Dr Mohamed Une Ghazel

Approche Par Décomposition

Contributions to Model-Based Diagnosis of Discrete-Event Systems

Keywords: Fault diagnosis, Discrete-event systems, Intermittent faults, Permanent faults, Finite state automata, Labeled Petri nets, Model-checking Fault diagnosis, Discrete-event systems, Intermittent faults, Permanent faults, Finite state automata, Labeled Petri nets, Model-checking

This PhD thesis deals with fault diagnosis of discrete-event systems modeled as nite state automata with some extensions to bounded Petri net models. The developed contributions can be classied regarding two pioneering approaches from the literature: the diagnoser-based technique and the twin-plant based technique. Regarding the diagnoser-based technique, we propose a new diagnoser variant with some interesting features that allow us to separately track the normal and the faulty traces directly in the diagnoser. On the basis of the developed diagnoser, we reformulate the necessary and sufcient condition for diagnosability of permanent faults and we propose a systematic procedure for checking such a condition without building any intermediate model. An on-the-y algorithm, for simultaneously constructing the diagnoser and verifying diagnosability is developed. The algorithm aims to generate as less state-space as possible, particularly when the system is nondiagnosable, which improves the memory/time consumption. The developed diagnoser is then extended to deal with fault diagnosis of intermittent faults. Various notions of diagnosability are addressed and necessary and sucient conditions are formulated on the basis of the new diagnoser structure. A Hybrid version (in the sense of combining enumerative and symbolic representations) of the diagnoser variant is established in order to deal with fault diagnosis of labeled bounded Petri nets. The main idea consists in using the symbolic representation (Binary Decision Diagrams)

to compact and handle the Petri net markings inside the diagnoser nodes and using explicit representation for the (observable) transitions that link the diagnoser nodes. Such a combination serves, on one hand, to reduce the memory required for constructing the diagnoser and, on the other hand, to easily explore the diagnoser paths. The developed approaches are implemented in dedicated tools and evaluated through benchmarks with respect to the reference approaches in the domain.

Regarding twin-plant based technique, the rst contribution consists in elaborating a modelchecking framework, that extends the Cimatti's work, for the actual verication of various diagnosability concepts pertaining to permanent failures based on the twin-plant structure. The main idea is to reformulate and express the diagnosability issues as temporal logics and then to tackle them using the model-checking engines. The second contribution is pertaining to the diagnosis of intermittent faults, and consists in addressing various notions of diagnosability while establishing their necessary and sucient conditions on the basis of the twin-plant structure.

Mots clés : Diagnostic des fautes, Systèmes à événements discrets, Fautes intermittentes, Fautes permanentes, Automates à états nis, Réseaux de Petri étiquetés, Vérication à base de modèles.

Acknowledgment

The work that resulted in this thesis could not have been accomplished without several persons' assistance, support, and encouragement! First and foremost, my special appreciation and thanks are due to my supervisor Dr Mohamed Ghazel for his day-to-day constant support and guidance during the past three years. Without his help, this work would not be possible.

I am deeply indebted and thoroughly grateful to Professor Jean-Jacques Lesage for agreeing to be the chair of my thesis committee, for accepting me as a master student in LURPA Laboratory four years ago, and his support and encouragement.

I would like to thank those who agreed to be the referees of this thesis and allocated their valuable time in order to evaluate the quality of this work: Pr Dimitri Lefebvre, Pr Michel Combacau, DR El-Miloudi El-Koursi, Pr Armand Toguyeni, Pr Narjes Ben Rajeb, and Dr Kais Klai, for their examination of the report and their very helpful comments and suggestions.

General Context

Nowadays, due to the pressing demand in terms of productivity, safety, comfort and services, many modern systems depend on computers for their correct operation. Of greatest concern, of course, are safety-critical systems [Storey, 1996] since the consequences of failure occurring in such systems can be serious. There are many applications that have traditionally been considered as safety-critical, but the scope of the denition has to be expanded as computer systems continue spreading through many areas that aect our lives [Knight, 2002]. Examples of non-traditional safety-critical systems are railwayembedded control, banking and nancial systems, electricity generation and distribution, telecommunications. All of these applications are extensively computerized, and computer failures can lead to serious safety concerns and extensive loss of service with consequent disruption of normal activities. Moreover, recent technological advances have resulted in increasingly complex systems that raise considerable challenges in terms of design, safetyanalysis and verication/validation.

Ensuring performance, comfort and safety goals in large-scale and safety-critical systems is a tough and challenging issue. In particular, complexity is one of the most dicult aspect that must be tackled to make theoretical methodologies applicable to real industrial applications. In fact, such large-scale and complex systems are vulnerable to faults that can cause undesired behavior and, as a consequence, damages to technical parts of the plant, to personnel, or to the environment. It is plain that this also impacts the timely delivery of quality products/services.

In the railway domain for instance, embedded control/command systems are nowadays endowed with a multitude of sensing components that monitor dierent aspects in the system behavior and generate huge volumes of data. The expansion of such sensing/monitoring systems within the train control modules is due to the need of surveillance means regarding the increasing complexity of train control systems. Actually, this increasing complexity is in line with the diversication of the implemented functions on-board trains, the increasing demand in terms of safety, comfort and competitiveness (punctuality, cost, etc.). One of the major challenges that face the automated monitoring task in railway applications is to eciently handle the important volumes of the generated data.

The work undertaken within this Ph.D thesis falls in the general scope that integrates research activities related to the safety analysis of guided transportation systems. Although the main contributions developed here are theoretical, various application will be tackled in the framework of this general scope.

The purpose of automated monitoring and fault diagnosis of large-scale and safetycritical systems is to improve their reliability and availability and to increase their opera-Thèse de Abderraouf Boussif, Lille 1, 2016

© 2016 Tous droits réservés.

lilliad.univ-lille.fr

Chapter 1. Introduction 3 tivity. In this context and to fulll the performance, comfort and safety goals, developing eective monitoring techniques becomes essential starting from the design phase of the system. In particular, having ecient tools for monitoring and diagnosis is of great interest since this prevents, or at least minimizes, the failure-related consequences, especially in safety-critical systems. Fortunately, the need for these automated mechanisms and tools to deal with the automated monitoring and fault diagnosis of systems is well understood and appreciated, by decision-makers, industry and academia. A great deal of research eort has been and is being spent in the design and development of such automated monitoring means.

From the practical point of view, industrial end-users are interested in the following questions:

• what kind of faults can be detected/diagnosed? what cannot be detected/diagnosed?

• what is the benet in case of a successful detection/diagnosis? how much is the cost (hardware, software, manpower, etc.) of realizing monitoring tasks?

• for a given monitoring and diagnosis task, which method/approach is most suitable?

All these issues and aspects are addressed in research works that deal with the automated monitoring and fault diagnosis.

One of the major distinctions in the approaches for automated monitoring and fault diagnosis is whether or not explicit models are used, and what type of models are used.

When some models of the system behavior are used as a basis for fault detection and diagnosis, this is often referred to as model-based diagnosis. The concept of model-based diagnosis poses a promising approach to the systematic capture and analysis of diagnostic knowledge. The use of explicit models of a system's structure and behavior allows us to trace deviant system observations directly to causing components. Establishing the models then becomes a signicant part of the application development eort. Moreover, in dierent engineering domains, there has been a shift towards model-based techniques.

In many model-based diagnosis approaches, a model of the system which may depict both the normal and faulty behavior is considered. The faulty behavior is caused by the occurrence of some failures -or category of failures which are not directly observable. Thus, their occurrences must be inferred from the observable part of the behavior.

From the theoretical point of view and at a high level of abstraction, Discrete Event Systems (DESs) are more suitable for modeling, monitoring and model-based diagnosing complex dynamic systems, because of the convenience of their associated models algorithms [START_REF] Cassandras | [END_REF]Lafortune, 2009, Lin, 1994]. DESs are a qualitative abstraction of continuous dynamic systems that has been receiving increasing attention from both 4

Chapter 1. Introduction Articial Intelligence and Automatic and Control communities. In fact, various classes of man-made systems can be viewed as DESs, provided that their evolution is driven by the occurrences of events and described by discrete state-space.

Fault diagnosis consists of many challenging problems to investigate. However, one of the main issues that must be rstly addressed is the diagnosability investigation. In fact, the diagnosability issue is relatively recent in the research eld, and principally two distinct and parallel research communities have been working along the lines of the modelbased diagnosis context: the FDI community and the DX community that have evolved in the elds of Automatic Control and Articial Intelligence [START_REF] Cordier | Conicts versus analytical redundancy relations: a comparative analysis of the model based diagnosis approach from the articial intelligence and automatic control perspectives[END_REF]. Analyzing diagnosability of a system intends to determine whether or not any predetermined failure or class of failures can be accurately detected and identied within a nite delay following its occurrence. Then comes the issue of developing the diagnoser (called also fault detection and identication engine or simply, the diagnosis system), which performs the diagnosis task. Roughly speaking, the diagnoser role is to carry the state estimation (of the system) online and to emit verdicts regarding the behavior of the monitored system (normal of faulty behavior) based on the delivered partially observations by the sensors map. A crucial issue that the diagnosis activity has to deal with is partial observability on the system behavior. This is due to the fact that it is often quite expensive and technically dicult to observe all changes in a complex system. Therefore, it becomes vital to develop ecient and robust methods able to ll this partial observability on the system behavior.

Problems Statement

The DES diagnosis problem is basically concerned with determining which faults, if any, explain a given observed system behavior. Fault diagnosis is therefore closely related to the problem of state estimation [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF]. The DES diagnosis is often discussed through two main issues: diagnosability analysis and online diagnosis.

Diagnosability refers to the capacity of providing a precise diagnosis verdict. Thus, the intention of analyzing diagnosability of a system is to determine accurately whether any predetermined failure can be detected and identied within a nite delay following its occurrence. Online diagnosis consists in inferring, online, the occurrence of predetermined faults from the observed behavior of the system [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF].

Various techniques have been developed to deal with DESs diagnosis, as will be detailed in the rst part of this dissertation (Part I). Moreover, several improvement in terms of eciency have been made and numerous issues still need to be tackled as discussed in what follows.

Diagnoser-based approaches

The pioneering work which has set the foundations of DESs fault diagnosis is [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Sampath et al., 1996] where a formal denition of diagnosability was introduced. Such a work provided a necessary and sucient condition for diagnosability as well as a systematic approach, based on the so-called diagnoser, with the aim of analyzing diagnosability and performing the online diagnosis. However, the combinatorial explosion problem is inherent to the dened approach and the state-space of the diagnoser is, in the worst case, exponential w.r.t. the size of the model state-space.

Improvements in terms of complexity have been introduced in [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], Moreira et al., 2011, Qiu and Kumar, 2006, Li et al., 2015a]. The basis idea was to build an intermediate structure called twin-plant/verier, by performing a parallel composition of the system model with itself. The diagnosability issue can then be addressed by analyzing every pair of executions that share the same observation. Such a task is performed using polynomial-time algorithms. Nevertheless, these approaches deal only with diagnosability analysis and do not consider online diagnosis.

Moreover, comparative studies show that the diagnoser-based approach is more ecient for analyzing diagnosability of some kinds of system models than the twin-plant/verier based approaches [Liu, 2014]. Consequently, the diagnoser-based approach remains a principal technique to deal with both diagnosability analysis and online diagnosis.

The main issues related to the diagnoser-based approaches can be outlined as follows:

1. the synthesis of the diagnoser is performed with an exponential complexity in the original model state-space, and double-exponential in the cardinality of the fault classes. This consequently hampers the scalability of the approach.

2. the approach is based on the analysis of two graphs. The rst graph is a nondeterministic observer (called pre-diagnoser, or generator), while the second one is a deterministic automaton, called diagnoser (or equivalently, generator/diagnoser [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], MBRG/BRD [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF], FM-graph/FM-set graph [Liu, 2014], etc.).

3. the double-checking procedure, which consists of one verication on the diagnoser (i.e., the existence of F -uncertain cycles) and the other on the generator or the prediagnoser (i.e., checking whether the F -uncertain cycle is an F -indeterminate one or not). In fact, in general such a double-checking procedure highly increases the verication time.

6

Chapter 1. Introduction

Intermittent Fault Diagnosis

In a major part of the literature regarding the DESs diagnosis, faults are typically assumed to be permanent, i.e., faults cause irremediable deviations form the normal behavior of the system. However, experience with fault diagnosis of industrial systems shows that intermittent faults (i.e., faults provoke only temporary deviations from the normal behavior of the system) are predominant and are among the most challenging kinds of faults to detect and isolate [START_REF] Fromherz | Model-based computing for design and control of recongurable systems[END_REF]. Indeed, according to [START_REF] Shen | Intermittent faults parameter framework and stochastic Petri net based formalization model[END_REF], intermittent faults exist in many systems, including those ranging from small components to the complex modules. The frequent occurrence of intermittent faults can bring on serious troubles and result in high safety risk and important maintenance costs and delays. In the late 1960s, Hardie [Ball andHardie, 1969, Hardie and[START_REF] Hardie | [END_REF] indicated that intermittent faults comprised over 30% of pre-delivery failures and almost 90% of eld failures in computer systems. Moreover, intermittent faults bring on many maintenance problems, such as False Alarms (FAs), Can Not Duplicate (CND) and No Fault Found (NFF) [START_REF] Sorensen | An analyzer for detecting intermittent faults in electronic devices[END_REF]]. This last one (i.e., NFF) has been identied as the source of the highest cost in aerospace maintenance. For instance, the annual NFF exchange cost of the F-16 avionics boxes due to intermittent faults was over $ 20,000,000 [START_REF] Steadman | Attacking" bad actor" and" no fault found" electronic boxes[END_REF], Steadman et al., 2008].

On the contrary to fault diagnosis of permanent faults, a few DES-based frameworks have been proposed to handle intermittent faults. In addition, the DES-based fault diagnosis methodologies which deal with permanent failures are unfortunately no longer suitable for the analysis of intermittent faults, since the case of intermittent faults shows some subtle congurations compared to the case of permanent failures. The same problem is also encountered with various methodologies developed in the eld of model-based reasoning in Articial Intelligence, as witnessed in [Contant, 2005].

Practical Verication of Diagnosability

In the last two decades, many research works have been concerned with the development of new models, new properties, new algorithms and ecient solutions for fault diagnosis of DES [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF]. Unfortunately, most of the approaches developed are oriented to the denition of theoretical frameworks and do not address the problems related to the practical application of the approaches developed. Moreover, such approaches propose ad-hoc algorithms for the actual verication of diagnosability which are implemented in academic tools. Hence, the practical implementation of the developed DES diagnosis techniques is an issue that still needs exploration.

The works in [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], Pecheur et al., 2002], propose a practical frame-work for the formal verication of the diagnosability using model-checking techniques.

In fact, the authors attempted to bring forward an eective framework for the analysis of diagnosability that can be practically applied in the development process of diagnosis systems. The main advantage of the proposed approach is that the actual verication is performed using the model-checking techniques. Fortunately, a wide range of powerful and optimized model-checkers have been developed in the formal verication community and successfully used for the verication/validation of large scale industrial systems. Such tools can be used for the verication of diagnosability using the practical framework proposed in [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], Pecheur et al., 2002]. However, the authors in [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], Pecheur et al., 2002] have only discussed a variant of the diagnosability that shows some restrictions.

Main Contributions

This dissertation focuses on fault diagnosis of discrete-event systems modeled by nite state automata with some extensions to bounded Petri net models. The main contributions are all discussed in the second and third part (Part II and Part III) of the thesis and can be summarized in the following items.

i.) the development of a new diagnoser variant approach for diagnosis of discrete-event systems modeled by automata with permanent faults with an extension for fault diagnosis of Petri net models;

ii.) the investigation of various notions of diagnosability of intermittent faults in both the diagnoser-based approach (in Point i.) and twin-plant based approach in [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF];

iii.) the elaboration of a model-checking framework for the practical verication of various diagnosability concepts on the basis of the work of Cimatti et al. [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF].

In what follows, we give the detailed features of our contributions:

A new diagnoser-based approach

We develop a diagnoser with a new structure for representing the nodes. Such a structure explicitly separates between the normal and the faulty states in each node.

This feature allows us to separately track the normal and the faulty traces directly in the diagnoser. Moreover, the diagnoser is constructed directly from the original model, without needing to construct any intermediate model;

Chapter 1. Introduction

On the basis of the proposed structure of the diagnoser, a sucient condition for the undiagnosability of the model is proposed. Such a condition is used for the on-the-y verication of diagnosability;

we prove for an F -uncertain cycle in the diagnoser, there exists at least one faultfree cycle in the original model that share the same observation. Therefore, for an F -uncertain cycle in the diagnoser to be an F -indeterminate one, it is sucient to check that at least one faulty cycle which shares the same observation with the F -uncertain cycle exists in the original model;

we establish a systematic procedure for checking the necessary and sucient condition for diagnosabilily without returning to any intermediate model to check if an F -uncertain cycle corresponds to two cycles, a faulty one and a non-faulty one;

we develop an on-the-y algorithm, for simultaneously constructing the diagnoser and verifying diagnosability. The algorithm aims to generate as less state-space as possible, particularly when the system is undiagnosable, which improves the memory/time consumption; the developed approach is implemented and some experimentation and comparative studies (with existing tools for analyzing diagnosability) are conducted in order to assess the eectiveness and the scalability of the approach developed;

we establish a hybrid version (in the sense of combining enumerative and symbolic representations) of the diagnoser variant we develop, in order to deal with fault diagnosis of bounded Petri nets. The maim idea consists in: using binary decision diagrams (BDDs) to compact and handle the diagnoser nodes, which serves to reduce the memory consumption;

using an explicit representation for the (observable) transitions that link the diagnoser nodes. Such a representation allows for an easy exploration of the diagnoser paths.

we develop a dedicated tool implementing the proposed approach, in order to assess the eciency and the scalability of the approach. Some experimentations have been conducted through a PN benchmark. The obtained results are discussed with respect to a reference approach for fault diagnosis of LPNs, called MBRG/BRD technique [Cabasino et al., 2009a].

Intermittent fault diagnosis

we extend the diagnoser-based approach introduced above, in order to deal with intermittent faults. Therefore, various notions of diagnosability are addressed, and necessary and sucient conditions are formulated on the basis of the new diagnoser structure;

we also address the issue of diagnosability of intermittent faults using the twin-plant approach. In fact, we develop new necessary and sucient conditions for the various notions of diagnosability discussed in this dissertation.

Practical verication of diagnosability

Cimatti et al. [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF] introduced an approach to deal with the diagnosability analysis in a model-checking framework. On the basis of this approach, we develop the following:

we extend the approach in [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF] in order to deal with practical version of diagnosability, namely, K/K min -diagnosability properties.

the necessary and sucient condition for diagnosability of the intermittent faults on the basis of the twin-plant approach (introduced above) are expressed in temporal logics (LTL/CTL) for the actual verication using model-checking; in order to show the applicability of this approach, some experimentation are performed on the basis of two benchmarks which depicts the concept of permanent and intermittent faults respectively.

Organization and Structure of the Dissertation

This dissertation is divided into four parts:

PART I: in this part, we give a literature review regarding fault diagnosis, particularity, the DESs diagnosis. The part is composed of two chapters:

• Chapter 2: we review the concept of fault diagnosis and the model-based diagnosis techniques;

• Chapter 3: we give a brief summary of the background on fault diagnosis of DESs modeled by nite state automata.

PART II: in this part, we discuss our contributions regarding the diagnoser-based approach. This part is composed of three chapters: 10 Chapter 1. Introduction

• Chapter 4: we propose a new version of the well-known diagnoser-approach. It consists in separating normal states from faulty ones in each diagnoser node. Such a distinction serves to more eciently track the faulty and fault-free traces in the diagnoser paths. On the basis of various features that characterize this new diagnoser, we develop a systematic procedure for checking the necessary and sucient condition for diagnosability;

• Chapter 5: we extend the diagnoser-based approach, introduced in the previous chapter, in order to deal with intermittent fault diagnosis. First, we discuss two ways for modeling the intermittent faults in nite state automata framework. Then, various denitions of diagnosability from the SED literature are revisited and necessary and sucient conditions for checking such properties are derived on the basis of the diagnoser structure. A systematic procedure for checking such conditions without needing any intermediate model is proposed;

• Chapter 6: we present an improvement of the diagnoser-based approach introduced in Chapter 4 while dealing with Petri net models. It consists in building a symbolic diagnoser called Symbolic Reachability diagnoser for both analyzing diagnosability and performing the online diagnosis of bounded labeled Petri nets.

PART III: in this part, we provide our contributions regarding the twin-plant approach. This part is composed of tow chapters:

• Chapter 7: we discuss the practical verication of permanent fault diagnosability in a model-checking framework. The diagnosability condition is expressed using CTL formula while the twin-plant structure is transformed into a Kripke structure and, therefore, diagnosability is investigated as a model-checking problem. Reformulation of K/K min -diagnosability are also discussed;

• Chapter 8: we discuss the diagnosability analysis of intermittent fault using the twinplant based approach. The various notions of diagnosability introduced in Chapter 5 are carried out, in this chapter. Necessary and sucient condition for each property is rstly established and then reformulated (if possible) as a model-chcking problem.

PART IV: in this part, we provide conclusion remarks regarding the dissertation and we draw future research directions.

Fault Diagnosis

According to Webster's Dictionary the meaning of the term diagnosis is as follows:

diagnosis Etymology: New Latin, from Greek diagnOsis, from diagignOskein to distinguish, from dia-+ gignOskein that means `knowing the dierence' Date: circa 1681.

Denition 1: (from medicine) The art or act of recognizing the presence of disease from its signs or symptoms, and deciding as to its character; also, the decision arrived at.

Denition 2: the act or process of identifying the nature or cause of some phenomenon, especially the abnormal behavior of an animal or artifactual device; as, diagnosis of a vibration in an automobile; diagnosis of the failure of a sales campaign;

diagnosis of a computer malfunction.

Hereafter, we recall the denitions of some terms and concepts that are often used in this thesis.

Terminology in the Area of Fault Diagnosis

As a step towards a unied terminology, the IFAC Technical Committee SAFEPROCESS has suggested preliminary denitions of some terms in the eld of fault diagnosis. Such a terminology was rst published in [Isermann andBallé, 1997, Isermann, 2006].

• Fault: an unpermitted deviation of at least one characteristic property or parameter of the system form the acceptable / usual/standard condition;

• Failure: a permanent interruption of a system's ability to perform a required function under specied operating conditions;

• Fault detection: determination of the faults present in a system and the time of detection;

• Fault isolation: determination of the kind, location and time of detection of a fault. Follows fault detection;

• Fault identication: determination of the size and time-variant behavior of a fault.

Follows fault isolation;

• Monitoring: a continuous real-time task of determining the conditions of a physical system, by recording information, recognizing and indicating anomalies in the behavior;

• Supervision: monitoring a physical system and taking appropriate actions to maintain the operation in the case of faults;

• Fault diagnosis: determination of the kind, size, location and time of detection of a fault. Follows fault detection. Includes fault isolation and identication;

The ranking of these functions according to the importance is obviously subjective, however, the fault detection is an absolute must for any practical system and isolation is almost equally important. Fault identication, on the other hand, whilst undoubtedly helpful, may not be essential if no reconguration action is involved. Hence, fault diagnosis is very often considered as fault detection and isolation/identication, abbreviated as FDI, in the literature [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF].

Fault Diagnosis Approaches

Approaches dealing with fault diagnosis can be classied into four main classes:

Expert Systems and Knowledge-Based Diagnosis

A popular method for diagnosis and supervision of complex systems has been the use of expert systems, often in conjunction with fault tree structures. The terms expert system and knowledge-based system are often used synonymously. Expert systems are eminently well suited for systems that are dicult to model, with complex interactions between and within components [Scherer andWhite III, 1989, Tzafestas andWatanabe, 1990]. Expert systems found broad application in fault diagnosis from their early stages because an expert system simulates human reasoning about a problem domain, performs reasoning over representations of human knowledge and solves problems using heuristic knowledge rather than precisely formulated relationships, in forms that reect more accurately the nature of most human knowledge. Domain experts have heuristic knowledge of the system and of how symptoms relate to faults. In traditional expert systems, this knowledge is represented in a rule-base and used in conjunction with an inference engine [START_REF] Venkatasubramanian | A review of process fault detection and diagnosis: Part i: Quantitative model-based methods[END_REF].

This heuristic approach has several drawbacks. Acquiring knowledge from experts is dicult and time consuming, and for new systems a considerable amount of time may elapse before enough knowledge is accumulated to develop the necessary set of heuristic Chapter 2. Model-Based Diagnosis rules for reliable diagnosis, coupled with the fact that this approach is very domain dependent, i.e., expert systems are not easily portable from one system to another. Furthermore, it is dicult to validate an expert system.

Data-Driven Based Diagnosis

In contrast to model-based approach, which requires reliable a priori quantitative or qualitative knowledge about the process, the data-driven approach makes use of this information from the huge amount of process history data. Thus, data-driven approaches work without models, or with only simplied ones [START_REF] Venkatasubramanian | A review of process fault detection and diagnosis: Part i: Quantitative model-based methods[END_REF]. Since most of the data-driven approaches assume that the process data have certain probability density functions, they are sometimes also called statistical process monitoring methods.

The univariate control chart may be the earliest statistical approach based on a priori knowledge of process measurement distributions [START_REF] Shewhart | Statistical method from the viewpoint of quality control[END_REF] and has been used for quality control in earlier industrial applications.

The main drawback of these techniques is the need to data for training. Data from the systems are not available until they have been built. Only during the testing phase of the physical system is it possible to collect useful data. This, however, drastically shortens the time available for the tuning of the diagnosis system, and makes it extremely dicult to validate the diagnoser when designing the system [Gario, 2016].

Fault-Tree Based Diagnosis

The most widely used scheme for alarm analysis, especially in the process control industry, is based on fault-trees [De Vries, 1990, Lapp and Powers, 1977, Lee et al., 1985] The basic idea behind fault tree approaches is that a failure can trigger other failures or events in the system and this can be traced back to the root cause [Hamscher, 1992]. A fault-tree graphically represents a cause-eect relationship among the failures in the system. The root of a fault tree, the so-called `top' event, is a system failure. The leaves of the tree are possibly contributing atomic events or basic faults, and inner nodes are AND-and ORtype. Sets of events that trigger the top event are computed using cut sets and minimal cut sets [Huang, 2003].

Fault-tree construction is laborious and error prone, and much work has been done on computer assisted and automatic fault tree construction [START_REF] Lapp | [END_REF]Powers, 1977, Elliott, 1994]. Moreover, a fault tree is used to analyze a single fault event, and that one and only one event can be analyzed during a single fault tree. These drawbacks in fact limit the applicability of fault-tree in practice.

Model-Based Diagnosis

Model-based diagnosis techniques (shortly MBD) [Kleer, 1992, Sampath et al., 1995, Roth et al., 2012, Lin, 1994, Reiter, 1987, Lamperti and Zanella, 2013, Darwiche and Provan, 1996, Frank, 1996, Schneider et al., 2012, Brusoni et al., 1998, Venkatasubramanian et al., 2003, Hamscher, 1992, Isermann and Ballé, 1997] have been remarkably developed since the 80s and their eciency for detecting faults has been demonstrated by a great number of applications in industrial processes and automatic control systems. The MBD approaches are based on a description of the system's behavior, called the `system model'. This model is generally provided by the system designer, and describes at least the normal behavior of the system. Better results are achieved when the model describes the behavior of the system under predened faults, or when the model accounts for the system structure, i.e., the components that intervene in the system behavior. The basic idea behind the MBD is to compare observations of the real system with the predictions from a model. Therefore, the occurrence of a fault is captured by discrepancies between the actual observed behavior and the behavior that is predicted by the model. Fault localization then rests on interlining the model parts (i.e., components) that are involved in each of the detected discrepancies.

As discussed in [START_REF] Cordier | Conicts versus analytical redundancy relations: a comparative analysis of the model based diagnosis approach from the articial intelligence and automatic control perspectives[END_REF], two distinct and parallel research communities have been using the MBD approaches. The FDI (for Fault Detection and Isolation/Identication) community has evolved in the Automatic Control eld from the seventies and uses techniques from control theory and statistical decision theory. It has now reached a mature state and a number of very good surveys exist in this eld [Patton andChen, 1991, Gertler, 1991]. The DX (for Diagnosis eXpert system) community emerged more recently, with foundations in the elds of Computer Science and Articial Intelligence [Reiter, 1987, Kleer, 1992, Hamscher, 1992]. Hereafter, we give a brief description of these approaches.

FDI Analytical Redundancy Methods

In the control system community, the most common class of model-based diagnosis method proposed is the analytical redundancy method [Frank, 1996, Chen and Patton, 2012, Willsky, 1976]. The analytical redundancy methods, addressed for continuous systems, consist of two steps: (i) generation of residuals and (ii) decision and fault isolation.

Residuals are quantities that represent the inconsistency between the actual system variables and the mathematical model. In other words, residual signals are generated by comparing predicted values of system variables with the actual observed values, where the predicted values come from the available mathematical model of the system. In the decision and fault isolation stage, the residuals are examined for the likelihood of faults.

Chapter 2. Model-Based Diagnosis

In other words, residuals are ideally zero and some residuals become non-zero if the actual system diers from the ideal one, which may be due to faults, disturbances, noise.

One of the main problems with the analytical redundancy method is the diculty in acquiring good enough models. The demands on the accuracy of the models are usually higher than for control design, since the residual generator works open-loop. Robust methods for residual generation has received considerable attention in recent years and is an active research area [Chen andPatton, 2012, Huang, 2003].

DX Logical Diagnosis Methods

The model-based approach to diagnosis started to be investigated by Articial Intelligence researchers in the late seventies, as a possible alternative to the expert-system approach.

The fundamental paradigm of this approach, much like the analytical redundancy methods, is that of observation and prediction. The basic idea is to predict the behavior of the system using behavioral and structural models of the system and its components and compare it with observations of the actual behavior of the real system.

Two main characterizations of DX model-based diagnosis exist in the literature: (i) consistency-based diagnosis [Reiter, 1987] and (ii) abductive diagnosis [Poole, 1989]. The former is pioneered by Reiter [Reiter, 1987] known as the diagnosis from rst principles.

The goal of such a method is to nd the set of constraints that are in conict with the observation (output from a model which only depicts the nominal behavior). In this way, a diagnosis is a set of components that must misbehave in order to justify the observation.

The abductive diagnosis methods exploit the causal model of a system, containing explicit information about which faults can occur and which chain of consequences they provoke, up to their observable manifestations.

The two approaches eventually converged into the parallel ideas of exploiting information about faults in consistency-based diagnosis, and information about correct behavior in abductive diagnosis, including in a component-oriented model information about faults corresponds to describing, along with the correct behavior of system components, also their possible faults and their consequences. Thus, models of correct behavior started to be endowed with fault models,and causal models started to include a description of nominal behavior [de Kleer and Kurien, 2004, Picardi,].

Diagnosis of Discrete-Event Systems

Discrete-Event Systems (DESs) [START_REF] Cassandras | Introduction to discrete event systems[END_REF] are systems, the dynamic of which is characterized by asynchronous occurrence of events. An event is a fundamental concept which can be viewed and described as `something happened', either in systems designed by humans or in nature. Events have no property of continuation, they are instant, and can be observed only at discrete points in time. The second fundamental concept, characterizing a DES is a state, which is viewed as a result of temporally ordered discrete events, occurred starting from a moment when the system was in its initial state.

In fact, the initial state of a DES characterizes the system before the occurrence of any event. The level of detail in DESs appears to be quite adequate for a large class of systems and a wide variety of failures to be diagnosed.

DESs diagnosis, particularly for nite state automata (shortly FSA), was initiated by Lin [Lin, 1994] and further treated in [START_REF] Bavishi | Automated fault diagnosis using a discrete event systems framework[END_REF]. The o-line and on-line diagnosis issues are addressed separately. The authors give an algorithm for computing a diagnostic control, i.e., a sequence of test commands for diagnosing system failures.

This algorithm is guaranteed to converge if the system satises the conditions for on-line diagnosability.

Diagnosis of DESs nds its roots in the work by Sampath et al [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Sampath et al., 1996]. In these works, a formal language framework for studying diagnosability properties (and online diagnosis) of un-timed DESs was proposed. The approach is closely related to the Ramage-Wonham framework for supervisory control of DESs [START_REF] Ramadge | Supervisory control of a class of discrete event processes[END_REF]. Actually, the DES model to be diagnosed depicts both its normal and faulty behaviors. The faults are considered as unobservable events and the diagnosis problem is then to infer about the past occurrences of fault events, on the basis of the observation recorded, within a nite delay. A diagnoser, which is an extended observer, that gives the (estimated) states and fault estimation of the system after the occurrence of each observable event is constructed from the model.

When a system model is not diagnosable, the authors in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] identify two means of making it diagnosable: i) revisit the sensors' map and ii) design the controller so that the faulty behavior is excited and can be detected. The former gives rise to reconguration/optimization of sensors [START_REF] Pan | Diagnosability analysis and sensor selection in discrete-event systems with permanent failures[END_REF], Jiang et al., 2003a, Ru and Hadjicostis, 2010, Yoo and Lafortune, 2002a[START_REF] Cabasino | Optimal sensor selection for ensuring diagnosability in labeled Petri nets[END_REF], Debouk et al., 2002a, Dallal and Lafortune, 2011] and the synthesis of observability requirements [START_REF] Bittner | Symbolic synthesis of observability requirements for diagnosability[END_REF], while the latter gives rise to active diagnosis issues [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF], Chanthery and Pencolé, 2009, Chen et al., 2014].

One of the main features of this approach is the ability to analyze diagnosability properties. In fact, diagnosability is the ability to detect and isolate the past occurrences of faults within nite delays. The formal denition of diagnosability, as well as the necessary and sucient condition for checking such a property have been provided in this work.

This approach will be detailed in Chapter 3.

Chapter 2. Model-Based Diagnosis

Actually, Sampath's approach requires building a diagnoser for analyzing diagnosability. However, due to the deterministic nature of the diagnoser, its construction is performed in an exponential complexity in the model state-space. Aiming to reduce computational complexity for analyzing diagnosability, various approaches have been proposed on the basis of twin-plant/verier structures [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], Cimatti et al., 2003, Moreira et al., 2011, Grastien, 2009]. Such approaches allow checking diagnosability using polynomial-time algorithms and therefore, the diagnoser construction can only be performed for the diagnosable models.

Centralized/Decentralized DESs Diagnosis

The DES diagnosis was rstly discussed in centralized architecture [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Lin, 1994, Zad et al., 2003, Jiang and Huang, 2001[START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF]]. In such an architecture, a global model of the system is used to be diagnosed (it may be obtained through a parallel composition of various components) and all the observations are performed at one site. Therefore, only one diagnoser is constructed, upon the current state of the diagnoser a decision o the fault occurrence is made.

Dealing with DES diagnosability using a decentralized architecture (called also codiagnosability) was proposed in [START_REF] Debouk | Coordinated decentralized protocols for failure diagnosis of discrete event systems[END_REF]]. In such an architecture, a global DES model of the system is also used, but several local sites perform observations using only local diagnosers, i.e, one diagnoser is computed for each site. Since the local diagnosers do not communicate to each other, a coordinator is used to ensure the communication (via protocols) and therefore is responsible for diagnosing the fault occurrences. Particularly, the authors have specied three protocols that realize the architecture, analyze the diagnostic properties and decide about the diagnosability under each protocol. In the last two decades, DESs decentralized diagnosis has received a lot of consideration and various contributions have been proposed [START_REF] Qiu | Decentralized failure diagnosis of discrete event systems[END_REF], Debouk et al., 2000, Philippot et al., 2013, Kumar and Takai, 2010, Pencole, 2000, Schumann et al., 2010, Wang et al., 2007, Sayed-Mouchaweh and Carre-Menetrier, 2008, Lafortune et al., 2005, Provan, 2002, Cabasino et al., 2013a, Basilio and Lafortune, 2009, Moreira et al., 2011, Zhou et al., 2008, Nunes et al., 2016, Takai and Kumar, 2016].

Distributed/Modular DESs Diagnosis

Distributed DESs diagnosis achieves diagnosis using a set of local models without referring to a global system model. The aim is to improve scalability and robustness of diagnostic methodologies. Each subsystem knows only its own part of the global model and has its local diagnoser in order to perform diagnosis locally [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF]. In fact, for each component (subsystem or module), the local diagnosability information is computed [START_REF] Fabre | Distributed diagnosis for large discrete event dynamic systems[END_REF], Su and Wonham, 2005, Pencolé and Cordier, 2005, Genc and Lafortune, 2003, Ye and Dague, 2010, Ye et al., 2009, Ye and Dague, 2012] and (may) later combined to obtain the global diagnosability result [Pencolé et al., 2004, Pencolé et al., 2005, Schumann and Pencolé, 2007]. In comparison to centralized approaches, distributed ones require less space. In fact, due to the high space requirements of centralized methods, they can hardly be applied to large scale systems.

The notion of modular diagnosability meets the same architectural implications of distributed techniques, and it can be seen as distributed approach with the amount of information the observation spots communicate to each other being equal to zero. The challenge of modular diagnosis methodologies consists in performing diagnosis locally, i.e., at each module, while at the same time accounting for the coupling of each module with the rest of the system. Approaches that exploit the modular structure of a system for monitoring and diagnosis have been developed in [START_REF] Benveniste | Diagnosis of asynchronous discrete-event systems: a net unfolding approach[END_REF], Ricker and Fabre, 2000, Contant et al., 2006, Schmidt, 2013, Zhou et al., 2008, García et al., 2005, Debouk et al., 2002b, Garcia et al., 2002, Holloway and Chand, 1994, Pandalai and Holloway, 2000] 2. [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF].

Although automata models are suitable for describing DESs, the use of Petri nets (PNs) oers signicant advantages because of their twofold representation: graphical and mathematical [Murata, 1989]. In fact, the mathematical foundation underlying [START_REF] Wen | A polynomial algorithm for checking diagnosability of Petri nets[END_REF], Ramírez-Treviño et al., 2007, Basile et al., 2008, Basile et al., 2009, Basile et al., 2010, Basile et al., 2012a, Dotoli Chapter 2. Model-Based Diagnosis et al., 2009, Basile, 2014, Jiroveanu and Boel, 2010, Cabasino et al., 2009a, Germanos et al., 2015, Madalinski and Khomenko, 2010, Ushio et al., 1998, Chung, 2005, Jiroveanu and Boel, 2004, Cabasino et al., 2010[START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF], Liu, 2014[START_REF] Liu | Toward an ecient approach for diagnosability analysis of DES modeled by labeled Petri nets[END_REF], Li et al., 2015c[START_REF] Li | On-the-y diagnosability analysis of labeled Petri nets using T-invariants[END_REF]

Summary

This chapter gives a brief summary of the background on fault diagnosis of discreteevent systems. The discussion is limited to discrete-event systems modeled by nite state automata. We rst present the discrete-event systems modeling and provide some notations that will be used throughout the thesis. Then, we review the fault diagnosis problem and some basic results concerning the analysis of the diagnosability property. Pioneering DES diagnosis approaches which deal with diagnosability analysis will be then recalled and a comparison discussion between these approaches is provided. It is worth noticing that the basic notions and denitions provided in this chapter are required for a better understanding of the following chapters.

Introduction

Fault diagnosis of failures in large, complex and dynamic systems is a crucial and challenging task, essentially in guaranteeing the reliable, safe, ecient and correct operation of complex engineered systems. In this context, and to fulll such requirements, developing eective monitoring techniques becomes essential starting from the design phase of the system. In particular, having ecient tools for monitoring and diagnosis is of great interest since this prevents or at least minimizes the failure-related down-times, especially in safety-critical systems.

From the theoretical point of view and at a high level of abstraction, discrete-event systems (DESs) [START_REF] Cassandras | Introduction to discrete event systems[END_REF], are quite suitable for fault diagnosis for a wide range of applications because of the formal basis oered by the state/transition models and their associated algorithms [Lin, 1994, Biswas, 2012]. Discrete event systems (DESs) are dynamic systems with discrete state-spaces and event-driven transitions, which change their discrete states upon asynchronous occurrence of certain events. States in DESs are represented by some symbolic variables. Events in DESs are some discrete qualitative changes. In order to characterize DES, dierent modeling notations have been developed [START_REF] Cassandras | Introduction to discrete event systems[END_REF]: language and automata, PN theory, (max,+) algebra, Markov chains and queuing theory, discrete-event simulation, perturbation analysis, and concurrent estimation techniques. Among them, automata and PNs are the two models most used in DES-based diagnosis.

In general, there are two types of DESs: untimed DESs and timed DESs. Untimed DES models are built when we consider only the logic features, i.e., the logical order of event occurrences, without considering timing properties of the system. Thus, dynamics of untimed DESs are determined by the order/sequence of states or events, not their timing properties. In timed DESs, system behaviors are aected by timing properties, which are captured by extra "timing" events or states with clock ticks.

Fault diagnosis is a crucial task in complex dynamic systems. Due to its importance, this problem has received considerable attention from industrial and academic communities in both Articial Intelligence (AI) and control engineering domains (CE). In particular, an increasing amount of work has been devoted to diagnosis of DESs during the last two decades [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF]. Actually, the DES diagnosis problem is basically concerned with determining which faults, if any, explain a given observed abnormal behavior, based on the system model. Fault diagnosis is therefore closely related to the problem of state estimation [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF].

The fault diagnosis involves (1) detecting when a fault has occurred, (2) isolating the true fault from many possible fault candidates, and (3) identifying the true damage to the system. In the context of DES, fault diagnosis is often discussed through two main issues: diagnosability analysis and online diagnosis [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Lin, 1994]. Online

diagnosis consists in inferring the occurrence of predetermined faults from the observed behavior of the system. Diagnosability refers to the capacity of the diagnoser to provide a precise diagnosis verdict. Thus, the intention of analyzing diagnosability of a system is to determine accurately whether any predetermined failure can be detected and identied within a nite delay following its occurrence [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF].

In this chapter, we are focused on fault diagnosis of untimed DESs modeled by nite state automata (FSA). To get a general overview of the literature pertaining to fault diagnosis of DESs, the reader can refer to the recent survey in [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF], where theoretical and practical issues, tools and other issues in relation to the diagnosis are discussed.

Discrete-Event Systems under Partial Observation

DESs Modeling

Discrete-event systems are quite convenient to perform the safety analysis of complex systems in a suciently high abstraction level [START_REF] Cassandras | [END_REF]Lafortune, 2009, Ramadge and[START_REF] Ramadge | [END_REF]. When systems are abstracted as DESs for diagnosis purposes, the model used is often nite state automata (FSA).

Dénition 1 (A Finite State Automaton [START_REF] Cassandras | Introduction to discrete event systems[END_REF])

An FSA is a tuple G = X, Σ, δ, x 0 where,

• X is a nite set of states;

• Σ is the alphabet of events;

• δ : X × Σ → 2 X is the (partial) transition function; • x 0 ∈ X is the initial state. Chapter 3. Fault Diagnosis of Discrete-Event systems A triple (x, σ, x) ∈ X × Σ × X is called a transition if x ∈ δ(x, σ). The model G
accounts for the normal and faulty behavior of the system, which can be described by the prex-closed language L ⊆ Σ * generated by G, where Σ * denotes the Kleene-closure of set Σ.

An event-sequence s = (σ 1 , σ 2 , . . . , σ n), with σ i ∈ Σ, is said to be associated with state-

sequence π = (x 1 , x 2 , . . . , x n+1) if ∀ i : 0 < i ≤ n, x i+1 ∈ δ(x i , σ i).
The partial transition function δ can be extended to sequences of events, i.e., one can write x n+1 ∈ δ(x 1 , s). We write s i to denote the i th event in s. We denote by L/s the post-language of L upon s,

i.e., L/s := {t ∈ Σ * |s.t ∈ L}. We write s ≤ s to denote that s is a prex of s . Let us consider σ ∈ Σ and s ∈ Σ * . We write σ ∈ s to denote that ∃ i :

1 ≤ i ≤ |s| : s i = σ.
The partial observability issue plays a central role in fault diagnosis. In this regard, some events in Σ are observable, i.e., their occurrence can be observed, while the others are unobservable. Thus, event set Σ can be partitioned as Σ = Σ o Σ u , where Σ o denotes the set of observable events and Σ u the set of unobservable events.

In the context of the diagnosis, faults are basically assumed to be unobservable events (Σ f ⊆ Σ u), since their detection and diagnosis would be trivial if they were observable.

The set of fault events can be partitioned as disjoint fault classes

Σ f = Σ f 1 Σ f 2 . . . Σ fm ,
where Σ f i (i = 1, 2, . . . , m) denotes one class of faults. We consider that ψ(Σ f) denotes the set of event-sequences in L that end with a faulty event in Σ f . That is,

ψ(Σ f) := {s.σ f ∈ L : σ f ∈ Σ f }. With a slight abuse of notation, we write Σ f ∈ s to denote that ∃ σ f ∈ Σ f such that σ f ∈ s.

Operations on DESs

In what follow, we recall some useful operations on DESs , which are used in the sequel:

To capture the observed behavior of the model, we dene the associated projection mapping.

Dénition 2 (The projection mapping [START_REF] Lin | On observability of discrete-event systems[END_REF]) With the set of observable events Σ o , a projection mapping is associated such that

P : Σ * → Σ *
o , with P (ε) = ε (ε is the empty event-sequence) and

P (σ) = ε, σ ∈ Σ u σ, σ ∈ Σ o P (sσ) = P (s)P (σ), s ∈ Σ * , σ ∈ Σ Chapter 3. Fault Diagnosis of Discrete-Event systems 29
The eect of P on an event-sequence s ∈ Σ * is simply to erase the unobservable events in it. The inverse projection operation P -1 L is dened by P -1 L (y) = {s ∈ L ⊆ Σ * : P (s) = y}.

The general setting of the inverse projection P -1 L is not restricted to the eventsequences which nished with an observable event (i.e., ∀ω ∈ Σ * , P -1 [START_REF] Fabre | Diagnosability of repairable faults[END_REF]. In this chapter, we consider that P -1 L is restricted to the event-sequences. However, in some parts of our thesis, the general setting of the inverse projection P -1

L (ω) = {s ∈ L ⊆ Σ * : P (s) = ω} ∩ Σ * Σ o)
L is considered since it has an impact on the obtained results and will be discussed in Chapter 5. The projection operator can then be extended to language L by applying the projection to all traces of L, i.e., P : 2

Σ * → 2 Σo . Therefore, if L ⊆ Σ * , then P (L) = {t ∈ Σ * o | (∃ s ∈ L) [P (s) = t]}.
We recall the classic notions of synchronous product and parallel composition of two FSA.

Dénition 3 (Synchronous product [START_REF] Cassandras | Introduction to discrete event systems[END_REF])

Consider G i = X i , Σ, δ i , x 0 i (for i = 1, 2). The synchronous product of G i is the FSA G = G 1 × G 2 = (X 1 × X 2), Σ, δ, (x 0 1 × x 0 2) where ((x 1 , x 2), σ, (y 1 , y 2)) ∈ δ if and only if (x 1 , σ, y 1) ∈ δ 1 and (x 2 , σ, y 2) ∈ δ 2 .
Using the projection mapping, we can characterize the language resulting from the synchronous product as follows:

L(G 1 × G 2) = L(G 1) × L(G 2).
The product between an FSA and itself is called a self-product.. Such an operation is also called the strict parallel composition.

