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Chapter 1

Introduction

1.1 Context and motivation

To address the challenges set to try to achieve millennium development goals to deal with

issues as overcrowding, natural resource depletion, and climate change, it is necessary to

introduce new approaches to production, consumption and transport, capable of supporting the

harmonious development of economy, society and the environment.

Rail transport, considered as an effective means of mass transport and as an environmentally-

friendly mode, can play a major role in setting up a new approach to transport that meets the

novel ecological requirements. However, rail transport remains less exploited than it may, being

road and air often preferred options. To promote the rail, European white paper on transport

recommends a 50% shift in middle distance passenger and longer distance freight journeys

from road to the rail mode or the inland water transport by 2050 to achieve a 60% reduction

in CO2 emissions and comparable reduction in oil dependency (Kallas, 2011). The resulting

growth in rail transport brings new challenges for this sector, concerning for example increase

of efficiency of operations and improvement of quality of service provided to customers.

Even without considering the expected grow of traffic volume, today in many European

countries and during peak hours the infrastructure capacity is completely exploited for ensuring

the trains circulations. Many trains travel within short time through critical points. In this

situation, if a disturbance occurs, traffic may be perturbed and, as a result, conflicts may

emerge. In a conflict, multiple trains traveling at the planned speed would claim the same

track segment concurrently. Hence, some trains must be stopped or decelerated for ensuring

safety, and delays propagate. In locations such as junctions, which are areas where multiple

lines cross, the emergence of conflicts is very frequent and effectively dealing with them may

be particularly difficult. The real-time Railway Traffic Management Problem (rtRTMP) is

the problem of modifying trains route and schedule to limit the delay propagation. Currently,

1



1 Introduction

this problem is tackled by dispatchers. They do it manually, so the result of their choices is

generally suboptimal. The use of an efficient algorithm to help dispatchers decision making

is crucial to ensure an effective traffic management when disturbances occur. The design of

such an efficient algorithm has been the object of a remarkable branch of research, to which

this thesis belongs.

1.2 Thesis objective and contribution

The objective of this thesis is to propose a decomposition algorithm, particularly a Benders

Decomposition (BD), to deal with the rtRTMP. Note that relevant contributions can be found in

the operations research literature which propose algorithms, including decomposition ones, to

address the rtRTMP. However, many of them cope with the problem considering cases in which

the size of instances tackled are relatively small. Moreover, several approaches neglect the train

re-routing possibility. These and other strong assumptions often limit the actual applicability of

the proposed algorithms.

The contribution of this thesis goes in the direction of increasing the applicability of

an existing algorithm in the practice. Namely, we consider the RECIFE-MILP algorithm.

RECIFE-MILP is a Mixed Integer Linear Programming (MILP) based heuristic which has been

developed by Pellegrini et al. (2015) as part of the decision support tool named REcherche sur

la Capacité des Infrastructures FErroviaires - Research on the Railway Infrastructures Capacity

(RECIFE) introduced by Rodriguez (2007). The RECIFE-MILP algorithm allows solving

some rtRTMP instances to optimality considering all details in the infrastructure. Indeed,

RECIFE-MILP allows modeling specific circulation constraints that can accurately emulate the

railway traffic in real circumstances. This is relevant for this thesis as shown in our experiments

where we tackle real case studies of the French railway network. However, it has been shown

(Pellegrini et al., 2015) that the performance of the RECIFE-MILP algorithm may strongly

worsen when tackling large instances in the short time allowed by the real-time nature of the

problem. For the MILP formulation at the basis of this algorithm, we propose BD approaches

to improve the performance of the RECIFE-MILP algorithm when tackling large instances.

After observing that the standard BD does not allow the effective solution of rtRTMP instances,

we study three possible approaches to improve the performance. Specifically, we first propose

a modification of the problem reformulation which is typical of BD, obtaining what we call

reduced BD. Then, we introduce some inequalities to the Benders master problem. Finally, we

split the solution process in three steps rather than two as in the standard BD. As we show in a

thorough experimental analysis, the combination of the first and last approaches outperforms

2



1.3 Outline

the original RECIFE-MILP algorithm when tackling large instances with some important

features.

1.3 Outline

The rest of this thesis is organized as follows.

In Chapter 2 we introduce main concepts and procedures characterizing the railway system.

More specifically, we start by defining the decision process for traffic planning. Then, we

describe the railway infrastructure elements and the two main approaches used to represent

them: macroscopic and microscopic. Finally, we give extended descriptions of the rtRTMP, as

it is the problem tackled in this thesis.

In Chapter 3 we present an overview of the state of the art for the rtRTMP. We classify and

discuss contributions on the rtRTMP according to two different approaches: the monolithic

approach and the decomposition one. The former includes the contributions dealing with the

problem as a unique element. The latter groups the contributions in which the problem is

split in sub-problems, either in its definition or in the solution technique used to solve it. The

decomposition approaches often aim to the solution of large instances.

In Chapter 4 we present RECIFE-MILP for the rtRTMP. The aim is to present RECIFE-

MILP model assumptions, mathematical formulation and algorithm. We also present some

RECIFE-MILP applications which have appeared in the literature. These applications motivate

the interest we devote to RECIFE-MILP, which is among the state of the art algorithms for the

rtRTMP but can be incapable of dealing with really large instances. This chapter is a basis for

the next chapters in which we propose a BD approach for the RECIFE-MILP formulation1.

In Chapter 5 we present the SBR of the RECIFE-MILP formulation. It consists in splitting

the MILP formulation presented in Chapter 4 into the Unrestricted Master Problem (UMP)

and the Sub-Problem (SP). The UMP is the real-time train routing and scheduling problem. It

contains the re-routing and rescheduling variables (binary variables) of the overall problem, and

one dummy variable representing the contribution of continuous variables to the UMP objective

function. The SP contains the continuous variables which represent train passing and stopping

times, and deduces the delay suffered by each train. The decomposed problem is solved with

the BA in which we add progressively Benders optimality cuts (OCs) and feasibility cuts (FCs)

to the UMP, obtaining them through the iterative solution of the Dual of the Sub-Problem

(DSP). After presenting the reformulation, we perform computational experiments on two case

studies representing traffic in two control areas in France: the Pierrefitte–Gonesse junction and

1We will name the RECIFE-MILP formulation to designate the MILP formulation solved in RECIFE-MILP in
the rest of this thesis.
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a line section around the Rouen–Rive–Droite station. The results show that the SBR is not

appropriate for the rtRTMP.

In Chapter 6, to improve the performance of the SBR presented in Chapter 5, we propose

the RBR for the RECIFE-MILP formulation. Unlike the classical decomposition approach (i.e.,

the SBR), the RBR exploits the nature of the RECIFE-MILP formulation to propose a more

suitable reformulation. In our experiments on the same two case studies used in Chapter 5,

the results show that the RBR is better than the SBR. Despite the improvement achieved, the

performance of RBR is still significantly worse that the one of RECIFE-MILP.

In Chapter 7 we propose some inequalities to boost the performance of RBR presented in

Chapter 6. The proposed inequalities are added to the UMP, to strengthen the consistency of

routing and scheduling decisions. After an algorithm configuration phase in which we identify

the most convenient inequalities to add to the UMP, we tackle instances representing traffic

at the two control areas tackled in Chapters 5 and 6. The results show that, although adding

inequalities to the UMP improves the RBR performance, the improvement of the proposed

algorithm compared to RECIFE-MILP remains modest.

Finally, in Chapter 8 we propose the 3BA. It is an algorithm based on the decomposition of

the RECIFE-MILP formulation into three problems: the New Unrestricted Master Problem

(NUMP), the Mixed Integer Linear Sub-Problem (MILSP) and the Linear Sub-Problem (LSP).

The NUMP contains only the binary re-routing variables. Given the re-routing decisions

made in the NUMP, we build the MILSP containing the binary rescheduling variables and

the continuous re-timing variables. We obtain the optimal scheduling decisions by solving

the MILSP, and we construct the LSP with the re-routing decisions made in the NUMP and

the corresponding optimal rescheduling decisions made in the MILSP, to define the cuts to

be added to the NUMP. This reformulation allows the generation of Benders cuts without

the big-M parameter and the avoidance of the exploration of rescheduling infeasible or sub-

optimal solutions. By doing so, we obtain an algorithm capable of reaching significantly better

performance than RECIFE-MILP for the Rouen instances, where the number of alternative

routes available for trains is very high.

In Chapter 9 we summarize the main results of this thesis and present some hints for future

works.
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Chapter 2

Railway system

2.1 Introduction

In this chapter we introduce the main concepts and terminology concerning the railway system

that are relevant to understand the rest of this thesis. In Section 2.2 we describe the railway

decision making process. Then, we present in Section 2.3 some elements of the railway

infrastructure that are to be taken into account when dealing with the rtRTMP, which is the

problem we tackle in the next chapters. The different modeling approaches for the representation

of these elements for the rtRTMP are depicted in Section 2.4. An introduction to the rtRTMP is

presented in Section 2.5, and Section 2.6 concludes the chapter.

2.2 Decision making process

The railway system is very complex. It is composed of many components such as the in-

frastructures, rolling stocks, crews, operating protocols, etc. All these elements interact in a

coordinated and regulated manner to allow the safe circulation of trains for transportation of

passengers or freight. Furthermore, the railway system consists of very expensive assets. To

ensure the best use of these valuable assets and to allow their efficient exploitation, an attentive

planning of the railway operations is necessary. To this end, the management of the railway

system is generally subdivided into three main decision levels, which are strategic, tactical and

operational. In each decision level, two main types of entities are involved: The IM and the

RU. An IM is a body or firm responsible for establishing, managing and maintaining a railway

infrastructure. A RU is a public or private entity that provides services for the transport of

goods and/or passengers by rail.
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In the following, we will detail each of the three decision levels by shortly describing

the problems tackled in each of them. Figure 2.1 shows these problems. They are ranked

firstly by the type of entity responsible for their solution (IM and RU), and secondly, by their

temporal occurrence. Although the nominal flow of problems, represented by the directed

arrows in Figure 2.1, is from top to bottom, problems at the same height may be performed

simultaneously. However, in practice, the flow of problems solving is not entirely sequential.

For example, the solution of a problem at a lower level can influence those at an upper level.

Hence a feedback loop allows the coordination between decision levels, to converge toward a

feasible or better solution.

2.2.1 Strategic level

Decisions made at the strategic level include infrastructure development, facility upgrade, etc.

Indeed, this level is based on traffic demand forecasting and concerns mainly the acquisition

and renovation of resources to cover the target demand. The decision making process at the

strategic level goes from 15 to 5 years prior to the execution of the decisions themselves. These

decisions concern two main problems:

1. Network design: This problem consists in elaborating plans for the construction or the

modification of the infrastructure. It is typically managed by the IM in cooperation with

the public authorities. However, RUs may also participate in the process by providing

studies of customer habits, demand and projections. The modification and the construc-

tion of new infrastructure is motivated by changes of the travel requirements, increased

demand of capacity or willingness of implementation of new technologies or standards.

For more details on the network design problem, we refer the reader to Magnanti and

Wong (1984); Hooghiemstra et al. (1999) and Garcìa-Archilla et al. (2013).

2. Line planning: Once the infrastructure is designed, lines have to be defined and associated

with individual frequencies. A train line is usually defined as an itinerary between two

designated stations in the network, generally major ones, that is to be recurrently traversed

by a train. Note that the itinerary may also include the stop pattern at a set of intermediate

stations. A line must also include the specification of the train type to be used, i.e., type

of engine, number of wagons, and its frequency, in case of regular periodic services. The

line planning problem consists in selecting a set of lines and their frequencies subject to

certain constraints and pursuing given objectives. For example, the line plan tries to meet

the passenger travel demand and respect existing network capacities and properties. Line

planning is mainly carried out by the RUs, but it might also require some collaboration

with the IM and to some extent with national or regional transport authorities. Relevant
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2.2 Decision making process

Figure 2.1 Decision levels in the railway service planning process (strategic, tactical and
operational). Problems are ranked firstly by the type of entity responsible of their solution (IM
and RU), and secondly, by their temporal occurrence.

work on the line planning problem can be found, for example, in Bussieck et al. (1997);

Claessens et al. (1998); Goossens et al. (2006); Schöbel (2012) and Fu et al. (2015).

2.2.2 Tactical level

At the tactical level, decisions concern mainly five problems, which are maintenance planning,

timetabling, capacity allocation, rolling stock planning and crew scheduling. These decisions

7



2 Railway system

are made between 5 and 1 year prior to their execution. The problems tackled at this level are

defined in the following:

1. Maintenance planning: It is also known as the maintenance scheduling problem. It defines

an infrastructure maintenance plan that meets the maintenance needs of the network.

The IM is responsible for establishing the maintenance plan, and this is typically done

before the definition of the timetable. For more information on the maintenance planning

problem see Higgins (1998); Caprara et al. (2006) and Forsgren et al. (2013).

2. Timetabling: This problem consists in establishing a timetable which determines trains

circulation in the network. Moreover, it dictates train arrival time at stations, dwell times

at platforms and departure times from stations, connections between services, etc. This

problem is widely studied in the literature where it is also known as the train scheduling

problem. The IM is in charge of producing the timetable after receiving RUs train path

requests. Relevant literature addressing the timetabling problem can be found (e.g.,

Cordeau et al. (1998); Lusby et al. (2011) and Cacchiani and Toth (2012)).

3. Stations capacity allocation: The objective of this problem is to produce a capacity al-

location plan compatible with all trains scheduled in the timetable. This plan is the

assignment of routes (for a formal definition of a route see Section 2.3) and platforms

in stations to each train while respecting their schedules. The IM is responsible for

the management of the capacity allocation problem. However, in case of impossible

allocation, negotiations are carried out with the RUs. The capacity allocation problem has

been named in several different ways in the literature such as track allocation problem,

train routing problem, train path allocation problem and, in some cases, train platforming

problem. Some relevant contributions addressing the capacity allocation are: Caprara

et al. (2011) and Schöbel (2012).

4. Rolling stock planning: This problem consists in finding a minimum cost rolling stock

assignment to the trains scheduled in the timetable. The scheduling of empty rides and

shunting movements is also included in the rolling stock planning. The aim of the rolling

stock planning typically is to minimize the number of vehicles, considered representative

of the total cost, necessary to meet the requirements of the timetable and respecting the

periodic rolling stock maintenance needs. The main actors responsible for the generation

of the rolling stock plan are the RUs. Some relevant academic contributions on this

problem are: Abbink et al. (2004); Maròti (2006); Steinzen et al. (2010) and Cacchiani

et al. (2012).
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5. Crew scheduling: This problem consists in the generation of crew duties to operate trains

at minimal cost, while respecting all work regulations and operational requirements. The

RUs are in charge of producing their crew schedule. We refer interesting readers to

Caprara et al. (1997); Abbink et al. (2005); Sahin and Yüceoglu (2011) and Jütte and

Thonemann (2012) for more details on the crew scheduling problem.

2.2.3 Operational level

The operational level refers to the daily and real-time planning and re-planning work. In this

level, the problems tackled concern the day of operation or few days before it. Two main

problems are tackled in this level: Resource (re)allocation and operations management and

rescheduling.

1. Resources (re)allocation: In case of new or unanticipated resource requirements, resources

must be (re)allocated. Conditions that provoke this need for (re)allocation can be for

instance: new freight trains due to an exceptional convoy, unexpected corrective main-

tenance due to a device malfunction, changes on the crew rotations due to strikes, etc.

Although these events are unforeseen in the tactical phase, some time is available to deal

with them, in general up to a few days. When the resource required to be (re)allocated is

infrastructure capacity, e.g., due to unforeseen maintenance activities, new trains requests,

etc., the IM is responsible for the (re)allocation. Instead, when the resources concerned

are rolling stock or crews the RUs are in charge. For more details on the resources

(re)allocation, we refer the reader to Huisman et al. (2005) and Chu and Oetting (2013).

2. Operations management and rescheduling: The aim of this problem is manage and coor-

dinate train movements in the railway network during operations. Two types of problems

can be identified. On the one hand, there are the problems dealing with large disruptions,

as the interruption of a line for several hours. They deal with the definition of a new

timetable including train cancellations and short-turning (Zhan et al., 2015), as well as

with rolling stock re-allocation (Nielsen et al., 2012) and crew rescheduling (Veelenturf

et al., 2012). What differentiates these problems with respect to the ones which we

mentioned in the resources (re)allocation paragraph is that here no anticipation at all is

possible. On the other hand, there are the problems dealing with small perturbations,

which occur on a daily basis. The rtRTMP, also known as the train rescheduling problem,

is the most important problem tackled in this case. The rtRTMP aims to reduce delay

propagation through rescheduling and local re-routing. This problem is faced by IMs.

We will present an extended description of the rtRTMP in Section 2.5. Then, we will

propose a detailed review of the literature on this problem in Chapter 3.
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2.3 Railway Infrastructure

As mentioned at the beginning of Section 2.2, a very important component of the railway system

is the infrastructure. The infrastructure is, in turn, composed of several elements, the first of

which corresponds to tracks. Tracks consist of two parallel steel rails, anchored perpendicularly

to components called ties (sleepers) of timber, concrete, steel, or plastic to maintain a consistent

distance (or gauge) between the rails (see Figure 2.2). The track guides the conical, flanged

wheels of the trains, keeping the cars on the tracks themselves without active steering and

therefore allowing trains to be much longer than road vehicles. The rails and ties are usually

placed on a foundation made of compressed earth on top of which is placed a bed of ballast. Its

role is to distribute the load from the ties and to prevent the track from buckling as the ground

settles over time, under the weight of the vehicles passing above. The ballast also serves as a

means of drainage.

Figure 2.2 Track composed of rails, ties and ballast.

Tracks are also composed by other devices necessary for trains guide: Switches (or points)

and crossings (see Figure 2.3). The former are mechanical installations enabling trains to be

guided from one track to another. The latter are used to divert trains from one track to another:

a special arrangement is made so that the inside flange of the wheel can move on the diverted

track. Switches and crossings are generally situated at junctions. A junction is a location where

two or more rails converge or diverge.

Moreover, tracks are divided into track-circuits. A track-circuit is a detection device on

which the presence of a train is automatically detected. A sequence of track-circuits whose

access is controlled by a signal is called block section. A signal is a semaphore that gives
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2.3 Railway Infrastructure

Figure 2.3 A switch on the left, a crossing on the right.

the train driver some information about the utilization state of the following block sections.

Often, signals have three colors, i.e., red, yellow and green, which are also called aspects. In a

three-aspect signaling system, the red aspect indicates that the driver must stop since the next

block section is currently being utilized by another train. The yellow aspect indicates that the

driver can proceed but with caution because the block section after the next one is currently

being utilized by another train. Commonly, a yellow aspect implies a considerable reduction

of the train speed. The green aspect indicates that the next two block sections are clear so the

driver can proceed at regular speed. When the signaling system has more than three aspects,

the additional ones are restrictive aspects which indicate to the driver additional steps for the

deceleration process to stop the train before the unavailable section. Typically, the higher the

number of aspects is, the shorter the block sections can be, since several of them are available

to pass from the planned speed to the complete stop of the train. With this system it is possible

to ensure that only one train uses a block section at any time and all trains have enough space

to brake to respect the safety distance.

The coordination between signals and block sections utilization is done through the in-

terlocking system. In the practice, there are two main interlocking systems: route-lock

route-release and route-lock sectional-release. In both, if a block section contains several

track-circuits, all of them are reserved at the same time. This mechanism is called route-lock.

As previously introduced, the circulation of a train in a block section is detected by the track-

circuits composing it. When the train finishes the occupation of a track-circuit, it is released

and then can be reserved by another train. The procedure of releasing independently the

track-circuits composing a block section is known as sectional-release. On the contrary, in the

case of the route-release, the release of all track-circuits in the block section is synchronized,

i.e., it occurs at the same time, when the last track-circuit is released. The sectional-release is

specifically useful in locations where track-circuits are shared by multiple block sections, as
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it helps reducing the separation between trains and, thus, maximizing the exploitation of the

capacity, as at stations.

Figure 2.4 shows an example of infrastructure including track-circuits, signals and block

sections. Let two trains, A and B, pass through this infrastructure, A using block sections

s1− s2, s2− s5 and s5− s6, and B using block-sections s3− s4, s4− s7 and s7− s8. The two

intermediate block sections share track-circuits tc3 and tc4. Suppose A passes before B. With

the route-lock sectional-release interlocking system, A releases the last common track-circuit

tc4 as soon as its tail exits it, plus the release time. Instead, with the route-lock route-release

system, tc4 is released after A exits tc5, plus the release time. Indeed, train B closely follows A,

it will encounter a red aspect at signal s4. This red aspect will change to green earlier with the

former interlocking system, which allows a better exploitation of the infrastructure.

Figure 2.4 Example of railway infrastructure including track-circuits, signals and block sections.

Stations are located along tracks. They are particular pieces of infrastructure used to

perform services such as loading/unloading of passengers and/or freight, exchange of on-board

staff, etc. They generally include a set of facilities next to tracks and platforms.

2.4 Infrastructure representation

The railway infrastructure elements described in Section 2.3 must be modeled to formalize

the problems mentioned in Section 2.2, and in particular the rtRTMP which is detailed in Sec-

tion 2.5. In the literature, two main approaches are used to represent the railway infrastructure:

macroscopic and microscopic, which we describe in the following.

2.4.1 Macroscopic representation

In the macroscopic approach, the infrastructure is seen as a graph. Here, nodes are very often

used to represent either stations or junctions. The connections between these nodes are assured
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by tracks that are aggregated and considered as links. In other words, all elements between two

nodes (track-circuits and block sections) are considered as a whole in a link. The purpose of

the macroscopic representation of the infrastructure is to provide a global view of the network.

Figure 2.5 shows a macroscopic representation of the region Nord-pas-de-Calais network in

France. We can see that only the main stations are represented, together with the links that

connect them.

Figure 2.5 A macroscopic representation of the regional railway network of Nord-pas-de-Calais,
France (source: Arenas Pimentel (2016)).

Remark that due to the rough representation of the infrastructure obtained in the macroscopic

approach, that do not allow considering all details on the railway infrastructure, this level of

abstraction is used generally to deal with the problems in which detailed information on the

infrastructure and train dynamics are not needed. Indeed, the problems very often tackled using

a macroscopic representation are treated in the strategic and the tactical decision level (see

Sections 2.2.1 and 2.2.2). A typical problem that is faced with the macroscopic representation

of the infrastructure is, for example, the network design problem.

Concerning train dynamics, in the macroscopic approach, no detail is taken into account:

only the total travel time of trains traveling between pairs of nodes is considered.
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For the capacity of nodes, this is usually simply quantified as a theoretic maximum number

of train that can be handled.

The concept of headway is used to ensure safety in the railway system when the macroscopic

representation of the infrastructure is applied. It consists in imposing a temporal or physical

separation between the utilization by two trains of a link rather using precise separations

depending on the specific signaling system. To calculate the headway several factors are taken

into account as the characteristics of both the tracks and the rolling stock (maximum speed,

weight and brake capacities, etc).

2.4.2 Microscopic representation

In the microscopic approach, all details of the infrastructure (see Figure 2.6) are considered.

The purpose of a microscopic representation is to provide a detailed description of the train

movements, in the form of complete routes and passing times in critical locations. To this end,

precise information about track topology and trains’ dynamic properties have to be taken into

consideration.

Concerning the track structure, in the microscopic approach, tracks are divided into track-

circuits. Note that the precise description of stations and junctions are also considered in the

microscopic approach (platforms, switches, crossings, etc.).

block sectionsignal

track-circuit

Figure 2.6 Microscopic representation of the railway infrastructure in which the track is divided
into a set of track-circuits grouped into block section whose access is controlled by a signal.

Concerning the trains’ dynamic properties, complete information on the blocking time

of a track-circuit is given. The blocking time is defined as the time interval that a block

section is exclusively reserved for a train movement (Pachl, 2009). Note that the blocking

time is applicable only with the microscopic representation of the railway infrastructure. The

utilization of the blocking time theory gives a precise modeling of the interlocking system.

The blocking time determines the minimum time or space that separate two succeeding trains.

Indeed, in a 3-aspect signaling system, the blocking time implies that a train is authorized to

cross a block section if two subsequent ones are not reserved by another train. This simulates

the fact that a train can enter a block section only with a green signal. The following intervals

compose the blocking time of a track-circuit:

14



2.4 Infrastructure representation

Figure 2.7 Elements of the blocking time (source: Arenas Pimentel (2016)).

• the time to set the block sections (signal and moving elements) to which the track-circuit

belongs;

• the signal visibility time, i.e., the time needed by the driver to see the aspect of the signal

opening the block section and react to it;

• the approach time, i.e., the time necessary for the travel across the previous block-section

(necessary for ensuring that the signal opening the block section has green aspect);

• the running time along the track-circuit itself and all the ones preceding the one considered in

the block section used (time necessary for the head of the train to traverse a track-circuit);

• the clearing time, i.e., the time needed for the tail of the train to exit the track-circuit once the

head entered the following;

• the release time to unlock the system.

Figure 2.7 illustrates the blocking time for a train on three track-circuits composing two

block sections. In this figure, the formation time corresponds to the time to set the block

section plus the visibility time. The reservation time corresponds to the approach time. We can

remark that the blocking time is significantly longer than the time used to physically traverse

the track-circuit.

For visually representing the train travel along an infrastructure, we can draw into a space-

time diagram the blocking times for all block sections crossed by train along its route. By
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doing so, we obtain the blocking time stairway (colored boxes in Figure 2.7). Indeed, the use

of the blocking time stairway allows the calculation of the minimum headway between two

trains using one or more common track-circuits: this headway is the time separation which

ensures that the blocking times of no track-circuit overlap.

In the microscopic representation of the railway infrastructure, the capacity of stations is

determined depending the specific characteristics of the tracks and platforms that compose

them.

Remark that the microscopic representation of the infrastructure allows obtaining a detailed

quantification of track sections capacity. Hence, this type of representation is particularly useful

when coping with problems in which precise information is needed. Indeed, the problems

very often tackled using a microscopic representation are treated in the tactical and operational

decision level (see Section 2.2.2 and 2.2.3). In particular, a problem that is appropriately faced

with the microscopic representation of the infrastructure is, for example, the rtRTMP.

2.5 real-time Railway Traffic Management Problem: rtRTMP

As the contributions of this thesis are related to the rtRTMP, we provide in this section a detailed

description of this problem. The rtRTMP consists in modifying trains route and schedule to

limit delay propagation. In the practice, this problem is tackled by IM dispatchers in control

areas, which are portions of the infrastructure. They do it manually, so the result of their choices

is generally suboptimal.

In principle, the timetables defined in the tactical phase (see Section 2.2) can be smoothly

operated: if there are no disturbances nor disruptions, then the timetable can be executed exactly

as planned. However, in the real-time operations disturbances and disruptions are inevitable.

Disturbances are relatively small perturbations that influence the railway traffic causing trains’

primary delay. They consist for example in a longer than planned running time or dwell time

from one station to another. These delays often propagate generating the so-called secondary

or knock-on delays. Disruptions are large perturbations leading to major modifications of the

timetable. As mentioned when describing operations management and rescheduling problems

in Section 2.2.3, the rtRTMP concerns the management of traffic in case of disturbances. In the

next sections, we detail the rtRTMP starting with the identification of the objective pursued.

Then we describe the constraints that must be satisfied, and finally we describe the two models

used in the literature to describe trains speed variation dynamics in case of unplanned brakings

and accelerations.
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2.5.1 Objective function

The objective functions used in literature when tackling the rtRTMP are typically functions of

trains’ delay or arrival time at destination.

Trains’ delay is the non-negative difference between the actual arrival times at stations and

the scheduled ones. Different functions of delay are minimized in the rtRTMP literature: total

delay, maximum delay, maximum consecutive delay, cumulative consecutive delay, sum of

delays with penalties when exceeding a threshold, etc..

Focusing on arrival times, some authors use also the minimization of the total completion

time, that is the arrival time of the last train at its destination.

Other objective functions considering different performance indicators are: the minimization

of the trains’ travel time, which is a measure of the time spent by all trains in the network,

the schedule deviation, which penalizes both trains’ advance and delay, and the maximization

of trains’ punctuality, which refers to the number of trains that do not arrive at their final

destination on time, or suffering a delay smaller than a given threshold.

In some cases weights are associated to different trains in the objective function to allow

taking into account different priorities.

Moreover, customer perspective is sometimes considered when solving the rtRTMP. For

example, passengers’ inconvenience to be minimized can be measured as the additional waiting

time at platforms and number of transfers.

