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Chapter 1

Introduction



1.1 The word problem

1.1.1 The undecidability of the word problem

Although algorithms are nowadays commonly associated with computer science, they appeared
together with mathematics as early as 1600 B.C. in Babylonia. Famous algorithms include
Euclid’s algorithm for computing the greatest common divisor, the sieve of Eratosthenes for
finding prime numbers, Newton’s method to approximate the roots of a real-valued function,
and Lovelace’s program for computing Bernoulli numbers. The word algorithm itself comes from
the latinized version of al-Khwarizmi’s name, a IX*® century Persian scholar. At the beginning of
the XX century, Hilbert’s 10" problem called for an algorithm capable of determining whether
a Diophantine equation had integer solutions.

However, it wasn’t before 1936 and the works of Church [19] [20] and Turing [34] [85] on
the Entscheidungsproblem (following the pioneering work of Godel [32]) that the first problem
provably unsolvable by algorithmic means arose. Such a problem is called undecidable. The
Entscheidungsproblem (literally, the ‘decision problem’) was a problem raised in 1928 by Hilbert
and Ackermann [!]. It asked for an algorithm capable of deciding whether a first-order formula
is valid or not. Soon after, Post introduced the notion of reducibility [68], allowing to prove
the undecidability of many other problems. In particular, he proved in 1947 the undecidability
of the word problem for monoids [69] (a result also independently proved by Markov [63]), a
question opened by Thue in 1914 [32] and which is of central importance to this work.

Recall that a monoid M is the data of a set M equipped with a binary associative and unary
operation M x M — M. If E is a set then the free monoid generated by FE is the set of all
finite (possibly empty) sequences of elements in E, where the product is given by concatenation.
Not all monoids are free though. In general, they can be described using a presentation. A
presentation is the data of a set E of generators together with a set R of generating relations
between the elements of E*. The monoid presented by such an object is the quotient of E*
by the congruence generated by R. For example, the monoid Bi, called the monoid of positive
braids on three strands, can be described by the following presentation:

BF = (s,t|sts = tst). (1.1.1)

In B?jr , the generating relation sts = tst induces for instance the relations stst = tstt and
stss = ssts (where in the second example we apply the generating relation twice). Note that a
monoid may also have more than one presentation. For example, another presentation of B; is
given by:

By = (s,t,alta = as, st = a, sas = aa, saa = aat). (1.1.2)

Given a presentation (F, R) of a monoid M, the quotient of E* by the generating relations
induces a surjective morphism of monoids 7w : E* — M. The word problem for monoids is the
following:

Problem 1.1.1.1 (Thue, [32]). Given a monoid M, does there exist a presentation (E,R) of
M such that there exists an algorithm deciding, for all u,v € E*, whether w(u) = 7(v)? !

Although the negative results of Post and Markov prove that there exist monoids for which
such an algorithm doesn’t exist, there are techniques to solve the word problem for some well-
behaved monoids. The technique we are particularly interested in is based on rewriting theory.

! Any reader not convinced of the utility of such an algorithm should prove whether the words stssttsstst and
tsttstttsts are equal in By .



1.1.2 Rewriting

Rewriting techniques became widespread in the 1930s in multiple contexts. It is therefore not
surprising that the first paper studying rewriting theory in itself was published in 1941 by
Newman. At the tie, the two main applications of rewriting were to provide solutions to the word
problem (both in the case of monoids and of other structures), and in Church’s A-calculus [19],
where the p-reduction forms a rewriting rule. We cannot resist quoting the description of
rewriting theory given by Newman in [67]:

The name “combinatorial theory” is often given to branches of mathematics in which
the central concept is an equivalence relation defined by means of certain “allowed
transformations” or “moves”. A class of objects is given, and it is declared of certain
pairs of them that one is obtained from the other by a “move”; and two objects are
regarded as equivalent if, and only if, one is obtainable from the other by a series of
moves. |...] In many of such theories the moves fall naturally into two classes, which
may be called “positive” and “negative”. Thus in a free group the cancelling of a
pair of letters may be called a positive move, the insertion negative; in topology the
breaking of an edge, in [A-calculus| the application of [S-reduction|, may be taken as
positive moves.

The idea behind rewriting theory is that, given a presentation (F, R), it is useful to consider
the order relation generated by R in order to study the equivalence relation that it generates. To
do that, we need a bit more structure on a presentation: we need a distinguished orientation of
each generating relation. Let us define a string rewriting system (or word rewriting system) as
a set E of generators and a set R of generating relations, together with source and target maps
s,t : R — E*. Of course, by forgetting about the orientation, one can see any string rewriting
system as a presentation. For example, the following string rewriting system is a presentation
of B; :

Bf ={s,t,ala:ta=>as,B: st = a,y:sas = aa,d : saa = aat).

Starting from an element f of R, an element of the form ufv, such as aft : astt = aat is called
a rewriting step. A sequence of rewriting steps, each one rewriting the previous one’s target,
is called a rewriting path. Finally, a sequence consisting of both rewriting steps and inverse
rewriting steps is called an equivalence path. In order to provide a solution to the word problem
for B; , let us showcase two properties of the string rewriting system presenting Bgr . One, it is a
terminating presentation, which means that there exists no infinite sequence of rewriting steps:

1 fo /3

Uop Uy U2 us

Second, it is confluent. Define a branching to be a pair (f, g) of rewriting sequences with the
same source. Confluence holds if, for any branching, there exist rewriting sequences f’ and ¢’ of
same target, such that f’ rewrites the target of f and ¢’ rewrites the target of g. For instance
in the case of B;, the rewriting steps yas : sasas = aaas and say : sasas = saaa form a
branching, leading to the following so-called confluence diagram:
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Note that although confluence may be difficult to verify, there exist results relating it to more
elementary properties. General references for rewriting theory are [1], and [10] for the particular
case of string rewriting. In particular, Newman’s lemma [67] shows that for a terminating word
rewriting system to be confluent, it is enough to show the confluence of the local branchings,
that is the branchings (f, g) where both f and g are rewriting steps. The critical pairs lemma
(see for example [10]) further restricts the set of branchings that one needs to check in order
to obtain confluence to the so-called critical pairs, which are in finite number whenever E and
R are. Finally, in the case where one has a terminating string rewriting system, Knuth-Bendix
completion [53] may be used to ensure the confluence.

A word rewriting system that is both terminating and confluent is called convergent. The
point of convergent string rewriting systems is that any monoid which can be presented by a
finite convergent word rewriting system has a decidable word problem, using the so-called normal
form procedure. This led Jansen to the following problem:

Problem 1.1.2.1 (Jansen, |10] |[17]). Does there exist a monoid whose word problem is decidable,
but which does not admit a presentation by a finite convergent string rewriting system?

In 1985, Kapur and Narendran |50] studied the case of By . They showed that even if, as
we saw, the monoid B; admits a finite convergent presentation, it admits no such presentation
on the set of generators {s,t}. This means in particular that, if one was to show that a monoid
does not admit a finite convergent presentation, one would have to check every possible set of
generators. As a consequence, new methods had to be introduced to answer Jansen’s question.

1.1.3 Squier’s theorems

In 1987, Squier introduced in [74] a homological invariant on monoids. By invariant we mean
that, although this invariant is defined on presentations, it actually only depends on the presented
monoid. Squier proved in particular that all monoids presented by a finite convergent string
rewriting system satisfy a homological finiteness condition. Moreover, he was able to produce a
monoid whose word problem is decidable, but which does not satisfy this finiteness condition.
By Squier’s homological theorem, this monoid cannot admit a presentation by a finite convergent
string rewriting system, answering by the negative to Jansen’s problem.

In a posthumous paper published in 1994 [75], Squier introduced a homotopical version of his
finiteness condition. To do that, he showed how to extend a convergent string rewriting system
(E, R) presenting a monoid M, into a coherent presentation (E, R, S) of M. Let us explicit the
structures at hand. First, F is a set, and it generates a free monoid E*. Then we have maps
s,t: R — E* and R generates the set of rewriting paths, that we denote R*. Moreover, for any
two elements f and g of R* (with suitable sources and targets) we can form two composites:
f ®1 g, which corresponds to applying f followed by g, but also f ey g, which corresponds to
applying f and ¢ in parallel to the same word.
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These compositions equip (E*, R*) with a structure of (one object) 2-category, with elements
of E* forming the 1-cells, and rewriting paths forming the 2-cells. The pair (E, R) on the other
hand forms a 2-polygraph. Polygraphs are presentations for higher-dimensional categories. They
were introduced by Street under the name of computads [78] [79], and later by Burroni [18]. A
3-polygraph is the data of a 2-polygraph (E, R) together with a set of generating 3-cells S (that
have to be understood as ‘relations between the relation’), with source and target operations
s,t: .S — R*. This data can be arranged in the following way, where the pairs of parallel arrows
denote the operations s and t, and the vertical arrows denote the inclusion:

E/ R
74

A 3-polygraph is said to be a coherent presentation of a monoid M if any two parallel
equivalence paths are related through a composite of elements of S (and their inverses). Note
that it is always possible to extend a convergent presentation (E,R) of a monoid M into a
coherent presentation: it suffices to take in S one generating 3-cell for each pair of parallel
rewriting paths. Squier’s homotopical theorem describes a more “efficient” coherent presentation
of M. In particular, the elements of S correspond to the critical branchings of (E, R). Critical
branchings are a particular form of local branchings, and they are furthermore in finite number
if both £ and R are finite. So Squier’s homotopical theorem proves that a monoid admitting a
finite convergent presentation also admits a finite coherent presentation. This last property is

the homotopical finiteness condition defined by Squier. This theorem of Squier is the starting
point of what is today called higher-dimensional rewriting.

S




1.2 Higher-dimensional rewriting

1.2.1 Squier’s theory and coherence theorems

Squier’s homotopical theorem deals with the rewriting of monoids. Since then, it has been
extended to other kinds of structures, such as algebras [37] or higher-dimensional categories [35]
[39]. The latter is particularly interesting because it can be used to prove coherence theorems
for weak structures. A mathematical structure, such as the notion of monoid or algebra, is often
defined as some data satisfying relations. In the case of monoids, the data is a set and a binary
application, and the relations are the associativity and the unit axioms. In category theory,
one often considers relations that hold only up to isomorphism. One of the simplest examples
of such a structure is that of monoidal categories, in which the product is not associative, but
instead there exist isomorphisms oy pc: (A®B)®C — A® (B® C). This additional data
must also satisfy a relation, known as Mac Lane’s pentagon:

(A® (B®C)) AABECD | o (B®C)® D)

aAB% &CIBCD

(A®B)®C)® ®(BR(C®D))

%\ %
(A®B)® (C® D)

The intended purpose of this relation is that, between any two bracketings of 41 ®...® A,
there exists a unique isomorphism constructed from the isomorphisms a4 g . This statement

was made precise and proved by Mac Lane in the case of monoidal categories [59]. In general
a coherence theorem contains a description of a certain class of diagrams that are to commute.
Coherence theorems exist for various other structures, for example bicategories [(1], or V-natural

transformations for a symmetric monoidal closed category V [52].

Coherence results are often the consequence of (arguably more essential [51]) strictification
theorems. A strictification theorem states that a “weak” structure is equivalent to a “strict” (or
at least “stricter”) one. For example, any bicategory is biequivalent to a 2-category, and the same
is true for pseudofunctors (this is a consequence of a general strictification result from [70]). It
does not hold however for pseudonatural transformations.

Squier’s theory is also well-adapted to prove coherence results since the purpose of a coherent
presentation is precisely that “every two equivalence paths are equal up to a higher relation”. Let
us consider for example the structure of a category equipped with a weakly associative tensor
product. The way to apply Squier’s theory is to encode the structure of category equipped
with an associative tensor product into a 4-polygraph Assoc. This 4-polygraph contains one
generating 2-cell ¥ coding for the product, and we see the associativity isomorphism as a

rewriting relation given by a 3-cell <=': y = g Finally, MacLane’s pentagon corresponds

8



to a 4-cell <= of the following shape:

< - =
T

In this setting, the coherence result for categories equipped with an associative product
amounts to showing that any two parallel equivalence paths (built from the cells <) are equal
up to a composite of cells <"

1.2.2 Resolutions of monoids and categorification

Squier’s theorem was also extended to build resolutions of monoids, instead of just coherent
presentations. In order to justify this shift, let us talk for a moment about categorification.
The term categorification was coined by Crane [23] [22], and it refers to the general idea of
finding category-theoretic analogues of concepts coming from set-theory. An element of a set
then becomes an object of a category, and an equation becomes an isomorphism. Monoidal
categories are a categorification of monoids, and finite sets can be seen as a categorification
of natural numbers. One interesting observation is that many deep results can be seen as
categorified versions of set-theoretic facts. The coherence theorem for monoidal categories is
an example of this. To understand this phenomenon, let us recall the following parable about
categorification given by Baez and Dolan in [5]:

Long ago, when shepherds wanted to see if two herds of sheep were isomorphic, they
would look for an explicit isomorphism. In other words, they would line up both
herds and try to match each sheep in one herd with a sheep in the other. But one
day, along came a shepherd who invented decategorification. She realized one could
take each herd and ‘count’ it, setting up an isomorphism between it and some set of
‘number’, which were nonsense words like ‘one, two, three, ...’ specially designed
for this purpose. By comparing the resulting numbers, she could show that two
herds were isomorphic without explicitly establishing an isomorphism! In short, by
decategorifying the category of finite sets, the set of natural numbers was invented.

Note however that apart from some specific cases, there is no general notion of what the cat-
egorification of a concept is, and in some cases there may exist multiple ones. For example,
the categorification of commutative monoids can equally be seen as being symmetric monoidal
categories, or braided monoidal categories.

To see how this is relevant to our setting, let us consider a monoid M acting on a category
C. This means that for any m € M we have an endofunctor [m]c : C — C, such that for all
m,n € M, [m]¢c o [n]ec = [mn]c and [1]¢ = 1¢. Suppose now that C is equivalent to a category
D. This means that there exist functors F' : C — D and G : D — C together with natural
isomorphisms F o G = 1p and G o F' = 1¢. The problem is the following (see [56] for a general
exposition about similar problems, or [36]| for a more gentle introduction):

9



Problem 1.2.2.1. Is it possible to transfer the action of M on C to an action of M on D?

One way of doing this would be to define [m]p = F o [m]¢ o G. However, notice that the
equality [m]p o[n]p = [mn]p does not hold. Instead, we get natural isomorphisms of the form:

[mlpo[n]p=Fo[m]coGoFo[nlcoG=Fo[m]co[n]coG=Fo[mn]coG = [mn]p

In turn, these natural isomorphisms will themselves satisfy some equations. In the end, we do
not get an action of M on D. However, we get an action of the 2-category presented by the
standard coherent presentation of M on D. The 2-category presented by a coherent presentation
(E,R,S) of M is the 2-category obtained by identifying any two parallel equivalence paths.?
If we want to extend this solution to actions of monoids on higher categories, with a weaker
notion of equivalence, then the equations between the natural isomorphisms will only hold up
to a higher morphism. In order to account for that, we use the notion of resolution of a monoid
M.

Recall that an (w, 1)-category is a (strict) w-category where all the k-cells are invertible, for
k = 2. Then an (w, 1)-polygraph is a system of generators for an (w, 1)-category. If ¥ is such
an (w, 1)-polygraph, then the (w, 1)-category it generates has as (uninvertible) 1-cells the words
on X, and as (invertible) 2-cells sequences formed of elements of 39 and of their inverses (they
correspond to the equivalence paths in the setting of string rewriting). Then a resolution of
a monoid M is an (w, 1)-polygraph such that (¥1,%3) forms a presentation of 3, and for any
two parallel n-cells f and g in the (w, 1)-category generated by ¥ (with n > 2), there exists an

(n+1)-cell f — g. Using the machinery of the model structure on (w, 1)-categories [55], ¥ forms
a cofibrant replacement of M (where we see M as a one-object (w, 1)-category).
In [10], Guiraud and Malbos extended Squier’s homotopical theorem, proving that, starting

from a convergent presentation (£, R) of a monoid M, it is possible to extend that presentation
into a resolution ¥ of M, such that the (n + 1)-cells of ¥ correspond to the n-fold critical
branchings. In particular, those critical branchings are in finite number if (F, R) is finite,
leading to a refinement of Squier’s homotopical finiteness condition.

2To be more precise, we should talk about the (2, 1)-category presented. Otherwise, we are only considering
rewriting paths and not equivalence paths.

10



1.3 Coherence through higher-dimensional rewriting

The rest of this introduction presents an outline of the content of this thesis. In this section, we
focus on Chapters 2 and 3. In Chapter 2, we start by recalling a number of classical definitions
and results of higher-dimensional rewriting, and we apply them to prove coherence theorems
for bicategories and pseudofunctors. Then in Chapter 3, we prove a coherence theorem for
pseudonatural transformations. We will see that the techniques from Chapter 2 fail in this case.
In order to overcome this difficulty, we prove a Squier-like theorem adapted to our needs.

1.3.1 Rewriting and polygraphs

Recall that an (n,p)-category is a category where all k-cells are invertible, for £ > p. In
particular, (n,0)-categories are commonly called n-groupoids, and (n,n)-categories are just n-
categories. There is a corresponding notion of (n,p)-polygraph. If 3 is an (n,p)-polygraph,
we denote by ¥*®) the free (n, p)-category generated by X, or simply ¥* if p = n. All those
definitions are made precise in Section 2.1.

To illustrate the content of Chapter 2, let us go back to the 4-polygraph Assoc described
in Section 1.2.1. As we said, this polygraph encodes the structure of a category equipped with
a weakly associative tensor product. Let us consider the (4,2)-category generated by Assoc,
that we denote Assoc*®). It has one object, its 1-cells are freely generated by | (and so are
in bijections with the integers). Its 2-cells are generated by ' (so they are forests of binary
trees). Its 3-cells are the equivalence paths of the associativity relation <~ and its 4-cells are
generated by <<—="- To understand how Assoc encodes the structure of a category equipped
with a weakly associative tensor product, let us define another (4, 2)-category.

Recall first that there is a (2, 1)-category Cat, whose objects are categories, morphisms are
functors, and 2-cells are natural isomorphisms (so the 2-cells are invertible). We can therefore
see Cat as a (3, 1)-category, where all the 3-cells are identities. Moreover, the cartesian product
makes Cat into a monoidal 3-category. By delooping, we can see Cat as a (4, 2)-category with
one object. The 1-cells are categories, and the “O-composite” of two categories C and D is the
category C x D.

Let us now understand what a functor (of (4,2)-categories) F from Assoc*?) to Cat is.
On 0O-cells, F' has to send the unique object of Assoc to the unique object of Cat. On 1-
cells, F' sends the cell | to a category, that we denote C. As a consequence, F' sends the 1-cell
of length n of Assoc*® to C*™. So on 2-cells, F' sends the 2-cell ¥ : | | = | to a functor
® : C x C — C. As our notation suggests, the 3-cell < is sent to a natural isomorphism «,
which shows that ® is associative up to isomorphism. Finally, the 4-cell <<= is sent by F to
an identity, which means that a has to satisfy the pentagon equation. What we just showed is
that the data of F : Assoc*(® — Cat is equivalent to the data of a category equipped with
a weakly associative tensor product. In Section 2.3 and 3.1, we extend this correspondence to
bicategories, pseudofuntors and pseudonatural transformations between them.

Let us show what this correspondence means for coherence. The coherence result about
categories equipped with a weakly associative tensor product states that all formal composite
of the natural isomorphisms « are equal. But such formal composites correspond exactly to
equivalence paths in Assoc*@ . So in the end, the coherence theorem is equivalent to saying
that Assoc is 3-coherent, that is between every pair of parallel 3-cells A, B in Assoc*?) | there
exists a 4-cell a : A= B in Assoc*®.

In order to prove that Assoc*? is 3-coherent, we rely on the properties of confluence and
termination of the rewriting system generated by <”". The precise definitions of confluence and
termination in this context can be found in Section 2.2.
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To prove that confluence and termination imply 3-coherence, we rely on a version of Squier’s
theorem for rewriting in 2-categories proved in [38]. Stating Squier’s theorem requires the notion
of critical branchings. Those are defined in Section 2.2.2. A local branching in Assoc is a pair
of rewriting steps of same source. Local branchings are ordered by adjunction of context, that
is a branching (f, g) is smaller than a branching (u *; f *; v,u *; g *; v) for any 2-cells u and v
and ¢ = 0,1. There are three types of local branchings:

e A branching of the form (f, f) is called aspherical .
e A branching of the form (f x; s(g),s(f) *; g) for i = 0 or 1 is called a Peiffer branching.
e Otherwise, (f,g) is called an overlapping branching.

Overlapping branchings that are also minimal are called critical branchings.
There is exactly one critical branching in Assoc, of source % Note that the critical

pair appears as the 2-source of the generating 4-cell of Assoc. In particular there is a one-to-one
correspondence between generating 4-cells and critical pairs. A 3-convergent 4-polygraph that
satisfies this property is said to satisfy the 3-Squier condition.

Proposition 4.3.4 in [38] states that a 4-polygraph satisfying the 3-Squier condition is 3-
coherent (and more generally, that any (n + 1)-polygraph satisfying the n-Squier condition is
n-coherent). In particular, the 4-polygraph Assoc satisfies the 3-Squier condition, so it is 3-
coherent.

As an application of the theory recalled in this chapter, we prove coherence theorems for
bicategories and pseudofunctors. To this end, we exhibit in Section 2.3, for any sets C and D and
any application f : C — D two 4-polygraphs BiCat[C] and PFonct[f] presenting respectively
the structures of “bicategories whose set of objects is C” and “pseudofunctor whose map between
sets of objects is f”. Applying the same reasoning as the one we just presented for Assoc, we
prove our first two results:

Theorem 2.3.1.6 (Coherence for bicategories). Let C be a set.
The 4-polygraph BiCat[C] is 3-convergent and the free (4,2)-category BiCat[C]*?) is 3-
coherent.

Theorem 2.3.2.7 (Coherence for pseudofunctors). Let C and D be sets, and £ : C — D an
application.

The 4-polygraph PFonct[f] is 3-convergent and the free (4,2)-category PFonct[f]*?) is 3-
coherent.

The goal of Chapter 3 is to prove a similar result for pseudonatural transformations. However,
the approach developed in Chapter 2 fails, because the (4, 2)-polygraph PNTrans[f, g] (where
f and g are applications C — D) encoding the structure of pseudonatural transformation is not
3-confluent.

1.3.2 The 2-Squier condition of depth 2

In order to circumvent this difficulty, we introduce the notion of 2-Squier condition of depth 2.
We say that a (4, 2)-polygraph ¥ satisfies the 2-Squier condition of depth 2 if it satisfies the
2-Squier condition, and if the 4-cells of ¥ correspond to the critical triples induced by the 2-cells
(with a prescribed shape).

For example, the 4-polygraph Assoc satisfies the 2-Squier condition of depth 2: its un-
derlying 2-polygraph is both 2-terminating and 2-confluent. Moreover, the only critical pair
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corresponds to the associativity 3-cell. Finally, Mac Lane’s pentagon can be written as follows,
which shows that it corresponds to the only critical triple:

o — ) —Y

v/<7| vf/x V/\Tvv \
<=

N VeI == I=1111 =

|19 S

(1.3.1)

We prove the following result about (4,2)-polygraph satisfying the 2-Squier condition of
depth 2:

Theorem 3.1.3.5. Let ¥ be a (4, 2)-polygraph satisfying the 2-Squier condition of depth 2.
For every parallel 3-cells A, B € 22(2) whose 1-target is a normal form, there exists a 4-cell
a: AS B in the free (4,2)-category 22(2).

Note in particular that the 2-Squier condition of depth 2 does not imply the 3-coherence of
the (4,2)-category generated by the polygraph, but only a partial coherence, “above the normal
forms”. For example in the case of Assoc, the only normal form is the 1-cell || So Theorem
3.1.3.5 only expresses the coherence of the 3-cells of Assoc*®) whose 1-target is | Conversely,
Squier’s theorem as extended in [38] concerns all the 3-cells of Assoc*?) | regardless of their
1-target.

The (4, 2)-polygraph PNTrans|f, g| does not satisfy the 2-Squier condition. However, we
identify in Section 3.1.3 a sub-(4, 2)-polygraph PNTrans™ " [f, g] of PNTrans|[f, g| that does.
By Theorem 3.1.3.5, we get a partial coherence result in PNTrans™*[f,g]*(). The rest of
Section 3.1 extends this partial coherence result to the rest of PNTrans|f, g]*(Q). To do so, we
define a weight application from PNTrans[f, g]*(® to N to keep track of the condition on the
1-targets of the 3-cells considered. We thereby prove the following result:

Theorem 3.1.1.8 (Coherence for pseudonatural transformations). Let C and D be sets, and
f.g: C — D applications.

Let A, B € PNTransl|f, g]§(2) be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell « : AS B € PN’I‘I'ans[f,g]Z(2).

1.3.3 Sketch of the proof of Theorem 3.1.3.5

The intuition behind the proof of Theorem 3.1.3.5 is the following. Let 3 be a 3-polygraph
satisfying the 2-Squier condition. Then a generating 3-cell of 3 has a shape of the form

f/7» \f’ (1.3.2)
S
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The first intuition that one may have to extend Squier’s Theorem would be to consider this 3-cell
as a rewriting step. However, in general this approach fails. In particular there is no guarantee
that such a rewriting system terminates. A better idea would be to consider A as rewriting the
left-hand side of (1.3.2) (that is, the diverging pair (f, g)) into the right-hand side (that is, the
confluent pair (f’,¢’)). This way in particular we will be able to make use of the 2-termination
of 3.

In order to make this intuition precise we first introduce the notion of white n-category. Let
j < k < n be integers. In an n-category C, one can define the j-composition of (k + 1)-cells A
and B using the k-composition and whiskering by setting:

Axj Bi= (Axjsp(B)) x (t6(A) xj B) = (s£(A) xj B) xk (A ty(B)).

This is made possible by the exchange axiom between *; and ;. A white n-category is an n-
category in which the exchange axioms between *j, and *o need not hold (even up to isomorphism)
for any k > 0. As a result, 0-composition is not defined for k-cells, for kK > 1. The notion of white
2-category coincides with the notion of sesquicategory (see [30]). In general, white n-categories
are categories enriched in (n — 1)-catgeories, where the category of (n — 1)-categories is equipped
with the so-called “funny” tensor product [37].

Most concepts from rewriting have a straightforward transcription in the setting of white
categories. In particular in Section 3.2.1, we define the notions of white (n,k)-category and
white (n, k)-polygraph. We also give an explicit description of the free white (n, k)-category
W) generated by a white (n, k)-polygraph .

In this setting, we give a precise definition of the notion of partial coherence. Let C be a white
(4,3)-category and S be a set of distinguished 2-cells of C. We call such a pair a pointed white
(4,3)-category. We say that C is S-coherent if for any parallel 2-cells f,g € S and any 3-cells
A,B: f = geC(, there exists a 4-cell « : A= B € C. In particular any (4, 3)-white category is
-coherent, and a (4, 3)-white category C is Ca-coherent if and only if it is 3-coherent (where Co
is the set of all the 2-cells of C). Theorem 3.1.3.5 amounts to showing that the free (4, 2)-category
»*(2) ig Sy-coherent, where Sy, is the set of all 2-cells whose target is a normal form.

Finally, we give a way to modify partially coherent categories while retaining information
about the partial coherence. Let (C, S) and (C’, S") be pointed white (4, 3)-categories. We define
a relation of strength between pointed white (4, 3)-categories. We show that if (C, S) is stronger
than (C’,S’), then the S-coherence of C implies the S’-coherence of C’.

Let us now return to the proof of Theorem 3.1.3.5. Let us fix a (4, 2)-polygraph A satisfying
the 2-Squier condition of depth 2, and denote by S 4 the set of 2-cells whose target is a normal
form. In particular, (A*®),S,) is a pointed white (4,3)-category. The first half of the proof
(Section 3.3) consists in applying to (A*(),S4) a series of transformations. At each step, we
verify that the new pointed white (4, 3)-category we obtain is stronger than the previous one. In
the end, we get a pointed white (4, 3)-category (F¥®), S¢), where F is a white 4-polygraph. In
dimension 2, the 2-cells of F consists of the union of the 2-cells of A together with their formal
inverses. We denote by f the formal inverse of a 2-cell f € A*. Let F3 be the set of 3-cells of F.
It contains 3-cells Cy 4, for any minimal local branching (f,g), and cells ny for any 2-cell f e A
of the following shape:

/
N

m\;@/
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Notice in particular that Cf 4 corresponds to the cell Ag, of (1.3.2), rotated by 90°. The result
of this transformation is that in FV®), for any 2-cells f, g € Sg, the 3-cells of the form f = ¢
(and 4-cells between them) are in one-to-one correspondence with 3-cells of the form g*; f = 15
(and 4-cells between them), where @ is the common target of f and g. More generally we study
cells of the form h = 14, and 4-cells between them.

We start by studying the rewriting system induced by the 3-cells. Note that the white 4-
polygraph F is not 3-terminating, so we cannot use a Squier-like theorem to conclude. However,
let N[AT] be the free commutative monoid on A7}, the set of 1-cells of A*. There is a well-founded
ordering on A} induced by the fact that A is 2-terminating. This order induces a well-founded
ordering on N[A}] called the multiset order. We define an application p : Fy — N[AF] which
induces a well-founded ordering on F3¥, the set of 2-cells of 7%, and show that the cells Cy 4
are compatible with this ordering (that is, the target of a cell Cf, is always smaller than the
source). Thus, the fragment of F3 consisting of the cells C¢ 4 is 3-terminating.

The cells ny however constitute a non-terminating part of F3". To control their behaviour,
we introduce a weight application w,, : F3¥ — N[.A]], that essentially counts the number of 7
cells present in a 3-cell. In Section 3.4.3, using the applications p and w;), we prove that for any
h € F3' whose source and target are normal forms (for As), and for any 3-cells A, B : h = 1;
in F¥, there is a 4-cell @ : A= B in F¥®). Finally, we prove that this implies that FV3) is
Sg-coherent, which concludes the proof.

1.3.4 Conclusion of Chapter 3

The combinatorics of the proof of Theorem 3.1.3.5 is convoluted enough that a generalisation
of these techniques seems dubious. Still, let us make a few observations. The first observation
is that the 2-Squier condition of depth 2 associates to any 3-fold critical branching (f,g,h) a
4-cell Ay 45 which has the shape of a cube (see for example (1.3.1) or (3.1.4)):

/ \ N
f7
\ i B2
Similarly, the confluence diagram associated to a 4-fold critical branching should have the shape
of a hypercube.

gh

f Aﬁg \
/

Notice that there is an action of the symmetric group &3 on the critical branchings (obtained
by permuting the rewriting steps). How does this action of &3 affect the cell Ay 7 If we simply
exchange f and h, we get Ay, 4 ¢, which is just the inverse of Ay ;3 with respect to the composition
2. Some permutations are more difficult to express in the globular setting, such as Ay 7. If we
see Ar g1 as a cube however, then every permutation corresponds to a symmetry of the cube.
Understanding this action of &3 is our first clue in finding the link between higher-dimensional
rewriting and cubical w-categories.
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The second clue is the appearance of the following cells in Section 3.3:

Ly(p)
—_—
7N \M/
€ _
Y mf \ f f
v/
Lyr)

Together with the relations they verify (see (3.3.1) and (3.3.2)), they are very similar to the
connections of a cubical w-category (see 4.1). Connections are a type of degeneracies present
in cubical w-categories, which associate to any 1-cell f two 2-cells '] f and I'{ f, which can be
represented as follows:

f €1T
e
f‘ Iy f ey ar| Tif ‘f
€y f
The last observation stems from studying the proof of the main theorem from [10]: the proof

relies on the construction of a natural transformation (called a normalisation strategy) between
two w-categories. The combinatorics of such an object is slightly difficult to describe in globular
w-categories, but it becomes very simple in cubical w-categories, as shown in Section 4.4.2.
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1.4 Cubical w-categories for rewriting

All these observations motivate us to look at higher-dimensional rewriting from the point of
view of cubical w-categories, which we do in Chapter 5. Before that, the first obstacle on our
way is that higher-dimensional rewriting requires the use of (w, p)-categories, a notion not yet
studied in the cubical setting. Chapter 4 is devoted to its study.

1.4.1 Cubical categories and their relationship with other structures

Handling higher structures such as higher categories usually involves conceiving them as con-
glomerates of cells of a certain shape. Such shapes include simplices, globes or cubes. Simplicial
sets have been successfully applied to a wide variety of subjects. For example, they occur in
May’s work on the recognition principle for iterated loop spaces [64], in Quillen’s approach to
rational homotopy theory [71], and in Bousfield and Kan’s work on completions, localisation,
and limits in homotopy theory [11].

Cubical objects however, have had a less successful history until recent years. Although
cubical sets were used in early works by Serre [73] and Kan [15], it became quickly apparent that
they suffer from a few shortcomings. For instance, cubical groups are not automatically fibrant,
and the cartesian product in the category of cubical sets fails to have the correct homotopy
type. As a result, cubical sets mostly fell out of fashion in favour of simplicial sets. However
later work on double groupoids, by Brown and Higgins, felt the need to add a new type of
degeneracies on cubical sets: the so-called connections that we evoked earlier [17] [11]. By using
these connections, a number of shortcomings of cubical objects were overcome. In particular the
category of cubes with connections is a strict test category [21] [62], and group objects in the
category of cubical sets with connections are Kan [33]. Cubical objects with connections were
particularly instrumental to the proof of a higher-dimensional Van-Kampen theorem by Brown
and Higgins [16]. Other applications of cubical structures arise in concurrency theory [29] [30]
[33], type theory [9], algebraic topology [31]. Of interest is also the natural expression of the
Gray-Crans tensor product of w-categories [24] in the cubical setting [3] [2].

A number of theorems relating objects of different shapes exist. For instance, Dold-Kan’s
correspondence states that in the category of abelian groups, simplicial objects, cubical sets with
connections and strict w-groupoids (globular or cubical with connections) are all equivalent to
chain complexes [19] [15].

Outside the category of abelian groups, the relationships between these notions become less
straightforward. We are mainly concerned with the two following results:

e The first result is the equivalence between cubical and globular w-groupoids [12] [14] proven
in 1981 by Brown and Higgins. Although this equivalence is useful in theory, in practice
it is complicated to make explicit the functors composing this equivalence. This is due to
the fact that the proof uses the notion of crossed complexes as a common ground between
globular and cubical w-categories.

e The second result is the equivalence between globular and cubical w-categories proved in
2002 2] By Al-Agl, Brown and Steiner.

Lastly in 2004, Steiner |[77] introduced the notion of augmented directed complexes (a variant
of the notion of chain complexes) and proved the existence of an adjunction between augmented
directed complexes and globular w-categories.

Globular (w, p)-categories are globular w-categories where cells of dimension at least p+1 are
invertible. They form a natural intermediate between globular w-categories, which correspond to
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the case p = w, and globular w-groupoids, which correspond to the case p = 0. As a consequence,
they form a natural setting in which to develop directed algebraic topology [35] or rewriting [10].

However, both directed algebraic topology and rewriting seem to favour the cubical geometry
(see once again [38] for directed algebraic topology, and [57] for rewriting), hence the need for a
suitable notion of cubical (w, p)-categories.

The aim of Chapter 4 is to define such a notion, so that when p = 0 or p = w, we respectively
recover the notions of cubical w-groupoids and cubical w-categories. Moreover, we bridge the
gap between two results we cited previously by proving the following theorem:

Theorem 4.3.1.3. Let A\ : w-CubCat — w-Cat and v : w-Cat — w-CubCat be the
functors from [2] forming an equivalence of categories between globular and cubical w-categories.
For all p = 0, their restrictions still induce an equivalence of categories:

(w,p)-Cat ~ (w,p) - CubCat

In particular, we recover the equivalence between globular and cubical w-groupoids in a more
explicit fashion.

We also define a notion of (w,p)-augmented directed complexes and show how to extend
Steiner’s adjunction. This is done in two steps. First we define functors Z€ : w- CubCat —
ADC and N€ : ADC — w-CubCat (where ADC is the category of augmented directed
complexes), as cubical analogues of the functors 2% : w-Cat — ADC and N : ADC —
w- Cat forming Steiner’s adjunction. We study the relationship between both those two pairs
of functors and show that the functor Z€ is left-adjoint to N (see Proposition 4.3.2.8). Then
we show how to restrict the functors Z&, N&, Z€ and N€ to (w, p)-structures. In the end, we
get the following result:

Theorem 4.3.2.12. Let A : w-CubCat — w-Cat and v : w-Cat — w-CubCat be the
functors from [2] forming an equivalence of categories between globular and cubical w-categories.
Let ZG : w-Cat — ADC and NG : ADC — w-Cat be the functors from [77] forming
an adjunction between globular w-categories and ADCs. Let Z€ : w-CubCat — ADC and
NG : ADC — w-CubCat be the cubical analogues of Z& and NG defined in Section /.5.2.
For all p e Nu{w}, their restrictions induce the following diagram of equivalence and adjunc-
tions between the categories (w,p)- Cat, (w,p)- CubCat and (w,p)-ADC, where both triangles
involving Z€ and Z& and both triangles involving NC and NG commute up to isomorphism:

e

)-ADC

CubCat

=2 |lle| >
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1.4.2 Invertibility in cubical categories

The main combinatorial difficulty of Chapter 4 consists in defining the appropriate notion of
invertibility in cubical w-categories. Before giving an account of the various invertibility no-
tions that we consider in the cubical setting, we start by recalling the more familiar notion of
invertibility in (2, 1)-categories.

Informally, a globular (w, p)-category is a globular w-category in which every n-cell is invert-
ible, for n > p. For this definition to make rigorous sense, one first needs to define an appropriate
notion of invertible n-cells. Let us fix a globular 2-category C. There are two ways to compose
two 2-cells A and B in Cs, that we denote by e1 and ey and that are respectively known as the
vertical and horizontal compositions. They can respectively be represented as follows:

We denote by Iyf : y — x the inverse (if it exists) of a 1-cell f : z — y in C;. A 2-cell A€ Cy
can have two inverses (one for each composition), that we denote respectively by Iy A and IyA.
Their source and targets are as follows:

f g Inf
g f Ing

Note that if a 2-cell is Ip-invertible, then so are its source and target, but that the I;-invertibility
of a 2-cell does not imply any property for its source and target. So if C is a 2-category where
every 2-cell is Ip-invertible, then C is a globular 2-groupoid (indeed, a cell 1; € Cs is Ip-invertible
if and only if f is Ip-invertible). Therefore, we say that a 2-cell is invertible if it is I;-invertible,
and C is a globular (2, 1)-category if each 2-cell is I-invertible.

In a cubical 2-category C (in what follows, cubical categories are always equipped with
connections), the source and target of a 1-cell f € C; are respectively denoted d; f and d; f, and
the source and target operations s, t : Co — C; are replaced by four faces operations 0 : Co — Cq
(for i = 1,2 and o = =), satisfying the cubical identity 8{“66 = (916(9?. A 2-cell A e Cy can be
represented as follows, where the corners of the square are uniquely defined 0-cells thanks to the
cubical identity:

0] A
0Oy Aj A j&; A
e

oF A

There still are two ways to compose two 2-cells A, B € Cs, that we denote respectively by
A1 B and A *3 B, which can be represented as follows:
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e

We say that a 2-cell A € Cy is R;-invertible if it is invertible for the composition *; (i = 1,2).
The faces of R1A and ReA are as follows (where Ry f : y — x denotes the inverse of a 1-cell

frx—y):

R
S L9, y
h A Jz thJ RlA JRIZ l‘ RQA h
—t $4>y t— 2
Ty Rig

Note that contrary to the notion of I1-invertibility, the Ry and Ro-invertibility of A require
respectively that 05 A and 0{'A are Rj-invertible (for o = +). We say that A has respectively
an R; or an Ro-invertible shell if that is the case. As a consequence, if C is a cubical 2-category
where every 2-cell is Rj-invertible, then every 1-cell of C is Rj-invertible (one can even show
that such a cubical 2-category is actually a cubical 2-groupoid) and the same property holds for
Ry. In order to have a good notion of cubical (w, p)-categories nonetheless, we have to be more
careful in our definition of an invertible cell.

This is done in Section 4.2.1, where we define a notion of invertibility for an n-cell (n > 1).
Let us first recall that, using the structure of connections on C, one can associate to any 1-cell
f:x — yin Cy, the cells T'] f and T'] f, which can be represented as follows:

€1x
r——y x x
f‘ Iryf ||ley €1x I’i"f Jf
r——y

Y= /

We say that a 2-cell A € Cs is invertible if the following composite (denoted 1 A) is Ry-invertible:

I'foy A A 7oy A

Note in particular that d; 114 and 03 11 A are both identities (which are always invertible),
and so the Rj-invertibility of 11 A does not require the invertibility of any face of A. The link
between invertibility, R;-invertibility and having an R;-invertible shell is given by the following
proposition:

Proposition 4.2.2.2. Let C be a cubical w-category, A€ C, and1 < j<n. A cell Ae C, is
Rj-invertible if and only if A is invertible and has an Rj;-invertible shell,
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We also investigate in Section 4.2.3 another notion of invertibility, with respect to a kind of
“diagonal” composition, that we call the T;-invertibility. If A is a 2-cell in a cubical 2-category,
then the T-inverse of A (if it exists) has the following faces:

f h
r——y r——z
z— Yy ——t

g 7

We then define a suitable notion of T;-invertible shells and prove the following result, analogous
to Proposition 4.2.2.2:

Proposition 4.2.3.5. Let C be a cubical w-category, and A € C,,, with n = 2. Then A is
T;-invertible if and only if A is invertible and has a T;-invertible shell.

The study of the relationship between R;-invertibility, T;-invertibility and (plain) invertibility
gives rise to the following Proposition:

Proposition 4.3.1.2. Let C be a cubical w-category, and fixrn > 0. The following five properties
are equivalent:

1. Any n-cell in C, is invertible.
For all 1 <i < n, any n-cell in C,, with an R;-invertible shell is R;-invertible.
Any n-cell in C,, with an Ri-invertible shell is Ry-invertible.

Any n-cell A€ Cy, such that 0§ A € Imey for all j # 1 is Ry-invertible.

Gvod o e

Any n-cell in ®,(C,,) is Ry-invertible.

Moreover, if n > 1, then all the previous properties are also equivalent to the following:
6. For all 1 <1i<n, any n-cell in C,, with a T;-invertible shell is T;-invertible
7. Any n-cell in C,, with a T1-invertible shell is Ty -invertible.

We can now define a cubical (w,p)-category as a cubical w-category where every n-cell is
invertible, for n > p, and we prove the equivalence with the globular notion.

1.4.3 Permutations and cubical (w, p)-categories

In Section 4.4.1, we extend the notion of the T;-invertibility of an n-cell to that of the o-
invertibility, for ¢ an element of the symmetric group &,,. In particular, we show that if C is a
cubical (w, 1)-category, then every cell of C is T;-invertible, and therefore o-invertible, for any
o € G,. Consequently, we get an action of the symmetric group &,, on the set of n-cells C,,
making C a symmetric cubical category (in a sense related to that of Grandis [31]).

In Section 4.4.2, we apply the notion of invertibility to k-transfors between cubical w-
categories. A k-transfor (following terminology by Crans [25]) from C to D is a family of
applications C,, — D, satisfying some compatibility conditions. These compatibility condi-
tions come in two varieties, leading to the notions of lax and oplax k-tranfors (respectively called
k-fold left and right homotopies in [2]). In particular, the lax or oplax 0-transfors are just the
functors from C to D, and a lax or oplax 1-transfor n between functors F' and G is the cubical
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analogue of a lax or oplax natural transformation from F' to G. For example, a 0-cell in x € Cy
is sent to a 1-cell n, : F(z) — G(x) in Dy, and a 1-cell f: 2 — y in C; is sent to a 2-cell 7 in
Dy of the following shape (respectively if 7 is lax or oplax):

E(f)
F(x) —= F(y) F(z) - G(a)
TI:UJ Ny jﬂy F(f)J ny JG(f)
G(z) —— G(y) Fly) —— G
G(f) (y) Ty (y)
As shown in [2], Section 10, lax and oplax transfors from C to D respectively form cubical

w-categories Lax(C,D) and OpLax(C, D). We define notions of pseudo transfors as transfors
satisfying some invertibility conditions. In particular in the case of 1-transfors, we require for
any 1-cell f in Cy that 5y is Ti-invertible. We show that pseudo lax and pseudo oplax transfors
from C to D still form cubical w-categories PsLax(C, D) and PsOpLax(C, D), and prove the
following result:

Proposition 4.4.2.6. For all cubical w-categories C and D, the cubical w-categories PsLax(C, D)
and PsOpLax(C, D) are isomorphic.

For example if 7 is a lax 1-transfor, then the application C; — D3 which is part of the oplax
1-transfor associated to 7 maps a cell f in C; to a 2-cell T17y in Da.
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1.5 Higher-dimensional rewriting in cubical categories

The goal in Chapter 5 is to apply the structure of cubical (w, p)-category developed in Chapter
4 to higher dimensional rewriting. As we will see this approach greatly simplifies the proof
techniques from [10], allowing us to prove theorems which were unattainable by other means.
Before stating those results, let us go back to the categorification problem that we evoked earlier.

1.5.1 Model structure and the Gray tensor product

As we saw, higher dimensional rewriting can be applied to many different structures. Squier’s
theorem dealt with rewriting in monoids. In Chapters 2 and 3 we were interested in rewriting in 2-
categories with a fixed set of objects and arrows. Squier-like theorems also exist for algebras [37].
One natural question is whether it is possible to find a suitable framework that encompasses
all those results. The idea we propose is to see monoids and 2-categories (with a fixed set of
objects and arrows) as algebras over (set-theoretic) operads. In order to see Squier-like theorems
as categorification results (as in Section 1.2.2) however, we need to have a model structure on
O-algebras in w-groupoids, for any operad O (although throughout Chapter 5 we only work in
the case where O is the operad of monoids).

More precisely, we would like to use the adjunction between O-algebras in w-groupoids and
w-groupoids in order to lift the model structure from w-groupoids to O-algebras in w-groupoids.
Multiple sufficient conditions exist in the literature to perform this kind of transfer (see for
example [72], [14] or [8]). They all have in common that w-groupoids have to form a monoidal
model category. A monoidal model category is a biclosed monoidal category equipped with a
model structure such that the product and the model structure interact nicely together. In
particular, it has to satisfy the pushout-product axiom, see Section 5.1.2.

However, w-groupoids equipped with the cartesian product do not form a monoidal model
category, as noted by Lack [51]. As for the Gray tensor product, whether it makes w-groupoids
into a monoidal model category is still an open problem. This seems like a reasonable conjecture
given that Lack proved in [51] that the pseudo Gray tensor product equips 2-categories with a
monoidal model structure. Unfortunately we fall short of proving the result for w-groupoids,
but we still show in Section 5.1.2 that part of the pushout-product is satisfied. This has in
particular the nice consequence that the Gray tensor product of two free w-groupoids is still
free, a fact that will be useful later on. Remark also that the apparition of the Gray tensor
product here reinforces our intuition that cubical w-categories are the right setting for studying
higher-dimensional rewriting.

