Entscheidungsproblem (literally, the ‘decision problem’) was a problem raised in 1928 by Hilbert
and Ackermann [1]. It asked for an algorithm capable of deciding whether a first-order formula
is valid or not. Soon after, Post introduced the notion of reducibility [68], allowing to prove
the undecidability of many other problems. In particular, he proved in 1947 the undecidability
of the word problem for monoids [69] (a result also independently proved by Markov [63]), a
question opened by Thue in 1914 [82] and which is of central importance to this work.

Recall that a monoidM is the data of a setM equipped with a binary associative and unary
operation M ˆM Ñ M . If E is a set then the free monoid generated by E is the set of all
finite (possibly empty) sequences of elements in E, where the product is given by concatenation.
Not all monoids are free though. In general, they can be described using a presentation. A
presentation is the data of a set E of generators together with a set R of generating relations
between the elements of E˚. The monoid presented by such an object is the quotient of E˚

by the congruence generated by R. For example, the monoid B`3 , called the monoid of positive
braids on three strands, can be described by the following presentation:

B`3 “ xs, t|sts “ tsty. (1.1.1)

In B`3 , the generating relation sts “ tst induces for instance the relations stst “ tstt and
stss “ ssts (where in the second example we apply the generating relation twice). Note that a
monoid may also have more than one presentation. For example, another presentation of B`3 is
given by:

B`3 “ xs, t, a|ta “ as, st “ a, sas “ aa, saa “ aaty. (1.1.2)

Given a presentation pE,Rq of a monoid M , the quotient of E˚ by the generating relations
induces a surjective morphism of monoids π : E˚ Ñ M . The word problem for monoids is the
following:

Problem 1.1.1.1 (Thue, [82]). Given a monoid M , does there exist a presentation pE,Rq of
M such that there exists an algorithm deciding, for all u, v P E˚, whether πpuq “ πpvq? 1

Although the negative results of Post and Markov prove that there exist monoids for which
such an algorithm doesn’t exist, there are techniques to solve the word problem for some well-
behaved monoids. The technique we are particularly interested in is based on rewriting theory.

1Any reader not convinced of the utility of such an algorithm should prove whether the words stssttsstst and
tsttstttsts are equal in B`3 .
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1.1.2 Rewriting

Rewriting techniques became widespread in the 1930s in multiple contexts. It is therefore not
surprising that the first paper studying rewriting theory in itself was published in 1941 by
Newman. At the tie, the two main applications of rewriting were to provide solutions to the word
problem (both in the case of monoids and of other structures), and in Church’s λ-calculus [19],
where the β-reduction forms a rewriting rule. We cannot resist quoting the description of
rewriting theory given by Newman in [67]:

The name “combinatorial theory” is often given to branches of mathematics in which
the central concept is an equivalence relation defined by means of certain “allowed
transformations” or “moves”. A class of objects is given, and it is declared of certain
pairs of them that one is obtained from the other by a “move”; and two objects are
regarded as equivalent if, and only if, one is obtainable from the other by a series of
moves. [...] In many of such theories the moves fall naturally into two classes, which
may be called “positive” and “negative”. Thus in a free group the cancelling of a
pair of letters may be called a positive move, the insertion negative; in topology the
breaking of an edge, in [λ-calculus] the application of [β-reduction], may be taken as
positive moves.

The idea behind rewriting theory is that, given a presentation pE,Rq, it is useful to consider
the order relation generated by R in order to study the equivalence relation that it generates. To
do that, we need a bit more structure on a presentation: we need a distinguished orientation of
each generating relation. Let us define a string rewriting system (or word rewriting system) as
a set E of generators and a set R of generating relations, together with source and target maps
s, t : R Ñ E˚. Of course, by forgetting about the orientation, one can see any string rewriting
system as a presentation. For example, the following string rewriting system is a presentation
of B`3 :

B`3 “ xs, t, a|α : tañ as, β : stñ a, γ : sasñ aa, δ : saañ aaty.

Starting from an element f of R, an element of the form ufv, such as aβt : asttñ aat is called
a rewriting step. A sequence of rewriting steps, each one rewriting the previous one’s target,
is called a rewriting path. Finally, a sequence consisting of both rewriting steps and inverse
rewriting steps is called an equivalence path. In order to provide a solution to the word problem
for B`3 , let us showcase two properties of the string rewriting system presenting B`3 . One, it is a
terminating presentation, which means that there exists no infinite sequence of rewriting steps:

u0 u1 u2 u3
f1 f2 f3

¨ ¨ ¨

Second, it is confluent. Define a branching to be a pair pf, gq of rewriting sequences with the
same source. Confluence holds if, for any branching, there exist rewriting sequences f 1 and g1 of
same target, such that f 1 rewrites the target of f and g1 rewrites the target of g. For instance
in the case of B`3 , the rewriting steps γas : sasas ñ aaas and saγ : sasas ñ saaa form a
branching, leading to the following so-called confluence diagram:

5



aaas

sasas aaas

saaa aata

γas

saγ
δa

aaα

Note that although confluence may be difficult to verify, there exist results relating it to more
elementary properties. General references for rewriting theory are [4], and [10] for the particular
case of string rewriting. In particular, Newman’s lemma [67] shows that for a terminating word
rewriting system to be confluent, it is enough to show the confluence of the local branchings,
that is the branchings pf, gq where both f and g are rewriting steps. The critical pairs lemma
(see for example [10]) further restricts the set of branchings that one needs to check in order
to obtain confluence to the so-called critical pairs, which are in finite number whenever E and
R are. Finally, in the case where one has a terminating string rewriting system, Knuth-Bendix
completion [53] may be used to ensure the confluence.

A word rewriting system that is both terminating and confluent is called convergent. The
point of convergent string rewriting systems is that any monoid which can be presented by a
finite convergent word rewriting system has a decidable word problem, using the so-called normal
form procedure. This led Jansen to the following problem:

Problem 1.1.2.1 (Jansen, [46] [47]). Does there exist a monoid whose word problem is decidable,
but which does not admit a presentation by a finite convergent string rewriting system?

In 1985, Kapur and Narendran [50] studied the case of B`3 . They showed that even if, as
we saw, the monoid B`3 admits a finite convergent presentation, it admits no such presentation
on the set of generators ts, tu. This means in particular that, if one was to show that a monoid
does not admit a finite convergent presentation, one would have to check every possible set of
generators. As a consequence, new methods had to be introduced to answer Jansen’s question.

1.1.3 Squier’s theorems

In 1987, Squier introduced in [74] a homological invariant on monoids. By invariant we mean
that, although this invariant is defined on presentations, it actually only depends on the presented
monoid. Squier proved in particular that all monoids presented by a finite convergent string
rewriting system satisfy a homological finiteness condition. Moreover, he was able to produce a
monoid whose word problem is decidable, but which does not satisfy this finiteness condition.
By Squier’s homological theorem, this monoid cannot admit a presentation by a finite convergent
string rewriting system, answering by the negative to Jansen’s problem.

In a posthumous paper published in 1994 [75], Squier introduced a homotopical version of his
finiteness condition. To do that, he showed how to extend a convergent string rewriting system
pE,Rq presenting a monoid M , into a coherent presentation pE,R, Sq of M . Let us explicit the
structures at hand. First, E is a set, and it generates a free monoid E˚. Then we have maps
s, t : RÑ E˚ and R generates the set of rewriting paths, that we denote R˚. Moreover, for any
two elements f and g of R˚ (with suitable sources and targets) we can form two composites:
f ‚1 g, which corresponds to applying f followed by g, but also f ‚0 g, which corresponds to
applying f and g in parallel to the same word.

6



f ‚1 g “

u

v

w

f

g
f ‚0 g “

u1

u2

v1

v2

f g

These compositions equip pE˚, R˚q with a structure of (one object) 2-category, with elements
of E˚ forming the 1-cells, and rewriting paths forming the 2-cells. The pair pE,Rq on the other
hand forms a 2-polygraph. Polygraphs are presentations for higher-dimensional categories. They
were introduced by Street under the name of computads [78] [79], and later by Burroni [18]. A
3-polygraph is the data of a 2-polygraph pE,Rq together with a set of generating 3-cells S (that
have to be understood as ‘relations between the relation’), with source and target operations
s, t : S Ñ R˚. This data can be arranged in the following way, where the pairs of parallel arrows
denote the operations s and t, and the vertical arrows denote the inclusion:

E R S

E˚ R˚

A 3-polygraph is said to be a coherent presentation of a monoid M if any two parallel
equivalence paths are related through a composite of elements of S (and their inverses). Note
that it is always possible to extend a convergent presentation pE,Rq of a monoid M into a
coherent presentation: it suffices to take in S one generating 3-cell for each pair of parallel
rewriting paths. Squier’s homotopical theorem describes a more “efficient” coherent presentation
of M . In particular, the elements of S correspond to the critical branchings of pE,Rq. Critical
branchings are a particular form of local branchings, and they are furthermore in finite number
if both E and R are finite. So Squier’s homotopical theorem proves that a monoid admitting a
finite convergent presentation also admits a finite coherent presentation. This last property is
the homotopical finiteness condition defined by Squier. This theorem of Squier is the starting
point of what is today called higher-dimensional rewriting.
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1.2 Higher-dimensional rewriting

1.2.1 Squier’s theory and coherence theorems

Squier’s homotopical theorem deals with the rewriting of monoids. Since then, it has been
extended to other kinds of structures, such as algebras [37] or higher-dimensional categories [38]
[39]. The latter is particularly interesting because it can be used to prove coherence theorems
for weak structures. A mathematical structure, such as the notion of monoid or algebra, is often
defined as some data satisfying relations. In the case of monoids, the data is a set and a binary
application, and the relations are the associativity and the unit axioms. In category theory,
one often considers relations that hold only up to isomorphism. One of the simplest examples
of such a structure is that of monoidal categories, in which the product is not associative, but
instead there exist isomorphisms αA,B,C : pA b Bq b C Ñ A b pB b Cq. This additional data
must also satisfy a relation, known as Mac Lane’s pentagon:

pAb pB b Cqq bD
αA,BbC,D

//

“

Ab ppB b Cq bDq

Ab αB,C,D

##

ppAbBq b Cq bD

αA,B,C bD

;;

αAbB,C,D
))

Ab pB b pC bDqq

pAbBq b pC bDq

αA,B,CbD

55

The intended purpose of this relation is that, between any two bracketings of A1b . . .bAn,
there exists a unique isomorphism constructed from the isomorphisms αA,B,C . This statement
was made precise and proved by Mac Lane in the case of monoidal categories [59]. In general
a coherence theorem contains a description of a certain class of diagrams that are to commute.
Coherence theorems exist for various other structures, for example bicategories [61], or V-natural
transformations for a symmetric monoidal closed category V [52].

Coherence results are often the consequence of (arguably more essential [51]) strictification
theorems. A strictification theorem states that a “weak” structure is equivalent to a “strict” (or
at least “stricter”) one. For example, any bicategory is biequivalent to a 2-category, and the same
is true for pseudofunctors (this is a consequence of a general strictification result from [70]). It
does not hold however for pseudonatural transformations.

Squier’s theory is also well-adapted to prove coherence results since the purpose of a coherent
presentation is precisely that “every two equivalence paths are equal up to a higher relation”. Let
us consider for example the structure of a category equipped with a weakly associative tensor
product. The way to apply Squier’s theory is to encode the structure of category equipped
with an associative tensor product into a 4-polygraph Assoc. This 4-polygraph contains one
generating 2-cell coding for the product, and we see the associativity isomorphism as a
rewriting relation given by a 3-cell : V . Finally, MacLane’s pentagon corresponds

8



to a 4-cell of the following shape:

In this setting, the coherence result for categories equipped with an associative product
amounts to showing that any two parallel equivalence paths (built from the cells ) are equal
up to a composite of cells .

1.2.2 Resolutions of monoids and categorification

Squier’s theorem was also extended to build resolutions of monoids, instead of just coherent
presentations. In order to justify this shift, let us talk for a moment about categorification.
The term categorification was coined by Crane [23] [22], and it refers to the general idea of
finding category-theoretic analogues of concepts coming from set-theory. An element of a set
then becomes an object of a category, and an equation becomes an isomorphism. Monoidal
categories are a categorification of monoids, and finite sets can be seen as a categorification
of natural numbers. One interesting observation is that many deep results can be seen as
categorified versions of set-theoretic facts. The coherence theorem for monoidal categories is
an example of this. To understand this phenomenon, let us recall the following parable about
categorification given by Baez and Dolan in [5]:

Long ago, when shepherds wanted to see if two herds of sheep were isomorphic, they
would look for an explicit isomorphism. In other words, they would line up both
herds and try to match each sheep in one herd with a sheep in the other. But one
day, along came a shepherd who invented decategorification. She realized one could
take each herd and ‘count’ it, setting up an isomorphism between it and some set of
‘number’, which were nonsense words like ‘one, two, three, . . . ’ specially designed
for this purpose. By comparing the resulting numbers, she could show that two
herds were isomorphic without explicitly establishing an isomorphism! In short, by
decategorifying the category of finite sets, the set of natural numbers was invented.

Note however that apart from some specific cases, there is no general notion of what the cat-
egorification of a concept is, and in some cases there may exist multiple ones. For example,
the categorification of commutative monoids can equally be seen as being symmetric monoidal
categories, or braided monoidal categories.

To see how this is relevant to our setting, let us consider a monoid M acting on a category
C. This means that for any m P M we have an endofunctor rmsC : C Ñ C, such that for all
m,n P M , rmsC ˝ rnsC “ rmnsC and r1sC “ 1C . Suppose now that C is equivalent to a category
D. This means that there exist functors F : C Ñ D and G : D Ñ C together with natural
isomorphisms F ˝G – 1D and G ˝ F – 1C . The problem is the following (see [56] for a general
exposition about similar problems, or [86] for a more gentle introduction):
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Problem 1.2.2.1. Is it possible to transfer the action of M on C to an action of M on D?

One way of doing this would be to define rmsD “ F ˝ rmsC ˝ G. However, notice that the
equality rmsD ˝ rnsD “ rmnsD does not hold. Instead, we get natural isomorphisms of the form:

rmsD ˝ rnsD “ F ˝ rmsC ˝G ˝ F ˝ rnsC ˝G – F ˝ rmsC ˝ rnsC ˝G “ F ˝ rmnsC ˝G “ rmnsD

In turn, these natural isomorphisms will themselves satisfy some equations. In the end, we do
not get an action of M on D. However, we get an action of the 2-category presented by the
standard coherent presentation ofM on D. The 2-category presented by a coherent presentation
pE,R, Sq of M is the 2-category obtained by identifying any two parallel equivalence paths.2

If we want to extend this solution to actions of monoids on higher categories, with a weaker
notion of equivalence, then the equations between the natural isomorphisms will only hold up
to a higher morphism. In order to account for that, we use the notion of resolution of a monoid
M .

Recall that an pω, 1q-category is a (strict) ω-category where all the k-cells are invertible, for
k ě 2. Then an pω, 1q-polygraph is a system of generators for an pω, 1q-category. If Σ is such
an pω, 1q-polygraph, then the pω, 1q-category it generates has as (uninvertible) 1-cells the words
on Σ1, and as (invertible) 2-cells sequences formed of elements of Σ2 and of their inverses (they
correspond to the equivalence paths in the setting of string rewriting). Then a resolution of
a monoid M is an pω, 1q-polygraph such that pΣ1,Σ2q forms a presentation of Σ, and for any
two parallel n-cells f and g in the pω, 1q-category generated by Σ (with n ě 2), there exists an
pn`1q-cell f Ñ g. Using the machinery of the model structure on pω, 1q-categories [55], Σ forms
a cofibrant replacement of M (where we see M as a one-object pω, 1q-category).

In [40], Guiraud and Malbos extended Squier’s homotopical theorem, proving that, starting
from a convergent presentation pE,Rq of a monoid M , it is possible to extend that presentation
into a resolution Σ of M , such that the pn ` 1q-cells of Σ correspond to the n-fold critical
branchings. In particular, those critical branchings are in finite number if pE,Rq is finite,
leading to a refinement of Squier’s homotopical finiteness condition.

2To be more precise, we should talk about the p2, 1q-category presented. Otherwise, we are only considering
rewriting paths and not equivalence paths.

10



1.3 Coherence through higher-dimensional rewriting

The rest of this introduction presents an outline of the content of this thesis. In this section, we
focus on Chapters 2 and 3. In Chapter 2, we start by recalling a number of classical definitions
and results of higher-dimensional rewriting, and we apply them to prove coherence theorems
for bicategories and pseudofunctors. Then in Chapter 3, we prove a coherence theorem for
pseudonatural transformations. We will see that the techniques from Chapter 2 fail in this case.
In order to overcome this difficulty, we prove a Squier-like theorem adapted to our needs.

1.3.1 Rewriting and polygraphs

Recall that an pn, pq-category is a category where all k-cells are invertible, for k ą p. In
particular, pn, 0q-categories are commonly called n-groupoids, and pn, nq-categories are just n-
categories. There is a corresponding notion of pn, pq-polygraph. If Σ is an pn, pq-polygraph,
we denote by Σ˚ppq the free pn, pq-category generated by Σ, or simply Σ˚ if p “ n. All those
definitions are made precise in Section 2.1.

To illustrate the content of Chapter 2, let us go back to the 4-polygraph Assoc described
in Section 1.2.1. As we said, this polygraph encodes the structure of a category equipped with
a weakly associative tensor product. Let us consider the p4, 2q-category generated by Assoc,
that we denote Assoc˚p2q. It has one object, its 1-cells are freely generated by (and so are
in bijections with the integers). Its 2-cells are generated by (so they are forests of binary
trees). Its 3-cells are the equivalence paths of the associativity relation and its 4-cells are
generated by . To understand how Assoc encodes the structure of a category equipped
with a weakly associative tensor product, let us define another p4, 2q-category.

Recall first that there is a p2, 1q-category Cat, whose objects are categories, morphisms are
functors, and 2-cells are natural isomorphisms (so the 2-cells are invertible). We can therefore
see Cat as a p3, 1q-category, where all the 3-cells are identities. Moreover, the cartesian product
makes Cat into a monoidal 3-category. By delooping, we can see Cat as a p4, 2q-category with
one object. The 1-cells are categories, and the “0-composite” of two categories C and D is the
category C ˆD.

Let us now understand what a functor (of p4, 2q-categories) F from Assoc˚p2q to Cat is.
On 0-cells, F has to send the unique object of Assoc to the unique object of Cat. On 1-
cells, F sends the cell to a category, that we denote C. As a consequence, F sends the 1-cell
of length n of Assoc˚p2q to Cˆn. So on 2-cells, F sends the 2-cell : ñ to a functor
b : C ˆ C Ñ C. As our notation suggests, the 3-cell is sent to a natural isomorphism α,
which shows that b is associative up to isomorphism. Finally, the 4-cell is sent by F to
an identity, which means that α has to satisfy the pentagon equation. What we just showed is
that the data of F : Assoc˚p2q Ñ Cat is equivalent to the data of a category equipped with
a weakly associative tensor product. In Section 2.3 and 3.1, we extend this correspondence to
bicategories, pseudofuntors and pseudonatural transformations between them.

Let us show what this correspondence means for coherence. The coherence result about
categories equipped with a weakly associative tensor product states that all formal composite
of the natural isomorphisms α are equal. But such formal composites correspond exactly to
equivalence paths in Assoc˚p2q. So in the end, the coherence theorem is equivalent to saying
that Assoc is 3-coherent, that is between every pair of parallel 3-cells A, B in Assoc˚p2q, there
exists a 4-cell α : A �?B in Assoc˚p2q.

In order to prove that Assoc˚p2q is 3-coherent, we rely on the properties of confluence and
termination of the rewriting system generated by . The precise definitions of confluence and
termination in this context can be found in Section 2.2.

11



To prove that confluence and termination imply 3-coherence, we rely on a version of Squier’s
theorem for rewriting in 2-categories proved in [38]. Stating Squier’s theorem requires the notion
of critical branchings. Those are defined in Section 2.2.2. A local branching in Assoc is a pair
of rewriting steps of same source. Local branchings are ordered by adjunction of context, that
is a branching pf, gq is smaller than a branching pu ‹i f ‹i v, u ‹i g ‹i vq for any 2-cells u and v
and i “ 0, 1. There are three types of local branchings:

• A branching of the form pf, fq is called aspherical .

• A branching of the form pf ‹i spgq, spfq ‹i gq for i “ 0 or 1 is called a Peiffer branching.

• Otherwise, pf, gq is called an overlapping branching.

Overlapping branchings that are also minimal are called critical branchings.

There is exactly one critical branching in Assoc, of source . Note that the critical

pair appears as the 2-source of the generating 4-cell of Assoc. In particular there is a one-to-one
correspondence between generating 4-cells and critical pairs. A 3-convergent 4-polygraph that
satisfies this property is said to satisfy the 3-Squier condition.

Proposition 4.3.4 in [38] states that a 4-polygraph satisfying the 3-Squier condition is 3-
coherent (and more generally, that any pn ` 1q-polygraph satisfying the n-Squier condition is
n-coherent). In particular, the 4-polygraph Assoc satisfies the 3-Squier condition, so it is 3-
coherent.

As an application of the theory recalled in this chapter, we prove coherence theorems for
bicategories and pseudofunctors. To this end, we exhibit in Section 2.3, for any setsC andD and
any application f : CÑ D two 4-polygraphs BiCatrCs and PFonctrf s presenting respectively
the structures of “bicategories whose set of objects is C” and “pseudofunctor whose map between
sets of objects is f ”. Applying the same reasoning as the one we just presented for Assoc, we
prove our first two results:

Theorem 2.3.1.6 (Coherence for bicategories). Let C be a set.
The 4-polygraph BiCatrCs is 3-convergent and the free p4, 2q-category BiCatrCs˚p2q is 3-

coherent.

Theorem 2.3.2.7 (Coherence for pseudofunctors). Let C and D be sets, and f : C Ñ D an
application.

The 4-polygraph PFonctrf s is 3-convergent and the free p4, 2q-category PFonctrf s˚p2q is 3-
coherent.

The goal of Chapter 3 is to prove a similar result for pseudonatural transformations. However,
the approach developed in Chapter 2 fails, because the p4, 2q-polygraph PNTransrf ,gs (where
f and g are applications CÑ D) encoding the structure of pseudonatural transformation is not
3-confluent.

1.3.2 The 2-Squier condition of depth 2

In order to circumvent this difficulty, we introduce the notion of 2-Squier condition of depth 2.
We say that a p4, 2q-polygraph Σ satisfies the 2-Squier condition of depth 2 if it satisfies the
2-Squier condition, and if the 4-cells of Σ correspond to the critical triples induced by the 2-cells
(with a prescribed shape).

For example, the 4-polygraph Assoc satisfies the 2-Squier condition of depth 2: its un-
derlying 2-polygraph is both 2-terminating and 2-confluent. Moreover, the only critical pair
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corresponds to the associativity 3-cell. Finally, Mac Lane’s pentagon can be written as follows,
which shows that it corresponds to the only critical triple:

%9

�&

%9

�)
“

�&

2F

%9

�,

5I

�)

�?

2F

�,

%9

%9

8L

%9

5I 8L

(1.3.1)

We prove the following result about p4, 2q-polygraph satisfying the 2-Squier condition of
depth 2:

Theorem 3.1.3.5. Let Σ be a p4, 2q-polygraph satisfying the 2-Squier condition of depth 2.
For every parallel 3-cells A,B P Σ

˚p2q
3 whose 1-target is a normal form, there exists a 4-cell

α : A �?B in the free p4, 2q-category Σ
˚p2q
4 .

Note in particular that the 2-Squier condition of depth 2 does not imply the 3-coherence of
the p4, 2q-category generated by the polygraph, but only a partial coherence, “above the normal
forms”. For example in the case of Assoc, the only normal form is the 1-cell . So Theorem
3.1.3.5 only expresses the coherence of the 3-cells of Assoc˚p2q whose 1-target is . Conversely,
Squier’s theorem as extended in [38] concerns all the 3-cells of Assoc˚p2q, regardless of their
1-target.

The p4, 2q-polygraph PNTransrf ,gs does not satisfy the 2-Squier condition. However, we
identify in Section 3.1.3 a sub-p4, 2q-polygraph PNTrans``rf ,gs of PNTransrf ,gs that does.
By Theorem 3.1.3.5, we get a partial coherence result in PNTrans``rf ,gs˚p2q. The rest of
Section 3.1 extends this partial coherence result to the rest of PNTransrf ,gs˚p2q. To do so, we
define a weight application from PNTransrf ,gs˚p2q to N to keep track of the condition on the
1-targets of the 3-cells considered. We thereby prove the following result:

Theorem 3.1.1.8 (Coherence for pseudonatural transformations). Let C and D be sets, and
f ,g : CÑ D applications.

Let A,B P PNTransrf ,gs
˚p2q
3 be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell α : A �?B P PNTransrf ,gs
˚p2q
4 .

1.3.3 Sketch of the proof of Theorem 3.1.3.5

The intuition behind the proof of Theorem 3.1.3.5 is the following. Let Σ be a 3-polygraph
satisfying the 2-Squier condition. Then a generating 3-cell of Σ has a shape of the form

f 1

�(Af,g

��

f &:

g $8
g1

Ui

(1.3.2)
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The first intuition that one may have to extend Squier’s Theorem would be to consider this 3-cell
as a rewriting step. However, in general this approach fails. In particular there is no guarantee
that such a rewriting system terminates. A better idea would be to consider A as rewriting the
left-hand side of (1.3.2) (that is, the diverging pair pf, gq) into the right-hand side (that is, the
confluent pair pf 1, g1q). This way in particular we will be able to make use of the 2-termination
of Σ.

In order to make this intuition precise we first introduce the notion of white n-category. Let
j ă k ă n be integers. In an n-category C, one can define the j-composition of pk ` 1q-cells A
and B using the k-composition and whiskering by setting:

A ‹j B :“ pA ‹j skpBqq ‹k ptkpAq ‹j Bq “ pskpAq ‹j Bq ‹k pA ‹j tkpBqq.

This is made possible by the exchange axiom between ‹k and ‹j . A white n-category is an n-
category in which the exchange axioms between ‹k and ‹0 need not hold (even up to isomorphism)
for any k ą 0. As a result, 0-composition is not defined for k-cells, for k ą 1. The notion of white
2-category coincides with the notion of sesquicategory (see [80]). In general, white n-categories
are categories enriched in pn´1q-catgeories, where the category of pn´1q-categories is equipped
with the so-called “funny” tensor product [87].

Most concepts from rewriting have a straightforward transcription in the setting of white
categories. In particular in Section 3.2.1, we define the notions of white pn, kq-category and
white pn, kq-polygraph. We also give an explicit description of the free white pn, kq-category
Σwpkq generated by a white pn, kq-polygraph Σ.

In this setting, we give a precise definition of the notion of partial coherence. Let C be a white
p4, 3q-category and S be a set of distinguished 2-cells of C. We call such a pair a pointed white
p4, 3q-category. We say that C is S-coherent if for any parallel 2-cells f, g P S and any 3-cells
A,B : f V g P C, there exists a 4-cell α : A �?B P C. In particular any p4, 3q-white category is
H-coherent, and a p4, 3q-white category C is C2-coherent if and only if it is 3-coherent (where C2

is the set of all the 2-cells of C). Theorem 3.1.3.5 amounts to showing that the free p4, 2q-category
Σ˚p2q is SΣ-coherent, where SΣ is the set of all 2-cells whose target is a normal form.

Finally, we give a way to modify partially coherent categories while retaining information
about the partial coherence. Let pC, Sq and pC1, S1q be pointed white p4, 3q-categories. We define
a relation of strength between pointed white p4, 3q-categories. We show that if pC, Sq is stronger
than pC1, S1q, then the S-coherence of C implies the S1-coherence of C1.

Let us now return to the proof of Theorem 3.1.3.5. Let us fix a p4, 2q-polygraph A satisfying
the 2-Squier condition of depth 2, and denote by SA the set of 2-cells whose target is a normal
form. In particular, pA˚p2q, SAq is a pointed white p4, 3q-category. The first half of the proof
(Section 3.3) consists in applying to pA˚p2q, SAq a series of transformations. At each step, we
verify that the new pointed white p4, 3q-category we obtain is stronger than the previous one. In
the end, we get a pointed white p4, 3q-category pFwp3q, SEq, where F is a white 4-polygraph. In
dimension 2, the 2-cells of F consists of the union of the 2-cells of A together with their formal
inverses. We denote by f̄ the formal inverse of a 2-cell f P A˚. Let F3 be the set of 3-cells of F .
It contains 3-cells Cf,g for any minimal local branching pf, gq, and cells ηf for any 2-cell f P A
of the following shape:

g

�(Cf,g

��

f̄ &:

f 1
$8

g1

Ui

1spfq

!5

f
�1

ηf
��

f̄

=Q
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Notice in particular that Cf,g corresponds to the cell Af,g of (1.3.2), rotated by 90˝. The result
of this transformation is that in Fwp3q, for any 2-cells f, g P SE , the 3-cells of the form f V g
(and 4-cells between them) are in one-to-one correspondence with 3-cells of the form ḡ ‹1 f V 1û
(and 4-cells between them), where û is the common target of f and g. More generally we study
cells of the form hV 1û, and 4-cells between them.

We start by studying the rewriting system induced by the 3-cells. Note that the white 4-
polygraph F is not 3-terminating, so we cannot use a Squier-like theorem to conclude. However,
let NrA˚1s be the free commutative monoid on A˚1 , the set of 1-cells of A˚. There is a well-founded
ordering on A˚1 induced by the fact that A is 2-terminating. This order induces a well-founded
ordering on NrA˚1s called the multiset order. We define an application p : Fw

2 Ñ NrA˚1s which
induces a well-founded ordering on Fw

2 , the set of 2-cells of Fw, and show that the cells Cf,g
are compatible with this ordering (that is, the target of a cell Cf,g is always smaller than the
source). Thus, the fragment of F3 consisting of the cells Cf,g is 3-terminating.

The cells ηf however constitute a non-terminating part of Fw
3 . To control their behaviour,

we introduce a weight application wη : Fw
3 Ñ NrA˚1s, that essentially counts the number of ηf

cells present in a 3-cell. In Section 3.4.3, using the applications p and wη, we prove that for any
h P Fw

2 whose source and target are normal forms (for A2), and for any 3-cells A,B : h V 1û
in Fw

3 , there is a 4-cell α : A �?B in Fwp3q. Finally, we prove that this implies that Fwp3q is
SE -coherent, which concludes the proof.

1.3.4 Conclusion of Chapter 3

The combinatorics of the proof of Theorem 3.1.3.5 is convoluted enough that a generalisation
of these techniques seems dubious. Still, let us make a few observations. The first observation
is that the 2-Squier condition of depth 2 associates to any 3-fold critical branching pf, g, hq a
4-cell Af,g,h which has the shape of a cube (see for example (1.3.1) or (3.1.4)):

%9

Af,g
�)

A

%9

B1

�)Af,h
�)

f
5I

g %9

h
�)

Ag,h

5I

�)

Af,g,h �?

f
5I

h
�)

%9

B2

%9

5I 5I

%9

5I

Similarly, the confluence diagram associated to a 4-fold critical branching should have the shape
of a hypercube.

Notice that there is an action of the symmetric group S3 on the critical branchings (obtained
by permuting the rewriting steps). How does this action of S3 affect the cell Af,g,h? If we simply
exchange f and h, we get Ah,g,f , which is just the inverse of Af,g,h with respect to the composition
‚2. Some permutations are more difficult to express in the globular setting, such as Ag,f,h. If we
see Af,g,h as a cube however, then every permutation corresponds to a symmetry of the cube.
Understanding this action of S3 is our first clue in finding the link between higher-dimensional
rewriting and cubical ω-categories.
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The second clue is the appearance of the following cells in Section 3.3:

f

}�

f

!
εf
��

1tpfq

1spfq

!5

f
�1

ηf
��

f̄

=Q

Together with the relations they verify (see (3.3.1) and (3.3.2)), they are very similar to the
connections of a cubical ω-category (see 4.1). Connections are a type of degeneracies present
in cubical ω-categories, which associate to any 1-cell f two 2-cells Γ´1 f and Γ`1 f , which can be
represented as follows:

f

ε1y

f ε1yΓ´1 f

ε1x

f

ε1x fΓ`1 f

The last observation stems from studying the proof of the main theorem from [40]: the proof
relies on the construction of a natural transformation (called a normalisation strategy) between
two ω-categories. The combinatorics of such an object is slightly difficult to describe in globular
ω-categories, but it becomes very simple in cubical ω-categories, as shown in Section 4.4.2.
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1.4 Cubical ω-categories for rewriting

All these observations motivate us to look at higher-dimensional rewriting from the point of
view of cubical ω-categories, which we do in Chapter 5. Before that, the first obstacle on our
way is that higher-dimensional rewriting requires the use of pω, pq-categories, a notion not yet
studied in the cubical setting. Chapter 4 is devoted to its study.

1.4.1 Cubical categories and their relationship with other structures

Handling higher structures such as higher categories usually involves conceiving them as con-
glomerates of cells of a certain shape. Such shapes include simplices, globes or cubes. Simplicial
sets have been successfully applied to a wide variety of subjects. For example, they occur in
May’s work on the recognition principle for iterated loop spaces [64], in Quillen’s approach to
rational homotopy theory [71], and in Bousfield and Kan’s work on completions, localisation,
and limits in homotopy theory [11].

Cubical objects however, have had a less successful history until recent years. Although
cubical sets were used in early works by Serre [73] and Kan [48], it became quickly apparent that
they suffer from a few shortcomings. For instance, cubical groups are not automatically fibrant,
and the cartesian product in the category of cubical sets fails to have the correct homotopy
type. As a result, cubical sets mostly fell out of fashion in favour of simplicial sets. However
later work on double groupoids, by Brown and Higgins, felt the need to add a new type of
degeneracies on cubical sets: the so-called connections that we evoked earlier [17] [14]. By using
these connections, a number of shortcomings of cubical objects were overcome. In particular the
category of cubes with connections is a strict test category [21] [62], and group objects in the
category of cubical sets with connections are Kan [83]. Cubical objects with connections were
particularly instrumental to the proof of a higher-dimensional Van-Kampen theorem by Brown
and Higgins [16]. Other applications of cubical structures arise in concurrency theory [29] [30]
[33], type theory [9], algebraic topology [34]. Of interest is also the natural expression of the
Gray-Crans tensor product of ω-categories [24] in the cubical setting [3] [2].

A number of theorems relating objects of different shapes exist. For instance, Dold-Kan’s
correspondence states that in the category of abelian groups, simplicial objects, cubical sets with
connections and strict ω-groupoids (globular or cubical with connections) are all equivalent to
chain complexes [49] [15].

Outside the category of abelian groups, the relationships between these notions become less
straightforward. We are mainly concerned with the two following results:

• The first result is the equivalence between cubical and globular ω-groupoids [12] [14] proven
in 1981 by Brown and Higgins. Although this equivalence is useful in theory, in practice
it is complicated to make explicit the functors composing this equivalence. This is due to
the fact that the proof uses the notion of crossed complexes as a common ground between
globular and cubical ω-categories.

• The second result is the equivalence between globular and cubical ω-categories proved in
2002 [2] By Al-Agl, Brown and Steiner.

Lastly in 2004, Steiner [77] introduced the notion of augmented directed complexes (a variant
of the notion of chain complexes) and proved the existence of an adjunction between augmented
directed complexes and globular ω-categories.

Globular pω, pq-categories are globular ω-categories where cells of dimension at least p`1 are
invertible. They form a natural intermediate between globular ω-categories, which correspond to
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the case p “ ω, and globular ω-groupoids, which correspond to the case p “ 0. As a consequence,
they form a natural setting in which to develop directed algebraic topology [35] or rewriting [40].

However, both directed algebraic topology and rewriting seem to favour the cubical geometry
(see once again [38] for directed algebraic topology, and [57] for rewriting), hence the need for a
suitable notion of cubical pω, pq-categories.

The aim of Chapter 4 is to define such a notion, so that when p “ 0 or p “ ω, we respectively
recover the notions of cubical ω-groupoids and cubical ω-categories. Moreover, we bridge the
gap between two results we cited previously by proving the following theorem:

Theorem 4.3.1.3. Let λ : ω -CubCat Ñ ω -Cat and γ : ω -Cat Ñ ω -CubCat be the
functors from [2] forming an equivalence of categories between globular and cubical ω-categories.
For all p ě 0, their restrictions still induce an equivalence of categories:

pω, pq -Cat pω, pq -CubCat

λ

γ

–

In particular, we recover the equivalence between globular and cubical ω-groupoids in a more
explicit fashion.

We also define a notion of pω, pq-augmented directed complexes and show how to extend
Steiner’s adjunction. This is done in two steps. First we define functors ZC : ω -CubCat Ñ
ADC and NC : ADC Ñ ω -CubCat (where ADC is the category of augmented directed
complexes), as cubical analogues of the functors ZG : ω -Cat Ñ ADC and NG : ADC Ñ

ω -Cat forming Steiner’s adjunction. We study the relationship between both those two pairs
of functors and show that the functor ZC is left-adjoint to NC (see Proposition 4.3.2.8). Then
we show how to restrict the functors ZG, NG, ZC and NC to pω, pq-structures. In the end, we
get the following result:

Theorem 4.3.2.12. Let λ : ω -CubCat Ñ ω -Cat and γ : ω -Cat Ñ ω -CubCat be the
functors from [2] forming an equivalence of categories between globular and cubical ω-categories.
Let ZG : ω -Cat Ñ ADC and NG : ADC Ñ ω -Cat be the functors from [77] forming
an adjunction between globular ω-categories and ADCs. Let ZC : ω -CubCat Ñ ADC and
NG : ADCÑ ω -CubCat be the cubical analogues of ZG and NG defined in Section 4.3.2.

For all p P NYtωu, their restrictions induce the following diagram of equivalence and adjunc-
tions between the categories pω, pq -Cat, pω, pq -CubCat and pω, pq-ADC, where both triangles
involving ZC and ZG and both triangles involving NC and NG commute up to isomorphism:

pω, pq -Cat pω, pq -CubCat

pω, pq-ADC

NG

ZG

NC

ZC

γ

λ

K

K

–
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1.4.2 Invertibility in cubical categories

The main combinatorial difficulty of Chapter 4 consists in defining the appropriate notion of
invertibility in cubical ω-categories. Before giving an account of the various invertibility no-
tions that we consider in the cubical setting, we start by recalling the more familiar notion of
invertibility in p2, 1q-categories.

Informally, a globular pω, pq-category is a globular ω-category in which every n-cell is invert-
ible, for n ą p. For this definition to make rigorous sense, one first needs to define an appropriate
notion of invertible n-cells. Let us fix a globular 2-category C. There are two ways to compose
two 2-cells A and B in C2, that we denote by ‚1 and ‚0 and that are respectively known as the
vertical and horizontal compositions. They can respectively be represented as follows:

A

B
A B

We denote by I0f : y Ñ x the inverse (if it exists) of a 1-cell f : xÑ y in C1. A 2-cell A P C2

can have two inverses (one for each composition), that we denote respectively by I1A and I0A.
Their source and targets are as follows:

x y

f

g

A x y

g

f

I1A y x

I0f

I0g

I0A

Note that if a 2-cell is I0-invertible, then so are its source and target, but that the I1-invertibility
of a 2-cell does not imply any property for its source and target. So if C is a 2-category where
every 2-cell is I0-invertible, then C is a globular 2-groupoid (indeed, a cell 1f P C2 is I0-invertible
if and only if f is I0-invertible). Therefore, we say that a 2-cell is invertible if it is I1-invertible,
and C is a globular p2, 1q-category if each 2-cell is I1-invertible.

In a cubical 2-category C (in what follows, cubical categories are always equipped with
connections), the source and target of a 1-cell f P C1 are respectively denoted B´1 f and B`1 f , and
the source and target operations s, t : C2 Ñ C1 are replaced by four faces operations Bαi : C2 Ñ C1

(for i “ 1, 2 and α “ ˘), satisfying the cubical identity Bα1 B
β
2 “ B

β
1 B

α
1 . A 2-cell A P C2 can be

represented as follows, where the corners of the square are uniquely defined 0-cells thanks to the
cubical identity:

B
´
1 A

B
`
1 A

B
´
2 A B

`
2 AA

There still are two ways to compose two 2-cells A,B P C2, that we denote respectively by
A ‹1 B and A ‹2 B, which can be represented as follows:
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A

B A B

We say that a 2-cell A P C2 is Ri-invertible if it is invertible for the composition ‹i (i “ 1, 2).
The faces of R1A and R2A are as follows (where R1f : y Ñ x denotes the inverse of a 1-cell
f : xÑ y):

x y

z t

f

g

h iA

z t

x y

g

f

R1h R1iR1A

y x

t z

R1f

R1g

i hR2A

Note that contrary to the notion of I1-invertibility, the R1 and R2-invertibility of A require
respectively that Bα2A and Bα1A are R1-invertible (for α “ ˘). We say that A has respectively
an R1 or an R2-invertible shell if that is the case. As a consequence, if C is a cubical 2-category
where every 2-cell is R1-invertible, then every 1-cell of C is R1-invertible (one can even show
that such a cubical 2-category is actually a cubical 2-groupoid) and the same property holds for
R2. In order to have a good notion of cubical pω, pq-categories nonetheless, we have to be more
careful in our definition of an invertible cell.

This is done in Section 4.2.1, where we define a notion of invertibility for an n-cell (n ě 1).
Let us first recall that, using the structure of connections on C, one can associate to any 1-cell
f : xÑ y in C1, the cells Γ´1 f and Γ`1 f , which can be represented as follows:

x y

y y

f

ε1y

f ε1yΓ´1 f

x x

x y

ε1x

f

ε1x fΓ`1 f

We say that a 2-cell A P C2 is invertible if the following composite (denoted ψ1A) is R1-invertible:

Γ`1 B
´
2 A A Γ´1 B

`
2 A

Note in particular that B´2 ψ1A and B`2 ψ1A are both identities (which are always invertible),
and so the R1-invertibility of ψ1A does not require the invertibility of any face of A. The link
between invertibility, Ri-invertibility and having an Ri-invertible shell is given by the following
proposition:

Proposition 4.2.2.2. Let C be a cubical ω-category, A P Cn and 1 ď j ď n. A cell A P Cn is
Rj-invertible if and only if A is invertible and has an Rj-invertible shell.
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We also investigate in Section 4.2.3 another notion of invertibility, with respect to a kind of
“diagonal” composition, that we call the Ti-invertibility. If A is a 2-cell in a cubical 2-category,
then the T1-inverse of A (if it exists) has the following faces:

x y

z t

f

g

h iA

x z

y t

h

i

f gT1A

We then define a suitable notion of Ti-invertible shells and prove the following result, analogous
to Proposition 4.2.2.2:

Proposition 4.2.3.5. Let C be a cubical ω-category, and A P Cn, with n ě 2. Then A is
Ti-invertible if and only if A is invertible and has a Ti-invertible shell.

The study of the relationship between Ri-invertibility, Ti-invertibility and (plain) invertibility
gives rise to the following Proposition:

Proposition 4.3.1.2. Let C be a cubical ω-category, and fix n ą 0. The following five properties
are equivalent:

1. Any n-cell in Cn is invertible.

2. For all 1 ď i ď n, any n-cell in Cn with an Ri-invertible shell is Ri-invertible.

3. Any n-cell in Cn with an R1-invertible shell is R1-invertible.

4. Any n-cell A P Cn such that Bαj A P Im ε1 for all j ‰ 1 is R1-invertible.

5. Any n-cell in ΦnpCnq is R1-invertible.

Moreover, if n ą 1, then all the previous properties are also equivalent to the following:

6. For all 1 ď i ă n, any n-cell in Cn with a Ti-invertible shell is Ti-invertible

7. Any n-cell in Cn with a T1-invertible shell is T1-invertible.

We can now define a cubical pω, pq-category as a cubical ω-category where every n-cell is
invertible, for n ą p, and we prove the equivalence with the globular notion.

1.4.3 Permutations and cubical pω, pq-categories

In Section 4.4.1, we extend the notion of the Ti-invertibility of an n-cell to that of the σ-
invertibility, for σ an element of the symmetric group Sn. In particular, we show that if C is a
cubical pω, 1q-category, then every cell of C is Ti-invertible, and therefore σ-invertible, for any
σ P Sn. Consequently, we get an action of the symmetric group Sn on the set of n-cells Cn,
making C a symmetric cubical category (in a sense related to that of Grandis [34]).

In Section 4.4.2, we apply the notion of invertibility to k-transfors between cubical ω-
categories. A k-transfor (following terminology by Crans [25]) from C to D is a family of
applications Cn Ñ Dn`k satisfying some compatibility conditions. These compatibility condi-
tions come in two varieties, leading to the notions of lax and oplax k-tranfors (respectively called
k-fold left and right homotopies in [2]). In particular, the lax or oplax 0-transfors are just the
functors from C to D, and a lax or oplax 1-transfor η between functors F and G is the cubical
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analogue of a lax or oplax natural transformation from F to G. For example, a 0-cell in x P C0

is sent to a 1-cell ηx : F pxq Ñ Gpxq in D1, and a 1-cell f : xÑ y in C1 is sent to a 2-cell ηf in
D2 of the following shape (respectively if η is lax or oplax):

F pxq F pyq

Gpxq Gpyq

F pfq

Gpfq

ηx ηyηf

F pxq Gpxq

F pyq Gpyq

ηx

ηy

F pfq Gpfqηf

As shown in [2], Section 10, lax and oplax transfors from C to D respectively form cubical
ω-categories LaxpC,Dq and OpLaxpC,Dq. We define notions of pseudo transfors as transfors
satisfying some invertibility conditions. In particular in the case of 1-transfors, we require for
any 1-cell f in C1 that ηf is T1-invertible. We show that pseudo lax and pseudo oplax transfors
from C to D still form cubical ω-categories PsLaxpC,Dq and PsOpLaxpC,Dq, and prove the
following result:

Proposition 4.4.2.6. For all cubical ω-categories C and D, the cubical ω-categories PsLaxpC,Dq
and PsOpLaxpC,Dq are isomorphic.

For example if η is a lax 1-transfor, then the application C1 Ñ D2 which is part of the oplax
1-transfor associated to η maps a cell f in C1 to a 2-cell T1ηf in D2.
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1.5 Higher-dimensional rewriting in cubical categories

The goal in Chapter 5 is to apply the structure of cubical pω, pq-category developed in Chapter
4 to higher dimensional rewriting. As we will see this approach greatly simplifies the proof
techniques from [40], allowing us to prove theorems which were unattainable by other means.
Before stating those results, let us go back to the categorification problem that we evoked earlier.

1.5.1 Model structure and the Gray tensor product

As we saw, higher dimensional rewriting can be applied to many different structures. Squier’s
theorem dealt with rewriting in monoids. In Chapters 2 and 3 we were interested in rewriting in 2-
categories with a fixed set of objects and arrows. Squier-like theorems also exist for algebras [37].
One natural question is whether it is possible to find a suitable framework that encompasses
all those results. The idea we propose is to see monoids and 2-categories (with a fixed set of
objects and arrows) as algebras over (set-theoretic) operads. In order to see Squier-like theorems
as categorification results (as in Section 1.2.2) however, we need to have a model structure on
O-algebras in ω-groupoids, for any operad O (although throughout Chapter 5 we only work in
the case where O is the operad of monoids).

More precisely, we would like to use the adjunction between O-algebras in ω-groupoids and
ω-groupoids in order to lift the model structure from ω-groupoids to O-algebras in ω-groupoids.
Multiple sufficient conditions exist in the literature to perform this kind of transfer (see for
example [72], [44] or [8]). They all have in common that ω-groupoids have to form a monoidal
model category. A monoidal model category is a biclosed monoidal category equipped with a
model structure such that the product and the model structure interact nicely together. In
particular, it has to satisfy the pushout-product axiom, see Section 5.1.2.

However, ω-groupoids equipped with the cartesian product do not form a monoidal model
category, as noted by Lack [54]. As for the Gray tensor product, whether it makes ω-groupoids
into a monoidal model category is still an open problem. This seems like a reasonable conjecture
given that Lack proved in [54] that the pseudo Gray tensor product equips 2-categories with a
monoidal model structure. Unfortunately we fall short of proving the result for ω-groupoids,
but we still show in Section 5.1.2 that part of the pushout-product is satisfied. This has in
particular the nice consequence that the Gray tensor product of two free ω-groupoids is still
free, a fact that will be useful later on. Remark also that the apparition of the Gray tensor
product here reinforces our intuition that cubical ω-categories are the right setting for studying
higher-dimensional rewriting.

The first step towards this goal is to find a suitable notion of polygraphs for Gray monoids
(where Gray monoids are monoid objects in ω-groupoids, equipped with the Gray tensor prod-
uct). Thankfully, a general result by Garner [28] allows us to do this, using the fact that Gray
monoids are monadic over pre-cubical sets. We call a Gray polygraph this associated notion of
polygraph. Let us look again at the presentation of B`3 from Section 1.1.2. In the setting of
Gray monoids, it corresponds to a Gray polygraph Σ such that Σ0 “ ts, tu, the 0-cells of the
Gray monoid generated by Σ are denoted Σ

Gp0q
0 : they form the words on the alphabet Σ0. Just

as for globular polygraphs, the set Σ1 is formed by the cells α, β, γ and δ (with the same sources
and targets), and Σ

Gp0q
1 is formed of all the equivalence paths. There is one main difference with

the globular setting though, which stems from the fact that we use the Gray tensor product.
Indeed, while in the globular setting we were able to compose two rewriting steps f : uÑ u1 and
g : v Ñ v1 in parallel using the composition ‚0, this operation is not available in Gray monoids.
Instead, there exists a 2-cell f b g relating the two composites: the one corresponding to doing
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f followed by g and the one corresponding to g followed by f :

uv uv1

u1v u1v1

ug

u1g

fv fv1f b g

uv1

uv u1v1

u1v

ug

fv

fv1

u1g

fg

The consequence of that is that in Gray monoids, the rewriting paths form the free groupoid
on the rewriting steps. This is actually a special case of a more general phenomenon: starting
from a Gray polygraph Σ, we can look at ΣGp0q the Gray monoid generated by Σ. If we forget
about the monoid structure, then we get an ω-groupoid. We prove in Section 5.1.2 that this
ω-groupoid is also free, over an pω, 0q-polygraph that we denote rΣs. In other words, we have
an isomorphism of ω-groupoids ΣGp0q – rΣs˚p0q. In the case where Σ is the presentation of B`3 ,
then rΣs0 is the set of words of Σ0, while rΣs1 is the set of all rewriting steps formed from the
elements of Σ1.

1.5.2 The two versions of Squier’s theorem

In order to understand the main theorem of Chapter 5, we first need to analyse Squier’s ho-
motopical theorem more closely. Squier’s homotopical theorem can be phrased in two different
ways, that we call respectively the Existence and the Detection Theorem:

Theorem 1.5.2.1 (Existence Theorem). Let Σ be a convergent 2-polygraph. Then there exists
an extension of Σ into a 3-polygraph such that:

• The 3-cells of Σ correspond to the critical branchings.

• The 3-polygraph Σ forms a coherent presentation of M , the monoid presented by Σ.

Theorem 1.5.2.2 (Detection Theorem). Let Σ be a terminating 3-polygraph. Suppose that for
any critical branching pf, gq in Σ, there exists a cell A P Σ3 of the following shape:

f

g

AA (1.5.1)

The Σ forms a coherent presentation of M , the monoid presented by Σ.

The existence theorem has been extended by Guiraud and Malbos in [40] into the following
result:

Theorem 1.5.2.3 (Extended Existence Theorem). Let Σ be a convergent 2-polygraph. Then
there exists an extension of Σ into an pω, 2q-polygraph such that:

• The pn` 1q-cells of Σ correspond to the n-critical branchings.

• The pω, 2q-polygraph Σ forms a polygraphic resolution of M , the monoid presented by Σ.
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These existence and detection theorems have slightly different applications. The existence
theorem is the one which allowed Squier to prove that all monoids with a finite convergent
presentation satisfied his homotopical finiteness condition. Later on the extended one allowed
Guiraud and Malbos to refine this condition. Note that the proof of the extended existence the-
orem is constructive, but the explicit computation of the polygraphic resolution that it provides
is often very complicated.

The detection theorem on the other hand is used to prove that a given 3-polygraphs (obtained
through other means) forms a coherent presentation of a monoid. The Theorem 3.1.3.5 is another
example of a detection theorem used similarly. The main result of Chapter 5 is an extended
detection theorem.

1.5.3 Higher-dimensional rewriting in Gray monoids

The difficulty to give a precise statement for an extended detection theorem lies in generalising
Equation (1.5.1) to higher dimensions. We show in Chapter 3 that in the next dimension it
corresponds to finding, for all critical triple branching, a cell with the shape of a cube, as in
equation (3.1.4). In general for an n-fold critical branching, the corresponding cell should have
the shape of an n-cube. In Section 5.1.3, this condition is made explicit using the notion of
cubical ω-groupoid.

To do that, we first study the structure of the local branchings. Let us start from a
string rewriting system pE,Rq. Then an n-local branching is an n-tuple of rewriting steps
that share the same source. We denote the set of n-local branchings LocBrpE,Rqn. Given
such an n-tuple f̄ “ pf1, . . . , fnq and 1 ď i ď n, we can define a new pn´ 1q-critical branching
Bif̄ :“ pf1; . . . , fi´1, fi`1, . . . , fnq. These operations Bi define a structure of semi-simplicial set on
LocBrpΣq. Defining other operations on local branchings, such as the action of the symmetric
group from Section 1.3.4, we finally get in Section 5.1.3 the following result:

Proposition 5.1.3.4. Let pE,Rq be a string rewriting system. The family of local branchings
LocBrpE,Rq equipped with the applications Bi, εi and b and the action of the symmetric group
forms a simplicial monoid, that is a monoid object in augmented symmetric simplicial sets.

