
HAL Id: tel-01667809
https://hal.science/tel-01667809v1

Submitted on 19 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to Model-Based Diagnosis of
Discrete-Event Systems

Abderraouf Boussif

To cite this version:
Abderraouf Boussif. Contributions to Model-Based Diagnosis of Discrete-Event Systems. Symbolic
Computation [cs.SC]. Université de Lille1 - Sciences et Technologies, 2016. English. �NNT : �. �tel-
01667809�

https://hal.science/tel-01667809v1
https://hal.archives-ouvertes.fr

No d'ordre: * * *

Institut Français des Sciences et Technologies des Transports, de

l'Aménagement et des Réseaux

Université de Lille1 - Sciences et Technologies

THÈSE
présentée en vue d'obtenir le grade de

DOCTEUR

en

Automatique, Génie Informatique, Traitement du Signal et des Images

par

Abderraouf BOUSSIF

Doctorat délivré par l'université de Lille1 - Sciences et Technologies

Titre de la thèse :

Contributions to Model-Based Diagnosis of Discrete-Event
Systems

Contributions au Diagnostic à Base de Modèles des Systèmes à

Évènements Discrets

Soutenance prévue le 12 Décembre 2016 devant le jury d'examen :

Président Pr Jean-Jacques Lesage LURPA, ENS Paris-Saclay

Rapporteur Pr Dimitri Lefebvre GREAH, Univ. Le Havre

Rapporteur Pr Michel Combacau LAAS, Univ. Toulouse 3

Examinateur DR El-Miloudi El-Koursi COSYS/ESTAS - IFSTTAR Lille

Examinateur Pr Armand Toguyeni CRIStAL-ECL Lille

Examinatrice Pr Narjes Ben Rajeb LIP2 - INSAT Tunis

Examinateur Dr-HDR Kais Klai LIPN, Univ. Paris 13

Directeur de thèse Dr-HDR Mohamed Ghazel COSYS/ESTAS - IFSTTAR Lille

Thèse préparée au Laboratoire d'Évaluation des Systèmes de Transports

Automatisés et de leur Sécurité

IFSTTAR, COSYS/ESTAS, Villeneuve d'Ascq

École Doctorale Sciences pour l'ingénieur ED 072 - PRES Université Lille Nord de France

Contributions to Model-Based Diagnosis of Discrete-Event Systems

Abstract : This PhD thesis deals with fault diagnosis of discrete-event systems modeled as �nite

state automata with some extensions to bounded Petri net models. The developed contributions

can be classi�ed regarding two pioneering approaches from the literature: the diagnoser-based

technique and the twin-plant based technique.

Regarding the diagnoser-based technique, we propose a new diagnoser variant with some inter-

esting features that allow us to separately track the normal and the faulty traces directly in

the diagnoser. On the basis of the developed diagnoser, we reformulate the necessary and suf-

�cient condition for diagnosability of permanent faults and we propose a systematic procedure

for checking such a condition without building any intermediate model. An on-the-�y algorithm,

for simultaneously constructing the diagnoser and verifying diagnosability is developed. The

algorithm aims to generate as less state-space as possible, particularly when the system is non-

diagnosable, which improves the memory/time consumption. The developed diagnoser is then

extended to deal with fault diagnosis of intermittent faults. Various notions of diagnosability

are addressed and necessary and su�cient conditions are formulated on the basis of the new

diagnoser structure.

A Hybrid version (in the sense of combining enumerative and symbolic representations) of the

diagnoser variant is established in order to deal with fault diagnosis of labeled bounded Petri

nets. The main idea consists in using the symbolic representation (Binary Decision Diagrams)

to compact and handle the Petri net markings inside the diagnoser nodes and using explicit

representation for the (observable) transitions that link the diagnoser nodes. Such a combination

serves, on one hand, to reduce the memory required for constructing the diagnoser and, on the

other hand, to easily explore the diagnoser paths. The developed approaches are implemented in

dedicated tools and evaluated through benchmarks with respect to the reference approaches in

the domain.

Regarding twin-plant based technique, the �rst contribution consists in elaborating a model-

checking framework, that extends the Cimatti's work, for the actual veri�cation of various di-

agnosability concepts pertaining to permanent failures based on the twin-plant structure. The

main idea is to reformulate and express the diagnosability issues as temporal logics and then

to tackle them using the model-checking engines. The second contribution is pertaining to the

diagnosis of intermittent faults, and consists in addressing various notions of diagnosability while

establishing their necessary and su�cient conditions on the basis of the twin-plant structure.

Keywords : Fault diagnosis, Discrete-event systems, Intermittent faults, Permanent faults,

Finite state automata, Labeled Petri nets, Model-checking.

Contributions au Diagnostic à Base de Modèles des

Systèmes à Évènements Discrets

Résumé : L'objet de cette thèse porte sur le diagnostic des systèmes à évènements discrets

modélisés par des automates à états �nis, avec une extension vers les réseaux de Petri bornés

et étiquetés. Les di�érentes contributions de ce travail peuvent être présentées selon deux vo-

lets, au regard des approches pionnières existantes dans la littérature: le diagnostic à base de

diagnostiqueur, et le diagnostic à base de twin-plant.

Sur le premier volet, i.e., le diagnostic à base de diagnostiqueur, nous proposons une variante du

diagnostiqueur avec une nouvelle structure qui permet de suivre séparément les traces normales et

les traces fautives dans le diagnostiqueur. A partir de cette structure, nous formulons une condi-

tion nécessaire et su�sante pour l'analyse de la diagnosticabilité des fautes permanentes et nous

développons une procédure systématique pour l'analyse de la diagnosticabilité sans construire de

modèle intermédiaire. La procédure de véri�cation est basée sur un algorithme à-la-volée pour

construire le diagnostiqueur et analyser la diagnosticabilité en parallèle. Cet algorithme permet,

d'une part de réduire l'espace-d'état généré, principalement pour les systèmes non-diagosticable,

et d'autre part, d'améliorer nettement les besoins en mémoire et en temps de calcul. Cette

approche est par la suite étendue pour traiter le cas des fautes intermittentes où plusieurs pro-

priétés relatives à la diagnosticabilité sont considérées et les conditions nécessaires et su�santes

correspondantes sont établies.

Comme extension aux modèles réseaux de Petri bornés et étiquetés, nous avons développé une

autre contribution qui porte sur l'établissement d'une version hybride de notre diagnostiqueur,

dans le sens ou on combine les représentations énumérative et symbolique. L'idée principale de

ce travail est de représenter symboliquement (sous forme de BDD) l'ensemble du marquages dans

chaque noeud de diagnostiqueur, tout en gardant une représentation explicite pour les arcs reliant

les noeuds. Une telle représentation permet d'une part, de réduire la mémoire utilisée pour la

construction du diagnostiqueur, et d'autre part, de faciliter l'exploration des traces d'exécution

du système. Cette technique a été implémentée dans un outil nommé SOG-Diag tool et évaluée

à travers des benchmarks.

Sur le deuxième volet, i.e., le diagnostic à base de twin-plant, une première contribution porte sur

la mise en oeuvre de nouvelles techniques pour l'analyse de diagnostic. Elle consiste notamment

à développer un cadre de véri�cation par model-checking de la diagnosticabilité. Ainsi, la per-

formance des techniques de model-checking et des outils associés peut être exploitée pour traiter

des questions de diagnostic. Une deuxième contribution sur ce volet consiste à étendre ce cadre

pour l'analyse des propriétés relatives à la diagnosticabilité des fautes intermittents en se basant

sur des conditions nécessaires et su�santes que nous avons développées.

Mots clés : Diagnostic des fautes, Systèmes à événements discrets, Fautes intermittentes, Fautes

permanentes, Automates à états �nis, Réseaux de Petri étiquetés, Véri�cation à base de modèles.

Acknowledgment

The work that resulted in this thesis could not have been accomplished without several

persons' assistance, support, and encouragement!

First and foremost, my special appreciation and thanks are due to my supervisor Dr

Mohamed Ghazel for his day-to-day constant support and guidance during the past three

years. Without his help, this work would not be possible.

I am deeply indebted and thoroughly grateful to Professor Jean-Jacques Lesage for

agreeing to be the chair of my thesis committee, for accepting me as a master student in

LURPA Laboratory four years ago, and his support and encouragement.

I would like to thank those who agreed to be the referees of this thesis and allocated

their valuable time in order to evaluate the quality of this work: Pr Dimitri Lefebvre,

Pr Michel Combacau, DR El-Miloudi El-Koursi, Pr Armand Toguyeni, Pr Narjes

Ben Rajeb, and Dr Kais Klai, for their examination of the report and their very helpful

comments and suggestions.

I would also like to express my thanks to various members of IFSTTAR - ESTAS and

LEOST Laboratories. I have learned so much from all of you!

I will fail in my duty if I do not acknowledge some of my friends who helped me a

lot during the past three years. I mention Baisi (I always enjoy discussing with you!), Ci,

Christophe, Antoine, Matthieu, Lucas, Ra�k, Hassanein, Nadjah, Ayoub, Foued, Sohaib,

WARSI-MHRSL group, and many others whose names only by lack of memory I failed to

include in this list.

I cannot �nd words to express my gratitude to my mother, my father, my sisters & my

brothers, for all their never-ending support . . . Your prayers for me were what sustained

me thus far!

Finally, I would like to thank all the people that in these three years supported me in

many ways, making this work possible!

Thank you very much, everyone!

A. BOUSSIF

Lille - December 12th 2016.

To the memory of my grandmother Saliha!

To my mother & my father

my sisters & my brothers

You write so beautifully . . .

the inside of your mind must be a terrible place!

Contents

1 Introduction 1

1.1 General Context . 2

1.2 Problems Statement . 4

1.3 Main Contributions . 7

1.4 Organization and Structure of the Dissertation 9

I LITERATURE REVIEW 13

2 Model-Based Diagnosis 15

2.1 Fault Diagnosis . 16

2.1.1 Terminology in the Area of Fault Diagnosis 16

2.2 Fault Diagnosis Approaches . 17

2.2.1 Expert Systems and Knowledge-Based Diagnosis 17

2.2.2 Data-Driven Based Diagnosis . 18

2.2.3 Fault-Tree Based Diagnosis . 18

2.2.4 Model-Based Diagnosis . 19

2.3 Diagnosis of Discrete-Event Systems . 20

2.3.1 Centralized/Decentralized DESs Diagnosis 22

2.3.2 Distributed/Modular DESs Diagnosis 22

2.4 DESs Diagnosis Using Petri Nets . 23

3 Fault Diagnosis of Discrete-Event systems 25

3.1 Introduction . 26

3.2 Discrete-Event Systems under Partial Observation 27

3.2.1 DESs Modeling . 27

3.2.2 Operations on DESs . 28

3.3 The Fault Diagnosis Problem . 30

3.4 Diagnosability . 32

3.4.1 K−Diagnosability . 33

3.4.2 Complexity Analysis . 35

3.5 The pioneering Approaches . 36

3.5.1 Sampath's Diagnoser Approach . 37

3.5.2 Twin-Plant/Veri�er Approaches . 40

viii Contents

3.5.3 A Comparison Between the Diagnoser/Twin-plant/Veri�er approaches 43

3.6 Conclusion . 44

II CONTRIBUTIONS REGARDING THE DIAGNOSER-BASED

APPROACH 45

4 A New Variant of the Diagnoser-Based Approach 47

4.1 Introduction . 48

4.2 The System Model . 50

4.3 A New Variant of The Diagnoser . 51

4.3.1 The Structure of a Diagnoser Node 51

4.3.2 The Diagnoser Construction . 52

4.3.3 Some Properties of the New Diagnoser Variant 55

4.3.4 Diagnosability Veri�cation . 57

4.4 On-the-�y Veri�cation . 62

4.4.1 A Systematic Procedure for Checking Diagnosability 62

4.4.2 Algorithm . 63

4.4.3 A Heuristic Strategy to Improve the Building Algorithm 67

4.4.4 Complexity Analysis . 68

4.5 Extensions . 69

4.5.1 Online Diagnosis . 69

4.5.2 K/Kmin−diagnosability . 69

4.5.3 Diagnosability of Multiple Fault Classes 70

4.6 Experimental Evaluation . 72

4.6.1 Presentation of the Considered Benchmark 72

4.6.2 Results . 74

4.6.3 Discussion . 75

4.7 A Comparison Between Sampath's Diagnoser and our Proposed Diagnoser 78

4.8 Conclusion . 79

5 A Diagnoser-Based Approach for Intermittent Fault Diagnosis 81

5.1 Introduction . 82

5.2 A Review of Intermittent Fault Diagnosis in DESs 84

5.3 Overview on the Developed Contribution 87

5.4 Modeling of the System and Intermittent Faults 88

5.4.1 System Model . 88

5.4.2 Intermittent Fault Modeling . 90

Contents ix

5.5 Notions of Diagnosability . 94

5.5.1 Assumptions . 94

5.5.2 De�nitions of Diagnosability . 94

5.6 Construction of the Diagnoser . 99

5.6.1 The Structure of the Diagnoser Node 99

5.6.2 The Diagnoser Construction . 101

5.6.3 The Various Types of Nodes in the Diagnoser 102

5.7 Analysis of WF -Diagnosability . 104

5.7.1 Necessary and Su�cient Condition for WF -diagnosability 104

5.7.2 Veri�cation of WF -Diagnosability 106

5.7.3 A Procedure for Checking WF -diagnosability 108

5.8 Analysis of SF -Diagnosability . 109

5.8.1 Necessary and Su�cient Condition for SF -diagnosability 109

5.8.2 Veri�cation of SF -Diagnosability 110

5.8.3 A Procedure for Checking SF -diagnosability 111

5.9 Discussion . 112

5.10 A Still Open Issue . 114

5.11 Conclusion . 116

6 Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 119

6.1 Summary . 119

6.2 Petri Net Based Fault Diagnosis . 120

6.3 Motivation of the Approach . 123

6.4 Preliminaries . 125

6.4.1 Labeled Petri Net Modeling . 125

6.4.2 Diagnosability of LPNs . 126

6.5 The Symbolic Observation Graph (SOG) 127

6.5.1 Binary Decision Diagrams . 128

6.5.2 The Construction of the SOG . 130

6.6 The Symbolic Reachability Diagnoser (SRD) 132

6.6.1 The Structure of the Diagnoser Node 132

6.6.2 De�nition of the SRD . 133

6.6.3 Diagnosis Using SRD . 137

6.7 Diagnosability Analysis Using The SRD 139

6.7.1 Necessary and Su�cient Condition for Diagnosability 140

6.7.2 A Procedure for Checking Diagnosability 142

6.8 On-the-�y Veri�cation Algorithm . 143

x Contents

6.9 Experimentation . 147

6.9.1 Experimental Results . 148

6.9.2 Discussion . 151

6.10 Conclusion . 153

III CONTRIBUTIONS REGARDING THE TWIN-PLANT BASED

APPROACH 155

7 Practical Veri�cation of Diagnosability in a Model-Checking Framework157

7.1 Introduction . 158

7.2 Model-Checking . 159

7.2.1 The System Modeling . 160

7.2.2 The Speci�cation Modeling . 161

7.2.3 Progress in Model-Checking . 162

7.3 A Review on Fault Diagnosis Using Model-Checking 162

7.3.1 Fault Diagnosis with LTL-based Speci�cations 163

7.3.2 Rules-based Model Using First-order LTL 163

7.3.3 Fault Diagnosis via Temporal Epistemic Logic 164

7.3.4 Fault Diagnosis via Satis�ability 165

7.3.5 Fault Diagnosis as a Practical Model-Checking Problem 165

7.4 State-Based Modeling of DESs . 166

7.5 Diagnosability Analysis . 167

7.5.1 Cimatti's Diagnosability De�nition 167

7.5.2 Extension of Cimatti's Diagnosability De�nition 168

7.6 Diagnosability as a Model-Checking Problem 170

7.6.1 The Twin-Plant as a Kripke Structure 170

7.6.2 Diagnosability Condition as a Temporal Logic Formula 171

7.7 K/Kmin−Diagnosability as a Model-Checking Problem 171

7.7.1 Reformulation of K-Diagnosability De�nition 172

7.7.2 K−Diagnosability Reformulation 173

7.7.3 Kmin−Diagnosability Reformulation 174

7.8 Diagnosability Veri�cation Using NuSMV Model-Checker 176

7.9 Experimentation . 176

7.9.1 Presentation of the Level Crossing Benchmark 177

7.9.2 Results and Discussion . 178

7.10 Conclusion . 179

Contents xi

8 Twin-Plant Based Approach for Intermittent Faults Diagnosis 181

8.1 Introduction . 182

8.2 Analysis of the Weak Diagnosability . 182

8.2.1 Twin-Plant Construction . 182

8.2.2 Necessary and Su�cient Conditions 184

8.2.3 Veri�cation Algorithm for Weak Diagnosability 187

8.3 Analysis of the Strong Diagnosability . 189

8.3.1 Necessary Conditions . 189

8.3.2 Necessary and Su�cient Conditions 190

8.3.3 Veri�cation Algorithm . 195

8.4 Diagnosability of Intermittent Faults as Model-Checking Problems 199

8.4.1 The Weak Diagnosability Conditions as LTL Formulas 199

8.4.2 Reformulation of the Strong Diagnosability Properties 200

8.5 Experimentation . 201

8.5.1 Presentation of the DES Benchmark 201

8.5.2 Results and Discussion . 201

8.6 Discussion of the Fr−diagnosability . 204

8.7 Conclusion . 206

IV CONCLUSION 207

9 Conclusions and Perspectives 209

9.1 Conclusions . 210

9.2 Perspectives . 211

Bibliography 215

A An Illustrative Example using NuSMV 243

A.1 Heating Ventilation and Air-Conditioning System 244

A.2 The Diagnosability Analysing Using NuSMV 246

List of Figures

3.1 Illustration of the diagnosis function [Jéron et al., 2006] 31

3.2 Illustration of K−diagnosability . 35

3.3 Fault propagation in the classic diagnoser 37

3.4 The FSA G . 38

3.5 Pre-diagnoser and diagnoser of FSA G . 39

3.6 Twin plant G of (Example 2) . 41

3.7 Veri�er VF of (Example 2) . 42

4.1 The structure of the diagnoser node and the diagnoser variant of FSA G in

Figure 3.4 . 53

4.2 Fault propagation in the diagnoser variant 54

4.3 Proofs of Property 2 and Proposition 1 . 57

4.4 Generation of series Sc` for analyzing diagnosability 63

4.5 Example of a diagnosable model . 63

4.6 Diagnoser DG′ corresponding to model G′ with series Sc` for analyzing

diagnosability . 64

4.7 Types of enabled transitions from a node 68

4.8 Di�erent cases for analyzing K−diagnosability 70

4.9 The structure of diagnoser nodes for multiple fault classes 71

4.10 An illustrative example of the diagnoser node with two fault classes 72

4.11 The PN benchamrk . 73

5.1 Illustration for the inverse projection mapping in Example 1 89

5.2 The label automaton Ω in the recover modeling 91

5.3 Example 7 . 92

5.4 The label automaton ΩN . 93

5.5 automaton G′` in normalizing modeling 93

5.6 A system model which is SF -diagnosable and non-SR-diagnosable 99

5.7 The diagnoser node structure . 100

5.8 Intermittent fault propagation in the diagnoser 103

5.9 The diagnoser of system model G (of Example 7) 104

5.10 The FSA model in Example 12 . 114

5.11 The diagnoser of model G′ (Example 12) 115

xiv List of Figures

6.1 A labeled Petri net (Example 3) . 127

6.2 A BDD representing the set of marking S (Example 4) 129

6.3 LPN N1 and its reachability graph (Example 13) 132

6.4 The SOG corresponding to LPN N1 in Example 13 132

6.5 The general structure of the SRD node . 133

6.6 Fault propagation on the SRD . 135

6.7 A part of the symbolic reachability diagnoser of Example 3 137

6.8 F -uncertain cycle c` and its c`-indicating sequence ρc` 141

6.9 Two possible forms of an c`-indicating sequence 141

6.10 Checking F -indeterminate cycle in Example 14 using Theorem 9 142

7.1 The label automaton Ω . 166

7.2 Critical pair . 168

7.3 In�nite critical pair . 169

7.4 The Level Crossing Benchmark . 177

8.1 Example 15 . 184

8.2 Illustration of a set of prime paths (SPP). 191

8.3 A part of a twin-plant (Example 18) . 192

8.4 The LPN Benchmark . 202

8.5 Example of an Fr-indicating sequence . 204

8.6 Automaton G of Example 1 . 205

8.7 A part of twin-plant G corresponding to automaton G 205

A.1 HVAC system components [Stéphane Lafortune and Paoli, 2014] 244

A.2 HVAC system model [Stéphane Lafortune and Paoli, 2014] 245

List of Tables

4.1 Experimental results for Test 1 . 75

4.2 Experimental results for Test 2 . 77

6.1 The truth table of the corresponding characteristic function 129

6.2 The reachable markings of Example 14 . 138

6.3 Experimental Comparative Results for Test 1 and Test 2 Based on the LPN

Benchmark . 150

7.1 Experimental results for LC models . 179

8.1 Experimental results for the LPN benchmark 203

Chapter 1

Introduction

Sommaire

1.1 General Context . 2

1.2 Problems Statement . 4

1.3 Main Contributions . 7

1.4 Organization and Structure of the Dissertation 9

Preamble

This dissertation presents a synthesis of research work, which was carried out as a fruit

of my Ph.D. (2013 − 2016) accomplished within the COSYS/ESTAS team (Evaluation

of Automated Transport Systems and their Safety) at IFSTTAR, the French Institute of

Science and Technology for Transport, Development and Networks (Institut Français des

Sciences et Technologies des Transports, de l'Aménagement et des Réseaux). The Ph.D.

thesis has been prepared within the doctoral school SPI (Engineering Sciences) at Lille 1

university. This thesis was supervised by Dr. Mohamed Ghazel, senior researcher with

IFSTTAR − COSYS/ESTAS.

The work presented in this dissertation contributes to fault diagnosis of discrete-event

systems (DESs) modeled by �nite state automata with some extension to Petri net models.

The intention of this research is twofold: (i) provide some new approaches to enhance the

fault diagnosis of DESs and (ii) bring into play the formal methods, namely the model-

checking techniques, for the actual veri�cation of diagnosis properties.

2 Chapter 1. Introduction

1.1 General Context

Nowadays, due to the pressing demand in terms of productivity, safety, comfort and ser-

vices, many modern systems depend on computers for their correct operation. Of great-

est concern, of course, are safety-critical systems [Storey, 1996] since the consequences

of failure occurring in such systems can be serious. There are many applications that

have traditionally been considered as safety-critical, but the scope of the de�nition has

to be expanded as computer systems continue spreading through many areas that a�ect

our lives [Knight, 2002]. Examples of non-traditional safety-critical systems are railway-

embedded control, banking and �nancial systems, electricity generation and distribution,

telecommunications. All of these applications are extensively computerized, and computer

failures can lead to serious safety concerns and extensive loss of service with consequent

disruption of normal activities. Moreover, recent technological advances have resulted in

increasingly complex systems that raise considerable challenges in terms of design, safety-

analysis and veri�cation/validation.

Ensuring performance, comfort and safety goals in large-scale and safety-critical sys-

tems is a tough and challenging issue. In particular, complexity is one of the most di�cult

aspect that must be tackled to make theoretical methodologies applicable to real industrial

applications. In fact, such large-scale and complex systems are vulnerable to faults that

can cause undesired behavior and, as a consequence, damages to technical parts of the

plant, to personnel, or to the environment. It is plain that this also impacts the timely

delivery of quality products/services.

In the railway domain for instance, embedded control/command systems are nowa-

days endowed with a multitude of sensing components that monitor di�erent aspects in

the system behavior and generate huge volumes of data. The expansion of such sens-

ing/monitoring systems within the train control modules is due to the need of surveillance

means regarding the increasing complexity of train control systems. Actually, this increas-

ing complexity is in line with the diversi�cation of the implemented functions on-board

trains, the increasing demand in terms of safety, comfort and competitiveness (punctual-

ity, cost, etc.). One of the major challenges that face the automated monitoring task in

railway applications is to e�ciently handle the important volumes of the generated data.

The work undertaken within this Ph.D thesis falls in the general scope that integrates

research activities related to the safety analysis of guided transportation systems. Al-

though the main contributions developed here are theoretical, various application will be

tackled in the framework of this general scope.

The purpose of automated monitoring and fault diagnosis of large-scale and safety-

critical systems is to improve their reliability and availability and to increase their opera-

Chapter 1. Introduction 3

tivity. In this context and to ful�ll the performance, comfort and safety goals, developing

e�ective monitoring techniques becomes essential starting from the design phase of the

system. In particular, having e�cient tools for monitoring and diagnosis is of great inter-

est since this prevents, or at least minimizes, the failure-related consequences, especially in

safety-critical systems. Fortunately, the need for these automated mechanisms and tools to

deal with the automated monitoring and fault diagnosis of systems is well understood and

appreciated, by decision-makers, industry and academia. A great deal of research e�ort

has been and is being spent in the design and development of such automated monitoring

means.

From the practical point of view, industrial end-users are interested in the following

questions:

• what kind of faults can be detected/diagnosed? what cannot be detected/diagnosed?

• what is the bene�t in case of a successful detection/diagnosis? how much is the cost

(hardware, software, manpower, etc.) of realizing monitoring tasks?

• for a given monitoring and diagnosis task, which method/approach is most suitable?

All these issues and aspects are addressed in research works that deal with the auto-

mated monitoring and fault diagnosis.

One of the major distinctions in the approaches for automated monitoring and fault

diagnosis is whether or not explicit models are used, and what type of models are used.

When some models of the system behavior are used as a basis for fault detection and

diagnosis, this is often referred to as model-based diagnosis. The concept of model-based

diagnosis poses a promising approach to the systematic capture and analysis of diagnostic

knowledge. The use of explicit models of a system's structure and behavior allows us

to trace deviant system observations directly to causing components. Establishing the

models then becomes a signi�cant part of the application development e�ort. Moreover,

in di�erent engineering domains, there has been a shift towards model-based techniques.

In many model-based diagnosis approaches, a model of the system which may depict

both the normal and faulty behavior is considered. The faulty behavior is caused by the

occurrence of some failures -or category of failures which are not directly observable. Thus,

their occurrences must be inferred from the observable part of the behavior.

From the theoretical point of view and at a high level of abstraction, Discrete Event

Systems (DESs) are more suitable for modeling, monitoring and model-based diagnosing

complex dynamic systems, because of the convenience of their associated models algo-

rithms [Cassandras and Lafortune, 2009, Lin, 1994]. DESs are a qualitative abstraction

of continuous dynamic systems that has been receiving increasing attention from both

4 Chapter 1. Introduction

Arti�cial Intelligence and Automatic and Control communities. In fact, various classes of

man-made systems can be viewed as DESs, provided that their evolution is driven by the

occurrences of events and described by discrete state-space.

Fault diagnosis consists of many challenging problems to investigate. However, one

of the main issues that must be �rstly addressed is the diagnosability investigation. In

fact, the diagnosability issue is relatively recent in the research �eld, and principally two

distinct and parallel research communities have been working along the lines of the model-

based diagnosis context: the FDI community and the DX community that have evolved in

the �elds of Automatic Control and Arti�cial Intelligence [Cordier et al., 2004]. Analyzing

diagnosability of a system intends to determine whether or not any predetermined failure

or class of failures can be accurately detected and identi�ed within a �nite delay following

its occurrence. Then comes the issue of developing the diagnoser (called also fault detection

and identi�cation engine or simply, the diagnosis system), which performs the diagnosis

task. Roughly speaking, the diagnoser role is to carry the state estimation (of the system)

online and to emit verdicts regarding the behavior of the monitored system (normal of

faulty behavior) based on the delivered partially observations by the sensors map. A

crucial issue that the diagnosis activity has to deal with is partial observability on the

system behavior. This is due to the fact that it is often quite expensive and technically

di�cult to observe all changes in a complex system. Therefore, it becomes vital to develop

e�cient and robust methods able to �ll this partial observability on the system behavior.

1.2 Problems Statement

The DES diagnosis problem is basically concerned with determining which faults, if any,

explain a given observed system behavior. Fault diagnosis is therefore closely related to

the problem of state estimation [Zaytoon and Lafortune, 2013]. The DES diagnosis is

often discussed through two main issues: diagnosability analysis and online diagnosis.

Diagnosability refers to the capacity of providing a precise diagnosis verdict. Thus, the

intention of analyzing diagnosability of a system is to determine accurately whether any

predetermined failure can be detected and identi�ed within a �nite delay following its

occurrence. Online diagnosis consists in inferring, online, the occurrence of predetermined

faults from the observed behavior of the system [Sampath et al., 1995].

Various techniques have been developed to deal with DESs diagnosis, as will be detailed

in the �rst part of this dissertation (Part I). Moreover, several improvement in terms of

e�ciency have been made and numerous issues still need to be tackled as discussed in

what follows.

Chapter 1. Introduction 5

Diagnoser-based approaches

The pioneering work which has set the foundations of DESs fault diagnosis is [Sampath

et al., 1995, Sampath et al., 1996] where a formal de�nition of diagnosability was intro-

duced. Such a work provided a necessary and su�cient condition for diagnosability as

well as a systematic approach, based on the so-called diagnoser, with the aim of analyzing

diagnosability and performing the online diagnosis. However, the combinatorial explosion

problem is inherent to the de�ned approach and the state-space of the diagnoser is, in the

worst case, exponential w.r.t. the size of the model state-space.

Improvements in terms of complexity have been introduced in [Jiang and Huang,

2001, Yoo and Lafortune, 2002b, Moreira et al., 2011, Qiu and Kumar, 2006, Li et al.,

2015a]. The basis idea was to build an intermediate structure called twin-plant/veri�er,

by performing a parallel composition of the system model with itself. The diagnosability

issue can then be addressed by analyzing every pair of executions that share the same ob-

servation. Such a task is performed using polynomial-time algorithms. Nevertheless, these

approaches deal only with diagnosability analysis and do not consider online diagnosis.

Moreover, comparative studies show that the diagnoser-based approach is more e�cient for

analyzing diagnosability of some kinds of system models than the twin-plant/veri�er based

approaches [Liu, 2014]. Consequently, the diagnoser-based approach remains a principal

technique to deal with both diagnosability analysis and online diagnosis.

The main issues related to the diagnoser-based approaches can be outlined as follows:

1. the synthesis of the diagnoser is performed with an exponential complexity in the

original model state-space, and double-exponential in the cardinality of the fault

classes. This consequently hampers the scalability of the approach.

2. the approach is based on the analysis of two graphs. The �rst graph is a non-

deterministic observer (called pre-diagnoser, or generator), while the second one is a

deterministic automaton, called diagnoser (or equivalently, generator/diagnoser [Sam-

path et al., 1995], MBRG/BRD [Cabasino et al., 2009b], FM-graph/FM-set graph [Liu,

2014], etc.).

3. the double-checking procedure, which consists of one veri�cation on the diagnoser

(i.e., the existence of F -uncertain cycles) and the other on the generator or the pre-

diagnoser (i.e., checking whether the F -uncertain cycle is an F -indeterminate one

or not). In fact, in general such a double-checking procedure highly increases the

veri�cation time.

6 Chapter 1. Introduction

Intermittent Fault Diagnosis

In a major part of the literature regarding the DESs diagnosis, faults are typically assumed

to be permanent, i.e., faults cause irremediable deviations form the normal behavior of the

system. However, experience with fault diagnosis of industrial systems shows that in-

termittent faults (i.e., faults provoke only temporary deviations from the normal behavior

of the system) are predominant and are among the most challenging kinds of faults to

detect and isolate [Fromherz et al., 2004]. Indeed, according to [Shen et al., 2016], inter-

mittent faults exist in many systems, including those ranging from small components to

the complex modules. The frequent occurrence of intermittent faults can bring on serious

troubles and result in high safety risk and important maintenance costs and delays. In

the late 1960s, Hardie [Ball and Hardie, 1969, Hardie and Suhocki, 1967] indicated that

intermittent faults comprised over 30% of pre-delivery failures and almost 90% of �eld

failures in computer systems. Moreover, intermittent faults bring on many maintenance

problems, such as False Alarms (FAs), Can Not Duplicate (CND) and No Fault Found

(NFF) [Sorensen et al., 1994]. This last one (i.e., NFF) has been identi�ed as the source of

the highest cost in aerospace maintenance. For instance, the annual NFF exchange cost of

the F-16 avionics boxes due to intermittent faults was over $ 20,000,000 [Steadman et al.,

2005, Steadman et al., 2008].

On the contrary to fault diagnosis of permanent faults, a few DES-based frameworks

have been proposed to handle intermittent faults. In addition, the DES-based fault di-

agnosis methodologies which deal with permanent failures are unfortunately no longer

suitable for the analysis of intermittent faults, since the case of intermittent faults shows

some subtle con�gurations compared to the case of permanent failures. The same prob-

lem is also encountered with various methodologies developed in the �eld of model-based

reasoning in Arti�cial Intelligence, as witnessed in [Contant, 2005].

Practical Veri�cation of Diagnosability

In the last two decades, many research works have been concerned with the development

of new models, new properties, new algorithms and e�cient solutions for fault diagnosis of

DES [Zaytoon and Lafortune, 2013]. Unfortunately, most of the approaches developed are

oriented to the de�nition of theoretical frameworks and do not address the problems re-

lated to the practical application of the approaches developed. Moreover, such approaches

propose ad-hoc algorithms for the actual veri�cation of diagnosability which are imple-

mented in academic tools. Hence, the practical implementation of the developed DES

diagnosis techniques is an issue that still needs exploration.

The works in [Cimatti et al., 2003, Pecheur et al., 2002], propose a practical frame-

Chapter 1. Introduction 7

work for the formal veri�cation of the diagnosability using model-checking techniques.

In fact, the authors attempted to bring forward an e�ective framework for the analysis

of diagnosability that can be practically applied in the development process of diagnosis

systems. The main advantage of the proposed approach is that the actual veri�cation is

performed using the model-checking techniques. Fortunately, a wide range of powerful

and optimized model-checkers have been developed in the formal veri�cation community

and successfully used for the veri�cation/validation of large scale industrial systems. Such

tools can be used for the veri�cation of diagnosability using the practical framework pro-

posed in [Cimatti et al., 2003, Pecheur et al., 2002]. However, the authors in [Cimatti

et al., 2003, Pecheur et al., 2002] have only discussed a variant of the diagnosability that

shows some restrictions.

1.3 Main Contributions

This dissertation focuses on fault diagnosis of discrete-event systems modeled by �nite

state automata with some extensions to bounded Petri net models. The main contributions

are all discussed in the second and third part (Part II and Part III) of the thesis and can

be summarized in the following items.

i.) the development of a new diagnoser variant approach for diagnosis of discrete-event

systems modeled by automata with permanent faults with an extension for fault di-

agnosis of Petri net models;

ii.) the investigation of various notions of diagnosability of intermittent faults in both

the diagnoser-based approach (in Point i.) and twin-plant based approach in [Jiang

and Huang, 2001];

iii.) the elaboration of a model-checking framework for the practical veri�cation of various

diagnosability concepts on the basis of the work of Cimatti et al. [Cimatti et al., 2003].

In what follows, we give the detailed features of our contributions:

A new diagnoser-based approach

� We develop a diagnoser with a new structure for representing the nodes. Such a

structure explicitly separates between the normal and the faulty states in each node.

This feature allows us to separately track the normal and the faulty traces directly

in the diagnoser. Moreover, the diagnoser is constructed directly from the original

model, without needing to construct any intermediate model;

8 Chapter 1. Introduction

� On the basis of the proposed structure of the diagnoser, a su�cient condition for the

undiagnosability of the model is proposed. Such a condition is used for the on-the-�y

veri�cation of diagnosability;

� we prove for an F−uncertain cycle in the diagnoser, there exists at least one fault-

free cycle in the original model that share the same observation. Therefore, for an

F−uncertain cycle in the diagnoser to be an F−indeterminate one, it is su�cient

to check that at least one faulty cycle which shares the same observation with the

F−uncertain cycle exists in the original model;

� we establish a systematic procedure for checking the necessary and su�cient condi-

tion for diagnosabilily without returning to any intermediate model to check if an

F−uncertain cycle corresponds to two cycles, a faulty one and a non-faulty one;

� we develop an on-the-�y algorithm, for simultaneously constructing the diagnoser

and verifying diagnosability. The algorithm aims to generate as less state-space as

possible, particularly when the system is undiagnosable, which improves the mem-

ory/time consumption;

� the developed approach is implemented and some experimentation and comparative

studies (with existing tools for analyzing diagnosability) are conducted in order to

assess the e�ectiveness and the scalability of the approach developed;

� we establish a hybrid version (in the sense of combining enumerative and symbolic

representations) of the diagnoser variant we develop, in order to deal with fault

diagnosis of bounded Petri nets. The maim idea consists in:

� using binary decision diagrams (BDDs) to compact and handle the diagnoser

nodes, which serves to reduce the memory consumption;

� using an explicit representation for the (observable) transitions that link the

diagnoser nodes. Such a representation allows for an easy exploration of the

diagnoser paths.

� we develop a dedicated tool implementing the proposed approach, in order to assess

the e�ciency and the scalability of the approach. Some experimentations have

been conducted through a PN benchmark. The obtained results are discussed with

respect to a reference approach for fault diagnosis of LPNs, called MBRG/BRD

technique [Cabasino et al., 2009a].

Chapter 1. Introduction 9

Intermittent fault diagnosis

� we extend the diagnoser-based approach introduced above, in order to deal with

intermittent faults. Therefore, various notions of diagnosability are addressed, and

necessary and su�cient conditions are formulated on the basis of the new diagnoser

structure;

� we also address the issue of diagnosability of intermittent faults using the twin-plant

approach. In fact, we develop new necessary and su�cient conditions for the various

notions of diagnosability discussed in this dissertation.

Practical veri�cation of diagnosability

Cimatti et al. [Cimatti et al., 2003] introduced an approach to deal with the diagnosability

analysis in a model-checking framework. On the basis of this approach, we develop the

following:

� we extend the approach in [Cimatti et al., 2003] in order to deal with practical

version of diagnosability, namely, K/Kmin−diagnosability properties.

� the necessary and su�cient condition for diagnosability of the intermittent faults on

the basis of the twin-plant approach (introduced above) are expressed in temporal

logics (LTL/CTL) for the actual veri�cation using model-checking;

� in order to show the applicability of this approach, some experimentation are per-

formed on the basis of two benchmarks which depicts the concept of permanent and

intermittent faults respectively.

1.4 Organization and Structure of the Dissertation

This dissertation is divided into four parts:

PART I: in this part, we give a literature review regarding fault diagnosis, particu-

larity, the DESs diagnosis. The part is composed of two chapters:

• Chapter 2: we review the concept of fault diagnosis and the model-based diagnosis

techniques;

• Chapter 3: we give a brief summary of the background on fault diagnosis of DESs

modeled by �nite state automata.

PART II: in this part, we discuss our contributions regarding the diagnoser-based

approach. This part is composed of three chapters:

10 Chapter 1. Introduction

• Chapter 4: we propose a new version of the well-known diagnoser-approach. It

consists in separating normal states from faulty ones in each diagnoser node. Such

a distinction serves to more e�ciently track the faulty and fault-free traces in the

diagnoser paths. On the basis of various features that characterize this new diag-

noser, we develop a systematic procedure for checking the necessary and su�cient

condition for diagnosability;

• Chapter 5: we extend the diagnoser-based approach, introduced in the previous

chapter, in order to deal with intermittent fault diagnosis. First, we discuss two

ways for modeling the intermittent faults in �nite state automata framework. Then,

various de�nitions of diagnosability from the SED literature are revisited and nec-

essary and su�cient conditions for checking such properties are derived on the basis

of the diagnoser structure. A systematic procedure for checking such conditions

without needing any intermediate model is proposed;

• Chapter 6: we present an improvement of the diagnoser-based approach introduced

in Chapter 4 while dealing with Petri net models. It consists in building a symbolic

diagnoser called Symbolic Reachability diagnoser for both analyzing diagnosability

and performing the online diagnosis of bounded labeled Petri nets.

PART III: in this part, we provide our contributions regarding the twin-plant ap-

proach. This part is composed of tow chapters:

• Chapter 7: we discuss the practical veri�cation of permanent fault diagnosability in

a model- checking framework. The diagnosability condition is expressed using CTL

formula while the twin-plant structure is transformed into a Kripke structure and,

therefore, diagnosability is investigated as a model-checking problem. Reformulation

of K/Kmin−diagnosability are also discussed;

• Chapter 8: we discuss the diagnosability analysis of intermittent fault using the twin-

plant based approach. The various notions of diagnosability introduced in Chapter 5

are carried out, in this chapter. Necessary and su�cient condition for each property

is �rstly established and then reformulated (if possible) as a model-chcking problem.

PART IV: in this part, we provide conclusion remarks regarding the dissertation and

we draw future research directions.

Chapter 1. Introduction 11

Publications

Journals

IJCCBS A. Boussif, M. Ghazel and K. Klai. Fault Diagnosis of Discrete-Event

Systems Based on the Symbolic Observation Graph. The International

Journal of Critical Computer-Based Systems. (submitted)

(This paper is among a selection of the best conference papers in VeCOS'15 for

publication in a special issue of IJCCBS)

IEEE-TASE A. Boussif and M. Ghazel. Analyzing Various Notions of Diagnosability

of Intermittent Faults in Discrete Event Systems. IEEE Transactions on

Automation Science and Engineering. (submitted)

Review comments have been received for the �rst version submitted, where some

modi�cations are asked. A second version is submitted on the light of the review

comments.

IEEE-TAC A. Boussif and M. Ghazel. A New Variant of the Diagnoser-Based

Approach for Fault Diagnosis of Discrete-Event Systems. IEEE Trans-

actions on Automatic Control. (submitted)

IEEE-SMC A. Boussif, M. Ghazel and K. Klai. Fault Diagnosis of Bounded Labeled

Petri Nets Using a Semi-Symbolic Diagnoser. IEEE Transactions on

Systems, Man, and Cybernetics: Systems (submitted)

Conferences & Proceedings

DCDS'15 A. Boussif and M. Ghazel. Diagnosability Analysis of Input/Output

Discrete-Event Systems Using Model-Checking. The 5th International

Workshop on Dependable Control of Discrete Systems, Cancun, Mexico.

|Mai 27-29, 2015

MSR'15 A. Boussif and M. Ghazel. Une Approche par Décomposition de Mod-

èles pour l'Analyse de la Diagnosticabilité des Systèmes à Évènements

Discrets par Model-Checking. 10e Colloque sur la Modélisation des Sys-

tèmes Réactifs Inria Nancy-Grand Est, France. |Nov 18-20,

2015.

12 Chapter 1. Introduction

VeCoS'15 A. Boussif, M. Ghazel and K. Klai. Combining Enumerative and Sym-

bolic Techniques for Diagnosis of Discrete-Event Systems. The 9th In-

ternational Workshop on Veri�cation and Evaluation of Computer and

Communication Systems (VeCos'15), Bucharest, Romania; |Sept.

10-11, 2015

WoDES'16 A. Boussif, B. Liu and M. Ghazel. A Twin-Plant Based Approach for

Diagnosability Analysis of Intermittent Failures. The 12th International

Workshop on Discrete-Event Systems (Wodes'16), Xi'an, China; | Mai

30 - Juin 1, 2016

ICPHM'16 A. Boussif and M. Ghazel. Intermittent Fault Diagnosis of Indus-

trial Systems in the Model-Checking Framework. IEEE International

Conference on Prognostics and Health Management, Ottawa, Canada;

|Juin 20-22, 2016

VeCoS'16 A. Boussif and M. Ghazel. Using Model-Checking Techniques for Diag-

nosability Analysis of Intermittent Faults - A Railway Case-Study. The

10th International Workshop on Veri�cation and Evaluation of Computer

and Communication Systems, Tunis, Tunisia; |Oct. 06-07, 2016

ACC'17 A. Boussif and M. Ghazel. A Diagnoser-Based Approach for Inter-

mittent Fault Diagnosis of Discrete-Event Systems. The 2017 American

Control Conference, Seattle, WA, USA, 2017; (submitted)

IFAC-WG'17 A. Boussif, M. Ghazel and K. Klai. DPN-SOG: A Software tool for

Fault Diagnosis of Labeled Petri Nets Using Semi-Symbolic Diagnoser.

20th IFAC World Congress, Toulouse, France, 2017; (submitted)

Part I

LITERATURE REVIEW

Chapter 2

Model-Based Diagnosis

Sommaire

2.1 Fault Diagnosis . 16

2.2 Fault Diagnosis Approaches . 17

2.3 Diagnosis of Discrete-Event Systems 20

2.4 DESs Diagnosis Using Petri Nets 23

16 Chapter 2. Model-Based Diagnosis

2.1 Fault Diagnosis

According to Webster's Dictionary the meaning of the term diagnosis is as follows:

diagnosis

Etymology: New Latin, from Greek diagnOsis, from diagignOskein

to distinguish, from dia- + gignOskein that means `knowing the di�erence'

Date: circa 1681.

De�nition 1: (from medicine) The art or act of recognizing the presence of disease

from its signs or symptoms, and deciding as to its character; also, the decision ar-

rived at.

De�nition 2: the act or process of identifying the nature or cause of some phe-

nomenon, especially the abnormal behavior of an animal or artifactual device; as,

diagnosis of a vibration in an automobile; diagnosis of the failure of a sales campaign;

diagnosis of a computer malfunction.

Hereafter, we recall the de�nitions of some terms and concepts that are often used in

this thesis.

2.1.1 Terminology in the Area of Fault Diagnosis

As a step towards a uni�ed terminology, the IFAC Technical Committee SAFEPROCESS

has suggested preliminary de�nitions of some terms in the �eld of fault diagnosis. Such a

terminology was �rst published in [Isermann and Ballé, 1997, Isermann, 2006].

• Fault: an unpermitted deviation of at least one characteristic property or parameter

of the system form the acceptable / usual/standard condition;

• Failure: a permanent interruption of a system's ability to perform a required func-

tion under speci�ed operating conditions;

• Fault detection: determination of the faults present in a system and the time of

detection;

• Fault isolation: determination of the kind, location and time of detection of a

fault. Follows fault detection;

• Fault identi�cation: determination of the size and time-variant behavior of a fault.

Follows fault isolation;

Chapter 2. Model-Based Diagnosis 17

• Monitoring: a continuous real-time task of determining the conditions of a phys-

ical system, by recording information, recognizing and indicating anomalies in the

behavior;

• Supervision: monitoring a physical system and taking appropriate actions to main-

tain the operation in the case of faults;

• Fault diagnosis: determination of the kind, size, location and time of detection of

a fault. Follows fault detection. Includes fault isolation and identi�cation;

The ranking of these functions according to the importance is obviously subjective,

however, the fault detection is an absolute must for any practical system and isolation

is almost equally important. Fault identi�cation, on the other hand, whilst undoubtedly

helpful, may not be essential if no recon�guration action is involved. Hence, fault diagnosis

is very often considered as fault detection and isolation/identi�cation, abbreviated as FDI,

in the literature [Chen and Patton, 2012].

2.2 Fault Diagnosis Approaches

Approaches dealing with fault diagnosis can be classi�ed into four main classes:

2.2.1 Expert Systems and Knowledge-Based Diagnosis

A popular method for diagnosis and supervision of complex systems has been the use of

expert systems, often in conjunction with fault tree structures. The terms expert system

and knowledge-based system are often used synonymously. Expert systems are eminently

well suited for systems that are di�cult to model, with complex interactions between and

within components [Scherer and White III, 1989, Tzafestas and Watanabe, 1990]. Expert

systems found broad application in fault diagnosis from their early stages because an expert

system simulates human reasoning about a problem domain, performs reasoning over

representations of human knowledge and solves problems using heuristic knowledge rather

than precisely formulated relationships, in forms that re�ect more accurately the nature

of most human knowledge. Domain experts have heuristic knowledge of the system and of

how symptoms relate to faults. In traditional expert systems, this knowledge is represented

in a rule-base and used in conjunction with an inference engine [Venkatasubramanian et al.,

2003].

This heuristic approach has several drawbacks. Acquiring knowledge from experts is

di�cult and time consuming, and for new systems a considerable amount of time may

elapse before enough knowledge is accumulated to develop the necessary set of heuristic

18 Chapter 2. Model-Based Diagnosis

rules for reliable diagnosis, coupled with the fact that this approach is very domain depen-

dent, i.e., expert systems are not easily portable from one system to another. Furthermore,

it is di�cult to validate an expert system.

2.2.2 Data-Driven Based Diagnosis

In contrast to model-based approach, which requires reliable a priori quantitative or qual-

itative knowledge about the process, the data-driven approach makes use of this informa-

tion from the huge amount of process history data. Thus, data-driven approaches work

without models, or with only simpli�ed ones [Venkatasubramanian et al., 2003]. Since

most of the data-driven approaches assume that the process data have certain probability

density functions, they are sometimes also called statistical process monitoring methods.

The univariate control chart may be the earliest statistical approach based on a priori

knowledge of process measurement distributions [Shewhart and Deming, 1939] and has

been used for quality control in earlier industrial applications.

The main drawback of these techniques is the need to data for training. Data from the

systems are not available until they have been built. Only during the testing phase of the

physical system is it possible to collect useful data. This, however, drastically shortens

the time available for the tuning of the diagnosis system, and makes it extremely di�cult

to validate the diagnoser when designing the system [Gario, 2016].

2.2.3 Fault-Tree Based Diagnosis

The most widely used scheme for alarm analysis, especially in the process control industry,

is based on fault-trees [De Vries, 1990, Lapp and Powers, 1977, Lee et al., 1985] The basic

idea behind fault tree approaches is that a failure can trigger other failures or events in

the system and this can be traced back to the root cause [Hamscher, 1992]. A fault-tree

graphically represents a cause-e�ect relationship among the failures in the system. The

root of a fault tree, the so-called `top' event, is a system failure. The leaves of the tree are

possibly contributing atomic events or basic faults, and inner nodes are AND- and OR-

type. Sets of events that trigger the top event are computed using cut sets and minimal

cut sets [Huang, 2003].

Fault-tree construction is laborious and error prone, and much work has been done on

computer assisted and automatic fault tree construction [Lapp and Powers, 1977, Elliott,

1994]. Moreover, a fault tree is used to analyze a single fault event, and that one and only

one event can be analyzed during a single fault tree. These drawbacks in fact limit the

applicability of fault-tree in practice.

Chapter 2. Model-Based Diagnosis 19

2.2.4 Model-Based Diagnosis

Model-based diagnosis techniques (shortly MBD) [Kleer, 1992, Sampath et al., 1995, Roth

et al., 2012, Lin, 1994, Reiter, 1987, Lamperti and Zanella, 2013, Darwiche and Provan,

1996, Frank, 1996, Schneider et al., 2012, Brusoni et al., 1998, Venkatasubramanian et al.,

2003, Hamscher, 1992, Isermann and Ballé, 1997] have been remarkably developed since

the 80s and their e�ciency for detecting faults has been demonstrated by a great number of

applications in industrial processes and automatic control systems. The MBD approaches

are based on a description of the system's behavior, called the `system model '. This model

is generally provided by the system designer, and describes at least the normal behavior

of the system. Better results are achieved when the model describes the behavior of the

system under prede�ned faults, or when the model accounts for the system structure, i.e.,

the components that intervene in the system behavior. The basic idea behind the MBD is

to compare observations of the real system with the predictions from a model. Therefore,

the occurrence of a fault is captured by discrepancies between the actual observed behavior

and the behavior that is predicted by the model. Fault localization then rests on interlining

the model parts (i.e., components) that are involved in each of the detected discrepancies.

As discussed in [Cordier et al., 2004], two distinct and parallel research communi-

ties have been using the MBD approaches. The FDI (for Fault Detection and Isola-

tion/Identi�cation) community has evolved in the Automatic Control �eld from the sev-

enties and uses techniques from control theory and statistical decision theory. It has now

reached a mature state and a number of very good surveys exist in this �eld [Patton and

Chen, 1991, Gertler, 1991]. The DX (for Diagnosis eXpert system) community emerged

more recently, with foundations in the �elds of Computer Science and Arti�cial Intelli-

gence [Reiter, 1987, Kleer, 1992, Hamscher, 1992]. Hereafter, we give a brief description

of these approaches.

2.2.4.1 FDI Analytical Redundancy Methods

In the control system community, the most common class of model-based diagnosis method

proposed is the analytical redundancy method [Frank, 1996, Chen and Patton, 2012,

Willsky, 1976]. The analytical redundancy methods, addressed for continuous systems,

consist of two steps: (i) generation of residuals and (ii) decision and fault isolation.

Residuals are quantities that represent the inconsistency between the actual system

variables and the mathematical model. In other words, residual signals are generated by

comparing predicted values of system variables with the actual observed values, where

the predicted values come from the available mathematical model of the system. In the

decision and fault isolation stage, the residuals are examined for the likelihood of faults.

20 Chapter 2. Model-Based Diagnosis

In other words, residuals are ideally zero and some residuals become non-zero if the actual

system di�ers from the ideal one, which may be due to faults, disturbances, noise.

One of the main problems with the analytical redundancy method is the di�culty in

acquiring good enough models. The demands on the accuracy of the models are usually

higher than for control design, since the residual generator works open-loop. Robust

methods for residual generation has received considerable attention in recent years and is

an active research area [Chen and Patton, 2012, Huang, 2003].

2.2.4.2 DX Logical Diagnosis Methods

The model-based approach to diagnosis started to be investigated by Arti�cial Intelligence

researchers in the late seventies, as a possible alternative to the expert-system approach.

The fundamental paradigm of this approach, much like the analytical redundancy meth-

ods, is that of observation and prediction. The basic idea is to predict the behavior of

the system using behavioral and structural models of the system and its components and

compare it with observations of the actual behavior of the real system.

Two main characterizations of DX model-based diagnosis exist in the literature: (i)

consistency-based diagnosis [Reiter, 1987] and (ii) abductive diagnosis [Poole, 1989]. The

former is pioneered by Reiter [Reiter, 1987] known as the diagnosis from �rst principles.

The goal of such a method is to �nd the set of constraints that are in con�ict with the

observation (output from a model which only depicts the nominal behavior). In this way,

a diagnosis is a set of components that must misbehave in order to justify the observation.

The abductive diagnosis methods exploit the causal model of a system, containing explicit

information about which faults can occur and which chain of consequences they provoke,

up to their observable manifestations.

The two approaches eventually converged into the parallel ideas of exploiting informa-

tion about faults in consistency-based diagnosis, and information about correct behavior

in abductive diagnosis, including in a component-oriented model information about faults

corresponds to describing, along with the correct behavior of system components, also

their possible faults and their consequences. Thus, models of correct behavior started

to be endowed with fault models,and causal models started to include a description of

nominal behavior [de Kleer and Kurien, 2004, Picardi,].

2.3 Diagnosis of Discrete-Event Systems

Discrete-Event Systems (DESs) [Cassandras and Lafortune, 2009] are systems, the dy-

namic of which is characterized by asynchronous occurrence of events. An event is a

Chapter 2. Model-Based Diagnosis 21

fundamental concept which can be viewed and described as `something happened ', either

in systems designed by humans or in nature. Events have no property of continuation, they

are instant, and can be observed only at discrete points in time. The second fundamental

concept, characterizing a DES is a state, which is viewed as a result of temporally ordered

discrete events, occurred starting from a moment when the system was in its initial state.

In fact, the initial state of a DES characterizes the system before the occurrence of any

event. The level of detail in DESs appears to be quite adequate for a large class of systems

and a wide variety of failures to be diagnosed.

DESs diagnosis, particularly for �nite state automata (shortly FSA), was initiated by

Lin [Lin, 1994] and further treated in [Bavishi and Chong, 1994]. The o�-line and on-line

diagnosis issues are addressed separately. The authors give an algorithm for computing

a diagnostic control, i.e., a sequence of test commands for diagnosing system failures.

This algorithm is guaranteed to converge if the system satis�es the conditions for on-line

diagnosability.

Diagnosis of DESs �nds its roots in the work by Sampath et al [Sampath et al.,

1995, Sampath et al., 1996]. In these works, a formal language framework for studying

diagnosability properties (and online diagnosis) of un-timed DESs was proposed. The

approach is closely related to the Ramage-Wonham framework for supervisory control of

DESs [Ramadge and Wonham, 1987]. Actually, the DES model to be diagnosed depicts

both its normal and faulty behaviors. The faults are considered as unobservable events

and the diagnosis problem is then to infer about the past occurrences of fault events,

on the basis of the observation recorded, within a �nite delay. A diagnoser, which is an

extended observer, that gives the (estimated) states and fault estimation of the system

after the occurrence of each observable event is constructed from the model.

When a system model is not diagnosable, the authors in [Sampath et al., 1995] identify

two means of making it diagnosable: i) revisit the sensors' map and ii) design the controller

so that the faulty behavior is excited and can be detected. The former gives rise to

recon�guration/optimization of sensors [Pan and Hashtrudi-Zad, 2007, Jiang et al., 2003a,

Ru and Hadjicostis, 2010, Yoo and Lafortune, 2002a, Cabasino et al., 2013b, Debouk et al.,

2002a, Dallal and Lafortune, 2011] and the synthesis of observability requirements [Bittner

et al., 2012], while the latter gives rise to active diagnosis issues [Sampath et al., 1998,

Chanthery and Pencolé, 2009, Chen et al., 2014].

One of the main features of this approach is the ability to analyze diagnosability

properties. In fact, diagnosability is the ability to detect and isolate the past occurrences of

faults within �nite delays. The formal de�nition of diagnosability, as well as the necessary

and su�cient condition for checking such a property have been provided in this work.

This approach will be detailed in Chapter 3.

22 Chapter 2. Model-Based Diagnosis

Actually, Sampath's approach requires building a diagnoser for analyzing diagnos-

ability. However, due to the deterministic nature of the diagnoser, its construction is

performed in an exponential complexity in the model state-space. Aiming to reduce

computational complexity for analyzing diagnosability, various approaches have been pro-

posed on the basis of twin-plant/veri�er structures [Jiang and Huang, 2001, Yoo and

Lafortune, 2002b, Cimatti et al., 2003, Moreira et al., 2011, Grastien, 2009]. Such ap-

proaches allow checking diagnosability using polynomial-time algorithms and therefore,

the diagnoser construction can only be performed for the diagnosable models.

2.3.1 Centralized/Decentralized DESs Diagnosis

The DES diagnosis was �rstly discussed in centralized architecture [Sampath et al., 1995,

Lin, 1994, Zad et al., 2003, Jiang and Huang, 2001, Yoo and Lafortune, 2002b]. In

such an architecture, a global model of the system is used to be diagnosed (it may be

obtained through a parallel composition of various components) and all the observations

are performed at one site. Therefore, only one diagnoser is constructed, upon the current

state of the diagnoser a decision o the fault occurrence is made.

Dealing with DES diagnosability using a decentralized architecture (called also codi-

agnosability) was proposed in [Debouk et al., 1998]. In such an architecture, a global DES

model of the system is also used, but several local sites perform observations using only

local diagnosers, i.e, one diagnoser is computed for each site. Since the local diagnosers

do not communicate to each other, a coordinator is used to ensure the communication

(via protocols) and therefore is responsible for diagnosing the fault occurrences. Particu-

larly, the authors have speci�ed three protocols that realize the architecture, analyze the

diagnostic properties and decide about the diagnosability under each protocol. In the last

two decades, DESs decentralized diagnosis has received a lot of consideration and various

contributions have been proposed [Qiu and Kumar, 2006, Debouk et al., 2000, Philip-

pot et al., 2013, Kumar and Takai, 2010, Pencole, 2000, Schumann et al., 2010, Wang

et al., 2007, Sayed-Mouchaweh and Carre-Menetrier, 2008, Lafortune et al., 2005, Provan,

2002, Cabasino et al., 2013a, Basilio and Lafortune, 2009, Moreira et al., 2011, Zhou et al.,

2008, Nunes et al., 2016, Takai and Kumar, 2016].

2.3.2 Distributed/Modular DESs Diagnosis

Distributed DESs diagnosis achieves diagnosis using a set of local models without referring

to a global system model. The aim is to improve scalability and robustness of diagnostic

methodologies. Each subsystem knows only its own part of the global model and has its

local diagnoser in order to perform diagnosis locally [Zaytoon and Lafortune, 2013]. In

Chapter 2. Model-Based Diagnosis 23

fact, for each component (subsystem or module), the local diagnosability information is

computed [Fabre et al., 2002, Su and Wonham, 2005, Pencolé and Cordier, 2005, Genc and

Lafortune, 2003, Ye and Dague, 2010, Ye et al., 2009, Ye and Dague, 2012] and (may) later

combined to obtain the global diagnosability result [Pencolé et al., 2004, Pencolé et al.,

2005, Schumann and Pencolé, 2007]. In comparison to centralized approaches, distributed

ones require less space. In fact, due to the high space requirements of centralized methods,

they can hardly be applied to large scale systems.

The notion of modular diagnosability meets the same architectural implications of

distributed techniques, and it can be seen as distributed approach with the amount of

information the observation spots communicate to each other being equal to zero. The

challenge of modular diagnosis methodologies consists in performing diagnosis locally,

i.e., at each module, while at the same time accounting for the coupling of each module

with the rest of the system. Approaches that exploit the modular structure of a system for

monitoring and diagnosis have been developed in [Benveniste et al., 2003, Ricker and Fabre,

2000, Contant et al., 2006, Schmidt, 2013, Zhou et al., 2008, García et al., 2005, Debouk

et al., 2002b, Garcia et al., 2002, Holloway and Chand, 1994, Pandalai and Holloway, 2000]

2.4 DESs Diagnosis Using Petri Nets

DESs fault diagnosis was �rst discussed in the automata framework, where the basic

de�nitions and the formal and algorithmic foundations of fault diagnosis and diagnosability

analysis of DES were established. several original theoretical approaches and industrial

applications have been performed. Subsequent contributions from much research teams

have been concerned with the development of new models, new properties, new algorithms,

and e�cient solutions for fault diagnosis of DES [Zaytoon and Lafortune, 2013].

Although automata models are suitable for describing DESs, the use of Petri nets

(PNs) o�ers signi�cant advantages because of their twofold representation: graphical and

mathematical [Murata, 1989]. In fact, the mathematical foundation underlying PNs, al-

lows the use of standard techniques, such as Integer Linear Programming (ILP) to perform

fault diagnosis tasks, while the graphical representation can be advantageously used to

extend the automata-based approaches so as to deal with fault diagnosis of Petri nets

by considering its reachability set. Moreover, the intrinsically distributed nature of PNs

where the notion of state (i.e., marking) and action (i.e., transition) is local reduces the

computational complexity involved in solving a diagnosis problem. Several adaptation of

automata-based techniques and original theoretical approaches have been proposed to deal

with diagnosis in Petri nets (PNs) framework [Wen et al., 2005, Ramírez-Treviño et al.,

2007, Basile et al., 2008, Basile et al., 2009, Basile et al., 2010, Basile et al., 2012a, Dotoli

24 Chapter 2. Model-Based Diagnosis

et al., 2009, Basile, 2014, Jiroveanu and Boel, 2010, Cabasino et al., 2009a, Germanos et al.,

2015, Madalinski and Khomenko, 2010, Ushio et al., 1998, Chung, 2005, Jiroveanu and

Boel, 2004, Cabasino et al., 2010, Cabasino et al., 2009b, Liu, 2014, Liu et al., 2014b, Li

et al., 2015c, Li et al., 2015b]. Other formalisms have been used to deal with fault diag-

nosis of DESs. A brief literature review about DESs diagnosis using Petri nets is given

in Chapter 6.

Chapter 3

Fault Diagnosis of Discrete-Event

systems

Sommaire

3.1 Introduction . 26

3.2 Discrete-Event Systems under Partial Observation 27

3.3 The Fault Diagnosis Problem . 30

3.4 Diagnosability . 32

3.5 The pioneering Approaches . 36

3.6 Conclusion . 44

Summary

This chapter gives a brief summary of the background on fault diagnosis of discrete-

event systems. The discussion is limited to discrete-event systems modeled by �nite state

automata. We �rst present the discrete-event systems modeling and provide some notations

that will be used throughout the thesis. Then, we review the fault diagnosis problem and

some basic results concerning the analysis of the diagnosability property. Pioneering DES

diagnosis approaches which deal with diagnosability analysis will be then recalled and a

comparison discussion between these approaches is provided. It is worth noticing that the

basic notions and de�nitions provided in this chapter are required for a better understanding

of the following chapters.

26 Chapter 3. Fault Diagnosis of Discrete-Event systems

This chapter is structured as follows: In Section 3.1, a general introduction to the

fault diagnosis of discrete-event systems is presented. In Section 3.2, the SEDs modeling

as well as the preliminary concepts needed in the sequel are introduced. In Section 3.3, we

discuss the diagnosis problem in DESs. The notion of diagnosability and the main results

related, are recalled in Section 3.4. The pioneering approaches for fault diagnosis of DESs

with a comparison discussion are presented in Section 3.5.