The first step towards this goal is to find a suitable notion of polygraphs for Gray monoids
(where Gray monoids are monoid objects in w-groupoids, equipped with the Gray tensor prod-
uct). Thankfully, a general result by Garner [28] allows us to do this, using the fact that Gray
monoids are monadic over pre-cubical sets. We call a Gray polygraph this associated notion of
polygraph. Let us look again at the presentation of Bg’ from Section 1.1.2. In the setting of
Gray monoids, it corresponds to a Gray polygraph ¥ such that ¥g = {s,t}, the O-cells of the
Gray monoid generated by 3 are denoted EOG(O): they form the words on the alphabet 3. Just
as for globular polygraphs, the set ¥; is formed by the cells o, 8,7 and ¢ (with the same sources
and targets), and ZlG(O) is formed of all the equivalence paths. There is one main difference with
the globular setting though, which stems from the fact that we use the Gray tensor product.
Indeed, while in the globular setting we were able to compose two rewriting steps f : u — u’ and
g : v — v in parallel using the composition eq, this operation is not available in Gray monoids.
Instead, there exists a 2-cell f ® g relating the two composites: the one corresponding to doing
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f followed by g and the one corresponding to g followed by f:

Uy — UU

va f®yg va’ uv

u'v — '’ \) _/

uwg

The consequence of that is that in Gray monoids, the rewriting paths form the free groupoid
on the rewriting steps. This is actually a special case of a more general phenomenon: starting
from a Gray polygraph ¥, we can look at £ the Gray monoid generated by X. If we forget
about the monoid structure, then we get an w-groupoid. We prove in Section 5.1.2 that this
w-groupoid is also free, over an (w,0)-polygraph that we denote [X]. In other words, we have
an isomorphism of w-groupoids L6 ~ [Z]*(O). In the case where ¥ is the presentation of B,
then [X]o is the set of words of ¥, while [X]; is the set of all rewriting steps formed from the
elements of Y.

1.5.2 The two versions of Squier’s theorem

In order to understand the main theorem of Chapter 5, we first need to analyse Squier’s ho-
motopical theorem more closely. Squier’s homotopical theorem can be phrased in two different
ways, that we call respectively the Existence and the Detection Theorem:

Theorem 1.5.2.1 (Existence Theorem). Let ¥ be a convergent 2-polygraph. Then there exists
an extension of 3 into a 3-polygraph such that:

o The 3-cells of X correspond to the critical branchings.
e The 3-polygraph ¥ forms a coherent presentation of M, the monoid presented by 3.

Theorem 1.5.2.2 (Detection Theorem). Let ¥ be a terminating 3-polygraph. Suppose that for
any critical branching (f, g) in X, there exists a cell A € X3 of the following shape:

/7N -
NS

The ¥ forms a coherent presentation of M, the monoid presented by 3.

The existence theorem has been extended by Guiraud and Malbos in [10] into the following
result:

Theorem 1.5.2.3 (Extended Existence Theorem). Let ¥ be a convergent 2-polygraph. Then
there exists an extension of 3 into an (w,2)-polygraph such that:

e The (n+ 1)-cells of ¥ correspond to the n-critical branchings.

e The (w,2)-polygraph ¥ forms a polygraphic resolution of M, the monoid presented by X.
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These existence and detection theorems have slightly different applications. The existence
theorem is the one which allowed Squier to prove that all monoids with a finite convergent
presentation satisfied his homotopical finiteness condition. Later on the extended one allowed
Guiraud and Malbos to refine this condition. Note that the proof of the extended existence the-
orem is constructive, but the explicit computation of the polygraphic resolution that it provides
is often very complicated.

The detection theorem on the other hand is used to prove that a given 3-polygraphs (obtained
through other means) forms a coherent presentation of a monoid. The Theorem 3.1.3.5 is another
example of a detection theorem used similarly. The main result of Chapter 5 is an extended
detection theorem.

1.5.3 Higher-dimensional rewriting in Gray monoids

The difficulty to give a precise statement for an extended detection theorem lies in generalising
Equation (1.5.1) to higher dimensions. We show in Chapter 3 that in the next dimension it
corresponds to finding, for all critical triple branching, a cell with the shape of a cube, as in
equation (3.1.4). In general for an n-fold critical branching, the corresponding cell should have
the shape of an n-cube. In Section 5.1.3, this condition is made explicit using the notion of
cubical w-groupoid.

To do that, we first study the structure of the local branchings. Let us start from a
string rewriting system (F, R). Then an n-local branching is an n-tuple of rewriting steps
that share the same source. We denote the set of n-local branchings LocBr(E, R),. Given
such an n-tuple f = (f1,..., fn) and 1 < i < n, we can define a new (n — 1)-critical branching
Oif == (f1;..., fi_t, fix1, .., fn). These operations ¢; define a structure of semi-simplicial set on
LocBr(Y). Defining other operations on local branchings, such as the action of the symmetric
group from Section 1.3.4, we finally get in Section 5.1.3 the following result:

Proposition 5.1.3.4. Let (E, R) be a string rewriting system. The family of local branchings
LocBr(E, R) equipped with the applications 0;, €; and ® and the action of the symmetric group
forms a simplicial monoid, that is a monoid object in augmented symmetric simplicial sets.

On the other hand, starting from a cubical w-groupoid C, there is a forgetful functor towards
symmetric cubical sets by Section 4.4.1, where the symmetries come from the T;-inverses of the
cells. Then from symmetric cubical sets we can forget about the faces (?ZT" , the connections I‘j
and the identities ¢;. We are left with a structure of an augmented symmetric simplicial set.
We prove that this functor is lax monoidal, and so induces a functor V' from Gray monoids to
simplicial monoids. We are now ready to state our extended detection theorem:

Theorem 5.1.3.8 (Extended Detection Theorem). Let ¥ be a terminating targets-only Gray
(w, 1)-polygraph, and let M be the monoid presented by ¥. We suppose that there exists a
morphism of simplicial monoids

® : LocBr(X) — V(2¢M)

such that for all Ae ¥, ®(br(A)) = A.
Then the morphism X6 — M is an equivalence of w-groupoids, meaning that ¥ is a
polygraphic resolution of M.

As with Theorem 1.5.2.2 or 3.1.3.5, we require any critical 3-branching to be associated to
a cell of the right shape. The associated cell is given by the map ®. The analogue of Equation
(1.3.2) or (3.1.4) here is hidden in the fact that ® is a morphism of simplicial monoids, together
with the equation ®(br(A)) = A. Let us spell out these conditions in low dimensions.
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First for a generating 1-cell f, br(f) is just f, so the condition is that ®(f) = f. The fact
that ® is a morphism of monoids implies that this is actually true for any rewriting step f. In
the next dimension, the fact that ¥ is targets-only means that any generating 2-cell A € X5 can
be represented as follows, with f and g rewriting steps:

e T

g A g br(A) g| ®(br(A))

Then the pair (g, f) forms a local branching, denoted br(A). The condition ®(br(A)) = A
implies that A is the canonical filling associated to (g, f).

One unexpected condition that appears in Theorem 5.1.3.8 is that we require ® to be defined
on all local branchings. This is to be contrasted to the situation in the detection theorem or
in Theorem 3.1.3.5, where we only require conditions on the critical branching. We investigate
this discrepancy in Section 5.1.3, and prove the following result:

Theorem 5.3.1.14. Let (E, R) be a string rewriting system, and suppose that for all f € R,
s(f) # 1 (which in particular is always true if (E, R) is terminating). Then LocBr(E, R) is
freely generated by any choice of critical branchings up to permutation.

This implies in particular that defining ® on the critical branchings is sufficient in order to
apply Theorem 5.1.3.8. Using this, we are able in Section 5.3.2 to give an explicit of the reduced
standard resolution of a monoid M. The generators of such a resolution were already known [10)]
(see Theorem 1.5.2.3), but the explicit description of the faces of the generators is new.

Theorem 5.3.2.3. Let M be a monoid. Let RStd(M) be the following Gray polygraph:

e Foranyn >0, RStd(M),, consists of (n+1)-tuples (mq, ..., mp11) of elements of M\{1},
that we denote (mq|...|mp41).

o The faces are given for 1 <i < n by:

6;(m1| e |mn+1) = (m1| e |ml) ® (mi+1| e |mn+1)
(mal...mimip1|migal. .. |mpy1) mimiy1 # 1
3 (ma].. ey = er(ms]...|mpi1) i=1and mmo =1
i + .
L (mal . m—imaga] o mpg) 2<i<n—1 and mymip1 =1
€n—1(mi|...|mp—1) 1=n and mpymupy1 =1

with 0 (m1|mg) = lrsta(anyco if mimg = 1y (the unit of the monoid M ).
Then the Gray monoid RStd(M)G(O) forms a polygraphic resolution of M.

Another application of Theorem 5.1.3.8 and 5.3.1.14 is given in Section 5.3.3, where we give
a new proof of the extended existence theorem in our setting.

Theorem 5.3.3.5. Let (E, R) be a convergent string rewriting system and let M be the monoid
presented by (E, R). There exists an extension of (E, R) into a Gray polygraph ¥ such that:

o The n-cells of 3, correspond to the critical branchings

e X is a resolution of M (more specifically, ¥ satisfies the hypothesis of Theorem 5.1.3.8).
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Chapter 2

Classical higher dimensional rewriting
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Introduction

In this section we recall some classical notions of higher-dimensional rewriting. We start in
Section 2.1 by recalling the definition of w-category and w-polygraphs, and more generally of
(n, p)-category and (n,p)-polygraph. According to Street in [31], the notion of w-catgeory was
probably first brought up by John Roberts in the late 70s. The earliest published definition can
be found in [13]. The notion of 2-polygraph on the other hand was introduced by Street in 78]
under the name of computad. It seems that the earliest occurrence of general n-polygraphs in
the literature comes |18].

In Section 2.2, we recall some classical definitions and results of higher dimensional rewriting.
In our case we need to talk about rewriting in n-categories. See |35 and [39] for references, or [11]
for a more gentle introduction to the special case of string rewriting.

Finally, in Section 2.3 we use these techniques to prove coherence theorems for bicategories
and pseudofunctors between them. A bicategory being just a monoidal category with many
objects, our proof of the coherence theorem for bicategories is a straight adaptation of the proof
of the coherence of monoidal categories found in [39]. The case of pseudofunctors is slightly more
interesting because we need to find a way to encode the operation of “taking the image through
the functor”, but once this is done the same techniques as in the case of monoidal categories can
be used.

2.1 Globular (n,p)-categories and polygraphs

This section is divided into two parts: in the first one we introduce w-categories, while in the
second we introduce polygraphs, following their description in [65].

2.1.1 Globular categories

Definition 2.1.1.1. A n-globular set (for n € N u {w}) is the data of a family of sets G}, for
0 < k < n together with source and target maps s,t : Gpr1 — Gy for all 0 < k < n, satisfying
the so called globular relations:

sot=so0s tot =tos. (2.1.1)

If G is such a globular set, we denote by s? and t? (or simply s; and t;) the maps from Gy,
to G such that si“ =s, tg“ = t and which satisfy the equations:

otk _ ok _ J
s;ot; =s; =5

k Jotk _ ok _ 10 Gk
Z-OS]' tlotjisl 7t’L‘OSj

For f € G}, we call sj(f) and t;(f) respectively the k-source and the k-target of f. An element
of Gy, is called a k-cell. Two k-cells f, g € G, are said to be j-composable if t;(f) = s;(g).

Definition 2.1.1.2. For n € Nu{w}, an n-category C is the data of an n-globular set C together
with, for any 0 < £ < n and 0 < j < k, maps e; associating to any two j-composable k-cells
f,9€Cracell fo;geCy, and for any k-cell f € Cp a (k+1)-cell 14 € Cy1. This data moreover
has to verify the following relations:

e For all j-composable f, g € Cy, s(f+59) = (/) #;5(g) and t(f o;.9) = t(f)e;t(g) if j # k—1,
if j =k —1 then s(f e g) = s(f), while t(f e; g) = t(g).

e For all f e Cy, S(lf) = t(lf) = f.

e For all j-composable f,g,heCy, (fejg)ejh = fe;(ge;h).
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e For all f € Ck, f ®L_1 1t(f) = 1s(f) ®L 1 f = f

e Forall f, f',g,g' € C,and 0 <i < j <k, then (fe; f')e; (ge;g) = (feig)e;(feyg),
as soon as the left-hand side is defined.

The relations imply additionally the additional following relations (as soon as they are de-
fined):

si(f)ejsilg) i>] ti(f)eiti(g) >3
si(fe59) = 1si(f) i=j ti(f e 9) =1 ti(g) =]
si(f) =silg) i<j ti(f) =ti(g) i<y

Definition 2.1.1.3. If C is a 2-category, we denote by C°P the 2-category obtained by reversing
the direction of the 1-cells, and by C®° the 2-category obtained by reversing the direction of the
2-cells.

Example 2.1.1.4. Let us explicit the notion of 2-category. The underlying 2-globular set is
constituted of three sets Cy, C; and Co. A 1-cell f and the 2-cell A are respectively represented
as follows:

s1(A)
f T
N E—— N L
\_/
t1(A)

For any O-cell x € Cp and 1-cell f € Cy, the cells 1, and 17 have the following shape:

f
. /\
T = T so(f) 1fH to(f)
\_/I
f
., . g
The composition ej associates, to any composable 1-cells * Y Z ,a
f f
feog T e
l-cel z ——— 2z . And to any O-composable 2-cells \Aﬂ/’ Y iﬂ/ z
g /
g
a 2-cell:
feof
geod
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f
JA

Finally, the composition e; associates to any l-composable 2-cells T — ¢ —— Y | a

S s S

h
f

2-cell A e; B of shape = @ v

h
Also, if f is 1-cell and A is a 2-cell then we denote by f ey A the composite (when defined)
17 %9 A, and similarly for Axqg for any 1-cell g. This operation is called whiskering. For instance
the composite f ey A eg g is represented as follows:

Definition 2.1.1.5. Let C be an n-category, for n € N u {w}. For p € N U {w}, we say that C
is an (n, p)-category if for any p < k < n, any k-cell has an inverse for composition e;_;. That
is for every A € Cj, there exists B € Cy such that A ey 1 B = 14y and B ey A = 1j4). In
particular for p = n an (n, p)-category is just a category, and for p = 0 we call an (n, 0)-category
an n-groupoid.

Example 2.1.1.6. A 2-category C is a (2, 1)-category if for any 2-cell A : f = g € Cy, there
exists a 2-cell A~ : g = f € Ca such that the following equality holds (together with the one
obtained by exchanging the roles of A and A™):

r—qg——Yy = =x Hlf Y
uA_ \f/’
f

It is a 2-groupoid if moreover for any 1-cell f : z — y there exits a 1-cell f~ : y — = such
that the following equalities hold:

Note that in addition in a 2-groupoid any 2-cell A : f = g € C2 admits an inverse B : f~ =
g~ for composition e, given by the following composite:

g
B L@L
f



2.1.2 Polygraphs

We recall the definition of polygraphs from [18]. For n € N, we denote by n- Cat the category of
n-categories and by Graph,, the category of n-graphs. The category of n-categories equipped
with a cellular extension, denoted by n- Cat™, is the limit of the following diagram:

n-Cat* —— Graph,,
n- Cat —— Graph,,
where the functor n-Cat — Graph, forgets the categorical structure and the functor

Graph,, ,; — Graph,, deletes the top-dimensional cells.
Hence, an object of n-Cat™ is a couple (C,G) where C is an n-category and G is a graph

s
Cn &—— Sh+1, such that for any u,v € S, 41, the following equations are verified:
t

Let Ry, be the functor from (n+1)-Cat to n- Cat™ that sends an (n + 1)-category C on the
couple (Cp, Cp &——Cpn41 ). This functor admits a left-adjoint £, : n-Cat™ — (n + 1)-Cat

(see [60]).

We now define by induction on n the category Pol,, of n-polygraphs together with a functor
Q,, : Pol,, —» n-Cat.

e The category Poly is the category of sets, and Qg is the identity functor.

e Assume @, : Pol,, — n- Cat is defined. Then Pol,,; is the limit of the following diagram:

Pol,.; ——n-Cat™

Pol, ———— n- Cat,

mn

and Q.1 is the composite
+_Ln
Pol,;; ——n-Cat™ —— (n + 1)-Cat

Definition 2.1.2.1. Given an n-polygraph X, the n-category Q,,(X) is denoted by ¥* and is
called the free n-category generated by 3.

Definition 2.1.2.2. Let C be an n-category, and 0 < i < n and A € C;41. If it exists, we denote
by A~ the inverse of A for the i-composition.
We denote by n - Cat® the full subcategory of n - Cat whose objects are the (n, k)-categories.

In particular n- Cat® is the category of n-groupoids, and n - Cat™ = n-Cat.

The functor R, restricts to a functor R from (n+1)-Cat™ to n-Cat™. Once again this
functor admits a left-adjoint E,(ln) :n-Catt — (n+1)- Cat™. We define categories Pol,(lk) of
(n, k)-polygraphs and functors Q%k) : Pol;k) — n-Cat® in a similar way to Pol, and Q,. See
2.2.3 in [10] for an explicit description of this construction.
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Definition 2.1.2.3. Given an (n, k)-polygraph X, the (n, k)-category ng)( Y)) is denoted by
»*(k) and is called the free (n, k)-category generated by ¥. For j < n, we denote by E **) Both

the j-cells of ¥*(¥) and the (7, k)-category generated by X. Hence, an (n, k)-polygraph E consists
of the following data:

)Y Ek+1

AL AL

I<:+1 <;

by

Remark 2.1.2.4. Let n, j and k be integers, with j < k < n. Since an (n, j)-category is also an
(n, k)-category, an (n, k)-polygraph gives rise to an (n, j)-polygraph. In particular forn =k =1
and j = 0 we recover that a monoid presentation gives rise to a group presentation.

In particular, if 3 is an (n, k)-polygraph, we denote by »*() the (n, j)-category it generates.

Definition 2.1.2.5. Let C be an (n+1, k)-category. We denote by C the (n, k)-category Cy,/Cri1.

Let ¥ be an (n + 1, k)-polygraph. We denote by ¥ the (n, k)-category ©*(*) and call it the
(n, k)-category presented by X.
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2.2 Higher-dimensional rewriting

In this section we recall the notions of termination (Section 2.2.1), confluence (Section 2.2.2)
and coherence (Section 2.2.3) of an n-category. Since this n will vary throughout Chapter 3, we
talk instead of n-confluence, n-termination and n-confluence. Finally, we state Squier’s theorem,
under its more general form proved by Guiraud and Malbos in [35].

2.2.1 Termination

Definition 2.2.1.1. Let ¥ be an n-polygraph. For 0 < k < n, the binary relation —} defined
by u —} v if there exists f : v — v in X} is a preorder on X} _, (transitivity is given by
composition, and reflexivity by the units). We say that the n-polygraph ¥ is k-terminating if

—7 is a well-founded ordering. We denote by —>,j the strict ordering associated to —7.

We recall Theorem 4.2.1 from [38], which we will use in order to show the 3-termination of
some polygraphs.

Definition 2.2.1.2. Let sOrd be the 2-category with one object, whose 1-cells are partially
ordered sets, whose 2-cells are monotonic functions and whose 0-composition is the cartesian
product.

Definition 2.2.1.3. Let C be a 2-category, X : C2 — sOrd and Y : C§° — sOrd two 2-functors,
and M a commutative monoid. An (X,Y, M)-derivation on C is given by, for every 2-cell f € Cq,
an application

d(f) : X(s(f)) x Y (¢(f)) = M,

such that for every 2-cells fi, fa € Ca, every z, y, z and ¢ respectively in X (s(f1)), Y (t(f1)),
X (s(f2)) and Y (t(f2)), the following equalities hold:

d(f1e1 f2)[z,t] = d(f1)[z, Y (f)[y]] + d(f2)[X (f1)[z], y]
d(fl ) fg)[(I,Z), (yvt)] = d(fl)[x7y] + d(fQ)[th]'

In order to show the 3-termination of some polygraphs, we are going to use the following
result (Theorem 4.2.1 from [38]).

Theorem 2.2.1.4. Let ¥ be an n-polygraph, X : ¥5 — sOrd and Y : (£35)°° — sOrd two
2-functors, and M be a commutative monoid equipped with a well-founded ordering =, and whose
addition is strictly monotonous in both arguments.

Suppose that for every 3-cell A € X3, the following inequalities hold:

X(s(4)) = X(t(4))  Y(s(A)) =Y(t(A)  d(s(4)) > d(t(A)).

Then the n-polygraph ¥ is 3-terminating.

2.2.2 Branchings and Confluence

Definition 2.2.2.1. Let 3 be an n-polygraph. A k-fold branching of ¥ is a k-tuple (f1, fa, ..., fx)
of m-cells in ¥* such that every f; has the same source u, which is called the source of the branch-
ng.

The symmetric group Si acts on the set of all k-fold branchings of 3. The equivalence class of
a branching (f1, f2, ..., fxr) under this action is denoted by [f1, f2,. .., fk]. Such an equivalence
class is called a k-fold symmetrical branching, and (f1, fo,..., fx) is called a representative of

[f17f27"'7fk‘]
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Definition 2.2.2.2. Let ¥ be an n-polygraph. We denote by N the n-category with exactly
one k-cell for every k < mn, whose n-cells are the natural numbers and whose compositions are
all given by addition.

We define an application 1 : ¥* — N by setting 1(f) = 1 for every f € ¥,,. For f e ¥ we
call 1(f) the length of a f.

An n-cell of length 1 in ¥} is also called a rewriting step.

Definition 2.2.2.3. Let X be an n-polygraph. A k-fold local branching of X is a k-fold branching
(f1, f2,- -+, fr) of ¥ where every f; is a rewriting step.

A k-fold local branching (f1,..., fr) of source u is a strict aspherical branching if there
exists an integer ¢ such that f; = fi11. We say that it is an aspherical branching if it is in the
equivalence class of a strict aspherical branching.

A k-fold local branching (f1,..., fx) is a strict Peiffer branching if it is not aspherical and
there exist vy, vo € X% _; such that u = vy e; v2, an integer m < n and f,..., f, € X% such that
for every j <m, fj = fj’ o; v2 and for every j > m, f; = v e; fj’ It is a Peiffer branching if it is
in the equivalence class of a strict Peiffer branching.

A local branching that is neither aspherical nor Peiffer is overlapping.

Given an n-polygraph 3, one defines an order € on k-fold local branchings by saying that
(fisooos fu) S (we; freiu, ..., ue; fre;v) for every u,v € ¥*_; and every k-fold local branching

(fiseeos fh)-

Definition 2.2.2.4. An overlapping branching that is minimal for < is a critical branching.
A 2-fold (resp. 3-fold) critical branching is also called a critical pair (resp. critical triple).

Definition 2.2.2.5. Let ¥ be an n-polygraph. A 2-fold branching (f,g) is confluent if there
are f', ¢ € XF of the following shape:

f/) \f/

\g\_) 4

Definition 2.2.2.6. An n-polygraph ¥ is k-confluent if every 2-fold branching of ¥, is confluent.

Definition 2.2.2.7. An n-polygraph is k-convergent if it is k-terminating and k-confluent.
The following two propositions are proven in [38].

Proposition 2.2.2.8. Let X be an n-terminating n-polygraph. It is n-confluent if and only if
every 2-fold critical branching is confluent.

Proposition 2.2.2.9. Let ¥ be a k-convergent n-polygraph. For every u € Xf_,, there evists a
unique v € X7, such that uw —F v and v is minimal for —7.

Definition 2.2.2.10. Let ¥ be an n-polygraph. A normal form for ¥ is an (n — 1)-cell minimal
for —.

If ¥ is n-convergent, for every u € 3% _,
denoted by 4 and is called the normal form of u.

*

the unique normal form v such that u —} v is
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2.2.3 Coherence

Definition 2.2.3.1. Two k-cells are parallel if they have the same source and the same target.
An (n + 1)-category C is m-coherent if, for each pair (f,g) of parallel n-cells in C,, there
exists an (n + 1)-cell A: f — g in Cpy1.

Definition 2.2.3.2. Let ¥ be an (n + 1)-polygraph, and (f, g) be a local branching of ¥,,. A

filling of (f,g) is an (n + 1)-cell A € Z:(fl) of the shape:

SN
Nt —"

Definition 2.2.3.3. An (n + 1)-polygraph ¥ satisfies the n-Squier condition if:
e it is n-convergent,

e there is a bijective application from 5,41 to the set of all critical pairs of 3J,, that associates
to every A € ¥,,11, a critical pair b of X,, such that A is a filling of a representative of b.

The following Theorem is due to Squier for n = 2 [75] and was extended to any integer n > 2
by Guiraud and Malbos [35].

Theorem 2.2.3.4. Let ¥ be an (n + 1)-polygraph satisfying the n-Squier condition. Then the
free (n + 1,n — 1)-category X*"=1) is n-coherent.

In the proof of this Theorem appears the following result (Lemma 4.3.3 in [38]).

Proposition 2.2.3.5. Let ¥ be an (n + 1)-polygraph satisfying the n-Squier condition.
For every parallel n-cells f, g € ¥% whose target is a normal form, there exists an (n+ 1)-cell

A:f—>yg inE:(fl).

Let us compare those two last results. Let 3 be an (n + 1)-polygraph satisfying the n-Squier
condition, and let f,g € ¥¥ be two parallel n-cells whose target is a normal form. According
to Theorem 2.2.3.4, there exists an (n + 1)-cell A : f — g in the free (n + 1,n — 1)-category

#(n—1)
Zn—i—l
Z:(fl), where the n-cells are not invertible. Hence, for cells f,g € X% whose target is a normal

form, Proposition 2.2.3.5 is more precise than Theorem 2.2.3.4.

. Proposition 2.2.3.5 shows that such an A can be chosen in the free (n + 1, n)-category
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2.3 Application to the coherence of bicategories and
pseudofunctors

We now study the coherence problem successively for bicategories and pseudofunctors. In Sec-
tion 2.3.1, we start by recalling the usual definition of bicategories (see [7]). We then give an
alternative description of bicategories in terms of algebras over a certain 4-polygraph BiCat|[C],
and show that the two definitions coincide. The coherence problem for bicategories is now re-
duced to showing the 3-coherence of BiCat[C], and we use the techniques introduced in the
previous section (especially Theorems 2.2.1.4 and 2.2.3.4) to conclude. In Section 2.3.2, we apply
the same reasoning to pseudofunctors.

2.3.1 Coherence for bicategories

Let Cat be the category of (small) categories. We denote by T the terminal category in Cat.
Let sCat be the 3-category with one O-cell, (small) categories as 1-cells, functors as 2-cells,
and natural transformations as 3-cells, where O-composition is given by the cartesian product,
1-composition by functor composition, and 2-composition by composition of natural transfor-
mations.

Definition 2.3.1.1. A bicategory B is given by:
o A set By.

e For every a,b € By, a category B(a,b). The objects and arrows of B(a,b) are respectively
called the 1-cells B and 2-cells of B.

For every a,b, c € By, a functor e, : B(a,b) x B(b,c) — B(a,c).

e For every a € By, a functor I, : T — B(a,a), that is to say a 1-cell I, : a — a.

For every a,b,c,d € By, a natural isomorphism ay p ¢ 4:

Bla.b) x B(b.c) x Be, d) 2\ X *hed Ba,b) x Bb, d)

Qg b,c,d
*abe x Blc,d) / ®ab,d

B(a,c) x B(c,d)

B(a,d)

a,c,d

of components a4 : (feg)eh = fe(geh), for every triple (f,g,h) € B(a,b) x B(b,c) x
B(c,d).

e For every a,b € By, natural isomorphisms R, ; and Lgp:

Blab) P UO )« B

Rab

I, x B(a,b) 7

®4.b,b

Lab

)

B(a,a) x B(a,b) B(a,b)

®4.a,b

of components Ly : I, o f = f and Ry : f e I, = f for every 1-cell f € B(a,b).
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This data must also satisfy the following axioms:

e For every composable 2-cells f, g, h,i in B:

(Fog)eh)ei |
w
(fo(geh))ei
(feg)e(hei) = O geh,i (2.3.1)
fe(lgeh)ei)
® Qg hi
fe(ge(her))
e For every couple (f,g) € B(a,b) x B(b,c):
fely)eg

(
Qf T
—

fe(lyeyg

Rf ® g
- \ (2.3.2)
[ ]
feL, feg
Definition 2.3.1.2. Let C be a set. Let us describe dimension by dimension a 4-polygraph

BiCat[C], so that bicategories correspond to algebras on BiCat[C], that is to 4-functors from
BiCat[C] to sCat (see Proposition 2.3.1.4).

Dimension 0: Let BiCat[C]y be the set C.
Dimension 1: The set BiCat[C]; contains, for every a,b e C, a 1-cell 4, : a — b.

Dimension 2: The set BiCat[C], contains the following 2-cells:
e For every a,b,c € C, a 2-cell 'V'%b’c s able = dle-
e For every a € C, a 2-cell 9, : 15 = 4l

Note that the indices are redundant with the source of a generating 2-cell. In what follows,
we will therefore omit them when the context is clear. For example, the 2-cell g‘ of source

ablla designates the composite (op.q) ®1 4 We will use the same notation for higher-
dimensional cells.

Dimension 3: The set BiCat[C]3 contains the following 3-cells:

e For every a,b,c,de C, a 3-cell =, . 4 y = g of 1-source gplcq-
e For every a,be C, 3-cells 4, ; : (y = |and b, : %Q = | of 1-source 4.
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Dimension 4: The set BiCat[C]4 contains the following 4-cells:

e For every a,b,c,d,e € C, a d-cell <=, ; . ;. of 1-source gplclile-
< ey

< N

< 5

e For every a,b,ce€ C, a 4-cell ¢’ of 1-source gp|..

a,b,c

g W
v, i
Definition 2.3.1.3. We denote by Alg(BiCat) the set of all couples (C, ®):
e where C is a set,

e where @ is a functor from BiCat[C] to sCat.

Proposition 2.3.1.4. There is a one-to-one correspondence between (small) bicategories and

Alg(BiCat).

Proof. The correspondence between a bicategory B and an algebra (C, ®) over BiCat is given
by:

o At the level of sets: C = By.

e For every a,b e By, ®(ap) = B(a,b).

e For every a,b,c € By, CI)('V'a,b,c) = o b

e For every a € By, ®(9,) = I,.

e For every a,b,c,d € By, (I)(va,b,c,d) = Qg p.cd-

e For every a,b € By, <I>(|>a7b) = Ry and @(da,b) = Lqp.

e The axioms that a bicategory must satisfy correspond to the fact that & is compatible
with the quotient by the 4-cells <<= and ‘¢".
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Bicategory Alg(BiCat)
Sets Bg C 0-cells
Categories B(_, ) | 1-cells
Functors o I Avallel 2-cells
Natural transformations a, L, R <7, 4, p | 3-cells
Equalities (2.3.1) (2.3.2) | == ¢’ | 4-cells

Table 2.1: Correspondence for bicategories

This correspondence between the structures of bicategory and of algebra over BiCat is

summed up by Table 2.1.
it

We are going to show the coherence theorem for bicategories, using Theorem 2.2.3.4.
Proposition 2.3.1.5. For every set C, the 4-polygraph BiCat[C] 3-terminates.

Proof. In order to apply Theorem 2.2.1.4 we construct two functors X¢ : BiCat[C]5 — sOrd
and Yc : (BiCat[C]3)%® — sOrd by setting, for every a,b e C:

XC(alb) = YC(alb) = N*
and, for every i,j € N*:
Xe(Wli,jl=i+ij,  Xc@ =1, Yc(Pi = (i9).

We now define an (X, Yc, N)-derivation dc on BiCat[C]3 by setting, for every 4, j, k € N*:

de(V)i k] =i+ k+1,  dc(@li] =1,

It remains to show that the required inequalities are satisfied. Concerning X¢ and Y¢, we
have for every 1, j, k € N*:

XC(@)[Z.’].’ k;] =i+J+ k=i +J+ k= XC(Q‘)[%]J’C]

Yo(Hil = (i) = (i) = Yol

Yo@Wlil=izi=Yo(lil Yol =i>i= Yo,

Concerning dg, we have for every i, j, k, | € N*:

do(X g by 1] = 20+ + 20 +2 > i+ j + 2+ 2 = do ()i . k. 1]

do@lij1 =27 +2>0=do()lij]  do(Dli il =i+2 +1>0 = do()i, .
pid

The following Theorem is a rephrasing of Mac Lane’s coherence theorem [61] in our setting.
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Theorem 2.3.1.6. Let C be a set.
The 4-polygraph BiCat[C] is 3-convergent and the free (4,2)-category BiCat[C]*?) is 3-
coherent.

Proof. We already know that BiCat[C] is 3-terminating. Using Proposition 2.2.2.8 and Theo-
rem 2.2.3.4, it remains to show that every critical pair admits a filling.
There are five families of critical pairs, of sources:

I

The first two families are filled by the 4-cells ¢’ and <<=, whereas the last three are

filled by 4-cells w; € BiCat[C]Z@), which are constructed in a similar fashion as in the case of
monoidal categories (see Proposition 3.5 in [39]). i)

2.3.2 Coherence for pseudofunctors

Definition 2.3.2.1. A pseudofunctor F' is given by:
e Two bicategories B and B'.
e A function Fy : By — Bj.
e For every a,b € By, a functor F,; : B(a,b) — B'(Fy(a), Fo(b)).
e For every a,b, c € By, a natural isomorphism ¢ .

®u.b,.c

B(a,b) x B(b,c)

¢a,b,c
Fa,b X Fb,c / Fa,c

B'(Fo(a), Fo(b)) x B'(Fy(b), Fo(c)) p B'(Fy(a), Fo(c))
® Fo(a),Fo(b),Fo(c)

of components ¢, : F(f e g) = F(f) e F(g), for every couple (f,g) € B(a,b) x B(b,c).

e For every a € By, a natural isomorphism ),:

T

I,

B(Fo(a), Fo(a))

!
Fo(a),Fo(a)
of components ¢, : F(I,) = I }70 (a)’ for every a € By
This data must satisfy the following axioms:
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Dimension 2:

e For every composable 1-cells f,g and h in B:

*h)

F(fe(geh)) F(f o o F(h)
¢f,g.hﬂ = ﬂgsfg o F(h
F(f)e' F(geh) F(g)) F(h)
F(f) o ¢g,f (f) o ( /)F(h
e For every 1-cell f:a — bin B:
v D g
% - Lro
F(f)
F(Ly)
e For every 1-cell f:a — bin B:
F !/
F(I) MF(JC) It
% - R (p)
F(fel) F(f)
F(Ry)

The polygraph PFonct|f] contains the union of:

We will prove in Proposition 2.3.2.5

(2.3.3)

(2.3.4)

(2.3.5)

Definition 2.3.2.2. Let C and D be sets, and f an application from C to D. Let us describe
dimension by dimension a 4-polygraph PFonct|f].
pseudofunctors correspond to algebras over PFonct[f].

that

e the polygraph BiCat[C], whose cells are denoted by ¥, ¢, <, b, {, =<~ and ‘¢,

defined as in Definition 2.3.1.2,

e the polygraph BiCat[D], whose cells are denoted by ¥, @, 9, p, {, ~<g" and '¢’,

defined as in Definition 2.3.1.2,

together with the following cells:

Dimension 1: For every a € C, the set PFonct[f]; contains a 1-cell ¢, : @ — f(a).
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Dimension 3: The set PFonct[f]s contains the following 3-cells:

e For every a,b,ce C, a 3-cell W, , .- w = %: of 1-source alplle(c)-
e For every a € C, a 3-cell &, : ?.J = | @ of 1-source e

Dimension 4: The PFonct|[f]; contains the following 4-cells:

e For every a,b,c,d € C, a 4-cell ~mp™_ | ., of 1-source alpllale(a)
g/ %

e For every a,b e C, 4-cells pi, , and a4, ;, of 1-source olle(s)

0 1=k
/#8 x w\x . WA TG
X =

Definition 2.3.2.3. Let Alg(PFonct) be the set of all tuples (C, D, f, ®):

;-;

e where C and D are sets,
e where f is an application from C to D,

e where ® is a functor from PFonct[f] to sCat such that, for every ¢ € C the following
equality holds:

q’(clf(c)) =T

Remark 2.3.2.4. Let f : C — D be an application. Since BiCat[C] (resp. BiCat[D]) is a
sub-4-polygraph of PFonct|[f], every functor ® : PFonct[f] — sCat induces by restriction two

functors:
®p : BiCat[C] — sCat dg : BiCat[D] — sCat

Proposition 2.3.2.5. Pseudofunctors between (small) categories are in one-to-one correspon-
dence with elements of Alg(PFonct).
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Pseudofunctors Alg(PFonct)

Source and target B and B’ (C, o) and (D, Pg) | Restrictions
Function Fy f Function
Functors F = 2-cells

Natural transformations U, ¢ P 4 3-cells
Equalities (2.3.3) (2.3.4) (2.3.5) - K K 4-cells

Table 2.2: Correspondence for pseudofunctors

Proof. The proof is similar to the case of bicategories, using the correspondence Table 2.3.2.
i

Proposition 2.3.2.6. For every sets C,D and every application f : C — D, the 4-polygraph
PFonct(f] 3-terminates.

Proof. In order to apply Theorem 2.2.1.4, we define functors X¢ : PFonct[f]; — sOrd and
Ys : (PFonct[f]5)°° — sOrd as extensions of the functors X¢, Xp, Y¢ and Yp from Proposition
2.3.1.5, and by setting for every a € C:

Xt (ale(a)) = Ye(ale)) = T,

where T is the terminal ordered set, and for every i € N*:

Xe(®)[i] =i Ye(@)[i] =20+ 1.

We now define an (X, Yr, N)-derivation df on PFonct[f]; as an extension of d¢, by setting
for every i, j, k € N*:

de(W)[i, g, k1 =i+ k  de(@)i] =i de(m)[i,j] =i+7+1

It remains to show that the inequalities required to apply Theorem 2.2.1.4 are satisfied. Since
X¢ (resp. Y;) extends X¢ and Xp (resp. Y¢ and Yp), the only inequalities that need to be
checked are those corresponding to the 3-cells @’ and #,. Indeed, for every i,j € N*, we have:

Xe(@) =12 1=X¢(l )

Xe(Gadlid) = i+ 5 i+ = Xe(ali]

Ve(Cad)li] = (20 +1,2i +1) > (2 +1,2i + 1) = Yf(g)[i]

Concerning dg, the 3-cells from BiCat[C] have already been checked in Proposition 2.3.1.5.
For the other 3-cells, we have, for every i, j, k € N*:

de(QPini] =2 +1>0=de()ij]  de@)lind] =i +2j > 0 = de()[i, 7]
dr(Q)[i] = 3i +2 > i = de(| 8)
de(gd)[i. j, K] = 2i + j + 3k +3 > 2i + j + 3k + 2 = df(%:)[i,j, k.
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Theorem 2.3.2.7. Let C and D be sets, and f : C — D an application.
The 4-polygraph PFonct[f] is 3-convergent and the free (4,2)-category PFonct[f]*(?) is 3-
coherent.

Proof. We have shown that it is 3-terminating, so using Proposition 2.2.2.8 and Theorem 2.2.3.4,
it remains to show that every critical pair admits a filler in PFonct[f]4.

There are thirteen families of critical pairs. Among them, ten come from BiCat[C] or
BiCat[D], and were already dealt with in Theorem 2.3.1.6. The remaining three have the

following sources:

and they are filled respectively by the 4-cells oK, %< and <P~ i)
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Chapter 3

Coherence for pseudonatural
transformations
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Organisation

The goal of this chapter is to prove a coherence theorem for pseudonatural transformations. In
the beginning of Section 3.1, we try to mimic the reasoning we used in the previous chapter to
show the coherence for bicategories and pseudofunctors. We quickly realise however that the
(4,2)-polygraph encoding the structure of pseudonatural transformation is not confluent, and so
we cannot apply Theorem 2.2.3.4. To conclude we therefore temporarily admit a new Squier-like
result: Theorem 3.1.3.5. Using this result we are able to prove the coherence for pseudonatural
transformations in Section 3.1.

We then proceed to prove Theorem 3.1.3.5. First in Section 3.2 we introduce some necessary
tools, and in particular the notion of white n-categories, which are n-categories where the ex-
change law does not hold (even up to isomorphism. Sections 3.3 and 3.4 then contain the proof
of Theorem 3.1.3.5.

3.1 Proof of the coherence for pseudonatural transformations

In this section we prove a coherence theorem for pseudonatural transformations (Theorem
3.1.1.8). However, the methods we developped in the previous chapter fail in this case. To
prove Theorem 3.1.1.8 we therefore rely on another result: Theorem 3.1.3.5, whose proof will
occupy Sections 3.2 to 3.4. In Section 3.1.1, we start by describing the structure of pseudonatural
transformation and a (4,2)-polygraph PNTrans[f, g] encoding it. A more complete overview
of the proof of Theorem 3.1.1.8 is given at the end of Section 3.1.1.

3.1.1 The structure of pseudonatural transformation

Definition 3.1.1.1. A pseudonatural transformation 7 consists of the following data:
e Two pseudofunctors F, F’ : B — B’, where B and B’ are bicategories.

e For every a € By, a functor 7, : T — B'(Fy(a), Fj(a)), that is a 1-cell 7, : Fy(a) — Fj(a)
in B'.

e For every a,b € By, a natural isomorphism o, y:

B(a,b)
Fop Fy

)

B (o), Fo() B (Fi(a), Fi ()
B (Fy(a), Fo(0) % = 70 = B(Fy @), Fy0)
B (Fo(a), Fo(0)) x B (Ro0), F§0) B (Fola), Fi(a) x B (Fila), Fi(5)

/

, /
.FO(a)vFO(b)vFO%)[(FO(a) Fé(b).)FO(a)’Fé(a)’Fé(b)

of components o5 : F(f) o' 7, = 7, ¢ F'(f), for every f € B(a,b).
This data must satisfy the following axioms:
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o For every (f,g) € B(a,b) x B(b,c):
Ta® F'(feg)
T fag 7a® Oy
F(feg)e
Prg e Te
(F(f) o' F(g)) o' 7

/
CF(f),F(g)7e

F(f) o (F(g) o' 7)

e For every a € By:

a o 7-a
. ’Ta
/FI(I )
I ® Ta Ta o Yy, (3.1.2)
! 7!
7 7o * Iha)

%

Definition 3.1.1.2. Let C and D be sets, and f, g be applications from C to D. Let us define
dimension by dimension a (4, 2)-polygraph PNTrans|[f,g|. We will see in Proposition 3.1.1.5
that pseudonatural transformations correspond to algebras over PNTrans|f, g].

The polygraph PNTrans|f, g] contains the union of the polygraphs PFonct[f] and PFonct[g].
In particular, the following cells are in PNTrans|f, g|:

e the cells Y, 9, <7, b, , =< and ¢’ coming from BiCat|[C],
e the cells ¥, @, 9, ), {, ~&= and ‘¢’ coming from BiCat[D],
o the cells jm, @y, 6, P~ X and % coming from PFonct|[f],

e the cells m, @, 06, <SP, > and @< coming from PFonct[g].

Together with the union of PFonct[f] and PFonct[g], PNTrans|[f, g] contains the follow-
ing cells:
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Dimension 2: For every a € C, the set PNTrans[f, gz contains a 2-cell @9, : dg@) =

alf(a)le(a)-

Dimension 3: For every a,b € C, the set PNTrans(f, g|3 contains a 3-cell: {mx,,, : ﬁ] =4

@ of 1-source glplgs)-

Dimension 4: The set PNTrans|f, g]; contains the following 4-cells:

e For every a € C, a 4-cell ©,, of 1-source glg(q)

e
A

w4 .
gt

e For every a,b,ce C, a 4-cell &, ;, . of 1-source gly|lg(c)

Definition 3.1.1.3. Let Alg(PNTrans) be the set of tuples (C,D, f, g, ®) :
e where C and D are sets,
e where f,g: C — D are applications,

e where @ is a functor from PNTrans[f, g] to sCat, such that for every ¢ € C, d € D and
1-cell |: ¢ — d:
(I)(cld) =T
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Remark 3.1.1.4. Since PFonct[f] (resp. PFonct[g]) is a sub-4-polygraph of PNTrans|[f, g],
every functor ® : PNTrans|[f, g] — sCat induces by restriction two functors

g : PFonct[f] — sCat g : PFonct[g| — sCat

Proposition 3.1.1.5. Pseudonatural transformations between pseudofuncteurs are in one-to-
one correspondence with elements of Alg(PNTrans).

Proof. The proof is similar to that of bicategories, using Table 3.1.

Pseudonatural transformations Alg(PNTrans)
Source and target F and I’ Pg and Pg | Restrictions
Functors T () 2-cells
Natural transformations o g 3-cells
Equalities (3.1.1) (3.1.2) S 4, 4-cells

Table 3.1: Correspondence for pseudonatural transformations

&

This result induces the classification presented in Table 3.2 of the cells of the (4, 2)-polygraph
PNTrans|f, g], depending on which structure they come from. We also distinguish two types of
cells: product cells and unit cells. Moreover, in Table 3.2, every line corresponds to a dimension.

’ Origin Dimension ‘ Product cells Unit cells ‘
2-cells A\ o)
Source bicategory 3-cells <~ b, 4
4-cells a—— hog
2-cells v [
Target bicategory 3-cells ~p~ b, ¢
4-cells . ‘9’
2-cells m
Source pseudofunctor 3-cells 4 'Y
4-cells <’ oK, K
2-cells pu g
Target pseudofunctor 3-cells g oy
4-cells = P S
2-cells (]
Pseudonatural transformation 3-cells i
4-cells ) w— oX

Table 3.2: Classification of the cells of PNTrans|f, g]

Proposition 3.1.1.6. Letf,g : C — D be two applications. The (4,2)-polygraph PNTrans|f, g]
3-terminates.