2.5.2 Constraints

Constraints of the rtRTMP are imposed to respect operational requirements:

Time concerning constraints: These constraints impose the respect of operational require-

ments related to the time. For instance, at a station a train cannot depart before its

scheduled departure time. Another requirement handled by these constraints is the co-

herent physical occupation time of track-circuits along a train route: a train cannot start

occupying a track-circuit along its route if it has not spent in the preceding one at least

the corresponding running time. Time constraints also allow modeling the complete

blocking time.

Connection constraints: In railway traffic, train services are sometimes in connection: pas-

sengers or crew members are planned to transfer from a train to another at a specific

station. In this case we must impose constraints that manage requirements such as the

guarantee of a minimum time separation between the arrival of the feeder train and the

departure of the connecting train.

17



2 Railway system

Rolling-stock re-utilization constraints: If train services are to be operated with the same

rolling-stock, their arrival and departure must be coherent, in terms of both time and

space. Hence, a minimum time interval must pass between arrival and departure, and the

concerned trains must arrive at and depart from the same track-circuit.

Delay management constraints: If the difference between the estimated train arrival time

and the scheduled arrival time at the exit from the infrastructure is positive there is a

delay. Constraints are imposed to capture this delay.

Capacity constraints: The track-circuits utilization by two trains must not overlap.

2.5.3 Fixed speed model vs variable speed one

In the rtRTMP, two main models for train movements are generally used in the literature

to capture the train speed variation dynamics due to unplanned brakings and accelerations:

the variable and the fixed speed ones. In a fixed speed model trains brake and re-accelerate

instantaneously in case of conflict, while in a variable speed one they follow more or less

realistic braking and acceleration curves. As an example, Figure 2.8 shows the evolution of

train A speed profile in case of a fixed speed model when encountering a yellow signal. Here,

train A is hindered by the presence of train B in the third block section of its route. The left

figure shows this evolution in a distance-speed diagram. According to the planned speed profile,

train A runs at 120km/h for the first 3.9km, then it accelerates to 160km/h until km 10, when

it needs to decelerate to pass a switch at 60km/h at distance 11.8km. After passing the switch

it can accelerate again to 160km/h. In the fixed speed model, due to the conflict, train A stops

in front of the yellow signal: its speed passes instantaneously from 120 to 0 km/h. When the

signal becomes green, i.e., when train B releases its first block section, train A regains its

planned speed of 120km/h instantaneously. The evolution of train A speed profile over time is

depicted in the right figure. In this figure, train A stops instantaneously at the time 150s and

re-starts at the time 380s after 130s of stopping time. The realistic speed evolution of train A

in the same conflict situation is shown in Figure 2.9 representing the variable speed model.

Here, instead of stopping at distance 3.5km or at time 150s, train A decelerates after passing the

yellow signal, to be able to stop at distance 4.8km. Its speed follows a coherent braking curve

and the train reaches its stop at time 250s. After train B releases its first block section, train A

accelerates, at time 380s, re-gaining its planned speed profile at time 500s and at distance 9km.

The trains’ entrance times in the different track-circuits in case of conflict are hence

imprecise when a fixed speed model is applied. However, this imprecision is not an issue for the

practical implementation of the traffic management decisions since what is actually imposed in
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Figure 2.8 Evolution of train A speed profile over distance and time when it meets a restrictive
signal aspect in case of application of a fixed speed model.
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Figure 2.9 Evolution of train A speed profile over distance and time when it meets a restrictive
signal aspect in case of application of a variable speed model.

reality is the set of precedences between trains, rather than the precise time at which trains are

supposed to pass.

As we illustrate in Chapter 3, most existing algorithms for the rtRTMP apply a fixed speed

model for limiting the difficulty of the problem. The impact of the application of a fixed speed

model on the quality of the solution returned by rtRTMP algorithms has not been thoroughly

studied in the literature. To the best of our knowledge, the only attempt to do so is the paper by

Sobieraj et al. (2011). Here, the authors measure the difference in terms of delay propagation

when the same train precedences are assessed with a fixed and a variable speed model. In some

different traffic situations, the authors show that although the delay propagation indeed differs,

the two models give coherent indications in terms of solution quality ranking.

2.6 Conclusions

In this chapter we introduced the main concepts and terminology concerning the railway system

that are relevant to understand the rest of this thesis.

The description of the decision making process helps to understand in which part of this

complex process are situated the main contribution of this thesis, i.e., the rtRTMP. Moreover,
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the introduction of the rtRTMP, coupled with the discussion of the different approaches to

represent the railway infrastructure, serves as a basis for Chapter 5 - 8 in which we present a

decomposition method to tackle this problem using a microscopic representation.
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Chapter 3

Literature review on the rtRTMP

3.1 Introduction

This chapter presents an overview of models and algorithms for the rtRTMP introduced in

Section 2. This problem consists in modifying trains’ route and schedule to limit the delay

propagation in the railway network. The rtRTMP is recognized in the literature to be an NP-hard

problem (Kroon et al., 1997; Mascis and Pacciarelli, 2002). Instances of realistic size are often

difficult to solve to optimality even using the best existing solvers. Many algorithms exist in the

literature to tackle this problem, aiming at better and better performance on larger and larger

instances.

The aim of this chapter is to classify and discuss various algorithms for the rtRTMP grouped

according to the approach they consider: monolithic versus decomposition approach. The

former includes the contributions facing the problem as a unique element. The latter groups the

contributions in which the problem is split in sub-problems, either in its definition or in the

solution technique used to solve it. The decomposition approaches often aim to the solution of

large instances.

The rest of the chapter is organized as follows. In Section 3.2, we present contributions

on the rtRTMP that use the monolithic approach. In Section 3.3, we describe decomposition

approaches used in the literature to address the rtRTMP, and in Section 3.4 we draw some

conclusions.

3.2 Monolithic approaches

In this section, we classify and discuss the most relevant contributions on the rtRTMP that

propose algorithms to tackle the problem considering it as a unique element, i.e., the monolithic
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3 Literature review on the rtRTMP

approaches. We group the algorithms into three mains categories according the solution

techniques. The most important algorithms for the rtRTMP are based on three solution

techniques (for recent surveys, see Lusby et al. (2011); Cacchiani et al. (2014); Corman and

Meng (2015); Fang et al. (2015)). The first technique is based on integer programming including

Integer Linear Programming (ILP) and MILP formulations. The second technique uses an

Alternative Graph (AG) formulation. The third one applies meta-heuristics.

3.2.1 ILP & MILP formulations

In an ILP formulation, all decision variables are binaries and/or integers. For instance, in

such formulation the order of two trains, assignment of resources, etc, can be represented by

binary variables, while trains’ arrival, departure times and delay can be represented by integer

variables. Unlike the ILP formulation, in a MILP some decision variables are continuous.

For instance, in a MILP for the rtRTMP, trains’ arrival, departure times and delay are often

represented by continuous variables. The binary decision variables are similar to those in the

ILP formulation. In both, the rtRTMP objective function and constraints are linear expressions.

Relevant contributions modeling the rtRTMP as an ILP are the ones by Caimi et al. (2011,

2012) and Dollevoet et al. (2014). Caimi et al. (2011) propose a multi-commodity flow formu-

lation for the train routing and scheduling problem where a set of different train movements

(paths) represent the different commodities. A solution to the problem is a collection of the train

paths, where a train path is defined as a feasible sequence of track sections and associated block-

ing times. In the formulation, the authors maximize the number of scheduled train movements

which can be performed in a given time horizon under the following constraints: each train must

choose no more than one path and two trains paths cannot use a same resource at a same time.

The case study tackled in the paper represents traffic in a station control area, in Switzerland.

In a subsequent work, Caimi et al. (2012) propose a discrete-time formulation for rescheduling

trains in complex central railway station areas. The computational analysis is done in Berne

station control area, in Switzerland. In the two formulations, the microscopic representation

of the railway infrastructure described in Section 2.3 is used. More recently, Dollevoet et al.

(2014) combine a macroscopic representation of the railway infrastructure (see Section 2.3)

and a microscopic one to tackle the train scheduling problem when considering connections. In

particular, the main decision which is to be taken concerns the set of connections to preserve,

possibly delaying a departing train to wait for the arrival of another one. This decision is made

considering a macroscopic model of a large network. A heuristic algorithm is then used to

solve the microscopic problem for each station, to ensure the respect of the decisions on the

connections to preserve, and hence on the trains’ departure times. However, the re-routing
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possibility is not considered. The instances used in the analysis are random perturbations of the

real timetable on a portion of the Dutch network.

The rtRTMP is also modeled by several authors using MILP formulations. This technique is

used by most of the publications on the rtRTMP (see Fang et al. (2015)). Among them, a MILP

formulation based on a graph formulation of the problem is used by Dessouky et al. (2006).

A branch-and-bound algorithm is used by the authors to solve the problem. The macroscopic

representation of the infrastructure is used. Törnquist and Persson (2007) propose a MILP

formulation based on a microscopic representation of the infrastructure to tackle the train

rescheduling problem in case of N-tracked railway network. They propose some strategies,

which simplify and restrict the solution space, to allow solving the problem in a reasonable

computation time. Different objectives and different delay characteristics are used to test

their influence in the solution procedure performance. Instances based a part of the Swedish

network are used in the computational experiments. Acuna-Agost et al. (2011a) present an

extension of the formulation by Törnquist and Persson (2007) to tackle the railway rescheduling

problem. A MILP-based local search method is proposed by the authors to solve the problem

on instances representing traffic in two different networks. The first one is located in France

and the second in Chile. In a subsequent paper, Acuna-Agost et al. (2011b) propose a new

solution approach to improve the computational results called SAPI, that performs a statistical

analysis of possible propagation of the incidents before solving the problem. In particular,

SAPI studies the probability that an event is affected by a given set of incidents. Using this

information, it is possible to identify the set of events that are not affected by the incidents.

More recently, Törnquist Krasemann (2015) proposes a MILP formulation to address

the train rescheduling problem. The formulation is adapted to the special restrictions of the

congested, single-tracked Iron Ore line located in northern Sweden. The paper investigates

potential configuration challenges in the development of a rescheduling support for train traffic

dispatchers controlling this line. The author discusses how the characteristics of different

situations shall influence the problem formulation and the resulting rescheduling solutions.

Finally, Pellegrini et al. (2014) propose a MILP formulation to tackle the rtRTMP when

the microscopic representation of the infrastructure is done at the track-circuit level (see

Section 2.4). In the paper, in addition to proposing the novel formulation, the authors show

that the consideration of such a fine granularity of the infrastructure representation may allow

the detection of better solutions than the use of a rough granularity limited to the block section

level (Section 2.4). The computational experiments are based on the triangle of Gagny control

area and on the Lille-Flandres one in France. In a subsequent paper, Pellegrini et al. (2015)

extend the model of Pellegrini et al. (2014) by including the consideration of intermediate

stops in the trains’ route and further peculiarities of the movements, and propose a heuristic
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algorithm named RECIFE-MILP based on the truncated solution of the MILP formulation and

on the application of some preprocessing procedures. RECIFE-MILP has been used in several

applications since its proposal, and it plays a very important role in this thesis. Hence, we

devote to its detailed explanation a whole chapter in the following (Chapter 4).

3.2.2 AG formulations

An AG formulation generalizes the disjunctive graph one and can be used to model no-store

job shop scheduling problems (Mascis and Pacciarelli, 2002). As the definition of the rtRTMP

can be linked to that of a no-store job shop scheduling problem (Mascis et al., 2004; D’Ariano

et al., 2007a), some authors have used an AG for the rtRTMP. To do so, in the rtRTMP, a

block section corresponds to a no-store machine and a train corresponds to a job. No-store

(or blocking) constraints model the absence of buffers between machines (or block sections).

The AG is composed by three elements, which are a set of nodes, a set of fixed arcs, and a

set of pairs of alternative arcs. A node represents the passing of a train through a particular

block section (an operation). A fixed arc models the sequence of operations to be executed by a

train. A pair of alternative arcs models the train rescheduling decision when a potential conflict

arises. In an AG, a solution is a complete selection, where an arc for each alternative pair is

selected. It is feasible if the connected graph has no positive length cycles. The longest path in

an AG is equivalent to the maximum propagated delay of the corresponding train sequencing.

The objective of the rtRTMP modeled as an AG is to minimize the length of the longest path

satisfying the capacity constraints. Moreover, the nature of the formulation used does not allow

to perform re-routing. As underlined in the following, when re-routing is to be considered,

the AG formulation needs to be integrated in an meta-heuristic algorithm exploring separately

different re-routing possibilities.

The AG formulation for the rtRTMP are used to tackle several variants of the problem.

D’Ariano et al. (2007a) propose a truncated branch-and-bound algorithm to solve it. In the

computational analysis, the effectiveness of the truncated branch-and-bound is evaluated with

respect to three other heuristics: First Come First Served (FCFS), First Leave First Served

(FLFS) and a greedy heuristic. The experiments are carried out on a Dutch control area. In a

following paper, D’Ariano et al. (2007b) extend the previous studies based on a fixed speed

model to a variable speed one (see Section 2.5). The latter takes into account the realistic

consequences of braking and subsequent acceleration imposed due to conflicts in the network.

The variable speed model is solved in an iterative rescheduling procedure. At each step the

rtRTMP is solved and if the solution includes conflicts, the first conflict in time is considered

and the train speed profile of the braking train is re-computed. With this new speed profile, the

blocking time stairway of the train is modified and the rtRTMP is solved once more starting at
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the time of the treated conflict. The procedure terminates when the end of the time horizon is

reached or there are no new conflicts in the rtRTMP solution. The computational experiments

are based on a Dutch control area. Although this procedure has the merit of dealing with a

variable speed model, it makes the solution of the rtRTMP with no re-routing much longer. For

this reason, it is not considered in the next papers. D’Ariano et al. (2008) present a real-time

traffic management system, called Railway traffic Optimization by Means of Alternative graphs

(ROMA), in which train re-scheduling and re-routing problems are tackled. A branch-and-

bound algorithm is used for train rescheduling, as in the previous papers on the AG formulation,

while a local search algorithm is developed for re-routing optimization purposes. An extensive

computational study is carried out, based on a Dutch control area. The rtRTMP including a re-

routing possibilities is also tackled by Corman et al. (2010). A tabu search algorithm is proposed

to solve the problem. In the same control area as the previous paper, the authors address two

variants of the rtRTMP. The first one implements the green wave policy, which consists in

letting trains wait at the stations to avoid speed profile modifications in open corridors (Corman

et al., 2009). The second considers a bi-objective version of the rtRTMP (Corman et al., 2012a),

where the minimization concerns both the maximum train delays and a measure of the missed

connections. The proposed algorithm provides a set of feasible non-dominated schedules to

support the dispatcher decision process. More recently, Samà et al. (2015) propose a Data

Envelopment Analysis (DEA) framework for assessing a multi-objective version of the rtRTMP.

In the experimental analysis, no re-routing is allowed, to speed up the solution of the traffic

management problem. However, the framework proposed does not impose any constraint in

this sense, and in principle it may be used also when alternative routes are considered. Corman

and Quaglietta (2015) study the performance of ROMA in a closed-loop framework. In a

closed-loop, the optimization algorithm, ROMA in this case, exchanges information with the

field (or with a simulator) on a regular basis. Specifically, the field sends information on the

traffic state to the algorithm. The algorithm, based on the most recent information available,

optimizes traffic management decisions and transmits them to the field. Further modules, as a

human machine interface to allow dispatchers deciding whether to implement some specific

decisions, may also be included in the loop.

Finally, in Kecman et al. (2013) the AG formulation is not used to tackle a specific variant of

the rtRTMP, but for assessing the impact of a macroscopic versus a microscopic representation

of the infrastructure. The computational experiments based on a part of the Dutch network

show that the more realistic the representation is, then when passing from macroscopic to

microscopic, the more the computational time necessary to find good quality solutions increases

and the more the model is realistic.
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3.2.3 Meta-heuristics

Some authors propose meta-heuristics to tackle different variants of the rtRTMP. T.K.Ho

and T.H.Yeung (2001) propose three meta-heuristic algorithms (genetic algorithm, simulated

annealing and tabu search) for routing trains through a railway junction. Then, Fan et al.

(2012) compare various meta-heuristics on common scenarios. In the experimental analysis, a

timetable generated specifically for the paper represents perturbed traffic in a portion of the

English network. The authors find that simple disturbances (i.e., one train delayed) can be

managed efficiently using straightforward approaches, such as first-come-first-served (FCFS).

For more complex scenarios, advanced methods as colony optimization and genetic algorithms

are found to be more appropriate. More recently, Samà et al. (2016) introduce the real-time

Train Routing Selection Problem (rtTRSP). The rtTRSP is a sub-problem of the rtRTMP. It

consists in selecting an appropriate set of routing possibilities for each train, to be considered in

the solution of the rtRTMP. By doing so, the size of the instance of the latter problem is reduced,

in principle without excluding the best quality solutions. The problem is modeled as an ILP

and efficiently solved with an ant colony optimization algorithm in a short computational time.

In a subsequent paper, Samà et al. (2017) investigate when the best moment to solve the Train

Routing Selection Problem (TRSP) is, comparing the tactical and operational application. The

authors claim that solving the TRSP at the operational level is the best choice when the traffic

disturbance is large or very different from the perturbations which are typically observed on

the part of the network considered.

Although the common techniques used to tackle the rtRTMP are based to the above three

ones, other techniques as Constraint Programming (CP) is also used to deal with the rtRTMP.

In particular, Rodriguez (2007) uses CP for the rtRTMP. Computational experiments on a

French control area show that the CP algorithm can find satisfactory solutions within 3 min of

computational time.

3.3 Decomposition approaches

In this section, we present decomposition approaches used in the literature to deal with the

rtRTMP. These approaches can be divided into three categories (spatial, temporal and mathe-

matical decompositions), which are described in the following.

3.3.1 Spatial decomposition

The spatial decomposition is interesting when dealing with the rtRTMP in large control area.

This kind of decomposition splits a control area into smaller dispatching zones. Each dispatch-
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ing zone is tackled separately. This approach somehow mimics the procedure implemented by

IM operators to manage traffic in large control areas.

The advantage of the spatial decomposition is the reduction of the problem difficulty by

reducing the size of instances. However, a decision on how the dispatching zones shall be

coordinated must be made, and this is often done accepting the sub-optimality of the overall

solution.

The solution of the rtRTMP using a spatial decomposition is not often considered in the

literature. To the best of our knowledge, only Corman et al. (2010, 2012b, 2014) present an

approach to solve the problem of coordinating the traffic management decisions of multiple

dispatchers. In Corman et al. (2010), the problem is formulated as a bi-level program with

the objective of minimizing delay propagation. At the lower level, the system manages traffic

in each dispatching zone independently, without any knowledge of traffic elsewhere. At

the higher level, a coordinator module is responsible for the traffic management over the

overall control area, with a global vision of traffic. The dispatchers’ and the coordinator’s

problems are formulated with AGs, as explained in Section 3.2.2. The coordinator problem

consists of imposing border constraints to dispatchers, i.e., constraints imposed on border

block sections. These border constraints ensure that locally feasible schedules are globally

feasible. The coordinator minimizes the maximum consecutive delay over all trains in the

whole control area. In the model, there are two types of border constraints at the limit between

dispatching zones. These constraints must be satisfied by the local solutions of all the concerned

dispatching zones. The first type of constraints concerns time windows indicating <earliest,

latest> entrance/exit times of a train into/out of a border block section: trains must enter and

exit neighbor dispatching zones at coherent times. The second type of constraints concerns

sequencing between two trains passing a border block section: the order of the trains entering

and exiting two neighbor dispatching zones must be the same. A specific AG is adopted to

model coordination constraints, while detailed graphs as the ones used in the papers described

in Section 3.2.2 are used for the dispatching zones. Each dispatching zone is managed with the

objective of minimizing the maximum consecutive delays of trains within it. A branch-and-

bound algorithm is used to solve the problem. Computational experiments are made on a large

part of the railway network in the South-East of the Netherlands. The papers by Corman et al.

(2012b, 2014) follow the just mentioned work, with the difference that in Corman et al. (2010)

only two dispatching control areas are take into account, whereas in Corman et al. (2012b)

the spatial decomposition is applied to multiple control areas. In Corman et al. (2014), the

assessment of monolithic and spatial decomposition approaches for the rtRTMP is performed.

The results suggest that when dealing with the rtRTMP in a large dispatching zone, the spatial

decomposition approach outperforms the monolithic one in terms of solution quality while
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keeping computation time at an acceptable level. The re-routing possibility is not considered

by the authors.

3.3.2 Temporal decomposition

The temporal decomposition is interesting to cut a long time horizon into tractable intervals.

The solution of the rtRTMP over a long time horizon is obtained by solving progressively the

problems over the shorter intervals.

As the spatial decomposition, the advantage of this approach is the reduction of the problem

difficulty by reducing the size of instances. However, it may give a global sub-optimal solution.

To the best of our knowledge, the only temporal decomposition applied to the rtRTMP is

the paper of D’Ariano and Pranzo (2009). The authors tackle the rtRTMP over several hours.

They compare the solution obtained through the temporal decomposition with the so-called

global approach, which corresponds to a monolothic one following the classification of this

thesis. Computational experiments are made on instances representing traffic on the control

area between Utrecht and Den Bosch in the Netherlands. The instances are solved using two

algorithms: a truncated branch-and-bound algorithm and the first comes first served algorithm.

According the authors, the computational analysis suggests the following observations. (1) In

terms of delay minimization, the global approach gives better results compared to the application

of the temporal decomposition. (2) When the time horizon is enlarged, the computational

time for finding good solutions increases considerably for the global approach. This increase

depends on the scheduling algorithm and on the instance size. The authors claim that when

dealing with real time applications, the global approach is only suitable for time horizons of

up to three hours. Furthermore the authors suggest that the reasonable time horizon for the

rtRTMP is one hour. The re-routing possibility is not considered by the authors.

3.3.3 Mathematical decomposition

The mathematical decomposition exploits the structure of the rtRTMP formulation instead

of decomposing it over time or space. This type of decomposition is widely used in integer

programming to tackle large combinatorial optimization problems. There are mainly three

mathematical decomposition approaches used in the rtRTMP literature: Lagrangian relaxation,

Dantzig-Wolfe decomposition and BD. They consist in decomposing a problem into sub-

problems. These sub-problems are coordinated by a master problem in the solution process.

A decomposition yields a new formulation (i.e., reformulation) of the original problem. If

the algorithm used to solve the reformulation converges, it returns an optimal solution for

the original problem. Unlike the two previous decomposition approaches used to tackle the
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rtRTMP which return a global sub-optimal solution, a mathematical decomposition returns a

global optimum if sufficient computational time is available. In the following, we present a

short and easy description of the main principles of each type of mathematical decomposition.

It is aimed to be an introduction of the main idea at its basis, and not a precise explanation of

its functioning. For such an explanation, we refer the interested reader to the large body of

dedicated literature existing.

3.3.3.1 Lagrangian relaxation

The Lagrangian relaxation separates the constraints of a problem into two groups, namely the

‘easy’ and the ‘hard’ ones. The hard constraints are removed and transferred into the objective

function. For example, consider the following integer linear problem.

Z = min cx (3.1)

Ax ≥ b, (3.2)

Dx ≥ e, (3.3)

x ∈ N
n. (3.4)

where c ∈ R
n, e,b ∈ R

m, A,D ∈ R
nm.

If Constraints 3.2 make Z difficult, the Lagrangian relaxation can be used to relax these

constraints: they are brought into the objective function with an associated vector µ called

Lagrange multiplier. We refer to the resulting problem

ZRL(µ) = min cx+µ(b−Ax) (3.5)

Dx ≥ e (3.6)

x ∈ Nn; µ ∈ Rm
+ (3.7)

as the Lagrangian relaxation or the Lagrangian sub-problem, and we refer to the function

ZRL(µ) as the Lagrangian function. As mentioned, we penalize in the objective function the

violation of Constraints 3.2 through the Lagrangian multiplier µ .

To solve Z, the following optimization problem

Z∗
(µ) = max

µ
ZRL(µ) (3.8)
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is used, which we refer to as the Lagrangian dual problem associated with the original opti-

mization problem. This dual problem is often solved with a sub-gradient method. This method

consists in updating iteratively the value of variables of Z∗
(µ). Each iteration k consists in two

main steps:

1. Given µk (i.e., Lagrangian multiplier of iteration k), compute ZRL(µ
k) to obtain a solution xk

and the sub-gradient of ZRL at point µk. We name this sub-gradient gk and it corresponds

to (b−Axk),

2. Compute µk+1 using µk and the step size Pk = UB−ZRL(µ
k)

||b−Ax||2
of the iteration k, i.e., µk+1 =

µk +Pk ∗gk. Where UB is an upper bound on the optimal solution we want to compute.

To the best of our knowledge, only Meng and Zhou (2014) propose a Lagrangian relaxation

to cope with the rtRTMP. The authors propose a network flow formulation to model the problem

which tackles the simultaneous train re-routing and rescheduling. The objective function of the

model minimizes the total delay of all involved trains. The network flow formulation contains

several big-M constraints reformulated by introducing new variables called cumulative flow

variables. The cumulative flow variables are time-indexed. They represent both temporal and

spatial resource consumption by trains. In the experimental analysis a discretization step of

one minute is considered to keep the number of variables tractable. The Lagrangian relaxation

technique is used to reformulate and solve the problem. The block section capacity constraints

are brought in the objective function. By doing so, the original problem is separated into

a path-finding sub-problem for each train. A Lagrangian relaxation algorithm based on the

sub-gradient method and embedding a computationally efficient time-dependent shortest path

algorithm is used to solve these path-finding sub-problems. The performance of this algorithm

is tested in a fictitious network. Based on the obtained results, the authors claim that the

algorithm can find feasible solutions with small gaps (up to 10%) for all test cases within about

1.3 min.

3.3.3.2 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) is widely used in the linear

programming field. Its application is particularly suitable if the problem to be tackled presents

a specific structure. Specifically, two types of constraints are distinguished: the coupling

constraints and the independent constraints. The coupling constraints contain all variables,

while the independent ones contain a subset of variables.

As an example of application of the Dantzig-Wolfe decomposition, consider the same

integer problem used in Section 3.3.3.1 and suppose that Constraints (3.2) are the coupling
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constraints and Constraints (3.3) are the independent ones. The Dantzig-Wolfe decomposition

consists in separating the problem Z into two problems. The first problem contains the coupling

constraints (Ax ≥ b), whereas the second one contains the independent constraints (Dx ≥ e).

The coordination between the two problems is done by Dantzig-Wolfe Master Problem (MPDW )

that corresponds to:

MPDW = min cx (3.9)

Ax ≥ b (3.10)

x ∈ X (3.11)

where X = {x ∈ Nn : Dx ≥ e} represents the polyhedron formed by the independent constraints.

Another way to express X is as the convex hull combination of extreme points (J) and extreme

rays (R), i.e.,

X = {x ∈ Nn : x = ∑
j∈J

λ jx j + ∑
r∈R

λrxr|∑
j∈J

λ j = 1, ∀ j ∈ J λ j ≥ 0, ∀r ∈ R λr ≥ 0} (3.12)

Replacing X by its expression in (3.12), we obtain the formulation of the MPDW equivalent

to the original problem Z.

MPDW = min c ∑
j∈J

λ jx j + c ∑
r∈R

λrxr (3.13)

A ∑
j∈J

λ jx j +A ∑
r∈R

λrxr ≥ b (3.14)

∑
j∈J

λ j = 1 (3.15)

λ j ≥ 0 ∀ j ∈ J (3.16)

λr ≥ 0 ∀r ∈ R. (3.17)

Note that, in the Dantzig-Wolfe decomposition only the coupling constraints are relaxed.

So, the approach may provide a better bound than the linear relaxation.

The Dantzig-Wolfe decomposition is solved using the column generation algorithm sketched

in the following. Specifically, first, a restricted version of MPDW , commonly referred to as the

Restricted Master Problem (RMPDW ) using a subset of extreme points J′ and extreme rays R′
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RMPDW = min c ∑
j∈J′

λ jx j + c ∑
r∈R′

λrxr (3.18)

A ∑
j∈J′

λ jx j +A ∑
r∈R′

λrxr ≥ b (3.19)

∑
j∈J′

λ j = 1 (3.20)

λ j ≥ 0 ∀ j ∈ J′ (3.21)

λr ≥ 0 ∀r ∈ R′. (3.22)

is solved to obtain optimal values for the dual variables u and v associated with Constraints (3.19)

and (3.20) respectively. Second, a sub-problem called Pricing Problem (PP) is used to generate

a new column to be added to the RMPDW that has negative reduced cost with respect to the dual

solutions u and v of the RMPDW . The PP is formulated as follows.

