Noisy Channel-Output Feedback in the Interference Channel

Victor Quintero

To cite this version:

Victor Quintero. Noisy Channel-Output Feedback in the Interference Channel. Information Theory [math.IT]. Université de Lyon, 2017. English. NNT : 2017LYSEI128 . tel-01667063v1

HAL Id: tel-01667063

https://hal.science/tel-01667063v1

Submitted on 19 Dec 2017 (v1), last revised 8 Mar 2019 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITY OF LYON

Doctoral School of Electronics, Electrotechnics and Automation (ED EEA)

THESIS

presented in partial fulfilment of the requirements
for the degree of Doctor of Philosophy from the University of Lyon, the 12/12/2017.

Specialization: Electrical Engineering

Victor Manuel Quintero Florez

Noisy Channel-Output Feedback in the Interference Channel

Jury:

Michèle Wigger Abdellatif Zaidi	Prof. Prof.	Télécom Paristech, France. Université Paris-Est Marne la Vallée, France.	Reviewer Reviewer
Inbar Fijalkow	Prof.	Université de Cergy-Pontoise, France.	Examiner H. Vincent Poor
Prof.	Princeton University, USA.	Examiner	
Gerhard Kramer	Prof.	Technische Universität München, Germany.	Examiner David Gesbert
Prof.	Eurecom, France.	Examer	
Jean-Marie Gorce	Prof.	Université de Lyon, France.	Thesis Director
Samir M. Perlaza	Dr.	INRIA, France.	Thesis Advisor
Iñaki Esnaola	Prof.	University of Sheffield, UK.	Guest

UNIVERSITÉ DE LYON
 Électronique, Électrotechnique et Automatique (ED EEA)

THĖSE

présentée publiquement pour l'obtention du diplôme de Docteur de l'Université de Lyon, le 12/12/2017.

Spécialité : Génie Électrique

Victor Manuel Quintero Florez

Noisy Channel-Output Feedback in the Interference Channel

Jury :

Michèle Wigger	Prof.	Télécom Paristech, France.	Rapporteure Abdellatif Zaidi
Prof.	Université Paris-Est Marne la Vallée, France.	Rapporteur	

Acknowledgements

This thesis is dedicated to the memory of my parents and to all my family, especially Yolanda and Matilde for their encouragement, patience, and unconditional love every day in this amazing journey; and my brother Luis who has always supported me and believed in me.

There have been many people who have walked along my side during these incredible four years to whom I would like to thank. I would like to specially thank my thesis director, Prof. Jean-Marie Gorce, who has always been encouraging and supporting me with all his knowledge and enthusiasm; my thesis advisor, Dr. Samir M. Perlaza, for his entire dedication during all the days and nights of this PhD , and his enormous contribution with all his knowledge and energy to assure the quality of this thesis; and Prof. Iñaki Esnaola, for all his time and the invaluable contributions and advices to improve this thesis. This thesis would not have been completed without their commitment and participation.

My deepest gratitude goes to all the people in the CITI Laboratory. Especially, I would like to thank Dr. Selma Belhadj Amor, Dr. Leonardo S. Cardoso, Dr. Malcolm Egan, David Kibloff, and Nizar Kalfhet for all their technical contributions and their friendship. I am also grateful with Gaelle Tworkowski, Joelle Charnay, Margarita Raimbaud, Aude Montillet, Caroline Tremeaud, Sophie Karsai, Delphine Diner, Marina Da Graca, Giulia Randisi, and Sandrine Dahan who have made great the experience of being part of the CITI Laboratory.

Abstract

In this thesis, the two-user Gaussian interference channel with noisy channel-output feedback (GIC-NOF) is studied from two perspectives: centralized and decentralized networks.
From the perspective of centralized networks, the fundamental limits of the two-user GICNOF are characterized by the capacity region. One of the main contributions of this thesis is an approximation to within a constant number of bits of the capacity region of the two-user GIC-NOF. This result is obtained thanks to the analysis of a simpler channel model, i.e., a two-user linear deterministic interference channel with noisy channel-output feedback (LDICNOF). The analysis to obtain the capacity region of the two-user LDIC-NOF provides the main insights required to analyze the two-user GIC-NOF.

From the perspective of decentralized networks, the fundamental limits of the two-user decentralized GIC-NOF (D-GIC-NOF) are characterized by the η-Nash equilibrium (η-NE) region. Another contribution of this thesis is an approximation to the η-NE region of the twouser GIC-NOF, with $\eta>1$. As in the centralized case, the two-user decentralized LDIC-NOF (D-LDIC-NOF) is studied first and the lessons learnt are applied in the two-user D-GIC-NOF.

The final contribution of this thesis consists of a closed-form answer to the question: "When does channel-output feedback enlarges the capacity or η-NE regions of the two-user GIC-NOF or two-user D-GIC-NOF?". This answer is of the form: Implementing channel-output feedback in transmitter-receiver i enlarges the capacity or $\eta-N E$ regions if the feedback $S N R$ is beyond SNR_{i}^{*}, with $i \in\{1,2\}$. The approximate value of SNR_{i}^{*} is shown to be a function of all the other parameters of the two-user GIC-NOF or two-user D-GIC-NOF.

Publications

Journals

[1] "Approximate Capacity Region of the Two-User Gaussian Interference Channel with Noisy Channel-Output Feedback". Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, and Jean-Marie Gorce. This work is under second round review in the IEEE Transactions on Information Theory. Submitted on Nov. 10, 2016 and revised on Sep. 23, 2017.
[2] "When Does Output Feedback Enlarge the Capacity of the Interference Channel?". Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, and Jean-Marie Gorce. Accepted in IEEE Transactions on Communications. Submitted Dec. 20, 2016; revised Apr. 9, 2017; and accepted Sep. 6, 2017.

Conferences

[1] "Noisy Channel-Output Feedback Capacity of the Linear Deterministic Interference Channel". Victor Quintero, Samir M. Perlaza, and Jean-Marie Gorce. IEEE Information Theory Workshop (ITW), Jeju, Korea, Oct., 2015.
[2] "Approximate Capacity of the Gaussian Interference Channel with Noisy Channel-Output Feedback". Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, and Jean-Marie Gorce. IEEE Information Theory Workshop (ITW), Cambridge, UK, Sep., 2016.
[3] "Nash Region of the Linear Deterministic Interference Channel with Noisy Output Feedback". Victor Quintero, Samir M. Perlaza, Jean-Marie Gorce, and H. Vincent Poor. IEEE Intl. Symposium on Information Theory (ISIT), Aachen, Germany, Jun., 2017.

INRIA Technical Reports

[1] "Noisy Channel-Output Feedback Capacity of the Linear Deterministic Interference Channel". Victor Quintero, Samir M. Perlaza, and Jean-Marie Gorce. Technical Report, INRIA, No. 456, Lyon, France, Jan., 2015.
[2] "Approximate Capacity of the Two-User Gaussian Interference Channel with Noisy Channel-Output Feedback". Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, and Jean-Marie Gorce. Technical Report, INRIA, No. 8861, Lyon, France, Mar., 2016.
[3] "When Does Channel-Output Feedback Enlarge the Capacity Region of the Interference Channel?". Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, and Jean-Marie Gorce. Technical Report, INRIA, No. 8862, Lyon, France, Mar., 2016.
[4] "Decentralized Interference Channels with Noisy Output Feedback". Victor Quintero, Samir M. Perlaza, Jean-Marie Gorce, and H. Vincent Poor. Technical Report, INRIA, No. RR-9011, Lyon, France, Jan., 2017.

Other Publications

[1] "On the Benefits of Channel-Output Feedback in 5G". Victor Quintero, Samir M. Perlaza, and Jean-Marie Gorce. GDR-ISIS meeting: 5G \& Beyond: Promises and Challenges, Paris, Oct., 2014. (Invited talk).
[2] "Noisy Channel-Output Feedback Capacity of the Linear Deterministic Interference Channel". Victor Quintero, Samir M. Perlaza, and Jean-Marie Gorce. European School of Information Theory (ESIT), Zandvoort, The Netherlands, Apr., 2015. (Poster).
[3] "Capacité du Canal Linéaire Déterministe à Interférences avec Voies de Retour Bruitées". Victor Quintero, Samir M. Perlaza, and Jean-Marie Gorce. Colloque GRETSI, Lyon, France, Sep., 2015.
[4] "Does the Channel-Output Feedback improve the performance of the Two-User Linear Deterministic Interference Channel?". Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, and Jean-Marie Gorce. INRIA-GDR-ISIS meeting: Recent Advances in Network Information Theory and Coding Theory, Villeurbanne, France, Nov., 2015. (Poster).
[5] "When Does Channel-Output Feedback Increase the Capacity Region of the Two-User Linear Deterministic Interference Channel?". Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, and Jean-Marie Gorce. 11th International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM), Grenoble, France, May., 2016.
[6] "On the Efficiency of Nash Equilibria in the Interference Channel with Noisy Feedback". Victor Quintero, Samir M. Perlaza, and Jean-Marie Gorce. European Wireless Conference. Workshop COCOA - COmpetitive and COoperative Approaches for 5G networks, Dresden, Germany, May., 2017. (Invited Paper).
[7] "Région d' η-Équilibre de Nash du Canal Linéaire Déterministe à Interférences avec Rétroalimentation Dégradée". Victor Quintero, Samir M. Perlaza, and Jean-Marie Gorce. Colloque GRETSI, Juan-les-Pins, France, Sep., 2017.

Contents

Acronyms xix
Notation xxi

1. Introduction 1
1.1. Motivation 3
1.2. Contributions 3
1.3. Outlines 4
I. INTERFERENCE CHANNELS 7
2. Centralized Interference Channels 9
2.1. Gaussian Interference Channel 10
2.1.1. Case without Feedback 12
2.1.2. Case with Perfect Channel-Output Feedback 17
2.1.3. Symmetric Case with Noisy Channel-Output Feedback 19
2.1.4. Rate-Limited Feedback 21
2.2. Linear Deterministic Interference Channel 22
2.2.1. Case without Feedback 24
2.2.2. Case with Perfect Channel-Output Feedback 24
2.2.3. Symmetric Case with Noisy Channel-Output Feedback 24
2.2.4. Symmetric Case with only one Perfect Channel-Output Feedback 25
2.2.5. Sum-Capacity with Source Cooperation 25
3. Decentralized Interference Channels 27
3.1. Game Formulation 28
3.2. Gaussian Interference Channel 29
3.2.1. Case without Feedback 29
3.2.2. Case with Perfect Channel-Output Feedback 30
3.3. Linear Deterministic Interference Channel 30
3.3.1. Case without Feedback 30
3.3.2. Case with Perfect Channel-Output Feedback 31
3.3.3. Symmetric Case with Noisy Channel-Output Feedback 31
4. Connections between Linear Deterministic and Gaussian Interference Channels 33
II. CONTRIBUTIONS TO CENTRALIZED INTERFERENCE CHANNELS 35
5. Linear Deterministic Interference Channel 37
5.1. Capacity Region 37
5.1.1. Comments on the Achievability Scheme 40
5.1.2. Comments on the Converse Region 41
5.2. Cases in which Feedback Enlarges the Capacity Region 42
5.2.1. Rate Improvement Metrics 44
5.2.2. Enlargement of the Capacity Region 45
5.2.3. Improvement of the Individual Rate R_{i} by Using Feedback in Link i 46
5.2.4. Improvement of the Individual Rate R_{j} by Using Feedback in Link i 46
5.2.5. Improvement of the Sum-Rate 47
5.2.6. Examples 47
5.3. Generalized Degrees of Freedom 49
6. Gaussian Interference Channel 53
6.1. An Achievable Region 53
6.2. A Converse Region 55
6.3. Gap between the Achievable Region and the Converse Region 58
6.4. Cases in which Feedback Enlarges the Capacity Region 58
6.4.1. Rate Improvement Metrics 58
6.4.2. Improvements 60
6.4.3. Examples 61
III. CONTRIBUTIONS TO DECENTRALIZED INTERFERENCE CHANNELS 67
7. Linear Deterministic Interference Channel 69
7.1. η-Nash Equilibrium Region 69
7.2. Enlargement of the η-Nash Equilibrium Region with Feedback 73
7.3. Efficiency of the η-NE 73
7.3.1. Definitions 74
7.3.2. Price of Anarchy 74
7.3.3. Price of Stability 78
8. Gaussian Interference Channel 81
8.1. Achievable η-Nash Equilibrium Region 81
8.2. Non-Equilibrium Region 85
IV. CONCLUSIONS 89
9. Conclusions 91
A. Achievability Proof of Theorem [5.1.1 and Proof of Theorem 6.1.1 95
A.1. An Achievable Region for the Two-user Linear Deterministic Interference Chan-nel with Noisy Channel-Output Feedback100
A.2. An Achievable Region for the Two-user Gaussian Interference Channel withNoisy Channel-Output Feedback103
B. Converse Proof of Theorem 5.1.1 107
C. Proof of Theorem [5.2.1 115
D. Proof of Theorem [5.2.2 121
E. Proof of Theorem 15.2 .4 123
F. Proof of Theorem [5.3.1] 125
G. Proof of Theorem $\sqrt{6.2 .1}$ 127
H. Proof of Theorem [6.3.1 135
I. Proof of Theorem|7.1.1 145
J. Proof of Theorem [8.1.1 155
K. Proof of Theorem 8.2.1 161
L. Proof of Lemmal21 169
M. Proof of Lemmal24 171
N. Proof of Lemmal28 181
O. Price of Anarchy and Maximum and Minimum Sum-Rates 183
O.1. PoA when both Transmitter-Receiver Pairs are in the Low-Interference Regime 185
O.2. PoA when Transmitter-Receiver Pair 1 is in the Low-Interference Regime andTransmitter-Receiver Pair 2 is in the High-Interference Regime187
P. Information Measures 189
P.1. Discrete Random Variables 189
P.1.1. Entropy 189
P.1.2. Joint Entropy 191
P.1.3. Conditional Entropy 193
P.1.4. Mutual Information 195
P.1.5. Conditional Mutual Information 198
P.2. Real-Valued Random Variables 206
P.2.1. Differential Entropy 206
P.2.2. Joint Differential Entropy 208
P.2.3. Conditional Differential Entropy 210
P.2.4. Mutual Information 211
P.2.5. Conditional Mutual Information 212
Q. Fano's Inequality 213
R. Weak Typicality 217
R.1. Discrete Random Variables 217
R.1.1. Weak Typicality 218
R.1.2. Weak Joint Typicality 222
R.1.3. Weak Conditional Typicality 225
R.2. Real-Valued Random Variables 227
R.2.1. Weak Typicality 227
R.2.2. Weak Joint Typicality 230

List of Figures

2.1. Two-User continuous interference channel with noisy channel-output feedback. 10
2.2. Gaussian interference channel with noisy channel-output feedback at channel use n.
2.3. Two-user linear deterministic interference channel with noisy channel-output feedback at channel use n.
5.1. (a) Capacity regions of $\mathcal{C}(5,1,3,4,0,0)$ (thick red line) and $\mathcal{C}(5,1,3,4,4,0)$ (thin blue line). (b) Achievability of the rate pair (3,1) in an LDIC-NOF with parameters $\vec{n}_{11}=5, \vec{n}_{22}=1, n_{12}=3, n_{21}=4, \overleftarrow{n}_{11}=0$ and $\overleftarrow{n}_{22}=0$ (no feedback links). (c) Achievability of the rate pair (3,2) in an LDIC-NOF with parameters $\vec{n}_{11}=5, \vec{n}_{22}=1, n_{12}=3, n_{21}=4, \overleftarrow{n}_{11}=4$ and $\overleftarrow{n}_{22}=0 . \quad \ldots \quad 39$
5.2. (a) Capacity regions of $\mathcal{C}(7,7,3,5,0,0)$ (thick red line) and $\mathcal{C}(7,7,3,5,6,0)$ (thin blue line). (b) Achievability of the rate pair (3,5) in an LDIC-NOF with parameters $\vec{n}_{11}=7, \vec{n}_{22}=7, n_{12}=3, n_{21}=5, \overleftarrow{n}_{11}=0$ and $\overleftarrow{n}_{22}=0$ (no feedback links). (c) Achievability of the rate pair (3,6) in an LDIC-NOF with parameters $\vec{n}_{11}=7, \vec{n}_{22}=7, n_{12}=3, n_{21}=5, \overleftarrow{n}_{11}=6$ and $\overleftarrow{n}_{22}=0 . \quad . . \quad 40$
5.3. Capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(6,0)$ (thin blue line), with $\vec{n}_{11}=7, \vec{n}_{22}=7, n_{12}=3, n_{21}=5$.

5.4. Capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(0,7)$ (thin blue line), with $\vec{n}_{11}=7, \vec{n}_{22}=8, n_{12}=6, n_{21}=5$.
5.5. Capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(4,0)$ (thin blue line), with $\vec{n}_{11}=5, \vec{n}_{22}=1, n_{12}=3, n_{21}=4$.
5.6. Generalized Degrees of Freedom as a function of the parameters α and β, with $0 \leqslant \alpha \leqslant 3$ and $\beta \in\left\{\frac{3}{5}, \frac{4}{5}, \frac{6}{5}\right\}$, of the two-user symmetric LDIC-NOF. The plot without feedback is obtained from 28 and the plot with perfect-output feedback is obtained from 80.]
6.1. Gap between the converse region $\overline{\mathcal{C}}$ and the achievable region \mathcal{C} of the two-user GIC-NOF under symmetric channel conditions, i.e., $\overrightarrow{\mathrm{SNR}}_{1}=\overrightarrow{\mathrm{SNR}}_{2}=\overline{\mathrm{SNR}}$, $\mathrm{INR}_{12}=\mathrm{INR}_{21}=\mathrm{INR}$, and $\overleftarrow{\mathrm{SNR}}_{1}=\overleftarrow{\mathrm{SNR}}_{2}=\overleftarrow{\mathrm{SNR}}$, as a function of $\alpha=\frac{\log \mathrm{INR}}{\log \overline{\mathrm{SNR}}}$

6.2. Improvement metrics $\Delta_{i}^{\mathrm{A}}, \Delta_{i}^{\mathrm{C}}, \Sigma^{\mathrm{A}}$, and Σ^{C} as functions of $\overleftarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{2}$, with $i \in\{1,2\}$, for Example $|6|$
6.3. Improvement metrics $\Delta_{i}^{\mathrm{A}}, \Delta_{i}^{\mathrm{C}}, \Sigma^{\mathrm{A}}$, and Σ^{C} as functions of $\overleftarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{2}$, with $i \in\{1,2\}$, for Example $7 \mid$63
6.4. Improvement metrics $\Delta_{i}^{\mathrm{A}}, \Delta_{i}^{\mathrm{C}}, \Sigma^{\mathrm{A}}$, and Σ^{C} as functions of $\overleftarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{2}$, with $i \in\{1,2\}$, for Example $8 \mid$
7.1. Capacity region $\mathcal{C}(7,6,4,4,0,0)$ (thin blue line) and η-NE region $\mathcal{N}_{\eta}(7,6,4,4,0,0)$ (thick black line) with η arbitrarily small. Fig. 7.1 1 shows the capacity region $\mathcal{C}\left(7,6,4,4, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}\left(7,6,4,4, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ (thin green line), with $\overleftarrow{n}_{11} \in\{0,1,2,3,4\}$ and $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$. Fig. $7.1 b$ shows the capacity region $\mathcal{C}\left(7,6,4,4,5, \overleftarrow{n}_{22}\right.$) (thick red line) and the η-NE region $\mathcal{N}_{\eta}\left(7,6,4,4,5, \overleftarrow{n}_{22}\right)$ (thin green line), with $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$. Fig. 7.1p shows the capacity region $\mathcal{C}\left(7,6,4,4,6, \overleftarrow{n}_{22}\right)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}\left(7,6,4,4,6, \overleftarrow{n}_{22}\right)$ (thin green line), with $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$. Fig. 7.1 d shows the capacity region $\mathcal{C}\left(7,6,4,4,7, \overleftarrow{n}_{22}\right)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}\left(7,6,4,4,7, \overleftarrow{n}_{22}\right)$ (thin green line), with $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$. Fig. 7.1e shows the capacity region $\mathcal{C}(7,6,4,4,7,5)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}(7,6,4,4,7,5)$ (thin green line). Fig. 7.1 f shows the capacity region $\mathcal{C}(7,6,4,4,7,6)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}(7,6,4,4,7,6)$ (thin green line). Fig. 7.1 p and Fig. 7.1 h illustrate the achievability scheme for the equilibrium rate pair $(3,4)$ and $(5,4)$ in $\mathcal{N}_{\eta}(7,6,4,4,5,0)$.
8.1. Achievable capacity regions (dashed-lines) and achievable η-NE regions (solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=10 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in$ $\{-100,18,50\} \mathrm{dB}, \overleftarrow{\mathrm{SNR}}_{2} \in\{-100,12,50\} \mathrm{dB}$ and $\eta=1 . \ldots$.
8.2. Achievable capacity regions (dashed-lines) and achievable η-NE regions (solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=48 \mathrm{~dB}, \mathrm{INR}_{21}=30 \mathrm{~dB}, \widetilde{\mathrm{SNR}}_{1} \in$ $\{-100,18,50\} \mathrm{dB}, \overleftarrow{\mathrm{SNR}}_{2} \in\{-100,12,50\} \mathrm{dB}$ and $\eta=1 . \ldots$.
8.3. Achievable capacity regions (dashed-lines) and achievable η-NE regions (solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overline{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overline{\mathrm{SNR}}_{2}=3 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=9 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in$ $\{-100,18,50\} \mathrm{dB}, \widetilde{\mathrm{SNR}}_{2} \in\{-100,8,50\} \mathrm{dB}$ and $\eta=1$.

83
8.4. Converse regions (dashed-lines) and non-equilibrium regions with $\eta \geqslant 1$ (solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=3 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=8 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=5 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in$ $\{-100,9,50\} \mathrm{dB}$ and $\overline{\mathrm{SNR}}_{2} \in\{-100,6,50\} \mathrm{dB}$.
8.5. Converse region (blue dashed-line), non-equilibrium region with $\eta \geqslant 1$ (blue solid lines), achievable capacity regions (red dashed-line), and achievable η-NE regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=10$ dB , (a) $\overline{\mathrm{SNR}}_{1}=-100 \mathrm{~dB}$ and $\overline{\mathrm{SNR}}_{2}=-100 \mathrm{~dB}$, (b) $\overline{\mathrm{SNR}}_{1}=18 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=12 \mathrm{~dB}$, and (c) $\overleftarrow{\mathrm{SNR}}_{1}=50 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=50 \mathrm{~dB}$.
8.6. Converse region (blue dashed-line), non-equilibrium region with $\eta \geqslant 1$ (blue solid lines), achievable capacity regions (red dashed-line), and achievable η-NE regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=48 \mathrm{~dB}, \mathrm{INR}_{21}=30$ dB , (a) $\overleftarrow{\mathrm{SNR}}_{1}=-100 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=-100 \mathrm{~dB}$, (b) $\overleftarrow{\mathrm{SNR}}_{1}=18 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=12 \mathrm{~dB}$, and (c) $\overleftarrow{\mathrm{SNR}}_{1}=50 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=50 \mathrm{~dB}$. .
8.7. Converse region (blue dashed-line), non-equilibrium region with $\eta \geqslant 1$ (blue solid lines), achievable capacity regions (red dashed-line), and achievable η-NE regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=3 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=9$ dB , (a) $\overline{\mathrm{SNR}}_{1}=-100 \mathrm{~dB}$ and $\overline{\mathrm{SNR}}_{2}=-100 \mathrm{~dB}$, (b) $\overleftarrow{\mathrm{SNR}}_{1}=18 \mathrm{~dB}$ and $\overline{\mathrm{SNR}}_{2}=8 \mathrm{~dB}$, and (c) $\overline{\mathrm{SNR}}_{1}=50 \mathrm{~dB}$ and $\overline{\mathrm{SNR}}_{2}=50 \mathrm{~dB}$. 87
8.8. Converse region (blue dashed-line), non-equilibrium region with $\eta \geqslant 1$ (blue solid lines), achievable capacity regions (red dashed-line), and achievable η-NE regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overline{\mathrm{SNR}}_{1}=3 \mathrm{~dB}, \overline{\mathrm{SNR}}_{2}=8 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=5$ dB , (a) $\widehat{\mathrm{SNR}}_{1}=-100 \mathrm{~dB}$ and $\widehat{\mathrm{SNR}}_{2}=-100 \mathrm{~dB}$, (b) $\widehat{\mathrm{SNR}}_{1}=9 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=6 \mathrm{~dB}$, and (c) $\overleftarrow{\mathrm{SNR}}_{1}=50 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=50 \mathrm{~dB}$. 88
A.1. Structure of the superposition code. The codewords corresponding to the message indices $W_{1 . C 1}^{(t-1)}, W_{2 . C 1}^{(t-1)}, W_{i . C 1}^{(t)}, W_{i . C 2}^{(t)}, W_{i . P}^{(t)}$ with $i \in\{1,2\}$ as well as the block index t are both highlighted. The (approximate) number of codewords for each code layer is also highlighted.
A.2. The auxiliary random variables and their relation with signals when channeloutput feedback is considered in (a) very weak interference regime, (b) weak interference regime, (c) moderate interference regime, (d) strong interference regime and (e) very strong interference regime.
B.1. Example of the notation of the channel inputs and the channel outputs when channel-output feedback is considered.
B.2. Vector $\boldsymbol{X}_{i, U, n}$ in different combination of interference regimes. 111
G.1. Genie-Aided GIC-NOF models for channel use n. (a) Model used to calculate the outer bound on R_{1}; (b) Model used to calculate the outer bound on $R_{1}+R_{2}$; and (c) Model used to calculate the outer bound on $2 R_{1}+R_{2}$ 128

M.1. Structure of the superposition code. The codewords corresponding to the
message indices $W_{1 . C 1}^{(t-1)}, W_{2 . C 1}^{(t-1)}, W_{i . C 1}^{(t)}, W_{i . C 2}^{(t)}, W_{i . P}^{(t)}$ with $i \in\{1,2\}$ as well as the
block index t are both highlighted. The (approximate) number of codewords
for each code layer is also highlighted.

M.2. The auxiliary random variables and their relation with signals when channel
output feedback is considered in (a) very weak interference regime, (b) weak
interference regime, (c) moderate interference regime, (d) strong interference
regime and (e) very strong interference regime.
P.1. The function $\iota(x)$. 190
P.2. Entropy of a binary random variable. 191
R.1. Empirical entropy of random binary sequence with $P_{X}(0)=1-P_{X}(1)=0.3$. 221

Acronyms

η-NE	η-Nash Equilibrium
AEP	Asymptotic Equipartition Property
BC	Broadcast Channel
D-GIC	Decentralized Gaussian Interference Channel
D-GIC-NOF	Decentralized Gaussian Interference Channel with Noisy Channel- Output Feedback
D-LDIC	Decentralized Linear Deterministic Interference Channel
D-LDIC-NOF	Decentralized Linear Deterministic Interference Channel with Noisy Channel-Output Feedback
FDM	Frequency Division Multiplexing
GDoF	Generalized Degrees of Freedom
GIC	Gaussian Interference Channel
GIC-NOF	Gaussian Interference Channel with Noisy Channel-Output Feedback
GIC-POF	Gaussian Interference Channel with Perfect Channel-Output Feed-
Gack	
GIC-RLF	Gaussian Interference Channel with Rate-Limited Feedback
HIR	High-Interference Regime
i.i.d.	Independent and Identically Distributed
IC	Interference Channel
IC-CT	Interference Channel with Conferencing Transmitters
IC-GF	Interference Channel with Generalized Feedback
IC-NOF	Interference Channel with Noisy Channel-Output Feedback
LDIC	Interference-to-Noise Ratio
Linear Deterministic Interference Channel	
LD	

LDIC-NOF	Linear Deterministic Interference Channel with Noisy Channel-Output Feedback
LDIC-POF	Linear Deterministic Interference Channel with Perfect Channel- Output Feedback
LIR	Low-Interference Regime
MAC	Multiple Access Channel
NE	Nash Equilibrium
NOF	Noisy Channel-Output Feedback
pdf	Probability Density Function
pmf	Probability Mass Function
POF	Perfect Channel-Output Feedback
RC	Relay Channel
RHK-NOF	Randomized Han-Kobayashi scheme with Noisy Channel-Output
RLF	Feedback
SIC	Ruce-Limited Feedback
SNR	Signal-to-Noise Ratio
TDM	Time Division Multiplexing
TIN	Treating Interference as Noise
WC	Wiretap Channel

Notation

Throughout this thesis, sets are denoted with uppercase calligraphic letters, e.g. \mathcal{X}. Random variables are denoted by uppercase letters, e.g., X. The realizations and the set of events from which the random variable X takes values are respectively denoted by x and \mathcal{X}.

For discrete random variables, the probability mass function (pmf) of X over the set \mathcal{X} is denoted by $P_{X}: \mathcal{X} \rightarrow[0,1]$. The support of P_{X} is $\operatorname{supp}\left(P_{X}\right)=\left\{x \in \mathcal{X}: P_{X}(x)>0\right\}$. Whenever a second discrete random variable Y is considered, $P_{X Y}$ and $P_{Y \mid X}$ denote respectively the joint pmf of (X, Y), i.e., $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$, and the conditional pmf of Y given X, i.e., $P_{Y \mid X}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1] . \mathbb{E}_{X}[\cdot]$ denotes the expectation with respect to the distribution of the random variable X. For real-valued random variables, the probability density function (pdf) of X is denoted by $f_{X}: \mathbb{R} \rightarrow[0, \infty)$. The support of f_{X} is $\operatorname{supp}\left(f_{X}\right)=\left\{x \in \mathbb{R}: f_{X}(x)>0\right\}$. Whenever a second real-valued random variable Y is considered, $f_{X Y}$ and $f_{Y \mid X}$ denote respectively the joint pdf of (X, Y), i.e., $f_{X Y}: \mathbb{R}^{2} \rightarrow[0, \infty)$, and the conditional pdf of Y given X, i.e., $f_{Y \mid X}: \mathbb{R}^{2} \rightarrow[0, \infty)$.

Let N be a fixed natural number. An N-dimensional vector of random variables is denoted by $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top}$ and a corresponding realization is denoted by $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{\top} \in$ \mathcal{X}^{N}. Given $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top}$ and $(a, b) \in \mathbb{N}^{2}$, with $a<b \leqslant N$, the $(b-a+1)$ dimensional vector of random variables formed by the components a to b of \boldsymbol{X} is denoted by $\boldsymbol{X}_{(a: b)}=\left(X_{a}, X_{a+1}, \ldots, X_{b}\right)^{\top}$. If the component a of the N-dimensional vector of random variables \boldsymbol{X} is also a q-dimensional vector, it is denoted by \boldsymbol{X}_{a}. Given $(c, d) \in \mathbb{N}^{2}$, with $c<d \leqslant q$, the $(d-c+1)$-dimensional vector formed by the components c to d of \boldsymbol{X}_{a} is denoted by $\boldsymbol{X}_{a}^{(c: d)}=\left(X_{a}^{(c)}, X_{a}^{(c+1)}, \ldots, X_{a}^{(d)}\right)^{\top}$. The notation $(\cdot)^{+}$denotes the positive part operator, i.e., $(\cdot)^{+}=\max (\cdot, 0)$ The logarithm function \log is assumed to be in base 2.

Abstract

Introduction

THE interference channel (IC) is one of the simplest yet insightful multi-user channels in network information theory. An important class of ICs is the twouser Gaussian interference channel (GIC) in which there exists two point-to-point links subject to mutual interference. In this model, each output signal is a noisy version of the sum of the two transmitted signals affected by the corresponding channel gains. The two-user GIC is a model that forms a basis to analyze not only the effect of the noise but also the effect of the interference in a multiuser communication system.

Some of the techniques often used to deal with interference have been to avoid it, suppress it, or treat it as noise. However, these techniques are not necessarily optimal in all cases. These approaches follow the long-established convention of communication networks in which nodes act as stand alone systems without considering the messages transmitted by other nodes 44. From this perspective, the determination of the capacity region of a two-user GIC has remained as a long standing open problem. While, the capacity region of the two-user GIC is known in the very strong interference regime 19 and in the strong interference regime [33, 73]. In both of these cases, each receiver must decode the messages coming from both transmitters. The best known achievable region for the two-GIC is given in 33 , which is simplified in 21]. The strategy in [33 uses rate-splitting 20, whereas the strategy in 21 uses rate-splitting 20, 33 and block-Markov superposition coding 24 . These strategies split each user's message in two parts: (1) a common part that can be decoded at both receivers; and (2) a private part that is only decoded at the intended received. That is, only part of the other transmitter message is decoded. Partial decoding provides a means of controlling at least partially the interference. The capacity region of the two-user GIC is at most one bit away from the achievable region described in 21. That is, the capacity region is approximated to within one bit 28]. However, the afore mentioned strategies do not allow users to work together to deal with offending interference. To obtain further performance gains, intelligent cooperation among users to control interference is required. How to carry out this cooperation is therefore an important question and forms the basic question addressed in this thesis.

One way to achieve cooperation is through channel-output feedback. Channel-output
feedback is an interference management technique that aims to improve the reliability and the performance of a communication network. From a general perspective, channel-output feedback enables a transmitter in a wireless network to observe the channel-output at its intended receiver. This allows the transmitters to exploit a coding strategy to control the interference, namely use interference as side information, and at the same time to benefit from the broadcast nature of the wireless channel making use of all possible links, establishing new paths for the communication.

Perfect observation of the channel-output at the intended receiver by each one of the corresponding transmitters is studied in $[80$. The achievability scheme presented in 80 is based on: rate-splitting 20,33 , block Markov superposition coding 24 , and backward decoding $[88,89$. The capacity region of the two-user GIC with perfect channel-output feedback (GIC-POF) is at most two bits from the achievable region. One of the most important observations made in 80 is that there exist a multiplicative gain in the capacity in certain interference regimes, particularly when both transmitter-receiver pairs are in the very strong interference regime. The next step towards a more general model was to consider the effect of the noise in the feedback links of a two-user symmetric GIC 47. The results on the interference channel with generalized feedback (IC-GF) in 84,92 are applied to obtain an achievable region in this channel model. The capacity region of the two-user symmetric GIC with noisy channel-ouput feedback is at most 4.7 bits away from the achievable region. The results provide a means of identifying certain values of the signal-to-noise ratios (SNRs) in the feedback links beyond which the capacity region can be enlarged with respect to the case without feedback. An important observation from these results is that the benefits of feedback are bounded by noise in the feedback links.

The benefits of channel-output feedback in communication systems have been also observed in other network topologies. More specifically, the effect of feedback in the multiple access channel (MAC) has been studied in $[11,24,30,45,55,83,87$ and references therein; in the broadcast channel (BCs) in $11,14,15,26,32,56,79,86,90,91$ and references therein; in the relay channel (RCs) in $18,23,31$ and references therein; and in the wiretap channel (WCs) in 5]. Channel-output feedback has been also shown to be beneficial in the simultaneous transmission of both information and energy in the MAC 10 as well as in the IC $37,38$.

From the perspective of decentralized networks, very little is known about the benefits of feedback. Some works highlighting these benefits in the MAC are described in [9] and in the IC in [59, 60, 61, 62]. The case of decentralized communications systems without feedback is a bit better understood 34,46 . For instance, the NEs of games arising in the MAC are described in $7,8,50,58$ and in the IC are described in $13,69,71$.

This thesis considers the two-user asymmetric GIC-NOF. The analysis is performed considering two general scenarios: (1) centralized, in which the entire network is controlled by a central entity that configures both transmitter-receiver pairs; and (2) decentralized, in which each transmitter-receiver pair autonomously configure their transmission-reception parameters. The analysis in these two scenarios allows the characterization of the approximate capacity region and the approximate η-Nash equilibrium (NE) region of the two-user GIC-NOF. These results also allow the identification of the scenarios and the conditions in which one feedback link can enlarge the capacity region and the equilibrium region, respectively.

1.1. Motivation

This thesis focuses in the case of the GIC with NOF (GIC-NOF). The analysis of channeloutput feedback in the IC has been fueled by the significant improvement it gives to the number of generalized degrees of freedom (GDoF) [36 with respect to the case without feedback. In particular, one of the main benefits of feedback is that the number of GDoF with perfect feedback increases monotonically with the interference-to-noise ratio (INR) in the very strong interference regime [80]. However, in the presence of additive Gaussian noise in the feedback links, the number of GDoF is bounded [47]. A significant improvement of the Nash equilibrium (NE) region of the Gaussian IC is also observed in the decentralized IC 60 , i.e., the case in which the transmitter-receiver pairs autonomously choose their own transmit-receive configurations to achieve the highest data transmission rate. More specifically, the NE region is enlarged with respect to the case in which feedback is not available.

The GDoF gain due to feedback in the IC depends on the topology of the network and the number of transmitter-receiver pairs in the network. In the symmetric K-user cyclic Z-interference channel, the GDoF gain does not increase with K [82. In particular, in the very strong interference regime, the GDoF gain is shown to be monotonically decreasing with K. In the fully connected symmetric K-user IC with perfect feedback, the number of GDoF per user is shown to be identical to the one in the two-user case, with an exception in a particular singularity, and totally independent of the exact number of transmitter-receiver pairs 51. It is important to highlight that the network topology, the number of transmitter-receiver pairs, and the interference regimes are not the only parameters determining the effect of feedback. Indeed, the presence of noise in the feedback links turns out to be another relevant factor.

The main motivation to study the two-user GIC-NOF is to analyze the effect of the noise in the feedback links on the capacity region and the NE region of the two-user GIC-NOF under asymmetric conditions. This implies the identification of the scenarios in which the capacity region and the NE Region can be enlarged by the use of one noisy feedback link and how the feedback parameters are related to the parameters of the GIC.

1.2. Contributions

The following are the main contributions of this thesis:

- A full characterization of the capacity region of the two-user LDIC-NOF [64, 66. This contribution generalizes the results for the cases of the LDIC without feedback [17], with perfect channel-output feedback (LDIC-POF) [80], with noisy channel-output feedback (LDIC-NOF) under symmetric conditions [47, and the cases involving channel-output feedback from the intended receivers to the corresponding transmitters in 72 .
- An achievable region and a converse region for the two-user GIC-NOF 63, 64. These two regions approximate the capacity region of the two-user GIC-NOF within 4.4 bits. The achievable region is obtained using a random coding argument combining message splitting, block-Markov superposition coding, and backward decoding, as first suggested in [80, 84, 92. The converse region is obtained using some existing outer bounds from the case of the two-user GIC with POF (GIC-POF) 80 as well as a set of new outer bounds that are obtained by using genie-aided models. This contribution generalizes the
results obtained for the cases without feedback (GIC) [28, with POF (GIC-POF) [80, and with NOF (GIC-NOF) under symmetric conditions 47.
- A full characterization of the η-NE region of the two-user LDIC-NOF 68. This contribution generalizes the results for the cases of the linear deterministic interference channel (LDIC) without feedback 12 , with POF (LDIC-POF) 60, and with NOF (LDIC-NOF) under symmetric conditions 62.
- An achievable η-NE region and a non-equilibrium region with $\eta \geqslant 1$ for the two-user GIC-NOF 67 . The achievable η-NE region is obtained introducing a modification of the achievability coding scheme considered in the centralized part. This modification implies the introduction of common randomness in the coding scheme as suggested in 13 and 60, which allows both transmitter-receiver pairs to limit the rate improvement of each other when either of them deviates from equilibrium. The non-equilibrium region obtained with $\eta>1$ is obtained using the insights obtained from the analysis of the linear deterministic model.
- Identification of the scenarios in which the use of one feedback link enlarges the capacity region and the η-NE region 65 .

1.3. Outlines

This thesis contains 5 parts as follows:

- Part I. This part describes the system model of the two-user continuous IC as well as the particular cases studied in this thesis: the two-user GIC-NOF and the two-user LDIC-NOF. It also establishes the differences between centralized and decentralized systems.
- Chapter 2 This chapter formulates the IC-NOF and more particularly, it describes the two-user GIC-NOF and the two-user LDIC-NOF as centralized systems. This chapter also presents the fundamental limits in both models in the cases without feedback, with perfect channel-output feedback (POF), and noisy channel-output feedback (NOF) under symmetric conditions.
- Chapter 3. This chapter establishes the difference between the centralized and decentralized systems. It establishes a formulation of the game for the decentralized system. Finally, this chapter also presents the fundamental limits in the two-user GIC-NOF and the two-user LDIC-NOF as decentralized systems in the cases without feedback, with POF, and NOF under symmetric conditions.
- Chapter 4 This chapter establishes the connections between the two-user GICNOF and the two-user LDIC-NOF.
- Part II. This part presents the main results and the analysis of the two-user LDIC-NOF and two-user GIC-NOF considering a centralized control of the communication network.
- Chapter 5. This chapter presents the main results for the two-user LDIC-NOF, i.e., the capacity region, and analyzes the cases in which the capacity region can be enlarged by the use of feedback;
- Chapter 6. This chapter presents the main results for the two-user GIC-NOF, i.e., an achievable region, a converse region, and the gap between both regions, and analyzes the cases in which the approximate capacity region might be enlarged.
- Part III. This part presents the main results and the analysis of the two-user LDICNOF and two-user GIC-NOF considering a decentralized control of the communication network.
- Chapter 7. This chapter presents the main results for the two-user D-LDIC-NOF, i.e., the η-NE region, and analyzes the efficiency of the equilibrium region.
- Chapter 8. This chapter presents the main results for the two-user D-GIC-NOF, i.e., an achievable η-NE region and a non-equilibrium region with $\eta \geqslant 1$.
- Part IV. This part contains the conclusions of this thesis.
- Part V. This part contains fundamental concepts on information theory and network information theory that are used along this thesis and the proofs of the main results in parts II and III.
- Appendix A This appendix contains the description of the achievability scheme for the two-user LDIC-NOF and two-user GIC-NOF.
- Appendix B. This appendix contains an outer bound for the two-user LDIC-NOF.
- Appendix C. This appendix contains the calculation of the thresholds in the feedback parameters, beyond which the capacity region of the two-user LDIC-NOF can be enlarged with respect to the case without feedback. This calculation is made for the case in which both transmitter-receiver pairs are in very weak interference regime.
- Appendix D. This appendix contains the calculation of the threshold in the feedback parameter i with $i \in\{1,2\}$, beyond which the individual rate R_{i} can be improved in the two-user LDIC-NOF with respect to the case without feedback.
- Appendix E This appendix contains the calculation of the threshold in one feedback parameter, beyond which the sum-rate capacity can be improved in the two-user LDIC-NOF with respect to the case without feedback.
- Appendix F This appendix contains a proof of the number of GDoF for the two-user LDIC-NOF.
- Appendix G. This appendix contains an outer bound for the two-user GIC-NOF.
- Appendix \mathbf{H}. This appendix contains the proof of the gap between the innerbound and the outer-bound of the two-user GIC-NOF. The proof is for the case in which both transmitter-receiver pairs are in high interference regime (HIR). This appendix gives the values of the parameters of the coding scheme that must be considered in the other cases.
- Appendix I. This appendix contains a proof of the η-Nash Equilibrium (NE) region for the two-user LDIC-NOF.
- Appendix J. This appendix contains an inner bound on the η-NE region for the two-user GIC-NOF.
- Appendix K This appendix contains a proof of the non-equilibrium region for the two-user GIC-NOF.
- Appendix [1. This appendix contains a proof of a Lemma 21 in Appendix G
- Appendix M. This appendix contains a proof of a Lemma $\mathbb{1}$ for the two-user LDIC-NOF in Appendix [
- Appendix N. This appendix contains a proof of an inner-bound of the η-Nash equilibrium (NE) region for the two-user GIC-NOF.
- Appendix O. This appendix presents the sum-rate capacity and the maximum and minimum sum-rate in the decentralized case for the two-user LDIC-NOF.
- Appendix P This appendix introduces some fundamental concepts on information measures.
- Appendix Q This appendix introduces Fano's inequality.
- Appendix \boldsymbol{R} This appendix introduces the concept of weak asymptotic equipartition property (AEP).

Part I.

INTERFERENCE CHANNELS

Centralized

Interference Channels

CONSIDER the two-user continuous IC-NOF in Figure 2.1. Transmitter $i, i \in\{1,2\}$, wishes to reliable communicate an independent and uniformly distributed message index $W_{i} \in \mathcal{W}_{i}=\left\{1,2, \ldots, 2^{N R_{i}}\right\}$ to receiver i, during $N \in \mathbb{N}$ channel uses, where $R_{i} \in \mathbb{R}_{+}$denotes the transmission rate of transmitter-receiver i in bits per channel use. In this respect, the transmitter i sends the codeword $\boldsymbol{X}_{i}=\left(X_{i, 1}, X_{i, 2}, \ldots, X_{i, N}\right)^{\top} \in \mathcal{C}_{i} \subseteq \mathbb{R}^{N}$, where \mathcal{C}_{i} is the codebook of transmitter i.

For a given channel use $n \in\{1,2, \ldots, N\}$, the transmitters 1 and 2 send the channel inputs $X_{1, n} \in \mathbb{R}$ and $X_{2, n} \in \mathbb{R}$, respectively, which generate the channel-outputs $\vec{Y}_{1, n} \in \mathbb{R}, \vec{Y}_{2, n} \in \mathbb{R}$, $\overleftarrow{Y}_{1, n} \in \mathbb{R}$, and $\overleftarrow{Y}_{2, n} \in \mathbb{R}$ according to the conditional pdf $\mathrm{f}_{\vec{Y}_{1}, \vec{Y}_{2}, \overleftarrow{Y}_{1}, \overleftarrow{Y}_{2} \mid X_{1}, X_{2}}\left(\vec{y}_{1}, \vec{y}_{2}, \overleftarrow{y}_{1}\right.$, $\left.\overleftarrow{y}_{2} \mid x_{1}, x_{2}\right)$, for all $\left(\vec{y}_{1}, \vec{y}_{2}, \overleftarrow{y}_{1}, \overleftarrow{y}_{2}, x_{1}, x_{2}\right) \in \mathbb{R}^{6}$.

The transmitter i generates the symbol $X_{i, n} \in \mathbb{R}$ considering the message index W_{i} and all previous outputs from the feedback link i, i.e., $\left(\overleftarrow{Y}_{i, 1}, \overleftarrow{Y}_{i, 2}, \ldots, \overleftarrow{Y}_{i, n-1}\right)$. The transmitter i observes $\overleftarrow{Y}_{i, n}$ at the end of the channel use n. The transmitter i is defined by the set of deterministic functions $\left\{f_{i, 1}, f_{i, 2}, \ldots, f_{i, N}\right\}$, with $f_{i, 1}: \mathcal{W}_{i} \rightarrow \mathbb{R}$ and for $n \in\{2,3, \ldots, N\}$, $f_{i, n}: \mathcal{W}_{i} \times \mathbb{R}^{n-1} \rightarrow \mathbb{R}$, such that

$$
\begin{align*}
& X_{i, 1}=f_{i, 1}\left(W_{i}\right), \text { and } \tag{2.1a}\\
& X_{i, n}=f_{i, n}\left(W_{i}, \overleftarrow{Y}_{i, 1}, \overleftarrow{Y}_{i, 2}, \ldots, \overleftarrow{Y}_{i, n-1}\right) \text { for all } n>1 \tag{2.1b}
\end{align*}
$$

At the end of the transmission, the receiver i uses all the channel-outputs $\vec{Y}_{i, 1}, \vec{Y}_{i, 2}, \ldots, \vec{Y}_{i, N}$ to obtain an estimate of the message index W_{i}, denoted by \widehat{W}_{i}.

Figure 2.1.: Two-User continuous interference channel with noisy channel-output feedback.

Thus, the following Markov chain holds:

$$
\begin{equation*}
W_{i}, \overleftarrow{\boldsymbol{Y}}_{i,(1 ; n-1)} \rightarrow X_{i, n} \rightarrow \vec{Y}_{i, n} \tag{2.2}
\end{equation*}
$$

Let $T \in \mathbb{N}$ be fixed. Assume that during a communication, T blocks, each of N channel uses, are transmitted. The receiver i is defined by the deterministic function $\psi_{i}: \mathbb{R}^{N T} \rightarrow \mathcal{W}_{i}^{T}$. At the end of the communication, receiver i uses the vector $\left(\vec{Y}_{i, 1}, \vec{Y}_{i, 2}, \ldots, \vec{Y}_{i, N T}\right)^{\top}$ to obtain

$$
\begin{equation*}
\left(\widehat{W}_{i}^{(1)}, \widehat{W}_{i}^{(2)}, \ldots, \widehat{W}_{i}^{(T)}\right)=\psi_{i}\left(\vec{Y}_{i, 1}, \vec{Y}_{i, 2}, \ldots, \vec{Y}_{i, N T}\right) \tag{2.3}
\end{equation*}
$$

where $\widehat{W}_{i}^{(t)}$ is an estimate of the message index $W_{i}^{(t)}$ sent during block $t \in\{1,2, \ldots, T\}$.
The decoding error probability in the two-user continuous IC during the block t, denoted by $P_{\mathrm{e}}(N)$, is given by

$$
\begin{equation*}
P_{\mathrm{e}}^{(t)}(N)=\max \left(\operatorname{Pr}\left[\widehat{W}_{1}^{(t)} \neq W_{1}^{(t)}\right], \operatorname{Pr}\left[\widehat{W}_{2}^{(t)} \neq W_{2}^{(t)}\right]\right) \tag{2.4}
\end{equation*}
$$

The definition of an achievable rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ is given below.
Definition 1 (Achievable Rate Pairs). A rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ is achievable if there exist sets of encoding functions $\left\{f_{1}^{(1)}, f_{1}^{(2)}, \ldots, f_{1}^{(N)}\right\}$ and $\left\{f_{2}^{(1)}, f_{2}^{(2)}, \ldots, f_{2}^{(N)}\right\}$, and decoding functions ψ_{1} and ψ_{2}, such that the error probability $P_{e}(N)$ can be made arbitrarily small by letting the block-length N grow to infinity, for all blocks $t \in\{1,2, \ldots, T\}$.

In a centralized system, a central controller determines the configurations of all transmitterreceiver pairs. The central controller has a global view of the network and can select optimal configurations with respect to a given metric, e.g., sum-rate, energy-efficiency, etc. The fundamental limits in a centralized system are characterized by the capacity region.
Definition 2 (Capacity region of a two-user IC). The capacity region of a two-user IC is the closure of the set of all possible achievable rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$.

2.1. Gaussian Interference Channel

A special case of the IC-NOF described above from the perspective of centralized networks is the Gaussian IC-NOF. Consider the two-user GIC-NOF depicted in Figure 2.2. The channel

Figure 2.2.: Gaussian interference channel with noisy channel-output feedback at channel use n.
coefficient from transmitter j to receiver i is denoted by $h_{i j}$; the channel coefficient from transmitter i to receiver i is denoted by $\vec{h}_{i i}$; and the channel coefficient from channel-output i to transmitter i is denoted by $\overleftarrow{h}_{i i}$. All channel coefficients are assumed to be non-negative real numbers. During channel use n, the input-output relations of the channel model are given by

$$
\begin{equation*}
\vec{Y}_{i, n}=\vec{h}_{i i} X_{i, n}+h_{i j} X_{j, n}+\vec{Z}_{i, n} \tag{2.5}
\end{equation*}
$$

and

$$
\overleftarrow{Y}_{i, n}= \begin{cases}\overleftarrow{Z}_{i, n} & \text { for } n \in\{1,2, \ldots, d\} \tag{2.6}\\ \overleftarrow{h}_{i i} \stackrel{Y}{Y}_{i, n-d}+\overleftarrow{Z}_{i, n}, & \text { for } n \in\{d+1, d+2, \ldots, N\}\end{cases}
$$

where $\vec{Z}_{i, n}$ and $\overleftarrow{Z}_{i, n}$ are independent real Gaussian random variables with zero mean and unit variance and $d>0$ is the finite feedback delay measured in channel uses.

In the following of this thesis, without loss of generality, the feedback delay is assumed to be one channel use, i.e., $d=1$. The components of the input vector \boldsymbol{X}_{i} are real numbers subject to an average power constraint:

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[X_{i, n}^{2}\right] \leq 1 \tag{2.7}
\end{equation*}
$$

where the expectation is taken over the joint distribution of the message indices W_{1} and W_{2}, and the noise terms, i.e., $\vec{Z}_{1}, \vec{Z}_{2}, \overleftarrow{Z}_{1}$, and \overleftarrow{Z}_{2}. The dependence of $X_{i, n}$ on W_{1}, W_{2}, and the previously observed noise realizations is due to the effect of feedback as shown in (2.1) and (2.6).

The two-user GIC-NOF in Figure 2.2 can be described by six parameters: $\overrightarrow{\mathrm{SNR}}_{i}, \overleftarrow{\mathrm{SNR}}_{i}$, and
$\operatorname{INR}_{i j}$, with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, which are defined as follows:

$$
\begin{align*}
\overline{\mathrm{SNR}}_{i} & =\vec{h}_{i i}^{2} \tag{2.8a}\\
\mathrm{INR}_{i j} & =h_{i j}^{2}, \text { and } \tag{2.8b}\\
\overleftarrow{\mathrm{SNR}}_{i} & =\overleftarrow{h}_{i i}^{2}\left(\vec{h}_{i i}^{2}+2 \vec{h}_{i i} h_{i j}+h_{i j}^{2}+1\right) \tag{2.8c}
\end{align*}
$$

When $\mathrm{INR}_{i j} \leqslant 1$, transmitter-receiver pair i is impaired mainly by noise instead of interference. In this case, treating interference as noise (TIN) is optimal and feedback does not bring a significant rate improvement. Therefore, the analysis developed in this thesis focuses exclusively on the case in which $\operatorname{INR}_{i j}>1$ for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$.

In this special case, the pdf of the IC-NOF can be factorized as follows:

$$
\begin{equation*}
\mathrm{f}_{\vec{Y}_{1}, \vec{Y}_{2}, \overleftarrow{Y}_{1}, \overleftarrow{Y}_{2} \mid X_{1}, X_{2}}=\mathrm{f}_{\vec{Y}_{1} \mid X_{1}, X_{2}} \mathrm{f}_{\vec{Y}_{2} \mid X_{1}, X_{2}} \mathrm{f}_{\overleftarrow{Y}_{1} \mid \vec{Y}_{1}} \mathrm{f}_{\overleftarrow{Y}_{2} \mid \vec{Y}_{2}} \tag{2.9}
\end{equation*}
$$

given that for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}, \vec{Y}_{i}$ is independent of \vec{Y}_{j} conditioning on X_{i} and X_{j}; and \overleftarrow{Y}_{i} is independent of X_{i}, X_{j}, and \vec{Y}_{j} conditioning on \vec{Y}_{i}. Based on the input-output relation in (2.5), for all $i \in\{1,2\}$ and given the channel-inputs x_{1} and x_{2} during a specific channel use, the pdf $\mathrm{f}_{\vec{Y}_{i} \mid X_{1}, X_{2}}$ in (2.9) can be expressed as follows:

$$
\begin{equation*}
\mathrm{f}_{\vec{Y}_{i} \mid X_{1}, X_{2}}\left(\vec{y}_{i} \mid x_{1}, x_{2}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\vec{y}_{i}-\vec{h}_{i i} x_{i}-h_{i j} x_{j}\right)^{2}\right) \tag{2.10}
\end{equation*}
$$

Similarly, based on the input-output relation in (2.6), for all $i \in\{1,2\}$ and given the channel-outputs \vec{y}_{1} and \vec{y}_{2} during a specific channel use, the pdf $\mathrm{f}_{\widehat{Y}_{i} \mid \vec{Y}_{i}}$ in 2.9) can be expressed as follows:

$$
\begin{equation*}
\mathrm{f}_{\overleftarrow{Y}_{i} \mid \vec{Y}_{i}}\left(\overleftarrow{y}_{i} \mid \vec{y}_{i}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\overleftarrow{y}_{i}-\overleftarrow{h}_{i i} \vec{y}_{i i}\right)^{2}\right) \tag{2.11}
\end{equation*}
$$

2.1.1. Case without Feedback

Assessing the capacity region of the two-user GIC is also a long-standing problem in network information theory. The capacity region is perfectly known in the very strong interference regime 19 , which is the same capacity region of two non-interfering point to point links. In this case, the interference in both receivers is stronger than the intended signals and therefore the interference can be decoded and substracted from the received signals to decode the intended signals in each receiver (successive interference cancellation, SIC). The capacity region of the GIC is also known in the case of strong interference regime and it was independently obtained by $\sqrt[33]{ }$ and 73 . The capacity region of the GIC for the case of strong interference regime in $\sqrt[73]{ }$ is obtained considering that each receiver must decode both messages. Thus, each transmitter with both receivers can be seen as a multiple access channel (MAC) and the capacity region of the GIC under strong interference can be obtained as the intersection of the capacity regions of the two MACs [1]. This capacity region was initially introduced in [2]. This approach considered the joint decoding instead of sequential decoding as in 19 .

In the other interference regimes, different strategies have been investigated, including considering partial decoding of the interference and TIN.

Fundamental results on the GIC are described in 20. Particularly, two general coding
schemes are presented. The first one is based on time division multiplexing and frequency division multiplexing (TDM/FDM), in which transmitter 1 and transmitter 2 use a fraction α and $1-\alpha$ of the bandwidth with powers P_{1} / α and $P_{2} /(1-\alpha)$, respectively. The second coding scheme is rate-splitting, in which transmitter $i \in\{1,2\}$ splits the message index $W_{i} \in \mathcal{W}_{i}=\left\{1,2, \ldots, 2^{N R_{i}}\right\}$ into two message indices $W_{i, 1} \in \mathcal{W}_{i, 1}=\left\{1,2, \ldots, 2^{N R_{i, 1}}\right\}$ and $W_{i, 2} \in \mathcal{W}_{i, 2}=\left\{1,2, \ldots, 2^{N R_{i, 2}}\right\}$, with $R_{i}=R_{i, 1}+R_{i, 2}$. Transmitter i generates two codebooks with independent codewords to represent all message indices in $\mathcal{W}_{i, 1}$ and $\mathcal{W}_{i, 2}$. Transmitter i encodes the message index W_{i} summing the two independent codewords corresponding to the indices $W_{i, 1}$ and $W_{i, 2}$, i.e., $\boldsymbol{x}_{i}=\boldsymbol{u}_{i}\left(W_{i, 1}\right)+\boldsymbol{v}_{i}\left(W_{i, 2}\right)$, where $\boldsymbol{u}_{i}\left(W_{i, 1}\right)$ and $\boldsymbol{v}_{i}\left(W_{i, 2}\right)$ represent the corresponding codewords for the message indices $W_{i, 1}$ and $W_{i, 2}$ in transmitter i, respectively. The general idea is to decode the interfering signals in order to facilitate the decoding of the intended signals (this can be seen as a kind of cooperation), which can allow to achieve higher rates.

The best known achievable region for the two-GIC is given in 33. This achievable region is simplified in [21]. The strategy in 33 uses rate-splitting [20, which implies dividing the transmitted information of both users into two parts: common information that can be decoded at both receivers and private information to be decoded only at the intended receiver. This strategy also implies to arbitrarily split the user signal power into the common and private parts of the message. In reception, this strategy uses joint typical decoding.

The following lemma presents the achievable region for the two-user GIC obtained in [33.
Lemma 1 (Han-Kobayashi Achievable Region for the two-user GIC). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user GIC. Then, \mathcal{C} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
& R_{1} \leq \sigma_{1}\left(\lambda_{1, P}, \lambda_{2, P}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right), \tag{2.12a}\\
& R_{2} \leq \sigma_{2}\left(\lambda_{1, P}, \lambda_{2, P}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right), \tag{2.12b}\\
& R_{1}+R_{2} \leq \sigma_{0}\left(\lambda_{1, P}, \lambda_{2, P}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right), \tag{2.12c}\\
& 2 R_{1}+R_{2} \leq 2 \sigma_{1}\left(\lambda_{1, P}, \lambda_{2, P}\right)+\log \left(1+\frac{\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right) \\
& -\left(\sigma_{1}\left(\lambda_{1, P}, \lambda_{2, P}\right)-\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \mathrm{INR}_{21}}{1+\lambda_{2, P} \overline{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right)\right)^{+} \\
& +\min \left(\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right), \frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}}\right)\right. \\
& +\left(\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \mathrm{INR}_{21}}{1+\lambda_{2, P} \overline{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right)-\sigma_{1}\left(\lambda_{1, P}, \lambda_{2, P}\right)\right)^{+}, \\
& \frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \mathrm{INR}_{12}}{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\lambda_{2, P} \mathrm{INR}_{12}}\right), \\
& \left.\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \overrightarrow{\mathrm{SNR}}_{1}+\left(1-\lambda_{2, P}\right) \mathrm{INR}_{12}}{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\lambda_{2, P} \mathrm{INR}_{12}}\right)-\sigma_{1}\left(\lambda_{1, P}, \lambda_{2, P}\right)\right), \tag{2.12d}
\end{align*}
$$

$$
\begin{align*}
& R_{1}+ 2 R_{2} \leq 2 \sigma_{2}\left(\lambda_{1, P}, \lambda_{2, P}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right) \\
&-\left(\sigma_{2}\left(\lambda_{1, P}, \lambda_{2, P}\right)-\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right)}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right)\right)^{+} \\
& \quad+\min \left(\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\lambda_{2, P} \mathrm{INR}_{12}}\right), \frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \overrightarrow{\mathrm{SNR}}_{1}}{\left.1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}_{1}+\mathrm{INR}_{12}}\right)}\right.\right. \\
&+\left(\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \mathrm{INR}_{12}}{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\lambda_{2, P} \mathrm{INR}_{12}}\right)-\sigma_{2}\left(\lambda_{1, P}, \lambda_{2, P}\right)\right)^{+}, \\
& \frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \mathrm{INR}_{21}}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right), \frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, C} \mathrm{INR}_{21}}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right) \\
&\left.\quad-\sigma_{2}\left(\lambda_{1, P}, \lambda_{2, P}\right)\right), \tag{2.12e}
\end{align*}
$$

with

$$
\begin{align*}
\sigma_{1}\left(\lambda_{1, P}, \lambda_{2, P}\right)= & \min \left(\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\lambda_{2, P} \mathrm{INR}_{12}}\right),\right. \\
& \left.\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \mathrm{INR}_{21}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right)\right), \tag{2.13a}\\
\sigma_{2}\left(\lambda_{1, P}, \lambda_{2, P}\right)= & \min \left(\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right),\right. \\
& \left.\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \mathrm{INR}_{12}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right)\right), \tag{2.13b}\\
\sigma_{0}\left(\lambda_{1, P}, \lambda_{2, P}\right)= & \min \left(\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \overrightarrow{\mathrm{SNR}}_{1}+\left(1-\lambda_{2, P}\right) \mathrm{INR}_{12}}{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\lambda_{2, P} \mathrm{INR}_{12}}\right),\right. \\
& \frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \overrightarrow{\mathrm{SNR}}_{2}+\left(1-\lambda_{1, P}\right) \mathrm{INR}_{21}}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right), \\
& \frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \mathrm{INR}_{12}}{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\lambda_{2, P} \mathrm{INR}_{12}}\right) \\
& +\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right) \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right), \\
& \frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{1, P}\right) \mathrm{INR}_{21}}{1+\lambda_{2, P} \overline{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right) \\
& \left.+\frac{1}{2} \log \left(1+\frac{\left(1-\lambda_{2, P}\right)}{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\lambda_{1, P} \mathrm{INR}_{21}}\right)\right),
\end{align*}
$$

with $\lambda_{i, P} \in[0,1]$ for all $i \in\{1,2\}$.
The strategy in 21 uses rate-splitting 20, 33 and superposition coding 24. The superposi-
tion coding is a technique that was introduced in the study of the broadcast channel (BC) in 22 . Consider the message index sent by transmitter i denoted by $W_{i} \in\left\{1,2, \ldots, 2^{N R_{i}}\right\}$. Following a rate-splitting argument, assume that W_{i} is represented by two subindices $\left(W_{i, C}, W_{i, P}\right) \in$ $\left\{1,2, \ldots, 2^{N R_{i, C}}\right\} \times\left\{1,2, \ldots, 2^{N R_{i, P}}\right\}$, where $R_{i, C}+R_{i, P}=R_{i}$. The message index $W_{i, C}$ is assumed to be decoded at both receivers (common part of the message) and the message index $W_{i, P}$ is assumed to be decoded at the intended receiver (private part of the message) at the end of the transmission. Using the index $W_{i, C}$, transmitter i identifies a codeword in the first code-layer. The first code-layer is a sub-codebook of $2^{N R_{i, C}}$ codewords (cloud centers). Denote by $\boldsymbol{u}_{i}\left(W_{i, C}\right)$ the corresponding codeword in the first code-layer. The second codeword is chosen by transmitter i using $W_{i, P}$ from the second code-layer, which is a sub-codebook of $2^{N R_{i, P}}$ codewords corresponding to $\boldsymbol{u}_{i}\left(W_{i, C}\right)$. Denote by $\boldsymbol{x}_{i}\left(W_{i, C}, W_{i, P}\right)$ the corresponding codeword in the second code-layer. Finally, transmitter i sends the codeword $\boldsymbol{x}_{i}\left(W_{i, C}, W_{i, P}\right)$. The simplification of the Han-Kobayashi achievable region for the two-user IC in 21 is due to an observation of the authors in which each receiver is not interested to decode the common message index coming from the non-corresponding transmitter. The consideration of decoding in each receiver the common message index coming from the non-corresponding transmitter in (33) generated a pair of inequalities in the evaluation of the error probability that are not necessary, which is proved in 39 .

The following lemma presents the achievable region for the two-user GIC in 38 obtained from the results in 21.

Lemma 2 (Chong-Motani-Garg-El Gamal Achievable Region for the two-user GIC). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user GIC. Then, \mathcal{C} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
R_{1} \leq & \frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right) \tag{2.14a}\\
R_{2} \leq & \frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right) \tag{2.14b}\\
R_{1}+R_{2} \leq & \frac{1}{2} \log \left(\frac{1+\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right) \tag{2.14c}\\
R_{1}+R_{2} \leq & \frac{1}{2} \log \left(\frac{1+\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(1+\frac{\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right) \tag{2.14d}\\
R_{1}+R_{2} \leq & \frac{1}{2} \log \left(\frac{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(\frac{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right) \tag{2.14e}\\
2 R_{1}+R_{2} \leq & \frac{1}{2} \log \left(\frac{1+\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(\frac{1+\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right) \\
& +\frac{1}{2} \log \left(1+\frac{\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right) \tag{2.14f}
\end{align*}
$$

$$
\begin{align*}
R_{1}+2 R_{2} \leq & \frac{1}{2} \log \left(\frac{1+\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(\frac{1+\lambda_{1, P} \overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}}{1+\lambda_{2, P} \mathrm{INR}_{12}}\right) \\
& +\frac{1}{2} \log \left(1+\frac{\lambda_{2, P} \overrightarrow{\mathrm{SNR}}_{2}}{1+\lambda_{1, P} \mathrm{INR}_{21}}\right) \tag{2.14~g}
\end{align*}
$$

with $\lambda_{i, P} \in[0,1]$ for all $i \in\{1,2\}$.

There are several outer bounds on the capacity region of the GIC $[3, \sqrt[28]{ }, 41,52, \sqrt[74]{4}, 75]$. Some outer bounds correspond to the capacity region of other network models that are seen as simplified models of the GIC under certain conditions. Some other outer bounds are obtained based on genie-aided models. Some of these outer bounds allow to obtain the sum-rate capacity or at least some corner points of the capacity region for specific conditions in the GIC. In the cases in which both transmitter-receiver pairs are in low-interference regime and the interference parameters are below certain thresholds, TIN achieves the sum-capacity of the GIC (this is also denominated the noisy interference regime) [3, 52, 75.

The authors in 28] obtained an outer bound based on genie-aided models which was used to prove that the achievable region in (21 (Lemma 2] is at most one bit per channel use away from the capacity region of the two-user GIC. Note that the authors in 28 assumed $\lambda_{i, P}=\frac{1}{\mathrm{INR}_{j i}}$ for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$ in the achievable region introduced in [21, considering that the private part of a message has not to be decoded in the non-intended receiver because it can be under the noise level. The authors in $\sqrt{28}$ considered three different interference regimes: weak interference channel ($\mathrm{INR}_{12}<\overrightarrow{\mathrm{SNR}}_{2}$ and $\mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{1}$); mixed interference channel $\left(\mathrm{INR}_{12} \geqslant \overrightarrow{\mathrm{SNR}}_{2}\right.$ and $\mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{1}$, or $\mathrm{INR}_{12}<\overrightarrow{\mathrm{SNR}}_{2}$ and $\left.\mathrm{INR}_{21} \geqslant \overrightarrow{\mathrm{SNR}}_{1}\right)$; and strong interference channel $\left(\mathrm{INR}_{12} \geqslant \overrightarrow{\mathrm{SNR}}_{2}\right.$ and $\left.\mathrm{INR}_{21} \geqslant \overrightarrow{\mathrm{SNR}}_{1}\right)$, where the outer bound for the last interference regime is not shown given that the capacity region is already known 19 , [33, 73. The following two lemmas present the outer bounds on the capacity region of the two-user GIC for the weak interference channel and for the mixed interference channel.

Lemma 3 (Outer bound for weak GIC, Theorem 3 in $\mid 28)$. Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the GIC. Then, \mathcal{C} is contained within the set of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
R_{1} & \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}\right), \tag{2.15a}\\
R_{2} & \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{2}\right), \tag{2.15b}\\
R_{1}+R_{2} & \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}\right)+\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{1+\mathrm{INR}_{21}}\right), \tag{2.15c}\\
R_{1}+R_{2} \leqslant & \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{2}\right)+\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{1+\mathrm{INR}_{12}}\right), \tag{2.15d}\\
R_{1}+R_{2} \leqslant & \frac{1}{2} \log \left(1+\mathrm{INR}_{12}+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{1+\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(1+\mathrm{INR}_{21}+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{1+\mathrm{INR}_{12}}\right), \tag{2.15e}
\end{align*}
$$

$$
\begin{align*}
& 2 R_{1}+R_{2} \leqslant \\
& \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}\right)+\frac{1}{2} \log \left(1+\mathrm{INR}_{21}+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{1+\mathrm{INR}_{12}}\right) \tag{2.15f}\\
&+\frac{1}{2} \log \left(\frac{1+\overrightarrow{\mathrm{SNR}}_{1}}{1+\mathrm{INR}_{21}}\right), \\
& R_{1}+2 R_{2} \leqslant \tag{2.15~g}\\
& \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}\right)+\frac{1}{2} \log \left(1+\mathrm{INR}_{12}+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{1+\mathrm{INR}_{21}}\right) \\
&+\frac{1}{2} \log \left(\frac{1+\overrightarrow{\mathrm{SNR}}_{2}}{1+\mathrm{INR}_{12}}\right) .
\end{align*}
$$

Lemma 4 (Outer bound for mixed GIC, Theorem 4 in 28). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the GIC. Then, \mathcal{C} is contained within the set of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
R_{1} & \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}\right), \tag{2.16a}\\
R_{2} & \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{2}\right), \tag{2.16b}\\
R_{1}+R_{2} & \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}\right)+\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{1+\mathrm{INR}_{21}}\right), \tag{2.16c}\\
R_{1}+R_{2} & \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}\right), \tag{2.16d}\\
R_{1}+2 R_{2} & \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}\right)+\frac{1}{2} \log \left(1+\mathrm{INR}_{12}+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{1+\mathrm{INR}_{21}}\right) \tag{2.16e}\\
& +\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{1+\mathrm{INR}_{12}}\right) . \tag{2.16f}
\end{align*}
$$

2.1.2. Case with Perfect Channel-Output Feedback

The two-user GIC-POF is analyzed in [80], and its capacity region is characterized to within two bits per channel use. The achievability scheme presented in 80 is based on: rate-splitting [20, 33], block Markov superposition coding [24, and backward decoding [88, 89]. The outerbound is obtained considering genie-aided models. One of the most important conclusions in 80 is that feedback can provide an arbitrary multiplicative gain in the high SNR regime for certain channel conditions in the two-user GIC, i.e., the very strong interference regime.

The following two lemmas present an inner bound and an outer bound on the capacity region of the two-user GIC-POF.

Lemma 5 (Inner bound two-user GIC-POF, Theorem 2 in [80]). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user GIC-POF. Then, \mathcal{C} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
& R_{1} \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}\right)-\frac{1}{2} \tag{2.17a}\\
& R_{1} \leqslant \frac{1}{2} \log \left(1+(1-\rho) \mathrm{INR}_{21}\right)+\frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)-1 \tag{2.17b}
\end{align*}
$$

$$
\begin{align*}
& R_{2} \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}\right)-\frac{1}{2}, \tag{2.17c}\\
& R_{2} \leqslant \frac{1}{2} \log \left(1+(1-\rho) \mathrm{INR}_{12}\right)+\frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}\right)-1, \tag{2.17d}\\
& R_{1}+R_{2} \leqslant \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}\right)-1, \tag{2.17e}\\
& R_{1}+R_{2} \leqslant \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}\right)-1, \tag{2.17f}
\end{align*}
$$

with $\rho \in[0,1]$.
Lemma 6 (Outer bound two-user GIC-POF, Theorem 3 in $[80]$). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the GIC-POF. Then, \mathcal{C} is contained within the set of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
& R_{1} \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}\right), \tag{2.18a}\\
& R_{1} \leqslant \frac{1}{2} \log \left(1+(1-\rho) \mathrm{INR}_{21}\right)+\frac{1}{2} \log \left(1+\frac{\left(1-\rho^{2}\right) \overrightarrow{\mathrm{SNR}}_{1}}{1+\left(1-\rho^{2}\right) \mathrm{INR}_{21}}\right), \tag{2.18b}\\
& R_{2} \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}\right), \tag{2.18c}\\
& R_{2} \leqslant \frac{1}{2} \log \left(1+(1-\rho) \mathrm{INR}_{12}\right)+\frac{1}{2} \log \left(1+\frac{\left(1-\rho^{2}\right) \overrightarrow{\mathrm{SNR}}_{2}}{1+\left(1-\rho^{2}\right) \mathrm{INR}_{12}}\right), \tag{2.18d}\\
& R_{1}+R_{2} \leqslant \frac{1}{2} \log \left(1+\frac{\left.\left(1-\rho^{2}\right){\overrightarrow{\mathrm{SNR}_{1}}}_{1+\left(1-\rho^{2}\right) \mathrm{INR}_{21}}\right)}{}\right. \\
&+\frac{1}{2} \log \left(1+{\left.\overrightarrow{\mathrm{SNR}_{2}}+\mathrm{INR}_{21}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}\right),}_{R_{1}+R_{2} \leqslant}^{\leqslant} \frac{1}{2} \log \left(1+\frac{\left.\left(1-\rho^{2}\right){\overrightarrow{\mathrm{SNR}_{2}}}_{1+\left(1-\rho^{2}\right) \mathrm{INR}_{12}}\right)}{} \quad+\frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}\right),\right.\right. \tag{2.18e}
\end{align*}
$$

with $\rho \in[0,1]$.
In [51], it is shown that the number of GDoF of a symmetric fully connected K-user symmetric GIC with POF is the same as in the case of the two-user IC-POF, except for the case in which the power signal in each receiver is equal to the interfering signal. Then, feedback can improve the performance of the networks except under the aforementioned condition. The coding scheme takes advantage of the network symmetry and is based on interference alignment and interference decoding. Thus, given the alignment of the interference (it is necessary to decode the interference to remove it, which is suppressed in standard approaches), the interference received from all other users can be seen as a single message using a lattice code approach. In [82, an approximate capacity region of the cyclic K-user GIC is presented. The network considers K-users where each intended signal is only interfered by one of the neighboring transmitters in a cyclic fashion. It is shown that the number of GDoF of a cyclic symmetric K-user symmetric GIC with POF is a function of K, i.e., the capacity gain for
each user is inversely proportional to K. Thus, the improvement in the capacity per user of a cyclic and symmetric K-user GIC vanishes as K grows, and when K tends to infinity the number of GDoF with feedback is equal to the number of GDoF without feedback. It is worth noting that the GDoF of the symmetric and cyclic K-user without feedback are the same as for the two-user GIC 95. Other feedback coding schemes for K-user Gaussian interference networks have been analyzed in 43,42 .