Proof. We apply Theorem 2.2.1.4. To construct the functors X¢ g : PNTrans|f, g]5 — sOrd
and Ytg : (PNTrans([f,g]5)°° — sOrd, we extend the functors X¢, Xg, Y¢ and Yy from
Proposition 2.3.2.6, by setting:

Xf,g([:) =1
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We now define an (Xt g, Y¢ g, N)-derivation dgg of the 2-category PNTrans[f, g]5 as the
extension of dg satisfying, for every i,j € N*:

deg(@®)[i,jl=i+j  deg(@D)[i] =i

It remains to show that the required inequalities are satisfied. Since X¢ g (resp. Ygg) is an
extension X¢ and Xg (resp. Yr and Yg), it only remains to treat the case of the 3-cell jm. For
every 1, j € N* we have:

Xf7g(§) [i]=i+1>i+1= ijg(@) [7] Yﬂg(ﬁ)[i] =22i+1>2i+1= Yf7g(@>[i]

Concerning d g, the 3-cells from PFonct[f] were already treated in Proposition 2.3.1.5. For
the others we have, for every i, j, k € N*:

dr g (Cgdli- . K] = 20+ j + 3k +2 > 2 + j + 3k = df,g(g)[i,j, k]

o) =34 150 = drgll @ g (V] = 203412 1435+ 1 = de o (@[]
[yl

Definition 3.1.1.7. We define a weight application w as the 1-functor from PNTrans|f, g|}
to N, defined as follows on PNTrans|f, g];:

e for all a,be C, w(yp) =1,
e for all a,be D, w(ap) =1,
e forallae Cand be D, w(g) = 0.

Theorem 3.1.1.8 (Coherence for pseudonatural transformations). Let C and D be sets, and
f,g: C — D applications.

Let A, B € PNTransl|f, g]§(2) be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell o : AS B e PN’I‘rans[f,g]z(Q).

This proof of this theorem will occupy the rest of Section 3.1. Contrary to the case of bicat-
egories and pseudofunctors, we cannot directly apply Theorem 2.2.3.4 to the (4,2)-polygraph
PNTrans|f, g], because the following critical pair is not confluent:

o
o AT
N
g T e
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Let us give a quick overview of the proof of Theorem 3.1.1.8. We fix for the rest of this section
two sets C and D, together with two applications f,g : C — D. Let A, B € PNTrans[f, g]*?
be 3-cells whose 1-target is of weight 1. We want to build a 4-cell o : A=) B € PN'Trans|f, g]*?®.

The 1-cells of weight 1 are of one of the following forms, with a,a’ € C and b,V € D:

do ot dele@)  dlg@y  deke@y  dgb dlrab

We start in Section 3.1.2 by show that if the common 1-target of A and B is not of the last
form, then they are generated by a sub-4-polygraph PFonct|f, g] of PNTrans|[f,g]. We then
show using Theorem 2.2.3.4 that this 4-polygraph is coherent.

There remains to treat the case where the 1-target of A and B is of the last form. We define
two sub-(4, 2)-polygraphs of PNTrans[f,g]: PNTrans'"[f,g] and PNTrans™[f,g]. The
(4,2)-polygraph PNTrans™ " [f, g] contains all the structure of pseudonatural transformations,
except for the axioms concerning the units ¢ and @, while PNTrans™[f, g] is constructed from
PNTrans*t[f,g] by adding the 2-cells ¢ and @ (but not the higher dimensional cells where
they appear). The inclusions between the (4, 2)-polygraphs can be seen as follows:

PNTrans™ [f, g]o € PNTrans*[f, g], = PNTrans[f, g]-

PNTrans™ *[f, g]; = PNTrans*[f, g]3 « PNTrans[f, g3

In Section 3.1.3, we show that PN'Trans™ " [f, g] satisfies the 2-Squier condition of depth 2,
which allows us to apply Theorem 3.1.3.5. But this only solves the problem whenever A, B €
PNTranst*[f, g]*(®). In order to extend that to the rest of PNTrans[f, g]*(?), we then define
a sub-3-polygraph PNTrans"[f,g]| of PNTrans|f,g]. The rewriting system induced by the
3-cells PNTrans"[f, g| corresponds to simplifying the units out.

Using the properties of this rewriting system, we extend the result of Section 3.1.3, first to
3-cells A and B in PNTrans™[f, g]*(?) in Section 3.1.4, and finally to general A and B whose
1-target is glg(q) in Section 3.1.5, thereby concluding the proof.

3.1.2 A convergent sub-polygraph of PNTrans|f, g|

Definition 3.1.2.1. Let PFonct[f, g] be the 4-polygraph containing every cell of PNTrans|f, g],
except those corresponding to the pseudonatural transformation. Alternatively, PFonct[f, g] is
the union of PFonct[f] and PFonct[g].

Lemma 3.1.2.2. For every h € PNTrans[f, g|5, one of the following holds:

o The target of h is of the form
all"'|a¢|f(a¢)|b1|"'|bj7 (313)

where © and j are non-zero integers, the ay are in C and the by are in D.
o The 2-cell h is in PFonct|[f, g]5.

Proof. Let us show first that the set of all 1-cells of the form (3.1.3) is stable when rewritten by
PFonct[f, g|5. To prove this, we examine the case of every cell of PFonct|[f, g|5 of length 1:

a1|“'|ak,1'7'ak+1|"'|bj : a1|"'|ai|f(ai)|b1|"'|bj = a1|"'|ak71lak+1|"'|bj

el Qb = ol by = ol

arl b WPor ol by * arllasle(anloal o, = anl b1l il
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arl o @0l b, @l lale(anlbil b, = ailloyloellb;

arl i B @)l by arllasle(anlbillo; = arllaiz il lecan ol b,

Let us now prove the lemma: we reason by induction on the length of h. If h is of length 0,
it is an identity, so h is in PFonct|[f, g]*.

If h is of length 1 and A is not in PFonct[f, g|*, then h has to be of the form |--| &3 ||
So its target is of the form:

arl " larleap)lgar)lbl b

which is indeed of the form (3.1.3), with by = g(ag).

Let now h be of length n > 1. We can write h = hy o1 ho, where ho is of length 1, and hq is
strictly shorter than h. Let us apply the induction hypothesis to hy. If the target of ho is of the
form (3.1.3), then so is the target of h, since t(h2) = t(h). Otherwise, then h; € PFonct|f, g]*,
and we can apply the induction hypothesis to ha. If hy also is in PFonct[f, g]*, then so is h.

It remains to treat the case where t(hq) is of the form (3.1.3) , and hs is in PFonct|[f, g]*. But
we have shown that the 1-cells of the form (3.1.3) are stable when rewritten by PFonct[f, g]*.
Thus, the target of ho (which is the target of h) is of the form (3.1.3), which concludes the
proof. pid

Lemma 3.1.2.3. For every A € PNTrans|f, g];:(z), one of the following holds:
e The 1-target of A is of the form (3.1.3).
o The 3-cell A is in PFonct[f, g]§(2).

Proof. Let us start by the case where A is a 3-cell of length 1 in PNTrans|f, g|5. If the 1-
target of A is not of the form (3.1.3) then, according to Lemma 3.1.2.2, the 2-source of A is in
PFonct[f,g|5. The only 3-cell in PNTrans[f, g]s which is not in PFonct[f, g3 is the 3-cell

AX, whose 2-source ﬁ is not in PFonct|[f, g|5. Thus A is in PFonct|[f, gl;.

Suppose now that A = B!, where B is a 3-cell of PNTrans|[f, g]} of length 1. The 1-target
of B is the same as the one of A. If it is not of the form (3.1.3), B is in PFonct[f, g];:(z), and
so is A.

In the general case, A is a composite of 3-cells of one of the two previous forms, and all of
them have the same 1-target as A. Thus if the 1-target of A is not of the form (3.1.3), all those

3-cells are in PFonct|f, g]§(2), and so is A. i
Lemma 3.1.2.4. The 4-polygraph PFonct[f, g| is 3-coherent.

Proof. 1t is a sub-4-polygraph of PNTrans|f, g| which is 3-terminating, therefore it is also 3-
terminating. Moreover, every critical pair in PFonct[f, g] arises from one either in PFonct[f]
or PFonct[g]. Since those 4-polygraphs are confluent and satisfy the Squier condition, so does
PFonct[f, g].

Using Theorem 2.2.3.4, this means that PFonct[f, g] is 3-coherent. i

Proposition 3.1.2.5. Let f,g: C — D be two applications.

For every parallel 3-cells A, B € PNTrans[f, g]*(?) whose 1-target is not of the form (3.1.3),
there exists a 4-cell o : A= B € PNTrans|f, g]z(m.

In particular, for every parallel 3-cells A, B € PNTrans|f, g]*(2) whose 1-target is of weight

1 and is not of the form ole(o)y, there exists a 4-cell a : A= B € PNTransl|f, g]Z(Q),
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Proof. Let A, B € PNTrans|f, g];‘(?) whose 1-target is not of the form (3.1.3). We want to build
ad-cell a: ASB € PNTrans[f,g]Z(z). According to Lemma 3.1.2.3, A and B are actually
3-cells in PFonct|f, g]§(2). In Lemma 3.1.2.4, we showed that PFonct|[f, g] is 3-coherent, hence

there exists a 4-cell @ : A= B € PFonct|f, g]Z(Q) c PNTrans|f, g]zm.

Moreover, the only 1-cells of weight 1 and of the form (3.1.3) are the 1-cells 4l¢(q), Which
proves the second part of the Proposition. yig]

3.1.3 The 2-Squier condition of depth 2 and PNTrans|f, g|

In this section, we finally state Theorem 3.1.3.5, and show that a sub-polygraph of PNTrans|f, g]
satisfies its hypothesis. The proof of Theorem 3.1.3.5 will occupy Sections 3.2 to 3.4.

Definition 3.1.3.1. Let PNTrans™**[f, g| be the sub-(4, 2)-polygraph of PNTrans|f, g] con-
taining every product cell from Table 3.2.

Definition 3.1.3.2. Let X be an (n + 1)-polygraph, and (f,g) a local branching in ¥,,. De-
pending on the nature of (f,g), we define the notion of canonical filling of (f,g).

e If (f,g) is an aspherical branching, then its canonical filling is the identity 1.

o If (f,g) is a Peiffer branching, if (f,g) = (f'e;v1,v2¢; ¢) (resp. (f,g) = (viei f', g ®iv2)),
then its canonical filling is 14,0 (vesp. 1y, f/).

e Assume that ¥ satisfies the n-Squier condition, and let (f, g) be a critical pair. Let A be
the (n + 1)-cell associated to [f, g]. If A is a filling of (f, g), then the canonical filling of
(f,g) is A. Otherwise, A is a filling of (g, f) and the canonical filling of (f,g) is A~!.

e Assume that the branching (f, g) admits a canonical filler A. Then the canonical filler of
(ue; fo;v,ue; fo;v)isue; Ae;v.

Definition 3.1.3.3. Let X be an (n + 2,n)-polygraph satisfying the n-Squier condition, and
(f,g,h) be alocal branching of ¥,,. A filling of (f,g,h) is an (n +2)-cell a € E:TZ) of the shape:

(3.1.4)

AN

x Ao

where A, A¢ g, Agh, A, B1 and By are (n + 1)-cells in E:g:ll), and Arg, Agp and Ay are the
canonical fillings of respectively (f,g), (g, h) and (f, h).

N —

Afg \ /\ By
g— A = Asp

/ x/ By

e

Definition 3.1.3.4. An (n + 2, n)-polygraph X satisfies the n-Squier condition of depth 2 if:
e it satisfies the n-Squier condition,

e there is a bijective application from 3, .9 to the set of all critical triples of ¥, that asso-
ciates to every a € ¥, 1o a critical triple b of X, such that « is a filling of a representative
of b.
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Theorem 3.1.3.5. Let A be a (4,2)-polygraph satisfying the 2-Squier condition of depth 2.
For every parallel 3-cells A, B € E;m)
a: AS B in the free (4,2)-category ZI(Z).

whose 1-target is a normal form, there exists a 4-cell

This theorem should be compared with Proposition 4.4.4 in [10]. There, for every parallel
A, Be Eg(l), a 4-cell @ : A= B is constructed in the free (4, 1)-category ZZ(I). By not requiring
the inversibility of the 2-cells, Theorem 3.1.3.5 gives a more precise statement, at the cost of
restricting the set of 3-cells allowed.

Lemma 3.1.3.6. The (4,2)-polygraph PNTrans'[f, g] satisfies the 2-Squier condition of
depth 2.

Proof. The 2-Squier condition
Let us start by showing the 2-termination of the (4, 2)-polygraph PNTrans®*[f, g].

We define a functor 7 : PNTrans[f,g]f — N3, where compositions in N? are given by
component-wise addition, by defining:

e Forall a,be C, 7(ap) = (1,0,0).

e Forall ae C, T(alf(a)) = (0, 1,0).

e For all a € C, 7(dlg(a)) = (0,2,0).

e For all a,be D, 7(4) = (0,0,1).

The lexicographic order on N? induces a noetherian ordering on PNTrans[f, g]¥. Moreover,
the 2-cells are indeed decreasing for this order:

7(s(¥)) = (2,0,0) > (1,0,0) = 7(t(¥))  7(s(¥)) = (0,0,2) > (0,0,1) = 7(t('¥))

T(s(m) = (1,1,0) > (0,1,1) = 7(t(m))  7(s(®)) = (1,2,0) > (0,2,1) = 7(t(m)))

T(s(@9)) = (0,2,0) > (0,1,1) = 7(t(&))

The following diagrams show both the 2-confluence of PNTrans**[f, g| and the correspon-
dence between critical pairs and 3-cells:

alcld alcld

¥ | ¥ v | v
alblcld v ald alblcld * ald
N A N

albla albld



A o
alole (b)le ) :l> ae(a)lew)lece) ablg(v)lg ) :L ag(@)lg(b)lg(c)

A A

alblclf( alf(a alblclg(c) w alg(a)lg(c)

alle alClg (¢)

& |
alg a)lg b) —_— alf |g(a)|g

> ~

ableg () b ale(a)lg (b)

= %

|b|fb| :>a|f |f |
( g >-< | g

o

The 2-Squier condition of depth 2

The following diagrams show the bijection between critical triples and 4-cells.

alcldle aldle alcldle aldle

7 1| /X
/ >y

'<:7| ale % alblcldle = alcle l?l ale

e
A
/
A
¢
<

'*' ale g alblcldle = alcle v ale
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o | aleldle (a) aldle (a)
<~ | / \
/ |9

aloleldle () albldle (a) alf (a)
=] = W *
ablle(ole(a) | de(a)le)le(a)
I}!\\\ 1] Y %
able@)leo)lea) able@)le(a)
il —
'V' |
alcldlf aldlf (d) >.<

V/’ W

= | | v
alblcldle(a) alclf () a|f Neole()) === dr)lt(a)
= ¢ / > | v
V R ¢
ablele()le a) a|f ewleole(a) ale(a)le(a)
s /| i
able)le o)l ablew)lea)
akldlg () aldlg(a)
Y |
v < |
| ¥ |
albleldlg a) ablalg(a) dlg(a)lg ()
1 | = [l
albldlg (o)l () | &= dg(@lg®lg(d)
| = | | W |
ablg ()l (¢)lg () alblg ()l (@)
Il
alddlg(a) ¥ | aldlg () -
Y | W

|
alblcldlg alclg(c |g(d alg |g |g
ﬂ v V ] v

alblclg |g alg(a)lg |g c)lg alg(a)lg(d)

|\ % ) %

ablg vl ()l (a) Ty ablg(v)le(a)
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= & | | 'Y

adlg(c) === dlg(a)le(c) === dlt(a)lg(a)le(0) ae(a)lg ()
| VW - W v
Y/ e a|g<a)|g<b>|g<c>éﬂf(aﬂg(a)lg(b)lg(c) v
w = | I 4
I 4
| = Y
ablelg(c) == ablg(v)le(c) pa . ale(@)lg)lg()
~~
|§\\\ _— /
|| & ablew)lg®)le(c) == dle(@)le®)e®)e(c) % ale(a)lev)lg )
| = _
||

a|b|c|f(c)|g(c1 ? rlblf(b)lf(c)lg(c) ﬁ' able@)le () |

| v
alclg(c alg a)lg c):>a|f |g(a |g alf(a)lg(c)

>
alf |f c)lg
a|b|C|g alclf(c |g(c
R ¢
de@le®)leole(c) == de(a)lg®)lg(c)
?li |
alblele c)lg = ablew)le(e) |g(c alblf ®lee)
[

&

Proposition 3.1.3.7. For every 3-cells A, B € PNTrans"*[f, g]*®) whose 1-target is of the
form ole(a)l, there exists a 4-cell « : A= B € PNTrans|f, gl*®.

Proof. Thanks to Lemma 3.1.3.6, we can apply Theorem 3.1.3.5 to PNTranerJr[f,g]*(Q), and
there exists a 4-cell o : A=) B in PNTrans™ *[f, g]*(?) for every 3-cells A, B € PNTrans™ *[f, g]*?
whose 1-target is a normal form. In particular the 1-cells of the form gl ()|, are normal forms. &
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3.1.4 Adjunction of the units 2-cells

Definition 3.1.4.1. Let PNTrans"[f, g| be the sub-3-polygraph of PNTrans|f, g]| containing
the same 1- and 2-cells, and whose only 3-cells are the unit cells from Table 3.2.

A 2-cell h € PNTrans[f, g|5 is said unitary if it is generated by the sub-2-polygraph of
PNTrans|f, g] whose only 2-cells are ¢ and @.

Lemma 3.1.4.2. Let h € PNTransl[f, g|5 whose target is of the form i q), where a € C and
beD.

If there is a decomposition h = hyeihg, where hy € PNTrans"[f, g]* and he € PNTrans|f, g|*
are not identities, and hy is a unitary 2-cell, then there is a 3-cell A € PNTrans"[f, g5 of source
h which is not an identity.

Proof. Let us start with the case where h; is of length 1. We reason by induction on the length
of ha. If hy is of length 1, since the target of hy is of the form gle(q)ls, h2 is one of the following
2-cells:

Y = &=

Hence, h is one of the following 2-cells:

Y ¥ =

And all of these 2-cells are indeed the sources of 3-cells in PNTrans"[f, g|5.
In the general case, let us write ha = hq 1 hfy, where hg is of length 1. Two cases can occur.

e If there exist 1-cells u,u’,v and v' and 2-cells by : u = «' € PNTrans"[f,g|* and 7] :
v = v’ € PNTrans|f, g]* such that hy = h] e u (resp. hy = u g h}) and hy = v ey hj,
(resp. ho = hyy e V).

Then h = (h) g hy) @1 hl, (resp. h = (h{, o h}) &1 hf), and we can apply the induction
hypothesis to (k] eo u’) e1 hl, (resp. (u' g h) &1 h).

e Otherwise, h; e1 hg is one of the following 2-cells,

HYH HYH HYH H@H HeH HeH

and all of them are sources of 3-cells in PNTrans"(f, g|*.

In the case general case where h; is of any length, let 2}, h] € PNTrans[f, g]3 with hf of
length 1 such that hy = h) 1 h{. Then there is a non-empty 3-cell A’ € PNTrans"[f, g|j of
source hf 1 hg, and one can take the 3-cell b o1 A'. pid

Lemma 3.1.4.3. Let h be a 2-cell in PNTrans|[f, g]* whose target is of the form dgq)l, with
aeC and beD.

If h is a normal form for PNTrans"[f, g], then one of the following holds:
e The 2-cell h equals the composite | .
e The 2-cell h is in PNTrans™t[f, g]*.

Proof. We reason by induction on the length of h. If h is of length 1, the cells of PNTrans|f, g|3
of length 1 and of target glg(,)ly are:

|Y &= = e

Otherwise, let us write h = hy ey hy, where hy is of length 1. We can apply the induction
hypothesis to hs, which leads us to distinguish three cases:
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o If hy =| @, then hy is a 2-cell in PNTrans[f, g]5 whose target is of the form 4le(,). The
only such cell is the identity, and h = hy =| @.

e If hy and hy are in PNTrans™ " [f, g]*, then h is in PNTrans™ " [f, g]*.

o Lastly, if ho is in PNTrans™ " [f,g]* and h; is in PNTrans"[f,g]*, then because of
Lemma 3.1.4.2, h is the source of a 3-cell in PNTrans"[f, g]|* of length 1, which is impos-
sible since, by hypothesis, h is a normal form for PNTrans"[f, g].

&

Definition 3.1.4.4. Let PNTrans™[f, g| be the sub-4-polygraph of PNTrans|[f, g| containing
PNTrans™[f, g], together with the 2-cells ¢ and @.

In particular a 3-cell in the free (3, 2)-category PNTrans ™ [f, g]*(?) is in PNTrans™* [f, g]*(?)
if and only if its 2-source is in PNTrans™*[f, g]*?) too.

Proposition 3.1.4.5. For every parallel 3-cells A, B € PNTrans™ [f, g]*(2) whose 1-target is of
the form dle(q)b and whose 2-source is a normal form for PNTrans"[f, g], there exists a 4-cell

o : A= B € PNTrans[f, g]*?.

Proof. Given such 3-cells A and B, we use Lemma 3.1.4.3 to distinguish two cases:
If the source of A and B is| @, the only 3-cell in PNTrans™[f, g]*(®) with source | @ is the
identity. So A = B and we can take a = 14.
2)

Otherwise, the source of A and B lies in PNTrans**[f, g]4, so A and B lie in PNTrans™ " [f, g]g( .
Proposition 3.1.3.7 allows us to conclude. pid

3.1.5 Adjunction of the units 3-cells

In this section, we consider the rewriting system formed by the 3-cells of PNTrans"[f,g].
Since it is a sub-3-polygraph of PNTrans|f,g] (which 3-terminates by Proposition 3.1.1.6),
PNTrans"[f, g] is 3-terminating. The fact that it is 3-confluent is a consequence of the following
more general Lemma:

Lemma 3.1.5.1. Let A € PNTrans|f,g|j and B € PNTrans"[f,g|5. There exist 3-cells

A" e PNTrans|f, g|5 and B' € PNTrans"[f, g|* and a 4-cell oy p € PNTrans|f, g]I(Q) of the
following shape:

Proof. Let us start by the case where (A, B) is a critical pair of PNTrans|f, g|s. If A and B are
in PFonct|[f, g3, the result holds because PFonct[f, g] is 3-convergent. Otherwise, the only
critical pair left is the following one:
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o, s T
)
T_’:[]Eqwﬁ

Let us now study the case where (A, B) is a local branching of PNTrans|f, g]3. We distin-
guish three cases depending on the shape of the branching:

e If (A, B) is an aspherical branching, then one can take identities for A’ and B’, and a = 14.

e If (A, B) is a Peiffer branching, let A’ and B’ be the canonical fillers of the confluence
diagram of (A, B), and « be an identity.

e Lastly, if (A, B) is an overlapping branching, let us write (A, B) = (f o1 uAjv o1 g, f o
uBjve; g), where (A1, By) is a critical pair. Let A}, B] and a; be the cells associated with

(A1, B1). We then define A’ := fejudijve; g, B := fejuBjveigand oy := fejuajve;g.

In the general case, we reason by noetherian induction on h = s(A) = s(B), using the
3-termination of PNTrans|[f, g].

e If A or B is an identity, then the result holds immediately.

e Otherwise, we write A = A; o3 Ay and B = Bj e By, where Ay and Bj are of length 1.
We now build the following diagram:

Ay A
h
B/
1
Bi|| ®Ay,B, || ®A9,B] ||BY
/ /
Al 2

"

Bo|| @ayB. || “ay.3; (B
/
1B,

" n

Al AQ

In this diagram, a4, p, is obtained thanks to our study of the local branchings. The existence
of ay, p; and aar g, (followed by « A, Bg) then follows from the induction hypothesis. o7

Lemma 3.1.5.2. Let f, g be 2-cells of PNTrans(f, g|*, and A : f = g a 3-cell of PNTrans™[f, g]*.
If f is a normal form for PNTrans"(f, g]|, then so is g.
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Proof. We prove this result by contrapositive. We are going to show that for any A € PNTrans™[f, g]*
and B € PNTrans"[f,g]* two 3-cells of length 1 such that t(A) = s(B), there exists B’ €
PNTrans"[f, g]* of length 1 and of source s(A):

%

Bm m

Two cases can occur depending on the shape of the branching (A%, B):
e If it is a Peiffer branching, then the required cell is provided by the canonical filling.
e If it is an overlapping branching, then it is enough to check the underlying critical pair.

It remains to examine those critical pairs:
~ ol
& s s

T ST
(N |

-

{<E'4E

=y
.
= [y w

—=C¢ =

>

»

g g
B

o=

=xb
dE=E = <=

E%I‘_}mﬁ X
5=

&

Lemma 3.1.5.3. Let A € PNTrans|f, g|5. If the source of A is a formal form for PNTrans"[f, g],
then A is in PNTrans™ [f, g|}.
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Proof. We reason by induction on the length of A:
e If A is an identity, then it is in PNTrans™[f, g].
e Otherwise, let us write A = A; o5 As, where A; is of length 1. Since the source of A is a

normal form for PNTrans"[f, g], the 3-cell A; can only be in PNTrans™[f, g]*.

According to Lemma 3.1.5.2, the normal forms for PNTrans"[f, g] are stable when rewrit-
ten by PNTrans™[f, g]*. Hence, the source Az is a normal form for PNTrans"[f, g],
and by induction hypothesis, As is in PNTrans™ [f, g|*. By composition, so is A.

&

Lemma 3.1.5.4. Let A be a 3-cell in PNTrans[f, g]*?). There exist Cy,Cy € PNTrans"[f, g]}
whose target is a normal form for PNTrans"[f,g], a 3-cell A’ € PN’I‘rans+[f,g]§(2) and a 4-

cell « e PNTrans|f, g]Z(2) of the following shape:

é
Ci / Co
A/

Proof. Let us write A = Afl o By ey A;l... oo A;! &3 B, where the A; and B; are in
PNTrans[f, g|5. For every i < n, we chose a 3-cell D; € PNTrans"[f, g|5 of source s(4;) =
s(B;) and of target a normal form for PNTrans"[f, g].

According to Lemma 3.1.5.1, there exist for every i some 3-cells A;, B! in PNTrans|f, g]*,
D! e PNTrans"[f, g] and D/ € PNTrans"[f, g|} and some 4-cells a; and §; in PNTrans|[f, g|*(?)

of the form:
= %
E/ E/
A B

i i
The following is a consequence of the target of D; being a normal form for PNTrans"[f, g]:
e Using Lemma 3.1.5.3, A} and B/ are in PNTrans*[f, g|*,

e Using Lemma 3.1.5.2, the target A, and B (thus of D and D!) are normal forms for
PNTrans"[f, g].

e Since PNTrans"[f, g] is 3-convergent, for any i < n, the cells D} and Dj_; are parallel.

Since PNTrans"[f, g] is a sub-polygraph of PFonct[f, g] which is 3-coherent, there exists,
for every i < n, a 4-cell ; : D! = D in PFonct[f, g]Z(Q).

We can now conclude the proof of this Lemma by taking C; = D}, Co = D! and A’ =
(A])"L ey Bhey... 05 (A!)"! ey B/, and by defining « as the following composite:

ns
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Dl Do Ds D
Qa9 A,
D o Y1 DY D! I5;
' B1 / B2 2 "
D2
Aj Bj A, B Af B _, Al B’
pig]

We can now conclude the proof Theorem 3.1.1.8.

Theorem 3.1.1.8 (Coherence for pseudonatural transformations). Let C and D be sets, and
f,g: C — D applications.

Let A, B € PNTransl|f, g];k@) be two parallel 3-cells whose 1-target is of weight 1.
There is a 4-cell « : A= B e PNTrans[f,g]Z(Q).
Proof. Let A, B € PNTrans|f, g]§(2)
going to build a 4-cell « : A= B € PNTrans|f, g]Z(Q).
According to Lemma 3.1.5.4, there exist C,Cs,C],Cy € PNTrans"[f, g|* whose targets

are normal forms for PNTrans®[f, g], A’, B’ e PNTrans*[f, g]*® and a1, ay € TPNf, g]z(z)
such that we have the diagrams:

é %
E, E,
A B

The 3-cells A and B are parallel, and the 3-cells C} and Cy (resp. C{ and C%) have the
same source and have a normal form for PNTrans"[f, g] as target. Since PNTrans"[f, g] is
3-convergent, this implies that the 3-cells C and Cy (resp. C] and C%) are parallel. This has
two consequences:

be two parallel 3-cells whose 1-target is alf(a)lb. We are

e The critical pairs of PNTrans"[f, g| already appeared in PFonct[f, g]|, and we showed
that they admit fillers. Hence, there exist cells 1 : C1=C and [y : C{=CY in

PNTrans|f, g]z(2).

e The 3-cells A’ and B’ are parallel, their 1-target is still ol¢(q)y, and their 2-source is a normal
form for PNTrans"(f,g]. So by Proposition 3.1.4.5 there exists a 4-cell v: A'= B'.
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To conclude, we define o as the following composite (where we omit the context of the
4-cells):

A
C1 ™1 C1

ﬁ\
b1 Y 1))
w

Co ~1 C’

Q9

B
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3.2 Partial coherence and transformation of polygraphs

This section cointains some preliminary results that will be used in Sections 3.3 and 3.4 to prove
Theorem 3.1.3.5. In Section 3.2.1, we define the notion of white category together with the
associated notion of white polygraph. The white 2-categories are also known as sesquicategories
(see [80]). White categories are strict categories in which the interchange law between the
compositions ey and e; need not hold, for every ¢ > 0. That is, strict n-categories are exactly
the white n-categories satisfying the additional condition that for every i-cells f and g of 1-
sources (resp. 1-targets) u and v (resp. u' and v'): (fegv) e; (u' 89 g) = (uegg) e; (f ey v).

In Section 3.2.2, we define a notion of partial coherence for white (4, 3)-categories, and
reformulate Theorem 3.1.3.5 using this notion. We show a simple criterion in order to deduce
the partial coherence of a white (4, 3)-category from that of another one. This criterion will be
used throughout Section 3.3. We also adapt the notion of Tietze-transformation from [31] to
our setting of partial coherence in white categories, in preparation for Section 3.3.5.

In Section 3.2.3, we study injective functors between free white categories. In particular,
we give a sufficient condition for a morphism of white polygraphs to yield an injective functor
between the white categories they generate. This result will be used in Section 3.3.3.

Note that, although Sections 3.2.2 and 3.2.3 are expressed in terms of white categories (since
this is how they will be used throughout Section 3.3), all the definitions and results in these
sections also hold in terms of strict categories, mutatis mutandis.

3.2.1 White categories and white polygraphs
Definition 3.2.1.1. Let n € N. An (n + 1)-white-category is given by:

e a set Cp,

e for every z,y € Cp, an n-category C(x,y). We denote by e,q the k-composition in this
category,

e for every z € Cy and every u : * — y € Cy, functors uwey : C(y,z) — C(x,z) and
_egu:C(z,z) = C(z,y), so that for every composable 1-cells u,v € Cy, their composite
u o¢ v is uniquely defined,

o for every = € Cy, a 1-cell 1, € C(z, x).
Moreover, this data must satisfy the following axioms:

e For every = € Cy, and every y € Cp, the functors 1, ¢g _ : C(z,y) — C(x,y) and _ eg 1, :
C(xz,y) — C(x,y) are identities.

e For every u,v € Cq, the following equalities hold:

—ueg(veg_)=(usgv)ey _,
—uey(_eov)=(uey_)eou,
— _ oo (usogv)=(_eou)eguv,
An (n, k)-white-category is an n-white-category in which every (i + 1)-cell is invertible for

the i-composition, for every i = k.

Let n be a natural number. Let C be an n-white-category. For k < n, we denote by C
both the set of k-cells of C and the k-white-category obtained by deleting the cells of dimension
greater than k. For z € C; and i < k, we denote by s;(z) and t;(x) respectively the i-source and
i-target of x. Finally, we write s(x) and t(z) respectively for s;_1(x) and tx_1(x).
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Definition 3.2.1.2. Let C and D be n-white-categories. An n-white-functor is given by:
e an application Fy : Cy — Dy,
e for every z,y € Co, a functor F,, : C(x,y) — D(Fo(z), Fo(y)).
Moreover, this data must satisfy the following axioms:
e for every x € Co, F(1s) = 15, (a);
e for every z € Cy and u : x — y € Cyq, the following equalities hold between functors:

— F(u)eg F(_)=F(uey ):C(y,z) > D(Fo(z), Fy(2))
— F(_)eo F(u) =F(_seou):C(z,z) = D(Fp(2), Fo(y))

This makes n-white-categories into a category, that we denote by WCat,,.

Remark 3.2.1.3. Let us define a structure of monoidal category ® on n-Cat, in such a way
that WCat,, 1 is the category of categories enriched over (n-Cat,®).
Let C, D be two n-categories. The n-categories C x Dy and Cy x D are defined as follows:

CxDy:=|]C,  CxD:i=|]D

yeDo zeCo

Let Cy x Dy be the n-category whose 0-cells are couples (z,y) € Cy x Dy, and whose i-cells
are identities for every i > 0. Let F': Cp x Dy — C x Dy (resp. G : Cy x Dy — Cy x D) be the
n-functor which is the identity on 0-cells. Then C ® D is the pushout (C x Dy) B¢, xp, (Co % D):

ngDOL)CxDO

o ]

CO ><'D4>C®'D

The category of n-white-categories equipped with a cellular extension, denoted by WCat',
is the limit of the following diagram:

WCat,;) —— Graph,, .,

WCat, —— Graph,,

where the functor WCat,, — Graph,, forgets the white-categorical structure and the functor
Graph,, ,; — Graph,, deletes the top-dimensional cells.
Let RY be the functor from WCat, 1 to WCat, that sends an (n + 1)-white-category C

on the couple (Cy,, C, &= Cp41 ).
Proposition 3.2.1.4. The functor RY admits a left-adjoint LY : WCat,” — WCat,, 1.

Proof. Let (C,¥) € WCat,; be an n-white-category equipped with a cellular extension. The
construction of LY (C,3) is split into three parts:

e First, we define a formal language FEx.
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e Then, we define a typing system T¢ on Fy. We denote by Eg the set of all typable
expressions of Efy.

e Finally, we define an equivalence relation =% on EL. The set of (n + 1)-cell of LY (C,¥)
is then the quotient EL/ =%,

Let Ex, be the formal language consisting of:

e For every 1-cells u,v € Cy, and every (n + 1)-cell A € ¥,,41, such that to(u) = sg(A) and
to(A) = so(v), a constant symbol ¢, 4.

e For every n-cell f € C,, a constant symbol 4.
e For every 0 < ¢ < n, a binary function symbol e;.

Thus Fy is the smallest set of expressions containing the constant symbols and such that ee; f € X
whenever e, f € Ey.

Let Tt be the set of all n-spheres of C, that is of couples (f,g) in C,, such that s(f) = s(g)
and t(f) = t(g). For e € Ex, and t € T¢, we define e : t (read as "e is of type t") as the smallest
relation satisfying the following axioms:

e For every 1-cells u and v in Cy, and every (n + 1)-cell A € ¥, such that to(u) = sp(A4) and
to(A) = so(v)
Cudv : (us(A)v,ut(A))

e For every n-cell f e C,

if: (f. f)
e For every ej,eg € Ex, and i < n, if eq : (s1,t1), e2 : (s2,t2) and t;(t1) = s;(s2), then
e1 ®; ez : (S1 9 52,11 8 t2)
e For every ey, es € Fy, if €1 : (s1,%1), €2 : (s2,t2) and t; = s9, then
e1 o €2 (s1,t2)

An expression e € Fy; is said to be typable if e : (s,t) for some n-sphere (s,t) € Tez. Moreover,
there is only one such n-sphere, so the operations s(e) := s and t(e) := ¢ are well-defined. We
denote by Eg be the set of all typable expressions.

Let =5, be the symmetric relation generated by the following relations on Eg :

e For every A,B,C,D € Eg , and every 11,42 < n non-zero distinct natural numbers,
(Ae; B)e;, (Ce;y D)=x(Ae;,C)e; (Be;, D)
e For every A, B,C € Eg, and every 0 < i < n,
(Ae;B)e,C =5 Ae;(Be; ()
e For every A€ EL and f € Cy:
ire, A=x A Aejip=x A
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e For every f1, fo € C,, and every i < n,
ifl ®i if2 =z if1°¢f2
e For every A, A', B € EL and every 0 < i < n, if A=y A’, then

Ae;B=x A e, B

e For every A, B, B’ € EL and every 0 <i < n, if B =5, B/, then

Ae; B=x Ae;, B

Let =%, be the reflexive closure of =x,. The (n+1)-cells of L} (C, X) are given by the quotient
Eg / =%. The i-composition is given by the one of EL and identities by i i op

Definition 3.2.1.5. We now define by induction on n the category WPol,, of n-white-polygraphs
together with a functor Q)Y : WPol,, - WCat,,.

e The category WPolj is the category of sets, and Qy is the identity functor.

o Assume Q) : WPol,, - WCat,, defined. Then WPol,,;; is the limit of the following
diagram:
WPol,,,1 —— WCat;r
WPOln F WCatn,

n

and Q)7 | is the composite

w

L
WPol,, . —— WCat! — WCat,,

Given an n-white-polygraph ¥, the n-white-category QW (%) is denoted by ¥V and is called
the free n-white-category generated by 3.

Definition 3.2.1.6. Let WCat:J(ﬁ) be the category of (n + 1,n)-white-categories. Once again

we have a functor RX(”) : WCatXﬁ) — WCat

~, and we are going to describe its left-adjoint

EX(:;). Let (C,X) be an n-white-category together with a cellular extension. To construct

EX(ﬁ) (C,Y), we adapt the construction of the free n-white-categories as follows:

e Let Iy be the formal language Fy s, where X consists of formal inverses to the elements
of ¥ (that is their source and targets are reversed).

e The type system is extended by setting, for every 1-cells u, v in C; and every (n + 1)-cell
A € ¥ such that to(u) = sp(v) and to(A4) = sp(A):

Cudn : (Wt(A)v,us(A)v).
We denote by Fg the set of all typable expressions for this new typing system.
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e We extend =y into a relation denoted by =~y by adding the following relations:

CuAv ®n Cy iy =% Z.us(A)v Cudp ®n Cudv =3 Z.ut(A)v
for every u,v in C; and every (n+1)-cell A € 3, such that to(u) = sp(A) and to(A) = so(v).

We define categories WPol of (n, k)-white-polygraphs and functors ov® . wpollt) -
WCat" similarly to Pol$® and Q)

Definition 3.2.1.7. Given an (n, k)-white-polygraph 3, the (n, k)-white-category Qx(k)(Z) is
denoted by W) and is called the free (n, k)-white-category generated by . For j < n, we

denote by Zw(k) both the j-cells of YW) and the (7, k)-category generated by X. Hence, an
(n, k)- polygraph Y consists of the following data:

20/21/22/("')/2k/2k+1/ /
%o sy Y () =y Sy

3.2.2 Partial coherence in pointed white (4, 3)-categories

Definition 3.2.2.1. A pointed white (4, 3)-category is a couple (C,S), where C is a white 4-
category, and S is a subset of Cs.

Definition 3.2.2.2. Let (C,S) be a pointed white (4, 3)-category. The restriction of C to S,
denoted by C1S, is the following (2, 1)-category:

e its O-cells are the 2-cells of Cy that lie in S,
e its 1-cells are the 3-cells of C3 with source and target in .5,
e its 2-cells are the 4-cells of C4 with 2-source and 2-target in S,

e its 0-composition and 1-composition are respectively induced by the compositions e5 and

o3 of C.

Definition 3.2.2.3. Let (C, S) be a pointed white (4, 3)-category. We say that C is S-coherent
if for every parallel 1-cells A, B in the (2, 1)-category C|S, there exists a 2-cella« : A = B e C|S.

Example 3.2.2.4. Every white (4, 3)-category is (J-coherent. A white (4, 3)-category C is
Ca-coherent if and only if it is 3-coherent.

Theorem 3.1.3.5. Let A be a (4,2)-polygraph satisfying the 2-Squier condition of depth 2, and
let S 4 be the set of all 2-cells whose target is a normal form.
Then A is S 4-coherent.

Definition 3.2.2.5. Let C and D be two 2-categories, F' : C — D a 2-functor.

We say that F' is 0-surjective if the application F' : Cy — Dy is surjective.

Let 0 < k < 2. We say that F' is k-surjective if, for every (k — 1)-parallel cells s,t € Cp_1,
the application F': Ci(s,t) — Dy(F(s), F(t)) is surjective.

Definition 3.2.2.6. Let (C,S) and (C’, S") be two pointed (4, 3)-categories. We say that (C’, S”)
is stronger than (C, S) if there is a functor F' : C’'1S” — C|S which is 0-surjective and 1-surjective.
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Lemma 3.2.2.7. Let (C,S), (C',5’) be two pointed white (4,3)-categories. If there exists a
2-functor F : C'1S" — C1'S which is 0-surjective and 1-surjective, then (C',S’) is stronger than
(C,S).

Proof. The functor F induces a functor F : C'S” — C1S. Since it is equal to F' on objects, it
is O-surjective. On 1-cells F' is the composition of F' with the canonical projection associated to
the quotient, hence it is 1-surjective, and so (C’,S’) is stronger than (C, S). it

Lemma 3.2.2.8. Let (C,S), (C',S") be two pointed white (4,3)-categories, and assume (C',S")
is stronger than (C,S).
If C' is S’-coherent, then C is S-coherent.

Proof. Let F : C'}S” — ClS be a functor that is O-surjective and l-surjective. Let A, B : f —
g € (C1S)1 be parallel 1-cells, and A, B be their projections in C1S.

Since F' is O-surjective, there exists f/, ¢’ € (C'1'S")o in the preimage of f and g under F.
Since F is 1-surjective, there exists A’, B’ € (C'1'S"); of source f' and of target ¢’ such that
F(A') = Aand F(B') = B.

Since C''S" is 2-coherent, there exists o/ : A’ = B’ € (C’'|S")y. Thus, A’ = B’ and A = B.
Hence, there exists a: A = B € C1S. This shows that C[S is 1-coherent, and therefore that C
is S-coherent. oy

We are going to define four families of Tietze-transformations on white (4, 3)-polygraphs.
Tietze transformations originates from combinatorial group theory [58], and was adapted for
(3,1)-categories in [31], as a way to modify a (3, 1)-polygraph without modifying the 2-categories
it presents. In particular, they preserve the 2-coherence. Here we adapt these transformations
to our setting of white (4, 3)-polygraphs and show that they preserve the partial coherence. This
will be used in Section 3.3.5. We fix a white 4-polygraph A.

Definition 3.2.2.9. Let A € A;V(S). We define a white 4-polygraph A(A) by adding to A a
3-cell B and a 4-cell a, whose sources and targets are given by:

e 5(B) =s(A),
e t(B) =t(A),
o s(a) = A,
e t(a) = B.

The inclusion induces a functor between white (4, 3)-categories 14 : AV — (A(A))VG).
We call this operation the adjunction of a 3-cell with its defining 4-cell.
Definition 3.2.2.10. Let o € A4 and A € A3 such that:

o t(a)=A

o s(a) € (A\{t(a)h)y®.

The 4-cell o induces an application Az — (A3z\{t(a)})V®) by sending t(a) on s(c) and that
is the identity on the other cells of 43. This application extends into a 3-functor 7, : A} —

(As\{t()})™.
Let A/(A; «) be the following white 4-polygraph:

Ao == AT = A 2 ()¢ :"‘:jma}
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Then 7, induces a functor A¥®) — (A/(A;a))¥®), which sends a on the identity of s(c),
and which is the identity on the other cells of A4. We call this operation the remowval of a 3-cell
with its defining 4-cell.

Definition 3.2.2.11. Let « be a 4-cell in .AZV(S). We define a white 4-polygraph A(«) by adding
to A a 4-cell B : s(a)= t(a). The inclusion of A into A(a) induces a functor ¢ : AVG) —
A(a)W(B). We call this operation the adjunction of a superfluous 4-cell.

Definition 3.2.2.12. Let 3 € Ay such that there exists a 4-cell o € (A\{B})™® parallel to
B. Let A/B be the white 4-polygraph obtained by removing 8 from A. There exists a functor
75+ AVG) — (A4/B)VG) ] that sends § on a and which is the identity on the other cells of .A.
We call this operation the removal of a superfluous 4-cell.

Remark 3.2.2.13. Note that, in those four cases, the set of 2-cells is left unchanged. In
particular, let A be a white 4-polygraph, and B a white 4-polygraph constructed from A through
a series of Tietze-transformations. If S is a sub-set of AY’, then § still is a subset of BY' .

Proposition 3.2.2.14. Let A be a white 4-polygraph, S a sub-set of AY, and B a white 4-
polygraph constructed from A through a series of Tietze-transformations.
If B¥®) s S-coherent, then AV®) is S-coherent.

Proof. We check that if B is constructed from A through a Tietze-transformation, then the white
3-categories presented by A and B are isomorphic.

Suppose now that B is S-coherent, and let A, B € AY be parallel 3-cells, whose source and
target are in S. Since B¥®) is S-coherent, the images of A and B in the white 3-category
presented by B are equal. Since it is isomorphic to the white 3-category presented by A, there
exists a 4-cell v : A= B e sz(g), which proves that A is S-coherent. pid

3.2.3 Injective functors between white categories

Definition 3.2.3.1. Let ¥ and I" be two (n, k)-polygraphs (resp. white (n, k)-polygraphs), and
let F': ¥ — T be a morphism of (n, k)-polygraphs (resp. white (n, k)-polygraphs). We say that
F' is injective if for all j < n it induces an injective application from 3, to I',,.

Definition 3.2.3.2. Let C and D be two white n-categories, and let F' : C — D be a morphism
of white n-categories. We say that F is injective if for all 7 < n it induces an injective application
from C to D.

Remark 3.2.3.3. An injective morphism between (n, k)-polygraphs does not always induce an
injective functor between the free (n, k)-categories they generate. To show that, we are going to
define two 2-polygraphs ¥ and I', an injective morphism of 2-polygraphs F : ¥ — I', and two
distinct 2-cells f, g € £*() such that F*M(f) = F*(g).

Let ¥ be the following 2-polygraph:

Yo={+} Yi={:x—x} Dp:={on:[=]

and I':
To={s} Ti={:x—% Ty={on:[=>]6:]— 1,

Let F' be the inclusion of ¥ into I', f = 8 and g = g They are distinct elements of E;‘(l).

(1)

However, using the exchange law, the following equality holds in F; , where @ denotes the

inverse of &:
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In what follows, we prove some sufficient conditions so that a morphism between two white
(n, k)-polygraphs induces an injective fucntor between the (n, k)-categories they present. This
is achieved in Proposition 3.2.3.8. This result will be used in Section 3.3.3.

To prove this result, we start by studying the more general case of an injective morphism
I between white (n, k)-categories equipped with a cellular extension. When its image is closed
by divisors (see Definition 3.2.3.5), we show a simple sufficient condition so that I induces an
injective white (n+ 1)-functor. We also show that the image of the white (n+ 1)-functor induced
by I is then automatically closed by divisors. Hence, this hypothesis disappears when we go back
to morphisms of white (n, k)-polygraphs. In particular, we show that every injective morphism
of white n-polygraphs induces an injective white functor between white n-categories.

