The undecidability of the word problem

Although algorithms are nowadays commonly associated with computer science, they appeared together with mathematics as early as 1600 B.C. in Babylonia. Famous algorithms include Euclid's algorithm for computing the greatest common divisor, the sieve of Eratosthenes for finding prime numbers, Newton's method to approximate the roots of a real-valued function, and Lovelace's program for computing Bernoulli numbers. The word algorithm itself comes from the latinized version of al-Khwarizmi's name, a IX th century Persian scholar. At the beginning of the XX th century, Hilbert's 10 th problem called for an algorithm capable of determining whether a Diophantine equation had integer solutions.

However, it wasn't before 1936 and the works of Church [19] [20] and Turing [START_REF] Mathison | On computable numbers, with an application to the entscheidungsproblem[END_REF] [85] on the Entscheidungsproblem (following the pioneering work of Godel [START_REF] Gödel | Über formal unentscheidbare sätze der principia mathematica und verwandter systeme i[END_REF]) that the first problem provably unsolvable by algorithmic means arose. Such a problem is called undecidable. The Entscheidungsproblem (literally, the 'decision problem') was a problem raised in 1928 by Hilbert and Ackermann [START_REF] Ackermann | Grundzüge der theoretischen logik[END_REF]. It asked for an algorithm capable of deciding whether a first-order formula is valid or not. Soon after, Post introduced the notion of reducibility [START_REF] Post | Recursively enumerable sets of positive integers and their decision problems[END_REF], allowing to prove the undecidability of many other problems. In particular, he proved in 1947 the undecidability of the word problem for monoids [69] (a result also independently proved by Markov [START_REF] Markoff | On the impossibility of certain algorithms in the theory of associative systems[END_REF]), a question opened by Thue in 1914 [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln, von Axel Thue[END_REF] and which is of central importance to this work.

Recall that a monoid M is the data of a set M equipped with a binary associative and unary operation M ˆM Ñ M . If E is a set then the free monoid generated by E is the set of all finite (possibly empty) sequences of elements in E, where the product is given by concatenation. Not all monoids are free though. In general, they can be described using a presentation. A presentation is the data of a set E of generators together with a set R of generating relations between the elements of E ˚. The monoid presented by such an object is the quotient of E by the congruence generated by R. For example, the monoid B 3 , called the monoid of positive braids on three strands, can be described by the following presentation: B 3 " xs, t|sts " tsty.

(1.1.1)

In B 3 , the generating relation sts " tst induces for instance the relations stst " tstt and stss " ssts (where in the second example we apply the generating relation twice). Note that a monoid may also have more than one presentation. For example, another presentation of B 3 is given by: B 3 " xs, t, a|ta " as, st " a, sas " aa, saa " aaty.

(1.1.2) Given a presentation pE, Rq of a monoid M , the quotient of E ˚by the generating relations induces a surjective morphism of monoids π : E ˚Ñ M . The word problem for monoids is the following: Problem 1.1.1.1 (Thue, [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln, von Axel Thue[END_REF]). Given a monoid M , does there exist a presentation pE, Rq of M such that there exists an algorithm deciding, for all u, v P E ˚, whether πpuq " πpvq? 1Although the negative results of Post and Markov prove that there exist monoids for which such an algorithm doesn't exist, there are techniques to solve the word problem for some wellbehaved monoids. The technique we are particularly interested in is based on rewriting theory.

Rewriting

Rewriting techniques became widespread in the 1930s in multiple contexts. It is therefore not surprising that the first paper studying rewriting theory in itself was published in 1941 by Newman. At the tie, the two main applications of rewriting were to provide solutions to the word problem (both in the case of monoids and of other structures), and in Church's λ-calculus [START_REF] Church | A set of postulates for the foundation of logic[END_REF], where the β-reduction forms a rewriting rule. We cannot resist quoting the description of rewriting theory given by Newman in [START_REF] Herman | On theories with a combinatorial definition of" equivalence[END_REF]:

The name "combinatorial theory" is often given to branches of mathematics in which the central concept is an equivalence relation defined by means of certain "allowed transformations" or "moves". A class of objects is given, and it is declared of certain pairs of them that one is obtained from the other by a "move"; and two objects are regarded as equivalent if, and only if, one is obtainable from the other by a series of moves. [...] In many of such theories the moves fall naturally into two classes, which may be called "positive" and "negative". Thus in a free group the cancelling of a pair of letters may be called a positive move, the insertion negative; in topology the breaking of an edge, in [λ-calculus] the application of [β-reduction], may be taken as positive moves.

The idea behind rewriting theory is that, given a presentation pE, Rq, it is useful to consider the order relation generated by R in order to study the equivalence relation that it generates. To do that, we need a bit more structure on a presentation: we need a distinguished orientation of each generating relation. Let us define a string rewriting system (or word rewriting system) as a set E of generators and a set R of generating relations, together with source and target maps s, t : R Ñ E ˚. Of course, by forgetting about the orientation, one can see any string rewriting system as a presentation. For example, the following string rewriting system is a presentation of B 3 : B 3 " xs, t, a|α : ta ñ as, β : st ñ a, γ : sas ñ aa, δ : saa ñ aaty.

Starting from an element f of R, an element of the form uf v, such as aβt : astt ñ aat is called a rewriting step. A sequence of rewriting steps, each one rewriting the previous one's target, is called a rewriting path. Finally, a sequence consisting of both rewriting steps and inverse rewriting steps is called an equivalence path. In order to provide a solution to the word problem for B 3 , let us showcase two properties of the string rewriting system presenting B 3 . One, it is a terminating presentation, which means that there exists no infinite sequence of rewriting steps:

u 0 u 1 u 2 u 3 f 1 f 2 f 3 ¨¨S
econd, it is confluent. Define a branching to be a pair pf, gq of rewriting sequences with the same source. Confluence holds if, for any branching, there exist rewriting sequences f 1 and g 1 of same target, such that f 1 rewrites the target of f and g 1 rewrites the target of g. For instance in the case of B 3 , the rewriting steps γas : sasas ñ aaas and saγ : sasas ñ saaa form a branching, leading to the following so-called confluence diagram: Note that although confluence may be difficult to verify, there exist results relating it to more elementary properties. General references for rewriting theory are [START_REF] Baader | Term rewriting and all that[END_REF], and [START_REF] Ronald | String-rewriting systems[END_REF] for the particular case of string rewriting. In particular, Newman's lemma [START_REF] Herman | On theories with a combinatorial definition of" equivalence[END_REF] shows that for a terminating word rewriting system to be confluent, it is enough to show the confluence of the local branchings, that is the branchings pf, gq where both f and g are rewriting steps. The critical pairs lemma (see for example [START_REF] Ronald | String-rewriting systems[END_REF]) further restricts the set of branchings that one needs to check in order to obtain confluence to the so-called critical pairs, which are in finite number whenever E and R are. Finally, in the case where one has a terminating string rewriting system, Knuth-Bendix completion [START_REF] Donald | Simple word problems in universal algebras[END_REF] may be used to ensure the confluence.

A word rewriting system that is both terminating and confluent is called convergent. The point of convergent string rewriting systems is that any monoid which can be presented by a finite convergent word rewriting system has a decidable word problem, using the so-called normal form procedure. This led Jansen to the following problem: Problem 1.1.2.1 (Jansen, [START_REF] Jantzen | Semi Thue systems and generalized Church-Rosser properties[END_REF] [START_REF] Jantzen | A note on a special one-rule semi-thue system[END_REF]). Does there exist a monoid whose word problem is decidable, but which does not admit a presentation by a finite convergent string rewriting system?

In 1985, Kapur and Narendran [START_REF] Kapur | A finite thue system with decidable word problem and without equivalent finite canonical system[END_REF] studied the case of B 3 . They showed that even if, as we saw, the monoid B 3 admits a finite convergent presentation, it admits no such presentation on the set of generators ts, tu. This means in particular that, if one was to show that a monoid does not admit a finite convergent presentation, one would have to check every possible set of generators. As a consequence, new methods had to be introduced to answer Jansen's question.

Squier's theorems

In 1987, Squier introduced in [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF] a homological invariant on monoids. By invariant we mean that, although this invariant is defined on presentations, it actually only depends on the presented monoid. Squier proved in particular that all monoids presented by a finite convergent string rewriting system satisfy a homological finiteness condition. Moreover, he was able to produce a monoid whose word problem is decidable, but which does not satisfy this finiteness condition. By Squier's homological theorem, this monoid cannot admit a presentation by a finite convergent string rewriting system, answering by the negative to Jansen's problem.

In a posthumous paper published in 1994 [75], Squier introduced a homotopical version of his finiteness condition. To do that, he showed how to extend a convergent string rewriting system pE, Rq presenting a monoid M , into a coherent presentation pE, R, Sq of M . Let us explicit the structures at hand. First, E is a set, and it generates a free monoid E ˚. Then we have maps s, t : R Ñ E ˚and R generates the set of rewriting paths, that we denote R ˚. Moreover, for any two elements f and g of R ˚(with suitable sources and targets) we can form two composites: f ' 1 g, which corresponds to applying f followed by g, but also f ' 0 g, which corresponds to applying f and g in parallel to the same word.

f ' 1 g " u v w f g f ' 0 g " u 1 u 2 v 1 v 2 f g
These compositions equip pE ˚, R ˚q with a structure of (one object) 2-category, with elements of E ˚forming the 1-cells, and rewriting paths forming the 2-cells. The pair pE, Rq on the other hand forms a 2-polygraph. Polygraphs are presentations for higher-dimensional categories. They were introduced by Street under the name of computads [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF] [79], and later by Burroni [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF]. A 3-polygraph is the data of a 2-polygraph pE, Rq together with a set of generating 3-cells S (that have to be understood as 'relations between the relation'), with source and target operations s, t : S Ñ R ˚. This data can be arranged in the following way, where the pairs of parallel arrows denote the operations s and t, and the vertical arrows denote the inclusion:

E R S E ˚RÅ
3-polygraph is said to be a coherent presentation of a monoid M if any two parallel equivalence paths are related through a composite of elements of S (and their inverses). Note that it is always possible to extend a convergent presentation pE, Rq of a monoid M into a coherent presentation: it suffices to take in S one generating 3-cell for each pair of parallel rewriting paths. Squier's homotopical theorem describes a more "efficient" coherent presentation of M . In particular, the elements of S correspond to the critical branchings of pE, Rq. Critical branchings are a particular form of local branchings, and they are furthermore in finite number if both E and R are finite. So Squier's homotopical theorem proves that a monoid admitting a finite convergent presentation also admits a finite coherent presentation. This last property is the homotopical finiteness condition defined by Squier. This theorem of Squier is the starting point of what is today called higher-dimensional rewriting.

Higher-dimensional rewriting

Squier's theory and coherence theorems

Squier's homotopical theorem deals with the rewriting of monoids. Since then, it has been extended to other kinds of structures, such as algebras [START_REF] Guiraud | Linear polygraphs and koszulity of algebras[END_REF] or higher-dimensional categories [38] [39]. The latter is particularly interesting because it can be used to prove coherence theorems for weak structures. A mathematical structure, such as the notion of monoid or algebra, is often defined as some data satisfying relations. In the case of monoids, the data is a set and a binary application, and the relations are the associativity and the unit axioms. In category theory, one often considers relations that hold only up to isomorphism. One of the simplest examples of such a structure is that of monoidal categories, in which the product is not associative, but instead there exist isomorphisms The intended purpose of this relation is that, between any two bracketings of A 1 b . . . b A n , there exists a unique isomorphism constructed from the isomorphisms α A,B,C . This statement was made precise and proved by Mac Lane in the case of monoidal categories [START_REF] Mac | Natural associativity and commutativity[END_REF]. In general a coherence theorem contains a description of a certain class of diagrams that are to commute. Coherence theorems exist for various other structures, for example bicategories [START_REF] Mac | Coherence for bicategories and indexed categories[END_REF], or V-natural transformations for a symmetric monoidal closed category V [START_REF] Maxwell | Closed coherence for a natural transformation[END_REF].

Coherence results are often the consequence of (arguably more essential [51]) strictification theorems. A strictification theorem states that a "weak" structure is equivalent to a "strict" (or at least "stricter") one. For example, any bicategory is biequivalent to a 2-category, and the same is true for pseudofunctors (this is a consequence of a general strictification result from [70]). It does not hold however for pseudonatural transformations.

Squier's theory is also well-adapted to prove coherence results since the purpose of a coherent presentation is precisely that "every two equivalence paths are equal up to a higher relation". Let us consider for example the structure of a category equipped with a weakly associative tensor product. The way to apply Squier's theory is to encode the structure of category equipped with an associative tensor product into a 4-polygraph Assoc. This 4-polygraph contains one generating 2-cell coding for the product, and we see the associativity isomorphism as a rewriting relation given by a 3-cell :

. Finally, MacLane's pentagon corresponds to a 4-cell of the following shape:

In this setting, the coherence result for categories equipped with an associative product amounts to showing that any two parallel equivalence paths (built from the cells ) are equal up to a composite of cells .

Resolutions of monoids and categorification

Squier's theorem was also extended to build resolutions of monoids, instead of just coherent presentations. In order to justify this shift, let us talk for a moment about categorification.

The term categorification was coined by Crane [START_REF] Crane | Four-dimensional topological quantum field theory, hopf categories, and the canonical bases[END_REF] [START_REF] Crane | Clock and category: Is quantum gravity algebraic[END_REF], and it refers to the general idea of finding category-theoretic analogues of concepts coming from set-theory. An element of a set then becomes an object of a category, and an equation becomes an isomorphism. Monoidal categories are a categorification of monoids, and finite sets can be seen as a categorification of natural numbers. One interesting observation is that many deep results can be seen as categorified versions of set-theoretic facts. The coherence theorem for monoidal categories is an example of this. To understand this phenomenon, let us recall the following parable about categorification given by Baez and Dolan in [5]:

Long ago, when shepherds wanted to see if two herds of sheep were isomorphic, they would look for an explicit isomorphism. In other words, they would line up both herds and try to match each sheep in one herd with a sheep in the other. But one day, along came a shepherd who invented decategorification. She realized one could take each herd and 'count' it, setting up an isomorphism between it and some set of 'number', which were nonsense words like 'one, two, three, . . . ' specially designed for this purpose. By comparing the resulting numbers, she could show that two herds were isomorphic without explicitly establishing an isomorphism! In short, by decategorifying the category of finite sets, the set of natural numbers was invented.

Note however that apart from some specific cases, there is no general notion of what the categorification of a concept is, and in some cases there may exist multiple ones. For example, the categorification of commutative monoids can equally be seen as being symmetric monoidal categories, or braided monoidal categories.

To see how this is relevant to our setting, let us consider a monoid M acting on a category C. This means that for any m P M we have an endofunctor rms C : C Ñ C, such that for all m, n P M , rms C ˝rns C " rmns C and r1s C " 1 C . Suppose now that C is equivalent to a category D. This means that there exist functors F : C Ñ D and G : D Ñ C together with natural isomorphisms F ˝G -1 D and G ˝F -1 C . The problem is the following (see [START_REF] Loday | Algebraic operads[END_REF] for a general exposition about similar problems, or [86] for a more gentle introduction): Problem 1.2.2.1. Is it possible to transfer the action of M on C to an action of M on D?

One way of doing this would be to define rms D " F ˝rms C ˝G. However, notice that the equality rms D ˝rns D " rmns D does not hold. Instead, we get natural isomorphisms of the form: rms D ˝rns D " F ˝rms C ˝G ˝F ˝rns C ˝G -F ˝rms C ˝rns C ˝G " F ˝rmns C ˝G " rmns D In turn, these natural isomorphisms will themselves satisfy some equations. In the end, we do not get an action of M on D. However, we get an action of the 2-category presented by the standard coherent presentation of M on D. The 2-category presented by a coherent presentation pE, R, Sq of M is the 2-category obtained by identifying any two parallel equivalence paths. 2If we want to extend this solution to actions of monoids on higher categories, with a weaker notion of equivalence, then the equations between the natural isomorphisms will only hold up to a higher morphism. In order to account for that, we use the notion of resolution of a monoid M .

Recall that an pω, 1q-category is a (strict) ω-category where all the k-cells are invertible, for k ě 2. Then an pω, 1q-polygraph is a system of generators for an pω, 1q-category. If Σ is such an pω, 1q-polygraph, then the pω, 1q-category it generates has as (uninvertible) 1-cells the words on Σ 1 , and as (invertible) 2-cells sequences formed of elements of Σ 2 and of their inverses (they correspond to the equivalence paths in the setting of string rewriting). Then a resolution of a monoid M is an pω, 1q-polygraph such that pΣ 1 , Σ 2 q forms a presentation of Σ, and for any two parallel n-cells f and g in the pω, 1q-category generated by Σ (with n ě 2), there exists an pn `1q-cell f Ñ g. Using the machinery of the model structure on pω, 1q-categories [START_REF] Lafont | A folk model structure on omega-cat[END_REF], Σ forms a cofibrant replacement of M (where we see M as a one-object pω, 1q-category).

In [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], Guiraud and Malbos extended Squier's homotopical theorem, proving that, starting from a convergent presentation pE, Rq of a monoid M , it is possible to extend that presentation into a resolution Σ of M , such that the pn `1q-cells of Σ correspond to the n-fold critical branchings. In particular, those critical branchings are in finite number if pE, Rq is finite, leading to a refinement of Squier's homotopical finiteness condition.

Coherence through higher-dimensional rewriting

The rest of this introduction presents an outline of the content of this thesis. In this section, we focus on Chapters 2 and 3. In Chapter 2, we start by recalling a number of classical definitions and results of higher-dimensional rewriting, and we apply them to prove coherence theorems for bicategories and pseudofunctors. Then in Chapter 3, we prove a coherence theorem for pseudonatural transformations. We will see that the techniques from Chapter 2 fail in this case. In order to overcome this difficulty, we prove a Squier-like theorem adapted to our needs.

Rewriting and polygraphs

Recall that an pn, pq-category is a category where all k-cells are invertible, for k ą p. In particular, pn, 0q-categories are commonly called n-groupoids, and pn, nq-categories are just ncategories. There is a corresponding notion of pn, pq-polygraph. If Σ is an pn, pq-polygraph, we denote by Σ ˚ppq the free pn, pq-category generated by Σ, or simply Σ ˚if p " n. All those definitions are made precise in Section 2.1.

To illustrate the content of Chapter 2, let us go back to the 4-polygraph Assoc described in Section 1.2.1. As we said, this polygraph encodes the structure of a category equipped with a weakly associative tensor product. Let us consider the p4, 2q-category generated by Assoc, that we denote Assoc ˚p2q . It has one object, its 1-cells are freely generated by (and so are in bijections with the integers). Its 2-cells are generated by (so they are forests of binary trees). Its 3-cells are the equivalence paths of the associativity relation and its 4-cells are generated by . To understand how Assoc encodes the structure of a category equipped with a weakly associative tensor product, let us define another p4, 2q-category.

Recall first that there is a p2, 1q-category Cat, whose objects are categories, morphisms are functors, and 2-cells are natural isomorphisms (so the 2-cells are invertible). We can therefore see Cat as a p3, 1q-category, where all the 3-cells are identities. Moreover, the cartesian product makes Cat into a monoidal 3-category. By delooping, we can see Cat as a p4, 2q-category with one object. The 1-cells are categories, and the "0-composite" of two categories C and D is the category C ˆD.

Let us now understand what a functor (of p4, 2q-categories) F from Assoc ˚p2q to Cat is. On 0-cells, F has to send the unique object of Assoc to the unique object of Cat. On 1cells, F sends the cell to a category, that we denote C. As a consequence, F sends the 1-cell of length n of Assoc ˚p2q to C ˆn. So on 2-cells, F sends the 2-cell : ñ to a functor b : C ˆC Ñ C. As our notation suggests, the 3-cell is sent to a natural isomorphism α, which shows that b is associative up to isomorphism. Finally, the 4-cell is sent by F to an identity, which means that α has to satisfy the pentagon equation. What we just showed is that the data of F : Assoc ˚p2q Ñ Cat is equivalent to the data of a category equipped with a weakly associative tensor product. In Section 2.3 and 3.1, we extend this correspondence to bicategories, pseudofuntors and pseudonatural transformations between them.

Let us show what this correspondence means for coherence. The coherence result about categories equipped with a weakly associative tensor product states that all formal composite of the natural isomorphisms α are equal. But such formal composites correspond exactly to equivalence paths in Assoc ˚p2q . So in the end, the coherence theorem is equivalent to saying that Assoc is 3-coherent, that is between every pair of parallel 3-cells A, B in Assoc ˚p2q , there exists a 4-cell α : A 1 c B in Assoc ˚p2q .

In order to prove that Assoc ˚p2q is 3-coherent, we rely on the properties of confluence and termination of the rewriting system generated by . The precise definitions of confluence and termination in this context can be found in Section 2.2.

To prove that confluence and termination imply 3-coherence, we rely on a version of Squier's theorem for rewriting in 2-categories proved in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. Stating Squier's theorem requires the notion of critical branchings. Those are defined in Section 2.2.2. A local branching in Assoc is a pair of rewriting steps of same source. Local branchings are ordered by adjunction of context, that is a branching pf, gq is smaller than a branching pu ‹ i f ‹ i v, u ‹ i g ‹ i vq for any 2-cells u and v and i " 0, 1. There are three types of local branchings:

• A branching of the form pf, f q is called aspherical .

• A branching of the form pf ‹ i spgq, spf q ‹ i gq for i " 0 or 1 is called a Peiffer branching.

• Otherwise, pf, gq is called an overlapping branching.

Overlapping branchings that are also minimal are called critical branchings.

There is exactly one critical branching in Assoc, of source . Note that the critical pair appears as the 2-source of the generating 4-cell of Assoc. In particular there is a one-to-one correspondence between generating 4-cells and critical pairs. A 3-convergent 4-polygraph that satisfies this property is said to satisfy the 3-Squier condition. Proposition 4.3.4 in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] states that a 4-polygraph satisfying the 3-Squier condition is 3coherent (and more generally, that any pn `1q-polygraph satisfying the n-Squier condition is n-coherent). In particular, the 4-polygraph Assoc satisfies the 3-Squier condition, so it is 3coherent.

As an application of the theory recalled in this chapter, we prove coherence theorems for bicategories and pseudofunctors. To this end, we exhibit in Section 2.3, for any sets C and D and any application f : C Ñ D two 4-polygraphs BiCatrCs and PFonctrf s presenting respectively the structures of "bicategories whose set of objects is C" and "pseudofunctor whose map between sets of objects is f ". Applying the same reasoning as the one we just presented for Assoc, we prove our first two results: Theorem 2.3.1.6 (Coherence for bicategories). Let C be a set.

The 4-polygraph BiCatrCs is 3-convergent and the free p4, 2q-category BiCatrCs ˚p2q is 3coherent.

Theorem 2.3.2.7 (Coherence for pseudofunctors). Let C and D be sets, and f : C Ñ D an application.

The 4-polygraph PFonctrf s is 3-convergent and the free p4, 2q-category PFonctrf s ˚p2q is 3coherent.

The goal of Chapter 3 is to prove a similar result for pseudonatural transformations. However, the approach developed in Chapter 2 fails, because the p4, 2q-polygraph PNTransrf , gs (where f and g are applications C Ñ D) encoding the structure of pseudonatural transformation is not 3-confluent.

The 2-Squier condition of depth 2

In order to circumvent this difficulty, we introduce the notion of 2-Squier condition of depth 2. We say that a p4, 2q-polygraph Σ satisfies the 2-Squier condition of depth 2 if it satisfies the 2-Squier condition, and if the 4-cells of Σ correspond to the critical triples induced by the 2-cells (with a prescribed shape).

For example, the 4-polygraph Assoc satisfies the 2-Squier condition of depth 2: its underlying 2-polygraph is both 2-terminating and 2-confluent. Moreover, the only critical pair corresponds to the associativity 3-cell. Finally, Mac Lane's pentagon can be written as follows, which shows that it corresponds to the only critical triple:

7 W 8 7 W ! A " 8 P p 7 W $ D S s ! A 1 c P p $ D 7 W 7 W V v 7 W S s V v (1.3.1)
We prove the following result about p4, 2q-polygraph satisfying the 2-Squier condition of depth 2: Theorem 3.1.3.5. Let Σ be a p4, 2q-polygraph satisfying the 2-Squier condition of depth 2.

For every parallel 3-cells A, B P Σ

˚p2q 3
whose 1-target is a normal form, there exists a 4-cell α :

A 1 c B in the free p4, 2q-category Σ ˚p2q 4 .
Note in particular that the 2-Squier condition of depth 2 does not imply the 3-coherence of the p4, 2q-category generated by the polygraph, but only a partial coherence, "above the normal forms". For example in the case of Assoc, the only normal form is the 1-cell . So Theorem 3.1.3.5 only expresses the coherence of the 3-cells of Assoc ˚p2q whose 1-target is . Conversely, Squier's theorem as extended in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] concerns all the 3-cells of Assoc ˚p2q , regardless of their 1-target.

The p4, 2q-polygraph PNTransrf , gs does not satisfy the 2-Squier condition. However, we identify in Section 3.1.3 a sub-p4, 2q-polygraph PNTrans ``rf , gs of PNTransrf , gs that does. By Theorem 3.1.3.5, we get a partial coherence result in PNTrans ``rf , gs ˚p2q . The rest of Section 3.1 extends this partial coherence result to the rest of PNTransrf , gs ˚p2q . To do so, we define a weight application from PNTransrf , gs ˚p2q to N to keep track of the condition on the 1-targets of the 3-cells considered. We thereby prove the following result: The intuition behind the proof of Theorem 3.1.3.5 is the following. Let Σ be a 3-polygraph satisfying the 2-Squier condition. Then a generating 3-cell of Σ has a shape of the form

f 1 @ A f,g Õ % f 8 X g 6 V g 1 i (1.3.2)
The first intuition that one may have to extend Squier's Theorem would be to consider this 3-cell as a rewriting step. However, in general this approach fails. In particular there is no guarantee that such a rewriting system terminates. A better idea would be to consider A as rewriting the left-hand side of (1.3.2) (that is, the diverging pair pf, gq) into the right-hand side (that is, the confluent pair pf 1 , g 1 q). This way in particular we will be able to make use of the 2-termination of Σ.

In order to make this intuition precise we first introduce the notion of white n-category. Let j ă k ă n be integers. In an n-category C, one can define the j-composition of pk `1q-cells A and B using the k-composition and whiskering by setting:

A ‹ j B :" pA ‹ j s k pBqq ‹ k pt k pAq ‹ j Bq " ps k pAq ‹ j Bq ‹ k pA ‹ j t k pBqq.
This is made possible by the exchange axiom between ‹ k and ‹ j . A white n-category is an ncategory in which the exchange axioms between ‹ k and ‹ 0 need not hold (even up to isomorphism) for any k ą 0. As a result, 0-composition is not defined for k-cells, for k ą 1. The notion of white 2-category coincides with the notion of sesquicategory (see [START_REF] Street | Categorical structures[END_REF]). In general, white n-categories are categories enriched in pn ´1q-catgeories, where the category of pn ´1q-categories is equipped with the so-called "funny" tensor product [87].

Most concepts from rewriting have a straightforward transcription in the setting of white categories. In particular in Section 3.2.1, we define the notions of white pn, kq-category and white pn, kq-polygraph. We also give an explicit description of the free white pn, kq-category Σ wpkq generated by a white pn, kq-polygraph Σ.

In this setting, we give a precise definition of the notion of partial coherence. Let C be a white p4, 3q-category and S be a set of distinguished 2-cells of C. We call such a pair a pointed white p4, 3q-category. We say that C is S-coherent if for any parallel 2-cells f, g P S and any 3-cells A, B : f g P C, there exists a 4-cell α : A 1 c B P C. In particular any p4, 3q-white category is H-coherent, and a p4, 3q-white category C is C 2 -coherent if and only if it is 3-coherent (where C 2 is the set of all the 2-cells of C). Theorem 3.1.3.5 amounts to showing that the free p4, 2q-category Σ ˚p2q is S Σ -coherent, where S Σ is the set of all 2-cells whose target is a normal form.

Finally, we give a way to modify partially coherent categories while retaining information about the partial coherence. Let pC, Sq and pC 1 , S 1 q be pointed white p4, 3q-categories. We define a relation of strength between pointed white p4, 3q-categories. We show that if pC, Sq is stronger than pC 1 , S 1 q, then the S-coherence of C implies the S 1 -coherence of C 1 .

Let us now return to the proof of Theorem 3.1.3.5. Let us fix a p4, 2q-polygraph A satisfying the 2-Squier condition of depth 2, and denote by S A the set of 2-cells whose target is a normal form. In particular, pA ˚p2q , S A q is a pointed white p4, 3q-category. The first half of the proof (Section 3.3) consists in applying to pA ˚p2q , S A q a series of transformations. At each step, we verify that the new pointed white p4, 3q-category we obtain is stronger than the previous one. In the end, we get a pointed white p4, 3q-category pF wp3q , S E q, where F is a white 4-polygraph. In dimension 2, the 2-cells of F consists of the union of the 2-cells of A together with their formal inverses. We denote by f the formal inverse of a 2-cell f P A ˚. Let F 3 be the set of 3-cells of F. It contains 3-cells C f,g for any minimal local branching pf, gq, and cells η f for any 2-cell f P A of the following shape:

g @ C f,g Õ % f 8 X f 1 6 V g 1 i 1 spf q 3 S f ) I η f Õ % f a
Notice in particular that C f,g corresponds to the cell A f,g of (1.3.2), rotated by 90 ˝. The result of this transformation is that in F wp3q , for any 2-cells f, g P S E , the 3-cells of the form f g (and 4-cells between them) are in one-to-one correspondence with 3-cells of the form ḡ ‹ 1 f 1 û (and 4-cells between them), where û is the common target of f and g. More generally we study cells of the form h 1 û, and 4-cells between them.

We start by studying the rewriting system induced by the 3-cells. Note that the white 4polygraph F is not 3-terminating, so we cannot use a Squier-like theorem to conclude. However, let NrA 1 s be the free commutative monoid on A 1 , the set of 1-cells of A ˚. There is a well-founded ordering on A 1 induced by the fact that A is 2-terminating. This order induces a well-founded ordering on NrA 1 s called the multiset order. We define an application p : F w 2 Ñ NrA 1 s which induces a well-founded ordering on F w 2 , the set of 2-cells of F w , and show that the cells C f,g are compatible with this ordering (that is, the target of a cell C f,g is always smaller than the source). Thus, the fragment of F 3 consisting of the cells C f,g is 3-terminating.

The cells η f however constitute a non-terminating part of F w 3 . To control their behaviour, we introduce a weight application w η : F w 3 Ñ NrA 1 s, that essentially counts the number of η f cells present in a 3-cell. In Section 3.4.3, using the applications p and w η , we prove that for any h P F w 2 whose source and target are normal forms (for A 2 ), and for any 3-cells A, B : h

1 û in F w 3 , there is a 4-cell α : A 1 c B in F wp3q
. Finally, we prove that this implies that F wp3q is S E -coherent, which concludes the proof.

Conclusion of Chapter 3

The combinatorics of the proof of Theorem 3.1.3.5 is convoluted enough that a generalisation of these techniques seems dubious. Still, let us make a few observations. The first observation is that the 2-Squier condition of depth 2 associates to any 3-fold critical branching pf, g, hq a 4-cell A f,g,h which has the shape of a cube (see for example (1.3.1) or (3.1.4)):

7 W A f,g ! A A 7 W B 1 ! A A f,h ! A f S s g 7 W h ! A A g,h S s ! A A f,g,h 1 c f S s h ! A 7 W B 2 7 W S s S s 7 W S s
Similarly, the confluence diagram associated to a 4-fold critical branching should have the shape of a hypercube.

Notice that there is an action of the symmetric group S 3 on the critical branchings (obtained by permuting the rewriting steps). How does this action of S 3 affect the cell A f,g,h ? If we simply exchange f and h, we get A h,g,f , which is just the inverse of A f,g,h with respect to the composition ' 2 . Some permutations are more difficult to express in the globular setting, such as A g,f,h . If we see A f,g,h as a cube however, then every permutation corresponds to a symmetry of the cube. Understanding this action of S 3 is our first clue in finding the link between higher-dimensional rewriting and cubical ω-categories.

The second clue is the appearance of the following cells in Section 3.3:

f } f 3 f Õ % 1 tpf q 1 spf q 3 S f ) I η f Õ % f a
Together with the relations they verify (see (3.3.1) and (3.3.2)), they are very similar to the connections of a cubical ω-category (see 4.1). Connections are a type of degeneracies present in cubical ω-categories, which associate to any 1-cell f two 2-cells Γ 1 f and Γ 1 f , which can be represented as follows:

f 1 y f 1 y Γ 1 f 1 x f 1 x f Γ 1 f
The last observation stems from studying the proof of the main theorem from [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]: the proof relies on the construction of a natural transformation (called a normalisation strategy) between two ω-categories. The combinatorics of such an object is slightly difficult to describe in globular ω-categories, but it becomes very simple in cubical ω-categories, as shown in Section 4.4.2.

Cubical ω-categories for rewriting

All these observations motivate us to look at higher-dimensional rewriting from the point of view of cubical ω-categories, which we do in Chapter 5. Before that, the first obstacle on our way is that higher-dimensional rewriting requires the use of pω, pq-categories, a notion not yet studied in the cubical setting. Chapter 4 is devoted to its study.

Cubical categories and their relationship with other structures

Handling higher structures such as higher categories usually involves conceiving them as conglomerates of cells of a certain shape. Such shapes include simplices, globes or cubes. Simplicial sets have been successfully applied to a wide variety of subjects. For example, they occur in May's work on the recognition principle for iterated loop spaces [START_REF] Matsumoto | Générateurs et relations des groupes de weyl généralisés[END_REF], in Quillen's approach to rational homotopy theory [START_REF] Quillen | Rational homotopy theory[END_REF], and in Bousfield and Kan's work on completions, localisation, and limits in homotopy theory [START_REF] Aldridge | Homotopy limits, completions and localizations[END_REF].

Cubical objects however, have had a less successful history until recent years. Although cubical sets were used in early works by Serre [START_REF] Serre | Homologie singulière des espaces fibrés[END_REF] and Kan [START_REF] Daniel | Abstract homotopy[END_REF], it became quickly apparent that they suffer from a few shortcomings. For instance, cubical groups are not automatically fibrant, and the cartesian product in the category of cubical sets fails to have the correct homotopy type. As a result, cubical sets mostly fell out of fashion in favour of simplicial sets. However later work on double groupoids, by Brown and Higgins, felt the need to add a new type of degeneracies on cubical sets: the so-called connections that we evoked earlier [START_REF] Brown | Double groupoids and crossed modules[END_REF] [START_REF] Brown | On the algebra of cubes[END_REF]. By using these connections, a number of shortcomings of cubical objects were overcome. In particular the category of cubes with connections is a strict test category [START_REF] Cisinski | Les préfaisceaux comme modèles des types d'homotopie[END_REF] [62], and group objects in the category of cubical sets with connections are Kan [START_REF] Tonks | Cubical groups which are Kan[END_REF]. Cubical objects with connections were particularly instrumental to the proof of a higher-dimensional Van-Kampen theorem by Brown and Higgins [START_REF] Brown | Nonabelian algebraic topology[END_REF]. Other applications of cubical structures arise in concurrency theory [START_REF] Gaucher | Homotopy invariants of higher dimensional categories and concurrency in computer science[END_REF] [START_REF] Gaucher | Combinatorics of branchings in higher dimensional automata[END_REF] [33], type theory [START_REF] Bezem | A model of type theory in cubical sets[END_REF], algebraic topology [START_REF] Grandis | Higher cospans and weak cubical categories (cospans in algebraic topology. I)[END_REF]. Of interest is also the natural expression of the Gray-Crans tensor product of ω-categories [24] in the cubical setting [3] [2].

A number of theorems relating objects of different shapes exist. For instance, Dold-Kan's correspondence states that in the category of abelian groups, simplicial objects, cubical sets with connections and strict ω-groupoids (globular or cubical with connections) are all equivalent to chain complexes [START_REF] Daniel | Functors involving c.s.s. complexes[END_REF] [START_REF] Brown | Cubical abelian groups with connections are equivalent to chain complexes[END_REF].

Outside the category of abelian groups, the relationships between these notions become less straightforward. We are mainly concerned with the two following results:

• The first result is the equivalence between cubical and globular ω-groupoids [12] [14] proven in 1981 by Brown and Higgins. Although this equivalence is useful in theory, in practice it is complicated to make explicit the functors composing this equivalence. This is due to the fact that the proof uses the notion of crossed complexes as a common ground between globular and cubical ω-categories.

• The second result is the equivalence between globular and cubical ω-categories proved in 2002 [2] By Al-Agl, Brown and Steiner.

Lastly in 2004, Steiner [START_REF] Steiner | Omega-categories and chain complexes[END_REF] introduced the notion of augmented directed complexes (a variant of the notion of chain complexes) and proved the existence of an adjunction between augmented directed complexes and globular ω-categories.

Globular pω, pq-categories are globular ω-categories where cells of dimension at least p`1 are invertible. They form a natural intermediate between globular ω-categories, which correspond to the case p " ω, and globular ω-groupoids, which correspond to the case p " 0. As a consequence, they form a natural setting in which to develop directed algebraic topology [START_REF] Grandis | Directed algebraic topology[END_REF] or rewriting [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF].

However, both directed algebraic topology and rewriting seem to favour the cubical geometry (see once again [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] for directed algebraic topology, and [START_REF] Lucas | A cubical Squier's theorem[END_REF] for rewriting), hence the need for a suitable notion of cubical pω, pq-categories.

The aim of Chapter 4 is to define such a notion, so that when p " 0 or p " ω, we respectively recover the notions of cubical ω-groupoids and cubical ω-categories. Moreover, we bridge the gap between two results we cited previously by proving the following theorem: Theorem 4.3.1.3. Let λ : ω -CubCat Ñ ω -Cat and γ : ω -Cat Ñ ω -CubCat be the functors from [2] forming an equivalence of categories between globular and cubical ω-categories. For all p ě 0, their restrictions still induce an equivalence of categories:

pω, pq -Cat pω, pq -CubCat λ γ -
In particular, we recover the equivalence between globular and cubical ω-groupoids in a more explicit fashion.

We also define a notion of pω, pq-augmented directed complexes and show how to extend Steiner's adjunction. This is done in two steps. First we define functors Z C : ω -CubCat Ñ ADC and N C : ADC Ñ ω -CubCat (where ADC is the category of augmented directed complexes), as cubical analogues of the functors Z G : ω -Cat Ñ ADC and N G : ADC Ñ ω -Cat forming Steiner's adjunction. We study the relationship between both those two pairs of functors and show that the functor Z C is left-adjoint to N C (see Proposition 4.3.2.8). Then we show how to restrict the functors Z G , N G , Z C and N C to pω, pq-structures. In the end, we get the following result: Theorem 4.3.2.12. Let λ : ω -CubCat Ñ ω -Cat and γ : ω -Cat Ñ ω -CubCat be the functors from [2] forming an equivalence of categories between globular and cubical ω-categories. Let Z G : ω -Cat Ñ ADC and N G : ADC Ñ ω -Cat be the functors from [START_REF] Steiner | Omega-categories and chain complexes[END_REF] forming an adjunction between globular ω-categories and ADCs. Let Z C : ω -CubCat Ñ ADC and N G : ADC Ñ ω -CubCat be the cubical analogues of Z G and N G defined in Section 4.3.2.

For all p P NYtωu, their restrictions induce the following diagram of equivalence and adjunctions between the categories pω, pq -Cat, pω, pq -CubCat and pω, pq-ADC, where both triangles involving Z C and Z G and both triangles involving N C and N G commute up to isomorphism:

pω, pq -Cat pω, pq -CubCat pω, pq-ADC N G Z G N C Z C γ λ K K - 1.4.

Invertibility in cubical categories

The main combinatorial difficulty of Chapter 4 consists in defining the appropriate notion of invertibility in cubical ω-categories. Before giving an account of the various invertibility notions that we consider in the cubical setting, we start by recalling the more familiar notion of invertibility in p2, 1q-categories.

Informally, a globular pω, pq-category is a globular ω-category in which every n-cell is invertible, for n ą p. For this definition to make rigorous sense, one first needs to define an appropriate notion of invertible n-cells. Let us fix a globular 2-category C. There are two ways to compose two 2-cells A and B in C 2 , that we denote by ' 1 and ' 0 and that are respectively known as the vertical and horizontal compositions. They can respectively be represented as follows:

A B A B
We denote by I 0 f : y Ñ x the inverse (if it exists) of a 1-cell f : x Ñ y in C 1 . A 2-cell A P C 2 can have two inverses (one for each composition), that we denote respectively by I 1 A and I 0 A. Their source and targets are as follows:

x y f g A x y g f I 1 A y x I 0 f I 0 g I 0 A
Note that if a 2-cell is I 0 -invertible, then so are its source and target, but that the I 1 -invertibility of a 2-cell does not imply any property for its source and target. So if C is a 2-category where every 2-cell is I 0 -invertible, then C is a globular 2-groupoid (indeed, a cell

1 f P C 2 is I 0 -invertible if and only if f is I 0 -invertible). Therefore, we say that a 2-cell is invertible if it is I 1 -invertible, and C is a globular p2, 1q-category if each 2-cell is I 1 -invertible.
In a cubical 2-category C (in what follows, cubical categories are always equipped with connections), the source and target of a 1-cell f P C 1 are respectively denoted B 1 f and B 1 f , and the source and target operations s, t :

C 2 Ñ C 1 are replaced by four faces operations B α i : C 2 Ñ C 1 (for i " 1, 2 and α " ˘), satisfying the cubical identity B α 1 B β 2 " B β 1 B α 1 .
A 2-cell A P C 2 can be represented as follows, where the corners of the square are uniquely defined 0-cells thanks to the cubical identity:

B 1 A B 1 A B 2 A B 2 A A
There still are two ways to compose two 2-cells A, B P C 2 , that we denote respectively by A ‹ 1 B and A ‹ 2 B, which can be represented as follows:

A B A B
We say that a 2-cell A P C 2 is R i -invertible if it is invertible for the composition ‹ i (i " 1, 2). The faces of R 1 A and R 2 A are as follows (where R 1 f : y Ñ x denotes the inverse of a 1-cell f : x Ñ y):

x y z t f g h i A z t x y g f R 1 h R 1 i R 1 A y x t z R 1 f R 1 g i h R 2 A
Note that contrary to the notion of I 1 -invertibility, the R 1 and R 2 -invertibility of A require respectively that B α 2 A and B α 1 A are R 1 -invertible (for α " ˘). We say that A has respectively an R 1 or an R 2 -invertible shell if that is the case. As a consequence, if C is a cubical 2-category where every 2-cell is R 1 -invertible, then every 1-cell of C is R 1 -invertible (one can even show that such a cubical 2-category is actually a cubical 2-groupoid) and the same property holds for R 2 . In order to have a good notion of cubical pω, pq-categories nonetheless, we have to be more careful in our definition of an invertible cell. This is done in Section 4.2.1, where we define a notion of invertibility for an n-cell (n ě 1). Let us first recall that, using the structure of connections on C, one can associate to any 1-cell f : x Ñ y in C 1 , the cells Γ 1 f and Γ 1 f , which can be represented as follows:

x y y y f 1 y f 1 y Γ 1 f x x x y
We say that a 2-cell A P C 2 is invertible if the following composite (denoted

ψ 1 A) is R 1 -invertible: Γ 1 B 2 A A Γ 1 B 2 A
Note in particular that B 2 ψ 1 A and B 2 ψ 1 A are both identities (which are always invertible), and so the R 1 -invertibility of ψ 1 A does not require the invertibility of any face of A. The link between invertibility, R i -invertibility and having an R i -invertible shell is given by the following proposition:

Proposition 4.2.2.2. Let C be a cubical ω-category, A P C n and 1 ď j ď n. A cell A P C n is R j -invertible if and only if A is invertible and has an R j -invertible shell.

We also investigate in Section 4.2.3 another notion of invertibility, with respect to a kind of "diagonal" composition, that we call the T i -invertibility. If A is a 2-cell in a cubical 2-category, then the T 1 -inverse of A (if it exists) has the following faces:

x y z t f g h i A x z y t h i f g T 1 A
We then define a suitable notion of T i -invertible shells and prove the following result, analogous to Proposition 4.2.2.2: Proposition 4.2.3.5. Let C be a cubical ω-category, and A P C n , with n ě 2. Then A is T i -invertible if and only if A is invertible and has a T i -invertible shell.

The study of the relationship between R i -invertibility, T i -invertibility and (plain) invertibility gives rise to the following Proposition: Proposition 4.3.1.2. Let C be a cubical ω-category, and fix n ą 0. The following five properties are equivalent:

1. Any n-cell in C n is invertible. 2. For all 1 ď i ď n, any n-cell in C n with an R i -invertible shell is R i -invertible. 3. Any n-cell in C n with an R 1 -invertible shell is R 1 -invertible.

Any n-cell

A P C n such that B α j A P Im 1 for all j ‰ 1 is R 1 -invertible. 5. Any n-cell in Φ n pC n q is R 1 -invertible.
Moreover, if n ą 1, then all the previous properties are also equivalent to the following:

6. For all 1 ď i ă n, any n-cell in C n with a T i -invertible shell is T i -invertible 7. Any n-cell in C n with a T 1 -invertible shell is T 1 -invertible.
We can now define a cubical pω, pq-category as a cubical ω-category where every n-cell is invertible, for n ą p, and we prove the equivalence with the globular notion.

Permutations and cubical pω, pq-categories

In Section 4.4.1, we extend the notion of the T i -invertibility of an n-cell to that of the σinvertibility, for σ an element of the symmetric group S n . In particular, we show that if C is a cubical pω, 1q-category, then every cell of C is T i -invertible, and therefore σ-invertible, for any σ P S n . Consequently, we get an action of the symmetric group S n on the set of n-cells C n , making C a symmetric cubical category (in a sense related to that of Grandis [START_REF] Grandis | Higher cospans and weak cubical categories (cospans in algebraic topology. I)[END_REF]).

In Section 4.4.2, we apply the notion of invertibility to k-transfors between cubical ωcategories. A k-transfor (following terminology by Crans [START_REF] Sjoerd | Localizations of transfors[END_REF]) from C to D is a family of applications C n Ñ D n`k satisfying some compatibility conditions. These compatibility conditions come in two varieties, leading to the notions of lax and oplax k-tranfors (respectively called k-fold left and right homotopies in [2]). In particular, the lax or oplax 0-transfors are just the functors from C to D, and a lax or oplax 1-transfor η between functors F and G is the cubical analogue of a lax or oplax natural transformation from F to G. For example, a 0-cell in x P C 0 is sent to a 1-cell η x : F pxq Ñ Gpxq in D 1 , and a 1-cell f : x Ñ y in C 1 is sent to a 2-cell η f in D 2 of the following shape (respectively if η is lax or oplax):

F pxq F pyq Gpxq Gpyq F pf q Gpf q η x η y η f F pxq Gpxq F pyq Gpyq η x η y F pf q Gpf q η f
As shown in [2], Section 10, lax and oplax transfors from C to D respectively form cubical ω-categories LaxpC, Dq and OpLaxpC, Dq. We define notions of pseudo transfors as transfors satisfying some invertibility conditions. In particular in the case of 1-transfors, we require for any 1-cell f in C 1 that η f is T 1 -invertible. We show that pseudo lax and pseudo oplax transfors from C to D still form cubical ω-categories PsLaxpC, Dq and PsOpLaxpC, Dq, and prove the following result: Proposition 4.4.2.6. For all cubical ω-categories C and D, the cubical ω-categories PsLaxpC, Dq and PsOpLaxpC, Dq are isomorphic.

For example if η is a lax 1-transfor, then the application

C 1 Ñ D 2 which is part of the oplax 1-transfor associated to η maps a cell f in C 1 to a 2-cell T 1 η f in D 2 .

Higher-dimensional rewriting in cubical categories

The goal in Chapter 5 is to apply the structure of cubical pω, pq-category developed in Chapter 4 to higher dimensional rewriting. As we will see this approach greatly simplifies the proof techniques from [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], allowing us to prove theorems which were unattainable by other means. Before stating those results, let us go back to the categorification problem that we evoked earlier.

Model structure and the Gray tensor product

As we saw, higher dimensional rewriting can be applied to many different structures. Squier's theorem dealt with rewriting in monoids. In Chapters 2 and 3 we were interested in rewriting in 2categories with a fixed set of objects and arrows. Squier-like theorems also exist for algebras [START_REF] Guiraud | Linear polygraphs and koszulity of algebras[END_REF]. One natural question is whether it is possible to find a suitable framework that encompasses all those results. The idea we propose is to see monoids and 2-categories (with a fixed set of objects and arrows) as algebras over (set-theoretic) operads. In order to see Squier-like theorems as categorification results (as in Section 1.2.2) however, we need to have a model structure on O-algebras in ω-groupoids, for any operad O (although throughout Chapter 5 we only work in the case where O is the operad of monoids).

More precisely, we would like to use the adjunction between O-algebras in ω-groupoids and ω-groupoids in order to lift the model structure from ω-groupoids to O-algebras in ω-groupoids. Multiple sufficient conditions exist in the literature to perform this kind of transfer (see for example [START_REF] Schwede | Algebras and modules in monoidal model categories[END_REF], [START_REF] Hovey | Monoidal model categories[END_REF] or [START_REF] Berger | Resolution of coloured operads and rectification of homotopy algebras[END_REF]). They all have in common that ω-groupoids have to form a monoidal model category. A monoidal model category is a biclosed monoidal category equipped with a model structure such that the product and the model structure interact nicely together. In particular, it has to satisfy the pushout-product axiom, see Section 5.1.2.