In 72 the impact of nine different POF architectures are studied for the symmetric LDIC and the symmetric GIC. The exact capacity region is obtained for the linear deterministic model and an approximate capacity region is obtained for the Gaussian case in which the capacity region is within 4.59 bits from the inner-bound. The authors proposed two achievable strategies: one based on rate splitting 20, 33 and the other one based on block-Markov coding (at one transmitter) and dirty paper coding at the other transmitter. The authors also proposed two new outer bounds that are tighter than the cut-set bound in some interference regimes.

The authors in 57 presented an inner bound and an outer bound on the sum-capacity of a symmetric IC with source cooperation (IC-CT). The inner bound is obtained using block-Markov superposition coding [24, backward decoding 88, 89, and a decode-and-forward strategy. The coding scheme splits the message index in four message indices, considering that common and private messages can be split into cooperative and non-cooperative. The outer bound is shown to be at most 20 bits away from the sum-rate capacity. Even though the IC-NOF is a model that differs from the symmetric IC-CT, there exists a connection between these two models. In this sense, the authors in [57] show that using their results on the symmetric IC-CT, the sum-capacity of the two-user symmetric GIC-POF is within a constant gap of 19 bits.

2.1.3. Symmetric Case with Noisy Channel-Output Feedback

The two-user symmetric GIC-NOF is analyzed in 47, and its capacity region is characterized to within 4.7 bits per channel use. Despite this approximate description of the capacity region, very little can be concluded in the case in which feedback is available in only one of the point-to-point links or simply when the point-to-point links are in different interference regimes. The results on the interference channel with generalized feedback (IC-GF) in 84 , 92 are applied to obtain an inner bound in this channel model. The outer bound is derived using genie-aided models thanks to insights from the analysis of the corresponding linear deterministic model.

The following two lemmas present an inner bound and an outer bound on the capacity region of the two-user symmetric GIC-NOF.

Lemma 7 (Inner bound two-user symmetric GIC-NOF, Theorem 3 in 47). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user symmetric GIC-NOF. Then, \mathcal{C} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
R_{1} \leqslant & \min \left(\tau_{6}\left(\rho, \lambda_{P}\right), \tau_{4}\left(\lambda_{N C}, \lambda_{P}\right)+\tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right), \tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)+\tau_{2}\left(\lambda_{P}\right)\right. \\
& \left.+\tau_{3}\left(\lambda_{N C}, \lambda_{P}\right)\right) \tag{2.19a}
\end{align*}
$$

$$
\begin{align*}
& R_{2} \leqslant \min \left(\left(\tau_{6}\left(\rho, \lambda_{P}\right), \tau_{4}\left(\lambda_{N C}, \lambda_{P}\right)+\tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right), \tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)+\tau_{2}\left(\lambda_{P}\right)\right.\right. \\
& \left.+\tau_{3}\left(\lambda_{N C}, \lambda_{P}\right)\right), \tag{2.19b}\\
& R_{1}+R_{2} \leqslant \min \left(\tau_{2}\left(\lambda_{P}\right)+\tau_{6}\left(\rho, \lambda_{P}\right), 2 \tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)+\tau_{5}\left(\lambda_{N C}, \lambda_{P}\right)+\tau_{2}\left(\lambda_{P}\right),\right. \\
& \left.2 \tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)+2 \tau_{3}\left(\lambda_{N C}, \lambda_{P}\right)\right), \tag{2.19c}\\
& 2 R_{1}+R_{2} \leqslant \min \left(\tau_{6}\left(\rho, \lambda_{P}\right)+\tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)+\tau_{2}\left(\lambda_{P}\right)+\tau_{3}\left(\lambda_{N C}, \lambda_{P}\right), 3 \tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)\right. \\
& \left.+\tau_{2}\left(\lambda_{P}\right)+\tau_{3}\left(\lambda_{N C}, \lambda_{P}\right)+\tau_{5}\left(\lambda_{N C}, \lambda_{P}\right)\right), \tag{2.19d}\\
& R_{1}+2 R_{2} \leqslant \min \left(\tau_{6}\left(\rho, \lambda_{P}\right)+\tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)+\tau_{2}\left(\lambda_{P}\right)+\tau_{3}\left(\lambda_{N C}, \lambda_{P}\right), 3 \tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)\right. \\
& \left.+\tau_{2}\left(\lambda_{P}\right)+\tau_{3}\left(\lambda_{N C}, \lambda_{P}\right)+\tau_{5}\left(\lambda_{N C}, \lambda_{P}\right)\right), \tag{2.19e}
\end{align*}
$$

with

$$
\begin{align*}
& \tau_{6}\left(\rho, \lambda_{P}\right) \triangleq \frac{1}{2} \log \left(\frac{1+\overrightarrow{\mathrm{SNR}}+\mathrm{INR}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR} \mathrm{INR}}}}{\lambda_{P} \mathrm{INR}+1}\right), \tag{2.20a}\\
& \tau_{5}\left(\lambda_{N C}, \lambda_{P}\right) \triangleq \frac{1}{2} \log \left(\frac{\left(\lambda_{N C}+\lambda_{P}\right) \mathrm{SNR}+\left(\lambda_{N C}+\lambda_{P}\right) \mathrm{INR}+1}{\lambda_{P} \mathrm{INR}+1}\right), \tag{2.20b}\\
& \tau_{4}\left(\lambda_{N C}, \lambda_{P}\right) \triangleq \frac{1}{2} \log \left(\frac{\left(\lambda_{N C}+\lambda_{P}\right) \mathrm{SNR}+\lambda_{P} \mathrm{INR}+1}{\lambda_{P} \mathrm{INR}+1}\right), \tag{2.20c}\\
& \tau_{3}\left(\lambda_{N C}, \lambda_{P}\right) \triangleq \frac{1}{2} \log \left(\frac{\lambda_{P} \mathrm{SNR}+\left(\lambda_{N C}+\lambda_{P}\right) \mathrm{INR}+1}{\lambda_{P} \mathrm{INR}+1}\right), \tag{2.20d}\\
& \tau_{2}\left(\lambda_{P}\right) \triangleq \frac{1}{2} \log \left(\frac{\lambda_{P} \mathrm{SNR}+\lambda_{P} \mathrm{INR}+1}{\lambda_{P} \mathrm{INR}+1}\right), \tag{2.20e}\\
& \tau_{1}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right) \triangleq \frac{1}{2} \log \left(\frac{\tau_{1 n}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right)}{\tau_{1 d}\left(\lambda_{N C}, \lambda_{P}\right)}\right), \tag{2.20f}\\
& \tau_{1 n}\left(\lambda_{C C}, \lambda_{N C}, \lambda_{P}\right) \triangleq \frac{1}{2} \log \left(\frac{\overleftarrow{\mathrm{SNR}}\left(\left(\lambda_{C C}+\lambda_{N C}+\lambda_{P}\right) \mathrm{INR}+1\right)}{1+\overrightarrow{\mathrm{SNR}}+\mathrm{INR}+2 \sqrt{\overrightarrow{\text { SNRINR }}}}\right)+1, \tag{2.20~g}\\
& \tau_{1 d}\left(\lambda_{N C}, \lambda_{P}\right) \triangleq \frac{1}{2} \log \left(\frac{\overleftarrow{\mathrm{SNR}}\left(\left(\lambda_{N C}+\lambda_{P}\right) \mathrm{INR}+1\right)}{1+\overline{\mathrm{SNR}}+\mathrm{INR}+2 \sqrt{\overrightarrow{\mathrm{SNRINR}}}}\right)+1, \tag{2.20h}
\end{align*}
$$

$\rho \in[0,1]$ and for all coding schemes that satisfy $\lambda_{C C}+\lambda_{N C}+\lambda_{P}=1-\rho$.
Lemma 8 (Outer bound two-user symmetric GIC-NOF, Theorem 2 in 47]). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user symmetric GIC-NOF. Then, \mathcal{C} is contained within the set of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
& R_{1} \leqslant \min \left(\Upsilon_{1}(\rho), \Upsilon_{2}\right), \tag{2.21a}\\
& R_{2} \leqslant \min \left(\Upsilon_{1}(\rho), \Upsilon_{2}\right), \tag{2.21b}\\
& R_{1}+ R_{2} \leqslant \min \left(\Upsilon_{3}(\rho), \Upsilon_{4}\right), \tag{2.21c}\\
& 2 R_{1}+ R_{2} \leqslant \Upsilon_{5}(\rho), \tag{2.21d}\\
& R_{1}+2 R_{2} \leqslant \Upsilon_{5}(\rho), \tag{2.21e}
\end{align*}
$$

with

$$
\begin{align*}
& \Upsilon_{1}(\rho) \triangleq \frac{1}{2} \log (1+\overrightarrow{\text { SNR }}+\text { INR }+2 \rho \sqrt{\overrightarrow{\text { SNRINR }}), ~} \tag{2.22a}\\
& \Upsilon_{2} \triangleq \frac{1}{2} \log (1+\overrightarrow{\mathrm{SNR}})+\frac{1}{2} \log \left(1+\frac{\overleftarrow{\mathrm{SNR}}}{1+\overrightarrow{\mathrm{SNR}}}\right), \tag{2.22b}\\
& \Upsilon_{3}(\rho) \triangleq \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}+\mathrm{INR}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR} \mathrm{INR}})}+\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}}{1+\mathrm{INR}}\right),\right. \tag{2.22c}\\
& \Upsilon_{4} \triangleq \begin{cases}\log \left(1+\frac{\mathrm{INR}^{2}}{\overline{\mathrm{SNR}}}\right)+\log \left(1+\frac{\overleftarrow{\mathrm{SNR}}}{\mathrm{INR}}\right)+\log \left(\frac{\overrightarrow{\mathrm{SNR}}}{\overline{\mathrm{INR}}}\right)+\log 3, & \text { if } \frac{1}{2} \leqslant \alpha_{G}<1 \\
\log \left(\frac{\mathrm{INR}^{2}+\overrightarrow{\mathrm{SNR}}+2 \mathrm{INR}+2 \rho \sqrt{\mathrm{SNRINR}}+1}{\mathrm{INR}+1}\right) \\
+\log \left(1+\frac{\overleftarrow{\mathrm{SNR}}(\mathrm{INR}+1)}{\overline{\mathrm{SNR}}+\mathrm{INR}+1}\right), & \text { otherwise. }\end{cases} \tag{2.22d}\\
& \left(\frac{1}{2}\left(1+\frac{\mathrm{INR}^{2}}{\overline{\mathrm{SNR}}}\right)+\frac{1}{2} \log \left(1+\frac{\overleftarrow{\mathrm{SNR}}}{\mathrm{INR}}\right)+\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}}{\mathrm{INR}}\right)+\frac{1}{2} \log 3\right. \\
& \Upsilon_{5}(\rho) \triangleq\left\{\begin{array}{l}
+\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}}{1+\mathrm{INR}}\right)+\frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}+\mathrm{INR}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR} \text { INR }}), \quad \text { if } \frac{1}{2} \leqslant \alpha_{G}<1}\right. \\
1 \quad\left(\mathrm{INR}^{2}+\overrightarrow{\mathrm{SNR}}+2 \mathrm{INR}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}} \mathrm{INR}}+1\right)
\end{array}\right. \tag{2.22e}\\
& \left(\begin{array}{l}
+\frac{1}{2} \log \left(1+\frac{\overleftarrow{\mathrm{SNR}}(\mathrm{INR}+1)}{\overrightarrow{\mathrm{SNR}}+\mathrm{INR}+1}\right)+\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}}{\mathrm{INR}+1}\right) \\
+\frac{1}{2} \log (1+\overrightarrow{\mathrm{SNR}}+\mathrm{INR}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR} \mathrm{INR}}),}
\end{array}\right.
\end{align*}
$$

and $\alpha_{G} \triangleq \frac{\log \mathrm{INR}}{\log \mathrm{SNR}}$, and $\rho \in[0,1]$.
An other outer bound for the two-user IC-NOF is introduced in [35, which considers the Hekstra-Willems dependence-balance arguments used in the analysis of two-way channels. In the GIC, these results suggest that feedback loses its ability to increase the capacity region when the noise variance on the feedback link is larger than on the forward link. Using similar arguments, new outer bounds that are tighter than the cut-set bound in some interference regimes are presented in 81.

2.1.4. Rate-Limited Feedback

The two-user GIC with rate-limited feedback (GIC-RLF), that is, the feedback links have finite capacity instead of the case in which the feedback is perfect or noiseless, is analyzed in [85. This corresponds to a more realistic feedback model in which the receivers can use all the information they have received to feed back information through an orthogonal channel of finite capacity. The rate-limited feedback (RLF) increases the complexity of the receivers, given that
these must encode the information they transmit over the capacity-limited feedback channels. Under symmetric conditions in this channel model, the symmetric capacity is approximated to within 7.4 bits from the inner bound. The problem is analyzed using three different IC models: the El Gamal-Costa deterministic model [27, the linear deterministic model [6, 17], and the Gaussian model. In the analysis of the deterministic models the coding strategies are based on: rate-splitting $[20,33$, quantize-and-binning, and decode-and-forward. In the analysis of the Gaussian model the coding strategy is based on block-Markov superposition coding 24, backward decoding $[88,89$, and lattice coding, which enable receivers to decode superposition of codewords. Outer bounds are developed based on the insights from the analysis of the deterministic models.

In 47, 51, 57, 80, 82, 85, the key insights for the analysis of the Gaussian cases are obtained from previous analysis of the respective linear deterministic models.

2.2. Linear Deterministic Interference Channel

A deterministic channel model is introduced by [6] as an approximation to the Gaussian channel models in the very high SNR regime. This model captures the key properties of the wireless communication systems: the signal strength; the broadcast nature of the wireless channel in which the signal sent by one transmitter can be overheard by many receivers at different signal strengths; and multiple signals can arrive to one receiver coming from different transmitters. Except for the point-to-point networks in which noise is the only source of uncertainty, networks are affected not only by noise but also by interference. This linear deterministic approximation considers that the network is operating in an interference-limited regime, where the noise power is small compared to the signal powers. Thus, this model focus on the interactions of the signals rather than the noise. Therefore, the noise as well as the parts of the signal affected by the noise are neglected. the LDIC is a special class of the El Gamal-Costa deterministic IC 27 and a special class of the IC-NOF.

Consider the two-user LDIC-NOF depicted in Figure 2.3 . For all $i \in\{1,2\}$, with $j \in$ $\{1,2\} \backslash\{i\}$, the number of bit-pipes between transmitter i and its corresponding intended receiver is denoted by $\vec{n}_{i i}$; the number of bit-pipes between transmitter i and its corresponding non-intended receiver is denoted by $n_{j i}$; and the number of bit-pipes between receiver i and its corresponding transmitter is denoted by $\overleftarrow{n}_{i i}$. These six non-negative integer parameters describe the two-user LDIC-NOF in Figure 2.3 .

At transmitter i, the channel-input $\boldsymbol{X}_{i, n}$ at channel use n, is a q-dimensional binary vector $\boldsymbol{X}_{i, n}=\left(X_{i, n}^{(1)}, X_{i, n}^{(2)}, \ldots, X_{i, n}^{(q)}\right)^{\top}$, where

$$
\begin{equation*}
q=\max \left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \tag{2.23}
\end{equation*}
$$

At receiver i, the channel-output $\overrightarrow{\boldsymbol{Y}}_{i, n}$ is also a q-dimensional binary vector $\overrightarrow{\boldsymbol{Y}}_{i, n}=\left(\vec{Y}_{i, n}^{(1)}\right.$,

Figure 2.3.: Two-user linear deterministic interference channel with noisy channel-output feedback at channel use n.
$\left.\vec{Y}_{i, n}^{(2)}, \ldots, \vec{Y}_{i, n}^{(q)}\right)^{\top}$. Let \boldsymbol{S} be a $q \times q$ lower shift matrix of the form:

$$
\boldsymbol{S}=\left[\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \tag{2.24}\\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

The input-output relation during channel use n is given by

$$
\begin{equation*}
\overrightarrow{\boldsymbol{Y}}_{i, n}=\boldsymbol{S}^{q-\vec{n}_{i i}} \boldsymbol{X}_{i, n}+\boldsymbol{S}^{q-n_{i j}} \boldsymbol{X}_{j, n}, \tag{2.25}
\end{equation*}
$$

and the feedback signal $\overleftarrow{\boldsymbol{Y}}_{i, n}$ available at transmitter i at the end of channel use n satisfies

$$
\begin{equation*}
\left((0, \ldots, 0), \overleftarrow{\boldsymbol{Y}}_{i, n}^{\top}\right)^{\top}=\boldsymbol{S}^{\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}} \overrightarrow{\boldsymbol{Y}}_{i, n-d} \tag{2.26}
\end{equation*}
$$

where d is a finite delay and additions and multiplications between matrices and vectors are defined over the Galois Field of two elements GF(2).

The dimension of the vector $(0, \ldots, 0)$ in (2.26) is $q-\min \left(\overleftarrow{n}_{i i}, \max \left(\vec{n}_{i i}, n_{i j}\right)\right)$ and the vector $\overleftarrow{\boldsymbol{Y}}_{i, n}$ represents the min $\left(\overleftarrow{n}_{i i}, \max \left(\vec{n}_{i i}, n_{i j}\right)\right)$ least significant bits of $\boldsymbol{S}\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+} \overrightarrow{\boldsymbol{Y}}_{i, n-d}$. Without any loss of generality, the feedback delay is assumed to be equal to 1 channel use.
In this special case, the pdf of the IC-NOF can be factorized as in 2.9. Based on the input-output relation in (2.25), for all $i \in\{1,2\}$ and given the channel-inputs \boldsymbol{x}_{1} and \boldsymbol{x}_{2}
during a specific channel use, the $\operatorname{pdf} \mathrm{f}_{\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{X}_{1}, \boldsymbol{X}_{2}}$ in (2.9) can be expressed as follows:

$$
\begin{equation*}
\mathrm{f}_{\overrightarrow{\boldsymbol{Y}}_{i} \mid X_{1}, X_{2}}\left(\overrightarrow{\boldsymbol{y}}_{i} \mid \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\mathbb{1}_{\left\{\overrightarrow{\boldsymbol{y}}_{i}=S^{\left.q-\vec{n}_{i i} x_{i}+S^{q-n_{i j}} x_{j}\right\}}\right.} . \tag{2.27}
\end{equation*}
$$

Similarly, based on the input-output relation in (2.26), for all $i \in\{1,2\}$ and given the channel-outputs $\overrightarrow{\boldsymbol{y}}_{1}$ and $\overrightarrow{\boldsymbol{y}}_{2}$ during a specific channel use, the pdf $\mathrm{f}_{\widehat{\boldsymbol{Y}}_{i} \mid \overrightarrow{\boldsymbol{Y}}_{i}}$ in (2.9) can be expressed as follows:

$$
\begin{equation*}
\mathrm{f}_{\overleftarrow{\boldsymbol{Y}}_{i} \mid \overrightarrow{\boldsymbol{Y}}_{i}}\left(\overleftarrow{\boldsymbol{y}}_{i} \mid \overrightarrow{\boldsymbol{y}}_{i}\right)=\mathbb{1}\left\{\overleftarrow{\boldsymbol{y}}_{i}^{\top}=\boldsymbol{S}^{\left.\left(\max \left(\vec{r}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+} \overrightarrow{\boldsymbol{y}}_{i}\right\}}\right. \tag{2.28}
\end{equation*}
$$

2.2.1. Case without Feedback

The following lemma presents the capacity region for the two-user LDIC without channel-output feedback.

Lemma 9 (Capacity region two-user LDIC, Lemma 4 in 17). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user LDIC without channel-output feedback. Then, \mathcal{C} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
& R_{1} \leqslant \vec{n}_{11} \text {, } \tag{2.29a}\\
& R_{2} \leqslant \vec{n}_{22}, \tag{2.29b}\\
& R_{1}+R_{2} \leqslant\left(\vec{n}_{11}-n_{12}\right)^{+}+\max \left(\vec{n}_{22}, n_{12}\right), \tag{2.29c}\\
& R_{1}+R_{2} \leqslant\left(\vec{n}_{22}-n_{21}\right)^{+}+\max \left(\vec{n}_{11}, n_{21}\right) \text {, } \tag{2.29d}\\
& R_{1}+R_{2} \leqslant \max \left(n_{21},\left(\vec{n}_{11}-n_{12}\right)^{+}\right)+\max \left(n_{12},\left(\vec{n}_{22}-n_{21}\right)^{+}\right) \text {, } \tag{2.29e}\\
& 2 R_{1}+R_{2} \leqslant \max \left(\vec{n}_{11}, n_{21}\right)+\left(\vec{n}_{11}-n_{12}\right)^{+}+\max \left(n_{12},\left(\vec{n}_{22}-n_{21}\right)^{+}\right), \tag{2.29f}\\
& R_{1}+2 R_{2} \leqslant \max \left(\vec{n}_{22}, n_{12}\right)+\left(\vec{n}_{22}-n_{21}\right)^{+}+\max \left(n_{21},\left(\vec{n}_{11}-n_{12}\right)^{+}\right) \text {. } \tag{2.29~g}
\end{align*}
$$

2.2.2. Case with Perfect Channel-Output Feedback

The following lemma presents the capacity region for the two-user LDIC-POF.
Lemma 10 (Capacity region two-user LDIC-POF, Corollary 1 in $80 \mid$). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user LDIC-POF. Then, \mathcal{C} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
& R_{1} \leqslant \min \left(\max \left(\vec{n}_{11}, n_{21}\right), \max \left(\vec{n}_{11}, n_{12}\right)\right), \tag{2.30a}\\
& R_{2} \leqslant \min \left(\max \left(\vec{n}_{22}, n_{12}\right), \max \left(\vec{n}_{22}, n_{21}\right)\right), \tag{2.30b}\\
& R_{1}+ R_{2} \leqslant \min \left(\max \left(\vec{n}_{22}, n_{21}\right)+\left(\vec{n}_{11}-n_{21}\right)^{+}, \max \left(\vec{n}_{11}, n_{12}\right)+\left(\vec{n}_{22}-n_{12}\right)^{+}\right) . \tag{2.30c}
\end{align*}
$$

2.2.3. Symmetric Case with Noisy Channel-Output Feedback

The following lemma presents the capacity region for the two-user symmetric LDIC-NOF, in which $\vec{n}_{11}=\vec{n}_{22}=\vec{n}, n_{12}=n_{21}=m$, and $\overleftarrow{n}_{11}=\overleftarrow{n}_{22}=\overleftarrow{n}$.

Lemma 11 (Capacity region two-user symmetric LDIC-NOF, Theorem 1 in 47). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user symmetric LDIC-NOF. Then, \mathcal{C} contains all the
rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
& R_{1} \leqslant \max (\vec{n}, m) \tag{2.31a}\\
& R_{2} \leqslant \max (\vec{n}, m) \tag{2.31b}\\
& R_{1} \leqslant \vec{n}+(\overleftarrow{n}-\vec{n})^{+} \tag{2.31c}\\
& R_{2} \leqslant \vec{n}+(\overleftarrow{n}-\vec{n})^{+}, \tag{2.31d}\\
& R_{1}+R_{2} \leqslant \max (\vec{n}, m)+(\vec{n}-m)^{+} \tag{2.31e}\\
& R_{1}+R_{2} \leqslant 2 \max \left((\vec{n}-m)^{+}, m\right)+2 \min \left((\vec{n}-m)^{+},\left(\overleftarrow{n}-\max \left(m,(\vec{n}-m)^{+}\right)\right)^{+}\right), \tag{2.31f}\\
& 2 R_{1}+R_{2} \leqslant \max (\vec{n}, m)+(\vec{n}-m)^{+}+\max \left((\vec{n}-m)^{+}, m\right) \\
& \quad+\min \left((\vec{n}-m)^{+},\left(\overleftarrow{n}-\max \left(m,(\vec{n}-m)^{+}\right)\right)^{+}\right) \tag{2.31~g}\\
& R_{1}+2 R_{2} \leqslant \max (\vec{n}, m)+(\vec{n}-m)^{+}+\max \left((\vec{n}-m)^{+}, m\right) \\
&+\min \left((\vec{n}-m)^{+},\left(\overleftarrow{n}-\max \left(m,(\vec{n}-m)^{+}\right)\right)^{+}\right) \tag{2.31h}
\end{align*}
$$

2.2.4. Symmetric Case with only one Perfect Channel-Output Feedback

The following lemma presents the capacity region for the two-user symmetric LDIC with only one POF, in which $\vec{n}_{11}=\vec{n}_{22}=\vec{n}, n_{12}=n_{21}=m$ and $\overleftarrow{n}_{11}=\max (\vec{n}, m)$, and $\overleftarrow{n}_{22}=0$.

Lemma 12 (Capacity region two-user LDIC with only one POF, Theorem 4.1 model 1000 in |72|). Let $\mathcal{C} \subset \mathbb{R}_{+}^{2}$ denote the capacity region of the two-user symmetric LDIC with only one $\widehat{P O F}$ between receiver 1 and transmitter 1 . Then, \mathcal{C} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy the following inequalities:

$$
\begin{align*}
& R_{1} \leqslant \vec{n} \tag{2.32}\\
& R_{2} \leqslant \max (\vec{n}, m) \tag{2.33}\\
R_{1}+ & R_{2} \leqslant \max (\vec{n}, m)+(\vec{n}-m)^{+} \tag{2.34}\\
2 R_{1}+ & R_{2} \leqslant \max (\vec{n}, m)+(\vec{n}-m)^{+}+\max (\vec{n}-m, m) \tag{2.35}
\end{align*}
$$

Note that the model 0001 in 72 corresponds to the two-user symmetric LDIC with only one POF between receiver 2 and transmitter 2. Note also that the model 1001 in 72 corresponds to the two-user symmetric LDIC with POF that corresponds to the Lemma 10 for symmetric parameters in the LDIC.

2.2.5. Sum-Capacity with Source Cooperation

In the two-user IC-NOF, a transmitter sees a noisy version of the sum of its own transmitted signal and the interfering signal from the other transmitter. Hence, subject to a finite delay, one transmitter knows at least partially the information transmitted by the other transmitter in the network. This observation highlights the connections between the IC with feedback and the IC with source cooperation studied in 57 . These two channel models are related but they are not the same. There are two main differences between the two channel models. First, the channel-output signal observed by the transmitter in the case of IC-NOF is impaired by the noise in the feedback link and the noise in the forward channel. In the case of source cooperation, the cooperation signal is only affected by the noise in the cooperative link. Second, the cooperation between transmitters is direct and symmetric in the case of source cooperation.

Conversely, in the case of IC-NOF, the signal that is observed by the transmitter is affected by the delay in the feedback link, and the part of the signal that was transmitted by the other transmitter is obtained from the substraction between the signal observed by the transmitter and the own signal that was transmitted previously. Then, the cooperation is not direct 47.

The two-user IC with source cooperation has two transmitters, i.e., 1 and 2 , two receivers, i.e., 3 and 4 , and it also has noisy connections between the two transmitters 57. The following lemma presents the sum-capacity of the LDIC with source cooperation.

Lemma 13 (Sum-capacity two-user LDIC with source cooperation, Theorem 1 in [57). The sum-capacity region of the two-user LDIC with source cooperation is the minimum of the following inequalities:

$$
\begin{align*}
& R_{1}+R_{2}=\max \left(n_{1,3}-n_{1,4}+n_{c}, n_{2,3}, n_{c}\right)+\max \left(n_{2,4}-n_{2,3}+n_{c}, n_{1,4}, n_{c}\right), \tag{2.36a}\\
& R_{1}+R_{2}=\max \left(n_{1,3}, n_{2,3}\right)+\left(\max \left(n_{2,4}, n_{2,3}, n_{c}\right)-n_{2,3}\right), \tag{2.36b}\\
& R_{1}+R_{2}=\max \left(n_{2,4}, n_{1,4}\right)+\left(\max \left(n_{1,3}, n_{1,4}, n_{c}\right)-n_{1,4}\right), \tag{2.36c}\\
& R_{1}+R_{2}=\max \left(n_{1,3}, n_{c}\right)+\max \left(n_{2,4}, n_{c}\right), \tag{2.36d}\\
& R_{1}+R_{2}= \begin{cases}\max \left(n_{1,3}+n_{2,4}, n_{1,4}+n_{2,3}\right), & \text { if } n_{1,3}-n_{2,3} \neq n_{1,4}-n_{2,4}, \\
\max \left(n_{1,3}, n_{2,4}, n_{1,4}, n_{2,3}\right), & \text { otherwise }\end{cases} \tag{2.36e}
\end{align*}
$$

In order to establish a connection between (2.36) and the sum-rate capacity of the two-user LDIC-NOF the following identities must be introduced: $n_{1,3}=\vec{n}_{11}, n_{2,4}=\vec{n}_{22}, n_{2,3}=n_{12}$, $n_{1,4}=n_{21}$, and $n_{c}=\overleftarrow{n}_{11}-\left(\vec{n}_{11}-n_{12}\right)^{+}=\overleftarrow{n}_{22}-\left(\vec{n}_{22}-n_{21}\right)^{+}$. The last equality implies that the feedback must include the signal levels that contain information about the non-intended source in order to allow cooperation between the sources.

Decentralized

Interference Channels

IN a decentralized system, a central controller does not exist and each transmitterreceiver pair is responsible for the selection of its own transmit-receive configuration to maximize its data transmission rate. A transmit-receive configuration for transmitter-receiver pair i, with $i \in\{1,2\}$, denoted by s_{i}, can be described in terms of the block-length N_{i}, the number of bits per block $M_{i}=\left\lceil\log _{2}\left|\mathcal{W}_{i}\right|\right\rceil$, the channel-input alphabet \mathcal{X}_{i}, the codebook \mathcal{C}_{i}, the encoding function f_{i}, the decoding function ψ_{i}, etc. The aim of transmitter i is to autonomously choose its transmit-receive configuration s_{i}, in order to maximize its achievable rate R_{i}. Note that the rate achieved by transmitter-receiver i depends on both configurations s_{1} and s_{2} due to mutual interference. This reveals the competitive interaction between both links in the decentralized interference channel.

The system models for the two-user decentralized continuous IC-NOF; the two-user D-GICNOF; and the two-user D-LDIC-NOF are in general the same as in the centralized case. The main differences are the following:

- Each transmitter-receiver defines the number of channel-uses per block, i.e., N_{1} and N_{2} channel uses.
- The transmission of a block consists of N channel uses, where $N=\max \left(N_{1}, N_{2}\right)$. Then, $X_{i, n}=0$ for all $n>N_{i}$.
- Encoder i generates the symbol $x_{i, n}$ considering not only the message index $W_{i} \in \mathcal{W}_{i}=$ $\left\{1,2, \ldots, 2^{N_{i} R_{i}}\right\}$ and all previous outputs from the feedback link i, i.e., $\left(\overleftarrow{y}_{i, 1}, \overleftarrow{y}_{i, 2}, \ldots\right.$, $\overleftarrow{y}_{i, n-1}$), but also the random message index $\Omega_{i} \in \mathbb{N}$. The index Ω_{i} is an additional index randomly generated which is assumed to be known by both transmitter i and receiver i, while unknown by transmitter j and receiver j (common randomness).
- At the end of the transmission, decoder i uses all the channel-outputs, i.e., $\left(\vec{y}_{i, 1}\right.$, $\vec{y}_{i, 2}, \ldots, \vec{y}_{i, N}$) and the random message index Ω_{i} to obtain an estimate of the message index W_{i}, denoted by \widehat{W}_{i}.
- The following Markov chain holds:

$$
\begin{equation*}
W_{i}, \Omega_{i}, \overleftarrow{\boldsymbol{Y}}_{i,(1 ; n-1)} \rightarrow X_{i, n} \rightarrow \vec{Y}_{i, n} \tag{3.1}
\end{equation*}
$$

- The calculation of the probability of error is made for each of the transmitter-receiver pairs. Let $W_{i}^{(t)}$ be written as $c_{i, 1}^{(t)} c_{i, 2}^{(t)} \ldots c_{i, M_{i}}^{(t)}$ in binary form. Let also $\widehat{W}_{i}^{(t)}$ be written as $\widehat{c}_{i, 1}^{(t)} \widehat{c}_{i, 2}^{(t)} \ldots \widehat{c}_{i, M_{i}}^{(t)}$ in binary form. Then, the average bit error probability at decoder i given the configurations s_{1} and s_{2}, denoted by $p_{i}\left(s_{1}, s_{2}\right)$, is given by

$$
\begin{equation*}
p_{i}\left(s_{1}, s_{2}\right)=\frac{1}{M_{i}} \sum_{\ell=1}^{M_{i}} \mathbb{1}_{\left\{\widetilde{c}_{i, \ell}^{(t)} \neq c_{i, \ell}^{(t)}\right\}} . \tag{3.2}
\end{equation*}
$$

The fundamental limits in a decentralized two-user IC-NOF system are defined by the η-NE region.

Definition 3 (η-NE region of a two-user IC). The η-NE region of a two-user IC is the closure of the set of all possible achievable rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that are stable in the sense of a Nash equilibrium. More specifically, given an NE coding scheme, there does not exist an alternative coding scheme for either transmitter-receiver pair that increases their individual rates by more than η bits per channel-use.

3.1. Game Formulation

The competitive interaction between the two transmitter-receiver pairs in the IC can be modeled by the following game in normal-form:

$$
\begin{equation*}
\mathcal{G}=\left(\mathcal{K},\left\{\mathcal{A}_{k}\right\}_{k \in \mathcal{K}},\left\{u_{k}\right\}_{k \in \mathcal{K}}\right) . \tag{3.3}
\end{equation*}
$$

The set $\mathcal{K}=\{1,2\}$ is the set of players, that is, the set of transmitter-receiver pairs. The sets \mathcal{A}_{1} and \mathcal{A}_{2} are the sets of actions of player 1 and 2 , respectively. The choice of one transmit-receive configuration by player $i \in \mathcal{K}$ is an action, which is denoted by $s_{i} \in \mathcal{A}_{i}$. The utility function of player i is $u_{i}: \mathcal{A}_{1} \times \mathcal{A}_{2} \rightarrow \mathbb{R}_{+}$and it is defined as the achieved rate of transmitter i,

$$
u_{i}\left(s_{1}, s_{2}\right)= \begin{cases}R_{i}=\frac{M_{i}}{N_{i}}, & \text { if } \tag{3.4}\\ 0, & p_{i}\left(s_{1}, s_{2}\right)<\epsilon \\ 0, & \text { otherwise },\end{cases}
$$

where $\epsilon>0$ is an arbitrarily small number and R_{i} denotes a transmission rate achievable with the configurations s_{1} and s_{2}. This game formulation was first proposed in 12 and 93 .

A class of transmit-receive configuration pairs $s^{*}=\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{2}$ that are particularly important in the analysis of this game is referred to as the set of η-Nash equilibria (η-NE), with $\eta>0$. These pairs of configurations satisfy the following definition.

Definition $4(\eta$-NE [54 $)$. In the game $\mathcal{G}=\left(\mathcal{K},\left\{\mathcal{A}_{k}\right\}_{k \in \mathcal{K}},\left\{u_{k}\right\}_{k \in \mathcal{K}}\right)$, a configuration pair $\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{2}$ is an η-NE if for all $i \in \mathcal{K}$ and for all $s_{i} \in \mathcal{A}_{i}$, there exits an $\eta>0$ such that

$$
\begin{equation*}
u_{i}\left(s_{i}, s_{j}^{*}\right) \leqslant u_{i}\left(s_{i}^{*}, s_{j}^{*}\right)+\eta . \tag{3.5}
\end{equation*}
$$

Let $\left(s_{1}^{*}, s_{2}^{*}\right)$ be an η-NE configuration pair of the game in (3.3). Then, none of the transmitters can increase its own information transmission rate more than η bits per channel use by changing its own transmit-receive configuration and keeping the average bit error probability arbitrarily close to zero. Note that for η sufficiently large, from Definition 4 any pair of configurations can be an η-NE. Alternatively, for $\eta=0$, the classical definition of NE is obtained [53]. In this case, if a pair of configurations is a $\mathrm{NE}(\eta=0)$, then each individual configuration is optimal with respect to each other. Hence, the interest is to describe the set of all possible η-NE rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ of the game in (3.3) with the smallest η for which there exists at least one equilibrium configuration pair.

The set of rate pairs that can be achieved at an η-NE is known as the η-NE region.
Definition 5 (η-NE Region). Let $\eta>0$ be fixed. An achievable rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ is said to be in the η-NE region of the game $\mathcal{G}=\left(\mathcal{K},\left\{\mathcal{A}_{k}\right\}_{k \in \mathcal{K}},\left\{u_{k}\right\}_{k \in \mathcal{K}}\right)$ if there exists a pair $\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{2}$ that is an η-NE and the following holds:

$$
\begin{equation*}
u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{1} \quad \text { and } \quad u_{2}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{2} . \tag{3.6}
\end{equation*}
$$

Following along the same lines in [13], if there exists a configuration pair $\left(s_{1}, s_{2}\right)$ that achieves a rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ using codes of block lengths N_{1} and N_{2} respectively, then it can be shown that there exists a configuration pair $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ that achieves the same rate pair using the same block length for both users, e.g., $N=\max \left(N_{1}, N_{2}\right)$. The resulting probability of error with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ is smaller than or equal to the probability of error obtained by the configuration pair $\left(s_{1}, s_{2}\right)$. For this reason, without loss of generality, the same block length is considered for both users in the remaining of this thesis.

3.2. Gaussian Interference Channel

3.2.1. Case without Feedback

The following lemma presents an approximate NE region for the two-user GIC without channel-output feedback.

Lemma 14 (Approximate NE region two-user GIC, Theorem 2 in $\sqrt[13 \mid)]$.${ } Let \mathcal{N} \subset \mathbb{R}_{+}^{2}$ denote the NE region of the two-user GIC without channel-output feedback. Then,

$$
\begin{equation*}
\underline{\mathcal{C}} \cap \underline{\mathcal{B}} \subseteq \mathcal{N} \subseteq \mathcal{C} \cap \mathcal{B}, \tag{3.7}
\end{equation*}
$$

with \mathcal{C} the capacity region of the two-user GIC, $\underline{\mathcal{C}}$ the achievable region of the two-user GIC (Lemma 1), and, \mathcal{B} and $\underline{\mathcal{B}}$ given by

$$
\begin{gather*}
\mathcal{B}=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}: L_{i} \leqslant R_{i} \leqslant U_{i}, \text { for all } i \in\{1,2\}\right\}, \tag{3.8a}\\
\underline{\mathcal{B}}=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}: L_{i} \leqslant R_{i} \leqslant \max \left(U_{i}-1, L_{i}\right), \text { for all } i \in\{1,2\}\right\}, \tag{3.8b}
\end{gather*}
$$

where for all $i \in\{1,2\}$

$$
\begin{align*}
L_{i}= & \frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{i}}{1+\mathrm{INR}_{i j}}\right) \text { and } \tag{3.9a}\\
U_{i}= & \min \left(\frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{i}+\mathrm{INR}_{i j}\right)-\frac{1}{2} \log \left(1+\frac{\left(\overrightarrow{\mathrm{SNR}}_{j}-\max \left(\mathrm{INR}_{j i}, \frac{\overrightarrow{\mathrm{SNR}}_{j}}{\mathrm{INR}_{i j}}\right)\right)^{+}}{1+\mathrm{INR}_{j i}+\max \left(\mathrm{INR}_{j i}, \frac{\mathrm{SNR}_{j}}{\mathrm{INR}_{i j}}\right)}\right),\right. \\
& \left.\frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{i}\right)\right) . \tag{3.9b}
\end{align*}
$$

The region defined by $\underline{\mathcal{B}}$ differs from \mathcal{B} by at most one bit, given that the achievable region in Lemma 1 is at most one bit from the capacity region [28].

3.2.2. Case with Perfect Channel-Output Feedback

The following lemma presents an approximate NE region for the two-user GIC-POF.
Lemma 15 (Approximate NE region two-user GIC-POF, Theorem 2 in 60). Let $\eta \geqslant 1$ and let $\mathcal{N} \subset \mathbb{R}_{+}^{2}$ denote the NE region of the two-user GIC-POF. Then,

$$
\begin{equation*}
\underline{\mathcal{C}} \cap \mathcal{B}_{\eta} \subseteq \mathcal{N} \subseteq \overline{\mathcal{C}} \cap \mathcal{B}_{\eta}, \tag{3.10}
\end{equation*}
$$

with $\underline{\mathcal{C}}$ the achievable region of the two-user GIC-POF (Lemma 5), $\overline{\mathcal{C}}$ the converse region of the two-user GIC-POF (Lemma 6), and \mathcal{B}_{η} given by

$$
\begin{equation*}
\mathcal{B}_{\eta}=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}:\left(L_{i}-\eta\right)^{+} \leqslant R_{i}, \text { for all } i \in\{1,2\}\right\}, \tag{3.11}
\end{equation*}
$$

where for all $i \in\{1,2\} \quad L_{i}$ is given by (3.9a).

3.3. Linear Deterministic Interference Channel

3.3.1. Case without Feedback

The following lemma presents the NE region for the two-user LDIC without channel-output feedback.

Lemma 16 (NE region two-user LDIC, Theorem 1 in 13$]$). Let $\mathcal{N} \subset \mathbb{R}_{+}^{2}$ denote the $N E$ region of the two-user LDIC without channel-output feedback. Then, \mathcal{N} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy:

$$
\begin{equation*}
\mathcal{N}=\mathcal{C} \cap \mathcal{B}, \tag{3.12}
\end{equation*}
$$

with \mathcal{C} the capacity region of the two-user LDIC (Lemma (9) and \mathcal{B} given by

$$
\begin{equation*}
\mathcal{B}=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}: L_{i} \leqslant R_{i} \leqslant U_{i}, \text { for all } i \in\{1,2\}\right\}, \tag{3.13}
\end{equation*}
$$

where for all $i \in\{1,2\}$

$$
\begin{align*}
& L_{i}=\left(\vec{n}_{i i}-n_{i j}\right)^{+} \text {and } \tag{3.14}\\
& U_{i}=\left\{\begin{array}{l}
\vec{n}_{i i}-\min \left(L_{j}, n_{i j}\right), \text { if } n_{i j} \leqslant \vec{n}_{i i} \\
\min \left(\left(n_{i j}-L_{j}\right)^{+}, \vec{n}_{i i}\right), \text { if } n_{i j}>\vec{n}_{i i}
\end{array} .\right. \tag{3.15}
\end{align*}
$$

3.3.2. Case with Perfect Channel-Output Feedback

The following lemma presents the NE region for the two-user LDIC-POF.
Lemma 17 (NE region two-user LDIC-POF, Theorem 1 in 60). Let $\eta \geqslant 0$ and let $\mathcal{N} \subset$ \mathbb{R}_{+}^{2} denote the NE region of the two-user LDIC-POF. Then, $\mathcal{\mathcal { N }}$ contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy:

$$
\begin{equation*}
\mathcal{N}=\mathcal{C} \cap \mathcal{B}_{\eta}, \tag{3.16}
\end{equation*}
$$

with \mathcal{C} the capacity region of the two-user LDIC-POF (Lemma 10) and \mathcal{B} given by

$$
\begin{equation*}
\mathcal{B}_{\eta}=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}:\left(L_{i}-\eta\right)^{+} \leqslant R_{i}, \text { for all } i \in\{1,2\}\right\}, \tag{3.17}
\end{equation*}
$$

where for all $i \in\{1,2\}$

$$
\begin{equation*}
L_{i}=\left(\vec{n}_{i i}-n_{i j}\right)^{+} . \tag{3.18}
\end{equation*}
$$

3.3.3. Symmetric Case with Noisy Channel-Output Feedback

The following lemma presents the NE region for the two-user symmetric LDIC-NOF, in which $\vec{n}_{11}=\vec{n}_{22}=\vec{n}, n_{12}=n_{21}=m$, and $\overleftarrow{n}_{11}=\overleftarrow{n}_{22}=\overleftarrow{n}$.

Lemma 18 (NE region two-user symmetric LDIC-NOF, Theorem 1 in 62). Let $\mathcal{N} \subset \mathbb{R}_{+}^{2}$ denote the NE region of the two-user symmetric LDIC-NOF. Then, \mathcal{N} contains all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy:

$$
\begin{equation*}
\mathcal{N}=\mathcal{C} \cap \mathcal{B}, \tag{3.19}
\end{equation*}
$$

with \mathcal{C} the capacity region of the two-user symmetric LDIC-NOF (Lemma 11) and \mathcal{B} given by

$$
\begin{equation*}
\mathcal{B}=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}: L \leqslant R_{i} \leqslant U, \text { for all } i \in\{1,2\}\right\}, \tag{3.20}
\end{equation*}
$$

where for all $i \in\{1,2\}$

$$
\begin{align*}
L_{i} & =(\vec{n}-m)^{+} \text {and } \tag{3.21}\\
U_{i} & = \begin{cases}\min (\max (\vec{n}, \overleftarrow{n}), m), & \text { if } m \geqslant \vec{n} \\
\max (\vec{n}, m)-\min \left((\vec{n}-m)^{+}, m\right) \\
+\left(\min \left((\vec{n}-m)^{+}, m\right)-(\max (\vec{n}, m)-\overleftarrow{n})\right)^{+} & \text {if } m \leqslant \vec{n} .\end{cases} \tag{3.22}
\end{align*}
$$

\square

Connections between Linear Deterministic and Gaussian Interference Channels

THE capacity region of the two-user GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}$, $\mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{2}$ can be approximated by the capacity region of an LDIC-NOF with parameters $\vec{n}_{i i}=\left\lfloor\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{i}\right)\right\rfloor ; n_{i j}=\left\lfloor\frac{1}{2} \log \left(\mathrm{INR}_{i j}\right)\right\rfloor$; $\overleftarrow{n}_{i i}=\left\lfloor\frac{1}{2} \log \left(\overleftarrow{\mathrm{SNR}}_{i}\right)\right\rfloor$, with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$. For instance, in the case without feedback, the capacity region of any GIC with parameters $\overrightarrow{\mathrm{SNR}}_{1}>1, \overrightarrow{\mathrm{SNR}}_{2}>1, \mathrm{INR}_{12}>1$ and $\mathrm{INR}_{21}>1$ is within 18.6 bits per channel use per user of the capacity of an LDIC with parameters $\vec{n}_{11}=\left\lfloor\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}\right)\right\rfloor, \vec{n}_{22}=\left\lfloor\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}\right)\right\rfloor, n_{12}=\left\lfloor\frac{1}{2} \log \left(\mathrm{INR}_{12}\right)\right\rfloor$, and $n_{21}=\left\lfloor\frac{1}{2} \log \left(\mathrm{INR}_{21}\right)\right\rfloor$ (Theorem 2 in [17]). More specifically, if the capacity region of the two-user GIC and the two-user LDIC without feedback are denoted by \mathcal{C}_{G} and $\mathcal{C}_{\mathrm{LD}}$, respectively, the following holds:

$$
\begin{align*}
& \mathcal{C}_{\mathrm{LD}} \subseteq \mathcal{C}_{\mathrm{G}}+(5,5), \text { and } \tag{4.1a}\\
& \mathcal{C}_{\mathrm{G}} \subseteq \mathcal{C}_{\mathrm{LD}}+(13.6,13.6) . \tag{4.1b}
\end{align*}
$$

In a more general setting, for instance in the case with NOF, the two-user LDIC is known to be a close approximation of the two-user GIC. In Section 6.4, this approximation is used to simplify the identification of the cases in which channel-output feedback, even subject to additive noise, enlarges the capacity region of the two-user GIC.

Part II.

CONTRIBUTIONS TO CENTRALIZED INTERFERENCE CHANNELS

Linear Deterministic Interference Channel

THis chapter presents the main results on the two-user centralized LDIC-NOF described in Section 2.2.

5.1. Capacity Region

Denote by $\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ the capacity region of the two-user LDIC-NOF with parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}$, and \overleftarrow{n}_{22}. Theorem 5.1.1 characterizes the latter.

5.1.1 Theorem (Capacity Region)

The capacity region $\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ of the two-user LDIC-NOF is the set of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$ satisfy:

$$
\left.\begin{array}{l}
\quad R_{i} \leqslant \min \left(\max \left(\vec{n}_{i i}, n_{j i}\right), \max \left(\vec{n}_{i i}, n_{i j}\right)\right), \\
R_{i} \leqslant \min \left(\max \left(\vec{n}_{i i}, n_{j i}\right), \max \left(\vec{n}_{i i}, \overleftarrow{n}_{j j}-\left(\vec{n}_{j j}-n_{j i}\right)^{+}\right)\right), \\
R_{1}+R_{2} \leqslant \min \left(\max \left(\vec{n}_{22}, n_{12}\right)+\left(\vec{n}_{11}-n_{12}\right)^{+}, \max \left(\vec{n}_{11}, n_{21}\right)+\left(\vec{n}_{22}-n_{21}\right)^{+}\right), \\
R_{1}+R_{2} \leqslant \max \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}, \vec{n}_{11}-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right) \\
\\
\quad+\max \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}, \vec{n}_{22}-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right), \\
2 R_{i}+R_{j} \leqslant \tag{5.1~d}
\end{array} \max \left(\vec{n}_{i i}, n_{j i}\right)+\left(\vec{n}_{i i}-n_{i j}\right)^{+}\right)
$$

The proof of Theorem 5.1.1 is divided into two parts. The first part describes the achievable region and is presented in Appendix A. The second part describes the converse region and is presented in Appendix B.

Theorem 5.1.1 generalizes previous results regarding the capacity region of the two-user LDIC with channel-output feedback. For instance, when $\overleftarrow{n}_{11}=0$ and $\overleftarrow{n}_{22}=0$, Theorem 5.1.1 describes the capacity region of the two-user LDIC without feedback (Lemma 4 in 17]); when $\overleftarrow{n}_{11} \geqslant \max \left(\vec{n}_{11}, n_{12}\right)$ and $\overleftarrow{n}_{22} \geqslant \max \left(\vec{n}_{22}, n_{21}\right)$, Theorem 5.1.1 describes the capacity region of the two-user LDIC with perfect channel output feedback (LDIC-POF) (Corollary 1 in 80); when $\vec{n}_{11}=\vec{n}_{22}, n_{12}=n_{21}$ and $\overleftarrow{n}_{11}=\overleftarrow{n}_{22}$, Theorem 5.1.1 describes the capacity region of the two-user symmetric LDIC-NOF (Theorem 1 in 47] and Theorem 4.1, Case 1001 in 72); and when $\vec{n}_{11}=\vec{n}_{22}, n_{12}=n_{21}, \overleftarrow{n}_{i i} \geqslant \max \left(\vec{n}_{i i}, n_{i j}\right)$ and $\overleftarrow{n}_{j j}=0$, with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, Theorem 5.1.1 describes the capacity region of the two-user symmetric LDIC with only one perfect channel output feedback (Theorem 4.1, Cases 1000 and 0001 in (72).

An interesting observation from Theorem 5.1.1 is that feedback is beneficial only when at least one of the feedback parameters \overleftarrow{n}_{11} or \overleftarrow{n}_{22} is beyond a certain threshold (See Section 5.2). For instance, note that when $\overleftarrow{n}_{i i} \leqslant\left(\vec{n}_{i i}-n_{i j}\right)^{+}$, receiver i is unable to send to its corresponding transmitter via feedback any information about the message sent by transmitter j, and thus, feedback does not play any role for enlarging the capacity region. This is basically because the bit-pipes that are subject to interference at receiver i are not included in the set of bit-pipes that are above the (feedback) noise level. However, the threshold $\left(\vec{n}_{i i}-n_{i j}\right)^{+}$for $\overleftarrow{n}_{i i}$ is necessary but not sufficient for feedback to enlarge the capacity region. Consider for instance the following examples.

Example 1. Consider the two-user LDIC-NOF with parameters $\vec{n}_{11}=5, \vec{n}_{22}=1, \vec{n}_{12}=3$, $\vec{n}_{21}=4$, and $\overleftarrow{n}_{22}=0$. The capacity regions $\mathcal{C}(5,1,3,4,0,0)$ and $\mathcal{C}(5,1,3,4,4,0)$ are shown in Figure 5.1 a. In this case, channel-output feedback in the transmitter-receiver pair 1 enlarges the capacity region only when $\overleftarrow{n}_{11}>\vec{n}_{22}+\left(\vec{n}_{11}-n_{12}\right)^{+}=3$. More specifically, for all $\overleftarrow{n}_{11} \in\{0, \ldots, 3\}$,

$$
\mathcal{C}\left(5,1,3,4, \overleftarrow{n}_{11}, 0\right)=\mathcal{C}(5,1,3,4,0,0)
$$

and for all $\overleftarrow{n}_{11} \in\{4,5, \ldots, \infty\}$,

$$
\mathcal{C}(5,1,3,4,0,0) \subset \mathcal{C}\left(5,1,3,4, \overleftarrow{n}_{11}, 0\right)
$$

In Example 3, in the absence of channel-output feedback, the rate R_{2} is upper-bounded by 1 bit per channel use, whereas the sum-rate $R_{1}+R_{2}$ is upper-bounded by 5 bits per channel use. Figure 5.1b shows a simple achievability scheme for the rate pair $(3,1)$. Note that R_{2} cannot be improved letting transmitter 2 use the bit-pipes $\boldsymbol{X}_{2, n}^{(2: 5)}$ as they are not observed at receiver 2 . When channel-output feedback is available at least at transmitter-receiver pair 1 and the bit-pipe from transmitter 2 ending at $\vec{Y}_{1, n}^{(4)}$ is included in the feedback signal $\overleftarrow{\boldsymbol{Y}}_{i, n}$, the bit-pipe $X_{2, n}^{(2)}$ can be used by transmitter 2 as feedback provides a path between transmitter 2 and receiver 2: transmitter 2 - receiver 1 - transmitter 1 - receiver 2 . For this alternative path to become available at least the $\left(\vec{n}_{22}+\left(\vec{n}_{11}-n_{12}\right)^{+}+1\right)$-th (feedback) bit-pipe from receiver 1 to transmitter 1 must be above the noise level, i.e., $\overleftarrow{n}_{11}>\vec{n}_{22}+\left(\vec{n}_{11}-n_{12}\right)^{+}$.

Figure 5.1.: (a) Capacity regions of $\mathcal{C}(5,1,3,4,0,0)$ (thick red line) and $\mathcal{C}(5,1,3,4,4,0)$ (thin blue line). (b) Achievability of the rate pair (3,1) in an LDIC-NOF with parameters $\vec{n}_{11}=5, \vec{n}_{22}=1, n_{12}=3, n_{21}=4, \overleftarrow{n}_{11}=0$ and $\overleftarrow{n}_{22}=0$ (no feedback links). (c) Achievability of the rate pair $(3,2)$ in an LDIC-NOF with parameters $\vec{n}_{11}=5, \vec{n}_{22}=1, n_{12}=3, n_{21}=4, \overleftarrow{n}_{11}=4$ and $\overleftarrow{n}_{22}=0$.

Example 2. Consider an LDIC-NOF with parameters $\vec{n}_{11}=7, \vec{n}_{22}=7, n_{12}=3$, $n_{21}=5$, and $\overleftarrow{n}_{22}=0$. The capacity regions $\mathcal{C}(7,7,3,5,0,0)$ and $\mathcal{C}(7,7,3,5,6,0)$ are shown in Figure 5.2 a . In this case, channel-output feedback in the transmitter-receiver pair 1 enlarges the capacity region only when $\overleftarrow{n}_{11}>\max \left(n_{21},\left(\vec{n}_{11}-n_{12}\right)^{+}\right)=5$. More specifically, for all $\overleftarrow{n}_{11} \in\{0,1, \ldots, 5\}$,

$$
\mathcal{C}\left(7,7,3,5, \overleftarrow{n}_{11}, 0\right)=\mathcal{C}(7,7,3,5,0,0)
$$

and for all $\overleftarrow{n}_{11} \in\{6,7, \ldots, \infty\}$,

$$
\mathcal{C}(7,7,3,5,0,0) \subset \mathcal{C}\left(7,7,3,5, \overleftarrow{n}_{11}, 0\right)
$$

In Example 5, in the absence of feedback, the sum-rate capacity can be achieved by simultaneously using two groups of bit-pipes: (a) all bit-pipes starting at transmitter i and being exclusively observed by receiver i; and (b) all bit-pipes starting at transmitter i that are observed at receiver j but do not interfere with the first group of bit-pipes, with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$. Figure 5.2b shows an achievability scheme that uses this idea and achieves the sum-rate capacity. Note that using other bit-pipes to increase any of the individual rates produces interference that cannot be resolved and thus, impedes reliable decoding. In particular note that $X_{2, n}^{(2)}$ and $X_{2, n}^{(3)}$ must remain unused. When feedback is available at least at transmitter-receiver pair 1 and the bit-pipe from transmitter 2 ending at $\vec{Y}_{1, n}^{(6)}$ is included in the feedback signal $\overleftarrow{\boldsymbol{Y}}_{1, n}$, the bit-pipe $X_{2, n}^{(2)}$ can be used for transmitting maximum-entropy i.i.d. bits for increasing the individual rate R_{2} and the sum-rate (see Figure 5.2k). This is mainly because the bits $X_{2, n}^{(2)}$ can be decoded by transmitter 1 via feedback and be re-transmitted to resolve interference at receiver 1. Interestingly, during the re-transmission by transmitter 1 these bits produce an interference that can be resolved by receiver 2 , as these bits have been received interference-free in the previous channel uses. Note that for this to be possible, at least one of the bit-pipes of transmitter 2 that does not belong to either of the two groups mentioned above, i.e., $X_{2, n}^{(2)}$ and $X_{2, n}^{(3)}$, must be observed above the noise level in the feedback

Figure 5.2.: (a) Capacity regions of $\mathcal{C}(7,7,3,5,0,0)$ (thick red line) and $\mathcal{C}(7,7,3,5,6,0)$ (thin blue line). (b) Achievability of the rate pair $(3,5)$ in an LDIC-NOF with parameters $\vec{n}_{11}=7, \vec{n}_{22}=7, n_{12}=3, n_{21}=5, \overleftarrow{n}_{11}=0$ and $\overleftarrow{n}_{22}=0$ (no feedback links). (c) Achievability of the rate pair $(3,6)$ in an LDIC-NOF with parameters $\vec{n}_{11}=7, \vec{n}_{22}=7, n_{12}=3, n_{21}=5, \overleftarrow{n}_{11}=6$ and $\overleftarrow{n}_{22}=0$.
link of the transmitter-receiver pair 1, i.e., $\overleftarrow{n}_{11}>5$.
The exact thresholds for the feedback parameters \overleftarrow{n}_{11} or \overleftarrow{n}_{22} beyond which the capacity region is enlarged are strongly dependent on the parameters, i.e., $\vec{n}_{11}, \vec{n}_{22}, n_{12}$, and n_{21}. A characterization of these thresholds is presented in Section 5.2.

5.1.1. Comments on the Achievability Scheme

The achievable region is obtained using a coding scheme that combines classical tools such as rate splitting, superposition coding, and backward decoding. This coding scheme is described in Appendix A. In the following, an intuitive description of this coding scheme is presented. Let the message index sent by transmitter i during the t-th block be denoted by $W_{i}^{(t)} \in$ $\left\{1,2, \ldots, 2^{N R_{i}}\right\}$. Following a rate-splitting argument, assume that $W_{i}^{(t)}$ is represented by three subindices $\left(W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}, W_{i, P}^{(t)}\right) \in\left\{1,2, \ldots, 2^{N R_{i, C 1}}\right\} \times\left\{1,2, \ldots, 2^{N R_{i, C 2}}\right\} \times\left\{1,2, \ldots, 2^{N R_{i, P}}\right\}$, where $R_{i, C 1}+R_{i, C 2}+R_{i, P}=R_{i}$. The codeword generation from $\left(W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}, W_{i, P}^{(t)}\right)$ follows a four-level superposition coding scheme. The index $W_{i, C 1}^{(t-1)}$ is assumed to be decoded at transmitter j via the feedback link of the transmitter-receiver pair j at the end of the transmission of block $t-1$. Therefore, at the beginning of block t, each transmitter possesses the knowledge of the indices $W_{1, C 1}^{(t-1)}$ and $W_{2, C 1}^{(t-1)}$. In the case of the first block $t=1$, the indices $W_{1, C 1}^{(0)}$ and $W_{2, C 1}^{(0)}$ correspond to two indices assumed to be known by all transmitters and receivers. Using these indices both transmitters are able to identify the same codeword in the first code-layer. This first code-layer is a sub-codebook of $2^{N\left(R_{1, C 1}+R_{2, C 1}\right)}$ codewords (see Figure A.1). Denote by $\boldsymbol{u}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}\right)$ the corresponding codeword in the first code-layer. The second codeword is chosen by transmitter i using $W_{i, C 1}^{(t)}$ from the second code-layer, which is a sub-codebook of $2^{N R_{i, C 1}}$ codewords corresponding at $\boldsymbol{u}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}\right)$ as shown in Figure A.1. Denote by $\boldsymbol{u}_{i}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}\right)$ the corresponding codeword in the second code-layer. The third codeword is chosen by transmitter i using $W_{i, C 2}^{(t)}$ from the third code-layer, which is a sub-codebook of $2^{N R_{i, C 2}}$
codewords corresponding at $\boldsymbol{u}_{i}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{t, C 1}^{(t)}\right)$ as shown in Figure A.1. Denote by $\boldsymbol{v}_{i}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}\right)$ the corresponding codeword in the third code-layer. The fourth codeword is chosen by transmitter i using $W_{i, P}^{(t)}$ from the fourth code-layer, which is a sub-codebook of $2^{N R_{i, P}}$ codewords corresponding at $\boldsymbol{v}_{i}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}\right)$ as shown in Figure A.1. Denote by $\boldsymbol{x}_{i, P}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}, W_{i, P}^{(t)}\right)$ the corresponding codeword in the fourth code-layer. Finally, the generation of the codeword $\boldsymbol{x}_{i}=$ $\left(\boldsymbol{x}_{i, 1}, \boldsymbol{x}_{i, 2}, \ldots, \boldsymbol{x}_{i, N}\right) \in \mathcal{C}_{i} \subseteq \mathcal{X}_{i}^{N}$ during block $t \in\{1,2, \ldots, T\}$ is a simple concatenation of the codewords $\boldsymbol{u}_{i}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}\right), \boldsymbol{v}_{i}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}\right)$ and $\boldsymbol{x}_{i, P}\left(W_{1, C 1}^{(t-1)}\right.$, $\left.W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}, W_{i, P}^{(t)}\right)$, i.e., $\boldsymbol{x}_{i}=\left(\boldsymbol{u}_{i}^{\top}, \boldsymbol{v}_{i}^{\top}, \boldsymbol{x}_{i, P}^{\top}\right)^{\top}$, where the message indices have been dropped for ease of notation.

The intuition to build this code structure follows from the identification of three types of bit-pipes that start at transmitter $i:(a)$ the set of bit-pipes that are observed by receiver j but not necessarily by receiver i and are above the (feedback) noise level; (b) the set of bit-pipes that are observed by receiver j but not necessarily by receiver i and are below the (feedback) noise level; and (c) the set of bit-pipes that are exclusively observed by receiver i. The first set of bit-pipes can be used to convey message index $W_{i, C 1}^{(t)}$ from transmitter i to receiver j and to transmitter j during block t. The second set of bit-pipes can be used to convey message index $W_{i, C 2}^{(t)}$ from transmitter i to receiver j and not to transmitter j during block t. The third set of bit-pipes can be used to convey message index $W_{i, P}^{(t)}$ from transmitter i to receiver i during block t.

These three types of bit-pipes justify the three code-layers superposed over a common layer, which is justified by the fact that feedback allows both transmitters to decode part of the message sent by each other. The decoder follows a classical backward decoding scheme. This coding/decoding scheme is thoroughly described in Appendix A in the most general case. Later, it is particularized for the case of the two-user LDIC-NOF and two-user GIC-NOF.

Other achievable schemes, as reported in [47], can also be obtained as special cases of the more general scheme presented in [84]. However, in this more general case, the resulting code for the IC-NOF counts with a handful of unnecessary superposing code-layers, which demands further optimization. This observation becomes clearer in the analysis of the two-user GIC-NOF in Chapter 6.

5.1.2. Comments on the Converse Region

The outer bounds (5.1a) and (5.1c) are cut-set bounds and were first reported in 17 for the case without feedback. These outer bounds are still useful in the case of POF 80. The outer bounds 5.1 b), 5.1 c) and (5.1 d) are new.

Consider the notation used in Appendix B (See Figure B. 1 and Figure B.2). The outer bound 5.1 b) on the individual rate i is a cut-set bound at the input of an enhanced version of receiver i. More specifically, this outer bound is calculated considering that receiver i possesses the message index of transmitter j, i.e., W_{j}, as side information and observes the channel output $\overrightarrow{\boldsymbol{Y}}_{i}$ and the feedback signal $\overleftarrow{\boldsymbol{Y}}_{j}$ of the transmitter-receiver pair j at each channel use. A complete proof of 5.1 b$)$ is presented in Appendix B.

The intuition behind the outer bound (5.1c) follows from the observation that in the absence of feedback, the sum-rate is upper-bounded by the sum of the bit-pipes from transmitter i that
are exclusively observed by receiver i (denoted by $\boldsymbol{X}_{i, P}$) and the bit-pipes from transmitter i that are observed by receiver j and do not interfere with bit-pipes $\boldsymbol{X}_{j, P}\left(\right.$ denoted by $\left.\boldsymbol{X}_{i, U}\right)$, with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$. More specifically, in the absence of feedback:

$$
\begin{equation*}
R_{1}+R_{2} \leqslant \sum_{i=1}^{2} \operatorname{dim} \boldsymbol{X}_{i, P}+\operatorname{dim} \boldsymbol{X}_{i, U} \tag{5.2}
\end{equation*}
$$

When $R_{1}+R_{2}=\sum_{i=1}^{2} \operatorname{dim} \boldsymbol{X}_{i, P}+\operatorname{dim} \boldsymbol{X}_{i, U}$ is achievable without feedback, the bit-pipes $\boldsymbol{X}_{i, P}$ and $\boldsymbol{X}_{i, U}$ can be used for sending maximum-entropy i.i.d. bits from transmitter i to receiver i, which maximizes the sum-rate. Interestingly, any attempt of using any of the other bit-pipes creates interference that cannot be resolved and thus impedes reliable decoding. This observation is formally proved in Appendix B (see proof of (5.1c)). Note also that this outer bound is not necessarily tight (see Example 3). When feedback is available at least at transmitter-receiver pair i, other bit-pipes different from $\boldsymbol{X}_{j, P}$ and $\boldsymbol{X}_{j, U}$ might be used by transmitter j for simultaneously increasing the rate R_{j} and the sum-rate (see Example 5). This simple observation suggests that there must exits an upper-bound on the sum-rate of the form:

$$
\begin{equation*}
R_{1}+R_{2} \leqslant \sum_{i=1}^{2} \operatorname{dim} \boldsymbol{X}_{i, P}+\operatorname{dim} \boldsymbol{X}_{i, U}+F_{i} \tag{5.3}
\end{equation*}
$$

where, $F_{i} \leqslant \operatorname{dim} \boldsymbol{X}_{i, C}+\operatorname{dim} \boldsymbol{X}_{i, D}$ represents the bit-pipes other than $\boldsymbol{X}_{i, P}$ and $\boldsymbol{X}_{i, U}$, whose origin is at transmitter i, that can be used for sending maximum entropy i.i.d. bits from transmitter i to receiver i, while generating an interference that can be resolved by the use of feedback. Following this idea, the following outer bound is presented in Appendix B (see proof of (5.1c)):

$$
\begin{equation*}
R_{1}+R_{2} \leqslant \sum_{i=1}^{2} \operatorname{dim} \boldsymbol{X}_{i, P}+\operatorname{dim} \boldsymbol{X}_{i, U}+\operatorname{dim} \boldsymbol{X}_{i, C F_{j}}+\operatorname{dim} \boldsymbol{X}_{i, D F} \tag{5.4}
\end{equation*}
$$

where $\operatorname{dim}\left(\boldsymbol{X}_{i, C F_{j}}, \boldsymbol{X}_{i, D F}\right)$ is the number of the bit-pipes whose origin is at transmitter i and are observed above the noise level in the feedback link of transmitter-receiver pair j. The outer bound (5.4) is derived considering genie-aided receivers. More specifically, receiver i has inputs $\overrightarrow{\boldsymbol{Y}}_{i}$ and $\overline{\boldsymbol{Y}}_{i}$, with $i \in\{1,2\}$.

A similar reasoning is followed to derive the outer bound (5.1d considering three genie-aided receivers. More specifically, receiver i has inputs $\overrightarrow{\boldsymbol{Y}}_{i}$ and $\overline{\boldsymbol{Y}}_{i}$, with $i \in\{1,2\}$, and a third receiver has inputs $\overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j}$, and W_{j} for at most one $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$.

5.2. Cases in which Feedback Enlarges the Capacity Region

Let $\alpha_{i} \in \mathbb{Q}$, with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$ be defined as

$$
\begin{equation*}
\alpha_{i}=\frac{n_{i j}}{\vec{n}_{i i}} \tag{5.5}
\end{equation*}
$$

For each transmitter-receiver pair i, there exist five possible interference regimes (IRs), as suggested in 28: the very weak IR (VWIR), i.e., $\alpha_{i} \leqslant \frac{1}{2}$, the weak IR (WIR), i.e., $\frac{1}{2}<\alpha_{i} \leqslant \frac{2}{3}$,
the moderate IR (MIR), i.e., $\frac{2}{3}<\alpha_{i}<1$, the strong IR (SIR), i.e., $1 \leqslant \alpha_{i} \leqslant 2$ and the very strong IR (VSIR), i.e., $\alpha_{i}>2$. The scenarios in which the desired signal is stronger than the interference ($\alpha_{i}<1$), namely the VWIR, the WIR, and the MIR, are referred to as the low-interference regimes (LIRs). Conversely, the scenarios in which the desired signal is weaker than or equal to the interference $\left(\alpha_{i} \geqslant 1\right)$, namely the SIR and the VSIR, are referred to as the high-interference regimes (HIRs).

The main results of this section are presented using a set of events (Boolean variables) that are determined by the parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}$, and n_{21}. Given a fixed tuple $\left(\vec{n}_{11}, \vec{n}_{22}\right.$, n_{12}, n_{21}), the events are defined below:

$$
\begin{array}{lc}
E_{1}: & \alpha_{1}<1 \wedge \alpha_{2}<1, \\
E_{2, i}: & \alpha_{i} \leqslant \frac{1}{2} \wedge 1 \leqslant \alpha_{j} \leqslant 2, \\
E_{3, i}: & \alpha_{i} \leqslant \frac{1}{2} \wedge \alpha_{j}>2, \\
E_{4, i}: & \frac{1}{2}<\alpha_{i} \leqslant \frac{2}{3} \wedge \alpha_{j} \geqslant 1, \\
E_{5, i}: & \frac{2}{3}<\alpha_{i}<1 \wedge \alpha_{j} \geqslant 1, \\
E_{6, i}: & \frac{1}{2}<\alpha_{i} \leqslant 1 \wedge \alpha_{j}>1, \\
E_{7, i}: & \alpha_{i} \geqslant 1 \wedge \alpha_{j} \leqslant 1, \\
E_{8, i}: & \vec{n}_{i i}>n_{j i}, \\
E_{9}: & \vec{n}_{11}+\vec{n}_{22}>n_{12}+n_{21}, \\
E_{10, i}: & \vec{n}_{i i}+\vec{n}_{j j}>n_{i j}+2 n_{j i}, \\
E_{11, i}: & \vec{n}_{i i}+\vec{n}_{j j}<n_{i j} . \tag{5.16}
\end{array}
$$

In the following, in the case of $E_{8, i}: \vec{n}_{i i}>n_{j i}$, the notation $\widetilde{E}_{8, i}$ indicates $\vec{n}_{i i}<n_{j i}$; the notation $\bar{E}_{8, i}$ indicates $\vec{n}_{i i} \leqslant n_{j i}$ (logical complement); and the notation $\breve{E}_{8, i}$ indicates $\vec{n}_{i i} \geqslant n_{j i}$. In the case $E_{1}: \alpha_{1}<1 \wedge \alpha_{2}<1$, the notation \widetilde{E}_{1} indicates $\alpha_{1}>1 \wedge \alpha_{2}>1$; and the notation \bar{E}_{1} indicates $\alpha_{1} \geqslant 1 \wedge \alpha_{2} \geqslant 1$. In the case $E_{9}: \vec{n}_{11}+\vec{n}_{22}>n_{12}+n_{21}$, the notation \bar{E}_{9} indicates $\vec{n}_{11}+\vec{n}_{22} \leqslant n_{12}+n_{21}$.

Combining the events (5.6)-(5.16), five main scenarios are identified:

$$
\begin{align*}
S_{1, i}: & \left(E_{1} \wedge E_{8, i}\right) \vee\left(E_{2, i} \wedge E_{8, i}\right) \vee\left(E_{3, i} \wedge E_{8, i} \wedge E_{9}\right) \vee\left(E_{4, i} \wedge E_{8, i} \wedge E_{9}\right) \vee\left(E_{5, i} \wedge E_{8, i} \wedge E_{9}\right), \tag{5.17}\\
S_{2, i}: & \left(E_{3, i} \wedge \widetilde{E}_{8, j} \wedge \bar{E}_{9}\right) \vee\left(E_{6, i} \wedge \widetilde{E}_{8, j} \wedge \bar{E}_{9}\right) \vee\left(\widetilde{E}_{1} \wedge \widetilde{E}_{8, j}\right), \tag{5.18}\\
S_{3, i}: & \left(E_{1} \wedge \bar{E}_{8, i}\right) \vee\left(E_{2, i} \wedge \bar{E}_{8, i}\right) \vee\left(E_{3, i} \wedge \check{E}_{8, j} \wedge \bar{E}_{8, i}\right) \vee\left(E_{4, i} \wedge \check{E}_{8, j} \wedge \bar{E}_{8, i}\right) \\
& \vee\left(E_{5, i} \wedge \check{E}_{8, j} \wedge \bar{E}_{8, i}\right) \vee\left(\bar{E}_{1} \wedge \check{E}_{8, j}\right) \vee\left(E_{7, i}\right), \tag{5.19}\\
S_{4}: & : E_{1} \wedge E_{8,1} \wedge E_{8,2} \wedge E_{10,1} \wedge E_{10,2}, \tag{5.20}\\
S_{5} & : \bar{E}_{1} \wedge E_{11,1} \wedge E_{11,2} . \tag{5.21}
\end{align*}
$$

For all $i \in\{1,2\}$, the events $S_{1, i}, S_{2, i}, S_{3, i}, S_{4}$ and S_{5} exhibit the properties stated by the following corollaries.

Corollary 1. For all ($\left.\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$, given a fixed $i \in\{1,2\}$, only one of the events $S_{1, i}, S_{2, i}$ and $S_{3, i}$ holds true.

Corollary 2. For all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$, when one of the events S_{4} or S_{5} holds true, then the other necessarily holds false.

Note that Corollary 2 does not exclude the case in which both S_{4} and S_{5} simultaneously hold false.

Corollary 3. For all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$, when S_{4} holds true, then both $S_{1,1}$ and $S_{1,2}$ hold true; and when S_{5} holds true, then both $S_{2,1}$ and $S_{2,2}$ hold true.