For the rest of this section, we fix two white n-categories equipped with cellular extensions
(C,%),(C',¥) e WCat™, and a morphism [ : (C, %) — (C’,¥') e WCat™. That is, I is given by
a white n-functor I : C — C’ together with an application I,,+1 : ¥ — ¥’ such that the following

squares commute:
Y
C

We denote by I™ (resp. IW(™) the white (n + 1)-functor £%(I) (resp. L¥((I)). By
definition, IV (resp. [ W(”)) is induced by an application from EL to Eg/ (resp. from FZ to
FL), that we again denote by IV (resp. vy,

Using their explicit definitions, the following properties of IV (resp. I% () hold:

n+1 n+1

E/

Y—
‘ t
C

4>C’

E/

4>C’

e Any element of EL (resp. F) whose image is an i-composite is an i-composite.
e Any element of EL (resp. FL) whose image is an identity is an identity.

e Any element of E% (resp. Fg ) whose image is a ¢, 47y 18 @ Cyayp.

e Any element of Fl whose image by T% is a ¢,y 11,/ is & ¢, 4,

Lemma 3.2.3.4. Assume that the application I, 1 is injective, and that I induces an injection
on C.
Then the applications IV : Eg — Eg, and I%(™ . Fz F , are injective.

Proof. Let ay,as € EL such that IV (a1) = I'V(az). We reason by induction on the structure of
Iw(al).

If IV(a1) = cyany, with v/;v" € C] and A’ € ¥'. Then there are uj, vy, u2,v2 € C; and
Ay, As € ¥ such that a1 = ¢y, 4,0, and ag = cyya,0,, and so:

I(u1) = I(uz) = o Iny1(Ar1) = Iy (Ag) = A I(v1) = I(vg) =
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Since I and I, 11 are injective, we get:
Uy = U2 Ay = A U1 = V2,

which proves that a = b.
If IV(a1) = iy, with f" € C},. Then there exist f1, f2 € Cy, such that:

ap =ip  ax=igp  I(fi)=f  I(f2) = .

Since [ is injective, fi = f2, and so a1 = as.
If IV(a1) = A’ e; B', with i < n, and A’, B’ € EL,. Then there exist Ay, A, By, B2 € EL
such that:

a; = Ay ¢; By as = Ay e; By IY(Ay) =TV (Ay) = A IY(By) =I%(B;) = B'.

Using the induction hypothesis, we get that A} = Ao and B; = B, and so a1 = as.
In the case of IV we reason as previously, and we have one more case to check: if
™M (a)) = Cyr drys With 1/, 0" € C] and A’ € ¥/, Then there are uy, vy, ug,v2 € C; and A1, Ay € ¥

such that a1 = ¢ and ag = ¢ and so:

u1A1v1 uzAgvg’

I(uy) = I(ug) = v’ Lni1(Ay) = Iy (Ag) = A I(v1) = I(vg) = .
Using the injectivity of I and I,,41, we get:
up = ug A = Ay v = 2,
and finally a; = as. il

Definition 3.2.3.5. Let C be a white n-category, and E be a subset of C,,. We say that E is
closed by divisors if, for any f e E, if f = f1 e; fo, then f; and f5 are in E.

Lemma 3.2.3.6. Assume the image of I in C, is closed by divisors, and that I and I, are
imjective.
Then, for every a/,b' € EL, such that ' =5/ V', and for every a € EL such that IV (a) = d/,
there exists b € Eg such that
o =v a=yb.
Assume moreover that the application I,,1 is bijective and that I is bijective on the 1-cells
of C.
Then, for every a', b € FL, such that o’ =sy V', and for every a € FL such that IV (a) = d,
there exists b € Fg such that
™M@y =  ax=xpb

Proof. To show the result on IV we reason by induction on the structure of a’.
If there exist A', B',C",D' € EL,, 0 <ij < iy <n and a € EL such that:

a' = (A e B)e;, (CMe;; D) U =(A"e;, ") e (B'e, DY) I¥(a) =d,
then, a = (A o;, B) e;, (C e;; D), with A, B,C,D € EL. Let b:= (A e;, C)e; (Be;, D): by

construction, we have I'V(b) = &' and a =y, b. The case where the roles of a’ and b’ are reversed
is symmetrical.
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If there exist A’, B',C" € EL,, 0 <i < n and a € EL such that:
a’ = (A/ o, B/) o, Cl b/ = A/ o, (B/ o, Cl) Iw(a) = a',

then, a = (A e; B) o; C, with A,B,C € EL. Let b:= Ae; (Be; C): By construction, we have
IY(b) = b’ and a =5 b. The case where the roles of @’ and b’ are reversed is symmetrical.
If there exist A’ € EL, f' € C/, and a € EL such that

a =ipey, A b =A IY(a) = d,
then a = iy e, A, with f € C, and A € EL. Let b:= A’: by construction, we have I'V(b) = ¥/
and a =5, b.

If there exist A’ € EL, f’ € C/, and a € EL such that

a=A W =ipe, A IY(a) = d,

let b := ig4) ®n a. Since b is well typed, we have f' = s(A’), hence I(s(A)) = s(IV(4)) =
s(A") = f’, and so IV (b) = b’ and a =y b. The case of the right-unit is symmetrical.
If there are f], f3 € Cl,, i < n and a € EL such that:

d=igeiiyg  V=igey IM@)=d,
then a = iy, e ig,, with fi, fo € Cp. Let b := iy, by construction, we have I'V(b) = b’ and

a =y, b.
If there are f1, f, € Cl,, i < n and a € EL such that:

alzlf{.zfé b/ZZf{ .lzfé Iw(a) =a'

then a = iy, with f € C,,. Since the image of I in C, is closed by divisors, there exist f1, fo € C,
such that
I(f)=fi If)=f [f=fie/f.
Let us define V' := iy, o;ig,: By construction, we have I¥(b) =0’ and a =y, b.
If there are A}, AL, B’ € Eg/, i <n and a € EL such that:

a' = A/1 o, B, A/l =3 A/2 b/ = A/2 o, B/ Iw(a) = CL/

then a = Aj o; B, with A1, B € Eg Using the induction hypothesis, there exist Ao € Eg
such that IV (Az) = A} and Ay =5 Ay. Let us define b := Ay e; B: by construction, we have
I'(b) = b and a =y b. The last case is symmetric.

In the case of ¥ (") we reason as previously, and we have two more cases to check. If there
exist v/, v' € C}, A€ ¥ and a € Fl such that:

a' = Cyr Ay O Cop firyy b = Gy s(ANY! ™ (a) =d

then a = ¢y, 4,0, ®n C with w1, us,v1,v2 € C1 and Ay, As € X such that:

ug Agvy?
I(ul) = I(UQ) = u/ I(’Ul) = I(’Ug) = U/ In+1(A1) = n+1(A2) = A.

Let b := iy, 5(A,)v,- Since I and I,,; 1 are injective, we have IV (b) = V' and a =yx b.
If there exist v/,v' € C, A€ ¥ and a € Fl such that

a = T s( AN V' = cuary ®n Cy dry ™) (a) =d
Thena = iy, with f € Cp,. Let b := cya09iC, 4y, Withu = I7H(u'), v = I (v/) and A = I}, (A"):
by construction, we have IV (b) = V' and a =~y b. The final case is symmetrical. o7
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Lemma 3.2.3.7. Assume that 1,11 and I are injective, and that the image of I in C, is closed
by divisors. Then the functor IV : L¥(C,X) — LY (C', %) is injective, and its image is closed
by divisors.

Assume moreover that I, 1 is bijective, and that I is bijective on the 1-cells of C. Then the
functor IV . LY (€, 2) — LWM)(C! S is injective and its image is closed by divisors.

Proof. Let fi1, fo € L¥(C,X) and a1, az € EL such that:

IY(f1) = IV (f2) [a1] = f1 laz] = fo.

Then [I%(a1)] = [I%¥(a2)], that is IV (a1) =% IV (a2). Hence, by definition, there exist n > 0
and t,,...,t, € EL, such that:

ty=1T"a1) ti=stin b, =1"(a).
Applying Lemma 3.2.3.6 successively, we get t1,...,t, € Eg, such that:
tl = a1 ti =y ti+1 Iw(ti) = t,».

In particular a; =% t, and IV (t,) = t,, = IV(a2). Using Lemma 3.2.3.4, this implies that
tn = ag, and so a; =% ag, which proves that fi = [a1] = [a2] = fo.

It remains to show that the image of I is closed by divisors. Let f’, f{, f5 € LW (C',¥’) and
i < n such that f' = f] e; f5, and assume that there is an f € LV (C',¥’) such that IV(f) = f'.
Let a € EL and b}, b, € EL, such that:

lal=f [l=fi (0] =fo

In particular, we have IV (a) =%, b} ; b5. Using both Lemmas 3.2.3.4 and 3.2.3.6 as before,
we get an element b € Eg such that:

a=5b  IV(b) = b e; b

Since the image of IV is closed by divisors, there exists by, bo € Eg such that b = by e; by. Let
f1:=[b1] and f5 := [f2]: by construction we have:

M(fy=f IM(f2)=fo fieifa=1F

The case of IW(™ is identical, the only difference lying in the hypothesis needed to apply
Lemma 3.2.3.6. pid

Proposition 3.2.3.8. Let ¥ and T' be two white (n, k)-polygraphs and I : ¥ — T be an injective
morphism of (n, k)-polygraphs. Then for every j < k the functor LY - B — IV is injective,
and its image s closed by divisors.

Assume moreover that Iy and Iy are bijections, and that for every j > k the application
(k) . gw(k) _, pwik)
)

p s injective, and

I; - ¥; — I'j is bijective. Then for every j the functor I;V
its 1mage s closed by divisors.

Proof. We reason by induction on j. The case j = 0 is true by hypothesis.

Let 1 < j < k. By hypothesis, the application I; is injective, and by induction hypothesis,
the functor I3V, is injective with image closed by divisors. Hence, I; satisfies the hypothesis of
Lemma 3.2.3.7, and IV is injective with image closed by divisors.

Let j > k. Again, using the hypothesis and induction hypothesis, we get that I; satisfies the
(k)

hypotheses of Lemma 3.2.3.7. Hence, I;-N is injective and its image is closed by divisors. GF
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In what follows, we use the fact that the image of a functor generated by a morphism of
polygraphs is closed by divisors in order to prove a characterisation of the image of such a
functor.

Definition 3.2.3.9. Let C,D be two white n-categories, ' : C — D be an n-functor and f be
an n-cell of D. We say that F' k-discriminates f if the following are equivalent:

1. The k-source of f is in the image of F'.
2. The k-target of f is in the image of F.
3. The n-cell f is in the image of F.

Given a subset D of D,,, we say that F'is k-discriminating on D if for every n-cell f in D,
F' k-discriminates f.

Lemma 3.2.3.10. Assume that the image of I is closed by divisors, that the application I, is
injective, and that I is n-discriminating on Y.
Then, I (resp. T%™) ) is n-discriminating on LY (C', %) (resp. L™ (C',%")).

Proof. Let us start with I'V. Let E be the set all (n + 1)-cells of LW (C',¥’) which I'V dis-
criminates. Let us show that £ = LW(C',%'). Since I commutes with the source and target
applications, the implications (3) = (1) and (3) = (2) hold for any cell in LY (C’,¥’). So in
order to show that a cell is in E, it remains to show that it verifies the implications (1) = (3)
and (2) = (3).

The set E contains all units. Indeed, let A" = 14, with f' e C'. If s(A") = f’ is in the image
of I'V, there exists f € C such that I(f) = f’. Let us define A = 1y € LW(C, X): by construction
we have IV(A) = 175 = 1y = A’, hence the implication (1) = (3) holds for A’. Moreover,
since t(A") = s(A’), the implication (2) = (3) also holds for A.

The set E contains all cells of length 1. Indeed, given such a cell A, there exist f}, g € C;.
and Af € ¥’ such that

A= fron1 (fn1 en—2-- 02 (f1A0g1) 92 - on—2 g 1) ®n—1 G-
Let A} := f] op—1 (fi_j ®k—2-.. 92 (f1A(91) ®2 ... ®t—2 g}._1) ®k—1 g),- Suppose that the source
(resp. target) of A’ is in the image of I, and let us show that A’ is in the image of I™. Since the
image of I is closed by divisors, we get first that f), g/, and s(A!,_;) (resp. t(A!,_;)) are in the

image of I. By iterating this reasoning, we get that, for all ¢, f/, g and s(A;_;) (resp. t(A4}_,))
are in the image of I. Since I'V discriminates ¥', there exist fi, gr € Cx and Ay € ¥ such that:

I(fo)=fre  Ilgk) =gr  Int1(Ao) = Ap.

By induction on k we show that Ay := fre;_1 Ay_1e4_1g is well-defined and that IV (Ay) = Aj.
Indeed, assume that it is true at rank k£ — 1. Then we have the equalities:

I(6(fr)) = t(fp) = sp—1 (A1) = I(sk—1(Ap—1))  I(tr—1(Ap-1)) = tr-1(Af 1) = s(gr) = I(s(gm))

Using the injectivity of I we get that t(fx) = sp—1(Ax—1) and tx—1(Ax—1) = s(gx), which shows
that Ay is well-defined, and finally:

IY(A) = flopr Ay wir gy = AL
In particular, we have A = I'V(A,).
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The set E is stable by n-composition. Indeed, let A’, B’ € E, and assume that the source
of A’ e, B’ is in the image of I. Let us show that A’ e, B’ is in the image of I™. The source
of A" e, B’ is none other that the one of A’. Since A’ is in E, there exists A € L¥(C,X) such
that ITW(A) = A’. Hence, the source of B’ is in the image of I, and since B’ € E, there exists
B e LY(C,Y) such that IV (B) = B’. Moreover, we have I(t(A)) = t(A") = s(B’) = I(s(B)), so
using the injectivity of I we get t(A) = s(B). Hence, the cell Ae, B is well-defined and satisfies:

IV(Ae,B)=1V(A)e, IV (B)=A"e, B

The case where the target of A’ e, B is in the image of I is symmetrical.

This concludes the proof for I'V. Concerning [ w(n) the reasoning is the same except that
we also have to show that F is stable under inversion. Indeed, let A’ € E and assume that the
source (resp. target) of (A’)~! is in the image of I. Then the target (resp. source) of A’ is in
the image of I and since A’ is in F, there exists A € LY (C, %) such that IV (A) = A’, and
so WM (A=) = (AL &

Proposition 3.2.3.11. Let ¥ and T’ be two white (n, k)-polygraphs, and I : ¥ — T' be a mor-
phism of polygraphs. Let ko such that for every j > ko, I; is a bijection.
Assume that I satisfies the hypothesis of Proposition 5.2.3.8, and that, for every j > ko, I;
(k)

is ko-discriminating on I';. Then for every j = ko, ij(k) 1s ko-discriminating on F;V .
Proof. Since I satisfies the hypotheses of Proposition 3.2.3.8, we know that for every j, the
(k)

We reason by induction on j > kg. For j = kg+ 1, the result is a direct application of Lemma
3.2.3.10.
Let j > ko + 1: let us show that I;V(k) is (j — 1)-discriminating on I';. Let A e I';. If

functor I;v is injective, and that its image is closed by divisors.

s(A) (resp. t(A)) is in the image of I;fo) then in particular, the kg-source (resp. ko-target) of

A is in the image of I,:Z(k). Since I;V(k) is ko-discriminating on I'j, A is in the image of I;-V(k).

*)'is (j — 1)-discriminating on I’} ™.

(k)

Hence, we can use Lemma 3.2.3.10, and we get that I]‘-N

Let A € F;V(k). If its kg-source (resp. ko-target) is in the image of I,:Z

hypothesis, the source (rep. target) of A is in the image of Ij“i(f), and so A is in the image of

w(k) (k)
I

then, by induction

, which proves that I;V is kg-discriminating. pid
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Name Description Commentary
A
(A*(2)7 S.A) "43
Ay
As Weakening of the
([5’W(2)7 Sp) As U K exchange law '
Ay u L
Asy Weakening
(C%3), Se) As v A U K U K of the invertibility
Ay U LU {pa,Aa} of 3-cells
Ay u AP Adjunction of
(D¥3), Sp) A3 A U K U K formal inverses
Ay U LU {pa,da} to 2-cells
Ay u AP Adjunction
(EWG) Se) | A3 U AL UK U KP U {ny, e} of connections
Ay O L u{pa,Aa}u{rs,or} between 2-cells

Table 3.3: List of the successive transformations of A.

3.3 Transformation of a (4,2)-polygraph into a white
(4,3)-polygraph

The proof of Theorem 3.1.3.5 will occupy the rest of this article. We start with a (4, 2)-polygraph
A satisfying the hypotheses of Theorem 3.1.3.5. Let S4 be the set of all 2-cells in A5 whose target
is a normal form. Then proving Theorem 3.1.3.5 consists in showing that A is S 4-coherent.

In this section we successively transform A four times, leading to five pointed white (4, 3)-
categories, namely (A*) S4), (B¥®?), Sg), (C¥®),Se), (DV®),Sp) and (EVB), Se), and we
show each time that the new pointed white (4, 3)-category is stronger than the previous one.
A Dbrief description of each pointed white (4,3)-category can be seen in Table 3.3. Finally,
in Section 3.3.5, we perform a number of Tietze-transformations on the white 4-polygraph &,
leading to a white 4-polygraph F.

Thanks to Lemma 3.2.2.8 and Proposition 3.2.2.14, we know that in order to show that A*(2)
is S 4-coherent, it is enough to show that F¥®) is Se-coherent. This will be done in Section 3.4.

Example 3.3.0.1. We have already shown in Section 2.3 that for every sets C, D and for every
applications f,g : C — D, the (4,2)-polygraph PNTrans®*[f, g] satisfies the hypothesis of
Theorem 3.1.3.5.

In what follows, we will use as a running example the polygraph A = Assoc which consists
of one 0-cell, one 1-cell |, one 2-cell & : | | = |, one 3-cell <F : @ = g‘, and one 4-cell

<=

IThe sets K and L will be defined in Section 3.3.1
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| 1] |II:II

7 || - | 7 | \} - \V¥
|||/w \|%||||

|l\'v / e ;'v%

||| o ’ |||$||

In particular, Assoc satisfies the 2-Squier condition of depth 2. The 2-category Assocs is
2-convergent and its only normal form is the 1-cell |.

The corresponding set Sy is then the set of 2-cells in Assocj from any 1-cell || to |.
3.3.1 Weakening of the exchange law

We Construct dimension by dimension a white (4, 2)-polygraph B, together with a white functor
F:BY®? - A*?) We then define a subset Sg of BY(?) and show (Proposition 3.3.1.4) using F
that (BW( ), Sp) is stronger than (A*?), ).

In low dimensions, we set B; = A;, for every i < 2, and the functor F' is the identity on
generators.

Lemma 3.3.1.1. The functor F : BY — A* is 2-surjective.

Proof. By construction, A3 is the quotient of BY by the equivalence relation generated by:
(feov) ei(u' o9 g) = (uegg)ei(feor).

And F is the canonical projection induced by the quotient. yig]

In what follows, we suppose chosen a section i : A* — BY of F', which is possible thanks to
Lemma 3.3.1.1.

We extend B into a white 3-polygraph and F' : BY — A* into a white 3-functor by setting
Bs:=Asu K:

e For every 3-cell A € A3, the source and target of A in BY are respectively s5(A) := i(s(A))
and t5(A) := i(tA(A)).

e The set K is the set of 3-cells Ay, 44, of shape:
Afv ug o
) -

\k} //

fu

for every strict Peiffer branching (fv,ug), where f : u = «' and g : v = ¢’ are rewriting
steps.

The image of a cell of B3 under F' is defined as follows:
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e For every strict Peiffer branching (fv,ug), F'(Afpug) := 1feg
e For every 3-cell A in Az, F(A) := A.

Lemma 3.3.1.2. Let f,g € BY. There exists a 3-cell A : f = g in K;V(Q) if and only if the
equality F(f) = F(g) holds in A;.

Proof. Let f,g € BY. The image of any cell in K;V(Z) by F' is an identity. So if there exists a
3cell A: f=gin K;v@), necessarily F(f) = F(g).
Conversely, the set A3 is the quotient of By by the equivalence relation generated by:

fs(g) o1 t(f)g=s(f)ge1 ft(g),

for f,g € BY. The 3-cells Ay, g, where (fu,vg) is a strict Peiffer branching, generate this
relation, and they are in K. Hence, the result holds. yid

Lemma 3.3.1.3. The functor F : B¥®) — A2 s 3-surjective.

Proof. Let E be the set of 3-cells A € ./4;(2) such that, for every f,g € BY in the preimage of
s(A) and t(A) under F, there exists a 3-cell B: f = g € B;V@) satisfying F'(B) = A. Let us
show that E = A%. We already know that E contains the identities thanks to Lemma 3.3.1.2.

The 3-cells of length 1 in A} are in E. Indeed, let A € A} be a 3-cell of length 1, and
f,9 € BY such that F(f) =s(A) et F(g) = t(A). There exist u,v € A¥, f',¢g' € A5, and A’ € A3
such that

A= f e (uAv) e g.

Let @, 0, f, § be in the preimages respectively of u, v, f/, ¢’ under F (they exist thanks to
Lemma 3.3.1.1), and let By := f o) (7A'0) o1 § € B;V(z). By construction, F'(B;) = A, which

leads to the equalities:

F(s(B1) = F(f)  F(t(B1)) = F(g).

Thus, according to Lemma 3.3.1.2, there exist 3-cells Cy : f = s(Bj) € K;V(Q) and Cy : t(B1) =

geE K;V(Z). Let B := (| o5 By e5 C5: by construction, B has the required source and target, and
IMOreover:

F(B) = F<Cl) 02 F(Bl) .2 F(CQ) = 1F(f) OQAOQ lF(g) = A

The set E is stable under composition. Indeed, let A;, Ay € E such that t(A4;) = s(4a),
and f,g € BY satisfying F(f) = s(A41) and F(g) = t(A2). Since F is 2-surjective, there exists
h € BY in the inverse image of t(A;) under F. Since A; (resp. Az) is in E, there exists a cell
By (resp. Bz) in B;V(Q) such that F(B;) = Ay (resp. F(Bg) = Az), s(B1) = f (resp. s(Bz2) = h)
and t(B1) = h (resp. t(B2) = g). Let B := By 3 By: we get:

s(B)=f F(B)=A1e4 t(B)=g

The set E is stable under 2-composition. Indeed, let A € E and f,g € BY such that
F(f) =s(A™1) and F(g) = t(A™"). There exists B € B¥? such that:

Hence, the cell B! satisfies the required property. yig]

We now extend B into a white (4, 2)-polygraph and F : B¥(?) — A*®) into a white 4-functor
by setting By = A4 U L:
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e For every 3-cell A € Ay, the source and target of A in B;V(Q) are respectively sB(A) :=
i(s4(A)) and tB(A) := i(tA(A)), where i is a chosen section of the application Fj : B;V@) —
AW(2) (which exists since F' is 3-surjective). And we set F(A) := A.

e For every 3-fold strict Peiffer branching (f, g, h), the set L contains a 4-cell Ay g, whose
shape depends on the form of the branching (f,g,h). If (f,g,h) = (f'v,g'v,uh’), with
(f',¢') a critical pair, and h’ : v = v’ then Ay g}, is of the following shape:

Agr.gv

ly— \ A
A gﬁ;?
A ul!

where A and B are in K;V(Q). And we define F(Aygg4p) = Lag, seoh-

/]

If (f,g,h) = (f'v,ug’,uh’), with (g, h) a critical pair, and f’: u = v’ then Ay g}, is of the

following shape:
\ u/Ag’,h’
\U 'LLh/

where A and B are in K;'(Q). And we define F(Afgp) := LyragAy -

If (f,9,h) = (f'vw,ug’'w,uh/w), then Af g} is of the following shape, where A and B are
w(2).
in K

flow flow
floug' W A U Ag w,vh!
"— Af’v & A
/

’

ug w,uv’ flvw,uvh!
uA / h'
g'w,v
u;>\§ ///% u;>\x

And we define F(Ath,h) = 1f’°og’-oh"

Let now Sp be the set of all 2-cells in BY whose 1-target is a normal form.

Proposition 3.3.1.4. The pointed white (4, 3)-category (BY?), Sg) is stronger than (A*?), S 4).

Proof. The functor F' sends normal forms on normal forms. Hence, by restriction it induces a
2-functor F'}Sg : B¥@ 1S5 — A*2) 15,

Lemmas 3.3.1.1 and 3.3.1.3 show that it is k-surjective for every k < 2. Hence, we can

conclude using Lemma 3.2.2.8. pid



Example 3.3.1.5. In the case where A = Assoc, the set K contains in particular the fol-
lowing 3-cells, associated respectively to the strict Peiffer branchings (¥ | | , | | V) and

S I I I B B B

YV=——==VY YIV===VIY

In L, the 4-cell associated to the strict Peiffer branching (& | | | » | S 1|, || ] 9Y)
is the following:

Cqi=—=Ni ¢
Ty S
el Ny

U7 7

3.3.2 Weakening of the invertibility of 3-cells

We construct dimension by dimension a white 4-polygraph C, together with a white 3-functor
G :CVG) — B¥?) . We then define a subset S¢ of C¥(®) and show (Proposition 3.3.2.2) using G
that (CV®), S¢) is stronger than (BY(?), Sg).

In low dimensions, we set C; = B; for ¢ < 2, with the functor G being the identity.

We extend C into a white 3-polygraph by setting C3 := B3 u B3, where the set B5” contains,
for every A € Bs, a cell denoted by A°, whose source and target are given by the equalities:

s(AP) = t(A) t(AP) =s(A)
And the functor G : €V — B¥?) is defined as follows for every A € Bs:
GA)=A G(A?) = A1,
Lemma 3.3.2.1. The functor G : CV®) — B¥(2) js 3-surjective.

Proof. By definition, B;VQ) is the quotient of C3" by the relations A” e9 A = 1 and A ey AP =1,
and G is the corresponding canonical projection. pid

We extend C into a white 4-polygraph by setting Cy := By U {pa, \a|A € B3}, where the
applications source and target s,t : C4 — C3' are defined as follows:

e For A € By, the cell s°(A) (resp. t¢(A)) is any cell in the preimage of s5(A4) under G,
which is non-empty thanks to Lemma 3.3.2.1. And we set G(A) := A.
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e For every A € Bg, the cells p4 and A4 have the following shape:
s(4) s(4) t(A4) t(A4)

DU G [ g %

s( 5(A) t(A) t(A)
And we set G(pa) := Lya) and G(Aa) 1= Lya).

Let S¢ be the set of all 2-cells in C%¥ whose 2-target is a normal form.
Proposition 3.3.2.2. The pointed white (4, 3)-category (C¥®), S¢) is stronger than (BY?), Sp).

Proof. The functor G restricts into a functor G} S¢ : C¥®3) 1S — B¥(2) } Sg, which is i-surjective
for ¢ < 2 thanks to Lemma 3.3.2.1. Hence, we can conclude thanks to Lemma 3.2.2.8. yig]

Example 3.3.2.3. In the case where A = Assoc, let A = <. The set C3 contains the

following 3-cell:
< ==Y
And the following cells lie in C4, where A ='<<7"

&
- o
e px@ @/

3.3.3 Adjunction of formal inverses to 2-cells

N

d

Let D be the white 4-polygraph defined as follows:
for every i # 2, D; :=C; Dy :=Cy U Ca,

where for every f € Co, the set Co contains a cell f with source t(f) and with target s(f). Let
Sp be the set of all 2-cells of the sub- white 2-category C3" of D3 whose target is a normal form.

Notation 3.3.3.1. The application Co — C extends into an application Yy — C>" which
exchanges the source and targets of the 2-cells.

We denote a 2-cell f by % it fisin BY, by é if fisin BY, and by é} if f

is any cell in C3'.
Proposition 3.3.3.2. The pointed white (4, 3)-category (DV®), Sp) is stronger than (C¥®), Se).

Proof. Let us show that D¥®) }Sp = CWG) 1S, Let ¢ : €V — DWE) be the canonical inclusion
functor. Since the only cells added are in dimension 2, ¢ satisfies the hypotheses of Proposition
3.2.3.8, thus C¥ is a sub- white 4-category of DY, which gives us an inclusion CV®) S, <
DYG) ) Sp.

Let us show the reverse inclusion. Let f € D¥®) be an i-cell (i = 2), and suppose that f is
in D¥G)Sp. In particular to(f) and sy(f) are in C3. Since ¢ also satisfies the hypotheses of
Proposition 3.2.3.11, with kg = 2, it is 2-discriminating on Dzv(g). Thus f is in C¥®), and in
CWB) 1 Se since its 1-target is a normal form. pid
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Example 3.3.3.3. In the case where A = Assoc, the set Dy contains one additional 2-cell:
A=Y

And the following cells are composites in DW:

SN TR

Note that the equality DV®) 1Sp = CWG) }Se implies that none of these composites belongs to
DYG) )} Sp.

3.3.4 Adjunction of connections between 2-cells

Let & be the following white 4-polygraph:
e Fori=0,1,2, & =D;,
o Fori=3,&E =D3u {n,ef|f €Ca}.
o Fori=4,E =Dyu {17,0¢|f €Ca}.

The cells 7, €7, 74 and o have the following shape:

o cr:fer f= 1y o npilyp =SS
Ls(p)
Ef HJnf
Lics)
o 7y (ferny)ex(eser f)D1f
(3.3.1)
/ !
/- M\fﬁm/ =/ A
£ f v/ f
o op:(nperflea(ferer)=1y.
(3.3.2)

74 AN

Notation 3.3.4.1. Let us denote by U the 3-cell €; and ) the 3-cell 7y. Similarly, we denote

by @ for o and ¢ for 7¢:
N U=
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Let R := {0, 7}, and RV (resp. RV()) be the sub- white 4-category (resp. sub- white
(4, 3)-category) of EWB) generated by the cells in R. A 4-cell of length 1 in RY is called an
R-rewriting step.

Let Sg¢ be the set of all 2-cells of the sub- white 2-category C3' of £5" whose target is a normal
form. Using properties of the rewriting system induced by RY, we are going to define a functor
K : VGBS —» DVB) )Gy,

Lemma 3.3.4.2. Let a € £} and B € RY of length 1 with the same source. There exist o’ € E)
and B € RY of mazimum length 1, such that:

=

(0}

Proof. The result holds whenever (a, 3) is a Peiffer or aspherical branching.

If (o, ) is an overlapping branching, then the source of o must contain an 7y or an €. The
only cells of length 1 in £} that satisfy this property are those in RY. Hence, o is in RY. Thus,
the branching («, ) is one of the following two, and both of them satisfy the required property:

e //’i/——'ig
MM—_—n LWU_—n

Lemma 3.3.4.3. The rewriting system generated by R is 4-convergent.

Proof. Using Lemma 3.3.4.2, the rewriting system generated by R is locally 4-confluent. More-
over, the cells o and 7 decrease the length of the 3-cells, hence the 4-termination. pid

Let A € £3': we denote by Ae &Y its normal form for R. Remark in particular that if A is
in DY, then A = A.

Lemma 3.3.4.4. Let A be a 3-cell of £ whose target is in C3'.
o If the source of A is in Cy, then A isin Dy

o Otherwise, for every factorization of A into fi e1 f e1 fo, where f is a rewriting step, there
exists a factorisation of A into:

% €f \f Al\
N

Ao
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Proof. We reason by induction on the length of A. If A is of length 0, then the source of A is in
Cy¥,and A= Ais in DY.

If A is of length n > 0, let us write A = By 1 By, where By is of length 1. We can then
apply the induction hypothesis to B2. We distinguish three cases:

e If both the sources of A and By are in Cy', then By is in DY, and so is A= B e Bg.

o If the source of A is in C3" but not thatiof Bo, then By is of the form g1 e1 1)y @1 g2. There
hence exists a factorisation (g; e1 f) e1 f 1 g2 of the source of By. Applying the induction
hypothesis to By, we deduce the following factorisation of A:

o /7' N0 7N\ AIN
NN

Ay

In particular, A is the source of an R-rewriting step. Let A’ be its target, which is thus of
length smaller than A. Applying the induction hypothesis to A’, we get that A = A’ is in
DY .

e There remains the case where the source of A is not an element of C3".

In order to treat this last case, let us fix a factorisation f; e; f 1 fo of the source of A, where
f is of length 1. We distinguish three cases depending on the form of Bj.

o If B) = fi o1 f &1 B}, where B] is a 3-cell of length 1 from f5 to go € DY, then we get a
factorisation of the source of B into f; 1 f @1 go. Let us apply the induction hypothesis
to Ba: there exist A}, A, € EY and ¢, € DY such that:

By = (fre1 fe1 Al) oo (f1e1 6501 5) e A

Thus A factorises as follows, which is of the required form by setting Ay = B e A} and
Ay = Al

L=
S

IS
/ =
=

v\

~

o If By = Bl e foqfo, where By is a 3-cell of length 1 from f; to g1 € Dy’. Then the source
of B factorises into g, 1 f o1 fo. Applying the induction hypothesis to Bs, there exist
Al AL e EY and f) € DY such that:

By = (g1 01 f o1 A}) e2 (g1 ®1 €5 ®1 f3) o2 A}
We get the required factorisation of A by setting Ay = A} and Ay = (B} o1 f5) o2 Al,.
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f N\ /
LN \
A2 /

e Otherwise, we have By = fi o1 €5 o1 f5, with fo = f e f. We then get the required
factorisation of A by setting A1 = 1f§ and Ay = Bs.

f f

% e fs
B2 /

Lemma 3.3.4.5. Let $ € RY, and « be a 4-cell EY of same source. There exist o' € £} and
B e RY of mazimum length that of B such that we have the following square:

=\

i

(0}

Proof. We reason using a double induction on the lengths of 5 and «. If 8 (resp. «) is an
identity, then the result holds by setting o’ = a (resp. ' = ).

Otherwise, let us write a = a1 o3 g and B = (1 3 B2, where a1 and Sy are of length 1. We
can then construct the following diagram:

o a9
b1 B 1
o
oy
B2 By 4
o o

The 4-cells o) and f] exist thanks to Lemma 3.3.4.2. We can then apply the induction hypothesis
to the 4-cells ay and B] (resp. o and f2) and we construct this way the cells of, and 37 (resp.
of and B3}). Lastly, we apply the induction hypothesis to o} et 3} in order to construct o/ and
"
. pig]
2
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Lemma 3.3.4.6. The application A — A extends into a 1-functor K : EWB)1Se - DWE) 1 Sp,
which is the identity on objects.

Proof. The application A — A does not change the source or target. Moreover, given a 3-cell
Ae WG if Aisin EVG)}Se then in particular the source and target of A are in Cy. Thus A
is in DY [ Sp (Lemma 3.3.4.4).

Let A, B be 3-cells in £Y®) which belong to £¥®) }Se. We just showed that A and B are in
DY 1Sp, hence so is A o B. So A o B is a normal form for R which is attainable from A o B.
Since R is 4-convergent, this means that m = Aey B. So A+ A does indeed define a
functor. pid

Proposition 3.3.4.7. The pointed (4, 3)-category (€, S¢) is stronger than (D, Sp).

Proof. Let us show that K induces a functor K : E¥G®)|Se — DWE) | Sp. Let A, B be 1-cells

in E¥G)}Se, and suppose A = B. Let us show that K(A) = K(B), that is that there exists a
dcell o/ : A= BeDy®.

Since A = B there exists a 4-cell a : A= B e EZV(3). Suppose that a lies in £}Y. Let g € RY
be a cell from A to A. Applying Lemma 3.3.4.5 to o and 3, we get cells o/ and 3’ of sources
respectively A and B. Let B’ be their common target. By hypothesis Aisin DY, and the only
cells in £)Y whose source is in DY are the cells in D}'. Thus o is in DY, and so is B'. So B’ is
a normal form for RY which is attainable from B. By unicity of the RW-normal-form, B’ = B,
and so o/ is a cell in DY of source K(A) and of target K(B), hence K(A) = K(B).

In general if A = B, there exist Aj,..., A, € &Y with Ay = A, B, = B and for every ¢
there exist cells oy : A9; = Ag;i—1 and ; : Ag; — Agi1 in E)Y. Hence, using the previous case
K(A))=...=K(A,), that is K(A;) = K(A,).

So K : EWB)1Se — DWE) | Sp is well-defined, and it is 0 and 1-surjective because K is.
Hence, (&, S¢) is stronger than (D, Sp). i

Example 3.3.4.8. In the case where A = Assoc, let A ='5/. The set &3 contains the following

3-cells:
&= | I=5X

And the set &4 the following 4-cells:

S
A% UTNA 'V'UA UUNV

3.3.5 Reversing the presentation of a white (4, 3)-category

We start by collecting some results on the cells of £.
Lemma 3.3.5.1. The set 3 is composed exactly of the following cells:

o For every f € Ag, 3-cells ny and ;.
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e For every non-aspherical minimal branching (f,g), a 3-cell Ay 4 of shape:

/
N

\/w

And in particular for every non-aspherical minimal branching (f,g), we have A;{Dg =Ays.

Proof. 1f (f, g) is a critical pair: if it was associated to a 3-cell in A then A 4 is this corresponding
cell. Otherwise, Ay 4 is in fact the cell Agp } from Section 3.3.2.

If (f,g) is a strict Peiffer branching, then Ay, is the cell defined in Section 3.3.1. Otherwise,
(g, f) is a strict Peiffer branching, and we set Ay, := A from Section 3.3.2. pid

Lemma 3.3.5.2. For every minimal non-aspherical branching (f,g,h), there exists a 4-cell
Afgh € 5ZV(3) of the following shape:

—
Af,g / \ B, \
A F Arp
f.9,h /
h Ag" h By

Proof. Let us first start by showing that, for every non-aspherical 3-fold minimal symmetrical
branching b, there exists a representative (f, g, h) of b for which the property holds. If b is an
overlapping branching then, using the fact that A satisfies the 2-Squier condition of depth 2,
the cell Ay ), exists for some representative (f, g, h) of b. Otherwise, b is a Peiffer branching,
and we conclude using the cells defined in Section 3.3.1.

It remains to show that the set of all branchings satisfying the property is closed under the
action of the symmetric group.

o If (f1, fo, f3) satisfies the property, then so does (f3, f2, f1). Indeed, let A := Ay, , ¢, and
let us denote its source by s and its target by ¢, all we need to construct is a 4-cell from
s°P to t°P. This is given by the following composite:

$SP ——mst? eg t 09 s’ st ey 5 09 s V7"t

_ _ 0]
Sop.2/\t1 top.2A 10280p tp.2ps

o If (f1, f2, f3) satisfies the property, then so does (f2, f1, f3). Indeed, given a cell Ay, ¢, .,
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we can construct the following composite:

Since the transpositions (1 2) and (1 3) generate the symmetric group, the set of all
branchings satisfying the property is closed under the action of the symmetric group. op

We are now going to apply a series of Tietze-transformations to £ in order to mimic a
technique known as reversing. Reversing is a combinatorial tool to study presented monoids [26].
Reversing is particularly adapted to monoids whose presentation contains no relation of the form
su = sv, where s is a generator and u and v words in the free monoid, and at most one relation of
the form su = s'v, for s and s’ generators. The (4, 2)-polygraph A satisfies those properties, but
only up to a dimensional shift: there are no 3-cell in As of the form fesg = fesh, where f is of
length 1 and g and h are in AY, and there is at most one 3-cell in A3 of the form fesg = f'egh,
where f and f’ are of length 1. Hence, we adapt this method to our higher-dimensional setting.

Adjunction of 3-cells (', with its defining 4-cell X;,. For every non-aspherical branch-
ing (f,g), we add a 3-cell Cf 4 of the following shape:

Nl

9
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using as defining 4-cell a cell X7, whose target is C't , and whose source is the composite:

/ g

AN N\
€f \f Ag,f \g/ Ng'

Ny N
f! q

Adjunction of a superfluous 4-cell Y;,. We add a 4-cell Yy, of target A, ¢, parallel to the
following 4-cell (where the second step consists in the parallel application of oy and oy ):

f/
g
A\ N X
1 oA, r 1y
X f §1 9.f g N g
f/

Removal of the superfluous 4-cell X;,. We remove the 4-cell X, ,, using the fact that it
is parallel to the following composite:

f g

Removal of the 3-cell A, ; with its defining 4-cell Y} ,. This last step is possible because
Ay s is the target of Yy, and does not appear in its source.
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We denote by F the white 4-polygraph obtained after performing this series of Tietze-
transformations for every non-aspherical branching (f,g), and II : E¥®) — FWG) the white
3-functor induced by the Tietze-transformations. We still denote by A, ; the composite in

fzv(g), image by II of Ay, € &4.

Example 3.3.5.3. In the case where A = Assoc, the cells <" and <s”"” respectively associ-

ated to the branchings (¥ | , | ¥Y)and (| ¥ , ¥ |) have been replaced by cells of the
following shape:

d=X =X
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3.4 Proof of Theorem 3.1.3.5

This Section concludes the proof of Theorem 3.1.3.5. We keep the notations from Section 3.3.
In Section 3.4.1, we study the 4-cells of the white (4, 3)-category F¥G) and in particular study
the consequences of A satisfying the 2-Squier condition of depth 2.

In Section 3.4.2, we define a well-founded ordering on N[F}¥], the free commutative monoid
on F}V. Using this ordering together with two applications p : 73" — N[FV] and w,, : 3" —
N[F}¥], we proceed to complete the proof by induction in Section 3.4.3.

3.4.1 Local coherence

Definition 3.4.1.1. We extend the notation C'y , from Section 3.3.5 by defining, for every local
branching (f, g) of BY, a 3-cell of the form C,: f o1 g = f o1 g’ € Fy', where f’ and ¢’ are in
By .

e If (f,g) is a minimal overlapping or Peiffer branching, then Cf , is already defined.
o If (f,g) is aspherical, that is f = g, then we set C ¢ = €.

e If (f,g) is not minimal, then let us write (f,g) = (ufv,ugv), with (f,§) a minimal branch-
ing, and we set Uy, := uC’fgv.

Definition 3.4.1.2. We say that a 3-fold local branching (f,g,h) of Ay is coherent if there

exists a 4-cell Cyqp € -FZV(?))

LSEON N
NNV N
N TNes

Lemma 3.4.1.3. Every 3-fold local branching of By is coherent.

of the following shape, where A and B are 4-cells in F3".

Proof. Let (f,g,h) be a minimal local branching. We first treat the case where (f,g,h) is an
aspherical branching. If f = g, then C, = €7, and the following cell shows that the branching
is coherent:

The case where g = h is symmetrical. Assume now g # f,h and f = h. Then (f, g) is either an
overlapping or a Peiffer branching. In any case there exists either a cell Ay, or Ay in £3. In

w(3)

the former case, we can construct the following cell in F,
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7 S N
\ / \ '
A4 Yyt
f/ef\f 77f f/\g ng P f
\“’/ \ / v
P (p4,,)
N\
W

In the latter, we can construct the same cell, only replacing II(pa, ) by II(A4, ).

Suppose now that (f, g, h) is not aspherical. Using the cell Ay 4, described in Lemma 3.3.5.2,
)

we build the following composite in fZV @),

<§\
o4
N/

/-

=,
=
3

<
—
3
L

N

/&
ava
A
/

/N
/.

N

v/m:\w/:
0N

II(

N

/2 /3
N/

Finally, if (f, g, k) is not aspherical, then there exists a 3-fold minimal branching ( f.q, fz) of
BY and 1-cells u,v € BY such that (f,g,h) = (ufv,ugv,uhv). Then the cell qugﬁU shows
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that (f,g,h) is coherent. i)

3.4.2 Orderings on the cells of 7%

Definition 3.4.2.1. Let E be a set. The set of all finite multi-sets on E is N[E], the free
commutative monoid over E. For every e € E, let v, : NJ[E] — N be the morphism of monoids
that sends e to 1 and every other elements of E to 0.

If F is equiped with a strict ordering >, we denote by >, the strict ordering on N[E] defined
as follows: for every f, g€ N[E], one has f >, g if

e f#y
e For every e € E, if vo(f) < vc(g), then there exists ¢ > e such that v/ (f) > ve(g).

Lemma 3.4.2.2. Let E be a set and a € E. The set of all f € N[E] such that f < a is equal to
the set of all f € N[E] satisfying the following implication for every be E:

vi(f) >0=10b<a.

In particular, this set is a sub-monoid of N[E].

Proof. Let f € N[E] such that for every b € E the implication v;(f) > 0 = b < a is verified.
Let us prove that f <,, a. Necessarily v,(f) = 0, otherwise we would have a < a. Thus, in
particular f # a. Moreover, let b € E such that vy(f) > viy(a) = 0. By definition of f this
implies that b < a, and since 0 = v4(f) < vq(a) = 1 we get that f < m,.

Conversely, let f <,, a. Let us show by contradiction that v,(f) = 0. If v,(f) # 0, we
distinguish two cases:

o If vo(f) =1, then since f # a, there exists b # a € E such that v(f) > 0. Thus, because
f < a, there exists ¢ > b € E such that v.(f) < v.(a). So we necessarily have v.(a) > 1,
which implies that ¢ = a. The condition v.(f) < v.(a) thus becomes v,(f) < 1, which
contradicts the hypothesis that v,(f) = 1.

e If vo(f) > 1, then there exists b > a such that vy(a) > vy(f), which is impossible.

Hence, necessarily v,(f) = 0.

Let b € E such that v,(f) > 0, and let us show that b < a. We just showed that b # a, and
so vp(f) > vp(a). Thus, there exists ¢ > b such that v.(a) > v.(f). In particular this implies
ve(a) > 0. So ¢ = a and finally a > b. i)

Lemma 3.4.2.3. Let (E, <) be a set equipped with a strict ordering. The relation >, is com-
patible with the monoidal structure on N(E), that is, for every f, f',g € N(E), if f >, f', then

f+9>m f'+y9.

Proof. Let f, f’,g € N(E), and suppose that f >,, f’. Let us show that f+g >, f'+g. Firstly,
f# f, hence f+g# f +g.

Let e € F such that ve(f + g) < ve(f' + g). Since v is a morphism of monoids, this
implies that v.(f) < ve(f’). Hence, there exists ¢/ > e such that v (f) > v (f’), and so
ve(f +9) > ve(f +9) @

The proof of the following theorem can be found in [1].

Theorem 3.4.2.4. Let (E,>) be a set equipped with a strict ordering. Then >, is a well-
founded ordering if and only if > is.
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Since A is 2-terminating, the set A} is equipped with a well-founded ordering =. This
induces a well-founded ordering =, on N[.AF]. We now define two applications p : 73" — N[AF]
and w,, : F3' — N[AJ]. Using =,,, those applications induce well-founded orderings on F3"
and F3¥. We then show a number of properties of these applications in preparation for Section
3.2.2.

Definition 3.4.2.5. We define an application p : Fy¥ — N[AT]:
e for every f € F3 of length 1, we set p(f) :=s(f) + t(f),

 for every composable fi, fs € Fy', we set p(fy o1 f2) = p(f1) + P(f2).