On the other hand, starting from a cubical ω-groupoid C, there is a forgetful functor towards
symmetric cubical sets by Section 4.4.1, where the symmetries come from the Ti-inverses of the
cells. Then from symmetric cubical sets we can forget about the faces B`i , the connections Γ`i
and the identities εi. We are left with a structure of an augmented symmetric simplicial set.
We prove that this functor is lax monoidal, and so induces a functor V from Gray monoids to
simplicial monoids. We are now ready to state our extended detection theorem:

Theorem 5.1.3.8 (Extended Detection Theorem). Let Σ be a terminating targets-only Gray
pω, 1q-polygraph, and let M be the monoid presented by Σ. We suppose that there exists a
morphism of simplicial monoids

Φ : LocBrpΣq Ñ V pΣGp1qq

such that for all A P Σ, ΦpbrpAqq “ A.
Then the morphism ΣGp0q Ñ M is an equivalence of ω-groupoids, meaning that Σ is a

polygraphic resolution of M .

As with Theorem 1.5.2.2 or 3.1.3.5, we require any critical 3-branching to be associated to
a cell of the right shape. The associated cell is given by the map Φ. The analogue of Equation
(1.3.2) or (3.1.4) here is hidden in the fact that Φ is a morphism of simplicial monoids, together
with the equation ΦpbrpAqq “ A. Let us spell out these conditions in low dimensions.
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First for a generating 1-cell f , brpfq is just f , so the condition is that Φpfq “ f . The fact
that Φ is a morphism of monoids implies that this is actually true for any rewriting step f . In
the next dimension, the fact that Σ is targets-only means that any generating 2-cell A P Σ2 can
be represented as follows, with f and g rewriting steps:

f

g A

f

g brpAq

f

g ΦpbrpAqq

Then the pair pg, fq forms a local branching, denoted brpAq. The condition ΦpbrpAqq “ A
implies that A is the canonical filling associated to pg, fq.

One unexpected condition that appears in Theorem 5.1.3.8 is that we require Φ to be defined
on all local branchings. This is to be contrasted to the situation in the detection theorem or
in Theorem 3.1.3.5, where we only require conditions on the critical branching. We investigate
this discrepancy in Section 5.1.3, and prove the following result:

Theorem 5.3.1.14. Let pE,Rq be a string rewriting system, and suppose that for all f P R,
spfq ‰ 1 (which in particular is always true if pE,Rq is terminating). Then LocBrpE,Rq is
freely generated by any choice of critical branchings up to permutation.

This implies in particular that defining Φ on the critical branchings is sufficient in order to
apply Theorem 5.1.3.8. Using this, we are able in Section 5.3.2 to give an explicit of the reduced
standard resolution of a monoidM . The generators of such a resolution were already known [40]
(see Theorem 1.5.2.3), but the explicit description of the faces of the generators is new.

Theorem 5.3.2.3. Let M be a monoid. Let RStdpMq be the following Gray polygraph:

• For any n ě 0, RStdpMqn consists of pn`1q-tuples pm1, . . . ,mn`1q of elements ofMzt1u,
that we denote pm1| . . . |mn`1q.

• The faces are given for 1 ď i ď n by:

B
´
i pm1| . . . |mn`1q “ pm1| . . . |miq b pmi`1| . . . |mn`1q

B
`
i pm1| . . . |mn`1q “

$

’

’

’

’

&

’

’

’

’

%

pm1| . . . |mimi`1|mi`2| . . . |mn`1q mimi`1 ‰ 1

ε1pm3| . . . |mn`1q i “ 1 and m1m2 “ 1

Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q 2 ď i ď n´ 1 and mimi`1 “ 1

εn´1pm1| . . . |mn´1q i “ n and mnmn`1 “ 1

with B`1 pm1|m2q “ 1RStdpMqGp0q if m1m2 “ 1M (the unit of the monoid M).

Then the Gray monoid RStdpMqGp0q forms a polygraphic resolution of M .

Another application of Theorem 5.1.3.8 and 5.3.1.14 is given in Section 5.3.3, where we give
a new proof of the extended existence theorem in our setting.

Theorem 5.3.3.5. Let pE,Rq be a convergent string rewriting system and let M be the monoid
presented by pE,Rq. There exists an extension of pE,Rq into a Gray polygraph Σ such that:

• The n-cells of Σn correspond to the critical branchings

• Σ is a resolution of M (more specifically, Σ satisfies the hypothesis of Theorem 5.1.3.8).
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Chapter 2

Classical higher dimensional rewriting
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Introduction

In this section we recall some classical notions of higher-dimensional rewriting. We start in
Section 2.1 by recalling the definition of ω-category and ω-polygraphs, and more generally of
pn, pq-category and pn, pq-polygraph. According to Street in [81], the notion of ω-catgeory was
probably first brought up by John Roberts in the late 70s. The earliest published definition can
be found in [13]. The notion of 2-polygraph on the other hand was introduced by Street in [78]
under the name of computad. It seems that the earliest occurrence of general n-polygraphs in
the literature comes [18].

In Section 2.2, we recall some classical definitions and results of higher dimensional rewriting.
In our case we need to talk about rewriting in n-categories. See [38] and [39] for references, or [41]
for a more gentle introduction to the special case of string rewriting.

Finally, in Section 2.3 we use these techniques to prove coherence theorems for bicategories
and pseudofunctors between them. A bicategory being just a monoidal category with many
objects, our proof of the coherence theorem for bicategories is a straight adaptation of the proof
of the coherence of monoidal categories found in [39]. The case of pseudofunctors is slightly more
interesting because we need to find a way to encode the operation of “taking the image through
the functor”, but once this is done the same techniques as in the case of monoidal categories can
be used.

2.1 Globular pn, pq-categories and polygraphs

This section is divided into two parts: in the first one we introduce ω-categories, while in the
second we introduce polygraphs, following their description in [65].

2.1.1 Globular categories

Definition 2.1.1.1. A n-globular set (for n P N Y tωu) is the data of a family of sets Gk for
0 ď k ď n together with source and target maps s, t : Gk`1 Ñ Gk for all 0 ď k ă n, satisfying
the so called globular relations:

s ˝ t “ s ˝ s t ˝ t “ t ˝ s . (2.1.1)

If G is such a globular set, we denote by skj and tkj (or simply sj and tj) the maps from Gk

to Gj such that sk`1
k “ s, tk`1

k “ t and which satisfy the equations:

sji ˝ tkj “ ski “ sji ˝ skj tji ˝ tkj “ ski “ tji ˝ skj

For f P Gk we call sjpfq and tjpfq respectively the k-source and the k-target of f . An element
of Gk is called a k-cell. Two k-cells f, g P Gk are said to be j-composable if tjpfq “ sjpgq.

Definition 2.1.1.2. For n P NYtωu, an n-category C is the data of an n-globular set C together
with, for any 0 ď k ď n and 0 ď j ă k, maps ‚j associating to any two j-composable k-cells
f, g P Ck a cell f ‚j g P Ck, and for any k-cell f P Ck a pk` 1q-cell 1f P Ck`1. This data moreover
has to verify the following relations:

• For all j-composable f, g P Ck, spf ‚j gq “ spfq‚j spgq and tpf ‚j gq “ tpfq‚j tpgq if j ‰ k´1,
if j “ k ´ 1 then spf ‚j gq “ spfq, while tpf ‚j gq “ tpgq.

• For all f P Ck, sp1f q “ tp1f q “ f .

• For all j-composable f, g, h P Ck, pf ‚j gq ‚j h “ f ‚j pg ‚j hq.
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• For all f P Ck, f ‚k´1 1tpfq “ 1spfq ‚k´1 f “ f .

• For all f, f 1, g, g1 P Ck, and 0 ď i ă j ă k, then pf ‚j f 1q ‚i pg ‚j g1q “ pf ‚i gq ‚j pf 1 ‚i g1q,
as soon as the left-hand side is defined.

The relations imply additionally the additional following relations (as soon as they are de-
fined):

sipf ‚j gq “

$

’

&

’

%

sipfq ‚j sipgq i ą j

sipfq i “ j

sipfq “ sipgq i ă j

tipf ‚j gq “

$

’

&

’

%

tipfq ‚j tipgq i ą j

tipgq i “ j

tipfq “ tipgq i ă j

Definition 2.1.1.3. If C is a 2-category, we denote by Cop the 2-category obtained by reversing
the direction of the 1-cells, and by Cco the 2-category obtained by reversing the direction of the
2-cells.

Example 2.1.1.4. Let us explicit the notion of 2-category. The underlying 2-globular set is
constituted of three sets C0, C1 and C2. A 1-cell f and the 2-cell A are respectively represented
as follows:

s0pfq t0pfq
f

s0pAq t0pAq

s1pAq

t1pAq

A

For any 0-cell x P C0 and 1-cell f P C1, the cells 1x and 1f have the following shape:

x x
1x s0pfq t0pfq

f

f

1f

The composition ‚0 associates, to any composable 1-cells x y z
f g

, a

1-cell x z
f ‚0 g

. And to any 0-composable 2-cells x y z

f

g

A

f 1

g1

A1 ,

a 2-cell:

x z

f ‚0 f
1

g ‚0 g
1

A ‚0 A
1
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Finally, the composition ‚1 associates to any 1-composable 2-cells x y

f

g

h

A

B
, a

2-cell A ‚1 B of shape x y

f

h

A ‚1 B .

Also, if f is 1-cell and A is a 2-cell then we denote by f ‚0 A the composite (when defined)
1f ‹0A, and similarly for A‹0 g for any 1-cell g. This operation is called whiskering. For instance
the composite f ‚0 A ‚0 g is represented as follows:

f g
A

Definition 2.1.1.5. Let C be an n-category, for n P N Y tωu. For p P N Y tωu, we say that C
is an pn, pq-category if for any p ă k ď n, any k-cell has an inverse for composition ‚k´1. That
is for every A P Ck there exists B P Ck such that A ‚k´1 B “ 1spAq and B ‚k´1 A “ 1tpAq. In
particular for p ě n an pn, pq-category is just a category, and for p “ 0 we call an pn, 0q-category
an n-groupoid.

Example 2.1.1.6. A 2-category C is a p2, 1q-category if for any 2-cell A : f ñ g P C2, there
exists a 2-cell A´ : g ñ f P C2 such that the following equality holds (together with the one
obtained by exchanging the roles of A and A´):

x y

f

g

f

A

A´
“ x y

f

f

1f

It is a 2-groupoid if moreover for any 1-cell f : x Ñ y there exits a 1-cell f´ : y Ñ x such
that the following equalities hold:

x y x
f f´

“ x x
1x

y x y
f´ f

“ y y
1y

Note that in addition in a 2-groupoid any 2-cell A : f ñ g P C2 admits an inverse B : f´ ñ
g´ for composition ‚0, given by the following composite:

B “
f´ g´

g

f

A´
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2.1.2 Polygraphs

We recall the definition of polygraphs from [18]. For n P N, we denote by n -Cat the category of
n-categories and by Graphn the category of n-graphs. The category of n-categories equipped
with a cellular extension, denoted by n -Cat`, is the limit of the following diagram:

n -Cat` //

��

{
Graphn`1

��

n -Cat // Graphn

where the functor n -Cat Ñ Graphn forgets the categorical structure and the functor
Graphn`1 Ñ Graphn deletes the top-dimensional cells.

Hence, an object of n -Cat` is a couple pC, Gq where C is an n-category and G is a graph

Cn Sn`1
t
oo

s
oo , such that for any u, v P Sn`1, the following equations are verified:

spspuqq “ sptpuqq tpspuqq “ tptpuqq

Let Rn be the functor from pn`1q -Cat to n -Cat` that sends an pn`1q-category C on the
couple pCn, Cn Cn`1oo

oo
q. This functor admits a left-adjoint Ln : n -Cat` Ñ pn ` 1q -Cat

(see [66]).
We now define by induction on n the category Poln of n-polygraphs together with a functor

Qn : Poln Ñ n -Cat.

• The category Pol0 is the category of sets, and Q0 is the identity functor.

• AssumeQn : Poln Ñ n -Cat is defined. Then Poln`1 is the limit of the following diagram:

Poln`1
//

��

{

n -Cat`

��

Poln Qn
// n -Cat,

and Qn`1 is the composite

Poln`1
// n -Cat`

Ln
// pn` 1q -Cat

Definition 2.1.2.1. Given an n-polygraph Σ, the n-category QnpΣq is denoted by Σ˚ and is
called the free n-category generated by Σ.

Definition 2.1.2.2. Let C be an n-category, and 0 ď i ă n and A P Ci`1. If it exists, we denote
by A´1 the inverse of A for the i-composition.

We denote by n -Catpkq the full subcategory of n -Cat whose objects are the pn, kq-categories.

In particular n -Catp0q is the category of n-groupoids, and n -Catpnq “ n -Cat.
The functor Rn restricts to a functor Rpnqn from pn`1q -Catpnq to n -Cat`. Once again this

functor admits a left-adjoint Lpnqn : n -Cat` Ñ pn` 1q -Catpnq. We define categories Pol
pkq
n of

pn, kq-polygraphs and functors Qpkqn : Pol
pkq
n Ñ n -Catpkq in a similar way to Poln and Qn. See

2.2.3 in [40] for an explicit description of this construction.
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Definition 2.1.2.3. Given an pn, kq-polygraph Σ, the pn, kq-category Qpkqn pΣq is denoted by
Σ˚pkq and is called the free pn, kq-category generated by Σ. For j ď n, we denote by Σ

˚pkq
j both

the j-cells of Σ˚pkq and the pj, kq-category generated by Σ. Hence, an pn, kq-polygraph Σ consists
of the following data:

Σ0 Σ1 Σ2 p¨ ¨ ¨ q Σk Σk`1 p¨ ¨ ¨ q Σn

Σ0 Σ˚1 Σ˚2 p¨ ¨ ¨ q Σ˚k Σ
˚pkq
k`1 p¨ ¨ ¨ q

Remark 2.1.2.4. Let n, j and k be integers, with j ď k ď n. Since an pn, jq-category is also an
pn, kq-category, an pn, kq-polygraph gives rise to an pn, jq-polygraph. In particular for n “ k “ 1
and j “ 0 we recover that a monoid presentation gives rise to a group presentation.

In particular, if Σ is an pn, kq-polygraph, we denote by Σ˚pjq the pn, jq-category it generates.

Definition 2.1.2.5. Let C be an pn`1, kq-category. We denote by C̄ the pn, kq-category Cn{Cn`1.
Let Σ be an pn` 1, kq-polygraph. We denote by Σ̄ the pn, kq-category Σ˚pkq and call it the

pn, kq-category presented by Σ.
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2.2 Higher-dimensional rewriting

In this section we recall the notions of termination (Section 2.2.1), confluence (Section 2.2.2)
and coherence (Section 2.2.3) of an n-category. Since this n will vary throughout Chapter 3, we
talk instead of n-confluence, n-termination and n-confluence. Finally, we state Squier’s theorem,
under its more general form proved by Guiraud and Malbos in [38].

2.2.1 Termination

Definition 2.2.1.1. Let Σ be an n-polygraph. For 0 ă k ď n, the binary relation Ñ˚
k defined

by u Ñ˚
k v if there exists f : u Ñ v in Σ˚k is a preorder on Σ˚k´1 (transitivity is given by

composition, and reflexivity by the units). We say that the n-polygraph Σ is k-terminating if
Ñ˚
k is a well-founded ordering. We denote by Ñ`

k the strict ordering associated to Ñ˚
k.

We recall Theorem 4.2.1 from [38], which we will use in order to show the 3-termination of
some polygraphs.

Definition 2.2.1.2. Let sOrd be the 2-category with one object, whose 1-cells are partially
ordered sets, whose 2-cells are monotonic functions and whose 0-composition is the cartesian
product.

Definition 2.2.1.3. Let C be a 2-category, X : C2 Ñ sOrd and Y : Cco2 Ñ sOrd two 2-functors,
andM a commutative monoid. An pX,Y,Mq-derivation on C is given by, for every 2-cell f P C2,
an application

dpfq : Xpspfqq ˆ Y ptpfqq ÑM,

such that for every 2-cells f1, f2 P C2, every x, y, z and t respectively in Xpspf1qq, Y ptpf1qq,
Xpspf2qq and Y ptpf2qq, the following equalities hold:

dpf1 ‚1 f2qrx, ts “ dpf1qrx, Y pf2qryss ` dpf2qrXpf1qrxs, ys

dpf1 ‚0 f2qrpx, zq, py, tqs “ dpf1qrx, ys ` dpf2qrz, ts.

In order to show the 3-termination of some polygraphs, we are going to use the following
result (Theorem 4.2.1 from [38]).

Theorem 2.2.1.4. Let Σ be an n-polygraph, X : Σ˚2 Ñ sOrd and Y : pΣ˚2q
co Ñ sOrd two

2-functors, andM be a commutative monoid equipped with a well-founded ordering ě, and whose
addition is strictly monotonous in both arguments.

Suppose that for every 3-cell A P Σ3, the following inequalities hold:

XpspAqq ě XptpAqq Y pspAqq ě Y ptpAqq dpspAqq ą dptpAqq.

Then the n-polygraph Σ is 3-terminating.

2.2.2 Branchings and Confluence

Definition 2.2.2.1. Let Σ be an n-polygraph. A k-fold branching of Σ is a k-tuple pf1, f2, . . . , fkq
of n-cells in Σ˚ such that every fi has the same source u, which is called the source of the branch-
ing.

The symmetric group Sk acts on the set of all k-fold branchings of Σ. The equivalence class of
a branching pf1, f2, . . . , fkq under this action is denoted by rf1, f2, . . . , fks. Such an equivalence
class is called a k-fold symmetrical branching, and pf1, f2, . . . , fkq is called a representative of
rf1, f2, . . . , fks
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Definition 2.2.2.2. Let Σ be an n-polygraph. We denote by N the n-category with exactly
one k-cell for every k ă n, whose n-cells are the natural numbers and whose compositions are
all given by addition.

We define an application l : Σ˚ Ñ N by setting lpfq “ 1 for every f P Σn. For f P Σ˚n, we
call lpfq the length of a f .

An n-cell of length 1 in Σ˚n is also called a rewriting step.

Definition 2.2.2.3. Let Σ be an n-polygraph. A k-fold local branching of Σ is a k-fold branching
pf1, f2, . . . , fkq of Σ where every fi is a rewriting step.

A k-fold local branching pf1, . . . , fkq of source u is a strict aspherical branching if there
exists an integer i such that fi “ fi`1. We say that it is an aspherical branching if it is in the
equivalence class of a strict aspherical branching.

A k-fold local branching pf1, . . . , fkq is a strict Peiffer branching if it is not aspherical and
there exist v1, v2 P Σ˚n´1 such that u “ v1 ‚i v2, an integer m ă n and f 11, . . . , f 1k P Σ˚n such that
for every j ď m, fj “ f 1j ‚i v2 and for every j ą m, fj “ v1 ‚i f

1
j . It is a Peiffer branching if it is

in the equivalence class of a strict Peiffer branching.
A local branching that is neither aspherical nor Peiffer is overlapping.

Given an n-polygraph Σ, one defines an order Ď on k-fold local branchings by saying that
pf1, . . . , fkq Ď pu ‚i f1 ‚i v, . . . , u ‚i fk ‚i vq for every u, v P Σ˚n´1 and every k-fold local branching
pf1, . . . , fkq.

Definition 2.2.2.4. An overlapping branching that is minimal for Ď is a critical branching.
A 2-fold (resp. 3-fold) critical branching is also called a critical pair (resp. critical triple).

Definition 2.2.2.5. Let Σ be an n-polygraph. A 2-fold branching pf, gq is confluent if there
are f 1, g1 P Σ˚n of the following shape:

f 1

��

f 00

g ..
g1

__

Definition 2.2.2.6. An n-polygraph Σ is k-confluent if every 2-fold branching of Σk is confluent.

Definition 2.2.2.7. An n-polygraph is k-convergent if it is k-terminating and k-confluent.

The following two propositions are proven in [38].

Proposition 2.2.2.8. Let Σ be an n-terminating n-polygraph. It is n-confluent if and only if
every 2-fold critical branching is confluent.

Proposition 2.2.2.9. Let Σ be a k-convergent n-polygraph. For every u P Σ˚k´1, there exists a
unique v P Σ˚k´1 such that uÑ˚

k v and v is minimal for Ñ˚
k.

Definition 2.2.2.10. Let Σ be an n-polygraph. A normal form for Σ is an pn´1q-cell minimal
for Ñ˚

n.
If Σ is n-convergent, for every u P Σ˚n´1, the unique normal form v such that u Ñ˚

n v is
denoted by û and is called the normal form of u.
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2.2.3 Coherence

Definition 2.2.3.1. Two k-cells are parallel if they have the same source and the same target.
An pn ` 1q-category C is n-coherent if, for each pair pf, gq of parallel n-cells in Cn, there

exists an pn` 1q-cell A : f Ñ g in Cn`1.

Definition 2.2.3.2. Let Σ be an pn ` 1q-polygraph, and pf, gq be a local branching of Σn. A
filling of pf, gq is an pn` 1q-cell A P Σ

˚pnq
n`1 of the shape:

��A

��

f 00

g ..

__

Definition 2.2.3.3. An pn` 1q-polygraph Σ satisfies the n-Squier condition if:

• it is n-convergent,

• there is a bijective application from Σn`1 to the set of all critical pairs of Σn that associates
to every A P Σn`1, a critical pair b of Σn such that A is a filling of a representative of b.

The following Theorem is due to Squier for n “ 2 [75] and was extended to any integer n ě 2
by Guiraud and Malbos [38].

Theorem 2.2.3.4. Let Σ be an pn ` 1q-polygraph satisfying the n-Squier condition. Then the
free pn` 1, n´ 1q-category Σ˚pn´1q is n-coherent.

In the proof of this Theorem appears the following result (Lemma 4.3.3 in [38]).

Proposition 2.2.3.5. Let Σ be an pn` 1q-polygraph satisfying the n-Squier condition.
For every parallel n-cells f, g P Σ˚n whose target is a normal form, there exists an pn`1q-cell

A : f Ñ g in Σ
˚pnq
n`1 .

Let us compare those two last results. Let Σ be an pn`1q-polygraph satisfying the n-Squier
condition, and let f, g P Σ˚n be two parallel n-cells whose target is a normal form. According
to Theorem 2.2.3.4, there exists an pn ` 1q-cell A : f Ñ g in the free pn ` 1, n ´ 1q-category
Σ
˚pn´1q
n`1 . Proposition 2.2.3.5 shows that such an A can be chosen in the free pn` 1, nq-category

Σ
˚pnq
n`1 , where the n-cells are not invertible. Hence, for cells f, g P Σ˚n whose target is a normal

form, Proposition 2.2.3.5 is more precise than Theorem 2.2.3.4.
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2.3 Application to the coherence of bicategories and
pseudofunctors

We now study the coherence problem successively for bicategories and pseudofunctors. In Sec-
tion 2.3.1, we start by recalling the usual definition of bicategories (see [7]). We then give an
alternative description of bicategories in terms of algebras over a certain 4-polygraph BiCatrCs,
and show that the two definitions coincide. The coherence problem for bicategories is now re-
duced to showing the 3-coherence of BiCatrCs, and we use the techniques introduced in the
previous section (especially Theorems 2.2.1.4 and 2.2.3.4) to conclude. In Section 2.3.2, we apply
the same reasoning to pseudofunctors.

2.3.1 Coherence for bicategories

Let Cat be the category of (small) categories. We denote by J the terminal category in Cat.
Let sCat be the 3-category with one 0-cell, (small) categories as 1-cells, functors as 2-cells,
and natural transformations as 3-cells, where 0-composition is given by the cartesian product,
1-composition by functor composition, and 2-composition by composition of natural transfor-
mations.

Definition 2.3.1.1. A bicategory B is given by:

• A set B0.

• For every a, b P B0, a category Bpa, bq. The objects and arrows of Bpa, bq are respectively
called the 1-cells B and 2-cells of B.

• For every a, b, c P B0, a functor ‚a,b,c : Bpa, bq ˆ Bpb, cq Ñ Bpa, cq.

• For every a P B0, a functor Ia : J Ñ Bpa, aq, that is to say a 1-cell Ia : aÑ a.

• For every a, b, c, d P B0, a natural isomorphism αa,b,c,d:

Bpa, bq ˆ Bpb, cq ˆ Bpc, dq
Bpa, bq ˆ ‚b,c,d

//

‚a,b,c ˆ Bpc, dq

��

Bpa, bq ˆ Bpb, dq

‚a,b,d

��

αa,b,c,d ,@

Bpa, cq ˆ Bpc, dq
‚a,c,d

// Bpa, dq

of components αf,g,h : pf ‚ gq ‚hñ f ‚ pg ‚hq, for every triple pf, g, hq P Bpa, bqˆBpb, cqˆ
Bpc, dq.

• For every a, b P B0, natural isomorphisms Ra,b and La,b:

Bpa, bq

Ia ˆ Bpa, bq

��

Bpa, bq ˆ Ib
// Bpa, bq ˆ Bpb, bq

‚a,b,b

��

Ra,bq�

Bpa, aq ˆ Bpa, bq
‚a,a,b

//

La,b
1E

Bpa, bq

of components Lf : Ia ‚ f ñ f and Rf : f ‚ Ib ñ f for every 1-cell f P Bpa, bq.

36



This data must also satisfy the following axioms:

• For every composable 2-cells f, g, h, i in B:

ppf ‚ gq ‚ hq ‚ i
αf,g,h ‚ i

�2αf‚g,h,i

r�
“

pf ‚ pg ‚ hqq ‚ i

αf,g‚h,i

��

pf ‚ gq ‚ ph ‚ iq

αf,g,h‚i

�,

f ‚ ppg ‚ hq ‚ iq

f ‚ αg,h,il�
f ‚ pg ‚ ph ‚ iqq

(2.3.1)

• For every couple pf, gq P Bpa, bq ˆ Bpb, cq:

pf ‚ Ibq ‚ g

f ‚ pIb ‚ gq f ‚ g

αf,Ib,g Rf ‚ g

f ‚ Lg

“ (2.3.2)

Definition 2.3.1.2. Let C be a set. Let us describe dimension by dimension a 4-polygraph
BiCatrCs, so that bicategories correspond to algebras on BiCatrCs, that is to 4-functors from
BiCatrCs to sCat (see Proposition 2.3.1.4).

Dimension 0: Let BiCatrCs0 be the set C.

Dimension 1: The set BiCatrCs1 contains, for every a, b P C, a 1-cell a b : aÑ b.

Dimension 2: The set BiCatrCs2 contains the following 2-cells:

• For every a, b, c P C, a 2-cell a,b,c : a b c ñ a c.

• For every a P C, a 2-cell a : 1a ñ aa.

Note that the indices are redundant with the source of a generating 2-cell. In what follows,
we will therefore omit them when the context is clear. For example, the 2-cell of source
a b c d designates the composite pa b b,c,dq ‚1 a,b,d. We will use the same notation for higher-
dimensional cells.

Dimension 3: The set BiCatrCs3 contains the following 3-cells:

• For every a, b, c, d P C, a 3-cell a,b,c,d : V of 1-source a b c d.

• For every a, b P C, 3-cells a,b : V and a,b : V of 1-source a b.
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Dimension 4: The set BiCatrCs4 contains the following 4-cells:

• For every a, b, c, d, e P C, a 4-cell a,b,c,d,e of 1-source a b c d e.

• For every a, b, c P C, a 4-cell a,b,c of 1-source a b c.

Definition 2.3.1.3. We denote by AlgpBiCatq the set of all couples pC,Φq:

• where C is a set,

• where Φ is a functor from BiCatrCs to sCat.

Proposition 2.3.1.4. There is a one-to-one correspondence between (small) bicategories and
AlgpBiCatq.

Proof. The correspondence between a bicategory B and an algebra pC,Φq over BiCat is given
by:

• At the level of sets: C “ B0.

• For every a, b P B0, Φpa bq “ Bpa, bq.

• For every a, b, c P B0, Φp a,b,cq “ ‚a,b,c.

• For every a P B0, Φp aq “ Ia.

• For every a, b, c, d P B0, Φp a,b,c,dq “ αa,b,c,d.

• For every a, b P B0, Φp a,bq “ Ra,b and Φp a,bq “ La,b.

• The axioms that a bicategory must satisfy correspond to the fact that Φ is compatible
with the quotient by the 4-cells and .
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Bicategory AlgpBiCatq

Sets B0 C 0-cells
Categories Bp_,_q 1-cells
Functors ‚, I , 2-cells

Natural transformations α, L, R , , 3-cells
Equalities (2.3.1) (2.3.2) 4-cells

Table 2.1: Correspondence for bicategories

This correspondence between the structures of bicategory and of algebra over BiCat is
summed up by Table 2.1.

�

We are going to show the coherence theorem for bicategories, using Theorem 2.2.3.4.

Proposition 2.3.1.5. For every set C, the 4-polygraph BiCatrCs 3-terminates.

Proof. In order to apply Theorem 2.2.1.4 we construct two functors XC : BiCatrCs˚2 Ñ sOrd
and YC : pBiCatrCs˚2q

co Ñ sOrd by setting, for every a, b P C:

XCpa bq “ YCpa bq “ N˚

and, for every i, j P N˚:

XCp qri, js “ i` j, XCp q “ 1, YCp qris “ pi, iq.

We now define an pXC, YC,Nq-derivation dC on BiCatrCs˚2 by setting, for every i, j, k P N˚:

dCp qri, j, ks “ i` k ` 1, dCp qris “ i,

It remains to show that the required inequalities are satisfied. Concerning XC and YC, we
have for every i, j, k P N˚:

XCp qri, j, ks “ i` j ` k ě i` j ` k “ XCp qri, j, ks

XCp qris “ i` 1 ě i “ XCpqris XCp qris “ i` 1 ě i “ XCpqris

YCp qris “ pi, i, iq ě pi, i, iq “ YCp qris

YCp qris “ i ě i “ YCpqris YCp qris “ i ě i “ YCpqris.

Concerning dC, we have for every i, j, k, l P N˚:

dCp qri, j, k, ls “ 2i` j ` 2l ` 2 ą i` j ` 2l ` 2 “ dCp qri, j, k, ls

dCp qri, js “ 2j ` 2 ą 0 “ dCpqri, js dCp qri, js “ i` 2j ` 1 ą 0 “ dCpqri, js.

�

The following Theorem is a rephrasing of Mac Lane’s coherence theorem [61] in our setting.
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Theorem 2.3.1.6. Let C be a set.
The 4-polygraph BiCatrCs is 3-convergent and the free p4, 2q-category BiCatrCs˚p2q is 3-

coherent.

Proof. We already know that BiCatrCs is 3-terminating. Using Proposition 2.2.2.8 and Theo-
rem 2.2.3.4, it remains to show that every critical pair admits a filling.

There are five families of critical pairs, of sources:

The first two families are filled by the 4-cells and , whereas the last three are
filled by 4-cells ωi P BiCatrCs

˚p2q
4 , which are constructed in a similar fashion as in the case of

monoidal categories (see Proposition 3.5 in [39]). �

2.3.2 Coherence for pseudofunctors

Definition 2.3.2.1. A pseudofunctor F is given by:

• Two bicategories B and B1.

• A function F0 : B0 Ñ B10.

• For every a, b P B0, a functor Fa,b : Bpa, bq Ñ B1pF0paq, F0pbqq.

• For every a, b, c P B0, a natural isomorphism φa,b,c:

Bpa, bq ˆ Bpb, cq
‚a,b,c

//

Fa,b ˆ Fb,c

��

Bpa, cq

Fa,c

��

φa,b,c
l�

B1pF0paq, F0pbqq ˆ B1pF0pbq, F0pcqq
‚1F0paq,F0pbq,F0pcq

// B1pF0paq, F0pcqq

of components φf,g : F pf ‚ gq ñ F pfq ‚1 F pgq, for every couple pf, gq P Bpa, bq ˆ Bpb, cq.

• For every a P B0, a natural isomorphism ψa:

J
Ia

// Bpa, aq

Fa,a

��

ψa
n�

J
I 1F0paq,F0paq

// B1pF0paq, F0paqq

of components ψa : F pIaq ñ I 1F0paq
, for every a P B0

This data must satisfy the following axioms:
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• For every composable 1-cells f, g and h in B:

F ppf ‚ gq ‚ hq
φf‚g,h

 4

F pαf,g,hq

k�

“

F pf ‚ pg ‚ hqq

φf,g‚h
��

F pf ‚ gq ‚1 F phq

φf,g ‚
1 F phq

��
F pfq ‚1 F pg ‚ hq

F pfq ‚1 φg,f �3

pF pfq ‚1 F pgqq ‚1 F phq

α1F pfq,F pgq,F phq
j~

F pfq ‚1 pF pgq ‚1 F phqq

(2.3.3)

• For every 1-cell f : aÑ b in B:

F pIaq ‚
1 F pfq

ψa ‚
1 F pfq

%9

“

I 1F0paq
‚1 F pfq

L1F pfq

�0
F pIa ‚ fq

φIa,f
-A

F pLf q

&: F pfq

(2.3.4)

• For every 1-cell f : aÑ b in B:

F pfq ‚1 F pIbq
F pfq ‚1 ψb%9

“

F pfq ‚1 I 1F0pbq

R1F pfq

�0
F pf ‚ Ibq

φf,Ib

-A

F pRf q

&: F pfq

(2.3.5)

Definition 2.3.2.2. Let C and D be sets, and f an application from C to D. Let us describe
dimension by dimension a 4-polygraph PFonctrf s. We will prove in Proposition 2.3.2.5 that
pseudofunctors correspond to algebras over PFonctrf s.

The polygraph PFonctrf s contains the union of:

• the polygraph BiCatrCs, whose cells are denoted by , , , , , and ,
defined as in Definition 2.3.1.2,

• the polygraph BiCatrDs, whose cells are denoted by , , , , , and ,
defined as in Definition 2.3.1.2,

together with the following cells:

Dimension 1: For every a P C, the set PFonctrf s1 contains a 1-cell a fpaq : aÑ fpaq.

Dimension 2: For every a, b P C, the set PFonctrf s2 contains a 2-cell a,b : a b fpbq ñ a fpaq fpbq.
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Dimension 3: The set PFonctrf s3 contains the following 3-cells:

• For every a, b, c P C, a 3-cell a,b,c : V of 1-source a b c fpcq.

• For every a P C, a 3-cell a : V of 1-source a fpaq.

Dimension 4: The PFonctrf s4 contains the following 4-cells:

• For every a, b, c, d P C, a 4-cell a,b,c,d of 1-source a b c d fpdq

%9

�.

�-

0D

%9

1E

• For every a, b P C, 4-cells a,b and a,b of 1-source a b fpbq

%9

�-

1E

';

%9

�-

0D

';

Definition 2.3.2.3. Let AlgpPFonctq be the set of all tuples pC,D, f ,Φq:

• where C and D are sets,

• where f is an application from C to D,

• where Φ is a functor from PFonctrf s to sCat such that, for every c P C the following
equality holds:

Φpc fpcqq “ J

Remark 2.3.2.4. Let f : C Ñ D be an application. Since BiCatrCs (resp. BiCatrDs) is a
sub-4-polygraph of PFonctrf s, every functor Φ : PFonctrf s Ñ sCat induces by restriction two
functors:

Φ : BiCatrCs Ñ sCat Φ : BiCatrDs Ñ sCat

Proposition 2.3.2.5. Pseudofunctors between (small) categories are in one-to-one correspon-
dence with elements of AlgpPFonctq.
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Pseudofunctors AlgpPFonctq

Source and target B and B1 pC,Φ q and pD,Φ q Restrictions
Function F0 f Function
Functors F 2-cells

Natural transformations ψ, φ , 3-cells
Equalities (2.3.3) (2.3.4) (2.3.5) 4-cells

Table 2.2: Correspondence for pseudofunctors

Proof. The proof is similar to the case of bicategories, using the correspondence Table 2.3.2.
�

Proposition 2.3.2.6. For every sets C,D and every application f : C Ñ D, the 4-polygraph
PFonctrf s 3-terminates.

Proof. In order to apply Theorem 2.2.1.4, we define functors Xf : PFonctrf s˚2 Ñ sOrd and
Yf : pPFonctrf s˚2q

co Ñ sOrd as extensions of the functorsXC,XD, YC and YD from Proposition
2.3.1.5, and by setting for every a P C:

Xf pa fpaqq “ Yf pa fpaqq “ J,

where J is the terminal ordered set, and for every i P N˚:

Xf p qris “ i Yf p qris “ 2i` 1.

We now define an pXf , Yf ,Nq-derivation df on PFonctrf s˚2 as an extension of dC, by setting
for every i, j, k P N˚:

df p qri, j, ks “ i` k df p qris “ i df p qri, js “ i` j ` 1

It remains to show that the inequalities required to apply Theorem 2.2.1.4 are satisfied. Since
Xf (resp. Yf ) extends XC and XD (resp. YC and YD), the only inequalities that need to be
checked are those corresponding to the 3-cells and . Indeed, for every i, j P N˚, we have:

Xf p q “ 1 ě 1 “ Xf p q

Xf p qri, js “ i` j ě i` j “ Xf p qri, js

Yf p qris “ p2i` 1, 2i` 1q ě p2i` 1, 2i` 1q “ Yf p qris

Concerning df , the 3-cells from BiCatrCs have already been checked in Proposition 2.3.1.5.
For the other 3-cells, we have, for every i, j, k P N˚:

df p qri, js “ 2j ` 1 ą 0 “ df pqri, js df p qri, js “ i` 2j ą 0 “ df pqri, js

df p qris “ 3i` 2 ą i “ df p q

df p qri, j, ks “ 2i` j ` 3k ` 3 ą 2i` j ` 3k ` 2 “ df p qri, j, ks.

�
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Theorem 2.3.2.7. Let C and D be sets, and f : CÑ D an application.
The 4-polygraph PFonctrf s is 3-convergent and the free p4, 2q-category PFonctrf s˚p2q is 3-

coherent.

Proof. We have shown that it is 3-terminating, so using Proposition 2.2.2.8 and Theorem 2.2.3.4,
it remains to show that every critical pair admits a filler in PFonctrf s4.

There are thirteen families of critical pairs. Among them, ten come from BiCatrCs or
BiCatrDs, and were already dealt with in Theorem 2.3.1.6. The remaining three have the
following sources:

and they are filled respectively by the 4-cells , and . �
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Chapter 3

Coherence for pseudonatural
transformations
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Organisation

The goal of this chapter is to prove a coherence theorem for pseudonatural transformations. In
the beginning of Section 3.1, we try to mimic the reasoning we used in the previous chapter to
show the coherence for bicategories and pseudofunctors. We quickly realise however that the
p4, 2q-polygraph encoding the structure of pseudonatural transformation is not confluent, and so
we cannot apply Theorem 2.2.3.4. To conclude we therefore temporarily admit a new Squier-like
result: Theorem 3.1.3.5. Using this result we are able to prove the coherence for pseudonatural
transformations in Section 3.1.

We then proceed to prove Theorem 3.1.3.5. First in Section 3.2 we introduce some necessary
tools, and in particular the notion of white n-categories, which are n-categories where the ex-
change law does not hold (even up to isomorphism. Sections 3.3 and 3.4 then contain the proof
of Theorem 3.1.3.5.

3.1 Proof of the coherence for pseudonatural transformations

In this section we prove a coherence theorem for pseudonatural transformations (Theorem
3.1.1.8). However, the methods we developped in the previous chapter fail in this case. To
prove Theorem 3.1.1.8 we therefore rely on another result: Theorem 3.1.3.5, whose proof will
occupy Sections 3.2 to 3.4. In Section 3.1.1, we start by describing the structure of pseudonatural
transformation and a p4, 2q-polygraph PNTransrf ,gs encoding it. A more complete overview
of the proof of Theorem 3.1.1.8 is given at the end of Section 3.1.1.

3.1.1 The structure of pseudonatural transformation

Definition 3.1.1.1. A pseudonatural transformation τ consists of the following data:

• Two pseudofunctors F, F 1 : B Ñ B1, where B and B1 are bicategories.

• For every a P B0, a functor τa : J Ñ B1pF0paq, F
1
0paqq, that is a 1-cell τa : F0paq Ñ F 10paq

in B1.

• For every a, b P B0, a natural isomorphism σa,b:

Bpa, bq
F 1a,b

((

Fa,b

vv

B1pF0paq, F0pbqq

B1pF0paq, F0pbqq ˆ τb
��

B1pF 10paq, F 10pbqq

τa ˆ B1pF 10paq, F 10pbqq
��

B1pF0paq, F0pbqq ˆ B1pF0pbq, F
1
0pbqq

‚1F0paq,F0pbq,F 10pbq
((

B1pF0paq, F
1
0paqq ˆ B1pF 10paq, F 10pbqq

‚1F0paq,F 10paq,F
1
0pbq

vv

B1pF0paq, F
1
0pbqq

σa,b %9

of components σf : F pfq ‚1 τb ñ τa ‚
1 F 1pfq, for every f P Bpa, bq.

This data must satisfy the following axioms:
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• For every pf, gq P Bpa, bq ˆ Bpb, cq:

τa ‚
1 F 1pf ‚ gq

τa ‚
1 φ1f,g

�3

σf‚g
,@

“

F pf ‚ gq ‚1 τc

φf,g ‚
1 τc
��

τa ‚
1 pF 1pfq ‚1 F 1pgqq

α1τa,F 1pfq,F 1pgq

EY

pF pfq ‚1 F pgqq ‚1 τc

α1F pfq,F pgq,τc
��

pτa ‚
1 F 1pfqq ‚1 F 1pgq

σf ‚
1 F 1pgq

EY

F pfq ‚1 pF pgq ‚1 τcq

F pfq ‚1 σg �2

pF pfq ‚1 τbq ‚
1 F 1pgq

α1F pfq,τb,F pgqk�
F pfq ‚1 pτb ‚

1 F 1pgqq

(3.1.1)

• For every a P B0:

F pIaq ‚
1 τa

τa ‚
1 F 1pIaq

I 1F0paq
‚1 τa

τa ‚
1 I 1F 10paq

τa

σIa

ψa ‚
1 τa

τa ‚
1 ψ1a

L1τa

R1τa

“ (3.1.2)

Definition 3.1.1.2. Let C and D be sets, and f ,g be applications from C to D. Let us define
dimension by dimension a p4, 2q-polygraph PNTransrf ,gs. We will see in Proposition 3.1.1.5
that pseudonatural transformations correspond to algebras over PNTransrf ,gs.

The polygraphPNTransrf ,gs contains the union of the polygraphsPFonctrf s andPFonctrgs.
In particular, the following cells are in PNTransrf ,gs:

• the cells , , , , , and coming from BiCatrCs,

• the cells , , , , , and coming from BiCatrDs,

• the cells , , , , and coming from PFonctrf s,

• the cells , , , , and coming from PFonctrgs.

Together with the union of PFonctrf s and PFonctrgs, PNTransrf ,gs contains the follow-
ing cells:
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Dimension 2: For every a P C, the set PNTransrf ,gs2 contains a 2-cell a : agpaq ñ

a fpaqgpaq.

Dimension 3: For every a, b P C, the set PNTransrf ,gs3 contains a 3-cell: a,b : V

of 1-source a bgpbq.

Dimension 4: The set PNTransrf ,gs4 contains the following 4-cells:

• For every a P C, a 4-cell a of 1-source agpaq

%9

�%

�0

8L

.B

• For every a, b, c P C, a 4-cell a,b,c of 1-source a b cgpcq

ey %9ey

1E Ym

%9

_s +?

Definition 3.1.1.3. Let AlgpPNTransq be the set of tuples pC,D, f ,g,Φq :

• where C and D are sets,

• where f ,g : CÑ D are applications,

• where Φ is a functor from PNTransrf ,gs to sCat, such that for every c P C, d P D and
1-cell : cÑ d:

Φpc dq “ J
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Remark 3.1.1.4. Since PFonctrf s (resp. PFonctrgs) is a sub-4-polygraph of PNTransrf ,gs,
every functor Φ : PNTransrf ,gs Ñ sCat induces by restriction two functors

Φ : PFonctrf s Ñ sCat Φ : PFonctrgs Ñ sCat

Proposition 3.1.1.5. Pseudonatural transformations between pseudofuncteurs are in one-to-
one correspondence with elements of AlgpPNTransq.

Proof. The proof is similar to that of bicategories, using Table 3.1.

Pseudonatural transformations AlgpPNTransq

Source and target F and F 1 Φ and Φ Restrictions
Functors τ 2-cells

Natural transformations σ 3-cells
Equalities (3.1.1) (3.1.2) 4-cells

Table 3.1: Correspondence for pseudonatural transformations

�

This result induces the classification presented in Table 3.2 of the cells of the p4, 2q-polygraph
PNTransrf, gs, depending on which structure they come from. We also distinguish two types of
cells: product cells and unit cells. Moreover, in Table 3.2, every line corresponds to a dimension.

Origin Dimension Product cells Unit cells

Source bicategory
2-cells
3-cells ,
4-cells

Target bicategory
2-cells
3-cells ,
4-cells

Source pseudofunctor
2-cells
3-cells
4-cells ,

Target pseudofunctor
2-cells
3-cells
4-cells ,

Pseudonatural transformation
2-cells
3-cells
4-cells

Table 3.2: Classification of the cells of PNTransrf, gs

Proposition 3.1.1.6. Let f ,g : CÑ D be two applications. The p4, 2q-polygraph PNTransrf ,gs
3-terminates.

Proof. We apply Theorem 2.2.1.4. To construct the functors Xf ,g : PNTransrf, gs˚2 Ñ sOrd
and Yf ,g : pPNTransrf ,gs˚2q

co Ñ sOrd, we extend the functors Xf , Xg, Yf and Yg from
Proposition 2.3.2.6, by setting:

Xf ,gp q “ 1
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We now define an pXf ,g, Yf ,g,Nq-derivation df ,g of the 2-category PNTransrf ,gs˚2 as the
extension of df satisfying, for every i, j P N˚:

df ,gp qri, js “ i` j df ,gp qris “ i

It remains to show that the required inequalities are satisfied. Since Xf ,g (resp. Yf ,g) is an
extension Xf and Xg (resp. Yf and Yg), it only remains to treat the case of the 3-cell . For
every i, j P N˚, we have:

Xf ,gp qris “ i`1 ě i`1 “ Xf ,gp qris Yf ,gp qris “ 2i`1 ě 2i`1 “ Yf ,gp qris

Concerning df ,g, the 3-cells from PFonctrf s were already treated in Proposition 2.3.1.5. For
the others we have, for every i, j, k P N˚:

df ,gp qri, j, ks “ 2i` j ` 3k ` 2 ą 2i` j ` 3k “ df ,gp qri, j, ks

df ,gp q “ 3i` 1 ą i “ df ,gp q df ,gp qri, js “ 2i` 3j` 1 ą i` 3j` 1 “ df ,gp qri, js

�

Definition 3.1.1.7. We define a weight application w as the 1-functor from PNTransrf ,gs˚1
to N, defined as follows on PNTransrf ,gs1:

• for all a, b P C, wpa bq “ 1,

• for all a, b P D, wpa bq “ 1,

• for all a P C and b P D, wpa bq “ 0.

Theorem 3.1.1.8 (Coherence for pseudonatural transformations). Let C and D be sets, and
f ,g : CÑ D applications.

Let A,B P PNTransrf ,gs
˚p2q
3 be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell α : A �?B P PNTransrf ,gs
˚p2q
4 .

This proof of this theorem will occupy the rest of Section 3.1. Contrary to the case of bicat-
egories and pseudofunctors, we cannot directly apply Theorem 2.2.3.4 to the p4, 2q-polygraph
PNTransrf ,gs, because the following critical pair is not confluent:

%9

�.

/C

%9 %9
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Let us give a quick overview of the proof of Theorem 3.1.1.8. We fix for the rest of this section
two sets C and D, together with two applications f ,g : CÑ D. Let A,B P PNTransrf ,gs˚p2q

be 3-cells whose 1-target is of weight 1. We want to build a 4-cell α : A �?B P PNTransrf ,gs˚p2q.
The 1-cells of weight 1 are of one of the following forms, with a, a1 P C and b, b1 P D:

aa1 b b1 aa1 fpa1q aa1 gpa1q aa1 fpa1q agpaq b a fpaq b

We start in Section 3.1.2 by show that if the common 1-target of A and B is not of the last
form, then they are generated by a sub-4-polygraph PFonctrf ,gs of PNTransrf ,gs. We then
show using Theorem 2.2.3.4 that this 4-polygraph is coherent.

There remains to treat the case where the 1-target of A and B is of the last form. We define
two sub-p4, 2q-polygraphs of PNTransrf ,gs: PNTrans``rf ,gs and PNTrans`rf ,gs. The
p4, 2q-polygraph PNTrans``rf ,gs contains all the structure of pseudonatural transformations,
except for the axioms concerning the units and , while PNTrans`rf ,gs is constructed from
PNTrans``rf ,gs by adding the 2-cells and (but not the higher dimensional cells where
they appear). The inclusions between the p4, 2q-polygraphs can be seen as follows:

PNTrans``rf ,gs2 Ă PNTrans`rf ,gs2 “ PNTransrf ,gs2

PNTrans``rf ,gs3 “ PNTrans`rf ,gs3 Ă PNTransrf ,gs3

In Section 3.1.3, we show that PNTrans``rf ,gs satisfies the 2-Squier condition of depth 2,
which allows us to apply Theorem 3.1.3.5. But this only solves the problem whenever A,B P

PNTrans``rf ,gs˚p2q. In order to extend that to the rest of PNTransrf ,gs˚p2q, we then define
a sub-3-polygraph PNTransurf ,gs of PNTransrf ,gs. The rewriting system induced by the
3-cells PNTransurf ,gs corresponds to simplifying the units out.

Using the properties of this rewriting system, we extend the result of Section 3.1.3, first to
3-cells A and B in PNTrans`rf ,gs˚p2q in Section 3.1.4, and finally to general A and B whose
1-target is a fpaq b in Section 3.1.5, thereby concluding the proof.

3.1.2 A convergent sub-polygraph of PNTransrf ,gs

Definition 3.1.2.1. LetPFonctrf ,gs be the 4-polygraph containing every cell ofPNTransrf ,gs,
except those corresponding to the pseudonatural transformation. Alternatively, PFonctrf ,gs is
the union of PFonctrf s and PFonctrgs.

Lemma 3.1.2.2. For every h P PNTransrf ,gs˚2 , one of the following holds:

• The target of h is of the form
a1 ai fpaiq b1 bj , (3.1.3)

where i and j are non-zero integers, the ak are in C and the bk are in D.

• The 2-cell h is in PFonctrf ,gs˚2 .

Proof. Let us show first that the set of all 1-cells of the form (3.1.3) is stable when rewritten by
PFonctrf ,gs˚2 . To prove this, we examine the case of every cell of PFonctrf ,gs˚2 of length 1:

a1 ak´1 ak`1 bj : a1 ai fpaiq b1 bj ñ a1 ak´1 ak`1 bj

a1 ak ak bj : a1 ai fpaiq b1 bj ñ a1 ak ak bj

a1 bk´1 bk`1 bj : a1 ai fpaiq b1 bj ñ a1 bk´1 bk`1 bj
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a1 bk bk bj : a1 ai fpaiq b1 bj ñ a1 bk bk bj

a1 ai´1 fpaiq bj : a1 ai fpaiq b1 bj ñ a1 ai´1 fpai´1q fpaiq b1 bj

Let us now prove the lemma: we reason by induction on the length of h. If h is of length 0,
it is an identity, so h is in PFonctrf ,gs˚.

If h is of length 1 and h is not in PFonctrf ,gs˚, then h has to be of the form .
So its target is of the form:

a1 ak fpakqgpakq b2 bj

which is indeed of the form (3.1.3), with b1 “ gpakq.
Let now h be of length n ą 1. We can write h “ h1 ‚1 h2, where h2 is of length 1, and h1 is

strictly shorter than h. Let us apply the induction hypothesis to h2. If the target of h2 is of the
form (3.1.3), then so is the target of h, since tph2q “ tphq. Otherwise, then h1 P PFonctrf ,gs˚,
and we can apply the induction hypothesis to h2. If h2 also is in PFonctrf ,gs˚, then so is h.

It remains to treat the case where tph1q is of the form (3.1.3) , and h2 is inPFonctrf ,gs˚. But
we have shown that the 1-cells of the form (3.1.3) are stable when rewritten by PFonctrf ,gs˚.
Thus, the target of h2 (which is the target of h) is of the form (3.1.3), which concludes the
proof. �

Lemma 3.1.2.3. For every A P PNTransrf ,gs
˚p2q
3 , one of the following holds:

• The 1-target of A is of the form (3.1.3).

• The 3-cell A is in PFonctrf ,gs
˚p2q
3 .

Proof. Let us start by the case where A is a 3-cell of length 1 in PNTransrf ,gs˚3 . If the 1-
target of A is not of the form (3.1.3) then, according to Lemma 3.1.2.2, the 2-source of A is in
PFonctrf ,gs˚2 . The only 3-cell in PNTransrf ,gs3 which is not in PFonctrf ,gs3 is the 3-cell

, whose 2-source is not in PFonctrf ,gs˚2 . Thus A is in PFonctrf ,gs˚3 .

Suppose now that A “ B´1, where B is a 3-cell of PNTransrf ,gs˚3 of length 1. The 1-target
of B is the same as the one of A. If it is not of the form (3.1.3), B is in PFonctrf ,gs

˚p2q
3 , and

so is A.
In the general case, A is a composite of 3-cells of one of the two previous forms, and all of

them have the same 1-target as A. Thus if the 1-target of A is not of the form (3.1.3), all those
3-cells are in PFonctrf ,gs

˚p2q
3 , and so is A. �

Lemma 3.1.2.4. The 4-polygraph PFonctrf ,gs is 3-coherent.

Proof. It is a sub-4-polygraph of PNTransrf ,gs which is 3-terminating, therefore it is also 3-
terminating. Moreover, every critical pair in PFonctrf ,gs arises from one either in PFonctrf s
or PFonctrgs. Since those 4-polygraphs are confluent and satisfy the Squier condition, so does
PFonctrf ,gs.

Using Theorem 2.2.3.4, this means that PFonctrf ,gs is 3-coherent. �

Proposition 3.1.2.5. Let f ,g : CÑ D be two applications.
For every parallel 3-cells A,B P PNTransrf ,gs˚p2q whose 1-target is not of the form (3.1.3),

there exists a 4-cell α : A �?B P PNTransrf ,gs
˚p2q
4 .