5.2.1. Rate Improvement Metrics

Given a fixed tuple ($\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}$), let $\mathcal{C}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ be the capacity region of an LDICNOF with parameters \overleftarrow{n}_{11} and \overleftarrow{n}_{22}. The maximum improvement of the individual rates R_{1} and R_{2}, denoted by $\Delta_{1}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ and $\Delta_{2}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$, due to the effect of channel-output feedback with respect to the case without feedback is:
$\Delta_{1}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)=\max _{0<R_{2}<R_{2}^{*}}\left\{\sup \left\{R_{1}:\left(R_{1}, R_{2}\right) \in \mathcal{C}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)\right\}-\sup \left\{R_{1}^{\dagger}:\left(R_{1}^{\dagger}, R_{2}\right) \in \mathcal{C}(0,0)\right\}\right\}$
and
$\Delta_{2}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)=\max _{0<R_{1}<R_{1}^{*}}\left\{\sup \left\{R_{2}:\left(R_{1}, R_{2}\right) \in \mathcal{C}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)\right\}-\sup \left\{R_{2}^{\dagger}:\left(R_{1}, R_{2}^{\dagger}\right) \in \mathcal{C}(0,0)\right\}\right\}$,
with

$$
\begin{align*}
& R_{1}^{*}=\sup \left\{r_{1}:\left(r_{1}, r_{2}\right) \in \mathcal{C}(0,0)\right\} \text { and } \tag{5.24}\\
& R_{2}^{*}=\sup \left\{r_{2}:\left(r_{1}, r_{2}\right) \in \mathcal{C}(0,0)\right\} . \tag{5.25}
\end{align*}
$$

Note that for a fixed $i \in\{1,2\}, \Delta_{i}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)>0$ if and only if it is possible to achieve a rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ with channel-output feedback such that R_{i} is greater than the maximum rate achievable by transmitter-receiver i without feedback when the rate of transmitter-receiver pair j is fixed at R_{j}. In the following, given fixed parameters \overleftarrow{n}_{11} and \overleftarrow{n}_{22}, the statement "the rate R_{i} is improved by using feedback" is used to indicate that $\Delta_{i}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)>0$.

Alternatively, the maximum improvement of the sum-rate $\Sigma\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ with respect to the case without feedback is:
$\Sigma\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)=\sup \left\{R_{1}+R_{2}:\left(R_{1}, R_{2}\right) \in \mathcal{C}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)\right\}-\sup \left\{R_{1}^{\dagger}+R_{2}^{\dagger}:\left(R_{1}^{\dagger}, R_{2}^{\dagger}\right) \in \mathcal{C}(0,0)\right\}$.

Note that $\Sigma\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)>0$ if and only if there exists a rate pair with feedback whose sum is greater than the maximum sum-rate achievable without feedback. In the following, given fixed parameters \overleftarrow{n}_{11} and \overleftarrow{n}_{22}, the statement "the sum-rate is improved by using feedback" is used to imply that $\Sigma\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)>0$.

In the following, when feedback is exclusively used by transmitter-receiver pair i, i.e., $\overleftarrow{n}_{i i}>0$ and $\overleftarrow{n}_{j j}=0$, then the maximum improvement of the individual rate of transmitter-receiver k, with $k \in\{1,2\}$, and the maximum improvement of the sum-rate are denoted by $\Delta_{k}\left(\overleftarrow{n}_{i i}\right)$ and $\Sigma\left(\overleftarrow{n}_{i i}\right)$, respectively. Hence, this notation $\Delta_{k}\left(\overleftarrow{n}_{i i}\right)$ replaces either $\Delta_{k}\left(\overleftarrow{n}_{11}, 0\right)$ or $\Delta_{k}\left(0, \overleftarrow{n}_{22}\right)$,
when $i=1$ or $i=2$, respectively. The same holds for the notation $\Sigma\left(\overleftarrow{n}_{i i}\right)$ that replaces $\Sigma\left(\overleftarrow{n}_{11}, 0\right)$ or $\Sigma\left(0, \overleftarrow{n}_{22}\right)$, when $i=1$ or $i=2$, respectively.

5.2.2. Enlargement of the Capacity Region

Given fixed parameters $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right), i \in\{1,2\}$, and $j \in\{1,2\} \backslash\{i\}$, the capacity region of a two-user LDIC-NOF, when feedback is available only at transmitter-receiver pair i, i.e., $\overleftarrow{n}_{i i}>0$ and $\overleftarrow{n}_{j j}=0$, is denoted by $\mathcal{C}\left(\overleftarrow{n}_{i i}\right)$ instead of $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$ or $\mathcal{C}\left(0, \overleftarrow{n}_{22}\right)$, when $i=1$ or $i=2$, respectively. Following this notation, Theorem 5.2.1 identifies the exact values of $\overleftarrow{n}_{i i}$ for which the strict inclusion $\mathcal{C}(0,0) \subset \mathcal{C}\left(\overleftarrow{n}_{i i}\right)$ holds for $i \in\{1,2\}$.

5.2.1 Theorem (Enlargement of the Capacity Region)

Let $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$ be a fixed tuple. Let also $i \in\{1,2\}, j \in\{1,2\} \backslash\{i\}$ and $\overleftarrow{n}_{i i}^{*} \in \mathbb{N}$ be fixed integers, with

$$
\overleftarrow{n}_{i i}^{*}= \begin{cases}\max \left(n_{j i},\left(\vec{n}_{i i}-n_{i j}\right)^{+}\right) & \text {if } S_{1, i} \text { holds true } \tag{5.27}\\ \vec{n}_{j j}+\left(\vec{n}_{i i}-n_{i j}\right)^{+} & \text {if } S_{2, i} \text { holds true }\end{cases}
$$

Assume that $S_{3, i}$ holds true. Then, for all $\overleftarrow{n}_{i i} \in \mathbb{N}, \mathcal{C}(0,0)=\mathcal{C}\left(\overleftarrow{n}_{i i}\right)$. Assume that either $S_{1, i}$ holds true or $S_{2, i}$ holds true. Then, for all $\overleftarrow{n}_{i i} \leqslant \overleftarrow{n}_{i i}^{*}, \mathcal{C}(0,0)=$ $\mathcal{C}\left(\overleftarrow{n}_{i i}\right)$ and for all $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{*}, \mathcal{C}(0,0) \subset \mathcal{C}\left(\overleftarrow{n}_{i i}\right)$.

Proof: The proof of Theorem 5.2.1 is presented in Appendix C.
Theorem 5.2.1 shows that under event $S_{3, i}$ in (5.19), implementing feedback in transmitterreceiver pair i, with any $\overleftarrow{n}_{i i}>0$ and $\overleftarrow{n}_{j j}=0$, does not enlarge the capacity region. Note that when both $E_{8, i}$ and $\widetilde{E}_{8, j}$ hold false, then both $S_{1, i}$ and $S_{2, i}$ hold false, which implies that $S_{3, i}$ holds true (Corollary 1). The following remark is a consequence of this observation.

Remark 1: A necessary but not sufficient condition for enlarging the capacity region by using feedback in transmitter-receiver pair i is: there exists at least one transmitter able to send more information bits to receiver i than to receiver j, i.e., $\vec{n}_{i i}>n_{j i}$ (Event $E_{8, i}$) or $n_{i j}>\vec{n}_{j j}$ (Event $\widetilde{E}_{8, j}$).

Alternatively, under events $S_{1, i}$ in (5.17) and $S_{2, i}$ in (5.18), the capacity region can be enlarged when $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{*}$. It is important to highlight that in the cases in which feedback enlarges the capacity region of the two-user LDIC-NOF, that is, in events $S_{1,1}, S_{2,1}, S_{1,2}$ or $S_{2,2}$, for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, the following always holds true:

$$
\begin{equation*}
\overleftarrow{n}_{i i}^{*}>\left(\vec{n}_{i i}-n_{i j}\right)^{+} \tag{5.28}
\end{equation*}
$$

Essentially, the inequality in (5.28) unveils a necessary but not sufficient condition to enlarge the capacity region using channel-output feedback. This condition is that for at least one $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$, transmitter i decodes a subset of the information bits sent by transmitter j at each channel use.

Another interesting observation is that the threshold $\overleftarrow{n}_{i i}^{*}$ beyond which feedback is useful is different under event $S_{1, i}$ in (5.17) and event $S_{2, i}$ in (5.18). In general when $S_{1, i}$ holds true, the enlargement of the capacity region is due to the fact that feedback allows using interference as side information 78. Alternatively, when $S_{2, i}$ in (5.18) holds true, the enlargement of
the capacity region occurs as a consequence of the fact that some of the bits that cannot be transmitted directly from transmitter j to receiver j, can arrive to receiver j via an alternative path: transmitter j - receiver i - transmitter i - receiver j.

5.2.3. Improvement of the Individual Rate R_{i} by Using Feedback in Link i

Given fixed parameters $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right)$, and $i \in\{1,2\}$, implementing channel-output feedback in transmitter-receiver pair i increases the individual rate R_{i}, i.e., $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)>0$ for some values of $\overleftarrow{n}_{i i}$. Theorem 5.2 .2 identifies the exact values of $\overleftarrow{n}_{i i}$ for which $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)>0$.

5.2.2 Theorem (Improvement of R_{i} by Using Feedback in Link i)

Let $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$ be a fixed tuple. Let also $i \in\{1,2\}, j \in\{1,2\} \backslash\{i\}$ and $\overleftarrow{n}_{i i}^{\dagger} \in \mathbb{N}$ be fixed integers, with

$$
\begin{equation*}
\overleftarrow{n}_{i i}^{\dagger}=\max \left(n_{j i},\left(\vec{n}_{i i}-n_{i j}\right)^{+}\right) \tag{5.29}
\end{equation*}
$$

Assume that either $S_{2, i}$ holds true or $S_{3, i}$ holds true. Then, for all $\overleftarrow{n}_{i i} \in \mathbb{N}$, $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)=0$. Assume that $S_{1, i}$ holds true. Then, when $\overleftarrow{n}_{i i} \leqslant \overleftarrow{n}_{i i}^{\dagger}$, it holds that $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)=0$; and when $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{\dagger}$, it holds that $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)>0$

Proof: The proof of Theorem 5.2.2 is presented in Appendix D.
Theorem 5.2.2 highlights that under events $S_{2, i}$ in (5.18) and $S_{3, i}$ in (5.19), the individual rate R_{i} cannot be improved by using feedback in transmitter-receiver pair i, i.e., $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)=$ 0. Alternatively, under event $S_{1, i}$ in (5.17), the individual rate R_{i} can be improved, i.e., $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)>0$, whenever $\overleftarrow{n}_{i i}>\max \left(n_{j i},\left(\vec{n}_{i i}-n_{i j}\right)^{+}\right)$. Hence, given the definition of $S_{1, i}$, the following remark is relevant.

Remark 2: A necessary but not sufficient condition for $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)>0$ is: the number of bit-pipes from transmitter i to receiver i is greater than the number of bit-pipes from transmitter i to receiver j, i.e., $\vec{n}_{i i}>n_{j i}$ (Event $E_{8, i}$)

5.2.4. Improvement of the Individual Rate R_{j} by Using Feedback in Link i

Given fixed parameters $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right), i \in\{1,2\}$, and $j \in\{1,2\} \backslash\{i\}$, implementing channel-output feedback in transmitter-receiver pair i increases the individual rate R_{j}, i.e., $\Delta_{j}\left(\overleftarrow{n}_{i i}\right)>0$ for some values of $\overleftarrow{n}_{i i}$. Theorem 5.2.3 identifies the exact values of $\overleftarrow{n}_{i i}$ for which $\Delta_{j}\left(\overleftarrow{n}_{i i}\right)>0$.

5.2.3 Theorem (Improvement of R_{j} by Using Feedback in Link i)

Let $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$ be a fixed tuple. Let also $i \in\{1,2\}, j \in\{1,2\} \backslash\{i\}$ and $\overleftarrow{n}_{i i}^{*} \in \mathbb{N}$ given in (5.27), be fixed integers. Assume that $S_{3, i}$ holds true. Then, for all $\overleftarrow{n}_{i i} \in \mathbb{N}, \Delta_{j}\left(\overleftarrow{n}_{i i}\right)=0$. Assume that either $S_{1, i}$ holds true or $S_{2, i}$ holds true. Then, when $\overleftarrow{n}_{i i} \leqslant \overleftarrow{n}_{i i}^{*}$, it holds that $\Delta_{j}\left(\overleftarrow{n}_{i i}\right)=0$; and when $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{*}$, it holds that $\Delta_{j}\left(\overleftarrow{n}_{i i}\right)>0$

Proof: The proof of Theorem 5.2 .3 follows along the same lines of the proof of Theorem 5.2 .2 in Appendix D.

Theorem 5.2 .3 shows that under event $S_{3, i}$ in (5.19), implementing feedback in transmitterreceiver pair i does not bring any improvement on the rate R_{j}. This is in line with the results of Theorem 5.2.1. In contrast, under events $S_{1, i}$ in (5.17) and $S_{2, i}$ in (5.18), the individual rate R_{j} can be improved, i.e., $\Delta_{j}\left(\overleftarrow{n}_{i i}\right)>0$ for all $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{*}$. From the definition of events $S_{1, i}$ and $S_{2, i}$, the following remark holds:

Remark 3: A necessary but not sufficient condition for $\Delta_{j}\left(\overleftarrow{n}_{i i}\right)>0$ is: there exists at least one transmitter able to send more information bits to receiver i than to receiver j, i.e., $\vec{n}_{i i}>n_{j i}$ (Event $E_{8, i}$) or $n_{i j}>\vec{n}_{j j}$ (Event $\widetilde{E}_{8, j}$).

It is important to highlight that under event $S_{1, i}$, the threshold on $\overleftarrow{n}_{i i}$ for increasing the individual rate R_{i}, i.e., $\overleftarrow{n}_{i i}^{\dagger}$, and R_{j}, i.e., $\overleftarrow{n}_{i i}^{*}$, are identical, see Theorem 5.2.2 and Theorem 5.2.3. This implies that in this case, the use of feedback in transmitter-receiver pair i, with $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{\dagger}=\overleftarrow{n}_{i i}^{*}$, benefits both transmitter-receiver pairs, i.e., $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)>0$ and $\Delta_{j}\left(\overleftarrow{n}_{i i}\right)>0$. Under event $S_{2, i}$, using feedback in transmitter-receiver pair i, with $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{*}$, exclusively benefits transmitter-receiver pair j, i.e., $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)=0$ and $\Delta_{j}\left(\overleftarrow{n}_{i i}\right)>0$.

5.2.5. Improvement of the Sum-Rate

Given fixed parameters ($\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}$), and $i \in\{1,2\}$, implementing channel-output feedback in transmitter-receiver pair i increases the sum-rate, i.e., $\Sigma\left(\overleftarrow{n}_{i i}\right)>0$ for some values of $\overleftarrow{n}_{i i}$. Theorem 5.2.4 identifies the exact values of $\overleftarrow{n}_{i i}$ for which $\Sigma\left(\overleftarrow{n}_{i i}\right)>0$.

5.2.4 Theorem (Improvement of the Sum-Capacity)

Let $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$ be a fixed tuple. Let also $i \in\{1,2\}, j \in\{1,2\} \backslash\{i\}$ and $\overleftarrow{n}_{i i}^{+} \in \mathbb{N}$ be fixed integers, with

$$
\overleftarrow{n}_{i i}^{+}= \begin{cases}\max \left(n_{j i},\left(\vec{n}_{i i}-n_{i j}\right)^{+}\right) & \text {if } S_{4} \text { holds true } \tag{5.30}\\ \vec{n}_{j j}+\left(\vec{n}_{i i}-n_{i j}\right)^{+} & \text {if } S_{5} \text { holds true } .\end{cases}
$$

Assume that S_{4} holds false and S_{5} holds false. Then, $\Sigma\left(\overleftarrow{n}_{i i}\right)=0$ for all $\overleftarrow{n}_{i i} \in \mathbb{N}$. Assume that S_{4} holds true or S_{5} holds true. Then, when $\overleftarrow{n}_{i i} \leqslant \overleftarrow{n}_{i i}^{+}$, it holds that $\Sigma\left(\overleftarrow{n}_{i i}\right)=0$; and when $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{+}$, it holds that $\Sigma\left(\overleftarrow{n}_{i i}\right)>0$.

Proof: The proof of Theorem 55.2.4 is presented in Appendix E.
Theorem 5.2.4 introduces a necessary but not sufficient condition for improving the sum-rate by implementing feedback in transmitter-receiver pair i.

Remark 4: A necessary but not sufficient condition for observing $\Sigma\left(\overleftarrow{n}_{i i}\right)>0$ is to satisfy one of the following conditions: (a) both transmitter-receiver pairs are in LIR (Event E_{1}); or (b) both transmitter-receiver pairs are in HIR (Event \bar{E}_{1}).

Finally, it follows from Corollary 3 that when S_{4} or S_{5} holds true, with $i \in\{1,2\}$ and $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{+}$, in addition to $\Sigma\left(\overleftarrow{n}_{i i}\right)>0$, it also holds that $\Delta_{1}\left(\overleftarrow{n}_{i i}\right)>0$ and $\Delta_{2}\left(\overleftarrow{n}_{i i}\right)>0$.

5.2.6. Examples

Example 3. Consider an LDIC-NOF with parameters $\vec{n}_{11}=7, \vec{n}_{22}=7, n_{12}=3$, and $n_{21}=5$.

In Example 3, both $S_{1,1}$ and $S_{1,2}$ hold true. Hence, from Theorem 5.2.1 when $\overleftarrow{n}_{11}>5$ or $\overleftarrow{n}_{22}>3$, there always exists an enlargement of the capacity region. More specifically, it

Figure 5.3.: Capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(6,0)$ (thin blue line), with $\vec{n}_{11}=7$, $\vec{n}_{22}=7, n_{12}=3, n_{21}=5$.
follows from Theorem 5.2.2 and Theorem 5.2.3 that using feedback in transmitter-receiver pair 1, with $\overleftarrow{n}_{11}>5$ or using feedback in transmitter-receiver pair 2, with $\overleftarrow{n}_{22}>3$, both individual rates can be simultaneously improved, i.e., $\Delta_{1}\left(\overleftarrow{n}_{i i}\right)>0$ and $\Delta_{2}\left(\overleftarrow{n}_{i i}\right)>0$ with $i=1$ or $i=2$ respectively. Alternatively, note that S_{4} holds true. Hence, it follows from Theorem 5.2.4 that using feedback in transmitter-receiver pair 1, with $\overleftarrow{n}_{11}>5$ or using feedback in transmitter-receiver pair 2 , with $\overleftarrow{n}_{22}>3$, improves the sum-rate, i.e., $\Sigma\left(\overleftarrow{n}_{i i}\right)>0$ with $i=1$ or $i=2$, respectively. These conclusions are observed in Figure 5.3, for the case $\overleftarrow{n}_{11}=6$ and $\overleftarrow{n}_{22}=0$, where the capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(6,0)$ (thin blue line) are plotted. Note that, when $\overleftarrow{n}_{11}=6$, there always exist a rate pair $\left(R_{1}^{\prime}, R_{2}^{\prime}\right) \in \mathcal{C}(0,0)$ and a rate pair $\left(R_{1}, R_{2}\right) \in \mathcal{C}(6,0) \backslash \mathcal{C}(0,0)$ such that $R_{1}^{\prime}<R_{1}$ and $R_{2}^{\prime}=R_{2}$ (Theorem 5.2.2). Simultaneously, there always exist a rate pair $\left(R_{1}^{\prime}, R_{2}^{\prime}\right) \in \mathcal{C}(0,0)$ and a rate pair $\left(R_{1}, R_{2}\right) \in \mathcal{C}(6,0) \backslash \mathcal{C}(0,0)$ such that $R_{2}^{\prime}<R_{2}$ and $R_{1}^{\prime}=R_{1}$ (Theorem 5.2.3). Finally, note that for all rate pairs $\left(R_{1}^{\prime}, R_{2}^{\prime}\right) \in \mathcal{C}(0,0)$ there always exists a rate pair $\left(R_{1}, R_{2}\right) \in \mathcal{C}(6,0)$, for which $R_{1}+R_{2}>R_{1}^{\prime}+R_{2}^{\prime}$ (Theorem 5.2.4).

Example 4. Consider an LDIC-NOF with parameters $\vec{n}_{11}=7, \vec{n}_{22}=8, n_{12}=6$, and $n_{21}=5$.

In Example 4 , the events $S_{1,1}$ and $S_{1,2}$ hold true, and the events S_{4} and S_{5} hold false. Hence, it follows from Theorem 5.2.4 that using feedback in either transmitter-receiver pair does not improve the sum-rate, i.e., for all $i \in\{1,2\}$ and for all $\overleftarrow{n}_{i i}>0, \Sigma\left(\overleftarrow{n}_{i i}\right)=0$. These conclusions are observed in Figure 5.4 for the case $\overleftarrow{n}_{11}=0$ and $\overleftarrow{n}_{22}=7$, where the capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(0,7)$ (thin blue line) are plotted. From Example 4 it becomes evident that when $S_{1,1}$ and $S_{1,2}$ hold true, S_{4} and S_{5} do not necessarily hold true. That is, the improvements on the individual rates, despite that they can be observed simultaneously, are not enough to improve the sum-rate beyond what is already achievable without feedback.

Figure 5.4.: Capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(0,7)$ (thin blue line), with $\vec{n}_{11}=7$, $\vec{n}_{22}=8, n_{12}=6, n_{21}=5$.

Example 5. Consider an LDIC-NOF with parameters $\vec{n}_{11}=5, \vec{n}_{22}=1, n_{12}=3$, and $n_{21}=4$.

In Example 5. both $S_{2,1}$ in 5.18) and $S_{3,2}$ in (5.19) hold true. Hence, it follows from Theorem 5.2.1 that the capacity region can be enlarged by using feedback in transmitterreceiver pair 1 when $\overleftarrow{n}_{11}>3$, whereas using feedback in transmitter-receiver pair 2 does not enlarge the capacity region. More specifically, it follows from Theorem 5.2.2 and Theorem 5.2 .3 that using feedback in transmitter-receiver pair 1 does not improve the individual rate R_{1} but R_{2}, i.e., $\Delta_{1}\left(\overleftarrow{n}_{11}\right)=0$ and $\Delta_{2}\left(\overleftarrow{n}_{11}\right)>0$. Note also that S_{4} and S_{5} hold false. Hence, it follows from Theorem 5.2.4 that using feedback in either transmitter-receiver pair does not improve the sum-rate, i.e., $\Sigma\left(\overleftarrow{n}_{11}\right)=0$ and $\Sigma\left(\overleftarrow{n}_{22}\right)=0$. These conclusions are observed in Figure 5.5, for the case $\overleftarrow{n}_{11}=4$ and $\overleftarrow{n}_{22}=0$, where the capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(4,0)$ (thin blue line) are plotted.

5.3. Generalized Degrees of Freedom

This section focuses on the analysis of the number of GDoF of the two-user LDIC-NOF for studying the case in which feedback is simultaneously implemented in both transmitter-receiver pairs. Moreover, the analysis is only performed for the symmetric case, i.e., $\vec{n}=\vec{n}_{11}=\vec{n}_{22}$, $m=n_{12}=n_{21}$, and $\overleftarrow{n}=\overleftarrow{n}_{11}=\overleftarrow{n}_{22}$, with $(\vec{n}, m, \overleftarrow{n}) \in \mathbb{N}^{3}$. The results in Theorem 5.1.1 allow a more general analysis of the number of GDoF, e.g., non-symmetric case. However, the symmetric case captures some of the most important insights regarding how the capacity region is enlarged when feedback is used in both transmitter-receiver pairs.
Essentially, given the parameters \vec{n}, m and \overleftarrow{n}, with $\alpha=\frac{m}{n}$ and $\beta=\frac{\hbar}{n}$, the number of GDoF, denoted by $D(\alpha, \beta)$, is the ratio between the symmetric capacity, i.e., $C_{\text {sym }}(\vec{n}, m, \overleftarrow{n})=$

Figure 5.5.: Capacity regions $\mathcal{C}(0,0)$ (thick red line) and $\mathcal{C}(4,0)$ (thin blue line), with $\vec{n}_{11}=5$, $\vec{n}_{22}=1, n_{12}=3, n_{21}=4$.
$\sup \{R:(R, R) \in \mathcal{C}(\vec{n}, \vec{n}, m, m, \overleftarrow{n}, \overleftarrow{n})\}$, and the individual interference-free point-to-point capacity, i.e., \vec{n}, when $(\vec{n}, m, \overleftarrow{n}) \rightarrow(\infty, \infty, \infty)$ at constant ratios $\alpha=\frac{m}{\vec{n}}$ and $\beta=\frac{\overleftarrow{n}}{\vec{n}}$. More specifically, the number of GDoF is:

$$
\begin{equation*}
D(\alpha, \beta)=\lim _{(\vec{n}, m, \overleftarrow{n}) \rightarrow(\infty, \infty, \infty)} \frac{C_{\mathrm{sym}}(\vec{n}, m, \overleftarrow{n})}{\vec{n}} \tag{5.31}
\end{equation*}
$$

Theorem 5.3.1 determines the number of GDoF for the two-user symmetric LDIC-NOF.

5.3.1 Theorem (The number of GDoF)

The number of GDoF for the two-user symmetric LDIC-NOF with parameters α and β is given by

$$
\begin{align*}
D(\alpha, \beta)= & \min \left(\max (1, \alpha), \max \left(1, \beta-(1-\alpha)^{+}\right), \frac{1}{2}\left(\max (1, \alpha)+(1-\alpha)^{+}\right)\right. \\
& \left.\max \left((1-\alpha)^{+}, \alpha, 1-(\max (1, \alpha)-\beta)^{+}\right)\right) \tag{5.32}
\end{align*}
$$

Proof: The proof of Theorem 5.3.1 is presented in Appendix F
The result in Theorem 5.3.1 can also be obtained from Theorem 1 in 47 . The following properties are a direct consequence of Theorem 5.3.1.

Corollary 4. The number of GDoF for the two-user symmetric LDIC-NOF with parameters

Figure 5.6.: Generalized Degrees of Freedom as a function of the parameters α and β, with $0 \leqslant \alpha \leqslant 3$ and $\beta \in\left\{\frac{3}{5}, \frac{4}{5}, \frac{6}{5}\right\}$, of the two-user symmetric LDIC-NOF. The plot without feedback is obtained from 28 and the plot with perfect-output feedback is obtained from 80 .
α and β satisfies the following properties:

$$
\begin{array}{ll}
\forall \alpha \in\left[0, \frac{2}{3}\right] \text { and } \beta \leqslant 1, & \max \left(\frac{1}{2}, \beta\right) \leqslant D(\alpha, \beta) \leqslant 1 \\
\forall \alpha \in\left[0, \frac{2}{3}\right] \text { and } \beta>1, & D(\alpha, \beta)=1-\frac{\alpha}{2} \\
\forall \alpha \in\left(\frac{2}{3}, 2\right] \text { and } \beta \in[0, \infty), & D(\alpha, 0)=D(\alpha, \beta)=D(\alpha, \max (1, \alpha)), \\
\forall \alpha \in(2, \infty) \text { and } \beta \geqslant 1, & 1 \leqslant D(\alpha, \beta) \leqslant \min \left(\frac{\alpha}{2}, \beta\right) \\
\forall \alpha \in(2, \infty) \text { and } \beta<1, & D(\alpha, \beta)=1 \tag{5.33e}
\end{array}
$$

Properties (5.33a and 5.33b highlight the fact that the existence of feedback links in the two-user symmetric LDIC-NOF in the VWIR and WIR does not have any impact in the number of GDoF when $\beta \leqslant \frac{1}{2}$, and the number of GDoF is equal to the case with perfect-output feedback when $\beta>1$. Property (5.33c underlines that in the two-user symmetric LDIC-NOF in MIR and SIR, the number of GDoF is identical in both extreme cases: without feedback $(\beta=0)$ and with perfect-output feedback $(\beta=\max (1, \alpha))$. Finally, from (5.33d) and (5.33e), it follows that for observing an improvement in the number of GDoF of the two-user symmetric LDIC-NOF in VSIR, the following condition must be met: $\beta>1$. That is, the number of bit-pipes in the feedback links must be greater than the number of bit-pipes in the direct links.

Figure 5.6 shows the number of GDoF for the two-user symmetric LDIC-NOF for the case in which $0 \leqslant \alpha \leqslant 3$ and $\beta \in\left\{\frac{3}{5}, \frac{4}{5}, \frac{6}{5}\right\}$.

6

Gaussian Interference Channel

THIS chapter presents the main results on the centralized GIC-NOF described in Section 2.1. These include an achievable region (Theorem 6.1.1) and a converse region (Theorem 6.2.1), denoted by $\underline{\mathcal{C}}$ and $\overline{\mathcal{C}}$ respectively, for the two-user GIC-
 capacity region of a given multi-user channel is said to be approximated to within a constant gap according to the following definition.

Definition 6 (Approximation to within ξ units).
A closed and convex set $\mathcal{T} \subset \mathbb{R}_{+}^{m}$ is approximated to within ξ units by the sets \mathcal{T} and $\overline{\mathcal{T}}$ if $\underline{\mathcal{T}} \subseteq \mathcal{T} \subseteq \overline{\mathcal{T}}$ and for all $\boldsymbol{t}=\left(t_{1}, t_{2}, \ldots, t_{m}\right) \in \overline{\mathcal{T}},\left(\left(t_{1}-\xi\right)^{+},\left(t_{2}-\xi\right)^{+}, \ldots,\left(t_{m}-\xi\right)^{+}\right) \in \underline{\mathcal{T}}$.

Denote by \mathcal{C} the capacity region of the 2 -user GIC-NOF. The achievable region $\underline{\mathcal{C}}$ and the converse region $\overline{\mathcal{C}}$ approximate the capacity region \mathcal{C} to within 4.4 bits (Theorem 6.3.1).

6.1. An Achievable Region

The description of the achievable region $\underline{\mathcal{C}}$ is presented using the constants $a_{1, i}$; the functions $a_{2, i}:[0,1] \rightarrow \mathbb{R}_{+}, a_{l, i}:[0,1]^{2} \rightarrow \mathbb{R}_{+}$, with $l \in\{3, \ldots, 6\} ;$ and $a_{7, i}:[0,1]^{3} \rightarrow \mathbb{R}_{+}$, which are defined as follows, for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$:

$$
\begin{align*}
a_{1, i} & =\frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}_{i}}}{\mathrm{INR}_{j i}}\right)-\frac{1}{2}, \tag{6.1a}\\
a_{2, i}(\rho) & =\frac{1}{2} \log \left(b_{1, i}(\rho)+1\right)-\frac{1}{2} \tag{6.1b}
\end{align*}
$$

$$
\begin{align*}
& a_{3, i}(\rho, \mu)=\frac{1}{2} \log \left(\frac{\overleftarrow{\operatorname{SNR}}_{i}\left(b_{2, i}(\rho)+2\right)+b_{1, i}(1)+1}{\overleftarrow{\operatorname{SNR}_{i}\left((1-\mu) b_{2, i}(\rho)+2\right)+b_{1, i}(1)+1}}\right), \tag{6.1c}\\
& a_{4, i}(\rho, \mu)=\frac{1}{2} \log \left((1-\mu) b_{2, i}(\rho)+2\right)-\frac{1}{2}, \tag{6.1d}\\
& a_{5, i}(\rho, \mu)=\frac{1}{2} \log \left(2+\frac{\overrightarrow{\operatorname{SNR}}_{i}}{\mathrm{INR}_{j i}}+(1-\mu) b_{2, i}(\rho)\right)-\frac{1}{2}, \tag{6.1e}\\
& a_{6, i}(\rho, \mu)=\frac{1}{2} \log \left(\frac{\overrightarrow{\operatorname{SNR}}_{i}}{\operatorname{INR}_{j i}}\left((1-\mu) b_{2, j}(\rho)+1\right)+2\right)-\frac{1}{2} \text {, and } \tag{6.1f}\\
& a_{7, i}\left(\rho, \mu_{1}, \mu_{2}\right)=\frac{1}{2} \log \left(\frac{\overrightarrow{\operatorname{SNR}}_{i}}{\operatorname{INR}_{j i}}\left(\left(1-\mu_{i}\right) b_{2, j}(\rho)+1\right)+\left(1-\mu_{j}\right) b_{2, i}(\rho)+2\right)-\frac{1}{2}, \tag{6.1g}
\end{align*}
$$

where the functions $b_{l, i}:[0,1] \rightarrow \mathbb{R}_{+}$, with $(l, i) \in\{1,2\}^{2}$ are defined as follows:

$$
\begin{align*}
& b_{1, i}(\rho)=\overrightarrow{\operatorname{SNR}}_{i}+2 \rho \sqrt{\overrightarrow{\operatorname{SNR}}_{i} \mathrm{INR}_{i j}}+\mathrm{INR}_{i j} \text { and } \tag{6.2a}\\
& b_{2, i}(\rho)=(1-\rho) \operatorname{INR}_{i j}-1, \tag{6.2b}
\end{align*}
$$

with $j \in\{1,2\} \backslash\{i\}$.
Note that the functions in (6.1) and (6.2) depend on $\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{1}$, and $\overleftarrow{\mathrm{SNR}}_{2}$, however as these parameters are fixed in this analysis, this dependence is not emphasized in the definition of these functions. Finally, using this notation, Theorem 6.1.1 is presented as follows:

6.1.1 Theorem (Achievable Region)

The capacity region \mathcal{C} contains the region $\underline{\mathcal{C}}$ given by the closure of the set of all possible achievable rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy:

$$
\begin{equation*}
R_{1} \leqslant \min \left(a_{2,1}(\rho), a_{6,1}\left(\rho, \mu_{1}\right)+a_{3,2}\left(\rho, \mu_{1}\right), a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{4,2}\left(\rho, \mu_{1}\right)\right) \tag{6.3a}
\end{equation*}
$$

$$
\begin{equation*}
R_{2} \leqslant \min \left(a_{2,2}(\rho), a_{3,1}\left(\rho, \mu_{2}\right)+a_{6,2}\left(\rho, \mu_{2}\right), a_{3,1}\left(\rho, \mu_{2}\right)+a_{4,1}\left(\rho, \mu_{2}\right)+a_{1,2}\right), \tag{6.3b}
\end{equation*}
$$

$$
\begin{align*}
R_{1}+R_{2} \leqslant & \min \left(a_{2,1}(\rho)+a_{1,2}, a_{1,1}+a_{2,2}(\rho),\right. \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right), \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right), \\
& \left.a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{1,2}\right), \tag{6.3c}\\
2 R_{1}+R_{2} \leqslant & \min \left(a_{2,1}(\rho)+a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right),\right. \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{1,1}+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+2 a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right), \\
& \left.a_{2,1}(\rho)+a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right)\right), \tag{6.3d}
\end{align*}
$$

$$
\begin{aligned}
& \qquad R_{1}+2 R_{2} \leqslant \min \left(a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{2,2}(\rho)+a_{1,2},\right. \\
& \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{2,2}(\rho)+a_{1,2}, \\
& \\
& \left.2 a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{1,2}+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right)\right)(k .3 \mathrm{e}) \\
& \text { with }\left(\rho, \mu_{1}, \mu_{2}\right) \in\left[0,\left(1-\max \left(\frac{1}{\operatorname{INR}_{12}}, \frac{1}{\operatorname{INR}_{21}}\right)\right)^{+}\right] \times[0,1] \times[0,1] .
\end{aligned}
$$

Proof: The proof of Theorem 6.1.1 is presented in Appendix A.
The achievability scheme presented in Appendix A is general and thus, it can be used for both the two-user LDIC-NOF and the two-user GIC-NOF. The special case of the two-user GIC-NOF is derived in Appendix A.

6.2. A Converse Region

The description of the converse region $\overline{\mathcal{C}}$ is determined by two events denoted by $S_{l_{1}, 1}$ and $S_{l_{2}, 2}$, where $\left(l_{1}, l_{2}\right) \in\{1, \ldots, 5\}^{2}$. The events are defined as follows:

$$
\begin{array}{ll}
S_{1, i}: & \overrightarrow{\mathrm{SNR}}_{j}<\min \left(\mathrm{INR}_{i j}, \mathrm{INR}_{j i}\right) \\
S_{2, i}: & \mathrm{INR}_{j i} \leqslant \overrightarrow{\mathrm{SNR}}_{j}<\mathrm{INR}_{i j} \\
S_{3, i}: & \mathrm{INR}_{i j} \leqslant \overrightarrow{\mathrm{SNR}}_{j}<\mathrm{INR}_{j i} \\
S_{4, i}: & \max \left(\mathrm{INR}_{i j}, \mathrm{INR}_{j i}\right) \leqslant \overrightarrow{\mathrm{SNR}}_{j}<\mathrm{INR}_{i j} \mathrm{INR}_{j i} \\
S_{5, i}: & \overrightarrow{\mathrm{SNR}}_{j} \geqslant \mathrm{INR}_{i j} \mathrm{INR}_{j i} . \tag{6.4e}
\end{array}
$$

Note that for all $i \in\{1,2\}$, the events $S_{1, i}, S_{2, i}, S_{3, i}, S_{4, i}$, and $S_{5, i}$ are mutually exclusive. This observation shows that given any 4-tuple $\left(\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}, \mathrm{INR}_{21}\right)$, there always exists one and only one pair of events $\left(S_{l_{1}, 1}, S_{l_{2}, 2}\right)$, with $\left(l_{1}, l_{2}\right) \in\{1, \ldots, 5\}^{2}$, that identifies a unique scenario. Note also that the pairs of events $\left(S_{2,1}, S_{2,2}\right)$ and ($S_{3,1}, S_{3,2}$) are not feasible. In view of this, twenty-three different scenarios can be identified using the events in (6.4). Once the exact scenario is identified, the converse region is described using the functions $\kappa_{l, i}:[0,1] \rightarrow \mathbb{R}_{+}$, with $l \in\{1, \ldots, 3\} ; \kappa_{l}:[0,1] \rightarrow \mathbb{R}_{+}$, with $l \in\{4,5\} ; \kappa_{6, l}:[0,1] \rightarrow \mathbb{R}_{+}$, with $l \in\{1, \ldots, 4\}$; and $\kappa_{7, i, l}:[0,1] \rightarrow \mathbb{R}_{+}$, with $l \in\{1,2\}$. These functions are defined as follows, for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$:

$$
\begin{align*}
& \kappa_{1, i}(\rho)=\frac{1}{2} \log \left(b_{1, i}(\rho)+1\right) \tag{6.5a}\\
& \kappa_{2, i}(\rho)=\frac{1}{2} \log \left(1+b_{5, j}(\rho)\right)+\frac{1}{2} \log \left(1+\frac{b_{4, i}(\rho)}{1+b_{5, j}(\rho)}\right), \tag{6.5b}\\
& \kappa_{3, i}(\rho)=\frac{1}{2} \log \left(\frac{\left(b_{4, i}(\rho)+b_{5, j}(\rho)+1\right) \overleftarrow{\operatorname{SNR}}_{j}}{\left(b_{1, j}(1)+1\right)\left(b_{4, i}(\rho)+1\right)}+1\right)+\frac{1}{2} \log \left(b_{4, i}(\rho)+1\right), \tag{6.5c}\\
& \kappa_{4}(\rho)=\frac{1}{2} \log \left(1+\frac{b_{4,1}(\rho)}{1+b_{5,2}(\rho)}\right)+\frac{1}{2} \log \left(b_{1,2}(\rho)+1\right), \tag{6.5d}
\end{align*}
$$

$$
\begin{align*}
& \kappa_{5}(\rho)=\frac{1}{2} \log \left(1+\frac{b_{4,2}(\rho)}{1+b_{5,1}(\rho)}\right)+\frac{1}{2} \log \left(b_{1,1}(\rho)+1\right), \tag{6.5e}\\
& \kappa_{6}(\rho)= \begin{cases}\kappa_{6,1}(\rho) & \text { if }\left(S_{1,2} \vee S_{2,2} \vee S_{5,2}\right) \wedge\left(S_{1,1} \vee S_{2,1} \vee S_{5,1}\right) \\
\kappa_{6,2}(\rho) & \text { if }\left(S_{1,2} \vee S_{2,2} \vee S_{5,2}\right) \wedge\left(S_{3,1} \vee S_{4,1}\right) \\
\kappa_{6,3}(\rho) & \text { if }\left(S_{3,2} \vee S_{4,2}\right) \wedge\left(S_{1,1} \vee S_{2,1} \vee S_{5,1}\right) \\
\kappa_{6,4}(\rho) & \text { if }\left(S_{3,2} \vee S_{4,2}\right) \wedge\left(S_{3,1} \vee S_{4,1}\right)\end{cases} \tag{6.5f}\\
& \kappa_{7, i}(\rho)= \begin{cases}\kappa_{7, i, 1}(\rho) & \text { if }\left(S_{1, i} \vee S_{2, i} \vee S_{5, i}\right) \\
\kappa_{7, i, 2}(\rho) & \text { if }\left(S_{3, i} \vee S_{4, i}\right)\end{cases} \tag{6.5~g}
\end{align*}
$$

where

$$
\begin{align*}
& \kappa_{6,1}(\rho)=\frac{1}{2} \log \left(b_{1,1}(\rho)+b_{5,1}(\rho) \mathrm{INR}_{21}\right)-\frac{1}{2} \log \left(1+\mathrm{INR}_{12}\right)+\frac{1}{2} \log \left(1+\frac{b_{5,2}(\rho) \overleftarrow{\mathrm{SNR}}_{2}}{b_{1,2}(1)+1}\right) \tag{6.6a}\\
& +\frac{1}{2} \log \left(b_{1,2}(\rho)+b_{5,1}(\rho) \mathrm{INR}_{21}\right)-\frac{1}{2} \log \left(1+\mathrm{INR}_{21}\right)+\frac{1}{2} \log \left(1+\frac{b_{5,1}(\rho) \overleftarrow{\mathrm{SNR}}_{1}}{b_{1,1}(1)+1}\right)+\log (2 \pi e), \\
& \kappa_{6,2}(\rho)=\frac{1}{2} \log \left(b_{6,2}(\rho)+\frac{b_{5,1}(\rho) \mathrm{INR}_{21}}{\overrightarrow{\mathrm{SNR}}_{2}}\left(\overrightarrow{\mathrm{SNR}}_{2}+b_{3,2}\right)\right)-\frac{1}{2} \log \left(1+\mathrm{INR}_{12}\right) \tag{6.6b}\\
& +\frac{1}{2} \log \left(1+\frac{b_{5,1}(\rho) \overleftarrow{\mathrm{SNR}}_{1}}{b_{1,1}(1)+1}\right)+\frac{1}{2} \log \left(b_{1,1}(\rho)+b_{5,1}(\rho) \mathrm{INR}_{21}\right)-\frac{1}{2} \log \left(1+\mathrm{INR}_{21}\right) \\
& +\frac{1}{2} \log \left(1+\frac{b_{5,2}(\rho)}{\overrightarrow{\mathrm{SNR}}_{2}}\left(\operatorname{INR}_{12}+\frac{b_{3,2} \overleftarrow{\mathrm{SNR}}_{2}}{b_{1,2}(1)+1}\right)\right)-\frac{1}{2} \log \left(1+\frac{b_{5,1}(\rho) \mathrm{INR}_{21}}{\overrightarrow{\mathrm{SNR}}_{2}}\right)+\log (2 \pi e), \\
& \kappa_{6,3}(\rho)=\frac{1}{2} \log \left(b_{6,1}(\rho)+\frac{b_{5,1}(\rho) \mathrm{INR}_{21}}{\overrightarrow{\mathrm{SNR}}_{1}}\left(\overrightarrow{\mathrm{SNR}}_{1}+b_{3,1}\right)\right)-\frac{1}{2} \log \left(1+\mathrm{INR}_{12}\right) \tag{6.6c}\\
& +\frac{1}{2} \log \left(1+\frac{b_{5,2}(\rho) \overleftarrow{\mathrm{SNR}}_{2}}{b_{1,2}(1)+1}\right)+\frac{1}{2} \log \left(b_{1,2}(\rho)+b_{5,1}(\rho) \mathrm{INR}_{21}\right)-\frac{1}{2} \log \left(1+\mathrm{INR}_{21}\right) \\
& +\frac{1}{2} \log \left(1+\frac{b_{5,1}(\rho)}{\overrightarrow{\mathrm{SNR}}_{1}}\left(\mathrm{INR}_{21}+\frac{b_{3,1} \overleftarrow{\mathrm{SNR}}_{1}}{b_{1,1}(1)+1}\right)\right)-\frac{1}{2} \log \left(1+\frac{b_{5,1}(\rho) \mathrm{INR}_{21}}{\overrightarrow{\mathrm{SNR}}_{1}}\right)+\log (2 \pi e), \\
& \kappa_{6,4}(\rho)=\frac{1}{2} \log \left(b_{6,1}(\rho)+\frac{b_{5,1}(\rho) \operatorname{INR}_{21}}{\overrightarrow{\operatorname{SNR}}_{1}}\left(\overrightarrow{\operatorname{SNR}}_{1}+b_{3,1}\right)\right)-\frac{1}{2} \log \left(1+\operatorname{INR}_{12}\right) \tag{6.6d}\\
& +\frac{1}{2} \log \left(1+\frac{b_{5,2}(\rho)}{{\underset{\mathrm{SNR}}{2}}^{2}}\left(\mathrm{INR}_{12}+\frac{b_{3,2} \overleftarrow{\mathrm{SNR}}_{2}}{b_{1,2}(1)+1}\right)\right)-\frac{1}{2} \log \left(1+\frac{b_{5,1}(\rho) \mathrm{INR}_{21}}{\overrightarrow{\mathrm{SNR}}_{2}}\right) \\
& -\frac{1}{2} \log \left(1+\frac{b_{5,1}(\rho) \mathrm{INR}_{21}}{\overrightarrow{\mathrm{SNR}}_{1}}\right)+\frac{1}{2} \log \left(b_{6,2}(\rho)+\frac{b_{5,1}(\rho) \mathrm{INR}_{21}}{\overrightarrow{\mathrm{SNR}}_{2}}\left(\overrightarrow{\mathrm{SNR}}_{2}+b_{3,2}\right)\right) \\
& -\frac{1}{2} \log \left(1+\operatorname{INR}_{21}\right)+\frac{1}{2} \log \left(1+\frac{b_{5,1}(\rho)}{{\underset{\mathrm{SNR}}{1}}}\left(\operatorname{INR}_{21}+\frac{b_{3,1} \overleftarrow{S N R}_{1}}{b_{1,1}(1)+1}\right)\right)+\log (2 \pi e),
\end{align*}
$$

and

$$
\begin{align*}
& \kappa_{7, i, 1}(\rho)=\frac{1}{2} \log \left(b_{1, i}(\rho)+1\right)-\frac{1}{2} \log \left(1+\mathrm{INR}_{i j}\right)+\frac{1}{2} \log \left(1+\frac{b_{5, j}(\rho) \overleftarrow{\mathrm{SNR}}_{j}}{b_{1, j}(1)+1}\right) \tag{6.7a}\\
& +\frac{1}{2} \log \left(b_{1, j}(\rho)+b_{5, i}(\rho) \mathrm{INR}_{j i}\right)+\frac{1}{2} \log \left(1+b_{4, i}(\rho)+b_{5, j}(\rho)\right)-\frac{1}{2} \log \left(1+b_{5, j}(\rho)\right) \\
& +2 \log (2 \pi e), \\
& \kappa_{7, i, 2}(\rho)=\frac{1}{2} \log \left(b_{1, i}(\rho)+1\right)-\frac{1}{2} \log \left(1+\mathrm{INR}_{i j}\right)-\frac{1}{2} \log \left(1+b_{5, j}(\rho)\right) \tag{6.7b}\\
& +\frac{1}{2} \log \left(1+b_{4, i}(\rho)+b_{5, j}(\rho)\right)+\frac{1}{2} \log \left(1+\left(1-\rho^{2}\right) \underset{\overline{\mathrm{SNR}}_{j}}{\mathrm{INR}_{j i}}\left(\operatorname{INR}_{i j}+\frac{b_{3, j} \overleftarrow{\mathrm{SNR}}_{j}}{b_{1, j}(1)+1}\right)\right) \\
& -\frac{1}{2} \log \left(1+\frac{b_{5, i}(\rho) \mathrm{INR}_{j i}}{\overrightarrow{\mathrm{SNR}}_{j}}\right)+\frac{1}{2} \log \left(b_{6, j}(\rho)+\frac{b_{5, i}(\rho) \mathrm{INR}_{j i}}{\overrightarrow{\mathrm{SNR}}_{j}}\left(\overrightarrow{\mathrm{SNR}}_{j}+b_{3, j}\right)\right)+2 \log (2 \pi e),
\end{align*}
$$

where, the functions $b_{l, i}$, with $(l, i) \in\{1,2\}^{2}$ are defined in $6.2 ; b_{3, i}$ are constants; and the functions $b_{l, i}:[0,1] \rightarrow \mathbb{R}_{+}$, with $(l, i) \in\{4,5,6\} \times\{1,2\}$ are defined as follows, with $j \in\{1,2\} \backslash\{i\}:$

$$
\begin{align*}
& b_{3, i}= \overrightarrow{\mathrm{SNR}}_{i}-2 \sqrt{\overrightarrow{\mathrm{SNR}}_{i} \mathrm{INR}_{j i}}+\mathrm{INR}_{j i}, \tag{6.8a}\\
& b_{4, i}(\rho)=\left(1-\rho^{2}\right){\overrightarrow{\mathrm{SNR}_{i}},}_{b_{5, i}(\rho)}= \tag{6.8b}\\
&\left(1-\rho^{2}\right) \mathrm{INR}_{i j}, \tag{6.8c}\\
& b_{6, i}(\rho)={\overrightarrow{\mathrm{SNR}_{i}}+\mathrm{INR}_{i j}+2 \rho \sqrt{\mathrm{INR}_{i j}}\left(\sqrt{\overrightarrow{\mathrm{SNR}}_{i}}-\sqrt{\mathrm{INR}_{j i}}\right)}=+\frac{\mathrm{INR}_{i j} \sqrt{\mathrm{INR}_{j i}}}{\overrightarrow{\mathrm{SNR}}_{i}}\left(\sqrt{\mathrm{INR}_{j i}}-2 \sqrt{\overrightarrow{\mathrm{SNR}}_{i}}\right) . \tag{6.8d}
\end{align*}
$$

Note that the functions in (6.5), 6.6), (6.7), and (6.8) depend on $\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}$, $\mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{1}$, and $\overleftarrow{\mathrm{SNR}}_{2}$. However, these parameters are fixed in this analysis, and therefore, this dependence is not emphasized in the definition of these functions. Finally, using this notation, Theorem 6.2.1 is presented below.

6.2.1 Theorem (Converse Region)

The capacity region \mathcal{C} is contained within the region $\overline{\mathcal{C}}$ given by the closure of the set of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$ satisfy:

$$
\begin{align*}
& R_{i} \leqslant \min \left(\kappa_{1, i}(\rho), \kappa_{2, i}(\rho)\right) \tag{6.9a}\\
& R_{i} \leqslant \kappa_{3, i}(\rho) \tag{6.9b}\\
R_{1}+ & R_{2} \leqslant \min \left(\kappa_{4}(\rho), \kappa_{5}(\rho)\right) \tag{6.9c}\\
R_{1}+ & R_{2} \leqslant \kappa_{6}(\rho) \tag{6.9d}\\
2 R_{i}+ & R_{j} \leqslant \kappa_{7, i}(\rho), \tag{6.9e}
\end{align*}
$$

with $\rho \in[0,1]$.

Proof: The proof of Theorem 6.2.1 is presented in Appendix G
The outer bounds (6.9a) and (6.9c) play the same role as the outer bounds (5.1a) and (5.1c) in the linear deterministic model and have been previously reported in 80 for the case of POF. The bounds 6.9 b , 6.9 d$)$, and 6.9 e correspond to new outer bounds. The intuition for deriving these outer bounds follows along the same steps of those used to prove the outer bounds (5.1b), 5.1c), and (5.1d), respectively. Note the duality between the Gaussian signals $X_{i, C}$ and $X_{i, U}$ (in (G.2) and (G.3), respectively) and the bit-pipes $\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{i, D}\right)$ and $\boldsymbol{X}_{i, U}$ (in (B.1a), B.1d and B.5), respectively).

6.3. Gap between the Achievable Region and the Converse Region

Theorem 6.3.1 describes the gap between the achievable region $\underline{\mathcal{C}}$ and the converse region $\overline{\mathcal{C}}$ (Definition 6).

6.3.1 Theorem (GAP)

The capacity region of the two-user GIC-NOF is approximated to within 4.4 bits by the achievable region $\underline{\mathcal{C}}$ and the converse region $\overline{\mathcal{C}}$.

Proof: The proof of Theorem 6.3.1 is presented in Appendix H.
Figure 6.1 presents the exact gap existing between the achievable region $\underline{\mathcal{C}}$ and the converse region $\overline{\mathcal{C}}$ for the case in which $\overrightarrow{\mathrm{SNR}}_{1}=\overrightarrow{\mathrm{SNR}}_{2}=\overrightarrow{\mathrm{SNR}}, \mathrm{INR}_{12}=\mathrm{INR}_{21}=\mathrm{INR}$, and $\overleftarrow{S N R}_{1}=\overleftarrow{S N R}_{2}=\overleftarrow{\mathrm{SNR}}$ as a function of $\alpha=\frac{\log \mathrm{INR}}{\log \overline{\mathrm{SNR}}}$ and $\beta=\frac{\log \overleftarrow{\mathrm{SNR}}}{\log \overline{\mathrm{SNR}}}$. Note that in this case, the maximum gap is 1.1 bits and occurs when $\alpha=1.05$ and $\beta=1.2$.

6.4. Cases in which Feedback Enlarges the Capacity Region

This section considers the application of the obtained results in Section 5.2 .2 into the two-user GIC-NOF. Therefore, this section defines for a given two-user GIC the approximate thresholds for the feedback parameters beyond which its capacity region can be enlarged.

6.4.1. Rate Improvement Metrics

In order to quantify the benefits of channel-output feedback in enlarging the achievable region $\underline{\mathcal{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)$ or the converse region $\overline{\mathcal{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)$, consider the following improvement metrics, which are similar to those defined in Section 5.2.1 for the two-user LDIC-NOF. The improvement metrics on the individual rates are defined as

$$
\begin{align*}
\Delta_{1}^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)=\max _{0<R_{2}<R_{2}^{*}} & \left\{\sup \left\{R_{1}:\left(R_{1}, R_{2}\right) \in \underline{\mathcal{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)\right\}\right. \\
& \left.-\sup \left\{R_{1}^{\dagger}:\left(R_{1}^{\dagger}, R_{2}\right) \in \underline{\mathcal{C}}(0,0)\right\}\right\} \tag{6.10}
\end{align*}
$$

Figure 6.1.: Gap between the converse region $\overline{\mathcal{C}}$ and the achievable region $\underline{\mathcal{C}}$ of the twouser GIC-NOF under symmetric channel conditions, i.e., $\overrightarrow{\mathrm{SNR}}_{1}=\overrightarrow{\mathrm{SNR}}_{2}=\overrightarrow{\mathrm{SNR}}$, $\mathrm{INR}_{12}=\mathrm{INR}_{21}=\mathrm{INR}$, and $\overleftarrow{\mathrm{SNR}}_{1}=\overleftarrow{\mathrm{SNR}}_{2}=\overleftarrow{\mathrm{SNR}}$, as a function of $\alpha=\frac{\log \mathrm{INR}}{\log \overline{\mathrm{SNR}}}$ and $\beta=\frac{\log \overleftarrow{S N R}}{\log \overline{S N R}}$.

$$
\begin{align*}
\Delta_{2}^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)=\max _{0<R_{1}<R_{1}^{*}} & \left\{\sup \left\{R_{2}:\left(R_{1}, R_{2}\right) \in \underline{\mathcal{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)\right\}\right. \\
& \left.-\sup \left\{R_{2}^{\dagger}:\left(R_{1}, R_{2}^{\dagger}\right) \in \underline{\mathcal{C}}(0,0)\right\}\right\} \tag{6.11}
\end{align*}
$$

$\Delta_{1}^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)=\max _{0<R_{2}<R_{2}^{\dagger}}\left\{\sup \left\{R_{1}:\left(R_{1}, R_{2}\right) \in \overline{\mathcal{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)\right\}\right.$

$$
\begin{equation*}
\left.-\sup \left\{R_{1}^{\dagger}:\left(R_{1}^{\dagger}, R_{2}\right) \in \overline{\mathcal{C}}(0,0)\right\}\right\}, \text { and } \tag{6.12}
\end{equation*}
$$

$$
\Delta_{2}^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)=\max _{0<R_{1}<R_{1}^{\dagger}}\left\{\sup \left\{R_{2}:\left(R_{1}, R_{2}\right) \in \overline{\mathcal{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)\right\}\right.
$$

$$
\begin{equation*}
\left.-\sup \left\{R_{2}^{\dagger}:\left(R_{1}, R_{2}^{\dagger}\right) \in \overline{\mathcal{C}}(0,0)\right\}\right\} \tag{6.13}
\end{equation*}
$$

with

$$
\begin{align*}
& R_{1}^{*}=\sup \left\{r_{1}:\left(r_{1}, r_{2}\right) \in \underline{\mathcal{C}}(0,0)\right\}, \tag{6.14}\\
& R_{2}^{*}=\sup \left\{r_{2}:\left(r_{1}, r_{2}\right) \in \underline{\mathcal{C}}(0,0)\right\}, \tag{6.15}
\end{align*}
$$

$$
\begin{align*}
& R_{1}^{\dagger}=\sup \left\{r_{1}:\left(r_{1}, r_{2}\right) \in \overline{\mathcal{C}}(0,0)\right\}, \text { and } \tag{6.16}\\
& R_{2}^{\dagger}=\sup \left\{r_{2}:\left(r_{1}, r_{2}\right) \in \overline{\mathcal{C}}(0,0)\right\} \tag{6.17}
\end{align*}
$$

Alternatively, the maximum improvements of the sum-rate $\Sigma^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)$ and $\Sigma^{\mathrm{C}}\left(\overleftarrow{\operatorname{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)$ with respect to the case without feedback are:

$$
\begin{align*}
\Sigma^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)= & \sup \left\{R_{1}+R_{2}:\left(R_{1}, R_{2}\right) \in \underline{\mathcal{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)\right\} \\
& -\sup \left\{R_{1}^{\dagger}+R_{2}^{\dagger}:\left(R_{1}^{\dagger}, R_{2}^{\dagger}\right) \in \underline{\mathcal{C}}(0,0)\right\}, \text { and } \tag{6.18}\\
\Sigma^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)= & \sup \left\{R_{1}+R_{2}:\left(R_{1}, R_{2}\right) \in \overline{\mathcal{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)\right\} \\
& -\sup \left\{R_{1}^{\dagger}+R_{2}^{\dagger}:\left(R_{1}^{\dagger}, R_{2}^{\dagger}\right) \in \overline{\mathcal{C}}(0,0)\right\} \tag{6.19}
\end{align*}
$$

6.4.2. Improvements

In Chapter 4, the connections between the two-user LDIC-NOF and the two-user GICNOF were discussed. Using these connections, a GIC with fixed parameters ($\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}$, $\left.\mathrm{INR}_{12}, \mathrm{INR}_{21}\right)$ is approximated by an LDIC with parameters $\vec{n}_{11}=\left\lfloor\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}\right)\right\rfloor, \vec{n}_{22}=$ $\left\lfloor\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}\right)\right\rfloor, n_{12}=\left\lfloor\frac{1}{2} \log \left(\mathrm{INR}_{12}\right)\right\rfloor$ and $n_{21}=\left\lfloor\frac{1}{2} \log \left(\mathrm{INR}_{21}\right)\right\rfloor$. From this observation, the results from Theorem 5.2.1 - Theorem 5.2.4 can be used to determine the feedback SNR thresholds beyond which either an individual rate or the sum-rate is improved in the original GIC-NOF. The procedure consists on using the equalities $\overleftarrow{n}_{i i}=\left[\frac{1}{2} \log \left(\overleftarrow{\mathrm{SNR}}_{i}\right)\right]$, with $i \in\{1,2\}$. Hence, the corresponding thresholds in the two-user GIC can be approximated by:

$$
\begin{align*}
& \overleftarrow{\mathrm{SNR}}_{i}^{*}=2^{2 \overleftarrow{n}_{i i}^{*}} \tag{6.20a}\\
& \overleftarrow{\mathrm{SNR}_{i}^{\dagger}}=2^{2 \overleftarrow{n}_{i i}^{\dagger}}, \text { and } \tag{6.20b}\\
& \overleftarrow{\mathrm{SNR}_{i}^{+}}=2^{2 \overleftarrow{n}_{i i}^{+}} \tag{6.20c}
\end{align*}
$$

When the corresponding LDIC-NOF is such that its capacity region can be improved, i.e., when $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{*}$ (Theorem 5.2.1) for a given $i \in\{1,2\}$, it is expected that either the achievability or converse regions of the original GIC-NOF become larger when $\overleftarrow{\mathrm{SNR}}_{i}>\overleftarrow{\mathrm{SNR}}_{i}^{*}$. Similarly, when the corresponding LDIC-NOF is such that $\Delta_{i}\left(\overleftarrow{n}_{i i}\right)>0$ or $\Delta_{i}\left(\overleftarrow{n}_{j j}\right)>0$, it is expected to observe an improvement on the individual rate R_{i} by either using feedback in transmitter-receiver pair i, with $\overleftarrow{\mathrm{SNR}}_{i}>\overleftarrow{\mathrm{SNR}}_{i}^{\dagger}$ or by using feedback in transmitter-receiver pair j, with $\overleftarrow{\mathrm{SNR}}_{j}>\overleftarrow{\mathrm{SNR}}_{j}^{*}$. When the corresponding LDIC-NOF is such that $\Sigma\left(\overleftarrow{n}_{i i}\right)>0$ using feedback in transmitter-receiver pair i, with $\overleftarrow{n}_{i i}>\overleftarrow{n}_{i i}^{+}$(Theorem 5.2.4), it is expected to observe an improvement on the sum-rate by using feedback in transmitter-receiver pair i, with $\overleftarrow{\mathrm{SNR}}_{i}>\overleftarrow{\mathrm{SNR}}_{i}^{+}$. Finally, when no improvement in a given metric is observed in the two-user LDIC-NOF, i.e., $\Delta_{1}\left(\overleftarrow{n}_{11}\right)=0, \Delta_{1}\left(\overleftarrow{n}_{22}\right)=0, \Delta_{2}\left(\overleftarrow{n}_{11}\right)=0, \Delta_{2}\left(\overleftarrow{n}_{22}\right)=0, \Sigma\left(\overleftarrow{n}_{11}\right)=0$, or $\Sigma\left(\overleftarrow{n}_{22}\right)=0$, only a negligible improvement (if any) is observed in the corresponding metric of the two-user GIC-NOF. For instance, when $\Delta_{1}\left(\overleftarrow{n}_{11}\right)=0$, it is expected that
$\Delta_{1}^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}\right)<\epsilon$ and $\Delta_{1}^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}\right)<\epsilon$, with $\epsilon>0$. Similarly, when $\Delta_{2}\left(\overleftarrow{n}_{11}\right)=0$, it is expected that $\Delta_{2}^{\mathrm{A}}\left(\widetilde{\mathrm{SNR}}_{1}\right)<\epsilon$ and $\Delta_{2}^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}\right)<\epsilon$. Finally, when $\Sigma\left(\overleftarrow{n}_{11}\right)=0$, it is expected that $\Sigma^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}\right)<\epsilon$ and $\Sigma^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}\right)<\epsilon$.

6.4.3. Examples

The following examples highlight the relevance of the approximations in 6.20 .
Example 6. Consider a GIC with parameters $\overrightarrow{S N R}_{1}=44 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=44 \mathrm{~dB}, \mathrm{INR}_{12}=20 \mathrm{~dB}$, and $\mathrm{INR}_{21}=33 \mathrm{~dB}$.

The linear deterministic approximation of the two-user GIC in Example 6 is the one presented in Example 3. Hence, $\overleftarrow{n}_{11}^{*}=\overleftarrow{n}_{11}^{\dagger}=\overleftarrow{n}_{11}^{+}=5$ and $\overleftarrow{n}_{22}^{*}=\overleftarrow{n}_{22}^{\dagger}=\overleftarrow{n}_{22}^{+}=3$. This implies that $\overleftarrow{\mathrm{SNR}_{1}^{*}}=\overleftarrow{\mathrm{SNR}}_{1}^{\dagger}=\overleftarrow{\mathrm{SNR}}+1=30 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}^{*}=\overleftarrow{\mathrm{SNR}}_{2}^{\dagger}=\overleftarrow{\mathrm{SNR}}_{2}^{+}=18 \mathrm{~dB}$.

Figure 6.2 shows that significant improvements on the metrics $\Delta_{i}^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right), \Delta_{i}^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}\right.$, $\left.\overleftarrow{\mathrm{SNR}}_{2}\right), \Sigma^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)$ and $\Sigma^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)$ are obtained when the feedback SNRs are beyond the corresponding thresholds. More importantly, negligible effects are observed when $\overleftarrow{\mathrm{SNR}}_{1}<\overleftarrow{\mathrm{SNR}}_{1}^{*}$ and $\overleftarrow{\mathrm{SNR}}_{2}<\overleftarrow{\mathrm{SNR}}_{2}^{*}$.
Example 7. Consider a GIC with parameters $\overrightarrow{\mathrm{SNR}}_{1}=45 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=50 \mathrm{~dB}, \mathrm{INR}_{12}=40 \mathrm{~dB}$, and $\mathrm{INR}_{21}=33 \mathrm{~dB}$.

The linear deterministic approximation of the two-user GIC in Example 7 is the one presented in Example 4. Hence, $\overleftarrow{n}_{1,1}^{*}=\overleftarrow{n}_{11}^{\dagger}=5$ and $\overleftarrow{n}_{22}^{*}=\overleftarrow{n}_{22}^{\dagger}=6$. This implies that $\overleftarrow{\mathrm{SNR}}_{1}^{*}=\overleftarrow{\mathrm{SNR}}_{1}^{\dagger}=30 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}^{*}=\overleftarrow{\mathrm{SNR}}_{2}^{\dagger}=36 \mathrm{~dB}$.

Figure 6.3 shows that significant improvements on the metrics $\Delta_{i}^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)$, and $\Delta_{i}^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}\right)$, are obtained when the feedback SNRs are beyond the corresponding thresholds. More importantly, negligible effects are observed when $\overleftarrow{\mathrm{SNR}}_{1}<\overleftarrow{\mathrm{SNR}}_{1}^{*}$ and $\overleftarrow{\mathrm{SNR}}_{2}<$ $\overleftarrow{S N R}_{2}^{*}$. Note also that using feedback in either transmitter-receiver pair does not improve the sum-rate in the two-user LDIC-NOF, i.e., $\Sigma\left(\overleftarrow{n}_{11}\right)=\Sigma\left(\overleftarrow{n}_{22}\right)=0$. This is also verified in the two-user GIC-NOF by Figure 6.3e and Figure 6.3d, where $\Sigma^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1},-100\right)<0.45$, $\Sigma^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1},-100 \mathrm{~dB}\right)<0.05, \Sigma^{\mathrm{A}}\left(-100 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{2}\right)<0.45$, and $\Sigma^{\mathrm{C}}\left(-100 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{2}\right)<0.05$

Example 8. Consider a GIC with parameters $\overrightarrow{\mathrm{SNR}}_{1}=33 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=9 \mathrm{~dB}, \mathrm{INR}_{12}=20 \mathrm{~dB}$, and $\mathrm{INR}_{21}=27 \mathrm{~dB}$.

The linear deterministic approximation of the two-user GIC in Example 8 is the one presented in Example5. Hence, $\overleftarrow{n}_{11}^{*}=3$, which implies that $\overleftarrow{\mathrm{SNR}_{1}^{*}}=18 \mathrm{~dB}$. It follows from the two-user LDIC-NOF that using feedback in transmitter-receiver pair 1 exclusively increases the individual rate R_{2}. This is observed in Figure 6.4. Note that the improvement in the individual rate R_{2} for all $\overleftarrow{\mathrm{SNR}}_{1}<\overleftarrow{\mathrm{SNR}}_{1}^{*}$ is negligible. Significant improvement is observed only beyond the threshold $\overleftarrow{\mathrm{SNR}}_{1}^{*}$.

Note also that using feedback in either transmitter-receiver pair does not improve the rate R_{1} in the two-user LDIC-NOF, i.e., $\Delta_{1}\left(\overleftarrow{n}_{11}\right)=\Delta_{1}\left(\overleftarrow{n}_{22}\right)=0$. This is also verified in the GIC-NOF by Figure 6.4 , Figure 6.4 , and Figure 6.4 , where $\Delta_{1}^{\mathrm{A}}\left(-100 \mathrm{~dB}, \overleftarrow{S N R}_{2}\right)<0.15$ and $\Delta_{1}^{\mathrm{C}}\left(-100 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{2}\right)<0.1$.

Figure 6.2.: Improvement metrics $\Delta_{i}^{\mathrm{A}}, \Delta_{i}^{\mathrm{C}}, \Sigma^{\mathrm{A}}$, and Σ^{C} as functions of $\overleftarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{2}$, with $i \in\{1,2\}$, for Example 6 .

Figure 6.3.: Improvement metrics $\Delta_{i}^{\mathrm{A}}, \Delta_{i}^{\mathrm{C}}, \Sigma^{\mathrm{A}}$, and Σ^{C} as functions of $\overleftarrow{\operatorname{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{2}$, with $i \in\{1,2\}$, for Example 7 .

Finally, note that using feedback in either transmitter-receiver pair does not increase the sum-rate in the two-user LDIC-NOF, i.e., $\Sigma\left(\overleftarrow{n}_{11}\right)=\Sigma\left(\overleftarrow{n}_{22}\right)=0$. This is also verified in

Figure 6.4.: Improvement metrics $\Delta_{i}^{\mathrm{A}}, \Delta_{i}^{\mathrm{C}}, \Sigma^{\mathrm{A}}$, and Σ^{C} as functions of $\overleftarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{2}$, with $i \in\{1,2\}$, for Example 8 .
the two-user GIC-NOF by Figure 6.4 a and Figure 6.4 , where $\Sigma^{\mathrm{A}}\left(\overleftarrow{\mathrm{SNR}}_{1},-100 \mathrm{~dB}\right)<0.15$,

$$
\Sigma^{\mathrm{C}}\left(\overleftarrow{\mathrm{SNR}}_{1},-100 \mathrm{~dB}\right)<0.05, \Sigma^{\mathrm{A}}\left(-100 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{2}\right)<0.15, \text { and } \Sigma^{\mathrm{C}}\left(-100 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{2}\right)<0.05
$$

Part III.

CONTRIBUTIONS TO DECENTRALIZED INTERFERENCE CHANNELS

7

Linear Deterministic Interference Channel

THIS chapter presents the main results on the two-user D-LDIC-NOF. This model was described in Section 2.2 and can be modeled by a game as suggested in Section 3.1. Denote by $\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ the capacity region of the two-user LDIC-NOF with parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}$, and \overleftarrow{n}_{22}, characterized in Theorem 5.1.1

7.1. η-Nash Equilibrium Region

This section characterizes the η-NE region (Definition 5) of the two-user D-LDIC-NOF.
The η-NE region of the two-user D-LDIC-NOF, given the fixed parameters $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}\right.$, $\left.n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$, is denoted by $\mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$. This is characterized in terms of two regions: the capacity region, denoted by $\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$, and a convex region, denoted by $\mathcal{B}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$. This region was first characterized in 13 for the case without feedback, in 60 for the case of POF, and in 62 for the case of NOF under symmetric conditions.

In the following, the analysis of these regions is presented for fix parameters $\vec{n}_{11}, \vec{n}_{22}$, $n_{12}, n_{21}, \overleftarrow{n}_{11}$, and \overleftarrow{n}_{22}, and thus, the tuple $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ is used only when needed. The capacity region \mathcal{C} of the two-user LDIC-NOF is described in Theorem 5.1.1, which is a generalization of the cases with and without POF, studied respectively in 17 and [80]. For all $\eta>0$, the convex region \mathcal{B}_{η} is defined as follows:

$$
\begin{equation*}
\mathcal{B}_{\eta}=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}: L_{i} \leqslant R_{i} \leqslant U_{i}, \text { for all } i \in \mathcal{K}=\{1,2\}\right\} \tag{7.1}
\end{equation*}
$$

where,

$$
\begin{align*}
L_{i}= & \left(\left(\vec{n}_{i i}-n_{i j}\right)^{+}-\eta\right)^{+} \text {and } \tag{7.2a}\\
U_{i}= & \max \left(\vec{n}_{i i}, n_{i j}\right) \tag{7.2b}\\
& -\left(\min \left(\left(\vec{n}_{j j}-n_{j i}\right)^{+}, n_{i j}\right)-\left(\min \left(\left(\vec{n}_{j j}-n_{i j}\right)^{+}, n_{j i}\right)-\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)^{+}\right)^{+}+\eta,
\end{align*}
$$

with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$. Theorem 7.1.1 uses the capacity region \mathcal{C} (Theorem 5.1.1) and the region \mathcal{B}_{η} in 7.1 to describe the η-NE region.

7.1.1 Theorem (η-NE region)

Let $\eta>0$ be fixed. The η-NE region \mathcal{N}_{η} of the two-user D-LDIC-NOF with parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}$, is

$$
\begin{equation*}
\mathcal{N}_{\eta}=\mathcal{C} \cap \mathcal{B}_{\eta} \tag{7.3}
\end{equation*}
$$

Proof: The proof of Theorem 7.1.1 is presented in Appendix
The following describes some interesting observations from Theorem 7.1.1. Figure 7.1 shows the capacity region \mathcal{C} and the η-NE region \mathcal{N}_{η} of a channel with parameters $\vec{n}_{11}=7$, $\vec{n}_{22}=6, n_{12}=4, n_{21}=4$ and different values for \overleftarrow{n}_{11} and \overleftarrow{n}_{22}, with η arbitrarily small. Note that when $\overleftarrow{n}_{11} \in\{0,1,2,3,4\}$ and $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$ (Figure 7.1a), it follows that $\mathcal{N}_{\eta}\left(7,6,4,4, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)=\mathcal{N}_{\eta}(7,6,4,4,0,0)$. Thus, in this case the use of feedback in any of the transmitter-receiver pairs does not enlarge the η-NE region. Alternatively, when $\overleftarrow{n}_{11}>4$ and $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$ (Figures 7.1p, 7.1. and 7.1d), the resulting η-NE region is larger than in the previous case. A similar effect is observed in Figures 7.1p and 7.1f. This observation implies the existence of a threshold on each feedback parameter \overleftarrow{n}_{11} and \overleftarrow{n}_{22} beyond which the η-NE region is enlarged. The exact values of \overleftarrow{n}_{11} and \overleftarrow{n}_{22}, given a fixed tuple $\left(\vec{n}_{11}, \vec{n}_{22}\right.$, n_{12}, n_{21}), beyond which the η-NE region can be enlarged is presented in Section 7.2 .