However, ω-groupoids equipped with the cartesian product do not form a monoidal model category, as noted by Lack [START_REF] Lack | A quillen model structure for 2-categories[END_REF]. As for the Gray tensor product, whether it makes ω-groupoids into a monoidal model category is still an open problem. This seems like a reasonable conjecture given that Lack proved in [START_REF] Lack | A quillen model structure for 2-categories[END_REF] that the pseudo Gray tensor product equips 2-categories with a monoidal model structure. Unfortunately we fall short of proving the result for ω-groupoids, but we still show in Section 5.1.2 that part of the pushout-product is satisfied. This has in particular the nice consequence that the Gray tensor product of two free ω-groupoids is still free, a fact that will be useful later on. Remark also that the apparition of the Gray tensor product here reinforces our intuition that cubical ω-categories are the right setting for studying higher-dimensional rewriting.

The first step towards this goal is to find a suitable notion of polygraphs for Gray monoids (where Gray monoids are monoid objects in ω-groupoids, equipped with the Gray tensor product). Thankfully, a general result by Garner [START_REF] Garner | Homomorphisms of higher categories[END_REF] allows us to do this, using the fact that Gray monoids are monadic over pre-cubical sets. We call a Gray polygraph this associated notion of polygraph. Let us look again at the presentation of B 3 from Section 1.1.2. In the setting of Gray monoids, it corresponds to a Gray polygraph Σ such that Σ 0 " ts, tu, the 0-cells of the Gray monoid generated by Σ are denoted Σ Gp0q 0

: they form the words on the alphabet Σ 0 . Just as for globular polygraphs, the set Σ 1 is formed by the cells α, β, γ and δ (with the same sources and targets), and Σ Gp0q 1 is formed of all the equivalence paths. There is one main difference with the globular setting though, which stems from the fact that we use the Gray tensor product. Indeed, while in the globular setting we were able to compose two rewriting steps f : u Ñ u 1 and g : v Ñ v 1 in parallel using the composition ' 0 , this operation is not available in Gray monoids. Instead, there exists a 2-cell f b g relating the two composites: the one corresponding to doing f followed by g and the one corresponding to g followed by f :

uv uv 1 u 1 v u 1 v 1 ug u 1 g f v f v 1 f b g uv 1 uv u 1 v 1 u 1 v ug f v f v 1 u 1 g f g
The consequence of that is that in Gray monoids, the rewriting paths form the free groupoid on the rewriting steps. This is actually a special case of a more general phenomenon: starting from a Gray polygraph Σ, we can look at Σ Gp0q the Gray monoid generated by Σ. If we forget about the monoid structure, then we get an ω-groupoid. We prove in Section 5.1.2 that this ω-groupoid is also free, over an pω, 0q-polygraph that we denote rΣs. In other words, we have an isomorphism of ω-groupoids Σ Gp0q -rΣs ˚p0q . In the case where Σ is the presentation of B 3 , then rΣs 0 is the set of words of Σ 0 , while rΣs 1 is the set of all rewriting steps formed from the elements of Σ 1 .

The two versions of Squier's theorem

In order to understand the main theorem of Chapter 5, we first need to analyse Squier's homotopical theorem more closely. Squier's homotopical theorem can be phrased in two different ways, that we call respectively the Existence and the Detection Theorem: Theorem 1.5.2.1 (Existence Theorem). Let Σ be a convergent 2-polygraph. Then there exists an extension of Σ into a 3-polygraph such that:

• The 3-cells of Σ correspond to the critical branchings.

• The 3-polygraph Σ forms a coherent presentation of M , the monoid presented by Σ.

Theorem 1.5.2.2 (Detection Theorem). Let Σ be a terminating 3-polygraph. Suppose that for any critical branching pf, gq in Σ, there exists a cell A P Σ 3 of the following shape:

f g A A (1.5.1)
The Σ forms a coherent presentation of M , the monoid presented by Σ.

The existence theorem has been extended by Guiraud and Malbos in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] into the following result: Theorem 1.5.2.3 (Extended Existence Theorem). Let Σ be a convergent 2-polygraph. Then there exists an extension of Σ into an pω, 2q-polygraph such that:

• The pn `1q-cells of Σ correspond to the n-critical branchings.

• The pω, 2q-polygraph Σ forms a polygraphic resolution of M , the monoid presented by Σ.

These existence and detection theorems have slightly different applications. The existence theorem is the one which allowed Squier to prove that all monoids with a finite convergent presentation satisfied his homotopical finiteness condition. Later on the extended one allowed Guiraud and Malbos to refine this condition. Note that the proof of the extended existence theorem is constructive, but the explicit computation of the polygraphic resolution that it provides is often very complicated.

The detection theorem on the other hand is used to prove that a given 3-polygraphs (obtained through other means) forms a coherent presentation of a monoid. The Theorem 3.1.3.5 is another example of a detection theorem used similarly. The main result of Chapter 5 is an extended detection theorem.

Higher-dimensional rewriting in Gray monoids

The difficulty to give a precise statement for an extended detection theorem lies in generalising Equation (1.5.1) to higher dimensions. We show in Chapter 3 that in the next dimension it corresponds to finding, for all critical triple branching, a cell with the shape of a cube, as in equation (3.1.4). In general for an n-fold critical branching, the corresponding cell should have the shape of an n-cube. In Section 5.1.3, this condition is made explicit using the notion of cubical ω-groupoid.

To do that, we first study the structure of the local branchings. Let us start from a string rewriting system pE, Rq. Then an n-local branching is an n-tuple of rewriting steps that share the same source. We denote the set of n-local branchings LocBrpE, Rq n . Given such an n-tuple f " pf 1 , . . . , f n q and 1 ď i ď n, we can define a new pn ´1q-critical branching B i f :" pf 1 ; . . . , f i´1 , f i`1 , . . . , f n q. These operations B i define a structure of semi-simplicial set on LocBrpΣq. Defining other operations on local branchings, such as the action of the symmetric group from Section 1.3.4, we finally get in Section 5.1.3 the following result: Proposition 5.1.3.4. Let pE, Rq be a string rewriting system. The family of local branchings LocBrpE, Rq equipped with the applications B i , i and b and the action of the symmetric group forms a simplicial monoid, that is a monoid object in augmented symmetric simplicial sets.

On the other hand, starting from a cubical ω-groupoid C, there is a forgetful functor towards symmetric cubical sets by Section 4.4.1, where the symmetries come from the T i -inverses of the cells. Then from symmetric cubical sets we can forget about the faces B ì , the connections Γ ì and the identities i . We are left with a structure of an augmented symmetric simplicial set. We prove that this functor is lax monoidal, and so induces a functor V from Gray monoids to simplicial monoids. We are now ready to state our extended detection theorem: Theorem 5.1.3.8 (Extended Detection Theorem). Let Σ be a terminating targets-only Gray pω, 1q-polygraph, and let M be the monoid presented by Σ. We suppose that there exists a morphism of simplicial monoids Φ : LocBrpΣq Ñ V pΣ Gp1q q such that for all A P Σ, ΦpbrpAqq " A.

Then the morphism Σ Gp0q Ñ M is an equivalence of ω-groupoids, meaning that Σ is a polygraphic resolution of M .

As with Theorem 1.5.2.2 or 3.1.3.5, we require any critical 3-branching to be associated to a cell of the right shape. The associated cell is given by the map Φ. The analogue of Equation (1.3.2) or (3.1.4) here is hidden in the fact that Φ is a morphism of simplicial monoids, together with the equation ΦpbrpAqq " A. Let us spell out these conditions in low dimensions.

First for a generating 1-cell f , brpf q is just f , so the condition is that Φpf q " f . The fact that Φ is a morphism of monoids implies that this is actually true for any rewriting step f . In the next dimension, the fact that Σ is targets-only means that any generating 2-cell A P Σ 2 can be represented as follows, with f and g rewriting steps:

f g A f g brpAq f g ΦpbrpAqq
Then the pair pg, f q forms a local branching, denoted brpAq. The condition ΦpbrpAqq " A implies that A is the canonical filling associated to pg, f q.

One unexpected condition that appears in Theorem 5.1.3.8 is that we require Φ to be defined on all local branchings. This is to be contrasted to the situation in the detection theorem or in Theorem 3.1.3.5, where we only require conditions on the critical branching. We investigate this discrepancy in Section 5.1.3, and prove the following result: Theorem 5.3.1.14. Let pE, Rq be a string rewriting system, and suppose that for all f P R, spf q ‰ 1 (which in particular is always true if pE, Rq is terminating). Then LocBrpE, Rq is freely generated by any choice of critical branchings up to permutation. This implies in particular that defining Φ on the critical branchings is sufficient in order to apply Theorem 5.1.3.8. Using this, we are able in Section 5.3.2 to give an explicit of the reduced standard resolution of a monoid M . The generators of such a resolution were already known [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] (see Theorem 1.5.2.3), but the explicit description of the faces of the generators is new. Theorem 5.3.2.3. Let M be a monoid. Let RStdpM q be the following Gray polygraph:

• For any n ě 0, RStdpM q n consists of pn`1q-tuples pm 1 , . . . , m n`1 q of elements of M zt1u, that we denote pm 1 | . . . |m n`1 q.

• The faces are given for 1 ď i ď n by:

B í pm 1 | . . . |m n`1 q " pm 1 | . . . |m i q b pm i`1 | . . . |m n`1 q B ì pm 1 | . . . |m n`1 q " $ ' ' ' ' & ' ' ' ' % pm 1 | . . . |m i m i`1 |m i`2 | . . . |m n`1 q m i m i`1 ‰ 1 1 pm 3 | . . . |m n`1 q i " 1 and m 1 m 2 " 1 Γ ì´1 pm 1 | . . . |m i´1 |m i`2 | . . . |m n`1 q 2 ď i ď n ´1 and m i m i`1 " 1 n´1 pm 1 | . . . |m n´1 q i " n and m n m n`1 " 1 with B 1 pm 1 |m 2 q " 1 RStdpM q Gp0q if m 1 m 2 " 1 M (the unit of the monoid M ).
Then the Gray monoid RStdpM q Gp0q forms a polygraphic resolution of M .

Another application of Theorem 5.1.3.8 and 5.3.1.14 is given in Section 5.3.3, where we give a new proof of the extended existence theorem in our setting.

Theorem 5.3.3.5. Let pE, Rq be a convergent string rewriting system and let M be the monoid presented by pE, Rq. There exists an extension of pE, Rq into a Gray polygraph Σ such that:

• The n-cells of Σ n correspond to the critical branchings • Σ is a resolution of M (more specifically, Σ satisfies the hypothesis of Theorem 5.1.3.8).

Introduction

In this section we recall some classical notions of higher-dimensional rewriting. We start in Section 2.1 by recalling the definition of ω-category and ω-polygraphs, and more generally of pn, pq-category and pn, pq-polygraph. According to Street in [START_REF] Street | An australian conspectus of higher categories[END_REF], the notion of ω-catgeory was probably first brought up by John Roberts in the late 70s. The earliest published definition can be found in [START_REF] Brown | The equivalence of 8-groupoids and crossed complexes[END_REF]. The notion of 2-polygraph on the other hand was introduced by Street in [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF] under the name of computad. It seems that the earliest occurrence of general n-polygraphs in the literature comes [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF].

In Section 2.2, we recall some classical definitions and results of higher dimensional rewriting. In our case we need to talk about rewriting in n-categories. See [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] and [START_REF] Guiraud | Coherence in monoidal track categories[END_REF] for references, or [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF] for a more gentle introduction to the special case of string rewriting.

Finally, in Section 2.3 we use these techniques to prove coherence theorems for bicategories and pseudofunctors between them. A bicategory being just a monoidal category with many objects, our proof of the coherence theorem for bicategories is a straight adaptation of the proof of the coherence of monoidal categories found in [START_REF] Guiraud | Coherence in monoidal track categories[END_REF]. The case of pseudofunctors is slightly more interesting because we need to find a way to encode the operation of "taking the image through the functor", but once this is done the same techniques as in the case of monoidal categories can be used.

Globular pn, pq-categories and polygraphs

This section is divided into two parts: in the first one we introduce ω-categories, while in the second we introduce polygraphs, following their description in [START_REF] Métayer | Resolutions by polygraphs[END_REF].

Globular categories

Definition 2.1.1.1. A n-globular set (for n P N Y tωu) is the data of a family of sets G k for 0 ď k ď n together with source and target maps s, t : G k`1 Ñ G k for all 0 ď k ă n, satisfying the so called globular relations: s ˝t " s ˝s t ˝t " t ˝s .

(2.1.1)

If G is such a globular set, we denote by s k j and t k j (or simply s j and t j ) the maps from G k to G j such that s k`1 k " s, t k`1 k " t and which satisfy the equations:

s j i ˝tk j " s k i " s j i ˝sk j t j i ˝tk j " s k i " t j i ˝sk j
For f P G k we call s j pf q and t j pf q respectively the k-source and the k-target of f . An element of G k is called a k-cell. Two k-cells f, g P G k are said to be j-composable if t j pf q " s j pgq.

Definition 2.1.1.2. For n P N Y tωu, an n-category C is the data of an n-globular set C together with, for any 0 ď k ď n and 0 ď j ă k, maps ' j associating to any two j-composable k-cells f, g P C k a cell f ' j g P C k , and for any k-cell f P C k a pk `1q-cell 1 f P C k`1 . This data moreover has to verify the following relations:

• For all j-composable f, g P C k , spf ' j gq " spf q' j spgq and tpf ' j gq " tpf q' j tpgq if j ‰ k ´1, if j " k ´1 then spf ' j gq " spf q, while tpf ' j gq " tpgq.

• For all f P C k , sp1 f q " tp1 f q " f .

• For all j-composable f, g, h P C k , pf ' j gq ' j h " f ' j pg ' j hq.

• For all f P C k , f ' k´1 1 tpf q " 1 spf q ' k´1 f " f .

• For all f, f 1 , g, g 1 P C k , and 0 ď i ă j ă k, then pf ' j f 1 q ' i pg ' j g 1 q " pf ' i gq ' j pf 1 ' i g 1 q, as soon as the left-hand side is defined.

The relations imply additionally the additional following relations (as soon as they are defined):

s i pf ' j gq " $ ' & ' % s i pf q ' j s i pgq i ą j s i pf q i " j s i pf q " s i pgq i ă j t i pf ' j gq " $ ' & ' % t i pf q ' j t i pgq i ą j t i pgq i " j t i pf q " t i pgq i ă j Definition 2.1.1.3.
If C is a 2-category, we denote by C op the 2-category obtained by reversing the direction of the 1-cells, and by C co the 2-category obtained by reversing the direction of the 2-cells.

Example 2.1.1.4. Let us explicit the notion of 2-category. The underlying 2-globular set is constituted of three sets C 0 , C 1 and C 2 . A 1-cell f and the 2-cell A are respectively represented as follows:

s 0 pf q t 0 pf q f s 0 pAq t 0 pAq s 1 pAq t 1 pAq

A

For any 0-cell x P C 0 and 1-cell f P C 1 , the cells 1 x and 1 f have the following shape:

x x 1 x s 0 pf q t 0 pf q f f 1 f
The composition ' 0 associates, to any composable 1-cells x y z f g , a

1-cell x z f ' 0 g
. And to any 0-composable 2-cells x y z

f g A f 1 g 1 A 1 , a 2-cell: x z f ' 0 f 1 g ' 0 g 1 A ' 0 A 1
Finally, the composition ' 1 associates to any 1-composable 2-cells

x y f g h A B , a 2-cell A ' 1 B of shape x y f h A ' 1 B .
Also, if f is 1-cell and A is a 2-cell then we denote by f ' 0 A the composite (when defined) 1 f ‹ 0 A, and similarly for A ‹ 0 g for any 1-cell g. This operation is called whiskering. For instance the composite f ' 0 A ' 0 g is represented as follows:

f g A Definition 2.1.1.5.
Let C be an n-category, for n P N Y tωu. For p P N Y tωu, we say that C is an pn, pq-category if for any p ă k ď n, any k-cell has an inverse for composition ' k´1 . That is for every A P C k there exists B P C k such that A ' k´1 B " 1 spAq and B ' k´1 A " 1 tpAq . In particular for p ě n an pn, pq-category is just a category, and for p " 0 we call an pn, 0q-category an n-groupoid.

Example 2.1.1.6. A 2-category C is a p2, 1q-category if for any 2-cell A : f ñ g P C 2 , there exists a 2-cell A ´: g ñ f P C 2 such that the following equality holds (together with the one obtained by exchanging the roles of A and A ´):

x y f g f A A ´" x y f f 1 f
It is a 2-groupoid if moreover for any 1-cell f : x Ñ y there exits a 1-cell f ´: y Ñ x such that the following equalities hold:

x y x f f ´" x x 1 x y x y f ´f " y y 1 y
Note that in addition in a 2-groupoid any 2-cell A : f ñ g P C 2 admits an inverse B : f ´ñ g ´for composition ' 0 , given by the following composite:

B " f ´gǵ f A 3 2.1.

Polygraphs

We recall the definition of polygraphs from [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF]. For n P N, we denote by n -Cat the category of n-categories and by Graph n the category of n-graphs. The category of n-categories equipped with a cellular extension, denoted by n -Cat `, is the limit of the following diagram:

n -Cat `/ / { Graph n`1 n -Cat / / Graph n
where the functor n -Cat Ñ Graph n forgets the categorical structure and the functor Graph n`1 Ñ Graph n deletes the top-dimensional cells.

Hence, an object of n -Cat `is a couple pC, Gq where C is an n-category and G is a graph

C n S n`1 t o o s o o
, such that for any u, v P S n`1 , the following equations are verified:

spspuqq " sptpuqq tpspuqq " tptpuqq Let R n be the functor from pn `1q -Cat to n -Cat `that sends an pn `1q-category C on the couple pC n ,

C n C n`1 o o o o q.
This functor admits a left-adjoint L n : n -Cat `Ñ pn `1q -Cat (see [START_REF] Métayer | Cofibrant objects among higher-dimensional categories[END_REF]).

We now define by induction on n the category Pol n of n-polygraphs together with a functor

Q n : Pol n Ñ n -Cat.
• The category Pol 0 is the category of sets, and Q 0 is the identity functor.

• Assume Q n : Pol n Ñ n -Cat is defined. Then Pol n`1 is the limit of the following diagram: [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] for an explicit description of this construction. Definition 2.1.2.3. Given an pn, kq-polygraph Σ, the pn, kq-category Q pkq n pΣq is denoted by Σ ˚pkq and is called the free pn, kq-category generated by Σ. For j ď n, we denote by Σ ˚pkq j both the j-cells of Σ ˚pkq and the pj, kq-category generated by Σ. Hence, an pn, kq-polygraph Σ consists of the following data:

Pol n`1 / / { n -Cat Pol n Q n / / n -
Σ 0 Σ 1 Σ 2 p¨¨¨q Σ k Σ k`1 p¨¨¨q Σ n Σ 0 Σ 1 Σ 2 p¨¨¨q Σ k Σ ˚pkq k`1 p¨¨¨q Remark 2.1.2.4.
Let n, j and k be integers, with j ď k ď n. Since an pn, jq-category is also an pn, kq-category, an pn, kq-polygraph gives rise to an pn, jq-polygraph. In particular for n " k " 1 and j " 0 we recover that a monoid presentation gives rise to a group presentation.

In particular, if Σ is an pn, kq-polygraph, we denote by Σ ˚pjq the pn, jq-category it generates.

Definition 2.1.2.5. Let C be an pn`1, kq-category. We denote by C the pn, kq-category C n {C n`1 .

Let Σ be an pn `1, kq-polygraph. We denote by Σ the pn, kq-category Σ ˚pkq and call it the pn, kq-category presented by Σ.

Higher-dimensional rewriting

In this section we recall the notions of termination (Section 2.2.1), confluence (Section 2.2.2) and coherence (Section 2.2.3) of an n-category. Since this n will vary throughout Chapter 3, we talk instead of n-confluence, n-termination and n-confluence. Finally, we state Squier's theorem, under its more general form proved by Guiraud and Malbos in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF].

Termination

Definition 2.2.1.1. Let Σ be an n-polygraph. For 0 ă k ď n, the binary relation Ñ k defined by u Ñ k v if there exists f : u Ñ v in Σ k is a preorder on Σ k´1 (transitivity is given by composition, and reflexivity by the units). We say that the n-polygraph Σ is k-terminating if Ñ k is a well-founded ordering. We denote by Ñ k the strict ordering associated to Ñ k .

We recall Theorem 4.2.1 from [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], which we will use in order to show the 3-termination of some polygraphs. Definition 2.2.1.2. Let sOrd be the 2-category with one object, whose 1-cells are partially ordered sets, whose 2-cells are monotonic functions and whose 0-composition is the cartesian product.

Definition 2.2.1.3. Let C be a 2-category, X : C 2 Ñ sOrd and Y : C co 2 Ñ sOrd two 2-functors, and M a commutative monoid. An pX, Y, M q-derivation on C is given by, for every 2-cell f P C 2 , an application dpf q : Xpspf qq ˆY ptpf qq Ñ M, such that for every 2-cells f 1 , f 2 P C 2 , every x, y, z and t respectively in Xpspf 1 qq, Y ptpf 1 qq, Xpspf 2 qq and Y ptpf 2 qq, the following equalities hold:

dpf 1 ' 1 f 2 qrx, ts " dpf 1 qrx, Y pf 2 qryss `dpf 2 qrXpf 1 qrxs, ys
dpf 1 ' 0 f 2 qrpx, zq, py, tqs " dpf 1 qrx, ys `dpf 2 qrz, ts.

In order to show the 3-termination of some polygraphs, we are going to use the following result (Theorem 4.2.1 from [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]).

Theorem 2.2.1.4. Let Σ be an n-polygraph, X : Σ 2 Ñ sOrd and Y : pΣ 2 q co Ñ sOrd two 2-functors, and M be a commutative monoid equipped with a well-founded ordering ě, and whose addition is strictly monotonous in both arguments.

Suppose that for every 3-cell A P Σ 3 , the following inequalities hold:

XpspAqq ě XptpAqq Y pspAqq ě Y ptpAqq dpspAqq ą dptpAqq.
Then the n-polygraph Σ is 3-terminating.

Branchings and Confluence

Definition 2.2.2.1. Let Σ be an n-polygraph. A k-fold branching of Σ is a k-tuple pf 1 , f 2 , . . . , f k q of n-cells in Σ ˚such that every f i has the same source u, which is called the source of the branching.

The symmetric group S k acts on the set of all k-fold branchings of Σ. The equivalence class of a branching pf 1 , f 2 , . . . , f k q under this action is denoted by rf 1 , f 2 , . . . , f k s. Such an equivalence class is called a k-fold symmetrical branching, and pf 1 , f 2 , . . . , f k q is called a representative of rf 1 , f 2 , . . . , f k s Definition 2.2.2.2. Let Σ be an n-polygraph. We denote by N the n-category with exactly one k-cell for every k ă n, whose n-cells are the natural numbers and whose compositions are all given by addition.

We define an application l : Σ ˚Ñ N by setting lpf q " 1 for every f P Σ n . For f P Σ n, we call lpf q the length of a f .

An n-cell of length 1 in Σ n is also called a rewriting step.

Definition 2.2.2.3. Let Σ be an n-polygraph. A k-fold local branching of Σ is a k-fold branching pf 1 , f 2 , . . . , f k q of Σ where every f i is a rewriting step.

A k-fold local branching pf 1 , . . . , f k q of source u is a strict aspherical branching if there exists an integer i such that f i " f i`1 . We say that it is an aspherical branching if it is in the equivalence class of a strict aspherical branching.

A k-fold local branching pf 1 , . . . , f k q is a strict Peiffer branching if it is not aspherical and there exist

v 1 , v 2 P Σ n´1 such that u " v 1 ' i v 2 , an integer m ă n and f 1 1 , . . . , f 1 k P Σ n such that for every j ď m, f j " f 1 j ' i v 2 and for every j ą m, f j " v 1 ' i f 1 j . It is a Peiffer branching if it is in the equivalence class of a strict Peiffer branching.
A local branching that is neither aspherical nor Peiffer is overlapping.

Given an n-polygraph Σ, one defines an order Ď on k-fold local branchings by saying that

pf 1 , . . . , f k q Ď pu ' i f 1 ' i v, . . . , u ' i f k ' i vq for every u, v P Σ n´1 and every k-fold local branching pf 1 , . . . , f k q.
Definition 2.2.2.4. An overlapping branching that is minimal for Ď is a critical branching.

A 2-fold (resp. 3-fold) critical branching is also called a critical pair (resp. critical triple).

Definition 2.2.2.5. Let Σ be an n-polygraph. A 2-fold branching pf, gq is confluent if there are f 1 , g 1 P Σ n of the following shape:

f 1 f 0 0 g . . g 1 _ _ Definition 2.2.2.6. An n-polygraph Σ is k-confluent if every 2-fold branching of Σ k is confluent. Definition 2.2.2.7. An n-polygraph is k-convergent if it is k-terminating and k-confluent.
The following two propositions are proven in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF].

Proposition 2.2.2.8. Let Σ be an n-terminating n-polygraph. It is n-confluent if and only if every 2-fold critical branching is confluent.

Proposition 2.2.2.9. Let Σ be a k-convergent n-polygraph. For every u P Σ k´1 , there exists a unique v P Σ k´1 such that u Ñ k v and v is minimal for Ñ k .

Definition 2.2.2.10. Let Σ be an n-polygraph. A normal form for Σ is an pn ´1q-cell minimal for Ñ n.

If Σ is n-convergent, for every u P Σ n´1 , the unique normal form v such that u Ñ n v is denoted by û and is called the normal form of u.

Coherence

Definition 2.2.3.1. Two k-cells are parallel if they have the same source and the same target.

An pn `1q-category C is n-coherent if, for each pair pf, gq of parallel n-cells in C n , there exists an pn `1q-cell

A : f Ñ g in C n`1 .
Definition 2.2.3.2. Let Σ be an pn `1q-polygraph, and pf, gq be a local branching of Σ n . A filling of pf, gq is an pn `1q-cell A P Σ ˚pnq n`1 of the shape:

A Õ % f 0 0 g . . _ _ Definition 2.2.3.3. An pn `1q-polygraph Σ satisfies the n-Squier condition if: • it is n-convergent,
• there is a bijective application from Σ n`1 to the set of all critical pairs of Σ n that associates to every

A P Σ n`1 , a critical pair b of Σ n such that A is a filling of a representative of b.
The following Theorem is due to Squier for n " 2 [75] and was extended to any integer n ě 2 by Guiraud and Malbos [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF].

Theorem 2.2.3.4. Let Σ be an pn `1q-polygraph satisfying the n-Squier condition. Then the free pn `1, n ´1q-category Σ ˚pn´1q is n-coherent.

In the proof of this Theorem appears the following result (Lemma 4.3.3 in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]).

Proposition 2.2.3.5. Let Σ be an pn `1q-polygraph satisfying the n-Squier condition.

For every parallel n-cells f, g P Σ n whose target is a normal form, there exists an pn `1q-cell

A : f Ñ g in Σ ˚pnq n`1 .
Let us compare those two last results. Let Σ be an pn `1q-polygraph satisfying the n-Squier condition, and let f, g P Σ n be two parallel n-cells whose target is a normal form. According to Theorem 2.2.3.4, there exists an pn `1q-cell A : f Ñ g in the free pn `1, n ´1q-category Σ ˚pn´1q n`1 . Proposition 2.2.3.5 shows that such an A can be chosen in the free pn `1, nq-category Σ ˚pnq n`1 , where the n-cells are not invertible. Hence, for cells f, g P Σ n whose target is a normal form, Proposition 2.2.3.5 is more precise than Theorem 2.2.3.4.

Application to the coherence of bicategories and pseudofunctors

We now study the coherence problem successively for bicategories and pseudofunctors. In Section 2.3.1, we start by recalling the usual definition of bicategories (see [START_REF] Bénabou | Introduction to bicategories[END_REF]). We then give an alternative description of bicategories in terms of algebras over a certain 4-polygraph BiCatrCs, and show that the two definitions coincide. The coherence problem for bicategories is now reduced to showing the 3-coherence of BiCatrCs, and we use the techniques introduced in the previous section (especially Theorems 2.2.1.4 and 2.2.3.4) to conclude. In Section 2.3.2, we apply the same reasoning to pseudofunctors.

Coherence for bicategories

Let Cat be the category of (small) categories. We denote by J the terminal category in Cat.

Let sCat be the 3-category with one 0-cell, (small) categories as 1-cells, functors as 2-cells, and natural transformations as 3-cells, where 0-composition is given by the cartesian product, 1-composition by functor composition, and 2-composition by composition of natural transformations.

Definition 2.3.1.1. A bicategory B is given by:

• A set B 0 .
• For every a, b P B 0 , a category Bpa, bq. The objects and arrows of Bpa, bq are respectively called the 1-cells B and 2-cells of B.

• For every a, b, c P B 0 , a functor ' a,b,c : Bpa, bq ˆBpb, cq Ñ Bpa, cq.

• For every a P B 0 , a functor I a : J Ñ Bpa, aq, that is to say a 1-cell I a : a Ñ a.

• For every a, b, c, d P B 0 , a natural isomorphism α a,b,c,d :

Bpa, bq ˆBpb, cq ˆBpc, dq Bpa, bq ˆ'b,c,d / / ' a,b,c ˆBpc, dq Bpa, bq ˆBpb, dq ' a,b,d α a,b,c,d D d Bpa, cq ˆBpc, dq ' a,c,d / / Bpa, dq of components α f,g,h : pf ' gq ' h ñ f ' pg ' hq,
for every triple pf, g, hq P Bpa, bq ˆBpb, cq Bpc, dq.

• For every a, b P B 0 , natural isomorphisms R a,b and L a,b :

Bpa, bq I a ˆBpa, bq Bpa, bq ˆIb / / Bpa, bq ˆBpb, bq ' a,b,b R a,b q Õ Bpa, aq ˆBpa, bq ' a,a,b / / L a,b I i Bpa, bq of components L f : I a ' f ñ f and R f : f ' I b ñ f for every 1-cell f P Bpa, bq.
This data must also satisfy the following axioms:

• For every composable 2-cells f, g, h, i in B:

ppf ' gq ' hq ' i α f,g,h ' i 0 P α f 'g,h,i r Ö " pf ' pg ' hqq ' i α f,g'h,i Õ % pf ' gq ' ph ' iq α f,g,h'i $ D f ' ppg ' hq ' iq f ' α g,h,i l Ð f ' pg ' ph ' iqq (2.3.1)
• For every couple pf, gq P Bpa, bq ˆBpb, cq: Dimension 2: The set BiCatrCs 2 contains the following 2-cells:

pf ' I b q ' g f ' pI b ' gq f ' g α f,I b ,g R f ' g f ' L g " (2.
• For every a, b, c P C, a 2-cell a,b,c : a b c ñ a c .
• For every a P C, a 2-cell a : 1 a ñ a a .

Note that the indices are redundant with the source of a generating 2-cell. In what follows, we will therefore omit them when the context is clear. For example, the 2-cell of source a b c d designates the composite p a b b,c,d q ' 1 a,b,d . We will use the same notation for higherdimensional cells. • where C is a set,

• where Φ is a functor from BiCatrCs to sCat.

Proposition 2.3.1.4. There is a one-to-one correspondence between (small) bicategories and AlgpBiCatq.

Proof. The correspondence between a bicategory B and an algebra pC, Φq over BiCat is given by:

• At the level of sets: C " B 0 .

• For every a, b P B 0 , Φp a b q " Bpa, bq.

• For every a, b, c P B 0 , Φp a,b,c q " ' a,b,c .

• For every a P B 0 , Φp a q " I a .

• For every a, b, c, d P B 0 , Φp a,b,c,d q " α a,b,c,d .

• For every a, b P B 0 , Φp a,b q " R a,b and Φp a,b q " L a,b .

• The axioms that a bicategory must satisfy correspond to the fact that Φ is compatible with the quotient by the 4-cells and .

Bicategory We are going to show the coherence theorem for bicategories, using Theorem 2.2.3.4.

AlgpBiCatq Sets B 0 C 0-cells Categories Bp_, _q 1-cells Functors ', I , 2-cells Natural transformations α, L, R , , 3-cells Equalities (2.3.1) (2.3.2) 4-cells
Proposition 2.3.1.5. For every set C, the 4-polygraph BiCatrCs 3-terminates.

Proof. In order to apply Theorem 2.2.1.4 we construct two functors X C : BiCatrCs 2 Ñ sOrd and Y C : pBiCatrCs 2 q co Ñ sOrd by setting, for every a, b P C:

X C p a b q " Y C p a b q " N ånd,
for every i, j P N ˚:

X C p qri, js " i `j, X C p q " 1, Y C p qris " pi, iq.
We now define an pX C , Y C , Nq-derivation d C on BiCatrCs 2 by setting, for every i, j, k P N ˚:

d C p qri, j, ks " i `k `1, d C p qris " i,
It remains to show that the required inequalities are satisfied. Concerning X C and Y C , we have for every i, j, k P N ˚:

X C p qri, j, ks " i `j `k ě i `j `k " X C p qri, j, ks X C p qris " i `1 ě i " X C pqris X C p qris " i `1 ě i " X C pqris Y C p qris " pi, i, iq ě pi, i, iq " Y C p qris Y C p qris " i ě i " Y C pqris Y C p qris " i ě i " Y C pqris.
Concerning d C , we have for every i, j, k, l P N ˚:

d C p qri, j, k, ls " 2i `j `2l `2 ą i `j `2l `2 " d C p qri, j, k, ls d C p qri, js " 2j `2 ą 0 " d C pqri, js d C p qri, js " i `2j `1 ą 0 " d C pqri, js.
The following Theorem is a rephrasing of Mac Lane's coherence theorem [START_REF] Mac | Coherence for bicategories and indexed categories[END_REF] in our setting.

Theorem 2.3.1.6. Let C be a set. The 4-polygraph BiCatrCs is 3-convergent and the free p4, 2q-category BiCatrCs ˚p2q is 3coherent.

Proof. We already know that BiCatrCs is 3-terminating. Using Proposition 2.2.2.8 and Theorem 2.2.3.4, it remains to show that every critical pair admits a filling.

There are five families of critical pairs, of sources:

The first two families are filled by the 4-cells and , whereas the last three are filled by 4-cells ω i P BiCatrCs ˚p2q 4 , which are constructed in a similar fashion as in the case of monoidal categories (see Proposition 3.5 in [START_REF] Guiraud | Coherence in monoidal track categories[END_REF]).

Coherence for pseudofunctors

Definition 2.3.2.1. A pseudofunctor F is given by:

• Two bicategories B and B 1 .

• A function F 0 : B 0 Ñ B 1 0 .
• For every a, b P B 0 , a functor F a,b : Bpa, bq Ñ B 1 pF 0 paq, F 0 pbqq.

• For every a, b, c P B 0 , a natural isomorphism φ a,b,c :

Bpa, bq ˆBpb, cq ' a,b,c / / F a,b ˆFb,c Bpa, cq F a,c φ a,b,c l Ð B 1 pF 0 paq, F 0 pbqq ˆB1 pF 0 pbq, F 0 pcqq ' 1 F 0 paq,F 0 pbq,F 0 pcq / / B 1 pF 0 paq, F 0 pcqq
of components φ f,g : F pf ' gq ñ F pf q ' 1 F pgq, for every couple pf, gq P Bpa, bq ˆBpb, cq.

• For every a P B 0 , a natural isomorphism ψ a :

J I a / / Bpa, aq F a,a ψ a n Ò J I 1 F 0 paq,F 0 paq / / B 1 pF 0 paq, F 0 paqq
of components ψ a : F pI a q ñ I 1 F 0 paq , for every a P B 0

This data must satisfy the following axioms:

• For every composable 1-cells f, g and h in B:

F ppf ' gq ' hq φ f 'g,h 2 R F pα f,g,h q k " F pf ' pg ' hqq φ f,g'h Õ % F pf ' gq ' 1 F phq φ f,g ' 1 F phq Õ % F pf q ' 1 F pg ' hq F pf q ' 1 φ g,f 1 Q pF pf q ' 1 F pgqq ' 1 F phq α 1 F pf q,F pgq,F phq j F pf q ' 1 pF pgq ' 1 F phqq (2.3.3) • For every 1-cell f : a Ñ b in B: F pI a q ' 1 F pf q ψ a ' 1 F pf q 7 W " I 1 F 0 paq ' 1 F pf q L 1 F pf q ( H F pI a ' f q φ Ia,f E e F pL f q 8 X F pf q (2.3.4)
• For every 1-cell f : a Ñ b in B:

F pf q ' 1 F pI b q F pf q ' 1 ψ b 7 W " F pf q ' 1 I 1 F 0 pbq R 1 F pf q ( H F pf ' I b q φ f,I b E e F pR f q 8 X F pf q (2.3.5)
Definition 2.3.2.2. Let C and D be sets, and f an application from C to D. Let us describe dimension by dimension a 4-polygraph PFonctrf s. We will prove in Proposition 2.3.2.5 that pseudofunctors correspond to algebras over PFonctrf s. The polygraph PFonctrf s contains the union of:

• the polygraph BiCatrCs, whose cells are denoted by , , , , , and , defined as in Definition 2.3.1.2,

• the polygraph BiCatrDs, whose cells are denoted by , , , , , and , defined as in Definition 2. • For every a P C, a 3-cell a : of 1-source a f paq .

Dimension 4: The PFonctrf s 4 contains the following 4-cells:

• For every a, b, c, d P C, a 4-cell a,b,c,d of 1-source a b c d f pdq 7 W & F % E H h 7 W I i • For every a, b P C, 4-cells a,b and a,b of 1-source a b f pbq 7 W % E I i 9 Y 7 W % E H h 9 Y
Definition 2.3.2.3. Let AlgpPFonctq be the set of all tuples pC, D, f , Φq:

• where C and D are sets,

• where f is an application from C to D,

• where Φ is a functor from PFonctrf s to sCat such that, for every c P C the following equality holds: Proof. In order to apply Theorem 2.2.1.4, we define functors X f : PFonctrf s 2 Ñ sOrd and Y f : pPFonctrf s 2 q co Ñ sOrd as extensions of the functors X C , X D , Y C and Y D from Proposition 2.3.1.5, and by setting for every a P C:

Φp c f pcq q " J Remark 2.3.2.4. Let f : C Ñ D
X f p a f paq q " Y f p a f paq q " J,
where J is the terminal ordered set, and for every i P N ˚:

X f p qris " i Y f p qris " 2i `1.
We now define an pX f , Y f , Nq-derivation d f on PFonctrf s 2 as an extension of d C , by setting for every i, j, k P N ˚:

d f p qri, j, ks " i `k d f p qris " i d f p qri, js " i `j `1
It remains to show that the inequalities required to apply Theorem 2.2.1.4 are satisfied. Since X f (resp. Y f ) extends X C and X D (resp. Y C and Y D ), the only inequalities that need to be checked are those corresponding to the 3-cells and . Indeed, for every i, j P N ˚, we have:

X f p q " 1 ě 1 " X f p q X f p qri, js " i `j ě i `j " X f p qri, js Y f p qris " p2i `1, 2i `1q ě p2i `1, 2i `1q " Y f p qris
Concerning d f , the 3-cells from BiCatrCs have already been checked in Proposition 2.3.1.5. For the other 3-cells, we have, for every i, j, k P N ˚:

d f p qri, js " 2j `1 ą 0 " d f pqri, js d f p qri, js " i `2j ą 0 " d f pqri, js d f p qris " 3i `2 ą i " d f p q d f p qri, j, ks " 2i `j `3k `3 ą 2i `j `3k `2 " d f p qri, j, ks.
Theorem 2.3.2.7. Let C and D be sets, and f : C Ñ D an application. The 4-polygraph PFonctrf s is 3-convergent and the free p4, 2q-category PFonctrf s ˚p2q is 3coherent.

Proof. We have shown that it is 3-terminating, so using Proposition 2.2.2.8 and Theorem 2.2.3.4, it remains to show that every critical pair admits a filler in PFonctrf s 4 .

There are thirteen families of critical pairs. Among them, ten come from BiCatrCs or BiCatrDs, and were already dealt with in Theorem 2.3.1.6. The remaining three have the following sources: and they are filled respectively by the 4-cells , and .

Organisation

The goal of this chapter is to prove a coherence theorem for pseudonatural transformations. In the beginning of Section 3.1, we try to mimic the reasoning we used in the previous chapter to show the coherence for bicategories and pseudofunctors. We quickly realise however that the p4, 2q-polygraph encoding the structure of pseudonatural transformation is not confluent, and so we cannot apply Theorem 2.2.3.4. To conclude we therefore temporarily admit a new Squier-like result: Theorem 3.1.3.5. Using this result we are able to prove the coherence for pseudonatural transformations in Section 3.1.

We then proceed to prove Theorem 3.1.3.5. First in Section 3.2 we introduce some necessary tools, and in particular the notion of white n-categories, which are n-categories where the exchange law does not hold (even up to isomorphism. Sections 3.3 and 3.4 then contain the proof of Theorem 3.1.3.5.

Proof of the coherence for pseudonatural transformations

In this section we prove a coherence theorem for pseudonatural transformations (Theorem 3.1.1.8). However, the methods we developped in the previous chapter fail in this case. To prove Theorem 3.1.1.8 we therefore rely on another result: Theorem 3.1.3.5, whose proof will occupy Sections 3.2 to 3.4. In Section 3.1.1, we start by describing the structure of pseudonatural transformation and a p4, 2q-polygraph PNTransrf , gs encoding it. A more complete overview of the proof of Theorem 3.1.1.8 is given at the end of Section 3.1.1. • For every a P B 0 , a functor τ a : J Ñ B 1 pF 0 paq,

The structure of pseudonatural transformation

F 1 0 paqq, that is a 1-cell τ a : F 0 paq Ñ F 1 0 paq in B 1 .
• For every a, b P B 0 , a natural isomorphism σ a,b :

Bpa, bq F 1 a,b ( ( 
F a,b v v B 1 pF 0 paq, F 0 pbqq B 1 pF 0 paq, F 0 pbqq ˆτb B 1 pF 1 0 paq, F 1 0 pbqq τ a ˆB1 pF 1 0 paq, F 1 0 pbqq B 1 pF 0 paq, F 0 pbqq ˆB1 pF 0 pbq, F 1 0 pbqq ' 1 F 0 paq,F 0 pbq,F 1 0 pbq ( ( B 1 pF 0 paq, F 1 0 paqq ˆB1 pF 1 0 paq, F 1 0 pbqq ' 1 F 0 paq,F 1 0 paq,F 1 0 pbq v v B 1 pF 0 paq, F 1 0 pbqq σ a,b 7 W of components σ f : F pf q ' 1 τ b ñ τ a ' 1 F 1 pf q, for every f P Bpa, bq.
This data must satisfy the following axioms:

• For every pf, gq P Bpa, bq ˆBpb, cq:

τ a ' 1 F 1 pf ' gq τ a ' 1 φ 1 f,g 1 Q σ f 'g D d " F pf ' gq ' 1 τ c φ f,g ' 1 τ c Õ % τ a ' 1 pF 1 pf q ' 1 F 1 pgqq α 1 τa,F 1 pf q,F 1 pgq i pF pf q ' 1 F pgqq ' 1 τ c α 1 F pf q,F pgq,τc Õ % pτ a ' 1 F 1 pf qq ' 1 F 1 pgq σ f ' 1 F 1 pgq i F pf q ' 1 pF pgq ' 1 τ c q F pf q ' 1 σ g 0 P pF pf q ' 1 τ b q ' 1 F 1 pgq α 1 F pf q,τ b ,F pgq k F pf q ' 1 pτ b ' 1 F 1 pgqq (3.1.1)
• For every a P B 0 :

F pI a q ' 1 τ a τ a ' 1 F 1 pI a q I 1 F 0 paq ' 1 τ a τ a ' 1 I 1 F 1 0 paq τ a σ Ia ψ a ' 1 τ a τ a ' 1 ψ 1 a L 1 τa R 1 τa " (3.1.2) Definition 3.1.1.2.
Let C and D be sets, and f , g be applications from C to D. Let us define dimension by dimension a p4, 2q-polygraph PNTransrf , gs. We will see in Proposition 3.1.1.5 that pseudonatural transformations correspond to algebras over PNTransrf , gs.

The polygraph PNTransrf , gs contains the union of the polygraphs PFonctrf s and PFonctrgs. In particular, the following cells are in PNTransrf , gs:

• the cells , , , , , and coming from BiCatrCs,

• the cells , , , , , and coming from BiCatrDs,

• the cells , , , , and coming from PFonctrf s,

• the cells , , , , and coming from PFonctrgs.

Together with the union of PFonctrf s and PFonctrgs, PNTransrf , gs contains the following cells: • where C and D are sets,

• where f , g : C Ñ D are applications,

• where Φ is a functor from PNTransrf , gs to sCat, such that for every c P C, d P D and 1-cell : c Ñ d: Proof. The proof is similar to that of bicategories, using Table 3 This result induces the classification presented in Table 3.2 of the cells of the p4, 2q-polygraph PNTransrf, gs, depending on which structure they come from. We also distinguish two types of cells: product cells and unit cells. Moreover, in Table 3.2, every line corresponds to a dimension.

Φp c d q " J

Origin Dimension Product cells Unit cells

Source bicategory

2-cells 3-cells , 4-cells

Target bicategory

2-cells 3-cells , 4-cells

Source pseudofunctor

2-cells 3-cells 4-cells ,

Target pseudofunctor

2-cells 3-cells 4-cells ,

Pseudonatural transformation Proof. We apply Theorem 2.2.1.4. To construct the functors X f ,g : PNTransrf, gs 2 Ñ sOrd and Y f ,g : pPNTransrf , gs 2 q co Ñ sOrd, we extend the functors X f , X g , Y f and Y g from Proposition 2.3.2.6, by setting:

2-cells 3-cells 4-cells

X f ,g p q " 1
We now define an pX f ,g , Y f ,g , Nq-derivation d f ,g of the 2-category PNTransrf , gs 2 as the extension of d f satisfying, for every i, j P N ˚:

d f ,g p qri, js " i `j d f ,g p qris " i
It remains to show that the required inequalities are satisfied. Since X f ,g (resp. Y f ,g ) is an extension X f and X g (resp. Y f and Y g ), it only remains to treat the case of the 3-cell . For every i, j P N ˚, we have:

X f ,g p qris " i `1 ě i `1 " X f ,g p qris Y f ,g p qris " 2i `1 ě 2i `1 " Y f ,g p qris
Concerning d f ,g , the 3-cells from PFonctrf s were already treated in Proposition 2.3.1.5. For the others we have, for every i, j, k P N ˚:

d f ,g p qri, j, ks " 2i `j `3k `2 ą 2i `j `3k " d f ,g p qri, j, ks d f ,g p q " 3i `1 ą i " d f ,g p q d f ,g p qri, js " 2i `3j `1 ą i `3j `1 " d f ,g p qri, js Definition 3.1.1.7.
We define a weight application w as the 1-functor from PNTransrf , gs 1 to N, defined as follows on PNTransrf , gs 1 :

• for all a, b P C, wp a b q " 1,

• for all a, b P D, wp a b q " 1,

• for all a P C and b P D, wp a b q " 0. This proof of this theorem will occupy the rest of Section 3.1. Contrary to the case of bicategories and pseudofunctors, we cannot directly apply Theorem 2.2.3.4 to the p4, 2q-polygraph PNTransrf , gs, because the following critical pair is not confluent:

7 W & F G g 7 W 7 W
Let us give a quick overview of the proof of Theorem 3.1.1.8. We fix for the rest of this section two sets C and D, together with two applications f , g : C Ñ D. Let A, B P PNTransrf , gs ˚p2q be 3-cells whose 1-target is of weight 1. We want to build a 4-cell α : A 1 c B P PNTransrf , gs ˚p2q .

The 1-cells of weight 1 are of one of the following forms, with a, a 1 P C and b, b 1 P D:

a a 1 b b 1 a a 1 f pa 1 q a a 1 gpa 1 q a a 1 f pa 1 q a gpaq b a f paq b
We start in Section 3.1.2 by show that if the common 1-target of A and B is not of the last form, then they are generated by a sub-4-polygraph PFonctrf , gs of PNTransrf , gs. We then show using Theorem 2.2.3.4 that this 4-polygraph is coherent.

There remains to treat the case where the 1-target of A and B is of the last form. We define two sub-p4, 2q-polygraphs of PNTransrf , gs: PNTrans ``rf , gs and PNTrans `rf , gs. The p4, 2q-polygraph PNTrans ``rf , gs contains all the structure of pseudonatural transformations, except for the axioms concerning the units and , while PNTrans `rf , gs is constructed from PNTrans ``rf , gs by adding the 2-cells and (but not the higher dimensional cells where they appear). The inclusions between the p4, 2q-polygraphs can be seen as follows:

PNTrans ``rf , gs 2 Ă PNTrans `rf , gs 2 " PNTransrf , gs 2 PNTrans ``rf , gs 3 " PNTrans `rf , gs 3 Ă PNTransrf , gs 3

In Section 3.1.3, we show that PNTrans ``rf , gs satisfies the 2-Squier condition of depth 2, which allows us to apply Theorem 3.1.3.5. But this only solves the problem whenever A, B P PNTrans ``rf , gs ˚p2q . In order to extend that to the rest of PNTransrf , gs ˚p2q , we then define a sub-3-polygraph PNTrans u rf , gs of PNTransrf , gs. The rewriting system induced by the 3-cells PNTrans u rf , gs corresponds to simplifying the units out.