3.1 Introduction

Fault diagnosis of failures in large, complex and dynamic systems is a crucial and chal-

lenging task, essentially in guaranteeing the reliable, safe, e�cient and correct operation

of complex engineered systems. In this context, and to ful�ll such requirements, devel-

oping e�ective monitoring techniques becomes essential starting from the design phase of

the system. In particular, having e�cient tools for monitoring and diagnosis is of great

interest since this prevents or at least minimizes the failure-related down-times, especially

in safety-critical systems.

From the theoretical point of view and at a high level of abstraction, discrete-event

systems (DESs) [Cassandras and Lafortune, 2009], are quite suitable for fault diagnosis

for a wide range of applications because of the formal basis o�ered by the state/transition

models and their associated algorithms [Lin, 1994, Biswas, 2012]. Discrete event sys-

tems (DESs) are dynamic systems with discrete state-spaces and event-driven transitions,

which change their discrete states upon asynchronous occurrence of certain events. States

in DESs are represented by some symbolic variables. Events in DESs are some discrete

qualitative changes. In order to characterize DES, di�erent modeling notations have been

developed [Cassandras and Lafortune, 2009]: language and automata, PN theory, (max,+)

algebra, Markov chains and queuing theory, discrete-event simulation, perturbation anal-

ysis, and concurrent estimation techniques. Among them, automata and PNs are the two

models most used in DES-based diagnosis.

In general, there are two types of DESs: untimed DESs and timed DESs. Untimed

DES models are built when we consider only the logic features, i.e., the logical order of

event occurrences, without considering timing properties of the system. Thus, dynamics of

untimed DESs are determined by the order/sequence of states or events, not their timing

properties. In timed DESs, system behaviors are a�ected by timing properties, which are

captured by extra "timing" events or states with clock ticks.

Fault diagnosis is a crucial task in complex dynamic systems. Due to its importance,

this problem has received considerable attention from industrial and academic communi-

ties in both Arti�cial Intelligence (AI) and control engineering domains (CE). In particular,

Chapter 3. Fault Diagnosis of Discrete-Event systems 27

an increasing amount of work has been devoted to diagnosis of DESs during the last two

decades [Zaytoon and Lafortune, 2013]. Actually, the DES diagnosis problem is basically

concerned with determining which faults, if any, explain a given observed abnormal behav-

ior, based on the system model. Fault diagnosis is therefore closely related to the problem

of state estimation [Zaytoon and Lafortune, 2013].

The fault diagnosis involves (1) detecting when a fault has occurred, (2) isolating the

true fault from many possible fault candidates, and (3) identifying the true damage to the

system. In the context of DES, fault diagnosis is often discussed through two main issues:

diagnosability analysis and online diagnosis [Sampath et al., 1995, Lin, 1994]. Online

diagnosis consists in inferring the occurrence of predetermined faults from the observed

behavior of the system. Diagnosability refers to the capacity of the diagnoser to provide

a precise diagnosis verdict. Thus, the intention of analyzing diagnosability of a system is

to determine accurately whether any predetermined failure can be detected and identi�ed

within a �nite delay following its occurrence [Sampath et al., 1995].

In this chapter, we are focused on fault diagnosis of untimed DESs modeled by �nite

state automata (FSA). To get a general overview of the literature pertaining to fault

diagnosis of DESs, the reader can refer to the recent survey in [Zaytoon and Lafortune,

2013], where theoretical and practical issues, tools and other issues in relation to the

diagnosis are discussed.

3.2 Discrete-Event Systems under Partial Observation

3.2.1 DESs Modeling

Discrete-event systems are quite convenient to perform the safety analysis of complex

systems in a su�ciently high abstraction level [Cassandras and Lafortune, 2009, Ramadge

and Wonham, 1987]. When systems are abstracted as DESs for diagnosis purposes, the

model used is often �nite state automata (FSA).

Dé�nition 1 (A Finite State Automaton [Cassandras and Lafortune, 2009])

An FSA is a tuple G = 〈X,Σ, δ, x0〉 where,

• X is a �nite set of states;

• Σ is the alphabet of events;

• δ : X × Σ→ 2X is the (partial) transition function;

• x0 ∈ X is the initial state. �

28 Chapter 3. Fault Diagnosis of Discrete-Event systems

A triple (x, σ, x′) ∈ X × Σ × X is called a transition if x′ ∈ δ(x, σ). The model G

accounts for the normal and faulty behavior of the system, which can be described by the

pre�x-closed language L ⊆ Σ∗ generated byG, where Σ∗ denotes the Kleene-closure of set Σ.

An event-sequence s = (σ1, σ2, . . . , σn), with σi ∈ Σ, is said to be associated with state-

sequence π = (x1, x2, . . . , xn+1) if ∀ i : 0 < i ≤ n, xi+1 ∈ δ(xi, σi). The partial transition
function δ can be extended to sequences of events, i.e., one can write xn+1 ∈ δ(x1, s). We

write si to denote the ith event in s. We denote by L/s the post-language of L upon s,

i.e., L/s := {t ∈ Σ∗ |s.t ∈ L}. We write s ≤ s′ to denote that s is a pre�x of s′. Let us

consider σ ∈ Σ and s ∈ Σ∗. We write σ ∈ s to denote that ∃ i : 1 ≤ i ≤ |s| : si = σ.

The partial observability issue plays a central role in fault diagnosis. In this regard,

some events in Σ are observable, i.e., their occurrence can be observed, while the others

are unobservable. Thus, event set Σ can be partitioned as Σ = Σo
⊎

Σu, where Σo denotes

the set of observable events and Σu the set of unobservable events.

In the context of the diagnosis, faults are basically assumed to be unobservable events

(Σf ⊆ Σu), since their detection and diagnosis would be trivial if they were observable.

The set of fault events can be partitioned as disjoint fault classes Σf = Σf1

⊎
Σf2

⊎
. . .

⊎
Σfm ,

where Σfi(i = 1, 2, . . . ,m) denotes one class of faults. We consider that ψ(Σf) de-

notes the set of event-sequences in L that end with a faulty event in Σf . That is,

ψ(Σf) := {s.σf ∈ L : σf ∈ Σf}. With a slight abuse of notation, we write Σf ∈ s

to denote that ∃σf ∈ Σf such that σf ∈ s. Without loss of generality, only one fault class

Σf is considered in the sequel.

3.2.2 Operations on DESs

In what follow, we recall some useful operations on DESs , which are used in the sequel:

To capture the observed behavior of the model, we de�ne the associated projection map-

ping.

Dé�nition 2 (The projection mapping [Lin and Wonham, 1988])

With the set of observable events Σo, a projection mapping is associated such that

P : Σ∗ → Σ∗o, with P (ε) = ε (ε is the empty event-sequence) and

P (σ) =

{
ε, σ ∈ Σu

σ, σ ∈ Σo

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ

�

Chapter 3. Fault Diagnosis of Discrete-Event systems 29

The e�ect of P on an event-sequence s ∈ Σ∗ is simply to erase the unobservable events

in it. The inverse projection operation P−1
L is de�ned by P−1

L (y) = {s ∈ L ⊆ Σ∗ : P (s) =

y}.
The general setting of the inverse projection P−1

L is not restricted to the event-

sequences which �nished with an observable event (i.e., ∀ω ∈ Σ∗, P−1
L (ω) = {s ∈ L ⊆

Σ∗ : P (s) = ω} ∩ Σ∗Σo) [Fabre et al., 2016]. In this chapter, we consider that P−1
L is

restricted to the event-sequences. However, in some parts of our thesis, the general setting

of the inverse projection P−1
L is considered since it has an impact on the obtained results

and will be discussed in Chapter 5. The projection operator can then be extended to

language L by applying the projection to all traces of L, i.e., P : 2Σ∗ → 2Σo . Therefore,

if L ⊆ Σ∗, then P (L) = {t ∈ Σ∗o | (∃ s ∈ L) [P (s) = t]}.
We recall the classic notions of synchronous product and parallel composition of two

FSA.

Dé�nition 3 (Synchronous product [Cassandras and Lafortune, 2009])

Consider Gi = 〈Xi,Σ, δi, x0i〉 (for i = 1, 2). The synchronous product of Gi is the FSA

G = G1 ×G2 = 〈(X1 ×X2),Σ, δ, (x01 × x02)〉 where ((x1, x2), σ, (y1, y2)) ∈ δ if and only if

(x1, σ, y1) ∈ δ1 and (x2, σ, y2) ∈ δ2.

Using the projection mapping, we can characterize the language resulting from the

synchronous product as follows: L(G1 ×G2) = L(G1)× L(G2). The product between an

FSA and itself is called a self-product.. Such an operation is also called the strict parallel

composition.

Dé�nition 4 (Parallel composition [Cassandras and Lafortune, 2009])

Consider Gi = 〈Xi,Σi, δi, x0i〉 (for i = 1, 2). The parallel composition of of Gi is the FSA

G1 ‖ G2 = 〈(X1 ×X2),Σ1 ∪ Σ2, δ1||2, (x01 × x02)〉 where

δ1||2((x1, x2), σ)) :=


(δ1(x1, σ), δ2(x2, σ)) if σ ∈ Σ1 ∩ Σ2

(δ1(x1, σ), x2) if σ ∈ Σ1\Σ2

(x1, δ2(x2, σ)) if σ ∈ Σ2\Σ1

(3.1)

�

Using the projection mapping, we can characterize the language resulting from the

parallel composition as follows: L(G1 ‖ G2) = P−1[L(G1)] ∩ P−1[L(G2)].

Dé�nition 5 (Σu−closure)
Σu−closure of G is FSA G′ = 〈Xo,Σo, δG′ , x0〉, where

30 Chapter 3. Fault Diagnosis of Discrete-Event systems

• Xo = {x0} ∪ {x ∈ X|∃x′ ∈ X,∃σ ∈ Σo : x ∈ δ(x′, σ)} is the �nite set of states;

• Σo is the �nite set of observable events;

• x0 ∈ X is the initial state;

• δG′ ⊆ (Xo × Σo ×Xo) is the transition relation, de�ned as follows:

(x, σ, x′) ∈ δG′ if ∃s ∈ Σ∗ : x′ ∈ δ(x, s) s.t. s = (σ1, σ2, . . . , σn = σ): σi ∈ Σu(i =

1, 2, . . . , n− 1) and σn ∈ Σo. �

In other words, the Σu−closure is an ε−reduction assuming all events of Σu are �rst

replaced by ε. That is, every unobservable transition in G is erased in the closure, while

preserving the set of observation, i.e., L(G′) = P (L(G)).

Dé�nition 6 (Determinization)

Determinization of FSA G is Det(G) = 〈X ,Σo, δo,X0〉 where

• X = 2X is the set of nodes, each node contains a set of system states;

• X0 = {x0} the initial node;

• δo(q, σ) = {x′ ∈ X|∃s ∈ Σ∗, ∃x ∈ q : x′ ∈ δ(x, sσ)} is the transition relation. �

The determinization can be easily performed from the Σu−closure of G and similarly,

determinization preservs the observation, i.e., L(Det(G)) = P (L(G)).

3.3 The Fault Diagnosis Problem

Partial observability on the system behavior is a main issue one has to deal with when

performing diagnosis analysis. Diagnosability analysis and online diagnosis where �rstly

formulated by M. Sampath et al. [Sampath et al., 1995, Sampath et al., 1996] in the

framework of automata models. In fact, the diagnosis activity is basically concerned with

determining which faults (unobservable events), if any, explain a given observed sequence

of events, based on the model of the system. Fault diagnosis is therefore closely related to

the problem of state observability, which consists in building a deterministic automaton,

called the observer, whose transitions are due to the observable events of the system and

whose states are estimates of the true system state [Zaytoon and Lafortune, 2013].

In the original framework introduced in [Sampath et al., 1995, Sampath et al., 1996],

the behavior of the DES is assumed to be known and a model of it is available as a �nite

state automaton G over an alphabet (set of events) Σ = Σo∪Σu with Σf ⊂ Σu. Therefore,

the aim of fault diagnosis is to detect the faulty sequences of the DES by only observing

Chapter 3. Fault Diagnosis of Discrete-Event systems 31

events in Σo. A faulty sequence is an event sequence of the DES containing at least one

occurrence of an event in Σf . It is assumed that an observer which has to detect the faults

knows the speci�cation/model of the DES and on the basis of such knowledge, it has to

announce whether an observation (a sequence in Σ∗) was produced by a faulty sequence

or not [Cassez, 2009, Cassez and Tripakis, 2008].

The diagnosis problem is de�ned as the problem of synthesizing a diagnoser, that is,

a function Diag : P (L(G)) −→ {yes, no, ?}, which answers the question whether all the

event sequences consistent with the observation have experienced at least one fault event

in Σf . The main properties of such a function are: Correctness, which means that Y es and

No answers should be accurate, while bounded diagnosability means that the fault events

should be diagnosed within �nite number of observable events [Morvan and Pinchinat,

2009, Chédor et al., 2015, Jéron et al., 2006].

Formally, the diagnosis problem can be de�ned as follow:

Dé�nition 7 (The diagnosis problem [Jéron et al., 2006]) given an FSA G, Σo is the

set of observable events, Σf is the set of fault events. For an observable event sequence

s ∈ Σo, the function Diag : P (L(G)) −→ {yes, no, ?} should verify

Diag(s) :=


“Y es” if ∀t ∈ P−1(s) : Σf ∈ t
“No” if ∀t ∈ P−1(s) : Σf /∈ t
? otherwise.

(3.2)

�

Figure 3.1 illustrates the diagnoser function, where after each observation, a verdict

regarding the status of the system is generated.

Figure 3.1 � Illustration of the diagnosis function [Jéron et al., 2006]

In fact, the diagnoser D of an FSA G (i.e., function Diag) can be derived from the

corresponding deterministic DES Det(G). A systematic procedure for building the diag-

noser is �rstly proposed in [Sampath et al., 1995, Sampath et al., 1996] (which we recall

32 Chapter 3. Fault Diagnosis of Discrete-Event systems

in the next section). Building the diagnoser is not a di�cult task, per se: it relies on

classical power-set construction (Σu−closure, determinization). Hence, for �nite state au-

tomata, it induces an unavoidable exponential blow-up [Sampath et al., 1995, Morvan

and Pinchinat, 2009, Tsitsiklis, 1989], even for succinct representations [Rintanen et al.,

2007a]. Therefore, on-the-�y computation of the diagnoser is a key technique that im-

proves the construction and the analysis procedure [Liu, 2014]. Moreover, it can also deal

with in�nite state settings [Tripakis, 2002, Baldan et al., 2010, Morvan and Pinchinat,

2009].

The practical interest of using a diagnoser greatly depends on its capabilities to output

accurate answers. That is, whatever method is used for the diagnoser, the central question

is whether the diagnoser will eventually detect any faulty execution. Such a property can

be formally captured by the notion of diagnosability [Sampath et al., 1995, Sampath et al.,

1996]. In simple terms, diagnosability is a qualitative property of the diagnoser which refers

to the ability (of the diagnoser) to infer accurately, from partially observed executions,

about the faulty behavior within a �nite delay after a possible occurrence of a fault. Such

a property is widely studied in fault diagnosis of DESs. In other words, diagnosability is

a qualitative property of the diagnoser which ensures a �nite latency for any observation

of a faulty execution, which corroborates the completeness of the diagnoser.

3.4 Diagnosability

The original de�nition of diagnosability was introduced in the seminal work of [Sampath

et al., 1995] under the assumptions that faults are permanent (i.e., once a fault occurs,

the system remains irreparably faulty), the language generated by G is live, and no cycles

composed only of unobservable events exist in G. The formal de�nition of diagnosability

is recalled as follows.

Dé�nition 8 (Diagnosability [Sampath et al., 1995])

A pre�x-closed and live language L is said to be diagnosable, with respect to projection

mapping P and class of faults Σf , if the following holds:

(∃n ∈ N) [∀s ∈ ψ(Σf)] (∀t ∈ L/s) [|t| ≥ n⇒ D]

where the diagnosability condition D is:

ω ∈ P−1
L [P (s.t)]⇒ Σf ∈ ω

�

Chapter 3. Fault Diagnosis of Discrete-Event systems 33

The above de�nition means the following: let s be any sequence generated by G that

ends with a fault event in Σf , and let t be any su�ciently long continuation of s. Condition

D then requires that every sequence ω belonging to language L, which produces the same

observable event-sequence as s.t (P (ω) = P (s.t)), holds a fault event from Σf .

Lemma 1 (non-diagnosability [Jéron et al., 2006])

An FSA G is non-diagnosable w.r.t. projection mapping P and class of faults Σf , if

and only if there exist two indistinguishable in�nite executions ω1 and ω2 such that ω1

reaches fault event f while ω2 does not.

Notice that diagnosability considers only in�nite executions that do not diverge, where

an in�nite execution diverges if it has an unobservable in�nite su�x. In other words, we

are only interested in the fair behavior of the system w.r.t. observability [Morvan and

Pinchinat, 2009].

Dé�nition 9 (Diagnosable system [Zaytoon and Lafortune, 2013])

An FSA G is diagnosable if it is possible to detect within a �nite delay occurrences of

faults of any type using the record of observed events. Alternatively speaking, diagnosability

requires that every occurrence of every fault event leads to observations distinct enough to

enable unique identi�cation of the fault event within a �nite delay. �

3.4.1 K−Diagnosability

The diagnosability problem consists in qualitatively determining the existence of a �nite

delay upon which any fault (or class of faults) can be detected and identi�ed. Diag-

nosability just means the existence of an upper bound without specifying its value. In

practice, such a property can be insu�cient to ensure a safe operation of the system,

namely when we deal with safety-critical systems. Indeed, this delay could be too long

and faults may have dramatic consequences before being diagnosed and before some re-

con�guration actions can be undertaken. Thus, some �quantitative versions� of diagnos-

ability have been developed, namely K−diagnosability [Basile et al., 2012b, Sampath

et al., 1995, Liu, 2014, Cabasino et al., 2012a, Dallal and Lafortune, 2010, Dallal and

Lafortune, 2011] (it is also called bounded diagnosability [Jéron et al., 2006] or latency

problem [Morvan and Pinchinat, 2009]). Unlike the classic de�nition of diagnosability,

K−diagnosability requires the quantitative determination of the �nite delay (as an integer

K). Thus, K−diagnosability means that one can determine with certainty the occurrence

of a fault in the system after K observations. Hereafter, we recall the original de�nition

of K−diagnosability introduced by Dallal et al. [Dallal and Lafortune, 2010, Dallal and

Lafortune, 2011].

34 Chapter 3. Fault Diagnosis of Discrete-Event systems

Dé�nition 10 (K−diagnosability [Dallal and Lafortune, 2011])

An FSA G is K−diagnosability with respect to projection mapping P and class of faults

Σf , if no pair of event sequences s1, s2 ∈ L(G) exists such that:

1. s1 has an occurrence of a fault event f ∈ Σf and s2 does not;

2. s1 has at least K + 1 events after fault event f ;

3. P (s1) = P (s2). �

This means that, for any two event sequences in the system model which share the same

observation, one faulty and the other normal, the system is said to be K−diagnosable if
and only if the two executions do not have K (or more) successive identical observation

after the occurrence of the fault. It is worth noticing that, according to this de�nition,

the bounded k is measured by the number of observable events. However, it can also

correspond to the number of unobservable events or the number of reachable states prior

to the fault detection.

Example 1 (from [Zaytoon and Lafortune, 2013])

This idea is conceptually sketched out in Figure 3.2 for a 6−diagnosable of fault event f .
Figure 3.2 (a) shows trace st of events with pre�x s ending with f and su�x t containing

5 observable events. This �gure indicates that f is not diagnosable within 5 observable

events after its occurrence because one of the other 5 trajectories that are indistinguishable

from st (the one that ends in state b) does not contain f . This means that the observation

trace P (st) does not allow one to conclude with certainty whether event f has occurred or

not.

Figure 3.2(b) represents an extension of t with an observable event e and shows that

only four trajectories remain indistinguishable from ste. The occurrence of fault event f ,

the last event of trace s, can be detected with certainty in this case because each of the

4 indistinguishable trajectories contains f . Fault f will be 6−diagnosable if each possible

occurrence of f in the entire system language can be detected with certainty, in the same

way, after 6 observations [Zaytoon and Lafortune, 2013].

Lemma 2 An FSA G is non-diagnosable ⇐⇒ ∀K ∈ N, G is not K−diagnosable.

Generally speaking, there are two main problems on K-diagnosability. The �rst is to

analyze K−diagnosability of a system under a given value K, i.e., whether or not any

fault (or class of faults) can be detected and identi�ed within K steps (observable events

basically) after its occurrence. The second is to �nd the minimum K for a diagnosable

system. This is called Kmin−diagnosability problem [Cassez and Tripakis, 2008, Cabasino

Chapter 3. Fault Diagnosis of Discrete-Event systems 35

Figure 3.2 � Illustration of K−diagnosability

et al., 2012a, Liu, 2014] (it is also called the bounded-latency diagnosability [Morvan and

Pinchinat, 2009], or the worst case detection delay (WCDD) [Eser Kart and Schmidt,

2015]).

3.4.2 Complexity Analysis

In this section, we summarize the main results in the literature, regarding the complexity

pertaining to various diagnosis problems. The classical fault diagnosis problems are the

following [Cassez, 2009]:

For a given FSA G and w.r.t. projection mapping P and class of faults Σf

Problem 1 : (K−diagnosability)
For a given K ∈ N , is G K−diagnosable?

Problem 2 : (diagnosability)

Is G diagnosable?

Problem 3 : (Kmin−diagnosability)
What is the minimum value of K s.t. G is Kdiagnosable?

Problem 4 : (diagnoser synthesis)

If G is diagnosable, synthesis a witness diagnoser D of G.

36 Chapter 3. Fault Diagnosis of Discrete-Event systems

Lemma 3 [Cassez, 2009]:

• Problem 1 (3.4.2) can be solved in ExpTime. Under some consideration, it can be

done in PTime (O(|G|4);

• Problem 1 (3.4.2) is in PSpace

Lemma 4 [Yoo and Lafortune, 2002b, Jiang and Huang, 2001, Cassez and Tripakis,

2008]:

• Problem 2 (3.4.2) can be solved in PTime (O(|G|2);

It is worth noticing that the non-diagnosability is NLogSpace-complete [Rintanen

et al., 2007a]. Moreover, using the non-diagnosability algorithm in the context of [Jéron

et al., 2006] yields a PTime upper bound and NLogSpace lower bound. Regarding

the in�nite state system, diagnosability problem is, in general, undecidable [Morvan and

Pinchinat, 2009].

Lemma 5 [Cassez, 2009]:

• Problem 3 (3.4.2) can be solved in PTime (O(|G|4)). It can also be done in (O(|G|3)) [Yoo

and Garcia, 2003].

Lemma 6 [Sampath et al., 1995, Sampath et al., 1996]:

• Problem 4 (3.4.2) can be solved in ExpTime.

In the following section, we recall the two approaches for the analysis of diagnos-

ability of DES, namely, Sampath's diagnoser approach [Sampath et al., 1995] and Twin-

plant/veri�er approaches [Yoo and Lafortune, 2002b, Jiang and Huang, 2001]. Note that

these approaches are the basis of several further approaches which developed adaptations

and extensions of the formers.

3.5 The pioneering Approaches

In order to apply these approaches, the system model under investigation assumed to

satisfy the following:

1. The system model is an FSA which has a live generated language;

2. No cycle composed of only unobservable event exists in the model;

3. Faults are permanent (i.e., once a fault occurs, the system remains irreparably

faulty).

Chapter 3. Fault Diagnosis of Discrete-Event systems 37

3.5.1 Sampath's Diagnoser Approach

Sampath et al. [Sampath et al., 1995] have proposed a systematic approach for analyzing

diagnosability. It consists in building a particular observer, the so-called diagnoser. To

build the diagnoser, an intermediate model, i.e., the so-called generator (or pre-diagnoser),

has to be established, a priori. Such a model is subsequently used to check diagnosability.

In fact, the generator G′ of model G is nothing more that the Σu−closure of G (see Def-

inition 5). It is worth recalling that when, the generator is combined with the tagging

function that associates to each state a tag (`N ' for normal states and `F ' for faulty ones),

then it is called a pre-diagnoser or an augmented generator. The diagnoser is then built

by the determinization (see De�nition 6) of the pre-diagnoser. Hereafter, we give a formal

de�nition of the diagnoser.

Dé�nition 11 (Diagnoser [Sampath et al., 1995])

The diagnoser of a system model G is a deterministic FSA Gd = 〈Q,Σd, δd, q0〉 associ-
ated with a tagging function Tag : Xo → 2∆, with ∆ = {N,F} (where N means `normal'

and F means `faulty').

• Q = 2(Xo×∆) is the set of diagnoser states;

• Σd = Σo is the set of (observable) events;

• δd : Q× Σd → Q is the transition relation;

• q0 = (x0, N) is the initial diagnoser state. �

Each diagnoser state q has the form q = {(x1, l1), . . . , (xn, ln)}, with xi ∈ Xo and

li ∈ ∆. If ∀i = 1, . . . , n, we have li = N (resp. li = F), the diagnoser state q is said to

be N -certain (resp. F -certain), otherwise, i.e., if ∃i, j such that li = N and lj = F in

diagnoser state q, it is an F -uncertain state. The fault propagation rules in the diagnoser

are depicted in Figure 3.3.

N -certain F -uncertain F -certain

Figure 3.3 � Fault propagation in the classic diagnoser

On the basis of the constructed diagnoser, Sampath et al. [Sampath et al., 1995] have

developed a necessary and su�cient condition for analyzing diagnosability. It consists in

38 Chapter 3. Fault Diagnosis of Discrete-Event systems

tracking some particular cycles in the diagnoser and the pre-diagnoser. Before discussing

the analysis of diagnosability, we recall the notions of cycles in the system model G and

in the diagnoser Gd.

Dé�nition 12 (Cycles in G and Gd)

• A series of states x1, x2, . . . , xn ∈ X is said to form a cycle in G if ∃s = σ1σ2 . . . , σn ∈
L(G) such that δ(xi, σi) = x(i+1)modn for i = 1, 2, . . . , n.

• A series of states q1, q2, . . . , qn ∈ Q is said to form a cycle in Gd if ∃ σi ∈ Σd such

that δd(ai, σi) = a(i+1)modn for i = 1, 2, . . . , n.

�

An F -uncertain cycle in the diagnoser is a cycle that is composed exclusively by F -

uncertain states. An F -indeterminate cycle in the diagnoser is de�ned as an F -uncertain

cycle, for which two corresponding cycles, sharing the same observable projection as the

F -uncertain cycle, exist in the pre-diagnoser such that one cycle involves only faulty states,

while the other one involves only normal states.

Such a notion of F -indeterminate cycle is crucial, since it helps to give the necessary

and su�cient condition for diagnosability.

Theorem 1 (Necessary & Su�cient Condition)

An FSA G is diagnosable if and only if no F -indeterminate cycle exists in its diagnoser

Gd for any class of faults Σf . �

Example 2 Let us consider FSA G in Figure 3.4 (adapted from [Sampath et al., 1995]).

The set of observable events is Σo = {a, b, d, t} and the set of unobservable events is

Σu = {u, f} with f ∈ Σf .

1start

2 3 4 5

7

8 9 10 6

11 12

f

a b u

d

ta
f

b u
t

b u

d

Figure 3.4 � The FSA G

Chapter 3. Fault Diagnosis of Discrete-Event systems 39

The pre-diagnoser and diagnoser corresponding to G are given in Figure 3.5. There

exists an F -uncertain cycle composed of {3F, 7N} and {4F, 9F, 11N} w.r.t. the observable
sequence (bd)∗ in the diagnoser. This cycle corresponds to two cycles in the pre-diagnoser

(and so in G). The �rst one is composed of faulty states 3, 4 w.r.t. sequence a(bd)∗.

The second cycle is composed of normal states 7, 11. Thus, one can infer, according to

Theorem 1, that an F -indeterminate cycle exists in the diagnoser and, consequently, G is

non-diagnosable.

1Nstart

3F 4F

9F 6F

7N 11N

{1N}start {3F, 7N}

{4F, 9F, 11N}{6F}

(a) The pre-diagnoser (b) The diagnoser

a

bd

t

t

a

b

d

t

a

t

b

b

d

Figure 3.5 � Pre-diagnoser and diagnoser of FSA G

It is worth noticing that, besides its usefulness for analyzing (o�ine) diagnosability,

the diagnoser serves to perform the actual monitoring task, online. In fact, the diagnoser

is established o�ine.

3.5.1.1 The Complexity Analysis

The diagnoser approach su�ers from the combinatorial explosion problem due to the de-

terminization operation (De�nition 6). In fact, the complexity of constructing the diag-

noser and testing the diagnosability is exponential in the number of states of the system

model and double-exponential in the number of fault classes. In [Sampath et al., 1995],

it has been proved that a maximum bounded delay ni for diagnosing faults in ΣFi exists:

ni ≤ Ci × n0 + n0, where n0 is the maximal length of sequences composed exclusively of

unobservable events and Ci is the number of states in the diagnoser states pertaining to

the Fi-uncertain cycles. Moreover, for a diagnosable model, a fault in ΣFi can be detected

at most after n0 + ni events after the fault occurrence.

40 Chapter 3. Fault Diagnosis of Discrete-Event systems

3.5.2 Twin-Plant/Veri�er Approaches

In order to (partially) overcome the issue of the combinatorial explosion problem in Sam-

path's diagnoser approach, some further approaches aiming to reduce the computing com-

plexity have been proposed [Yoo and Lafortune, 2002b, Jiang and Huang, 2001]. The

main idea behind these approaches is to investigate the automata composition, i.e., the

parallel composition and the synchronous product, in order to deal with diagnosability. In

fact, such compositions allow the analysis of pairs of in�nite event-sequences separately.

Therefore, according to Lemma 1, it is possible to decide about the diagnosability.

3.5.2.1 The Twin-Plant Approach [Jiang and Huang, 2001]

In such an approach, given a system model G, the pre-diagnoser G′ is �rst constructed

and then a structure called twin-plant (denoted G is obtained by the strict parallel com-

position (i.e, the synchronous product) of the pre-diagnoser with itself, i.e. } = G′ × G′

(see De�nition 3), based on the observable events to obtain all the pairs of event-sequences

sharing the same observations.

Each twin-plant state q is a pair of the system states, q = {(x1, l1), (x2, l2)}, with
xi ∈ Xo and li ∈ {N,F}. If li = N (resp. li = F) for i = 1, 2, the twin-plant state q is

said to be N -certain (resp. F -certain). Otherwise, state q, it is an F -ambiguous state.

An F -confused cycle (called also an in�nite critical pair or critical path) in the twin-

plant is a cycle which is composed exclusively of F -ambiguous states.

According to Lemma 1, the necessary and su�cient condition on the basis of the

twin-plant structure, is announced as follows,

Theorem 2 (Necessary and su�cient condition [Jiang and Huang, 2001])

An FSA G is diagnosable with respect to projection mapping P and class of faults Σf

if and only if no F -confused cycle exists in its corresponding twin-plant G. �

Example 3 Let us take again automaton G of Example 2. Figure 3.6 depicted its corre-

sponding twin-plant G. It is worth noticing that only the live part of G is constructed. One

can observe that G contains some F -confused cycles (drawn in orange color). Therefore,

according to Theorem 2, G is non-diagnosable.

3.5.2.2 The Complexity Analysis

The complexity of constructing the pre-diagnoser is O([X|2 × 22|F | × |Σo|), whereas, the
complexity of constructing the twin plant is O([X|4 × 24|F | × |Σo|). Finally, detecting the
presence of F -confused cycle is linear in the number of states/transitions of G. Therefore

Chapter 3. Fault Diagnosis of Discrete-Event systems 41

1N , 1Nstart

3F , 7N7N , 3F7N , 7N 3 F , 3F

4F , 4F4F , 11N
11N , 4F11N,11N9 F , 9F6 F , 6F

a
a

a a

bbb bdddd
b

t

t

Figure 3.6 � Twin plant G of (Example 2)

the complexity of the twin-plant approach is polynomial (4th order) in the number of

states in G and exponential in the number of fault classes.

3.5.2.3 The Veri�er Approach [Yoo and Lafortune, 2002b]

The veri�er approach consists of the construction of a non-deterministic automaton VΣf

(called Σf−veri�er, with Σf is a fault class), by performing the the parallel composition

of a system model G with itself augmented with a tagging function that associated to each

system state its types (N for normal states, F for faulty ones).

Similarly to the twin-plant structure, each veri�er state q is a pair of the system states,

q = {(x1, l1), (x2, l2)}, with xi ∈ Xo and li ∈ {N,F}. If li = N (resp. li = F) for i = 1, 2,

the veri�er state q is said to be N -certain (resp. F -certain), otherwise, state q, it is an

F -ambiguous state.

Veri�er VΣf is called Σf -confused if it contains at least one cycle which is composed

exclusively of F -ambiguous states. Otherwise, it called Σf -confused-free.

According to Lemma 1, the necessary and su�cient condition on the basis of the veri�er

structure, is announced as follows,

Theorem 3 (Necessary and su�cient condition [Yoo and Lafortune, 2002b])

An FSA G is diagnosable with respect to projection mapping P and class of faults Σf

if and only if its corresponding veri�er VΣf is Σf -confused-free �

Example 4 Let us take again automaton G of Example 2. Figure 3.7 depicted its corre-

sponding veri�er VF . It is worth noticing that only a part of VF is generated. One can

observe that VF is an V − F -confused since it contains some F -confused cycles (drawn in

orange color). Therefore, according to Theorem 3, G is non-diagnosable.

42 Chapter 3. Fault Diagnosis of Discrete-Event systems

1N , 1Nstart

2F , 1N1N , 2F7N , 7N 2 F , 2F

3F , 7N11N,11N8 F , 8F

4F , 11N5F , 12N

f

f

a f

abf

b

u

d

Figure 3.7 � Veri�er VF of (Example 2)

3.5.2.4 The Complexity Analysis

According to [Yoo and Lafortune, 2002b], for a reachable state v in the veri�er, the number

of feasible transition from v is 3 × Σ at most. Since the number of reachable states of is

4 × |X|2 states at most, the complexity of constructing the veri�er takes 12 × |X|2 × Σ

time. Therefore, the overall complexity is polynomial (O([X|2 × |Σo|)) in the number

of the system states. Moreover, it has been proved that for a diagnosable model, any fault

occurrence can be detected within |X|2 transitions after the fault occurs.

One can underline that the twin-plant/veri�er structures have an interesting feature,

which is the symmetric property. It means that each path in the twin-plant/veri�er has

its symmetric path (e.g., a path containing a state (x1N, x2F) then it has its symmetric

path which contains (x2F, x1N) state, and vice versa). Since the interesting part of the

twin-plant/veri�er structure for analyzing diagnosability is the ambiguous one (i.e, paths

composed of Funcertain states, then the symmetric property has been exploited in order

to reduce the generate state-space. In [Grastien, 2009, Tripakis, 2002], a reduced twin-

plant structure is proposed. It consists in keeping the faults behave only on a copy of

the model. The other copy, noted GN , is non-failure, i.e., it contains only the nominal

behavior obtained by erasing the faulty transitions and their successors. Therefore, the

reduced twin plant is computed by the parallel synchronization GN ‖ G. Recently, Moreira

et al. [Moreira et al., 2011], have proposed a reduced veri�er with a lower complexity

(O(|X|2×(|Σ|−|Σf |))). In fact, the algorithm in [Moreira et al., 2011] perform the parallel

synchronization between the non-failure copy of the model GN and the co-accessible part

from faulty states, noted G, (i.e., GN ‖ GF). The e�ciency of such a construction is due

to the fact that in the synchronization step, only the traces that lead to the violation of

diagnosability are computed [Hosseini et al., 2013].

Chapter 3. Fault Diagnosis of Discrete-Event systems 43

3.5.3 A Comparison Between the Diagnoser/Twin-plant/Veri�er ap-

proaches

In what follow, we provide a comparison between the pioneering approches for fault diag-

nosis of DESs (discussed approach) regarding various features.

• O�ine/online diagnosis:

Regarding the o�ine diagnosis (i.e., diagnosability analysis), both approaches can

deal with this issue, and relatively withK/Kmin−diagnosability. However, regarding
the online diagnosis, twin-plant and veri�er approaches do not consider such a task

due to their nondeterministic structures, contrary to the diagnoser approach, which

deals with the online diagnosis (thanks to its determinstic structure). Consequently,

the diagnoser approach remains a principal technique to perform both diagnosability

analysis and online diagnosis.

• Intermediate models:

The veri�er approach has the particularity to be built directly from the system

model, contrary to the diagnoser and twin-plant approaches were an intermediate

model (the generator or the pre-diagnoser) is necessary for building the diagnoser/twin-

plant. Such intermediate constructions increase the memory demanding.

• The theoretical complexity:

As discussed in the above sections, the diagnoser is built in exponential complexity

contrary to the twin-plant/ver�er were only a polynomial complexity is needed.

Nevertheless, comparative studies show that the diagnoser-based approach is more

e�cient for analyzing diagnosability of some kinds of system models than the twin-

plant/veri�er approaches, as witnessed by [Liu, 2014].

• The veri�cation procedure:

The procedure for checking diagnosabilily on the basis of the diagnoser approach

consists of a double check procedure. Firstly, the existence of F -uncertain cy-

cle is checked by exploring the diagnoser paths. Secondly, once an F -uncertain

cycle is found, its corresponding event-trace is used to check the existence of an

F -indeterminate cycle by executing the event-trace on the pre-diagnoser, from the

initial state. In the case of a diagnosable system, this procedure is repeated as many

times as there are F -uncertain cycles in the diagnoser. In fact, this double check

procedure a�ects drastically the memory/time consumption of the veri�cation algo-

rithm. Despite the need of an intermediate model for constructing the twin-plant,

the veri�cation procedure is performed upon one check on the twin-plant structure

44 Chapter 3. Fault Diagnosis of Discrete-Event systems

(i.e., checking the F -confused cycles). The same procedure is also performed using

the veri�er approach.

3.6 Conclusion

This chapter proposes a brief overview on the fault diagnosis of DESs under partial ob-

servation. The de�nitions, assumptions, notions and notations, as well as the discussions

related the pioneering approaches provided in this chapter will be used in the remainder

of this dissertation.

Part II

CONTRIBUTIONS REGARDING

THE DIAGNOSER-BASED

APPROACH

Chapter 4

A New Variant of the

Diagnoser-Based Approach

Sommaire

4.1 Introduction . 48

4.2 The System Model . 50

4.3 A New Variant of The Diagnoser 51

4.4 On-the-�y Veri�cation . 62

4.5 Extensions . 69

4.6 Experimental Evaluation . 72

4.7 A Comparison Between Sampath's Diagnoser and our Proposed

Diagnoser . 78

4.8 Conclusion . 79

Summary

In this chapter, we propose a new version of the well-known diagnoser-approach. It consists

in separating normal states from faulty ones in each diagnoser node. Such a distinction

serves to more e�ciently track the faulty and fault-free traces in the diagnoser paths. On

the basis of various features that characterize this new diagnoser, we develop a systematic

procedure for checking the necessary and su�cient condition for diagnosability without

needing to construct any intermediate model (i.e., generator or pre-diagnoser). Finally,

we provide an on-the-�y algorithm to simultaneously construct the diagnoser and analyze

diagnosability. Therefore, in general, the diagnoser need not be built completely to check

diagnosability and perform online diagnosis. Some experimentation are conducted in order

to evaluate the e�ectiveness and the scalability of the proposed approach with respect to the

reference approaches in the �eld, namely, Sampath's diagnoser and the veri�er approach.

This chapter is enclosed by a comparison discussed between our diagnoser and Sampath's

diagnoser regarding various features.

The work presented in this chapter is the subject of publications in VeCOS'15 [Boussif

et al., 2015] and submitted journal papers in IJCCBS [Boussif et al., 2016b] and IEEE-

TAC [Boussif and Ghazel, 2016c].

48 Chapter 4. A New Variant of the Diagnoser-Based Approach

This chapter is structured as follows: In Section 4.2, the system model as well as

the preliminary concepts needed in the sequel are introduced. Section 4.3 is devoted to

discussing the construction of the new diagnoser variant. Some theoretical results and a

systematic procedure to check the necessary and su�cient condition for diagnosability are

provided. In Section 4.4, we develop an on-the-�y algorithm for constructing the diagnoser

and checking diagnosability simultaneously. Section 4.5 discusses some extensions of the

proposed approach. In Section 4.6, the e�ectiveness and the scalability of the approach are

evaluated through some experimentation. A comparison discussion w.r.t. the reference

approach (Sampath's diagnoser) is presented in Section 4.7. Finally, conclusion remarks

and future research directions are given in Section 4.8.

4.1 Introduction

The fault diagnosis involves (i) detecting when a fault has occurred, (ii) isolating the

true fault from many possible fault candidates, and (iii) identifying the true damage to

the system. In the context of DES, fault diagnosis is often discussed through two main

issues: diagnosability analysis and online diagnosis [Sampath et al., 1995, Lin, 1994].

Online diagnosis consists in inferring the occurrence of predetermined faults from the

observed behavior of the system. Diagnosability refers to the capacity of providing a

precise diagnosis verdict. Thus, the intention of analyzing diagnosability of a system is

to determine accurately whether any predetermined failure can be detected and identi�ed

within a �nite delay following its occurrence [Sampath et al., 1995].

The pioneering work which deals with these issues was proposed in [Sampath et al.,

1995] where a formal de�nition of diagnosability was introduced. Such a work provided

a necessary and su�cient condition for diagnosability as well as a systematic approach,

based on the so-called diagnoser, with the aim to verify diagnosability and perform the

online diagnosis. However, the combinatorial explosion problem is inherent to the de�ned

approach and the state-space of the diagnoser is, in the worst case, exponential w.r.t. the

size of the model state-space.

In order to reduce the computing complexity, some further approaches were proposed.

In [Yoo and Lafortune, 2002b], a polynomial-time algorithm for checking diagnosability

based on the so-called veri�er is adopted. In [Jiang and Huang, 2001], an algorithm based

on the twin-plant (a parallel composition of the investigated model with itself) is proposed.

Nevertheless, these approaches deal only with diagnosability analysis and do not consider

online diagnosis. Moreover, comparative studies show that the diagnoser-based approach

is more e�cient for analyzing diagnosability of some kinds of system models than these

approaches [Liu, 2014]. Consequently, the diagnoser-based approach remains a principal

Chapter 4. A New Variant of the Diagnoser-Based Approach 49

technique to deal with both diagnosability analysis and online diagnosis.

The diagnoser-based approach has �rstly been introduced for systems modeled by

centralized automata [Sampath et al., 1995, Zad et al., 2003, Sampath et al., 1996]. The

approach is then extended to deal with decentralized architectures [Debouk et al., 1998,

Qiu and Kumar, 2006, Debouk et al., 2000, Philippot et al., 2013, Kumar and Takai,

2010, Pencole, 2000, Schumann et al., 2010, Wang et al., 2007, Sayed-Mouchaweh and

Carre-Menetrier, 2008, Lafortune et al., 2005, Provan, 2002, Cabasino et al., 2013a, Basilio

and Lafortune, 2009, Moreira et al., 2011, Zhou et al., 2008, Nunes et al., 2016, Takai and

Kumar, 2016], modular and distributed architectures [Debouk et al., 2002a, García et al.,

2005, Contant et al., 2006, Ye and Dague, 2013]. More recently, a series of interesting

contributions, inspired from the diagnoser approach, have been proposed in the Petri net

framework [Cabasino et al., 2014, Jiroveanu et al., 2008, Ushio et al., 1998, Liu et al.,

2014b, Li et al., 2015c].

The main issues related to the diagnoser-based approaches can be outlined as follows:

1. The high complexity of construction, which is exponential in the number of states

of the original model, and double-exponential regarding the classes of faults. This

consequently hampers the scalability of the approach.

2. The approach is based on the analysis of two graphs. The �rst graph is a non-

deterministic observer (called pre-diagnoser, or generator), while the second one is a

deterministic automaton, called diagnoser (or equivalently, generator/diagnoser [Sam-

path et al., 1995], MBRG/BRD [Cabasino et al., 2009b], FM-graph/FM-set graph [Liu,

2014], etc.).

3. The double-checking procedure, which consists in one veri�cation upon the diagnoser

(i.e., the existence of F -uncertain cycles) and the other upon the generator or the

pre-diagnoser (i.e., checking whether the F -uncertain cycle is an F -indeterminate

one or not). In fact, in general such a double-checking procedure highly increases

the veri�cation time.

To partially overcome these limitations, we propose in this chapter a new diagnoser

variant with a structure that allows us to check directly the necessary and su�cient con-

dition, without building any intermediate model. Moreover, we provide an on-the-�y al-

gorithm for constructing the diagnoser and checking diagnosability simultaneously, which

improves the e�ciency in terms of memory and time consumption.

In what follows, we highlight the main features of the proposed approach and we make

some comparisons with existing diagnoser-based approaches.

50 Chapter 4. A New Variant of the Diagnoser-Based Approach

1. The developed approach provides a new structure for representing the diagnoser

nodes. Such a structure explicitly separates between the normal and the faulty

states in each node. This feature allows us to separately track the normal and the

faulty traces directly in the diagnoser.

2. In the same way as for the existing diagnoser-based approaches, our diagnoser serves

both to check diagnosability and to perform online diagnosis.

3. In our approach, the diagnoser is directly built from the original system model,

without needing to construct any intermediate model, as usually done in the classic

diagnoser approaches.

4. On the basis of the proposed structure of the diagnoser, a su�cient condition for the

undiagnosability of the model is proposed. Such a condition is used for the on-the-�y

veri�cation of diagnosability. Hence, the model is stated to be non-diagnosable as

soon as the condition is met, without building or analyzing the whole diagnoser.

5. The approach provides a systematic procedure for checking the necessary and suf-

�cient condition for diagnosabilily (i.e., the existence of F -indeterminate cycle or

not) without returning to any intermediate model to check if an F -uncertain cycle

corresponds to two cycles, a faulty one and a non-faulty one. Besides, the procedure

performs directly on the F -uncertain cycle with no need to start from the initial

state. All these aspects allow for signi�cantly speeding up the veri�cation process.

6. An on-the-�y algorithm, based on a depth-�rst search procedure, for both construct-

ing the diagnoser and verifying diagnosability simultaneously is proposed. The algo-

rithm aims to generate as less state-space as possible, particularly when the system

is undiagnosable, which improves the memory/time consumption.

Besides diagnosability analysis, the developed technique allows for checking K/Kmin−
diagnosability and, when the system is diagnosable, the constructed part of the diagnoser

can be directly used as an online diagnoser.

4.2 The System Model

The system to be diagnosed is modeled as a �nite state automaton (FSA)G = 〈X,Σ, δ, x0〉.
In this chapter, we keep the same notations and notions introduced in Section 3.2.

Regarding the projection mapping, we consider the general setting of the inverse pro-

jection P−1
L , which is not restricted to the event-sequences which end with an observable

event, i.e., ∀ω ∈ Σ∗o, P
−1
L (ω) = {s ∈ L ⊆ Σ∗ : P (s) = ω}.

Chapter 4. A New Variant of the Diagnoser-Based Approach 51

4.3 A New Variant of The Diagnoser

In order to depict the structure of the new diagnoser, we �rstly introduce the following

notations:

• EnableΣ(x) = {σ ∈ Σ|δ(x, σ) 6= ∅}, is the set of events in Σ that are enabled

from state x. The generalization to a subset of states X ′ ⊆ X and a subset of

events Σ′ ⊆ Σ, is EnableΣ′(X
′) = {σ ∈ Σ′|∃ x ∈ X ′ : δ(x, σ) 6= ∅} which denotes

the set of enabled events in Σ′ from the set of states X ′, i.e., EnableΣ′(X
′) =⋃

x∈X′EnableΣ′(x).

• Img(X,σ) =
⋃
x∈X′ δ(x, σ) with σ ∈ Σ, is the generalization of the transition re-

lation to a subset of states X ′ ⊆ X. The generalization of the transition relation

δ to a subset of states X ′ ⊆ X and a subset of events Σ′ ⊆ Σ is Img(X ′,Σ′) =⋃
x∈X′

⋃
σ∈Σ′ δ(x, σ).

• ReachΣ′(x) = {x} ∪ {x′ ∈ X|∃t ∈ Σ′∗ : x′ ∈ δ(x, t)} is the set of states reached by

the occurrence of a sequence of events in Σ′ from x (will be used particularly for

the unobservable reachability). The generalization of this notion for a set of states

is ReachΣ′(X
′) =

⋃
x∈X′ ReachΣ′(x).

4.3.1 The Structure of a Diagnoser Node

In our diagnoser variant, nodes are equivalent to states in the classic diagnoser [Sampath

et al., 1995], except that an explicit distinction is made, within each node, between the

normal states (denoted by set XN) and the faulty ones (denoted by set XF), and we

indicate if there exists a (faulty) transition from XN to XF . We will show in the sequel

how such a structure can be advantageously used to render diagnosability analysis more

e�cient than when using the classic diagnoser.

Figure 4.1 (a) depicts the general form of a diagnoser node which contains two sets

of states; XN represents the set of normal states, while XF represents the set of faulty

ones. Some faulty states may be reached from normal states in the same node through

the occurrence of faulty events. This is depicted by a faulty transition from XN to XF
within the diagnoser node. In order to simplify the notation, we use a.XN (resp. a.XF) to
indicate the set of normal states XN (resp. the fault states XF) corresponding to diagnoser
node a. Moreover, the notation x ∈ a means that state x ∈ XN ∪ XF .

One can di�erentiate between three types of diagnoser nodes, in the same way as in

the classic diagnoser:

52 Chapter 4. A New Variant of the Diagnoser-Based Approach

• N-certain diagnoser node: is a diagnoser node of which the set of faulty states

is empty (XF = ∅);

• F-certain diagnoser node: is a diagnoser node of which the set of normal states

is empty (XN = ∅);

• F-uncertain diagnoser node: is a diagnoser node of which neither the normal

set, nor the faulty set, is empty, i.e., XN 6= ∅ and XF 6= ∅.

Hereafter, we introduce the formal de�nition of a diagnoser node.

Dé�nition 13 (Diagnoser node)

Consider an FSA G = 〈X,Σ, δ, x0〉 with Σ = Σo
⊎

Σu and Σf ⊆ Σu. We de�ne a

diagnoser node a = 〈XN ,XF 〉 as a non-empty set of states satisfying:

1. ∀x ∈ X, s ∈ Σ∗, and Σf ∈ s such that x ∈ δ(x0, s) (i.e., x is reachable by a faulty

sequence): x ∈ a⇔ ReachΣu(x) ⊆ a.XF ;

2. ∀x ∈ X, s ∈ (Σ\Σf)∗ such that x ∈ δ(x0, s) (i.e., x is reachable by a fault-free

sequence): x ∈ a⇔ X ′ = ReachΣu\Σf (x) ⊆ a.XN ∧ReachΣu(Img(X ′,Σf)) ⊆ a.XF .

3. ∀x, x′ ∈ a, ∃s, s′ ∈ Σ∗, such that x ∈ δ(x0, s), x
′ ∈ δ(x0, s

′), and P (s) = P (s′).

�

The dashed arrows in Figure 4.1 (a) show the di�erent possibilities that an observable

transition from a diagnoser node may correspond to. For instance, in Figure 4.1 (a)

observable event σ2 output by diagnoser node a may be output from the normal or the

faulty sets or from both sets. Moreover, a faulty transition f may or may not exist between

XN and XF . As for the dashed arrows, only the faulty transitions linking XN to XF inside

a given node are actually encoded (as a single faulty transition) in the diagnoser (cf.

Figure 4.1 (a)) using a boolean variable which is True when such transitions exist, and

False if not.

4.3.2 The Diagnoser Construction

For a given FSA G, the new diagnoser variant can be de�ned as follows.

Dé�nition 14 (Diagnoser variant)

Let G = 〈X,Σ, δ, x0〉 be an FSA to be diagnosed. The diagnoser associated with G is a

deterministic FSA D = 〈Γ,Σo, δD, γ0〉, where:

Chapter 4. A New Variant of the Diagnoser-Based Approach 53

Figure 4.1 � The structure of the diagnoser node and the diagnoser variant of FSA G in

Figure 3.4

1. Γ is a �nite set of diagnoser nodes;

2. γ0 is the initial diagnoser node with:

a) γ0.XN = ReachΣu\Σf (x0);

b) γ0.XF = ReachΣu(Img(γ0.XN ,Σf)).

3. δD : Γ× Σo → Γ is the transition relation, de�ned as follows:

∀a, a′ ∈ Γ, σ ∈ Σo : a′ = δD(a, σ)

⇔


a′.XN = ReachΣu\Σf (Img(a.XN , σ))

∧
a′.XF = ReachΣu(Img(a′.XN ,Σf) ∪ Img(a.XF , σ))

�

To summarize, the diagnoser D is constructed as follows: let the current node be a,

and an observable event σ. The target diagnoser node a′ is computed following the rules

below:

1. If σ ∈ Enable(a.XN) ∩ Enable(a.XF) then:

- a′.XN = ReachΣu\Σf (Img(a.XN , σ)).

- a′.XF = ReachΣu(Img(a′.XN ,Σf) ∪ Img(a.XF , σ)).

2. If σ ∈ Enable(a.XN)\Enable(a.XF) then:

54 Chapter 4. A New Variant of the Diagnoser-Based Approach

- a′.XN = ReachΣu\Σf (Img(a.XN , σ)).

- a′.XF = ReachΣu(Img(a′.XN ,Σf)).

3. If σ ∈ Enable(a.XF)\Enable(a.XN) then:

- a′.XN = ∅.

- a′.XF = ReachΣu(Img(a.XF , σ)).

These aforementioned rules preserve a speci�c fault propagation scheme regarding the

assumption that faults are considered to be permanent. This can be depicted in Figure

4.2, and can be summarized in the three points below:

• From an N -certain diagnoser node, either an N -certain diagnoser node or an F -

uncertain one can be reached;

• From an F -certain diagnoser node, only F -certain diagnoser nodes can be reached;

• From an F -uncertain diagnoser node, any of an F -uncertain, an N -certain or an

F -certain diagnoser node can be reached.

Since all the successors of an F -certain diagnoser node are also F -certain, we do not

need in our approach to construct them (i.e., the subsequent F -certain nodes) because it

is unnecessary from the diagnosis point of view. Indeed, as regards diagnosability analysis,

only the analysis of F -uncertain cycles is necessary and since faults are permanent, one

can be certain that no such cycle can be generated following an F -certain node. As for

online diagnosis, once an F -certain node is reached, one can be sure that the system will

remain inde�nitely faulty.

It is worth noticing that the fault propagation rules of our diagnoser are di�erent

from those of the classic diagnoser, since an F -certain diagnoser node cannot be reached

directly from an N -certain diagnoser node. This is due to the fact that in the building

procedure of our diagnoser, the unobservable reachability is computed before the current

node is left.

N -certain F -uncertain F -certain

Figure 4.2 � Fault propagation in the diagnoser variant

Chapter 4. A New Variant of the Diagnoser-Based Approach 55

In order to better illustrate the diagnoser construction procedure, let us again con-

sider FSA G in Figure 3.4, introduced in the previous chapter (Chapter 3). Then, its

corresponding diagnoser is depicted in Figure 4.1(b). The initial node (a0) is composed

of the initial state of G (state 1) and state 2 reachable from state 1 by the occurrence of

faulty event f . One can also notice that there exists an F -uncertain cycle composed of

nodes (a1) and (a2) by executing the observable event sequence a(bd)∗. Diagnoser node

(a3) is reached after the occurrence of event t and it contains only a set of faulty states

(a3.XN = ∅). Thus, it is an F -certain node. As F -certain nodes are unnecessary for

analyzing diagnosability, and since we deal with permanent faults, the subsequent nodes

are not constructed.

4.3.3 Some Properties of the New Diagnoser Variant

In this section, we discuss some main features characterizing the new diagnoser variant

that will be used in the sequel to analyze diagnosability.

Dé�nition 15 Let us consider three successive diagnoser nodes a, a′, and a′′ such that

a′ = δD(a, σ) and a′′ = δD(a′, σ′) (σ, σ′ ∈ Σo).

• The set of input normal states Ia,σN (a′): is the set of states in a′.XN , which are

directly reachable from a.XN through the occurrence of observable event σ. Formally,

Ia,σN (a′) = {x′ ∈ a′.XN |∃ x ∈ a.XN : x′ ∈ δ(x, σ)}.

We note that Ia,σN (a′) can be also written as : Ia,σN (a′) = Img(a.XN , σ).

• The set of output normal states OσN (a′): is the set of states in a′.XN , which di-

rectly enable observable event σ′ to reach some states in a′′.XN . Formally, Oσ
′
N (a′) =

{y′ ∈ a′.XN |∃ x′′ ∈ Ia
′,σ′

N (a′′) : x′′ ∈ δ(y′, σ′)}.

�

It is worth noticing that the notions of input (resp. output) normal states are related

to a sequence of nodes, which means that many input (resp. output) normal states may

exist for node a, i.e., according to the entering (resp. outgoing) transitions.

Property 1 Let a, a′ ∈ Γ be two diagnoser nodes, such that a′ = δD(a, σ) for σ ∈ Σo.

Then, we have: (∀x′ ∈ a′.XN), (∃t ∈ (Σu\Σf)∗,∃x ∈ Ia,σN (a′)): x′ ∈ δ(x, t).
�

56 Chapter 4. A New Variant of the Diagnoser-Based Approach

This means that for a diagnoser node a′ that is reached from a diagnoser node a by

the occurrence of an event σ, all the states in a′.XN are reachable from some states in the

set of input normal states corresponding to diagnoser node a, i.e., from Ia,σn (a′).

This property is inferred directly from the construction procedure of the diagnoser.

Indeed, ∀a, a′ ∈ Γ, σ ∈ Σo: a′ = δD(a, σ) ⇒ a′.XN = ReachΣu\Σf (Img(a.XN , σ)), which

means that each state in a′.XN is reachable from Ia,σN (a′) (which is nothing other than

Img(a.XN , σ)). Therefore, in the case where a′ has more than one predecessor node in

the diagnoser, each state in a′.XN is reachable from some states in any set of input normal

states corresponding to any entering transition for a′.

Property 2 Let us consider three successive diagnoser nodes a, a′, a′′ such that a′ =

δD(a, σ) and a′′ = δD(a′, σ′) (σ, σ′ ∈ Σo). We have:

1. Ia
′,σ′

N (a′′) = Img(Oσ′N (a′), σ′).

2. ∀ x′′ ∈ Ia
′,σ′

N (a′′): ∃x′ ∈ Ia,σN (a′), s ∈ (Σu\Σf)∗ such that x′′ ∈ δ(x′, s.σ′). �

The �rst point is trivial given the de�nition of Img() operation. The second one means that

each input normal state x′′ ∈ Ia
′,σ′

N (a′′) is reachable from some (normal) states x′ ∈ Ia,σN (a′)

through a fault-free unobservable sequence (possibly empty) followed by σ′. Hereafter, a

sketch of the proof is given.

Proof.

Let us pick x′ ∈ Ia,σN (a′), y′ ∈ Oσ′N (a′) and x′′ ∈ Ia
′,σ′

N (a′′). From the diagnoser

construction, we have a′.XN = ReachΣu\Σf (Img(a.XN , σ)). In fact, the states in a.XN
that enable the output observable event σ are those in OσN (a), which means that a′.XN =

ReachΣu\Σf (Img(OσN (a), σ)). From the �rst point, we have Ia,σN (a′) = Img(OσN (a), σ),

then a′.XN = ReachΣu\Σf (Ia,σN (a′)), which means that any state in a′.XN is reachable

from some states in Ia,σN (a′) through a faultless unobservable sequence. Regarding the set

of output normal states, this means that:

∀y′ ∈ Oσ′N (a′),∃x′ ∈ Ia,σN (a′), ∃s ∈ (Σu\Σf)∗ : y′ ∈ δ(x′, s) (1)

In other terms, each state from any set of output normal states is reachable from some

states in any set of input normal states. This ensures a chaining between input normal

states and output normal states in the same node, regardless of the considered entering

and outgoing transitions of the node.

Furthermore, as Ia
′,σ′

N (a′′) = Img(Oσ′N (a′), σ′), then:

∀x′′ ∈ Ia
′,σ′

N (a′′), ∃y′ ∈ Oσ′N (a′) : x′′ ∈ δ(y′, σ′) (2)

Chapter 4. A New Variant of the Diagnoser-Based Approach 57

From (1) and (2), one can infer that:

∀ x′′ ∈ Ia
′,σ′

N (a′′),∃x′ ∈ Ia,σN (a′), s ∈ (Σu\Σf)∗ : x′′ ∈ δ(x′, s.σ′)

In a similar way to the above, this ensures a chaining between the input normal states

in any successive nodes of the diagnoser. Such a feature will be used in the following

section to derive necessary and su�cient conditions for diagnosability. �

Figure 4.3 (A) illustrates the above proof, where successive diagnoser nodes a, a′, a′′

are considered (only the sets of normal states are represented). Ia,σN (a′) = {x′1, x′2, x′3, x′4},
Oσ′N (a′) = {y′1, y′2, y′3} and I

a′,σ′

N (a′′) = {x′′1, x′′2, x′′3}. One can observe that each state from

the set of input normal states of a′′ is reachable from some states in the set of input normal

states of a′ (e.g. x′′1 is reachable from state x′1).

Figure 4.3 � Proofs of Property 2 and Proposition 1

4.3.4 Diagnosability Veri�cation

Diagnosability veri�cation using the classic diagnoser consists in checking the existence

of F -indeterminate cycles. As mentioned before, this method requires a double-checking

process, i.e., to check the existence of an F -uncertain cycle in the diagnoser and in the

case when such cycles exist, to return to an intermediate model (the generator or the

pre-diagnoser) to check if the found F -uncertain cycle corresponds to two cycles: a faulty

cycle and a non-faulty one. Moreover, the cycle analysis procedure is performed each time,

starting from the initial state of the intermediate model. In order to avoid this double-

checking process, we develop a systematic procedure to check F -indeterminate cycles

without needing to construct an intermediate model. Besides, the elaborated procedure

does not require starting from the initial node to check whether an F -uncertain cycle is

58 Chapter 4. A New Variant of the Diagnoser-Based Approach

an F -indeterminate one. Instead, only the nodes of the F -uncertain cycle are handled.

This technique relies on some theoretical results that we discuss in what follows:

Proposition 1 Let c` = a1, a2, . . . , an be an F -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn
1 for 1 ≤ i ≤ n. Then, there exists, at least, one fault-free cycle in G, that

shares the same observation (σ1, σ2, . . . , σn)∗. �

Proof.

According to the diagnoser building procedure, ∀ i : 1 ≤ i ≤ n, a(i+1)modn .XN =

ReachΣu\Σf (Img(ai.XN , σi)). Then, from Property 2, we have : for 1 ≤ l < n,∀ x(l+1) ∈
Ial,σlN (a(l+1)): ∃ xl ∈ I

a(l−1),σ(l−1)

N (al), ∃ sl ∈ (Σu\Σf)∗ s.t. x(l+1) ∈ δ(xl, sl.σl), and ∀ x1 ∈
Ian,σnN (a1): ∃xn ∈ I

a(n−1),σ(n−1)

N (an), ∃ sn ∈ (Σu\Σf)∗ s.t. x1 ∈ δ(xn, sn.σn).

Now, let us take an input normal state xil from I
a(l−1),σ(l−1)

N (al), with 1 < l ≤ n and

1 ≤ i ≤ kl (kl is the number of input normal states in Ia(l−1),σ(l−1)

N (al) = {x1
l , . . . , x

kl
l }).

Then, from above, ∀ i : 1 ≤ i ≤ kl, ∃ t = s(l+1)modn
, σ(l+1)modn

, s(l+2)modn
, σ(l+2)modn

, . . . ,

s(l+n−1)modn
, σ(l+n−1)modn

, with si′ ∈ (Σu\Σf)∗, for 1 ≤ i′ ≤ n such that xil ∈ δ(xjl , t),

with 1 ≤ j ≤ kl.
In other words, by applying the result of Property 2 recursively upon the F -uncertain

cycle a1, a2, . . . , an ∈ D, one can infer that xil ∈ I
a(l−1),σ(l−1)

N (al) is reachable from an input

state xjl also in Ia(l−1),σ(l−1)

N (al). By repeating this operation while considering xjl instead

of xil, and so on, at least k times, one can infer that the input state xil is certainly visited

twice (See Figure 4.3 (B)). Therefore, it becomes obvious that a cycle exists in the original

model G. As all the states are normal, it is consequently a fault-free cycle. �

Remark 1 This result is interesting for checking F -indeterminate cycles, using both the

classic diagnoser or our diagnoser. It is, in fact, su�cient to check that an F -uncertain

cycle in the diagnoser corresponds to a faulty cycle in the original model (or the interme-

diate model), without checking the existence of the fault-free cycle.