In particular, for every parallel 3-cells A,B P PNTransrf ,gs˚p2q whose 1-target is of weight
1 and is not of the form a fpaq b, there exists a 4-cell α : A �?B P PNTransrf ,gs

˚p2q
4 .
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Proof. Let A,B P PNTransrf ,gs
˚p2q
3 whose 1-target is not of the form (3.1.3). We want to build

a 4-cell α : A �?B P PNTransrf ,gs
˚p2q
4 . According to Lemma 3.1.2.3, A and B are actually

3-cells in PFonctrf ,gs
˚p2q
3 . In Lemma 3.1.2.4, we showed that PFonctrf ,gs is 3-coherent, hence

there exists a 4-cell α : A �?B P PFonctrf ,gs
˚p2q
4 Ă PNTransrf ,gs

˚p2q
4 .

Moreover, the only 1-cells of weight 1 and of the form (3.1.3) are the 1-cells a fpaq b, which
proves the second part of the Proposition. �

3.1.3 The 2-Squier condition of depth 2 and PNTransrf ,gs

In this section, we finally state Theorem 3.1.3.5, and show that a sub-polygraph ofPNTransrf ,gs
satisfies its hypothesis. The proof of Theorem 3.1.3.5 will occupy Sections 3.2 to 3.4.

Definition 3.1.3.1. Let PNTrans``rf ,gs be the sub-p4, 2q-polygraph of PNTransrf ,gs con-
taining every product cell from Table 3.2.

Definition 3.1.3.2. Let Σ be an pn ` 1q-polygraph, and pf, gq a local branching in Σn. De-
pending on the nature of pf, gq, we define the notion of canonical filling of pf, gq.

• If pf, gq is an aspherical branching, then its canonical filling is the identity 1f .

• If pf, gq is a Peiffer branching, if pf, gq “ pf 1 ‚i v1, v2 ‚i g
1q (resp. pf, gq “ pv1 ‚i f

1, g1 ‚i v2q),
then its canonical filling is 1f 1‚ig1 (resp. 1g1‚if 1).

• Assume that Σ satisfies the n-Squier condition, and let pf, gq be a critical pair. Let A be
the pn ` 1q-cell associated to rf, gs. If A is a filling of pf, gq, then the canonical filling of
pf, gq is A. Otherwise, A is a filling of pg, fq and the canonical filling of pf, gq is A´1.

• Assume that the branching pf, gq admits a canonical filler A. Then the canonical filler of
pu ‚i f ‚i v, u ‚i f ‚i vq is u ‚i A ‚i v.

Definition 3.1.3.3. Let Σ be an pn ` 2, nq-polygraph satisfying the n-Squier condition, and
pf, g, hq be a local branching of Σn. A filling of pf, g, hq is an pn` 2q-cell α P Σ

˚pnq
n`2 of the shape:

//

Af,g
��

A

//

B1

��Af,h
��

f
??

g //

h
��

Ag,h

??

��

α %9

f
??

h
��

//

B2

//

?? ??

//

??

(3.1.4)

where A,Af,g, Ag,h, Af,h, B1 and B2 are pn ` 1q-cells in Σ
˚pnq
n`1 , and Af,g, Ag,h and Af,h are the

canonical fillings of respectively pf, gq, pg, hq and pf, hq.

Definition 3.1.3.4. An pn` 2, nq-polygraph Σ satisfies the n-Squier condition of depth 2 if:

• it satisfies the n-Squier condition,

• there is a bijective application from Σn`2 to the set of all critical triples of Σn that asso-
ciates to every α P Σn`2 a critical triple b of Σn such that α is a filling of a representative
of b.
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Theorem 3.1.3.5. Let A be a p4, 2q-polygraph satisfying the 2-Squier condition of depth 2.
For every parallel 3-cells A,B P Σ

˚p2q
3 whose 1-target is a normal form, there exists a 4-cell

α : A �?B in the free p4, 2q-category Σ
˚p2q
4 .

This theorem should be compared with Proposition 4.4.4 in [40]. There, for every parallel
A,B P Σ

˚p1q
3 , a 4-cell α : A �?B is constructed in the free p4, 1q-category Σ

˚p1q
4 . By not requiring

the inversibility of the 2-cells, Theorem 3.1.3.5 gives a more precise statement, at the cost of
restricting the set of 3-cells allowed.

Lemma 3.1.3.6. The p4, 2q-polygraph PNTrans``rf ,gs satisfies the 2-Squier condition of
depth 2.

Proof. The 2-Squier condition

Let us start by showing the 2-termination of the p4, 2q-polygraph PNTrans``rf ,gs.
We define a functor τ : PNTransrf ,gs˚1 Ñ N3, where compositions in N3 are given by

component-wise addition, by defining:

• For all a, b P C, τpa bq “ p1, 0, 0q.

• For all a P C, τpa fpaqq “ p0, 1, 0q.

• For all a P C, τpagpaqq “ p0, 2, 0q.

• For all a, b P D, τpa bq “ p0, 0, 1q.

The lexicographic order on N3 induces a noetherian ordering on PNTransrf ,gs˚1 . Moreover,
the 2-cells are indeed decreasing for this order:

τpsp qq “ p2, 0, 0q ą p1, 0, 0q “ τptp qq τpsp qq “ p0, 0, 2q ą p0, 0, 1q “ τptp qq

τpsp qq “ p1, 1, 0q ą p0, 1, 1q “ τptp qq τpsp qq “ p1, 2, 0q ą p0, 2, 1q “ τptp qq

τpsp qq “ p0, 2, 0q ą p0, 1, 1q “ τptp qq

The following diagrams show both the 2-confluence of PNTrans``rf ,gs and the correspon-
dence between critical pairs and 3-cells:

a c d

�-
a b c d

0D

�.

ad

a b d

1E

a c d

�-
a b c d

0D

�.

ad

a b d

1E
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a b fpbq fpcq
%9
a fpaq fpbq fpcq

�&
a b c fpcq

8L

�/

a fpaq fpcq

a c fpcq

/C

a bgpbqgpcq
%9
agpaqgpbqgpcq

�&
a b cgpcq

8L

�/

agpaqgpcq

a cgpcq

/C

agpaqgpbq
%9
a fpaqgpaqgpbq

�2
a bgpbq

-A

�1

a fpaqgpbq

a b fpbqgpbq
%9
a fpaq fpbqgpbq

,@

The 2-Squier condition of depth 2

The following diagrams show the bijection between critical triples and 4-cells.

a c d e
%9
ad e

�(

a c d e
%9

�*
“

ade

�(
a b c d e

3G

%9

�+

a b d e

4H

�*

a e
�?
a b c d e

3G

�+

a c e
%9
a e

a b c e
%9
a b e

6J

a b c e
%9

4H

a b e

6J

a c d e
%9
ad e

�(

a c d e
%9

�*
“

ad e

�(
a b c d e

3G

%9

�+

a b d e

4H

�*

a e
�?
a b c d e

3G

�+

a c e
%9
a e

a b c e
%9
a b e

6J

a b c e
%9

4H

a b e

6J
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a c d fpdq
%9
ad fpdq

�0
a b c d fpdq

-A

%9

��

a b d fpdq

,@

�&

a fpaq fpdq

a b c fpcq fpdq

�1

a fpaq fpbq fpdq

EY

a b fpbq fpcq fpdq
%9

��

a b fpbq fpdq

+?

a c d fpdq
%9

�2

ad fpdq

�0
a b c d fpdq

-A

��

“ a c fpcq fpdq
%9
a fpaq fpcq fpdq

%9
a fpaq fpdq

a b c fpcq fpdq

�1

)=

a fpaq fpbq fpcq fpdq

,@

%9
a fpaq fpdq

EY

a b fpbq fpcq fpdq
%9

,@
“

a b fpbq fpdq

+?

a c dgpdq
%9
adgpdq

�1
a b c dgpdq

-A

%9

��

a b dgpdq

,@

�&

agpaqgpdq

a b cgpcqgpdq

�1

agpaqgpbqgpdq

EY

a bgpbqgpcqgpdq
%9

��

a bgpbqgpdq

+?

a c dgpdq
%9

�2

adgpdq

�1
a b c dgpdq

-A

��

“ a cgpcqgpdq
%9
agpaqgpcqgpdq

%9
agpaqgpdq

a b cgpcqgpdq

�1

)=

agpaqgpbqgpcqgpdq

,@

%9
agpaqgpdq

EY

a bgpbqgpcqgpdq
%9

,@
“

a bgpbqgpdq

+?
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a cgpcq
%9
agpaqgpcq

%9

“

a fpaqgpaqgpcq
%9
a fpaqgpcq

agpaqgpbqgpcq

EY

%9
a fpaqgpaqgpbqgpcq

EY

�2
a b cgpcq

9M

%9

�%

a bgpbqgpcq

.B

�0

a fpaqgpbqgpcq

5I

a b fpbqgpbqgpcq
%9

�1

a fpaq fpbqgpbqgpcq

,@

&: a fpaq fpbqgpcq

EY

a b c fpcqgpcq
%9
a b fpbq fpcqgpcq

%9
a b fpbqgpcq

1E

“

��

a cgpcq
%9

�'
“

agpaqgpcq
%9
a fpaqgpaqgpcq

%9
a fpaqgpcq

a fpaq fpcqgpcq

-A

a b cgpcq

9M

�%

a c fpcqgpcq

)=

a fpaq fpbq fpcqgpcq

EY

%9
a fpaqgpbqgpcq

EY

a b c fpcqgpcq
%9

7K

a b fpbq fpcqgpcq
%9

)=

“

a b fpbqgpcq

1E

�

Proposition 3.1.3.7. For every 3-cells A,B P PNTrans``rf ,gs˚p2q whose 1-target is of the
form a fpaq b, there exists a 4-cell α : A �?B P PNTransrf ,gs˚p2q.

Proof. Thanks to Lemma 3.1.3.6, we can apply Theorem 3.1.3.5 to PNTrans``rf ,gs˚p2q, and
there exists a 4-cell α : A �?B inPNTrans``rf ,gs˚p2q for every 3-cellsA,B P PNTrans``rf ,gs˚p2q

whose 1-target is a normal form. In particular the 1-cells of the form a fpaq b are normal forms. �
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3.1.4 Adjunction of the units 2-cells

Definition 3.1.4.1. Let PNTransurf ,gs be the sub-3-polygraph of PNTransrf ,gs containing
the same 1- and 2-cells, and whose only 3-cells are the unit cells from Table 3.2.

A 2-cell h P PNTransrf ,gs˚2 is said unitary if it is generated by the sub-2-polygraph of
PNTransrf ,gs whose only 2-cells are and .

Lemma 3.1.4.2. Let h P PNTransrf ,gs˚2 whose target is of the form a fpaq b, where a P C and
b P D.

If there is a decomposition h “ h1‚1h2, where h1 P PNTransurf ,gs˚ and h2 P PNTransrf ,gs˚

are not identities, and h1 is a unitary 2-cell, then there is a 3-cell A P PNTransurf ,gs˚3 of source
h which is not an identity.

Proof. Let us start with the case where h1 is of length 1. We reason by induction on the length
of h2. If h2 is of length 1, since the target of h2 is of the form a fpaq b, h2 is one of the following
2-cells:

Hence, h is one of the following 2-cells:

And all of these 2-cells are indeed the sources of 3-cells in PNTransurf ,gs˚3 .
In the general case, let us write h2 “ h0 ‚1 h

1
2, where h0 is of length 1. Two cases can occur.

• If there exist 1-cells u, u1, v and v1 and 2-cells h10 : u ñ u1 P PNTransurf ,gs˚ and h11 :
v ñ v1 P PNTransrf ,gs˚ such that h1 “ h11 ‚0 u (resp. h1 “ u ‚0 h

1
1) and h0 “ v1 ‚0 h

1
0

(resp. h0 “ h10 ‚0 v
1).

Then h “ ph11 ‚0 h
1
0q ‚1 h

1
2 (resp. h “ ph10 ‚0 h

1
1q ‚1 h

1
2), and we can apply the induction

hypothesis to ph11 ‚0 u
1q ‚1 h

1
2 (resp. pu1 ‚0 h

1
1q ‚1 h

1
2).

• Otherwise, h1 ‚1 h0 is one of the following 2-cells,

and all of them are sources of 3-cells in PNTransurf ,gs˚.

In the case general case where h1 is of any length, let h11, h21 P PNTransrf ,gs˚2 with h21 of
length 1 such that h1 “ h11 ‚1 h

2
1. Then there is a non-empty 3-cell A1 P PNTransurf ,gs˚3 of

source h21 ‚1 h2, and one can take the 3-cell h11 ‚1 A
1. �

Lemma 3.1.4.3. Let h be a 2-cell in PNTransrf ,gs˚ whose target is of the form a fpaq b, with
a P C and b P D.

If h is a normal form for PNTransurf ,gs, then one of the following holds:

• The 2-cell h equals the composite .

• The 2-cell h is in PNTrans``rf ,gs˚.

Proof. We reason by induction on the length of h. If h is of length 1, the cells of PNTransrf ,gs˚2
of length 1 and of target a fpaq b are:

Otherwise, let us write h “ h1 ‚1 h2, where h1 is of length 1. We can apply the induction
hypothesis to h2, which leads us to distinguish three cases:
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• If h2 “ , then h1 is a 2-cell in PNTransrf ,gs˚2 whose target is of the form a fpaq. The
only such cell is the identity, and h “ h2 “ .

• If h1 and h2 are in PNTrans``rf ,gs˚, then h is in PNTrans``rf ,gs˚.

• Lastly, if h2 is in PNTrans``rf ,gs˚ and h1 is in PNTransurf ,gs˚, then because of
Lemma 3.1.4.2, h is the source of a 3-cell in PNTransurf ,gs˚ of length 1, which is impos-
sible since, by hypothesis, h is a normal form for PNTransurf ,gs.

�

Definition 3.1.4.4. Let PNTrans`rf ,gs be the sub-4-polygraph of PNTransrf ,gs containing
PNTrans``rf ,gs, together with the 2-cells and .

In particular a 3-cell in the free p3, 2q-categoryPNTrans`rf ,gs˚p2q is inPNTrans``rf ,gs˚p2q

if and only if its 2-source is in PNTrans``rf ,gs˚p2q too.

Proposition 3.1.4.5. For every parallel 3-cells A,B P PNTrans`rf ,gs˚p2q whose 1-target is of
the form a fpaq b and whose 2-source is a normal form for PNTransurf ,gs, there exists a 4-cell
α : A �?B P PNTransrf ,gs˚p2q.

Proof. Given such 3-cells A and B, we use Lemma 3.1.4.3 to distinguish two cases:
If the source of A and B is , the only 3-cell in PNTrans`rf ,gs˚p2q with source is the

identity. So A “ B and we can take α “ 1A.
Otherwise, the source ofA andB lies inPNTrans``rf ,gs˚2 , soA andB lie inPNTrans``rf ,gs

˚p2q
3 .

Proposition 3.1.3.7 allows us to conclude. �

3.1.5 Adjunction of the units 3-cells

In this section, we consider the rewriting system formed by the 3-cells of PNTransurf ,gs.
Since it is a sub-3-polygraph of PNTransrf ,gs (which 3-terminates by Proposition 3.1.1.6),
PNTransurf ,gs is 3-terminating. The fact that it is 3-confluent is a consequence of the following
more general Lemma:

Lemma 3.1.5.1. Let A P PNTransrf ,gs˚3 and B P PNTransurf ,gs˚3 . There exist 3-cells
A1 P PNTransrf ,gs˚3 and B1 P PNTransurf ,gs˚ and a 4-cell αA,B P PNTransrf ,gs

˚p2q
4 of the

following shape:

A %9

B

��

B1

��

αA,B
o�

A1
%9

Proof. Let us start by the case where pA,Bq is a critical pair of PNTransrf ,gs3. If A and B are
in PFonctrf ,gs˚3 , the result holds because PFonctrf ,gs is 3-convergent. Otherwise, the only
critical pair left is the following one:
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Let us now study the case where pA,Bq is a local branching of PNTransrf ,gs3. We distin-
guish three cases depending on the shape of the branching:

• If pA,Bq is an aspherical branching, then one can take identities for A1 and B1, and α “ 1A.

• If pA,Bq is a Peiffer branching, let A1 and B1 be the canonical fillers of the confluence
diagram of pA,Bq, and α be an identity.

• Lastly, if pA,Bq is an overlapping branching, let us write pA,Bq “ pf ‚1 uA1v ‚1 g, f ‚1

uB1v ‚1 gq, where pA1, B1q is a critical pair. Let A11, B11 and α1 be the cells associated with
pA1, B1q. We then define A1 :“ f ‚1uA

1
1v‚1 g, B1 :“ f ‚1uB

1
1v‚1 g and α1 :“ f ‚1uα1v‚1 g.

In the general case, we reason by noetherian induction on h “ spAq “ spBq, using the
3-termination of PNTransrf ,gs.

• If A or B is an identity, then the result holds immediately.

• Otherwise, we write A “ A1 ‚2 A2 and B “ B1 ‚2 B2, where A1 and B1 are of length 1.
We now build the following diagram:

h
A1 %9

B1

��

αA1,B1

A2 %9
B11

��

αA2,B11 B21

��A11 %9

B2

��

αA11,B2

A12 %9

B12��

αA12,B12 B22

��

A21

%9
A22

%9

In this diagram, αA1,B1 is obtained thanks to our study of the local branchings. The existence
of αA2,B11

and αA11,B2
(followed by αA12,B12) then follows from the induction hypothesis. �

Lemma 3.1.5.2. Let f, g be 2-cells of PNTransrf ,gs˚, and A : f V g a 3-cell of PNTrans`rf ,gs˚.
If f is a normal form for PNTransurf ,gs, then so is g.
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Proof. We prove this result by contrapositive. We are going to show that for anyA P PNTrans`rf ,gs˚

and B P PNTransurf ,gs˚ two 3-cells of length 1 such that tpAq “ spBq, there exists B1 P
PNTransurf ,gs˚ of length 1 and of source spAq:

B

��

Aey

B1

��

Two cases can occur depending on the shape of the branching pA´1, Bq:

• If it is a Peiffer branching, then the required cell is provided by the canonical filling.

• If it is an overlapping branching, then it is enough to check the underlying critical pair.

It remains to examine those critical pairs:

��

ey

�� ��

ey

��

�� ��

ey

�� ��

ey

�� ��

ey

�� ��

ey

��

ey

�� ��

ey

��
��

ey

��
��

ey

��

�� ��

ey

�

Lemma 3.1.5.3. Let A P PNTransrf ,gs˚3 . If the source of A is a formal form for PNTransurf ,gs,
then A is in PNTrans`rf ,gs˚3 .
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Proof. We reason by induction on the length of A:

• If A is an identity, then it is in PNTrans`rf ,gs.

• Otherwise, let us write A “ A1 ‚2 A2, where A1 is of length 1. Since the source of A is a
normal form for PNTransurf ,gs, the 3-cell A1 can only be in PNTrans`rf ,gs˚.

According to Lemma 3.1.5.2, the normal forms for PNTransurf ,gs are stable when rewrit-
ten by PNTrans`rf ,gs˚. Hence, the source A2 is a normal form for PNTransurf ,gs,
and by induction hypothesis, A2 is in PNTrans`rf ,gs˚. By composition, so is A.

�

Lemma 3.1.5.4. Let A be a 3-cell in PNTransrf ,gs˚p2q. There exist C1, C2 P PNTransurf ,gs˚3
whose target is a normal form for PNTransurf ,gs, a 3-cell A1 P PNTrans`rf ,gs

˚p2q
3 and a 4-

cell α P PNTransrf ,gs
˚p2q
4 of the following shape:

A %9

C1

��

C2

��

α
o�

A1
%9

Proof. Let us write A “ A´1
1 ‚2 B1 ‚2 A

´1
2 . . . ‚2 A

´1
n ‚2 Bn, where the Ai and Bi are in

PNTransrf ,gs˚3 . For every i ď n, we chose a 3-cell Di P PNTransurf ,gs˚3 of source spAiq “
spBiq and of target a normal form for PNTransurf ,gs.

According to Lemma 3.1.5.1, there exist for every i some 3-cells A1i, B
1
i in PNTransrf, gs˚,

D1i P PNTransurf ,gs˚3 andD2i P PNTransurf ,gs˚3 and some 4-cells αi and βi inPNTransrf ,gs˚p2q

of the form:

Ai %9

Di

��

D1i

��

αi
o�

A1i

%9

Bi %9

Di

��

D2i

��

βi
o�

B1i

%9

The following is a consequence of the target of Di being a normal form for PNTransurf ,gs:

• Using Lemma 3.1.5.3, A1i and B
1
i are in PNTrans`rf ,gs˚,

• Using Lemma 3.1.5.2, the target A1i and B1i (thus of D1i and D2i ) are normal forms for
PNTransurf ,gs.

• Since PNTransurf ,gs is 3-convergent, for any i ă n, the cells D2i and D1i`1 are parallel.

Since PNTransurf ,gs is a sub-polygraph of PFonctrf ,gs which is 3-coherent, there exists,
for every i ă n, a 4-cell γi : D2i

�?D1i in PFonctrf ,gs
˚p2q
4 .

We can now conclude the proof of this Lemma by taking C1 “ D11, C2 “ D2n and A1 “
pA11q

´1 ‚2 B
1
2 ‚2 . . . ‚2 pA

1
nq
´1 ‚2 B

1
n, and by defining α as the following composite:
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A1A1 B1B1 A2A2 B2B2 A3A3 Bn´1Bn´1 AnAn BnBn

D11D
1
1

D11D
1
1 D21D

2
1

D12D
1
2

D2D2

D22D
2
2 D1nD

1
n

DnDn

D2nD
2
n

A11A
1
1 B11B

1
1 A12A

1
2 B12B

1
2 A13A

1
3 B1n´1B1n´1 A1nA

1
n B1nB

1
n

. . .

. . .

¨ ¨ ¨

α1
β1

γ1
α2

β2

αn
βn

�

We can now conclude the proof Theorem 3.1.1.8.

Theorem 3.1.1.8 (Coherence for pseudonatural transformations). Let C and D be sets, and
f ,g : CÑ D applications.

Let A,B P PNTransrf ,gs
˚p2q
3 be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell α : A �?B P PNTransrf ,gs
˚p2q
4 .

Proof. Let A,B P PNTransrf ,gs
˚p2q
3 be two parallel 3-cells whose 1-target is a fpaq b. We are

going to build a 4-cell α : A �?B P PNTransrf ,gs
˚p2q
4 .

According to Lemma 3.1.5.4, there exist C1, C2, C
1
1, C

1
2 P PNTransurf ,gs˚ whose targets

are normal forms for PNTransurf ,gs, A1, B1 P PNTrans`rf ,gs˚p2q and α1, α2 P TPN rf ,gs
˚p2q
4

such that we have the diagrams:

A %9

C1

��

C 11

��

α1

o�

A1
%9

B %9

C2

��

C 12

��

α2

o�

B1
%9

The 3-cells A and B are parallel, and the 3-cells C1 and C2 (resp. C 11 and C 12) have the
same source and have a normal form for PNTransurf ,gs as target. Since PNTransurf ,gs is
3-convergent, this implies that the 3-cells C1 and C2 (resp. C 11 and C 12) are parallel. This has
two consequences:

• The critical pairs of PNTransurf ,gs already appeared in PFonctrf ,gs, and we showed
that they admit fillers. Hence, there exist cells β1 : C1

�?C2 and β2 : C 11
�?C 12 in

PNTransrf ,gs
˚p2q
4 .

• The 3-cells A1 and B1 are parallel, their 1-target is still a fpaq b, and their 2-source is a normal
form for PNTransurf ,gs. So by Proposition 3.1.4.5 there exists a 4-cell γ : A1 �?B1.
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To conclude, we define α as the following composite (where we omit the context of the
4-cells):

BB

AA

C2C2

C1C1

A1A1

B1B1

C 12C
1
2

C 11C
1
1

β1 γ β2

α1

α´1
2

�
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3.2 Partial coherence and transformation of polygraphs

This section cointains some preliminary results that will be used in Sections 3.3 and 3.4 to prove
Theorem 3.1.3.5. In Section 3.2.1, we define the notion of white category together with the
associated notion of white polygraph. The white 2-categories are also known as sesquicategories
(see [80]). White categories are strict categories in which the interchange law between the
compositions ‚0 and ‚i need not hold, for every i ą 0. That is, strict n-categories are exactly
the white n-categories satisfying the additional condition that for every i-cells f and g of 1-
sources (resp. 1-targets) u and v (resp. u1 and v1): pf ‚0 vq ‚i pu

1 ‚0 gq “ pu ‚0 gq ‚i pf ‚0 vq.
In Section 3.2.2, we define a notion of partial coherence for white p4, 3q-categories, and

reformulate Theorem 3.1.3.5 using this notion. We show a simple criterion in order to deduce
the partial coherence of a white p4, 3q-category from that of another one. This criterion will be
used throughout Section 3.3. We also adapt the notion of Tietze-transformation from [31] to
our setting of partial coherence in white categories, in preparation for Section 3.3.5.

In Section 3.2.3, we study injective functors between free white categories. In particular,
we give a sufficient condition for a morphism of white polygraphs to yield an injective functor
between the white categories they generate. This result will be used in Section 3.3.3.

Note that, although Sections 3.2.2 and 3.2.3 are expressed in terms of white categories (since
this is how they will be used throughout Section 3.3), all the definitions and results in these
sections also hold in terms of strict categories, mutatis mutandis.

3.2.1 White categories and white polygraphs

Definition 3.2.1.1. Let n P N. An pn` 1q-white-category is given by:

• a set C0,

• for every x, y P C0, an n-category Cpx, yq. We denote by ‚k`1 the k-composition in this
category,

• for every z P C0 and every u : x Ñ y P C1, functors u ‚0 _ : Cpy, zq Ñ Cpx, zq and
_ ‚0 u : Cpz, xq Ñ Cpz, yq, so that for every composable 1-cells u, v P C1, their composite
u ‚0 v is uniquely defined,

• for every x P C0, a 1-cell 1x P Cpx, xq.

Moreover, this data must satisfy the following axioms:

• For every x P C0, and every y P C0, the functors 1x ‚0 _ : Cpx, yq Ñ Cpx, yq and _ ‚0 1y :
Cpx, yq Ñ Cpx, yq are identities.

• For every u, v P C1, the following equalities hold:

– u ‚0 pv ‚0 _q “ pu ‚0 vq ‚0 _,
– u ‚0 p_ ‚0 vq “ pu ‚0 _q ‚0 v,
– _ ‚0 pu ‚0 vq “ p_ ‚0 uq ‚0 v,

An pn, kq-white-category is an n-white-category in which every pi ` 1q-cell is invertible for
the i-composition, for every i ě k.

Let n be a natural number. Let C be an n-white-category. For k ď n, we denote by Ck
both the set of k-cells of C and the k-white-category obtained by deleting the cells of dimension
greater than k. For x P Ck and i ă k, we denote by sipxq and tipxq respectively the i-source and
i-target of x. Finally, we write spxq and tpxq respectively for sk´1pxq and tk´1pxq.
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Definition 3.2.1.2. Let C and D be n-white-categories. An n-white-functor is given by:

• an application F0 : C0 Ñ D0,

• for every x, y P C0, a functor Fx,y : Cpx, yq Ñ DpF0pxq, F0pyqq.

Moreover, this data must satisfy the following axioms:

• for every x P C0, F p1xq “ 1F0pxq,

• for every z P C0 and u : xÑ y P C1, the following equalities hold between functors:

– F puq ‚0 F p_q “ F pu ‚0 _q : Cpy, zq Ñ DpF0pxq, F0pzqq

– F p_q ‚0 F puq “ F p_ ‚0 uq : Cpz, xq Ñ DpF0pzq, F0pyqq

This makes n-white-categories into a category, that we denote by WCatn.

Remark 3.2.1.3. Let us define a structure of monoidal category b on n -Cat, in such a way
that WCatn`1 is the category of categories enriched over pn -Cat,bq.

Let C,D be two n-categories. The n-categories C ˆD0 and C0 ˆD are defined as follows:

C ˆD0 :“
ğ

yPD0

C, C0 ˆD :“
ğ

xPC0

D

Let C0 ˆ D0 be the n-category whose 0-cells are couples px, yq P C0 ˆ D0, and whose i-cells
are identities for every i ą 0. Let F : C0 ˆ D0 Ñ C ˆ D0 (resp. G : C0 ˆ D0 Ñ C0 ˆ D) be the
n-functor which is the identity on 0-cells. Then C bD is the pushout pC ˆD0q ‘C0ˆD0 pC0ˆDq:

C0 ˆD0
F
//

G
�� x

C ˆD0

��

C0 ˆD // C bD.

The category of n-white-categories equipped with a cellular extension, denoted by WCat`n ,
is the limit of the following diagram:

WCat`n //

��

{

Graphn`1

��

WCatn // Graphn

where the functor WCatn Ñ Graphn forgets the white-categorical structure and the functor
Graphn`1 Ñ Graphn deletes the top-dimensional cells.

Let Rw
n be the functor from WCatn`1 to WCat`n that sends an pn ` 1q-white-category C

on the couple pCn, Cn Cn`1oo
oo

q.

Proposition 3.2.1.4. The functor Rw
n admits a left-adjoint Lwn : WCat`n ÑWCatn`1.

Proof. Let pC,Σq P WCat`n be an n-white-category equipped with a cellular extension. The
construction of Lwn pC,Σq is split into three parts:

• First, we define a formal language EΣ.
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• Then, we define a typing system TC on EΣ. We denote by ETΣ the set of all typable
expressions of EΣ.

• Finally, we define an equivalence relation ”˚Σ on ETΣ . The set of pn ` 1q-cell of Lwn pC,Σq
is then the quotient ETΣ{ ”

˚
Σ.

Let EΣ be the formal language consisting of:

• For every 1-cells u, v P C1, and every pn ` 1q-cell A P Σn`1, such that t0puq “ s0pAq and
t0pAq “ s0pvq, a constant symbol cuAv.

• For every n-cell f P Cn, a constant symbol if .

• For every 0 ă i ď n, a binary function symbol ‚i.

Thus EΣ is the smallest set of expressions containing the constant symbols and such that e‚if P Σ
whenever e, f P EΣ.

Let TC be the set of all n-spheres of C, that is of couples pf, gq in Cn such that spfq “ spgq
and tpfq “ tpgq. For e P EΣ and t P TC , we define e : t (read as "e is of type t") as the smallest
relation satisfying the following axioms:

• For every 1-cells u and v in C1, and every pn` 1q-cell A P Σ, such that t0puq “ s0pAq and
t0pAq “ s0pvq

cuAv : pu spAqv, u tpAqvq

• For every n-cell f P Cn
if : pf, fq

• For every e1, e2 P EΣ and i ă n, if e1 : ps1, t1q, e2 : ps2, t2q and tipt1q “ sips2q, then

e1 ‚i e2 : ps1 ‚i s2, t1 ‚i t2q

• For every e1, e2 P EΣ, if e1 : ps1, t1q, e2 : ps2, t2q and t1 “ s2, then

e1 ‚n e2 : ps1, t2q

An expression e P EΣ is said to be typable if e : ps, tq for some n-sphere ps, tq P TC . Moreover,
there is only one such n-sphere, so the operations speq :“ s and tpeq :“ t are well-defined. We
denote by ETΣ be the set of all typable expressions.

Let ”Σ be the symmetric relation generated by the following relations on ETΣ :

• For every A,B,C,D P ETΣ , and every i1, i2 ď n non-zero distinct natural numbers,

pA ‚i1 Bq ‚i2 pC ‚i1 Dq ”Σ pA ‚i2 Cq ‚i1 pB ‚i2 Dq

• For every A,B,C P ETΣ , and every 0 ă i ď n,

pA ‚i Bq ‚i C ”Σ A ‚i pB ‚i Cq

• For every A P ETΣ and f P Cn:

if ‚n A ”Σ A A ‚n if ”Σ A
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• For every f1, f2 P Cn and every i ă n,

if1 ‚i if2 ”Σ if1‚if2

• For every A,A1, B P ETΣ and every 0 ă i ď n, if A ”Σ A1, then

A ‚i B ”Σ A1 ‚i B

• For every A,B,B1 P ETΣ and every 0 ă i ď n, if B ”Σ B1, then

A ‚i B ”Σ A ‚i B
1

Let ”˚Σ be the reflexive closure of ”Σ. The pn`1q-cells of Lwn pC,Σq are given by the quotient
ETΣ{ ”

˚
Σ. The i-composition is given by the one of ETΣ , and identities by if . �

Definition 3.2.1.5. We now define by induction on n the categoryWPoln of n-white-polygraphs
together with a functor Qw

n : WPoln ÑWCatn.

• The category WPol0 is the category of sets, and Qw
0 is the identity functor.

• Assume Qw
n : WPoln Ñ WCatn defined. Then WPoln`1 is the limit of the following

diagram:
WPoln`1

//

��

{

WCat`n

��

WPoln Qw
n

//WCatn,

and Qw
n`1 is the composite

WPoln`1
//WCat`n

Lwn
//WCatn`1

Given an n-white-polygraph Σ, the n-white-category Qw
n pΣq is denoted by Σw and is called

the free n-white-category generated by Σ.

Definition 3.2.1.6. Let WCat
wpnq
n`1 be the category of pn` 1, nq-white-categories. Once again

we have a functor Rwpnq
n : WCat

wpnq
n`1 ÑWCat`n , and we are going to describe its left-adjoint

Lwpnqn`1 . Let pC,Σq be an n-white-category together with a cellular extension. To construct
Lwpnqn`1 pC,Σq, we adapt the construction of the free n-white-categories as follows:

• Let FΣ be the formal language EΣYΣ̄, where Σ̄ consists of formal inverses to the elements
of Σ (that is their source and targets are reversed).

• The type system is extended by setting, for every 1-cells u, v in C1 and every pn` 1q-cell
A P Σ such that t0puq “ s0pvq and t0pAq “ s0pAq:

cuĀv : pu tpAqv, u spAqvq.

We denote by F TΣ the set of all typable expressions for this new typing system.
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• We extend ”Σ into a relation denoted by –Σ by adding the following relations:

cuAv ‚n cuĀv –Σ iu spAqv cuĀv ‚n cuAv –Σ iu tpAqv

for every u, v in C1 and every pn`1q-cell A P Σ, such that t0puq “ s0pAq and t0pAq “ s0pvq.

We define categories WPol
pkq
n of pn, kq-white-polygraphs and functors Qwpkq

n : WPol
pkq
n Ñ

WCat
pkq
n similarly to Pol

pkq
n and Qpkqn .

Definition 3.2.1.7. Given an pn, kq-white-polygraph Σ, the pn, kq-white-category Qwpkq
n pΣq is

denoted by Σwpkq and is called the free pn, kq-white-category generated by Σ. For j ď n, we
denote by Σ

wpkq
j both the j-cells of Σwpkq and the pj, kq-category generated by Σ. Hence, an

pn, kq-polygraph Σ consists of the following data:

Σ0 Σ1 Σ2 p¨ ¨ ¨ q Σk Σk`1 p¨ ¨ ¨ q Σn

Σ0 Σw
1 Σw

2 p¨ ¨ ¨ q Σw
k Σ

wpkq
k`1 p¨ ¨ ¨ q

3.2.2 Partial coherence in pointed white p4, 3q-categories

Definition 3.2.2.1. A pointed white p4, 3q-category is a couple pC, Sq, where C is a white 4-
category, and S is a subset of C2.

Definition 3.2.2.2. Let pC, Sq be a pointed white p4, 3q-category. The restriction of C to S,
denoted by CæS, is the following p2, 1q-category:

• its 0-cells are the 2-cells of C2 that lie in S,

• its 1-cells are the 3-cells of C3 with source and target in S,

• its 2-cells are the 4-cells of C4 with 2-source and 2-target in S,

• its 0-composition and 1-composition are respectively induced by the compositions ‚2 and
‚3 of C.

Definition 3.2.2.3. Let pC, Sq be a pointed white p4, 3q-category. We say that C is S-coherent
if for every parallel 1-cells A, B in the p2, 1q-category CæS, there exists a 2-cell α : Añ B P CæS.

Example 3.2.2.4. Every white p4, 3q-category is H-coherent. A white p4, 3q-category C is
C2-coherent if and only if it is 3-coherent.

Theorem 3.1.3.5. Let A be a p4, 2q-polygraph satisfying the 2-Squier condition of depth 2, and
let SA be the set of all 2-cells whose target is a normal form.

Then A is SA-coherent.

Definition 3.2.2.5. Let C and D be two 2-categories, F : C Ñ D a 2-functor.
We say that F is 0-surjective if the application F : C0 Ñ D0 is surjective.
Let 0 ă k ă 2. We say that F is k-surjective if, for every pk ´ 1q-parallel cells s, t P Ck´1,

the application F : Ckps, tq Ñ DkpF psq, F ptqq is surjective.

Definition 3.2.2.6. Let pC, Sq and pC1, S1q be two pointed p4, 3q-categories. We say that pC1, S1q
is stronger than pC, Sq if there is a functor F : C1æS1 Ñ CæS which is 0-surjective and 1-surjective.
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Lemma 3.2.2.7. Let pC, Sq, pC1, S1q be two pointed white p4, 3q-categories. If there exists a
2-functor F : C1æS1 Ñ CæS which is 0-surjective and 1-surjective, then pC1, S1q is stronger than
pC, Sq.

Proof. The functor F induces a functor F̄ : C1æS1 Ñ CæS. Since it is equal to F on objects, it
is 0-surjective. On 1-cells F̄ is the composition of F with the canonical projection associated to
the quotient, hence it is 1-surjective, and so pC1, S1q is stronger than pC, Sq. �

Lemma 3.2.2.8. Let pC, Sq, pC1, S1q be two pointed white p4, 3q-categories, and assume pC1, S1q
is stronger than pC, Sq.

If C1 is S1-coherent, then C is S-coherent.

Proof. Let F : C1æS1 Ñ CæS be a functor that is 0-surjective and 1-surjective. Let A,B : f Ñ
g P pCæSq1 be parallel 1-cells, and Ā, B̄ be their projections in CæS.

Since F is 0-surjective, there exists f 1, g1 P pC1æS1q0 in the preimage of f and g under F .
Since F is 1-surjective, there exists A1, B1 P pC1æS1q1 of source f 1 and of target g1 such that
F pĀ1q “ Ā and F pB̄1q “ B̄.

Since C1æS1 is 2-coherent, there exists α1 : A1 ñ B1 P pC1æS1q2. Thus, Ā1 “ B̄1 and Ā “ B̄.
Hence, there exists α : A ñ B P CæS. This shows that CæS is 1-coherent, and therefore that C
is S-coherent. �

We are going to define four families of Tietze-transformations on white p4, 3q-polygraphs.
Tietze transformations originates from combinatorial group theory [58], and was adapted for
p3, 1q-categories in [31], as a way to modify a p3, 1q-polygraph without modifying the 2-categories
it presents. In particular, they preserve the 2-coherence. Here we adapt these transformations
to our setting of white p4, 3q-polygraphs and show that they preserve the partial coherence. This
will be used in Section 3.3.5. We fix a white 4-polygraph A.

Definition 3.2.2.9. Let A P Awp3q
3 . We define a white 4-polygraph ApAq by adding to A a

3-cell B and a 4-cell α, whose sources and targets are given by:

• spBq “ spAq,

• tpBq “ tpAq,

• spαq “ A,

• tpαq “ B.

The inclusion induces a functor between white p4, 3q-categories ιA : Awp3q Ñ pApAqqwp3q.
We call this operation the adjunction of a 3-cell with its defining 4-cell.

Definition 3.2.2.10. Let α P A4 and A P A3 such that:

• tpαq “ A

• spαq P pAzttpαquqwp3q3 .

The 4-cell α induces an application A3 Ñ pA3zttpαquq
wp3q, by sending tpαq on spαq and that

is the identity on the other cells of A3. This application extends into a 3-functor πα : Aw
3 Ñ

pA3zttpαquq
w.

Let A{pA;αq be the following white 4-polygraph:

A0 Awp3q
1

t
oo

s
oo Awp3q

2
t
oo

s
oo

pA3zttpαquq
wp3q

t
oo

s
oo A4ztαu

πα ˝ t
oo

πα ˝ s
oo
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Then πα induces a functor Awp3q Ñ pA{pA;αqqwp3q, which sends α on the identity of spαq,
and which is the identity on the other cells of A4. We call this operation the removal of a 3-cell
with its defining 4-cell.

Definition 3.2.2.11. Let α be a 4-cell in Awp3q
4 . We define a white 4-polygraph Apαq by adding

to A a 4-cell β : spαq �? tpαq. The inclusion of A into Apαq induces a functor ια : Awp3q Ñ

Apαqwp3q. We call this operation the adjunction of a superfluous 4-cell.

Definition 3.2.2.12. Let β P A4 such that there exists a 4-cell α P pAztβuqwp3q parallel to
β. Let A{β be the white 4-polygraph obtained by removing β from A. There exists a functor
πβ : Awp3q Ñ pA{βqwp3q, that sends β on α and which is the identity on the other cells of A.
We call this operation the removal of a superfluous 4-cell.

Remark 3.2.2.13. Note that, in those four cases, the set of 2-cells is left unchanged. In
particular, let A be a white 4-polygraph, and B a white 4-polygraph constructed from A through
a series of Tietze-transformations. If S is a sub-set of Aw

2 , then S still is a subset of Bw2 .

Proposition 3.2.2.14. Let A be a white 4-polygraph, S a sub-set of Aw
2 , and B a white 4-

polygraph constructed from A through a series of Tietze-transformations.
If Bwp3q is S-coherent, then Awp3q is S-coherent.

Proof. We check that if B is constructed from A through a Tietze-transformation, then the white
3-categories presented by A and B are isomorphic.

Suppose now that B is S-coherent, and let A,B P Aw
3 be parallel 3-cells, whose source and

target are in S. Since Bwp3q is S-coherent, the images of A and B in the white 3-category
presented by B are equal. Since it is isomorphic to the white 3-category presented by A, there
exists a 4-cell α : A �?B P Awp3q

4 , which proves that A is S-coherent. �

3.2.3 Injective functors between white categories

Definition 3.2.3.1. Let Σ and Γ be two pn, kq-polygraphs (resp. white pn, kq-polygraphs), and
let F : Σ Ñ Γ be a morphism of pn, kq-polygraphs (resp. white pn, kq-polygraphs). We say that
F is injective if for all j ď n it induces an injective application from Σn to Γn.

Definition 3.2.3.2. Let C and D be two white n-categories, and let F : C Ñ D be a morphism
of white n-categories. We say that F is injective if for all j ď n it induces an injective application
from C to D.

Remark 3.2.3.3. An injective morphism between pn, kq-polygraphs does not always induce an
injective functor between the free pn, kq-categories they generate. To show that, we are going to
define two 2-polygraphs Σ and Γ, an injective morphism of 2-polygraphs F : Σ Ñ Γ, and two
distinct 2-cells f, g P Σ˚p1q such that F ˚p1qpfq “ F ˚p1qpgq.

Let Σ be the following 2-polygraph:

Σ0 “ t˚u Σ1 “ t : ˚ Ñ ˚u Σ2 :“ t , : ñ u

and Γ:
Γ0 “ t˚u Γ1 “ t : ˚ Ñ ˚u Γ2 :“ t , : ñ , : Ñ 1˚u

Let F be the inclusion of Σ into Γ, f “ and g “ . They are distinct elements of Σ
˚p1q
2 .

However, using the exchange law, the following equality holds in Γ
˚p1q
2 , where denotes the

inverse of :
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F pfq “ “ “ “ “ “ F pgq

In what follows, we prove some sufficient conditions so that a morphism between two white
pn, kq-polygraphs induces an injective fucntor between the pn, kq-categories they present. This
is achieved in Proposition 3.2.3.8. This result will be used in Section 3.3.3.

To prove this result, we start by studying the more general case of an injective morphism
I between white pn, kq-categories equipped with a cellular extension. When its image is closed
by divisors (see Definition 3.2.3.5), we show a simple sufficient condition so that I induces an
injective white pn`1q-functor. We also show that the image of the white pn`1q-functor induced
by I is then automatically closed by divisors. Hence, this hypothesis disappears when we go back
to morphisms of white pn, kq-polygraphs. In particular, we show that every injective morphism
of white n-polygraphs induces an injective white functor between white n-categories.

For the rest of this section, we fix two white n-categories equipped with cellular extensions
pC,Σq, pC1,Σ1q PWCat`, and a morphism I : pC,Σq Ñ pC1,Σ1q PWCat`. That is, I is given by
a white n-functor I : C Ñ C1 together with an application In`1 : Σ Ñ Σ1 such that the following
squares commute:

Σ
In`1

//

s

��

“

Σ1

s

��

C
I

// C1

Σ
In`1

//

t

��

“

Σ1

t

��

C
I

// C1

We denote by Iw (resp. Iwpnq) the white pn ` 1q-functor LwpIq (resp. LwpnqpIq). By
definition, Iw (resp. Iwpnq) is induced by an application from ETΣ to ETΣ1 (resp. from F TΣ to
F TΣ1), that we again denote by Iw (resp. Iwpnq).

Using their explicit definitions, the following properties of Iw (resp. Iwpnq) hold:

• Any element of ETΣ (resp. F TΣ ) whose image is an i-composite is an i-composite.

• Any element of ETΣ (resp. F TΣ ) whose image is an identity is an identity.

• Any element of ETΣ (resp. F TΣ ) whose image is a cu1A1v1 is a cuAv.

• Any element of F TΣ whose image by Iwpnq is a cu1Ā1v1 is a cuĀv.

Lemma 3.2.3.4. Assume that the application In`1 is injective, and that I induces an injection
on C.

Then the applications Iw : ETΣ Ñ ETΣ1 and I
wpnq : F TΣ Ñ F TΣ1 are injective.

Proof. Let a1, a2 P E
T
Σ such that Iwpa1q “ Iwpa2q. We reason by induction on the structure of

Iwpa1q.
If Iwpa1q “ cu1A1v1 , with u1, v1 P C11 and A1 P Σ1. Then there are u1, v1, u2, v2 P C1 and

A1, A2 P Σ such that a1 “ cu1A1v1 and a2 “ cu2A2v2 , and so:

Ipu1q “ Ipu2q “ u1 In`1pA1q “ In`1pA2q “ A1 Ipv1q “ Ipv2q “ v1.

72



Since I and In`1 are injective, we get:

u1 “ u2 A1 “ A2 v1 “ v2,

which proves that a “ b.
If Iwpa1q “ if , with f 1 P C1n. Then there exist f1, f2 P Cn such that:

a1 “ if1 a2 “ if2 Ipf1q “ f 1 Ipf2q “ f.

Since I is injective, f1 “ f2, and so a1 “ a2.
If Iwpa1q “ A1 ‚i B

1, with i ă n, and A1, B1 P ETΣ1 . Then there exist A1, A2, B1, B2 P E
T
Σ

such that:

a1 “ A1 ‚i B1 a2 “ A2 ‚i B2 IwpA1q “ IwpA2q “ A1 IwpB1q “ IwpB2q “ B1.

Using the induction hypothesis, we get that A1 “ A2 and B1 “ B2, and so a1 “ a2.
In the case of Iwpnq, we reason as previously, and we have one more case to check: if

Iwpnqpa1q “ cu1Ā1v1 , with u1, v1 P C11 and A1 P Σ1. Then there are u1, v1, u2, v2 P C1 and A1, A2 P Σ
such that a1 “ cu1Ā1v1 and a2 “ cu2Ā2v2 , and so:

Ipu1q “ Ipu2q “ u1 In`1pA1q “ In`1pA2q “ A1 Ipv1q “ Ipv2q “ v1.

Using the injectivity of I and In`1, we get:

u1 “ u2 A1 “ A2 v1 “ v2,

and finally a1 “ a2. �

Definition 3.2.3.5. Let C be a white n-category, and E be a subset of Cn. We say that E is
closed by divisors if, for any f P E, if f “ f1 ‚i f2, then f1 and f2 are in E.

Lemma 3.2.3.6. Assume the image of I in Cn is closed by divisors, and that I and In`1 are
injective.

Then, for every a1, b1 P ETΣ1 such that a1 ”Σ1 b
1, and for every a P ETΣ such that Iwpaq “ a1,

there exists b P ETΣ such that
Iwpbq “ b1 a ”Σ b.

Assume moreover that the application In`1 is bijective and that I is bijective on the 1-cells
of C.

Then, for every a1, b1 P F TΣ1 such that a1 –Σ1 b
1, and for every a P F TΣ such that Iwpnqpaq “ a1,

there exists b P F TΣ such that
Iwpnqpbq “ b1 a –Σ b

.

Proof. To show the result on Iw we reason by induction on the structure of a1.
If there exist A1, B1, C 1, D1 P ETΣ1 , 0 ă i1 ă i2 ď n and a P ETΣ such that:

a1 “ pA1 ‚i1 B
1q ‚i2 pC

1 ‚i1 D
1q b1 “ pA1 ‚i2 C

1q ‚i1 pB
1 ‚i2 D

1q Iwpaq “ a1,

then, a “ pA ‚i1 Bq ‚i2 pC ‚i1 Dq, with A,B,C,D P ETΣ . Let b :“ pA ‚i2 Cq ‚i1 pB ‚i2 Dq: by
construction, we have Iwpbq “ b1 and a ”Σ b. The case where the roles of a1 and b1 are reversed
is symmetrical.
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If there exist A1, B1, C 1 P ETΣ1 , 0 ă i ď n and a P ETΣ such that:

a1 “ pA1 ‚i B
1q ‚i C

1 b1 “ A1 ‚i pB
1 ‚i C

1q Iwpaq “ a1,

then, a “ pA ‚i Bq ‚i C, with A,B,C P ETΣ . Let b :“ A ‚i pB ‚i Cq: By construction, we have
Iwpbq “ b1 and a ”Σ b. The case where the roles of a1 and b1 are reversed is symmetrical.

If there exist A1 P ETΣ , f
1 P C1n and a P ETΣ such that

a1 “ if 1 ‚n A
1 b1 “ A1 Iwpaq “ a1,

then a “ if ‚n A, with f P Cn and A P ETΣ . Let b :“ A1: by construction, we have Iwpbq “ b1

and a ”Σ b.
If there exist A1 P ETΣ , f

1 P C1n and a P ETΣ such that

a1 “ A1 b1 “ if 1 ‚n A
1 Iwpaq “ a1,

let b :“ ispAq ‚n a. Since b1 is well typed, we have f 1 “ spA1q, hence IpspAqq “ spIwpAqq “
spA1q “ f 1, and so Iwpbq “ b1 and a ”Σ b. The case of the right-unit is symmetrical.

If there are f 11, f 12 P C1n, i ă n and a P ETΣ such that:

a1 “ if 11 ‚i if 12 b1 “ if 11‚if 12 Iwpaq “ a1,

then a “ if1 ‚i if2 , with f1, f2 P Cn. Let b :“ if1‚if2 : by construction, we have Iwpbq “ b1 and
a ”Σ b.

If there are f 11, f 12 P C1n, i ă n and a P ETΣ such that:

a1 “ if 11‚if 12 b1 “ if 11 ‚i if 12 Iwpaq “ a1

then a “ if , with f P Cn. Since the image of I in Cn is closed by divisors, there exist f1, f2 P Cn
such that

Ipf1q “ f 11 Ipf2q “ f 12 f “ f1 ‚i f2.

Let us define b1 :“ if1 ‚i if2 : By construction, we have Iwpbq “ b1 and a ”Σ b.
If there are A11, A12, B1 P ETΣ1 , i ď n and a P ETΣ such that:

a1 “ A11 ‚i B
1 A11 ”Σ1 A

1
2 b1 “ A12 ‚i B

1 Iwpaq “ a1

then a “ A1 ‚i B, with A1, B P ETΣ . Using the induction hypothesis, there exist A2 P E
T
Σ

such that IwpA2q “ A12 and A1 ”Σ A2. Let us define b :“ A2 ‚i B: by construction, we have
Iwpbq “ b1 and a ”Σ b. The last case is symmetric.

In the case of Iwpnq, we reason as previously, and we have two more cases to check. If there
exist u1, v1 P C11, A P Σ1 and a P F TΣ such that:

a1 “ cu1A1v1 ‚n cu1Ā1v1 b1 “ iu1 spA1qv1 Iwpnqpaq “ a1

then a “ cu1A1v2 ‚n cu2Ā2v2 , with u1, u2, v1, v2 P C1 and A1, A2 P Σ such that:

Ipu1q “ Ipu2q “ u1 Ipv1q “ Ipv2q “ v1 In`1pA1q “ In`1pA2q “ A.

Let b :“ iu1 spA1qv1 . Since I and In`1 are injective, we have Iwpbq “ b1 and a –Σ b.
If there exist u1, v1 P C11, A P Σ1 and a P F TΣ such that

a1 “ iu1 spA1qv1 b1 “ cu1A1v1 ‚n cu1Ā1v1 Iwpnqpaq “ a1

Then a “ if , with f P Cn. Let b1 :“ cuAv‚icuĀv, with u “ I´1pu1q, v “ I´1pv1q and A “ I´1
n`1pA

1q:
by construction, we have Iwpbq “ b1 and a –Σ b. The final case is symmetrical. �
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Lemma 3.2.3.7. Assume that In`1 and I are injective, and that the image of I in Cn is closed
by divisors. Then the functor Iw : LwpC,Σq Ñ LwpC1,Σ1q is injective, and its image is closed
by divisors.

Assume moreover that In`1 is bijective, and that I is bijective on the 1-cells of C. Then the
functor Iwpnq : LwpnqpC,Σq Ñ LwpnqpC1,Σ1q is injective and its image is closed by divisors.

Proof. Let f1, f2 P L
wpC,Σq and a1, a2 P E

T
Σ such that:

Iwpf1q “ Iwpf2q ra1s “ f1 ra2s “ f2.

Then rIwpa1qs “ rI
wpa2qs, that is Iwpa1q ”

˚
Σ1 I

wpa2q. Hence, by definition, there exist n ą 0
and t11, . . . , t1n P ETΣ1 such that:

t11 “ Iwpa1q t1i ”Σ1 t
1
i`1 t1n “ Iwpa2q.

Applying Lemma 3.2.3.6 successively, we get t1, . . . , tn P ETΣ1 such that:

t1 “ a1 ti ”Σ ti`1 Iwptiq “ t1i.

In particular a1 ”
˚
Σ tn and Iwptnq “ t1n “ Iwpa2q. Using Lemma 3.2.3.4, this implies that

tn “ a2, and so a1 ”
˚
Σ a2, which proves that f1 “ ra1s “ ra2s “ f2.