Dénition 4 (Parallel composition [START_REF] Cassandras | Introduction to discrete event systems[END_REF])

Consider G i = X i , Σ i , δ i , x 0 i (for i = 1, 2). The parallel composition of of G i is the FSA G 1 G 2 = (X 1 × X 2), Σ 1 ∪ Σ 2 , δ 1||2 , (x 0 1 × x 0 2) where δ 1||2 ((x 1 , x 2), σ)) :=        (δ 1 (x 1 , σ), δ 2 (x 2 , σ)) if σ ∈ Σ 1 ∩ Σ 2 (δ 1 (x 1 , σ), x 2) if σ ∈ Σ 1 \Σ 2 (x 1 , δ 2 (x 2 , σ)) if σ ∈ Σ 2 \Σ 1 (3.1)
Using the projection mapping, we can characterize the language resulting from the parallel composition as follows:

L(G 1 G 2) = P -1 [L(G 1)] ∩ P -1 [L(G 2)]. Dénition 5 (Σ u -closure) Σ u -closure of G is FSA G = X o , Σ o , δ G , x 0 , where Chapter 3. Fault Diagnosis of Discrete-Event systems • X o = {x 0 } ∪ {x ∈ X|∃x ∈ X, ∃σ ∈ Σ o : x ∈ δ(x , σ)} is the nite set of states; • Σ o is the nite set of observable events; • x 0 ∈ X is the initial state; • δ G ⊆ (X o × Σ o × X o)
is the transition relation, dened as follows:

(x, σ, x) ∈ δ G if ∃s ∈ Σ * : x ∈ δ(x, s) s.t. s = (σ 1 , σ 2 , . . . , σ n = σ): σ i ∈ Σ u (i = 1, 2, . . . , n -1) and σ n ∈ Σ o .
In other words, the Σ u -closure is an ε-reduction assuming all events of Σ u are rst replaced by ε. That is, every unobservable transition in G is erased in the closure, while preserving the set of observation, i.e., L(G

) = P (L(G)). Dénition 6 (Determinization) Determinization of FSA G is Det(G) = X , Σ o , δ o , X 0 where • X = 2 X
is the set of nodes, each node contains a set of system states;

• X 0 = {x 0 } the initial node; • δ o (q, σ) = {x ∈ X|∃s ∈ Σ * , ∃x ∈ q : x ∈ δ(x, sσ)} is the transition relation.
The determinization can be easily performed from the Σ u -closure of G and similarly, determinization preservs the observation, i.e., L(Det(G)) = P (L(G)).

The Fault Diagnosis Problem

Partial observability on the system behavior is a main issue one has to deal with when performing diagnosis analysis. Diagnosability analysis and online diagnosis where rstly formulated by M. Sampath et al. [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Sampath et al., 1996] in the framework of automata models. In fact, the diagnosis activity is basically concerned with determining which faults (unobservable events), if any, explain a given observed sequence of events, based on the model of the system. Fault diagnosis is therefore closely related to the problem of state observability, which consists in building a deterministic automaton, called the observer, whose transitions are due to the observable events of the system and whose states are estimates of the true system state [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF].

In the original framework introduced in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Sampath et al., 1996],

the behavior of the DES is assumed to be known and a model of it is available as a nite state automaton G over an alphabet (set of events) Σ = Σ o ∪Σ u with Σ f ⊂ Σ u . Therefore, the aim of fault diagnosis is to detect the faulty sequences of the DES by only observing events in Σ o . A faulty sequence is an event sequence of the DES containing at least one occurrence of an event in Σ f . It is assumed that an observer which has to detect the faults knows the specication/model of the DES and on the basis of such knowledge, it has to announce whether an observation (a sequence in Σ *) was produced by a faulty sequence

or not [Cassez, 2009, Cassez and[START_REF] Cassez | [END_REF].

The diagnosis problem is dened as the problem of synthesizing a diagnoser, that is, a function Diag : P (L(G)) -→ {yes, no, ?}, which answers the question whether all the event sequences consistent with the observation have experienced at least one fault event in Σ f . The main properties of such a function are: Correctness, which means that Y es and N o answers should be accurate, while bounded diagnosability means that the fault events should be diagnosed within nite number of observable events [START_REF] Morvan | Diagnosability of pushdown systems[END_REF], Chédor et al., 2015, Jéron et al., 2006].

Formally, the diagnosis problem can be dened as follow:

Dénition 7 (The diagnosis problem [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF]) given an FSA G, Σ o is the set of observable events, Σ f is the set of fault events. For an observable event sequence s ∈ Σ o , the function Diag : P (L(G)) -→ {yes, no, ?} should verify

Diag(s) :=        "Y es" if ∀t ∈ P -1 (s) : Σ f ∈ t "N o" if ∀t ∈ P -1 (s) : Σ f / ∈ t ?
otherwise.

(3.2) Figure 3.1 illustrates the diagnoser function, where after each observation, a verdict regarding the status of the system is generated.

Figure 3.1 Illustration of the diagnosis function [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF] In fact, the diagnoser D of an FSA G (i.e., function Diag) can be derived from the corresponding deterministic DES Det(G). A systematic procedure for building the diagnoser is rstly proposed in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Sampath et al., 1996] (which we recall Chapter 3. Fault Diagnosis of Discrete-Event systems in the next section). Building the diagnoser is not a dicult task, per se: it relies on classical power-set construction (Σ u -closure, determinization). Hence, for nite state automata, it induces an unavoidable exponential blow-up [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Morvan and Pinchinat, 2009, Tsitsiklis, 1989], even for succinct representations [Rintanen et al., 2007a]. Therefore, on-the-y computation of the diagnoser is a key technique that improves the construction and the analysis procedure [Liu, 2014]. Moreover, it can also deal with innite state settings [Tripakis, 2002, Baldan et al., 2010, Morvan and Pinchinat, 2009].

The practical interest of using a diagnoser greatly depends on its capabilities to output accurate answers. That is, whatever method is used for the diagnoser, the central question is whether the diagnoser will eventually detect any faulty execution. Such a property can be formally captured by the notion of diagnosability [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Sampath et al., 1996]. In simple terms, diagnosability is a qualitative property of the diagnoser which refers to the ability (of the diagnoser) to infer accurately, from partially observed executions, about the faulty behavior within a nite delay after a possible occurrence of a fault. Such a property is widely studied in fault diagnosis of DESs. In other words, diagnosability is a qualitative property of the diagnoser which ensures a nite latency for any observation of a faulty execution, which corroborates the completeness of the diagnoser.

Diagnosability

The original denition of diagnosability was introduced in the seminal work of [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] under the assumptions that faults are permanent (i.e., once a fault occurs, the system remains irreparably faulty), the language generated by G is live, and no cycles composed only of unobservable events exist in G. The formal denition of diagnosability is recalled as follows.

Dénition 8 (Diagnosability [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]) A prex-closed and live language L is said to be diagnosable, with respect to projection mapping P and class of faults Σ f , if the following holds:

(∃n ∈ N) [∀s ∈ ψ(Σ f)] (∀t ∈ L/s) [|t| ≥ n ⇒ D]
where the diagnosability condition D is:

ω ∈ P -1 L [P (s.t)] ⇒ Σ f ∈ ω
The above denition means the following: let s be any sequence generated by G that ends with a fault event in Σ f , and let t be any suciently long continuation of s. Condition D then requires that every sequence ω belonging to language L, which produces the same observable event-sequence as s.t (P (ω) = P (s.t)), holds a fault event from Σ f .

Lemma 1 (non-diagnosability [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF]) An FSA G is non-diagnosable w.r.t. projection mapping P and class of faults Σ f , if and only if there exist two indistinguishable innite executions ω 1 and ω 2 such that ω 1 reaches fault event f while ω 2 does not.

Notice that diagnosability considers only innite executions that do not diverge, where an innite execution diverges if it has an unobservable innite sux. In other words, we are only interested in the fair behavior of the system w.r.t. observability [START_REF] Morvan | Diagnosability of pushdown systems[END_REF].

Dénition 9 (Diagnosable system [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF])

An FSA G is diagnosable if it is possible to detect within a nite delay occurrences of faults of any type using the record of observed events. Alternatively speaking, diagnosability requires that every occurrence of every fault event leads to observations distinct enough to enable unique identication of the fault event within a nite delay.

K-Diagnosability

The diagnosability problem consists in qualitatively determining the existence of a nite delay upon which any fault (or class of faults) can be detected and identied. Diagnosability just means the existence of an upper bound without specifying its value. In practice, such a property can be insucient to ensure a safe operation of the system, namely when we deal with safety-critical systems. Indeed, this delay could be too long and faults may have dramatic consequences before being diagnosed and before some reconguration actions can be undertaken. Thus, some quantitative versions of diagnosability have been developed, namely K-diagnosability [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], Sampath et al., 1995, Liu, 2014, Cabasino et al., 2012a, Dallal and Lafortune, 2010, Dallal and Lafortune, 2011] (it is also called bounded diagnosability [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF] or latency problem [START_REF] Morvan | Diagnosability of pushdown systems[END_REF]). Unlike the classic denition of diagnosability, K-diagnosability requires the quantitative determination of the nite delay (as an integer K). Thus, K-diagnosability means that one can determine with certainty the occurrence of a fault in the system after K observations. Hereafter, we recall the original denition of K-diagnosability introduced by Dallal et al. [Dallal and[START_REF] Dallal | [END_REF][START_REF] Dallal | [END_REF].

34

Chapter 3. Fault Diagnosis of Discrete-Event systems Dénition 10 (K-diagnosability [START_REF] Dallal | Ecient computation of most permissive observers in dynamic sensor activation problems[END_REF]) An FSA G is K-diagnosability with respect to projection mapping P and class of faults Σ f , if no pair of event sequences s 1 , s 2 ∈ L(G) exists such that:

1. s 1 has an occurrence of a fault event f ∈ Σ f and s 2 does not; 2. s 1 has at least K + 1 events after fault event f ; 3. P (s 1) = P (s 2).

This means that, for any two event sequences in the system model which share the same observation, one faulty and the other normal, the system is said to be K-diagnosable if and only if the two executions do not have K (or more) successive identical observation after the occurrence of the fault. It is worth noticing that, according to this denition, the bounded k is measured by the number of observable events. However, it can also correspond to the number of unobservable events or the number of reachable states prior to the fault detection.

Example 1 (from [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF]) This idea is conceptually sketched out in Figure 3.2 for a 6-diagnosable of fault event f . Figure 3.2 (a) shows trace st of events with prex s ending with f and sux t containing 5 observable events. This gure indicates that f is not diagnosable within 5 observable events after its occurrence because one of the other 5 trajectories that are indistinguishable from st (the one that ends in state b) does not contain f . This means that the observation trace P (st) does not allow one to conclude with certainty whether event f has occurred or not.

Figure 3.2(b) represents an extension of t with an observable event e and shows that only four trajectories remain indistinguishable from ste. The occurrence of fault event f , the last event of trace s, can be detected with certainty in this case because each of the 4 indistinguishable trajectories contains f . Fault f will be 6-diagnosable if each possible occurrence of f in the entire system language can be detected with certainty, in the same way, after 6 observations [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF].

Lemma 2 An FSA G is non-diagnosable ⇐⇒ ∀K ∈ N, G is not K-diagnosable.
Generally speaking, there are two main problems on K-diagnosability. The rst is to analyze K-diagnosability of a system under a given value K, i.e., whether or not any fault (or class of faults) can be detected and identied within K steps (observable events basically) after its occurrence. The second is to nd the minimum K for a diagnosable system. This is called K min -diagnosability problem [Cassez and Tripakis, 2008, Cabasino Figure 3.2 Illustration of K-diagnosability et al., 2012aK-diagnosability et al., , Liu, 2014]] (it is also called the bounded-latency diagnosability [START_REF] Morvan | Diagnosability of pushdown systems[END_REF], or the worst case detection delay (WCDD) [Eser Kart and Schmidt, 2015]).

Complexity Analysis

In this section, we summarize the main results in the literature, regarding the complexity pertaining to various diagnosis problems. The classical fault diagnosis problems are the following [Cassez, 2009]:

For a given FSA G and w.r.t. projection mapping P and class of faults Σ f Problem 1 : (K -diagnosability)

For a given K ∈ N , is G K-diagnosable? Problem 2 : (diagnosability) Is G diagnosable? Problem 3 : (K min -diagnosability) What is the minimum value of K s.t. G is Kdiagnosable? Problem 4 : (diagnoser synthesis) If G is diagnosable, synthesis a witness diagnoser D of G.
Chapter 3. Fault Diagnosis of Discrete-Event systems Lemma 3 [Cassez, 2009]:

• Problem 1 (3.4.2) can be solved in ExpTime. Under some consideration, it can be done in PTime (O(|G| 4);

• Problem 1 (3.4.2) is in PSpace

Lemma 4 [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], Jiang and Huang, 2001, Cassez and Tripakis, 2008]:

• Problem 2 (3.4.2) can be solved in PTime (O(|G| 2);

It is worth noticing that the non-diagnosability is NLogSpace-complete [Rintanen et al., 2007a]. Moreover, using the non-diagnosability algorithm in the context of [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF]] yields a PTime upper bound and NLogSpace lower bound. Regarding the innite state system, diagnosability problem is, in general, undecidable [START_REF] Morvan | Diagnosability of pushdown systems[END_REF].

Lemma 5 [Cassez, 2009]:

• Problem 3 (3.4.2) can be solved in PTime (O(|G| 4)). It can also be done in (O(|G| 3)) [START_REF] Yoo | Computation of fault detection delay in discrete-event systems[END_REF].

Lemma 6 [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Sampath et al., 1996]:

• Problem 4 (3.4.2) can be solved in ExpTime.

In the following section, we recall the two approaches for the analysis of diagnosability of DES, namely, Sampath's diagnoser approach [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] and Twinplant/verier approaches [Yoo andLafortune, 2002b, Jiang and[START_REF] Jiang | [END_REF]. Note that these approaches are the basis of several further approaches which developed adaptations and extensions of the formers.

The pioneering Approaches

In order to apply these approaches, the system model under investigation assumed to satisfy the following:

1. The system model is an FSA which has a live generated language;

2. No cycle composed of only unobservable event exists in the model;

3. Faults are permanent (i.e., once a fault occurs, the system remains irreparably faulty).

Sampath's Diagnoser Approach

Sampath et al. [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] have proposed a systematic approach for analyzing diagnosability. It consists in building a particular observer, the so-called diagnoser. Dénition 11 (Diagnoser [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF])

The diagnoser of a system model G is a deterministic FSA G d = Q, Σ d , δ d , q 0 associated with a tagging function T ag : X o → 2 ∆ , with ∆ = {N, F } (where N means `normal' and F means `faulty').

• Q = 2 (Xo×∆) is the set of diagnoser states;

• Σ d = Σ o is the set of (observable) events; • δ d : Q × Σ d → Q is the transition relation; • q 0 = (x 0 , N) is the initial diagnoser state.
Each diagnoser state q has the form q = {(x 1 , l 1), . . . , (x n , l n)}, with x i ∈ X o and l i ∈ ∆. If ∀i = 1, . . . , n, we have l i = N (resp. l i = F), the diagnoser state q is said to be N -certain (resp. F -certain), otherwise, i.e., if ∃i, j such that l i = N and l j = F in diagnoser state q, it is an F -uncertain state. The fault propagation rules in the diagnoser are depicted in Figure 3.3.

N -certain

F -uncertain F -certain On the basis of the constructed diagnoser, Sampath et al. [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] 3.4 (adapted from [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]). The set of observable events is Σ o = {a, b, d, t} and the set of unobservable events is The pre-diagnoser and diagnoser corresponding to G are given in Figure 3.5. There exists an F -uncertain cycle composed of {3F, 7N } and {4F, 9F, 11N } w.r.t. the observable sequence (bd) * in the diagnoser. This cycle corresponds to two cycles in the pre-diagnoser (and so in G). The rst one is composed of faulty states 3, 4 w.r.t. sequence a(bd) * . The second cycle is composed of normal states 7, 11. Thus, one can infer, according to Theorem 1, that an F -indeterminate cycle exists in the diagnoser and, consequently, G is non-diagnosable. It is worth noticing that, besides its usefulness for analyzing (oine) diagnosability, the diagnoser serves to perform the actual monitoring task, online. In fact, the diagnoser is established oine.

if ∃s = σ 1 σ 2 . . . , σ n ∈ L(G) such that δ(x i , σ i) = x (i+1)modn for i = 1, 2, . . . , n. • A series of states q 1 , q 2 , . . . , q n ∈ Q is said to form a cycle in G d if ∃ σ i ∈ Σ d such that δ d (a i , σ i) = a (i+1)modn for i = 1,
Σ u = {u, f } with f ∈ Σ f .

The Complexity Analysis

The diagnoser approach suers from the combinatorial explosion problem due to the determinization operation (Denition 6). In fact, the complexity of constructing the diagnoser and testing the diagnosability is exponential in the number of states of the system model and double-exponential in the number of fault classes. In [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], it has been proved that a maximum bounded delay n i for diagnosing faults in Σ F i exists: n i ≤ C i × n 0 + n 0 , where n 0 is the maximal length of sequences composed exclusively of unobservable events and C i is the number of states in the diagnoser states pertaining to the F i -uncertain cycles. Moreover, for a diagnosable model, a fault in Σ F i can be detected at most after n 0 + n i events after the fault occurrence. In order to (partially) overcome the issue of the combinatorial explosion problem in Sampath's diagnoser approach, some further approaches aiming to reduce the computing complexity have been proposed [Yoo andLafortune, 2002b, Jiang and[START_REF] Jiang | [END_REF]. The main idea behind these approaches is to investigate the automata composition, i.e., the parallel composition and the synchronous product, in order to deal with diagnosability. In fact, such compositions allow the analysis of pairs of innite event-sequences separately.

Therefore, according to Lemma 1, it is possible to decide about the diagnosability.

3.5.2.1 The Twin-Plant Approach [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF] In such an approach, given a system model G, the pre-diagnoser G is rst constructed and then a structure called twin-plant (denoted G is obtained by the strict parallel composition (i.e, the synchronous product) of the pre-diagnoser with itself, i.e. } = G × G (see Denition 3), based on the observable events to obtain all the pairs of event-sequences sharing the same observations. Each twin-plant state q is a pair of the system states, q = {(x 1 , l 1), (x 2 , l 2)}, with x i ∈ X o and l i ∈ {N, F }. If l i = N (resp. l i = F) for i = 1, 2, the twin-plant state q is said to be N -certain (resp. F -certain). Otherwise, state q, it is an F -ambiguous state.

An F -confused cycle (called also an innite critical pair or critical path) in the twinplant is a cycle which is composed exclusively of F -ambiguous states.

According to Lemma 1, the necessary and sucient condition on the basis of the twin-plant structure, is announced as follows, Theorem 2 (Necessary and sucient condition [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF])

An FSA G is diagnosable with respect to projection mapping P and class of faults Σ f if and only if no F -confused cycle exists in its corresponding twin-plant G.

Example 3 Let us take again automaton G of Example 2. Figure 3.6 depicted its corresponding twin-plant G. It is worth noticing that only the live part of G is constructed. One can observe that G contains some F -confused cycles (drawn in orange color). Therefore, according to Theorem 2, G is non-diagnosable.

The Complexity Analysis

The complexity of constructing the pre- the complexity of the twin-plant approach is polynomial (4 th order) in the number of states in G and exponential in the number of fault classes.

diagnoser is O([X| 2 × 2 2|F | × |Σ o |), whereas, the complexity of constructing the twin plant is O([X| 4 × 2 4|F | × |Σ o |).

3.5.2.3

The Verier Approach [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF] The verier approach consists of the construction of a non-deterministic automaton V Σ f (called Σ f -verier, with Σ f is a fault class), by performing the the parallel composition of a system model G with itself augmented with a tagging function that associated to each system state its types (N for normal states, F for faulty ones).

Similarly to the twin-plant structure, each verier state q is a pair of the system states, q = {(x 1 , l 1), (x 2 , l 2)}, with x i ∈ X o and l i ∈ {N, F }. If l i = N (resp. l i = F) for i = 1, 2, the verier state q is said to be N -certain (resp. F -certain), otherwise, state q, it is an F -ambiguous state.

Verier V Σ f is called Σ f -confused if it contains at least one cycle which is composed exclusively of F -ambiguous states. Otherwise, it called Σ f -confused-free.

According to Lemma 1, the necessary and sucient condition on the basis of the verier structure, is announced as follows, Theorem 3 (Necessary and sucient condition [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF])

An FSA G is diagnosable with respect to projection mapping P and class of faults Σ f if and only if its corresponding verier

V Σ f is Σ f -confused-free
Example 4 Let us take again automaton G of Example 2. Figure 3.7 depicted its corresponding verier V F . It is worth noticing that only a part of V F is generated. One can observe that V F is an V -F -confused since it contains some F -confused cycles (drawn in orange color). Therefore, according to Theorem 3, G is non-diagnosable.

The Complexity Analysis

According to [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], for a reachable state v in the verier, the number of feasible transition from v is 3 × Σ at most. Since the number of reachable states of is 4 × |X| 2 states at most, the complexity of constructing the verier takes 12 × |X| 2 × Σ time. Therefore, the overall complexity is polynomial (O([X| 2 × |Σ o |)) in the number of the system states. Moreover, it has been proved that for a diagnosable model, any fault occurrence can be detected within |X| 2 transitions after the fault occurs.

One can underline that the twin-plant/verier structures have an interesting feature, which is the symmetric property. It means that each path in the twin-plant/verier has its symmetric path (e.g., a path containing a state (x 1 N, x 2 F) then it has its symmetric path which contains (x 2 F, x 1 N) state, and vice versa). Since the interesting part of the twin-plant/verier structure for analyzing diagnosability is the ambiguous one (i.e, paths composed of F u ncertain states, then the symmetric property has been exploited in order to reduce the generate state-space. In [Grastien, 2009, Tripakis, 2002], a reduced twinplant structure is proposed. It consists in keeping the faults behave only on a copy of the model. The other copy, noted G N , is non-failure, i.e., it contains only the nominal behavior obtained by erasing the faulty transitions and their successors. Therefore, the reduced twin plant is computed by the parallel synchronization G N G. Recently, Moreira et al. [START_REF] Moreira | Polynomial time verication of decentralized diagnosability of discrete event systems[END_REF], have proposed a reduced verier with a lower complexity

(O(|X | 2 ×(|Σ|-|Σ f |))).
In fact, the algorithm in [START_REF] Moreira | Polynomial time verication of decentralized diagnosability of discrete event systems[END_REF] perform the parallel synchronization between the non-failure copy of the model G N and the co-accessible part from faulty states, noted G, (i.e., G N G F). The eciency of such a construction is due to the fact that in the synchronization step, only the traces that lead to the violation of diagnosability are computed [START_REF] Hosseini | A survey on ecient diagnosability tests for automata and bounded petri nets[END_REF].

A Comparison Between the Diagnoser/Twin-plant/Verier approaches

In what follow, we provide a comparison between the pioneering approches for fault diagnosis of DESs (discussed approach) regarding various features.

• Oine/online diagnosis:

Regarding the oine diagnosis (i.e., diagnosability analysis), both approaches can deal with this issue, and relatively with K/K min -diagnosability. However, regarding the online diagnosis, twin-plant and verier approaches do not consider such a task due to their nondeterministic structures, contrary to the diagnoser approach, which deals with the online diagnosis (thanks to its determinstic structure). Consequently, the diagnoser approach remains a principal technique to perform both diagnosability analysis and online diagnosis.

• Intermediate models:

The verier approach has the particularity to be built directly from the system model, contrary to the diagnoser and twin-plant approaches were an intermediate model (the generator or the pre-diagnoser) is necessary for building the diagnoser/twinplant. Such intermediate constructions increase the memory demanding.

• The theoretical complexity:

As discussed in the above sections, the diagnoser is built in exponential complexity contrary to the twin-plant/verer were only a polynomial complexity is needed.

Nevertheless, comparative studies show that the diagnoser-based approach is more ecient for analyzing diagnosability of some kinds of system models than the twinplant/verier approaches, as witnessed by [Liu, 2014].

• The verication procedure:

The procedure for checking diagnosabilily on the basis of the diagnoser approach consists of a double check procedure. Firstly, the existence of F -uncertain cycle is checked by exploring the diagnoser paths. Secondly, once an F -uncertain cycle is found, its corresponding event-trace is used to check the existence of an F -indeterminate cycle by executing the event-trace on the pre-diagnoser, from the initial state. In the case of a diagnosable system, this procedure is repeated as many times as there are F -uncertain cycles in the diagnoser. In fact, this double check procedure aects drastically the memory/time consumption of the verication algorithm. Despite the need of an intermediate model for constructing the twin-plant, the verication procedure is performed upon one check on the twin-plant structure (i.e., checking the F -confused cycles). The same procedure is also performed using the verier approach.

Conclusion

This chapter proposes a brief overview on the fault diagnosis of DESs under partial observation. The denitions, assumptions, notions and notations, as well as the discussions related the pioneering approaches provided in this chapter will be used in the remainder of this dissertation.

Part II

CONTRIBUTIONS REGARDING THE DIAGNOSER-BASED APPROACH

Summary

In this chapter, we propose a new version of the well-known diagnoser-approach. It consists in separating normal states from faulty ones in each diagnoser node. Such a distinction serves to more eciently track the faulty and fault-free traces in the diagnoser paths. On the basis of various features that characterize this new diagnoser, we develop a systematic procedure for checking the necessary and sucient condition for diagnosability without needing to construct any intermediate model (i.e., generator or pre-diagnoser). Finally, we provide an on-the-y algorithm to simultaneously construct the diagnoser and analyze diagnosability. Therefore, in general, the diagnoser need not be built completely to check diagnosability and perform online diagnosis. Some experimentation are conducted in order to evaluate the eectiveness and the scalability of the proposed approach with respect to the reference approaches in the eld, namely, Sampath's diagnoser and the verier approach. This chapter is enclosed by a comparison discussed between our diagnoser and Sampath's diagnoser regarding various features.

The work presented in this chapter is the subject of publications in VeCOS'15 [Boussif et al., 2015] and submitted journal papers in IJCCBS [START_REF] Boussif | Intermittent fault diagnosis of industrial systems in the model-checking framework[END_REF] and IEEE-TAC [START_REF] Boussif | A twin plant based approach for diagnosability analysis of intermittent failure. 13 th International Workshop on Discrete Event Systems[END_REF].

Introduction

The fault diagnosis involves (i) detecting when a fault has occurred, (ii) isolating the true fault from many possible fault candidates, and (iii) identifying the true damage to the system. In the context of DES, fault diagnosis is often discussed through two main issues: diagnosability analysis and online diagnosis [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Lin, 1994].

Online diagnosis consists in inferring the occurrence of predetermined faults from the observed behavior of the system. Diagnosability refers to the capacity of providing a precise diagnosis verdict. Thus, the intention of analyzing diagnosability of a system is to determine accurately whether any predetermined failure can be detected and identied within a nite delay following its occurrence [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF].

The pioneering work which deals with these issues was proposed in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] where a formal denition of diagnosability was introduced. Such a work provided a necessary and sucient condition for diagnosability as well as a systematic approach, based on the so-called diagnoser, with the aim to verify diagnosability and perform the online diagnosis. However, the combinatorial explosion problem is inherent to the dened approach and the state-space of the diagnoser is, in the worst case, exponential w.r.t. the size of the model state-space.

In order to reduce the computing complexity, some further approaches were proposed.

In [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], a polynomial-time algorithm for checking diagnosability based on the so-called verier is adopted. In [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF], an algorithm based on the twin-plant (a parallel composition of the investigated model with itself) is proposed.

Nevertheless, these approaches deal only with diagnosability analysis and do not consider online diagnosis. Moreover, comparative studies show that the diagnoser-based approach is more ecient for analyzing diagnosability of some kinds of system models than these approaches [Liu, 2014]. Consequently, the diagnoser-based approach remains a principal technique to deal with both diagnosability analysis and online diagnosis.

The diagnoser-based approach has rstly been introduced for systems modeled by centralized automata [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Zad et al., 2003, Sampath et al., 1996]. The approach is then extended to deal with decentralized architectures [START_REF] Debouk | Coordinated decentralized protocols for failure diagnosis of discrete event systems[END_REF], Qiu and Kumar, 2006, Debouk et al., 2000, Philippot et al., 2013, Kumar and Takai, 2010, Pencole, 2000, Schumann et al., 2010, Wang et al., 2007, Sayed-Mouchaweh and Carre-Menetrier, 2008, Lafortune et al., 2005, Provan, 2002, Cabasino et al., 2013a, Basilio and Lafortune, 2009, Moreira et al., 2011, Zhou et al., 2008, Nunes et al., 2016, Takai and Kumar, 2016], modular and distributed architectures [Debouk et al., 2002a, García et al., 2005, Contant et al., 2006, Ye and Dague, 2013]. More recently, a series of interesting contributions, inspired from the diagnoser approach, have been proposed in the Petri net framework [START_REF] Cabasino | Diagnosability of discrete-event systems using labeled petri nets[END_REF], Jiroveanu et al., 2008, Ushio et al., 1998[START_REF] Liu | Toward an ecient approach for diagnosability analysis of DES modeled by labeled Petri nets[END_REF], Li et al., 2015c].

The main issues related to the diagnoser-based approaches can be outlined as follows:

1. The high complexity of construction, which is exponential in the number of states of the original model, and double-exponential regarding the classes of faults. This consequently hampers the scalability of the approach.

2. The approach is based on the analysis of two graphs. The rst graph is a nondeterministic observer (called pre-diagnoser, or generator), while the second one is a deterministic automaton, called diagnoser (or equivalently, generator/diagnoser [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], MBRG/BRD [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF], FM-graph/FM-set graph [Liu, 2014], etc.).

3. The double-checking procedure, which consists in one verication upon the diagnoser (i.e., the existence of F -uncertain cycles) and the other upon the generator or the pre-diagnoser (i.e., checking whether the F -uncertain cycle is an F -indeterminate one or not). In fact, in general such a double-checking procedure highly increases the verication time.

To partially overcome these limitations, we propose in this chapter a new diagnoser variant with a structure that allows us to check directly the necessary and sucient condition, without building any intermediate model. Moreover, we provide an on-the-y algorithm for constructing the diagnoser and checking diagnosability simultaneously, which improves the eciency in terms of memory and time consumption.

In what follows, we highlight the main features of the proposed approach and we make some comparisons with existing diagnoser-based approaches.

1. The developed approach provides a new structure for representing the diagnoser nodes. Such a structure explicitly separates between the normal and the faulty states in each node. This feature allows us to separately track the normal and the faulty traces directly in the diagnoser.

2. In the same way as for the existing diagnoser-based approaches, our diagnoser serves both to check diagnosability and to perform online diagnosis.

3. In our approach, the diagnoser is directly built from the original system model, without needing to construct any intermediate model, as usually done in the classic diagnoser approaches.

4. On the basis of the proposed structure of the diagnoser, a sucient condition for the undiagnosability of the model is proposed. Such a condition is used for the on-the-y verication of diagnosability. Hence, the model is stated to be non-diagnosable as soon as the condition is met, without building or analyzing the whole diagnoser.

5. The approach provides a systematic procedure for checking the necessary and sufcient condition for diagnosabilily (i.e., the existence of F -indeterminate cycle or not) without returning to any intermediate model to check if an F -uncertain cycle corresponds to two cycles, a faulty one and a non-faulty one. Besides, the procedure performs directly on the F -uncertain cycle with no need to start from the initial state. All these aspects allow for signicantly speeding up the verication process.

6. An on-the-y algorithm, based on a depth-rst search procedure, for both constructing the diagnoser and verifying diagnosability simultaneously is proposed. The algorithm aims to generate as less state-space as possible, particularly when the system is undiagnosable, which improves the memory/time consumption.

Besides diagnosability analysis, the developed technique allows for checking K/K mindiagnosability and, when the system is diagnosable, the constructed part of the diagnoser can be directly used as an online diagnoser.

The System Model

The system to be diagnosed is modeled as a nite state automaton (FSA) G = X, Σ, δ, x 0 .

In this chapter, we keep the same notations and notions introduced in Section 3.2.

Regarding the projection mapping, we consider the general setting of the inverse projection P -1 L , which is not restricted to the event-sequences which end with an observable event, i.e., ∀ω ∈ Σ * o , P -1 L (ω) = {s ∈ L ⊆ Σ * : P (s) = ω}. In order to depict the structure of the new diagnoser, we rstly introduce the following notations:

• Enable Σ (x) = {σ ∈ Σ|δ(x, σ) = ∅}, is the set of events in Σ that are enabled from state x. The generalization to a subset of states X ⊆ X and a subset of

events Σ ⊆ Σ, is Enable Σ (X) = {σ ∈ Σ |∃ x ∈ X : δ(x, σ) = ∅} which denotes
the set of enabled events in Σ from the set of states X , i.e., Enable Σ (X) =

x∈X Enable Σ (x).

• Img(X, σ) = x∈X δ(x, σ) with σ ∈ Σ, is the generalization of the transition relation to a subset of states X ⊆ X. The generalization of the transition relation δ to a subset of states X ⊆ X and a subset of events Σ ⊆ Σ is Img(X , Σ) = x∈X σ∈Σ δ(x, σ).

• Reach Σ (x) = {x} ∪ {x ∈ X|∃t ∈ Σ * : x ∈ δ(x, t)} is the set of states reached by
the occurrence of a sequence of events in Σ from x (will be used particularly for the unobservable reachability). The generalization of this notion for a set of states is Reach Σ (X) = x∈X Reach Σ (x).

The Structure of a Diagnoser Node

In our diagnoser variant, nodes are equivalent to states in the classic diagnoser [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], except that an explicit distinction is made, within each node, between the normal states (denoted by set X N) and the faulty ones (denoted by set X F), and we indicate if there exists a (faulty) transition from X N to X F . We will show in the sequel how such a structure can be advantageously used to render diagnosability analysis more ecient than when using the classic diagnoser. ones. Some faulty states may be reached from normal states in the same node through the occurrence of faulty events. This is depicted by a faulty transition from X N to X F within the diagnoser node. In order to simplify the notation, we use a.X N (resp. a.X F) to indicate the set of normal states X N (resp. the fault states X F) corresponding to diagnoser node a. Moreover, the notation x ∈ a means that state x ∈ X N ∪ X F .

One can dierentiate between three types of diagnoser nodes, in the same way as in the classic diagnoser:

52

Chapter 4. A New Variant of the Diagnoser-Based Approach

• N-certain diagnoser node: is a diagnoser node of which the set of faulty states is empty (X F = ∅);

• F-certain diagnoser node: is a diagnoser node of which the set of normal states is empty (X N = ∅);

• F-uncertain diagnoser node: is a diagnoser node of which neither the normal set, nor the faulty set, is empty, i.e., X N = ∅ and X F = ∅.

Hereafter, we introduce the formal denition of a diagnoser node.

Dénition 13 (Diagnoser node)

Consider an FSA G = X, Σ, δ, x 0 with Σ = Σ o Σ u and Σ f ⊆ Σ u .
We dene a diagnoser node a = X N , X F as a non-empty set of states satisfying:

1. ∀x ∈ X, s ∈ Σ * , and Σ f ∈ s such that x ∈ δ(x 0 , s) (i.e., x is reachable by a faulty sequence):

x ∈ a ⇔ Reach Σu (x) ⊆ a.X F ; 2. ∀x ∈ X, s ∈ (Σ\Σ f) * such that x ∈ δ(x 0 , s) (i.e., x is reachable by a fault-free sequence): x ∈ a ⇔ X = Reach Σu\Σ f (x) ⊆ a.X N ∧ Reach Σu (Img(X , Σ f)) ⊆ a.X F . 3. ∀x, x ∈ a, ∃s, s ∈ Σ * , such that x ∈ δ(x 0 , s), x ∈ δ(x 0 , s), and P (s) = P (s).
The dashed arrows in Figure 4.1 (a) show the dierent possibilities that an observable transition from a diagnoser node may correspond to. For instance, in Figure 4.1 (a) observable event σ 2 output by diagnoser node a may be output from the normal or the faulty sets or from both sets. Moreover, a faulty transition f may or may not exist between X N and X F . As for the dashed arrows, only the faulty transitions linking X N to X F inside a given node are actually encoded (as a single faulty transition) in the diagnoser (cf.

The Diagnoser Construction

For a given FSA G, the new diagnoser variant can be dened as follows.

Dénition 14 (Diagnoser variant) Let G = X, Σ, δ, x 0 be an FSA to be diagnosed. The diagnoser associated with G is a deterministic FSA D = Γ, Σ o , δ D , γ 0 , where: 1. Γ is a nite set of diagnoser nodes; 2. γ 0 is the initial diagnoser node with: a

) γ 0 .X N = Reach Σu\Σ f (x 0); b) γ 0 .X F = Reach Σu (Img(γ 0 .X N , Σ f)). 3. δ D : Γ × Σ o → Γ is the transition relation, dened as follows: ∀a, a ∈ Γ, σ ∈ Σ o : a = δ D (a, σ) ⇔        a .X N = Reach Σu\Σ f (Img(a.X N , σ)) ∧ a .X F = Reach Σu (Img(a .X N , Σ f) ∪ Img(a.X F , σ))
To summarize, the diagnoser D is constructed as follows: let the current node be a, and an observable event σ. The target diagnoser node a is computed following the rules below:

1. If σ ∈ Enable(a.X N) ∩ Enable(a.X F) then: -a .X N = Reach Σu\Σ f (Img(a.X N , σ)). -a .X F = Reach Σu (Img(a .X N , Σ f) ∪ Img(a.X F , σ)). 2. If σ ∈ Enable(a.X N)\Enable(a.X F) then: 54 Chapter 4. A New Variant of the Diagnoser-Based Approach -a .X N = Reach Σu\Σ f (Img(a.X N , σ)). -a .X F = Reach Σu (Img(a .X N , Σ f)). 3. If σ ∈ Enable(a.X F)\Enable(a.X N) then: -a .X N = ∅. -a .X F = Reach Σu (Img(a.X F , σ)).
These aforementioned rules preserve a specic fault propagation scheme regarding the assumption that faults are considered to be permanent. This can be depicted in Figure 4.2, and can be summarized in the three points below:

• From an N -certain diagnoser node, either an N -certain diagnoser node or an Funcertain one can be reached;

• From an F -certain diagnoser node, only F -certain diagnoser nodes can be reached;

• From an F -uncertain diagnoser node, any of an F -uncertain, an N -certain or an F -certain diagnoser node can be reached. Since all the successors of an F -certain diagnoser node are also F -certain, we do not need in our approach to construct them (i.e., the subsequent F -certain nodes) because it is unnecessary from the diagnosis point of view. Indeed, as regards diagnosability analysis, only the analysis of F -uncertain cycles is necessary and since faults are permanent, one can be certain that no such cycle can be generated following an F -certain node. As for online diagnosis, once an F -certain node is reached, one can be sure that the system will remain indenitely faulty.

It is worth noticing that the fault propagation rules of our diagnoser are dierent from those of the classic diagnoser, since an F -certain diagnoser node cannot be reached directly from an N -certain diagnoser node. This is due to the fact that in the building procedure of our diagnoser, the unobservable reachability is computed before the current node is left. In order to better illustrate the diagnoser construction procedure, let us again consider FSA G in Figure 3.4, introduced in the previous chapter (Chapter 3). Then, its corresponding diagnoser is depicted in Figure 4.1(b). The initial node (a 0) is composed of the initial state of G (state 1) and state 2 reachable from state 1 by the occurrence of faulty event f . One can also notice that there exists an F -uncertain cycle composed of nodes (a 1) and (a 2) by executing the observable event sequence a(bd) * . Diagnoser node (a 3) is reached after the occurrence of event t and it contains only a set of faulty states (a 3 .X N = ∅). Thus, it is an F -certain node. As F -certain nodes are unnecessary for analyzing diagnosability, and since we deal with permanent faults, the subsequent nodes are not constructed.

N -certain F -uncertain F -certain

Some Properties of the New Diagnoser Variant

In this section, we discuss some main features characterizing the new diagnoser variant that will be used in the sequel to analyze diagnosability.

Dénition 15 Let us consider three successive diagnoser nodes a, a , and a such that

a = δ D (a, σ) and a = δ D (a , σ) (σ,σ ∈ Σ o).
• The set of input normal states I a,σ N (a): is the set of states in a .X N , which are directly reachable from a.X N through the occurrence of observable event σ. Formally,

I a,σ N (a) = {x ∈ a .X N |∃ x ∈ a.X N : x ∈ δ(x, σ)}.
We note that I a,σ N (a) can be also written as : I a,σ N (a) = Img(a.X N , σ).

• The set of output normal states O σ N (a): is the set of states in a .X N , which directly enable observable event σ to reach some states in a .X

N . Formally, O σ N (a) = {y ∈ a .X N |∃ x ∈ I a ,σ N (a) : x ∈ δ(y , σ)}.
It is worth noticing that the notions of input (resp. output) normal states are related to a sequence of nodes, which means that many input (resp. output) normal states may exist for node a, i.e., according to the entering (resp. outgoing) transitions.

Property 1 Let a, a ∈ Γ be two diagnoser nodes, such that a = δ D (a, σ) for σ ∈ Σ o . Then, we have:

(∀x ∈ a .X N), (∃t ∈ (Σ u \Σ f) * , ∃x ∈ I a,σ N (a)): x ∈ δ(x, t).

56

Chapter 4. A New Variant of the Diagnoser-Based Approach

This means that for a diagnoser node a that is reached from a diagnoser node a by the occurrence of an event σ, all the states in a .X N are reachable from some states in the set of input normal states corresponding to diagnoser node a, i.e., from I a,σ n (a).

This property is inferred directly from the construction procedure of the diagnoser.

Indeed, ∀a, a ∈ Γ, σ ∈ Σ o : a = δ D (a, σ) ⇒ a .X N = Reach Σu\Σ f (Img(a.X N , σ)), which
means that each state in a .X N is reachable from I a,σ N (a) (which is nothing other than Img(a.X N , σ)). Therefore, in the case where a has more than one predecessor node in the diagnoser, each state in a .X N is reachable from some states in any set of input normal states corresponding to any entering transition for a .

Property 2 Let us consider three successive diagnoser nodes a, a , a such that a = δ D (a, σ)

and a = δ D (a , σ) (σ,σ ∈ Σ o). We have: 1. I a ,σ N (a) = Img(O σ N (a), σ). 2. ∀ x ∈ I a ,σ N (a): ∃x ∈ I a,σ N (a), s ∈ (Σ u \Σ f) * such that x ∈ δ(x , s.σ).
The rst point is trivial given the denition of Img() operation. The second one means that each input normal state x ∈ I a ,σ N (a) is reachable from some (normal) states x ∈ I a,σ N (a) through a fault-free unobservable sequence (possibly empty) followed by σ . Hereafter, a sketch of the proof is given.

Proof.

Let us pick x ∈ I a,σ N (a), y ∈ O σ N (a) and x ∈ I a ,σ N (a). From the diagnoser construction, we have a .X N = Reach Σu\Σ f (Img(a.X N , σ)). In fact, the states in a.X N that enable the output observable event σ are those in O σ N (a), which means that a .

X N = Reach Σu\Σ f (Img(O σ N (a), σ)). From the rst point, we have I a,σ N (a) = Img(O σ N (a), σ), then a .X N = Reach Σu\Σ f (I a,σ N (a)
), which means that any state in a .X N is reachable from some states in I a,σ N (a) through a faultless unobservable sequence. Regarding the set of output normal states, this means that:

∀y ∈ O σ N (a), ∃x ∈ I a,σ N (a), ∃s ∈ (Σ u \Σ f) * : y ∈ δ(x , s) (1)
In other terms, each state from any set of output normal states is reachable from some states in any set of input normal states. This ensures a chaining between input normal states and output normal states in the same node, regardless of the considered entering and outgoing transitions of the node.

Furthermore, as

I a ,σ N (a) = Img(O σ N (a), σ), then: ∀x ∈ I a ,σ N (a), ∃y ∈ O σ N (a) : x ∈ δ(y , σ) (2)
Chapter 4. A New Variant of the Diagnoser-Based Approach 57

From (1) and (2), one can infer that:

∀ x ∈ I a ,σ N (a), ∃x ∈ I a,σ N (a), s ∈ (Σ u \Σ f) * : x ∈ δ(x , s.σ)
In a similar way to the above, this ensures a chaining between the input normal states in any successive nodes of the diagnoser. Such a feature will be used in the following section to derive necessary and sucient conditions for diagnosability.

(a) = {x 1 , x 2 , x 3 , x 4 }, O σ N (a) = {y 1 , y 2 , y 3 } and I a ,σ N (a) = {x 1 , x 2 , x 3 }.
One can observe that each state from the set of input normal states of a is reachable from some states in the set of input normal states of a (e.g. x 1 is reachable from state x 1). This technique relies on some theoretical results that we discuss in what follows:

Proposition 1 Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn 1 for 1 ≤ i ≤ n.
Then, there exists, at least, one fault-free cycle in G, that shares the same observation (σ 1 , σ 2 , . . . , σ n) * .

Proof.

According to the diagnoser building procedure, ∀ i :

1 ≤ i ≤ n, a (i+1)modn .X N = Reach Σu\Σ f (Img(a i .X N , σ i)). Then, from Property 2, we have : for 1 ≤ l < n, ∀ x (l+1) ∈ I a l ,σ l N (a (l+1)): ∃ x l ∈ I a (l-1) ,σ (l-1) N (a l), ∃ s l ∈ (Σ u \Σ f) * s.t. x (l+1) ∈ δ(x l , s l .σ l), and ∀ x 1 ∈ I an,σn N (a 1): ∃x n ∈ I a (n-1) ,σ (n-1) N (a n), ∃ s n ∈ (Σ u \Σ f) * s.t. x 1 ∈ δ(x n , s n .σ n). Now, let us take an input normal state x i l from I a (l-1) ,σ (l-1) N (a l), with 1 < l ≤ n and 1 ≤ i ≤ k l (k l is the number of input normal states in I a (l-1) ,σ (l-1) N (a l) = {x 1 l , . . . , x k l l }). Then, from above, ∀ i : 1 ≤ i ≤ k l , ∃ t = s (l+1) modn , σ (l+1) modn , s (l+2) modn , σ (l+2) modn , . . . , s (l+n-1) modn , σ (l+n-1) modn , with s i ∈ (Σ u \Σ f) * , for 1 ≤ i ≤ n such that x i l ∈ δ(x j l , t), with 1 ≤ j ≤ k l .
In other words, by applying the result of Property 2 recursively upon the F -uncertain cycle a 1 , a 2 , . . . , a n ∈ D, one can infer that x i l ∈ I

a (l-1) ,σ (l-1) N (a l) is reachable from an input state x j l also in I a (l-1) ,σ (l-1) N
(a l). By repeating this operation while considering x j l instead of x i l , and so on, at least k times, one can infer that the input state x i l is certainly visited twice (See Figure 4.3 (B)). Therefore, it becomes obvious that a cycle exists in the original model G. As all the states are normal, it is consequently a fault-free cycle.

Remark 1 This result is interesting for checking F -indeterminate cycles, using both the classic diagnoser or our diagnoser. It is, in fact, sucient to check that an F -uncertain cycle in the diagnoser corresponds to a faulty cycle in the original model (or the intermediate model), without checking the existence of the fault-free cycle.

Proposition 2 Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n. Then, if ∀i : 1 ≤ i ≤ n, Img(a i .X N , Σ f) = ∅, then c is an F -indeterminate cycle.
This result means that if in all the diagnoser nodes of an F -uncertain cycle no faulty transitions from the normal set of states to the faulty one (by means of Img operator) exists, therefore this cycle is an F -indeterminate cycle.