PP = min
j∈J,r∈R

(c−uA)x j +(c−uA)xr − v (3.23)

The algorithm iterates these two steps and it stops when all variables have positive reduced

cost, i.e., PP ≥ 0 or the computational time limit is elapsed.

To the best of our knowledge, the only application of a column generation algorithm to

tackle the rtRTMP is the one by Lusby et al. (2012). The authors use a set packing formulation,

which is an integer linear program with a resource based constraint system. Two instances

on a German complex junction from an actual midweek timetable operated by Deutsch Bahn

with respectively one hour and two hour time horizons are tackled. The solution of the column

generation algorithm and the solution of the plain Cplex are compared. The authors show that

the column generation algorithm obtains the optimal solution of the two instances within 60s

and outperforms the plain Cplex result. The authors do not consider re-routing possibilities.

3.3.3.3 Benders decomposition

The BD (Benders, 1962) is used to tackle MILP formulations, which contain both integer (or

binary) and continuous variables. The principle of this decomposition consists in separating the

integer (or binary) part (UMP) from the continuous one (SP) of the MILP. The decomposed

problem is solved adding progressively to the UMP Benders cuts obtained from the SP.

As an example, consider the following MILP
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Z : mincx+ f y (3.24)

Ax+By ≤ b (3.25)

x ∈ N, y ∈ R. (3.26)

where f ,c ∈ R, A,B ∈ R
m and b ∈ R

m.

Suppose that the values of the integer variables x are given (x̄). The above problem is

decomposed in the following Benders SP with dual DSP:

SP : mincx̄+ f y (3.27)

By ≤ b−Ax̄ (3.28)

y ∈ R. (3.29)

DSP : maxu(b−Ax̄)+ cx̄ (3.30)

uB ≥ f (3.31)

u ∈ R. (3.32)
where u are dual variables associated to Constraints (3.28).

Based on the above DSP, the Benders Master Problem (MP), commonly referred as the

Restricted Master Problem (RMP) is:

RMP : mincx+ z (3.33)

u(b−Ax)+ cx ≤ z ∀u ∈ P (3.34)

u(b−Ax)+ cx ≤ 0 ∀u ∈ R (3.35)

x ∈ N (3.36)

z ∈ R. (3.37)

where P and R are, respectively, the subsets of extreme points and extreme rays of polyhedron

defined by Constraints (3.31) and (3.32). The additional dummy variable z represents the

contribution of the continuous variables to the RMP objective function. The RMP has only one

dummy variable z and the integer variables x of the original problem Z. Note that the values of

u are known because the right hand side of (3.34) and (3.35) is either an extreme point P or an

extreme ray R calculated in the DSP. Constraints (3.34) and (3.35) represent respectively the

classic Benders OC and FC.

To solve the BD, one starts seeking a feasible solution to the RMP by fixing sets P and R to

empty. The problem with P = R = 0, i.e., without Constraints (3.34) and (3.35), is called the
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UMP, which is formulated as follows.

UMP : mincx+ z (3.38)

x ∈ N (3.39)

z ∈ R. (3.40)

The BD is solved using a row generation algorithm, commonly named as a BA. In each

iteration of the algorithm, the UMP and the DSP are solved and a Benders cut, OC or FC, is

added to the UMP depending the solution of the DSP. The algorithm stops when either the

optimum of the overall problem is found (the objective function value is the same for the UMP

and the DSP) or the computational time limit is elapsed.

Some heuristic algorithms based on the BD dealing with the rtRTMP exist. First of all, in

the paper by Lamorgese and Mannino (2015) the rtRTMP is decomposed into two sub-problems.

They are called Line Dispatching (LD) and Station Dispatching (SD) problem respectively. The

LD problem deals with finding a minimum cost schedule such that all pairs of trains only meet

in a station. Once this problem is solved then in the SD problem a platform is assigned to each

train at each station separately. The authors consider this approach as equivalent to the classical

BD method where the MP corresponds to the LD problem and the SP corresponds to the SD

one. However, note that although the authors consider this approach as a BD, it is slightly

different as both the LD and the SD are MILP problems. The LD problem, which is modeled

macroscopically, provides train tentative arrival and departure times in the stations of the

railway line. The SD problem modeled microscopically tries to assign to each train a platform

at each station so that the given tentative arrival and departure times are satisfied. Cuts are

progressively added to the LD problem based on the station capacity violations identified in the

SD one. The experimental analysis made on Italian and Norwegian single and double line tracks

show the algorithm improvement with respect to a previously proposed heuristic algorithm.

However, to keep the solution of the SD problem quick, only a rough approximation of the

microscopic representation of each station is considered. In a subsequent paper, Lamorgese

et al. (2016) propose a variation of the former algorithm by making it more macroscopic.

Specifically, in Lamorgese et al. (2016), instead of being associated to the precise locations

in which trains can meet or pass each other, the binary variables are associated with entire

sub-regions. Moreover, some algorithmic enhancements are added for solving the LD problem.

On the same Italian and Norwegian instances, the authors report that the computational results

with the new approach improve the ones presented in Lamorgese and Mannino (2015). Finally,

in a recent seminar, Lamorgese and Mannino (2016) present a BD approach to tackle the train’s

rescheduling problem formulated with an AG model. In their approach, the authors replace the
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Benders feasibility and optimality cuts with strong cuts obtained by strengthening and lifting

the standards ones. In all these papers, the authors do not consider re-routing possibilities when

dealing with the rtRTMP.

3.4 Conclusions

In this chapter, we presented an overview of the state of the art for the rtRTMP. We classified and

discussed contributions on the rtRTMP according to two different approaches: the monolithic

approach and the decomposition one. The former includes the contributions facing the problem

as a unique element. The latter groups the contributions in which the problem is split in sub-

problems, either in its definition or in the solution technique used to solve it. The decomposition

approaches often aim to the solution of large instances.

Although many algorithms have been proposed to tackle the rtRTMP in the literature, most

of them deal with the problem using the monolithic approaches. In several studies, the size of

instances tackled are relatively small. Even if some authors use the decomposition approaches

to deal with the rtRTMP, they very often neglect the train re-routing possibility. The only

decomposition approach that considers this possibility is the one proposed by Meng and Zhou

(2014). However, the authors tackle a rather small artificial case study and are obliged to

consider a very rough time discretization to keep the solution times reasonable. Moreover, the

microscopic representation of the infrastructure at the track-circuit level is never considered in

the cited literature that use the decomposition approach.

In this thesis, we consider the RECIFE-MILP algorithm, which allows solving some

rtRTMP instances to optimality considering all details in the infrastructure. However, it has

been shown (Pellegrini et al., 2015) that its performance may strongly worsen when tackling

very large instances in the short time allowed by the real-time nature of the problem. For the

MILP formulation at the basis of this algorithm, we propose BD approaches to improve the

performance of RECIFE-MILP when tackling large instances.
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Chapter 4

RECIFE-MILP

4.1 Introduction

In this chapter, we present RECIFE-MILP for the rtRTMP proposed by Pellegrini et al. (2015).

RECIFE-MILP has been developed as part of the decision support platform called RECIFE

introduced by Rodriguez et al. (2007). More specifically, RECIFE-MILP is a heuristic algorithm

based on the truncated solution of a MILP formulation. This formulation is based on the

microscopic representation of the infrastructure described in Section 2.4 and it is then capable

of considering all the characteristics of the infrastructure in deep details.

This chapter is organized as follows. Section 4.2 details the RECIFE-MILP formula-

tion assumptions. Section 4.3 presents the mathematical formulation. Section 4.4 describes

the RECIFE-MILP algorithm. Some applications of RECIFE-MILP which appeared in the

literature are presented in Section 4.5. Section 4.6 concludes the chapter.

4.2 Assumptions

The following assumptions are made to model the rtRTMP in RECIFE-MILP.

The first assumption considered in RECIFE-MILP concerns the blocking time theory

utilization presented in Section 2.4. As previously explained, a blocking time is defined as the

time interval that a block section is exclusively occupied by a train movement. It implies that a

train is authorized to cross a block section if the two subsequent block sections are not reserved

by another train. Moreover, in a 3-aspect (green, yellow and red) signaling system defined in

Section 2.3, a train is allowed to use a block section only if the signal is green. However, in

real-life railway traffic situation, this condition does not need to be respected: a train can enter

a block section opened by a yellow signal adjusting its speed to be able to stop in front of the
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forthcoming signal, if red. The blocking time theory utilization assumption is made in most

existing rtRTMP decision support tools as for example ROMA, a real-time traffic management

system introduced by D’Ariano et al. (2008).

The second assumption consists in the use of the so-called fixed speed model to describe

train movements presented in Section 2.5. As previously mentioned, in a fixed speed model

trains brake and re-accelerate instantaneously in case of conflict. Hence, the trains’ entrance

times in the different block sections in case of conflict are imprecise when a fixed speed model

is applied. However, this imprecision is not an issue for the practical implementation of the

traffic management decisions since what is actually imposed in reality is the set of precedences

between trains, rather than the precise time at which trains are supposed to pass.

In addition to the above assumptions, in the variant of RECIFE-MILP considered in this

thesis, we make the following ones to deal with sightly easier formulation. Remark that these

assumptions are often made in the literature and do not strongly penalize the realism of the

model.

First, we consider that the shortest track-circuit is longer than all trains. In real cases,

a train can be longer than a track-circuit as exemplified in Figure 4.1. In this case, the duration

of a track-circuit utilization can depend on a train standing still on another track-circuit. For

example, the utilization of tc1 lasts as long as train t stops in tc2. Instead, With this assumption

exemplified in Figure 4.2, the duration of a track-circuit utilization is not influenced by a train

standing still on another track-circuit. In the example, then, even if the blue train is stopped in

tc2, we allow the green train to enter tc1.

Figure 4.1 One train longer than the shortest track-circuit.

Figure 4.2 The shortest track-circuit is longer than all trains.
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Second, we suppose the dwell time, that corresponds to the time for which a train stays at

a station platform to allow passengers to disembark, transfer and board the train, as fixed. With

the fixed dwell time assumption, we consider that the dwell time cannot be adjusted during the

traffic optimization phase. In reality, the dwell time can be reduced or increased according to

the dispatching strategies to suitably manage the delay propagation.

Finally, we do not consider any Rolling-stock re-utilization. Indeed, two trains t and t ′

can use a same rolling-stock. Hence, a minimum time must separate their arrival and departure,

which must take place on the same track-circuit. Moreover, if train t and t ′ use the same

rolling-stock and t ′ results from t, the track-circuit tc where the turnaround, join, or split takes

place must be utilized for the whole time between t’s arrival and t ′’s departure.

4.3 Formulation

In this section, we present the RECIFE-MILP formulation. This is one of the most accurate

formulations for the rtRTMP, in which the infrastructure is modeled at the level of track-circuit

which allows a representation of the route-lock sectional-release interlocking system (see

Section 2.3) actually used in the practice.

In the RECIFE-MILP formulation, in addition to the actual track-circuits, two dummy ones

are considered, tc0 and tc∞. They represent the entry and the exit locations of the infrastructure,

respectively: all routes start from tc0 and end at tc∞. Each track-circuit has a running time and

a clearing time which depend on the type of train traversing them and on the route traveled.

Indeed, trains with different acceleration capabilities, for example, may need different running

times to traverse a track-circuit. Moreover, several routes can share a track-circuit and the speed

authorized on this track-circuit may depend on the route along which it is used. For the dummy

track-circuits, the running time and clearing time are null for all train types and along all routes.

4.3.1 Notation

In the RECIFE-MILP formulation, the following notation is used for the input data:

T ≡ set of trains;

wt ≡ weight associated to train t’s delay;

tyt ≡ type corresponding to train t (train characteristics);

initt ,exitt ≡ earliest time at which train t can be operated and earliest time at which it can

reach its destination given initt and the route assigned in the timetable;
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Figure 4.3 Set of routes Rt , track-circuits TCt available for train t and set of track-circuits TCr1

composing route r1.

Rt ,TCt ≡ set of routes and track-circuits available for train t, a graphical representation is

showed in Figure 4.3;

TCr ≡ set of track-circuits composing route r, see the example of route r1 used by train t in

Figure 4.3;

TC(tc, tc′,r)≡ set of track-circuits between tc and tc′ along r;

pr,tc,sr,tc ≡ track-circuits preceding and following tc along r;

rtty,r,tc,ctty,r,tc ≡ running time and clearing time of tc along r for a train of type ty;

bsr,tc ≡ block section including track-circuit tc along route r;

f orbs,relbs ≡ formation time and release time for block section bs;

ˆTCt,t ′,tc ≡ set of track-circuits tc′ which may be used by both t and t ′ such that if t precedes

(≺) t ′ on tc, then necessarily t ≺ t ′ on tc′ , and so on (e.g., if the track-circuits follow each

other on a straight track segment). In other words, it is the set of track-circuits composing

the track segment which starts with tc. ˆTCt,t ′,tc = {tc} if tc ∈ TCt ∩TCt ′ and no implied

precedence relation links tc to other track-circuits. ˆTCt,t ′,tc = /0 if ∃tc′ ∈ TCt ∩TCt ′ such

that tc ∈ ˆTCt,t ′,tc′ , i.e., that is tc belongs to a track segment which starts with a different

tc′. Hence, each track-circuit belongs to one and only one set ˆTCt,t ′,tc;

ˆTCt,t ′ ≡ ∪tc∈TCt∩TCt′
ˆTCt,t ′,tc , i.e., ˆTCt,t ′ is the set of all the track segments for the two trains;

M ≡ large constant.

We will use this notation in the rest of this thesis.
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Figure 4.4 Main variables and data concerning the utilization of tc belonging to route r of train
t.

4.3.2 Variables

The formulation contains non-negative continuous variables:

for all triplets of t ∈ T , r ∈ Rt and tc ∈ TCr:

ot,r,tc : time at which t starts the occupation time of tc along r;

lt,r,tc : longer stay of t’s head on tc along r, due to dwell time and scheduling decisions (delay);

for all pairs of t ∈ T and tc ∈ TCt :

sU t,tc : time at which t starts tc utilization;

eU t,tc : time at which t ends tc utilization;

The above continuous variables are represented in Figure 4.4, together with the main input

data (clearing time, running time, release time and formation time) concerning block sections

and track-circuits.

for all t ∈ T :

Dt : delay suffered by train t when exiting the infrastructure.

In addition it includes binary variables:

for all pairs of t ∈ T and r ∈ Rt :

xt,r =

{

1 if t uses r,

0 otherwise,

for all triplets of t, t ′ ∈ T such that the index of t is smaller than the index of t ′, and tc ∈

TCt ∩TCt ′:
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yt,t ′,tc =

{

1 if t utilizes tc before t ′ (t ≺ t ′),

0 otherwise (t ≻ t ′).

We impose the index of t smaller than the index of t ′ to avoid creating two re-scheduling

variables yt,t ′,tc and yt ′,t,tc for track-circuit tc. One variable is enough in this case since yt ′,t,tc

is a complement to one of yt,t ′,tc. By doing so, we reduce the number of y-variables in the

formulation.

4.3.3 Objective and constraints

The RECIFE-MILP formulation is as follows:

min ∑
t∈T

wtDt . (4.1)

ot,r,tc ≥ initt xt,r ∀t ∈ T,r ∈ Rt , tc ∈ TCr : pr,tc = tc0, (4.2)

ot,r,tc ≤ Mxt,r ∀t ∈ T,r ∈ Rt , tc ∈ TCr, (4.3)

ot,r,tc = ot,r,pr,tc + lt,r,pr,tc + rtr,ty,pr,tcxt,r ∀t ∈ T,r ∈ Rt , tc ∈ TCr : tc ̸= tc0, (4.4)

∑
r∈Rt

xt,r = 1 ∀t ∈ T, (4.5)

Dt ≥ ∑
r∈Rt

ot,r,tc∞
− exitt ∀t ∈ T, (4.6)

sUt,tc ≤ ∑
r∈Rt :

tc∈TCr

(

ot,r,ref r,tc
− forbsr,tc

xt,r

)

∀t ∈ T, tc ∈ TCt , (4.7)

eU t,tc ≥ ∑
r∈Rt :

tc∈TCr

ot,r,re f r,tc
+ relbsr,tc xt,r + ctr,ty,tc xt,r + ∑

tc′∈TC(re f r,tc,tc,r)

rtr,ty,tc′ xt,r + lt,r,tc′

∀t ∈ T, tc ∈ TCt , (4.8)
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eUt,tc −M(1− yt,t ′,tc)≤ sUt ′,tc ∀t, t ′ ∈ T, t < t ′, tc ∈ TCt ∩TCt ′ , (4.9)

eUt ′,tc −Myt,t ′,tc ≤ sUt,tc ∀t, t ′ ∈ T, t < t ′, tc ∈ TCt ∩TCt ′ . (4.10)

In the formulation, the objective (4.1) is the minimization of the total weighted delays

suffered by trains at their exit from the infrastructure. The weighting in the objective function

allows taking into account different train priorities. These priorities may be linked to the

type of circulation (e.g., freight or passenger) or other aspects as the number of passengers

traveling on each train. Constraints (4.2) state that a train t cannot be operated earlier than

initt . Constraints (4.3) indicate that the start time of track-circuit occupation time along a route

is zero if the route itself is not used. Constraints (4.4) impose that a train starts occupying

track-circuit tc along a route after spending in the preceding track-circuit its longer stay and its

running time, if the route is used. Constraints (4.5) state that a train must use exactly one route.

Constraints (4.6) indicate that the value of delay Dt at least equals the difference between the

actual and the scheduled arrival times at the exit of the infrastructure. Constraints (4.7) impose

that a train’s utilization of a track-circuit tc starts as soon as the train starts occupying the track-

circuit re fr,tc along one of the routes including tc, minus the formation time. Constraints (4.8)

indicate that the utilization of a track-circuit lasts till the train utilizes it along any route, plus the

formation time and the release time. Constraints (4.9) and (4.10) impose that the track-circuit

utilization by two trains must not overlap.

4.4 Algorithm

RECIFE-MILP is a heuristic algorithm which mainly consists in tackling a rtRTMP instance

by solving a MILP formulation for a limited computational time through a MILP solver. If the

optimum is proven, the run is interrupted, otherwise, the best solution found after the elapse of

this time is returned.

The RECIFE-MILP algorithm uses three boosting methods to improve the solution per-

formance. In particular, their aim is, first, to increase the speed of detection of high quality

feasible solutions and, second, to decrease the computation time needed for proving optimality.

In the following, we present these three boosting methods used to improve the RECIFE-

MILP algorithm performance:

Initialization: providing an initial solution. In RECIFE-MILP, a two-optimization-step

cycle is implemented. In the first step, the MILP solver optimizes the train scheduling without

modifying the routes with respect to the default ones (i.e., the routes defined in the initial
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timetable). In the second step, it optimizes also in terms of train routing, using as initial solution

the best solution found in the first step. Disregarding the optimality proof, the first step is

terminated after 30 seconds provided that one feasible solution has been found. Otherwise,

the first step continues until the first feasible solution is detected; in all experiments run so far,

the search with no re-routing (first optimization step) always found at least a feasible solution

within very few seconds.

Decreasing the big-M value: The solution obtained in the first optimization step is ex-

ploited to decrease the value of M , the large constant used in the formulation. For ensuring the

coherence of Constraints (4.11) and (4.12), M needs to be at least equal to the latest end of a

concerned track-circuit utilization. Let S∗1 be the solution returned by the first optimization

step and wD∗1 its total weighted delay. In the second optimization step, all solutions improving

over S∗1 will have an associated total weighted delay not greater than wD∗1. Thus, the latest

utilization of a track-circuit tc by a train t will be at most equal to the sum of wD∗1/wt and the

maximum of the earliest possible exit time from tc along each available route. Formally, let

ūt,tc be the latest time at which t may end the utilization of track-circuit tc during the second

optimization step. In any solution improving over S∗1 it holds that

ūt,tc ≤
wD∗1

wt

+max
r∈Rt















initt + ∑
tc′∈TC(tc0,tc,r):

tc∈TCr

rtr,tyt,tc′ + ctr,tyt,tc + relbsr,tc















;

M can be set equal to the maximum of these quantities across the trains involved in each

constraint.

Infrastructure topology exploitation: The RECIFE-MILP algorithm exploits the char-

acteristics of the infrastructure topology to reduce as much as possible the number of binary

y-variables, i.e., the variables appearing in the disjunctive Constraints (4.9) and (4.10) that

define the precedence relation between couples of trains utilizing the same track-circuit. To

this aim, it exploits the fact that the topology of an infrastructure frequently imposes that the

precedence relation between couples of trains must be identical on different track-circuits.

Consider the situation exemplified in Figure 4.5 in which a simple infrastructure is traversed

by two trains t and t ′, using routes r1 and r2, respectively. The topology of this infrastructure

and the routes used by trains t and t ′ define two track segments ˆTCt,t ′,tc7
= {tc7, tc8} and

ˆTCt,t ′,tc11
= {tc11, tc12}. Indeed, in every feasible solution where t uses r1 and t ′ uses r2, if t

precedes t ′ (respectively, t ′ precedes t) on tc7 or tc11 then t (respectively, t ′) must necessarily

traverse tc8 or tc12 before t ′ (respectively, t). Hence, in a preprocessing phase, for the couple of

trains t, t ′ and on the basis of the physical network topology, first the set of shared track-circuits

TCt ∩TCt ′ is partitioned into subsets defined as follows: two track-circuits belong to the same
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Figure 4.5 Graphical representation of track segments ˆTCt,t ′,tc7
, ˆTCt,t ′,tc11

in which the order
between trains cannot change.

subset ˆTCt,t ′, ˆtc if the same precedence relation between t and t ′ must hold on both track-circuits

(e.g, in Figure 4.5, the precedence relation between t and t ′ cannot change on track-circuits

tc7 and tc8, so they are grouped into same track segment ˆTCt,t ′,tc7
). Then, for each non empty

ˆTCt,t ′, ˆtc, a single yt,t ′, ˆtc variable is created in Constraints (4.9) and (4.10): yt,t ′,tc7
is used for tc7

and tc8, yt,t ′,tc11
is used for tc11 and tc12

As a consequence, Constraints (4.9) and (4.10) become Constraints (4.11) and (4.12),

respectively:

eUt,tc −M(1− yt,t ′, ˆtc)≤ sUt ′,tc ∀t, t ′ ∈ T, t < t ′, tc, ˆtc ∈ TCt ∩TCt ′ : tc ∈ ˆTCt,t ′, ˆtc, (4.11)

eUt ′,tc −Myt,t ′, ˆtc ≤ sUt,tc ∀t, t ′ ∈ T, t < t ′, tc, ˆtc ∈ TCt ∩TCt ′ : tc ∈ ˆTCt,t ′, ˆtc. (4.12)

For a more detailed discussion of the RECIFE-MILP formulation and algorithm we refer

the interested reader to Pellegrini et al. (2014, 2015).

4.5 RECIFE-MILP applications

Since its proposal, RECIFE-MILP has been validated on several applications coming from

Sweden, the UK, the Netherlands (Quaglietta et al., 2016; Ghaemi et al., 2017) and France

(Pellegrini et al., 2016; Samà et al., 2016). In the following, we summarize some applications

in which RECIFE-MILP is used. In Quaglietta et al. (2016), the authors propose a modular

framework which may be used to practically deploy real-time traffic management algorithms.

They use both RECIFE-MILP and ROMA (D’Ariano et al., 2008) in closed-loop with a

microscopic traffic simulator. The two algorithms are applied to tackle instances representing

traffic in three very different infrastructures: a portion of the East Coast Main Line in the
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UK, a part of the Dutch network and a section of the Iron Ore line in Sweden and Norway.

The perturbations considered are based on real timetables and specified by the concerned rail

infrastructure managers. Ghaemi et al. (2017) present a MILP model for optimally short-turning

trains in case of complete blockage and no train can use part of the track for several hours.

Here, the authors adopt a variant of the RECIFE-MILP formulation which allows for short-

turning in case of complete blockage. In Pellegrini et al. (2016), the authors compare the traffic

management decisions of RECIFE-MILP to the ones of different strategies, according to several

KPI’s. Specifically, the authors compare the decisions made by RECIFE-MILP with those

made by the dispatchers. This comparison is made on scenarios suggested by SNCF Réseau,

French infrastructure manager on portions of the French network. The authors show that on all

case studies tackled, RECIFE-MILP clearly outperformed the other strategies assessed. Samà

et al. (2016) introduce the real-time Train Routing Selection Problem (rtTRSP) which consists

in selecting a best subset of routes for each train to compute the rtRTMP. In the paper, the

authors analyze the performance of RECIFE-MILP when using various routing subsets. The

authors claim that, giving a subset of alternative routes determined when solving the rtTRSP,

RECIFE-MILP achieves better performance than ACO meta-heuristic.

Despite the good performance achieved in all these applications, it is indeed possible to

define instances for which RECIFE-MILP finds it difficult to return a high quality solution

in real-time. The difficulty is very often linked to the size of the formulation describing the

instances, which may easily include several tens of thousands of binary variables.

4.6 Conclusions

In this chapter, we presented RECIFE-MILP for the rtRTMP. The aim was to present RECIFE-

MILP model assumptions, mathematical formulation and algorithm. We also presented some

RECIFE-MILP applications which have appeared in the literature. These applications motivate

the interest we devote to RECIFE-MILP, which is among the state of the art algorithms for the

rtRTMP but can be incapable of dealing with really large instances. This chapter is a basis for

the next chapters in which we propose a BD approach for the RECIFE-MILP formulation.
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Chapter 5

Standard Benders Reformulation for

RECIFE-MILP

5.1 Introduction

In Section 4.3, we presented the RECIFE-MILP formulation, which contains both binary and

continuous variables. The binary variables determine the re-routing and rescheduling decisions,

whereas the continuous ones set the re-timing decisions during the rtRTMP optimization.

As stated in Chapter 1, in this thesis we propose a BD to improve the performance of

RECIFE-MILP when tackling large instances. In our BD, we separate the rtRTMP into

two problems: the UMP and SP following the principles described in Section 3.3. The

UMP is the real-time train routing and scheduling problem: it contains the re-routing and

rescheduling variables (binary variables) and one dummy variable representing the contribution

of continuous variables to the UMP objective function. The schedule here is intended as

the order in which trains cross common tracks, and does not include time information. The

SP contains the continuous variables which determine the track-circuit occupation time and

reservation times, and deduces the delay suffered by each train. The decomposed problem is

solved by progressively adding to the UMP Benders cuts obtained from the SP.

This chapter is organized as follows. Section 5.2 presents the SBR for RECIFE-MILP.

Section 5.3 details the BA which we apply to solve the SBR. Computational experiments are

reported in Section 5.4, and Section 5.5 concludes the chapter.
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5.2 Standard Benders Reformulation: SBR

In this section, we present the SBR for the RECIFE-MILP formulation. In the SBR, the SP

contains all constraints and continuous variables related to a given routing and scheduling.

These decisions are determined by the UMP and include the information on the routes assigned

to the trains (x̄t,r) and the scheduling decisions (ȳt,t ′,tc).

5.2.1 Sub-Problem (SP)

By fixing routing and scheduling variables in the RECIFE-MILP formulation (let them be

x̄t,r and ȳt,t ′,tc) we get the SP. This SP contains the continuous variables which determine the

track-circuits occupation time and reservation times, and deduces the delay suffered by train.