For every f,g € Fy', weset f > g if p(f) =, p(g). The relation > is a well-founded ordering
of F3'.
Definition 3.4.2.6. We define an application w,, : 73" — N[A]] by setting:

e For every f e By of length 1, w,(ny) = s(f).

e For every 3-cell A€ F3 and u,v e A7, if A is not an 1y then w,(uAv) = 0.

o For every fi, fo € F3¥ and A e FY, w,(f1 01 Aei fo) = wy(A).

e For every Ay, Ay € F3Y, wy (A7 o3 Ag) = wy (A1) + wy(A2).

Definition 3.4.2.7. A product of the form f e; g € F3¥, where f and g are nonempty cells in
5 is called a cavity. It is a local cavity if f and g are of length 1. Let Cr be the set of all
cavities.

Lemma 3.4.2.8. Let f,g € BY. Suppose f is not an identity and t(f) = s(g). The following
inequality holds:

s(f) > p(9)

Proof. We reason by induction on the length of g. If g is empty, then p(g) = 0 < s(f).
Otherwise, let us write g = g1 1 g2, with g; of length 1. Then p(9) = p(q1) + p(g2)

and by induction hypothesis p(g2) < s(f 1 g1) = s(f). Moreover, we have f : s(f) = s(g1)

and f e g1 : s(f) = t(g1). Hence, s(f) > p(g1),s(92),t(g2) and, by Lemma 3.4.2.2, we get

s(f) > p(g1) +s(g2) +t(g2) = p(g).
i

Lemma 3.4.2.9. Let f1, f2, 01,92 € BY, with fi and fa non-empty and of same source u. For
every 3-cell A : fi o1 fo = g1 @1 §o € F3¥, the following inequalities hold:

p(s(4)) > u > p(t(4)).
In particular for every cell Cy 4, we have s(Cyq) > t(Ctq).

Proof. Considering the first inequality, we have p(s(4)) = p(f1) + p(g2) = 2u > w.
Considering the second one, using Lemma 3.4.2.8, we have the inequalities u = s(f1) > p(¢1)
and u = s(f2) > p(g2). By 3.4.2.2, we then have u > p(¢1) + p(g92) = p(t(4)). i

Definition 3.4.2.10. Let h € F3'. A factorisation h = h; ; fi o1 foe1 ho of h, with fi1, fo € By
of length 1 and hy, hg € F3" is called a cavity-factorisation of h. Thus, a cavity-factorisation is
represented as follows:

wo Nt
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Lemma 3.4.2.11. Let h € F35" be a 2-cell which is not an identity, and whose source and target
are a normal form for As. Then there exists a cavity-factorisation of h.

Proof. By definition of F3", there exist n € N* and g1, ..., g2, € By all not identities, except
possibly g1 or gon, such that h = gy 1 go e1 ... 1 o1 @1 Gop.
Let us show that g; and g2, are not identities:

e If g1 is an identity, then since h isn’t, either n = 2 or n = 1 and g9, is not an identity.
In both cases g is of length at least 1, and has s(h) as target, which contradicts the fact
that s(h) is a normal form for As.

e The case where go, is an identity is symmetric.

Therefore, the 2-cells g; and go are of length at least 1. So we can write g; = f; 1 g} and
92 = f2e195, with f1, fo € BY of length 1. Let hy := g) and ho := g501G301941...91G2n—191G2n-
We ﬁnally get: h = hl L3l f1 o f2 o] h2. oo

Lemma 3.4.2.12. Let h € F35 be a 2-cell of source and target @, a normal form for Az. There
exists a 3-cell A : h = 1y such that wy(A) = 0.

Proof. We reason by induction on h using the ordering >. If A is minimal, then h = 1; and we
can set A := 1.

Otherwise, by Lemma 3.4.2.11 there exists a cavity-factorisation h = hq 1 f1 e1 fo @1 ho of
h. Let Ay := Cy, f,: we have wy(A;) = 0 and by Lemma 3.4.2.9, s(A;) > t(A;). Since the
ordering is compatible with composition, we get h > hq o1 t(A;) 1 hy. By induction hypothesis,
there exists a 3-cell Ay : hy o1 t(A1) ®1 hg = 1; € F3¥ such that w,(A2) = 0.

Let A := (hye; A e hy) e Ay. We have wy)(A) = w(hi e Ay o1 hy) +wW(A2) = w(A)+0 =
0. it

Lemma 3.4.2.13. Let h € F3" of source and target 4 a normal form for Az, and A : h =
1g € F3V. For every cavity-factorisation h = hy e; f1 ®1 fo ®1 ha, there exists a factorisation of
A= (hl o A1 o hQ) (D) AQ, with Al,AQ € er, and either A1 = Cf17f2 or Al = le o 77f3 o fz,
with f3 € BY of length 1.

Proof. We reason by induction on the length of A. If A is of length 0, then there is no cavity-
factorisation of h = 1; and the result holds.

If A is not of length 0, let h = hy e; fi 1 f2 @1 hy be a cavity-factorisation of h. Let
us write A = B e; C, where B is of length 1. If B is not of the required form, then either
B =DBe fie) fye hy, or B=hy e fie fre; B'. Let us treat the first case, the second being
symmetrical. The source of C' admits a cavity-factorisation s(C') = t(B’) o1 fi ®1 fo 1 ho. By
induction hypothesis, we can factorise C' as follows:

C = (h) o1 Ay o1 hy) e C',

with A1 = Cf, 4, or A = fi e Nf, o1 fo. Let Ay := (B} e1 t(A1) &1 ha) 2 Co: we then have
A= (hye; Ay e hy) ey A,
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Lemma 3.4.2.14. Let h € 3" and uw € A} such that uw > p(h), u > s(h) and v > t(h). For
every 3-cell A e F3¥ of source h, the inequality u > wy(A) holds.

Proof. We reason by induction on the length of A. If A is of length 0, w;(A) = 0 and the result
holds.

Otherwise, let us write A = Aje9 Ao, with A; of length 1. We distinguish two cases depending
on the shape of A;.

o If Ay = hy e 1y @1 ho, with hy, ho € 3V and f € BY of length 1.

If hy and hy are empty, then s(Az) = f o1 f. Thus p(s(4z2)) = 2s(f) + 2t(f) < 4s(f) =
4s(h). Since s(h) < u, using Lemma 3.4.2.2, we get that p(s(As)) < u. Applying the
induction hypothesis to Aa, we get wy(A2) < u. Moreover, wy(A) = wy (A1) + wy(42) =
s(f) + w(Az2), and we showed that w(As) < w and s(f) = s(h) < u. Thus, according to
Lemma 3.4.2.2 we get w,(A4) < .

Otherwise, suppose for example that h; is not an identity (the case where hy is not an
identity being symmetrical). Then we have vy, )(P(h1)) > 0, so vy, (P(h)) > 0. Since
p(h) < u, we have by Lemma 3.4.2.2 that s(f) = t(h1) < u. So p(s(42)) = p(h1)+p(h2)+
2s(f) +2t(f) < p(h) +4s(f) < u. By induction hypothesis, we thus have w,(42) < u,
and finally w, (A) = s(f) + wy(A2) < u.

e Otherwise, we have on the one hand that w,(A;) = 0, and on the other hand that
s(A2) = t(A1) <s(A1) = h <u by Lemma 3.4.2.9. Thus, w,(A) = w,(A2) < .

&

Lemma 3.4.2.15. Let (f1, f2, f3) be a 3-fold local branching, u € A%, and A, B € Fy' two 3-cells
such that there exists a 4-cell:

Chifsfo fl °1 775 o1 f2 ®2 (Cf17f3 ! Cf33f2) ®2 Aécfl,fz *; B.
Then wy(A), wy(B) < u.

Proof. Using Lemma 3.4.2.9, we have p(t(CY,.1,)), P(t(C,, 1)), P(t(CF,.15)) < u. So p(s(A)) =
Pt(Ch.5) + PE(Chy 1)) < u et p(s(B)) = p(t(Cy.f)) < u, and using 3.4.2.14, we get
wy(A), wy(B) <wu e

3.4.3 Partial coherence of FV®)

Proposition 3.4.3.1. For every 2-cell h € F3¥ with source and target i a normal form for As,
and for every 3-cells A, B : h = 15 € F3", there ewists a 4-cella : AS B e }_Zv(g).

Proof. We reason by induction on the couple (w,(A) + wy,(B),p(h)), using the lexicographic
order. If h = 13, then A = B = 1;. Thus setting o« = 14 = 1p shows that the property is
verified.

Suppose now that h is not an identity. Using Lemma 3.4.2.11, there exists a cavity-
factorisation h = hy 1 f1 @1 f2 1 he. By Lemma 3.4.2.13, there exist Aq, Ao, By, By € F¥,
such that A = (hy @1 Ay 1 hy) e3 Ay and B = (h; e1 By 1 hy) 3 Bs. Using this Lemma, we
distinguish four cases depending on the shape of A; and As.

98



If Ay = By =CYy, . Then in particular we have:
s(A2) =s(B2)  wy(Ad) =wy(d2)  wy(B) =wy(Ba2) (A1) <s(Ar),

where the last inequality is a consequence of Lemma 3.4.2.9. Hence, we get p(s(Az2)) = p(h1) +
P(t(A1)) +p(h2) < p(h) +p(s(A1)) +p(h2) = p(h), and finally (wy(A2) +wy(B2), p(s(42))) <
(wy(A) + wy(B),h)). Using the induction hypothesis there exists o : A= By € ]-"ZV(S), and by
composition we construct A; e o : A — B.

If Ay = fi e N, @1 f2 and By = Cy, y,. We are going to construct the following composite:

w 7N\,

_ <> <>
hy e1 f1 817, 1 f2 01 ho hi o1 Cy, 1, @1 ho
fl 5 <> <>
hl h2
m NN m S
D, “ Do
¥/ ¥/

N .

According to Lemma 3.4.1.3, there exists a 4-cell

Chifsfo fre Nfs ®1 202 (Cry g5 01 Cpy 1) @2 DiéC’fth o2 Ds,

with D}, D} € FZV(?’). Let us define Dy := hi o1 (Cy, 1, 91Cfy 5,) 92 D) 1 ha, Dy := hi e Dy ey ho,
and oy := h1 e1Cy, 1, 1, ®1 ha. The existence of D3 is guaranteed by Lemma 3.4.2.12, which also
proves that we can choose D3 such that w,(Ds) = 0.

In order to construct the 4-cells a; and a9, let us show that we can apply the induction
hypothesis to the couples (Ag, D1 2 D3) and (D2 3 D3, By). Let v be the common source of f;
and fo.

e Using Lemma 3.4.2.15, w, (D 83 D3) = wy(D1) = wy (D)) < v, and so:

wy)(A2) + wy (D1 o3 D3) < wy(Asz) + w(ns) = wy(A4) < wy(A) + wy(B).

e As previously w, (D3 3 D3) = wy(D2) = wy (D)) < v, and so:

Wn(B2) + Wn(D2 o D3) < Wn(B2) +w(nz) < Wn(B) + Wn(A)~

If Ay = Cy, 5, and By = f1 e1 1y, 1 fo. This case is similar to the previous one, only using
o . rather than C .
J1.f3,f2 f1.13,f2
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If A, = f1 e nf, 1 fo and By = fi 1 N, ®1 fo. We are going to construct the following
composite:

w N,
(= —————————

hie1 fie17mf, o1 f2 01 ho hi e1 fi ®1 75, o1 f2 1 he
f f
hy ;1/ \ / \2 ho ha ;1/ \ / \2 ho
=1 =1 =1 =1
D, a“ D,

m | o ININSN | |
N SO

Dy :=hy ey f1 01 f3e1 f3 0175, o1 foe1 ho
Dy :=hy ey fre1nys, 1 f1e1 f101 f2 01 ha.

Let us set

We then have
(h1e1 Ay o1 hy) @3 Dy = hy e f1 e1 15, @1 1p, @1 f2 @1 ho = (hy e By e hy) e1 Ds.

Hence, we define oy as an identity. Let now Ds be as in Lemma 3.4.2.12, with w,(D3) = 0, and
v be the common source of f1, fo, f3 and f;. We then have the inequalities:

wy(A2) + wy(D1) + wy(D3) = wy(A2) + v < wy(A2) + wy(B2) + 2v = wy(A) + wy(B),
wy(B2) + wy(D2) + wy(D3) = wy(B2) + v < wy(B2) + wy(A2) + 2v = wy(A) + w,(B).

Hence we can apply the induction hypothesis to the couples (Ag, D1 e2 D3) and (D2 e3 D3, By),
which provides as and asg. &

Proposition 3.4.3.2. The white (4,3)-category F¥3) is Sg-coherent.

Proof. Let A,B : f = h e F3" whose 1-target is a normal form 4, with f,g e By .

The 3-cells (h o1 A) e3¢, and (h o1 B) e3¢}, are parallel, and their target is 15. In particular,
they verify the hypothesis of Proposition 3.4.3.1. So there exists « : (hey A) eg¢;, = (he1 B) eg¢y,.
Then the following composite is the required cell from A to B:

\ / h\ﬁnh&h/ \lUla
N el
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We can now complete the proof of Theorem 3.1.3.5. Indeed, we showed that F¥®) is Se-
coherent. Using Proposition 3.2.2.14, that means that E¥®) is Sg-coherent, and finally using
Lemma 3.2.2.8 that A*®?) is S 4-coherent, that is that for every 3-cells A, B € A;(z)) whose

1-target is a normal form, there exists a 4-cell @ : AS B € Az(z).
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Chapter 4

Cubical (w, p)-categories
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Organisation

The goal of this chapter is to study the notion of (w,p)-cubical category, in preparation for the
next chapter. In Section 4.1, we recall a number of results on cubical w-categories. In particular,
we recall the definition of the two functors forming the equivalence between globular and cubical
w-categories.

In Section 4.2 we study the various forms of invertibility that exist in cubical w-categories.
In particular we define the notion of R;-invertibility in Section 4.2.1, that of plain invertibility
in Section 4.2.2 and finally the notion of Tj-invertibility in Section 4.2.3.

In Section 4.3, we finally define cubical (w, p)-categories. In Section 4.3.1 we use the results
on invertibility that we collected throughout Section 4.2, we prove the equivalence with the
globular notion and characterize the notions of cubical (w,0) and (w, 1)-categories. In Section
4.3.2 we introduce the notion of (w, p)-ADCs and study its relationship with both globular and
cubical (w, p)-categories.

Lastly in Section 4.4, we apply the notions of invertibility as studied beforehand, to show
firstly that cubical (w, 1)-categories carry a natural structure of symmetric cubical categories in
Section 4.4.1. Then in Section 4.4.2 we define and study the notion of pseudo transfors between
cubical w-categories.

4.1 Cubical categories

In this section we recall the notion of w-cubical categories (with connections) and the following
functors
A

/\
w- Cat ~ w-CubCat

\—/

~

defined in [2] that form an equivalence between the category of cubical w-categories and that of
globular w-categories.

While our description of the functor A matches exactly the description given in [2], we
rephrase slightly the definition of . Our construction consists in defining a co-cubical w-category
object in w-Cat (that is a cubical w-category object in w-Cat®P), in order to define 7 as a
nerve functor. The starting point of this construction consists in describing the standard globular
w-category of the n-cube (denoted n - MG in this thesis, and M (I™) in [2]). Here we use the closed
monoidal structure on w- Cat to construct these categories, but one could equivalently define
them as in |2] using directed complexes [76], or using augmented directed complexes [77].

4.1.1 Cubical sets

Definition 4.1.1.1. We denote by n-Cat the category of strict globular n-categories (with
n € N u {w}). We implicitly consider all globular n-categories (with n € N) to be globular
w-categories whose only cells in dimension higher than n are identities. Let C be a globular
w-category and n = 0. We denote by C, the set of n-cells of C. For f € C,, and 0 < k < n, we
denote by si(f) € Cx (resp. tx(f)) the k-dimensional source (resp. target) of f, and we simply
write s(f) (resp. t(f)) for s,—1(f) (resp. tn—1(f)). For f,g € C, such that tx(f) = si(g) we
write f e g their composite. For f € C,, we write 17 the identity of f. Finally, for z,y € Co, we
denote by C(x,y) the globular w-category of arrows between them.
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We say that an n-cell f € C, is invertible if it is invertible for the composition e, _1, that is
if there exists an n-cell g € C,, such that f e, 19 = 1yy) and g e,_1 f = 1yy). Forp =0, a
globular (w, p)-category is a globular w-category in which any n-cell is invertible, for n > p. In
particular, a globular (w,0)-category is just a globular w-groupoid.

Definition 4.1.1.2. For every i € N, we define two applications (_ )" : N — N\{i} and (_); :
N\{i} — N as follows:

g )J J<u ) J<u
J =3 L Ji =y . S
7+1 5= j—1 j57>1

J

Finally, for 4, j distinct integers, we define applications (_);j, (_)* and (_)]
as follows:

{N\{i,j} - N {N —  N\{i,j) {N\{ij} - N\{ji}

respectively

K ) PR VB Eooe (),
Lemma 4.1.1.3. The following equalities hold, for every k and every i # j:
kz’,j _ kj,z'
ki,j = kj’i k # i,j
k] = (kij)ji k #1;

Proof. Recall that there is at most one isomorphism between any two well-ordered sets. Here
()" and (_)»* are both isomorphism from N to N\{i,j}, hence they are equal. The same
reasoning proves the other two equalities. yig]

The series of Definitions 4.1.1.4, 4.1.1.6 and 4.1.2.1 is exactly the same as in [2], except that
we make use of the notations introduced in Definition 4.1.1.2.

Definition 4.1.1.4. A pre-cubical set is a series of sets C,, (for n > 0) together with applications
(called faces operations) 0% : Cy, — Cp_1, for @ = &+ and 1 < i < n, satisfying

orol = ol on (4.1.1)

A morphism of pre-cubical sets is a family of applications F,, : C,, — D,, commuting with
the faces operations.

Example 4.1.1.5. Following work of Grandis and Mauri [36], pre-cubical sets can be seen as
presheaves over the free PRO generated by cells ©: 0 — 1 and @ : 0 — 1. Then the applications
0; : C, —» Cp—1 and é’;r : Cy, — Cp—1 correspond respectively to the following cells, with ¢ — 1
strings on the left and n — ¢ on the right:

1o bl -

Equation (4.1.1) corresponds to equations of the following form, replacing the occurrences
of @ either by ¢ or @ depending on a and 3:

HEH oH-HaHT

Note finally that reading an expression 05" . .. 0? from left to right corresponds to reading a string
diagram in the PRO from top to bottom.
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Definition 4.1.1.6. A cubical set (with connections) is given by:
e For all n e N, a set C),.
e For all ne N* all 1 <i <n and all « € {+,—}, applications ¢ : C), — Cp_1.
e Forallmne Nand all 1 <¢<n+ 1, applications ¢; : C;, — Cj,41.
e Forallne N* all 1 <i<n and all a € {+,—}, applications I'" : C}, — Cp41.

This data must moreover verify the following axioms:

i Yo% . . - 1 = > :q . .
poe, = {0 1A (4.1.2) “Gr T (4.14)
ide, i=3
s [T0T i
3 S rer =< 70 (4.1.5)
Fjiaij 1# 75,7 +1 J rere i=jand a=p
o°T) ={ide, i=jj+landa=4

S o s

(4.1.3) €i€; i=7
Example 4.1.1.7. Following once again [30], cubical sets with connections can be seen as

presheaves over the following PRO, denoted by J and called the intermediate cubical site in [30]:

e The generators are the cells :

0:0—1 e:0—1 6:1-0 ¥Y:2->1 v:2->1

e They satisfy the following relations :

Then the applications I'; : C;, — Cyy1, Fj : Cp, — Cpq1 and ¢; correspond respectively to
composites of the form || ¥ ||, || ¥ |~|and || é ||, with the appropriate number of

strings on each side.

4.1.2 Cubical w-categories

Definition 4.1.2.1. A cubical w-category is given by a cubical set C, equipped with, for all
n € N* and all 1 < 7 < n, a partial application x; from C,, x C, to C,, defined exactly for any
cells A,B such that 0;" A = 9; B. This data must moreover satisfy the following axioms:
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(Ax;B)%; (Cx; D) = (A%;C)x;(Bx; D) (4.1.7)
’ ’ ’ Axieidf A=ed  Ax A=A (4.1.10)

El(A * B) = EiaA *ji G?B (419) F;FA *i+1 F;A = €Z'A (4112)

0% A xj, 0%B i # j

Of(Axj B) = {07 A i=jand a = — (4.1.13)
o B i=jand a =+
I¢Ax;: T¢B i #
I A | e1B ﬁ
’ Eztl ‘ t=jand a = —
T¢(Ax;B)=4LaB | iB | i (4.1.14)

THA | A ﬁ
! < t=jand a =+

6i+1A F:FB 1+1

ABl"
C|D| j

where in the last relation we denote by the composite (A *; B) *j (C %; D)

(which is made possible by relation (4.1.7)). We denote by w- CubCat the category of cubical
w-categories.

Definition 4.1.2.2. Let C be a cubical w-category. For any n > 0, we define operations
Y, U, @, : C,, > C,, with1 <i<n—1,1<r<nand0<m<n as follows:

77/)114 = FT@;IA *iil A *i1] F;@iHA
v,.A = ¢r71 t ¢1A
o, A = V-V, A

Definition 4.1.2.3. Let C be a cubical w-category, and A € C,,. We say that A is a thin cell
if ¢1 .. .T/Jn_lA € Imel.

Definition 4.1.2.4. Let n € N. There is a truncation functor tr, : (n + 1)- CubCat —
n- CubCat. This functor admits both a left and a right adjoint (see [13] for an explicit descrip-
tion of both functors).

(n 4+ 1)-CubCat try n- CubCat

For C € n- CubCat, the (n + 1)-category [JC coincides with C up to dimension n, and the
rest of the structure is defined as follows:
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The set of (n + 1)-cells of [JC is the set of all families (A$) € C,, (with 1 <i<n+1 and
a = =) such that:
0r AP = 3% A2
FE) Ji

For Ae (OC)p41, 08A = AY.

For A € C,,, the families ;4 € ((JC),+1 and I' A € ((JC),,41 are defined by:

4 L
_ ) =3 ed’A  j=iji+land f=—a

A j=t4i+1land =«
<6’A)1_{ B

OF A J#1

€; 0,4 J#1 I80;A j#ii+1

For A, B € (OC)pn+1 such that A = B;, the family A *; B € ((JC);41 is defined by:

A j=tand o = —

()

(Ax; B)f = { Bf j=tand o = +

7

A9 By i

Let C be a cubical (n + 1)-category. The unit of the adjunction tr - [] induces a morphism
of cubical (n + 1)-categories @ : C — [Jtr C. This functor associates, to any A € Cp41 the
family 0A := (07 A). We call 0A the shell of A.

More generally, if C is a cubical w-category, we denote by [,,C the (n + 1)-category [Jtr,, C,
and for any A € C, 1, by 04 the cell dtr,,1 A €],C.

Theorem 4.1.2.5 (Proposition 2.1 and Theorem 2.8 from [13]). Let C be a cubical category.
Thin cells of C are exactly the composites of cells of the form e;f and I''f. Moreover, if two
thin cells have the same shell, then they are equal.

Notation 4.1.2.6. As a consequence, when writing thin cells in 2-dimensional compositions (as
in Equation (4.1.14) for example), we make use of the notation already used in [2] and [13]: a
thin cell A is replaced by a string diagram linking the non-thin faces of A. For example Fj A

and I';” A will respectively be represented by the symbols and , and the cells ¢; A by the

symbol E or m Following this convention, Equations (4.1.11) and (4.1.12) can be represented
by the following string diagrams:

J0)-0 g L

- i+1

And the last two cases of Equation (4.1.14) become respectively:

]-

- | - rl— Fz
-r:

—_ | r i+1

Finally, for any A € C,, 1; A is the following composite:

Vvid=| r| Al l—MH

i
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4.1.3 Equivalence between cubical and globular w-categories
The functor v : w- CubCat — w- Cat was described in [2] as follows.

Proposition 4.1.3.1. Let C be a cubical category. The following assignment defines a globular
w-category yC :

e The n-cells of 7C are the elements of ®,(C,,),

o Forall AevC,, 14 := €A,

e Forall Ae~C,, s(A) := 0] A,

e For all Ae~C,, t(A) =0 A,

o Forall A,Be~C, and0 <k <n, Ao B:= Ax, . B.

To define the functor A : w-Cat — w-CubCat, we start by constructing a co-cubical
w-category object in w- Cat. This is a reformulation of [2].

Definition 4.1.3.2. Let I be the category with two O-cells (—) and (+) and one non-identity
1-cell (0):
(0): (=) = (+)
We denote by n- B, and call the n-cube category the globular w-category I®", where ® is
the Crans-Gray tensor product, which equips w- Cat with a closed monoidal structure.

Example 4.1.3.3. For example 2- B is the free 2-category with four 0-cells, four generating
1-cells and one generating 2-cell, with source and targets given by the following diagram:

(=) (++)

(0+)

Definition 4.1.3.4. For a = =+, we denote by 0* : T — I the functor sending the (unique)
O-dimensional cell of T to («), where T denotes the terminal category.

For any n > 0, any 1 < ¢ < n and any a = %+, we denote by 05" : n-m¢ - (n+ 1)- M the
functor I' ! ® 0> @ I" .
Definition 4.1.3.5. We denote by ¢: 1- M — 0- B the (unique) functor from T to T.

For any n > 0 and any 1 < ¢ < n, we denote by & : (n — 1)—IG — n-MS the functor
®0-1) g ¢®I®Mn—1),

Definition 4.1.3.6. For o = +, let I'® : 2-W% — 1-W% be the functor defined as follows,

where 8 = —a:
I:“O‘(aa) = (a) I:‘O‘(Oa) = (0)
r(af) = (B) 1*(08) = 1¢5) P (00) = 1
°(50) = (9 " (af) = (6) Y
I (8p) = (B) I'%(B0) = 1(5



For any n > 0 any 1 < ¢ < n and any o = £, we denote by f‘? :n-W% - (n+1)-WC the
functor I®(—1) g T ® [®(n—1),

Definition 4.1.3.7. We denote by Rect® the following pushout in w- Cat:

5+
0-m¢ 9", | mC

‘VTl - l (4.1.15)

1-m¢ —— Rect®

Explicitly, the 0-cells of Rect® are elements (cj), where @« = £ and i = 1,2, with the
identification (+1) = (—2). The 1-cells of RectyPC are freely generated by (0;) : (—;) — (+4),
fori=1,2.

For every n > 0 and every 1 <i < n, let (n,i)- Rect® be the cubical w-category:

(n,i)-Rect® := 1071 @ Rect® @ 1"

Remark 4.1.3.8. Since the monoidal structure on w- Cat is biclosed [2], (n,i)- Rect® is the
colimit of the following diagram:

al - l (4.1.16)

Definition 4.1.3.9. We denote by * : 1- W% — Rect® the following functor:

(=) =(=1) %(0) = (01) oo (02)

—
»*< %<
—~
_|_
~—
I
—~
+
no
~—

For any n > 0 and any 1 < i < n, we denote by %; : n- MBS — (n,i)-Rect® the functor
®0-1) @ @ [®0n—),

This result is a reformulation of Section 2 of [2]:

Proposition 4.1.3.10. The objects n- MG equipped with the applications 5?, €, f? and *; form
a co-cubical w-category object in the category w - Cat.

Consequently, for C a globular w-category, the family (XC), = w- Cat(n-B%,C) comes
equipped with a structure of cubical w-category, that we denote by AC. This defines a functor
A:w-Cat — w- CubCat.

Finally, the main result of [2] is the following:
Theorem 4.1.3.11. The following functors form an equivalence of Categories:

A
/\

w- Cat ~ w-CubCat

\/
Y
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4.2 Invertible cells in cubical w-categories

In this Section, we investigate three notions of invertibility in cubical w-categories. We start by
defining in Section 4.2.1, both the notion of R;-invertibility, which is a direct cubical analogue of
the usual notion of invertibilty with respect to a binary composition, and the notion of (plain)
invertibility, which is specific to cubical w-categories. Then in Section 4.2.3, we define a notion
of T;-invertibility, a variant of the notion of R;-invertibility using a kind of diagonal composition.

4.2.1 R;-invertibility

We start by proving a number of useful Lemmas about the notion of R;-invertibility. We then
proceed to give the definition of (plain) invertibility in Definition 4.2.2.1. The rest of the Section
is then used to prove a characterisation of R;-invertibility in terms of invertibility, which is
achieved in Proposition 4.2.2.2.

Definition 4.2.1.1. Let C be a cubical w-category, and 1 < k < n be integers. We say that a
cell A € C,, is Ry-invertible if there exists B € C,, such that Axy B = €0, A and B, A = ek(?,jA.
We call B the Rg-inverse of A, and we write R A for B.

In particular, we say that A € C,, has an Rg-invertible shell if dA is Ry-invertible in [, C.

Lemma 4.2.1.2. Let C be a cubical n-category, and A € ((JC)p+1. Then A is R;-invertible if
and only if for all j # 1, AJO-‘ is R;;-invertible, and:

CA =k

0Ry A = .
RklafA 1#k

In particular, for C a cubical w-category, a cell A € C, has an R;-invertible shell if and only
if 07 A 1s Ry -invertible for any j # 1.

Proof. Let B be the Ry-inverse of A, and i # k. We have:
Af xp, BYY = (Ax, B)) = 0f'ex A}, = ey, 00 A, = ekia,;ik Al = e, 0, A7
Bj* xp, AT = (B x, A)f = Gio‘ekA,': = ekiﬁf,iA,": = Ekialjik A = ekiﬁ,;A?.
Thus B is the k;-inverse of AS', that is 0 Ry A = Ry, 0" A.

Moreover, for the composite A x RpA (resp. RrA x; A) to make sense we necessarily have
0y R A = 0 A (vesp. 0 RyA = 0 A). i)

The following Lemma will be useful in order to compute the R;-inverses of thin cells.

Lemma 4.2.1.3. Let C be a cubical w-category, and let A be a thin cell in C,,. We fixr an
integer i < m. If there exists a thin cell B in C,, such that 0;B = 0; “A, and for all j # i,
(7313 = R;.0%A, then A is R;-invertible, and B = R;A.

7770

Proof. Since 0; B = 0" A, A and B are i-composable. Let us look at the cell Ax; B. It is a thin
cell, and it has the following shell:

0; A=0; €0, A j=tand a = —
0F (A% B) = 0;B=0;A=0; €0 A j=tand o = +
6;)‘14 *ii 8]0‘B = 6]0‘14 *i; szé’]o‘A = 61]6;6;’14 = 6]0‘618;14 J#1
Therefore, A x; B and €;0; A are two thin cells that have the same shell. By Theorem 4.1.2.5,

they are equal. The same computation with B*; A leads to the equality B*; A = ez-&;r A. Finally,
A is R;-invertible, and R;A = B. oo
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Lemma 4.2.1.4. Let C be a cubical w-category, and fir A,Be€ C,, and 1 < k < n.

e For any i < n, if A, B are Ry-invertible and i-composable, then A x; B is Ry-invertible,
and:

, (4.2.1)
RkB * [ RkA 1=k

Ri(Ax; B) = {

e Foranyi <n+1, A is R;-invertible and R;e;A = ¢;A. Moreover, if A is Ry-invertible
then ;A is also Ry invertible, with

RkieiA = €1RkA (422)

e For any i # k and o = £, if A is Ry-invertible, then I'{' A is Ry invertible, and I'Y A is
both Ry and Ry,1-tnvertible, and:

RT®A =T%R,A (4.2.3)

k1 ReAxp 1 TFA a=—
FI;A *k €1 R A o=+

EkRkA *l+1 F]JCFA o = —
FI;A *pi1 eeRp A a =+
(4.2.4)

RkPgA = { Rk+1P%A = {

Proof. Suppose A and B are k-invertible, and let i < n. If ¢ # k, Then we have:

(RiA*; RiB) x; (Ax; B) = (RgA xj, A) *; (Ri.B *i, B) = €,0; A »; €4,0; B = €,0; (A x; B)
(A*; B) xp (RiA »i RpB) = (A, RpA) *; (B % RpB) = €x0), A %i €0, B = €,0; (A % B).

Thus A »; B is Ry-invertible and Ry (A *; B) = Ry A ; R, B. Suppose now that ¢ = k. Then we

have:

Ry B i, RiA xj; A% B = €;,0; B = €,0 (A *; B)
Axp B RpB %), R, A = Ekak_A = 6kak_(A * B)

So A xi, B is Ry-invertible, and Ry (A xx B) = Ry B *, RiA.

Suppose ¢ # k. Then we have:

FiaA X pi P?RkA = P?(A *L RkA) = P?ekc?,;A = ekil“;?jc&k_A = 6kia];-FiaA
F?RkA * i F?A = F?(RkA * [ A) = F?Gkﬁg_A = EkiFiO;anA = Gkial;F?A
Thus I'§' A is Ryi-invertible, and R I'¢A = ' R A.

Suppose now i = k, and o = —. In order to show that RyI', A = €1 RpA %4 F;A, we
are going to use Lemma 4.2.1.3. Note first that both I'; A and ey 1 RpA %541 F,‘:A are thin,
so we only need to check the hypothesis about the shell of €, 1 RrA *11 F;A. Note that the
hypotheses on directions k and k + 1 are always satisfied:

€x0, RpA = ekale = 8;FI;A j=kand a=—

T fA=A=0,T A i =k and a =
a]qz(EkHRkA*kF;A) - k- k L k_k L B - ]'_ and « —|—_

RpAxp 0 Ty A= RpAsped, A= RpA= R0, T A j=k+1land a=—

RkA * [ a];_lFIjA = RkA *L A= Eka;A = Rka,jF;A ] =k+1and o=+

As for the remaining directions, we reason by induction on n, the dimension of A. The case
where n = 1 (and thus k = 1), there is no other direction to check and so RiI'] = eaR1 A FTA.
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Suppose now n > 1, and let j < n + 1, with j # k,k + 1. Then we have the following equalities
(where the fourth one uses the induction hypothesis):

aj“(ekHRkA * [ F]jA) = é’;-"ekHRkA *k]- afF,jA
= ), % R iy T 35,4

ki~ Ik
= ek].HRkjﬁiA *k; F%&%A
= Rkjfl;aﬁcA
— Ry, 5T; A

Thus, by Lemma 4.2.1.3, I',’ A is Rj-invertible, and RipI'} A = €1 RpA *p 41 F,jA.
The proofs of the remaining three cases (i = k with &« = +, and i = k + 1 with a = +) are
similar. it

Remark 4.2.1.5. Note that Lemma 4.2.1.4 shows in particular that, if A is Rj-invertible, then
RiI'§ A, RpI'¢ A and Ry 1I'(} A are thin. In particular, applying the Notation defined in 4.1.2.6,
we get the equations:

k
mld-l] mald-00 alf-0 maf]-H) |

k+1

Remark 4.2.1.6. Let C be a cubical n-category and A € ([JC)p+1. Recall from [13] that for
all i # 1, 081 ... ¢YnA € Ime;. Therefore, by Lemma 4.2.1.2 ¢1...9,A is Rj-invertible. So
finally, any cell in [JC is invertible.

Lemma 4.2.1.7. Let C be a cubical w-category, and A € C,. Suppose A is Rj-invertible for
some j <n. Then :

o The n-cell Y;A is Rj-invertible for any i # j — 1.
o The n-cell Yj_1A is Rj_i-invertible

Proof. Suppose first j # 4,7 + 1. Then we have ¢;A x; Y, R;jA = (A x; R;jA) = Viejo; A =
ej8;¢iA, as well as Y RjA x; ;A = j(RjA%; A) = Q,Z)iej(?;A = eja;-ri/}iA. Hence, ;A is
Rj-invertible, and R;y; A = ¢; R; A.

Suppose now j = i. Then ;A is a composite of R;-invertible cells. As a consequence it is
R;-invertible.

Suppose now j =i + 1. Let B be the following composite:

ri—1| A [ ]| ,
J
) r i RA L] j
j—1
[ |1 L | =14

Let us show that B is the R;_i-inverse of ¢;_1 A:
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rl A4
| | ri— | 1 rlAl- i
ri— | 1
1/)]'_1A *5-1 B = = I r RJA - I .
| e Ra |4 | i1
TN EE
I EE
rl—1| 1 [ |1 ri—1a 1|1 ;
=1 rlral a4 =] L] il
j—
RREERE IEE
j
= | | ‘[ :Ej—la;—1¢j—1‘4
7j—1

A similar computation shows that B *;_1¢; 1A = Ej_l(?;r_le_lA and thus ;1A is Rj_1-
invertible. ol

Lemma 4.2.1.8. Let C be a cubical w-category, and A € C,, be an n-cell with an R;-invertible
shell for some j <n. Then:

o If ;A is Rj-invertible for some i # j — 1, then A is R;-invertible. Moreover, if Rj; A is
thin then so is RjA.

o If1;_1 Ais Rj_i-invertible, then A is Rj-invertible. Moreover, if Rj_11;_1A is thin then
50 s RjA.

Proof. Suppose ;A is Rj-invertible, with ¢ # j. Recall that the following composite is equal to
A

67;_;,_15;14 F;razt_lA
YA

Fi_ﬁz’_JrlA €i+15;_14

Using the string notation for thin cells, this composite can be represented as follows:

I r

o l—> i+l

i

4

This notation is ambiguous, since it does not specify which factorisations of 0f*¢; A are used.
However, we use the convention that in any diagram of this form, the standard factorisations
0; ViA = 0; A x; 0;;114 and ﬁfwiA =0, 1 Ax (3Z-+A are used.

Since A has an Rj-invertible shell, by Lemma 4.2.1.4, every cell in this composite is R;-
invertible, and A is Rj-invertible. Moreover, if R;1;A is thin, then the explicit formulas from

Lemma 4.2.1.4 prove that R;A is thin.
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Suppose now that ;1A is R;_i-invertible. We denote by B the following composite:

el = |-
[ |1 r A A
j
I | R4 | | i
j—1
L |4 | |
— | — | |

We are going to show that B is the R;-inverse of A. Notice that if R;_11);_1A is thin, then
B is thin, using Lemma 4.2.1.4. Let us evaluate the composite A x; B:

I — — r — — r — —
[ 1] r A | r T | r A ;
|| A || = A || = Rj_1¢; 1A | | j_‘[l
[ | & - | | r|- | | ri A - |
Al—|— - I Al — - | 40 |
r — — r — —
| r A | r T
‘7
=| Rj_1;1A | | |=| Rjipj—1A | | j_‘[l
%7114 I %7114 I
- | | - | |
rl—|— .
J
=l 1| rln \[
j—1
400
= Eja;A
The evaluation of B x; A is similar. [yl

4.2.2 Plain invertibility
Definition 4.2.2.1. We say that a cell A € C,, is invertible if ¢ ...1,_1A is Ri-invertible.

The rest of this Section is devoted to establishing the link between R;-invertibility and (plain)
invertibility. This is achieved in Proposition 4.2.2.2. In order to do this, we make use of the
Lemmas 4.2.1.7 and 4.2.1.8, which relate the R;-invertibility of a cell A with that of v, A.

Proposition 4.2.2.2. Let C be a cubical w-category, A€ C, and1 < j<n. A cellAe C, is
Rj-invertible if and only if A is invertible and has an Rj-invertible shell. Moreover, if A is thin,
then so is its Rj-inverse.

Proof. Suppose first that A is Rj-invertible. Then its shell is R;-invertible, and for all ¢ > 7,
;... ¢Yn_1A is Rj-invertible. Repeated applications of Lemma 4.2.3.4 show that ¢;...1¢,_1A is
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Rj-invertible. As aresult (still by Lemma 4.2.3.4), ¢;_1 ... 9,1 A is Rj_i-invertible. Inductively
we show that for any ¢ < j, ¢;...1¢,_1A is R;-invertible. Finally, we get that ¢ ...¢,_1A4 is
Ry-invertible, in other words that A is invertible.

Suppose now that A is invertible and has an Rj-invertible shell. By multiple applications
of Lemma 4.2.1.7, we get that v, ...1,_1A has an Rj-invertible shell, for & > j, and an Rj-
invertible one for £ < j. Applying Lemma 4.2.1.8 multiple times, we get that for all k£ < j,
Vg ... ¥Un—1A is Rp-invertible, and finally that for all k > j, ¢ ...¢,—1A4 is Rj-invertible. In
particular for k = n, A is Rj-invertible.

Finally, if A is thin, then %1...%, 14 € Ime; and so RiY1... ¥ 14 = Y1...¢Yp_1A is
thin. Multiple applications of Lemma 4.2.1.8 imply that R;A is thin. yid

Finally, the following Lemma will be useful in Proposition 4.2.3.5:

Lemma 4.2.2.3. The composite of two invertible cells is also invertible.

Proof. Let 1 < i < n, and let E; be the set of all cells A € C, such that ¢y ...1;_1A is R;-
invertible. Note first that E; contains all R;-invertible cells by Lemma 4.2.1.7 and that E, is
the set of all invertible cells. We are going to show by induction on i that FE; is closed under
composition, for 1 < i < n.

For ¢ = 1, Ej is the set of all Ri-invertible cells, which is closed under composition by Lemma
4.2.1.4. Suppose now ¢ > 1. Take A, B € E;. We have:

Vi1 Axjp; 1B J#EL1—1
VYi—1(Axj B) = < (Yi—1A %; €210, B) *i_1 (€i—10; A*; ;_1B) j=1—-1
(€i-10;_ A% 1B) xi1 (Yi1A %107\ B) j=i

Note that:
e Since ¥ ...1¥;_1A and 1 ...¢;_1 B are Ri-invertible, ¢;_1A and ;1B are in E;_;.

e The cells ¢;_10; A and ¢;_10; B are R;_i-invertible by Lemma 4.2.1.4, and therefore are in
FE;_1.

By induction hypothesis, E;_; is closed under composition, and therefore ;1 (A x; B) is in Ej.
So YP1...1i—1(A * B) is Rj-invertible, and so A x; B is in E;, which is therefore close under
composition. 5]

4.2.3 T;-invertiblility

The notion of T;-invertibility is closely related to that of R;-invertibility, as we show in Lemma
4.2.3.3. Consequently, a number of results from the previous Section have analogues in terms
of T;-invertibility. In particular, the characterisation of T;-invertibility in terms of invertibility
given in Proposition 4.2.3.5 is the direct analogue of Proposition 4.2.2.2.

Definition 4.2.3.1. Let C be a cubical w-category, and i < n be integers. Let A, B be cells in
C,, such that J;'A = 0 | B and 0} {A = 0'B, for a = £. If the following two equations are
verified, we say that A is T;-invertible, and that B is the T;-inverse of A, and we denote B by
T; A:

B mT [ (4.2.5)

A - i+1
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A aT (I (4.2.6)

B A i+1

In particular, we say that A € C,,;1 has a T;-invertible shell if A is T;-invertible in [, C.

Remark 4.2.3.2. Note that T;A is uniquely defined. Indeed, if B and C are both T;-inverses
of A, then evaluating the following square in two different ways shows that B = C"

r| B r| B r ]
r r v
B=l4 |1 |=|rlal|d|= o |
C__I i+1
I__I CJ

The relationship between T; and R;-invertibility is given by the following Lemma.

Lemma 4.2.3.3. Let C be a cubical w-category, and A € C,, be an n-cell, with n = 2. Then A
is Ti-invertible (with i < n) if and only if 1; A is R;-invertible, and we have the equalities:

i+1
T;A =| RihA i (4.2.8)

i

R A = p;T; A (4.2.7) 4

In particular, if A is thin, then so is T;A.

Proof. Suppose first that A is Tj-invertible. Then the composite 1;T; A *; ;A is equal to the

following:
r EA - F A

rl A A i+1

Using (4.2.5), we show that this composite is equal to eﬁ;’ ; A. We prove in the same way
(using (4.2.6)), that ;A x; ;T; A = €;0; 1; A, which shows that 1;T;A is the R;-inverse of ; A.
Suppose now that ;A is T;-invertible. Then we have:

| | r
| | r | | r
1 R;; A P -
Ri; Ri; !
v = ri4 1= i =< | r
r|- I leA i
riAl—|-
Al—1]4 40
401

Finally, if A is thin, then so is ¥;A, and so is R;1; A by Proposition 4.2.2.2. Equation (4.2.8)
then shows that T; A is then thin. oo
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Lemma 4.2.3.4. Let C be a cubical n-category. Let 1 < i < n and A € [JC. Then A is
Tj-invertible if and only if for all i # j,j + 1, A is T}, -invertible, and:
T;,08A 1#7,5+1
;T A = A =1, (4.2.9)
o5 A 1=7+1,
In particular, if C is a cubical w-category, and a cell A € C,, has a T;-invertible shell, then
63?‘/1 is Ty -invertible for any j # 4,7+ 1.

Proof. Suppose first that A € (JC is Tj-invertible, and let 7 # j,j + 1. Then we have:

a, A— a+ A+
00ej0T A | 9TFor A "y
09T A = 0 Rj1h; A j
Ji
ar— A— a, Nt
PT;7A | et A
- a + A+ o
€j.05,1), 08 A | TIotoeA e,
= Rj ;07 A j
Ji
B~ ipale . At [e}
DL000A | 6,00, 004
= Tjia?A
For ¢ = 7, we have:
0; T;A = 0] €0, A 0; T A 0 T;A = 0; T 07 A; 0; €0, A
= 6;114 *; 6161_53_14 = 625:_6@_14 *; 8;;114
=0,,,4 =0 ,A

i+1 i+1
Finally, for ¢ = 7 + 1:

07\ TiA = 07 €07 A x; 07, Ritvi A x; 07, T 07 A

i+1 i+1 i+1
= 6181_5;114 *; Rieiagﬁﬁ_lA *,; 81_14
= eiaf‘&;’HA *; al_A = 8;14
é’jﬂTlA = 6;1Fj6jA *; 8;1}2@@[)214 *; 6;_1616;_114

Reciprocally suppose that for all ¢ # j,j + 1, A?‘ is T}j,-invertible. Then let By = T;, A if
i #j,j+1, Bf = A?‘H and B}, = A;?‘. Then B is an element of [JC, and we verify that it is
the T;-inverse of A. g
Proposition 4.2.3.5. Let C be a cubical w-category, and A € C,, with n = 2. Then A is

T;-invertible if and only if A is invertible and has a T;-invertible shell.