It remains to show that the image of Iw is closed by divisors. Let f 1, f 11, f 12 P LwpC1,Σ1q and
i ď n such that f 1 “ f 11 ‚i f

1
2, and assume that there is an f P LwpC1,Σ1q such that Iwpfq “ f 1.

Let a P ETΣ and b11, b12 P ETΣ1 such that:

ras “ f rb11s “ f 11 rb12s “ f 12.

In particular, we have Iwpaq ”˚Σ1 b
1
1 ‚i b

1
2. Using both Lemmas 3.2.3.4 and 3.2.3.6 as before,

we get an element b P ETΣ such that:

a ”˚Σ b Iwpbq “ b11 ‚i b
1
2.

Since the image of Iw is closed by divisors, there exists b1, b2 P ETΣ such that b “ b1 ‚i b2. Let
f1 :“ rb1s and f2 :“ rf2s: by construction we have:

Iwpf1q “ f 11 Iwpf2q “ f 12 f1 ‚i f2 “ f.

The case of Iwpnq is identical, the only difference lying in the hypothesis needed to apply
Lemma 3.2.3.6. �

Proposition 3.2.3.8. Let Σ and Γ be two white pn, kq-polygraphs and I : Σ Ñ Γ be an injective
morphism of pn, kq-polygraphs. Then for every j ď k the functor Iwj : Σw

j Ñ Γw
j is injective,

and its image is closed by divisors.
Assume moreover that I0 and I1 are bijections, and that for every j ą k the application

Ij : Σj Ñ Γj is bijective. Then for every j the functor Iwpkqj : Σ
wpkq
j Ñ Γ

wpkq
j is injective, and

its image is closed by divisors.

Proof. We reason by induction on j. The case j “ 0 is true by hypothesis.
Let 1 ď j ď k. By hypothesis, the application Ij is injective, and by induction hypothesis,

the functor Iwj´1 is injective with image closed by divisors. Hence, Ij satisfies the hypothesis of
Lemma 3.2.3.7, and Iwj is injective with image closed by divisors.

Let j ą k. Again, using the hypothesis and induction hypothesis, we get that Ij satisfies the
hypotheses of Lemma 3.2.3.7. Hence, Iwpkqj is injective and its image is closed by divisors. �
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In what follows, we use the fact that the image of a functor generated by a morphism of
polygraphs is closed by divisors in order to prove a characterisation of the image of such a
functor.

Definition 3.2.3.9. Let C,D be two white n-categories, F : C Ñ D be an n-functor and f be
an n-cell of D. We say that F k-discriminates f if the following are equivalent:

1. The k-source of f is in the image of F .

2. The k-target of f is in the image of F .

3. The n-cell f is in the image of F .

Given a subset D of Dn, we say that F is k-discriminating on D if for every n-cell f in D,
F k-discriminates f .

Lemma 3.2.3.10. Assume that the image of I is closed by divisors, that the application In is
injective, and that I is n-discriminating on Σ1.

Then, Iw (resp. Iwpnq) is n-discriminating on LwpC1,Σ1q (resp. LwpnqpC1,Σ1q).

Proof. Let us start with Iw. Let E be the set all pn ` 1q-cells of LwpC1,Σ1q which Iw dis-
criminates. Let us show that E “ LwpC1,Σ1q. Since Iw commutes with the source and target
applications, the implications (3) ñ (1) and (3) ñ (2) hold for any cell in LwpC1,Σ1q. So in
order to show that a cell is in E, it remains to show that it verifies the implications (1) ñ (3)
and (2)ñ (3).

The set E contains all units. Indeed, let A1 “ 1f 1 , with f 1 P C1. If spA1q “ f 1 is in the image
of Iw, there exists f P C such that Ipfq “ f 1. Let us define A “ 1f P L

wpC,Σq: by construction
we have IwpAq “ 1Ipfq “ 1f 1 “ A1, hence the implication (1) ñ (3) holds for A1. Moreover,
since tpA1q “ spA1q, the implication (2)ñ (3) also holds for A.

The set E contains all cells of length 1. Indeed, given such a cell A1, there exist f 1k, g
1
k P C1k

and A10 P Σ1 such that

A1 “ f 1n ‚n´1 pf
1
n´1 ‚n´2 . . . ‚2 pf

1
1A
1
0g
1
1q ‚2 . . . ‚n´2 g

1
n´1q ‚n´1 g

1
n.

Let A1k :“ f 1k ‚k´1 pf
1
k´1 ‚k´2 . . . ‚2 pf

1
1A
1
0g
1
1q ‚2 . . . ‚k´2 g

1
k´1q ‚k´1 g

1
k. Suppose that the source

(resp. target) of A1 is in the image of I, and let us show that A1 is in the image of Iw. Since the
image of I is closed by divisors, we get first that f 1n, g1n and spA1n´1q (resp. tpA1n´1q) are in the
image of I. By iterating this reasoning, we get that, for all i, f 1i , g

1
i and spA1i´1q (resp. tpA1i´1q)

are in the image of I. Since Iw discriminates Σ1, there exist fk, gk P Ck and A0 P Σ such that:

Ipfkq “ f 1k Ipgkq “ g1k In`1pA0q “ A10.

By induction on k we show that Ak :“ fk‚k´1Ak´1‚k´1gk is well-defined and that IwpAkq “ A1k.
Indeed, assume that it is true at rank k ´ 1. Then we have the equalities:

Iptpfkqq “ tpf 1kq “ sk´1pA
1
k´1q “ Ipsk´1pAk´1qq Iptk´1pAk´1qq “ tk´1pA

1
k´1q “ spg1kq “ Ipspgkqq

Using the injectivity of I we get that tpfkq “ sk´1pAk´1q and tk´1pAk´1q “ spgkq, which shows
that Ak is well-defined, and finally:

IwpAkq “ f 1k ‚k´1 A
1
k´1 ‚k´1 g

1
k “ A1k.

In particular, we have A1n “ IwpAnq.
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The set E is stable by n-composition. Indeed, let A1, B1 P E, and assume that the source
of A1 ‚n B1 is in the image of I. Let us show that A1 ‚n B1 is in the image of Iw. The source
of A1 ‚n B1 is none other that the one of A1. Since A1 is in E, there exists A P LwpC,Σq such
that IwpAq “ A1. Hence, the source of B1 is in the image of I, and since B1 P E, there exists
B P LwpC,Σq such that IwpBq “ B1. Moreover, we have IptpAqq “ tpA1q “ spB1q “ IpspBqq, so
using the injectivity of I we get tpAq “ spBq. Hence, the cell A‚nB is well-defined and satisfies:

IwpA ‚n Bq “ IwpAq ‚n I
wpBq “ A1 ‚n B

1.

The case where the target of A1 ‚n B1 is in the image of I is symmetrical.
This concludes the proof for Iw. Concerning Iwpnq, the reasoning is the same except that

we also have to show that E is stable under inversion. Indeed, let A1 P E and assume that the
source (resp. target) of pA1q´1 is in the image of I. Then the target (resp. source) of A1 is in
the image of I and since A1 is in E, there exists A P LwpnqpC,Σq such that IwpnqpAq “ A1, and
so IwpnqpA´1q “ pA1q´1. �

Proposition 3.2.3.11. Let Σ and Γ be two white pn, kq-polygraphs, and I : Σ Ñ Γ be a mor-
phism of polygraphs. Let k0 such that for every j ą k0, Ij is a bijection.

Assume that I satisfies the hypothesis of Proposition 3.2.3.8, and that, for every j ą k0, Ij
is k0-discriminating on Γj. Then for every j ě k0, I

wpkq
j is k0-discriminating on Γ

wpkq
j .

Proof. Since I satisfies the hypotheses of Proposition 3.2.3.8, we know that for every j, the
functor Iwpkqj is injective, and that its image is closed by divisors.

We reason by induction on j ą k0. For j “ k0`1, the result is a direct application of Lemma
3.2.3.10.

Let j ą k0 ` 1: let us show that Iwpkqj is pj ´ 1q-discriminating on Γj . Let A P Γj . If

spAq (resp. tpAq) is in the image of Iwpkqj´1 then in particular, the k0-source (resp. k0-target) of

A is in the image of Iwpkqk0
. Since Iwpkqj is k0-discriminating on Γj , A is in the image of Iwpkqj .

Hence, we can use Lemma 3.2.3.10, and we get that Iwpkqj is pj ´ 1q-discriminating on Γ
wpkq
j .

Let A P Γ
wpkq
j . If its k0-source (resp. k0-target) is in the image of Iwpkqk0

then, by induction

hypothesis, the source (rep. target) of A is in the image of Iwpkqj´1 , and so A is in the image of

I
wpkq
j , which proves that Iwpkqj is k0-discriminating. �
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Name Description Commentary
A2

pA˚p2q, SAq A3

A4

A2 Weakening of the
pBwp2q, SBq A3 YK exchange law 1

A4 Y L

A2 Weakening
pCwp3q, SCq A3 YAop3 YK YKop of the invertibility

A4 Y LY tρA, λAu of 3-cells
A2 YAop2 Adjunction of

pDwp3q, SDq A3 YAop3 YK YKop formal inverses
A4 Y LY tρA, λAu to 2-cells
A2 YAop2 Adjunction

pEwp3q, SEq A3 YAop3 YK YKop Y tηf , εfu of connections
A4 Y LY tρA, λAu Y tτf , σfu between 2-cells

Table 3.3: List of the successive transformations of A.

3.3 Transformation of a p4, 2q-polygraph into a white
p4, 3q-polygraph

The proof of Theorem 3.1.3.5 will occupy the rest of this article. We start with a p4, 2q-polygraph
A satisfying the hypotheses of Theorem 3.1.3.5. Let SA be the set of all 2-cells inA˚2 whose target
is a normal form. Then proving Theorem 3.1.3.5 consists in showing that A is SA-coherent.

In this section we successively transform A four times, leading to five pointed white p4, 3q-
categories, namely pA˚p2q, SAq, pBwp2q, SBq, pCwp3q, SCq, pDwp3q, SDq and pEwp3q, SEq, and we
show each time that the new pointed white p4, 3q-category is stronger than the previous one.
A brief description of each pointed white p4, 3q-category can be seen in Table 3.3. Finally,
in Section 3.3.5, we perform a number of Tietze-transformations on the white 4-polygraph E ,
leading to a white 4-polygraph F .

Thanks to Lemma 3.2.2.8 and Proposition 3.2.2.14, we know that in order to show that A˚p2q
is SA-coherent, it is enough to show that Fwp3q is SE -coherent. This will be done in Section 3.4.

Example 3.3.0.1. We have already shown in Section 2.3 that for every sets C, D and for every
applications f ,g : C Ñ D, the p4, 2q-polygraph PNTrans``rf ,gs satisfies the hypothesis of
Theorem 3.1.3.5.

In what follows, we will use as a running example the polygraph A “ Assoc which consists
of one 0-cell, one 1-cell , one 2-cell : ñ , one 3-cell : V , and one 4-cell

:

1The sets K and L will be defined in Section 3.3.1
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%9

�&

%9

�)
“

�&

2F

%9

�,

5I

�)

�?

2F

�,

%9

%9

8L

%9

5I 8L

In particular, Assoc satisfies the 2-Squier condition of depth 2. The 2-category Assoc˚2 is
2-convergent and its only normal form is the 1-cell .

The corresponding set SA is then the set of 2-cells in Assoc˚2 from any 1-cell to .

3.3.1 Weakening of the exchange law

We construct dimension by dimension a white p4, 2q-polygraph B, together with a white functor
F : Bwp2q Ñ A˚p2q. We then define a subset SB of Bwp2q and show (Proposition 3.3.1.4) using F
that pBwp2q, SBq is stronger than pA˚p2q, SAq.

In low dimensions, we set Bi “ Ai, for every i ď 2, and the functor F is the identity on
generators.

Lemma 3.3.1.1. The functor F : Bw Ñ A˚ is 2-surjective.

Proof. By construction, A˚2 is the quotient of Bw2 by the equivalence relation generated by:

pf ‚0 vq ‚i pu
1 ‚0 gq “ pu ‚0 gq ‚i pf ‚0 v

1q.

And F is the canonical projection induced by the quotient. �

In what follows, we suppose chosen a section i : A˚ Ñ Bw of F , which is possible thanks to
Lemma 3.3.1.1.

We extend B into a white 3-polygraph and F : Bw Ñ A˚ into a white 3-functor by setting
B3 :“ A3 YK:

• For every 3-cell A P A3, the source and target of A in Bw2 are respectively sBpAq :“ ipsApAqq
and tBpAq :“ iptApAqq.

• The set K is the set of 3-cells Afv,ug, of shape:

u1g

�(Afv,ug

��

fv &:

ug $8
fv1

Ui

for every strict Peiffer branching pfv, ugq, where f : u ñ u1 and g : v ñ v1 are rewriting
steps.

The image of a cell of B3 under F is defined as follows:
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• For every strict Peiffer branching pfv, ugq, F pAfv,ugq :“ 1f‚0g

• For every 3-cell A in A3, F pAq :“ A.

Lemma 3.3.1.2. Let f, g P Bw2 . There exists a 3-cell A : f V g in K
wp2q
3 if and only if the

equality F pfq “ F pgq holds in A˚2 .

Proof. Let f, g P Bw2 . The image of any cell in Kwp2q
3 by F is an identity. So if there exists a

3-cell A : f V g in Kwp2q
3 , necessarily F pfq “ F pgq.

Conversely, the set A˚2 is the quotient of Bw2 by the equivalence relation generated by:

f spgq ‚1 tpfqg “ spfqg ‚1 f tpgq,

for f, g P Bw2 . The 3-cells Afu,vg, where pfu, vgq is a strict Peiffer branching, generate this
relation, and they are in K. Hence, the result holds. �

Lemma 3.3.1.3. The functor F : Bwp2q Ñ Awp2q is 3-surjective.

Proof. Let E be the set of 3-cells A P A˚p2q3 such that, for every f, g P Bw2 in the preimage of
spAq and tpAq under F , there exists a 3-cell B : f V g P Bwp2q3 satisfying F pBq “ A. Let us
show that E “ A˚3 . We already know that E contains the identities thanks to Lemma 3.3.1.2.

The 3-cells of length 1 in A˚3 are in E. Indeed, let A P A˚3 be a 3-cell of length 1, and
f, g P Bw2 such that F pfq “ spAq et F pgq “ tpAq. There exist u, v P A˚1 , f 1, g1 P A˚2 , and A1 P A3

such that
A “ f 1 ‚1 puA

1vq ‚1 g
1.

Let ũ, ṽ, f̃ , g̃ be in the preimages respectively of u, v, f 1, g1 under F (they exist thanks to
Lemma 3.3.1.1), and let B1 :“ f̃ ‚1 pũA

1ṽq ‚1 g̃ P Bwp2q3 . By construction, F pB1q “ A, which
leads to the equalities:

F pspB1qq “ F pfq F ptpB1qq “ F pgq.

Thus, according to Lemma 3.3.1.2, there exist 3-cells C1 : f V spB1q P K
wp2q
3 and C2 : tpB1qV

g P K
wp2q
3 . Let B :“ C1 ‚2 B1 ‚2 C2: by construction, B has the required source and target, and

moreover:
F pBq “ F pC1q ‚2 F pB1q ‚2 F pC2q “ 1F pfq ‚2 A ‚2 1F pgq “ A.

The set E is stable under composition. Indeed, let A1, A2 P E such that tpA1q “ spA2q,
and f, g P Bw2 satisfying F pfq “ spA1q and F pgq “ tpA2q. Since F is 2-surjective, there exists
h P Bw2 in the inverse image of tpA1q under F . Since A1 (resp. A2) is in E, there exists a cell
B1 (resp. B2) in Bwp2q3 such that F pB1q “ A1 (resp. F pB2q “ A2), spB1q “ f (resp. spB2q “ h)
and tpB1q “ h (resp. tpB2q “ g). Let B :“ B1 ‚2 B2: we get:

spBq “ f F pBq “ A1 ‚2 A2 tpBq “ g

The set E is stable under 2-composition. Indeed, let A P E and f, g P Bw2 such that
F pfq “ spA´1q and F pgq “ tpA´1q. There exists B P Bwp2q such that:

spBq “ g F pBq “ A tpBq “ f.

Hence, the cell B´1 satisfies the required property. �

We now extend B into a white p4, 2q-polygraph and F : Bwp2q Ñ A˚p2q into a white 4-functor
by setting B4 “ A4 Y L:
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• For every 3-cell A P A4, the source and target of A in Bwp2q3 are respectively sBpAq :“

ipsApAqq and tBpAq :“ iptApAqq, where i is a chosen section of the application F3 : Bwp2q3 Ñ

Awp2q
3 (which exists since F is 3-surjective). And we set F pAq :“ A.

• For every 3-fold strict Peiffer branching pf, g, hq, the set L contains a 4-cell Af,g,h, whose
shape depends on the form of the branching pf, g, hq. If pf, g, hq “ pf 1v, g1v, uh1q, with
pf 1, g1q a critical pair, and h1 : v ñ v1 then Af,g,h is of the following shape:

%9

Af 1,g1v

�)
A

%9

B

�)Af 1v,uh1
�)

f 1v
5I

g1v %9

uh1
�)

Ag1v,uh1

5I

�)

Af,g,h
�?

f 1v
5I

uh1
�)

%9

Af 1,g1v
1

%9

5I 5I

%9

5I

where A and B are in Kwp2q
3 . And we define F pAf,g,hq :“ 1Af 1,g1‚0h1 .

If pf, g, hq “ pf 1v, ug1, uh1q, with pg, hq a critical pair, and f 1 : uñ u1 then Af,g,h is of the
following shape:

%9

Af 1v,ug1

�)
A

%9

u1Ag1,h1

�)Af 1v,uh1
�)

f 1v
5I

ug1 %9

uh1
�)

uAg1,h1

5I

�)

Af,g,h
�?

f 1v
5I

uh1
�)

%9

B

%9

5I 5I

%9

5I

where A and B are in Kwp2q
3 . And we define F pAf,g,hq :“ 1f 1‚0Ag1,h1 .

If pf, g, hq “ pf 1vw, ug1w, uh1wq, then Af,g,h is of the following shape, where A and B are
in Kwp2q

3 :

%9

Af 1v,ug1w

�)Af 1v1w,uv1h

%9

u1Ag1w,vh1

�)Af 1vw,uvh1
�)

f 1vw
5I

ug1w %9

uvh1
�)

uAg1w,vh1

5I

�)

Af,g,h �?

f 1vw
5I

uvh1
�)

%9

Af 1v,ug1w
1

%9

5I 5I

%9

5I

And we define F pAf,g,hq :“ 1f 1‚0g1‚0h1 .

Let now SB be the set of all 2-cells in Bw whose 1-target is a normal form.

Proposition 3.3.1.4. The pointed white p4, 3q-category pBwp2q, SBq is stronger than pA˚p2q, SAq.

Proof. The functor F sends normal forms on normal forms. Hence, by restriction it induces a
2-functor FæSB : Bwp2qæSB Ñ A˚p2qæSA.

Lemmas 3.3.1.1 and 3.3.1.3 show that it is k-surjective for every k ă 2. Hence, we can
conclude using Lemma 3.2.2.8. �
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Example 3.3.1.5. In the case where A “ Assoc, the set K contains in particular the fol-
lowing 3-cells, associated respectively to the strict Peiffer branchings p , q and
p , q:

%9 %9

In L, the 4-cell associated to the strict Peiffer branching p , , q

is the following:

%9

�1

-A

�1
%9

-A

��

3.3.2 Weakening of the invertibility of 3-cells

We construct dimension by dimension a white 4-polygraph C, together with a white 3-functor
G : Cwp3q Ñ Bwp2q. We then define a subset SC of Cwp3q and show (Proposition 3.3.2.2) using G
that pCwp3q, SCq is stronger than pBwp2q, SBq.

In low dimensions, we set Ci “ Bi for i ď 2, with the functor G being the identity.
We extend C into a white 3-polygraph by setting C3 :“ B3YBop3 , where the set Bop3 contains,

for every A P B3, a cell denoted by Aop, whose source and target are given by the equalities:

spAopq “ tpAq tpAopq “ spAq

And the functor G : Cw Ñ Bwp2q is defined as follows for every A P B3:

GpAq “ A GpAopq “ A´1.

Lemma 3.3.2.1. The functor G : Cwp3q Ñ Bwp2q is 3-surjective.

Proof. By definition, Bwp2q3 is the quotient of Cw3 by the relations Aop ‚2A “ 1 and A‚2A
op “ 1,

and G is the corresponding canonical projection. �

We extend C into a white 4-polygraph by setting C4 :“ B4 Y tρA, λA|A P B3u, where the
applications source and target s, t : C4 Ñ Cw3 are defined as follows:

• For A P B4, the cell sCpAq (resp. tCpAq) is any cell in the preimage of sBpAq under G,
which is non-empty thanks to Lemma 3.3.2.1. And we set GpAq :“ A.
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• For every A P B3, the cells ρA and λA have the following shape:

A
�� 1spAq

��

spAq

�'

spAq

7KtpAq %9

Aop
��

ρA �?

spAq

�'

spAq

7K
Aop
�� 1tpAq

��

tpAq

�'

tpAq

7KspAq %9

A
��

λA �?

tpAq

�'

tpAq

7K

And we set GpρAq :“ 1spAq and GpλAq :“ 1tpAq.

Let SC be the set of all 2-cells in Cw whose 2-target is a normal form.

Proposition 3.3.2.2. The pointed white p4, 3q-category pCwp3q, SCq is stronger than pBwp2q, SBq.

Proof. The functor G restricts into a functor GæSC : Cwp3qæSC Ñ Bwp2qæSB, which is i-surjective
for i ă 2 thanks to Lemma 3.3.2.1. Hence, we can conclude thanks to Lemma 3.2.2.8. �

Example 3.3.2.3. In the case where A “ Assoc, let A “ . The set C3 contains the
following 3-cell:

op : %9

And the following cells lie in C4, where A “ :

op

�$
ρA

��

0D

�$
λA

��

op
0D

3.3.3 Adjunction of formal inverses to 2-cells

Let D be the white 4-polygraph defined as follows:

for every i ‰ 2, Di :“ Ci D2 :“ C2 Y C̄2,

where for every f P C2, the set C̄2 contains a cell f̄ with source tpfq and with target spfq. Let
SD be the set of all 2-cells of the sub- white 2-category Cw2 of Dw

2 whose target is a normal form.

Notation 3.3.3.1. The application C2 Ñ C̄2 extends into an application Cw2 Ñ C̄2
w which

exchanges the source and targets of the 2-cells.

We denote a 2-cell f by
f %9 if f is in Bw2 , by

fey if f̄ is in Bw2 , and by ey f %9 if f
is any cell in Cw2 .

Proposition 3.3.3.2. The pointed white p4, 3q-category pDwp3q, SDq is stronger than pCwp3q, SCq.

Proof. Let us show that Dwp3qæSD “ Cwp3qæSC . Let ι : Cwp3q Ñ Dwp3q be the canonical inclusion
functor. Since the only cells added are in dimension 2, ι satisfies the hypotheses of Proposition
3.2.3.8, thus Cw is a sub- white 4-category of Dw, which gives us an inclusion Cwp3qæSC Ď
Dwp3qæSD.

Let us show the reverse inclusion. Let f P Dwp3q be an i-cell (i ě 2), and suppose that f is
in Dwp3qæSD. In particular t2pfq and s2pfq are in Cw2 . Since ι also satisfies the hypotheses of
Proposition 3.2.3.11, with k0 “ 2, it is 2-discriminating on Dwp3q

i . Thus f is in Cwp3q, and in
Cwp3qæSC since its 1-target is a normal form. �
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Example 3.3.3.3. In the case where A “ Assoc, the set D2 contains one additional 2-cell:

:“

And the following cells are composites in Dw:

%9

Note that the equality Dwp3qæSD “ Cwp3qæSC implies that none of these composites belongs to
Dwp3qæSD.

3.3.4 Adjunction of connections between 2-cells

Let E be the following white 4-polygraph:

• For i “ 0, 1, 2, Ei “ Di,

• For i “ 3, E3 “ D3 Y tηf , εf |f P C2u.

• For i “ 4, E4 “ D4 Y tτf , σf |f P C2u.

The cells ηf , εf , τf and σf have the following shape:

• εf : f̄ ‚1 f V 1tpfq

f

|�

f

�"

εf

��

1tpfq

• ηf : 1spfq V f ‚1 f̄

1spfq

"6

f
�0

ηf

�� f
n�

• τf : pf̄ ‚1 ηf q ‚2 pεf ‚1 f̄q �? 1f̄

f

|�

f

�+

εf

��

ηf

��
f

l�

f

|�

1f̄
f

l�

τf �?

(3.3.1)

• σf : pηf ‚1 fq ‚2 pf ‚1 εf q �? 1f .

f
�2

ηf

��

εf

��

f

s�

f

�"
f

�2

1f
f

�"

σf �?

(3.3.2)

Notation 3.3.4.1. Let us denote by the 3-cell εf and the 3-cell ηf . Similarly, we denote
by for σf and for τf :

�? �?
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Let R :“ tσf , τfu, and Rw (resp. Rwp3q) be the sub- white 4-category (resp. sub- white
p4, 3q-category) of Ewp3q generated by the cells in R. A 4-cell of length 1 in Rw is called an
R-rewriting step.

Let SE be the set of all 2-cells of the sub- white 2-category Cw2 of Ew2 whose target is a normal
form. Using properties of the rewriting system induced by Rw, we are going to define a functor
K : Ewp3qæSE Ñ Dwp3qæSD.

Lemma 3.3.4.2. Let α P Ew4 and β P Rw of length 1 with the same source. There exist α1 P Ew4
and β1 P Rw of maximum length 1, such that:

α �?

β

��

β1

��

α1
�?

Proof. The result holds whenever pα, βq is a Peiffer or aspherical branching.
If pα, βq is an overlapping branching, then the source of α must contain an ηf or an εf . The

only cells of length 1 in Ew4 that satisfy this property are those in Rw. Hence, α is in Rw. Thus,
the branching pα, βq is one of the following two, and both of them satisfy the required property:

�6
(H

�6
(H

�

Lemma 3.3.4.3. The rewriting system generated by R is 4-convergent.

Proof. Using Lemma 3.3.4.2, the rewriting system generated by R is locally 4-confluent. More-
over, the cells σf and τf decrease the length of the 3-cells, hence the 4-termination. �

Let A P Ew3 : we denote by Â P Ew3 its normal form for R. Remark in particular that if A is
in Dw

3 , then Â “ A.

Lemma 3.3.4.4. Let A be a 3-cell of Ew3 whose target is in Cw2 .

• If the source of A is in Cw2 , then Â is in Dw
3 .

• Otherwise, for every factorization of A into f1 ‚1 f̄ ‚1 f2, where f is a rewriting step, there
exists a factorisation of A into:

εf

f

f
f2

A1
f1

A2
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Proof. We reason by induction on the length of A. If A is of length 0, then the source of A is in
Cw2 , and Â “ A is in Dw

3 .
If A is of length n ą 0, let us write A “ B1 ‚1 B2, where B1 is of length 1. We can then

apply the induction hypothesis to B2. We distinguish three cases:

• If both the sources of A and B2 are in Cw2 , then B1 is in Dw
3 , and so is Â “ B1 ‚2 B̂2.

• If the source of A is in Cw2 but not that of B2, then B1 is of the form g1 ‚1 ηf ‚1 g2. There
hence exists a factorisation pg1 ‚1 fq ‚1 f̄ ‚1 g2 of the source of B2. Applying the induction
hypothesis to B2, we deduce the following factorisation of A:

f
ηf

f f
εf

g2
A1

g1

A2

In particular, A is the source of an R-rewriting step. Let A1 be its target, which is thus of
length smaller than A. Applying the induction hypothesis to A1, we get that Â “ Â1 is in
Dw

3 .

• There remains the case where the source of A is not an element of Cw2 .

In order to treat this last case, let us fix a factorisation f1 ‚1 f̄ ‚1 f2 of the source of A, where
f is of length 1. We distinguish three cases depending on the form of B1.

• If B1 “ f1 ‚1 f̄ ‚1 B
1
1, where B11 is a 3-cell of length 1 from f2 to g2 P Dw

2 , then we get a
factorisation of the source of B into f1 ‚1 f̄ ‚1 g2. Let us apply the induction hypothesis
to B2: there exist A11, A12 P Ew3 and g12 P Dw

2 such that:

B2 “ pf1 ‚1 f̄ ‚1 A
1
1q ‚2 pf1 ‚1 εf ‚1 g

1
2q ‚2 A

1
2

Thus A factorises as follows, which is of the required form by setting A1 “ B11 ‚2 A
1
1 and

A2 “ A12:

εf

f

f f2g2
f1

A11

B11

A2

• If B1 “ B11 ‚1 f̄ ‚1 f2, where B11 is a 3-cell of length 1 from f1 to g1 P Dw
2 . Then the source

of B factorises into g1 ‚1 f̄ ‚1 f2. Applying the induction hypothesis to B2, there exist
A11, A

1
2 P Ew3 and f 12 P Dw

2 such that:

B2 “ pg1 ‚1 f̄ ‚1 A
1
1q ‚2 pg1 ‚1 εf ‚1 f

1
2q ‚2 A

1
2

We get the required factorisation of A by setting A1 “ A11 and A2 “ pB
1
1 ‚1 f

1
2q ‚2 A

1
2.
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εf

f

f
g2

A11
f1

g1
B11

A2

• Otherwise, we have B1 “ f1 ‚1 εf ‚1 f
1
2, with f2 “ f ‚1 f

1
2. We then get the required

factorisation of A by setting A1 “ 1f 12 and A2 “ B2.

εf

f f

f 12f1

B2

�

Lemma 3.3.4.5. Let β P Rw, and α be a 4-cell Ew4 of same source. There exist α1 P Ew4 and
β1 P Rw of maximum length that of β such that we have the following square:

α �?

β

��

β1

��

α1
�?

Proof. We reason using a double induction on the lengths of β and α. If β (resp. α) is an
identity, then the result holds by setting α1 “ α (resp. β1 “ β).

Otherwise, let us write α “ α1 ‚3 α2 and β “ β1 ‚3 β2, where α1 and β1 are of length 1. We
can then construct the following diagram:

α1
�?

β1

��

α2
�?

β11

��

β21

��
α11

�?

β2

��

α12

�?

β12

��

β22

��

α21

�?

α22

�?

The 4-cells α11 and β11 exist thanks to Lemma 3.3.4.2. We can then apply the induction hypothesis
to the 4-cells α2 and β11 (resp. α11 and β2) and we construct this way the cells α12 and β21 (resp.
α21 and β12). Lastly, we apply the induction hypothesis to α12 et β12 in order to construct α22 and
β22 . �
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Lemma 3.3.4.6. The application A ÞÑ Â extends into a 1-functor K : Ewp3qæSE Ñ Dwp3qæSD,
which is the identity on objects.

Proof. The application A ÞÑ Â does not change the source or target. Moreover, given a 3-cell
A P Ewp3q, if A is in Ewp3qæSE then in particular the source and target of A are in Cw2 . Thus Â
is in Dw

3 æSD (Lemma 3.3.4.4).
Let A, B be 3-cells in Ewp3q which belong to Ewp3qæSE . We just showed that Â and B̂ are in

Dw
3 æSD, hence so is Â ‚2 B̂. So Â ‚2 B̂ is a normal form for R which is attainable from A ‚2 B.

Since R is 4-convergent, this means that {A ‚2 B “ Â ‚2 B̂. So A ÞÑ Â does indeed define a
functor. �

Proposition 3.3.4.7. The pointed p4, 3q-category pE , SEq is stronger than pD, SDq.

Proof. Let us show that K induces a functor K̄ : Ewp3qæSE Ñ Dwp3qæSD. Let A,B be 1-cells
in Ewp3qæSE , and suppose Ā “ B̄. Let us show that KpAq “ KpBq, that is that there exists a
4-cell α1 : Â �? B̂ P Dwp3q

4 .
Since Ā “ B̄ there exists a 4-cell α : A �?B P Ewp3q4 . Suppose that α lies in Ew4 . Let β P Rw

be a cell from A to Â. Applying Lemma 3.3.4.5 to α and β, we get cells α1 and β1 of sources
respectively Â and B. Let B1 be their common target. By hypothesis Â is in Dw

3 , and the only
cells in Ew4 whose source is in Dw

3 are the cells in Dw
4 . Thus α1 is in Dw

4 , and so is B1. So B1 is
a normal form for Rw which is attainable from B. By unicity of the Rw-normal-form, B1 “ B̂,
and so α1 is a cell in Dw

4 of source KpAq and of target KpBq, hence KpAq “ KpBq.
In general if Ā “ B̄, there exist A1, . . . , An P Ew3 with A1 “ A, Bn “ B and for every i

there exist cells αi : A2i
�?A2i´1 and βi : A2i Ñ A2i`1 in Ew4 . Hence, using the previous case

KpA1q “ . . . “ KpAnq, that is KpA1q “ KpAnq.
So K̄ : Ewp3qæSE Ñ Dwp3qæSD is well-defined, and it is 0 and 1-surjective because K is.

Hence, pE , SEq is stronger than pD, SDq. �

Example 3.3.4.8. In the case where A “ Assoc, let A “ . The set E3 contains the following
3-cells:

εA %9 ηA %9

And the set E4 the following 4-cells:

εA

�'
τA
��

ηA
7K

εA

�'
σA
��

ηA
7K

3.3.5 Reversing the presentation of a white p4, 3q-category

We start by collecting some results on the cells of E .

Lemma 3.3.5.1. The set E3 is composed exactly of the following cells:

• For every f P A2, 3-cells ηf and εf .
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• For every non-aspherical minimal branching pf, gq, a 3-cell Af,g of shape:

f 1

�(Af,g

��

f &:

g $8
g1

5I

And in particular for every non-aspherical minimal branching pf, gq, we have Aopf,g “ Ag,f .

Proof. If pf, gq is a critical pair: if it was associated to a 3-cell inA then Af,g is this corresponding
cell. Otherwise, Af,g is in fact the cell Aopg,f from Section 3.3.2.

If pf, gq is a strict Peiffer branching, then Af,g is the cell defined in Section 3.3.1. Otherwise,
pg, fq is a strict Peiffer branching, and we set Af,g :“ Aopg,f from Section 3.3.2. �

Lemma 3.3.5.2. For every minimal non-aspherical branching pf, g, hq, there exists a 4-cell
Af,g,h P E

wp3q
4 of the following shape:

%9

Af,g
�)

A

%9

B1

�)Af,h
�)

f
5I

g %9

h
�)

Ag,h

5I

�)

Af,g,h
�?

f
5I

h
�)

%9

B2

%9

5I 5I

%9

5I

Proof. Let us first start by showing that, for every non-aspherical 3-fold minimal symmetrical
branching b, there exists a representative pf, g, hq of b for which the property holds. If b is an
overlapping branching then, using the fact that A satisfies the 2-Squier condition of depth 2,
the cell Af,g,h exists for some representative pf, g, hq of b. Otherwise, b is a Peiffer branching,
and we conclude using the cells defined in Section 3.3.1.

It remains to show that the set of all branchings satisfying the property is closed under the
action of the symmetric group.

• If pf1, f2, f3q satisfies the property, then so does pf3, f2, f1q. Indeed, let A :“ Af1,f2,f3 , and
let us denote its source by s and its target by t, all we need to construct is a 4-cell from
sop to top. This is given by the following composite:

sop

sop ‚2 λ
´1
t

�? top ‚2 t ‚2 s
op

top ‚2 A
´1 ‚2 s

op

�? top ‚2 s ‚2 s
op

top ‚2 ρs

�? top

• If pf1, f2, f3q satisfies the property, then so does pf2, f1, f3q. Indeed, given a cell Af1,f2,f3 ,
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we can construct the following composite:

f2

f1

f3

Af2,f1

Af1,f3

B1

ρ´1
B1
ρ´1
B1

f2

f1

f3

Af2,f1

Af1,f3

B1

B2

Bop
2

A´1
f1,f2,f3

A´1
f1,f2,f3

f2

f3

Af2,f1

A

Bop
2

f2

f1

f2

f3

Af2,f1

Af1,f2

Af2,f3

A

Bop
2

λAf1,f2λAf1,f2

Since the transpositions p1 2q and p1 3q generate the symmetric group, the set of all
branchings satisfying the property is closed under the action of the symmetric group. �

We are now going to apply a series of Tietze-transformations to E in order to mimic a
technique known as reversing. Reversing is a combinatorial tool to study presented monoids [26].
Reversing is particularly adapted to monoids whose presentation contains no relation of the form
su “ sv, where s is a generator and u and v words in the free monoid, and at most one relation of
the form su “ s1v, for s and s1 generators. The p4, 2q-polygraph A satisfies those properties, but
only up to a dimensional shift: there are no 3-cell in A3 of the form f ‚2 g V f ‚2h, where f is of
length 1 and g and h are in Aw

2 , and there is at most one 3-cell in A3 of the form f ‚2 g V f 1 ‚2h,
where f and f 1 are of length 1. Hence, we adapt this method to our higher-dimensional setting.

Adjunction of 3-cells Cf,g with its defining 4-cell Xf,g. For every non-aspherical branch-
ing pf, gq, we add a 3-cell Cf,g of the following shape:

g

�(

f

v
 Cf,g

��
f 1

$8
g1

fz
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using as defining 4-cell a cell Xf,g whose target is Cf,g and whose source is the composite:

εf

f g

f Ag,f g1 ηg1

f 1 g1

Adjunction of a superfluous 4-cell Yf,g. We add a 4-cell Yf,g of target Ag,f , parallel to the
following 4-cell (where the second step consists in the parallel application of σf and σg1):

f f 1

g g1

f g1ηf Cf,g εg1

g

f
f f g1 g1

g1

f 1

ηf
εf

Ag,f
ηg1

εg1

g

f
f g1

g1

f 1

1f Ag,f 1g1

X´1
f,gX´1
f,g

σfσf σg1σg1

Removal of the superfluous 4-cell Xf,g. We remove the 4-cell Xf,g, using the fact that it
is parallel to the following composite:

f g

f g1

f 1 g1

εf Ag,f ηg1

g
f

f f g1 g1
g1

f 1
εf

ηf
Cf,g εg1

ηg1

f 1

f
f g1

g1

g

1f Cf,g 1g1

Y ´1
f,gY ´1
f,g

τfτf τg1τg1

Removal of the 3-cell Ag,f with its defining 4-cell Yf,g. This last step is possible because
Ag,f is the target of Yf,g and does not appear in its source.
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We denote by F the white 4-polygraph obtained after performing this series of Tietze-
transformations for every non-aspherical branching pf, gq, and Π : Ewp3q Ñ Fwp3q the white
3-functor induced by the Tietze-transformations. We still denote by Ag,f the composite in
Fwp3q

4 , image by Π of Af,g P E4.

Example 3.3.5.3. In the case where A “ Assoc, the cells and op respectively associ-
ated to the branchings p , q and p , q have been replaced by cells of the
following shape:

%9 %9
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3.4 Proof of Theorem 3.1.3.5

This Section concludes the proof of Theorem 3.1.3.5. We keep the notations from Section 3.3.
In Section 3.4.1, we study the 4-cells of the white p4, 3q-category Fwp3q, and in particular study
the consequences of A satisfying the 2-Squier condition of depth 2.

In Section 3.4.2, we define a well-founded ordering on NrFw
1 s, the free commutative monoid

on Fw
1 . Using this ordering together with two applications p : Fw

2 Ñ NrFw
1 s and wη : Fw

3 Ñ

NrFw
1 s, we proceed to complete the proof by induction in Section 3.4.3.

3.4.1 Local coherence

Definition 3.4.1.1. We extend the notation Cf,g from Section 3.3.5 by defining, for every local
branching pf, gq of Bw2 , a 3-cell of the form Cf,g : f̄ ‚1 g V f 1 ‚1 ḡ

1 P Fw
3 , where f 1 and g1 are in

Bw2 .

• If pf, gq is a minimal overlapping or Peiffer branching, then Cf,g is already defined.

• If pf, gq is aspherical, that is f “ g, then we set Cf,f “ εf .

• If pf, gq is not minimal, then let us write pf, gq “ puf̃v, ug̃vq, with pf̃ , g̃q a minimal branch-
ing, and we set Cf,g :“ uCf̃ ,g̃v.

Definition 3.4.1.2. We say that a 3-fold local branching pf, g, hq of A2 is coherent if there
exists a 4-cell Cf,g,h P F

wp3q
4 of the following shape, where A and B are 4-cells in Fw

3 .

f
g g hηg

Cf,g Cg,h

A

f h

Cf,h

B
Cf,g,hCf,g,h

Lemma 3.4.1.3. Every 3-fold local branching of Bw2 is coherent.

Proof. Let pf, g, hq be a minimal local branching. We first treat the case where pf, g, hq is an
aspherical branching. If f “ g, then Cf,g “ εf , and the following cell shows that the branching
is coherent:

f
f f

h

f 1 h1

f 1

ηf

εf Cf,h

1f 1

f h

f 1 h1
Cf,hτfτf

The case where g “ h is symmetrical. Assume now g ‰ f, h and f “ h. Then pf, gq is either an
overlapping or a Peiffer branching. In any case there exists either a cell Af,g or Ag,f in Ew3 . In
the former case, we can construct the following cell in Fwp3q

4 .
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f
g g

fηg

Cf,g Cg,f
εg1

f f f g g
f

εf
ηf ηg

Cf,g Cg,f
εg1 εf 1

ηf 1

εf
ηf 1

τ´1
fτ
´1
f τ´1

f 1τ
´1
f 1

ΠpρAf,gqΠpρAf,gq

In the latter, we can construct the same cell, only replacing ΠpρAf,gq by ΠpλAf,gq.
Suppose now that pf, g, hq is not aspherical. Using the cell Af,g,h described in Lemma 3.3.5.2,

we build the following composite in Fwp3q
4 :

Cf,g

ηg

Cg,h

ε
ΠpAq η

εf
ηf

Cf,g

ηg

Cg,h
ε

η

ε
ΠpAq 1

η

εf
ηf

Cf,h

ε

η

ηΠpB1q
ΠpB2q

Cf,h

ε

η

ηΠpB1q
ΠpB2q

τ´1
fτ
´1
f τ´1τ´1

ΠpAf,g,hqΠpAf,g,hq

τfτf

Finally, if pf, g, hq is not aspherical, then there exists a 3-fold minimal branching pf̃ , g̃, h̃q of
Bw2 and 1-cells u, v P Bw1 such that pf, g, hq “ puf̃v, ug̃v, uh̃vq. Then the cell uCf̃ ,g̃,h̃v shows
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that pf, g, hq is coherent. �

3.4.2 Orderings on the cells of Fw

Definition 3.4.2.1. Let E be a set. The set of all finite multi-sets on E is NrEs, the free
commutative monoid over E. For every e P E, let ve : NrEs Ñ N be the morphism of monoids
that sends e to 1 and every other elements of E to 0.

If E is equiped with a strict ordering ą, we denote by ąm the strict ordering on NrEs defined
as follows: for every f, g P NrEs, one has f ąm g if

• f ‰ g

• For every e P E, if vepfq ă vepgq, then there exists e1 ą e such that ve1pfq ą ve1pgq.

Lemma 3.4.2.2. Let E be a set and a P E. The set of all f P NrEs such that f ă a is equal to
the set of all f P NrEs satisfying the following implication for every b P E:

vbpfq ą 0 ñ b ă a.

In particular, this set is a sub-monoid of NrEs.

Proof. Let f P NrEs such that for every b P E the implication vbpfq ą 0 ñ b ă a is verified.
Let us prove that f ăm a. Necessarily vapfq “ 0, otherwise we would have a ă a. Thus, in
particular f ‰ a. Moreover, let b P E such that vbpfq ą vbpaq ě 0. By definition of f this
implies that b ă a, and since 0 “ vapfq ă vapaq “ 1 we get that f ă ma.

Conversely, let f ăm a. Let us show by contradiction that vapfq “ 0. If vapfq ‰ 0, we
distinguish two cases:

• If vapfq “ 1, then since f ‰ a, there exists b ‰ a P E such that vbpfq ą 0. Thus, because
f ă a, there exists c ą b P E such that vcpfq ă vcpaq. So we necessarily have vcpaq ě 1,
which implies that c “ a. The condition vcpfq ă vcpaq thus becomes vapfq ă 1, which
contradicts the hypothesis that vapfq “ 1.

• If vapfq ą 1, then there exists b ą a such that vbpaq ą vbpfq, which is impossible.

Hence, necessarily vapfq “ 0.
Let b P E such that vbpfq ą 0, and let us show that b ă a. We just showed that b ‰ a, and

so vbpfq ą vbpaq. Thus, there exists c ą b such that vcpaq ą vcpfq. In particular this implies
vcpaq ą 0. So c “ a and finally a ą b. �

Lemma 3.4.2.3. Let pE,ăq be a set equipped with a strict ordering. The relation ąm is com-
patible with the monoidal structure on NpEq, that is, for every f, f 1, g P NpEq, if f ąm f 1, then
f ` g ąm f 1 ` g.

Proof. Let f, f 1, g P NpEq, and suppose that f ąm f 1. Let us show that f`g ąm f 1`g. Firstly,
f ‰ f 1, hence f ` g ‰ f 1 ` g.

Let e P E such that vepf ` gq ă vepf
1 ` gq. Since ve is a morphism of monoids, this

implies that vepfq ă vepf
1q. Hence, there exists e1 ą e such that ve1pfq ą ve1pf

1q, and so
ve1pf ` gq ą ve1pf

1 ` gq �

The proof of the following theorem can be found in [4].

Theorem 3.4.2.4. Let pE,ąq be a set equipped with a strict ordering. Then ąm is a well-
founded ordering if and only if ą is.
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Since A is 2-terminating, the set A˚1 is equipped with a well-founded ordering ñ. This
induces a well-founded orderingñm on NrA˚1s. We now define two applications p : Fw

2 Ñ NrA˚1s
and wη : Fw

3 Ñ NrA˚1s. Using ñm, those applications induce well-founded orderings on Fw
2

and Fw
3 . We then show a number of properties of these applications in preparation for Section

3.2.2.

Definition 3.4.2.5. We define an application p : Fw
2 Ñ NrA˚1s:

• for every f P Fw
2 of length 1, we set ppfq :“ spfq ` tpfq,

• for every composable f1, f2 P Fw
2 , we set ppf1 ‚1 f2q :“ ppf1q ` ppf2q.

For every f, g P Fw
2 , we set f ą g if ppfq ñm ppgq. The relation ą is a well-founded ordering

of Fw
2 .

Definition 3.4.2.6. We define an application wη : Fw
3 Ñ NrA˚1s by setting:

• For every f P Bw2 of length 1, wηpηf q “ spfq.

• For every 3-cell A P F3 and u, v P A˚1 , if A is not an ηf then wηpuAvq “ 0.

• For every f1, f2 P Fw
2 and A P Fw

3 , wηpf1 ‚1 A ‚1 f2q “ wηpAq.

• For every A1, A2 P Fw
3 , wηpA1 ‚2 A2q “ wηpA1q `wηpA2q.

Definition 3.4.2.7. A product of the form f̄ ‚1 g P Fw
2 , where f and g are nonempty cells in

Bw2 is called a cavity. It is a local cavity if f and g are of length 1. Let CF be the set of all
cavities.

Lemma 3.4.2.8. Let f, g P Bw2 . Suppose f is not an identity and tpfq “ spgq. The following
inequality holds:

spfq ą ppgq

Proof. We reason by induction on the length of g. If g is empty, then ppgq “ 0 ă spfq.
Otherwise, let us write g “ g1 ‚1 g2, with g1 of length 1. Then ppgq “ ppg1q ` ppg2q

and by induction hypothesis ppg2q ă spf ‚1 g1q “ spfq. Moreover, we have f : spfq ñ spg1q

and f ‚1 g1 : spfq ñ tpg1q. Hence, spfq ą ppg1q, spg2q, tpg2q and, by Lemma 3.4.2.2, we get
spfq ą ppg1q ` spg2q ` tpg2q “ ppgq.

�

Lemma 3.4.2.9. Let f1, f2, g1, g2 P Bw2 , with f1 and f2 non-empty and of same source u. For
every 3-cell A : f̄1 ‚1 f2 V g1 ‚1 ḡ2 P Fw

3 , the following inequalities hold:

ppspAqq ą u ą pptpAqq.

In particular for every cell Cf,g, we have spCf,gq ą tpCf,gq.

Proof. Considering the first inequality, we have ppspAqq “ ppf1q ` ppg2q ě 2u ą u.
Considering the second one, using Lemma 3.4.2.8, we have the inequalities u “ spf1q ą ppg1q

and u “ spf2q ą ppg2q. By 3.4.2.2, we then have u ą ppg1q ` ppg2q “ pptpAqq. �

Definition 3.4.2.10. Let h P Fw
2 . A factorisation h “ h1 ‚1 f̄1 ‚1 f2 ‚1 h2 of h, with f1, f2 P Bw2

of length 1 and h1, h2 P Fw
2 is called a cavity-factorisation of h. Thus, a cavity-factorisation is

represented as follows:

h1

f1 f2
h2
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Lemma 3.4.2.11. Let h P Fw
2 be a 2-cell which is not an identity, and whose source and target

are a normal form for A2. Then there exists a cavity-factorisation of h.

Proof. By definition of Fw
2 , there exist n P N˚ and g1, . . . , g2n P Bw2 all not identities, except

possibly g1 or g2n, such that h “ ḡ1 ‚1 g2 ‚1 . . . ‚1 ḡ2n´1 ‚1 g2n.
Let us show that g1 and g2n are not identities:

• If g1 is an identity, then since h isn’t, either n ě 2 or n “ 1 and g2n is not an identity.
In both cases g2 is of length at least 1, and has sphq as target, which contradicts the fact
that sphq is a normal form for A2.

• The case where g2n is an identity is symmetric.

Therefore, the 2-cells g1 and g2 are of length at least 1. So we can write g1 “ f1 ‚1 g
1
1 and

g2 “ f2‚1g
1
2, with f1, f2 P Bw2 of length 1. Let h1 :“ ḡ11 and h2 :“ g12‚1 ḡ3‚1g4‚1 . . .‚1 ḡ2n´1‚1g2n.

We finally get: h “ h1 ‚1 f̄1 ‚1 f2 ‚1 h2. �

Lemma 3.4.2.12. Let h P Fw
2 be a 2-cell of source and target û, a normal form for A2. There

exists a 3-cell A : hV 1û such that wηpAq “ 0.

Proof. We reason by induction on h using the ordering ą. If h is minimal, then h “ 1û and we
can set A :“ 1h.

Otherwise, by Lemma 3.4.2.11 there exists a cavity-factorisation h “ h1 ‚1 f1 ‚1 f2 ‚1 h2 of
h. Let A1 :“ Cf1,f2 : we have wηpA1q “ 0 and by Lemma 3.4.2.9, spA1q ą tpA1q. Since the
ordering is compatible with composition, we get h ą h1 ‚1 tpA1q ‚1 h2. By induction hypothesis,
there exists a 3-cell A2 : h1 ‚1 tpA1q ‚1 h2 V 1û P Fw

3 such that wηpA2q “ 0.
Let A :“ ph1 ‚1A1 ‚1 h2q ‚1A2. We have wηpAq “ wph1 ‚1A1 ‚1 h2q`wpA2q “ wpA1q` 0 “

0. �

Lemma 3.4.2.13. Let h P Fw
2 of source and target û a normal form for A2, and A : h V

1û P Fw
3 . For every cavity-factorisation h “ h1 ‚1 f̄1 ‚1 f2 ‚1 h2, there exists a factorisation of

A “ ph1 ‚1 A1 ‚1 h2q ‚2 A2, with A1, A2 P Fw
3 , and either A1 “ Cf1,f2 or A1 “ f̄1 ‚1 ηf3 ‚1 f2,

with f3 P Bw2 of length 1.

Proof. We reason by induction on the length of A. If A is of length 0, then there is no cavity-
factorisation of h “ 1û and the result holds.

If A is not of length 0, let h “ h1 ‚1 f̄1 ‚1 f2 ‚1 h2 be a cavity-factorisation of h. Let
us write A “ B ‚1 C, where B is of length 1. If B is not of the required form, then either
B “ B1 ‚1 f̄1 ‚1 f2 ‚1 h2, or B “ h1 ‚1 f̄1 ‚1 f2 ‚1 B

1. Let us treat the first case, the second being
symmetrical. The source of C admits a cavity-factorisation spCq “ tpB1q ‚1 f̄1 ‚1 f2 ‚1 h2. By
induction hypothesis, we can factorise C as follows:

C “ ph11 ‚1 A1 ‚1 h2q ‚2 C
1,

with A1 “ Cf1,f2 or A1 “ f̄1 ‚1 ηf3 ‚1 f2. Let A2 :“ pB11 ‚1 tpA1q ‚1 h2q ‚2 C2: we then have
A “ ph1 ‚1 A1 ‚1 h2q ‚2 A2.

h1 f1 f2
h2

B A1

C 1

�
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Lemma 3.4.2.14. Let h P Fw
2 and u P A˚1 such that u ą pphq, u ą sphq and u ą tphq. For

every 3-cell A P Fw
3 of source h, the inequality u ą wηpAq holds.

Proof. We reason by induction on the length of A. If A is of length 0, wηpAq “ 0 and the result
holds.

Otherwise, let us write A “ A1‚2A2, with A1 of length 1. We distinguish two cases depending
on the shape of A1.

• If A1 “ h1 ‚1 ηf ‚1 h2, with h1, h2 P Fw
2 and f P Bw2 of length 1.

If h1 and h2 are empty, then spA2q “ f ‚1 f̄ . Thus ppspA2qq “ 2 spfq ` 2 tpfq ď 4 spfq “
4 sphq. Since sphq ă u, using Lemma 3.4.2.2, we get that ppspA2qq ă u. Applying the
induction hypothesis to A2, we get wηpA2q ă u. Moreover, wηpAq “ wηpA1q `wηpA2q “

spfq `wpA2q, and we showed that wpA2q ă u and spfq “ sphq ă u. Thus, according to
Lemma 3.4.2.2 we get wηpAq ă u.