Using the properties of this rewriting system, we extend the result of Section 3.1.3, first to 3-cells A and B in PNTrans `rf , gs ˚p2q in Section 3.1.4, and finally to general A and B whose 1-target is a f paq b in Section 3.1.5, thereby concluding the proof.

A convergent sub-polygraph of PNTransrf , gs

Definition 3.1.2.1. Let PFonctrf , gs be the 4-polygraph containing every cell of PNTransrf , gs, except those corresponding to the pseudonatural transformation. Alternatively, PFonctrf , gs is the union of PFonctrf s and PFonctrgs. Lemma 3.1.2.2. For every h P PNTransrf , gs 2 , one of the following holds:

• The target of h is of the form

a 1 a i f pa i q b 1 b j , (3.1.3) 
where i and j are non-zero integers, the a k are in C and the b k are in D.

• The 2-cell h is in PFonctrf , gs 2 .

Proof. Let us show first that the set of all 1-cells of the form (3.1.3) is stable when rewritten by PFonctrf , gs 2 . To prove this, we examine the case of every cell of PFonctrf , gs 2 of length 1:

a 1 a k´1 a k`1 b j : a 1 a i f pa i q b 1 b j ñ a 1 a k´1 a k`1 b j a 1 a k a k b j : a 1 a i f pa i q b 1 b j ñ a 1 a k a k b j a 1 b k´1 b k`1 b j : a 1 a i f pa i q b 1 b j ñ a 1 b k´1 b k`1 b j a 1 b k b k b j : a 1 a i f pa i q b 1 b j ñ a 1 b k b k b j a 1 a i´1 f pa i q b j : a 1 a i f pa i q b 1 b j ñ a 1 a i´1 f pa i´1 q f pa i q b 1 b j
Let us now prove the lemma: we reason by induction on the length of h. If h is of length 0, it is an identity, so h is in PFonctrf , gs ˚.

If h is of length 1 and h is not in PFonctrf , gs ˚, then h has to be of the form . So its target is of the form:

a 1 a k f pa k q gpa k q b 2 b j which is indeed of the form (3.1.3), with b 1 " gpa k q.
Let now h be of length n ą 1. We can write h " h 1 ' 1 h 2 , where h 2 is of length 1, and h 1 is strictly shorter than h. Let us apply the induction hypothesis to h 2 . If the target of h 2 is of the form (3.1.3), then so is the target of h, since tph 2 q " tphq. Otherwise, then h 1 P PFonctrf , gs ˚, and we can apply the induction hypothesis to h 2 . If h 2 also is in PFonctrf , gs ˚, then so is h.

It remains to treat the case where tph 1 q is of the form (3.1.3) , and h 2 is in PFonctrf , gs ˚. But we have shown that the 1-cells of the form (3.1.3) are stable when rewritten by PFonctrf , gs ˚.

Thus, the target of h 2 (which is the target of h) is of the form (3.1.3), which concludes the proof.

Lemma 3.1.2.3. For every A P PNTransrf , gs ˚p2q 3 , one of the following holds:

• The 1-target of A is of the form (3.1.3). • The 3-cell A is in PFonctrf , gs ˚p2q 3 . 
Proof. Let us start by the case where A is a 3-cell of length 1 in PNTransrf , gs 3 . If the 1target of A is not of the form (3.1.3) then, according to Lemma 3.1.2.2, the 2-source of A is in PFonctrf , gs 2 . The only 3-cell in PNTransrf , gs 3 which is not in PFonctrf , gs 3 is the 3-cell , whose 2-source is not in PFonctrf , gs 2 . Thus A is in PFonctrf , gs 3 .

Suppose now that A " B ´1, where B is a 3-cell of PNTransrf , gs 3 of length 1. The 1-target of B is the same as the one of A. If it is not of the form (3.1.3), B is in PFonctrf , gs ˚p2q 3 , and so is A.

In the general case, A is a composite of 3-cells of one of the two previous forms, and all of them have the same 1-target as A. Thus if the 1-target of A is not of the form (3.1.3), all those 3-cells are in PFonctrf , gs ˚p2q 3 , and so is A.

Lemma 3.1.2.4. The 4-polygraph PFonctrf , gs is 3-coherent.
Proof. It is a sub-4-polygraph of PNTransrf , gs which is 3-terminating, therefore it is also 3terminating. Moreover, every critical pair in PFonctrf , gs arises from one either in PFonctrf s or PFonctrgs. Since those 4-polygraphs are confluent and satisfy the Squier condition, so does PFonctrf , gs.

Using Theorem 2.2.3.4, this means that PFonctrf , gs is 3-coherent.

Proposition 3.1.2.5. Let f , g : C Ñ D be two applications.

For every parallel 3-cells A, B P PNTransrf , gs ˚p2q whose 1-target is not of the form (3.1.3), there exists a 4-cell α : A 1 c B P PNTransrf , gs In particular, for every parallel 3-cells A, B P PNTransrf , gs ˚p2q whose 1-target is of weight 1 and is not of the form a f paq b , there exists a 4-cell α : A 1 c B P PNTransrf , gs Proof. Let A, B P PNTransrf , gs ˚p2q 3 whose 1-target is not of the form (3.1.3). We want to build a 4-cell α : A 1 c B P PNTransrf , gs Let PNTrans ``rf , gs be the sub-p4, 2q-polygraph of PNTransrf , gs containing every product cell from Table 3.2. Definition 3.1.3.2. Let Σ be an pn `1q-polygraph, and pf, gq a local branching in Σ n . Depending on the nature of pf, gq, we define the notion of canonical filling of pf, gq.

• If pf, gq is an aspherical branching, then its canonical filling is the identity

1 f . • If pf, gq is a Peiffer branching, if pf, gq " pf 1 ' i v 1 , v 2 ' i g 1 q (resp. pf, gq " pv 1 ' i f 1 , g 1 ' i v 2 q),
then its canonical filling is

1 f 1 ' i g 1 (resp. 1 g 1 ' i f 1 ).
• Assume that Σ satisfies the n-Squier condition, and let pf, gq be a critical pair. Let A be the pn `1q-cell associated to rf, gs. If A is a filling of pf, gq, then the canonical filling of pf, gq is A. Otherwise, A is a filling of pg, f q and the canonical filling of pf, gq is A ´1.

• Assume that the branching pf, gq admits a canonical filler A. Then the canonical filler of

pu ' i f ' i v, u ' i f ' i vq is u ' i A ' i v.
Definition 3.1.3.3. Let Σ be an pn `2, nq-polygraph satisfying the n-Squier condition, and pf, g, hq be a local branching of Σ n . A filling of pf, g, hq is an pn `2q-cell α P Σ ˚pnq n`2 of the shape: • it satisfies the n-Squier condition,

/ / A f,g A / / B 1 A f,h f ? ? g / / h A g
• there is a bijective application from Σ n`2 to the set of all critical triples of Σ n that associates to every α P Σ n`2 a critical triple b of Σ n such that α is a filling of a representative of b. This theorem should be compared with Proposition 4.4.4 in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]. There, for every parallel A, B P Σ ˚p1q 3 , a 4-cell α : A 1 c B is constructed in the free p4, 1q-category Σ We define a functor τ : PNTransrf , gs 1 Ñ N 3 , where compositions in N 3 are given by component-wise addition, by defining:

• For all a, b P C, τ p a b q " p1, 0, 0q.

• For all a P C, τ p a f paq q " p0, 1, 0q.

• For all a P C, τ p a gpaq q " p0, 2, 0q.

• For all a, b P D, τ p a b q " p0, 0, 1q.

The lexicographic order on N 3 induces a noetherian ordering on PNTransrf , gs 1 . Moreover, the 2-cells are indeed decreasing for this order: τ psp qq " p2, 0, 0q ą p1, 0, 0q " τ ptp qq τ psp qq " p0, 0, 2q ą p0, 0, 1q " τ ptp qq τ psp qq " p1, 1, 0q ą p0, 1, 1q " τ ptp qq τ psp qq " p1, 2, 0q ą p0, 2, 1q " τ ptp qq τ psp qq " p0, 2, 0q ą p0, 1, 1q " τ ptp qq

The following diagrams show both the 2-confluence of PNTrans ``rf , gs and the correspondence between critical pairs and 3-cells: Proof. Thanks to Lemma 3.1.3.6, we can apply Theorem 3.1.3.5 to PNTrans ``rf , gs ˚p2q , and there exists a 4-cell α : A 1 c B in PNTrans ``rf , gs ˚p2q for every 3-cells A, B P PNTrans ``rf , gs ˚p2q whose 1-target is a normal form. In particular the 1-cells of the form a f paq b are normal forms. If there is a decomposition h " h 1 ' 1 h 2 , where h 1 P PNTrans u rf , gs ˚and h 2 P PNTransrf , gs åre not identities, and h 1 is a unitary 2-cell, then there is a 3-cell A P PNTrans u rf , gs 3 of source h which is not an identity.

a c d % E a b c d H h & F a d a b d I i a c d % E a b c d H h & F a d a b d I i a b f pbq f pcq 7 W a f paq f pbq f pcq 8 a b c f pcq V v ' G a f paq f pcq a c f pcq
) I a f paq f pbq f pdq i a b f pbq f pcq f pdq 7 W 1 a b f pbq f pdq C c a c d f pdq 7 W 0 P a d f pdq ( H a b c d f pdq E e Õ % " a c f pcq f pdq 7 W a f paq f pcq f pdq 7 W a f paq f pdq a b c f pcq f pdq ) I A a a f paq f pbq f pcq f pdq D d 7 W a f paq f pdq i a b f pbq f pcq f pdq 7 W D d

Adjunction of the units 2-cells

Proof. Let us start with the case where h 1 is of length 1. We reason by induction on the length of h 2 . If h 2 is of length 1, since the target of h 2 is of the form a f paq b , h 2 is one of the following 2-cells:

Hence, h is one of the following 2-cells: And all of these 2-cells are indeed the sources of 3-cells in PNTrans u rf , gs 3 .

In the general case, let us write h 2 " h 0 ' 1 h 1 2 , where h 0 is of length 1. Two cases can occur.

• If there exist 1-cells u, u 1 , v and v 1 and 2-cells

h 1 0 : u ñ u 1 P PNTrans u rf , gs ˚and h 1 1 : v ñ v 1 P PNTransrf , gs ˚such that h 1 " h 1 1 ' 0 u (resp. h 1 " u ' 0 h 1 1 ) and h 0 " v 1 ' 0 h 1 0 (resp. h 0 " h 1 0 ' 0 v 1 ). Then h " ph 1 1 ' 0 h 1 0 q ' 1 h 1 2 (resp. h " ph 1 0 ' 0 h 1 1 q ' 1 h 1 
2 ), and we can apply the induction hypothesis to ph

1 1 ' 0 u 1 q ' 1 h 1 2 (resp. pu 1 ' 0 h 1 1 q ' 1 h 1 2 ).
• Otherwise, h 1 ' 1 h 0 is one of the following 2-cells, and all of them are sources of 3-cells in PNTrans u rf , gs ˚.

In the case general case where h 1 is of any length, let

h 1 1 , h 2 1 P PNTransrf , gs 2 with h 2 1 of length 1 such that h 1 " h 1 1 ' 1 h 2 1 .
Then there is a non-empty 3-cell A 1 P PNTrans u rf , gs 3 of source h 2 1 ' 1 h 2 , and one can take the 3-cell

h 1 1 ' 1 A 1 . Lemma 3.1.4.3.
Let h be a 2-cell in PNTransrf , gs ˚whose target is of the form a f paq b , with a P C and b P D.

If h is a normal form for PNTrans u rf , gs, then one of the following holds:

• The 2-cell h equals the composite .

• The 2-cell h is in PNTrans ``rf , gs ˚.

Proof. We reason by induction on the length of h. If h is of length 1, the cells of PNTransrf , gs 2 of length 1 and of target a f paq b are:

Otherwise, let us write h " h 1 ' 1 h 2 , where h 1 is of length 1. We can apply the induction hypothesis to h 2 , which leads us to distinguish three cases:

• If h 2 "
, then h 1 is a 2-cell in PNTransrf , gs 2 whose target is of the form a f paq . The only such cell is the identity, and h " h 2 " . In particular a 3-cell in the free p3, 2q-category PNTrans `rf , gs ˚p2q is in PNTrans ``rf , gs ˚p2q if and only if its 2-source is in PNTrans ``rf , gs ˚p2q too. Proposition 3.1.4.5. For every parallel 3-cells A, B P PNTrans `rf , gs ˚p2q whose 1-target is of the form a f paq b and whose 2-source is a normal form for PNTrans u rf , gs, there exists a 4-cell α : A 1 c B P PNTransrf , gs ˚p2q .

Proof. Given such 3-cells A and B, we use Lemma 3.1.4.3 to distinguish two cases:

If the source of A and B is , the only 3-cell in PNTrans `rf , gs ˚p2q with source is the identity. So A " B and we can take α " 1 A .

Otherwise, the source of A and B lies in PNTrans ``rf , gs 2 , so A and B lie in PNTrans ``rf , gs 

Adjunction of the units 3-cells

In this section, we consider the rewriting system formed by the 3-cells of PNTrans u rf , gs. Since it is a sub-3-polygraph of PNTransrf , gs (which 3-terminates by Proposition 3.1.1.6), PNTrans u rf , gs is 3-terminating. The fact that it is 3-confluent is a consequence of the following more general Lemma: Lemma 3.1.5.1. Let A P PNTransrf , gs 3 and B P PNTrans u rf , gs 3 . There exist 3-cells A 1 P PNTransrf , gs 3 and B 1 P PNTrans u rf , gs ˚and a 4-cell α A,B P PNTransrf , gs ˚p2q 4 of the following shape:

A 7 W B Õ % B 1 Õ % α A,B o A 1 7 W
Proof. Let us start by the case where pA, Bq is a critical pair of PNTransrf , gs 3 . If A and B are in PFonctrf , gs 3 , the result holds because PFonctrf , gs is 3-convergent. Otherwise, the only critical pair left is the following one:

Let us now study the case where pA, Bq is a local branching of PNTransrf , gs 3 . We distinguish three cases depending on the shape of the branching:

• If pA, Bq is an aspherical branching, then one can take identities for A 1 and B 1 , and α " 1 A .

• If pA, Bq is a Peiffer branching, let A 1 and B 1 be the canonical fillers of the confluence diagram of pA, Bq, and α be an identity.

• Lastly, if pA, Bq is an overlapping branching, let us write pA,

Bq " pf ' 1 uA 1 v ' 1 g, f ' 1 uB 1 v ' 1 gq, where pA 1 , B 1 q is a critical pair. Let A 1 1 , B 1
1 and α 1 be the cells associated with pA 1 , B 1 q. We then define

A 1 :" f ' 1 uA 1 1 v ' 1 g, B 1 :" f ' 1 uB 1 1 v ' 1 g and α 1 :" f ' 1 uα 1 v ' 1 g.
In the general case, we reason by noetherian induction on h " spAq " spBq, using the 3-termination of PNTransrf , gs.

• If A or B is an identity, then the result holds immediately.

• Otherwise, we write A " A 1 ' 2 A 2 and B " B 1 ' 2 B 2 , where A 1 and B 1 are of length 1.

We now build the following diagram:

h A 1 7 W B 1 Õ % α A 1 ,B 1 A 2 7 W B 1 1 Õ % α A 2 ,B 1 1 B 2 1 Õ % A 1 1 7 W B 2 Õ % α A 1 1 ,B 2 A 1 2 7 W B 1 2 Õ % α A 1 2 ,B 1 2 B 2 2 Õ % A 2 1 7 W A 2 2 7 W
In this diagram, α A 1 ,B 1 is obtained thanks to our study of the local branchings. The existence of α A 2 ,B 1

1 and α A 1 1 ,B 2 (followed by α A 1 2 ,B 1 
2 ) then follows from the induction hypothesis.

Lemma 3.1.5.2. Let f, g be 2-cells of PNTransrf , gs ˚, and A : f g a 3-cell of PNTrans `rf , gs

˚.
If f is a normal form for PNTrans u rf , gs, then so is g.

Proof. We prove this result by contrapositive. We are going to show that for any A P PNTrans `rf , gs ånd B P PNTrans u rf , gs ˚two 3-cells of length 1 such that tpAq " spBq, there exists B 1 P PNTrans u rf , gs ˚of length 1 and of source spAq:

B Õ % A e y B 1 Õ %
Two cases can occur depending on the shape of the branching pA ´1, Bq:

• If it is a Peiffer branching, then the required cell is provided by the canonical filling.

• If it is an overlapping branching, then it is enough to check the underlying critical pair.

It remains to examine those critical pairs:

Õ % e y Õ % Õ % e y Õ % Õ % Õ % e y Õ % Õ % e y Õ % Õ % e y Õ % Õ % e y Õ % e y Õ % Õ % e y Õ % Õ % e y Õ % Õ % e y Õ % Õ % Õ % e y
Lemma 3.1.5.3. Let A P PNTransrf , gs 3 . If the source of A is a formal form for PNTrans u rf , gs, then A is in PNTrans `rf , gs 3 .

Proof. We reason by induction on the length of A:

• If A is an identity, then it is in PNTrans `rf , gs. of the following shape:

• Otherwise, let us write

A " A 1 ' 2 A 2 ,
A 7 W C 1 Õ % C 2 Õ % α o A 1 7 W Proof. Let us write A " A ´1 1 ' 2 B 1 ' 2 A ´1 2 . . . ' 2 A ´1 n ' 2 B n ,
where the A i and B i are in PNTransrf , gs 3 . For every i ď n, we chose a 3-cell D i P PNTrans u rf , gs 3 of source spA i q " spB i q and of target a normal form for PNTrans u rf , gs.

According to Lemma 3.1.5.1, there exist for every i some 3-cells

A 1 i , B 1 i in PNTransrf, gs ˚, D 1 
i P PNTrans u rf , gs 3 and D 2 i P PNTrans u rf , gs 3 and some 4-cells α i and β i in PNTransrf , gs ˚p2q of the form:

A i 7 W D i Õ % D 1 i Õ % α i o A 1 i 7 W B i 7 W D i Õ % D 2 i Õ % β i o B 1 i 7 W
The following is a consequence of the target of D i being a normal form for PNTrans u rf , gs:

• Using Lemma 3.1.5.3, A 1 i and B 1 i are in PNTrans `rf , gs ˚,
• Using Lemma 3.1.5.2, the target A 1 i and B 1 i (thus of D 1 i and D 2 i ) are normal forms for PNTrans u rf , gs.

• Since PNTrans u rf , gs is 3-convergent, for any i ă n, the cells D 2 i and D 1 i`1 are parallel.

Since PNTrans u rf , gs is a sub-polygraph of PFonctrf , gs which is 3-coherent, there exists, for every i ă n, a 4-cell γ i :

D 2 i 1 c D 1 i in PFonctrf , gs ˚p2q 
4 . We can now conclude the proof of this Lemma by taking

C 1 " D 1 1 , C 2 " D 2 n and A 1 " pA 1 1 q ´1 ' 2 B 1 2 ' 2 . . . ' 2 pA 1 n q ´1 ' 2 B 1
n , and by defining α as the following composite:

A 1 A 1 B 1 B 1 A 2 A 2 B 2 B 2 A 3 A 3 B n´1 B n´1 A n A n B n B n D 1 1 D 1 1 D 1 1 D 1 1 D 2 1 D 2 1 D 1 2 D 1 2 D 2 D 2 D 2 2 D 2 2 D 1 n D 1 n D n D n D 2 n D 2 n A 1 1 A 1 1 B 1 1 B 1 1 A 1 2 A 1 2 B 1 2 B 1 2 A 1 3 A 1 3 B 1 n´1 B 1 n´1 A 1 n A 1 n B 1 n B 1 n . . . . . . ¨¨α 1 β 1 γ 1 α 2 β 2 α n β n
We can now conclude the proof Theorem 3. be two parallel 3-cells whose 1-target is of weight 1.

There is a 4-cell α :

A 1 c B P PNTransrf , gs ˚p2q 4 . 
Proof. Let A, B P PNTransrf , gs such that we have the diagrams:

A 7 W C 1 Õ % C 1 1 Õ % α 1 o A 1 7 W B 7 W C 2 Õ % C 1 2 Õ % α 2 o B 1 7 W
The 3-cells A and B are parallel, and the 3-cells C 1 and C 2 (resp. C 1 1 and C 1 2 ) have the same source and have a normal form for PNTrans u rf , gs as target. Since PNTrans u rf , gs is 3-convergent, this implies that the 3-cells C 1 and C 2 (resp. C 1 1 and C 1 2 ) are parallel. This has two consequences:

• The critical pairs of PNTrans u rf , gs already appeared in PFonctrf , gs, and we showed that they admit fillers. Hence, there exist cells • The 3-cells A 1 and B 1 are parallel, their 1-target is still a f paq b , and their 2-source is a normal form for PNTrans u rf , gs. So by Proposition 3.1.4.5 there exists a 4-cell γ :

β 1 : C 1 1 c C 2 and β 2 : C 1 1 1 c C 1 2 in PNTransrf , gs
A 1 1 c B 1 .
To conclude, we define α as the following composite (where we omit the context of the 4-cells):

B B A A C 2 C 2 C 1 C 1 A 1 A 1 B 1 B 1 C 1 2 C 1 2 C 1 1 C 1 1 β 1 γ β 2 α 1 α ´1 2 

Partial coherence and transformation of polygraphs

This section cointains some preliminary results that will be used in Sections 3.3 and 3.4 to prove Theorem 3.1.3.5. In Section 3.2.1, we define the notion of white category together with the associated notion of white polygraph. The white 2-categories are also known as sesquicategories (see [START_REF] Street | Categorical structures[END_REF]). White categories are strict categories in which the interchange law between the compositions ' 0 and ' i need not hold, for every i ą 0. That is, strict n-categories are exactly the white n-categories satisfying the additional condition that for every i-cells f and g of 1sources (resp. 1-targets) u and v (resp. u 1 and v 1 ): pf ' 0 vq ' i pu 1 ' 0 gq " pu ' 0 gq ' i pf ' 0 vq. In Section 3.2.2, we define a notion of partial coherence for white p4, 3q-categories, and reformulate Theorem 3.1.3.5 using this notion. We show a simple criterion in order to deduce the partial coherence of a white p4, 3q-category from that of another one. This criterion will be used throughout Section 3.3. We also adapt the notion of Tietze-transformation from [START_REF] Gaussent | Coherent presentations of artin monoids[END_REF] to our setting of partial coherence in white categories, in preparation for Section 3.3.5.

In Section 3.2.3, we study injective functors between free white categories. In particular, we give a sufficient condition for a morphism of white polygraphs to yield an injective functor between the white categories they generate. This result will be used in Section 3.3.3.

Note that, although Sections 3.2.2 and 3.2.3 are expressed in terms of white categories (since this is how they will be used throughout Section 3.3), all the definitions and results in these sections also hold in terms of strict categories, mutatis mutandis.

White categories and white polygraphs

Definition 3.2.1.1. Let n P N. An pn `1q-white-category is given by:

• a set C 0 ,
• for every x, y P C 0 , an n-category Cpx, yq. We denote by ' k`1 the k-composition in this category,

• for every z P C 0 and every u : x Ñ y P C 1 , functors u ' 0 _ : Cpy, zq Ñ Cpx, zq and _ ' 0 u : Cpz, xq Ñ Cpz, yq, so that for every composable 1-cells u, v P C 1 , their composite u ' 0 v is uniquely defined,

• for every x P C 0 , a 1-cell 1 x P Cpx, xq.

Moreover, this data must satisfy the following axioms:

• For every x P C 0 , and every y P C 0 , the functors 1 x ' 0 _ : Cpx, yq Ñ Cpx, yq and _ ' 0 1 y : Cpx, yq Ñ Cpx, yq are identities.

• For every u, v P C 1 , the following equalities hold:

-u ' 0 pv ' 0 _q " pu ' 0 vq ' 0 _, -u ' 0 p_ ' 0 vq " pu ' 0 _q ' 0 v, -_ ' 0 pu ' 0 vq " p_ ' 0 uq ' 0 v,
An pn, kq-white-category is an n-white-category in which every pi `1q-cell is invertible for the i-composition, for every i ě k.

Let n be a natural number. Let C be an n-white-category. For k ď n, we denote by C k both the set of k-cells of C and the k-white-category obtained by deleting the cells of dimension greater than k. For x P C k and i ă k, we denote by s i pxq and t i pxq respectively the i-source and i-target of x. Finally, we write spxq and tpxq respectively for s k´1 pxq and t k´1 pxq. Definition 3.2.1.2. Let C and D be n-white-categories. An n-white-functor is given by:

• an application F 0 : C 0 Ñ D 0 ,

• for every x, y P C 0 , a functor F x,y : Cpx, yq Ñ DpF 0 pxq, F 0 pyqq. Moreover, this data must satisfy the following axioms:

• for every x P C 0 , F p1 x q " 1 F 0 pxq ,

• for every z P C 0 and u : x Ñ y P C 1 , the following equalities hold between functors:

-F puq ' 0 F p_q " F pu ' 0 _q : Cpy, zq Ñ DpF 0 pxq, F 0 pzqq -F p_q ' 0 F puq " F p_ ' 0 uq : Cpz, xq Ñ DpF 0 pzq, F 0 pyqq
This makes n-white-categories into a category, that we denote by WCat n . Remark 3.2.1.3. Let us define a structure of monoidal category b on n -Cat, in such a way that WCat n`1 is the category of categories enriched over pn -Cat, bq.

Let C, D be two n-categories. The n-categories C ˆD0 and C 0 ˆD are defined as follows:

C ˆD0 :" ğ yPD 0 C, C 0 ˆD :" ğ xPC 0 D
Let C 0 ˆD0 be the n-category whose 0-cells are couples px, yq P C 0 ˆD0 , and whose i-cells are identities for every i ą 0. Let F : C 0 ˆD0 Ñ C ˆD0 (resp. G : C 0 ˆD0 Ñ C 0 ˆD) be the n-functor which is the identity on 0-cells. Then C b D is the pushout pC ˆD0 q ' C 0 ˆD0 pC 0 ˆDq:

C 0 ˆD0 F / / G x C ˆD0 C 0 ˆD / / C b D.
The category of n-white-categories equipped with a cellular extension, denoted by WCat ǹ , is the limit of the following diagram:

WCat ǹ / / { Graph n`1 WCat n / / Graph n
where the functor WCat n Ñ Graph n forgets the white-categorical structure and the functor Graph n`1 Ñ Graph n deletes the top-dimensional cells. Let R w n be the functor from WCat n`1 to WCat ǹ that sends an pn `1q-white-category C on the couple pC n ,

C n C n`1 o o o o q.
Proposition 3.2.1.4. The functor R w n admits a left-adjoint L w n : WCat ǹ Ñ WCat n`1 .

Proof. Let pC, Σq P WCat ǹ be an n-white-category equipped with a cellular extension. The construction of L w n pC, Σq is split into three parts:

• First, we define a formal language E Σ .

• Then, we define a typing system T C on E Σ . We denote by E T Σ the set of all typable expressions of E Σ .

• Finally, we define an equivalence relation " Σ on E T Σ . The set of pn `1q-cell of L w n pC, Σq is then the quotient E T Σ { " Σ.

Let E Σ be the formal language consisting of:

• For every 1-cells u, v P C 1 , and every pn `1q-cell A P Σ n`1 , such that t 0 puq " s 0 pAq and t 0 pAq " s 0 pvq, a constant symbol c uAv .

• For every n-cell f P C n , a constant symbol i f .

• For every 0 ă i ď n, a binary function symbol ' i .

Thus E Σ is the smallest set of expressions containing the constant symbols and such that e' i f P Σ whenever e, f P E Σ . Let T C be the set of all n-spheres of C, that is of couples pf, gq in C n such that spf q " spgq and tpf q " tpgq. For e P E Σ and t P T C , we define e : t (read as "e is of type t") as the smallest relation satisfying the following axioms:

• For every 1-cells u and v in C 1 , and every pn `1q-cell A P Σ, such that t 0 puq " s 0 pAq and t 0 pAq " s 0 pvq c uAv : pu spAqv, u tpAqvq

• For every n-cell f P C n i f : pf, f q
• For every e 1 , e 2 P E Σ and i ă n, if e 1 : ps 1 , t 1 q, e 2 : ps 2 , t 2 q and t i pt 1 q " s i ps 2 q, then e 1 ' i e 2 : ps 1 ' i s 2 , t 1 ' i t 2 q

• For every e 1 , e 2 P E Σ , if e 1 : ps 1 , t 1 q, e 2 : ps 2 , t 2 q and t 1 " s 2 , then e 1 ' n e 2 : ps 1 , t 2 q

An expression e P E Σ is said to be typable if e : ps, tq for some n-sphere ps, tq P T C . Moreover, there is only one such n-sphere, so the operations speq :" s and tpeq :" t are well-defined. We denote by E T Σ be the set of all typable expressions. Let " Σ be the symmetric relation generated by the following relations on E T Σ :

• For every A, B, C, D P E T Σ , and every i 1 , i 2 ď n non-zero distinct natural numbers,

pA ' i 1 Bq ' i 2 pC ' i 1 Dq " Σ pA ' i 2 Cq ' i 1 pB ' i 2 Dq
• For every A, B, C P E T Σ , and every 0 ă i ď n,

pA ' i Bq ' i C " Σ A ' i pB ' i Cq
• For every A P E T Σ and f P C n :

i f ' n A " Σ A A ' n i f " Σ A • For every f 1 , f 2 P C n and every i ă n, i f 1 ' i i f 2 " Σ i f 1 ' i f 2 • For every A, A 1 , B P E T Σ and every 0 ă i ď n, if A " Σ A 1 , then A ' i B " Σ A 1 ' i B
• For every A, B, B 1 P E T Σ and every 0 ă i ď n, if B " Σ B 1 , then

A ' i B " Σ A ' i B 1
Let " Σ be the reflexive closure of " Σ . The pn `1q-cells of L w n pC, Σq are given by the quotient E T Σ { " Σ. The i-composition is given by the one of E T Σ , and identities by i f . Definition 3.2.1.5. We now define by induction on n the category WPol n of n-white-polygraphs together with a functor Q w n : WPol n Ñ WCat n .

• The category WPol 0 is the category of sets, and Q w 0 is the identity functor.

• Assume Q w n : WPol n Ñ WCat n defined. Then WPol n`1 is the limit of the following diagram:

WPol n`1 / / { WCat ǹ WPol n Q w n / / WCat n , and Q w n`1 is the composite WPol n`1 / / WCat ǹ L w n / / WCat n`1
Given an n-white-polygraph Σ, the n-white-category Q w n pΣq is denoted by Σ w and is called the free n-white-category generated by Σ. Definition 3.2.1.6. Let WCat wpnq n`1 be the category of pn `1, nq-white-categories. Once again we have a functor R wpnq n : WCat wpnq n`1 Ñ WCat ǹ , and we are going to describe its left-adjoint L wpnq n`1 . Let pC, Σq be an n-white-category together with a cellular extension. To construct L wpnq n`1 pC, Σq, we adapt the construction of the free n-white-categories as follows:

• Let F Σ be the formal language E ΣY Σ, where Σ consists of formal inverses to the elements of Σ (that is their source and targets are reversed).

• The type system is extended by setting, for every 1-cells u, v in C 1 and every pn `1q-cell A P Σ such that t 0 puq " s 0 pvq and t 0 pAq " s 0 pAq:

c u Āv : pu tpAqv, u spAqvq.
We denote by F T Σ the set of all typable expressions for this new typing system.

• We extend " Σ into a relation denoted by -Σ by adding the following relations:

c uAv ' n c u Āv -Σ i u spAqv c u Āv ' n c uAv -Σ i u tpAqv
for every u, v in C 1 and every pn`1q-cell A P Σ, such that t 0 puq " s 0 pAq and t 0 pAq " s 0 pvq.

We define categories WPol pΣq is denoted by Σ wpkq and is called the free pn, kq-white-category generated by Σ. For j ď n, we denote by Σ wpkq j both the j-cells of Σ wpkq and the pj, kq-category generated by Σ. Hence, an pn, kq-polygraph Σ consists of the following data: • its 0-cells are the 2-cells of C 2 that lie in S,

Σ 0 Σ 1 Σ 2 p¨¨¨q Σ k Σ k`1 p¨¨¨q Σ n Σ 0 Σ w 1 Σ w 2 p¨¨¨q Σ w k Σ wpkq k`1 p¨¨¨q 3.2.2
• its 1-cells are the 3-cells of C 3 with source and target in S,

• its 2-cells are the 4-cells of C 4 with 2-source and 2-target in S,

• its 0-composition and 1-composition are respectively induced by the compositions ' 2 and ' 3 of C. We say that F is 0-surjective if the application F : C 0 Ñ D 0 is surjective. Let 0 ă k ă 2. We say that F is k-surjective if, for every pk ´1q-parallel cells s, t P C k´1 , the application F : C k ps, tq Ñ D k pF psq, F ptqq is surjective. Definition 3.2.2.6. Let pC, Sq and pC 1 , S 1 q be two pointed p4, 3q-categories. We say that pC 1 , S 1 q is stronger than pC, Sq if there is a functor F : C 1 aeS 1 Ñ CaeS which is 0-surjective and 1-surjective. Lemma 3.2.2.7. Let pC, Sq, pC 1 , S 1 q be two pointed white p4, 3q-categories. If there exists a 2-functor F : C 1 aeS 1 Ñ CaeS which is 0-surjective and 1-surjective, then pC 1 , S 1 q is stronger than pC, Sq.

Proof. The functor F induces a functor F : C 1 aeS 1 Ñ CaeS. Since it is equal to F on objects, it is 0-surjective. On 1-cells F is the composition of F with the canonical projection associated to the quotient, hence it is 1-surjective, and so pC 1 , S 1 q is stronger than pC, Sq. Lemma 3.2.2.8. Let pC, Sq, pC 1 , S 1 q be two pointed white p4, 3q-categories, and assume pC 1 , S 1 q is stronger than pC, Sq.

If C 1 is S 1 -coherent, then C is S-coherent.
Proof. Let F : C 1 aeS 1 Ñ CaeS be a functor that is 0-surjective and 1-surjective. Let A, B : f Ñ g P pCaeSq 1 be parallel 1-cells, and Ā, B be their projections in CaeS.

Since F is 0-surjective, there exists f 1 , g 1 P pC 1 aeS 1 q 0 in the preimage of f and g under F . Since F is 1-surjective, there exists A 1 , B 1 P pC 1 aeS 1 q 1 of source f 1 and of target g 1 such that F p Ā1 q " Ā and F p B1 q " B.

Since C 1 aeS 1 is 2-coherent, there exists α 1 : A 1 ñ B 1 P pC 1 aeS 1 q 2 . Thus, Ā1 " B1 and Ā " B. Hence, there exists α : A ñ B P CaeS. This shows that CaeS is 1-coherent, and therefore that C is S-coherent.

We are going to define four families of Tietze-transformations on white p4, 3q-polygraphs. Tietze transformations originates from combinatorial group theory [START_REF] Roger | Combinatorial group theory[END_REF], and was adapted for p3, 1q-categories in [START_REF] Gaussent | Coherent presentations of artin monoids[END_REF], as a way to modify a p3, 1q-polygraph without modifying the 2-categories it presents. In particular, they preserve the 2-coherence. Here we adapt these transformations to our setting of white p4, 3q-polygraphs and show that they preserve the partial coherence. This will be used in Section 3.3.5. We fix a white 4-polygraph A. Definition 3.2.2.9. Let A P A wp3q 3

. We define a white 4-polygraph ApAq by adding to A a 3-cell B and a 4-cell α, whose sources and targets are given by:

• spBq " spAq,

• tpBq " tpAq,

• spαq " A,

• tpαq " B.

The inclusion induces a functor between white p4, 3q-categories ι A : A wp3q Ñ pApAqq wp3q . We call this operation the adjunction of a 3-cell with its defining 4-cell. Definition 3.2.2.10. Let α P A 4 and A P A 3 such that:

• tpαq " A • spαq P pAzttpαquq wp3q 3
. The 4-cell α induces an application A 3 Ñ pA 3 zttpαquq wp3q , by sending tpαq on spαq and that is the identity on the other cells of A 3 . This application extends into a 3-functor π α : A w 3 Ñ pA 3 zttpαquq w .

Let A{pA; αq be the following white 4-polygraph:

A 0 A wp3q 1 t o o s o o A wp3q 2 t o o s o o pA 3 zttpαquq wp3q t o o s o o A 4 ztαu π α ˝t o o π α ˝s o o
Then π α induces a functor A wp3q Ñ pA{pA; αqq wp3q , which sends α on the identity of spαq, and which is the identity on the other cells of A 4 . We call this operation the removal of a 3-cell with its defining 4-cell. Definition 3.2.2.11. Let α be a 4-cell in A wp3q 4

. We define a white 4-polygraph Apαq by adding to A a 4-cell β : spαq 1 c tpαq. The inclusion of A into Apαq induces a functor ι α : A wp3q Ñ Apαq wp3q . We call this operation the adjunction of a superfluous 4-cell. Definition 3.2.2.12. Let β P A 4 such that there exists a 4-cell α P pAztβuq wp3q parallel to β. Let A{β be the white 4-polygraph obtained by removing β from A. There exists a functor π β : A wp3q Ñ pA{βq wp3q , that sends β on α and which is the identity on the other cells of A. We call this operation the removal of a superfluous 4-cell.

Remark 3.2.2.13. Note that, in those four cases, the set of 2-cells is left unchanged. In particular, let A be a white 4-polygraph, and B a white 4-polygraph constructed from A through a series of Tietze-transformations. If S is a sub-set of A w 2 , then S still is a subset of B w 2 .

Proposition 3.2.2.14. Let A be a white 4-polygraph, S a sub-set of A w 2 , and B a white 4polygraph constructed from A through a series of Tietze-transformations.

If B wp3q is S-coherent, then A wp3q is S-coherent.

Proof. We check that if B is constructed from A through a Tietze-transformation, then the white 3-categories presented by A and B are isomorphic. Suppose now that B is S-coherent, and let A, B P A w 3 be parallel 3-cells, whose source and target are in S. Since B wp3q is S-coherent, the images of A and B in the white 3-category presented by B are equal. Since it is isomorphic to the white 3-category presented by A, there exists a 4-cell α :

A 1 c B P A wp3q 4
, which proves that A is S-coherent.

Injective functors between white categories

Definition 3.2.3.1. Let Σ and Γ be two pn, kq-polygraphs (resp. white pn, kq-polygraphs), and let F : Σ Ñ Γ be a morphism of pn, kq-polygraphs (resp. white pn, kq-polygraphs). We say that F is injective if for all j ď n it induces an injective application from Σ n to Γ n . Definition 3.2.3.2. Let C and D be two white n-categories, and let F : C Ñ D be a morphism of white n-categories. We say that F is injective if for all j ď n it induces an injective application from C to D. Remark 3.2.3.3. An injective morphism between pn, kq-polygraphs does not always induce an injective functor between the free pn, kq-categories they generate. To show that, we are going to define two 2-polygraphs Σ and Γ, an injective morphism of 2-polygraphs F : Σ Ñ Γ, and two distinct 2-cells f, g P Σ ˚p1q such that F ˚p1q pf q " F ˚p1q pgq.

Let Σ be the following 2-polygraph:

Σ 0 " t˚u Σ 1 " t : ˚Ñ ˚u Σ 2 :" t , : ñ u and Γ: Γ 0 " t˚u Γ 1 " t : ˚Ñ ˚u Γ 2 :" t , : ñ , : Ñ 1 ˚u
Let F be the inclusion of Σ into Γ, f " and g " . They are distinct elements of Σ ˚p1q 2 . However, using the exchange law, the following equality holds in Γ ˚p1q 2 , where denotes the inverse of :

F pf q " " " " " " F pgq
In what follows, we prove some sufficient conditions so that a morphism between two white pn, kq-polygraphs induces an injective fucntor between the pn, kq-categories they present. This is achieved in Proposition 3.2.3.8. This result will be used in Section 3.3.3.

To prove this result, we start by studying the more general case of an injective morphism I between white pn, kq-categories equipped with a cellular extension. When its image is closed by divisors (see Definition 3.2.3.5), we show a simple sufficient condition so that I induces an injective white pn`1q-functor. We also show that the image of the white pn`1q-functor induced by I is then automatically closed by divisors. Hence, this hypothesis disappears when we go back to morphisms of white pn, kq-polygraphs. In particular, we show that every injective morphism of white n-polygraphs induces an injective white functor between white n-categories.

For the rest of this section, we fix two white n-categories equipped with cellular extensions pC, Σq, pC 1 , Σ 1 q P WCat `, and a morphism I : pC, Σq Ñ pC 1 , Σ 1 q P WCat `. That is, I is given by a white n-functor I : C Ñ C 1 together with an application I n`1 : Σ Ñ Σ 1 such that the following squares commute:

Σ I n`1 / / s " Σ 1 s C I / / C 1 Σ I n`1 / / t " Σ 1 t C I / / C 1
We denote by I w (resp. I wpnq ) the white pn `1q-functor L w pIq (resp. L wpnq pIq). By definition, I w (resp. I wpnq ) is induced by an application from E T

Σ to E T Σ 1 (resp. from F T Σ to F T Σ 1 ), that we again denote by I w (resp. I wpnq ).

Using their explicit definitions, the following properties of I w (resp. I wpnq ) hold:

• Any element of E T Σ (resp. F T Σ ) whose image is an i-composite is an i-composite.

• Any element of E T Σ (resp. F T Σ ) whose image is an identity is an identity.

• Any element of E T Σ (resp. F T Σ ) whose image is a c u 1 A 1 v 1 is a c uAv . • Any element of F T Σ whose image by I wpnq is a c u 1 Ā1 v 1 is a c u Āv .
Lemma 3.2.3.4. Assume that the application I n`1 is injective, and that I induces an injection on C.

Then the applications

I w : E T Σ Ñ E T Σ 1 and I wpnq : F T Σ Ñ F T Σ 1 are injective.
Proof. Let a 1 , a 2 P E T Σ such that I w pa 1 q " I w pa 2 q. We reason by induction on the structure of I w pa 1 q.

If I w pa 1 q " c u 1 A 1 v 1 , with u 1 , v 1 P C 1 1 and A 1 P Σ 1 . Then there are u 1 , v 1 , u 2 , v 2 P C 1 and A 1 , A 2 P Σ such that a 1 " c u 1 A 1 v 1 and a 2 " c u 2 A 2 v 2 , and so:

Ipu 1 q " Ipu 2 q " u 1 I n`1 pA 1 q " I n`1 pA 2 q " A 1 Ipv 1 q " Ipv 2 q " v 1 .
Since I and I n`1 are injective, we get:

u 1 " u 2 A 1 " A 2 v 1 " v 2 ,
which proves that a " b.

If I w pa 1 q " i f , with f 1 P C 1 n . Then there exist f 1 , f 2 P C n such that:

a 1 " i f 1 a 2 " i f 2 Ipf 1 q " f 1 Ipf 2 q " f.
Since I is injective, f 1 " f 2 , and so a 1 " a 2 . If I w pa 1 q " A 1 ' i B 1 , with i ă n, and A 1 , B 1 P E T Σ 1 . Then there exist A 1 , A 2 , B 1 , B 2 P E T Σ such that:

a 1 " A 1 ' i B 1 a 2 " A 2 ' i B 2 I w pA 1 q " I w pA 2 q " A 1 I w pB 1 q " I w pB 2 q " B 1 .
Using the induction hypothesis, we get that A 1 " A 2 and B 1 " B 2 , and so a 1 " a 2 .

In the case of I wpnq , we reason as previously, and we have one more case to check: if

I wpnq pa 1 q " c u 1 Ā1 v 1 , with u 1 , v 1 P C 1 1 and A 1 P Σ 1 . Then there are u 1 , v 1 , u 2 , v 2 P C 1 and A 1 , A 2 P Σ such that a 1 " c u 1 Ā1 v 1 and a 2 " c u 2 Ā2 v 2 ,
and so:

Ipu 1 q " Ipu 2 q " u 1 I n`1 pA 1 q " I n`1 pA 2 q " A 1 Ipv 1 q " Ipv 2 q " v 1 .
Using the injectivity of I and I n`1 , we get:

u 1 " u 2 A 1 " A 2 v 1 " v 2 ,
and finally a 1 " a 2 .

Definition 3.2.3.5. Let C be a white n-category, and E be a subset of C n . We say that E is closed by divisors if, for any f P E, if f " f 1 ' i f 2 , then f 1 and f 2 are in E.

Lemma 3.2.3.6. Assume the image of I in C n is closed by divisors, and that I and I n`1 are injective.

Then, for every a 1 , b 1 P E T Σ 1 such that a 1 " Σ 1 b 1 , and for every a P E T Σ such that I w paq " a 1 , there exists b P E T Σ such that

I w pbq " b 1 a " Σ b.
Assume moreover that the application I n`1 is bijective and that I is bijective on the 1-cells of C.

Then, for every a 1 , b 1 P F T Σ 1 such that a 1 -Σ 1 b 1 , and for every a P F T Σ such that I wpnq paq " a 1 , there exists b P F T Σ such that

I wpnq pbq " b 1 a -Σ b .
Proof. To show the result on I w we reason by induction on the structure of a 1 . If there exist A 1 , B 1 , C 1 , D 1 P E T Σ 1 , 0 ă i 1 ă i 2 ď n and a P E T Σ such that:

a 1 " pA 1 ' i 1 B 1 q ' i 2 pC 1 ' i 1 D 1 q b 1 " pA 1 ' i 2 C 1 q ' i 1 pB 1 ' i 2 D 1 q I w paq " a 1 , then, a " pA ' i 1 Bq ' i 2 pC ' i 1 Dq, with A, B, C, D P E T Σ . Let b :" pA ' i 2 Cq ' i 1 pB ' i 2 Dq:
by construction, we have I w pbq " b 1 and a " Σ b. The case where the roles of a 1 and b 1 are reversed is symmetrical.

If there exist A 1 , B 1 , C 1 P E T Σ 1 , 0 ă i ď n and a P E T Σ such that:

a 1 " pA 1 ' i B 1 q ' i C 1 b 1 " A 1 ' i pB 1 ' i C 1 q I w paq " a 1 ,
then, a " pA ' i Bq ' i C, with A, B, C P E T Σ . Let b :" A ' i pB ' i Cq: By construction, we have I w pbq " b 1 and a " Σ b. The case where the roles of a 1 and b 1 are reversed is symmetrical.

If there exist

A 1 P E T Σ , f 1 P C 1 n and a P E T Σ such that a 1 " i f 1 ' n A 1 b 1 " A 1 I w paq " a 1 ,
then a " i f ' n A, with f P C n and A P E T Σ . Let b :" A 1 : by construction, we have I w pbq " b 1 and a " Σ b.

If there exist

A 1 P E T Σ , f 1 P C 1 n and a P E T Σ such that a 1 " A 1 b 1 " i f 1 ' n A 1 I w paq " a 1 , let b :" i spAq ' n a.
Since b 1 is well typed, we have f 1 " spA 1 q, hence IpspAqq " spI w pAqq " spA 1 q " f 1 , and so I w pbq " b 1 and a " Σ b. The case of the right-unit is symmetrical.

If there are f 1 1 , f 1 2 P C 1 n , i ă n and a P E T Σ such that:

a 1 " i f 1 1 ' i i f 1 2 b 1 " i f 1 1 ' i f 1 2 I w paq " a 1 , then a " i f 1 ' i i f 2 , with f 1 , f 2 P C n . Let b :" i f 1 ' i f 2 : by construction, we have I w pbq " b 1 and a " Σ b. If there are f 1 1 , f 1 2 P C 1 n , i ă n and a P E T Σ such that: a 1 " i f 1 1 ' i f 1 2 b 1 " i f 1 1 ' i i f 1 2 I w paq " a 1 then a " i f , with f P C n . Since the image of I in C n is closed by divisors, there exist f 1 , f 2 P C n such that Ipf 1 q " f 1 1 Ipf 2 q " f 1 2 f " f 1 ' i f 2 .
Let us define b 1 :" i f 1 ' i i f 2 : By construction, we have I w pbq " b 1 and a " Σ b.

If there are A 1 1 , A 1 2 , B 1 P E T Σ 1 , i ď n and a P E T Σ such that:

a 1 " A 1 1 ' i B 1 A 1 1 " Σ 1 A 1 2 b 1 " A 1 2 ' i B 1 I w paq " a 1 then a " A 1 ' i B, with A 1 , B P E T Σ .
Using the induction hypothesis, there exist A 2 P E T Σ such that I w pA 2 q " A 1 2 and A 1 " Σ A 2 . Let us define b :" A 2 ' i B: by construction, we have I w pbq " b 1 and a " Σ b. The last case is symmetric.

In the case of I wpnq , we reason as previously, and we have two more cases to check. If there exist u 1 , v 1 P C 1 1 , A P Σ 1 and a P F T Σ such that:

a 1 " c u 1 A 1 v 1 ' n c u 1 Ā1 v 1 b 1 " i u 1 spA 1 qv 1 I wpnq paq " a 1 then a " c u 1 A 1 v 2 ' n c u 2 Ā2 v 2 , with u 1 , u 2 , v 1 , v 2 P C 1 and A 1 , A 2 P Σ such that:
Ipu 1 q " Ipu 2 q " u 1 Ipv 1 q " Ipv 2 q " v 1 I n`1 pA 1 q " I n`1 pA 2 q " A.