Its formulation is as follows.

min ∑
t∈T

wtDt . (5.1)

ot,r,tc ≥ initt x̄t,r ∀t ∈ T,r ∈ Rt , tc ∈ TCr : pr,tc = tc0, (5.2)

ot,r,tc ≤ Mx̄t,r ∀t ∈ T,r ∈ Rt , tc ∈ TCr, (5.3)

−ot,r,tc +ot,r,pr,tc + lt,r,pr,tc =−rtr,ty,pr,tc x̄t,r ∀t ∈ T,r ∈ Rt , tc ∈ TCr : tc ̸= tc0, (5.4)

Dt − ∑
r∈Rt

ot,r,tc∞
≥−exitt ∀t ∈ T, (5.5)

sU t,tc − ∑
r∈Rt :

tc∈TCr

ot,r,re f r,tc
≤− ∑

r∈Rt :
tc∈TCr

forbsr,tc
x̄t,r ∀t ∈ T, tc ∈ TCt , (5.6)

eU t,tc − ∑
r∈Rt :

tc∈TCr

ot,r,re f r,tc
− ∑

tc′∈TC(re f r,tc,tc,r)

lt,r,tc′ ≥ ∑
r∈Rt :

tc∈TCr

relbsr,tc x̄t,r + ctr,ty,tcx̄t,r+

∑
tc′∈TC(re f r,tc,tc,r)

rtr,ty,tc′ x̄t,r ∀t ∈ T, tc ∈ TCt , (5.7)
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eUt,tc − sUt ′,tc ≤ M−Mȳt,t ′, ˆtc ∀t, t ′ ∈ T, t < t ′, tc, ˆtc ∈ TCt ∩TCt ′ : tc ∈ ˆTCt,t ′, ˆtc, (5.8)

eU t ′,tc − sU t,tc ≤ Mȳt,t ′, ˆtc ∀t, t ′ ∈ T, t < t ′, tc, ˆtc ∈ TCt ∩TCt ′ : tc ∈ ˆTCt,t ′, ˆtc. (5.9)

Let αt,r,tc, βt,r,tc, λt,r,tc, θt , φt,tc, ωt,tc, ηt,t ′,tc, ψt,t ′,tc, be the dual variables associated

with Constraints (5.2)-(5.9) respectively. As such, αt,r,tc ≥ 0, βt,r,tc ≤ 0, λt,r,tc ∈ R, θt ≥ 0,

φt,tc ≤ 0, ωt,tc ≥ 0, ηt,t ′,tc ≤ 0 and ψt,t ′,tc ≤ 0. The DSP is written as follows.

5.2.2 Dual of the Sub-Problem (DSP)

max ∑
t∈T

∑
r∈Rt

∑
tc∈TCr

x̄t,r(inittαt,r,tc +Mβt,r,tc − rtr,ty,pr,tcλt,r,tc)+

+ ∑
t∈T

∑
r∈Rt

∑
tc∈TCt

x̄t,r[(relbsr,tc + ctr,ty,tc + ∑
tc′∈TC(re f r,tc,tc,r)

rtr,ty,tc′)ωt,tc − f orbsr,tc
φt,tc]−

− ∑
t∈T

exittθt + ∑
t,t ′∈T

∑
ˆtc,tc∈TCt∩TCt′ :

tc∈ ˆTCt,t′, ˆtc

M[(1− ȳt,t ′, ˆtc)ηt,t ′,tc + ȳt,t ′, ˆtcψt,t ′,tc]. (5.10)

αt,r,tc +βt,r,tc +λt,r,tc −φt,tc −ωt,tc ≤ 0 ∀t ∈ T, r ∈ Rt , tc ∈ TCr : pr,tc = tc0, (5.11)

λt,r,tc −λt,r,pr,tc +βt,r,tc −φt,tc −ωt,tc ≤ 0 ∀t ∈ T, r ∈ Rt , tc ∈ TCr, (5.12)

λt,r,tc −ωt,tc ≤ 0 ∀t ∈ T, r ∈ Rt , tc ∈ TCr, (5.13)

αt,r,tc∞
+βt,r,tc∞

−λ t,r,tc∞
−θt ≤ 0 ∀t ∈ T, r ∈ Rt , (5.14)

θt ≤ 1 ∀t ∈ T, (5.15)

φt,tc −ηt,t ′,tc −ψt,t ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCt ∩TCt ′ , (5.16)

ωt,tc +ηt,t ′,tc +ψt,t ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCt ∩TCt ′ . (5.17)
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Given the DSP, we can generate the cuts that are necessary to reformulate the RECIFE-

MILP formulation as the MP, commonly referred as the RMP.

5.2.3 Restricted Master Problem (RMP)

minz (5.18)

z− (∑
t∈T

∑
r∈Rt

∑
tc∈TCr

x̄t,r(inittαt,r,tc +Mβt,r,tc − rtr,ty,pr,tcλt,r,tc)+

+ ∑
t∈T

∑
r∈Rt

∑
tc∈TCt

x̄t,r[(relbsr,tc + ctr,ty,tc + ∑
tc′∈TC(re f r,tc,tc,r)

rtr,ty,tc′)ωt,tc − f orbsr,tc
φt,tc]−

− ∑
t∈T

exittθt + ∑
t,t ′∈T

∑
ˆtc,tc∈TCt∩TCt′ :

tc∈ ˆTCt,t′, ˆtc

M[(1− ȳt,t ′, ˆtc)ηt,t ′,tc + ȳt,t ′, ˆtcψt,t ′,tc])≥ 0

((α, β , λ , θ , φ , ω, η , ψ) ∈ PS), (5.19)

∑
t∈T

∑
r∈Rt

∑
tc∈TCr

x̄t,r(inittαt,r,tc +Mβt,r,tc − rtr,ty,pr,tcλt,r,tc)+

+ ∑
t∈T

∑
r∈Rt

∑
tc∈TCt

x̄t,r[(relbsr,tc + ctr,ty,tc + ∑
tc′∈TC(re f r,tc,tc,r)

rtr,ty,tc′)ωt,tc − f orbsr,tc
φt,tc]−

− ∑
t∈T

exittθt + ∑
t,t ′∈T

∑
ˆtc,tc∈TCt∩TCt′ :

tc∈ ˆTCt,t′, ˆtc

M[(1− ȳt,t ′, ˆtc)ηt,t ′,tc + ȳt,t ′, ˆtcψt,t ′,tc]≤ 0

((α, β , λ , θ , φ , ω, η , ψ) ∈ RS), (5.20)

∑
r∈Rt

xt,r = 1 ∀t ∈ T, (5.21)

xt,r ∈ {0,1} ∀t ∈ T,r ∈ Rt , (5.22)

yt,t ′, ˆtc ∈ {0,1} ∀t, t ′ ∈ T, t < t ′, ˆtc ∈ ˆTCt,t ′ , (5.23)
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z ≥ 0. (5.24)

The additional dummy variable z represents the contribution of the RECIFE-MILP continu-

ous variables to the RMP objective function, while sets Ps and Rs contain the extreme points

and extreme rays, respectively, of the polyhedron S representing the feasible solution space of

the DSP. The RMP has only one dummy variable z and the binary variables xt,r and yt,t ′, ˆtc of

the original problem. Note that the values of α, β , λ , θ , φ , ω, η , ψ are known because they

are either the extreme points Ps or the extreme rays Rs calculated in the DSP. Constraints (5.19)

and (5.20) represent respectively the classic Benders OC and FC. Constraints (5.21) represent

the routing constraints equivalent to (4.5).

To solve the BD, we start seeking a feasible solution to the RMP by fixing sets Ps and Rs to

empty. The problem with Ps = Rs = /0, i.e., without Constraints (5.19) and (5.20), is called the

UMP, which is formulated as follows.

5.2.4 Unrestricted Master Problem (UMP)

minz (5.25)

∑
r∈Rt

xt,r = 1 ∀t ∈ T, (5.26)

xt,r ∈ {0,1} ∀t ∈ T,r ∈ Rt , (5.27)

yt,t ′, ˆtc ∈ {0,1} ∀t, t ′ ∈ T, t < t ′, ˆtc ∈ ˆTCt,t ′ , (5.28)

z ≥ 0. (5.29)

In BA, Benders cuts (5.19) and (5.20) obtained in the DSP are added to the UMP iteratively

until the optimal solution is found or the computational time limit is reached.

5.3 Benders Algorithm: BA

We solve our SBR of the RECIFE-MILP formulation with a BA.

50



5.4 Computational experiments

In our BA, the UMP and the DSP are iteratively solved at the optimum, see Algorithm 1.

At each iteration, we add to the UMP either an OC or a FC depending the solution of the DSP

until the optimum is found (the objective function value is the same for the UMP and the DSP)

or the computational time limit is elapsed.

Algorithm 1: Benders algorithm (BA).
Data: Problem instance

Result: Solution of the overall problem

Initialization:

set UB =+∞, LB =−∞, BestSolution = /0;

while LB ̸=UB and Computational time available do

Solve UMP to optimality and find z̄, x̄t,r, ȳt,t ′, ˆtc;

Set LB = z̄ ;

Solve DSP with x̄t,r and ȳt,t ′, ˆtc and find ōt,r,tc, l̄t,r,tc, sU t,tc, eU t,tc and D̄t ;

Add corresponding cut (OC or FC) to the UMP ;

if DSP bounded and z̄ ⩽UB then

Set UB = z̄ record BestSolution = {x̄t,r, ȳt,t ′, ˆtc, ōt,r,tc, l̄t,r,tc, sU t,tc, eU t,tc, D̄t};

Stop.

Return BestSolution;

Note that the UMP cannot be infeasible due to its formulation. As a result, the infeasibility

case of the UMP is not considered in the algorithm.

Similarly to what is done in RECIFE-MILP, we initialize the search with a feasible solution.

In particular, we solve the RECIFE-MILP formulation by fixing the train routing decisions to

the default routes defined in the timetable (fixed routes). Then, we initialize the SBR with this

fixed route optimal solution or with the best solution found after 30 seconds of computation. In

our experiments, this threshold was never reached.

5.4 Computational experiments

In this section, we assess the performance of the SBR. The reformulation is solved using the

BA through Cplex (from now on BA-SBR). Specifically, the implementation is done using

IBM ILOG CPLEX Concert Technology for C++ (IBM ILOG CPLEX version 12.7 (IBM,

2017)). We consider two case studies representing traffic in two control areas in France:

the Pierrefitte–Gonesse junction (Gonesse) and a line section around the Rouen–Rive–Droite

station (Rouen). These case studies are the ones used in all the experimental analyze presented
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Figure 5.1 Pierrefitte–Gonesse junction.

in this thesis. We set the computational time available for the optimization to three minutes as

often done in the literature (e.g., Pellegrini et al. (2015); Samà et al. (2015)).

The weight associated to delay in the objective function is set to 1 for all trains, since we

have no information on different train priorities. The route formation and release times are 15

and 5 seconds for all block sections, respectively.

For each control area, we consider a one-day timetable, and we create 30 scenarios in which

20% of trains, randomly selected, suffer a random delay between 5 and 15 minutes at their

entrance in the control area. We generate one rtRTMP instance from each of these 30 scenarios

by considering all the trains entering the control area within a one-hour horizon. We set the

time horizon from 6:00 am to 07:00 am. This time horizon corresponds to the morning peak

hour. We use the so obtained 60 instances for testing the BA-SBR performance.

Before presenting the results, we describe each control area in the next subsections.

5.4.1 Pierrefitte–Gonesse junction

Gonesse is a critical control area with intense mixed traffic. Figure 5.1 schematically depicts

its infrastructure. It includes 89 track-circuits, grouped into 174 block sections and 39 routes.

A week-day timetable includes 340 trains: 120 high-speed and 129 conventional passenger

trains, and 91 freight trains. The one-hour instances we tackle include between 14 and 17

trains (mean 15). Each train can use between 5 and 13 routes (mean 8), which translates into a

RECIFE-MILP formulation with about 121 000 continuous variables, 1 800 binary variables

and 35 000 constraints for an instance with 15 trains.

5.4.2 Rouen-Rive-Droite control area

The control area including Rouen-Rive-Droite comprises six stations, with two to six platforms,

and one junction. The presence of multiple stations with several possible platform assignments

implies the availability of a very large number of alternative routes. The existence of these
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Figure 5.2 Rouen-Rive-Droite control area.

routes is the main source of complexity of traffic management in this control area, together with

the presence of mix traffic. The control area is depicted in Figure 5.2. The 190 track-circuits

compose 189 block sections and 11 347 routes. The one-day timetable considered includes

186 trains: 2 high-speed and 107 conventional passenger trains, 33 freight trains and 44 local

movements. The obtained one-hour instances include between 10 and 13 trains (mean 11).

Each train can use between 1 and 384 routes (mean 68), which translates into a RECIFE-MILP

formulation with about 949 800 continuous variables, 1 030 binary variables and 224 900

constraints, for an instance including 11 trains.

5.4.3 Results

In this section, we present the results of our computational experiments on the two control

areas. The aim of these computational experiments is to evaluate the BA-SBR performance. As

mentioned in Section 5.3, BA-SBR starts with an initial solution found in the first optimization

step, which is equal to the one of RECIFE-MILP (see Section 4.4). However, for sake of

completeness, we first compare the results of BA-SBR without the initialization with the ones

of RECIFE-MILP. Then, we compare them when using the initialization.

Tables 5.1-5.4 report the results obtained over the 30 instances described in Section 5.4

for each control area, Gonesse and Rouen, after 180 seconds of computation. In each table,

column 1 indicates the instance tackled. Although 30 instances were solved for each control

area, for sake of readability we only show the results for the 10 first instances and the average

over all the instances in the last row. Columns 2 and 3 report the number of trains and the total

number of routes in each instance, respectively. Columns 4-7 report the objective function

value, the number of generated OC and FC, and the number of iteration of BA-SBR within the

computational time available, respectively. Columns 8-9 report the objective function value and

the optimality gap of RECIFE-MILP within the same time limit of 180 seconds, respectively.

When no initial solution is supplied, the results show that the performance of BA-SBR is

very bad compared to RECIFE-MILP: RECIFE-MILP finds the optimal solution for all the

Gonesse instances and at least a feasible solution for all the Rouen ones, while BA-SBR never

reaches feasibility. A remarkable number of FC are added to the UMP throughout the runs, but

they do not appear to be capable of driving the solution toward feasibility quickly enough. The
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Table 5.1 Results of BA-SBR and RECIFE-MILP on 30 Gonesse instances without initialization
(time limit 180 seconds).

Inst # T # R
BA-SBR RECIFE-MILP

Obj # OC # FC # it Obj Gap (%)

I1 16 124 x 0 377 377 30 0
I2 15 118 x 0 402 402 220 0
I3 14 106 x 0 443 443 0 0
I4 15 118 x 0 398 398 236 0
I5 16 124 x 0 377 377 0 0
I6 16 124 x 0 378 378 204 0
I7 16 124 x 0 384 384 1 0
I8 16 124 x 0 378 378 82 0
I9 16 124 x 0 377 377 347 0
I10 16 124 x 0 377 377 15 0

I... ... ... ... ... ... ... ... ...

Average 15 119 x 0 392 392 120 0
x = no feasible solution found.

Table 5.2 Results of BA-SBR and RECIFE-MILP on 30 Rouen instances without initialization
(time limit 180 seconds).

Inst # T # R
BA-SBR RECIFE-MILP

Obj # OC # FC # it Obj Gap (%)

I1 12 856 x 0 27 27 1318 100
I2 12 856 x 0 29 29 771 100
I3 12 856 x 0 28 28 328 100
I4 11 664 x 0 37 37 23 100
I5 11 664 x 0 37 37 328 100
I6 10 661 x 0 37 37 148 100
I7 11 664 x 0 36 36 148 100
I8 12 856 x 0 28 28 328 100
I9 10 661 x 0 32 32 256 51
I10 12 856 x 0 27 27 100 100

I... ... ... ... ... ... ... ... ...

Average 11 808 x 0 30 30 419 92
x = no feasible solution found.
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Table 5.3 Results of BA-SBR and RECIFE-MILP on 30 Gonesse instances with initialization
(time limit 180 seconds).

Inst # T # R
BA-SBR RECIFE-MILP

Obj # OC # FC # it Obj Gap (%)

I1 16 124 70 1 373 374 30 0
I2 15 118 257 1 394 395 220 0
I3 14 106 136 1 437 438 0 0
I4 15 118 261 1 395 396 236 0
I5 16 124 105 1 370 371 0 0
I6 16 124 234 1 376 377 204 0
I7 16 124 73 1 380 381 1 0
I8 16 124 159 1 372 373 82 0
I9 16 124 762 1 372 373 347 0
I10 16 124 27 1 372 373 15 0

I... ... ... ... ... ... ... ... ...

Average 15 119 188 1 348 349 120 0

Table 5.4 Results of BA-SBR and RECIFE-MILP on 30 Rouen instances with initialization
(time limit 180 seconds).

Inst # T # R
BA-SBR RECIFE-MILP

Obj # OC # FC # it Obj Gap (%)

I1 12 856 1318 1 26 27 1318 100
I2 12 856 771 1 27 28 771 100
I3 12 856 328 1 26 27 328 100
I4 11 664 251 1 35 36 23 100
I5 11 664 328 1 34 35 328 100
I6 10 661 251 1 34 35 148 100
I7 11 664 251 1 35 36 148 100
I8 12 856 328 1 27 28 328 100
I9 10 661 454 1 30 31 256 51
I10 12 856 100 1 26 27 100 100

I... ... ... ... ... ... ... ... ...

Average 11 808 477 1 27 28 419 92
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conclusion that can be drawn is that BA-SBR with no initialization is inappropriate for solving

the rtRTMP.

With the initialization, the search process of BA-SBR is not actually ameliorated (see the

results in Tables 5.3 and 5.4). Indeed, BA-SBR fails to improve the initial integer feasible

solution provided. However, compared to the performance without the initialization, the results

are slightly better as at least one feasible solution is found for each instance, i.e., the one

corresponding to the one used for the initialization.

5.5 Conclusions

In this chapter, we presented the SBR of the RECIFE-MILP formulation. It consists in splitting

the MILP formulation presented in Section 4.3 into the UMP and the SP. The UMP is the real-

time train routing and scheduling problem. It contains the re-routing and rescheduling variables

(binary variables) of the overall problem, and one dummy variable representing the contribution

of continuous variables to the UMP objective function. The schedule here is intended as the

order in which trains cross common tracks, and does not include time information. The SP

contains the continuous variables which determine the track-circuit occupation and reservation

times, and deduces the delay suffered by each train. The decomposed problem is solved with

the BA in which we add progressively Benders optimality and feasibility cuts to the UMP

obtained through the iterative solution of the DSP.

We performed some computational experiments on two case studies representing traffic

in two control areas in France: the Pierrefitte–Gonesse junction and a line section around

the Rouen–Rive–Droite station. The results show that the SBR is not appropriate for the

rtRTMP. To improve the performance of the BA-SBR algorithm, we initialized the search

with a feasible solution. In particular, we performed a first optimization-phase in which we

solved the RECIFE-MILP formulation by fixing the train routing decisions to the default routes

defined in the timetable (fixed routes). Then, we initialized the solution of the SBR with the

so-obtained solution. However, even with the initialization, the results are not promising as the

BA failed to improve the initial integer feasible solution within the computational time limit

imposed (180 seconds).

Note that, although the results are clearly negative, BD has been proven to be good for a

number of applications. For example, it was successfully used in several applications such as

the engine scheduling problem (Florian et al., 1976), the aircraft routing problem (Richardson,

1976), the vehicle routing problem (Fisher and Jaicumeur, 1978), and the locomotive and car

assignment problem (Cordeau et al., 1975). However, the BD is also known to be inappropriate

for some applications like the network design problem (Wong, 1978). For the rtRTMP, the bad
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performance of the SBR is also confirmed by Lamorgese and Mannino (2016) when tackling

the train’s rescheduling problem formulated with an AG model. To improve their algorithm

performance, the authors replace the standard Benders feasibility and optimality cuts with

strong cuts obtained by strengthening and lifting the standards ones. Several other methods

have been proposed in the literature to obtain well performing BD (Wong, 1978; Magnanti

and Wong, 1981; Geoffrion, 2005; Papadakos, 2008). In the next chapters we propose and test

some variants of the SBR and the BA to try to improve the BA performance.
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Chapter 6

Reduced Benders reformulation for

RECIFE-MILP

6.1 Introduction

In Chapter 5, we presented a SBR for the RECIFE-MILP formulation. This reformulation is

a classical application of the BD approach. Specifically, we separated the original problem

into two problems: the UMP and SP. We kept the binary variables related to the re-routing and

rescheduling decisions in the UMP and we delegated the re-timing decisions in the SP.

Recall that in the SBR, the SP contains all constraints and continues variables related to the

predefined routing and scheduling. These decisions are determined by the UMP and include

the information on the routes assigned to the trains (x̄t,r) and the scheduling decisions (ȳt,t ′, ˆtc).

The SBR proved not to be suitable for solving the rtRTMP.

As a step forward, in this chapter we exploit the structure of the RECIFE-MILP formulation

to propose a reduced reformulation which we call RBR. The idea behind this reformulation is

the removal from the SP assessment of unnecessary variables and constraints. Indeed, when a

train does not use a route, all variables and constraints related to the timing decisions along this

route are actually useless, since they can be fixed a priori without the need of optimization. For

example, the occupation start variables will be equal to zero. Similarly, when several routes are

available for a pair of trains t and t ′, typically not all track-circuits in TCt ∩TCt ′ will be used

by both trains given a specific set of route choices. For the unused track-circuits, a scheduling

decision will be made in the UMP, but it will actually be useless in the practice: if only t, for

example, uses a track-circuit, then defining a precedence relation there is not really necessary.

In the RBR, we replace the complete SP of SBR with a reduced one, only containing useful

variables and constraints given the route choices. The potential merit of this idea is linked to
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the observation that some UMP solutions which are infeasible for the standard SP due to some

inappropriately set unnecessary variables will actually be feasible for the reduced sub-problem.

When this happens, an OC will be included in the UMP rather than a (typically weaker) FC.

The possible drawback of the RBR is that the cuts are in principle weaker than in the SBR, since

they exclude all the temporarily unnecessary binary variables. In this chapter, after the detailed

description of the RBR, we assess whether its merit overcomes its drawback in practice.

The rest of this chapter is organized as follows. Section 6.2 describes the RBR for the

RECIFE-MILP formulation. Section 6.3 presents the computational experiments, and Sec-

tion 6.4 concludes the chapter.

6.2 Reduced Benders Reformulation: RBR

In this section, we present the RBR in which the information on the routes not used by trains in

the UMP solution in input of the SP are neglected.

Indeed as mentioned in the introduction of this chapter, by studying the rtRTMP structure,

we realize that many constraints in the SP are negligible if one already knows a route is

not used by a train: For example Constraints (5.3) in the SP become unnecessary because

they are trivially satisfied or their role is simply to set some variables equal to zero. By

simply not generating these null variables we can actually avoid writing the constraints without

actually changing the solution. Hence, many variables (as βt,r,tc) and many constraints (as some

Constraints (5.11) and (5.12)) in the DSP are also unnecessary. For the same reason, we can

discard all constraints in the SP associated with the unused routes (x̄t,r = 0).

Moreover, we observe that, in the SP, the disjunctive Constraints (5.8) and (5.9) are imposed

for all track-circuits which may possibly be used by two trains t and t ′. However, if the routes

chosen for the two trains imply that a possibly common track-circuit is used by either only

one or none of them, the scheduling decision implied by the corresponding y−variable is

actually negligible from a practical point of view. RECIFE-MILP will fix this variable, but this

information will not be used for the practical implementation of the solution since, in reality,

no precedence needs to be set unless both trains are passing in the same location. Hence, the

value of these practically negligible y−variable can be disregarded in the SP, together with the

corresponding constraints.

Recall that, for a pair of trains t, t ′ and shared track-circuit ˆtc, we define the disjunctive

variable yt,t ′, ˆtc that takes value 1 if t utilizes ˆtc before t ′, 0 otherwise. Remark that, when only

one train uses ˆtc, only one assignment of yt,t ′, ˆtc is feasible: if t is using it, then the variable

must be equal to 0 since the utilization variables of t ′ must be set to 0; if t ′ is using it, then the

variable must be set to 1. This implication is not explicit in the UMP: it can generate solutions
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6 Reduced Benders reformulation for RECIFE-MILP

which result infeasible for the SP due to the negligible y−variables. By removing from the SP

Constraints (5.8) and (5.9) which correspond to the track-circuits not actually used by each

pair of trains, the generation of many Benders feasibility cuts can be avoided. The result of

the constraint and variable removals, from the SP and hence from the DSP, is the RBR, whose

detailed formulation is described in the rest of this section.

6.2.1 Reduced Sub-Problem (Red-SP)

Let, r̄ ∈ Rt be the route used by train t and r̄′ ∈ Rt ′ the route used by train t ′, where t, t ′ ∈ T in

the UMP solution to be evaluated. Remark that the set of track-circuits available for train t (TCt)

can be reduced to TCr̄ (set of track-circuits composing route r̄) and the set of track-circuits

available for train t ′ (TCt ′) can also be reduced to TCr̄′ . The Reduced Sub-Problem (Red-SP)

can then be formulated as follows.

min ∑
t∈T

wtDt . (6.1)

ot,r̄,tc ≥ initt ∀t ∈ T, tc ∈ TCr̄ : pr̄,tc = tc0 (6.2)

−ot,r̄,tc +ot,r̄,pr,tc + lt,r̄,pr̄,tc =−rtr̄,ty,pr̄,tc ∀t ∈ T, tc ∈ TCr̄ : tc ̸= tc0 (6.3)

Dt −ot,r̄,tc∞
≥−exitt ∀t ∈ T (6.4)

sU t,tc −ot,r̄,re f r̄,tc
≤−forbsr̄,tc

∀t ∈ T, tc ∈ TCr̄ (6.5)

eU t,tc −ot,r̄,re f r̄,tc
− ∑

tc′∈TC(re f r̄,tc,tc,r̄)

lt,r̄,tc′ ≥ relbsr̄,tc + ct r̄,ty,tc+

+ ∑
tc′∈TC(re f r̄,tc,tc,r̄)

rt r̄,ty,tc′ ∀t ∈ T, tc ∈ TCr̄ (6.6)

eUt,tc − sUt ′,tc ≤ M−Mȳt,t ′, ˆtc ∀t, t ′ ∈ T, t < t ′, tc, ˆtc ∈ TCr̄ ∩TCr̄′ : tc ∈ ˆTCt,t ′, ˆtc (6.7)
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6.2 Reduced Benders Reformulation: RBR

eU t ′,tc − sU t,tc ≤ Mȳt,t ′, ˆtc ∀t, t ′ ∈ T, t < t ′, tc, ˆtc ∈ TCr̄ ∩TCr̄′ : tc ∈ ˆTCt,t ′, ˆtc. (6.8)

Let αt,r̄,tc, λt,r̄,tc, θt , φt,tc, ωt,tc, ηt,t ′,tc, ψt,t ′,tc, be the dual variables associ-

ated with Constraints (6.2)-(6.8) respectively. As such, αt,r̄,tc ≥ 0, λt,r̄,tc ∈ R, θt ≥ 0,

φt,tc ≤ 0, ωt,tc ≥ 0, ηt,t ′,tc ≤ 0 and ψt,t ′,tc ≤ 0. The Reduced Dual of the Sub-Problem

(Red-DSP) is written as follows. It is the dual of the Red-SP.

6.2.2 Reduced Dual of the Sub-Problem (Red-DSP)

max ∑
t∈T

∑
tc∈TCr̄

inittαt,r̄,tc − rt r̄,ty,pr̄,tcλt,r̄,tc+

+ ∑
t∈T

∑
tc∈TCr̄

(relbsr̄,tc + ct r̄,ty,tc + ∑
tc′∈TC(re f r̄,tc,tc,r̄)

rt r̄,ty,tc′)ωt,tc − f orbsr̄,tc
φt,tc−

− ∑
t∈T

exittθt + ∑
t,t ′∈T

∑
ˆtc,tc∈TCr̄∩TCr̄′ :

tc∈ ˆTCt,t′, ˆtc

M[(1− ȳt,t ′, ˆtc)ηt,t ′,tc + ȳt,t ′, ˆtcψt,t ′,tc]. (6.9)

αt,r̄,tc +λt,r̄,tc −φt,tc −ωt,tc ≤ 0 ∀t ∈ T, tc ∈ TCr̄ : pr̄,tc = tc0 (6.10)

λt,r̄,tc −λt,r̄,pr̄,tc −φt,tc −ωt,tc ≤ 0 ∀t ∈ T, tc ∈ TCr̄ (6.11)

λt,r̄,tc −ωt,tc ≤ 0 ∀t ∈ T, tc ∈ TCr̄ (6.12)

αt,r̄,tc∞
−λt,r̄,tc∞

−θt ≤ 0 ∀t ∈ T (6.13)

θt ≤ 1 ∀t ∈ T (6.14)

φt,tc −ηt,t ′,tc −ψt,t ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ (6.15)

ωt,tc +ηt,t ′,tc +ψt,t ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ . (6.16)
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6 Reduced Benders reformulation for RECIFE-MILP

Finally, we need also to change the formulation of the RMP to take into account the changes

in the Red-DSP. In particular, Constraints (5.19) and (5.20) become Constraints (6.17) and

(6.18). Here, the cuts include only the variables which we considered in the Red-DSP.

z− (∑
t∈T

∑
tc∈TCr̄

xt,r̄(inittαt,r̄,tc − rt r̄,ty,pr̄,tcλt,r̄,tc)+

+ ∑
t∈T

∑
tc∈TCr̄

xt,r̄[(relbsr̄,tc + ct r̄,ty,tc + ∑
tc′∈TC(re f r̄,tc,tc,r̄)

rt r̄,ty,tc′)ωt,tc − f orbsr̄,tc
φt,tc]−

− ∑
t∈T

exittθt + ∑
t,t ′∈T

∑
ˆtc,tc∈TCr̄∩TCr̄′ :

tc∈ ˆTCt,t′, ˆtc

M[(1− yt,t ′, ˆtc)ηt,t ′,tc + yt,t ′, ˆtcψt,t ′,tc])≥ 0

((α, λ , θ , φ , ω, η , ψ) ∈ PS) (6.17)

∑
t∈T

∑
tc∈TCr̄

xt,r̄(inittαt,r̄,tc − rt r̄,ty,pr̄,tcλt,r̄,tc)

+ ∑
t∈T

∑
tc∈TCr̄

xt,r̄[(relbsr̄,tc + ct r̄,ty,tc + ∑
tc′∈TC(re f r̄,tc,tc,r̄)

rt r̄,tyt ,tc
′)ωt,tc − f orbsr̄,tc

φt,tc]−

− ∑
t∈T

exittθt + ∑
t,t ′∈T

∑
ˆtc,tc∈TCr̄∩TCr̄′ :

tc∈ ˆTCt,t′, ˆtc

M[(1− yt,t ′, ˆtc)ηt,t ′,tc + yt,t ′, ˆtcψt,t ′,tc]≤ 0

((α, λ , θ , φ , ω, η , ψ) ∈ RS) (6.18)

6.3 Computational experiments

In this section, we assess the quality of the RBR. To do so, we solve the reformulations with

the BA presented in Section 5.3. The experiments are performed on the two French control

areas described in Section 5.4 and an identical experimental setup is used.