Note that the bound $R_{i} \leqslant U_{i}$ is not always active. For instance, when $\vec{n}_{j j} \leqslant \min \left(n_{j i}, n_{i j}\right)$, then $U_{i}=\max \left(\vec{n}_{i i}, n_{i j}\right)$, which is redundant with the bounds given by the capacity region \mathcal{C} (see Theorem 5.1.1). When $\vec{n}_{j j}>\max \left(n_{j i}, n_{i j}\right)$ and the condition

$$
\begin{align*}
& \left(\left(\vec{n}_{j j}>n_{i j}+n_{j i} \wedge \max \left(n_{j i}, \vec{n}_{i i}-\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right)>\left(\vec{n}_{i i}-n_{i j}\right)^{+}\right) \vee\right. \\
& \left(\vec{n}_{j j} \leqslant n_{i j}+n_{j i} \wedge \vec{n}_{i i}<n_{i j}+n_{j i} \wedge \vec{n}_{i i}>n_{i j} \wedge n_{j i}>\vec{n}_{i i}-\left(\vec{n}_{i i}-\overleftarrow{n}_{i i}\right)^{+}\right) \vee \\
& \left(\vec{n}_{j j} \leqslant n_{i j}+n_{j i} \wedge \vec{n}_{i i}<n_{i j}+n_{j i} \wedge \vec{n}_{i i}>n_{i j} \wedge n_{i j}>\left(\vec{n}_{i i}-\overleftarrow{n}_{i i}\right)^{+}\right) \vee \\
& \left.\left(\vec{n}_{j j} \leqslant n_{i j}+n_{j i} \wedge \vec{n}_{i i}<n_{i j}+n_{j i} \wedge \vec{n}_{i i} \leqslant n_{i j} \wedge \vec{n}_{i i}>n_{i j}-\vec{n}_{j j}+n_{j i}\right)\right), \tag{7.4}
\end{align*}
$$

η-NE region, the bound $R_{i} \leqslant U_{i}$ is active. In this case

$$
\left(\min \left(\vec{n}_{j j}-n_{j i}, n_{i j}\right)-\left(\min \left(\vec{n}_{j j}-n_{i j}, n_{j i}\right)-\left(\vec{n}_{j j}-\overleftarrow{n}_{j j}\right)^{+}\right)^{+}\right)^{+}>0
$$

Figure 7.1.: Capacity region $\mathcal{C}(7,6,4,4,0,0)$ (thin blue line) and η-NE region $\mathcal{N}_{\eta}(7,6,4,4,0,0)$ (thick black line) with η arbitrarily small. Fig. 7.1a shows the capacity region $\mathcal{C}\left(7,6,4,4, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}\left(7,6,4,4, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ (thin green line), with $\overleftarrow{n}_{11} \in\{0,1,2,3,4\}$ and $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$. Fig. 7.1b shows the capacity region $\mathcal{C}\left(7,6,4,4,5, \overleftarrow{n}_{22}\right)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}\left(7,6,4,4,5, \overleftarrow{n}_{22}\right)$ (thin green line), with $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$. Fig. 7.1. shows the capacity region $\mathcal{C}\left(7,6,4,4,6, \overleftarrow{n}_{22}\right)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}\left(7,6,4,4,6, \overleftarrow{n}_{22}\right)$ (thin green line), with $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$. Fig. 7.1d shows the capacity region $\mathcal{C}\left(7,6,4,4,7, \overleftarrow{n}_{22}\right)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}\left(7,6,4,4,7, \overleftarrow{n}_{22}\right)$ (thin green line), with $\overleftarrow{n}_{22} \in\{0,1,2,3,4\}$. Fig. 7.1. shows the capacity region $\mathcal{C}(7,6,4,4,7,5)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}(7,6,4,4,7,5)$ (thin green line). Fig. 7.1. shows the capacity region $\mathcal{C}(7,6,4,4,7,6)$ (thick red line) and the η-NE region $\mathcal{N}_{\eta}(7,6,4,4,7,6)$ (thin green line). Fig. 7.15 and Fig. 7.1h illustrate the achievability scheme for the equilibrium rate pair $(3,4)$ and $(5,4)$ in $\mathcal{N}_{\eta}(7,6,4,4,5,0)$.
and the following is a necessary condition to observe a larger η-NE region with respect to the case in which feedback in transmitter-receiver j, i.e., $\overleftarrow{n}_{j j}$, is not available:

$$
\begin{equation*}
\overleftarrow{n}_{j j}>\max \left(n_{i j}, \vec{n}_{j j}-n_{j i}\right) \tag{7.5}
\end{equation*}
$$

Note that condition 7.5 is identical to the condition needed to observe an enlargement of the capacity region in this case (see Section 5.2).

The η-NE region \mathcal{N}_{η} without feedback, i.e., when $\overleftarrow{n}_{11}=0$ and $\overleftarrow{n}_{22}=0$, is described by Theorem 1 in 13. This result is obtained as a corollary of Theorem 7.1.1.

Corollary 5 (Theorem 1 in 13). The η-NE region of the two-user decentralized linear deterministic interference channel (D-LDIC) without channel-output feedback, with parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}$, and n_{21}, is $\mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, 0,0\right)$.

The η-NE region with POF, i.e., $\overleftarrow{n}_{11} \geqslant \max \left(\vec{n}_{11}, n_{12}\right)$ and $\overleftarrow{n}_{22} \geqslant \max \left(\vec{n}_{22}, n_{21}\right)$, is described by Theorem 1 in 60 . This result can also be obtained as a corollary of Theorem 7.1.1.

Corollary 6 (Theorem 1 in 60$]$). The η-NE region of the two-user D-LDIC with perfect channel-output feedback, with parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}$, and n_{21}, is $\mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right.$, $\left.\max \left(\vec{n}_{11}, n_{12}\right), \max \left(\vec{n}_{22}, n_{21}\right)\right)$.

The η-NE region with noisy feedback under symmetric conditions, i.e., $\vec{n}_{11}=\vec{n}_{22}=\vec{n}$, $n_{12}=n_{21}=m$, and $\overleftarrow{n}_{11}=\overleftarrow{n}_{22}=\overleftarrow{n}$, is described by Theorem 1 in 62 . This result can also be obtained as a corollary of Theorem 7.1.1.

Corollary 7 (Theorem 1 in 62). The η-NE region of the two-user symmetric D-LDIC-NOF, e.g., $\vec{n}_{11}=\vec{n}_{22}=\vec{n}, n_{12}=n_{21}=m$, and $\overleftarrow{n}_{11}=\overleftarrow{n}_{22}=\overleftarrow{n}$, is $\mathcal{N}_{\eta}(\vec{n}, \vec{n}, m, m, \overleftarrow{n}, \overleftarrow{n})$

From the comments above, it is interesting to highlight the following set of inclusions:

$$
\begin{align*}
& \mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, 0,0\right) \subseteq \mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \subseteq \tag{7.6}\\
& \mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \max \left(\vec{n}_{11}, n_{12}\right), \max \left(\vec{n}_{22}, n_{21}\right)\right)
\end{align*}
$$

for all $\eta>0$. The inclusions above might appear trivial, however, enlarging the set of actions often leads to paradoxes (Braess Paradox [16]) in which the new game possesses equilibria at which players obtain smaller individual benefits and/or smaller total benefit. Nonetheless, letting both transmitter-receiver pairs to use feedback does not induce this type of paradoxes with respect to the case without feedback.

Consider again the example in which $\vec{n}_{11}=7, \vec{n}_{22}=6, n_{12}=4, n_{21}=4, \overleftarrow{n}_{11}=5$ and $\overleftarrow{n}_{22}=0$ (See Figure 7.1b). In this case, the η-NE region \mathcal{N}_{η} is the convex hull of the rate pairs $(3,2),(3,4),(5,4)$, and $(5,2)$. The rate pair $(3,4)$ is achieved at an η-NE thanks to the use of feedback in transmitter-receiver pair 1. Transmitter 1 uses the bit-pipes 2 and 3 of the channel input $\boldsymbol{X}_{1, n}$ to re-transmit during channel use n two bits that have been previously transmitted by transmitter 2 and have produced interference at receiver 1 during channel use $n-1$ (See Figure 7.1 g). Note that there are four bit-pipes at receiver 1 impaired by interference from transmitter 2, however, only two bits can be fed back due to the effect of noise in the feedback channel. At channel use n, transmitter 1 re-transmits the interfering bits
through bit-pipes 2 and 3 that are simultaneously received by receiver 1 and receiver 2 . At receiver 2 , these bits are seen at bit-pipes 5 and 6 . However, these bits do not represent any interference for receiver 2 since they were received interference free at channel use $n-1$, and thus, they can be cancelled at channel use n. At receiver 1 , these bits are seen during channel use n at bit-pipes 2 and 3 and thus, interference free. Hence, at channel use n, receiver 1 can cancel the interference produced during channel use $n-1$. In this case, transmitter 1 and transmitter 2 are able to send three and four bits per channel use, respectively. Note that transmitter 2 also sends randomly generated bits, denoted by $\widetilde{b}_{1}, \widetilde{b}_{2}, \ldots$ in Figure 7.1. These bits are assumed to be known at both transmitter 2 and receiver 2 and thus, they do not increase the transmission rate of transmitter-receiver 2 , however, they produce interference at receiver 1. In this case, the sole objective of transmitting randomly generated bits by transmitter 2 is to prevent the transmitter 1 from sending new information bits and thus, from increasing its transmission rate. Then, any attempt of transmitter i to transmit additional information bits would bound its probability of error away from zero. Thus, the rate pair $(3,4)$ is achieved at an η-NE. The use of common randomness is also observed in $13,60,62$. Common randomness reflects a competitive behavior between both transmitter-receiver pairs.

The achievability of the rate pair $(5,4)$ follows the same explanation of the achievability of the η-NE rate pair $(3,4)$ with the difference that for this rate pair, it is not necessary that transmitter 2 sends randomly generated bits (See Figure 7.1 h), and thus, transmitter-receiver pair 1 achieves a greater rate at an η-NE with respect to the previous example. This suggests a more altruistic behavior. In this case, transmitter 1 and transmitter 2 are able to send five and four bits per channel use, respectively. Any attempt of transmitter i to transmit additional information bits would bound its probability of error away from zero. Thus, the rate pair $(5,4)$ is achieved at an η-NE.

7.2. Enlargement of the η-Nash Equilibrium Region with Feedback

The metrics, the conditions, and the values on the feedback parameters beyond which the η-NE region of the two-user LDIC-NOF can be enlarged are the same as in the centralized case, taking into account that these are referred to the η-NE region instead of the capacity region.

7.3. Efficiency of the η-NE

This section characterizes the efficiency of the set of equilibria in the two-user D-LDIC-NOF using two metrics: price of anarchy (PoA) and price of stability (PoS). The PoA measures the loss of performance due to decentralization by comparing the maximum sum-rate achieved by a centralized two-user LDIC-NOF with the minimum sum-rate achieved by a decentralized two-user LDIC-NOF at an η-NE. That is, the ratio between the sum-rate capacity and the smallest sum-rate at an η-NE region. Alternatively, the PoS measures the loss of performance due to decentralization by comparing the maximum sum-rate achieved by a centralized two-user LDIC-NOF with the maximum sum-rate achieved by a decentralized two-user LDIC-NOF at an η-NE region. That is, the ratio between the sum-rate capacity and the biggest sum-rate at an η-NE region 61.

7.3.1. Definitions

The results of this section are presented using a list of events (Boolean variables) that are determined by the parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}$, and n_{21}. Let $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, and define the following events:

$$
\begin{align*}
A_{1, i}: & \vec{n}_{i i}-n_{i j} \geqslant n_{j i}, \tag{7.7a}\\
A_{2, i}: & \vec{n}_{i i} \geqslant n_{j i}, \tag{7.7b}\\
B_{1}: & A_{1,1} \wedge A_{1,2}, \tag{7.7c}\\
B_{2, i}: & A_{1, i} \wedge \bar{A}_{1, j} \wedge A_{2, j}, \tag{7.7d}\\
B_{3, i}: & A_{1, i} \wedge \bar{A}_{1, j} \wedge \bar{A}_{2, j}, \tag{7.7e}\\
B_{4}: & \bar{A}_{1,1} \wedge \bar{A}_{1,2} \wedge A_{2,1} \wedge A_{2,2}, \tag{7.7f}\\
B_{5, i}: & \bar{A}_{1,1} \wedge \bar{A}_{1,2} \wedge \bar{A}_{2, i} \wedge A_{2, j}, \tag{7.7~g}\\
B_{6}: & \bar{A}_{1,1} \wedge \bar{A}_{1,2} \wedge \bar{A}_{2,1} \wedge \bar{A}_{2,2}, \tag{7.7h}\\
B_{7}: & A_{1,1}, \tag{7.7i}\\
B_{8}: & \bar{A}_{1,1} \wedge A_{2,1} \wedge A_{2,2}, \tag{7.7j}\\
B_{9}: & \bar{A}_{1,1} \wedge \bar{A}_{2,1} \wedge A_{2,2} \tag{7.7k}\\
B_{10}: & \bar{A}_{1,1} \wedge \bar{A}_{2,2} . \tag{7.71}
\end{align*}
$$

When both transmitter-receiver pairs are in LIR, i.e., $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22}>n_{21}$, the events $B_{1}, B_{2,1}, B_{2,2}, B_{3,1}, B_{3,2}, B_{4}, B_{5,1}, B_{5,2}$, and B_{6} exhibit the property stated by the following lemma.

Lemma 19. For a fixed tuple $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$ with $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22}>n_{21}$, only one of the events $B_{1}, B_{2,1}, B_{2,2}, B_{3,1}, B_{3,2}, B_{4}, B_{5,1}, B_{5,2}$, and B_{6} holds true.

Proof: The proof follows from verifying that when both transmitter-receiver pairs are in LIR, i.e., $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22}>n_{21}$, the events $7.7 \mathrm{c}-(7.7 \mathrm{~h})$ are mutually exclusive. This completes the proof.

When transmitter-receiver pair 1 is in LIR and transmitter-receiver pair 2 is in HIR, i.e., $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22} \leqslant n_{21}$, the events B_{7}, B_{8}, B_{9}, and B_{10} exhibit the property stated by the following lemma.

Lemma 20. For a fixed tuple $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right) \in \mathbb{N}^{4}$ with $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22} \leqslant n_{21}$, only one of the events B_{7}, B_{8}, B_{9}, and B_{10} holds true.

Proof: The proof of Lemma 20 follows along the same lines of the proof of Lemma 19.

7.3.2. Price of Anarchy

Let $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ be the set of all possible configuration pairs and $\mathcal{A}_{\eta-\mathrm{NE}} \subset \mathcal{A}$ be the set of η-NE configuration pairs of the game in (3.3) (Definition 4).

Definition 7 (Price of Anarchy [40). Let $\eta>0$. The PoA of the game \mathcal{G}, denoted by
$\operatorname{PoA}(\eta, \mathcal{G})$, is given by:

$$
\begin{equation*}
\operatorname{PoA}(\eta, \mathcal{G})=\frac{\max _{\left(s_{1}, s_{2}\right) \in \mathcal{A}} \sum_{i=1}^{2} R_{i}\left(s_{1}, s_{2}\right)}{\min _{\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{\eta-\mathrm{NE}}} \sum_{i=1}^{2} R_{i}\left(s_{1}^{*}, s_{2}^{*}\right)} \tag{7.8}
\end{equation*}
$$

Let $\bar{\Sigma}_{C}$ denote the solution to the optimization problem in the numerator of 7.8 , which correspond to the maximum sum-rate in the centralized case. Let also $\underline{\Sigma}_{N}$ denote the solution to the optimization problem in the denominator of (7.8). Closed-form expressions of the maximum sum-rate in the centralized case, i.e., $\bar{\Sigma}_{C}$ and the minimum sum-rate in the decentralized case, i.e., $\underline{\Sigma}_{N}$, are presented in Appendix 0

The following theorems describe the $\operatorname{PoA}(\eta, \mathcal{G})$ in particular interference regimes of the twouser D-LDIC-NOF. In all the cases, it is assumed that $\overleftarrow{n}_{i i} \leqslant \max \left(\vec{n}_{i i}, n_{i j}\right)$ for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$. If $\overleftarrow{n}_{11}>\max \left(\vec{n}_{11}, n_{12}\right)$ or $\overleftarrow{n}_{22}>\max \left(\vec{n}_{22}, n_{21}\right)$, the results are the same as those in the case of POF, i.e., $\overleftarrow{n}_{11}=\max \left(\vec{n}_{11}, n_{12}\right)$ or $\overleftarrow{n}_{22}=\max \left(\vec{n}_{22}, n_{21}\right)$.

7.3.1 Theorem (Both transmitter-receiver pairs in LIR)

For all $i \in\{1,2\}, j \in\{1,2\} \backslash\{i\}$ and for all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$ with $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22}>n_{21}$, the $\operatorname{PoA}(\eta, \mathcal{G})$ satisfies:

$$
\operatorname{PoA}(\eta, \mathcal{G})=\left\{\begin{array}{cc}
\frac{\bar{\Sigma}_{C 1}}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} & \text { if } \quad B_{1} \text { holds true } \\
\frac{\bar{\Sigma}_{C 2, i}}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} & \text { if } \\
\vec{n}_{i i} & B_{2, i} \text { holds true } \\
\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta & \text { if } \\
\bar{\Sigma}_{C 3} & B_{3, i} \vee B_{5, i} \text { holds true } \tag{7.9}\\
\vec{n}_{11-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} & \text { if } \\
\frac{\min \left(\vec{n}_{11}, \vec{n}_{22}\right)}{} \text { holds true } \\
\vec{n}_{11-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} & \text { if } \quad B_{6} \text { holds true }
\end{array}\right.
$$

where,

$$
\begin{align*}
\bar{\Sigma}_{C 1}= & \min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21},\right. \tag{7.10a}\\
& \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+\max \left(\vec{n}_{22}-n_{21}, \overleftarrow{n}_{22}\right) \\
& \left.2 \vec{n}_{11}-n_{12}+\max \left(\vec{n}_{22}-n_{21}, \overleftarrow{n}_{22}\right), 2 \vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)\right)
\end{align*}
$$

$$
\begin{align*}
\bar{\Sigma}_{C 2, i}= & \min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21},\right. \tag{7.10b}\\
& \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+\max \left(\vec{n}_{22}-n_{21}, \overleftarrow{n}_{22}\right), \\
& \left.2 \vec{n}_{i i}-n_{i j}+\max \left(n_{i j}, \overleftarrow{n}_{j j}\right), 2 \vec{n}_{j j}-n_{j i}+\max \left(\vec{n}_{i i}-n_{i j}, \overleftarrow{n}_{i i}\right)\right) ; \text { and } \\
\bar{\Sigma}_{C 3}= & \min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21}, \max \left(n_{21}, \overleftarrow{n}_{11}\right)+\max \left(n_{12}, \overleftarrow{n}_{22}\right),\right. \\
& \left.2 \vec{n}_{11}-n_{12}+\max \left(n_{12}, \overleftarrow{n}_{22}\right), 2 \vec{n}_{22}-n_{21}+\max \left(n_{21}, \overleftarrow{n}_{11}\right)\right) . \tag{7.10c}
\end{align*}
$$

Proof: The proof is presented in Appendix 0 .
From Theorem 7.3.1, the following conclusions can be drawn. When both transmitterreceiver pairs are in LIR, and at least one of the conditions $B_{3, i}, B_{5, i}$, or B_{6} holds true, with $i \in\{1,2\}$, then the $\operatorname{PoA}(\eta, \mathcal{G})$ does not depend on the feedback parameters \overleftarrow{n}_{11} and \overleftarrow{n}_{22}. However, under other conditions, i.e., $B_{1}, B_{2, i}$, or B_{4}, this is not always the case as shown in the following corollaries.

Corollary 8. For any $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$ with $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22}>n_{21}$, such that B_{1} holds true, it follows that:

$$
\begin{equation*}
1<\frac{\vec{n}_{11}+\vec{n}_{22}-n_{12}-n_{21}}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} \leqslant \operatorname{PoA}(\eta, \mathcal{G}) \leqslant \frac{\vec{n}_{11}+\vec{n}_{22}-\max \left(n_{12}, n_{21}\right)}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} . \tag{7.11}
\end{equation*}
$$

The lower bound in (7.11) is obtained assuming that $\overleftarrow{n}_{11}=0$ and $\overleftarrow{n}_{22}=0$ in (7.9). That is, when feedback is not available. The upper bound in (7.11) is obtained assuming that $\overleftarrow{n}_{11}=\max \left(\vec{n}_{11}, n_{12}\right)=\vec{n}_{11}$ and $\overleftarrow{n}_{22}=\max \left(\vec{n}_{22}, n_{21}\right)=\vec{n}_{22}$ in (7.9). That is, when POF is available at both transmitter-receiver pairs.

Note also that for any η, when both transmitter-receiver pairs are in LIR, condition B_{1} holds true, $\overleftarrow{n}_{11} \leqslant \vec{n}_{11}-n_{12}$, and $\overleftarrow{n}_{22} \leqslant \vec{n}_{22}-n_{21}$, the sum-rate capacity approaches to the minimum sum-rate at an η-NE region $(\operatorname{PoA}(\eta, \mathcal{G}) \approx 1)$. Alternatively, when both transmitterreceiver pairs are in LIR, condition B_{1} holds true, and at least one the following conditions: $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$ or $\overleftarrow{n}_{22}>\vec{n}_{22}-n_{21}$ holds true, the use of feedback in transmitter-receiver pair 1 or transmitter-receiver pair 2, respectively, enlarges both the capacity region and the η-NE region. Nonetheless, the PoA increases as the smallest sum-rate at an η-NE region remains unchanged with respect to the case without feedback.

Corollary 9. For any ($\left.\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$ with $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22}>n_{21}$, such that $B_{2, i}$ holds true for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, it follows that:

$$
\begin{equation*}
1<\frac{\vec{n}_{i i}}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} \leqslant \operatorname{PoA}(\eta, \mathcal{G}) \leqslant \frac{\vec{n}_{11}+\vec{n}_{22}-\max \left(n_{12}, n_{21}\right)}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} . \tag{7.12}
\end{equation*}
$$

Note that when both transmitter-receiver pairs are in LIR and for a given $i \in\{1,2\}$ condition $B_{2, i}$ holds true, $\overleftarrow{n}_{i i} \leqslant \vec{n}_{i i}-n_{i j}$; and $\overleftarrow{n}_{j j} \leqslant n_{i j}$, the use of feedback in either transmitterreceiver pair does not enlarge the capacity region or the η-NE region. Then, the $\operatorname{PoA}(\eta, \mathcal{G})$ is
equal to the lower bound in (7.12), i.e., $\operatorname{PoA}(\eta, \mathcal{G})=\frac{\vec{n}_{i i}}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta}$. Conversely, when both transmitter-receiver pairs are in LIR and for a given $i \in\{1,2\}$ condition $B_{2, i}$ holds true, and at least one of the following conditions: $\overleftarrow{n}_{i i}>\vec{n}_{i i}-n_{i j}$ or $\overleftarrow{n}_{j j}>n_{i j}$ holds true, the use of feedback enlarges both the capacity region and the η-NE region.
The lower and upper bounds in (7.12) are obtained as in the case of (7.11).

Corollary 10. For any $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$ with $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22}>n_{21}$, such that B_{4} holds true, it follows that:
$1<\frac{\min \left(\vec{n}_{11}+\vec{n}_{22}-\max \left(n_{12}, n_{21}\right), n_{12}+n_{21}\right)}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta} \leqslant \operatorname{PoA}(\eta, \mathcal{G}) \leqslant \frac{\vec{n}_{11}+\vec{n}_{22}-\max \left(n_{12}, n_{21}\right)}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta}$.

Note that when both transmitter-receiver pairs are in LIR, condition B_{4} holds true, and $\bar{\Sigma}_{C 5} \leqslant n_{12}+n_{21}$, then the $\operatorname{PoA}(\eta, \mathcal{G})$ does not depend on the feedback parameters \overleftarrow{n}_{11} and \overleftarrow{n}_{22}. When both transmitter-receiver pairs are in LIR, condition B_{4} holds true, $\vec{n}_{11}+\vec{n}_{22}-$ $\max \left(n_{12}, n_{21}\right)>n_{12}+n_{21} ; \overleftarrow{n}_{11} \leqslant n_{21}$, and $\overleftarrow{n}_{22} \leqslant n_{12}$, then the $\operatorname{PoA}(\eta, \mathcal{G})$ is equal to the lower bound in (7.13), i.e., $\operatorname{PoA}(\eta, \mathcal{G})=\frac{n_{12}+n_{21}}{\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta}$. Conversely, when both transmitter-receiver pairs are in LIR, condition B_{4} holds true, $\vec{n}_{11}+\vec{n}_{22}-\max \left(n_{12}, n_{21}\right)>$ $n_{12}+n_{21}$, and at least one of the following conditions: $\overleftarrow{n}_{11}>n_{21}$ or $\overleftarrow{n}_{22}>n_{12}$ holds true, the use of feedback in transmitter-receiver pair 1 or transmitter-receiver pair 2, respectively, enlarges the capacity region and the η-NE region.

7.3.2 Theorem (Transmitter-receiver pair 1 in LIR and transmitter-receiver pair 2 in HIR)

For all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$ with $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22} \leqslant n_{21}$, the $\operatorname{PoA}(\eta, \mathcal{G})$ satisfies:

$$
\operatorname{PoA}(\eta, \mathcal{G})= \begin{cases}\frac{\vec{n}_{11}}{\vec{n}_{11}-n_{12}-\eta} & \text { if } \quad B_{7} \vee B_{8} \vee B_{10} \text { holds true } \tag{7.14}\\ \frac{\min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, n_{21}\right)}{\vec{n}_{11}-n_{12}-\eta} & \text { if } \quad B_{9} \text { holds true }\end{cases}
$$

Proof: The proof is presented in Appendix 0
Note that in the cases in which transmitter-receiver pair 1 is in LIR and transmitter-receiver pair 2 is in HIR, the $\operatorname{PoA}(\eta, \mathcal{G})$ does not depend on the feedback parameters. This follows since the use of feedback in this scenario can enlarge the capacity region but it does not increase the sum-rate capacity (Theorem 5.2.4).

In the case in which transmitter-receiver pair 1 is in HIR and transmitter-receiver pair 2 is in LIR, i.e., $\vec{n}_{11} \leqslant n_{12}$ and $\vec{n}_{22}>n_{21}$, the $\operatorname{PoA}(\eta, \mathcal{G})$ for the two-user D-LDIC-NOF is characterized as in Theorem 7.3.2 interchanging the indices of the parameters.

7.3.3 Theorem (Both transmitter-receiver pairs in HIR)

For all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$ with $\vec{n}_{11} \leqslant n_{12}$ and $\vec{n}_{22} \leqslant n_{21}$, the $\operatorname{PoA}(\eta, \mathcal{G})$ satisfies:

$$
\begin{equation*}
\operatorname{PoA}(\eta, \mathcal{G})=\infty \tag{7.15}
\end{equation*}
$$

The result on Theorem 7.3 .3 is due to the fact that $\left(\left(\vec{n}_{11}-n_{12}\right)^{+}-\eta\right)^{+}+\left(\left(\vec{n}_{22}-n_{21}\right)^{+}-\right.$ $\eta)^{+}=0$. That is, when $\vec{n}_{11} \leqslant n_{12}$ and $\vec{n}_{22} \leqslant n_{21}$, none of the transmitter-receiver pairs is able to transmit at a strictly positive rate at the worst η-NE (the smallest sum-rate at the η-NE region).

In general, in any interference regime in which the $\operatorname{PoA}(\eta, \mathcal{G})$ depends on the feedback parameters \overleftarrow{n}_{11} or \overleftarrow{n}_{22}, there exists a value in the feedback parameter \overleftarrow{n}_{11} or the feedback parameter \overleftarrow{n}_{22} beyond which the $\operatorname{PoA}(\eta, \mathcal{G})$ increases. These values correspond to those values beyond which the sum-capacity can be enlarged (Theorem 5.2.4).

7.3.3. Price of Stability

In this section, the efficiency of the η-NE of the game \mathcal{G} in 3.3 is analyzed by using the PoS.
Definition 8 (Price of stability (4). Let $\eta>0$. The PoS of the game \mathcal{G}, denoted by $\operatorname{PoS}(\eta, \mathcal{G})$, is given by:

$$
\begin{equation*}
\operatorname{PoS}(\eta, \mathcal{G})=\frac{\max _{\left(s_{1}, s_{2}\right) \in \mathcal{A}} \sum_{i=1}^{2} R_{i}\left(s_{1}, s_{2}\right)}{\max _{\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{\eta-\mathrm{NE}}} \sum_{i=1}^{2} R_{i}\left(s_{1}^{*}, s_{2}^{*}\right)} \tag{7.16}
\end{equation*}
$$

Let $\bar{\Sigma}_{N}$ denote the solution to the optimization problem in the denominator of (7.16). A closed-form expression of the maximum sum-rate in the decentralized case, i.e., $\bar{\Sigma}_{N}$ is presented in Appendix O and it can be obtained from Theorem 7.1.1.

The following proposition characterizes the PoS of the game \mathcal{G} in 3.3 for the two-user D-LDIC-NOF.

Proposition 1 (PoS). For all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$ and for all $\eta>0$ arbitrary small, the PoS in the game \mathcal{G} of the two-user D-LDIC-NOF is:

$$
\begin{equation*}
\operatorname{PoS}(\eta, \mathcal{G})=1 \tag{7.17}
\end{equation*}
$$

Proof: The proof of Proposition 1 is obtained from Lemma 34 and Lemma 35 in Appendix 0

Note that the fact that the price of stability is equal to one, independently of the parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}$ and \overleftarrow{n}_{22}, implies that despite the anarchical behavior of both transmitter-receiver pairs, the biggest η-NE sum-rate is equal to the sum-rate capacity, i.e., $\bar{\Sigma}_{C}=\bar{\Sigma}_{N}$. This implies that in all interference regimes, there always exists an η-NE that is sum-rate optimal (Pareto optimal η-NE). The thresholds on the feedback parameters beyond which the sum-capacity and the maximum sum-rate in the η-NE region can be improved can be obtained from Theorem 5.2.4.

In conclusion, with $\eta>0$ and when both transmitter-receiver pairs are in LIR, the PoA can be made arbitrarily close to one as η approaches zero, subject to a particular condition. This immediately implies that in this regime even the worst η-NE (in terms of sum-rate) is arbitrarily close to the Pareto boundary of the capacity region. The use of feedback increases the PoA in some interference regimes. This is basically because in these regimes, the use of feedback increases the sum-capacity, whereas the smallest sum-rate at an η-NE region is not changed. In some cases the PoA can be infinity due to the fact that when both transmitter-receiver pairs are in HIR, the smallest sum-rate at an η-NE region is zero bit per channel use. In other regimes, the use of feedback does not have any impact on the PoA as it does not increase the sum-capacity. Finally, the PoS is shown to be equal to one in all interference regimes. This implies that there always exists an η-NE in the Pareto boundary of the capacity region. These results highlight the relevance of designing equilibrium selection methods such that decentralized networks can operate at efficient η-NE points. The need of these methods becomes more relevant when channel-output feedback is available as it might increase the PoA.

Gaussian Interference Channel

THIS chapter presents the main results on the two-user D-GIC-NOF. This model was described in Section 2.1 and can be modeled by a game as suggested in Section 3.1. Denote by \mathcal{C} the capacity region of the two-user GIC-NOF with fixed parameters $\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{1}$, and $\overleftarrow{\mathrm{SNR}}_{2}$. The achievable capacity region $\underline{\mathcal{C}}$ and the converse region $\overline{\mathcal{C}}$ approximate the capacity region \mathcal{C} to within 4.4 bits (Theorem 6.3.1. The achievable capacity region $\underline{\mathcal{C}}$ and the converse region $\overline{\mathcal{C}}$ are defined by Theorem 6.1.1 and Theorem 6.2.1, respectively.

8.1. Achievable η-Nash Equilibrium Region

Let the η-NE region (Definition 5) of the two-user D-GIC-NOF be denoted by \mathcal{N}_{η}. This section introduces a region $\underline{\mathcal{N}}_{\eta} \subseteq \mathcal{N}_{\eta}$ that is achievable using the randomized Han-Kobayashi scheme with noisy channel-output feedback (RHK-NOF). This coding scheme is presented in Appendix M and Appendix N . The RHK-NOF is proved to be an η-NE configuration pair with $\eta \geqslant 1$. That is, any unilateral deviation from the RHK-NOF by any of the transmitter-receiver pairs might lead to an individual rate improvement that is upper bounded by one bit per channel use. The description of the achievable η-NE region $\underline{\mathcal{N}}_{\eta}$ is presented using the constants $a_{1, i}$; the functions $a_{2, i}:[0,1] \rightarrow \mathbb{R}_{+}, a_{l, i}:[0,1]^{2} \rightarrow \mathbb{R}_{+}$, with $l \in\{3, \ldots, 6\} ;$ and $a_{7, i}:[0,1]^{3} \rightarrow \mathbb{R}_{+}$, defined in (6.1), for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$, and the functions $b_{l, i}:[0,1] \rightarrow \mathbb{R}_{+}$, with $(l, i) \in\{1,2\}^{2}$, defined in (6.2).

Note that the functions in (6.1) and (6.2) depend on $\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{1}$, and $\overleftarrow{S N R}_{2}$. However, as these parameters are fixed in this analysis, this dependence is not emphasized in the definition of these functions. Finally, using this notation, the main result is presented by Theorem 8.1.1.

Figure 8.1.: Achievable capacity regions (dashed-lines) and achievable η-NE regions (solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24$ $\mathrm{dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=10 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,18,50\} \mathrm{dB}$, $\overleftarrow{\mathrm{SNR}}_{2} \in\{-100,12,50\} \mathrm{dB}$ and $\eta=1$.

Figure 8.2.: Achievable capacity regions (dashed-lines) and achievable η-NE regions (solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24$ $\mathrm{dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=48 \mathrm{~dB}, \mathrm{INR}_{21}=30 \mathrm{~dB}, \overleftarrow{S N R}_{1} \in\{-100,18,50\} \mathrm{dB}$, $\overleftarrow{\mathrm{SNR}}_{2} \in\{-100,12,50\} \mathrm{dB}$ and $\eta=1$.

Figure 8.3.: Achievable capacity regions (dashed-lines) and achievable η-NE regions (solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24$ $\mathrm{dB}, \overrightarrow{\mathrm{SNR}}_{2}=3 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=9 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,18,50\} \mathrm{dB}$, $\overleftarrow{\mathrm{SNR}}_{2} \in\{-100,8,50\} \mathrm{dB}$ and $\eta=1$.

8.1.1 Theorem (achievable η-NE region)

Let $\eta \geqslant 1$. The achievable η-NE region $\underline{\mathcal{N}}_{\eta}$ is given by the closure of all possible achievable rate pairs $\left(R_{1}, R_{2}\right) \in \underline{\mathcal{C}}$ that satisfy, for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, the following conditions:

$$
\begin{align*}
& \qquad R_{i} \geqslant\left(a_{2, i}(\rho)-a_{3, i}\left(\rho, \mu_{j}\right)-a_{4, i}\left(\rho, \mu_{j}\right)-\eta\right)^{+}, \tag{8.1a}\\
& \quad R_{i} \leqslant \min \left(a_{2, i}(\rho)+a_{3, j}\left(\rho, \mu_{i}\right)+a_{5, j}\left(\rho, \mu_{i}\right)-a_{2, j}(\rho)+\eta,\right. \tag{8.1b}\\
& a_{3, i}\left(\rho, \mu_{j}\right)+a_{7, i}\left(\rho, \mu_{1}, \mu_{2}\right)+2 a_{3, j}\left(\rho, \mu_{i}\right)+a_{5, j}\left(\rho, \mu_{i}\right)-a_{2, j}(\rho)+\eta, \\
& R_{1}+R_{2, i} \leqslant a_{1, i}+a_{3, i}(\rho)+a_{3, i}\left(\rho, \mu_{j}\right)+2 a_{3, j}\left(\rho, \mu_{i}\right)+a_{5, j}\left(\rho, \mu_{i, i}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{7, j}\left(\rho, \mu_{1}, \mu_{2}\right)-2 a_{2, j}(\rho)+a_{3, j}\left(\rho, \mu_{1}\right)-a_{2, i}(\rho)+\eta,\right. \\
& \text { for all }\left(\rho, \mu_{1}, \mu_{2}\right) \in\left[0,\left(1-\max \left(\frac{1}{\operatorname{INR}_{12}}, \frac{1}{\operatorname{INR}_{21}}\right)\right)^{+}\right] \times[0,1] \times[0,1] . \tag{8.1c}
\end{align*}
$$

Proof: The proof of Theorem 8.1.1 is presented in Appendix J
The following describes some interesting observations from Theorem 8.1.1. Figure 8.1 shows an inner-bound on the capacity region (Theorem 6.2.1) and the achievable η-NE region in Theorem 8.1.1 for a two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}$, $\mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=10 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,18,50\} \mathrm{dB}$ and $\widetilde{\mathrm{SNR}}_{2} \in\{-100,12,50\} \mathrm{dB}$. At low values of $\overleftarrow{S N R}_{1}$ and $\overleftarrow{S N R}_{2}$, the achievable η-NE region approaches the region reported in 13 for the case of the two-user decentralized GIC (D-GIC) without channel-output feedback.

Figure 8.4.: Converse regions (dashed-lines) and non-equilibrium regions with $\eta \geqslant 1$ (solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=3$ $\mathrm{dB}, \overrightarrow{\mathrm{SNR}}_{2}=8 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=5 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,9,50\} \mathrm{dB}$ and $\overleftarrow{\mathrm{SNR}}_{2} \in\{-100,6,50\} \mathrm{dB}$.

Alternatively, for high values of $\overleftarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{2}$, the achievable η-NE region approaches the region reported in 60 for the case of the two-user D-GIC with POF.

Denote by $\mathcal{N}_{\eta \text { PF }}$ the achievable η-NE region of the two-user GIC with perfect channeloutput feedback presented in $[60$. Figure 8.2 shows an inner-region on the capacity region (Theorem 6.1.1) and the achievable η-NE region in Theorem 8.1.1 for a two-user D-GIC-NOF channel with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=48 \mathrm{~dB}, \mathrm{INR}_{21}=30 \mathrm{~dB}$, $\overleftarrow{\mathrm{SNR}}_{1} \in\{-100,18,50\} \mathrm{dB}$ and $\overleftarrow{\mathrm{SNR}}_{2} \in\{-100,12,50\} \mathrm{dB}$. In this case, the achievable η-NE region and the inner-region on the capacity region (Theorem 6.1.1) are almost identical, which implies that in the cases in which ${\overrightarrow{\operatorname{SNR}_{i}}}^{2} \operatorname{INR}_{i j}$, for both $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$, the η-NE region is almost the same as the achievable region in the centralized case (Theorem 6.1.1).

Figure 8.3 shows an inner-region on the capacity region (Theorem 6.1.1) and the achievable η-NE region in Theorem 8.1.1 for a two-user D-GIC-NOF channel with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24$ $\mathrm{dB}, \overrightarrow{\mathrm{SNR}}_{2}=3 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=9 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,18,50\} \mathrm{dB}$ and $\overleftarrow{\mathrm{SNR}}_{2} \in$ $\{-100,8,50\} \mathrm{dB}$. Note that in this case, the feedback parameter $\overleftarrow{\mathrm{SNR}_{2}}$ does not have an effect on the achievable η-NE region and the inner-region on the capacity region (Theorem 6.1.1). This is due to the fact that when one transmitter-receiver pair is in LIR and the other transmitter-receiver pair is in HIR, feedback is useless on the transmitter-receiver pair in HIR.

8.2. Non-Equilibrium Region

Let the η-NE region (Def. 5) of the two-user D-GIC-NOF be denoted by \mathcal{N}_{η}. This section introduces a region $\overline{\mathcal{N}}_{\eta} \supseteq \overline{\mathcal{N}}_{\eta}$ which is given in terms of the convex region $\overline{\mathcal{B}}_{\eta}$. Here, for the case of the two-user D-GIC-NOF, the convex region $\overline{\mathcal{B}}_{\eta}$ is given by the closure of non-negative rate pairs $\left(R_{1}, R_{2}\right)$ that for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$ satisfy:

$$
\begin{equation*}
\overline{\mathcal{B}}_{\eta}=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}: L_{i} \leqslant R_{i} \leqslant \bar{U}_{i}, \text { for all } i \in \mathcal{K}=\{1,2\}\right\} \tag{8.2}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{i}=\left(\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{i}}{1+\mathrm{INR}_{i j}}\right)-\eta\right)^{+} \text {and } \tag{8.3}\\
& \bar{U}_{i}= \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{i}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{i} \mathrm{INR}_{i j}}+\mathrm{INR}_{i j}+1\right) \\
&-\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{j}+2\left(\rho-\rho_{X_{i} V_{j}} \sqrt{\gamma_{j}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{j} \mathrm{INR}_{j i}}+\mathrm{INR}_{j i}+1}{\left.\left(1-\gamma_{j}\right) \overrightarrow{\mathrm{SNR}}_{j}+2\left(\rho-\rho_{X_{i} V_{j}} \sqrt{\gamma_{j}}\right) \sqrt{\overrightarrow{\mathrm{SNR}_{j} \mathrm{INR}_{j i}}+\mathrm{INR}_{j i}+1}\right)}\right. \\
&-\frac{1}{2} \log \left(\mathrm{INR}_{j i}\left(1-\rho^{2}\right)+1\right)+\frac{1}{2} \log \left(\mathrm{INR}_{j i}\left(1-\left(\rho-\rho_{X_{i} V_{j}} \sqrt{\gamma_{j}}\right)^{2}\right)+1\right) \\
&+\frac{1}{2} \log \left({\left.\overrightarrow{\mathrm{SNR}_{j}}+2 \rho \sqrt{\mathrm{SNR}_{j} \mathrm{INR}_{j i}}+\mathrm{INR}_{j i}+1\right)}-\frac{1}{2} \log \left({\left.\overrightarrow{\mathrm{SNR}_{j}}\left(\gamma_{j}-\gamma_{j}^{2}\right)+2 \gamma_{j}\left(\rho-\rho_{X_{i} V_{j}} \sqrt{\gamma_{j}}\right) \sqrt{\overrightarrow{\operatorname{SNR}}_{j} \mathrm{INR}_{j i}}+\gamma_{j} \mathrm{INR}_{j i}\left(1-\rho_{X_{i} V_{j}}^{2}\right)+\gamma_{j}\right)}-\frac{1}{2} \log \left(1-\rho_{X_{i} V_{j}}^{2}\right)-\frac{1}{2} \log \left(\operatorname{INR}_{i j}\left(1-\rho^{2}\right)+1\right)\right.\right. \\
&+\frac{1}{2} \log \left(\gamma_{j}\left(\mathrm{INR}_{i j}\left(1-\rho^{2}\right)+1\right)-\rho_{X_{i} V_{j}}^{2} \gamma_{j}\left(\mathrm{INR}_{i j}+1\right)+\gamma_{2} \mathrm{INR}_{i j}\left(2 \rho_{X_{i} V_{j}} \rho \sqrt{\gamma_{j}}-\gamma_{j}\right)\right) \\
&+\eta .
\end{align*}
$$

with

Figure 8.5.: Converse region (blue dashed-line), non-equilibrium region with $\eta \geqslant 1$ (blue solid lines), achievable capacity regions (red dashed-line), and achievable η-NE regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=10 \mathrm{~dB}$, (a) $\overleftarrow{\mathrm{SNR}}_{1}=-100 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=-100 \mathrm{~dB}$, (b) $\overleftarrow{\mathrm{SNR}}_{1}=18 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=12 \mathrm{~dB}$, and (c) $\overleftarrow{\mathrm{SNR}}_{1}=50 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=50 \mathrm{~dB}$.
$C_{1, j}: \operatorname{INR}_{j i}<\overrightarrow{\operatorname{SNR}}_{j} \leqslant \operatorname{INR}_{i j}$,
$C_{2, j}: \max \left(\mathrm{INR}_{i j}, \mathrm{INR}_{j i}, \overleftarrow{\mathrm{SNR}}_{j}\right)<\overrightarrow{\mathrm{SNR}}_{j}<\mathrm{INR}_{i j} \mathrm{INR}_{j i}$,
$C_{3, j}: \overleftarrow{\mathrm{SNR}}_{j} \leqslant \mathrm{INR}_{i j}$,
$C_{4, j}: \mathrm{INR}_{j i}<\mathrm{INR}_{i j}<\overrightarrow{\mathrm{SNR}}_{j} \leqslant \overleftarrow{\mathrm{SNR}}_{j}$,
$C_{5, j}: \overrightarrow{\mathrm{SNR}}_{j}>\max \left(\mathrm{INR}_{i j}, \mathrm{INR}_{j i}, \overleftarrow{\mathrm{SNR}}_{j}\right)$,
$C_{6, j}: \overrightarrow{\operatorname{SNR}}_{j} \geqslant \max \left(\operatorname{INR}_{i j} \operatorname{INR}_{j i}, \overleftarrow{S N R}_{j} \mathrm{INR}_{j i}\right)$,
$C_{7, j}: \max \left(\mathrm{INR}_{i j}, \mathrm{INR}_{j i}, \overleftarrow{\mathrm{SNR}}_{j}, \frac{\overleftarrow{\mathrm{SNR}}_{j} \mathrm{INR}_{j i}}{\mathrm{INR}_{i j}}\right)<\overrightarrow{\mathrm{SNR}}_{j}<\overleftarrow{\mathrm{SNR}}_{j} \mathrm{INR}_{j i} \leqslant \frac{\overleftarrow{\mathrm{SNR}}_{j} \overrightarrow{\mathrm{SNR}}_{j}}{\mathrm{INR}_{i j}}$,
$C_{8, j}: \max \left(\operatorname{INR}_{i j}, \mathrm{INR}_{j i}, \overleftarrow{\mathrm{SNR}}_{j}, \frac{\overleftarrow{\operatorname{SNR}}_{j} \mathrm{INR}_{j i}}{\mathrm{INR}_{i j}}\right)<\overrightarrow{\mathrm{SNR}}_{j}<\mathrm{INR}_{i j} \mathrm{INR}_{j i}<\overleftarrow{\mathrm{SNR}}_{j} \mathrm{INR}_{j i}$,
,$\rho \in[0,1]$, and $\rho_{X_{i} V_{j}} \in[0,1)$.
Note that L_{i} is the rate achieved by the transmitter-receiver pair i when it saturates the power constraint in (2.7) and treats interference as noise. Following this notation, the non-equilibrium region of the two-user GIC-NOF, i.e., $\overline{\mathcal{N}}_{\eta}$, can be written as in the following theorem.

8.2.1 Theorem (The non-equilibrium region)

Let $\eta \geqslant 1$. The non-equilibrium region $\overline{\mathcal{N}}_{\eta}$ of the two-user D-GIC-NOF is given by the closure of all possible non-negative rate pairs $\left(R_{1}, R_{2}\right) \in \overline{\mathcal{C}} \cap \overline{\mathcal{B}}_{\eta}$ for all $\rho \in[0,1]$.

Proof: The proof of Theorem 8.2.1 is presented in Appendix K.
It is worth noting that Theorem 8.2.1 has a strong connection with Theorem 7.1.1. The

Figure 8.6.: Converse region (blue dashed-line), non-equilibrium region with $\eta \geqslant 1$ (blue solid lines), achievable capacity regions (red dashed-line), and achievable η-NE regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=48 \mathrm{~dB}, \mathrm{INR}_{21}=30 \mathrm{~dB}$, (a) $\overleftarrow{\mathrm{SNR}}_{1}=-100 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=-100 \mathrm{~dB},(\mathrm{~b}) \overleftarrow{\mathrm{SNR}}_{1}=18 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=12 \mathrm{~dB}$, and (c) $\overleftarrow{\mathrm{SNR}}_{1}=50 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=50 \mathrm{~dB}$.

Figure 8.7.: Converse region (blue dashed-line), non-equilibrium region with $\eta \geqslant 1$ (blue solid lines), achievable capacity regions (red dashed-line), and achievable η-NE regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=3 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=9 \mathrm{~dB}$, (a) $\overleftarrow{\mathrm{SNR}}_{1}=-100 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=-100 \mathrm{~dB}$, (b) $\overleftarrow{\mathrm{SNR}}_{1}=18 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=8 \mathrm{~dB}$, and (c) $\overleftarrow{\mathrm{SNR}}_{1}=50 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=50 \mathrm{~dB}$.
relevance of Theorem 8.2.1 relies on two important implications: (a) if the pair of configurations $\left(s_{1}, s_{2}\right)$ is an η-NE, then transmitter-receiver pair 1 and transmitter-receiver pair 2 always achieve a rate equal to or larger than L_{1} and L_{2}, with L_{1} and L_{2} as in 8.3 , respectively; and (b) there always exists an η-NE transmit-receive configuration pair $\left(s_{1}, s_{2}\right)$ that achieves a rate pair $\left(R_{1}\left(s_{1}, s_{2}\right), R_{2}\left(s_{1}, s_{2}\right)\right)$ that is at most η bits per channel use per user away from the outer bound on the converse region.

Figure 8.4 shows an outer-bound on the capacity region (Theorem 6.2.1) and the nonequilibrium region with $\eta \geqslant 1 \overline{\mathcal{N}}_{\eta}$ in Theorem 8.2.1 for a two-user D-GIC-NOF channel with parameters $\overrightarrow{\mathrm{SNR}}_{1}=3 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=8 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=5 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,9,50\}$ dB and $\overleftarrow{\mathrm{SNR}}_{2} \in\{-100,6,50\} \mathrm{dB}$.

Figure 8.5 shows an inner-bound (Theorem 6.1.1), an outer-bound on the capacity region (Theorem 6.2.1), the achievable η-NE region $\underline{\mathcal{N}}_{\eta}$ (Theorem 8.1.1), the non-equilibrium region

Figure 8.8.: Converse region (blue dashed-line), non-equilibrium region with $\eta \geqslant 1$ (blue solid lines), achievable capacity regions (red dashed-line), and achievable η-NE regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with parameters $\overrightarrow{\mathrm{SNR}}_{1}=3 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=8 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=5 \mathrm{~dB}$, (a) $\overleftarrow{S N R}_{1}=-100 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=-100 \mathrm{~dB}$, (b) $\overleftarrow{\mathrm{SNR}}_{1}=9 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=6 \mathrm{~dB}$, and (c) $\overleftarrow{\mathrm{SNR}}_{1}=50 \mathrm{~dB}$ and $\overleftarrow{\mathrm{SNR}}_{2}=50 \mathrm{~dB}$.
with $\eta \geqslant 1 \overline{\mathcal{N}}_{\eta}$ (Theorem 8.2.1 for a two-user D-GIC-NOF channel with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24$ $\mathrm{dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=10 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,18,50\} \mathrm{dB}$ and $\overleftarrow{S N R}_{2} \in\{-100,12,50\} \mathrm{dB}$.

Figure 8.6 shows an inner-bound (Theorem 6.1.1), an outer-bound on the capacity region (Theorem 6.2.1), the achievable η-NE region $\underline{\mathcal{N}}_{\eta}$ (Theorem 8.1.1), the non-equilibrium region with $\eta \geqslant 1 \overline{\mathcal{N}}_{\eta}$ (Theorem 8.2.1 for a two-user D-GIC-NOF channel with parameters $\overrightarrow{\mathrm{SNR}}_{1}=24$ $\mathrm{dB}, \overrightarrow{\mathrm{SNR}}_{2}=18 \mathrm{~dB}, \mathrm{INR}_{12}=48 \mathrm{~dB}, \mathrm{INR}_{21}=30 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,18,50\} \mathrm{dB}$ and $\overleftarrow{S N R}_{2} \in\{-100,12,50\} \mathrm{dB}$.
Figure 8.7 shows an inner-bound (Theorem 6.1.1), an outer-bound on the capacity region (Theorem 6.2.1), the achievable η-NE region $\underline{\mathcal{N}}_{\eta}$ (Theorem 8.1.1), the non-equilibrium region with $\eta \geqslant 1 \overline{\mathcal{N}}_{\eta}$ (Theorem 8.2.1) for a two-user D-GIC-NOF channel with parameters $\overrightarrow{\mathrm{SNR}}_{1}=$ $24 \mathrm{~dB}, \overrightarrow{\mathrm{SNR}}_{2}=3 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=9 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,18,50\} \mathrm{dB}$ and $\overleftarrow{\mathrm{SNR}}_{2} \in\{-100,8,50\} \mathrm{dB}$.

Figure 8.8 shows an inner-bound (Theorem 6.1.1), an outer-bound on the capacity region (Theorem 6.2.1), the achievable η-NE region $\underline{\mathcal{N}}_{\eta}$ (Theorem 8.1.1), the non-equilibrium region with $\eta \geqslant 1 \overline{\mathcal{N}}_{\eta}$ (Theorem 8.2.1) for a two-user D-GIC-NOF channel with parameters $\overrightarrow{\mathrm{SNR}}_{1}=3$ $\mathrm{dB}, \stackrel{\mathrm{SNR}}{2}^{2}=8 \mathrm{~dB}, \mathrm{INR}_{12}=16 \mathrm{~dB}, \mathrm{INR}_{21}=5 \mathrm{~dB}, \overleftarrow{\mathrm{SNR}}_{1} \in\{-100,9,50\} \mathrm{dB}$ and $\overleftarrow{\mathrm{SNR}}_{2} \in$ $\{-100,6,50\} \mathrm{dB}$.

Part IV.

CONCLUSIONS

Conclusions

THIS thesis presented the fundamental limits in the asymptotic regime of the two-user IC with channel-output feedback using tools of information theory and network information theory. More specifically, the focus of this thesis was on the effect of the noise in the feedback links on these fundamental limits under asymmetric conditions on the IC-NOF. The results obtained in this thesis can be seen as a generalization of the results on the two-user IC for the cases without channel-output feedback, with POF, and with NOF under symmetric conditions. To the best of the author's knowledge, this approximation is the most general with respect to existing literature and the one that guarantees the smallest gap between the achievable and converse regions on the GIC when feedback links are subject to Gaussian additive noise. Additionally, the results of this work allowed to identify the scenarios in which the use of only one channel-output feedback can bring benefits in terms of rate improvements in a two-user IC despite the effect of the noise in the feedback link. Particularly, in the case in which one transmitter-receiver pair is in HIR and the other is in LIR, the use of feedback in the transmitter-receiver in HIR does not enlarge the capacity region, even in the case of POF. Additionally, a necessary but no sufficient condition on the GIC for improving the sum-rate is that both transmitter-receiver pairs must be in LIR or both transmitter receiver pairs must be in LIR. These improvements were observed and analyzed from the perspective of centralized and decentralized networks.

An achievable region for the two-user LDIC-NOF and an achievable region for the two-user GIC-NOF were obtained using well-known techniques on information theory: rate-splitting, block-Markov superposition coding, and backward decoding. The converse region was the result of using genie-aided models. The genie-aided models and the insights that were used in the Gaussian case were obtained from the analysis of the linear deterministic model. The linear deterministic model is an approximation to the Gaussian case in a very high SNR regime. Therefore, it allowed the analysis of the IC as an interference-limited network focusing more the attention in the interactions of the signals. The achievable and converse regions coincided for the two-user LDIC-NOF. Thus, the capacity region of the two-user LDIC-NOF
was characterized. The achievable and converse regions for the two-user GIC-NOF were also characterized and they did not coincide. Nonetheless, It was shown that the capacity region is at most 4.4 bits from the achievable region, which is a very good approximation if it is taken into account that the capacity region of the two-user GIC is only known in certain specific cases. The capacity regions of the two-user LDIC-NOF and the two-user LDIC were compared to identify the values in the feedback parameters of the two-user LDIC-NOF beyond which the capacity region can be enlarged. This allowed to identify the scenarios in which the capacity region can be enlarged, and more specifically the scenarios in which both individual transmission rates can be improved and not the sum-rate capacity, the scenarios in which the sum-capacity can be improved, and the scenarios in which the use of feedback in one transmitter-receiver pair allows to improve the individual transmission rate. It was also identified the scenarios in which feedback does not enlarge the capacity region. Given the established connection between the Gaussian and the linear deterministic models, an approximate value in the feedback parameter beyond which the approximate capacity region can be enlarged is also identified. This is a very important result from the engineering point of view, because it establishes the scenarios or the conditions in which is useful to implement channel-output feedback at least in one transmitter-receiver pair of the two-user GIC. These results confirmed the fact that the interference regimes are not the only factor determining the effect of feedback. Indeed, the quality of the feedback links turns out to be another relevant factor.

An achievable η-NE region for the two-user LDIC-NOF and an achievable η-NE region for the two-user GIC-NOF were obtained including common randomness in the coding schemes introduced in the centralized part. This common randomness allowed both transmitterreceiver pairs to limit the rate improvement of each other when either of them deviates from an equilibrium rate pair. A non-equilibrium region was obtained for the two-user LDIC-NOF and a non-equilibrium region was also obtained for the two-user GIC-NOF based on the insights from the analysis in the linear deterministic model. This allowed to define an η-NE region for the two-user LDIC-NOF with $\eta>0$ and an approximate η-NE region for the two-user GIC-NOF with $\eta \geqslant 1$. The efficiency of the η-NE region of the two-user LDIC-NOF was characterized using well-known metrics in game theory: price of anarchy (PoA) and price of stability (PoS). These metrics allowed to compare the sum-capacity of the two-user LDIC-NOF with the smallest and the best sum-rate at an η-NE region. The PoS is equal to one in all the interference regimes which implies that there always exists an η-NE in the Pareto boundary of the capacity region. It is worth noting here that feedback plays a key role on increasing the PoA in the interference regimes in which feedback can enlarge the sum-rate capacity.

The scenarios, conditions, and values in the feedback parameters beyond which the capacity region of the two-user LDIC-NOF can be enlarged are the same scenarios, conditions, and values to enlarge its η-NE region. In the decentralized case, despite the anarchical behavior of each transmitter-receiver pair, feedback can be seen as an altruistic technique. The latter is because implementing feedback in one transmitter-receiver pair can enlarge the η-NE region improving the individual rate of the other transmitter-receiver pair.

Future works in this area must consider the cost of feedback, which means to define metrics to analyze if the improvements on the individual rates justify feedback and the additional functionalities that must be implemented overall in the transmitters or to analyze if the use of feedback allows to use less transmission power to achieve the same rate pairs as in the case without feedback. It will be also important to analyze the effect of feedback in the capacity region when fading is considered into the system models. These studies can be complemented
with a real implementation of a basic network using channel-output feedback. Another step to go to a more general model will be the analysis of the two-user GIC in which feedback can be also implemented between each receiver and the non-corresponding transmitter. In the decentralized part, a future work will be the analysis of equilibrium selection methods to reduce the effect of anarchical behavior in a network with channel-output feedback.

Interference is increasing due to the massive use of wireless devices operating in licensed and unlicensed bands. Thus, channel-output feedback might be an effective technique to manage the interference taking advantage of its structure.

- A

Achievability Proof of Theorem 5.1.1 and Proof of Theorem 6.1.1

THIS appendix describes an achievability scheme for the two-user LDIC-NOF and two-user GIC-NOF based on a three-part message splitting, superposition coding, and backward decoding.

Codebook Generation: Fix a strictly positive joint probability distribution

$$
\begin{gather*}
P_{U U_{1} U_{2} V_{1} V_{2} X_{1, P} X_{2, P}}\left(u, u_{1}, u_{2}, v_{1}, v_{2}, x_{1, P}, x_{2, P}\right)=P_{U}(u) P_{U_{1} \mid U}\left(u_{1} \mid u\right) P_{U_{2} \mid U}\left(u_{2} \mid u\right) \\
P_{V_{1} \mid U U_{1}}\left(v_{1} \mid u, u_{1}\right) P_{V_{2} \mid U U_{2}}\left(v_{2} \mid u, u_{2}\right) P_{X_{1, P} \mid U U_{1} V_{1}}\left(x_{1, P} \mid u, u_{1}, v_{1}\right) \\
P_{X_{2, P} \mid U U_{2} V_{2}}\left(x_{2, P} \mid u, u_{2}, v_{2}\right) \tag{A.1}
\end{gather*}
$$

for all $\left(u, u_{1}, u_{2}, v_{1}, v_{2}, x_{1, P}, x_{2, P}\right) \in\left(\mathcal{X}_{1} \cup \mathcal{X}_{2}\right) \times \mathcal{X}_{1} \times \mathcal{X}_{2} \times \mathcal{X}_{1} \times \mathcal{X}_{2} \times \mathcal{X}_{1} \times \mathcal{X}_{2}$.
Let $R_{1, C 1}, R_{1, C 2}, R_{2, C 1}, R_{2, C 2}, R_{1, P}$, and $R_{2, P}$ be non-negative real numbers. Define also $R_{1, C}=R_{1, C 1}+R_{1, C 2}, R_{2, C}=R_{2, C 1}+R_{2, C 2}, R_{1}=R_{1, C}+R_{1, P}$, and $R_{2}=R_{2, C}+R_{2, P}$.

Generate $2^{N\left(R_{1, C 1}+R_{2, C 1}\right)}$ i.i.d. N-length codewords $\boldsymbol{u}(s, r)=\left(u_{1}(s, r), u_{2}(s, r), \ldots, u_{N}(s, r)\right)$ according to the product distribution

$$
\begin{equation*}
P_{\boldsymbol{U}}(\boldsymbol{u}(s, r))=\prod_{i=1}^{N} P_{U}\left(u_{i}(s, r)\right) \tag{A.2}
\end{equation*}
$$

with $s \in\left\{1,2, \ldots, 2^{N R_{1, C 1}}\right\}$ and $r \in\left\{1,2, \ldots, 2^{N R_{2, C 1}}\right\}$.
For encoder 1, generate for each codeword $\boldsymbol{u}(s, r), 2^{N R_{1, C 1}}$ i.i.d. N-length codewords $\boldsymbol{u}_{1}(s, r, k)=\left(u_{1,1}(s, r, k), u_{1,2}(s, r, k), \ldots, u_{1, N}(s, r, k)\right)$ according to the conditional distribu-
tion

$$
\begin{equation*}
P_{\boldsymbol{U}_{1} \mid U}\left(\boldsymbol{u}_{1}(s, r, k) \mid \boldsymbol{u}(s, r)\right)=\prod_{i=1}^{N} P_{U_{1} \mid U}\left(u_{1, i}(s, r, k) \mid u_{i}(s, r)\right), \tag{A.3}
\end{equation*}
$$

with $k \in\left\{1,2, \ldots, 2^{N R_{1, C 1}}\right\}$. For each pair of codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{1}(s, r, k)\right)$, generate $2^{N R_{1, C 2}}$ i.i.d. N-length codewords $\boldsymbol{v}_{1}(s, r, k, l)=\left(v_{1,1}(s, r, k, l), v_{1,2}(s, r, k, l), \ldots, v_{1, N}(s, r, k, l)\right)$ according to

$$
\begin{equation*}
P_{\boldsymbol{V}_{1} \mid \boldsymbol{U} U_{1}}\left(\boldsymbol{v}_{1}(s, r, k, l) \mid \boldsymbol{u}(s, r), \boldsymbol{u}_{1}(s, r, k)\right)=\prod_{i=1}^{N} P_{V_{1} \mid U U_{1}}\left(v_{1, i}(s, r, k, l) \mid u_{i}(s, r), u_{1, i}(s, r, k)\right), \tag{A.4}
\end{equation*}
$$

with $l \in\left\{1,2, \ldots, 2^{N R_{1, C 2}}\right\}$. For each triplet of codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{1}(s, r, k), \boldsymbol{v}_{1}(s, r, k, l)\right)$, generate $2^{N R_{1, P}}$ i.i.d. N-length codewords $\boldsymbol{x}_{1, P}(s, r, k, l, q)=\left(x_{1, P, 1}(s, r, k, l, q), x_{1, P, 2}(s, r, k, l, q)\right.$, $\left.\ldots, x_{1, P, N}(s, r, k, l, q)\right)$ according to the conditional distribution

$$
\begin{align*}
& P_{\boldsymbol{X}_{1, P} \mid \boldsymbol{U} \boldsymbol{U}_{1} \boldsymbol{V}_{1}}\left(\boldsymbol{x}_{1, P}(s, r, k, l, q) \mid \boldsymbol{u}(s, r), \boldsymbol{u}_{1}(s, r, k), \boldsymbol{v}_{1}(s, r, k, l)\right) \\
& \quad=\prod_{i=1}^{N} P_{X_{1, P} \mid U U_{1} V_{1}}\left(x_{1, P, i}(s, r, k, l, q) \mid u_{i}(s, r), u_{1, i}(s, r, k), v_{1, i}(s, r, k, l)\right) \tag{A.5}
\end{align*}
$$

with $q \in\left\{1,2, \ldots, 2^{N R_{1, P}}\right\}$.
For encoder 2 , generate for each codeword $\boldsymbol{u}(s, r), 2^{N R_{2, C 1}}$ i.i.d. N-length codewords $\boldsymbol{u}_{2}(s, r, j)=\left(u_{2,1}(s, r, j), u_{2,2}(s, r, j), \ldots, u_{2, N}(s, r, j)\right)$ according to the conditional distribution

$$
\begin{equation*}
P_{\boldsymbol{U}_{2} \mid \boldsymbol{U}}\left(\boldsymbol{u}_{2}(s, r, j) \mid \boldsymbol{u}(s, r)\right)=\prod_{i=1}^{N} P_{U_{2} \mid U}\left(u_{2, i}(s, r, j) \mid u_{i}(s, r)\right), \tag{A.6}
\end{equation*}
$$

with $j \in\left\{1,2, \ldots, 2^{N R_{2, C 1}}\right\}$. For each pair of codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{2}(s, r, j)\right)$, generate $2^{N R_{2, C 2}}$ i.i.d. N-length codewords $\boldsymbol{v}_{2}(s, r, j, m)=\left(v_{2,1}(s, r, j, m), v_{2,2}(s, r, j, m), \ldots, v_{2, N}(s, r, j, m)\right)$ according to the conditional distribution

$$
\begin{equation*}
P_{\boldsymbol{V}_{2} \mid \boldsymbol{U} \boldsymbol{U}_{2}}\left(\boldsymbol{v}_{2}(s, r, j, m) \mid \boldsymbol{u}(s, r), \boldsymbol{u}_{2}(s, r, j)\right)=\prod_{i=1}^{N} P_{V_{2} \mid U U_{2}}\left(v_{2, i}(s, r, j, m) \mid u_{i}(s, r), u_{2, i}(s, r, j)\right) \tag{A.7}
\end{equation*}
$$

with $m \in\left\{1,2, \ldots, 2^{N R_{2, C 2}}\right\}$. For each triplet of codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{2}(s, r, j), \boldsymbol{v}_{2}(s, r, j, m)\right)$, generate $2^{N R_{2, P}}$ i.i.d. N-length codewords $\boldsymbol{x}_{2, P}(s, r, j, m, b)=\left(x_{2, P, 1}(s, r, j, m, b), x_{2, P, 2}(s, r, j, m, b)\right.$, $\left.\ldots, x_{2, P, N}(s, r, j, m, b)\right)$ according to

$$
\begin{align*}
& P_{\boldsymbol{X}_{2, P} \mid \boldsymbol{U} \boldsymbol{U}_{2} \boldsymbol{V}_{2}}\left(\boldsymbol{x}_{2, P}(s, r, j, m, b) \mid \boldsymbol{u}(s, r), \boldsymbol{u}_{2}(s, r, j), \boldsymbol{v}_{2}(s, r, j, m)\right) \\
& \quad=\prod_{i=1}^{N} P_{X_{2, P} \mid U U_{2} V_{2}}\left(x_{2, P, i}(s, r, j, m, b) \mid u_{i}(s, r), u_{2, i}(s, r, j), v_{2, i}(s, r, j, m, b)\right) \tag{A.8}
\end{align*}
$$

with $b \in\left\{1,2, \ldots, 2^{N R_{2, P}}\right\}$. The resulting code structure is shown in Figure A.1.
Encoding: Denote by $W_{i}^{(t)} \in \mathcal{W}_{i}=\left\{1,2, \ldots, 2^{N R_{i}}\right\}$ the message index of transmitter
$i \in\{1,2\}$ during block $t \in\{1,2, \ldots, T\}$, with $T \in \mathbb{N}$ the total number of blocks. Let $W_{i}^{(t)}$ be composed of the message index $W_{i, C}^{(t)} \in \mathcal{W}_{i, C}=\left\{1,2, \ldots, 2^{N R_{i, C}}\right\}$ and message index $W_{i, P}^{(t)} \in \mathcal{W}_{i, P}=\left\{1,2, \ldots, 2^{N R_{i, P}}\right\}$. That is, $W_{i}^{(t)}=\left(W_{i, C}^{(t)}, W_{i, P}^{(t)}\right)$. The message index $W_{i, P}^{(t)}$ must be reliably decoded at receiver i. Let also $W_{i, C}^{(t)}$ be composed of the message indices $W_{i, C 1}^{(t)} \in \mathcal{W}_{i, C 1}=\left\{1,2, \ldots, 2^{N R_{i, C 1}}\right\}$ and $W_{i, C 2}^{(t)} \in \mathcal{W}_{i, C 2}=\left\{1,2, \ldots, 2^{N R_{i, C 2}}\right\}$. That is, $W_{i, C}^{(t)}=\left(W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}\right)$. The message index $W_{i, C 1}^{(t)}$ must be reliably decoded by transmitter j, with $j \in\{1,2\} \backslash\{i\}$ (via feedback), and by the non-intended receiver, but not necessarily by the intended receiver. The message index $W_{i, C 2}^{(t)}$ must be reliably decoded by the non-intended receiver, but not necessarily by the intended receiver.

Consider Markov encoding over T blocks. At encoding step t, with $t \in\{1,2, \ldots, T\}$, transmitter 1 sends the codeword:

$$
\begin{align*}
\boldsymbol{x}_{1}^{(t)}= & \Theta_{1}\left(\boldsymbol{u}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}\right), \boldsymbol{u}_{1}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{1, C 1}^{(t)}\right), \boldsymbol{v}_{1}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{1, C 1}^{(t)}, W_{1, C 2}^{(t)}\right),\right. \\
& \left.\boldsymbol{x}_{1, P}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{1, C 1}^{(t)}, W_{1, C 2}^{(t)}, W_{1, P}^{(t)}\right)\right) \tag{A.9}
\end{align*}
$$

where, $\Theta_{1}:\left(\mathcal{X}_{1} \cup \mathcal{X}_{2}\right)^{N} \times \mathcal{X}_{1}^{N} \times \mathcal{X}_{1}^{N} \times \mathcal{X}_{1}^{N} \rightarrow \mathcal{X}_{1}^{N}$ is a function that transforms the codewords $\boldsymbol{u}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}\right), \boldsymbol{u}_{1}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{1, C 1}^{(t)}\right), \boldsymbol{v}_{1}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{1, C 1}^{(t)}, W_{1, C 2}^{(t)}\right)$, and $\boldsymbol{x}_{1, P}\left(W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{1, C 1}^{(t)}, W_{1, C 2}^{(t)}, W_{1, P}^{(t)}\right)$ into the N-dimensional vector $\boldsymbol{x}_{1}^{(t)}$ of channel inputs. The indices $W_{1, C 1}^{(0)}=W_{1, C 1}^{(T)}=s^{*}$ and $W_{2, C 1}^{(0)}=W_{2, C 1}^{(T)}=r^{*}$, and the pair $\left(s^{*}, r^{*}\right) \in\left\{1,2, \ldots, 2^{N R_{1, C 1}}\right\} \times\left\{1,2, \ldots, 2^{N R_{2, C 1}}\right\}$ are pre-defined and known by both receivers and transmitters. It is worth noting that the message index $W_{2, C 1}^{(t-1)}$ is obtained by transmitter 1 from the feedback signal $\overleftarrow{\boldsymbol{y}}_{1}^{(t-1)}$ at the end of the previous encoding step $t-1$

Transmitter 2 follows a similar encoding scheme.
Decoding: Both receivers decode their message indices at the end of block T in a backward decoding fashion. At each decoding step t, with $t \in\{1,2, \ldots, T\}$, receiver 1 obtains the message indices $\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}, \widehat{W}_{1, C 2}^{(T-(t-1))}, \widehat{W}_{1, P}^{(T-(t-1))}, \widehat{W}_{2, C 2}^{(T-(t-1))}\right) \in \mathcal{W}_{1, C 1} \times \mathcal{W}_{2, C 1} \times$ $\mathcal{W}_{1, C 2} \times \mathcal{W}_{1, P} \times \mathcal{W}_{2, C 2}$ from the channel output $\overrightarrow{\boldsymbol{y}}_{1}^{(T-(t-1))}$. The tuple $\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}\right.$, $\left.\widehat{W}_{1, C 2}^{(T-(t-1))}, \widehat{W}_{1, P}^{(T-(t-1))}, \widehat{W}_{2, C 2}^{(T-(t-1))}\right)$ is the unique tuple that satisfies

$$
\begin{align*}
& \left(\boldsymbol{u}\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}\right), \boldsymbol{u}_{1}\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}, W_{1, C 1}^{(T-(t-1))}\right)\right. \\
& \boldsymbol{v}_{1}\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}, W_{1, C 1}^{(T-(t-1))}, \widehat{W}_{1, C 2}^{(T-(t-1))}\right), \\
& \boldsymbol{x}_{1, P}\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}, W_{1, C 1}^{(T-(t-1))}, \widehat{W}_{1, C 2}^{(T-(t-1))}, \widehat{W}_{1, P}^{(T-(t-1))}\right), \\
& \boldsymbol{u}_{2}\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}, W_{2, C 1}^{(T-(t-1))}\right), \boldsymbol{v}_{2}\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}, W_{2, C 1}^{(T-(t-1))}, \widehat{W}_{2, C 2}^{(T-(t-1))}\right), \\
& \left.\left.\overrightarrow{\boldsymbol{y}}_{1}^{(T-(t-1))}\right) \in \mathcal{T}_{[U, \epsilon)}^{\left(N U_{1} V_{1} X_{1, P} U_{2} V_{2}\right.} \vec{Y}_{1}\right] \tag{A.10}
\end{align*}
$$

where $W_{1, C 1}^{(T-(t-1))}$ and $W_{2, C 1}^{(T-(t-1))}$ are assumed to be perfectly decoded in the previous decoding

Figure A.1.: Structure of the superposition code. The codewords corresponding to the message indices $W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}, W_{i, P}^{(t)}$ with $i \in\{1,2\}$ as well as the block index t are both highlighted. The (approximate) number of codewords for each code layer is also highlighted.
step $t-1$. The set $\mathcal{T}_{\left[\begin{array}{llll}U & U_{1} & V_{1} & X_{1, P}\end{array} U_{2} V_{2} \vec{Y}_{1}\right]}$ represents the set of jointly typical sequences of the random variables $U, U_{1}, V_{1}, X_{1, P}, U_{2}, V_{2}$, and \vec{Y}_{1}, with $\epsilon>0$. Receiver 2 follows a similar decoding scheme.