Let b :" i u 1 spA 1 qv 1 . Since I and I n`1 are injective, we have I w pbq " b 1 and a -Σ b.

If there exist u 1 , v 1 P C 1 1 , A P Σ 1 and a P F T Σ such that

a 1 " i u 1 spA 1 qv 1 b 1 " c u 1 A 1 v 1 ' n c u 1 Ā1 v 1 I wpnq paq " a 1
Then a " i f , with f P C n . Let b 1 :" c uAv ' i c u Āv , with u " I ´1pu 1 q, v " I ´1pv 1 q and A " I ´1 n`1 pA 1 q: by construction, we have I w pbq " b 1 and a -Σ b. The final case is symmetrical. Lemma 3.2.3.7. Assume that I n`1 and I are injective, and that the image of I in C n is closed by divisors. Then the functor I w : L w pC, Σq Ñ L w pC 1 , Σ 1 q is injective, and its image is closed by divisors.

Assume moreover that I n`1 is bijective, and that I is bijective on the 1-cells of C. Then the functor I wpnq : L wpnq pC, Σq Ñ L wpnq pC 1 , Σ 1 q is injective and its image is closed by divisors.

Proof. Let f 1 , f 2 P L w pC, Σq and a 1 , a 2 P E T Σ such that:

I w pf 1 q " I w pf 2 q ra 1 s " f 1 ra 2 s " f 2 .
Then rI w pa 1 qs " rI w pa 2 qs, that is I w pa 1 q " Σ1 I w pa 2 q. Hence, by definition, there exist n ą 0 and t 1 1 , . . . , t 1 n P E T Σ 1 such that:

t 1 1 " I w pa 1 q t 1 i " Σ 1 t 1 i`1 t 1 n " I w pa 2 q.
Applying Lemma 3.2.3.6 successively, we get t 1 , . . . , t n P E T Σ 1 such that:

t 1 " a 1 t i " Σ t i`1 I w pt i q " t 1 i .
In particular a 1 " Σ t n and I w pt n q " t 1 n " I w pa 2 q. Using Lemma 3.2.3.4, this implies that t n " a 2 , and so a 1 " Σ a 2 , which proves that f 1 " ra 1 s " ra 2 s " f 2 .

It remains to show that the image of I w is closed by divisors. Let

f 1 , f 1 1 , f 1 2 P L w pC 1 , Σ 1 q and i ď n such that f 1 " f 1 1 ' i f 1 2
, and assume that there is an f P L w pC 1 , Σ 1 q such that I w pf q " f 1 .

Let a P E T Σ and b 1 1 , b 1 2 P E T Σ 1 such that: ras " f rb 1 1 s " f 1 1 rb 1 2 s " f 1 2 .
In particular, we have

I w paq " Σ1 b 1 1 ' i b 1 2 .
Using both Lemmas 3.2.3.4 and 3.2.3.6 as before, we get an element b P E T Σ such that:

a " Σ b I w pbq " b 1 1 ' i b 1 2 .
Since the image of I w is closed by divisors, there exists b 1 , b 2 P E T Σ such that b " b 1 ' i b 2 . Let f 1 :" rb 1 s and f 2 :" rf 2 s: by construction we have:

I w pf 1 q " f 1 1 I w pf 2 q " f 1 2 f 1 ' i f 2 " f.
The case of I wpnq is identical, the only difference lying in the hypothesis needed to apply Lemma 3.2.3.6. Proposition 3.2.3.8. Let Σ and Γ be two white pn, kq-polygraphs and I : Σ Ñ Γ be an injective morphism of pn, kq-polygraphs. Then for every j ď k the functor I w j : Σ w j Ñ Γ w j is injective, and its image is closed by divisors.

Assume moreover that I 0 and I 1 are bijections, and that for every j ą k the application I j : Σ j Ñ Γ j is bijective. Then for every j the functor I Proof. We reason by induction on j. The case j " 0 is true by hypothesis.

Let 1 ď j ď k. By hypothesis, the application I j is injective, and by induction hypothesis, the functor I w j´1 is injective with image closed by divisors. Hence, I j satisfies the hypothesis of Lemma 3.2.3.7, and I w j is injective with image closed by divisors. Let j ą k. Again, using the hypothesis and induction hypothesis, we get that I j satisfies the hypotheses of Lemma 3.2.3.7. Hence, I wpkq j is injective and its image is closed by divisors.

In what follows, we use the fact that the image of a functor generated by a morphism of polygraphs is closed by divisors in order to prove a characterisation of the image of such a functor. Definition 3.2.3.9. Let C, D be two white n-categories, F : C Ñ D be an n-functor and f be an n-cell of D. We say that F k-discriminates f if the following are equivalent:

1. The k-source of f is in the image of F . 2. The k-target of f is in the image of F . 3. The n-cell f is in the image of F .
Given a subset D of D n , we say that F is k-discriminating on D if for every n-cell f in D, F k-discriminates f . Lemma 3.2.3.10. Assume that the image of I is closed by divisors, that the application I n is injective, and that I is n-discriminating on Σ 1 .

Then, I w (resp. I wpnq ) is n-discriminating on L w pC 1 , Σ 1 q (resp. L wpnq pC 1 , Σ 1 q).

Proof. Let us start with I w . Let E be the set all pn `1q-cells of L w pC 1 , Σ 1 q which I w discriminates. Let us show that E " L w pC 1 , Σ 1 q. Since I w commutes with the source and target applications, the implications (3) ñ (1) and ( 3) ñ (2) hold for any cell in L w pC 1 , Σ 1 q. So in order to show that a cell is in E, it remains to show that it verifies the implications (1) ñ (3) and (2) ñ (3).

The set E contains all units. Indeed, let A 1 " 1 f 1 , with f 1 P C 1 . If spA 1 q " f 1 is in the image of I w , there exists f P C such that Ipf q " f 1 . Let us define A " 1 f P L w pC, Σq: by construction we have I w pAq " 1 Ipf q " 1 f 1 " A 1 , hence the implication (1) ñ (3) holds for A 1 . Moreover, since tpA 1 q " spA 1 q, the implication (2) ñ (3) also holds for A.

The set E contains all cells of length 1. Indeed, given such a cell A 1 , there exist

f 1 k , g 1 k P C 1 k and A 1 0 P Σ 1 such that A 1 " f 1 n ' n´1 pf 1 n´1 ' n´2 . . . ' 2 pf 1 1 A 1 0 g 1 1 q ' 2 . . . ' n´2 g 1 n´1 q ' n´1 g 1 n . Let A 1 k :" f 1 k ' k´1 pf 1 k´1 ' k´2 . . . ' 2 pf 1 1 A 1 0 g 1 1 q ' 2 . . . ' k´2 g 1 k´1 q ' k´1 g 1 k .
Suppose that the source (resp. target) of A 1 is in the image of I, and let us show that A 1 is in the image of I w . Since the image of I is closed by divisors, we get first that f 1 n , g 1 n and spA 1 n´1 q (resp. tpA 1 n´1 q) are in the image of I. By iterating this reasoning, we get that, for all i, f 1 i , g 1 i and spA 1 i´1 q (resp. tpA 1 i´1 q) are in the image of I. Since I w discriminates Σ 1 , there exist f k , g k P C k and A 0 P Σ such that:

Ipf k q " f 1 k Ipg k q " g 1 k I n`1 pA 0 q " A 1 0 .
By induction on k we show that A k :" f k ' k´1 A k´1 ' k´1 g k is well-defined and that I w pA k q " A 1 k . Indeed, assume that it is true at rank k ´1. Then we have the equalities: Iptpf k qq " tpf 1 k q " s k´1 pA 1 k´1 q " Ips k´1 pA k´1 qq Ipt k´1 pA k´1 qq " t k´1 pA 1 k´1 q " spg 1 k q " Ipspg k qq

Using the injectivity of I we get that tpf k q " s k´1 pA k´1 q and t k´1 pA k´1 q " spg k q, which shows that A k is well-defined, and finally:

I w pA k q " f 1 k ' k´1 A 1 k´1 ' k´1 g 1 k " A 1 k .
In particular, we have A 1 n " I w pA n q.

The set E is stable by n-composition. Indeed, let A 1 , B 1 P E, and assume that the source of A 1 ' n B 1 is in the image of I. Let us show that A 1 ' n B 1 is in the image of I w . The source of A 1 ' n B 1 is none other that the one of A 1 . Since A 1 is in E, there exists A P L w pC, Σq such that I w pAq " A 1 . Hence, the source of B 1 is in the image of I, and since B 1 P E, there exists B P L w pC, Σq such that I w pBq " B 1 . Moreover, we have IptpAqq " tpA 1 q " spB 1 q " IpspBqq, so using the injectivity of I we get tpAq " spBq. Hence, the cell A ' n B is well-defined and satisfies:

I w pA ' n Bq " I w pAq ' n I w pBq " A 1 ' n B 1 .
The case where the target of A 1 ' n B 1 is in the image of I is symmetrical.

This concludes the proof for I w . Concerning I wpnq , the reasoning is the same except that we also have to show that E is stable under inversion. Indeed, let A 1 P E and assume that the source (resp. target) of pA 1 q ´1 is in the image of I. Then the target (resp. source) of A 1 is in the image of I and since A 1 is in E, there exists A P L wpnq pC, Σq such that I wpnq pAq " A 1 , and so I wpnq pA ´1q " pA 1 q ´1. Proposition 3.2.3.11. Let Σ and Γ be two white pn, kq-polygraphs, and I : Σ Ñ Γ be a morphism of polygraphs. Let k 0 such that for every j ą k 0 , I j is a bijection.

Assume that I satisfies the hypothesis of Proposition 3.2.3.8, and that, for every j ą k 0 , I j is k 0 -discriminating on Γ j . Then for every j ě k 0 , I wpkq j is k 0 -discriminating on Γ wpkq j . Proof. Since I satisfies the hypotheses of Proposition 3.2.3.8, we know that for every j, the functor I wpkq j is injective, and that its image is closed by divisors. We reason by induction on j ą k 0 . For j " k 0 `1, the result is a direct application of Lemma 3.2.3.10.

Let j ą k 0 `1: let us show that I , which proves that

I wpkq j is k 0 -discriminating. Name Description Commentary A 2 pA ˚p2q , S A q A 3 A 4 A 2 Weakening of the pB wp2q , S B q A 3 Y K exchange law 1 A 4 Y L A 2 Weakening pC wp3q , S C q A 3 Y A op 3 Y K Y K op of the invertibility A 4 Y L Y tρ A , λ A u of 3-cells A 2 Y A op 2 Adjunction of pD wp3q , S D q A 3 Y A op 3 Y K Y K op formal inverses A 4 Y L Y tρ A , λ A u to 2-cells A 2 Y A op 2 Adjunction pE wp3q , S E q A 3 Y A op 3 Y K Y K op Y tη f , f u of connections A 4 Y L Y tρ A , λ A u Y tτ f , σ f u
between 2-cells Table 3.3: List of the successive transformations of A.

Transformation of a p4, 2q-polygraph into a white p4, 3q-polygraph

The proof of Theorem 3.1.3.5 will occupy the rest of this article. We start with a p4, 2q-polygraph A satisfying the hypotheses of Theorem 3.1.3.5. Let S A be the set of all 2-cells in A 2 whose target is a normal form. Then proving Theorem 3.1.3.5 consists in showing that A is S A -coherent.

In this section we successively transform A four times, leading to five pointed white p4, 3qcategories, namely pA ˚p2q , S A q, pB wp2q , S B q, pC wp3q , S C q, pD wp3q , S D q and pE wp3q , S E q, and we show each time that the new pointed white p4, 3q-category is stronger than the previous one. A brief description of each pointed white p4, 3q-category can be seen in Table 3.3. Finally, in Section 3.3.5, we perform a number of Tietze-transformations on the white 4-polygraph E, leading to a white 4-polygraph F.

Thanks to Lemma 3.2.2.8 and Proposition 3.2.2.14, we know that in order to show that A ˚p2q is S A -coherent, it is enough to show that F wp3q is S E -coherent. This will be done in Section 3.4. In what follows, we will use as a running example the polygraph A " Assoc which consists of one 0-cell, one 1-cell , one 2-cell : ñ , one 3-cell : , and one 4-cell :

7 W 8 7 W ! A " 8 P p 7 W $ D S s ! A 1 c P p $ D 7 W 7 W V v 7 W S s V v
In particular, Assoc satisfies the 2-Squier condition of depth 2. The 2-category Assoc 2 is 2-convergent and its only normal form is the 1-cell .

The corresponding set S A is then the set of 2-cells in Assoc 2 from any 1-cell to .

Weakening of the exchange law

We construct dimension by dimension a white p4, 2q-polygraph B, together with a white functor F : B wp2q Ñ A ˚p2q . We then define a subset S B of B wp2q and show (Proposition 3.3.1.4) using F that pB wp2q , S B q is stronger than pA ˚p2q , S A q.

In low dimensions, we set B i " A i , for every i ď 2, and the functor F is the identity on generators. 

pf ' 0 vq ' i pu 1 ' 0 gq " pu ' 0 gq ' i pf ' 0 v 1 q.
And F is the canonical projection induced by the quotient.

In what follows, we suppose chosen a section i : A ˚Ñ B w of F , which is possible thanks to Lemma 3.3.1.1.

We extend B into a white 3-polygraph and F : B w Ñ A ˚into a white 3-functor by setting B 3 :" A 3 Y K:

• For every 3-cell A P A 3 , the source and target of A in B w 2 are respectively s B pAq :" ips A pAqq and t B pAq :" ipt A pAqq.

• The set K is the set of 3-cells A f v,ug , of shape:

u 1 g @ A f v,ug Õ % f v 8 X ug 6 V f v 1 i
for every strict Peiffer branching pf v, ugq, where f : u ñ u 1 and g : v ñ v 1 are rewriting steps.

The image of a cell of B 3 under F is defined as follows:

• For every strict Peiffer branching pf v, ugq, F pA f v,ug q :" 1 f ' 0 g

• For every 3-cell A in A 3 , F pAq :" A.

Lemma 3.3.1.2. Let f, g P B w

2 . There exists a 3-cell A : f g in K wp2q 3

if and only if the equality F pf q " F pgq holds in A 2 .

Proof. Let f, g P B w

2 . The image of any cell in K wp2q 3

by F is an identity. So if there exists a 3-cell A : f g in K wp2q 3

, necessarily F pf q " F pgq. Conversely, the set A 2 is the quotient of B w 2 by the equivalence relation generated by:

f spgq ' 1 tpf qg " spf qg ' 1 f tpgq,
for f, g P B w 2 . The 3-cells A f u,vg , where pf u, vgq is a strict Peiffer branching, generate this relation, and they are in K. Hence, the result holds. Proof. Let E be the set of 3-cells A P A ˚p2q 3 such that, for every f, g P B w 2 in the preimage of spAq and tpAq under F , there exists a 3-cell B : f g P B wp2q 3

satisfying F pBq " A. Let us show that E " A 3 . We already know that E contains the identities thanks to Lemma 3.3.1.2.

The 3-cells of length 1 in A 3 are in E. Indeed, let A P A 3 be a 3-cell of length 1, and f, g P B w 2 such that F pf q " spAq et F pgq " tpAq. There exist u, v P A 1 , f 1 , g 1 P A 2 , and

A 1 P A 3 such that A " f 1 ' 1 puA 1 vq ' 1 g 1 .
Let ũ, ṽ, f , g be in the preimages respectively of u, v, f 1 , g 1 under F (they exist thanks to Lemma 3.3.1.1), and let B 1 :" f ' 1 pũA 1 ṽq ' 1 g P B wp2q 3

. By construction, F pB 1 q " A, which leads to the equalities:

F pspB 1 qq " F pf q F ptpB 1 qq " F pgq.

Thus, according to Lemma 3.3.1.2, there exist 3-cells C 1 : f spB 1 q P K wp2q 3

and C 2 : tpB 1 q g P K wp2q 3

. Let B :" C 1 ' 2 B 1 ' 2 C 2 : by construction, B has the required source and target, and moreover:

F pBq " F pC 1 q ' 2 F pB 1 q ' 2 F pC 2 q " 1 F pf q ' 2 A ' 2 1 F pgq " A.
The set E is stable under composition. Indeed, let A 1 , A 2 P E such that tpA 1 q " spA 2 q, and f, g P B w 2 satisfying F pf q " spA 1 q and F pgq " tpA 2 q. Since F is 2-surjective, there exists h P B w 2 in the inverse image of tpA 1 q under F . Since A 1 (resp. A 2 ) is in E, there exists a cell B 1 (resp. B 2 ) in B wp2q 3 such that F pB 1 q " A 1 (resp. F pB 2 q " A 2 ), spB 1 q " f (resp. spB 2 q " h) and tpB 1 q " h (resp. tpB 2 q " g). Let B :" B 1 ' 2 B 2 : we get:

spBq " f F pBq " A 1 ' 2 A 2 tpBq " g
The set E is stable under 2-composition. Indeed, let A P E and f, g P B w 2 such that F pf q " spA ´1q and F pgq " tpA ´1q. There exists B P B wp2q such that:

spBq " g F pBq " A tpBq " f.
Hence, the cell B ´1 satisfies the required property.

We now extend B into a white p4, 2q-polygraph and F : B wp2q Ñ A ˚p2q into a white 4-functor by setting B 4 " A 4 Y L:

• For every 3-cell A P A 4 , the source and target of A in B wp2q 3 are respectively s B pAq :" ips A pAqq and t B pAq :" ipt A pAqq, where i is a chosen section of the application F 3 : B (which exists since F is 3-surjective). And we set F pAq :" A.

• For every 3-fold strict Peiffer branching pf, g, hq, the set L contains a 4-cell A f,g,h , whose shape depends on the form of the branching pf, g, hq. If pf, g, hq " pf 1 v, g 1 v, uh 1 q, with pf 1 , g 1 q a critical pair, and h 1 : v ñ v 1 then A f,g,h is of the following shape:

7 W A f 1 ,g 1 v ! A A 7 W B ! A A f 1 v,uh 1 ! A f 1 v S s g 1 v 7 W uh 1 ! A A g 1 v,uh 1 S s ! A A f,g,h 1 c f 1 v S s uh 1 ! A 7 W A f 1 ,g 1 v 1 7 W S s S s 7 W S s
where A and B are in K wp2q 3

. And we define F pA f,g,h q :" 1

A f 1 ,g 1 ' 0 h 1 .
If pf, g, hq " pf 1 v, ug 1 , uh 1 q, with pg, hq a critical pair, and f 1 : u ñ u 1 then A f,g,h is of the following shape:

7 W A f 1 v,ug 1 ! A A 7 W u 1 A g 1 ,h 1 ! A A f 1 v,uh 1 ! A f 1 v S s ug 1 7 W uh 1 ! A uA g 1 ,h 1 S s ! A A f,g,h 1 c f 1 v S s uh 1 ! A 7 W B 7 W S s S s 7 W S s
where A and B are in K wp2q 3

. And we define F pA f,g,h q :" 1

f 1 ' 0 A g 1 ,h 1 .
If pf, g, hq " pf 1 vw, ug 1 w, uh 1 wq, then A f,g,h is of the following shape, where A and B are in K wp2q 3

:

7 W A f 1 v,ug 1 w ! A A f 1 v 1 w,uv 1 h 7 W u 1 A g 1 w,vh 1 ! A A f 1 vw,uvh 1 ! A f 1 vw S s ug 1 w 7 W uvh 1 ! A uA g 1 w,vh 1 S s ! A A f,g,h 1 c f 1 vw S s uvh 1 ! A 7 W A f 1 v,ug 1 w 1 7 W S s S s 7 W S s
And we define F pA f,g,h q :" 1

f 1 ' 0 g 1 ' 0 h 1 .
Let now S B be the set of all 2-cells in B w whose 1-target is a normal form.

Proposition 3.3.1.4. The pointed white p4, 3q-category pB wp2q , S B q is stronger than pA ˚p2q , S A q.

Proof. The functor F sends normal forms on normal forms. Hence, by restriction it induces a 2-functor F aeS B : B wp2q aeS B Ñ A ˚p2q aeS A . Lemmas 3.3.1.1 and 3.3.1.3 show that it is k-surjective for every k ă 2. Hence, we can conclude using Lemma 3.2.2.8. Example 3.3.1.5. In the case where A " Assoc, the set K contains in particular the following 3-cells, associated respectively to the strict Peiffer branchings p , q and p , q:

7 W 7 W
In L, the 4-cell associated to the strict Peiffer branching p , , q is the following:

7 W ) I E e ) I 7 W E e 1

Weakening of the invertibility of 3-cells

We construct dimension by dimension a white 4-polygraph C, together with a white 3-functor G : C wp3q Ñ B wp2q . We then define a subset S C of C wp3q and show (Proposition 3.3.2.2) using G that pC wp3q , S C q is stronger than pB wp2q , S B q.

In low dimensions, we set C i " B i for i ď 2, with the functor G being the identity.

We extend C into a white 3-polygraph by setting C 3 :" B 3 Y B op 3 , where the set B op 3 contains, for every A P B 3 , a cell denoted by A op , whose source and target are given by the equalities: spA op q " tpAq tpA op q " spAq And the functor G : C w Ñ B wp2q is defined as follows for every A P B 3 :

GpAq " A GpA op q " A ´1. is the quotient of C w 3 by the relations A op ' 2 A " 1 and A ' 2 A op " 1, and G is the corresponding canonical projection.

We extend C into a white 4-polygraph by setting C 4 :" B 4 Y tρ A , λ A |A P B 3 u, where the applications source and target s, t : C 4 Ñ C w 3 are defined as follows:

• For A P B 4 , the cell s C pAq (resp. t C pAq) is any cell in the preimage of s B pAq under G, which is non-empty thanks to Lemma 3.3.2.1. And we set GpAq :" A.

• For every A P B 3 , the cells ρ A and λ A have the following shape:

A Õ % 1 spAq Õ % spAq 9 spAq U u tpAq 7 W A op Õ % ρ A 1 c spAq 9 spAq U u A op Õ % 1 tpAq Õ % tpAq 9 tpAq U u spAq 7 W A Õ % λ A 1 c tpAq 9 tpAq U u
And we set Gpρ A q :" 1 spAq and Gpλ A q :" 1 tpAq .

Let S C be the set of all 2-cells in C w whose 2-target is a normal form.

Proposition 3.3.2.2. The pointed white p4, 3q-category pC wp3q , S C q is stronger than pB wp2q , S B q.

Proof. And the following cells lie in C 4 , where A " :

op 6 ρ A 1 H h 6 λ A 1 op H h

Adjunction of formal inverses to 2-cells

Let D be the white 4-polygraph defined as follows:

for every i ‰ 2, D i :" C i D 2 :" C 2 Y C2 ,
where for every f P C 2 , the set C2 contains a cell f with source tpf q and with target spf q. Let S D be the set of all 2-cells of the sub-white 2-category C w 2 of D w 2 whose target is a normal form. Notation 3.3.3.1. The application C 2 Ñ C2 extends into an application C w 2 Ñ C2 w which exchanges the source and targets of the 2-cells.

We denote a 2-cell f by

f 7 W if f is in B w 2 , by f e y if f is in B w 2 ,
and by e y f 7 W if f is any cell in C w 2 . Proposition 3.3.3.2. The pointed white p4, 3q-category pD wp3q , S D q is stronger than pC wp3q , S C q.

Proof. Let us show that D wp3q aeS D " C wp3q aeS C . Let ι : C wp3q Ñ D wp3q be the canonical inclusion functor. Since the only cells added are in dimension 2, ι satisfies the hypotheses of Proposition 3.2.3.8, thus C w is a sub-white 4-category of D w , which gives us an inclusion C wp3q aeS C Ď D wp3q aeS D .

Let us show the reverse inclusion. Let f P D wp3q be an i-cell (i ě 2), and suppose that f is in D wp3q aeS D . In particular t 2 pf q and s 2 pf q are in C w 2 . Since ι also satisfies the hypotheses of Proposition 3.2.3.11, with k 0 " 2, it is 2-discriminating on D wp3q i . Thus f is in C wp3q , and in C wp3q aeS C since its 1-target is a normal form. Note that the equality D wp3q aeS D " C wp3q aeS C implies that none of these composites belongs to D wp3q aeS D .

Adjunction of connections between 2-cells

Let E be the following white 4-polygraph:

• For i " 0, 1, 2, E i " D i , • For i " 3, E 3 " D 3 Y tη f , f |f P C 2 u. • For i " 4, E 4 " D 4 Y tτ f , σ f |f P C 2 u.
The cells η f , f , τ f and σ f have the following shape:

• f : f ' 1 f 1 tpf q f | f 4 f Õ % 1 tpf q • η f : 1 spf q f ' 1 f 1 spf q 4 T f ( H η f Õ % f n Ò • τ f : p f ' 1 η f q ' 2 p f ' 1 f q 1 c 1 f f | f # C f Õ % η f Õ % f l Ð f | 1 f f l Ð τ f 1 c (3.3.1) • σ f : pη f ' 1 f q ' 2 pf ' 1 f q 1 c 1 f . f 0 P η f Õ % f Õ % f s × f 4 f 0 P 1 f f 4 σ f 1 c (3.3.2) Notation 3.3.4.1.
Let us denote by the 3-cell f and the 3-cell η f . Similarly, we denote by for σ f and for τ f : Let R :" tσ f , τ f u, and R w (resp. R wp3q ) be the sub-white 4-category (resp. sub-white p4, 3q-category) of E wp3q generated by the cells in R. A 4-cell of length 1 in R w is called an R-rewriting step.

Let S E be the set of all 2-cells of the sub-white 2-category C w 2 of E w 2 whose target is a normal form. Using properties of the rewriting system induced by R w , we are going to define a functor K : E wp3q aeS E Ñ D wp3q aeS D . Lemma 3.3.4.2. Let α P E w 4 and β P R w of length 1 with the same source. There exist α 1 P E w 4 and β 1 P R w of maximum length 1, such that:

α 1 c β 1 β 1 1 α 1 1 c
Proof. The result holds whenever pα, βq is a Peiffer or aspherical branching. If pα, βq is an overlapping branching, then the source of α must contain an η f or an f . The only cells of length 1 in E w 4 that satisfy this property are those in R w . Hence, α is in R w . Thus, the branching pα, βq is one of the following two, and both of them satisfy the required property:

" T @ r
" T @ r Lemma 3.3.4.3. The rewriting system generated by R is 4-convergent.

Proof. Using Lemma 3.3.4.2, the rewriting system generated by R is locally 4-confluent. Moreover, the cells σ f and τ f decrease the length of the 3-cells, hence the 4-termination.

Let A P E w 3 : we denote by  P E w 3 its normal form for R. Remark in particular that if A is in D w 3 , then  " A.

Lemma 3.3.4.4. Let A be a 3-cell of E w 3 whose target is in C w 2 . • If the source of A is in C w 2 , then  is in D w 3 .
• Otherwise, for every factorization of

A into f 1 ' 1 f ' 1 f 2 ,
where f is a rewriting step, there exists a factorisation of A into:

f f f f 2 A 1 f 1 A 2
Proof. We reason by induction on the length of A. If A is of length 0, then the source of A is in C w 2 , and  " A is in D w 3 . If A is of length n ą 0, let us write A " B 1 ' 1 B 2 , where B 1 is of length 1. We can then apply the induction hypothesis to B 2 . We distinguish three cases:

• If both the sources of A and B 2 are in C w 2 , then B 1 is in D w 3 , and so is  " B 1 ' 2 B2 .

• If the source of A is in C w 2 but not that of B 2 , then B 1 is of the form g 1 ' 1 η f ' 1 g 2 . There hence exists a factorisation pg 1 ' 1 f q ' 1 f ' 1 g 2 of the source of B 2 . Applying the induction hypothesis to B 2 , we deduce the following factorisation of A:

f η f f f f g 2 A 1 g 1 A 2
In particular, A is the source of an R-rewriting step. Let A 1 be its target, which is thus of length smaller than A. Applying the induction hypothesis to A 1 , we get that  " Â1 is in D w 3 .

• There remains the case where the source of A is not an element of C w 2 .

In order to treat this last case, let us fix a factorisation f 1 ' 1 f ' 1 f 2 of the source of A, where f is of length 1. We distinguish three cases depending on the form of B 1 .

• If B 1 " f 1 ' 1 f ' 1 B 1
1 , where B 1 1 is a 3-cell of length 1 from f 2 to g 2 P D w 2 , then we get a factorisation of the source of B into f 1 ' 1 f ' 1 g 2 . Let us apply the induction hypothesis to B 2 : there exist A 1 1 , A 1 2 P E w 3 and g 1 2 P D w 2 such that:

B 2 " pf 1 ' 1 f ' 1 A 1 1 q ' 2 pf 1 ' 1 f ' 1 g 1 2 q ' 2 A 1 2
Thus A factorises as follows, which is of the required form by setting

A 1 " B 1 1 ' 2 A 1 1 and A 2 " A 1 2 : f f f f 2 g 2 f 1 A 1 1 B 1 1 A 2 • If B 1 " B 1 1 ' 1 f ' 1 f 2 , where B 1 1 is a 3-cell of length 1 from f 1 to g 1 P D w 2 .
Then the source of B factorises into g 1 ' 1 f ' 1 f 2 . Applying the induction hypothesis to B 2 , there exist A 1 1 , A 1 2 P E w 3 and f 1 2 P D w 2 such that:

B 2 " pg 1 ' 1 f ' 1 A 1 1 q ' 2 pg 1 ' 1 f ' 1 f 1 2 q ' 2 A 1 2
We get the required factorisation of A by setting

A 1 " A 1 1 and A 2 " pB 1 1 ' 1 f 1 2 q ' 2 A 1 2 . f f f g 2 A 1 1 f 1 g 1 B 1 1 A 2 • Otherwise, we have B 1 " f 1 ' 1 f ' 1 f 1 2 , with f 2 " f ' 1 f 1 2 .
We then get the required factorisation of A by setting

A 1 " 1 f 1 2 and A 2 " B 2 . f f f f 1 2 f 1 B 2
Lemma 3.3.4.5. Let β P R w , and α be a 4-cell E w 4 of same source. There exist α 1 P E w 4 and β 1 P R w of maximum length that of β such that we have the following square:

α 1 c β 1 β 1 1 α 1 1 c
Proof. We reason using a double induction on the lengths of β and α. If β (resp. α) is an identity, then the result holds by setting α 1 " α (resp. β 1 " β).

Otherwise, let us write α " α 1 ' 3 α 2 and β " β 1 ' 3 β 2 , where α 1 and β 1 are of length 1. We can then construct the following diagram:

α 1 1 c β 1 1 α 2 1 c β 1 1 1 β 2 1 1 α 1 1 1 c β 2 1 α 1 2 1 c β 1 2 1 β 2 2 1 α 2 1 1 c α 2 2 1 c
The 4-cells α 1 1 and β 1 1 exist thanks to Lemma 3.3.4.2. We can then apply the induction hypothesis to the 4-cells α 2 and β 1 1 (resp. α 1 1 and β 2 ) and we construct this way the cells α 1 2 and β 2 1 (resp. α 2 1 and β 1 2 ). Lastly, we apply the induction hypothesis to α 1 2 et β 1 2 in order to construct α 2 2 and β 2 2 .

Lemma 3.3.4.6. The application A Þ Ñ Â extends into a 1-functor K : E wp3q aeS E Ñ D wp3q aeS D , which is the identity on objects.

Proof. The application A Þ Ñ Â does not change the source or target. Moreover, given a 3-cell A P E wp3q , if A is in E wp3q aeS E then in particular the source and target of A are in C w 2 . Thus  is in D w 3 aeS D (Lemma 3.3.4.4). Let A, B be 3-cells in E wp3q which belong to E wp3q aeS E . We just showed that  and B are in

D w 3 aeS D , hence so is  ' 2 B. So  ' 2 B is a normal form for R which is attainable from A ' 2 B. Since R is 4-convergent, this means that { A ' 2 B "  ' 2 B. So A Þ Ñ Â does indeed define a functor.
Proposition 3.3.4.7. The pointed p4, 3q-category pE, S E q is stronger than pD, S D q.

Proof. Let us show that K induces a functor K : E wp3q aeS E Ñ D wp3q aeS D . Let A, B be 1-cells in E wp3q aeS E , and suppose Ā " B. Let us show that KpAq " KpBq, that is that there exists a 4-cell α 1 :  1 c B P D . Suppose that α lies in E w 4 . Let β P R w be a cell from A to Â. Applying Lemma 3.3.4.5 to α and β, we get cells α 1 and β 1 of sources respectively  and B. Let B 1 be their common target. By hypothesis  is in D w 3 , and the only cells in E w 4 whose source is in D w 3 are the cells in D w 4 . Thus α 1 is in D w 4 , and so is B 1 . So B 1 is a normal form for R w which is attainable from B. By unicity of the R w -normal-form, B 1 " B, and so α 1 is a cell in D w 4 of source KpAq and of target KpBq, hence KpAq " KpBq. In general if Ā " B, there exist A 1 , . . . , A n P E w 3 with A 1 " A, B n " B and for every i there exist cells α i : A 2i 1 c A 2i´1 and β i :

A 2i Ñ A 2i`1 in E w 4 .
Hence, using the previous case KpA 1 q " . . . " KpA n q, that is KpA 1 q " KpA n q.

So K : E wp3q aeS E Ñ D wp3q aeS D is well-defined, and it is 0 and 1-surjective because K is. Hence, pE, S E q is stronger than pD, S D q.

Example 3.3.4.8. In the case where A " Assoc, let A " . The set E 3 contains the following 3-cells:

A 7 W η A 7 W
And the set E 4 the following 4-cells:

A 9 τ A 1 η A U u A 9 σ A 1 η A U u

Reversing the presentation of a white p4, 3q-category

We start by collecting some results on the cells of E. Lemma 3.3.5.1. The set E 3 is composed exactly of the following cells:

• For every f P A 2 , 3-cells η f and f .

• For every non-aspherical minimal branching pf, gq, a 3-cell A f,g of shape:

f 1 @ A f,g Õ % f 8 X g 6 V g 1 S s
And in particular for every non-aspherical minimal branching pf, gq, we have A op f,g " A g,f .

Proof. If pf, gq is a critical pair: if it was associated to a 3-cell in A then A f,g is this corresponding cell. Otherwise, A f,g is in fact the cell A op g,f from Section 3.3.2. If pf, gq is a strict Peiffer branching, then A f,g is the cell defined in Section 3.3.1. Otherwise, pg, f q is a strict Peiffer branching, and we set A f,g :" A op g,f from Section 3.3.2.

Lemma 3.3.5.2. For every minimal non-aspherical branching pf, g, hq, there exists a 4-cell A f,g,h P E wp3q 4

of the following shape:

7 W A f,g ! A A 7 W B 1 ! A A f,h ! A f S s g 7 W h ! A A g,h S s ! A A f,g,h 1 c f S s h ! A 7 W B 2 7 W S s S s 7 W S s
Proof. Let us first start by showing that, for every non-aspherical 3-fold minimal symmetrical branching b, there exists a representative pf, g, hq of b for which the property holds. If b is an overlapping branching then, using the fact that A satisfies the 2-Squier condition of depth 2, the cell A f,g,h exists for some representative pf, g, hq of b. Otherwise, b is a Peiffer branching, and we conclude using the cells defined in Section 3.3.1.

It remains to show that the set of all branchings satisfying the property is closed under the action of the symmetric group.

• If pf 1 , f 2 , f 3 q satisfies the property, then so does pf 3 , f 2 , f 1 q. Indeed, let A :" A f 1 ,f 2 ,f 3 , and let us denote its source by s and its target by t, all we need to construct is a 4-cell from s op to t op . This is given by the following composite:

s op s op ' 2 λ ´1 t 1 c t op ' 2 t ' 2 s op t op ' 2 A ´1 ' 2 s op 1 c t op ' 2 s ' 2 s op t op ' 2 ρ s 1 c t op
• If pf 1 , f 2 , f 3 q satisfies the property, then so does pf 2 , f 1 , f 3 q. Indeed, given a cell A f 1 ,f 2 ,f 3 , we can construct the following composite:

f 2 f 1 f 3 A f 2 ,f 1 A f 1 ,f 3 B 1 ρ ´1 B 1 ρ ´1 B 1 f 2 f 1 f 3 A f 2 ,f 1 A f 1 ,f 3 B 1 B 2 B op 2 A ´1 f 1 ,f 2 ,f 3 A ´1 f 1 ,f 2 ,f 3 f 2 f 3 A f 2 ,f 1 A B op 2 f 2 f 1 f 2 f 3 A f 2 ,f 1 A f 1 ,f 2 A f 2 ,f 3 A B op 2 λ A f 1 ,f 2 λ A f 1 ,f 2
Since the transpositions p1 2q and p1 3q generate the symmetric group, the set of all branchings satisfying the property is closed under the action of the symmetric group.

We are now going to apply a series of Tietze-transformations to E in order to mimic a technique known as reversing. Reversing is a combinatorial tool to study presented monoids [START_REF] Dehornoy | The subword reversing method[END_REF]. Reversing is particularly adapted to monoids whose presentation contains no relation of the form su " sv, where s is a generator and u and v words in the free monoid, and at most one relation of the form su " s 1 v, for s and s 1 generators. The p4, 2q-polygraph A satisfies those properties, but only up to a dimensional shift: there are no 3-cell in A 3 of the form f ' 2 g f ' 2 h, where f is of length 1 and g and h are in A w 2 , and there is at most one 3-cell in A 3 of the form f ' 2 g f 1 ' 2 h, where f and f 1 are of length 1. Hence, we adapt this method to our higher-dimensional setting.

Adjunction of 3-cells C f,g with its defining 4-cell X f,g . For every non-aspherical branching pf, gq, we add a 3-cell C f,g of the following shape:

g @ f v C f,g Õ % f 1 6 V g 1 f z
using as defining 4-cell a cell X f,g whose target is C f,g and whose source is the composite:

f f g f A g,f g 1 η g 1 f 1 g 1
Adjunction of a superfluous 4-cell Y f,g . We add a 4-cell Y f,g of target A g,f , parallel to the following 4-cell (where the second step consists in the parallel application of σ f and σ g 1 ):

f f 1 g g 1 f g 1 η f C f,g g 1 g f f f g 1 g 1 g 1 f 1 η f f A g,f η g 1 g 1 g f f g 1 g 1 f 1 1 f A g,f 1 g 1 X ´1 f,g X ´1 f,g σ f σ f σ g 1 σ g 1
Removal of the superfluous 4-cell X f,g . We remove the 4-cell X f,g , using the fact that it is parallel to the following composite:

f g f g 1 f 1 g 1 f A g,f η g 1 g f f f g 1 g 1 g 1 f 1 f η f C f,g g 1 η g 1 f 1 f f g 1 g 1 g 1 f C f,g 1 g 1 Y ´1 f,g Y ´1 f,g τ f τ f τ g 1 τ g 1
Removal of the 3-cell A g,f with its defining 4-cell Y f,g . This last step is possible because A g,f is the target of Y f,g and does not appear in its source.

Proof of Theorem 3.1.3.5

This Section concludes the proof of Theorem 3.1.3.5. We keep the notations from Section 3.3. In Section 3.4.1, we study the 4-cells of the white p4, 3q-category F wp3q , and in particular study the consequences of A satisfying the 2-Squier condition of depth 2. In Section 3.4.2, we define a well-founded ordering on NrF w 1 s, the free commutative monoid on F w 1 . Using this ordering together with two applications p : F w 2 Ñ NrF w 1 s and w η : F w 3 Ñ NrF w 1 s, we proceed to complete the proof by induction in Section 3.4.3.

Local coherence

Definition 3.4.1.1. We extend the notation C f,g from Section 3.3.5 by defining, for every local branching pf, gq of B w 2 , a 3-cell of the form C f,g : f ' 1 g f 1 ' 1 ḡ1 P F w 3 , where f 1 and g 1 are in B w 2 .

• If pf, gq is a minimal overlapping or Peiffer branching, then C f,g is already defined.

• If pf, gq is aspherical, that is f " g, then we set C f,f " f .

• If pf, gq is not minimal, then let us write pf, gq " pu f v, ugvq, with p f , gq a minimal branching, and we set C f,g :" uC f ,g v.

Definition 3.4.1.2. We say that a 3-fold local branching pf, g, hq of A 2 is coherent if there exists a 4-cell C f,g,h P F wp3q 4

of the following shape, where A and B are 4-cells in F w 3 .

f g g h η g C f,g C g,h A f h C f,h B C f,g,h C f,g,h Lemma 3.4.1.3. Every 3-fold local branching of B w 2 is coherent.
Proof. Let pf, g, hq be a minimal local branching. We first treat the case where pf, g, hq is an aspherical branching. If f " g, then C f,g " f , and the following cell shows that the branching is coherent:

f f f h f 1 h 1 f 1 η f f C f,h 1 f 1 f h f 1 h 1 C f,h τ f τ f
The case where g " h is symmetrical. Assume now g ‰ f, h and f " h. Then pf, gq is either an overlapping or a Peiffer branching. In any case there exists either a cell A f,g or A g,f in E w 3 . In the former case, we can construct the following cell in

F wp3q 4 . f g g f η g C f,g C g,f g 1 f f f g g f f η f η g C f,g C g,f g 1 f 1 η f 1 f η f 1 τ ´1 f τ ´1 f τ ´1 f 1 τ ´1 f 1 Πpρ A f,g q Πpρ A f,g q
In the latter, we can construct the same cell, only replacing Πpρ A f,g q by Πpλ A f,g q. Suppose now that pf, g, hq is not aspherical. Using the cell A f,g,h described in Lemma 3.3.5.2, we build the following composite in F

wp3q 4 : C f,g η g C g,h ΠpAq η f η f C f,g η g C g,h η ΠpAq 1 η f η f C f,h η η ΠpB 1 q ΠpB 2 q C f,h η η ΠpB 1 q ΠpB 2 q τ ´1 f τ ´1 f τ ´1 τ ´1 ΠpA f,g,h q ΠpA f,g,h q τ f τ f
Finally, if pf, g, hq is not aspherical, then there exists a 3-fold minimal branching p f , g, hq of B w 2 and 1-cells u, v P B w 1 such that pf, g, hq " pu f v, ugv, u hvq. Then the cell uC f ,g, hv shows that pf, g, hq is coherent.

Orderings on the cells of F w

Definition 3.4.2.1. Let E be a set. The set of all finite multi-sets on E is NrEs, the free commutative monoid over E. For every e P E, let v e : NrEs Ñ N be the morphism of monoids that sends e to 1 and every other elements of E to 0.

If E is equiped with a strict ordering ą, we denote by ą m the strict ordering on NrEs defined as follows: for every f, g P NrEs, one has f ą m g if

• f ‰ g
• For every e P E, if v e pf q ă v e pgq, then there exists e 1 ą e such that v e 1 pf q ą v e 1 pgq. Lemma 3.4.2.2. Let E be a set and a P E. The set of all f P NrEs such that f ă a is equal to the set of all f P NrEs satisfying the following implication for every b P E:

v b pf q ą 0 ñ b ă a.
In particular, this set is a sub-monoid of NrEs.

Proof. Let f P NrEs such that for every b P E the implication v b pf q ą 0 ñ b ă a is verified. Let us prove that f ă m a. Necessarily v a pf q " 0, otherwise we would have a ă a. Thus, in particular f ‰ a. Moreover, let b P E such that v b pf q ą v b paq ě 0. By definition of f this implies that b ă a, and since 0 " v a pf q ă v a paq " 1 we get that f ă m a .

Conversely, let f ă m a. Let us show by contradiction that v a pf q " 0. If v a pf q ‰ 0, we distinguish two cases:

• If v a pf q " 1, then since f ‰ a, there exists b ‰ a P E such that v b pf q ą 0. Thus, because f ă a, there exists c ą b P E such that v c pf q ă v c paq. So we necessarily have v c paq ě 1, which implies that c " a. The condition v c pf q ă v c paq thus becomes v a pf q ă 1, which contradicts the hypothesis that v a pf q " 1.

• If v a pf q ą 1, then there exists b ą a such that v b paq ą v b pf q, which is impossible.

Hence, necessarily v a pf q " 0. Let b P E such that v b pf q ą 0, and let us show that b ă a. We just showed that b ‰ a, and so v b pf q ą v b paq. Thus, there exists c ą b such that v c paq ą v c pf q. In particular this implies v c paq ą 0. So c " a and finally a ą b. Lemma 3.4.2.3. Let pE, ăq be a set equipped with a strict ordering. The relation ą m is compatible with the monoidal structure on NpEq, that is, for every

f, f 1 , g P NpEq, if f ą m f 1 , then f `g ą m f 1 `g. Proof. Let f, f 1 , g P NpEq, and suppose that f ą m f 1 . Let us show that f `g ą m f 1 `g. Firstly, f ‰ f 1 , hence f `g ‰ f 1 `g.
Let e P E such that v e pf `gq ă v e pf 1 `gq. Since v e is a morphism of monoids, this implies that v e pf q ă v e pf 1 q. Hence, there exists e 1 ą e such that v e 1 pf q ą v e 1 pf 1 q, and so v e 1 pf `gq ą v e 1 pf 1 `gq

The proof of the following theorem can be found in [START_REF] Baader | Term rewriting and all that[END_REF].

Theorem 3.4.2.4. Let pE, ąq be a set equipped with a strict ordering. Then ą m is a wellfounded ordering if and only if ą is. Lemma 3.4.2.11. Let h P F w 2 be a 2-cell which is not an identity, and whose source and target are a normal form for A 2 . Then there exists a cavity-factorisation of h.

Proof. By definition of F w 2 , there exist n P N ˚and g 1 , . . . , g 2n P B w 2 all not identities, except possibly g 1 or g 2n , such that h " ḡ1 ' 1 g 2 ' 1 . . . ' 1 ḡ2n´1 ' 1 g 2n .

Let us show that g 1 and g 2n are not identities:

• If g 1 is an identity, then since h isn't, either n ě 2 or n " 1 and g 2n is not an identity. In both cases g 2 is of length at least 1, and has sphq as target, which contradicts the fact that sphq is a normal form for A 2 .

• The case where g 2n is an identity is symmetric.

Therefore, the 2-cells g 1 and g 2 are of length at least 1. So we can write

g 1 " f 1 ' 1 g 1 1 and g 2 " f 2 ' 1 g 1 2 , with f 1 , f 2 P B w 2 of length 1. Let h 1 :" ḡ1 1 and h 2 :" g 1 2 ' 1 ḡ3 ' 1 g 4 ' 1 . . .' 1 ḡ2n´1 ' 1 g 2n . We finally get: h " h 1 ' 1 f1 ' 1 f 2 ' 1 h 2 .
Lemma 3.4.2.12. Let h P F w 2 be a 2-cell of source and target û, a normal form for A 2 . There exists a 3-cell A : h 1 û such that w η pAq " 0.

Proof. We reason by induction on h using the ordering ą. If h is minimal, then h " 1 û and we can set A :" 1 h . Otherwise, by Lemma 3.4.2.11 there exists a cavity-factorisation h "

h 1 ' 1 f 1 ' 1 f 2 ' 1 h 2 of h. Let A 1 :" C f 1 ,f 2 :
we have w η pA 1 q " 0 and by Lemma 3.4.2.9, spA 1 q ą tpA 1 q. Since the ordering is compatible with composition, we get h ą h 1 ' 1 tpA 1 q ' 1 h 2 . By induction hypothesis, there exists a 3-cell

A 2 : h 1 ' 1 tpA 1 q ' 1 h 2 1 û P F w 3 such that w η pA 2 q " 0. Let A :" ph 1 ' 1 A 1 ' 1 h 2 q ' 1 A 2 . We have w η pAq " wph 1 ' 1 A 1 ' 1 h 2 q `wpA 2 q " wpA 1 q `0 " 0.
Lemma 3.4.2.13. Let h P F w 2 of source and target û a normal form for A 2 , and A : h

1 û P F w 3 . For every cavity-factorisation h " h 1 ' 1 f1 ' 1 f 2 ' 1 h 2 , there exists a factorisation of A " ph 1 ' 1 A 1 ' 1 h 2 q ' 2 A 2 , with A 1 , A 2 P F w 3 , and either A 1 " C f 1 ,f 2 or A 1 " f1 ' 1 η f 3 ' 1 f 2 , with f 3 P B w
2 of length 1. Proof. We reason by induction on the length of A. If A is of length 0, then there is no cavityfactorisation of h " 1 û and the result holds.

If A is not of length 0, let h "

h 1 ' 1 f1 ' 1 f 2 ' 1 h 2 be a cavity-factorisation of h. Let us write A " B ' 1 C, where B is of length 1. If B is not of the required form, then either B " B 1 ' 1 f1 ' 1 f 2 ' 1 h 2 , or B " h 1 ' 1 f1 ' 1 f 2 ' 1 B 1 .
Let us treat the first case, the second being symmetrical. The source of C admits a cavity-factorisation spCq " tpB 1 q ' 1 f1 ' 1 f 2 ' 1 h 2 . By induction hypothesis, we can factorise C as follows:

C " ph 1 1 ' 1 A 1 ' 1 h 2 q ' 2 C 1 , with A 1 " C f 1 ,f 2 or A 1 " f1 ' 1 η f 3 ' 1 f 2 . Let A 2 :" pB 1 1 ' 1 tpA 1 q ' 1 h 2 q ' 2 C 2 : we then have A " ph 1 ' 1 A 1 ' 1 h 2 q ' 2 A 2 . h 1 f 1 f 2 h 2 B A 1 C 1 If A 1 " B 1 " C f 1 ,f 2 .
Then in particular we have:

spA 2 q " spB 2 q w η pAq " w η pA 2 q w η pBq " w η pB 2 q tpA 1 q ă spA 1 q, where the last inequality is a consequence of Lemma 3.4.2.9. Hence, we get ppspA 2 qq " pph 1 q pptpA 1 qq `pph 2 q ă pph 1 q `ppspA 1 qq `pph 2 q " pphq, and finally pw η pA 2 q `wη pB 2 q, ppspA 2 qqq ă pw η pAq `wη pBq, hqq. Using the induction hypothesis there exists α : A 2 1 c B 2 P F wp3q 4

, and by composition we construct A 1 ' 2 α : A Ñ B.