Proposition 2 Let c` = a1, a2, . . . , an be an F -uncertain cycle in D with δD(ai, σi) =

a(i+1)modn for 1 ≤ i ≤ n. Then, if ∀i : 1 ≤ i ≤ n, Img(ai.XN ,Σf) = ∅, then c` is an

F -indeterminate cycle.

�

This result means that if in all the diagnoser nodes of an F -uncertain cycle no faulty

transitions from the normal set of states to the faulty one (by means of Img operator)

exists, therefore this cycle is an F -indeterminate cycle.

1δD(ai, σi) = a(i+1)modn means the following: ∀i < n : δD(ai, σi) = ai+1 and δD(an, σn) = a1.

Chapter 4. A New Variant of the Diagnoser-Based Approach 59

Proof.

Let us consider c` = a1, a2, . . . , an ∈ D to be an F -uncertain cycle. Also, let us assume

that ∀i : 1 ≤ i ≤ n, Img(ai.XN ,Σf) = ∅.
From Proposition 1, a corresponding fault-free cycle exists in the original model G,

which shares the same observation (σ1, σ2, . . . , σn)∗. Then, it only remains to prove

that a corresponding faulty cycle exists in model G, which also shares the same ob-

servation as c`. As ∀i : 1 ≤ i ≤ n, Img(ai.XN ,Σf) = ∅, we have a(i+1)modn .XF =

ReachΣu(Img(ai.XF , σi)). One can observe that it corresponds exactly to the construction
rule of the normal set of states in the diagnoser node (i.e., a(i+1)modn .XN = ReachΣu\Σf
(Img(ai.XN , σi))). Thus, using the same reasoning in Proof 4.3.4, we infer that a corre-

sponding faulty cycle, which also shares the same observation as c`, exists in the original

model. Thus, the F -uncertain cycle c` is an F -indeterminate one as well. �

Remark 2 Proposition 2 can be viewed as a su�cient condition for non-diagnosability,

since a system model is non-diagnosable if the condition in Proposition 2 is satis�ed by the

diagnoser. Hence, diagnosability analysis is stopped as soon as the condition in Proposi-

tion 2 is satis�ed. In this case, the diagnoser will be constructed partially. Indeed, as will

be discussed in Section 4.4, diagnosability analysis will be performed simultaneously on the

�y as the diagnoser is set up. Such a feature will potentially speed up the diagnosability

analysis; in particular when the system is non-diagnosable.

The above result is used below to introduce two notions of series associated to an F -

uncertain cycle.

Dé�nition 16 (Series Sc`)

Let c` = a1, a2, . . . , an be an F -uncertain cycle in D, with δD(ai, σi) = a(i+1)modn for

1 ≤ i ≤ n. Series Sc` = Sc`1 , S
c`
2 , . . . associated with c`, is de�ned as follows:

Sc` : N∗ → 2X

Sc`
1 = a1.XF (the �rst term of Sc`)

Sc`
i = ReachΣu(Img(Sc`

(i−1), σ(i−1)modn
)),∀i > 1.

(4.1)

�

In fact, series Sc` tracks the subsets of faulty states in each node along c`, but does

not consider the faulty states generated through the occurrence of some faulty transitions

starting form the normal subset in the traversed nodes (except for Sc`1 which holds all the

faulty states of a1, i.e., Sc`1 = a1.XF). In fact, series Sc` is introduced with the aim of

tracking the actual faulty cycles corresponding to a given F -uncertain cycle, if such cycles

exist in the original model G.

60 Chapter 4. A New Variant of the Diagnoser-Based Approach

Dé�nition 17 (Series S′c`)

Let c` = a1, a2, . . . , an be an F -uncertain cycle in D, with δD(ai, σi) = a(i+1)modn, for

1 ≤ i ≤ n. Series S′c` = S′c`1 , S′c`2 , S′c`3 , . . . corresponding to c`, is de�ned as follows:{
S′c` : N∗ → 2X

S′c`i = Sc`
(1+(i−1)n),∀i ∈ N∗.

(4.2)

�

It is worth noticing that S′c` can also be written as follows: S′c` = Sc`1 , S
c`
(1+n), . . . , S

c`
(1+kn),

Sc`(1+(k+1)n), . . . , for k ∈ N. In other terms, series S′c` is a sub-series of series Sc`, which

is extracted from Sc` by considering sample terms with n steps (n is the number of nodes

in the F -uncertain cycle). Thus, series S′c` preserves some properties of series Sc` (i.e.,

convergence, limits, etc.).

Proposition 3 Let c` = a1, a2, . . . , an be an F -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn for 1 ≤ i ≤ n, and let S′c` = S′c`1 , S′c`2 , S′c`3 , . . . be its corresponding series as

de�ned above. Then, the following property holds:

∀k ∈ N∗ : S′c`k+1 ⊆ S′c`k

i.e., ∀k ∈ N∗ : Sc`(1+kn) ⊆ S
c`
(1+(k−1)n). �

Proof.

This property can be straightforwardly proved using mathematical induction. Firstly,

for k = 1, it is direct that Sc`n+1 ⊆ Sc`1 , since we have: Sc`1 = a1.XF and Sc`2 =

ReachΣu(Img(Sc`1 , σ1)) ⊆ a2.XF = ReachΣu(Img(a2.XN ,Σf) ∪ Img(a1.XF , σ1)), with

the same logical reasoning along the event-sequence σ1, . . . , σn, we obtain:

Sc`n = ReachΣu(Img(Sc`(n−1), σn)) ⊆ an.XF = ReachΣu(Img(an.XN ,Σf)∪ Img(a(n−1).XF ,
σ(n−1))). Therefore, S

c`
n+1 = ReachΣu(Img(Sc`n , σn))⊆ a1.XF = ReachΣu(Img(a1.XN ,Σf)

∪Img(an.XF , σn)) = Sc`1 . Now, let us suppose, as by heredity, that Sc`(1+kn) ⊆ S
c`
(1+(k−1)n)

and we have to prove that Sc`(1+(k+1)n) ⊆ S
c`
(1+kn).

In fact, we have Sc`(1+kn) = ReachΣu(Img(Sc`kn, σn)) and Sc`(k+1)n ⊆ Sc`kn (by following the

same logical reasoning as above). Then, Sc`(1+(k+1)n) = ReachΣu(Img(Sc`(k+1)n, σn)) ⊆
ReachΣu(Img(Sc`kn, σn)) = Sc`1+kn. �

The above-mentioned property means that, by ignoring the faulty states generated by

the faulty transitions from the normal sets of states into the faulty ones within the same

node, one can ensure the (non-strict) inclusion relationship between terms of series S′c`.

Proposition 4 For a given F -uncertain cycle c` = a1, a2, . . . , an, its corresponding series

S′c` := S′c`1 = Sc`1 , S
′c`
2 = Sc`(1+n), S

′c`
3 = Sc`(1+2n), Then, S

′c` reaches a �xed-point.

i.e., ∃ k ∈ N s.t. ∀i ∈ N : Sc`(1+(k+i)n) = Sc`(1+kn). �

Chapter 4. A New Variant of the Diagnoser-Based Approach 61

Proof.

By considering the (non-strict) inclusion relationship and that S′c` : N → 2X , Propo-

sition 4 can be derived directly from the �xed-point theorem (version Banach-Picard [Far-

makis and Moskowitz, 2013]). �

Corollary 1 For a given F -uncertain cycle c` = a1, a2, . . . , an, its corresponding series

Sc` = Sc`1 , S
c`
2 , S

c`
3 , . . . becomes periodic (with period n) from a certain index. �

Proof. By Proposition 4 , let k be the index of the �xed-point reached by S′c`. Then

∀i ∈ N, S′c`(k+i) = S′c`k , that is ∀i ∈ N : Sc`1+(k+i)n = Sc`1+kn. Thus, ∀j : 0 ≤ j ≤ n ⇒
Sc`(1+(k−1)n+j) = Sc`(1+kn+j) = · · · = Sc`(1+(k+i)n+j) = · · · . �

Corollary 2 Let c` be an F -uncertain cycle, If c` is not an F -indeterminate one then,

its corresponding series Sc` reaches an empty �xed-point within a �nite delay. �

Theorem 4 An F -uncertain cycle c` = a1, a2, . . . , an in D is an F -indeterminate cycle

if and only if the �xed point reached by its corresponding series S′c` is non-empty. �

Proof. Let c` = a1, a2, . . . , an be an F -uncertain cycle in D with δD(ai, σi) = a(i+1)modn

for 1 ≤ i ≤ n.
(⇒) We assume that c` is an F -indeterminate cycle, and we have to prove that the

�xed point reached by series S′c` associated with c` is non-empty.

As c` is an F -indeterminate cycle, this means that some faulty cycles exist in the

original model G and share the same observation (σ1, . . . , σn)∗ with some indistinguishable

normal cycles. Let us assume that there exist exactly m faulty cycles. This means that

∃sji ∈ Σ∗u,∃x
j
i ∈ ai.XF such that xj(i+1) ∈ δ(x

j
i , s

j
i .σi) for (1 ≤ i < n) and xj1 ∈ δ(x

j
n, s

j
n.σn),

for 1 ≤ j ≤ m (See proof of Proposition 1). Thus, it is plain that ∀k ∈ N∗,∀i : 1 ≤ i ≤
n, ∀j : 1 ≤ j ≤ m : xji ∈ Sc`i+nk. Therefore, all the terms of S′c` are non-empty. Hence,

obviously the reached �xed point is also non-empty.

(⇐) We assume that series S′c` associated with c` has a non-empty �xed point and

let us prove that c` is an F -indeterminate cycle. Actually, from Proposition 1, one only

needs to prove that a faulty cycle which shares the same observation (σ1, . . . , σn)∗ exists

in the original model G.

From Proposition 4, ∃ k ∈ N∗ s.t. Sc`(1+kn) = Sc`(1+(k−1)n). Moreover, according to our

assumption Sc`(1+kn) 6= ∅. Let us assume that Sc`(1+kn) = Sc`(1+(k−1)n) = {x1, . . . , xm}, with
m ∈ N.

We will adopt a reasoning analogous to the one used to prove Proposition 1. From

the de�nition of series Sc` (see De�nition 16), we have ∃xi, xj ∈ Sc`(1+(k−1)n), ∃ t =

s1.σ1.s2.σ2.sn−1.σn−1. sn.σn, with si′ ∈ (Σu)∗ (for 1 ≤ i′ ≤ n) such that xi ∈ δ(xj , t),

62 Chapter 4. A New Variant of the Diagnoser-Based Approach

with 1 ≤ i, j ≤ m. Thus, by repeating this procedure to xi and so on at least m times,

one can infer that xj is certainly visited twice, which means that, at least, one faulty cycle

exists in G. Therefore, c` is an F -indeterminate cycle. �

4.4 On-the-�y Veri�cation

4.4.1 A Systematic Procedure for Checking Diagnosability

It is worth noticing that for the actual veri�cation of diagnosability, a systematic procedure,

which is derived directly from Theorem 4, can be performed as follows:

When an F -uncertain cycle c` is found in D, then:

• generate the successive terms of series Sc` (starting from S1), and for each terms Sc`i
check the following conditions:

1. if Sc`i = ∅, then cycle c` is not an F -indeterminate cycle and stop the procedure;

2. else, if Sc`i 6= ∅ and ∃k ∈ N : i = 1 + kn (with n = |c`|), then:

(a) if Sc`i = Sc`(i−n), stop the procedure, since cycle c` is an F -indeterminate;

(b) otherwise continue.

This procedure is repeated as long as there are F -uncertain cycles in diagnoser D.
It should be noticed that, on the basis of Proposition 4, one can be certain that the

above procedure terminates well since a �xed-point will be reached (by S′c`) within a �nite

delay.

Example 5 Let us take once again diagnoser D of model G depicted in Figure 4.1(b). An

F -uncertain cycle c` = a1, a2 exists in D. Thus, let us pick sequence ρ4 = Sc`1 , S
c`
2 , S

c`
3 , S

c`
4 ,

which contains the successive terms of series Sc` (see Figure 4.4). One can observe that

Sc`4 = Sc`2=4−2 = {4, 5} 6= ∅, which means that, according to Theorem 4, the F -uncertain

cycle c` is also an F -indeterminate cycle. Thus, G is non-diagnosable.

Example 6 Let us consider another FSA G′ in Figure 4.5 (taken from [Sampath et al.,

1995]). The set of observable events is Σo = {a, b, c, d, e} and the set of unobserv-

able events is Σu = Σf = {f}. Diagnoser DG′ corresponding to model G′ is depicted

in Figure 4.6. One can observe that DG′ has an F -uncertain cycle composed of diag-

noser nodes a1, a2, a3 with corresponding event sequence (bce)∗. Let as pick sequence

ρ = Sc`1 , S
c`
2 , S

c`
3 , S

c`
4 , S

c`
5 , S

c`
6 , S

c`
7 which contains the successive terms of series Sc` . Since

Sc`7 = S′c`2 = ∅, then according to Theorem 4, the F -uncertain cycle in G′ is not an

F -indeterminate one. Thus, FSA G is diagnosable.

Chapter 4. A New Variant of the Diagnoser-Based Approach 63

Figure 4.4 � Generation of series Sc` for analyzing diagnosability

1start

2

3 4 5 6

8

7 11 12

9 10

f

a

a

b c d
d

f

b

b c

e

c

e

Figure 4.5 � Example of a diagnosable model

4.4.2 Algorithm

In this section, we discuss an on-the-�y algorithm based on a depth-�rst-search (DFS) pro-

cedure for simultaneously constructing the diagnoser and verifying diagnosability. Con-

structing the diagnoser on the �y serves to avoid the systematic generation of the whole

state-space of the diagnoser. On the one hand, if the system is diagnosable, it is unneces-

sary to construct the part of the diagnoser following F -certain diagnoser nodes, since such

a part is unnecessary for analyzing diagnosability and performing online diagnosis. On

the other hand, when the system is non-diagnosable, we stop constructing the diagnoser

as soon as an F -indeterminate cycle is found. Moreover, the proposed algorithm �rstly

checks the su�cient condition for non-diagnosability, as proposed in Proposition 2. As

soon as this condition is met, the model is stated to be non-diagnosable and the veri�cation

process is stopped.

64 Chapter 4. A New Variant of the Diagnoser-Based Approach

Figure 4.6 � Diagnoser DG′ corresponding to model G′ with series Sc` for analyzing diag-

nosability

The following functions and data structures will be used in the elaborated algorithm:

• IsUncertain(): is a function that returns a Boolean value (true if the encountered

cycle is composed of only F -uncertain diagnoser nodes, and false otherwise).

• List_State, List_State1, Cycle_State: are three �nite ordered lists of sets

of states. They are used for checking the existence of cycles.

• List_Event, Cycle_Event: are two �nite ordered lists of observed events, cor-

responding respectively to List_State, Cycle_State. They are used to check

the existence of cycles.

• Add: an operation that adds an element to an ordered list .

• RemoveLast(S): is an operation that removes the last added element from an or-

dered list.

• Copy(i, End): is an operation that copies elements from index i to the end of the

ordered list, into a new empty ordered list.

The initialization step of the algorithm (cf. Algorithm 1, lines 6-12) serves to compute

the initial diagnoser node. Therefore, the construction of the diagnoser nodes is performed

by Diagnoser_Construct() function (cf. Algorithm 2). The construction is performed

using a depth-�rst exploration regarding the set of enabled (observable) events from the

Chapter 4. A New Variant of the Diagnoser-Based Approach 65

Algorithm 1 On-the-�y algorithm to construct the diagnoser and check diagnosability
Input: G = 〈X,Σ, δ, x0〉
Output: Diagnosability verdict

1 Set of states Sn, Sf , Ynf , Yf , S′n, S
′
f

2 Set of Events: Evtn, Evtf

3 Boolean: bool = True

4 Ordered lists: List_State = {}, List_Event = {}
5 Diagnoser node a, a′

6 Initialization:

7 Sn = ReachΣu\Σf (q0)

8 Sf = ReachΣu(Img(Sn,Σf))

9 Γ0.XN = Sn; Γ0.XF = Sf ; Γ0.tag = False

10 Γ = {Γ0}; a = Γ0

11 Evtn = EnableΣo(Sn); Evtf = EnableΣo(Sf)

12 List_State = {a};
13 if (Diagnoser_Construct (G, D, Evtn, Evtf , Sn, Sf)) then
14 return Non-diagnosable

15 return Diagnosable

current node. With the aim of using the constructed diagnoser to perform the online

diagnosis while avoiding the construction of the subsequent F -certain diagnoser nodes,

Diagnoser_Construct() function builds only the �rst encountered F -certain node (if there

exists) in the diagnoser path. This is performed by exploring the set of observable events

enabled only from the set of faulty states (i.e., Evtf\Evtn) (Algorithm 2, Lines 2-6).

However, for analyzing diagnosability, the exploration is done from the set of observable

events enabled from the set of normal states of the current node (i.e., Evtn). It should

be noticed that boolean variable tag that is associated with each diagnoser node and

initialized to false, is used for checking the su�cient condition given in Proposition 2.

The computation of a new node a′, reachable through an observable event σ from node

a, is completed by the `Reach' operation upon the unobservable events (c.f. Algorithm 2,

lines 7-14). If diagnoser node a′ has already been encountered then the diagnoser is

updated by only adding a new transition. In this case, function IsUncertain() checks if

node a′ belongs to an F -uncertain cycle (cf. Algorithm 2, line 20). If so, the su�cient

condition (Proposition 2) is �rstly checked by analyzing if all the tags of the diagnoser

nodes in this F -uncertain cycle are true (c.f. Algorithm 2, lines 21 and 22), which means

that the F -uncertain cycle is an F -indeterminate one.

66 Chapter 4. A New Variant of the Diagnoser-Based Approach

Algorithm 2 Diagnoser_Construct() function
Input: G, D, Evtn, Evtf , Sn, Sf
Output: Boolean value

1 Function Diagnoser_Construct():

2 foreach (σ ∈ Evtf\Evtn) do

3 a′.XN = ∅
4 a′.XF = ReachΣu(Img(Sf , σ))

5 if (∃ a′′ ∈ Γ | a′′ = a′); then a′′ = δ(a, σ)

6 else Γ = Γ ∪ {a′}, a′ = δ(a, σ)

7 foreach (σ ∈ Evtn) do

8 S′n = ReachΣu\Σf (Img(Sn, σ))

9 Ynf = ReachΣu(Img(S′n,Σf))

10 Yf = ReachΣu(Img(Sf , σ))

11 a′.XN = S′n

12 if (Ynf = ∅) then a′.XF = S′f = Yf , a′.tag = true

13 else a′.XF = S′f = Ynf ∪ Yf
14 List_Event.Add(σ)

15 if (∃ a′′ ∈ Γ | a′′ = a′); then

16 a′′ = δ(a, σ)

17 if (a′ ∈ List_State) then

18 Cycle_State = List_State.Copy(Index(a′), End)

19 Cycle_Event = List_Event.Copy(Index(a′), End)

20 if (IsUncertain(Cycle_State)) then

21 foreach (a ∈ Cycle_State do
22 if (a.tag = false) then bool = false

23 if (bool = true) then return true

24 if (Check_Series(G, a′, Cycle_Event)) then

25 return true

26 else List_State.Add(a′)

27 else

28 Γ = Γ ∪ {a′}, a′ = δ(a, σ)

29 Evt′n = EnableΣo(S
′
n), Evt′f = EnableΣo(S

′
f)

30 Diagnoser_Construct (G, D, Evt′n, Evt′f , S′
n, S

′
f)

31 RemoveLast(List_State)

32 RemoveLast(List_Event)

33 return false

Chapter 4. A New Variant of the Diagnoser-Based Approach 67

Thus, Diagnoser_Construct() function outputs boolean value true and the veri�cation

process is stopped. If the su�cient condition is not satis�ed, the necessary and su�cient

condition for diagnosability is checked using the procedure proposed in Theorem 4 (cf.

Algorithm 3).

Algorithm 3 Check_Series() function

Input: G, a′, Cycle_Event, Int i, n

Output: Boolean value

1 Function Check_Series()

2 S1 = a′.XF , i = 1, n = |List_Event|, List_State1.Add(S1)

3 while (Si 6= ∅) do
4 S(i+1) = ReachΣu(Img(Si, σ(i+1)modn

))

5 if (i % n = 0) then

6 if ((i ≥ n)&(S(i+1) = S(i−n+1)) then return (true)

7 else List_State1.Add (Si), i+ +

8 return (false)

Indeed, function Check_Series() (c.f. Algorithm 3) is launched in order to compute

the successive terms of series Sc` associated with the F -uncertain cycle. If a (non-empty)

computed term Si is equivalent to term S(i−n) (i > n) already computed, then boolean

value true is returned� otherwise, if the generated term is empty, then boolean value

false is returned. If the returned value by function Check_Series() is `true', then the

F -uncertain cycle is an F -indeterminate one. Thus, Algorithm 1 outputs that the model

is non-diagnosable and the diagnoser construction is stopped. Otherwise, construction is

continued in a recursive manner. Once all the branches of interest are constructed and

explored with no F -indeterminate cycle having been met, Algorithm 1 outputs that the

model is diagnosable.

4.4.3 A Heuristic Strategy to Improve the Building Algorithm

Our algorithm for constructing the diagnoser (and checking diagnosability) is based on

a depth-�rst search (DFS) to investigate the state-space. However, no rules are de�ned

to select the execution to be investigated �rst, i.e., the order of exploring executions is

arbitrary. In fact, in our case, the diagnoser node structure provides some information

that can be exploited to direct the search in such a way as to increase the chances of

quickly obtaining a diagnosability verdict by exploring the most �promising� executions

at �rst.

68 Chapter 4. A New Variant of the Diagnoser-Based Approach

When we deal with diagnosability analysis, the interesting executions of the system

are those which share the same observed event-sequence such that some of them contain

a faulty event and the others are fault-free. This amounts to track the observed event-

sequences, in the variant diagnoser, leading to F -uncertain nodes. Generally, there exists

three types of enabled transitions from any nodes, as depicted in Figure 4.7.

1. Observable events generated only from states in the faulty set (i.e., a.XF) (Figure

4.7 (a)). In fact, this trace generates only F -certain nodes.

2. Observable events generated only from states in normal set (i.e., a.XF)) (Figure 4.7

(b)). In this case, we need to continue the construction through this branch since

other faults may occur in the future.

3. Observable events generated from both normal and faulty sets of states (Figure 4.7

(c)). In this case, the next reachable diagnoser node will be certainly F -uncertain.

Figure 4.7 � Types of enabled transitions from a node

This last type of transitions is the most-promising as one seeks for F -indeterminate

cycles, since it is known, a priori, that the new diagnoser node will be certainly an F -

uncertain node, contrary to the other above cases. Thus, such a branch will be the �rst to

be explored in order to direct the construction of the diagnoser and to potentially speed

up the veri�cation process.

4.4.4 Complexity Analysis

The construction of the diagnoser variant has the same theoretical complexity as the other

diagnoser-based approaches [Sampath et al., 1995, Cabasino et al., 2014, Zad et al., 2003],

which means that, in the worst case, such a procedure is exponential in the cardinal-

ity of state-space of the system model. Actually, this is unavoidable when working with

diagnoser-based approaches, since it is due to the deterministic nature of the diagnoser.

However, the main underlying idea behind our approach is to avoid as much as possible

such a case, i.e., to avoid generating the whole state-space of the diagnoser. In this re-

spect, thanks to the proposed structure of diagnoser nodes and the on-the-�y construction

Chapter 4. A New Variant of the Diagnoser-Based Approach 69

and veri�cation procedure, our approach shows many advantages regarding the classic

diagnoser-based approaches. Firstly, no intermediate model is needed, either for con-

struction the diagnoser or for analyzing diagnosability. This feature reduces signi�cantly

memory/time consumption. Secondly, only the necessary part for analyzing diagnosability

and performing online diagnosis is generated. Thirdly, diagnosability analysis is performed

directly on the F -uncertain cycles with no need to start the investigation form the initial

state. Finally, building the diagnoser and checking diagnosability, simultaneously on the

�y serves to signi�cantly speed up the veri�cation process, particularly in the case of non-

diagnosable models. Indeed, in this case the veri�cation process is stopped immediately

after an F -indeterminate cycle is found.

4.5 Extensions

In this section, we discuss some extensions of the proposed approach in order to deal with

further fault diagnosis issues, namely online diagnosis, K/Kmin−diagnosability and the

case of multiple fault classes.

4.5.1 Online Diagnosis

Once a system model is checked to be diagnosable, the constructed part of our diagnoser

is su�cient to perform online diagnosis. To do so, one keeps only the fault tag information

in each diagnoser node (i.e, `F ' for `faulty' nodes, `N ' for `Normal' ones, and `U ' for 'F -

uncertain' ones). In fact, the online diagnoser is a directed graph where each node carries

a fault tag and each transition is tagged with an observable event. Thus, for any sequence

of observable events, by following the corresponding path in the diagnoser and according

to some prede�ned rules pertaining to F -uncertain cycles, one can determine, online, the

system status.

4.5.2 K/Kmin−diagnosability

In addition to the analysis of the `classical' diagnosability, the proposed diagnoser can be

used to deal with the practical concepts of diagnosability, namely K−diagnosability (i.e.,

diagnosability in K steps) and Kmin−diagnosability (i.e, the smallest value of K ensuring

diagnosability) [Liu et al., 2014b, Dallal and Lafortune, 2010, Cabasino et al., 2012a, Basile

et al., 2012a], in the case where the investigated model is diagnosable.

In fact, we extended the diagnosability analysis procedure in order to cope with

K/Kmin− diagnosability analysis, in the case where the model is diagnosable. The main

idea is to count the maximum number of possible successive F -uncertain nodes in diag-

noser D. Three cases can be encountered:

70 Chapter 4. A New Variant of the Diagnoser-Based Approach

− Case 1 : a non-cyclic maximal sequence of successive F -uncertain nodes: in this case,

the number of these nodes is considered;

− Case 2 : an F -uncertain cycle c` where all the predecessors and successors of its

nodes, which do not belong to c`, are N (or F)-certain: in this case, the index of

the earliest empty term (�xed-point) of series Sc` is considered;

− Case 3 : an F -uncertain cycle c` holding nodes that have some F -uncertain prede-

cessors and/or successors, which do not belong to c`: in this case, both the index of

the earliest empty term of series Sc` (By Theorem 4 and Corollary 2, since the model

is diagnosable, we are certain that S′c`, so also Sc`, reach an empty �xed-point) and

the length of the successive F -uncertain predecessors and successors, are considered.

These di�erent cases are depicted in Figure 4.8, with `F ' for `faulty' nodes, `N ' for

`Normal' ones, and `U ' for 'F -uncertain' ones.

Figure 4.8 � Di�erent cases for analyzing K−diagnosability

4.5.3 Diagnosability of Multiple Fault Classes

In this work, only one class of fault has been considered. However, the proposed approach

can be extended to deal with multiple classes of faults. In this case, the set of fault

events is partitioned into disjoint fault classes Σf = Σf1

⊎
Σf2

⊎
. . .

⊎
Σfm , where Σfi(i =

1, 2, . . . ,m) denotes the ith fault class. Sampath et al. [Sampath et al., 1995] have dealt

Chapter 4. A New Variant of the Diagnoser-Based Approach 71

with this case of multiple fault classes and proposed a generalization of the necessary and

su�cient condition of diagnosability. In fact, a system model is said to be diagnosed if

and only if no Fi-indeterminate cycles exist in the diagnoser (with index i corresponds to

fault class Σfi).

In order to deal with multiple fault classes using the developed diagnoser, one �rst

needs to extend the structure of the diagnoser node. Thus, for a system containing m

fault classes, each diagnoser node a contains m+1 subsets of states (some of them may be

empty): a.XN which is the set of normal states, a.XFi which is the set of Fi-faulty states

reached by event-traces which have experimented, at least, one fault event from fault class

Σfi , for i : 1 ≤ i ≤ m. These various sets of states may be linked to each other by various

faulty transitions, e.g., set of faulty states XF2 may be linked by faulty transitions (i.e.,

transitions labeled with fault events in Σf2) originated from a.XN , a.XF1 , a.XF3 , . . . or

a.XFm . Figure 4.9 depicts the general form of a diagnoser node.

Figure 4.9 � The structure of diagnoser nodes for multiple fault classes

Figure 4.10 illustrates the diagnoser node construction for a part of system model

containing, while considering two fault classes (Σf1 = {f1} and Σf2 = {f2}). The di�erent
sets of states are a.XN = {1}, a.XF1 = {2, 3}, and a.XF2 = {3, 4}. One can observe that

state 3 belongs to both a.XF1 and a.XF2 , which is due to the fact that this state is

reached following the occurrence of both f1 and f2 in the same event sequence. Thus, it is

duplicated with respect to the fault classes involved. Actually, this feature of duplicating

states is crucial for the diagnosability investigation, since it allows for analyzing each set

of faulty states separately.

In fact, regarding the diagnosability analysis, the systematic procedure, proposed in

Section 4.4.1, can be extended in order to check the existence of the Fi-indeterminate

cycles. The main idea is to generate for each Fi-uncertain cycle c`, its corresponding

series Sc`i and S′c`i . Then, in the same way as in the case of one fault class, one has to

check the �xed-point reached by series S′c`i . Moreover, by considering that all the entering

transitions to a set of faulty states XFi from any other state within the same node are

viewed as if they are issued from the normal set of states (with regards to Σfi), then the

72 Chapter 4. A New Variant of the Diagnoser-Based Approach

Figure 4.10 � An illustrative example of the diagnoser node with two fault classes

su�cient condition for diagnosability, developed in Proposition 2, can be adapted for the

case of multiple fault classes in order to speed up the veri�cation process.

4.6 Experimental Evaluation

In order to assess the e�ectiveness and the scalability of the proposed approach, the

developed algorithm for constructing the diagnoser and verifying diagnosability on the �y

(c.f. Section 4.4, has been implemented in C# programming language and tested using

a Petri net benchmark. The considered model illustrates the concept of permanent fault

concept and ful�lls the assumptions considered in this work.

The obtained results are discussed with respect to some reference approaches, namely

Sampath's diagnoser [Sampath et al., 1995] and the veri�er approach [Yoo and Lafortune,

2002b], which are implemented in the UMDES Library [Lafortune, 2000]. Besides the

simulation results, we will point out the similarities and di�erences between our approach

and these reference approaches.

4.6.1 Presentation of the Considered Benchmark

The DES benchmark, depicted in Figure 4.11, is a modi�ed version of the WODES Bench-

mark [Giua, 2008]. This version of the benchmark was also presented in [Hosseini et al.,

2013]. It describes a manufacturing plant characterized by three parameters: m, k and b,

where:

• k is the number of production lines;

• m is the the number of units of the �nal product that can be simultaneously pro-

duced, while each unit is composed of k parts;

• b is the number of operations that each part must undergo in each line.

The faulty transitions are indicated by red boxes, while the other transitions are nominal

and can be observable or unobservable depending on the experiments we will carry out.

Chapter 4. A New Variant of the Diagnoser-Based Approach 73

Figure 4.11 � The PN benchamrk

In order to evaluate our approach; two con�gurations of the benchamrk are considered:

Test 1) in this test, we consider that parameters m = 1, b = 4, and k = 3, . . . , 8. Moreover,

transitions t0, t1, and ti,1, ti,3 for 1 ≤ i ≤ k are observable, and transitions fi for

1 ≤ i ≤ k are faulty. Regarding the other transitions, two cases are considered :

a) All the other transitions are unobservable (in this case, the model is non-

diagnosable).

b) All the other transitions are unobservable except for transitions ti,4 for 1 ≤ i ≤ k
which are observable (in this case, the model is diagnosable).

Test 2) we evaluate the e�ciency of our approach regarding the number of observable and

unobservable transitions in the model. In this test, we consider that parameters

m = 1, k = 4, and b = 2, 3 . . . , 10, 15, 18. Transitions t0, t1, and ti,b for 1 ≤ i ≤ 4 are

observable. In addition, transitions fi for 1 ≤ i ≤ 4 are unobservable. Therefore,

the model is always diagnosable. Regarding the rest of transitions, two cases are

considered:

74 Chapter 4. A New Variant of the Diagnoser-Based Approach

a) All the other transitions are unobservable.

b) All the other transitions are observable.

In fact, for this test, we only increase the number of unobservable (resp. observable)

transitions in the model from one experiment to another. That is, we iteratively add 4

unobservable (or observable) transitions in the model each time.

Before proceeding with the actual experiments, some preparations are necessary. Both

approaches, deal with automata models by importing �*.fsm� �le. Thus, we �rst generate

the reachability graph (as an automaton) of the considered PN with the help of TINA

(TIme petri Net Analyzer) tool [Berthomieu et al., 2007], which is a toolbox for the editing

and analysis of Petri Nets. This yields to a �*.aut� �le, which is then transformed into a

�.fsm� �le with the help of a script we have developed. This ensures that the comparative

experiments are performed with the same input. It is worth noticing that the experiments

have been performed on 64-bit PC (CPU: Intel Core i5, 2.5 GHz, RAM: 6GB). We �x 4

hour as a maximum analysis duration, i.e., if after 4 hours, no results is output by the

tool, then we stop the experiment and we consider that the tool fails the analysis.

4.6.2 Results

The experimental results are summarized in Table 4.1 for Test 1, and in Table 4.2 for

Test 2, where :

� m, k, and b are the basic structural parameters of the benchmark. They represent

respectively the number of tokens in place p0, the number of production lines, and

the number of operations along each production line;

� |P | and |T | are respectively the number of places and transitions of the PN model;

� |RS | and |RT |, which are the number of states and transitions of the reachability

graph respectively, give the scale of the PN reachability graph computed by TINA

Tool [Berthomieu et al., 2007]. The reachability graph serves, indeed, as the input

automaton model;

� |DS | and TeD, are the results obtained by the diagnoser approach [Sampath et al.,

1995], and represent respectively: the number of nodes in the diagnoser and the

elapsed time for generating the diagnoser and analyzing the diagnosability. Theses

results are obtained using diag.exe, diag_UR.exe, dcycle.elf functions of the UMDES

Library.

Chapter 4. A New Variant of the Diagnoser-Based Approach 75

� |DS | and TeD are the results obtained using our approach, and represent respectively:

the number of constructed nodes in the diagnoser and the elapsed time for generating

the diagnoser and checking the diagnosability;

� Ve is the elapsed time for checking diagnosability using the veri�er approach. The

result is obtained using veri�er_dia.exe function of UMDES Library. Let us note

that for this approach, the number of states in the veri�er are not provided since

the constructed model is not a diagnoser and thus, the comparison in terms of state-

space size is not appropriate in this case. Thus, we only give the computation time

related to the veri�er technique.

� Diag is the diagnosability verdict.

Table 4.1 � Experimental results for Test 1

Our approach Sampath's approach veri�er

k |P | |T | |RS | |RT | |D| TeD (s) |D| TeD (s) TeV (s) Diag

3 16 17 126 377 16 ' 0 56 0.3 0.2

no
n-
di
ag
no
sa
bl
e

4 21 22 626 2502 20 ' 0 164 0.4 4.4

5 26 27 3126 15627 24 0.1 488 4.4 o.t.

6 31 32 15626 93752 28 0.3 1460 1893 o.t.

7 36 37 78126 546877 32 1.5 * o.t. o.t.

8 41 42 390626 3125002 36 9.3 * o.t. o.t.

3 16 17 126 377 65 ' 0 270 0.2 0.1

di
ag
no
sa
bl
e

4 21 22 626 2502 257 ' 0 1378 0.3 1.3

5 26 27 3126 15627 1025 0.2 6686 1 163.4

6 31 32 15626 93752 4097 1.8 31314 31.4 o.t.

7 36 37 78126 546877 16385 41.6 143086 1471 o.t.

8 41 42 390626 3125002 65537 921 * o.t. o.t.

*: No result obtained in 4 hours. o.t.: Out of time (simulation time ≥ 4 hours).

4.6.3 Discussion

Regarding the obtained results, presented in Table 4.1, the following remarks can be

underlined:

� One can observe that, for all the considered parameters, our approach performs

successfully the diagnosability analysis for both diagnosable and non-diagnosable

cases while the two other approaches fall starting from a certain range.

76 Chapter 4. A New Variant of the Diagnoser-Based Approach

� For the non-diagnosable case, the elapsed time for analyzing diagnosability using

our approach remains in the order of milliseconds, in spite of the increasing state

space of the model. This is particularly due to the on the �y veri�cation technique,

which stops constructing the diagnoser as soon as the diagnosability condition is vio-

lated. Contrarily, the classic approaches (diagnoser and veri�er) �rstly build the hole

diagnoser/veri�er before checking the diagnosability condition, which considerably

a�ects the computation time.

� Our proposed approach remains e�cient, in terms of computation time, compared

to the two other approaches, when the model is diagnosable. This can be explained

by the following three points:

1. in our approach there is no need to construct any intermediate model as in the

case of the classic approaches;

2. only the relevant part of the diagnoser for analyzing diagnosability is con-

structed. That is, the subsequent following F -cetrain nodes (i.e., the certainly

faulty part of the diagnoser) is not constructed;

3. the systematic procedure de�ned for checking diagnosability on the basis of our

diagnoser variant allows for enhancing the veri�cation time.

Thus, the generated state-space of the our diagnoser is lower than those of the classic

approaches as shown in Table 4.1 (e.g., for k = 6 in the diagnosable case, we have

31314 states for the classic diagnoser compared in the 4097 states for our diagnoser).

� The results show that the classic diagnoser approach is more e�cient than the veri�er

approach for the considered benchmark. This does not violate the claim that the

veri�er approach is more e�cient in terms of time complexity (polynomial complexity

for the veri�er approach versus exponential for the diagnoser approach), since the

theoretical complexity is computed while considering the worst case.

For the evaluation results of the approaches regarding the increasing of observable/ unob-

servable transitions (Table 4.2), the following observation can be made:

� The state-space of the diagnosers are not a�ected when the number of the unobserv-

able transitions is increased. However, they are very sensitive to the increasing of

the observable transitions. This is due to the diagnoser structure.

� The e�ciency of Sampath's diagnoser approach and the veri�er approach highly

decreases when the number of unobservable transitions increases. Regarding the

Sampath's diagnoser, this is due to the ε-reduction operation when generating the

Chapter 4. A New Variant of the Diagnoser-Based Approach 77

Table 4.2 � Experimental results for Test 2

Our approach Sampath's approach veri�er

b |P | |T | |RS | |RT | |D| TeD (s) |D| TeD (s) TeV (s)

2 13 14 82 326 17 ' 0 34 0.1 0.6

3 17 18 257 1026 17 ' 0 34 3000 46

4 21 22 626 2502 17 ' 0 * o.t. 1440

5 25 26 1297 5186 17 0.1 * o.t. o.t.

6 29 30 2402 9606 17 0.2 * o.t. o.t.

7 33 34 4097 16386 17 0.5 * o.t. o.t.

8 37 38 6562 26246 17 0.7 * o.t. o.t.

9 41 42 10001 40002 17 1.7 * o.t. o.t.

10 45 46 14642 58566 17 3 * o.t. o.t.

14 61 62 50626 202502 17 8.4 * o.t. o.t.

18 77 78 130322 521286 17 28.8 * o.t. o.t.

2 13 14 82 326 82 ' 0 164 ' 0 0.4

3 17 18 257 1026 257 ' 0 514 ' 0 0.4

4 21 22 626 2502 626 ' 0 626 0.1 0.5

5 25 26 1297 5186 1297 0.1 0.4 1.2 1.2

6 29 30 2402 9606 2402 0.3 4804 0.7 2.7

7 33 34 4097 16386 4097 1 8194 2.1 9.3

8 37 38 6562 26246 6562 3 13124 3.4 31

9 41 42 10001 40002 10001 8.9 20002 8.5 71.6

10 45 46 14642 58566 14642 15.4 29284 25.3 154.4

14 61 62 50626 202502 50626 206 101252 363 1590

18 77 78 130322 521286 130322 1382 260644 2340 8520

*: No result obtained in 4 hours. o.t.: Out of time (simulation time ≥ 4 hours).

intermediate model (the generator), which highly depends on the number of unob-

servable events in the model. Regarding the veri�er approach, this is due to the

various rules used for building the veri�er, i.e., for one unobservable transition in

the system model, three distinct transitions are considered in the veri�er (see the

construction rules of the veri�er in [Yoo and Lafortune, 2002b]).

� It is worthwhile noticing that the UMDES tool (both the diagnoser and the veri�er

techniques) falls with some models in this test while our tool performs successfully

the diagnosability analysis of all the model variants. The e�ciency of our tech-

nique comparatively to the two UMDES techniques is more noticeable as the part

of unobservable transitions becomes more important in the model.

78 Chapter 4. A New Variant of the Diagnoser-Based Approach

4.7 A Comparison Between Sampath's Diagnoser and our

Proposed Diagnoser

The new diagnoser-based approach, we have discussed in this chapter, has some similarities

and di�erences with Sampath's diagnoser approach that are discussed in what follows:

• Both approaches deal with fault diagnosis of DESs in the automata formalism under

the same assumptions, (i.e., the model is live and no unobservable cycle exist in it).

• Both approaches are constructed in an exponential complexity, due the determiniza-

tion nature of the diagnoser. However, in our approach, this high complexity is

partially tackled using the partial construction of the diagnoser state-space, due to

the on the �y building/veri�cation algorithm.

• The main advantages of our approach w.r.t. to Sampath's diagnoser are twofold:

1. Only the necessary part for analyzing diagnosability and performing the online

diagnosis is generated. Indeed, the diagnoser construction and diagnosability

analysis are simultaneously performed on-the-�y using a depth-�rst-search al-

gorithm. Therefore, the diagnoser need not be built completely for checking

diagnosability. This would signi�cantly save memory, particularly in the case

of non-diagnosable models.

2. In our technique, the systematic procedure for checking the necessary and suf-

�cient condition does not require to return to any intermediate model. Besides,

for the analysis of F -uncertain cycles, there is no need to start from the initial

state and the analysis is performed directly on the cycle. Such a procedure, sig-

ni�cantly speed up the veri�cation process (as shown in the experimentation).

• The main drawback of our approach, is the size of nodes (in terms of memory)

in the diagnoser, due to the unobservable reachability. In fact, the nodes of our

diagnoser may contain a large number of the model states that are reachable through

unobservable sequences after the occurrence of an observable event. Such an issue is

not encountered in Sampath's diagnoser, since the unobservable reachability is erased

by means of the ε-reduction operation when building the generator. However, the

fact that two graphs, namely the generator and the diagnoser, are constructed and

memorized still raises the memory issues. In order to overcome the issue of memory

consumption in our diagnoser, we intend to bring into play symbolic representation

techniques (using Binary Decision Diagrams (BDDs)). In fact, BDDs can e�ciently

encode and manage the sets of states in the diagnoser nodes. Such a technique

Chapter 4. A New Variant of the Diagnoser-Based Approach 79

represents the main contribution of Chapter 6 where the considered models are

labeled Petri nets.

4.8 Conclusion

This chapter discusses an e�cient diagnoser-based approach for fault diagnosis of discrete-

event system modeled as partially observed �nite state automata. A new structure for

representing the diagnoser nodes is proposed. It consists in separating normal states

and faulty states in each diagnoser node. Therefore, on the basis of this structure and

through using various features that characterize it, we propose a systematic procedure

for directly checking diagnosability using the diagnoser and without needing to construct

any intermediate model. Moreover, the proposed procedure also considers dealing with

the quantitative diagnosability properties, namely, K− and Kmin−diagnosability , as well
as online diagnosis. An on-the-�y algorithm for constructing the proposed diagnoser and

verifying diagnosability simultaneously is provided.

Chapter 5

A Diagnoser-Based Approach for

Intermittent Fault Diagnosis

Sommaire

5.1 Introduction . 82

5.2 A Review of Intermittent Fault Diagnosis in DESs 84

5.3 Overview on the Developed Contribution 87

5.4 Modeling of the System and Intermittent Faults 88

5.5 Notions of Diagnosability . 94

5.6 Construction of the Diagnoser . 99

5.7 Analysis of WF -Diagnosability . 104

5.8 Analysis of SF -Diagnosability . 109

5.9 Discussion . 112

5.10 A Still Open Issue . 114

5.11 Conclusion . 116

Summary

In this chapter, we extend the diagnoser-based approach, introduced in the previous chap-

ter, in order to deal with the fault diagnosis of intermittent faults. First, we discuss two

ways for modeling the intermittent faults in �nite state automata framework. Then, various

de�nitions of diagnosability from the SED literature are revisited. Such de�nitions concern

the occurrence of the fault events, their recovery, and the identi�cation of the system status

within �nite delays. In order to analyze such properties, we extend the proposed diagnoser

(discussed in Chapter 4) with a new structure, which consists in separating normal states,

faulty states and recovered ones in each diagnoser node. Furthermore, necessary and su�-

cient conditions for checking the various diagnosability properties are derived on the basis

of the diagnoser structure and systematic procedures for checking such conditions without

needing any intermediate model is proposed.

The work presented in this chapter is the subject of publications in ICPHM'16 [Boussif

and Ghazel, 2016b], WoDES [Boussif et al., 2016c] and a submitted one on ACC'17 [Bous-

sif and Ghazel, 2017].

82Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

This chapter is structured as follows: Section 5.1 gives a general introduction regard-

ing intermittent faults and their importance in the fault diagnosis of real-life systems. In

Section 5.2, a brief literature review on intermittent fault diagnosis of DESs is provided.

Section 5.3 presents an overview on the approach we discuss in the current chapter. Sec-

tion 5.4 introduces the system modeling and two ways for modeling intermittent faults.

In Section 5.5, various notions of diagnosability of intermittent faults are introduced and

illustrated. Section 5.6 discusses the construction of the diagnoser and presents some asso-

ciated features that will be advantageously exploited in the sequel. Section 5.7 is devoted

to the reformulation of the necessary and su�cient conditions regarding the `weak' versions

of diagnosability and the development of a systematic method for checking these condi-

tions. Necessary and su�cient conditions regarding the strong versions of diagnosability

of intermittent faults are established in Section 5.8. In section 5.9, a discussion regarding

the related works is provided. Finally, Section 5.11 draws some concluding remarks.

5.1 Introduction

A fault is de�ned to be any deviation of a system from its normal or intended behavior

and fault diagnosis is the task that consists in detecting/identifying the abnormality in

the system behavior and isolating the cause or the source of this abnormality. In the

DESs framework, faults are basically depicted as unobservable/silent, indistinguishable and

uncontrollable event or states, which means that the failure cannot be detected/identi�ed

directly.

Faults can be classi�ed on the basis of their individual behavior into three types [Sharma

et al., 2015, Zaytoon and Lafortune, 2013]:

1. Permanent faults: fault occurs but does not disappear (such that the system

remains in faulty state) until repairing measures are undertaken. Typically a per-

manent fault is caused by subsystem failures, physical damage or design error.

2. Incipient faults (also called gradual or drift-like faults): fault varies gradually

and slowly develops into an enormously large value. Diagnosis of such faults is more

di�cult than the case of permanent faults because they evolve very slowly and their

e�ects can be confused with noise and uncertainty.

3. Intermittent faults: fault occurs and then suddenly disappears and this process

continues to happen in a repeated manner. Therefore, the system switches between

normal and faulty states. Such faults may be activated or deactivated by some

external disturbances [Isermann, 2006].

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis83

From the diagnosis point of view, it is important to distinguish between these fault

types, especially between the permanent and intermittent faults. The intermittent faults

can be spontaneously recovered (by the occurrence of uncontrollable and unobservable re-

set event), therefore the system oscillates between normal and faulty behavior. Permanent

faults, on the other hand, may be associated with recovery events (repair/replacement)

which are controllable and observable, and the system can not spontaneously move from

a fault state to a non-faulty one [Huang, 2003].

In a major part of the literature regarding model-based fault diagnosis (MBD), faults

are typically assumed to be permanent. However, experience with fault diagnosis of real-

life systems shows that intermittent faults are predominant and are among the most

challenging kinds of faults to detect and isolate [Fromherz et al., 2004]. Indeed, according

to [Shen et al., 2016], intermittent faults exist in many systems, including those ranging

from small components to huge complicated equipment. The frequent occurrence of inter-

mittent faults can bring on serious troubles and result in high safety risk and important

maintenance cost. In the late 1960s, Hardie [Ball and Hardie, 1969, Hardie and Suhocki,

1967] indicated that intermittent faults comprised over 30% of pre-delivery failures and

almost 90% of �eld failures in computer systems. Roberts [Roberts, 1989] stated that

between 80 and 90% of system faults are caused by intermittent faults. Banerjee [Baner-

jee and Khilar, 2010] indicated that in wireless sensor networks intermittent faults are

the most frequently occurring. Intermittent faults bring on many maintenance problems,

such as False Alarms (FAs), No Fault Found (NFF), Can Not Duplicate (CND) and so

on [Sorensen et al., 1994]. In 2012, a survey among 80 aerospace organizations ranked

intermittent faults as the highest perceived cause of NFF [Syed et al., 2013]. The NFF

problem has been the highest cost source in aerospace maintenance. For example, the

annual NFF exchange cost of the F-16 avionics boxes due to intermittent faults was over

$ 20,000,000 [Steadman et al., 2005, Steadman et al., 2008].

According to [Correcher et al., 2003, Correcher et al., 2010], intermittent faults can

be modeled using four parameters. These indicators report useful information to the

supervisor regarding preventive maintenance and control recon�guration.

1. Duration (Di): is de�ned as the time during which the fault is active in each one of

its occurrences;

2. Pseudo-period (Ps): is de�ned as the time between two consecutive fault detections.

It does not seem reasonable to talk about period, due to the asynchronous nature

of faults;

3. Persistence (Pr): is de�ned as the inverse of the pseudo-period. It gives an estimate

of the fault frequency;

84Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

4. Number of fault detection (Nf): represents how many times the fault was detected.

Examples of intermittent faults are: electrical contacts, overheating, overloads, arc

faults in the pantograph of a running train [Aydin et al., 2013], some kinds of interrup-

tions and bugs in software systems, etc. In practice, intermittent faults are viewed as a

temporary malfunction of a device that compels the system to switch between faulty and

non-faulty behavior at discrete random intervals. Intermittent faults are characterized by

repetitive occurrences, often with irregular intervals, and separated by reset action that

causes the system to switch back to the normal behavior . Applications in various do-

mains are concerned by intermittent fault diagnosis, such as digital circuit testing [Chang

and McCluskey, 1997], aerospace industry [Salvatore et al., 2003], aircraft systems [Ander-

son and Aylward, 1993], modern industrial and chemical processes [Madden and Nolan,

1999, Yan et al., 2015], transportation systems [Aydin et al., 2013] and machine driven

systems [Ismaeel and Bhatnagar, 1997, Kim, 2009].

Many de�nitions of intermittent faults have been proposed in the literature: Sorensen

in [Sorensen et al., 1994] de�ned intermittent faults as any temporary deviation from

nominal operating conditions of a circuit or device. In [Syed et al., 2013], they are de�ned

as temporary malfunction of a device. Among these de�nitions, the environment induced

disturbance may also be regarded as intermittent faults. Pan [Pan et al., 2012] regarded

intermittent faults as a hardware error which occurs frequently and irregularly for a period

of time. According to IEEE [Prasad, 1990], intermittent faults are de�ned as �failures of

an item for a limited period of time, following which the item recovers its ability to perform

its required function without being subjected to any external corrective action. Moreover,

such failures are often recurrent�. In the DESs community, intermittent faults are de�ned

as faults which often occur intermittently, and can be depicted with fault events followed

by corresponding reset events for these faults, followed by new occurrences of fault events,

and so forth [Contant et al., 2004]. Another de�nition, which is similar to this one, is given

in [Deng et al., 2014]: Intermittent faults are de�ned as failures that can automatically

recover once they have occurred. It may be activated or deactivated by some external

disturbance. Then, if the disturbance ends, the failure will disappear. The work presented

in this Chapter considers these last two de�nitions which can be seen as an abstraction of

intermittent faults description in the DESs framework.

5.2 A Review of Intermittent Fault Diagnosis in DESs

The DES-based fault diagnosis techniques developed to deal with permanent failures are no

longer suitable for the analysis of intermittent faults, since the case of intermittent faults

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis85

shows some subtle con�gurations compared to the case of permanent failures. The same

remark can be made for the various methodologies developed in the �eld of model-based

reasoning in Arti�cial Intelligence, as witnessed in [Contant, 2005]. Consequently, some

further DES-based frameworks have been proposed to handle intermittent faults. The

earlier works in [Aghasaryan et al., 1998, Benveniste et al., 2003], which are developed to

deal with permanent failures, allows considering intermittent faults. Nevertheless, these

works do not propose a systematic framework for their detection and isolation.

One of the pioneering contributions in intermittent fault diagnosis was made in [Jiang

et al., 2003b], where a state-based DES modeling for the so-called �repeated faults� was

introduced. The idea behind this work is that, instead of only diagnosing the fault oc-

currences, the developed technique considers determining the number of times the fault

has occurred. In order to do so, Jiang et al. have introduced three notions of diagnosabil-

ity: K-diagnosability (for determining that a fault has been occurred K times), [1,K]-

diagnosability (for 1 to K faults diagnosability), and [1,∞]-diagnosability (for all fault

occurrences diagnosability). For checking such diagnosability properties, some polynomial

algorithms were provided. Moreover, a polynomial procedure for online diagnosis of such

faults is also presented in this work. Improvement in terms of the polynomial complex-

ity for checking [1,∞]−diagnosability have been proposed in [Yoo and Garcia, 2004, Yoo

and Garcia, 2009, Zhou and Kumar, 2009], where the complexity is of O(|X|5 · [Σ|2) and

O(min(|X|3 · [Σ|2, |X|5)) for respectively nondeterministic and deterministic models in-

stead of O(|X|6 · [Σ|2) and O(|X|4 · [Σ|2) in [Jiang et al., 2003b]. An application of such a

theoretical framework for diagnosing routing events in discrete �ow networks is discussed

in [Garcia and Yoo, 2005]

In [Jiang and Kumar, 2006, Jiang, 2002], the above-mentioned framework (of repeated

faults) has been reformulated in a temporal logic-based approach. Indeed, Linear-time

temporal logic (LTL) formulas were used to express the above-mentioned diagnosability

properties. In these works, notions of prediagnosability and diagnosability for failures,

�rstly introduced for dealing with permanent failures [Jiang and Kumar, 2004], have

been extended to deal with repeated faults. Then, polynomial algorithms for testing

the prediagnosability and diagnosability have been provided.

These works, discussed above, focused on diagnosing how many times a fault has

occurred. However, they do not take into account determining the status of the system

at a given moment (i.e., detecting and identifying which faults are present in the system

and which ones have been reset). Dealing with the diagnosability of intermittent faults

in this sense was �rstly discussed in [Contant, 2005, Contant et al., 2002, Contant et al.,

2004]. In these works, an event-based reasoning on the basis of �nite state automata

(FSA) is adopted, namely, faults and their recovery are considered to be unobservable

86Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

events. The purpose of these works is to determine, at certain points, which faults are

present in the system and which ones have occurred, or have been recovered. These

works can be regarded as an extension of the seminal work on diagnosability analysis of

permanent failures based on the diagnoser approach [Sampath et al., 1995]. The structure

of the diagnoser, in this case, was enriched by new labels to capture the dynamic nature of

intermittent faults in the system model. Four notions of diagnosability have been proposed,

regarding the occurrence/recovery of faults and the identi�cation (determination) of the

faulty/recovered system status within �nite delays.

On the basis of the theoretical framework developed in [Contant et al., 2004], the au-

thors in [Correcher et al., 2003] proposed a methodology to diagnose intermittent faults

in industrial processes. The classic pump/valve process [Sampath et al., 1995] is simu-

lated in Matlab, employing Simulink for modeling the continuous behavior and State�ow

for the DES diagnoser. In [Carvalho et al., 2013], the authors addressed the issue of

diagnosing intermittent sensor faults. In the same spirit as in [Contant et al., 2004], au-

thors have modi�ed the model of intermittent loss of observation to account for sensor

malfunction only. Then, the issue of detecting intermittent sensor faults is transformed

into an issue of diagnosing intermittent faults. Therefore, a similar diagnoser to the one

developed in [Contant et al., 2004] is used to check diagnosability. In the same scope,

robust diagnosability against intermittent sensor faults is discussed in [Carvalho et al.,

2010]. In such a work, the assumption that not only all sensors work properly but also all

information reported by sensors always reaches the diagnoser, is relaxed. That is, some

observed events may not reach the diagnoser, which can be seen as an intermittent loss of

the observation. A necessary and su�cient condition for robust diagnosability is provided

and tested using the diagnoser [Sampath et al., 1995] and the veri�er [Yoo and Lafortune,

2002b] techniques.

An extension of the state-based DES framework [Zad et al., 2003] was proposed

in [Biswas, 2012] to deal with intermittent faults. Two notions of diagnosability were

introduced. One for detecting the occurrence of a fault, and the other for detecting its

recovery. The diagnoser is built in a similar way as in [Zad et al., 2003] with the same

time complexity. Necessary and su�cient conditions for each notion of diagnosability were

developed and an algorithm to verify such conditions was provided.

In [Soldani et al., 2007], intermittent fault diagnosis in an FSA framework was re-

ported. The particularity of such a work is that only the normal behavior of the system

is considered, i.e., a fault-free model). Then, faults are modeled as the occurrence of an

extra event or as the absence of a speci�c event. A diagnoser is then established for each

event type. An extension to Petri net framework was given in [Soldani et al., 2006].

An overall framework regarding the assessment of intermittent fault probabilities, i.e.,

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis87

computing the occurrence probabilities, is developed in [De Kleer et al., 2008, De Kleer,

2009]. The proposed approach aims at developing an e�cient general method, referred

to as the General Diagnostic Engine (GDE), for diagnosing failures due to any number

of simultaneous faults. Moreover, the approach computes both the posterior probabilities

after some observations are made as well as the additional probes needed to e�ciently

isolate the fault in the system devices. In [Deng et al., 2014], a new fault model which

includes both permanent and intermittent faults is presented. Thereafter, an approach is

given to discriminate between the two fault types and diagnoses any current fault in the

system. The authors in [Jéron et al., 2006] have proposed a supervision pattern framework

for dealing with fault diagnosis. In fact, such patterns are �nite state automata that can

describe the occurrence of permanent faults, intermittent faults, the repair of a system

after the occurrence of a fault, as well as quite complex sequences of events. Then, the

problems of diagnosis correctness and bounded diagnosability are discussed.

Recently (and in parallel to our work), Fabre et al. [Fabre et al., 2016] have proposed

an approach to deal with repairable faults. Diagnosability in this work means that the

occurrence of a fault should always be detected in bounded delay, but also before the fault

is repaired. The authors have also showed that checking such a notion of diagnosability is

PSPACE-complete and have proposed an augmented diagnoser (by performing the parallel

composition of the classic diagnoser and the original system model) in order to conduct

the diagnosability veri�cation.

5.3 Overview on the Developed Contribution

Almost all the works pertaining to intermittent fault diagnosis in DESs mentioned above

deal with diagnosability on the basis of structural analysis of the so-called �diagnoser�.

However, we have shown in the previous chapter (Chapter 4) that, besides the fact that

the diagnoser construction shows a high complexity level (exponential) in terms of state-

space, two other main issues related to diagnosability analysis can be outlined:

(i) the approach is based on the analysis of two graphs. The �rst graph is a non-

deterministic observer (called pre-diagnoser, or generator), while the second one is

a deterministic automaton called diagnoser;

(ii) the diagnoser-based approaches use a double-checking procedure, which consists in

one veri�cation step on the diagnoser to check the existence of F -uncertain cycles and

the other one on the generator/pre-diagnoser to check whether the F -uncertain cycle

is an F -indeterminate one or not). In fact, in general this double check procedure

greatly increases the veri�cation time.

88Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

The work presented in this chapter falls in the framework of diagnoser-based ap-

proaches for intermittent fault diagnosis of DESs. It consists in an extension of the ap-

proach discussed in Chapter 4 where a new diagnoser structure is proposed to partially

overcome the above-mentioned limitations of existing diagnoser-based approaches. The

main idea consists in separating the normal, the faulty and the recovered sets of states in

each diagnoser node. Such a structure allows for performing diagnosability analysis upon

the diagnoser, without needing to construct any intermediate model, which improves the

e�ciency in terms of the memory and time consumption.

In what follows, we recall the main features of the proposed approach,

1. Separating the normal, the faulty and the recovered states in each diagnoser node

allows us to separately track the nominal, the faulty and the recovered traces directly

in the diagnoser.

2. In our approach, the diagnoser is directly built from the original system model,

without needing to construct any intermediate model, as usually done in the classic

diagnoser approaches [Sampath et al., 1995, Contant et al., 2004].

3. The approach provides a systematic procedure for checking the necessary and suf-

�cient conditions for diagnosabilily of intermittent faults without returning to any

intermediate model. Besides, when an uncertain cycle is encountered the proce-

dure performs directly on the cycle of the diagnoser. All these aspects allow for

signi�cantly speeding up the veri�cation process.

5.4 Modeling of the System and Intermittent Faults

5.4.1 System Model

In this chapter, we consider that the system to be diagnosed is modeled by an FSA

G = 〈X,Σ, δ, x0〉. We keep the same notations and notions introduced in Section 3.2.

However, we add the following notations regarding intermittent faults:

Let us denote by Σf ⊆ Σu the set of fault events and Σr ⊆ Σu the set of fault reset

events. Faults and their recovery are basically represented using unobservable events.

Moreover, the set of fault events (resp. the set of reset events) can be partitioned into

disjoint fault classes Σf = Σf1

⊎
Σf2

⊎
. . .

⊎
Σfm , where Σfi(i = 1, 2, . . . ,m) denotes one

class of faults (resp. Σr = Σr1

⊎
Σr2

⊎
. . .

⊎
Σrm , where Σri(i = 1, 2, . . . ,m) denotes the

recovering class of faults in Σfi) and Σf ∩ Σr = ∅. In the sequel, we will use ψ(Σfi)

to denote the set of event-traces in L that end with some faulty event in Σfi . That is,

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis89

ψ(Σfi) := {s.σfi ∈ L : σfi ∈ Σfi}. Similarly, we will use ψ(Σri) to denote the set of event-

traces in L that end with some reset event in Σri . That is, ψ(Σri) := {s.σri ∈ L|σri ∈ Σri}.
Finally, we make the following remark:

Remark 1 We assume that the occurrence of a reset event σr without any corresponding

fault event σf having occurred, does not a�ect the system status (i.e., in this case, the

reset event is seen as a normal unobservable event).

Remark 2 It is worth noticing that regarding the projection mapping, the general setting

of the inverse projection P−1
L is not restricted to the event-sequences which end with an

observable event (i.e., ∀ω ∈ Σ∗o, P
−1
L (ω) = {s ∈ L ⊆ Σ∗ : P (s) = ω} ∩ Σ∗Σo), as it

is usually considered in fault diagnosis of permanent faults (for instance, see [Sampath

et al., 1995, Contant et al., 2004]). Therefore, in this chapter, the general setting of

the inverse projection P−1
L is considered, that is, ∀ω ∈ Σ∗o, P

−1
L (ω) = {s ∈ L ⊆ Σ∗ :

P (s) = ω}. In other terms, we consider a -somehow- more general setting since we

require that the diagnosis shall consider also any unobservable continuation following the

last observed event. Hereafter, an example that explains this slight di�erence between these

two de�nitions, is given.

Example 1 Let us consider the part of automaton in Figure 5.1. We are interesting in

the generation of the set of event-sequences sharing the same observation ω = a using the

two de�nitions above.

1. P−1
L (ω) = {s ∈ L ⊆ Σ∗ : P (s) = ω} ∩ Σ∗Σo = {a, ua};

2. P−1
L (ω) = {s ∈ L ⊆ Σ∗ : P (s) = ω} = {a, au, auf, ua, uau}.

1start 2 3 4 5

11 12 13 14

u

a u f b

a u b

Figure 5.1 � Illustration for the inverse projection mapping in Example 1

Remark 3 It is worth noticing that this slight di�erence between the two de�nitions of

the inverse projection operator, does not a�ect the diagnosis verdict when dealing with per-

manent faults, i.e., using both de�nitions, we obtain the same diagnosis verdict. However,

in the case of intermittent faults, the choice of the inverse projection operator can have an

impact on the diagnosis verdict, as it will be discussed at the end of this chapter.

90Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

For the sake of clarity, only one class of fault event Σf and its corresponding class Σr

of reset events are considered here. Extension to multiple fault classes is performed in the

same manner as discussed in 4 (Section 4.5.3).

5.4.2 Intermittent Fault Modeling

In the literature pertaining to the diagnosis of DES, faults are said to be intermittent

when they are non-permanent, in the sense that each fault occurrence is followed by

its corresponding reset event (i.e., normalization) within a �nite delay, which is in turn

followed later on by a new occurrences of fault events, and so forth. Such faults may be

activated or deactivated by some external disturbances.