Proof. Suppose A is Tj-invertible. Then ;A is R;-invertible, and therefore it is invertible. Recall
from [2] that A is equal to the following composite:

I r

wZA F i+1

i

4
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All the cells in this composite are invertible, and invertible cells are closed under composition
(Lemma 4.2.2.3), therefore A is invertible. Moreover, since ¥;A is R;-invertible, it has an
R;-invertible shell. In particular, for j # 7,7 + 1, we have that 0;-114 = (95“¢,~A = wijﬁj“A is
R;;-invertible. By Lemma 4.2.3.3, é’JO-‘A is T;,-invertible. So finally A has a Tj-invertible shell.
Suppose now that A is invertible and has a Tj-invertible shell. By application of Lemma
4.2.3.3 in (JC,,, ¥; A is invertible and has an R;-invertible shell. So ;A is R;-invertible, and A
is Tj-invertible by Lemma 4.2.3.3. pid

Proposition 4.2.3.6. Let C be a cubical w-category.

o Let Ac C,. Foralll1 <j<n-+1,¢AisTj and Tj_1-invertible and:
EfjA = €j+1A 1}_163'_/4 = Ej_lA (4210)
Moreover, if A is Tj-invertible (for i # j — 1), then €;A is Ty -invertible, and:

T~j€jA = EjT‘iA (4211)

i
e Let Ac C,. Foralll<j<n, F?‘A is Tj-invertible, and
T;I'fA=T5A (4.2.12)
Moreover, if A is Tj-invertible, then I'J'A is Tjj-invertible, and:
T,;T5A=T7T;A (4.2.13)

Finally, if A is Ti-invertible, then ', | A (resp. T'*A) is Tj-invertible (resp. Tji1-invertible)
and I'§T; A (resp. I'§ T;A) is Ty q-invertible (resp. T;-invertible), and:

T YT A =TT A Ty TiA=T, 1 I'TA (4.2.14)
o Let A,BeC,. If A and B are Tj-invertible, then A x; B 1is T;-invertible, and:

(TiA) *iv1 (I;B)  j =1,
Ti(Ax; B) = { (TA)» (TB)  j—i+1, (4.2.15)
(T3A) x; (T;B) otherwise.

Proof. For the first seven equations, notice that both sides of the equations are thin by Lemma
4.2.3.3. Therefore, by Theorem 4.1.2.5, it is enough to check that their shells are equal.
For the last one, we return to the definition of Tj-invertibility. pid
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4.3 Relationship of cubical (w, p)-categories with other
structures

In Section 4.3.1, we collect the results of Section 4.2 to give a series of equivalent characterisation
of the invertibility in a cubical w-category of all cells of dimension n (Proposition 4.3.1.2). From
that we then deduce the equivalence between globular and cubical (w, p)-categories (Theorem
4.3.1.3).

In Section 4.3.2, we generalise the adjunctions between globular w-groupoids and chain com-
plexes and the one between globular w-categories and ADCs from [77]. To do so we introduce
the notion of (w, p)-ADCs, such that (w,w)-ADCs are just ADCs, and (w,0)-ADCs coincide with

augmented chain complexes.

4.3.1 Cubical and globular (w, p)-categories

In this Section we start by defining the notion of cubical (w, p)-categories. In Proposition 4.3.1.2,
we give various equivalent characterisations of those using the result from Section 4.2. As a result,
we show Theorem 4.3.1.3 that the equivalence between globular and cubical w-category induces
equivalences between globular and cubical (w, p)-categories. Finally, in Corollary 4.3.1.4 we give
a simple characterisation of the notions of cubical (w,0) and (w, 1)-categories.

Definition 4.3.1.1. Let C be a cubical w-category, and p a natural number. We say that C is
a cubical (w, p)-category if any n-cell is invertible, for n > p. We denote by (w, p)- CubCat the
full subcategory of w- CubCat spanned by cubical (w, p)-categories.

Proposition 4.3.1.2. Let C be a cubical w-category, and fix n > 0. The following five properties
are equivalent:

1. Any n-cell in C, is invertible.
2. For all 1 <11 < n, any n-cell in C,, with an R;-invertible shell is R;-invertible.
3. Any n-cell in C,, with an Ri-invertible shell is Ri-invertible.
4. Any n-cell A€ Cy, such that for all j # 1, 0fA € Ime; is Ry-invertible.
5. Any n-cell in ©,(C,,) is Ry-invertible.
Moreover, if n > 1, then all the previous properties are also equivalent to the following:
6. For all 1 <i < n, any n-cell in C,, with a T;-invertible shell is T;-invertible
7. Any n-cell in C,, with a Ty-invertible shell is Ti-invertible.

Proof. (1) = (2) holds by Proposition 4.2.2.2, (2) = (3) is clear, and (3) = (4) holds because
if A€ C,, satisfies 0f' A € Imey, then its shell is Ry-invertible. Also, (4) = (5) holds because for
any A€ ©,(C,), 07 A€ Ime for all j # 1. Let us finally show that (5) = (7). From Lemmas
4.2.1.7 and 4.2.1.8, for any ¢ < n, a cell A € C,, with an Rj-invertible shell is Rj-invertible if
and only if ¢; A. Iterating this result, we get that for all A e C,, 91 ...v¢,_1A is Ri-invertible if
and only if ®¢y...¢¥,_1A is. Since ®; = @ for all ¢ < n, A is invertible if and only if ®A is
R;-invertible.

Suppose now n > 1. Then (1) = (6) by Proposition 4.2.3.5, and clearly (6) = (7). Suppose
now that any n-cell with a Tj-invertible shell is T3-invertible, and let us show that (4) holds. Let
A € C,, such that (??A € Ime; for all j # 1 is Ry-invertible. Then A has a Ti-invertible shell,
and is therefore T-invertible by hypothesis. So A is invertible, and since it has an Rj-invertible
shell, it is Rq-invertible. yig]
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Theorem 4.3.1.3. The functors A and v restrict to an equivalence of categories:

A

/\

(w,p)-Cat ~ (w,p)- CubCat

\_/

~y

Proof. Let C be a cubical (w,p)-category. The globular w-category vC is a globular (w,p)-
category if and only if, for all n > p, every cell in ®,,(C,,) is R;-invertible. By Proposition 4.3.1.2,
this is equivalent to C being a cubical (w, p)-category. Since (w,p)-Cat and (w,p)- CubCat
are replete full sub-categories respectively of w- Cat and w- CubCat, this proves the result. &

Corollary 4.3.1.4. Let C be a cubical w-category. Then:
e C is a cubical w-groupoid if and only if every n-cell of C is R;-invertible for all 1 < i < n.
e C is a cubical (w,1)-category if and only if every n-cell is T;-invertible, for all 1 < i < n.

Proof. If every n-cell of C,, is R;-invertible then in particular every cell of C,, is invertible, and
so C is a cubical w-groupoid. Reciprocally, if C is a cubical w-groupoid, we prove by induction
on n that every cell is R;-invertible. For n = 1, every 1-cell has an Rj-invertible shell, and
so every cell is Rj-invertible. Suppose now the property true for all n-cells. Then any cell
A € C, 11 necessarily has a R;-invertible shell by Lemma 4.2.1.2, and so the property holds for
all (n + 1)-cells.

The proof of the second point is similar, using the fact that any 2-cell in a cubical w-category
has a Tj-invertible shell. od

4.3.2 Augmented directed complexes and (w, p)-categories

From [2] and [77], we have the following functors, where ADC is the category of augmented
directed complexes.

zG A
/\
ADC 1 w- Cat = w-CubCat
\/
NG Y

In this section we define cubical analogues to N& and Z©, and show that they induce an
adjunction between ADC and w-CubCat. Finally, we show that all these functors can be
restricted to the case of (w, p)-categories, with a suitable notion of (w,p)-ADC.

Definition 4.3.2.1. An augmented chain compler K is a sequence of abelian groups K, (for
n = 0) together with applications d : K,,+; — K, for every n > 0 and an application e : Ky — Z
satisfying the equations:

dod=0 eod=0

A morphism of augmented chain complexes from (K, d,e) — (L, d, e) is a family of morphisms
fn: K, — L, satisfying:
dofnt1 = fnod e = eofo.
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Definition 4.3.2.2. An augmented directed chain complex (or ADC for short) is an augmented
chain complex K equipped with a submonoid K} of K,, for any n > 0.

A morphism of ADCs K — L is a morphism of augmented chain complexes f satisfying
f(K}) < L¥. We denote by ADC the category of augmented directed chain complexes.

The following is a reformulation of Steiner |77]:

Proposition 4.3.2.3. Let us fir n = 0, and let K the following ADC:

Z[Sk,tk] k<n N[Sk,tk] k<n d[m] =1tp_1— Spn—_1
Kk = Z[m] k=mn K]: = N[Z’] k=mn d[SkJrl] = d[thrl] = tk — Sk k=0
0 k>n 0 k>n e[so] =efto] =1

We denote this ADC' by n-@*PC . Equipped with morphisms §,t : (n + 1)-@4PC€ — . @ADC
I:ne2PC . (n+1)-@APC and %; : n-@APC |_|Z._.ADC n-@3PC  those form a co globular
w-category object in ADC, and therefore they induce a functor NG : ADC — w- Cat defined
by (NGK), = ADC(n-@4P€ K)

The category ADC is equipped with a tensor product defined as follows |77]:
Definition 4.3.2.4. Let K and L be ADCs. We define an object K ® L in ADC as follows:

e Foralln >0, ( K®L), =@ K;®L;.

i+j=n
e For all n > 0, (K ® L)? is the sub-monoid of (K ® L),, generated by the elements of the
form z @y, with x € K and y e L _,.

eforallze K; andye L, 4, d[x®y] = d[z] ®y + (—1)'z @ d[y].
e For all z € Ky and y € Lo, e[z ® y] = e[x] e[y].

Proposition 4.3.2.5. Let C be a globular w-category. Following Steiner [77], we define an ADC
K = ZGC as follows:

e For alln e N, K, is the quotient of the group Z[Cy,] by the relation [A o, B] = [A] + [B].
o For allneN, K is the image of N[Cy,] in K.
e Forall AeCy, d[A] = [s(A)] — [t(A)].
e For all A€ Cy, e[A] =1.
Proposition 4.3.2.6 ( [77], Theorem 2.11). The functor Z is left-adjoint to the functor NG.

Definition 4.3.2.7. Let n- BAPC be the augmented directed complex Z%(n-MW%). The ap-
plications 5’?‘, €, f‘f‘ and *; still induce a structure of co-cubical w-category object in ADC on
the family n- BAPC. Consequently, for any K € ADC the family of sets ADC(n - BAPC K)
is equipped with a structure of cubical w-category. This defines a functor N©¢ : ADC —
w- CubCat.

Let C be a cubical w-category. We define an ADC K = Z€C as follows:

122



e For all n € N, K,, is the quotient of Z[C,,] by the relations [A x; B] = [A] + [B] and
[[¥A] = 0.

e For all n e N, K}' is the image of N[C,,] in K.

e For all Ae C,,

e For all Ae Cy, e[A] =1.
Proposition 4.3.2.8. There are isomorphisms of functors:
ZC%ZGO")/ N€ ~ Ao NC

As a result, we have the following diagram of equivalence and adjunctions between w- Cat,
w-CubCat and ADC, where both triangles involving Z€ and Z& and both triangles involving
NC and NG commute up to isomorphism:

w- Cat w-CubCat

=2 |lle| >

ADC

Proof. Let K be an ADC. We have for all n > 0, using the adjunction between N& and Z%:

Ao NG(K), = w-Cat(n-B% NCK)
~ ADC(2%(n-H°), K)
— ADC(n-BAPC K)
= (N“K),

Moreover, because these equalities are functorial, they preserve the cubical w-category structures
on the families A o NG(K),, and (NCK),,. So finally we have the isomorphism NC ~ X\ o NG.

Let now C be a cubical w-category. For all n = 0, the group Z%(y(C)),, is the free abelian
group generated by elements [A], for A € Im ®,,, subject to the relations [A ; B] = [A] + [B],
for all A, B € Im®,,. Let us show that for all n > 0, Z%(y(C)),, and Z€(C),, are isomorphic.

First, the inclusion Im ®, — C,, gives rise to an application Z[Im ®,] — Z€(C),,. More-
over, this application respects the relations defining Z%(v(C)),, so it induces a morphism
L2 Z8(y(C))n — 2°(C)y.

For all A € C,, we have in Z€(C),: [;A] = [T} 0;,,A] + [A] + [['; 0/, ,A] = [A]. By
iterating this formula, we get that for all A € C,,, [®,(A)] = [A]. Hence, ¢ is surjective. Let
us now show that it is injective. Using the relation [®,(A)] = [A], we get that Z€(C), is
isomorphic to the free group generated by [Im ®,], subject to the relations [®,(A *; B)] =
[@,(A)] + [®,(B)] for all A, B € C,, and [®,(I'*A)] = 0, for all A€ C,,_;. Let us prove that
these equalities already hold in ZG(y(C)),.
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Let = be a thin cell in C,,. Then ®,(x) is in the image of €1, and ®,(z)*1 P, (z) = ¢, (z), and
s0 in ZG(y(C))p: 2+ [®n(x)] = [@n(2)], and finally [®,(2)] = 0. In particular [®,(I'¢A)] = 0
in Z&(y(C)),. Let now A and B be i-composable n-cells. Following Proposition 6.8 from [2],
®,,(A*; B) is a composite of cells of the form ¢}~ ®,, DA and €] " ®,, DB, where 0 < m < n is
an integer, and D is a composite of length m of faces operations. Using the fact that /""" ®,, =
Q,e7™™, we get that ®,(A %; B) is a composite of cells ®,(x), where x is thin, with the cells
®,,(A) and ®,,(B). So in ZG((C))p, [Pn(A *; B)] = k1[®,,(A)] + k2[®,,(B)] for some integers
k1 and ks. Moreover, following Section 6 of 2|, we verify that the cells ®, A and ®,B appear
exactly once in this composition. As a result [®,(A x; B)] = [®,(A)] + [®,(B)] in ZG(v(C))a.
So Z&(y(C)), and Z€(C),, are isomorphic.

Let us denote respectively by d€ and d€ the boundary applications in Z%(y(C)) and
Z€(C),. For A e Im(®,), we have d8[A] = [d] A]—[; A], and d[A] = Zlgiﬁn a(—1)"[08 A].

Since A is in Im ®,,, for all i # 1, %A is thin. So [0 A] = 0, and d°[A4] = [81_/1] — [0 A] =
d®[4]. So ¢ induces an isomorphism of chain complexes between Z%(y(C)) and Z2€(C). Fi-
nally, ZG(y(C))# and Z€(C)# are the submonoids respectively generated by Im ®,, and C,

and [A] = [®,(A)] in Z€(C),, so Z%(y(C)) and Z€(C) are isomorphic as ADCs. i)

Definition 4.3.2.9. Let K be an ADC. We say that a cell A € K} is invertible if —A is in K.
We say that K is an (w, p)-ADC if for any n > p, K,, = K}5. We denote by (w,p)-ADC the
category of (w,p)-ADCs.

Proposition 4.3.2.10. Let C be a globular w-category, and A € Cy,. If A is invertible, then so
is [A] in ZG(C), and [A™Y] = —[A]. In particular if C is an (w,p)-category, then ZGC is an
(w,p)-ADC.

Let K be an ADC, and A € ADC(n-@APC K). If A[(z)] € K is invertible then so is A in
NG (K), and the inverse of A is given by:

Blz] = —Alx] Blsn-1] = Altn-1] Bls;] = Als;] i<n—1
B[tn_l] = A[Sn_l] B[tl] = A[tz] 1<n—1

In particular if K is an (w,p)-ADC then NGK is a globular (w,p)-category.

Proof. Let C be an w-category, and A € C,,. If A is invertible, then there exists B such that
Ae, B = 144). Notice first that [154)] + [1sa)] = [1s(a) *n 1sa)] = [15(a)], and therefore
[15(4)] = 0. So finally [A] + [B] = [A e, B] = 0. Since both [A] and [B] are in Z&(C)}, [A] is
invertible. If C is an (w, p)-category, then for all n > p, (ZGC)# is generated by invertible cells.
Since invertible cells are closed under addition, (ZGC);"L is actually a group. Moreover, it has the
same generators as (Z%C),, so the two groups are actually equal, making Z%C an (w,p)-ADC.

Let now K be an ADC, and A € ADC(n-@4P€ K) such that A[z] is invertible. Define B

as the following morphism from n-@4P€ to K:

Blz] = —A[z] {B[Snl] = Alty-1] {B[Si] =Als;] i<n-—1

B[tn_l] = A[Sn_l] B[t,] A[tl] t1<n-—1

Note that since A[x] is invertible, —A[z] is in K}, and so B is indeed a morphism of ADC.

Moreover, A and B are (n — 1)-composable, and A e,,_; B is given by:

. 2] = Alzl—Aflz] = (Aen1 B)sn] = Alsn1] (Ae,_1 B)[si]
(Ao, 1B)[z] = Alz]-Alz] =0 {(A 01 B)[tn_1] = Bltn_1] = A[sn_1] {(A o,_1 B)[s]
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So A e,_1 B = 1y4), and symmetrically B e,_1 A = 14). The cell A is thus invertible. In
particular if K is an (w,p)-ADC, then for all n > p and all A ¢ ADC(n-@4PC K), A[z] is
invertible and A is invertible. So every cell in (NG K), is invertible, and finally N¢K is an
(w, p)-category. it

Recall from [77] that n- BAPC is the free abelian group over the set n- WYt of sequences
s:{1,...,n} — {(—),(0),(+)} such that [s~1(0)| = k. For any such s, and any 1 <14 < n such
that s(i) # (0), we denote by R;s the sequence obtained by replacing s(i) by —s(i) in s. The
following Proposition is the cubical analogue of the previous one.

Proposition 4.3.2.11. Let C be a cubical w-category, and A € C,. If A is R;-invertible or
T;-invertible, then [A] is invertible. In particular if C is a cubical (w,p)-category, then Z°C is
an (w,p)-ADC.

Let K be an ADC, and let A€ ADC(n-BAPC K):

o If for any 0 < k < n, and any sequence s € n- W3 such that s(i) = (0), A[s] is invertible
(in K) then A is R;-invertible, and R; A is given by:

sl = ) ALl s() = ()
R’A[]_{A[ms] s(i) # (0)

o If for any 0 < k < n, and any sequence s € n- W such that s(i) = s(i + 1) = (6), A[s]
is invertible, then A is T;-invertible, and T; A is given by:

—Als] s(i) =s(i+1)=(0)

AlsoT] otherwise.

ratd - |

In particular, if K is an (w,p)-ADC, then NCK is a cubical (w,p)-category.
Proof. The proof is similar to that of the previous Proposition. op

Theorem 4.3.2.12. For all p e Nu{w}, the categories (w,p) - Cat, (w,p)- CubCat and (w,p)-
ADC are related by the following diagram of equivalence and adjunctions, where both triangles
involving Z€ and Z& and both triangles involving N© and NG commute up to isomorphism:

A
-Cat >~ - CubCat
\\ ! /
)-ADC

Proof. We have already proven that the equivalence between w- Cat and w- CubCat could be
restricted to (w, p)-categories in Theorem 4.3.1.3, and by Propositions 4.3.2.10 and 4.3.2.11, so
can the two adjunctions. Lastly, the commutations up to isomorphisms come from Proposition
4.3.2.8. pid
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Remark 4.3.2.13. In the case where p = 0, one would expect the previous Theorem to recover
the usual adjunction between chain complexes and groupoids. However, the category of (w,0)-
ADCs is not the category of chain complexes, but that of chain complexes K equipped with a
distinguished sub-monoid of Kj.

In order to recover the adjunction between groupoids and chain complexes, one could use a
variant of the notion of ADC that does not specify a distinguished submonoid of Ky. Then an
(w,0)-ADC is indeed just a chain complex. One can check that, mutatis mutandis, the results
of this Section, and in particular Theorem 4.3.2.12, still hold using this alternative definition.
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4.4 Permutations in cubical (w, p)-categories

We now apply our results from the previous Section. First, we show in Section 4.4.1 that the
operations 7T; induce a partial action of the symmetric group S,, on the n-cells of a cubical w-
category. To do this, we define a general notion of o-invertibility, where ¢ € .S,,. In particular
when o is a transposition 7; we recover the notion of T;-invertibility of Section 4.2.3. In Section
4.4.2, we define the notions of lax and oplax transfors between cubical categories.

Then we then define what it means for a tranfor to be pseudo using the notion of o-
invertibility defined previously and finally we show that the cubical w-categories of pseudo lax
and oplax transfors between two cubical w-categories are isomorphic

4.4.1 Cubical (w,1)-categories are symmetric

We start by defining a notion of u-invertibility, where w is a word over 11, . .., T;, and characterise
the notion of u-invertibility in terms of plain invertibility, just as we have done previously for
R; and Tj-invertibility.

We then show how the notion of u-invertibility induces a notion of o-invertibility, for o € S,,.
The difficulty lies in the fact that, even if two words v and v over Ti,...,T; correspond to
the same permutations, the notions of u and wv-invertibility do not necessarily coincide. We
circumvent this difficulty by using a classical result about the symmetric group (see Theorem
4.4.1.12), which makes use of the notion of representative of minimal length of permutation.

Finally, in Proposition 4.4.1.14 we extend the results concerning u-invertibility to o-invertibility,
with o € S,.

Definition 4.4.1.1. Let n € N. We write T,, the free monoid on n — 1 elements. We denote its
generators by 11,...,T,_1, and by 1 : T,, — N the morphism of monoids that sends every T; on
1. For u € Ty, we call 1(u) the length of .

Recall that S), is a quotient of T,, using the relations:

T =1 (4.4.1)
LT T, =T 1 TiTi 4 (4.4.2)
LT =T7 i j|>2 (1.4

We denote by % the image of an element u € T, in S,, and 7; = T;. Using this projection,
one defines a right-action of T, on {1,...,n} by setting k- u := k - u.

Let C be a cubical w-category. For every u € T,,, we define a notion of u-invertible cell and
a partial application u- _: C,, —» C,, defined on u-invertible cells as follows:

e Any n-cell of C, is l-invertible, and 1- A = A.

e For any u € T), and 1 < i < n, a cell A € C, is said to be (T; - u)-invertible if A is
u-invertible and u - A is T;-invertible. Moreover, we set: (T; - u) - A := T;(u - A).

In particular, we say that A has a u-invertible shell if A is u-invertible in [, C.
Proposition 4.4.1.2. Let C be a cubical w-category, and A be an n-cell in C, with n = 2.
Let uw € T,,. Suppose u # 1. Then A is u-invertible if and only if A is invertible and has a

u-invertible shell.
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Proof. We reason by induction on the length of u. If u is of length 1, there exists 1 < ¢ < n such
that v = T;, and the result to prove becomes: A is T;-invertible if and only if A is invertible
and has a T;-invertible shell, which is exactly Proposition 4.2.3.5.

Otherwise, write u = T;v, with v # 1. Suppose A is u-invertible. Then by definition A is v-
invertible, and v- A is Tj-invertible. By induction A is therefore invertible, and has a v-invertible
shell. Moreover, v - A is T;-invertible, and hence has a T;-invertible shell by Proposition 4.2.3.5.
Since d(v-A) = v-0A, 0A is v-invertible, and v- A is T;-invertible. Therefore, 0 A is u-invertible.

Reciprocally, suppose A is invertible, and has a (7} - v)-invertible shell. Then A has a v-
invertible shell, and v-8 A is T;-invertible. Since A is also invertible, by induction A is v-invertible,
and since d(v- A) = v - 0A, the cell v- A has a Tj-invertible shell. Moreover, it is invertible, and
so by Proposition 4.2.3.5, v - A is T;-invertible, which means that A is u-invertible. pid

Definition 4.4.1.3. For 1 < i < n, we define applications ¢; : T,, — T,_1 as follows:

ji 757

Note in particular that the applications ¢; are not morphisms of monoids.

Lemma 4.4.1.4. LetueT,. Foralll <i<mn, and 1 <k <n, we have:

Proof. Note first the formula holds when u is 1 or a T}. Finally, suppose the property holds for
u and v. Then we have:

k-0i(u-v)=Fk-omu- 0jqv= (l{:Z U)oy OV

= ((kl ’ U);Z : U)i-u-v = (kl U - U)i-u-v
pid

Lemma 4.4.1.5. Let C be a cubical n-category, A € (JC)n+1 and u € Tyiy. The cell A is
u-invertible if and only if for all j < n+ 1, A%, is dju-invertible, and:

% (u- A) = dyu- 0%, A

In particular, if C is a cubical w-category, then A € C, 11 has a u-invertible shell if and only
if for all j <n+1, 05, A is dju-invertible.

Proof. We reason by induction on the length of w. If u is of length 0, then v = 1 and for all 7,
dju = 1. Therefore, both conditions are empty, and (1 - A)ja = A7

Otherwise, write u = T; - v. Suppose that A is u-invertible. Then A is v-invertible, and v - A
is Ti-invertible. Fix j and a. Then dju = T;; - djr;v. Let us show that Ajo-{u is dju-invertible.
We distinguish two cases:

o If j =i (resp. j =i+ 1), then dju = d;41v (resp. d;v), and j-u = (i+ 1) v (resp. i-v).

By induction, A7, (resp. Af,) is dir1v-invertible (resp. djv-invertible).

e Otherwise, then dju = Tj; - 0ju and j - u = j - v. By induction hypothesis, A7, is 0;jv-
invertible. Let us show that d;v- A}’.U is T} ;-invertible. First since A is T; - v-invertible, v- A
is Ti-invertible, and so by Lemma 4.2.3.4, 0% (v- A) is T;,;-invertible. Finally, by induction,

07 (v-A) = djv- A7,

128



Finally, using the induction property on v, we get:

(U . A)?—',—l = 8i+1v . Aa-ﬁ-l)'v = 8,u . A?u j =1
(u-A)j =(Ti-v-A)f =1 (v-A)F = v A2, = Oipau- Ay, j=1i+1

Ti,(0jv- A)S = T;; 00 - A%, = dju- A%, j#ii+1

Suppose now that for all j, A?_u is dju-invertible. Let us show that A is u-invertible. First,
let us prove that A is v-invertible. Indeed, let j < n, and let us show that A;., is d;v-invertible.

o If j #14,i+ 1, we have that A;{u is 0ju-invertible. Since 0ju = T;,0jv, and j-u = j - v, this

means that A?{v is d;jv-invertible and 0;v - A?,U is T;,;-invertible.

o If j =i (resp. j =i+ 1) then d;11u = ;v (resp. dju = dj41v) and (i + 1) -u =1i-v (resp.
i-u=(i+1) v). So A7, is 0jv-invertible.

(%

Finally, by induction, A is v-invertible. Let us show that v - A is Tj-invertible. Indeed, for
j#F i+, (U-A);?‘ = d;jv- A7, is Tj;-invertible, and so vA is T;-invertible by Lemma 4.2.3.4. &

Lemma 4.4.1.6. Let C be a cubical w-category.

o [f A is T;T;-invertible, then:
T A=A (4.4.4)

o A cell Ae C, is T;T; 1 T;-invertible if and only if it is T; 1 T;T;1-invertible, and
LT - A=Ti 1 TiTiq - A (4.4.5)

o Leti,j < n such that |i — j| = 2. A cell A € C,, is T;Tj-invertible if and only if it is
T;T;-invertible, and
T,T;- A=T/T; A (4.4.6)

Proof. For the first one, notice that the axioms (4.2.5) and (4.2.6) are each other’s symmetric,
meaning that if B is the T;-inverse of A, then A is the T;-inverse of A. This means in particular
that T;T; - A = A.

For the second one, a cell A € C,, is T;T;.1T;-invertible if and only if it is invertible and 6 A
is T;T; 1 T;-invertible, that is for all j < n, a;){TiTi+lTiA is 0;(T;T;+1T;)-invertible. Notice that:

ﬂjﬂj+1ﬂj ];ﬁ Z7Z+ 17Z+2
T G142

Tyl Ti,yn J#t,0+1,0+2

T; j=1%1t+1,i+2
(4.4.7)

Therefore, by induction on n, a cell is T;T;1 1 T;-invertible if and only if it is 75 17;7T;4 1-invertible.

Let A be such a cell. Let us show that T;7;,17; - A is the T; q1-inverse of T;T; 11 - A. Indeed, we

have:

I (T,-07 A T.Ti - A le I'For A A ﬁ
z+1< 7 ) +1 :,Tiﬂ—&-l' i Vi

0;(TiTi 1 T;) = { 0 (Ti 1 TiTiy1) = {

LTAT A | Ty (5-05,4) | 02 oA |17on,A ]
=TiTis1 - (T; 0/, A% T 0] A)

= (TiTi+1-T; 01 A) %1 (TiTi41 - T 0 A)
=T 100 (TiTig1 - A) %ip1 T 10 (TiTiv1 - A)

The other axioms are verified in the same fashion. ol
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Remark 4.4.1.7. The first point of the previous Lemma is the main reason why the notion of
u-invertibility relies on the monoid T,, and not .S,,. Indeed for C a cubical w-category, any cell
is 1-invertible while the only cells T;T;-invertible are the T;-invertible ones.

Definition 4.4.1.8. A symmetric cubical w-category C is a cubical w-category C equipped with
total applications T; : C,, — C,, for 1 < i < n — 1, satisfying the equalities (4.2.9) to (4.2.14)
and (4.4.4) to (4.4.6).

Remark 4.4.1.9. Note that a symmetric cubical w-category is close but not the same as the
notion of symmetric cubical category defined by Grandis in [31]. A symmetric cubical category
in the sense of Grandis would be a symmetric cubical w-category (in the sense of 4.4.1.8, but
without connections) object in the category Cat.

Proposition 4.4.1.10. Let C be a cubical (w, 1)-category. The applications A — T; A induce a
structure of symmetric cubical category on C.

Proof. Any cell is T;-invertible in a cubical (w, 1)-category by Corollary 4.3.1.4 and so the appli-
cations are indeed total. Moreover and the equations they verify are a consequence of Proposition
4.2.3.6 and Lemma 4.4.1.6. yig]

We now make explicit the (partial) action of the symmetric groups on the n-cells of a cubical
category. To do so, we rely on Theorem 4.4.1.12, a classical result about the symmetric group.

Definition 4.4.1.11. For u € S,,, we define the length of u as the integer 1(u) = min{l(v)|v €
T, and © = u}. A representative of minimal length of u in T,, is an element v € T,, such that
v =wu and l(v) = 1(u).

Theorem 4.4.1.12. Let u,v € T,. If u and v are two representative of minimal length of a

same permutation o, then u = v, where = is the congruence on T,, generated by (4.4.2) and
(4.4.3).

Definition 4.4.1.13. Let C be a cubical w-category. For every A € C,, and o € S,,, we say
that A is o-invertible if there exists a representative of minimal length u of o such that A is
u-invertible, and we define 0 - A := v - A. By Lemma 4.4.1.6 and Theorem 4.4.1.12, this is
independent from the choice of a minimal representative of o.

Proposition 4.4.1.14. The composites of the applications 0; : T,, — T,_1 with the projection
T,—1 — Sn—1 are compatible with the relations (4.4.1) to (4.4.3). Hence, they induce applications
0; : Sp — Sn_1, satisfying:

0i(0-7T) =00 CjoT.

Tj; ’L'?éj,j-i-l

{1 i=7j7+1
Specifically, for 1 <i<n and o € Sy, 0;0 is the (necessarily unique) permutation satisfying
foralll<j<n-—1:

joio=(j" 0)io (4.4.8)

Let C be a cubical n-category, and o € Sy,. A cell A € ((JC)p+1 is o-invertible if and only if

for all j < n, AY, is 0jo-invertible, and:

0% (0 - A) = 9j0 - 85,4 (4.4.9)

Finally, let 0 € Sy,. If 0 # 1, then a cell A € C,, is o-invertible if and only if A is invertible
and 0A is o-invertible.
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Proof. For the first point we simply verify the equalities as needed (note in particular that the
compatibility of 0; with Equation (4.4.2) is a consequence of Equation (4.4.7)).

The rest of the results is a consequence of Proposition 4.4.1.2, together with Lemma 4.4.1.4
and 4.4.1.5. pid

Remark 4.4.1.15. The operations ¢; applied to a permutation o correspond to deleting the
i-th string in the string diagram representation of o. For example, by definition we have:

81(7'17'2) = (517'1)'(527'2) =1 52(7'17'2) = (627'1)'(617'2) =T1 83(7'17'2) = (637'1)-(&37'2) =T1
Which can be diagrammatically represented as:

aEr) =11 AE) =< BEw) =

More generally, the relation 0;(o - 7) = 0;0 - ;.o corresponds to the diagram:

Lemma 4.4.1.16. Let C be a cubical w-category, and A € C,,. If ;A is o-invertible, then A is
0;.o— 0 -invertible and:

0-6A=¢.45-(0j5-0A)
IfT$A is o-invertible then A is also 0;.,-o-invertible and if (i+1) -0~ =1i-0~ + 1 we have:
o-IFA =T, (0g-0-A)

Proof. 1f €;A is o-invertible, then A = 0; ¢;A is 0;.,—0 by Proposition 4.4.1.14.

To show the equality, we reason by induction on n. If n = 0 then ¢ = 1 and the result is
verified. Otherwise, suppose n > 0. By Lemma 4.2.3.3, both sides of the equation are thin, and
so they are equal if and only if their shells are equal. Note first that for j =i -07:

07 (0 - €A) = 0jo - 0j'6;A = 0j0 - A = 0f¢j(0j0 - A)

Now for j #1i-07:

0j (0 - €A) = 0jo - 0f,6iA = 0jo - €, 0}, A

Note that d;(c - 07) = dj0 - 0j.,0~ =1, 50 (0j0)” = 0j.,0~. So by proposition 4.4.1.14:
ijo (0j0)7 = (i, 07 )j = (i-07);
So by induction hypothesis, we have 05 (o - €;A) = €(.5-,(0(1.0-), 050 - 0@,0)114). On the other
hand, note that j;.,- - 0;.0-0 = (j*9_ - 0);.0-., = (j - 0);. Applying this we get:
a?@'v‘ (ai-a—a ’ A) = €li07); o5 _ (aiv—o- ’ A) = €(iom); (a ai-a—a -5 A)

Ji.g ]i-d_ (]U)l
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Finally, it remains to show that d;, _0;,-0 = 0(;.,-),0j0. More generally, let us show that for
any i # j, 0;,0;0 = 0j,0;0. Indeed, for any k:

0,00 -k = () - 0);); = (K- o)y (4.4.10)

And this formula is symmetric in i and j by Lemma 4.1.1.3.

We now move on to the second equality. Once again if I'{* A is o-invertible, then A = 0¢T'¢ A
is 0;.,—o-invertible by Proposition 4.4.1.14. We show the equality by induction on n. If n = 1,
then the only permutation o satisfying (i + 1) -0~ =i-0~ + 1 is the identity, and the result is
verified. Suppose now n > 1, and let o € S,, such that (i +1)-0~ =i-0~ + 1. As previously,
Lemma 4.2.3.3 show that both sides of the equation are thin, and so they are equal if and only
if their shells are equal. Let us calculate their faces. Let 1 < j < n and § = +. We start by
treating the case where j =i -07. For f = a we have:

0¥ (0 -TFA) = 0j0 - 03, TFA = dj0 - 9TLA

jo-i

= Jjo - A =0T} (0jo - A)

Now for B = —a. Note first that j - djo = (j7 - 0); = ((j + 1) - 0); = (i + 1); = i (we here use
the hypothesis on o). Therefore, i - (0;0)~ = j, and:

0; %o -I7A) = 0jo-0;°TTA
= 0j0 - €0; “A
=€j(0;0j0 - 0; “A)
0; °I'F(0jo - A) = €;0;,“(0;0 - A)
= ¢j(0j0j0 - ;% A)

The case where j = i -0~ 4+ 1 is similar. We now study the general case where § = + and
j#Ei-0i-0” + 1t
(o TPA) = ;0 - 0] TFA

joot

= 00 -T¢ i

(o)t

ATy (g0 A) =T )8 (00 A)
=T, )J_(aj Opg0 - OY

Jiio— ai-a_o.

A)

To conclude using the induction hypothesis, we need to show that j;.,— - 0;.,-0 = (j - 0);, and
that ij.o - (0jo)” = (¢ - 07);. And indeed we have:
Jio—* Oig—0 = (jzlg: 0)ig—o = (1 0)i
(i-07); 0o =((i-07) 0)jo=ijo

it

Remark 4.4.1.17. Diagrammatically, the equations from Lemma 4.4.1.16 correspond to the
following diagrams:
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Remark 4.4.1.18. In this Section, we restricted ourselves to the Tj-inverses. However, all
results previous can be adapted to also consider the R;-inverses. The action of the symmetric
groups are then extended into an action of the Hyperoctahedral groups BC,,, which are the full
groups of permutations of the hypercubes. A presentation of the group BC), is given by the
generators R; (for 1 <i < n) and T; (for 1 <i < n), subject to the relations:

TT, =1  TTaTi =TTl TT =TT i—j| =2
R,R;, =1 R,‘Rj = RjRi 1 # ]
TiR; = Ri1T; TiRiy1 = RT; TiR; = RjT; j#1,1+1

In particular the groups BC), are Coxeter groups and they hence verify an analogue to
Theorem 4.4.1.12, often called Matsumoto’s Theorem [G1].

4.4.2 Transfors between cubical w-categories

Let C and D be two categories, and F, G : C — D be functors. Recall that a natural transforma-
tion n from F to G is given by an application n : Cy — D; such that, for all z € Cy, s(n,) = F(x),
t(ny) = G(x), and for all f: 2 — y € C; the following diagram commutes:

mJ Jny (4.4.11)

Natural transformations compose, and so for any categories C and D there is a category Cat(C, D).

If C and D are two globular 2-categories, and F,G : C — D are two functors, then there
are multiple ways to extend the notion of natural transformation. A lax natural transformation
from F' to G consists in applications 7 : Cg — D; and n : C; — Do, satisfying some compatibility
conditions. In particular, for f : x — y € Cy, the 2-cell n; € Dy is required to have the following
source and target:

An oplax natural transformation requires the 2-cell 1y to be in the opposite direction. This
leads to two different notions of the 2-category of functors between C and D, where objects
are functors from C to D, 1l-cells are lax (resp. oplax) natural transformations, and 2-cells are
modifications. Modifications consist of an application Cy — D satisfying some compatibility
conditions. Notice that, if 1 is a lax natural transformation and 7y is invertible for all f € C1,
then replacing 7y by its inverse yields an oplax natural transformation (and reciprocally when
reversing the role of lax and oplax natural transformation). Such natural transformations are
called pseudo.

More generally, if C and D are w-categories, then for any k > 0 there are notions of lax and
oplax k-transfors between them (following terminology by Crans [25]), consisting of applications
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Cn — Dyyk, for all n = 0. In particular, O-transfors correspond to functors, and lax (resp.
oplax) 1-transfors to lax (resp. oplax) natural transformations.

Similar constructions can be made in cubical w-categories, and are recalled in Definition
4.4.2.1. This definition uses the notion of Crans-Grey tensor product between cubical w-
categories. One benefit of working in cubical categories is that this tensor product has a very
natural expression in this setting, and so we are able to make explicit the conditions that trans-
fors between cubical w-categories have to satisfy. Next we define the two notion of pseudo
transfor: one for lax and one for oplax transfor, using the notion of o-invertibility defined in
Section 4.4.1. In Proposition 4.4.2.4, we give an alternative characterisation of pseudo trans-
fors. Lastly we prove that the notions of pseudo lax and oplax transfors coincide in Proposition
4.4.2.6.

Definition 4.4.2.1. We exhibited in Section 4.1 a structure of cubical w-category object in
w-Cat®? on the family n-BMS. Applying the functor A, we obtain a structure of cubical w-
category object in w- CubCat of the family n- B := \(n- HS).

Consequently, if C and D are cubical w-categories, then both the families (of sets) Lax(C, D),, =
w- CubCat(n-B° ®C,D) and OpLax(C,D),, = w- CubCat(C ® n- B D) come equipped
with cubical w-category structures (where we denote by ® the monoidal product on w- CubCat
as defined in [2]).

We call an element F € Lax(C,D),, (resp. F € OpLax(C,D),) a laz n-transfor (resp. an
oplaz n-transfor) from C to D. Unfolding the definition of the monoidal product on w - CubCat
as defined in [2], Section 10, a lax p-transfor (resp. oplax p-transfor) is a family of applications
F, : C,, — Dy, satisfying the equations (4.4.12) to (4.4.15) (resp. (4.4.16) to (4.4.19)).

0%, Fu(A) = Foo1 (09 A) (4.4.12) 0% F,(A) = F,_1 (0% A) (4.4.16)
Fn(EZA) = €p+iFn—1(A) (4413) Fn(qA) = GiFn_l(A) (4417)
F(T$A) = T8, Fy 1 (A) (4.4.14) Fo(T®A) = T9F,_(A) (4.4.18)
Fo(A*; B) = Fp(A) %pss Fa(B)  (4.4.15) Fo(Ax B) = Fy(A) % Fo(B)  (4.4.19)

Moreover, the cubical w-category structure on Lax(C, D) (resp. on OpLax(C,D)) is given
by the equations (4.4.20) to (4.4.23) (resp. (4.4.24) to (4.4.27)).

(CCF)u(A) = 0%(Fu(4))  (44.20) (OF)a(A) = 8 i(Fa(A))  (4.4.20)
(& F)n(A) = €(F,(A)) (4.4.21) (& F)n(A) = ensi(Fn(A)) (4.4.25)
(I F)n(A) =TT (Fn(A)) (4.4.22) (I§ F)n(A) =I5 (Fa(A)) (4.4.26)

(F % G)p(A) = F,,(A) % Gp(A)  (4.4.23) (F %; G)p(A) = Fi(A) *pti Gu(A)  (4.4.27)
The following Proposition is a consequence of [2], Section 10.
Proposition 4.4.2.2. Let C be a cubical w-category. The functors (_ @ C) and (C® )

are respectively left-adjoint to the functors Lax(C, ) and OpLax(C, ). This implies that
w-CubCat is a biclosed monoidal category.
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Definition 4.4.2.3. Let n,m > 0 be integers. We denote by p,,, € Sy, the following
permutations:
. {Z +n 1<n
L Ppom =g .
i—n i>n

Let C and D be cubical w-categories. We say that a lax p-transfor ' : C — D is pseudo if
for all Ae C,,, F(A) is ppp-invertible. We say that an oplax p-transfor F': C — D is pseudo if
for all Ae C,,, F(A) is ppn-invertible.

Proposition 4.4.2.4. Let C and D be cubical w-categories, and F : C — D a lax p-transfor
(resp. an oplaz p-transfor). Then F is pseudo if and only if:

e Fither p =0,

e Orp>0, for alln > 0 and all A € C,,, F(A) is invertible, and for all 1 < i < p, 03F is
pseudo.

Moreover, if F is pseudo, then so are I'fF (1 <i<p), ¢F (1<i<p+1)and if Gisa

pseudo laz p-transfor (resp. pseudo oplaz p- tmnsfor) then Fx G (if deﬁned) 18 also pseudo, for
1<i<p.

Proof. Let us prove the result for pseudo lax p-transfors, the case of pseudo oplax p-transfors
being similar. If p = 0, then for all n, p,, = 1. Since any cell in D is 1-invertible, any lax
O-transfor is pseudo.

Suppose now p > 0. Let F' € Lax(C,D),, and suppose F is pseudo. Let n > 0 and A € C
Then py,, # 1, and by Proposition 4.4.1.14, F,,(A) is invertible. Moreover, for 1 < i < p,
(0FF)n(A) = 8(0;)+z) o (Fn(A)) is Opyipnp-invertible. Since Optipnp = pnp—1, We just proved
that for all Ae C,,, (08F),(A) is pnp—1-invertible. So 08 F' is pseudo.

Reciprocally, suppose that for all n > 0, F,(A) is invertible, and for all 1 < i < p, 0¢F
is pseudo. We reason by induction on n to show that for all A € C,,, F,,(A) is ppp- 1nvert1ble.
If n =0, pnp = 1 and F,(A) is ppp-invertible. If n > 1, then F(A) is invertible and for
all 1 < i < p, 0% ( n(A)) = (09F)(A) is ppp—i-invertible. And for all 1 < i < n,

(z+n)
0, (Fn(A)) = Fn1 (0 ) is pp—1p-invertible by induction. In conclusion, F},(A) is invertible,
and for all 1 < ¢ < p+n, 0F(F,(A)) is 0ipnp-invertible. By Proposition 4.4.1.14, F,,(A) is

pn p-invertible.

We reason by induction on p to show that, for any pseudo lax p-transfor. F', ¢;F' and I''F' are
pseudo. Let A € C,,. By equations (4.4.13) and (4.4.14), (&F)(A) and (I'{F)(A) are thin cells,
and so in particular are invertible. Moreover, the cubical w-category structure on Lax(C, D)
show that for all j, we have:

o €0 i apB . .
ofei b = e J T G F=4F i=j,j+1land a=0
Z:
J &09F i=jj+1landa=—p

Using what we proved previously, iy F' is pseudo for all k, so by induction, 53%1'F and 6? I'$F are
always pseudo. Applying the criterion that we proved previously for a p-transfor to be pseudo,
€ F" and I'{' F' are pseudo.

Finally, we reason by induction on p to show that for any two pseudo lax p-transfors F' and
G, F »; G is pseudo (if it is defined). Since any lax O-transfor is pseudo, it is true if p = 0.
Take now p > 0, and A € C,,, for some n > 0. Then F(A) and G(A) are invertible, and so
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is (F *; G)n(A) = F,(A) x; Gp,(A) by Lemma 4.2.2.3. Moreover, using the cubical w-category
structure on Lax(C, D), we have:

OFF %, 08G 1 # ]
O (F*;G) =30, F i=jand a = —
oG it=7and a =+

)

So by the induction hypothesis, 0} (F *; G) is pseudo for all j. Therefore, F' x; G is pseudo. 0P

Definition 4.4.2.5. Let C and D be cubical w-categories. We denote by PsLax(C,D) (resp.
PsOpLax(C, D)) the pseudo lax transfors (resp. the pseudo oplax transfors) from C to D. By
Proposition 4.4.2.4, PsLax(C, D) and PsOpLax(C, D) are cubical w-categories.

Proposition 4.4.2.6. For all cubical w-categories C and D, the cubical w-categories PsLax(C, D)
and PsOpLax(C, D) are isomorphic.