Probability of Error Analysis: An error might occur during encoding step t if the message index $W_{2, C 1}^{(t-1)}$ is not correctly decoded at transmitter 1. From the AEP 25, it follows that the message index $W_{2, C 1}^{(t-1)}$ can be reliably decoded at transmitter 1 during encoding step t, under the condition:

$$
\begin{align*}
R_{2, C 1} & \leqslant I\left(\overleftarrow{Y}_{1} ; U_{2} \mid U, U_{1}, V_{1}, X_{1}\right) \\
& =I\left(\overleftarrow{Y}_{1} ; U_{2} \mid U, X_{1}\right) \tag{A.11}
\end{align*}
$$

An error might occur during the (backward) decoding step t if the message indices $W_{1, C 1}^{(T-t)}$, $W_{2, C 1}^{(T-t)}, W_{1, C 2}^{(T-(t-1))}, W_{1, P}^{(T-(t-1))}$, and $W_{2, C 2}^{(T-(t-1))}$ are not decoded correctly given that the message indices $W_{1, C 1}^{(T-(t-1))}$ and $W_{2, C 1}^{(T-(t-1))}$ were correctly decoded in the previous decoding step $t-1$. These errors might arise for two reasons: (i) there does not exist a tuple $\left(\widehat{W}_{1, C 1}^{(T-t)}\right.$, $\left.\widehat{W}_{2, C 1}^{(T-t)}, \widehat{W}_{1, C 2}^{(T-(t-1))}, \widehat{W}_{1, P}^{(T-(t-1))}, \widehat{W}_{2, C 2}^{(T-(t-1))}\right)$ that satisfies A.10, or (ii) there exist several tuples $\left(\widehat{W}_{1, C 1}^{(T-t)}, \widehat{W}_{2, C 1}^{(T-t)}, \widehat{W}_{1, C 2}^{(T-(t-1))}, \widehat{W}_{1, P}^{(T-(t-1))}, \widehat{W}_{2, C 2}^{(T-(t-1))}\right)$ that simultaneously satisfy A.10). From the AEP [25], the probability of an error due to (i) tends to zero when N grows to infinity. Consider the error due to $(i i)$ and define the event $E_{(s, r, l, q, m)}^{(t)}$ that describes the case in which
the codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{1}\left(s, r, W_{1, C 1}^{(T-(t-1))}\right), \boldsymbol{v}_{1}\left(s, r, W_{1, C 1}^{(T-(t-1))}, l\right), \boldsymbol{x}_{1, P}\left(s, r, W_{1, C 1}^{(T-(t-1))}, l, q\right)\right.$, $\boldsymbol{u}_{2}\left(s, r, W_{2, C 1}^{(T-(t-1))}\right)$, and $\left.\boldsymbol{v}_{2}\left(s, r, W_{2, C 1}^{(T-(t-1))}, m\right)\right)$ are jointly typical with $\overrightarrow{\boldsymbol{y}}_{1}^{(T-(t-1))}$ during decoding step t. Without loss of generality assume that the codeword to be decoded at decoding step t corresponds to the indices $(s, r, l, q, m)=(1,1,1,1,1)$ due to the symmetry of the code. Then, the probability of error due to (ii) during decoding step t, can be bounded using Boole's inequality as follows:

$$
\operatorname{Pr}\left[\bigcup_{(s, r, l, q, m) \neq(1,1,1,1,1)} E_{(s, r, l, q, m)}^{(t)}\right]
$$

$$
\begin{equation*}
\leqslant \sum_{(s, r, l, q, m) \in \mathcal{T}} \operatorname{Pr}\left[E_{(s, r, l, q, m)}^{(t)}\right], \tag{A.12}
\end{equation*}
$$

with $\mathcal{T}=\left\{\mathcal{W}_{1, C 1} \times \mathcal{W}_{2, C 1} \times \mathcal{W}_{1, C 2} \times \mathcal{W}_{1, P} \times \mathcal{W}_{2, C 2}\right\} \backslash\{(1,1,1,1,1)\}$.
From the AEP 25, it follows that

$$
\begin{align*}
& P_{e 1}^{(t)}(N) \leqslant 2^{N\left(R_{2, C 2}-I\left(\vec{Y}_{1} ; V_{2} \mid U, U_{1}, U_{2}, V_{1}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1, P}-I\left(\vec{Y}_{1} ; X_{1} \mid U, U_{1}, U_{2}, V_{1}, V_{2}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C 2}+R_{1, P}-I\left(\vec{Y}_{1} ; V_{2}, X_{1} \mid U, U_{1}, U_{2}, V_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1, C 2}-I\left(\vec{Y}_{1} ; V_{1}, X_{1} \mid U, U_{1}, U_{2}, V_{2}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 2}+R_{2, C 2}-I\left(\vec{Y}_{1} ; V_{1}, V_{2}, X_{1} \mid U, U_{1}, U_{2}\right)+2 \epsilon\right)}+2^{N\left(R_{1, C 2}+R_{1, P}-I\left(\vec{Y}_{1} ; V_{1}, X_{1} \mid U, U_{1}, U_{2}, V_{2}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 2}+R_{1, P}+R_{2, C 2}-I\left(\vec{Y}_{1} ; V_{1}, V_{2}, X_{1} \mid U, U_{1}, U_{2}\right)+2 \epsilon\right)}+2^{N\left(R_{2, C 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& \left.+2^{N\left(R_{2, C}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{2}, C 1\right.}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right) \\
& +2^{N\left(R_{2, C}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{2, C 1}+R_{1, C 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C}+R_{1, C 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{2}, C 1+R_{1, C 2}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C}+R_{1, C 2}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1, C 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 1}+R_{2}, C_{2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1}, C_{1}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 1}+R_{1, P}+R_{2, C 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1, C}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C}+R_{2}, C_{2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1}+R_{2, C 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1, C 1}+R_{2, C 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 1}+R_{2, C}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1, C 1}+R_{2, C 1}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 1}+R_{2, C}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1, C}+R_{2, C 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C}+R_{2}, C-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}+2^{N\left(R_{1}+R_{2, C 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1}+R_{2, C}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} . \tag{A.13}
\end{align*}
$$

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence, in general, from (A.11) and A.13), reliable decoding holds under the following conditions for transmitter $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$:

$$
\begin{align*}
R_{j, C 1} & \leqslant \theta_{1, i} \\
& \triangleq I\left(\overleftarrow{Y}_{i} ; U_{j} \mid U, U_{i}, V_{i}, X_{i}\right) \\
& =I\left(\overleftarrow{Y}_{i} ; U_{j} \mid U, X_{i}\right), \tag{A.14a}
\end{align*}
$$

$$
\begin{align*}
R_{i}+R_{j, C} & \leqslant \theta_{2, i} \\
& \triangleq I\left(\vec{Y}_{i} ; U, U_{i}, U_{j}, V_{i}, V_{j}, X_{i}\right) \\
& =I\left(\vec{Y}_{i} ; U, U_{j}, V_{j}, X_{i}\right), \tag{A.14b}\\
R_{j, C 2} & \leqslant \theta_{3, i} \\
& \triangleq I\left(\vec{Y}_{i} ; V_{j} \mid U, U_{i}, U_{j}, V_{i}, X_{i}\right) \\
& =I\left(\vec{Y}_{i} ; V_{j} \mid U, U_{j}, X_{i}\right), \tag{A.14c}\\
R_{i, P} & \leqslant \theta_{4, i} \\
& \triangleq I\left(\vec{Y}_{i} ; X_{i} \mid U, U_{i}, U_{j}, V_{i}, V_{j}\right), \tag{A.14d}\\
R_{i, P}+R_{j, C 2} & \leqslant \theta_{5, i} \\
& \triangleq I\left(\vec{Y}_{i} ; V_{j}, X_{i} \mid U, U_{i}, U_{j}, V_{i}\right), \tag{A.14e}\\
R_{i, C 2}+R_{i, P} & \leqslant \theta_{6, i} \\
& \triangleq I\left(\vec{Y}_{i} ; V_{i}, X_{i} \mid U, U_{i}, U_{j}, V_{j}\right) \\
& =I\left(\vec{Y}_{i} ; X_{i} \mid U, U_{i}, U_{j}, V_{j}\right), \text { and } \tag{A.14f}\\
R_{i, C 2}+R_{i, P}+R_{j, C 2} & \leqslant \theta_{7, i} \\
& \triangleq I\left(\vec{Y}_{i} ; V_{i}, V_{j}, X_{i} \mid U, U_{i}, U_{j}\right) \\
& =I\left(\vec{Y}_{i} ; V_{j}, X_{i} \mid U, U_{i}, U_{j}\right) . \tag{A.14g}
\end{align*}
$$

Taking into account that $R_{i}=R_{i, C 1}+R_{i, C 2}+R_{i, P}$, a Fourier-Motzkin elimination process in (A.14) yields:

$$
\begin{align*}
& R_{1} \leqslant \min \left(\theta_{2,1}, \theta_{6,1}+\theta_{1,2}, \theta_{4,1}+\theta_{1,2}+\theta_{3,2}\right), \tag{A.15a}\\
& R_{2} \leqslant \min \left(\theta_{2,2}, \theta_{1,1}+a_{6,2}, \theta_{1,1}+\theta_{3,1}+\theta_{4,2}\right), \tag{A.15b}\\
R_{1}+ & R_{2} \leqslant \min \left(\theta_{2,1}+\theta_{4,2}, \theta_{2,1}+a_{6,2}, \theta_{4,1}+\theta_{2,2}, \theta_{6,1}+\theta_{2,2}, \theta_{1,1}+\theta_{3,1}+\theta_{4,1}+\theta_{1,2}+\theta_{5,2}\right. \\
& \theta_{1,1}+\theta_{7,1}+\theta_{1,2}+\theta_{5,2}, \theta_{1,1}+\theta_{4,1}+\theta_{1,2}+\theta_{7,2}, \theta_{1,1}+\theta_{5,1}+\theta_{1,2}+\theta_{3,2}+\theta_{4,2} \\
& \left.\theta_{1,1}+\theta_{5,1}+\theta_{1,2}+\theta_{5,2}, \theta_{1,1}+\theta_{7,1}+\theta_{1,2}+\theta_{4,2}\right) \tag{A.15c}\\
2 R_{1}+ & R_{2} \leqslant \min \left(\theta_{2,1}+\theta_{4,1}+\theta_{1,2}+\theta_{7,2}, \theta_{1,1}+\theta_{4,1}+\theta_{7,1}+2 \theta_{1,2}+\theta_{5,2}, \theta_{2,1}+\theta_{4,1}+\theta_{1,2}+\theta_{5,2}\right), \tag{A.15d}\\
R_{1}+ & 2 R_{2} \leqslant \min \left(\theta_{1,1}+\theta_{5,1}+\theta_{2,2}+\theta_{4,2}, \theta_{1,1}+\theta_{7,1}+\theta_{2,2}+\theta_{4,2}, 2 \theta_{1,1}+\theta_{5,1}+\theta_{1,2}+\theta_{4,2}+\theta_{7,2}\right), \tag{A.15e}
\end{align*}
$$

where $\theta_{l, i}$ are defined in A.14 with $(l, i) \in\{1, \ldots, 7\} \times\{1,2\}$.

A.1. An Achievable Region for the Two-user Linear Deterministic Interference Channel with Noisy Channel-Output Feedback

In the two-user LDIC-NOF, the channel input of transmitter i at each channel use is a q-dimensional binary vector $\boldsymbol{X}_{i} \in\{0,1\}^{q}$ with $i \in\{1,2\}$ and q as defined in (2.23). Following this observation, the random variables U, U_{i}, V_{i}, and $X_{i, P}$ described in A.1 in the codebook generation are also vectors, and thus, in this subsection, they are denoted by $\boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{V}_{i}$ and $\boldsymbol{X}_{i, P}$, respectively. The random variables $\boldsymbol{U}_{i}, \boldsymbol{V}_{i}$, and $\boldsymbol{X}_{i, P}$ are assumed to be mutu-
ally independent and uniformly distributed over the sets $\{0,1\}^{\left(n_{j i}-\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)^{+}}$, $\{0,1\}\left(\min \left(n_{j i},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)\right)$and $\{0,1\}^{\left(\vec{n}_{i i}-n_{j i}\right)^{+}}$, respectively. Note that the random variables $\boldsymbol{U}_{i}, \boldsymbol{V}_{i}$, and $\boldsymbol{X}_{i, P}$ have the following dimensions:

$$
\begin{align*}
\operatorname{dim} \boldsymbol{U}_{i} & =\left(n_{j i}-\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)^{+} \tag{A.16a}\\
\operatorname{dim} \boldsymbol{V}_{i} & =\min \left(n_{j i},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right), \text {and } \tag{A.16b}\\
\operatorname{dim} \boldsymbol{X}_{i, P} & =\left(\vec{n}_{i i}-n_{j i}\right)^{+} \tag{A.16c}
\end{align*}
$$

These dimensions satisfy the following condition:

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{U}_{i}+\operatorname{dim} \boldsymbol{V}_{i}+\operatorname{dim} \boldsymbol{X}_{i, P}=\max \left(\vec{n}_{i i}, n_{j i}\right) \leqslant q \tag{A.17}
\end{equation*}
$$

Note that the random variable \boldsymbol{U} in (A.1) is not used, and therefore, is a constant. The input symbol of transmitter i during channel use n is $\boldsymbol{X}_{i}=\left(\boldsymbol{U}_{i}^{\top}, \boldsymbol{V}_{i}^{\top}, \boldsymbol{X}_{i, P}^{\top},(0, \ldots, 0)\right)^{\top}$, where $(0, \ldots, 0)$ is put to meet the dimension constraint $\operatorname{dim} \boldsymbol{X}_{i}=q$. Hence, during block $t \in\{1,2, \ldots, T\}$, the codeword $\boldsymbol{X}_{i}^{(t)}$ in the two-user LDIC-NOF is a $q \times N$ matrix, i.e., $\boldsymbol{X}_{i}^{(t)}=\left(\boldsymbol{X}_{i, 1}, \boldsymbol{X}_{i, 2} \ldots, \boldsymbol{X}_{i, N}\right) \in\{0,1\}^{q \times N}$.

The intuition behind this choice is based on the following observations: (a) the vector \boldsymbol{U}_{i} represents the bits in \boldsymbol{X}_{i} that can be observed by transmitter j via feedback but no necessarily by receiver $i ;(b)$ the vector \boldsymbol{V}_{i} represents the bits in \boldsymbol{X}_{i} that can be observed by receiver j but no necessarily by receiver i; and finally, (c) the vector $\boldsymbol{X}_{i, P}$ is a notational artefact to denote the bits of \boldsymbol{X}_{i} that are neither in \boldsymbol{U}_{i} nor \boldsymbol{V}_{i}. In particular, the bits in $\boldsymbol{X}_{i, P}$ are only observed by receiver i, as shown in Figure A.2. This intuition justifies the dimensions described in A.16.

Considering this particular code structure, the following holds for the terms $\theta_{l, i}$, with $(l, i) \in\{1, \ldots, 7\} \times\{1,2\}$, in A.14):

$$
\begin{align*}
\theta_{1, i} & =I\left(\overleftarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{U}_{j} \mid \boldsymbol{U}, \boldsymbol{X}_{i}\right) \\
& \stackrel{(a)}{=} H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{X}_{i}\right) \\
& =H\left(\boldsymbol{U}_{j}\right) \\
& =\left(n_{i j}-\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right)^{+} \tag{A.18a}\\
\theta_{2, i} & =I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{U}, \boldsymbol{U}_{j}, \boldsymbol{V}_{j}, \boldsymbol{X}_{i}\right) \\
& \stackrel{(b)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right) \\
& =\max \left(\vec{n}_{i i}, n_{i j}\right) ; \tag{A.18b}\\
\theta_{3, i} & =I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{V}_{j} \mid \boldsymbol{U}, \boldsymbol{U}_{j}, \boldsymbol{X}_{i}\right) \\
& \stackrel{(b)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{j}, \boldsymbol{X}_{i}\right) \\
& =H\left(\boldsymbol{V}_{j}\right) \\
& =\min \left(n_{i j},\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right) \tag{A.18c}
\end{align*}
$$

Figure A.2.: The auxiliary random variables and their relation with signals when channeloutput feedback is considered in (a) very weak interference regime, (b) weak interference regime, (c) moderate interference regime, (d) strong interference regime and (e) very strong interference regime.

$$
\begin{align*}
\theta_{4, i} & =I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{X}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}, \boldsymbol{V}_{i}, \boldsymbol{V}_{j}\right) \\
& \stackrel{(b)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}, \boldsymbol{V}_{i}, \boldsymbol{V}_{j}\right) \\
& =H\left(\boldsymbol{X}_{i, P}\right) \\
& =\left(\vec{n}_{i i}-n_{j i}\right)^{+}, \text {and } \tag{A.18d}\\
\theta_{5, i} & =I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{V}_{j}, \boldsymbol{X}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}, \boldsymbol{V}_{i}\right) \\
& \stackrel{(b)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}, \boldsymbol{V}_{i}\right) \\
& =\max \left(\operatorname{dim} \boldsymbol{X}_{i, P}, \operatorname{dim} \boldsymbol{V}_{j}\right) \\
& =\max \left(\left(\vec{n}_{i i}-n_{j i}\right)^{+}, \min \left(n_{i j},\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right)\right), \tag{A.18e}
\end{align*}
$$

where (a) follows from the fact that $H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{j}, \boldsymbol{X}_{i}\right)=0$; and (b) follows from the fact that $H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{j}, \boldsymbol{V}_{j}, \boldsymbol{X}_{i}\right)=0$.
For the calculation of the last two mutual information terms in inequalities A.14f) and (A.14g), special notation is used. Let for instance the vector \boldsymbol{V}_{i} be the concatenation of the vectors $\boldsymbol{X}_{i, H A}$ and $\boldsymbol{X}_{i, H B}$, i.e., $\boldsymbol{V}_{i}=\left(\boldsymbol{X}_{i, H A}, \boldsymbol{X}_{i, H B}\right)$. The vector $\boldsymbol{X}_{i, H A}$ is the part of \boldsymbol{V}_{i} that is available in both receivers. The vector $\boldsymbol{X}_{i, H B}$ is the part of \boldsymbol{V}_{i} that is exclusively available in receiver j (see Figure A.2). Note that $H\left(\boldsymbol{V}_{i}\right)=H\left(\boldsymbol{X}_{i, H A}\right)+H\left(\boldsymbol{X}_{i, H B}\right)$. Note
also that the vectors $\boldsymbol{X}_{i, H A}$ and $\boldsymbol{X}_{i, H B}$ possess the following dimensions:
$\operatorname{dim} \boldsymbol{X}_{i, H A}=\min \left(n_{j i},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)-\min \left(\left(n_{j i}-\vec{n}_{i i}\right)^{+},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)$ $\operatorname{dim} \boldsymbol{X}_{i, H B}=\min \left(\left(n_{j i}-\vec{n}_{i i}\right)^{+},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)$.

Using this notation, the following holds:

$$
\begin{align*}
\theta_{6, i}= & I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{X}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}, \boldsymbol{V}_{j}\right) \\
& \stackrel{(c)}{=}
\end{aligned} H^{\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}, \boldsymbol{V}_{j}\right)} \begin{aligned}
= & H\left(\boldsymbol{X}_{i, H A}, \boldsymbol{X}_{i, P}\right) \\
= & \operatorname{dim} \boldsymbol{X}_{i, H A}+\operatorname{dim} \boldsymbol{X}_{i, P} \\
= & \min \left(n_{j i},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)-\min \left(\left(n_{j i}-\vec{n}_{i i}\right)^{+},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right) \\
& +\left(\vec{n}_{i i}-n_{j i}\right)^{+} \text {and } \\
\theta_{7, i}= & I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{V}_{j}, \boldsymbol{X}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}\right) \tag{A.18f}\\
= & I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{X}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}\right)+I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{V}_{j} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}, \boldsymbol{X}_{i}\right) \\
= & I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{X}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}\right)+I\left(\overrightarrow{\boldsymbol{Y}}_{i} ; \boldsymbol{V}_{j} \mid \boldsymbol{U}, \boldsymbol{U}_{j}, \boldsymbol{X}_{i}\right) \\
& \stackrel{(c)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{i}, \boldsymbol{U}_{j}\right) \\
= & \max \left(H\left(\boldsymbol{V}_{j}\right), H\left(\boldsymbol{X}_{i, H A}\right)+H\left(\boldsymbol{X}_{i, P}\right)\right) \\
= & \max \left(\operatorname{dim} \boldsymbol{V}_{j}, \operatorname{dim} \boldsymbol{X}_{i, H A}+\operatorname{dim} \boldsymbol{X}_{i, P}\right) \\
= & \max \left(\min \left(n_{i j},\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right), \min \left(n_{j i},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)\right. \\
& \left.-\min \left(\left(n_{j i}-\vec{n}_{i i}\right)^{+},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)+\left(\vec{n}_{i i}-n_{j i}\right)^{+}\right),
\end{align*}
$$

where (c) follows from the fact that $H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{U}, \boldsymbol{U}_{j}, \boldsymbol{V}_{j}, \boldsymbol{X}_{i}\right)=0$.
Plugging (A.18) into A.15) (after some trivial manipulations) yields the system of inequalities in Theorem 5.1.1.

The sum-rate bound in A.15c can be simplified as follows:

$$
\begin{equation*}
R_{1}+R_{2} \leqslant \min \left(\theta_{2,1}+\theta_{4,2}, \theta_{4,1}+\theta_{2,2}, \theta_{1,1}+\theta_{5,1}+\theta_{1,2}+\theta_{5,2}\right) . \tag{A.19}
\end{equation*}
$$

Note that this follows from the fact that $\max \left(\theta_{2,1}+\theta_{4,2}, \theta_{4,1}+\theta_{2,2}, \theta_{1,1}+\theta_{5,1}+\theta_{1,2}+\theta_{5,2}\right) \leqslant$ $\min \left(\theta_{2,1}+a_{6,2}, \theta_{6,1}+\theta_{2,2}, \theta_{1,1}+\theta_{3,1}+\theta_{4,1}+\theta_{1,2}+\theta_{5,2}, \theta_{1,1}+\theta_{7,1}+\theta_{1,2}+\theta_{5,2}, \theta_{1,1}+\theta_{4,1}+\theta_{1,2}+\right.$ $\left.\theta_{7,2}, \theta_{1,1}+\theta_{5,1}+\theta_{1,2}+\theta_{3,2}+\theta_{4,2}, \theta_{1,1}+\theta_{7,1}+\theta_{1,2}+\theta_{4,2}\right)$.

This completes the achievability proof of Theorem 5.1.1.

A.2. An Achievable Region for the Two-user Gaussian Interference Channel with Noisy Channel-Output Feedback

Consider that transmitter i uses the following Gaussian input distribution:

$$
\begin{equation*}
X_{i}=U+U_{i}+V_{i}+X_{i, P}, \tag{A.20}
\end{equation*}
$$

where $U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1, P}$, and $X_{2, P}$ in A.1) are mutually independent and distributed as follows:

$$
\begin{align*}
U & \sim \mathcal{N}(0, \rho) \tag{A.21a}\\
U_{i} & \sim \mathcal{N}\left(0, \mu_{i} \lambda_{i, C}\right) \tag{A.21b}\\
V_{i} & \sim \mathcal{N}\left(0,\left(1-\mu_{i}\right) \lambda_{i, C}\right), \tag{A.21c}\\
X_{i, P} & \sim \mathcal{N}\left(0, \lambda_{i, P}\right) \tag{A.21d}
\end{align*}
$$

with

$$
\begin{align*}
& \rho+\lambda_{i, C}+\lambda_{i, P}=1 \text { and } \tag{A.22a}\\
& \lambda_{i, P}=\min \left(\frac{1}{\mathrm{INR}_{j i}}, 1\right), \tag{A.22b}
\end{align*}
$$

where $\mu_{i} \in[0,1]$ and $\rho \in\left[0,\left(1-\max \left(\frac{1}{\mathrm{INR}_{12}}, \frac{1}{\mathrm{INR}_{21}}\right)\right)^{+}\right]$. The random variables U, U_{1}, U_{2}, $V_{1}, V_{2}, X_{1, P}$, and $X_{2, P}$ can be interpreted as components of the signals X_{1} and X_{2} following the insights described in this appendix. The random variable U, which is used in this case, represents the common component of the channel inputs of transmitter 1 and transmitter 2 .

The parameters ρ, μ_{i}, and $\lambda_{i, P}$ define a particular coding scheme for transmitter i. The assignment in A.22b is based on the intuition obtained from the linear deterministic model, in which the power of the signal $X_{i, P}$ from transmitter i to receiver j must be observed at the noise level. From (2.5), (2.6), and A.20), the right-hand side of the inequalities in (A.14) can be written in terms of $\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}, \rho, \mu_{1}$, and μ_{2} as follows:

$$
\begin{align*}
\theta_{1, i} & =I\left(\overleftarrow{Y}_{i} ; U_{j} \mid U, X_{i}\right) \\
& =\frac{1}{2} \log \left(\frac{\overleftarrow{\operatorname{SNR}}_{i}\left(b_{2, i}(\rho)+2\right)+b_{1, i}(1)+1}{\overleftarrow{\operatorname{SNR}}_{i}\left(\left(1-\mu_{j}\right) b_{2, i}(\rho)+2\right)+b_{1, i}(1)+1}\right) \\
& =a_{3, i}\left(\rho, \mu_{j}\right) \tag{A.23a}\\
\theta_{2, i} & =I\left(\vec{Y}_{i} ; U, U_{j}, V_{j}, X_{i}\right) \\
& =\frac{1}{2} \log \left(b_{1, i}(\rho)+1\right)-\frac{1}{2} \\
& =a_{2, i}(\rho) \tag{A.23b}\\
\theta_{3, i} & =I\left(\vec{Y}_{i} ; V_{j} \mid U, U_{j}, X_{i}\right) \\
& =\frac{1}{2} \log \left(\left(1-\mu_{j}\right) b_{2, i}(\rho)+2\right)-\frac{1}{2} \\
& =a_{4, i}\left(\rho, \mu_{j}\right), \tag{A.23c}\\
\theta_{4, i} & =I\left(\vec{Y}_{i} ; X_{i} \mid U, U_{i}, U_{j}, V_{i}, V_{j}\right) \\
& =\frac{1}{2} \log \left(\frac{\overline{\operatorname{SNR}}_{i}}{\mathrm{INR}_{j i}}+2\right)-\frac{1}{2} \\
& =a_{1, i} \tag{A.23d}
\end{align*}
$$

$$
\begin{align*}
\theta_{5, i} & =I\left(\vec{Y}_{i} ; V_{j}, X_{i} \mid U, U_{i}, U_{j}, V_{i}\right) \\
& =\frac{1}{2} \log \left(2+\frac{\overrightarrow{\operatorname{SNR}}_{i}}{\operatorname{INR}_{j i}}+\left(1-\mu_{j}\right) b_{2, i}(\rho)\right)-\frac{1}{2} \\
& =a_{5, i}\left(\rho, \mu_{j}\right), \tag{A.23e}\\
\theta_{6, i} & =I\left(\vec{Y}_{i} ; X_{i} \mid U, U_{i}, U_{j}, V_{j}\right) \\
& =\frac{1}{2} \log \left(\frac{\overrightarrow{\operatorname{SNR}}_{i}}{\mathrm{INR}_{j i}}\left(\left(1-\mu_{i}\right) b_{2, j}(\rho)+1\right)+2\right)-\frac{1}{2} \\
& =a_{6, i}\left(\rho, \mu_{i}\right), \text { and } \tag{A.23f}\\
\theta_{7, i} & =I\left(\vec{Y}_{i} ; V_{j}, X_{i} \mid U, U_{i}, U_{j}\right) \\
& =\frac{1}{2} \log \left(\frac{\operatorname{SNR}_{i}}{\mathrm{INR}_{j i}}\left(\left(1-\mu_{i}\right) b_{2, j}(\rho)+1\right)+\left(1-\mu_{j}\right) b_{2, i}(\rho)+2\right)-\frac{1}{2} \\
& =a_{7, i}\left(\rho, \mu_{1}, \mu_{2}\right) . \tag{A.23g}
\end{align*}
$$

Finally, plugging A.23) into A.15 (after some trivial manipulations) yields the system of inequalities in Theorem 6.1.1. The sum-rate bound in A.15c) can be simplified as follows:

$$
\begin{align*}
R_{1}+R_{2} \leqslant & \min \left(a_{2,1}(\rho)+a_{1,2}, a_{1,1}+a_{2,2}(\rho), a_{3,1}\left(\rho, \mu_{2}\right)+a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right),\right. \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right), \\
& \left.a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{1,2}\right) . \tag{A.24}
\end{align*}
$$

Note that this follows from the fact that $\max \left(a_{2,1}(\rho)+a_{1,2}, a_{1,1}+a_{2,2}(\rho), a_{3,1}\left(\rho, \mu_{2}\right)+\right.$ $a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right), a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right), a_{3,1}\left(\rho, \mu_{2}\right)+$ $\left.a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{1,2}\right) \leqslant \min \left(a_{2,1}+a_{6,2}\left(\rho, \mu_{2}\right), a_{6,1}\left(\rho, \mu_{1}\right)+a_{2,2}(\rho), a_{3,1}\left(\rho, \mu_{2}\right)+\right.$ $a_{4,1}\left(\rho, \mu_{2}\right)+a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right), a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right)$, $\left.a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+\theta_{3,2}+a_{1,2}\right)$. Therefore, the inequalities in A.15 simplify into (6.3) and this completes the proof of Theorem 6.1.1.

Converse Proof of Theorem 5.1.1

THIS appendix provides a converse proof of Theorem 5.1.1. Inequalities (5.1a) and (5.1c) correspond to the minimum cut-set bound 76$]$ and the sum-rate bound for the case of the two-user LDIC with POF. The proofs of these bounds are presented in 80 . The rest of this appendix provides a proof of the inequalities (5.1b), (5.1c) and (5.1d).

Notation. For all $i \in\{1,2\}$, the channel input $\boldsymbol{X}_{i, n}$ of the two-user LDIC-NOF in 2.25) for any channel use $n \in\{1,2, \ldots, N\}$ is a q-dimensional binary vector, with q in (2.23), that can be written as the concatenation of four vectors: $\boldsymbol{X}_{i, C, n}, \boldsymbol{X}_{i, P, n}, \boldsymbol{X}_{i, D, n}$, and $\boldsymbol{X}_{i, Q, n}$, i.e., $\boldsymbol{X}_{i, n}=\left(\boldsymbol{X}_{i, C, n}^{\top}, \boldsymbol{X}_{i, P, n}^{\top}, \boldsymbol{X}_{i, D, n}^{\top}, \boldsymbol{X}_{i, Q, n}^{\top}\right)^{\top}$, as shown in Figure B.1. Note that this notation is independent of the feedback parameters \overleftarrow{n}_{11} and \overleftarrow{n}_{22}, and it holds for all $n \in\{1,2, \ldots, N\}$. More specifically,
$\boldsymbol{X}_{i, C, n}$ represents the bits of $\boldsymbol{X}_{i, n}$ that are observed by both receivers. Then,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, C, n}=\min \left(\vec{n}_{i i}, n_{j i}\right) ; \tag{B.1a}
\end{equation*}
$$

$\boldsymbol{X}_{i, P, n}$ represents the bits of $\boldsymbol{X}_{i, n}$ that are observed only at receiver i. Then,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, P, n}=\left(\vec{n}_{i i}-n_{j i}\right)^{+} \tag{B.1b}
\end{equation*}
$$

$\boldsymbol{X}_{i, D, n}$ represents the bits of $\boldsymbol{X}_{i, n}$ that are observed only at receiver j. Then,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, D, n}=\left(n_{j i}-\vec{n}_{i i}\right)^{+} ; \text {and } \tag{B.1c}
\end{equation*}
$$

Figure B.1.: Example of the notation of the channel inputs and the channel outputs when channel-output feedback is considered.
$\boldsymbol{X}_{i, Q, n}=(0, \ldots, 0)^{\top}$ is included for dimensional matching of the model in 2.26). Then,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, Q, n}=q-\max \left(\vec{n}_{i i}, n_{j i}\right) . \tag{B.1d}
\end{equation*}
$$

The bits $\boldsymbol{X}_{i, Q, n}$ are fixed and thus do not carry any information. Hence, the following holds:

$$
\begin{align*}
H\left(\boldsymbol{X}_{i, n}\right) & =H\left(\boldsymbol{X}_{i, C, n}, \boldsymbol{X}_{i, P, n}, \boldsymbol{X}_{i, D, n}, \boldsymbol{X}_{i, Q, n}\right) \\
& =H\left(\boldsymbol{X}_{i, C, n}, \boldsymbol{X}_{i, P, n}, \boldsymbol{X}_{i, D, n}\right) \\
& \leqslant \operatorname{dim} \boldsymbol{X}_{i, C, n}+\operatorname{dim} \boldsymbol{X}_{i, P, n}+\operatorname{dim} \boldsymbol{X}_{i, D, n} . \tag{B.1e}
\end{align*}
$$

Note that the vectors $\boldsymbol{X}_{i, P, n}$ and $\boldsymbol{X}_{i, D, n}$ do not exist simultaneously. The former exists when $\vec{n}_{i i}>n_{j i}$, while the latter exists when $\vec{n}_{i i}<n_{j i}$. Moreover, the dimension of $\boldsymbol{X}_{i, n}$ satisfies

$$
\begin{align*}
\operatorname{dim} \boldsymbol{X}_{i, n} & =\operatorname{dim} \boldsymbol{X}_{i, C, n}+\operatorname{dim} \boldsymbol{X}_{i, P, n}+\operatorname{dim} \boldsymbol{X}_{i, D, n}+\operatorname{dim} \boldsymbol{X}_{i, Q, n} \\
& =q . \tag{B.1f}
\end{align*}
$$

For the case in which feedback is taken into account an alternative notation is adopted. Let $\boldsymbol{X}_{i, D, n}$ be written in terms of $\boldsymbol{X}_{i, D F, n}$ and $\boldsymbol{X}_{i, D G, n}$, i.e., $\boldsymbol{X}_{i, D, n}=\left(\boldsymbol{X}_{i, D F, n}^{\top}, \boldsymbol{X}_{i, D G, n}^{\top}\right)^{\top}$. The vector $\boldsymbol{X}_{i, D F, n}$ represents the bits of $\boldsymbol{X}_{i, D, n}$ that are above the noise level in the feedback link from receiver j to transmitter j; and $\boldsymbol{X}_{i, D G, n}$ represents the bits of $\boldsymbol{X}_{i, D, n}$ that are below the noise level in the feedback link from receiver j to transmitter j, as shown in Figure B. 1 . The dimension of the vectors $\boldsymbol{X}_{i, D F, n}$ and $\boldsymbol{X}_{i, D G, n}$ are given by

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, D F, n}=\min \left(\left(n_{j i}-\vec{n}_{i i}\right)^{+},\left(\overleftarrow{n}_{j j}-\vec{n}_{i i}-\min \left(\left(\vec{n}_{j j}-n_{j i}\right)^{+}, n_{i j}\right)-\left(\left(\vec{n}_{j j}-n_{i j}\right)^{+}-n_{j i}\right)^{+}\right)^{+}\right) \tag{B.2a}
\end{equation*}
$$

and
$\operatorname{dim} \boldsymbol{X}_{i, D G, n}=\operatorname{dim} \boldsymbol{X}_{i, D, n}-\operatorname{dim} \boldsymbol{X}_{i, D F, n}$.
Let $\boldsymbol{X}_{i, C, n}$ be written in terms of $\boldsymbol{X}_{i, C F_{j}, n}$ and $\boldsymbol{X}_{i, C G_{j}, n}$, i.e., $\boldsymbol{X}_{i, C, n}=\left(\boldsymbol{X}_{i, C F_{j}, n}^{\top}, \boldsymbol{X}_{i, C G_{j}, n}^{\top}\right)^{\top}$. The vector $\boldsymbol{X}_{i, C F_{j}, n}$ represents the bits of $\boldsymbol{X}_{i, C, n}$ that are above the noise level in the feedback link from receiver j to transmitter j; and $\boldsymbol{X}_{i, C G_{j}, n}$ represents the bits of $\boldsymbol{X}_{i, C, n}$ that are below the noise level in the feedback link from receiver j to transmitter j, as shown in Figure B.1.

Let also, the dimension of the vector $\left(\boldsymbol{X}_{i, C F_{j}, n}^{\top}, \boldsymbol{X}_{i, D F, n}^{\top}\right)$ be defined as follows:

$$
\begin{equation*}
\operatorname{dim}\left(\left(\boldsymbol{X}_{i, C F_{j}, n}^{\top}, \boldsymbol{X}_{i, D F, n}^{\top}\right)\right)=\left(\min \left(\overleftarrow{n}_{j j}, \max \left(\vec{n}_{j j}, n_{j i}\right)\right)-\left(\vec{n}_{j j}-n_{j i}\right)^{+}\right)^{+} \tag{B.3}
\end{equation*}
$$

The dimension of the vectors $\boldsymbol{X}_{i, C F_{j}, n}$ and $\boldsymbol{X}_{i, C G_{j}, n}$ can be obtained as follows:

$$
\begin{align*}
\operatorname{dim} \boldsymbol{X}_{i, C F_{j}, n} & =\operatorname{dim}\left(\left(\boldsymbol{X}_{i, C F_{j}, n}^{\top}, \boldsymbol{X}_{i, D F, n}^{\top}\right)\right)-\operatorname{dim} \boldsymbol{X}_{i, D F, n} \text { and } \tag{B.4a}\\
\operatorname{dim} \boldsymbol{X}_{i, C G_{j}, n} & =\operatorname{dim} \boldsymbol{X}_{i, C, n}-\operatorname{dim} \boldsymbol{X}_{i, C F_{j}, n} . \tag{B.4b}
\end{align*}
$$

More generally, when needed, the vector $\boldsymbol{X}_{i F_{k}, n}$ is used to represent the bits of $\boldsymbol{X}_{i, n}$ that are above the noise level in the feedback link from receiver k to transmitter k, with $k \in\{1,2\}$. The vector $\boldsymbol{X}_{i G_{k}, n}$ is used to represent the bits of $\boldsymbol{X}_{i, n}$ that are below the noise level in the feedback link from receiver k to transmitter k.

The vector $\boldsymbol{X}_{i, U, n}$ is used to represent the bits of the vector $\boldsymbol{X}_{i, n}$ that interfere with bits of $\boldsymbol{X}_{j, C, n}$ at receiver j and those bits of $\boldsymbol{X}_{i, n}$ that are observed by receiver j and do not interfere any bits from transmitter j. An alternative definition of the vector $\boldsymbol{X}_{i, U, n}$ is the following: the bits of the vector $\boldsymbol{X}_{i, n}$ that are observed by receiver j and do not interfere any bits corresponding to the vector $\boldsymbol{X}_{j, P, n}$. An example is shown in Figure B. 2.

Based on its definition, the dimension of the vector $\boldsymbol{X}_{i, U, n}$ is

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, U, n}=\min \left(\vec{n}_{j j}, n_{i j}\right)-\min \left(\left(\vec{n}_{j j}-n_{j i}\right)^{+}, n_{i j}\right)+\left(n_{j i}-\vec{n}_{j j}\right)^{+} . \tag{B.5}
\end{equation*}
$$

Finally, for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$, the channel output $\overrightarrow{\boldsymbol{Y}}_{i, n}$ of the two-user LDIC-NOF in (2.25) for any channel use $n \in\{1,2, \ldots, N\}$ is a q-dimensional binary vector, with q in (2.23), that can be written as the concatenation of three vectors: $\overrightarrow{\boldsymbol{Y}}_{i, Q, n}, \overleftarrow{\boldsymbol{Y}}_{i, n}$, and $\overrightarrow{\boldsymbol{Y}}_{i, G, n}$, i.e., $\overrightarrow{\boldsymbol{Y}}_{i, n}=\left(\overrightarrow{\boldsymbol{Y}}_{i, Q, n}^{\top}, \overleftarrow{\boldsymbol{Y}}_{i, n}^{\top}, \overrightarrow{\boldsymbol{Y}}_{i, G, n}^{\top}\right)^{\top}$, as shown in Figure B.1. More specifically, the vector $\overleftarrow{\boldsymbol{Y}}_{i, n}$ contains the bits that are above the noise level in the feedback link from receiver i to transmitter i. Then,

$$
\begin{equation*}
\operatorname{dim} \overleftarrow{\boldsymbol{Y}}_{i, n}=\min \left(\overleftarrow{n}_{i i}, \max \left(\vec{n}_{i i}, n_{i j}\right)\right) \tag{B.6a}
\end{equation*}
$$

The vector $\overrightarrow{\boldsymbol{Y}}_{i, G, n}$ contains the bits that are below the noise level in the feedback link from receiver i to transmitter i. Then,

$$
\begin{equation*}
\operatorname{dim} \overrightarrow{\boldsymbol{Y}}_{i, G, n}=\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+} \tag{B.6b}
\end{equation*}
$$

The vector $\overrightarrow{\boldsymbol{Y}}_{i, Q, n}=(0, \ldots, 0)$ is included for dimensional matching with the model in (2.26). Then,

$$
\begin{align*}
H\left(\overrightarrow{\boldsymbol{Y}}_{i, n}\right) & =H\left(\overrightarrow{\boldsymbol{Y}}_{i, Q, n}, \overleftarrow{\boldsymbol{Y}}_{i, n}, \overrightarrow{\boldsymbol{Y}}_{i, G, n}\right) \\
& =H\left(\overleftarrow{\boldsymbol{Y}}_{i, n}, \overrightarrow{\boldsymbol{Y}}_{i, G, n}\right) \\
& \leqslant \operatorname{dim} \overleftarrow{\boldsymbol{Y}}_{i, n}+\operatorname{dim} \overrightarrow{\boldsymbol{Y}}_{i, G, n} . \tag{B.6c}
\end{align*}
$$

The dimension of $\overrightarrow{\boldsymbol{Y}}_{i, n}$ satisfies $\operatorname{dim} \overrightarrow{\boldsymbol{Y}}_{i, n}=q$.

Using this notation, the proof continues as follows.
Proof of 5.1 b : First, consider $n_{j i} \leqslant \vec{n}_{i i}$, i.e., the vector $\boldsymbol{X}_{i, P, n}$ exists and the vector $\boldsymbol{X}_{i, D, n}$ does not exist. From the assumption that the message index W_{i} is i.i.d. following a uniform distribution over the set \mathcal{W}_{i}, the following holds for any $k \in\{1,2, \ldots, N\}$:

$$
\begin{align*}
N R_{i} & =H\left(W_{i}\right) \\
& \stackrel{(a)}{=} H\left(W_{i} \mid W_{j}\right) \\
& \stackrel{(b)}{\leqslant} I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+N \delta(N) \\
& =H\left(\overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+N \delta(N) \\
& \stackrel{(c)}{=} \sum_{n=1}^{N} H\left(\overrightarrow{\boldsymbol{Y}}_{i, n}, \overleftarrow{\boldsymbol{Y}}_{j, n} \mid W_{j}, \overrightarrow{\boldsymbol{Y}}_{i,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}, \boldsymbol{X}_{j, n}\right)+N \delta(N) \\
& \leqslant \sum_{n=1}^{N} H\left(\boldsymbol{X}_{i, n}, \overleftarrow{\boldsymbol{Y}}_{j, n} \mid \boldsymbol{X}_{j, n}\right)+N \delta(N) \\
& \leqslant \sum_{n=1}^{N} H\left(\boldsymbol{X}_{i, n}\right)+N \delta(N) \\
& =N H\left(\boldsymbol{X}_{i, k}\right)+N \delta(N) \\
& \leqslant N\left(\operatorname{dim} \boldsymbol{X}_{i, C, k}+\operatorname{dim} \boldsymbol{X}_{i, P, k}\right)+N \delta(N) \tag{B.7}
\end{align*}
$$

where, (a) follows from the fact that W_{1} and W_{2} are mutually independent; (b) follows from Fano's inequality with $\delta: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58. ; and (c) follows from the fact that $\boldsymbol{X}_{j, n}=f_{j}^{(n)}\left(W_{j}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}\right)$ with $f_{j}^{(n)}$ a deterministic injective function.

Second, consider the case in which $n_{j i}>\vec{n}_{i i}$. In this case the vector $\boldsymbol{X}_{i, P, n}$ does not exist and the vector $\boldsymbol{X}_{i, D, n}$ exists. From the assumption that the message index W_{i} is i.i.d. following a uniform distribution over the set \mathcal{W}_{i}, hence the following holds for any $k \in\{1,2, \ldots, N\}$:

$$
\begin{align*}
N R_{i} & =H\left(W_{i}\right) \\
& \stackrel{(a)}{=} H\left(W_{i} \mid W_{j}\right) \\
& \stackrel{(b)}{\leqslant} I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+N \delta(N) \\
& =H\left(\overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+N \delta(N) \\
& \stackrel{(c)}{=} \sum_{n=1}^{N} H\left(\overrightarrow{\boldsymbol{Y}}_{i, n}, \overleftarrow{\boldsymbol{Y}}_{j, n} \mid W_{j}, \overrightarrow{\boldsymbol{Y}}_{i,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}, \boldsymbol{X}_{j, n}\right)+N \delta(N) \\
& \leqslant \sum_{n=1}^{N} H\left(\boldsymbol{X}_{i, C, n}, \boldsymbol{X}_{i, C F_{j}, n}, \boldsymbol{X}_{i, D F, n}\right)+N \delta(N) \\
& =\sum_{n=1}^{N} H\left(\boldsymbol{X}_{i, C, n}, \boldsymbol{X}_{i, D F, n}\right)+N \delta(N) \\
& =N H\left(\boldsymbol{X}_{i, C, k}, \boldsymbol{X}_{i, D F, k}\right)+N \delta(N) \\
& \leqslant N\left(\operatorname{dim} \boldsymbol{X}_{i, C, k}+\operatorname{dim} \boldsymbol{X}_{i, D F, k}\right)+N \delta(N) \tag{B.8}
\end{align*}
$$

Figure B.2.: Vector $\boldsymbol{X}_{i, U, n}$ in different combination of interference regimes.

Then, B.7) and (B.8) can be expressed as one inequality in the block-length asymptotic regime, as follows:

$$
\begin{equation*}
R_{i} \leqslant \operatorname{dim} \boldsymbol{X}_{i, C, k}+\operatorname{dim} \boldsymbol{X}_{i, P, k}+\operatorname{dim} \boldsymbol{X}_{i, D F, k}, \tag{B.9}
\end{equation*}
$$

which holds for any $k \in\{1,2, \ldots, N\}$.
Plugging (B.1a), B.1b), and (B.2a) into (B.9), and after some trivial manipulations, the following holds:

$$
\begin{equation*}
R_{i} \leqslant \min \left(\max \left(\vec{n}_{i i}, n_{j i}\right), \max \left(\vec{n}_{i i}, \overleftarrow{n}_{j j}-\left(\vec{n}_{j j}-n_{j i}\right)^{+}\right)\right) \tag{B.10}
\end{equation*}
$$

This completes the proof of 5.1 b .
Proof of (5.1c): From the assumption that the message indices W_{1} and W_{2} are i.i.d. following a uniform distribution over the sets \mathcal{W}_{1} and \mathcal{W}_{2} respectively, the following holds for any $k \in\{1,2, \ldots, N\}$:

$$
\begin{aligned}
N\left(R_{1}+R_{2}\right)= & H\left(W_{1}\right)+H\left(W_{2}\right) \\
\stackrel{(a)}{\leqslant} & I\left(W_{1} ; \overrightarrow{\boldsymbol{Y}}_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right)+I\left(W_{2} ; \overrightarrow{\boldsymbol{Y}}_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)+N \delta(N) \\
\leqslant & H\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\boldsymbol{X}_{2, C} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right) \\
& -H\left(\boldsymbol{X}_{1, C} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}\right)+N \delta(N) \\
= & H\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2}\right) \\
& -H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)-H\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}\right)+N \delta(N) \\
= & H\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)+\left[I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right)-H\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)\right]+H\left(\overrightarrow{\boldsymbol{Y}}_{2}\right) \\
& +\left[I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)-H\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)\right]-H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right) \\
& +N \delta(N)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(b)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)-H\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} \mid \overrightarrow{\boldsymbol{Y}}_{1}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right) \\
& -H\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} \mid \overrightarrow{\boldsymbol{Y}}_{2}\right)+I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right)+I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right) \\
& -H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+N \delta(N) \\
& \leqslant H\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)+I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right) \\
& +I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+N \delta(N) \\
& \leqslant H\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)+I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}, W_{2}, \overleftarrow{\boldsymbol{Y}}_{2} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right) \\
& +I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}, W_{1}, \overleftarrow{\boldsymbol{Y}}_{1} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+N \delta(N) \\
& =H\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)+I\left(W_{2} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right) \\
& +I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}, \overleftarrow{\boldsymbol{Y}}_{2} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1} \mid W_{2}\right)+I\left(W_{1} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)+I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}, \overleftarrow{\boldsymbol{Y}}_{1} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2} \mid W_{1}\right) \\
& -H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+N \delta(N) \\
& \stackrel{(c)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)+H\left(W_{1}\right)+H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(W_{1} \mid W_{2}\right) \\
& -H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{2}, W_{1}\right)+H\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}, \overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+H\left(W_{2}\right)+H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)-H\left(W_{2} \mid W_{1}\right) \\
& -H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{1}, W_{2}\right)+H\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}, \overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+N \delta(N) \\
& \leqslant H\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)+H\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}, \overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right) \\
& +H\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}, \overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)+N \delta(N) \\
& =\sum_{n=1}^{N}\left[H\left(\overrightarrow{\boldsymbol{Y}}_{1, n} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}, \overrightarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2, n} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}, \overrightarrow{\boldsymbol{Y}}_{2,(1: n-1)}\right)\right. \\
& +H\left(\boldsymbol{X}_{2, C, n}, \boldsymbol{X}_{1, U, n}, \overleftarrow{\boldsymbol{Y}}_{2, n} \mid W_{2}, \boldsymbol{X}_{2, C,(1: n-1)}, \boldsymbol{X}_{1, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{2,(1: n-1)}\right) \\
& \left.+H\left(\boldsymbol{X}_{1, C, n}, \boldsymbol{X}_{2, U, n}, \overleftarrow{\boldsymbol{Y}}_{1, n} \mid W_{1}, \boldsymbol{X}_{1, C,(1: n-1)}, \boldsymbol{X}_{2, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right)\right]+N \delta(N) \\
& \stackrel{(d)}{=} \sum_{n=1}^{N}\left[H\left(\overrightarrow{\boldsymbol{Y}}_{1, n} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}, \overrightarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2, n} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}, \overrightarrow{\boldsymbol{Y}}_{2,(1: n-1)}\right)\right. \\
& +H\left(\boldsymbol{X}_{2, C, n}, \boldsymbol{X}_{1, U, n}, \overleftarrow{\boldsymbol{Y}}_{2, n} \mid W_{2}, \boldsymbol{X}_{2, C,(1: n-1)}, \boldsymbol{X}_{1, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{2,(1: n-1)}, \boldsymbol{X}_{2, n}\right) \\
& \left.+H\left(\boldsymbol{X}_{1, C, n}, \boldsymbol{X}_{2, U, n}, \overleftarrow{\boldsymbol{Y}}_{1, n} \mid W_{1}, \boldsymbol{X}_{1, C,(1: n-1)}, \boldsymbol{X}_{2, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{1,(1: n-1)}, \boldsymbol{X}_{1, n}\right)\right]+N \delta(N) \\
& \stackrel{(e)}{\leqslant} \sum_{n=1}^{N}\left[H\left(\overrightarrow{\boldsymbol{Y}}_{1, n} \mid \boldsymbol{X}_{1, C, n}, \boldsymbol{X}_{2, U, n}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{2, n} \mid \boldsymbol{X}_{2, C, n}, \boldsymbol{X}_{1, U, n}\right)+H\left(\boldsymbol{X}_{1, U, n}, \overleftarrow{\boldsymbol{Y}}_{2, n} \mid \boldsymbol{X}_{2, n}\right)\right. \\
& \left.+H\left(\boldsymbol{X}_{2, U, n}, \overleftarrow{\boldsymbol{Y}}_{1, n} \mid \boldsymbol{X}_{1, n}\right)\right]+N \delta(N) \\
& \leqslant \sum_{n=1}^{N}\left[H\left(\boldsymbol{X}_{1, P, n}\right)+H\left(\boldsymbol{X}_{2, P, n}\right)+H\left(\boldsymbol{X}_{1, U, n}, \overleftarrow{\boldsymbol{Y}}_{2, n} \mid \boldsymbol{X}_{2, n}\right)+H\left(\boldsymbol{X}_{2, U, n}, \overleftarrow{\boldsymbol{Y}}_{1, n} \mid \boldsymbol{X}_{1, n}\right)\right]+N \delta(N) \\
& \stackrel{(e)}{\leqslant} N\left[H\left(\boldsymbol{X}_{1, P, k}\right)+H\left(\boldsymbol{X}_{2, P, k}\right)+H\left(\boldsymbol{X}_{1, U, k}\right)+H\left(\overleftarrow{\boldsymbol{Y}}_{2, k} \mid \boldsymbol{X}_{2, k}, \boldsymbol{X}_{1, U, k}\right)+H\left(\boldsymbol{X}_{2, U, k}\right)\right. \\
& \left.+H\left(\overleftarrow{\boldsymbol{Y}}_{1, k} \mid \boldsymbol{X}_{1, k}, \boldsymbol{X}_{2, U, k}\right)\right]+N \delta(N), \\
& =N\left[H\left(\boldsymbol{X}_{1, P, k}\right)+H\left(\boldsymbol{X}_{2, P, k}\right)+H\left(\boldsymbol{X}_{1, U, k}\right)+H\left(\boldsymbol{X}_{1, C F_{2}, k}, \boldsymbol{X}_{1, D F, k} \mid \boldsymbol{X}_{2, k}, \boldsymbol{X}_{1, U, k}\right)\right. \\
& \left.+H\left(\boldsymbol{X}_{2, U, k}\right)+H\left(\boldsymbol{X}_{2, C F_{1}, k}, \boldsymbol{X}_{2, D F, k} \mid \boldsymbol{X}_{1, k}, \boldsymbol{X}_{2, U, k}\right)\right]+N \delta(N)
\end{aligned}
$$

$$
\begin{align*}
\leqslant & N\left[H\left(\boldsymbol{X}_{1, P, k}\right)+H\left(\boldsymbol{X}_{2, P, k}\right)+H\left(\boldsymbol{X}_{1, U, k}\right)+H\left(\boldsymbol{X}_{1, C F_{2}, k}, \boldsymbol{X}_{1, D F, k} \mid \boldsymbol{X}_{1, U, k}\right)+H\left(\boldsymbol{X}_{2, U, k}\right)\right. \\
& \left.+H\left(\boldsymbol{X}_{2, C F_{1}, k}, \boldsymbol{X}_{2, D F, k} \mid \boldsymbol{X}_{2, U, k}\right)\right]+N \delta(N), \\
\leqslant & N\left[\operatorname{dim} \boldsymbol{X}_{1, P, k}+\operatorname{dim} \boldsymbol{X}_{2, P, k}+\operatorname{dim} \boldsymbol{X}_{1, U, k}+\left(\operatorname{dim}\left(\boldsymbol{X}_{1, C F_{2}, k}, \boldsymbol{X}_{1, D F, k}\right)-\operatorname{dim} \boldsymbol{X}_{1, U, k}\right)^{+}\right. \\
& \left.+\operatorname{dim} \boldsymbol{X}_{2, U, k}+\left(\operatorname{dim}\left(\boldsymbol{X}_{2, C F_{1}, k}, \boldsymbol{X}_{2, D F, k}\right)-\operatorname{dim} \boldsymbol{X}_{2, U, k}\right)^{+}\right]+N \delta(N) . \tag{B.11}
\end{align*}
$$

where, (a) follows from Fano's inequality with $\delta: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58); (b) follows from the fact that $H(Y)-H(X)=H(Y \mid X)-H(X \mid Y)$; (c) follows from the fact that $H\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)=0$; (d) follows from the fact that $\boldsymbol{X}_{i, n}=f_{i}^{(n)}\left(W_{i}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)}\right)$ from the definition of the encoding function in (??) and $W_{i}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)} \rightarrow X_{i, n} \rightarrow \vec{Y}_{i, n}$; and (e) follows from the fact that conditioning does not increase entropy (Lemma 40).

Plugging (B.1b), (B.3), and (B.5) into (B.11) and after some trivial manipulations, the following holds in the block-length asymptotic regime:

$$
\begin{align*}
R_{1}+R_{2} \leqslant & \max \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}, \vec{n}_{11}-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right) \\
& +\max \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}, \vec{n}_{22}-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right) \tag{B.12}
\end{align*}
$$

This completes the proof of 5.1c.
Proof of 5.1d): From the assumption that the message indices W_{i} and W_{j} are i.i.d. following a uniform distribution over the sets \mathcal{W}_{i} and \mathcal{W}_{j} respectively, for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$, the following holds for any $k \in\{1,2, \ldots, N\}$:

$$
\begin{aligned}
N\left(2 R_{i}+\right. & \left.R_{j}\right)=2 H\left(W_{i}\right)+H\left(W_{j}\right) \\
\stackrel{(a)}{\leqslant} & I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+I\left(W_{j} ; \overrightarrow{\boldsymbol{Y}}_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+N \delta(N) \\
\stackrel{(b)}{=} & H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j}\right) \\
& -H\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+N \delta(N) \\
= & H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-H\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{j, D} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j}\right) \\
& -H\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{i, D} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+N \delta(N) \\
\leqslant & H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-H\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right) \\
& +H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)-H\left(\boldsymbol{X}_{i, C} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+N \delta(N) \\
\leqslant & H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)+\left[I\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} ; W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)-H\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)\right] \\
& +H\left(\overrightarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i, C} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)-H\left(\boldsymbol{X}_{i, C} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+N \delta(N) \\
= & H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)+\left[I\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} ; W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)-H\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)\right] \\
& +H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)+N \delta(N)
\end{aligned}
$$

$$
\begin{align*}
& \leqslant H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)+\left[I\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} ; W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)-H\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)\right] \\
&+H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \delta(N) \\
& \stackrel{(c)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)+I\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} ; W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right) \\
&+H\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \delta(N) \\
& \leqslant H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)+I\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j} ; W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right) \\
&+H\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \delta(N) \\
& \stackrel{(d)}{=} H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-H\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{j}, W_{i},\right)+H\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right) \\
&+H\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \delta(N) \\
& \leqslant H\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)+H\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \delta(N) \\
& \leqslant \sum_{n=1}^{N}\left[H\left(\overrightarrow{\boldsymbol{Y}}_{i, n}\right)+H\left(\boldsymbol{X}_{j, C, n}, \boldsymbol{X}_{i, U, n}, \overleftarrow{\boldsymbol{Y}}_{j, n} \mid W_{j}, \boldsymbol{X}_{j, C,(1: n-1)}, \boldsymbol{X}_{i, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}\right)\right. \\
&\left.+H\left(\overrightarrow{\boldsymbol{Y}}_{i, n} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}, \overrightarrow{\boldsymbol{Y}}_{i,(1: n-1)}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j, n} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}, \overrightarrow{\boldsymbol{Y}}_{j,(1: n-1)}\right)\right]+N \delta(N) \\
&= \sum_{n=1}^{N}\left[H\left(\overrightarrow{\boldsymbol{Y}}_{i, n}\right)+H\left(\boldsymbol{X}_{j, C, n}, \boldsymbol{X}_{i, U, n}, \overleftarrow{\boldsymbol{Y}}_{j, n} \mid W_{j}, \boldsymbol{X}_{j, C,(1: n-1)}, \boldsymbol{X}_{i, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}, \boldsymbol{X}_{j, n}\right)\right. \\
&\left.+H\left(\overrightarrow{\boldsymbol{Y}}_{i, n} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}, \overrightarrow{\boldsymbol{Y}}_{i,(1: n-1)}, \boldsymbol{X}_{j, n}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{j, n} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}, \overrightarrow{\boldsymbol{Y}}_{j,(1: n-1)}\right)\right]+N \delta(N) \\
& \leqslant \sum_{n=1}^{N}\left[H\left(\overrightarrow{\boldsymbol{Y}}_{i, n}\right)+H\left(\boldsymbol{X}_{i, U, n} \mid \boldsymbol{X}_{j, n}\right)+H\left(\overleftarrow{\boldsymbol{Y}}_{j, n} \mid \boldsymbol{X}_{j, n}, \boldsymbol{X}_{i, U, n}\right)+H\left(\overrightarrow{\boldsymbol{Y}}_{i, n} \mid \boldsymbol{X}_{i, C, n}, \boldsymbol{X}_{j, n}\right)\right. \\
&\left.+H\left(\overrightarrow{\boldsymbol{Y}}_{j, n} \mid \boldsymbol{X}_{j, C, n}, \boldsymbol{X}_{i, U, n}\right)\right]+N \delta(N) \\
& \leqslant N\left[H\left(\overrightarrow{\boldsymbol{Y}}_{i, k}\right)+H\left(\boldsymbol{X}_{i, U, k}\right)+H\left(\overleftarrow{\boldsymbol{Y}}_{j, k} \mid \boldsymbol{X}_{j, k}, \boldsymbol{X}_{i, U, k}\right)+H\left(\boldsymbol{X}_{i, P, k}\right)+H\left(\boldsymbol{X}_{j, P, k}\right)\right]+N \delta(N) \\
&= N\left[H\left(\overrightarrow{\boldsymbol{Y}}_{i, k}\right)+H\left(\boldsymbol{X}_{i, U, k}\right)+H\left(\boldsymbol{X}_{i, C F_{j}, k}, \boldsymbol{X}_{i, D F, k} \mid \boldsymbol{X}_{i, U, k}\right)+H\left(\boldsymbol{X}_{i, P, k}\right)+H\left(\boldsymbol{X}_{j, P, k}\right)\right]+N \delta(N), \\
& \leqslant N\left[\operatorname{dim} \overleftarrow{\boldsymbol{Y}}_{i, k}+\operatorname{\operatorname {dim}} \overrightarrow{\boldsymbol{Y}}_{i, G, k}+\operatorname{\operatorname {dim}\boldsymbol {X}_{i,U,k}+(\operatorname {dim}(\boldsymbol {X}_{i,CF_{j},k},\boldsymbol {X}_{i,DF,k})-\operatorname {dim}\boldsymbol {X}_{i,U,k})+}\right. \\
&+\operatorname{dim} \boldsymbol{X}_{i, P, k}+\operatorname{\operatorname {dim}\boldsymbol {X}_{j,P,k}]+N\delta (N),} \tag{B.13}
\end{align*}
$$

where, (a) follows from Fano's inequality with $\delta: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58); (b) follows from the fact that $H\left(\overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{i}, W_{j}\right)=0$; (c) follows from the fact that $H(Y \mid X)=H(X, Y)-H(X)$; and (d) follows from the fact that $H\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right.$, $\left.\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}, W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)=0$.

Plugging (B.1b), (B.3), (B.5), (B.6a), and (B.6b) into (B.13) and after some trivial manipulations, the following holds in the block-length asymptotic regime:

$$
\begin{align*}
2 R_{i}+R_{j} & \leqslant \max \left(\vec{n}_{i i}, n_{j i}\right)+\left(\vec{n}_{i i}-n_{i j}\right)^{+} \\
& +\max \left(\left(\vec{n}_{j j}-n_{j i}\right)^{+}, n_{i j}, \vec{n}_{j j}-\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right) \tag{B.14}
\end{align*}
$$

This completes the proof of 5.1d.

Proof of Theorem 5.2.1

THE proof of Theorem 5.2 .1 is obtained by comparing $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)\left(\operatorname{resp} . \mathcal{C}\left(0, \overleftarrow{n}_{22}\right)\right)$ and $\mathcal{C}(0,0)$, with fixed parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}$, and n_{21}. More specifically, for each tuple $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right)$, the exact value $\overleftarrow{n}_{11}^{*}$ (resp $\left.\overleftarrow{n}_{22}^{*}\right)$ for which any $\overleftarrow{n}_{11}>\overleftarrow{n}_{11}^{*}\left(\right.$ resp $\left.\overleftarrow{n}_{22}>\overleftarrow{n}_{22}^{*}\right)$ ensures $\mathcal{C}(0,0) \subset \mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)\left(\right.$ resp. $\left.\mathcal{C}(0,0) \subset \mathcal{C}\left(0, \overleftarrow{n}_{22}\right)\right)$ is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one combination of interference regimes is studied, namely, VWIR - VWIR.

Proof:
Consider that both transmitter-receiver pairs are in VWIR, that is,

$$
\begin{equation*}
\alpha_{1}=\frac{n_{12}}{\vec{n}_{11}} \leqslant \frac{1}{2} \text { and } \alpha_{2}=\frac{n_{21}}{\vec{n}_{22}} \leqslant \frac{1}{2} . \tag{C.1}
\end{equation*}
$$

When the conditions in (C.1) are fulfilled, it follows from Theorem 5.1.1 that $\mathcal{C}(0,0)$ is the set of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy:

$$
\begin{align*}
& R_{1} \leqslant \theta_{1} \triangleq \vec{n}_{11}, \tag{C.2a}\\
& R_{2} \leqslant \theta_{2} \triangleq \vec{n}_{22}, \tag{C.2b}\\
R_{1}+ & R_{2} \leqslant \theta_{3} \triangleq \min \left(\max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{11}-n_{12}, \max \left(\vec{n}_{11}, n_{21}\right)+\vec{n}_{22}-n_{21}\right), \tag{C.2c}\\
R_{1}+ & R_{2} \leqslant \theta_{4} \triangleq \max \left(\vec{n}_{11}-n_{12}, n_{21}\right)+\max \left(\vec{n}_{22}-n_{21}, n_{12}\right), \tag{C.2d}\\
2 R_{1}+ & R_{2} \leqslant \theta_{5} \triangleq \max \left(\vec{n}_{11}, n_{21}\right)+\vec{n}_{11}-n_{12}+\max \left(\vec{n}_{22}-n_{21}, n_{12}\right), \tag{C.2e}\\
R_{1}+2 & R_{2} \leqslant \theta_{6} \triangleq \max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{22}-n_{21}+\max \left(n_{21}, \vec{n}_{11}-n_{12}\right) . \tag{C.2f}
\end{align*}
$$

Note that for all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{5}$ and $\overleftarrow{n}_{11}>\max \left(\vec{n}_{11}, n_{12}\right)$, it follows that $\mathcal{C}\left(\overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)=\mathcal{C}\left(\max \left(\vec{n}_{11}, n_{12}\right), \overleftarrow{n}_{22}\right)$. Hence, in the following, the analysis is restricted to the following condition:

$$
\begin{equation*}
\overleftarrow{n}_{11} \leqslant \max \left(\vec{n}_{11}, n_{12}\right) \tag{C.3}
\end{equation*}
$$

Under conditions (C.1) and (C.3), it follows from Theorem 5.1.1 that $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$ is the set of
rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that satisfy:

$$
\begin{align*}
& R_{1} \leqslant \vec{n}_{11}, \tag{C.4a}\\
& R_{2} \leqslant \vec{n}_{22} \tag{C.4b}\\
R_{1}+ & R_{2} \leqslant \min \left(\max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{11}-n_{12}, \max \left(\vec{n}_{11}, n_{21}\right)+\vec{n}_{22}-n_{21}\right), \tag{C.4c}\\
R_{1}+ & R_{2} \leqslant \theta_{7} \triangleq \max \left(\vec{n}_{11}-n_{12}, n_{21}, \overleftarrow{n}_{11}\right)+\max \left(\vec{n}_{22}-n_{21}, n_{12}\right) \tag{C.4d}\\
2 R_{1}+ & R_{2} \leqslant \max \left(\vec{n}_{11}, n_{21}\right)+\vec{n}_{11}-n_{12}+\max \left(\vec{n}_{22}-n_{21}, n_{12}\right) \tag{C.4e}\\
R_{1}+2 & R_{2} \leqslant \theta_{8} \triangleq \max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, n_{21}, \overleftarrow{n}_{11}\right) \tag{C.4f}
\end{align*}
$$

When comparing $\mathcal{C}(0,0)$ and $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$, note that C.2a, C.2b, C.2c , and C.2e are equivalent to (C.4a), C.4b, C.4c), and (C.4e), respectively. That being the case, the region $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$ is larger than the region $\mathcal{C}(0,0)$ if at least one of the following conditions holds true:

$$
\begin{gather*}
\min \left(\theta_{3}, \theta_{4}, \theta_{1}+\theta_{2}, \theta_{5}, \theta_{6}\right)<\theta_{7}<\min \left(\theta_{3}, \theta_{1}+\theta_{2}, \theta_{5}, \theta_{8}\right) \tag{C.5a}\\
\min \left(\theta_{6}, \theta_{1}+2 \theta_{2}, \theta_{2}+\theta_{3}, \theta_{4}+\theta_{2}\right)<\theta_{8}<\min \left(\theta_{1}+2 \theta_{2}, \theta_{2}+\theta_{3}, \theta_{2}+\theta_{7}\right) \tag{C.5b}
\end{gather*}
$$

Condition C.5a implies that the active sum-rate bound in $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$ is greater than the active sum-rate bound in $\mathcal{C}(0,0)$. Condition (C.5b implies that the active weighted sum-rate bound on $R_{1}+2 R_{2}$ in $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$ is greater than the active weighted sum-rate bound on $R_{1}+2 R_{2}$ in $\mathcal{C}(0,0)$.

To simplify the inequalities containing the operator $\max (\cdot, \cdot)$ in (C.4) and (C.2), the following 4 cases are identified:

$$
\begin{align*}
& \text { Case 1: } \vec{n}_{11}-n_{12}<n_{21} \text { and } \vec{n}_{22}-n_{21}<n_{12} \text {; } \tag{C.6}\\
& \text { Case 2: } \vec{n}_{11}-n_{12}<n_{21} \text { and } \vec{n}_{22}-n_{21} \geqslant n_{12} \text {; } \tag{C.7}\\
& \text { Case 3: } \vec{n}_{11}-n_{12} \geqslant n_{21} \text { and } \vec{n}_{22}-n_{21}<n_{12} ; \text { and } \tag{C.8}\\
& \text { Case 4: } \vec{n}_{11}-n_{12} \geqslant n_{21} \text { and } \vec{n}_{22}-n_{21} \geqslant n_{12} \text {. } \tag{C.9}
\end{align*}
$$

Case 1: Under condition (C.1), the Case 1, i.e., (C.6), is not possible.
Case 2: Under condition (C.1), the Case 2, i.e., (C.7), is possible.
Plugging (C.7) into (C.4) yields:

$$
\begin{align*}
& R_{1}+R_{2} \leqslant \min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \max \left(\vec{n}_{11}, n_{21}\right)+\vec{n}_{22}-n_{21}\right) \tag{C.10a}\\
& R_{1}+R_{2} \leqslant \max \left(n_{21}, \overleftarrow{n}_{11}\right)+\vec{n}_{22}-n_{21} \tag{C.10b}\\
& R_{1}+2 R_{2} \leqslant 2 \vec{n}_{22}-n_{21}+\max \left(n_{21}, \overleftarrow{n}_{11}\right) \tag{C.10c}
\end{align*}
$$

Plugging (C.7) into (C.2 yields:

$$
\begin{gather*}
R_{1}+R_{2} \leqslant \vec{n}_{22} \tag{C.11a}\\
R_{1}+2 R_{2} \leqslant 2 \vec{n}_{22} \tag{C.11b}
\end{gather*}
$$

To simplify the inequalities containing the operator $\max (\cdot, \cdot)$ in C.10, the following 2 cases
are identified:
Case 2a: $\vec{n}_{11}>n_{21}$; and
Case $2 \mathrm{~b}: \vec{n}_{11} \leqslant n_{21}$.
Case 2a: Plugging (C.12 into (C.10 yields:

$$
\begin{align*}
& R_{1}+R_{2} \leqslant \vec{n}_{11}+\vec{n}_{22}-n_{21}, \tag{C.14a}\\
& R_{1}+R_{2} \leqslant \max \left(n_{21}, \overleftarrow{n}_{11}\right)+\vec{n}_{22}-n_{21}, \tag{C.14b}\\
& R_{1}+2 R_{2} \leqslant 2 \vec{n}_{22}-n_{21}+\max \left(n_{21}, \overleftarrow{n}_{11}\right) . \tag{C.14c}
\end{align*}
$$

Comparing inequalities (C.14a) and C.14b with inequality (C.11a), it can be verified that $\min \left(\vec{n}_{11}+\vec{n}_{22}-n_{21}, \max \left(n_{21}, \overleftarrow{n}_{11}\right)+\vec{n}_{22}-n_{21}\right)>\vec{n}_{22}$, i.e., condition (C.5a) holds, when $\overleftarrow{n}_{11}>n_{21}$. Comparing inequalities (C.14c) and (C.11b), it can be verified that $2 \vec{n}_{22}-n_{21}+\max \left(n_{21}, \overleftarrow{n}_{11}\right)>2 \vec{n}_{22}$, i.e., condition (C.5b) holds, when $\overleftarrow{n}_{11}>n_{21}$. Therefore, $\overleftarrow{n}_{11}^{*}=n_{21}$ under conditions (C.1), (C.3), (C.7), and (C.12).
Case 2b: Plugging (C.13) into (C.10 yields:

$$
\begin{align*}
& R_{1}+R_{2} \leqslant \vec{n}_{22} \tag{C.15a}\\
& R_{1}+R_{2} \leqslant \max \left(n_{21}, \overleftarrow{n}_{11}\right)+\vec{n}_{22}-n_{21}, \tag{C.15b}\\
& R_{1}+2 R_{2} \leqslant 2 \vec{n}_{22}-n_{21}+\max \left(n_{21}, \overleftarrow{n}_{11}\right) . \tag{C.15c}
\end{align*}
$$

Comparing inequalities C.15a and C.15b with inequality C.11a), it can be verified that $\min \left(\vec{n}_{22}, \max \left(n_{21}, \overleftarrow{n}_{11}\right)+\vec{n}_{22}-n_{21}\right)=\vec{n}_{22}$, i.e., condition (C.5a) does not hold, for all $\overleftarrow{n}_{11} \in \mathbb{N}$. Comparing inequalities (C.15c) and (C.11b) it can be verified that $2 \vec{n}_{22}-$ $n_{21}+\max \left(n_{21}, \overleftarrow{n}_{11}\right)>2 \vec{n}_{22}$, when $\overleftarrow{n}_{11}>n_{21}$, which implies that $\overleftarrow{n}_{11}>\max \left(\vec{n}_{11}, n_{12}\right)$. However, under the conditions (C.1), (C.3), (C.7), and (C.13), the bounds (C.11b) and (C.15c) are not active. Hence, condition (C.5b) does not hold. Therefore, for all $\overleftarrow{n}_{11} \in \mathbb{N}$, the capacity region cannot be enlarged under conditions (C.1), (C.3), (C.7), and (C.13).
Case 3: Under condition (C.1), the Case 3, i.e., (C.8), is possible.
Plugging (C.8) into (C.4) yields:

$$
\begin{align*}
& R_{1}+R_{2} \leqslant \min \left(\max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21}\right), \tag{C.16a}\\
& R_{1}+R_{2} \leqslant \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+n_{12}, \tag{C.16b}\\
& R_{1}+2 R_{2} \leqslant \max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right) \tag{C.16c}
\end{align*}
$$

Plugging (C.8) into (C.2) yields:

$$
\begin{align*}
& R_{1}+R_{2} \leqslant \vec{n}_{11}, \tag{C.17a}\\
& R_{1}+2 R_{2} \leqslant \max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{22}-n_{21}+\vec{n}_{11}-n_{12} . \tag{C.17b}
\end{align*}
$$

To simplify the inequalities containing the operator $\max (\cdot, \cdot)$ in C.16) and C.17), the following 2 cases are identified:

$$
\begin{equation*}
\text { Case 3a }: \vec{n}_{22}>n_{12} \text {; and } \tag{C.18}
\end{equation*}
$$

Case 3b: $\vec{n}_{22} \leqslant n_{12}$.

Case 3a: Plugging (C.18) into (C.16) yields:

$$
\begin{align*}
R_{1}+R_{2} \leqslant \vec{n}_{22}+\vec{n}_{11}-n_{12} \tag{C.20a}\\
R_{1}+R_{2} \leqslant \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+n_{12} \tag{C.20b}\\
R_{1}+2 R_{2} \leqslant 2 \vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right) \tag{C.20c}
\end{align*}
$$

Plugging (C.18 into C.17 yields:

$$
\begin{align*}
R_{1}+R_{2} & \leqslant \vec{n}_{11} \tag{C.21a}\\
R_{1}+2 R_{2} & \leqslant 2 \vec{n}_{22}-n_{21}+\vec{n}_{11}-n_{12} \tag{C.21b}
\end{align*}
$$

Comparing inequalities (C.20a and C.20b with inequality (C.21a), it can be verified that $\min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+n_{12}\right)>\vec{n}_{11}$, i.e., condition (C.5a) holds, when $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$. Comparing inequalities (C.20c) and C.21b, it can be verified that $2 \vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)>2 \vec{n}_{22}-n_{21}+\vec{n}_{11}-n_{12}$, i.e., condition (C.5b) holds, when $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$. Therefore, $\overleftarrow{n}_{11}^{*}=\vec{n}_{11}-n_{12}$ under conditions (C.1), (С.3), (С.8), and C.18.
Case 3b: Plugging (C.19 into (C.16) yields:

$$
\begin{align*}
R_{1}+R_{2} \leqslant \vec{n}_{11} \tag{C.22a}\\
R_{1}+R_{2} \leqslant \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+n_{12} \tag{C.22b}\\
R_{1}+2 R_{2} \leqslant n_{12}+\vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right) \tag{C.22c}
\end{align*}
$$

Plugging (C.18) into (C.17) yields:

$$
\begin{align*}
R_{1}+R_{2} & \leqslant \vec{n}_{11} \tag{C.23a}\\
R_{1}+2 R_{2} & \leqslant \vec{n}_{22}-n_{21}+\vec{n}_{11} \tag{C.23b}
\end{align*}
$$

Comparing inequalities (C.22a) and C.22b with inequality C.23a) it can be verified that $\min \left(\vec{n}_{11}, \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+n_{12}\right)=\vec{n}_{11}$, i.e., condition (C.5a) does not hold, for all $\overleftarrow{n}_{11} \in \mathbb{N}$. Comparing inequalities (C.22c) and C.23b, it can be verified that $n_{12}+\vec{n}_{22}-n_{21}+$ $\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)>\vec{n}_{22}-n_{21}+\vec{n}_{11}$, i.e., condition (C.5b holds, when $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$. Therefore, $\overleftarrow{n}_{11}^{*}=\vec{n}_{11}-n_{12}$ under conditions (C.1), (C.3), (C.8), and (C.19)
Case 4: Under condition (C.1), the Case 4, i.e., (C.9), is possible.
Plugging (C.9) into (C.4) yields:

$$
\begin{align*}
& R_{1}+R_{2} \leqslant \min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21}\right) \tag{C.24a}\\
& R_{1}+R_{2} \leqslant \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+\vec{n}_{22}-n_{21} \tag{C.24b}\\
& R_{1}+2 R_{2} \leqslant 2 \vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right) \tag{C.24c}
\end{align*}
$$

Plugging (C.9) into (C.2 yields:

$$
\begin{gather*}
R_{1}+R_{2} \leqslant \vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21} \tag{C.25a}\\
R_{1}+2 R_{2} \leqslant 2 \vec{n}_{22}-n_{21}+\vec{n}_{11}-n_{12} \tag{C.25b}
\end{gather*}
$$

Comparing inequalities (C.24a) and C.24b with inequality (C.25a), it can be verified that
$\min \left(\min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21}\right), \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+\vec{n}_{22}-n_{21}\right)>$ $\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}$, i.e., condition C.5a) holds, when $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$. Comparing inequalities (C.24c) and C.25b, it can be verified that: $2 \vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}\right.$, $\left.\overleftarrow{n}_{11}\right)>2 \vec{n}_{22}-n_{21}+\vec{n}_{11}-n_{12}$, i.e., condition C.5b) holds, when $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$.