Proof.

Let us consider c = a 1 , a 2 , . . . , a n ∈ D to be an F -uncertain cycle. Also, let us assume

that ∀i : 1 ≤ i ≤ n, Img(a i .X N , Σ f) = ∅.
From Proposition 1, a corresponding fault-free cycle exists in the original model G, which shares the same observation (σ 1 , σ 2 , . . . , σ n) * . Then, it only remains to prove that a corresponding faulty cycle exists in model G, which also shares the same observation as c . As ∀i : 1

≤ i ≤ n, Img(a i .X N , Σ f) = ∅, we have a (i+1)modn .X F = Reach Σu (Img(a i .X F , σ i)).
One can observe that it corresponds exactly to the construction rule of the normal set of states in the diagnoser node (i.e., a (i+1)modn .

X N = Reach Σu\Σ f (Img(a i .X N , σ i))
). Thus, using the same reasoning in Proof 4.3.4, we infer that a corresponding faulty cycle, which also shares the same observation as c , exists in the original model. Thus, the F -uncertain cycle c is an F -indeterminate one as well.

Remark 2 Proposition 2 can be viewed as a sucient condition for non-diagnosability, since a system model is non-diagnosable if the condition in Proposition 2 is satised by the diagnoser. Hence, diagnosability analysis is stopped as soon as the condition in Proposition 2 is satised. In this case, the diagnoser will be constructed partially. Indeed, as will be discussed in Section 4.4, diagnosability analysis will be performed simultaneously on the y as the diagnoser is set up. Such a feature will potentially speed up the diagnosability analysis; in particular when the system is non-diagnosable.

The above result is used below to introduce two notions of series associated to an Funcertain cycle.

Dénition 16 (Series

S c) Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n. Series S c = S c 1 , S c 2 , . . . associated with c , is dened as follows:      S c : N * → 2 X S c 1 = a 1 .X F (the rst term of S c) S c i = Reach Σu (Img(S c (i-1) , σ (i-1) modn)), ∀i > 1.
(4.1)

In fact, series S c tracks the subsets of faulty states in each node along c , but does not consider the faulty states generated through the occurrence of some faulty transitions starting form the normal subset in the traversed nodes (except for S c

1 which holds all the faulty states of a 1 , i.e., S c 1 = a 1 .X F). In fact, series S c is introduced with the aim of tracking the actual faulty cycles corresponding to a given F -uncertain cycle, if such cycles exist in the original model G.

(Series S c) Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn , for 1 ≤ i ≤ n. Series S c = S c 1 , S c
2 , S c 3 , . . . corresponding to c , is dened as follows:

S c : N * → 2 X S c i = S c (1+(i-1)n) , ∀i ∈ N * . (4.2)
It is worth noticing that S c can also be written as follows:

S c = S c 1 , S c (1+n) , . . . , S c (1+kn) , S c (1+(k+1)n) , . . . , for k ∈ N.
In other terms, series S c is a sub-series of series S c , which is extracted from S c by considering sample terms with n steps (n is the number of nodes in the F -uncertain cycle). Thus, series S c preserves some properties of series S c (i.e., convergence, limits, etc.).

Proposition 3 Let c = a 1 , a 2 , . . . , a n be an

F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n, and let S c = S c 1 , S c 2 , S c
3 , . . . be its corresponding series as dened above. Then, the following property holds:

∀k ∈ N * : S c k+1 ⊆ S c k i.e., ∀k ∈ N * : S c (1+kn) ⊆ S c (1+(k-1)n) . Proof.
This property can be straightforwardly proved using mathematical induction. Firstly,

for k = 1, it is direct that S c n+1 ⊆ S c 1 , since we have: S c 1 = a 1 .X F and S c 2 = Reach Σu (Img(S c 1 , σ 1)) ⊆ a 2 .X F = Reach Σu (Img(a 2 .X N , Σ f) ∪ Img(a 1 .X F , σ 1)
), with the same logical reasoning along the event-sequence σ 1 , . . . , σ n , we obtain:

S c n = Reach Σu (Img(S c (n-1) , σ n)) ⊆ a n .X F = Reach Σu (Img(a n .X N , Σ f)∪ Img(a (n-1) .X F , σ (n-1))). Therefore, S c n+1 = Reach Σu (Img(S c n , σ n)) ⊆ a 1 .X F = Reach Σu (Img(a 1 .X N , Σ f) ∪Img(a n .X F , σ n)) = S c
1 . Now, let us suppose, as by heredity, that S c (1+kn) ⊆ S c

(1+(k-1)n)
and we have to prove that S c (1+(k+1)n) ⊆ S c (1+kn) .

In fact, we have S c

(1+kn) = Reach Σu (Img(S c kn , σ n)) and S c (k+1)n ⊆ S c
kn (by following the same logical reasoning as above). Then, S c

(1+(k+1)n) = Reach Σu (Img(S c (k+1)n , σ n)) ⊆ Reach Σu (Img(S c kn , σ n)) = S c 1+kn .
The above-mentioned property means that, by ignoring the faulty states generated by the faulty transitions from the normal sets of states into the faulty ones within the same node, one can ensure the (non-strict) inclusion relationship between terms of series S c .

Proposition 4 For a given F -uncertain cycle c = a 1 , a 2 , . . . , a n , its corresponding series

S c := S c 1 = S c 1 , S c 2 = S c (1+n) , S c 3 = S c (1+2n) , Then, S c reaches a xed-point. i.e., ∃ k ∈ N s.t. ∀i ∈ N : S c (1+(k+i)n) = S c (1+kn) .
Proof.

By considering the (non-strict) inclusion relationship and that S c : N → 2 X , Proposition 4 can be derived directly from the xed-point theorem (version Banach-Picard [START_REF] Farmakis | Fixed point theorems and their applications[END_REF]).

Corollary 1 For a given F -uncertain cycle c = a 1 , a 2 , . . . , a n , its corresponding series

S c = S c 1 , S c 2 , S c
3 , . . . becomes periodic (with period n) from a certain index. Proof. By Proposition 4 , let k be the index of the xed-point reached by S c . Then

∀i ∈ N, S c (k+i) = S c k , that is ∀i ∈ N : S c 1+(k+i)n = S c 1+kn . Thus, ∀j : 0 ≤ j ≤ n ⇒ S c (1+(k-1)n+j) = S c (1+kn+j) = • • • = S c (1+(k+i)n+j) = • • • .
Corollary 2 Let c be an F -uncertain cycle, If c is not an F -indeterminate one then, its corresponding series S c reaches an empty xed-point within a nite delay.

Theorem 4 An F -uncertain cycle c = a 1 , a 2 , . . . , a n in D is an F -indeterminate cycle if and only if the xed point reached by its corresponding series

S c is non-empty. Proof. Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n.
(⇒) We assume that c is an F -indeterminate cycle, and we have to prove that the xed point reached by series S c associated with c is non-empty.

As c is an F -indeterminate cycle, this means that some faulty cycles exist in the original model G and share the same observation (σ 1 , . . . , σ n) * with some indistinguishable normal cycles. Let us assume that there exist exactly m faulty cycles. This means that

∃s j i ∈ Σ * u , ∃x j i ∈ a i .X F such that x j (i+1) ∈ δ(x j i , s j i .σ i) for (1 ≤ i < n) and x j 1 ∈ δ(x j n , s j n .σ n), for 1 ≤ j ≤ m (See proof of Proposition 1). Thus, it is plain that ∀k ∈ N * , ∀i : 1 ≤ i ≤ n, ∀j : 1 ≤ j ≤ m : x j i ∈ S c i+nk .
Therefore, all the terms of S c are non-empty. Hence, obviously the reached xed point is also non-empty.

(⇐) We assume that series S c associated with c has a non-empty xed point and let us prove that c is an F -indeterminate cycle. Actually, from Proposition 1, one only needs to prove that a faulty cycle which shares the same observation (σ 1 , . . . , σ n) * exists in the original model G.

From Proposition 4, ∃ k ∈ N * s.t. S c (1+kn) = S c (1+(k-1)n) . Moreover, according to our assumption S c (1+kn) = ∅. Let us assume that S c (1+kn) = S c (1+(k-1)n) = {x 1 , . . . , x m }, with m ∈ N.
We will adopt a reasoning analogous to the one used to prove Proposition 1. From the denition of series S c (see Denition 16), we have ∃x

i , x j ∈ S c (1+(k-1)n) , ∃ t = s 1 .σ 1 .s 2 .σ 2s n-1 .σ n-1 . s n .σ n , with s i ∈ (Σ u) * (for 1 ≤ i ≤ n) such that x i ∈ δ(x j , t),
with 1 ≤ i, j ≤ m. Thus, by repeating this procedure to x i and so on at least m times, one can infer that x j is certainly visited twice, which means that, at least, one faulty cycle exists in G. Therefore, c is an F -indeterminate cycle.

4.4 On-the-y Verication 4.4.1 A Systematic Procedure for Checking Diagnosability It is worth noticing that for the actual verication of diagnosability, a systematic procedure, which is derived directly from Theorem 4, can be performed as follows:

When an F -uncertain cycle c is found in D, then:

• generate the successive terms of series S c (starting from S 1), and for each terms S c i check the following conditions:

1. if S c i = ∅, then cycle c is not an F -indeterminate cycle and stop the procedure; 2. else, if S c i = ∅ and ∃k ∈ N : i = 1 + kn (with n = |c |), then: (a) if S c i = S c (i-n) , stop the procedure, since cycle c is an F -indeterminate; (b) otherwise continue.
This procedure is repeated as long as there are F -uncertain cycles in diagnoser D.

It should be noticed that, on the basis of Proposition 4, one can be certain that the above procedure terminates well since a xed-point will be reached (by S c) within a nite delay.

Example 5 Let us take once again diagnoser D of model G depicted in Figure 4.1(b). An F -uncertain cycle c = a 1 , a 2 exists in D. Thus, let us pick sequence

ρ 4 = S c 1 , S c 2 , S c 3 , S c
4 , which contains the successive terms of series S c (see Figure 4.4). One can observe that

S c 4 = S c
2=4-2 = {4, 5} = ∅, which means that, according to Theorem 4, the F -uncertain cycle c is also an F -indeterminate cycle. Thus, G is non-diagnosable.

Example 6 Let us consider another FSA G in Figure 4.5 (taken from [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]). The set of observable events is Σ o = {a, b, c, d, e} and the set of unobservable events is

Σ u = Σ f = {f }. Diagnoser D G corresponding to model G is depicted in Figure 4.6. One can observe that D G has an F -uncertain cycle composed of diag- noser nodes a 1 , a 2 , a 3 with corresponding event sequence (bce) * . Let as pick sequence ρ = S c 1 , S c 2 , S c 3 , S c 4 , S c 5 , S c 6 , S c
7 which contains the successive terms of series S c . Since

S c 7 = S c 2
= ∅, then according to Theorem 4, the F -uncertain cycle in G is not an F -indeterminate one. Thus, FSA G is diagnosable.

Algorithm

In this section, we discuss an on-the-y algorithm based on a depth-rst-search (DFS) procedure for simultaneously constructing the diagnoser and verifying diagnosability. Constructing the diagnoser on the y serves to avoid the systematic generation of the whole state-space of the diagnoser. On the one hand, if the system is diagnosable, it is unnecessary to construct the part of the diagnoser following F -certain diagnoser nodes, since such a part is unnecessary for analyzing diagnosability and performing online diagnosis. On the other hand, when the system is non-diagnosable, we stop constructing the diagnoser as soon as an F -indeterminate cycle is found. Moreover, the proposed algorithm rstly checks the sucient condition for non-diagnosability, as proposed in Proposition 2. As soon as this condition is met, the model is stated to be non-diagnosable and the verication process is stopped. The following functions and data structures will be used in the elaborated algorithm:

• IsU ncertain(): is a function that returns a Boolean value (true if the encountered cycle is composed of only F -uncertain diagnoser nodes, and f alse otherwise).

• List_State, List_State1, Cycle_State: are three nite ordered lists of sets of states. They are used for checking the existence of cycles.

• List_Event, Cycle_Event: are two nite ordered lists of observed events, corresponding respectively to List_State, Cycle_State. They are used to check the existence of cycles.

• Add: an operation that adds an element to an ordered list .

• RemoveLast(S): is an operation that removes the last added element from an ordered list.

• Copy(i, End): is an operation that copies elements from index i to the end of the ordered list, into a new empty ordered list.

The initialization step of the algorithm (cf. Algorithm 1, lines 6-12) serves to compute the initial diagnoser node. Therefore, the construction of the diagnoser nodes is performed by Diagnoser_Construct() function (cf. Algorithm 2). The construction is performed using a depth-rst exploration regarding the set of enabled (observable) events from the Algorithm 1 On-the-y algorithm to construct the diagnoser and check diagnosability Input:

G = X, Σ, δ, x 0 Output: Diagnosability verdict Set of states S n , S f , Y nf , Y f , S n , S f Set of Events: Evt n , Evt f Boolean: bool = T rue Ordered lists: List_State = {}, List_Event = {} Diagnoser node a, a
Initialization:

S n = Reach Σu\Σ f (q 0) S f = Reach Σu (Img(S n , Σ f)) Γ 0 .X N = S n ; Γ 0 .X F = S f ; Γ 0 .tag = F alse Γ = {Γ 0 }; a = Γ 0 Evt n = Enable Σo (S n); Evt f = Enable Σo (S f) List_State = {a}; if (Diagnoser_Construct (G, D, Evt n , Evt f , S n , S f)) then return Non-diagnosable
return Diagnosable current node. With the aim of using the constructed diagnoser to perform the online diagnosis while avoiding the construction of the subsequent F -certain diagnoser nodes, Diagnoser_Construct() function builds only the rst encountered F -certain node (if there exists) in the diagnoser path. This is performed by exploring the set of observable events enabled only from the set of faulty states (i.e., Evt f \Evt n) (Algorithm 2, Lines 2-6).

However, for analyzing diagnosability, the exploration is done from the set of observable events enabled from the set of normal states of the current node (i.e., Evt n). It should be noticed that boolean variable tag that is associated with each diagnoser node and initialized to f alse, is used for checking the sucient condition given in Proposition 2.

The computation of a new node a , reachable through an observable event σ from node a, is completed by the `Reach' operation upon the unobservable events (c.f. Algorithm 2,

foreach (σ ∈ Evt f \Evt n) do a .X N = ∅ a .X F = Reach Σu (Img(S f , σ)) if (∃ a ∈ Γ | a = a); then a = δ(a, σ) else Γ = Γ ∪ {a }, a = δ(a, σ) foreach (σ ∈ Evt n) do S n = Reach Σu\Σ f (Img(S n , σ)) Y nf = Reach Σu (Img(S n , Σ f)) Y f = Reach Σu (Img(S f , σ)) a .X N = S n if (Y nf = ∅) then a .X F = S f = Y f , a .tag = true else a .X F = S f = Y nf ∪ Y f List_Event.Add(σ) if (∃ a ∈ Γ | a = a); then a = δ(a, σ) if (a ∈ List_State) then Cycle_State = List_State.Copy(Index(a), End) Cycle_Event = List_Event.Copy(Index(a), End) if (IsUncertain(Cycle_State)) then foreach (a ∈ Cycle_State do if (a.tag = f alse) then bool = f alse if (bool = true) then return true if (Check_Series(G, a , Cycle_Event)) then return true else List_State.Add(a) else Γ = Γ ∪ {a }, a = δ(a, σ) Evt n = Enable Σo (S n), Evt f = Enable Σo (S f) Diagnoser_Construct (G, D, Evt n , Evt f , S n , S f) RemoveLast(List_State) RemoveLast(List_Event)
return f alse Thus, Diagnoser_Construct() function outputs boolean value true and the verication process is stopped. If the sucient condition is not satised, the necessary and sucient condition for diagnosability is checked using the procedure proposed in Theorem 4 (cf.

Algorithm 3).

Algorithm 3 Check_Series() function Input: G, a , Cycle_Event, Int i, n Output: Boolean value Function Check_Series()

S 1 = a .X F , i = 1, n = |List_Event|, List_State1.Add(S 1) while (S i = ∅) do S (i+1) = Reach Σu (Img(S i , σ (i+1) modn)) if (i % n = 0) then if ((i ≥ n)&(S (i+1) = S (i-n+1)) then return (true) else List_State1.Add (S i), i + + return (f alse)
Indeed, function Check_Series() (c.f. Algorithm 3) is launched in order to compute the successive terms of series S c associated with the F -uncertain cycle. If a (non-empty) computed term S i is equivalent to term S (i-n) (i > n) already computed, then boolean value true is returned otherwise, if the generated term is empty, then boolean value f alse is returned. If the returned value by function Check_Series() is `true', then the F -uncertain cycle is an F -indeterminate one. Thus, Algorithm 1 outputs that the model is non-diagnosable and the diagnoser construction is stopped. Otherwise, construction is continued in a recursive manner. Once all the branches of interest are constructed and explored with no F -indeterminate cycle having been met, Algorithm 1 outputs that the model is diagnosable.

A Heuristic Strategy to Improve the Building Algorithm

Our algorithm for constructing the diagnoser (and checking diagnosability) is based on a depth-rst search (DFS) to investigate the state-space. However, no rules are dened to select the execution to be investigated rst, i.e., the order of exploring executions is arbitrary. In fact, in our case, the diagnoser node structure provides some information that can be exploited to direct the search in such a way as to increase the chances of quickly obtaining a diagnosability verdict by exploring the most promising executions at rst.

68

Chapter 4. A New Variant of the Diagnoser-Based Approach When we deal with diagnosability analysis, the interesting executions of the system are those which share the same observed event-sequence such that some of them contain a faulty event and the others are fault-free. This amounts to track the observed eventsequences, in the variant diagnoser, leading to F -uncertain nodes. Generally, there exists three types of enabled transitions from any nodes, as depicted in Figure 4.7.

1. Observable events generated only from states in the faulty set (i.e., a.X F) (Figure 4.7 (a)). In fact, this trace generates only F -certain nodes.

2. Observable events generated only from states in normal set (i.e., a.X F)) (Figure 4.7 (b)). In this case, we need to continue the construction through this branch since other faults may occur in the future.

3. Observable events generated from both normal and faulty sets of states (Figure 4.7 (c)). In this case, the next reachable diagnoser node will be certainly F -uncertain. This last type of transitions is the most-promising as one seeks for F -indeterminate cycles, since it is known, a priori, that the new diagnoser node will be certainly an Funcertain node, contrary to the other above cases. Thus, such a branch will be the rst to be explored in order to direct the construction of the diagnoser and to potentially speed up the verication process.

Complexity Analysis

The construction of the diagnoser variant has the same theoretical complexity as the other diagnoser-based approaches [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Cabasino et al., 2014, Zad et al., 2003], which means that, in the worst case, such a procedure is exponential in the cardinality of state-space of the system model. Actually, this is unavoidable when working with diagnoser-based approaches, since it is due to the deterministic nature of the diagnoser.

However, the main underlying idea behind our approach is to avoid as much as possible such a case, i.e., to avoid generating the whole state-space of the diagnoser. In this respect, thanks to the proposed structure of diagnoser nodes and the on-the-y construction and verication procedure, our approach shows many advantages regarding the classic diagnoser-based approaches. Firstly, no intermediate model is needed, either for construction the diagnoser or for analyzing diagnosability. This feature reduces signicantly memory/time consumption. Secondly, only the necessary part for analyzing diagnosability and performing online diagnosis is generated. Thirdly, diagnosability analysis is performed directly on the F -uncertain cycles with no need to start the investigation form the initial state. Finally, building the diagnoser and checking diagnosability, simultaneously on the y serves to signicantly speed up the verication process, particularly in the case of nondiagnosable models. Indeed, in this case the verication process is stopped immediately after an F -indeterminate cycle is found.

Extensions

In this section, we discuss some extensions of the proposed approach in order to deal with further fault diagnosis issues, namely online diagnosis, K/K min -diagnosability and the case of multiple fault classes.

Online Diagnosis

Once a system model is checked to be diagnosable, the constructed part of our diagnoser is sucient to perform online diagnosis. To do so, one keeps only the fault tag information in each diagnoser node (i.e, `F ' for `faulty' nodes, `N ' for `Normal' ones, and `U ' for 'Funcertain' ones). In fact, the online diagnoser is a directed graph where each node carries a fault tag and each transition is tagged with an observable event. Thus, for any sequence of observable events, by following the corresponding path in the diagnoser and according to some predened rules pertaining to F -uncertain cycles, one can determine, online, the system status.

K/K min -diagnosability

In addition to the analysis of the `classical' diagnosability, the proposed diagnoser can be used to deal with the practical concepts of diagnosability, namely K-diagnosability (i.e., diagnosability in K steps) and K min -diagnosability (i.e, the smallest value of K ensuring diagnosability) [START_REF] Liu | Toward an ecient approach for diagnosability analysis of DES modeled by labeled Petri nets[END_REF], Dallal and Lafortune, 2010, Cabasino et al., 2012a, Basile et al., 2012a], in the case where the investigated model is diagnosable.

In fact, we extended the diagnosability analysis procedure in order to cope with K/K min -diagnosability analysis, in the case where the model is diagnosable. The main idea is to count the maximum number of possible successive F -uncertain nodes in diagnoser D. Three cases can be encountered: 70 Chapter 4. A New Variant of the Diagnoser-Based Approach -Case 1: a non-cyclic maximal sequence of successive F -uncertain nodes: in this case, the number of these nodes is considered;

-Case 2: an F -uncertain cycle c where all the predecessors and successors of its nodes, which do not belong to c , are N (or F)-certain: in this case, the index of the earliest empty term (xed-point) of series S c is considered;

-Case 3: an F -uncertain cycle c holding nodes that have some F -uncertain predecessors and/or successors, which do not belong to c : in this case, both the index of the earliest empty term of series S c (By Theorem 4 and Corollary 2, since the model is diagnosable, we are certain that S c , so also S c , reach an empty xed-point) and the length of the successive F -uncertain predecessors and successors, are considered.

These dierent cases are depicted in Figure 4.8, with `F ' for `faulty' nodes, `N ' for `Normal' ones, and `U ' for 'F-uncertain' ones.

Diagnosability of Multiple Fault Classes

In this work, only one class of fault has been considered. However, the proposed approach can be extended to deal with multiple classes of faults. In this case, the set of fault events is partitioned into disjoint fault classes Σ f = Σ f 1 Σ f 2 . . . Σ fm , where Σ f i (i = 1, 2, . . . , m) denotes the i th fault class. Sampath et al. [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] have dealt with this case of multiple fault classes and proposed a generalization of the necessary and sucient condition of diagnosability. In fact, a system model is said to be diagnosed if and only if no F i -indeterminate cycles exist in the diagnoser (with index i corresponds to fault class Σ f i).

In order to deal with multiple fault classes using the developed diagnoser, one rst needs to extend the structure of the diagnoser node. Thus, for a system containing m fault classes, each diagnoser node a contains m + 1 subsets of states (some of them may be empty): a.X N which is the set of normal states, a.X F i which is the set of F i -faulty states reached by event-traces which have experimented, at least, one fault event from fault class Σ f i , for i : 1 ≤ i ≤ m. These various sets of states may be linked to each other by various faulty transitions, e.g., set of faulty states X F 2 may be linked by faulty transitions (i.e., transitions labeled with fault events in Σ f 2) originated from a.X N , a.X F 1 , a.X F 3 , . . . or a.X Fm . Figure 4.9 depicts the general form of a diagnoser node.

f 1 = {f 1 } and Σ f 2 = {f 2 }).
The dierent sets of states are a.X N = {1}, a.X F 1 = {2, 3}, and a.X F 2 = {3, 4}. One can observe that state 3 belongs to both a.X F 1 and a.X F 2 , which is due to the fact that this state is reached following the occurrence of both f 1 and f 2 in the same event sequence. Thus, it is duplicated with respect to the fault classes involved. Actually, this feature of duplicating states is crucial for the diagnosability investigation, since it allows for analyzing each set of faulty states separately.

In fact, regarding the diagnosability analysis, the systematic procedure, proposed in Section 4.4.1, can be extended in order to check the existence of the F i -indeterminate cycles. The main idea is to generate for each F i -uncertain cycle c , its corresponding series S c i and S c i . Then, in the same way as in the case of one fault class, one has to check the xed-point reached by series S c i . Moreover, by considering that all the entering transitions to a set of faulty states X F i from any other state within the same node are viewed as if they are issued from the normal set of states (with regards to Σ f i), then the

Experimental Evaluation

In order to assess the eectiveness and the scalability of the proposed approach, the developed algorithm for constructing the diagnoser and verifying diagnosability on the y (c.f. Section 4.4, has been implemented in C # programming language and tested using a Petri net benchmark. The considered model illustrates the concept of permanent fault concept and fullls the assumptions considered in this work.

The obtained results are discussed with respect to some reference approaches, namely Sampath's diagnoser [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] and the verier approach [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], which are implemented in the UMDES Library [Lafortune, 2000]. Besides the simulation results, we will point out the similarities and dierences between our approach and these reference approaches.

Presentation of the Considered Benchmark

The DES benchmark, depicted in Figure 4.11, is a modied version of the WODES Benchmark [Giua, 2008]. This version of the benchmark was also presented in [START_REF] Hosseini | A survey on ecient diagnosability tests for automata and bounded petri nets[END_REF]. It describes a manufacturing plant characterized by three parameters: m, k and b,

where:

• k is the number of production lines;

• m is the the number of units of the nal product that can be simultaneously produced, while each unit is composed of k parts;

• b is the number of operations that each part must undergo in each line.

The faulty transitions are indicated by red boxes, while the other transitions are nominal and can be observable or unobservable depending on the experiments we will carry out. hour as a maximum analysis duration, i.e., if after 4 hours, no results is output by the tool, then we stop the experiment and we consider that the tool fails the analysis.

Results

The experimental results are summarized in |D S | and T e D are the results obtained using our approach, and represent respectively:

the number of constructed nodes in the diagnoser and the elapsed time for generating the diagnoser and checking the diagnosability;

V e is the elapsed time for checking diagnosability using the verier approach. The result is obtained using verier_dia.exe function of UMDES Library. Let us note that for this approach, the number of states in the verier are not provided since the constructed model is not a diagnoser and thus, the comparison in terms of statespace size is not appropriate in this case. Thus, we only give the computation time related to the verier technique.

Diag is the diagnosability verdict.

Discussion

Regarding the obtained results, presented in Table 4.1, the following remarks can be underlined:

One can observe that, for all the considered parameters, our approach performs successfully the diagnosability analysis for both diagnosable and non-diagnosable cases while the two other approaches fall starting from a certain range.

76

Chapter 4. A New Variant of the Diagnoser-Based Approach

For the non-diagnosable case, the elapsed time for analyzing diagnosability using our approach remains in the order of milliseconds, in spite of the increasing state space of the model. This is particularly due to the on the y verication technique, which stops constructing the diagnoser as soon as the diagnosability condition is violated. Contrarily, the classic approaches (diagnoser and verier) rstly build the hole diagnoser/verier before checking the diagnosability condition, which considerably aects the computation time.

Our proposed approach remains ecient, in terms of computation time, compared to the two other approaches, when the model is diagnosable. This can be explained by the following three points:

1. in our approach there is no need to construct any intermediate model as in the case of the classic approaches;

2. only the relevant part of the diagnoser for analyzing diagnosability is constructed. That is, the subsequent following F -cetrain nodes (i.e., the certainly faulty part of the diagnoser) is not constructed;

3. the systematic procedure dened for checking diagnosability on the basis of our diagnoser variant allows for enhancing the verication time.

Thus, the generated state-space of the our diagnoser is lower than those of the classic approaches as shown in Table 4.1 (e.g., for k = 6 in the diagnosable case, we have 31314 states for the classic diagnoser compared in the 4097 states for our diagnoser).

The results show that the classic diagnoser approach is more ecient than the verier approach for the considered benchmark. This does not violate the claim that the verier approach is more ecient in terms of time complexity (polynomial complexity for the verier approach versus exponential for the diagnoser approach), since the theoretical complexity is computed while considering the worst case.

For the evaluation results of the approaches regarding the increasing of observable/ unobservable transitions (Table 4.2), the following observation can be made:

The state-space of the diagnosers are not aected when the number of the unobservable transitions is increased. However, they are very sensitive to the increasing of the observable transitions. This is due to the diagnoser structure.

The eciency of Sampath's diagnoser approach and the verier approach highly decreases when the number of unobservable transitions increases. Regarding the Sampath's diagnoser, this is due to the ε-reduction operation when generating the intermediate model (the generator), which highly depends on the number of unobservable events in the model. Regarding the verier approach, this is due to the various rules used for building the verier, i.e., for one unobservable transition in the system model, three distinct transitions are considered in the verier (see the construction rules of the verier in [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF]).

It is worthwhile noticing that the UMDES tool (both the diagnoser and the verier techniques) falls with some models in this test while our tool performs successfully the diagnosability analysis of all the model variants. The eciency of our technique comparatively to the two UMDES techniques is more noticeable as the part of unobservable transitions becomes more important in the model.

A Comparison Between Sampath's Diagnoser and our Proposed Diagnoser

The new diagnoser-based approach, we have discussed in this chapter, has some similarities and dierences with Sampath's diagnoser approach that are discussed in what follows:

• Both approaches deal with fault diagnosis of DESs in the automata formalism under the same assumptions, (i.e., the model is live and no unobservable cycle exist in it).

• Both approaches are constructed in an exponential complexity, due the determinization nature of the diagnoser. However, in our approach, this high complexity is partially tackled using the partial construction of the diagnoser state-space, due to the on the y building/verication algorithm.

• The main advantages of our approach w.r.t. to Sampath's diagnoser are twofold:

1. Only the necessary part for analyzing diagnosability and performing the online diagnosis is generated. Indeed, the diagnoser construction and diagnosability analysis are simultaneously performed on-the-y using a depth-rst-search algorithm. Therefore, the diagnoser need not be built completely for checking diagnosability. This would signicantly save memory, particularly in the case of non-diagnosable models.

2. In our technique, the systematic procedure for checking the necessary and sufcient condition does not require to return to any intermediate model. Besides, for the analysis of F -uncertain cycles, there is no need to start from the initial state and the analysis is performed directly on the cycle. Such a procedure, signicantly speed up the verication process (as shown in the experimentation).

• The main drawback of our approach, is the size of nodes (in terms of memory) in the diagnoser, due to the unobservable reachability. In fact, the nodes of our diagnoser may contain a large number of the model states that are reachable through unobservable sequences after the occurrence of an observable event. Such an issue is not encountered in Sampath's diagnoser, since the unobservable reachability is erased by means of the ε-reduction operation when building the generator. However, the fact that two graphs, namely the generator and the diagnoser, are constructed and memorized still raises the memory issues. In order to overcome the issue of memory consumption in our diagnoser, we intend to bring into play symbolic representation techniques (using Binary Decision Diagrams (BDDs)). In fact, BDDs can eciently encode and manage the sets of states in the diagnoser nodes. Such a technique represents the main contribution of Chapter 6 where the considered models are labeled Petri nets.

Conclusion

Summary

In this chapter, we extend the diagnoser-based approach, introduced in the previous chapter, in order to deal with the fault diagnosis of intermittent faults. First, we discuss two ways for modeling the intermittent faults in nite state automata framework. Then, various denitions of diagnosability from the SED literature are revisited. Such denitions concern the occurrence of the fault events, their recovery, and the identication of the system status within nite delays. In order to analyze such properties, we extend the proposed diagnoser (discussed in Chapter 4) with a new structure, which consists in separating normal states, faulty states and recovered ones in each diagnoser node. Furthermore, necessary and sucient conditions for checking the various diagnosability properties are derived on the basis of the diagnoser structure and systematic procedures for checking such conditions without needing any intermediate model is proposed. The work presented in this chapter is the subject of publications in ICPHM'16 [START_REF] Boussif | Intermittent fault diagnosis of industrial systems in the model-checking framework[END_REF], WoDES [START_REF] Boussif | A twin plant based approach for diagnosability analysis of intermittent failure. 13 th International Workshop on Discrete Event Systems[END_REF]] and a submitted one on ACC'17 [Boussif and Ghazel, 2017]. This chapter is structured as follows: Section 5.1 gives a general introduction regarding intermittent faults and their importance in the fault diagnosis of real-life systems. In Section 5.2, a brief literature review on intermittent fault diagnosis of DESs is provided. Section 5.3 presents an overview on the approach we discuss in the current chapter. Section 5.4 introduces the system modeling and two ways for modeling intermittent faults.

In Section 5.5, various notions of diagnosability of intermittent faults are introduced and illustrated. Section 5.6 discusses the construction of the diagnoser and presents some associated features that will be advantageously exploited in the sequel. Section 5.7 is devoted to the reformulation of the necessary and sucient conditions regarding the `weak' versions of diagnosability and the development of a systematic method for checking these conditions. Necessary and sucient conditions regarding the strong versions of diagnosability of intermittent faults are established in Section 5.8. In section 5.9, a discussion regarding the related works is provided. Finally, Section 5.11 draws some concluding remarks.

Introduction

A fault is dened to be any deviation of a system from its normal or intended behavior and fault diagnosis is the task that consists in detecting/identifying the abnormality in the system behavior and isolating the cause or the source of this abnormality. In the DESs framework, faults are basically depicted as unobservable/silent, indistinguishable and uncontrollable event or states, which means that the failure cannot be detected/identied directly.

Faults can be classied on the basis of their individual behavior into three types [Sharma et al., 2015, Zaytoon andLafortune, 2013]:

1. Permanent faults: fault occurs but does not disappear (such that the system remains in faulty state) until repairing measures are undertaken. Typically a permanent fault is caused by subsystem failures, physical damage or design error.

2. Incipient faults (also called gradual or drift-like faults): fault varies gradually and slowly develops into an enormously large value. Diagnosis of such faults is more dicult than the case of permanent faults because they evolve very slowly and their eects can be confused with noise and uncertainty.

3. Intermittent faults: fault occurs and then suddenly disappears and this process continues to happen in a repeated manner. Therefore, the system switches between normal and faulty states. Such faults may be activated or deactivated by some external disturbances [Isermann, 2006]. From the diagnosis point of view, it is important to distinguish between these fault types, especially between the permanent and intermittent faults. The intermittent faults can be spontaneously recovered (by the occurrence of uncontrollable and unobservable reset event), therefore the system oscillates between normal and faulty behavior. Permanent faults, on the other hand, may be associated with recovery events (repair/replacement) which are controllable and observable, and the system can not spontaneously move from a fault state to a non-faulty one [Huang, 2003].

In a major part of the literature regarding model-based fault diagnosis (MBD), faults are typically assumed to be permanent. However, experience with fault diagnosis of reallife systems shows that intermittent faults are predominant and are among the most challenging kinds of faults to detect and isolate [START_REF] Fromherz | Model-based computing for design and control of recongurable systems[END_REF]. Indeed, according to [START_REF] Shen | Intermittent faults parameter framework and stochastic Petri net based formalization model[END_REF], intermittent faults exist in many systems, including those ranging from small components to huge complicated equipment. The frequent occurrence of intermittent faults can bring on serious troubles and result in high safety risk and important maintenance cost. In the late 1960s, Hardie [Ball andHardie, 1969, Hardie and[START_REF] Hardie | [END_REF] indicated that intermittent faults comprised over 30% of pre-delivery failures and almost 90% of eld failures in computer systems. Roberts [Roberts, 1989] stated that between 80 and 90% of system faults are caused by intermittent faults. [START_REF] Banerjee | Performance analysis of distributed intermittent fault diagnosis in wireless sensor networks using clustering[END_REF] indicated that in wireless sensor networks intermittent faults are the most frequently occurring. Intermittent faults bring on many maintenance problems, such as False Alarms (FAs), No Fault Found (NFF), Can Not Duplicate (CND) and so on [START_REF] Sorensen | An analyzer for detecting intermittent faults in electronic devices[END_REF]. In 2012, a survey among 80 aerospace organizations ranked intermittent faults as the highest perceived cause of NFF [START_REF] Syed | Intermittent fault nding strategies[END_REF]. The NFF problem has been the highest cost source in aerospace maintenance. For example, the annual NFF exchange cost of the F-16 avionics boxes due to intermittent faults was over $ 20,000,000 [START_REF] Steadman | Attacking" bad actor" and" no fault found" electronic boxes[END_REF], Steadman et al., 2008].

According to [START_REF] Correcher | Intermittent failure diagnosis in industrial processes[END_REF], Correcher et al., 2010], intermittent faults can be modeled using four parameters. These indicators report useful information to the supervisor regarding preventive maintenance and control reconguration. Examples of intermittent faults are: electrical contacts, overheating, overloads, arc faults in the pantograph of a running train [START_REF] Aydin | A new computer vision approach for active pantograph control[END_REF], some kinds of interruptions and bugs in software systems, etc. In practice, intermittent faults are viewed as a temporary malfunction of a device that compels the system to switch between faulty and non-faulty behavior at discrete random intervals. Intermittent faults are characterized by repetitive occurrences, often with irregular intervals, and separated by reset action that causes the system to switch back to the normal behavior . Applications in various domains are concerned by intermittent fault diagnosis, such as digital circuit testing [START_REF] Chang | Detecting bridging faults in dynamic cmos circuits[END_REF], aerospace industry [START_REF] Salvatore | Hybrid automated reliability predictor (HARP) integrated reliability tool system (version 7.0) HARP introduction and user's guide[END_REF], aircraft systems [START_REF] Anderson | Lab testing of neural networks for improved aircraft onboard-diagnostics on ight-ready hardware[END_REF], modern industrial and chemical processes [START_REF] Madden | [END_REF]Nolan, 1999, Yan et al., 2015], transportation systems [START_REF] Aydin | A new computer vision approach for active pantograph control[END_REF] and machine driven systems [Ismaeel andBhatnagar, 1997, Kim, 2009].

Many denitions of intermittent faults have been proposed in the literature: Sorensen in [START_REF] Sorensen | An analyzer for detecting intermittent faults in electronic devices[END_REF] dened intermittent faults as any temporary deviation from nominal operating conditions of a circuit or device. In [START_REF] Syed | Intermittent fault nding strategies[END_REF], they are dened as temporary malfunction of a device. Among these denitions, the environment induced disturbance may also be regarded as intermittent faults. Pan [START_REF] Pan | Ivf: Characterizing the vulnerability of microprocessor structures to intermittent faults[END_REF] regarded intermittent faults as a hardware error which occurs frequently and irregularly for a period of time. According to IEEE [Prasad, 1990], intermittent faults are dened as failures of an item for a limited period of time, following which the item recovers its ability to perform its required function without being subjected to any external corrective action. Moreover, such failures are often recurrent. In the DESs community, intermittent faults are dened as faults which often occur intermittently, and can be depicted with fault events followed by corresponding reset events for these faults, followed by new occurrences of fault events, and so forth [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]. Another denition, which is similar to this one, is given in [START_REF] Deng | A discrete event systems approach to discriminating intermittent from permanent faults[END_REF]: Intermittent faults are dened as failures that can automatically recover once they have occurred. It may be activated or deactivated by some external disturbance. Then, if the disturbance ends, the failure will disappear. The work presented in this Chapter considers these last two denitions which can be seen as an abstraction of intermittent faults description in the DESs framework. shows some subtle congurations compared to the case of permanent failures. The same remark can be made for the various methodologies developed in the eld of model-based reasoning in Articial Intelligence, as witnessed in [Contant, 2005]. Consequently, some further DES-based frameworks have been proposed to handle intermittent faults. The earlier works in [START_REF] Aghasaryan | Fault detection and diagnosis in distributed systems: an approach by partially stochastic petri nets[END_REF], Benveniste et al., 2003], which are developed to deal with permanent failures, allows considering intermittent faults. Nevertheless, these works do not propose a systematic framework for their detection and isolation.

A Review of Intermittent Fault Diagnosis in DESs

One of the pioneering contributions in intermittent fault diagnosis was made in [START_REF] Jiang | Diagnosis of repeated / intermittent failures in discrete event systems[END_REF], where a state-based DES modeling for the so-called repeated faults was introduced. The idea behind this work is that, instead of only diagnosing the fault occurrences, the developed technique considers determining the number of times the fault has occurred. In order to do so, Jiang et al. have introduced three notions of diagnosability: K-diagnosability (for determining that a fault has been occurred K times), [1, K]diagnosability (for 1 to K faults diagnosability), and [1, ∞]-diagnosability (for all fault occurrences diagnosability). For checking such diagnosability properties, some polynomial algorithms were provided. Moreover, a polynomial procedure for online diagnosis of such faults is also presented in this work. Improvement in terms of the polynomial complexity for checking [1, ∞]-diagnosability have been proposed in [START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF], Yoo and Garcia, 2009, Zhou and Kumar, 2009], where the complexity is of

O(|X| 5 • [Σ| 2) and O(min(|X| 3 • [Σ| 2 , |X| 5))
for respectively nondeterministic and deterministic models in- [START_REF] Jiang | Diagnosis of repeated / intermittent failures in discrete event systems[END_REF]]. An application of such a theoretical framework for diagnosing routing events in discrete ow networks is discussed in [START_REF] Garcia | Model-based detection of routing events in discrete ow networks[END_REF] In [Jiang andKumar, 2006, Jiang, 2002], the above-mentioned framework (of repeated faults) has been reformulated in a temporal logic-based approach. Indeed, Linear-time temporal logic (LTL) formulas were used to express the above-mentioned diagnosability properties. In these works, notions of prediagnosability and diagnosability for failures, rstly introduced for dealing with permanent failures [START_REF] Jiang | Failure diagnosis of discrete-event systems with linear-time temporal logic specications[END_REF], have been extended to deal with repeated faults. Then, polynomial algorithms for testing the prediagnosability and diagnosability have been provided. These works, discussed above, focused on diagnosing how many times a fault has occurred. However, they do not take into account determining the status of the system at a given moment (i.e., detecting and identifying which faults are present in the system and which ones have been reset). Dealing with the diagnosability of intermittent faults in this sense was rstly discussed in [Contant, 2005, Contant et al., 2002, Contant et al., 2004]. In these works, an event-based reasoning on the basis of nite state automata (FSA) is adopted, namely, faults and their recovery are considered to be unobservable events. The purpose of these works is to determine, at certain points, which faults are present in the system and which ones have occurred, or have been recovered. These works can be regarded as an extension of the seminal work on diagnosability analysis of permanent failures based on the diagnoser approach [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. The structure of the diagnoser, in this case, was enriched by new labels to capture the dynamic nature of intermittent faults in the system model. Four notions of diagnosability have been proposed, regarding the occurrence/recovery of faults and the identication (determination) of the faulty/recovered system status within nite delays.

stead of O(|X| 6 • [Σ| 2) and O(|X| 4 • [Σ| 2) in
On the basis of the theoretical framework developed in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], the authors in [START_REF] Correcher | Intermittent failure diagnosis in industrial processes[END_REF] proposed a methodology to diagnose intermittent faults in industrial processes. The classic pump/valve process [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] is simulated in Matlab, employing Simulink for modeling the continuous behavior and Stateow for the DES diagnoser. In [START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF], the authors addressed the issue of diagnosing intermittent sensor faults. In the same spirit as in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], authors have modied the model of intermittent loss of observation to account for sensor malfunction only. Then, the issue of detecting intermittent sensor faults is transformed into an issue of diagnosing intermittent faults. Therefore, a similar diagnoser to the one developed in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] is used to check diagnosability. In the same scope, robust diagnosability against intermittent sensor faults is discussed in [START_REF] Carvalho | Robust diagnosability of discrete event systems subject to intermittent sensor failures[END_REF]. In such a work, the assumption that not only all sensors work properly but also all information reported by sensors always reaches the diagnoser, is relaxed. That is, some observed events may not reach the diagnoser, which can be seen as an intermittent loss of the observation. A necessary and sucient condition for robust diagnosability is provided and tested using the diagnoser [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] and the verier [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF] techniques.

An extension of the state-based DES framework [START_REF] Zad | Fault diagnosis in discrete-event systems: Framework and model reduction[END_REF] was proposed in [Biswas, 2012] to deal with intermittent faults. Two notions of diagnosability were introduced. One for detecting the occurrence of a fault, and the other for detecting its recovery. The diagnoser is built in a similar way as in [START_REF] Zad | Fault diagnosis in discrete-event systems: Framework and model reduction[END_REF] with the same time complexity. Necessary and sucient conditions for each notion of diagnosability were developed and an algorithm to verify such conditions was provided.

In [START_REF] Soldani | Intermittent fault diagnosis: a diagnoser derived from the normal behavior[END_REF], intermittent fault diagnosis in an FSA framework was reported. The particularity of such a work is that only the normal behavior of the system is considered, i.e., a fault-free model). Then, faults are modeled as the occurrence of an extra event or as the absence of a specic event. A diagnoser is then established for each event type. An extension to Petri net framework was given in [START_REF] Soldani | Intermittent fault detection through message exchanges: a coherence based approach[END_REF]].

An overall framework regarding the assessment of intermittent fault probabilities, i.e., [START_REF] Kleer | [END_REF], De Kleer, 2009]. The proposed approach aims at developing an ecient general method, referred to as the General Diagnostic Engine (GDE), for diagnosing failures due to any number of simultaneous faults. Moreover, the approach computes both the posterior probabilities after some observations are made as well as the additional probes needed to eciently isolate the fault in the system devices. In [START_REF] Deng | A discrete event systems approach to discriminating intermittent from permanent faults[END_REF], a new fault model which includes both permanent and intermittent faults is presented. Thereafter, an approach is given to discriminate between the two fault types and diagnoses any current fault in the system. The authors in [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF] have proposed a supervision pattern framework for dealing with fault diagnosis. In fact, such patterns are nite state automata that can describe the occurrence of permanent faults, intermittent faults, the repair of a system after the occurrence of a fault, as well as quite complex sequences of events. Then, the problems of diagnosis correctness and bounded diagnosability are discussed.

Recently (and in parallel to our work), Fabre et al. [START_REF] Fabre | Diagnosability of repairable faults[END_REF] have proposed an approach to deal with repairable faults. Diagnosability in this work means that the occurrence of a fault should always be detected in bounded delay, but also before the fault is repaired. The authors have also showed that checking such a notion of diagnosability is PSPACE-complete and have proposed an augmented diagnoser (by performing the parallel composition of the classic diagnoser and the original system model) in order to conduct the diagnosability verication.

Overview on the Developed Contribution

Almost all the works pertaining to intermittent fault diagnosis in DESs mentioned above deal with diagnosability on the basis of structural analysis of the so-called diagnoser.

However, we have shown in the previous chapter (Chapter 4) that, besides the fact that the diagnoser construction shows a high complexity level (exponential) in terms of statespace, two other main issues related to diagnosability analysis can be outlined:

(i) the approach is based on the analysis of two graphs. The rst graph is a nondeterministic observer (called pre-diagnoser, or generator), while the second one is a deterministic automaton called diagnoser;

(ii) the diagnoser-based approaches use a double-checking procedure, which consists in one verication step on the diagnoser to check the existence of F -uncertain cycles and the other one on the generator/pre-diagnoser to check whether the F -uncertain cycle is an F -indeterminate one or not). In fact, in general this double check procedure greatly increases the verication time. In what follows, we recall the main features of the proposed approach, 1. Separating the normal, the faulty and the recovered states in each diagnoser node allows us to separately track the nominal, the faulty and the recovered traces directly in the diagnoser.

2. In our approach, the diagnoser is directly built from the original system model, without needing to construct any intermediate model, as usually done in the classic diagnoser approaches [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Contant et al., 2004].