Otherwise, suppose for example that h1 is not an identity (the case where h2 is not an
identity being symmetrical). Then we have vtph1qppph1qq ą 0, so vtph1qppphqq ą 0. Since
pphq ă u, we have by Lemma 3.4.2.2 that spfq “ tph1q ă u. So ppspA2qq “ pph1q`pph2q`

2 spfq ` 2 tpfq ă pphq ` 4 spfq ă u. By induction hypothesis, we thus have wηpA2q ă u,
and finally wηpAq “ spfq `wηpA2q ă u.

• Otherwise, we have on the one hand that wηpA1q “ 0, and on the other hand that
spA2q “ tpA1q ă spA1q “ h ă u by Lemma 3.4.2.9. Thus, wηpAq “ wηpA2q ă u.

�

Lemma 3.4.2.15. Let pf1, f2, f3q be a 3-fold local branching, u P A˚1 , and A,B P Fw
3 two 3-cells

such that there exists a 4-cell:

Cf1,f3,f2 : f̄1 ‚1 ηf3 ‚1 f2 ‚2 pCf1,f3 ‚1 Cf3,f2q ‚2 A �?Cf1,f2 ‚2 B.

Then wηpAq,wηpBq ă u.

Proof. Using Lemma 3.4.2.9, we have pptpCf1,f2qq,pptpCf2,f3qq,pptpCf1,f3qq ă u. So ppspAqq “
pptpCf1,f2q ` pptpCf2,f3qq ă u et ppspBqq “ pptpCf1,f3qq ă u, and using 3.4.2.14, we get
wηpAq,wηpBq ă u �

3.4.3 Partial coherence of Fwp3q

Proposition 3.4.3.1. For every 2-cell h P Fw
2 with source and target û a normal form for A2,

and for every 3-cells A,B : hV 1û P Fw
3 , there exists a 4-cell α : A �?B P Fwp3q

4 .

Proof. We reason by induction on the couple pwηpAq ` wηpBq,pphqq, using the lexicographic
order. If h “ 1û, then A “ B “ 1h. Thus setting α “ 1A “ 1B shows that the property is
verified.

Suppose now that h is not an identity. Using Lemma 3.4.2.11, there exists a cavity-
factorisation h “ h1 ‚1 f̄1 ‚1 f2 ‚1 h2. By Lemma 3.4.2.13, there exist A1, A2, B1, B2 P Fw

3 ,
such that A “ ph1 ‚1 A1 ‚1 h2q ‚2 A2 and B “ ph1 ‚1 B1 ‚1 h2q ‚2 B2. Using this Lemma, we
distinguish four cases depending on the shape of A1 and A2.
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If A1 “ B1 “ Cf1,f2. Then in particular we have:

spA2q “ spB2q wηpAq “ wηpA2q wηpBq “ wηpB2q tpA1q ă spA1q,

where the last inequality is a consequence of Lemma 3.4.2.9. Hence, we get ppspA2qq “ pph1q `

pptpA1qq`pph2q ă pph1q`ppspA1qq`pph2q “ pphq, and finally pwηpA2q`wηpB2q,ppspA2qqq ă

pwηpAq `wηpBq, hqq. Using the induction hypothesis there exists α : A2
�?B2 P Fwp3q

4 , and by
composition we construct A1 ‚2 α : AÑ B.

If A1 “ f̄1 ‚1 ηf3 ‚1 f2 and B1 “ Cf1,f2. We are going to construct the following composite:

h1

f1 f2
h2

h1 h2h1

f1 f2
h2

h1 h2

1û

h1 ‚1 Cf1,f2 ‚1 h2h1 ‚1 Cf1,f2 ‚1 h2h1 ‚1 f̄1 ‚1 ηf3 ‚1 f2 ‚1 h2h1 ‚1 f̄1 ‚1 ηf3 ‚1 f2 ‚1 h2

D1D1 D2D2

A2A2 B2B2

D3D3

α1

α2 α3

According to Lemma 3.4.1.3, there exists a 4-cell

Cf1,f3,f2 : f̄1 ‚1 ηf3 ‚1 f2 ‚2 pCf1,f3 ‚1 Cf3,f2q ‚2 D
1
1
�?Cf1,f2 ‚2 D

1
2,

with D11, D12 P F
wp3q
4 . Let us define D1 :“ h1 ‚1 pCf1,f3 ‚1Cf3,f2q‚2D

1
1q‚1h2, D2 :“ h1 ‚1D

1
2 ‚1h2,

and α1 :“ h1 ‚1Cf1,f3,f2 ‚1 h2. The existence of D3 is guaranteed by Lemma 3.4.2.12, which also
proves that we can choose D3 such that wηpD3q “ 0.

In order to construct the 4-cells α1 and α2, let us show that we can apply the induction
hypothesis to the couples pA2, D1 ‚2 D3q and pD2 ‚2 D3, B2q. Let v be the common source of f1

and f2.

• Using Lemma 3.4.2.15, wηpD1 ‚2 D3q “ wηpD1q “ wηpD
1
1q ă v, and so:

wηpA2q `wηpD1 ‚2 D3q ă wηpA2q `wpη3q “ wηpAq ď wηpAq `wηpBq.

• As previously wηpD2 ‚2 D3q “ wηpD2q “ wηpD
1
2q ă v, and so:

wηpB2q `wηpD2 ‚2 D3q ă wηpB2q `wpη3q ď wηpBq `wηpAq.

If A1 “ Cf1,f2 and B1 “ f̄1 ‚1 ηf3 ‚1 f2. This case is similar to the previous one, only using
C´1
f1,f3,f2

rather than Cf1,f3,f2 .
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If A1 “ f̄1 ‚1 ηf3 ‚1 f2 and B1 “ f̄1 ‚1 ηf4 ‚1 f2. We are going to construct the following
composite:

h1

f1 f2
h2

h1

f1 f2
h2 h1

f1 f2
h2

h1

f1 f2
h2

1û

h1 ‚1 f̄1 ‚1 ηf3 ‚1 f2 ‚1 h2h1 ‚1 f̄1 ‚1 ηf3 ‚1 f2 ‚1 h2 h1 ‚1 f̄1 ‚1 ηf4 ‚1 f2 ‚1 h2h1 ‚1 f̄1 ‚1 ηf4 ‚1 f2 ‚1 h2

D1D1 D2D2

A2A2 B2B2

D3D3

α1

α2 α3

Let us set
D1 :“ h1 ‚1 f̄1 ‚1 f3 ‚1 f̄3 ‚1 ηf4 ‚1 f2 ‚1 h2

D2 :“ h1 ‚1 f̄1 ‚1 ηf3 ‚1 f4 ‚1 f̄4 ‚1 f2 ‚1 h2.

We then have

ph1 ‚1 A1 ‚1 h2q ‚2 D1 “ h1 ‚1 f̄1 ‚1 ηf3 ‚1 ηf4 ‚1 f2 ‚1 h2 “ ph1 ‚1 B1 ‚1 h2q ‚1 D2.

Hence, we define α1 as an identity. Let now D3 be as in Lemma 3.4.2.12, with wηpD3q “ 0, and
v be the common source of f1, f2, f3 and f4. We then have the inequalities:

wηpA2q `wηpD1q `wηpD3q “ wηpA2q ` v ă wηpA2q `wηpB2q ` 2v “ wηpAq `wηpBq,

wηpB2q `wηpD2q `wηpD3q “ wηpB2q ` v ă wηpB2q `wηpA2q ` 2v “ wηpAq `wηpBq.

Hence we can apply the induction hypothesis to the couples pA2, D1 ‚2 D3q and pD2 ‚2 D3, B2q,
which provides α2 and α3. �

Proposition 3.4.3.2. The white p4, 3q-category Fwp3q is SE -coherent.

Proof. Let A,B : f V h P Fw
3 whose 1-target is a normal form û, with f, g P Bw2 .

The 3-cells ph̄ ‚1 Aq ‚2 εh and ph̄ ‚1 Bq ‚2 εh are parallel, and their target is 1û. In particular,
they verify the hypothesis of Proposition 3.4.3.1. So there exists α : ph̄‚1Aq‚2 εh �? ph̄‚1Bq‚2 εh.
Then the following composite is the required cell from A to B:

f

h

A

f

h
h

hηh εh

A

f

h
h

hηh εh

B
f

h

B

τ´1
hτ
´1
h

αα

τhτh
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We can now complete the proof of Theorem 3.1.3.5. Indeed, we showed that Fwp3q is SE -
coherent. Using Proposition 3.2.2.14, that means that Ewp3q is SE -coherent, and finally using
Lemma 3.2.2.8 that A˚p2q is SA-coherent, that is that for every 3-cells A,B P A˚p2q3 , whose
1-target is a normal form, there exists a 4-cell α : A �?B P A˚p2q4 .
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Chapter 4

Cubical pω, pq-categories
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Organisation

The goal of this chapter is to study the notion of pω, pq-cubical category, in preparation for the
next chapter. In Section 4.1, we recall a number of results on cubical ω-categories. In particular,
we recall the definition of the two functors forming the equivalence between globular and cubical
ω-categories.

In Section 4.2 we study the various forms of invertibility that exist in cubical ω-categories.
In particular we define the notion of Ri-invertibility in Section 4.2.1, that of plain invertibility
in Section 4.2.2 and finally the notion of Ti-invertibility in Section 4.2.3.

In Section 4.3, we finally define cubical pω, pq-categories. In Section 4.3.1 we use the results
on invertibility that we collected throughout Section 4.2, we prove the equivalence with the
globular notion and characterize the notions of cubical pω, 0q and pω, 1q-categories. In Section
4.3.2 we introduce the notion of pω, pq-ADCs and study its relationship with both globular and
cubical pω, pq-categories.

Lastly in Section 4.4, we apply the notions of invertibility as studied beforehand, to show
firstly that cubical pω, 1q-categories carry a natural structure of symmetric cubical categories in
Section 4.4.1. Then in Section 4.4.2 we define and study the notion of pseudo transfors between
cubical ω-categories.

4.1 Cubical categories

In this section we recall the notion of ω-cubical categories (with connections) and the following
functors

ω -Cat ω -CubCat

λ

γ

–

defined in [2] that form an equivalence between the category of cubical ω-categories and that of
globular ω-categories.

While our description of the functor λ matches exactly the description given in [2], we
rephrase slightly the definition of γ. Our construction consists in defining a co-cubical ω-category
object in ω -Cat (that is a cubical ω-category object in ω -Catop), in order to define γ as a
nerve functor. The starting point of this construction consists in describing the standard globular
ω-category of the n-cube (denoted n -�G in this thesis, andMpInq in [2]). Here we use the closed
monoidal structure on ω -Cat to construct these categories, but one could equivalently define
them as in [2] using directed complexes [76], or using augmented directed complexes [77].

4.1.1 Cubical sets

Definition 4.1.1.1. We denote by n -Cat the category of strict globular n-categories (with
n P N Y tωu). We implicitly consider all globular n-categories (with n P N) to be globular
ω-categories whose only cells in dimension higher than n are identities. Let C be a globular
ω-category and n ě 0. We denote by Cn the set of n-cells of C. For f P Cn, and 0 ď k ă n, we
denote by skpfq P Ck (resp. tkpfq) the k-dimensional source (resp. target) of f , and we simply
write spfq (resp. tpfq) for sn´1pfq (resp. tn´1pfq). For f, g P Cn such that tkpfq “ skpgq we
write f ‚k g their composite. For f P Cn we write 1f the identity of f . Finally, for x, y P C0, we
denote by Cpx, yq the globular ω-category of arrows between them.
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We say that an n-cell f P Cn is invertible if it is invertible for the composition ‚n´1, that is
if there exists an n-cell g P Cn such that f ‚n´1 g “ 1spfq and g ‚n´1 f “ 1tpfq. For p ě 0, a
globular pω, pq-category is a globular ω-category in which any n-cell is invertible, for n ą p. In
particular, a globular pω, 0q-category is just a globular ω-groupoid.

Definition 4.1.1.2. For every i P N, we define two applications p_qi : N Ñ Nztiu and p_qi :
Nztiu Ñ N as follows:

ji :“

#

j j ă i

j ` 1 j ě i
ji :“

#

j j ă i

j ´ 1 j ą i

Finally, for i, j distinct integers, we define applications p_qi,j , p_qi,j and p_qji respectively
as follows:

#

Nzti, ju Ñ N
k ÞÑ pkiqji

#

N Ñ Nzti, ju
k ÞÑ pkij qj

#

Nztiju Ñ Nztjiu
k ÞÑ pkjqi

Lemma 4.1.1.3. The following equalities hold, for every k and every i ‰ j:
$

’

&

’

%

ki,j “ kj,i

ki,j “ kj,i k ‰ i, j

kji “ pkij q
ji k ‰ ij

Proof. Recall that there is at most one isomorphism between any two well-ordered sets. Here
p_qi,j and p_qj,i are both isomorphism from N to Nzti, ju, hence they are equal. The same
reasoning proves the other two equalities. �

The series of Definitions 4.1.1.4, 4.1.1.6 and 4.1.2.1 is exactly the same as in [2], except that
we make use of the notations introduced in Definition 4.1.1.2.

Definition 4.1.1.4. A pre-cubical set is a series of sets Cn (for n ě 0) together with applications
(called faces operations) Bαi : Cn Ñ Cn´1, for α “ ˘ and 1 ď i ď n, satisfying

BαijB
β
j “ B

β
ji
Bαi (4.1.1)

A morphism of pre-cubical sets is a family of applications Fn : Cn Ñ Dn commuting with
the faces operations.

Example 4.1.1.5. Following work of Grandis and Mauri [36], pre-cubical sets can be seen as
presheaves over the free PRO generated by cells : 0 Ñ 1 and : 0 Ñ 1. Then the applications
B
´
i : Cn Ñ Cn´1 and B`i : Cn Ñ Cn´1 correspond respectively to the following cells, with i´ 1
strings on the left and n´ i on the right:

Equation (4.1.1) corresponds to equations of the following form, replacing the occurrences
of either by or depending on α and β:

“

Note finally that reading an expression Bαi . . . B
β
j from left to right corresponds to reading a string

diagram in the PRO from top to bottom.

105



Definition 4.1.1.6. A cubical set (with connections) is given by:

• For all n P N, a set Cn.

• For all n P N˚, all 1 ď i ď n and all α P t`,´u, applications Bαi : Cn Ñ Cn´1.

• For all n P N and all 1 ď i ď n` 1, applications εi : Cn Ñ Cn`1.

• For all n P N˚, all 1 ď i ď n and all α P t`,´u, applications Γαi : Cn Ñ Cn`1.

This data must moreover verify the following axioms:

Bαi εj “

#

εjiB
α
ij

i ‰ j

idCn i “ j
(4.1.2)

Bαi Γβj “

$

’

&

’

%

ΓβjiBij i ‰ j, j ` 1

idCn i “ j, j ` 1 and α “ β

εjB
α
j i “ j, j ` 1 and α “ ´β

(4.1.3)

εiεji “ εjεij (4.1.4)

ΓαijΓ
β
j “

#

Γβ
ji

Γαi i ‰ j

Γαi Γαi i “ j and α “ β
(4.1.5)

Γαi εj “

#

εjiΓ
α
ij

i ‰ j

εiεi i “ j
(4.1.6)

Example 4.1.1.7. Following once again [36], cubical sets with connections can be seen as
presheaves over the following PRO, denoted by J and called the intermediate cubical site in [36]:

• The generators are the cells :

: 0 Ñ 1 : 0 Ñ 1 : 1 Ñ 0 : 2 Ñ 1 : 2 Ñ 1

• They satisfy the following relations :

“

“ “

“ “

“

“

“

“ “

“ “

“

“

Then the applications Γ´i : Cn Ñ Cn`1, Γ`i : Cn Ñ Cn`1 and εi correspond respectively to
composites of the form , and , with the appropriate number of
strings on each side.

4.1.2 Cubical ω-categories

Definition 4.1.2.1. A cubical ω-category is given by a cubical set C, equipped with, for all
n P N˚ and all 1 ď i ď n, a partial application ‹i from Cn ˆCn to Cn defined exactly for any
cells A,B such that B`i A “ B

´
i B. This data must moreover satisfy the following axioms:
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pA‹iBq‹j pC‹iDq “ pA‹jCq‹ipB‹jDq (4.1.7)

A ‹i pB ‹i Cq “ pA ‹i Bq ‹i C (4.1.8)

εipA ‹j Bq “ εαi A ‹ji ε
α
i B (4.1.9)

A ‹i εiB
`
i A “ εiB

´
i A ‹i A “ A (4.1.10)

Γ`i A ‹i Γ´i A “ εi`1A (4.1.11)

Γ`i A ‹i`1 Γ´i A “ εiA (4.1.12)

Bαi pA ‹j Bq “

$

’

&

’

%

Bαi A ‹ji B
α
i B i ‰ j

B
´
i A i “ j and α “ ´
B
`
i B i “ j and α “ `

(4.1.13)

Γαi pA ‹j Bq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Γαi A ‹ji Γαi B i ‰ j

Γ´i A εi`1B

εiB Γ´i B

i

i`1
i “ j and α “ ´

Γ`i A εiA

εi`1A Γ`i B

i

i`1
i “ j and α “ `

(4.1.14)

where in the last relation we denote by
A B

C D

i

j
the composite pA ‹i Bq ‹j pC ‹i Dq

(which is made possible by relation (4.1.7)). We denote by ω -CubCat the category of cubical
ω-categories.

Definition 4.1.2.2. Let C be a cubical ω-category. For any n ą 0, we define operations
ψi,Ψr,Φm : Cn Ñ Cn, with 1 ď i ď n´ 1, 1 ď r ď n and 0 ď m ď n as follows:

ψiA “ Γ`i B
´
i`1A ‹i`1 A ‹i`1 Γ´i B

`
i`1A

ΨrA “ ψr´1 ¨ ¨ ¨ψ1A

ΦmA “ Ψ1 ¨ ¨ ¨ΨmA

Definition 4.1.2.3. Let C be a cubical ω-category, and A P Cn. We say that A is a thin cell
if ψ1 . . . ψn´1A P Im ε1.

Definition 4.1.2.4. Let n P N. There is a truncation functor trn : pn ` 1q -CubCat Ñ
n -CubCat. This functor admits both a left and a right adjoint (see [43] for an explicit descrip-
tion of both functors).

pn` 1q -CubCat n -CubCat

m

trn

l

K

K

For C P n -CubCat, the pn` 1q-category lC coincides with C up to dimension n, and the
rest of the structure is defined as follows:
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• The set of pn` 1q-cells of lC is the set of all families pAαi q P Cn (with 1 ď i ď n` 1 and
α “ ˘) such that:

BαijA
β
j “ B

β
ji
Aαi .

• For A P plCqn`1, Bαi A “ Aαi .

• For A P Cn, the families εiA P plCqn`1 and Γαi A P plCqn`1 are defined by:

pεiAq
β
j “

#

A j “ i

εijB
β
ji
A j ‰ i

pΓαi q
β
j “

$

’

&

’

%

A j “ i, i` 1 and β “ α

εiB
β
i A j “ i, i` 1 and β “ ´α

ΓαijBjiA j ‰ i, i` 1

• For A,B P plCqn`1 such that A`i “ B´i , the family A ‹i B P plCqn`1 is defined by:

pA ‹i Bq
α
j “

$

’

&

’

%

A´i j “ i and α “ ´
B`i j “ i and α “ `
Aαj ‹ij B

α
j j ‰ i

Let C be a cubical pn` 1q-category. The unit of the adjunction tr % l induces a morphism
of cubical pn ` 1q-categories BBB : C Ñ l trC. This functor associates, to any A P Cn`1 the
family BBBA :“ pBαi Aq. We call BBBA the shell of A.

More generally, if C is a cubical ω-category, we denote by lnC the pn`1q-category l trnC,
and for any A P Cn`1, by BBBA the cell BBB trn`1A P lnC.

Theorem 4.1.2.5 (Proposition 2.1 and Theorem 2.8 from [43]). Let C be a cubical category.
Thin cells of C are exactly the composites of cells of the form εif and Γαi f . Moreover, if two
thin cells have the same shell, then they are equal.

Notation 4.1.2.6. As a consequence, when writing thin cells in 2-dimensional compositions (as
in Equation (4.1.14) for example), we make use of the notation already used in [2] and [43]: a
thin cell A is replaced by a string diagram linking the non-thin faces of A. For example Γ`i A

and Γ´i A will respectively be represented by the symbols and , and the cells εiA by the
symbol or . Following this convention, Equations (4.1.11) and (4.1.12) can be represented
by the following string diagrams:

“ “

i

i`1

And the last two cases of Equation (4.1.14) become respectively:

“ “

i

i`1

Finally, for any A P Cn, ψiA is the following composite:

ψiA “ A

i`1

i
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4.1.3 Equivalence between cubical and globular ω-categories

The functor γ : ω -CubCatÑ ω -Cat was described in [2] as follows.

Proposition 4.1.3.1. Let C be a cubical category. The following assignment defines a globular
ω-category γC :

• The n-cells of γC are the elements of ΦnpCnq,

• For all A P γCn, 1A :“ ε1A,

• For all A P γCn, spAq :“ B´1 A,

• For all A P γCn, tpAq :“ B`1 A,

• For all A,B P γCn and 0 ď k ă n, A ‚k B :“ A ‹n´k B.

To define the functor λ : ω -Cat Ñ ω -CubCat, we start by constructing a co-cubical
ω-category object in ω -Cat. This is a reformulation of [2].

Definition 4.1.3.2. Let I be the category with two 0-cells p´q and p`q and one non-identity
1-cell p0̈q:

p0̈q : p´q Ñ p`q

We denote by n -�G, and call the n-cube category the globular ω-category Ibn, where b is
the Crans-Gray tensor product, which equips ω -Cat with a closed monoidal structure.

Example 4.1.3.3. For example 2 -�G is the free 2-category with four 0-cells, four generating
1-cells and one generating 2-cell, with source and targets given by the following diagram:

p´´q p`´q

p´`q p``q

p0̈´q

p0̈`q

p´0̈q p`0̈qA

Definition 4.1.3.4. For α “ ˘, we denote by B̌α : J Ñ I the functor sending the (unique)
0-dimensional cell of J to pαq, where J denotes the terminal category.

For any n ě 0, any 1 ď i ď n and any α “ ˘, we denote by B̌αi : n -�G Ñ pn` 1q -�G the
functor Ii´1 b B̌α b In´i.

Definition 4.1.3.5. We denote by ε̌ : 1 -�G Ñ 0 -�G the (unique) functor from I to J.
For any n ą 0 and any 1 ď i ď n, we denote by ε̌i : pn ´ 1q -�G Ñ n -�G the functor

Ibpi´1q b ε̌b Ibpn´iq.

Definition 4.1.3.6. For α “ ˘, let Γ̌α : 2 -�G Ñ 1 -�G be the functor defined as follows,
where β “ ´α:

$

’

’

’

’

&

’

’

’

’

%

Γ̌αpααq “ pαq

Γ̌αpαβq “ pβq

Γ̌αpβαq “ pβq

Γ̌αpββq “ pβq

$

’

’

’

’

&

’

’

’

’

%

Γ̌αp0̈αq “ p0̈q
Γ̌αp0̈βq “ 1pβq

Γ̌αpα0̈q “ p0̈q
Γ̌αpβ0̈q “ 1pβq

Γ̌αp0̈0̈q “ 1p0̈q
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For any n ą 0 any 1 ď i ď n and any α “ ˘, we denote by Γ̌αi : n -�G Ñ pn` 1q -�G the
functor Ibpi´1q b Γ̌α b Ibpn´iq.

Definition 4.1.3.7. We denote by RectG the following pushout in ω -Cat:

0 -�G 1 -�G

1 -�G RectG

B̌´

B̌`

x (4.1.15)

Explicitly, the 0-cells of RectG are elements pαjq, where α “ ˘ and i “ 1, 2, with the
identification p`1q “ p´2q. The 1-cells of RectADC

0 are freely generated by p0̈iq : p´iq Ñ p`iq,
for i “ 1, 2.

For every n ą 0 and every 1 ď i ď n, let pn, iq -RectG be the cubical ω-category:

pn, iq -RectG :“ Ipi´1q b RectG b Ipn´iq

Remark 4.1.3.8. Since the monoidal structure on ω -Cat is biclosed [2], pn, iq -RectG is the
colimit of the following diagram:

pn´ 1q -�G n -�G

n -�G pn, iq -RectG

B̌
´
i

B̌
`
i

x (4.1.16)

Definition 4.1.3.9. We denote by ‹̌ : 1 -�G Ñ RectG the following functor:
#

‹̌p´q “ p´1q

‹̌p`q “ p`2q
‹̌p0̈q “ p0̈1q ‚0 p0̈2q

For any n ą 0 and any 1 ď i ď n, we denote by ‹̌i : n -�G Ñ pn, iq -RectG the functor
Ibpi´1q b ‹̌ b Ibpn´iq.

This result is a reformulation of Section 2 of [2]:

Proposition 4.1.3.10. The objects n -�G equipped with the applications B̌αi , ε̌i, Γ̌αi and ‹̌i form
a co-cubical ω-category object in the category ω -Cat.

Consequently, for C a globular ω-category, the family pλCqn “ ω -Catpn -�G, Cq comes
equipped with a structure of cubical ω-category, that we denote by λC. This defines a functor
λ : ω -CatÑ ω -CubCat.

Finally, the main result of [2] is the following:

Theorem 4.1.3.11. The following functors form an equivalence of Categories:

ω -Cat ω -CubCat

λ

γ

–
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4.2 Invertible cells in cubical ω-categories

In this Section, we investigate three notions of invertibility in cubical ω-categories. We start by
defining in Section 4.2.1, both the notion of Ri-invertibility, which is a direct cubical analogue of
the usual notion of invertibilty with respect to a binary composition, and the notion of (plain)
invertibility, which is specific to cubical ω-categories. Then in Section 4.2.3, we define a notion
of Ti-invertibility, a variant of the notion of Ri-invertibility using a kind of diagonal composition.

4.2.1 Ri-invertibility

We start by proving a number of useful Lemmas about the notion of Ri-invertibility. We then
proceed to give the definition of (plain) invertibility in Definition 4.2.2.1. The rest of the Section
is then used to prove a characterisation of Ri-invertibility in terms of invertibility, which is
achieved in Proposition 4.2.2.2.

Definition 4.2.1.1. Let C be a cubical ω-category, and 1 ď k ď n be integers. We say that a
cell A P Cn is Rk-invertible if there exists B P Cn such that A‹kB “ εkB

´
k A and B‹kA “ εkB

`
k A.

We call B the Rk-inverse of A, and we write RkA for B.
In particular, we say that A P Cn has an Rk-invertible shell if BBBA is Rk-invertible in lnC.

Lemma 4.2.1.2. Let C be a cubical n-category, and A P plCqn`1. Then A is Ri-invertible if
and only if for all j ‰ i, Aαj is Rij -invertible, and:

Bαi RkA “

#

B
´α
k A i “ k

RkiB
α
i A i ‰ k

In particular, for C a cubical ω-category, a cell A P Cn has an Ri-invertible shell if and only
if Bαj A is Rij -invertible for any j ‰ i.

Proof. Let B be the Rk-inverse of A, and i ‰ k. We have:

Aαi ‹ki B
α
i “ pA ‹k Bq

α
i “ B

α
i εkA

´
k “ εkiB

α
ikA

´
k “ εkiB

´
k
ik
Aαi “ εkiB

´
ki
Aαi ,

Bα
i ‹ki A

α
i “ pB ‹k Aq

α
i “ B

α
i εkA

`
k “ εkiB

α
ikA

`
k “ εkiB

`
k
ik
Aαi “ εkiB

`
ki
Aαi .

Thus Bα
i is the ki-inverse of Aαi , that is B

α
i RkA “ RkiB

α
i A.

Moreover, for the composite A ‹k RkA (resp. RkA ‹k A) to make sense we necessarily have
B
´
k RkA “ B

`
k A (resp. B`k RkA “ B

´
k A). �

The following Lemma will be useful in order to compute the Ri-inverses of thin cells.

Lemma 4.2.1.3. Let C be a cubical ω-category, and let A be a thin cell in Cn. We fix an
integer i ď n. If there exists a thin cell B in Cn such that Bαi B “ B

´α
i A, and for all j ‰ i,

Bαj B “ RijB
α
j A, then A is Ri-invertible, and B “ RiA.

Proof. Since B´i B “ B
`
i A, A and B are i-composable. Let us look at the cell A ‹iB. It is a thin

cell, and it has the following shell:

Bαj pA ‹i Bq “

$

’

&

’

%

B
´
i A “ B

´
i εiB

´
i A j “ i and α “ ´

B
`
i B “ B

´
i A “ B

´
i εiB

´
i A j “ i and α “ `

Bαj A ‹ij B
α
j B “ B

α
j A ‹ij RijB

α
j A “ εijB

´
ij
Bαj A “ B

α
j εiB

´
i A j ‰ i

Therefore, A ‹i B and εiB´i A are two thin cells that have the same shell. By Theorem 4.1.2.5,
they are equal. The same computation with B‹iA leads to the equality B‹iA “ εiB

`
i A. Finally,

A is Ri-invertible, and RiA “ B. �
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Lemma 4.2.1.4. Let C be a cubical ω-category, and fix A,B P Cn and 1 ď k ď n.

• For any i ď n, if A,B are Rk-invertible and i-composable, then A ‹i B is Rk-invertible,
and:

RkpA ‹i Bq “

#

RkA ‹i RkB i ‰ k

RkB ‹k RkA i “ k
(4.2.1)

• For any i ď n ` 1, εiA is Ri-invertible and RiεiA “ εiA. Moreover, if A is Rk-invertible
then εiA is also Rki invertible, with

RkiεiA “ εiRkA (4.2.2)

• For any i ‰ k and α “ ˘, if A is Rk-invertible, then Γαi A is Rki invertible, and ΓαkA is
both Rk and Rk`1-invertible, and:

RkiΓ
α
i A “ Γαi RkA (4.2.3)

RkΓ
α
kA “

#

εk`1RkA ‹k`1 Γ`k A α “ ´

Γ´k A ‹k εk`1RkA α “ `
Rk`1ΓαkA “

#

εkRkA ‹k`1 Γ`k A α “ ´

Γ´k A ‹k`1 εkRkA α “ `

(4.2.4)

Proof. Suppose A and B are k-invertible, and let i ď n. If i ‰ k, Then we have:

pRkA ‹i RkBq ‹k pA ‹i Bq “ pRkA ‹k Aq ‹i pRkB ‹k Bq “ εkB
`
k A ‹i εkB

`
k B “ εkB

`
k pA ‹i Bq

pA ‹i Bq ‹k pRkA ‹i RkBq “ pA ‹k RkAq ‹i pB ‹k RkBq “ εkB
´
k A ‹i εkB

´
k B “ εkB

´
k pA ‹i Bq.

Thus A ‹i B is Rk-invertible and RkpA ‹i Bq “ RkA ‹i RkB. Suppose now that i “ k. Then we
have:

RkB ‹k RkA ‹k A ‹k B “ εkB
`
k B “ εkB

`
k pA ‹k Bq

A ‹k B ‹k RkB ‹k RkA “ εkB
´
k A “ εkB

´
k pA ‹k Bq.

So A ‹k B is Rk-invertible, and RkpA ‹k Bq “ RkB ‹k RkA.
Suppose i ‰ k. Then we have:

Γαi A ‹ki Γαi RkA “ Γαi pA ‹k RkAq “ Γαi εkB
´
k A “ εkiΓ

α
ik
B
´
k A “ εkiB

´

ki
Γαi A

Γαi RkA ‹ki Γαi A “ Γαi pRkA ‹k Aq “ Γαi εkB
`
k A “ εkiΓ

α
ik
B
`
k A “ εkiB

`

ki
Γαi A

Thus Γαi A is Rki-invertible, and RkiΓαi A “ Γαi RkA.
Suppose now i “ k, and α “ ´. In order to show that RkΓ´k A “ εk`1RkA ‹k`1 Γ`k A, we

are going to use Lemma 4.2.1.3. Note first that both Γ´k A and εk`1RkA ‹k`1 Γ`k A are thin,
so we only need to check the hypothesis about the shell of εk`1RkA ‹k`1 Γ`k A. Note that the
hypotheses on directions k and k ` 1 are always satisfied:

Bαj pεk`1RkA‹kΓ
`
k Aq “

$

’

’

’

’

&

’

’

’

’

%

εkB
´
k RkA “ εkB

`
k A “ B

`
k Γ´k A j “ k and α “ ´

B
`
k Γ`k A “ A “ B´k Γ´k A j “ k and α “ `
RkA ‹k B

´
k`1Γ`k A “ RkA ‹k εkB

´
k A “ RkA “ RkB

´
k Γ´k A j “ k ` 1 and α “ ´

RkA ‹k B
`
k`1Γ`k A “ RkA ‹k A “ εkB

`
k A “ RkB

`
k Γ´k A j “ k ` 1 and α “ `

As for the remaining directions, we reason by induction on n, the dimension of A. The case
where n “ 1 (and thus k “ 1), there is no other direction to check and so R1Γ´1 “ ε2R1A‹2 Γ`1 A.

112



Suppose now n ą 1, and let j ď n` 1, with j ‰ k, k ` 1. Then we have the following equalities
(where the fourth one uses the induction hypothesis):

Bαj pεk`1RkA ‹k Γ`k Aq “ B
α
j εk`1RkA ‹kj B

α
j Γ`k A

“ εpk`1qjB
α
jk`1

RkA ‹kj Γ`kjB
α
jk
A

“ εkj`1RkjB
α
jk
A ‹kj Γ`kjB

α
jk
A

“ RkjΓ
´
kj
BαjkA

“ RkjB
α
j Γ´k A

Thus, by Lemma 4.2.1.3, Γ´k A is Rk-invertible, and RkΓ´k A “ εk`1RkA ‹k`1 Γ`k A.
The proofs of the remaining three cases (i “ k with α “ `, and i “ k ` 1 with α “ ˘) are

similar. �

Remark 4.2.1.5. Note that Lemma 4.2.1.4 shows in particular that, if A is Rk-invertible, then
RkiΓ

α
i A, RkΓ

α
kA and Rk`1ΓαkA are thin. In particular, applying the Notation defined in 4.1.2.6,

we get the equations:

Rk “ Rk`1 “ Rk “ Rk`1 “

k

k`1

Remark 4.2.1.6. Let C be a cubical n-category and A P plCqn`1. Recall from [43] that for
all i ‰ 1, Bαi ψ1 . . . ψnA P Im ε1. Therefore, by Lemma 4.2.1.2 ψ1 . . . ψnA is R1-invertible. So
finally, any cell in lC is invertible.

Lemma 4.2.1.7. Let C be a cubical ω-category, and A P Cn. Suppose A is Rj-invertible for
some j ď n. Then :

• The n-cell ψiA is Rj-invertible for any i ‰ j ´ 1.

• The n-cell ψj´1A is Rj´1-invertible

Proof. Suppose first j ‰ i, i ` 1. Then we have ψiA ‹j ψiRjA “ ψipA ‹j RjAq “ ψiεjB
´
j A “

εjB
´
j ψiA, as well as ψiRjA ‹j ψiA “ ψipRjA ‹j Aq “ ψiεjB

`
j A “ εjB

`
j ψiA. Hence, ψiA is

Rj-invertible, and RjψiA “ ψiRjA.
Suppose now j “ i. Then ψiA is a composite of Ri-invertible cells. As a consequence it is

Ri-invertible.
Suppose now j “ i` 1. Let B be the following composite:

RjA

j

j´1

Let us show that B is the Rj´1-inverse of ψj´1A:
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ψj´1A ‹j´1 B “

A

RjA
“

A

RjA

j

j´1

“ RjA A “

j

j´1

“

j

j´1
“ εj´1B

´
j´1ψj´1A

A similar computation shows that B ‹j´1 ψj´1A “ εj´1B
`
j´1ψj´1A and thus ψj´1A is Rj´1-

invertible. �

Lemma 4.2.1.8. Let C be a cubical ω-category, and A P Cn be an n-cell with an Rj-invertible
shell for some j ď n. Then:

• If ψiA is Rj-invertible for some i ‰ j ´ 1, then A is Rj-invertible. Moreover, if RjψiA is
thin then so is RjA.

• If ψj´1 A is Rj´1-invertible, then A is Rj-invertible. Moreover, if Rj´1ψj´1A is thin then
so is RjA.

Proof. Suppose ψiA is Rj-invertible, with i ‰ j. Recall that the following composite is equal to
A

εi`1B
´
i A Γ`i B

`
i`1A

ψiA

Γ´i B
´
i`1A εi`1B

`
i A

Using the string notation for thin cells, this composite can be represented as follows:

ψiA

i`1

i

This notation is ambiguous, since it does not specify which factorisations of Bαi ψiA are used.
However, we use the convention that in any diagram of this form, the standard factorisations
B
´
i ψiA “ B

´
i A ‹i B

`
i`1A and B`i ψiA “ B

´
i`1A ‹i B

`
i A are used.

Since A has an Rj-invertible shell, by Lemma 4.2.1.4, every cell in this composite is Rj-
invertible, and A is Rj-invertible. Moreover, if RjψiA is thin, then the explicit formulas from
Lemma 4.2.1.4 prove that RjA is thin.
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Suppose now that ψj´1A is Rj´1-invertible. We denote by B the following composite:

Rj´1ψj´1A

j

j´1

We are going to show that B is the Rj-inverse of A. Notice that if Rj´1ψj´1A is thin, then
B is thin, using Lemma 4.2.1.4. Let us evaluate the composite A ‹j B:

Rj´1ψj´1A

A

“ Rj´1ψj´1A

A

“ Rj´1ψj´1A

A

j

j´1

“ Rj´1ψj´1A

ψj´1A

“ Rj´1ψj´1A

ψj´1A

j

j´1

“

j

j´1

“ εjB
´
j A

The evaluation of B ‹j A is similar. �

4.2.2 Plain invertibility

Definition 4.2.2.1. We say that a cell A P Cn is invertible if ψ1 . . . ψn´1A is R1-invertible.

The rest of this Section is devoted to establishing the link between Ri-invertibility and (plain)
invertibility. This is achieved in Proposition 4.2.2.2. In order to do this, we make use of the
Lemmas 4.2.1.7 and 4.2.1.8, which relate the Ri-invertibility of a cell A with that of ψjA.

Proposition 4.2.2.2. Let C be a cubical ω-category, A P Cn and 1 ď j ď n. A cell A P Cn is
Rj-invertible if and only if A is invertible and has an Rj-invertible shell. Moreover, if A is thin,
then so is its Rj-inverse.

Proof. Suppose first that A is Rj-invertible. Then its shell is Rj-invertible, and for all i ě j,
ψi . . . ψn´1A is Rj-invertible. Repeated applications of Lemma 4.2.3.4 show that ψj . . . ψn´1A is
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Rj-invertible. As a result (still by Lemma 4.2.3.4), ψj´1 . . . ψn´1A is Rj´1-invertible. Inductively
we show that for any i ď j, ψi . . . ψn´1A is Ri-invertible. Finally, we get that ψ1 . . . ψn´1A is
R1-invertible, in other words that A is invertible.

Suppose now that A is invertible and has an Rj-invertible shell. By multiple applications
of Lemma 4.2.1.7, we get that ψk . . . ψn´1A has an Rj-invertible shell, for k ě j, and an Rk-
invertible one for k ď j. Applying Lemma 4.2.1.8 multiple times, we get that for all k ď j,
ψk . . . ψn´1A is Rk-invertible, and finally that for all k ě j, ψk . . . ψn´1A is Rj-invertible. In
particular for k “ n, A is Rj-invertible.

Finally, if A is thin, then ψ1 . . . ψn´1A P Im ε1 and so R1ψ1 . . . ψn´1A “ ψ1 . . . ψn´1A is
thin. Multiple applications of Lemma 4.2.1.8 imply that RjA is thin. �

Finally, the following Lemma will be useful in Proposition 4.2.3.5:

Lemma 4.2.2.3. The composite of two invertible cells is also invertible.

Proof. Let 1 ď i ď n, and let Ei be the set of all cells A P Cn such that ψ1 . . . ψi´1A is R1-
invertible. Note first that Ei contains all Ri-invertible cells by Lemma 4.2.1.7 and that En is
the set of all invertible cells. We are going to show by induction on i that Ei is closed under
composition, for 1 ď i ď n.

For i “ 1, E1 is the set of all R1-invertible cells, which is closed under composition by Lemma
4.2.1.4. Suppose now i ą 1. Take A,B P Ei. We have:

ψi´1pA ‹j Bq “

$

’

&

’

%

ψi´1A ‹j ψi´1B j ‰ i, i´ 1

pψi´1A ‹i εi´1B
`
i Bq ‹i´1 pεi´1B

´
i A ‹i ψi´1Bq j “ i´ 1

pεi´1B
´
i´1A ‹i ψi´1Bq ‹i´1 pψi´1A ‹i εi´1B

`
i´1Bq j “ i

Note that:

• Since ψ1 . . . ψi´1A and ψ1 . . . ψi´1B are R1-invertible, ψi´1A and ψi´1B are in Ei´1.

• The cells εi´1B
α
kA and εi´1B

α
kB are Ri´1-invertible by Lemma 4.2.1.4, and therefore are in

Ei´1.

By induction hypothesis, Ei´1 is closed under composition, and therefore ψi´1pA ‹j Bq is in Ei.
So ψ1 . . . ψi´1pA ‹j Bq is R1-invertible, and so A ‹j B is in Ei, which is therefore close under
composition. �

4.2.3 Ti-invertiblility

The notion of Ti-invertibility is closely related to that of Ri-invertibility, as we show in Lemma
4.2.3.3. Consequently, a number of results from the previous Section have analogues in terms
of Ti-invertibility. In particular, the characterisation of Ti-invertibility in terms of invertibility
given in Proposition 4.2.3.5 is the direct analogue of Proposition 4.2.2.2.

Definition 4.2.3.1. Let C be a cubical ω-category, and i ă n be integers. Let A,B be cells in
Cn such that Bαi A “ B

α
i`1B and Bαi`1A “ B

α
i B, for α “ ˘. If the following two equations are

verified, we say that A is Ti-invertible, and that B is the Ti-inverse of A, and we denote B by
TiA:

B

A
“

i

i`1
(4.2.5)
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A

B
“

i

i`1
(4.2.6)

In particular, we say that A P Cn`1 has a Ti-invertible shell if BBBA is Ti-invertible in lnC.

Remark 4.2.3.2. Note that TiA is uniquely defined. Indeed, if B and C are both Ti-inverses
of A, then evaluating the following square in two different ways shows that B “ C:

B “

B

“

B

A

C

“

C
“ C

i

i`1

The relationship between Ti and Ri-invertibility is given by the following Lemma.

Lemma 4.2.3.3. Let C be a cubical ω-category, and A P Cn be an n-cell, with n ě 2. Then A
is Ti-invertible (with i ă n) if and only if ψiA is Ri-invertible, and we have the equalities:

RiψiA “ ψiTiA (4.2.7)

TiA “ RiψiA

i`1

i
(4.2.8)

In particular, if A is thin, then so is TiA.

Proof. Suppose first that A is Ti-invertible. Then the composite ψiTiA ‹i ψiA is equal to the
following:

TiA

A

i

i`1

Using (4.2.5), we show that this composite is equal to εiB`i ψiA. We prove in the same way
(using (4.2.6)), that ψiA ‹i ψiTiA “ εiB

´
i ψiA, which shows that ψiTiA is the Ri-inverse of ψiA.

Suppose now that ψiA is Ti-invertible. Then we have:

RiψiA

A

“

RiψiA

A

“
RiψiA

ψiA
“

i`1

i

Finally, if A is thin, then so is ψiA, and so is RiψiA by Proposition 4.2.2.2. Equation (4.2.8)
then shows that TiA is then thin. �
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Lemma 4.2.3.4. Let C be a cubical n-category. Let 1 ď i ă n and A P lC. Then A is
Tj-invertible if and only if for all i ‰ j, j ` 1, Aαi is Tji-invertible, and:

Bαi TjA “

$

’

&

’

%

TjiB
α
i A i ‰ j, j ` 1

Bαj`1A i “ j,

Bαj A i “ j ` 1,

(4.2.9)

In particular, if C is a cubical ω-category, and a cell A P Cn has a Ti-invertible shell, then
Bαj A is Tij -invertible for any j ‰ i, i` 1.

Proof. Suppose first that A P lC is Tj-invertible, and let i ‰ j, j ` 1. Then we have:

Bαi TjA “

Bαi εjB
´
j`1A Bαi Γ`j B

`
j A

Bαi RjψjA

Bαi Γ´j B
´
j A Bαj εjB

`
j`1A

pj`1qi

ji

“

εjiB
´

pj`1qi
Bαi A Γ`jiB

`
ji
Bαi A

RjiψjB
α
i A

Γ´jiB
´
ji
Bαi A εjiB

`

pj`1qi
Bαi A

pj`1qi

ji

“ TjiB
α
i A

For i “ j, we have:

B
´
i TiA “ B

´
i εiB

´
i`1A ‹i B

´
i Γ`i B

`
i A B

`
i TiA “ B

´
i Γ´i B

´
i A ‹i B

´
i εiB

`
i`1A

“ B
´
i`1A ‹i εiB

´
i B

`
i A “ εiB

`
i B

´
i A ‹i B

`
i`1A

“ B
´
i`1A “ B

`
i`1A

Finally, for i “ j ` 1:

B
´
i`1TiA “ B

´
i`1εiB

´
i`1A ‹i B

´
i`1RiψiA ‹i B

´
i`1Γ´i B

´
i A

“ εiB
´
i B

´
i`1A ‹i RiεiB

α
i B

α
i`1A ‹i B

´
i A

“ εiB
α
i B

α
i`1A ‹i B

´
i A “ B

´
i A

B
`
i`1TiA “ B

`
i`1Γ`i B

`
i A ‹i B

`
i`1RiψiA ‹i B

`
i`1εiB

`
i`1A

Reciprocally suppose that for all i ‰ j, j ` 1, Aαj is Tji-invertible. Then let Bα
i “ TjiA

α
i if

i ‰ j, j ` 1, Bα
j “ Aαj`1 and Bα

j`1 “ Aαj . Then B is an element of lC, and we verify that it is
the Ti-inverse of A. �

Proposition 4.2.3.5. Let C be a cubical ω-category, and A P Cn, with n ě 2. Then A is
Ti-invertible if and only if A is invertible and has a Ti-invertible shell.

Proof. Suppose A is Ti-invertible. Then ψiA is Ri-invertible, and therefore it is invertible. Recall
from [2] that A is equal to the following composite:

ψiA

i`1

i
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All the cells in this composite are invertible, and invertible cells are closed under composition
(Lemma 4.2.2.3), therefore A is invertible. Moreover, since ψiA is Ri-invertible, it has an
Ri-invertible shell. In particular, for j ‰ i, i ` 1, we have that Bαj A “ Bαj ψiA “ ψijB

α
j A is

Rij -invertible. By Lemma 4.2.3.3, Bαj A is Tij -invertible. So finally A has a Tj-invertible shell.
Suppose now that A is invertible and has a Ti-invertible shell. By application of Lemma

4.2.3.3 in lCn, ψiA is invertible and has an Ri-invertible shell. So ψiA is Ri-invertible, and A
is Ti-invertible by Lemma 4.2.3.3. �

Proposition 4.2.3.6. Let C be a cubical ω-category.

• Let A P Cn. For all 1 ď j ď n` 1, εjA is Tj and Tj´1-invertible and:

TjεjA “ εj`1A Tj´1εjA “ εj´1A (4.2.10)

Moreover, if A is Ti-invertible (for i ‰ j ´ 1), then εjA is Tij -invertible, and:

Tij εjA “ εjTiA (4.2.11)

• Let A P Cn. For all 1 ď j ď n, Γαj A is Tj-invertible, and

TjΓ
α
j A “ Γαj A (4.2.12)

Moreover, if A is Ti-invertible, then Γαj A is Tij -invertible, and:

TijΓ
α
j A “ Γαj TiA (4.2.13)

Finally, if A is Ti-invertible, then Γαi`1A (resp. Γαi A) is Ti-invertible (resp. Ti`1-invertible)
and Γαi TiA (resp. Γαi`1TiA) is Ti`1-invertible (resp. Ti-invertible), and:

Ti`1Γαi TiA “ TiΓ
α
i`1A TiΓ

α
i`1TiA “ Ti`1Γαi A (4.2.14)

• Let A,B P Cn. If A and B are Ti-invertible, then A ‹j B is Ti-invertible, and:

TipA ‹j Bq “

$

’

&

’

%

pTiAq ‹i`1 pTiBq j “ i,

pTiAq ‹i pTiBq j “ i` 1,

pTiAq ‹j pTiBq otherwise.
(4.2.15)

Proof. For the first seven equations, notice that both sides of the equations are thin by Lemma
4.2.3.3. Therefore, by Theorem 4.1.2.5, it is enough to check that their shells are equal.

For the last one, we return to the definition of Ti-invertibility. �
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4.3 Relationship of cubical pω, pq-categories with other
structures

In Section 4.3.1, we collect the results of Section 4.2 to give a series of equivalent characterisation
of the invertibility in a cubical ω-category of all cells of dimension n (Proposition 4.3.1.2). From
that we then deduce the equivalence between globular and cubical pω, pq-categories (Theorem
4.3.1.3).

In Section 4.3.2, we generalise the adjunctions between globular ω-groupoids and chain com-
plexes and the one between globular ω-categories and ADCs from [77]. To do so we introduce
the notion of pω, pq-ADCs, such that pω, ωq-ADCs are just ADCs, and pω, 0q-ADCs coincide with
augmented chain complexes.

4.3.1 Cubical and globular pω, pq-categories

In this Section we start by defining the notion of cubical pω, pq-categories. In Proposition 4.3.1.2,
we give various equivalent characterisations of those using the result from Section 4.2. As a result,
we show Theorem 4.3.1.3 that the equivalence between globular and cubical ω-category induces
equivalences between globular and cubical pω, pq-categories. Finally, in Corollary 4.3.1.4 we give
a simple characterisation of the notions of cubical pω, 0q and pω, 1q-categories.

Definition 4.3.1.1. Let C be a cubical ω-category, and p a natural number. We say that C is
a cubical pω, pq-category if any n-cell is invertible, for n ą p. We denote by pω, pq -CubCat the
full subcategory of ω -CubCat spanned by cubical pω, pq-categories.

Proposition 4.3.1.2. Let C be a cubical ω-category, and fix n ą 0. The following five properties
are equivalent:

1. Any n-cell in Cn is invertible.

2. For all 1 ď i ď n, any n-cell in Cn with an Ri-invertible shell is Ri-invertible.

3. Any n-cell in Cn with an R1-invertible shell is R1-invertible.

4. Any n-cell A P Cn such that for all j ‰ 1, Bαj A P Im ε1 is R1-invertible.

5. Any n-cell in ΦnpCnq is R1-invertible.

Moreover, if n ą 1, then all the previous properties are also equivalent to the following:

6. For all 1 ď i ă n, any n-cell in Cn with a Ti-invertible shell is Ti-invertible

7. Any n-cell in Cn with a T1-invertible shell is T1-invertible.

Proof. (1) ñ (2) holds by Proposition 4.2.2.2, (2) ñ (3) is clear, and (3) ñ (4) holds because
if A P Cn satisfies Bαj A P Im ε1, then its shell is R1-invertible. Also, (4) ñ (5) holds because for
any A P ΦnpCnq, Bαj A P Im ε1 for all j ‰ 1. Let us finally show that (5) ñ (1). From Lemmas
4.2.1.7 and 4.2.1.8, for any i ă n, a cell A P Cn with an R1-invertible shell is R1-invertible if
and only if ψiA. Iterating this result, we get that for all A P Cn ψ1 . . . ψn´1A is R1-invertible if
and only if Φψ1 . . . ψn´1A is. Since Φψi “ Φ for all i ă n, A is invertible if and only if ΦA is
R1-invertible.

Suppose now n ą 1. Then (1) ñ (6) by Proposition 4.2.3.5, and clearly (6) ñ (7). Suppose
now that any n-cell with a T1-invertible shell is T1-invertible, and let us show that (4) holds. Let
A P Cn such that Bαj A P Im ε1 for all j ‰ 1 is R1-invertible. Then A has a T1-invertible shell,
and is therefore T1-invertible by hypothesis. So A is invertible, and since it has an R1-invertible
shell, it is R1-invertible. �
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Theorem 4.3.1.3. The functors λ and γ restrict to an equivalence of categories:

pω, pq -Cat pω, pq -CubCat

λ

γ

–

Proof. Let C be a cubical pω, pq-category. The globular ω-category γC is a globular pω, pq-
category if and only if, for all n ą p, every cell in ΦnpCnq is R1-invertible. By Proposition 4.3.1.2,
this is equivalent to C being a cubical pω, pq-category. Since pω, pq -Cat and pω, pq -CubCat
are replete full sub-categories respectively of ω -Cat and ω -CubCat, this proves the result. �

Corollary 4.3.1.4. Let C be a cubical ω-category. Then:

• C is a cubical ω-groupoid if and only if every n-cell of C is Ri-invertible for all 1 ď i ď n.

• C is a cubical pω, 1q-category if and only if every n-cell is Ti-invertible, for all 1 ď i ă n.

Proof. If every n-cell of Cn is Ri-invertible then in particular every cell of Cn is invertible, and
so C is a cubical ω-groupoid. Reciprocally, if C is a cubical ω-groupoid, we prove by induction
on n that every cell is Ri-invertible. For n “ 1, every 1-cell has an R1-invertible shell, and
so every cell is R1-invertible. Suppose now the property true for all n-cells. Then any cell
A P Cn`1 necessarily has a Ri-invertible shell by Lemma 4.2.1.2, and so the property holds for
all pn` 1q-cells.

The proof of the second point is similar, using the fact that any 2-cell in a cubical ω-category
has a T1-invertible shell. �

4.3.2 Augmented directed complexes and pω, pq-categories

From [2] and [77], we have the following functors, where ADC is the category of augmented
directed complexes.

ADC ω -Cat ω -CubCat

ZG

NG

λ

γ

–K

In this section we define cubical analogues to NG and ZG, and show that they induce an
adjunction between ADC and ω -CubCat. Finally, we show that all these functors can be
restricted to the case of pω, pq-categories, with a suitable notion of pω, pq-ADC.