Therefore, $\overleftarrow{n}_{11}^{*}=\vec{n}_{11}-n_{12}$ under conditions (C.1), (C.3), and (C.9).
From all the observations above, when both transmitter-receiver pairs are in VWIR (event E_{1} in (5.6) holds true), it follows that when $\overleftarrow{n}_{11}>\overleftarrow{n}_{11}^{*}$ and $\vec{n}_{11}>n_{21}$ (event $E_{8,1}$ in (5.13) with $i=1$ holds true) with $\overleftarrow{n}_{11}^{*}=\max \left(\vec{n}_{11}-n_{12}, n_{21}\right)$, then $\mathcal{C}(0,0) \subset \mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$. Otherwise, $\mathcal{C}(0,0)=\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$. Note that when events E_{1} and $E_{8,1}$ hold simultaneously true, then the event $S_{1,1}$ in 5.17) with $i=1$ holds true, which verifies the statement of Theorem 5.2.1. The same procedure can be applied for all the other combinations of interference regimes. This completes the proof.

Proof of Theorem 5.2.2

THE proof of Theorem 5.2 .2 is obtained by comparing $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$ (resp. $\left.\mathcal{C}\left(0, \overleftarrow{n}_{22}\right)\right)$ and $\mathcal{C}(0,0)$, for all possible parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}$, and \overleftarrow{n}_{11} (resp. \vec{n}_{11}, $\vec{n}_{22}, n_{12}, n_{21}$, and $\left.\overleftarrow{n}_{22}\right)$. More specifically, for each tuple $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right)$, the exact value $\overleftarrow{n}_{11}^{\dagger}\left(\right.$ resp $\left.\overleftarrow{n}_{22}^{\dagger}\right)$ for which any $\overleftarrow{n}_{11}>\overleftarrow{n}_{11}^{\dagger}\left(\right.$ resp $\left.\overleftarrow{n}_{22}>\overleftarrow{n}_{22}^{\dagger}\right)$ ensures an improvement on $R_{1}\left(\right.$ resp. $\left.R_{2}\right)$, i.e., $\Delta_{1}\left(\overleftarrow{n}_{11}, 0\right)>0\left(\right.$ resp. $\left.\Delta_{2}\left(0, \overleftarrow{n}_{22}\right)>0\right)$, is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one combination of interference regimes is studied, namely, VWIR - VWIR.

Proof:
Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (C.1) hold. Under these conditions, the capacity regions $\mathcal{C}(0,0)$ and $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$ are given by (C.2) and (C.4), respectively. When comparing $\mathcal{C}(0,0)$ and $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$, note that (C.2a, C.2b), C.2c), and (C.2e are equivalent to (C.4a, C.4b, C.4c), and C.4e, respectively. In this case any improvement on R_{1} is produced by an improvement on $R_{1}+R_{2}$ (condition C.5a) or $2 R_{1}+R_{2}$ (condition C.5a), and thus, the proof of Theorem5.2.2 in these particular interference regimes follows exactly the same steps as in Theorem 5.2.1. This completes the proof.

E

Proof of Theorem 5.2.4

THe proof of Theorem 5.2 .4 is obtained by comparing $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right) \quad\left(\operatorname{resp} . \mathcal{C}\left(0, \overleftarrow{n}_{22}\right)\right)$ and $\mathcal{C}(0,0)$, for all possible parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}$, and \overleftarrow{n}_{11} (resp. \vec{n}_{11}, $\vec{n}_{22}, n_{12}, n_{21}$, and $\left.\overleftarrow{n}_{22}\right)$. More specifically, for each tuple $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}\right)$, the exact value $\overleftarrow{n}_{11}^{+}\left(\right.$resp $\left.\overleftarrow{n}_{22}^{+}\right)$for which any $\overleftarrow{n}_{11}>\overleftarrow{n}_{11}^{+}\left(\right.$resp $\left.\overleftarrow{n}_{22}>\overleftarrow{n}_{22}^{+}\right)$ensures an improvement on $R_{1}+R_{2}$, i.e., $\Sigma\left(\overleftarrow{n}_{11}, 0\right)>0$ (resp. $\left.\Sigma\left(0, \overleftarrow{n}_{22}\right)>0\right)$, is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one combination of interference regimes is studied, namely, VWIR - VWIR.

Proof:
Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (C.1) hold. Under these conditions, the capacity regions $\mathcal{C}(0,0)$ and $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$ are given by (C.2) and (C.4), respectively. When comparing $\mathcal{C}(0,0)$ and $\mathcal{C}\left(\overleftarrow{n}_{11}, 0\right)$, note that (C.2a), (C.2b), (C.2c), and (C.2e) are equivalent to (C.4a, (C.4b, (C.4c), and (C.4e), respectively.

In this case, the proof is focused on any improvement on $R_{1}+R_{2}$ (condition (C.5a), and thus, the proof of Theorem 5.2.4 in these particular interference regimes follows exactly the same steps as in Theorem 5.2.1.

From the analysis presented in Appendix C, it follows that:
Case 2a: condition (C.5a) holds true, when $\overleftarrow{n}_{11}>n_{21}$ under conditions (C.1), (C.3), (C.7), and (C.12).
Case 2b: condition (C.5a does not hold true, under conditions (C.1), (C.7), and (C.13).
Case 3a: condition (C.5a) holds true, when $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$ under conditions (C.1), (C.3), (C.8), and (C.18).

Case 36 : condition (C.5a does not hold true, when $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$ under conditions (C.1), (С.3), C.8), and C.19).

Case 4: condition (C.5a) holds true, when $\overleftarrow{n}_{11}>\vec{n}_{11}-n_{12}$ under conditions (C.1), (C.3), and (C.9).

From all the observations above, when both transmitter-receiver pairs are in VWIR (event E_{1} in (5.6) holds true), it follows that when $\overleftarrow{n}_{11}>\overleftarrow{n}_{11}^{+}, \vec{n}_{11}>n_{21}$ (event $E_{8,1}$ in (5.13) with $i=1$
holds true), $\vec{n}_{22}>n_{12}$ (event $E_{8,2}$ in (5.13) with $i=2$ holds true), $\vec{n}_{11}+\vec{n}_{22}>n_{12}+2 n_{21}$ (event $E_{10,1}$ in (5.15) with $i=1$ holds true), and $\vec{n}_{11}+\vec{n}_{22}>n_{21}+2 n_{12}$ (event $E_{10,2}$ in (5.15) with $i=2$ holds true) with $\overleftarrow{n}_{11}^{+}=\max \left(\vec{n}_{11}-n_{12}, n_{21}\right)$, then $\Sigma\left(\overleftarrow{n}_{11}, 0\right)>0$. Otherwise, $\Sigma\left(\overleftarrow{n}_{11}, 0\right)=0$. Note that when events $E_{1}, E_{8,1}, E_{8,2}, E_{10,1}$, and $E_{10,2}$ hold simultaneously true, then the event S_{4} in 5.20 holds true, which verifies the statement of Theorem 5.2.4. The same procedure can be applied for all the other combinations of interference regimes. This completes the proof.

Proof of Theorem 5.3.1

T
HIS appendix provides a proof to Theorem 5.3.1 for the two-user LDIC-NOF.

Proof:
Under symmetric conditions, i.e., $\vec{n}=\vec{n}_{11}=\vec{n}_{22}, m=n_{12}=n_{21}$ and $\overleftarrow{n}=\overleftarrow{n}_{11}=\overleftarrow{n}_{22}$, from (5.1a) and 5.1b with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, it follows that:

$$
\begin{align*}
& R_{1} \leqslant a_{1} \triangleq \min \left(\max (\vec{n}, m), \max \left(\vec{n}, \overleftarrow{n}-(\vec{n}-m)^{+}\right)\right), \tag{F.1}\\
& R_{2} \leqslant a_{1} \triangleq \min \left(\max (\vec{n}, m), \max \left(\vec{n}, \overleftarrow{n}-(\vec{n}-m)^{+}\right)\right) \tag{F.2}
\end{align*}
$$

from (5.1c and (5.1c), it follows that:

$$
\begin{align*}
& R_{1}+R_{2} \leqslant a_{2} \tag{F.3}\\
& \quad \triangleq \min \left(\max (\vec{n}, m)+(\vec{n}-m)^{+}, 2 \max \left((\vec{n}-m)^{+}, m, \vec{n}-(\max (\vec{n}, m)-\overleftarrow{n})^{+}\right)\right)
\end{align*}
$$

and from 5.1d, it follows that:

$$
\begin{align*}
& 2 R_{1}+R_{2} \leqslant a_{3} \tag{F.4}\\
& \quad \triangleq \max (\vec{n}, m)+(\vec{n}-m)^{+}+\max \left((\vec{n}-m)^{+}, m, \vec{n}-(\max (\vec{n}, m)-\overleftarrow{n})^{+}\right), \\
& R_{1}+2 R_{2} \leqslant a_{3} \tag{F.5}\\
& \quad \triangleq \max (\vec{n}, m)+(\vec{n}-m)^{+}+\max \left((\vec{n}-m)^{+}, m, \vec{n}-(\max (\vec{n}, m)-\overleftarrow{n})^{+}\right) .
\end{align*}
$$

The sum-capacity can be obtained considering the sum of (F.1) and (F.2); (F.3); and the sumrate bound that can be obtained from (F.4) and (F.5) with $R 1 \geqslant 0$ and $R 2 \geqslant 0$, respectively. Then,

$$
\begin{align*}
R_{1}+R_{2} & \leqslant \min \left(2 a_{1}, a_{2}, a_{3}\right) \\
& =\min \left(2 a_{1}, a_{2}\right), \tag{F.6}
\end{align*}
$$

given that $a_{3} \geqslant a_{2}$.
The symmetric capacity, $C_{\mathrm{sym}}(\vec{n}, m, \overleftarrow{n})=\sup \left\{R \in \mathbb{R}_{+}:(R, R) \in \mathcal{C}(\vec{n}, \vec{n}, m, m, \overleftarrow{n}\right.$, $\overleftarrow{n})\}$, can be obtained from (F.6), (F.1), and (F.3) as follows:

$$
\begin{align*}
C_{\mathrm{sym}}= & \min \left(a_{1}, \frac{a_{2}}{2}\right) \\
= & \min \left(\max (\vec{n}, m), \max \left(\vec{n}, \overleftarrow{n}-(\vec{n}-m)^{+}\right), \frac{1}{2}\left(\max (\vec{n}, m)+(\vec{n}-m)^{+}\right)\right. \\
& \left.\max \left((\vec{n}-m)^{+}, m, \vec{n}-(\max (\vec{n}, m)-\overleftarrow{n})^{+}\right)\right) \tag{F.7}
\end{align*}
$$

Plugging (F.7) into (5.31) yields:

$$
\begin{align*}
D_{\mathrm{sym}}(\alpha, \beta)= & \min \left(\max (1, \alpha), \max \left(1, \beta-(1-\alpha)^{+}\right), \frac{1}{2}\left(\max (1, \alpha)+(1-\alpha)^{+}\right)\right. \\
& \left.\max \left((1-\alpha)^{+}, \alpha, 1-(\max (1, \alpha)-\beta)^{+}\right)\right) \tag{F.8}
\end{align*}
$$

where $\alpha=\frac{m}{\vec{n}}$ and $\beta=\frac{\overleftarrow{n}}{\vec{n}}$. This completes the proof.

Proof of Theorem 6.2.1

THE outer bounds (6.9a) and $\sqrt{6.9 \mathrm{c}})$ correspond to the outer bounds of the case of POF derived in 80 . The bounds 66.9 b , 6.9 d) and 6.9 e correspond to new outer bounds. Before presenting the proof, consider the parameter $h_{j i, U}$, with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, defined as follows:

$$
h_{j i, U}= \begin{cases}0 & \text { if }\left(S_{1, i} \vee S_{2, i} \vee S_{3, i}\right) \tag{G.1}\\ \sqrt{\frac{\mathrm{INR}_{i j} \mathrm{INR}_{j i}}{\overline{\mathrm{SNR}}_{j}}} & \text { if }\left(S_{4, i} \vee S_{5, i}\right),\end{cases}
$$

where, the events $S_{1, i}, S_{2, i}, S_{3, i}, S_{4, i}$, and $S_{5, i}$ are defined in (6.4). Consider also the following signals:

$$
\begin{align*}
& X_{i, C, n}=\sqrt{\mathrm{INR}_{j i}} X_{i, n}+\vec{Z}_{j, n} \text { and } \tag{G.2}\\
& X_{i, U, n}=h_{j i, U} X_{i, n}+\vec{Z}_{j, n} \tag{G.3}
\end{align*}
$$

where, $X_{i, n}$ and $\vec{Z}_{j, n}$ are the channel input of transmitter i and the noise observed at receiver j during a given channel use $n \in\{1,2, \ldots, N\}$, as described by (2.5). The following lemma is instrumental in the present proof of Theorem 6.2.1.

Lemma 21. For all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$, the following holds:

$$
\begin{align*}
I\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i}, W_{i} ; \overleftarrow{\boldsymbol{Y}}_{j}, W_{j}\right) \leqslant & h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+\sum_{n=1}^{N}\left[h\left(X_{j, U, n} \mid X_{i, C, n}\right)+h\left(\overleftarrow{Y}_{i, n} \mid X_{i, n}, X_{j, U, n}\right)\right. \\
& \left.-\frac{3}{2} \log (2 \pi e)\right] \tag{G.4}
\end{align*}
$$

Proof: The proof of Lemma 21 is presented in appendix \boxed{L}.
Proof of 6.9b: From the assumption that the message index W_{i} is i.i.d. following a

Figure G.1.: Genie-Aided GIC-NOF models for channel use n. (a) Model used to calculate the outer bound on R_{1}; (b) Model used to calculate the outer bound on $R_{1}+R_{2}$; and (c) Model used to calculate the outer bound on $2 R_{1}+R_{2}$
uniform distribution over the set \mathcal{W}_{i}, the following holds for any $k \in\{1,2, \ldots, N\}$:

$$
\begin{align*}
& N R_{i}=H\left(W_{i}\right) \\
&=H\left(W_{i} \mid W_{j}\right) \\
& \stackrel{(a)}{\leqslant} \\
& I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+N \delta(N) \\
& \leqslant \sum_{n=1}^{N}\left[h\left(\vec{Y}_{i, n}, \overleftarrow{Y}_{j, n} \mid W_{j}, \overrightarrow{\boldsymbol{Y}}_{i,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}, X_{j, n}\right)-h\left(\vec{Z}_{i, n}\right)-h\left(\overleftarrow{Z}_{j, n}\right)\right] \\
&+N \delta(N) \\
& \leqslant \sum_{n=1}^{N}\left[h\left(\vec{Y}_{i, n}, \overleftarrow{Y}_{j, n} \mid X_{j, n}\right)-h\left(\vec{Z}_{i, n}\right)-h\left(\overleftarrow{Z}_{j, n}\right)\right]+N \delta(N) \tag{G.5}\\
&= N\left[h\left(\vec{Y}_{i, k}, \overleftarrow{Y}_{j, k} \mid X_{j, k}\right)-\log (2 \pi e)\right]+N \delta(N)
\end{align*}
$$

where (a) follows from Fano's inequality with $\delta: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58) (see Figure G.11).
From (G.5), the following holds in the block-length asymptotic regime:

$$
\begin{align*}
R_{i} & \leqslant h\left(\vec{Y}_{i, k}, \overleftarrow{Y}_{j, k} \mid X_{j, k}\right)-\log (2 \pi e) \\
& \leqslant \frac{1}{2} \log \left(b_{3, i}+1\right)+\frac{1}{2} \log \left(\frac{\left(b_{3, i}+b_{4, j}(\rho)+1\right) \overleftarrow{\operatorname{SNR}}_{j}}{\left(b_{1, j}(\rho)+1\right)\left(b_{3, i}+\left(1-\rho^{2}\right)\right)}+1\right) \tag{G.6}
\end{align*}
$$

This completes the proof of 6.9b).
Proof of 6.9d):
From the assumption that the message indices W_{1} and W_{2} are i.i.d. following a uniform distribution over the sets \mathcal{W}_{1} and \mathcal{W}_{2} respectively, the following holds for any $k \in\{1,2, \ldots, N\}$:

$$
\begin{aligned}
N\left(R_{1}+R_{2}\right) & =H\left(W_{1}\right)+H\left(W_{2}\right) \\
& \stackrel{(a)}{\leqslant} I\left(W_{1} ; \overrightarrow{\boldsymbol{Y}}_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right)+I\left(W_{2} ; \overrightarrow{\boldsymbol{Y}}_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)+N \delta(N)
\end{aligned}
$$

$$
\begin{aligned}
& =h\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)+h\left(\overleftarrow{\boldsymbol{Z}}_{1} \mid \overrightarrow{\boldsymbol{Y}}_{1}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{2}\right)+h\left(\overleftarrow{\boldsymbol{Z}}_{2} \mid \overrightarrow{\boldsymbol{Y}}_{2}\right) \\
& -h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}\right)+N \delta(N) \\
& \leqslant h\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)+h\left(\overleftarrow{\boldsymbol{Z}}_{1}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-h\left(\boldsymbol{X}_{2, C} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{2}\right)+h\left(\overleftarrow{\boldsymbol{Z}}_{2}\right) \\
& -h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)-h\left(\boldsymbol{X}_{1, C} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}\right)+N \delta(N) \\
& =h\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-h\left(\boldsymbol{X}_{2, C}, \overrightarrow{\boldsymbol{Z}}_{2} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{2} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2, C}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{2}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)-h\left(\boldsymbol{X}_{1, C}, \overrightarrow{\boldsymbol{Z}}_{1} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{1} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1, C}\right) \\
& +N \log (2 \pi e)+N \delta(N) \\
& =h\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)-h\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{2} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2, C}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{2}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)-h\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{1} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1, C}\right) \\
& +N \log (2 \pi e)+N \delta(N) \\
& =h\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)+\left[I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right)-h\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)\right]+h\left(\overrightarrow{\boldsymbol{Y}}_{2}\right) \\
& -h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+\left[I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)-h\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)\right] \\
& +h\left(\overrightarrow{\boldsymbol{Z}}_{1} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1, C}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{2} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2, C}\right)+N \log (2 \pi e)+N \delta(N) \\
& \leqslant h\left(\overrightarrow{\boldsymbol{Y}}_{1}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)+\left[I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right)-h\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)\right]+h\left(\overrightarrow{\boldsymbol{Y}}_{2}\right) \\
& -h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+\left[I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)-h\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)\right]+\left[h\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} \mid \overrightarrow{\boldsymbol{Y}}_{2}\right)\right. \\
& \left.-h\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} \mid \overrightarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2}\right)\right]+\left[h\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} \mid \overrightarrow{\boldsymbol{Y}}_{1}\right)-h\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} \mid \overrightarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1}\right)\right] \\
& +h\left(\overrightarrow{\boldsymbol{Z}}_{1} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1, C}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{2} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2, C}\right)+N \log (2 \pi e)+N \delta(N) \\
& \stackrel{(b)}{=} h\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)+I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right) \\
& -h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)-h\left(\overrightarrow{\boldsymbol{Z}}_{1}, \overrightarrow{\boldsymbol{Z}}_{2} \mid \overrightarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2}\right) \\
& -h\left(\overrightarrow{\boldsymbol{Z}}_{2}, \overrightarrow{\boldsymbol{Z}}_{1} \mid \overrightarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{1} \mid W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}, \boldsymbol{X}_{2}, \boldsymbol{X}_{1, C}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{2} \mid W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2, C}\right) \\
& +N \log (2 \pi e)+N \delta(N) \\
& \stackrel{(c)}{\leqslant} h\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)+I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right) \\
& -h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)+N \log (2 \pi e)+N \delta(N) \\
& \leqslant h\left(\overrightarrow{\boldsymbol{Y}}_{1} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{1} \mid W_{1}\right)+I\left(\boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}, W_{2}, \overleftarrow{\boldsymbol{Y}}_{2} ; W_{1}, \overleftarrow{\boldsymbol{Y}}_{1}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{2} \mid W_{2}\right)+I\left(\boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}, W_{1}, \overleftarrow{\boldsymbol{Y}}_{1} ; W_{2}, \overleftarrow{\boldsymbol{Y}}_{2}\right)+N \log (2 \pi e) \\
& +N \delta(N) \\
& \stackrel{(d)}{\leqslant} \sum_{n=1}^{N}\left[h\left(\vec{Y}_{1, n} \mid \boldsymbol{X}_{1, C}, \boldsymbol{X}_{2, U}, \overrightarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right)+h\left(X_{1, U, n} \mid X_{2, C, n}\right)+h\left(\overleftarrow{Y}_{2, n} \mid X_{2, n}, X_{1, U, n}\right)\right. \\
& \left.+h\left(\vec{Y}_{2, n} \mid \boldsymbol{X}_{2, C}, \boldsymbol{X}_{1, U} \overrightarrow{\boldsymbol{Y}}_{2,(1: n-1)}\right)+h\left(X_{2, U, n} \mid X_{1, C, n}\right)+h\left(\overleftarrow{Y}_{1, n} \mid X_{1, n}, X_{2, U, n}\right)-3 \log (2 \pi e)\right] \\
& +N \log (2 \pi e)+N \delta(N)
\end{aligned}
$$

$$
\begin{align*}
\leqslant & \sum_{n=1}^{N}\left[h\left(\vec{Y}_{1, n} \mid X_{1, C, n}, X_{2, U, n}\right)+h\left(X_{1, U, n} \mid X_{2, C, n}\right)+h\left(\overleftarrow{Y}_{2, n} \mid X_{2, n}, X_{1, U, n}\right)\right. \\
& \left.+h\left(\vec{Y}_{2, n} \mid X_{2, C, n}, X_{1, U, n}\right)+h\left(X_{2, U, n} \mid X_{1, C, n}\right)+h\left(\overleftarrow{Y}_{1, n} \mid X_{1, n}, X_{2, U, n}\right)-3 \log (2 \pi e)\right] \\
& +N \log (2 \pi e)+N \delta(N) \\
= & N\left[h\left(\vec{Y}_{1, k} \mid X_{1, C, k}, X_{2, U, k}\right)+h\left(X_{1, U, k} \mid X_{2, C, k}\right)+h\left(\overleftarrow{Y}_{2, k} \mid X_{2, k}, X_{1, U, k}\right)\right. \\
& \left.+h\left(\vec{Y}_{2, k} \mid X_{2, C, k}, X_{1, U, k}\right)+h\left(X_{2, U, k} \mid X_{1, C, k}\right)+h\left(\overleftarrow{Y}_{1, k} \mid X_{1, k}, X_{2, U, k}\right)-3 \log (2 \pi e)\right] \\
& +N \log (2 \pi e)+N \delta(N) \tag{G.7}
\end{align*}
$$

where (a) follows from Fano's inequality with $\delta: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58 (see Figure G.1p); (b) follows from the fact that $h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)$ $h\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}\right)+h\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U} \mid \overrightarrow{\boldsymbol{Y}}_{i}\right)=h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}\right) ;$ (c) follows from the fact that $h\left(\overrightarrow{\boldsymbol{Z}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{j}, \boldsymbol{X}_{i, C}\right)-h\left(\overrightarrow{\boldsymbol{Z}}_{i}, \overrightarrow{\boldsymbol{Z}}_{j} \mid \overrightarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right) \leqslant 0$; and (d) follows from Lemma 21

From G.7), the following holds in the block-length asymptotic regime for any $k \in$ $\{1,2, \ldots, N\}$:

$$
\begin{align*}
R_{1}+R_{2} \leqslant & h\left(\vec{Y}_{1, k} \mid X_{1, C, k}, X_{2, U, k}\right)+h\left(X_{1, U, k} \mid X_{2, C, k}\right)+h\left(\overleftarrow{Y}_{2, k} \mid X_{2, k}, X_{1, U, k}\right) \\
& +h\left(\vec{Y}_{2, k} \mid X_{2, C, k}, X_{1, U, k}\right)+h\left(X_{2, U, k} \mid X_{1, C, k}\right)+h\left(\overleftarrow{Y}_{1, k} \mid X_{1, k}, X_{2, U, k}\right)-2 \log (2 \pi e) \\
\leqslant & \frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(\vec{Y}_{1, k}, X_{1, C, k}, X_{2, U, k}\right)\right)\right)-\frac{1}{2} \log \left(\operatorname{INR}_{12}+1\right) \\
& +\frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(\overleftarrow{Y}_{2, k}, X_{2, k}, X_{1, U, k}\right)\right)\right)-\frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(X_{2, k}, X_{1, U, k}\right)\right)\right) \\
& +\frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(\vec{Y}_{2, k}, X_{2, C, k}, X_{1, U, k}\right)\right)\right)-\frac{1}{2} \log \left(\operatorname{INR}_{21}+1\right) \\
& +\frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(\overleftarrow{Y}_{1, k}, X_{1, k}, X_{2, U, k}\right)\right)\right)-\frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(X_{1, k}, X_{2, U, k}\right)\right)\right) \\
& +\log (2 \pi e), \tag{G.8}
\end{align*}
$$

where, for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$ the following holds for any $k \in\{1,2, \ldots, N\}$:

$$
\begin{align*}
\operatorname{det}(\operatorname{Var} & \left.\left(\vec{Y}_{j, k}, X_{j, C, k}, X_{i, U, k}\right)\right)=\overrightarrow{\operatorname{SNR}}_{j}+\mathrm{INR}_{j i}+h_{j i, U}^{2}-2 h_{j i, U} \sqrt{\mathrm{INR}_{j i}} \tag{G.9a}\\
& +\left(1-\rho^{2}\right)\left(\operatorname{INR}_{i j} \mathrm{INR}_{j i}+h_{j i, U}^{2}\left({\left.\left.\overrightarrow{\mathrm{SNR}_{j}}+\mathrm{INR}_{i j}\right)-2 h_{j i, U} \mathrm{INR}_{i j} \sqrt{\mathrm{INR}_{j i}}\right)}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}_{j}}}\left(\sqrt{\mathrm{INR}_{j i}}-h_{j i, U}\right)\right.\right.
\end{align*}
$$

The expressions in (G.9) depend on $S_{1, i}, S_{2, i}, S_{3, i}, S_{4, i}$, and $S_{5, i}$ via the parameter $h_{j i, U}$ in
G.1). Hence, the following cases are identified:

Case 1: $\left(S_{1,2} \vee S_{2,2} \vee S_{5,2}\right) \wedge\left(S_{1,1} \vee S_{2,1} \vee S_{5,1}\right)$. From (G.1), it follows that $h_{12, U}=0$ and $h_{21, U}=0$. Therefore, plugging the expression G.9) into (G.8) yields 6.6a).

Case 2: $\left(S_{1,2} \vee S_{2,2} \vee S_{5,2}\right) \wedge\left(S_{3,1} \vee S_{4,1}\right)$. From (G.1), it follows that $h_{12, U}=0$ and $h_{21, U}=\sqrt{\frac{\mathrm{INR}_{12} \mathrm{INR}_{21}}{\mathrm{SNR}_{2}}}$. Therefore, plugging the expression (G.9) into (G.8) yields (6.6b).
Case 3: $\left(S_{3,2} \vee S_{4,2}\right) \wedge\left(S_{1,1} \vee S_{2,1} \vee S_{5,1}\right)$. From (G.1), it follows that $h_{12, U}=\sqrt{\frac{\mathrm{INR}_{12} \mathrm{INR}_{21}}{\overline{\mathrm{SNR}_{1}}}}$ and $h_{21, U}=0$. Therefore, plugging the expression (G.9) into G.8 yields 6.6c).

Case 4: $\left(S_{3,2} \vee S_{4,2}\right) \wedge\left(S_{3,1} \vee S_{4,1}\right)$. From (G.1], it follows that $h_{12, U}=\sqrt{\frac{\mathrm{INR}_{122} I N R_{21}}{\mathrm{SNR}_{1}}}$ and $h_{21, U}=\sqrt{\frac{\mathrm{INR}_{12} \mathrm{INR}_{21}}{\mathrm{SNR}_{2}}}$. Therefore, plugging the expression (G.9) into (G.8) yields (6.6d).

This completes the proof of 6.9d).
Proof of 6.9e): From the assumption that the message indices W_{i} and W_{j} are i.i.d. following a uniform distribution over the sets \mathcal{W}_{i} and \mathcal{W}_{j} respectively, for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$, the following holds for any $k \in\{1,2, \ldots, N\}$:

$$
\begin{aligned}
& N(\left.2 R_{i}+R_{j}\right)=2 H\left(W_{i}\right)+H\left(W_{j}\right) \\
& \stackrel{(a)}{=} H\left(W_{i}\right)+H\left(W_{i} \mid W_{j}\right)+H\left(W_{j}\right) \\
& \stackrel{(b)}{\leqslant} \\
& I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+I\left(W_{j} ; \overrightarrow{\boldsymbol{Y}}_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+N \delta(N) \\
& \leqslant h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overleftarrow{\boldsymbol{Z}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{i}, W_{j}\right) \\
&+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)+h\left(\overleftarrow{\boldsymbol{Z}}_{j}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+N \delta(N) \\
&= h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{i}, W_{j}\right)+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right) \\
&+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{j}\right)+N \log (2 \pi e)+N \delta(N) \\
& \leqslant h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}\right)+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right) \\
&-h\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{j}\right)+N \log (2 \pi e)+N \delta(N) \\
& \stackrel{(c)}{=} h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{j, C} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}\right)+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right) \\
&-h\left(\boldsymbol{X}_{i, C} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{j}\right)+N \log (2 \pi e)+N \delta(N) \\
&= h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{j, C}, \overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j, C}\right) \\
&+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)-h\left(\boldsymbol{X}_{i, C} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{j}\right)+N \log (2 \pi e)+N \delta(N) \\
& \stackrel{(d)}{=} h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}, \boldsymbol{\boldsymbol { X } _ { j , C })}\right. \\
&+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)-h\left(\boldsymbol{X}_{i, C} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{j}\right)+N \log (2 \pi e)+N \delta(N) \\
& \leqslant h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j, C}\right) \\
&+I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i, C} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)-h\left(\boldsymbol{X}_{i, C} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+N \log (2 \pi e)+N \delta(N) \\
&= h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j, C}\right) \\
&+h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i, C} \mid W_{i}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)+N \log (2 \pi e)+N \delta(N)
\end{aligned}
$$

$$
\begin{align*}
& \stackrel{(e)}{\leqslant} h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j, C}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i, C} \mid W_{i}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)+N \log (2 \pi e) \\
& +N \delta(N) \\
& =h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j, C}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right)-h\left(\overrightarrow{\boldsymbol{Z}}_{i}, \overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right) \\
& +N \log (2 \pi e)+N \delta(N) \\
& \stackrel{(f)}{\leqslant} h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right) \\
& +N \log (2 \pi e)+N \delta(N) \\
& \leqslant h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)+I\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} ; W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)-h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)+h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid \overrightarrow{\boldsymbol{Y}}_{j}\right)+N \log (2 \pi e)+N \delta(N) \\
& \stackrel{(g)}{\underline{(g)}} h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)+I\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} ; W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \log (2 \pi e)+N \delta(N) \\
& \leqslant h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)+I\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j} ; W_{i}, \overleftarrow{\boldsymbol{Y}}_{i}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \log (2 \pi e)+N \delta(N) \\
& \stackrel{(h)}{\leqslant} h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)+\sum_{n=1}^{N}\left[h\left(X_{i, U, n} \mid X_{j, C, n}\right)+h\left(\overleftarrow{\boldsymbol{Y}}_{j, n} \mid X_{j, n}, X_{i, U, n}\right)-\frac{3}{2} \log (2 \pi e)\right] \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i, C}\right)+h\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \log (2 \pi e)+N \delta(N) \\
& \stackrel{(i)}{\leqslant} h\left(\overrightarrow{\boldsymbol{Y}}_{i}\right)+\sum_{n=1}^{N}\left[h\left(X_{i, U, n} \mid X_{j, C, n}\right)+h\left(\overleftarrow{\boldsymbol{Y}}_{j, n} \mid X_{j, n}, X_{i, U, n}\right)-\frac{3}{2} \log (2 \pi e)\right]+h\left(\overrightarrow{\boldsymbol{Y}}_{i} \mid \boldsymbol{X}_{i, C}, \boldsymbol{X}_{j}\right) \\
& +h\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+N \log (2 \pi e)+N \delta(N) \\
& \leqslant \sum_{n=1}^{N}\left[h\left(\vec{Y}_{i, n}\right)+h\left(X_{i, U, n} \mid X_{j, C, n}\right)+h\left(\overleftarrow{Y}_{j, n} \mid X_{j, n}, X_{i, U, n}\right)-\frac{3}{2} \log (2 \pi e)\right. \\
& \left.+h\left(\vec{Y}_{i, n} \mid X_{i, C, n}, X_{j, n}\right)+h\left(\vec{Y}_{j, n} \mid X_{j, C, n}, X_{i, U, n}\right)\right]+N \log (2 \pi e)+N \delta(N) \\
& =N\left[h\left(\vec{Y}_{i, k}\right)+h\left(X_{i, U, k} \mid X_{j, C, k}\right)+h\left(\overleftarrow{Y}_{j, k} \mid X_{j, k}, X_{i, U, j}\right)-\frac{5}{2} \log (2 \pi e)+h\left(\vec{Y}_{i, k} \mid X_{i, C, k}, X_{j, k}\right)\right. \\
& \left.+h\left(\vec{Y}_{j, k} \mid X_{j, C, k}, X_{i, U, k}\right)+2 \log (2 \pi e)+\delta(N)\right], \tag{G.10}
\end{align*}
$$

where, (a) follows from the fact that W_{1} and W_{2} are mutually independent; (b) follows from Fano's inequality with $\delta: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58) (see Figure G.1k); (c) follows from (2.5) and (G.2); (d) follows from (G.3); (e) follows from (2.1) and the fact that conditioning does not increase entropy (Lemma 40); (f) follows from the fact that $h\left(\overrightarrow{\boldsymbol{Z}}_{j} \mid W_{j}, \overleftarrow{\boldsymbol{Y}}_{i}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j, C}\right)-h\left(\overrightarrow{\boldsymbol{Z}}_{i}, \overrightarrow{\boldsymbol{Z}}_{j} \mid W_{i}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}, \boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right) \leqslant 0$; (g) follows from the fact that $h\left(\overrightarrow{\boldsymbol{Y}}_{j}\right)-h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)+h\left(\boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U} \mid \overrightarrow{\boldsymbol{Y}}_{j}\right)=h\left(\overrightarrow{\boldsymbol{Y}}_{j} \mid \boldsymbol{X}_{j, C}, \boldsymbol{X}_{i, U}\right)$; (h) follows from Lemma 21, and (i) follows from the fact that conditioning does not increase entropy (Lemma 40).

From G.10, the following holds in the block-length asymptotic regime for any $k \in$ $\{1,2, \ldots N\}$:

$$
\begin{align*}
2 R_{i}+R_{j} \leqslant & h\left(\vec{Y}_{i, k}\right)+h\left(X_{i, U, k} \mid X_{j, C, k}\right)+h\left(\overleftarrow{Y}_{j, k} \mid X_{j, k}, X_{i, U, k}\right)+h\left(\vec{Y}_{i, k} \mid X_{i, C, k}, X_{j, k}\right) \\
& +h\left(\vec{Y}_{j, k} \mid X_{j, C, k}, X_{i, U, k}\right)-\frac{1}{2} \log (2 \pi e) \\
\leqslant & \frac{1}{2} \log \left({\overrightarrow{\mathrm{SNR}_{i}}}_{i}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{i} \mathrm{INR}_{i j}}+\mathrm{INR}_{i j}+1\right)-\frac{1}{2} \log \left(\mathrm{INR}_{i j}+1\right) \\
& +\frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(\overleftarrow{Y}_{j, k}, X_{j, k}, X_{i, U, k}\right)\right)\right)-\frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(X_{j, k}, X_{i, U, k}\right)\right)\right) \\
& +\frac{1}{2} \log \left(1+\left(1-\rho^{2}\right)\left({\left.\left.\overrightarrow{\mathrm{SNR}_{i}}+\mathrm{INR}_{j i}\right)\right)-\frac{1}{2} \log \left(1+\left(1-\rho^{2}\right) \mathrm{INR}_{j i}\right)}+\frac{1}{2} \log \left(\operatorname{det}\left(\operatorname{Var}\left(\vec{Y}_{j, k}, X_{j, C, k}, X_{i, U, k}\right)\right)\right)+2 \log (2 \pi e) .\right.\right.
\end{align*}
$$

The outer bound on (G.11) depends on $S_{1, i}, S_{2, i}, S_{3, i}, S_{4, i}$, and $S_{5, i}$ via the parameter $h_{j i, U}$ in G.1. Hence, as in the previous part, the following cases are identified:

Case 1: $\left(S_{1, i} \vee S_{2, i} \vee S_{5, i}\right)$. From (G.1), it follows that $h_{j i, U}=0$. Therefore, plugging the expressions G.9 into G.11 yields (6.7a).

Case 2: $\left(S_{3, i} \vee S_{4, i}\right)$. From G.1), it follows that $h_{j i, U}=\sqrt{\frac{\mathrm{INR}_{i j} \mathrm{INR}_{j i}}{\mathrm{SNR}_{j}}}$. Therefore, plugging the expressions (G.9) into G.11) yields 6.7b.

This completes the proof of 6.9 e and the proof of Theorem 6.2.1.

H

Proof of Theorem 6.3.1

THIS appendix presents a proof of the Theorem 6.3.1. The gap, denoted by δ, between the sets $\overline{\mathcal{C}}$ and $\underline{\mathcal{C}}$ (Definition 6 is approximated as follows:

$$
\begin{equation*}
\delta=\max \left(\delta_{R_{1}}, \delta_{R_{2}}, \frac{\delta_{2 R}}{2}, \frac{\delta_{3 R_{1}}}{3}, \frac{\delta_{3 R_{2}}}{3}\right) \tag{H.1}
\end{equation*}
$$

where,

$$
\begin{align*}
\delta_{R_{1}}= & \min \left(\kappa_{1,1}\left(\rho^{\prime}\right), \kappa_{2,1}\left(\rho^{\prime}\right), \kappa_{3,1}\left(\rho^{\prime}\right)\right)-\min \left(a_{2,1}(\rho), a_{6,1}\left(\rho, \mu_{1}\right)+a_{3,2}\left(\rho, \mu_{1}\right),\right. \\
& \left.a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{4,2}\left(\rho, \mu_{1}\right)\right) \tag{H.2a}\\
\delta_{R_{2}}= & \min \left(\kappa_{1,2}\left(\rho^{\prime}\right), \kappa_{2,2}\left(\rho^{\prime}\right), \kappa_{3,2}\left(\rho^{\prime}\right)\right)-\min \left(a_{2,2}(\rho), a_{3,1}\left(\rho, \mu_{2}\right)+a_{6,2}\left(\rho, \mu_{2}\right),\right. \\
& \left.a_{3,1}\left(\rho, \mu_{2}\right)+a_{4,1}\left(\rho, \mu_{2}\right)+a_{1,2}\right), \tag{H.2b}\\
\delta_{2 R}= & \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right), \kappa_{6}\left(\rho^{\prime}\right)\right)-\min \left(a_{2,1}(\rho)+a_{1,2}, a_{1,1}+a_{2,2}(\rho),\right. \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right) \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right) \\
& \left.a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{1,2}\right) \tag{H.2c}\\
\delta_{3 R_{1}}= & \kappa_{7,1}\left(\rho^{\prime}\right)-\min \left(a_{2,1}(\rho)+a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right),\right. \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{1,1}+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+2 a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right), \\
& \left.a_{2,1}(\rho)+a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right)\right), \tag{H.2d}\\
\delta_{3 R_{2}}= & \kappa_{7,2}\left(\rho^{\prime}\right)-\min \left(a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{2,2}(\rho)+a_{1,2},\right. \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{2,2}(\rho)+a_{1,2} \\
& \left.2 a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{1,2}+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right)\right), \tag{H.2e}
\end{align*}
$$

where, $\rho^{\prime} \in[0,1]$ and $\left(\rho, \mu_{1}, \mu_{2}\right) \in\left[0,\left(1-\max \left(\frac{1}{\mathrm{INR}_{12}}, \frac{1}{\mathrm{INR}_{21}}\right)\right)^{+}\right] \times[0,1] \times[0,1]$.
Note that $\delta_{R_{1}}$ and $\delta_{R_{2}}$ represent the gap between the active achievable single-rate bound and the active converse single-rate bound; $\delta_{2 R}$ represents the gap between the active achievable sum-rate bound and the active converse sum-rate bound; and, $\delta_{3 R_{1}}$ and $\delta_{3 R_{2}}$ represent the gap between the active achievable weighted sum-rate bound and the active converse weighted sum-rate bound.

It is important to highlight that, as suggested in $28,47,80$, the gap between $\underline{\mathcal{C}}$ and $\overline{\mathcal{C}}$ can be calculated more precisely. However, the choice in H.1) eases the calculations at the expense of less precision. Note also that whether or not the bounds are active (achievable or converse) in either of the equalities in ($\overrightarrow{\mathrm{H} .2}$) depend on the exact values of $\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}$, $\mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{1}$, and $\overleftarrow{\mathrm{SNR}}_{2}$. Hence, a key point in order to find the gap between the achievable region and the converse region is to choose a convenient coding scheme parameters for the achievable region, i.e., the values of ρ, μ_{1}, and μ_{2}, according to the definitions in (H.2) for all $i \in\{1,2\}$. These particular coding scheme parameters are chosen such that the expressions in $\overline{H .2}$ become simpler to upper bound at the expense of a looser outer bound. These particular coding scheme parameters are different for each interference regime. The following describes all the key cases and the corresponding coding scheme parameters.

Case 1: $\mathrm{INR}_{12}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}$. This case corresponds to the scenario in which both transmitter-receiver pairs are in HIR. Three subcases follow considering the SNR in the feedback links.

Case 1.1: $\overleftarrow{S N R}_{2} \leqslant \overrightarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{1} \leqslant \overrightarrow{\mathrm{SNR}}_{2}$. In this case the coding scheme has parameters: $\rho=0, \mu_{1}=0$ and $\mu_{2}=0$.

Case 1.2: $\overleftarrow{\mathrm{SNR}}_{2}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{1}>\overrightarrow{\mathrm{SNR}}_{2}$. In this case the coding scheme has parameters: $\rho=0, \mu_{1}=1$, and $\mu_{2}=1$.

Case 1.3: $\overleftarrow{\mathrm{SNR}}_{2} \leqslant \overrightarrow{\mathrm{SNR}}_{1}$ and $\overleftarrow{\mathrm{SNR}}_{1}>\overrightarrow{\mathrm{SNR}}_{2}$. In this case the coding scheme has parameters: $\rho=0, \mu_{1}=0$, and $\mu_{2}=1$.

Case 2: $\mathrm{INR}_{12} \leqslant \overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{21} \leqslant \overrightarrow{\mathrm{SNR}}_{2}$. This case corresponds to the scenario in which both transmitter-receiver pairs are in LIR. There are twelve subcases that must be studied separately.

In the following four subcases, the achievability scheme presented above is used considering the following parameters: $\rho=0, \mu_{1}=0$, and $\mu_{2}=0$.

Case 2.1: $\overleftarrow{\mathrm{SNR}}_{1} \leqslant \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2} \leqslant \mathrm{INR}_{12}$, $\mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}$. Case 2.2: $\overleftarrow{\mathrm{SNR}}_{1} \leqslant \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21} \leqslant \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}<$ $\overrightarrow{\mathrm{SNR}}_{2}$.
$\xrightarrow{\text { Case 2.3: }} \overleftarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12} \leqslant \overrightarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2} \leqslant \mathrm{INR}_{12}, \mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}>$ $\overrightarrow{\mathrm{SNR}}_{2}$.

Case 2.4: $\overleftarrow{S N R}_{1} \mathrm{INR}_{12} \leqslant \overrightarrow{\mathrm{SNR}}_{1}, \quad \overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21} \leqslant \overrightarrow{\mathrm{SNR}}_{2}, \quad \operatorname{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{2}$.

In the following four subcases, the achievability scheme presented above is used considering the following parameters: $\rho=0, \mu_{1}=\frac{\mathrm{INR}_{21}^{2} \overleftarrow{S N R}_{2}}{\left(\mathrm{INR}_{21}-1\right)\left(\mathrm{INR}_{21} \overleftarrow{\mathrm{SNR}}_{2}+\overrightarrow{\mathrm{SNR}}_{2}\right)}$, and $\mu_{2}=\frac{\mathrm{INR}_{12}^{2} \overleftarrow{\mathrm{SNR}}_{1}}{\left(\mathrm{INR}_{12}-1\right)\left(\mathrm{INR}_{12} \overleftarrow{\mathrm{SNR}}_{1}+\overrightarrow{\mathrm{SNR}}_{1}\right)}$.

Case 2.5: $\overleftarrow{S N R}_{1}>\mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2}>\mathrm{INR}_{12}, \mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}$.

Case 2.6: $\overleftarrow{\mathrm{SNR}}_{1}>\mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}<$ $\overrightarrow{\mathrm{SNR}}_{2}$.
Case 2.7: $\overleftarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}>\overrightarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}>\mathrm{INR}_{12}, \mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}>$ $\overrightarrow{\mathrm{SNR}}_{2}$.
Case 2.8: $\overleftarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}>\overrightarrow{\mathrm{SNR}}_{1}, \quad \overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}, \quad \mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{2}$.
In the following four subcases, the achievability scheme presented above is used considering the following parameters: $\rho=0, \mu_{1}=0$, and $\mu_{2}=\frac{\mathrm{INR}_{12}^{2} \overleftarrow{S N R}_{1}}{\left(\mathrm{INR}_{12}-1\right)\left(\mathrm{INR}_{12} \overleftarrow{\mathrm{SNR}}_{1}+\overrightarrow{\mathrm{SNR}}_{1}\right)}$.

Case 2.9: $\overleftarrow{\mathrm{SNR}}_{1}>\mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2} \leqslant \mathrm{INR}_{12}, \mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}$.
Case 2.10: $\overleftarrow{\mathrm{SNR}}_{1}>\mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21} \leqslant \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}<$ $\overrightarrow{\mathrm{SNR}}_{2}$.
Case 2.11: $\overleftarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}>\overrightarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2} \leqslant \mathrm{INR}_{12}, \mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}>$ $\overrightarrow{\mathrm{SNR}}_{2}$.
Case 2.12: $\overleftarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}>\overrightarrow{\mathrm{SNR}}_{1}, \quad \overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21} \leqslant \overrightarrow{\mathrm{SNR}}_{2}, \quad \mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{2}$.

Case 3: $\mathrm{INR}_{12}>\overrightarrow{\mathrm{SNR}}_{1}$ and $\mathrm{INR}_{21} \leqslant \overrightarrow{\mathrm{SNR}}_{2}$. This case corresponds to the scenario in which transmitter-receiver pair 1 is in HIR and transmitter-receiver pair 2 is in LIR. There are four subcases that must be studied separately.
In the following two subcases, the achievability scheme presented above is used considering the following parameters: $\rho=0, \mu_{1}=0$, and $\mu_{2}=0$.
Case 3.1: $\overleftarrow{\mathrm{SNR}}_{2} \leqslant \mathrm{INR}_{12}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}$.
Case 3.2: $\overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21} \leqslant \overrightarrow{\mathrm{SNR}}_{2}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{2}$.
In the following two subcases, the achievability scheme presented above is used considering the following parameters:: $\rho=0, \mu_{1}=1$, and $\mu_{2}=0$.
Case 3.3: $\overleftarrow{\mathrm{SNR}}_{2}>\mathrm{INR}_{12}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}$.
Case 3.4: $\overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}>\overrightarrow{\mathrm{SNR}}_{2}$ and $\mathrm{INR}_{12} \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{2}$.
The following is the calculation of the gap δ in Case 1.1.

1. Calculation of $\delta_{R_{1}}$.

From H.2a) and considering the corresponding coding scheme parameters for the achievable region ($\rho=0, \mu_{1}=0$ and $\mu_{2}=0$), it follows that

$$
\begin{equation*}
\delta_{R_{1}} \leqslant \min \left(\kappa_{1,1}\left(\rho^{\prime}\right), \kappa_{2,1}\left(\rho^{\prime}\right), \kappa_{3,1}\left(\rho^{\prime}\right)\right)-\min \left(a_{6,1}(0,0), a_{1,1}+a_{4,2}(0,0)\right), \tag{H.3}
\end{equation*}
$$

where the exact value of ρ^{\prime} is chosen to provide at least an outer bound for H.3).

Note that in this case:

$$
\begin{align*}
& \kappa_{1,1}\left(\rho^{\prime}\right)=\frac{1}{2} \log \left(b_{1,1}\left(\rho^{\prime}\right)+1\right) \\
& \stackrel{(a)}{\leqslant} \frac{1}{2} \log \left({\overrightarrow{\mathrm{SNR}_{1}}}_{1}+2 \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right) \\
& \stackrel{(b)}{\leqslant} \frac{1}{2} \log \left(2{\overrightarrow{\mathrm{SNR}_{1}}}_{1}+2 \mathrm{INR}_{12}+1\right) \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2}, \tag{Н.4а}\\
& \kappa_{2,1}\left(\rho^{\prime}\right)=\frac{1}{2} \log \left(1+b_{4,1}\left(\rho^{\prime}\right)+b_{5,2}\left(\rho^{\prime}\right)\right) \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right), \tag{H.4b}\\
& \kappa_{3,1}\left(\rho^{\prime}\right)=\frac{1}{2} \log \left(b_{4,1}\left(\rho^{\prime}\right)+1\right)+\frac{1}{2} \log \left(\frac{\overleftarrow{\mathrm{SNR}}_{2}\left(b_{4,1}\left(\rho^{\prime}\right)+b_{5,2}\left(\rho^{\prime}\right)+1\right)}{\left(b_{1,2}(1)+1\right)\left(b_{4,1}\left(\rho^{\prime}\right)+1\right)}+1\right) \\
& \stackrel{(c)}{\leqslant} \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+1\right)+\frac{1}{2} \log \left(\frac{\overleftarrow{\mathrm{SNR}}_{2}\left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right)}{\left(\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1\right)\left(\overrightarrow{\mathrm{SNR}}_{1}+1\right)}+1\right) \\
& =\frac{1}{2} \log \left(\frac{\overleftarrow{\mathrm{SNR}}_{2}\left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right)}{\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1}+\overrightarrow{\mathrm{SNR}}_{1}+1\right) \text {, } \tag{H.4c}
\end{align*}
$$

where (a) follows from the fact that $0 \leqslant \rho^{\prime} \leqslant 1$; (b) follows from the fact that

$$
\begin{equation*}
\left(\sqrt{\overrightarrow{\mathrm{SNR}}_{1}}-\sqrt{\mathrm{INR}_{12}}\right)^{2} \geqslant 0 \tag{H.5}
\end{equation*}
$$

and (c) follows from the fact that $\kappa_{3,1}\left(\rho^{\prime}\right)$ is a monotonically decreasing function of ρ^{\prime}. Note also that the achievable bound $a_{1,1}+a_{4,2}(0,0)$ can be lower bounded as follows:

$$
\begin{align*}
a_{1,1}+a_{4,2}(0,0) & =\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}+2\right)+\frac{1}{2} \log \left(\mathrm{INR}_{21}+1\right)-1 \\
& \geqslant \frac{1}{2} \log \left(\frac{\mathrm{SNR}_{1}}{\mathrm{INR}_{21}}+2\right)+\frac{1}{2} \log \left(\mathrm{INR}_{21}\right)-1 \\
& =\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \mathrm{INR}_{21}\right)-1 \\
& =\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+\mathrm{INR}_{21}\right)-1 \\
& \geqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right)-1 . \tag{H.6}
\end{align*}
$$

From (H.3), H.4 and (H.6), assuming that $a_{1,1}+a_{4,2}(0,0)<a_{6,1}(0,0)$, it follows that

$$
\begin{align*}
\delta_{R_{1}} & \leqslant \min \left(\kappa_{1,1}\left(\rho^{\prime}\right), \kappa_{2,1}\left(\rho^{\prime}\right), \kappa_{3,1}(\rho)\right)-\left(a_{1,1}+a_{4,2}(0,0)\right) \\
& \leqslant \kappa_{2,1}\left(\rho^{\prime}\right)-\left(a_{1,1}+a_{4,2}(0,0)\right) \\
& \leqslant 1 \tag{H.7}
\end{align*}
$$

Now, assuming that $a_{6,1}(0,0)<a_{1,1}+a_{4,2}(0,0)$, the following holds:

$$
\begin{equation*}
\delta_{R_{1}} \leqslant \min \left(\kappa_{1,1}\left(\rho^{\prime}\right), \kappa_{2,1}\left(\rho^{\prime}\right), \kappa_{3,1}(\rho)\right)-a_{6,1}(0,0) \tag{H.8}
\end{equation*}
$$

To calculate an upper bound for (H.8), the following cases are considered:
Case 1.1.1: $\overrightarrow{\mathrm{SNR}}_{1} \geqslant \mathrm{INR}_{21} \wedge \overrightarrow{\mathrm{SNR}}_{2}<\mathrm{INR}_{12}$;
Case 1.1.2: $\overrightarrow{\mathrm{SNR}}_{1}<\mathrm{INR}_{21} \wedge \overrightarrow{\mathrm{SNR}}_{2} \geqslant \mathrm{INR}_{12}$; and
Case 1.1.3: $\overrightarrow{\mathrm{SNR}}_{1}<\mathrm{INR}_{21} \wedge \overrightarrow{\mathrm{SNR}}_{2}<\mathrm{INR}_{12}$.
In Case 1.1.1, from (H.4) and (H.8), it follows that

$$
\begin{align*}
\delta_{R_{1}} & \leqslant \kappa_{2,1}\left(\rho^{\prime}\right)-a_{6,1}(0,0) \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\overrightarrow{\mathrm{SNR}}_{1}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
& \leqslant 1 \tag{H.9}
\end{align*}
$$

In Case 1.1.2, from (H.4 and (H.8), it follows that

$$
\begin{align*}
\delta_{R_{1}} & \leqslant \kappa \kappa_{3,1}\left(\rho^{\prime}\right)-a_{6,1}(0,0) \\
& \leqslant \frac{1}{2} \log \left(\frac{\overleftarrow{\mathrm{SNR}}_{2}\left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right)}{\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1}+\overrightarrow{\mathrm{SNR}}_{1}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log \left(\overleftrightarrow{\mathrm{SNR}}_{2}+\overrightarrow{\mathrm{SNR}}_{1}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\overrightarrow{\mathrm{SNR}}_{1}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
& \leqslant 1 \tag{H.10}
\end{align*}
$$

In Case 1.1.3 two additional cases are considered:
Case 1.1.3.1: $\overrightarrow{\mathrm{SNR}}_{1} \geqslant \overrightarrow{\mathrm{SNR}}_{2}$; and
Case 1.1.3.2: $\overrightarrow{\mathrm{SNR}}_{1}<\overrightarrow{\mathrm{SNR}}_{2}$.
In Case 1.1.3.1, from (H.4) and (H.8), it follows that

$$
\begin{aligned}
\delta_{R_{1}} \leqslant & \kappa_{3,1}\left(\rho^{\prime}\right)-a_{6,1}(0,0) \\
\leqslant & \frac{1}{2} \log \left(\frac{\overleftarrow{\mathrm{SNR}}_{2}\left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right)}{\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1}+\overrightarrow{\mathrm{SNR}}_{1}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
= & \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+1\right)+\frac{1}{2} \log \left(\frac{\overleftrightarrow{\mathrm{SNR}}_{2}\left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right)}{\left(\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1\right)\left(\overrightarrow{\mathrm{SNR}}_{1}+1\right)}+1\right) \\
& -\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2}
\end{aligned}
$$

$$
\begin{align*}
& \leqslant \frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{1}\left(\mathrm{INR}_{21}+\mathrm{INR}_{21}+\mathrm{INR}_{21}\right)}{\mathrm{INR}_{21} \overrightarrow{\mathrm{SNR}}_{1}}+1\right)+\frac{1}{2} \\
& =\frac{3}{2} \tag{H.11}
\end{align*}
$$

In Case 1.1.3.2, from (H.4) and (H.8), it follows that

$$
\begin{align*}
\delta_{R_{1}} & \leqslant \kappa \kappa_{3,1}\left(\rho^{\prime}\right)-a_{6,1}(0,0) \\
& \leqslant \frac{1}{2} \log \left(\frac{\overleftarrow{\mathrm{SNR}}_{2}\left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{21}+1\right)}{\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1}+\overrightarrow{\mathrm{SNR}}_{1}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log \left(\overleftrightarrow{\mathrm{SNR}}_{2}+\overrightarrow{\mathrm{SNR}}_{1}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\overrightarrow{\mathrm{SNR}}_{1}+1\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2\right)+\frac{1}{2} \\
& \leqslant 1 \tag{H.12}
\end{align*}
$$

Then, from (H.7), (H.9), (H.10), (H.11), and (H.12), it follows that in Case 1.1:

$$
\begin{equation*}
\delta_{R_{1}} \leqslant \frac{3}{2} \tag{H.13}
\end{equation*}
$$

The same procedure holds to calculate $\delta_{R_{2}}$ and it yields:

$$
\begin{equation*}
\delta_{R_{2}} \leqslant \frac{3}{2} \tag{H.14}
\end{equation*}
$$

2. Calculation of $\delta_{2 R}$. From H.2c and considering the corresponding coding scheme parameters for the achievable region $\left(\rho=0, \mu_{1}=0\right.$ and $\left.\mu_{2}=0\right)$, it follows that

$$
\begin{align*}
\delta_{2 R} & \leqslant \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right), \kappa_{6}\left(\rho^{\prime}\right)\right)-\min \left(a_{2,1}(0)+a_{1,2}, a_{1,1}+a_{2,2}(0), a_{5,1}(0,0)+a_{5,2}(0,0)\right) \\
& \leqslant \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right)\right)-\min \left(a_{2,1}(0)+a_{1,2}, a_{1,1}+a_{2,2}(0), a_{5,1}(0,0)+a_{5,2}(0,0)\right) . \tag{H.15}
\end{align*}
$$

Note that

$$
\begin{aligned}
\kappa_{4}\left(\rho^{\prime}\right) & =\frac{1}{2} \log \left(1+\frac{b_{4,1}\left(\rho^{\prime}\right)}{1+b_{5,2}\left(\rho^{\prime}\right)}\right)+\frac{1}{2} \log \left(b_{1,2}\left(\rho^{\prime}\right)+1\right) \\
& \leqslant \frac{1}{2} \log \left(1+\frac{b_{4,1}\left(\rho^{\prime}\right)}{b_{5,2}\left(\rho^{\prime}\right)}\right)+\frac{1}{2} \log \left(b_{1,2}\left(\rho^{\prime}\right)+1\right) \\
& =\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(b_{1,2}\left(\rho^{\prime}\right)+1\right) \\
& \leqslant \frac{(h)}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(2{\left.\overrightarrow{\mathrm{SNR}_{2}}+2 \mathrm{INR}_{21}+1\right)}\right.
\end{aligned}
$$

$$
\begin{align*}
& \leqslant \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1\right)+\frac{1}{2} \text { and } \tag{H.16a}\\
& \kappa_{5}\left(\rho^{\prime}\right)=\frac{1}{2} \log \left(1+\frac{b_{4,2}\left(\rho^{\prime}\right)}{1+b_{5,1}\left(\rho^{\prime}\right)}\right)+\frac{1}{2} \log \left(b_{1,1}\left(\rho^{\prime}\right)+1\right) \\
& \leqslant \frac{1}{2} \log \left(1+\frac{b_{4,2}\left(\rho^{\prime}\right)}{b_{5,1}\left(\rho^{\prime}\right)}\right)+\frac{1}{2} \log \left(b_{1,1}\left(\rho^{\prime}\right)+1\right) \\
& =\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(b_{1,1}\left(\rho^{\prime}\right)+1\right) \\
& \stackrel{(i)}{\leqslant} \frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(2 \overrightarrow{\mathrm{SNR}}_{1}+2 \mathrm{INR}_{12}+1\right) \\
& \leqslant \frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \text {, } \tag{H.16b}
\end{align*}
$$

where (h) follows from the fact that

$$
\begin{equation*}
\left(\sqrt{\overrightarrow{\mathrm{SNR}}_{2}}-\sqrt{\mathrm{INR}_{21}}\right)^{2} \geqslant 0 \tag{H.17}
\end{equation*}
$$

and (i) follows from the fact that

$$
\begin{equation*}
\left(\sqrt{\overline{\mathrm{SNR}}_{1}}-\sqrt{\mathrm{INR}_{12}}\right)^{2} \geqslant 0 \tag{H.18}
\end{equation*}
$$

From H.15 and H.16), assuming that $a_{2,1}(0)+a_{1,2}<\min \left(a_{1,1}+a_{2,2}(0), a_{5,1}(0,0)+\right.$ $\left.a_{5,2}(0,0)\right)$, it follows that

$$
\begin{align*}
\delta_{2 R} & \leqslant \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right)\right)-\left(a_{2,1}(0)+a_{1,2}\right) \\
& \leqslant \kappa_{5}\left(\rho^{\prime}\right)-\left(a_{2,1}(0)+a_{1,2}\right) \\
& \leqslant \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2}-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right) \\
& -\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}+2\right)+1 \\
& =\frac{3}{2} . \tag{H.19}
\end{align*}
$$

From H.15) and H.16), assuming that $a_{1,1}+a_{2,2}(0)<\min \left(a_{2,1}(0)+a_{1,2}, a_{5,1}(0,0)+\right.$ $\left.a_{5,2}(0,0)\right)$, it follows that

$$
\delta_{2 R} \leqslant \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right)\right)-\left(a_{1,1}+a_{2,2}(0)\right)
$$

$$
\begin{align*}
\leqslant & \kappa_{4}\left(\rho^{\prime}\right)-\left(a_{1,1}+a_{2,2}(0)\right) \\
\leqslant & \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1\right)+\frac{1}{2}-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1\right) \\
& -\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}+2\right)+1 \\
= & \frac{3}{2} . \tag{H.20}
\end{align*}
$$

Now, assume that $a_{5,1}(0,0)+a_{5,2}(0,0)<\min \left(a_{2,1}(0)+a_{1,2}, a_{1,1}+a_{2,2}(0)\right)$. In this case, the following holds:

$$
\begin{equation*}
\delta_{2 R} \leqslant \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right)\right)-\left(a_{5,1}(0,0)+a_{5,2}(0,0)\right) . \tag{H.21}
\end{equation*}
$$

To calculate an upper bound for (H.21), the cases 1.1.1-1.1.3 defined above are analyzed hereunder.

In Case 1.1.1, $a_{5,1}(0,0)+a_{5,2}(0,0)$ can be lower bounded as follows:

$$
\begin{align*}
a_{5,1}(0,0)+a_{5,2}(0,0) & =\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}+\mathrm{INR}_{21}+1\right)-1 \\
& \geqslant \frac{1}{2} \log \left(\mathrm{INR}_{12}+1\right)-1 . \tag{H.22}
\end{align*}
$$

From (H.16), (H.21), and H.22), it follows that

$$
\begin{align*}
& \delta_{2 R} \leqslant \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right)\right)-\left(a_{5,1}(0,0)+a_{5,2}(0,0)\right) \\
& \leqslant \kappa_{5}\left(\rho^{\prime}\right)-\left(a_{5,1}(0,0)+a_{5,2}(0,0)\right) \\
& \leqslant \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2}-\frac{1}{2} \log \left(\mathrm{INR}_{12}+1\right)+1 \\
& \leqslant \frac{1}{2} \log (2+1)+\frac{1}{2} \log \left(\mathrm{INR}_{12}+\mathrm{INR}_{12}+1\right)-\frac{1}{2} \log \left(\mathrm{INR}_{12}+1\right)+\frac{3}{2} \\
& \leqslant \frac{1}{2} \log (3)+2 . \tag{H.23}
\end{align*}
$$

In Case 1.1.2, $a_{5,1}(0,0)+a_{5,2}(0,0)$ can be lower bounded as follows:

$$
\begin{align*}
a_{5,1}(0,0)+a_{5,2}(0,0) & =\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}+\mathrm{INR}_{21}+1\right)-1 \\
& \geqslant \frac{1}{2} \log \left(\mathrm{INR}_{21}+1\right)-1 . \tag{H.24}
\end{align*}
$$

From (H.16), (H.21), and (H.24), it follows that

$$
\begin{align*}
\delta_{2 R} & \leqslant \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right)\right)-\left(a_{5,1}(0,0)+a_{5,2}(0,0)\right) \\
& \leqslant \kappa_{4}\left(\rho^{\prime}\right)-\left(a_{5,1}(0,0)+a_{5,2}(0,0)\right) \\
& \leqslant \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1\right)+\frac{1}{2}-\frac{1}{2} \log \left(\mathrm{INR}_{21}+1\right)+1 \\
& \leqslant \frac{1}{2} \log (2+1)+\frac{1}{2} \log \left(\mathrm{INR}_{21}+\mathrm{INR}_{21}+1\right)-\frac{1}{2} \log \left(\mathrm{INR}_{21}+1\right)+\frac{3}{2} \\
& \leqslant \frac{1}{2} \log (3)+2 \tag{H.25}
\end{align*}
$$

In Case 1.1.3, from H.16, H.21, and H.22, it follows that

$$
\begin{align*}
\delta_{2 R} & \leqslant \min \left(\kappa_{4}\left(\rho^{\prime}\right), \kappa_{5}\left(\rho^{\prime}\right)\right)-\left(a_{5,1}(0,0)+a_{5,2}(0,0)\right) \\
\leqslant & \kappa_{5}\left(\rho^{\prime}\right)-\left(a_{5,1}(0,0)+a_{5,2}(0,0)\right) \\
\leqslant & \frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}_{2}}}{\mathrm{INR}_{12}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2}-\frac{1}{2} \log \left(\mathrm{INR}_{12}+1\right)+1 \\
\leqslant & \frac{1}{2} \log (2+1)+\frac{1}{2} \log \left(\mathrm{INR}_{12}+\mathrm{INR}_{12}+1\right) \\
& -\frac{1}{2} \log \left(\mathrm{INR}_{12}+1\right)+\frac{3}{2} \\
\leqslant & \frac{1}{2} \log (3)+2 \tag{H.26}
\end{align*}
$$

Then, from (H.19), (H.20), (H.23), (H.25), and (H.26), it follows that in Case 1.1:

$$
\begin{equation*}
\delta_{2 R} \leqslant 2+\frac{1}{2} \log (3) . \tag{Н.27}
\end{equation*}
$$

3. Calculation of $\delta_{3 R_{1}}$. From (H.2d) and considering the corresponding coding scheme parameters for the achievable region $\left(\rho=0, \mu_{1}=0\right.$ and $\left.\mu_{2}=0\right)$, it follows that

$$
\begin{equation*}
\delta_{3 R_{1}} \leqslant \kappa_{7,1}\left(\rho^{\prime}\right)-\left(a_{1,1}+a_{7,1}(0,0,0)+a_{5,2}(0,0)\right) \tag{H.28}
\end{equation*}
$$

The sum $a_{1,1}+a_{7,1}(0,0,0)+a_{5,2}(0,0)$ can be lower bounded as follows:

$$
\begin{align*}
a_{1,1}+a_{7,1}(0,0,0)+a_{5,2}(0,0)= & \frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}+2\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right) \\
& +\frac{1}{2} \log \left(\frac{\mathrm{SNR}_{2}}{\mathrm{INR}_{12}}+\mathrm{INR}_{21}+1\right)-\frac{3}{2} \\
\geqslant & \frac{1}{2} \log \left(\frac{\mathrm{SNR}_{1}}{\mathrm{INR}_{21}}+2\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right) \\
& +\frac{1}{2} \log \left(\mathrm{INR}_{21}+1\right)-\frac{3}{2} \tag{H.29}
\end{align*}
$$

If the term $\kappa_{7,1}\left(\rho^{\prime}\right)$ is active in the converse region, this can be upper bounded by the sum $\kappa_{1,1}\left(\rho^{\prime}\right)+\kappa_{4}\left(\rho^{\prime}\right)$, which corresponds to the sum of the single rate and sum-rate outer bounds respectively, and this can be upper bounded as follows:

$$
\begin{align*}
\kappa_{7,1}\left(\rho^{\prime}\right) & \leqslant \kappa_{1,1}\left(\rho^{\prime}\right)+\kappa_{4}\left(\rho^{\prime}\right) \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+\mathrm{INR}_{21}+1\right)+1 \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(\mathrm{INR}_{21}+\mathrm{INR}_{21}+1\right)+1 \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(\mathrm{INR}_{21}+1\right)+\frac{3}{2} . \tag{H.30}
\end{align*}
$$

From (H.28), H.29) and (H.30), it follows that in Case 1.1:

$$
\begin{align*}
\delta_{3 R_{1}} \leqslant & \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \log \left(2+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{\mathrm{INR}_{21}}\right)+\frac{1}{2} \log \left(\mathrm{INR}_{21}+1\right)+\frac{3}{2} \\
& -\frac{1}{2} \log \left(\frac{\mathrm{SNR}_{1}}{\mathrm{INR}_{21}}+2\right)-\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1\right)-\frac{1}{2} \log \left(\mathrm{INR}_{21}+1\right)+\frac{3}{2} \\
& =3 \tag{H.31}
\end{align*}
$$

The same procedure holds in the calculation of $\delta_{3 R_{2}}$ and it yields:

$$
\begin{equation*}
\delta_{3 R_{2}} \leqslant 3 \tag{H.32}
\end{equation*}
$$

Therefore, in Case 1.1, from (H.1), (H.14), (H.13), H.27, H.31) and (H.32) it follows that

$$
\begin{equation*}
\delta=\max \left(\delta_{R_{1}}, \delta_{R_{2}}, \frac{\delta_{2 R}}{2}, \frac{\delta_{3 R_{1}}}{3}, \frac{\delta_{3 R_{2}}}{3}\right) \leqslant \frac{3}{2} \tag{H.33}
\end{equation*}
$$

This completes the calculation of the gap in Case 1.1. Applying the same procedure to all the other cases listed above yields that $\delta \leqslant 4.4$ bits.

I

Proof of Theorem 7.1.1

To prove Theorem 7.1.1. the first step is to show that a rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$, with $R_{i}<L_{i}$ or $R_{i}>U_{i}$ for at least one $i \in\{1,2\}$, is not achievable at an η-NE for all $\eta>0$. That is,

$$
\begin{equation*}
\mathcal{N}_{\eta} \subseteq \mathcal{C} \cap \mathcal{B}_{\eta} \tag{I.1}
\end{equation*}
$$

The second step is to show that any point in $\mathcal{C} \cap \mathcal{B}_{\eta}$ can be achievable at an η-NE for all $\eta>0$. That is,

$$
\begin{equation*}
\mathcal{N}_{\eta} \supseteq \mathcal{C} \cap \mathcal{B}_{\eta} \tag{I.2}
\end{equation*}
$$

This proves Theorem 7.1.1.
Proof of (I.1): The proof of (I.1) is completed by the following lemmas.
Lemma 22. A rate pair $\left(R_{1}, R_{2}\right) \in \mathcal{C}$, with either $R_{1}<L_{1}$ or $R_{2}<L_{2}$ is not achievable at an η-NE for all $\eta>0$.

Proof: Let $\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{2}$ be an η-NE transmit-receive configuration pair such that $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{2}$, respectively. Assume, without loss of generality, that $R_{1}<L_{1}$. Let $s_{1}^{\prime} \in \mathcal{A}_{1}$ be a transmit receive configuration in which transmitter 1 uses its $\left(\vec{n}_{11}-n_{12}\right)^{+}$most significant bit-pipes, which are interference free, to transmit new bits at each channel use n. Hence, it achieves a rate $R_{1}\left(s_{1}^{\prime}, s_{2}^{*}\right) \geqslant\left(\vec{n}_{11}-n_{12}\right)^{+}$and thus, a utility improvement of at least η bits per channel use is always possible, i.e., $R_{1}\left(s_{1}^{\prime}, s_{2}^{*}\right)-R_{1}>\eta$, independently of the current transmit-receive configuration s_{2}^{*} of user 2 . This implies that the transmit-receive configuration pair $\left(s_{1}^{*}, s_{2}^{*}\right)$ is not an η-NE, which contradicts the initial assumption. This proves that if $\left(s_{1}^{*}, s_{2}^{*}\right)$ is an η-NE, then $R_{1} \geqslant L_{1}$ and $R_{2} \geqslant L_{2}$. This completes the proof.

Lemma 23. A rate pair $\left(R_{1}, R_{2}\right) \in \mathcal{C}$, with either $R_{1}>U_{1}$ or $R_{2}>U_{2}$ is not achievable at an η-NE for all $\eta>0$.