If A 1 " f1 ' 1 η f 3 ' 1 f 2 and B 1 " C f 1 ,f 2 .
We are going to construct the following composite:

h 1 f 1 f 2 h 2 h 1 h 2 h 1 f 1 f 2 h 2 h 1 h 2 1 û h 1 ' 1 C f 1 ,f 2 ' 1 h 2 h 1 ' 1 C f 1 ,f 2 ' 1 h 2 h 1 ' 1 f1 ' 1 η f 3 ' 1 f 2 ' 1 h 2 h 1 ' 1 f1 ' 1 η f 3 ' 1 f 2 ' 1 h 2 D 1 D 1 D 2 D 2 A 2 A 2 B 2 B 2 D 3 D 3 α 1 α 2 α 3
According to Lemma 3.4.1.3, there exists a 4-cell

C f 1 ,f 3 ,f 2 : f1 ' 1 η f 3 ' 1 f 2 ' 2 pC f 1 ,f 3 ' 1 C f 3 ,f 2 q ' 2 D 1 1 1 c C f 1 ,f 2 ' 2 D 1 2 , with D 1 1 , D 1 2 P F wp3q 4 . Let us define D 1 :" h 1 ' 1 pC f 1 ,f 3 ' 1 C f 3 ,f 2 q ' 2 D 1 1 q ' 1 h 2 , D 2 :" h 1 ' 1 D 1 2 ' 1 h 2 , and α 1 :" h 1 ' 1 C f 1 ,f 3 ,f 2 ' 1 h 2 .
The existence of D 3 is guaranteed by Lemma 3.4.2.12, which also proves that we can choose D 3 such that w η pD 3 q " 0.

In order to construct the 4-cells α 1 and α 2 , let us show that we can apply the induction hypothesis to the couples pA 2 , D 1 ' 2 D 3 q and pD 2 ' 2 D 3 , B 2 q. Let v be the common source of f 1 and f 2 .

• Using Lemma 3.4.2.15, w η pD 1 ' 2 D 3 q " w η pD 1 q " w η pD 1 1 q ă v, and so: w η pA 2 q `wη pD 1 ' 2 D 3 q ă w η pA 2 q `wpη 3 q " w η pAq ď w η pAq `wη pBq.

• As previously w η pD 2 ' 2 D 3 q " w η pD 2 q " w η pD 1 2 q ă v, and so:

w η pB 2 q `wη pD 2 ' 2 D 3 q ă w η pB 2 q `wpη 3 q ď w η pBq `wη pAq.

If A 1 " C f 1 ,f 2 and B 1 " f1 ' 1 η f 3 ' 1 f 2 .
This case is similar to the previous one, only using

C ´1 f 1 ,f 3 ,f 2 rather than C f 1 ,f 3 ,f 2 . If A 1 " f1 ' 1 η f 3 ' 1 f 2 and B 1 " f1 ' 1 η f 4 ' 1 f 2 .
We are going to construct the following composite:

h 1 f 1 f 2 h 2 h 1 f 1 f 2 h 2 h 1 f 1 f 2 h 2 h 1 f 1 f 2 h 2 1 û h 1 ' 1 f1 ' 1 η f 3 ' 1 f 2 ' 1 h 2 h 1 ' 1 f1 ' 1 η f 3 ' 1 f 2 ' 1 h 2 h 1 ' 1 f1 ' 1 η f 4 ' 1 f 2 ' 1 h 2 h 1 ' 1 f1 ' 1 η f 4 ' 1 f 2 ' 1 h 2 D 1 D 1 D 2 D 2 A 2 A 2 B 2 B 2 D 3 D 3 α 1 α 2 α 3 Let us set D 1 :" h 1 ' 1 f1 ' 1 f 3 ' 1 f3 ' 1 η f 4 ' 1 f 2 ' 1 h 2 D 2 :" h 1 ' 1 f1 ' 1 η f 3 ' 1 f 4 ' 1 f4 ' 1 f 2 ' 1 h 2 .
We then have

ph 1 ' 1 A 1 ' 1 h 2 q ' 2 D 1 " h 1 ' 1 f1 ' 1 η f 3 ' 1 η f 4 ' 1 f 2 ' 1 h 2 " ph 1 ' 1 B 1 ' 1 h 2 q ' 1 D 2 .
Hence, we define α 1 as an identity. Let now D 3 be as in Lemma 3.4.2.12, with w η pD 3 q " 0, and v be the common source of f 1 , f 2 , f 3 and f 4 . We then have the inequalities:

w η pA 2 q `wη pD 1 q `wη pD 3 q " w η pA 2 q `v ă w η pA 2 q `wη pB 2 q `2v " w η pAq `wη pBq, w η pB 2 q `wη pD 2 q `wη pD 3 q " w η pB 2 q `v ă w η pB 2 q `wη pA 2 q `2v " w η pAq `wη pBq.

Hence we can apply the induction hypothesis to the couples pA 2 , D 1 ' 2 D 3 q and pD 2 ' 2 D 3 , B 2 q, which provides α 2 and α 3 .

Proposition 3.4.3.2. The white p4, 3q-category F wp3q is S E -coherent.

Proof. Let A, B : f h P F w 3 whose 1-target is a normal form û, with f, g P B w 2 . The 3-cells p h ' 1 Aq ' 2 h and p h ' 1 Bq ' 2 h are parallel, and their target is 1 û. In particular, they verify the hypothesis of Proposition 3.4.3.1. So there exists α :

p h ' 1 Aq ' 2 h 1 c p h ' 1 Bq ' 2 h .
Then the following composite is the required cell from A to B:

f h A f h h h η h h A f h h h η h h B f h B τ ´1 h τ ´1 h α α τ h τ h

Organisation

The goal of this chapter is to study the notion of pω, pq-cubical category, in preparation for the next chapter. In Section 4.1, we recall a number of results on cubical ω-categories. In particular, we recall the definition of the two functors forming the equivalence between globular and cubical ω-categories.

In Section 4.2 we study the various forms of invertibility that exist in cubical ω-categories. In particular we define the notion of R i -invertibility in Section 4.2.1, that of plain invertibility in Section 4.2.2 and finally the notion of T i -invertibility in Section 4.2.3.

In Section 4.3, we finally define cubical pω, pq-categories. In Section 4.3.1 we use the results on invertibility that we collected throughout Section 4.2, we prove the equivalence with the globular notion and characterize the notions of cubical pω, 0q and pω, 1q-categories. In Section 4.3.2 we introduce the notion of pω, pq-ADCs and study its relationship with both globular and cubical pω, pq-categories.

Lastly in Section 4.4, we apply the notions of invertibility as studied beforehand, to show firstly that cubical pω, 1q-categories carry a natural structure of symmetric cubical categories in Section 4.4.1. Then in Section 4.4.2 we define and study the notion of pseudo transfors between cubical ω-categories.

Cubical categories

In this section we recall the notion of ω-cubical categories (with connections) and the following functors

ω -Cat ω -CubCat λ γ - defined in [2]
that form an equivalence between the category of cubical ω-categories and that of globular ω-categories.

While our description of the functor λ matches exactly the description given in [2], we rephrase slightly the definition of γ. Our construction consists in defining a co-cubical ω-category object in ω -Cat (that is a cubical ω-category object in ω -Cat op ), in order to define γ as a nerve functor. The starting point of this construction consists in describing the standard globular ω-category of the n-cube (denoted n -G in this thesis, and M pI n q in [2]). Here we use the closed monoidal structure on ω -Cat to construct these categories, but one could equivalently define them as in [2] using directed complexes [START_REF] Steiner | The algebra of directed complexes[END_REF], or using augmented directed complexes [START_REF] Steiner | Omega-categories and chain complexes[END_REF].

Cubical sets

Definition 4.1.1.1. We denote by n -Cat the category of strict globular n-categories (with n P N Y tωu). We implicitly consider all globular n-categories (with n P N) to be globular ω-categories whose only cells in dimension higher than n are identities. Let C be a globular ω-category and n ě 0. We denote by C n the set of n-cells of C. For f P C n , and 0 ď k ă n, we denote by s k pf q P C k (resp. t k pf q) the k-dimensional source (resp. target) of f , and we simply write spf q (resp. tpf q) for s n´1 pf q (resp. t n´1 pf q). For f, g P C n such that t k pf q " s k pgq we write f ' k g their composite. For f P C n we write 1 f the identity of f . Finally, for x, y P C 0 , we denote by Cpx, yq the globular ω-category of arrows between them.

We say that an n-cell f P C n is invertible if it is invertible for the composition ' n´1 , that is if there exists an n-cell g P C n such that f ' n´1 g " 1 spf q and g ' n´1 f " 1 tpf q . For p ě 0, a globular pω, pq-category is a globular ω-category in which any n-cell is invertible, for n ą p. In particular, a globular pω, 0q-category is just a globular ω-groupoid. Definition 4.1.1.2. For every i P N, we define two applications p_q i : N Ñ Nztiu and p_q i : Nztiu Ñ N as follows:

j i :" # j j ă i j `1 j ě i j i :" # j j ă i j ´1 j ą i
Finally, for i, j distinct integers, we define applications p_q i,j , p_q i,j and p_q j i respectively as follows:

# Nzti, ju Ñ N k Þ Ñ pk i q j i # N Ñ Nzti, ju k Þ Ñ pk i j q j # Nzti j u Ñ Nztj i u k Þ Ñ pk j q i Lemma 4.1.1.3.
The following equalities hold, for every k and every i ‰ j:

$ ' & ' % k i,j " k j,i k i,j " k j,i k ‰ i, j k j i " pk i j q j i k ‰ i j Proof.
Recall that there is at most one isomorphism between any two well-ordered sets. Here p_q i,j and p_q j,i are both isomorphism from N to Nzti, ju, hence they are equal. The same reasoning proves the other two equalities.

The series of Definitions 4. 

B α i j B β j " B β j i B α i (4.1.1)
A morphism of pre-cubical sets is a family of applications F n : C n Ñ D n commuting with the faces operations. • For all n P N, a set C n .

• For all n P N ˚, all 1 ď i ď n and all α P t`, ´u, applications B α i : C n Ñ C n´1 .

• For all n P N and all 1 ď i ď n `1, applications i :

C n Ñ C n`1 .
• For all n P N ˚, all 1 ď i ď n and all α P t`, ´u, applications

Γ α i : C n Ñ C n`1 .
This data must moreover verify the following axioms:

B α i j " # j i B α i j i ‰ j id Cn i " j (4.1.2) B α i Γ β j " $ ' & ' % Γ β j i B i j i ‰ j, j `1 id Cn i " j, j `1 and α " β j B α j i " j, j `1 and α " ´β (4.1.3) i j i " j i j (4.1.4) Γ α i j Γ β j " # Γ β j i Γ α i i ‰ j Γ α i Γ α i i " j and α " β (4.1.5) 
Γ α i j " # j i Γ α i j i ‰ j i i i " j (4.1.6)
Example 4.1.1.7. Following once again [START_REF] Grandis | Cubical sets and their site[END_REF], cubical sets with connections can be seen as presheaves over the following PRO, denoted by J and called the intermediate cubical site in [START_REF] Grandis | Cubical sets and their site[END_REF]:

• The generators are the cells :

: 0 Ñ 1 : 0 Ñ 1 : 1 Ñ 0 : 2 Ñ 1 : 2 Ñ 1
• They satisfy the following relations : "

Then the applications

Γ í : C n Ñ C n`1 , Γ ì : C n Ñ C n`
1 and i correspond respectively to composites of the form , and , with the appropriate number of strings on each side.

Cubical ω-categories

Definition 4.1.2.1. A cubical ω-category is given by a cubical set C, equipped with, for all n P N ˚and all 1 ď i ď n, a partial application ‹ i from C n ˆCn to C n defined exactly for any cells A,B such that B ì A " B í B. This data must moreover satisfy the following axioms:

• The set of pn `1q-cells of lC is the set of all families pA α i q P C n (with 1 ď i ď n `1 and α " ˘) such that:

B α i j A β j " B β j i A α i .
• For A P plCq n`1 , B α i A " A α i .

• For A P C n , the families i A P plCq n`1 and Γ α i A P plCq n`1 are defined by:

p i Aq β j " # A j " i i j B β j i A j ‰ i pΓ α i q β j " $ ' & ' % A j " i, i `1 and β " α i B β i A j " i, i `1 and β " ´α Γ α i j B j i A j ‰ i, i `1
• For A, B P plCq n`1 such that A ì " B í , the family A ‹ i B P plCq n`1 is defined by:

pA ‹ i Bq α j " $ ' & ' %
A í j " i and α " Bì j " i and α " Àα

j ‹ i j B α j j ‰ i
Let C be a cubical pn `1q-category. The unit of the adjunction tr % l induces a morphism of cubical pn `1q-categories B B B : C Ñ l tr C. This functor associates, to any A P C n`1 the family B B BA :" pB α i Aq. We call B B BA the shell of A. More generally, if C is a cubical ω-category, we denote by l n C the pn `1q-category l tr n C, and for any A P C n`1 , by B B BA the cell B B B tr n`1 A P l n C. Theorem 4.1.2.5 (Proposition 2.1 and Theorem 2.8 from [START_REF] Higgins | Thin elements and commutative shells in cubical ω-categories[END_REF]). Let C be a cubical category. Thin cells of C are exactly the composites of cells of the form i f and Γ α i f . Moreover, if two thin cells have the same shell, then they are equal. Notation 4.1.2.6. As a consequence, when writing thin cells in 2-dimensional compositions (as in Equation (4.1.14) for example), we make use of the notation already used in [2] and [START_REF] Higgins | Thin elements and commutative shells in cubical ω-categories[END_REF]: a thin cell A is replaced by a string diagram linking the non-thin faces of A. For example Γ ì A and Γ í A will respectively be represented by the symbols and , and the cells i A by the symbol or . Following this convention, Equations (4.1.11) and (4.1.12) can be represented by the following string diagrams:

" " i i`1
And the last two cases of Equation (4.1.14) become respectively:

" " i i`1
Finally, for any A P C n , ψ i A is the following composite:

ψ i A " A i`1 i
For any n ą 0 any 1 ď i ď n and any α " ˘, we denote by Γα i : n -G Ñ pn `1q -G the functor I bpi´1q b Γα b I bpn´iq . Definition 4.1.3.7. We denote by Rect G the following pushout in ω -Cat:

0 -G 1 -G 1 -G Rect G B´B `x (4.1.15)
Explicitly, the 0-cells of Rect G are elements pα j q, where α " ˘and i " 1, 2, with the identification p`1q " p´2q. The 1-cells of Rect ADC 0 are freely generated by p0 ¨iq : p´iq Ñ p`iq, for i " 1, 2.

For every n ą 0 and every 1 ď i ď n, let pn, iq -Rect G be the cubical ω-category: 

pn, iq -Rect G :" I pi´1q b Rect G b I pn´iq
pn ´1q -G n -G n -G pn, iq -Rect G Bí Bì x (4.1.16) 
Definition 4.1.3.9. We denote by ‹ : 1 -G Ñ Rect G the following functor:

# ‹p´q " p´1q ‹p`q " p`2q ‹p0 ¨q " p0 ¨1q ' 0 p0 ¨2q

For any n ą 0 and any 1 ď i ď n, we denote by ‹i : n -G Ñ pn, iq -Rect G the functor

I bpi´1q b ‹ b I bpn´iq .
This result is a reformulation of Section 2 of [2]: Proposition 4.1.3.10. The objects n -G equipped with the applications Bα i , ˇ i , Γα i and ‹i form a co-cubical ω-category object in the category ω -Cat.

Consequently, for C a globular ω-category, the family pλCq n " ω -Catpn -G , Cq comes equipped with a structure of cubical ω-category, that we denote by λC. This defines a functor λ : ω -Cat Ñ ω -CubCat.

Finally, the main result of [2] is the following: 

Invertible cells in cubical ω-categories

In this Section, we investigate three notions of invertibility in cubical ω-categories. We start by defining in Section 4.2.1, both the notion of R i -invertibility, which is a direct cubical analogue of the usual notion of invertibilty with respect to a binary composition, and the notion of (plain) invertibility, which is specific to cubical ω-categories. Then in Section 4.2.3, we define a notion of T i -invertibility, a variant of the notion of R i -invertibility using a kind of diagonal composition.

R i -invertibility

We start by proving a number of useful Lemmas about the notion of R i -invertibility. We then proceed to give the definition of (plain) invertibility in Definition 4.2.2.1. The rest of the Section is then used to prove a characterisation of R i -invertibility in terms of invertibility, which is achieved in Proposition 4.2.2.2.

Definition 4.2.1.1. Let C be a cubical ω-category, and 1 ď k ď n be integers. We say that a cell

A P C n is R k -invertible if there exists B P C n such that A‹ k B " k B ḱ A and B‹ k A " k B k A.
We call B the R k -inverse of A, and we write R k A for B.

In particular, we say that

A P C n has an R k -invertible shell if B B BA is R k -invertible in l n C.
Lemma 4.2.1.2. Let C be a cubical n-category, and A P plCq n`1 . Then A is R i -invertible if and only if for all j ‰ i, A α j is R i j -invertible, and:

B α i R k A " # B ´α k A i " k R k i B α i A i ‰ k In particular, for C a cubical ω-category, a cell A P C n has an R i -invertible shell if and only if B α j A is R i j -invertible for any j ‰ i. Proof.
Let B be the R k -inverse of A, and i ‰ k. We have:

A α i ‹ k i B α i " pA ‹ k Bq α i " B α i k A ḱ " k i B α i k A ḱ " k i B ḱi k A α i " k i B ḱi A α i , B α i ‹ k i A α i " pB ‹ k Aq α i " B α i k A k " k i B α i k A k " k i B ki k A α i " k i B ki A α i .
Thus

B α i is the k i -inverse of A α i , that is B α i R k A " R k i B α i A. Moreover, for the composite A ‹ k R k A (resp. R k A ‹ k A) to make sense we necessarily have B ḱ R k A " B k A (resp. B k R k A " B ḱ A).
The following Lemma will be useful in order to compute the R i -inverses of thin cells. Lemma 4.2.1.3. Let C be a cubical ω-category, and let A be a thin cell in C n . We fix an integer i ď n. If there exists a thin cell B in C n such that B α i B " B ´α i A, and for all j ‰ i,

B α j B " R i j B α j A, then A is R i -invertible, and B " R i A. Proof. Since B í B " B ì A, A and B are i-composable. Let us look at the cell A ‹ i B.
It is a thin cell, and it has the following shell:

B α j pA ‹ i Bq " $ ' & ' % B í A " B í i B í A j " i and α " Bì B " B í A " B í i B í A j " i and α " Bα j A ‹ i j B α j B " B α j A ‹ i j R i j B α j A " i j B íj B α j A " B α j i B í A j ‰ i
Therefore, A ‹ i B and i B í A are two thin cells that have the same shell. By Theorem 4.1.2.5, they are equal. The same computation with B ‹ i A leads to the equality

B ‹ i A " i B ì A. Finally, A is R i -invertible, and R i A " B.
Lemma 4.2.1.4. Let C be a cubical ω-category, and fix A, B P C n and 1 ď k ď n.

• For any i ď n, if A, B are R k -invertible and i-composable, then A ‹ i B is R k -invertible, and:

R k pA ‹ i Bq " # R k A ‹ i R k B i ‰ k R k B ‹ k R k A i " k (4.2.1) • For any i ď n `1, i A is R i -invertible and R i i A " i A. Moreover, if A is R k -invertible then i A is also R k i invertible, with R k i i A " i R k A (4.2.2) • For any i ‰ k and α " ˘, if A is R k -invertible, then Γ α i A is R k i invertible, and Γ α k A is both R k and R k`1 -
invertible, and:

R k i Γ α i A " Γ α i R k A (4.2.3) R k Γ α k A " # k`1 R k A ‹ k`1 Γ k A α " Γḱ A ‹ k k`1 R k A α " `Rk`1 Γ α k A " # k R k A ‹ k`1 Γ k A α " Γḱ A ‹ k`1 k R k A α " (4.2.4)
Proof. Suppose A and B are k-invertible, and let i ď n. If i ‰ k, Then we have:

pR k A ‹ i R k Bq ‹ k pA ‹ i Bq " pR k A ‹ k Aq ‹ i pR k B ‹ k Bq " k B k A ‹ i k B k B " k B k pA ‹ i Bq pA ‹ i Bq ‹ k pR k A ‹ i R k Bq " pA ‹ k R k Aq ‹ i pB ‹ k R k Bq " k B ḱ A ‹ i k B ḱ B " k B ḱ pA ‹ i Bq. Thus A ‹ i B is R k -invertible and R k pA ‹ i Bq " R k A ‹ i R k B.
Suppose now that i " k. Then we have:

R k B ‹ k R k A ‹ k A ‹ k B " k B k B " k B k pA ‹ k Bq A ‹ k B ‹ k R k B ‹ k R k A " k B ḱ A " k B ḱ pA ‹ k Bq. So A ‹ k B is R k -invertible, and R k pA ‹ k Bq " R k B ‹ k R k A. Suppose i ‰ k.
Then we have:

Γ α i A ‹ k i Γ α i R k A " Γ α i pA ‹ k R k Aq " Γ α i k B ḱ A " k i Γ α i k B ḱ A " k i B ḱi Γ α i A Γ α i R k A ‹ k i Γ α i A " Γ α i pR k A ‹ k Aq " Γ α i k B k A " k i Γ α i k B k A " k i B ki Γ α i A Thus Γ α i A is R k i -invertible, and R k i Γ α i A " Γ α i R k A. Suppose now i " k, and α " ´. In order to show that R k Γ ḱ A " k`1 R k A ‹ k`1 Γ k A, we are going to use Lemma 4.2.1.3. Note first that both Γ ḱ A and k`1 R k A ‹ k`1 Γ k A are thin, so we only need to check the hypothesis about the shell of k`1 R k A ‹ k`1 Γ k A.
Note that the hypotheses on directions k and k `1 are always satisfied:

B α j p k`1 R k A‹ k Γ k Aq " $ ' ' ' ' & ' ' ' ' % k B ḱ R k A " k B k A " B k Γ ḱ A j " k and α " Bk Γ k A " A " B ḱ Γ ḱ A j " k and α " Rk A ‹ k B ḱ`1 Γ k A " R k A ‹ k k B ḱ A " R k A " R k B ḱ Γ ḱ A j " k `1 and α " Ŕk A ‹ k B k`1 Γ k A " R k A ‹ k A " k B k A " R k B k Γ ḱ A j " k `1 and α " Às
for the remaining directions, we reason by induction on n, the dimension of A. The case where n " 1 (and thus k " 1), there is no other direction to check and so

R 1 Γ 1 " 2 R 1 A‹ 2 Γ 1 A.
Suppose now n ą 1, and let j ď n `1, with j ‰ k, k `1. Then we have the following equalities (where the fourth one uses the induction hypothesis):

B α j p k`1 R k A ‹ k Γ k Aq " B α j k`1 R k A ‹ k j B α j Γ k A " pk`1q j B α j k`1 R k A ‹ k j Γ kj B α j k A " k j `1R k j B α j k A ‹ k j Γ kj B α j k A " R k j Γ ḱj B α j k A " R k j B α j Γ ḱ A Thus, by Lemma 4.2.1.3, Γ ḱ A is R k -invertible, and R k Γ ḱ A " k`1 R k A ‹ k`1 Γ k A.
The proofs of the remaining three cases (i " k with α " `, and i " k `1 with α " ˘) are similar.

Remark 4.2.1.5. Note that Lemma 4.2.1.4 shows in particular that, if

A is R k -invertible, then R k i Γ α i A, R k Γ α k A and R k`1 Γ α k A are thin.
In particular, applying the Notation defined in 4.1.2.6, we get the equations:

R k " R k`1 " R k " R k`1 " k k`1
Remark 4.2.1.6. Let C be a cubical n-category and A P plCq n`1 . Recall from [START_REF] Higgins | Thin elements and commutative shells in cubical ω-categories[END_REF] that for all i ‰ 1,

B α i ψ 1 . . . ψ n A P Im 1 . Therefore, by Lemma 4.2.1.2 ψ 1 . . . ψ n A is R 1 -invertible.
So finally, any cell in lC is invertible. Lemma 4.2.1.7. Let C be a cubical ω-category, and A P C n . Suppose A is R j -invertible for some j ď n. Then :

• The n-cell ψ i A is R j -invertible for any i ‰ j ´1. • The n-cell ψ j´1 A is R j´1 -invertible Proof. Suppose first j ‰ i, i `1. Then we have ψ i A ‹ j ψ i R j A " ψ i pA ‹ j R j Aq " ψ i j B j A " j B j ψ i A, as well as ψ i R j A ‹ j ψ i A " ψ i pR j A ‹ j Aq " ψ i j B j A " j B j ψ i A. Hence, ψ i A is R j -invertible, and R j ψ i A " ψ i R j A. Suppose now j " i. Then ψ i A is a composite of R i -invertible cells. As a consequence it is R i -invertible.
Suppose now j " i `1. Let B be the following composite:

R j A j j´1
Let us show that B is the R j´1 -inverse of ψ j´1 A:

ψ j´1 A ‹ j´1 B " A R j A " A R j A j j´1 " R j A A " j j´1 " j j´1 " j´1 B j´1 ψ j´1 A A similar computation shows that B ‹ j´1 ψ j´1 A " j´1 B j´1 ψ j´1 A and thus ψ j´1 A is R j´1 - invertible.
Lemma 4.2.1.8. Let C be a cubical ω-category, and A P C n be an n-cell with an R j -invertible shell for some j ď n. Then:

• If ψ i A is R j -invertible for some i ‰ j ´1, then A is R j -invertible. Moreover, if R j ψ i A is thin then so is R j A. • If ψ j´1 A is R j´1 -invertible, then A is R j -invertible. Moreover, if R j´1 ψ j´1 A is thin then so is R j A.
Proof. Suppose ψ i A is R j -invertible, with i ‰ j. Recall that the following composite is equal to

A i`1 B í A Γ ì B ì`1 A ψ i A Γ í B í`1 A i`1 B ì A
Using the string notation for thin cells, this composite can be represented as follows:

ψ i A i`1 i
This notation is ambiguous, since it does not specify which factorisations of B α i ψ i A are used. However, we use the convention that in any diagram of this form, the standard factorisations

B í ψ i A " B í A ‹ i B ì`1 A and B ì ψ i A " B í`1 A ‹ i B ì A are used.
Since A has an R j -invertible shell, by Lemma 4.2.1.4, every cell in this composite is R jinvertible, and A is R j -invertible. Moreover, if R j ψ i A is thin, then the explicit formulas from Lemma 4.2.1.4 prove that R j A is thin. Suppose now that ψ j´1 A is R j´1 -invertible. We denote by B the following composite:

R j´1 ψ j´1 A j j´1
We are going to show that B is the R j -inverse of A. Notice that if R j´1 ψ j´1 A is thin, then B is thin, using Lemma 4.2.1.4. Let us evaluate the composite A ‹ j B:

R j´1 ψ j´1 A A " R j´1 ψ j´1 A A " R j´1 ψ j´1 A A j j´1 " R j´1 ψ j´1 A ψ j´1 A " R j´1 ψ j´1 A ψ j´1 A j j´1 " j j´1 " j B j A
The evaluation of B ‹ j A is similar.

Plain invertibility

Definition 4.2.2.1. We say that a cell

A P C n is invertible if ψ 1 . . . ψ n´1 A is R 1 -invertible.
The rest of this Section is devoted to establishing the link between R i -invertibility and (plain) invertibility. This is achieved in Proposition 4.2.2.2. In order to do this, we make use of the Lemmas 4.2.1.7 and 4.2.1.8, which relate the R i -invertibility of a cell A with that of ψ j A. Proposition 4.2.2.2. Let C be a cubical ω-category, A P C n and 1 ď j ď n. A cell A P C n is R j -invertible if and only if A is invertible and has an R j -invertible shell. Moreover, if A is thin, then so is its R j -inverse.

Proof. Suppose first that A is R j -invertible. Then its shell is R j -invertible, and for all i ě j, ψ i . . . ψ n´1 A is R j -invertible. Repeated applications of Lemma 4.2.3.4 show that ψ j . . . ψ n´1 A is R j -invertible. As a result (still by Lemma 4.2.3.4), ψ j´1 . . . ψ n´1 A is R j´1 -invertible. Inductively we show that for any i ď j, ψ i . . . ψ n´1 A is R i -invertible. Finally, we get that ψ 1 . . . ψ n´1 A is R 1 -invertible, in other words that A is invertible.

Suppose now that A is invertible and has an R j -invertible shell. By multiple applications of Lemma 4.2.1.7, we get that ψ k . . . ψ n´1 A has an R j -invertible shell, for k ě j, and an R kinvertible one for k ď j. Applying Lemma 4.2.1.8 multiple times, we get that for all k ď j, ψ k . . . ψ n´1 A is R k -invertible, and finally that for all k ě j, ψ k . . .

ψ n´1 A is R j -invertible. In particular for k " n, A is R j -invertible.
Finally, if A is thin, then ψ 1 . . . ψ n´1 A P Im 1 and so R 1 ψ 1 . . . ψ n´1 A " ψ 1 . . . ψ n´1 A is thin. Multiple applications of Lemma 4.2.1.8 imply that R j A is thin.

Finally, the following Lemma will be useful in Proposition 4.2.3.5: Lemma 4.2.2.3. The composite of two invertible cells is also invertible. Proof. Let 1 ď i ď n, and let E i be the set of all cells A P C n such that ψ 1 . . . ψ i´1 A is R 1invertible. Note first that E i contains all R i -invertible cells by Lemma 4.2.1.7 and that E n is the set of all invertible cells. We are going to show by induction on i that E i is closed under composition, for 1 ď i ď n.

For i " 1, E 1 is the set of all R 1 -invertible cells, which is closed under composition by Lemma 4.2.1.4. Suppose now i ą 1. Take A, B P E i . We have:

ψ i´1 pA ‹ j Bq " $ ' & ' % ψ i´1 A ‹ j ψ i´1 B j ‰ i, i ´1 pψ i´1 A ‹ i i´1 B ì Bq ‹ i´1 p i´1 B í A ‹ i ψ i´1 Bq j " i ´1 p i´1 B í´1 A ‹ i ψ i´1 Bq ‹ i´1 pψ i´1 A ‹ i i´1 B ì´1 Bq j " i Note that: • Since ψ 1 . . . ψ i´1 A and ψ 1 . . . ψ i´1 B are R 1 -invertible, ψ i´1 A and ψ i´1 B are in E i´1 .
• The cells i´1 B α k A and i´1 B α k B are R i´1 -invertible by Lemma 4.2.1.4, and therefore are in E i´1 .

By induction hypothesis, E i´1 is closed under composition, and therefore ψ i´1 pA ‹ j Bq is in E i . So ψ 1 . . . ψ i´1 pA ‹ j Bq is R 1 -invertible, and so A ‹ j B is in E i , which is therefore close under composition.

T i -invertiblility

The notion of T i -invertibility is closely related to that of R i -invertibility, as we show in Lemma 4.2.3.3. Consequently, a number of results from the previous Section have analogues in terms of T i -invertibility. In particular, the characterisation of T i -invertibility in terms of invertibility given in Proposition 4.2.3.5 is the direct analogue of Proposition 4.2.2.2. Definition 4.2.3.1. Let C be a cubical ω-category, and i ă n be integers. Let A, B be cells in

C n such that B α i A " B α i`1 B and B α i`1 A " B α i B, for α " ˘.
If the following two equations are verified, we say that A is T i -invertible, and that B is the T i -inverse of A, and we denote B by

T i A: B A " i i`1 (4.2.5) A B " i i`1 (4.2.6)
In particular, we say that

A P C n`1 has a T i -invertible shell if B B BA is T i -invertible in l n C.
Remark 4.2.3.2. Note that T i A is uniquely defined. Indeed, if B and C are both T i -inverses of A, then evaluating the following square in two different ways shows that B " C:

B " B " B A C " C " C i i`1
The relationship between T i and R i -invertibility is given by the following Lemma.

Lemma 4.2.3.3. Let C be a cubical ω-category, and A P C n be an n-cell, with n ě 2. Then A is T i -invertible (with i ă n) if and only if ψ i A is R i -invertible, and we have the equalities:

R i ψ i A " ψ i T i A (4.2.7) 
T i A " R i ψ i A i`1 i (4.2.8) 
In particular, if A is thin, then so is T i A.

Proof. Suppose first that A is T i -invertible. Then the composite ψ i T i A ‹ i ψ i A is equal to the following:

T i A A i i`1
Using (4.2.5), we show that this composite is equal to i B ì ψ i A. We prove in the same way (using (4.2.6)), that

ψ i A ‹ i ψ i T i A " i B í ψ i A, which shows that ψ i T i A is the R i -inverse of ψ i A.
Suppose now that ψ i A is T i -invertible. Then we have:

R i ψ i A A " R i ψ i A A " R i ψ i A ψ i A " i`1 i
Finally, if A is thin, then so is ψ i A, and so is R i ψ i A by Proposition 4.2.2.2. Equation (4.2.8) then shows that T i A is then thin.

All the cells in this composite are invertible, and invertible cells are closed under composition (Lemma 4.2.2.3), therefore A is invertible. Moreover, since ψ i A is R i -invertible, it has an R i -invertible shell. In particular, for j ‰ i, i `1, we have that

B α j A " B α j ψ i A " ψ i j B α j A is R i j -invertible. By Lemma 4.2.3.3, B α j A is T i j -invertible.
So finally A has a T j -invertible shell. Suppose now that A is invertible and has a T i -invertible shell. By application of Lemma 4.2.3.3 in lC n , ψ i A is invertible and has an R i -invertible shell. So ψ i A is R i -invertible, and A is T i -invertible by Lemma 4.2.3.3. Proposition 4.2.3.6. Let C be a cubical ω-category.

• Let A P C n . For all 1 ď j ď n `1, j A is T j and T j´1 -invertible and:

T j j A " j`1 A T j´1 j A " j´1 A (4.2.10)
Moreover, if A is T i -invertible (for i ‰ j ´1), then j A is T i j -invertible, and:

T i j j A " j T i A (4.2.

11)

• Let A P C n . For all 1 ď j ď n, Γ α j A is T j -invertible, and

T j Γ α j A " Γ α j A (4.2.12) Moreover, if A is T i -invertible, then Γ α j A is T i j -invertible
, and:

T i j Γ α j A " Γ α j T i A (4.2.13) Finally, if A is T i -invertible, then Γ α i`1 A (resp. Γ α i A) is T i -invertible (resp. T i`1 -invertible) and Γ α i T i A (resp. Γ α i`1 T i A) is T i`1 -invertible (resp. T i -invertible)
, and:

T i`1 Γ α i T i A " T i Γ α i`1 A T i Γ α i`1 T i A " T i`1 Γ α i A (4.2.

14)

• Let A, B P C n . If A and B are T i -invertible, then A ‹ j B is T i -invertible, and:

T i pA ‹ j Bq " $ ' & ' % pT i Aq ‹ i`1 pT i Bq j " i, pT i Aq ‹ i pT i Bq j " i `1, pT i Aq ‹ j pT i Bq otherwise. (4.2.15) 
Proof. For the first seven equations, notice that both sides of the equations are thin by Lemma 4.2.3.3. Therefore, by Theorem 4.1.2.5, it is enough to check that their shells are equal.

For the last one, we return to the definition of T i -invertibility. Let C be a cubical pω, pq-category. The globular ω-category γC is a globular pω, pqcategory if and only if, for all n ą p, every cell in Φ n pC n q is R 1 -invertible. By Proposition 4.3.1.2, this is equivalent to C being a cubical pω, pq-category. Since pω, pq -Cat and pω, pq -CubCat are replete full sub-categories respectively of ω -Cat and ω -CubCat, this proves the result.

Corollary 4.3.1.4. Let C be a cubical ω-category. Then:

• C is a cubical ω-groupoid if and only if every n-cell of C is R i -invertible for all 1 ď i ď n.
• C is a cubical pω, 1q-category if and only if every n-cell is T i -invertible, for all 1 ď i ă n.

Proof. If every n-cell of C n is R i -invertible then in particular every cell of C n is invertible, and so C is a cubical ω-groupoid. Reciprocally, if C is a cubical ω-groupoid, we prove by induction on n that every cell is R i -invertible. For n " 1, every 1-cell has an R 1 -invertible shell, and so every cell is R 1 -invertible. Suppose now the property true for all n-cells. Then any cell A P C n`1 necessarily has a R i -invertible shell by Lemma 4.2.1.2, and so the property holds for all pn `1q-cells.

The proof of the second point is similar, using the fact that any 2-cell in a cubical ω-category has a T 1 -invertible shell.

Augmented directed complexes and pω, pq-categories

From [2] and [START_REF] Steiner | Omega-categories and chain complexes[END_REF], we have the following functors, where ADC is the category of augmented directed complexes.

ADC ω -Cat ω -CubCat Z G N G λ γ - K
In this section we define cubical analogues to N G and Z G , and show that they induce an adjunction between ADC and ω -CubCat. Finally, we show that all these functors can be restricted to the case of pω, pq-categories, with a suitable notion of pω, pq-ADC. Definition 4.3.2.1. An augmented chain complex K is a sequence of abelian groups K n (for n ě 0) together with applications d : K n`1 Ñ K n for every n ě 0 and an application e : K 0 Ñ Z satisfying the equations: d ˝d " 0 e ˝d " 0 A morphism of augmented chain complexes from pK, d, eq Ñ pL, d, eq is a family of morphisms

f n : K n Ñ L n satisfying: d ˝fn`1 " f n ˝d
e " e ˝f0 .

• For all n P N, K n is the quotient of ZrC n s by the relations rA ‹ k Bs " rAs `rBs and rΓ α i As " 0.

• For all n P N, K n is the image of NrC n s in K n .

• For all A P C n , drAs "

ÿ 1ďiďn α"˘α p´1q i rB α i As
• For all A P C 0 , erAs " 1.

Proposition 4.3.2.8. There are isomorphisms of functors:

Z C « Z G ˝γ N C « λ ˝N G
As a result, we have the following diagram of equivalence and adjunctions between ω -Cat, ω -CubCat and ADC, where both triangles involving Z C and Z G and both triangles involving N C and N G commute up to isomorphism:

ω -Cat ω -CubCat ADC N G Z G N C Z C γ λ K K - Proof.
Let K be an ADC. We have for all n ě 0, using the adjunction between N G and Z G :

λ ˝N G pKq n " ω -Catpn -G , N G Kq « ADCpZ G pn -G q, Kq " ADCpn -ADC , Kq " pN C Kq n
Moreover, because these equalities are functorial, they preserve the cubical ω-category structures on the families λ ˝N G pKq n and pN C Kq n . So finally we have the isomorphism

N C « λ ˝N G .
Let now C be a cubical ω-category. For all n ě 0, the group Z G pγpCqq n is the free abelian group generated by elements rAs, for A P Im Φ n , subject to the relations rA ‹ i Bs " rAs `rBs, for all A, B P Im Φ n . Let us show that for all n ě 0, Z G pγpCqq n and Z C pCq n are isomorphic.

First, the inclusion Im Φ n Ñ C n gives rise to an application ZrIm Φ n s Ñ Z C pCq n . Moreover, this application respects the relations defining Z G pγpCqq n , so it induces a morphism ι :

Z G pγpCqq n Ñ Z C pCq n .
For all A P C n , we have in Z C pCq n : rψ i As " rΓ ì B í`1 As `rAs `rΓ í B ì`1 As " rAs. By iterating this formula, we get that for all A P C n , rΦ n pAqs " rAs. Hence, ι is surjective. Let us now show that it is injective. Using the relation rΦ n pAqs " rAs, we get that Z C pCq n is isomorphic to the free group generated by rIm Φ n s, subject to the relations rΦ n pA ‹ i Bqs " rΦ n pAqs `rΦ n pBqs for all A, B P C n and rΦ n pΓ α i Aqs " 0, for all A P C n´1 . Let us prove that these equalities already hold in Z G pγpCqq n .

Let x be a thin cell in C n . Then Φ n pxq is in the image of 1 , and Φ n pxq‹ 1 Φ n pxq " Φ n pxq, and so in Z G pγpCqq n : 2 ¨rΦ n pxqs " rΦ n pxqs, and finally rΦ n pxqs " 0. In particular rΦ n pΓ α i Aqs " 0 in Z G pγpCqq n . Let now A and B be i-composable n-cells. Following Proposition 6.8 from [2], Φ n pA ‹ i Bq is a composite of cells of the form n´m , we get that Φ n pA ‹ i Bq is a composite of cells Φ n pxq, where x is thin, with the cells Φ n pAq and Φ n pBq. So in Z G pγpCqq n , rΦ n pA ‹ i Bqs " k 1 rΦ n pAqs `k2 rΦ n pBqs for some integers k 1 and k 2 . Moreover, following Section 6 of [2], we verify that the cells Φ n A and Φ n B appear exactly once in this composition. As a result rΦ n pA ‹ i Bqs " rΦ n pAqs `rΦ n pBqs in Z G pγpCqq n . So Z G pγpCqq n and Z C pCq n are isomorphic.

Let us denote respectively by d G and d C the boundary applications in Z G pγpCqq and Z C pCq n . For A P ImpΦ n q, we have d G rAs " rB 1 As´rB 1 As, and d C rAs " ř 1ďiďn α"˘α

p´1q i rB α i As. Since A is in Im Φ n , for all i ‰ 1, B α i A is thin. So rB α i
As " 0, and d C rAs " rB 1 As ´rB 1 As " d G rAs. So ι induces an isomorphism of chain complexes between Z G pγpCqq and Z C pCq. Finally, Z G pγpCqq n and Z C pCq n are the submonoids respectively generated by Im Φ n and C n and rAs " rΦ n pAqs in Z C pCq n , so Z G pγpCqq and Z C pCq are isomorphic as ADCs. Definition 4.3.2.9. Let K be an ADC. We say that a cell

A P K n is invertible if ´A is in K n .
We say that K is an pω, pq-ADC if for any n ą p, K n " K n . We denote by pω, pq-ADC the category of pω, pq-ADCs. Proposition 4.3.2.10. Let C be a globular ω-category, and A P C n . If A is invertible, then so is rAs in Z G pCq, and rA ´1s " ´rAs. In particular if C is an pω, pq-category, then Z G C is an pω, pq-ADC.

Let K be an ADC, and A P ADCpn-ADC , Kq. If Arpxqs P K n is invertible then so is A in N G pKq, and the inverse of A is given by:

Brxs " ´Arxs # Brs n´1 s " Art n´1 s Brt n´1 s " Ars n´1 s # Brs i s " Ars i s i ă n ´1 Brt i s " Art i s i ă n ´1
In particular if K is an pω, pq-ADC then N G K is a globular pω, pq-category.

Proof. Let C be an ω-category, and A P C n . If A is invertible, then there exists B such that A ' n B " 1 spAq . Notice first that r1 spAq s `r1 spAq s " r1 spAq ' n 1 spAq s " r1 spAq s, and therefore r1 spAq s " 0. So finally rAs `rBs " rA ' n Bs " 0. Since both rAs and rBs are in Z G pCq n, rAs is invertible. If C is an pω, pq-category, then for all n ą p, pZ G Cq n is generated by invertible cells. Since invertible cells are closed under addition, pZ G Cq n is actually a group. Moreover, it has the same generators as pZ G Cq n , so the two groups are actually equal, making Z G C an pω, pq-ADC.

Let now K be an ADC, and A P ADCpn-ADC , Kq such that Arxs is invertible. Define B as the following morphism from n-ADC to K:

Brxs " ´Arxs # Brs n´1 s " Art n´1 s Brt n´1 s " Ars n´1 s # Brs i s " Ars i s i ă n ´1 Brt i s " Art i s i ă n ´1
Note that since Arxs is invertible, ´Arxs is in K n , and so B is indeed a morphism of ADC. Moreover, A and B are pn ´1q-composable, and A ' n´1 B is given by: pA' n´1 Bqrxs " Arxs´Arxs " 0 # pA ' n´1 Bqrs n´1 s " Ars n´1 s pA ' n´1 Bqrt n´1 s " Brt n´1 s " Ars n´1 s # pA ' n´1 Bqrs i s " Ars i s pA ' n´1 Bqrs i s " Ars i s So A ' n´1 B " 1 spAq , and symmetrically B ' n´1 A " 1 tpAq . The cell A is thus invertible. In particular if K is an pω, pq-ADC, then for all n ą p and all A P ADCpn-ADC , Kq, Arxs is invertible and A is invertible. So every cell in pN G Kq n is invertible, and finally N G K is an pω, pq-category.

Recall from [START_REF] Steiner | Omega-categories and chain complexes[END_REF] that n -ADC k is the free abelian group over the set n -Set k of sequences s : t1, . . . , nu Ñ tp´q, p0 ¨q, p`qu such that |s ´1p0 ¨q| " k. For any such s, and any 1 ď i ď n such that spiq ‰ p0 ¨q, we denote by R i s the sequence obtained by replacing spiq by ´spiq in s. The following Proposition is the cubical analogue of the previous one. Proposition 4.3.2.11. Let C be a cubical ω-category, and A P C n . If A is R i -invertible or T i -invertible, then rAs is invertible. In particular if C is a cubical pω, pq-category, then Z C C is an pω, pq-ADC.

Let K be an ADC, and let A P ADCpn -ADC , Kq:

• If for any 0 ď k ď n, and any sequence s P n -Set k such that spiq " p0 ¨q, Arss is invertible (in K) then A is R i -invertible, and R i A is given by: R i Arss " # ´Arss spiq " p0 ¨q ArR i ss spiq ‰ p0 ¨q

• If for any 0 ď k ď n, and any sequence s P n -Set k such that spiq " spi `1q " p0 ¨q, Arss is invertible, then A is T i -invertible, and T i A is given by: T i Arss " # ´Arss spiq " spi `1q " p0 ¨q Ars ˝τi s otherwise.

In particular, if K is an pω, pq-ADC, then N C K is a cubical pω, pq-category.

Proof. The proof is similar to that of the previous Proposition.

Theorem 4.3.2.12. For all p P NYtωu, the categories pω, pq -Cat, pω, pq -CubCat and pω, pq-ADC are related by the following diagram of equivalence and adjunctions, where both triangles involving Z C and Z G and both triangles involving N C and N G commute up to isomorphism:

pω, pq -Cat pω, pq -CubCat pω, pq-ADC N G Z G N C Z C γ λ K K - Proof.
We have already proven that the equivalence between ω -Cat and ω -CubCat could be restricted to pω, pq-categories in Theorem 4. Remark 4.3.2.13. In the case where p " 0, one would expect the previous Theorem to recover the usual adjunction between chain complexes and groupoids. However, the category of pω, 0q-ADCs is not the category of chain complexes, but that of chain complexes K equipped with a distinguished sub-monoid of K 0 . In order to recover the adjunction between groupoids and chain complexes, one could use a variant of the notion of ADC that does not specify a distinguished submonoid of K 0 . Then an pω, 0q-ADC is indeed just a chain complex. One can check that, mutatis mutandis, the results of this Section, and in particular Theorem 4.3.2.12, still hold using this alternative definition.

Finally, using the induction property on v, we get:

pu ¨Aq α j " pT i ¨v ¨Aq α j " $ ' & ' % pv ¨Aq α i`1 " B i`1 v ¨Aα pi`1q¨v " B i u ¨Aα i¨u j " i pv ¨Aq α i " B i v ¨Aα i¨v " B i`1 u ¨Aα pi`1q¨u j " i `1 T i j pB j v ¨Aq α j " T i j B j v ¨Aα j¨v " B j u ¨Aα j¨u j ‰ i, i `1
Suppose now that for all j, A α j¨u is B j u-invertible. Let us show that A is u-invertible. First, let us prove that A is v-invertible. Indeed, let j ď n, and let us show that A j¨v is B j v-invertible.

• If j ‰ i, i `1, we have that A α j¨u is B j u-invertible. Since B j u " T i j B j v, and j ¨u " j ¨v, this means that A α j¨v is B j v-invertible and B j v ¨Aα j¨v is T i j -invertible.

• If j " i (resp. j " i `1) then B i`1 u " B i v (resp. B i u " B i`1 v) and pi `1q ¨u " i ¨v (resp. i ¨u " pi `1q ¨v). So A α j¨v is B j v-invertible. Finally, by induction, A is v-invertible. Let us show that v ¨A is T i -invertible. Indeed, for j ‰ i, i `1, pv ¨Aq α j " B j v ¨Aα j¨v is T i j -invertible, and so v 9 A is T i -invertible by Lemma 4.2.3.4.

Lemma 4.4.1.6. Let C be a cubical ω-category.

• If A is T i T i -invertible, then: T i T i ¨A " A (4.4.4) • A cell A P C n is T i T i`1 T i -invertible if and only if it is T i`1 T i T i`1 -invertible, and 
T i T i`1 T i ¨A " T i`1 T i T i`1 ¨A (4.4.5) 
• Let i, j ă n such that |i ´j| ě 2. A cell A P C n is T i T j -invertible if and only if it is T j T i -invertible, and T i T j ¨A " T j T i ¨A (4.4.6)

Proof. For the first one, notice that the axioms (4.2.5) and (4.2.6) are each other's symmetric, meaning that if B is the T i -inverse of A, then A is the T i -inverse of A. This means in particular that T i T i ¨A " A.