Definition 4.3.2.1. An augmented chain complex K is a sequence of abelian groups Kn (for
n ě 0) together with applications d : Kn`1 Ñ Kn for every n ě 0 and an application e : K0 Ñ Z
satisfying the equations:

d ˝d “ 0 e ˝d “ 0

Amorphism of augmented chain complexes from pK,d, eq Ñ pL,d, eq is a family of morphisms
fn : Kn Ñ Ln satisfying:

d ˝fn`1 “ fn ˝ d e “ e ˝f0.
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Definition 4.3.2.2. An augmented directed chain complex (or ADC for short) is an augmented
chain complex K equipped with a submonoid K˚

n of Kn for any n ě 0.
A morphism of ADCs K Ñ L is a morphism of augmented chain complexes f satisfying

fpK˚
nq Ď L˚n. We denote by ADC the category of augmented directed chain complexes.

The following is a reformulation of Steiner [77]:

Proposition 4.3.2.3. Let us fix n ě 0, and let K the following ADC:

Kk “

$

’

&

’

%

Zrsk, tks k ă n

Zrxs k “ n

0 k ą n

K˚
k “

$

’

&

’

%

Nrsk, tks k ă n

Nrxs k “ n

0 k ą n

$

’

&

’

%

drxs “ tn´1 ´ sn´1

drsk`1s “ drtk`1s “ tk ´ sk k ě 0

ers0s “ ert0s “ 1

We denote this ADC by n- ADC. Equipped with morphisms š, ť : pn ` 1q- ADC Ñ n- ADC,
1̌ : n- ADC Ñ pn ` 1q- ADC and ‹̌i : n- ADC

Ů

i- ADC n- ADC, those form a co globular
ω-category object in ADC, and therefore they induce a functor NG : ADC Ñ ω -Cat defined
by pNGKqn “ ADCpn- ADC,Kq

The category ADC is equipped with a tensor product defined as follows [77]:

Definition 4.3.2.4. Let K and L be ADCs. We define an object K b L in ADC as follows:

• For all n ě 0, pK b Lqn “
À

i`j“nKi b Lj .

• For all n ě 0, pK b Lq˚n is the sub-monoid of pK b Lqn generated by the elements of the
form xb y, with x P K˚

i and y P L˚n´i.

• For all x P Ki and y P Ln´i, drxb ys “ drxs b y ` p´1qixb drys.

• For all x P K0 and y P L0, erxb ys “ erxs erys.

Proposition 4.3.2.5. Let C be a globular ω-category. Following Steiner [77], we define an ADC
K “ ZGC as follows:

• For all n P N, Kn is the quotient of the group ZrCns by the relation rA ‚k Bs “ rAs ` rBs.

• For all n P N, K˚
n is the image of NrCns in Kn.

• For all A P Cn, drAs “ rspAqs ´ rtpAqs.

• For all A P C0, erAs “ 1.

Proposition 4.3.2.6 ( [77], Theorem 2.11). The functor ZG is left-adjoint to the functor NG.

ADC ω -Cat

NG

ZG

K

Definition 4.3.2.7. Let n -�ADC be the augmented directed complex ZGpn -�Gq. The ap-
plications B̌αi , ε̌i, Γ̌αi and ‹̌i still induce a structure of co-cubical ω-category object in ADC on
the family n -�ADC. Consequently, for any K P ADC the family of sets ADCpn -�ADC,Kq
is equipped with a structure of cubical ω-category. This defines a functor NC : ADC Ñ

ω -CubCat.
Let C be a cubical ω-category. We define an ADC K “ ZCC as follows:
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• For all n P N, Kn is the quotient of ZrCns by the relations rA ‹k Bs “ rAs ` rBs and
rΓαi As “ 0.

• For all n P N, K˚
n is the image of NrCns in Kn.

• For all A P Cn,
drAs “

ÿ

1ďiďn
α“˘

αp´1qirBαi As

• For all A P C0, erAs “ 1.

Proposition 4.3.2.8. There are isomorphisms of functors:

ZC « ZG ˝ γ NC « λ ˝NG

As a result, we have the following diagram of equivalence and adjunctions between ω -Cat,
ω -CubCat and ADC, where both triangles involving ZC and ZG and both triangles involving
NC and NG commute up to isomorphism:

ω -Cat ω -CubCat

ADC

NG

ZG

NC

ZC

γ

λ

K

K

–

Proof. Let K be an ADC. We have for all n ě 0, using the adjunction between NG and ZG:

λ ˝NGpKqn “ ω -Catpn -�G, NGKq

« ADCpZGpn -�Gq,Kq

“ ADCpn -�ADC,Kq

“ pNCKqn

Moreover, because these equalities are functorial, they preserve the cubical ω-category structures
on the families λ ˝NGpKqn and pNCKqn. So finally we have the isomorphism NC « λ ˝NG.

Let now C be a cubical ω-category. For all n ě 0, the group ZGpγpCqqn is the free abelian
group generated by elements rAs, for A P ImΦn, subject to the relations rA ‹i Bs “ rAs ` rBs,
for all A,B P ImΦn. Let us show that for all n ě 0, ZGpγpCqqn and ZCpCqn are isomorphic.

First, the inclusion ImΦn Ñ Cn gives rise to an application ZrImΦns Ñ ZCpCqn. More-
over, this application respects the relations defining ZGpγpCqqn, so it induces a morphism
ι : ZGpγpCqqn Ñ ZCpCqn.

For all A P Cn, we have in ZCpCqn: rψiAs “ rΓ`i B
´
i`1As ` rAs ` rΓ

´
i B
`
i`1As “ rAs. By

iterating this formula, we get that for all A P Cn, rΦnpAqs “ rAs. Hence, ι is surjective. Let
us now show that it is injective. Using the relation rΦnpAqs “ rAs, we get that ZCpCqn is
isomorphic to the free group generated by rImΦns, subject to the relations rΦnpA ‹i Bqs “
rΦnpAqs ` rΦnpBqs for all A,B P Cn and rΦnpΓ

α
i Aqs “ 0, for all A P Cn´1. Let us prove that

these equalities already hold in ZGpγpCqqn.
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Let x be a thin cell in Cn. Then Φnpxq is in the image of ε1, and Φnpxq‹1Φnpxq “ Φnpxq, and
so in ZGpγpCqqn: 2 ¨ rΦnpxqs “ rΦnpxqs, and finally rΦnpxqs “ 0. In particular rΦnpΓ

α
i Aqs “ 0

in ZGpγpCqqn. Let now A and B be i-composable n-cells. Following Proposition 6.8 from [2],
ΦnpA‹iBq is a composite of cells of the form εn´m1 ΦmDA and εn´m1 ΦmDB, where 0 ď m ď n is
an integer, and D is a composite of length m of faces operations. Using the fact that εn´m1 Φm “

Φnε
n´m
1 , we get that ΦnpA ‹i Bq is a composite of cells Φnpxq, where x is thin, with the cells

ΦnpAq and ΦnpBq. So in ZGpγpCqqn, rΦnpA ‹i Bqs “ k1rΦnpAqs ` k2rΦnpBqs for some integers
k1 and k2. Moreover, following Section 6 of [2], we verify that the cells ΦnA and ΦnB appear
exactly once in this composition. As a result rΦnpA ‹i Bqs “ rΦnpAqs ` rΦnpBqs in ZGpγpCqqn.
So ZGpγpCqqn and ZCpCqn are isomorphic.

Let us denote respectively by dG and dC the boundary applications in ZGpγpCqq and
ZCpCqn. For A P ImpΦnq, we have dGrAs “ rB´1 As´rB

`
1 As, and dCrAs “

ř

1ďiďn
α“˘

αp´1qirBαi As.

Since A is in ImΦn, for all i ‰ 1, Bαi A is thin. So rBαi As “ 0, and dCrAs “ rB´1 As ´ rB
`
1 As “

dGrAs. So ι induces an isomorphism of chain complexes between ZGpγpCqq and ZCpCq. Fi-
nally, ZGpγpCqq˚n and ZCpCq˚n are the submonoids respectively generated by ImΦn and Cn

and rAs “ rΦnpAqs in ZCpCqn, so ZGpγpCqq and ZCpCq are isomorphic as ADCs. �

Definition 4.3.2.9. Let K be an ADC. We say that a cell A P K˚
n is invertible if ´A is in K˚

n .
We say that K is an pω, pq-ADC if for any n ą p, Kn “ K˚

n . We denote by pω, pq-ADC the
category of pω, pq-ADCs.

Proposition 4.3.2.10. Let C be a globular ω-category, and A P Cn. If A is invertible, then so
is rAs in ZGpCq, and rA´1s “ ´rAs. In particular if C is an pω, pq-category, then ZGC is an
pω, pq-ADC.

Let K be an ADC, and A P ADCpn- ADC,Kq. If Arpxqs P K˚
n is invertible then so is A in

NGpKq, and the inverse of A is given by:

Brxs “ ´Arxs

#

Brsn´1s “ Artn´1s

Brtn´1s “ Arsn´1s

#

Brsis “ Arsis i ă n´ 1

Brtis “ Artis i ă n´ 1

In particular if K is an pω, pq-ADC then NGK is a globular pω, pq-category.

Proof. Let C be an ω-category, and A P Cn. If A is invertible, then there exists B such that
A ‚n B “ 1spAq. Notice first that r1spAqs ` r1spAqs “ r1spAq ‚n 1spAqs “ r1spAqs, and therefore
r1spAqs “ 0. So finally rAs ` rBs “ rA ‚n Bs “ 0. Since both rAs and rBs are in ZGpCq˚n, rAs is
invertible. If C is an pω, pq-category, then for all n ą p, pZGCq˚n is generated by invertible cells.
Since invertible cells are closed under addition, pZGCq˚n is actually a group. Moreover, it has the
same generators as pZGCqn, so the two groups are actually equal, making ZGC an pω, pq-ADC.

Let now K be an ADC, and A P ADCpn- ADC,Kq such that Arxs is invertible. Define B
as the following morphism from n- ADC to K:

Brxs “ ´Arxs

#

Brsn´1s “ Artn´1s

Brtn´1s “ Arsn´1s

#

Brsis “ Arsis i ă n´ 1

Brtis “ Artis i ă n´ 1

Note that since Arxs is invertible, ´Arxs is in K˚
n , and so B is indeed a morphism of ADC.

Moreover, A and B are pn´ 1q-composable, and A ‚n´1 B is given by:

pA‚n´1Bqrxs “ Arxs´Arxs “ 0

#

pA ‚n´1 Bqrsn´1s “ Arsn´1s

pA ‚n´1 Bqrtn´1s “ Brtn´1s “ Arsn´1s

#

pA ‚n´1 Bqrsis “ Arsis

pA ‚n´1 Bqrsis “ Arsis
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So A ‚n´1 B “ 1spAq, and symmetrically B ‚n´1 A “ 1tpAq. The cell A is thus invertible. In
particular if K is an pω, pq-ADC, then for all n ą p and all A P ADCpn- ADC,Kq, Arxs is
invertible and A is invertible. So every cell in pNGKqn is invertible, and finally NGK is an
pω, pq-category. �

Recall from [77] that n -�ADC
k is the free abelian group over the set n -�Set

k of sequences
s : t1, . . . , nu Ñ tp´q, p0̈q, p`qu such that |s´1p0̈q| “ k. For any such s, and any 1 ď i ď n such
that spiq ‰ p0̈q, we denote by Ris the sequence obtained by replacing spiq by ´spiq in s. The
following Proposition is the cubical analogue of the previous one.

Proposition 4.3.2.11. Let C be a cubical ω-category, and A P Cn. If A is Ri-invertible or
Ti-invertible, then rAs is invertible. In particular if C is a cubical pω, pq-category, then ZCC is
an pω, pq-ADC.

Let K be an ADC, and let A P ADCpn -�ADC,Kq:

• If for any 0 ď k ď n, and any sequence s P n -�Set
k such that spiq “ p0̈q, Arss is invertible

(in K) then A is Ri-invertible, and RiA is given by:

RiArss “

#

´Arss spiq “ p0̈q
ArRiss spiq ‰ p0̈q

• If for any 0 ď k ď n, and any sequence s P n -�Set
k such that spiq “ spi ` 1q “ p0̈q, Arss

is invertible, then A is Ti-invertible, and TiA is given by:

TiArss “

#

´Arss spiq “ spi` 1q “ p0̈q
Ars ˝ τis otherwise.

In particular, if K is an pω, pq-ADC, then NCK is a cubical pω, pq-category.

Proof. The proof is similar to that of the previous Proposition. �

Theorem 4.3.2.12. For all p P NYtωu, the categories pω, pq -Cat, pω, pq -CubCat and pω, pq-
ADC are related by the following diagram of equivalence and adjunctions, where both triangles
involving ZC and ZG and both triangles involving NC and NG commute up to isomorphism:

pω, pq -Cat pω, pq -CubCat

pω, pq-ADC

NG

ZG

NC

ZC

γ

λ

K

K

–

Proof. We have already proven that the equivalence between ω -Cat and ω -CubCat could be
restricted to pω, pq-categories in Theorem 4.3.1.3, and by Propositions 4.3.2.10 and 4.3.2.11, so
can the two adjunctions. Lastly, the commutations up to isomorphisms come from Proposition
4.3.2.8. �
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Remark 4.3.2.13. In the case where p “ 0, one would expect the previous Theorem to recover
the usual adjunction between chain complexes and groupoids. However, the category of pω, 0q-
ADCs is not the category of chain complexes, but that of chain complexes K equipped with a
distinguished sub-monoid of K0.

In order to recover the adjunction between groupoids and chain complexes, one could use a
variant of the notion of ADC that does not specify a distinguished submonoid of K0. Then an
pω, 0q-ADC is indeed just a chain complex. One can check that, mutatis mutandis, the results
of this Section, and in particular Theorem 4.3.2.12, still hold using this alternative definition.
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4.4 Permutations in cubical pω, pq-categories

We now apply our results from the previous Section. First, we show in Section 4.4.1 that the
operations Ti induce a partial action of the symmetric group Sn on the n-cells of a cubical ω-
category. To do this, we define a general notion of σ-invertibility, where σ P Sn. In particular
when σ is a transposition τi we recover the notion of Ti-invertibility of Section 4.2.3. In Section
4.4.2, we define the notions of lax and oplax transfors between cubical categories.

Then we then define what it means for a tranfor to be pseudo using the notion of σ-
invertibility defined previously and finally we show that the cubical ω-categories of pseudo lax
and oplax transfors between two cubical ω-categories are isomorphic

4.4.1 Cubical pω, 1q-categories are symmetric

We start by defining a notion of u-invertibility, where u is a word over T1, . . . , Ti, and characterise
the notion of u-invertibility in terms of plain invertibility, just as we have done previously for
Ri and Ti-invertibility.

We then show how the notion of u-invertibility induces a notion of σ-invertibility, for σ P Sn.
The difficulty lies in the fact that, even if two words u and v over T1, . . . , Ti correspond to
the same permutations, the notions of u and v-invertibility do not necessarily coincide. We
circumvent this difficulty by using a classical result about the symmetric group (see Theorem
4.4.1.12), which makes use of the notion of representative of minimal length of permutation.

Finally, in Proposition 4.4.1.14 we extend the results concerning u-invertibility to σ-invertibility,
with σ P Sn.

Definition 4.4.1.1. Let n P N. We write Tn the free monoid on n´ 1 elements. We denote its
generators by T1, . . . , Tn´1, and by l : Tn Ñ N the morphism of monoids that sends every Ti on
1. For u P Tn, we call lpuq the length of u.

Recall that Sn is a quotient of Tn using the relations:

TiTi “ 1 (4.4.1)

TiTi`1Ti “ Ti`1TiTi`1 (4.4.2)

TjTi “ TjTi |i´ j| ě 2 (4.4.3)

We denote by ū the image of an element u P Tn in Sn, and τi “ T̄i. Using this projection,
one defines a right-action of Tn on t1, . . . , nu by setting k ¨ u :“ k ¨ ū.

Let C be a cubical ω-category. For every u P Tn, we define a notion of u-invertible cell and
a partial application u ¨_ : Cn Ñ Cn defined on u-invertible cells as follows:

• Any n-cell of Cn is 1-invertible, and 1 ¨A “ A.

• For any u P Tn and 1 ď i ă n, a cell A P Cn is said to be pTi ¨ uq-invertible if A is
u-invertible and u ¨A is Ti-invertible. Moreover, we set: pTi ¨ uq ¨A :“ Tipu ¨Aq.

In particular, we say that A has a u-invertible shell if BBBA is u-invertible in lnC.

Proposition 4.4.1.2. Let C be a cubical ω-category, and A be an n-cell in C, with n ě 2.
Let u P Tn. Suppose u ‰ 1. Then A is u-invertible if and only if A is invertible and has a
u-invertible shell.
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Proof. We reason by induction on the length of u. If u is of length 1, there exists 1 ď i ă n such
that u “ Ti, and the result to prove becomes: A is Ti-invertible if and only if A is invertible
and has a Ti-invertible shell, which is exactly Proposition 4.2.3.5.

Otherwise, write u “ Tiv, with v ‰ 1. Suppose A is u-invertible. Then by definition A is v-
invertible, and v ¨A is Ti-invertible. By induction A is therefore invertible, and has a v-invertible
shell. Moreover, v ¨A is Ti-invertible, and hence has a Ti-invertible shell by Proposition 4.2.3.5.
Since BBBpv ¨Aq “ v ¨ BBBA, BBBA is v-invertible, and v ¨A is Ti-invertible. Therefore, BBBA is u-invertible.

Reciprocally, suppose A is invertible, and has a pTi ¨ vq-invertible shell. Then A has a v-
invertible shell, and v¨BBBA is Ti-invertible. Since A is also invertible, by induction A is v-invertible,
and since BBBpv ¨Aq “ v ¨ BBBA, the cell v ¨A has a Ti-invertible shell. Moreover, it is invertible, and
so by Proposition 4.2.3.5, v ¨A is Ti-invertible, which means that A is u-invertible. �

Definition 4.4.1.3. For 1 ď i ď n, we define applications Bi : Tn Ñ Tn´1 as follows:

Bi1 “ 1 BiTj “

#

1 i “ j, j ` 1

Tji i ‰ j, j ` 1
Bipu ¨ vq “ Biu ¨ Bi¨uv.

Note in particular that the applications Bi are not morphisms of monoids.

Lemma 4.4.1.4. Let u P Tn. For all 1 ď i ď n, and 1 ď k ď n, we have:

k ¨ Biu “ pk
i ¨ uqi¨u

Proof. Note first the formula holds when u is 1 or a Tj . Finally, suppose the property holds for
u and v. Then we have:

k ¨ Bipu ¨ vq “ k ¨ Biu ¨ Bi¨uv “ pk
i ¨ uqi¨u ¨ Bi¨uv

“ ppki ¨ uqi¨ui¨u ¨ vqi¨u¨v “ pk
i ¨ u ¨ vqi¨u¨v

�

Lemma 4.4.1.5. Let C be a cubical n-category, A P plCqn`1 and u P Tn`1. The cell A is
u-invertible if and only if for all j ď n` 1, Aαj¨u is Bju-invertible, and:

Bαj pu ¨Aq “ Bju ¨ B
α
j¨uA

In particular, if C is a cubical ω-category, then A P Cn`1 has a u-invertible shell if and only
if for all j ď n` 1, Bαj¨uA is Bju-invertible.

Proof. We reason by induction on the length of u. If u is of length 0, then u “ 1 and for all j,
Bju “ 1. Therefore, both conditions are empty, and p1 ¨Aqαj “ Aαj .

Otherwise, write u “ Ti ¨ v. Suppose that A is u-invertible. Then A is v-invertible, and v ¨A
is Ti-invertible. Fix j and α. Then Bju “ Tij ¨ Bj¨Tiv. Let us show that Aαj¨u is Bju-invertible.
We distinguish two cases:

• If j “ i (resp. j “ i` 1), then Bju “ Bi`1v (resp. Bjv), and j ¨ u “ pi` 1q ¨ v (resp. i ¨ v).
By induction, Aα

pi`1q¨v (resp. Aαi¨v) is Bi`1v-invertible (resp. Biv-invertible).

• Otherwise, then Bju “ Tij ¨ Bjv and j ¨ u “ j ¨ v. By induction hypothesis, Aαj¨v is Bjv-
invertible. Let us show that Bjv ¨Aαj¨v is Tij -invertible. First since A is Ti ¨v-invertible, v ¨A
is Ti-invertible, and so by Lemma 4.2.3.4, Bαj pv ¨Aq is Tij -invertible. Finally, by induction,
Bαj pv ¨Aq “ Bjv ¨A

α
j¨v.
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Finally, using the induction property on v, we get:

pu ¨Aqαj “ pTi ¨ v ¨Aq
α
j “

$

’

&

’

%

pv ¨Aqαi`1 “ Bi`1v ¨A
α
pi`1q¨v “ Biu ¨A

α
i¨u j “ i

pv ¨Aqαi “ Biv ¨A
α
i¨v “ Bi`1u ¨A

α
pi`1q¨u j “ i` 1

Tij pBjv ¨Aq
α
j “ TijBjv ¨A

α
j¨v “ Bju ¨A

α
j¨u j ‰ i, i` 1

Suppose now that for all j, Aαj¨u is Bju-invertible. Let us show that A is u-invertible. First,
let us prove that A is v-invertible. Indeed, let j ď n, and let us show that Aj¨v is Bjv-invertible.

• If j ‰ i, i` 1, we have that Aαj¨u is Bju-invertible. Since Bju “ TijBjv, and j ¨u “ j ¨ v, this
means that Aαj¨v is Bjv-invertible and Bjv ¨Aαj¨v is Tij -invertible.

• If j “ i (resp. j “ i` 1) then Bi`1u “ Biv (resp. Biu “ Bi`1v) and pi` 1q ¨ u “ i ¨ v (resp.
i ¨ u “ pi` 1q ¨ v). So Aαj¨v is Bjv-invertible.

Finally, by induction, A is v-invertible. Let us show that v ¨ A is Ti-invertible. Indeed, for
j ‰ i, i`1, pv ¨Aqαj “ Bjv ¨A

α
j¨v is Tij -invertible, and so v 9A is Ti-invertible by Lemma 4.2.3.4. �

Lemma 4.4.1.6. Let C be a cubical ω-category.

• If A is TiTi-invertible, then:
TiTi ¨A “ A (4.4.4)

• A cell A P Cn is TiTi`1Ti-invertible if and only if it is Ti`1TiTi`1-invertible, and

TiTi`1Ti ¨A “ Ti`1TiTi`1 ¨A (4.4.5)

• Let i, j ă n such that |i ´ j| ě 2. A cell A P Cn is TiTj-invertible if and only if it is
TjTi-invertible, and

TiTj ¨A “ TjTi ¨A (4.4.6)

Proof. For the first one, notice that the axioms (4.2.5) and (4.2.6) are each other’s symmetric,
meaning that if B is the Ti-inverse of A, then A is the Ti-inverse of A. This means in particular
that TiTi ¨A “ A.

For the second one, a cell A P Cn is TiTi`1Ti-invertible if and only if it is invertible and BBBA
is TiTi`1Ti-invertible, that is for all j ď n, Bαj¨TiTi`1Ti

A is BjpTiTi`1Tiq-invertible. Notice that:

BjpTiTi`1Tiq “

#

TijTij`1Tij j ‰ i, i` 1, i` 2

Ti j “ i, i` 1, i` 2
BjpTi`1TiTi`1q “

#

Tij`1TijTij`1 j ‰ i, i` 1, i` 2

Ti j “ i, i` 1, i` 2

(4.4.7)
Therefore, by induction on n, a cell is TiTi`1Ti-invertible if and only if it is Ti`1TiTi`1-invertible.
Let A be such a cell. Let us show that TiTi`1Ti ¨A is the Ti`1-inverse of TiTi`1 ¨A. Indeed, we
have:

Γ`i`1pTi ¨ B
´
i Aq TiTi`1 ¨A

TiTi`1Ti ¨A Γ´i`1pTi ¨ B
`
i`1Aq

i`1

i`2
“ TiTi`1 ¨

Γ`i B
´
i A A

Ti ¨A Γ´i B
`
i`1A

i

i`1

“ TiTi`1 ¨ pΓ
´
i B
`
i`1A ‹i Γ`i B

`
i Aq

“ pTiTi`1 ¨ Γ
´
i B
`
i`1Aq ‹i`1 pTiTi`1 ¨ Γ

`
i B
`
i Aq

“ Γ´i`1B
´
i`2pTiTi`1 ¨Aq ‹i`1 Γ`i`1B

`
i`1pTiTi`1 ¨Aq

The other axioms are verified in the same fashion. �
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Remark 4.4.1.7. The first point of the previous Lemma is the main reason why the notion of
u-invertibility relies on the monoid Tn and not Sn. Indeed for C a cubical ω-category, any cell
is 1-invertible while the only cells TiTi-invertible are the Ti-invertible ones.

Definition 4.4.1.8. A symmetric cubical ω-category C is a cubical ω-category C equipped with
total applications Ti : Cn Ñ Cn, for 1 ď i ď n ´ 1, satisfying the equalities (4.2.9) to (4.2.14)
and (4.4.4) to (4.4.6).

Remark 4.4.1.9. Note that a symmetric cubical ω-category is close but not the same as the
notion of symmetric cubical category defined by Grandis in [34]. A symmetric cubical category
in the sense of Grandis would be a symmetric cubical ω-category (in the sense of 4.4.1.8, but
without connections) object in the category Cat.

Proposition 4.4.1.10. Let C be a cubical pω, 1q-category. The applications A ÞÑ TiA induce a
structure of symmetric cubical category on C.

Proof. Any cell is Ti-invertible in a cubical pω, 1q-category by Corollary 4.3.1.4 and so the appli-
cations are indeed total. Moreover and the equations they verify are a consequence of Proposition
4.2.3.6 and Lemma 4.4.1.6. �

We now make explicit the (partial) action of the symmetric groups on the n-cells of a cubical
category. To do so, we rely on Theorem 4.4.1.12, a classical result about the symmetric group.

Definition 4.4.1.11. For u P Sn, we define the length of u as the integer lpuq “ mintlpvq|v P
Tn and v̄ “ uu. A representative of minimal length of u in Tn is an element v P Tn such that
v̄ “ u and lpvq “ lpuq.

Theorem 4.4.1.12. Let u, v P Tn. If u and v are two representative of minimal length of a
same permutation σ, then u ” v, where ” is the congruence on Tn generated by (4.4.2) and
(4.4.3).

Definition 4.4.1.13. Let C be a cubical ω-category. For every A P Cn and σ P Sn, we say
that A is σ-invertible if there exists a representative of minimal length u of σ such that A is
u-invertible, and we define σ ¨ A :“ u ¨ A. By Lemma 4.4.1.6 and Theorem 4.4.1.12, this is
independent from the choice of a minimal representative of σ.

Proposition 4.4.1.14. The composites of the applications Bi : Tn Ñ Tn´1 with the projection
Tn´1 � Sn´1 are compatible with the relations (4.4.1) to (4.4.3). Hence, they induce applications
Bi : Sn Ñ Sn´1, satisfying:

Bi1 “ 1 Biτj “

#

1 i “ j, j ` 1

τji i ‰ j, j ` 1
Bipσ ¨ τq “ Biσ ¨ Bi¨στ.

Specifically, for 1 ď i ď n and σ P Sn, Biσ is the (necessarily unique) permutation satisfying
for all 1 ď j ď n´ 1:

j ¨ Biσ “ pj
i ¨ σqi¨σ (4.4.8)

Let C be a cubical n-category, and σ P Sn. A cell A P plCqn`1 is σ-invertible if and only if
for all j ď n, Aαj¨σ is Bjσ-invertible, and:

Bαj pσ ¨Aq “ Bjσ ¨ B
α
j¨σA (4.4.9)

Finally, let σ P Sn. If σ ‰ 1, then a cell A P Cn is σ-invertible if and only if A is invertible
and BBBA is σ-invertible.
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Proof. For the first point we simply verify the equalities as needed (note in particular that the
compatibility of Bi with Equation (4.4.2) is a consequence of Equation (4.4.7)).

The rest of the results is a consequence of Proposition 4.4.1.2, together with Lemma 4.4.1.4
and 4.4.1.5. �

Remark 4.4.1.15. The operations Bi applied to a permutation σ correspond to deleting the
i-th string in the string diagram representation of σ. For example, by definition we have:

B1pτ1τ2q “ pB1τ1q¨pB2τ2q “ 1 B2pτ1τ2q “ pB2τ1q¨pB1τ2q “ τ1 B3pτ1τ2q “ pB3τ1q¨pB3τ2q “ τ1

Which can be diagrammatically represented as:

B1p q “ B2p q “ B3p q “

More generally, the relation Bipσ ¨ τq “ Biσ ¨ Bi¨στ corresponds to the diagram:

Bi
σ

τ
“ Bi

i

σ

i¨σ

τ

i¨σ¨τ

“
Biσ

Bi¨στ

Finally, Equation (4.4.9) corresponds to the diagram:

i

σ

i¨σ

“
Biσ

i¨σ

Lemma 4.4.1.16. Let C be a cubical ω-category, and A P Cn. If εiA is σ-invertible, then A is
Bi¨σ´σ-invertible and:

σ ¨ εiA “ εi¨σ´pBi¨σ´σ ¨Aq

If Γαi A is σ-invertible then A is also Bi¨σ´σ-invertible and if pi` 1q ¨ σ´ “ i ¨ σ´ ` 1 we have:

σ ¨ Γαi A “ Γαi¨σ´pBi¨σ´σ ¨Aq

Proof. If εiA is σ-invertible, then A “ B´i εiA is Bi¨σ´σ by Proposition 4.4.1.14.
To show the equality, we reason by induction on n. If n “ 0 then σ “ 1 and the result is

verified. Otherwise, suppose n ą 0. By Lemma 4.2.3.3, both sides of the equation are thin, and
so they are equal if and only if their shells are equal. Note first that for j “ i ¨ σ´:

Bαj pσ ¨ εiAq “ Bjσ ¨ B
α
i εiA “ Bjσ ¨A “ B

α
j εjpBjσ ¨Aq

Now for j ‰ i ¨ σ´:

Bαj pσ ¨ εiAq “ Bjσ ¨ B
α
j¨σεiA “ Bjσ ¨ εij¨σB

α
pj¨σqi

A

Note that Bjpσ ¨ σ´q “ Bjσ ¨ Bj¨σσ´ “ 1, so pBjσq´ “ Bj¨σσ´. So by proposition 4.4.1.14:

ij¨σ ¨ pBjσq
´ “ pijj¨σ ¨ σ

´qj¨σ¨σ´ “ pi ¨ σ
´qj

So by induction hypothesis, we have Bαj pσ ¨ εiAq “ εpi¨σ´qj pBpi¨σ´qjBjσ ¨ B
α
pj¨σqi

Aq. On the other

hand, note that ji¨σ´ ¨ Bi¨σ´σ “ pji¨σ
´

i¨σ´ ¨ σqi¨σ´¨σ “ pj ¨ σqi. Applying this we get:

Bαj εi¨σ´pBi¨σ´σ ¨Aq “ εpi¨σ´qjB
α
ji¨σ´

pBi¨σ´σ ¨Aq “ εpi¨σ´qj pBji¨σ´Bi¨σ´σ ¨ B
α
pj¨σqi

Aq.
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Finally, it remains to show that Bji¨σ´Bi¨σ´σ “ Bpi¨σ´qjBjσ. More generally, let us show that for
any i ‰ j, BijBjσ “ BjiBiσ. Indeed, for any k:

BijBjσ ¨ k “ pppk
jqij ¨ σqij qj “ pk

j,i ¨ σqi,j (4.4.10)

And this formula is symmetric in i and j by Lemma 4.1.1.3.
We now move on to the second equality. Once again if Γαi A is σ-invertible, then A “ Bαi Γαi A

is Bi¨σ´σ-invertible by Proposition 4.4.1.14. We show the equality by induction on n. If n “ 1,
then the only permutation σ satisfying pi` 1q ¨ σ´ “ i ¨ σ´ ` 1 is the identity, and the result is
verified. Suppose now n ě 1, and let σ P Sn such that pi ` 1q ¨ σ´ “ i ¨ σ´ ` 1. As previously,
Lemma 4.2.3.3 show that both sides of the equation are thin, and so they are equal if and only
if their shells are equal. Let us calculate their faces. Let 1 ď j ď n and β “ ˘. We start by
treating the case where j “ i ¨ σ´. For β “ α we have:

Bαj pσ ¨ Γ
α
i Aq “ Bjσ ¨ B

α
j¨σΓαi A “ Bjσ ¨ B

α
i Γαi A

“ Bjσ ¨A “ B
α
j Γαj pBjσ ¨Aq

Now for β “ ´α. Note first that j ¨ Bjσ “ pjj ¨ σqi “ ppj ` 1q ¨ σqi “ pi ` 1qi “ i (we here use
the hypothesis on σ). Therefore, i ¨ pBjσq´ “ j, and:

B
´α
j pσ ¨ Γαi Aq “ Bjσ ¨ B

´α
i Γαi A

“ Bjσ ¨ εiB
´α
i A

“ εjpBjBjσ ¨ B
´α
i Aq

B
´α
j Γαj pBjσ ¨Aq “ εjB

´α
j pBjσ ¨Aq

“ εjpBjBjσ ¨ B
´α
i Aq

The case where j “ i ¨ σ´ ` 1 is similar. We now study the general case where β “ ˘ and
j ‰ i ¨ σ´, i ¨ σ´ ` 1:

B
β
j pσ ¨ Γ

α
i Aq “ Bjσ ¨ B

β
j¨σΓαi A

“ Bjσ ¨ Γ
α
ij¨σB

β
pj¨σqi

A

B
β
j Γαi¨σ´pBi¨σ´σ ¨Aq “ Γαpi¨σ´qjB

β
ji¨σ´

pBi¨σ´σ ¨Aq

“ Γαpi¨σ´qj pBji¨σ´Bi¨σ´σ ¨ B
β
ji¨σ´ ¨Bi¨σ´σ

Aq

To conclude using the induction hypothesis, we need to show that ji¨σ´ ¨ Bi¨σ´σ “ pj ¨ σqi, and
that ij¨σ ¨ pBjσq´ “ pi ¨ σ´qj . And indeed we have:

ji¨σ´ ¨ Bi¨σ´σ “ pj
i¨σ´

i¨σ´ ¨ σqi¨σ´¨σ “ pj ¨ σqi

pi ¨ σ´qj ¨ Bjσ “ ppi ¨ σ
´q

j
j ¨ σqj¨σ “ ij¨σ

�

Remark 4.4.1.17. Diagrammatically, the equations from Lemma 4.4.1.16 correspond to the
following diagrams:

i¨σ´

σ

i
“

i¨σ´

Bi¨σ´σ

i¨σ´

σ

i

“
i¨σ´

Bi¨σ´σ

i
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Remark 4.4.1.18. In this Section, we restricted ourselves to the Ti-inverses. However, all
results previous can be adapted to also consider the Ri-inverses. The action of the symmetric
groups are then extended into an action of the Hyperoctahedral groups BCn, which are the full
groups of permutations of the hypercubes. A presentation of the group BCn is given by the
generators Ri (for 1 ď i ď n) and Ti (for 1 ď i ă n), subject to the relations:

TiTi “ 1 TiTi`1Ti “ Ti`1TiTi`1 TjTi “ TjTi |i´ j| ě 2

RiRi “ 1 RiRj “ RjRi i ‰ j

TiRi “ Ri`1Ti TiRi`1 “ RiTi TiRj “ RjTi j ‰ i, i` 1

In particular the groups BCn are Coxeter groups and they hence verify an analogue to
Theorem 4.4.1.12, often called Matsumoto’s Theorem [64].

4.4.2 Transfors between cubical ω-categories

Let C and D be two categories, and F,G : C Ñ D be functors. Recall that a natural transforma-
tion η from F to G is given by an application η : C0 Ñ D1 such that, for all x P C0, spηxq “ F pxq,
tpηxq “ Gpxq, and for all f : xÑ y P C1 the following diagram commutes:

F pxq F pyq

Gpxq Gpyq

F pfq

Gpfq

ηx ηy (4.4.11)

Natural transformations compose, and so for any categories C andD there is a categoryCatpC,Dq.
If C and D are two globular 2-categories, and F,G : C Ñ D are two functors, then there

are multiple ways to extend the notion of natural transformation. A lax natural transformation
from F to G consists in applications η : C0 Ñ D1 and η : C1 Ñ D2, satisfying some compatibility
conditions. In particular, for f : xÑ y P C1, the 2-cell ηf P D2 is required to have the following
source and target:

F pxq F pyq

Gpxq Gpyq

F pfq

Gpfq

ηx ηyηf

An oplax natural transformation requires the 2-cell ηf to be in the opposite direction. This
leads to two different notions of the 2-category of functors between C and D, where objects
are functors from C to D, 1-cells are lax (resp. oplax) natural transformations, and 2-cells are
modifications. Modifications consist of an application C0 Ñ D2 satisfying some compatibility
conditions. Notice that, if η is a lax natural transformation and ηf is invertible for all f P C1,
then replacing ηf by its inverse yields an oplax natural transformation (and reciprocally when
reversing the role of lax and oplax natural transformation). Such natural transformations are
called pseudo.

More generally, if C and D are ω-categories, then for any k ě 0 there are notions of lax and
oplax k-transfors between them (following terminology by Crans [25]), consisting of applications
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Cn Ñ Dn`k, for all n ě 0. In particular, 0-transfors correspond to functors, and lax (resp.
oplax) 1-transfors to lax (resp. oplax) natural transformations.

Similar constructions can be made in cubical ω-categories, and are recalled in Definition
4.4.2.1. This definition uses the notion of Crans-Grey tensor product between cubical ω-
categories. One benefit of working in cubical categories is that this tensor product has a very
natural expression in this setting, and so we are able to make explicit the conditions that trans-
fors between cubical ω-categories have to satisfy. Next we define the two notion of pseudo
transfor: one for lax and one for oplax transfor, using the notion of σ-invertibility defined in
Section 4.4.1. In Proposition 4.4.2.4, we give an alternative characterisation of pseudo trans-
fors. Lastly we prove that the notions of pseudo lax and oplax transfors coincide in Proposition
4.4.2.6.

Definition 4.4.2.1. We exhibited in Section 4.1 a structure of cubical ω-category object in
ω -Catop on the family n -�G. Applying the functor λ, we obtain a structure of cubical ω-
category object in ω -CubCatop of the family n -�C :“ λpn -�Gq.

Consequently, ifC andD are cubical ω-categories, then both the families (of sets) LaxpC,Dqn “
ω -CubCatpn -�C bC,Dq and OpLaxpC,Dqn “ ω -CubCatpC b n -�C ,Dq come equipped
with cubical ω-category structures (where we denote by b the monoidal product on ω -CubCat
as defined in [2]).

We call an element F P LaxpC,Dqn (resp. F P OpLaxpC,Dqn) a lax n-transfor (resp. an
oplax n-transfor) from C to D. Unfolding the definition of the monoidal product on ω -CubCat
as defined in [2], Section 10, a lax p-transfor (resp. oplax p-transfor) is a family of applications
Fn : Cn Ñ Dn`p satisfying the equations (4.4.12) to (4.4.15) (resp. (4.4.16) to (4.4.19)).

Bαp`iFnpAq “ Fn´1pB
α
i Aq (4.4.12)

FnpεiAq “ εp`iFn´1pAq (4.4.13)

FnpΓ
α
i Aq “ Γαp`iFn´1pAq (4.4.14)

FnpA ‹i Bq “ FnpAq ‹p`i FnpBq (4.4.15)

Bαi FnpAq “ Fn´1pB
α
i Aq (4.4.16)

FnpεiAq “ εiFn´1pAq (4.4.17)

FnpΓ
α
i Aq “ Γαi Fn´1pAq (4.4.18)

FnpA ‹i Bq “ FnpAq ‹i FnpBq (4.4.19)

Moreover, the cubical ω-category structure on LaxpC,Dq (resp. on OpLaxpC,Dq) is given
by the equations (4.4.20) to (4.4.23) (resp. (4.4.24) to (4.4.27)).

pBαi F qnpAq “ B
α
i pFnpAqq (4.4.20)

pεiF qnpAq “ εipFnpAqq (4.4.21)

pΓαi F qnpAq “ Γαi pFnpAqq (4.4.22)

pF ‹i GqnpAq “ FnpAq ‹i GnpAq (4.4.23)

pBαi F qnpAq “ B
α
n`ipFnpAqq (4.4.24)

pεiF qnpAq “ εn`ipFnpAqq (4.4.25)

pΓαi F qnpAq “ Γαn`ipFnpAqq (4.4.26)

pF ‹i GqnpAq “ FnpAq ‹n`i GnpAq (4.4.27)

The following Proposition is a consequence of [2], Section 10.

Proposition 4.4.2.2. Let C be a cubical ω-category. The functors p_ b Cq and pC b _q
are respectively left-adjoint to the functors LaxpC,_q and OpLaxpC,_q. This implies that
ω -CubCat is a biclosed monoidal category.
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Definition 4.4.2.3. Let n,m ě 0 be integers. We denote by ρn,m P Sn`m the following
permutations:

i ¨ ρn,m :“

#

i` n i ď n

i´ n i ą n

Let C and D be cubical ω-categories. We say that a lax p-transfor F : CÑ D is pseudo if
for all A P Cn, F pAq is ρn,p-invertible. We say that an oplax p-transfor F : CÑ D is pseudo if
for all A P Cn, F pAq is ρp,n-invertible.

Proposition 4.4.2.4. Let C and D be cubical ω-categories, and F : C Ñ D a lax p-transfor
(resp. an oplax p-transfor). Then F is pseudo if and only if:

• Either p “ 0,

• Or p ą 0, for all n ą 0 and all A P Cn, F pAq is invertible, and for all 1 ď i ď p, Bαi F is
pseudo.

Moreover, if F is pseudo, then so are Γαi F (1 ď i ď p), εiF (1 ď i ď p ` 1) and, if G is a
pseudo lax p-transfor (resp. pseudo oplax p-transfor) then F ‹iG (if defined) is also pseudo, for
1 ď i ď p.

Proof. Let us prove the result for pseudo lax p-transfors, the case of pseudo oplax p-transfors
being similar. If p “ 0, then for all n, ρn,p “ 1. Since any cell in D is 1-invertible, any lax
0-transfor is pseudo.

Suppose now p ą 0. Let F P LaxpC,Dqp, and suppose F is pseudo. Let n ą 0 and A P Cn.
Then ρn,p ‰ 1, and by Proposition 4.4.1.14, FnpAq is invertible. Moreover, for 1 ď i ď p,
pBαi F qnpAq “ B

α
pp`iq¨ρn,p

pFnpAqq is Bp`iρn,p-invertible. Since Bp`iρn,p “ ρn,p´1, we just proved
that for all A P Cn, pBαi F qnpAq is ρn,p´1-invertible. So Bαi F is pseudo.

Reciprocally, suppose that for all n ą 0, FnpAq is invertible, and for all 1 ď i ď p, Bαi F
is pseudo. We reason by induction on n to show that for all A P Cn, FnpAq is ρn,p-invertible.
If n “ 0, ρn,p “ 1 and FnpAq is ρn,p-invertible. If n ě 1, then F pAq is invertible and for
all 1 ď i ď p, Bα

pi`nq¨ρn,p
pFnpAqq “ pBαi F qpAq is ρn,p´1-invertible. And for all 1 ď i ď n,

Bαi¨ρn,ppFnpAqq “ Fn´1pB
α
i Aq is ρn´1,p-invertible by induction. In conclusion, FnpAq is invertible,

and for all 1 ď i ď p ` n, Bαi pFnpAqq is Biρn,p-invertible. By Proposition 4.4.1.14, FnpAq is
ρn,p-invertible.

We reason by induction on p to show that, for any pseudo lax p-transfor. F , εiF and Γαi F are
pseudo. Let A P Cn. By equations (4.4.13) and (4.4.14), pεiF qpAq and pΓαi F qpAq are thin cells,
and so in particular are invertible. Moreover, the cubical ω-category structure on LaxpC,Dq
show that for all j, we have:

Bαi εjF “

#

εjiB
α
ij
F i ‰ j

F i “ j
Bαi Γβj F “

$

’

&

’

%

ΓβjiB
α
ij
F i ‰ j, j ` 1

F i “ j, j ` 1 and α “ β

εjB
α
j F i “ j, j ` 1 and α “ ´β

Using what we proved previously, BαkF is pseudo for all k, so by induction, Bαj εiF and Bβj Γαi F are
always pseudo. Applying the criterion that we proved previously for a p-transfor to be pseudo,
εiF and Γαi F are pseudo.

Finally, we reason by induction on p to show that for any two pseudo lax p-transfors F and
G, F ‹i G is pseudo (if it is defined). Since any lax 0-transfor is pseudo, it is true if p “ 0.
Take now p ą 0, and A P Cn, for some n ą 0. Then F pAq and GpAq are invertible, and so
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is pF ‹i GqnpAq “ FnpAq ‹i GnpAq by Lemma 4.2.2.3. Moreover, using the cubical ω-category
structure on LaxpC,Dq, we have:

Bαi pF ‹j Gq “

$

’

&

’

%

Bαi F ‹ji B
α
i G i ‰ j

B
´
i F i “ j and α “ ´
B
`
i G i “ j and α “ `

So by the induction hypothesis, Bαj pF ‹i Gq is pseudo for all j. Therefore, F ‹i G is pseudo. �

Definition 4.4.2.5. Let C and D be cubical ω-categories. We denote by PsLaxpC,Dq (resp.
PsOpLaxpC,Dq) the pseudo lax transfors (resp. the pseudo oplax transfors) from C to D. By
Proposition 4.4.2.4, PsLaxpC,Dq and PsOpLaxpC,Dq are cubical ω-categories.

Proposition 4.4.2.6. For all cubical ω-categories C and D, the cubical ω-categories PsLaxpC,Dq
and PsOpLaxpC,Dq are isomorphic.

Proof. Let F P PsLaxpC,Dq, and define applications Gn : Cn Ñ Dn`p as: GnpAq “ ρn,p ¨
FnpAq. Let us show that G is an oplax p-transfor (using formulas from Lemma 4.4.1.16):

Bαi GnpAq “ B
α
i pρn,p ¨ FnpAqq “ Biρn,p ¨ B

α
i¨ρn,pFnpAq

“ ρn´1,p ¨ Bi`pFnpAq “ ρn´1,p ¨ Fn´1pB
α
i pAqq “ Gn´1pB

α
i pAqq

GnpεiAq “ ρn,p ¨ FnpεiAq “ ρn,p ¨ εp`iFn´1pAq

“ εpp`iq¨ρp,npBpp`iq¨ρp,nρn,p ¨ Fn´1pAqq

“ εipBiρn,p ¨ Fn´1pAqq “ εipρn´1,p ¨ Fn´1pAqq “ εiGn´1pAq

GnpΓ
α
i Aq “ ρn,p ¨ FnpΓ

α
i Aq “ ρn,p ¨ Γ

α
p`iFn´1pAq

“ Γαpp`iq¨ρp,npBpp`iq¨ρp,nρn,p ¨ Fn´1pAqq

“ Γαi pBiρn,p ¨ Fn´1pAqq “ Γαi pρn´1,p ¨ Fn´1pAqq “ Γαi Gn´1pAq

GnpA ‹i Bq “ ρn,p ¨ FnpA ‹i Bq “ ρn,p ¨ pFnpAq ‹p`i FnpBqq

“ pρn,p ¨ FnpAqq ‹pp`iq¨ρp,n pρn,p ¨ FnpBqq “ GnpAq ‹i GnpBq

We denote by PpF q this oplax p-transfor. Moreover, for A P Cn ρ ¨ F pAq “ ρn,p ¨ F pAq
is ρp,n-invertible (with ρp,n-inverse A). So PpF q is actually pseudo. Let us show that P is
functorial. Let F P PsLaxpC,Dqp:

pBαi pPpF qqqnpAq “ B
α
n`ippPpF qqnpAqq “ B

α
n`ipρn,p ¨ F pAqq

“ Bn`iρn,p ¨ B
α
pn`iq¨ρn,p

F pAq

“ ρn,p´1 ¨ B
α
i F pAq “ PpBαi F qpAq

pPpΓαi F qqnpAq “ ρn,p ¨ ppΓ
α
i F qnpAqq “ ρn,p ¨ Γ

α
i pFnpAqq

“ Γαi¨ρp,npBi¨ρp,nρn,p ¨ FnpAqq

“ Γαn`ipBp`iρn,p ¨ FnpAqq “ Γαn`ipρn,p´1 ¨ FnpAqq “ pΓ
α
i pPpF qqqnpAq
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pPpεiF qqnpAq “ ρn,p ¨ ppεiF qnpAqq “ ρn,p ¨ εipFnpAqq

“ εi¨ρp,npBi¨ρp,nρn,p ¨ FnpAqq

“ εn`ipBp`iρn,p ¨ FnpAqq “ εn`ipρn,p´1 ¨ FnpAqq “ pεipPpF qqqnpAq

pPpF ‹i GqqnpAq “ ρn,p ¨ ppF ‹i GqnpAqq “ ρn,p ¨ pFnpAq ‹i GnpAqq

“ pρn,p ¨ FnpAqq ‹i¨ρp,n pρn,p ¨GnpAqq

“ PpF qnpAq ‹i PpGqnpAq “ pPpF q ‹i PpGqqnpAq

So P is a functor from PsLaxpC,Dq to PsOpLaxpC,Dq. Reciprocally, if F is a pseudo
oplax p-transfor, we define a family of applications RpF qn : Cn Ñ Dn`p by setting RpF qnpAq “
ρp,n ¨ FnpAq. As we did for P, we show that R induces a functor from PsOpLaxpC,Dq to
PsLaxpC,Dq. Finally, since ρp,n¨ρn,p “ 1, P andR are inverses of each other, andPsLaxpC,Dq
is isomorphic to PsOpLaxpC,Dq. �

137





Chapter 5

Resolution of monoids
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Organisation

The goal of this chapter is to reformulate higher-dimensional rewriting in the framework of
cubical categories, using the notion of cubical pω, pq-category that we described in the last
chapter. Section 5.1 contains some preliminary materials before we are able to express our main
result (Theorem 5.1.3.8). We reserve the proof of Theorem 5.1.3.8 for Section 5.2.

Finally Section 2.3, we look for applications of Theorem 5.1.3.8. In particular, we give an
explicit description of the reduced standard presentation of a monoid, and we construct the
Squier resolution of a monoid presented by a convergent presentation, a result similar to the one
from [40].

5.1 Resolutions of monoids by Gray polygraphs

The goal of this Section is to express our Extended Detection Theorem. In Section 5.1.1, we start
by giving the definition of Gray polygraphs. Section 5.1.2 contains the proof of the central fact
that Gray monoids are also free ω-categories. Finally, in Section 5.1.3, we study the structure of
local branchings and prove that they form a simplicial monoid. We finally state our Extended
Detection Theorem.

5.1.1 Gray polygraphs

In order to define a notion of Gray polygraph associated to Gray categories, we make use of a
result of Garner [28]. In order to do that we need to prove that Gray monoids are monadic over
pre-cubical sets. The adjunction between Gray monoids and cubical sets is the composite of
two monadic adjunctions (factorising through cubical ω-groupoids). However, as is well-known
a composite of monadic adjunctions is not necessarily monadic. Still, in our case we are able to
use a criterion from [27] to conclude. First, let us start by recalling the following classical fact
about monadic functors (see for example [60]):

Proposition 5.1.1.1. Let pT, µ, ηq be a monad on a category C, and U , F the adjunction it
induces between C and CT . The functor U strictly creates coequalizers of U -split pairs.

In other words, for any f, g : pA,αq Ñ pB, βq in CT , if there exists C in C and h : B Ñ C in
C such that

A B C
g

f h

is a split coequalizer in C, then there exists a unique γ : TC Ñ C such that pC, γq is a T -algebra
and the diagram

pA,αq pB, βq pC, γq
g

f h

is a coequaliser in CT .
Moreover, γ is the only morphism making the following square commute:

TB TC

B C

Th

h

β γ
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The following Proposition shows that any algebra for a monad can be recovered as a reflexive
coequaliser of free algebras.

Proposition 5.1.1.2. Let pT, µ, ηq be a monad on a category C, and pA, hq be a T -algebra. The
following is a reflexive coequaliser in CT :

pTTA, µTAq pTA, µAq pA, hq
µA

Th h

Proof. Note first that the diagram

TTA TA A
µA

Th h

is an equaliser in C, which is split by the morphisms TηA and ηA. Moreover, the following square
commutes:

TTA TA

TA TA.

Th

h

µA h

Thus, the fact that it is a coequaliser follows from Proposition 5.1.1.1. To show that it is also
reflexive, let us look at the morphism TηA : TTA Ñ TA. By hypothesis Th ˝ TηA “ 1TA and
µA˝TηA “ 1TA. So all we have to do is check that TηA : pTTA, µTAq Ñ pTA, µAq is a morphism
of T -algebras. Indeed, the following diagram commutes by naturality of µ:

TTA TTTA

TA TTA

TTηA

TηA

µA µTA

�

The following Proposition was written (incorrectly) in [27]. We reproduce here the corrected
Proposition and proof from the Errata.

Proposition 5.1.1.3. Suppose we have two adjunctions:

C D E

F2

U2

F1

U1

KK

We denote respectively by T1 and T2 the monads U1 ˝ F1 and U2 ˝ F2.
Suppose D is the category of algebras of T1 and E is the category of algebras of T2. If T1

preserves reflexive coequalisers in D, then C is isomorphic to the category of algebras of the
monad T :“ U1 ˝ U2 ˝ F2 ˝ F1.
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Proof. Recall first that, for any monad pT, µ, ηq, and any T -algebra pA, hq, h induces a morphism
of T -algebras h˚ : pTA, µAq Ñ pA, hq, as shown by the commutation of the following square:

TTA TA

TA A

µA

h

Th h

Suppose now pA, h1, h2q is a T2-algebra, where pA, h1q is a T1-algebra. Then the following
morphism equips A with a structure of T -algebra:

TA “ U1T2F1A “ U1T2pT1A,µAq U1T2pA, h1q U1pA, h1q “ A
U1T2h

˚
1 U1h2

This construction induces a functor from T2-algebras to T -algebras.
Let us now fix a T -algebra pA, hq and let us define h1 and h2 making pA, h1, h2q a T2-algebra.