Proof. Let F' € PsLax(C,D), and define applications G,, : C,, — Dy 4y as: Gp(A4) = pnyp -
F,(A). Let us show that G is an oplax p-transfor (using formulas from Lemma 4.4.1.16):

a?Gn(A) = 5?(Pn,p -Fo(A)) = aipn,p : agpn,pFn(A)

= puetp OitpFn(A) = puotp - Fac1(09(A)) = G (65(A))

Gn(eA) = Pnp Fo(eA) = Pnp €p+iFn—1(A)
= €(p+i)-ppn (a(p+i)-pp,npn,p Fh-1(A))
= Ei(aipmp ’ Fn—l(A)) = 6z‘(pn—l,p ’ Fn—l(A)) = GiGn_l(A)

Gn(F?A) = Pn,p " Fn(F?A) = Pnp- FZ-H’Fn—l(A)
= F((Xp-i-i)-pp,n(a(p'i"i)'pp,npn,l’ Fn-1(A))

= T (P - Fa1(A)) = T (puorp - Fuo1(4)) = T9Go1(A)

Gn(A*; B) = pnp - Fn(Axi B) = ppp - (Fu(A) *pii Fn(B))
= (pnp - Fu(A)) *(p+i)-pp.n (Pnp - Fn(B)) = Gn(A) *i Gn(B)

We denote by P(F') this oplax p-transfor. Moreover, for A € C,, p- F(A) = ppp - F(A)
is ppp-invertible (with py,,-inverse A). So P(F) is actually pseudo. Let us show that P is
functorial. Let F' € PsLax(C,D),:

(05 (P(F)n(A) = 05i(P(F))n(A)) = 0 1i(pnp - F(A))
= On+iPn,p (9?n+i)_pn7pF(A)

= pup-1- 8 F(A) = P(3FF)(4)

(PTFF))n(A) = pnp - (FFF)n(A)) = pnyp - T (Fa(A))
= ngp,n (Oi-pponPrp - Fn(A))
= I4i(Optitnp - Fu(A)) = Th 1 i(pnp-1 - Fu(A)) = (TF (P(F)))n(A)
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(P(&F)n(A) = pup - ((€iF)n(A)) = pnp - €i(Fn(A))
= €isppn(OipynPrp - Fn(A))
= en-‘ri(ap-‘ripn,p : Fn(A)) = fn-‘ri(pn,p—l : FR(A)) = (61<P(F)))N(A)

(P(F % G)n(A) = prp - (F % G)n(A)) = pnyp - (Fn(A) x; Gn(A))
= (Pn,p - F(A)) *i-pp.n (Pn,p -Gn(A))
= P(F)u(A) % P(G)u(A) = (P(F) % P(G))n(A)

So P is a functor from PsLax(C,D) to PsOpLax(C,D). Reciprocally, if F' is a pseudo
oplax p-transfor, we define a family of applications R(F),, : C,, — Dy,4, by setting R(F),(A) =
Ppn - Fn(A). As we did for P, we show that R induces a functor from PsOpLax(C,D) to
PsLax(C, D). Finally, since p, ,,-pnp = 1, P and R are inverses of each other, and PsLax(C, D)

is isomorphic to PsOpLax(C, D). it
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Chapter 5

Resolution of monoids
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Organisation

The goal of this chapter is to reformulate higher-dimensional rewriting in the framework of
cubical categories, using the notion of cubical (w,p)-category that we described in the last
chapter. Section 5.1 contains some preliminary materials before we are able to express our main
result (Theorem 5.1.3.8). We reserve the proof of Theorem 5.1.3.8 for Section 5.2.

Finally Section 2.3, we look for applications of Theorem 5.1.3.8. In particular, we give an
explicit description of the reduced standard presentation of a monoid, and we construct the
Squier resolution of a monoid presented by a convergent presentation, a result similar to the one
from [10].

5.1 Resolutions of monoids by Gray polygraphs

The goal of this Section is to express our Extended Detection Theorem. In Section 5.1.1, we start
by giving the definition of Gray polygraphs. Section 5.1.2 contains the proof of the central fact
that Gray monoids are also free w-categories. Finally, in Section 5.1.3, we study the structure of
local branchings and prove that they form a simplicial monoid. We finally state our Extended
Detection Theorem.

5.1.1 Gray polygraphs

In order to define a notion of Gray polygraph associated to Gray categories, we make use of a
result of Garner [25]. In order to do that we need to prove that Gray monoids are monadic over
pre-cubical sets. The adjunction between Gray monoids and cubical sets is the composite of
two monadic adjunctions (factorising through cubical w-groupoids). However, as is well-known
a composite of monadic adjunctions is not necessarily monadic. Still, in our case we are able to
use a criterion from [27] to conclude. First, let us start by recalling the following classical fact
about monadic functors (see for example [60]):

Proposition 5.1.1.1. Let (T, u,n) be a monad on a category C, and U, F the adjunction it
induces between C and CT. The functor U strictly creates coequalizers of U-split pairs.
In other words, for any f,g: (A,a) — (B, B) in CT, if there exists C in C and h : B — C in
C such that
/

—B——C

g

is a split coequalizer in C, then there exists a unique vy : TC — C such that (C,~) is a T-algebra
and the diagram

f h
(Av O‘) ? (376) I (Oa 7)

is a coequaliser in CT.
Moreover, v is the only morphism making the following square commute:

8 -, 1

BJ )

B c
h



The following Proposition shows that any algebra for a monad can be recovered as a reflexive
coequaliser of free algebras.

Proposition 5.1.1.2. Let (T, u,n) be a monad on a category C, and (A, h) be a T-algebra. The
following is a reflexive coequaliser in CT:

Th h
(TTAMUTA) S— (TAv MA) - (A7 h)
HA
Proof. Note first that the diagram
Th h
TTA_—_—_—_TA— A
1A

is an equaliser in C, which is split by the morphisms T4 and n4. Moreover, the following square
commutes:

TTA Lh> TA

| [

TA TA.
h

Thus, the fact that it is a coequaliser follows from Proposition 5.1.1.1. To show that it is also
reflexive, let us look at the morphism Ty : TTA — T A. By hypothesis ThoTns = 174 and
uwaoTna = 1pa. So all we have to do is check that Tna : (TT A, pra) — (T'A, pa) is a morphism
of T-algebras. Indeed, the following diagram commutes by naturality of u:

TTna
TTA——TTTA

| =

TA TTA

Tna

&

The following Proposition was written (incorrectly) in [27]. We reproduce here the corrected
Proposition and proof from the Errata.

Proposition 5.1.1.3. Suppose we have two adjunctions:

F2 Fl
/—\ /—\
¢ L TpT 1 e
U2 Ul

We denote respectively by T and T the monads Uy o Fy and Uy o F5.

Suppose D is the category of algebras of T1 and & is the category of algebras of To. If T
preserves reflerive coequalisers in D, then C is isomorphic to the category of algebras of the
monad T := U oUsy o F5 0 FY.
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Proof. Recall first that, for any monad (7', u,n), and any T-algebra (A, h), h induces a morphism
of T-algebras h* : (TA,ua) — (A, h), as shown by the commutation of the following square:

A
TrA A 1A

n  |n

TA A

Suppose now (A, hi, he) is a Tr-algebra, where (A, h;) is a Ti-algebra. Then the following
morphism equips A with a structure of T-algebra:

lezbhik U1h2
TA = U1T2F1A = UlTQ(TlA,;LA) — UlTQ(A,hl) — Ul(A, hl) = A

This construction induces a functor from Th-algebras to T-algebras.
Let us now fix a T-algebra (A, h) and let us define h; and ho making (A, h1, ho) a Th-algebra.
First we define h; as the following composite:

U1772 A
TA = U A — 2 A =14 — " 4

Moreover, the following diagram is a reflexive coequaliser in of T;-algebras by Proposition 5.1.1.2:

1 —>T1h1 1y M
(VT A, g, 4) — (Th A, py) —— (A, h).
gy

By hypothesis T5 preserves reflexive coequalisers and so the following is an equaliser of Ti-
algebras:

. BTk L Tl
(T A, pp, 4) — To(Th A, py) —— Ta (A, ha).
Tz,uih

Let us spell out explicitly TQ(TlA,'LL(lq). Compositing with Uy, we get that it is of the form
(T A, h}) for some morphism A} : T\ TA — TA. Let us €' : F;U; — Idp be the counit of the
adjunction Fi,U;. First the fact that e%QFlA is a morphism of Tj-algebra from FiU;T5F1A =
(ThTA, uk ) to ToFy A = (T A, h) gives us:

T1U161 A
TTTA BRA A
MlTAJ hll
TTA 1 TA
U1€T2F1A

Precomposing this square with Tm% 4 gives us the equality b} = Uy 6%«2 - Notice that we can
express Ule%“gFlA as ftg o Ulm%“lTA' Indeed, we have by definition of p4:

2 2 1 2
paoUnpra = Uipp 4 0 UrToen, pa © Uinpra
2 2 1
= Uippa oUinp,poa 0 Uren,pa

_ 1
= UleTgFlA‘
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So we finally get ToF1 A = (T'A, g o Um%lTA).

Let us now show that h : TA — A induces a morphism of Tj-algebras: ToF1 A — (A, hy).
Using the definition of hj, this amounts to the commutation of the following diagram, where
the top square commutes by naturality of n?, and the bottom square because h is T-algebra
structure on A.

T1h
TlTA E— TlA

Uln%«“lTAJ JUIWJ%HA
TTA TA
Th
m{ jh
TA A

Let us now show that there is a fork in 7Tj-algebras:

| DTk o
TQ(TlTlAHuTlA) E— TQ(TIAHLLA) - (Aa hl)
Toply

Since To(ThT1 A, ur}lA) =ToF\T1A=(TThA, Ule%zFlA), this amounts to the commutation of the
following square:

Thy
TThA——TA

UlTQM}q‘ {h
TA A

This square commutes because of the following equalities:

hoThy =hoThoTUynp s =hopaoTUing 4
=ho UIM%}A o U1T261T2F1A o TU17712:’1A
= ho Uiy a 0 UrTong, 4 0 UiTaep, 4
= hoUTsep, 4 = ho UiTouly.

By universal property of the coequalizer, we thereby get a morphism of Tj-algebras ho :
T5(A, h1) — (A, h1), which equips (A, h1) with the structure of a Th-algebra. it

In our case, the monad T is the free monoid monad. We show more generally in Proposition
5.1.1.5 that whenever T} is a free monoid monad over a biclosed monoidal category, T satisfies
the hypothesis of Proposition 5.1.1.3. First let us recall a classical result about biclosed monoidal
categories.

Lemma 5.1.1.4. A biclosed product preserves reflexive coequalisers in both variables simulta-
neously.

Proof. Suppose we have the following reflexive coequalisers, for i = 0, 1:

T
A; fi— B; :

C;

9i ——
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We are going to show that the following is also a coequaliser:

— - ho ® hy
Ao ® Ay 7538£1HBO®BI

Co® Cq

Suppose given i : By ® By — D such that i o (fo ® fi1) = 10 (9o ® g1). We want to find a
factorisation ¢ = (ho®hy) ok for some morphism k. First, notice that io (By® f1) = i0(Bo®g1)
(and, symmetrically, 7 o (fo ® B1) =i 0 (go ® B1)). Indeed, we have:

i0o(Bo® f1) =i0(Bo® f1) o (fo® A1) o (ro® A1)
io(fo® f1)o (ro® Ar)

(90 ®g1) o (1o ® Ay)
i0(Byp®g1)o(g0®Ar)o(ro® Ar)
=i0(By®g1).

70

Since the product is biclosed, the product by By preserves the coequaliser formed by f1,91 and
hi. The universal property of this coequaliser gives us a factorisation ¢ = j o (By ® hy).

Let us now show that jo (fo®C1) = jo (go®C1), so that we can use the universal property
of this other coequaliser. Since the product by Ag preserves the coequalisers, Ag ® hi is an epi,
and it is enough to show that jo (fo® Cy) o (Ag®h1) =jo (fo®C1) o (Ag® hy). And indeed
we have (using the fact that i equalises fo ® By and (go ® Bi):

Jjo(fo®Chi)o(Ag®hi)

jo(Bo®hi)o(fo® B1)
io(fo® B1)
o (

@)

jo(Bo®hi)o(go® Bi)
J

go ® By)

o
-

(
j0(g90®C1) o (Ao ® h1)

Using the universal property, we finally have that j = ko (hg ® C) and so finally: i = j o (By®
hi) = ko(hg®Ci) o (Co®hi) = ko (hg® hi). The fact that such a factorisation is unique
comes from the fact that hg ® h; is a composite of epimorphisms, and so is epi too. pid

Proposition 5.1.1.5. Let C be a category, and T be a monad on C. Suppose the category T-Alg
of T-algebras is equipped with a biclosed monoidal product &.
Then the category Mon(T-Alg) of monoid objects in T-Alg is monadic over C:

— T
Mon(T-Alg) 1 T-Alg @ c
\_/

Proof. We want to apply Proposition 5.1.1.3. The free monoid monad on T'—Gpd is given by
A [ ] A%
neN

Let us show that this monad preserves reflexive coequalisers. Since colimits commute with
colimits, we just have to show that A — A®" preserves reflexive coequalisers. This is a direct
consequence of Lemma 5.1.1.4. pid
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The following definition is a generalisation by Mike Shulman of the construction of computads
by Batanin [], following the reformulation of Richard Garner in [28].

Definition 5.1.1.6. Let Z be a category whose objects are natural numbers, and such that for
all non-identity morphism f : ¢ — j, we have ¢ < j. Let T" be a monad on 7 (the category of
presheaves over Z). For A € Z, we denote A[n] by A,. Let us define inductively the notion of
n-T-polygraph, together with an adjunction between n-T-polygraphs and T-Algebras (U,, F},).
Let us denote by (U, F') the morphisms forming the adjunction between T-algebras and 7.

e A 0-T-polygraph is just a set X. The free T-algebra Fy(Xp) generated by X is X - Y (0),
where (-) denotes the copower and Y : Z — 7 is the Yoneda embedding. If A is a T-algebra
then Fy(A) := U(A)o.

e Suppose n-T-polygraphs defined, together with F,, and U,,. Then an (n + 1)-T-polygraph
is the data of an n-T-polygraph ¥, a set ¥,4; and a morphism 0: ¥,,11- F(Y(n + 1)) —

—_——

F,(X), where Y(n + 1) is obtained from Y (n+1) by removing Y (n+1),4+1. Then the func-
tor Fj, 41 is defined by the following pushout of T-algebras, where ¢ denoted the inclusion

—_—

of Y(n+1) into Y(n + 1):

Yny1- F(Y(n+1)) Fa(X)
En+1 . F(L)

i1 F(Y(n+1)) —— Fpp1(3, 3041, 0)

If A is a T-algebra, then let 3,11 and @ given by the following pullback:

Y1 hom(F(Y(n+1)),A)

: j

—_— —_—

hom(F(Y (n+ 1)), FuUp A) —¢— hom(F(Y (n + 1)), A)

where the bottom morphism is induced by the counit of the adjunction F),,U,, and the

right-hand-side morphism comes from the inclusion of le) into Y(n + 1). We then
define Uy, 41(A) := (Un(A), Ep11,0).

Finally, the category of w-T-polygraph is the limit of the sequence of projection from (n+1)-
T-polygraphs to n-T-polygraphs.

Definition 5.1.1.7. We call Gray monoids or Gray (w,0)-monoids (resp. Gray (w,1)-monoids)
the monoid objects in w-groupoids (resp. (w,1)-categories), equipped with the Gray tensor
product. By Proposition 5.1.1.5, Gray monoids (resp. Gray (w, 1)-monoids) are monadic over
pre cubical sets. We call the associated notion of polygraphs Gray polygraphs (resp. Gray
(w, 1)-polygraphs).

If ¥ is a Gray (w,p)-polygraph and k < p, we denote by X¢*) the free Gray (w, k)-monoid
generated by X.
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5.1.2 Free Gray (w, 1)-monoids are free (w, 1)-categories

The aim of this Section is to prove that the Gray product of two free (w, 1)-categories is still
free. To do that, we show that the pushout-product of two cofibrations in w-categories is still
a cofibration (this is one of the axioms of a monoidal model category). It is a classical result
of homotopy theory that it is sufficient to check this result on generating cofibrations. In the
first part of this section, we choose our set of generating cofibrations carefully to simplify the
computation of the pushout-product.

Proposition 5.1.2.1. The free cubical w-category functor F' : w- CubSet — w-CubCat is
monoidal.

Proof. Let us denote by U : w-CubCat — w-CubSet the forgetful functor from cubical
w-category to pre-cubical sets, and P : w- CubSet — w-CubSet the functor forgetting di-
mension 0 and the direction-1 face in every dimension. The functor P also induces a functor
P : w-CubCat — w- CubCat. Moreover, we have for any cubical w-category C: UPC = PUC.

Recall from [2] the internal Hom in w - CubCat is given by w - CubCat(C, D); = w- CubCat(C, P'D),
and similarly in w- CubSet : w- CubSet(C, D); = w- CubSet(C, P'D). So in the end we have,
for any pre-cubical set C' and any cubical w-category C:

w- CubCat(F(C),C); = w- CubCat(F(C), PC)
= w-CubSet(C,UPC)
= w- CubSet(C, P'UC)
= w-CubSet(C,UC);

Moreover, the pre-cubical set structures match, so that we have: Uw-CubCat(F(C),C) =
w- CubSet(C,UC).
So if C' and D are pre-Cubical sets, we have for any cubical w-category C:

w-CubCat(F(C)® F(D),C) = w-CubCat(F(C),w- CubCat(F (D),
w-CubSet(C,Uw- CubCat(F(D),C)
w- CubSet(C,w-CubSet(D,UC))

= w-CubSet(C® D,UC)

= w-CubCat(F(C®D),C)

C))
)

Since this is natural in C, there is an isomorphism F'(C) ® F(D) = F(C ® D). i

Definition 5.1.2.2. We denote by i, : n-O — n-@ the inclusion of the n-sphere into the
n-disk, and by j, : n-[] — n- M the inclusion of the n-shell into the n-cube.

Lemma 5.1.2.3. There are pushouts of w-categories:

n-[]—— n-O n—o—-—n—[]
n-B—— n-@ n—e——n—MN
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Proof. The right-hand square comes from the fact that n- M is a free w-category on a globular
polygraph, where the (n — 1)-polygraph generates n-[], and with exactly one generating n-cell.
Similarly, the left-hand square comes from expressing n-@ as a free w-category generated by a
cubical polygraph.

it

Lemma 5.1.2.4. Let C be a category, and let f, g be morphisms in C. Suppose that g is a
pushout of f. If h is a cell in C having the right-lifting-property with respect to f, then it has
the right-lifting property with respect to g.

Proof. We are in the following situation:

K i’

Using the right-lifting-property of A with respect to f, we get a morphism w such that uo f = iok
and hou = i'ok’. Using the first equality and the fact that g is a pushout of f, we get a morphism
v such that vog =17 and vo k' = u:

Let us show that v is the required lifting. The first equality is already given, it remains to show
that hov = 7'.

Notice that since the big rectangle commutes, by universal property of g there is exactly
one morphism w satisfying w o k' = i’ o k' and w o g = h oi. But both 7/ and h o v satisfy this
property:

{i’ok’zz”ok’ {hovok’zhouzi’ok’

i'og=hoi hovog=hoi

Therefore, the two arrows are equal, and h does indeed have the right-lifting property with
respect to g. pid

We are now armed to choose our set of generating cofibrations:

Proposition 5.1.2.5. The family j, forms a family of generating cofibrations for the model
structure on w- Cat.

Proof. Recall from [55] that the family 4, is a family of generating cofibrations for the model
structure on w-Cat. The model structure is actually determined by the arrows having the
right-lifting property with respect to the generating cofibrations. By Lemma 5.1.2.4 and 5.1.2.3,
the arrows having the right lifting property with respect to i, and j, are actually the same, so
they generate the same model structure. pid
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Definition 5.1.2.6. If f : C — D and f’ : C’ — D’ are two morphisms of w-categories, The
pushout-product of f and f’, denoted f®f’, is the following morphism, where £ is defined as a
coproduct:

®1
C®C’L>D®C’

1®f’J ‘

CRD .
f&f

DPOD

1®f

f®el
Proposition 5.1.2.7. For any n,m € N, we have:
jn @Jm = jn—i—m

As a consequence, if f and g are two cofibrations, then f®g is also a cofibration.
In particular, the product of two cofibrant objects is still cofibrant, that is: for any two
polygraphs 3 and T, the w-category X* @ I'* is free on a polygraph that we denote by X QT'.

Proof. Let us first compute €. First we need to compute (n-J®m-[]), (n-B®m-[]) and
(n-CJ®m-M). Since all those are free on pre-cubical sets, using 5.1.2.1 we can compute the
products in cubical sets.

Recall that for all n, n- M is the free w-category on the cubical set n- B¢, where n - Iz-set is
given by the set of all applications s : {1,...,n} — {(—),(0), (+)} such that #s-(0) = i. We
see such an element as a sequence of length n containing exactly i copies of (0). For such an s,
and 1 < k < i, 0%s is given by replacing the i-th (0) appearing in s by (). Similarly, n - [1°¢
is obtained by removing the cell (0...0).

Therefore, we have:

e The pre-cubical set n-[1°¢ ®m -[1°¢ is the sub pre-cubical set of (n+m)- moet consisting
ofall s: {1,...,n+m} — {(—),(0),(+)} which are not of the form (0...0a;...as,) or

(By...5,0...0) for some ai,...,qm,B1,-.., 08, € {(—),(0),(+)}

e The pre-cubical set n-[1°¢ @m - B is the sub pre-cubical set of (n+m)- B¢ consisting
ofall s: {1,...,n+m} — {(—),(0), (+)} which are not of the form (B;...5,0...0) for

some f1,...,0n € {(—),(0),(+)}.

e The pre-cubical set n- W% @m -[3%¢ is the sub pre-cubical set of (n+m)- W ¢ consisting
ofall s: {1,...,n+m} — {(—),(0),(+)} which are not of the form (0...0a;...a,,) for
some afq, ...,y € {(—),(0),(+)}.

Since all the j, come from morphisms of pre-cubical sets, we can also form the coproduct in
w-CubSet. From the explicit descriptions above, we see that the coproduct in w- CubSet is
the sub-cubical set of (n + m)- B¢ consisting of all s : {1,...,n +m} — {(—),(0),(+)} that
are either in n-[1°¢ @m- B° or in n- W5 ®@m-[1°¢, that is of all s except for (0...0). So
finally £ = (n +m)-[]. On the other hand, by definition n-B@m-B =n + m-MB. So j,Qjmn
and j,+., share the same source and target, and explicit computation show that they both are
the canonical inclusion of (n +m)-[Jinto (n + m)-M. So finally j,&jm = jnirm-

The consequence about cofibrations is a standard result in model structure (see [15]), using
the fact that the j, form a generating family of cofibrations (Proposition 5.1.2.5).
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Finally, since polygraphs correspond to cofibrant objects, for any polygraphs ¥ and I' the
morphisms f : & — ¥* and f’ : J — I'* are cofibrations. Then f®f’ is just the (unique)
morphism @ — X*®@I'™. We just proved that it is a cofibration, meaning that X* @ I'* is a free
category on a polygraph. pid

Remark 5.1.2.8. The fact that the product of two free w-categories is still free is one of the
main reasons for our use of the Gray tensor product over the cartesian one. Indeed, this fails
for the cartesian product, as already noted by Lack [54]:

Let C be the free category on one generator and one arrow. We have the isomorphism of
monoids C(e,e) = N. Then C®RC still only has one object and as a monoid (CQC)(e,e) = Nx N,
which is not a free monoid.

Remark 5.1.2.9. The fact that the product of two free w-categories is still free was also proven
independently by Hadzihasanovic [12], and by Ara and Maltsinotis. Explicitly, if ¥ and T" are
two cubical w-polygraphs. Then the cubical w-polygraph > ® I is given by:

(E@T), = [] ZixTy
i+j=n
0YA®B AeX;and1<k<1
(A® B) = L A® € X; an . /)
ARy ;B Ae¥;andi<k
Moreover, by definition of the product of two polygraphs, the free functor ¥ — X* is monoidal.

Proposition 5.1.2.10. Let X be a Gray polygraph. The free Gray monoid on % is also free as
an (w, 1)-category, generated by a cubical (w, 1)-polygraph that we denote [X], defined by:

Sl = ] Zix...xI (5.1.1)
11+...+ip=n
Z+...+ij+l(‘41®"'®‘4k) = A1®®AJ @alaAde@AjJrQ@...@Ak, where 1 < l < ij+1
(5.1.2)

Proof. By Proposition 5.1.2.7, the free-category functor is strictly monoidal, and so it induces
a functor from the category of monoidal objects in (w,1)-polygraphs to monoidal objects in
(w, 1)-categories (that is to Gray monoids). Finally, any Gray polygraph can be made into a
monoidal object in (w, 1)-polygraphs by sending a Gray polygraphs ¥ to the (w, 1)-polygraph
[X] given by the formulas (5.1.1) and (5.1.2).

The following diagram sums up the situation, where the right-hand square commutes because
the free-category functor is monoidal, and the left-hand triangle is just the inclusion of Gray
polygraphs into monoid objects in (w, 1)-polygraphs.

GrayPol ———— MonPol

(w,1) - Pol

F F
F

GrayMon _ , (w,1)-CubCat

&

Definition 5.1.2.11. Let ¥ be an (w, 1)-polygraph. We say that X is targets-only if for all
n=2all<i<nandal AeX¥,, J; Aisin X,_1.

We say that a Gray (w,1)-polygraph ¥ is a targets-only polygraph if the (w, 1)-polygraph
[X] is targets-only. Explicitly, for all n > 2, all 1 < i < n and all A € %, there exists
A1 € Ei17"'aAk} eEik such that G;A = A1®®Ak
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5.1.3 The simplicial monoid of local branchings

Proposition 5.1.3.1. Let Cube be the PROP generated by operations ¥, 7, ¢, @ and o,
subject to the following relations:

VG Y YT W By ey
Y4 gl Yeeeo¥ ges-

Let Simp be the PROP defined by operations 7, Q, subject to the following relations:

Y- Y ey

The category of symmetric cubical sets, denoted CSet is the category of presheaves on Cube.
Similarly, the category of augmented symmetric simplicial sets is denoted SSet is the category
of presheaves over Simp. The inclusion functor Simp — Cube gives rise to an adjunction
between SSet and CSet.

Moreover, the monoidal structures on Cube and Simp give rise by Day convolution to
monoidal structures on augmented symmetric cubical sets and augmented symmetric ssmplicial
sets. Define a cubical monoid (resp. a simplicial monoid) as a monoid object in CSet (resp.
SSet). The functors in the adjunction preserve the monoidal structures, and so induce functors
between the categories of cubical and simplicial monoids.

Definition 5.1.3.2. Let ¥ be a monoidal 1-polygraph. A rewriting step f is an element of %7,
the free ¥§-bimodule. We call s(f) its source. A local n-branching (for n > 0) is an n-tuple
(f1,- .., fn) of rewriting steps of same source. We denote by LocBr(X),, the set of all n-local
branchings. We extend that to n = 0 by saying that a 0-local branching is just an element of
5.

Definition 5.1.3.3. Let ¥ be a monoidal 1-polygraph. We define:

e For all (fi,..., fn) € LocBr(X),, and 1 <i < n. If n =1 then we define ¢ f = s(f) and
otherwise, let 0;(f1,..., fn) be the following n — 1-branching:

(fr,- o fimts fivns oo fn)
e For all (f1,..., fn) € LocBr(X),, and 1 <i < n, let ¢(f1,..., fn) be the branching

(f1,--os fis fis fixts oo fu)

e For all (f1,...,fi) € LocBr(X); and (g1,...,9;) € LocBr(X); respectively of source u
and v, let f®g
(ugn, ..., ugj, frv,... fiv)

Finally, G,, acts on LocBr(X) by permuting the rewriting steps.
The following proposition is a straightforward verification of the axioms.

Proposition 5.1.3.4. Let 3 be monoidal 1-polygraph. The family of local branchings LocBr(X)
equipped with the applications 0;, €; and ® forms a simplicial monoid.

Proposition 5.1.3.5. The forgetful functor U : (w,1)—Cat — CSet is lax monoidal, that is
there exists in CSet a morphism € : T — U(T) and, naturally in A,B € w—Cat a morphism
paB :U(A)®U(B) — U(A ®B) satisfying the usual conditions.
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Proof. Notice that in the terminal cubical (w, 1)-category there is only one cell in each dimension.
Therefore, U(T) = T and € is defined as the identity. For the morphism pa B, recall that the
product (of (w,1)-categories) A ® B is generated by elements of the form A ® B with A € A
and B € B. The map A® B — A ® B therefore induces a morphism pa B. pid

Proposition 5.1.3.6. The functor U induces a functor from Gray (w,1)-monoids to cubical
monoids.

Proof. More generally, a lax monoidal functor between two monoidal categories induces a functor
between the categories of monoidal objects in the two categories. yig]

Definition 5.1.3.7. We denote by V' the composite of the forgetful functor from Gray (w,1)-
monoids to cubical monoids with the one from cubical monoid to simplicial monoids.

Theorem 5.1.3.8. Let ¥ be a terminating targets-only Gray (w,1)-polygraph, and let M =

Zg(o)/zf(o) be the monoid presented by 3. We suppose that there exists a morphism of simplicial
monoids

® : LocBr(X) — V(2¢M)

such that for all Ae X, ®(br(A)) = A.
Then the morphism YO — M is an equivalence of w-groupoids.
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5.2 Proof of Theorem 5.1.3.8

The proof of Theorem 5.1.3.8 in Section 5.2.3 relies on the description of a complicated composite
of cells. To simplify the expression of this composite, we introduce two main tools: in Section
5.2.2, we introduce a generalised notion of connection, built in any cubical (w, 1)-category as a
composite of connections and of permutations, while in Section 5.2.2 we introduce a generalised
form of composition, similar to pasting schemes.

5.2.1 (Generalised connections

Before defining new notions of connections, we start by defining new notations for operations
on permutations.

Lemma 5.2.1.1. Let 0 € &, et i,j < n+ 1. There exists a unique permutation 7 € Sy
satisfying

0jT =0
T -j=1
Proof. 1t is the following permutation:
S (R
i k=j

Definition 5.2.1.2. We denote by o[i — j] the permutation such that
Oioli—jl=o0o
o
In particular if o = 1, we simply write [i — j].
Lemma 5.2.1.3. The following equality hold for every k # i:
Ok(ali = 7]) = Ok, )ik = Ji,.0)9]

In particular, we have [i — j]= = [j > i] and Ox[i — j] = [ix — ju,)i]- For k # j, this last
formula becomes O|i — j| = [ix — Jk]-

Proof. Indeed, we have
OiOk(oli— j]) = Ok di(ali— j]) = Ok,0
i, - Op(oli—j1) = (if-oli—j4]),,

where u = k - o[i — j] = (k; - o). Using the fact that (if - o[i — j] =i - o[i — j] = j, we get
the required formula. In the case where k # j, let us prove that j,); = ji:

o If k <i,j then (k)7 =k = k.
o Ifi,j <k then (k) = (k— 1)) =
o If j <k <ithen (k;)) = k+1, and jiy1 = j = ji.

oIfi<k‘<jthen(ki)jzk‘—l,andjk_l=j—1=jk.
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Definition 5.2.1.4. Let C be a cubical (w, 1)-category. For any n > 2 and 1 < i # j < n, we
define I'?; := [i — j;] - I'}.. In particular, we have I'Y = I'?; ;.

Example 5.2.1.5. Diagrammatically, we can represent the generalised connections I'y; as fol-
lows, respectively for ¢ < j and ¢ > j:

Proposition 5.2.1.6. For every i # j and every «, the cell I'?; is the only thin cell satisfying
for every k and every [:

Ba a I&] ..

G Li;A=15 ;, 0pA k#1375
A =

oore a4 P=o

’ €,0;, B=—«

aTa [Z '_)Jl]A B=a

ajri,Az{ ]aﬁA _
€i; 05 ,3——&

Proof. The cell I'?'; is thin by Lemma 4.2.3.3, and thin cells are uniquely determined by their
shell. As for the relations, let k # 1, j.

oA = 0] ([i > ji] - TS A) = i > ji] - 0., , TS A

[i—7i]
We first evaluate dg[i — j;]. Using the formulas from Lemma 4.1.1.3, we have: (k;)7 = (k)4 =
. . . ) "] .
(W )ii- Hence, a = (ji) gy = Uid) k), = Jig (ki) = Jrizi- Now ()i = (i), ) = (i)’* so
= Jri (ipye = k) (i) = k)i, And finally dg[i — ji] = [ix — (jk)i,]. We now consider the
second term. Let u = k - [i — j;] = (k;)?". Then we have u # j;,j; + 1 and so

Bra 4 _ 1o 5 a AB 8
5ufjiA—l_‘( D o), A s 8 A F(jk) 8kiA

And so finally:
dLA=TE 0] A

i Jk

TS A = [ix = ()i - TG,

As for the other relations,

T A = ) ([i > 5] - TS A) = &ifi > Gi] - 0, THA
_ofrea={t ,  P=e
e 6]16 A B=-—
T A =) ([i > ji] T9)A = dli — ji] - aﬁ[w A
. . o Ji =] - A B=a
= [ij = ji] - a]Hr A= [, ?] 5
[ji — 4;] - 6318 A=¢,0;,A f=-a
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Lemma 5.2.1.7. For all 1 <i # j <n, and 1 <k < n we have the equality [k — i] - T'¢; =
AL
Proof. Indeed, we have by definition of I'?’;:

[k i) - T8y = [k i) - [0 i) - TG = b o i) T = [k o> GO T = T8 o

it
Notation 5.2.1.8. Let £ — N and i € N. Let us denote by E’ the set of elements of the form
n’, for n € E. Similarly, if i ¢ E, we denote by E; the set of elements of the form n;, for n € E.

If F c N is finite, we denote by e the composite eg = ¢, ...€;,, where E = {i1,...,i,} and
11 >19 > ... > .

Definition 5.2.1.9. For any n 1,1< n,m=>=0, Ec{l,...,n+m} of cardinality m + 1
and A € C,,, we define a cell FZ A e Cn+m recursively on n + m as follows:

o If m =0, and E = {j} then T®" := [j — .
e Otherwise, then F?’E is the only thin cell satisfying:

ﬁEk ag* )A k¢ E

(E\{km@? kel azf

Proof. We need to prove that there indeed exists a thin cell with the specified shell. Suppose
E = F u{j}. and fix k € F. Then we define: I'}" o =T¢ L5 ¥3 Let us check that the shell of
this cell is the required one.

Case | ¢ E:
oprt =18 i g

o B,E_ (67 B BvF
oLy = oy, Jiki Z( J,FV' (L,r)*

Jz Ky
On the other hand, using the fact that E; = F; u {j;} and k; € F}:

arB.E 5Ez fo _ 1B B,Fj1 A
oLy =T, a(lE)Z - Fjl:kl i Ue)

And the two expressions coincide because Ig = [ . Suppose now [ € E/ and o = §3.

Casele E,a=pFand | # j, k

o (F\{Li D

a,Fj _ o
; Jis kl (31 szszi

T = opre
and on the other hand, using the fact that (E\{l}); = (F\{l}); v {ji} and k; € (F\{l});:

opT®F — p B\ _ —re, a,(F\{})u,;

And the two sides coincide using the fact that (F;\{l;});, = (F\{l});-

Casele E, a = and [ = j:

aF

a,E' _ _ O[,(E\{]}) _ azE
oorr = a1, I =10 =1 /= 39T

i
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Casele /, o= and [ = k:

TP = QTGN = [ k] - T7

7

If FF = {k} then F?’Fj = [kj — ] and we have 8?F?’E = [jr —i] = F?’(E\{k})’“. Otherwise, let

a.F: o,(Gj)k.
G # (& such that F' = G U {k} and let € G. Then by induction I'; i L o, (s and so,
using Lemma 5.2.1.7:
6,‘3T?’E = [ = k] - gj,sz?’Gj’k _ F?k,xkriaﬁj’k _ F?v(GU{j})k _ F?,(E\{/f})k
Casele B, a# pfand | # j, k:
arB,E _ AamB BF 1B apBF; 1B a
AL =T =T g OGT = T ey %
= U= ki - TF ey, 08 = L= kil - e em, 0F
= G0 = Sl = €0
Casele F,a#fand = :
B.E B8 1B.F; B,F;
L = G = e Oy = e empiy; 0 = R 00 = emgy; &
Casele E, a # f and | = k:
amB,E o B,F; a 1BF; o «a
RV = RTHITY = G AT = e n),ndf = €m0
e

Example 5.2.1.10. The point of these generalised connections is to make use of the (co)associativity
relation they verify. Together with the action of the symmetric group, it means that a (con-
nected) composite of connections is uniquely determined by the indices of its set of output and

{1,3,4
T; { }

by the index of its input. For example for n = 4, the connection can equally be

represented by any the following diagrams:

oo

! Lo 1 o 11 3 4
1] 34 1] 34
2

i ' 2

]

5.2.2 Generalised composition

If A and B are two 2-cells in a cubical w-category, then one can talk of the following composites
respectively as 2 x 1 and 1 x 2 composites. The goal of this Section is to formalise this idea and
to extend it to higher dimension.
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Notation 5.2.2.1. Let I be a finite totally ordered set, and x € I. If x # max([) (resp.
x # min(I)), we denote by S(x) (resp. P(x)) the smallest element in I greater than x (resp.
the greater element in I smaller than x).

Let I1,..., I, be totally ordered finite sets. For s € I1 x ... x I, and 1 < i < n such that
si # max([;) (resp. s; # min(l;)). We denote by S;s (resp. P;s the element of I} x ... x I,

given by:
(Sis)y =47 7 7 ' (Pys); =4 ! 7 '
S(si) j=i P(s;) j=1

Definition 5.2.2.2. Let Iy, ..., I, be finite totally ordered non-empty sets, and C be a cubical
w-category. An Iy x ... x I,-grid in C is the data of a family of cells Cy in C,, for any
sel; x...x1I,.

An I} x ... x I,-grid C, s said to be composable if, for any s € Iy x ... x I, such that
s; # max([;), 8;08 = 0; Cs;s.

Lemma 5.2.2.3. Let C, be a composable Iy x ... x I,-grid, and let x € I; such that x # max(I;).
Let D, be the following Iy x ... x I;—y x [\{x} x Ii11 x ... x I,-grid:

D. — Cs s; # S(x)
° CPis *x Cs 55 = S($)

Then the grid D, is composable. We denote it by comp’,(C.).

Proof. Let I} = I; if j # i and I; = I;\{z}. To avoid confusions, we denote by S’ and P’ the
operations S and P taken in an I;. Let t € I{ x ... x I}, such that ¢ is not maximal, and let us
show that ﬁlth = 0, Dg/,+. We distinguish multiple cases:

o If k # ¢ and t; # S(z). Then D; = C; and Dg/,; = Cs,, and so the composability of C,
gives the required result.

o If k # i and t; = S(x). Then D; = Cp,¢ *; C; and Ds'kt = Op,s,t *i Cs,+, and so:
0 Dy = 0; Cpyy %iy, 0 Cr = 0y, Cs, Pyt iy, O Cst = 0 (Cpysyt *i Csyi) = 0f, Dgypi

o If k =i and t; # P(z),S(x), then D; = C; and Dg/,; = Cs,+, and so the composability of
C, gives the required result.

e If k =i and t; = P(x), then ¢/ D, = 0;C;, and é’;DS;t = 0, (Cp,s/;t *i Csrt) =
0; Cp,s1;t = 0; Cs,t, and the two are equal by composability of C,.

e The case where k =i and t; = S(z) is similar.
s3]

Proposition 5.2.2.4. Let Iy,...,1I, be finite non-empty totally ordered sets, and x € I; and
y € I; be two distinct non-maximal elements. Then for any Iy x ... x I,-composable grid Co we
have:

comp; o comp’,(C,) = comp’, o compi(C.)

In particular, all the composite of maps of the form comp® from Iy x ... x I,-grids to
composable T x ... x T-grids are equal (where T denotes the terminal ordered set). Since a
composable T x ... x T-grid is just an element of C, this defines a map Comp from composable
Iy x ... x I,-grids to C,.
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Proof. We distinguish two cases depending whether ¢ = j or not. If ¢ = j, we can suppose
without loss of generality that x < y. We then have, for all £ € I; x ... x I, such that ¢; # z,y:

o If y=S(x):

Cy ti # S(y)

comp’ o comp’ (C,); =
Py PL(Ce)r {(CPiPit *; Op,t) % Cp  t; # S(y)

Cy ti # S(y)
Cp,pit *i (Cp,e *i Cy)  ti # S(y)

Using the associativity of *;, the two are equal.

comp’, o comp;(C.)t = {

e If y # S(x), then we have the following formula (once again symmetric in z and y):

Ct ti # S(x)st/)

comp’ o comp’.(C,); =
P} 0 comps (C)e {CP,-t*iCt ti = S(x),S(y)

Suppose now that i # j. Then we have:

C, tj # S(x) and t; # S(y)

A : L% t;=S dt; #8
comp!, o compi, (C.); = Cp,i *‘Ct (z) an f (v)
Cp;i*i C t; # S(x) and t; = S(y)
(Cp,p,t *i Op,t) *j (Cp,t % Cr) t; = S(z) and t; = S(y)

Using the fact that P;P; = P;P; and the exchange law between x; and x;, the expression is
symmetric in x and y. sid

Definition 5.2.2.5. Let Cs be a composable I1 x ... x I,-grid in a cubical w-category C, and
let A e C,. Let us denote by m; the minimum of I; and let m be the element of Iy x ... x I,
formed by those minimums. We say that C, is an A-simple grid if for all s € Iy x ... X I,
Cs,s € Im(¢;) and Cp, = A.

Lemma 5.2.2.6. Let C, be an A-simple composable 11 x ... x I,-grid in a cubical w-category C,
for some A € C,,. Let m; be the minimum of I;. If m; is not mazimal in I; (that is, if I; # T ),
then comp, C, is an A-simple It x ... x I\{m;} x ... x I-grid.

Proof. Let Dy = comp?, (C,), and let t € Iy x ... x I;\{m;} x ... x I,. Then we have:
o If t; # S(m;), then Dg,; = Cs,+ € Im(ey).
o If t; = S(m;) and k = i then Dg,; = Cs;+ € Im(¢;).

o If t; = S(m;) and k # i then Dg,; = Cp,s,t *i Cs,+ = Cs,p,t *i Cs,t- By hypothesis both
Cs,p,;t and Cg,; are in Im(ek) and so so is Dg, ;.

Finally, if t; = m; for all j # ¢ and t; = S(m;) then D; = Cp,s*;Cy = Ax;Cs,n, = A because
Cs,m € Im(¢;). So finally D, is an A-simple grid. it

Proposition 5.2.2.7. Let Co be an A-simple grid. Then Comp(C,) = A.

Proof. We reason by induction on the sum of the cardinalities of Iy,...,I,. If they are all
singletons then C, is just the data of A and so Comp(C,) = A. Otherwise, then there ex-
ists 1 < ¢ < n such that I; is not a singleton. Let m; be the minimum of I;. By Lemma
5.2.2.6, compfni(C.) is an A-simple grid. Using the induction hypothesis, we therefore have
Comp(C,) = Comp(comp}, (C,)) = A. i)
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5.2.3 Construction of the normalisation strategy

Let us fix a Gray (w, 1)-polygraph ¥ satisfying the hypothesis of Theorem 5.1.3.8. Let M be
the monoid presented by ¥, and let us denote by NF : M — 26 the inclusion of the normal
forms, and by 7 : ¥¢(©) — A the canonical projection. Note that 7 is a morphism of Gray
monoids, while NF is just a morphism of w-groupoids. We are going to show that the two from
an equivalence of w-groupoid.

Note first that moINF = idps. We now need to define a natural transformation S : ids,c0) =
NF or. To do that, we start by making use of the fact that ¥ is a Gray (w, 1)-polygraph and
that NF and 7 are induced by morphisms of (w, 1)-categories. This means that we can start by
defining a natural transformation S : idy.cq) = NF or.

Using the fact that () is the free (w, 1)-category on the (w, 1)-polygraph [X], constructing
S amounts to finding, for any A € [X],,, a cell S(A4) € [E]:(ﬂ, satisfying the following relations
(recursively in n):

e 07 S(A) = A.
e 0/ S(A) = NFor(A)

e Forl <i<nand a=+, 0" S(A) =S(0%(A4)).

i+1 7

Definition 5.2.3.1. Let A € [X],,. There exists A;,..., A € ¥;; x ... x X;, such that A =
A1 ®...® Ag. Let f:=br(A;)®...®br(A;) and let u be the source of f. Let g := (7, f):

we denote by 74 the cell ®(g) € [E]:(g

Lemma 5.2.3.2. Let A€ [X],. Foralll<i<n+1,

p A i=1
i TAT Tom A 1>1

Note in particular that 7,- A is well-defined because [X] is a targets-only (w, 1)-polygraph.

Proof. Let fi,..., fn berewriting steps such that f = (fi,..., fn). Then 0] 74 = 0] (7, f1,..., fn) =

¢(61(7U7 f17 SRR fn)) = q)(flv s 7fn) = A
And for ¢ > 1, 0; 74 = ®(7u, f1,..., fi—2, fir-- -, fn) = ®(7u,br(d;_;A)). Since [X] is a
targets-only (w, 1)-polygraph, 0;_; A is in [¥],—1 and so 7,- A= (7, br(0;_,A)). i)

Definition 5.2.3.3. For any (w, k)-polygraph X, we denote by X, the (n — 1, k)-polygraph

obtained by truncating X, and by ¢, : [X] i(,}) — [2]*(™ the canonical inclusion.

Proposition 5.2.3.4. Let ¥ be a targets-only terminating Gray (w, 1)-polygraph, and let M =
Zg(o)/Z?(o) be the monoid presented by X.
Suppose that there exists a morphism of augmented symmetric simplicial sets

® : BrLoc(X)<, — V(2¢0)

such that for all A € [X]<n, ®(br(A)) = A.
For any A € [S]<n, let T4 € W) be the cell defined as in Definition 5.2.3.1). Then there
exists a unique natural transformation S from i, to NF om such that for any A € [X],, for
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m < n, the {—1,0,1} x {0,1}™-grid C2 defined as follows

TA s=1(0,...,0)
€A s =(-1,0,...,0)

CA={ - ~ 5.2.1
rr Ortseral yra) s() = -1 (52.1)
" WSk (yma) s(1) # 1

is composable and S(A) = Comp(C7).

Case n =0 We define S inductively on u € [X]g. If u is a normal form for ¥; then S(u) = 1,,
otherwise formula (5.2.1) become simply S(u) = eyu *1 7, *1 S(0f 1) = 70 *1 S(0] 7). Denoting
by v’ the target of ,, we have:

Tu S(ul>
S(u) :==u o U

Case n =1 Let f:u — ve[X];. Wereason by induction on u = 0; f. Let us denote by
u’ the target of 7,. Then Formula (5.2.1) gives us the following formula for S(f). Remark in
particular that the faces satisfy the required conditions:

IIC) JS(U)

2
S = T T1S(05 ) F

1

<
g
|
n
&
|
=33

>
> o«
<33

General case Let us fix an k > m > 0, and let A € [X],,. We reason by induction on the

source u € [X]o of A. Suppose that S is defined on any generator of source smaller than u. Let
C# be the grid defined by (5.2.1).

Lemma 5.2.3.5. The {—1,0,1} x {0,1}™-grid C2 is composable.
Proof. Let us decompose A = A1 ®...® Ay, with 4; € Xy, for 1 < j <p. Let fi:= br(4;),
f=br(4) and g = (7, f).