Regarding the system status after the occurrence of fault events and their reset events,

two modeling formalisms can be distinguished:

5.4.2.1 The Recover formalism

In such a formalism, a distinction is made between the states reached by faulty-free se-

quences and the states reached by sequences where at least one fault has occurred and

reset. Regarding the system status, the occurrence of an intermittent fault occurrence

switches the system from a normal state to a faulty state, and thereafter the system is

switched again to a recovered state within a �nite delay upon the occurrence of the corre-

sponding reset event. Such a recovered state is assumed to be safe. However, it is di�erent

from the normal, i.e., it can somehow be seen as a degraded mode. It should be noticed

that, in such a formalism, the reset events are also called `recover ' events.

Such a modeling manner has been used in [Carvalho et al., 2010, Moreira et al., 2011,

Carvalho et al., 2013] and also in [Contant, 2005, Contant et al., 2004, Contant et al., 2002]

by adding a distinction between the �rst fault occurrence and the subsequent occurrences.

Due to the various types of events and in order to capture these changes in the system

status, we use a supervision pattern Ω = 〈{N,F,R},Σ, δΩ, N〉 [Carvalho et al., 2012, Fabre
et al., 2016] as shown in Figure 5.2, which is a label automaton that transcribes the system

status according to the occurrence of the di�erent event types. Automaton Ω can be seen

as a labeling function, which is usually used in fault diagnosis [Sampath et al., 1995].

In fact, when label automaton Ω is in state N (N stands for the normal status), the

system executes a normal behavior, which indicates that no event from Σf has occurred

yet. However, when a fault event occurs, Ω moves to state F (F stands for the faulty

status) and remains in this state as long as the system executes a faulty behavior. When

the fault is recovered due to the occurrence of a reset event, Ω switches to state R (R

stands for the recovered status), where it stays as long as the system continues to execute

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis91

Nstart F R
Σf

Σ \ Σf

Σr

Σ \ Σr

Σf

Σ \ Σf

Figure 5.2 � The label automaton Ω in the recover modeling

a non-faulty behavior. As we deal with intermittent faults, the system can again execute

a fault event. In this case, the label automaton Ω switches back to state F and so on.

As mentioned in Remark 1, one can notice that a reset event σr ∈ Σr may take place

without any fault event σf ∈ Σf having occurred. This is also taken into account by label

automaton Ω and the system remains in normal status (state N in Ω) in this case.

In order to keep track of the fault occurrences and their corresponding resets along the

system's evolution, we compute automaton G` as the parallel composition of automata G

and Ω (G` = G ‖ Ω). In fact, the parallel composition does not change the language of G,

but performs a state augmentation that keeps track of the �ring of fault and reset events.

That is, the states of G` are the states of automaton G enriched with labels N , F and

R. This technique was generalized in [Jéron et al., 2006] to detect/diagnose some regular

pattern of labels, rather than the simple �ring of fault/reset events.

Example 7 Consider automaton G (taken from [Contant et al., 2004]) and shown in

Figure 5.3 (a) . The sets of observable and unobservable events are Σo = {a, b, c, d} and
Σu = {f, r}, respectively. In addition, Σf = {f} and Σr = {r}. Automaton G` = G ‖ Ω

is depicted in Figure 5.3 (b).

From the monitoring viewpoint, the states of automaton G` can be partitioned into

three subsets: `Normal', `Faulty' and `recovered', which can be identi�ed using fault-

assignment function:

Ψ : X → {N,F,R}.
Now, let us de�ne labeling function `, ` : L(G) ⊆ Σ∗ → {N,F,R} as follows:
Let s ∈ L be an event-sequence, then:

• `(s) = N if (Σf /∈ s)

• `(s) = F if ∃ s′, s′′ : (s = s′s′′) ∧ [s′ ∈ ψ(Σf)] ∧ (Σr /∈ s′′)

• `(s) = R if ∃ s′, s′′ : (s = s′s′′) ∧ (Σf ∈ s′) ∧ [s′ ∈ ψ(Σr)] ∧ (Σf /∈ s′′)

92Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

1start

2

3

49

5

6

7

8

10

11

12

13

14

1,Nstart

2,F

3,F

4,R9,F

5,R

6,F

7,F

8,R

10,R

11,R

12,F

13,N

14,N

(a) Automaton G (b) Automaton G`

fb

a

r

b

b

f

c

r

d

r

c

f

d

a

c

fb

a

r

b

b

f

c

r

d

r

c

f

d

a

c

Figure 5.3 � Example 7

5.4.2.2 The Normalizing formalism

In such a formalism, a fault event switches the system from a normal state to the faulty

one, while its corresponding reset event takes back the system from a faulty state to

a normal one. Therefore, only two types of states exist in the system model, since no

distinction is made between the normal states reached by faulty-free event sequences and

the states reached by event sequences that show a recovered fault, i.e., s = s′s′′ such that

Σf ∈ s′, s′ ∈ ψ(Σr) and Σf /∈ s′′.

In fact, in this modeling formalism, it is assumed that the system returns to its nominal

behavior as soon as the fault recovers. Typical examples of faults for which such a modeling

formalism is appropriate: in the case of circuits, some faults may occur due to high

temperatures but disappear once the circuit is cooled. Also, a valve in a �ow control

system may get stuck closed due to over�ow of a liquid. The system may recover from the

failure after some repeated e�orts by the motor to open the valve which is triggered by the

controller when it detects an abnormal pressure rise (because of the closed valve) [Biswas,

2012].

It should be noticed that, in this modeling formalism, the reset events are called `nor-

malizing ' event and the switch from a faulty state to a normal one is called `normalization'.

Figure 5.4 shows the label automaton ΩN = 〈{N,F},Σ, δΩ, N〉 that illustrates the

normalizing formalism. In fact, when Ω is in state N , the system executes a normal

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis93

Nstart F

Σf

Σ \ Σf

Σr

Σ \ Σr

Figure 5.4 � The label automaton ΩN

behavior, which indicates that no fault event from Σf has occurred yet or that any fault

that has occurred is normalized, due to the occurrence of a reset (normalizing) event.

However, when a fault event occurs, label automaton Ω moves to state F and remains in

that state as long as the system executes a faulty behavior (i.e., no reset event occurs). As

we deal with intermittent faults, the system switches between these two status inde�nitely.

In order to keep tracking of the occurrence of faults and their corresponding resets

along the system's evolution, we compute automaton G′` as the parallel composition of

automata G and ΩN (G′` = G ‖ ΩN). G′` is depicted in Figure 5.5.

1start

2

3

49

5

6

7

8

10

11

12

13

14

1,Nstart

2,F

3,F

4,N9,F

5,N

6,F

7,F

8,N

10,N

11,N

12,F

13,N

14,N

(a) Automaton G (c) Automaton G′`

fb

a

r

b

b

f

c

r

d

r

c

f

d

a

c

fb

a

r

b

b

f

c

r

d

r

c

f

d

a

c

Figure 5.5 � automaton G′` in normalizing modeling

From monitoring point of view, the states of automaton G` can be partitioned into two

subsets: `Normal' and `Faulty', which can be captured using fault-assignment function:

Ψ : X → {N,F}.
Now, let us de�ne labeling function `, ` : L(G) ⊆ Σ∗ → {N,F} as follows:

94Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

Let s ∈ L be an event-sequence, then:

• `(s) = N if : (Σf /∈ s) ∨ ∃ s′, s′′ : (s = s′s′′) ∧ (Σf ∈ s′) ∧ [s′ ∈ ψ(Σr)] ∧ (Σf /∈ s′′)

• `(s) = F if : ∃ s′, s′′ : (s = s′s′′) ∧ [s′ ∈ ψ(Σf)] ∧ (Σr /∈ s′′)

It should be underlined that in the remainder of our thesis the recover formalism is

adopted. However, a discussion regarding the normalizing formalism will be given as

necessary.

5.5 Notions of Diagnosability

5.5.1 Assumptions

Besides the well-known assumptions considered in the diagnosis of permanent faults [Sam-

path et al., 1995], that is language L(G) is live and no cycle of unobservable events exists

in G, the following assumptions are considered:

(A1) Each class of fault events Σf has its corresponding class of reset event Σr. Recall

that both faulty and reset events are unobservable.

(A2) At least one observable event exists between the occurrence of a fault event

σf ∈ Σf and its corresponding reset event σr ∈ Σr and between the occurrence of a reset

event σr ∈ Σr and a new occurrence of fault event σf ∈ Σf .

(A3) Each occurrence of fault event σf ∈ Σf is followed by the occurrence of a

reset event σr ∈ Σr within a �nite delay. Similarly, each occurrence of a reset event

σr ∈ Σr is followed by a new occurrence of a fault event σf ∈ Σf within a �nite delay.

This assumption implies that fault and reset events occur with some regularity (pseudo-

periodicity). These notions are called the Σf − recurrence and Σr − recurrence, as

introduced in [Contant, 2005].

5.5.2 De�nitions of Diagnosability

Intermittent faults are dynamic [Contant, 2005]; that is, they can repeatedly occur and

reset. Thus, the fault status evolves along the system evolution. Consequently, several

notions of diagnosability can be introduced, according to the properties and the speci�-

cations one may need to investigate. For example, one may want to ensure the detection

of any fault occurrence or its corresponding recovery. Another de�nition would require

checking the presence of each fault before its recovery or checking the recovery of a fault

before a new occurrence of this fault. Determining accurately the �nite delays in which

the fault or its recovery can be diagnosed can also be of interest in practice. Obviously,

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis95

the choice between these considerations greatly depends on the application nature of the

system and the objectives assigned to the diagnosis activity.

In this section, we discuss and adapt various de�nitions of diagnosability to our mod-

eling formalism. The �rst two notions of diagnosability deal with the detection of fault

occurrences and that of their recovery [Contant, 2005] without necessarily identifying at

any moment whether or not the current status of the system (fault is present or not) is

precisely known. We call these de�nitions the weak diagnosability properties. Then, we

discuss some restrictive versions of these de�nitions, for the purpose of assessing the ability

to identify with certainty the status of the system after the occurrence of an intermittent

fault or its recovery. These last two properties are called strong diagnosability. These

properties are �rstly introduced in [Contant, 2005] with slight di�erences.

Dé�nition 18 (WF -diagnosability)

An FSA G is said to be WF -diagnosable w.r.t. projection P , fault class Σf and its

corresponding reset event class Σr, if the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σf)] (∀t ∈ L/s) [‖ t ‖≥ n⇒ DWF]

where diagnosability condition DWF is:

ω ∈ [P−1
L (P (s.t))]⇒ (Σf ∈ ω)

�

WF -diagnosability, where `W ' stands for `weak' and `F ' for `fault occurrence', has the

following meaning: for any event-trace s ending with a fault event in Σf , and t any

continuation of s, then, n ∈ N exists such that, after the occurrence of at most n events,

it is possible to detect that a fault has occurred based on the captured observation. This

implies that all the event-traces that are indistinguishable from s.t contain at least one fault

from Σf . It is worth noticing here that there is no constraint regarding the system status

at the time when the fault occurrence can be detected. Phrased di�erently, according to

the above de�nition, it is possible that the system has left the faulty status when the fault

occurrence is diagnosed.

As we deal with intermittent faults, each fault occurrence is followed later by its corre-

sponding reset event (recover). Therefore, it is also interesting to discuss the diagnosability

of the recovery occurrence. Namely, this consists in checking whether we can detect within

a �nite delay that the system has moved to its recovered behavior after the fault has been

recovered. In what follows, we introduce WR-diagnosability which represents the dual

notion of WF -diagnosability.

96Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

Dé�nition 19 (WR-diagnosability)

An FSA G is said to be WR-diagnosable w.r.t. projection P , fault class Σf and its

corresponding reset event class Σr, if the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σr)] (∀t ∈ L/s) [‖ t ‖≥ n⇒ DWR]

where diagnosability condition DWR is:

ω ∈ [P−1
L (P (s.t))]⇒ (Σr ∈ ω)

�

Where `R' stands for reset event occurrences, WR-diagnosability has the following

meaning: there exists n ∈ N, such that for any event-trace s ending with a reset event in

Σr (which means that at least one fault has occurred and recovered) and t any continuation

of s which is arbitrarily long, then, after at most n events it is possible to detect the fault

recovery based on the captured observation. This implies that all the event-traces that

are indistinguishable from s.t have experienced a fault occurrence and its recovery. In the

same way as for WF -diagnosability, there is no constraint regarding the system status

when the recovery is diagnosed.

Example 8 Let us take automaton G in Example 7 (Figure 5.3). G shows one type

of faults (event f) with its corresponding reset class (event r). Consider execution ρ =

1, f, 2, a, 3, r, 4, b (5, f, 6, c, 7, r, 8, d)∗. Let the in�nite event-trace, corresponding to this

execution, be noted s.t with, s = (f, a, r, b, f) (one can see that s ∈ ψ(Σf)), and t =

(c, r, d, f)∗. The resulting observed event-trace is then P (s.t) = (a, b, (c, d)∗). The only

event-trace in G which shares the same observable event-trace with ρ is ω = (f, a, b, (r, c, f, d)∗).

One can see that once 3 events after executing the faulty event-trace s (2 observable events)

have occurred, it becomes possible to infer accurately the occurrence of fault f (since f oc-

curs in all the event-traces which share the same observation with s.t). Thus, according

to De�nition 18, G is WF -diagnosable (n ≥ 3). The same reasoning can be done to show

that G is also WR-diagnosable.

As mentioned earlier in the chapter, the above de�nitions serve only to detect the

occurrence of the fault (or its recovery) without any guarantee regarding the determination

of the system status at any moment. Throughout this thesis, the above de�nitions are

referred to as the weak diagnosability.

In what follows, we introduce strong versions of the above notions, in order to consider

the identi�cation of the system status.

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis97

Dé�nition 20 (SF -diagnosability)

An FSA G is said to be SF -diagnosable w.r.t. projection P , fault class Σf and corre-

sponding reset event class Σr, if the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σf)] (∀t ∈ L/s) [‖ t ‖≥ n⇒ DSF]

where diagnosability condition DSF is:

∃ t′ ≤ t : ∀ ω ∈ [P−1
L (P (s.t′))]⇒ `(ω) = F

�

In SF -diagnosability, `S' stands for `strong ' and `F ' for `fault occurrence'.

SF -diagnosability states that for any event-trace s ending with a fault event in Σf , and t

any continuation of s, it is possible to detect the occurrence of the fault and to determine,

with certainty, the faulty status of the system upon the occurrence of at most n events

following the fault event. This implies that all the event-traces that are indistinguishable

from s.t lead the system to faulty states at the same observation point, within a �nite

delay after the occurrence of the fault.

Hereafter, SR-diagnosability, which represents the dual notion of SF -diagnosability,

is stated.

Dé�nition 21 (SR-diagnosability)

An FSA G is said to be SR-diagnosable w.r.t. projection P , fault class Σf and corre-

sponding reset event class Σr, if the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σr)] (∀t ∈ L/s) [‖ t ‖≥ n⇒ DSR]

where diagnosability condition DSR is:

∃ t′ ≤ t : ∀ ω ∈ [P−1
L (P (s.t′))]⇒ `(ω) = R

�

It means that for any event-sequence s ending with a reset event in Σr, and t any

continuation of s, it is possible, based on the captured observations, to detect the reset

of the fault and to determine, with certainty, the recovered status of the system. This

implies that all the event-sequences that are indistinguishable from s.t lead to recovered

states from reset fault class F at the same observable point, within a �nite delay after the

fault recovery.

98Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

Example 9 Let us take again automaton G (cf. Figure 5.3), execution ρ = 1, f, 2, a, 3, r, 4,

b(5,f, 6, c, 7, r, 8, d)∗. There exists, in automaton G, one event-sequence ω = f, a, b, (r, c, f, d)∗

which shares the same observed event-sequence with ρ, i.e., P (ω) = P (ρ) = a, b, (c, d)∗.

However, according to De�nition 20, there is no bound n such that, after this limit, both

event-sequences ρ and ω lead to faulty states at the same time, which means that it is not

possible to identify accurately the faulty status of the system. Therefore, G is non-SF -

diagnosable. The same reasoning can be applied to show that G is non-SR-diagnosable.

It should be noticed that (SF , SR)-diagnosability are stronger notions compared to

(WF , WR)-diagnosability. Indeed, SF -(resp. SR)-diagnosability requires the detection

of any fault (resp. any recovery) and the certain determination of the system status (faulty

or recovered). However, WF -(resp. WR)-diagnosability only requires the detection of the

fault (resp. its recovery) within a �nite delay. Therefore, it is straightforward to infer the

following,

Proposition 5 [Contant et al., 2004]

• SF -diagnosability ⇒ WF -diagnosability

• SR-diagnosability ⇒ WR-diagnosability

5.5.2.1 Relationship Between Properties

Earlier in this chapter, it was assumed that the models under investigation satisfy the

Σf − recurrence and Σr − recurrence (See assumption (A3)). That is, the fault and

reset events occur with some regularity along any possible event sequence in the system

behavior. Such an assumption ensures the following properties [Contant et al., 2004]:

Property 3 Let x1, x2, . . . , xn be a state-trace associated with event-sequence s = σ1, σ2, . . .

,σn and that forms a cycle in G, i.e., x(i+1)modn
= δ(xi, σi) for 1 ≤ i ≤ n. Then, fault

event σf ∈ s if and only if its corresponding reset event σr ∈ s.

This property means that each cycle that contains an event fault σf , contains also its

corresponding reset event σr.

Corollary 3 Let us consider a system model G that satis�es assumptions (A1), (A2) and

(A3). Then, G is WF -diagnosable if and only if it is WR-diagnosable. �

Proof. A formal proof of this corollary will be given in Chapter 8 (see Section 8.2.2).

As WF -diagnosability is equivalent to WR-diagnosability (under assumptions (A1),

(A2), and (A3)), the necessary and su�cient conditions will be discussed only regarding

WF -diagnosability in the sequel.

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis99

Remark 3 It is worth noticing that, unlike the weak diagnosability, there is no equiv-

alence between the strong version of diagnosability. Therefore, a system model may be

SF -diagnosable while it is non-SR-diagnosable, or conversely.

The following Example illustrates this remark,

Example 10 Consider automaton G1, shown in Figure 5.6. The sets of observable and

unobservable events are Σo = {a, b, c, d, e} and Σu = {f, r}, respectively. In addition,

Σf = {f} and Σr = {r}. Executions π1 = 1, a, 2, f, 3, b, (4, c, 5, r, 6, d, 7, f, 8, e)∗ and

π2 = 1, f, 11, a, 12, r, 13, b, (14, f , 15, c, 16, d, 17, r, 18, e)∗ share the same observation ω =

ab(cde)∗. one can observe that both executions reach faulty states (respectively, state 5

and state 16) after executing observable sequence `abc', and then periodically upon any

observable sequence abc(dec)∗. Therefore, model G1 is SF -diagnosable. However, π1 and

π2 never reach recovered states at the same time upon the execution of a same observable

sequence. Therefore, model G1 is non-SR-diagnosable.

1start 2 3 4 5 6 7 8

11 12 13 14 15 16 17 18

f

a f b c r d f

e

a r b f c d r

e

Figure 5.6 � A system model which is SF -diagnosable and non-SR-diagnosable

5.6 Construction of the Diagnoser

In this section, we extend the diagnoser-based approach proposed in the previous chap-

ter, in order to deal with intermittent faults. In what follow, we discuss the diagnoser

construction, while considering the recover formalism for modeling intermittent faults

5.6.1 The Structure of the Diagnoser Node

In our proposed diagnoser, the nodes are equivalent to the states in the classic diag-

nosers [Sampath et al., 1995, Contant et al., 2004, Zad et al., 2003, Cabasino et al.,

2009a], except that an explicit distinction is made, within each node, between the normal

100Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

states (denoted by set XN), the faulty states (denoted by set XF), and the recovered states

(denoted by set XR). Moreover, we indicate if there exists some (faulty) transitions from

XN or XR to XF and similarly, if there exists some reset transitions from XF to XR.

Figure 5.7 depicts the general form of a diagnoser node. In particular, three subsets

of states can be discussed; XN is the set of normal states and XF the set of faulty ones,

while XR is the set of recovered states. Some faulty states may be reached from normal

(resp. recovered states) in the same node through the occurrence (resp. reoccurrence) of

faulty events. This is depicted by a faulty transition from XN or XR to XF within the

diagnoser node. Similarly, some recovered states may be reached from faulty states in the

same node through the occurrence of reset events.

In Figure 5.7, the dashed arrows entering in and outgoing from each node show the

di�erent possibilities an entering/outgoing observable transition may correspond to. For

instance, observable event σ2 output by diagnoser node a may be output from the normal,

the faulty, or the recovered set. That is, σ2 is generated from at least one of these three

sets. Note that these transition (entering/outgoing dashed arrows) are depicted here for

the sake of explanation but are not actually encoded in the diagnoser. Moreover, some

faulty transitions f may or may not exist between XN (or XR) and XF . Similarly, some

reset transitions r may or may not exist between XF and XR. This is depicted by the

dotted arrows (inside the diagnoser node) linking XN , XF and XR within the same node.

It is worth noticing that the existing of such transitions between the same node subsets is

actually encoded in the diagnoser structure using boolean variables that are set to True

when such transitions exist, and to False if not.

These information will be useful while investigating diagnosability. In order to simplify

the notation, we use a.XN (resp. a.XF , a.XR) to indicate the set of normal states XN
(resp. the faulty states XF and the recovered states a.XR) corresponding to diagnoser

node a.

Figure 5.7 � The diagnoser node structure

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis101

5.6.2 The Diagnoser Construction

For a given FSA G, the diagnoser can be de�ned as follows.

Dé�nition 22 (Diagnoser)

Let G = 〈X,Σ, δ, x0〉 be an FSA to be diagnosed. The diagnoser associated with G is a

deterministic FSA D = 〈Γ,Σo, δD,Γ0〉, where:

1. Γ is a �nite set of diagnoser nodes;

2. Γ0 is the initial diagnoser node with:

a) Γ0.XN = ReachΣu\Σf (x0);

b) Γ0.XF = ReachΣu\Σr(Img(Γ0.XN ,Σf)).

b) Γ0.XR = ReachΣu\Σf (Img(Γ0.XF ,Σr)).

3. δD : Γ× Σo → Γ is the transition relation, de�ned as follows:

∀a, a′ ∈ Γ, σ ∈ Σo: a
′ = δD(a, σ)

⇔


a′.XN = ReachΣu\Σf (Img(a.XN , σ))

a′.XF = ReachΣu\Σr(Img(a.XF , σ) ∪ Img(a′.XN ,Σf) ∪ Img(a′.XR,Σf))

a′.XR = ReachΣu\Σf (Img(a.XR, σ) ∪ Img(a′.XF ,Σr))

(5.1)

�

It should be noticed that one may think that a con�ict arises when constructing a′.XF
and a′.XR. However, this is only a �ctitious one. More precisely a′.XF and a′.XR can be

actually constructed as follows:

Let QF = Img(a.XF , σ)∪ Img(a′.XN ,Σf) and QR = Img(a.XR, σ). Hence, according

to assumption (A2):

{
a′.XF = ReachΣu\Σr(QF ∪ Img(ReachΣu\Σf (QR),Σf))

a′.XR = ReachΣu\Σf (QF ∪ Img(ReachΣu\Σr(QF),Σr))
(5.2)

Property 4 (Equivalence between nodes)

Two diagnoser nodes a and a′ in D are equivalent if a.XN = a′.XN , a.XF = a′.XFanda.XR =

a′.XR

102Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

5.6.3 The Various Types of Nodes in the Diagnoser

According to the diagnoser construction, one can di�erentiate between various types of

nodes int the diagnoser variant, in the same way as in the classic diagnoser:

• N-node: is a diagnoser node of which the sets of faulty and recovered states are

empty (XF = XR = ∅);

• F-node: is a diagnoser node of which the sets of normal and recovered states are

empty (XN = XR = ∅);

• R-node: is a diagnoser node of which the sets of normal and faulty states are empty

(XN = XF = ∅);

• NF-node: is a diagnoser node of which the sets of recovered states is empty, while

XN and XF are not;

• NR-node: is a diagnoser node of which the sets of faulty states is empty (XF = ∅),
while XN and XR are not;

• FR-node: is a diagnoser node of which the sets of normal states is empty (XN = ∅),
while XF and XR are not;

• NFR-node: is a diagnoser node where XN 6= ∅, XF 6= ∅ and XR 6= ∅.

Besides the above mentioned types, we introduce the following types that will be used

to state the necessary and su�cient condition for diagnosability in the sequel.

• N-uncertain node, if it is an NF-(or NFR- or NR-)node;

• F-uncertain node, if it is an NF-(or NFR- or FR-)node;

• R-uncertain node, if it is an NR-(or NFR- or FR-)node;

• non-N-certain node, if it is not N-node;

• non-F-certain node, if it is not F-node;

• non-R-certain node, if it is not R-node;

It is worth noticing that a non-N-certain (resp. non-F-certain, non-R-certain) node is not

necessarily an N-uncertain (resp. F-uncertain, R-uncertain).

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis103

5.6.3.1 Intermittent Fault Propagation in the Diagnoser

The diagnoser construction preserves a speci�c fault propagation scheme regarding the fact

that faults are intermittent and based on the assumptions (A1), (A2) and (A3). These

propagation rules are depicted in Figure 5.8, and outlined below.

• From an N-node, either an N-node or an NF-node can be reached;

• From an F-node, either an F-node or an FR-node can be reached;

• From an R-node, an R-node or an FR-node can be reached;

• From an NF-node, an NF-node, an N-node, an F-node, an FR-node or NFR-node

can be reached;

• From an NR-node, an NR-node, an N-node, an R-node, an FR-node or NFR-node

can be reached;

• From an FR-node, an FR-node, an F-node, an FR-node or NFR-node can be reached;

• From NFR-node, all the node types can be reached.

It should be noticed that the dashed self loop on a node type (e.g. NF-node) means

that the system cannot remains inde�nitely in the same node type (by (A2) and (A3)).

on the contrary, the system may remain in the same type of nodes where self loops are

depicted in continued lines (e.g. NFR-node).

Figure 5.8 � Intermittent fault propagation in the diagnoser

Example 2 The diagnoser D corresponding to FSA G (c.f., Figure 7) is shown in Fig-

ure 5.9. The initial node (a0) is composed of initial state 1 and state 2 reachable from state

104Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

1 by the occurrence of faulty event f . Thus, a0.XN = {1}, a0.XF = {2} and a0.XR = ∅,
which means that node a0 is an NF-node. One can observe that event a is only enabled

from the faulty set of node (a0). Therefore, node a1 reached from a0 through event a con-

tains an empty set of normal states, i.e. a1.XN = ∅. Moreover, a1.XF = {3} and, since
state 4 is reachable from state 3 through the occurrence of a reset event r and no unob-

servable event is enabled from state 4, then a1.XR = {4}. Hence, node a1 is an FR-node.

The rest of nodes are constructed according to the fault propagation scheme in Figure 5.8.

Finally, one can observe that two cycles exist in D: (1) a cycle composed of FR-nodes a2

and a3 and (2) a cycle composed of N-node a5.

Figure 5.9 � The diagnoser of system model G (of Example 7)

5.7 Analysis of WF -Diagnosability

This section is dedicated to the analysis of WF -diagnosability (and WR-diagnosability

according to Corollary 3) by adapting the necessary and su�cient conditions, introduced

by Contant et al. [Contant et al., 2004], to our intermittent fault modeling (i.e., the recover

modeling formalism). Then, we establish a systematic method for checking such a condi-

tion on the basis of our diagnoser variant. In fact, the developed method is an extension

of the systematic procedure developed in Chapter 4 for the analysis of diagnosability of

permanent faults.

5.7.1 Necessary and Su�cient Condition for WF -diagnosability

In order to state the necessary and su�cient condition for WF -diagnosability, we �rst

introduce the notions of WF -uncertain and WF -indeterminate cycle. In fact, the notion

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis105

of WF -indeterminate cycle is introduced in [Contant et al., 2004] as FOi -indeterminate

cycle (with a slight di�erence regarding the modeling of intermittent faults).

Dé�nition 23 (WF -uncertain cycle)

A cycle c` = a1, a2, . . . , an in D, with δD(ai, σi) = a(i+1)modn, σi ∈ Σo for 1 ≤ i ≤ n,

is said to be WN -uncertain cycle if all nodes in c` are N-uncertain ones.

Dé�nition 24 (WF -indeterminate cycle)

Let c` = a1, a2, . . . , an be a WF -uncertain cycle in D, with δD(ai, σi) = a(i+1)modn,

σi ∈ Σo for 1 ≤ i ≤ n.
c` is said to be a WF -indeterminate cycle if ∃m,m′ ∈ N∗ such that the following

condition holds:

(C1) Considering nodes a1, a2, . . . , an ∈ D, ∃ xki , yk
′
i ∈ ai, i = 1, . . . , n, and k =

1, . . . ,m and k′ = 1, . . . ,m′, with xki ∈ ai.XF for some i and k and:

δ(xki , s
k
i σi) = xk(i+1), for i = 1, . . . , n− 1, k = 1, . . . ,m

δ(yk
′
i , t

k′
i σi) = yk

′

(i+1), for i = 1, . . . , n− 1, k′ = 1, . . . ,m′

δ(xkn, s
m
n σn) = x

(k+1)
1 , for k = 1, . . . ,m− 1

δ(yk
′
n , t

m′
n σn) = y

(k′+1)
1 , for k′ = 1, . . . ,m′ − 1

δ(xmn , s
m
n σn) = x1

1

δ(ym
′

n , tm
′

n σn) = y1
1

with ski ∈ Σ∗u ∀1 ≤ i ≤ n and 1 ≤ k ≤ m and ∃1 ≤ i1 ≤ n, ∃k1 ≤ m s.t. Σf ∈ sk1
i1
.

tk
′
i ∈ (Σu\Σf)∗ ∀1 ≤ i ≤ n and 1leqk′ ≤ m′

In other words, condition (C1) indicates that two cycles c`1G and c`2G exist in G such

that:

• the event-sequence associated with c`1G contains (at least) one fault event from Σf

and generates an observable sequence (σ1, σ2, . . . , σn)m with m ∈ N∗;

• the event-sequence associated with c`2G is fault-free and generates an observable

sequence (σ1, σ2, . . . , σn)m
′
with m′ ∈ N∗.

Here, m (resp. m′) denote the number of times cycle c` in D is completed before cycle

c`1G (resp. c`2G) in G is completed. That is, nm (resp. nm′) is the length of c`1G (resp.

c`2G) in terms of number of states, i.e. |c`1G| = nm (resp. |c`2G| = nm′) (the readers can

refers to [Sampath et al., 1995] for more details regarding this point).

Hereafter, we recall the necessary and su�cient condition for a system model G to be

WF -diagnosable as stated in [Contant et al., 2004].

106Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

Theorem 5 (Necessary & su�cient condition for WF -diagnosability [Contant et al.,

2004])

A system model G is WF -diagnosable w.r.t projection P , class of fault events Σf and its

corresponding class of reset events Σr, if and only if no WF -indeterminate cycle exists in

its corresponding diagnoser D. �

5.7.2 Veri�cation of WF -Diagnosability

In what follows, we �rst reformulate the necessary and su�cient condition for WF -

diagnosability on the basis of the new diagnoser variant. Then, we propose a systematic

method for the actual veri�cation, without needing to construct any intermediate model.

Proposition 6 Let c` = a1, a2, . . . , an be a WF -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn for 1 ≤ i ≤ n. Then, there exists, at least, one fault-free cycle in G, which

shares the same observation (σ1, σ2, . . . , σn)∗. �

Proof. The proof of Proposition 6 is omitted as it is similar to that of Proposition 1

in Chapter 4.

This result is interesting for checkingWF -indeterminate cycles. It is, in fact, su�cient

to check that a cycle c`G exists in model G such that it shares the same observation with

WF -uncertain cycle c` in the diagnoser, and has experienced at least one fault occurrence.

In order terms, one does not need to check the existence of a corresponding faulty-free

cycle.

In order to check the existence of WF -indeterminate cycles in D, we introduce the

notion of c`WF -indicating sequence associated to WF -uncertain cycle c`.

Dé�nition 25 (c`WF -indicating sequence)

Let c` = a1, a2, . . . , an be aWF -uncertain cycle in D, with δD(ai, σi) = a(i+1)modn ∀1 ≤
i ≤ n. Also, let us chose the �rst node a1 in c` in such a way as to ful�ll: ai.XF∪ai.XR 6= ∅.
Since c` is a WF -uncertain cycle, such a node necessarily exists in c`.

c`WF -indicating sequence ρ
c` = S1,S2, . . . , associated with c` is an in�nite sequence of

sets of states, such that:

− S1 = a1.XF ∪ a1.XR;
− Sj = ReachΣu(Img(Sj−1, σ(j−1)modn

)) for j > 1.

�

In fact, the c`WF -indicating sequence tracks the subsets of faulty and recovered states

in each node of c` without considering the faulty states generated through the occurrence

of some faulty transitions outgoing from the normal set of states in the traversed nodes

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis107

(except for S1 which holds all the faulty and recovered states of a1). Actually, the c`WF -

indicating sequence is introduced with the aim of tracking the existence of cycles in G that

share the same observation with some corresponding WF -uncertain cycle c`, and which

have experienced at least one fault occurrence.

Dé�nition 26 (Series Sc`)
Let c` = a1, a2, . . . , an be a WF -uncertain cycle in D, with δD(ai, σi) = a(i+1)modn, for

1 ≤ i ≤ n. ρc` = S1,S2, . . . is the c`WF -indicating sequence. Series Sc` = S1,S2, S3, . . .

corresponding to ρc`, is de�ned as follows:{
Sc` : N∗ → 2X

Si = S(1+(i−1)n),∀i ∈ N∗.
(5.3)

�

It is worth noticing that Sc` can also be written as follows: Sc` = S1,S(1+n), . . . ,S(1+kn),

S(1+(k+1)n), . . . , for k ∈ N. In other terms, series Sc` is extracted from c`WF -indicating

sequence ρc` by considering sample elements with n steps (n is the number of nodes in

the WF -uncertain cycle).

Proposition 7 Let c` = a1, a2, . . . , an be a WF -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn (σi ∈ Σo), for 1 ≤ i ≤ n. Let ρc` = S1,S2, . . . be the c`WF -indicating sequence

and Sc` = S1, S2, S3, . . . be the corresponding series as de�ned above. Then, the following

property holds true:

∀k ∈ N∗ : Sk+1 ⊆ Sk

i.e., ∀k ∈ N∗ : S1+nk ⊆ S1+n(k−1) �

Proof. The proof of Proposition 7 is omitted as it is similar to that of Proposition 3

in Chapter 4.

The above-mentioned property means that, by ignoring the faulty states generated by

the faulty transitions from the normal sets of states into the faulty ones within the same

node, one can ensure the (non-strict) inclusion relationship between terms S1+ni∀i ∈ N.

Proposition 8 Let c` = a1, a2, . . . , an be a WF -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn (σi ∈ Σo), for 1 ≤ i ≤ n. Let ρc` = S1,S2, . . . be the c`WF -indicating sequence

and Sc` = S1,S2, S3, . . . be its corresponding series. Then, Sc` reaches a �xed-point.

i.e., ∃ k ∈ N∗ s.t. ∀i ∈ N : Sk+i = Sk, which means that S(1+(k+i−1)n) = S(1+(k−1)n). �

Proof. The proof of Proposition 8 is omitted as it is similar to that of Proposition 4

in Chapter 4.

108Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

Proposition 8, establishes the fact that there exists an index i from which c`WF -

indicating sequence ρc` shows a repetitive bloc of length n [S1+kn,S2+kn, . . . ,Sn−1+knS(k+1)n]

with S(1+(k+1)n = S1+kn. Phrased di�erently, if we take i = k + 1 then ρc` necessarily

takes one of the following two forms:

1. A prime sequence: a non-cyclic elementary sequence (possibly empty) S1,S2, . . . ,Si−1,

connected to an elementary cycle (S(i+1),S(i+2), . . . ,S(i−1+n),S(i+n))
∗, with S(i+1+n) = Si;

2. A �nite sequence of non-empty elements S1, S2, . . . ,Sj (for j ∈ N∗) followed by

an in�nite number of empty elements, i.e., S(j+k) = ∅, ∀k ∈ N∗;
In fact, the �rst case, i.e., a prime sequence, reveals the presence of at least one

actual cycle in the system model, which has experienced at least one fault occurrence

and corresponds to the WF -uncertain cycle c`. This is depicted in the c`WF -indicating

sequence by the presence of the elementary cycle. In contrast, in the second case, the

WF -uncertain cycle in the diagnoser does not correspond to an actual faulty cycle in

the system model. In what follows, these features will be used to determine whether an

WF -uncertain cycle is an WF -indeterminate one or not.

Theorem 6 For an WF -uncertain cycle c` = a1, a2, . . . , an in D, with δD(ai, σi) =

a(i+1)modn ∀1 ≤ i ≤ n. ρc` = S1,S2, . . . is the c`WF -indicating sequence associated with c`

and Sc` = S1, S2,S3, . . . is its corresponding series. Therefore, c` is a WF -indeterminate

cycle if and only if the �xed-point reached by series Sc` is non-empty. �

In other terms, it means that ∀i ∈ N∗ : Si 6= ∅.
Actually, this theorem states that a WF -uncertain cycle is a WF -indeterminate one

if and only if the c`WF -indicating sequence does not reach an empty �xed-point. In other

words, it takes the form of a prime sequence.

Proof.

The proof of Theorem 6 is omitted as it is similar to that of Theorem 4 in Chapter 4.

5.7.3 A Procedure for Checking WF -diagnosability

It is worth noticing that for the actual veri�cation of WF -diagnosability, a systematic

procedure, derived directly from Theorem 6, can be performed as follows:

When a WF -uncertain cycle c` is encountered in diagnoser D, one has to proceed as

follows:

Generate the successive elements of c`WF -indicating sequence ρc` (starting from S1),

and for each element Si check the following conditions:

1. if Si = ∅: cycle c` is not a WF -indeterminate cycle and therefore the procedure is

stopped;

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis109

2. else: if ∃k ∈ N : i = 1 + kn (with n = |c`|), then:

(a) if Si = S(i−n) 6= ∅, c` is an WF -indeterminate cycle and the procedure is

stopped;

(b) otherwise continue.

This procedure is repeated on each WF -uncertain cycle generated in D.
It is worth underlining that, according to the Corollary 3 (i.e., equivalence between

WF -diagnosability and WR-diagnosability), the same procedure can be used for checking

WR-diagnosability.

5.8 Analysis of SF -Diagnosability

In this section, we �rst reformulate the necessary and su�cient condition for SF -diagnosability

on the basis of our diagnoser structure (by adapting the necessary and su�cient condi-

tions, introduced by Contant et al. [Contant et al., 2004], to our diagnoser variant). Then,

in the same manner as in the section above, we discuss the actual veri�cation of SF -

diagnosability, without needing to construct any intermediate model.

5.8.1 Necessary and Su�cient Condition for SF -diagnosability

Firstly, according to Proposition 5, it is easy to infer that the necessary and su�cient

condition for WF -diagnosability represents a necessary condition for SF -diagnosability.

That is, the presence of an WF -indeterminate cycle in diagnoser D implies the non-WF -

diagnosability and, therefore the non-SF -diagnosability of the system model. However, it

is only a necessary condition, which means that the absence of WF -indeterminate cycle

does not imply the SF -diagnosability, as witnessed by Example 7.

In order to state the necessary and su�cient condition for SF -diagnosability, we �rst

introduce the notions of SF -uncertain cycle and SF -indeterminate cycle (which is pre-

sented in [Contant et al., 2004] as FPi -indeterminate cycle).

Dé�nition 27 (SF -uncertain cycle)

A cycle c` = a1, a2, . . . , an in D, with δD(ai, σi) = a(i+1)modn, σi ∈ Σo, for 1 ≤ i ≤ n,

is said to be SF -uncertain if all nodes in c` are non-F-certain and at least one node is an

F-uncertain one. �

Dé�nition 28 (SF -indeterminate cycle)

Let c` = a1, a2, . . . , an be an SF -uncertain cycle in D, with δD(ai, σi) = a(i+1)modn,

σi ∈ Σo, for 1 ≤ i ≤ n.

110Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

c` is said to be an SF -indeterminate cycle if the following condition holds:

(C2) Considering nodes a1, a2, . . . , an ∈ D, ∃ xki ∈ ai, i = 1, . . . , n and k = 1, . . . ,m,

with xki ∈ ai.XF for some i and k and:

δ(xki , s
k
i σi) = xk(i+1), for i = 1, . . . , n− 1, k = 1, . . . ,m

δ(xkn, s
k
nσn) = x

(k+1)
1 , for k = 1, . . . ,m− 1

δ(xmn , s
m
n σn) = x1

1.

with si ∈ Σ∗u and for some i, ∃σf ∈ Σf s.t. σf ∈ si.
�

In other words, condition (C2) indicates that a cycle c`G exists in G such that the

event-trace associated with it contains (at least) one fault event (σf ∈ Σf) and depicts

the same observable sequence (σ1, σ2, . . . , σn)m with m ∈ N.
Hereafter, we recall the necessary and su�cient condition for a model G to be SF -

diagnosable.

Theorem 7 (Necessary & su�cient condition for SF -diagnosability)

A system model G is SF -diagnosable, w.r.t projection P , class of fault events Σf and

its corresponding class of reset events Σr, if and only if no SF -indeterminate cycle exists

in its corresponding diagnoser D.

5.8.2 Veri�cation of SF -Diagnosability

In fact, checking the existence of an SF -indeterminate cycle can be performed in the

same way as for WF -diagnosability, i.e., by generating an indicating sequence (which is

associated with the SF -uncertain cycle this time) and then checking if all the element of

the indicating sequence are non-empty. Hereafter, we recall the main results.

Dé�nition 29 (c`SF -indicating sequence)

Let c` = a1, a2, . . . , an be an SF -uncertain cycle in D, with δD(ai, σi) = a(i+1)modn

(σi ∈ Σo), for 1 ≤ i ≤ n. Also, let us chose the �rst node a1 in c` in such a way as to

ful�ll: ai.XF ∪ ai.XR 6= ∅.
c`SF -indicating sequence ρ

c` = S1,S2, . . . , associated with c` is an in�nite sequence of

sets of states, such that:

− S1 = a1.XF ∪ a1.XR;
− Sj = ReachΣu(Img(Sj−1, σ(j−1)modn

)), for j > 1.

�

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis111

Dé�nition 30 (Series Sc`)
Let c` = a1, a2, . . . , an be an SF -uncertain cycle in D, with δD(ai, σi) = a(i+1)modn,

for 1 ≤ i ≤ n. ρc` = S1,S2, . . . is the c`SF -indicating sequence. Series Sc` = S1,S2, S3, . . .

corresponding to ρc`, is de�ned as follows:{
Sc` : N∗ → 2X

Si = S(1+(i−1)n),∀i ∈ N∗.
(5.4)

�

Proposition 9 Let c` = a1, a2, . . . , an be an SF -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn (σi ∈ Σo), for 1 ≤ i ≤ n. Let ρc` = S1,S2, . . . be the c`SF -indicating sequence

and Sc` = S1,S2, S3, . . . be its corresponding series. Then, Sc` reaches a �xed-point.

i.e., ∃ k ∈ N∗ s.t. ∀i ∈ N : Sk+i = Sk, which means that S(1+(k+i−1)n) = S(1+(k−1)n).

�

Proof. The proof of Proposition 9 is omitted as it is similar to that of Proposition 4

in Chapter 4.

Theorem 8 For an SF -uncertain cycle c` = a1, a2, . . . , an in D, with δD(ai, σi) = a(i+1)modn

(σi ∈ Σo), for 1 ≤ i ≤ n. ρc` = S1,S2, . . . is the c`SF -indicating sequence associated with

c` and Sc` = S1,S2, S3, . . . be its corresponding series. Then, c` is an SF -indeterminate

cycle if and only if the �xed-point reached by series Sc` is non-empty. �

In other terms, this means that ∀i ∈ N∗ : Si 6= ∅.
Proof. The proof of Theorem 8 is omitted as it is similar to that of Theorem 4 in

Chapter 4.

5.8.3 A Procedure for Checking SF -diagnosability

It is worth noticing that for the actual veri�cation of SF -diagnosability, a systematic

procedure, derived directly from Theorem 8, can be performed as follows:

When an SF -uncertain cycle c` is encountered in diagnoser D, we proceed as follows:

Generate the successive elements of c`SF -indicating sequence ρc` (starting from S1),

and for each element Si check the following conditions:

1. if Si = ∅, cycle c` is not an SF -indeterminate cycle and therefore the procedure is

stopped;

2. else, if ∃k ∈ N : i = 1 + kn (with n = |c`|), then:

(a) if Si = S(i−n) 6= ∅, then cycle c` is an SF -indeterminate cycle and the procedure

is stopped;

112Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

(b) otherwise continue.

This procedure is repeated on each SF -uncertain cycle generated in D.

Example 11 Let us take once again model G (Figure 7) and its diagnoser D (Fig-

ure 5.9). Cycle c` = a2, a3 is an SF -uncertain one since a2 and a3 are both non-F-

certain nodes and also F-uncertain ones. The c`SN -indicating sequence associated with c`

is ρ = S1,S2,S3, . . . , such that S1 = {9, 6, 5, 10} = S3 = S5 = . . . and S2 = {7, 12, 8, 11} =

S4 = S6 = One can observe that ρ is a cycle composed of two (non-empty) sets of

states. Therefore, according to Theorem 8 c` is an SF -indeterminate cycle, which means

that model G is non-SF -diagnosable.

Remark 4 Regarding the analysis of SR-diagnosability, it can be performed in an anal-

ogous manner to the analysis of SF -diagnosability. Namely, we �rst generate a c`SR-

indicating sequence starting from the faulty and recovered sets of states in the SR-uncertain

cycle (i.e., a cycle in which all its nodes are non-R-certain and at least one node is an

R-uncertain one). Then, one checks if the c`SR-indicating sequence takes the form of a

prime sequence. If it is the case, then the SR-uncertain cycle is an SR-indeterminate

one, and therefore, the model G is non-SR-diagnosable. In the case where the c`SR-

indicating sequence reaches an empty �xed -point, then the SR-uncertain cycle is not an

SR-indeterminate one.

5.9 Discussion

In this section, we will point out the main features of the proposed approach and some

comparative remarks regarding some existing works strictly related to the issues discussed

in the current chapter.

• Regarding the intermittent fault modeling, in our work we do not make a di�erence

between the �rst fault occurrence and the other occurrences as done in [Contant

et al., 2004], where the states reached by the �rst occurrences of faults have a label

(Fi) di�erent from the other states reached after more than one fault occurrence

have occurred, which are labeled with F pi . However, this feature does not a�ect the

diagnosability verdict, since assumption (A3) ensures that each fault event occurs

inde�nitely. Thus, if the the model is SF -diagnosable, this means that each fault

occurrence can be identi�ed within a �nite delay.

• Regarding the diagnoser construction, the initial node of our diagnoser can be an N -

(or NF -node) contrarily to Contant's diagnoser, where the initial node is always N -

node. This is due to the fact that in the building procedure of our diagnoser variant,

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis113

the unobservable reachability is computed before the current node is left, whereas

in Contant's diagnoser the unobservable reachability is computed (in the observer)

once the current node is left. This feature does not a�ect the diagnosability verdict,

since the necessary and su�cient condition is established regarding the existence of

indeterminate cycles, i.e., SF -indeterminate cycle in our work and F pi -indeterminate

cycle in [Contant et al., 2004].

• The extension of our approach to deal with multiple fault classes can be performed in

the same manner as usually done in the classic diagnoser-based approaches [Sampath

et al., 1995]. That is, we can either build one speci�c diagnoser for each fault class.

Alternatively, on can build a single diagnoser that simultaneously tracks all the fault

types. This means to extend the diagnoser node structure; i.e., for instance, for a

system containing m fault classes, each diagnoser node a contains 2m+ 1 subsets of

states (some of them may be empty): XN ,XFi , and XRi , for = 1, . . . ,m. It should

be noticed that in such cases, these state subsets are not necessarily disjoint.

• In our approach, the diagnoser is constructed by considering the unobservable reach-

ability to the left (see the construction procedure in Section 5.6). Therefore, the

general setting of the inverse projection mapping P−1
L is considered, i.e., without

restriction to the event-sequences which terminate with an observable event. This

is di�erent from the diagnoser approaches proposed in [Sampath et al., 1995, Con-

tant et al., 2004] where the ε−reduction is considered when building the diagnoser.

That is, the inverse projection mapping P−1
L is restricted to the event-sequences

that terminate with an observable event. Consequently, regarding the diagnosabil-

ity of intermittent faults (for example the SF -diagnosability), it is possible that an

SF−indeterminate cycle (called FP−indeterminate cycle in [Contant et al., 2004])

exists in our diagnoser variant, while it does not exist in the diagnoser proposed

in [Contant et al., 2004]. In other terms, the diagnosability property in [Contant

et al., 2004, Sampath et al., 1995] refers to the ability to discriminate between the

sequences that share the same observation and that all end with an observable event.

However, in our case, we also consider any unobservable continuation following the

last observed event. Therefore, the diagnosability decision may be di�erent between

the two approaches. Namely, it is possible that a system that is diagnosable in the

sense of [Contant et al., 2004] is not diagnosable considering our projection map-

ping. For instance, the diagnosability decision can be di�erent between the two

approaches when only one observable event exists between the fault occurrence and

its reset event. In this case and to comply with the context of [Contant et al., 2004],

it is su�cient to add a condition that checks this particular case. Let us explain

114Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

such a particular case using the following example.

1start

2 3 4 13 14 15 16 17

18

5 6 7 8

9 10 11 12f

a

a r b c d f a

rc

b cf d

e

c r d

e

Figure 5.10 � The FSA model in Example 12

Example 12 Consider automaton G shown in Figure 5.10 and taken from [Contant

et al., 2004]. The sets of observable and unobservable events are Σo = {a, b, c, d, e}
and Σu = {f, r}, respectively. In addition, Σf = {f} and Σr = {r}. Diagnoser D
corresponding to model G is depicted in Figure 5.11. One can observe that it contains

two SF -uncertain cycles: c`1 = a2, a3, a4 and c`2 = a5, a6. Let us denote by ρ1 and

ρ2 are the indicating sequence corresponding to c`1 and c`2 respectively. It is plain that

c`1 is non-SF -indeterminate cycle, since for i = 7 : Si = ∅. However, c`2 is an SF -

indeterminate cycle since ∀i ∈ N : Si 6= ∅. therefore, model G′ is non-SF -diagnosable.

In [Contant et al., 2004], this model is assumed to be SF -diagnosable (more precisely

Type-F p-diagnosable, according to the de�nition in [Contant et al., 2004]). In fact, there

is no contradictory between these two results, since the two results are obtained under a

di�erent assumption regarding the projection mapping P . Let us consider the observable se-

quence s = abcda. In one hand, according to [Contant et al., 2004] P−1(s) = {farbcdfa},
which is only one event sequence that reaches a faulty states (i.e., state 17). There-

fore, the model is SF -diagnosable. In the other hand, according to our assumption,

P−1(s) = {farbcdfa, farbcdfar}, which consists in two event sequences that respectively

reach a faulty state (state 17) and recovered state (state 18). Therefore, it is not possible

to decide about the recovery status of the system.

5.10 A Still Open Issue

In this chapter, we have discussed various notions of diagnosability of intermittent faults,

regarding the detection/identi�cation of the fault event occurrences and their reset event

occurrences within �nite delays. However, we have not taken into account the multiplicity

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis115

Figure 5.11 � The diagnoser of model G′ (Example 12)

of fault/reset occurrences. That is, a fault can occur and recover many times before its

detection/identi�cation. In other words, these de�nitions can not give a verdict on how

many times a fault has occurred/recovered.

A stronger version of the diagnosability property consists in detecting each fault event

occurrence in a �nite delay, but also before that it resets. Hereafter, we give the formal

de�nition of such a property.

Dé�nition 31 (Fr-diagnosability)

An FSA G is said to be Fr-diagnosable w.r.t. projection P , fault class Σf and correspond-

ing reset event class Σr, if the following holds:

[∀s ∈ ψ(Σf)] (∀t ∈ L/s ∧ t ∈ ψ(Σr))⇒ DFr

where diagnosability condition DFr is:

∃ t′ < t : ∀ ω ∈ [P−1
L (P (s.t′))]⇒ `(ω) = F

with ψ(Σr) = {s = (σ1, σ2, . . . , σn) ∈ L | ∀1 ≤ i < n : σi /∈ Σr ∧ σn ∈ Σr} is the set of

�nite event-traces in L that have only the last event in Σr.

The above de�nition means the following: let s be a �nite event-trace in L that ends

with a faulty event, t be any �nite continuation of s that ends with a reset event but does

116Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis

not hold any reset event before this last event. Condition DFr then requires that any �nite

event-trace that shares the same observation with s.t, shall experiment a faulty behavior

between the moment of the fault occurrence and its recovery. In simple words, when a fault

event occurs, one needs to be able to detect it and identify the faulty status of the system

before its recovering. In the same way, we can de�ne its deal version Rf -diagnosability,

which consists in detecting and identifying that the system reaches a recovered status after

each occurrence of reset event and before any new occurrence of the corresponding fault

event.

Remark 4 Fr−diagnosability allow us to detect each occurrence of a fault event before its

recovery, which means that we can also determine how many times a fault has occurred.

Using such a de�nition, it becomes possible to link our fault diagnosis framework with the

ones discussed in [Jiang et al., 2003b, Yoo and Garcia, 2004, Yoo and Garcia, 2009, Zhou

and Kumar, 2009, Garcia and Yoo, 2005], which deal with fault diagnosis of repeated faults,

i.e., the ability to determine how many times a fault has occurred.

We have introduced and discussed the concept of Fr-diagnosability in our work [Boussif

and Ghazel, 2016d]. In parallel, Fabre et al. [Fabre et al., 2016] have introduced a similar

de�nition called T−diagnosability, where the only di�erence is that faults are considered

to be repairable, i.e., the recovery of the fault is a controllable (and then observable) action

which can be generated by the controller. In [Fabre et al., 2016], the authors propose a nec-

essary and su�cient condition for the analysis of Fr-diagnosability (or T−diagnosability)
on the basis of an augmented diagnoser, i.e., a parallel composition of the diagnoser

and the system model, and they show that checking such a notion of diagnosability is

PSPACE-complete. However, this technique is only applied to deterministic model. In

addition, the authors argue that the twin-plant technique is not su�cient to check such

a diagnosability property since it cannot be characterized by pairs of equivalent paths,

i.e., diagnosability is rather a global property on classes of observable-equivalent traces.

For the best of our knowledge, there is no work that proposes a necessary and su�cient

condition for Fr−diagnosability derived directly from the well-known diagnoser-based or

twin-plant based approaches.

5.11 Conclusion

In this chapter, we have extended the diagnoser-based approach, which we have developed

in Chapter 4, in order to deal with diagnosability of intermittent faults of DESs. The

system modeling, intermittent fault modeling and various diagnosability properties are

�rstly discussed. An extended diagnoser with a new structure that allows checking the

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis117

necessary and su�cient conditions, without needing to construct any intermediate model,

is established. Moreover, systematic procedures for the actual veri�cation of the various

diagnosability properties considered are established.

Chapter 6

Fault Diagnosis of LPNs Using a

Symbolic Reachability Diagnoser

Sommaire

6.1 Summary . 119

6.2 Petri Net Based Fault Diagnosis 120

6.3 Motivation of the Approach . 123

6.4 Preliminaries . 125

6.5 The Symbolic Observation Graph (SOG) 127

6.6 The Symbolic Reachability Diagnoser (SRD) 132

6.7 Diagnosability Analysis Using The SRD 139

6.8 On-the-�y Veri�cation Algorithm 143

6.9 Experimentation . 147

6.10 Conclusion . 153

6.1 Summary

The present chapter represents an improvement of the diagnoser-based approach introduced

in Chapter 4 while dealing with Petri nets. It consists in building a symbolic diagnoser

called Symbolic Reachability diagnoser (SRD) for both analyzing diagnosability and per-

forming the online diagnosis. In particular, to obtain a compact representation of the

diagnoser state-space, the nodes are encoded using a symbolic representation, i.e., Binary

Decision Diagrams. However, the arcs linking the diagnoser nodes remain in an explicit

representation.Furthermore, a necessary and su�cient condition for diagnosability anal-

ysis of PNs is derived on the basis of the proposed structure, and a systematic procedure

for checking such a condition is proposed. Finally, we provide an on-the-�y algorithm to

simultaneously construct the symbolic diagnoser and analyze diagnosability. In order to

evaluate the e�ciency and the scalability of the proposed approach, an experimental and

comparative analysis relative to other existing technique is presented and discussed, on

the basis of a Petri net benchmark. The work presented in this chapter is the subject

of publications at VeCOS'15 [Boussif et al., 2015] and two submitted journal papers to

IJCCBS [Boussif et al., 2016b] and IEEE-SMC [Boussif et al., 2016a].

120
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

This chapter is structured as follows: in Section 6.2, a brief survey of fault diagnosis

in Petri net (PN) framework is presented. In Section 6.4, basic PN notations and the

de�nition of diagnosability are introduced. In Section 6.5, the concept of BDDs and the

construction of the symbolic observation graph is discussed. Section 6.6 is devoted to

discussing the construction of SRD. In Section 6.7, we discuss the diagnosability analy-

sis using the SRD structure. In Section 6.8, an on-the-�y algorithm for simultaneously

constructing the SRD and checking diagnosability is proposed. Section 6.9 presents some

experimentations to illustrate the e�ectiveness and the scalability of our approach while

taking the MBRG/BRD approach [Cabasino et al., 2009b] as a reference. Finally, Sec-

tion 6.10 draws some concluding remarks.

6.2 Petri Net Based Fault Diagnosis

The early works that addressed fault diagnosis issues mostly considered �nite state au-

tomaton models [Lin, 1994, Sampath et al., 1995, Zad et al., 2003, Jiang and Huang,

2001, Yoo and Lafortune, 2002b, Cimatti et al., 2003]. Afterwards, fault diagnosis is-

sues have also been dealt with within the Petri nets (PNs) framework [Lefebvre and

Leclercq, 2015, Lefebvre et al., 2013, Wen et al., 2005, Ramírez-Treviño et al., 2007, Basile

et al., 2008, Basile et al., 2009, Basile et al., 2010, Lefebvre, 2014, Lefebvre and Delherm,

2007, Basile, 2014, Jiroveanu and Boel, 2010, Cabasino et al., 2009a, Germanos et al.,

2015, Madalinski and Khomenko, 2010, Ushio et al., 1998, Chung, 2005, Jiroveanu and

Boel, 2004, Cabasino et al., 2010, Cabasino et al., 2009b, Liu et al., 2014b, Li et al., 2015c].

PNs were created by German mathematician Carl Adam Petri for the purpose of describ-

ing chemical processes [Petri, 1966]. PNs are a graph-based mathematical formalism that

allow the analysis and veri�cation of concurrent system behavior, based on their graphical

and mathematical representations [Murata, 1989].

The diagnosis approaches based on PN models can be classi�ed into two main classes:

1) Methods based on the structural representation of PNs

The mathematical foundation underlying PNs, allows the use of standard techniques,

such as Integer Linear-Programming (ILP) to perform online diagnosis and investigate di-

agnosability. Regarding the diagnosability investigation, various su�cient conditions have

been proposed. Authors in [Wen et al., 2005] have proposed an approach for analyzing

diagnosability by checking the structural properties of T -invariants under the assumption

that the net marking and the transitions are partially observable. In [Ramírez-Treviño

et al., 2007], an interpreted diagnoser has been developed for fault diagnosis of interpreted

Petri nets (IPNs), where a su�cient condition has also been developed on the basis of

T -invariant properties. A linear-programming-based polynomial algorithm has been es-

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 121

tablished in [Wen et al., 2005] for computing a su�cient condition of diagnosability. In a

series of works [Basile et al., 2008, Basile et al., 2009, Basile et al., 2010], Basile et al. have

developed two conditions regarding diagnosability: the �rst is a necessary condition, while

the second is a su�cient one. The elaborated technique uses the concept of g-marking in-

troduced for online fault detection and used to derive an interpreted diagnosser, i.e., an

algorithm based on the online solution of ILP problems [Basile et al., 2009]. More recently,

a necessary and su�cient condition for analyzing K-diagnosability (i.e., diagnosability in

k steps) was established in [Basile et al., 2012a] on the basis of an ILP optimization tool.

The general idea of these approaches based on structural representations of PNs, is to

develop an interpreted diagnoser that, based on the observable transitions, infers the cur-

rent status of the system, by using an ILP algorithm [Basile et al., 2007, Dotoli et al.,

2009, Basile et al., 2009].

2) Methods based on the behavioral representation of PNs

The behavioral representation can be advantageously used to extend the automata-

based approaches so as to deal with fault diagnosis of Petri nets by considering its reacha-

bility grah. In fact, this consists in building some particular graphs to deal with diagnosis

issues, which lead to reduce sizes with respect to the reachability graph [Basile, 2014].

Some interesting works were inspired from the twin-plant/veri�er approaches [Jiang

and Huang, 2001, Yoo and Lafortune, 2002b, Cimatti et al., 2003]. In [Jiroveanu and

Boel, 2010], an automaton called `ROF -automaton' is used for checking the diagnos-

ability of bounded nets by adapting the veri�er approach [Yoo and Lafortune, 2002b].

ROF -automaton is e�ciently constructed on the basis of the computation of the minimal

explanations of faults, which serves to generate a state-space that is signi�cantly smaller

than the reachability graph. The authors in [Cabasino et al., 2009a] have developed an

approach for analyzing diaganosability of unbounded Petri nets on the basis of a net called

`veri�er net ' and the corresponding coverability graph. In fact, the veri�er net is obtained

by a (parallel) composition of the PN model and a copy that depicts only the normal be-

havior. Similar approaches, in the sens of considering parallel composition of PNs, have

been proposed in [Germanos et al., 2015, Madalinski and Khomenko, 2010], with the par-

ticularity that the diagnosabilily issue was reduced to an LTL-X model-checking problem

and solved using parallel model-checking based on Petri net unfoldings. As mentioned

earlier in this thesis, the main drawback of the approaches based on veri�ers/twin-plant

approaches, is that they deal only with diagnosability analysis and do not consider online

diagnosis.

Actually, the diagnoser-based approaches [Sampath et al., 1995, Zad et al., 2003] (which

consist in constructing observers/diagnosers) remain the principal techniques which deal

with both diagnosability analysis and online diagnosis. Consequently, these approaches

122
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

have been extended in order to cope with PN models. In [Ushio et al., 1998], two kinds of

diagnosers (ω- and ω-re�ned diagnosers) have been proposed and a su�cient condition for

diagnosability of unbounded PNs, under the assumption that the net marking is observable

and all transitions are unobservable is established. The authors in [Chung, 2005] have

discussed a similar approach with the assumption that only a subset of transitions is

observable. In [Jiroveanu and Boel, 2004], an approach for fault detection of bounded

PNs was proposed using a reduced observer and a backward analysis on the net structure.

Also, an approach for online diagnosis of bounded PNs was proposed in [Cabasino et al.,

2010]. It consists in constructing a compiled diagnoser, called Basis Reachability Graph

(BRG), by using the concept of minimal explanations. Actually, the minimal explanations

are �ring count vectors associated with the set of minimal sequences of unobservable

transitions that explain the �ring of an observable transition.

Recently, Lefebvre and Leclercq [Lefebvre and Leclercq, 2015, Lefebvre et al., 2013]

have proposed an approach to deal with diagnosability of both bounded and unbounded

Petri nets under partial observation (regarding both transitions and places). The main

idea behind this work is to transform the coverability graph into an observation graph that

encodes all the observation sequences with respect to a sensor con�guration. The aim of

such graphs is to represent all observation sequences collected with a given measurement

function and also to encode all �ring sequences consistent with the observation sequences.

On the basis of the analysis of paths and circuit in the observation graph, a necessary and

su�cient condition is established.

The main approach which deals with both online diagnosis and o�ine diagnosability

analysis has been proposed in [Cabasino et al., 2009b]. In this approach, two graphs are

presented: an observer called `modi�ed basis reachability graph' (MBRG) and a diagnoser

called `the basis reachability diagnoser' (BRD). Although in most of the cases these two

graphs are in general smaller than the reachability graph, the proposed procedure to build

the MBRG can require a number of steps equal to the cardinality of the reachability graph.

Furthermore, the proposed diagnosability test requires to check the existence of cycles in

the BRD, which, in the worst case, implies an exponential complexity in time [Basile et al.,

2012a].