For the second one, a cell A P C n is T i T i`1 T i -invertible if and only if it is invertible and B B BA is T i T i`1 T i -invertible, that is for all j ď n, B α j¨T i T i`1 T i A is B j pT i T i`1 T i q-invertible. Notice that:

B j pT i T i`1 T i q " # T i j T i j `1T i j j ‰ i, i `1, i `2 T i j " i, i `1, i `2 B j pT i`1 T i T i`1 q " # T i j `1T i j T i j `1 j ‰ i, i `1, i `2 T i j " i, i `1, i `2 (4.4.7) Therefore, by induction on n, a cell is T i T i`1 T i -invertible if and only if it is T i`1 T i T i`1 -invertible.
Let A be such a cell. Let us show that T i T i`1 T i ¨A is the T i`1 -inverse of T i T i`1 ¨A. Indeed, we have:

Γ ì`1 pT i ¨Bí Aq T i T i`1 ¨A T i T i`1 T i ¨A Γ í`1 pT i ¨Bì `1Aq i`1 i`2 " T i T i`1 ¨Γì B í A A T i ¨A Γ í B ì`1 A i i`1 " T i T i`1 ¨pΓ í B ì`1 A ‹ i Γ ì B ì Aq " pT i T i`1 ¨Γí B ì`1 Aq ‹ i`1 pT i T i`1 ¨Γì B ì Aq " Γ í`1 B í`2 pT i T i`1 ¨Aq ‹ i`1 Γ ì`1 B ì`1 pT i T i`1 ¨Aq
The other axioms are verified in the same fashion. We now make explicit the (partial) action of the symmetric groups on the n-cells of a cubical category. To do so, we rely on Theorem 4.4.1.12, a classical result about the symmetric group. Definition 4.4.1.11. For u P S n , we define the length of u as the integer lpuq " mintlpvq|v P T n and v " uu. A representative of minimal length of u in T n is an element v P T n such that v " u and lpvq " lpuq. 3). Hence, they induce applications B i : S n Ñ S n´1 , satisfying:

B i 1 " 1 B i τ j " # 1 i " j, j `1 τ j i i ‰ j, j `1 B i pσ ¨τ q " B i σ ¨Bi¨σ τ.
Specifically, for 1 ď i ď n and σ P S n , B i σ is the (necessarily unique) permutation satisfying for all 1 ď j ď n ´1: j ¨Bi σ " pj i ¨σq i¨σ (4.4.8)

Let C be a cubical n-category, and σ P S n . A cell A P plCq n`1 is σ-invertible if and only if for all j ď n, A α j¨σ is B j σ-invertible, and: B α j pσ ¨Aq " B j σ ¨Bα j¨σ A (4.4.9)

Finally, let σ P S n . If σ ‰ 1, then a cell A P C n is σ-invertible if and only if A is invertible and B B BA is σ-invertible.

Proof. For the first point we simply verify the equalities as needed (note in particular that the compatibility of B i with Equation (4.4.2) is a consequence of Equation ( 4 B 1 pτ 1 τ 2 q " pB 1 τ 1 q¨pB 2 τ 2 q " 1 B 2 pτ 1 τ 2 q " pB 2 τ 1 q¨pB 1 τ 2 q " τ 1 B 3 pτ 1 τ 2 q " pB 3 τ 1 q¨pB 3 τ 2 q " τ 1

Which can be diagrammatically represented as:

B 1 p q " B 2 p q " B 3 p q "
More generally, the relation B i pσ ¨τ q " B i σ ¨Bi¨σ τ corresponds to the diagram:

B i σ τ " B i i σ i¨σ τ i¨σ¨τ " B i σ B i¨σ τ
Finally, Equation (4.4.9) corresponds to the diagram: 

σ ¨Γα i A " Γ α i¨σ ´pB i¨σ ´σ ¨Aq Proof. If i A is σ-invertible, then A " B í i
A is B i¨σ ´σ by Proposition 4.4.1.14. To show the equality, we reason by induction on n. If n " 0 then σ " 1 and the result is verified. Otherwise, suppose n ą 0. By Lemma 4.2.3.3, both sides of the equation are thin, and so they are equal if and only if their shells are equal. Note first that for j " i ¨σ´: B α j pσ ¨ i Aq " B j σ ¨Bα i i A " B j σ ¨A " B α j j pB j σ ¨Aq Now for j ‰ i ¨σ´:

B α j pσ ¨ i Aq " B j σ ¨Bα j¨σ i A " B j σ ¨ i j¨σ B α pj¨σq i A
Note that B j pσ ¨σ´q " B j σ ¨Bj¨σ σ ´" 1, so pB j σq ´" B j¨σ σ ´. So by proposition 4.4.1.14:

i j¨σ ¨pB j σq ´" pi j j¨σ ¨σ´q j¨σ¨σ ´" pi ¨σ´q j So by induction hypothesis, we have B α j pσ ¨ i Aq " pi¨σ ´qj pB pi¨σ ´qj B j σ ¨Bα pj¨σq i Aq. On the other hand, note that j i¨σ ´¨B i¨σ ´σ " pj i¨σ í¨σ ´¨σq i¨σ ´¨σ " pj ¨σq i . Applying this we get: B α j i¨σ ´pB i¨σ ´σ ¨Aq " pi¨σ ´qj B α j i¨σ ´pB i¨σ ´σ ¨Aq " pi¨σ ´qj pB j i¨σ ´Bi¨σ ´σ ¨Bα pj¨σq i Aq.

Finally, it remains to show that B j i¨σ ´Bi¨σ ´σ " B pi¨σ ´qj B j σ. More generally, let us show that for any i ‰ j, B i j B j σ " B j i B i σ. Indeed, for any k:

B i j B j σ ¨k " pppk j q i j ¨σq i j q j " pk j,i ¨σq i,j (4.4.10) And this formula is symmetric in i and j by Lemma 4.1.1.3. We now move on to the second equality. Once again if Γ α i A is σ-invertible, then A " B α i Γ α i A is B i¨σ ´σ-invertible by Proposition 4.4.1.14. We show the equality by induction on n. If n " 1, then the only permutation σ satisfying pi `1q ¨σ´" i ¨σ´`1 is the identity, and the result is verified. Suppose now n ě 1, and let σ P S n such that pi `1q ¨σ´" i ¨σ´`1 . As previously, Lemma 4.2.3.3 show that both sides of the equation are thin, and so they are equal if and only if their shells are equal. Let us calculate their faces. Let 1 ď j ď n and β " ˘. We start by treating the case where j " i ¨σ´. For β " α we have:

B α j pσ ¨Γα i Aq " B j σ ¨Bα j¨σ Γ α i A " B j σ ¨Bα i Γ α i A " B j σ ¨A " B α j Γ α j pB j σ ¨Aq
Now for β " ´α. Note first that j ¨Bj σ " pj j ¨σq i " ppj `1q ¨σq i " pi `1q i " i (we here use the hypothesis on σ). Therefore, i ¨pB j σq ´" j, and:

B ´α j pσ ¨Γα i Aq " B j σ ¨B´α i Γ α i A " B j σ ¨ i B ´α i A " j pB j B j σ ¨B´α i Aq B ´α j Γ α j pB j σ ¨Aq " j B ´α j pB j σ ¨Aq " j pB j B j σ ¨B´α i Aq
The case where j " i ¨σ´`1 is similar. We now study the general case where β " ˘and j ‰ i ¨σ´, i ¨σ´`1 :

B β j pσ ¨Γα i Aq " B j σ ¨Bβ j¨σ Γ α i A " B j σ ¨Γα i j¨σ B β pj¨σq i A B β j Γ α i¨σ ´pB i¨σ ´σ ¨Aq " Γ α pi¨σ ´qj B β j i¨σ ´pB i¨σ ´σ ¨Aq " Γ α pi¨σ ´qj pB j i¨σ ´Bi¨σ ´σ ¨Bβ j i¨σ ´¨B i¨σ ´σ Aq
To conclude using the induction hypothesis, we need to show that j i¨σ ´¨B i¨σ ´σ " pj ¨σq i , and that i j¨σ ¨pB j σq ´" pi ¨σ´q j . And indeed we have: In this Section, we restricted ourselves to the T i -inverses. However, all results previous can be adapted to also consider the R i -inverses. The action of the symmetric groups are then extended into an action of the Hyperoctahedral groups BC n , which are the full groups of permutations of the hypercubes. A presentation of the group BC n is given by the generators R i (for 1 ď i ď n) and T i (for 1 ď i ă n), subject to the relations:

j i¨σ ´¨B i¨σ ´σ " pj
T i T i " 1 T i T i`1 T i " T i`1 T i T i`1 T j T i " T j T i |i ´j| ě 2 R i R i " 1 R i R j " R j R i i ‰ j T i R i " R i`1 T i T i R i`1 " R i T i T i R j " R j T i j ‰ i, i `1
In particular the groups BC n are Coxeter groups and they hence verify an analogue to Theorem 4.4.1.12, often called Matsumoto's Theorem [START_REF] Matsumoto | Générateurs et relations des groupes de weyl généralisés[END_REF].

Transfors between cubical ω-categories

Let C and D be two categories, and F, G : C Ñ D be functors. Recall that a natural transformation η from F to G is given by an application η : C 0 Ñ D 1 such that, for all x P C 0 , spη x q " F pxq, tpη x q " Gpxq, and for all f : x Ñ y P C 1 the following diagram commutes:

F pxq F pyq Gpxq Gpyq F pf q Gpf q η x η y (4.4.11) 
Natural transformations compose, and so for any categories C and D there is a category CatpC, Dq.

If C and D are two globular 2-categories, and F, G : C Ñ D are two functors, then there are multiple ways to extend the notion of natural transformation. A lax natural transformation from F to G consists in applications η : C 0 Ñ D 1 and η : C 1 Ñ D 2 , satisfying some compatibility conditions. In particular, for f : x Ñ y P C 1 , the 2-cell η f P D 2 is required to have the following source and target:

F pxq F pyq Gpxq Gpyq F pf q Gpf q η x η y η f
An oplax natural transformation requires the 2-cell η f to be in the opposite direction. This leads to two different notions of the 2-category of functors between C and D, where objects are functors from C to D, 1-cells are lax (resp. oplax) natural transformations, and 2-cells are modifications. Modifications consist of an application C 0 Ñ D 2 satisfying some compatibility conditions. Notice that, if η is a lax natural transformation and η f is invertible for all f P C 1 , then replacing η f by its inverse yields an oplax natural transformation (and reciprocally when reversing the role of lax and oplax natural transformation). Such natural transformations are called pseudo.

More generally, if C and D are ω-categories, then for any k ě 0 there are notions of lax and oplax k-transfors between them (following terminology by Crans [START_REF] Sjoerd | Localizations of transfors[END_REF]), consisting of applications C n Ñ D n`k , for all n ě 0. In particular, 0-transfors correspond to functors, and lax (resp. oplax) 1-transfors to lax (resp. oplax) natural transformations.

Similar constructions can be made in cubical ω-categories, and are recalled in Definition 4.4.2.1. This definition uses the notion of Crans-Grey tensor product between cubical ωcategories. One benefit of working in cubical categories is that this tensor product has a very natural expression in this setting, and so we are able to make explicit the conditions that transfors between cubical ω-categories have to satisfy. Next we define the two notion of pseudo transfor: one for lax and one for oplax transfor, using the notion of σ-invertibility defined in Section 4.4.1. In Proposition 4.4.2.4, we give an alternative characterisation of pseudo transfors. Lastly we prove that the notions of pseudo lax and oplax transfors coincide in Proposition 4.4.2.6. Definition 4.4.2.1. We exhibited in Section 4.1 a structure of cubical ω-category object in ω -Cat op on the family n -G . Applying the functor λ, we obtain a structure of cubical ωcategory object in ω -CubCat op of the family n -C :" λpn -G q.

Consequently, if C and D are cubical ω-categories, then both the families (of sets) LaxpC, Dq n " ω -CubCatpn -C bC, Dq and OpLaxpC, Dq n " ω -CubCatpC b n -C , Dq come equipped with cubical ω-category structures (where we denote by b the monoidal product on ω -CubCat as defined in [2]).

We call an element F P LaxpC, Dq n (resp. F P OpLaxpC, Dq n ) a lax n-transfor (resp. an oplax n-transfor ) from C to D. Unfolding the definition of the monoidal product on ω -CubCat as defined in [2], Section 10, a lax p-transfor (resp. oplax p-transfor) is a family of applications F n : C n Ñ D n`p satisfying the equations (4.4.12) to ( 4 i ¨ρn,m :"

# i `n i ď n i ´n i ą n
Let C and D be cubical ω-categories. We say that a lax p-transfor F : C Ñ D is pseudo if for all A P C n , F pAq is ρ n,p -invertible. We say that an oplax p-transfor F : C Ñ D is pseudo if for all A P C n , F pAq is ρ p,n -invertible. • Either p " 0,

• Or p ą 0, for all n ą 0 and all A P C n , F pAq is invertible, and for all

1 ď i ď p, B α i F is pseudo. Moreover, if F is pseudo, then so are Γ α i F (1 ď i ď p), i F (1 ď i ď p `1)
and, if G is a pseudo lax p-transfor (resp. pseudo oplax p-transfor) then F ‹ i G (if defined) is also pseudo, for 1 ď i ď p.

Proof. Let us prove the result for pseudo lax p-transfors, the case of pseudo oplax p-transfors being similar. If p " 0, then for all n, ρ n,p " 1. Since any cell in D is 1-invertible, any lax 0-transfor is pseudo.

Suppose now p ą 0. Let F P LaxpC, Dq p , and suppose F is pseudo. Let n ą 0 and A P C n . Then ρ n,p ‰ 1, and by Proposition 4.4.1.14, F n pAq is invertible. Moreover, for 1 ď i ď p, pB α i F q n pAq " B α pp`iq¨ρn,p pF n pAqq is B p`i ρ n,p -invertible. Since B p`i ρ n,p " ρ n,p´1 , we just proved that for all A P C n , pB α i F q n pAq is ρ n,p´1 -invertible. So B α i F is pseudo. Reciprocally, suppose that for all n ą 0, F n pAq is invertible, and for all 1 ď i ď p, B α i F is pseudo. We reason by induction on n to show that for all A P C n , F n pAq is ρ n,p -invertible. If n " 0, ρ n,p " 1 and F n pAq is ρ n,p -invertible. If n ě 1, then F pAq is invertible and for all 1 ď i ď p, B α pi`nq¨ρn,p pF n pAqq " pB α i F qpAq is ρ n,p´1 -invertible. And for all 1 ď i ď n, B α i¨ρn,p pF n pAqq " F n´1 pB α i Aq is ρ n´1,p -invertible by induction. In conclusion, F n pAq is invertible, and for all 1 ď i ď p `n, B α i pF n pAqq is B i ρ n,p -invertible. By Proposition 4.4.1.14, F n pAq is ρ n,p -invertible.

We reason by induction on p to show that, for any pseudo lax p-transfor. F , i F and Γ α i F are pseudo. Let A P C n . By equations (4.4.13) and (4.4.14), p i F qpAq and pΓ α i F qpAq are thin cells, and so in particular are invertible. Moreover, the cubical ω-category structure on LaxpC, Dq show that for all j, we have:

B α i j F " # j i B α i j F i ‰ j F i " j B α i Γ β j F " $ ' & ' % Γ β j i B α i j F i ‰ j, j `1 F i " j, j `1 and α " β j B α j F i " j, j `1

and α " ´β

Using what we proved previously, B α k F is pseudo for all k, so by induction, B α j i F and B β j Γ α i F are always pseudo. Applying the criterion that we proved previously for a p-transfor to be pseudo, i F and Γ α i F are pseudo. Finally, we reason by induction on p to show that for any two pseudo lax p-transfors F and G, F ‹ i G is pseudo (if it is defined). Since any lax 0-transfor is pseudo, it is true if p " 0. Take now p ą 0, and A P C n , for some n ą 0. Then F pAq and GpAq are invertible, and so is pF ‹ i Gq n pAq " F n pAq ‹ i G n pAq by Lemma 4.2.2.3. Moreover, using the cubical ω-category structure on LaxpC, Dq, we have: 

B α i pF ‹ j Gq " $ ' & ' % B α i F ‹ j i B α i G i ‰ j B í F i " j

Organisation

The goal of this chapter is to reformulate higher-dimensional rewriting in the framework of cubical categories, using the notion of cubical pω, pq-category that we described in the last chapter. Section 5.1 contains some preliminary materials before we are able to express our main result (Theorem 5.1.3.8). We reserve the proof of Theorem 5.1.3.8 for Section 5.2. Finally Section 2.3, we look for applications of Theorem 5.1.3.8. In particular, we give an explicit description of the reduced standard presentation of a monoid, and we construct the Squier resolution of a monoid presented by a convergent presentation, a result similar to the one from [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF].

Resolutions of monoids by Gray polygraphs

The goal of this Section is to express our Extended Detection Theorem. In Section 5.1.1, we start by giving the definition of Gray polygraphs. Section 5.1.2 contains the proof of the central fact that Gray monoids are also free ω-categories. Finally, in Section 5.1.3, we study the structure of local branchings and prove that they form a simplicial monoid. We finally state our Extended Detection Theorem.

Gray polygraphs

In order to define a notion of Gray polygraph associated to Gray categories, we make use of a result of Garner [START_REF] Garner | Homomorphisms of higher categories[END_REF]. In order to do that we need to prove that Gray monoids are monadic over pre-cubical sets. The adjunction between Gray monoids and cubical sets is the composite of two monadic adjunctions (factorising through cubical ω-groupoids). However, as is well-known a composite of monadic adjunctions is not necessarily monadic. Still, in our case we are able to use a criterion from [START_REF] Anthony D Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF] The following Proposition shows that any algebra for a monad can be recovered as a reflexive coequaliser of free algebras. Proposition 5.1.1.2. Let pT, µ, ηq be a monad on a category C, and pA, hq be a T -algebra. The following is a reflexive coequaliser in C T : pT T A, µ T A q pT A, µ A q pA, hq µ A

T h h

Proof. Note first that the diagram

T T A T A A µ A

T h h

is an equaliser in C, which is split by the morphisms T η A and η A . Moreover, the following square commutes:

T T A T A T A T A. T h h µ A h
Thus, the fact that it is a coequaliser follows from Proposition 5.1.1.1. To show that it is also reflexive, let us look at the morphism T η A : T T A Ñ T A. By hypothesis T h ˝T η A " 1 T A and µ A ˝T η A " 1 T A . So all we have to do is check that T η A : pT T A, µ T A q Ñ pT A, µ A q is a morphism of T -algebras. Indeed, the following diagram commutes by naturality of µ:

T T A T T T A T A T T A T T η

A T η A µ A µ T A
The following Proposition was written (incorrectly) in [START_REF] Anthony D Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]. We reproduce here the corrected Proposition and proof from the Errata. Proposition 5.1.1.3. Suppose we have two adjunctions:

C D E F 2 U 2 F 1 U 1 K K
We denote respectively by T 1 and T 2 the monads U 1 ˝F1 and U 2 ˝F2 .

Suppose D is the category of algebras of T 1 and E is the category of algebras of T 2 . If T 1 preserves reflexive coequalisers in D, then C is isomorphic to the category of algebras of the monad T :" U 1 ˝U2 ˝F2 ˝F1 .

Proof. Recall first that, for any monad pT, µ, ηq, and any T -algebra pA, hq, h induces a morphism of T -algebras h ˚: pT A, µ A q Ñ pA, hq, as shown by the commutation of the following square:

T T A T A T A A µ A h T h h

Suppose now pA, h 1 , h 2 q is a T 2 -algebra, where pA, h 1 q is a T 1 -algebra. Then the following morphism equips A with a structure of T -algebra:

T A " U 1 T 2 F 1 A " U 1 T 2 pT 1 A, µ A q U 1 T 2 pA, h 1 q U 1 pA, h 1 q " A U 1 T 2 h 1 U 1 h 2
This construction induces a functor from T 2 -algebras to T -algebras.

Let us now fix a T -algebra pA, hq and let us define h 1 and h 2 making pA, h 1 , h 2 q a T 2 -algebra. First we define h 1 as the following composite:

T 1 A " U 1 F 1 A U 1 T 2 F 1 A " T A A U 1 η 2 F 1 A h
Moreover, the following diagram is a reflexive coequaliser in of T 1 -algebras by Proposition 5.1.1.2:

pT 1 T 1 A, µ 1 T 1 A q pT 1 A, µ 1 A q pA, h 1 q. µ 1 A 1 T 1 h 1 h 1
By hypothesis T 2 preserves reflexive coequalisers and so the following is an equaliser of T 1algebras:

T 2 pT 1 T 1 A, µ 1 T 1 A q T 2 pT 1 A, µ 1 A q T 2 pA, h 1 q. T 2 µ 1 A 1 T 2 T 1 h 1 T 2 h 1
Let us spell out explicitly T 2 pT 1 A, µ 1 A q. Compositing with U 1 , we get that it is of the form pT A, h 1 1 q for some morphism h 1

1 : T 1 T A Ñ T A. Let us 1 : F 1 U 1 Ñ Id D be the counit of the adjunction F 1 , U 1 . First the fact that 1 T 2 F 1 A is a morphism of T 1 -algebra from F 1 U 1 T 2 F 1 A " pT 1 T A, µ 1 T A q to T 2 F 1 A " pT A, h 1 
1 q gives us:

T 1 T 1 T A T 1 T A T 1 T A T A T 1 U 1 1 T 2 F 1 A U 1 1 T 2 F 1 A µ 1 T A h 1 1 
Precomposing this square with T 1 η 1 T A gives us the equality h

1 1 " U 1 1 T 2 F 1 A . Notice that we can express U 1 1 T 2 F 1 A as µ A ˝U1 η 2 F 1 T A
. Indeed, we have by definition of µ A :

µ A ˝U1 η 2 F 1 T A " U 1 µ 2 F 1 A ˝U1 T 2 1 T 2 F 1 A ˝U1 η 2 F 1 T A " U 1 µ 2 F 1 A ˝U1 η 2 T 2 F 1 A ˝U1 1 T 2 F 1 A " U 1 1 T 2 F 1 A . So we finally get T 2 F 1 A " pT A, µ A ˝U1 η 2 F 1 T A q. Let us now show that h : T A Ñ A induces a morphism of T 1 -algebras: T 2 F 1 A Ñ pA, h 1 q.
Using the definition of h 1 , this amounts to the commutation of the following diagram, where the top square commutes by naturality of η 2 , and the bottom square because h is T -algebra structure on A.

T 1 T A T 1 A T T A T A T A A T 1 h T h h U 1 η 2 F 1T A U 1 η 2 F 1 A µ A h
Let us now show that there is a fork in T 1 -algebras:

T 2 pT 1 T 1 A, µ 1 T 1 A q T 2 pT 1 A, µ 1 A q pA, h 1 q. T 2 µ 1 A T 2 T 1 h 1 h Since T 2 pT 1 T 1 A, µ 1 T 1 A q " T 2 F 1 T 1 A " pT T 1 A, U 1 1 T 2 F 1 A
q, this amounts to the commutation of the following square:

T T 1 A T A T A A T h 1 h U 1 T 2 µ 1 A h
This square commutes because of the following equalities:

h ˝T h 1 " h ˝T h ˝T U 1 η 2 F 1 A " h ˝µA ˝T U 1 η 2 F 1 A " h ˝U1 µ 2 F 1 A ˝U1 T 2 1 T 2 F 1 A ˝T U 1 η 2 F 1 A " h ˝U1 µ 2 F 1 A ˝U1 T 2 η 2 F 1 A ˝U1 T 2 1 F 1 A " h ˝U1 T 2 1 F 1 A " h ˝U1 T 2 µ 1 A .
By universal property of the coequalizer, we thereby get a morphism of T 1 -algebras h 2 : T 2 pA, h 1 q Ñ pA, h 1 q, which equips pA, h 1 q with the structure of a T 2 -algebra.

In our case, the monad T 1 is the free monoid monad. We show more generally in Proposition 5.1.1.5 that whenever T 1 is a free monoid monad over a biclosed monoidal category, T 1 satisfies the hypothesis of Proposition 5.1.1.3. First let us recall a classical result about biclosed monoidal categories.

Lemma 5.1.1.4. A biclosed product preserves reflexive coequalisers in both variables simultaneously.

Proof. Suppose we have the following reflexive coequalisers, for i " 0, 1:

A i B i C i g i f i r i h i
We are going to show that the following is also a coequaliser:

A 0 b A 1 B 0 b B 1 C 0 b C 1 g 0 b g 1 f 0 b f 1 h 0 b h 1 Suppose given i : B 0 b B 1 Ñ D such that i ˝pf 0 b f 1 q " i ˝pg 0 b g 1 q.
We want to find a factorisation i " ph 0 b h 1 q ˝k for some morphism k. First, notice that i ˝pB 0 b f 1 q " i ˝pB 0 b g 1 q (and, symmetrically, i ˝pf 0 b B 1 q " i ˝pg 0 b B 1 q). Indeed, we have:

i ˝pB 0 b f 1 q " i ˝pB 0 b f 1 q ˝pf 0 b A 1 q ˝pr 0 b A 1 q " i ˝pf 0 b f 1 q ˝pr 0 b A 1 q " i ˝pg 0 b g 1 q ˝pr 0 b A 1 q " i ˝pB 0 b g 1 q ˝pg 0 b A 1 q ˝pr 0 b A 1 q " i ˝pB 0 b g 1 q.
Since the product is biclosed, the product by B 0 preserves the coequaliser formed by f 1 ,g 1 and h 1 . The universal property of this coequaliser gives us a factorisation i " j ˝pB 0 b h 1 q.

Let us now show that j ˝pf 0 b C 1 q " j ˝pg 0 b C 1 q, so that we can use the universal property of this other coequaliser. Since the product by A 0 preserves the coequalisers, A 0 b h 1 is an epi, and it is enough to show that j ˝pf 0 b C 1 q ˝pA 0 b h 1 q " j ˝pf 0 b C 1 q ˝pA 0 b h 1 q. And indeed we have (using the fact that i equalises f 0 b B 1 and pg 0 b B 1 ):

j ˝pf 0 b C 1 q ˝pA 0 b h 1 q " j ˝pB 0 b h 1 q ˝pf 0 b B 1 q " i ˝pf 0 b B 1 q " i ˝pg 0 b B 1 q " j ˝pB 0 b h 1 q ˝pg 0 b B 1 q " j ˝pg 0 b C 1 q ˝pA 0 b h 1 q
Using the universal property, we finally have that j " k ˝ph 0 b C 1 q and so finally: i " j ˝pB 0 b h 1 q " k ˝ph 0 b C 1 q ˝pC 0 b h 1 q " k ˝ph 0 b h 1 q. The fact that such a factorisation is unique comes from the fact that h 0 b h 1 is a composite of epimorphisms, and so is epi too. Then the category MonpT -Algq of monoid objects in T -Alg is monadic over C:

MonpT -Algq T -Alg C K K
Proof. We want to apply Proposition 5.1.1.3. The free monoid monad on T ´Gpd is given by

A Þ Ñ ž nPN A bn
Let us show that this monad preserves reflexive coequalisers. Since colimits commute with colimits, we just have to show that A Þ Ñ A bn preserves reflexive coequalisers. This is a direct consequence of Lemma 5.1.1.4.

The following definition is a generalisation by Mike Shulman of the construction of computads by Batanin [6], following the reformulation of Richard Garner in [START_REF] Garner | Homomorphisms of higher categories[END_REF]. Definition 5.1.1.6. Let I be a category whose objects are natural numbers, and such that for all non-identity morphism f : i Ñ j, we have i ă j. Let T be a monad on Î (the category of presheaves over I). For A P Î, we denote Arns by A n . Let us define inductively the notion of n-T -polygraph, together with an adjunction between n-T -polygraphs and T -Algebras pU n , F n q. Let us denote by pU, F q the morphisms forming the adjunction between T -algebras and Î.

• A 0-T -polygraph is just a set Σ 0 . The free T -algebra F 0 pΣ 0 q generated by Σ 0 is Σ 0 ¨Y p0q, where p¨q denotes the copower and Y : I Ñ Î is the Yoneda embedding. If A is a T -algebra then F 0 pAq :" U pAq 0 . 

Σ n`1 ¨F p Č Y pn `1qq F n pΣq Σ n`1 ¨F pY pn `1qq F n`1 pΣ, Σ n`1 , Bq B Σ n`1 ¨F pιq
If A is a T -algebra, then let Σ n`1 and B given by the following pullback:

Σ n`1 hompF pY pn `1qq, Aq hompF p Č Y pn `1qq, F n U n Aq hompF p Č Y pn `1qq, Aq n B ι
where the bottom morphism is induced by the counit of the adjunction F n , U n , and the right-hand-side morphism comes from the inclusion of Č Y pn `1q into Y pn `1q. We then define U n`1 pAq :" pU n pAq, Σ n`1 , Bq.

Finally, the category of ω-T -polygraph is the limit of the sequence of projection from pn `1q-T -polygraphs to n-T -polygraphs. Definition 5.1.1.7. We call Gray monoids or Gray pω, 0q-monoids (resp. Gray pω, 1q-monoids) the monoid objects in ω-groupoids (resp. pω, 1q-categories), equipped with the Gray tensor product. By Proposition 5.1.1.5, Gray monoids (resp. Gray pω, 1q-monoids) are monadic over pre cubical sets. We call the associated notion of polygraphs Gray polygraphs (resp. Gray pω, 1q-polygraphs).

If Σ is a Gray pω, pq-polygraph and k ď p, we denote by Σ Gpkq the free Gray pω, kq-monoid generated by Σ.

Proof. The right-hand square comes from the fact that n -is a free ω-category on a globular polygraph, where the pn ´1q-polygraph generates nl, and with exactly one generating n-cell. Similarly, the left-hand square comes from expressing n -as a free ω-category generated by a cubical polygraph. Lemma 5.1.2.4. Let C be a category, and let f , g be morphisms in C. Suppose that g is a pushout of f . If h is a cell in C having the right-lifting-property with respect to f , then it has the right-lifting property with respect to g.

Proof. We are in the following situation:

k k 1 f g h i i 1
Using the right-lifting-property of h with respect to f , we get a morphism u such that u˝f " i˝k and h˝u " i 1 ˝k1 . Using the first equality and the fact that g is a pushout of f , we get a morphism v such that v ˝g " i and v ˝k1 " u:

k k 1 f g h i i 1 u v
Let us show that v is the required lifting. The first equality is already given, it remains to show that h ˝v " i 1 .

Notice that since the big rectangle commutes, by universal property of g there is exactly one morphism w satisfying w ˝k1 " i 1 ˝k1 and w ˝g " h ˝i. But both i 1 and h ˝v satisfy this property:

# i 1 ˝k1 " i 1 ˝k1 i 1 ˝g " h ˝i # h ˝v ˝k1 " h ˝u " i 1 ˝k1 h ˝v ˝g " h ˝i 
Therefore, the two arrows are equal, and h does indeed have the right-lifting property with respect to g.

We are now armed to choose our set of generating cofibrations:

Proposition 5.1.2.5. The family j n forms a family of generating cofibrations for the model structure on ω -Cat.

Proof. Recall from [START_REF] Lafont | A folk model structure on omega-cat[END_REF] that the family i n is a family of generating cofibrations for the model structure on ω -Cat. The model structure is actually determined by the arrows having the right-lifting property with respect to the generating cofibrations. By Lemma 5.1.2.4 and 5.1.2.3, the arrows having the right lifting property with respect to i n and j n are actually the same, so they generate the same model structure.

Definition 5.1.2.6. If f : C Ñ D and f 1 : C 1 Ñ D 1 are two morphisms of ω-categories, The pushout-product of f and f 1 , denoted f bf 1 , is the following morphism, where E is defined as a coproduct:

C b C 1 D b C 1 C b D 1 E D b D 1 f b 1 1 b f 1 f bf 1 f b 1 1 b f 1
Proposition 5.1.2.7. For any n, m P N, we have:

j n b j m " j n`m
As a consequence, if f and g are two cofibrations, then f bg is also a cofibration.

In particular, the product of two cofibrant objects is still cofibrant, that is: for any two polygraphs Σ and Γ, the ω-category Σ ˚b Γ ˚is free on a polygraph that we denote by Σ b Γ.

Proof. Let us first compute E. First we need to compute pnl bmlq, pnbmlq and pnl bmq. Since all those are free on pre-cubical sets, using 5.1.2.1 we can compute the products in cubical sets.

Recall that for all n, n -is the free ω-category on the cubical set n -Set , where n -Set i is given by the set of all applications s : t1, . . . , nu Ñ tp´q, p0 ¨q, p`qu such that #s ´1p0 ¨q " i. We see such an element as a sequence of length n containing exactly i copies of p0 ¨q. For such an s, and 1 ď k ď i, B α i s is given by replacing the i-th p0 ¨q appearing in s by pαq. Similarly, nl Set is obtained by removing the cell p0 ¨. . . 0 ¨q.

Therefore, we have:

• The pre-cubical set nl Set bml Set is the sub pre-cubical set of pn `mq -Set consisting of all s : t1, . . . , n `mu Ñ tp´q, p0 ¨q, p`qu which are not of the form p0 ¨. . . 0 ¨α1 . . . α m q or pβ 1 . . . β n 0 ¨. . . 0 ¨q for some α 1 , . . . , α m , β 1 , . . . , β n P tp´q, p0 ¨q, p`qu.

• The pre-cubical set nl Set bm -Set is the sub pre-cubical set of pn `mq -Set consisting of all s : t1, . . . , n `mu Ñ tp´q, p0 ¨q, p`qu which are not of the form pβ 1 . . . β n 0 ¨. . . 0 ¨q for some β 1 , . . . , β n P tp´q, p0 ¨q, p`qu.

• The pre-cubical set n -Set bml Set is the sub pre-cubical set of pn `mq -Set consisting of all s : t1, . . . , n `mu Ñ tp´q, p0 ¨q, p`qu which are not of the form p0 ¨. . . 0 ¨α1 . . . α m q for some α 1 , . . . , α m P tp´q, p0 ¨q, p`qu.

Since all the j n come from morphisms of pre-cubical sets, we can also form the coproduct in ω -CubSet. From the explicit descriptions above, we see that the coproduct in ω -CubSet is the sub-cubical set of pn `mq -Set consisting of all s : t1, . . . , n `mu Ñ tp´q, p0 ¨q, p`qu that are either in nl Set bm -Set or in n -Set bml Set , that is of all s except for p0 ¨. . . 0 ¨q. So finally E " pn `mql. On the other hand, by definition nbm -" n `m -. So j n bj m and j n`m share the same source and target, and explicit computation show that they both are the canonical inclusion of pn `mql into pn `mq -. So finally j n bj m " j n`m . The consequence about cofibrations is a standard result in model structure (see [START_REF] Hovey | Model categories[END_REF]), using the fact that the j n form a generating family of cofibrations (Proposition 5.1.2.5).

Finally, since polygraphs correspond to cofibrant objects, for any polygraphs Σ and Γ the morphisms f : H Ñ Σ ˚and f 1 : H Ñ Γ ˚are cofibrations. Then f bf 1 is just the (unique) morphism H Ñ Σ ˚b Γ ˚. We just proved that it is a cofibration, meaning that Σ ˚b Γ ˚is a free category on a polygraph. Remark 5.1.2.8. The fact that the product of two free ω-categories is still free is one of the main reasons for our use of the Gray tensor product over the cartesian one. Indeed, this fails for the cartesian product, as already noted by Lack [START_REF] Lack | A quillen model structure for 2-categories[END_REF]:

Let C be the free category on one generator and one arrow. We have the isomorphism of monoids Cp', 'q " N. Then C b C still only has one object and as a monoid pC b Cqp', 'q " N ˆN, which is not a free monoid.

Remark 5.1.2.9. The fact that the product of two free ω-categories is still free was also proven independently by Hadzihasanovic [42], and by Ara and Maltsinotis. Explicitly, if Σ and Γ are two cubical ω-polygraphs. Then the cubical ω-polygraph Σ b Γ is given by:

pΣ b Γq n " ž i`j"n Σ i ˆΓj B α k pA b Bq " # B α k A b B A P Σ i and 1 ď k ď i A b B α
k´i B A P Σ i and i ă k Moreover, by definition of the product of two polygraphs, the free functor Σ Þ Ñ Σ ˚is monoidal. Proposition 5.1.2.10. Let Σ be a Gray polygraph. The free Gray monoid on Σ is also free as an pω, 1q-category, generated by a cubical pω, 1q-polygraph that we denote rΣs, defined by:

rΣs n " ž i 1 `...`i k "n Σ i 1 ˆ. . . ˆΣi k (5.1.1) B α i 1 `...`i j `lpA 1 b . . . b A k q " A 1 b . . . b A j b B α l A j`1 b A j`2 b . . . b A k , where 1 ď l ď i j`1 (5.1.2)
Proof. By Proposition 5.1.2.7, the free-category functor is strictly monoidal, and so it induces a functor from the category of monoidal objects in pω, 1q-polygraphs to monoidal objects in pω, 1q-categories (that is to Gray monoids). Finally, any Gray polygraph can be made into a monoidal object in pω, 1q-polygraphs by sending a Gray polygraphs Σ to the pω, 1q-polygraph rΣs given by the formulas (5.1.1) and (5.1.2).

The following diagram sums up the situation, where the right-hand square commutes because the free-category functor is monoidal, and the left-hand triangle is just the inclusion of Gray polygraphs into monoid objects in pω, 1q-polygraphs.

GrayPol

MonPol pω, 1q -Pol GrayMon pω, 1q -CubCat F F F Definition 5.1.2.11. Let Σ be an pω, 1q-polygraph. We say that Σ is targets-only if for all n ě 2, all 1 ď i ď n and all A P Σ n , B í A is in Σ n´1 . We say that a Gray pω, 1q-polygraph Σ is a targets-only polygraph if the pω, 1q-polygraph rΣs is targets-only. Explicitly, for all n ě 2, all 1 ď i ď n and all A P Σ n , there exists

A 1 P Σ i 1 , . . . , A k P Σ i k such that B í A " A 1 b . . . b A k .

The simplicial monoid of local branchings

Proposition 5.1.3.1. Let Cube be the PROP generated by operations , , , and , subject to the following relations: " " " " " " " " " " " " " " " "

Let Simp be the PROP defined by operations , , subject to the following relations:

" " " "

The category of symmetric cubical sets, denoted CSet is the category of presheaves on Cube. Similarly, the category of augmented symmetric simplicial sets is denoted SSet is the category of presheaves over Simp. The inclusion functor Simp Ñ Cube gives rise to an adjunction between SSet and CSet.

Moreover, the monoidal structures on Cube and Simp give rise by Day convolution to monoidal structures on augmented symmetric cubical sets and augmented symmetric simplicial sets. Define a cubical monoid (resp. a simplicial monoid) as a monoid object in CSet (resp. SSet). The functors in the adjunction preserve the monoidal structures, and so induce functors between the categories of cubical and simplicial monoids. Definition 5.1.3.2. Let Σ be a monoidal 1-polygraph. A rewriting step f is an element of Σ 1 , the free Σ 0 -bimodule. We call spf q its source. A local n-branching (for n ą 0) is an n-tuple pf 1 , . . . , f n q of rewriting steps of same source. We denote by LocBrpΣq n the set of all n-local branchings. We extend that to n " 0 by saying that a 0-local branching is just an element of Σ 0 . Definition 5.1.3.3. Let Σ be a monoidal 1-polygraph. We define:

• For all pf 1 , . . . , f n q P LocBrpΣq n , and 1 ď i ď n. If n " 1 then we define B 1 f " spf q and otherwise, let B i pf 1 , . . . , f n q be the following n ´1-branching: pf 1 , . . . , f i´1 , f i`1 , . . . , f n q

• For all pf 1 , . . . , f n q P LocBrpΣq n , and 1 ď i ď n, let i pf 1 , . . . , f n q be the branching pf 1 , . . . , f i , f i , f i`1 , . . . , f n q

• For all pf 1 , . . . , f i q P LocBrpΣq i and pg 1 , . . . , g j q P LocBrpΣq j respectively of source u and v, let f b ḡ pug 1 , . . . , ug j , f 1 v, . . . f i vq

Finally, S n acts on LocBrpΣq by permuting the rewriting steps.

The following proposition is a straightforward verification of the axioms. Definition 5.2.1.4. Let C be a cubical pω, 1q-category. For any n ě 2 and 1 ď i ‰ j ď n, we define Γ α i,j :" ri Þ Ñ j i s ¨Γα j i . In particular, we have Γ α i " Γ α i,i`1 .

Example 5.2.1.5. Diagrammatically, we can represent the generalised connections Γ α i,j as follows, respectively for i ă j and i ą j: i j j´1 j´1 j i j Proposition 5.2.1.6. For every i ‰ j and every α, the cell Γ α i,j is the only thin cell satisfying for every k and every β:

B β k Γ α i,j A " Γ α i k ,j k B β k i A k ‰ i, j B β i Γ α i,j A " # A β " α j i B β j i β " ´α B α j Γ α i,j A " # ri j Þ Ñ j i s ¨A β " α i j B β j i A β " ´α
Proof. The cell Γ α i,j is thin by Lemma 4.2.3.3, and thin cells are uniquely determined by their shell. As for the relations, let k ‰ i, j.

B β

k Γ α i,j A " B β k pri Þ Ñ j i s ¨Γα j i Aq " B k ri Þ Ñ j i s ¨Bβ k¨riÞ Ñj i s Γ α j i A

We first evaluate B k ri Þ Ñ j i s. Using the formulas from Lemma 4.1.1.3, we have: pk i q j i " pk i j j q j i j " pk j q i j . Hence, a :" pj i q pk i q j i " pj i j q pk j q i j " j i j ,pk j q " j k j ,i j . Now pi j q k j " pi pk j q j q j k j " pi k q j k so a " j k j ,pi k q j k " pj k q pi k q j k " pj k q i k . And finally B k ri Þ Ñ j i s " ri k Þ Ñ pj k q i k s. We now consider the second term. Let u " k ¨ri Þ Ñ j i s " pk i q j i . Then we have u ‰ j i , j i `1 and so

B β u Γ α j i A " Γ α pj i qu B β u j i A " Γ α j i,k B β k i A " Γ α pj k q i k B β k i A
And so finally:

B β k Γ α i,j A " ri k Þ Ñ pj k q i k s ¨Γα pj k q i k B β k i A " Γ α i k ,j k B β k i A
As for the other relations,

B β i Γ α i,j A " B β i pri Þ Ñ j i s ¨Γα j i Aq " B i ri Þ Ñ j i s ¨Bβ i¨riÞ Ñj i s Γ α j i A " B β j i Γ α j i A " # A β " α j i B β j i A.
β " ´α B β j Γ α i,j A " B β j pri Þ Ñ j i s ¨Γα j i qA " B j ri Þ Ñ j i s ¨Bβ j¨riÞ Ñj i s Γ α j i A " ri j Þ Ñ j i s ¨Bβ

j i `1Γ α j i A " # rj i Þ Ñ i j s ¨A β " α rj i Þ Ñ i j s ¨ j i B β j i A " i j B β j i A β " ´α
Lemma 5.2.1.7. For all 1 ď i ‰ j ď n, and 1 ď k ď n we have the equality rk Þ Ñ is ¨Γα i,j " Γ k,pj i q k Proof. Indeed, we have by definition of Γ α i,j : rk Þ Ñ is ¨Γα i,j " rk Þ Ñ is ¨ri Þ Ñ j i s ¨Γα j i " rk Þ Ñ j i s ¨Γα j i " rk Þ Ñ pj i q k k s ¨Γα

pj i q k k " Γ α k,pj i q k
Notation 5.2.1.8. Let E Ă N and i P N. Let us denote by E i the set of elements of the form n i , for n P E. Similarly, if i R E, we denote by E i the set of elements of the form n i , for n P E.

If E Ă N is finite, we denote by E the composite E " i 1 . . . in , where E " ti 1 , . . . , i n u and i 1 ą i 2 ą . . . ą i n . Definition 5.2.1.9. For any n ě 1, 1 ď i ď n, m ě 0, E Ă t1, . . . , n `mu of cardinality m `1 and A P C n , we define a cell Γ E,α i A P C n`m recursively on n `m as follows:

• If m " 0, and E " tju then Γ α,E i :" rj Þ Ñ is.

• Otherwise, then Γ α,E i is the only thin cell satisfying:

B α k Γ β,E i " $ ' ' & ' ' % Γ β,E k i pk E q i B α pk E q i k R E Γ β,pEztkuq k i k P E α " β pEztkuq k B α i k P E α ‰ β
Proof. We need to prove that there indeed exists a thin cell with the specified shell. Suppose E " F Y tju. and fix k P F . Then we define: Γ α,E i :" Γ α j,k Γ α,F j i

. Let us check that the shell of this cell is the required one.

Case l R E:

B α l Γ β,E i " B α l Γ β j,k Γ β,F j i " Γ β j l ,k l B α l j Γ β,F j i " Γ β j l ,k l Γ β,F j,l i pl j,F q i B α pl j,F q i

On the other hand, using the fact that E l " F l Y tj l u and k l P F l :

B α l Γ β,E i " Γ β,E l i pl E q i B α pl E q i " Γ β j l ,k l Γ β,F j,l i pl E q i B α pl E q i
And the two expressions coincide because l E " l j,F . Suppose now l P E and α " β.

Case l P E, α " β and l ‰ j, k

B α l Γ α,E i " B α l Γ α j,k Γ α,F j i " Γ α j l ,k l B α l j Γ α,F j i " Γ α j l ,k l Γ
α,pF j ztl j uq l j i and on the other hand, using the fact that pEztluq l " pF ztluq l Y tj l u and k l P pF ztluq l :

B α l Γ α,E i " Γ α,pEztluq l i
" Γ α j l ,k l Γ α,pF ztluq l,j i

And the two sides coincide using the fact that pF j ztl j uq l j " pF ztluq l,j .

Case l P E, α " β and l " j:

B α j Γ α,E i " B α j Γ α j,k Γ α,F j i " Γ α,F j i " Γ α,pEztjuq j i " B α j Γ α,E i
Case l P E, α " β and l " k:

B α k Γ α,E i " B α k Γ α j,k Γ α,F j i " rj k Þ Ñ k j s ¨Γα,F j i If F " tku then Γ α,F j i " rk j Þ Ñ is and we have B α k Γ α,E i " rj k Þ Ñ is " Γ α,pEztkuq k i . Otherwise, let
G ‰ H such that F " G Y tku and let x P G. Then by induction Γ α,F j i " Γ α k j ,x j Γ α,pG j q k j i and so, using Lemma 5.2.1.7:

B α k Γ α,E i " rj k Þ Ñ k j s ¨Γα k j ,x j Γ α,G j,k i " Γ α j k ,x k Γ α,G j,k i " Γ α,pGYtjuq k i " Γ α,pEztkuq k i
Case l P E, α ‰ β and l ‰ j, k:

B α l Γ β,E i " B α l Γ β j,k Γ β,F j i " Γ β j l ,k l B α l j Γ β,F j i
" Γ β j l ,k l pF ztluq j,l B α i " rj l Þ Ñ k j,l s ¨Γβ k j,l pF ztluq j,l B α i " rj l Þ Ñ k j,l s ¨ k j,l pF ztluq j,l B α i " j l pF ztluq j,l B α i " pF ztluq l ,j l B α i " pEztluq l B α i Case l P E, α ‰ β and l " j :

B α j Γ β,E i " B α j Γ β j,k Γ β,F j i " k j B α k j Γ β,F j i
" k j pF ztkuq j,k B α i " F j B α i " pEztjuq j B α i Case l P E, α ‰ β and l " k:

B α k Γ β,E i " B α k Γ β j,k Γ β,F j i " j k B α k j Γ β,F j i " j k pF ztkuq j,k B α i " pEztkuq k B α i
Example 5.2.1.10. The point of these generalised connections is to make use of the (co)associativity relation they verify. Together with the action of the symmetric group, it means that a (connected) composite of connections is uniquely determined by the indices of its set of output and by the index of its input. For example for n " 4, the connection Γ α,t1,3,4u 2 can equally be represented by any the following diagrams: 

Generalised composition

If A and B are two 2-cells in a cubical ω-category, then one can talk of the following composites respectively as 2 ˆ1 and 1 ˆ2 composites. The goal of this Section is to formalise this idea and to extend it to higher dimension. x ‰ minpIq), we denote by Spxq (resp. Ppxq) the smallest element in I greater than x (resp. the greater element in I smaller than x).

Let I 1 , . . . , I n be totally ordered finite sets. For s P I 1 ˆ. . . ˆIn , and 1 ď i ď n such that s i ‰ maxpI i q (resp. s i ‰ minpI i q). We denote by S i s (resp. P i s the element of I 1 ˆ. . . ˆIn given by: pS i sq j " # s j j ‰ i Sps i q j " i pP i sq j " # s j j ‰ i Pps i q j " i Definition 5.2.2.2. Let I 1 , . . . , I n be finite totally ordered non-empty sets, and C be a cubical ω-category. An I 1 ˆ. . . ˆIn -grid in C is the data of a family of cells C s in C n , for any s P I 1 ˆ. . . ˆIn .

An I 1 ˆ. . . ˆIn -grid C ' s said to be composable if, for any s P I 1 ˆ. . . ˆIn such that s i ‰ maxpI i q, B ì C s " B í C S i s .