For each control area, we use the 30 instances utilized in Section 5.4 to assess the RBR

quality with the BA (from now on BA-RBR).

As done in Section 5.3, we first assess BA-RBR without the initialization for sake of

completeness. Then we add the initialization and we repeat the assessment.

Tables 6.1-6.4 report the results with the same format used in Tables 5.1-5.4. Specifi-

cally, Column 1 indicates the instance tackled. Columns 2 and 3 report the number of trains

and the total number of routes in each instance, respectively. Columns 4-7 report the ob-

jective function value, the number of generated OC and FC, and the number of iteration of
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6.3 Computational experiments

Table 6.1 Results of BA-RBR and RECIFE-MILP on 30 Gonesse instances without initialization
(time limit 180 seconds).

Inst # T # R
BA-RBR RECIFE-MILP

Obj # OC # FC # it Obj Gap (%)

I1 16 124 14551 48 108 156 30 0
I2 15 118 14946 56 114 170 220 0
I3 14 106 9693 57 136 193 0 0
I4 15 118 10957 32 144 176 236 0
I5 16 124 14136 48 107 155 0 0
I6 16 124 16487 51 97 148 204 0
I7 16 124 29564 48 103 151 1 0
I8 16 124 17182 45 104 149 82 0
I9 16 124 16281 44 100 144 347 0
I10 16 124 17028 47 106 153 15 0

I... ... ... ... ... ... ... ... ...

Average 15 119 16721 49 113 162 122 0

BA-RBR, respectively. Columns 8-9 report the objective function value and the optimality gap

of RECIFE-MILP within the same time limit of 180 seconds, respectively.

Without the initialization, although the results achieved by BA-RBR are still worse from

the ones of RECIFE-MILP (see Tables 6.1 and 6.2), the performance of BA-RBR is better than

the one of BA-SBR (see Section 5.4): the BA finds several integer feasible solutions when used

to solve the RBR.

With the initialization, as we observed for the SBR in Section 5.4, (see the results in

Tables 6.3 and 6.4), BA-RBR fails to improve the initial integer feasible solution provided.

However, compared to the performance without the initialization, we consider the search

process more appropriate since the algorithm finds several integer feasible solutions (see the

number of OC generated) although the first incumbent is not improved.
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6 Reduced Benders reformulation for RECIFE-MILP

Table 6.2 Results of BA-RBR and RECIFE-MILP on 30 Rouen instances without initialization
(time limit 180 seconds).

Inst # T # R
BA-RBR RECIFE-MILP

Obj # OC # FC # it Obj Gap (%)

I1 12 856 21865 224 62 286 1318 100
I2 12 856 22887 222 64 286 771 100
I3 12 856 23648 223 63 286 328 100
I4 11 664 15233 225 185 410 23 100
I5 11 664 10550 228 185 413 328 100
I6 10 661 16798 216 219 435 148 100
I7 11 664 16218 221 188 409 148 100
I8 12 856 23648 223 63 286 328 100
I9 10 661 2696 273 160 433 256 51
I10 12 856 23547 223 62 285 100 100

I... ... ... ... ... ... ... ... ...

Average 11 808 20466 237 85 322 419 92

Table 6.3 Results of BA-RBR and RECIFE-MILP on 30 Gonesse instances with initialization
(time limit 180 seconds).

Inst # T # R
BA-RBR RECIFE-MILP

Obj # OC # FC # it Obj Gap (%)

I1 16 124 70 48 90 138 30 0
I2 15 118 257 59 112 171 220 0
I3 14 106 136 66 118 184 0 0
I4 15 118 261 23 151 174 236 0
I5 16 124 105 41 109 150 0 0
I6 16 124 234 50 88 138 204 0
I7 16 124 73 51 111 162 1 0
I8 16 124 159 52 100 152 82 0
I9 16 124 762 48 97 145 347 0
I10 16 124 27 53 83 136 15 0

I... ... ... ... ... ... ... ... ...

Average 15 119 188 44 98 142 120 0
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Table 6.4 Results of BA-RBR and RECIFE-MILP on 30 Rouen instances with initialization
(time limit 180 seconds).

Inst # T # R
BA-RBR RECIFE-MILP

Obj # OC # FC # it Obj Gap (%)

I1 12 856 1318 216 71 287 1318 100
I2 12 856 771 250 35 285 771 100
I3 12 856 328 223 63 286 328 100
I4 11 664 251 216 191 407 23 100
I5 11 664 328 204 206 410 328 100
I6 10 661 251 227 217 444 148 100
I7 11 664 251 228 185 413 148 100
I8 12 856 328 223 63 286 328 100
I9 10 661 454 268 163 431 256 51
I10 12 856 100 208 80 288 100 100

I... ... ... ... ... ... ... ... ...

Average 11 808 477 231 78 309 419 92

6.4 Conclusions

In this chapter, we proposed the RBR for the RECIFE-MILP formulation. Unlike the classical

decomposition approach applied in Chapter 5 (i.e., the SBR), the RBR exploits the nature of

the RECIFE-MILP formulation to propose a more suitable reformulation.

To assess this reformulation, we performed computational experiments on two case studies

representing traffic in two French control areas. The results show that the RBR is better than

the SBR. In our understanding, the main reason behind the difference in performance is the

fact that with the RBR many feasible solutions are found to the overall problem, while with

the SBR the FCs generated in the DSP do not drive toward feasibility quickly enough. Indeed,

feasibility here disregards the value set for a number of actually unnecessary binary variables,

once route choices are made. In the rest of this thesis, we will use BA-RBR for the experiments.

Despite the improvement achieved, the performance of BA-RBR is still significantly worse

that the one of RECIFE-MILP. In the next chapter we propose a further approach for trying to

improve this performance.
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Chapter 7

Inequalities for the unrestricted master

problem

7.1 Introduction

In Chapter 5, we presented the SBR for RECIFE-MILP. This reformulation is a classical

application of BD to the RECIFE-MILP formulation. Indeed, the SBR presents a performance

issue when it is used to tackle an instance of the rtRTMP. As a result, often the computational

time limit elapses without finding a feasible solution. To overcome the SBR inefficiency,

in Chapter 6, we proposed the RBR. This reformulation exploits the nature of the rtRTMP.

Specifically, we discard in the SP (DSP) some constraints and variables which are unnecessary

given a set of re-routing decisions made in the UMP.

Despite the improvement achieved with the RBR, the performance remains poor with

respect to the RECIFE-MILP algorithm presented in Chapter 4. To try to improve it, we

propose, in this chapter, some inequalities to be added to the UMP. Indeed, the UMP, which

determines the value of the binary variables (i.e., the re-routing and rescheduling decisions), has

no constraints to force their consistency. In other words, there is no link between the re-routing

decisions and the rescheduling ones in the UMP, or between different rescheduling decisions.

The inequalities which we present impose this consistency in several circumstances.

This chapter is organized as follows. In Section 7.2, we propose some inequalities for the

UMP. These inequalities are grouped into six families. To select which ones are suitable to

be added to the UMP, an algorithm configuration phase is presented in Section 7.3. Then, to

assess the impact of this addition, computational experiments are reported in Section 7.4. The

conclusions of the chapter are reported in Section 7.5.
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7.2 Inequalities for the unrestricted master problem

We propose here some inequalities to be added to the UMP presented in Section 5.2.4 to avoid

the exploration of many Red-DSP unbounded solutions during the search. These inequalities

would be redundant in RECIFE-MILP because they are implicitly imposed through constraints

including continuous variables. However, they may be useful in the UMP because they

establish a link between the re-routing decisions and the rescheduling ones, and among different

rescheduling decisions. In particular, they force the consistency of these decisions.

The inequalities proposed in this thesis avoid some inconsistent re-routing and rescheduling

decisions between two or three trains.

In the following, we explain the proposed inequalities using the infrastructure of the Gonesse

control area, introduced in Section 5.4. These inequalities are found by studying the causes

of the Red-DSP unboundedness with respect to some UMP solutions. We recall that in the

BAs, we determine in the UMP the re-routing and rescheduling decisions then we solve the

Red-DSP given these decisions. If the Red-DSP is bounded, it returns a Benders OC for the

UMP; if unbounded, normally the Red-DSP returns a Benders FC. Hence, by studying the

unboundedness cases and formulating the inequalities to cut the concerned UMP solutions, we

limit the number of FC added.

In the explanation of these inequalities, we will use the concepts of:

Common track-circuit: a track-circuit is common to a set of trains if it belongs to at least one

route available for each of them.

Shared track-circuit: a track-circuit is shared by a set of trains if it belongs to the specific

route chosen by each of them.

Reservation zone: a reservation zone is a set of track-circuits reserved concurrently by a train

due to the route chosen and the interlocking system.

In the following, we present the inequalities proposed and their explanation. They are

grouped into six families (F1, F2, F3, F4, F5 and F6).

7.2.1 Family F1

The following Inequalities (7.1)-(7.4) compose family F1:

xt,r + xt ′,r′ + yt,t ′,tc1
− yt,t ′,tc2

≤ 2 ∀t, t ′ ∈ T, t < t ′, r ∈ Rt , r′ ∈ Rt ′ , tc1, tc2 ∈ TCr ∩TCr′ ,

(sr,tc1 = tc2,sr′,tc1
= tc2)∨ (sr,tc1 = tc2, pr′,tc1

= tc2).

(7.1)
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7 Inequalities for the unrestricted master problem

−xt,r − xt ′,r′ + yt,t ′,tc1
− yt,t ′,tc2

≥−2 ∀t, t ′ ∈ T, t < t ′, r ∈ Rt , r′ ∈ Rt ′ , tc1, tc2 ∈ TCr ∩TCr′ ,

(sr,tc1 = tc2,sr′,tc1
= tc2)∨ (sr,tc1 = tc2, pr′,tc1

= tc2).

(7.2)

Inequalities (7.1) and (7.2) state that if tc1 and tc2 are adjacent shared track-circuits in the

routes used by trains t and t ′ then the value of the rescheduling variables in tc1 and tc2, yt,t ′,tc1

and yt,t ′,tc2
, must be equal. Figure 7.1 shows an example of network topology where these

inequalities operate.

Figure 7.1 Situation in which Inequalities (7.1) and (7.2) apply.

xt,r + xt ′,r′ + yt,t ′,tc1
− yt,t ′,tc2

≤ 2

∀t, t ′ ∈ T, t < t ′, r ∈ Rt , r′ ∈ Rt ′ , tc1, tc2 ∈ TCr ∩TCr′ ,

(tc1 ∈ TC(re fr,tc2 , tc2,r))∨ (tc2 ∈ TC(re fr,tc1 , tc1,r)),

(tc1 ∈ TC(re fr′,tc2
, tc2,r

′))∨ (tc2 ∈ TC(re fr′,tc1
, tc1,r

′)). (7.3)

−xt,r − xt ′,r′ + yt,t ′,tc1
− yt,t ′,tc2

≥−2

∀t, t ′ ∈ T, t < t ′, r ∈ Rt , r′ ∈ Rt ′ , tc1, tc2 ∈ TCr ∩TCr′ ,

(tc1 ∈ TC(re fr,tc2 , tc2,r))∨ (tc2 ∈ TC(re fr,tc1 , tc1,r)),

(tc1 ∈ TC(re fr′,tc2
, tc2,r

′))∨ (tc2 ∈ TC(re fr′,tc1
, tc1,r

′)). (7.4)
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Inequalities (7.3) and (7.4) extend the requirement imposed by (7.1) and (7.2) to reservation

zones. In words, (7.3) and (7.4) are formulated as Inequalities (7.1) and (7.2) but they are

imposed if the two track-circuits tc1 and tc2 belong to a same reservation zone. Note that

Inequalities (7.3) and (7.4) are not imposed if tc1 and tc2 are adjacent track-circuits, to avoid

the redundancy with (7.1) and (7.2).

7.2.2 Family F2

Inequalities (7.5) constitute family F2:

xt,r + xt ′,r′ + yt,t ′,tc2
− yt,t ′,tc1

≤ 2 ∀t, t ′ ∈ T, t < t ′, r ∈ Rt , r′ ∈ Rt ′ ,

tc1, tc2 ∈ TCr ∩TCr′ , tc2 ∈ TC(tc1, tc∞,r), tc2 ∈ TC(tc0, tc1,r
′). (7.5)

Inequalities (7.5) impose that the value of the rescheduling variable yt,t ′,tc2
must be smaller

than or equal to the value of the rescheduling variable yt,t ′,tc1
if the following conditions are

respected:

• track-circuits tc1 and tc2 are shared by trains t and t ′,

• track-circuit tc2 follows tc1 in the route of the train t,

• track-circuit tc2 precedes tc1 in the route of t ′.

Figure 7.2 exemplifies a case in which these conditions are met. Here we can see that either the

precedence relation between the two trains on tc1 and tc2 is the same, or t passes first through

tc1, t ′ passes first through tc2, and they cross in the portion of track which is not common to

the two routes. It is not possible that t passes first on tc2 and second on tc1, and this is cut by

Inequalities (7.5).

7.2.3 Family F3

Family F3 includes Inequalities (7.6)–(7.8):

yt,t ′,tc − ∑
r∈Rt :

tc∈TCr

xt,r − ∑
r∈Rt′ :

tc∈TCr

xt ′,r ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCt ∩TCt ′ . (7.6)

Inequalities (7.6) force the value of the rescheduling variables yt,t ′,tc to be 0 unless at least one

of trains t and t ′ uses tc. These inequalities eliminate the symmetry in the branch-and-bound
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Figure 7.2 Situation in which Inequalities (7.5) apply.

tree. In the original model, both values 0 and 1 for this variable are feasible if the track-circuit

is not used by either train, and this has no impact on the objective function.

yt,t ′,tc + ∑
r∈Rt :

tc∈TCr

xt,r − ∑
r∈Rt′ :

tc∈TCr

xt ′,r ≥ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCt ∩TCt ′ . (7.7)

yt,t ′,tc + ∑
r∈Rt :

tc∈TCr

xt,r − ∑
r∈Rt′ :

tc∈TCr

xt ′,r ≤ 1 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCt ∩TCt ′ . (7.8)

Inequalities (7.7) and (7.8) state that if both t and t ′ may use the common track-circuit tc but

only t ′ chooses a route which actually does, then the rescheduling variables yt,t ′,tc must be set

to 1; on the contrary if only t chooses a route including tc, then yt,t ′,tc must be set to 0.

7.2.4 Family F4

Family F4 contains the following Inequalities (7.9)–(7.12):

yt,t ′,tc + yt ′,t ′′,tc − yt,t ′′,tc ≤ 1 ∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′, tc ∈ TCt ∩TCt ′ ∩TCt ′′ . (7.9)

yt,t ′,tc + yt ′,t ′′,tc − yt,t ′′,tc ≥ 0 ∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′, tc ∈ TCt ∩TCt ′ ∩TCt ′′ . (7.10)
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Inequalities (7.9) and (7.10) impose the transitivity between the triplets of y-variables con-

cerning each common track-circuit for three trains, t, t ′ and t ′′. Specifically, Inequalities (7.9)

impose that if train t precedes t ′ (t ≺ t ′) and t ′ precedes t ′′ (t ′ ≺ t ′′) then t precedes t ′′ (t ≺ t ′′).

Inequalities (7.10) impose the opposite relation.

yt,t ′,tc1
+ yt ′,t ′′,tc2

− yt,t ′′,tc3
+ ∑

r∈Rt :
tc1, tc3∈TCr

xt,r + ∑
r∈Rt′ :

tc1, tc2∈TCr

xt ′,r + ∑
r∈Rt′′ :

tc2, tc3∈TCr

xt ′′,r ≤ 4

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′, tc1 ∈ TCt ∩TCt ′ , tc2 ∈ TCt ′ ∩TCt ′′ , tc3 ∈ TCt ∩TCt ′′ ,

∃r ∈ Rt : tc1, tc3 ∈ TCr, (tc1 ∈ TC(re fr,tc3 , tc3,r))∨ (tc3 ∈ TC(re fr,tc1 , tc1,r)),

∃r ∈ Rt ′ : tc1, tc2 ∈ TCr, (tc1 ∈ TC(re fr,tc2 , tc2,r))∨ (tc2 ∈ TC(re fr,tc1 , tc1,r)),

∃r ∈ Rt ′′ : tc2, tc3 ∈ TCr, (tc2 ∈ TC(re fr,tc3 , tc3,r))∨ (tc3 ∈ TC(re fr,tc2 , tc2,r)). (7.11)

yt,t ′,tc1
+ yt ′,t ′′,tc2

− yt,t ′′,tc3
− ∑

r∈Rt :
tc1, tc3∈TCr

xt,r − ∑
r∈Rt′ :

tc1, tc2∈TCr

xt ′,r − ∑
r∈Rt′′ :

tc2, tc3∈TCr

xt ′′,r ≥−3

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′, tc1 ∈ TCt ∩TCt ′ , tc2 ∈ TCt ′ ∩TCt ′′ , tc3 ∈ TCt ∩TCt ′′ ,

∃r ∈ Rt : tc1, tc3 ∈ TCr, (tc1 ∈ TC(re fr,tc3 , tc3,r))∨ (tc3 ∈ TC(re fr,tc1 , tc1,r)),

∃r ∈ Rt ′ : tc1, tc2 ∈ TCr, (tc1 ∈ TC(re fr,tc2 , tc2,r))∨ (tc2 ∈ TC(re fr,tc1 , tc1,r)),

∃r ∈ Rt ′′ : tc2, tc3 ∈ TCr, (tc2 ∈ TC(re fr,tc3 , tc3,r))∨ (tc3 ∈ TC(re fr,tc2 , tc2,r)). (7.12)

Inequalities (7.11) and (7.12) extend the transitivity requirements of (7.9) and (7.10) to reserva-

tion zones. Let tc1 be the shared track-circuit between train t, t ′ and tc2 the shared track-circuit

between train t, t ′′. Moreover, let tc3 be the shared track-circuit between t ′, t ′′. Inequali-

ties (7.11) impose that if train t precedes t ′′ (t ≺ t ′′) in tc2 and t ′ precedes t (t ′ ≺ t) in tc1 then t ′

precedes t ′′ (t ′ ≺ t ′′) in tc3. Inequalities (7.12) impose the opposite relation. In Figure 7.3 we

show an example in which tc2 and tc1 belong to the same reservation zone for train t (they are

both in block section s3− s4), tc3 and tc1 belong to the same reservation zone for t ′ (they are

both in block section s2− s4), and tc2 and tc3 belong to the same reservation zone for t ′′ (they

are both in block section s1− s2). In this situation, if train t passes before t ′′ in tc2 and t ′ before

t in tc1 then t ′′ cannot precede t ′ in tc3. Indeed this violates Inequalities (7.11) and (7.12).

71



7 Inequalities for the unrestricted master problem

Figure 7.3 Situation in which Inequalities (7.11) and (7.12) apply.

7.2.5 Family F5

Family F5 includes Inequalities (7.13) - (7.17):

yt,t ′′,tc2
− yt ′,t ′′,tc3

− yt,t ′,tc1
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 3

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′ ∩TCr′′ , tc2 ∈ TCr ∩TCr′′ , tc3 ∈ TCr′ ∩TCr′′ ,

tc1 ∈ TC(tc0, tc2,r), tc3 ∈ TC(tc0, tc1,r
′),

tc1 ∈ TC(tc0, tc2,r
′′), tc3 ∈ TC(tc1, tc∞,r

′′),

(tc2 ∈ TC(re fr′′,tc3
, tc3,r

′′))∨ (tc3 ∈ TC(re fr′′,tc2
, tc2,r

′′)). (7.13)

Inequalities (7.13) consider three trains t, t ′ and t ′′ using three track-circuits tc1, tc2 and

tc3. They state that if t ′′ passes before t ′ on tc3 ( yt ′,t ′′,tc3
= 0) and t ′ passes before t on tc1

(yt,t ′,tc1
= 0) then t ′ must pass before t on tc2 (yt,t ′,tc2

= 0). These inequalities are imposed

under the following conditions:

• track-circuit tc1 is shared by trains t , t ′ and t ′′,

• track-circuit tc2 is shared by t and t ′′ which travel in the same direction,

• track-circuit tc3 is shared by t ′ and t ′′ which travel in opposite directions,

• tc1 and tc3 precede tc2 in the route of t ′′ and tc2 and tc3 are in the same reservation zone,

• tc1 precedes tc2 and tc3 precedes tc1 in the route of t and t ′, respectively.

An example in which Inequalities (7.13) apply is shown in Figure 7.4.
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7.2 Inequalities for the unrestricted master problem

Figure 7.4 Situation in which Inequalities (7.13) apply.

Recall that we define y-variables only for pairs of trains t, t ′ such that the index of t is smaller

than the one of t ′. Hence, if the trains traveling in the same direction on tc2 change, for example

rather than being t and t ′′ as in Figure 7.4 they are t and t ′, or the trains having tc3 in their

route change, then the conditions to cut off the infeasible assignment change as well. The five

sets of Inequalities (7.14) - (7.18) similar to (7.13) must be imposed. When t and t ′ traverse

tc2 traveling in the same direction and t ′ has tc3 in its route (Figure 7.5), Inequalities (7.14)

impose the coherence of the precedences. When the two trains are t ′ and t, and t has tc3 in its

route (Figure 7.6), this is imposed by Inequalities (7.15). In the case where t ′ and t ′′ traverse

tc2 traveling in the same direction and t ′ has tc3 in its route (Figure 7.7), Inequalities (7.16)

impose the coherence of the precedences. For the case where t ′′ and t ′ traverse tc2 traveling in

the same direction and t ′′ has tc3 in its route (Figure 7.8), Inequalities (7.17) play. Finally, if t ′′

and t traverse tc2 traveling in the same direction and t has tc3 in its route (Figure 7.9) then we

set Inequalities (7.18).

yt,t ′,tc2
+ yt ′,t ′′,tc3

− yt,t ′′,tc1
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 4

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′ ∩TCr′′ , tc2 ∈ TCr ∩TCr′ , tc3 ∈ TCr′ ∩TCr′′ ,

tc1 ∈ TC(tc0, tc2,r), tc3 ∈ TC(tc0, tc1,r
′′),

tc1 ∈ TC(tc0, tc2,r
′), tc3 ∈ TC(tc1, tc∞,r

′), ,

(tc2 ∈ TC(re fr′,tc3
, tc3,r

′))∨ (tc3 ∈ TC(re fr′,tc2
, tc2,r

′)). (7.14)
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7 Inequalities for the unrestricted master problem

Figure 7.5 Situation in which Inequalities (7.14) apply.

yt,t ′′,tc3
− yt,t ′,tc2

− yt ′,t ′′,tc1
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 3

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′ ∩TCr′′ , tc2 ∈ TCr ∩TCr′ , tc3 ∈ TCr ∩TCr′′ ,

tc1 ∈ TC(tc0, tc2,r), tc3 ∈ TC(tc1, tc∞,r),

tc1 ∈ TC(tc0, tc2,r
′), tc3 ∈ TC(tc0, tc1,r

′′),

(tc2 ∈ TC(re fr,tc3 , tc3,r))∨ (tc3 ∈ TC(re fr,tc2 , tc2,r)). (7.15)

Figure 7.6 Situation in which Inequalities (7.15) apply.
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7.2 Inequalities for the unrestricted master problem

yt,t ′′,tc1
− yt,t ′,tc3

− yt ′,t ′′,tc2
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 3

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′ ∩TCr′′ , tc2 ∈ TCr′ ∩TCr′′ , tc3 ∈ TCr ∩TCr′ ,

tc1 ∈ TC(tc0, tc2,r
′), tc3 ∈ TC(tc1, tc∞,r

′),

tc3 ∈ TC(tc0, tc1,r), tc1 ∈ TC(tc0, tc2,r
′′),

(tc2 ∈ TC(re fr′,tc3
, tc3,r

′))∨ (tc3 ∈ TC(re fr′,tc2
, tc2,r

′)). (7.16)

Figure 7.7 Situation in which Inequalities (7.16) apply.

yt,t ′,tc1
− yt,t ′′,tc3

− yt ′,t ′′,tc2
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 3

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′ ∩TCr′′ , tc2 ∈ TCr′ ∩TCr′′ , tc3 ∈ TCr ∩TCr′′ ,

tc1 ∈ TC(tc0, tc2,r
′′), tc3 ∈ TC(tc1, tc∞,r

′′),

tc3 ∈ TC(tc0, tc1,r) tc1 ∈ TC(tc0, tc2,r
′),

(tc2 ∈ TC(re fr′′,tc3
, tc3,r

′′))∨ (tc3 ∈ TC(re fr′′,tc2
, tc2,r

′′)). (7.17)
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7 Inequalities for the unrestricted master problem

Figure 7.8 Situation in which Inequalities (7.17) apply.

yt ′,t ′′,tc1
+ yt,t ′,tc3

− yt,t ′′,tc2
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 4

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′ ∩TCr′′ , tc2 ∈ TCr ∩TCr′′ , tc3 ∈ TCr ∩TCr′ ,

tc1 ∈ TC(tc0, tc2,r), tc3 ∈ TC(tc1, tc∞,r),

tc1 ∈ TC(tc0, tc2,r
′′), tc3 ∈ TC(tc0, tc1,r

′),

(tc2 ∈ TC(re fr,tc3 , tc3,r))∨ (tc3 ∈ TC(re fr,tc2 , tc2,r)). (7.18)

Figure 7.9 Situation in which Inequalities (7.18) apply.
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7.2 Inequalities for the unrestricted master problem

7.2.6 Family F6

Family F6 contains Inequalities (7.19) - (7.24):

yt,t ′′,tc2
− yt,t ′,tc1

− yt ′,t ′′,tc3
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 3

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′ , tc2 ∈ TCr ∩TCr′′ , tc3 ∈ TCr′ ∩TCr′′ ,

tc1 ∈ TC(tc2, tc∞,r), (tc1 ∈ TC(re fr,tc2 , tc2,r))∨ (tc2 ∈ TC(re fr,tc1 , tc1,r)),

tc1 ∈ TC(tc3, tc∞,r
′), tc2 ∈ TC(tc0, tc3,r

′′). (7.19)

Given three trains t, t ′ and t ′′using three track-circuits tc1, tc2 and tc3, Inequalities (7.19) force

that if t passes before t ′′ on tc2 and t ′′ before t ′ on tc3 then t ′ must precede t on tc1. They must

be imposed under the following conditions:

• tc1 is shared by trains t and t ′ which travel in the same direction,

• tc2 is shared by t and t ′′ which travel in opposite direction,

• tc3 is shared by t ′ and t ′′ which travel in opposite direction,

• in the route of t, tc1 follows tc2 and they belong to the same reservation zone,

• in the route of t ′ and t ′′, tc1 follows tc3 and tc2 precedes tc3, respectively.