We need to check that for all s and for all 4, 9 C2 = o) C"S‘li s Let us first check the case
s=(—=1,0,...,0). For i = 1 we have:

OyCt =A=077m4=07C8,
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And for i # 1, we have (using the fact that (S;s)™(1) = {i}):
o Cd =07 (A
07 Cé, = o, OntS(ar o - yma)
= 9, T "I S(07 9 7a)

= 0; [i = 1T S(0,7,0y 7a)
= Oy T{S(07,4) = €10y S(07,4) = €107, A

Let us now check the case s = (0,...,0). Then once again (S;s)” (1) = {i}, and we have:

070 = 0f 1o
5[Cé4,-s _ ai—Fl—v(sis)*(1)5(@;(1)“)
= 0; [i = 1]S(0; 74) = 07 S(0f 7a) = 0] 7a

Suppose now s(1) = —1. Then we distinguish two cases.

e If i =1 then (S15)7(1) = s~ (1) and we have:

oFCcA = afr;ﬂ”rm(a;a;(1)TA) = r;vsf(”‘la;rfsw;a;(1)m)
=17 WS(ar0r () ma)
orcd =orry Wsat r) =17 Wlars@r 1)
1¢81s = 01y s=(1)7A 1 22— (1)7A
=1 Whsorar 1))

o If i # 1, note first that i, (1) + 1 # 1,2. Indeed, if i;-(;) + 1 = 2 then i;-(;) = 1, and so
{1,...i—1} < s7(1) which is impossible since s(1) = —1. So finally we have:
o Cf = o0y It s(ar ok )
— F;:S_(l)i8;;7(1)+1Ff5(8179:,(1)7',4)
_ r;vS’“’irfa;;(l)S(a;a;(l)m)
— r;,s—(1>¢r1+5(a;;_(1)_1a;a; 1)7A)
_ r;’s’(”irfS(a;a;;w 0F 1y7a)
=17 WS (o7 o), y7a)
07 Céy = o> ntsarad o 7a)

—,8 (1), _
=17 WS (o7 e y7a)
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Suppose finally that s(1) # —1 and that s # (0,...,0). Then we have:

of et =T WSk jya)
s ()i A+ +
=1 0is_(1)+15(88,(1)TA)
- r;’s_(l)iS(a;_(l)TA)
07 G = oS Vs (ag - yma)

=17 WiS(of ).

1,87

So in all cases we have 0 CA = o) C"S“i .» which means that the family CZ' is composable. &
Lemma 5.2.3.6. The following equation holds:

A a=—andi=1
08Comp(C{) = {NF(A) a=+andi=1
S0 A) i #1
Proof. We start by the case i = 1 and o = —. Let us define D := 8;06‘;1 5" Then
0] Comp(C{) = Comp(DZ). Moreover, we have, for s # (0,...,0):

—p—s (1)+1 —
D = o0y WHTES(ar ok )41 7a)
—s (1 — _
=17 Wedr $(07 01 1),,7a)

= 65_(1)(91*@;(1”17-14

In particular, for any 1 < i < n, Déis € Im(e;), and Ddisa D{(‘)W’O)—simple grid. By Proposition
5.2.2.7 Comp(D) = Dy = CL g =07ma=A
We now to the case i = 1 and o = +. Let us define D2 := 8fCé 5)- Then we have:

D = o T S @ )
= 51,5*(1)+15TS(5I57(1)+1TA)

= €1,5-(1)+1 NF (9, (), 74) = NF(4)

So finally Comp(D{) = NF(A).

Let now i # 1 and @ = —. For ¢ an element of {—1,0,1} x {0,1}""!, let us denote by ¢_;
the element of {—1,0,1} x {0,1}" obtained by inserting a 0 in ¢ in the i-th position. Define
Df = 8;0;1_. Then we have:

e Fort=(0,...,0), Df:@i_TAzTa_,lA_

e Fort = (—1,0,...,0), D{ = 0; 1A = €10,_, A.
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o If t(1) = —1, then let s = t_;. Then we also have s(1) = —1 and (s7(1)); =t~ (1). So:

Dt = o7 Tt S(orat )
—t=(1) Ae _
_ppt O DT S@T ot )
-t (@1 _ _
=T, t( )Ffﬁif(l)S(al (92__(1)7'A>

_ rl—’t_(1)F1+S(a;s_(1)_10;6;(1)m)

— rlit*(l)FfS(ﬁl‘ai;(l)(9:_(1)TA)

=17 OrfSerar ()07 ma)

-, (1 _
o SR S ECICRTARE S

e Finally, if ¢(1) # 1, once again let s = t_;. Then we still have s(1) # —1 and (s7(1)); =
t~(1), so that:

D? = a;F;’S_(l)S(a;r—(l)TA)
— (1) A
=1 ais,ms(a:—(l)m)

— (1) A
=T} ( )ais_(l)HS(&:,(l)TA)

—t=(1) @y A
= Fl S(@if(l)a:_(l)TA)

=1, Ws(of yorma)

1" sk W7o )

So finally we have D& = C’f;’lA. So 0; Comp(C2) = Comp(C’.aiilA) = S5(0,_,A).
Finally, let i # 1 and o = +. For ¢ an element of {—1,0,1} x {0,1}"!, let us denote by

t4; the element of {—1,0,1} x {0, 1}" obtained by inserting a 1 in ¢ in the i-th position. Define
D = 6;6’;1_. Then we have:

e If (1) = —1, then let s = ¢,;. Then we also have s(1) = —1 and s~ (1) = ¢~ (1) U {i}. So:

Dt = o1 UTES(0r ok ) a)
= €&-(1)0 I S(0 0 1)7a)
= - (1)S(07 0~ (y7a)
= et—(l)S(ﬁfﬁtJﬁ(l)@jTA}

In particular, if t = (—1,0,...,0) then Dff = S(6; 0/ 74) =
there exists j such that ¢(j) = 1 then let [ such that ¢t = S
D = €5€1-(1) S(&f&;(l)Ta;_lA). In particular Déjl € Im(e;).

J

S(0:7,A). Otherwise, if
il

jl. Then j € t7(1) and
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e If (1) # —1, then let s = ¢t;;. Then we also have s(1) # —1 and s~ (1) = ¢~ (1)* U {i}. So:

D? = ajrl_787(1)s(a:—(1)TA)
= Gt—(l)af—S(a:,(l)TA)
= €;—(1) NF(4)

= €1 nt

In particular, if ¢ = S;l then Dg; € Im(e;).
So we just proved that DZ is a D(A_l’opﬂo)—simple grid. By Proposition 5.2.2.7, Comp(DZ) =

Dél,o,...,o) = S(d) | A), and finally 8 Comp(CZ) = S(d; | A). i

163



5.3 Construction of polygraphic resolutions and examples

In this section, we look for applications of Theorem 5.1.3.8. The main difficulty preventing us
from applying this Theorem is that we need to define the map ® on every local branching, instead
of just considering critical local branchings, as is usual for Squier-like Theorems. In Section 5.3.1,
we address this shortcoming by studying the simplicial monoid of local branchings. The main
result is that (under very mild assumptions) local branchings form a free simplicial monoid, with
generators given by the critical branchings. This means that we actually only need to define the
map & on critical branchings.

Armed we this result, we then proceed to give an explicit description of the reduced standard
presentation of a monoid M in Section 5.3.2. As it turns out, the main difficulty lies in proving
that the structure we define is indeed a Gray polygraph. Once this is done, very little work is
needed to prove that it satisfies the hypotheses of Theorem 5.1.3.8. Finally, in Section 5.3.3, we
prove an Extended Existence Theorem similar to 1.5.2.3 in our setting.

5.3.1 Critical branchings

Notation 5.3.1.1. Let ¥ be a Gray 1-polygraph. For any local n-branchings f and g, we write
f=gif f and g are equal up to action of the symmetric group.

Definition 5.3.1.2. Let ¥ be a Gray 1-polygraph, and let f be a local n-branching. We say
that f is an aspherical branching if f = ¢;g, for some local (n — 1)-branching g.

We say that a non-aspherical branching f is a critical branching if f # 1 and for any
factorisation f = g®h, g=1or h = 1.

Example 5.3.1.3. For any Gray 1-polygraph 3, we always have that the critical 0-branchings
correspond to the elements of ¥y, while the critical 1-branchings correspond to the elements of
3.

Definition 5.3.1.4. We define a simplicial monoid N as follows:
e Foralln >0, N, =N
e Given an n-tuple s € N,,, and 1 <4 < n, 0;s is given by deleting the i-th entry of s.
e Given an n-tuple s € N,,, and 1 <14 < n, ¢s is given by duplicating the i-th entry of s.
e Given an n-tuple se N,, and t € N,,, s ® is the concatenation of s and ¢.

e Given an n-tuple s € N,,, and 1 < i < n, 75 is given by permuting the entries in position
tand i+ 1 of s.

Lemma 5.3.1.5. Let s € N” be a non-decreasing sequence of natural numbers of length n = 0,

and let o and T be permutations such that for all 1 < i < n. Suppose that o (resp. T) satisfies

the property: for all 1 <i<n, if s; = siy1 theno-i<o-(i+1) (resp. T-i<7-(i+1)).
Then if os =Ts, 0 = T.

Proof. The equivalence relation defined by i = j if s; = s; induces a partition of {1,...n}. Let
I be an element of this partition. Let us show that ¢ and 7 coincide on I. Let ¢ be the value
of s on I, and let J be the set of indices at which ¢ appears in s = 7¢. Both ¢ and 7 induce
bijections from I to J, and by hypothesis they are even order-preserving maps. But there is at
most one isomorphism of finite totally ordered sets, so ¢ and 7 coincide on I. Since this is true
for any element of our chosen partition of {1,...,n}, o = 7. pid
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Lemma 5.3.1.6. Let s = (1,...,n) € N,, for somen > 0. Let m > 0 and let 1 < j; <
o< Jm <n+m. Lett =¢j, ...€;5. Let 1 <k < n+m. Then ty = ty41 if and only if
ke {jla B 7jm}

Proof. We reason by induction on m. For m = 0, there does not exist k € u such that ux = ug,1
so the result holds. Suppose now that the property is true at rank m, and let t = ¢;,, ., ...€j, s,
andlett' = ¢, ...€;s. Let I = {1 <k <n+m+1|ty =tp1},and I’ = {1 <k <n+m+1jt), =
ty,.1}. Using the induction hypothesis, I = {j1,...,jm} and in particular all the elements of
I’ are strictly smaller than jp,1i. Since €, ., consists in duplicating the jp,41-th entry of ¢/,

I:I/U{jm-i-l}:{jlv'--’jm+1}~ pid

Definition 5.3.1.7. Let n > 0, and let j be a subset of {1,...,n —1}. We denote by 5, (j) the
set of all permutations o € S,, such that for all i€ j, 0-i <o - (i +1).

Unfolding the definition of a simplicial monoid, we get that a simplicial monoid is the data
of:

e A family of sets C,,, for n = 0.

e For any n > 0 and any 1 < i < n applications ¢; : C,, » Cpy1 and ¢; : C;, = Cpyq.
e For any n,m = 0 an application ® : C,, x C, > Cpim.

e For any n > 0 and any 1 < i < n, an application 7; : C,, — C,.

This data has to verify some axioms. In particular the axioms that do not involve the operations
0; are the following:

(6_®_)=ea(_®_)
€ji€;i <] {( Qe )= eniil ® ) (5.3.5)
€€j = . ) (531) _ &)= eptil _ —
€€ 1=
titj = t;t; |i5] > 2 Tit1€i i<
titiv1t; = tig1titiv1 (5.3.2) e i=d
L TiTj+1€; 1=7+1
Ce®Ce )=((Le )®_) (533 Tj€; i>j+1
ti —t;
(t_®_) (L®_) (5.3.4)
((®ti )=th+i(  ® ) Ti€i =1 (5.3.7)
We prove the following Proposition about simplicial monoids:
Proposition 5.3.1.8. Let C be a simplicial monoid, and let f : C;; x ... x C; ., — Cp be a

formal composite of applications €;, 7; and ® subject to the relations (5.3.1) to (5.3.7), where
m, p and i1, ...,tm+1 are integers. Then there exists a unique integer n and a unique family of
integers 1 < j1 < ... < jn < p and a unique factorisation of f:

f=o€6,. ... (C®_)...0_)
such that:
o p=1i1+...+ims1+n.
e o€ Sy(j), withj = {j1,...,Jn}
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Proof. For the existence, consider that it is possible to pass all ® to the right using Equations
(5.3.4) and (5.3.5), and then all the transpositions ¢; on the left using Equation (5.3.6). Finally,
the operations ® can be rearranged using the associativity, and the operations ¢; using Equation
(5.3.1). It remains to show that we can choose o to be in S, (j).

Suppose that we have a factorisation of f that does not verify this property. Let J be the
set of all j € j such that 0-j > o - (j + 1), and let k£ such that j; is the minimum of J. Let
o' = o - 7j, and let us show that o’¢;, ... €¢;, = o€;j,, ...€j,. We distinguish two cases:

o If jp +1 = jii1. Using Equation (5.3.6) we have:

/ P— . . . . . .
O € v €y = O€G, o €y oTj Ejpt16jy - - - €y
=0€5, - €T €€l - - - €
= 0€5, - o€ - - - €

=06, € o€y +16j, - - - €y
e Otherwise, then

Uéjn...Ejl = Uejn"'ejk+17—jk€jk "'Ejl

= O'Gjn .. '6jk+16jk "'Ejl

Notice that for all i < jg, 0/ -4 =0 -iand that o' - jy =0 - (Jx + 1) < o -jr = o - (jr + 1).
Let us denote by J' the set of all j € j such that ¢’ -j > ¢’ - (j + 1). We just proved that the
minimum of J' is greater than that of J. By iterating this process, we progressively get rid of
all the elements in J.

We now move on to the proof of the unicity. Suppose f = Jlej;/ e (L® 1))
where n’ and 1 < ji <... < j,, < p are integers such that p = i1 +...+iy,11+7/, and o € S,(j'),
with j’ = {ji,...,j.,}. Note first that n’ = p —i; — ... —ippq1 = n.

Let now s = (1,...,41 + ... + mt1)) € Nil+--'+im+1' Let t = ¢j,...€,s and t' = €, - Ej-

n

By definition of € in N, both ¢ and ¢ are non-decreasing sequences of integers. Moreover,
ot = ot = f((1,...,01),(61 +1,...,01 +d2),. .., (i1 + oo+ im + 1,... 81 + ... + imy1)). Let
k € N. Since the application of o and 7 does not modify the number of occurrences of k in ¢ and
', k appears the same number of times in ¢ and #’. Since both ¢ and ¢’ non-decreasing sequences,
they are equal.

So we get that €, ...€¢;8 = € ...€ys. Using Lemma 5.3.1.6, {j1,...,jn} = {J1,. .-, dn}-
Since there is only one way to pick the elements of a finite set of integers in a strictly increasing
fashion, ji = j;. for all 1 <k < n.

On the other hand, we also have that ot = ¢’t. Let 1 <4 < p such that ¢; = ¢;;1. By Lemma
5.3.1.6, ¢ is in j. Since 0,0’ € Sp(j), 0 -i < o - (i + 1), and the same holds for ¢’. So by Lemma
5.3.15,0=0. it

Definition 5.3.1.9. Let X be a Gray 1-polygraph. A choice of critical branching up to permu-
tation is the choice, for any critical branching, of a distinguished representative up to =.

Lemma 5.3.1.10. Let % be a Gray 1-polygraph. Then any choice of critical branchings generates
LocBr(Y).

Proof. Using the action of the symmetric groups, we first get that the set of all local branch-
ings generated by a choice of critical branchings is closed under permutation. In particular, it
therefore contains all the critical branchings. Let us prove by induction on the pair (n,p) that
any n-branching whose source is of length p is generated by the critical branchings.
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If n = 0 then this corresponds to saying that EOG(O) is generated by Xy as a monoid. Take

now any f an n-branching whose source is of length p. If f = ¢;g, then g is an (n — 1)-branching
and by induction hypothesis, § is generated by the critical branchings, and so is f.

Otherwise, then either f is a critical branching and so the result holds, or we can write
f=g®h, with g # 1 and h # 1. The only case where we cannot apply the induction hypothesis
to conclude is if g (resp. h) is also an n-branching with source of length p. But then h (resp. g)
has to be a 0-branching with source of length 0, that is h = 1 (resp. h = 1), but this contradicts
the hypothesis on h (resp. g). it

Definition 5.3.1.11. Let X be a Gray 1-polygraph, and let f be a rewriting step. Then f can
be factored uniquely as ugv, with u,v € EOG(O) and g € 1. We call u (resp. v) the left-whisker
(resp. right-whisker of g, and denote it by lw(f) (resp. rw(f)).

Lemma 5.3.1.12. Let ¥ be a Gray 1-polygraph, and suppose that for all f € ¥y, s(f) # 1. Let
Y., 7 be distinguished critical branchings, and h = f1 ® ... ® f* € LocBr(X )p, for some
p>1. Let us write h = (hy,..., hy).

Then for any 1 <1 # j <p, h; # h;.

Proof. Let ji,...,jn such that for all 1 < i < n, f' € LocBr(X);,, and let h = (hy,...,hy),
where each h; is a rewriting step. For any 1 < i < p, let us denote by u(i) and v(i) the unique
integers such that 1 < v(i) < jyu) and i = j1 + ... + jy@)—1 + v(i). Then by definition of the
product:

hi = s(F1) - s(FUO ) SO+ s
Let now 1 < i # j < p, and let us show that h; # h;.

o If u(i) = u(j), then there exists z,y € EG(I) such that h; = xf y and h; = xf ])y
Since f*() is not an aspherical branching, f ;é f and so h; # h].

e Otherwise, suppose without loss of generality that ¢ < j. Then there exists z,y, z € ZOG(O)
such that:

hi = afoys(F D)z hy = sl
Then in particular lw(h;) = xlw(fv((;))) and lw(h;) = zs(fe¢ )ylw(ﬁ}ug))). But the hy-
pothesis on the source of the branchings implies that l(s(fg(.i))) > l(lw(fu(?))). So as a

(i) v (i)
consequence, 1(Iw(h;)) < 1(Iw(h;)), and so h; # h;.
s3]

Lemma 5.3.1.13. Let X be a Gray 1-polygraph, and suppose that for all f € X, s(f) # 1. Let
fYo o f"and gt ..., g™ be families of distinguished critical branchings. Ifa fl®. -® fr=
7 (' ®...®g"), for some 0,7 € Sy, thenn =m, o =7 and for all 1 <i<n, f _g .

Proof. First we prove, that for all 1 <4 < n, s( 5 = s(g"). Indeed, otherwise, let i minimal
such that s(f?) # s(g'). Note first that necessarlly m > i, so that g* is well-defined. Indeed, if
m = i — 1 the hypothesis on the source of the rewriting steps gives us that 1(s(f*)) > 0 and so
we get the following contradiction (where u = s(f')...s(f™)):

Wu) =1s(F1) - s(F") = Us(F1) .. s(F) > () - s(F 1) =1s(g") - - 8(g"™H)) = 1w).

Moreover, the fact that i is minimal implies that 1(f?) # 1(g°). Without loss of generality,
suppose that 1(s(f?)) < 1(s(g%)), such that s(g") = s(f*)v for some v € ZOG(I), v # 1. Note that
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in particular 1(s(g%)) > 1, so that g is not a O-branching. Let j > 0 such that ¢ = (g%, ... ,gj)

Let j1,...,jn such that for all 1 <k < n, f¥ € LocBr(X);,, andlet h =0 - (f!1 ®...® f") =
(hi,...,hp), where each hy is a rewriting step. For any 1 < k < p, by the deﬁnltlon of the
product, there exist integers u(k) and v(k) such that

b = s(F1) o s(FUE Pl s(FO ) s(F7)

Moreover, using the hypothesis on the source of the rewriting steps, u(k) is completely charac-
terised by the fact that 1(s(f1)) + ... + 1(s(f“®O1)) <1(Aw(hy)) < I(s(f1)) + ... + 1(s(F4*))).
So u(k) is uniquely determined. And since f**) is not aspherical, so is v(k). Let 1 < k < j
There exists k" such that s(g')...s(g" 1)gi s(g") ...s(g™) = zgLy = hy, with z,y € 200(1). Then
two cases are possible:

o If u(k') =i. Then hy =s(g")...s(g" 1)g' s(fit)...s(f") = zg'vz, with z € E(?(O) and ¢’
a rewriting step. So g,i =g¢'vand y = vz.

e Otherwise, then u(k') > i and hyy = s(f1)...s(f*E) =) g/ s(fuEI+1) [ s(f™) = zs(f)z19 22,
with 21,29 € EOG(O) and ¢’ a rewriting step. So gl = s(f%)z1¢” for some rewriting step g”.

In the end, any rewriting step g,i can be factored either in something of the form ¢’v or in
the form s(f?)g’. Since moreover s(g') = s(f?)v, we get that g° is a Peiffer branching, which
contradicts the hypothesis on g'. So in the end we get that n < m and for all 1 < i < n
s(f%) = s(g%). By symmetry, we get that n = m.

Notice finally that because of the characterisation of u(k) we gave earlier, we have that for any

1 < k < n, there exists some (unique) v/(k) such that hy = s(f1)...s(f*®)-1) ZUZ s(f“ (R)+1y s(fm).
As a consequence, we get that for all 1 < k <n, {fF,..., j]‘;} = {gk,... ,gjk}. So g' = f*, but
since they are both distinguished critical branchings, f° = g'. Finally, because of Lemma
5.3.1.12, for any 7 # j h; # hj, and so 0 = 7. pid

Theorem 5.3.1.14. Let X2 be a monoidal 1-polygraph, and suppose that for all f € X1, s(f) # 1.
Then LocBr(X) is freely generated by any choice of critical branchings up to permutation.

Proof. We already know from Lemma 5.3.1.10 that LocBr(X) is generated by any choice of
critical branchings. Using Proposition 5.3.1.8, we need to show that for any p-branching f,
there exists a unique m € N, a unique sequence of integers i1,...,%4n+1, a unique family of

distinguished critical branchings f*,..., f™*!, with f* € LocBr(X), unique integers n and
1<j1 <...<jn<pand aunique o € S, such that:

f:a~ejn...ejl(fl®~--®fm+l>'

Together with p = i1+ ... +ipm41 +n and 0 € S,(j), where j = {j1,...,jn}. Let us suppose that
we have a second such decomposition f = o’ - €, €5 (f'®...® f™*1), and let us show that
they are equal.

Note first that by definition of the operations ¢; and of teh action of o, we have equalities
that the set of rewriting steps appearing in f is the same as the set of rewriting steps appearing
in f!®...® f™"! and symmetrically as the set of branchings appearing in ! ®...® f™ 1.
Since all the rewriting steps appearing in f'®...® f™* or f1®...@ f™ *! are distinct (Lemma

5.3.1.12 ), there exists a permutation 7 such that fl®...® fm* = 7. (f’l ®...® f™+1). By
Lemma 5.3.1.13, we get that 7 = 1, m’ = m and for all 1 <i<m + 1, f' = f".
The proof of the uniqueness of the j; and of ¢ is similar to the one in the proof of Proposition

5.3.1.8, using the fact that all the rewriting steps appearing are distinct. op
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Remark 5.3.1.15. The condition that for all f € X1, s(f) # 1 is really necessary. Indeed, if
f is such an rewriting step, then we have €1 f = (f, f) = f ® f. This condition however is very
mild since we are interested in terminating polygraphs, which will all verify this condition.

Definition 5.3.1.16. A good choice of critical branching is a choice of critical branchings such
that for all distinguished critical n-branching f and all 1 < i < n, there exists distinguished
critical branchings f',..., f? such that ¢;f = f'1 ®...® fP.

Lemma 5.3.1.17. Let ¥ be a Gray 1-polygraph such that for all f € X1, s(f) # 1. There exists
a good choice of critical branchings in LocBr(X).

Proof. For n = 0, critical 0-branchings correspond to the elements of ¥g. The equivalence classes
are trivial, so we choose all of those as distinguished ones. For n = 1 the critical 1-branchings are
the elements of X1, and once again the equivalence classes are trivial. The condition that there
exists distinguished critical O-branchings f!,..., f? such that 0, f = f!®...® fP correspond to
the fact that 0; f is a word on Xy.

We now order rewriting steps by saying that for all f,g € »; and all z,y,2 € Eg(l),
xfys(g)z < xs(f)ygz. Note that in particular this is anti-reflexive because if xfys(f)z <
xs(f)yfz then in particular x = zs(f)y and so s(f) = 1, which is impossible by hypothesis.
Let us now choose a completion of < into a total ordering on rewriting steps. We say that a
non-aspherical branching f is well-ordered if for any i < j, f; < f;. In particular if f! and f? are
well-ordered, then so is f' ® f2. Define the distinguished critical branchings as the well-ordered
ones, and let us show that this is a good choice of critical branchings. First because the order
is total it is a choice of critical branchings.

Next we reason inductively on n to show that for any 1 < i < n, and any n-branching f,
0;f is of the required form. Since a choice of critical branchings freely generate all branchings
we know that we can write 6;f = o - €jp - - - a(f'®...® fm), with f* all distinguished critical
branchings. Since f is a critical branching, no rewriting step appears twice in f and in particular
this also holds for 0;f. Sop =0and 6;f = o (f'®...® f™). Since all the fi are well-ordered,
sois f1®...® f™, and so is 0;f (because f was). But then the only permutation that respects
the order is 0 = 1.

i)
Note that the proof of Lemma 5.3.1.17 actually proves the following:

Proposition 5.3.1.18. Let ¥ be a Gray 1-polygraph such that for all f € X1, s(f) # 1, and

let < be a total ordering on rewriting steps such that for all f,g € 31 and all x,y,z € Eg(l),

zfys(g9)z < xs(f)ygz )

Define a non-aspherical branching f = (f1,..., fn) to be well-ordered if for alli < j, f; < fj,
and define the distinguished critical branchings as the well-ordered ones.

This defines a good choice of critical branchings in LocBr(X).

Remark 5.3.1.19. In particular, if ¥ is a reduced Gray 1-polygraph, then the left-most ordering
on rewriting steps satisfies the hypothesis of Proposition 5.3.1.18. The left-most ordering is
defined by: for all rewriting steps f and g of same source, f < g if I(lw(f)) < 1(lw(g)).

5.3.2 The reduced standard resolution of a monoid

In this section, we give an explicit description of the reduced standard resolution of a monoid
M. In order to clarify notations, we reserve juxtaposition to denote the multiplication in M.
Product in the free Gray-monoid will be denoted by &.

169



Definition 5.3.2.1. Let M be a monoid. We define a Gray (w,1)-polygraph RStd(M) as
follows:

e For any n > 0, RStd(M),, consists of (n+ 1)-tuples (mq,...,m,+1) of elements of M\{1},
that we denote (mq|...|mu41).

e The faces are given for 1 < i < n by:

0; (mal...Impi1) = (mal...|m;) @ (Mgl [Mps1)
(ma] ... [mimipr|migol .. [Mmps1)  mimapq # 1
O (ma). . Immsr) = er(msg|...|mps1) 1=1and mimo =1
Ly (mal. .. |mi—1|mital ... mpt1) 2<i<n—1and mm;i =1
€n—1(ma|...|mp_1) i =mn and mym,41 =1

with 0] (m1|ms2) = 1 (the unit of the Gray monoid RStd(M)) if mi;ms = 1 (the unit of
the monoid M.

Proof. Let us prove that RStd(M) does indeed form a Gray (w, 1)-polygraph. Indeed, we have,
for j > i:

0710, (mal...|mpgr) = 0,y (mal ... [m;) @ (Miga]. .. [mpg1)
= (m1|...|m;) @ (Mix1]...|my) @ (Mjsa] ... |Mnps1)
= 0; (ma|...|m;) ® (mjs1|. . [mns1)
=0; 0; (ma]...[mp41)

If mimjy1 # 1:

0105 (ma] .. Impy1) = 01 (ma] .. [my) ® (miga] ... [mng)
= (ma]...|mi) @ (miya]... [mymjalmjiol. .. [mni1)
= 0; (ma]...[mymji1lmjsol. .. |mpi1)
= 8{8}(m1| o mng1)

If mjmji1 =1and j =i+ 1:

o 37 (mal . Imast) = 8F (] . 1ms) @ (i - [ s)
= (m1]...|m;) @3 (miy1] ... |mns1)
= (mq|...|m;) @ ex(miss|...|Mnt1)
=€ (my]...|m;) ® (Mits|...|mpt1)
= €0; (ma]...|milmigs|...|[mns1)
=0; If (ma] ... milmits] ... |mps1)
= 0705 (ma ... |mpy1)
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Ifmmjg=1landi+2<j<n-—1L

0105 (ma] .. Impy1) = 04 (ma| ... [my) ® (miga ... [mn41)
= (ma]...|my) ® Oj—i(mis1] ... |mny1)
= (ma|...|my) ®F;r_i_1(mi+1| comyoimygel .
=T ((mal]. . [me) @ (misa| ... [mj—a|mjaal ...
F;r 0; (ma]...|mj—1|mjyo|...|mp)
= 0; T (mal...Jmj—1|mjial ... Imy)
= Gi_ﬁj-ﬁrl(ml\ oo mn)

If mi;miy1 = 1 andj =n:

OE 107 (mal o Imas1) = 3y (ma . [m) @ (i - mnga)
= (m1| e |ml) ® 0Z_i(m¢+1| N |mn+1)
= (m1| e |ml) @ En,ifl(mi+1| e |mn,1)
= en,g(m1| e |ml) ® (mi+1| e |mn,1)
= €n—20; (M1]...|mp—1)
=0, en—1(mi|...|mp_1)

— 7ot (mal. )

If mym;y1 # 1:
05107 (mal .. [mps1) = 0y (mal .. [mamiga|[migal .. M)
= (ma|...|lmimiamisel. .. [m;) ® (mjsa]. .. [mns1)
= 0 (mal...[malmig1|misol .. [mj) ® (mja] ...
= 8?0]-_(7711\ oo ming1)
If mimiy1 =1landi=1and j =2:
ﬁfﬁf(mll e ]mnH) = 51_61(TrL3’ e ]mn+1)
= (mg‘ e \mm_l)
= ) (m1|ma) ® (m3| ... [my41)
= 6f6’2_(m1| e mng)
If mim;y1=1andi=1and j > 2:
0;_161+(m1| ce |mn+1) = (97 161(m3| v |mn+1)

— @107 y(ma.... )
=e((msl...|m;) ® (myjs]. .. |mpt1))
= (e1(ma]...|m;)) ® (mji1]. .. [mn41)
= (07 (ma] ... Imy)) ® (M ... [mnt1)

=0y ((ma] ... Imj) ® (mjsa] ... [mps1))
éfa (m1| N |mn+1)
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Ifmm;pi1=1land2<i<n—landj=i+1

07 0 (mal...\mps1) = 0, T ((ma] ... [mi—1|migal ... [mny1)
= €i—10;_1(ma|...|mi—1|migal ... |mps1)
=é€—1(my]...|mi—1) ® (Mital| ... |mps+1)
=0/ (ma]...[mit1) ® (misa| ... Mnt1)
— 3F o5 (] Imns)

Ifmimigg=1land2<i<n—1landj>i+2
0,10 (ma| .. Impg1) = 04T (mal . fmi—a|misal . M)
=T 0, o(mal... Imicamiral .. . [mns1)
=TF (ma] ... micimigel ... |my) @ (Mt ... [mn+1)
=0 (mal... [mj) ® (myjsa] ... [mpi1)
= 8;5;(7711\ oo M)

If mimijp1 #1 and mym; 1 # 1and j =17+ 1:

8j6j(m1| compg) = é’;r(m1| oo mi—mimiga | mage| - mpgr)
= (my|...|mi—1mimirimiralmizs| ... |mui1)
= a;r(mﬂ o mglmipimgpalmig | .. Imp )
=07 0f 1 (my] ... |mpy1)

If mimip1 #1 and mym; 1 # 1and j >0+ 1:

é’;f_l&j(mﬂ M) = 5;_1(m1| cocmizalmimigamigel . fmn )
= (mal...[mi—1lmimiy1|migal ... Imj_1fmimjiiaimgiel. . [mny1)
=0/ (mu]...[mj—1lmjmj1|mjial ... [mas1)
= 0;&;(m1| cmpg1)

If mim;y1=1andi=1and j =2:
afaf—(mﬂ e |mn+1) = é’fel(m3| e |mn+1)
= (TTL3| e ‘anrl)
= 0] (m1|mams|mal ... |mps1)
— 675 (m] . mas)

If mym;y1 =1 and ¢ =1and m;ym;y; # 1 and j > 2:

a;f_laf(mﬂ cmng1) = 6;_161(m3| e mpg)
= 610;’_2(m3| oo ming1)
= er(ms]...|mj—1|mymjpi|mjgol ... |Mmps1)
=0y (ma] ... |mj_1|mjmjs1|mjial. .. |mni1)
= 0,0 (ma]...|mny1)

Ifmim;y1=1land2<i<n-—1landj=1i+1:

6;’8:‘(m1’ oo mpg) = ajrltl(mﬂ o mizamigal L mpgr)
= (ma]...|mi—1|misa|. .. |mus1)
= 0; (mal ... mglmig1migalmigs ... [mpy1)
- a;raztrl(mﬂ - M)
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If mimipr =1land 2<i<n-—1and mjmj1 #1and j >i+ 1.

OF 1 0F (ma] .. mps1) = & T (ma . Jmialmasal - lmas)
= F;r—la;‘r—z(ml‘ o mizi migal - mpg)
=TF (ma].. [mic1lmige| ... [mj—1|mjmjsi|mjgol ... |mpir)
=0 (ma] ... |mj_1lmimji1lmjial. .. [mpi1)

= 6?(9;”(m1| cmng1)

If i =1and mjmj1 =1and j =2

o7 o (ma|. .. Impy1) = 0f (maimal ... [mui1)
= (mafmal. .. |mpi1)
= 07 e1(ma|ma| ... |mpi1)
= 0+ 0} (ma) .- Jmns)

Ifi#1,n—1and mjymj1 =1land j=1i+1

8:“62+(m1\ e |mn+1) = &j(m1| e |mi_1]mimi+1\mi+2| .o |mn+1)
= (m1] NN ]mi\mi+3| NN ]m,H_l)
=0 I (mal...[milmiss . . [mnsa)

= 6700y (mal )

Ifi=n—1and mjmjy1 =1and j =n.
8;718;71(m1| s mpg1) = a;fl(ml\ oo mp—amp—1mp | mp 1)
= (my|...|mp-1)

= &Z_len_l(ml\ “. |mn_1)

= 07,0 ] . Ima)

If mimiy1 #1and mjmjyp =landi+2<j<n—1

8;’71617"(7%1\ coimy) = @;Ll(mﬂ e mi—gmimia|mage| - mpg1)
= F;l2(m1] o ma—a | mimg e magel - Imy—1mggel - Mpgr)
=T/ 50 (mal... [mj—almjial ... [mpi1)
=0T/ (ma]...Jmj1|mjaal .. [mpy1)
= 8;5;(7711] oo mingr)

If mymiy1 #1land mymjy =landi+2<j=n

0:{_167l+ (mal...|my,) = 6:_1(m1| co Mz mimermiga| o mygr)
= €ep—a(mal|...|mi—1|mimipi|lmigo|...|mnp_1)
= €n—20; (ma]...|mp_1)
=0 en_1(mal...|mp_1)
G
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If mimjpz1 =1and mymj;1 =landi=1land3<j<n—1

6}718T(m1\ e mpg1) = 0+ e1(ms] .. |mpg1)
€10, 5(ms| ... [mn41)

= g+ s(msl...[mj_1|m ol .. [mpi1)

=T/ se(ms]...[mj—1lmjsal. .. [mps1)

=T/500 (mal ... [mj1|mjo] . [mnsa)

= 81+Fj+—1(m1| o myamgpe] o ming)
= 070 (ma) ... [mas1)

If mym;y1 =1land mymjy1 =landi=1land3<j=n

Op_10y (ma] .. Impy1) = 05 161(m3|-~|mn+1)
= €10, _o(ms3]...|Mmpi1)
= €16n— 3(m | mn—1)

€n—2€1(ms| ... |[mp_1)
= €n—20; (ma]...|mn_1)
= 0 en—1(ma]...|mn_1)
=07 0 (ma] ... |my)

If mym;y1 =1land mymj1 =land2<iandi+2<j<n-—1:

6;_1(9;’ (mi|...|mps1) = ﬁ;’_ll“f_l(mll comizamigal - mpg)
- F;r—la;'r—2(m1| o micamigel . [ming)
= F;r_lfj_3(m1| o masr Mgl o my—1|mygal .
= F;’_QI‘;”_l(mﬂ o misamigal L my_amygal
=T/ 507 (m]. . fmj1|mjia| . [mps)
=0/ )y (mal ... Imjamjial . [ s1)
= 0,70 (mal... [mpi1)

If mym;y1 =1land mymjy; =land2<iandi+2<j=mn:

Op_10; (mal .. Imps) = 05 Ty (mal o Imam1|mia| - [mipn
= F+ 105 o(ma| . Imisamigel Mg
r" 1en s(mal...Jmi—1|migol. .. |mu_1
= €n—21—‘i,1(m1‘ comizimigal - Mg
= €n—20; (ma]...|mu_1)
=0 en_1(ma]...|mp_1)
= 020 (mal .- mns)
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If mimjp1 =1and mym; 1 =landi+2=j=n:

Op_10n_o(mal...Imni1) = 0y Ty g(mal ... [mp_z|mn|mni1)
= Fn 30n— Q(m |- mn—s|mn|mpg 1)
=T} sens(ma|...|mn_3)
= €p—26n—3(mi|...|my_3)
= €n—20, o(ma|...|mu_1)
= Oy gen—1(ma|...|mn_1)
= 5;,25;'(7711] cee[Mpgn)

&

Lemma 5.3.2.2. The Gray-polygraph RStd(M) is a terminating targets-only Gray-polygraph.
The monoid presented by RStd(M) is M.

For any (mq]...|mp11) € RStd(M),, br(mi|...|mnps+1) is the n-branching given by, for
1<k<n:

br(mi|...[Mmus1)e =M1 ® ... @ Mp_—1 @ (Mp—kt1|Mp—k+2) @Mp_42 Q... @ Mpi1
Moreover, those form a good choice of critical branchings.

Proof. Let my,ma € M, with my,mg # 1. Then 1(d] (m1|m2)) = 2 > 1 = 1(d; (m1|mz)). So
RStd(M) is terminating. Moreover, the formula 0; (m1]...|mp41) = (ma]. .. |m;)@(Mmit1]. .. |Mpi1)
shows that it is targets-only.

Finally, recall that the standard presentation of M is the following:

{(m) € M|(m1) ® (ma) = (mimz), (1) = 1)

In particular, using the relation (1) = 1 we can remove (1) from the generators. Moreover, in
this case the relations (mj) ® (m2) = (m1msz) become redundant whenever m; = 1 or my = 1.
In the end, we get RStd(M )¢ as set of generators, and RStd(M); as generating relations. So
the monoid presented by RStd(M) is indeed M.

We prove the formula for br(mi|...|mp4+1) by induction on n. For n = 1 this just means
that br(mi|ms) = (mq|mse). For general n > 1, we have:

br(mi|...|mui1) = (br(dy (mal...[mnp41)), br(d, (mal ... |mni1))n-1)

Sofor1 < k <nwegetbr(my|...|mp1)r =br(d] (mi]...|mps1))e = mi®br(ma|...|mp41)k.
By induction, we finally get the required formula:

br(mi|...[mps1)k =M1 @M2® ... @ Mp_—1 & (Mp—k41|Mn—k+2) @ Mp_t12 @ ... @ Mpi1
And for k = n we have br(mq|...|mp41)n = br(d, (mi]...|mps1))n—1 = (M1lm2) @M3®...®
Mpi1, as required.
Finally, up to permutations, all the critical branchings are of this form, making the family

br(mi|...|mu+1) a choice of critical branchings. It is a good choice thanks to the equation
(%br(ml\ ce |mn+1) = br(mﬂ ce |7TLZ) ® br(mHl\ ce |mn+1). od

Theorem 5.3.2.3. The Gray monoid RStd(M) forms a polygraphic resolution of M.
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Proof. The only hypothesis missing to apply Theorem 5.1.3.8 is the description of a morphism
of simplicial monoid

® : LocBr(RStd(M)) — V(RStd(M)EM).

By Proposition 5.3.1.14 together with Lemma 5.3.2.2, LocBr(RStd(M)) is freely gener-
ated by the branchings br(m;|...|mp+1), so it is enough to define ® on those. We define
®(br(mi|...|mut1)) := (ma|...|muyt1), so that ® also satisfies the required equation. Theo-
rem 5.1.3.8 therefore allows us to conclude. &

5.3.3 Squier’s resolution of a monoid

In this section, we suppose given a convergent Gray l-polygraph ¥ presenting a monoid M.
We show how it is possible to extend this data in a polygraphic resolution of M satisfying the
hypothesis of Theorem 5.1.3.8. We suppose chosen a good choice of critical branchings in Br(X),
which is possible by Lemma 5.3.1.17.

Definition 5.3.3.1. Let C be a cubical w-category, a half-n-shell in C is the data of A =
(Aq1,...,A,) € C,—1 such that for all j > i, 8]-__114@- =0; A;.

We denote A4; by d; A. For any half-n-shell 4in C, and 1 < i < n, we define a half (n—1)-shell
d; A by putting:

By definition, we have for any half n-shell A and 1 <i # j < n: o (9;-814 = 85 0 A.

Proposition 5.3.3.2. Let ¥ be a terminating Gray (w, 1)-polygraph. Suppose that there exists
a natural transformation S : v, = NF or.
Let 1 < p < n, and let A be a half p-shell in [S]*V). Define the following {0,1}P grid in
[Z]*(l):
,s7 (0 — n
) {rf D80 A s #1,..00)

Cs[A] = _
Al e’NF(1A) s=(1,...,1)

Then C,[A] is a composable grid. Moreover, we have for all 1 < i < p:

22 Comp(C.[A]) = {?é . z .

Proof. First, we show C,[A] is a composable grid:
Let s € {0,1}? and suppose that s(i) = 0 for some 1 < ¢ < p. We distinguish two cases. If

s(j) = 1 for every j # i then Ff’si(o) = [i — 1] and:

0f Cu[A] = o7 V8(a7 ) A) = 0f S(07 A) = NF(n(4))) = & i
Since necessarily S;s = (1,...,1), we have on the other hand 6;’05 = 0; Cs,;s. Suppose now
that there exists j # ¢ such that s(j) = 0. Then:

oFCuA] = o1 s o\ A)

)
_ O g
T} (0, )
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_ - o, (Sis)™ _ -
Oy Cu[A] = o1& Og (g o 0 A)

_ p+(Sis)7(0); A— - 1

=5 6i<sis>*<o)HS(&(SVL'S)*(O)A>

_ H(Sis)7(0); — - A

=T S(gi(sis)ﬂo)6(318)’(0)‘4)
,(Sis)7(0); — 1

_ Pi"( )~ (0) 5(557(0)14)

So finally C, is composable. Let D, be the composable {0,1}P~! grid defined by D; = 0; Ci_,

(recall that ¢_; consists in inserting 0 in the i-th position of ¢). Then we have d; Comp(C,) =
Comp(D.,), and we have:

Dy =87C, =orY A

We distinguish two cases. If t7(0) = ¢J then Ff’t:i 0 _ [i — 1] and so Dy = 0] S(0; A) = 0; A;.

Otherwise, then ¢ can be written as P ;s for some j # i , and then Dp € Im(¢;). In a manner
symmetric to that of simple grids, we therefore have that Comp(D ) A;, which proves that
Comp(C,) satisfies the first condition.

For the second condition, let D, be the composable {0,1}P~1 grid defined by Dy = d; C,,,

2
(recall that t,; consists in inserting 1 in the i-th position of ¢. Then we have J;" Comp(C,) =

Comp(D.,), and we have, if t # (1,...,1):

Dy = f Croi = of1 Vg0

t44(0)

iA4)

4)
_ rh O g
=TT TSy
_ 1t (0) 5+ A
=170 S0 g A)

_ rHit™ () + — A
B R A P

1 O,

-0 A) = Ci[o7 4]

And similarly if ¢t = (1,...,1) then D; = ezf_lu = C[0f A]. So finally 0 Comp(C,) =
Comp(D.) = Comp(C.[0] A]).

2

&

The previous Proposition expressed how the existence of S assured that any half-p-shell has
a filling, for p < n. The next Lemma asserts on the other hand that half-(n + 1)-shells can be
completed into an (n + 1)-shell.

Lemma 5.3.3.3. Let ¥ be a terminating Gray (w,1)-polygraph. Suppose that there exists a
natural transformation S : 1, = NF om.

Let A be a half (n + 1)-shell in [S]*1). There exists an (n + 1)-shell B in [Z]*V) such that
0y B=0; A foralll <i<n-+1.
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Proof. Using Proposition 5.3.3.2, let Bj” = Comp(C,[d;" A]). Then we have, for j > i

07 10; B=0; ,0;f A=0;0; B
0; 10 B =20, ,Comp(C.[0] A]) = 0, 0] A
=0;0;A=0/0;B
0j 10; B= 0] ,0; A= 0] ,0; Comp(C.[A])
_ oot i — o + AN = A~ ot B
- 0; 0; Comp(C.[A]z = 0; Comp(C,[0] A]) = 0, 0] B
5;_1(9;"3 = 6;’_1Comp(C. [0:" A]) = Comp(C, [&;”_IGZ*A])
= Comp(C.[0; 0] A]) = ¢; 0] B

&

Proposition 5.3.3.4. Let ¥ be a targets-only terminating Gray (n, 1)-polygraph, and let M =

E(?(O)/Ef(o) be the monoid presented by . Suppose that there exists a natural transformation
S ity = NFor and a morphism of augmented symmetric simplicial sets ® : BrLoc(X)<, —
V(2CW) such that for all A € [X]<pn, ®(br(A)) = A.

Then it is possible to extend ¥ into a targets-only (n + 1,1)-polygraph such that there ezists
a morphism of augmented symmetric simplicial sets ® : BrLoc(I') <11 — V(EG(U) satisfying
for all A € [X]<n, ®(br(A)) = A.

Proof. Let f be a distinguished (n + 1)-critical branching in BrLoc(X). Let 4; = ®(0;f). Since
® is a morphism of semi-simplicial sets, this defines a half-(n + 1)-shell in X¢(1). By Lemma
5.3.3.3, let us complete this in a shell B’. We now define ¥, to be a set of cells Bf, with
shell given by Bf. Then since BrLoc(X) is freely generated by critical branchings, it is enough
to define ® on the distinguished (n + 1)-critical branching, which is done in the obvious way :
®(f) = Bf. By construction, this verifies all the required properties. pid

Theorem 5.3.3.5. Let X be a convergent Gray 1-polygraph and let M be the monoid presented
by X. There exists a completion of ¥ into a Gray (w,1)-polygraph ¥ such that:

o The n-cells of ¥y, correspond to the n-critical branchings
e Y is a resolution of M (more specifically, 3 satisfies the hypothesis of Theorem 5.1.3.8).

Proof. This is just a repeated application of Proposition 5.2.3.4 to extend 3, followed by an
application of Proposition 5.3.3.4 to extend S. op
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