First we define h1 as the following composite:

T1A “ U1F1A U1T2F1A “ TA A
U1η

2
F1A h

Moreover, the following diagram is a reflexive coequaliser in of T1-algebras by Proposition 5.1.1.2:

pT1T1A,µ
1
T1A
q pT1A,µ

1
Aq pA, h1q.

µ1
A1

T1h1 h1

By hypothesis T2 preserves reflexive coequalisers and so the following is an equaliser of T1-
algebras:

T2pT1T1A,µ
1
T1A
q T2pT1A,µ

1
Aq T2pA, h1q.

T2µ
1
A1

T2T1h1 T2h1

Let us spell out explicitly T2pT1A,µ
1
Aq. Compositing with U1, we get that it is of the form

pTA, h11q for some morphism h11 : T1TA Ñ TA. Let us ε1 : F1U1 Ñ IdD be the counit of the
adjunction F1, U1. First the fact that ε1T2F1A

is a morphism of T1-algebra from F1U1T2F1A “
pT1TA, µ

1
TAq to T2F1A “ pTA, h

1
1q gives us:

T1T1TA T1TA

T1TA TA

T1U1ε
1
T2F1A

U1ε
1
T2F1A

µ1
TA h11

Precomposing this square with T1η
1
TA gives us the equality h11 “ U1ε

1
T2F1A

. Notice that we can
express U1ε

1
T2F1A

as µA ˝ U1η
2
F1TA

. Indeed, we have by definition of µA:

µA ˝ U1η
2
F1TA “ U1µ

2
F1A ˝ U1T2ε

1
T2F1A ˝ U1η

2
F1TA

“ U1µ
2
F1A ˝ U1η

2
T2F1A ˝ U1ε

1
T2F1A

“ U1ε
1
T2F1A.
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So we finally get T2F1A “ pTA, µA ˝ U1η
2
F1TA

q.
Let us now show that h : TA Ñ A induces a morphism of T1-algebras: T2F1A Ñ pA, h1q.

Using the definition of h1, this amounts to the commutation of the following diagram, where
the top square commutes by naturality of η2, and the bottom square because h is T -algebra
structure on A.

T1TA T1A

TTA TA

TA A

T1h

Th

h

U1η
2
F1TA U1η

2
F1A

µA h

Let us now show that there is a fork in T1-algebras:

T2pT1T1A,µ
1
T1A
q T2pT1A,µ

1
Aq pA, h1q.

T2µ
1
A

T2T1h1 h

Since T2pT1T1A,µ
1
T1A
q “ T2F1T1A “ pTT1A,U1ε

1
T2F1A

q, this amounts to the commutation of the
following square:

TT1A TA

TA A

Th1

h

U1T2µ
1
A h

This square commutes because of the following equalities:

h ˝ Th1 “ h ˝ Th ˝ TU1η
2
F1A “ h ˝ µA ˝ TU1η

2
F1A

“ h ˝ U1µ
2
F1A ˝ U1T2ε

1
T2F1A ˝ TU1η

2
F1A

“ h ˝ U1µ
2
F1A ˝ U1T2η

2
F1A ˝ U1T2ε

1
F1A

“ h ˝ U1T2ε
1
F1A “ h ˝ U1T2µ

1
A.

By universal property of the coequalizer, we thereby get a morphism of T1-algebras h2 :
T2pA, h1q Ñ pA, h1q, which equips pA, h1q with the structure of a T2-algebra. �

In our case, the monad T1 is the free monoid monad. We show more generally in Proposition
5.1.1.5 that whenever T1 is a free monoid monad over a biclosed monoidal category, T1 satisfies
the hypothesis of Proposition 5.1.1.3. First let us recall a classical result about biclosed monoidal
categories.

Lemma 5.1.1.4. A biclosed product preserves reflexive coequalisers in both variables simulta-
neously.

Proof. Suppose we have the following reflexive coequalisers, for i “ 0, 1:

Ai Bi Cigi
fi

ri

hi
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We are going to show that the following is also a coequaliser:

A0 bA1 B0 bB1 C0 b C1g0 b g1

f0 b f1
h0 b h1

Suppose given i : B0 b B1 Ñ D such that i ˝ pf0 b f1q “ i ˝ pg0 b g1q. We want to find a
factorisation i “ ph0bh1q˝k for some morphism k. First, notice that i˝pB0bf1q “ i˝pB0bg1q

(and, symmetrically, i ˝ pf0 bB1q “ i ˝ pg0 bB1q). Indeed, we have:

i ˝ pB0 b f1q “ i ˝ pB0 b f1q ˝ pf0 bA1q ˝ pr0 bA1q

“ i ˝ pf0 b f1q ˝ pr0 bA1q

“ i ˝ pg0 b g1q ˝ pr0 bA1q

“ i ˝ pB0 b g1q ˝ pg0 bA1q ˝ pr0 bA1q

“ i ˝ pB0 b g1q.

Since the product is biclosed, the product by B0 preserves the coequaliser formed by f1,g1 and
h1. The universal property of this coequaliser gives us a factorisation i “ j ˝ pB0 b h1q.

Let us now show that j ˝ pf0bC1q “ j ˝ pg0bC1q, so that we can use the universal property
of this other coequaliser. Since the product by A0 preserves the coequalisers, A0 b h1 is an epi,
and it is enough to show that j ˝ pf0 b C1q ˝ pA0 b h1q “ j ˝ pf0 b C1q ˝ pA0 b h1q. And indeed
we have (using the fact that i equalises f0 bB1 and pg0 bB1):

j ˝ pf0 b C1q ˝ pA0 b h1q “ j ˝ pB0 b h1q ˝ pf0 bB1q

“ i ˝ pf0 bB1q

“ i ˝ pg0 bB1q

“ j ˝ pB0 b h1q ˝ pg0 bB1q

“ j ˝ pg0 b C1q ˝ pA0 b h1q

Using the universal property, we finally have that j “ k ˝ ph0bC1q and so finally: i “ j ˝ pB0b

h1q “ k ˝ ph0 b C1q ˝ pC0 b h1q “ k ˝ ph0 b h1q. The fact that such a factorisation is unique
comes from the fact that h0 b h1 is a composite of epimorphisms, and so is epi too. �

Proposition 5.1.1.5. Let C be a category, and T be a monad on C. Suppose the category T -Alg
of T -algebras is equipped with a biclosed monoidal product b.

Then the category MonpT -Algq of monoid objects in T -Alg is monadic over C:

MonpT -Algq T -Alg CKK

Proof. We want to apply Proposition 5.1.1.3. The free monoid monad on T´Gpd is given by

A ÞÑ
ž

nPN
Abn

Let us show that this monad preserves reflexive coequalisers. Since colimits commute with
colimits, we just have to show that A ÞÑ Abn preserves reflexive coequalisers. This is a direct
consequence of Lemma 5.1.1.4. �
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The following definition is a generalisation by Mike Shulman of the construction of computads
by Batanin [6], following the reformulation of Richard Garner in [28].

Definition 5.1.1.6. Let I be a category whose objects are natural numbers, and such that for
all non-identity morphism f : i Ñ j, we have i ă j. Let T be a monad on Î (the category of
presheaves over I). For A P Î, we denote Arns by An. Let us define inductively the notion of
n-T -polygraph, together with an adjunction between n-T -polygraphs and T -Algebras pUn, Fnq.
Let us denote by pU,F q the morphisms forming the adjunction between T -algebras and Î.

• A 0-T -polygraph is just a set Σ0. The free T -algebra F0pΣ0q generated by Σ0 is Σ0 ¨Y p0q,
where p¨q denotes the copower and Y : I Ñ Î is the Yoneda embedding. If A is a T -algebra
then F0pAq :“ UpAq0.

• Suppose n-T -polygraphs defined, together with Fn and Un. Then an pn` 1q-T -polygraph
is the data of an n-T -polygraph Σ, a set Σn`1 and a morphism B : Σn`1 ¨ F p ČY pn` 1qq Ñ

FnpΣq, where ČY pn` 1q is obtained from Y pn`1q by removing Y pn`1qn`1. Then the func-
tor Fn`1 is defined by the following pushout of T -algebras, where ι denoted the inclusion
of ČY pn` 1q into Y pn` 1q:

Σn`1 ¨ F p ČY pn` 1qq FnpΣq

Σn`1 ¨ F pY pn` 1qq Fn`1pΣ,Σn`1, Bq

B

Σn`1 ¨ F pιq

If A is a T -algebra, then let Σn`1 and B given by the following pullback:

Σn`1 hompF pY pn` 1qq, Aq

hompF p ČY pn` 1qq, FnUnAq hompF p ČY pn` 1qq, Aqεn

B ι

where the bottom morphism is induced by the counit of the adjunction Fn, Un, and the
right-hand-side morphism comes from the inclusion of ČY pn` 1q into Y pn ` 1q. We then
define Un`1pAq :“ pUnpAq,Σn`1, Bq.

Finally, the category of ω-T -polygraph is the limit of the sequence of projection from pn`1q-
T -polygraphs to n-T -polygraphs.

Definition 5.1.1.7. We call Gray monoids or Gray pω, 0q-monoids (resp. Gray pω, 1q-monoids)
the monoid objects in ω-groupoids (resp. pω, 1q-categories), equipped with the Gray tensor
product. By Proposition 5.1.1.5, Gray monoids (resp. Gray pω, 1q-monoids) are monadic over
pre cubical sets. We call the associated notion of polygraphs Gray polygraphs (resp. Gray
pω, 1q-polygraphs).

If Σ is a Gray pω, pq-polygraph and k ď p, we denote by ΣGpkq the free Gray pω, kq-monoid
generated by Σ.
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5.1.2 Free Gray pω, 1q-monoids are free pω, 1q-categories

.
The aim of this Section is to prove that the Gray product of two free pω, 1q-categories is still

free. To do that, we show that the pushout-product of two cofibrations in ω-categories is still
a cofibration (this is one of the axioms of a monoidal model category). It is a classical result
of homotopy theory that it is sufficient to check this result on generating cofibrations. In the
first part of this section, we choose our set of generating cofibrations carefully to simplify the
computation of the pushout-product.

Proposition 5.1.2.1. The free cubical ω-category functor F : ω -CubSet Ñ ω -CubCat is
monoidal.

Proof. Let us denote by U : ω -CubCat Ñ ω -CubSet the forgetful functor from cubical
ω-category to pre-cubical sets, and P : ω -CubSet Ñ ω -CubSet the functor forgetting di-
mension 0 and the direction-1 face in every dimension. The functor P also induces a functor
P̃ : ω -CubCatÑ ω -CubCat. Moreover, we have for any cubical ω-category C: UP̃C “ PUC.

Recall from [2] the internal Hom in ω -CubCat is given by ω -CubCatpC,Dqi “ ω -CubCatpC, P̃ iDq,
and similarly in ω -CubSet : ω -CubSetpC,Dqi “ ω -CubSetpC,P iDq. So in the end we have,
for any pre-cubical set C and any cubical ω-category C:

ω -CubCatpF pCq, Cqi “ ω -CubCatpF pCq, P̃ iCq
“ ω -CubSetpC,UP̃ iCq
“ ω -CubSetpC,P iUCq
“ ω -CubSetpC,UCqi

Moreover, the pre-cubical set structures match, so that we have: Uω -CubCatpF pCq, Cq “
ω -CubSetpC,UCq.

So if C and D are pre-Cubical sets, we have for any cubical ω-category C:

ω -CubCatpF pCq b F pDq, Cq “ ω -CubCatpF pCq, ω -CubCatpF pDq, Cqq
“ ω -CubSetpC,Uω -CubCatpF pDq, Cqq
“ ω -CubSetpC,ω -CubSetpD,UCqq
“ ω -CubSetpC bD,UCq
“ ω -CubCatpF pC bDq, Cq

Since this is natural in C, there is an isomorphism F pCq b F pDq “ F pC bDq. �

Definition 5.1.2.2. We denote by in : n - Ñ n - the inclusion of the n-sphere into the
n-disk, and by jn : n - l Ñ n -� the inclusion of the n-shell into the n-cube.

Lemma 5.1.2.3. There are pushouts of ω-categories:

n - l n -

n -� n -

jn in

n´ ˝ n´l

n´ ‚ n´�

in jn
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Proof. The right-hand square comes from the fact that n -� is a free ω-category on a globular
polygraph, where the pn´ 1q-polygraph generates n - l, and with exactly one generating n-cell.
Similarly, the left-hand square comes from expressing n - as a free ω-category generated by a
cubical polygraph.

�

Lemma 5.1.2.4. Let C be a category, and let f , g be morphisms in C. Suppose that g is a
pushout of f . If h is a cell in C having the right-lifting-property with respect to f , then it has
the right-lifting property with respect to g.

Proof. We are in the following situation:

k

k1

f g h

i

i1

Using the right-lifting-property of h with respect to f , we get a morphism u such that u˝f “ i˝k
and h˝u “ i1˝k1. Using the first equality and the fact that g is a pushout of f , we get a morphism
v such that v ˝ g “ i and v ˝ k1 “ u:

k

k1

f g h

i

i1

u
v

Let us show that v is the required lifting. The first equality is already given, it remains to show
that h ˝ v “ i1.

Notice that since the big rectangle commutes, by universal property of g there is exactly
one morphism w satisfying w ˝ k1 “ i1 ˝ k1 and w ˝ g “ h ˝ i. But both i1 and h ˝ v satisfy this
property:

#

i1 ˝ k1 “ i1 ˝ k1

i1 ˝ g “ h ˝ i

#

h ˝ v ˝ k1 “ h ˝ u “ i1 ˝ k1

h ˝ v ˝ g “ h ˝ i

Therefore, the two arrows are equal, and h does indeed have the right-lifting property with
respect to g. �

We are now armed to choose our set of generating cofibrations:

Proposition 5.1.2.5. The family jn forms a family of generating cofibrations for the model
structure on ω -Cat.

Proof. Recall from [55] that the family in is a family of generating cofibrations for the model
structure on ω -Cat. The model structure is actually determined by the arrows having the
right-lifting property with respect to the generating cofibrations. By Lemma 5.1.2.4 and 5.1.2.3,
the arrows having the right lifting property with respect to in and jn are actually the same, so
they generate the same model structure. �
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Definition 5.1.2.6. If f : C Ñ D and f 1 : C1 Ñ D1 are two morphisms of ω-categories, The
pushout-product of f and f 1, denoted fb̂f 1, is the following morphism, where E is defined as a
coproduct:

C b C1 D b C1

C bD1 E

D bD1

f b 1

1b f 1

fb̂f 1

f b 1

1b f 1

Proposition 5.1.2.7. For any n,m P N, we have:

jn b jm “ jn`m

As a consequence, if f and g are two cofibrations, then fb̂g is also a cofibration.
In particular, the product of two cofibrant objects is still cofibrant, that is: for any two

polygraphs Σ and Γ, the ω-category Σ˚ b Γ˚ is free on a polygraph that we denote by Σb Γ.

Proof. Let us first compute E . First we need to compute pn - lbm - lq, pn -�bm - lq and
pn - lbm -�q. Since all those are free on pre-cubical sets, using 5.1.2.1 we can compute the
products in cubical sets.

Recall that for all n, n -� is the free ω-category on the cubical set n -�Set, where n -�Seti is
given by the set of all applications s : t1, . . . , nu Ñ tp´q, p0̈q, p`qu such that #s´1p0̈q “ i. We
see such an element as a sequence of length n containing exactly i copies of p0̈q. For such an s,
and 1 ď k ď i, Bαi s is given by replacing the i-th p0̈q appearing in s by pαq. Similarly, n - lSet

is obtained by removing the cell p0̈ . . . 0̈q.
Therefore, we have:

• The pre-cubical set n - lSetbm - lSet is the sub pre-cubical set of pn`mq -�Set consisting
of all s : t1, . . . , n `mu Ñ tp´q, p0̈q, p`qu which are not of the form p0̈ . . . 0̈α1 . . . αmq or
pβ1 . . . βn0̈ . . . 0̈q for some α1, . . . , αm, β1, . . . , βn P tp´q, p0̈q, p`qu.

• The pre-cubical set n - lSetbm -�Set is the sub pre-cubical set of pn`mq -�Set consisting
of all s : t1, . . . , n `mu Ñ tp´q, p0̈q, p`qu which are not of the form pβ1 . . . βn0̈ . . . 0̈q for
some β1, . . . , βn P tp´q, p0̈q, p`qu.

• The pre-cubical set n -�Setbm - lSet is the sub pre-cubical set of pn`mq -�Set consisting
of all s : t1, . . . , n `mu Ñ tp´q, p0̈q, p`qu which are not of the form p0̈ . . . 0̈α1 . . . αmq for
some α1, . . . , αm P tp´q, p0̈q, p`qu.

Since all the jn come from morphisms of pre-cubical sets, we can also form the coproduct in
ω -CubSet. From the explicit descriptions above, we see that the coproduct in ω -CubSet is
the sub-cubical set of pn `mq -�Set consisting of all s : t1, . . . , n `mu Ñ tp´q, p0̈q, p`qu that
are either in n - lSetbm -�Set or in n -�Setbm - lSet, that is of all s except for p0̈ . . . 0̈q. So
finally E “ pn `mq - l. On the other hand, by definition n -�bm -� “ n `m -�. So jnb̂jm
and jn`m share the same source and target, and explicit computation show that they both are
the canonical inclusion of pn`mq - l into pn`mq -�. So finally jnb̂jm “ jn`m.

The consequence about cofibrations is a standard result in model structure (see [45]), using
the fact that the jn form a generating family of cofibrations (Proposition 5.1.2.5).
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Finally, since polygraphs correspond to cofibrant objects, for any polygraphs Σ and Γ the
morphisms f : H Ñ Σ˚ and f 1 : H Ñ Γ˚ are cofibrations. Then fb̂f 1 is just the (unique)
morphism HÑ Σ˚bΓ˚. We just proved that it is a cofibration, meaning that Σ˚bΓ˚ is a free
category on a polygraph. �

Remark 5.1.2.8. The fact that the product of two free ω-categories is still free is one of the
main reasons for our use of the Gray tensor product over the cartesian one. Indeed, this fails
for the cartesian product, as already noted by Lack [54]:

Let C be the free category on one generator and one arrow. We have the isomorphism of
monoids Cp‚, ‚q “ N. Then CbC still only has one object and as a monoid pCbCqp‚, ‚q “ NˆN,
which is not a free monoid.

Remark 5.1.2.9. The fact that the product of two free ω-categories is still free was also proven
independently by Hadzihasanovic [42], and by Ara and Maltsinotis. Explicitly, if Σ and Γ are
two cubical ω-polygraphs. Then the cubical ω-polygraph Σb Γ is given by:

pΣb Γqn “
ž

i`j“n

Σi ˆ Γj

Bαk pAbBq “

#

BαkAbB A P Σi and 1 ď k ď i

Ab Bαk´iB A P Σi and i ă k

Moreover, by definition of the product of two polygraphs, the free functor Σ ÞÑ Σ˚ is monoidal.

Proposition 5.1.2.10. Let Σ be a Gray polygraph. The free Gray monoid on Σ is also free as
an pω, 1q-category, generated by a cubical pω, 1q-polygraph that we denote rΣs, defined by:

rΣsn “
ž

i1`...`ik“n

Σi1 ˆ . . .ˆ Σik (5.1.1)

Bαi1`...`ij`lpA1 b . . .bAkq “ A1 b . . .bAj b B
α
l Aj`1 bAj`2 b . . .bAk, where 1 ď l ď ij`1

(5.1.2)

Proof. By Proposition 5.1.2.7, the free-category functor is strictly monoidal, and so it induces
a functor from the category of monoidal objects in pω, 1q-polygraphs to monoidal objects in
pω, 1q-categories (that is to Gray monoids). Finally, any Gray polygraph can be made into a
monoidal object in pω, 1q-polygraphs by sending a Gray polygraphs Σ to the pω, 1q-polygraph
rΣs given by the formulas (5.1.1) and (5.1.2).

The following diagram sums up the situation, where the right-hand square commutes because
the free-category functor is monoidal, and the left-hand triangle is just the inclusion of Gray
polygraphs into monoid objects in pω, 1q-polygraphs.

GrayPol MonPol pω, 1q - Pol

GrayMon pω, 1q -CubCat

F
F F

�

Definition 5.1.2.11. Let Σ be an pω, 1q-polygraph. We say that Σ is targets-only if for all
n ě 2, all 1 ď i ď n and all A P Σn, B´i A is in Σn´1.

We say that a Gray pω, 1q-polygraph Σ is a targets-only polygraph if the pω, 1q-polygraph
rΣs is targets-only. Explicitly, for all n ě 2, all 1 ď i ď n and all A P Σn, there exists
A1 P Σi1 , . . . , Ak P Σik such that B´i A “ A1 b . . .bAk.
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5.1.3 The simplicial monoid of local branchings

Proposition 5.1.3.1. Let Cube be the PROP generated by operations , , , and ,
subject to the following relations:

“ “ “ “ “ “ “ “

“ “ “ “ “ “ “ “

Let Simp be the PROP defined by operations , , subject to the following relations:

“ “ “ “

The category of symmetric cubical sets, denoted CSet is the category of presheaves on Cube.
Similarly, the category of augmented symmetric simplicial sets is denoted SSet is the category
of presheaves over Simp. The inclusion functor Simp Ñ Cube gives rise to an adjunction
between SSet and CSet.

Moreover, the monoidal structures on Cube and Simp give rise by Day convolution to
monoidal structures on augmented symmetric cubical sets and augmented symmetric simplicial
sets. Define a cubical monoid (resp. a simplicial monoid) as a monoid object in CSet (resp.
SSet). The functors in the adjunction preserve the monoidal structures, and so induce functors
between the categories of cubical and simplicial monoids.

Definition 5.1.3.2. Let Σ be a monoidal 1-polygraph. A rewriting step f is an element of Σ`1 ,
the free Σ˚0-bimodule. We call spfq its source. A local n-branching (for n ą 0) is an n-tuple
pf1, . . . , fnq of rewriting steps of same source. We denote by LocBrpΣqn the set of all n-local
branchings. We extend that to n “ 0 by saying that a 0-local branching is just an element of
Σ˚0 .

Definition 5.1.3.3. Let Σ be a monoidal 1-polygraph. We define:

• For all pf1, . . . , fnq P LocBrpΣqn, and 1 ď i ď n. If n “ 1 then we define B1f “ spfq and
otherwise, let Bipf1, . . . , fnq be the following n´ 1-branching:

pf1, . . . , fi´1, fi`1, . . . , fnq

• For all pf1, . . . , fnq P LocBrpΣqn, and 1 ď i ď n, let εipf1, . . . , fnq be the branching

pf1, . . . , fi, fi, fi`1, . . . , fnq

• For all pf1, . . . , fiq P LocBrpΣqi and pg1, . . . , gjq P LocBrpΣqj respectively of source u
and v, let f̄ b ḡ

pug1, . . . , ugj , f1v, . . . fivq

Finally, Sn acts on LocBrpΣq by permuting the rewriting steps.

The following proposition is a straightforward verification of the axioms.

Proposition 5.1.3.4. Let Σ be monoidal 1-polygraph. The family of local branchings LocBrpΣq
equipped with the applications Bi, εi and b forms a simplicial monoid.

Proposition 5.1.3.5. The forgetful functor U : pω, 1q´Cat Ñ CSet is lax monoidal, that is
there exists in CSet a morphism ε : J Ñ UpJq and, naturally in A,B P ω´Cat a morphism
µA,B : UpAq b UpBq Ñ UpAbBq satisfying the usual conditions.
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Proof. Notice that in the terminal cubical pω, 1q-category there is only one cell in each dimension.
Therefore, UpJq “ J and ε is defined as the identity. For the morphism µA,B, recall that the
product (of pω, 1q-categories) A b B is generated by elements of the form A b B with A P A
and B P B. The map AbB ÞÑ AbB therefore induces a morphism µA,B. �

Proposition 5.1.3.6. The functor U induces a functor from Gray pω, 1q-monoids to cubical
monoids.

Proof. More generally, a lax monoidal functor between two monoidal categories induces a functor
between the categories of monoidal objects in the two categories. �

Definition 5.1.3.7. We denote by V the composite of the forgetful functor from Gray pω, 1q-
monoids to cubical monoids with the one from cubical monoid to simplicial monoids.

Theorem 5.1.3.8. Let Σ be a terminating targets-only Gray pω, 1q-polygraph, and let M “

Σ
Gp0q
0 {Σ

Gp0q
1 be the monoid presented by Σ. We suppose that there exists a morphism of simplicial

monoids
Φ : LocBrpΣq Ñ V pΣGp1qq

such that for all A P Σ, ΦpbrpAqq “ A.
Then the morphism ΣGp0q ÑM is an equivalence of ω-groupoids.
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5.2 Proof of Theorem 5.1.3.8

The proof of Theorem 5.1.3.8 in Section 5.2.3 relies on the description of a complicated composite
of cells. To simplify the expression of this composite, we introduce two main tools: in Section
5.2.2, we introduce a generalised notion of connection, built in any cubical pω, 1q-category as a
composite of connections and of permutations, while in Section 5.2.2 we introduce a generalised
form of composition, similar to pasting schemes.

5.2.1 Generalised connections

Before defining new notions of connections, we start by defining new notations for operations
on permutations.

Lemma 5.2.1.1. Let σ P Sn et i, j ď n ` 1. There exists a unique permutation τ P Sn`1

satisfying
#

Bjτ “ σ

τ ¨ j “ i

Proof. It is the following permutation:

k ÞÑ

#

pkj ¨ σq
i k ‰ j,

i k “ j.

�

Definition 5.2.1.2. We denote by σri ÞÑ js the permutation such that
#

Biσri ÞÑ js “ σ

σri ÞÑ js ¨ i “ j

In particular if σ “ 1, we simply write ri ÞÑ js.

Lemma 5.2.1.3. The following equality hold for every k ‰ i:

Bkpσri ÞÑ jsq “ pBkiσqrik ÞÑ jpki¨σqj s

In particular, we have ri ÞÑ js´ “ rj ÞÑ is and Bkri ÞÑ js “ rik ÞÑ jpkiqj s. For k ‰ j, this last
formula becomes Bkri ÞÑ js “ rik ÞÑ jks.

Proof. Indeed, we have
#

BikBkpσri ÞÑ jsq “ BkiBipσri ÞÑ jsq “ Bkiσ

ik ¨ Bkpσri ÞÑ jsq “
`

ikk ¨ σri ÞÑ js
˘

u
,

where u “ k ¨ σri ÞÑ js “ pki ¨ σq
j . Using the fact that pikk ¨ σri ÞÑ js “ i ¨ σri ÞÑ js “ j, we get

the required formula. In the case where k ‰ j, let us prove that jpkiqj “ jk:

• If k ă i, j then pkiqj “ kj “ k.

• If i, j ă k then pkiqj “ pk ´ 1qj “ k.

• If j ă k ă i then pkiqj “ k ` 1, and jk`1 “ j “ jk.

• If i ă k ă j then pkiqj “ k ´ 1, and jk´1 “ j ´ 1 “ jk.
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Definition 5.2.1.4. Let C be a cubical pω, 1q-category. For any n ě 2 and 1 ď i ‰ j ď n, we
define Γαi,j :“ ri ÞÑ jis ¨ Γ

α
ji
. In particular, we have Γαi “ Γαi,i`1.

Example 5.2.1.5. Diagrammatically, we can represent the generalised connections Γαi,j as fol-
lows, respectively for i ă j and i ą j:

i j

j´1

j´1

j i

j

Proposition 5.2.1.6. For every i ‰ j and every α, the cell Γαi,j is the only thin cell satisfying
for every k and every β:

B
β
kΓαi,jA “ Γαik,jkB

β
ki
A k ‰ i, j

B
β
i Γαi,jA “

#

A β “ α

εjiB
β
ji

β “ ´α

Bαj Γαi,jA “

#

rij ÞÑ jis ¨A β “ α

εijB
β
ji
A β “ ´α

Proof. The cell Γαi,j is thin by Lemma 4.2.3.3, and thin cells are uniquely determined by their
shell. As for the relations, let k ‰ i, j.

B
β
kΓαi,jA “ B

β
k pri ÞÑ jis ¨ Γ

α
jiAq “ Bkri ÞÑ jis ¨ B

β
k¨ri ÞÑjis

ΓαjiA

We first evaluate Bkri ÞÑ jis. Using the formulas from Lemma 4.1.1.3, we have: pkiqji “ pkijj q
j
ij “

pkjqij . Hence, a :“ pjiqpkiqji “ pjij qpkjqij
“ jij ,pkjq “ jkj ,ij . Now pijqkj “ pipkjqj q

j
kj “ pikq

jk so
a “ jkj ,pikqjk “ pjkqpikqjk “ pjkqik . And finally Bkri ÞÑ jis “ rik ÞÑ pjkqiks. We now consider the
second term. Let u “ k ¨ ri ÞÑ jis “ pkiq

ji . Then we have u ‰ ji, ji ` 1 and so

BβuΓαjiA “ ΓαpjiquB
β
uji
A “ Γαji,kB

β
ki
A “ Γαpjkqik

B
β
ki
A

And so finally:
B
β
kΓαi,jA “ rik ÞÑ pjkqiks ¨ Γ

α
pjkqik

B
β
ki
A “ Γαik,jkB

β
ki
A

As for the other relations,

B
β
i Γαi,jA “ B

β
i pri ÞÑ jis ¨ Γ

α
jiAq “ Biri ÞÑ jis ¨ B

β
i¨ri ÞÑjis

ΓαjiA

“ B
β
ji

ΓαjiA “

#

A β “ α

εjiB
β
ji
A. β “ ´α

B
β
j Γαi,jA “ B

β
j pri ÞÑ jis ¨ Γ

α
jiqA “ Bjri ÞÑ jis ¨ B

β
j¨ri ÞÑjis

ΓαjiA

“ rij ÞÑ jis ¨ B
β
ji`1ΓαjiA “

#

rji ÞÑ ijs ¨A β “ α

rji ÞÑ ijs ¨ εjiB
β
ji
A “ εijB

β
ji
A β “ ´α

�
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Lemma 5.2.1.7. For all 1 ď i ‰ j ď n, and 1 ď k ď n we have the equality rk ÞÑ is ¨ Γαi,j “
Γk,pjiqk

Proof. Indeed, we have by definition of Γαi,j :

rk ÞÑ is ¨ Γαi,j “ rk ÞÑ is ¨ ri ÞÑ jis ¨ Γ
α
ji “ rk ÞÑ jis ¨ Γ

α
ji “ rk ÞÑ pjiq

k
ks ¨ Γ

α
pjiqkk

“ Γαk,pjiqk

�

Notation 5.2.1.8. Let E Ă N and i P N. Let us denote by Ei the set of elements of the form
ni, for n P E. Similarly, if i R E, we denote by Ei the set of elements of the form ni, for n P E.

If E Ă N is finite, we denote by εE the composite εE “ εi1 . . . εin , where E “ ti1, . . . , inu and
i1 ą i2 ą . . . ą in.

Definition 5.2.1.9. For any n ě 1, 1 ď i ď n, m ě 0, E Ă t1, . . . , n`mu of cardinality m` 1
and A P Cn, we define a cell ΓE,αi A P Cn`m recursively on n`m as follows:

• If m “ 0, and E “ tju then Γα,Ei :“ rj ÞÑ is.

• Otherwise, then Γα,Ei is the only thin cell satisfying:

BαkΓβ,Ei “

$

’

’

&

’

’

%

Γβ,Eki
pkEq

i
Bα
pkEqi

k R E

Γ
β,pEztkuqk
i k P E α “ β

εpEztkuqkB
α
i k P E α ‰ β

Proof. We need to prove that there indeed exists a thin cell with the specified shell. Suppose
E “ F Y tju. and fix k P F . Then we define: Γα,Ei :“ Γαj,kΓ

α,Fj
i . Let us check that the shell of

this cell is the required one.

Case l R E:
Bαl Γβ,Ei “ Bαl Γβj,kΓ

β,Fj
i “ Γβjl,klB

α
lj

Γ
β,Fj
i “ Γβjl,klΓ

β,Fj,l
i
plj,F q

i
Bα
plj,F qi

On the other hand, using the fact that El “ Fl Y tjlu and kl P Fl:

Bαl Γβ,Ei “ Γβ,Eli
plEq

i
Bα
plEqi

“ Γβjl,klΓ
β,Fj,l
i
plEq

i
Bα
plEqi

And the two expressions coincide because lE “ lj,F . Suppose now l P E and α “ β.

Case l P E, α “ β and l ‰ j, k

Bαl Γα,Ei “ Bαl Γαj,kΓ
α,Fj
i “ Γαjl,klB

α
lj

Γ
α,Fj
i “ Γαjl,klΓ

α,pFjztljuqlj
i

and on the other hand, using the fact that pEztluql “ pF ztluql Y tjlu and kl P pF ztluql:

Bαl Γα,Ei “ Γ
α,pEztluql
i “ Γαjl,klΓ

α,pF ztluql,j
i

And the two sides coincide using the fact that pFjztljuqlj “ pF ztluql,j .

Case l P E, α “ β and l “ j:

Bαj Γα,Ei “ Bαj Γαj,kΓ
α,Fj
i “ Γ

α,Fj
i “ Γ

α,pEztjuqj
i “ Bαj Γα,Ei

154



Case l P E, α “ β and l “ k:

BαkΓα,Ei “ BαkΓαj,kΓ
α,Fj
i “ rjk ÞÑ kjs ¨ Γ

α,Fj
i

If F “ tku then Γ
α,Fj
i “ rkj ÞÑ is and we have BαkΓα,Ei “ rjk ÞÑ is “ Γ

α,pEztkuqk
i . Otherwise, let

G ‰ H such that F “ GYtku and let x P G. Then by induction Γ
α,Fj
i “ Γαkj ,xjΓ

α,pGjqkj
i and so,

using Lemma 5.2.1.7:

BαkΓα,Ei “ rjk ÞÑ kjs ¨ Γ
α
kj ,xj

Γ
α,Gj,k
i “ Γαjk,xkΓ

α,Gj,k
i “ Γ

α,pGYtjuqk
i “ Γ

α,pEztkuqk
i

Case l P E, α ‰ β and l ‰ j, k:

Bαl Γβ,Ei “ Bαl Γβj,kΓ
β,Fj
i “ Γβjl,klB

α
lj

Γ
β,Fj
i “ Γβjl,klεpF ztluqj,lB

α
i

“ rjl ÞÑ kj,ls ¨ Γ
β
kj,l
εpF ztluqj,lB

α
i “ rjl ÞÑ kj,ls ¨ εkj,lεpF ztluqj,lB

α
i

“ εjlεpF ztluqj,lB
α
i “ εpF ztluql,jlB

α
i “ εpEztluqlB

α
i

Case l P E, α ‰ β and l “ j :

Bαj Γβ,Ei “ Bαj Γβj,kΓ
β,Fj
i “ εkjB

α
kj

Γ
β,Fj
i “ εkj εpF ztkuqj,kB

α
i “ εFjB

α
i “ εpEztjuqjB

α
i

Case l P E, α ‰ β and l “ k:

BαkΓβ,Ei “ BαkΓβj,kΓ
β,Fj
i “ εjkB

α
kj

Γ
β,Fj
i “ εjkεpF ztkuqj,kB

α
i “ εpEztkuqkB

α
i

�

Example 5.2.1.10. The point of these generalised connections is to make use of the (co)associativity
relation they verify. Together with the action of the symmetric group, it means that a (con-
nected) composite of connections is uniquely determined by the indices of its set of output and
by the index of its input. For example for n “ 4, the connection Γ

α,t1,3,4u
2 can equally be

represented by any the following diagrams:

1 3 4

2

1 3 4

2

1 3 4

2

5.2.2 Generalised composition

If A and B are two 2-cells in a cubical ω-category, then one can talk of the following composites
respectively as 2ˆ 1 and 1ˆ 2 composites. The goal of this Section is to formalise this idea and
to extend it to higher dimension.

B

A

A B

2

1
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Notation 5.2.2.1. Let I be a finite totally ordered set, and x P I. If x ‰ maxpIq (resp.
x ‰ minpIq), we denote by Spxq (resp. Ppxq) the smallest element in I greater than x (resp.
the greater element in I smaller than x).

Let I1, . . . , In be totally ordered finite sets. For s P I1 ˆ . . . ˆ In, and 1 ď i ď n such that
si ‰ maxpIiq (resp. si ‰ minpIiq). We denote by Sis (resp. Pis the element of I1 ˆ . . . ˆ In
given by:

pSisqj “

#

sj j ‰ i

Spsiq j “ i
pPisqj “

#

sj j ‰ i

Ppsiq j “ i

Definition 5.2.2.2. Let I1, . . . , In be finite totally ordered non-empty sets, and C be a cubical
ω-category. An I1 ˆ . . . ˆ In-grid in C is the data of a family of cells Cs in Cn, for any
s P I1 ˆ . . .ˆ In.

An I1 ˆ . . . ˆ In-grid C‚ s said to be composable if, for any s P I1 ˆ . . . ˆ In such that
si ‰maxpIiq, B`i Cs “ B

´
i CSis.

Lemma 5.2.2.3. Let C‚ be a composable I1ˆ. . .ˆIn-grid, and let x P Ii such that x ‰maxpIiq.
Let D‚ be the following I1 ˆ . . .ˆ Ii´1 ˆ Iiztxu ˆ Ii`1 ˆ . . .ˆ In-grid:

Ds “

#

Cs si ‰ Spxq

CPis ‹i Cs si “ Spxq

Then the grid D‚ is composable. We denote it by compixpC‚q.

Proof. Let I 1j “ Ij if j ‰ i and I 1i “ Iiztxu. To avoid confusions, we denote by S1 and P1 the
operations S and P taken in an I 1k. Let t P I

1
1 ˆ . . .ˆ I

1
n such that tk is not maximal, and let us

show that B`k Dt “ B
´
k DS1kt. We distinguish multiple cases:

• If k ‰ i and ti ‰ Spxq. Then Dt “ Ct and DS1kt “ CSkt, and so the composability of C‚
gives the required result.

• If k ‰ i and ti “ Spxq. Then Dt “ CPit ‹i Ct and DS1kt
“ CPiSkt ‹i CSkt, and so:

B
`
k Dt “ B

`
k CPit ‹ik B

`
k Ct “ B

´
k CSkPit ‹ik B

´
k CSkt “ B

´
k pCPiSkt ‹i CSktq “ B

´
k DS1kt

• If k “ i and ti ‰ Ppxq,Spxq, then Dt “ Ct and DS1kt “ CSkt, and so the composability of
C‚ gives the required result.

• If k “ i and ti “ Ppxq, then B`i Dt “ B
`
i Ct, and B´i DS1it

“ B
´
i pCPiS1it ‹i CS1itq “

B
´
i CPiS1it “ B

´
i CSit, and the two are equal by composability of C‚.

• The case where k “ i and ti “ Spxq is similar.

�

Proposition 5.2.2.4. Let I1, . . . , In be finite non-empty totally ordered sets, and x P Ii and
y P Ij be two distinct non-maximal elements. Then for any I1 ˆ . . .ˆ In-composable grid C‚ we
have:

compjy ˝ compixpC‚q “ compix ˝ compjypC‚q

In particular, all the composite of maps of the form compix from I1 ˆ . . . ˆ In-grids to
composable J ˆ . . . ˆ J-grids are equal (where J denotes the terminal ordered set). Since a
composable Jˆ . . .ˆJ-grid is just an element of Cn, this defines a map Comp from composable
I1 ˆ . . .ˆ In-grids to Cn.
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Proof. We distinguish two cases depending whether i “ j or not. If i “ j, we can suppose
without loss of generality that x ă y. We then have, for all t P I1 ˆ . . .ˆ In such that ti ‰ x, y:

• If y “ Spxq:

compiy ˝ compixpC‚qt “

#

Ct ti ‰ Spyq

pCPiPit ‹i CPitq ‹i Ct ti ‰ Spyq

compix ˝ compiypC‚qt “

#

Ct ti ‰ Spyq

CPiPit ‹i pCPit ‹i Ctq ti ‰ Spyq

Using the associativity of ‹i, the two are equal.

• If y ‰ Spxq, then we have the following formula (once again symmetric in x and y):

compiy ˝ compixpC‚qt “

#

Ct ti ‰ Spxq,Spyq

CPit ‹i Ct ti “ Spxq,Spyq

Suppose now that i ‰ j. Then we have:

compjy ˝ compixpC‚qt “

$

’

’

’

’

&

’

’

’

’

%

Ct tj ‰ Spxq and ti ‰ Spyq

CPit ‹i Ct ti “ Spxq and tj ‰ Spyq

CPjt ‹i Ct ti ‰ Spxq and tj “ Spyq

pCPiPjt ‹i CPjtq ‹j pCPit ‹i Ctq ti “ Spxq and tj “ Spyq

Using the fact that PiPj “ PjPi and the exchange law between ‹i and ‹j , the expression is
symmetric in x and y. �

Definition 5.2.2.5. Let C‚ be a composable I1 ˆ . . .ˆ In-grid in a cubical ω-category C, and
let A P Cn. Let us denote by mi the minimum of Ii and let m be the element of I1 ˆ . . . ˆ In
formed by those minimums. We say that C‚ is an A-simple grid if for all s P I1 ˆ . . . ˆ In,
CSis P Impεiq and Cm “ A.

Lemma 5.2.2.6. Let C‚ be an A-simple composable I1ˆ . . .ˆIn-grid in a cubical ω-category C,
for some A P Cn. Let mi be the minimum of Ii. If mi is not maximal in Ii (that is, if Ii ‰ J),
then compimiC‚ is an A-simple I1 ˆ . . .ˆ Iiztmiu ˆ . . .ˆ In-grid.

Proof. Let D‚ “ compimipC‚q, and let t P I1 ˆ . . .ˆ Iiztmiu ˆ . . .ˆ In. Then we have:

• If ti ‰ Spmiq, then DSkt “ CSkt P Impεkq.

• If ti “ Spmiq and k “ i then DSit “ CSit P Impεiq.

• If ti “ Spmiq and k ‰ i then DSkt “ CPiSkt ‹i CSkt “ CSkPit ‹i CSkt. By hypothesis both
CSkPit and CSkt are in Impεkq and so so is DSkt.

Finally, if tj “ mj for all j ‰ i and ti “ Spmiq then Dt “ CPit ‹iCt “ A‹iCSim “ A because
CSim P Impεiq. So finally D‚ is an A-simple grid. �

Proposition 5.2.2.7. Let C‚ be an A-simple grid. Then ComppC‚q “ A.

Proof. We reason by induction on the sum of the cardinalities of I1, . . . , In. If they are all
singletons then C‚ is just the data of A and so ComppC‚q “ A. Otherwise, then there ex-
ists 1 ď i ď n such that Ii is not a singleton. Let mi be the minimum of Ii. By Lemma
5.2.2.6, compimipC‚q is an A-simple grid. Using the induction hypothesis, we therefore have
ComppC‚q “ ComppcompimipC‚qq “ A. �
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5.2.3 Construction of the normalisation strategy

Let us fix a Gray pω, 1q-polygraph Σ satisfying the hypothesis of Theorem 5.1.3.8. Let M be
the monoid presented by Σ, and let us denote by NF : M Ñ ΣGp0q the inclusion of the normal
forms, and by π : ΣGp0q Ñ M the canonical projection. Note that π is a morphism of Gray
monoids, while NF is just a morphism of ω-groupoids. We are going to show that the two from
an equivalence of ω-groupoid.

Note first that π ˝NF “ idM . We now need to define a natural transformation S : idΣGp0q ñ

NF ˝π. To do that, we start by making use of the fact that Σ is a Gray pω, 1q-polygraph and
that NF and π are induced by morphisms of pω, 1q-categories. This means that we can start by
defining a natural transformation S : idΣGp1q ñ NF ˝π.

Using the fact that ΣGp1q is the free pω, 1q-category on the pω, 1q-polygraph rΣs, constructing
S amounts to finding, for any A P rΣsn, a cell SpAq P rΣs˚p1qn`1, satisfying the following relations
(recursively in n):

• B´1 SpAq “ A.

• B`1 SpAq “ NF ˝πpAq

• For 1 ď i ď n and α “ ˘, Bαi`1SpAq “ SpBαi pAqq.

Definition 5.2.3.1. Let A P rΣsn. There exists A1, . . . , Ak P Σi1 ˆ . . . ˆ Σik such that A “

A1 b . . . b Ak. Let f :“ brpA1q b . . . b brpAkq and let u be the source of f . Let ḡ :“ pτu, fq:
we denote by τA the cell Φpḡq P rΣs

˚p1q
n`1.

Lemma 5.2.3.2. Let A P rΣsn. For all 1 ď i ď n` 1,

B
´
i τA “

#

A i “ 1

τ
B
´
i´1A

i ą 1

Note in particular that τ
B
´
i´1A

is well-defined because rΣs is a targets-only pω, 1q-polygraph.

Proof. Let f1, . . . , fn be rewriting steps such that f “ pf1, . . . , fnq. Then B´1 τA “ B
´
1 Φpτu, f1, . . . , fnq “

ΦpB1pτu, f1, . . . , fnqq “ Φpf1, . . . , fnq “ A.
And for i ą 1, B´i τA “ Φpτu, f1, . . . , fi´2, fi, . . . , fnq “ Φpτu,brpB

´
i´1Aqq. Since rΣs is a

targets-only pω, 1q-polygraph, B´i´1A is in rΣsn´1 and so τ
B
´
i´1A

“ Φpτu,brpB
´
i´1Aqq. �

Definition 5.2.3.3. For any pω, kq-polygraph Σ, we denote by Σăn the pn ´ 1, kq-polygraph
obtained by truncating Σ, and by ιn : rΣs

˚p1q
ăn Ñ rΣs˚p1q the canonical inclusion.

Proposition 5.2.3.4. Let Σ be a targets-only terminating Gray pω, 1q-polygraph, and let M “

Σ
Gp0q
0 {Σ

Gp0q
1 be the monoid presented by Σ.

Suppose that there exists a morphism of augmented symmetric simplicial sets

Φ : BrLocpΣqďn Ñ V pΣGp1qq

such that for all A P rΣsďn, ΦpbrpAqq “ A.
For any A P rΣsďn, let τA P ΣGp1q be the cell defined as in Definition 5.2.3.1). Then there

exists a unique natural transformation S from ιn to NF ˝π such that for any A P rΣsm for
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m ă n, the t´1, 0, 1u ˆ t0, 1um-grid CA‚ defined as follows

CAs “

$

’

’

’

’

&

’

’

’

’

%

τA s “ p0, . . . , 0q

ε1A s “ p´1, 0, . . . , 0q

Γ
´,s´p1q
1 Γ`1 SpB

´
1 B

`

s´p1q
τAq sp1q “ ´1

Γ
´,s´p1q
1 SpB`

s´p1q
τAq sp1q ‰ ´1

(5.2.1)

is composable and SpAq “ ComppCA‚ q.

Case n “ 0 We define S inductively on u P rΣs0. If u is a normal form for Σ1 then Spuq “ 1u,
otherwise formula (5.2.1) become simply Spuq “ ε1u ‹1 τu ‹1 SpB

`
1 τuq “ τu ‹1 SpB

`
1 τuq. Denoting

by u1 the target of τu, we have:

Spuq :“ u u1 û
τu Spu1q

Case n “ 1 Let f : u Ñ v P rΣs1. We reason by induction on u “ B´1 f . Let us denote by
u1 the target of τu. Then Formula (5.2.1) gives us the following formula for Spfq. Remark in
particular that the faces satisfy the required conditions:

Spfq :“

u v v

u v û

u1 w û

û û û

f

f

τu

Spu1q

Spvq

Spvq

Spwq

Spwq

τf T1SpB
`
2 τf q

SpB`1 τf q

ε1f Γ`1 Spvq

Γ´1 Spwq

2

1

General case Let us fix an k ą m ą 0, and let A P rΣsm. We reason by induction on the
source u P rΣs0 of A. Suppose that S is defined on any generator of source smaller than u. Let
CA‚ be the grid defined by (5.2.1).

Lemma 5.2.3.5. The t´1, 0, 1u ˆ t0, 1um-grid CA‚ is composable.

Proof. Let us decompose A “ A1 b . . . b Ap, with Aj P Σmj for 1 ď j ď p. Let f̄ i :“ brpAiq,
f̄ “ brpAq and ḡ “ pτu, f̄q.

We need to check that for all s and for all i, B`i C
A
s “ B

´
i C

A
Sis

. Let us first check the case
s “ p´1, 0, . . . , 0q. For i “ 1 we have:

B
`
1 C

A
s “ A “ B´1 τA “ B

´
1 C

A
S1s
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And for i ‰ 1, we have (using the fact that pSisq´p1q “ tiu):

B
`
i C

A
s “ ε1B

`
i´1A

B
´
i C

A
Sis “ B

´
i Γ

´,pSisq
´p1q

1 Γ`1 SpB
´
1 B

`

pSisq´p1q
τAq

“ B
´
i Γ´,i1 Γ`1 SpB

´
1 B

`
i τAq

“ B
´
i ri ÞÑ 1sΓ`1 SpB

`
i´1B

´
1 τAq

“ B
´
1 Γ`1 SpB

`
i´1Aq “ ε1B

´
1 SpB

`
i´1Aq “ ε1B

`
i´1A

Let us now check the case s “ p0, . . . , 0q. Then once again pSisq´p1q “ tiu, and we have:

B
`
i C

A
s “ B

`
i τA

B
´
i C

A
Sis “ B

´
i Γ

´,pSisq
´p1q

1 SpB`
s´p1q

τAq

“ B
´
i ri ÞÑ 1sSpB`i τAq “ B

´
1 SpB

`
i τAq “ B

`
i τA

Suppose now sp1q “ ´1. Then we distinguish two cases.

• If i “ 1 then pS1sq
´p1q “ s´p1q and we have:

B
`
1 C

A
s “ B

`
1 Γ

´,s´p1q
1 Γ`1 SpB

´
1 B

`

s´p1q
τAq “ Γ

´,s´p1q´1
1 B

`
2 Γ`1 SpB

´
1 B

`

s´p1q
τAq

“ Γ
´,s´p1q´1
1 SpB´1 B

`

s´p1q
τAq

B
´
1 C

A
S1s “ B

´
1 Γ

´,s´p1q
1 SpB`

s´p1q
τAq “ Γ

´,s´p1q´1
1 B

´
2 SpB

`

s´p1q
τAq

“ Γ
´,s´p1q´1
1 SpB´1 B

`

s´p1q
τAq

• If i ‰ 1, note first that is´p1q ` 1 ‰ 1, 2. Indeed, if is´p1q ` 1 “ 2 then is´p1q “ 1, and so
t1, . . . i´ 1u Ă s´p1q which is impossible since sp1q “ ´1. So finally we have:

B
`
i C

A
s “ B

`
i Γ

´,s´p1q
1 Γ`1 SpB

´
1 B

`

s´p1q
τAq

“ Γ
´,s´p1qi
1 B

`
is´p1q`1Γ`1 SpB

´
1 B

`

s´p1q
τAq

“ Γ
´,s´p1qi
1 Γ`1 B

`
is´p1q

SpB´1 B
`

s´p1q
τAq

“ Γ
´,s´p1qi
1 Γ`1 SpB

`
is´p1q´1B

´
1 B

`

s´p1q
τAq

“ Γ
´,s´p1qi
1 Γ`1 SpB

´
1 B

`
is´p1q

B
`

s´p1q
τAq

“ Γ
´,s´p1qi
1 Γ`1 SpB

´
1 B

`

i,s´p1q
τAq

B
´
i C

A
Sis “ B

´
i Γ

´,Sis
´p1q

1 Γ`1 SpB
´
1 B

`

Sis´p1q
τAq

“ Γ
´,s´p1qi
1 Γ`1 SpB

´
1 B

`

i,s´p1q
τAq
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Suppose finally that sp1q ‰ ´1 and that s ‰ p0, . . . , 0q. Then we have:

B
`
i C

A
s “ B

`
i Γ

´,s´p1q
1 SpB`

s´p1q
τAq

“ Γ
´,s´p1qi
1 B

`
is´p1q`1SpB

`

s´p1q
τAq

“ Γ
´,s´p1qi
1 SpB`

i,s´p1q
τAq

B
´
i C

A
Sis “ B

´
i Γ

´,Sis
´p1q

1 SpB`
Sis´p1q

τAq

“ Γ
´,s´p1qi
1 SpB`

i,s´p1q
τAq.

So in all cases we have B`i C
A
s “ B

´
i C

A
Sis

, which means that the family CAs is composable. �

Lemma 5.2.3.6. The following equation holds:

Bαi ComppCA‚ q “

$

’

&

’

%

A α “ ´ and i “ 1

NFpAq α “ ` and i “ 1

SpBαi´1Aq i ‰ 1

Proof. We start by the case i “ 1 and α “ ´. Let us define DA
s :“ B

´
1 C

A
p´1,sq. Then

B
´
1 ComppCA‚ q “ ComppDA

‚ q. Moreover, we have, for s ‰ p0, . . . , 0q:

DA
s “ B

´
1 Γ

´,s´p1q`1
1 Γ`1 SpB

´
1 B

`

s´p1q`1
τAq

“ Γ
´,s´p1q
1 ε1B

´
1 SpB

´
1 B

`

s´p1q`1
τAq

“ εs´p1qB
´
1 B

`

s´p1q`1
τA

In particular, for any 1 ď i ď n, DA
Sis
P Impεiq, and DA

‚ is a DA
p0,...,0q-simple grid. By Proposition

5.2.2.7 ComppDA
s q “ DA

p0,...,0q “ B
´
1 C

A
p´1,0,...,0q “ B

´
1 τA “ A.

We now to the case i “ 1 and α “ `. Let us define DA
s :“ B`1 C

A
p1,sq. Then we have:

DA
s “ B

`
1 Γ

´,1,s´p1q`1
1 SpB`

1,s´p1q`1
τAq

“ ε1,s´p1q`1B
`
1 SpB

`

1,s´p1q`1
τAq

“ ε1,s´p1q`1 NFpB`
1,s´p1q`1

τAq “ NFpAq

So finally ComppDf
s q “ NFpAq.

Let now i ‰ 1 and α “ ´. For t an element of t´1, 0, 1u ˆ t0, 1un´1, let us denote by t´i
the element of t´1, 0, 1u ˆ t0, 1un obtained by inserting a 0 in t in the i-th position. Define
DA
t :“ B´i C

A
t´i . Then we have:

• For t “ p0, . . . , 0q, DA
t “ B

´
i τA “ τ

B
´
i´1A

.