Figure 7.10 shows a case in which Inequalities (7.19) apply. For the same reason discussed for

Figure 7.10 Situation in which Inequalities (7.19) apply.

Inequalities (7.13), the following five sets of Inequalities (7.20) - (7.24) similar to (7.19) are
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7 Inequalities for the unrestricted master problem

imposed if the trains traveling in the same direction on tc1 change.

yt ′,t ′′,tc2
+ yt,t ′,tc1

− yt,t ′′,tc3
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 4

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′ , tc2 ∈ TCr′ ∩TCr′′ , tc3 ∈ TCr ∩TCr′′ ,

tc1 ∈ TC(tc3, tc∞,r), tc2 ∈ TC(tc0, tc3,r
′′),

tc1 ∈ TC(tc2, tc∞,r
′), (tc1 ∈ TC(re fr′,tc2

, tc2,r
′))∨ (tc2 ∈ TC(re fr′,tc1

, tc1,r
′)). (7.20)

Figure 7.11 Situation in which Inequalities (7.20) apply.

yt,t ′′,tc3
− yt ′,t ′′,tc1

− yt,t ′,tc2
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 3

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr′ ∩TCr′′ , tc2 ∈ TCr ∩TCr′ , tc3 ∈ TCr ∩TCr′′ ,

tc1 ∈ TC(tc2, tc∞,r
′), (tc1 ∈ TC(re fr′,tc2

, tc2,r
′))∨ (tc2 ∈ TC(re fr′,tc1

, tc1,r
′)),

tc1 ∈ TC(tc3, tc∞,r
′′), tc2 ∈ TC(tc0, tc3,r). (7.21)

yt ′,t ′′,tc1
+ yt,t ′,tc3

− yt,t ′′,tc2
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 4

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr′ ∩TCr′′ , tc2 ∈ TCr ∩TCr′′ , tc3 ∈ TCr ∩TCr′ ,

tc2 ∈ TC(tc0, tc3,r), tc1 ∈ TC(tc3, tc∞,r
′),

tc1 ∈ TC(tc2, tc∞,r
′′), (tc1 ∈ TC(re fr′′,tc2

, tc2,r
′′))∨ (tc2 ∈ TC(re fr′′,tc1

, tc1,r
′′)). (7.22)
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7.2 Inequalities for the unrestricted master problem

Figure 7.12 Situation in which Inequalities (7.21) apply.

Figure 7.13 Situation in which Inequalities (7.22) apply.

yt,t ′,tc2
+ yt ′,t ′′,tc3

− yt,t ′′,tc1
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 4

∀t, t ′, t” ∈ T, t < t ′ < t”,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′′ , tc2 ∈ TCr ∩TCr′ , tc3 ∈ TCr′ ∩TCr′′ ,

tc1 ∈ TC(tc2, tc∞,r), (tc1 ∈ TC(re fr,tc2 , tc2,r))∨ (tc2 ∈ TC(re fr,tc1 , tc1,r)),

tc1 ∈ TC(tc3, tc∞,r
′′), tc2 ∈ TC(tc0, tc3,r

′). (7.23)
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7 Inequalities for the unrestricted master problem

Figure 7.14 Situation in which Inequalities (7.23) apply.

yt,t ′′,tc1
− yt,t ′,tc3

− yt ′,t ′′,tc2
+ xt,r + xt ′,r′ + xt ′′,r′′ ≤ 3

∀t, t ′, t ′′ ∈ T, t < t ′ < t ′′,r ∈ Rt , r′ ∈ Rt ′ , r′′ ∈ Rt ′′ ,

tc1 ∈ TCr ∩TCr′′ , tc2 ∈ TCr′ ∩TCr′′ , tc3 ∈ TCr ∩TCr′ ,

tc1 ∈ TC(tc3, tc∞,r), tc2 ∈ TC(tc0, tc3,r
′),

(tc1 ∈ TC(tc2, tc∞,r
′′), tc2,r

′′))∨ (tc2 ∈ TC(re fr′′,tc1
, tc1,r

′′)). (7.24)

Figure 7.15 Situation in which Inequalities (7.24) apply.
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7.3 Algorithm configuration

In this section, we aim at selecting the best variant of the RBR, which may include one or more

families of inequalities proposed in Section 7.2. To do so, we consider the two case studies

representing traffic in two control areas described in Section 5.4, with identical experimental

setup.

For each control area, we use the 30 instances utilized in Section 5.4 to select the best

variant of the RBR and we name them tuning instances. Then, to compare the best variant of

the RBR to RECIFE-MILP we generate 30 novel instances, named test instances which will

then be used in Section 7.4. We consider two separate sets of instances for the tuning and the

testing for avoiding over-tuning (Birattari, 2009).

The six variants of the RBR which we obtain by adding a family of inequalities to the UMP

are the following:

• BA-RBR-F1: BA-RBR with the inequalities of family F1,

• BA-RBR-F2: BA-RBR with the inequalities of family F2,

• BA-RBR-F3: BA-RBR with the inequalities of family F3,

• BA-RBR-F4: BA-RBR with the inequalities of family F4,

• BA-RBR-F5: BA-RBR with the inequalities of family F5,

• BA-RBR-F6: BA-RBR with the inequalities of family F6.

Table 7.1 present the comparison between the variants of the RBR and the standard one

presented in Chapter 6 on the tuning instances considered. The first column indicates the

name of the variant. The two following sets of four columns contain, for the two control areas,

the number of instances solved to the optimum within the available computational time, the

percentage improvement with respect to the BA-RBR objective function, the average delay

in seconds and the average optimality gap achieved by each variant, respectively. The results

show that, for the Gonesse tuning instances, no variants of the RBR improves the performance

of BA-RBR. However, for the Rouen tuning instances, BA-RBR-F3 improves the performance

of BA-RBR. BA-RBR-F3 improves the objective function value of BA-RBR by 9 % in average

and solves four instances to the optimum instead of only one. We think that the failure of the

other families is due to a high solution time overhead brought to the UMP, which is not balanced

by a significant improvement of the solutions produced. As only one family of inequalities

achieves improvement over Rouen, we do not investigate the possibility of adding multiple sets

of inequalities simultaneously.
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7 Inequalities for the unrestricted master problem

Table 7.1 Performance of the RBR variants vs BA-RBR over the two control areas (time limit
180 seconds).

Variants
Gonesse Rouen

#Opt Imp (%) Delay (s) Gap (%) #Opt Imp (%) Delay (s) Gap (%)

BA-RBR 7 – 188 36 1 – 465 96

BA-RBR-F1 7 0 188 36 1 0 465 96
BA-RBR-F2 7 0 188 36 1 0 465 96
BA-RBR-F3 7 0 188 36 4 9 437 76
BA-RBR-F4 7 0 188 36 1 0 465 96
BA-RBR-F5 7 0 188 36 1 0 465 96
BA-RBR-F6 7 0 188 36 1 0 465 96

7.4 Computational analysis

In this section, we compare the performance of the BA-RBR-F3 to RECIFE-MILP on the two

control areas of Gonesse and Rouen. We use the 30 test instances for each control area.

In Table 7.2, we report the results achieved, setting the computational time available to

three minutes. The first column indicates the name of the algorithm. The last two sets of

three columns contain the number of instances solved to the optimum within the available

computational time, the average delay in seconds and the average optimality gap achieved

by each algorithm, respectively. The table shows that, despite the addition of the inequalities

proposed, BA-RBR-F3 remains inefficient with respect to RECIFE-MILP: RECIFE-MILP

always achieves the best performance in terms of the average delay. Moreover, for the Gonesse

instances, BA-RBR-F3 is also outperformed in terms of number of optimal solutions found.

This does not happen for the Rouen instances, instead, where BA-RBR-F3 finds three optimal

solutions instead of the one found by RECIFE-MILP. However, we do not consider these results

sufficient to declare BA-RBR-F3 promising. An opportunity which we did not consider in this

thesis, but may be worth investigating in the future, is the wise addition of some inequalities,

based for example on some measure of criticality of the decisions influenced. This may help

reducing the time overhead while still suitably driving the solution process.

7.5 Conclusions

In this chapter, we proposed some inequalities to boost the performance of BA-RBR. The

proposed inequalities are added to the UMP, to strengthen the consistency of routing and
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Table 7.2 Performance of BA-RBR-F3 vs RECIFE-MILP over the two control areas (time limit
180 seconds).

Algos
Gonesse Rouen

#Opt Delay (s) Gap (%) #Opt Delay (s) Gap (%)

BA-RBR-F3 7 188 36 3 406 83
RECIFE-MILP 36 122 0 1 405 95

scheduling decisions. We tackled instances representing traffic at the two control areas tackled

in Chapters 5 and 6. The results show that the performance of the proposed algorithm compared

to RECIFE-MILP remains poor.

We conjecture that one of the reasons behind the bad performance of all the variants tested

of BD algorithm which we tested up to now may be the presence of the big-M parameter in

the cuts generated. The bad performance of the BD due to this presence is also confirmed by

some authors. For example, Binato et al. (2001) face this issue when dealing with the power

transmission network design problem. The authors consider a linear (0-1) disjunctive model

which contains a big-M parameter. To cope with the performance issue of their BA due to

the presence of the big-M parameter in Benders cuts, the authors specialize their Benders

approach by using small values for this parameter. Lamorgese and Mannino (2016) face similar

performance issues when using the BD to tackle the rtRTMP modeled as a MILP containing a

big-M parameter, based on an AG (see Section 3.3). To improve their algorithm performance,

the authors replace the standard Benders cuts that contain the big-M parameter with stronger

ones.

In the next chapter, following this conjecture, we remove the big-M parameter from the

cuts generated by proposing a novel variant of BA.
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Chapter 8

Three-step Benders Algorithm for

RECIFE-MILP

8.1 Introduction

In Chapter 7, we concluded that the performance of BA-RBR-F3 is not satisfactory when

compared to RECIFE-MILP: RECIFE-MILP always achieves the best performance in terms of

average delay. One possible reason of the poor performance of our algorithm is the presence of

the big-M parameter in Benders cuts.

In this chapter, we propose a 3BA. 3BA generates Benders cuts without the big-M parameter.

The rest of this chapter is organized as follows. Section 8.2 presents 3BA. Section 8.3

presents the computational experiments, and Section 8.4 concludes the chapter.

8.2 Three-step Benders Algorithm: 3BA

In this section, we propose 3BA. Unlike the reformulations proposed in Chapters 5 and 6 where

the RECIFE-MILP formulation is decomposed into two problems, 3BA separates the RECIFE-

MILP formulation into three problems: the NUMP, the MILSP and the LSP. Figures 8.1 and

8.2 show the procedures behind the classic BA used in Chapters 5, 6 and 7, and 3BA. In 3BA,

the NUMP contains only the binary re-routing variables xt,r. Given the re-routing decisions

made in the NUMP, we build the MILSP containing the binary rescheduling variables yt,t ′, ˆtc and

the continuous re-timing variables and we solve the MILSP to obtain the optimal rescheduling

decisions. Then, we construct the Dual of the Linear Sub-Problem (DLSP) with the re-routing

decisions made in the NUMP and the corresponding optimal rescheduling decisions made in the

MILSP to define the cuts to be added. These cuts will include only x-variables, as they are to
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8.2 Three-step Benders Algorithm: 3BA

be added to the NUMP. Remark that 3BA is promising only as the solution of the rescheduling

problem with no re-routing, MILSP, is quick. According to our experience, and as proven in

the computational analysis, it is in general the case in the rtRTMP. The details on 3BA are

described in the rest of this section.

Figure 8.1 Standard Benders Algorithm in which the RECIFE-MILP formulation is decomposed
into two problems.

Figure 8.2 Three-step Benders Algorithm in which the RECIFE-MILP formulation is decom-
posed into three problems.

8.2.1 New Unrestricted Master Problem (NUMP)

The NUMP includes only the re-routing variables xt,r and a dummy variables z. Its formulation

is a follows.

minz. (8.1)
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8 Three-step Benders Algorithm for RECIFE-MILP

∑
r∈Rt

xt,r = 1 ∀t ∈ T (8.2)

xt,r ∈ {0,1} ∀t ∈ T,r ∈ Rt (8.3)

z ≥ 0. (8.4)

8.2.2 Mixed Integer Linear Sub-Problem (MILSP)

When the re-routing variables are fixed in the NUMP (let them be x̄t,r), then we know the route

used, r̄ ∈ Rt , by each train t. As done in Section 6.2.1, we can write the reduced formulation of

the MILSP as follows.

min ∑
t∈T

wtDt . (8.5)

ot,r̄,tc ≥ initt ∀t ∈ T, tc ∈ TCr̄ : pr̄,tc = tc0 (8.6)

−ot,r̄,tc +ot,r̄,pr,tc + lt,r̄,pr̄,tc =−rtr̄,ty,pr̄,tc ∀t ∈ T, tc ∈ TCr̄ : tc ̸= tc0 (8.7)

Dt −ot,r̄,tc∞
≥−exitt ∀t ∈ T (8.8)

sU t,tc −ot,r̄,re f r̄,tc
≤− f orbsr̄,tc

∀t ∈ T, tc ∈ TCr̄ (8.9)

eU t,tc −ot,r̄,re f r̄,tc
− ∑

tc′∈TC(re f r̄,tc,tc,r̄)

lt,r̄,tc′ ≥ relbsr̄,tc + ct r̄,ty,tc+

+ ∑
tc′∈TC(re f r̄,tc,tc,r̄)

rt r̄,ty,tc′ ∀t ∈ T, tc ∈ TCr̄ (8.10)

eUt,tc − sUt ′,tc ≤ M−Myt,t ′, ˆtc ∀t, t ′ ∈ T, t < t ′, tc, ˆtc ∈ TCr̄ ∩TCr̄′ : tc ∈ ˆTCt,t ′, ˆtc (8.11)
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eU t ′,tc − sU t,tc ≤ Myt,t ′, ˆtc ∀t, t ′ ∈ T, t < t ′, tc, ˆtc ∈ TCr̄ ∩TCr̄′ : tc ∈ ˆTCt,t ′, ˆtc. (8.12)

Note that in the MILSP, Constraints (8.11) and (8.12) contain the binary variables yt,t ′, ˆtc.

Hence, we cannot formulate the dual of this problem and identify the cut to be added to the

NUMP. To do so, we solve the MILSP to get the optimal rescheduling decisions ȳt,t ′, ˆtc, then we

construct the LSP given ȳt,t ′, ˆtc and the re-routing decisions x̄t,r fixed in the NUMP. The reduced

formulation of the LSP is as follows.

8.2.3 Linear Sub-Problem (LSP)

Note that when we know the re-routing decisions made in the NUMP (let them be x̄t,r) and the

corresponding rescheduling decisions made in the MILSP (let them be ȳt,t ′, ˆtc), the remaining

problem is a re-timing one. The LSP is formulated as follows.

min ∑
t∈T

wtDt . (8.13)

ot,r̄,tc ≥ initt ∀t ∈ T, tc ∈ TCr̄ : pr̄,tc = tc0 (8.14)

−ot,r̄,tc +ot,r̄,pr,tc + lt,r̄,pr̄,tc =−rtr̄,ty,pr̄,tc ∀t ∈ T, tc ∈ TCr̄ : tc ̸= tc0 (8.15)

Dt −ot,r̄,tc∞
≥−exitt ∀t ∈ T (8.16)

sU t,tc −ot,r̄,re f r̄,tc
≤−forbsr̄,tc

∀t ∈ T, tc ∈ TCr̄ (8.17)

eU t,tc −ot,r̄,re f r̄,tc
− ∑

tc′∈TC(re f r̄,tc,tc,r̄)

lt,r̄,tc′ ≥ relbsr̄,tc + ct r̄,ty,tc+

+ ∑
tc′∈TC(re f r̄,tc,tc,r̄)

rt r̄,ty,tc′ ∀t ∈ T, tc ∈ TCr̄ (8.18)
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According to the value of the rescheduling decisions ȳt,t ′, ˆtc made in the MILSP we add to the

LSP one of the following two sets of constraints:

eUt,tc − sUt ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ (8.19)

eU t ′,tc − sU t,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ . (8.20)

If ȳt,t ′, ˆtc = 1 then we add Constraints (8.19) to the LSP otherwise (8.20) is added.

Let αt,r̄,tc, λt,r̄,tc, θt , φt,tc, ωt,tc, ηt,t ′,tc, ψt,t ′,tc, be the dual variables associ-

ated with Constraints (8.14)-(8.20) respectively. As such, αt,r̄,tc ≥ 0, λt,r̄,tc ∈ R, θt ≥ 0,

φt,tc ≤ 0, ωt,tc ≥ 0 , ηt,t ′,tc ≤ 0 and ψt,t ′,tc ≤ 0. The DLSP is written as follows.

8.2.4 Dual of the Linear Sub-Problem (DLSP)

max ∑
t∈T

∑
tc∈TCr̄

inittαt,r̄,tc − rt r̄,ty,pr̄,tcλt,r̄,tc+

+ ∑
t∈T

∑
tc∈TCr̄

(relbsr̄,tc + ct r̄,ty,tc + ∑
tc′∈TC(re f r̄,tc,tc,r̄)

rt r̄,ty,tc′)ωt,tc − f orbsr̄,tc
φt,tc−

− ∑
t∈T

exittθt . (8.21)

αt,r̄,tc +λt,r̄,tc −φt,tc −ωt,tc ≤ 0 ∀t ∈ T, tc ∈ TCr̄ : pr̄,tc = tc0 (8.22)

λt,r̄,tc −λt,r̄,pr̄,tc −φt,tc −ωt,tc ≤ 0 ∀t ∈ T, tc ∈ TCr̄ (8.23)

λt,r̄,tc −ωt,tc ≤ 0 ∀t ∈ T, tc ∈ TCr̄ (8.24)

αt,r̄,tc∞
−λt,r̄,tc∞

−θt ≤ 0 ∀t ∈ T (8.25)

θt ≤ 1 ∀t ∈ T (8.26)
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If ȳt,t ′, ˆtc = 1 then we add Constraints (8.27) and (8.28) to the DLSP

φt ′,tc −ηt,t ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ (8.27)

ωt,tc +ηt,t ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ (8.28)

Constraints (8.27) and (8.28) can be rewritten as follows.

φt ′,tc +ωt,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ (8.29)

If ȳt,t ′, ˆtc = 0 then we add (8.30) and (8.31) to the DLSP.

φt,tc −ψt,t ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ (8.30)

ωt ′,tc +ψt,t ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ . (8.31)

Constraints (8.30) and (8.31) can be also rewritten as follows.

φt,tc +ωt ′,tc ≤ 0 ∀t, t ′ ∈ T, t < t ′, tc ∈ TCr̄ ∩TCr̄′ (8.32)

As the MILSP finds the optimal schedule given the routing decisions, the re-timing problem

with such schedule and routing is feasible by definition. Thus, the DLSP is always bounded,

and all Benders cuts returned are optimality ones. Remark that, as neither the NUMP nor the

DLSP include y-variables, these cuts are formulated as follows:

z− (∑
t∈T

∑
r̄∈Rt

∑
tc∈TCr̄

xt,r̄(inittαt,r̄,tc − rt r̄,ty,pr̄,tcλt,r̄,tc)+

+ ∑
t∈T

∑
r̄∈Rt

∑
tc∈TCr̄

xt,r̄[(relbsr̄,tc + ct r̄,ty,tc + ∑
tc′∈TC(re f r̄,tc,tc,r̄)

rt r̄,ty,tc′)ωt,tc − f orbsr̄,tc
φt,tc]−

− ∑
t∈T

exittθt)≥ 0

((α, λ , θ , φ , ω) ∈ PS) (8.33)
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Table 8.1 Performance of 3BA vs RECIFE-MILP and BA-RBR-F3 over the two control areas
(time limit 180 seconds).

Algos
Gonesse Rouen

#Opt Delay (s) Gap (%) # Opt Delay (s) Gap (%)

BA-RBR-F3 7 188 36 4 437 80
3BA 9 179 29 22 29 27
RECIFE-MILP 30 120 0 2 419 92

8.3 Computational experiments

In this section, we compare the performance of 3BA to the RECIFE-MILP one on the two

control areas considered in the previous chapters of this thesis: Gonesse and Rouen. We use

the 30 instances utilized in Section 5.4 for each control area. In addition, we compare 3BA to

BA-RBR-F3.

In Table 8.1, we report the results achieved on the two case studies, setting the computational

time available to three minutes. The first column indicates the name of the algorithm. The two

following sets of three columns contain the number of instances solved to the optimum within

the available computational time, the average delay in seconds and the average optimality gap

achieved by each algorithm, respectively.

Removing the big-M from the cuts, together with the guidance of the re-routing decisions

through the optimal rescheduling, appear to be a good approach: the average returned objective

function value of 3BA is lower than the one of BA-RBR-F3 in the two control areas, while the

number of optimal solutions proven is higher. In the computational time available, the number

of cuts generated for 3BA is lower than the one for BA-RBR-F3. In particular, BA-RBR-F3

generates 142 and 309 cuts in average versus 114 and 61 for 3BA on the Gonesse and Rouen

instances, respectively. The lower number for 3BA can be explained by the longer time needed

for the generation of one cut, which includes the solution of a MILP problem. However, the

fewer cuts do not penalize 3BA with respect to BA-RBR-F3, and this allows conjecturing

that the quality of the cuts added is better. Regarding the performance of 3BA compared

to RECIFE-MILP, the results show that the former clearly outperforms the latter in Rouen

instances. 3BA solves 22 instances to the optimum, finds 29 seconds as the average delay and

27% as the average optimality gap. The corresponding figures for RECIFE-MILP are 2, 419

and 92%, respectively. However, on the Gonesse instances, although the performance of 3BA

is better than the one of BA-RBR-F3, it is still not comparable to the one of RECIFE-MILP.
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Table 8.2 Comparison of 3BA and RECIFE-MILP performance on the Gonesse instances when
varying the maximum number of routes per train (time limit 180 seconds).

Max routes # x # y
3BA RECIFE-MILP

# Opt Av-delay (s) # Opt Av-delay (s)

1 15 68 30 188 30 188
2 31 308 29 138 30 135
3 46 522 23 131 30 123
4 62 1053 14 129 30 123
5 77 1438 12 165 30 121
6 86 1609 10 173 30 120
7 91 1609 11 165 30 120
8 96 1698 10 165 30 120
9 101 1698 10 165 30 120
10 105 1698 9 179 30 120
11 110 1759 8 173 30 120
12 115 1759 7 177 30 120
13 120 1802 9 179 30 120

To find an explanation to the different relative performance in the two control areas, we

conjecture that 3BA is appropriate for the instances on which the number of alternative routes

available per train is important. Specifically, the Rouen instances contain more alternative

routes per train than the Gonesse ones: the average number of routes per train for Rouen is 68,

while it is 8 for Gonesse. To support our conjecture, we study in the following how the results

on each control area change when we vary the maximum number of alternative routes per train.

To do so, we solve the same instances considered above limiting the number of routes per train

to different values. Specifically, we consider the first m available routes for each train, and we

vary m between 1 and the maximum number of routes in the original instances.

The results of these experiments for each control area are reported in Tables 8.2 and 8.3,

setting the computational time available to three minutes. Column 1 reports the maximum

number of routes per train in each instance. Columns 2 and 3 indicate the average number of x

and y-variables per instance, respectively. Columns 4-5 and 6-7 report the number of instances

solved to the optimum within the available computational time and the average delay in seconds

in the returned solution for each algorithm, respectively.

The graphical analysis of results in Tables 8.2 and 8.3 is done in Figures 8.3 and 8.4. In

Figures 8.3, the x-axis indicates the maximum number of routes per train and the y-axis shows

the average delay in seconds for Gonesse and Rouen. In Figure 8.4, the x-axis indicates the

maximum number of routes per train and the y-axis shows the number of instances solved to
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Table 8.3 Comparison of 3BA and RECIFE-MILP performance on the Rouen instances when
varying the maximum number of routes per train (time limit 180 seconds).

Max routes # x # y
3BA RECIFE-MILP

# Opt Av-delay (s) # Opt Av-delay (s)

1 12 71 30 459 30 459
2 23 230 30 22 30 22
3 31 253 30 18 30 18
4 37 253 30 18 30 18
5 43 275 30 18 30 18
6 49 309 30 18 30 18
7 55 309 30 18 30 18
8 60 329 30 18 30 18
9 66 329 30 18 30 18
10 72 357 30 18 30 18
20 122 411 25 21 30 18
40 216 486 25 19 25 33
60 310 502 25 18 24 74
80 384 507 25 24 18 95
100 451 507 25 23 13 176
120 488 507 22 31 12 243
140 524 507 23 34 9 296
160 561 507 23 36 9 344
180 598 507 23 31 9 279
200 628 507 24 23 5 341
220 648 507 22 35 5 343
240 668 507 24 27 3 332
260 688 507 24 26 5 316
280 708 507 23 29 4 394
300 728 507 23 35 2 403
320 748 507 22 35 1 428
340 768 507 23 36 3 422
360 788 507 23 28 1 459
384 812 507 22 29 2 419
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Figure 8.3 Comparison of the average delay achieved by RECIFE-MILP and 3BA on the two
control areas depending the maximum number of routes per train.

Figure 8.4 Comparison of the number of instances solved to the optimum by RECIFE-MILP
and 3BA on the two control areas depending the maximum number of routes per train.

the optimum within the available computational time, again for the two control areas. These

figures show the following results.

For the Rouen instances (see Table 8.3, and Figures 8.3 and 8.4, bottom) the higher the

maximum number of routes per train is, the more the average delay found by RECIFE-MILP

increases. Instead, the average delay found by 3BA remains stable and tends to decrease.

When the maximum number of routes per train is in the interval [1,10], the two algorithms

achieve the same performance. When this value is 20 RECIFE-MILP solves all the instances to

the optimum, while 3BA fails to do so in 5 cases. However, for 4 of them, 3BA reaches the

optimal solution although it does not manage to prove its optimality. To assess the statistical

significance of the difference between the two algorithms, we perform the Wilcoxon rank-sum

test with a confidence level of 0.95. This test does not show any significant difference between

the algorithms run on Rouen, when the maximum number of routes per train is in [1, 60].

Nevertheless, for a maximum number of routes per train going from 80 to the extreme value of

384, the difference is statistically significant in favor of 3BA. However, different observations

are suggested for Gonesse (see Table 8.2 and Figures 8.3 and 8.4, top). Specifically, the
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Figure 8.5 Comparison of the average delay achieved by RECIFE-MILP and 3BA on the two
control areas depending the number of x-variables.

experiments on Gonesse do not allow to remark any significant difference when the maximum

number of routes per train is smaller than or equal to 2. From 3, this difference is statistically

significant in favor of RECIFE-MILP. Moreover, in terms of the number of optima proven,

RECIFE-MILP solves all the instances to the optimum, while the number of instances solved

to the optimum by 3BA tends to decrease when the maximum number of routes per train

increases.

As a result, we cannot state that the difference of performance between the two algorithms

is due to the maximum number of alternative routes available per train. To further investigate

the reason of this difference, we study the performance depending to the total number of x and

y-variables separately. The graphical analysis of this study is done in Figures 8.5 - 8.8.

In Figure 8.5, we draw the behavior of the two algorithms on the two control areas in

terms of average delay in seconds in the returned solution (y-axis) depending the number of

x-variables (x-axis). We remark that on the Gonesse instances, the average delay in seconds

found by RECIFE-MILP tends to stabilize after an initial diminution as a function of the

number of x-variables, while this value for 3BA tends to increase, also in this case after an

initial diminution. On the Rouen instances, we do not observe the same behavior. Remark

that the total number of x-variables is larger for Rouen (812 in average) than for Gonesse (120

in average). Although it is not clear when observing the whole range of the number of these

variables, when we consider the same scale of the total number of x-variables on Gonesse and

Rouen (between 12 and 120), we observe that the average delay found by both algorithms

tends to stabilize after an initial diminution (see Tables 8.2 and 8.3). However, on Rouen, we

observe that when the total number of x-variables increases, RECIFE-MILP suffers from this

augmentation and its average delay in seconds tends to increase, while the average delay in

seconds found by 3BA tends to decrease after an initial slight augmentation.
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Figure 8.6 Comparison of the number of instances solved to the optimum by RECIFE-MILP
and 3BA on the two control areas depending the number of x-variables.