3. The approach provides a systematic procedure for checking the necessary and sufcient conditions for diagnosabilily of intermittent faults without returning to any intermediate model. Besides, when an uncertain cycle is encountered the procedure performs directly on the cycle of the diagnoser. All these aspects allow for signicantly speeding up the verication process.

5.4 Modeling of the System and Intermittent Faults

System Model

In this chapter, we consider that the system to be diagnosed is modeled by an FSA G = X, Σ, δ, x 0 . We keep the same notations and notions introduced in Section 3.2.

However, we add the following notations regarding intermittent faults:

Let us denote by Σ f ⊆ Σ u the set of fault events and Σ r ⊆ Σ u the set of fault reset events. Faults and their recovery are basically represented using unobservable events.

Moreover, the set of fault events (resp. the set of reset events) can be partitioned into

disjoint fault classes Σ f = Σ f 1 Σ f 2 . . . Σ fm , where Σ f i (i = 1, 2, . . . , m) denotes one class of faults (resp. Σ r = Σ r 1 Σ r 2 . . . Σ rm , where Σ r i (i = 1, 2, . . . , m) denotes the recovering class of faults in Σ f i) and Σ f ∩ Σ r = ∅.
In the sequel, we will use ψ(Σ f i)

to denote the set of event-traces in L that end with some faulty event in Σ f i . That is,

ψ(Σ f i) := {s.σ f i ∈ L : σ f i ∈ Σ f i }.
Similarly, we will use ψ(Σ r i) to denote the set of eventtraces in L that end with some reset event in Σ r i . That is, ψ(Σ r i) := {s.σ r i ∈ L|σ r i ∈ Σ r i }.

Finally, we make the following remark:

Remark 1 We assume that the occurrence of a reset event σ r without any corresponding fault event σ f having occurred, does not aect the system status (i.e., in this case, the reset event is seen as a normal unobservable event).

Remark 2 It is worth noticing that regarding the projection mapping, the general setting of the inverse projection P -1 L is not restricted to the event-sequences which end with an observable event (i.e., ∀ω ∈ Σ * o , P -1

L (ω) = {s ∈ L ⊆ Σ * : P (s) = ω} ∩ Σ * Σ o
), as it is usually considered in fault diagnosis of permanent faults (for instance, see [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Contant et al., 2004]). Therefore, in this chapter, the general setting of the inverse projection

P -1 L is considered, that is, ∀ω ∈ Σ * o , P -1 L (ω) = {s ∈ L ⊆ Σ * : P (s) = ω}.
In other terms, we consider a -somehow-more general setting since we require that the diagnosis shall consider also any unobservable continuation following the last observed event. Hereafter, an example that explains this slight dierence between these two denitions, is given.

Example 1 Let us consider the part of automaton in Figure 5.1. We are interesting in the generation of the set of event-sequences sharing the same observation ω = a using the two denitions above. 1. P -1

L (ω) = {s ∈ L ⊆ Σ * : P (s) = ω} ∩ Σ * Σ o = {a, ua};
2. P -1 L (ω) = {s ∈ L ⊆ Σ * : P (s) = ω} = {a, au, auf, ua, uau}. Remark 3 It is worth noticing that this slight dierence between the two denitions of the inverse projection operator, does not aect the diagnosis verdict when dealing with permanent faults, i.e., using both denitions, we obtain the same diagnosis verdict. However, in the case of intermittent faults, the choice of the inverse projection operator can have an impact on the diagnosis verdict, as it will be discussed at the end of this chapter.

For the sake of clarity, only one class of fault event Σ f and its corresponding class Σ r of reset events are considered here. Extension to multiple fault classes is performed in the same manner as discussed in 4 (Section 4.5.3).

Intermittent Fault Modeling

In the literature pertaining to the diagnosis of DES, faults are said to be intermittent when they are non-permanent, in the sense that each fault occurrence is followed by its corresponding reset event (i.e., normalization) within a nite delay, which is in turn followed later on by a new occurrences of fault events, and so forth. Such faults may be activated or deactivated by some external disturbances.

Regarding the system status after the occurrence of fault events and their reset events, two modeling formalisms can be distinguished:

The Recover formalism

In such a formalism, a distinction is made between the states reached by faulty-free sequences and the states reached by sequences where at least one fault has occurred and reset. Regarding the system status, the occurrence of an intermittent fault occurrence switches the system from a normal state to a faulty state, and thereafter the system is switched again to a recovered state within a nite delay upon the occurrence of the corresponding reset event. Such a recovered state is assumed to be safe. However, it is dierent from the normal, i.e., it can somehow be seen as a degraded mode. It should be noticed that, in such a formalism, the reset events are also called `recover ' events.

Such a modeling manner has been used in [START_REF] Carvalho | Robust diagnosability of discrete event systems subject to intermittent sensor failures[END_REF], Moreira et al., 2011, Carvalho et al., 2013] and also in [Contant, 2005, Contant et al., 2004, Contant et al., 2002] by adding a distinction between the rst fault occurrence and the subsequent occurrences.

Due to the various types of events and in order to capture these changes in the system status, we use a supervision pattern Ω = {N, F, R}, Σ, δ Ω , N [START_REF] Carvalho | Robust diagnosis of discrete event systems against intermittent loss of observations[END_REF], Fabre et al., 2016] as shown in Figure 5.2, which is a label automaton that transcribes the system status according to the occurrence of the dierent event types. Automaton Ω can be seen as a labeling function, which is usually used in fault diagnosis [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF].

In fact, when label automaton Ω is in state N (N stands for the normal status), the system executes a normal behavior, which indicates that no event from Σ f has occurred yet. However, when a fault event occurs, Ω moves to state F (F stands for the faulty status) and remains in this state as long as the system executes a faulty behavior. When the fault is recovered due to the occurrence of a reset event, Ω switches to state R (R stands for the recovered status), where it stays as long as the system continues to execute

N start F R Σ f Σ \ Σ f Σr Σ \ Σr Σ f Σ \ Σ f Figure 5.2
The label automaton Ω in the recover modeling a non-faulty behavior. As we deal with intermittent faults, the system can again execute a fault event. In this case, the label automaton Ω switches back to state F and so on.

As mentioned in Remark 1, one can notice that a reset event σ r ∈ Σ r may take place without any fault event σ f ∈ Σ f having occurred. This is also taken into account by label automaton Ω and the system remains in normal status (state N in Ω) in this case.

In order to keep track of the fault occurrences and their corresponding resets along the system's evolution, we compute automaton G as the parallel composition of automata G

and Ω (G = G Ω). In fact, the parallel composition does not change the language of G, but performs a state augmentation that keeps track of the ring of fault and reset events.

That is, the states of G are the states of automaton G enriched with labels N , F and R. This technique was generalized in [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF] to detect/diagnose some regular pattern of labels, rather than the simple ring of fault/reset events.

Example 7 Consider automaton G (taken from [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]) and shown in Figure 5.3 (a) . The sets of observable and unobservable events are Σ o = {a, b, c, d} and Σ u = {f, r}, respectively. In addition, Σ f = {f } and Σ r = {r}. Automaton G = G Ω is depicted in Figure 5.3 (b).

From the monitoring viewpoint, the states of automaton G can be partitioned into three subsets: `Normal', `Faulty' and `recovered', which can be identied using faultassignment function:

Ψ : X → {N, F, R}.
Now, let us dene labeling function , : L(G) ⊆ Σ * → {N, F, R} as follows:

Let s ∈ L be an event-sequence, then:

• (s) = N if (Σ f / ∈ s) • (s) = F if ∃ s , s : (s = s s) ∧ [s ∈ ψ(Σ f)] ∧ (Σ r / ∈ s) • (s) = R if ∃ s , s : (s = s s) ∧ (Σ f ∈ s) ∧ [s ∈ ψ(Σ r)] ∧ (Σ f / ∈ s)

The Normalizing formalism

In such a formalism, a fault event switches the system from a normal state to the faulty one, while its corresponding reset event takes back the system from a faulty state to a normal one. Therefore, only two types of states exist in the system model, since no distinction is made between the normal states reached by faulty-free event sequences and the states reached by event sequences that show a recovered fault, i.e., s = s s such that Σ f ∈ s , s ∈ ψ(Σ r) and Σ f / ∈ s .

In fact, in this modeling formalism, it is assumed that the system returns to its nominal behavior as soon as the fault recovers. Typical examples of faults for which such a modeling formalism is appropriate: in the case of circuits, some faults may occur due to high temperatures but disappear once the circuit is cooled. Also, a valve in a ow control system may get stuck closed due to overow of a liquid. The system may recover from the failure after some repeated eorts by the motor to open the valve which is triggered by the controller when it detects an abnormal pressure rise (because of the closed valve) [Biswas, 2012].

It should be noticed that, in this modeling formalism, the reset events are called `normalizing' event and the switch from a faulty state to a normal one is called `normalization '. However, when a fault event occurs, label automaton Ω moves to state F and remains in that state as long as the system executes a faulty behavior (i.e., no reset event occurs). As we deal with intermittent faults, the system switches between these two status indenitely.

In order to keep tracking of the occurrence of faults and their corresponding resets along the system's evolution, we compute automaton G as the parallel composition of automata G and Ω N (G = G Ω N). G is depicted in Figure 5.5. Let s ∈ L be an event-sequence, then:

• (s) = N if : (Σ f / ∈ s) ∨ ∃ s , s : (s = s s) ∧ (Σ f ∈ s) ∧ [s ∈ ψ(Σ r)] ∧ (Σ f / ∈ s) • (s) = F if : ∃ s , s : (s = s s) ∧ [s ∈ ψ(Σ f)] ∧ (Σ r / ∈ s)
It should be underlined that in the remainder of our thesis the recover formalism is adopted. However, a discussion regarding the normalizing formalism will be given as necessary.

5.5 Notions of Diagnosability

Assumptions

Besides the well-known assumptions considered in the diagnosis of permanent faults [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], that is language L(G) is live and no cycle of unobservable events exists in G, the following assumptions are considered:

(A1) Each class of fault events Σ f has its corresponding class of reset event Σ r . Recall that both faulty and reset events are unobservable.

(A2) At least one observable event exists between the occurrence of a fault event σ f ∈ Σ f and its corresponding reset event σ r ∈ Σ r and between the occurrence of a reset event σ r ∈ Σ r and a new occurrence of fault event σ f ∈ Σ f .

(A3) Each occurrence of fault event σ f ∈ Σ f is followed by the occurrence of a reset event σ r ∈ Σ r within a nite delay. Similarly, each occurrence of a reset event σ r ∈ Σ r is followed by a new occurrence of a fault event σ f ∈ Σ f within a nite delay.

This assumption implies that fault and reset events occur with some regularity (pseudoperiodicity). These notions are called the Σ f -recurrence and Σ r -recurrence, as introduced in [Contant, 2005].

Denitions of Diagnosability

Intermittent faults are dynamic [Contant, 2005]; that is, they can repeatedly occur and reset. Thus, the fault status evolves along the system evolution. Consequently, several notions of diagnosability can be introduced, according to the properties and the speci- the choice between these considerations greatly depends on the application nature of the system and the objectives assigned to the diagnosis activity.

In this section, we discuss and adapt various denitions of diagnosability to our modeling formalism. The rst two notions of diagnosability deal with the detection of fault occurrences and that of their recovery [Contant, 2005] without necessarily identifying at any moment whether or not the current status of the system (fault is present or not) is precisely known. We call these denitions the weak diagnosability properties. Then, we discuss some restrictive versions of these denitions, for the purpose of assessing the ability to identify with certainty the status of the system after the occurrence of an intermittent fault or its recovery. These last two properties are called strong diagnosability. These properties are rstly introduced in [Contant, 2005] with slight dierences.

Dénition 18 (WF-diagnosability) An FSA G is said to be W F -diagnosable w.r.t. projection P , fault class Σ f and its corresponding reset event class Σ r , if the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σ f)] (∀t ∈ L/s) [t ≥ n ⇒ D W F]
where diagnosability condition D W F is:

ω ∈ [P -1 L (P (s.t))] ⇒ (Σ f ∈ ω)
W F -diagnosability, where `W ' stands for `weak' and `F ' for `fault occurrence', has the following meaning: for any event-trace s ending with a fault event in Σ f , and t any continuation of s, then, n ∈ N exists such that, after the occurrence of at most n events, it is possible to detect that a fault has occurred based on the captured observation. This implies that all the event-traces that are indistinguishable from s.t contain at least one fault from Σ f . It is worth noticing here that there is no constraint regarding the system status at the time when the fault occurrence can be detected. Phrased dierently, according to the above denition, it is possible that the system has left the faulty status when the fault occurrence is diagnosed.

As we deal with intermittent faults, each fault occurrence is followed later by its corresponding reset event (recover). Therefore, it is also interesting to discuss the diagnosability of the recovery occurrence. Namely, this consists in checking whether we can detect within a nite delay that the system has moved to its recovered behavior after the fault has been recovered. In what follows, we introduce W R-diagnosability which represents the dual notion of W F -diagnosability.

Dénition 19 (WR-diagnosability) An FSA G is said to be W R-diagnosable w.r.t. projection P , fault class Σ f and its corresponding reset event class Σ r , if the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σ r)] (∀t ∈ L/s) [t ≥ n ⇒ D W R]
where diagnosability condition D W R is:

ω ∈ [P -1 L (P (s.t))] ⇒ (Σ r ∈ ω)
Where `R' stands for reset event occurrences, W R-diagnosability has the following meaning: there exists n ∈ N, such that for any event-trace s ending with a reset event in Σ r (which means that at least one fault has occurred and recovered) and t any continuation of s which is arbitrarily long, then, after at most n events it is possible to detect the fault recovery based on the captured observation. This implies that all the event-traces that are indistinguishable from s.t have experienced a fault occurrence and its recovery. In the same way as for W F -diagnosability, there is no constraint regarding the system status when the recovery is diagnosed.

Example 8 Let us take automaton G in Example 7 (Figure 5. One can see that once 3 events after executing the faulty event-trace s (2 observable events) have occurred, it becomes possible to infer accurately the occurrence of fault f (since f occurs in all the event-traces which share the same observation with s.t). Thus, according to Denition 18, G is W F -diagnosable (n ≥ 3). The same reasoning can be done to show that G is also W R-diagnosable.

As mentioned earlier in the chapter, the above denitions serve only to detect the occurrence of the fault (or its recovery) without any guarantee regarding the determination of the system status at any moment. Throughout this thesis, the above denitions are referred to as the weak diagnosability.

In what follows, we introduce strong versions of the above notions, in order to consider the identication of the system status.

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 97

Dénition 20 (SF-diagnosability) An FSA G is said to be SF -diagnosable w.r.t. projection P , fault class Σ f and corresponding reset event class Σ r , if the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σ f)] (∀t ∈ L/s) [t ≥ n ⇒ D SF]
where diagnosability condition D SF is:

∃ t ≤ t : ∀ ω ∈ [P -1 L (P (s.t))] ⇒ (ω) = F
In SF -diagnosability, `S' stands for `strong ' and `F ' for `fault occurrence'.

SF -diagnosability states that for any event-trace s ending with a fault event in Σ f , and t any continuation of s, it is possible to detect the occurrence of the fault and to determine, with certainty, the faulty status of the system upon the occurrence of at most n events following the fault event. This implies that all the event-traces that are indistinguishable from s.t lead the system to faulty states at the same observation point, within a nite delay after the occurrence of the fault.

Hereafter, SR-diagnosability, which represents the dual notion of SF -diagnosability, is stated.

Dénition 21 (SR-diagnosability) An FSA G is said to be SR-diagnosable w.r.t. projection P , fault class Σ f and corresponding reset event class Σ r , if the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σ r)] (∀t ∈ L/s) [t ≥ n ⇒ D SR]
where diagnosability condition D SR is:

∃ t ≤ t : ∀ ω ∈ [P -1 L (P (s.t))] ⇒ (ω) = R
It means that for any event-sequence s ending with a reset event in Σ r , and t any continuation of s, it is possible, based on the captured observations, to detect the reset of the fault and to determine, with certainty, the recovered status of the system. This implies that all the event-sequences that are indistinguishable from s.t lead to recovered states from reset fault class F at the same observable point, within a nite delay after the fault recovery. However, according to Denition 20, there is no bound n such that, after this limit, both event-sequences ρ and ω lead to faulty states at the same time, which means that it is not possible to identify accurately the faulty status of the system. Therefore, G is non-SFdiagnosable. The same reasoning can be applied to show that G is non-SR-diagnosable.

It should be noticed that (SF , SR)-diagnosability are stronger notions compared to (W F , W R)-diagnosability. Indeed, SF -(resp. SR)-diagnosability requires the detection of any fault (resp. any recovery) and the certain determination of the system status (faulty or recovered). However, W F -(resp. W R)-diagnosability only requires the detection of the fault (resp. its recovery) within a nite delay. Therefore, it is straightforward to infer the following,

Proposition 5 [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] • SF -diagnosability ⇒ W F -diagnosability

• SR-diagnosability ⇒ W R-diagnosability

Relationship Between Properties

Earlier in this chapter, it was assumed that the models under investigation satisfy the Σ f -recurrence and Σ r -recurrence (See assumption (A3)). That is, the fault and reset events occur with some regularity along any possible event sequence in the system behavior. Such an assumption ensures the following properties [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]:

Property 3 Let x 1 , x 2 , . . . , x n be a state-trace associated with event-sequence s = σ 1 , σ 2 , . . . ,σ n and that forms a cycle in G, i.e., x (i+1) modn = δ(x i , σ i) for 1 ≤ i ≤ n. Then, fault event σ f ∈ s if and only if its corresponding reset event σ r ∈ s.

This property means that each cycle that contains an event fault σ f , contains also its corresponding reset event σ r .

Corollary 3 Let us consider a system model G that satises assumptions (A1), (A2) and

(A3). Then, G is W F -diagnosable if and only if it is W R-diagnosable.
Proof. A formal proof of this corollary will be given in Chapter 8 (see Section 8.2.2).

As W F -diagnosability is equivalent to W R-diagnosability (under assumptions (A1), (A2), and (A3)), the necessary and sucient conditions will be discussed only regarding W F -diagnosability in the sequel. In our proposed diagnoser, the nodes are equivalent to the states in the classic diagnosers [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Contant et al., 2004, Zad et al., 2003, Cabasino et al., 2009a], except that an explicit distinction is made, within each node, between the normal states (denoted by set X N), the faulty states (denoted by set X F), and the recovered states (denoted by set X R). Moreover, we indicate if there exists some (faulty) transitions from X N or X R to X F and similarly, if there exists some reset transitions from X F to X R .

Figure 5.7 depicts the general form of a diagnoser node. In particular, three subsets of states can be discussed; X N is the set of normal states and X F the set of faulty ones, while X R is the set of recovered states. Some faulty states may be reached from normal (resp. recovered states) in the same node through the occurrence (resp. reoccurrence) of faulty events. This is depicted by a faulty transition from X N or X R to X F within the diagnoser node. Similarly, some recovered states may be reached from faulty states in the same node through the occurrence of reset events.

In Figure 5.7, the dashed arrows entering in and outgoing from each node show the dierent possibilities an entering/outgoing observable transition may correspond to. For instance, observable event σ 2 output by diagnoser node a may be output from the normal, the faulty, or the recovered set. That is, σ 2 is generated from at least one of these three sets. Note that these transition (entering/outgoing dashed arrows) are depicted here for the sake of explanation but are not actually encoded in the diagnoser. Moreover, some faulty transitions f may or may not exist between X N (or X R) and X F . Similarly, some reset transitions r may or may not exist between X F and X R . This is depicted by the dotted arrows (inside the diagnoser node) linking X N , X F and X R within the same node.

It is worth noticing that the existing of such transitions between the same node subsets is actually encoded in the diagnoser structure using boolean variables that are set to True when such transitions exist, and to False if not.

These information will be useful while investigating diagnosability. In order to simplify the notation, we use a.X N (resp. a.X F , a.X R) to indicate the set of normal states X N (resp. the faulty states X F and the recovered states a.X R) corresponding to diagnoser node a.

The Diagnoser Construction

For a given FSA G, the diagnoser can be dened as follows.

Dénition 22 (Diagnoser) Let G = X, Σ, δ, x 0 be an FSA to be diagnosed. The diagnoser associated with G is a deterministic FSA D = Γ, Σ o , δ D , Γ 0 , where:

1. Γ is a nite set of diagnoser nodes; 2. Γ 0 is the initial diagnoser node with: a

) Γ 0 .X N = Reach Σu\Σ f (x 0); b) Γ 0 .X F = Reach Σu\Σr (Img(Γ 0 .X N , Σ f)). b) Γ 0 .X R = Reach Σu\Σ f (Img(Γ 0 .X F , Σ r)). 3. δ D : Γ × Σ o → Γ is the transition relation, dened as follows: ∀a, a ∈ Γ, σ ∈ Σ o : a = δ D (a, σ) ⇔        a .X N = Reach Σu\Σ f (Img(a.X N , σ)) a .X F = Reach Σu\Σr (Img(a.X F , σ) ∪ Img(a .X N , Σ f) ∪ Img(a .X R , Σ f)) a .X R = Reach Σu\Σ f (Img(a.X R , σ) ∪ Img(a .X F , Σ r)) (5.1)
It should be noticed that one may think that a conict arises when constructing a .X F and a .X R . However, this is only a ctitious one. More precisely a .X F and a .X R can be actually constructed as follows:

Let Q F = Img(a.X F , σ) ∪ Img(a .X N , Σ f) and Q R = Img(a.X R , σ). Hence, according to assumption (A2): a .X F = Reach Σu\Σr (Q F ∪ Img(Reach Σu\Σ f (Q R), Σ f)) a .X R = Reach Σu\Σ f (Q F ∪ Img(Reach Σu\Σr (Q F), Σ r)) (5.2)
Property 4 (Equivalence between nodes) Two diagnoser nodes a and a in D are equivalent if a.X N = a .X N , a.X F = a .X F anda.X R = a .X R

The Various Types of Nodes in the Diagnoser

According to the diagnoser construction, one can dierentiate between various types of nodes int the diagnoser variant, in the same way as in the classic diagnoser:

• N-node: is a diagnoser node of which the sets of faulty and recovered states are empty (X F = X R = ∅);

• F-node: is a diagnoser node of which the sets of normal and recovered states are empty (X N = X R = ∅);

• R-node: is a diagnoser node of which the sets of normal and faulty states are empty (X N = X F = ∅);

• NF-node: is a diagnoser node of which the sets of recovered states is empty, while X N and X F are not;

• NR-node: is a diagnoser node of which the sets of faulty states is empty (X F = ∅), while X N and X R are not;

• FR-node: is a diagnoser node of which the sets of normal states is empty (X N = ∅), while X F and X R are not;

• NFR-node: is a diagnoser node where X N = ∅, X F = ∅ and X R = ∅.

Besides the above mentioned types, we introduce the following types that will be used to state the necessary and sucient condition for diagnosability in the sequel.

• N-uncertain node, if it is an NF-(or NFR-or NR-)node;

• F-uncertain node, if it is an NF-(or NFR-or FR-)node;

• R-uncertain node, if it is an NR-(or NFR-or FR-)node;

• non-N-certain node, if it is not N-node;

• non-F-certain node, if it is not F-node;

• non-R-certain node, if it is not R-node;

It is worth noticing that a non-N-certain (resp. non-F-certain, non-R-certain) node is not necessarily an N-uncertain (resp. F-uncertain, R-uncertain).

Intermittent Fault Propagation in the Diagnoser

The diagnoser construction preserves a specic fault propagation scheme regarding the fact that faults are intermittent and based on the assumptions (A1), (A2) and (A3). These propagation rules are depicted in Figure 5.8, and outlined below.

• From an N-node, either an N-node or an NF-node can be reached;

• From an F-node, either an F-node or an FR-node can be reached;

• From an R-node, an R-node or an FR-node can be reached;

• From an NF-node, an NF-node, an N-node, an F-node, an FR-node or NFR-node can be reached;

• From an NR-node, an NR-node, an N-node, an R-node, an FR-node or NFR-node can be reached;

• From an FR-node, an FR-node, an F-node, an FR-node or NFR-node can be reached;

• From NFR-node, all the node types can be reached.

It should be noticed that the dashed self loop on a node type (e.g. NF-node) means that the system cannot remains indenitely in the same node type (by (A2) and (A3)). on the contrary, the system may remain in the same type of nodes where self loops are depicted in continued lines (e.g. NFR-node). 1 by the occurrence of faulty event f . Thus, a 0 .X N = {1}, a 0 .X F = {2} and a 0 .X R = ∅, which means that node a 0 is an NF-node. One can observe that event a is only enabled from the faulty set of node (a 0). Therefore, node a 1 reached from a 0 through event a contains an empty set of normal states, i.e. a 1 .X N = ∅. Moreover, a 1 .X F = {3} and, since state 4 is reachable from state 3 through the occurrence of a reset event r and no unobservable event is enabled from state 4, then a 1 .X R = {4}. Hence, node a 1 is an FR-node. The rest of nodes are constructed according to the fault propagation scheme in Figure 5.8. Finally, one can observe that two cycles exist in D: (1) a cycle composed of FR-nodes a 2 and a 3 and (2) a cycle composed of N-node a 5 .

Analysis of W F -Diagnosability

This section is dedicated to the analysis of W F -diagnosability (and W R-diagnosability according to Corollary 3) by adapting the necessary and sucient conditions, introduced by Contant et al. [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], to our intermittent fault modeling (i.e., the recover modeling formalism). Then, we establish a systematic method for checking such a condition on the basis of our diagnoser variant. In fact, the developed method is an extension of the systematic procedure developed in Chapter 4 for the analysis of diagnosability of permanent faults.

Necessary and Sucient Condition for W F -diagnosability

In order to state the necessary and sucient condition for W F -diagnosability, we rst introduce the notions of W F -uncertain and W F -indeterminate cycle. In fact, the notion

Dénition 23 (WF-uncertain cycle)

A cycle c = a 1 , a 2 , . . . , a n in D, with δ D (a i , σ i) = a (i+1)modn , σ i ∈ Σ o for 1 ≤ i ≤ n, is said to be W N -uncertain cycle if all nodes in c are N-uncertain ones.

Dénition 24 (WF-indeterminate cycle)

Let c = a 1 , a 2 , . . . , a n be a W F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn , σ i ∈ Σ o for 1 ≤ i ≤ n.
c is said to be a W F -indeterminate cycle if ∃m, m ∈ N * such that the following condition holds:

(C1) Considering nodes a 1 , a 2 , . . . , a n ∈ D, ∃ x k i , y k i ∈ a i , i = 1, . . . , n, and k = 1, . . . , m and k = 1, . . . , m , with x k i ∈ a i .X F for some i and k and:

δ(x k i , s k i σ i) = x k (i+1) , for i = 1, . . . , n -1, k = 1, . . . , m δ(y k i , t k i σ i) = y k (i+1) , for i = 1, . . . , n -1, k = 1, . . . , m δ(x k n , s m n σ n) = x (k+1) 1 , for k = 1, . . . , m -1 δ(y k n , t m n σ n) = y (k +1) 1 , for k = 1, . . . , m -1 δ(x m n , s m n σ n) = x 1 1 δ(y m n , t m n σ n) = y 1 1 with s k i ∈ Σ * u ∀1 ≤ i ≤ n and 1 ≤ k ≤ m and ∃1 ≤ i 1 ≤ n, ∃k 1 ≤ m s.t. Σ f ∈ s k 1 i 1 . t k i ∈ (Σ u \Σ f) * ∀1 ≤ i ≤ n and 1leqk ≤ m
In other words, condition (C1) indicates that two cycles c 1 G and c 2 G exist in G such that:

• the event-sequence associated with c 1 G contains (at least) one fault event from Σ f and generates an observable sequence (σ 1 , σ 2 , . . . , σ n) m with m ∈ N * ;

• the event-sequence associated with c 2 G is fault-free and generates an observable sequence (σ 1 , σ 2 , . . . , σ n) m with m ∈ N * .

Here, m (resp. m) denote the number of times cycle

c in D is completed before cycle c 1 G (resp. c 2 G) in G is completed. That is, nm (resp. nm) is the length of c 1 G (resp. c 2 G) in terms of number of states, i.e. |c 1 G | = nm (resp. |c 2 G | = nm) (the readers can
refers to [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] for more details regarding this point).

Hereafter, we recall the necessary and sucient condition for a system model G to be W F -diagnosable as stated in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF].

106 Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis Theorem 5 (Necessary & sucient condition for W F -diagnosability [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]) A system model G is W F -diagnosable w.r.t projection P , class of fault events Σ f and its corresponding class of reset events Σ r , if and only if no W F -indeterminate cycle exists in its corresponding diagnoser D.

Verication of W F -Diagnosability

In what follows, we rst reformulate the necessary and sucient condition for W Fdiagnosability on the basis of the new diagnoser variant. Then, we propose a systematic method for the actual verication, without needing to construct any intermediate model.

Proposition 6 Let c = a 1 , a 2 , . . . , a n be a W F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n. Then, there exists, at least, one fault-free cycle in G, which shares the same observation (σ 1 , σ 2 , . . . , σ n) * .

Proof. The proof of Proposition 6 is omitted as it is similar to that of Proposition 1 in Chapter 4.

This result is interesting for checking W F -indeterminate cycles. It is, in fact, sucient to check that a cycle c G exists in model G such that it shares the same observation with W F -uncertain cycle c in the diagnoser, and has experienced at least one fault occurrence.

In order terms, one does not need to check the existence of a corresponding faulty-free cycle.

In order to check the existence of W F -indeterminate cycles in D, we introduce the notion of c W F -indicating sequence associated to W F -uncertain cycle c .

Dénition 25 (c W F -indicating sequence) Let c = a 1 , a 2 , . . . , a n be a W F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn ∀1 ≤ i ≤ n. Also, let us chose the rst node a 1 in c in such a way as to fulll: a i .X F ∪a i .X R = ∅. Since c is a W F -uncertain cycle, such a node necessarily exists in c .

c W F -indicating sequence ρ c = S 1 , S 2 , . . . , associated with c is an innite sequence of sets of states, such that:

-S 1 = a 1 .X F ∪ a 1 .X R ; -S j = Reach Σu (Img(S j-1 , σ (j-1) modn)) for j > 1.

In fact, the c W F -indicating sequence tracks the subsets of faulty and recovered states in each node of c without considering the faulty states generated through the occurrence of some faulty transitions outgoing from the normal set of states in the traversed nodes Dénition 26 (Series S c) Let c = a 1 , a 2 , . . . , a n be a W F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn , for 1 ≤ i ≤ n. ρ c = S 1 , S 2 , . . . is the c W F -indicating sequence. Series S c = S 1 , S 2 , S 3 , . . . corresponding to ρ c , is dened as follows:

S c : N * → 2 X S i = S (1+(i-1)n) , ∀i ∈ N * .
(5.3) It is worth noticing that S c can also be written as follows: S c = S 1 , S (1+n) , . . . , S (1+kn) , S (1+(k+1)n) , . . . , for k ∈ N. In other terms, series S c is extracted from c W F -indicating sequence ρ c by considering sample elements with n steps (n is the number of nodes in the W F -uncertain cycle).

Proposition 7 Let c = a 1 , a 2 , . . . , a n be a W F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn (σ i ∈ Σ o), for 1 ≤ i ≤ n. Let ρ c = S 1 , S 2 , .
. . be the c W F -indicating sequence and S c = S 1 , S 2 , S 3 , . . . be the corresponding series as dened above. Then, the following property holds true:

∀k ∈ N * : S k+1 ⊆ S k i.e., ∀k ∈ N * : S 1+nk ⊆ S 1+n(k-1)
Proof. The proof of Proposition 7 is omitted as it is similar to that of Proposition 3 in Chapter 4.

The above-mentioned property means that, by ignoring the faulty states generated by the faulty transitions from the normal sets of states into the faulty ones within the same node, one can ensure the (non-strict) inclusion relationship between terms S 1+ni ∀i ∈ N. with S (1+(k+1)n = S 1+kn . Phrased dierently, if we take i = k + 1 then ρ c necessarily takes one of the following two forms:

Proposition 8 Let c = a 1 , a 2 , . . . , a n be a W F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn (σ i ∈ Σ o), for 1 ≤ i ≤ n. Let ρ c = S 1 ,
1. A prime sequence: a non-cyclic elementary sequence (possibly empty) S 1 , S 2 , . . . , S i-1 , connected to an elementary cycle (S (i+1) , S (i+2) , . . . , S (i-1+n) , S (i+n)) * , with S (i+1+n) = S i ;

2. A nite sequence of non-empty elements S 1 , S 2 , . . . , S j (for j ∈ N *) followed by an innite number of empty elements, i.e., S (j+k) = ∅, ∀k ∈ N * ;

In fact, the rst case, i.e., a prime sequence, reveals the presence of at least one actual cycle in the system model, which has experienced at least one fault occurrence and corresponds to the W F -uncertain cycle c . This is depicted in the c W F -indicating sequence by the presence of the elementary cycle. In contrast, in the second case, the W F -uncertain cycle in the diagnoser does not correspond to an actual faulty cycle in the system model. In what follows, these features will be used to determine whether an W F -uncertain cycle is an W F -indeterminate one or not.

Theorem 6 For an W F -uncertain cycle c = a 1 , a 2 , . . . , a n in D, with δ D (a i , σ i) = a (i+1)modn ∀1 ≤ i ≤ n. ρ c = S 1 , S 2 , . . . is the c W F -indicating sequence associated with c and S c = S 1 , S 2 , S 3 , . . . is its corresponding series. Therefore, c is a W F -indeterminate cycle if and only if the xed-point reached by series S c is non-empty.

In other terms, it means that ∀i ∈ N * : S i = ∅.

Actually, this theorem states that a W F -uncertain cycle is a W F -indeterminate one if and only if the c W F -indicating sequence does not reach an empty xed-point. In other words, it takes the form of a prime sequence.

Proof.

The proof of Theorem 6 is omitted as it is similar to that of Theorem 4 in Chapter 4.

A Procedure for Checking W F -diagnosability

It is worth noticing that for the actual verication of W F -diagnosability, a systematic procedure, derived directly from Theorem 6, can be performed as follows:

When a W F -uncertain cycle c is encountered in diagnoser D, one has to proceed as follows:

Generate the successive elements of c W F -indicating sequence ρ c (starting from S 1), and for each element S i check the following conditions: This procedure is repeated on each W F -uncertain cycle generated in D.

1. if S i = ∅: cycle c is not a W F -indeterminate cycle
It is worth underlining that, according to the Corollary 3 (i.e., equivalence between W F -diagnosability and W R-diagnosability), the same procedure can be used for checking W R-diagnosability.

Analysis of SF -Diagnosability

In this section, we rst reformulate the necessary and sucient condition for SF -diagnosability on the basis of our diagnoser structure (by adapting the necessary and sucient conditions, introduced by Contant et al. [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], to our diagnoser variant). Then, in the same manner as in the section above, we discuss the actual verication of SFdiagnosability, without needing to construct any intermediate model.

Necessary and Sucient Condition for SF -diagnosability

Firstly, according to Proposition 5, it is easy to infer that the necessary and sucient condition for W F -diagnosability represents a necessary condition for SF -diagnosability.

That is, the presence of an W F -indeterminate cycle in diagnoser D implies the non-W Fdiagnosability and, therefore the non-SF -diagnosability of the system model. However, it is only a necessary condition, which means that the absence of W F -indeterminate cycle does not imply the SF -diagnosability, as witnessed by Example 7.

In order to state the necessary and sucient condition for SF -diagnosability, we rst introduce the notions of SF -uncertain cycle and SF -indeterminate cycle (which is presented in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] as

F P i -indeterminate cycle). Dénition 27 (SF-uncertain cycle) A cycle c = a 1 , a 2 , . . . , a n in D, with δ D (a i , σ i) = a (i+1)modn , σ i ∈ Σ o , for 1 ≤ i ≤ n
, is said to be SF -uncertain if all nodes in c are non-F-certain and at least one node is an F-uncertain one.

Dénition 28 (SF-indeterminate cycle)

Let c = a 1 , a 2 , . . . , a n be an SF -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn ,

σ i ∈ Σ o , for 1 ≤ i ≤ n.
c is said to be an SF -indeterminate cycle if the following condition holds: (C2) Considering nodes a 1 , a 2 , . . . , a n ∈ D, ∃ x k i ∈ a i , i = 1, . . . , n and k = 1, . . . , m, with x k i ∈ a i .X F for some i and k and:

δ(x k i , s k i σ i) = x k (i+1) , for i = 1, . . . , n -1, k = 1, . . . , m δ(x k n , s k n σ n) = x (k+1) 1 , for k = 1, . . . , m -1 δ(x m n , s m n σ n) = x 1 1 . with s i ∈ Σ * u and for some i, ∃σ f ∈ Σ f s.t. σ f ∈ s i .
In other words, condition (C2) indicates that a cycle c G exists in G such that the event-trace associated with it contains (at least) one fault event (σ f ∈ Σ f) and depicts the same observable sequence (σ 1 , σ 2 , . . . , σ n) m with m ∈ N.

Hereafter, we recall the necessary and sucient condition for a model G to be SFdiagnosable.

Theorem 7 (Necessary & sucient condition for SF -diagnosability) A system model G is SF -diagnosable, w.r.t projection P , class of fault events Σ f and its corresponding class of reset events Σ r , if and only if no SF -indeterminate cycle exists in its corresponding diagnoser D.

Verication of SF -Diagnosability

In fact, checking the existence of an SF -indeterminate cycle can be performed in the same way as for W F -diagnosability, i.e., by generating an indicating sequence (which is associated with the SF -uncertain cycle this time) and then checking if all the element of the indicating sequence are non-empty. Hereafter, we recall the main results.

Dénition 29 (c SF -indicating sequence)

Let c = a 1 , a 2 , . . . , a n be an SF -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn (σ i ∈ Σ o), for 1 ≤ i ≤ n. Also, let us chose the rst node a 1 in c in such a way as to fulll:

a i .X F ∪ a i .X R = ∅.
c SF -indicating sequence ρ c = S 1 , S 2 , . . . , associated with c is an innite sequence of sets of states, such that:

-S 1 = a 1 .X F ∪ a 1 .X R ; -S j = Reach Σu (Img(S j-1 , σ (j-1) modn)), for j > 1.

Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 111

Dénition 30 (Series S c) Let c = a 1 , a 2 , . . . , a n be an SF -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn , for 1 ≤ i ≤ n. ρ c = S 1 , S 2 , . . . is the c SF -indicating sequence. Series S c = S 1 , S 2 , S 3 , . . . corresponding to ρ c , is dened as follows:

S c : N * → 2 X S i = S (1+(i-1)n) , ∀i ∈ N * . (5.4) Proposition 9 Let c = a 1 , a 2 , . . . , a n be an SF -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn (σ i ∈ Σ o), for 1 ≤ i ≤ n. Let ρ c = S 1 , S 2 , .
. . be the c SF -indicating sequence and S c = S 1 , S 2 , S 3 , . . . be its corresponding series. Then, S c reaches a xed-point.

i.e., ∃ k ∈ N * s.t. ∀i ∈ N : S k+i = S k , which means that S (1+(k+i-1)n) = S (1+(k-1)n) .
Proof. The proof of Proposition 9 is omitted as it is similar to that of Proposition 4 in Chapter 4.

Theorem 8 For an

SF -uncertain cycle c = a 1 , a 2 , . . . , a n in D, with δ D (a i , σ i) = a (i+1)modn (σ i ∈ Σ o), for 1 ≤ i ≤ n. ρ c = S 1 , S 2 , .
. . is the c SF -indicating sequence associated with c and S c = S 1 , S 2 , S 3 , . . . be its corresponding series. Then, c is an SF -indeterminate cycle if and only if the xed-point reached by series S c is non-empty.

In other terms, this means that ∀i ∈ N * : S i = ∅.

Proof. The proof of Theorem 8 is omitted as it is similar to that of Theorem 4 in Chapter 4.

A Procedure for Checking SF -diagnosability

It is worth noticing that for the actual verication of SF -diagnosability, a systematic procedure, derived directly from Theorem 8, can be performed as follows:

When an SF -uncertain cycle c is encountered in diagnoser D, we proceed as follows:

Generate the successive elements of c SF -indicating sequence ρ c (starting from S 1), and for each element S i check the following conditions:

1. if S i = ∅, cycle c is not an SF -indeterminate cycle and therefore the procedure is stopped; Example 11 Let us take once again model G (Figure 7) and its diagnoser D (Figure 5.9). Cycle c = a 2 , a 3 is an SF -uncertain one since a 2 and a 3 are both non-Fcertain nodes and also F-uncertain ones. The c SN -indicating sequence associated with c is ρ = S 1 , S 2 , S 3 , . . . , such that S 1 = {9, 6, 5, 10} = S 3 = S 5 = . . . and S 2 = {7, 12, 8, 11} = S 4 = S 6 = One can observe that ρ is a cycle composed of two (non-empty) sets of states. Therefore, according to Theorem 8 c is an SF -indeterminate cycle, which means that model G is non-SF-diagnosable. Remark 4 Regarding the analysis of SR-diagnosability, it can be performed in an analogous manner to the analysis of SF -diagnosability. Namely, we rst generate a c SRindicating sequence starting from the faulty and recovered sets of states in the SR-uncertain cycle (i.e., a cycle in which all its nodes are non-R-certain and at least one node is an R-uncertain one). Then, one checks if the c SR -indicating sequence takes the form of a prime sequence. If it is the case, then the SR-uncertain cycle is an SR-indeterminate one, and therefore, the model G is non-SR-diagnosable. In the case where the c SRindicating sequence reaches an empty xed -point, then the SR-uncertain cycle is not an SR-indeterminate one.

2. else, if ∃k ∈ N : i = 1 + kn (with n = |c |), then: (a) if S i = S (i-n) = ∅,

Discussion

In this section, we will point out the main features of the proposed approach and some comparative remarks regarding some existing works strictly related to the issues discussed in the current chapter.

• Regarding the intermittent fault modeling, in our work we do not make a dierence between the rst fault occurrence and the other occurrences as done in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], where the states reached by the rst occurrences of faults have a label (F i) dierent from the other states reached after more than one fault occurrence have occurred, which are labeled with F p i . However, this feature does not aect the diagnosability verdict, since assumption (A3) ensures that each fault event occurs indenitely. Thus, if the the model is SF -diagnosable, this means that each fault occurrence can be identied within a nite delay.

• Regarding the diagnoser construction, the initial node of our diagnoser can be an N -(or N F -node) contrarily to Contant's diagnoser, where the initial node is always Nnode. This is due to the fact that in the building procedure of our diagnoser variant, Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 113 the unobservable reachability is computed before the current node is left, whereas in Contant's diagnoser the unobservable reachability is computed (in the observer) once the current node is left. This feature does not aect the diagnosability verdict, since the necessary and sucient condition is established regarding the existence of indeterminate cycles, i.e., SF -indeterminate cycle in our work and F p i -indeterminate cycle in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF].

• The extension of our approach to deal with multiple fault classes can be performed in the same manner as usually done in the classic diagnoser-based approaches [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. That is, we can either build one specic diagnoser for each fault class.

Alternatively, on can build a single diagnoser that simultaneously tracks all the fault types. This means to extend the diagnoser node structure; i.e., for instance, for a system containing m fault classes, each diagnoser node a contains 2m + 1 subsets of states (some of them may be empty): X N , X F i , and X R i , for = 1, . . . , m. It should be noticed that in such cases, these state subsets are not necessarily disjoint.

• In our approach, the diagnoser is constructed by considering the unobservable reachability to the left (see the construction procedure in Section 5.6). Therefore, the general setting of the inverse projection mapping P -1 L is considered, i.e., without restriction to the event-sequences which terminate with an observable event. This is dierent from the diagnoser approaches proposed in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Contant et al., 2004] where the ε-reduction is considered when building the diagnoser.

That is, the inverse projection mapping P -1 L is restricted to the event-sequences that terminate with an observable event. Consequently, regarding the diagnosability of intermittent faults (for example the SF -diagnosability), it is possible that an SF -indeterminate cycle (called F P -indeterminate cycle in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]) exists in our diagnoser variant, while it does not exist in the diagnoser proposed in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]. In other terms, the diagnosability property in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], Sampath et al., 1995] refers to the ability to discriminate between the sequences that share the same observation and that all end with an observable event.

However, in our case, we also consider any unobservable continuation following the last observed event. Therefore, the diagnosability decision may be dierent between the two approaches. Namely, it is possible that a system that is diagnosable in the sense of [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] is not diagnosable considering our projection mapping. For instance, the diagnosability decision can be dierent between the two approaches when only one observable event exists between the fault occurrence and its reset event. In this case and to comply with the context of [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], it is sucient to add a condition that checks this particular case. Let us explain 114 Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis such a particular case using the following example. Example 12 Consider automaton G shown in Figure 5.10 and taken from [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]. The sets of observable and unobservable events are Σ o = {a, b, c, d, e} and Σ u = {f, r}, respectively. In addition, Σ f = {f } and Σ r = {r}. Diagnoser D corresponding to model G is depicted in Figure 5.11. One can observe that it contains two SF -uncertain cycles: c 1 = a 2 , a 3 , a 4 and c 2 = a 5 , a 6 . Let us denote by ρ 1 and ρ 2 are the indicating sequence corresponding to c 1 and c 2 respectively. It is plain that c 1 is non-SF-indeterminate cycle, since for i = 7 : S i = ∅. However, c 2 is an SFindeterminate cycle since ∀i ∈ N : S i = ∅. therefore, model G is non-SF-diagnosable.

In [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], this model is assumed to be SF -diagnosable (more precisely Type-F p -diagnosable, according to the denition in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]). In fact, there is no contradictory between these two results, since the two results are obtained under a dierent assumption regarding the projection mapping P . Let us consider the observable sequence s = abcda. In one hand, according to [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]] P -1 (s) = {f arbcdf a}, which is only one event sequence that reaches a faulty states (i.e., state 17). Therefore, the model is SF -diagnosable. In the other hand, according to our assumption, P -1 (s) = {f arbcdf a, f arbcdf ar}, which consists in two event sequences that respectively reach a faulty state (state 17) and recovered state (state 18). Therefore, it is not possible to decide about the recovery status of the system.

A Still Open Issue

In this chapter, we have discussed various notions of diagnosability of intermittent faults, regarding the detection/identication of the fault event occurrences and their reset event occurrences within nite delays. However, we have not taken into account the multiplicity A stronger version of the diagnosability property consists in detecting each fault event occurrence in a nite delay, but also before that it resets. Hereafter, we give the formal denition of such a property.

Dénition 31 (F r -diagnosability) An FSA G is said to be F r -diagnosable w.r.t. projection P , fault class Σ f and corresponding reset event class Σ r , if the following holds:

[∀s ∈ ψ(Σ f)] (∀t ∈ L/s ∧ t ∈ ψ(Σ r)) ⇒ D Fr
where diagnosability condition D Fr is:

∃ t < t : ∀ ω ∈ [P -1 L (P (s.t))] ⇒ (ω) = F with ψ(Σ r) = {s = (σ 1 , σ 2 , . . . , σ n) ∈ L | ∀1 ≤ i < n : σ i / ∈ Σ r ∧ σ n ∈ Σ r }
is the set of nite event-traces in L that have only the last event in Σ r .

The above denition means the following: let s be a nite event-trace in L that ends with a faulty event, t be any nite continuation of s that ends with a reset event but does not hold any reset event before this last event. Condition D Fr then requires that any nite event-trace that shares the same observation with s.t, shall experiment a faulty behavior between the moment of the fault occurrence and its recovery. In simple words, when a fault event occurs, one needs to be able to detect it and identify the faulty status of the system before its recovering. In the same way, we can dene its deal version R f -diagnosability, which consists in detecting and identifying that the system reaches a recovered status after each occurrence of reset event and before any new occurrence of the corresponding fault event.