Lemma 5.2.2.3. Let C ' be a composable I 1 ˆ. . .ˆI n -grid, and let x P I i such that x ‰ maxpI i q. Let D ' be the following I 1 ˆ. . . ˆIi´1 ˆIi ztxu ˆIi`1 ˆ. . . ˆIn -grid:

D s " # C s s i ‰ Spxq C P i s ‹ i C s s i " Spxq
Then the grid D ' is composable. We denote it by comp i

x pC ' q.

Proof. Let I 1 j " I j if j ‰ i and I 1 i " I i ztxu. To avoid confusions, we denote by S 1 and P 1 the operations S and P taken in an I 1 k . Let t P I 1 1 ˆ. . . ˆI1 n such that t k is not maximal, and let us show that B k D t " B ḱ D S 1 k t . We distinguish multiple cases:

• If k ‰ i and t i ‰ Spxq. Then D t " C t and D S 1 k t " C S k t , and so the composability of C ' gives the required result.

• If k ‰ i and t i " Spxq. Then D t " C P i t ‹ i C t and D S 1 k t " C P i S k t ‹ i C S k t , and so:

B k D t " B k C P i t ‹ i k B k C t " B ḱ C S k P i t ‹ i k B ḱ C S k t " B ḱ pC P i S k t ‹ i C S k t q " B ḱ D S 1 k t
• If k " i and t i ‰ Ppxq, Spxq, then D t " C t and D S 1 k t " C S k t , and so the composability of C ' gives the required result.

• If k " i and t i " Ppxq, then B ì D t " B ì C t , and B í D S 1 i t " B í pC P i S 1 i t ‹ i C S 1 i t q " B í C P i S 1 i t " B í C S i t , and the two are equal by composability of C ' .

• The case where k " i and t i " Spxq is similar. Proposition 5.2.2.4. Let I 1 , . . . , I n be finite non-empty totally ordered sets, and x P I i and y P I j be two distinct non-maximal elements. Then for any I 1 ˆ. . . ˆIn -composable grid C ' we have:

comp j y ˝comp i x pC ' q " comp i x ˝comp j y pC ' q In particular, all the composite of maps of the form comp i

x from I 1 ˆ. . . ˆIn -grids to composable J ˆ. . . ˆJ-grids are equal (where J denotes the terminal ordered set). Since a composable J ˆ. . . ˆJ-grid is just an element of C n , this defines a map Comp from composable I 1 ˆ. . . ˆIn -grids to C n .

Proof. We distinguish two cases depending whether i " j or not. If i " j, we can suppose without loss of generality that x ă y. We then have, for all t P I 1 ˆ. . . ˆIn such that t i ‰ x, y:

• If y " Spxq: comp i y ˝comp i x pC ' q t " # C t t i ‰ Spyq pC P i P i t ‹ i C P i t q ‹ i C t t i ‰ Spyq comp i x ˝comp i y pC ' q t " # C t t i ‰ Spyq C P i P i t ‹ i pC P i t ‹ i C t q t i ‰ Spyq Using the associativity of ‹ i , the two are equal.

• If y ‰ Spxq, then we have the following formula (once again symmetric in x and y): pC P i P j t ‹ i C P j t q ‹ j pC P i t ‹ i C t q t i " Spxq and t j " Spyq Using the fact that P i P j " P j P i and the exchange law between ‹ i and ‹ j , the expression is symmetric in x and y.

comp i y ˝comp i x pC ' q t " # C t t i ‰
Definition 5.2.2.5. Let C ' be a composable I 1 ˆ. . . ˆIn -grid in a cubical ω-category C, and let A P C n . Let us denote by m i the minimum of I i and let m be the element of I 1 ˆ. . . ˆIn formed by those minimums. We say that C ' is an A-simple grid if for all s P I 1 ˆ. . . ˆIn , C S i s P Imp i q and C m " A.

Lemma 5.2.2.6. Let C ' be an A-simple composable I 1 ˆ. . . ˆIn -grid in a cubical ω-category C, for some A P C n . Let m i be the minimum of I i . If m i is not maximal in I i (that is, if I i ‰ J), then comp i m i C ' is an A-simple I 1 ˆ. . . ˆIi ztm i u ˆ. . . ˆIn -grid. Proof. Let D ' " comp i m i pC ' q, and let t P I 1 ˆ. . . ˆIi ztm i u ˆ. . . ˆIn . Then we have: • If t i ‰ Spm i q, then D S k t " C S k t P Imp k q.

• If t i " Spm i q and k " i then D S i t " C S i t P Imp i q.

• If t i " Spm i q and k ‰ i then D S k t " C P i S k t ‹ i C S k t " C S k P i t ‹ i C S k t . By hypothesis both C S k P i t and C S k t are in Imp k q and so so is D S k t .

Finally, if t j " m j for all j ‰ i and t i " Spm i q then D t " C P i t ‹ i C t " A ‹ i C S i m " A because C S i m P Imp i q. So finally D ' is an A-simple grid. Proposition 5.2.2.7. Let C ' be an A-simple grid. Then ComppC ' q " A.

Proof. We reason by induction on the sum of the cardinalities of I 1 , . . . , I n . If they are all singletons then C ' is just the data of A and so ComppC ' q " A. Otherwise, then there exists 1 ď i ď n such that I i is not a singleton. Let m i be the minimum of I i . By Lemma 5.2.2.6, comp i m i pC ' q is an A-simple grid. Using the induction hypothesis, we therefore have ComppC ' q " Comppcomp i m i pC ' qq " A.

Suppose finally that sp1q ‰ ´1 and that s ‰ p0, . . . , 0q. Then we have:

B ì C A s " B ì Γ
´,s ´p1q 1

SpB s´p 1q τ A q " Γ

´,s ´p1q i 1

B ìs ´p1q

`1SpB s´p 1q τ A q " Γ

´,s ´p1q i 1 SpB ì,s ´p1q τ A q B í C A S i s " B í Γ

´,S i s ´p1q 1

SpB Si s ´p1q τ A q " Γ

´,s ´p1q i 1 SpB ì,s ´p1q τ A q.

So in all cases we have B ì C A s " B í C A S i s , which means that the family C A s is composable.

Lemma 5.2.3.6. The following equation holds:

B α i ComppC A ' q " $ ' & ' % A α " ´and i " 1 NFpAq
α " `and i " 1 SpB α i´1 Aq i ‰ 1

Proof. We start by the case i " 1 and α " ´. Let us define D A s :" B 1 C A p´1,sq . Then B 1 ComppC A ' q " ComppD A ' q. Moreover, we have, for s ‰ p0, . . . , 0q:

D A s " B 1 Γ
´,s ´p1q`1 1

Γ 1 SpB 1 B s´p 1q`1 τ A q " Γ
´,s ´p1q 1 1 B 1 SpB 1 B s´p 1q`1 τ A q " s ´p1q B 1 B s´p 1q`1 τ A

In particular, for any 1 ď i ď n, D A S i s P Imp i q, and D A ' is a D A p0,...,0q -simple grid. By Proposition 5.2.2.7 ComppD A s q " D A p0,...,0q " B 1 C A p´1,0,...,0q " B 1 τ A " A. We now to the case i " 1 and α " `. Let us define D A s :" B 1 C A p1,sq . Then we have:

D A s " B 1 Γ
´,1,s ´p1q`1 1 SpB 1,s ´p1q`1 τ A q " 1,s ´p1q`1 B 1 SpB 1,s ´p1q`1 τ A q " 1,s ´p1q`1 NFpB 1,s ´p1q`1 τ A q " NFpAq So finally ComppD f s q " NFpAq. Let now i ‰ 1 and α " ´. For t an element of t´1, 0, 1u ˆt0, 1u n´1 , let us denote by t ´i the element of t´1, 0, 1u ˆt0, 1u n obtained by inserting a 0 in t in the i-th position. Define D A t :" B í C A t ´i . Then we have:

• For t " p0, . . . , 0q, D A t " B í τ A " τ B í´1 A .

• For t " p´1, 0, . . . , 0q, D A t " B í 1 A " 1 B í´1 A.

• If tp1q " ´1, then let s " t ´i. Then we also have sp1q " ´1 and ps ´p1qq i " t ´p1q. So:

D A t " B í Γ
´,s ´p1q 1 ´,t ´p1q 1

Γ 1 SpB 1 B s´p 1q τ A q " Γ ´,
Γ 1 SpB 1 B t´p 1q B í τ A q " Γ
´,t ´p1q 1

Γ 1 SpB 1 B t´p 1q τ B í´1 A q
• Finally, if tp1q ‰ 1, once again let s " t ´i. Then we still have sp1q ‰ ´1 and ps ´p1qq i " t ´p1q, so that:

D A t " B í Γ
´,s ´p1q 1

SpB s´p 1q τ A q " Γ

´,t ´p1q 1

B ís ´p1q

SpB s´p 1q τ A q " Γ

´,t ´p1q 1 B ís ´p1q

`1SpB s´p 1q τ A q " Γ

´,t ´p1q 1

SpB ís ´p1q

B s´p 1q τ A q " Γ

´,t ´p1q 1

SpB t´p 1q B í τ A q " Γ

´,t ´p1q 1

SpB t´p 1q τ B í´1 A q So finally we have

D A ' " C B í´1 A ' . So B í ComppC A ' q " ComppC B í´1 A '
q " SpB í´1 Aq. Finally, let i ‰ 1 and α " `. For t an element of t´1, 0, 1u ˆt0, 1u n´1 , let us denote by t `i the element of t´1, 0, 1u ˆt0, 1u n obtained by inserting a 1 in t in the i-th position. Define D A t :" B ì C A t `i . Then we have:

• If tp1q " ´1, then let s " t `i. Then we also have sp1q " ´1 and s ´p1q " t ´p1q i Y tiu. So:

D A t " B ì Γ
´,s ´p1q 1

Γ 1 SpB 1 B s´p 1q τ A q " t ´p1q B 1 Γ 1 SpB 1 B s´p 1q τ A q " t ´p1q SpB 1 B s´p 1q τ A q " t ´p1q SpB 1 B t´p 1q B ì τ A q
In particular, if t " p´1, 0, . . . , 0q then D A t " SpB 1 B ì τ A q " SpB ì´1 Aq. Otherwise, if there exists j such that tpjq " 1 then let l such that t " S j l. Then j P t ´p1q and D A t " j l ´p1q j SpB 1 B t´p 1q τ B í´1 A q. In particular D A S j l P Imp j q.

• If tp1q ‰ ´1, then let s " t `i. Then we also have sp1q ‰ ´1 and s ´p1q " t ´p1q i Y tiu. So:

D A t " B ì Γ
´,s ´p1q 1

SpB s´p 1q τ A q " t ´p1q B 1 SpB s´p 1q τ A q " t ´p1q NFpAq " 1,...,n û

In particular, if t " S j l then D A S j l P Imp j q.

So we just proved that D A ' is a D A p´1,0,...,0q -simple grid. By Proposition 5.2.2.7, ComppD A ' q " D A p´1,0,...,0q " SpB ì´1 Aq, and finally B ì ComppC A ' q " SpB ì´1 Aq.

Construction of polygraphic resolutions and examples

In this section, we look for applications of Theorem 5.1.3.8. The main difficulty preventing us from applying this Theorem is that we need to define the map Φ on every local branching, instead of just considering critical local branchings, as is usual for Squier-like Theorems. In Section 5.3.1, we address this shortcoming by studying the simplicial monoid of local branchings. The main result is that (under very mild assumptions) local branchings form a free simplicial monoid, with generators given by the critical branchings. This means that we actually only need to define the map Φ on critical branchings. Armed we this result, we then proceed to give an explicit description of the reduced standard presentation of a monoid M in Section 5.3.2. As it turns out, the main difficulty lies in proving that the structure we define is indeed a Gray polygraph. Once this is done, very little work is needed to prove that it satisfies the hypotheses of Theorem 5.1.3.8. Finally, in Section 5.3.3, we prove an Extended Existence Theorem similar to 1.5.2.3 in our setting.

Critical branchings

Notation 5.3.1.1. Let Σ be a Gray 1-polygraph. For any local n-branchings f and ḡ, we write f " ḡ if f and ḡ are equal up to action of the symmetric group. Definition 5.3.1.2. Let Σ be a Gray 1-polygraph, and let f be a local n-branching. We say that f is an aspherical branching if f " i ḡ, for some local pn ´1q-branching g.

We say that a non-aspherical branching f is a critical branching if f ‰ 1 and for any factorisation f " ḡ b h, ḡ " 1 or h " 1.

Example 5.3.1.3. For any Gray 1-polygraph Σ, we always have that the critical 0-branchings correspond to the elements of Σ 0 , while the critical 1-branchings correspond to the elements of Σ 1 . Definition 5.3.1.4. We define a simplicial monoid N as follows:

• For all n ě 0, Nn " N n .

• Given an n-tuple s P Nn , and 1 ď i ď n, B i s is given by deleting the i-th entry of s.

• Given an n-tuple s P Nn , and 1 ď i ď n, i s is given by duplicating the i-th entry of s.

• Given an n-tuple s P Nn and t P Nn , s b t is the concatenation of s and t.

• Given an n-tuple s P Nn , and 1 ď i ă n, τ i s is given by permuting the entries in position i and i `1 of s.

Lemma 5.3.1.5. Let s P N n be a non-decreasing sequence of natural numbers of length n ě 0, and let σ and τ be permutations such that for all 1 ď i ď n. Suppose that σ (resp. τ ) satisfies the property: for all 1 ď i ď n, if s i " s i`1 then σ ¨i ă σ ¨pi `1q (resp. τ ¨i ă τ ¨pi `1q).

Then if σs " τ s, σ " τ .

Proof. The equivalence relation defined by i " j if s i " s j induces a partition of t1, . . . nu. Let I be an element of this partition. Let us show that σ and τ coincide on I. Let i be the value of s on I, and let J be the set of indices at which i appears in σs " τ t. Both σ and τ induce bijections from I to J, and by hypothesis they are even order-preserving maps. But there is at most one isomorphism of finite totally ordered sets, so σ and τ coincide on I. Since this is true for any element of our chosen partition of t1, . . . , nu, σ " τ .

If n " 0 then this corresponds to saying that Σ Gp0q 0 is generated by Σ 0 as a monoid. Take now any f an n-branching whose source is of length p. If f " i ḡ, then ḡ is an pn ´1q-branching and by induction hypothesis, ḡ is generated by the critical branchings, and so is f . Otherwise, then either f is a critical branching and so the result holds, or we can write f " ḡ b h, with ḡ ‰ 1 and h ‰ 1. The only case where we cannot apply the induction hypothesis to conclude is if ḡ (resp. h) is also an n-branching with source of length p. But then h (resp. ḡ) has to be a 0-branching with source of length 0, that is h " 1 (resp. h " 1), but this contradicts the hypothesis on h (resp. ḡ). Definition 5.3.1.11. Let Σ be a Gray 1-polygraph, and let f be a rewriting step. Then f can be factored uniquely as ugv, with u, v P Σ Gp0q 0 and g P Σ 1 . We call u (resp. v) the left-whisker (resp. right-whisker of g, and denote it by lwpf q (resp. rwpf q). Lemma 5.3.1.12. Let Σ be a Gray 1-polygraph, and suppose that for all f P Σ 1 , spf q ‰ 1. Let f 1 , . . . , f n be distinguished critical branchings, and h " f 1 b . . . b f n P LocBrpΣq p , for some p ě 1. Let us write h " ph 1 , . . . , h p q.

Then for any 1 ď i ‰ j ď p, h i ‰ h j .

Proof. Let j 1 , . . . , j n such that for all 1 ď i ď n, f i P LocBrpΣq j i , and let h " ph 1 , . . . , h p q, where each h i is a rewriting step. For any 1 ď i ď p, let us denote by upiq and vpiq the unique integers such that 1 ď vpiq ď j upiq and i " j 1 `. . . `jupiq´1 `vpiq. Then by definition of the product: h i " sp f 1 q . . . sp f upiq´1 q f upiq vpiq sp f upiq`1 q . . . sp f n q Let now 1 ď i ‰ j ď p, and let us show that h i ‰ h j .

• If upiq " upjq, then there exists x, y P Σ Gp1q such that h i " xf upiq vpiq y and h j " xf upiq vpjq y. Since f upiq is not an aspherical branching, f upiq vpiq ‰ f upiq vpjq and so h i ‰ h j .

• Otherwise, suppose without loss of generality that i ă j. Then there exists x, y, z P Σ Gp0q 0 such that: h i " x f upiq vpiq y spf upjq qz h j " x sp f upiq vpiq qy f upjq vpjq z

Then in particular lwph i q " xlwpf upiq vpiq q and lwph j q " x sp f upiq qylwp f upjq vpjq q. But the hypothesis on the source of the branchings implies that lpspf upiq vpiq qq ą lplwpf upiq vpiq qq. So as a consequence, lplwph i qq ă lplwph j qq, and so h i ‰ h j . Lemma 5.3.1.13. Let Σ be a Gray 1-polygraph, and suppose that for all f P Σ 1 , spf q ‰ 1. Let f 1 , . . . , f n and ḡ1 , . . . , ḡm be families of distinguished critical branchings. If σ ¨f 1 b . . . b f n " τ ¨pḡ 1 b . . . b ḡm ), for some σ, τ P S p , then n " m, σ " τ and for all 1 ď i ď n, f i " ḡi .

Proof. First we prove, that for all 1 ď i ď n, sp f i q " spḡ i q. Indeed, otherwise, let i minimal such that sp f i q ‰ spḡ i q. Note first that necessarily m ě i, so that ḡi is well-defined. Indeed, if m " i ´1 the hypothesis on the source of the rewriting steps gives us that lpsp f i qq ą 0 and so we get the following contradiction (where u " sp f 1 q . . . sp f n q): lpuq " lpsp f 1 q . . . sp f n qq ě lpsp f 1 q . . . sp f i qq ą lpsp f 1 q . . . sp f i´1 qq " lpspḡ 1 q . . . spḡ i´1 qq " lpuq. Moreover, the fact that i is minimal implies that lp f i q ‰ lpḡ i q. Without loss of generality, suppose that lpsp f i qq ă lpspḡ i qq, such that spḡ i q " sp f i qv for some v P Σ Gp1q 0 , v ‰ 1. Note that Remark 5.3.1.15. The condition that for all f P Σ 1 , spf q ‰ 1 is really necessary. Indeed, if f is such an rewriting step, then we have 1 f " pf, f q " f b f . This condition however is very mild since we are interested in terminating polygraphs, which will all verify this condition. Definition 5.3.1.16. A good choice of critical branching is a choice of critical branchings such that for all distinguished critical n-branching f and all 1 ď i ď n, there exists distinguished critical branchings f 1 , . . . , f p such that B i f " f 1 b . . . b f p . Lemma 5.3.1.17. Let Σ be a Gray 1-polygraph such that for all f P Σ 1 , spf q ‰ 1. There exists a good choice of critical branchings in LocBrpΣq.

Proof. For n " 0, critical 0-branchings correspond to the elements of Σ 0 . The equivalence classes are trivial, so we choose all of those as distinguished ones. For n " 1 the critical 1-branchings are the elements of Σ 1 , and once again the equivalence classes are trivial. The condition that there exists distinguished critical 0-branchings f 1 , . . . , f p such that B 1 f " f 1 b . . . b f p correspond to the fact that B 1 f is a word on Σ 0 .

We now order rewriting steps by saying that for all f, g P Σ 1 and all x, y, z P Σ Gp1q 0 , xf yspgqz ă x spf qygz. Note that in particular this is anti-reflexive because if xf yspf qz ă x spf qyf z then in particular x " x spf qy and so spf q " 1, which is impossible by hypothesis. Let us now choose a completion of ă into a total ordering on rewriting steps. We say that a non-aspherical branching f is well-ordered if for any i ă j, f i ă f j . In particular if f 1 and f 2 are well-ordered, then so is f 1 b f 2 . Define the distinguished critical branchings as the well-ordered ones, and let us show that this is a good choice of critical branchings. First because the order is total it is a choice of critical branchings.

Next we reason inductively on n to show that for any 1 ď i ď n, and any n-branching f , B i f is of the required form. Since a choice of critical branchings freely generate all branchings we know that we can write B i f " σ ¨ jp . . . 1 p f 1 b . . . b f m q, with f k all distinguished critical branchings. Since f is a critical branching, no rewriting step appears twice in f and in particular this also holds for B i f . So p " 0 and B i f " σ ¨p f 1 b . . . b f m q. Since all the f i are well-ordered, so is f 1 b . . . b f m , and so is B i f (because f was). But then the only permutation that respects the order is σ " 1.

Note that the proof of Lemma 5.3.1.17 actually proves the following: Proposition 5.3.1.18. Let Σ be a Gray 1-polygraph such that for all f P Σ 1 , spf q ‰ 1, and let ă be a total ordering on rewriting steps such that for all f, g P Σ 1 and all x, y, z P Σ Gp1q 0 , xf yspgqz ă x spf qygz Define a non-aspherical branching f " pf 1 , . . . , f n q to be well-ordered if for all i ă j, f i ă f j , and define the distinguished critical branchings as the well-ordered ones.

This defines a good choice of critical branchings in LocBrpΣq.

Remark 5.3.1.19. In particular, if Σ is a reduced Gray 1-polygraph, then the left-most ordering on rewriting steps satisfies the hypothesis of Proposition 5.3.1.18. The left-most ordering is defined by: for all rewriting steps f and g of same source, f ă g if lplwpf qq ă lplwpgqq.

The reduced standard resolution of a monoid

In this section, we give an explicit description of the reduced standard resolution of a monoid M . In order to clarify notations, we reserve juxtaposition to denote the multiplication in M . Product in the free Gray-monoid will be denoted by b.

  α A,B,C : pA b Bq b C Ñ A b pB b Cq. This additional data must also satisfy a relation, known as Mac Lane's pentagon: pA b pB b Cqq b D α A,BbC,D / / " A b ppB b Cq b Dq A b α B,C,D # # ppA b Bq b Cq b D α A,B,C b D ; ; α AbB,C,D ) ) A b pB b pC b Dqq pA b Bq b pC b Dq α A,B,CbD 5 5

Theorem 3 . 1 . 1 . 8 ( 3 be two parallel 3 -

 311833 Coherence for pseudonatural transformations). Let C and D be sets, and f , g : C Ñ D applications.Let A, B P PNTransrf , gs ˚p2q cells whose 1-target is of weight 1. There is a 4-cell α : A 1 c B P PNTransrf , gs

˚p2q 4 . 1 . 3 . 3

 4133 Sketch of the proof of Theorem 3.1.3.5

3 . 2 )Dimension 1 :

 321 Definition 2.3.1.2. Let C be a set. Let us describe dimension by dimension a 4-polygraph BiCatrCs, so that bicategories correspond to algebras on BiCatrCs, that is to 4-functors from BiCatrCs to sCat (see Proposition 2.3.1.4). Dimension 0: Let BiCatrCs 0 be the set C. The set BiCatrCs 1 contains, for every a, b P C, a 1-cell a b : a Ñ b.

Dimension 3 :Dimension 4 :•

 34 The set BiCatrCs 3 contains the following 3-cells: • For every a, b, c, d P C, a 3-cell a,b,c,d : of 1-source a b c d . • For every a, b P C, 3-cells a,b : and a,b : of 1-source a b . The set BiCatrCs 4 contains the following 4-cells: For every a, b, c, d, e P C, a 4-cell a,b,c,d,e of 1-source a b c d e . • For every a, b, c P C, a 4-cell a,b,c of 1-source a b c . Definition 2.3.1.3. We denote by AlgpBiCatq the set of all couples pC, Φq:

Dimension 1 :Dimension 3 :

 13 3.1.2, together with the following cells: For every a P C, the set PFonctrf s 1 contains a 1-cell a f paq : a Ñ f paq. Dimension 2: For every a, b P C, the set PFonctrf s 2 contains a 2-cell a,b : a b f pbq ñ a f paq f pbq . The set PFonctrf s 3 contains the following 3-cells: • For every a, b, c P C, a 3-cell a,b,c : of 1-source a b c f pcq .

Definition 3 . 1 . 1 . 1 .

 3111 A pseudonatural transformation τ consists of the following data:• Two pseudofunctors F, F 1 : B Ñ B 1 , where B and B 1 are bicategories.

Dimension 2 :Dimension 3 :Dimension 4 :••Definition 3 . 1 . 1 . 3 .

 2343113 For every a P C, the set PNTransrf , gs 2 contains a 2-cell a : a gpaq ñ a f paq gpaq . For every a, b P C, the set PNTransrf , gs 3 contains a 3-cell: a,b : of 1-source a b gpbq . The set PNTransrf , gs 4 contains the following 4-cells: For every a P C, a 4-cell a of 1-source a gpaq For every a, b, c P C, a 4-cell a,b,c of 1-source a b c gpcq Let AlgpPNTransq be the set of tuples pC, D, f , g, Φq :

Remark 3 . 1 . 1 . 4 .

 3114 Since PFonctrf s (resp. PFonctrgs) is a sub-4-polygraph of PNTransrf , gs, every functor Φ : PNTransrf , gs Ñ sCat induces by restriction two functors Φ : PFonctrf s Ñ sCat Φ : PFonctrgs Ñ sCat Proposition 3.1.1.5. Pseudonatural transformations between pseudofuncteurs are in one-toone correspondence with elements of AlgpPNTransq.

Theorem 3 . 1 . 1 . 8 ( 3 be two parallel 3 -

 311833 Coherence for pseudonatural transformations). Let C and D be sets, and f , g : C Ñ D applications.Let A, B P PNTransrf , gs ˚p2q cells whose 1-target is of weight 1. There is a 4-cell α : A 1 c B P PNTransrf , gs ˚p2q 4 .

˚p2q 4 . 4 Ă

 44 According to Lemma 3.1.2.3, A and B are actually 3-cells in PFonctrf , gs ˚p2q 3 . In Lemma 3.1.2.4, we showed that PFonctrf , gs is 3-coherent, hence there exists a 4-cell α : A 1 c B P PFonctrf , gs ˚p2q PNTransrf , gs ˚p2q 4 . Moreover, the only 1-cells of weight 1 and of the form (3.1.3) are the 1-cells a f paq b , which proves the second part of the Proposition.

3. 1 . 3

 13 The 2-Squier condition of depth 2 and PNTransrf , gs In this section, we finally state Theorem 3.1.3.5, and show that a sub-polygraph of PNTransrf , gs satisfies its hypothesis. The proof of Theorem 3.1.3.5 will occupy Sections 3.2 to 3.4. Definition 3.1.3.1.

Definition 3 . 1 . 3 . 4 .

 3134 An pn `2, nq-polygraph Σ satisfies the n-Squier condition of depth 2 if:

Theorem 3 . 1 . 3 . 5 . 3 whose 1 -

 313531 Let A be a p4, 2q-polygraph satisfying the 2-Squier condition of depth 2. For every parallel 3-cells A, B P Σ ˚p2q target is a normal form, there exists a 4-cell α : A 1 c B in the free p4, 2q-category Σ ˚p2q 4 .

˚p1q 4 .

 4 By not requiring the inversibility of the 2-cells, Theorem 3.1.3.5 gives a more precise statement, at the cost of restricting the set of 3-cells allowed. Lemma 3.1.3.6. The p4, 2q-polygraph PNTrans ``rf , gs satisfies the 2-Squier condition of depth 2. Proof. The 2-Squier condition Let us start by showing the 2-termination of the p4, 2q-polygraph PNTrans ``rf , gs.

7 W 8 a

 78 a f paq gpaq gpbq 0 P a b gpbq E e ) I a f paq gpbq a b f pbq gpbq 7 W a f paq f pbq gpbq D d The 2-Squier condition of depth 2 The following diagrams show the bijection between critical triples and 4-cells. f paq f pdq a b c f pcq f pdq

" a b f pbq f pdq C c a c d gpdq 7 W 7 Wa f paq f pbq gpbq gpcq D d 8 X 1 a c gpcq 7 W 9 " a gpaq gpcq 7 W

 7781797 a gpaq gpcq gpdq 7 W a gpaq gpdq a b c gpcq gpdq ) I A a a gpaq gpbq gpcq gpdq D d 7 W a gpaq gpdq i a b gpbq gpcq gpdq 7 W D d " a b gpbq gpdq C c a c gpcq 7 W a gpaq gpcq 7 W " a f paq gpaq gpcq 7 W a f paq gpcq a gpaq gpbq gpcq i 7 W a f paq gpaq gpbq gpcq a f paq f pbq gpcq i a b c f pcq gpcq 7 W a b f pbq f pcq gpcq 7 W a b f pbq gpcq I i " a f paq gpaq gpcq 7 W a f paq gpcq a f paq f pcq gpcq E e a b c gpcq W w 7 a c f pcq gpcq A a a f paq f pbq f pcq gpcq i 7 W a f paq gpbq gpcq i a b c f pcq gpcq 7 W U u a b f pbq f pcq gpcq 7 W A a " a b f pbq gpcq I i Proposition 3.1.3.7. For every 3-cells A, B P PNTrans ``rf , gs ˚p2q whose 1-target is of the form a f paq b , there exists a 4-cell α : A 1 c B P PNTransrf , gs ˚p2q .

˚p2q 3 .

 3 Proposition 3.1.3.7 allows us to conclude.

˚p2q 3 be

 3 two parallel 3-cells whose 1-target is a f paq b . We are going to build a 4-cell α : A 1 c B P PNTransrf , gs

˚p2q 4 .

 4 According to Lemma 3.1.5.4, there exist C 1 , C 2 , C 1 1 , C

pkqn 7 .

 7 of pn, kq-white-polygraphs and functors Q Given an pn, kq-white-polygraph Σ, the pn, kq-white-category Q wpkq n

  its image is closed by divisors.

  wpkq j is pj ´1q-discriminating on Γ j . Let A P Γ j . If spAq (resp. tpAq) is in the image of I wpkq j´1 then in particular, the k 0 -source (resp. k 0 -target) of A is in the image of I wpkq k 0 . Since I wpkq j is k 0 -discriminating on Γ j , A is in the image of I wpkq j . Hence, we can use Lemma 3.2.3.10, and we get that I wpkq j is pj ´1q-discriminating on Γ wpkq j . Let A P Γ wpkq j . If its k 0 -source (resp. k 0 -target) is in the image of I wpkq k 0 then, by induction hypothesis, the source (rep. target) of A is in the image of I wpkq j´1 , and so A is in the image of I wpkq j

Example 3 . 3 .0. 1 .

 331 We have already shown in Section 2.3 that for every sets C, D and for every applications f , g : C Ñ D, the p4, 2q-polygraph PNTrans ``rf , gs satisfies the hypothesis of Theorem 3.1.3.5.

Lemma 3 . 3 . 1 . 1 .

 3311 The functor F : B w Ñ A ˚is 2-surjective.Proof. By construction, A 2 is the quotient of B w 2 by the equivalence relation generated by:

Lemma 3 . 3 . 1 . 3 .

 3313 The functor F : B wp2q Ñ A wp2q is 3-surjective.

Lemma 3 . 3 .2. 1 .

 331 The functor G : C wp3q Ñ B wp2q is 3-surjective.Proof. By definition, Bwp2q 3

Example 3 . 3 . 3 . 3 .

 3333 In the case where A " Assoc, the set D 2 contains one additional 2-cell: :" And the following cells are composites in D w : 7 W

wp3q 4 .

 4 Since Ā " B there exists a 4-cell α : A 1 c B P E wp3q 4

  1.1.4, 4.1.1.6 and 4.1.2.1 is exactly the same as in [2], except that we make use of the notations introduced in Definition 4.1.1.2. Definition 4.1.1.4. A pre-cubical set is a series of sets C n (for n ě 0) together with applications (called faces operations) B α i : C n Ñ C n´1 , for α " ˘and 1 ď i ď n, satisfying

Example 4 . 1 . 1 . 5 .

 4115 Following work of Grandis and Mauri[START_REF] Grandis | Cubical sets and their site[END_REF], pre-cubical sets can be seen as presheaves over the free PRO generated by cells : 0 Ñ 1 and : 0 Ñ 1. Then the applicationsB í : C n Ñ C n´1 and B ì : C n Ñ C n´1 correspondrespectively to the following cells, with i ´1 strings on the left and n ´i on the right: Equation (4.1.1) corresponds to equations of the following form, replacing the occurrences of either by or depending on α and β: " Note finally that reading an expression B α i . . . B β j from left to right corresponds to reading a string diagram in the PRO from top to bottom.

Definition 4 .

 4 1.1.6. A cubical set (with connections) is given by:

Remark 4 . 1 . 3 . 8 .

 4138 Since the monoidal structure on ω -Cat is biclosed [2], pn, iq -Rect G is the colimit of the following diagram:

Theorem 4 . 1 . 3 . 11 .

 41311 The following functors form an equivalence of Categories:ω -Cat ω -CubCat λ γ -

Theorem 4 . 3 . 1 . 3 .-

 4313 The functors λ and γ restrict to an equivalence of categories:pω, pq -Cat pω, pq -CubCat λ γProof.

1 Φ m DA and n´m 1 Φ

 11 m DB, where 0 ď m ď n is an integer, and D is a composite of length m of faces operations. Using the fact that n´m 1

Theorem 4 . 4 . 1 . 12 .

 44112 Let u, v P T n . If u and v are two representative of minimal length of a same permutation σ, then u " v, where " is the congruence on T n generated by (4.4.2) and (4.4.3). Definition 4.4.1.13. Let C be a cubical ω-category. For every A P C n and σ P S n , we say that A is σ-invertible if there exists a representative of minimal length u of σ such that A is u-invertible, and we define σ ¨A :" u ¨A. By Lemma 4.4.1.6 and Theorem 4.4.1.12, this is independent from the choice of a minimal representative of σ. Proposition 4.4.1.14. The composites of the applications B i : T n Ñ T n´1 with the projection T n´1 S n´1 are compatible with the relations (4.4.1) to (4.4.

  .4.7)). The rest of the results is a consequence of Proposition 4.4.1.2, together with Lemma 4.4.1.4 and 4.4.1.5. Remark 4.4.1.15. The operations B i applied to a permutation σ correspond to deleting the i-th string in the string diagram representation of σ. For example, by definition we have:

Proposition 4 .

 4 4.2.4. Let C and D be cubical ω-categories, and F : C Ñ D a lax p-transfor (resp. an oplax p-transfor). Then F is pseudo if and only if:

  to conclude. First, let us start by recalling the following classical fact about monadic functors (see for example [60]): Proposition 5.1.1.1. Let pT, µ, ηq be a monad on a category C, and U , F the adjunction it induces between C and C T . The functor U strictly creates coequalizers of U -split pairs. In other words, for any f, g : pA, αq Ñ pB, βq in C T , if there exists C in C and h : B Ñ C in C such that coequalizer in C, then there exists a unique γ : T C Ñ C such that pC, γq is a T -algebra and the diagram pA, αq pB, βq pC, γq g f h is a coequaliser in C T . Moreover, γ is the only morphism making the following square commute:

Proposition 5 . 1 . 1 . 5 .

 5115 Let C be a category, and T be a monad on C. Suppose the category T -Alg of T -algebras is equipped with a biclosed monoidal product b.

Proposition 5 . 1 . 3 . 4 .

 5134 Let Σ be monoidal 1-polygraph. The family of local branchings LocBrpΣq equipped with the applications B i , i and b forms a simplicial monoid. Proposition 5.1.3.5. The forgetful functor U : pω, 1q´Cat Ñ CSet is lax monoidal, that is there exists in CSet a morphism : J Ñ U pJq and, naturally in A, B P ω´Cat a morphism µ A,B : U pAq b U pBq Ñ U pA b Bq satisfying the usual conditions.

1 .

 1 Let I be a finite totally ordered set, and x P I. If x ‰ maxpIq (resp.

  Given an n-polygraph Σ, the n-category Q n pΣq is denoted by Σ ˚and is called the free n-category generated by Σ. Let C be an n-category, and 0 ď i ă n and A P C i`1 . If it exists, we denote by A ´1 the inverse of A for the i-composition.We denote by n -Cat pkq the full subcategory of n -Cat whose objects are the pn, kq-categories. Cat `Ñ pn `1q -Cat pnq . We define categories Pol Cat pkq in a similar way to Pol n and Q n . See 2.2.3 in

				Cat,
	and Q n`1 is the composite		
	Pol n`1		/ / n -Cat `Ln / / pn `1q -Cat
	Definition 2.1.2.1. Definition 2.1.2.2. In particular n -Cat p0q is the category of n-groupoids, and n -Cat pnq " n -Cat.
	The functor R n restricts to a functor R	pnq n from pn `1q -Cat pnq to n -Cat `. Once again this
	functor admits a left-adjoint L			pkq n of
	pn, kq-polygraphs and functors Q	pkq n : Pol	pkq n Ñ n -

pnq n : n -

Table 2 .

 2 1: Correspondence for bicategories This correspondence between the structures of bicategory and of algebra over BiCat is summed up by Table 2.1.

  The proof is similar to the case of bicategories, using the correspondence Table2.3.2. Proposition 2.3.2.6. For every sets C, D and every application f : C Ñ D, the 4-polygraph PFonctrf s 3-terminates.

	Pseudofunctors	AlgpPFonctq	
	Source and target	B and B 1	pC, Φ q and pD, Φ q Restrictions
	Function	F 0	f	Function
	Functors	F		2-cells
	Natural transformations	ψ, φ	,	3-cells
	Equalities	(2.3.3) (2.3.4) (2.3.5)		4-cells
	Table 2.2: Correspondence for pseudofunctors	
	Proof.			

be an application. Since BiCatrCs (resp. BiCatrDs) is a sub-4-polygraph of PFonctrf s, every functor Φ : PFonctrf s Ñ sCat induces by restriction two functors:

Φ : BiCatrCs Ñ sCat Φ : BiCatrDs Ñ sCat Proposition 2.3.2.5. Pseudofunctors between (small) categories are in one-to-one correspondence with elements of AlgpPFonctq.

Table 3 .

 3 .1.

	Pseudonatural transformations	AlgpPNTransq
	Source and target	F and F 1	Φ and Φ	Restrictions
	Functors	τ		2-cells
	Natural transformations	σ		3-cells
	Equalities	(3.1.1) (3.1.2)		4-cells

1: Correspondence for pseudonatural transformations

Table 3 .

 3 

2: Classification of the cells of PNTransrf, gs Proposition 3.1.1.6. Let f , g : C Ñ D be two applications. The p4, 2q-polygraph PNTransrf , gs 3-terminates.

  , and A f,g , A g,h and A f,h are the canonical fillings of respectively pf, gq, pg, hq and pf, hq.

		? ?	? ?		(3.1.4)
			f		
		? ?	α 7 W	? ?	/ / ? ?
	,h	/ /	h	B 2	/ /

where A, A f,g , A g,h , A f,h , B 1 and B 2 are pn `1q-cells in Σ ˚pnq n`1

  Definition 3.1.4.1. Let PNTrans u rf , gs be the sub-3-polygraph of PNTransrf , gs containing the same 1-and 2-cells, and whose only 3-cells are the unit cells from Table3.2.A 2-cell h P PNTransrf , gs 2 is said unitary if it is generated by the sub-2-polygraph of PNTransrf , gs whose only 2-cells are and . Lemma 3.1.4.2. Let h P PNTransrf , gs 2 whose target is of the form a f paq b , where a P C and b P D.

•

  If h 1 and h 2 are in PNTrans ``rf , gs ˚, then h is in PNTrans ``rf , gs ˚. • Lastly, if h 2 is in PNTrans ``rf , gs ˚and h 1 is in PNTrans u rf , gs ˚, then because of Lemma 3.1.4.2, h is the source of a 3-cell in PNTrans u rf , gs ˚of length 1, which is impossible since, by hypothesis, h is a normal form for PNTrans u rf , gs. Definition 3.1.4.4. Let PNTrans `rf , gs be the sub-4-polygraph of PNTransrf , gs containing PNTrans ``rf , gs, together with the 2-cells and .

  where A 1 is of length 1. Since the source of A is a normal form for PNTrans u rf , gs, the 3-cell A 1 can only be in PNTrans `rf , gs According to Lemma 3.1.5.2, the normal forms for PNTrans u rf , gs are stable when rewritten by PNTrans `rf , gs ˚. Hence, the source A 2 is a normal form for PNTrans u rf , gs, and by induction hypothesis, A 2 is in PNTrans `rf , gs ˚. By composition, so is A. Lemma 3.1.5.4. Let A be a 3-cell in PNTransrf , gs ˚p2q . There exist C 1 , C 2 P PNTrans u rf , gs 3 whose target is a normal form for PNTrans u rf , gs, a 3-cell A 1 P PNTrans `rf , gs

	˚.
	˚p2q 3	and a 4-
	˚p2q cell α P PNTransrf , gs 4	

  1 2 P PNTrans u rf , gs ˚whose targets are normal forms for PNTrans u rf , gs, A 1 , B 1 P PNTrans `rf , gs ˚p2q and α 1 , α 2 P T P N rf , gs

	˚p2q
	4

  Example 3.2.2.4. Every white p4, 3q-category isH-coherent. A white p4, 3q-category C is C 2 -coherent if and only if it is 3-coherent.Theorem 3.1.3.5. Let A be a p4, 2q-polygraph satisfying the 2-Squier condition of depth 2, and let S A be the set of all 2-cells whose target is a normal form.Then A is S A -coherent. Let C and D be two 2-categories, F : C Ñ D a 2-functor.

	Definition 3.2.2.5.

Definition 3.2.2.3. Let pC, Sq be a pointed white p4, 3q-category. We say that C is S-coherent if for every parallel 1-cells A, B in the p2, 1q-category CaeS, there exists a 2-cell α : A ñ B P CaeS.

  The functor G restricts into a functor GaeS C : C wp3q aeS C Ñ B wp2q aeS B , which is i-surjective for i ă 2 thanks to Lemma 3.3.2.1. Hence, we can conclude thanks to Lemma 3.2.2.8.

	Example 3.3.2.3. In the case where A " Assoc, let A "	. The set C 3 contains the
	following 3-cell:	

op : 7 W

  3.1.3, and by Propositions 4.3.2.10 and 4.3.2.11, so can the two adjunctions. Lastly, the commutations up to isomorphisms come from Proposition 4.3.2.8.

  Remark 4.4.1.7. The first point of the previous Lemma is the main reason why the notion of u-invertibility relies on the monoid T n and not S n . Indeed for C a cubical ω-category, any cell is 1-invertible while the only cells T i T i -invertible are the T i -invertible ones. Definition 4.4.1.8. A symmetric cubical ω-category C is a cubical ω-category C equipped with total applications T i : C n Ñ C n , for 1 ď i ď n ´1, satisfying the equalities (4.2.9) to (4.2.14) and (4.4.4) to (4.4.6). Note that a symmetric cubical ω-category is close but not the same as the notion of symmetric cubical category defined by Grandis in[START_REF] Grandis | Higher cospans and weak cubical categories (cospans in algebraic topology. I)[END_REF]. A symmetric cubical category in the sense of Grandis would be a symmetric cubical ω-category (in the sense of 4.4.1.8, but without connections) object in the category Cat. Proposition 4.4.1.10. Let C be a cubical pω, 1q-category. The applications A Þ Ñ T i A induce a structure of symmetric cubical category on C. Proof. Any cell is T i -invertible in a cubical pω, 1q-category by Corollary 4.3.1.4 and so the applications are indeed total. Moreover and the equations they verify are a consequence of Proposition 4.2.3.6 and Lemma 4.4.1.6.

	Remark 4.4.1.9.

  Let C be a cubical ω-category, andA P C n . If i A is σ-invertible, then A is B i¨σ ´σ-invertible and: σ ¨ i A " i¨σ ´pB i¨σ ´σ ¨AqIf Γ α i A is σ-invertible then A is also B i¨σ ´σ-invertible and if pi `1q ¨σ´" i ¨σ´`1 we have:

	i	B i σ
	σ	"
	i¨σ	i¨σ
	Lemma 4.4.1.16.	

  .4.15) (resp. (4.4.16) to (4.4.19)). Gq n pAq " F n pAq ‹ n`i G n pAq (4.4.27) Proposition 4.4.2.2. Let C be a cubical ω-category. The functors p_ b Cq and pC b _q are respectively left-adjoint to the functors LaxpC, _q and OpLaxpC, _q. This implies that ω -CubCat is a biclosed monoidal category.Definition 4.4.2.3. Let n, m ě 0 be integers. We denote by ρ n,m P S n`m the following permutations:

	B α p`i F n pAq " F n´1 pB α i Aq	(4.4.12)	B α i F n pAq " F n´1 pB α i Aq	(4.4.16)
	F n p i Aq " p`i F n´1 pAq	(4.4.13)	F n p i Aq " i F n´1 pAq	(4.4.17)
	F n pΓ α i Aq " Γ α p`i F n´1 pAq	(4.4.14)	F n pΓ α i Aq " Γ α i F n´1 pAq	(4.4.18)
	F n pA ‹ i Bq " F n pAq ‹ p`i F n pBq	(4.4.15)	F n pA ‹ i Bq " F n pAq ‹ i F n pBq	(4.4.19)
	Moreover, the cubical ω-category structure on LaxpC, Dq (resp. on OpLaxpC, Dq) is given
	by the equations (4.4.20) to (4.4.23) (resp. (4.4.24) to (4.4.27)).	
	pB α i F q n pAq " B α i pF n pAqq	(4.4.20)	pB α i F q n pAq " B α n`i pF n pAqq	(4.4.24)
	p i F q n pAq " i pF n pAqq	(4.4.21)	p i F q n pAq " n`i pF n pAqq	(4.4.25)
	pΓ α i F q n pAq " Γ α i pF n pAqq	(4.4.22)	pΓ α i F q n pAq " Γ α n`i pF n pAqq	(4.4.26)
	pF ‹ i Gq n pAq " F n pAq ‹ i G n pAq pF ‹ i The following Proposition is a consequence of [2], Section 10. (4.4.23)	

  Gq is pseudo for all j. Therefore, F ‹ i G is pseudo. Definition 4.4.2.5. Let C and D be cubical ω-categories. We denote by PsLaxpC, Dq (resp. PsOpLaxpC, Dq) the pseudo lax transfors (resp. the pseudo oplax transfors) from C to D. By Proposition 4.4.2.4, PsLaxpC, Dq and PsOpLaxpC, Dq are cubical ω-categories. Proposition 4.4.2.6. For all cubical ω-categories C and D, the cubical ω-categories PsLaxpC, Dq and PsOpLaxpC, Dq are isomorphic. Proof. Let F P PsLaxpC, Dq, and define applications G n : C n Ñ D n`p as: G n pAq " ρ n,p Fn pAq. Let us show that G is an oplax p-transfor (using formulas from Lemma 4.4.1.16):B α i G n pAq " B α i pρ n,p ¨Fn pAqq " B i ρ n,p ¨Bα i¨ρn,p F n pAq " ρ n´1,p ¨Bi`p F n pAq " ρ n´1,p ¨Fn´1 pB α i pAqq " G n´1 pB α Moreover, for A P C n ρ ¨F pAq " ρ n,p ¨F pAq is ρ p,n -invertible (with ρ p,n -inverse A). So PpF q is actually pseudo. Let us show that P is functorial. Let F P PsLaxpC, Dq p :

				and α "	Bì
	G			i " j and α "	So
	by the induction hypothesis, B α j pF ‹ i G n pΓ α i Aq " ρ n,p ¨Fn pΓ α i Aq " ρ n,p	¨Γα p`i F n´1 pAq
	" Γ α pp`iq¨ρp,n pB pp`iq¨ρp,n ρ n,p ¨Fn´1 pAqq
	" Γ α i pB i ρ n,p ¨Fn´1 pAqq " Γ α i pρ n´1,p ¨Fn´1 pAqq " Γ α i G n´1 pAq
	G pB α i pPpF qqq n pAq " B α n`i ppPpF qq n pAqq " B α n`i pρ n,p ¨F pAqq
	" B n`i ρ n,p	¨Bα pn`iq¨ρn,p F pAq
	" ρ n,p´1	¨Bα i F pAq " PpB α i F qpAq
	pPpΓ α i F qq n pAq " ρ n,p ¨ppΓ α i F q n pAqq " ρ n,p	¨Γα i pF n pAqq
	" Γ α i¨ρp,		

i pAqq G n p i Aq " ρ n,p ¨Fn p i Aq " ρ n,p ¨ p`i F n´1 pAq " pp`iq¨ρp,n pB pp`iq¨ρp,n ρ n,p ¨Fn´1 pAqq " i pB i ρ n,p ¨Fn´1 pAqq " i pρ n´1,p ¨Fn´1 pAqq " i G n´1 pAq n pA ‹ i Bq " ρ n,p ¨Fn pA ‹ i Bq " ρ n,p ¨pF n pAq ‹ p`i F n pBqq " pρ n,p ¨Fn pAqq ‹ pp`iq¨ρp,n pρ n,p ¨Fn pBqq " G n pAq ‹ i G n pBq We denote by PpF q this oplax p-transfor. n pB i¨ρp,n ρ n,p ¨Fn pAqq " Γ α n`i pB p`i ρ n,p ¨Fn pAqq " Γ α n`i pρ n,p´1 ¨Fn pAqq " pΓ α i pPpF qqq n pAq

•

  Suppose n-T -polygraphs defined, together with F n and U n . Then an pn `1q-T -polygraph is the data of an n-T -polygraph Σ, a set Σ n`1 and a morphism B : Σ n`1 ¨F p Č Y pn `1qq Ñ F n pΣq, where Č Y pn `1q is obtained from Y pn`1q by removing Y pn`1q n`1 . Then the functor F n`1 is defined by the following pushout of T -algebras, where ι denoted the inclusion of Č Y pn `1q into Y pn `1q:

  Spxq, Spyq C P i t ‹ i C t t i " Spxq, Spyq Suppose now that i ‰ j. Then we have: Spxq and t i ‰ Spyq C P i t ‹ i C t t i " Spxq and t j ‰ Spyq C P j t ‹ i C t t i ‰ Spxq and t j " Spyq

		$	
		' '	C t	t j ‰
		'	
		'	
	comp j y ˝comp i x pC ' q t "	&	
		'	
		'	
		'	
		'	
		%	

  t ´p1q 1 SpB 1 B s´p 1q τ A q

	B `1Γ 1 " Γ ís ´p1q ´,t ´p1q 1 Γ 1 B ís ´p1q SpB 1 B s´p 1q τ A q
	" Γ ´,t ´p1q 1	Γ 1 SpB	ís ´p1q	´1B 1 B s´p 1q τ A q
	" Γ ´,t ´p1q 1	Γ 1 SpB 1 B	ís ´p1q	B s´p 1q τ A q
	" Γ			

Any reader not convinced of the utility of such an algorithm should prove whether the words stssttsstst and tsttstttsts are equal in B 3 .