Proof: Let $\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{2}$ be an η-NE transmit-receive configuration pair such that $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{2}$, respectively. Hence, the following holds for transmitterreceiver i :

$$
\begin{align*}
& N R_{i}=H\left(W_{i}\right) \\
& \quad \stackrel{(a)}{=} H\left(W_{i} \mid \Omega_{i}\right) \\
& \quad \stackrel{(b)}{\leqslant} I\left(W_{i} ; \overrightarrow{\boldsymbol{Y}}_{i} \mid \Omega_{i}\right)+N \delta_{i}(N), \tag{I.3}
\end{align*}
$$

where, (a) follows from the independence between the indices W_{i} and Ω_{i}; and (b) follows from Fano's inequality, as the rate R_{i} is achievable from the assumptions of the lemma, with $\delta_{i}: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function for all $i \in\{1,2\}$ (Lemma 58). In particular, for transmitter-receiver pair 1 in (I.3), the following holds:

$$
\begin{equation*}
N R_{1} \stackrel{(c)}{\leqslant} N \max \left(\vec{n}_{11}, n_{12}\right)-\sum_{n=1}^{N} H\left(\overrightarrow{\boldsymbol{Y}}_{1, n} \mid \Omega_{1}, W_{1}, \overrightarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right)+N \delta_{1}(N), \tag{I.4}
\end{equation*}
$$

where, (c) follows from $H\left(\overrightarrow{\boldsymbol{Y}}_{1, n} \mid \Omega_{1}, \overrightarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right) \leqslant H\left(\overrightarrow{\boldsymbol{Y}}_{1, n}\right) \leqslant \max \left(\vec{n}_{11}, n_{12}\right)$, for all $n \in$ $\{1,2, \ldots, N\}$. Note that $\boldsymbol{X}_{1, n}=f_{1, n}^{(N)}\left(W_{1}, \Omega_{1}, \overleftarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right)$ from the definition of the encoding function in (??). Moreover, for all $n \in\{1,2, \ldots, N\}$, the channel input $\boldsymbol{X}_{i, n}$ can be written as

$$
\begin{equation*}
\boldsymbol{X}_{i, n}=\left(\boldsymbol{X}_{i, C, n}, \boldsymbol{X}_{i, D, n}, \boldsymbol{X}_{i, P, n}, \boldsymbol{X}_{i, Q, n}\right), \tag{I.5}
\end{equation*}
$$

where for all $i \in\{1,2\}$, the vector $\boldsymbol{X}_{i, C, n}$ represents the bits of $\boldsymbol{X}_{i, n}$ that are observed by both receivers, i.e.,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, C, n}=\min \left(\vec{n}_{i i}, n_{j i}\right) ; \tag{I.6}
\end{equation*}
$$

the vector $\boldsymbol{X}_{i, P, n}$ represents the bits of $\boldsymbol{X}_{i, n}$ that are exclusively observed by receiver i, i.e.,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, P, n}=\left(\vec{n}_{i i}-n_{j i}\right)^{+} ; \tag{I.7}
\end{equation*}
$$

the vector $\boldsymbol{X}_{i, D, n}$ represents the bits of $\boldsymbol{X}_{i, n}$ that are exclusively observed at receiver j, i.e.,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, D, n}=\left(n_{j i}-\vec{n}_{i i}\right)^{+} ; \tag{I.8}
\end{equation*}
$$

finally, $\boldsymbol{X}_{i, Q, n}=(0, \ldots, 0)^{\top}$ is included for dimensional matching of the model in 2.26, i.e.,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, Q, n}=q-\max \left(\vec{n}_{i i}, n_{j i}\right) . \tag{I.9}
\end{equation*}
$$

Using this notation, the following holds from (I.4):

$$
\begin{align*}
R_{1} & \leqslant \max \left(\vec{n}_{11}, n_{12}\right)-\frac{1}{N} \sum_{n=1}^{N} H\left(\boldsymbol{X}_{2, C, n}, \boldsymbol{X}_{2, D, n} \mid \Omega_{1}, W_{1}, \overrightarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right)+\delta_{1}(N) \tag{I.10}\\
& =\max \left(\vec{n}_{11}, n_{12}\right)-H\left(\widetilde{\boldsymbol{X}}_{2, C, n}, \widetilde{\boldsymbol{X}}_{2, D, n}\right)+\delta_{1}(N), \text { for any } n \in\{1,2, \ldots, N\} \tag{I.11}
\end{align*}
$$

where $\widetilde{\boldsymbol{X}}_{2, C}=\left(\widetilde{\boldsymbol{X}}_{2, C, 1}, \widetilde{\boldsymbol{X}}_{2, C, 2}, \ldots, \widetilde{\boldsymbol{X}}_{2, C, N}\right)$ and $\widetilde{\boldsymbol{X}}_{2, D}=\left(\widetilde{\boldsymbol{X}}_{2, D, 1}, \widetilde{\boldsymbol{X}}_{2, D, 2}, \ldots, \widetilde{\boldsymbol{X}}_{2, D, N}\right)$; and for all $n \in\{1,2, \ldots, N\}, \widetilde{\boldsymbol{X}}_{2, C, n}$ and $\widetilde{\boldsymbol{X}}_{2, D, n}$ are respectively the bits in $\boldsymbol{X}_{2, C, n}$ and $\boldsymbol{X}_{2, D, n}$ that are independent of W_{1}, Ω_{1}, and $\overrightarrow{\boldsymbol{Y}}_{1,(1: n-1)}$. That is, the bits other than those depending on bits previously transmitted by transmitter 1 . The inequality in (I.11) follows from the signal construction in (2.25).

$$
\text { For all } i \in\{1,2\} \text {, let } \boldsymbol{X}_{i, C, n}=\left(\boldsymbol{X}_{i, C 1, n}^{\top}, \boldsymbol{X}_{i, C 2, n}^{\top}\right)^{\top} \text { be such that } \boldsymbol{X}_{i, C 1, n} \text { satisfies: }
$$

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, C 1, n}=\left(\min \left(\left(\vec{n}_{i i}-n_{i j}\right)^{+}, n_{j i}\right)-\left(\min \left(\left(\vec{n}_{i i}-n_{j i}\right)^{+}, n_{i j}\right)-\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right)^{+}\right)^{+} . \tag{I.12}
\end{equation*}
$$

The dimension of $\boldsymbol{X}_{i, C 1, n}$ is chosen as the non-negative difference between two values: (a) All the bits in $\boldsymbol{X}_{i, C, n}$ that are observed at both receivers and the observation at receiver i is interference-free, i.e., $\min \left(\left(\vec{n}_{i i}-n_{i j}\right)^{+}, n_{j i}\right)$; and (b) the number of bits in $\boldsymbol{X}_{i, n}$ that are only observed at receiver i, interfered by transmitter j, and can be sent via feedback from receiver i to transmitter i, i.e., $\left(\min \left(\left(\vec{n}_{i i}-n_{j i}\right)^{+}, n_{i j}\right)-\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right)^{+}$. The vector $\boldsymbol{X}_{i, C 2, n}$ contains the bits in $\boldsymbol{X}_{i, C, n}$ that are not in $\boldsymbol{X}_{i, C 1, n}$. That is,

$$
\begin{equation*}
\operatorname{dim} \boldsymbol{X}_{i, C 2, n}=\min \left(\vec{n}_{i i}, n_{j i}\right)-\operatorname{dim} \boldsymbol{X}_{i, C 1, n} . \tag{I.13}
\end{equation*}
$$

For $i=2, \boldsymbol{X}_{i, C 1, n}$ satisfies:
$\operatorname{dim} \boldsymbol{X}_{2, C 1, n}=\left(\min \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}\right)-\left(\min \left(\left(\vec{n}_{22}-n_{12}\right)^{+}, n_{21}\right)-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)^{+}\right)^{+}$.

Consider a set of events (Boolean variables) that are determined by the parameters $\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}$, and \overleftarrow{n}_{22}. Given a fixed tuple ($\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{2}$), the events are defined below:

$$
\begin{array}{ll}
C_{1,2}: & n_{21}<\vec{n}_{22} \leqslant n_{12}, \\
C_{2,2}: & \max \left(n_{12}, n_{21}, \overleftarrow{n}_{22}\right)<\vec{n}_{22}<n_{12}+n_{21}, \\
C_{3,2}: & \overleftarrow{n}_{22} \leqslant n_{12}, \\
C_{4,2}: & n_{21}<n_{12}<\vec{n}_{22} \leqslant \overleftarrow{n}_{22}, \\
C_{5,2}: & \vec{n}_{22}>\max \left(n_{12}, n_{21}, \overleftarrow{n}_{22}\right), \\
C_{6,2}: & \vec{n}_{22} \geqslant \max \left(n_{12}+n_{21}, \overleftarrow{n}_{22}+n_{21}\right), \\
C_{7,2}: & \max \left(n_{12}, n_{21}, \overleftarrow{n}_{22}, \overleftarrow{n}_{22}+n_{21}-n_{12}\right)<\vec{n}_{22}<\overleftarrow{n}_{22}+n_{21} \leqslant \overleftarrow{n}_{22}+\vec{n}_{22}-n_{12}, \tag{I.15g}\\
& \\
C_{8,2}: & \max \left(n_{12}, n_{21}, \overleftarrow{n}_{22}, \overleftarrow{n}_{22}+n_{21}-n_{12}\right)<\vec{n}_{22}<n_{12}+n_{21}<\overleftarrow{n}_{22}+n_{21} .
\end{array}
$$

Then, the following holds:

$$
\operatorname{dim} \boldsymbol{X}_{2, C 1, n}=\left\{\begin{array}{cll}
\vec{n}_{22}-n_{21} & \text { if } & C_{1,2} \vee\left(C_{2,2} \wedge C_{3,2}\right) \text { holds true } \tag{I.16}\\
n_{12}-n_{21} & \text { if } & C_{4,2} \text { holds true } \\
n_{12} & \text { if } & C_{5,2} \wedge C_{6,2} \text { holds true } \\
\vec{n}_{22}+\overleftarrow{n}_{12}-\overleftarrow{n}_{22}-n_{21} & \text { if } & C_{7,2} \vee C_{8,2} \text { holds true } \\
0 & & \text { otherwise. }
\end{array}\right.
$$

The following step is to obtain a lower bound for $H\left(\widetilde{\boldsymbol{X}}_{2, C, n}, \widetilde{\boldsymbol{X}}_{2, D, n}\right)$ at an η-NE. From (I.3) the following inequality holds for transmitter-receiver pair 2:

$$
\begin{align*}
& N R_{2} \leqslant I\left(W_{2} ; \overrightarrow{\boldsymbol{Y}}_{2} \mid \Omega_{2}\right)+N \delta_{2}(N) \\
&= \sum_{n=1}^{N}\left(H\left(\overrightarrow{\boldsymbol{Y}}_{2, n} \mid \Omega_{1}, \overrightarrow{\boldsymbol{Y}}_{2,(1: n-1)}\right)-H\left(\overrightarrow{\boldsymbol{Y}}_{2, n} \mid W_{2, \Omega_{1}}, \overrightarrow{\boldsymbol{Y}}_{2,(1: n-1)}\right)\right)+N \delta_{2}(N) \\
& \leqslant \sum_{n=1}^{N}\left(H\left(\overrightarrow{\boldsymbol{Y}}_{2, n}\right)-H\left(\overrightarrow{\boldsymbol{Y}}_{2, n} \mid W_{2}, \Omega_{2}, \overrightarrow{\boldsymbol{Y}}_{2,(1: n-1)}\right)\right)+N \delta_{2}(N) \\
& \stackrel{(d)}{=} \sum_{n=1}^{N}\left(H\left(\overrightarrow{\boldsymbol{Y}}_{2, n}\right)-H\left(\overrightarrow{\boldsymbol{Y}}_{2, n} \mid \boldsymbol{X}_{2, n}\right)\right)+N \delta_{2}(N) \\
&= \sum_{n=1}^{N} I\left(\overrightarrow{\boldsymbol{Y}}_{2, n} ; \boldsymbol{X}_{2, n}\right)+N \delta_{2}(N) \\
&= \sum_{n=1}^{N} I\left(\overrightarrow{\boldsymbol{Y}}_{2, n} ; \boldsymbol{X}_{2, C 1, n}, \boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n}, \boldsymbol{X}_{2, D, n}\right)+N \delta_{2}(N) \\
&= \sum_{n=1}^{N}\left(I\left(\overrightarrow{\boldsymbol{Y}}_{2, n} ; \boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n}, \boldsymbol{X}_{2, D, n}\right)\right. \\
&\left.+I\left(\overrightarrow{\boldsymbol{Y}}_{2, n} ; \boldsymbol{X}_{2, C 1, n} \mid \boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n}, \boldsymbol{X}_{2, D, n}\right)\right)+N \delta_{2}(N) \\
&= \sum_{n=1}^{N}\left(I\left(\overrightarrow{\boldsymbol{Y}}_{2, n} ; \boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n}, \boldsymbol{X}_{2, D, n}\right)+H\left(\boldsymbol{X}_{2, C 1, n} \mid \boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n}, \boldsymbol{X}_{2, D, n}\right)\right) \\
&+N \delta_{2}(N) \\
&= \sum_{n=1}^{N}\left(I\left(\overrightarrow{\boldsymbol{Y}}_{2, n} ; \boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n}, \boldsymbol{X}_{2, D, n}\right)+H\left(\boldsymbol{X}_{2, C 1, n}\right)\right)+N \delta_{2}(N), \tag{I.17}
\end{align*}
$$

where, (d) follows from the fact that $\boldsymbol{X}_{i, n}=f_{i, n}^{(N)}\left(W_{i}, \Omega_{i}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)}\right)$ from the definition of the encoding function and $W_{i}, \Omega_{i}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)} \rightarrow X_{i, n} \rightarrow \vec{Y}_{i, n}$.

Let $\varphi: \mathrm{N} \rightarrow \mathrm{R}^{+}$be a monotonically decreasing function such that (I.17) holds with equality, i.e., ,

It holds from (I.17) that

$$
\begin{equation*}
R_{2}=I\left(\overrightarrow{\boldsymbol{Y}}_{2, n} ; \boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n}, \boldsymbol{X}_{2, D, n}\right)+H\left(\boldsymbol{X}_{2, C 1, n}\right)+\varphi(N) . \tag{I.18}
\end{equation*}
$$

Assume now that there exists another transmit-receive configuration for receiver-transmitter
pair 2 and denote it by s_{2}^{\prime}. Assume also that using s_{2}^{\prime}, for all $n \in\{1,2, \ldots, N\}$, transmitterreceiver pair 2 continues to generate the symbols $\boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n}$, and $\boldsymbol{X}_{2, D, n}$ as with the equilibrium transmit-receive configuration s_{2}^{*}. Alternatively, for all $n \in\{1,2, \ldots, N\}$, the bits $\boldsymbol{X}_{2, C 1, n}$ are generated at maximum entropy and independently of any other symbol previously transmitted by any transmitter. More specifically, the bits $\boldsymbol{X}_{2, C 1, n}$ are used to send new information bits at each channel use n, i.e.,

$$
\begin{equation*}
R_{2}\left(s_{1}^{*}, s_{2}^{\prime}\right) \leqslant I\left(\boldsymbol{X}_{2, C 2, n}, \boldsymbol{X}_{2, P, n} ; \overrightarrow{\boldsymbol{Y}}_{2, n}\right)+\operatorname{dim} \boldsymbol{X}_{2, C 1, n}+\delta_{2}^{\prime}(N), \tag{I.19}
\end{equation*}
$$

with $\delta_{2}^{\prime}: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function. From Definition 4 it follows that $R_{2}\left(s_{1}^{*}, s_{2}^{\prime}\right)-R_{2} \leqslant \eta$. Hence, from (I.18) and (I.19), it follows that

$$
\begin{equation*}
H\left(\boldsymbol{X}_{2, C 1, n}\right) \geqslant \operatorname{dim} \boldsymbol{X}_{2, C 1, n}-\eta-\varphi(N)+\delta_{2}^{\prime}(N) . \tag{I.20}
\end{equation*}
$$

Note that for a finite N, can be satisfied only if $\eta>-\varphi(N)+\delta_{2}^{\prime}(N)$. This suggests that in the block-length asymptotic regime and η arbitrarily small at an η-NE, the bits $\boldsymbol{X}_{2, C 1, n}$ are used at maximum entropy. Note also that from the definition of $\widetilde{\boldsymbol{X}}_{2, C, n}$, it follows that the bits $\boldsymbol{X}_{2, C 1, n}$ are contained into $\widetilde{\boldsymbol{X}}_{2, C, n}$ and thus, it follows that

$$
\begin{align*}
H\left(\widetilde{\boldsymbol{X}}_{2, C, n}, \widetilde{\boldsymbol{X}}_{2, D, n}\right) & \geqslant H\left(\widetilde{\boldsymbol{X}}_{2, C, n}\right) \\
& \geqslant H\left(\boldsymbol{X}_{2, C 1, n}\right) \\
& \geqslant \operatorname{dim} \boldsymbol{X}_{2, C 1, n}-\eta-\varphi(N)+\delta_{2}^{\prime}(N) . \tag{I.21}
\end{align*}
$$

Plugging (I.12) and (I.21) into (I.11), it follows that at an η-NE,

$$
\begin{align*}
R_{1} \leqslant & \max \left(\vec{n}_{11}, n_{12}\right) \\
& -\left(\min \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}\right)-\left(\min \left(\left(\vec{n}_{22}-n_{12}\right)^{+}, n_{21}\right)-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)^{+}\right)^{+} \\
& +\eta+\varphi(N)-\delta_{2}^{\prime}(N), \tag{I.22}
\end{align*}
$$

which proves, in the block-length asymptotic regime and for all $\eta>0$, that

$$
\begin{aligned}
& U_{1} \leqslant \max \left(\vec{n}_{11}, n_{12}\right) \\
& \quad-\left(\min \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}\right)-\left(\min \left(\left(\vec{n}_{22}-n_{12}\right)^{+}, n_{21}\right)-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)^{+}\right)^{+}+\eta,
\end{aligned}
$$

and this completes the proof of Lemma 23.

Proof of (I.2): To continue with the second part of the proof of Theorem 7.1.1, consider a modification of the coding scheme with noisy feedback presented in the centralized part (Part II). The novelty consists in allowing users to introduce common randomness as suggested in [13, 60 .
Consider without any loss of generality that $N=N_{1}=N_{2}$. Let $W_{i}^{(t)} \in\left\{1,2, \ldots, 2^{N R_{i}}\right\}$ and $\Omega_{i}^{(t)} \in\left\{1,2, \ldots, 2^{N R_{i, R}}\right\}$ denote the message index and the random message index sent
by transmitter i during the t-th block, with $t \in\{1,2, \ldots, T\}$, respectively. Following a ratesplitting argument, assume that $\left(W_{i}^{(t)}, \Omega_{i}^{(t)}\right)$ is represented by the indices $\left(W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}, W_{i, C 2}^{(t)}\right.$, $\left.\Omega_{i, R 2}^{(t)}, W_{i, P}^{(t)}\right) \in\left\{1,2, \ldots, 2^{N R_{i, C 1}}\right\} \times\left\{1,2, \ldots, 2^{N R_{i, R 1}}\right\} \times\left\{1,2, \ldots, 2^{N R_{i, C 2}}\right\} \times\left\{1,2, \ldots, 2^{N R_{i, R 2}}\right\} \times$ $\left\{1,2, \ldots, 2^{N R_{i, P}}\right\}$, where $R_{i}=R_{i, C 1}+R_{i, C 2}+R_{i, P}$ and $R_{i, R}=R_{i, R 1}+R_{i, R 2}$. The rate $R_{i, R}$ is the number of transmitted bits that are known by both transmitter i and receiver i per channel use, and thus it does not have an impact on the information rate R_{i}.

The codeword generation follows a four-level superposition coding scheme. The indices $W_{i, C 1}^{(t-1)}$ and $\Omega_{i, R 1}^{(t-1)}$ are assumed to be decoded at transmitter j via the feedback link of transmitter-receiver pair j at the end of the transmission of block $t-1$. Therefore, at the beginning of block t, each transmitter possesses the knowledge of the indices $W_{1, C 1}^{(t-1)}$, $\Omega_{1, R 1}^{(t-1)}, W_{2, C 1}^{(t-1)}$ and $\Omega_{2, R 1}^{(t-1)}$. In the case of the first block $t=1$, the indices $W_{1, C 1}^{(0)}, \Omega_{1, R 1}^{(0)}$, $W_{2, C 1}^{(0)}$ and $\Omega_{1, R 2}^{(0)}$ are assumed to be known by all transmitters and receivers. Using these indices, both transmitters are able to identify the same codeword in the first code-layer. This first code-layer, which is common for both transmitter-receiver pairs, is a sub-codebook of $2^{N\left(R_{1, C 1}+R_{2, C 1}+R_{1, R 1}+R_{2, R 1}\right)}$ codewords. Denote by $\boldsymbol{u}\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right)$ the corresponding codeword in the first code-layer. The second codeword is chosen by transmitter i using $\left(W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}\right)$ from the second code-layer, which is a sub-codebook of $2^{N\left(R_{i, C 1}+R_{i, R 1}\right)}$ codewords corresponding to the codeword $\boldsymbol{u}\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right)$. Denote by $\boldsymbol{u}_{i}\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}, W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}\right)$ the corresponding codeword in the second code-layer. The third codeword is chosen by transmitter i using $\left(W_{i, C 2}^{(t)}, \Omega_{i, R 2}^{(t)}\right)$ from the third code-layer, which is a sub-codebook of $2^{N\left(R_{i, C 2}+R_{i, R 2}\right)}$ codewords corresponding to the codeword $\boldsymbol{u}_{i}\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}, W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}\right)$. Denote by $\boldsymbol{v}_{i}\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right.$, $\left.W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}, W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}, W_{i, C 2}^{(t)}, \Omega_{i, R 2}^{(t)}\right)$ the corresponding codeword in the third code-layer. The fourth codeword is chosen by transmitter i using $W_{i, P}^{(t)}$ from the fourth code-layer, which is a sub-codebook of $2^{N R_{i, P}}$ codewords corresponding to the codeword $\boldsymbol{v}_{i}\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right.$, $\left.W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}, W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}, W_{i, C 2}^{(t)}, \Omega_{i, R 2}^{(t)}\right)$. Denote by $\boldsymbol{x}_{i, P}\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right.$, $\left.W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}, W_{i, C 2}^{(t)}, \Omega_{i, R 2}^{(t)}, W_{i, P}^{(t)}\right)$ the corresponding codeword in the fourth code-layer. Finally, the codeword $\boldsymbol{x}_{i}\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}, W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}, W_{i, C 2}^{(t)}, \Omega_{i, R 2}^{(t)}, W_{i, P}^{(t)}\right)$ to be sent during block $t \in\{1,2, \ldots, T\}$ is a simple concatenation of the previous codewords, i.e., $\boldsymbol{x}_{i}=\left(\boldsymbol{u}_{i}^{\top}, \boldsymbol{v}_{i}^{\top}, \boldsymbol{x}_{i, P}^{\top}\right)^{\top} \in\{0,1\}^{q \times N}$, where the message indices have been dropped for ease of notation.

The decoder follows a backward decoding scheme. In the following, this coding scheme is referred to as a randomized Han-Kobayashi coding scheme with noisy feedback (RHK-NOF). This coding/decoding scheme is thoroughly described in Appendix M.

The proof of (I.2) uses the following results:
Lemma 24 proves that the RHK-NOF achieves all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathcal{C}$; Lemma 25 provides the maximum rate improvement that a transmitter-receiver pair can obtain when it deviates from the RHK-NOF coding scheme; Lemma 26 proves that when the rates of the random components $R_{1, R 1}, R_{1, R 2}, R_{2, R 1}$, and $R_{2, R 2}$ are properly chosen, the RHK-NOF is an
η-NE for all $\eta>0$; and Lemma 27 shows that for all rate pairs in $\mathcal{C} \cap \mathcal{B}_{\eta}$ there always exists a RHK-NOF that is an η-NE and achieves such a rate pair.

This verifies that $\mathcal{N}_{\eta} \supseteq \mathcal{C} \cap \mathcal{B}_{\eta}$ and completes the proof of (I.2).
Lemma 24. The achievable region of the randomized Han-Kobayashi coding scheme for the two-user D-LDIC-NOF is the set of rates $\left(R_{1, C 1}, R_{1, R 1}, R_{1, C 2}, R_{1, R 2}, R_{1, P}, R_{2, C 1}, R_{2, R 1}\right.$, $\left.R_{2, C 2}, R_{2, R 2}, R_{2, P}\right) \in \mathbb{R}_{+}^{10}$ that for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$ satisfy the following conditions:

$$
\begin{array}{r}
R_{j, C 1}+R_{j, R 1} \leqslant \theta_{1, i}, \\
R_{i}+R_{j, C}+R_{j, R} \leqslant \theta_{2, i}, \\
R_{j, C 2}+R_{j, R 2} \leqslant \theta_{3, i}, \\
R_{i, P} \leqslant \theta_{4, i}, \\
R_{i, P}+R_{j, C 2}+R_{j, R 2} \leqslant \theta_{5, i}, \\
R_{i, C 2}+R_{i, P} \leqslant \theta_{6, i}, \text { and } \\
R_{i, C 2}+R_{i, P}+R_{j, C 2}+R_{j, R 2} \leqslant \theta_{7, i}, \tag{I.23g}
\end{array}
$$

where,

$$
\begin{align*}
\theta_{1, i}= & \left(n_{i j}-\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right)^{+}, \tag{I.24a}\\
\theta_{2, i}= & \max \left(\vec{n}_{i i}, n_{i j}\right), \tag{I.24b}\\
\theta_{3, i}= & \min \left(n_{i j},\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right), \tag{I.24c}\\
\theta_{4, i}= & \left(\vec{n}_{i i}-n_{j i}\right)^{+}, \tag{I.24d}\\
\theta_{5, i}= & \max \left(\left(\vec{n}_{i i}-n_{j i}\right)^{+}, \min \left(n_{i j},\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right)\right), \tag{I.24e}\\
\theta_{6, i}= & \min \left(n_{j i},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)-\min \left(\left(n_{j i}-\vec{n}_{i i}\right)^{+},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right) \\
& +\left(\vec{n}_{i i}-n_{j i}\right)^{+}, \text {and } \tag{I.24f}\\
\theta_{7, i}= & \max \left(\min \left(n_{i j},\left(\max \left(\vec{n}_{i i}, n_{i j}\right)-\overleftarrow{n}_{i i}\right)^{+}\right), \min \left(n_{j i},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)\right. \\
& \left.-\min \left(\left(n_{j i}-\vec{n}_{i i}\right)^{+},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)+\left(\vec{n}_{i i}-n_{j i}\right)^{+}\right) . \tag{I.24~g}
\end{align*}
$$

Proof: The proof of Lemma 24 is presented in Appendix M
The set of inequalities in can be written in terms of the transmission rates $R_{1}=$ $R_{1, C 1}+R_{1, C 2}+R_{1, P}, R_{2}=R_{2, C 1}+R_{2, C 2}+R_{2, P}, R_{1, R}=R_{1, R 1}+R_{1, R 2}$ and $R_{2, R}=R_{2, R 1}+R_{2, R 2}$. When $R_{1, R}=R_{2, R}=0$, the region characterized by (I.23) in terms of R_{1} and R_{2}, corresponds to the region \mathcal{C} (Theorem 5.1.1). Therefore, the relevance of Lemma 24 relies on the implication that any rate pair (R_{1}, R_{2}) \mathcal{C} is achievable by the RHK-NOF, under the assumption that the random common rates $R_{1, R 1}, R_{1, R 2}, R_{2, R 1}$, and $R_{2, R 2}$ are chosen accordingly to the conditions in (I.23).
The following lemma shows than when both transmitter-receiver links use the RHK-NOF and one of them unilaterally changes its coding scheme, it obtains a rate improvement that can be upper bounded.

Lemma 25. Let the rate tuple $\boldsymbol{R}=\left(R_{1, C}, R_{1, R}, R_{1, P}, R_{2, C}, R_{2, R}, R_{2, P}\right)$ be achievable with the RHK-NOF such that $R_{1}=R_{1, P}+R_{1, C}$ and $R_{2}=R_{2, P}+R_{2, C}$. Then, any unilateral deviation of transmitter-receiver pair i by using any other coding scheme leads to a transmission rate R_{i}^{\prime}
that satisfies:

$$
\begin{equation*}
R_{i}^{\prime} \leqslant \max \left(\vec{n}_{i i}, n_{i j}\right)-\left(R_{j, C}+R_{j, R}\right) \tag{I.25}
\end{equation*}
$$

Proof: Without loss of generality, let $i=1$ be the deviating user in the following analysis. After the deviation, the new coding scheme used by transmitter 1 can be of any type. Indeed, with such a new coding scheme, the deviating transmitter might or might not use feedback to generate its codewords. It can also use or not random symbols and it might possibly have a different block-length $N_{1}^{\prime} \neq N_{1}$. Let $\overrightarrow{\boldsymbol{Y}}_{1}^{\prime}=\left(\overrightarrow{\boldsymbol{Y}}_{1,1}^{\prime \top}, \overrightarrow{\boldsymbol{Y}}_{1,2}^{\prime \top}, \ldots, \overrightarrow{\boldsymbol{Y}}_{1, N}^{\prime \top}\right)^{\top}$ be the super vector of channel outputs at receiver 1 during $N=\max \left(N_{1}^{\prime}, N_{2}\right)$ consecutive channel uses in the model in 2.25. Hence, an upper bound for R_{1}^{\prime} is obtained from the following inequalities:

$$
\begin{align*}
N R_{1}^{\prime} & =H\left(W_{1}\right) \\
& =H\left(W_{1} \mid \Omega_{1}\right) \\
& =I\left(W_{1} ; \overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid \Omega_{1}\right)+H\left(W_{1} \mid \overrightarrow{\boldsymbol{Y}}_{1}^{\prime}, \Omega_{1}\right) \\
& \stackrel{(a)}{\leqslant} I\left(W_{1} ; \overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid \Omega_{1}\right)+N \delta_{1}(N) \\
& =H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid \Omega_{1}\right)-H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+N \delta_{1}(N) \\
& \stackrel{(b)}{\leqslant} N \max \left(\vec{n}_{11}, n_{12}\right)-H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+N \delta_{1}(N) \tag{I.26}
\end{align*}
$$

where, (a) follows from Fano's inequality, as the rate R_{1}^{\prime} is achievable as the indice W_{1} can be reliably decoded by receiver 1 using the signals $\overrightarrow{\boldsymbol{Y}}_{1}^{\prime}$ and Ω_{1} from the assumptions of the lemma with $\delta_{1}: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58); and (b) follows from $H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid \Omega_{1}\right) \leqslant N \operatorname{dim} \overrightarrow{\boldsymbol{Y}}_{1, n}^{\prime}=N \max \left(\vec{n}_{11}, n_{12}\right)$, for all $n \in\{1,2, \ldots, N\}$. To refine this upper bound, the term $H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)$ in (I.26) can be lower bounded as follows:

$$
\begin{align*}
N\left(R_{2, C}+R_{2, R}\right) & =H\left(W_{2, C}, \Omega_{2}\right) \\
& \stackrel{(c)}{=} H\left(W_{2, C}, \Omega_{2} \mid W_{1}, \Omega_{1}\right) \\
& =I\left(W_{2, C}, \Omega_{2} ; \overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+H\left(W_{2, C}, \Omega_{2} \mid W_{1}, \Omega_{1}, \overrightarrow{\boldsymbol{Y}}_{1}^{\prime}\right) \\
& \stackrel{(d)}{\leqslant} I\left(W_{2, C}, \Omega_{2} ; \overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+N \delta_{2}(N) \\
& =H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)-H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}, W_{2, C}, \Omega_{2}\right)+N \delta_{2}(N) \\
& \leqslant H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+N \delta_{2}(N), \tag{I.27}
\end{align*}
$$

where (c) follows from the mutual independence between $W_{2, C}, \Omega_{2}, W_{1}$ and Ω_{1}; and (d) follows from Fano's inequality as the indices $W_{2, C}$ and Ω_{2} can be reliably decoded by receiver 1 using the signals $\overrightarrow{\boldsymbol{Y}}_{1}^{\prime}$ from the assumptions of the lemma with $\delta_{2}: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58). Hence, it follows from (I.27) that

$$
\begin{equation*}
H\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right) \geqslant N\left(R_{2, C}+R_{2, R}\right)-N \delta_{2}(N) \tag{I.28}
\end{equation*}
$$

Finally, plugging (I.28) into (I.26) yields, in the block-length asymptotic regime, the following
upper bound:

$$
\begin{equation*}
R_{1}^{\prime} \leqslant \max \left(\vec{n}_{11}, n_{12}\right)-\left(R_{2, C}+R_{2, R}\right) . \tag{I.29}
\end{equation*}
$$

The same can be proved for the other transmitter-receiver pair. This completes the proof.
Lemma 25 reveals the relevance of the random symbols Ω_{1} and Ω_{2} used by the RHKNOF. Even though the random symbols used by transmitter j do not increase the effective transmission rate of transmitter-receiver pair j, they strongly limit the rate improvement transmitter-receiver pair i can obtain by deviating from the RHK-NOF coding scheme. This observation can be used to show that the RHK-NOF can be an η-NE, when both $R_{1, R}$ and $R_{2, R}$ are properly chosen. For instance, for any achievable rate pair $\left(R_{1}, R_{2}\right) \in \mathcal{C} \cap \mathcal{B}_{\eta}$, there exists a RHK-NOF that achieves the rate tuple $\boldsymbol{R}=\left(R_{1, C}, R_{1, R}, R_{1, P}, R_{2, C}, R_{2, R}, R_{2, P}\right)$, with $R_{i}=R_{i, P}+R_{i, C}$. Denote by $R_{i, \max }^{\prime}=\max \left(\vec{n}_{i i}, n_{i j}\right)-\left(R_{j, C}+R_{j, R}\right)$ the maximum rate transmitter-receiver pair i can obtain by unilaterally deviating from its RHK-NOF. Then, when the rates $R_{1, R}$ and $R_{2, R}$ are chosen such that $R_{i, \text { max }}^{\prime}-R_{i} \leqslant \eta$, any improvement obtained by either transmitter deviating from its RHK-NOF is bounded by η. The following lemma formalizes this observation.

Lemma 26. Let $\eta>0$ be fixed and let the rate tuple $\boldsymbol{R}=\left(R_{1, C}, R_{1, R}, R_{1, P}, R_{2, C}, R_{2, R}, R_{2, P}\right)$ be achievable with the RHK-NOF and satisfy for all $i \in\{1,2\}$,

$$
\begin{equation*}
R_{i, C}+R_{i, P}+R_{j, C}+R_{j, R}=\max \left(\vec{n}_{i i}, n_{i j}\right)-\eta . \tag{I.30}
\end{equation*}
$$

Then, the rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$, with $R_{i}=R_{i, C}+R_{i, P}$ is achievable at an η-NE.
Proof: Let $\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{2}$ be a transmit-receive configuration pair, in which the configuration s_{i}^{*} is a RHK-NOF satisfying condition (I.30). From the assumptions of the lemma, it follows that $\left(s_{1}^{*}, s_{2}^{*}\right)$ is an η-NE at which $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{1, C}+R_{1, P}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{2, C}+R_{2, P}$. Consider that such a transmit-receive configuration pair $\left(s_{1}^{*}, s_{2}^{*}\right)$ is not an η-NE. Then, from Definition 4 there exists at least one $i \in\{1,2\}$ and at least one configuration $s_{i} \in \mathcal{A}_{i}$ such that the utility u_{i} is improved by at least η bits per channel use when transmitter-receiver pair i deviates from s_{i}^{*} to s_{i}. Without loss of generality, let $i=1$ be the deviating user and denote by R_{1}^{\prime} the rate achieved after the deviation. Then,

$$
\begin{equation*}
u_{1}\left(s_{1}, s_{2}^{*}\right)=R_{1}^{\prime} \geqslant u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)+\eta=R_{1, C}+R_{1, P}+\eta . \tag{I.31}
\end{equation*}
$$

However, from Lemma 25, it follows that

$$
\begin{equation*}
R_{1}^{\prime} \leqslant \max \left(\vec{n}_{11}, n_{12}\right)-\left(R_{2, C}+R_{2, R}\right), \tag{I.32}
\end{equation*}
$$

and from the assumption in , with $i=1$, i.e.,

$$
\begin{equation*}
R_{2, C}+R_{2, R}=\max \left(\vec{n}_{11}, n_{12}\right)-\left(R_{1, C}+R_{1, P}\right)-\eta \tag{I.33}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
R_{1}^{\prime} \leqslant R_{1, C}+R_{1, P}+\eta . \tag{I.34}
\end{equation*}
$$

The result in (I.34) contradicts condition (I.31) for any $\eta>0$ and shows that there exists no other coding scheme that brings an individual utility improvement greater than η. The same
can be proved for the other transmitter-receiver pair. This completes the proof.
The following lemma shows that all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathcal{C} \cap \mathcal{B}_{\eta}$ are achievable by the RHK-NOF coding scheme at an η-NE, for all $\eta>0$.

Lemma 27. Let $\eta>0$ be fixed. Then, for all rate pairs $\left(R_{1}, R_{2}\right) \in \mathcal{C} \cap \mathcal{B}_{\eta}$, there always exists at least one η-NE transmit-receive configuration pair $\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{2}$, such that $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{2}$.

Proof: From Lemma 26, it follows that the configuration pair $\left(s_{1}^{*}, s_{2}^{*}\right)$ in which each player's transmit-receive configuration is the RHK-NOF satisfying condition (I.30) is an η-NE. Thus, from the conditions in (I.23) and (I.30), the following holds:

$$
\begin{gather*}
R_{j, C 1}+R_{j, R 1} \leqslant \theta_{1, i}, \\
R_{i}+R_{j, C}+R_{j, R} \leqslant \theta_{2, i}, \\
R_{i}+R_{j, C}+R_{j, R} \geqslant \theta_{2, i}-\eta, \\
R_{j, C 2}+R_{j, R 2} \leqslant \theta_{3, i}, \\
R_{i, P} \leqslant \theta_{4, i}, \\
R_{i, P}+R_{j, C 2}+R_{j, R 2} \leqslant \theta_{5, i}, \\
R_{i, C 2}+R_{i, P} \leqslant \theta_{6, i}, \text { and } \\
R_{i, C 2}+R_{i, P}+R_{j, C 2}+R_{j, R 2} \leqslant \theta_{7, i} . \tag{I.35}
\end{gather*}
$$

The region characterized by (I.35) can be written in terms of $R_{1}=R_{1, C 1}+R_{1, C 2}+R_{1, P}$ and $R_{2}=R_{2, C 1}+R_{2, C 2}+R_{2, P}$ following a Fourier-Motzkin elimination process:

$$
\begin{align*}
& R_{1} \geqslant\left(\theta_{2,1}-\theta_{1,1}-\theta_{3,1}-\eta\right)^{+}, \\
& R_{1} \leqslant \min \left(\theta_{6,1}+\theta_{1,2}, \theta_{2,1}+\theta_{1,2}+\theta_{5,2}-\theta_{2,2}+\eta, \theta_{2,1}\right), \\
& R_{2} \geqslant\left(\theta_{2,2}-\theta_{1,2}-\theta_{3,2}-\eta\right)^{+}, \\
& R_{2} \leqslant \min \left(\theta_{1,1}+\theta_{6,2}, \theta_{2,2}, \theta_{1,1}+\theta_{5,1}+\theta_{2,2}-\theta_{2,1}+\eta\right), \\
R_{1}+ & R_{2} \leqslant \min \left(\theta_{4,1}+\theta_{2,2}-\eta, \theta_{2,1}+\theta_{4,2}, \theta_{1,1}+\theta_{5,1}+\theta_{1,2}+\theta_{5,2}\right), \\
R_{1}+ & 2 R_{2} \leqslant \min \left(\theta_{1,1}+\theta_{5,1}+\theta_{2,2}+\theta_{4,2}, \theta_{1,1}+\theta_{2,1}+\theta_{4,2}+\theta_{6,2}\right), \\
2 R_{1}+ & R_{2} \leqslant \min \left(\theta_{4,1}+\theta_{6,1}+\theta_{1,2}+\theta_{2,2}, \theta_{2,1}+\theta_{4,1}+\theta_{1,2}+\theta_{5,2}\right) . \tag{I.36}
\end{align*}
$$

The region described by ind identical to $\mathcal{C} \cap \mathcal{B}_{\eta}$. This completes the proof.

J

Proof of Theorem 8.1.1

THE proof of Theorem 8.1.1 consists of constructing a coding scheme that satisfies Definition 4 The coding scheme is a generalization to continuous channel inputs of the coding scheme introduced in Appendix for the linear deterministic interference channel. The difference is that the generation of the codeword $\boldsymbol{x}_{i}=\left(x_{i, 1}, x_{i, 2}, \ldots, x_{i, N}\right) \in \mathbb{R}^{N}$ during block $t \in\{1,2, \ldots, T\}$ is obtained by adding the described codewords, i.e., $\boldsymbol{x}_{i}=\boldsymbol{u}+\boldsymbol{u}_{i}+\boldsymbol{v}_{i}+\boldsymbol{x}_{i, p}$, whose message indices and random indices are dropped by ease of notation. The rest of the proof consists of showing that this code construction is an η-NE for certain values of η. This is immediate from the following lemmas. Lemma 28 describes all the rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ that can be achieved with the RHK-NOF scheme.

Lemma 28. The RHK-NOF scheme achieves the set of rates $\left(R_{1, C 1}, R_{1, R 1}, R_{1, C 2}, R_{1, R 2}\right.$, $\left.R_{1, P}, R_{2, C 1}, R_{2, R 1}, R_{2, C 2}, R_{2, R 2}, R_{2, P}\right) \in \mathbb{R}_{+}^{10}$ that satisfy the following conditions:

$$
\begin{gather*}
R_{i, P} \leqslant a_{1, i}, \tag{J.1a}\\
R_{i}+R_{j, C}+R_{j, R} \leqslant a_{2, i}(\rho), \tag{J.1b}\\
R_{j, C 1}+R_{j, R 1} \leqslant a_{3, i}\left(\rho, \mu_{j}\right), \tag{J.1c}\\
R_{j, C 2}+R_{j, R 2} \leqslant a_{4, i}\left(\rho, \mu_{j}\right), \tag{J.1d}\\
R_{i, P}+R_{j, C 2}+R_{j, R 2} \leqslant a_{5, i}\left(\rho, \mu_{j}\right), \tag{J.1e}\\
R_{i, C 2}+R_{i, P} \leqslant a_{6, i}\left(\rho, \mu_{i}\right), \text { and } \tag{J.1f}\\
R_{i, C 2}+R_{i, P}+R_{j, C 2}+R_{j, R 2} \leqslant a_{7, i}\left(\rho, \mu_{1}, \mu_{2}\right), \tag{J.1g}
\end{gather*}
$$

for all $\left(\rho, \mu_{1}, \mu_{2}\right) \in\left[0,\left(1-\max \left(\frac{1}{\mathrm{INR}_{12}}, \frac{1}{\mathrm{NRR}_{21}}\right)\right)^{+}\right] \times[0,1] \times[0,1]$.
Proof: The proof of Lemma 28 is presented in Appendix M and Appendix \mathbb{N}.
The set of inequalities in (J.1) can be written in terms of the transmission rates $R_{1}=$ $R_{1, C 1}+R_{1, C 2}+R_{1, P}, R_{2}=R_{2, C 1}+R_{2, C 2}+R_{2, P}, R_{1, R}=R_{1, R 1}+R_{1, R 2}$, and $R_{2, R}=R_{2, R 1}+R_{2, R 2}$
following a Fourier-Motzkin elimination process. The resulting region, when $R_{1, R 1}=R_{1, R 2}=$ $R_{2, R 1}=R_{2, R 2}=0$ corresponds to the region $\underline{\mathcal{C}}$ (Theorem 6.1.1). Therefore, the relevance of Lemma 28 relies on the implication that any rate pair $\left(R_{1}, R_{2}\right) \in \underline{\mathcal{C}}$ is achievable by the RHK-NOF coding scheme, under the assumption that the random rates $R_{1, R 1}, R_{1, R 2}, R_{2, R 1}$, and $R_{2, R 2}$ are properly chosen.
Lemma 29 provides the maximum rate improvement that a given transmitter-receiver pair achieves by unilateral deviation from the R-KH-NOF coding scheme.

Lemma 29. Assume that the rate tuple $\boldsymbol{R}=\left(R_{1, C 1}, R_{1, R 1}, R_{1, C 2}, R_{1, R 2}, R_{1, P}, R_{2, C 1}, R_{2, R 1}\right.$, $\left.R_{2, C 2}, R_{2, R 2}, R_{2, P}\right) \in \mathbb{R}_{+}^{10}$ is achievable with the RHK-NOF. Then, any unilateral deviation of transmitter-receiver pair i by using any other coding scheme leads to a transmission rate $R_{i}^{\prime} \in \mathbb{R}_{+}$that satisfies:

$$
R_{i}^{\prime} \leqslant \frac{1}{2} \log \left(1+\overrightarrow{\mathrm{SNR}}_{i}+\mathrm{INR}_{i j}+2 \sqrt{\overrightarrow{\mathrm{SNR}}_{i} \mathrm{INR}_{i j}}\right)-\left(R_{j, C}+R_{j, R}\right)
$$

Proof: Assume that both transmitters achieve the rates \boldsymbol{R} by using the RHK-NOF coding scheme following the code construction in Appendix \mathbb{N}
Without loss of generality, let transmitter 1 change its transmit-receive configuration while the transmitter-receiver pair 2 remains unchanged. Note that the new transmit-receive configuration of transmitter-receiver pair 1 can be arbitrary, i.e., it may or may not use feedback, and it may or may not use any random symbols. It can also use a new block length $N_{1}^{\prime} \neq N_{1}$. Denote by $\boldsymbol{X}_{1}^{\prime}=\left(X_{1,1}^{\prime}, X_{1,2}^{\prime}, \ldots, X_{1, N}^{\prime}\right)$ and $\overrightarrow{\boldsymbol{Y}}_{1}^{\prime}=\left(\vec{Y}_{1,1}^{\prime}, \vec{Y}_{1,2}^{\prime}, \ldots, \vec{Y}_{1, N}^{\prime}\right)$ respectively the vector of channel outputs of transmitter 1 and channel inputs to receiver 1 , with $N=\max \left(N_{1}^{\prime}, N_{2}\right)$. Hence, an upper bound for R_{1}^{\prime} is obtained from the following inequalities:

$$
\begin{align*}
& R_{1}^{\prime}=H\left(W_{1} \mid \Omega_{1}\right) \\
& \stackrel{(a)}{\leqslant} I\left(W_{1} ; \overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid \Omega_{1}\right)+N \delta_{1}(N) \\
& \quad=h\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid \Omega_{1}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+N \delta_{1}(N) \\
& \stackrel{(b)}{\leqslant} \frac{N}{2} \log \left(2 \pi e\left(\overrightarrow{\operatorname{SNR}}_{1}+2 \sqrt{\overrightarrow{\operatorname{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+N \delta_{1}(N), \tag{J.2}
\end{align*}
$$

where, (a) follows from Fano's inequality, as the rate R_{1}^{\prime} is achievable from the assumptions of the lemma with $\delta_{1}: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58), and (b) follows from the fact that for all $n \in\{1,2, \ldots, N\}, h\left(\vec{Y}_{1, n}^{\prime} \mid \vec{Y}_{1,1}^{\prime}, \vec{Y}_{1,2}^{\prime} \ldots, \vec{Y}_{1, n-1}^{\prime}, \Omega_{1}\right) \leqslant$ $h\left(\vec{Y}_{1, n}^{\prime}\right) \leqslant \frac{1}{2} \log \left(2 \pi e\left(\overrightarrow{\mathrm{SNR}}_{1}+2 \rho \sqrt{\mathrm{SNR}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)\right)$. To refine this upper bound, the term $h\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)$ in (J.2) can be lower bounded:

$$
\begin{aligned}
N_{2}\left(R_{2, C}+R_{2, R}\right) & =H\left(W_{2, C}, \Omega_{2}\right) \\
& \stackrel{(d)}{=} H\left(W_{2, C}, \Omega_{2} \mid W_{1}, \Omega_{1}\right) \\
& =I\left(W_{2, C}, \Omega_{2} ; \overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+H\left(W_{2, C}, \Omega_{2} \mid \overrightarrow{\boldsymbol{Y}}_{1}^{\prime}, W_{1}, \Omega_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& \stackrel{(e)}{\leqslant} I\left(W_{2, C}, \Omega_{2} ; \overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+N \delta_{2}(N) \\
& =h\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}, W_{2, C}, \Omega_{2}\right)+N \delta_{2}(N) \\
& \stackrel{(f)}{\leqslant} h\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}\right)+N\left(\delta_{2}(N)-\frac{1}{2} \log (2 \pi e)\right) \tag{J.3}
\end{align*}
$$

where, (d) follows from the independence of the indices W_{1}, Ω_{1}, W_{2}, and $\Omega_{2} ;(e)$ follows from Fano's inequality as the indices $W_{2, C}$ and Ω_{2} can be reliably decoded by receiver 1 using the signals $\overrightarrow{\boldsymbol{Y}}_{1}^{\prime}, W_{1}$, and Ω_{1} from the assumptions of the lemma with $\delta_{2}: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58); and finally, (f) follows from the fact that $h\left(\overrightarrow{\boldsymbol{Y}}_{1}^{\prime} \mid W_{1}, \Omega_{1}, W_{2, C}, \Omega_{2}\right)>\frac{N}{2} \log (2 \pi e)$. Substituting (J.3) into (J.2), it follows that

$$
\begin{align*}
R_{1}^{\prime} & \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \sqrt{\overrightarrow{\mathrm{SNR}_{1}} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\left(R_{2, C}+R_{2, R}\right)-\frac{1}{2} \log (2 \pi e)+\delta(N) \\
& \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\left(R_{2, C}+R_{2, R}\right)+\delta(N) \tag{J.4}
\end{align*}
$$

Note that $\delta(N)=\delta_{1}(N)+\delta_{2}(N)$ is a monotonically decreasing function of N. Hence, in the block-length asymptotic regime, it follows that

$$
R_{1}^{\prime} \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\left(R_{2, C}+R_{2, R}\right)
$$

The same can be proved for the other transmitter-receiver pair 2 and this completes the proof.

Note that if there exists an $\eta>0$ and a rate tuple $\boldsymbol{R}=\left(R_{1, C 1}, R_{1, R 1}, R_{1, C 2}, R_{1, R 2}\right.$, $R_{1, P}, R_{2, C 1}, R_{2, R 1}, R_{2, C 2}, R_{2, R 2}, R_{2, P}$) achievable with the RHK-NOF coding scheme, such that $R_{i}^{\prime}-\left(R_{i, C}+R_{i, P}\right)<\eta$, then the rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$, with $R_{1, C}=R_{1, C 1}+R_{1, C 2}$, $R_{2, C}=R_{2, C 1}+R_{2, C 2}, R_{1}=R_{1, P}+R_{1, C}$ and $R_{2}=R_{2, P}+R_{2, C}$, is achievable at an η-NE. The following lemma formalizes this observation.

Lemma 30. Let $\eta \geqslant 1$ and let the rate tuple $\boldsymbol{R}=\left(R_{1, C 1}, R_{1, R 1}, R_{1, C 2}, R_{1, R 2}, R_{1, P}, R_{2, C 1}\right.$, $\left.R_{2, R 1}, R_{2, C 2}, R_{2, R 2}, R_{2, P}\right) \in \mathbb{R}_{+}^{10}$ be achievable with the RHK-NOF scheme. Let also $\rho \in[0,1]$ and for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$,

$$
\begin{equation*}
R_{i, C}+R_{i, P}+R_{j, C}+R_{j, R}=\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{i}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{i} \mathrm{INR}_{i j}}+\mathrm{INR}_{i j}+1\right)-\frac{1}{2} \tag{J.5}
\end{equation*}
$$

Then, the rate pair $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$, with $R_{i, C}=R_{i, C 1}+R_{i, C 2}$ and $R_{i}=R_{i, P}+R_{i, C}$ is achievable at an $\eta-N E$.

The proof of Lemma 30 follows the same steps as in the proof of Lemma 26.
Proof: Let $s_{i}^{*} \in \mathcal{A}_{i}$ be a transmit-receive configuration in which communication takes place using the RHK-NOF coding scheme and $R_{1, R 1}, R_{1, R 2}, R_{2, R 1}$, and $R_{2, R 2}$ are chosen according to condition (J.5), with $i=1$ and $i=2$, respectively. From the assumptions of the
lemma such that the configuration pair $\left(s_{1}^{*}, s_{2}^{*}\right)$ is an η-NE and

$$
\begin{align*}
u_{i}\left(s_{1}^{*}, s_{2}^{*}\right) & =R_{i} \\
& =R_{i, C}+R_{i, P} \\
& =\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{i}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{i} \mathrm{INR}_{i j}}+\mathrm{INR}_{i j}+1\right)-\left(R_{j, C}+R_{j, R}\right)-\frac{1}{2} \tag{J.6}
\end{align*}
$$

where the last equality holds from (J.5). Then, from Definition 4, it holds that for all $i \in\{1,2\}$ and for all transmit-receive configurations $s_{i} \neq s_{i}^{*} \in \mathcal{A}_{i}$, the utility improvement is upper bounded by η, that is,

$$
\begin{equation*}
u_{i}\left(s_{i}, s_{j}^{*}\right)-u_{i}\left(s_{i}^{*}, s_{j}^{*}\right) \leqslant \eta \tag{J.7}
\end{equation*}
$$

Without loss of generality, let $i=1$ be the deviating transmitter-receiver pair and assume it achieves the highest improvement (Lemma 29), that is,

$$
\begin{equation*}
u_{1}\left(s_{1}, s_{2}^{*}\right)=\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\left(R_{2, C}+R_{2, R}\right) \tag{J.8}
\end{equation*}
$$

Hence, plugging (J.6) and (J.8) into (J.7) yields:

$$
\begin{align*}
u_{1}\left(s_{1}, s_{2}^{*}\right)-u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)= & \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \sqrt{\mathrm{SNR}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right) \tag{J.9}\\
& -\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \rho \sqrt{\mathrm{SNR}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)+\frac{1}{2} \\
& \stackrel{(a)}{\leqslant} \\
\leqslant & \eta
\end{align*}
$$

where (a) follows from the fact that $\Delta=\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \sqrt{\overrightarrow{\mathrm{SNR}_{1} \mathrm{INR}_{12}}}+\mathrm{INR}_{12}+1\right)-$ $\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \rho \sqrt{\mathrm{SNR}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)+\frac{1}{2}$ satisfies the following inequality:

$$
\begin{align*}
\Delta & =\frac{1}{2} \log \left(1+\frac{2(1-\rho) \sqrt{\mathrm{SNR}_{1} \mathrm{INR}_{12}}}{\overrightarrow{\mathrm{SNR}_{1}+2 \rho \sqrt{\mathrm{SNR}_{1}} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1}\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log \left(1+\frac{2 \sqrt{\mathrm{SNR}_{1} \mathrm{INR}_{12}}}{\overline{\mathrm{SNR}_{1}}+\mathrm{INR}_{12}+1}\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log \left(1+\frac{{\overrightarrow{\mathrm{SNR}_{1}}+\mathrm{INR}_{12}}_{\overrightarrow{\mathrm{SNR}}_{1}+\mathrm{INR}_{12}+1}}{2}\right)+\frac{1}{2} \\
& \leqslant \frac{1}{2} \log (2)+\frac{1}{2} \\
& =1 \\
& \leqslant \eta . \tag{J.10}
\end{align*}
$$

This verifies that any rate improvement by unilateral deviation of the transmit-receive configuration $\left(s_{1}^{*}, s_{2}^{*}\right)$ is upper bounded by any η arbitrarily close to 1 , i.e., $\eta \geqslant 1$. The same can be proved for the other transmitter-receiver pair and this completes the proof.

Finally, Lemma 31 shows the achievable η-NE region $\underline{\mathcal{N}}_{\eta}$ and this completes the proof of

Theorem 8.1.1

Lemma 31. For all rate pairs $\left(R_{1}, R_{2}\right) \in \mathcal{N}_{\eta}$, there always exists at least one η-NE configuration pair $\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{2}$, with $\eta \geqslant 1$, such that $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{2}$.

Proof: A rate tuple $\left(R_{1, C 1}, R_{1, R 1}, R_{1, C 2}, R_{1, R 2}, R_{1, P}, R_{2, C 1}, R_{2, R 1}, R_{2, C 2}, R_{2, R 2}, R_{2, P}\right) \in$ \mathbb{R}_{+}^{10} that is achievable with the RHK-NOF coding scheme satisfies the inequalities in (J.1). Additionally, any rate tuple ($R_{1, C 1}, R_{1, R 1}, R_{1, C 2}, R_{1, R 2}, R_{1, P}, R_{2, C 1}, R_{2, R 1}, R_{2, C 2}, R_{2, R 2}$, $\left.R_{2, P}\right) \in \mathbb{R}_{+}^{10}$ that satisfies (J.1) and (J.5) is an η-NE (Lemma 30). A Fourier-Motzkin elimination of inequalities (J.1) and (J.5) leads to a region in terms of the rates R_{1} and R_{2}, as follows:

$$
\begin{align*}
& R_{1} \geqslant\left(a_{2,1}(\rho)-a_{3,1}\left(\rho, \mu_{2}\right)-a_{4,1}\left(\rho, \mu_{2}\right)-\eta\right)^{+}, \\
& R_{1} \leqslant \min \left(a_{2,1}(\rho), a_{6,1}\left(\rho, \mu_{1}\right)+a_{3,2}\left(\rho, \mu_{1}\right), a_{1,1}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{4,2}\left(\rho, \mu_{1}\right),\right. \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+2 a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right)-a_{2,2}(\rho)+\eta, \\
& a_{2,1}(\rho)+a_{3,1}\left(\rho, \mu_{2}\right)+2 a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right)-2 a_{2,2}(\rho)+2 \eta, \\
&\left.a_{2,1}(\rho)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right)-a_{2,2}(\rho)+\eta\right), \\
& R_{2} \geqslant\left(a_{2,2}(\rho)-a_{3,2}\left(\rho, \mu_{1}\right)-a_{4,2}\left(\rho, \mu_{1}\right)-\eta\right)^{+} \\
& R_{2} \leqslant \min \left(a_{3,1}\left(\rho, \mu_{2}\right)+a_{6,2}\left(\rho, \mu_{2}\right), a_{2,2}(\rho), a_{3,1}\left(\rho, \mu_{2}\right)+a_{4,1}\left(\rho, \mu_{2}\right)+a_{1,2},\right. \\
& 2 a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{2,2}(\rho)+a_{3,2}\left(\rho, \mu_{1}\right)-2 a_{2,1}(\rho)+2 \eta, \\
& 2 a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right)-a_{2,1}(\rho)+\eta, \\
&\left.a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{2,2}(\rho)-a_{2,1}(\rho)+\eta\right), \\
& R_{1}+R_{2} \leqslant \min \left(a_{1,1}+a_{2,2}(\rho), a_{1,2}+a_{2,1}(\rho), a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right),\right. \\
& a_{1,1}+a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{2,2}(\rho)+a_{3,2}\left(\rho, \mu_{1}\right)-a_{2,1}(\rho)+\eta, \\
& a_{1,1}+a_{3,1}\left(\rho, \mu_{2}\right)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right), \\
& a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+a_{1,2}+a_{3,2}\left(\rho, \mu_{1}\right), \\
&\left.a_{2,1}(\rho)+a_{3,1}\left(\rho, \mu_{2}\right)+a_{1,2}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right)-a_{2,2}(\rho)+\eta\right), \\
& R_{1}+2 R_{2} \leqslant \min \left(a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{1,2}+a_{2,2}(\rho),\right. \\
&\left.2 a_{3,1}\left(\rho, \mu_{2}\right)+a_{5,1}\left(\rho, \mu_{2}\right)+a_{1,2}+a_{3,2}\left(\rho, \mu_{1}\right)+a_{7,2}\left(\rho, \mu_{1}, \mu_{2}\right)\right), \\
& 2 R_{1}+R_{2} \leqslant \min \left(a_{1,1}+a_{2,1}(\rho)+a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right),\right. \\
&\left.a_{1,1}+a_{3,1}\left(\rho, \mu_{2}\right)+a_{7,1}\left(\rho, \mu_{1}, \mu_{2}\right)+2 a_{3,2}\left(\rho, \mu_{1}\right)+a_{5,2}\left(\rho, \mu_{1}\right)\right) . \tag{J.11}\\
&(\mathrm{J} .11
\end{align*}
$$

The region (J.11) corresponds to the achievable η-NE region for the two-user D-GIC-NOF, i.e., $\underline{\mathcal{N}}_{\eta}$. Finally, the achievable η-NE region in (J.11) can be presented in terms of the achievable region $\underline{\mathcal{C}}$ (Theorem 6.1.1) and the bounds in (J.11) that are not in the achievable region $\underline{\mathcal{C}}$. This completes the proof.

Proof of Theorem 8.2.1

GIVEN an $\eta \geqslant 1$, it is shown that $R_{1}>L_{1}, R_{2}>L_{2}, R_{1}<U_{1}$, and $R_{2}<U_{2}$ are necessary conditions for the rate pair $\left(R_{1}, R_{2}\right)$ to be an η-NE. This shows that if any rate pair $\left(R_{1}, R_{2}\right)$ is an η-NE, then $\left(R_{1}, R_{2}\right) \in \overline{\mathcal{C}} \cap \overline{\mathcal{B}}_{\eta}$. This proof is completed by Lemma 32 and Lemma 33 .

Lemma 32. A rate pair $\left(R_{1}, R_{2}\right) \in \mathcal{C}$, with either $R_{1}<\left(\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{1+\mathrm{INR}_{12}}\right)-\eta\right)^{+}$or $R_{2}<\left(\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{2}}{1+\mathrm{INR}_{21}}\right)-\eta\right)^{+}$is not an $\eta-N E$, for any given $\eta \geqslant 0$.

Proof: Let $\left(s_{1}^{*}, s_{2}^{*}\right)$ be an η-NE transmit-receive configuration pair such that $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{2}$, respectively. Hence, from Definition 4 it holds that any rate improvement of a transmitter-receiver pair that unilaterally deviates from $\left(s_{1}^{*}, s_{2}^{*}\right)$ is upper bounded by η. Without loss of generality, let $R_{1}<\left(\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{1+\mathrm{INR}_{12}}\right)-\eta\right)^{+}$. Then, note that independently of the transmit-receive configuration of transmitter-receiver pair 2 , transmitter-receiver pair 1 can always use a transmit-receive configuration s_{1}^{\prime} in which transmitter 1 saturates the average power constraint (2.7) and interference is treated as noise at receiver 1. Thus, transmitterreceiver pair 1 is always able to achieve the rate $R\left(s_{1}^{\prime}, s_{2}^{*}\right)=\frac{1}{2} \log \left(1+\frac{\overrightarrow{\mathrm{SNR}}_{1}}{1+\mathrm{INR}_{12}}\right)$, which implies that a utility improvement $R\left(s_{1}^{\prime}, s_{2}^{*}\right)-R\left(s_{1}^{*}, s_{2}^{*}\right)>\eta$ is always possible. Thus, from Definition 4. the assumption that the rate pair $\left(R_{1}, R_{2}\right)$ is an η-NE does not hold. This completes the proof.

Lemma 33. A rate pair $\left(R_{1}, R_{2}\right) \in \overline{\mathcal{C}}$, with either $R_{1}>U_{1}$ or $R_{2}>U_{2}$ is not an η-NE, for any given $\eta \geqslant 1$.

Proof: Let $\left(s_{1}^{*}, s_{2}^{*}\right)$ be an η-NE transmit-receive configuration pair such that $u_{1}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{1}$ and $u_{2}\left(s_{1}^{*}, s_{2}^{*}\right)=R_{2}$, respectively. Hence, from Definition 4, it holds that any rate improvement of a transmitter-receiver pair that unilaterally deviates from $\left(s_{1}^{*}, s_{2}^{*}\right)$ is upper bounded by η.

Without loss of generality, the focus is on user 1 to show the upper bound on R_{1}. Then, the following holds:

$$
\begin{align*}
& N R_{1}= H\left(W_{1}\right) \\
& \stackrel{(a)}{=} H\left(W_{1} \mid \Omega_{1}\right) \\
&=I\left(W_{1} ; \overrightarrow{\boldsymbol{Y}}_{1} \mid \Omega_{1}\right)+H\left(W_{1} \mid \Omega_{1}, \overrightarrow{\boldsymbol{Y}}_{1}\right) \\
& \stackrel{(b)}{\leqslant} I\left(W_{1} ; \overrightarrow{\boldsymbol{Y}}_{1} \mid \Omega_{1}\right)+N \delta_{1}(N) \\
&= h\left(\vec{Y}_{1} \mid \Omega_{1}\right)-h\left(\vec{Y}_{1} \mid W_{1}, \Omega_{1}\right)+N \delta_{1}(N) \\
&= \sum_{n=1}^{N}\left(h\left(\vec{Y}_{1, n} \mid \Omega_{1}, \vec{Y}_{1,(1: n-1)}\right)-h\left(\vec{Y}_{1, n} \mid W_{1}, \Omega_{1}, \vec{Y}_{1,(1: n-1)}\right)\right)+N \delta_{1}(N) \\
& \leqslant \sum_{n=1}^{N}\left(h\left(\vec{Y}_{1, n}\right)-h\left(\vec{Y}_{1, n} \mid W_{1}, \Omega_{1}, \vec{Y}_{1,(1: n-1)}\right)\right)+N \delta_{1}(N) \\
& \stackrel{(c)}{=} \sum_{n=1}^{N}\left(h\left(\vec{Y}_{1, n}\right)-h\left(\vec{Y}_{1, n} \mid X_{1, n}\right)\right)+N \delta_{1}(N) \\
&= \sum_{n=1}^{N}\left(h\left(\vec{Y}_{1, n}\right)-h\left(\vec{Z}_{1, n}\right)-h\left(\vec{Y}_{1, n} \mid X_{1, n}\right)+h\left(\vec{Z}_{1, n}\right)\right)+N \delta_{1}(N) \\
& \leqslant \frac{N}{2} \log \left(\overrightarrow{\operatorname{SNR}}_{1}+2 \rho \sqrt{\overline{\operatorname{SNR}}_{1} \operatorname{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\sum_{n=1}^{N}\left(h\left(\vec{Y}_{1, n} \mid X_{1, n}\right)\right. \\
&\left.-h\left(\vec{Y}_{1, n} \mid X_{1, n}, X_{2, n}\right)\right)+N \delta_{1}(N) \\
&= \frac{N}{2} \log \left(\overrightarrow{\operatorname{SNR}}_{1}+2 \rho \sqrt{\mathrm{SNR}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; X_{2, n} \mid X_{1, n}\right) \\
&+N \delta_{1}(N), \tag{K.1}
\end{align*}
$$

where, (a) follows from the independence between the indices W_{i} and $\Omega_{i} ;(b)$ follows from Fano's inequality, as the rate R_{i} is achievable from the assumptions of the lemma with $\delta_{1}: \mathbb{N} \rightarrow \mathbb{R}_{+}$a positive monotonically decreasing function (Lemma 58); and (c) follows from the fact that $\boldsymbol{X}_{i, n}=f_{i, n}^{(N)}\left(W_{i}, \Omega_{i}, \overleftarrow{Y}_{i,(1: n-1)}\right)$ from the definition of the encoding function in (??) and $W_{i}, \Omega_{i}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)} \rightarrow X_{i, n} \rightarrow \vec{Y}_{i, n}$.

Then, the following holds:

$$
\begin{equation*}
R_{1} \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; X_{2, n} \mid X_{1, n}\right)+\delta_{1}(N) \tag{K.2}
\end{equation*}
$$

The term $\frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; X_{2, n} \mid X_{1, n}\right)$ in (K.2) plays the same role of $\frac{1}{N} \sum_{n=1}^{N} H\left(\boldsymbol{X}_{2, C, n}, \boldsymbol{X}_{2, D, n} \mid \Omega_{1}\right.$, $\left.W_{1}, \overrightarrow{\boldsymbol{Y}}_{1,(1: n-1)}\right)^{n=1}$ in (I.10) in the linear deterministic case. The remaining of the proof consists
on finding a lower-bound on $\frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; X_{2, n} \mid X_{1, n}\right)$. Consider a set of events (Boolean variables) that are determined by the parameters $\overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}, \mathrm{INR}_{21}$, and $\overleftarrow{\mathrm{SNR}}_{2}$. Given a fixed tuple $\left(\overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2}\right)$, the events are defined below:
$C_{1,2}: \quad \mathrm{INR}_{21}<\overrightarrow{\mathrm{SNR}}_{2} \leqslant \mathrm{INR}_{12}$,
$C_{2,2}: \quad \max \left(\mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2}\right)<\overrightarrow{\mathrm{SNR}}_{2}<\mathrm{INR}_{12} \mathrm{INR}_{21}$,
$C_{3,2}: \quad \overleftarrow{\mathrm{SNR}}_{2} \leqslant \mathrm{INR}_{12}$,
$C_{4,2}: \quad \mathrm{INR}_{21}<\mathrm{INR}_{12}<\overrightarrow{\mathrm{SNR}}_{2} \leqslant \overleftarrow{\mathrm{SNR}}_{2}$,
$C_{5,2}: \quad \overrightarrow{\mathrm{SNR}}_{2}>\max \left(\mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2}\right)$,
$C_{6,2}: \quad \overrightarrow{\mathrm{SNR}}_{2} \geqslant \max \left(\mathrm{INR}_{12} \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}\right)$,
$C_{7,2}: \quad \max \left(\mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2}, \frac{\overleftarrow{S N R}_{2} \mathrm{INR}_{21}}{\mathrm{INR}_{12}}\right)<\overrightarrow{\mathrm{SNR}}_{2}<\overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21} \leqslant \frac{\overleftarrow{\mathrm{SNR}}_{2} \overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12}}$,
$C_{8,2}: \quad \max \left(\mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{2}, \frac{\overleftarrow{S N R}_{2} \mathrm{INR}_{21}}{\mathrm{INR}_{12}}\right)<\overrightarrow{\mathrm{SNR}}_{2}<\mathrm{INR}_{12} \mathrm{INR}_{21}<\overleftarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}$.

Let $0 \leqslant \gamma_{2} \leqslant 1$, be a fixed positive real defined as follows:

$$
\gamma_{2}=\left\{\begin{array}{cll}
\min \left(\frac{\overrightarrow{\mathrm{SNR}}_{2}}{\mathrm{INR}_{12} \mathrm{INR}_{21}}, \frac{1}{\mathrm{INR}_{21}}\right) & \text { if } & C_{1,2} \vee\left(C_{2,2} \wedge C_{3,2}\right) \text { holds true } \tag{K.4}\\
\min \left(\frac{1}{\mathrm{INR}_{21}}, \frac{\mathrm{INR}_{12}}{\mathrm{INR}_{21} \overrightarrow{\mathrm{SNR}}_{2}}\right) & \text { if } & C_{4,2} \text { holds true } \\
\min \left(1, \stackrel{\mathrm{INR}_{12}}{\mathrm{SNR}_{2}}\right) & \text { if } & C_{5,2} \wedge C_{6,2} \text { holds true } \\
\min \left(\frac{\mathrm{SNR}_{2}}{\mathrm{SNR}_{2} \mathrm{INR}_{21}}, \frac{\mathrm{INR}_{12}}{\mathrm{SNR}_{2} \mathrm{INR}_{21}}, 1\right) & \text { if } & C_{7,2} \vee C_{8,2} \text { holds true } \\
0 & \text { otherwise. }
\end{array}\right.
$$

For all $n \in\{1,2, \ldots, N\}$, let $U_{2, n}$ and $V_{2, n}$ be two independent random variables with zero means and variances $1-\gamma_{2}$ and γ_{2}, respectively, with γ_{2} defined as in K.4, such that $X_{2, n}=U_{2, n}+V_{2, n}$. Using this notation, the inequality in (K.2) can be written as follows:

$$
\begin{aligned}
R_{1} \stackrel{(d)}{\leqslant} & 1 \\
2 & \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; U_{2, n}, V_{2, n} \mid X_{1, n}\right) \\
& +\delta_{1}(N), \\
= & \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{1, n} ; V_{2, n} \mid X_{1, n}\right)\right. \\
& \left.+I\left(\vec{Y}_{1, n} ; U_{2, n}, \mid X_{1, n}, V_{2, n}\right)\right)+\delta_{1}(N)
\end{aligned}
$$

$$
\begin{equation*}
\leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right)-\frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; V_{2, n} \mid X_{1, n}\right)+\delta_{1}(N) \tag{K.5}
\end{equation*}
$$

where, (d) follows from the fact that $I\left(\vec{Y}_{1, n} ; X_{2, n} \mid X_{1, n}\right)=I\left(\vec{Y}_{1, n} ; U_{2, n}, V_{2, n} \mid X_{1, n}\right)$ for all $n \in\{1,2, \ldots N\}$.
The remaining of the proof consists on finding a lower-bound on $\frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; V_{2, n} \mid X_{1, n}\right)$.
Following the same steps as in K.1, the following holds:

$$
\begin{align*}
N R_{2} & =H\left(W_{2}\right) \\
& =H\left(W_{2} \mid \Omega_{2}\right) \\
& =I\left(W_{2} ; \overrightarrow{\boldsymbol{Y}}_{2} \mid \Omega_{2}\right)+H\left(W_{2} \mid \Omega_{2}, \overrightarrow{\boldsymbol{Y}}_{2}\right) \\
& \leqslant I\left(W_{2} ; \overrightarrow{\boldsymbol{Y}}_{2} \mid \Omega_{2}\right)+N \delta_{2}(N) \\
& =h\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid \Omega_{2}\right)-h\left(\overrightarrow{\boldsymbol{Y}}_{2} \mid W_{2}, \Omega_{2}\right)+N \delta_{2}(N) \\
& =\sum_{n=1}^{N}\left(h\left(\vec{Y}_{2, n} \mid \Omega_{2}, \vec{Y}_{2,(1: n-1)}\right)-h\left(\vec{Y}_{2, n} \mid W_{2}, \Omega_{2}, \vec{Y}_{2,(1: n-1)}\right)\right)+N \delta_{2}(N) \\
& \leqslant \sum_{n=1}^{N}\left(h\left(\vec{Y}_{2, n}\right)-h\left(\vec{Y}_{2, n} \mid W_{2}, \Omega_{2}, \vec{Y}_{2,(1: n-1)}\right)\right)+N \delta_{2}(N) \\
& =\sum_{n=1}^{N}\left(h\left(\vec{Y}_{2, n}\right)-h\left(\vec{Y}_{2, n} \mid X_{2, n}\right)\right)+N \delta_{2}(N) \\
& =\sum_{n=1}^{N} I\left(\vec{Y}_{2, n} ; X_{2, n}\right)+N \delta_{2}(N) \\
& \stackrel{(e)}{=} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+h\left(\vec{Y}_{2, n} \mid V_{2, n}\right)-h\left(\vec{Y}_{2, n} \mid X_{2, n}\right)\right)+N \delta_{2}(N), \tag{K.6}
\end{align*}
$$

where, (e) follows from the fact that $I\left(\vec{Y}_{2, n} ; X_{2, n}, V_{2, n}\right)=I\left(\vec{Y}_{2, n} ; X_{2, n}\right)+I\left(\vec{Y}_{2, n} ; V_{2, n} \mid X_{2, n}\right)=$ $I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+I\left(\vec{Y}_{2, n} ; X_{2, n} \mid V_{2, n}\right)$.