• For t “ p´1, 0, . . . , 0q, DA
t “ B

´
i ε1A “ ε1B

´
i´1A.
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• If tp1q “ ´1, then let s “ t´i. Then we also have sp1q “ ´1 and ps´p1qqi “ t´p1q. So:

DA
t “ B

´
i Γ

´,s´p1q
1 Γ`1 SpB

´
1 B

`

s´p1q
τAq

“ Γ
´,t´p1q
1 B

´
is´p1q`1Γ`1 SpB

´
1 B

`

s´p1q
τAq

“ Γ
´,t´p1q
1 Γ`1 B

´
is´p1q

SpB´1 B
`

s´p1q
τAq

“ Γ
´,t´p1q
1 Γ`1 SpB

´
is´p1q´1B

´
1 B

`

s´p1q
τAq

“ Γ
´,t´p1q
1 Γ`1 SpB

´
1 B

´
is´p1q

B
`

s´p1q
τAq

“ Γ
´,t´p1q
1 Γ`1 SpB

´
1 B

`

t´p1q
B
´
i τAq

“ Γ
´,t´p1q
1 Γ`1 SpB

´
1 B

`

t´p1q
τ
B
´
i´1A

q

• Finally, if tp1q ‰ 1, once again let s “ t´i. Then we still have sp1q ‰ ´1 and ps´p1qqi “
t´p1q, so that:

DA
t “ B

´
i Γ

´,s´p1q
1 SpB`

s´p1q
τAq

“ Γ
´,t´p1q
1 B

´
is´p1q

SpB`
s´p1q

τAq

“ Γ
´,t´p1q
1 B

´
is´p1q`1SpB

`

s´p1q
τAq

“ Γ
´,t´p1q
1 SpB´is´p1q

B
`

s´p1q
τAq

“ Γ
´,t´p1q
1 SpB`

t´p1q
B
´
i τAq

“ Γ
´,t´p1q
1 SpB`

t´p1q
τ
B
´
i´1A

q

So finally we have DA
‚ “ C

B
´
i´1A
‚ . So B´i ComppCA‚ q “ ComppC

B
´
i´1A
‚ q “ SpB´i´1Aq.

Finally, let i ‰ 1 and α “ `. For t an element of t´1, 0, 1u ˆ t0, 1un´1, let us denote by
t`i the element of t´1, 0, 1u ˆ t0, 1un obtained by inserting a 1 in t in the i-th position. Define
DA
t :“ B`i C

A
t`i . Then we have:

• If tp1q “ ´1, then let s “ t`i. Then we also have sp1q “ ´1 and s´p1q “ t´p1qiY tiu. So:

DA
t “ B

`
i Γ

´,s´p1q
1 Γ`1 SpB

´
1 B

`

s´p1q
τAq

“ εt´p1qB
`
1 Γ`1 SpB

´
1 B

`

s´p1q
τAq

“ εt´p1qSpB
´
1 B

`

s´p1q
τAq

“ εt´p1qSpB
´
1 B

`

t´p1q
B
`
i τAq

In particular, if t “ p´1, 0, . . . , 0q then DA
t “ SpB´1 B

`
i τAq “ SpB`i´1Aq. Otherwise, if

there exists j such that tpjq “ 1 then let l such that t “ Sjl. Then j P t´p1q and
DA
t “ εjεl´p1qjSpB

´
1 B

`

t´p1q
τ
B
´
i´1A

q. In particular DA
Sj l
P Impεjq.
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• If tp1q ‰ ´1, then let s “ t`i. Then we also have sp1q ‰ ´1 and s´p1q “ t´p1qiY tiu. So:

DA
t “ B

`
i Γ

´,s´p1q
1 SpB`

s´p1q
τAq

“ εt´p1qB
`
1 SpB

`

s´p1q
τAq

“ εt´p1qNFpAq

“ ε1,...,nû

In particular, if t “ Sjl then DA
Sj l
P Impεjq.

So we just proved that DA
‚ is a DA

p´1,0,...,0q-simple grid. By Proposition 5.2.2.7, ComppDA
‚ q “

DA
p´1,0,...,0q “ SpB`i´1Aq, and finally B`i ComppCA‚ q “ SpB`i´1Aq. �
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5.3 Construction of polygraphic resolutions and examples

In this section, we look for applications of Theorem 5.1.3.8. The main difficulty preventing us
from applying this Theorem is that we need to define the map Φ on every local branching, instead
of just considering critical local branchings, as is usual for Squier-like Theorems. In Section 5.3.1,
we address this shortcoming by studying the simplicial monoid of local branchings. The main
result is that (under very mild assumptions) local branchings form a free simplicial monoid, with
generators given by the critical branchings. This means that we actually only need to define the
map Φ on critical branchings.

Armed we this result, we then proceed to give an explicit description of the reduced standard
presentation of a monoid M in Section 5.3.2. As it turns out, the main difficulty lies in proving
that the structure we define is indeed a Gray polygraph. Once this is done, very little work is
needed to prove that it satisfies the hypotheses of Theorem 5.1.3.8. Finally, in Section 5.3.3, we
prove an Extended Existence Theorem similar to 1.5.2.3 in our setting.

5.3.1 Critical branchings

Notation 5.3.1.1. Let Σ be a Gray 1-polygraph. For any local n-branchings f̄ and ḡ, we write
f̄ ” ḡ if f̄ and ḡ are equal up to action of the symmetric group.

Definition 5.3.1.2. Let Σ be a Gray 1-polygraph, and let f̄ be a local n-branching. We say
that f̄ is an aspherical branching if f̄ ” εiḡ, for some local pn´ 1q-branching g.

We say that a non-aspherical branching f̄ is a critical branching if f̄ ‰ 1 and for any
factorisation f̄ ” ḡ b h̄, ḡ “ 1 or h̄ “ 1.

Example 5.3.1.3. For any Gray 1-polygraph Σ, we always have that the critical 0-branchings
correspond to the elements of Σ0, while the critical 1-branchings correspond to the elements of
Σ1.

Definition 5.3.1.4. We define a simplicial monoid N̄ as follows:

• For all n ě 0, N̄n “ Nn.

• Given an n-tuple s P N̄n, and 1 ď i ď n, Bis is given by deleting the i-th entry of s.

• Given an n-tuple s P N̄n, and 1 ď i ď n, εis is given by duplicating the i-th entry of s.

• Given an n-tuple s P N̄n and t P N̄n, sb t is the concatenation of s and t.

• Given an n-tuple s P N̄n, and 1 ď i ă n, τis is given by permuting the entries in position
i and i` 1 of s.

Lemma 5.3.1.5. Let s P Nn be a non-decreasing sequence of natural numbers of length n ě 0,
and let σ and τ be permutations such that for all 1 ď i ď n. Suppose that σ (resp. τ) satisfies
the property: for all 1 ď i ď n, if si “ si`1 then σ ¨ i ă σ ¨ pi` 1q (resp. τ ¨ i ă τ ¨ pi` 1q).

Then if σs “ τs, σ “ τ .

Proof. The equivalence relation defined by i ” j if si “ sj induces a partition of t1, . . . nu. Let
I be an element of this partition. Let us show that σ and τ coincide on I. Let i be the value
of s on I, and let J be the set of indices at which i appears in σs “ τt. Both σ and τ induce
bijections from I to J , and by hypothesis they are even order-preserving maps. But there is at
most one isomorphism of finite totally ordered sets, so σ and τ coincide on I. Since this is true
for any element of our chosen partition of t1, . . . , nu, σ “ τ . �
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Lemma 5.3.1.6. Let s “ p1, . . . , nq P N̄n for some n ě 0. Let m ě 0 and let 1 ď j1 ă
. . . ă jm ă n ` m. Let t “ εjm . . . εj1s. Let 1 ď k ď n ` m. Then tk “ tk`1 if and only if
k P tj1, . . . , jmu.

Proof. We reason by induction on m. For m “ 0, there does not exist k P u such that uk “ uk`1

so the result holds. Suppose now that the property is true at rank m, and let t “ εjm`1 . . . εj1s,
and let t1 “ εjm . . . εj1s. Let I “ t1 ď k ď n`m`1|tk “ tk`1u, and I 1 “ t1 ď k ď n`m`1|t1k “
t1k`1u. Using the induction hypothesis, I “ tj1, . . . , jmu and in particular all the elements of
I 1 are strictly smaller than jm`1. Since εjm`1 consists in duplicating the jm`1-th entry of t1,
I “ I 1 Y tjm`1u “ tj1, . . . , jm`1u. �

Definition 5.3.1.7. Let n ą 0, and let j be a subset of t1, . . . , n´ 1u. We denote by Snpjq the
set of all permutations σ P Sn such that for all i P j, σ ¨ i ă σ ¨ pi` 1q.

Unfolding the definition of a simplicial monoid, we get that a simplicial monoid is the data
of:

• A family of sets Cn, for n ě 0.

• For any n ą 0 and any 1 ď i ď n applications Bi : Cn Ñ Cn`1 and εi : Cn Ñ Cn`1.

• For any n,m ě 0 an application b : Cn ˆ Cm Ñ Cn`m.

• For any n ą 0 and any 1 ď i ă n, an application τi : Cn Ñ Cn.

This data has to verify some axioms. In particular the axioms that do not involve the operations
Bi are the following:

εiεj “

#

εjiεi i ă j

εiεi i “ j
(5.3.1)

$

’

&

’

%

titj “ tjti |ij | ą 2

titi`1ti “ ti`1titi`1

titi “ 1

(5.3.2)

p_b p_b_qq “ pp_b_q b_q (5.3.3)
#

pti_b_q “ tip_b_q
p_b ti_q “ tn`ip_b_q

(5.3.4)

#

pεi_b_q “ εip_b_q
p_b εi_q “ εn`ip_b_q

(5.3.5)

εiτj “

$

’

’

’

’

&

’

’

’

’

%

τj`1εi i ă j

τj`1τjεj`1 i “ j

τjτj`1εj i “ j ` 1

τjεi i ą j ` 1

(5.3.6)

τiεi “ 1 (5.3.7)

We prove the following Proposition about simplicial monoids:

Proposition 5.3.1.8. Let C be a simplicial monoid, and let f : Ci1 ˆ . . . ˆ Cim`1 Ñ Cp be a
formal composite of applications εi, τi and b subject to the relations (5.3.1) to (5.3.7), where
m, p and i1, . . . , im`1 are integers. Then there exists a unique integer n and a unique family of
integers 1 ď j1 ă . . . ă jn ă p and a unique factorisation of f :

f “ σεjn . . . εj1p. . . p_b_q . . .b_q

such that:

• p “ i1 ` . . .` im`1 ` n.

• σ P Sppjq, with j “ tj1, . . . , jnu.
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Proof. For the existence, consider that it is possible to pass all b to the right using Equations
(5.3.4) and (5.3.5), and then all the transpositions ti on the left using Equation (5.3.6). Finally,
the operations b can be rearranged using the associativity, and the operations εi using Equation
(5.3.1). It remains to show that we can choose σ to be in Sppjq.

Suppose that we have a factorisation of f that does not verify this property. Let J be the
set of all j P j such that σ ¨ j ą σ ¨ pj ` 1q, and let k such that jk is the minimum of J . Let
σ1 “ σ ¨ τjk and let us show that σ1εjn . . . εj1 “ σεjm . . . εj1 . We distinguish two cases:

• If jk ` 1 “ jk`1. Using Equation (5.3.6) we have:

σ1εjn . . . εj1 “ σεjn . . . εjk`2
τjkεjk`1εjk . . . εj1

“ σεjn . . . εjk`2
τjkεjkεjk . . . εj1

“ σεjn . . . εjk`2
εjkεjk . . . εj1

“ σεjn . . . εjk`2
εjk`1εjk . . . εj1

• Otherwise, then

σ1εjn . . . εj1 “ σεjn . . . εjk`1
τjkεjk . . . εj1

“ σεjn . . . εjk`1
εjk . . . εj1

Notice that for all i ă jk, σ1 ¨ i “ σ ¨ i and that σ1 ¨ jk “ σ ¨ pjk ` 1q ă σ ¨ jk “ σ1 ¨ pjk ` 1q.
Let us denote by J 1 the set of all j P j such that σ1 ¨ j ą σ1 ¨ pj ` 1q. We just proved that the
minimum of J 1 is greater than that of J . By iterating this process, we progressively get rid of
all the elements in J .

We now move on to the proof of the unicity. Suppose f “ σ1εj1
n1
. . . εj11p. . . p_ b _q . . ._q

where n1 and 1 ď j11 ă . . . ă j1n1 ă p are integers such that p “ i1`. . .`im`1`n
1, and σ P Sppj1q,

with j1 “ tj11, . . . , j
1
n1u. Note first that n1 “ p´ i1 ´ . . .´ im`1 “ n.

Let now s “ p1, . . . , i1 ` . . . ` im`1qq P N̄i1`...`im`1 . Let t “ εjn . . . εj1s and t1 “ εj1
n1
. . . εj11 .

By definition of ε in N, both t and t1 are non-decreasing sequences of integers. Moreover,
σt “ σt1 “ fpp1, . . . , i1q, pi1 ` 1, . . . , i1 ` i2q, . . . , pi1 ` . . . ` im ` 1, . . . , i1 ` . . . ` im`1qq. Let
k P N. Since the application of σ and τ does not modify the number of occurrences of k in t and
t1, k appears the same number of times in t and t1. Since both t and t1 non-decreasing sequences,
they are equal.

So we get that εjn . . . εj1s “ εj1n . . . εj11s. Using Lemma 5.3.1.6, tj1, . . . , jnu “ tj11, . . . , j
1
nu.

Since there is only one way to pick the elements of a finite set of integers in a strictly increasing
fashion, jk “ j1k for all 1 ď k ď n.

On the other hand, we also have that σt “ σ1t. Let 1 ď i ď p such that ti “ ti`1. By Lemma
5.3.1.6, i is in j. Since σ, σ1 P Sppjq, σ ¨ i ă σ ¨ pi` 1q, and the same holds for σ1. So by Lemma
5.3.1.5, σ “ σ1. �

Definition 5.3.1.9. Let Σ be a Gray 1-polygraph. A choice of critical branching up to permu-
tation is the choice, for any critical branching, of a distinguished representative up to ”.

Lemma 5.3.1.10. Let Σ be a Gray 1-polygraph. Then any choice of critical branchings generates
LocBrpΣq.

Proof. Using the action of the symmetric groups, we first get that the set of all local branch-
ings generated by a choice of critical branchings is closed under permutation. In particular, it
therefore contains all the critical branchings. Let us prove by induction on the pair pn, pq that
any n-branching whose source is of length p is generated by the critical branchings.
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If n “ 0 then this corresponds to saying that Σ
Gp0q
0 is generated by Σ0 as a monoid. Take

now any f̄ an n-branching whose source is of length p. If f̄ ” εiḡ, then ḡ is an pn´1q-branching
and by induction hypothesis, ḡ is generated by the critical branchings, and so is f̄ .

Otherwise, then either f̄ is a critical branching and so the result holds, or we can write
f̄ ” ḡb h̄, with ḡ ‰ 1 and h̄ ‰ 1. The only case where we cannot apply the induction hypothesis
to conclude is if ḡ (resp. h̄) is also an n-branching with source of length p. But then h̄ (resp. ḡ)
has to be a 0-branching with source of length 0, that is h̄ “ 1 (resp. h̄ “ 1), but this contradicts
the hypothesis on h̄ (resp. ḡ). �

Definition 5.3.1.11. Let Σ be a Gray 1-polygraph, and let f be a rewriting step. Then f can
be factored uniquely as ugv, with u, v P Σ

Gp0q
0 and g P Σ1. We call u (resp. v) the left-whisker

(resp. right-whisker of g, and denote it by lwpfq (resp. rwpfq).

Lemma 5.3.1.12. Let Σ be a Gray 1-polygraph, and suppose that for all f P Σ1, spfq ‰ 1. Let
f̄1, . . . , f̄n be distinguished critical branchings, and h̄ “ f̄1 b . . . b f̄n P LocBrpΣqp, for some
p ě 1. Let us write h̄ “ ph1, . . . , hpq.

Then for any 1 ď i ‰ j ď p, hi ‰ hj.

Proof. Let j1, . . . , jn such that for all 1 ď i ď n, f̄ i P LocBrpΣqji , and let h̄ “ ph1, . . . , hpq,
where each hi is a rewriting step. For any 1 ď i ď p, let us denote by upiq and vpiq the unique
integers such that 1 ď vpiq ď jupiq and i “ j1 ` . . . ` jupiq´1 ` vpiq. Then by definition of the
product:

hi “ spf̄1q . . . spf̄upiq´1qf̄
upiq
vpiq spf̄upiq`1q . . . spf̄nq

Let now 1 ď i ‰ j ď p, and let us show that hi ‰ hj .

• If upiq “ upjq, then there exists x, y P ΣGp1q such that hi “ xf
upiq
vpiq y and hj “ xf

upiq
vpjqy.

Since f̄upiq is not an aspherical branching, fupiqvpiq ‰ f
upiq
vpjq and so hi ‰ hj .

• Otherwise, suppose without loss of generality that i ă j. Then there exists x, y, z P Σ
Gp0q
0

such that:
hi “ xf̄

upiq
vpiq y spfupjqqz hj “ x spf̄

upiq
vpiq qyf̄

upjq
vpjq z

Then in particular lwphiq “ xlwpf
upiq
vpiq q and lwphjq “ x spf̄upiqqylwpf̄

upjq
vpjq q. But the hy-

pothesis on the source of the branchings implies that lpspf
upiq
vpiq qq ą lplwpf

upiq
vpiq qq. So as a

consequence, lplwphiqq ă lplwphjqq, and so hi ‰ hj .

�

Lemma 5.3.1.13. Let Σ be a Gray 1-polygraph, and suppose that for all f P Σ1, spfq ‰ 1. Let
f̄1, . . . , f̄n and ḡ1, . . . , ḡm be families of distinguished critical branchings. If σ ¨ f̄1 b . . .b f̄n “
τ ¨ pḡ1 b . . .b ḡm), for some σ, τ P Sp, then n “ m, σ “ τ and for all 1 ď i ď n, f̄ i “ ḡi.

Proof. First we prove, that for all 1 ď i ď n, spf̄ iq “ spḡiq. Indeed, otherwise, let i minimal
such that spf̄ iq ‰ spḡiq. Note first that necessarily m ě i, so that ḡi is well-defined. Indeed, if
m “ i ´ 1 the hypothesis on the source of the rewriting steps gives us that lpspf̄ iqq ą 0 and so
we get the following contradiction (where u “ spf̄1q . . . spf̄nq):

lpuq “ lpspf̄1q . . . spf̄nqq ě lpspf̄1q . . . spf̄ iqq ą lpspf̄1q . . . spf̄ i´1qq “ lpspḡ1q . . . spḡi´1qq “ lpuq.

Moreover, the fact that i is minimal implies that lpf̄ iq ‰ lpḡiq. Without loss of generality,
suppose that lpspf̄ iqq ă lpspḡiqq, such that spḡiq “ spf̄ iqv for some v P Σ

Gp1q
0 , v ‰ 1. Note that
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in particular lpspḡiqq ą 1, so that ḡi is not a 0-branching. Let j ą 0 such that ḡi “ pgi1, . . . , gijq.
Let j1, . . . , jn such that for all 1 ď k ď n, f̄k P LocBrpΣqjk , and let h̄ “ σ ¨ pf̄1 b . . . b f̄nq “
ph1, . . . , hpq, where each hk is a rewriting step. For any 1 ď k ď p, by the definition of the
product, there exist integers upkq and vpkq such that

hk “ spf̄1q . . . spf̄upkq´1qf̄
upkq
vpkq spf̄upkq`1q . . . spf̄nq

Moreover, using the hypothesis on the source of the rewriting steps, upkq is completely charac-
terised by the fact that lpspf̄1qq ` . . . ` lpspf̄upkq´1qq ď lplwphkqq ă lpspf̄1qq ` . . . ` lpspf̄upkqqq.
So upkq is uniquely determined. And since f̄upkq is not aspherical, so is vpkq. Let 1 ď k ď j.
There exists k1 such that spḡ1q . . . spḡi´1qgik spḡiq . . . spḡmq “ xgiky “ hk1 , with x, y P Σ

Gp1q
0 . Then

two cases are possible:

• If upk1q “ i. Then hk1 “ spḡ1q . . . spḡi´1qg1 spf̄ i`1q . . . spf̄nq “ xg1vz, with z P Σ
Gp0q
0 and g1

a rewriting step. So gik “ g1v and y “ vz.

• Otherwise, then upk1q ą i and hk1 “ spf̄1q . . . spf̄upk
1q´1qg1 spf̄upk

1q`1q . . . spf̄nq “ x spf̄ iqz1g
1z2,

with z1, z2 P Σ
Gp0q
0 and g1 a rewriting step. So gik “ spf̄ iqz1g

2 for some rewriting step g2.

In the end, any rewriting step gik can be factored either in something of the form g1v or in
the form spf̄ iqg1. Since moreover spḡiq “ spf̄ iqv, we get that ḡi is a Peiffer branching, which
contradicts the hypothesis on ḡi. So in the end we get that n ď m and for all 1 ď i ď n
spf̄ iq “ spḡiq. By symmetry, we get that n “ m.

Notice finally that because of the characterisation of upkq we gave earlier, we have that for any
1 ď k ď n, there exists some (unique) v1pkq such that hk “ spf1q . . . spf̄upkq´1qg

upkq
v1pkq spf̄upkq`1q . . . spf̄nq.

As a consequence, we get that for all 1 ď k ď n, tfk1 , . . . , fkjku “ tg
k
1 , . . . , g

k
jk
u. So ḡi ” f̄ i, but

since they are both distinguished critical branchings, f̄ i “ ḡi. Finally, because of Lemma
5.3.1.12, for any i ‰ j hi ‰ hj , and so σ “ τ . �

Theorem 5.3.1.14. Let Σ be a monoidal 1-polygraph, and suppose that for all f P Σ1, spfq ‰ 1.
Then LocBrpΣq is freely generated by any choice of critical branchings up to permutation.

Proof. We already know from Lemma 5.3.1.10 that LocBrpΣq is generated by any choice of
critical branchings. Using Proposition 5.3.1.8, we need to show that for any p-branching f̄ ,
there exists a unique m P N, a unique sequence of integers i1, . . . , im`1, a unique family of
distinguished critical branchings f̄1, . . . , f̄m`1, with f̄k P LocBrpΣqk, unique integers n and
1 ď j1 ă . . . ă jn ă p and a unique σ P Sp such that:

f̄ “ σ ¨ εjn . . . εj1pf̄
1 b . . .b f̄m`1q.

Together with p “ i1` . . .` im`1`n and σ P Sppjq, where j “ tj1, . . . , jnu. Let us suppose that
we have a second such decomposition f̄ “ σ1 ¨ εj1

n1
. . . εj11pf̄

11b . . .b f̄ 1m
1`1q, and let us show that

they are equal.
Note first that by definition of the operations εi and of teh action of σ, we have equalities

that the set of rewriting steps appearing in f̄ is the same as the set of rewriting steps appearing
in f̄1 b . . .b f̄m`1, and symmetrically as the set of branchings appearing in f̄ 11 b . . .b f̄ 1m1`1.
Since all the rewriting steps appearing in f̄1b. . .bf̄m`1 or f̄ 11b. . .bf̄ 1m1`1 are distinct (Lemma
5.3.1.12 ), there exists a permutation τ such that f̄1 b . . .b f̄m`1 “ τ ¨ pf̄ 11 b . . .b f̄ 1m

1`1q. By
Lemma 5.3.1.13, we get that τ “ 1, m1 “ m and for all 1 ď i ď m` 1, f̄ i “ f̄ 1i.

The proof of the uniqueness of the jk and of σ is similar to the one in the proof of Proposition
5.3.1.8, using the fact that all the rewriting steps appearing are distinct. �
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Remark 5.3.1.15. The condition that for all f P Σ1, spfq ‰ 1 is really necessary. Indeed, if
f is such an rewriting step, then we have ε1f “ pf, fq “ f b f . This condition however is very
mild since we are interested in terminating polygraphs, which will all verify this condition.

Definition 5.3.1.16. A good choice of critical branching is a choice of critical branchings such
that for all distinguished critical n-branching f̄ and all 1 ď i ď n, there exists distinguished
critical branchings f̄1, . . . , f̄p such that Bif̄ “ f̄1 b . . .b f̄p.

Lemma 5.3.1.17. Let Σ be a Gray 1-polygraph such that for all f P Σ1, spfq ‰ 1. There exists
a good choice of critical branchings in LocBrpΣq.

Proof. For n “ 0, critical 0-branchings correspond to the elements of Σ0. The equivalence classes
are trivial, so we choose all of those as distinguished ones. For n “ 1 the critical 1-branchings are
the elements of Σ1, and once again the equivalence classes are trivial. The condition that there
exists distinguished critical 0-branchings f̄1, . . . , f̄p such that B1f̄ “ f̄1b . . .b f̄p correspond to
the fact that B1f̄ is a word on Σ0.

We now order rewriting steps by saying that for all f, g P Σ1 and all x, y, z P Σ
Gp1q
0 ,

xfyspgqz ă x spfqygz. Note that in particular this is anti-reflexive because if xfyspfqz ă
x spfqyfz then in particular x “ x spfqy and so spfq “ 1, which is impossible by hypothesis.
Let us now choose a completion of ă into a total ordering on rewriting steps. We say that a
non-aspherical branching f̄ is well-ordered if for any i ă j, fi ă fj . In particular if f̄1 and f̄2 are
well-ordered, then so is f̄1b f̄2. Define the distinguished critical branchings as the well-ordered
ones, and let us show that this is a good choice of critical branchings. First because the order
is total it is a choice of critical branchings.

Next we reason inductively on n to show that for any 1 ď i ď n, and any n-branching f̄ ,
Bif̄ is of the required form. Since a choice of critical branchings freely generate all branchings
we know that we can write Bif̄ “ σ ¨ εjp . . . ε1pf̄

1 b . . . b f̄mq, with f̄k all distinguished critical
branchings. Since f̄ is a critical branching, no rewriting step appears twice in f̄ and in particular
this also holds for Bif̄ . So p “ 0 and Bif̄ “ σ ¨ pf̄1b . . .b f̄mq. Since all the f̄ i are well-ordered,
so is f̄1b . . .b f̄m, and so is Bif̄ (because f̄ was). But then the only permutation that respects
the order is σ “ 1.

�

Note that the proof of Lemma 5.3.1.17 actually proves the following:

Proposition 5.3.1.18. Let Σ be a Gray 1-polygraph such that for all f P Σ1, spfq ‰ 1, and
let ă be a total ordering on rewriting steps such that for all f, g P Σ1 and all x, y, z P Σ

Gp1q
0 ,

xfyspgqz ă x spfqygz

Define a non-aspherical branching f̄ “ pf1, . . . , fnq to be well-ordered if for all i ă j, fi ă fj,
and define the distinguished critical branchings as the well-ordered ones.

This defines a good choice of critical branchings in LocBrpΣq.

Remark 5.3.1.19. In particular, if Σ is a reduced Gray 1-polygraph, then the left-most ordering
on rewriting steps satisfies the hypothesis of Proposition 5.3.1.18. The left-most ordering is
defined by: for all rewriting steps f and g of same source, f ă g if lplwpfqq ă lplwpgqq.

5.3.2 The reduced standard resolution of a monoid

In this section, we give an explicit description of the reduced standard resolution of a monoid
M . In order to clarify notations, we reserve juxtaposition to denote the multiplication in M .
Product in the free Gray-monoid will be denoted by b.
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Definition 5.3.2.1. Let M be a monoid. We define a Gray pω, 1q-polygraph RStdpMq as
follows:

• For any n ě 0, RStdpMqn consists of pn`1q-tuples pm1, . . . ,mn`1q of elements ofMzt1u,
that we denote pm1| . . . |mn`1q.

• The faces are given for 1 ď i ď n by:

B
´
i pm1| . . . |mn`1q “ pm1| . . . |miq b pmi`1| . . . |mn`1q

B
`
i pm1| . . . |mn`1q “

$

’

’

’

’

&

’

’

’

’

%

pm1| . . . |mimi`1|mi`2| . . . |mn`1q mimi`1 ‰ 1

ε1pm3| . . . |mn`1q i “ 1 and m1m2 “ 1

Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q 2 ď i ď n´ 1 and mimi`1 “ 1

εn´1pm1| . . . |mn´1q i “ n and mnmn`1 “ 1

with B`1 pm1|m2q “ 1 (the unit of the Gray monoid RStdpMq) if m1m2 “ 1 (the unit of
the monoid M .

Proof. Let us prove that RStdpMq does indeed form a Gray pω, 1q-polygraph. Indeed, we have,
for j ą i:

B
´
j´1B

´
i pm1| . . . |mn`1q “ B

´
j´1pm1| . . . |miq b pmi`1| . . . |mn`1q

“ pm1| . . . |miq b pmi`1| . . . |mjq b pmj`1| . . . |mn`1q

“ B
´
i pm1| . . . |mjq b pmj`1| . . . |mn`1q

“ B
´
i B

´
j pm1| . . . |mn`1q

If mjmj`1 ‰ 1:

B
`
j´1B

´
i pm1| . . . |mn`1q “ B

`
j´1pm1| . . . |miq b pmi`1| . . . |mn`1q

“ pm1| . . . |miq b pmi`1| . . . |mjmj`1|mj`2| . . . |mn`1q

“ B
´
i pm1| . . . |mjmj`1|mj`2| . . . |mn`1q

“ B
´
i B

`
j pm1| . . . |mn`1q

If mjmj`1 “ 1 and j “ i` 1:

B
`
i B

´
i pm1| . . . |mn`1q “ B

`
i pm1| . . . |miq b pmi`1| . . . |mn`1q

“ pm1| . . . |miq b B
`
1 pmi`1| . . . |mn`1q

“ pm1| . . . |miq b ε1pmi`3| . . . |mn`1q

“ εipm1| . . . |miq b pmi`3| . . . |mn`1q

“ εiB
´
i pm1| . . . |mi|mi`3| . . . |mn`1q

“ B
´
i Γ`i pm1| . . . |mi|mi`3| . . . |mn`1q

“ B
´
i B

`
i`1pm1| . . . |mn`1q
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If mjmj`1 “ 1 and i` 2 ď j ď n´ 1:

B
`
j´1B

´
i pm1| . . . |mn`1q “ B

`
j´1pm1| . . . |miq b pmi`1| . . . |mn`1q

“ pm1| . . . |miq b Bj´ipmi`1| . . . |mn`1q

“ pm1| . . . |miq b Γ`j´i´1pmi`1| . . . |mj´1|mj`2| . . . |mnq

“ Γ`j´1ppm1| . . . |miq b pmi`1| . . . |mj´1|mj`2| . . . |mnq

“ Γ`j´1B
´
i pm1| . . . |mj´1|mj`2| . . . |mnq

“ B
´
i Γ`j pm1| . . . |mj´1|mj`2| . . . |mnq

“ B
´
i B

`
j`1pm1| . . . |mnq

If mjmj`1 “ 1 and j “ n:

B
`
n´1B

´
i pm1| . . . |mn`1q “ B

`
n´1pm1| . . . |miq b pmi`1| . . . |mn`1q

“ pm1| . . . |miq b B
`
n´ipmi`1| . . . |mn`1q

“ pm1| . . . |miq b εn´i´1pmi`1| . . . |mn´1q

“ εn´2pm1| . . . |miq b pmi`1| . . . |mn´1q

“ εn´2B
´
i pm1| . . . |mn´1q

“ B
´
i εn´1pm1| . . . |mn´1q

“ B
´
i B

`
n pm1| . . . |mn`1q

If mimi`1 ‰ 1:

B
´
j´1B

`
i pm1| . . . |mn`1q “ B

´
j´1pm1| . . . |mimi`1|mi`2| . . . |mn`1q

“ pm1| . . . |mimi`1|mi`2| . . . |mjq b pmj`1| . . . |mn`1q

“ B
`
i pm1| . . . |mi|mi`1|mi`2| . . . |mjq b pmj`1| . . . |mn`1q

“ B
`
i B

´
j pm1| . . . |mn`1q

If mimi`1 “ 1 and i “ 1 and j “ 2:

B
´
1 B

`
1 pm1| . . . |mn`1q “ B

´
1 ε1pm3| . . . |mn`1q

“ pm3| . . . |mn`1q

“ B
`
1 pm1|m2q b pm3| . . . |mn`1q

“ B
`
1 B

´
2 pm1| . . . |mn`1q

If mimi`1 “ 1 and i “ 1 and j ą 2:

B
´
j´1B

`
1 pm1| . . . |mn`1q “ B

´
j´1ε1pm3| . . . |mn`1q

“ ε1B
´
j´2pm3| . . . |mn`1q

“ ε1ppm3| . . . |mjq b pmj`1| . . . |mn`1qq

“ pε1pm3| . . . |mjqq b pmj`1| . . . |mn`1q

“ pB
`
1 pm1| . . . |mjqq b pmj`1| . . . |mn`1q

“ B
`
1 ppm1| . . . |mjq b pmj`1| . . . |mn`1qq

“ B
`
1 B

´
j pm1| . . . |mn`1q
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If mimi`1 “ 1 and 2 ď i ď n´ 1 and j “ i` 1

B
´
i B

`
i pm1| . . . |mn`1q “ B

´
i Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ εi´1B
´
i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ εi´1pm1| . . . |mi´1q b pmi`2| . . . |mn`1q

“ B
`
i pm1| . . . |mi`1q b pmi`2| . . .mn`1q

“ B
`
i B

´
i`1pm1| . . . |mn`1q

If mimi`1 “ 1 and 2 ď i ď n´ 1 and j ě i` 2

B
´
j´1B

`
i pm1| . . . |mn`1q “ B

´
j´1Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ Γ`i´1B
´
j´2pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mjq b pmj`1| . . . |mn`1q

“ B
`
i pm1| . . . |mjq b pmj`1| . . . |mn`1q

“ B
`
i B

´
j pm1| . . . |mn`1q

If mimi`1 ‰ 1 and mjmj`1 ‰ 1 and j “ i` 1:

B
`
i B

`
i pm1| . . . |mn`1q “ B

`
i pm1| . . . |mi´1|mimi`1|mi`2| . . . |mn`1q

“ pm1| . . . |mi´1|mimi`1mi`2|mi`3| . . . |mn`1q

“ B
`
i pm1| . . . |mi|mi`1mi`2|mi`3| . . . |mn`1q

“ B
`
i B

`
i`1pm1| . . . |mn`1q

If mimi`1 ‰ 1 and mjmj`1 ‰ 1 and j ą i` 1:

B
`
j´1B

`
i pm1| . . . |mn`1q “ B

`
j´1pm1| . . . |mi´1|mimi`1|mi`2| . . . |mn`1q

“ pm1| . . . |mi´1|mimi`1|mi`2| . . . |mj´1|mjmj`1|mj`2| . . . |mn`1q

“ B
`
i pm1| . . . |mj´1|mjmj`1|mj`2| . . . |mn`1q

“ B
`
i B

`
j pm1| . . . |mn`1q

If mimi`1 “ 1 and i “ 1 and j “ 2:

B
`
1 B

`
1 pm1| . . . |mn`1q “ B

`
1 ε1pm3| . . . |mn`1q

“ pm3| . . . |mn`1q

“ B
`
1 pm1|m2m3|m4| . . . |mn`1q

“ B
`
1 B

`
2 pm1| . . . |mn`1q

If mimi`1 “ 1 and i “ 1 and mjmj`1 ‰ 1 and j ą 2:

B
`
j´1B

`
1 pm1| . . . |mn`1q “ B

`
j´1ε1pm3| . . . |mn`1q

“ ε1B
`
j´2pm3| . . . |mn`1q

“ ε1pm3| . . . |mj´1|mjmj`1|mj`2| . . . |mn`1q

“ B
`
1 pm1| . . . |mj´1|mjmj`1|mj`2| . . . |mn`1q

“ B
`
1 B

`
j pm1| . . . |mn`1q

If mimi`1 “ 1 and 2 ď i ď n´ 1 and j “ i` 1:

B
`
i B

`
i pm1| . . . |mn`1q “ B

`
i Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ B
`
i pm1| . . . |mi|mi`1mi`2|mi`3 . . . |mn`1q

“ B
`
i B

`
i`1pm1| . . . |mn`1q
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If mimi`1 “ 1 and 2 ď i ď n´ 1 and mjmj`1 ‰ 1 and j ą i` 1.

B
`
j´1B

`
i pm1| . . . |mn`1q “ B

`
j´1Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ Γ`i´1B
`
j´2pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mj´1|mjmj`1|mj`2| . . . |mn`1q

“ B
`
i pm1| . . . |mj´1|mjmj`1|mj`2| . . . |mn`1q

“ B
`
i B

`
j pm1| . . . |mn`1q

If i “ 1 and mjmj`1 “ 1 and j “ 2

B
`
1 B

`
1 pm1| . . . |mn`1q “ B

`
1 pm1m2| . . . |mn`1q

“ pm1|m4| . . . |mn`1q

“ B
`
1 ε1pm1|m4| . . . |mn`1q

“ B
`
i B

`
2 pm1| . . . |mn`1q

If i ‰ 1, n´ 1 and mjmj`1 “ 1 and j “ i` 1

B
`
i B

`
i pm1| . . . |mn`1q “ B

`
i pm1| . . . |mi´1|mimi`1|mi`2| . . . |mn`1q

“ pm1| . . . |mi|mi`3| . . . |mn`1q

“ B
`
i Γ`i pm1| . . . |mi|mi`3| . . . |mn`1q

“ B
`
i B

`
i`1pm1| . . . |mn`1q

If i “ n´ 1 and mjmj`1 “ 1 and j “ n.

B
`
n´1B

`
n´1pm1| . . . |mn`1q “ B

`
n´1pm1| . . . |mn´2|mn´1mn|mn`1q

“ pm1| . . . |mn´1q

“ B
`
n´1εn´1pm1| . . . |mn´1q

“ B
`
n´1B

`
n pm1| . . . |mn`1q

If mimi`1 ‰ 1 and mjmj`1 “ 1 and i` 2 ď j ď n´ 1

B
`
j´1B

`
i pm1| . . . |mnq “ B

`
j´1pm1| . . . |mi´1|mimi`1|mi`2| . . . |mn`1q

“ Γ`j´2pm1| . . . |mi´1|mimi`1|mi`2| . . . |mj´1|mj`2| . . . |mn`1q

“ Γ`j´2B
`
i pm1| . . . |mj´1|mj`2| . . . |mn`1q

“ B
`
i Γ`j´1pm1| . . . |mj´1|mj`2| . . . |mn`1q

“ B
`
i B

`
j pm1| . . . |mn`1q

If mimi`1 ‰ 1 and mjmj`1 “ 1 and i` 2 ď j “ n

B
`
n´1B

`
i pm1| . . . |mnq “ B

`
n´1pm1| . . . |mi´1|mimi`1|mi`2| . . . |mn`1q

“ εn´2pm1| . . . |mi´1|mimi`1|mi`2| . . . |mn´1q

“ εn´2B
`
i pm1| . . . |mn´1q

“ B
`
i εn´1pm1| . . . |mn´1q

“ B
`
i B

`
n pm1| . . . |mn`1q
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If mimi`1 “ 1 and mjmj`1 “ 1 and i “ 1 and 3 ď j ď n´ 1

B
`
j´1B

`
1 pm1| . . . |mn`1q “ B

`
j´1ε1pm3| . . . |mn`1q

“ ε1B
`
j´2pm3| . . . |mn`1q

“ ε1Γ`j´3pm3| . . . |mj´1|mj`2| . . . |mn`1q

“ Γ`j´2ε1pm3| . . . |mj´1|mj`2| . . . |mn`1q

“ Γ`j´2B
`
1 pm1| . . . |mj´1|mj`2| . . . |mn`1q

“ B
`
1 Γ`j´1pm1| . . . |mj´1|mj`2| . . . |mn`1q

“ B
`
1 B

`
j pm1| . . . |mn`1q

If mimi`1 “ 1 and mjmj`1 “ 1 and i “ 1 and 3 ď j “ n

B
`
n´1B

`
1 pm1| . . . |mn`1q “ B

`
n´1ε1pm3| . . . |mn`1q

“ ε1B
`
n´2pm3| . . . |mn`1q

“ ε1εn´3pm3| . . . |mn´1q

“ εn´2ε1pm3| . . . |mn´1q

“ εn´2B
`
1 pm1| . . . |mn´1q

“ B
`
1 εn´1pm1| . . . |mn´1q

“ B
`
1 B

`
n pm1| . . . |mnq

If mimi`1 “ 1 and mjmj`1 “ 1 and 2 ď i and i` 2 ď j ď n´ 1:

B
`
j´1B

`
i pm1| . . . |mn`1q “ B

`
j´1Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ Γ`i´1B
`
j´2pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ Γ`i´1Γ`j´3pm1| . . . |mi´1|mi`2| . . . |mj´1|mj`2| . . . |mn`1q

“ Γ`j´2Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mj´1|mj`2| . . . |mn`1q

“ Γ`j´2B
`
i pm1| . . . |mj´1|mj`2| . . . |mn`1q

“ B
`
i Γ`j´1pm1| . . . |mj´1|mj`2| . . . |mn`1q

“ B
`
i B

`
j pm1| . . . |mn`1q

If mimi`1 “ 1 and mjmj`1 “ 1 and 2 ď i and i` 2 ă j “ n:

B
`
n´1B

`
i pm1| . . . |mn`1q “ B

`
n´1Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ Γ`i´1B
`
n´2pm1| . . . |mi´1|mi`2| . . . |mn`1q

“ Γ`i´1εn´3pm1| . . . |mi´1|mi`2| . . . |mn´1q

“ εn´2Γ`i´1pm1| . . . |mi´1|mi`2| . . . |mn´1q

“ εn´2B
`
i pm1| . . . |mn´1q

“ B
`
i εn´1pm1| . . . |mn´1q

“ B
`
i B

`
n pm1| . . . |mn`1q
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If mimi`1 “ 1 and mjmj`1 “ 1 and i` 2 “ j “ n:

B
`
n´1B

`
n´2pm1| . . . |mn`1q “ B

`
n´1Γ`n´3pm1| . . . |mn´3|mn|mn`1q

“ Γ`n´3B
`
n´2pm1| . . . |mn´3|mn|mn`1q

“ Γ`n´3εn´3pm1| . . . |mn´3q

“ εn´2εn´3pm1| . . . |mn´3q

“ εn´2B
`
n´2pm1| . . . |mn´1q

“ B
`
n´2εn´1pm1| . . . |mn´1q

“ B
`
n´2B

`
n pm1| . . . |mn`1q

�

Lemma 5.3.2.2. The Gray-polygraph RStdpMq is a terminating targets-only Gray-polygraph.
The monoid presented by RStdpMq is M .

For any pm1| . . . |mn`1q P RStdpMqn, brpm1| . . . |mn`1q is the n-branching given by, for
1 ď k ď n:

brpm1| . . . |mn`1qk “ m1 b . . .bmn´k´1 b pmn´k`1|mn´k`2q bmn´k`2 b . . .bmn`1

Moreover, those form a good choice of critical branchings.

Proof. Let m1,m2 P M , with m1,m2 ‰ 1. Then lpB´1 pm1|m2qq “ 2 ą 1 ě lpB`1 pm1|m2qq. So
RStdpMq is terminating. Moreover, the formula B´i pm1| . . . |mn`1q “ pm1| . . . |miqbpmi`1| . . . |mn`1q

shows that it is targets-only.
Finally, recall that the standard presentation of M is the following:

xpmq PM |pm1q b pm2q “ pm1m2q, p1q “ 1y

In particular, using the relation p1q “ 1 we can remove p1q from the generators. Moreover, in
this case the relations pm1q b pm2q “ pm1m2q become redundant whenever m1 “ 1 or m2 “ 1.
In the end, we get RStdpMq0 as set of generators, and RStdpMq1 as generating relations. So
the monoid presented by RStdpMq is indeed M .

We prove the formula for brpm1| . . . |mn`1q by induction on n. For n “ 1 this just means
that brpm1|m2q “ pm1|m2q. For general n ą 1, we have:

brpm1| . . . |mn`1q “ pbrpB
´
1 pm1| . . . |mn`1qq,brpB

´
n pm1| . . . |mn`1qqn´1q

So for 1 ď k ă n we get brpm1| . . . |mn`1qk “ brpB´1 pm1| . . . |mn`1qqk “ m1bbrpm2| . . . |mn`1qk.
By induction, we finally get the required formula:

brpm1| . . . |mn`1qk “ m1 bm2 b . . .bmn´k´1 b pmn´k`1|mn´k`2q bmn´k`2 b . . .bmn`1

And for k “ n we have brpm1| . . . |mn`1qn “ brpB´n pm1| . . . |mn`1qqn´1 “ pm1|m2qbm3b . . .b
mn`1, as required.

Finally, up to permutations, all the critical branchings are of this form, making the family
brpm1| . . . |mn`1q a choice of critical branchings. It is a good choice thanks to the equation
Bibrpm1| . . . |mn`1q “ brpm1| . . . |miq b brpmi`1| . . . |mn`1q. �

Theorem 5.3.2.3. The Gray monoid RStdpMq forms a polygraphic resolution of M .
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Proof. The only hypothesis missing to apply Theorem 5.1.3.8 is the description of a morphism
of simplicial monoid

Φ : LocBrpRStdpMqq Ñ V pRStdpMqGp1qq.

By Proposition 5.3.1.14 together with Lemma 5.3.2.2, LocBrpRStdpMqq is freely gener-
ated by the branchings brpm1| . . . |mn`1q, so it is enough to define Φ on those. We define
Φpbrpm1| . . . |mn`1qq :“ pm1| . . . |mn`1q, so that Φ also satisfies the required equation. Theo-
rem 5.1.3.8 therefore allows us to conclude. �

5.3.3 Squier’s resolution of a monoid

In this section, we suppose given a convergent Gray 1-polygraph Σ presenting a monoid M .
We show how it is possible to extend this data in a polygraphic resolution of M satisfying the
hypothesis of Theorem 5.1.3.8. We suppose chosen a good choice of critical branchings in BrpΣq,
which is possible by Lemma 5.3.1.17.

Definition 5.3.3.1. Let C be a cubical ω-category, a half-n-shell in C is the data of Ā “

pA1, . . . , Anq P Cn´1 such that for all j ą i, B´j´1Ai “ B
´
i Aj .

We denote Ai by B´i Ā. For any half-n-shell Ā in C, and 1 ď i ď n, we define a half pn´1q-shell
B
`
i Ā by putting:

pB
`
i Āqj “

#

B
`
j Ai´1 1 ď j ă i

B
`
j Ai`1 i ď j ď n´ 1

By definition, we have for any half n-shell Ā and 1 ď i ‰ j ď n: BαjiB
β
i Ā “ B

β
ij
Bαi Ā.

Proposition 5.3.3.2. Let Σ be a terminating Gray pω, 1q-polygraph. Suppose that there exists
a natural transformation S : ιn ñ NF ˝π.

Let 1 ď p ď n, and let Ā be a half p-shell in rΣs˚p1q. Define the following t0, 1up grid in
rΣs˚p1q:

CsrĀs “

#

Γ
`,s´p0q
1 SpB´

s´p0q
Āq s ‰ p1, . . . , 1q

εp1NFpπĀq s “ p1, . . . , 1q

Then C‚rĀs is a composable grid. Moreover, we have for all 1 ď i ď p:

Bαi ComppC‚rĀsq “

#

B
´
i Ā α “ ´

C‚rB
`
i Ās α “ `

Proof. First, we show C‚rĀs is a composable grid:
Let s P t0, 1up and suppose that spiq “ 0 for some 1 ď i ď p. We distinguish two cases. If

spjq “ 1 for every j ‰ i then Γ
`,s´p0q
1 “ ri ÞÑ 1s and:

B
`
i CsrĀs “ B

`
i Γ

`,s´p0q
1 SpB´

s´p0q
Āq “ B`1 SpB

´
i Āq “ NFpπpAiqq “ εp´1

1 û

Since necessarily Sis “ p1, . . . , 1q, we have on the other hand B`i Cs “ B
´
i CSis. Suppose now

that there exists j ‰ i such that spjq “ 0. Then:

B
`
i C‚rĀs “ B

`
i Γ

`,s´p0q
1 SpB´

s´p0q
Āq

“ Γ
`,ps´p0qztiuqi
1 SpB´

s´p0q
Āq “ Γ

`,pSisq
´p0qi

1 SpB´
s´p0q

Āq
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B
´
i C‚rĀs “ B

´
i Γ

`,pSisq
´p0q

1 SpB´
pSisq´p0q

Āq

“ Γ
`,pSisq

´p0qi
1 B

´
i
pSisq

´p0q`1SpB
´

pSisq´p0q
Āq

“ Γ
`,pSisq

´p0qi
1 SpB´i

pSisq
´p0q
B
´

pSisq´p0q
Āq

“ Γ
`,pSisq

´p0qi
1 SpB´

s´p0q
Āq

So finally C‚ is composable. Let D‚ be the composable t0, 1up´1 grid defined by Dt “ B
´
i Ct´i

(recall that t´i consists in inserting 0 in the i-th position of t). Then we have B´i ComppC‚q “
ComppD‚q, and we have:

Dt “ B
´
i Ct´i “ B

´
i Γ

`,t´
´ip0q

1 SpB´
t´
´ip0q

Āq

We distinguish two cases. If t´p0q “ H then Γ
`,t´

´ip0q

1 “ ri ÞÑ 1s and so Dt “ B
´
1 SpB

´
i Āq “ B

´
i Ai.

Otherwise, then t can be written as Pjs for some j ‰ i , and then DPjs P Impεjq. In a manner
symmetric to that of simple grids, we therefore have that ComppD‚q “ Ai, which proves that
ComppC‚q satisfies the first condition.

For the second condition, let D‚ be the composable t0, 1up´1 grid defined by Dt “ B
´
i Ct`i

(recall that t`i consists in inserting 1 in the i-th position of t. Then we have B`i ComppC‚q “
ComppD‚q, and we have, if t ‰ p1, . . . , 1q:

Dt “ B
`
i Ct`i “ B

`
i Γ

`,t´
`ip0q

1 SpB´
t´
`ip0q

Āq

“ B
`
i Γ

`,pt´p0qqi

1 SpB´
pt´p0qqi

Āq

“ Γ
`,t´p0q
1 B

`
it´p0q`1SpB

´

pt´p0qqi
Āq

“ Γ
`,t´p0q
1 SpB`it´p0q

B
´

pt´p0qqi
Āq

“ Γ
`,t´p0q
1 SpB´

pt´p0qq
B
`
i Āq “ CtrB

`
i Ās

And similarly if t “ p1, . . . , 1q then Dt “ εp´1
1 u “ CtrB

`
i Ās. So finally B`i ComppC‚q “

ComppD‚q “ ComppC‚rB
`
i Asq.

�

The previous Proposition expressed how the existence of S assured that any half-p-shell has
a filling, for p ď n. The next Lemma asserts on the other hand that half-pn ` 1q-shells can be
completed into an pn` 1q-shell.

Lemma 5.3.3.3. Let Σ be a terminating Gray pω, 1q-polygraph. Suppose that there exists a
natural transformation S : ιn ñ NF ˝π.

Let Ā be a half pn` 1q-shell in rΣs˚p1q. There exists an pn` 1q-shell B̄ in rΣs˚p1q such that
B
´
i B̄ “ B

´
i Ā for all 1 ď i ď n` 1.
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Proof. Using Proposition 5.3.3.2, let B`i “ ComppC‚rB
`
i Asq. Then we have, for j ą i:

B
´
j´1B

´
i B̄ “ B

´
j´1B

´
i Ā “ B

´
i B

´
j B̄

B
´
j´1B

`
i B̄ “ B

´
j´1ComppC‚rB

`
i Āsq “ B

´
j´1B

`
i Ā

“ B
`
i B

´
j Ā “ B

`
i B

´
j B̄

B
`
j´1B

´
i B̄ “ B

`
j´1B

´
i Ā “ B

`
j´1B

´
i ComppC‚rĀsq

“ B
´
i B

`
j ComppC‚rĀsq “ B

´
i ComppC‚rB

`
j Āsq “ B

´
i B

`
j B̄

B
`
j´1B

`
i B̄ “ B

`
j´1ComppC‚rB

`
i Āsq “ ComppC‚rB

`
j´1B

`
i Asq

“ ComppC‚rB
`
i B

`
j Asq “ B

`
i B

`
j B̄

�

Proposition 5.3.3.4. Let Σ be a targets-only terminating Gray pn, 1q-polygraph, and let M “

Σ
Gp0q
0 {Σ

Gp0q
1 be the monoid presented by Σ. Suppose that there exists a natural transformation

S : ιn ñ NF ˝π and a morphism of augmented symmetric simplicial sets Φ : BrLocpΣqďn Ñ
V pΣGp1qq such that for all A P rΣsďn, ΦpbrpAqq “ A.

Then it is possible to extend Σ into a targets-only pn` 1, 1q-polygraph such that there exists
a morphism of augmented symmetric simplicial sets Φ : BrLocpΓqďn`1 Ñ V pΣGp1qq satisfying
for all A P rΣsďn, ΦpbrpAqq “ A.

Proof. Let f̄ be a distinguished pn`1q-critical branching in BrLocpΣq. Let Ai “ ΦpBif̄q. Since
Φ is a morphism of semi-simplicial sets, this defines a half-pn ` 1q-shell in ΣGp1q. By Lemma
5.3.3.3, let us complete this in a shell B̄f̄ . We now define Σn`1 to be a set of cells Bf̄ , with
shell given by B̄f̄ . Then since BrLocpΣq is freely generated by critical branchings, it is enough
to define Φ on the distinguished pn ` 1q-critical branching, which is done in the obvious way :
Φpf̄q “ Bf̄ . By construction, this verifies all the required properties. �

Theorem 5.3.3.5. Let Σ be a convergent Gray 1-polygraph and let M be the monoid presented
by Σ. There exists a completion of Σ into a Gray pω, 1q-polygraph Σ such that:

• The n-cells of Σn correspond to the n-critical branchings

• Σ is a resolution of M (more specifically, Σ satisfies the hypothesis of Theorem 5.1.3.8).

Proof. This is just a repeated application of Proposition 5.2.3.4 to extend Σ, followed by an
application of Proposition 5.3.3.4 to extend S. �
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