In Figure 8.6, We analyze the behavior of the two algorithms on the two control areas in

terms of the number of instances solved to the optimum (y-axis) by each algorithm depending

the total number of x-variables (x-axis). For Gonesse, we observe that RECIFE-MILP solves all

instances to the optimum, while 3BA fails to do so as soon as more than one route is considered

per train (all the points following the first one). Instead, for Rouen, when the total number of

x-variables is in the interval [12, 72], the number of instances solved to the optimum within the

available computational time by the two algorithms is the same. When the value is 122 (the first

point where the lines get separated in Figure 8.6, bottom), the number of instances solved to

the optimum within the available computational time decreases for 3BA and remains constant

for RECIFE-MILP. However, when the total number of x-variables increases RECIFE-MILP

suffers from this augmentation and its number of instances solved to the optimum tends to

decrease, while these figures for 3BA tends to stabilize.

The observation that we can draw on Figures 8.5 and 8.6 is that, when an instance of the

rtRTMP contains “many” alternative train routes, meaning “many” routes are available for

many trains, 3BA seems to be the best option. However, this observation does not fully explain

the different performance. To further investigate, we consider the total number of y-variables.

In particular, we analyze the behavior of the two algorithms on the two control areas in terms

of the average delay in seconds and the number of instances solved to the optimum by each

algorithm (y-axis) depending the total number of y-variables (x-axis) in Figures 8.7 and 8.8.

Note that the number of y-variables is constant for Rouen throughout the increase of the number

of routes available per train, when this number is above 80 (see Table 8.3): the last points

in Figures 8.7 and 8.8 bottom have the same abscissa. This is due to the characteristics of

the additional routes available for the trains: they are new combinations of parts of routes

which are already covered by existing y-variables, since they were present in other trains routes.

Moreover, remark that the characteristics of the train routes in the two control areas imply that,
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Figure 8.7 Comparison of the average delay achieved by RECIFE-MILP and 3BA on the two
control areas depending the number of y-variables.

Figure 8.8 Comparison of the number of instances solved to the optimum by RECIFE-MILP
and 3BA on the two control areas depending the number of y-variables.

when the maximum number of routes per train increases, the number of y-variables for Gonesse

increases much more than for Rouen.

For Rouen, we observe that the average delay found by both algorithms decreases at first,

as a number of y-variables. However, when this number gets high (486), 3BA tends to stabilize

while RECIFE-MILP returns solutions with higher and higher average delay. Even when the

number of y-variables remains constant (507), the average delay keeps increasing, due to the

effect of the higher number of routes. Also for Gonesse we observe an initial delay diminution.

However, when the number y-variables increases 3BA suffers from this augmentation and

its average delay in seconds tends to increase, while this value for RECIFE-MILP tends to

stabilize. Reasoning in terms of number of instances solved to the optimum, for Rouen, in

the interval [71, 357], the two algorithms are successful for all instances. When this value is

411, the number of instances solved by 3BA decreases, while for RECIFE-MILP it remains

stable. When the total number of y-variables reaches 507, the number of instances solved by

3BA tends to stabilize, while this value for RECIFE-MILP strongly decreases following the

increase of the number of routes per train. Instead, for Gonesse, as soon as more than one
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route is available for each train (second point in the series), 3BA suffers from the noticeable

augmentation of y-variables and the number of instances it solves to the optimum decreases,

while for RECIFE-MILP it remains stable.

The conclusion which we draw from these analyzes is that, when an instance of the rtRTMP

contains “many” x-variables and “few” y-variables as in the case of Rouen with many alternative

routes per train, 3BA achieves a better performance than RECIFE-MILP. Instead, when the

number of y-variables is “large” and the number of x-ones is “small”, as in Gonesse, RECIFE-

MILP outperforms 3BA. These results suggest that, depending on the characteristics of the

rtRTMP instances, either 3BA or RECIFE-MILP can be the best option. Specifically, when

a rtRTMP instance contains “many” train routes that do not generate “many” rescheduling

variables yt,t ′, ˆtc 3BA proves to be efficient. Instead, disregards the number of train routes, if

these routes generates “many” rescheduling variables yt,t ′, ˆtc, then RECIFE-MILP seems to be

the best.

The fact that 3BA outperforms RECIFE-MILP when there are “many” routing decisions

(i.e., x-variables) and “few” scheduling ones (i.e., y-variables) may be due to several reasons.

One possible reason is related to the computational time necessary to solve the rescheduling

problem (i.e., the MILSP) in 3BA. When the MILSP contains “many” y-variables this compu-

tational time may increase. As a result, 3BA generates less Benders cuts than when the MILSP

is easy to solve. We remark that for Gonesse, where the MILSP contains “many” y-variables

“few” Benders cuts are added to the NUMP: for example, when all the routes of the original

instances are available for the trains, the average computational time per cut added is 1.33

seconds. Instead, for Rouen, where the MILSP contains “few” y-variables, “many” Benders

cuts are added to the NUMP: the average computational time per cut added is 0.64 seconds.

Indeed, the quality of the search process being equal, the more solutions are explored, and

hence the more cuts are generated, the better the solution quality is. This may explain the better

performance for Rouen than for Gonesse.

Moreover, we believe that another reason for the different performance is related to the

characteristics of the control area considered. In particular, it is related to the fact that different

control areas may feature different route inter-dependencies. Let us call two routes interdepen-

dent if two trains using them incur in strong potential conflicts, and independent otherwise.

A proxy for routes interdependency is the number of y-variables which derive from their use:

the more the variables, the higher the interdependency1. Although routes interdependency is

difficult to quantify, intuitively it can be observed that Rouen, with its line structure, allows

the definition of more independent routes that Gonesse, that is a junction rich of switches

1Remark that this is only a proxy since what really matters for the reasoning which follows is the presence of
potential conflicts, which also depend on the trains timing. However, we think the proxy is meaningful here.
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and bidirectional tracks. For Rouen, given a set of trains, a few of which are perturbed, it is

often possible to identify an allocation of routes such that the perturbed trains seldom cross the

others. Depending on the fact that these routes are chosen or not, the total delay and hence the

objective function value of the LSP will change quite a lot. For Gonesse, this is still possible if

the number of trains is low, but it becomes very unlikely for large train sets. As a consequence,

the objective function value of the LSP corresponding to different routes allocations will often

be similar for this control area. This is indeed what we observe throughout 3BA runs. Getting

now to the different behavior of 3BA on the two control areas, we think that, in general,

largely different LSP (and hence DLSP) objective function values will imply largely different

coefficients for the x-variables involved. In turn, this will imply that different route assignments,

when evaluated in the NUMP already including some cuts, will have quite different impact

on the value of variable z, and hence on the NUMP objective function. Thus, the quality

of different route assignments may become visible already after a few cut generations, and

this may indeed improve the performance of the solution process. Hence for Rouen, where

routes are more independent, 3BA soon manages to make wise route choices and reach good

performance, whereas for Gonesse, where routes are strongly interdependent, 3BA struggles to

identify promising assignments and behaves quite poorly.

8.4 Conclusions

In this chapter, we proposed 3BA. It is an algorithm based on the decomposition of the

RECIFE-MILP formulation into three problems: the NUMP, the MILSP and the LSP. The

NUMP contains only the binary re-routing variables xt,r. Given the re-routing decisions made

in the NUMP, we build the MILSP containing the binary rescheduling variables yt,t ′, ˆtc and

the continuous re-timing variables. We obtain the optimal scheduling decisions by solving

the MILSP, and we construct the LSP with the re-routing decisions made in the NUMP and

the corresponding optimal rescheduling decisions made in the MILSP, to define the cuts to

be added to the NUMP. This reformulation allows the generation of Benders cuts without

the big-M parameter and the avoidance of the exploration of rescheduling infeasible or sub-

optimal solutions. By doing so, we obtain an algorithm capable of reaching significantly

better performance than RECIFE-MILP for the Rouen instances. Unfortunately, this is not

the case for Gonesse ones, although 3BA outperforms BA-RBR-F3 which we proposed in

Chapter 7. We conjecture that the different performance on the two control areas is due to the

characteristics of the rtRTMP instances to be tackled: we think that when a rtRTMP instance

contains “many” train routes that do not generate “many” rescheduling variables 3BA is the

best option to achieve high quality results, while RECIFE-MILP is to be preferred when there
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are “few” train routes even if these routes generate “many” rescheduling variables. In future

research we will try to verify the general validity of this conjecture by tackling other case

studies, which unfortunately are not available today.
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Chapter 9

Conclusions and future works

9.1 Conclusions

In this thesis, we focused on the rtRTMP. This is the problem of re-routing and rescheduling

trains in case of perturbation, to minimize delay propagation. More specifically, we proposed a

BD to deal with this problem. To facilitate the comprehension of this thesis, in Chapter 2 we

introduced main concepts and procedures characterizing the railway system. In particular, we

started by defining the decision process for traffic planning. Then, we described the railway

infrastructure elements and the two main approaches used to represent them: macroscopic and

microscopic. Finally, we gave extended descriptions of the rtRTMP, as it is the problem tackled

in this thesis.

Before addressing the details on our BAs proposed in Chapters 5-8 to tackle the rtRTMP, we

presented a literature review on this problem in Chapter 3. Indeed, as mentioned in Section 1.2,

we found that relevant contributions exist in the operations research literature which propose

algorithms, including decomposition ones, to address the rtRTMP. However, many of them

appear suitable to cope with the problem considering cases in which the size of instances tackled

are relatively small. Moreover, several approaches neglect the train re-routing possibility. These

and other strong assumptions often limit the actual applicability of the proposed algorithms.

Hence, our contribution to the existing literature consisted in trying to increase the applicability

of an existing algorithms in the practice by overcoming some of these limits. Namely, we

consider the RECIFE-MILP algorithm that we presented in Chapter 4. RECIFE-MILP is a

MILP based heuristic which allows modeling specific circulation constraints that can accurately

emulate the railway traffic in real circumstances without penalizing the quality of the results.

However, it has been shown that the performance of the RECIFE-MILP algorithm may strongly

worsen when tackling large instances in the short time allowed by the real-time nature of the
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problem. For the MILP formulation at the basis of this algorithm, we hence proposed BD

approaches to improve the performance when tackling large instances.

In particular, in Chapter 5 we presented the SBR of the RECIFE-MILP formulation. It

consists in splitting the MILP formulation presented in Chapter 4 into the UMP and the SP.

The UMP is the real-time train routing and scheduling problem. It contains the re-routing

and rescheduling variables (binary variables) of the overall problem, and one dummy variable

representing the contribution of continuous variables to the UMP objective function. The

SP contains the continuous variables which represent train passing and stopping times, and

deduces the delay suffered by each train. The decomposed problem is solved with the BA in

which we add progressively Benders OCs and FCs to the UMP, obtaining them through the

iterative solution of the DSP. After presenting the reformulation, we performed computational

experiments on two case studies representing traffic in two control areas in France: the

Pierrefitte–Gonesse junction and a line section around the Rouen–Rive–Droite station. The

results showed that the SBR is not appropriate for the rtRTMP.

In Chapter 6, to improve the performance of the SBR presented in Chapter 5, we proposed

the RBR for the RECIFE-MILP formulation. Unlike the classical decomposition approach (i.e.,

the SBR), the RBR exploits the nature of the RECIFE-MILP formulation. In our experiments

on the same two case studies used in Chapter 5, the results showed that the RBR is better

than the SBR. However, despite the improvement achieved, the performance of RBR was still

significantly worse that the one of RECIFE-MILP.

With the same performance improvement goal, in Chapter 7 we proposed some inequalities

to boost the performance of RBR presented in Chapter 6. The proposed inequalities were

added to the UMP, to strengthen the consistency of routing and scheduling decisions. After

an algorithm configuration phase in which we identified the most convenient inequalities to

add to the UMP, we tackled instances representing traffic at the two control areas tackled in

Chapters 5 and 6. The results showed that, although adding inequalities to the UMP improves

the RBR performance, the improvement of the proposed algorithm compared to RECIFE-MILP

remains modest.

Finally, in Chapter 8 we proposed the 3BA. It is an algorithm based on the decomposition of

the RECIFE-MILP formulation into three problems: the NUMP, the MILSP and the LSP. The

NUMP contains only the binary re-routing variables. Given the re-routing decisions made in the

NUMP, we build the MILSP containing the binary rescheduling variables and the continuous

re-timing variables. We obtain the optimal scheduling decisions by solving the MILSP, and

we construct the LSP with the re-routing decisions made in the NUMP and the corresponding

optimal rescheduling decisions made in the MILSP, to define the cuts to be added to the

NUMP. This reformulation allows the generation of Benders cuts without the big-M parameter
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and the avoidance of the exploration of rescheduling infeasible or sub-optimal solutions. By

doing so, we obtained an algorithm capable of reaching significantly better performance than

RECIFE-MILP for the Rouen instances. Unfortunately, this is not the case for Gonesse ones,

although 3BA outperforms the algorithm which we proposed in Chapter 7. We conjecture that

the different performance on the two control areas is due to the characteristics of the rtRTMP

instances to be tackled: we think that when a rtRTMP instance contains “many” train routes

that do not generate “many” rescheduling variables 3BA is the best option to achieve high

quality results, while RECIFE-MILP is to be preferred when there are “few” train routes even if

these routes generate “many” rescheduling variables. Hence, we conclude that if we have large

instances it seems necessary to reduce the number of routes in some sensible way. However,

until an appropriate procedure to do so is available, 3BA may be an option to effectively limit

delay propagation in railway traffic.

9.2 Future works

In this thesis, the application of the BD to the MILP formulation used in RECIFE-MILP

revealed some issues that deserve investigation in future works.

The first issue we identify concerns the unsuitability of BD when applied to the RECIFE-

MILP formulation as it is. Specifically, we can point out three research directions which we

consider particularly relevant.

• Indeed, the formulation of the UMP is such that the objective function does not contain

binary variables (i.e., the re-routing and rescheduling decisions), but only the dummy

variable representing in some sense the impact of binary decisions on continuous variables.

Hence, the objective function is only driven by the cuts which are progressively added

during the BA run. This implies that, until a remarkable number of cuts are added,

no promising areas of the solution space can be identified and the search in the UMP

cannot follow any smart direction. We think that the identification of a suitable objective

function for the UMP may be possible, and it is likely to quite significantly improve the

performance of our algorithms.

• Moreover, looking at the performance issues of the algorithms, we think that they are

likely, at least in part, to be linked to the fact that the master problem which determines

the value of the binary variables has no constraints to force their consistency. In other

words, there is no link between the re-routing decisions and the rescheduling ones in

the UMP, or between different rescheduling decisions. Although we proposed some

inequalities in Chapter 7 that impose this consistency in several circumstances, they were
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not sufficient to overcome this problem. On the one hand, in future works we will try

to identify other, possibly stronger, inequalities. On the other hand, we will study the

possibility of adding them dynamically to the branch-and-bound tree for exploiting their

merits without adding excessive computational burden to the search process.

• Finally, we will consider the opportunity to decompose stronger reformulations of

RECIFE-MILP, as the one recently proposed by Pellegrini et al. (2017). Indeed, this re-

formulation exploits the link between scheduling and routing decision, for decreasing the

number of binary variables of the MILP formulation. From computational experiments

on Pierrefitte-Gonesse junction, this reformulation seems to bring a clear performance

improvement to RECIFE-MILP, and we think it may be the case also for our algorithms.

The second issue is related to the choice of the suitable decomposition method to be used

to tackle the rtRTMP. The mathematical decomposition based on the BD principles which we

proposed in thesis does not seem to be particularly efficient when the size of the instances

increases. Specifically, although the performance is interesting when the control area considered

have particular features related to the number and characteristics of the alternative routes of the

trains, it is not practicable to tackle a whole national network, for example. To be able to do so,

we think the spatial decomposition is the only viable option, i.e., a decomposition in which a

whole control area is divided into subset of tractable dispatching zone. Specifically,

• we think that it is possible to imagine a combined microscopic and macroscopic approach,

in which the former is used to tackle the rtRTMP in critical locations (e.g., stations or

junctions) and the latter to deal with the more general problem in the whole network.

Indeed an interactive algorithm may be defined to obtain coherent traffic management

decisions, but the way this shall be done is not clear yet. The main issue to be tackled is

the fact that the optimal solutions at different critical locations are indeed interdependent

but are likely to be incoherent. What is the suitable way for solve the overall problem in

cases as this is not agreed in the community, and how to get to the optimal or to a good

sub-optimal solution once the objective is defined shall be object of future research.

The last issue concerns the improvement of the performance of the RECIFE-MILP algo-

rithm. Indeed, several other possible approaches can be used in addition to the BD considered

in this paper. In particular,

• a promising possibility is linked to the strengthening of the linear relaxation of RECIFE-

MILP formulation. Indeed, when studying the results of our experiments, we realized that

the lower bound obtained from the linear relaxation of the RECIFE-MILP formulation

is sometimes very far from the optimal solution, and in the most unlucky instances
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increasing the value of this lower bound takes a very long time. An intuition behind

the weakness of the linear relaxation is the fact that if the precedence binary variables

appearing in the disjunctive constraints are far from integrity, then the trains can run

one on the other without accumulating any delay. Other sources of weakness probably

contribute to the low quality of the lower bound in some instances, and in future research

it will be interesting to deeply analyze this issue to try to improve the performance of

RECIFE-MILP.

104



Bibliography

Abbink, E., den Berg, B. V., Kroon, L., and Salomon, M. (2004). Allocation of railway rolling
stock for passenger trains. Transportation Science, 38(1):33–41.

Abbink, E., Fischetti, M., Kroon, L., Timmer, G., and Vromans, M. (2005). Reinventing crew
scheduling at netherlands railways. Interfaces, 35(5):393–401.

Acuna-Agost, R., Michelon, P., Feillet, D., and Gueye, S. (2011a). A MIP-based local search
method for the railway rescheduling problem. Networks, 57(1):69–86.

Acuna-Agost, R., Michelon, P., Feillet, D., and Gueye, S. (2011b). SAPI: Statistical analysis of
propagation of incidents. A new approach for rescheduling trains after disruptions. European
Journal of Operational Research, 215(1):227–243.

Arenas Pimentel, L. (2016). Contributions on microscopic approaches to solve the train
timetabling problem and its integration to the performance of infrastructure maintenance
activities. Ph.D.thesis, University of VALENCIENNES ET DU HAINAUT CAMBRESIS.

Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4:238–252.

Binato, S., Pereira, M., and Granville, S. (2001). A new benders decomposition approach to
solve power transmission network design problems. IEEE TRANSACTIONS ON POWER
SYSTEMS, 16(2):235–240.

Birattari, M. (2009). Tuning metaheuristics. In A Machine Learning Perspective, Springer.

Bussieck, M., Kreuzer, P., and Zimmermann, U. (1997). Optimal lines for railway systems.
European Journal of Operational Research, 96(1):54 –63.

Cacchiani, V., Caprara, A., Galli, L., Kroon, L., Maròti, G., and Toth, P. (2012). Rail-
way rolling stock planning: Robustness against large disruptions. Transportation Science,
46(2):217–232.

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., and Wagenaar, J.
(2014). An overview of recovery models and algorithms for real-time railway rescheduling.
Transportation Research Part B: Methodological, 63:15–37.

Cacchiani, V. and Toth, P. (2012). Nominal and robust train timetabling problems. European
Journal of Operational Research, 219(3):727–737.

105



Bibliography

Caimi, G., Chudak, F., Fuchsberger, M., Laumanns, M., and Zenklusen, R. (2011). A new
resource-constrained multicommodity flow model for conflict-free train routing and schedul-
ing. Transportation Science, 45(2):212–227.

Caimi, G., Fuchsberger, M., Laumanns, M., and Lüthi, M. (2012). A model predictive
control approach for discrete-time rescheduling in complex central railway station approach.
Computers & Operations Research, 39:2578–2593.

Caprara, A., Fischetti, M., Toth, P., Vigo, D., and Guida, P. L. (1997). Algorithms for railway
crew management. Mathematical Programming, 79(1):125–141.

Caprara, A., Galli, L., and Toth, P. (2011). Solution of the train platforming problem. Trans-
portation Science, 45(2):246–257.

Caprara, A., Monaci, M., Toth, P., and Guida, P. (2006). A lagrangian heuristic algorithm for a
real-world train timetabling problem. Discrete Applied Mathematics, 154(5):738–753.

Chu, F. and Oetting, A. (2013). Modeling capacity consumption considering disruption program
characteristics and the transition phase to steady operations during disruptions. Journal of
Rail Transport Planning & Management, 3:54–67.

Claessens, M., van Dijk, N., and Zwaneveld, P. (1998). Cost optimal allocation of rail passenger
lines. European Journal of Operational Research, 110(3):474–489.

Cordeau, J., Soumis, F., and Desrosiers, J. (1975). A benders decomposition approach for the
locomotive and car assignment problem. Transportation Science, 34:133–149.

Cordeau, J., Toth, P., and Vigo, D. (1998). A survey of optimization models for train routing
and scheduling. Transportation Science, 32(4):380–404.

Corman, F., D’Ariano, A., Pacciarelli, D., and Pranzo, M. (2009). Evaluation of green wave
policy in real-time railway traffic management. Transportation Research Part C, 17:607–616.

Corman, F., D’Ariano, A., Pacciarelli, D., and Pranzo, M. (2010). A tabu search algorithm for
rerouting trains during rail operations. Transportation Research Part B, 44:175–192.

Corman, F., D’Ariano, A., Pacciarelli, D., and Pranzo, M. (2012a). Bi-objective conflict
detection and resolution in railway traffic management. Transportation Research Part C,
20:79–94.

Corman, F., D’Ariano, A., Pacciarelli, D., and Pranzo, M. (2012b). Optimal inter-area coordi-
nation of train rescheduling decisions. Transportation Research Part E, 48:71–88.

Corman, F., D’Ariano, A., Pacciarelli, D., and Pranzo, M. (2014). Dispatching and coordination
in multi-area railway traffic management. Computers & Operations Research, 44:146 – 160.

Corman, F. and Meng, L. (2015). A review of online dynamic models and algorithms for
railway traffic management. Intelligent Transportation Systems, IEEE Transactions on,
16(3):1274–1284.

Corman, F. and Quaglietta, E. (2015). Closing the loop in real-time railway control: Framework
design and impacts on operations. Transportation Research Part C: Emerging Technologies,
54:15–39.

106



Bibliography

Dantzig, G. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations
Research, 8:101–111.

D’Ariano, A., Corman, F., Pacciarelli, D., and Pranzo, M. (2008). Reordering and local
rerouting strategies to manage train traffic in real-time. Transportation Science, 42(4):405–
419.

D’Ariano, A., Pacciarelli, D., and Pranzo, M. (2007a). A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Research, 183:643–
657.

D’Ariano, A. and Pranzo, M. (2009). An advanced real-time train dispatching system for
minimizing the propagation of delays in a dispatching area under severe disturbances.
Networks and Spatial Economics, 9:63–84.

D’Ariano, A., Pranzo, M., and Hansen, I. (2007b). Conflict resolution and train speed coor-
dination for solving real-time timetable perturbations. IEEE Transactions on Intelligent
Transportation Systems, 8(2):208–222.

Dessouky, M., Lu, Q., Zhao, J., and Leachman, R. (2006). An exact solution procedure
to determine the optimal dispatching times for complex rail networks. IIE Transactions,
38(2):141–152.

Dollevoet, T., Corman, F., D’Ariano, A., and Huisman, D. (2014). An iterative optimization
framework for delay management and train scheduling. Flexible Services and Manufacturing
Journal, 26(4):490–515.

Fan, B., Roberts, C., and Weston, P. (2012). A comparison of algorithms for minimising
delay costs in disturbed railway traffic scenarios. Journal of Rail Transport Planning &
Management, 2:23–33.

Fang, W., Yang, S., and Yao, X. (2015). A survey on problem models and solution approaches
to rescheduling in railway networks. Intelligent Transportation Systems, IEEE Transactions
on. To appear.

Fisher, M. and Jaicumeur, R. (1978). A decomposition algorithm for large scale vehicle routing.
Technical Report 78-11-05, Department of decision sciences, university of Pennsylvania.

Florian, M., Guerin, G., and Bushel, G. (1976). The engine scheduling problem in a railway
network. INFOR J, 14:121–138.

Forsgren, M., Aronsson, M., and Gestrelius, S. (2013). Maintaining tracks and traffic flow at
the same time. Journal of Rail Transport Planning & Management, 3(3):111–123.

Fu, H., Nie, L., Meng, L., Sperry, B., and He, Z. (2015). A hierarchical line planning approach
for a large-scale high speed rail network: The china case. Transportation Research Part A:
Policy and Practice, 75:61–83.

Garcìa-Archilla, B., Lozano, A., Mesa, J., and Perea, F. (2013). Grasp algorithms for the robust
railway network design problem. Journal of Heuristics, 19(2):399–422.

107



Bibliography

Geoffrion, A. (2005). Generalized benders decomposition. Journal of Optimization Theory
and Applications, 10:237–260.

Ghaemi, N., Cats, O., and Goverde, R. (2017). Microscopic model for optimally short-turning
trains in case of complete blockage. RailLille 2017, Lille, France.

Goossens, J., van Hoesel, S., and Kroon, L. (2006). Cost optimal allocation of rail passenger
lines. European Journal of Operational Research, 162(2).

Higgins, A. (1998). Scheduling of railway track maintenance activities and crews. Operational
Research Society, 49:1026–1033.

Hooghiemstra, J., Kroon, L., Odijk, M., Salomon, M., and Zwaneveld, P. (1999). Decision sup-
port systems support the search for win-win solutions in railway network design. Interfaces,
29(2):15–32.

Huisman, D., Kroon, L., Lentik, R., and Vromans, M. (2005). Operations research in passenger
railway transportation. Technical report, Erasmus Research Institute of Management.

IBM (2017). Ibm ilog cplex concert technology for c++.
https://developer.ibm.com/docloud/blog/2016/11/11/whats-in-cos-12-7/.

Jütte, S. and Thonemann, U. (2012). Divide-and-price: A decomposition algorithm for
solving large railway crew scheduling problems. European Journal of Operational Research,
219(2):214–223.

Kallas, S. (2011). White paper: Roadmap to a single europian transport area–towards a
competitive and resource-efficient transport system. COM(2011) 144 final of 28 March 2011.

Kecman, P., Corman, F., D’Ariano, A., and Goverde, R. (2013). Rescheduling models for
railway traffic management in large-scale networks. Public Transport, 5(1-2):95–123.

Kroon, L., Romeijn, H., and Zwaneweld, P. J. (1997). Routing trains through railway networks:
Complexity issues. European Journal of Operational Research, 68:485–498.

Lamorgese, L. and Mannino, C. (2015). An exact decomposition approach for the real-time
train dispatching problem. Operations Research, 63(1):48–64.

Lamorgese, L. and Mannino, C. (2016). A non-compact formulation for job-shop scheduling
problem in transportation. SINTEF Tech. Report F27646, April.

Lamorgese, L., Mannino, C., and Piacentini, M. (2016). Optimal train dispatching by benders’-
like reformulation. Transportation Science, 50(3):910–925.

Lusby, R., Larsen, J., Ehrgott, M., and Ryan, D. (2011). Railway track allocation: models and
methods. OR Spectrum, 33(4):843–883.

Lusby, R., Larsen, J., Ehrgott, M., and Ryan, D. (2012). A set packing inspired method for
real-time junction train routing. Computers & Operations Research, 40(3):713–724.

Magnanti, T. and Wong, R. (1981). Accelerating benders decomposition: Algorithmic enhance-
ment and model selection criteria. Operations Research, 29:464–484.

108



Bibliography

Magnanti, T. and Wong, R. (1984). Network design and transportation planning. Transportation
Science, 18(1):1–55.

Maròti, G. (2006). Operations research models for railway rolling stock planning. PhD thesis.
Eindhoven University of Technology, Eindhoven, The Netherlands.

Mascis, A. and Pacciarelli, D. (2002). Job-shop scheduling with blocking and no-wait con-
straints. European Journal of Operational Research, 143:498–517.

Mascis, A., Pacciarelli, D., and Pranzo, M. (2004). Scheduling models for short-term railway
traffic optimization. In 9th international conference on computer-aided scheduling of public
transport, Lecture notes in economics and mathematical systems, San Diego, pages 9–11.

Meng, L. and Zhou, X. (2014). Simultaneous train rerouting and rescheduling on an n-track net-
work: A model reformulation with network-based cumulative flow variables. Transportation
Research Part B: Methodological, 67:208–234.

Nielsen, L., Kroon, L., and Maróti, G. (2012). A rolling horizon approach for disruption manage-
ment of railway rolling stock. European Journal of Operational Research, 220(2):496–509.