Remark 4 F r -diagnosability allow us to detect each occurrence of a fault event before its recovery, which means that we can also determine how many times a fault has occurred.

Using such a denition, it becomes possible to link our fault diagnosis framework with the ones discussed in [START_REF] Jiang | Diagnosis of repeated / intermittent failures in discrete event systems[END_REF], Yoo and Garcia, 2004, Yoo and Garcia, 2009, Zhou and Kumar, 2009, Garcia and Yoo, 2005], which deal with fault diagnosis of repeated faults, i.e., the ability to determine how many times a fault has occurred.

We have introduced and discussed the concept of F r -diagnosability in our work [START_REF] Boussif | Using model-checking techniques for diagnosability analysis of intermittent faults -a railway case-study[END_REF]. In parallel, Fabre et al. [START_REF] Fabre | Diagnosability of repairable faults[END_REF] have introduced a similar denition called T -diagnosability, where the only dierence is that faults are considered to be repairable, i.e., the recovery of the fault is a controllable (and then observable) action which can be generated by the controller. In [START_REF] Fabre | Diagnosability of repairable faults[END_REF], the authors propose a necessary and sucient condition for the analysis of F r -diagnosability (or T -diagnosability)

on the basis of an augmented diagnoser, i.e., a parallel composition of the diagnoser and the system model, and they show that checking such a notion of diagnosability is PSPACE-complete. However, this technique is only applied to deterministic model. In addition, the authors argue that the twin-plant technique is not sucient to check such a diagnosability property since it cannot be characterized by pairs of equivalent paths, i.e., diagnosability is rather a global property on classes of observable-equivalent traces.

For the best of our knowledge, there is no work that proposes a necessary and sucient condition for F r -diagnosability derived directly from the well-known diagnoser-based or twin-plant based approaches.

Conclusion

In this chapter, we have extended the diagnoser-based approach, which we have developed in Chapter 4, in order to deal with diagnosability of intermittent faults of DESs. The present chapter represents an improvement of the diagnoser-based approach introduced in Chapter 4 while dealing with Petri nets. It consists in building a symbolic diagnoser called Symbolic Reachability diagnoser (SRD) for both analyzing diagnosability and performing the online diagnosis. In particular, to obtain a compact representation of the diagnoser state-space, the nodes are encoded using a symbolic representation, i.e., Binary Decision Diagrams. However, the arcs linking the diagnoser nodes remain in an explicit representation.Furthermore, a necessary and sucient condition for diagnosability analysis of PNs is derived on the basis of the proposed structure, and a systematic procedure for checking such a condition is proposed. Finally, we provide an on-the-y algorithm to simultaneously construct the symbolic diagnoser and analyze diagnosability. In order to evaluate the eciency and the scalability of the proposed approach, an experimental and comparative analysis relative to other existing technique is presented and discussed, on the basis of a Petri net benchmark. The work presented in this chapter is the subject of publications at VeCOS'15 [Boussif et al., 2015] and two submitted journal papers to IJCCBS [START_REF] Boussif | Intermittent fault diagnosis of industrial systems in the model-checking framework[END_REF] and IEEE-SMC [Boussif et al., 2016a].

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser

This chapter is structured as follows: in Section 6.2, a brief survey of fault diagnosis in Petri net (PN) framework is presented. In Section 6.4, basic PN notations and the denition of diagnosability are introduced. In Section 6.5, the concept of BDDs and the construction of the symbolic observation graph is discussed. Section 6.6 is devoted to discussing the construction of SRD. In Section 6.7, we discuss the diagnosability analysis using the SRD structure. In Section 6.8, an on-the-y algorithm for simultaneously constructing the SRD and checking diagnosability is proposed. Section 6.9 presents some experimentations to illustrate the eectiveness and the scalability of our approach while taking the MBRG/BRD approach [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF] as a reference. Finally, Section 6.10 draws some concluding remarks.

Petri Net Based Fault Diagnosis

The early works that addressed fault diagnosis issues mostly considered nite state automaton models [Lin, 1994, Sampath et al., 1995, Zad et al., 2003, Jiang and Huang, 2001[START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], Cimatti et al., 2003]. Afterwards, fault diagnosis issues have also been dealt with within the Petri nets (PNs) framework [START_REF] Lefebvre | Diagnosability of petri nets with observation graphs[END_REF], Lefebvre et al., 2013, Wen et al., 2005, Ramírez-Treviño et al., 2007, Basile et al., 2008, Basile et al., 2009, Basile et al., 2010, Lefebvre, 2014, Lefebvre and Delherm, 2007, Basile, 2014, Jiroveanu and Boel, 2010, Cabasino et al., 2009a, Germanos et al., 2015, Madalinski and Khomenko, 2010, Ushio et al., 1998, Chung, 2005, Jiroveanu and Boel, 2004, Cabasino et al., 2010[START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF][START_REF] Liu | Toward an ecient approach for diagnosability analysis of DES modeled by labeled Petri nets[END_REF], Li et al., 2015c].

PNs were created by German mathematician Carl Adam Petri for the purpose of describing chemical processes [Petri, 1966]. PNs are a graph-based mathematical formalism that allow the analysis and verication of concurrent system behavior, based on their graphical and mathematical representations [Murata, 1989].

The diagnosis approaches based on PN models can be classied into two main classes:

1) Methods based on the structural representation of PNs

The mathematical foundation underlying PNs, allows the use of standard techniques, such as Integer Linear-Programming (ILP) to perform online diagnosis and investigate diagnosability. Regarding the diagnosability investigation, various sucient conditions have been proposed. Authors in [START_REF] Wen | A polynomial algorithm for checking diagnosability of Petri nets[END_REF] have proposed an approach for analyzing diagnosability by checking the structural properties of T -invariants under the assumption that the net marking and the transitions are partially observable. In [START_REF] Ramírez-Treviño | Online fault diagnosis of discrete event systems. a Petri net-based approach[END_REF], an interpreted diagnoser has been developed for fault diagnosis of interpreted Petri nets (IPNs), where a sucient condition has also been developed on the basis of T -invariant properties. A linear-programming-based polynomial algorithm has been es-Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 121

tablished in [START_REF] Wen | A polynomial algorithm for checking diagnosability of Petri nets[END_REF] for computing a sucient condition of diagnosability. In a series of works [START_REF] Basile | Sucient conditions for diagnosability of Petri nets. 9 th International Workshop on Discrete Event Systems[END_REF], Basile et al., 2009, Basile et al., 2010], Basile et al. have developed two conditions regarding diagnosability: the rst is a necessary condition, while the second is a sucient one. The elaborated technique uses the concept of g-marking introduced for online fault detection and used to derive an interpreted diagnosser, i.e., an algorithm based on the online solution of ILP problems [START_REF] Basile | An Ecient Approach for Online Diagnosis of Discrete Event Systems[END_REF]. More recently, a necessary and sucient condition for analyzing K-diagnosability (i.e., diagnosability in k steps) was established in [Basile et al., 2012a] on the basis of an ILP optimization tool.

The general idea of these approaches based on structural representations of PNs, is to develop an interpreted diagnoser that, based on the observable transitions, infers the current status of the system, by using an ILP algorithm [START_REF] Basile | Improving on-line fault diagnosis for discrete event systems using time[END_REF], Dotoli et al., 2009, Basile et al., 2009].

2) Methods based on the behavioral representation of PNs

The behavioral representation can be advantageously used to extend the automatabased approaches so as to deal with fault diagnosis of Petri nets by considering its reachability grah. In fact, this consists in building some particular graphs to deal with diagnosis issues, which lead to reduce sizes with respect to the reachability graph [Basile, 2014].

Some interesting works were inspired from the twin-plant/verier approaches [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], Cimatti et al., 2003]. In [START_REF] Jiroveanu | The diagnosability of Petri net models using minimal explanations[END_REF], an automaton called `ROF -automaton' is used for checking the diagnosability of bounded nets by adapting the verier approach [START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF].

ROF -automaton is eciently constructed on the basis of the computation of the minimal explanations of faults, which serves to generate a state-space that is signicantly smaller than the reachability graph. The authors in [Cabasino et al., 2009a] have developed an approach for analyzing diaganosability of unbounded Petri nets on the basis of a net called `verier net' and the corresponding coverability graph. In fact, the verier net is obtained by a (parallel) composition of the PN model and a copy that depicts only the normal behavior. Similar approaches, in the sens of considering parallel composition of PNs, have been proposed in [Germanos et al., 2015, Madalinski andKhomenko, 2010], with the particularity that the diagnosabilily issue was reduced to an LTL-X model-checking problem and solved using parallel model-checking based on Petri net unfoldings. As mentioned earlier in this thesis, the main drawback of the approaches based on veriers/twin-plant approaches, is that they deal only with diagnosability analysis and do not consider online diagnosis.

Actually, the diagnoser-based approaches [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Zad et al., 2003] (which consist in constructing observers/diagnosers) remain the principal techniques which deal with both diagnosability analysis and online diagnosis. Consequently, these approaches 122 Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser have been extended in order to cope with PN models. In [START_REF] Ushio | Fault detection based on Petri net models with faulty behaviors[END_REF], two kinds of diagnosers (ω-and ω-rened diagnosers) have been proposed and a sucient condition for diagnosability of unbounded PNs, under the assumption that the net marking is observable and all transitions are unobservable is established. The authors in [Chung, 2005] have discussed a similar approach with the assumption that only a subset of transitions is observable. In [START_REF] Jiroveanu | Contextual distributed diagnosis for very large systems[END_REF], an approach for fault detection of bounded PNs was proposed using a reduced observer and a backward analysis on the net structure.

Also, an approach for online diagnosis of bounded PNs was proposed in [START_REF] Cabasino | Fault detection for discrete event systems using Petri nets with unobservable transitions[END_REF]. It consists in constructing a compiled diagnoser, called Basis Reachability Graph (BRG), by using the concept of minimal explanations. Actually, the minimal explanations are ring count vectors associated with the set of minimal sequences of unobservable transitions that explain the ring of an observable transition.

Recently, Lefebvre andLeclercq [Lefebvre andLeclercq, 2015, Lefebvre et al., 2013] have proposed an approach to deal with diagnosability of both bounded and unbounded

Petri nets under partial observation (regarding both transitions and places). The main idea behind this work is to transform the coverability graph into an observation graph that encodes all the observation sequences with respect to a sensor conguration. The aim of such graphs is to represent all observation sequences collected with a given measurement function and also to encode all ring sequences consistent with the observation sequences.

On the basis of the analysis of paths and circuit in the observation graph, a necessary and sucient condition is established.

The main approach which deals with both online diagnosis and oine diagnosability analysis has been proposed in [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF]. In this approach, two graphs are presented: an observer called `modied basis reachability graph' (MBRG) and a diagnoser called `the basis reachability diagnoser' (BRD). Although in most of the cases these two graphs are in general smaller than the reachability graph, the proposed procedure to build the MBRG can require a number of steps equal to the cardinality of the reachability graph.

Furthermore, the proposed diagnosability test requires to check the existence of cycles in the BRD, which, in the worst case, implies an exponential complexity in time [Basile et al., 2012a].

Recently, an on-the-y approach for analyzing diagnosability and K/K min -diagnosability was proposed in [Liu, 2014[START_REF] Liu | Toward an ecient approach for diagnosability analysis of DES modeled by labeled Petri nets[END_REF]. The approach consists in constructing, on the y, two graphs, called FM-graph and FM-set graph, and simultaneously analyzing diagnosability. Moreover, the generated FM-set graph can be used for performing online diagnosis when the PN model is diagnosable. The key point of this approach is that, in general, only a part of the reachability graph is generated to investigate diagnosability and perform online diagnosis. Some improvements of this approach, using the minimal Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 123

explanation concept and T -invariant properties were proposed in [Li et al., 2015c[START_REF] Li | On-the-y diagnosability analysis of labeled Petri nets using T-invariants[END_REF].

To get a general overview on the literature pertaining to the fault diagnosis of DESs, the reader can refer to the recent surveys [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF] (a general survey), [Basile, 2014] (a survey on PN-based approaches) where theoretical and practical issues are discussed.

Motivation of the Approach

On the basis of the behavioral representation, diagnoser-based approaches remain the principal techniques which deal with both diagnosability analysis and online diagnosis. Nevertheless, as discussed in Section 4.1, these approaches mainly suer from some diculties.

Namely, the high complexity of constructing the diagnoser, the need of an intermediate model and the double-checking procedure for analyzing diagnosability. In the previous chapters (Chapters 4 and 5), we have presented an ecient diagnoser variant approach, which partially overcomes these issues, as witnessed by the experimental results in Section 4.6. Nevertheless, we have pointed that the main drawback of our approach is the number of nodes (in terms of memory) in the diagnoser, due to the unobservable reachability. In fact, the nodes of our diagnoser may contain a large number of the model states that are reachable through unobservable sequences after the occurrence of an observable event. To deal with this issue of memory consumption in the diagnoser, we want to investigate the symbolic representation using binary decision diagrams (BDDs). In fact, BDDs can eciently encode and manage the sets of states in the diagnoser nodes.

The proposed technique is inspired from the Symbolic Observation Graph (SOG) [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker. 2 nd International Symposium on Automated Technology for Verication and Analysis[END_REF]Petrucci, 2008] which combines symbolic and enumarative representations in order to build a deterministic observer from a partially observed model. The symbolic observation graph was rstly used for the formal verication using event-based model-checking as an ecient alternative to the Kripke structure.

In fact, the approach we develop allows for analyzing the diagnosability of bounded labeled PNs and for performing the online diagnosis on the basis of a deterministic symbolic automaton called SRD, for `Symbolic Reachability Diagnoser', derived directly from the PN model. The SRD has a particular structure, which consists in separating normal markings from faulty ones in each diagnoser node and then encode the two obtained subsets using BDDs. This aims in one hand at reducing the memory requirements and on the other hand at speeding up the verication process. On the basis of this structure, we propose a systematic procedure to check the necessary and sucient condition for diagnosability using only the SRD (as presented in Chapter 4). An on-the-y algorithm In what follow, we point out the main features of the proposed approach:

1. The approach provides a new structure for representing the diagnoser nodes. Such a structure explicitly separates the normal markings from the faulty ones in each node. This feature serves to track normal and faulty traces more eciently.

2. The approach combines enumerative and symbolic representations to construct the diagnoser. The main idea consists in:

• using binary decision diagrams (BDDs) to compact and handle the sets of markings in the diagnoser nodes, which serves to reduce the memory consumption;

• using an explicit representation for the (observable) transitions that link the diagnoser nodes. Such a representation allows for an easy exploration of the SRD paths.

3. In the same way as for existing diagnoser-based approaches, the SRD serves to both check diagnosability and perform online diagnosis.

4. In the developed approach, the SRD is directly built from the original LPN without requiring to construct any intermediate model as usually done in the diagnoserbased approaches, e.g., generator or pre-diagnoser in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], MBRG in [START_REF] Cabasino | Diagnosability of discrete-event systems using labeled petri nets[END_REF], FM-graph [Liu, 2014].

5. On the basis of the SRD structure, a sucient condition for checking the undiagnosability of LPNs is derived. Such a condition is used for the on-the-y verication of diagnosability. Therefore, the model is stated to be non-diagnosable as soon as such a condition is met, without needing to build and analyze the whole state-space of the SRD.

6. The developed approach provides a systematic procedure for checking the necessary and sucient condition for diagnosabilily (i.e., the existence or not of Findeterminate cycle) without using any intermediate model. This procedure serves to improve the verication time.

7. An on-the-y depth-rst search algorithm for both constructing the SRD and verifying diagnosability simultaneously is proposed. Such an algorithm serves to generate as small state-space as possible and then, improves the memory/time consumption.

In addition to the above-mentioned features, a dedicated tool, called `DPN-SOG' tool (for Diagnosability analysis of Petri Nets using Symbolic Observation Graphs) implementing the proposed approach has been developed. In order to assess the eciency and Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 125

the scalability of the approach, some experimentations have been conducted through a PN benchmark.

In the section below, we briey recall the syntax and semantics of the bounded labeled Petri nets (LPNs), as well as the diagnosability analysis of such models.

6.4 Preliminaries

m = m + C • t i ,
where t i ∈ {0, 1} |T | is a vector in which only the entry associated with transition t i is equal to 1, the other entries are 0. Then, marking m is said to be reachable from marking m by ring the transition t i , also denoted by m [t i > m .

A sequence of transitions s = t 1 t 2 . . . t k is rable at marking m, denoted by m [s >, A marking m is reachable in (N, m 0) if and only if there exists a ring sequence s such that m 0 [s > m. The set of all markings reachable from m 0 denes the reachability set of (N, m 0) and is denoted by R(N, m 0).

if ∃m 1 , m 2 , m k-1 s.t. m [t 1 > m 1 [t 2 > • • • m k-1 [t k >.
A PN (N, m 0) is bounded if the number of tokens in each place does not exceed a nite number b ∈ N for any marking reachable from m 0 . Formally,

∃ b ∈ N s.t. ∀m ∈ R(N, m 0), ∀p ∈ P : m(p) ≤ b. A PN is live if, no
matter what marking has been reached from m 0 , it is possible to ultimately re any transition of the net by progressing through some further ring sequence [Murata, 1989]. Formally, ∀m ∈ R(N, m 0), ∀t ∈ T, ∃s ∈ T * : m [s.t >.

A labeled Petri net (LPN) is a tuple N L = (N, m 0 , Σ, ϕ), where (N, m 0) is a marked PN, Σ is a nite set of events (i.e., labels) and ϕ : T → Σ is the transition labeling function. ϕ is also extended to sequences of transitions, ϕ : T * → Σ * . The language generated by

N L is L(N L) = {ϕ(s) ∈ Σ * | s ∈ T * , m 0 [s >}. For short, we write L instead of L(N L).
126 Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser Also, one should notice that various transitions can share the same event label, i.e., ϕ is not bijective. We denote by T σ the set of transitions sharing the same event σ, i.e., T σ = {t ∈ T : ϕ(t) = σ}.

Diagnosability of LPNs

Due to the partial observability, the set of transitions is partitioned as T = T o T u , where T o is the set of observable transitions, and T u is the set of unobservable transitions. The set of unobservable transitions is also partitioned into two subsets T u = T f T reg where T f is the set of fault transitions while T reg includes the regular (i.e., non-faulty) unobservable transitions. As we deal with labeled Petri nets, the event set Σ can also be partitioned into two disjoint sets, Σ = Σ o Σ u , where Σ o is a nite set of observable events and Σ u is a nite set of unobservable events. Fault events denoted by set Σ f are unobservable, thus Σ f ⊆ Σ u . Moreover, the set of unobservable events can be partitioned into two disjoint sets, Σ u = Σ f Σ reg , where Σ reg = Σ u \Σ f is the set of regular unobservable events, i.e., non-faulty unobservable events. In addition, the set of fault events Σ f can be further partitioned into various fault classes, i.e., Σ f = m i=1 Σ f i , where Σ f i (i = 1, 2, . . . , m) denotes the i th class of faults.

Let P o : Σ * → Σ * o be the projection mapping which erases the unobservable events in any given sequence u ∈ Σ * . The inverse projection operator P -1

o is dened as P -1 o (v) = {u ∈ L | P o (u) = v} for v ∈ Σ * o .
Given a live and prex-closed language L ⊆ Σ * and an event-sequence u ∈ L, the post-language of L upon u denoted by L/u is L/u = {v ∈ Σ * | uv ∈ L}. We denote by |u| the length of event sequence u, and the i th event of u by u i . Also, for a ∈ Σ and u ∈ Σ * , we write a ∈ u if ∃ i s.t. u i = a. By abuse of notation, we note

Σ f i ∈ u to indicate that ∃f i ∈ Σ f i s.t. f i ∈ u.
Without loss of generality, in the sequel we will consider one single fault class Σ f . The generalization of the technique to multiple fault classes is performed in the same way as discussed in Section 4.5.3.

Dénition 32 (Diagnosability of LPNs)

A given LPN N L is diagnosable w.r.t. fault class Σ f and projection P o if:

(∃ n ∈ N) (∀u ∈ L, u |u| ∈ Σ f) (∀v ∈ L/u): |P o (v)| ≥ n ⇒ [∀ω ∈ P -1 o (P o (uv)) : Σ f ∈ ω].
The above denition means that an LPN is diagnosable if for every trace u ending with a fault event (which corresponds to a fault transition) of type Σ f , and for any suciently long continuation v of u, all traces ω having the same observable projection of uv contain at least one fault event. In other words, diagnosability of an LPN implies that each occurrence of a fault can be detected after a nite number of transition rings.

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 127

In what follows, we consider the following assumptions that the LPN model under investigation has to fulll:

• The LPN is deadlock-free, i.e., every reachable marking enables at least one transition;

• The LPN is bounded with an upper bound b ∈ N + , i.e., ∀p ∈ P, M (p) ≤ b;

• The LPN has a known structure as well as a known initial marking m 0 ;

• The LPN has no executable cycle of unobservable transitions.

• The faults are permanent, i.e., the model remains innitely faulty after the occurrence of a fault.

Example 3 Let us consider the LPN N L in Figure 6.1, where the set of observable transitions is T o = {t 2 , t 5 , t 7 } and the set of unobservable transitions is

T u = {t 1 , t 3 , t 4 , t 6 }.
The labeling function is ϕ(t 1) = ϕ(t 3) = ε, ϕ(t 2) = a, ϕ(t 5) = ϕ(t 7) = b, and ϕ(t 4) = ϕ(t 6) = f . In Figure 6.1, the observable transitions are depicted with grey boxes, regular transitions are in white boxes, while faulty transitions are depicted with red boxes. Let us consider observable sequence ω = (ab) * . One can observe that the innite ring sequences s 1 = (t 1 t 2 t 5) * and s 2 = (t 1 t 4 t 2 t 5) * share the same observation ω and that s 1 is fault-free while s 2 contains faulty transition t 5 . Consequently, there is no nite delay upon which one can infer the fault occurrence with certainty. Thus, according to Denition 32, LPN N L is non-diagnosable. In this section, we recall the concept of symbolic observability graph (SOG) introduced in [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker. 2 nd International Symposium on Automated Technology for Verication and Analysis[END_REF], as an abstraction of the partially observed labeled transition Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser systems (and by extension, the reachability graph of Petri nets) for the purpose of the verication using LTL-X model-checking. Firstly, we recall the concept of binary decision diagrams (BDDs).

p 0 t 1 (ε) p 1 t 2 (a) p 2 t 3 (ε) p 3 t 4 (f) t 5 (b) p 4 t 7 (b) t 6 (f)

Binary Decision Diagrams

Binary decision diagrams (BDDs), introduced by [Akers, 1978] and improved in [Bryant, 1992], are compact (i.e., symbolic) representations of Boolean functions that enable the encoding and implicit manipulation of sets of states and/or transitions, with no need for explicit enumeration. Nowadays, BDDs are used in a wide range of research areas, such as formal verication, AI planning, etc.

Dénition 33 (binary decision diagram (BDD))

A BDD is a rooted, directed acyclic graph with:

• one or two terminal nodes of out-degree zero labeled false or true;

• a set of variable nodes u of out-degree. The two outgoing edges are given by two functions: low(u) and high(u);

• a variable var(u) is associated with each node.

In order to express operations on Boolean functions in terms of ecient graph algorithms, the BDD needs to be reduced and ordered.

Dénition 34 (Ordered BDD) A BDD is ordered (OBDD), if on all paths through the graph, the variable respect a given linear order

x 1 < x 2 < • • • < x n . Dénition 35 (Reduced OBDD)
An OBDD is reduced (ROBDD), if the following properties hold: 1. Uniqueness: no two distinct nodes u and v have the same variable name and lowand high-successor, i.e., var(u

) = var(v) ∧ low(u) = low(v) ∧ high(u) = high(v)) ⇒ u = v;
2. Non-redundant tests: no variable node u has identical low-and high-successors, i.e., low(u) = high(u).

For instance, for safe Petri nets (where every place is marked with at most one token), one can consider each marking as a Boolean vector v = {0, 1}

F R (s) := 1, if s ∈ S 0 otherwise (6.1)
Example 4 Let us consider a safe Petri net containing four places p 0 , p 1 , p 2 , p 3 , and let S be the set of markings where only one place is marked. The truth table of the corresponding characteristic function is shown in Table 6.1.

In order to construct the BDD graph associated with this example, we dene V = {v 0 , v 1 , v 2 , v 3 } as the set of totally ordered variables (e.g., v 0 < v 1 < v 2 < v 3). The constructed BDD, depicted in Figure 6.2, is actually an ROBDD, since there are no isomorphic sub-graphs and no redundant nodes. Dotted (resp. solid) outgoing arc of a node u represents the successor low(u) (resp. high(u)). A path leading to a true leaf corresponds to a marking in S. In [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker. 2 nd International Symposium on Automated Technology for Verication and Analysis[END_REF], the authors introduced the SOG as an abstraction of the reachability graph of concurrent systems and proved that the verication of an event-based formula of LTL-X on the SOG is equivalent to the verication on the original reachability graph. The main idea is to combine the on-the-y construction and the compact representation (using BDD techniques) of the model, in order to check LTL-X state-based properties over nite models. Thus, instead of composing the whole system with the Buchi automaton representing the negation of the formula to be checked, the authors propose to make the synchronization of the automaton with an abstraction of the original reachability graph of the system.

p 0 p 1 p 2 p 3 f R 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 - 0 v 0 v 1 v 1 v 2 v 2 v 3 v 3 f alse true
In order to dene the SOG and then dene symbolic reachability diagnoser (SRD), we introduce the following notations:

• Given a subset of transitions T ⊆ T , we dene Enable T (m) = {t ∈ T | m [t >}, as the set of transitions in T that are enabled at marking m.

The extension to a subset of markings

M ⊆ R(N, m 0), is Enable T (M) = {t ∈ T | ∃ m ∈ M : m [t >}
which denotes the set of transitions in T enabled at a marking belonging to M , i.e., Enable T (M) = m∈M Enable T (m).

• Given a subset of markings M ⊆ R(N, m 0) and a transition t ∈ T , we dene

Img(M, t) = {m ∈ R(N, m 0) | ∃m ∈ M : m [t > m }
as the set of markings reachable from the markings in M by ring transition t.

The generalization to a subset of transitions T ⊆ T is Img(M , T) = t∈T Img(M , t).

• Given a marking m ∈ R(N, m 0) and a subset of transition T ⊆ T , we dene

Reach T (m) = {m} ∪ {m ∈ R(N, m 0)|(∃s ∈ T *) : m [s > m } as the set of
markings reached by ring a sequence of transitions in T from marking m (will be used particularly for the unobservable reachability).

The generalization of this notion to a subset of markings

M ⊆ R(N, m 0) is Reach T (M) = m∈M Reach T (m).
The construction of the SOG is guided by the set of events occurring in the formula to be checked. Such events are said to be observable while the other events are unobservable. The SOG is then represented as a graph where each node (called an aggregate) is a set of states (reachable by ring unobservable events) handled eciently using BDD techniques [Bryant, 1992]. Aggregates of the SOG are linked by edges which are labeled with observable events. The SOG is said to be hybrid, since it is both an explicit and a Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 131 symbolic structure: the graph is represented explicitly while the nodes are sets of states encoded and managed symbolically.

Despite the theoretical exponential complexity of the size of a SOG, it has a very moderate size in practice (see [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker. 2 nd International Symposium on Automated Technology for Verication and Analysis[END_REF] for the theoretic details and [START_REF] Klai | Modular construction of the symbolic observation graph[END_REF] for experimental results). In the following, we rst dene what an aggregate formally is, before providing a formal denition of a SOG associated with an LPN.

Dénition 36 (aggregate) Consider an LPN N L = (N, m 0 , Σ, ϕ), with N = (P, T, P re, P ost) and T = T o T u . An aggregate a is a non-empty set of markings satisfying: m ∈ a ⇔ Reach Tu (m) ⊆ a.

In fact, each aggregate in the SOG contains the markings reachable through the ring of an input observable transition and all the successor markings reachable through the ring of a sequence (possibly empty) of unobservable transitions.

Dénition 37 (Symbolic Observation Graph) The symbolic observation graph G associated with an LPN N L = (N, m 0 , Σ, ϕ) is a deterministic graph, G = A, Σ o , → Σo , a 0 , with Σ o is the set of observable events and:

1. A is a nite set of aggregates such that: a) a 0 ∈ A is the initial aggregate and

a 0 = Reach Tu (m 0). b) ∀ a ∈ A, ∀ σ ∈ Σ o , if ∃ m ∈ a,∃ t ∈ T σ , ∃ m ∈ R(N, m 0): m [t > m then,
Reach Tu (m) ⊆ a for some aggregate a and (a, σ, a) ∈→ Σo ; 2. → Σo ⊆ A × Σ o × A is the transition relation, obtained by applying 1.b).

The SOG can be constructed by starting with the initial aggregate a 0 and iteratively adding new aggregates as long as the condition of 1.b) holds (see [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker. 2 nd International Symposium on Automated Technology for Verication and Analysis[END_REF] for the construction algorithm). In fact, the SOG can be viewed as an observer [START_REF] Cassandras | Introduction to discrete event systems[END_REF] whose macro-states are represented symbolically.

Example 13 Let us consider the LPN N 1 depicted in Figure 6.3 with its reachability graph. The set of observable transitions is T o = {t 2 , t 5 } and the set of unobservable transitions is

T u = {t 1 , t 4 }. The labeling function is ϕ(t 1) = ϕ(t 4) = ε, ϕ(t 2) = a, ϕ(t 5) = b.
The SOG corresponding to LPN N 1 is depicted in Figure 6.4. It is composed of three aggregates, each one contains a set of markings, with m 0 = 2 0 0, m 1 = 1 1 0, m 2 = Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser In this section, we discuss how the SOG can be used in order to build a symbolic diagnoser, which we call `symbolic reachability diagnoser (SRD).

p 0 t 1 (ε) p 1 t 2 (a) p 2 t 4 (ε) t 5 (b) 1 1 0 2 0 0 start 1 0 1 0 2 0 0 1 1 0 0 2

The Structure of the Diagnoser Node

In order to capture the main feature for analyzing diagnosability, which is to keep tracking the ambiguous behavior of the system, i.e., normal and faulty executions that share the same observable event sequence, we modify the structure of the aggregates of the SOG.

Therefore, each node in our diagnoser (SRD) is partitioned into two distinct subsets of markings, each of them is encoded using a BDD.

1. the set of normal markings (denoted by M N), which is the subset of markings in the node that are reachable by ring faulty-free sequences.

2. the set of faulty markings (denoted by M F), which is the subset of markings in the node that are reachable by ring faulty sequences. Moreover, there may exist some faulty transitions that link some markings in M N to some others in M F within the same node. The existence of such transitions is also encoded within each node using a Boolean variable. The general structure of the diagnoser node is depicted in Figure 6.5.

We will show in the sequel how such a structure of the SRD nodes can be advantageously explored for rendering diagnosability analysis more eciently than using the classic structure of diagnosers [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Cabasino et al., 2014].

According to this structure of nodes, one can dierentiate between three types of diagnoser nodes, in the same way as in the classic diagnoser approaches:

• N-certain diagnoser node: is a diagnoser node of which the set of faulty markings is empty (M F = ∅);

• F-certain diagnoser node: is a diagnoser node of which the set of normal marking is empty (M N = ∅);

• F-uncertain diagnoser node: is a diagnoser node of which neither the normal set, nor the faulty set of markings, is empty, i.e., M N = ∅ and M F = ∅.

In order to simplify the notation, we use a.M N (resp. a.M F) to indicate the set of normal markings M N (resp. set of faulty markings M F) of a given diagnoser node a.

Denition of the SRD

The SRD can be dened as a directed deterministic graph, where each node is composed of two BDDs encoding the subsets of normal and faulty markings, while the arcs are labeled by observable events.

Dénition 38 (Symbolic Reachability Diagnoser)

The SRD associated with an LPN N L is a directed deterministic graph D = Γ, Σ o , δ D , Γ 0 , with N = (P, T, P re, P ost) and T = T o T u , where:

1. Γ is a nite set of diagnoser nodes; 2. Σ o is a nite set of events associated with a nite set of observable transitions T o ; 3. Γ 0 is the initial diagnoser node with: a

) Γ 0 .M N = Reach Treg (m 0); b) Γ 0 .M F = Reach Tu (Img(Γ 0 .M N , T f)). 4. δ D : Γ × Σ o → Γ is the transition relation, dened as follows: ∀a, a ∈ Γ, σ ∈ Σ o : a = δ D (a, σ) ⇔ a .M N = Reach Treg (Img(a.M N , T σ)) ∧ a .M F = Reach Tu (Img(a .M N , T f) ∪ Img(a.M F , T σ))
where

T σ = {t ∈ T : ϕ(t) = σ}.
In summary, SRD D is constructed as follows: let the current node be a and let σ be an observable event, such that:

∃ t ∈ T σ ; ∃ m ∈ M N ∪ M F : m [t >
The target diagnoser node a reachable from a by occurrence of σ is computed following the rules below:

1. If Enable T (a.M N) ∩ Enable T (a.M F) ∩ T σ = ∅, then: • a .M N = Reach Treg (Img(a.M N , T σ)) • a .M F = Reach Tu (Img(a .M N , T f) ∪ Img(a.M F , T σ)) 2. If Enable T (a.M N)\Enable T (a.M F) ∩ T σ = ∅, then: • a .M N = Reach Treg (Img(a.M N , T σ)) • a .M F = Reach Tu (Img(a .M N , T f)) 3. If Enable T (a.M F)\Enable T (a.M N) ∩ T σ = ∅, then: • a .M N = ∅ • a .M F = Reach Tu (Img(a.M F , T σ))
These aforementioned rules preserve a specic fault propagation scheme regarding the assumption that faults are assumed to be permanent. Such rules can be summarized in three points as depicted in Figure 6.6:

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 135

• From an N -certain diagnoser node, either an N -certain diagnoser node or an Funcertain one can be reached;

• From an F -certain diagnoser node, only F -certain diagnoser nodes can be reached;

• From an F -uncertain diagnoser node, either an F -uncertain, an N -certain or an F -certain diagnoser node can be reached.

Since all the successors of an F -certain node are also F -certain, it is unnecessary to build them (i.e., the subsequent F -certain nodes) because they do not bring new information from the diagnosis point of view. Indeed, as regards diagnosability analysis, and given the necessary and sucient condition of diagnosability established in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], only the analysis of F -uncertain cycles is necessary. Thus, as faults are permanent, one can be certain that no such cycles can exist subsequently to an F -certain node. As for online diagnosis, based on the SRD, once an F -certain node is reached, one can be sure that the system will remain indenitely faulty.

It should be noticed here that the fault propagation rules of the SRD are dierent from those of the classic diagnosers [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Cabasino et al., 2014]. Indeed, an Fcertain diagnoser node cannot be reached directly from an N -certain diagnoser node. This is due to the fact that in the building procedure of the SRD, the unobservable reachability is computed before the current node is left, i.e., before considering the occurrence of any further observable event.

N -certain F -uncertain F -certain Figure 6.6 Fault propagation on the SRD

In the same way as in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], we dene the F -uncertain and the F -indeterminate cycles.

Dénition 39 (F-uncertain cycle)

A cycle c = a 1 , a 2 , . . . , a n , with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n, in SRD D, is said to be an F -uncertain cycle, if ∀i : 1 ≤ i ≤ n : a i is an F -uncertain diagnoser node.
Dénition 40 (F-indeterminate cycle) An F -indeterminate cycle in the SRD is an F -uncertain cycle that corresponds to at least, one faulty-free cycle in LPN N L and at least, one faulty cycle. 136 Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser

Authors in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] have established a necessary and sucient condition for diagnosability using this particular cycles. In fact, it has been established that a system model is diagnosable if and only if no F -indeterminate cycle exists in its corresponding diagnoser.

Example 14 A part of the SRD corresponding to the LPN in Figure 6.1 (introduced in Example 3), which is constructed on the y, is shown in Figure 6.7. The generated markings are enumerated in Table 6.2. The initial node (a 0) is composed of the initial marking m 0 of the LPN and markings m 1 and m 2 reachable from m 0 by ring unobservable transition t 1 . These three markings represent the set of normal markings of node (a 0). As faulty transition t 4 can be red from the set of normal markings then (a 0) also contains a set of faulty markings reachable by ring unobservable transitions. Node (a 1) is the successor node of (a 0) by considering the ring of observable transition t 2 (labeled by event a).

One can observe that observable transition t 2 is enabled from both sets of normal markings a 0 .M N and faulty markings a 0 .M F of node (a 0). Therefore, according to the fault propagation rules, node (a 1) obviously contains both sets of normal and faulty markings. The set of normal markings of (a 1) contains markings reachable from the set of normal markings of (a 0) by the occurrence of observable transition t 2 and the regular transitions enabled directly after t 2 . The set of faulty markings of (a 1) is composed of markings reachable from the set of faulty markings of (a 0) by the occurrence of the observable transition (t 2) and the unobservable transitions enabled after t 2 . In addition to that, it also contains markings reachable from the set of normal markings in (a 1) by the ring of faulty transitions t 1 and t 6 and the unobservable transitions enabled after these faulty transitions.

Diagnoser node (a 2) is reached after the ring of transition t 7 (labeled with event b) and it contains only a set of faulty markings (a 2 .M N = ∅). Thus, it is an F -certain node. As F -certain nodes are unnecessary for analyzing diagnosability, and since we deal with permanent faults, the subsequent nodes, are not constructed.

The rest of nodes are constructed on the y using the same reasoning. Regarding the diagnosability analysis, once a cycle appears, it will be checked whether it is an Findeterminate one or not. If it is, the constructing procedure of the SRD is stopped. We underline that the dotted lines are optionally used for guiding the construction and tracking the normal (in green) and faulty (in red) traces. However, in the actual construction of the SRD, these lines are not built. Moreover, the dashed line, representing the faulty transitions can be replaced by a Boolean variable associated with each diagnoser node (true if faulty transitions exist and f alse otherwise).

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 137

Actually, they are compacted and managed using BDDs as illustrated in Section 6.5.2.

Thus, each node is represented using two BDDs: the rst BDD encapsulates the set of normal markings and the second one corresponds to the set of faulty markings.

• (ω, T f) = N if ∀s ∈ P -1 o (ω), ∀σ f ∈ Σ f : σ f /
∈ s, which means that no fault transitions exist in all the ring sequences consistent with the observation ω. Thus, the reached node in the SRD, after the occurrence of ω is an N -certain node (i.e.,

M F = ∅) ; • (ω, T f) = F if ∀s ∈ P -1 o (ω), ∃σ f ∈ Σ f : σ f ∈ s,
which means that at least one fault transition exists in each ring sequences consistent with the observation ω. Thus, the reached node in the SRD, after the occurrence of ω is an F -certain node (i.e.,

M N = ∅);

0

[2 0 0 0 0] τ [10 00 00 00 00] τ 1

[1 1 0 0 0] τ [01 01 00 00 00] τ 2 [0 2 0 0 0] τ [00 10 00 00 00] τ 3 [1 0 1 0 0] τ [01 00 01 00 00] τ 4 [0 0 2 0 0] τ [00 00 10 00 00] τ 5

[1 0 0 1 0] τ [01 00 00 01 00] τ 6 [0 0 1 1 0] τ [00 00 01 01 00] τ 7 [0 0 1 0 1] τ [00 00 01 00 01] τ 8 [0 0 0 2 0] τ [00 00 00 10 00] τ 9 [0 0 0 1 1] τ [00 00 00 01 01] τ 10 [0 0 0 0 2] τ [00 00 00 00 10] τ 11

[0 1 1 0 0] τ [00 01 01 00 00] τ 12

[0 1 0 1 0] τ [00 01 00 01 00] τ 13

[0 1 0 0 1] τ [00 01 00 00 01] τ 14 [1 0 0 0 1] τ [01 00 00 00 01] τ

• (ω, T f) = U if ∃ (at least) s 1 , s 2 ∈ P -1 o (ω) s.t. ∀σ f ∈ Σ f : σ f / ∈ s 1 and ∃σ f ∈ Σ f : σ f ∈ s 2 ,
which means that two ring sequences consistent with the observation ω exist such that one ring sequence is fault-free and the other one contains at least one faulty transition. Thus, the reached node in the SRD, after the occurrence of ω is an F -uncertain node. Remark 5 As faults are assumed to be permanent, once the obtained diagnosis state is certainly faulty ((ω, T f) = F), it is unnecessary to keep computing the diagnosis states for the continuations of the observable sequence, since all the successive diagnosis states will be certainly faulty. Thus, the subsequent of F -certain nodes are not constructed in the SRD. Remark 6 In the SRD, the initial node can be an F -uncertain node contrarily to the classic diagnoser approaches where the initial diagnoser node is assumed to be normal. In fact, this is due to the way we handle the unobservable reachability in the SRD construction procedure, which is computed before the current node is left (using the Reach operator, See Section 6.6.2). This feature does not aect the correctness of the diagnosis function, since a fault transition can be red directly from the initial marking of the LPN (as shown in Example 1).

Without considering the markings held in the node, the SRD is used for the on-line diagnosis. In fact, for each new observable event the diagnosis state is updated accordingly.

Besides, for the online diagnosis, only the types of nodes are depicted as a tag in the node when the model is diagnosable, which serves to save memory and to speed up the output diagnosis state. Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 139

Diagnosability Analysis Using The SRD

Regarding the diagnosability analysis, Sampath et al. [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] have established a necessary and sucient condition for diagnosability on the basis of the generator and diagnoser models. In fact, it consists in checking the existence of F -indeterminate cycles in the diagnoser.

The same condition has been reformulated in [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF] for analyzing diagnosability of bounded labeled Petri nets. Actually, this condition is used by most compiled diagnoser-based approaches [Liu, 2014, Ushio et al., 1998, Zad et al., 2003].

Computationally, the analysis of such a condition consists in a double-check procedure upon the diagnoser, as discussed in Chapter 4.

Aiming to tackle this issue, we have proposed in Section 4.3.4 a reformulation of the necessary and sucient condition for the analysis of diagnosability on the basis of the new structure of the diagnoser and we have developed a systematic approach for the actual verication such a condition without needing any intermediate model. Hereafter, we adapt these theoretical results to the SRD. The proofs are omitted as they are similar to that provided in Chapter 4.

Proposition 10 Let c = a 1 , a 2 , . . . , a n be an

F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n.
Then, there exists at least one fault-free cycle in LPN N L that shares the same observation (σ 1 , σ 2 , . . . , σ n) * .

This result is interesting for checking F -indeterminate cycles, using both the classic diagnoser-based approaches and the SRD. It is, in fact, sucient to check that an Funcertain cycle in the diagnoser corresponds to a faulty cycle in the original model (or the intermediate model), without checking the existence of the faulty-free cycle (since this is plain henceforth).

Proposition 11 Let c = a 1 , a 2 , . . . , a n be an

F -uncertain cycle in D with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n. Hence, if ∀1 ≤ i ≤ n : Img(a i .M N , T f) = ∅, then c is an F -indeterminate cycle.
This result means that if in all the diagnoser nodes of an F -uncertain cycle no faulty transition from the normal set of markings to the faulty one exists, therefore this cycle is an F -indeterminate cycle.

Remark 7 Proposition 11 can be viewed as a sucient condition for non-diagnosability, since an LPN is non-diagnosable if the condition in Proposition 11 is satised by the SRD. Then, the diagnosability analysis is stopped as soon as the condition in Proposition 11 is 140 Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser met. In this case, the SRD will be constructed partially. Indeed, as will be discussed in Section 6.8, diagnosability analysis will be performed simultaneously on the y as the SRD is set up. Such a feature would speed up the diagnosability analysis; in particular when the LPN model is non-diagnosable.

Necessary and Sucient Condition for Diagnosability

In this section, we discuss a reformulation of the necessary and sucient condition for diagnosability on the basis of the SRD. Firstly, we introduce the notion of `indicating sequence' associated with a given F -uncertain cycle, which will be used to establish the necessary and sucient condition.

Dénition 42 (c -indicating sequence) Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D (the starting node a 1 can be arbitrarily chosen in the cycle), with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n. c -indicating sequence ρ c = S 1 , S 2 , . . . , is an innite sequence of sets of markings, such that:

-S 1 = a 1 .M F ;

-∀ i > 1 : S i = Reach Tu (Img(S i-1 , T σ (i-1) modn));
In fact, the c -indicating sequence tracks the subsets of faulty markings in each node of c without considering the faulty markings generated through the occurrence of some faulty transitions outgoing from the normal set of markings in the traversed nodes (except for S 1 which holds all the faulty states of a 1 .M F , i.e., S 1 = a 1 .M F).

Actually, the c -indicating sequence is introduced with the aim of tracking the actual faulty cycles corresponding to a given F -uncertain cycle, if such cycles exist in the original model.

Figure 6.8 depicts an F -uncertain cycle c = a 1 , a 2 , . . . , a n and its corresponding cindicating sequence ρ c = S 1 , S 2 , Proposition 12 Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n, and let ρ c = S 1 , S 2 , . . . be the c -indicating sequence associated with c . Therefore, the following property holds true:

∀k ∈ N * : S 1+nk ⊆ S 1+n(k-1)
The above-mentioned proposition means that, by ignoring the faulty transitions from the normal sets of states into the faulty ones in the same node, one can ensure the (nonstrict) inclusion relationship, after covering the event-trace (σ 1 , σ 2 , . . . , σ n) k times, between S i+nk and S i+n(k-1) , for 1 ≤ i ≤ n and ∀k ∈ N * . Proposition 13 Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D, with δ D (a i , σ i) = a (i+1)modn for 1 ≤ i ≤ n, and let ρ c = S 1 , S 2 , . . . be the c -indicating sequence associated with c . Therefore, the following property holds:

∃ k ∈ N : ∀ i ∈ N : S (1+(k+i)n) = S 1+(kn)
Proposition 13, establishes the fact that there exists an index i from which c -indicating sequence ρ c shows a repetitive bloc of length n: [S (i+1) , S (i+2) , . . . , S (i-1+n) S (i+n)] with S (1+i+n) = S i (i.e., a cycle). Phrased dierently, ρ c always takes one of these two forms:

1. A prime sequence: a non-cyclic elementary sequence (possibly empty) S 1 , S 2 , . . . , S i , connected to an elementary cycle (S (i+1) , S (i+2) , . . . , S (i-1+n) , S (i+n)) * , with S (i+1+n) = S i+1 (See Figure 6.9 (a));

2. A nite sequence of non-empty elements followed by an innite number of empty elements: S 1 , S 2 , . . . , S i for i ∈ N * , with S (i+k) = ∅, ∀k ∈ N * (See Figure 6.9 (b)); It is worth noticing that for the actual verication of diagnosability, a systematic procedure, derived directly from Theorem 9, can be performed as follows:

When an F -uncertain cycle c is found in SRD D, then:

• generate the successive elements of c -indicating sequence ρ c (starting from S 1), and for each element S i check the following conditions:

Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 143

1. if S i = ∅, then cycle c is not an F -indeterminate cycle and therefore the procedure is stopped;

2. else, if S i = ∅ and ∃k ∈ N : i = 1 + kn (with n = |c |), then:

(a) if S i = S (i-n) , then cycle c is an F -indeterminate cycle and stop the procedure;

(b) otherwise, continue.

This procedure is repeated on each F -uncertain cycle generated (on the y) in D.