Recently, an on-the-�y approach for analyzing diagnosability andK/Kmin−diagnosability
was proposed in [Liu, 2014, Liu et al., 2014b]. The approach consists in constructing, on

the �y, two graphs, called FM-graph and FM-set graph, and simultaneously analyzing

diagnosability. Moreover, the generated FM-set graph can be used for performing online

diagnosis when the PN model is diagnosable. The key point of this approach is that, in

general, only a part of the reachability graph is generated to investigate diagnosability

and perform online diagnosis. Some improvements of this approach, using the minimal

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 123

explanation concept and T -invariant properties were proposed in [Li et al., 2015c, Li et al.,

2015b].

To get a general overview on the literature pertaining to the fault diagnosis of DESs,

the reader can refer to the recent surveys [Zaytoon and Lafortune, 2013] (a general sur-

vey), [Basile, 2014] (a survey on PN-based approaches) where theoretical and practical

issues are discussed.

6.3 Motivation of the Approach

On the basis of the behavioral representation, diagnoser-based approaches remain the prin-

cipal techniques which deal with both diagnosability analysis and online diagnosis. Never-

theless, as discussed in Section 4.1, these approaches mainly su�er from some di�culties.

Namely, the high complexity of constructing the diagnoser, the need of an intermediate

model and the double-checking procedure for analyzing diagnosability. In the previous

chapters (Chapters 4 and 5), we have presented an e�cient diagnoser variant approach,

which partially overcomes these issues, as witnessed by the experimental results in Sec-

tion 4.6. Nevertheless, we have pointed that the main drawback of our approach is the

number of nodes (in terms of memory) in the diagnoser, due to the unobservable reacha-

bility. In fact, the nodes of our diagnoser may contain a large number of the model states

that are reachable through unobservable sequences after the occurrence of an observable

event. To deal with this issue of memory consumption in the diagnoser, we want to inves-

tigate the symbolic representation using binary decision diagrams (BDDs). In fact, BDDs

can e�ciently encode and manage the sets of states in the diagnoser nodes.

The proposed technique is inspired from the Symbolic Observation Graph (SOG) [Had-

dad et al., 2004, Klai and Petrucci, 2008] which combines symbolic and enumarative repre-

sentations in order to build a deterministic observer from a partially observed model. The

symbolic observation graph was �rstly used for the formal veri�cation using event-based

model-checking as an e�cient alternative to the Kripke structure.

In fact, the approach we develop allows for analyzing the diagnosability of bounded

labeled PNs and for performing the online diagnosis on the basis of a deterministic symbolic

automaton called SRD, for `Symbolic Reachability Diagnoser ', derived directly from the

PN model. The SRD has a particular structure, which consists in separating normal

markings from faulty ones in each diagnoser node and then encode the two obtained

subsets using BDDs. This aims in one hand at reducing the memory requirements and

on the other hand at speeding up the veri�cation process. On the basis of this structure,

we propose a systematic procedure to check the necessary and su�cient condition for

diagnosability using only the SRD (as presented in Chapter 4). An on-the-�y algorithm

124
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

is then developed for simultaneously constructing the SRD and analyzing diagnosability.

In what follow, we point out the main features of the proposed approach:

1. The approach provides a new structure for representing the diagnoser nodes. Such

a structure explicitly separates the normal markings from the faulty ones in each

node. This feature serves to track normal and faulty traces more e�ciently.

2. The approach combines enumerative and symbolic representations to construct the

diagnoser. The main idea consists in:

• using binary decision diagrams (BDDs) to compact and handle the sets of mark-

ings in the diagnoser nodes, which serves to reduce the memory consumption;

• using an explicit representation for the (observable) transitions that link the

diagnoser nodes. Such a representation allows for an easy exploration of the

SRD paths.

3. In the same way as for existing diagnoser-based approaches, the SRD serves to both

check diagnosability and perform online diagnosis.

4. In the developed approach, the SRD is directly built from the original LPN without

requiring to construct any intermediate model as usually done in the diagnoser-

based approaches, e.g., generator or pre-diagnoser in [Sampath et al., 1995], MBRG

in [Cabasino et al., 2014], FM-graph [Liu, 2014].

5. On the basis of the SRD structure, a su�cient condition for checking the undiag-

nosability of LPNs is derived. Such a condition is used for the on-the-�y veri�cation

of diagnosability. Therefore, the model is stated to be non-diagnosable as soon as

such a condition is met, without needing to build and analyze the whole state-space

of the SRD.

6. The developed approach provides a systematic procedure for checking the neces-

sary and su�cient condition for diagnosabilily (i.e., the existence or not of F -

indeterminate cycle) without using any intermediate model. This procedure serves

to improve the veri�cation time.

7. An on-the-�y depth-�rst search algorithm for both constructing the SRD and verify-

ing diagnosability simultaneously is proposed. Such an algorithm serves to generate

as small state-space as possible and then, improves the memory/time consumption.

In addition to the above-mentioned features, a dedicated tool, called `DPN-SOG' tool

(for Diagnosability analysis of Petri Nets using Symbolic Observation Graphs) imple-

menting the proposed approach has been developed. In order to assess the e�ciency and

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 125

the scalability of the approach, some experimentations have been conducted through a

PN benchmark.

In the section below, we brie�y recall the syntax and semantics of the bounded labeled

Petri nets (LPNs), as well as the diagnosability analysis of such models.

6.4 Preliminaries

6.4.1 Labeled Petri Net Modeling

A Petri net is a structure N = (P, T, Pre, Post), where P is a �nite set of places; T

is a �nite set of transitions; Pre and Post are the pre- and post-incidence mappings,

respectively. C = Post − Pre is the incidence matrix. A marking is a vector m ∈ N|P |

that assigns a non-negative integer to each place. We denote by m(p) the marking of a

place p. A marked PN (N,m0) is a PN N with a given initial marking m0. For short, a

marked PN will be called PN afterward.

A transition ti is enabled by marking m, denoted by m[ti >, if m(p) ≥ Pre(p, ti),∀p ∈
P . A transition ti enabled by marking m can �re, yielding to a marking m′ = m+ C · ~ti,
where ~ti ∈ {0, 1}|T | is a vector in which only the entry associated with transition ti is

equal to 1, the other entries are 0. Then, marking m′ is said to be reachable from marking

m by �ring the transition ti, also denoted by m [ti > m′.

A sequence of transitions s = t1t2 . . . tk is �rable at marking m, denoted by m [s >,

if ∃m1,m2,mk−1 s.t. m [t1 > m1 [t2 > · · · mk−1 [tk >. The reached marking m′ is

computed by m′ = m+C · π(s), and denoted by m [s > m′, where π(s) =
∑k

i=1
~ti is the

�ring vector relative to s.

A marking m is reachable in (N,m0) if and only if there exists a �ring sequence s such

that m0 [s > m. The set of all markings reachable from m0 de�nes the reachability set of

(N,m0) and is denoted by R(N,m0).

A PN (N,m0) is bounded if the number of tokens in each place does not exceed

a �nite number b ∈ N for any marking reachable from m0. Formally, ∃ b ∈ N s.t.

∀m ∈ R(N,m0),∀p ∈ P : m(p) ≤ b. A PN is live if, no matter what marking has been

reached from m0, it is possible to ultimately �re any transition of the net by progressing

through some further �ring sequence [Murata, 1989]. Formally, ∀m ∈ R(N,m0),∀t ∈
T, ∃s ∈ T ∗ : m [s.t >.

A labeled Petri net (LPN) is a tuple NL = (N,m0,Σ, ϕ), where (N,m0) is a marked

PN, Σ is a �nite set of events (i.e., labels) and ϕ : T → Σ is the transition labeling function.

ϕ is also extended to sequences of transitions, ϕ : T ∗ → Σ∗. The language generated by

NL is L(NL) = {ϕ(s) ∈ Σ∗ | s ∈ T ∗, m0 [s >}. For short, we write L instead of L(NL).

126
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

Also, one should notice that various transitions can share the same event label, i.e., ϕ

is not bijective. We denote by Tσ the set of transitions sharing the same event σ, i.e.,

Tσ = {t ∈ T : ϕ(t) = σ}.

6.4.2 Diagnosability of LPNs

Due to the partial observability, the set of transitions is partitioned as T = To]Tu, where
To is the set of observable transitions, and Tu is the set of unobservable transitions. The

set of unobservable transitions is also partitioned into two subsets Tu = Tf]Treg where Tf
is the set of fault transitions while Treg includes the regular (i.e., non-faulty) unobservable

transitions. As we deal with labeled Petri nets, the event set Σ can also be partitioned

into two disjoint sets, Σ = Σo]Σu, where Σo is a �nite set of observable events and Σu is

a �nite set of unobservable events. Fault events denoted by set Σf are unobservable, thus

Σf ⊆ Σu. Moreover, the set of unobservable events can be partitioned into two disjoint

sets, Σu = Σf] Σreg, where Σreg = Σu\Σf is the set of regular unobservable events, i.e.,

non-faulty unobservable events. In addition, the set of fault events Σf can be further

partitioned into various fault classes, i.e., Σf =
⊎m
i=1 Σfi , where Σfi(i = 1, 2, . . . ,m)

denotes the ith class of faults.

Let Po : Σ∗ → Σ∗o be the projection mapping which erases the unobservable events in

any given sequence u ∈ Σ∗. The inverse projection operator P−1
o is de�ned as P−1

o (v) =

{u ∈ L | Po(u) = v} for v ∈ Σ∗o. Given a live and pre�x-closed language L ⊆ Σ∗ and

an event-sequence u ∈ L, the post-language of L upon u denoted by L/u is L/u = {v ∈
Σ∗| uv ∈ L}. We denote by |u| the length of event sequence u, and the ith event of u by

ui. Also, for a ∈ Σ and u ∈ Σ∗, we write a ∈ u if ∃ i s.t. ui = a. By abuse of notation, we

note Σfi ∈ u to indicate that ∃fi ∈ Σfi s.t. fi ∈ u.
Without loss of generality, in the sequel we will consider one single fault class Σf . The

generalization of the technique to multiple fault classes is performed in the same way as

discussed in Section 4.5.3.

Dé�nition 32 (Diagnosability of LPNs)

A given LPN NL is diagnosable w.r.t. fault class Σf and projection Po if:

(∃ n ∈ N) (∀u ∈ L, u|u| ∈ Σf) (∀v ∈ L/u):

|Po(v)| ≥ n⇒ [∀ω ∈ P−1
o (Po(uv)) : Σf ∈ ω]. �

The above de�nition means that an LPN is diagnosable if for every trace u ending with

a fault event (which corresponds to a fault transition) of type Σf , and for any su�ciently

long continuation v of u, all traces ω having the same observable projection of uv contain

at least one fault event. In other words, diagnosability of an LPN implies that each

occurrence of a fault can be detected after a �nite number of transition �rings.

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 127

In what follows, we consider the following assumptions that the LPN model under

investigation has to ful�ll:

• The LPN is deadlock-free, i.e., every reachable marking enables at least one transi-

tion;

• The LPN is bounded with an upper bound b ∈ N+, i.e., ∀p ∈ P,M(p) ≤ b;

• The LPN has a known structure as well as a known initial marking m0;

• The LPN has no executable cycle of unobservable transitions.

• The faults are permanent, i.e., the model remains in�nitely faulty after the occur-

rence of a fault.

Example 3 Let us consider the LPN NL in Figure 6.1, where the set of observable tran-

sitions is To = {t2, t5, t7} and the set of unobservable transitions is Tu = {t1, t3, t4, t6}.
The labeling function is ϕ(t1) = ϕ(t3) = ε, ϕ(t2) = a, ϕ(t5) = ϕ(t7) = b, and ϕ(t4) =

ϕ(t6) = f . In Figure 6.1, the observable transitions are depicted with grey boxes, regular

transitions are in white boxes, while faulty transitions are depicted with red boxes.

Let us consider observable sequence ω = (ab)∗. One can observe that the in�nite �ring

sequences s1 = (t1t2t5)∗ and s2 = (t1t4t2t5)∗ share the same observation ω and that s1 is

fault-free while s2 contains faulty transition t5. Consequently, there is no �nite delay upon

which one can infer the fault occurrence with certainty. Thus, according to De�nition 32,

LPN NL is non-diagnosable.

p0 t1(ε)
p1 t2(a)

p2 t3(ε)
p3

t4(f)

t5(b)

p4t7(b) t6(f)

Figure 6.1 � A labeled Petri net (Example 3)

6.5 The Symbolic Observation Graph (SOG)

In this section, we recall the concept of symbolic observability graph (SOG) introduced

in [Haddad et al., 2004], as an abstraction of the partially observed labeled transition

128
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

systems (and by extension, the reachability graph of Petri nets) for the purpose of the

veri�cation using LTL-X model-checking. Firstly, we recall the concept of binary decision

diagrams (BDDs).

6.5.1 Binary Decision Diagrams

Binary decision diagrams (BDDs), introduced by [Akers, 1978] and improved in [Bryant,

1992], are compact (i.e., symbolic) representations of Boolean functions that enable the

encoding and implicit manipulation of sets of states and/or transitions, with no need for

explicit enumeration. Nowadays, BDDs are used in a wide range of research areas, such

as formal veri�cation, AI planning, etc.

Dé�nition 33 (binary decision diagram (BDD))

A BDD is a rooted, directed acyclic graph with:

• one or two terminal nodes of out-degree zero labeled false or true;

• a set of variable nodes u of out-degree. The two outgoing edges are given by two

functions: low(u) and high(u);

• a variable var(u) is associated with each node. �

In order to express operations on Boolean functions in terms of e�cient graph algo-

rithms, the BDD needs to be reduced and ordered.

Dé�nition 34 (Ordered BDD)

A BDD is ordered (OBDD), if on all paths through the graph, the variable respect a

given linear order x1 < x2 < · · · < xn. �

Dé�nition 35 (Reduced OBDD)

An OBDD is reduced (ROBDD), if the following properties hold:

1. Uniqueness: no two distinct nodes u and v have the same variable name and low-

and high-successor, i.e., var(u) = var(v)∧ low(u) = low(v)∧high(u) = high(v))⇒
u = v;

2. Non-redundant tests: no variable node u has identical low- and high-successors,

i.e., low(u) = high(u). �

For instance, for safe Petri nets (where every place is marked with at most one token),

one can consider each marking as a Boolean vector v = {0, 1}m, m is the number of places

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 129

in the net. Then, a set of markings S ⊆ R(N,m0) can be represented within a BDD by

means of the Boolean characteristic function FR : R(N,m0)→ {0, 1} with:

FR(s) :=

{
1, if s ∈ S
0 otherwise

(6.1)

Example 4 Let us consider a safe Petri net containing four places p0, p1 , p2 , p3,

and let S be the set of markings where only one place is marked. The truth table of the

corresponding characteristic function is shown in Table 6.1.

In order to construct the BDD graph associated with this example, we de�ne V =

{v0, v1, v2, v3} as the set of totally ordered variables (e.g., v0 < v1 < v2 < v3). The

constructed BDD, depicted in Figure 6.2, is actually an ROBDD, since there are no iso-

morphic sub-graphs and no redundant nodes. Dotted (resp. solid) outgoing arc of a node u

represents the successor low(u) (resp. high(u)). A path leading to a true leaf corresponds

to a marking in S.

Table 6.1 � The truth table of the corresponding characteristic function

p0 p1 p2 p3 fR

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

− 0

v0

v1v1

v2v2

v3v3

falsetrue

Figure 6.2 � A BDD representing the set of marking S (Example 4)

130
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

6.5.2 The Construction of the SOG

In [Haddad et al., 2004], the authors introduced the SOG as an abstraction of the reach-

ability graph of concurrent systems and proved that the veri�cation of an event-based

formula of LTL-X on the SOG is equivalent to the veri�cation on the original reachability

graph. The main idea is to combine the on-the-�y construction and the compact rep-

resentation (using BDD techniques) of the model, in order to check LTL-X state-based

properties over �nite models. Thus, instead of composing the whole system with the Buchi

automaton representing the negation of the formula to be checked, the authors propose to

make the synchronization of the automaton with an abstraction of the original reachability

graph of the system.

In order to de�ne the SOG and then de�ne symbolic reachability diagnoser (SRD), we

introduce the following notations:

• Given a subset of transitions T ′ ⊆ T , we de�ne EnableT ′(m) = {t ∈ T ′ |m [t >}, as
the set of transitions in T ′ that are enabled at marking m.

The extension to a subset of markings M ′ ⊆ R(N,m0), is EnableT ′(M ′) = {t ∈ T ′ | ∃m ∈
M ′ : m [t >} which denotes the set of transitions in T ′ enabled at a marking belonging

to M ′, i.e., EnableT ′(M ′) =
⋃
m∈M ′EnableT ′(m).

• Given a subset of markings M ⊆ R(N,m0) and a transition t ∈ T , we de�ne

Img(M, t) = {m′ ∈ R(N,m0) | ∃m ∈ M : m [t > m′} as the set of markings

reachable from the markings in M by �ring transition t.

The generalization to a subset of transitions T ′ ⊆ T is Img(M ′, T ′) =
⋃
t∈T ′ Img(M ′, t).

• Given a marking m ∈ R(N,m0) and a subset of transition T ′ ⊆ T , we de�ne

ReachT ′(m) = {m} ∪ {m′ ∈ R(N,m0)|(∃s ∈ T ′∗) : m [s > m′} as the set of

markings reached by �ring a sequence of transitions in T ′ from marking m (will be

used particularly for the unobservable reachability).

The generalization of this notion to a subset of markingsM ⊆ R(N,m0) is ReachT ′(M) =⋃
m∈M ReachT ′(m).

The construction of the SOG is guided by the set of events occurring in the formula

to be checked. Such events are said to be observable while the other events are unob-

servable. The SOG is then represented as a graph where each node (called an aggregate)

is a set of states (reachable by �ring unobservable events) handled e�ciently using BDD

techniques [Bryant, 1992]. Aggregates of the SOG are linked by edges which are labeled

with observable events. The SOG is said to be hybrid, since it is both an explicit and a

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 131

symbolic structure: the graph is represented explicitly while the nodes are sets of states

encoded and managed symbolically.

Despite the theoretical exponential complexity of the size of a SOG, it has a very

moderate size in practice (see [Haddad et al., 2004] for the theoretic details and [Klai

and Petrucci, 2008] for experimental results). In the following, we �rst de�ne what an

aggregate formally is, before providing a formal de�nition of a SOG associated with an

LPN.

Dé�nition 36 (aggregate)

Consider an LPN NL = (N,m0,Σ, ϕ), with N = (P, T, Pre, Post) and T = To
⊎
Tu.

An aggregate a is a non-empty set of markings satisfying: m ∈ a⇔ ReachTu(m) ⊆ a. �

In fact, each aggregate in the SOG contains the markings reachable through the �ring

of an input observable transition and all the successor markings reachable through the

�ring of a sequence (possibly empty) of unobservable transitions.

Dé�nition 37 (Symbolic Observation Graph)

The symbolic observation graph G associated with an LPN NL = (N,m0,Σ, ϕ) is a

deterministic graph, G = 〈A,Σo,→Σo , a0〉, with Σo is the set of observable events and:

1. A is a �nite set of aggregates such that:

a) a0 ∈ A is the initial aggregate and a0 = ReachTu(m0).

b) ∀ a ∈ A,∀ σ ∈ Σo, if ∃ m ∈ a,∃ t ∈ Tσ, ∃ m′ ∈ R(N,m0): m [t > m′ then,

ReachTu(m′) ⊆ a′ for some aggregate a′ and (a, σ, a′) ∈→Σo ;

2. →Σo⊆ A× Σo ×A is the transition relation, obtained by applying 1.b).

The SOG can be constructed by starting with the initial aggregate a0 and iteratively

adding new aggregates as long as the condition of 1.b) holds (see [Haddad et al., 2004] for

the construction algorithm). In fact, the SOG can be viewed as an observer [Cassandras

and Lafortune, 2009] whose macro-states are represented symbolically.

Example 13 Let us consider the LPN N1 depicted in Figure 6.3 with its reachability

graph. The set of observable transitions is To = {t2, t5} and the set of unobservable

transitions is Tu = {t1, t4}. The labeling function is ϕ(t1) = ϕ(t4) = ε, ϕ(t2) = a,

ϕ(t5) = b.

The SOG corresponding to LPN N1 is depicted in Figure 6.4. It is composed of three

aggregates, each one contains a set of markings, with m0 = 2 0 0,m1 = 1 1 0,m2 =

132
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

p0 t1(ε)
p1 t2(a)

p2

t4(ε)

t5(b)

1 1 0

2 0 0start

1 0 1

0 2 0 0 1 1 0 0 2

ε

ε

a

ε

ε

b

ε

ε
a
b

a
b

Figure 6.3 � LPN N1 and its reachability graph (Example 13)

1 0 1,m3 = 0 2 0,m4 = 0 1 1,m5 = 0 0 2. In this example, the markings in each aggregate

are enumerated. However, in the actual representation such sets of marking are encoded

as BDDs, in the same manner as shown in Example 4.

m0,m1,m2

m3,m4,m5

a0

m2,m4,m5

a1

m5

a2
a

b

b

a

b

Figure 6.4 � The SOG corresponding to LPN N1 in Example 13

6.6 The Symbolic Reachability Diagnoser (SRD)

In this section, we discuss how the SOG can be used in order to build a symbolic diagnoser,

which we call `symbolic reachability diagnoser (SRD).

6.6.1 The Structure of the Diagnoser Node

In order to capture the main feature for analyzing diagnosability, which is to keep tracking

the ambiguous behavior of the system, i.e., normal and faulty executions that share the

same observable event sequence, we modify the structure of the aggregates of the SOG.

Therefore, each node in our diagnoser (SRD) is partitioned into two distinct subsets of

markings, each of them is encoded using a BDD.

1. the set of normal markings (denoted by MN), which is the subset of markings in

the node that are reachable by �ring faulty-free sequences.

2. the set of faulty markings (denoted byMF), which is the subset of markings in the

node that are reachable by �ring faulty sequences.

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 133

Figure 6.5 � The general structure of the SRD node

Moreover, there may exist some faulty transitions that link some markings in MN

to some others in MF within the same node. The existence of such transitions is also

encoded within each node using a Boolean variable. The general structure of the diagnoser

node is depicted in Figure 6.5.

We will show in the sequel how such a structure of the SRD nodes can be advan-

tageously explored for rendering diagnosability analysis more e�ciently than using the

classic structure of diagnosers [Sampath et al., 1995, Cabasino et al., 2014].

According to this structure of nodes, one can di�erentiate between three types of

diagnoser nodes, in the same way as in the classic diagnoser approaches:

• N-certain diagnoser node: is a diagnoser node of which the set of faulty markings is

empty (MF = ∅);

• F-certain diagnoser node: is a diagnoser node of which the set of normal marking is

empty (MN = ∅);

• F-uncertain diagnoser node: is a diagnoser node of which neither the normal set,

nor the faulty set of markings, is empty, i.e.,MN 6= ∅ andMF 6= ∅.

In order to simplify the notation, we use a.MN (resp. a.MF) to indicate the set of

normal markingsMN (resp. set of faulty markingsMF) of a given diagnoser node a.

6.6.2 De�nition of the SRD

The SRD can be de�ned as a directed deterministic graph, where each node is composed of

two BDDs encoding the subsets of normal and faulty markings, while the arcs are labeled

by observable events.

Dé�nition 38 (Symbolic Reachability Diagnoser)

The SRD associated with an LPN NL is a directed deterministic graph D = 〈Γ,Σo, δD,Γ0〉,
with N = (P, T, Pre, Post) and T = To

⊎
Tu, where:

134
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

1. Γ is a �nite set of diagnoser nodes;

2. Σo is a �nite set of events associated with a �nite set of observable transitions To;

3. Γ0 is the initial diagnoser node with:

a) Γ0.MN = ReachTreg(m0);

b) Γ0.MF = ReachTu(Img(Γ0.MN , Tf)).

4. δD : Γ× Σo → Γ is the transition relation, de�ned as follows:

∀a, a′ ∈ Γ, σ ∈ Σo: a′ = δD(a, σ) ⇔ a′.MN = ReachTreg(Img(a.MN , Tσ)) ∧
a′.MF = ReachTu(Img(a′.MN , Tf) ∪ Img(a.MF , Tσ))

where Tσ = {t ∈ T : ϕ(t) = σ}. �

In summary, SRD D is constructed as follows: let the current node be a and let σ be

an observable event, such that:

∃ t ∈ Tσ;∃m ∈MN ∪MF : m [t >

The target diagnoser node a′ reachable from a by occurrence of σ is computed following

the rules below:

1. If EnableT (a.MN) ∩ EnableT (a.MF) ∩ Tσ 6= ∅, then:

• a′.MN = ReachTreg(Img(a.MN , Tσ))

• a′.MF = ReachTu(Img(a′.MN , Tf) ∪ Img(a.MF , Tσ))

2. If EnableT (a.MN)\EnableT (a.MF) ∩ Tσ 6= ∅, then:

• a′.MN = ReachTreg(Img(a.MN , Tσ))

• a′.MF = ReachTu(Img(a′.MN , Tf))

3. If EnableT (a.MF)\EnableT (a.MN) ∩ Tσ 6= ∅, then:

• a′.MN = ∅

• a′.MF = ReachTu(Img(a.MF , Tσ))

These aforementioned rules preserve a speci�c fault propagation scheme regarding the

assumption that faults are assumed to be permanent. Such rules can be summarized in

three points as depicted in Figure 6.6:

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 135

• From an N -certain diagnoser node, either an N -certain diagnoser node or an F -

uncertain one can be reached;

• From an F -certain diagnoser node, only F -certain diagnoser nodes can be reached;

• From an F -uncertain diagnoser node, either an F -uncertain, an N -certain or an

F -certain diagnoser node can be reached.

Since all the successors of an F -certain node are also F -certain, it is unnecessary

to build them (i.e., the subsequent F -certain nodes) because they do not bring new

information from the diagnosis point of view. Indeed, as regards diagnosability analysis,

and given the necessary and su�cient condition of diagnosability established in [Sampath

et al., 1995], only the analysis of F -uncertain cycles is necessary. Thus, as faults are

permanent, one can be certain that no such cycles can exist subsequently to an F -certain

node. As for online diagnosis, based on the SRD, once an F -certain node is reached, one

can be sure that the system will remain inde�nitely faulty.

It should be noticed here that the fault propagation rules of the SRD are di�erent from

those of the classic diagnosers [Sampath et al., 1995, Cabasino et al., 2014]. Indeed, an F -

certain diagnoser node cannot be reached directly from anN -certain diagnoser node. This

is due to the fact that in the building procedure of the SRD, the unobservable reachability

is computed before the current node is left, i.e., before considering the occurrence of any

further observable event.

N -certain F -uncertain F -certain

Figure 6.6 � Fault propagation on the SRD

In the same way as in [Sampath et al., 1995], we de�ne the F -uncertain and the

F -indeterminate cycles.

Dé�nition 39 (F -uncertain cycle)

A cycle c` = a1, a2, . . . , an, with δD(ai, σi) = a(i+1)modn for 1 ≤ i ≤ n, in SRD D, is said
to be an F -uncertain cycle, if ∀i : 1 ≤ i ≤ n : ai is an F -uncertain diagnoser node. �

Dé�nition 40 (F -indeterminate cycle)

An F -indeterminate cycle in the SRD is an F -uncertain cycle that corresponds to at least,

one faulty-free cycle in LPN NL and at least, one faulty cycle. �

136
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

Authors in [Sampath et al., 1995] have established a necessary and su�cient condition

for diagnosability using this particular cycles. In fact, it has been established that a system

model is diagnosable if and only if no F -indeterminate cycle exists in its corresponding

diagnoser.

Example 14 A part of the SRD corresponding to the LPN in Figure 6.1 (introduced

in Example 3), which is constructed on the �y, is shown in Figure 6.7. The generated

markings are enumerated in Table 6.2. The initial node (a0) is composed of the initial

marking m0 of the LPN and markings m1 and m2 reachable from m0 by �ring unobservable

transition t1. These three markings represent the set of normal markings of node (a0). As

faulty transition t4 can be �red from the set of normal markings then (a0) also contains

a set of faulty markings reachable by �ring unobservable transitions. Node (a1) is the

successor node of (a0) by considering the �ring of observable transition t2 (labeled by event

a).

One can observe that observable transition t2 is enabled from both sets of normal mark-

ings a0.MN and faulty markings a0.MF of node (a0). Therefore, according to the fault

propagation rules, node (a1) obviously contains both sets of normal and faulty markings.

The set of normal markings of (a1) contains markings reachable from the set of normal

markings of (a0) by the occurrence of observable transition t2 and the regular transitions

enabled directly after t2. The set of faulty markings of (a1) is composed of markings reach-

able from the set of faulty markings of (a0) by the occurrence of the observable transition

(t2) and the unobservable transitions enabled after t2. In addition to that, it also con-

tains markings reachable from the set of normal markings in (a1) by the �ring of faulty

transitions t1 and t6 and the unobservable transitions enabled after these faulty transitions.

Diagnoser node (a2) is reached after the �ring of transition t7 (labeled with event b)

and it contains only a set of faulty markings (a2.MN = ∅). Thus, it is an F -certain node.

As F -certain nodes are unnecessary for analyzing diagnosability, and since we deal with

permanent faults, the subsequent nodes, are not constructed.

The rest of nodes are constructed on the �y using the same reasoning. Regarding

the diagnosability analysis, once a cycle appears, it will be checked whether it is an F -

indeterminate one or not. If it is, the constructing procedure of the SRD is stopped. We

underline that the dotted lines are optionally used for guiding the construction and tracking

the normal (in green) and faulty (in red) traces. However, in the actual construction of the

SRD, these lines are not built. Moreover, the dashed line, representing the faulty transitions

can be replaced by a Boolean variable associated with each diagnoser node (true if faulty

transitions exist and false otherwise).

It is worth noticing that, in this example, the nodes are enumerated (for illustration).

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 137

Actually, they are compacted and managed using BDDs as illustrated in Section 6.5.2.

Thus, each node is represented using two BDDs: the �rst BDD encapsulates the set of

normal markings and the second one corresponds to the set of faulty markings.

Figure 6.7 � A part of the symbolic reachability diagnoser of Example 3

In the same way, as for the existing diagnoser-based approaches, the SRD serves to

both solving the diagnosability issue and performing online diagnosis. In what follows, we

show how the SRD is used for performing the online diagnosis.

6.6.3 Diagnosis Using SRD

Dé�nition 41 The diagnosis function (corresponding to the SRD) is 4 : Po(ϕ(T ∗)) ×
Tf → {N,F,U}, which associates to each observation ω ∈ L, w.r.t. the fault class Tf , a

diagnosis state:

• 4(ω, Tf) = N if ∀s ∈ P−1
o (ω), ∀σf ∈ Σf : σf /∈ s, which means that no fault

transitions exist in all the �ring sequences consistent with the observation ω. Thus,

the reached node in the SRD, after the occurrence of ω is an N -certain node (i.e.,

MF = ∅) ;

• 4(ω, Tf) = F if ∀s ∈ P−1
o (ω),∃σf ∈ Σf : σf ∈ s, which means that at least one fault

transition exists in each �ring sequences consistent with the observation ω. Thus,

the reached node in the SRD, after the occurrence of ω is an F -certain node (i.e.,

MN = ∅);

138
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

Table 6.2 � The reachable markings of Example 14

i mi (enumerative) mi (symbolic)

0 [2 0 0 0 0]τ [10 00 00 00 00]τ

1 [1 1 0 0 0]τ [01 01 00 00 00]τ

2 [0 2 0 0 0]τ [00 10 00 00 00]τ

3 [1 0 1 0 0]τ [01 00 01 00 00]τ

4 [0 0 2 0 0]τ [00 00 10 00 00]τ

5 [1 0 0 1 0]τ [01 00 00 01 00]τ

6 [0 0 1 1 0]τ [00 00 01 01 00]τ

7 [0 0 1 0 1]τ [00 00 01 00 01]τ

8 [0 0 0 2 0]τ [00 00 00 10 00]τ

9 [0 0 0 1 1]τ [00 00 00 01 01]τ

10 [0 0 0 0 2]τ [00 00 00 00 10]τ

11 [0 1 1 0 0]τ [00 01 01 00 00]τ

12 [0 1 0 1 0]τ [00 01 00 01 00]τ

13 [0 1 0 0 1]τ [00 01 00 00 01]τ

14 [1 0 0 0 1]τ [01 00 00 00 01]τ

• 4(ω, Tf) = U if ∃ (at least) s1, s2 ∈ P−1
o (ω) s.t. ∀σf ∈ Σf : σf /∈ s1 and ∃σf ∈

Σf : σf ∈ s2, which means that two �ring sequences consistent with the observation

ω exist such that one �ring sequence is fault-free and the other one contains at least

one faulty transition. Thus, the reached node in the SRD, after the occurrence of ω

is an F -uncertain node. �

Remark 5 As faults are assumed to be permanent, once the obtained diagnosis state is

certainly faulty (4(ω, Tf) = F), it is unnecessary to keep computing the diagnosis states

for the continuations of the observable sequence, since all the successive diagnosis states

will be certainly faulty. Thus, the subsequent of F -certain nodes are not constructed in the

SRD.

Remark 6 In the SRD, the initial node can be an F -uncertain node contrarily to the

classic diagnoser approaches where the initial diagnoser node is assumed to be normal. In

fact, this is due to the way we handle the unobservable reachability in the SRD construction

procedure, which is computed before the current node is left (using the Reach operator, See

Section 6.6.2). This feature does not a�ect the correctness of the diagnosis function, since

a fault transition can be �red directly from the initial marking of the LPN (as shown in

Example 1).

Without considering the markings held in the node, the SRD is used for the on-line

diagnosis. In fact, for each new observable event the diagnosis state is updated accordingly.

Besides, for the online diagnosis, only the types of nodes are depicted as a tag in the node

when the model is diagnosable, which serves to save memory and to speed up the output

diagnosis state.

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 139

6.7 Diagnosability Analysis Using The SRD

Regarding the diagnosability analysis, Sampath et al. [Sampath et al., 1995] have estab-

lished a necessary and su�cient condition for diagnosability on the basis of the generator

and diagnoser models. In fact, it consists in checking the existence of F -indeterminate

cycles in the diagnoser.

The same condition has been reformulated in [Cabasino et al., 2009b] for analyzing

diagnosability of bounded labeled Petri nets. Actually, this condition is used by most

compiled diagnoser-based approaches [Liu, 2014, Ushio et al., 1998, Zad et al., 2003].

Computationally, the analysis of such a condition consists in a double-check procedure

upon the diagnoser, as discussed in Chapter 4.

Aiming to tackle this issue, we have proposed in Section 4.3.4 a reformulation of the

necessary and su�cient condition for the analysis of diagnosability on the basis of the new

structure of the diagnoser and we have developed a systematic approach for the actual

veri�cation such a condition without needing any intermediate model. Hereafter, we adapt

these theoretical results to the SRD. The proofs are omitted as they are similar to that

provided in Chapter 4.

Proposition 10 Let c` = a1, a2, . . . , an be an F -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn for 1 ≤ i ≤ n. Then, there exists at least one fault-free cycle in LPN NL that

shares the same observation (σ1, σ2, . . . , σn)∗. �

This result is interesting for checking F -indeterminate cycles, using both the classic

diagnoser-based approaches and the SRD. It is, in fact, su�cient to check that an F -

uncertain cycle in the diagnoser corresponds to a faulty cycle in the original model (or the

intermediate model), without checking the existence of the faulty-free cycle (since this is

plain henceforth).

Proposition 11 Let c` = a1, a2, . . . , an be an F -uncertain cycle in D with δD(ai, σi) =

a(i+1)modn for 1 ≤ i ≤ n. Hence, if ∀1 ≤ i ≤ n : Img(ai.MN , Tf) = ∅, then c` is an

F -indeterminate cycle. �

This result means that if in all the diagnoser nodes of an F -uncertain cycle no faulty

transition from the normal set of markings to the faulty one exists, therefore this cycle is

an F -indeterminate cycle.

Remark 7 Proposition 11 can be viewed as a su�cient condition for non-diagnosability,

since an LPN is non-diagnosable if the condition in Proposition 11 is satis�ed by the SRD.

Then, the diagnosability analysis is stopped as soon as the condition in Proposition 11 is

140
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

met. In this case, the SRD will be constructed partially. Indeed, as will be discussed in

Section 6.8, diagnosability analysis will be performed simultaneously on the �y as the SRD

is set up. Such a feature would speed up the diagnosability analysis; in particular when the

LPN model is non-diagnosable.

6.7.1 Necessary and Su�cient Condition for Diagnosability

In this section, we discuss a reformulation of the necessary and su�cient condition for

diagnosability on the basis of the SRD. Firstly, we introduce the notion of `indicating

sequence' associated with a given F -uncertain cycle, which will be used to establish the

necessary and su�cient condition.

Dé�nition 42 (c`-indicating sequence)

Let c` = a1, a2, . . . , an be an F -uncertain cycle in D (the starting node a1 can be

arbitrarily chosen in the cycle), with δD(ai, σi) = a(i+1)modn for 1 ≤ i ≤ n. c`-indicating

sequence ρc` = S1,S2, . . . , is an in�nite sequence of sets of markings, such that:

− S1 = a1.MF ;

− ∀ i > 1 : Si = ReachTu(Img(Si−1, Tσ(i−1)modn
)); �

In fact, the c`-indicating sequence tracks the subsets of faulty markings in each node

of c` without considering the faulty markings generated through the occurrence of some

faulty transitions outgoing from the normal set of markings in the traversed nodes (except

for S1 which holds all the faulty states of a1.MF , i.e., S1 = a1.MF).

Actually, the c`-indicating sequence is introduced with the aim of tracking the actual

faulty cycles corresponding to a given F -uncertain cycle, if such cycles exist in the original

model.

Figure 6.8 depicts an F -uncertain cycle c` = a1, a2, . . . , an and its corresponding c`-

indicating sequence ρc` = S1,S2,

Proposition 12 Let c` = a1, a2, . . . , an be an F -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn for 1 ≤ i ≤ n, and let ρc` = S1,S2, . . . be the c`-indicating sequence associated

with c`. Therefore, the following property holds true:

∀k ∈ N∗ : S1+nk ⊆ S1+n(k−1)

�

The above-mentioned proposition means that, by ignoring the faulty transitions from

the normal sets of states into the faulty ones in the same node, one can ensure the (non-

strict) inclusion relationship, after covering the event-trace (σ1, σ2, . . . , σn) k times, be-

tween Si+nk and Si+n(k−1), for 1 ≤ i ≤ n and ∀k ∈ N∗.

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 141

Figure 6.8 � F -uncertain cycle c` and its c`-indicating sequence ρc`

Proposition 13 Let c` = a1, a2, . . . , an be an F -uncertain cycle in D, with δD(ai, σi) =

a(i+1)modn for 1 ≤ i ≤ n, and let ρc` = S1,S2, . . . be the c`-indicating sequence associated

with c`. Therefore, the following property holds:

∃ k ∈ N : ∀ i ∈ N : S(1+(k+i)n) = S1+(kn)

�

Proposition 13, establishes the fact that there exists an index i from which c`-indicating

sequence ρc` shows a repetitive bloc of length n: [S(i+1),S(i+2), . . . ,S(i−1+n)S(i+n)] with

S(1+i+n) = Si (i.e., a cycle). Phrased di�erently, ρc` always takes one of these two forms:

1. A prime sequence: a non-cyclic elementary sequence (possibly empty) S1,S2, . . . ,Si,
connected to an elementary cycle (S(i+1),S(i+2), . . . ,S(i−1+n),S(i+n))

∗, with S(i+1+n) =

Si+1 (See Figure 6.9 (a));

2. A �nite sequence of non-empty elements followed by an in�nite number of empty

elements: S1, S2, . . . ,Si for i ∈ N∗, with S(i+k) = ∅, ∀k ∈ N∗ (See Figure 6.9 (b));

Figure 6.9 � Two possible forms of an c`-indicating sequence

142
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

In fact, the �rst case, i.e., a prime sequence, reveals the presence of, at least, one faulty

cycle in the LPN model, that corresponds to the F -uncertain cycle c`. This is depicted in

the c`-indicating sequence by the presence of the elementary cycle. However, in the second

case, the F -uncertain cycle in the SRD does not correspond to an actual faulty cycle in

the model. In what follows, these features, will be used to check whether an F -uncertain

cycle is an F -indeterminate one or not.

Theorem 9 For an F -uncertain cycle c` = a1, a2, . . . , an in D, and ρc` = S1,S2, . . . its

corresponding c`-indicating sequence. Then, c` is an F -indeterminate cycle if and only if

∀i ∈ N∗ : Si 6= ∅

�

Actually, this theorem states that an F -uncertain cycle is an F -indeterminate one if

the c`-indicating sequence does not reach an empty �xed-point. In other words, it takes

the form of a prime sequence.

Let us take again, the SRD D generated from LPN NL in Example 3. The �rst

encountered F -uncertain cycle in D (since the construction is performed on the �y) is

c` = a4, a5. The c`-indicating sequence ρc` is depicted in Figure 6.10. According to

Theorem 9, c` is an F -indeterminate cycle since ρc` does not reach an empty �xed-point,

i.e., ∀i ∈ N∗ : Si 6= ∅. Therefore, LPN NL, in Figure 6.1 is non-diagnosable.

Figure 6.10 � Checking F -indeterminate cycle in Example 14 using Theorem 9

6.7.2 A Procedure for Checking Diagnosability

It is worth noticing that for the actual veri�cation of diagnosability, a systematic procedure,

derived directly from Theorem 9, can be performed as follows:

When an F -uncertain cycle c` is found in SRD D, then:

• generate the successive elements of c`-indicating sequence ρc` (starting from S1),

and for each element Si check the following conditions:

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 143

1. if Si = ∅, then cycle c` is not an F -indeterminate cycle and therefore the

procedure is stopped;

2. else, if Si 6= ∅ and ∃k ∈ N : i = 1 + kn (with n = |c`|), then:

(a) if Si = S(i−n), then cycle c` is an F -indeterminate cycle and stop the

procedure;

(b) otherwise, continue.

This procedure is repeated on each F -uncertain cycle generated (on the �y) in D.

It is worth underlining that, on the basis of Proposition 13, one can be certain that

the above procedure terminates since a �xed-point will ultimately be reached (within a

�nite delay).

6.8 On-the-�y Veri�cation Algorithm

In this section, we develop an on-the-�y depth-�rst search (DFS) algorithm for construct-

ing the SRD and for verifying diagnosability simultaneously. Constructing the SRD on

the �y serves to avoid the systematic generation of the whole state-space of the diag-

noser. That is, on one hand, one does not need to construct the part, of the diagnoser,

following F -certain nodes, since such a part is unnecessary for analyzing diagnosability

and performing online diagnosis (in the case where the LPN is diagnosable). On the other

hand, when the LPN is non-diagnosable, we stop constructing the diagnoser as soon as

an F -indeterminate cycle is found. Moreover, the proposed algorithm �rstly checks the

su�cient condition for non-diagnosability, proposed in Proposition 11. Thus, as soon as

such a condition is met, the LPN is stated to be non-diagnosable and the veri�cation

process is stopped without checking the necessary and su�cient condition.

The following functions and data structures are used in the elaborated algorithm:

144
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

Algorithm 4 On-the-�y algorithm to construct the SRD and check diagnosability

Input: NL = (N,m0,Σ, ϕ);

Output: D = 〈Γ,Σo, δD,Γ0〉 ; Diagnosability verdict

9 Set of markings: Mn,Mf , Ynf , Yf ,M′n,M′f
10 Set of Transitions: Tn, Tf , T ′n, T ′f
11 Boolean: bool = True, tag = False

12 Diagnoser node: a, a′, a′′

13 Initialization:

14 Mn = ReachTreg(m0)

15 Mf = ReachTu(Img(Mn, Tf))

16 Γ0.MN =Mn

17 Γ0.MF =Mf

18 Γ = {Γ0}; a = Γ0

19 Tn = EnableTo(Mn); Tf = EnableTo(Mf)

20 List_Nodes = {a}; List_Labels = ∅
21 if (Diagnoser_Construct (NL, D, Tn, Tf ,Mn,Mf)) then

22 return Non-Diagnosable

23 else return Diagnosable

• IsUncertain(c`): is a function that returns a Boolean value (true if the encountered

cycle c` in the SRD is composed of only F -uncertain nodes and false otherwise).

• List_Nodes, List_Nodes1, Cycle_Nodes: are three �nite ordered lists of di-

agnoser nodes or sets of markings. These lists are used for checking the existence of

cycles.

• List_Labels, Cycle_Labels: are two �nite ordered lists of labels (observable

events), corresponding respectively to List_Nodes, Cycle_Nodes. They are

used to check the existence of cycles in the SRD.

• Add(a): an operation that adds an element a to a given ordered list.

• RemoveLast(E): an operation that removes the last added element from an ordered

list E.

• Copy(i, End): is an operation that copies elements from index i to the end of a

given ordered list, into a new empty ordered list.

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 145

Algorithm 5 Diagnoser_Construct() function
Input: NL, D, Tn, Tf ,Mn,Mf

Output: Boolean value

1 Function Diagnoser_Construct():

2 foreach (Tσ ∈ Tn) do

3 M′n = ReachTreg (Img(Mn, Tσ))

4 Ynf = ReachTu(Img(M′n, Tf))

5 Yf = ReachTu(Img(Mf , Tσ))

6 a′.MN =M′n
7 if (Ynf ⊂ Yf) then

8 M′f = Yf ; a
′.tag = True

9 a′.MF =M′f

10 else

11 M′f = Ynf = ∅
12 a′.MF =M′f

13 List_Labels.Add(σ)

14 if (∃ a′′ ∈ Γ | a′′ = a′); then

15 a′′ = δ(a, σ)

16 if (a′ ∈ List_Nodes) then

17 Cycle_Nodes = List_Nodes.Copy(Index(a′), End)

18 Cycle_Labels = List_Labels.Copy(Index(a′), End)

19 if (IsUncertain(Cycle_Nodes)) then

20 foreach (a ∈ Cycle_Nodes do

21 if (a.tag = False) then bool = False

22 if (bool = True) then return True

23 if (Check_Indicating_Sequence(G, a′, Cycle_Lables)) then

24 return True

25 else List_Nodes.Add(a′)

26 else

27 Γ = Γ ∪ {a′} a′ = δ(a, σ)

28 T ′n = EnableΣo(M′n); T ′f = EnableΣo(M′f)

29 Diagnoser_Construct (G, D, T ′
n, T ′

f , M′
n, M′

f)

30 RemoveLast(List_Nodes)

31 RemoveLast(List_Labels)

32 foreach (Tσ ∈ Tf\Tn) do

33 M′N = ∅
34 M′F = ReachTu(Img(MF , Tσ))

35 a′.M′n =M′N
36 a′.M′F = bdd_Reduce(M′F , Tu)

37 if (∃ a′′ ∈ Γ | a′′ = a′); then a′′ = δ(a, σ)

38 else Γ = Γ ∪ {a′}, a′ = δ(a, σ)

39 return False

146
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

The initialization step of the algorithm (cf. Algorithm 4, Lines 5-11) serves to compute

the initial diagnoser node. Then, the construction of the following diagnoser nodes is

performed by function Diagnoser_Construct(). The construction is performed using

a depth-�rst exploration regarding the set of enabled (observable) transitions from the

current node. With the aim of using the constructed diagnoser to perform the online

diagnosis while avoiding the construction of the subsequent F -certain diagnoser nodes,

Diagnoser_Construct() function builds only the �rst encountered F -certain node (if

there exists) in the diagnoser path, by exploring the set of observable transitions enabled

only from the set of faulty markings (i.e., Tf\Tn) (Algorithm 7, Lines 32-38).

Regarding the diagnosability veri�cation, the paths of interest are generated (and

explored) from the set of observable transitions enabled from the set of normal markings of

the current node (i.e., Tn). It should be noticed that Boolean variable tag associated with

each diagnoser node and initialized to False is used for checking the su�cient condition

given in Proposition 11.

Algorithm 6 Check_Indicating_Sequence() function
Input: G, a′, Cycle_Event, Int i, n

Output: Boolean value

1 Function Check_Indicating_Sequence()

2 S1 = a′.MF , i = 1, n = |Cycle_Event|, List_Nodes1.Add(S1)

3 while (Si 6= ∅) do
4 S(i+1) = ReachTu(Img(Si, Tσ(i+1)modn

))

5 if (i mod n) then

6 if ((i ≥ n)&(S(i+1) = S(i−n+1)) then return (True)

7 else List_Nodes1.Add (Si), i+ +

8 return False

The computation of a new node a′, reachable by the occurrence of an observable event

σ from node a, is completed by the `Reach' operation upon the enabled unobservable

sequences. If diagnoser node a′ has already been encountered (i.e., a similar diagnoser

node has already been computed) then the diagnoser is updated by only adding a new arc

towards this node (cf. Algorithm 7, Lines 14, 15). In this case, function IsUncertain()

checks if node a′ belongs to an F -uncertain cycle (cf. Algorithm 7, line 19). If so,

then the su�cient condition proposed in Proposition 11 is �rstly checked by analyzing

if all tags of the diagnoser nodes in this F -uncertain cycle are True (c.f. Algorithm 7,

Lines 20-21), which means that the F -uncertain cycle is an F -indeterminate one. In this

case, the function Diagnoser_Construct() returns True and the veri�cation process

is stopped. If the su�cient condition is not satis�ed, the necessary and su�cient condition

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 147

for diagnosability is checked using the proposed procedure in Section 6.7.2.

In practice, function Check_Indicating_Sequence() (c.f. Algorithm 6) is launched

in order to compute the successive elements of ρc` associated with a given F -uncertain

cycle. If a generated non-empty element Si (with i > n) is equal to S(i−n), True is

returned, which means that the cycle is an F -indeterminate one. Thus, Algorithm 4

outputs that the LPN model is non-diagnosable and the diagnoser construction procedure

is stopped. Otherwise, an empty element will ultimately be generated, and therefore False

is returned, which means the cycle is not F -indeterminate. The construction procedure is

hence continued in a recursive manner. Once all the branches of interest are constructed

and explored with no F -indeterminate cycle has been met, Algorithm 4 outputs that the

LPN model is diagnosable.

6.9 Experimentation

A tool, called DPN-SOG (forDiagnosability analysis ofPetriNets using SymbolicObservation

Graphs) [Boussif et al., 2017], implementing the proposed approach was developed in C++

programming language. DPN-SOG consists in a modi�ed and re-implemented version of

ObsGraphTool [Klai and Petrucci, 2008], which is a BDD-based tool implementing vari-

ous veri�cation approaches for work�ows/PNs using symbolic observation graphs [Haddad

et al., 2004].

In order to assess the e�ectiveness and the scalability of the SRD approach, we reuse

the benchmark of Figure 4.11, which was introduced in Chapter 4 (See Section 4.6.1 for

more details). The obtained results are discussed with respect to a reference approach for

fault diagnosis of LPNs, called MBRG/BRD technique [Cabasino et al., 2014]. In fact,

the MBRG/BRD technique is implemented as a MATLAB Toolbox called PN_DIAG

tool [Pocci, 2012]. It allows generating the whole state-space of the MBRG and the BRD

graphs of an LPN, which respectively are more or less equivalent to the generator and the

diagnoser in [Sampath et al., 1995], but for PNs, and then performing the diagnosability

analysis (for more details about MBRG/BRD technique and PN_DIAG tool, one can

refer to [Cabasino et al., 2014, Cabasino et al., 2012b, Pocci, 2012]). It should be noticed

that the experiments have been performed on 64-bit PC (CPU: Intel Core i5, 2.5 GHz,

RAM: 6GB). We �x 5 hours as a maximum analysis duration above which we consider

that the tool failed to return a result.

We evaluate the memory/time e�ciency of our approach while varying the number of

observable and unobservable transitions in the model. Thus, we consider the following

parameters: m = 1, b = 10, and k = 4. Transitions t0 and t1 are observable while

transitions fi ∈ Tf are faulty (for 1 ≤ i ≤ 4). Regarding transitions ti,10 (i.e., transitions

in parallel with faulty transitions), two cases are considered:

148
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

Test 1: transitions ti,10 are non-observable (for 1 ≤ i ≤ 4), in this case the model is

non-diagnosable;

Test 2: transitions ti,10 are observable (for 1 ≤ i ≤ 4), in this case the model is

diagnosable.

Concerning the reset of transitions, we �rst consider them unobservable and then

after each simulation, we increase the number of observable transitions in the model (by

returning to observable transition in each production line of the benchmark), i.e., we

increment the number of observable transitions after each simulation, from 2, 6,. . . , until

38 observable transitions, for Test 1 and from 6, 10,. . . , until 42 observable transitions for

Test 2. Finally, it should be noticed that for the sake of clarity each transition symbol is

considered also as its label (i.e., ϕ(t0) = t0).

6.9.1 Experimental Results

The experimental results are summarized in Table 6.3, where:

� Obs is the number of observable transitions in the considered model;

� |DS | and |DT | are, respectively, the numbers of nodes and arcs in the SRD;

� De and Dm are, respectively, the elapsed time for generating the SRD and analyzing

diagnosability on the �y, and the memory required for building the SRD;

� |G1S |, |G1T | and G1e are, respectively, the numbers of states and transitions in the

MBRG and the elapsed time for constructing the MBRG;

� |G2S |, |G2T | and G2e are, respectively, the numbers of states and transitions in the

BRD and the elapsed time for constructing the BRD;

� `Diag' is the time required for giving diagnosability verdict using MBRG/ BRD

approach.

One has to note that the PN_DIAG Tool takes a mathematical model of the LPN

as an input, and has �rst to compute the whole state-space of the MBRG graph and

then generate the whole state-space of BRD graph. Both graphs are then used for an-

alyzing diagnosability by searching F -indeterminate cycles [Cabasino et al., 2014]. Our

tool, DPN-SOG Tool, takes an LPN in prod format [Varpaaniemi et al., 1997] as an in-

put and simultaneously has to generate the SRD state-space on the �y while analyzing

diagnosability. Thus, once an F -indeterminate cycle is found, the construction of SRD

and the veri�cation process is stopped to avoid generating the whole state-space. In the

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 149

case of a diagnosable model, a partially generated state-space of the SRD is su�cient for

performing the online diagnosis, as discussed earlier in the chapter.

150
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

T
ab
le
6.
3
�
E
xp

er
im

en
ta
l
C
om

pa
ra
ti
ve

R
es
ul
ts

fo
r
T
es
t
1
an
d
T
es
t
2
B
as
ed

on
th
e
L
P
N
B
en
ch
m
ar
k

SR
D

M
B
R
G

B
R
D

O
bs

|D
S
|

|D
T
|

D
e
(s

)
D

m
(k
b)

|G
1
S
|
|G

1
T
|

G
1
e
(s

)
|G

2
S
|
|G

2
T
|

G
2 e

(s
)

D
ia
g

(s
)

2
4

3
≤

0.
1

33
7

17
49

≤
0.
1

4
4

≤
0.
1

0.
13

Non-diagnosable(Test1)

6
12

11
≤

0.
1

69
9

82
23
3

0.
5

34
68

≤
0.
1

0.
31

10
20

19
≤

0.
1

10
42

25
7

78
5

2
16
4

43
6

1
a.
q.

14
28

27
≤

0.
1

13
68

62
6

20
17

6
51
4

15
40

10
a.
q.

18
36

35
≤

0.
1

16
79

12
97

43
37

17
12
52

40
04

68
a.
q.

22
44

43
≤

0.
1

19
47

24
02

82
49

47
25
94

86
44

41
9

a.
q.

26
52

51
≤

0.
1

21
92

40
97

14
35
3

12
0

48
04

16
46
8

14
93

-

30
60

59
≤

0.
1

24
25

65
62

23
34
5

28
9

81
94

28
67
6

45
43

-

34
68

67
≤

0.
1

26
51

10
00
1

36
01
7

68
5

*
*

o.
t.

-

38
76

75
≤

0.
1

28
45

14
64
2

53
25
7

13
84

*
*

o.
t.

-

6
17

34
0.
2

25
83

17
66

0.
1

35
99

≤
0.
1

0.
48

Diagnosable(Test2)

10
82

21
8

0.
5

86
89

82
32
6

0.
63

16
5

46
7

0.
8

a.
q.

14
25
7

77
0

0.
6

21
31
0

25
7

10
26

2.
28

51
5

15
71

8
a.
q.

18
62
6

20
02

0.
8

43
92
9

62
6

25
02

7.
15

12
53

40
35

53
.6

a.
q.

22
12
97

43
22

1
81
41
2

12
97

96
06

20
.2
9

25
95

86
75

26
1.
1

a.
q.

26
24
02

82
34

1.
1

13
99
66

24
02

96
06

55
.1
8

48
05

16
49
9

10
84
.5

a.
q.

30
40
97

14
33
8

1.
6

22
94
87

40
97

16
38
6

15
5

81
94

28
70
7

34
89

-

34
65
62

23
33
0

1.
8

34
33
22

65
62

26
24
6

37
1

13
12
5

46
69
1

99
91

-

38
10
00
1

36
00
2

2.
5

50
36
01

10
00
1

40
00
2

72
1

*
*

o.
t.

-

42
14
64
2

53
24
2

3.
7

71
00
52

14
64
2

58
56
6

16
24

*
*

o.
t.

-

*:
N
o
re
su
lt
ob
ta
in
ed

in
5
ho
ur
s.

o.
t.
:
O
ut

of
ti
m
e
(s
im

ul
at
io
n
ti
m
e
≥

4
ho
ur
s)
.

a.
q.
:
`a
cc
id
en
t
qu
it
'

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 151

6.9.2 Discussion

In this section, we highlight the main observations that can be derived from the obtained

results. Firstly, by considering m = 1, k = 4 and b = 10, the LPN benchmark has 45

places, 46 transitions, while its reachability graph contains 14642 markings and 58566

transitions. Secondly, it should be noticed that the LPN benchmark is non-diagnosable

for Test 1 whereas it is diagnosable for Test 2. In what follows, the obtained results are

discussed according to two features:

6.9.2.1 Memory/Time E�ciency of the SRD approach

� In the case of the non-diagnosable models (i.e., Test 1), one can observe that the

SRD approach e�ciently analyze the diagnosability by only constructing the rel-

evant part of the diagnoser (as regards of diagnosability analysis), which reduces

the memory/time consumption. Actually, as the construction of the diagnoser and

veri�cation of diagnosability are simultaneously performed on the �y. As soon as an

F -indeterminate cycle is found, the construction/veri�cation process is stopped and

the model is stated to be non-diagnosable (without necessarily building the whole

state-space of the diagnoser). Consequently, the diagnosability verdicts are given in

less than one second even for large values of Obs.

� In the case of diagnosable models (i.e., Test 2), the SRD approach potentially needs

to construct a larger part of the diagnoser state-space. Consequently, the veri�cation

process checks all the F -uncertain cycles that exist in the diagnoser. Thanks to the

systematic procedure for checking diagosability (established in Section 6.7.2), the

veri�cation time is not too much a�ected (it remains in the order of seconds for

large number of observable events, i.e., Obs).

� The e�ciency of the symbolic representation can be clearly shown in the case of

diagnosable models (i.e., Test 2) since a larger part of the SRD state-space is poten-

tially generated (contrarily to the case of non-diagnosable models where only a small

part of the SRD is generated). One can observe that for the same reachability state-

space (i.e., 14642 markings and 58566 transitions), the required memory to build

the SRD increases proportionally with the number of observable transitions. In fact,

the symbolic representation leads to an important memory saving when the model

contains a large number of unobservable transitions. That is, when the SRD nodes

contain a large number of markings (which corresponds to the case of a large num-

ber of unobservable transitions in the model), then the corresponding BDDs will be

e�ciently compacted. This is due to the fact that BDDs are particularly convenient

152
Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability

Diagnoser

to represent large sets of markings. However, when The SRD nodes contain a few

number of markings, it is more di�cult to compact them using BDDs. Thus, this

explains the considerable memory consumption when the model contains a large

number of observable transitions. In fact, when the number of observable transi-

tions increases in the model, the SRD converges to the classic diagnosers [Sampath

et al., 1995, Cabasino et al., 2009b] in terms of memory required for the diagnoser

construction, which decreases the e�ciency of the symbolic representation.

6.9.2.2 A comparative Analysis with the MBRG/BRD approach

� It is worth recalling that for MBRG/BRD approach, the PN_DIAG tool �rstly

needs to generate the MBRG graph and thereafter the BRD graph to �nally analyze

diagnosability.

� In the case of non-diagnosable models (i.e., Test 1), our approach is largely more

e�cient compared to the MBRG/BRD approach. This is a logical result since our

approach is based on the on-the-�y technique for generating the diagnoser and ana-

lyzing diagnosablity (as explained above).

� Our approach remains more e�cient when there is a large number of unobservable

transitions compared to the MBRG/BRD approach in the case of diagnosable models

(Test 2). This may be explained through three points:

1. Our approach only constructs one graph since diagnosability analysis is per-

formed directly on the diagnoser.

2. The systematic procedure for checking F -indeterminate cycles allows reducing

the veri�cation time compared to the MBRG/BRD (since it su�ers from the

double-check issue discussed earlier in this chapter).

3. Our approach generates only the necessary part of the SRD for analyzing di-

agnosability and performing online diagnosis contrarily to the MBRG/BRD

approach, where the whole state-spaces of the MBRG and BRD graphs are

generated to analyze diangosbaility.

� As shown in Table 6.3, when the model contains more than 30 observable transi-

tions, PN_Diag tool spends more than 5 hours without generating the BRD and

thus without deciding the diagnosability. However, our tool generates the SRD and

analyzes diagnosability in few seconds.

� Regarding the diagnosability analysis using PN_DIAG tool, some accident quits

occur during its running (i.e., an exit without any output results). This may be

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
Diagnoser 153

caused by eventual bugs in the tool. Thus, we do not compare the elapsed time for

checking diagnosability.

6.10 Conclusion

In this chapter, a diagnoser-based approach to deal with fault diagnosis of bounded and

labeled Petri net models is presented. The approach consists in building a partial symbolic

diagnoser called `Symbolic Reachability Diagnoser' with a new structure that consists in

separating normal markings from faulty ones in each diagnoser node. In fact, the sets of

normal and faulty markings, in each diagnoser node, are encoded using a symbolic repre-

sentation, i.e. Binary Decision Diagrams. Moreover, a necessary and su�cient condition

for diagnosability analysis of Petri nets is derived from the diagnoser structure, and a sys-

tematic procedure for checking such a condition without building any intermediate model

is established. Finally, an on-the-�y algorithm to construct the diagnoser and check the

diagnosability simultaneously is provided. Finally, some experimental results that show

the e�ectiveness of the proposed approach are discussed.

In the second part of the manuscript, we address various DES diagnosis issues on

the basis of the twin-plant structure. Indeed, as mentioned earlier in the dissertation,

the twin-plant based technique shows some substantial advantages in terms of complexity

compared to the diagnoser-based technique, when it comes to investigate diagnosability.

The developed contributions are related to both permanent and intermittent faults while

considering di�erent aspects.

Part III

CONTRIBUTIONS REGARDING

THE TWIN-PLANT BASED

APPROACH

Chapter 7

Practical Veri�cation of

Diagnosability in a Model-Checking

Framework

Sommaire

7.1 Introduction . 158

7.2 Model-Checking . 159

7.3 A Review on Fault Diagnosis Using Model-Checking 162

7.4 State-Based Modeling of DESs . 166

7.5 Diagnosability Analysis . 167

7.6 Diagnosability as a Model-Checking Problem 170

7.7 K/Kmin−Diagnosability as a Model-Checking Problem 171

7.8 Diagnosability Veri�cation Using NuSMV Model-Checker 176

7.9 Experimentation . 176

7.10 Conclusion . 179

Summary

This chapter discusses the practical veri�cation of permanent fault diagnosability in a

model-checking framework. In fact, the diagnosability issue is reformulated as a model-

checking problem and then tackled using model-checking techniques. The diagnosability

condition is expressed using CTL formula while the twin-plant structure is transformed

into a Kripke structure and, therefore, diagnosability is investigated as a model-checking

problem. Moreover, we reformulate the K-diagnosability issue in model-checking frame-

work and we discuss the problem of Kmin-diagnosability (the minimal value of K ensuring

diagnosability). Finally, some illustrations are provided through a benchmark.

The work presented in this chapter is the subject of publications in DCDS'15 [Boussif

and Ghazel, 2015a] and MSR'15 [Boussif and Ghazel, 2015b].

158
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

This chapter is organized as follows: after a short introduction regarding the practical

veri�cation of diagnosability, we brie�y recall the main concepts regarding model-checking

in Section 7.2 and we give an overview of fault diagnosis using model-checking techniques

in Section 7.3. In Section 7.4, we discuss some modeling issues in view of using model-

checking techniques. Section 7.5 �rst recalls Cimatti's de�nition of diagnosability [Cimatti

et al., 2003], and then introduces an extension of this de�nition in order to comply with the

classic one [Sampath et al., 1995]. The reformulation of diagnosability as a model-checking

problem is discussed in Section 7.6. In Section 7.7, we introduceK-diagnosability as a CTL

model-checking problem and we discuss the Kmin-diagnosability issue. In Section 7.9, we

illustrate the concepts discussed through a level crossing benchmark. Finally, Section 7.10

draws various concluding remarks.