Pachl, J. (2009). Railway Operations Processes. In Theeg, G. and Vlasenko, S., editors,
Railway Signaling and Interlocking, volume 25, pages 39–60. International Compendium.

Papadakos, N. (2008). Practical enhancements to the magnanti-wong method. Operations
Research Letters, 36:444–449.

Pellegrini, P., Marlière, G., Pesenti, R., and Rodriguez, J. (2015). Recife-milp: An effective
milp-based heuristic for the real-time railway traffic management problem. Intelligent
Transportation Systems, IEEE Transactions on, 16(5):2609–2619.

Pellegrini, P., Marlière, G., Pesenti, R., and Rodriguez, J. (2017). Boosting the performance of
railway traffic management through the reformulation of recife-milp. RailLille 2017, Lille,
France.

Pellegrini, P., Marlière, G., and Rodriguez, J. (2014). Optimal train routing and scheduling
for managing traffic perturbations in complex junctions. Transportation Research Part B,
59:58–80.

Pellegrini, P., Marlière, G., and Rodriguez, J. (2016). A detailed analysis of the actual impact
of real-time railway traffic management optimization. Journal of Rail Transport Planning
and Management, 6(5):13–31.

Quaglietta, E., Pellegrini, P., Goverde, R., Albrecht, T., Jaekel, B., Marlière, G., Rodriguez,
J., Dollevoet, T., Ambrogio, B., Carcasole, D., Giaroli, M., and Nicholson, G. (2016).
The on-time real-time railway traffic management framework: A proof-of-concept using a
scalable standardised data communication architecture. Transportation Research Part C,
3(4):137–149.

Richardson, R. (1976). An optimization approach to routing aircraft. Transportation Science,
10:52–71.

109



Bibliography

Rodriguez, J. (2007). A constraint programming model for real-time train scheduling at
junctions. Transportation Research Part B, 41:231–245.

Rodriguez, J., Delorme, X., Gandibleux, X., Marlière, G., Bartusiak, R., Degoutin, F., and
Sobieraj, S. (2007). RECIFE: models and tools for analyzing rail capacity. Recherche
Transports Sécurité, 95:19–36. In French.

Sahin, G. and Yüceoglu, B. (2011). Tactical crew planning in railways. Transportation
Research Part E: Logistics and Transportation Review, 47(6):1221–1243.

Samà, M., Meloni, C., D’Ariano, A., and Corman, F. (2015). A multi-criteria decision
support methodology for real-time train scheduling. Journal of Rail Transport Planning &
Management. To appear.

Samà, M., Pellegrini, P., D’Ariano, A., Rodriguez, J., and Pacciarelli, D. (2016). Ant colony
optimization for the real-time train routing selection problem. Transportation Research Part
B, 85:89–108.

Samà, M., Pellegrini, P., D’Ariano, A., Rodriguez, J., and Pacciarelli, D. (2017). On the tactical
and operational train routing selection problem. Transportation Research Part C, 76:1–15.

Schöbel, A. (2012). Line planning in public transportation: models and methods. OR Spectrum,
34(3):491–510.

Sobieraj, S., Marlière, G., and Rodriguez, J. (2011). Simulation of solutions of a fixed-speed
model for the real-time railway traffic optimization problem. RailRome 2011,Rome, Italy.

Steinzen, I., Gintner, V., Suhl, L., and Kliewer, N. (2010). A time-space network approach for
the integrated vehicle-and crew-scheduling problem with multiple depots. Transportation
Science, 44(3):367–382.

T.K.Ho and T.H.Yeung (2001). Railway junction traffic control by heuristic methods. Proceed-
ings IEEE – Electric Power Applications, 148:77–84.

Törnquist, J. and Persson, J. (2007). N-tracked railway traffic re-scheduling during disturbances.
Transportation Research Part B, 41:342–362.

Törnquist Krasemann, J. (2015). Computational decision-support for railway traffic man-
agement and associated configuration challenges: An experimental study. Journal of Rail
Transport Planning & Management. To appear.

Veelenturf, L., Potthoff, D., Huisman, D., and Kroon, L. (2012). Railway crew rescheduling
with retiming. Transportation Research Part C, 20:95–110.

Wong, R. (1978). Accelerating benders decomposition for network design. Ph.D.thesis,
Department of electrical engineering and computer science, Massachusetts Institute of
technology.

Zhan, S., Kroon, L., Veelenturf, L., and Wagenaar, J. (2015). Real-time high-speed train
rescheduling in case of a complete blockage. Transportation Research Part B: Methodologi-
cal, 78:182–201.

110



List of acronyms

3BA Three-step Benders Algorithm. vi–viii, 4, 84, 85, 90–98, 101, 102, 117, 118

AG Alternative Graph. 22, 24, 25, 27, 34, 57, 83

BA Benders Algorithm. vii, 3, 34, 46, 50–57, 62–65, 67, 81–84, 90, 98, 100–102, 116

BD Benders Decomposition. 2, 3, 28, 32–35, 45, 46, 50, 56–58, 66, 83, 100–103, 122

DLSP Dual of the Linear Sub-Problem. 84, 88, 89, 98

DSP Dual of the Sub-Problem. 3, 33, 34, 48–51, 56, 59, 60, 65, 66, 101, 117

FC feasibility cut. 3, 33, 34, 50, 51, 53–55, 59, 62–65, 67, 101, 117

ILP Integer Linear Programming. 22, 26

IM Infrastructure Manager. v, 5–9, 16, 27

LSP Linear Sub-Problem. 4, 84, 87, 88, 98, 101, 118

MILP Mixed Integer Linear Programming. 2, 3, 22–24, 32, 34–36, 42, 45, 56, 83, 90, 100–103,

116, 118, 119, 122

MILSP Mixed Integer Linear Sub-Problem. 4, 84–89, 97, 98, 101, 118

MP Master Problem. 33, 34, 49

NUMP New Unrestricted Master Problem. 4, 84–87, 89, 97, 98, 101, 118

OC optimality cut. 3, 33, 34, 50, 51, 53–55, 59, 62–65, 67, 101, 117

RBR Reduced Benders Reformulation. vii, 4, 58–60, 62–66, 81–84, 90, 98, 101, 117

111



RECIFE REcherche sur la Capacité des Infrastructures FErroviaires - Research on the Railway

Infrastructures Capacity. 2, 36, 116

Red-DSP Reduced Dual of the Sub-Problem. 61, 62, 67

Red-SP Reduced Sub-Problem. 60, 61

RMP Restricted Master Problem. 33, 49, 50, 62

ROMA Railway traffic Optimization by Means of Alternative graphs. 25, 37, 44

rtRTMP real-time Railway Traffic Management Problem. 1–5, 9, 12, 16–30, 32, 34–38, 42,

45, 46, 52, 56, 58, 59, 66, 83, 85, 95, 97, 98, 100–103, 115, 122

RU Railway Undertaking. v, 5–9

SBR Standard Benders Reformulation. vii, 3, 4, 46, 47, 50–59, 63, 65, 66, 101, 116

SP Sub-Problem. 3, 32–34, 46, 47, 56, 58–60, 66, 101, 116

UMP Unrestricted Master Problem. 3, 4, 32, 34, 46, 47, 50, 51, 53, 56, 58–60, 66, 67, 81, 82,

101, 102, 116
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Glossary

block section A sequence of track-circuits whose access is controlled by a signal. v, 10–12,

14, 15, 18, 23, 24, 36, 39, 52

clearing time The time elapsed between the moment when the train’s head leaves a track-

circuit and the moment when its tail leaves it. 15, 38–40

conflict In the rtRTMP, a conflict exists when multiple trains travelling at the planned speed

would concurrently require the same track segment. 1, 18, 24, 25, 37, 122

dwell time The time that a train stays in a station platform to allow passengers to alight,

transfer and board the train. 8, 16, 38, 40

formation time In addition to the reservation time, a supplementary time is needed before a

train starts the occupation of a sequence of block sections. 15, 39, 40, 42

interlocking In railway signalling, an interlocking is an arrangement of signal apparatus that

prevents conflicting movements through an arrangement of tracks such as junctions or

crossings. 11, 12, 14, 38, 67

occupation time The time interval during which a train physically occupies a track-circuit.

17, 40, 42, 46, 47

RECIFE-MILP A heuristic algorithm, it tackles the railway traffic management problems.

vi–viii, 2–4, 24, 35–38, 41–47, 49–56, 58, 59, 63–67, 81–85, 90–98, 100–104, 116–120,

122

release time The release time corresponds to the lapse of time in which the reservation of a

track-circuit is still active after a train exits it. 12, 15, 39, 40, 42, 52

reservation time The time elapsed between the start of the reservation and the actual occupa-

tion of a track-circuit by a train. 15, 46, 47
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route The complete sequence of track-circuits traversed by a train during its trip is named

route. 8, 14, 17, 18, 38, 42, 93

running time The time spent by the head of a train on a track-circuit when traveling at the

planned speed. 15–17, 38–40, 42

signal A signal is a mechanical or electrical device erected beside a railway line to pass

information relating to the state of the line ahead to train drivers. v, 10–12, 14, 15, 18, 36

track segment A sequence of track-circuit in which the order between trains cannot change.

1, 39, 43, 44, 122

track-circuit A detection device on which the presence of a train is automatically detected. v,

10–12, 14, 15, 17, 23, 35, 37–39, 42, 43, 46, 47, 56, 58, 59, 67–72, 77

utilization we name utilization the sum of reservation and occupation time. 37, 40, 42, 43, 59
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RÉSUMÉ ÉTENDU EN FRANÇAIS

La mise en place d’une nouvelle façon de produire, consommer et transporter pour soutenir

le développement harmonieux de l’économie, la société et l’environnement est devenue au-

jourd’hui l’une des voies auquel il faut au cours de ce nouveau millénaire pour les grands défis

comme la surpopulation, la réduction des ressources naturelles, le changement climatique, etc..

Le transport ferroviaire, considéré comme un moyen de transport de masse et aussi comme

un mode de transport écologique, peut jouer un rôle majeur dans la mise en place d’une nouvelle

façon de transporter qui est en adéquation avec les nouvelles exigences écologiques. Cependant,

le ferroviaire reste peu utilisé dans le transport de biens et de personnes comparé au mode

routier bien que ce dernier soit assez énergivore. Pour promouvoir le ferroviaire, le livre blanc

de l’Union Européenne sur le transport préconise un transfert modal à hauteur de 50% du

transport routier des biens et des personnes sur les trajets de moyenne et longue distance vers le

ferroviaire ou la voie d’eau d’ici 2050 afin de parvenir à une réduction des émissions de CO2 et

de la dépendance du pétrole (Kallas, 2011). La croissance attendue du transport ferroviaire qui

résultera de ce transfert modal entraîne de nouveaux défis pour ce secteur qui sont entre autres

la réduction des coûts, l’efficience de l’exploitation et l’amélioration de la qualité des services

rendus aux clients.

Actuellement, sans considérer l’éventuelle croissance du trafic ferroviaire, la capacité de

l’infrastructure des réseaux de plusieurs pays européens est complètement exploitée aux heures

de pointe et aux points critiques : une grande quantité de trains traversent ces points critiques

dans un laps de temps très réduit. Dans cette situation, en cas de perturbation du trafic, le retard

peut se propager dans le réseau à la suite de l’apparition des conflits. Un conflit est une situation

d’exploitation où plusieurs trains circulant à vitesse planifiée réclament la même section de voie

au même moment. Ainsi, des trains doivent être arrêtés ou décélérés pour assurer la sécurité

et les retards se propagent dans le réseau. La propagation du retard serait encore pire avec la

croissance attendue du trafic ferroviaire si rien n’est fait. Dans ce contexte, le trafic doit être

géré au mieux pour limiter la propagation du retard.

Le problème de gestion opérationnelle du trafic ferroviaire, qui se traduit en anglais par «

real-time Railway Traffic Management Problem (rtRTMP) », est le problème de modification

des itinéraires et des ordonnancements entre trains afin de limiter la propagation du retard.

Actuellement, ce problème est traité par des régulateurs. Ils le font manuellement, ce qui rend

le résultat de leur choix généralement sous-optimal. L’utilisation d’un algorithme efficace

pour aider les régulateurs dans leur prise de décision est donc cruciale afin d’assurer la gestion

efficace du trafic quand les perturbations surviennent. La conception d’un tel algorithme

efficace a fait l’objet d’une voie de recherche très active, dans laquelle s’inscrit cette thèse.
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L’objectif de cette thèse est de proposer un algorithme de décomposition, plus spécifique-

ment celui de décomposition de Benders, pour résoudre le problème de gestion opérationnelle

du trafic ferroviaire. Plusieurs contributions intéressantes peuvent être trouvées dans la littéra-

ture scientifique sur ce problème. Elles proposent des algorithmes, y compris de décomposition,

pour traiter le problème de gestion opérationnelle du trafic ferroviaire. Cependant, beaucoup

d’entre elles traitent le problème en considérant des instances de taille relativement modeste.

De plus, plusieurs approches ignorent ou négligent la possibilité de reroutage. Cette hypothèse

forte limite assez souvent l’applicabilité réelle des algorithmes proposés.

La contribution de cette thèse vise à améliorer l’applicabilité de l’algorithme RECIFE-

MILP. RECIFE-MILP est une heuristique basée sur la programmation linéaire en nombres

entiers à variables mixtes, terme abrégé en MILP qui correspond à son équivalent anglais et

qui a été développé par Pellegrini et al. (2015) comme partie intégrante d’une plate-forme

d’outils d’aide à la décision nommée REcherche sur la Capacité des Infrastructures FErroviaires

(RECIFE) et introduite par Rodriguez (2007). RECIFE-MILP permet de résoudre certaines

instances du problème de gestion opérationnelle du trafic ferroviaire à l’optimum tout en

considérant tous les détails de l’infrastructure. En effet, RECIFE-MILP permet de modéliser

des contraintes de circulation spécifiques qui peuvent précisément représenter les circonstances

réelles du trafic. Cette caractéristique est très importante pour cette thèse comme on peut le voir

dans nos expérimentations où nous traitons des cas d’étude réels qui représentent le trafic dans

deux parties du réseau ferroviaire français. Néanmoins, il a été montré (Pellegrini et al., 2015)

que la performance de RECIFE-MILP peut se détériorer quand on fait face à des problèmes

de grandes tailles en temps réel. Pour la formulation MILP à la base de cet algorithme, nous

proposons des approches de décomposition de Benders afin d’améliorer la performance dans le

cas de grandes instances.

Dans ce manuscrit, nous commencerons par présenter la reformulation standard de Ben-

ders (SBR) de la formulation de RECIFE-MILP. Elle consiste à séparer la formulation de

départ en un problème maître (UMP) et un sous-problème (SP). Le problème maître est un

problème de routage et d’ordonnancement des trains en temps réel. Ce problème contient les

variables binaires de reroutage et réordonnancement du problème global et une variable «fac-

tice» représentant la contribution des variables continues dans la fonction objectif du problème

maître. Le sous-problème contient les variables continues qui représentent les temps de passage

et d’arrêt des trains et déduit le retard subit par chaque train en fonction des choix de routage et

ordonnancement effectués dans le problème maître. Le problème décomposé est résolu avec

l’algorithme de Benders (BA) dans lequel nous résolvons itérativement le problème maître et

le sous-problème. Le problème maître propose des valeurs pour les variables binaires. Étant

données les valeurs pour ces variables de réordonnancement et de reroutage, le sous-problème
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déduit les valeurs des variables continues, dans le cas où les valeurs des variables du problème

maître donnent des solutions faisables. Dans le cas contraire, de nouvelles contraintes (coupes

de faisabilité, FC) qui restreignent les valeurs des variables binaires sont ajoutées au problème

maître. Si par contre la solution du problème maître est faisable pour le sous-problème et

si la solution du sous-problème est sous optimale pour le problème de départ (le problème

décomposé), de nouvelles contraintes (coupes d’optimalité, OC) qui restreignent les valeurs des

variables binaires sont ajoutées au problème maître. Plusieurs coupes, FC et OC, sont obtenues

à travers la résolution itérative du dual du sous-problème (DSP). Après avoir présenté la refor-

mulation, nous décrivons des expérimentations sur deux cas d’études réels qui représentent le

trafic dans deux zones de contrôle en France : la jonction de Pierrefitte-Gonesse et la section

de ligne autour de la gare Rouen-Rive-Droite. Les résultats montrent que la reformulation

standard de Benders n’est pas appropriée pour la gestion opérationnelle du trafic ferroviaire :

RECIFE-MILP trouve toujours de meilleurs résultats que l’algorithme de Benders.

Ensuite, pour améliorer la performance de l’application de la décomposition de Benders

, nous proposons la reformulation réduite de Benders (RBR) de la formulation de RECIFE-

MILP. Contrairement à l’approche classique (la reformulation standard), la reformulation

réduite exploite la nature de la formulation de RECIFE-MILP. L’idée de la reformulation

réduite est de supprimer dans l’évaluation du sous-problème des variables et des contraintes

qui s’avèrent inutile dès lors que les décisions de routage sont fixées dans le problème maître.

En effet, quand un train n’utilise pas un itinéraire, toutes les variables et les contraintes liées

aux décisions de timing sur cet itinéraire sont inutiles car elles peuvent être fixées a priori sans

optimisation. Dans nos expérimentations sur les deux zones de contrôle, les résultats montrent

que la reformulation réduite est meilleure que la reformulation standard. Cependant, malgré

l’amélioration réalisée, la performance de la reformulation réduite reste significativement moins

performante que celle de RECIFE-MILP.

Dans la voie de recherche suivante, nous proposons de générer des inégalités pour accroître

les performances de la reformulation réduite de Benders. Les inégalités proposées sont ajoutées

au problème maître de Benders, pour renforcer la cohérence entre les décisions de reroutage

et de réordonnancement. Après une phase de configuration algorithmique dans laquelle nous

avons identifié les inégalités les plus pertinentes à ajouter au problème maître, nous avons

résolu des instances représentatives du trafic sur les deux zones de contrôle. Les résultats

montrent que, bien que l’ajout des inégalités au problème maître améliore la performance de la

reformulation réduite, la performance de l’algorithme de Benders reste modeste comparée à

celle de RECIFE-MILP.

Finalement, nous proposons un algorithme de Benders en trois étapes (3BA). C’est un

algorithme basé sur la décomposition de la formulation de RECIFE-MILP en trois problèmes :
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le nouveau problème maître (NUMP), le sous-problème linéaire en nombres entiers à variables

mixtes (MILSP) et le sous-problème linéaire (LSP). L’algorithme 3BA suit le même principe

de l’algorithme classique de Benders : la résolution est itérative, mais à chaque itération, au

lieu d’avoir la résolution du problème maître suivi par celle du sous-problème pour générer les

coupes, nous résolvons le nouveau problème maître NUMP, le sous-problème linéaire MILSP

puis le sous-problème LSP pour générer les coupes. Dans cette décomposition, le nouveau

problème maître NUMP ne contient que les variables binaires de reroutage. Étant donné les

décisions de reroutage obtenues, nous construisons le sous-problème MILSP contenant les vari-

ables binaires de réordonnancement et les variables continues de re-timing. Avec les décisions

d’ordonnancement optimales obtenues avec le sous-problème MILSP nous construisons ensuite

le sous-problème linéaire LSP contenant uniquement les variables de re-timing pour définir les

coupes à ajouter au problème maître NUMP. Cette reformulation permet de générer des coupes

de Benders sans le paramètre big-M et de cette façon éviter l’exploration de réordonnancements

infaisables ou de solutions sous-optimales. En faisant ainsi, nous obtenons un algorithme

capable de réaliser une performance significativement meilleure que RECIFE-MILP pour les

instances de Rouen-Rive-Droite. Malheureusement, cela n’est pas le cas pour les instances

de Gonesse, bien que l’algorithme en trois étapes surpasse celui basé sur la décomposition du

problème en deux étapes sur les deux zones de contrôle. Nous conjecturons que la différence

de performances de l’algorithme en trois étapes sur les deux zones de contrôle est due aux

caractéristiques des instances du problème. Nous pensons que lorsqu’une instance du problème

contient « beaucoup » d’itinéraires pour chaque train et «peu» de variables de réordonnance-

ment, l’algorithme en trois étapes est la meilleure option pour obtenir des solutions de bonne

qualité, tandis que RECIFE-MILP est préférable quand il y a « peu » d’itinéraires pour chaque

train et « beaucoup » de variables de réordonnancement.

En conclusions, nous pouvons affirmer que dans cette thèse, l’application des approches

de décomposition de Benders à la formulation MILP utilisée dans RECIFE-MILP a révélé de

nouvelles voies de recherche qui pourront faire l’objet de futurs travaux.

La première problématique que nous identifions concerne l’inadaptation de la décomposition

de Benders à la formulation MILP actuelle utilisée dans RECIFE-MILP. En particulier, nous

pouvons mettre en avant trois axes de recherche que nous considérons comme importants.

• Tout d’abord, la fonction objectif de la formulation du problème maître ne contient pas

de variables binaires (les variables de reroutage et de réordonnancement), mais seulement

la variable «factice» représentant en quelque sorte l’impact de variables binaires sur

les variables continues. Ainsi, la fonction objectif est seulement guidée par les coupes

que nous ajoutons progressivement durant l’exécution de l’algorithme de Benders. Cela

implique que, jusqu’à ce qu’un nombre important de coupes soient ajoutées, aucun
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espace de solutions intéressant ne peut être identifié et la recherche dans le problème

maître ne peut pas suivre une bonne direction. Nous pensons que l’identification d’une

fonction objectif problème maître qui intègre les variables binaires pourrait améliorer la

performance de nos algorithmes.

• D’autre part, lorsque l’on examine les mauvaises performances des algorithmes, nous

pensons qu’elles sont probablement liées, du moins en partie, au fait que le problème

maître n’a aucune contrainte pour forcer la cohérence des valeurs des variables binaires.

En d’autres termes, il n’y a pas de lien entre les décisions de reroutage et celles de

réordonnancement ou entre différentes décisions de réordonnancement dans le problème

maître. Même si nous proposons dans cette thèse quelques inégalités qui imposent cette

cohérence dans plusieurs circonstances, elles ne sont pas suffisantes pour remédier à ce

problème. Une première perspective de recherche de cette axe serait d’identifier d’autres

inégalités fortes. Une première perspective serait la possibilité d’ajouter dynamique-

ment des inégalités dans un arbre de branchement et séparation afin d’exploiter leurs

potentialités sans augmenter le temps de calcul du processus.

• Finalement, nous considérerons la possibilité de décomposer des reformulations plus

fortes de RECIFE-MILP, comme celles proposées récemment par Pellegrini et al.

(2017). En effet, cette reformulation exploite le lien entre les décisions de routage

et d’ordonnancement afin de diminuer le nombre de variables binaires de la formulation

MILP. À partir des expérimentations sur la jonction de Gonesse, cette reformulation

semble apporter des améliorations évidentes à RECIFE-MILP et nous pensons que cela

pourrait être le cas aussi pour les algorithmes de décomposition que nous avons étudié

dans cette thèse.

La deuxième problématique est liée au choix de la méthode de décomposition pour résoudre

le problème de gestion opérationnelle du trafic ferroviaire. La décomposition mathématique

basée sur les principes de Benders que nous proposons dans cette thèse ne semble pas être

suffisamment efficace quand on est face à des problèmes de grandes tailles. Bien que la

performance soit intéressante quand la zone de contrôle considérée possède des caractéristiques

particulières relatives au nombre et à la nature des itinéraires alternatifs des trains, on ne

peut pas envisager de traiter par exemple tout un réseau national. Pour en être capable, nous

pensons que la décomposition spatiale reste la seule option viable, c’est-à-dire une approche

de décomposition dans laquelle on décompose un ensemble de zones de contrôle en plusieurs

sous-ensembles «faciles» à traiter. En particulier,

• nous pensons qu’il est possible d’envisager une approche de décomposition selon une

hiérarchie macroscopique-microscopique de représentation de l’infrastructure. Le niveau
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microscopique serait utilisé pour traiter le problème de gestion opérationnelle du trafic

ferroviaire dans des zones critiques (les gares ou les jonctions) et le niveau macroscopique

pour traiter le problème sur l’ensemble du réseau. En effet, un algorithme interactif

pourrait être défini pour obtenir des décisions de gestion du trafic cohérentes entre les

différentes zones critiques mais la manière de faire cela n’est pas encore clairement

déterminée. Le principal problème à traiter est que les solutions dans ces zones critiques

sont interdépendantes et donc que les solutions optimales localement sont probablement

incohérentes entre elles. La meilleure façon de résoudre le problème global dans ce cas

n’est pas encore tranchée dans la communauté, de même la façon d’obtenir la solution

optimale où une solution sous-optimale de bonne qualité doit faire l’objet de futurs

travaux de recherche.

La dernière problématique concerne l’amélioration de la performance de l’algorithme

RECIFE-MILP. En effet, plusieurs autres approches peuvent être utilisées en plus de la décom-

position de Benders considérée dans cette thèse. En particulier,

• une possibilité intéressante est liée au renforcement de la relaxation linéaire de la for-

mulation de RECIFE-MILP. En effet, en étudiant les résultats de nos expérimentations,

nous nous sommes rendu compte que la borne inférieure obtenue de la relaxation linéaire

de la formulation de RECIFE-MILP est quelquefois très éloignée de la solution optimale

et dans certaines instances augmenter la valeur de cette borne inférieure consomme beau-

coup de temps. Intuitivement, on peut penser que la faiblesse de la relaxation linéaire

est que si les variables binaires de précédence qui apparaissent dans les contraintes

disjonctives sont assez éloignées de l’intégralité alors les trains peuvent circuler «l’un

sur l’autre» sans accumuler de retard. D’autres causes sont peut-être à l’origine de la

mauvaise qualité de la borne inférieure dans d’autres instances, un autre futur sujet de

recherche serait alors d’analyser en profondeur cette problématique pour améliorer la

performance de RECIFE-MILP.
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Décomposition de Benders pour la gestion opérationnelle du trafic ferroviaire

Dans plusieurs pays européens, la capacité de l’infrastructure est complètement exploitée aux heures

de pointe et aux points critiques : une grande quantité de trains traversent ces points critiques dans un laps

de temps très réduit. Dans cette situation le retard d’un train provoqué par un conflit de circulation peut

se propager dans tout le réseau. Le problème de la gestion opérationnelle du trafic ferroviaire consiste à

trouver les modifications des itinéraires et des ordonnancements des trains qui minimisent la propagation

des retards. Dans cette thèse, nous proposons une approche de décomposition de Benders pour la

formulation linéaire en nombres entiers à variables mixtes utilisée dans l’algorithme RECIFE-MILP.

Après avoir constaté que l’approche de décomposition standard de Benders ne permet pas de trouver

rapidement une solution de bonne qualité pour certaines instances du problème, nous étudions trois

approches alternatives afin d’améliorer la performance de notre algorithme. Nous proposons d’abord

une approche que nous appelons la reformulation réduite de Benders. Ensuite, nous introduisons des

inégalités dans la formulation du problème maître de Benders. Finalement, nous scindons le processus de

résolution en trois étapes au lieu de deux comme dans la décomposition standard de Benders. L’analyse

expérimentale montre que la combinaison de la première et dernière approche surpasse l’algorithme

original RECIFE-MILP dans la résolution de grandes instances sous certaines conditions.

Mots-clés :
Gestion opérationnelle du trafic ferroviaire, programmation linéaire en nombres entiers à variables

mixtes, décomposition de Benders.

Benders decomposition for the real–time Railway Traffic Management Problem

In railway systems, during congested traffic situations, the infrastructure capacity is completely

exploited for trains circulation. In these situations, when traffic is perturbed some trains must be stopped

or slowed down for ensuring safety, and delays occur. The real-time Railway Traffic Management

Problem (rtRTMP) is the problem of modifying trains route and schedule to limit delay propagation. In

this thesis, we propose a Benders decomposition of a MILP-based algorithm for this problem, named

RECIFE-MILP. After observing that the standard Benders decomposition (BD) does not allow the

effective solution of rtRTMP instances, we study three possible approaches to improve the performance.

Specifically, we first propose a modification of the problem reformulation which is typical of BD,

obtaining what we call reduced BD. Then, we introduce some inequalities to the Benders master

problem. Finally, we split the solution process in three steps rather than two as in the standard BD. As we

show in a thorough experimental analysis, the combination of the first and last approaches outperforms

the original RECIFE-MILP algorithm when tackling large instances with some specific features.

Mots-clefs
real-time Railway Traffic Management Problem (rtRTMP), Mixed Integer Linear Programming

(MILP), Benders decomposition (BD).
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