It is worth underlining that, on the basis of Proposition 13, one can be certain that the above procedure terminates since a xed-point will ultimately be reached (within a nite delay).

On-the-y Verication Algorithm

In this section, we develop an on-the-y depth-rst search (DFS) algorithm for constructing the SRD and for verifying diagnosability simultaneously. Constructing the SRD on the y serves to avoid the systematic generation of the whole state-space of the diagnoser. That is, on one hand, one does not need to construct the part, of the diagnoser, following F -certain nodes, since such a part is unnecessary for analyzing diagnosability and performing online diagnosis (in the case where the LPN is diagnosable). On the other hand, when the LPN is non-diagnosable, we stop constructing the diagnoser as soon as an F -indeterminate cycle is found. Moreover, the proposed algorithm rstly checks the sucient condition for non-diagnosability, proposed in Proposition 11. Thus, as soon as such a condition is met, the LPN is stated to be non-diagnosable and the verication process is stopped without checking the necessary and sucient condition.

The following functions and data structures are used in the elaborated algorithm: foreach (Tσ ∈ Tn) do Regarding the diagnosability verication, the paths of interest are generated (and explored) from the set of observable transitions enabled from the set of normal markings of the current node (i.e., T n). It should be noticed that Boolean variable tag associated with each diagnoser node and initialized to F alse is used for checking the sucient condition given in Proposition 11.

M n = ReachT reg (Img(Mn, Tσ)) Y nf = ReachT u (Img(M n , T f)) Y f = ReachT u (Img(M f , Tσ)) a .MN = M n if (Y nf ⊂ Y f) then M f = Y f ; a .tag = T rue a .MF = M f else M f = Y nf = ∅ a .MF = M f List_Labels.Add(σ) if (∃ a ∈ Γ | a = a); then a = δ(a, σ) if (a ∈ List_Nodes) then Cycle_Nodes = List_Nodes.Copy(Index(a), End) Cycle_Labels = List_Labels.Copy(Index(a), End) if (IsU ncertain(Cycle_Nodes)) then foreach (a ∈ Cycle_Nodes do if (a.tag = F alse) then bool = F alse if (bool = T rue) then return T rue if (Check_Indicating_Sequence(G, a , Cycle_Lables)) then return T rue else List_Nodes.Add(a) else Γ = Γ ∪ {a } a = δ(a, σ) T n = EnableΣ o (M n); T f = EnableΣ o (M f) Diagnoser_Construct (G, D, T n , T f , M n , M f) RemoveLast(List_Nodes) RemoveLast(List_Labels) foreach (Tσ ∈ T f \Tn) do M N = ∅ M F = ReachT u (Img(MF , Tσ)) a .M n = M N a .M F = bdd_Reduce(M F , Tu) if (∃ a ∈ Γ | a = a); then a = δ(a, σ) else Γ = Γ ∪ {a }, a = δ(a, σ)

Algorithm 6 Check_Indicating_Sequence() function

Input: G, a , Cycle_Event, Int i, n Output: Boolean value Function Check_Indicating_Sequence()

S1 = a .MF , i = 1, n = |Cycle_Event|, List_Nodes1.Add(S1) while (Si = ∅) do S (i+1) = ReachT u (Img(Si, Tσ (i+1) modn)) if (i mod n) then if ((i ≥ n)&(S (i+1) = S (i-n+1)) then return (T rue) else List_Nodes1.Add (Si), i + + return F alse
The computation of a new node a , reachable by the occurrence of an observable event σ from node a, is completed by the `Reach' operation upon the enabled unobservable sequences. If diagnoser node a has already been encountered (i.e., a similar diagnoser node has already been computed) then the diagnoser is updated by only adding a new arc towards this node (cf. Algorithm 7, Lines 14, 15). In this case, function IsU ncertain() checks if node a belongs to an F -uncertain cycle (cf. Algorithm 7, line 19). If so, then the sucient condition proposed in Proposition 11 is rstly checked by analyzing if all tags of the diagnoser nodes in this F -uncertain cycle are T rue (c.f. Algorithm 7, Lines 20-21), which means that the F -uncertain cycle is an F -indeterminate one. In this case, the function Diagnoser_Construct() returns T rue and the verication process is stopped. If the sucient condition is not satised, the necessary and sucient condition Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 147

for diagnosability is checked using the proposed procedure in Section 6.7.2.

In practice, function Check_Indicating_Sequence() (c.f. Algorithm 6) is launched in order to compute the successive elements of ρ c associated with a given F -uncertain cycle. If a generated non-empty element S i (with i > n) is equal to S (i-n) , T rue is returned, which means that the cycle is an F -indeterminate one. Thus, Algorithm 4

outputs that the LPN model is non-diagnosable and the diagnoser construction procedure is stopped. Otherwise, an empty element will ultimately be generated, and therefore F alse is returned, which means the cycle is not F -indeterminate. The construction procedure is hence continued in a recursive manner. Once all the branches of interest are constructed and explored with no F -indeterminate cycle has been met, Algorithm 4 outputs that the LPN model is diagnosable.

Experimentation

A tool, called DPN-SOG (for Diagnosability analysis of Petri Nets using Symbolic Observation Graphs) [Boussif et al., 2017], implementing the proposed approach was developed in C++ programming language. DPN-SOG consists in a modied and re-implemented version of

ObsGraphTool [START_REF] Klai | Modular construction of the symbolic observation graph[END_REF], which is a BDD-based tool implementing various verication approaches for workows/PNs using symbolic observation graphs [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker. 2 nd International Symposium on Automated Technology for Verication and Analysis[END_REF].

In order to assess the eectiveness and the scalability of the SRD approach, we reuse the benchmark of Figure 4.11, which was introduced in Chapter 4 (See Section 4.6.1 for more details). The obtained results are discussed with respect to a reference approach for fault diagnosis of LPNs, called MBRG/BRD technique [START_REF] Cabasino | Diagnosability of discrete-event systems using labeled petri nets[END_REF]. In fact, the MBRG/BRD technique is implemented as a MATLAB Toolbox called PN_DIAG tool [Pocci, 2012]. It allows generating the whole state-space of the MBRG and the BRD graphs of an LPN, which respectively are more or less equivalent to the generator and the diagnoser in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], but for PNs, and then performing the diagnosability analysis (for more details about MBRG/BRD technique and PN_DIAG tool, one can refer to [START_REF] Cabasino | Diagnosability of discrete-event systems using labeled petri nets[END_REF][START_REF] Cabasino | A comparison among tools for the diagnosability of discrete event systems[END_REF], Pocci, 2012]). It should be noticed that the experiments have been performed on 64-bit PC (CPU: Intel Core i5, 2.5 GHz, RAM: 6GB). We x 5 hours as a maximum analysis duration above which we consider that the tool failed to return a result.

We evaluate the memory/time eciency of our approach while varying the number of observable and unobservable transitions in the model. Thus, we consider the following parameters: m = 1, b = 10, and k = 4. Transitions t 0 and t 1 are observable while transitions f i ∈ T f are faulty (for 1 ≤ i ≤ 4). Test 2: transitions t i,10 are observable (for 1 ≤ i ≤ 4), in this case the model is diagnosable.

Concerning the reset of transitions, we rst consider them unobservable and then after each simulation, we increase the number of observable transitions in the model (by returning to observable transition in each production line of the benchmark), i.e., we increment the number of observable transitions after each simulation, from 2, 6,. . . , until 38 observable transitions, for Test 1 and from 6, 10,. . . , until 42 observable transitions for Test 2. Finally, it should be noticed that for the sake of clarity each transition symbol is considered also as its label (i.e., ϕ(t 0) = t 0).

Experimental Results

The experimental results are summarized in Table 6.3, where:

Obs is the number of observable transitions in the considered model; `Diag' is the time required for giving diagnosability verdict using MBRG/ BRD approach.

One has to note that the PN_DIAG Tool takes a mathematical model of the LPN as an input, and has rst to compute the whole state-space of the MBRG graph and then generate the whole state-space of BRD graph. Both graphs are then used for analyzing diagnosability by searching F -indeterminate cycles [START_REF] Cabasino | Diagnosability of discrete-event systems using labeled petri nets[END_REF]. Our tool, DPN-SOG Tool, takes an LPN in prod format [START_REF] Varpaaniemi | Prod 3.2 an advanced tool for ecient reachability analysis[END_REF] as an input and simultaneously has to generate the SRD state-space on the y while analyzing diagnosability. Thus, once an F -indeterminate cycle is found, the construction of SRD and the verication process is stopped to avoid generating the whole state-space. In the F -indeterminate cycle is found, the construction/verication process is stopped and the model is stated to be non-diagnosable (without necessarily building the whole state-space of the diagnoser). Consequently, the diagnosability verdicts are given in less than one second even for large values of Obs.

In the case of diagnosable models (i.e., Test 2), the SRD approach potentially needs to construct a larger part of the diagnoser state-space. Consequently, the verication process checks all the F -uncertain cycles that exist in the diagnoser. Thanks to the systematic procedure for checking diagosability (established in Section 6.7.2), the verication time is not too much aected (it remains in the order of seconds for large number of observable events, i.e., Obs).

The eciency of the symbolic representation can be clearly shown in the case of diagnosable models (i.e., Test 2) since a larger part of the SRD state-space is potentially generated (contrarily to the case of non-diagnosable models where only a small part of the SRD is generated). One can observe that for the same reachability statespace (i.e., 14642 markings and 58566 transitions), the required memory to build the SRD increases proportionally with the number of observable transitions. In fact, the symbolic representation leads to an important memory saving when the model contains a large number of unobservable transitions. That is, when the SRD nodes contain a large number of markings (which corresponds to the case of a large number of unobservable transitions in the model), then the corresponding BDDs will be eciently compacted. This is due to the fact that BDDs are particularly convenient Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser to represent large sets of markings. However, when The SRD nodes contain a few number of markings, it is more dicult to compact them using BDDs. Thus, this explains the considerable memory consumption when the model contains a large number of observable transitions. In fact, when the number of observable transitions increases in the model, the SRD converges to the classic diagnosers [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF][START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF] in terms of memory required for the diagnoser construction, which decreases the eciency of the symbolic representation.

6.9.2.2 A comparative Analysis with the MBRG/BRD approach It is worth recalling that for MBRG/BRD approach, the PN_DIAG tool rstly needs to generate the MBRG graph and thereafter the BRD graph to nally analyze diagnosability.

In the case of non-diagnosable models (i.e., Test 1), our approach is largely more ecient compared to the MBRG/BRD approach. This is a logical result since our approach is based on the on-the-y technique for generating the diagnoser and analyzing diagnosablity (as explained above).

Our approach remains more ecient when there is a large number of unobservable transitions compared to the MBRG/BRD approach in the case of diagnosable models (Test 2). This may be explained through three points:

1. Our approach only constructs one graph since diagnosability analysis is performed directly on the diagnoser.

2. The systematic procedure for checking F -indeterminate cycles allows reducing the verication time compared to the MBRG/BRD (since it suers from the double-check issue discussed earlier in this chapter).

3. Our approach generates only the necessary part of the SRD for analyzing diagnosability and performing online diagnosis contrarily to the MBRG/BRD approach, where the whole state-spaces of the MBRG and BRD graphs are generated to analyze diangosbaility.

As shown in Table 6.3, when the model contains more than 30 observable transitions, PN_Diag tool spends more than 5 hours without generating the BRD and thus without deciding the diagnosability. However, our tool generates the SRD and analyzes diagnosability in few seconds.

Regarding the diagnosability analysis using PN_DIAG tool, some accident quits occur during its running (i.e., an exit without any output results). This may be

Summary

This chapter discusses the practical verication of permanent fault diagnosability in a model-checking framework. In fact, the diagnosability issue is reformulated as a modelchecking problem and then tackled using model-checking techniques. The diagnosability condition is expressed using CTL formula while the twin-plant structure is transformed into a Kripke structure and, therefore, diagnosability is investigated as a model-checking problem. Moreover, we reformulate the K-diagnosability issue in model-checking framework and we discuss the problem of K min -diagnosability (the minimal value of K ensuring diagnosability). Finally, some illustrations are provided through a benchmark.

The work presented in this chapter is the subject of publications in DCDS'15 [Boussif and Ghazel, 2015a] and MSR'15 [START_REF] Boussif | Une approche par décomposition de modèles pour l'analyse de la diagnosticabilité des seds par model-checking. 10 eme Colloque sur la Modélisation des Systèmes Réactifs[END_REF]].

Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 159 applied in the development process of diagnosis systems. The main advantage of the proposed approach is that the actual verication is performed using a model-checking tool.

Fortunately, a wide range of powerful and optimized model-checkers have been developed

in the formal verication community and successfully used for the verication/validation of large scale industrial systems. Such tools can be used for the verication of diagnosability using the practical framework proposed in [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], Pecheur et al., 2002].

The work we propose in this chapter is based on this practical approach [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], where some improvements and extensions to deal with various fault diagnosis problems are discussed.

Model-Checking

Techniques for automatic formal verication of nite state transition concurrent systems have been developed in the last three decades to the point where major chip design companies are beginning to integrate them into their normal quality assurance process. The most widely used of these methods is called Model-Checking [START_REF] Biere | Bounded model checking[END_REF]. Modelchecking is originated from the independent work of two pairs in the early eighties: Clarke and Emerson [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching time temporal logic[END_REF] and Queille and Sifakis [START_REF] Queille | Specication and verication of concurrent systems in cesar[END_REF]. Model-checking is an automatic formal verication technique that is widely applied to the design of complex dynamic systems (communication protocols, hardware design, software design, etc.). It allows for verifying whether the behavior of a system (modeled by a Kripke structure) satises a given property (expressed in a property specication language) or not using ecient algorithms based on an exhaustive exploration of the system behavior. A counter-example is generated if the system does not satisfy the property, which is an interesting feature namely for debugging [START_REF] Clarke | Model Checking[END_REF], Baier et al., 2008] .

The model-checking problem can be dened as follows:

Dénition 43 (Model-Checking Problem) Let M be a design (abstraction as a transition system) and let p be a specication (expressed in a temporal logic) to be checking. The model checking problem is to nd all the states s (of the system model) such that: M, s |= p.

When applying model checking to a design, the following dierent phases can be distinguished [START_REF] Baier | Principles of model checking[END_REF]:

• Modeling phase: 160 Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 1. model the system under consideration using the model description language of the model checker at hand; 2. formalize the property to be checked using the property specication language.

• Running phase: run the model checker to check the validity of the property in the system model;

• Analysis phase:

1. property satised? → check next property (if any);

2. property violated? → (a) analyze generated counterexample by simulation;

(b) rene the model, design, or property; repeat the entire procedure.

3. out of memory? → try to reduce the model and try again.

The prerequisite inputs to model-checking are (1) a model of the system (a transition system) under consideration and (2) a formal specication to be checked.

The System Modeling

Generally, the systems under verication are modeled by Kripke Structure (for statebased models) or Labeled Transition Systems (for event/transition-based model). Both models are interchangeable in many contexts [START_REF] Reniers | Folk theorems on the correspondence between state-based and event-based systems[END_REF], De Nicola and Vaandrager, 1995, De Nicola and Vaandrager, 1990]. However, the Kripke structure remains the standard representation of models in the model-checking literature.

Dénition 44 (Kripke Structure (KS)) A Kripke Structure is a tuple S, AP, →, L , where S is the set of states; AP is a set of atomic propositions; →⊆ S × S is a total transition relation, i.e. ∀s ∈ S, ∃t ∈ S : (s, t) ∈→; L : S → 2 AP is the state labeling function ;

The notion of a Kripke structure is only a vehicle for illustrating the algorithms. It captures the semantics of the system under investigation. For a concrete design language, the process of extracting a Kripke structure from a given representation may not be that easy. In particular, the size of the system description and the size of the state-space can be very dierent [START_REF] Biere | Bounded model checking[END_REF].

Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 161

The Specication Modeling

To make a rigorous verication possible, properties should be described in a precise and unambiguous manner. This is typically done using a property specication language. The specication languages most used are temporal logics. Temporal logics are basically an extension of traditional propositional logics with operators that refer to the behavior of systems over time. It allows for the specication of a broad range of relevant system properties such as functional correctness (does the system do what it is supposed to do?), reachability (is it possible to end up in a deadlock state?), safety (something bad never happens), liveness (something good will eventually happen), fairness (does, under certain conditions, an event occur repeatedly?), and real-time properties (is the system acting in time?) [START_REF] Baier | Principles of model checking[END_REF].

Linear Temporal Logic (LTL)

Pnueli [Pnueli, 1977] has introduced the linear temporal logic for the specication and verication of the designs. LTL reasons over linear traces of the Kripke structure through time. At each time instant, there is only one real future timeline that is considered.

Conventionally, that timeline is dened as starting `now ', in the current time step, and progressing innitely in the future. LTL formulas are composed of nite set of atomic propositions, Boolean connectives ¬, ∧, ∨, and the temporal connectives: `X' that means `neXt ', `G: Globally',`R: Release', `F : in the Future',`U : Until' Dénition 45 (Syntax of LTL) LTL formulas over the set of atomic proposition (AP) are formed according to the following grammar:

φ ::= true | a |φ 1 ∧ φ 2 | Xφ | φ 1 ∪ φ 2
where a ∈ AP .

Computation Tree Logic (CTL)

CTL is a temporal logic based on propositional logic with a discrete notion of time, and only future modalities. CTL is an important branching temporal logic that is suciently expressive for the formulation of an important set of system properties. It was originally used by [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching time temporal logic[END_REF] and (in a slightly dierent form)

by [START_REF] Queille | Specication and verication of concurrent systems in cesar[END_REF].

CTL has a two-stage syntax where formulas in CTL are classied into state and path formulas. The former are assertions about the atomic propositions in the states and their branching structure, while path formulas express temporal properties of paths.

ψ ::= true | a |ψ 1 ∧ ψ 2 | ¬ψ | ∃φ | ∀φ
where a ∈ AP and φ is a path formula. CTL path formulas are formed according to the following grammar:

φ ::= Xψ | ψ 1 ∪ ψ 2
where ψ, ψ 1 , ψ 2 are states formulas.

Progress in Model-Checking

The main technical challenge in model-checking is the state explosion problem, since the size of the global transition system can be (at least) exponential in the size of design.

Considerable progress has been made to partially overcome this problem: methods based on abstraction, counterexample-guided abstraction, symbolic representation, and compositional reasoning are used [Emerson, 2008, Clarke et al., 2001]. Indeed, the symbolic model-checking (SMC) [McMillan, 1993, Clarke et al., 1996[START_REF] Biere | Symbolic model checking using sat procedures instead of bdds[END_REF], which is originated from the CTL and Fixpoint based model-checking algorithm uses binary decision diagrams (BDDs) to handle the sets of states and transitions. Currently, with the SMC techniques, it is possible to verify designs modeled with 100 to 300 state variables and having about 10 30 to 10 100 or more global states. In the last decade, SAT-based bounded model-Checking (BMC) [McMillan, 2003, Biere et al., 1999a] has been put forward as an alternative approach. In fact, the SAT-based approaches [START_REF] Prasad | A survey of recent advances in sat-based formal verication[END_REF] can accommodate larger designs than the BDD-based approaches. However, it only explores for `close ' errors at depth bounded by k where typically k ranges from a few tens to hundreds of steps. In general it cannot nd `deep' errors and provide verication of correctness [Emerson, 2008].

A Review on Fault Diagnosis Using Model-Checking

Due to their expressiveness, temporal logics have been used for for a long time in supervisory control of DESs. For instance, [START_REF] Thistle | Control problems in a temporal logic framework[END_REF], Lin, 1991, Ling and Ionescu, 1994, Deshpande and Varaiya, 1996] uses linear-time temporal logic (LTL); [Ostro andWonham, 1990, Ostro, 1989] uses real-time temporal logic (RTTL), [Antoniotti, 1995] uses computation tree logic (CTL). Regarding the fault diagnosis of DESs, the temporal logics provide a general specication for the notion of failures. Thus, in addition to expressing the fault event occurrences and the reachability of faulty states, temporal

Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 163 logics can express more complex kinds of failures such as: a certain set of states should be visited innitely often, or a certain set of states should eventually be invariant, or other invariance, recurrence, and stability properties.

The rst work dealing with fault diagnosis of DESs using temporal logic was made by [START_REF] Darwiche | Exploiting system structure in model-based diagnosis of discrete-event systems[END_REF], where a modeling formalism was proposed. In [START_REF] Cordier | Using model-checking techniques for diagnosing discrete-event systems[END_REF], the authors have discussed how model-checking techniques can be exploited for the diagnosis task by computing trajectories explaining observations generated by the system based on automata behavioral models. In the last fteen years, various approaches and formalism based on the formal specication and model-checking frameworks have been proposed. In what follows, we give an overview of the relevant approaches proposed.

Fault Diagnosis with LTL-based Specications

Fault diagnosis of DES using LTL specications was the subject of S. Jiang's PhD thesis [Jiang, 2002]. In this work, the LTL formulas are used for specifying failures in the system. That is, an innite state-trace of the system is said to be faulty if it violates the given LTL formula. Fault diagnosis in this context can be viewed as a generalization of the language/automata-based fault diagnosis [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], Zad et al., 2003], since it can capture the failure representing the violation of both liveness and safety properties, whereas the prior formal language/automaton-based framework can capture the failures representing the violation of only the safety properties (i.e., the occurrence of faulty events or the reachability of faulty states) [START_REF] Jiang | Failure diagnosis of discrete-event systems with linear-time temporal logic specications[END_REF].

In such a work [Jiang, 2002], diagnosability of DESs is dened in the temporal logic setting and the verication problem is reduced to that of LTL model-checking. Algorithms for performing such a verication of diagnosability and synthesis of a diagnoser are provided. The complexity of the algorithm, for the diagnosability analysis, is exponential in the length of each LTL formula, and polynomial in the number of system states and the number of specications. The problem of the failure diagnosis of intermittent/repeated faults [START_REF] Jiang | Diagnosis of repeated / intermittent failures in discrete event systems[END_REF] has also been studied and the corresponding algorithms were

given in [START_REF] Jiang | Diagnosis of repeated failures for discrete event systems with linear-time temporal-logic specications[END_REF].

Rules-based Model Using First-order LTL

The rules-based models [START_REF] Chandra | A event occurrence rules based compact modeling formalism for a class of discrete event systems[END_REF] are specic assignment program models [START_REF] Kumar | Predicates and predicate transformers for supervisory control of discrete event dynamical systems[END_REF], which can be used for representing DESs. In such a formalism, state-variables and rules for modifying their values are used to compactly model a DES.

The representation of a system with faults in the rules-based modeling formalism is poly-164 Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework nomial in the number of signals and faults (which are assumed to be binary valued). In the rules-based modeling formalism, states correspond to values of certain variables which start from certain initial values and evolve as the events occur. The rule-based models are known to be compact. Thus, developing techniques for failure diagnosis that are able to exploit the compactness of such models is an interesting task.

In this regard, authors in [START_REF] Huang | Diagnosis of discrete event systems in rules-based model using rst-order linear temporal logic[END_REF], Huang, 2003] have developed symbolic techniques based on rst-order temporal logic model-checking for verifying diagnosability.

Moreover, an on-line algorithm for diagnoser synthesis is obtained by using predicates and predicate transformers. First-order linear temporal logic (FOLTL) [Emerson, 1990, Hughes and[START_REF] Hughes | [END_REF] is obtained by taking Propositional linear temporal logic (PLTL)

and endowing it with a rst-order logic. That is, in addition to atomic propositions, Boolean connectives, and temporal operators, it is endowed with variables, functions, and predicates, each interpreted over appropriate domains, and existential and universal quantiers. The diagnosability analysis in the rules-based model, is a generalization of the diagnosability analysis in the automaton setting presented in work [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF].

Fault Diagnosis via Temporal Epistemic Logic

Temporal Epistemic logic (TEL) is an extension of the Epistemic logic (which is used to describe and reason about knowledge of agents and processes) by considering the LTL with past operators. Such an extension is called KL [START_REF] Halpern | The complexity of reasoning about knowledge and time. i. lower bounds[END_REF]] (or LTLK [M¦ski et al., 2012]).

The rst contribution on the basis of TEL was proposed in [START_REF] Cimatti | Applications of model checking for multi-agent systems: Verication of diagnosability and recoverability[END_REF] where a reformulation of diagnosability as epistemic properties is introduced. In this work, the DES model is represented as a deontic interpreted system [Gammie and Van Der Meyden, 2004], in which the diagnoser is a particular agent that stores in its local states the outputs and the commands. The particularity of such an approach, regarding the diagnosability analysis using (a temporal-only) model-checking, is the fact that it does not reason about pair of traces but it considers sets of (observationally) equivalent traces.

In a series of works [START_REF] Bozzano | Formal design of fault detection and identication components using temporal epistemic logic[END_REF], Gario, 2016, Bozzano et al., 2013b, Bozzano et al., 2013a], Bozzano et al. have proposed a formal approach to the design of FDI (Fault Detection and Identication) components for DESs and a logical language for the specication of FDI requirements. More precisely, they have reformulated the diagnosability property and the maximality of the diagnoser, that is, the ability of the diagnoser to raise an alarm, as soon as and whenever, possible, as epistemic properties. Such properties are then checked via epistemic model-checking [Gammie and Van Der Meyden, 2004] using Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 165

the semantics of the alarm conditions [START_REF] Bozzano | Formal design of fault detection and identication components using temporal epistemic logic[END_REF]. In addition, the automated synthesis of a diagnoser according to several TEL specications is discussed.

Fault Diagnosis via Satisability

The Boolean Satisability Problem (SAT) [Cook, 1971] is a dual technique of modelchecking, which is considered as an ecient approach to solving path nding problems such as AI planning. It consists in reformulating a problem as a conjunction of Boolean formula and then determining an interpretation (model) that satises this formula.

In [START_REF] Grastien | Modeling and solving diagnosis of discrete-event systems via satisability[END_REF], authors have proposed a SAT framework for modeling and solving fault diagnosis problems. In this work the diagnosis problem is translated into the propositional satisability problem (SAT) and then solved by the state-of-the-art SAT algorithms. Some experiments have been conducted to demonstrate the applicability of the proposed framework [Grastien andAnbulagan, 2013, Grastien and[START_REF] Grastien | [END_REF].

The incremental diagnosis problem consists in computing the diagnosis of only a temporal window, and then updating the diagnosis by extending the considered temporal window. Such a problem has been tackled by satisability techniques in [Grastien et al., 2008] and solverd using MiniSAT solvers [START_REF] Eén | An extensible sat-solver[END_REF].

Regarding the diagnosability analysis, the authors in [Rintanen et al., 2007b] consider the fact the diagnosability can be viewed as nding paths problem, similarly to AI planning or LTL model-checking, which can be reduced to the satisability problem of the classical propositional logic [Kautz andSelman, 1996, Biere et al., 1999a]. The proposed approach is based on a reformulation of the twin-plant technique [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF], by constructing a formula for which the satiable valuations (of state variables) corresponds to pairs of states that depict the concept of ambiguous traces [Jiang andHuang, 2001, Yoo and[START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF]. Then, the formula is satisable if and only if it is not possible to detect the occurrence of a fault event (for a given event sequence length).

Fault Diagnosis as a Practical Model-Checking Problem

Cimatti et al. [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF] have reformulated the twin-plant technique [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF]] as a symbolic model-checking problem, which can be tackled directely using state-of-the-art symbolic model-checkers. In particular, this denition is based on the notion of critical pairs, which refer to ambiguous behavior in the system. Checking diagnosability is reduced to a reachability analysis problem in the coupled twin plant. In this work, diagnosability is expressed as a CTL/LTL formula and then tackled using a model-checking engine to check whether the model satisfy such a formula. A counterexample is given when the formula is violated. The approach has been tested in a real 166 Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework case-study [START_REF] Bajwa | The livingstone model of a main propulsion system[END_REF] and shown promising results. The particularity of such an approach is that it can be practically implemented, applied and reused for various kinds of real-life systems. Various approaches have been proposed later with the same spirit: [START_REF] Bourgne | Diagnosability of Input Output Symbolic Transition Systems[END_REF] (for input/output symbolic transition systems), [START_REF] Cassez | Fault diagnosis with static and dynamic observers[END_REF] (reducing the diagnosability problem to the Buchi emptiness problem),

and [START_REF] Philippot | Decentralized diagnosis and diagnosability by Model-Checking[END_REF] (for a decentralized framework). Recently, [START_REF] Peres | An operative formulation of the diagnosability of discrete event systems using a single logical framework[END_REF] proposed a generic operative formulation for diagnosability using µ-calculus logic.

The main contribution of this approach is that it deals with the diagnosability issue in a single homogeneous logical framework while using various µ-calculus formula.

The work we propose in this chapter is based on this practical approach [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], where some improvements and extensions to deal with various fault diagnosis problems are discussed.

State-Based Modeling of DESs

The formal verication of diagnosability via model-checking is more suitable for the statebased diagnosis [Lin, 1994, Zad et al., 2003], i.e., where diagnosability consists in detecting if the model reaches bad (faulty) states. Contrarily to Sampath's context [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], in which diagnosability consists of the detection of the fault event occurrences, i.e., an event-based diagnosis. It is possible to transform an event-based FSA into a statebased one. Such a transformation can be performed by means of a label automaton, i.e., a supervision pattern [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF]] Ω = {N, F }, Σ, δ Ω , N , which depicts the dynamic behavior of the system regarding the permanent faults, as illustrated in Figure 7.1.

Therefore, the state-based FSA is obtained by the parallel composition of the event-based model G and the label automaton Ω. One can note that automaton Ω plays the role of the labeling function, which is usually used in fault diagnosis [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF].

N start F Σ f Σ \ Σ f Σ

Diagnosability Analysis

In this section, we review the main denitions and results on the diagnosability analysis using model-checking introduced by Cimatti et al. in various works [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], Bertoli et al., 2007]. Then, we introduce an extended denition of diagnosability and we discuss its formulation as a CTL model-checking problem.

Cimatti's Diagnosability Denition

In [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF] diagnosis is introduced as a function which associates each observable event sequence with a set of conditions; each condition represents a set of of states which satises the same properties. Using such a condition oers a quite generic framework to deal with various fault specication forms (event/state faults, intermittent faults, or complex ones). Hereafter, we give the denition of diagnosis condition.

Dénition 47 (Diagnosis condition [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF]) A diagnosis condition for an FSA Q is a pair of non-empty sets of states c 1 and c 2 ⊆ X, with c 1 ∩ c 2 = ∅, denoted by c 1 ⊥ c 2 .

One can note that the diagnosis condition concept oers a generic frame to deal with various issues. For instance, one can express, Fault detection, i.e. deciding whether any fault has occurred: f ault i ⊥ ¬f ault i .

Fault separation, i.e. distinguishing between dierent faults (or fault classes):

f ault i ⊥ f ault j .
For the sake of simplicity and without loss of generality, we will assume the existence of one single class of faults. Therefore, only the fault detection issue will be dealt with.

Then, if we consider several fault classes, it suces to prove that the system is diagnosable for each kind of fault taken separately. According to [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], we can verify the diagnosability of a diagnosis condition by checking that the plant does not have a pair of nite executions with identical observation, where the nal state of one execution belongs to set c 1 , whereas the nal state of the other execution belongs to set c 2 . We call such a pair of executions a critical pair for the diagnosis condition c 1 ⊥ c 2 .

Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework Dénition 48 (Critical pair) A critical pair in FSA Q relative to a diagnosis condition c 1 ⊥ c 2 , is a pair of feasible executions s 1 and s 2 , both of length t, with identical observation P (s 1) = P (s 2), such that ∃t ∈ N : (c 1 (x t s 1) ∧ c 2 (x t s 2)) holds.

Here c i (x) denotes that state x ∈ c i and state x t s i denotes the reached state upon the t th observable event in execution s i , as illustrated in Fig. 7.2. It is worthwhile noticing that, if we consider that c 1 refers to normal states and c 2 to faulty states, the above denition is equivalent to the ambiguity notion in the sense of [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. Theorem 1 (Necessary and Sucient Condition of Diagnosability [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF]) Considering c 1 a set of normal states and c 2 a set of faulty states, a diagnosis condition c 1 ⊥ c 2 is said to be diagnosable in FSA Q if and only if Q has no critical pair.

According to this theorem, diagnosability consists in verifying if two executions exist, both of length t and with identical observation in which the rst execution leads to a state in set c 1 (normal states) and the second one leads to a state in set c 2 (faulty states).

The existence of such a pair of executions implies that the system is not diagnosable as it corresponds to a critical pair.

Extension of Cimatti's Diagnosability Denition

Diagnosability as dened here before is very important for safety-critical systems in which, knowing the accurate estimation state of system instantaneously after each observation and identifying whether it behaves in normal or faulty behavior, is considered as crucial task.

One can note that Cimatti's denition of diagnosability can be very useful when dealing with safety-critical systems, since it considers that a system is not diagnosable as soon as some ambiguity on the state estimation may occur, i.e. one does not consider the possible Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 169 continuations on the system behavior to decide about diagnosability. Nevertheless, in the original context of [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], the diagnosability property is fullled if ambiguity disappears within a nite delay. Therefore, taking into account the classic denition of diagnosability [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], such a denition can be considered as simplied version of diagnosability with a strong condition, since it does not take into account the evolution of the system state after the last observation t, i.e. it does not take into account the continuations of executions. More precisely and from a quantitative viewpoint, such a denition is equivalent to Zero-diagnosablity, which means `the immediate diagnosability with no delay'.

With the aim of approaching the classic denition of diagnosability [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], which takes into account the evolution of the state estimation after the rst occurrence of the fault, i. e., taking the innite continuation of executions into consideration, before checking whether a system is diagnosable on not, this denition of diagnosability [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF] has to be extended by introducing a novel notion called innite critical pairs. Using this extended denition, it becomes possible to take into consideration, not only the actual state estimation, but also its evolution after the rst occurrence of the fault, and so to give a more accurate decision about diagnosability.

Dénition 49 Given an FSA Q, c 1 and c 2 are two sets of states and c 1 ⊥ c 2 is a diagnosis condition. Two innite feasible executions s 1 and s 2 are said to form an innite critical pair for diagnosis condition c 1 ⊥ c 2 , if and only if,

s 1 , s 2 ∈ Σ * such that P (s 1) = P (s 2) ∧ ∃ t ∈ N | ∀i ≥ t : c 1 (x i s 1) ∧ c 2 (x i s 2)
The above denition means that given two innite feasible executions s 1 and s 2 with identical observation, s 1 and s 2 form an innite critical pair if, from a given step t, s 1 leads to, and stays in, states in condition c 1 innitely, and s 2 leads to, and stays in, states in condition c 2 innitely, as illustrated in Fig. 7.3. Furthermore, it is clear that the denition above corresponds exactly to the denition of indistinguishable innite event-sequence in the original denition of diagnosability [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF].

According to this denition, we can state that the absence of innite critical pairs for a diagnosis condition c 1 ⊥ c 2 over Σ * is a necessary and sucient condition for c 1 ⊥ c 2 to be diagnosable. In order to use model-checking for verifying diagnosability of permanent faults, [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF] proposed a method to formulate the diagnosability issue as a model-checking problem using a temporal logic formulas. Using such a formalism, diagnosability investigation on FSA Q is reduced to the problem of searching critical pairs, which can be done by means of twin-plant construction [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF]. Actually, the search for the critical pairs, i.e., the problem of diagnosability, can be reformulated as a reachability problem on the twin-plant. Indeed, the twin-plant structure is reformulated as a Kripke structure and the necessary and sucient condition for diagnosability, which can be viewed as a safety property, is expressed using a temporal logic formula. In what follows, we discuss such a reformulation.

The Twin-Plant as a Kripke Structure

As presented in Chapter 3, Section 3.5.2. The twin-plant G simply consists of two synchronized copies of the system model, i.e. the transitions are synchronized on the (observable) transitions so that any path in the twin-plant corresponds to a pair of executions in the system model Q that share the same observation.

In order to formulate a twin-plant as a Kripke structure, one can simply encode states (of the two copies of the system model) and the observed events of the twin-plant in the state-space of the Kripke structure, i.e., a state in the Kripke structure is dened as a vector (x 1 , x 2 , σ, φ), where x 1 , x 2 are the states of the system copies and σ is a feasible (observable) event from both x 1 and x 2 , and φ is an atomic proposition associated with each state, and which takes e takes one proposition from {N, F } × {N, F }.

Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 171 7.6.2 Diagnosability Condition as a Temporal Logic Formula

According to [START_REF] Jiang | Failure diagnosis of discrete-event systems with linear-time temporal logic specications[END_REF], the diagnosability property can be considered as a safety specication, which can be expressed using temporal logics. Therefore, the diagnosisability problem, in the sense of [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], is reduced to a reachability problem that can be checked by looking for the existence of critical pairs in a twin plant.

The atomic proposition φ that expresses the diagnosis condition in a state p = (x 1 , x 2 , σ, φ)

of the Kripke structure is: φ : x 1 ∈ c 1 ∧ x 2 ∈ c 2 , shortly, we write φ 1 : c 1 ∧ c 2 . Therefore, the LTL formula which characterizes the reachability of critical pairs for a diagnosis condition c 1 ⊥ c 2 is:

LTL-SPEC:

F (c 1 ∧ c 2)
Such a specication can be read as follows: `there exists a path from the current state in the twin-plant, which contains at least one state that satises the diagnosis condition

c 1 ⊥ c 2 '.
The corresponding CTL specication is:

CTL-SPEC: EF (c 1 ∧ c 2)
The model-checking problem expressing the diagnosability of the diagnosis condition in the sens of [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], i.e., the zero-diagnosability, is:

K G , S G |= ¬ EF (c 1 ∧ c 2)
with K P ×P the Kripke structure corresponding to the twin-plant of P G and S P the set of initial states.

The diagnosability problem, in the sense of [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], i.e., the verication of the innite critical pairs, can be expressed using the following model-checking problem:

K G , S G |= ¬ EF (EG (c 1 ∧ c 2))
which means that no paths exist in twin-plant G where from a state (in the path) the diagnosis condition holds innitely.

K/K min -Diagnosability as a Model-Checking Problem

As discussed in Chapter 3 (Section 3.4.1), the classic denition of diagnosability requires the existence of a nite delay after the occurrence of any fault, which allows for stating with certainty that the fault has occurred [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. Therefore, diagnosability only means the existence of an upper bound without specifying its value. A ner version Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework of diagnosability is called K-diagnosabiliy and requires the quantitative determination of the nite delay (as an integer K). Thus, K-diagnosability means that one can determine with certainty the occurrence of a fault in the system after K observations. Hereafter, we recall the original denition of K-diagnosability introduced by [START_REF] Dallal | Ecient computation of most permissive observers in dynamic sensor activation problems[END_REF] in the context of automata formalism, more precisely in event-based diagnosis.

Dénition 51 [START_REF] Dallal | Ecient computation of most permissive observers in dynamic sensor activation problems[END_REF] A given FSA G, it is said to be K-diagnosable if no pair of event-executions S y , S n ∈ L(G) exists such that: 1. S y has an occurrence of a fault event f ∈ Σ f and S n does not. 2. S y has at least K + 1 events after the fault event f . 3. P (S y) = P (S n).

This means that, for any two event-sequence in the system with the same observation, one faulty and the other normal, the system is said to be K-diagnosable if and only if the two executions do not have K (or more) successive identical observation after the occurrence of the fault.

It is important to state that K-diagnosability is stronger than the classic diagnosability.

Thus, K-diagnosability of a fault always implies its diagnosability, while the converse is not necessarily true [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF]. Furthermore, if a fault is K-diagnosable, it is also (K + 1)-diagnosable, but it is not necessarily (K -1)-diagnosable.

Generally, there are often two main problems to deal with in K-diagnosability. The rst is to analyze K-diagnosability for a given value of K, i.e. if any fault is diagnosable within at most K steps (observable events) after its occurrence. The second is to nd the minimal value of K (K min) for a diagnosable system.

Reformulation of K-Diagnosability Denition

As mentioned in Section 7.5.2, we dene the innite critical pair as two innite feasible executions with the same observation, where the rst one leads to states in c 1 (normal states) and the second leads to states in c 2 (faulty states). We refer to diagnosability as the absence of such an innite critical pair. Roughly speaking, the absence of innite critical pairs means that, after a nite delay either both faulty and normal execution lead to states in the same set of states or they do not generate the same observation any more.

Thus, determining this delay means looking for the number K of observable events from which the diagnosis condition becomes diagnosable.

It is worth noticing that the nite delay for diagnosability can be computed either with the number of observable events (in event-based diagnosis) or with the number of reachable Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 173

states (in state-based diagnosis). There is an equivalence between these two forms, i.e.

if the system is diagnosable in K observable events this means that it is diagnosable in (K + 1) reachable states. As we work in a state-based context, in the remainder of this chapter,K -diagnosability is examined with regard to reachable states. Now, we are ready to state the following denition of K-diagnosability in the context of [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF].

Dénition 52 Given an FSA Q, c 1 and c 2 are two sets of states and c 1 ⊥ c 2 is a diagnosis condition. c 1 ⊥ c 2 is said to be K-diagnosable if no pair of execution s 1 and s 2 exists such that:

1. ∃ t ∈ N | c 1 (x t+i s 1) ∧ c 2 (x t+i s 2) , for 0 ≤ i ≤ K 2. P (s 1) = P (s 2).
In other terms, a diagnosis condition is said to be K-diagnosable, if no pair of feasible executions with identical observation exists, where the system enters and stays in an ambiguous status for more than K reachable states.

K-Diagnosability Reformulation

Our aim now is to reformulate K-diagnosability as a model-checking problem. First, we deal with the problem of checking K-diagnosability for a given value of K.

K-diagnosability is solved by browsing each innite feasible execution in the twinplant and checking if an execution exists where the model state reaches and stays in an ambiguous state (x 1 , x 2) (x 1 ∈ c 1 and x 2 ∈ c 2) for K successive states.

To achieve this task, we dene a delay function that associates each state in an innite feasible execution with the number of the precedent successive ambiguous states. We dene the delay function as follows,

Algorithm 7 Delay function delay : X × X → N ;

delay(x 0 1 , x 0 2) = 0; while (i ≥ 0 :) do if c 1 (x i+1 1) ∧ c 2 (x i+1 2) then delay(x i+1 1 , x i+1 2) = delay(x i 1 , x i 2) + 1; else delay(x i+1 1 , x i+1 2) = 0;
Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 175

K-diagnosability with CTL specication. Furthermore, as is well known, the complexity of CTL model-Checking is ExpTime-Complete [START_REF] Kupferman | Model checking of safety properties. Formal Methods in System Design[END_REF] relatively to the property size. Thus, this method remains impractical for large systems. To overcome this limitation, an alternative approach based on the central feature of model checking which is the generation and analysis of counter-example, can be explored. The main idea is to establish a CTL specication in such a way that, if this specication is violated, then the model-checker generates a counter-example which contains a sequence of successive ambiguous states. The following formula can be used:

CTL-SPEC: ¬ EF (φ ∧ E [φ U ¬ φ])
with φ representing the ambiguous states (c 1 ∧ c 2). By analyzing the concept of the K min -Diagnosability, one can observe that the value k min corresponds to the maximal number of successive ambiguous states which an observable event-sequence may contain. Such a concept can be viewed as the problem of generating of the lengthiest counter-example, known in the model-checking framework. Actually, such a problem cannot be expressed using only one CTL/LTL specication. However, it can be easily expressed using an RT-CTL specication (Real-Time CTL) [START_REF] Alur | Model-checking for real-time systems[END_REF], Larsen et al., 1995, Henzinger et al., 1994, Alur et al., 1993, Cimatti et al., 2000, Bellini et al., 2000]. Such a temporal logic allows expressing the properties with quantitative information regarding the number of events/states or discrete time, for instance, determining the min/max delay between two CTL properties which hold along a path. The NuSMV model-checker [START_REF] Cimatti | NUSMV: a new symbolic model checker[END_REF]] is one among model-checking tools which handle such problems.

The An interesting feature of this benchmark is that it can be extended to n railway tracks to obtain larger models. For more details about the modeling and the development of the Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework benchmark, the reader can refer to [Liu et al., 2014a, Liu et al., 2016, Ghazel and Liu, 2016, Ghazel and El-Koursi, 2014].

As the LC system is modeled by an LPN, we rst generate the reachability graph of the LPN considered with the help of the TINA tool [START_REF] Berthomieu | The tool TINA: Construction of abstract state spaces for Petri nets and time Petri nets[END_REF]. We note that the reachability graph is represented by an automaton in an event-based formalism, i.e. faults are treated as unobservable events rather than faulty states. Thus, we have to make a transformation from the event-based representation to the state-based one (as discussed in Section 7.4).

Before proceeding with tests, we construct the twin-plant as a Kripke structure. It is described as a synchronous composition of two copies of system modules instead of enumerating the whole model. In order to reduce the state-space, we take into account the symmetric property of the twin-plant regarding the ambiguous states. Thus, we consider one copy of the system as to be faulty-free by deleting the faulty states.

Then, the verication task is conducted as follows:

1. Checking diagnosability of Σ F 1 fault class (resp. Σ F 2): we dene the diagnosis condition c 1 ⊥ c 2 , with c 1 the set of normal states and c 2 the set of faulty states w.r.t. fault class. This task is performed using our extended formulation of diagnosability.

Determining the

K min -diagnosability : if the fault class Σ F 1 (resp. Σ F 2)
is diagnosable, we aim to nd the minimal delay ensuring its diagnosability. This task follows the diagnosability verication immediately if the system is diagnosable.

Results and Discussion

The experimental results are summarized in The analysis of diagnosis conditions shows that the 1 st class of faults is diagnosable only for the 1-track LC model where the 2 nd fault class is diagnosable for any number of tracks in the LC model. These results correspond to those obtained in [Liu, 2014].

Once the diagnosability is checked for the fault class Σ F 2 , we immediately proceed to the determination of the value K min ensuring the diagnosability.

We A few seconds are sucient for NuSMV to perform the analysis which is quite promising, given the size of the models dealt with, especially for n = 3. It is worth noticing that no reduction or optimization technique performed on the model. We can see that the runtime when the fault is not diagnosable is greater that the runtime when it is diagnosable. This dierence is mainly due to the delay necessary for generating counterexamples. Compared to the results obtained through the UMDES tool [Liu, 2014], the model-checking based technique provides better results in terms of time cost. Moreover,

(1) our tool decides about non-diagnosability of the rst fault class, however UMDES fails and (2) it investigates also K min -diagnosability which is a ner result than only a verdict about diagnosability.

Conclusion

In this work, we discuss the reformulation of various diagnosability issues in a modelchecking framework. We have rst extended Cimatti's diagnosability denition in the aim of complying with the classic denition [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. Then, we have formulated the K-diagnosability as a model-checking issue using a CTL specication and the K mindiagnosability as a RT-CTL one. These reformulation have been illustrated through a level crossing benchmark. The promising results obtained from the conducted experimentation in our work (and also from other similar works), urge us to extend such a framework in order to deal with more complex types of failures such as faults specied by supervision patterns and other notions for diagnosability of repeated/intermittent faults. Some of these extensions are the subject of the next chapter.

Summary

This chapter focuses on the diagnosability analysis of intermittent faults in discrete-event systems. Various notions of diagnosability introduced in Chapter 5 are carried out, in this chapter, using a twin-plant based approach. Firstly, the necessary and sucient conditions for the weak diagnosability properties are established and proved. Regarding the strong diagnosability properties, necessary conditions are rst deduced (from the necessary and sucient conditions for the weak notions) and, then, the necessary and sucient conditions are provided and proved. On-the-y and incremental algorithms are then established for the actual checking of the elaborated conditions.