7.1 Introduction

Diagnosability of DESs [Lin, 1994, Sampath et al., 1995, Sampath et al., 1996] has become

an interesting research topic in both arti�cial intelligence and control theory communities.

A large and a signi�cant amount of works have been devoted the to the analysis of such a

property in centralized models [Bourgne et al., 2009, Morvan and Pinchinat, 2009, Hosseini

et al., 2013, Schumann and Pencolé, 2007, Zad et al., 2003, Liu, 2014, Grastien, 2009,

Jiang and Huang, 2001, Yoo and Garcia, 2004, Yoo and Lafortune, 2002b], decentralized

models [Philippot et al., 2013, Debouk et al., 1998, Moreira et al., 2011, Wang et al.,

2007, Sayed-Mouchaweh and Carre-Menetrier, 2008, Lafortune et al., 2005, Provan, 2002,

Cabasino et al., 2013a, Qiu and Kumar, 2006, Wang et al., 2004, Qiu et al., 2009, Schmidt,

2010], distributed and modular models [Ye and Dague, 2013, Contant et al., 2006, Debouk

et al., 2002b, Zhou et al., 2008, Schmidt, 2013], Petri net framework [Cabasino et al.,

2014, Liu, 2014, Li et al., 2015c, Cabasino et al., 2009b, Cabasino et al., 2012a, Basile

et al., 2012a], etc.

Unfortunately, most of the approaches developed are oriented to the de�nition of a the-

oretical frameworks, and do not address the problems related to the practical application

of the approaches developed. Moreover, such approaches propose ad-hoc algorithms for

the actual veri�cation of diagnosability which are implemented in academic tools. Hence,

the practical implementation of the developed DESs diagnoser techniques is an issue that

still needs exploration.

The works in [Cimatti et al., 2003, Pecheur et al., 2002], which are rather di�erent from

the works mentioned above, propose a practical framework for the formal veri�cation of

the diagnosability using model-checking techniques. In fact, authors attempted to bring

forward an e�ective platform for the analysis of diagnosability that can be practically

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 159

applied in the development process of diagnosis systems. The main advantage of the

proposed approach is that the actual veri�cation is performed using a model-checking tool.

Fortunately, a wide range of powerful and optimized model-checkers have been developed

in the formal veri�cation community and successfully used for the veri�cation/validation of

large scale industrial systems. Such tools can be used for the veri�cation of diagnosability

using the practical framework proposed in [Cimatti et al., 2003, Pecheur et al., 2002].

The work we propose in this chapter is based on this practical approach [Cimatti

et al., 2003], where some improvements and extensions to deal with various fault diagnosis

problems are discussed.

7.2 Model-Checking

Techniques for automatic formal veri�cation of �nite state transition concurrent systems

have been developed in the last three decades to the point where major chip design com-

panies are beginning to integrate them into their normal quality assurance process. The

most widely used of these methods is called Model-Checking [Biere et al., 2003]. Model-

checking is originated from the independent work of two pairs in the early eighties: Clarke

and Emerson [Clarke and Emerson, 1981] and Queille and Sifakis [Queille and Sifakis,

1982]. Model-checking is an automatic formal veri�cation technique that is widely applied

to the design of complex dynamic systems (communication protocols, hardware design,

software design, etc.). It allows for verifying whether the behavior of a system (modeled

by a Kripke structure) satis�es a given property (expressed in a property speci�cation

language) or not using e�cient algorithms based on an exhaustive exploration of the sys-

tem behavior. A counter-example is generated if the system does not satisfy the property,

which is an interesting feature namely for debugging [Clarke et al., 1999, Baier et al., 2008]

.

The model-checking problem can be de�ned as follows:

Dé�nition 43 (Model-Checking Problem)

Let M be a design (abstraction as a transition system) and let p be a speci�cation

(expressed in a temporal logic) to be checking. The model checking problem is to �nd all

the states s (of the system model) such that: M, s |= p.

When applying model checking to a design, the following di�erent phases can be distin-

guished [Baier et al., 2008]:

• Modeling phase:

160
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

1. model the system under consideration using the model description language of

the model checker at hand;

2. formalize the property to be checked using the property speci�cation language.

• Running phase: run the model checker to check the validity of the property in the

system model;

• Analysis phase:

1. property satis�ed? → check next property (if any);

2. property violated? →

(a) analyze generated counterexample by simulation;

(b) re�ne the model, design, or property; repeat the entire procedure.

3. out of memory? → try to reduce the model and try again.

The prerequisite inputs to model-checking are (1) a model of the system (a transi-

tion system) under consideration and (2) a formal speci�cation to be checked.

7.2.1 The System Modeling

Generally, the systems under veri�cation are modeled by Kripke Structure (for state-

based models) or Labeled Transition Systems (for event/transition-based model). Both

models are interchangeable in many contexts [Reniers and Willemse, 2011, De Nicola

and Vaandrager, 1995, De Nicola and Vaandrager, 1990]. However, the Kripke structure

remains the standard representation of models in the model-checking literature.

Dé�nition 44 (Kripke Structure (KS))

A Kripke Structure is a tuple 〈S,AP,→, L〉, where

� S is the set of states;

� AP is a set of atomic propositions;

� →⊆ S × S is a total transition relation, i.e. ∀s ∈ S, ∃t ∈ S : (s, t) ∈→;

� L : S → 2AP is the state labeling function ;

The notion of a Kripke structure is only a vehicle for illustrating the algorithms. It

captures the semantics of the system under investigation. For a concrete design language,

the process of extracting a Kripke structure from a given representation may not be that

easy. In particular, the size of the system description and the size of the state-space can

be very di�erent [Biere et al., 2003].

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 161

7.2.2 The Speci�cation Modeling

To make a rigorous veri�cation possible, properties should be described in a precise and

unambiguous manner. This is typically done using a property speci�cation language. The

speci�cation languages most used are temporal logics. Temporal logics are basically an

extension of traditional propositional logics with operators that refer to the behavior of

systems over time. It allows for the speci�cation of a broad range of relevant system

properties such as functional correctness (does the system do what it is supposed to do?),

reachability (is it possible to end up in a deadlock state?), safety (something bad never

happens), liveness (something good will eventually happen), fairness (does, under certain

conditions, an event occur repeatedly?), and real-time properties (is the system acting in

time?) [Baier et al., 2008].

7.2.2.1 Linear Temporal Logic (LTL)

Pnueli [Pnueli, 1977] has introduced the linear temporal logic for the speci�cation and

veri�cation of the designs. LTL reasons over linear traces of the Kripke structure through

time. At each time instant, there is only one real future timeline that is considered.

Conventionally, that timeline is de�ned as starting `now ', in the current time step, and

progressing in�nitely in the future. LTL formulas are composed of �nite set of atomic

propositions, Boolean connectives ¬,∧,∨, and the temporal connectives: `X' that means

`neXt ', `G: Globally ',`R: Release', `F : in the Future',`U : Until '

Dé�nition 45 (Syntax of LTL)

LTL formulas over the set of atomic proposition (AP) are formed according to the following

grammar:

φ ::= true | a |φ1 ∧ φ2 |Xφ | φ1 ∪ φ2

where a ∈ AP .

7.2.2.2 Computation Tree Logic (CTL)

CTL is a temporal logic based on propositional logic with a discrete notion of time, and

only future modalities. CTL is an important branching temporal logic that is su�ciently

expressive for the formulation of an important set of system properties. It was originally

used by Clarke and Emerson [Clarke and Emerson, 1981] and (in a slightly di�erent form)

by Queille and Sifakis [Queille and Sifakis, 1982].

CTL has a two-stage syntax where formulas in CTL are classi�ed into state and path

formulas. The former are assertions about the atomic propositions in the states and their

branching structure, while path formulas express temporal properties of paths.

162
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

Dé�nition 46 (Syntax of CTL)

LTL state formulas over the set of atomic proposition (AP) are formed according to the

following grammar:

ψ ::= true | a |ψ1 ∧ ψ2 | ¬ψ | ∃φ | ∀φ

where a ∈ AP and φ is a path formula. CTL path formulas are formed according to the

following grammar:

φ ::= Xψ | ψ1 ∪ ψ2

where ψ,ψ1, ψ2 are states formulas.

7.2.3 Progress in Model-Checking

The main technical challenge in model-checking is the state explosion problem, since the

size of the global transition system can be (at least) exponential in the size of design.

Considerable progress has been made to partially overcome this problem: methods

based on abstraction, counterexample-guided abstraction, symbolic representation, and

compositional reasoning are used [Emerson, 2008, Clarke et al., 2001]. Indeed, the symbolic

model-checking (SMC) [McMillan, 1993, Clarke et al., 1996, Biere et al., 1999b], which

is originated from the CTL and Fixpoint based model-checking algorithm uses binary

decision diagrams (BDDs) to handle the sets of states and transitions. Currently, with the

SMC techniques, it is possible to verify designs modeled with 100 to 300 state variables and

having about 1030 to 10100 or more global states. In the last decade, SAT-based bounded

model-Checking (BMC) [McMillan, 2003, Biere et al., 1999a] has been put forward as

an alternative approach. In fact, the SAT-based approaches [Prasad et al., 2005] can

accommodate larger designs than the BDD-based approaches. However, it only explores

for `close' errors at depth bounded by k where typically k ranges from a few tens to

hundreds of steps. In general it cannot �nd `deep' errors and provide veri�cation of

correctness [Emerson, 2008].

7.3 A Review on Fault Diagnosis Using Model-Checking

Due to their expressiveness, temporal logics have been used for for a long time in super-

visory control of DESs. For instance, [Thistle and Wonham, 1986, Lin, 1991, Ling and

Ionescu, 1994, Deshpande and Varaiya, 1996] uses linear-time temporal logic (LTL); [Os-

tro� and Wonham, 1990, Ostro�, 1989] uses real-time temporal logic (RTTL), [Antoniotti,

1995] uses computation tree logic (CTL). Regarding the fault diagnosis of DESs, the tem-

poral logics provide a general speci�cation for the notion of failures. Thus, in addition

to expressing the fault event occurrences and the reachability of faulty states, temporal

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 163

logics can express more complex kinds of failures such as: a certain set of states should be

visited in�nitely often, or a certain set of states should eventually be invariant, or other

invariance, recurrence, and stability properties.

The �rst work dealing with fault diagnosis of DESs using temporal logic was made

by Darwiche et al. [Darwiche and Provan, 1996], where a modeling formalism was pro-

posed. In [Cordier and Largouet, 2001], the authors have discussed how model-checking

techniques can be exploited for the diagnosis task by computing trajectories explaining

observations generated by the system based on automata behavioral models. In the last

�fteen years, various approaches and formalism based on the formal speci�cation and

model-checking frameworks have been proposed. In what follows, we give an overview of

the relevant approaches proposed.

7.3.1 Fault Diagnosis with LTL-based Speci�cations

Fault diagnosis of DES using LTL speci�cations was the subject of S. Jiang's PhD the-

sis [Jiang, 2002]. In this work, the LTL formulas are used for specifying failures in the

system. That is, an in�nite state-trace of the system is said to be faulty if it violates the

given LTL formula. Fault diagnosis in this context can be viewed as a generalization of the

language/automata-based fault diagnosis [Sampath et al., 1995, Zad et al., 2003], since it

can capture the failure representing the violation of both liveness and safety properties,

whereas the prior formal language/automaton-based framework can capture the failures

representing the violation of only the safety properties (i.e., the occurrence of faulty events

or the reachability of faulty states) [Jiang and Kumar, 2004].

In such a work [Jiang, 2002], diagnosability of DESs is de�ned in the temporal logic

setting and the veri�cation problem is reduced to that of LTL model-checking. Algorithms

for performing such a veri�cation of diagnosability and synthesis of a diagnoser are pro-

vided. The complexity of the algorithm, for the diagnosability analysis, is exponential in

the length of each LTL formula, and polynomial in the number of system states and the

number of speci�cations. The problem of the failure diagnosis of intermittent/repeated

faults [Jiang et al., 2003b] has also been studied and the corresponding algorithms were

given in [Jiang and Kumar, 2006].

7.3.2 Rules-based Model Using First-order LTL

The rules-based models [Chandra and Kumar, 2002] are speci�c assignment program mod-

els [Kumar et al., 1993], which can be used for representing DESs. In such a formalism,

state-variables and rules for modifying their values are used to compactly model a DES.

The representation of a system with faults in the rules-based modeling formalism is poly-

164
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

nomial in the number of signals and faults (which are assumed to be binary valued). In

the rules-based modeling formalism, states correspond to values of certain variables which

start from certain initial values and evolve as the events occur. The rule-based models are

known to be compact. Thus, developing techniques for failure diagnosis that are able to

exploit the compactness of such models is an interesting task.

In this regard, authors in [Huang et al., 2004, Huang, 2003] have developed symbolic

techniques based on �rst-order temporal logic model-checking for verifying diagnosability.

Moreover, an on-line algorithm for diagnoser synthesis is obtained by using predicates and

predicate transformers. First-order linear temporal logic (FOLTL) [Emerson, 1990, Hughes

and Cresswell, 1996] is obtained by taking Propositional linear temporal logic (PLTL)

and endowing it with a �rst-order logic. That is, in addition to atomic propositions,

Boolean connectives, and temporal operators, it is endowed with variables, functions,

and predicates, each interpreted over appropriate domains, and existential and universal

quanti�ers. The diagnosability analysis in the rules-based model, is a generalization of

the diagnosability analysis in the automaton setting presented in work [Jiang and Huang,

2001].

7.3.3 Fault Diagnosis via Temporal Epistemic Logic

Temporal Epistemic logic (TEL) is an extension of the Epistemic logic (which is used to

describe and reason about knowledge of agents and processes) by considering the LTL with

past operators. Such an extension is called KL [Halpern and Vardi, 1989] (or LTLK [M¦ski

et al., 2012]).

The �rst contribution on the basis of TEL was proposed in [Cimatti et al., 2005] where

a reformulation of diagnosability as epistemic properties is introduced. In this work, the

DES model is represented as a deontic interpreted system [Gammie and Van Der Meyden,

2004], in which the diagnoser is a particular agent that stores in its local states the outputs

and the commands. The particularity of such an approach, regarding the diagnosability

analysis using (a temporal-only) model-checking, is the fact that it does not reason about

pair of traces but it considers sets of (observationally) equivalent traces.

In a series of works [Bozzano et al., 2014, Gario, 2016, Bozzano et al., 2013b, Bozzano

et al., 2013a], Bozzano et al. have proposed a formal approach to the design of FDI (Fault

Detection and Identi�cation) components for DESs and a logical language for the speci-

�cation of FDI requirements. More precisely, they have reformulated the diagnosability

property and the maximality of the diagnoser, that is, the ability of the diagnoser to raise

an alarm, as soon as and whenever, possible, as epistemic properties. Such properties are

then checked via epistemic model-checking [Gammie and Van Der Meyden, 2004] using

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 165

the semantics of the alarm conditions [Bozzano et al., 2014]. In addition, the automated

synthesis of a diagnoser according to several TEL speci�cations is discussed.

7.3.4 Fault Diagnosis via Satis�ability

The Boolean Satis�ability Problem (SAT) [Cook, 1971] is a dual technique of model-

checking, which is considered as an e�cient approach to solving path �nding problems

such as AI planning. It consists in reformulating a problem as a conjunction of Boolean

formula and then determining an interpretation (model) that satis�es this formula.

In [Grastien et al., 2007], authors have proposed a SAT framework for modeling and

solving fault diagnosis problems. In this work the diagnosis problem is translated into

the propositional satis�ability problem (SAT) and then solved by the state-of-the-art SAT

algorithms. Some experiments have been conducted to demonstrate the applicability of

the proposed framework [Grastien and Anbulagan, 2013, Grastien and Anbulagan, 2010].

The incremental diagnosis problem consists in computing the diagnosis of only a tem-

poral window, and then updating the diagnosis by extending the considered temporal

window. Such a problem has been tackled by satis�ability techniques in [Grastien et al.,

2008] and solverd using MiniSAT solvers [Eén and Sörensson, 2003].

Regarding the diagnosability analysis, the authors in [Rintanen et al., 2007b] consider

the fact the diagnosability can be viewed as �nding paths problem, similarly to AI planning

or LTL model-checking, which can be reduced to the satis�ability problem of the classical

propositional logic [Kautz and Selman, 1996, Biere et al., 1999a]. The proposed approach

is based on a reformulation of the twin-plant technique [Jiang and Huang, 2001], by

constructing a formula for which the sati�able valuations (of state variables) corresponds

to pairs of states that depict the concept of ambiguous traces [Jiang and Huang, 2001, Yoo

and Lafortune, 2002b]. Then, the formula is satis�able if and only if it is not possible to

detect the occurrence of a fault event (for a given event sequence length).

7.3.5 Fault Diagnosis as a Practical Model-Checking Problem

Cimatti et al. [Cimatti et al., 2003] have reformulated the twin-plant technique [Jiang

and Huang, 2001] as a symbolic model-checking problem, which can be tackled directely

using state-of-the-art symbolic model-checkers. In particular, this de�nition is based on

the notion of critical pairs, which refer to ambiguous behavior in the system. Checking

diagnosability is reduced to a reachability analysis problem in the coupled twin plant. In

this work, diagnosability is expressed as a CTL/LTL formula and then tackled using a

model-checking engine to check whether the model satisfy such a formula. A counter-

example is given when the formula is violated. The approach has been tested in a real

166
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

case-study [Bajwa et al., 2003] and shown promising results. The particularity of such

an approach is that it can be practically implemented, applied and reused for various

kinds of real-life systems. Various approaches have been proposed later with the same

spirit: [Bourgne et al., 2009] (for input/output symbolic transition systems), [Cassez and

Tripakis, 2008] (reducing the diagnosability problem to the Buchi emptiness problem),

and [Philippot et al., 2013] (for a decentralized framework). Recently, [Peres and Ghazel,

2014] proposed a generic operative formulation for diagnosability using µ-calculus logic.

The main contribution of this approach is that it deals with the diagnosability issue in a

single homogeneous logical framework while using various µ-calculus formula.

The work we propose in this chapter is based on this practical approach [Cimatti

et al., 2003], where some improvements and extensions to deal with various fault diagnosis

problems are discussed.

7.4 State-Based Modeling of DESs

The formal veri�cation of diagnosability via model-checking is more suitable for the state-

based diagnosis [Lin, 1994, Zad et al., 2003], i.e., where diagnosability consists in detecting

if the model reaches bad (faulty) states. Contrarily to Sampath's context [Sampath et al.,

1995], in which diagnosability consists of the detection of the fault event occurrences, i.e.,

an event-based diagnosis. It is possible to transform an event-based FSA into a state-

based one. Such a transformation can be performed by means of a label automaton, i.e.,

a supervision pattern [Jéron et al., 2006] Ω = 〈{N,F},Σ, δΩ, N〉, which depicts the dy-

namic behavior of the system regarding the permanent faults, as illustrated in Figure 7.1.

Therefore, the state-based FSA is obtained by the parallel composition of the event-based

model G and the label automaton Ω. One can note that automaton Ω plays the role of

the labeling function, which is usually used in fault diagnosis [Sampath et al., 1995].

Nstart F
Σf

Σ \ Σf Σ

Figure 7.1 � The label automaton Ω

In this chapter, we consider that we have the state-based model Q of the system to

be diagnosed, obtained by a parallel composition of the event-based model G (as de�ned

in Section 3.2) with label automaton Ω. Therefore, Q = G ‖ Ω = 〈X,Σ, δ, x0〉, with
X = Xn

⊎
Xf such that Xn denotes the set of normal states and Xf the faulty ones. The

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 167

notations introduced inSection 3.2 for event-based FSA G remains valid for state-based

FSA Q.

7.5 Diagnosability Analysis

In this section, we review the main de�nitions and results on the diagnosability analysis

using model-checking introduced by Cimatti et al. in various works [Cimatti et al., 2003,

Bertoli et al., 2007]. Then, we introduce an extended de�nition of diagnosability and we

discuss its formulation as a CTL model-checking problem.

7.5.1 Cimatti's Diagnosability De�nition

In [Cimatti et al., 2003] diagnosis is introduced as a function which associates each ob-

servable event sequence with a set of conditions; each condition represents a set of of

states which satis�es the same properties. Using such a condition o�ers a quite generic

framework to deal with various fault speci�cation forms (event/state faults, intermittent

faults, or complex ones). Hereafter, we give the de�nition of diagnosis condition.

Dé�nition 47 (Diagnosis condition [Cimatti et al., 2003])

A diagnosis condition for an FSA Q is a pair of non-empty sets of states c1 and c2 ⊆ X,

with c1 ∩ c2 = ∅, denoted by c1 ⊥ c2.

One can note that the diagnosis condition concept o�ers a generic frame to deal with

various issues. For instance, one can express,

� Fault detection, i.e. deciding whether any fault has occurred: faulti ⊥ ¬faulti.

� Fault separation, i.e. distinguishing between di�erent faults (or fault classes):

faulti ⊥ faultj .

For the sake of simplicity and without loss of generality, we will assume the existence

of one single class of faults. Therefore, only the fault detection issue will be dealt with.

Then, if we consider several fault classes, it su�ces to prove that the system is diagnosable

for each kind of fault taken separately. According to [Cimatti et al., 2003], we can verify

the diagnosability of a diagnosis condition by checking that the plant does not have a

pair of �nite executions with identical observation, where the �nal state of one execution

belongs to set c1, whereas the �nal state of the other execution belongs to set c2 . We call

such a pair of executions a critical pair for the diagnosis condition c1 ⊥ c2.

168
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

Dé�nition 48 (Critical pair)

A critical pair in FSA Q relative to a diagnosis condition c1 ⊥ c2, is a pair of feasible

executions s1 and s2, both of length t, with identical observation P (s1) = P (s2), such that

∃t ∈ N : (c1(xts1) ∧ c2(xts2)) holds. �

Here ci(x) denotes that state x ∈ ci and state xtsi denotes the reached state upon the

tth observable event in execution si, as illustrated in Fig. 7.2. It is worthwhile noticing

that, if we consider that c1 refers to normal states and c2 to faulty states, the above

de�nition is equivalent to the ambiguity notion in the sense of [Sampath et al., 1995].

Figure 7.2 � Critical pair

Theorem 1 (Necessary and Su�cient Condition of Diagnosability [Cimatti et al., 2003])

Considering c1 a set of normal states and c2 a set of faulty states, a diagnosis condition

c1 ⊥ c2 is said to be diagnosable in FSA Q if and only if Q has no critical pair.

According to this theorem, diagnosability consists in verifying if two executions exist,

both of length t and with identical observation in which the �rst execution leads to a

state in set c1 (normal states) and the second one leads to a state in set c2 (faulty states).

The existence of such a pair of executions implies that the system is not diagnosable as it

corresponds to a critical pair.

7.5.2 Extension of Cimatti's Diagnosability De�nition

Diagnosability as de�ned here before is very important for safety-critical systems in which,

knowing the accurate estimation state of system instantaneously after each observation

and identifying whether it behaves in normal or faulty behavior, is considered as crucial

task.

One can note that Cimatti's de�nition of diagnosability can be very useful when dealing

with safety-critical systems, since it considers that a system is not diagnosable as soon as

some ambiguity on the state estimation may occur, i.e. one does not consider the possible

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 169

continuations on the system behavior to decide about diagnosability. Nevertheless, in the

original context of [Sampath et al., 1995], the diagnosability property is ful�lled if ambi-

guity disappears within a �nite delay. Therefore, taking into account the classic de�nition

of diagnosability [Sampath et al., 1995], such a de�nition can be considered as simpli�ed

version of diagnosability with a strong condition, since it does not take into account the

evolution of the system state after the last observation t, i.e. it does not take into account

the continuations of executions. More precisely and from a quantitative viewpoint, such a

de�nition is equivalent to Zero−diagnosablity, which means `the immediate diagnosability

with no delay '.

With the aim of approaching the classic de�nition of diagnosability [Sampath et al.,

1995], which takes into account the evolution of the state estimation after the �rst occur-

rence of the fault, i. e., taking the in�nite continuation of executions into consideration,

before checking whether a system is diagnosable on not, this de�nition of diagnosabil-

ity [Cimatti et al., 2003] has to be extended by introducing a novel notion called in�nite

critical pairs. Using this extended de�nition, it becomes possible to take into considera-

tion, not only the actual state estimation, but also its evolution after the �rst occurrence

of the fault, and so to give a more accurate decision about diagnosability.

Dé�nition 49 Given an FSA Q, c1 and c2 are two sets of states and c1 ⊥ c2 is a

diagnosis condition. Two in�nite feasible executions s1 and s2 are said to form an in�nite

critical pair for diagnosis condition c1 ⊥ c2, if and only if,

s1, s2 ∈ Σ∗ such that P (s1) = P (s2) ∧ ∃ t ∈ N | ∀i ≥ t : c1(xis1) ∧ c2(xis2)

The above de�nition means that given two in�nite feasible executions s1 and s2 with

identical observation, s1 and s2 form an in�nite critical pair if, from a given step t, s1

leads to, and stays in, states in condition c1 in�nitely, and s2 leads to, and stays in, states

in condition c2 in�nitely, as illustrated in Fig. 7.3.

Figure 7.3 � In�nite critical pair

Recall here that, without loss of generality, we consider that one condition represents

the faulty states and the other the normal states. Then, for any execution that leads to,

170
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

and stays in, states in this condition we can infer that a permanent fault has occurred.

Furthermore, it is clear that the de�nition above corresponds exactly to the de�nition of

indistinguishable in�nite event-sequence in the original de�nition of diagnosability [Sam-

path et al., 1995].

According to this de�nition, we can state that the absence of in�nite critical pairs for

a diagnosis condition c1 ⊥ c2 over Σ∗ is a necessary and su�cient condition for c1 ⊥ c2 to

be diagnosable.

Dé�nition 50 A diagnosis condition c1 ⊥ c2 is said to be diagnosable over Σ in Q, if
and only if Q has no in�nite critical pairs for c1 ⊥ c2 in Σ∗.

7.6 Diagnosability as a Model-Checking Problem

In order to use model-checking for verifying diagnosability of permanent faults, [Cimatti

et al., 2003] proposed a method to formulate the diagnosability issue as a model-checking

problem using a temporal logic formulas. Using such a formalism, diagnosability inves-

tigation on FSA Q is reduced to the problem of searching critical pairs, which can be

done by means of twin-plant construction [Jiang and Huang, 2001]. Actually, the search

for the critical pairs, i.e., the problem of diagnosability, can be reformulated as a reach-

ability problem on the twin-plant. Indeed, the twin-plant structure is reformulated as

a Kripke structure and the necessary and su�cient condition for diagnosability, which

can be viewed as a safety property, is expressed using a temporal logic formula. In what

follows, we discuss such a reformulation.

7.6.1 The Twin-Plant as a Kripke Structure

As presented in Chapter 3, Section 3.5.2. The twin-plant G simply consists of two synchro-

nized copies of the system model, i.e. the transitions are synchronized on the (observable)

transitions so that any path in the twin-plant corresponds to a pair of executions in the

system model Q that share the same observation.

In order to formulate a twin-plant as a Kripke structure, one can simply encode states

(of the two copies of the system model) and the observed events of the twin-plant in the

state-space of the Kripke structure, i.e., a state in the Kripke structure is de�ned as a

vector (x1, x2, σ, φ), where x1, x2 are the states of the system copies and σ is a feasible

(observable) event from both x1 and x2, and φ is an atomic proposition associated with

each state, and which takes e takes one proposition from {N,F} × {N,F}.

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 171

7.6.2 Diagnosability Condition as a Temporal Logic Formula

According to [Jiang and Kumar, 2004], the diagnosability property can be considered

as a safety speci�cation, which can be expressed using temporal logics. Therefore, the

diagnosisability problem, in the sense of [Cimatti et al., 2003], is reduced to a reachability

problem that can be checked by looking for the existence of critical pairs in a twin plant.

The atomic proposition φ that expresses the diagnosis condition in a state p = (x1, x2, σ, φ)

of the Kripke structure is: φ : x1 ∈ c1 ∧ x2 ∈ c2, shortly, we write φ1 : c1 ∧ c2. There-

fore, the LTL formula which characterizes the reachability of critical pairs for a diagnosis

condition c1 ⊥ c2 is:

LTL-SPEC: F (c1 ∧ c2)

Such a speci�cation can be read as follows: `there exists a path from the current state

in the twin-plant, which contains at least one state that satis�es the diagnosis condition

c1 ⊥ c2'.

The corresponding CTL speci�cation is:

CTL-SPEC: EF (c1 ∧ c2)

The model-checking problem expressing the diagnosability of the diagnosis condition

in the sens of [Cimatti et al., 2003], i.e., the zero−diagnosability, is:

KG, SG |= ¬ EF (c1 ∧ c2)

with KP×P the Kripke structure corresponding to the twin-plant of P G and SP the

set of initial states.

The diagnosability problem, in the sense of [Sampath et al., 1995], i.e., the veri�cation

of the in�nite critical pairs, can be expressed using the following model-checking problem:

KG, SG |= ¬ EF (EG (c1 ∧ c2))

which means that no paths exist in twin-plant G where from a state (in the path) the

diagnosis condition holds in�nitely.

7.7 K/Kmin−Diagnosability as a Model-Checking Problem

As discussed in Chapter 3 (Section 3.4.1), the classic de�nition of diagnosability requires

the existence of a �nite delay after the occurrence of any fault, which allows for stating

with certainty that the fault has occurred [Sampath et al., 1995]. Therefore, diagnosability

only means the existence of an upper bound without specifying its value. A �ner version

172
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

of diagnosability is called K-diagnosabiliy and requires the quantitative determination of

the �nite delay (as an integer K). Thus, K-diagnosability means that one can determine

with certainty the occurrence of a fault in the system after K observations. Hereafter,

we recall the original de�nition of K-diagnosability introduced by [Dallal and Lafortune,

2011] in the context of automata formalism, more precisely in event-based diagnosis.

Dé�nition 51 [Dallal and Lafortune, 2011] A given FSA G, it is said to beK-diagnosable

if no pair of event-executions Sy, Sn ∈ L(G) exists such that:

1. Sy has an occurrence of a fault event f ∈ Σf and Sn does not.

2. Sy has at least K + 1 events after the fault event f .

3. P (Sy) = P (Sn). �

This means that, for any two event-sequence in the system with the same observation, one

faulty and the other normal, the system is said to be K-diagnosable if and only if the two

executions do not have K (or more) successive identical observation after the occurrence

of the fault.

It is important to state thatK-diagnosability is stronger than the classic diagnosability.

Thus, K-diagnosability of a fault always implies its diagnosability, while the converse is

not necessarily true [Basile et al., 2012b]. Furthermore, if a fault is K-diagnosable, it is

also (K + 1)-diagnosable, but it is not necessarily (K − 1)-diagnosable.

Generally, there are often two main problems to deal with in K-diagnosability. The

�rst is to analyze K-diagnosability for a given value of K, i.e. if any fault is diagnosable

within at most K steps (observable events) after its occurrence. The second is to �nd the

minimal value of K (Kmin) for a diagnosable system.

7.7.1 Reformulation of K-Diagnosability De�nition

As mentioned in Section 7.5.2, we de�ne the in�nite critical pair as two in�nite feasible

executions with the same observation, where the �rst one leads to states in c1 (normal

states) and the second leads to states in c2 (faulty states). We refer to diagnosability

as the absence of such an in�nite critical pair. Roughly speaking, the absence of in�nite

critical pairs means that, after a �nite delay either both faulty and normal execution lead

to states in the same set of states or they do not generate the same observation any more.

Thus, determining this delay means looking for the number K of observable events from

which the diagnosis condition becomes diagnosable.

It is worth noticing that the �nite delay for diagnosability can be computed either with

the number of observable events (in event-based diagnosis) or with the number of reachable

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 173

states (in state-based diagnosis). There is an equivalence between these two forms, i.e.

if the system is diagnosable in K observable events this means that it is diagnosable in

(K + 1) reachable states. As we work in a state-based context, in the remainder of this

chapter,K-diagnosability is examined with regard to reachable states.

Now, we are ready to state the following de�nition of K-diagnosability in the context

of [Cimatti et al., 2003].

Dé�nition 52 Given an FSA Q, c1 and c2 are two sets of states and c1 ⊥ c2 is a

diagnosis condition. c1 ⊥ c2 is said to be K-diagnosable if no pair of execution s1 and s2

exists such that:

1. ∃ t ∈ N | c1(xt+is1) ∧ c2(xt+is2) , for 0 ≤ i ≤ K

2. P (s1) = P (s2). �

In other terms, a diagnosis condition is said to be K-diagnosable, if no pair of feasible

executions with identical observation exists, where the system enters and stays in an

ambiguous status for more than K reachable states.

7.7.2 K−Diagnosability Reformulation

Our aim now is to reformulate K-diagnosability as a model-checking problem. First, we

deal with the problem of checking K-diagnosability for a given value of K.

K-diagnosability is solved by browsing each in�nite feasible execution in the twin-

plant and checking if an execution exists where the model state reaches and stays in an

ambiguous state (x1, x2) (x1 ∈ c1 and x2 ∈ c2) for K successive states.

To achieve this task, we de�ne a delay function that associates each state in an in�nite

feasible execution with the number of the precedent successive ambiguous states. We

de�ne the delay function as follows,

Algorithm 7 Delay function
delay : X ×X → N ;

delay(x0
1, x

0
2) = 0;

while (i ≥ 0 :) do

if c1(xi+1
1) ∧ c2(xi+1

2) then

delay(xi+1
1 , xi+1

2) = delay(xi1, x
i
2) + 1;

else

delay(xi+1
1 , xi+1

2) = 0;

174
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

To check K-diagnosability by model-checking, it is enough to check that the value

returned by delay function never reaches the valueK in all the reachable states. Therefore,

the model-checking problem expressing the K-diagnosability property is:

KG, SG |= AG delay() < K

If the Kripke structure corresponding to the twin-plant satis�es such speci�cation, it

means that the system model Q is K-diagnosable and thus the system is diagnosable. If

it does not satisfy the speci�cation, then the system is not K-diagnosable.

7.7.3 Kmin−Diagnosability Reformulation

The second main problem related to K-diagnosability is to �nd the minimum value of

K (Kmin) for which the system is K-diagnosable, i.e., the case when the system is K-

diagnosable but not (K − 1)-diagnosable.

It is possible to adapt an incremental approach by means of successive logical formula

in order to �nd the minimum value Kmin ensuring diagnosability. The idea is to introduce

increment of K in the CTL speci�cation as illustrated below:

k = 0 : ¬ EF φ

k = 1 : ¬ EF (φ ∧ EX φ)

k = 2 : ¬ EF (φ ∧ EX (φ ∧ EX φ))

. . .

k = K : ¬ EF (φ ∧ EX (φ ∧ . . . ∧ EX φ︸ ︷︷ ︸
K-1 times

) . . .)

with φ = c1 ∧ c2 .

For K = 0, we �nd the same speci�cation for expressing zero−diagnosability. For

K = 1, we only extend veri�cation of diagnosis condition to the states reachable upon

one observation using CTL formula EX φ, which means that φ holds in a successor of the

current state. In other words, such a formula means that the system remains in ambiguous

status after the �rst observation from the original ambiguous state. We repeat the same

procedure for the following values of K.

We can note that this method su�ers from the number of model-checking runs, since

we repeat the procedure for each speci�cation, which is of high time complexity. An-

other drawback of this approach is its e�ectiveness, since the length of a speci�cation is

proportional to the value of K. Thus, for great integers it becomes di�cult to express

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 175

K-diagnosability with CTL speci�cation. Furthermore, as is well known, the complexity

of CTL model-Checking is ExpTime−Complete [Kupferman and Vard, 2001] relatively to

the property size. Thus, this method remains impractical for large systems. To overcome

this limitation, an alternative approach based on the central feature of model checking

which is the generation and analysis of counter-example, can be explored. The main idea

is to establish a CTL speci�cation in such a way that, if this speci�cation is violated, then

the model-checker generates a counter-example which contains a sequence of successive

ambiguous states. The following formula can be used:

CTL-SPEC: ¬ EF (φ ∧ E [φ U ¬ φ])

with φ representing the ambiguous states (c1 ∧ c2).

This means that no �nite sequence containing ambiguous states exists in the twin-

plant structure. By analyzing the generated counter-example, we can �nd the length of

this sequence. If we generate all counter-examples, then �nding Kmin is nothing else

than �nding the maximal length of the sequence of successive ambiguous states among

counter-examples. Thanks to the existing algorithms that allow for generating multiple

or all counter-examples in one model-checking run [Basu et al., 2003], one can avoid the

multiple model-checking runs and thus avoid high time complexity.

7.7.3.1 Kmin-Diagnosability Using RT-CTL Model-Checking

By analyzing the concept of the Kmin-Diagnosability, one can observe that the value kmin

corresponds to the maximal number of successive ambiguous states which an observable

event-sequence may contain. Such a concept can be viewed as the problem of generating of

the lengthiest counter-example, known in the model-checking framework. Actually, such

a problem cannot be expressed using only one CTL/LTL speci�cation. However, it can be

easily expressed using an RT-CTL speci�cation (Real-Time CTL) [Alur et al., 1990, Larsen

et al., 1995, Henzinger et al., 1994, Alur et al., 1993, Cimatti et al., 2000, Bellini et al.,

2000]. Such a temporal logic allows expressing the properties with quantitative information

regarding the number of events/states or discrete time, for instance, determining the

min/max delay between two CTL properties which hold along a path. The NuSMV

model-checker [Cimatti et al., 2000] is one among model-checking tools which handle such

problems.

The RT-CTL speci�cation expressing the Kmin-Diagnosability is : MAX[φ,¬φ], with

`MAX' is a temporal operation indicating the maximal delay, exists in the Kripke structure,

between properties φ and ¬φ (φ expresses the diagnosis condition c1 ∧ c2). Finally, the

model-checking problem expressing the Kmin-Diagnosability is :

176
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

KG, SG |= MAX[φ,¬φ]

The output decision through such a model-checking problem is either a �nite integer,

which represents the Kmin value, or in�nity value (+∞), which means that the model is

non-diagnosable.

7.8 Diagnosability Veri�cation Using NuSMVModel-Checker

For the actual veri�cation of the various reformulation of diagnosability properties that

we have established, we use the symbolic model-checker NuSMV [Cimatti et al., 2000]

(version 2.5.4), originated from the reengineering, reimplementation and extension of the

CMU SMV tool [Srinivasan and Gluch, 1998, Plath and Ryan, 2000], the original BDD-

based model-checker developed at CMU [McMillan, 1993]. In fact, NuSMV is one of the

most popular model-checkers for temporal logics (LTL, CTL, RT-CTL, PSL, etc.). It is

equipped with a dedicated modeling language (SMV language) which allows for the repre-

sentation of synchronous/asynchronous �nite state/transition systems as Kripke structures

and the analysis of speci�cation expressed in various temporal logics. Its main advantage is

the integration of model checking techniques based on propositional satis�ability analysis

(SAT), which is currently enjoying a substantial success in several industrial �elds.

Aiming at automatizing the generation of formal models (as a NuSMV modules) for the

twin-plant and the integration of the various speci�cations expressing the diagnosability

properties, we developed a platform, in C# programming language, that carried out these

tasks. In fact, the platform takes event-based automata (*.fsm �les), and the diagnosability

properties to be checked, as input and generates a NuSMV model (*.smv) which contains

NuSMV modules describing the twin-plant and the speci�cation to be checked in the

corresponding temporal logic (LTL, CTL, or RT-CTL). An illustrative example, which

details the procedure for checking diagnosability of permanent faults using NuSMV, is

given in Appendix A.

7.9 Experimentation

In order show the applicability of the proposed technique, we perform some experimen-

tation through a benchmark, taken from [Ghazel and Liu, 2016], which abstracts a level

crossing system and depicts the concept of permanent faults.

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 177

7.9.1 Presentation of the Level Crossing Benchmark

A level crossing (LC) is an intersection where a railway line intersects with a road or

path at the same level. It can be seen as a composition of three subsystems: the railway

tra�c, the LC controller and the barriers. Such subsystems are modeled by Labeled

Petri Nets (LPN). The global LC system is established using some shared places and

transitions between these sub-models (See Figure 7.4). The LC model has two classes

of faults represented as unobservable transitions. The �rst one (ΣF1) pertains to train-

sensors along the track and may cause the arrival of the train into the LC intersection

zone before the barriers are ensured to be lowered. This fault class is represented by

the occurrence of unobservable (faulty) transition t6 in the benchmark. The other class

(ΣF2) indicates a barrier failure and is manifested by an early raising of the barriers. It is

represented by the occurrence of unobservable (faulty) transitions ti,5 (for 1 ≤ i ≤ n) in

the benchmark.

Figure 7.4 � The Level Crossing Benchmark

An interesting feature of this benchmark is that it can be extended to n railway tracks

to obtain larger models. For more details about the modeling and the development of the

178
Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking

Framework

benchmark, the reader can refer to [Liu et al., 2014a, Liu et al., 2016, Ghazel and Liu,

2016, Ghazel and El-Koursi, 2014].

As the LC system is modeled by an LPN, we �rst generate the reachability graph of

the LPN considered with the help of the TINA tool [Berthomieu et al., 2007]. We note

that the reachability graph is represented by an automaton in an event-based formalism,

i.e. faults are treated as unobservable events rather than faulty states. Thus, we have

to make a transformation from the event-based representation to the state-based one (as

discussed in Section 7.4).

Before proceeding with tests, we construct the twin-plant as a Kripke structure. It

is described as a synchronous composition of two copies of system modules instead of

enumerating the whole model. In order to reduce the state-space, we take into account the

symmetric property of the twin-plant regarding the ambiguous states. Thus, we consider

one copy of the system as to be faulty-free by deleting the faulty states.

Then, the veri�cation task is conducted as follows:

1. Checking diagnosability of ΣF1 fault class (resp. ΣF2): we de�ne the

diagnosis condition c1 ⊥ c2, with c1 the set of normal states and c2 the set of faulty states

w.r.t. fault class. This task is performed using our extended formulation of diagnosability.

2. Determining the Kmin-diagnosability : if the fault class ΣF1 (resp. ΣF2)

is diagnosable, we aim to �nd the minimal delay ensuring its diagnosability. This task

follows the diagnosability veri�cation immediately if the system is diagnosable.

7.9.2 Results and Discussion

The experimental results are summarized in Table 1, where the columns from left to right

correspond to: fault class, number of railway tracks, number of states in the reachability

graph of the LPN model, number of states of the state-based FSA obtained after the

transformation, number of reachable states generated by the Model-Checker, diagnosabil-

ity verdict, time elapsed by the model-checker, Kmin ensuring diagnosability if the system

is diagnosable. All experiments were conducted on a 64-bit PC, Ubuntu 14.04, an Intel

Core i5, 2.5 GHz Processor with 4 cores and 4 GB RAM.

The analysis of diagnosis conditions shows that the 1st class of faults is diagnosable

only for the 1-track LC model where the 2nd fault class is diagnosable for any number

of tracks in the LC model. These results correspond to those obtained in [Liu, 2014].

Once the diagnosability is checked for the fault class ΣF2, we immediately proceed to the

determination of the value Kmin ensuring the diagnosability.

We have used BDD-based and SAT-based model-checking techniques. The �rst failed,

while the second achieved the task. The di�erence between the results is caused by the fact

that the BDD-based technique investigates only the in�nite paths, whereas the SAT-based

Chapter 7. Practical Veri�cation of Diagnosability in a Model-Checking
Framework 179

Table 7.1 � Experimental results for LC models

ΣFi n MG X RS Diag T ime Kmin

1 24 38 121 YES 00.01 s 4

ΣF1 2 216 416 3013 NO 00.50 s −
3 1632 3240 40603 NO 50.20 s −
1 24 38 115 YES 00.01 s 6

ΣF2 2 216 352 2573 YES 00.28 s 13

3 1632 2604 38310 YES 21.51 s 20

technique is also able to deal with �nite paths. Thus, it can check the existence of �nite

ambiguous state execution. The analysis of the counter-examples generated con�rms the

correctness of our extended diagnosability formulation.

A few seconds are su�cient for NuSMV to perform the analysis which is quite promis-

ing, given the size of the models dealt with, especially for n = 3. It is worth noticing

that no reduction or optimization technique performed on the model. We can see that

the runtime when the fault is not diagnosable is greater that the runtime when it is

diagnosable. This di�erence is mainly due to the delay necessary for generating counter-

examples. Compared to the results obtained through the UMDES tool [Liu, 2014], the

model-checking based technique provides better results in terms of time cost. Moreover,

(1) our tool decides about non-diagnosability of the �rst fault class, however UMDES fails

and (2) it investigates also Kmin-diagnosability which is a �ner result than only a verdict

about diagnosability.

7.10 Conclusion

In this work, we discuss the reformulation of various diagnosability issues in a model-

checking framework. We have �rst extended Cimatti's diagnosability de�nition in the aim

of complying with the classic de�nition [Sampath et al., 1995]. Then, we have formulated

the K-diagnosability as a model-checking issue using a CTL speci�cation and the Kmin-

diagnosability as a RT-CTL one. These reformulation have been illustrated through a level

crossing benchmark. The promising results obtained from the conducted experimentation

in our work (and also from other similar works), urge us to extend such a framework in

order to deal with more complex types of failures such as faults speci�ed by supervision

patterns and other notions for diagnosability of repeated/intermittent faults. Some of

these extensions are the subject of the next chapter.

Chapter 8

Twin-Plant Based Approach for

Intermittent Faults Diagnosis

Sommaire

8.1 Introduction . 182

8.2 Analysis of the Weak Diagnosability 182

8.3 Analysis of the Strong Diagnosability 189

8.4 Diagnosability of Intermittent Faults as Model-Checking Prob-

lems . 199

8.5 Experimentation . 201

8.6 Discussion of the Fr−diagnosability 204

8.7 Conclusion . 206

Summary

This chapter focuses on the diagnosability analysis of intermittent faults in discrete-event

systems. Various notions of diagnosability introduced in Chapter 5 are carried out, in

this chapter, using a twin-plant based approach. Firstly, the necessary and su�cient con-

ditions for the weak diagnosability properties are established and proved. Regarding the

strong diagnosability properties, necessary conditions are �rst deduced (from the necessary

and su�cient conditions for the weak notions) and, then, the necessary and su�cient con-

ditions are provided and proved. On-the-�y and incremental algorithms are then established

for the actual checking of the elaborated conditions.

The work presented in this chapter is the subject of publications in ICPHM'16 [Boussif

and Ghazel, 2016b], WoDES [Boussif et al., 2016c], VeCOS'16 [Boussif and Ghazel, 2016d]

and a submitted journal paper on IEEE−TASE [Boussif and Ghazel, 2016a].

182Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

This chapter is structured as follows: Section 8.2 discusses the twin-plant construc-

tion and provides the necessary and su�cient conditions for weak diagnosability notions

introduced in Section 5.5.2. Dedicated algorithm for checking such conditions are also

provided. Necessary and su�cient conditions for the strong notions of diagnosability are

developed in Section 8.3, where the associated checking algorithms are also discussed. Re-

formulation of (some of) these diagnosability properties as LTL model-checking problems

is discussed in Section 8.4). A Benchmark is used to illustrate the applicability of such a

reformulation and to assess its e�ciency is provided in Section 8.5. Finally, Section 8.7

draws some concluding remarks.

8.1 Introduction

Most of the approaches in the literature pertaining to intermittent fault diagnosis deal

with the diagnosability of intermittent faults on the basis of the structural analysis of

the so-called �diagnoser� (as widely discussed in Section 5.2 (of Chapter 5)). However,

developing such a model su�ers from the combinatorial explosion problem and shows a high

complexity level (exponential) regarding the state-space of the system model. Instead, we

use the twin-plant structure [Jiang and Huang, 2001, Yoo and Lafortune, 2002b, Cimatti

et al., 2003] to perform diagnosability analysis in the current work. In fact, the twin-

plant shows a lower complexity (polynomial), which can help to tackle the combinatorial

explosion problem (as discussed in Chapter 4).

8.2 Analysis of the Weak Diagnosability

This section is dedicated to the analysis of WF and WR-diagnosability by developing

necessary and su�cient conditions for each notion before elaborating algorithms to check

these conditions. The procedure to establish such conditions is based on the twin-plant

structure [Jiang and Huang, 2001]. In what follows, we discuss the twin-plant construction.

8.2.1 Twin-Plant Construction

The twin-plant, �rstly introduced in [Jiang and Huang, 2001], simply consists of two

synchronized copies of generator G′ of the system model G, while the synchronization is

performed. Thus, any event-trace in the twin-plant corresponds to a pair of event-traces in

the system model that share the same observation. More precisely, a path in the twin-plant

corresponds to two indistinguishable traces in the system model.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis183

To keep tracking the system status labels, we use constructed generator G′`, instead

of constructed generator G′. Then, in order to generate a reduced state-space of the

twin-plant (by generating only the behavior of interest for fault diagnosis), a synchronous

composition G′`||G′`F is performed, which is di�erent from that in [Jiang and Huang, 2001].

In fact, G′`F depicts only the co-accessible part of generator G′` from faulty states, i.e. it

only contains the generated faulty event-traces. Thus, G′`F = 〈XoF ,Σo, δoF , x0〉, where
XoF is the set of states in G′` that are reachable by event-traces that, in turn, contain

at least one fault event. For more details about generating G′`F , the reader can refer to

[Moreira et al., 2011].

Dé�nition 53 (The reduced twin-plant)

A reduced twin-plant of model G is an FSA P = 〈Q,Σo,Γ, q0〉, where:

• Q ⊆ {(x, x′) | x ∈ Xo, x
′ ∈ XoF } is the set of states.

• Σo the set of observable events.

• Γ : Q × Σo → 2Q is the partial transition relation. q′ ∈ Γ(q, σ), with q = (x1, x2),

and q′ = (x′1, x
′
2) if and only if x′1 ∈ δo(x1, σ), x′2 ∈ δoF (x2, σ).

• q0 = (x0 × x0) ∈ Q is the initial state.

�

It is worthwhile recalling that constructing the twin-plant can be performed in (O(|X|4×
|Σo|)) [Jiang and Huang, 2001].

As the reduced twin-plant is established directly based on the constructed generatorG′`,

then label tracking is preserved and therefore, the fault-assignment function is extended

as follows:

Ψ : Q = (Xo, XoF)→ ({N,F,R} × {N,F,R})
Hence, di�erent types of states can be distinguished between in the reduced twin-plant.

Hereafter, only state types which will be used in the sequel for developing necessary and

su�cient conditions for weak diagnosability are de�ned.

Dé�nition 54 (Types of states in the twin-plant)

We de�ne the following state types,

• N-state (resp. F -state, R-state): is a state q = (x, x′) ∈ Q, such that Ψ(q) =

(N,N) (resp. Ψ(q) = (F, F), Ψ(q) = (R,R)).

• NF -state: is a state q = (x, x′) ∈ Q, such that Ψ(q) = (N,F). FN-state is

de�ned similarly.

184Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

• NR-state: is a state q = (x, x′) ∈ Q, such that Ψ(q) = (N,R). RN-state is

de�ned similarly.

• N1-state: is a state q = (x, x′) ∈ Q, such that Ψ(q) = (N,4). with 4 ∈ {N,F,R}.

• non-N-state (resp. non-F -state, non-R-state): is a state which is not an N-

state (resp. F -state, R-state).

�

One can underline the fact that the twin-plant has an interesting feature, which is the

symmetric property. It means that each path in the twin-plant has its symmetric path

(e.g., a path containing FN -states has its symmetric path which contains the symmetric

NF -states, and vice versa). In the following section, we take into account this property

for developing the necessary and su�cient conditions.

Example 15 Figure 8.1 (a) depicts generator G′` corresponding to automaton G (cf. Fig-

ure 5.3 in Chapter 5), and Figure 8.1 (b), depicts the reduced twin-plant P (taking into

account the symmetric property) of automaton G.

1 Nstart

13 N

14 N

3 F

5 R 9 F

7 F 11 R

1N,1Nstart

3F,3F

5R,9F5R,5R 9 F,9F

7F,11R7F,7F 11R,11R

(b) Reduced twin-plant P(a) Generator G′`

a

b
b

b

cc cdd d

a

c

ab

b

b

cc dd

Figure 8.1 � Example 15

8.2.2 Necessary and Su�cient Conditions

The twin-plant structure has been used to establish a necessary and su�cient condition

for the diagnosability of permanent faults [Jiang and Huang, 2001, Boussif and Ghazel,

2015a]. Such a condition stipulates that there is no F -uncertain cycles in the constructed

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis185

twin-plant, i.e., cycles that are composed only of NF (or FN)-states. Here, we also

use the twin-plant structure to establish necessary and su�cient conditions for the weak

diagnosability of intermittent faults. To do so, some further concepts will be introduced

in what follows.

Dé�nition 55 (F -confused cycle)

An F -confused cycle is a cycle c` = (q1, σ1, q2, . . . , qn, σn, qn+1 = q1) in the twin-plant,

s.t. ∀ 1 ≤ i ≤ n, qi is an N1-state, and ∃ j : 1 ≤ j ≤ n, s.t. qj is an NF -state.
�

An F -confused cycle in the twin-plant corresponds to two cyclic traces in the system

model (automaton G) which generate the same observed trace, such that the �rst one has

no fault event (a fault-free cyclic trace) and the second one contains at least one fault

event (which explains the existence of an NF -state in the twin-plant).

Dé�nition 56 (R-confused cycle)

An R-confused cycle is a cycle c` = (q1, σ1, q2, . . . , qn, σn, qn+1 = q1), in the twin-

plant, s.t. ∀ 1 ≤ i ≤ n, qi is an N1-state, and ∃ 1 ≤ j ≤ n, s.t. qj is an NR-state.
�

After having set up these preliminary notions, the necessary and su�cient conditions

for the weak diagnosability of intermittent faults can be stated.

Theorem 10 (Necessary & su�cient conditions for WF and WR-diagnosability)

A system model G, w.r.t projection P , class of fault events Σf and its corresponding class

of reset events Σr, is:

1. WF -diagnosable, if and only if no F -confused cycle exists in its corresponding twin-

plant.

2. WR-diagnosable, if and only if no R-confused cycle exists in its corresponding twin-

plant.

�

Hereafter, we provide a proof of this Theorem regarding WF−diagnosability.
Proof. (⇒) Assume that L(G) isWF -diagnosable and there exists an F -confused cycle

in its corresponding twin-plant: q1, σ1, q2, . . . , qn, σn, q1, n ≥ 1. Such a cycle corresponds to

two cycles in G′`: c` = x1
1, σ1x

1
2, . . . , x

1
n, σn, x

1
1 and c`′ = x2

1, σ1, x
2
2, . . . , x

2
n, σn, x

2
1. Let t =

v1, σ1, v2, σ2, . . . , vn, σn and t
′ = v′1, σ1, v

′
2, σ2, . . . , v

′
n, σn be the event-traces that correspond

186Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

to cyclic executions c` and c`′ in G s.t. ∀ i ≤ n, vi, v
′
i ∈ Σ∗u. (i.e., P (t) = P (t′) =

σ1, σ2, . . . , σn).

By construction of the twin-plant, ∃ s0, s
′
0 ∈ L(G), s.t.

[P (s0) = P (s′0)] ∧ [δ(x0, s0) = x1
1] ∧ [δ(x0, s

′
0) = x2

1] ∧ [Σf /∈ s0].

(the last condition Σf /∈ s0 is due to the fact that x1
i is an N -state ∀1 ≤ i ≤ n). Also,

according to De�nition 55, Σf ∈ t′ and Σf /∈ t. Thus, one can consider t′ = t′1.t
′
2 such

that t
′|t′1|
1 ∈ Σf (i.e., t′1 ends with a fault event). Now, let us consider s = s′0.t

′
1, then

s ∈ ψ(Σf). Thus, for any n ∈ N let us take t′′n = t′2(t′)n ∈ L/s, then (|t′′n| ≥ n) and

(∃ ωn = s0.(t)
n+1) such that [ωn ∈ P−1P (st′′n)] ∧ [Σf /∈ ωn].

Therefore, WF -diagnosability de�nition is violated.

(⇐) Assume that automaton G is non-WF -diagnosable. Then,

(∀n ∈ N)(∃ s ∈ ψ(Σf)) (∃ t ∈ L(G)/s) such that:

[|t| ≥ n] ∧ [(∃ ω ∈ P−1P (s.t)) ∧ [Σf /∈ ω]]

Let us suppose that twin-plant P is F -confused-cycle-free and pick any n ≥ |X|2, ω ∈ L(G)

such that P (ω) = P (s.t) = σ1, σ2, . . . , σk, with k ∈ N. By constructing twin-plant P of G,

we have a path π = q0, σ1, q1, . . . , σk, qk+1, k ≤ |s.t| that corresponds to executions ω and

s.t.

As |X|2 ≤ n ≤ |t|, it is clear that executions corresponding to s.t and ω contain cycles

[Jiang and Huang, 2001]. Thus, ∃ i : 0 ≤ i ≤ k′, with k′ ≤ k such that c` ∈ π, with

c` = qi, σi+1, qi, . . . , qk′−1, σk′ , qi (i.e., a cycle c` exists in π).

Since Σf /∈ ω, then ∀q ∈ c`, q is an N1-state. Moreover, Σf ∈ s (since s ∈ ψ(Σf)).

According to assumption (A3), the fault event occurs and reset regularly. Then, ∃ i ≤ k′

s.t. qi is an NF -state. Thus, c` is an F -confused cycle, according to De�nition 53, which

contradicts our assumption. �

The proof of the necessary and su�cient condition regarding WR-diagnosability is

omitted as it is similar to that of WF -diagnosability.

Corollary 4 Let an automaton G satisfy assumptions (A1−A3). Then, G is WF -

diagnosable if and only if G is WR-diagnosable.

This corollary has been introduced in Chapter 5 (Corollary 3). Hereafter, we give its

formal proof.

Proof. Assume that G is not WF -diagnosable. Then, from De�nition 18, there ex-

ists, in P (its corresponding twin-plant), a set of states q1, q2, . . . , qn that form an F -

confused cycle. This cycle corresponds to two cycles in G: x1
1, x

1
2, . . . , x

1
n = x1

1 and

x2
1, x

2
2, . . . , x

2
n = x2

1 such that ∀i ≤ n, Ψ(x1
i) = N and ∃ j ≤ n s.t. Ψ(x2

j) = F (cf.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis187

De�nition 5.). By assumption (A3), each fault is recovered within a �nite delay. Conse-

quently, from De�nition 18, ∃ i′ ≤ n s.t. Ψ(x2
i′) = R. Therefore, states q1, q2, . . . , qn also

form an R-confused cycle in P. Hence, automaton G is not WR-diagnosable.

By similar reasoning, we prove that, if automaton G is not WR-diagnosable, then it

is not WF -diagnosable. Indeed, it su�ces to note that, by assumption (A3), each reset

event is followed by a new occurrence of a fault event in a �nite delay. �

Example 16 From reduced twin-plant P (cf. Figure 8.1) corresponding to automaton G

(cf. Example 7), one can infer that G is WF -diagnosable (and then WR-diagnosable),

since no F -confused cycle exists in its corresponding reduced twin-plant P.

8.2.3 Veri�cation Algorithm for Weak Diagnosability

The proposed algorithm for checking the weak diagnosability consists in constructing, on

the �y, the reduced twin-plant P corresponding to model G, while checking in parallel

the necessary and su�cient condition for WF -diagnosability according to Theorem 10. It

should be noticed that only the veri�cation algorithm for WF -diagnosability is discussed,

since it also applies for WR-diagnosability in the same manner.

Algorithm 8 is based on a depth-�rst search procedure. It builds twin-plant P and

simultaneously checks the necessary and su�cient condition for WF -diagnosability. As

soon as a cycle is found in P, function Check_F-Confused_Cycle() (cf. Algorithm 8,

Line 29) checks whether this cycle is an F -confused cycle or not. If it is an F -confused

cycle, then G is not WF -diagnosable and the veri�cation process is stopped. Otherwise,

the construction and veri�cation process continues. If the whole state-space of P is gen-

erated, through Algorithm 8, without looking for any F -confused cycle, then model G is

stated to be WF -diagnosable (cf. Algorithm 8, Line 33).

Below, functions and data, used in the algorithm, are brie�y explained:

• Stack.Push, Stack.Top, Stack.Pop: are the usual methods to handle a stack.

• Enable(q): returns the set of output (observable) events σi from state x. Formally,

Enable(x) = {σ ∈ Σo | δG′(x, σ) 6= ∅}.

• List_Current: The list of twin-plant states that need to be handled.

• Add(), RemoveLast(): two functions used to handle lists of twin-plant states.

• Check_F-Confused_Cycle(): the function that checks the existence of an F -

confused cycle in List_Current. Such a function returns a Boolean value: True

if a cycle is found; otherwise, it returns False.

188Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

Algorithm 8 Generating the reduced twin-plant and checking the existence of F -confused cycle

Input: G′` = (Xo,Σo, δo, x0), G′`F = (XoF ,Σo, δoF , x0)

Output: P = G′`||G′`F = (Q,Σo,Γ, q0)

9 Γ← ∅, Stack ← ∅ // Initialization step

10 Q ← {q0} = {(x0, x0)} // Creating the initial state of twin-plant

11 List_Current = {(x0, x0)}
12 Stack.Push(〈(x0, x0), Enable(x0)× Enable(x0)〉)

// Formally, Enable(x)= {σ ∈ Σ s.t. δ(x, σ) ∈ X}.

13 while Stack 6= ∅ do
14 〈(x, x′), Enable_Set〉 = Stack.Top // Take the top element in the stack

15 if Enable_Set= ∅ then
16 〈(x, x′), Enable_Set〉 = Stack.Pop // Remove the element from stack

17 else

18 (σ, σ′) = RemoveLast(Enable_Set) // Pick up an element

19 if (σ = σ′) then

// Only the shared observable event are handled

20 x1 ← δ(x, σ) // Get back the target state

21 x′1 ← δ(x′, σ′)

22 if (x1, x
′
1) /∈ Q) then

23 Q ← Q∪ {(x1, x
′
1)} // Update the set of states

24 Γ← Γ ∪ {(x, x′) σ−→ (x1, x
′
1)} // Update the transition function

25 List_Current.Add((x1, x
′
1))

26 Stack.Push(〈(x1, x
′
1),Enable(x1)×Enable(x′1)〉) // Pile up the

current element

27 else

28 Γ← Γ ∪ {(x, x′) σ−→ (x1, x
′
1)}

29 if ((x1, x
′
1) ∈ List_Current) then

30 if Check_F-Confused_Cycle() then

31 return �non-WF -diagnosable�

// Check for F-Confused-cycle

32 RemoveLast(List_Current)

33 return �WF -diagnosable�

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis189

8.3 Analysis of the Strong Diagnosability

In this section, we �rstly provide the necessary conditions for SF -(and SR-)diagnosability

on the basis of the necessary and su�cient conditions for the weak diagnosability de-

veloped above. Then, we establish the necessary and su�cient conditions for SF -(and

SR-)diagnosability on the basis of the reduced twin-plant introduced in Section 8.2.1.

It is worth underlining that the necessary conditions are �rstly developed since such

conditions can be used to speed up the analysis. In fact, the model is stated to be non-

SF -diagnosable as soon as these conditions are violated (i.e., there is no need to continue

the construction of the twin-plant and check the necessary and su�cient condition).

8.3.1 Necessary Conditions

Firstly, according to Proposition 5 (introduced in Chapter 5), it is easy to infer that

the necessary and su�cient condition for WF -diagnosability (resp. WR-diagnosability)

represents a necessary condition for SF -diagnosability (resp. SR-diagnosability). That is,

the presence of an F -confused cycle in the twin-plant implies the non-WF -diagnosability

and, therefore, the non-SF -diagnosability, since that non-WF -diagnosability ⇒ non-SF -

diagnosability (cf. Proposition 5). However, it is only a necessary condition, which means

that the absence of F -confused cycle does not imply the SF -diagnosability, as witnessed

in Example 9. In what follows, the notions of F -confused and R-confused cycles are

used to develop stronger necessary conditions for SF -(and SR-)diagnosability. We �rstly

introduce two particular cycles.

Dé�nition 57 (non-F -cycle, non-R-cycle)

• A non-F -cycle, is a cycle c` = (q1, σ1, q2, . . . , qn, σn, qn+1 = q1) in twin-plant P,
such that ∀ 1 ≤ i ≤ n, qi is a non-F -state and at least one state is a non-N -state.

• A non-R-cycle, is a cycle c` = (q1, σ1, q2, . . . , qn, σn, qn+1 = q1) in twin-plant P,
such that ∀ 1 ≤ i ≤ n, qi is a non-R-state and at least one state is a non-N -state.