To be more precise, we should talk about the p2, 1q-category presented. Otherwise, we are only considering rewriting paths and not equivalence paths.

x f 1 x f Γ 1 f

The sets K and L will be defined in Section 3.3.1

c 1 c

B ìs ´p1q `1Γ 1 SpB 1 B s´p 1q τ A q " Γ ´,s ´p1q i 1 Γ 1 B ìs ´p1q SpB 1 B s´p 1q τ A q " Γ ´,s ´p1q i 1 Γ 1 SpB ìs ´p1q ´1B 1 B s´p 1q τ A q " Γ ´,s ´p1q i 1 Γ 1 SpB 1 B ìs ´p1q B s´p 1q τ A q " Γ ´,s ´p1q i 1 Γ 1 SpB 1 B ì,s ´p1q τ A q B í C A S i s " B í Γ´,S i s ´p1q 1Γ 1 SpB 1 B Si s ´p1q τ A q " Γ´,s ´p1q i 1Γ 1 SpB 1 B ì,s ´p1q τ A q

Chapter 2

Classical higher dimensional rewriting

Chapter 3

Coherence for pseudonatural transformations

We denote by F the white 4-polygraph obtained after performing this series of Tietzetransformations for every non-aspherical branching pf, gq, and Π : E wp3q Ñ F wp3q the white 3-functor induced by the Tietze-transformations. We still denote by A g,f the composite in F wp3q 4

, image by Π of A f,g P E 4 .

Example 3.3.5.3. In the case where A " Assoc, the cells and op respectively associated to the branchings p , q and p , q have been replaced by cells of the following shape:

Since A is 2-terminating, the set A 1 is equipped with a well-founded ordering ñ. This induces a well-founded ordering ñ m on NrA 1 s. We now define two applications p : F w 2 Ñ NrA 1 s and w η : F w 3 Ñ NrA 1 s. Using ñ m , those applications induce well-founded orderings on F w 2 and F w 3 . We then show a number of properties of these applications in preparation for Section 3.2.2. Definition 3.4.2.5. We define an application p : F w 2 Ñ NrA 1 s: • for every f P F w 2 of length 1, we set ppf q :" spf q `tpf q, • for every composable f 1 , f 2 P F w 2 , we set ppf 1 ' 1 f 2 q :" ppf 1 q `ppf 2 q. For every f, g P F w 2 , we set f ą g if ppf q ñ m ppgq. The relation ą is a well-founded ordering of F w 2 . Definition 3.4.2.6. We define an application w η : F w 3 Ñ NrA 1 s by setting: • For every f P B w 2 of length 1, w η pη f q " spf q. • For every 3-cell A P F 3 and u, v P A 1 , if A is not an η f then w η puAvq " 0.

• For every f 1 , f 2 P F w 2 and A P F w 3 , w η pf 1 ' 1 A ' 1 f 2 q " w η pAq. • For every A 1 , A 2 P F w 3 , w η pA 1 ' 2 A 2 q " w η pA 1 q `wη pA 2 q. Definition 3.4.2.7. A product of the form f ' 1 g P F w 2 , where f and g are nonempty cells in B w 2 is called a cavity. It is a local cavity if f and g are of length 1. Let C F be the set of all cavities.

Lemma 3.4.2.8. Let f, g P B w 2 . Suppose f is not an identity and tpf q " spgq. The following inequality holds: spf q ą ppgq Proof. We reason by induction on the length of g. If g is empty, then ppgq " 0 ă spf q.

Otherwise, let us write g " g 1 ' 1 g 2 , with g 1 of length 1. Then ppgq " ppg 1 q `ppg 2 q and by induction hypothesis ppg 2 q ă spf ' 1 g 1 q " spf q. Moreover, we have f : spf q ñ spg 1 q and f ' 1 g 1 : spf q ñ tpg 1 q. Hence, spf q ą ppg 1 q, spg 2 q, tpg 2 q and, by Lemma 3.4.2.2, we get spf q ą ppg 1 q `spg 2 q `tpg 2 q " ppgq. Lemma 3.4.2.9. Let f 1 , f 2 , g 1 , g 2 P B w 2 , with f 1 and f 2 non-empty and of same source u. For every 3-cell A : f1 ' 1 f 2 g 1 ' 1 ḡ2 P F w 3 , the following inequalities hold: ppspAqq ą u ą pptpAqq.

In particular for every cell C f,g , we have spC f,g q ą tpC f,g q.

Proof. Considering the first inequality, we have ppspAqq " ppf 1 q `ppg 2 q ě 2u ą u.

Considering the second one, using Lemma 3.4.2.8, we have the inequalities u " spf 1 q ą ppg 1 q and u " spf 2 q ą ppg 2 q. By 3.4.2.2, we then have u ą ppg 1 q `ppg 2 q " pptpAqq. Definition 3.4.2.10. Let h P F w 2 . A factorisation h " h 1 ' 1 f1 ' 1 f 2 ' 1 h 2 of h, with f 1 , f 2 P B w 2 of length 1 and h 1 , h 2 P F w 2 is called a cavity-factorisation of h. Thus, a cavity-factorisation is represented as follows:

Lemma 3.4.2.14. Let h P F w 2 and u P A 1 such that u ą pphq, u ą sphq and u ą tphq. For every 3-cell A P F w 3 of source h, the inequality u ą w η pAq holds.

Proof. We reason by induction on the length of A. If A is of length 0, w η pAq " 0 and the result holds.

Otherwise, let us write A " A 1 ' 2 A 2 , with A 1 of length 1. We distinguish two cases depending on the shape of A 1 .

• If A 1 " h 1 ' 1 η f ' 1 h 2 , with h 1 , h 2 P F w 2 and f P B w 2 of length 1. If h 1 and h 2 are empty, then spA 2 q " f ' 1 f . Thus ppspA 2 qq " 2 spf q `2 tpf q ď 4 spf q " 4 sphq. Since sphq ă u, using Lemma 3.4.2.2, we get that ppspA 2 qq ă u. Applying the induction hypothesis to A 2 , we get w η pA 2 q ă u. Moreover, w η pAq " w η pA 1 q `wη pA 2 q " spf q `wpA 2 q, and we showed that wpA 2 q ă u and spf q " sphq ă u. Thus, according to Lemma 3.4.2.2 we get w η pAq ă u. Otherwise, suppose for example that h 1 is not an identity (the case where h 2 is not an identity being symmetrical). Then we have v tph 1 q ppph 1 qq ą 0, so v tph 1 q ppphqq ą 0. Since pphq ă u, we have by Lemma 3.4.2.2 that spf q " tph 1 q ă u. So ppspA 2 qq " pph 1 q`pph 2 q2 spf q `2 tpf q ă pphq `4 spf q ă u. By induction hypothesis, we thus have w η pA 2 q ă u, and finally w η pAq " spf q `wη pA 2 q ă u.

• Otherwise, we have on the one hand that w η pA 1 q " 0, and on the other hand that spA 2 q " tpA 1 q ă spA 1 q " h ă u by Lemma 3.4.2.9. Thus, w η pAq " w η pA 2 q ă u.

Lemma 3.4.2.15. Let pf 1 , f 2 , f 3 q be a 3-fold local branching, u P A 1 , and A, B P F w 3 two 3-cells such that there exists a 4-cell:

Then w η pAq, w η pBq ă u.

Proof. Using Lemma 3.4.2.9, we have pptpC f 1 ,f 2 qq, pptpC f 2 ,f 3 qq, pptpC f 1 ,f 3 qq ă u. So ppspAqq " pptpC f 1 ,f 2 q `pptpC f 2 ,f 3 qq ă u et ppspBqq " pptpC f 1 ,f 3 qq ă u, and using 3.4.2.14, we get w η pAq, w η pBq ă u

Partial coherence of F wp3q

Proposition 3.4.3.1. For every 2-cell h P F w 2 with source and target û a normal form for A 2 , and for every 3-cells A, B : h

.

Proof. We reason by induction on the couple pw η pAq `wη pBq, pphqq, using the lexicographic order. If h " 1 û, then A " B " 1 h . Thus setting α " 1 A " 1 B shows that the property is verified. Suppose now that h is not an identity. Using Lemma 3.4.2.11, there exists a cavityfactorisation h "

Using this Lemma, we distinguish four cases depending on the shape of A 1 and A 2 .

Chapter 4

Cubical pω, pq-categories pA‹ i Bq‹ j pC ‹ i Dq " pA‹ j Cq‹ i pB‹ j Dq (4.1.7)

i " j and α " Bì B i " j and α " `(4.1.13)

i " j and α " Γì

i " j and α " `(4. 1.14) where in the last relation we denote by

(which is made possible by relation (4.1.7)). We denote by ω -CubCat the category of cubical ω-categories.

Definition 4.1.2.2. Let C be a cubical ω-category. For any n ą 0, we define operations ψ i , Ψ r , Φ m : C n Ñ C n , with 1 ď i ď n ´1, 1 ď r ď n and 0 ď m ď n as follows:

Let C be a cubical ω-category, and A P C n . We say that A is a thin cell if ψ 1 . . . ψ n´1 A P Im 1 .

Definition 4.1.2.4. Let n P N. There is a truncation functor tr n : pn `1q -CubCat Ñ n -CubCat. This functor admits both a left and a right adjoint (see [START_REF] Higgins | Thin elements and commutative shells in cubical ω-categories[END_REF] for an explicit description of both functors).

For C P n -CubCat, the pn `1q-category lC coincides with C up to dimension n, and the rest of the structure is defined as follows:

Equivalence between cubical and globular ω-categories

The functor γ : ω -CubCat Ñ ω -Cat was described in [2] as follows.

Proposition 4.1.3.1. Let C be a cubical category. The following assignment defines a globular ω-category γC :

• The n-cells of γC are the elements of Φ n pC n q,

• For all A P γC n , 1 A :" 1 A,

• For all A P γC n , spAq :" B 1 A,

• For all A P γC n , tpAq :" B 1 A,

• For all A, B P γC n and 0

To define the functor λ : ω -Cat Ñ ω -CubCat, we start by constructing a co-cubical ω-category object in ω -Cat. This is a reformulation of [2]. Definition 4.1.3.2. Let I be the category with two 0-cells p´q and p`q and one non-identity 1-cell p0 ¨q: p0 ¨q : p´q Ñ p`q

We denote by n -G , and call the n-cube category the globular ω-category I bn , where b is the Crans-Gray tensor product, which equips ω -Cat with a closed monoidal structure.

Example 4.1.3.3. For example 2 -G is the free 2-category with four 0-cells, four generating 1-cells and one generating 2-cell, with source and targets given by the following diagram: p´´q p`´q p´`q p``q p0 ¨´q p0 ¨`q p´0 ¨q p`0 ¨q A Definition 4.1.3.4. For α " ˘, we denote by Bα : J Ñ I the functor sending the (unique) 0-dimensional cell of J to pαq, where J denotes the terminal category.

For any n ě 0, any 1 ď i ď n and any α " ˘, we denote by Bα

Definition 4.1.3.5. We denote by ˇ : 1 -G Ñ 0 -G the (unique) functor from I to J.

For any n ą 0 and any 1 ď i ď n, we denote by

Definition 4.1.3.6. For α " ˘, let Γα : 2 -G Ñ 1 -G be the functor defined as follows, where β " ´α:

Γα p0 ¨αq " p0 ¨q Γα p0 ¨βq " 1 pβq Γα pα0 ¨q " p0 ¨q Γα pβ0 ¨q " 1 pβq Γα p0 ¨0 ¨q " 1 p0 ¨q Lemma 4.2.3.4. Let C be a cubical n-category. Let 1 ď i ă n and A P lC. Then A is T j -invertible if and only if for all i ‰ j, j `1, A α i is T j i -invertible, and:

In particular, if C is a cubical ω-category, and a cell A P C n has a T i -invertible shell, then B α j A is T i j -invertible for any j ‰ i, i `1. Proof. Suppose first that A P lC is T j -invertible, and let i ‰ j, j `1. Then we have:

For i " j, we have:

Finally, for i " j `1:

Then B is an element of lC, and we verify that it is the T i -inverse of A. Proposition 4.2.3.5. Let C be a cubical ω-category, and A P C n , with n ě 2. Then A is T i -invertible if and only if A is invertible and has a T i -invertible shell.

Proof. Suppose A is T i -invertible. Then ψ i A is R i -invertible, and therefore it is invertible. Recall from [2] that A is equal to the following composite:

Cubical and globular pω, pq-categories

In this Section we start by defining the notion of cubical pω, pq-categories. In Proposition 4.3.1.2, we give various equivalent characterisations of those using the result from Section 4.2. As a result, we show Theorem 4.3.1.3 that the equivalence between globular and cubical ω-category induces equivalences between globular and cubical pω, pq-categories. Finally, in Corollary 4.3.1.4 we give a simple characterisation of the notions of cubical pω, 0q and pω, 1q-categories. Definition 4.3.1.1. Let C be a cubical ω-category, and p a natural number. We say that C is a cubical pω, pq-category if any n-cell is invertible, for n ą p. We denote by pω, pq -CubCat the full subcategory of ω -CubCat spanned by cubical pω, pq-categories. Proposition 4.3.1.2. Let C be a cubical ω-category, and fix n ą 0. The following five properties are equivalent:

2. For all 1 ď i ď n, any n-cell in C n with an R i -invertible shell is R i -invertible.

3. Any n-cell in C n with an R 1 -invertible shell is R 1 -invertible.

Any n-cell

Moreover, if n ą 1, then all the previous properties are also equivalent to the following:

Proof. (1) ñ (2) holds by Proposition 4.2.2.2, (2) ñ (3) is clear, and (3) ñ (4) holds because if A P C n satisfies B α j A P Im 1 , then its shell is R 1 -invertible. Also, (4) ñ (5) holds because for any A P Φ n pC n q, B α j A P Im 1 for all j ‰ 1. Let us finally show that (5) ñ (1). From Lemmas 4.2.1.7 and 4.2.1.8, for any i ă n, a cell A P C n with an R 1 -invertible shell is R 1 -invertible if and only if ψ i A. Iterating this result, we get that for all

Suppose now n ą 1. Then (1) ñ (6) by Proposition 4.2.3.5, and clearly (6) ñ [START_REF] Bénabou | Introduction to bicategories[END_REF]. Suppose now that any n-cell with a T 1 -invertible shell is T 1 -invertible, and let us show that (4) holds. Let A P C n such that B α j A P Im 1 for all j ‰ 1 is R 1 -invertible. Then A has a T 1 -invertible shell, and is therefore T 1 -invertible by hypothesis. So A is invertible, and since it has an R 1 -invertible shell, it is R 1 -invertible. Definition 4.3.2.2. An augmented directed chain complex (or ADC for short) is an augmented chain complex K equipped with a submonoid K n of K n for any n ě 0.

A morphism of ADCs K Ñ L is a morphism of augmented chain complexes f satisfying f pK n q Ď L n. We denote by ADC the category of augmented directed chain complexes.

The following is a reformulation of Steiner [START_REF] Steiner | Omega-categories and chain complexes[END_REF]: Proposition 4.3.2.3. Let us fix n ě 0, and let K the following ADC:

We denote this ADC by n-ADC . Equipped with morphisms š, ť : pn `1q-ADC Ñ n-ADC , 1 : n-ADC Ñ pn `1q-ADC and ‹i : n-ADC Ů i-

ADC n-ADC , those form a co globular ω-category object in ADC, and therefore they induce a functor N G : ADC Ñ ω -Cat defined by pN G Kq n " ADCpn-ADC , Kq

The category ADC is equipped with a tensor product defined as follows [START_REF] Steiner | Omega-categories and chain complexes[END_REF]: Definition 4.3.2.4. Let K and L be ADCs. We define an object K b L in ADC as follows:

• For all n ě 0, pK b Lq n is the sub-monoid of pK b Lq n generated by the elements of the form x b y, with x P K i and y P L n´i .

• For all x P K i and y P L n´i , drx b ys " drxs b y `p´1q i x b drys.

• For all x P K 0 and y P L 0 , erx b ys " erxs erys.

Proposition 4.3.2.5. Let C be a globular ω-category. Following Steiner [START_REF] Steiner | Omega-categories and chain complexes[END_REF], we define an ADC K " Z G C as follows:

• For all n P N, K n is the quotient of the group ZrC n s by the relation rA ' k Bs " rAs `rBs.

• For all n P N, K n is the image of NrC n s in K n .

• For all A P C n , drAs " rspAqs ´rtpAqs.

• For all A P C 0 , erAs " 1.

Let n -ADC be the augmented directed complex Z G pn -G q. The applications Bα i , ˇ i , Γα i and ‹i still induce a structure of co-cubical ω-category object in ADC on the family n -ADC . Consequently, for any K P ADC the family of sets ADCpn -ADC , Kq is equipped with a structure of cubical ω-category. This defines a functor N C : ADC Ñ ω -CubCat.

Let C be a cubical ω-category. We define an ADC K " Z C C as follows:

Permutations in cubical pω, pq-categories

We now apply our results from the previous Section. First, we show in Section 4.4.1 that the operations T i induce a partial action of the symmetric group S n on the n-cells of a cubical ωcategory. To do this, we define a general notion of σ-invertibility, where σ P S n . In particular when σ is a transposition τ i we recover the notion of T i -invertibility of Section 4.2.3. In Section 4.4.2, we define the notions of lax and oplax transfors between cubical categories. Then we then define what it means for a tranfor to be pseudo using the notion of σinvertibility defined previously and finally we show that the cubical ω-categories of pseudo lax and oplax transfors between two cubical ω-categories are isomorphic

Cubical pω, 1q-categories are symmetric

We start by defining a notion of u-invertibility, where u is a word over T 1 , . . . , T i , and characterise the notion of u-invertibility in terms of plain invertibility, just as we have done previously for R i and T i -invertibility.

We then show how the notion of u-invertibility induces a notion of σ-invertibility, for σ P S n . The difficulty lies in the fact that, even if two words u and v over T 1 , . . . , T i correspond to the same permutations, the notions of u and v-invertibility do not necessarily coincide. We circumvent this difficulty by using a classical result about the symmetric group (see Theorem 4.4.1.12), which makes use of the notion of representative of minimal length of permutation.

Finally, in Proposition 4.4.1.14 we extend the results concerning u-invertibility to σ-invertibility, with σ P S n . Definition 4.4.1.1. Let n P N. We write T n the free monoid on n ´1 elements. We denote its generators by T 1 , . . . , T n´1 , and by l : T n Ñ N the morphism of monoids that sends every T i on 1. For u P T n , we call lpuq the length of u.

Recall that S n is a quotient of T n using the relations:

)

We denote by ū the image of an element u P T n in S n , and τ i " Ti . Using this projection, one defines a right-action of T n on t1, . . . , nu by setting k ¨u :" k ¨ū.

Let C be a cubical ω-category. For every u P T n , we define a notion of u-invertible cell and a partial application u ¨_ : C n Ñ C n defined on u-invertible cells as follows:

• Any n-cell of C n is 1-invertible, and 1 ¨A " A.

• For any u P T n and 1 ď i ă n, a cell A P C n is said to be pT i ¨uq-invertible if A is u-invertible and u ¨A is T i -invertible. Moreover, we set: pT i ¨uq ¨A :" T i pu ¨Aq.

In particular, we say that

Proposition 4.4.1.2. Let C be a cubical ω-category, and A be an n-cell in C, with n ě 2. Let u P T n . Suppose u ‰ 1. Then A is u-invertible if and only if A is invertible and has a u-invertible shell.

Proof. We reason by induction on the length of u. If u is of length 1, there exists 1 ď i ă n such that u " T i , and the result to prove becomes: A is T i -invertible if and only if A is invertible and has a T i -invertible shell, which is exactly Proposition 4.2.3.5. Otherwise, write u " T i v, with v ‰ 1. Suppose A is u-invertible. Then by definition A is vinvertible, and v ¨A is T i -invertible. By induction A is therefore invertible, and has a v-invertible shell. Moreover, v ¨A is T i -invertible, and hence has a T i -invertible shell by Proposition 4.2.3.5.

Reciprocally, suppose A is invertible, and has a pT i ¨vq-invertible shell. Then A has a vinvertible shell, and v¨B B BA is T i -invertible. Since A is also invertible, by induction A is v-invertible, and since B B Bpv ¨Aq " v ¨B B BA, the cell v ¨A has a T i -invertible shell. Moreover, it is invertible, and so by Proposition 4.2.3.5, v ¨A is T i -invertible, which means that A is u-invertible. Definition 4.4.1.3. For 1 ď i ď n, we define applications B i : T n Ñ T n´1 as follows:

Note in particular that the applications B i are not morphisms of monoids.

Lemma 4.4.1.4. Let u P T n . For all 1 ď i ď n, and 1 ď k ď n, we have:

Proof. Note first the formula holds when u is 1 or a T j . Finally, suppose the property holds for u and v. Then we have:

" ppk i ¨uq i¨u i¨u ¨vq i¨u¨v " pk i ¨u ¨vq i¨u¨v Lemma 4.4.1.5. Let C be a cubical n-category, A P plCq n`1 and u P T n`1 . The cell A is u-invertible if and only if for all j ď n `1, A α j¨u is B j u-invertible, and:

Proof. We reason by induction on the length of u. If u is of length 0, then u " 1 and for all j, B j u " 1. Therefore, both conditions are empty, and p1 ¨Aq α j " A α j . Otherwise, write u " T i ¨v. Suppose that A is u-invertible. Then A is v-invertible, and v ¨A is T i -invertible. Fix j and α. Then B j u " T i j ¨Bj¨T i v. Let us show that A α j¨u is B j u-invertible. We distinguish two cases:

• If j " i (resp. j " i `1), then B j u " B i`1 v (resp. B j v), and j ¨u " pi `1q ¨v (resp. i ¨v).

By induction,

• Otherwise, then B j u " T i j ¨Bj v and j ¨u " j ¨v. By induction hypothesis, Chapter 5

Resolution of monoids 5.1.2 Free Gray pω, 1q-monoids are free pω, 1q-categories . The aim of this Section is to prove that the Gray product of two free pω, 1q-categories is still free. To do that, we show that the pushout-product of two cofibrations in ω-categories is still a cofibration (this is one of the axioms of a monoidal model category). It is a classical result of homotopy theory that it is sufficient to check this result on generating cofibrations. In the first part of this section, we choose our set of generating cofibrations carefully to simplify the computation of the pushout-product. Proposition 5.1.2.1. The free cubical ω-category functor F : ω -CubSet Ñ ω -CubCat is monoidal.

Proof. Let us denote by U : ω -CubCat Ñ ω -CubSet the forgetful functor from cubical ω-category to pre-cubical sets, and P : ω -CubSet Ñ ω -CubSet the functor forgetting dimension 0 and the direction-1 face in every dimension. The functor P also induces a functor P : ω -CubCat Ñ ω -CubCat. Moreover, we have for any cubical ω-category C: U P C " P U C.

Recall from [2] the internal Hom in ω -CubCat is given by ω -CubCatpC, Dq i " ω -CubCatpC, P i Dq, and similarly in ω -CubSet : ω -CubSetpC, Dq i " ω -CubSetpC, P i Dq. So in the end we have, for any pre-cubical set C and any cubical ω-category C:

Moreover, the pre-cubical set structures match, so that we have: U ω -CubCatpF pCq, Cq " ω -CubSetpC, U Cq.

So if C and D are pre-Cubical sets, we have for any cubical ω-category C:

Since this is natural in C, there is an isomorphism F pCq b F pDq " F pC b Dq.

Definition 5.1.2.2. We denote by i n : n -Ñ n -the inclusion of the n-sphere into the n-disk, and by j n : nl Ñ n -the inclusion of the n-shell into the n-cube.

Lemma 5.1.2.3. There are pushouts of ω-categories:

Proof. Notice that in the terminal cubical pω, 1q-category there is only one cell in each dimension. Therefore, U pJq " J and is defined as the identity. For the morphism µ A,B , recall that the product (of pω, 1q-categories) A b B is generated by elements of the form A b B with A P A and

Proposition 5.1.3.6. The functor U induces a functor from Gray pω, 1q-monoids to cubical monoids.

Proof. More generally, a lax monoidal functor between two monoidal categories induces a functor between the categories of monoidal objects in the two categories.

Definition 5.1.3.7. We denote by V the composite of the forgetful functor from Gray pω, 1qmonoids to cubical monoids with the one from cubical monoid to simplicial monoids. be the monoid presented by Σ. We suppose that there exists a morphism of simplicial monoids Φ : LocBrpΣq Ñ V pΣ Gp1q q such that for all A P Σ, ΦpbrpAqq " A.

Then the morphism Σ Gp0q Ñ M is an equivalence of ω-groupoids.

Proof of Theorem 5.1.3.8

The proof of Theorem 5.1.3.8 in Section 5.2.3 relies on the description of a complicated composite of cells. To simplify the expression of this composite, we introduce two main tools: in Section 5.2.2, we introduce a generalised notion of connection, built in any cubical pω, 1q-category as a composite of connections and of permutations, while in Section 5.2.2 we introduce a generalised form of composition, similar to pasting schemes.

Generalised connections

Before defining new notions of connections, we start by defining new notations for operations on permutations.

Lemma 5.2.1.1. Let σ P S n et i, j ď n `1. There exists a unique permutation τ P S n`1 satisfying # B j τ " σ τ ¨j " i Proof. It is the following permutation:

Definition 5.2.1.2. We denote by σri Þ Ñ js the permutation such that

In particular if σ " 1, we simply write ri Þ Ñ js.

Lemma 5.2.1.3. The following equality hold for every k ‰ i:

Proof. Indeed, we have

where u " k ¨σri Þ Ñ js " pk i ¨σq j . Using the fact that pi k k ¨σri Þ Ñ js " i ¨σri Þ Ñ js " j, we get the required formula. In the case where k ‰ j, let us prove that j pk i q j " j k :

• If k ă i, j then pk i q j " k j " k.

• If i, j ă k then pk i q j " pk ´1q j " k.

• If j ă k ă i then pk i q j " k `1, and j k`1 " j " j k .

• If i ă k ă j then pk i q j " k ´1, and j k´1 " j ´1 " j k .

Construction of the normalisation strategy

Let us fix a Gray pω, 1q-polygraph Σ satisfying the hypothesis of Theorem 5.1.3.8. Let M be the monoid presented by Σ, and let us denote by NF : M Ñ Σ Gp0q the inclusion of the normal forms, and by π : Σ Gp0q Ñ M the canonical projection. Note that π is a morphism of Gray monoids, while NF is just a morphism of ω-groupoids. We are going to show that the two from an equivalence of ω-groupoid.

Note first that π ˝NF " id M . We now need to define a natural transformation S : id Σ Gp0q ñ NF ˝π. To do that, we start by making use of the fact that Σ is a Gray pω, 1q-polygraph and that NF and π are induced by morphisms of pω, 1q-categories. This means that we can start by defining a natural transformation S : id Σ Gp1q ñ NF ˝π.

Using the fact that Σ Gp1q is the free pω, 1q-category on the pω, 1q-polygraph rΣs, constructing S amounts to finding, for any A P rΣs n , a cell SpAq P rΣs ˚p1q n`1 , satisfying the following relations (recursively in n):

. . b brpA k q and let u be the source of f . Let ḡ :" pτ u , f q: we denote by τ A the cell Φpḡq P rΣs ˚p1q n`1 .

Lemma 5.2.3.2. Let A P rΣs n . For all

Note in particular that τ B í´1 A is well-defined because rΣs is a targets-only pω, 1q-polygraph.

Proof. Let f 1 , . . . , f n be rewriting steps such that f " pf 1 , . . . , f n q. Then B 1 τ A " B 1 Φpτ u , f 1 , . . . , f n q " ΦpB 1 pτ u , f 1 , . . . , f n qq " Φpf 1 , . . . , f n q " A.

And for i ą 1, B í τ A " Φpτ u , f 1 , . . . , f i´2 , f i , . . . , f n q " Φpτ u , brpB í´1 Aqq. Since rΣs is a targets-only pω, 1q-polygraph, B í´1 A is in rΣs n´1 and so τ B í´1 A " Φpτ u , brpB í´1 Aqq. be the monoid presented by Σ. Suppose that there exists a morphism of augmented symmetric simplicial sets Φ : BrLocpΣq ďn Ñ V pΣ Gp1q q such that for all A P rΣs ďn , ΦpbrpAqq " A.

For any A P rΣs ďn , let τ A P Σ Gp1q be the cell defined as in Definition 5.2.3.1). Then there exists a unique natural transformation S from ι n to NF ˝π such that for any A P rΣs m for m ă n, the t´1, 0, 1u ˆt0, 1u m -grid C A ' defined as follows

is composable and SpAq " ComppC A ' q.

Case n " 0 We define S inductively on u P rΣs 0 . If u is a normal form for Σ 1 then Spuq " 1 u , otherwise formula (5.2.1) become simply Spuq " 1 u ‹ 1 τ u ‹ 1 SpB 1 τ u q " τ u ‹ 1 SpB 1 τ u q. Denoting by u 1 the target of τ u , we have:

Case n " 1 Let f : u Ñ v P rΣs 1 . We reason by induction on u " B 1 f . Let us denote by u 1 the target of τ u . Then Formula (5.2.1) gives us the following formula for Spf q. Remark in particular that the faces satisfy the required conditions:

General case Let us fix an k ą m ą 0, and let A P rΣs m . We reason by induction on the source u P rΣs 0 of A. Suppose that S is defined on any generator of source smaller than u. Let C A ' be the grid defined by (5.2.1).

Lemma 5.2.3.5. The t´1, 0, 1u ˆt0, 1u m -grid C A ' is composable.

Proof. Let us decompose A " A 1 b . . . b A p , with A j P Σ m j for 1 ď j ď p. Let f i :" brpA i q, f " brpAq and ḡ " pτ u , f q.

We need to check that for all s and for all i, B ì C A s " B í C A S i s . Let us first check the case s " p´1, 0, . . . , 0q. For i " 1 we have:

And for i ‰ 1, we have (using the fact that pS i sq ´p1q " tiu):

´,pS i sq ´p1q 1

Let us now check the case s " p0, . . . , 0q. Then once again pS i sq ´p1q " tiu, and we have:

´,pS i sq ´p1q 1

Suppose now sp1q " ´1. Then we distinguish two cases.

• If i " 1 then pS 1 sq ´p1q " s ´p1q and we have:

´,s ´p1q 1

´,s ´p1q 1

SpB s´p 1q τ A q " Γ

´,s ´p1q´1 1

´,s ´p1q´1 1

SpB 1 B s´p 1q τ A q

• If i ‰ 1, note first that i s ´p1q `1 ‰ 1, 2. Indeed, if i s ´p1q `1 " 2 then i s ´p1q " 1, and so t1, . . . i ´1u Ă s ´p1q which is impossible since sp1q " ´1. So finally we have:

´,s ´p1q 1

´,s ´p1q i Lemma 5.3.1.6. Let s " p1, . . . , nq P Nn for some n ě 0. Let m ě 0 and let 1 ď j 1 ă . . . ă j m ă n `m. Let t " jm . . . j 1 s. Let 1 ď k ď n `m. Then t k " t k`1 if and only if k P tj 1 , . . . , j m u.

Proof. We reason by induction on m. For m " 0, there does not exist k P u such that u k " u k`1 so the result holds. Suppose now that the property is true at rank m, and let t " j m`1 . . . j 1 s, and let t 1 " jm . . . j 1 s. Let I " t1 ď k ď n`m`1|t k " t k`1 u, and I 1 " t1 ď k ď n`m`1|t 1 k " t 1 k`1 u. Using the induction hypothesis, I " tj 1 , . . . , j m u and in particular all the elements of I 1 are strictly smaller than j m`1 . Since j m`1 consists in duplicating the j m`1 -th entry of t 1 , I " I 1 Y tj m`1 u " tj 1 , . . . , j m`1 u. Definition 5.3.1.7. Let n ą 0, and let j be a subset of t1, . . . , n ´1u. We denote by S n pjq the set of all permutations σ P S n such that for all i P j, σ ¨i ă σ ¨pi `1q.

Unfolding the definition of a simplicial monoid, we get that a simplicial monoid is the data of:

• A family of sets C n , for n ě 0.

• For any n ą 0 and any 1 ď i ď n applications B i :

• For any n, m ě 0 an application b : C n ˆCm Ñ C n`m .

• For any n ą 0 and any 1 ď i ă n, an application τ i :

This data has to verify some axioms. In particular the axioms that do not involve the operations B i are the following: 

(5.3.6)

We prove the following Proposition about simplicial monoids: • p " i 1 `. . . `im`1 `n.

• σ P S p pjq, with j " tj 1 , . . . , j n u.

Proof. For the existence, consider that it is possible to pass all b to the right using Equations (5.3.4) and (5.3.5), and then all the transpositions t i on the left using Equation (5.3.6). Finally, the operations b can be rearranged using the associativity, and the operations i using Equation (5.3.1). It remains to show that we can choose σ to be in S p pjq. Suppose that we have a factorisation of f that does not verify this property. Let J be the set of all j P j such that σ ¨j ą σ ¨pj `1q, and let k such that j k is the minimum of J. Let σ 1 " σ ¨τj k and let us show that σ 1 jn . . . j 1 " σ jm . . . j 1 . We distinguish two cases:

Using Equation (5.3.6) we have:

Notice that for all i ă j k , σ 1 ¨i " σ ¨i and that σ 1 ¨jk " σ ¨pj k `1q ă σ ¨jk " σ 1 ¨pj k `1q.

Let us denote by J 1 the set of all j P j such that σ 1 ¨j ą σ 1 ¨pj `1q. We just proved that the minimum of J 1 is greater than that of J. By iterating this process, we progressively get rid of all the elements in J.

We now move on to the proof of the unicity. Suppose f " σ 1 j 1 n 1 . . . j 1 1 p. . . p_ b _q . . . _q where n 1 and 1 ď j 1 1 ă . . . ă j 1 n 1 ă p are integers such that p " i 1 `. . .`i m`1 `n1 , and σ P S p pj 1 q, with j 1 " tj 1 1 , . . . , j 1 n 1 u. Note first that n 1 " p ´i1 ´. . . ´im`1 " n. Let now s " p1, . . . , i 1 `. . . `im`1 qq P Ni 1 `...`i m`1 . Let t " jn . . . j 1 s and t 1 " j 1 n 1 . . . j 1 1 . By definition of in N, both t and t 1 are non-decreasing sequences of integers. Moreover, σt " σt 1 " f pp1, . . . , i 1 q, pi 1 `1, . . . , i 1 `i2 q, . . . , pi 1 `. . . `im `1, . . . , i 1 `. . . `im`1 qq. Let k P N. Since the application of σ and τ does not modify the number of occurrences of k in t and t 1 , k appears the same number of times in t and t 1 . Since both t and t 1 non-decreasing sequences, they are equal.

So we get that jn . . . j 1 s " j 1 n . . . j 1 1 s. Using Lemma 5.3.1.6, tj 1 , . . . , j n u " tj 1 1 , . . . , j 1 n u. Since there is only one way to pick the elements of a finite set of integers in a strictly increasing fashion, j k " j 1 k for all 1 ď k ď n. On the other hand, we also have that σt " σ 1 t. Let 1 ď i ď p such that t i " t i`1 . By Lemma 5.3.1.6, i is in j. Since σ, σ 1 P S p pjq, σ ¨i ă σ ¨pi `1q, and the same holds for σ 1 . So by Lemma 5.3.1.5, σ " σ 1 . Definition 5.3.1.9. Let Σ be a Gray 1-polygraph. A choice of critical branching up to permutation is the choice, for any critical branching, of a distinguished representative up to ". Proof. Using the action of the symmetric groups, we first get that the set of all local branchings generated by a choice of critical branchings is closed under permutation. In particular, it therefore contains all the critical branchings. Let us prove by induction on the pair pn, pq that any n-branching whose source is of length p is generated by the critical branchings. in particular lpspḡ i qq ą 1, so that ḡi is not a 0-branching. Let j ą 0 such that ḡi " pg i 1 , . . . , g i j q. Let j 1 , . . . , j n such that for all 1 ď k ď n, f k P LocBrpΣq j k , and let h " σ ¨p f 1 b . . . b f n q " ph 1 , . . . , h p q, where each h k is a rewriting step. For any 1 ď k ď p, by the definition of the product, there exist integers upkq and vpkq such that h k " sp f 1 q . . . sp f upkq´1 q f upkq vpkq sp f upkq`1 q . . . sp f n q

Moreover, using the hypothesis on the source of the rewriting steps, upkq is completely characterised by the fact that lpsp f 1 qq `. . . `lpsp f upkq´1 qq ď lplwph k qq ă lpsp f 1 qq `. . . `lpsp f upkq qq. So upkq is uniquely determined. And since f upkq is not aspherical, so is vpkq. Let 1 ď k ď j.

There exists k 1 such that spḡ 1 q . . . spḡ i´1 qg i k spḡ i q . . . spḡ m q " xg i k y " h k 1 , with x, y P Σ Gp1q 0

. Then two cases are possible:

and g 1 a rewriting step. So g i k " g 1 v and y " vz.

• Otherwise, then upk 1 q ą i and h k 1 " sp f 1 q . . . sp f upk 1 q´1 qg 1 sp f upk 1 q`1 q . . . sp f n q " x sp f i qz 1 g 1 z 2 , with z 1 , z 2 P Σ Gp0q 0

and g 1 a rewriting step. So g i k " sp f i qz 1 g 2 for some rewriting step g 2 .

In the end, any rewriting step g i k can be factored either in something of the form g 1 v or in the form sp f i qg 1 . Since moreover spḡ i q " sp f i qv, we get that ḡi is a Peiffer branching, which contradicts the hypothesis on ḡi . So in the end we get that n ď m and for all 1 ď i ď n sp f i q " spḡ i q. By symmetry, we get that n " m.

Notice finally that because of the characterisation of upkq we gave earlier, we have that for any 1 ď k ď n, there exists some (unique) v 1 pkq such that h k " spf 1 q . . . sp f upkq´1 qg upkq v 1 pkq sp f upkq`1 q . . . sp f n q. As a consequence, we get that for all 1 ď k ď n, tf k 1 , . . . , f k j k u " tg k 1 , . . . , g k j k u. So ḡi " f i , but since they are both distinguished critical branchings, f i " ḡi . Finally, because of Lemma 5.3.1.12, for any i ‰ j h i ‰ h j , and so σ " τ . Theorem 5.3.1.14. Let Σ be a monoidal 1-polygraph, and suppose that for all f P Σ 1 , spf q ‰ 1. Then LocBrpΣq is freely generated by any choice of critical branchings up to permutation.

Proof. We already know from Lemma 5.3.1.10 that LocBrpΣq is generated by any choice of critical branchings. Using Proposition 5.3.1.8, we need to show that for any p-branching f , there exists a unique m P N, a unique sequence of integers i 1 , . . . , i m`1 , a unique family of distinguished critical branchings f 1 , . . . , f m`1 , with f k P LocBrpΣq k , unique integers n and 1 ď j 1 ă . . . ă j n ă p and a unique σ P S p such that:

Together with p " i 1 `. . . `im`1 `n and σ P S p pjq, where j " tj 1 , . . . , j n u. Let us suppose that we have a second such decomposition f " σ 1 ¨ j 1 n 1 . . . 

The proof of the uniqueness of the j k and of σ is similar to the one in the proof of Proposition 5.3.1.8, using the fact that all the rewriting steps appearing are distinct. Definition 5.3.2.1. Let M be a monoid. We define a Gray pω, 1q-polygraph RStdpM q as follows:

• For any n ě 0, RStdpM q n consists of pn `1q-tuples pm 1 , . . . , m n`1 q of elements of M zt1u, that we denote pm 1 | . . . |m n`1 q.

• The faces are given for 1 ď i ď n by:

i " n and m n m n`1 " 1 with B 1 pm 1 |m 2 q " 1 (the unit of the Gray monoid RStdpM q) if m 1 m 2 " 1 (the unit of the monoid M .

Proof. Let us prove that RStdpM q does indeed form a Gray pω, 1q-polygraph. Indeed, we have, for j ą i:

If m j m j`1 ‰ 1:

If m j m j`1 " 1 and j " i `1:

If m j m j`1 " 1 and i `2 ď j ď n ´1:

If m j m j`1 " 1 and j " n:

If m i m i`1 " 1 and i " 1 and j " 2:

If m i m i`1 " 1 and i " 1 and j ą 2:

If m i m i`1 " 1 and 2 ď i ď n ´1 and j " i `1

If m i m i`1 " 1 and 2 ď i ď n ´1 and j ě i `2

If m i m i`1 ‰ 1 and m j m j`1 ‰ 1 and j " i `1:

If m i m i`1 ‰ 1 and m j m j`1 ‰ 1 and j ą i `1:

If m i m i`1 " 1 and i " 1 and j " 2:

If m i m i`1 " 1 and i " 1 and m j m j`1 ‰ 1 and j ą 2:

If m i m i`1 " 1 and 2 ď i ď n ´1 and j " i `1:

If m i m i`1 " 1 and 2 ď i ď n ´1 and m j m j`1 ‰ 1 and j ą i `1.

If i " 1 and m j m j`1 " 1 and j " 2

If i " n ´1 and m j m j`1 " 1 and j " n.

If m i m i`1 ‰ 1 and m j m j`1 " 1 and i `2 ď j ď n ´1

If m i m i`1 ‰ 1 and m j m j`1 " 1 and i `2 ď j " n

If m i m i`1 " and m j m j`1 " 1 and i " 1 and 3 ď j ď n ´1

If m i m i`1 " and m j m j`1 " 1 and i " 1 and 3 ď j " n

If m i m i`1 " and m j m j`1 " 1 and 2 ď i and i `2 ď j ď n ´1:

If m i m i`1 " and m j m j`1 " 1 and 2 ď i and i `2 ă j " n:

If m i m i`1 " 1 and m j m j`1 " 1 and i `2 " j " n:

Lemma 5.3.2.2. The Gray-polygraph RStdpM q is a terminating targets-only Gray-polygraph. The monoid presented by RStdpM q is M .

For any pm 1 | . . . |m n`1 q P RStdpM q n , brpm 1 | . . . |m n`1 q is the n-branching given by, for

Moreover, those form a good choice of critical branchings.

shows that it is targets-only.

Finally, recall that the standard presentation of M is the following:

xpmq P M |pm 1 q b pm 2 q " pm 1 m 2 q, p1q " 1y

In particular, using the relation p1q " 1 we can remove p1q from the generators. Moreover, in this case the relations pm 1 q b pm 2 q " pm 1 m 2 q become redundant whenever m 1 " 1 or m 2 " 1.

In the end, we get RStdpM q 0 as set of generators, and RStdpM q 1 as generating relations. So the monoid presented by RStdpM q is indeed M . We prove the formula for brpm 1 | . . . |m n`1 q by induction on n. For n " 1 this just means that brpm 1 |m 2 q " pm 1 |m 2 q. For general n ą 1, we have:

By induction, we finally get the required formula:

And for k " n we have brpm

Finally, up to permutations, all the critical branchings are of this form, making the family brpm 1 | . . . |m n`1 q a choice of critical branchings. It is a good choice thanks to the equation

Theorem 5.3.2.3. The Gray monoid RStdpM q forms a polygraphic resolution of M .

Proof. The only hypothesis missing to apply Theorem 5.1.3.8 is the description of a morphism of simplicial monoid Φ : LocBrpRStdpM qq Ñ V pRStdpM q Gp1q q.

By Proposition 5.3.1.14 together with Lemma 5.3.2.2, LocBrpRStdpM qq is freely generated by the branchings brpm 1 | . . . |m n`1 q, so it is enough to define Φ on those. We define Φpbrpm 1 | . . . |m n`1 qq :" pm 1 | . . . |m n`1 q, so that Φ also satisfies the required equation. Theorem 5.1.3.8 therefore allows us to conclude.

Squier's resolution of a monoid

In this section, we suppose given a convergent Gray 1-polygraph Σ presenting a monoid M . We show how it is possible to extend this data in a polygraphic resolution of M satisfying the hypothesis of Theorem 5.1.3.8. We suppose chosen a good choice of critical branchings in BrpΣq, which is possible by Lemma 5.3.1.17.

Definition 5.3.3.1. Let C be a cubical ω-category, a half-n-shell in C is the data of Ā " pA 1 , . . . , A n q P C n´1 such that for all j ą i, B j´1 A i " B í A j .

We denote A i by B í Ā. For any half-n-shell Ā in C, and 1 ď i ď n, we define a half pn´1q-shell B ì Ā by putting:

By definition, we have for any half n-shell Ā and Then C ' r Ās is a composable grid. Moreover, we have for all 1 ď i ď p:

First, we show C ' r Ās is a composable grid: Let s P t0, 1u p and suppose that spiq " 0 for some 1 ď i ď p. We distinguish two cases. If spjq " 1 for every j ‰ i then Γ `,s ´p0q 1 " ri Þ Ñ 1s and:

SpB ś´p 0q Āq " B 1 SpB í Āq " NFpπpA i qq " p´1 1 û Since necessarily S i s " p1, . . . , 1q, we have on the other hand B ì C s " B í C S i s . Suppose now that there exists j ‰ i such that spjq " 0. Then: (recall that t ´i consists in inserting 0 in the i-th position of t). Then we have B í ComppC ' q " ComppD ' q, and we have:

SpB t´i p0q Āq

We distinguish two cases. If t ´p0q " H then Γ `,t ´ip0q 1

" ri Þ Ñ 1s and so D t " B 1 SpB í Āq " B í A i . Otherwise, then t can be written as P j s for some j ‰ i , and then D P j s P Imp j q. In a manner symmetric to that of simple grids, we therefore have that ComppD ' q " A i , which proves that ComppC ' q satisfies the first condition.

For the second condition, let D ' be the composable t0, 1u p´1 grid defined by D t " B í C t `i (recall that t `i consists in inserting 1 in the i-th position of t. Then we have B ì ComppC ' q " ComppD ' q, and we have, if t ‰ p1, . . . , 1q: SpB ṕt ´p0qq B ì Āq " C t rB ì Ās And similarly if t " p1, . . . , 1q then D t " p´1 1 u " C t rB ì Ās. So finally B ì ComppC ' q " ComppD ' q " ComppC ' rB ì Asq.

The previous Proposition expressed how the existence of S assured that any half-p-shell has a filling, for p ď n. The next Lemma asserts on the other hand that half-pn `1q-shells can be completed into an pn `1q-shell.

Lemma 5.3.3.3. Let Σ be a terminating Gray pω, 1q-polygraph. Suppose that there exists a natural transformation S : ι n ñ NF ˝π.

Let Ā be a half pn `1q-shell in rΣs ˚p1q . There exists an pn `1q-shell B in rΣs ˚p1q such that B í B " B í Ā for all 1 ď i ď n `1. be the monoid presented by Σ. Suppose that there exists a natural transformation S : ι n ñ NF ˝π and a morphism of augmented symmetric simplicial sets Φ : BrLocpΣq ďn Ñ V pΣ Gp1q q such that for all A P rΣs ďn , ΦpbrpAqq " A.

Then it is possible to extend Σ into a targets-only pn `1, 1q-polygraph such that there exists a morphism of augmented symmetric simplicial sets Φ : BrLocpΓq ďn`1 Ñ V pΣ Gp1q q satisfying for all A P rΣs ďn , ΦpbrpAqq " A.

Proof. Let f be a distinguished pn `1q-critical branching in BrLocpΣq. Let A i " ΦpB i f q. Since Φ is a morphism of semi-simplicial sets, this defines a half-pn `1q-shell in Σ Gp1q . By Lemma 5.3.3.3, let us complete this in a shell B f . We now define Σ n`1 to be a set of cells B f , with shell given by B f . Then since BrLocpΣq is freely generated by critical branchings, it is enough to define Φ on the distinguished pn `1q-critical branching, which is done in the obvious way : Φp f q " B f . By construction, this verifies all the required properties.

Theorem 5.3.3.5. Let Σ be a convergent Gray 1-polygraph and let M be the monoid presented by Σ. There exists a completion of Σ into a Gray pω, 1q-polygraph Σ such that:

• The n-cells of Σ n correspond to the n-critical branchings

• Σ is a resolution of M (more specifically, Σ satisfies the hypothesis of Theorem 5. 1.3.8).

Proof. This is just a repeated application of Proposition 5.2.3.4 to extend Σ, followed by an application of Proposition 5.3.3.4 to extend S.