The work presented in this chapter is the subject of publications in ICPHM'16 [START_REF] Boussif | Intermittent fault diagnosis of industrial systems in the model-checking framework[END_REF], WoDES [START_REF] Boussif | A twin plant based approach for diagnosability analysis of intermittent failure. 13 th International Workshop on Discrete Event Systems[END_REF], VeCOS'16 [START_REF] Boussif | Using model-checking techniques for diagnosability analysis of intermittent faults -a railway case-study[END_REF] and a submitted journal paper on IEEE-TASE [Boussif and Ghazel, 2016a].

182Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis This chapter is structured as follows: Section 8.2 discusses the twin-plant construction and provides the necessary and sucient conditions for weak diagnosability notions introduced in Section 5.5.2. Dedicated algorithm for checking such conditions are also provided. Necessary and sucient conditions for the strong notions of diagnosability are developed in Section 8.3, where the associated checking algorithms are also discussed. Reformulation of (some of) these diagnosability properties as LTL model-checking problems is discussed in Section 8.4). A Benchmark is used to illustrate the applicability of such a reformulation and to assess its eciency is provided in Section 8.5. Finally, Section 8.7 draws some concluding remarks.

Introduction

Most of the approaches in the literature pertaining to intermittent fault diagnosis deal with the diagnosability of intermittent faults on the basis of the structural analysis of the so-called diagnoser (as widely discussed in Section 5.2 (of Chapter 5)). However, developing such a model suers from the combinatorial explosion problem and shows a high complexity level (exponential) regarding the state-space of the system model. Instead, we use the twin-plant structure [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], Cimatti et al., 2003] to perform diagnosability analysis in the current work. In fact, the twinplant shows a lower complexity (polynomial), which can help to tackle the combinatorial explosion problem (as discussed in Chapter 4).

Analysis of the Weak Diagnosability

This section is dedicated to the analysis of W F and W R-diagnosability by developing necessary and sucient conditions for each notion before elaborating algorithms to check these conditions. The procedure to establish such conditions is based on the twin-plant structure [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF]. In what follows, we discuss the twin-plant construction.

Twin-Plant Construction

The twin-plant, rstly introduced in [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF], simply consists of two synchronized copies of generator G of the system model G, while the synchronization is performed. Thus, any event-trace in the twin-plant corresponds to a pair of event-traces in the system model that share the same observation. More precisely, a path in the twin-plant corresponds to two indistinguishable traces in the system model.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis183

To keep tracking the system status labels, we use constructed generator G , instead of constructed generator G . Then, in order to generate a reduced state-space of the twin-plant (by generating only the behavior of interest for fault diagnosis), a synchronous composition G ||G F is performed, which is dierent from that in [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF].

In fact, G F depicts only the co-accessible part of generator G from faulty states, i.e. it only contains the generated faulty event-traces. Thus, G F = X oF , Σ o , δ oF , x 0 , where X oF is the set of states in G that are reachable by event-traces that, in turn, contain at least one fault event. For more details about generating G F , the reader can refer to [START_REF] Moreira | Polynomial time verication of decentralized diagnosability of discrete event systems[END_REF].

Dénition 53 (The reduced twin-plant)

A reduced twin-plant of model G is an FSA P = Q, Σ o , Γ, q 0 , where:

• Q ⊆ {(x, x) | x ∈ X o , x ∈ X oF } is the set of states. • Σ o the set of observable events. • Γ : Q × Σ o → 2 Q is the partial transition relation. q ∈ Γ(q, σ), with q = (x 1 , x 2), and q = (x 1 , x 2) if and only if x 1 ∈ δ o (x 1 , σ), x 2 ∈ δ oF (x 2 , σ). • q 0 = (x 0 × x 0) ∈ Q is the initial state.
It is worthwhile recalling that constructing the twin-plant can be performed in (O(|X| 4 × |Σ o |)) [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF].

As the reduced twin-plant is established directly based on the constructed generator G , then label tracking is preserved and therefore, the fault-assignment function is extended as follows:

Ψ : Q = (X o , X oF) → ({N, F, R} × {N, F, R})
Hence, dierent types of states can be distinguished between in the reduced twin-plant.

Hereafter, only state types which will be used in the sequel for developing necessary and sucient conditions for weak diagnosability are dened.

Dénition 54 (Types of states in the twin-plant)

We dene the following state types,

• N -state (resp. F -state, R-state): is a state q = (x, x) ∈ Q, such that Ψ(q) = (N, N) (resp. Ψ(q) = (F, F), Ψ(q) = (R, R)). • N F -state: is a state q = (x, x) ∈ Q, such that Ψ(q) = (N, F). F N -state is dened similarly.
184Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

• N R-state: is a state q = (x, x) ∈ Q, such that Ψ(q) = (N, R). RN -state is dened similarly.

• N 1-state: is a state q = (x, x) ∈ Q, such that Ψ(q) = (N,). with ∈ {N, F, R}.

• non-N -state (resp. non-F -state, non-R-state): is a state which is not an Nstate (resp. F -state, R-state).

One can underline the fact that the twin-plant has an interesting feature, which is the symmetric property. It means that each path in the twin-plant has its symmetric path (e.g., a path containing F N -states has its symmetric path which contains the symmetric N F -states, and vice versa). In the following section, we take into account this property for developing the necessary and sucient conditions.

Necessary and Sucient Conditions

The twin-plant structure has been used to establish a necessary and sucient condition for the diagnosability of permanent faults [Jiang andHuang, 2001, Boussif andGhazel, 2015a]. Such a condition stipulates that there is no F -uncertain cycles in the constructed 186Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis to cyclic executions c and c in G s.

t. ∀ i ≤ n, v i , v i ∈ Σ * u . (i.e., P (t) = P (t) = σ 1 , σ 2 , . . . , σ n).
By construction of the twin-plant, ∃ s 0 , s 0 ∈ L(G), s.t.

[P (s 0) = P (s 0)] ∧ [δ(x 0 , s 0) = x 1 1] ∧ [δ(x 0 , s 0) = x 2 1] ∧ [Σ f / ∈ s 0].
(the last condition Σ f / ∈ s 0 is due to the fact that x1

i is an N -state ∀1 ≤ i ≤ n). Also, according to Denition 55, Σ f ∈ t and Σ f / ∈ t. Thus, one can consider t = t 1 .t 2 such that t |t 1 | 1 ∈ Σ f (i.e., t 1 ends with a fault event). Now, let us consider s = s 0 .t 1 , then s ∈ ψ(Σ f). Thus, for any n ∈ N let us take

t n = t 2 (t) n ∈ L/s, then (|t n | ≥ n) and (∃ ω n = s 0 .(t) n+1) such that [ω n ∈ P -1 P (st n)] ∧ [Σ f / ∈ ω n]. Therefore, W F -diagnosability denition is violated. (⇐) Assume that automaton G is non-WF-diagnosable. Then, (∀n ∈ N)(∃ s ∈ ψ(Σ f)) (∃ t ∈ L(G)/s) such that: [|t| ≥ n] ∧ [(∃ ω ∈ P -1 P (s.t)) ∧ [Σ f / ∈ ω]]
Let us suppose that twin-plant P is F -confused-cycle-free and pick any n ≥ |X|2 , ω ∈ L(G) such that P (ω) = P (s.t) = σ 1 , σ 2 , . . . , σ k , with k ∈ N. By constructing twin-plant P of G, we have a path π = q 0 , σ 1 , q 1 , . . . , σ k , q k+1 , k ≤ |s.t| that corresponds to executions ω and s.t.

As |X| 2 ≤ n ≤ |t|, it is clear that executions corresponding to s.t and ω contain cycles [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF]. Thus, ∃ i : 0 ≤ i ≤ k , with k ≤ k such that c ∈ π, with c = q i , σ i+1 , q i , . . . , q k -1 , σ k , q i (i.e., a cycle c exists in π).

Since Σ f / ∈ ω, then ∀q ∈ c , q is an N 1-state. Moreover, Σ f ∈ s (since s ∈ ψ(Σ f)). According to assumption (A3), the fault event occurs and reset regularly. Then, ∃ i ≤ k s.t. q i is an N F -state. Thus, c is an F -confused cycle, according to Denition 53, which contradicts our assumption.

The proof of the necessary and sucient condition regarding W R-diagnosability is omitted as it is similar to that of W F -diagnosability.

Corollary 4 Let an automaton

G satisfy assumptions (A1-A3). Then, G is W F - diagnosable if and only if G is W R-diagnosable.
This corollary has been introduced in Chapter 5 (Corollary 3). Hereafter, we give its formal proof.

Proof. Assume that G is not W F -diagnosable. Then, from Denition 18, there exists, in P (its corresponding twin-plant), a set of states q 1 , q 2 , . . . , q n that form an Fconfused cycle. This cycle corresponds to two cycles in

G: x 1 1 , x 1 2 , . . . , x 1 n = x 1 1 and x 2 1 , x 2 2 , . . . , x 2 n = x 2
Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis189

Analysis of the Strong Diagnosability

In this section, we rstly provide the necessary conditions for SF -(and SR-)diagnosability on the basis of the necessary and sucient conditions for the weak diagnosability developed above. Then, we establish the necessary and sucient conditions for SF -(and SR-)diagnosability on the basis of the reduced twin-plant introduced in Section 8.2.1.

It is worth underlining that the necessary conditions are rstly developed since such conditions can be used to speed up the analysis. In fact, the model is stated to be non-SF -diagnosable as soon as these conditions are violated (i.e., there is no need to continue the construction of the twin-plant and check the necessary and sucient condition).

Necessary Conditions

Firstly, according to Proposition 5 (introduced in Chapter 5), it is easy to infer that the necessary and sucient condition for W F -diagnosability (resp. W R-diagnosability)

represents a necessary condition for SF -diagnosability (resp. SR-diagnosability). That is, the presence of an F -confused cycle in the twin-plant implies the non-W F -diagnosability and, therefore, the non-SF -diagnosability, since that non-W F -diagnosability ⇒ non-SFdiagnosability (cf. Proposition 5). However, it is only a necessary condition, which means that the absence of F -confused cycle does not imply the SF -diagnosability, as witnessed in Example 9. In what follows, the notions of F -confused and R-confused cycles are used to develop stronger necessary conditions for SF -(and SR-)diagnosability. We rstly introduce two particular cycles.

Dénition 57 (non-F-cycle, non-R-cycle)

• A non-F-cycle, is a cycle c = (q 1 , σ 1 , q 2 , . . . , q n , σ n , q n+1 = q 1) in twin-plant P, such that ∀ 1 ≤ i ≤ n, q i is a non-F-state and at least one state is a non-N-state.

• A non-R-cycle, is a cycle c = (q 1 , σ 1 , q 2 , . . . , q n , σ n , q n+1 = q 1) in twin-plant P, such that ∀ 1 ≤ i ≤ n, q i is a non-R-state and at least one state is a non-N-state.

Remark 5 It should be noticed that an F -confused cycle is also a non-F-cycle, since an N 1-state is also a non-F-state and an N F -state is a non-N-state as well. In an analogous way, an R-confused cycle is also a non-R-cycle. Now, we state a necessary condition for SF (and SR)-diagnosability.

190Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis Proposition 14 (Necessary conditions for the strong diagnosability) A DES model G, w.r.t. projection P , class of fault events Σ f and class of reset events Σ r , is:

• non-SF-diagnosable if a non-F-cycle exists in its corresponding twin-plant.

• non-SR-diagnosable if a non-R-cycle exists in its corresponding twin-plant.

Proof.

The proof of this proposition is straightforward. Indeed, the existence of a non-Fcycle in the twin-plant means that two event-traces which share the same observation exist in the generator G and lead to two cycles: c = x 1 , σ 1 x 2 , . . . , x n , σ n , x 1 and c = x 1 , σ 1 , x 2 , . . . , x n , σ n , x 1 such that ∀1 ≤ i ≤ n: Ψ(x i) and Ψ(x i) will never be F at the same time. Therefore, it follows that it is not possible to identify the status of the system along this innite observable event-trace. Thus, according to Denition 20, the model is non-SF -diagnosable. An analogous reasoning can be made for SR-diagnosability.

Let us now establish the necessary and sucient conditions for SF and SR-diagnosability on the basis of the reduced twin-plant.

Necessary and Sucient Conditions

In order to formalize the necessary and sucient conditions for SF (and SR)-diagnosability, the following denitions are introduced.

Dénition 58 (Types of state-traces in the twin-plant)

• A path ℘ in twin-plant P is a state-trace (q 1 , q 2 , . . . , q n) such that ∀q i , q i+1 ∈ ℘, ∃σ i ∈ Σ o satisfying q i+1 ∈ Γ(q i , σ i), for (1 ≤ i < n). • ℘ is a closed path, if it is a path whose ending state is also the starting one (i.e., q n = q 1). • ℘ is a generated path if q 1 is the initial state of twin-plant P (i.e., q 1 = q 0).

• ℘ is an elementary path if no state q i ∈ ℘ is visited twice (i.e., ∀i, j ∈ {1, • • • , n} and i = j, we have q i = q j).

• ℘ is an elementary cycle if it is a closed path whose states are dierent from each other, except for the rst and the last ones.

• ℘ = ℘ c ℘ is a prime path if ℘ is an elementary path and c ℘ is an elementary cycle.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis191

• ℘ = ℘ c ℘ is a generated prime path if ℘ is a generated elementary path and c ℘ is an elementary cycle.

For more details about the above denitions, the reader can refer to [START_REF] Zhou | Computation of diagnosable faultoccurrence indices for systems with Rrepeatable-faults[END_REF].

Remark 8 It is worth noticing that:

1. An innite path is composed of a (possibly empty) elementary path and a set of elementary cycles. 2. A closed path is composed of one or more elementary cycles.

Dénition 59 (Set of prime-paths (SPP)) For any innite path ℘, we dene P ℘ as the set of prime-paths associated with ℘.

Example 17 Let us consider the innite path ℘ = (q 1 , (q 2 , q 3 , q 4) 3 , (q 2 , q 3) 1 , (q 5 , q 6) *) in G, depicted in Figure 8.2 (a). The set of prime-paths associated with ℘ is P ℘ = {(q 1 , (q 2 , q 3 , q 4) *), (q 1 , (q 2 , q 3) *), (q 1 , q 2 , q 3 , (q 5 , q 6) *)} is depicted in Figure 8.2 (b).

q 1 q 2 q 3 q 4 q 5 q 6 q 1 q 2 q 3 q 4 q 1 q 2 q 3 q 1 q 2 q 3 q 5 q 6

(a) An FSA model G Dénition 60 (The associated set of generated prime-paths (ASGPP)) For a given observable event-trace s = (σ 1 , σ 2 , . . .) ∈ Σ * o associated with generated prime path ℘ ∈ T r(P):

Π s (P) = {℘ = (q 0 , q 1 , . . .) ∈ T r(P) is prime-path | ∀ i ≥ 0, q i+1 ∈ Γ(q i , σ i+1)} is the set of all generated prime-paths associated with s.

192Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis One recalls that T r(P) is the set of all state-traces of the (reduced) twin-plant. Each prime-path ℘ in Π s (P) has the following form ℘ = ℘ c * , where ℘ is a generated elementary path, and c is an elementary cycle.

Dénition 61 (F-Interception condition) Let ℘ be a generated prime-path and s ∈ Σ * o its associated observable event-trace, then the F -Interception condition relatively to ℘ is dened as follows: ∃ k ∈ N s.t. ∀℘ i = ℘ i c * ℘ i = (q 0 , q 1 , . . .) ∈ Π s (P):

1. q k is an F -state. 2. q k ∈ c * ℘ i .

The F -Interception condition ensures that, after a nite delay, all the generated primepaths that share the same observation as ℘ (i.e., event-trace s) reach F -states, in their corresponding elementary cycles at the same time (i.e., after k -1 observations).

Example 18 Let us consider twin-plant P (the corresponding system model is not given), depicted partially in Figure 8.3. Each state q i in twin-plant P is represented by its corresponding labels, i.e., q 1 = (x 1 , x 1) is represented by the labels of x 1 and x 1 (here, Ψ(x 1) = Ψ(x 1) = N). Let us consider event-trace s = ab (cd) * associated with the primepath: q 1 , q 2 , (q 3 , q 4 , q 5 , q 6) * . Then, Π s (P) = {(q 1 , q 2 , (q 3 , q 4 , q 5 , q 6) *), (q 1 , q 7 , q 8 , (q 9 , q 10) *), (q 1 , q 7 , q 11 , q 12 , (q 13 , q 14) *)}. One can deduce that for k = 6 (i.e. after 5 observations), the k th states of all the generated prime-paths in Π s (P) are F -states (i.e., states q 6 , q 9 , and q 14 respectively to the order of prime-paths in Π s (P)). Thus, the F -Interception condition is satised by Π s (P). In what follows, the F -Interception condition is generalized to any generated innite path, by considering the dierent elementary cycles in it.

N N start q 1 F F q 2 F N q 7 R F q 3 R F q 4 F R q 5 F F q 6 R N q 8 R F q 11 F F q 9 R R q 10 R F q 12 R R q 13 F F q 14
Corollary 5 The F -Interception condition is satised for any generated innite path ℘ in twin plant P if and only if the F -Interception condition is satised for any generated prime-path in P.

Proof. The proof of this corollary is straightforward. Indeed, for necessary condition (⇒), let us assume that all the generated innite paths ℘ in P satisfy the F -Interception condition. As the generated prime-paths are also generated innite paths, it follows directly that all the generated prime-paths in P satisfy the F -Interception condition.

For the sucient condition (⇐), let us take a generated innite path ℘ that contains n elementary cycles c i . It follows that P ℘ also contains n generated prime-path ℘ i ∈ P ℘ for 1 ≤ i ≤ n. Let us assume that all the generated prime-paths in P satisfy the F -Interception condition. Then all the prime-paths in the ASGPP Π s i satisfy the F -Interception condition (s i is the event-trace associated to ℘ i). Then, it follows that ℘ also satises the F -Interception condition. Thus, this is true for all the generated innite paths in P.

It is worth noticing that the above-mentioned corollary will be used to develop the necessary and sucient conditions for strong diagnosability by reasoning directly on the prime-paths, in the twin-plant. Now, the necessary and sucient condition for SF -diagnosability can be stated.

Theorem 11 (SF-diagnosability) A DES model G is SF -diagnosable w.r.t projection P , class of fault events Σ f and its corresponding class of reset events Σ r , if and only if the F -Intersection condition is satised by any event-trace s ∈ L(P) associated with a prime-path ℘ ∈ T r(P).

Proof.

(⇒) Assume that automaton G is SF -diagnosable and let s ∈ ψ(Σ f) be an event trace which ends with a faulty event from Σ f . According to Denition 20, ∃ n ∈ N s. Consider k = |P (s.t)|. Then, from Denition 20, we have ∀℘ ∈ Π s (P) : q k ∈ ℘ is an F -state. This applies for any s i ∈ ψ(Σ f). Thus, it is true for any Π s i (P), with s i .t ≤ s i .

Finally, to show that q k ∈ c ℘ , by assumption (A3), the fault repeats indenitely, it then suces to pick t suciently long such that |P (s.t)| ≥ |X o | 2 (See [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF]). Thus, the F -Interception condition is satised.

194Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis (⇐) Assume that the F -Interception condition is satised by any event-trace s ∈ L(P) associated with a prime-path ℘ ∈ T r(P). Then, for any innite observable event-trace s ∈ P (L(G)) such that Π s (P) = ∅, the F -Interception condition states that ∀℘ = ℘ c ℘ ∈ Π s (P), ∃k ∈ N such that q k ∈ ℘ is an F -state.

This means that ∃ n ∈ N (n ≥ k)

such that ∀ω ∈ Σ * , P (ω) = s, then (w n) = F . This ensures that some occurrences of the intermittent fault in ω can be diagnosed according to Denition 20. Moreover, the F -Interception condition states that q k ∈ c ℘ . Then, according to assumption (A3), ∀ω = ω c ω ∈ Σ * such that P (ω) = s, ∃n ∈ N : (ω (c ω) n) = F , which ensures that each occurrence of an intermittent fault in ω is diagnosable. As the F -Interception condition holds for any s i ∈ P (L(G)), Then, L(G) is SF -diagnosable.

In order to state the necessary and sucient condition for SR-diagnosability, we introduce the R-interception condition, in the same way as Denition 61.

Dénition 62 (R-Interception condition) Let ℘ be a generated prime-path, and s ∈ Σ * o its associated observable event-trace, then the R-Interception condition relatively to ℘ is as follows:

∃ k ∈ N s.t. ∀℘ i = ℘ i c * ℘ i = (q 0 , q 1 , . . .) ∈ Π s (P):

1. q k is an R-state.

2. q k ∈ c * ℘ i . Example 19 Let us consider again the twin-plant of Example 18. For event-trace s = (a, b, (c, d) *), we have Π s (P) = {(q 1 , q 2 , (q 3 , q 4 , q 5 , q 6) *), (q 1 , q 7 , q 8 , (q 9 , q 10) *), (q 1 , q 7 , q 11 , q 12 ,(q 13 , q 14) *)}. One can deduce that no k ∈ N exists such that all the prime-paths in Π s are in R-states at this step. Besides, for the primary cycle of the rst generated prime-path in Π s , i.e. q 1 , q 2 , (q 3 , q 4 , q 5 , q 6) * , no R-state exists. As a consequence, the Π s (P) does not satisfy the R-Interception condition.

Theorem 12 (SR-diagnosability) A DES model G is SR-diagnosable w.r.t a projection function P , a class of fault events Σ f and its corresponding class of reset events Σ r , if and only if the R-Intersection condition is satised by any event-trace s ∈ L(P) associated to a prime-path ℘ ∈ T r(P).

Proof. The proof of this theorem is omitted, since it can be elaborated in an analogous way as for Theorem 11.

It is worth noticing that SF -diagnosability does not imply SR-diagnosability and vice versa (as witnessed through Example 18 and 19), unlike in the case of weak diagnosability.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis199

(1) Elementary cycles of the prime state-traces have the same length: In this case, checking F -state indices is performed on the real indices in F-Indices and F-IndicesP (cf. Algorithm 11, Lines 6 -12).

(2) Elementary cycles of the prime state-traces have dierent lengths: In this case, the elementary cycle, with smaller length, is extended by considering as many loops as possible to reach the same length of the other prime state-trace elementary cycle (i.e., lengths of elementary cycles in prime state-traces which share the same event-trace are multiples of the smallest cycle length). Then, checking F -state indices is performed on the new computed indices (cf. Algorithm 11, Lines 17 -30). Finally, when all event-traces in P are investigated with no exit point has been encountered, then we conclude that automaton G is SF -diagnosable (cf. Algorithm 10, Line 6).

Diagnosability of Intermittent Faults as Model-Checking Problems

In the previous chapter, we have discussed the practical verication of diagnosability of permanent faults in the model-checking framework. The approach proposed is a reformulation of the twin-plant technique [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF]. In this work, the twin-plant structure is reformulated as a Kripke structure, while the necessary and sucient condition is expressed as a CTL/LTL formula and tackled using a model-checking engine.

The particularity of such an approach is that it can be practically implemented, applied and reused for various kinds of real-life systems. Moreover, a wide range of powerful and optimized model-checkers have been developed in the formal verication community and successfully used for the verication/validation of large scale industrial systems. In this section, we extend the approach in order to deal with the diagnosability verication of intermittent faults. That is, the necessary and sucient conditions developed above are expressed using LTL formulas for the actual verication.

The Weak Diagnosability Conditions as LTL Formulas

In order to formulate the analysis issue of the weak diagnosability properties as Model-Checking problems, we rst express each diagnosability condition as an LTL formula. For the sake of simplicity, we introduce these atomic propositions: N1, NF, and NR, which mean respectively: the state q in the twin plant is an N 1-state, N F -state, N R-state. The LTL formula which characterizes each state of an F -confused cycle in the twin plant is, φ 1 : G(N1 ∧ F NF)

The specication can be read as follows: a path from the current state in the twin-plant exists, where all states are N 1-states and at least one state is an N F -state. Therefore, property (N1 ∧ F NF) is satised by each state in the cycle.

The Model-Checking problem expressing W F -diagnosability is:

K P , S P |= ¬ F (G(N1 ∧ F NF))
where K P is the Kripke structure corresponding to the twin-plant P of model G, and S P is the initial state in K P .

W R-Diagnosability as a Model-Checking Problem

The LTL formula that characterizes each state of an R-confused cycle in the twin plant is, φ 2 : G(N1 ∧ F NR)

The specication can be read as follows: a path from the current state in the twin-plant exists, where all states are N 1-states and at least one state is an N R-state. Therefore, property (N1 ∧ F NR) is satised by each state in the cycle.

The Model-Checking problem expressing W R-diagnosability is: K P , S P |= ¬ F (G(N1 ∧ F NR))

Reformulation of the Strong Diagnosability Properties

Regarding the reformulation of the strong diagnosability properties, we notice that only the necessary conditions (presented in Section 8.3.1), can be reformulated as LTL formulas.

The necessary and sucient conditions cannot be reformulated as CTL/LTL formulas. This is due to the fact that such properties cannot be characterized by pairs of equivalent traces. They are rather global properties on sets of (observationally) equivalent traces [START_REF] Fabre | Diagnosability of repairable faults[END_REF] and unfortunately CTL/LTL are no longer adequate to express such properties. We think that such properties can be dealt with via Temporal Epistemic Logic [START_REF] Halpern | [END_REF]Vardi, 1989, M¦ski et al., 2012] which are capable to express global properties on sets of (observationally) equivalent traces [Cimatti et al., 2005, Gammie andVan Der Meyden, 2004].

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis201

Experimentation

In this section, some experimentations are performed in order to evaluate the diagnosability of intermittent faults using model-checking. We limit the experimentation to the weak diagnosability properties, since they are the only reformulation as model-checking problems. The experimentation are conducted through a benchmark that depicts the concept of intermittent faults with assumptions A1, A2, and A3 (See Section 5.5.1. For the verication, we use the symbolic model-checker NuSMV (version 2.5.4) [START_REF] Cimatti | NUSMV: a new symbolic model checker[END_REF], which is widely used for formal verication in both academia and industry.

Presentation of the DES Benchmark

The DES benchmark, depicted in Figure 8.4, describes a manufacturing system composed of a normal part and a faulty one. Each part contains several similar production lines modeled using a Labeled Petri Net (LPN). Many parameters can be taken into account, such as the number of tokens in place P 0 , the line length, or the number of production lines. In our study, we consider only the number of production lines as a variable parameter (k). Transitions t 1 , t 1 , t 2 , t 2 , t 4,i , t 4,i are observable ∀1 ≤ i ≤ k. t 1 is labeled with a, t 1 can be labeled with a or b (we consider two tests as it will be detailed after), t 2 , t 2 are labeled with b, and ∀1 ≤ i ≤ k, t 4,i , t 4,i are labeled with c. Transitions t 3.i , t 3.i , t 5 , t 5 are unobservable ∀1 ≤ i ≤ k. All the unobservable transitions are labeled with u excepted transition t 3,1 and t 5 that correspond respectively to the fault event (labeled with f ∈ Σ f) and the corresponding reset event (labeled with r ∈ Σ r).

As said before, two tests are performed: (Test 1) where t 1 is labeled with a, and (Test 2) where t 1 is labeled with b. As the benchmark is modeled by an LPN, we rst generate its reachability graph with the help of TINA Tool [START_REF] Berthomieu | The tool TINA: Construction of abstract state spaces for Petri nets and time Petri nets[END_REF] and then, perform our technique based on the generated reachability graph. In order to assess the scalability, we increase the number of production lines k progressively for each test.

Results and Discussion

All the experiments were conducted on a 64-bit PC, Ubuntu 14.04 operating system, an Intel Core i5, 2.5 GHz Processor with 4 cores and 4 GB RAM.

Table 1 summarize the obtained results, for dierent number of production lines. T RS is the time elapsed for generating the Kripke structure;

Diag is the diagnosability verdict;

T Diag : the time elapsed for verication.

Discussion

It can be seen that for Test 1, G is not diagnosable (not W F -diagnosable thus not W Rdiagnosable). This is a logical result given the structure of the net, where the left part and the right part of the net depict the same structure (in terms of observable and unobservable transitions). Moreover, the left part is fault-free unlike the right one, which contains an intermittent fault. Thus, two executions that share the same observations exist in the twin-plant, where in the rst execution an intermittent fault can occur. However, no fault event occurs in the second one. In Test 2 (where transition t 1 is labeled with b), the model is W F -(and W R-)diagnosable, since there are no executions that share the same observations such that one execution contains intermittent fault f and the other is fault-free. The same reasoning can be considered for W R-diagnosability.

Regarding the scalability of the approach, we observe that the size of the reachability graph G signicantly increases with the number of production lines, which aects the size of the Kripke structure that corresponding to the twin-plant. This is not surprising since, on the one hand, twin-plant computation is performed in a polynomial complexity regarding the size of model G. On the other hand, model-checking is very sensitive to the combinatorial explosion of the state space.

Finally, three remarks relative to the elapsed times for generating the twin-plant and checking diagnosability, can be emphasized:

1. The model-checker spends more time in verication than in generating the twinplant.

2. Elapsed times for generating the twin-plant and verifying diagnosability remain in the order of milliseconds until 5 production lines, then it increases signicantly. This is due to the size of the twin-plant which becomes considerable.

3. More time elapsed for verifying diagnosability when the system is diagnosable (cf.

Test 2) than when the system is not diagnosable (cf. Test 1). This can be clearly observed in line 5 (Test 1: 2.70s → 663454 states, Test 2: 2.12s → 331728 states).

This result is logical, since the model-checker needs to analyze the whole statespace to conclude that the system is diagnosable. However, when the system is not diagnosable, the verication process is stopped as soon as a counter-example is found, that is, only a part of the generated state-space is covered.

204Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis 8.6 Discussion of the F r -diagnosability

In Section 5.10 (Chapter 5), we have introduced the notion of F r -diagnosability (see Definition 31), which consists in diagnosing each fault event occurrence within a nite delay, but also before its corresponding reset event occurs. In this section, we provide a necessary condition for F r -diagnosability on the basis of the twin-plant structure. To do so, let us introduce the following twin-plant state-types

• F F -state: is a state q = (x, x) ∈ Q, such that Ψ(q) = (F, F).

• F 1-state (resp. R1-state): is a state q = (x, x) ∈ Q, such that Ψ(q) = (F,) (resp. Ψ(q) = (R,)), with ∈ {N, F, R}.

• F 1-state: is a state q = (x, x) ∈ Q, such that Ψ(q) = (F ,).

with F means that the label of the corresponding state is dierent from F . Now, we introduce a particular type of nite trace in the twin-plant called F r -indicating sequence, that will be used in the sequel.

Dénition 63 (F r -indicating sequence)

Let π = (q 1 , q 2 , . . . , q n) be a nite state-sequence in the twin-plant. π is an F r -indicating sequence if q 1 is an F 1-state, ∀1 < i < n, q i is an F F -state, and q n (n > 2) is an R1-state. represented by twin-plant states q 1 , q 2 , q 3 , and q 4 . A system model G is non-F r -diagnosable, w.r.t a projection function P , a class of fault events Σ f and its corresponding class of reset events Σ r , if an F r -indicating sequence exists in its corresponding twin-plant.

The proof of F r -diagnosability is omitted since it can be derived directly from Proof 8.3.1.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis205

Example 20 Let us consider automaton G depicted in Figure 8.6. Σ o = {a}, Σ u = {f, r, u}, with Σ f = {f } and its corresponding reset event set Σ r = {r}. Automaton G in Figure 8.7 is a part of the twin-plant corresponding to G, where only the composition of the top and central sequences, the bottom and top sequences, the central and the bottom sequences are represented. Let us consider nite path π = q 1 , a, q 2 , a, q 3 , a, q 4 , a, q 5 in G. One can observe that the nite state-sequence q 3 , q 4 , q 5 is an F r -indicating sequence since q 3 is an F 1-state, q 4 is an F F -state and q 5 is an R1-state. Therefore, G is non-F r -diagnosable. In Chapter 5, we extended the diagnoser variant, introduced in Chapter 4, in order to deal with intermittent fault diagnosis. Various notions of diagnosability are discussed and necessary and sucient condition for each notion is formulated on the basis of our diagnoser variant. In the same way as for the permanent faults, a systematic procedure for the actual verication of diagnosability properties is developed.

q 1 F F q 2 R R q 3 F R q 4 R F q 5 F F q 6 R F q 7 F F q 8 F R q 9 F F q 10 F R q 11 R F q 12
In Chapter 6, we established a hybrid version (in the sense of combining enumerative and symbolic representations) of the diagnoser variant that we have developed, in order to deal with fault diagnosis of bounded Petri nets. The main idea consisted in: (i) using binary decision diagrams (BDDs) to depict marking sets so as to compact the diagnoser nodes. This allows for reducing the memory consumption eciently handling PN markings and (ii) using an explicit representation for the (observable) transitions that link the diagnoser nodes. A dedicated tool implementing the proposed approach is developed in order to assess the eciency and the scalability of the approach. Moreover, some experimentations have been conducted through a PN benchmark. The obtained results are discussed with respect to a reference approach for fault diagnosis of LPNs, called MBRG/BRD technique [Cabasino et al., 2009a].

The third part (Part III:Chapter 7, 8) of the dissertation was dedicated to fault diagnosis of DESs through the twin-plan based technique [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF].

Chapter 7 discusses the actual verication of diagnosability of permanent failures using model-checking. Namely, some extensions of the approach in [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF]] are developed to deal with the classic denition of diagnosability based on the twin-plant model.

Thereafter, some quantitative versions of diagnosability, namely, K/K min -diagnosability properties are investigated. These properties are expressed using CTL/LTL and RT-CTL specications respectively to be tackled as model-checking problems. Some experimentations are conducted through a level crossing benchmark in order to show the applicability of the approach.

Chapter 5 deals with the diagnosability of intermittent faults. In particular, we developed necessary and sucient conditions, for each notion of diagnosability introduced in Chapter 5 on the basis of the twin-plant approach [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF]. Some of the developed necessary and sucient conditions were expressed in temporal logics (LTL/CTL) and then model-checking technique was used to perform the actual verication.

Perspectives

The work discussed in this dissertation raises several research direction as discussed below:

1) Modular diagnoser-based approach

The diagnoser-based approach we propose in the second part of this dissertation deals with monolithic system models for diagnosability analysis and implementation. However, in general, industrial systems are composed of several modules, local components, or subsystems that could themselves be formed by various sub-modules. Such modular systems tend to have very large state-spaces and therefore, they are complex to model and dicult to diagnose in a holistic manner, i.e., by means of a global diagnoser [START_REF] Contant | Diagnosability of discrete event systems with modular structure[END_REF]. The challenge of modular diagnosis methodologies consists in performing diagnosis locally, i.e., at each module, while at the same time accounting for the coupling of each module with the rest of the system [START_REF] Benveniste | Diagnosis of asynchronous discrete-event systems: a net unfolding approach[END_REF], Ricker and Fabre, 2000, Contant et al., 2006, Schmidt, 2013, Debouk et al., 2002b, Pandalai and Holloway, 2000].

In the near future, we intend to investigate the modular diagnosability by extending our diagnoser approach. In fact, we think that the various features of our approach, namely, the systematic procedure for the actual verication, the on-the-y and partial construction/verication, can potentially improve and speed up the diagnosability analysis.

Chapter 9. Conclusions and Perspectives

2) Sensor placement issues

When a system model is checked to be non-diagnosable, then two means are identied to make it diagnosable: i) revisit sensors placement and possibly introduce new sensors and ii) redesign the controller. The former arises sensor optimization/reconguration issues [START_REF] Pan | Diagnosability analysis and sensor selection in discrete-event systems with permanent failures[END_REF], Jiang et al., 2003a, Ru and Hadjicostis, 2010, Yoo and Lafortune, 2002a[START_REF] Cabasino | Optimal sensor selection for ensuring diagnosability in labeled Petri nets[END_REF], Debouk et al., 2002a, Dallal and Lafortune, 2011] and the synthesis of observability requirements [START_REF] Bittner | Symbolic synthesis of observability requirements for diagnosability[END_REF]. The diagnoser we develop in Chapter 4 has an interesting feature that can be investigate when one deals with sensor reconguration. As we distinguish between the normal and faulty states in each diagnoser node, it is possible to accurately identify the fault events that cause the non-diagnosablity of the system. In fact, from the various experimentations we have performed, we have seen that only one event fault is responsible for the existing of each indeterminate cycle.

Moreover, such a fault event may occur either in the entering node of an indeterminate cycle or the nite trace which is linked to. These observations motivate us to explore in depth this issue.

3) Discriminating between fault types

In this dissertation, we have dealt with diagnosability of permanent and intermittent faults separately, i.e., the system model is assumed to contain either permanent faults or intermittent faults. However, in reality most of industrial systems, can show both types of failures. In such a case and from maintenance point of view, it can be critical to discriminate intermittent faults from permanent ones when a fault occurs. Namely, if the current fault is diagnosed to be an intermittent fault, a timely fault treatment actions could be required. In this way, a lot of maintenance cost can be saved by avoiding unnecessary shutdown and repair. Unfortunately, most of the existing approaches (including the contribution developed in this manuscript) consider only one type of faults, i.e., either permanent faults or intermittent faults. Dealing with this issue, i.e., discriminating intermittent from permanent faults in the same framework, is an interesting perspective that we wish to investigate.

4) An eective platform for the analysis of various system safety properties

The third part of the dissertation was devoted to the practical verication of diagnosability in a model-checking framework. In this part, we have extended the approach proposed by Cimatti et al. [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF] to deal with various properties in fault diagnosis, namely, diagnosability, K/K mindiagnosability, W F/W R-diagnosability. As a future research direction, we intend to develop an eective platform for the analysis of vari-ous properties related to system safety. In fact, we wish to reformulate the analysis of predictability/prognosability [Jéron et al., 2008, Takai andKumar, 2012] and opacity [Saboori andHadjicostis, 2007, Lin, 2011] as model-checking problems in the same way as for diagnosability analysis. A software platform, which gathers all these reformulations and integrate ecient model-checking tools, will be of a great help for the actual verication of the system safety properties. This can be the subject of some research action, for instance a research project covering these aspects.

5) Application to railway systems

This thesis was accomplished within the COSYS/ESTAS team (Evaluation and Safety of Automated Transport Systems) at IFSTTAR. In ESTAS, we develop methods, techniques and tools to analyze and improve the safety features of guided transport systems. Although the contributions of this thesis are mainly theoretical, as a part of our future works, we intend to bring into play the techniques developed in the thesis in order to deal with monitoring and fault diagnosis issues pertaining to embedded railway control systems.

Besides, several railway case-studies have already been identied.

 Contributions au Diagnostic à Base de Modèles des Systèmes à Évènements Discrets Résumé : L'objet de cette thèse porte sur le diagnostic des systèmes à évènements discrets modélisés par des automates à états nis, avec une extension vers les réseaux de Petri bornés et étiquetés. Les diérentes contributions de ce travail peuvent être présentées selon deux volets, au regard des approches pionnières existantes dans la littérature: le diagnostic à base de diagnostiqueur, et le diagnostic à base de twin-plant. Sur le premier volet, i.e., le diagnostic à base de diagnostiqueur, nous proposons une variante du diagnostiqueur avec une nouvelle structure qui permet de suivre séparément les traces normales et les traces fautives dans le diagnostiqueur. A partir de cette structure, nous formulons une condition nécessaire et susante pour l'analyse de la diagnosticabilité des fautes permanentes et nous développons une procédure systématique pour l'analyse de la diagnosticabilité sans construire de modèle intermédiaire. La procédure de vérication est basée sur un algorithme à-la-volée pour construire le diagnostiqueur et analyser la diagnosticabilité en parallèle. Cet algorithme permet, d'une part de réduire l'espace-d'état généré, principalement pour les systèmes non-diagosticable, et d'autre part, d'améliorer nettement les besoins en mémoire et en temps de calcul. Cette approche est par la suite étendue pour traiter le cas des fautes intermittentes où plusieurs propriétés relatives à la diagnosticabilité sont considérées et les conditions nécessaires et susantes correspondantes sont établies. Comme extension aux modèles réseaux de Petri bornés et étiquetés, nous avons développé une autre contribution qui porte sur l'établissement d'une version hybride de notre diagnostiqueur, dans le sens ou on combine les représentations énumérative et symbolique. L'idée principale de ce travail est de représenter symboliquement (sous forme de BDD) l'ensemble du marquages dans chaque noeud de diagnostiqueur, tout en gardant une représentation explicite pour les arcs reliant les noeuds. Une telle représentation permet d'une part, de réduire la mémoire utilisée pour la construction du diagnostiqueur, et d'autre part, de faciliter l'exploration des traces d'exécution du système. Cette technique a été implémentée dans un outil nommé SOG-Diag tool et évaluée à travers des benchmarks. Sur le deuxième volet, i.e., le diagnostic à base de twin-plant, une première contribution porte sur la mise en oeuvre de nouvelles techniques pour l'analyse de diagnostic. Elle consiste notamment à développer un cadre de vérication par model-checking de la diagnosticabilité. Ainsi, la performance des techniques de model-checking et des outils associés peut être exploitée pour traiter des questions de diagnostic. Une deuxième contribution sur ce volet consiste à étendre ce cadre pour l'analyse des propriétés relatives à la diagnosticabilité des fautes intermittents en se basant sur des conditions nécessaires et susantes que nous avons développées.

I

 would also like to express my thanks to various members of IFSTTAR -ESTAS and LEOST Laboratories. I have learned so much from all of you! I will fail in my duty if I do not acknowledge some of my friends who helped me a lot during the past three years. I mention Baisi (I always enjoy discussing with you!), Ci, Christophe, Antoine, Matthieu, Lucas, Rak, Hassanein, Nadjah, Ayoub, Foued, Sohaib, WARSI-MHRSL group, and many others whose names only by lack of memory I failed to include in this list. I cannot nd words to express my gratitude to my mother, my father, my sisters & my brothers, for all their never-ending support . . . Your prayers for me were what sustained me thus far! To the memory of my grandmother Saliha! To my mother & my father my sisters & my brothers You write so beautifully . . . the inside of your mind must be a terrible place. Context . 2 1.2 Problems Statement . 4 1.3 Main Contributions . 7 1.4 Organization and Structure of the Dissertation 9 Preamble This dissertation presents a synthesis of research work, which was carried out as a fruit of my Ph.D. (2013 -2016) accomplished within the COSYS/ESTAS team (Evaluation of Automated Transport Systems and their Safety) at IFSTTAR, the French Institute of Science and Technology for Transport, Development and Networks (Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux). The Ph.D. thesis has been prepared within the doctoral school SPI (Engineering Sciences)

Figure 3 . 3

 33 Figure 3.3 Fault propagation in the classic diagnoser

 Figure 3.4 The FSA G

 Figure 3.5 Pre-diagnoser and diagnoser of FSA G

 Figure 3.6 Twin plant G of (Example 2)

 Figure 3.7 Verier V F of (Example 2)

Figure 4

 4 Figure 4.1 (a) depicts the general form of a diagnoser node which contains two sets of states; X N represents the set of normal states, while X F represents the set of faulty

Figure 4

 4 Figure 4.1 (a)) using a boolean variable which is True when such transitions exist, and False if not.

Figure 4 . 1

 41 Figure 4.1 The structure of the diagnoser node and the diagnoser variant of FSA G in Figure 3.4

Figure 4 . 2

 42 Figure 4.2 Fault propagation in the diagnoser variant

Figure 4

 4 Figure 4.3 (A) illustrates the above proof, where successive diagnoser nodes a, a , a are considered (only the sets of normal states are represented). I a,σ N (a) = {x 1 , x 2 , x 3 , x 4 }, O σ N (a) = {y 1 , y 2 , y 3 } and I a ,σ N (a) = {x 1 , x 2 , x 3 }. One can observe that each state from the set of input normal states of a is reachable from some states in the set of input normal

Figure 4 . 3

 43 Figure 4.3 Proofs of Property 2 and Proposition 1

Figure 4 . 4

 44 Figure 4.4 Generation of series S c for analyzing diagnosability

64

 Figure 4.6 Diagnoser D G corresponding to model G with series S c for analyzing diagnosability

 lines 7-14). If diagnoser node a has already been encountered then the diagnoser is updated by only adding a new transition. In this case, function IsU ncertain() checks if node a belongs to an F -uncertain cycle (cf. Algorithm 2, line 20). If so, the sucient condition (Proposition 2) is rstly checked by analyzing if all the tags of the diagnoser nodes in this F -uncertain cycle are true (c.f. Algorithm 2, lines 21 and 22), which means that the F -uncertain cycle is an F -indeterminate one. 66 Chapter 4. A New Variant of the Diagnoser-Based Approach Algorithm 2 Diagnoser_Construct() function Input: G, D, Evt n , Evt f , S n , S f Output: Boolean value Function Diagnoser_Construct():

Figure 4 . 7

 47 Figure 4.7 Types of enabled transitions from a node

Figure 4 . 8

 48 Figure 4.8 Dierent cases for analyzing K-diagnosability

Figure 4 . 9

 49 Figure 4.9 The structure of diagnoser nodes for multiple fault classes

Figure 4 .

 4 Figure 4.10 illustrates the diagnoser node construction for a part of system model containing, while considering two fault classes (Σ f 1 = {f 1 } and Σ f 2 = {f 2 }). The dierent

Figure 4 .

 4 Figure 4.10 An illustrative example of the diagnoser node with two fault classes

Figure 4 .

 4 Figure 4.11 The PN benchamrk

 m, k, and b are the basic structural parameters of the benchmark. They represent respectively the number of tokens in place p 0 , the number of production lines, and the number of operations along each production line; |P | and |T | are respectively the number of places and transitions of the PN model; |R S | and |R T |, which are the number of states and transitions of the reachability graph respectively, give the scale of the PN reachability graph computed by TINA Tool [Berthomieu et al., 2007]. The reachability graph serves, indeed, as the input automaton model;|D S | and T e D , are the results obtained by the diagnoser approach[START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], and represent respectively: the number of nodes in the diagnoser and the elapsed time for generating the diagnoser and analyzing the diagnosability. Theses results are obtained using diag.exe, diag_UR.exe, dcycle.elf functions of the UMDES Library.

 Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 83

 1. Duration (D i): is dened as the time during which the fault is active in each one of its occurrences; 2. Pseudo-period (Ps): is dened as the time between two consecutive fault detections. It does not seem reasonable to talk about period, due to the asynchronous nature of faults; 3. Persistence (Pr): is dened as the inverse of the pseudo-period. It gives an estimate of the fault frequency; 4. Number of fault detection (Nf): represents how many times the fault was detected.

 The DES-based fault diagnosis techniques developed to deal with permanent failures are no longer suitable for the analysis of intermittent faults, since the case of intermittent faults Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 85

 The work presented in this chapter falls in the framework of diagnoser-based approaches for intermittent fault diagnosis of DESs. It consists in an extension of the approach discussed in Chapter 4 where a new diagnoser structure is proposed to partially overcome the above-mentioned limitations of existing diagnoser-based approaches. The main idea consists in separating the normal, the faulty and the recovered sets of states in each diagnoser node. Such a structure allows for performing diagnosability analysis upon the diagnoser, without needing to construct any intermediate model, which improves the eciency in terms of the memory and time consumption.