Remark 5 It should be noticed that an F -confused cycle is also a non-F -cycle, since an

N1-state is also a non-F -state and an NF -state is a non-N -state as well. In an analogous

way, an R-confused cycle is also a non-R-cycle.

Now, we state a necessary condition for SF (and SR)-diagnosability.

190Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

Proposition 14 (Necessary conditions for the strong diagnosability)

A DES model G, w.r.t. projection P , class of fault events Σf and class of reset events

Σr, is:

• non-SF -diagnosable if a non-F -cycle exists in its corresponding twin-plant.

• non-SR-diagnosable if a non-R-cycle exists in its corresponding twin-plant.

Proof.

The proof of this proposition is straightforward. Indeed, the existence of a non-F -

cycle in the twin-plant means that two event-traces which share the same observation

exist in the generator G′` and lead to two cycles: c` = x1, σ1x2, . . . , xn, σn, x1 and c`′ =

x′1, σ1, x
′
2, . . . , x

′
n, σn, x

′
1 such that ∀1 ≤ i ≤ n: Ψ(xi) and Ψ(x′i) will never be F at the

same time. Therefore, it follows that it is not possible to identify the status of the system

along this in�nite observable event-trace. Thus, according to De�nition 20, the model is

non-SF -diagnosable. An analogous reasoning can be made for SR-diagnosability. �

Let us now establish the necessary and su�cient conditions for SF and SR-diagnosability

on the basis of the reduced twin-plant.

8.3.2 Necessary and Su�cient Conditions

In order to formalize the necessary and su�cient conditions for SF (and SR)-diagnosability,

the following de�nitions are introduced.

Dé�nition 58 (Types of state-traces in the twin-plant)

• A path ℘ in twin-plant P is a state-trace (q1, q2, . . . , qn) such that ∀qi, qi+1 ∈ ℘,∃σi ∈
Σo satisfying qi+1 ∈ Γ(qi, σi), for (1 ≤ i < n).

• ℘ is a closed path, if it is a path whose ending state is also the starting one (i.e.,

qn = q1).

• ℘ is a generated path if q1 is the initial state of twin-plant P (i.e., q1 = q0).

• ℘ is an elementary path if no state qi ∈ ℘ is visited twice (i.e., ∀i, j ∈ {1, · · · , n}
and i 6= j, we have qi 6= qj).

• ℘ is an elementary cycle if it is a closed path whose states are di�erent from each

other, except for the �rst and the last ones.

• ℘ = ℘′c`℘ is a prime path if ℘′ is an elementary path and c`℘ is an elementary

cycle.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis191

• ℘ = ℘′c`℘ is a generated prime path if ℘′ is a generated elementary path and c`℘

is an elementary cycle.

For more details about the above de�nitions, the reader can refer to [Zhou and Kumar,

2009].

Remark 8 It is worth noticing that:

1. An in�nite path is composed of a (possibly empty) elementary path and a set of

elementary cycles.

2. A closed path is composed of one or more elementary cycles.

Dé�nition 59 (Set of prime-paths (SPP))

For any in�nite path ℘, we de�ne P℘ as the set of prime-paths associated with ℘. �

Example 17 Let us consider the in�nite path ℘ = (q1, (q2, q3, q4)3, (q2, q3)1, (q5, q6)∗)

in G, depicted in Figure 8.2 (a). The set of prime-paths associated with ℘ is P℘ =

{(q1, (q2, q3, q4)∗), (q1, (q2, q3)∗), (q1, q2, q3, (q5, q6)∗)} is depicted in Figure 8.2 (b).

q1 q2 q3

q4

q5

q6

q1 q2 q3

q4

q1 q2 q3

q1 q2 q3 q5

q6

(a) An FSA model G

(b) Sub-models of the FSA G

a
b

c

d
d

e
a b

a

b

d

e

a
b

c

a b d

a b

Figure 8.2 � Illustration of a set of prime paths (SPP).

Dé�nition 60 (The associated set of generated prime-paths (ASGPP))

For a given observable event-trace s = (σ1, σ2, . . .) ∈ Σ∗o associated with generated prime

path ℘ ∈ Tr(P):

Πs(P) = {℘ = (q0, q1, . . .) ∈ Tr(P) is prime-path | ∀ i ≥ 0, qi+1 ∈ Γ(qi, σi+1)}

is the set of all generated prime-paths associated with s.

192Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

One recalls that Tr(P) is the set of all state-traces of the (reduced) twin-plant. Each

prime-path ℘ in Πs(P) has the following form ℘ = ℘′c`∗, where ℘′ is a generated elemen-

tary path, and c` is an elementary cycle.

Dé�nition 61 (F -Interception condition)

Let ℘ be a generated prime-path and s ∈ Σ∗o its associated observable event-trace, then the

F -Interception condition relatively to ℘ is de�ned as follows:

∃ k ∈ N s.t. ∀℘i = ℘′ic`
∗
℘i = (q0, q1, . . .) ∈ Πs(P):

1. qk is an F -state.

2. qk ∈ c`∗℘i .

The F -Interception condition ensures that, after a �nite delay, all the generated prime-

paths that share the same observation as ℘ (i.e., event-trace s) reach F -states, in their

corresponding elementary cycles at the same time (i.e., after k − 1 observations).

Example 18 Let us consider twin-plant P (the corresponding system model is not given),

depicted partially in Figure 8.3. Each state qi in twin-plant P is represented by its cor-

responding labels, i.e., q1 = (x1, x
′
1) is represented by the labels of x1 and x′1 (here,

Ψ(x1) = Ψ(x′1) = N). Let us consider event-trace s = ab (cd)∗ associated with the prime-

path: q1, q2, (q3, q4, q5, q6)∗. Then, Πs(P) = {(q1, q2, (q3, q4, q5, q6)∗), (q1, q7, q8, (q9, q10)∗),

(q1, q7, q11, q12, (q13, q14)∗)}. One can deduce that for k = 6 (i.e. after 5 observations), the

kth states of all the generated prime-paths in Πs(P) are F -states (i.e., states q6, q9, and

q14 respectively to the order of prime-paths in Πs(P)). Thus, the F -Interception condition

is satis�ed by Πs(P).

N

N
start

q1

F

F

q2

F

N

q7

R

F

q3

R

F

q4

F

R

q5

F

F

q6

R

N

q8

R

F

q11

F

F

q9

R

R

q10

R

F

q12

R

R

q13

F

F

q14

a

a

b c d c

d

b

b

c d

c

c d c

d

Figure 8.3 � A part of a twin-plant (Example 18)

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis193

In what follows, the F - Interception condition is generalized to any generated in�nite

path, by considering the di�erent elementary cycles in it.

Corollary 5 The F -Interception condition is satis�ed for any generated in�nite path ℘

in twin plant P if and only if the F -Interception condition is satis�ed for any generated

prime-path in P.
Proof. The proof of this corollary is straightforward. Indeed, for necessary condition

(⇒), let us assume that all the generated in�nite paths ℘ in P satisfy the F -Interception

condition. As the generated prime-paths are also generated in�nite paths, it follows di-

rectly that all the generated prime-paths in P satisfy the F -Interception condition.

For the su�cient condition (⇐), let us take a generated in�nite path ℘ that contains n

elementary cycles c`i. It follows that P℘ also contains n generated prime-path ℘i ∈ P℘ for

1 ≤ i ≤ n. Let us assume that all the generated prime-paths in P satisfy the F -Interception

condition. Then all the prime-paths in the ASGPP Πsi satisfy the F -Interception condition

(si is the event-trace associated to ℘i). Then, it follows that ℘ also satis�es the F -

Interception condition. Thus, this is true for all the generated in�nite paths in P. �

It is worth noticing that the above-mentioned corollary will be used to develop the

necessary and su�cient conditions for strong diagnosability by reasoning directly on the

prime-paths, in the twin-plant.

Now, the necessary and su�cient condition for SF -diagnosability can be stated.

Theorem 11 (SF -diagnosability)

A DES model G is SF -diagnosable w.r.t projection P , class of fault events Σf and

its corresponding class of reset events Σr, if and only if the F -Intersection condition is

satis�ed by any event-trace s ∈ L(P) associated with a prime-path ℘ ∈ Tr(P).

Proof.

(⇒) Assume that automaton G is SF -diagnosable and let s ∈ ψ(Σf) be an event

trace which ends with a faulty event from Σf . According to De�nition 20, ∃ n ∈ N s.t.

∀t ∈ L(G)/s, |t| ≥ n⇒ (∃t′ ≤ t), satisfying ∀ω ∈ P−1
L (P (s.t′) : `(ω) = F . Let us consider

s′ ∈ Σ∗ such that s.t ≤ s′. Then, by construction of the reduced twin-plant (De�nition

53), we have Πs′(P) 6= ∅.
Consider k = |P (s.t′)|. Then, from De�nition 20, we have ∀℘ ∈ Πs′(P) : qk ∈ ℘ is an

F -state. This applies for any si ∈ ψ(Σf). Thus, it is true for any Πs′i
(P), with si.t ≤ s′i.

Finally, to show that qk ∈ c`℘, by assumption (A3), the fault repeats inde�nitely, it

then su�ces to pick t su�ciently long such that |P (s.t′)| ≥ |Xo|2 (See [Jiang and Huang,

2001]). Thus, the F -Interception condition is satis�ed.

194Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

(⇐) Assume that the F -Interception condition is satis�ed by any event-trace s ∈ L(P)

associated with a prime-path ℘ ∈ Tr(P). Then, for any in�nite observable event-trace

s ∈ P (L(G)) such that Πs(P) 6= ∅, the F -Interception condition states that ∀℘ = ℘′c`℘ ∈
Πs(P), ∃k ∈ N such that qk ∈ ℘ is an F -state. This means that ∃ n ∈ N (n ≥ k)

such that ∀ω ∈ Σ∗, P (ω) = s, then `(wn) = F . This ensures that some occurrences

of the intermittent fault in ω can be diagnosed according to De�nition 20. Moreover,

the F -Interception condition states that qk ∈ c`℘. Then, according to assumption (A3),

∀ω = ω′c`ω ∈ Σ∗ such that P (ω) = s, ∃n′ ∈ N : `(ω′(c`ω)n
′
) = F , which ensures that each

occurrence of an intermittent fault in ω is diagnosable. As the F -Interception condition

holds for any si ∈ P (L(G)), Then, L(G) is SF -diagnosable. �

In order to state the necessary and su�cient condition for SR-diagnosability, we in-

troduce the R-interception condition, in the same way as De�nition 61.

Dé�nition 62 (R-Interception condition)

Let ℘ be a generated prime-path, and s ∈ Σ∗o its associated observable event-trace, then the

R-Interception condition relatively to ℘ is as follows:

∃ k ∈ N s.t. ∀℘i = ℘′ic`
∗
℘i = (q0, q1, . . .) ∈ Πs(P):

1. qk is an R-state.

2. qk ∈ c`∗℘i . �

Example 19 Let us consider again the twin-plant of Example 18. For event-trace s =

(a, b, (c, d)∗), we have Πs(P) = {(q1, q2, (q3, q4, q5, q6)∗), (q1, q7, q8, (q9, q10)∗), (q1, q7, q11, q12

,(q13, q14)∗)}. One can deduce that no k ∈ N exists such that all the prime-paths in Πs are

in R-states at this step. Besides, for the primary cycle of the �rst generated prime-path

in Πs, i.e. q1, q2, (q3, q4, q5, q6)∗, no R-state exists. As a consequence, the Πs(P) does not

satisfy the R-Interception condition.

Theorem 12 (SR-diagnosability)

A DES model G is SR-diagnosable w.r.t a projection function P , a class of fault events Σf

and its corresponding class of reset events Σr, if and only if the R-Intersection condition

is satis�ed by any event-trace s ∈ L(P) associated to a prime-path ℘ ∈ Tr(P). �

Proof. The proof of this theorem is omitted, since it can be elaborated in an analogous

way as for Theorem 11. �

It is worth noticing that SF -diagnosability does not imply SR-diagnosability and vice

versa (as witnessed through Example 18 and 19), unlike in the case of weak diagnosability.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis195

8.3.3 Veri�cation Algorithm

In order to check SF and SR-diagnosability based on the elaborated conditions in the

previous section, we have developed an incremental depth-�rst search algorithm.

The algorithm consists in constructing, on the �y, twin-plant P corresponding to

model G, while checking in parallel the necessary condition for SF -diagnosability ac-

cording to Proposition 14. It is interesting to note that checking the necessary condition

for the SF -diagnosability is performed by means of the same algorithm used for the WF -

diagnosability (cf. Algorithm 8). The only di�erence is that, instead of checking the

existence of an F -confused cycle, we check the existence of non-F -cycle.

If the necessary condition is satis�ed (i.e., the absence of non-F -cycle), then the neces-

sary and su�cient condition (cf. Theorem 11) is checked in an incremental way. Thus, for

any event-trace s that is associated with a prime-path in Tr(P), set Πs(P) is generated

and the F -Interception condition is checked incrementally in Πs(P). This task is repeated

until all the prime-paths in P have been investigated. As soon as the F -Interception con-

dition is violated, G is stated to be non-SF -diagnosable. On the contrary, if no violation

of the F -Interception condition is detected, G is stated to be SF -diagnosable. A similar

algorithm is also used for checking SR-diagnosability. Hereafter, the various tasks and

functions that constitute the algorithm are detailed.

Algorithm 9 is a depth-�rst search algorithm. It builds twin-plant P and veri�es the

necessary condition for SF -diagnosability simultaneously. As soon as a cycle is found in

P, function Check-Non-F-Cycle() checks whether such a cycle is a non-F -Cycle or

not. If it is a non-F -cycle, then G is non-SF -diagnosable and the veri�cation process is

stopped. If the whole state-space of P has been generated, through Algorithm 9, without

�nding any non-F -cycle, then condition C1 will be checked through Algorithm 10.

Algorithm 10 is a recursive algorithm that generates an arbitrary event-trace List_

Event (associated with prime state-trace List_State) using functionGenEventTrace().

Once an event-trace has been generated, function Check_Condition (cf. Algorithm 11)

is called to perform two tasks: generating (in an incremental manner) set ΠList_Event cor-

responding to the generated event-trace List_Event and checking simultaneously the

F -Interception condition (De�nition 61). This task is repeated for any generated event-

trace List_Event.

Algorithm 11, a depth-�rst search procedure, allows us to generate set ΠList_Event

corresponding to the input event-trace List_Event (generated from Algorithm 10) and

check the F -Interception condition in an incremental way.

196Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

Algorithm 9 Generating the reduced twin-plant and checking the existence of non-F -cycle

Input: G′` = (Xo,Σo, δo, x0), G′`F = (XoF ,Σo, δoF , x0)

Output: P = G′`||G′`F = (Q,Σo,Γ, q0)

1 Γ← ∅, Stack ← ∅ // Initialization step

2 Q ← {q0} = {(x0, x0)} // Creating the initial state of twin-plant

3 List_Current = {(x0, x0)}
4 Stack.Push(〈(x0, x0), Enable(x0)× Enable(x0)〉)

// Formally, Enable(x)= {σ ∈ Σ s.t. δ(x, σ) ∈ X}.

5 while Stack 6= ∅ do
6 〈(x, x′), Enable_Set〉 = Stack.Top // Take the top element in the stack

7 if Enable_Set= ∅ then
8 〈(x, x′), Enable_Set〉 = Stack.Pop // Remove the element from stack

9 else

10 (σ, σ′) = RemoveLast(Enable_Set) // Pick up an element

11 if (σ = σ′) then

// Only the shared observable event are handled

12 x1 ← δ(x, σ) // Get back to the target state

13 x′1 ← δ(x′, σ′)

14 if (x1, x
′
1) /∈ Q) then

15 Q ← Q∪ {(x1, x
′
1)} // Update the set of states

16 Γ← Γ ∪ {(x, x′) σ−→ (x1, x
′
1)} // Update the transition function

17 List_Current.Add((x1, x
′
1))

18 Stack.Push(〈(x1, x
′
1),Enable(x1)×Enable(x′1)〉) // Pile up the

current element

19 else

20 Γ← Γ ∪ {(x, x′) σ−→ (x1, x
′
1)}

21 if ((x1, x
′
1) ∈ List_Current) then

22 if Check_Non-F-Cycle() then

// Check for non-F-cycle

23 return �non-SF -diagnosable�

24 RemoveLast(List_Current)

First, a prime state-trace (noted by List_StatePrime) is generated, which is as-

sociated with event-trace List_Event. Then, List_StatePrime is compared with

List_State (generated by Algorithm 10) in terms of F -state indices. We �rst pick from

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis197

the elementary cycle of List_State (resp. List_StatePrime), F -state indices in F-

Indices (resp. F-IndicesP) using function Indices() (cf. Algorithm 10). Then, we

check if List_StatePrime and List_State share some F -states indices. If no F -state

index is shared (i.e., F-Indices ∩ F-IndicesP= ∅), then the procedure is stopped and

we conclude that G is non-SF -diagnosable. Otherwise, the shared F -state indices are

saved in F-Indices and the procedure is continued, to check other state-traces that have

List_Event as an associated event-trace. This task is repeated for each List_Event

generated by Algorithm 10.

Algorithm 10 Checking necessary and su�cient condition
Input: twin-plant P
Output: Decision about diagnosability

1 q ← q0

2 List_State.Add (q0)

3 List_Event

4 F-Indices

5 GenEventTrace(G, q)
6 return `G is SF -diagnosable'

1 Function GenEventTrace(G, q)
2 foreach σ ∈Enable(q) do

3 q′ ← Γ(q, σ)

4 List_Event.Add(σ)

5 if q′ /∈ List_State then
6 List_State.Add(q′)

7 GenEventTrace(G, q′)

8 else

9 F-Indices = Indices(List_State)

10 Check_Condition(P, F-Indices, List_Event)
// cf. Algorithm 3

11 List_State.Remove(q′)

12 List_Event.Remove(σ)

It is worthwhile noticing that two cases are possible when comparing two prime state-

traces that share the same associated event-trace in terms of F -states indices:

198Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

Algorithm 11 Check_Condition()

Input: twin-plant P
Input: List_Event, F-Indices

Output: Decision about non diagnosability

1 q ← q0

2 index = 0, indexP = 0

3 List_StatePrime.Add(q0) F-IndicesP

4 Compute_Π_Set(G, q)
1 Function Compute_Π_Set(G, q)
2 foreach σ ∈Enable(q) do

3 if (index ≤ | List_Event|) then
4 if (σ == List_Event [index]) then

5 q′ ← δ(q, σ)

6 if (q′ ∈ List_StatePrime) then

7 if (index == | List_Event|) then
8 F-IndicesP=Indices(List_StatePrime)

9 if (F-Indices ∩ F-IndicesP = ∅) then
10 return G is not SF -diagnosable

11 else

12 F-Indices←F-Indices∩F-IndicesP

13 else

14 index← index+ 1

15 List_StatePrime.Add(q′)

16 Compute_Π_Set(G, q′)

17 else

18 indexP=(| List_Event-|℘|)+(index− List_Event)mod|℘| // ℘:

elementary cycle of List_State

19 if (σ == List_Event [indexP]) then

20 q′ ← δ(q, σ)

21 if (q′ ∈ List_StatePrime) then

22 F-IndicesP = Indices(List_StatePrime)

23 if (F-Indices ∩ F-IndicesP= ∅) then
24 return G is not SF -diagnosable

25 else

26 F-Indices←F-Indices ∩F-IndicesP

27 else

28 index← index+ 1

29 List_StatePrime.Add(q′)

30 Compute_Π_Set(G, q′)

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis199

(1) Elementary cycles of the prime state-traces have the same length: In this case,

checking F -state indices is performed on the real indices in F-Indices and F-IndicesP

(cf. Algorithm 11, Lines 6 - 12).

(2) Elementary cycles of the prime state-traces have di�erent lengths: In this case,

the elementary cycle, with smaller length, is extended by considering as many loops as

possible to reach the same length of the other prime state-trace elementary cycle (i.e.,

lengths of elementary cycles in prime state-traces which share the same event-trace are

multiples of the smallest cycle length). Then, checking F -state indices is performed on

the new computed indices (cf. Algorithm 11, Lines 17 - 30). Finally, when all event-traces

in P are investigated with no exit point has been encountered, then we conclude that

automaton G is SF -diagnosable (cf. Algorithm 10, Line 6).

8.4 Diagnosability of Intermittent Faults as Model-Checking

Problems

In the previous chapter, we have discussed the practical veri�cation of diagnosability of

permanent faults in the model-checking framework. The approach proposed is a reformu-

lation of the twin-plant technique [Jiang and Huang, 2001]. In this work, the twin-plant

structure is reformulated as a Kripke structure, while the necessary and su�cient con-

dition is expressed as a CTL/LTL formula and tackled using a model-checking engine.

The particularity of such an approach is that it can be practically implemented, applied

and reused for various kinds of real-life systems. Moreover, a wide range of powerful and

optimized model-checkers have been developed in the formal veri�cation community and

successfully used for the veri�cation/validation of large scale industrial systems. In this

section, we extend the approach in order to deal with the diagnosability veri�cation of

intermittent faults. That is, the necessary and su�cient conditions developed above are

expressed using LTL formulas for the actual veri�cation.

8.4.1 The Weak Diagnosability Conditions as LTL Formulas

In order to formulate the analysis issue of the weak diagnosability properties as Model-

Checking problems, we �rst express each diagnosability condition as an LTL formula. For

the sake of simplicity, we introduce these atomic propositions: N1, NF, and NR, which

mean respectively: the state q in the twin plant is an N1-state, NF -state, NR-state.

8.4.1.1 WF -Diagnosability as a Model-Checking Problem

200Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

The LTL formula which characterizes each state of an F -confused cycle in the twin

plant is,

φ1 : G(N1 ∧ F NF)

The speci�cation can be read as follows: �a path from the current state in the twin-plant

exists, where all states are N1-states and at least one state is an NF -state�. Therefore,

property (N1 ∧ F NF) is satis�ed by each state in the cycle.

The Model-Checking problem expressing WF -diagnosability is:

KP , SP |= ¬ F (G(N1 ∧ F NF))

where KP is the Kripke structure corresponding to the twin-plant P of model G, and

SP is the initial state in KP .

8.4.1.2 WR-Diagnosability as a Model-Checking Problem

The LTL formula that characterizes each state of an R-confused cycle in the twin plant

is,

φ2 : G(N1 ∧ F NR)

The speci�cation can be read as follows: �a path from the current state in the twin-plant

exists, where all states are N1-states and at least one state is an NR-state�. Therefore,

property (N1 ∧ F NR) is satis�ed by each state in the cycle.

The Model-Checking problem expressing WR-diagnosability is:

KP , SP |= ¬ F (G(N1 ∧ F NR))

8.4.2 Reformulation of the Strong Diagnosability Properties

Regarding the reformulation of the strong diagnosability properties, we notice that only the

necessary conditions (presented in Section 8.3.1), can be reformulated as LTL formulas.

The necessary and su�cient conditions cannot be reformulated as CTL/LTL formulas.

This is due to the fact that such properties cannot be characterized by pairs of equiv-

alent traces. They are rather global properties on sets of (observationally) equivalent

traces [Fabre et al., 2016] and unfortunately CTL/LTL are no longer adequate to express

such properties. We think that such properties can be dealt with via Temporal Epistemic

Logic [Halpern and Vardi, 1989, M¦ski et al., 2012] which are capable to express global

properties on sets of (observationally) equivalent traces [Cimatti et al., 2005, Gammie and

Van Der Meyden, 2004].

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis201

8.5 Experimentation

In this section, some experimentations are performed in order to evaluate the diagnos-

ability of intermittent faults using model-checking. We limit the experimentation to the

weak diagnosability properties, since they are the only reformulation as model-checking

problems. The experimentation are conducted through a benchmark that depicts the con-

cept of intermittent faults with assumptions A1, A2, and A3 (See Section 5.5.1. For the

veri�cation, we use the symbolic model-checker NuSMV (version 2.5.4) [Cimatti et al.,

2000], which is widely used for formal veri�cation in both academia and industry.

8.5.1 Presentation of the DES Benchmark

The DES benchmark, depicted in Figure 8.4, describes a manufacturing system composed

of a normal part and a faulty one. Each part contains several similar production lines

modeled using a Labeled Petri Net (LPN). Many parameters can be taken into account,

such as the number of tokens in place P0, the line length, or the number of production

lines. In our study, we consider only the number of production lines as a variable parameter

(k). Transitions t1, t′1, t2, t
′
2, t4,i, t

′
4,i are observable ∀1 ≤ i ≤ k. t1 is labeled with a, t′1

can be labeled with a or b (we consider two tests as it will be detailed after), t2, t′2 are

labeled with b, and ∀1 ≤ i ≤ k, t4,i, t′4,i are labeled with c. Transitions t3.i, t′3.i, t5, t
′
5 are

unobservable ∀1 ≤ i ≤ k. All the unobservable transitions are labeled with u excepted

transition t′3,1 and t
′
5 that correspond respectively to the fault event (labeled with f ∈ Σf)

and the corresponding reset event (labeled with r ∈ Σr).

As said before, two tests are performed: (Test 1) where t′1 is labeled with a, and (Test

2) where t′1 is labeled with b. As the benchmark is modeled by an LPN, we �rst generate

its reachability graph with the help of TINA Tool [Berthomieu et al., 2007] and then,

perform our technique based on the generated reachability graph. In order to assess the

scalability, we increase the number of production lines k progressively for each test.

8.5.2 Results and Discussion

All the experiments were conducted on a 64-bit PC, Ubuntu 14.04 operating system, an

Intel Core i5, 2.5 GHz Processor with 4 cores and 4 GB RAM.

Table 1 summarize the obtained results, for di�erent number of production lines.

Columns from left to right correspond to the di�erent tests:

� k is the number of production lines;

� |GS |, |GT | are respectively the number of states and the number of transitions in

202Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

Figure 8.4 � The LPN Benchmark

automaton G (i.e., the reachability graph of the LPN model obtained using the

TINA Tool);

� |RS| is the number of reachable states in the Kripke structure corresponding to the

twin-plant;

� TRS is the time elapsed for generating the Kripke structure;

� Diag is the diagnosability verdict;

� TDiag : the time elapsed for veri�cation.

8.5.2.1 Discussion

It can be seen that for Test 1, G is not diagnosable (not WF -diagnosable thus not WR-

diagnosable). This is a logical result given the structure of the net, where the left part and

the right part of the net depict the same structure (in terms of observable and unobservable

transitions). Moreover, the left part is fault-free unlike the right one, which contains an

intermittent fault. Thus, two executions that share the same observations exist in the

twin-plant, where in the �rst execution an intermittent fault can occur. However, no

fault event occurs in the second one. In Test 2 (where transition t′1 is labeled with b),

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis203

Table 8.1 � Experimental results for the LPN benchmark

k |GS | |GT | |RS| TRS Diag TDiag

T
es
t
1

3 131 294 2077 0.02s No 0.02s

4 515 1542 38285 0.17s No 0.28s

5 2015 7686 663453 3.04s No 2.70s

6 8195 36870 11048100 57s No 361s

T
es
t
2

3 131 294 1040 0.01s Yes 0.02s

4 515 1542 19144 0.17s Yes 0.14s

5 2015 7686 331728 4.22s Yes 2.12s

6 8195 36870 5524040 63s Yes 290s

the model is WF -(and WR-)diagnosable, since there are no executions that share the

same observations such that one execution contains intermittent fault f and the other is

fault-free. The same reasoning can be considered for WR-diagnosability.

Regarding the scalability of the approach, we observe that the size of the reachability

graph G signi�cantly increases with the number of production lines, which a�ects the

size of the Kripke structure that corresponding to the twin-plant. This is not surprising

since, on the one hand, twin-plant computation is performed in a polynomial complexity

regarding the size of model G. On the other hand, model-checking is very sensitive to the

combinatorial explosion of the state space.

Finally, three remarks relative to the elapsed times for generating the twin-plant and

checking diagnosability, can be emphasized:

1. The model-checker spends more time in veri�cation than in generating the twin-

plant.

2. Elapsed times for generating the twin-plant and verifying diagnosability remain in

the order of milliseconds until 5 production lines, then it increases signi�cantly. This

is due to the size of the twin-plant which becomes considerable.

3. More time elapsed for verifying diagnosability when the system is diagnosable (cf.

Test 2) than when the system is not diagnosable (cf. Test 1). This can be clearly

observed in line 5 (Test 1: 2.70s → 663454 states, Test 2: 2.12s → 331728 states).

This result is logical, since the model-checker needs to analyze the whole state-

space to conclude that the system is diagnosable. However, when the system is

not diagnosable, the veri�cation process is stopped as soon as a counter-example is

found, that is, only a part of the generated state-space is covered.

204Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

8.6 Discussion of the Fr−diagnosability

In Section 5.10 (Chapter 5), we have introduced the notion of Fr−diagnosability (see Def-
inition 31), which consists in diagnosing each fault event occurrence within a �nite delay,

but also before its corresponding reset event occurs. In this section, we provide a necessary

condition for Fr−diagnosability on the basis of the twin-plant structure. To do so, let us

introduce the following twin-plant state-types

• FF -state: is a state q = (x, x′) ∈ Q, such that Ψ(q) = (F, F).

• F1-state (resp. R1-state): is a state q = (x, x′) ∈ Q, such that Ψ(q) =

(F,4) (resp. Ψ(q) = (R,4)), with 4 ∈ {N,F,R}.

• F1-state: is a state q = (x, x′) ∈ Q, such that Ψ(q) = (F ,4).

with F means that the label of the corresponding state is di�erent from F .

Now, we introduce a particular type of �nite trace in the twin-plant called Fr−indicating
sequence, that will be used in the sequel.

Dé�nition 63 (Fr−indicating sequence)

Let π = (q1, q2, . . . , qn) be a �nite state-sequence in the twin-plant. π is an Fr−indicating
sequence if q1 is an F1-state, ∀1 < i < n, qi is an FF -state, and qn (n > 2) is an R1-state.

Figure 8.5 shows a path that contains a con�guration of an F -indicating sequence

represented by twin-plant states q1, q2, q3, and q4.

Figure 8.5 � Example of an Fr-indicating sequence

Proposition 15 (Fr-diagnosability)

A system model G is non-Fr-diagnosable, w.r.t a projection function P , a class of fault

events Σf and its corresponding class of reset events Σr, if an Fr-indicating sequence exists

in its corresponding twin-plant.

The proof of Fr−diagnosability is omitted since it can be derived directly from Proof 8.3.1.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis205

Example 20 Let us consider automaton G depicted in Figure 8.6. Σo = {a}, Σu =

{f, r, u}, with Σf = {f} and its corresponding reset event set Σr = {r}. Automaton G in

Figure 8.7 is a part of the twin-plant corresponding to G, where only the composition of

the top and central sequences, the bottom and top sequences, the central and the bottom

sequences are represented. Let us consider �nite path π = q1, a, q2, a, q3, a, q4, a, q5 in

G. One can observe that the �nite state-sequence q3, q4, q5 is an Fr−indicating sequence

since q3 is an F1-state, q4 is an FF -state and q5 is an R1-state. Therefore, G is non-

Fr−diagnosable.

1start 2 3 4 5 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21

f a r a f a a r a

f
a

f a a r

a

f

a r a f

au

Figure 8.6 � Automaton G of Example 1

N

N
start

q1

F

F

q2

R

R

q3

F

R

q4

R

F

q5

F

F

q6

R

F

q7

F

F

q8

F

R

q9

F

F

q10

F

R

q11

R

F

q12

a a a a a

a

a

a a

a

a

a a

a

Figure 8.7 � A part of twin-plant G corresponding to automaton G

206Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

8.7 Conclusion

In this chapter, the twin-plant technique is investigated in order to deal with diagnosability

of intermittent faults of DESs. Necessary and su�cient conditions for various notions of

diagnosability properties are established and proved. Firstly, on-the-�y and incremental

ad-hoc algorithms are developed to check these conditions. Secondly, the veri�cation of

(some of) these diagnosability properties is reformulated as LTL model-checking problems.

Some experimentations are conducted through an LPN benchmark in order to illustrate

the practicability of the developed reformulation.

Part IV

CONCLUSION

Chapter 9

Conclusions and Perspectives

Sommaire

9.1 Conclusions . 210

9.2 Perspectives . 211

210 Chapter 9. Conclusions and Perspectives

9.1 Conclusions

This dissertation is focused on fault diagnosis of discrete-event systems modeled by �nite

state automata with some extensions to bounded Petri net models. Our contributions are

discussed in Part II and Part III.

The second part (Part II:Chapter 4, 5 and 6) of the dissertation was devoted to fault

diagnosis of DESs in the diagnoser-based context. The goal of this part is to provide some

improvements to the classic diagnoser approaches.

In Chapter 4, we have developed a diagnoser variant with a new structure for represent-

ing the diagnoser nodes. Such a structure explicitly separates between the normal and the

faulty states in each node. This feature allows us to separately track the normal and the

faulty traces directly in the diagnoser. Moreover, the diagnoser is built directly from the

original model, without needing to construct any intermediate model. On the basis of such

a diagnoser structure, a necessary and su�cient condition for analyzing diagnosability is

formulated and a systematic procedure for the actual veri�cation of diagnosability, which

does not require building any intermediate model is established. For the actual veri�ca-

tion, we proposed an on-the-�y algorithm, for simultaneously constructing the diagnoser

and verifying diagnosability.

In Chapter 5, we extended the diagnoser variant, introduced in Chapter 4, in order

to deal with intermittent fault diagnosis. Various notions of diagnosability are discussed

and necessary and su�cient condition for each notion is formulated on the basis of our

diagnoser variant. In the same way as for the permanent faults, a systematic procedure

for the actual veri�cation of diagnosability properties is developed.

In Chapter 6, we established a hybrid version (in the sense of combining enumerative

and symbolic representations) of the diagnoser variant that we have developed, in order

to deal with fault diagnosis of bounded Petri nets. The main idea consisted in: (i) using

binary decision diagrams (BDDs) to depict marking sets so as to compact the diagnoser

nodes. This allows for reducing the memory consumption e�ciently handling PN markings

and (ii) using an explicit representation for the (observable) transitions that link the

diagnoser nodes. A dedicated tool implementing the proposed approach is developed

in order to assess the e�ciency and the scalability of the approach. Moreover, some

experimentations have been conducted through a PN benchmark. The obtained results

are discussed with respect to a reference approach for fault diagnosis of LPNs, called

MBRG/BRD technique [Cabasino et al., 2009a].

The third part (Part III:Chapter 7, 8) of the dissertation was dedicated to fault diag-

nosis of DESs through the twin-plan based technique [Jiang and Huang, 2001].

Chapter 7 discusses the actual veri�cation of diagnosability of permanent failures using

Chapter 9. Conclusions and Perspectives 211

model-checking. Namely, some extensions of the approach in [Cimatti et al., 2003] are de-

veloped to deal with the classic de�nition of diagnosability based on the twin-plant model.

Thereafter, some quantitative versions of diagnosability, namely, K/Kmin−diagnosability
properties are investigated. These properties are expressed using CTL/LTL and RT-CTL

speci�cations respectively to be tackled as model-checking problems. Some experimenta-

tions are conducted through a level crossing benchmark in order to show the applicability

of the approach.

Chapter 5 deals with the diagnosability of intermittent faults. In particular, we de-

veloped necessary and su�cient conditions, for each notion of diagnosability introduced

in Chapter 5 on the basis of the twin-plant approach [Jiang and Huang, 2001]. Some

of the developed necessary and su�cient conditions were expressed in temporal logics

(LTL/CTL) and then model-checking technique was used to perform the actual veri�ca-

tion.

9.2 Perspectives

The work discussed in this dissertation raises several research direction as discussed below:

1) Modular diagnoser-based approach

The diagnoser-based approach we propose in the second part of this dissertation deals

with monolithic system models for diagnosability analysis and implementation. However,

in general, industrial systems are composed of several modules, local components, or sub-

systems that could themselves be formed by various sub-modules. Such modular systems

tend to have very large state-spaces and therefore, they are complex to model and di�-

cult to diagnose in a holistic manner, i.e., by means of a global diagnoser [Contant et al.,

2006]. The challenge of modular diagnosis methodologies consists in performing diagnosis

locally, i.e., at each module, while at the same time accounting for the coupling of each

module with the rest of the system [Benveniste et al., 2003, Ricker and Fabre, 2000, Con-

tant et al., 2006, Schmidt, 2013, Debouk et al., 2002b, Pandalai and Holloway, 2000].

In the near future, we intend to investigate the modular diagnosability by extending our

diagnoser approach. In fact, we think that the various features of our approach, namely,

the systematic procedure for the actual veri�cation, the on-the-�y and partial construc-

tion/veri�cation, can potentially improve and speed up the diagnosability analysis.

212 Chapter 9. Conclusions and Perspectives

2) Sensor placement issues

When a system model is checked to be non-diagnosable, then two means are identi�ed to

make it diagnosable: i) revisit sensors placement and possibly introduce new sensors and ii)

redesign the controller. The former arises sensor optimization/recon�guration issues [Pan

and Hashtrudi-Zad, 2007, Jiang et al., 2003a, Ru and Hadjicostis, 2010, Yoo and Lafortune,

2002a, Cabasino et al., 2013b, Debouk et al., 2002a, Dallal and Lafortune, 2011] and the

synthesis of observability requirements [Bittner et al., 2012]. The diagnoser we develop

in Chapter 4 has an interesting feature that can be investigate when one deals with sensor

recon�guration. As we distinguish between the normal and faulty states in each diagnoser

node, it is possible to accurately identify the fault events that cause the non-diagnosablity

of the system. In fact, from the various experimentations we have performed, we have

seen that only one event fault is responsible for the existing of each indeterminate cycle.

Moreover, such a fault event may occur either in the entering node of an indeterminate

cycle or the �nite trace which is linked to. These observations motivate us to explore in

depth this issue.

3) Discriminating between fault types

In this dissertation, we have dealt with diagnosability of permanent and intermittent faults

separately, i.e., the system model is assumed to contain either permanent faults or inter-

mittent faults. However, in reality most of industrial systems, can show both types of

failures. In such a case and from maintenance point of view, it can be critical to dis-

criminate intermittent faults from permanent ones when a fault occurs. Namely, if the

current fault is diagnosed to be an intermittent fault, a timely fault treatment actions

could be required. In this way, a lot of maintenance cost can be saved by avoiding un-

necessary shutdown and repair. Unfortunately, most of the existing approaches (including

the contribution developed in this manuscript) consider only one type of faults, i.e., either

permanent faults or intermittent faults. Dealing with this issue, i.e., discriminating inter-

mittent from permanent faults in the same framework, is an interesting perspective that

we wish to investigate.

4) An e�ective platform for the analysis of various system safety properties

The third part of the dissertation was devoted to the practical veri�cation of diagnosabil-

ity in a model-checking framework. In this part, we have extended the approach proposed

by Cimatti et al. [Cimatti et al., 2003] to deal with various properties in fault diagnosis,

namely, diagnosability, K/Kmin− diagnosability, WF/WR−diagnosability. As a future

research direction, we intend to develop an e�ective platform for the analysis of vari-

Chapter 9. Conclusions and Perspectives 213

ous properties related to system safety. In fact, we wish to reformulate the analysis of

predictability/prognosability [Jéron et al., 2008, Takai and Kumar, 2012] and opacity [Sa-

boori and Hadjicostis, 2007, Lin, 2011] as model-checking problems in the same way as for

diagnosability analysis. A software platform, which gathers all these reformulations and

integrate e�cient model-checking tools, will be of a great help for the actual veri�cation of

the system safety properties. This can be the subject of some research action, for instance

a research project covering these aspects.

5) Application to railway systems

This thesis was accomplished within the COSYS/ESTAS team (Evaluation and Safety of

Automated Transport Systems) at IFSTTAR. In ESTAS, we develop methods, techniques

and tools to analyze and improve the safety features of guided transport systems. Although

the contributions of this thesis are mainly theoretical, as a part of our future works, we

intend to bring into play the techniques developed in the thesis in order to deal with

monitoring and fault diagnosis issues pertaining to embedded railway control systems.

Besides, several railway case-studies have already been identi�ed.

Bibliography

[Aghasaryan et al., 1998] Aghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., and Jard, C.

(1998). Fault detection and diagnosis in distributed systems: an approach by partially stochastic

petri nets. Discrete event dynamic systems, 8(2):203�231. (Cited in page 85.)

[Akers, 1978] Akers, S. B. (1978). Binary decision diagrams. IEEE Transactions on computers,

100(6):509�516. (Cited in page 128.)

[Alur et al., 1990] Alur, R., Courcoubetis, C., and Dill, D. (1990). Model-checking for real-time

systems. 5th Annual IEEE Symposium on Logic in Computer Science, pages 414�425. (Cited

in page 175.)

[Alur et al., 1993] Alur, R., Courcoubetis, C., and Dill, D. (1993). Model-checking in dense real-

time. Information and computation, 104(1):2�34. (Cited in page 175.)

[Anderson and Aylward, 1993] Anderson, R. J. and Aylward, S. R. (1993). Lab testing of neural

networks for improved aircraft onboard-diagnostics on �ight-ready hardware. Annual Reliability

and Maintainability Symposium, pages 404�410. (Cited in page 84.)

[Antoniotti, 1995] Antoniotti, M. (1995). Synthesis and Veri�cation of Discrete Controllers for

Robotics and Manufacturing Devices with Temporal Logic and the Control-D System. PhD

thesis, New York University. (Cited in page 162.)

[Aydin et al., 2013] Aydin, �., Karaköse, E., Karaköse, M., Genço§lu, M. T., and Ak�n, E. (2013).

A new computer vision approach for active pantograph control. Innovations in Intelligent

Systems and Applications (INISTA), 2013 IEEE International Symposium on, pages 1�5. (Cited

in page 84.)

[Baier et al., 2008] Baier, C., Katoen, J.-P., and Larsen, K. G. (2008). Principles of model check-

ing. MIT press. (Cited in pages 159 and 161.)

[Bajwa et al., 2003] Bajwa, A., Sweet, A., and Korsmeyer, D. (2003). The livingstone model of a

main propulsion system. (Cited in page 166.)

[Baldan et al., 2010] Baldan, P., Chatain, T., Haar, S., and König, B. (2010). Unfolding-based

diagnosis of systems with an evolving topology. Information and Computation, 208(10):1169�

1192. (Cited in page 32.)

216 Bibliography

[Ball and Hardie, 1969] Ball, M. and Hardie, F. (1969). E�ects and detection of intermittent fail-

ures in digital systems. Proceedings of the November 18-20, 1969, fall joint computer conference,

pages 329�335. (Cited in pages 6 and 83.)

[Banerjee and Khilar, 2010] Banerjee, N. and Khilar, P. (2010). Performance analysis of dis-

tributed intermittent fault diagnosis in wireless sensor networks using clustering. 5th Interna-

tional Conference on Industrial and Information Systems, pages 13�18. (Cited in page 83.)

[Basile, 2014] Basile, F. (2014). Overview of fault diagnosis methods based on Petri net models.

European Control Conference (ECC), pages 2636�2642. (Cited in pages 24, 120, 121 and 123.)

[Basile et al., 2007] Basile, F., Chiacchio, P., and De Tommasi, G. (2007). Improving on-line fault

diagnosis for discrete event systems using time. IEEE International Conference on Automation

Science and Engineering, pages 26�32. (Cited in page 121.)

[Basile et al., 2009] Basile, F., Chiacchio, P., and De Tommasi, G. (2009). An E�cient Approach

for Online Diagnosis of Discrete Event Systems. IEEE Transactions on Automatic Control,

54(4):748�759. (Cited in pages 24, 120 and 121.)

[Basile et al., 2010] Basile, F., Chiacchio, P., and De Tommasi, G. (2010). Diagnosability of

labeled Petri nets via integer linear programming. Discrete Event Systems, 10(1):71�77. (Cited

in pages 24, 120 and 121.)

[Basile et al., 2012a] Basile, F., Chiacchio, P., and De Tommasi, G. (2012a). On k-diagnosability

of Petri nets via integer linear programming. Automatica, 48(9):2047�2058. (Cited in pages 24,

69, 121, 122 and 158.)

[Basile et al., 2012b] Basile, F., Chiacchio, P., and De Tommasi, G. (2012b). On K-diagnosability

of Petri nets via integer linear programming. Automatica, 48(9):2047�2058. (Cited in pages 33

and 172.)

[Basile et al., 2008] Basile, F., Chiacchiot, P., and De Tommasi, G. (2008). Su�cient conditions

for diagnosability of Petri nets. 9th International Workshop on Discrete Event Systems, pages

370�375. (Cited in pages 24, 120 and 121.)

[Basilio and Lafortune, 2009] Basilio, J. C. and Lafortune, S. (2009). Robust codiagnosability of

discrete event systems. In 2009 American Control Conference, pages 2202�2209. IEEE. (Cited

in pages 22 and 49.)

[Basu et al., 2003] Basu, S., Saha, D., Lin, Y., and Smolka, S. A. (2003). Generation of all

counter-examples for Push-Down Systems. (Cited in page 175.)

Bibliography 217

[Bavishi and Chong, 1994] Bavishi, S. and Chong, E. K. (1994). Automated fault diagnosis using

a discrete event systems framework. In Intelligent Control, 1994., Proceedings of the 1994 IEEE

International Symposium on, pages 213�218. IEEE. (Cited in page 21.)

[Bellini et al., 2000] Bellini, P., Mattolini, R., and Nesi, P. (2000). Temporal logics for real-time

system speci�cation. ACM Computing Surveys (CSUR), 32(1):12�42. (Cited in page 175.)

[Benveniste et al., 2003] Benveniste, A., Fabre, E., Haar, S., and Jard, C. (2003). Diagnosis

of asynchronous discrete-event systems: a net unfolding approach. IEEE Transactions on

Automatic Control, 48(5):714�727. (Cited in pages 23, 85 and 211.)

[Berthomieu et al., 2007] Berthomieu, B., Ribet, P.-O., and Vernadat, M. (2007). The tool TINA:

Construction of abstract state spaces for Petri nets and time Petri nets. International Journal

of Production Research, 42(14):2741�2756. (Cited in pages 74, 178 and 201.)

[Bertoli et al., 2007] Bertoli, P., Bozzano, M., and Cimatti, A. (2007). A symbolic model checking

framework for safety analysis, diagnosis, and synthesis. Model Checking and Arti�cial Intelli-

gence, pages 4428, 1�18. (Cited in page 167.)

[Biere et al., 1999a] Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. (1999a). Symbolic model

checking without bdds. In International conference on tools and algorithms for the construction

and analysis of systems, pages 193�207. Springer. (Cited in pages 162 and 165.)

[Biere et al., 1999b] Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. (1999b). Sym-

bolic model checking using sat procedures instead of bdds. In Proceedings of the 36th annual

ACM/IEEE Design Automation Conference, pages 317�320. ACM. (Cited in page 162.)

[Biere et al., 2003] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. (2003).

Bounded model checking. Advances in computers, 58:117�148. (Cited in pages 159 and 160.)

[Biswas, 2012] Biswas, S. (2012). Diagnosability of discrete event systems for temporary failures.

Computers & Electrical Engineering, 38(6):1534�1549. (Cited in pages 26, 86 and 92.)

[Bittner et al., 2012] Bittner, B., Bozzano, M., Cimatti, A., and Olive, X. (2012). Symbolic syn-

thesis of observability requirements for diagnosability. 27th Conference on Arti�cial Intelligence,

pages 712�718. (Cited in pages 21 and 212.)

[Bourgne et al., 2009] Bourgne, G., Dague, P., Nouioua, F., and Rapin, N. (2009). Diagnosability

of Input Output Symbolic Transition Systems. 1st Int. Conference on Advances in System

Testing and Validation Lifecycle, pages 147�154. (Cited in pages 158 and 166.)

218 Bibliography

[Boussif and Ghazel, 2015a] Boussif, A. and Ghazel, M. (2015a). Diagnosability analysis of in-

put/output discrete event system using model checking. 5th IFAC International Workshop

on Dependable Control of Discrete Systems DCDS 2015, 48(7):71 � 78. (Cited in pages 157

and 184.)

[Boussif and Ghazel, 2015b] Boussif, A. and Ghazel, M. (2015b). Une approche par décomposition

de modèles pour l'analyse de la diagnosticabilité des seds par model-checking. 10eme Colloque

sur la Modélisation des Systèmes Réactifs (MSR'15). (Cited in page 157.)

[Boussif and Ghazel, 2016a] Boussif, A. and Ghazel, M. (2016a). Analyzing various notions of di-

agnosability of intermittent faults in discrete event systems. IEEE Transactions on Automation

Science and Engineering (submitted). (Cited in page 181.)

[Boussif and Ghazel, 2016b] Boussif, A. and Ghazel, M. (2016b). Intermittent fault diagnosis of

industrial systems in the model-checking framework. 2016 IEEE International Conference on

Prognostics and Health Management (ICPHM), pages 1�6. (Cited in pages 81 and 181.)

[Boussif and Ghazel, 2016c] Boussif, A. and Ghazel, M. (2016c). A new variant of the diagnoser-

based approach for fault diagnosis of discrete-event systems. IEEE Transactions on Automatic

Control (submitted). (Cited in page 47.)

[Boussif and Ghazel, 2016d] Boussif, A. and Ghazel, M. (2016d). Using model-checking tech-

niques for diagnosability analysis of intermittent faults -a railway case-study. Proceedings of the

10th International Workshop on Veri�cation and Evaluation of Computer and Communication

Systems, pages 93�104. (Cited in pages 116 and 181.)

[Boussif and Ghazel, 2017] Boussif, A. and Ghazel, M. (2017). A diagnoser-based approach for

intermittent fault diagnosis of discrete-event systems. the 2017 American Control Conference

(submitted). (Cited in page 81.)

[Boussif et al., 2015] Boussif, A., Ghazel, M., and Klai, K. (2015). Combining enumerative and

symbolic techniques for diagnosis of discrete event systems. in Proc. of the 9th Int. Workshopon

Veri�cation and Evaluation of Computer and Communication Systems. (Cited in pages 47

and 119.)

[Boussif et al., 2016a] Boussif, A., Ghazel, M., and Klai, K. (2016a). Fault diagnosis of bounded

labeled petri nets using a semi-symbolic diagnoser. IEEE Transactions on Systems, Man, and

Cybernetics: Systems (submitted). (Cited in page 119.)

Bibliography 219

[Boussif et al., 2016b] Boussif, A., Ghazel, M., and Klai, K. (2016b). Fault diagnosis of discrete-

event systems based on the symbolic observation graph. The International Journal of Critical

Computer-Based Systems (submitted). (Cited in pages 47 and 119.)

[Boussif et al., 2017] Boussif, A., Ghazel, M., and Klai, K. (2017). Dpn-sog: A software tool for

fault diagnosis of labeled petri nets using the semi-symbolic diagnoser. 20th World Congress of

the International Federation of Automatic Control, (submitted). (Cited in page 147.)

[Boussif et al., 2016c] Boussif, A., Liu, B., and Ghazel, M. (2016c). A twin plant based approach

for diagnosability analysis of intermittent failure. 13th International Workshop on Discrete

Event Systems. (Cited in pages 81 and 181.)

[Bozzano et al., 2013a] Bozzano, M., Cimatti, A., Gario, M., and Tonetta, S. (2013a). A formal

framework for the speci�cation, veri�cation and synthesis of diagnosers. In AAAI (Late-Breaking

Developments). (Cited in page 164.)

[Bozzano et al., 2013b] Bozzano, M., Cimatti, A., Gario, M., and Tonetta, S. (2013b). Formal

speci�cation and synthesis of fdi through an example. In Workshop on Principles of Diagnosis

(DX13), pages 174�179. (Cited in page 164.)

[Bozzano et al., 2014] Bozzano, M., Cimatti, A., Gario, M., and Tonetta, S. (2014). Formal design

of fault detection and identi�cation components using temporal epistemic logic. In International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 326�

340. Springer. (Cited in pages 164 and 165.)

[Brusoni et al., 1998] Brusoni, V., Console, L., Terenziani, P., and Dupré, D. T. (1998). A spec-

trum of de�nitions for temporal model-based diagnosis. Arti�cial Intelligence, 102(1):39�79.

(Cited in page 19.)

[Bryant, 1992] Bryant, R. E. (1992). Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Comput. Surv., 24(3):293�318. (Cited in pages 128 and 130.)

[Cabasino et al., 2009a] Cabasino, M. P., Giua, A., Lafortune, S., and Seatzu, C. (2009a). Di-

agnosability analysis of unbounded Petri nets. Proceedings of the 48th IEEE Conference on

Decision and Control (CDC) held jointly with 28th Chinese Control Conference, pages 1267�

1272. (Cited in pages 8, 24, 99, 120, 121 and 210.)

[Cabasino et al., 2012a] Cabasino, M. P., Giua, A., Lafortune, S., and Seatzu, C. (2012a). A new

approach for diagnosability analysis of Petri nets using veri�er nets. IEEE Transactions on

Automatic Control, 57(12):3104�3117. (Cited in pages 33, 35, 69 and 158.)

220 Bibliography

[Cabasino et al., 2012b] Cabasino, M. P., Giua, A., Marcias, L., and Seatzu, C. (2012b). A

comparison among tools for the diagnosability of discrete event systems. In IEEE International

Conference on Automation Science and Engineering, pages 218�223. IEEE. (Cited in page 147.)

[Cabasino et al., 2013a] Cabasino, M. P., Giua, A., Paoli, A., and Seatzu, C. (2013a). Decen-

tralized diagnosis of discrete-event systems using labeled Petri nets. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, pages 1�9. (Cited in pages 22, 49 and 158.)

[Cabasino et al., 2009b] Cabasino, M. P., Giua, A., and Seatzu, C. (2009b). Diagnosability of

bounded Petri nets. Proceedings of the 48th IEEE Conference on Decision and Control, held

jointly with the 28th Chinese Control Conference, pages 1254�1260. (Cited in pages 5, 24, 49,

120, 122, 139, 152 and 158.)

[Cabasino et al., 2010] Cabasino, M. P., Giua, A., and Seatzu, C. (2010). Fault detection for

discrete event systems using Petri nets with unobservable transitions. Automatica, 46(9):1531�

1539. (Cited in pages 24, 120 and 122.)

[Cabasino et al., 2014] Cabasino, M. P., Giua, A., and Seatzu, C. (2014). Diagnosability of

discrete-event systems using labeled petri nets. IEEE Transactions on Automation Science

and Engineering, 11(1):144�153. (Cited in pages 49, 68, 124, 133, 135, 147, 148 and 158.)

[Cabasino et al., 2013b] Cabasino, M. P., Lafortune, S., and Seatzu, C. (2013b). Optimal sensor

selection for ensuring diagnosability in labeled Petri nets. Automatica, 49(8):2373�2383. (Cited

in pages 21 and 212.)

[Carvalho et al., 2012] Carvalho, L., Basilio, J., and Moreira, M. V. (2012). Robust diagnosis of

discrete event systems against intermittent loss of observations. Automatica, 48(9):2068�2078.

(Cited in page 90.)

[Carvalho et al., 2010] Carvalho, L. K., Basilio, J. C., and Moreira, M. V. (2010). Robust diagnos-

ability of discrete event systems subject to intermittent sensor failures. International Workshop

on Discrete Event Systems, pages 84�89. (Cited in pages 86 and 90.)

[Carvalho et al., 2013] Carvalho, L. K., Basilio, J. C., Moreira, M. V., and Clavijo, L. B. (2013).

Diagnosability of intermittent sensor faults in discrete event systems. American Control Con-

ference, pages 929�934. (Cited in pages 86 and 90.)

[Cassandras and Lafortune, 2009] Cassandras, C. and Lafortune, S. (2009). Introduction to dis-

crete event systems. Springer Science and Business Media. (Cited in pages 3, 20, 26, 27, 29,

131 and 244.)

Bibliography 221

[Cassez, 2009] Cassez, F. (2009). A note on fault diagnosis algorithms. Proceedings of the 48th

IEEE Conference on Decision and Control, held jointly with the 28th Chinese Control Confer-

ence. CDC/CCC, pages 6941�6946. (Cited in pages 31, 35 and 36.)

[Cassez and Tripakis, 2008] Cassez, F. and Tripakis, S. (2008). Fault diagnosis with static and dy-

namic observers. Fundamenta Informaticae, 88(4):497�540. (Cited in pages 31, 35, 36 and 166.)

[Chandra and Kumar, 2002] Chandra, V. and Kumar, R. (2002). A event occurrence rules based

compact modeling formalism for a class of discrete event systems. Mathematical and computer

modelling of dynamical Systems, 8(1):49�73. (Cited in page 163.)

[Chang and McCluskey, 1997] Chang, J. T. Y. and McCluskey, E. J. (1997). Detecting bridging

faults in dynamic cmos circuits. IEEE International Workshop on IDDQ Testing, pages 106�

109. (Cited in page 84.)

[Chanthery and Pencolé, 2009] Chanthery, E. and Pencolé, Y. (2009). Monitoring and active

diagnosis for discrete-event systems. IFAC Proceedings Volumes, 42(8):1545�1550. (Cited in

page 21.)

[Chédor et al., 2015] Chédor, S., Morvan, C., Pinchinat, S., and Marchand, H. (2015). Diagnosis

and opacity problems for in�nite state systems modeled by recursive tile systems. Discrete

Event Dynamic Systems, 25(1-2):271�294. (Cited in page 31.)

[Chen and Patton, 2012] Chen, J. and Patton, R. J. (2012). Robust model-based fault diagnosis

for dynamic systems, volume 3. Springer Science & Business Media. (Cited in pages 17, 19

and 20.)

[Chen et al., 2014] Chen, Z., Lin, F., Wang, C., Le Wang, Y., and Xu, M. (2014). Active di-

agnosability of discrete event systems and its application to battery fault diagnosis. IEEE

Transactions on control systems technology, 22(5):1892�1898. (Cited in page 21.)

[Chung, 2005] Chung, S.-L. (2005). Diagnosing PN-based models with partial observable transi-

tions. International Journal of Computer Integrated Manufacturing, 18(2-3):158�169. (Cited in

pages 24, 120 and 122.)

[Cimatti et al., 2000] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M. (2000). NUSMV:

a new symbolic model checker. Int. Journal on Software Tools for Technology Transfer. (Cited

in pages 175, 176 and 201.)

[Cimatti et al., 2003] Cimatti, A., Pecheur, C., and Cavada, R. (2003). Formal veri�cation of

diagnosability via symbolic model checking. Int. Joint Conference on Arti�cial Intelligence.

222 Bibliography

(Cited in pages 6, 7, 9, 22, 120, 121, 158, 159, 165, 166, 167, 168, 169, 170, 171, 173, 182, 211,

212 and 246.)

[Cimatti et al., 2005] Cimatti, A., Pecheur, C., and Lomuscio, A. (2005). Applications of model

checking for multi-agent systems: Veri�cation of diagnosability and recoverability. In Proceed-

ings of the International Workshop on Concurrency, Speci�cation, and Programming (CS&P

2005). Ruciane-Nida. (Cited in pages 164 and 200.)

[Clarke et al., 2001] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2001). Progress on

the state explosion problem in model checking. In Informatics, pages 176�194. Springer. (Cited

in page 162.)

[Clarke et al., 1996] Clarke, E., McMillan, K., Campos, S., and Hartonas-Garmhausen, V. (1996).

Symbolic model checking. In International Conference on Computer Aided Veri�cation, pages

419�422. Springer. (Cited in page 162.)

[Clarke and Emerson, 1981] Clarke, E. M. and Emerson, E. A. (1981). Design and synthesis

of synchronization skeletons using branching time temporal logic. In Workshop on Logic of

Programs, pages 52�71. Springer. (Cited in pages 159 and 161.)

[Clarke et al., 1999] Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. MIT

Press. (Cited in page 159.)

[Contant, 2005] Contant, O. (2005). On monitoring and diagnosing classes of discrete event sys-

tems. PhD Thesis, University of Michigan. (Cited in pages 6, 85, 90, 94 and 95.)

[Contant et al., 2002] Contant, O., Lafortune, S., and Teneketzis, D. (2002). Failure diagnosis of

discrete event system: The case of intermittent faults. International Conference on Decision

and Control, pages 4006�4017. (Cited in pages 85 and 90.)

[Contant et al., 2004] Contant, O., Lafortune, S., and Teneketzis, D. (2004). Diagnosis of Inter-

mittent Faults. Discrete Event Dynamic Systems, 14(2):171�202. (Cited in pages 84, 85, 86,

88, 89, 90, 91, 98, 99, 104, 105, 106, 109, 112, 113 and 114.)

[Contant et al., 2006] Contant, O., Lafortune, S., and Teneketzis, D. (2006). Diagnosability of

discrete event systems with modular structure. Discrete Event Dynamic Systems, 16(1):9�37.

(Cited in pages 23, 49, 158 and 211.)

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of computing, pages 151�158. ACM. (Cited in

page 165.)

Bibliography 223

[Cordier et al., 2004] Cordier, M.-O., Dague, P., Lévy, F., Montmain, J., Staroswiecki, M., and

Travé-Massuyès, L. (2004). Con�icts versus analytical redundancy relations: a comparative

analysis of the model based diagnosis approach from the arti�cial intelligence and automatic

control perspectives. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-

netics), 34(5):2163�2177. (Cited in pages 4 and 19.)

[Cordier and Largouet, 2001] Cordier, M. O. and Largouet, C. (2001). Using model-checking

techniques for diagnosing discrete-event systems. 12th Int. Workshop on Principles of Diagnosis.

(Cited in page 163.)

[Correcher et al., 2003] Correcher, A., Garcia, E., Morant, F., and Quiles, E. (2003). Intermittent

failure diagnosis in industrial processes. IEEE International Symposium on Industrial Electron-

ics, 2:723�728. (Cited in pages 83 and 86.)

[Correcher et al., 2010] Correcher, A., García, E., Quiles, E., Morant, F., and Rodríguez, L.

(2010). Diagnosis of intermittent faults and its dynamics. INTECH Open Access Publisher.

(Cited in page 83.)

[Dallal and Lafortune, 2010] Dallal, E. and Lafortune, S. (2010). On most permissive observers

in dynamic sensor optimization problems for discrete event systems. 48th Annual Allerton

Conference on Communication, Control, and Computing, pages 318�324. (Cited in pages 33

and 69.)

[Dallal and Lafortune, 2011] Dallal, E. and Lafortune, S. (2011). E�cient computation of most

permissive observers in dynamic sensor activation problems. Int. Workshop on Logical Aspects

of Fault-Tolerance, pages 1�28. (Cited in pages 21, 33, 34, 172 and 212.)

[Darwiche and Provan, 1996] Darwiche, A. and Provan, G. (1996). Exploiting system structure

in model-based diagnosis of discrete-event systems. In Proceedings of the Seventh International

Workshop on Principles of Diagnosis, pages 95�105. (Cited in pages 19 and 163.)

[De Kleer, 2009] De Kleer, J. (2009). Diagnosing multiple persistent and intermittent faults. The

International Joint Conference on Arti�cial Intelligence, pages 733�738. (Cited in page 87.)

[de Kleer and Kurien, 2004] de Kleer, J. and Kurien, J. (2004). Fundamentals of model-based di-

agnosis. In Proc. 5th IFAC Symposium on Fault Detection, Supervision, and Safety of Technical

Processes (Safeprocess), pages 25�36. (Cited in page 20.)

[De Kleer et al., 2008] De Kleer, J., Price, B., Kuhn, L., Do, M., and Zhou, R. (2008). A frame-

work for continuously estimating persistent and intermittent failure probabilities. 19th Inter-

national Workshop on Principles of Diagnosis, pages 63�70. (Cited in page 87.)

224 Bibliography

[De Nicola and Vaandrager, 1990] De Nicola, R. and Vaandrager, F. (1990). Action versus state

based logics for transition systems. In Semantics of Systems of Concurrent Processes, pages

407�419. Springer. (Cited in page 160.)

[De Nicola and Vaandrager, 1995] De Nicola, R. and Vaandrager, F. (1995). Three logics for

branching bisimulation. Journal of the ACM (JACM), 42(2):458�487. (Cited in page 160.)

[De Vries, 1990] De Vries, R. C. (1990). An automated methodology for generating a fault tree.

IEEE transactions on reliability, 39(1):76�86. (Cited in page 18.)

[Debouk et al., 1998] Debouk, R., Lafortune, S., and Teneketzis, D. (1998). Coordinated decen-

tralized protocols for failure diagnosis of discrete event systems. IEEE International Conference

on Systems, Man, and Cybernetics, 3:3010�3011. (Cited in pages 22, 49 and 158.)

[Debouk et al., 2000] Debouk, R., Lafortune, S., and Teneketzis, D. (2000). Coordinated de-

centralized protocols for failure diagnosis of discrete event systems. Discrete Event Dynamic

Systems, 10(1-2):33�86. (Cited in pages 22 and 49.)