Figure 5 . 1

 51 Figure 5.1 Illustration for the inverse projection mapping in Example 1

 Figure 5.3 Example 7

Figure 5 .Figure 5 . 4

 554 Figure5.4 shows the label automaton Ω N = {N, F }, Σ, δ Ω , N that illustrates the normalizing formalism. In fact, when Ω is in state N , the system executes a normal

Figure 5

 5 Figure 5.5 automaton G in normalizing modeling

 cations one may need to investigate. For example, one may want to ensure the detection of any fault occurrence or its corresponding recovery. Another denition would require checking the presence of each fault before its recovery or checking the recovery of a fault before a new occurrence of this fault. Determining accurately the nite delays in which the fault or its recovery can be diagnosed can also be of interest in practice. Obviously, Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 95

 3). G shows one type of faults (event f) with its corresponding reset class (event r). Consider execution ρ = 1, f, 2, a, 3, r, 4, b (5, f, 6, c, 7, r, 8, d) * . Let the innite event-trace, corresponding to this execution, be noted s.t with, s = (f, a, r, b, f) (one can see that s ∈ ψ(Σ f)), and t = (c, r, d, f) * . The resulting observed event-trace is then P (s.t) = (a, b, (c, d) *). The only event-trace in G which shares the same observable event-trace with ρ is ω = (f, a, b, (r, c, f, d) *).

98

 Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis Example 9 Let us take again automaton G (cf. Figure 5.3), execution ρ = 1, f, 2, a, 3, r, 4, b(5,f, 6, c, 7, r, 8, d) * . There exists, in automaton G, one event-sequence ω = f, a, b, (r, c, f, d) * which shares the same observed event-sequence with ρ, i.e., P (ω) = P (ρ) = a, b, (c, d) * .

Figure 5

 5 Figure 5.6 A system model which is SF -diagnosable and non-SR-diagnosable

Figure

 Figure 5.7 The diagnoser node structure

 droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 103

Figure 5 . 8

 58 Figure 5.8 Intermittent fault propagation in the diagnoser

Figure 5 . 9

 59 Figure 5.9 The diagnoser of system model G (of Example 7)

 droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 105of W F -indeterminate cycle is introduced in[START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] as F O i -indeterminate cycle (with a slight dierence regarding the modeling of intermittent faults).

 and therefore the procedure is stopped; Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 109 2. else: if ∃k ∈ N : i = 1 + kn (with n = |c |), then: (a) if S i = S (i-n) = ∅, c is an W F -indeterminate cycle and the procedure is stopped; (b) otherwise continue.

 then cycle c is an SF -indeterminate cycle and the procedure is stopped; (b) otherwise continue.This procedure is repeated on each SF -uncertain cycle generated in D.

 Figure 5.10 The FSA model in Example 12

 Figure 5.11 The diagnoser of model G (Example 12)

124Chapter 6 .

 6 Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser is then developed for simultaneously constructing the SRD and analyzing diagnosability.

 The reached marking m is computed by m = m + C • π(s), and denoted by m [s > m , where π(s) = k i=1 t i is the ring vector relative to s.

Figure

 Figure 6.1 A labeled Petri net (Example 3)

Figure 6

 6 Figure 6.2 A BDD representing the set of marking S (Example 4)

Figure 6

 6 Figure 6.3 LPN N 1 and its reachability graph (Example 13)

Chapter 6 .

 6 Figure 6.5 The general structure of the SRD node

Figure 6

 6 Figure 6.7 A part of the symbolic reachability diagnoser of Example 3

Chapter 6 .

 6 Figure 6.8 F -uncertain cycle c and its c -indicating sequence ρ c

Figure 6 . 9

 69 Figure 6.9 Two possible forms of an c -indicating sequence

Figure 6 .

 6 Figure 6.10 Checking F -indeterminate cycle in Example 14 using Theorem 9

 Fault Diagnosis of LPNs Using a Symbolic Reachability DiagnoserThe initialization step of the algorithm (cf. Algorithm 4, Lines 5-11) serves to compute the initial diagnoser node. Then, the construction of the following diagnoser nodes is performed by function Diagnoser_Construct(). The construction is performed using a depth-rst exploration regarding the set of enabled (observable) transitions from the current node. With the aim of using the constructed diagnoser to perform the online diagnosis while avoiding the construction of the subsequent F -certain diagnoser nodes, Diagnoser_Construct() function builds only the rst encountered F -certain node (if there exists) in the diagnoser path, by exploring the set of observable transitions enabled only from the set of faulty markings (i.e., T f \T n) (Algorithm 7, Lines 32-38).

 |D S | and |D T | are, respectively, the numbers of nodes and arcs in the SRD; D e and D m are, respectively, the elapsed time for generating the SRD and analyzing diagnosability on the y, and the memory required for building the SRD; |G1 S |, |G1 T | and G1 e are, respectively, the numbers of states and transitions in the M BRG and the elapsed time for constructing the M BRG; |G2 S |, |G2 T | and G2 e are, respectively, the numbers of states and transitions in the BRD and the elapsed time for constructing the BRD;

Figure 7 . 1

 71 Figure 7.1 The label automaton Ω

Figure

 Figure 7.2 Critical pair

Figure 7 . 3

 73 Figure 7.3 Innite critical pair

 RT-CTL specication expressing the K min -Diagnosability is : MAX[φ, ¬φ], with `MAX' is a temporal operation indicating the maximal delay, exists in the Kripke structure, between properties φ and ¬φ (φ expresses the diagnosis condition c 1 ∧ c 2). Finally, the model-checking problem expressing the K min -Diagnosability is : Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 177 7.9.1 Presentation of the Level Crossing Benchmark A level crossing (LC) is an intersection where a railway line intersects with a road or path at the same level. It can be seen as a composition of three subsystems: the railway trac, the LC controller and the barriers. Such subsystems are modeled by Labeled Petri Nets (LPN). The global LC system is established using some shared places and transitions between these sub-models (See Figure 7.4). The LC model has two classes of faults represented as unobservable transitions. The rst one (Σ F 1) pertains to train- sensors along the track and may cause the arrival of the train into the LC intersection zone before the barriers are ensured to be lowered. This fault class is represented by the occurrence of unobservable (faulty) transition t 6 in the benchmark. The other class (Σ F 2) indicates a barrier failure and is manifested by an early raising of the barriers. It is represented by the occurrence of unobservable (faulty) transitions t i,5 (for 1 ≤ i ≤ n) in the benchmark.

Figure

 Figure 7.4 The Level Crossing Benchmark

 have used BDD-based and SAT-based model-checking techniques. The rst failed, while the second achieved the task. The dierence between the results is caused by the fact that the BDD-based technique investigates only the innite paths, whereas the SAT-based Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework 179

 Figure 8.1 Example 15

Figure 8 . 2

 82 Figure 8.2 Illustration of a set of prime paths (SPP).

Figure 8

 8 Figure 8.3 A part of a twin-plant (Example 18)

 t. ∀t ∈ L(G)/s, |t| ≥ n ⇒ (∃t ≤ t), satisfying ∀ω ∈ P -1 L (P (s.t) : (ω) = F . Let us consider s ∈ Σ * such that s.t ≤ s .Then, by construction of the reduced twin-plant (Denition 53), we have Π s (P) = ∅.

8. 4

 4 .1.1 W F -Diagnosability as a Model-Checking Problem 200Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

 Columns from left to right correspond to the dierent tests: k is the number of production lines; |G S |, |G T | are respectively the number of states and the number of transitions in 202Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis

Figure 8

 8 Figure 8.4 The LPN Benchmark

 Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis203

Figure 8 .

 8 Figure 8.5 shows a path that contains a conguration of an F -indicating sequence

Figure 8 . 5

 85 Figure 8.5 Example of an F r -indicating sequence

 Figure 8.6 Automaton G of Example 1

 Figure 8.7 A part of twin-plant G corresponding to automaton G

 Fault Diagnosis . 2.2 Fault Diagnosis Approaches . 2.3 Diagnosis of Discrete-Event Systems 2.4 DESs Diagnosis Using Petri Nets

	Chapter 2 Model-Based Diagnosis Sommaire 2.1 Chapter 2. Model-Based Diagnosis

]. Other formalisms have been used to deal with fault diag-Introduction . 26

	Chapter 3
	Fault Diagnosis of Discrete-Event
	nosis of DESs. A brief literature review about DESs diagnosis using Petri nets is given in Chapter 6. systems
	Sommaire
	3.1

3.2 Discrete-Event Systems under Partial Observation 27 3.3 The Fault Diagnosis Problem . 30 3.4 Diagnosability . 32 3.5 The pioneering Approaches . 36 3.6 Conclusion . 44

 Cycles in G and G d)• A series of states x 1 , x 2 , . . . , x n ∈ X is said to form a cycle in G

	Chapter 3. Fault Diagnosis of Discrete-Event systems
	tracking some particular cycles in the diagnoser and the pre-diagnoser. Before discussing
	the analysis of diagnosability, we recall the notions of cycles in the system model G and
	in the diagnoser G d .
	Dénition 12 (
	have
	developed a necessary and sucient condition for analyzing diagnosability. It consists in

 2, . . . , n.

	An F -uncertain cycle in the diagnoser is a cycle that is composed exclusively by F -uncertain states. An F -indeterminate cycle in the diagnoser is dened as an F -uncertain
	cycle, for which two corresponding cycles, sharing the same observable projection as the
	F -uncertain cycle, exist in the pre-diagnoser such that one cycle involves only faulty states,
	while the other one involves only normal states. Such a notion of F -indeterminate cycle is crucial, since it helps to give the necessary
	and sucient condition for diagnosability.
	Theorem 1 (Necessary & Sucient Condition) An FSA G is diagnosable if and only if no F -indeterminate cycle exists in its diagnoser G d for any class of faults Σ f .
	Example 2 Let us consider FSA G in Figure

 Finally, detecting the presence of F -confused cycle is linear in the number of states/transitions of G. Therefore

				start	1N , 1N	
			7N , 7N	7N , 3F	3F , 7N	3 F , 3F
	6 F , 6F	9 F , 9F	11N,11N	11N , 4F	4F , 11N	4F , 4F

 Conclusion . 79

	Chapter 4
	A New Variant of the
	Diagnoser-Based Approach
	Sommaire
	4.1 Introduction . 48
	4.2 The System Model . 50
	4.3 A New Variant of The Diagnoser 51
	4.4 On-the-y Verication . 62
	4.5 Extensions . 69
	4.6 Experimental Evaluation . 72
	4.7 A Comparison Between Sampath's Diagnoser and our Proposed
	Diagnoser . 78
	4.8

 2) we evaluate the eciency of our approach regarding the number of observable and unobservable transitions in the model. In this test, we consider that parameters m = 1, k = 4, and b = 2, 3 . . . , 10, 15, 18. Transitions t 0 , t 1 , and t i,b for 1 ≤ i ≤ 4 are observable. In addition, transitions f i for 1 ≤ i ≤ 4 are unobservable. Therefore, Before proceeding with the actual experiments, some preparations are necessary. Both approaches, deal with automata models by importing *.fsm le. Thus, we rst generate the reachability graph (as an automaton) of the considered PN with the help of TINA (TIme petri Net Analyzer) tool[START_REF] Berthomieu | The tool TINA: Construction of abstract state spaces for Petri nets and time Petri nets[END_REF], which is a toolbox for the editing and analysis of Petri Nets. This yields to a *.aut le, which is then transformed into a

	74	Chapter 4. A New Variant of the Diagnoser-Based Approach
	a) All the other transitions are unobservable.
	b) All the other transitions are observable.
	In fact, for this test, we only increase the number of unobservable (resp. observable)
	transitions in the model from one experiment to another. That is, we iteratively add 4
	unobservable (or observable) transitions in the model each time.
	the model is always diagnosable. Regarding the rest of transitions, two cases are
	considered:	

Moreover, transitions t 0 , t 1 , and t i,1 , t i,3 for 1 ≤ i ≤ k are observable, and transitions f i for 1 ≤ i ≤ k are faulty. Regarding the other transitions, two cases are considered : a) All the other transitions are unobservable (in this case, the model is nondiagnosable). b) All the other transitions are unobservable except for transitions t i,4 for 1 ≤ i ≤ k which are observable (in this case, the model is diagnosable).

Test

.fsm le with the help of a script we have developed. This ensures that the comparative experiments are performed with the same input. It is worth noticing that the experiments have been performed on 64-bit PC (CPU: Intel Core i5, 2.5 GHz, RAM: 6GB). We x 4

Table 4

 4

.1 for Test 1, and in Table 4.2 for Test 2, where :

Table 4

 4

				.1 Experimental results for Test 1		
					Our approach	Sampath's approach	verier	
	k |P | |T |	|R S |	|R T |	|D| T e D (s)	|D|	T e D (s) T e V (s) Diag
	3 4 5 6 7	16 17 21 22 26 27 31 32 36 37	126 626 3126 15626 78126	377 2502 15627 93752 546877	16 20 24 28 32	0 0 0.1 0.3 1.5	56 164 488 1460 *	0.3 0.4 4.4 1893 o.t.	0.2 4.4 o.t. o.t. o.t.	non-diagnosable
	8	41 42 390626 3125002	36	9.3	*	o.t.	o.t.	
	3	16 17	126	377	65	0	270	0.2	0.1	
	4 5 6 7	21 22 26 27 31 32 36 37	626 3126 15626 78126	2502 15627 93752 546877 16385 257 1025 4097	0 0.2 1.8 41.6 143086 1378 6686 31314	0.3 1 31.4 1471	1.3 163.4 o.t. o.t.	diagnosable
	8	41 42 390626 3125002 65537	921	*	o.t.	o.t.	

*: No result obtained in 4 hours. o.t.: Out of time (simulation time ≥ 4 hours).

Table 4

 4

				.2 Experimental results for Test 2		
					Our approach	Sampath's approach	verier
	b |P | |T |	|R S |	|R T |	|D| T e D (s)	|D|	T e D (s) T e V (s)
	2	13 14	82	326	17	0	34	0.1	0.6
	3	17 18	257	1026	17	0	34	3000	46
	4	21 22	626	2502	17	0	*	o.t.	1440
	5	25 26	1297	5186	17	0.1	*	o.t.	o.t.
	6	29 30	2402	9606	17	0.2	*	o.t.	o.t.
	7	33 34	4097	16386	17	0.5	*	o.t.	o.t.
	8	37 38	6562	26246	17	0.7	*	o.t.	o.t.
	9	41 42	10001	40002	17	1.7	*	o.t.	o.t.
	10	45 46	14642	58566	17	3	*	o.t.	o.t.
	14	61 62	50626 202502	17	8.4	*	o.t.	o.t.
	18	77 78 130322 521286	17	28.8	*	o.t.	o.t.
	2	13 14	82	326	82	0	164	0	0.4
	3	17 18	257	1026	257	0	514	0	0.4
	4	21 22	626	2502	626	0	626	0.1	0.5
	5	25 26	1297	5186	1297	0.1	0.4	1.2	1.2
	6	29 30	2402	9606	2402	0.3	4804	0.7	2.7
	7	33 34	4097	16386	4097	1	8194	2.1	9.3
	8	37 38	6562	26246	6562	3	13124	3.4	31
	9	41 42	10001	40002	10001	8.9	20002	8.5	71.6
	10	45 46	14642	58566	14642	15.4	29284	25.3	154.4
	14	61 62	50626 202502	50626	206 101252	363	1590
	18	77 78 130322 521286 130322	1382 260644	2340	8520

*: No result obtained in 4 hours. o.t.: Out of time (simulation time ≥ 4 hours).

 This chapter discusses an ecient diagnoser-based approach for fault diagnosis of discreteevent system modeled as partially observed nite state automata. A new structure for representing the diagnoser nodes is proposed. It consists in separating normal states and faulty states in each diagnoser node. Therefore, on the basis of this structure and through using various features that characterize it, we propose a systematic procedure for directly checking diagnosability using the diagnoser and without needing to construct any intermediate model. Moreover, the proposed procedure also considers dealing with the quantitative diagnosability properties, namely, Kand K min -diagnosability, as well as online diagnosis. An on-the-y algorithm for constructing the proposed diagnoser and verifying diagnosability simultaneously is provided. Introduction . 82 5.2 A Review of Intermittent Fault Diagnosis in DESs 84 5.3 Overview on the Developed Contribution 87 5.4 Modeling of the System and Intermittent Faults 88 5.5 Notions of Diagnosability . .

	Chapter 5
	A Diagnoser-Based Approach for
	Intermittent Fault Diagnosis
	Sommaire
	5.1

. 94 5.6 Construction of the Diagnoser . 99 5.7 Analysis of W F -Diagnosability . 104 5.8 Analysis of SF -Diagnosability . 109 5.9 Discussion . 112 5.10 A Still Open Issue . 114 5.11 Conclusion . 116

 Thèse de Abderraouf Boussif, Lille 1, 2016 Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 87 computing the occurrence probabilities, is developed in [De

© 2016 Tous droits réservés. lilliad.univ-lille.fr

 Thèse deAbderraouf Boussif, Lille 1, 2016

© 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 89

 Thèse deAbderraouf Boussif, Lille 1, 2016

© 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 91

 Thèse deAbderraouf Boussif, Lille 1, 2016 Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 99 Remark 3 It is worth noticing that, unlike the weak diagnosability, there is no equivalence between the strong version of diagnosability. Therefore, a system model may be SF -diagnosable while it is non-SR-diagnosable, or conversely.Example 10 Consider automaton G 1 , shown in Figure5.6. The sets of observable and unobservable events are Σ o = {a, b, c, d, e} and Σ u = {f, r}, respectively. In addition, Σ f = {f } and Σ r = {r}. Executions π 1 = 1, a, 2, f, 3, b, (4, c, 5, r, 6, d, 7, f, 8, e) * and π 2 = 1, f, 11, a, 12, r, 13, b, (14, f , 15, c, 16, d, 17, r, 18, e) * share the same observation ω = ab(cde) * . one can observe that both executions reach faulty states (respectively, state 5 and state 16) after executing observable sequence `abc', and then periodically upon any observable sequence abc(dec) * . Therefore, model G 1 is SF -diagnosable. However, π 1 and π 2 never reach recovered states at the same time upon the execution of a same observable sequence. Therefore, model G 1 is non-SR-diagnosable.

	The following Example illustrates this remark,				
	start	1	2	3	4	5	6	7	8
		11	12	13	14	15	16	17	18

© 2016 Tous droits réservés. lilliad.univ-lille.fr

 Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 107 (except for S 1 which holds all the faulty and recovered states of a 1). Actually, the c W Findicating sequence is introduced with the aim of tracking the existence of cycles in G that share the same observation with some corresponding W F -uncertain cycle c , and which have experienced at least one fault occurrence.

	Thèse de Abderraouf Boussif, Lille 1, 2016

© 2016 Tous droits réservés. lilliad.univ-lille.fr

 S 2 , . . . be the c W F -indicating sequence and S c = S 1 , S 2 , S 3 , . . . be its corresponding series. Then, S c reaches a xed-point. i.e., ∃ k ∈ N * s.t. ∀i ∈ N : S k+i = S k , which means that S Based Approach for Intermittent Fault Diagnosis Proposition 8, establishes the fact that there exists an index i from which c W Findicating sequence ρ c shows a repetitive bloc of length n [S 1+kn , S 2+kn , . . . , S n-1+kn S (k+1)n]

	108 Chapter 5. A Diagnoser-
	(1+(k+i-1)n) = S (1+(k-1)n) .
	Proof. The proof of Proposition 8 is omitted as it is similar to that of Proposition 4
	in Chapter 4.

 Chapter 5. A Diagnoser-Based Approach for Intermittent Fault Diagnosis 117 necessary and sucient conditions, without needing to construct any intermediate model, is established. Moreover, systematic procedures for the actual verication of the various diagnosability properties considered are established. Summary . 119 6.2 Petri Net Based Fault Diagnosis 120 6.3 Motivation of the Approach . 123 6.4 Preliminaries . 125 6.5 The Symbolic Observation Graph (SOG) 127 6.6 The Symbolic Reachability Diagnoser (SRD) 132 6.7 Diagnosability Analysis Using The SRD

	Thèse de Abderraouf Boussif, Lille 1, 2016
	Chapter 6
	Fault Diagnosis of LPNs Using a
	Symbolic Reachability Diagnoser
	Sommaire
	6.1
	The
	system modeling, intermittent fault modeling and various diagnosability properties are
	rstly discussed. An extended diagnoser with a new structure that allows checking the

© 2016 Tous droits réservés. lilliad.univ-lille.fr 139 6.8 On-the-y Verication Algorithm 143 6.9 Experimentation . 147 6.10 Conclusion . 153 6.1 Summary

 Petri net is a structure N = (P, T, P re, P ost), where P is a nite set of places; T is a nite set of transitions; P re and P ost are the pre-and post-incidence mappings, respectively. C = P ost -P re is the incidence matrix. A marking is a vector m ∈ N |P | that assigns a non-negative integer to each place. We denote by m(p) the marking of a place p. A marked PN (N, m 0) is a PN N with a given initial marking m 0 . For short, a marked PN will be called PN afterward.A transition t i is enabled by marking m, denoted by m[t i >, if m(p) ≥ P re(p, t i), ∀p ∈ P . A transition t i enabled by marking m can re, yielding to a marking

	6.4.1 Labeled Petri Net Modeling

A

 m , m is the number of places Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 129 in the net. Then, a set of markings S ⊆ R(N, m 0) can be represented within a BDD by means of the Boolean characteristic function F R : R(N, m 0) → {0, 1} with:

Table 6 .

 6 1 The truth table of the corresponding characteristic function

 Regarding transitions t i,10 (i.e., transitions in parallel with faulty transitions), two cases are considered: Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser Test 1: transitions t i,10 are non-observable (for 1 ≤ i ≤ 4), in this case the model is non-diagnosable;

Table 6 .

 6 Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability Diagnoser 149 case of a diagnosable model, a partially generated state-space of the SRD is sucient for performing the online diagnosis, as discussed earlier in the chapter. 3 Experimental Comparative Results for Test 1 and Test 2 Based on the LPN Benchmark

		Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability
	150	Diagnoser

 this section, we highlight the main observations that can be derived from the obtained results. Firstly, by considering m = 1, k = 4 and b = 10, the LPN benchmark has 45 places, 46 transitions, while its reachability graph contains 14642 markings and 58566 Memory/Time Eciency of the SRD approachIn the case of the non-diagnosable models (i.e., Test 1), one can observe that the SRD approach eciently analyze the diagnosability by only constructing the relevant part of the diagnoser (as regards of diagnosability analysis), which reduces the memory/time consumption. Actually, as the construction of the diagnoser and verication of diagnosability are simultaneously performed on the y. As soon as an

	Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability		
	Diagnoser													151
	6.9.2 Discussion													
						Diagnosable (Test 2)			
	-transitions. Secondly, it should be noticed that the LPN benchmark is non-diagnosable -0.48 a.q. a.q. a.q. a.q. a.q. ----quit' for Test 1 whereas it is diagnosable for Test 2. In what follows, the obtained results are
	discussed according to two features: 6.9.2.1	* * o.t.	* * o.t.	35 99 ≤ 0.1	165 467 0.8	515 1571 8	1253 4035 53.6	2595 8675 261.1	4805 16499 1084.5	8194 28707 3489	13125 46691 9991	* * o.t.	* * o.t.	hours). a.q.: `accident
		1 2651 10001 36017 685	≤ 0.1 2845 14642 53257 1384	0.2 2583 17 66 0.1	0.5 8689 82 326 0.63	0.6 21310 257 1026 2.28	0.8 43929 626 2502 7.15	1 81412 1297 9606 20.29	1.1 139966 2402 9606 55.18	1.6 229487 4097 16386 155	1.8 343322 6562 26246 371	2.5 503601 10001 40002 721	3.7 710052 14642 58566 1624	hours. o.t.: Out of time (simulation time ≥ 4
			38 76 75	6 17 34	10 82 218	14 257 770	18 626 2002	22 1297 4322	26 2402 8234	30 4097 14338	34 6562 23330	38 10001 36002	42 14642 53242	*: No result obtained in 5

In

 Symbolic Reachability Diagnoser' with a new structure that consists in separating normal markings from faulty ones in each diagnoser node. In fact, the sets of normal and faulty markings, in each diagnoser node, are encoded using a symbolic representation, i.e. Binary Decision Diagrams. Moreover, a necessary and sucient condition for diagnosability analysis of Petri nets is derived from the diagnoser structure, and a systematic procedure for checking such a condition without building any intermediate model is established. Finally, an on-the-y algorithm to construct the diagnoser and check the diagnosability simultaneously is provided. Finally, some experimental results that show the eectiveness of the proposed approach are discussed.In the second part of the manuscript, we address various DES diagnosis issues on the basis of the twin-plant structure. Indeed, as mentioned earlier in the dissertation, the twin-plant based technique shows some substantial advantages in terms of complexity compared to the diagnoser-based technique, when it comes to investigate diagnosability. Introduction . 158 7.2 Model-Checking . 159 7.3 A Review on Fault Diagnosis Using Model-Checking 162 7.4 State-Based Modeling of DESs . 166 7.5 Diagnosability Analysis . 167 7.6 Diagnosability as a Model-Checking Problem 170 7.7 K/K min -Diagnosability as a Model-Checking Problem 171 7.8 Diagnosability Verication Using NuSMV Model-Checker 176 7.9 Experimentation . 176 7.10 Conclusion . 179

	Chapter 6. Fault Diagnosis of LPNs Using a Symbolic Reachability	
	Diagnoser	153
	caused by eventual bugs in the tool. Thus, we do not compare the elapsed time for Chapter 7
	checking diagnosability. Practical Verication of 6.10 Conclusion In this chapter, a diagnoser-based approach to deal with fault diagnosis of bounded and Diagnosability in a Model-Checking
	labeled Petri net models is presented. The approach consists in building a partial symbolic Part III THE TWIN-PLANT BASED APPROACH Framework Sommaire diagnoser called `The developed contributions are related to both permanent and intermittent faults while CONTRIBUTIONS REGARDING 7.1
	considering dierent aspects.	

 Dénition 50 A diagnosis condition c 1 ⊥ c 2 is said to be diagnosable over Σ in Q, if and only if Q has no innite critical pairs for c 1 ⊥ c 2 in Σ * .

7.6 Diagnosability as a Model-Checking Problem

 This means that no nite sequence containing ambiguous states exists in the twinplant structure. By analyzing the generated counter-example, we can nd the length of this sequence. If we generate all counter-examples, then nding K min is nothing else than nding the maximal length of the sequence of successive ambiguous states among

counter-examples. Thanks to the existing algorithms that allow for generating multiple or all counter-examples in one model-checking run

[START_REF] Basu | Generation of all counter-examples for Push-Down Systems[END_REF]

, one can avoid the multiple model-checking runs and thus avoid high time complexity. 7.7.3.1 K min -Diagnosability Using RT-CTL Model-Checking

Table 1

 1 , where the columns from left to right correspond to: fault class, number of railway tracks, number of states in the reachability graph of the LPN model, number of states of the state-based FSA obtained after the transformation, number of reachable states generated by the Model-Checker, diagnosability verdict, time elapsed by the model-checker, K min ensuring diagnosability if the system is diagnosable. All experiments were conducted on a 64-bit PC, Ubuntu 14.04, an Intel Core i5, 2.5 GHz Processor with 4 cores and 4 GB RAM.

Table 7

 7

		.1 Experimental results for LC models	
	Σ F i n M G	X	RS	Diag T ime K min
	1	24	38	121	YES	00.01 s	4
	Σ F 1 2 216	416	3013	NO	00.50 s	-
	3	1632	3240	40603	NO	50.20 s	-
	1	24	38	115	YES	00.01 s	6
	Σ F 2 2 216	352	2573	YES	00.28 s	13
	3	1632	2604	38310	YES	21.51 s	20
	technique is also able to deal with nite paths. Thus, it can check the existence of nite
	ambiguous state execution. The analysis of the counter-examples generated conrms the
	correctness of our extended diagnosability formulation.		

 Introduction . 182 8.2 Analysis of the Weak Diagnosability 182 8.3 Analysis of the Strong Diagnosability 189 8.4 Diagnosability of Intermittent Faults as Model-Checking Problems . 199 8.5 Experimentation . 201 8.6 Discussion of the F r -diagnosability 204 8.7 Conclusion . 206

	Chapter 8
	Twin-Plant Based Approach for
	Intermittent Faults Diagnosis
	Sommaire
	8.1

Table 8 .

 8 1 Experimental results for the LPN benchmark k |G S | |G T | |RS| T RS Diag T Diag

		3	131	294	2077	0.02s	No	0.02s
	Test 1	4 5	515 2015	1542 7686	38285 663453	0.17s 3.04s	No No	0.28s 2.70s
		6	8195	36870	11048100	57s	No	361s
		3	131	294	1040	0.01s	Yes	0.02s
	Test 2	4 5	515 2015	1542 7686	19144 331728	0.17s 4.22s	Yes Yes	0.14s 2.12s
		6	8195	36870	5524040	63s	Yes	290s

Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr

Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 1. Introduction

Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 3. Fault Diagnosis of Discrete-Event systems

Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr

Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.frChapter 4. A New Variant of the Diagnoser-Based Approach

δD(ai, σi) = a (i+1)modn means the following: ∀i < n : δD(ai, σi) = ai+1 and δD(an, σn) = a1.Thèse de Abderraouf Boussif, Lille 1,

© 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 4. A New Variant of the Diagnoser-Based Approach

It is worth noticing that, in this example, the nodes are enumerated (for illustration).Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr

[START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF], Yoo and Garcia, 2004[START_REF] Yoo | Polynomial-time verication of diagnosability of partially observed discrete-event systems[END_REF], decentralized models[START_REF] Philippot | Decentralized diagnosis and diagnosability by Model-Checking[END_REF], Debouk et al., 1998, Moreira et al., 2011, Wang et al., 2007, Sayed-Mouchaweh and Carre-Menetrier, 2008, Lafortune et al., 2005, Provan, 2002, Cabasino et al., 2013a, Qiu and Kumar, 2006, Wang et al., 2004, Qiu et al., 2009, Schmidt, 2010], distributed and modular models[START_REF] Ye | Undecidable case and decidable case of joint diagnosability in distributed discrete event systems[END_REF], Contant et al., 2006, Debouk et al., 2002b, Zhou et al., 2008, Schmidt, 2013], Petri net framework[START_REF] Cabasino | Diagnosability of discrete-event systems using labeled petri nets[END_REF], Liu, 2014, Li et al., 2015c[START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF], Cabasino et al., 2012a, Basile et al., 2012a], etc.Unfortunately, most of the approaches developed are oriented to the denition of a theoretical frameworks, and do not address the problems related to the practical application of the approaches developed. Moreover, such approaches propose ad-hoc algorithms for the actual verication of diagnosability which are implemented in academic tools. Hence, the practical implementation of the developed DESs diagnoser techniques is an issue that still needs exploration.The works in[START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], Pecheur et al., 2002], which are rather dierent from the works mentioned above, propose a practical framework for the formal verication of the diagnosability using model-checking techniques. In fact, authors attempted to bring forward an eective platform for the analysis of diagnosability that can be practically Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr

such that ∀i ≤ n, Ψ(x 1 i) = N and ∃ j ≤ n s.t. Ψ(x

j) = F (cf.Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr

Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr 206Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis8.7 ConclusionIn this chapter, the twin-plant technique is investigated in order to deal with diagnosability of intermittent faults of DESs. Necessary and sucient conditions for various notions of diagnosability properties are established and proved. Firstly, on-the-y and incremental ad-hoc algorithms are developed to check these conditions. Secondly, the verication of (some of) these diagnosability properties is reformulated as LTL model-checking problems. Some experimentations are conducted through an LPN benchmark in order to illustrate the practicability of the developed reformulation.Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr

Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Chapter 9. Conclusions and Perspectives

© 2016 Tous droits réservés. lilliad.univ-lille.fr

Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr Thèse de Abderraouf Boussif, Lille 1, 2016 © 2016 Tous droits réservés. lilliad.univ-lille.fr

Initialization:

return Non-Diagnosable else return Diagnosable

• IsU ncertain(c): is a function that returns a Boolean value (true if the encountered cycle c in the SRD is composed of only F -uncertain nodes and f alse otherwise).

• List_Nodes, List_Nodes1, Cycle_Nodes: are three nite ordered lists of diagnoser nodes or sets of markings. These lists are used for checking the existence of cycles.

• List_Labels, Cycle_Labels: are two nite ordered lists of labels (observable events), corresponding respectively to List_Nodes, Cycle_Nodes. They are used to check the existence of cycles in the SRD.

• Add(a): an operation that adds an element a to a given ordered list.

• RemoveLast(E): an operation that removes the last added element from an ordered list E.

• Copy(i, End): is an operation that copies elements from index i to the end of a given ordered list, into a new empty ordered list.

Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework

This chapter is organized as follows: after a short introduction regarding the practical verication of diagnosability, we briey recall the main concepts regarding model-checking in Section 7.2 and we give an overview of fault diagnosis using model-checking techniques in Section 7.3. In Section 7.4, we discuss some modeling issues in view of using modelchecking techniques. Section 7.5 rst recalls Cimatti's denition of diagnosability [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], and then introduces an extension of this denition in order to comply with the classic one [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. The reformulation of diagnosability as a model-checking problem is discussed in Section 7.6. In Section 7.7, we introduce K-diagnosability as a CTL model-checking problem and we discuss the K min -diagnosability issue. In Section 7.9, we illustrate the concepts discussed through a level crossing benchmark. Finally, Section 7.10 draws various concluding remarks.

Introduction

Diagnosability of DESs [Lin, 1994, Sampath et al., 1995, Sampath et al., 1996] has become an interesting research topic in both articial intelligence and control theory communities.

A large and a signicant amount of works have been devoted the to the analysis of such a property in centralized models [START_REF] Bourgne | Diagnosability of Input Output Symbolic Transition Systems[END_REF], Morvan and Pinchinat, 2009, Hosseini et al., 2013, Schumann and Pencolé, 2007, Zad et al., 2003, Liu, 2014, Grastien, 2009, Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework

To check K-diagnosability by model-checking, it is enough to check that the value returned by delay function never reaches the value K in all the reachable states. Therefore, the model-checking problem expressing the K-diagnosability property is:

If the Kripke structure corresponding to the twin-plant satises such specication, it means that the system model Q is K-diagnosable and thus the system is diagnosable. If it does not satisfy the specication, then the system is not K-diagnosable.

K min -Diagnosability Reformulation

The second main problem related to K-diagnosability is to nd the minimum value of K (K min) for which the system is K-diagnosable, i.e., the case when the system is K-

It is possible to adapt an incremental approach by means of successive logical formula in order to nd the minimum value K min ensuring diagnosability. The idea is to introduce increment of K in the CTL specication as illustrated below:

For K = 0, we nd the same specication for expressing zero-diagnosability. For K = 1, we only extend verication of diagnosis condition to the states reachable upon one observation using CTL formula EX φ, which means that φ holds in a successor of the current state. In other words, such a formula means that the system remains in ambiguous status after the rst observation from the original ambiguous state. We repeat the same procedure for the following values of K.

We can note that this method suers from the number of model-checking runs, since we repeat the procedure for each specication, which is of high time complexity. Another drawback of this approach is its eectiveness, since the length of a specication is proportional to the value of K. Thus, for great integers it becomes dicult to express Chapter 7. Practical Verication of Diagnosability in a Model-Checking Framework

The output decision through such a model-checking problem is either a nite integer, which represents the K min value, or innity value (+∞), which means that the model is non-diagnosable.

Diagnosability Verication Using NuSMV Model-Checker

For the actual verication of the various reformulation of diagnosability properties that we have established, we use the symbolic model-checker NuSMV [START_REF] Cimatti | NUSMV: a new symbolic model checker[END_REF] (version 2.5.4), originated from the reengineering, reimplementation and extension of the CMU SMV tool [START_REF] Srinivasan | [END_REF]Gluch, 1998, Plath and[START_REF] Plath | [END_REF], the original BDDbased model-checker developed at CMU [McMillan, 1993]. In fact, NuSMV is one of the most popular model-checkers for temporal logics (LTL, CTL, RT-CTL, PSL, etc.). It is equipped with a dedicated modeling language (SMV language) which allows for the representation of synchronous/asynchronous nite state/transition systems as Kripke structures and the analysis of specication expressed in various temporal logics. Its main advantage is the integration of model checking techniques based on propositional satisability analysis (SAT), which is currently enjoying a substantial success in several industrial elds.

Aiming at automatizing the generation of formal models (as a NuSMV modules) for the twin-plant and the integration of the various specications expressing the diagnosability properties, we developed a platform, in C # programming language, that carried out these tasks. In fact, the platform takes event-based automata (*.fsm les), and the diagnosability properties to be checked, as input and generates a NuSMV model (*.smv) which contains

NuSMV modules describing the twin-plant and the specication to be checked in the corresponding temporal logic (LTL, CTL, or RT-CTL). An illustrative example, which details the procedure for checking diagnosability of permanent faults using NuSMV, is given in Appendix A.

Experimentation

In order show the applicability of the proposed technique, we perform some experimentation through a benchmark, taken from [START_REF] Ghazel | A customizable railway benchmark to deal with fault diagnosis issues in des[END_REF], which abstracts a level crossing system and depicts the concept of permanent faults.

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis185 twin-plant, i.e., cycles that are composed only of N F (or F N)-states. Here, we also use the twin-plant structure to establish necessary and sucient conditions for the weak diagnosability of intermittent faults. To do so, some further concepts will be introduced in what follows.

Dénition 55 (F-confused cycle) An F -confused cycle is a cycle c = (q 1 , σ 1 , q 2 , . . . , q n , σ n , q n+1 = q 1) in the twin-plant, s.t. ∀ 1 ≤ i ≤ n, q i is an N 1-state, and ∃ j : 1 ≤ j ≤ n, s.t. q j is an N F -state.

An F -confused cycle in the twin-plant corresponds to two cyclic traces in the system model (automaton G) which generate the same observed trace, such that the rst one has no fault event (a fault-free cyclic trace) and the second one contains at least one fault event (which explains the existence of an N F -state in the twin-plant).

Dénition 56 (R-confused cycle)

An R-confused cycle is a cycle c = (q 1 , σ 1 , q 2 , . . . , q n , σ n , q n+1 = q 1), in the twinplant, s.

After having set up these preliminary notions, the necessary and sucient conditions for the weak diagnosability of intermittent faults can be stated.

Theorem 10 (Necessary & sucient conditions for W F and W R-diagnosability) A system model G, w.r.t projection P , class of fault events Σ f and its corresponding class of reset events Σ r , is:

1. W F -diagnosable, if and only if no F -confused cycle exists in its corresponding twinplant. 2. W R-diagnosable, if and only if no R-confused cycle exists in its corresponding twinplant.

Hereafter, we provide a proof of this Theorem regarding W F -diagnosability.

Proof. (⇒) Assume that L(G) is W F -diagnosable and there exists an F -confused cycle in its corresponding twin-plant: q 1 , σ 1 , q 2 , . . . , q n , σ n , q 1 , n ≥ 1. Such a cycle corresponds to two cycles in G : c = x 1 Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis187 Denition 5.). By assumption (A3), each fault is recovered within a nite delay. Consequently, from Denition 18, ∃ i ≤ n s.t. Ψ(x 2 i) = R. Therefore, states q 1 , q 2 , . . . , q n also form an R-confused cycle in P. Hence, automaton G is not W R-diagnosable.

By similar reasoning, we prove that, if automaton G is not W R-diagnosable, then it is not W F -diagnosable. Indeed, it suces to note that, by assumption (A3), each reset event is followed by a new occurrence of a fault event in a nite delay.

Example 16 From reduced twin-plant P (cf. Figure 8.1) corresponding to automaton G (cf. Example 7), one can infer that G is W F -diagnosable (and then W R-diagnosable), since no F -confused cycle exists in its corresponding reduced twin-plant P.

Verication Algorithm for Weak Diagnosability

The proposed algorithm for checking the weak diagnosability consists in constructing, on the y, the reduced twin-plant P corresponding to model G, while checking in parallel the necessary and sucient condition for W F -diagnosability according to Theorem 10. It should be noticed that only the verication algorithm for W F -diagnosability is discussed, since it also applies for W R-diagnosability in the same manner.

Algorithm 8 is based on a depth-rst search procedure. It builds twin-plant P and simultaneously checks the necessary and sucient condition for W F -diagnosability. As soon as a cycle is found in P, function Check_F-Confused_Cycle() (cf. Algorithm 8, Line 29) checks whether this cycle is an F -confused cycle or not. If it is an F -confused cycle, then G is not W F -diagnosable and the verication process is stopped. Otherwise, the construction and verication process continues. If the whole state-space of P is generated, through Algorithm 8, without looking for any F -confused cycle, then model G is stated to be W F -diagnosable (cf. Algorithm 8, Line 33).

Below, functions and data, used in the algorithm, are briey explained:

• Stack.Push, Stack.Top, Stack.Pop: are the usual methods to handle a stack.

• Enable(q): returns the set of output (observable) events σ i from state x. Formally,

• List_Current: The list of twin-plant states that need to be handled.

• Add(), RemoveLast(): two functions used to handle lists of twin-plant states.

• Check_F-Confused_Cycle(): the function that checks the existence of an Fconfused cycle in List_Current. x 1 ← δ(x, σ) // Get back the target state

Stack.Push((x 1 , x 1),Enable(x 1)×Enable(x 1)) // Pile up the current element else

Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis195

Verication Algorithm

In order to check SF and SR-diagnosability based on the elaborated conditions in the previous section, we have developed an incremental depth-rst search algorithm.

The algorithm consists in constructing, on the y, twin-plant P corresponding to model G, while checking in parallel the necessary condition for SF -diagnosability according to Proposition 14. It is interesting to note that checking the necessary condition for the SF -diagnosability is performed by means of the same algorithm used for the W Fdiagnosability (cf. Algorithm 8). The only dierence is that, instead of checking the existence of an F -confused cycle, we check the existence of non-F -cycle.

If the necessary condition is satised (i.e., the absence of non-F -cycle), then the necessary and sucient condition (cf. Theorem 11) is checked in an incremental way. Thus, for any event-trace s that is associated with a prime-path in T r(P), set Π s (P) is generated and the F -Interception condition is checked incrementally in Π s (P). This task is repeated until all the prime-paths in P have been investigated. As soon as the F -Interception condition is violated, G is stated to be non-SF -diagnosable. On the contrary, if no violation of the F -Interception condition is detected, G is stated to be SF -diagnosable. A similar algorithm is also used for checking SR-diagnosability. Hereafter, the various tasks and functions that constitute the algorithm are detailed.

Algorithm 9 is a depth-rst search algorithm. It builds twin-plant P and veries the necessary condition for SF -diagnosability simultaneously. As soon as a cycle is found in P, function Check-Non-F-Cycle() checks whether such a cycle is a non-F -Cycle or not. If it is a non-F -cycle, then G is non-SF -diagnosable and the verication process is stopped. If the whole state-space of P has been generated, through Algorithm 9, without nding any non-F -cycle, then condition C1 will be checked through Algorithm 10.

Algorithm 10 is a recursive algorithm that generates an arbitrary event-trace List_ Event (associated with prime state-trace List_State) using function GenEventTrace(). Once an event-trace has been generated, function Check_Condition (cf. Algorithm 11) is called to perform two tasks: generating (in an incremental manner) set Π List_Event cor- responding to the generated event-trace List_Event and checking simultaneously the x 1 ← δ(x, σ) // Get back to the target state

List_Current.Add((x 1 , x 1))

Stack.Push((x 1 , x 1),Enable(x 1)×Enable(x 1)) // Pile up the current element else

First, a prime state-trace (noted by List_StatePrime) is generated, which is associated with event-trace List_Event. Then, List_StatePrime is compared with List_State (generated by Algorithm 10) in terms of F -state indices. We rst pick from Chapter 8. Twin-Plant Based Approach for Intermittent Faults Diagnosis197 the elementary cycle of List_State (resp. List_StatePrime), F -state indices in F-Indices (resp. F-IndicesP) using function Indices() (cf. Algorithm 10). Then, we check if List_StatePrime and List_State share some F -states indices. If no F -state index is shared (i.e., F-Indices ∩ F-IndicesP= ∅), then the procedure is stopped and we conclude that G is non-SF -diagnosable. Otherwise, the shared F -state indices are saved in F-Indices and the procedure is continued, to check other state-traces that have List_Event as an associated event-trace. This task is repeated for each List_Event generated by Algorithm 10.

Algorithm 10 Checking necessary and sucient condition Input: twin-plant P Output: Decision about diagnosability

An Illustrative Example using NuSMV

A.1 Heating Ventilation and Air-Conditioning System

Let us consider the HVAC system discussed in [Zad, 1999, Sampath et al., 1995, Cassandras and Lafortune, 2009, Stéphane Lafortune and Paoli, 2014] For simplicity, we consider that both events SC and SO belong to the same fault class, i.e., Σ f = {SC, SO}. The rest of events are considered to be observable. It is worth noticing that G can be seen as an eventbased model, i.e., the occurrence of the faulty behavior is modeled by the occurrence of faulty events SC and SO, or as a state-based automaton, i.e., the occurrence of the faulty behavior is modeled by the reachability of faulty states. In fact, set of states X can be partitioned into to disjoint subset of states: X = X N X N , with X N = { VC_POFF_C1, VO_POFF_C2,VO_PON_C3, VO_POFF_C4, } and X F = { SO_POFF_C1, SO_POFF_C2, SO_PON_C3, SO_POFF_C4, SC_POFF_C1, SC_POFF_C2, SC_PON_C3, SC_POFF_C4 }.

A.2 The Diagnosability Analysing Using NuSMV

In this section, we provide the NuSMV program for analyzing diagnosability. The program is composed of two modules: HVAC and main. Module HVAC contains the observable behavior of the HVAC system, i.e., a description of the generator G of G obtained by the εreduction. Module main contains the instantiation of two copies of generator G (plant_L and plant_R) which will be used to construct the twin-plant as a Kripke structure. Variable SameObs_Trace is used as an invariant to ensure that only the indistinguishable traces are generated. Finally, the CTL specication, which expresses the necessary and sucient condition for diagnosability of permanent faults, is integrated.

It is worth noticing that the NUSMV program we present here, is not the optimized one (regarding the generated state-space of the Kripke structure). However, it allows for better illustrating the concept of the twin-plant approach [Jiang andHuang, 2001, Cimatti et al., 2003]. In Script 4 (Appendix A.2), we give another manner of coding the two copies of generator G , where the synchronization regarding observable event is performed in the main module, i.e., the two copies (plant_L and plant_R) shares the same observable events. Various manners of encoding the twin-plant in NuSMV can be found in [START_REF] Cimatti | Formal verication of diagnosability via symbolic model checking[END_REF], Huang, 2003, Noori Hosseini, 2011]. Script 3 (Appendix A.2), give the result output by executing The NuSMV modelchecker. The system is checked to be non-diagnosable and a counter-example is generated with a witnessed trace. ---Script I: HVAC NuSMV module - -- ---Script II: module main - -- to compact and handle the Petri net markings inside the diagnoser nodes and using explicit representation for the (observable) transitions that link the diagnoser nodes. Such a combination serves, on one hand, to reduce the memory required for constructing the diagnoser and, on the other hand, to easily explore the diagnoser paths. The developed approaches are implemented in dedicated tools and evaluated through benchmarks with respect to the reference approaches in the domain.

Regarding twin-plant based technique, the rst contribution consists in elaborating a modelchecking framework, that extends the Cimatti's work, for the actual verication of various diagnosability concepts pertaining to permanent failures based on the twin-plant structure. The main idea is to reformulate and express the diagnosability issues as temporal logics and then to tackle them using the model-checking engines. The second contribution is pertaining to the diagnosis of intermittent faults, and consists in addressing various notions of diagnosability while establishing their necessary and sucient conditions on the basis of the twin-plant structure.