[Debouk et al., 2002a] Debouk, R., Lafortune, S., and Teneketzis, D. (2002a). On an optimization

problem in sensor selection. Discrete Event Dynamic Systems. (Cited in pages 21, 49 and 212.)

[Debouk et al., 2002b] Debouk, R., Malik, R., and Brandin, B. (2002b). A modular architecture

for diagnosis of discrete event systems. Proceedings of the 41st IEEE Conference on Decision

and Control, 1:417�422. (Cited in pages 23, 158 and 211.)

[Deng et al., 2014] Deng, G., Qiu, J., Liu, G., and Lyu, K. (2014). A discrete event systems

approach to discriminating intermittent from permanent faults. Chinese Journal of Aeronautics,

27(2):390�396. (Cited in pages 84 and 87.)

[Deshpande and Varaiya, 1996] Deshpande, A. and Varaiya, P. (1996). Semantic tableau for con-

trol of PLTL formulae. In Decision and Control, 1996., Proceedings of the 35th IEEE Conference

on, volume 2, pages 2243�2248. IEEE. (Cited in page 162.)

[Dotoli et al., 2009] Dotoli, M., Fanti, M. P., Mangini, A. M., and Ukovich, W. (2009). On-

line fault detection in discrete event systems by Petri nets and integer linear programming.

Automatica, 45(11):2665�2672. (Cited in pages 24 and 121.)

[Eén and Sörensson, 2003] Eén, N. and Sörensson, N. (2003). An extensible sat-solver. In Inter-

national conference on theory and applications of satis�ability testing, pages 502�518. Springer.

(Cited in page 165.)

Bibliography 225

[Elliott, 1994] Elliott, M. S. (1994). Computer-assisted fault-tree construction using a knowledge-

based approach. IEEE Transactions on Reliability, 43(1):112�120. (Cited in page 18.)

[Emerson, 1990] Emerson, E. A. (1990). Temporal and modal logic. Handbook of Theoretical Com-

puter Science, Volume B: Formal Models and Sematics (B), 995(1072):5. (Cited in page 164.)

[Emerson, 2008] Emerson, E. A. (2008). The beginning of model checking: a personal perspective.

In 25 Years of Model Checking, pages 27�45. Springer. (Cited in page 162.)

[Eser Kart and Schmidt, 2015] Eser Kart, B. and Schmidt, K. (2015). Computation of reduced

diagnosers for the fault diagnosis of discrete event systems. Engineering and Technology Sym-

posium, pages 1�6. (Cited in page 35.)

[Fabre et al., 2002] Fabre, E., Benveniste, A., and Jard, C. (2002). Distributed diagnosis for large

discrete event dynamic systems. 15th IFAC World Congress, Barcelona. (Cited in page 23.)

[Fabre et al., 2016] Fabre, E., Hélouet, L., Lefaucheux, E., and Marchand, H. (2016). Diagnos-

ability of repairable faults. 13th International Workshop on Discrete Event Systems (WODES),

pages 230�236. (Cited in pages 29, 87, 90, 116 and 200.)

[Farmakis and Moskowitz, 2013] Farmakis, I. and Moskowitz, M. A. (2013). Fixed point theorems

and their applications. World Scienti�c. (Cited in page 61.)

[Frank, 1996] Frank, P. (1996). Analytical and qualitative model-based fault diagnosis: A survey

and some new results. European Journal of Control, 2(1):6 � 28. (Cited in page 19.)

[Fromherz et al., 2004] Fromherz, M. P. J., Bobrow, D. G., and de Kleer, J. (2004). Model-based

computing for design and control of recon�gurable systems. AI Magazine, 24(4):120�130. (Cited

in pages 6 and 83.)

[Gammie and Van Der Meyden, 2004] Gammie, P. and Van Der Meyden, R. (2004). MCK: Model

checking the logic of knowledge. In International Conference on Computer Aided Veri�cation,

pages 479�483. Springer. (Cited in pages 164 and 200.)

[García et al., 2005] García, E., Correcher, A., Morant, F., Quiles, E., and Blasco, R. (2005).

Modular fault diagnosis based on discrete event systems. Discrete Event Dynamic Systems,

15(3):237�256. (Cited in pages 23 and 49.)

[Garcia et al., 2002] Garcia, E., Morant, F., Blasco-Giménez, R., Correcher, A., and Quiles, E.

(2002). Centralized modular diagnosis and the phenomenon of coupling. In Discrete Event

226 Bibliography

Systems, 2002. Proceedings. Sixth International Workshop on, pages 161�168. IEEE. (Cited in

page 23.)

[Garcia and Yoo, 2005] Garcia, H. E. and Yoo, T.-S. (2005). Model-based detection of routing

events in discrete �ow networks. Automatica, 41(4):583�594. (Cited in pages 85 and 116.)

[Gario, 2016] Gario, M. E. G. (2016). A formal foundation of fdi design via temporal epistemic

logic. PhD Thesis. (Cited in pages 18 and 164.)

[Genc and Lafortune, 2003] Genc, S. and Lafortune, S. (2003). Distributed diagnosis of discrete-

event systems using petri nets. In International Conference on Application and Theory of Petri

Nets, pages 316�336. Springer. (Cited in page 23.)

[Germanos et al., 2015] Germanos, V., Haar, S., Khomenko, V., and Schwoon, S. (2015). Diag-

nosability under weak fairness. ACM Transactions on Embedded Computing Systems (TECS),

14(4):69. (Cited in pages 24, 120 and 121.)

[Gertler, 1991] Gertler, J. (1991). Analytical redundancy methods in fault detection and isola-

tion. In Preprints of IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for

Technical Processes SAFEPROCESS91, pages 9�21. (Cited in page 19.)

[Ghazel and El-Koursi, 2014] Ghazel, M. and El-Koursi, E.-M. (2014). Two-half-barrier level

crossings versus four-half-barrier level crossings: A comparative risk analysis study. IEEE

Transactions on Intelligent Transportation Systems, 15(3):1123�1133. (Cited in page 178.)

[Ghazel and Liu, 2016] Ghazel, M. and Liu, B. (2016). A customizable railway benchmark to deal

with fault diagnosis issues in des. 2016 13th International Workshop on Discrete Event Systems

(WODES), pages 177�182. (Cited in pages 176 and 178.)

[Giua, 2008] Giua, A. (2008). A benchmark for diagnosis. 9th International Workshop on Discrete

Event Systems. (Cited in page 72.)

[Grastien, 2009] Grastien, A. (2009). Symbolic testing of diagnosability. DX'09. (Cited in

pages 22, 42 and 158.)

[Grastien et al., 2008] Grastien, A. et al. (2008). Incremental diagnosis of des by satis�ability.

In Proceedings of the 18th European Conference on Arti�cial Intelligence, pages 787�788. IOS

Press. (Cited in page 165.)

Bibliography 227

[Grastien et al., 2007] Grastien, A., Rintanen, J., and Kelareva, E. (2007). Modeling and solving

diagnosis of discrete-event systems via satis�ability. In Eighteenth International Workshop on

Principles of Diagnosis�DX, volume 7, pages 114�121. (Cited in page 165.)

[Grastien and Anbulagan, 2010] Grastien, Al. and Anbulagan, An. (2010). Diagnostic de systèmes

à événements discrets à base de cohérence par SAT. Revue d'Intelligence Arti�cielle (RIA),

24(6):757�786. (Cited in page 165.)

[Grastien and Anbulagan, 2013] Grastien, Al. and Anbulagan, An. (2013). Diagnosis of discrete

event systems using satis�ability algorithms: a theoretical and empirical study. IEEE Transac-

tions on Automatic Control (TAC), 58(12):3070�3083. (Cited in page 165.)

[Haddad et al., 2004] Haddad, S., Ilié, J. M., Klai, K., andWang, F. (2004). Design and evaluation

of a symbolic and abstraction-based model checker. 2nd International Symposium on Automated

Technology for Veri�cation and Analysis (ATVA'04), pages 198�210. (Cited in pages 123, 127,

130, 131 and 147.)

[Halpern and Vardi, 1989] Halpern, J. Y. and Vardi, M. Y. (1989). The complexity of reason-

ing about knowledge and time. i. lower bounds. Journal of Computer and System Sciences,

38(1):195�237. (Cited in pages 164 and 200.)

[Hamscher, 1992] Hamscher, W. (1992). Readings in model-based diagnosis. (Cited in pages 18

and 19.)

[Hardie and Suhocki, 1967] Hardie, F. H. and Suhocki, R. J. (1967). Design and use of fault

simulation for saturn computer design. IEEE Transactions on Electronic Computers, (4):412�

429. (Cited in pages 6 and 83.)

[Henzinger et al., 1994] Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1994). Symbolic

model checking for real-time systems. Information and computation, 111(2):193�244. (Cited in

page 175.)

[Holloway and Chand, 1994] Holloway, L. E. and Chand, S. (1994). Time templates for discrete

event fault monitoring in manufacturing systems. In American Control Conference, 1994, vol-

ume 1, pages 701�706. IEEE. (Cited in page 23.)

[Hosseini et al., 2013] Hosseini, M., Lennartson, B., Cabasino, M., and Seatzu, C. (2013). A

survey on e�cient diagnosability tests for automata and bounded petri nets. IEEE 18th Con-

ference on Emerging Technologies Factory Automation (ETFA),, pages 1�6. (Cited in pages 42,

72 and 158.)

228 Bibliography

[Huang, 2003] Huang, Z. (2003). Rules based modeling of discrete event systems with faults and

their diagnosis. PhD Thesis. (Cited in pages 18, 20, 83, 164 and 246.)

[Huang et al., 2004] Huang, Z., Bhattacharyya, S., Chandra, V., Jiang, S., and Kumar, R. (2004).

Diagnosis of discrete event systems in rules-based model using �rst-order linear temporal logic.

In American Control Conference, 2004. Proceedings of the 2004, volume 6, pages 5114�5119.

IEEE. (Cited in page 164.)

[Hughes and Cresswell, 1996] Hughes, G. E. and Cresswell, M. J. (1996). A new introduction to

modal logic. Psychology Press. (Cited in page 164.)

[Isermann, 2006] Isermann, R. (2006). Fault-diagnosis systems: an introduction from fault detec-

tion to fault tolerance. Springer Science & Business Media. (Cited in pages 16 and 82.)

[Isermann and Ballé, 1997] Isermann, R. and Ballé, P. (1997). Trends in the application of

model-based fault detection and diagnosis of technical processes. Control engineering prac-

tice, 5(5):709�719. (Cited in pages 16 and 19.)

[Ismaeel and Bhatnagar, 1997] Ismaeel, A. A. and Bhatnagar, R. (1997). Test for detection

and location of intermittent faults in combinational circuits. IEEE transactions on reliabil-

ity, 46(2):269�274. (Cited in page 84.)

[Jéron et al., 2008] Jéron, T., Marchand, H., Genc, S., and Lafortune, S. (2008). Predictability

of sequence patterns in discrete event systems. {IFAC} Proceedings Volumes, 41(2):537 � 543.

(Cited in page 213.)

[Jéron et al., 2006] Jéron, T., Marchand, H., Pinchinat, S., and Cordier, M.-O. (2006). Supervi-

sion patterns in discrete event systems diagnosis. Discrete Event Systems, 2006 8th International

Workshop on, pages 262�268. (Cited in pages xiii, 31, 33, 36, 87, 91 and 166.)

[Jiang, 2002] Jiang, S. (2002). Supervisory control and failure diagnosis of discrete event systems:

A temporal logic approach. PhD Thesis. (Cited in pages 85 and 163.)

[Jiang and Huang, 2001] Jiang, S. and Huang, Z. (2001). A polynomial algorithm for testing

diagnosability of discrete-event systems. IEEE Transactions on Automatic Control, 46(8):1318�

1321. (Cited in pages 5, 7, 22, 36, 40, 48, 120, 121, 158, 164, 165, 170, 182, 183, 184, 186, 193,

199, 210, 211 and 246.)

[Jiang and Kumar, 2004] Jiang, S. and Kumar, R. (2004). Failure diagnosis of discrete-event sys-

tems with linear-time temporal logic speci�cations. IEEE Transactions on Automatic Control,,

49(6):934�945. (Cited in pages 85, 163 and 171.)

Bibliography 229

[Jiang and Kumar, 2006] Jiang, S. and Kumar, R. (2006). Diagnosis of repeated failures for

discrete event systems with linear-time temporal-logic speci�cations. IEEE Transactions on

Automation Science and Engineering, 3(1):47�59. (Cited in pages 85 and 163.)

[Jiang et al., 2003a] Jiang, S., Kumar, R., and Garcia, H. (2003a). Optimal sensor selection for

discrete-event systems with partial observation. IEEE Transactions on Automatic Control,

48(3):369�381. (Cited in pages 21 and 212.)

[Jiang et al., 2003b] Jiang, S., Kumar, R., and Garcia, H. E. (2003b). Diagnosis of repeated /

intermittent failures in discrete event systems. IEEE Transactions on Robotics and Automation,

19(2):1�27. (Cited in pages 85, 116 and 163.)

[Jiroveanu and Boel, 2004] Jiroveanu, G. and Boel, R. (2004). Contextual distributed diagnosis

for very large systems. 7th IFAC Workshop on Discrete Event Systems, pages 343�348. (Cited

in pages 24, 120 and 122.)

[Jiroveanu and Boel, 2010] Jiroveanu, G. and Boel, R. K. (2010). The diagnosability of Petri net

models using minimal explanations. IEEE Transactions on Automatic Control, 55(7):1663�

1668. (Cited in pages 24, 120 and 121.)

[Jiroveanu et al., 2008] Jiroveanu, G., Boel, R. K., and Bordbar, B. (2008). On-line monitoring of

large Petri net models under partial observation. Discrete Event Dynamic Systems, 18(3):323�

354. (Cited in page 49.)

[Kautz and Selman, 1996] Kautz, H. and Selman, B. (1996). Pushing the envelope: Planning,

propositional logic, and stochastic search. In Proceedings of the National Conference on Arti�cial

Intelligence, pages 1194�1201. (Cited in page 165.)

[Kim, 2009] Kim, C. J. (2009). Electromagnetic radiation behavior of low-voltage arcing fault.

IEEE Transactions on Power Delivery, 24(1):416�423. (Cited in page 84.)

[Klai and Petrucci, 2008] Klai, K. and Petrucci, L. (2008). Modular construction of the symbolic

observation graph. The 8th International Conference on Application of concurrency to System

Design, pages 23�27. (Cited in pages 123, 131 and 147.)

[Kleer, 1992] Kleer, J. D. (1992). Diagnosing Multiple Persistent and Intermittent Faults. pages

733�738. (Cited in page 19.)

[Knight, 2002] Knight, J. C. (2002). Safety critical systems: challenges and directions. In Software

Engineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference on, pages 547�

550. IEEE. (Cited in page 2.)

230 Bibliography

[Kumar et al., 1993] Kumar, R., Garg, V., and Marcus, S. I. (1993). Predicates and predicate

transformers for supervisory control of discrete event dynamical systems. IEEE Transactions

on Automatic Control, 38(2):232�247. (Cited in page 163.)

[Kumar and Takai, 2010] Kumar, R. and Takai, S. (2010). Decentralized prognosis of failures

in discrete event systems. IEEE Transactions on Automatic Control, 55(1):48�59. (Cited in

pages 22 and 49.)

[Kupferman and Vard, 2001] Kupferman, O. and Vard, M. Y. (2001). Model checking of safety

properties. Formal Methods in System Design. (Cited in page 175.)

[Lafortune, 2000] Lafortune, S. (2000). UMDES Software library.

http://wiki.eecs.umich.edu/umdes/index.php /UMDES Group. (Cited in page 72.)

[Lafortune et al., 2005] Lafortune, S., Wang, Y., and Yoo, T.-S. (2005). Diagnostic décentralisé

des systèmes à événements discrets. Journal Européen des Systèmes Automatisés, 39(1-3):95�

110. (Cited in pages 22, 49 and 158.)

[Lamperti and Zanella, 2013] Lamperti, G. and Zanella, M. (2013). Diagnosis of active systems:

principles and techniques, volume 741. Springer Science & Business Media. (Cited in page 19.)

[Lapp and Powers, 1977] Lapp, S. A. and Powers, G. J. (1977). Computer-aided synthesis of

fault-trees. IEEE Transactions on Reliability, 1:2�13. (Cited in page 18.)

[Larsen et al., 1995] Larsen, K. G., Pettersson, P., and Yi, W. (1995). Model-checking for real-

time systems. International Symposium on Fundamentals of Computation Theory, pages 62�88.

(Cited in page 175.)

[Lee et al., 1985] Lee, W.-S., Grosh, D. L., Tillman, F. A., and Lie, C. H. (1985). Fault tree

analysis, methods, and applications − a review. IEEE transactions on reliability, 34(3):194�

203. (Cited in page 18.)

[Lefebvre, 2014] Lefebvre, D. (2014). On-line fault diagnosis with partially observed petri nets.

IEEE Transactions on Automatic Control, 59(7):1919�1924. (Cited in page 120.)

[Lefebvre and Delherm, 2007] Lefebvre, D. and Delherm, C. (2007). Diagnosis of des with petri

net models. IEEE Transactions on Automation Science and Engineering, 4(1):114�118. (Cited

in page 120.)

Bibliography 231

[Lefebvre and Leclercq, 2015] Lefebvre, D. and Leclercq, E. (2015). Diagnosability of petri nets

with observation graphs. Discrete Event Dynamic Systems, pages 1�21. (Cited in pages 120

and 122.)

[Lefebvre et al., 2013] Lefebvre, D., Leclercq, E., and Guerin, F. (2013). Design of observations

graphs for partially observed petri nets: Application to the diagnosability analysis of des1. In

52nd IEEE Conference on Decision and Control, pages 6329�6334. IEEE. (Cited in pages 120

and 122.)

[Li et al., 2015a] Li, B., Guo, T., Zhu, X., and Li, Z. (2015a). Reverse twin plant for e�cient di-

agnosability testing and optimizing. Engineering Applications of Arti�cial Intelligence, 38:131�

137. (Cited in page 5.)

[Li et al., 2015b] Li, B., Khlif-Bouassida, M., and Toguyéni, A. (2015b). On-the-�y diagnosability

analysis of labeled Petri nets using T-invariants. 5th IFAC International Workshop on Depend-

able Control of Discrete Systems, 48(7):64�70. (Cited in pages 24 and 123.)

[Li et al., 2015c] Li, B., Liu, B., and Toguyeni, A. (2015c). On-the-�y diagnosability analysis

of labeled Petri nets using minimal explanations. 9th IFAC Symposium on Fault Detection,

Supervision and Safety for Technical Processes, 48(21):326�331. (Cited in pages 24, 49, 120,

123 and 158.)

[Lin, 1991] Lin, F. (1991). Analysis and synthesis of discrete event systems using temporal logic.

In Proceedings of the IEEE International Symposium on Intelligent Control, pages 140�145.

IEEE. (Cited in page 162.)

[Lin, 1994] Lin, F. (1994). Diagnosability of discrete event systems and its applications. Discrete

Event Dynamic Systems, 4(2):197�212. (Cited in pages 3, 19, 21, 22, 26, 27, 48, 120, 158

and 166.)

[Lin, 2011] Lin, F. (2011). Opacity of discrete event systems and its applications. Automatica,

47(3):496�503. (Cited in page 213.)

[Lin and Wonham, 1988] Lin, F. and Wonham, W. M. (1988). On observability of discrete-event

systems. Information sciences, 44(3):173�198. (Cited in page 28.)

[Ling and Ionescu, 1994] Ling, J.-Y. and Ionescu, D. (1994). A reachability synthesis procedure

for discrete event systems in a temporal logic framework. IEEE Transactions on Systems, Man,

and Cybernetics, 24(9):1397�1406. (Cited in page 162.)

232 Bibliography

[Liu, 2014] Liu, B. (2014). An e�cient approach for diagnosability and diagnosis of des based on

LPN in untimed and timed contexts. PhD Thesis, Ecole Centrale de Lille. (Cited in pages 5,

24, 32, 33, 35, 43, 48, 49, 122, 124, 139, 158, 178 and 179.)

[Liu et al., 2014a] Liu, B., Ghazel, M., and Toguyéni, A. (2014a). OF-PENDA: A software tool for

fault diagnosis of discrete event systems modeled by labeled Petri nets. International Worshop

Petri Nets for Adaptive Discrete-Event Control Systems. (Cited in page 178.)

[Liu et al., 2014b] Liu, B., Ghazel, M., and Toguyéni, A. (2014b). Toward an e�cient approach

for diagnosability analysis of DES modeled by labeled Petri nets. In The 13th European Control

Conference (ECC'14). (Cited in pages 24, 49, 69, 120 and 122.)

[Liu et al., 2016] Liu, B., Ghazel, M., and Toguyéni, A. (2016). Model-based diagnosis of multi-

track level crossing plants. IEEE Transactions on Intelligent Transportation Systems, 17(2):546�

556. (Cited in page 178.)

[Madalinski and Khomenko, 2010] Madalinski, A. and Khomenko, V. (2010). Diagnosability ver-

i�cation with parallel LTL-X model checking based on Petri net unfoldings. Conference on

Control and Fault-Tolerant Systems (SysTol). (Cited in pages 24, 120 and 121.)

[Madden and Nolan, 1999] Madden, M. G. M. and Nolan, P. J. (1999). Monitoring and diagnosis

of multiple incipient faults using fault tree induction. IEE Proceedings - Control Theory and

Applications, 146(2). (Cited in page 84.)

[McMillan, 1993] McMillan, K. L. (1993). Symbolic model checking. pages 25�60. (Cited in

pages 162 and 176.)

[McMillan, 2003] McMillan, K. L. (2003). Interpolation and sat-based model checking. In Inter-

national Conference on Computer Aided Veri�cation, pages 1�13. Springer. (Cited in page 162.)

[M¦ski et al., 2012] M¦ski, A., Penczek, W., Szreter, M., Wo¹na-Szcze±niak, B., and Zbrzezny, A.

(2012). Two approaches to bounded model checking for linear time logic with knowledge. In KES

International Symposium on Agent and Multi-Agent Systems: Technologies and Applications,

pages 514�523. Springer. (Cited in pages 164 and 200.)

[Moreira et al., 2011] Moreira, M., Jesus, T., and Basilio, J. (2011). Polynomial time veri�cation

of decentralized diagnosability of discrete event systems. IEEE Transactions on Automatic

Control, 56(7):1679�1684. (Cited in pages 5, 22, 42, 49, 90, 158 and 183.)

[Morvan and Pinchinat, 2009] Morvan, C. and Pinchinat, S. (2009). Diagnosability of pushdown

systems. Haifa Veri�cation Conference, pages 21�33. (Cited in pages 31, 32, 33, 35, 36 and 158.)

Bibliography 233

[Murata, 1989] Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4):541�580. (Cited in pages 23, 120 and 125.)

[Noori Hosseini, 2011] Noori Hosseini, M. (2011). Diagnosis of discrete event systems. (Cited in

page 246.)

[Nunes et al., 2016] Nunes, C. E., Moreira, M. V., Alves, M. V., and Basilio, J. C. (2016). Network

codiagnosability of discrete-event systems subject to event communication delays. In 2016 13th

International Workshop on Discrete Event Systems (WODES), pages 217�223. IEEE. (Cited in

pages 22 and 49.)

[Ostro�, 1989] Ostro�, J. S. (1989). Synthesis of controllers for real-time discrete event systems.

In Proceedings of the 28th IEEE Conference on Decision and Control, pages 138�144. IEEE.

(Cited in page 162.)

[Ostro� and Wonham, 1990] Ostro�, J. S. and Wonham, W. M. (1990). A framework for real-

time discrete event control. IEEE Transactions on Automatic control, 35(4):386�397. (Cited in

page 162.)

[Pan and Hashtrudi-Zad, 2007] Pan, J. and Hashtrudi-Zad, S. (2007). Diagnosability analysis and

sensor selection in discrete-event systems with permanent failures. IEEE International Confer-

ence on Automation Science and Engineering, pages 869�874. (Cited in pages 21 and 212.)

[Pan et al., 2012] Pan, S., Hu, Y., and Li, X. (2012). Ivf: Characterizing the vulnerability of

microprocessor structures to intermittent faults. IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, 20(5):777�790. (Cited in page 84.)

[Pandalai and Holloway, 2000] Pandalai, D. N. and Holloway, L. E. (2000). Template languages

for fault monitoring of timed discrete event processes. IEEE transactions on automatic control,

45(5):868�882. (Cited in pages 23 and 211.)

[Patton and Chen, 1991] Patton, R. and Chen, J. (1991). A review of parity space approaches to

fault diagnosis. In IFAC Safeprocess Conference, pages 65�81. (Cited in page 19.)

[Pecheur et al., 2002] Pecheur, C., Cimatti, A., and Cimatti, R. (2002). Formal veri�cation of

diagnosability via symbolic model checking. In Workshop on Model Checking and Arti�cial

Intelligence (MoChArt-2002), Lyon, France. (Cited in pages 6, 7, 158 and 159.)

[Pencole, 2000] Pencole, Y. (2000). Decentralized diagnoser approach: application to telecommu-

nication networks. proceedings of the International Workshop on Principles of Diagnosis, pages

185�192. (Cited in pages 22 and 49.)

234 Bibliography

[Pencolé and Cordier, 2005] Pencolé, Y. and Cordier, M.-O. (2005). A formal framework for the

decentralised diagnosis of large scale discrete event systems and its application to telecommu-

nication networks. Arti�cial Intelligence, 164(1):121�170. (Cited in page 23.)

[Pencolé et al., 2004] Pencolé, Y. et al. (2004). Diagnosability analysis of distributed discrete

event systems. In ECAI, volume 16, page 43. (Cited in page 23.)

[Pencolé et al., 2005] Pencolé, Y. et al. (2005). Assistance for the design of a diagnosable

component-based system. In ICTAI, pages 549�556. (Cited in page 23.)

[Peres and Ghazel, 2014] Peres, F. and Ghazel, M. (2014). An operative formulation of the di-

agnosability of discrete event systems using a single logical framework. pages 1�11. (Cited in

page 166.)

[Petri, 1966] Petri, C. A. (1966). Communication with automata. Ph.D. Thesis. (Cited in

page 120.)

[Philippot et al., 2013] Philippot, A., Marangé, P., and Riera, R. (2013). Decentralized diagnosis

and diagnosability by Model-Checking. Universal Journal of Control and Automation, 1(2):28�

33. (Cited in pages 22, 49, 158 and 166.)

[Picardi,] Picardi, C. A short tutorial on model-based diagnosis. (Cited in page 20.)

[Plath and Ryan, 2000] Plath, M. and Ryan, M. D. (2000). The feature construct for SMV:

Semantics. FIW, pages 129�144. (Cited in page 176.)

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on

Foundations of Computer Science, pages 46�57. IEEE. (Cited in page 161.)

[Pocci, 2012] Pocci, M. (2012). A toolbox for diagnosability of Petri nets.

http://www.diee.unica.it/giua/ TESI/09_Marco .Pocci/. (Cited in page 147.)

[Poole, 1989] Poole, D. (1989). Explanation and prediction: an architecture for default and ab-

ductive reasoning. Computational Intelligence, 5(2):97�110. (Cited in page 20.)

[Prasad et al., 2005] Prasad, M. R., Biere, A., and Gupta, A. (2005). A survey of recent ad-

vances in sat-based formal veri�cation. International Journal on Software Tools for Technology

Transfer, 7(2):156�173. (Cited in page 162.)

Bibliography 235

[Prasad, 1990] Prasad, V. B. (1990). Computer networks reliability evaluations and intermittent

faults. Proceedings of the 33rd Midwest Symposium on Circuits and Systems, pages 327�330.

(Cited in page 84.)

[Provan, 2002] Provan, G. (2002). On the diagnosability of decentralized, timed discrete event

systems. In Proceedings of the 41st IEEE Conference on Desision and Control, pages 405�410.

(Cited in pages 22, 49 and 158.)

[Qiu and Kumar, 2006] Qiu, W. and Kumar, R. (2006). Decentralized failure diagnosis of discrete

event systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and

Humans, 36(2):384�395. (Cited in pages 5, 22, 49 and 158.)

[Qiu et al., 2009] Qiu, W., Wen, Q., and Kumar, R. (2009). Decentralized diagnosis of event-

driven systems for safely reacting to failures. IEEE Transactions on Automation Science and

Engineering, 6(2):362�366. (Cited in page 158.)

[Queille and Sifakis, 1982] Queille, J.-P. and Sifakis, J. (1982). Speci�cation and veri�cation of

concurrent systems in cesar. In International Symposium on Programming, pages 337�351.

Springer. (Cited in pages 159 and 161.)

[Ramadge and Wonham, 1987] Ramadge, P. J. and Wonham, W. M. (1987). Supervisory control

of a class of discrete event processes. SIAM journal on control and optimization, 25(1):206�230.

(Cited in pages 21 and 27.)

[Ramírez-Treviño et al., 2007] Ramírez-Treviño, A., Ruiz-Beltrán, E., Rivera-Rangel, I., and

Lopez-Mellado, E. (2007). Online fault diagnosis of discrete event systems. a Petri net-based

approach. IEEE Transactions on Automation Science and Engineering, 4(1):31�39. (Cited in

pages 24 and 120.)

[Reiter, 1987] Reiter, R. (1987). A theory of diagnosis from �rst principles. Arti�cial intelligence,

32(1):57�95. (Cited in pages 19 and 20.)

[Reniers and Willemse, 2011] Reniers, M. A. and Willemse, T. A. (2011). Folk theorems on the

correspondence between state-based and event-based systems. In International Conference on

Current Trends in Theory and Practice of Computer Science, pages 494�505. Springer. (Cited

in page 160.)

[Ricker and Fabre, 2000] Ricker, S. and Fabre, E. (2000). On the construction of modular ob-

servers and diagnosers for discrete-event systems. In Decision and Control, 2000. Proceedings

of the 39th IEEE Conference on, volume 3, pages 2240�2244. IEEE. (Cited in pages 23 and 211.)

236 Bibliography

[Rintanen et al., 2007a] Rintanen, J. et al. (2007a). Diagnosers and diagnosability of succinct

transition systems. International Joint Conference on Arti�cial Intelligence, pages 538�544.

(Cited in pages 32 and 36.)

[Rintanen et al., 2007b] Rintanen, J., Grastien, A., et al. (2007b). Diagnosability testing with

satis�ability algorithms. In IJCAI, pages 532�537. (Cited in page 165.)

[Roberts, 1989] Roberts, M. (1989). A fault-tolerant scheme that copes with intermittent and

transient faults in sequential circuits. Proceedings of the 32nd Midwest Symposium on Circuits

and Systems, pages 36�39. (Cited in page 83.)

[Roth et al., 2012] Roth, M., Schneider, S., Lesage, J.-J., and Litz, L. (2012). Fault Detection

and Isolation in Manufacturing Systems with an Identi ed Discrete Event Model. International

Journal of Systems Science, 43(10):1826�1841. (Cited in page 19.)

[Ru and Hadjicostis, 2010] Ru, Y. and Hadjicostis, C. N. (2010). Sensor selection for structural

observability in discrete event systems modeled by Petri nets. IEEE Transactions on Automatic

Control, 55(7):1�14. (Cited in pages 21 and 212.)

[Saboori and Hadjicostis, 2007] Saboori, A. and Hadjicostis, C. N. (2007). Notions of security

and opacity in discrete event systems. In Decision and Control, 2007 46th IEEE Conference

on, pages 5056�5061. IEEE. (Cited in page 213.)

[Salvatore et al., 2003] Salvatore, J. B., Elizabeth, R., Joanne Bechta, D., Kishor S, T., Nitin,

M., Robert M, G., and Mark D, S. (2003). Hybrid automated reliability predictor (HARP)

integrated reliability tool system (version 7.0) HARP introduction and user's guide. NASA

Langley Technical Report Server. (Cited in page 84.)

[Sampath et al., 1998] Sampath, M., Lafortune, S., and Teneketzis, D. (1998). Active diagnosis

of discrete-event systems. IEEE Transactions on Automatic Control, 43(7):908�929. (Cited in

page 21.)

[Sampath et al., 1995] Sampath, M., Sengupta, R., and Lafortune, S. (1995). Diagnosability of

discrete-event systems. IEEE Transactions on Automatic Control, pages 1555�1575, 40(9).

(Cited in pages 4, 5, 19, 21, 22, 27, 30, 31, 32, 33, 36, 37, 38, 39, 48, 49, 51, 62, 68, 70, 72, 74,

86, 88, 89, 90, 94, 99, 105, 113, 120, 121, 124, 133, 135, 136, 139, 147, 152, 158, 163, 166, 168,

169, 170, 171, 179 and 244.)

[Sampath et al., 1996] Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., and

Teneketzis, D. C. (1996). Failure diagnosis using discrete-event models. IEEE transactions

on control systems technology, 4(2):105�124. (Cited in pages 5, 21, 30, 31, 32, 36, 49 and 158.)

Bibliography 237

[Sayed-Mouchaweh and Carre-Menetrier, 2008] Sayed-Mouchaweh, M., a. P. A. and Carre-

Menetrier, V. (2008). Decentralized diagnosis based on boolean discrete event models: applica-

tion on manufacturing systems. International Journal of Production Research, 46(9):5469�5490.

(Cited in pages 22, 49 and 158.)

[Scherer and White III, 1989] Scherer, W. T. and White III, C. C. (1989). A survey of expert

systems for equipment maintenance and diagnostics. Knowledge-Based System Diagnosis, Su-

pervision, and Control, pages 285�300. (Cited in page 17.)

[Schmidt, 2010] Schmidt, K. (2010). Abstraction-based veri�cation of codiagnosability for discrete

event systems. Automatica, 46(9):1489�1494. (Cited in page 158.)

[Schmidt, 2013] Schmidt, K. W. (2013). Veri�cation of modular diagnosability with local spec-

i�cations for discrete-event systems. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 43(5):1130�1140. (Cited in pages 23, 158 and 211.)

[Schneider et al., 2012] Schneider, S., Litz, L., and Lesage, J.-J. (2012). Determination of Timed

Transitions in Identi�ed Discrete-Event Models for Fault Detection. In 51st IEEE Annual

Conference on Decision and Control, pages 5816�5821. (Cited in page 19.)

[Schumann and Pencolé, 2007] Schumann, A. and Pencolé, Y. (2007). Scalable diagnosability

checking of event-driven system. 20th Int. Joint Conference on Arti�cial Intelligence. (Cited

in pages 23 and 158.)

[Schumann et al., 2010] Schumann, A., Pencole, Y., and Thiebaux, S. (2010). A decentralised

symbolic diagnosis approach. 19th European Conference on Arti�cial Intelligence, pages 99�

104. (Cited in pages 22 and 49.)

[Sharma et al., 2015] Sharma, R., Dewan, L., and Chatterji, S. (2015). ault diagnosis methods in

dynamic systems: A review. International Journal of Electronics and Electrical Engineering,

3(6):465�471. (Cited in page 82.)

[Shen et al., 2016] Shen, Q., Qiu, J., Liu, G., and Lv, K. (2016). Intermittent faults parameter

framework and stochastic Petri net based formalization model. Eksploatacja I neizawodnosc,

18(2):1�210. (Cited in pages 6 and 83.)

[Shewhart and Deming, 1939] Shewhart, W. A. and Deming, W. E. (1939). Statistical method

from the viewpoint of quality control. Courier Corporation. (Cited in page 18.)

238 Bibliography

[Soldani et al., 2006] Soldani, S., Combacau, M., Subias, A., and Thomas, J. (2006). Intermit-

tent fault detection through message exchanges: a coherence based approach. International

Workshop Principles Diagnosis, pages 251�257. (Cited in page 86.)

[Soldani et al., 2007] Soldani, S., Combacau, M., Subias, A., and Thomas, J. (2007). Intermittent

fault diagnosis: a diagnoser derived from the normal behavior. pages 391�399. (Cited in

page 86.)

[Sorensen et al., 1994] Sorensen, B., Kelly, G., Sajecki, A., and Sorensen, P. (1994). An analyzer

for detecting intermittent faults in electronic devices. IEEE Systems Readiness Technology

Conference.'Cost E�ective Support Into the Next Century', Conference Proceedings., pages 417�

421. (Cited in pages 6, 83 and 84.)

[Srinivasan and Gluch, 1998] Srinivasan, G. R. and Gluch, D. P. (1998). A study of practice issues

in model-based veri�cation using the symbolic model veri�er (SMV). (Cited in page 176.)

[Steadman et al., 2008] Steadman, B., Berghout, F., Olsen, N., and Sorensen, B. (2008). Inter-

mittent fault detection and isolation system. IEEE AUTOTESTCON, pages 37�40. (Cited in

pages 6 and 83.)

[Steadman et al., 2005] Steadman, B., Sievert, S., Sorensen, B., and Berghout, F. (2005). At-

tacking" bad actor" and" no fault found" electronic boxes. IEEE Autotestcon, pages 821�824.

(Cited in pages 6 and 83.)

[Stéphane Lafortune and Paoli, 2014] Stéphane Lafortune, R. H. and Paoli, A. (2014). Fault diag-

nosis of manufacturing systems using �nite state automata. pages 601�626. (Cited in pages xiv,

244 and 245.)

[Storey, 1996] Storey, N. R. (1996). Safety critical computer systems. Addison-Wesley Longman

Publishing Co., Inc. (Cited in page 2.)

[Su and Wonham, 2005] Su, R. and Wonham, W. M. (2005). Global and local consistencies in

distributed fault diagnosis for discrete-event systems. IEEE Transactions on Automatic Control,

50(12):1923�1935. (Cited in page 23.)

[Syed et al., 2013] Syed, W. A., Khan, S., Phillips, P., and Perinpanayagam, S. (2013). Intermit-

tent fault �nding strategies. Procedia CIRP, 11:74�79. (Cited in pages 83 and 84.)

[Takai and Kumar, 2012] Takai, S. and Kumar, R. (2012). Distributed failure prognosis of discrete

event systems with bounded-delay communications. IEEE Transactions on Automatic Control,

57(5):1259�1265. (Cited in page 213.)

Bibliography 239

[Takai and Kumar, 2016] Takai, S. and Kumar, R. (2016). Delay bound of inference-based decen-

tralized diagnosis in discrete event systems. In 2016 13th International Workshop on Discrete

Event Systems (WODES), pages 224�229. IEEE. (Cited in pages 22 and 49.)

[Thistle and Wonham, 1986] Thistle, J. and Wonham, W. (1986). Control problems in a temporal

logic framework. International Journal of Control, 44(4):943�976. (Cited in page 162.)

[Tripakis, 2002] Tripakis, S. (2002). Fault diagnosis for timed automata. International Symposium

on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 205�221. (Cited in

pages 32 and 42.)

[Tsitsiklis, 1989] Tsitsiklis, J. N. (1989). On the control of discrete-event dynamical systems.

Mathematics of Control, Signals and Systems, 2(2):95�107. (Cited in page 32.)

[Tzafestas and Watanabe, 1990] Tzafestas, S. and Watanabe, K. (1990). Modern approaches to

system sensor fault detection and diagnosis. Journal A, 31(4):42�57. (Cited in page 17.)

[Ushio et al., 1998] Ushio, T., Onishi, I., and Okuda, K. (1998). Fault detection based on Petri

net models with faulty behaviors. In IEEE International Conference on Systems, Man, and

Cybernetics, volume 1, pages 113�118. (Cited in pages 24, 49, 120, 122 and 139.)

[Varpaaniemi et al., 1997] Varpaaniemi, K., Heljanko, K., and Lilius, J. (1997). Prod 3.2 an

advanced tool for e�cient reachability analysis. International Conference on Computer Aided

Veri�cation, pages 472�475. (Cited in page 148.)

[Venkatasubramanian et al., 2003] Venkatasubramanian, V., Rengaswamy, R., Yin, K., and

Kavuri, S. N. (2003). A review of process fault detection and diagnosis: Part i: Quantitative

model-based methods. Computers & chemical engineering, 27(3):293�311. (Cited in pages 17,

18 and 19.)

[Wang et al., 2004] Wang, Y., Yoo, T.-S., and Lafortune, S. (2004). New results on decentralized

diagnosis of discrete event systems. Proceedings of 2004 Annual. (Cited in page 158.)

[Wang et al., 2007] Wang, Y., Yoo, T. S., and Lafortune, S. (2007). Diagnosis of discrete event

systems using decentralized architectures. Discrete Event Dynamic Systems: Theory and Ap-

plications, 17(2):233�263. (Cited in pages 22, 49 and 158.)

[Wen et al., 2005] Wen, Y., Li, C., and Jeng, M. (2005). A polynomial algorithm for checking di-

agnosability of Petri nets. In IEEE International Conference on Systems, Man and Cybernetics

(SMC'05), volume 3, pages 2542�2547. IEEE. (Cited in pages 24, 120 and 121.)

240 Bibliography

[Willsky, 1976] Willsky, A. S. (1976). A survey of design methods for failure detection in dynamic

systems. Automatica, 12(6):601�611. (Cited in page 19.)

[Yan et al., 2015] Yan, R., He, X., and Zhou, D. (2015). Robust detection of intermittent faults

for linear discrete-time stochastic systems with parametric perturbations. 34th Chinese Control

Conference (CCC), pages 6308�6313. (Cited in page 84.)

[Ye and Dague, 2010] Ye, L. and Dague, P. (2010). Diagnosability analysis of discrete event

systems with autonomous components. In ECAI, pages 105�110. (Cited in page 23.)

[Ye and Dague, 2012] Ye, L. and Dague, P. (2012). A general algorithm for pattern diagnosability

of distributed discrete event systems. In 2012 IEEE 24th International Conference on Tools

with Arti�cial Intelligence, volume 1, pages 130�137. IEEE. (Cited in page 23.)

[Ye and Dague, 2013] Ye, L. and Dague, P. (2013). Undecidable case and decidable case of joint

diagnosability in distributed discrete event systems. International Journal on Advances in

Systems and Measurements, 6(3). (Cited in pages 49 and 158.)

[Ye et al., 2009] Ye, L., Dague, P., and Yan, Y. (2009). A distributed approach for pattern

diagnosability. In Proceedings of the 20th International Workshop on Principles of Diagnosis

(DX-09), pages 179�186. (Cited in page 23.)

[Yoo and Garcia, 2003] Yoo, T. and Garcia, H. (2003). Computation of fault detection delay

in discrete-event systems. Proceedings of the 14th International Workshop on Principles of

Diagnosis, pages 207�212. (Cited in page 36.)

[Yoo and Garcia, 2004] Yoo, T.-S. and Garcia, H. (2004). Event diagnosis of discrete-event sys-

tems with uniformly and nonuniformly bounded diagnosis delays. American Control Conference,

6:5102�5107. (Cited in pages 85, 116 and 158.)

[Yoo and Garcia, 2009] Yoo, T.-S. and Garcia, H. E. (2009). Event counting of partially-observed

discrete-event systems with uniformly and nonuniformly bounded diagnosis delays. Discrete

Event Dynamic Systems, 19(2):167�187. (Cited in pages 85 and 116.)

[Yoo and Lafortune, 2002a] Yoo, T.-S. and Lafortune, S. (2002a). NP-completeness of sensor

selection problems arising in partially observed discrete-event systems. IEEE Transactions on

Automatic Control, 47(9):1495�1499. (Cited in pages 21 and 212.)

[Yoo and Lafortune, 2002b] Yoo, T. S. and Lafortune, S. (2002b). Polynomial-time veri�cation of

diagnosability of partially observed discrete-event systems. 47(9):1491�1495. (Cited in pages 5,

22, 36, 40, 41, 42, 48, 72, 77, 86, 120, 121, 158, 165 and 182.)

Bibliography 241

[Zad, 1999] Zad, S. H. (1999). Fault diagnosis in discrete-event and hybrid systems. PhD thesis,

University of Toronto. (Cited in page 244.)

[Zad et al., 2003] Zad, S. H., Kwong, R. H., and Wonham, W. M. (2003). Fault diagnosis in

discrete-event systems: Framework and model reduction. IEEE Transactions on Automatic

Control, pages 1199�1212. (Cited in pages 22, 49, 68, 86, 99, 120, 121, 139, 158, 163 and 166.)

[Zaytoon and Lafortune, 2013] Zaytoon, J. and Lafortune, S. (2013). Overview of fault diagnosis

methods for Discrete Event Systems. Annual Reviews in Control, pages 308�320. (Cited in

pages 4, 6, 22, 23, 27, 30, 33, 34, 82 and 123.)

[Zhou and Kumar, 2009] Zhou, C. and Kumar, R. (2009). Computation of diagnosable fault-

occurrence indices for systems with Rrepeatable-faults. Proceedings of the 44th IEEE Conference

on Decision and Control, pages 6311�6316. (Cited in pages 85, 116 and 191.)

[Zhou et al., 2008] Zhou, C., Kumar, R., and Sreenivas, R. (2008). Decentralized modular diag-

nosis of concurrent discrete event systems. In Discrete Event Systems, 2008. WODES 2008.

9th International Workshop on, pages 388�393. IEEE. (Cited in pages 22, 23, 49 and 158.)

Appendix A

An Illustrative Example using

NuSMV

244 Appendix A. An Illustrative Example using NuSMV

A.1 Heating Ventilation and Air-Conditioning System

Let us consider the HVAC system discussed in [Zad, 1999, Sampath et al., 1995, Cassandras

and Lafortune, 2009, Stéphane Lafortune and Paoli, 2014] and shown in Figure A.1. It

consists of a pump, a vale, and a controller, represented by FSA. Considering the valve

model, the nominal behavior of the valve is that it is initially closed (VC), where the

initial state is indicated by the short arrow, and the valve transitions to its open position

(VO) under the open valve command (ov). Likewise, the valve returns to the closed

position under the close valve command (cv). This model also includes faulty behavior

in that the valve can transition to a stuck-closed (SC) or stuck-open (SO) state via the

occurrence of fault events sc and so, respectively. For simplicity, the pump model does

not include any faulty behavior and transitions between the pump o�-state (POFF) and

the pump-on state (PON) under the commands po� and pon, respectively. The controller

runs the system through the cycle of events: open valve, turn pump on, turn pump o� and

close valve. Such a cycle could be initiated by a higher level controller where the material

output of this subsystem is being employed for cooling or is feeding a larger manufacturing

process [Stéphane Lafortune and Paoli, 2014].

Figure A.1 � HVAC system components [Stéphane Lafortune and Paoli, 2014]

The global model of the HVAC system is obtained by performing the parallel compo-

sition of the component models (valve, pump, controller). The global model is illustrated

in Figure A.2.

Formally, the HVAC system is an FSA G = 〈X,Σ, δ, x0〉, where X = {VC_POFF_C1,

Appendix A. An Illustrative Example using NuSMV 245

VO_POFF_C2,VO_PON_C3, VO_POFF_C4, SO_POFF_C1, SO_POFF_C2,

SO_PON_C3, SO_POFF_C4, SC_POFF_C1, SC_POFF_C2, SC_PON_C3,

SC_POFF_C4 } (as illustrated in Figure A.2). Set of events Σ = {CV, OV, SO, SC,
POFF, PON } and x0 = VC_POFF_C1, which is indicated by a short arrow in Fig-

ure A.2. Two fault event exist in the model, SC and SO. For simplicity, we consider that

both events SC and SO belong to the same fault class, i.e., Σf = {SC, SO}. The rest of
events are considered to be observable. It is worth noticing that G can be seen as an event-

based model, i.e., the occurrence of the faulty behavior is modeled by the occurrence of

faulty events SC and SO, or as a state-based automaton, i.e., the occurrence of the faulty

behavior is modeled by the reachability of faulty states. In fact, set of states X can be par-

titioned into to disjoint subset of states: X = XN
⊎
XN , with XN = { VC_POFF_C1,

VO_POFF_C2,VO_PON_C3, VO_POFF_C4, } and XF = { SO_POFF_C1,
SO_POFF_C2, SO_PON_C3, SO_POFF_C4, SC_POFF_C1, SC_POFF_C2,

SC_PON_C3, SC_POFF_C4 }.

Figure A.2 � HVAC system model [Stéphane Lafortune and Paoli, 2014]

246 Appendix A. An Illustrative Example using NuSMV

A.2 The Diagnosability Analysing Using NuSMV

In this section, we provide the NuSMV program for analyzing diagnosability. The program

is composed of two modules: HVAC and main. Module HVAC contains the observable

behavior of the HVAC system, i.e., a description of the generator G′ of G obtained by the ε-

reduction. Module main contains the instantiation of two copies of generator G′ (plant_L

and plant_R) which will be used to construct the twin-plant as a Kripke structure. Vari-

able SameObs_Trace is used as an invariant to ensure that only the indistinguishable

traces are generated. Finally, the CTL speci�cation, which expresses the necessary and

su�cient condition for diagnosability of permanent faults, is integrated.

It is worth noticing that the NUSMV program we present here, is not the optimized

one (regarding the generated state-space of the Kripke structure). However, it allows for

better illustrating the concept of the twin-plant approach [Jiang and Huang, 2001, Cimatti

et al., 2003]. In Script 4 (Appendix A.2), we give another manner of coding the two copies

of generator G′, where the synchronization regarding observable event is performed in

the main module, i.e., the two copies (plant_L and plant_R) shares the same observable

events. Various manners of encoding the twin-plant in NuSMV can be found in [Cimatti

et al., 2003, Huang, 2003, Noori Hosseini, 2011].

Script 3 (Appendix A.2), give the result output by executing The NuSMV model-

checker. The system is checked to be non-diagnosable and a counter-example is generated

with a witnessed trace.

Appendix A. An Illustrative Example using NuSMV 247

Script 1

--

-- Script I: HVAC NuSMV module

--

MODULE HVAC

VAR

State :{VC_POFF_C1, VO_POFF_C2,VO_PON_C3, VO_POFF_C4,

SO_POFF_C1, SO_POFF_C2, SO_PON_C3, SO_POFF_C4,

SC_POFF_C1, SC_POFF_C2, SC_PON_C3, SC_POFF_C4};

Event :{CV, OV, PON, POFF};

ASSIGN

Event:= case

State in {VC_POFF_C1, SO_POFF_C1, SC_POFF_C1} : OV;

State in {VO_POFF_C2, SO_POFF_C2, SC_POFF_C2} : PON;

State in {VO_PON_C3, SO_PON_C3, SC_PON_C3} : POFF;

State in {VO_POFF_C4, SO_POFF_C4, SC_POFF_C4} : CV;

-- TRUE :Event;

esac;

init(State) :=VC_POFF_C1;

next(State) := case

State = VC_POFF_C1 & Event = OV:{VO_POFF_C2, SO_POFF_C2, SC_POFF_C2};

State = VO_POFF_C2 & Event = PON:{VO_PON_C3, SO_PON_C3, SC_PON_C3};

State = VO_PON_C3 & Event = POFF:{VO_POFF_C4, SO_POFF_C4, SC_POFF_C4};

State = VO_POFF_C4 & Event = CV:{VC_POFF_C1, SO_POFF_C1, SC_POFF_C1};

State = SO_POFF_C1 & Event = OV :SO_POFF_C2;

State = SO_POFF_C2 & Event = PON :SO_PON_C3;

State = SO_PON_C3 & Event = POFF :SO_POFF_C4;

State = SO_POFF_C4 & Event = CV :SO_POFF_C1;

State = SC_POFF_C1 & Event = OV :SC_POFF_C2;

State = SC_POFF_C2 & Event = PON :SC_PON_C3;

State = SC_PON_C3 & Event = POFF :SC_POFF_C4;

State = SC_POFF_C4 & Event = CV :SC_POFF_C1;

TRUE : State;

esac;

248 Appendix A. An Illustrative Example using NuSMV

Script 2

--

-- Script II: module main

--

MODULE main

VAR

plant_L : HVAC;

plant_R : HVAC;

DEFINE NormalState := {VC_POFF_C1, VO_POFF_C2,VO_PON_C3, VO_POFF_C4};

DEFINE FaultyState := {SO_POFF_C1, SO_POFF_C2, SO_PON_C3, SO_POFF_C4,

SC_POFF_C1, SC_POFF_C2, SC_PON_C3, SC_POFF_C4};

DEFINE SameObs := ((plant_L.Event = plant_R.Event));

VAR

SameObs_Trace : boolean ;

ASSIGN

init (SameObs_Trace) :=SameObs;

next (SameObs_Trace) :=case

!SameObs :FALSE;

SameObs :TRUE ; --next(SameObs);

esac;

INVAR SameObs_Trace

CTLSPEC !EF(EG((plant_R.State in NormalState)&(plant_L.State in FaultyState)))

Appendix A. An Illustrative Example using NuSMV 249

Script 3

NuSMV > read_model -i HVAC_Thesis.smv

NuSMV > go

NuSMV > print_reachable_states

##

system diameter: 5

reachable states: 36 (2^5.16993) out of 4608 (2^12.1699)

##

NuSMV > check_ctlspec

-- specification !(EF (EG (plant_R.State in NormalState &

plant_L.State in FaultyState))) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

plant_L.State = VC_POFF_C1

plant_L.Event = OV

plant_R.State = VC_POFF_C1

plant_R.Event = OV

SameObs_Trace = TRUE

-- Loop starts here

-> State: 1.2 <-

plant_L.State = SO_POFF_C2

plant_L.Event = PON

plant_R.State = VO_POFF_C2

plant_R.Event = PON

-> State: 1.3 <-

plant_L.State = SO_PON_C3

plant_L.Event = POFF

plant_R.State = VO_PON_C3

plant_R.Event = POFF

-> State: 1.4 <-

plant_L.State = SO_POFF_C4

plant_L.Event = CV

plant_R.State = VO_POFF_C4

plant_R.Event = CV

-> State: 1.5 <-

plant_L.State = SO_POFF_C1

plant_L.Event = OV

plant_R.State = VC_POFF_C1

plant_R.Event = OV

-> State: 1.6 <-

plant_L.State = SO_POFF_C2

plant_L.Event = PON

plant_R.State = VO_POFF_C2

plant_R.Event = PON

250 Appendix A. An Illustrative Example using NuSMV

Script 4

MODULE main

VAR

Event :{CV, OV, PON, POFF};

plant_L : HVAC(Event);

plant_R : HVAC(Event);

DEFINE NormalState := {VC_POFF_C1, VO_POFF_C2,VO_PON_C3, VO_POFF_C4};

DEFINE FaultyState := {SO_POFF_C1, SO_POFF_C2, SO_PON_C3, SO_POFF_C4,

SC_POFF_C1, SC_POFF_C2, SC_PON_C3, SC_POFF_C4};

ASSIGN

Event := case

plant_L.State in {VC_POFF_C1, SO_POFF_C1, SC_POFF_C1} : OV;

plant_L.State in {VO_POFF_C2, SO_POFF_C2, SC_POFF_C2} : PON;

plant_L.State in {VO_PON_C3, SO_PON_C3, SC_PON_C3} : POFF;

plant_L.State in {VO_POFF_C4, SO_POFF_C4, SC_POFF_C4} : CV;

-- TRUE :Event;

esac;

CTLSPEC !EF(EG((plant_R.State in NormalState)&(plant_L.State in FaultyState)))

Contributions to Model-Based Diagnosis of Discrete-Event Systems

Abstract : This PhD thesis deals with fault diagnosis of discrete-event systems modeled as �nite

state automata with some extensions to bounded Petri net models. The developed contributions

can be classi�ed regarding two pioneering approaches from the literature: the diagnoser-based

technique and the twin-plant based technique.

Regarding the diagnoser-based technique, we propose a new diagnoser variant with some inter-

esting features that allow us to separately track the normal and the faulty traces directly in

the diagnoser. On the basis of the developed diagnoser, we reformulate the necessary and suf-

�cient condition for diagnosability of permanent faults and we propose a systematic procedure

for checking such a condition without building any intermediate model. An on-the-�y algorithm,

for simultaneously constructing the diagnoser and verifying diagnosability is developed. The

algorithm aims to generate as less state-space as possible, particularly when the system is non-

diagnosable, which improves the memory/time consumption. The developed diagnoser is then

extended to deal with fault diagnosis of intermittent faults. Various notions of diagnosability

are addressed and necessary and su�cient conditions are formulated on the basis of the new

diagnoser structure.

A Hybrid version (in the sense of combining enumerative and symbolic representations) of the

diagnoser variant is established in order to deal with fault diagnosis of labeled bounded Petri

nets. The main idea consists in using the symbolic representation (Binary Decision Diagrams)

to compact and handle the Petri net markings inside the diagnoser nodes and using explicit

representation for the (observable) transitions that link the diagnoser nodes. Such a combination

serves, on one hand, to reduce the memory required for constructing the diagnoser and, on the

other hand, to easily explore the diagnoser paths. The developed approaches are implemented in

dedicated tools and evaluated through benchmarks with respect to the reference approaches in

the domain.

Regarding twin-plant based technique, the �rst contribution consists in elaborating a model-

checking framework, that extends the Cimatti's work, for the actual veri�cation of various di-

agnosability concepts pertaining to permanent failures based on the twin-plant structure. The

main idea is to reformulate and express the diagnosability issues as temporal logics and then

to tackle them using the model-checking engines. The second contribution is pertaining to the

diagnosis of intermittent faults, and consists in addressing various notions of diagnosability while

establishing their necessary and su�cient conditions on the basis of the twin-plant structure.

Keywords : Fault diagnosis, Discrete-event systems, Intermittent faults, Permanent faults,

Finite state automata, Labeled Petri nets, Model-checking.

	Title
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	1.1 General Context
	1.2 Problems Statement
	1.3 Main Contributions
	1.4 Organization and Structure of the Dissertation

	Part I : Literature review
	Chapter 2 : Model-Based Diagnosis
	2.1 Fault Diagnosis
	2.1.1 Terminology in the Area of Fault Diagnosis

	2.2 Fault Diagnosis Approaches
	2.2.1 Expert Systems and Knowledge-Based Diagnosis
	2.2.2 Data-Driven Based Diagnosis
	2.2.3 Fault-Tree Based Diagnosis
	2.2.4 Model-Based Diagnosis

	2.3 Diagnosis of Discrete-Event Systems
	2.3.1 Centralized/Decentralized DESs Diagnosis
	2.3.2 Distributed/Modular DESs Diagnosis

	2.4 DESs Diagnosis Using Petri Nets

	Chapter 3 : Fault Diagnosis of Discrete-Event systems
	3.1 Introduction
	3.2 Discrete-Event Systems under Partial Observation
	3.2.1 DESs Modeling
	3.2.2 Operations on DESs

	3.3 The Fault Diagnosis Problem
	3.4 Diagnosability
	3.4.1 K-Diagnosability
	3.4.2 Complexity Analysis

	3.5 The pioneering Approaches
	3.5.1 Sampath's Diagnoser Approach
	3.5.2 Twin-Plant/Verifier Approaches
	3.5.3 A Comparison Between the Diagnoser/Twin-plant/Verifier approaches

	3.6 Conclusion

	Part II : Contributions regarding the diagnoser-based approach
	Chapter 4 : A New Variant of the Diagnoser-Based Approach
	4.1 Introduction
	4.2 The System Model
	4.3 A New Variant of The Diagnoser
	4.3.1 The Structure of a Diagnoser Node
	4.3.2 The Diagnoser Construction
	4.3.3 Some Properties of the New Diagnoser Variant
	4.3.4 Diagnosability Verification

	4.4 On-the-fly Verification
	4.4.1 A Systematic Procedure for Checking Diagnosability
	4.4.2 Algorithm
	4.4.3 A Heuristic Strategy to Improve the Building Algorithm
	4.4.4 Complexity Analysis

	4.5 Extensions
	4.5.1 Online Diagnosis
	4.5.2 K/Kmin-diagnosability
	4.5.3 Diagnosability of Multiple Fault Classes

	4.6 Experimental Evaluation
	4.6.1 Presentation of the Considered Benchmark
	4.6.2 Results
	4.6.3 Discussion

	4.7 A Comparison Between Sampath's Diagnoser and our Proposed Diagnoser
	4.8 Conclusion

	Chapter 5 : A Diagnoser-Based Approach for Intermittent Fault Diagnosis
	5.1 Introduction
	5.2 A Review of Intermittent Fault Diagnosis in DESs
	5.3 Overview on the Developed Contribution
	5.4 Modeling of the System and Intermittent Faults
	5.4.1 System Model
	5.4.2 Intermittent Fault Modeling

	5.5 Notions of Diagnosability
	5.5.1 Assumptions
	5.5.2 Definitions of Diagnosability

	5.6 Construction of the Diagnoser
	5.6.1 The Structure of the Diagnoser Node
	5.6.2 The Diagnoser Construction
	5.6.3 The Various Types of Nodes in the Diagnoser

	5.7 Analysis of WF-Diagnosability
	5.7.1 Necessary and Sufficient Condition for WF-diagnosability
	5.7.2 Verification of WF-Diagnosability
	5.7.3 A Procedure for Checking WF-diagnosability

	5.8 Analysis of SF-Diagnosability
	5.8.1 Necessary and Sufficient Condition for SF-diagnosability
	5.8.2 Verification of SF-Diagnosability
	5.8.3 A Procedure for Checking SF-diagnosability

	5.9 Discussion
	5.10 A Still Open Issue
	5.11 Conclusion

	Chapter 6 : Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser
	6.1 Summary
	6.2 Petri Net Based Fault Diagnosis
	6.3 Motivation of the Approach
	6.4 Preliminaries
	6.4.1 Labeled Petri Net Modeling
	6.4.2 Diagnosability of LPNs

	6.5 The Symbolic Observation Graph (SOG)
	6.5.1 Binary Decision Diagrams
	6.5.2 The Construction of the SOG

	6.6 The Symbolic Reachability Diagnoser (SRD)
	6.6.1 The Structure of the Diagnoser Node
	6.6.2 Definition of the SRD
	6.6.3 Diagnosis Using SRD

	6.7 Diagnosability Analysis Using The SRD
	6.7.1 Necessary and Sufficient Condition for Diagnosability
	6.7.2 A Procedure for Checking Diagnosability

	6.8 On-the-fly Verification Algorithm
	6.9 Experimentation
	6.9.1 Experimental Results
	6.9.2 Discussion

	6.10 Conclusion

	Part III : Contributions regarding the twin-plant based approach
	Chapter 7 : Practical Verification of Diagnosability in a Model-Checking Framework
	7.1 Introduction
	7.2 Model-Checking
	7.2.1 The System Modeling
	7.2.2 The Specification Modeling
	7.2.3 Progress in Model-Checking

	7.3 A Review on Fault Diagnosis Using Model-Checking
	7.3.1 Fault Diagnosis with LTL-based Specifications
	7.3.2 Rules-based Model Using First-order LTL
	7.3.3 Fault Diagnosis via Temporal Epistemic Logic
	7.3.4 Fault Diagnosis via Satisfiability
	7.3.5 Fault Diagnosis as a Practical Model-Checking Problem

	7.4 State-Based Modeling of DESs
	7.5 Diagnosability Analysis
	7.5.1 Cimatti's Diagnosability Definition
	7.5.2 Extension of Cimatti's Diagnosability Definition

	7.6 Diagnosability as a Model-Checking Problem
	7.6.1 The Twin-Plant as a Kripke Structure
	7.6.2 Diagnosability Condition as a Temporal Logic Formula

	7.7 K/Kmin-Diagnosability as a Model-Checking Problem
	7.7.1 Reformulation of K-Diagnosability Definition
	7.7.2 K-Diagnosability Reformulation
	7.7.3 Kmin-Diagnosability Reformulation

	7.8 Diagnosability Verification Using NuSMV Model-Checker
	7.9 Experimentation
	7.9.1 Presentation of the Level Crossing Benchmark
	7.9.2 Results and Discussion

	7.10 Conclusion

	Chapter 8 : Twin-Plant Based Approach for Intermittent Faults Diagnosis
	8.1 Introduction
	8.2 Analysis of the Weak Diagnosability
	8.2.1 Twin-Plant Construction
	8.2.2 Necessary and Sufficient Conditions
	8.2.3 Verification Algorithm for Weak Diagnosability

	8.3 Analysis of the Strong Diagnosability
	8.3.1 Necessary Conditions
	8.3.2 Necessary and Sufficient Conditions
	8.3.3 Verification Algorithm

	8.4 Diagnosability of Intermittent Faults as Model-Checking Problems
	8.4.1 The Weak Diagnosability Conditions as LTL Formulas
	8.4.2 Reformulation of the Strong Diagnosability Properties

	8.5 Experimentation
	8.5.1 Presentation of the DES Benchmark
	8.5.2 Results and Discussion

	8.6 Discussion of the Fr-diagnosability
	8.7 Conclusion

	Part IV : Conclusion
	Chapter 9 : Conclusions and Perspectives
	9.1 Conclusions
	9.2 Perspectives

	Bibliography
	Appendix A : An Illustrative Example using NuSMV
	A.1 Heating Ventilation and Air-Conditioning System
	A.2 The Diagnosability Analysing Using NuSMV

	source: Thèse de Abderraouf Boussif, Lille 1, 2016
	d: © 2016 Tous droits réservés.
	lien: lilliad.univ-lille.fr