Let $\varphi: \mathrm{N} \rightarrow \mathrm{R}^{+}$be a monotonically decreasing function such that K.6) holds with equality, i.e.,

$$
\begin{equation*}
R_{2}=\frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+h\left(\vec{Y}_{2, n} \mid V_{2, n}\right)-h\left(\vec{Y}_{2, n} \mid X_{2, n}\right)\right)+\varphi(N) . \tag{K.7}
\end{equation*}
$$

Consider that player 2 implements an alternative strategy s_{2}^{\prime} that induces channel inputs $\boldsymbol{X}_{2}^{\prime}=\left(X_{2,1}^{\prime}, X_{2,2}^{\prime}, \ldots, X_{2, N_{2}^{\prime}}^{\prime}\right)$ where $X_{2, n}^{\prime}=U_{2, n}+V_{2, n}^{\prime}$, with $V_{2, n}^{\prime}$ a random variable with variance γ_{2} and independent of any symbol transmitted by either transmitter until channel use n. Note that $U_{2, n}$ continues to be the same as with the strategy s_{2}^{*}. Then, the channel-output at receiver 2 after the deviation from s_{2}^{*} to s_{2}^{\prime}, denoted by $\vec{Y}_{2, n}^{\prime}$, is:

$$
\begin{equation*}
\vec{Y}_{2, n}^{\prime}=\vec{h}_{22}\left(U_{2, n}+V_{2, n}^{\prime}\right)+h_{21} X_{1, n}+\vec{Z}_{2, n} \tag{K.8}
\end{equation*}
$$

Let $\rho=\mathbb{E}\left[X_{1, n} X_{2, n}\right], \mathbb{E}\left[X_{1, n} U_{2, n}\right]=\sqrt{1-\gamma_{2}} \rho_{X_{1} U_{2}}, \mathbb{E}\left[X_{1, n} V_{2, n}\right]=\sqrt{\gamma_{2}} \rho_{X_{1} V_{2}}$, and $\rho=$ $\sqrt{1-\gamma_{2}} \rho_{X_{1} U_{2}}+\sqrt{\gamma_{2}} \rho_{X_{1} V_{2}}$. Then, following the same steps as in (K.6), it follows that:

$$
\begin{equation*}
R_{2}\left(s_{1}^{*}, s_{2}^{\prime}\right) \leqslant \frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n}^{\prime} ; V_{2, n}^{\prime}\right)+h\left(\vec{Y}_{2, n}^{\prime} \mid V_{2, n}^{\prime}\right)-h\left(\vec{Y}_{2, n}^{\prime} \mid X_{2, n}^{\prime}\right)\right)+\delta_{2}^{\prime}(N) \tag{K.9}
\end{equation*}
$$

where, for all $n \in\{1,2, \ldots, N\}$,

$$
\begin{align*}
& I\left(\vec{Y}_{2, n}^{\prime} ; V_{2, n}^{\prime}\right)=h\left(\vec{Y}_{2, n}^{\prime}\right)-h\left(\vec{Y}_{2, n}^{\prime} \mid V_{2, n}^{\prime}\right) \\
& \geqslant \frac{1}{2} \log \left(2 \pi e\left(\overrightarrow{\mathrm{SNR}}_{2}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1\right)\right) \\
& -\frac{1}{2} \log \left(2 \pi e\left(\left(1-\gamma_{2}\right){\left.\left.\overrightarrow{\mathrm{SNR}_{2}} 2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1\right)\right)}_{(}\right)\right. \\
& =\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{2}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1}{\left(1-\gamma_{2}\right) \overrightarrow{\mathrm{SNR}}_{2}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1}\right) \text {, } \tag{K.10}
\end{align*}
$$

The inequality in K.10 follows from using a worst-case noise argument.
From Definition 4, it follows that $R_{2}\left(s_{1}^{*}, s_{2}^{\prime}\right) \leqslant R_{2}+\eta$, with $\eta>0$. Hence, the following holds:

$$
\begin{array}{r}
\frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n}^{\prime} ; V_{2, n}^{\prime}\right)+h\left(\vec{Y}_{2, n}^{\prime} \mid V_{2, n}^{\prime}\right)-h\left(\vec{Y}_{2, n}^{\prime} \mid X_{2, n}^{\prime}\right)\right)+\delta_{2}^{\prime}(N) \leqslant \\
\frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+h\left(\vec{Y}_{2, n} \mid V_{2, n}\right)-h\left(\vec{Y}_{2, n} \mid X_{2, n}\right)\right)+\varphi(N)+\eta \tag{K.11}
\end{array}
$$

From K.11 the following holds:

$$
\begin{aligned}
\frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{2, n} ; V_{2, n}\right) \geqslant & \frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n}^{\prime} ; V_{2, n}^{\prime}\right)+h\left(\vec{Y}_{2, n}^{\prime} \mid V_{2, n}^{\prime}\right)-h\left(\vec{Y}_{2, n}^{\prime} \mid X_{2, n}^{\prime}\right)-h\left(\vec{Y}_{2, n} \mid V_{2, n}\right)\right. \\
& \left.+h\left(\vec{Y}_{2, n} \mid X_{2, n}\right)\right)+\delta_{2}^{\prime}(N)-\varphi(N)-\eta \\
= & \frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n}^{\prime} ; V_{2, n}^{\prime}\right)+h\left(\vec{h}_{22} U_{2, n}+h_{21} X_{1, n}+\vec{Z}_{2, n}\right)\right. \\
& -h\left(h_{21} X_{1, n}+\vec{Z}_{2, n} \mid X_{2, n}^{\prime}\right)-h\left(\vec{h}_{22} U_{2, n}+h_{21} X_{1, n}+\vec{Z}_{2, n} \mid V_{2, n}\right) \\
& \left.+h\left(h_{21} X_{1, n}+\vec{Z}_{2, n} \mid X_{2, n}\right)\right)+\delta_{2}^{\prime}(N)-\varphi(N)-\eta
\end{aligned}
$$

$$
\begin{align*}
& \geqslant \frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n}^{\prime} ; V_{2, n}^{\prime}\right)+h\left(h_{21} X_{1, n}+\vec{Z}_{2, n} \mid X_{2, n}\right)-h\left(h_{21} X_{1, n}+\vec{Z}_{2, n} \mid X_{2, n}^{\prime}\right)\right)+\delta_{2}^{\prime}(N) \\
&-\varphi(N)-\eta \\
& \stackrel{(f)}{\geqslant} \frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{2}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1}{\left.\left(1-\gamma_{2}\right){\overrightarrow{\mathrm{SNR}_{2}}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1}^{2}\right)}\right. \\
&+\frac{1}{2} \log \left(\mathrm{INR}_{21}\left(1-\rho^{2}\right)+1\right)-\frac{1}{2} \log \left(\mathrm{INR}_{21}\left(1-\left(\rho-\rho_{X 1 V 2} \sqrt{\gamma_{2}}\right)^{2}\right)+1\right) \\
&+\delta_{2}^{\prime}(N)-\varphi(N)-\eta \tag{K.12}
\end{align*}
$$

where, (f) follows from K.10.

The lower bound on $\frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; V_{2, n} \mid X_{1, n}\right)$ can be obtained as follows:

$$
\begin{aligned}
& \frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{1, n} ; V_{2, n} \mid X_{1, n}\right) \stackrel{(g)}{=} \frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+I\left(\vec{Y}_{1, n}, X_{1, n} ; V_{2, n} \mid \vec{Y}_{2, n}\right)-I\left(X_{1, n} ; V_{2, n}\right)\right. \\
&\left.-I\left(\vec{Y}_{2, n} ; V_{2, n} \mid X_{1, n}, \vec{Y}_{1, n}\right)\right) \\
&= \frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+h\left(V_{2, n} \mid \vec{Y}_{2, n}\right)-h\left(V_{2, n} \mid \vec{Y}_{2, n}, \vec{Y}_{1, n}, X_{1, n}\right)\right. \\
&\left.-I\left(X_{1, n} ; V_{2, n}\right)-h\left(V_{2, n} \mid X_{1, n}, \vec{Y}_{1, n}\right)+h\left(V_{2, n} \mid X_{1, n}, \vec{Y}_{1, n}, \vec{Y}_{2, n}\right)\right) \\
&= \frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+h\left(V_{2, n} \mid \vec{Y}_{2, n}\right)-I\left(X_{1, n} ; V_{2, n}\right)\right. \\
&\left.-h\left(V_{2, n} \mid X_{1, n}, \vec{Y}_{1, n}\right)\right) \\
& \stackrel{(h)}{=} \frac{1}{N} \sum_{n=1}^{N}\left(I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+h\left(V_{2, n} \mid \vec{Y}_{2, n}\right)-h\left(V_{2, n} \mid X_{1, n}, \vec{Y}_{1, n}\right)\right) \\
&+\frac{1}{2} \log \left(1-\rho_{X_{1} V_{2}}^{2}\right) \\
& \stackrel{(i)}{=} \frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{2, n} ; V_{2, n}\right)-\frac{1}{2} \log \left(\overrightarrow{\operatorname{SNR}}_{2}+2 \rho \sqrt{\mathrm{SNR}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1\right) \\
&+\frac{1}{2} \log \left((2 \pi e) \left(\overrightarrow{\operatorname{SNR}}_{2}\left(\gamma_{2}-\gamma_{2}^{2}\right)+2 \gamma_{2}\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\stackrel{\mathrm{SNR}_{2} \mathrm{INR}_{21}}{ }}\right.\right. \\
&\left.\left.+\gamma_{2} \operatorname{INR} 21\left(1-\rho_{X_{1} V_{2}}^{2}\right)+\gamma_{2}\right)\right)-\frac{1}{N} \sum_{n=1}^{N} h\left(V_{2, n} \mid X_{1, n}, \vec{Y}_{1, n}\right) \\
&+\frac{1}{2} \log \left(1-\rho_{X_{1} V_{2}}^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \stackrel{(j)}{=} \frac{1}{N} \sum_{n=1}^{N} I\left(\vec{Y}_{2, n} ; V_{2, n}\right) \\
& -\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1\right) \\
& +\frac{1}{2} \log \left((2 \pi e) \left({\overrightarrow{\operatorname{SNR}_{2}}}_{2}\left(\gamma_{2}-\gamma_{2}^{2}\right)+2 \gamma_{2}\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\gamma_{2} \operatorname{INR}_{21}\left(1-\rho_{X_{1} V_{2}}^{2}\right)\right.\right. \\
& \left.\left.+\gamma_{2}\right)\right)+\frac{1}{2} \log \left(1-\rho_{X_{1} V_{2}}^{2}\right)+\frac{1}{2} \log \left(\operatorname{INR}_{12}\left(1-\rho^{2}\right)+1\right) \\
& -\frac{1}{2} \log \left((2 \pi e) \left(\gamma_{2}\left(\operatorname{INR}_{12}\left(1-\rho^{2}\right)+1\right)-\rho_{X_{1} V_{2}}^{2} \gamma_{2}\left(\operatorname{INR}_{12}+1\right)+\gamma_{2} \operatorname{INR}_{12}\left(2 \rho_{X_{1} V_{2}} \rho \sqrt{\gamma_{2}}\right.\right.\right. \\
& \left.-\gamma_{2}\right) \text {) } \\
& \stackrel{(k)}{\geqslant} \frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{2}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1}{\left(1-\gamma_{2}\right) \overrightarrow{\mathrm{SNR}}_{2}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\mathrm{SNR}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1}\right) \\
& +\frac{1}{2} \log \left(\operatorname{INR}_{21}\left(1-\rho^{2}\right)+1\right)-\frac{1}{2} \log \left(\operatorname{INR}_{21}\left(1-\left(\rho-\rho_{X 1 V 2} \sqrt{\gamma_{2}}\right)^{2}\right)+1\right) \\
& -\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1\right) \\
& +\frac{1}{2} \log \left(\overrightarrow{\operatorname{SNR}}_{2}\left(\gamma_{2}-\gamma_{2}^{2}\right)+2 \gamma_{2}\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \operatorname{INR}_{21}}+\gamma_{2} \operatorname{INR}_{21}\left(1-\rho_{X_{1} V_{2}}^{2}\right)+\gamma_{2}\right) \\
& +\frac{1}{2} \log \left(1-\rho_{X_{1} V_{2}}^{2}\right)+\frac{1}{2} \log \left(\operatorname{INR}_{12}\left(1-\rho^{2}\right)+1\right) \\
& -\frac{1}{2} \log \left(\gamma_{2}\left(\operatorname{INR}_{12}\left(1-\rho^{2}\right)+1\right)-\rho_{X_{1} V_{2}}^{2} \gamma_{2}\left(\operatorname{INR}_{12}+1\right)+\gamma_{2} \operatorname{INR}_{12}\left(2 \rho_{X_{1} V_{2}} \rho \sqrt{\gamma_{2}}-\gamma_{2}\right)\right) \\
& +\delta_{2}^{\prime}(N)-\varphi(N)-\eta, \tag{K.13}
\end{align*}
$$

where, (g) follows from the fact that $I\left(\vec{Y}_{1, n}, \vec{Y}_{2, n}, X_{1, n} ; V_{2, n}\right)=I\left(\vec{Y}_{2, n} ; V_{2, n}\right)+I\left(\vec{Y}_{1, n}, X_{1, n}\right.$; $\left.V_{2, n} \mid \vec{Y}_{2, n}\right)=I\left(X_{1, n} ; V_{2, n}\right)+I\left(\vec{Y}_{1, n} ; V_{2, n} \mid X_{1, n}\right)+I\left(\vec{Y}_{2, n} ; V_{2, n} \mid X_{1, n}, \vec{Y}_{1, n}\right) ;(h)$ follows from the fact that $I\left(X_{1, n} ; V_{2, n}\right)=-\frac{1}{2} \log \left(1-\rho_{X_{1} V_{2}}^{2}\right) ;(i)$ follows from the fact that $h\left(V_{2, n} \mid \vec{Y}_{2, n}\right)=$ $\frac{1}{2} \log \left((2 \pi e)\left(\overrightarrow{\operatorname{SNR}}_{2}\left(\gamma_{2}-\gamma_{2}^{2}\right)+2 \gamma_{2}\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\operatorname{SNR}}_{2} \operatorname{INR}_{21}}+\gamma_{2} \operatorname{INR}_{21}\left(1-\rho_{X_{1} V_{2}}^{2}\right)+\gamma_{2}\right)\right)-$ $\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1\right) ;(j)$ follows from the fact that $h\left(V_{2, n} \mid X_{1, n}, \vec{Y}_{1, n}\right)=$ $\frac{1}{2} \log \left((2 \pi e)\left(\gamma_{2}\left(\operatorname{INR}_{12}\left(1-\rho^{2}\right)+1\right)-\rho_{X_{1} V_{2}}^{2} \gamma_{2}\left(\operatorname{INR}_{12}+1\right)+\gamma_{2} \operatorname{INR}_{12}\left(2 \rho_{X_{1} V_{2}} \rho \sqrt{\gamma_{2}}-\gamma_{2}\right)\right)\right)-$ $\frac{1}{2} \log \left(\operatorname{INR}_{12}\left(1-\rho^{2}\right)+1\right)$; and (k) follows from (K.12).

Plugging (K.13) into (K.5), and in the block-length asymptotic regime, the following holds:

$$
\begin{align*}
& R_{1}\left(s_{1}^{*}, s_{2}^{*}\right) \leqslant \frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{1}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{1} \mathrm{INR}_{12}}+\mathrm{INR}_{12}+1\right) \\
& -\frac{1}{2} \log \left(\frac{\overrightarrow{\mathrm{SNR}}_{2}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1}{\left(1-\gamma_{2}\right) \overrightarrow{\mathrm{SNR}}_{2}+2\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1}\right) \\
& -\frac{1}{2} \log \left(\operatorname{INR}_{21}\left(1-\rho^{2}\right)+1\right)+\frac{1}{2} \log \left(\operatorname{INR}_{21}\left(1-\left(\rho-\rho_{X 1 V 2} \sqrt{\gamma_{2}}\right)^{2}\right)+1\right) \\
& +\frac{1}{2} \log \left(\overrightarrow{\mathrm{SNR}}_{2}+2 \rho \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\mathrm{INR}_{21}+1\right) \\
& -\frac{1}{2} \log \left(\overrightarrow{\operatorname{SNR}}_{2}\left(\gamma_{2}-\gamma_{2}^{2}\right)+2 \gamma_{2}\left(\rho-\rho_{X_{1} V_{2}} \sqrt{\gamma_{2}}\right) \sqrt{\overrightarrow{\mathrm{SNR}}_{2} \mathrm{INR}_{21}}+\gamma_{2} \operatorname{INR}_{21}\left(1-\rho_{X_{1} V_{2}}^{2}\right)+\gamma_{2}\right) \\
& -\frac{1}{2} \log \left(1-\rho_{X_{1} V_{2}}^{2}\right)-\frac{1}{2} \log \left(\operatorname{INR}_{12}\left(1-\rho^{2}\right)+1\right) \\
& +\frac{1}{2} \log \left(\gamma_{2}\left(\operatorname{INR}_{12}\left(1-\rho^{2}\right)+1\right)-\rho_{X_{1} V_{2}}^{2} \gamma_{2}\left(\operatorname{INR}_{12}+1\right)+\gamma_{2} \operatorname{INR}_{12}\left(2 \rho_{X_{1} V_{2}} \rho \sqrt{\gamma_{2}}-\gamma_{2}\right)\right) \\
& +\eta \text {. } \tag{K.14}
\end{align*}
$$

The same procedure can be applied for the other user and this completes the proof.

Proof of Lemma 21

 EMMA 21 is proved as follows:

$$
\begin{aligned}
& I\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i}, W_{i} ; \overleftarrow{\boldsymbol{Y}}_{j}, W_{j}\right) \\
= & I\left(W_{i} ; \overleftarrow{\boldsymbol{Y}}_{j}, W_{j}\right)+I\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i} ; \overleftarrow{\boldsymbol{Y}}_{j}, W_{j} \mid W_{i}\right) \\
= & h\left(\overleftarrow{\boldsymbol{Y}}_{j}, W_{j}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{j}, W_{j} \mid W_{i}\right)+h\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right) \\
= & h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)-h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{i}, W_{j}\right)+h\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}, W_{j}, \overleftarrow{\boldsymbol{Y}}_{j}\right) \\
= & h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+h\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i} \mid W_{i}\right)-h\left(\boldsymbol{X}_{i, C}, \boldsymbol{X}_{j, U}, \overleftarrow{\boldsymbol{Y}}_{i}, \overleftarrow{\boldsymbol{Y}}_{j} \mid W_{i}, W_{j}\right) \\
= & h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+\sum_{n=1}^{N}\left[h\left(X_{i, C, n}, X_{j, U, n}, \overleftarrow{Y}_{i, n} \mid W_{i}, \boldsymbol{X}_{i, C,(1: n-1)}, \boldsymbol{X}_{j, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)}, X_{i, n}\right)\right. \\
& -h\left(X_{i, C, n}, X_{j, U, n}, \overleftarrow{Y}_{i, n}, \overleftarrow{Y}_{j, n} \mid W_{i}, W_{j}, \boldsymbol{X}_{i, C,(1: n-1)}, \boldsymbol{X}_{j, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}\right. \\
& \left.\left.X_{i, n}, X_{j, n}\right)\right] \\
\leqslant & h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+\sum_{n=1}^{N}\left[h\left(X_{i, C, n}, X_{j, U, n}, \overleftarrow{Y}_{i, n} \mid X_{i, n}\right)-h\left(\vec{Z}_{j, n}, \vec{Z}_{i, n}, \overleftarrow{Y}_{i, n}, \overleftarrow{Y}_{j, n} \mid W_{i}, W_{j},\right.\right. \\
& \left.\left.\boldsymbol{X}_{i, C,(1: n-1)}, \boldsymbol{X}_{j, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}, X_{i, n}, X_{j, n}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
&= h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+\sum_{n=1}^{N}\left[h\left(X_{i, C, n} \mid X_{i, n}\right)+h\left(X_{j, U, n} \mid X_{i, n}, X_{i, C, n}\right)+h\left(\overleftarrow{Y}_{i, n} \mid X_{i, n}, X_{i, C, n}, X_{j, U, n}\right)\right. \\
&-h\left(\vec{Z}_{j, n}\right)-h\left(\vec{Z}_{i, n}\right)-h\left(\overleftarrow{Y}_{i, n}, \overleftarrow{Y}_{j, n} \mid W_{i}, W_{j}, \boldsymbol{X}_{i, C,(1: n-1)}, \boldsymbol{X}_{j, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)},\right. \\
&\left.\left.\overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}, X_{i, n}, X_{j, n}, \vec{Z}_{j, n}, \vec{Z}_{i, n}\right)\right] \\
& \leqslant h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+\sum_{n=1}^{N}\left[h\left(\vec{Z}_{j, n} \mid X_{i, n}\right)+h\left(X_{j, U, n} \mid X_{i, C, n}\right)+h\left(\overleftarrow{Y}_{i, n} \mid X_{i, n}, X_{j, U, n}\right)-h\left(\vec{Z}_{j, n}\right)\right. \\
&-h\left(\vec{Z}_{i, n}\right)-h\left(\overleftarrow{Z}_{i, n} \overleftarrow{Z}_{j, n} \mid W_{i}, W_{j}, \boldsymbol{X}_{i, C,(1: n-1)}, \boldsymbol{X}_{j, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}, X_{i, n},\right. \\
&\left.\left.X_{j, n}, \vec{Z}_{j, n}, \vec{Z}_{i, n}\right)\right] \\
& \stackrel{(a)}{=} h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+\sum_{n=1}^{N}\left[h\left(X_{j, U, n} \mid X_{i, C, n}\right)+h\left(\overleftarrow{Y}_{i, n} \mid X_{i, n}, X_{j, U, n}\right)-h\left(\vec{Z}_{i, n}\right)-h\left(\overleftarrow{Z}_{i, n}\right)-h\left(\overleftarrow{Z}_{j, n}\right)\right] \\
&= h\left(\overleftarrow{\boldsymbol{Y}}_{j} \mid W_{j}\right)+\sum_{n=1}^{N}\left[h\left(X_{j, U, n} \mid X_{i, C, n}\right)+h\left(\overleftarrow{Y}_{i, n} \mid X_{i, n}, X_{j, U, n}\right)-\frac{3}{2} \log (2 \pi e)\right],
\end{aligned}
$$

where (a) follows from the fact that $\overleftarrow{Z}_{i, n}$ and $\overleftarrow{Z}_{j, n}$ are independent of $W_{i}, W_{j}, \boldsymbol{X}_{i, C,(1: n-1)}$, $\boldsymbol{X}_{j, U,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{i,(1: n-1)}, \overleftarrow{\boldsymbol{Y}}_{j,(1: n-1)}, X_{i, n}, X_{j, n}, \vec{Z}_{j, n}$, and $\vec{Z}_{i, n}$.

This completes the proof of Lemma 21.

M

Proof of Lemma 24

THIS appendix provides a description of the RHK-NOF and a proof of Lemma 24 , This scheme is based on a three-part message splitting, superposition coding, common randomness and backward decoding.
Codebook Generation: Fix a strictly positive joint probability distribution

$$
\begin{align*}
& P_{U U_{1} U_{2} V_{1} V_{2} X_{1, P} X_{2, P}}\left(u, u_{1}, u_{2}, v_{1}, v_{2}, x_{1, P}, x_{2, P}\right)=P_{U}(u) P_{U_{1} \mid U}\left(u_{1} \mid u\right) P_{U_{2} \mid U}\left(u_{2} \mid u\right) \\
& \quad P_{V_{1} \mid U U_{1}}\left(v_{1} \mid u, u_{1}\right) P_{V_{2} \mid U U_{2}}\left(v_{2} \mid u, u_{2}\right) P_{X_{1, P} \mid U U_{1} V_{1}}\left(x_{1, P} \mid u, u_{1}, v_{1}\right) P_{X_{2, P} \mid U U_{2} V_{2}}\left(x_{2, P} \mid u, u_{2}, v_{2}\right), \tag{M.1}
\end{align*}
$$

for all $\left(u, u_{1}, u_{2}, v_{1}, v_{2}, x_{1, P}, x_{2, P}\right) \in \mathcal{U} \times \mathcal{U}_{1} \times \mathcal{U}_{2} \times \mathcal{V}_{1} \times \mathcal{V}_{2} \times \mathcal{X}_{1, P} \times \mathcal{X}_{2, P}$.
Let $R_{1, C 1}, R_{1, R 1}, R_{1, C 2}, R_{1, R 2}, R_{2, C 1}, R_{2, R 1}, R_{2, C 2}, R_{1, R 2}, R_{1, P}$, and $R_{2, P}$ be non-negative real numbers. Let $R_{1, C}=R_{1, C 1}+R_{1, C 2}, R_{2, C}=R_{2, C 1}+R_{2, C 2}, R_{1, R}=R_{1, R 1}+R_{1, R 2}, R_{2, R}=$ $R_{2, R 1}+R_{2, R 2}$. Define also $R_{1}=R_{1, C}+R_{1, P}$ and $R_{2}=R_{2, C}+R_{2, P}$. Note that the rate R_{i} is not considering the rate $R_{i, R}$, this is due to the fact that it corresponds to a message that is assumed to be known by transmitter i and receiver i. Consider without any loss of generality that $N=N_{1}=N_{2}$.

Generate $2^{N\left(R_{1, C 1}+R_{1, R 1}+R_{2, C 1}+R_{2, R 1}\right)}$ i.i.d. N-length codewords $\boldsymbol{u}(s, r)=\left(u_{1}(s, r), u_{2}(s, r)\right.$, $\left.\ldots, u_{N}(s, r)\right)$ according to the product distribution

$$
P_{\boldsymbol{U}}(\boldsymbol{u}(s, r))=\prod_{i=1}^{N} P_{U}\left(u_{i}(s, r)\right)
$$

with $s \in\left\{1,2, \ldots, 2^{N\left(R_{1, C 1}+R_{1, R 1}\right)}\right\}$ and $r \in\left\{1,2, \ldots, 2^{N\left(R_{2, C 1}+R_{2, R 1}\right)}\right\}$.
For encoder 1, generate for each codeword $\boldsymbol{u}(s, r), 2^{N\left(R_{1, C 1}+R_{1, R 1}\right)}$ i.i.d. N-length codewords $\boldsymbol{u}_{1}(s, r, k)=\left(u_{1,1}(s, r, k), u_{1,2}(s, r, k), \ldots, u_{1, N}(s, r, k)\right)$ according to the conditional
distribution

$$
P_{\boldsymbol{U}_{1} \mid \boldsymbol{U}}\left(\boldsymbol{u}_{1}(s, r, k) \mid \boldsymbol{u}(s, r)\right)=\prod_{i=1}^{N} P_{U_{1} \mid U}\left(u_{1, i}(s, r, k) \mid u_{i}(s, r)\right),
$$

with $k \in\left\{1,2, \ldots, 2^{N\left(R_{1, C 1}+R_{1, R 1}\right)}\right\}$.
For each pair of codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{1}(s, r, k)\right)$, generate $2^{N\left(R_{1, C 2}+R_{1, R 2}\right)}$ i.i.d. N-length codewords $\boldsymbol{v}_{1}(s, r, k, l, d)=\left(v_{1,1}(s, r, k, l), v_{1,2}(s, r, k, l), \ldots, v_{1, N}(s, r, k, l)\right)$ according to the conditional distribution

$$
P_{\boldsymbol{V}_{1} \mid \boldsymbol{U} \boldsymbol{U}_{1}}\left(\boldsymbol{v}_{1}(s, r, k, l) \mid \boldsymbol{u}(s, r), \boldsymbol{u}_{1}(s, r, k)\right)=\prod_{i=1}^{N} P_{V_{1} \mid U U_{1}}\left(v_{1, i}(s, r, k, l) \mid u_{i}(s, r), u_{1, i}(s, r, k)\right)
$$

with $l \in\left\{1,2, \ldots, 2^{N\left(R_{1, C 2}+R_{1, R 2}\right)}\right\}$.
For each triplet of codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{1}(s, r, k), \boldsymbol{v}_{1}(s, r, k, l)\right)$, generate $2^{N R_{1, P}}$ i.i.d. N length codewords $\boldsymbol{x}_{1, P}(s, r, k, l, q)=\left(x_{1, P, 1}(s, r, k, l, q), x_{1, P, 2}(s, r, k, l, q), \ldots, x_{1, P, N}(s, r, k, l, q)\right)$ according to the conditional distribution

$$
\begin{aligned}
& P_{\boldsymbol{X}_{1, P} \mid \boldsymbol{U} \boldsymbol{U}_{1} \boldsymbol{V}_{1}}\left(\boldsymbol{x}_{1, P}(s, r, k, l, q) \mid \boldsymbol{u}(s, r), \boldsymbol{u}_{1}(s, r, k), \boldsymbol{v}_{1}(s, r, k, l)\right)= \\
& \quad \prod_{i=1}^{N} P_{X_{1, P} \mid U U_{1} V_{1}}\left(x_{1, P, i}(s, r, k, l, q) \mid u_{i}(s, r), u_{1, i}(s, r, k), v_{1, i}(s, r, k, l)\right)
\end{aligned}
$$

with $q \in\left\{1,2, \ldots, 2^{N R_{1, P}}\right\}$.
For encoder 2 , generate for each codeword $\boldsymbol{u}(s, r), 2^{N\left(R_{2, C 1}+R_{2, R 1}\right)}$ i.i.d. N-length codewords $\boldsymbol{u}_{2}(s, r, j)=\left(u_{2,1}(s, r, j), u_{2,2}(s, r, j), \ldots, u_{2, N}(s, r, j)\right)$ according to the conditional distribution

$$
P_{\boldsymbol{U}_{2} \mid \boldsymbol{U}}\left(\boldsymbol{u}_{2}(s, r, j) \mid \boldsymbol{u}(s, r)\right)=\prod_{i=1}^{N} P_{U_{2} \mid U}\left(u_{2, i}(s, r, j) \mid u_{i}(s, r)\right)
$$

with $j \in\left\{1,2, \ldots, 2^{N\left(R_{2, C 1}+R_{2, R 1}\right)}\right\}$.
For each pair of codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{2}(s, r, j)\right)$, generate $2^{N\left(R_{2, C 2}+R_{2, R 2}\right)}$ i.i.d. N-length codewords $\boldsymbol{v}_{2}(s, r, j, m)=\left(v_{2,1}(s, r, j, m), v_{2,2}(s, r, j, m), \ldots, v_{2, N}(s, r, j, m)\right)$ according to the conditional distribution

$$
P_{\boldsymbol{V}_{2} \mid \boldsymbol{U} \boldsymbol{U}_{2}}\left(\boldsymbol{v}_{2}(s, r, j, m) \mid \boldsymbol{u}(s, r), \boldsymbol{u}_{2}(s, r, j)\right)=\prod_{i=1}^{N} P_{V_{2} \mid U U_{2}}\left(v_{2, i}(s, r, j, m) \mid u_{i}(s, r), u_{2, i}(s, r, j)\right)
$$

with $m \in\left\{1,2, \ldots, 2^{N\left(R_{2, C 2}+R_{2, R 2}\right)}\right\}$.
For each triplet of codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{2}(s, r, j), \boldsymbol{v}_{2}(s, r, j, m)\right)$, generate $2^{N R_{2, P}}$ i.i.d. N length codewords $\boldsymbol{x}_{2, P}(s, r, j, m, b)=\left(x_{2, P, 1}(s, r, j, m, b), x_{2, P, 2}(s, r, j, m, b), \ldots, x_{2, P, N}(s, r, j, m)\right)$ according to

$$
\begin{aligned}
& P_{\boldsymbol{X}_{2, P} \mid \boldsymbol{U} \boldsymbol{U}_{2} \boldsymbol{V}_{2}}\left(\boldsymbol{x}_{2, P}(s, r, j, m, b) \mid \boldsymbol{u}(s, r), \boldsymbol{u}_{2}(s, r, j), \boldsymbol{v}_{2}(s, r, j, m)\right)= \\
& \quad \prod_{i=1}^{N} P_{X_{2, P} \mid U U_{2} V_{2}}\left(x_{2, P, i}(s, r, j, m, b) \mid u_{i}(s, r), u_{2, i}(s, r, j), v_{2, i}(s, r, j, m, b)\right)
\end{aligned}
$$

with $b \in\left\{1,2, \ldots, 2^{N R_{2, P}}\right\}$. The resulting code structure is shown in Figure M.1.

Encoding: Denote by $W_{i}^{(t)} \in \mathcal{W}_{i}=\left\{1,2, \ldots, 2^{N\left(R_{i, C}+R_{i, P}\right)}\right\}$ and $\Omega_{i}^{(t)} \in \mathcal{W}_{i, R}=\{1$, $\left.2, \ldots, 2^{N R_{i, R}}\right\}$ the message index and the random message index of transmitter i during block $t \in\{1,2, \ldots, T\}$, respectively, with $T \in \mathbb{N}$ the total number of blocks. Let $W_{i}^{(t)}$ be decomposed into the message index $W_{i, C}^{(t)} \in \mathcal{W}_{i, C}=\left\{1,2, \ldots, 2^{N R_{i, C}}\right\}$ and the message index $W_{i, P}^{(t)} \in \mathcal{W}_{i, P=}=\left\{1,2, \ldots, 2^{N R_{i, P}}\right\}$. That is, $W_{i}^{(t)}=\left(W_{i, C}^{(t)}, W_{i, P}^{(t)}\right)$. The message index $W_{i, P}^{(t)}$ must be reliably decoded at receiver i. Let $W_{i, C}^{(t)}$ be decomposed into the message indices $W_{i, C 1}^{(t)} \in \mathcal{W}_{i, C 1}=\left\{1,2, \ldots, 2^{N R_{i, C 1}}\right\}$ and $W_{i, C 2}^{(t)} \in \mathcal{W}_{i, C 2}=\left\{1,2, \ldots, 2^{N R_{i, C 2}}\right\}$. That is, $W_{i, C}^{(t)}=\left(W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}\right)$. Let $\Omega_{i}^{(t)}$ be decomposed into the message indices $\Omega_{i, R 1}^{(t)} \in \mathcal{W}_{i, R 1}=$ $\left\{1,2, \ldots, 2^{N R_{i, R 1}}\right\}$ and $\Omega_{i, R 2}^{(t)} \in \mathcal{W}_{i, R 2}=\left\{1,2, \ldots, 2^{N R_{i, R 2}}\right\}$. That is, $\Omega_{i}^{(t)}=\left(\Omega_{i, R 1}^{(t)}, \Omega_{i, R 2}^{(t)}\right)$. The index $\left(W_{i, C 1}^{(t)}, \Omega_{i, R 1}^{(t)}\right)$ must be reliably decoded at transmitter j, with $j \in\{1,2\} \backslash\{i\}$ (via feedback), but no necessarily by receiver i. The index $\left(W_{i, C 2}^{(t)}, \Omega_{i, R 2}^{(t)}\right)$ must be reliably decoded by receiver j but no necessarily by receiver i.

Consider Markov encoding over T blocks. At encoding step t, with $t \in\{1,2, \ldots, T\}$, transmitter 1 sends the codeword

$$
\begin{align*}
\boldsymbol{x}_{1}^{(t)}= & \Theta_{1}\left(\boldsymbol{u}\left(\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right),\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right)\right)\right. \tag{M.2}\\
& \boldsymbol{u}_{1}\left(\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right),\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right),\left(W_{1, C 1}^{(t)}, \Omega_{1, R 1}^{(t)}\right)\right) \\
& \boldsymbol{v}_{1}\left(\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right),\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right),\left(W_{1, C 1}^{(t)}, \Omega_{1, R 1}^{(t)}\right),\left(W_{1, C 2}^{(t)}, \Omega_{1, R 2}^{(t)}\right)\right), \\
& \left.\boldsymbol{x}_{1, P}\left(\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right),\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right),\left(W_{1, C 1}^{(t)}, \Omega_{1, R 1}^{(t)}\right),\left(W_{1, C 2}^{(t)}, \Omega_{1, R 2}^{(t)}\right), W_{1, P}^{(t)}\right)\right),
\end{align*}
$$

where $\Theta_{1}: \mathcal{U}^{N} \times \mathcal{U}_{1}^{N} \times \mathcal{V}_{1}^{N} \times \mathcal{X}_{1, P}^{N} \rightarrow \mathcal{X}_{1}^{N}$ is a function that transforms the codewords $\boldsymbol{u}\left(\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right),\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right)\right), \boldsymbol{u}_{1}\left(\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right),\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right),\left(W_{1, C 1}^{(t)}, \Omega_{1, R 1}^{(t)}\right)\right)$, $\boldsymbol{v}_{1}\left(\left(W_{1, C 1}^{(t-1)}, \Omega_{1, R 1}^{(t-1)}\right),\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right),\left(W_{1, C 1}^{(t)}, \Omega_{1, R 1}^{(t)}\right),\left(W_{1, C 2}^{(t)}, \Omega_{1, R 2}^{(t)}\right)\right)$, and $\boldsymbol{x}_{1, P}\left(\left(W_{1, C 1}^{(t-1)}\right.\right.$, $\left.\left.\Omega_{1, R 1}^{(t-1)}\right),\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right),\left(W_{1, C 1}^{(t)}, \Omega_{1, R 1}^{(t)}\right),\left(W_{1, C 2}^{(t)}, \Omega_{1, R 2}^{(t)}\right), W_{1, P}^{(t)}\right)$ into the N-dimensional vector $\boldsymbol{x}_{1}^{(t)}$ of channel inputs. The indices $\left(W_{1, C 1}^{(0)}, \Omega_{1, R 1}^{(0)}\right)=\left(W_{1, C 1}^{(T)}, \Omega_{1, R 1}^{(T)}\right)=s^{*}$ and $\left(W_{2, C 1}^{(0)}=\Omega_{2, R 1}^{(0)}\right)=\left(W_{2, C 1}^{(T)}, \Omega_{2, R 1}^{(T)}\right)=r^{*}$, and the pair $\left(s^{*}, r^{*}\right) \in\left\{1,2, \ldots, 2^{N\left(R_{1, C 1}+R_{1, R 1}\right)}\right\} \times$ $\left\{1,2, \ldots, 2^{N\left(R_{2, C 1}+R_{2, R 1}\right)}\right\}$ are pre-defined and known by both receivers and transmitters. It is worth noting that the index $\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right)$ is obtained by transmitter 1 from the feedback signal $\overleftarrow{\boldsymbol{y}}_{1}^{(t-1)}$ at the end of the previous encoding step $t-1$

Transmitter 2 follows a similar encoding scheme.
Decoding: Both receivers decode their message indices at the end of block T in a backward decoding fashion. At each decoding step t, with $t \in\{1,2, \ldots, T\}$, receiver 1 obtains the indices $\left(\left(\widehat{W}_{1, C 1}^{(T-t)}, \Omega_{1, R 1}^{(T-t)}\right),\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right),\left(\widehat{W}_{1, C 2}^{(T-(t-1))}, \Omega_{1, R 2}^{(T-(t-1))}\right), \widehat{W}_{1, P}^{(T-(t-1))}\right.$, $\left.\left(\widehat{W}_{2, C 2}^{(T-(t-1))}, \widehat{\Omega}_{2, R 2}^{(T-(t-1))}\right)\right) \in \mathcal{W}_{1, C 1} \times \mathcal{W}_{1, R 1} \times \mathcal{W}_{2, C 1} \times \mathcal{W}_{2, R 1} \times \mathcal{W}_{1, C 2} \times \mathcal{W}_{1, R 2} \times \mathcal{W}_{1, P} \times$
$\mathcal{W}_{2, C 2} \times \mathcal{W}_{2, R 2}$ from the channel output $\overrightarrow{\boldsymbol{y}}_{1}^{(T-(t-1))}$. The tuple $\left(\left(\widehat{W}_{1, C 1}^{(T-t)}, \Omega_{1, R 1}^{(T-t)}\right),\left(\widehat{W}_{2, C 1}^{(T-t)}\right.\right.$, $\left.\left.\widehat{\Omega}_{2, R 1}^{(T-t)}\right),\left(\widehat{W}_{1, C 2}^{(T-(t-1))}, \Omega_{1, R 2}^{(T-(t-1))}\right), \widehat{W}_{1, P}^{(T-(t-1))},\left(\widehat{W}_{2, C 2}^{(T-(t-1))}, \widehat{\Omega}_{2, R 2}^{(T-(t-1))}\right)\right)$ is the unique tuple that satisfies:

$$
\begin{align*}
& \left(\boldsymbol{u}\left(\left(\widehat{W}_{1, C 1}^{(T-t)}, \Omega_{1, R 1}^{(T-t)}\right),\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right)\right), \boldsymbol{u}_{1}\left(\left(\widehat{W}_{1, C 1}^{(T-t)}, \Omega_{1, R 1}^{(T-t)}\right),\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right),\right.\right. \\
& \left.\left(W_{1, C 1}^{(T-(t-1))}, \Omega_{1, R 1}^{(T-(t-1))}\right)\right), \boldsymbol{v}_{1}\left(\left(\widehat{W}_{1, C 1}^{(T-t)}, \Omega_{1, R 1}^{(T-t)}\right),\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right),\right. \\
& \left.\left(W_{1, C 1}^{(T-(t-1))}, \Omega_{1, R 1}^{(T-(t-1))}\right),\left(\widehat{W}_{1, C 2}^{(T-(t-1))}, \Omega_{1, R 2}^{(T-(t-1))}\right)\right), \boldsymbol{x}_{1, P}\left(\left(\widehat{W}_{1, C 1}^{(T-t)}, \Omega_{1, R 1}^{(T-t)}\right),\right. \\
& \left.\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right),\left(W_{1, C 1}^{(T-(t-1))}, \Omega_{1, R 1}^{(T-(t-1))}\right),\left(\widehat{W}_{1, C 2}^{(T-(t-1))}, \Omega_{1, R 2}^{(T-(t-1))}\right), \widehat{W}_{1, P}^{(T-(t-1))}\right), \\
& \boldsymbol{u}_{2}\left(\left(\widehat{W}_{1, C 1}^{(T-t)}, \Omega_{1, R 1}^{(T-t)}\right),\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right),\left(W_{2, C 1}^{(T-(t-1))}, \Omega_{2, R 1}^{(T-(t-1))}\right)\right), \\
& \boldsymbol{v}_{2}\left(\left(\widehat{W}_{1, C 1}^{(T-t)}, \Omega_{1, R 1}^{(T-t)}\right),\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right),\left(W_{2, C 1}^{(T-(t-1))}, \Omega_{2, R 1}^{(T-(t-1))}\right),\right. \\
& \left.\left.\left.\left(\widehat{W}_{2, C 2}^{(T-(t-1))}, \widehat{\Omega}_{2, R 2}^{(T-(t-1))}\right)\right), \overrightarrow{\boldsymbol{y}}_{1}^{(T-(t-1))}\right) \in \mathcal{T}_{[U, \epsilon)}^{\left(N, U_{1} V_{1} X_{1, P} U_{2} V_{2} \vec{Y}_{1}\right]}\right] \tag{M.3}
\end{align*}
$$

where $W_{1, C 1}^{(T-(t-1))}$ and $\left(W_{2, C 1}^{(T-(t-1))}, \Omega_{2, R 1}^{(T-(t-1))}\right)$ are assumed to be perfectly decoded in the previous decoding step $t-1$, given that $\Omega_{1, R 1}^{(T-(t-1))}$ is known at both transmitter 1 and receiver 1 . The set $\mathcal{T}_{\left[\begin{array}{llllll}U, \epsilon) \\ U & U_{1} & V_{1} & X_{1, P} & U_{2} & V_{2}\end{array} \vec{Y}_{1}\right.}^{(N)}$ represents the set of jointly typical sequences of the random variables $U, U_{1}, V_{1}, X_{1, P}, U_{2}, V_{2}$, and \vec{Y}_{1}, with $\epsilon>0$. Finally, receiver 2 follows a similar decoding scheme.

Probability of Error Analysis: An error might occur during encoding step t if the index $\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right)$ is not correctly decoded at transmitter 1 . From the AEP $\mid 25$, it follows that the index $\left(W_{2, C 1}^{(t-1)}, \Omega_{2, R 1}^{(t-1)}\right)$ can be reliably decoded at transmitter 1 during encoding step t, under the condition:

$$
\begin{align*}
R_{2, C 1}+R_{2, R 1} & \leqslant I\left(\overleftarrow{Y}_{1} ; U_{2} \mid U, U_{1}, V_{1}, X_{1}\right) \\
& =I\left(\overleftarrow{Y}_{1} ; U_{2} \mid U, X_{1}\right) \tag{M.4}
\end{align*}
$$

An error might occur during the (backward) decoding step t if the indices $W_{1, C 1}^{(T-t)},\left(W_{2, C 1}^{(T-t)}\right.$, $\left.\Omega_{2, R 1}^{(T-t)}\right), W_{1, C 2}^{(T-(t-1))}, W_{1, P}^{(T-(t-1))}$, and $\left(W_{2, C 2}^{(T-(t-1))}, \Omega_{2, R 2}^{(T-(t-1))}\right)$ are not decoded correctly given that the indices $W_{1, C 1}^{(T-(t-1))}$ and $\left(W_{2, C 1}^{(T-(t-1))}, \Omega_{2, R 1}^{(T-(t-1))}\right)$ were correctly decoded in the previous decoding step $t-1$. These errors might arise for two reasons: (i) there does not exist a tuple $\left(\widehat{W}_{1, C 1}^{(T-t)},\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right), \widehat{W}_{1, C 2}^{(T-(t-1))}, \widehat{W}_{1, P}^{(T-(t-1))},\left(\widehat{W}_{2, C 2}^{(T-(t-1))}, \widehat{\Omega}_{2, R 2}^{(T-(t-1))}\right)\right)$ that satisfies (M.3), or (ii) there exist several tuples $\left(\widehat{W}_{1, C 1}^{(T-t)},\left(\widehat{W}_{2, C 1}^{(T-t)}, \widehat{\Omega}_{2, R 1}^{(T-t)}\right), \widehat{W}_{1, C 2}^{(T-(t-1))}\right.$, $\left.\widehat{W}_{1, P}^{(T-(t-1))},\left(\widehat{W}_{2, C 2}^{(T-(t-1))}, \widehat{\Omega}_{2, R 2}^{(T-(t-1))}\right)\right)$ that simultaneously satisfy M.3). From the AEP [25, the probability of an error due to (i) tends to zero when N grows to infinity. Consider the error due to $(i i)$ and define the event $E_{(s, r, l, q, m)}^{(t)}$ that describes the case in which

Figure M.1.: Structure of the superposition code. The codewords corresponding to the message indices $W_{1, C 1}^{(t-1)}, W_{2, C 1}^{(t-1)}, W_{i, C 1}^{(t)}, W_{i, C 2}^{(t)}, W_{i, P}^{(t)}$ with $i \in\{1,2\}$ as well as the block index t are both highlighted. The (approximate) number of codewords for each code layer is also highlighted.
the codewords $\left(\boldsymbol{u}(s, r), \boldsymbol{u}_{1}\left(s, r,\left(W_{1, C 1}^{(T-(t-1))}, \Omega_{1, R 1}^{(T-(t-1))}\right), \boldsymbol{v}_{1}\left(s, r,\left(W_{1, C 1}^{(T-(t-1))}, \Omega_{1, R 1}^{(T-(t-1))}\right), l\right)\right.\right.$, $\boldsymbol{x}_{1, P}\left(s, r,\left(W_{1, C 1}^{(T-(t-1))}, \Omega_{1, R 1}^{(T-(t-1))}\right), l, q\right), \quad \boldsymbol{u}_{2}\left(s, r,\left(W_{2, C 1}^{(T-(t-1))}, \Omega_{2, R 1}^{(T-(t-1))}\right)\right)$, and $\quad \boldsymbol{v}_{2}(s, r$, $\left.\left.\left(W_{2, C 1}^{(T-(t-1))}, \Omega_{2, R 1}^{(T-(t-1))}\right), m\right)\right)$ are jointly typical with $\overrightarrow{\boldsymbol{y}}_{1}^{(T-(t-1))}$ during decoding step t. Without loss of generality assume that the codeword to be decoded at decoding step t corresponds to the indices $(s, r, l, q, m)=(1,1,1,1,1)$ due to the symmetry of the code. Then, the probability of error due to (ii) during decoding step t, can be bounded using Boole's inequality as follows:

$$
\begin{align*}
P_{1}^{(t)}\left(s_{1}, s_{2}\right) & =\operatorname{Pr}\left[\bigcup_{(s, r, l, q, m) \neq(1,1,1,1,1)} E_{(s, r, l, q, m)}^{(t)}\right] \\
& \leqslant \sum_{(s, r, l, q, m) \in \mathcal{T}} \operatorname{Pr}\left[E_{(s, r, l, q, m)}^{(t)}\right] \tag{M.5}
\end{align*}
$$

with $\mathcal{T}=\left\{\mathcal{W}_{1, C 1} \times \mathcal{W}_{1, R 1} \times \mathcal{W}_{2, C 1} \times \mathcal{W}_{2, R 1} \times \mathcal{W}_{1, C 2} \times \mathcal{W}_{1, R 2} \times \mathcal{W}_{1, P} \times \mathcal{W}_{2, C 2} \times \mathcal{W}_{2, R 2}\right\} \backslash$ $\{(1,1,1,1,1)\}$. Therefore,

$$
\begin{align*}
& P_{1}^{(t)}\left(s_{1}, s_{2}\right) \leqslant \sum_{s=1, r=1, l=1, q=1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s=1, r=1, l=1, q \neq 1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s=1, r=1, l=1, q \neq 1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s=1, r=1, l \neq 1, q=1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s=1, r=1, l \neq 1, q=1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s=1, r=1, l \neq 1, q \neq 1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s=1, r=1, l \neq 1, q \neq 1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s=1, r \neq 1, l=1, q=1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s=1, r \neq 1, l=1, q=1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s=1, r \neq 1, l=1, q \neq 1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s=1, r \neq 1, l=1, q \neq 1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s=1, r \neq 1, l \neq 1, q=1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s=1, r \neq 1, l \neq 1, q=1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s=1, r \neq 1, l \neq 1, q \neq 1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s=1, r \neq 1, l \neq 1, q \neq 1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s \neq 1, r=1, l=1, q=1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s \neq 1, r=1, l=1, q=1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s \neq 1, r=1, l=1, q \neq 1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s \neq 1, r=1, l=1, q \neq 1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s \neq 1, r=1, l \neq 1, q=1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s \neq 1, r=1, l \neq 1, q=1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s \neq 1, r=1, l \neq 1, q \neq 1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s \neq 1, r=1, l \neq 1, q \neq 1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s \neq 1, r \neq 1, l=1, q=1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s \neq 1, r \neq 1, l=1, q=1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s \neq 1, r \neq 1, l=1, q \neq 1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s \neq 1, r \neq 1, l=1, q \neq 1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s \neq 1, r \neq 1, l \neq 1, q=1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s \neq 1, r \neq 1, l \neq 1, q=1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right]+\sum_{s \neq 1, r \neq 1, l \neq 1, q \neq 1, m=1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] \\
& +\sum_{s \neq 1, r \neq 1, l \neq 1, q \neq 1, m \neq 1} \operatorname{Pr}\left[E_{(s, r, l, q, m)}\right] . \tag{M.6}
\end{align*}
$$

$$
\begin{aligned}
P_{1}^{(t)}\left(s_{1}, s_{2}\right) \leqslant & 2^{N\left(R_{2, C 2}+R_{2, R 2}-I\left(\vec{Y}_{1} ; V_{2} \mid U, U_{1}, U_{2}, V_{1}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, P}-I\left(\vec{Y}_{1} ; X_{1} \mid U, U_{1}, U_{2}, V_{1}, V_{2}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C 2}+R_{2, R 2}+R_{1, P}-I\left(\vec{Y}_{1} ; V_{2}, X_{1} \mid U, U_{1}, U_{2}, V_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 2}-I\left(\vec{Y}_{1} ; V_{1}, X_{1} \mid U, U_{1}, U_{2}, V_{2}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 2}+R_{2, C 2}+R_{2, R 2}-I\left(\vec{Y}_{1} ; V_{1}, V_{2}, X_{1} \mid U, U_{1}, U_{2}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 2}+R_{1, P}-I\left(\vec{Y}_{1} ; V_{1}, X_{1} \mid U, U_{1}, U_{2}, V_{2}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 2}+R_{1, P}+R_{2, C 2}+R_{2, R 2}-I\left(\vec{Y}_{1} ; V_{1}, V_{2}, X_{1} \mid U, U_{1}, U_{2}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C 1}+R_{2, R 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C}+R_{2, R}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}
\end{aligned}
$$

$$
\begin{align*}
& +2^{N\left(R_{2, C 1}+R_{2, R 1}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C}+R_{2, R}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C 1}+R_{2, R 1}+R_{1, C 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C}+R_{2, R}+R_{1, C 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C 1}+R_{2, R 1}+R_{1, C 2}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{2, C}+R_{2, R}+R_{1, C 2}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 1}+R_{2, C 2}+R_{2, R 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 1}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& +2^{N\left(R_{1, C 1}+R_{1, P}+R_{2, C 2}+R_{2, R 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
& \left.+2^{N\left(R_{1, C}-I\left(\vec{Y}_{\left.\left.1 ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}\right.\right.} \begin{array}{l}
+2^{N\left(R_{1, C}+R_{2, C 2}+R_{2, R 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1}-I\left(\vec{Y}_{\left.\left.1 ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}\right.\right.}+2^{N\left(R_{1}+R_{2, C 2}+R_{2, R 2}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1, C 1}+R_{2, C 1}+R_{2, R 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1, C 1}+R_{2, C}+R_{2, R}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1, C 1}+R_{2, C 1}+R_{2, R 1}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1, C 1}+R_{2, C}+R_{2, R}+R_{1, P}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1, C}+R_{2, C 1}+R_{2, R 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1, C}+R_{2, C}+R_{2, R}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1}+R_{2, C 1}+R_{2, R 1}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)} \\
+2^{N\left(R_{1}+R_{2, C}+R_{2, R}-I\left(\vec{Y}_{1} ; U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1}\right)+2 \epsilon\right)}
\end{array}\right)
\end{align*}
$$

The same analysis of the probability of error holds for transmitter-receiver pair 2. From the AEP [25, and from (M.4) and M.7), reliable decoding holds under the following conditions for transmitter $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$:

$$
\begin{align*}
R_{j, C 1}+R_{j, R 1} & \leqslant \theta_{1, i} \\
& \triangleq I\left(\overleftarrow{Y}_{i} ; U_{j} \mid U, U_{i}, V_{i}, X_{i}\right) \\
& =I\left(\overleftarrow{Y}_{i} ; U_{j} \mid U, X_{i}\right), \tag{M.8a}\\
R_{i}+R_{j, C}+R_{j, R} & \leqslant \theta_{2, i} \\
& \triangleq I\left(\vec{Y}_{i} ; U, U_{i}, U_{j}, V_{i}, V_{j}, X_{i}\right) \\
& =I\left(\vec{Y}_{i} ; U, U_{j}, V_{j}, X_{i}\right), \tag{M.8b}\\
R_{j, C 2}+R_{j, R 2} & \leqslant \theta_{3, i} \\
& \triangleq I\left(\vec{Y}_{i} ; V_{j} \mid U, U_{i}, U_{j}, V_{i}, X_{i}\right) \\
& =I\left(\vec{Y}_{i} ; V_{j} \mid U, U_{j}, X_{i}\right), \tag{M.8c}\\
R_{i, P} & \leqslant \theta_{4, i} \\
& \triangleq I\left(\vec{Y}_{i} ; X_{i} \mid U, U_{i}, U_{j}, V_{i}, V_{j}\right), \tag{M.8d}
\end{align*}
$$

Figure M.2.: The auxiliary random variables and their relation with signals when channeloutput feedback is considered in (a) very weak interference regime, (b) weak interference regime, (c) moderate interference regime, (d) strong interference regime and (e) very strong interference regime.

$$
\begin{align*}
R_{i, P}+R_{j, C 2}+R_{j, R 2} & \leqslant \theta_{5, i} \\
& \triangleq I\left(\vec{Y}_{i} ; V_{j}, X_{i} \mid U, U_{i}, U_{j}, V_{i}\right), \tag{M.8e}\\
R_{i, C 2}+R_{i, P} & \leqslant \theta_{6, i} \\
& \triangleq I\left(\vec{Y}_{i} ; V_{i}, X_{i} \mid U, U_{i}, U_{j}, V_{j}\right) \\
& =I\left(\vec{Y}_{i} ; X_{i} \mid U, U_{i}, U_{j}, V_{j}\right), \text { and } \tag{M.8f}\\
R_{i, C 2}+R_{i, P}+R_{j, C 2}+R_{j, R 2} & \leqslant \theta_{7, i} \\
& \triangleq I\left(\vec{Y}_{i} ; V_{i}, V_{j}, X_{i} \mid U, U_{i}, U_{j}\right) \\
& =I\left(\vec{Y}_{i} ; V_{j}, X_{i} \mid U, U_{i}, U_{j}\right) . \tag{M.8g}
\end{align*}
$$

From the probability of error analysis, it follows that the rate-pairs achievable with the proposed randomized coding scheme with NOF are those simultaneously satisfying conditions M.8) with $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$. Indeed, when $R_{1, R}=R_{2, R}=0$, the coding scheme described above reduces to the coding scheme presented in Appendix A.

In the two-user LDIC-NOF model, the channel input of transmitter i at each channel use is a q-dimensional binary vector $\boldsymbol{X}_{i} \in \mathcal{X}_{i}=\{0,1\}^{q}$ with $i \in\{1,2\}$ and q as defined in 2.23). Following this observation, the random variables U, U_{i}, V_{i}, and $X_{i, P}$ described in M.1 in the codebook generation are also vectors, and thus, they are denoted by \boldsymbol{U}, $\boldsymbol{U}_{i}, \boldsymbol{V}_{i}$ and $\boldsymbol{X}_{i, P}$, respectively. The random variables $\boldsymbol{U}_{i}, \boldsymbol{V}_{i}$, and $\boldsymbol{X}_{i, P}$ are assumed to be
mutually independent and uniformly distributed over the sets $\{0,1\}{ }^{\left(n_{j i}-\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)^{+}}$, $\{0,1\}\left(\min \left(n_{j i},\left(\max \left(\vec{n}_{j j}, n_{j i}\right)-\overleftarrow{n}_{j j}\right)^{+}\right)\right)$, and $\{0,1\}^{\left(\vec{n}_{i i}-n_{j i}\right)^{+}}$, respectively. Note that the random variables $\boldsymbol{U}_{i}, \boldsymbol{V}_{i}$, and $\boldsymbol{X}_{i, P}$ have the dimensions indicated in A.16a, A.16b, and A.16c , respectively.
Note that the random variable \boldsymbol{U} in (M.1) is not used, and therefore, is a constant. The input symbol of transmitter i during channel use n is $\boldsymbol{X}_{i}=\left(\boldsymbol{U}_{i}^{\top}, \boldsymbol{V}_{i}^{\top}, \boldsymbol{X}_{i, P}^{\top},(0, \ldots, 0)\right)^{\top}$, where $(0, \ldots, 0)$ is put to meet the dimension constraint $\operatorname{dim} \boldsymbol{X}_{i}=q$. Hence, during block $t \in\{1,2, \ldots, T\}$, the codeword $\boldsymbol{X}_{i}^{(t)}$ in the two-user LDIC-NOF is a $q \times N$ matrix, i.e., $\boldsymbol{X}_{i}^{(t)}=\left(\boldsymbol{X}_{i, 1}, \boldsymbol{X}_{i, 2} \ldots, \boldsymbol{X}_{i, N}\right) \in\{0,1\}^{q \times N}$.

The intuition behind this choice is based on the following observations: (a) the vector \boldsymbol{U}_{i} represents the bits in \boldsymbol{X}_{i} that can be observed by transmitter j via feedback but no necessarily by receiver $i ;(b)$ the vector \boldsymbol{V}_{i} represents the bits in \boldsymbol{X}_{i} that can be observed by receiver j but no necessarily by receiver i; and finally, (c) the vector $\boldsymbol{X}_{i, P}$ is a notational artefact to denote the bits of \boldsymbol{X}_{i} that are neither in \boldsymbol{U}_{i} nor \boldsymbol{V}_{i}. In particular, the bits in $\boldsymbol{X}_{i, P}$ are only observed by receiver i, as shown in Figure M.2. This intuition justifies the dimensions described in A.16.

Considering this particular code structure, the terms $\theta_{l, i}$, with $(l, i) \in\{1, \ldots, 7\} \times\{1,2\}$ in M.8), are defined in (I.24). This completes the proof of Lemma 24

N

Proof of Lemma 28

THIS appendix provides a proof of Lemma 28. For the two-user D-GIC-NOF model, consider that transmitter i uses the following Gaussian input distribution:

$$
\begin{equation*}
X_{i}=U+U_{i}+V_{i}+X_{i, P} \tag{N.1}
\end{equation*}
$$

where $U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1, P}$, and $X_{2, P}$ in A.1 are mutually independent and distributed as follows:

$$
\begin{align*}
U & \sim \mathcal{N}(0, \rho) \tag{N.2a}\\
U_{i} & \sim \mathcal{N}\left(0, \mu_{i} \lambda_{i, C}\right), \tag{N.2b}\\
V_{i} & \sim \mathcal{N}\left(0,\left(1-\mu_{i}\right) \lambda_{i, C}\right), \tag{N.2c}\\
X_{i, P} & \sim \mathcal{N}\left(0, \lambda_{i, P}\right), \tag{N.2d}
\end{align*}
$$

with

$$
\begin{gather*}
\rho+\lambda_{i, C}+\lambda_{i, P}=1 \text { and } \tag{N.3a}\\
\lambda_{i, P}=\min \left(\frac{1}{\mathrm{INR}_{j i}}, 1\right), \tag{N.3b}
\end{gather*}
$$

where $\mu_{i} \in[0,1]$ and $\rho \in\left[0,\left(1-\max \left(\frac{1}{\mathrm{INR}_{12}}, \frac{1}{\mathrm{INR}_{21}}\right)\right)^{+}\right]$.
The random variables $U, U_{1}, U_{2}, V_{1}, V_{2}, X_{1, P}$, and $X_{2, P}$ can be interpreted as components of the signals X_{1} and X_{2}. The random variable U, which is used in this case, represents the common component of the channel inputs of transmitter 1 and transmitter 2.

The parameters ρ, μ_{i}, and $\lambda_{i, P}$ define a particular coding scheme for transmitter i. The assignment in N.3b is based on the intuition obtained from the linear deterministic model, in which the power of the signal $X_{i, P}$ from transmitter i to receiver j must be observed at the noise level. From (2.5), 2.6), and (N.1), the right-hand side of the inequalities in (A.14) can
be written in terms of $\overrightarrow{\mathrm{SNR}}_{1}, \overrightarrow{\mathrm{SNR}}_{2}, \mathrm{INR}_{12}, \mathrm{INR}_{21}, \overleftarrow{\mathrm{SNR}}_{1}, \overleftarrow{\mathrm{SNR}}_{2}, \rho, \mu_{1}$, and μ_{2}. Then, the following holds in (A.14) for the two-user GIC-NOF:

$$
\begin{align*}
& \theta_{1, i} \triangleq a_{3, i}\left(\rho, \mu_{j}\right), \tag{N.4a}\\
& \theta_{2, i} \triangleq a_{2, i}(\rho), \tag{N.4b}\\
& \theta_{3, i} \triangleq a_{4, i}\left(\rho, \mu_{j}\right), \tag{N.4c}\\
& \theta_{4, i} \triangleq a_{1, i}, \tag{N.4d}\\
& \theta_{5, i} \triangleq a_{5, i}\left(\rho, \mu_{j}\right), \tag{N.4e}\\
& \theta_{6, i} \triangleq a_{6, i}\left(\rho, \mu_{i}\right), \text { and } \tag{N.4f}\\
& \theta_{7, i} \triangleq a_{7, i}\left(\rho, \mu_{1}, \mu_{2}\right), \tag{N.4g}
\end{align*}
$$

where the functions $a_{1, i}, a_{2, i}(\rho), a_{3, i}\left(\rho, \mu_{j}\right), a_{4, i}\left(\rho, \mu_{j}\right), a_{5, i}\left(\rho, \mu_{j}\right), a_{6, i}\left(\rho, \mu_{i}\right)$, and $a_{7, i}\left(\rho, \mu_{1}, \mu_{2}\right)$ are defined in 6.1). This completes the proof of Lemma 28 .

Price of Anarchy and Maximum and Minimum Sum-Rates

THIS appendix presents the maximum sum-rate in the centralized case and the maximum and minimum sum-rate in the decentralized case.Denote by $\bar{\Sigma}_{C}$ the maximum sum-rate in the centralized case, which is the solution to the optimization problem in the numerator of (7.8) and the numerator of (7.16). A closed-form expression of $\bar{\Sigma}_{C}$ is given by the Lemma 34

Lemma 34 (Maximum sum-rate in the capacity region). For all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}\right.$, $\left.\overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}, \bar{\Sigma}_{\mathcal{C}}$ satisfies the following equality:

$$
\begin{aligned}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}= & \min \left(\max \left(\vec{n}_{11}, n_{12}\right)+\max \left(\vec{n}_{22}, n_{21}\right)\right. \\
& \max \left(\vec{n}_{11}, n_{12}\right)+\max \left(\vec{n}_{22}, \overleftarrow{n}_{11}-\left(\vec{n}_{11}-n_{12}\right)^{+}\right) \\
& \max \left(\vec{n}_{11}, \overleftarrow{n}_{22}-\left(\vec{n}_{22}-n_{21}\right)^{+}\right)+\max \left(\vec{n}_{22}, n_{21}\right) \\
& \max \left(\vec{n}_{11}, \overleftarrow{n}_{22}-\left(\vec{n}_{22}-n_{21}\right)^{+}\right)+\max \left(\vec{n}_{22}, \overleftarrow{n}_{11}-\left(\vec{n}_{11}-n_{12}\right)^{+}\right), \\
& \max \left(\vec{n}_{22}, n_{12}\right)+\left(\vec{n}_{11}-n_{12}\right)^{+}, \max \left(\vec{n}_{11}, n_{21}\right)+\left(\vec{n}_{22}-n_{21}\right)^{+} \\
& \max \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}, \vec{n}_{11}-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right) \\
& +\max \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}, \vec{n}_{22}-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)
\end{aligned}
$$

$$
\begin{align*}
& \max \left(\vec{n}_{11}, n_{21}\right)+\left(\vec{n}_{11}-n_{12}\right)^{+} \\
& +\max \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}, \vec{n}_{22}-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right) \\
& \max \left(\vec{n}_{22}, n_{12}\right)+\left(\vec{n}_{22}-n_{21}\right)^{+} \\
& \left.+\max \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}, \vec{n}_{11}-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right)\right) \tag{O.1}
\end{align*}
$$

Proof: The proof of Lemma 34 is obtained by combining the minimum between the sum-rate bounds (5.1c)-(5.1c), the weighted sum-rate bounds (5.1d), and the sum of single rate bounds (5.1a)-(5.1b on the capacity region of the two-user LDIC-NOF (Theorem 5.1.1) for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$.

Denote by $\bar{\Sigma}_{\mathcal{N}_{\eta}}$ the maximum sum-rate in the decentralized case, which is the solution to the optimization problem in the denominator of (7.16). A closed-form expression of $\bar{\Sigma}_{\mathcal{N}_{\eta}}$ is given by the Lemma 35 .

Lemma 35 (Maximum Sum-Rate at an η-NE). For all ($\left.\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$, $\bar{\Sigma}_{\mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}$ satisfies the following equality:

$$
\begin{aligned}
& \bar{\Sigma}_{\mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}=\min \left(\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}, \max \left(\vec{n}_{11}, n_{21}\right)+\max \left(\vec{n}_{22}, n_{21}\right)\right. \\
& -\left(\min \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}\right)-\left(\min \left(\left(\vec{n}_{11}-n_{21}\right)^{+}, n_{12}\right)-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right)^{+}\right)^{+}+\eta
\end{aligned}
$$

$$
\max \left(\vec{n}_{11}, \overleftarrow{n}_{22}-\left(\vec{n}_{22}-n_{21}\right)^{+}\right)+\max \left(\vec{n}_{22}, n_{21}\right)+\eta
$$

$$
-\left(\min \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}\right)-\left(\min \left(\left(\vec{n}_{11}-n_{21}\right)^{+}, n_{12}\right)-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right)^{+}\right)^{+}
$$

$$
\max \left(\vec{n}_{11}, n_{12}\right)+\max \left(\vec{n}_{22}, n_{21}\right)+\eta
$$

$$
-\left(\min \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}\right)-\left(\min \left(\left(\vec{n}_{11}-n_{21}\right)^{+}, n_{12}\right)-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right)^{+}\right)^{+}
$$

$$
\max \left(\vec{n}_{11}, n_{12}\right)+\max \left(\vec{n}_{22}, n_{21}\right)+\eta
$$

$$
-\left(\min \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}\right)-\left(\min \left(\left(\vec{n}_{22}-n_{12}\right)^{+}, n_{21}\right)-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)^{+}\right)^{+}
$$

$$
\max \left(\vec{n}_{11}, n_{12}\right)+\max \left(\vec{n}_{22}, n_{12}\right)+\eta
$$

$$
-\left(\min \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}\right)-\left(\min \left(\left(\vec{n}_{22}-n_{12}\right)^{+}, n_{21}\right)-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)^{+}\right)^{+}
$$

$$
\max \left(\vec{n}_{11}, n_{12}\right)+\max \left(\vec{n}_{22}, \overleftarrow{n}_{11}-\left(\vec{n}_{11}-n_{12}\right)^{+}\right)+\eta
$$

$$
-\left(\min \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}\right)-\left(\min \left(\left(\vec{n}_{22}-n_{12}\right)^{+}, n_{21}\right)-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)^{+}\right)^{+}
$$

$\max \left(\vec{n}_{11}, n_{12}\right)+\max \left(\vec{n}_{22}, n_{21}\right)+2 \eta$
$-\left(\min \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}\right)-\left(\min \left(\left(\vec{n}_{22}-n_{12}\right)^{+}, n_{21}\right)-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)^{+}\right)^{+}$
$-\left(\min \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}\right)-\left(\min \left(\left(\vec{n}_{11}-n_{21}\right)^{+}, n_{12}\right)-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right)^{+}\right)^{+}$,
$\max \left(\vec{n}_{11}, n_{21}\right)+\left(\vec{n}_{11}-n_{12}\right)^{+}+\max \left(\left(\vec{n}_{22}-n_{21}\right)^{+}, n_{12}, \vec{n}_{22}-\left(\max \left(\vec{n}_{22}, n_{21}\right)-\overleftarrow{n}_{22}\right)^{+}\right)$ $-\left(\left(\vec{n}_{11}-n_{12}\right)^{+}-\eta\right)^{+}, \max \left(\vec{n}_{11}, n_{21}\right)+\left(\vec{n}_{11}-n_{12}\right)^{+}-\left(\left(\vec{n}_{22}-n_{21}\right)^{+}-\eta\right)^{+}$
$\left.+\max \left(\left(\vec{n}_{11}-n_{12}\right)^{+}, n_{21}, \vec{n}_{11}-\left(\max \left(\vec{n}_{11}, n_{12}\right)-\overleftarrow{n}_{11}\right)^{+}\right)\right)$,
where, $\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}$ is defined in Lemma 34 .
Proof: The proof of Lemma 35 follows from obtaining the maximum sum-rate for the η-NE region of the two-user LDIC-NOF (Theorem 7.1.1). It corresponds to the minimum between the sum-rate upper-bounds (5.1c)-(5.1c), the difference between the upper-bound on the weighted sum-rate (5.1d) and the lower-bound on the single rate (7.2b), i.e., U_{i}, and the sum of upper-bounds on single rates 5.1a)-5.1b) in Theorem 5.1.1 and 7.2b, for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$.

Denote by $\underline{\Sigma}_{\mathcal{N}_{\eta}}$ the minimum sum-rate in the decentralized case, which is the solution to the optimization problem in the denominator of (7.8). A closed-form expression of $\underline{\Sigma}_{\mathcal{N}_{\eta}}$ is given by the Lemma 36.

Lemma 36 (Minimum Sum-Rate at an η-NE). For all $\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right) \in \mathbb{N}^{6}$, $\underline{\Sigma}_{\mathcal{N}_{\eta}}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)$ satisfies the following equality:

Proof: The proof of Lemma 36 follows from obtaining the minimum sum-rate for the η-NE region of the two-user LDIC-NOF (Theorem 7.1.1) and it is obtained as the sum of the lower-bounds on the single rates in $7.2 a$, i.e., L_{i}, for all $i \in\{1,2\}$, with $j \in\{1,2\} \backslash\{i\}$.

O.1. PoA when both Transmitter-Receiver Pairs are in the Low-Interference Regime

When both transmitter-receiver pairs are in LIR, i.e., $\vec{n}_{11}>n_{12}$ and $\vec{n}_{22}>n_{21}$, and assuming that $\overleftarrow{n}_{i i} \leqslant \max \left(\vec{n}_{i i}, n_{i j}\right)$ for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, the following holds:

$$
\begin{aligned}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}= & \min \left(\max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{11}-n_{12}, \max \left(\vec{n}_{11}, n_{21}\right)+\vec{n}_{22}-n_{21},\right. \\
& \max \left(\vec{n}_{11}-n_{12}, n_{21}, \overleftarrow{n}_{11}\right)+\max \left(\vec{n}_{22}-n_{21}, n_{12}, \overleftarrow{n}_{22}\right),
\end{aligned}
$$

$$
\begin{align*}
& \max \left(\vec{n}_{11}, n_{21}\right)+\vec{n}_{11}-n_{12}+\max \left(\vec{n}_{22}-n_{21}, n_{12}, \overleftarrow{n}_{22}\right) \\
& \max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, n_{21}, \overleftarrow{n}_{11}\right) \tag{O.4}
\end{align*}
$$

and

$$
\begin{align*}
\underline{\Sigma}_{\mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)} & =\vec{n}_{11}-n_{12}+\vec{n}_{22}-n_{21}-2 \eta \\
& =\underline{\Sigma}_{\mathcal{N} 1} . \tag{O.5}
\end{align*}
$$

Then, the PoA when both transmitter-receiver pairs are in LIR can be calculated using (O.4) and (0.5).

If B_{1} in 7.7 c holds true, the following holds:

$$
\begin{align*}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)=} & \min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21}\right. \\
& \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+\max \left(\vec{n}_{22}-n_{21}, \overleftarrow{n}_{22}\right) \\
& 2 \vec{n}_{11}-n_{12}+\max \left(\vec{n}_{22}-n_{21}, \overleftarrow{n}_{22}\right) \\
& 2 \vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right) \\
= & \bar{\Sigma}_{\mathcal{C} 1} \tag{O.6}
\end{align*}
$$

and this proves 7.10a.
If $B_{2, i}$ in 7.7 d with $i=1$ and $j=2$ holds true, the following holds:

$$
\begin{align*}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)=} & \min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21}\right. \\
& \max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)+\max \left(n_{12}, \overleftarrow{n}_{22}\right) \\
& 2 \vec{n}_{11}-n_{12}+\max \left(n_{12}, \overleftarrow{n}_{22}\right) \\
& \left.2 \vec{n}_{22}-n_{21}+\max \left(\vec{n}_{11}-n_{12}, \overleftarrow{n}_{11}\right)\right) \\
= & \bar{\Sigma}_{\mathcal{C} 2,1}, \tag{O.7}
\end{align*}
$$

and this proves 7.10 b with $i=1$ and $j=2$. The same procedure can be followed when $B_{2, i}$ in 7.7 d with $i=2$ and $j=1$ holds true.

If $B_{3, i}$ in 7.7 e or $B_{5, i}$ in 7.7 g with $i=1$ and $j=2$ holds true, the following holds:

$$
\begin{equation*}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}=\vec{n}_{11} \tag{O.8}
\end{equation*}
$$

The same procedure can be followed when $B_{3, i}$ in 7.7 e or $B_{5, i}$ in 7.7 g with $i=2$ and $j=1$ holds true.

If B_{4} in (7.7f) holds true, the following holds:

$$
\begin{align*}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}= & \min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, \vec{n}_{11}+\vec{n}_{22}-n_{21},\right. \\
& \max \left(n_{21}, \overleftarrow{n}_{11}\right)+\max \left(n_{12}, \overleftarrow{n}_{22}\right), \\
& 2 \vec{n}_{11}-n_{12}+\max \left(n_{12}, \overleftarrow{n}_{22}\right), \\
& 2 \vec{n}_{22}-n_{21}+\max \left(n_{21}, \overleftarrow{n}_{11}\right) \\
= & \bar{\Sigma}_{\mathcal{C} 3}, \tag{O.9}
\end{align*}
$$

and this proves (7.10c). Plugging (0.6), O.7), O.8, O.9), and 0.5 into (7.8) yields (7.9), and this completes the proof of the PoA when both transmitter receiver pairs are in LIR.

O.2. PoA when Transmitter-Receiver Pair 1 is in the Low-Interference Regime and Transmitter-Receiver Pair 2 is in the High-Interference Regime

When transmitter-receiver pair 1 is in LIR, i.e., $\vec{n}_{11}>n_{12}$, and transmitter-receiver pair 2 is in HIR, i.e, $\vec{n}_{22} \leqslant n_{21}$, and assuming that $\overleftarrow{n}_{i i} \leqslant \max \left(\vec{n}_{i i}, n_{i j}\right)$ for all $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, the following holds:

$$
\begin{align*}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}= & \min \left(\vec{n}_{11}+\max \left(\vec{n}_{22}, \overleftarrow{n}_{11}-\vec{n}_{11}+n_{12}\right),\right. \tag{O.10}\\
& \max \left(\vec{n}_{22}, n_{12}\right)+\vec{n}_{11}-n_{12}, \max \left(\vec{n}_{11}, n_{21}\right) \\
& \left.\max \left(\vec{n}_{11}-n_{12}, n_{21}, \overleftarrow{n}_{11}\right)+\max \left(n_{12}, \vec{n}_{22}-n_{21}+\overleftarrow{n}_{22}\right)\right)
\end{align*}
$$

and

$$
\begin{equation*}
\underline{\Sigma}_{\mathcal{N}_{\eta}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}=\vec{n}_{11}-n_{12}-\eta \tag{O.11}
\end{equation*}
$$

If B_{7} in (7.7i), or B_{8} in (7.7j), or B_{10} in (7.71) holds true, the following holds:

$$
\begin{equation*}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}=\vec{n}_{11} \tag{O.12}
\end{equation*}
$$

If B_{9} in 7.7 k holds true, the following holds:

$$
\begin{equation*}
\bar{\Sigma}_{\mathcal{C}\left(\vec{n}_{11}, \vec{n}_{22}, n_{12}, n_{21}, \overleftarrow{n}_{11}, \overleftarrow{n}_{22}\right)}=\min \left(\vec{n}_{22}+\vec{n}_{11}-n_{12}, n_{21}\right) \tag{O.13}
\end{equation*}
$$

Plugging (O.12, (O.13), and (0.11) into (7.8) yields (7.14), and this completes the proof of the PoA when when transmitter-receiver pair 1 is in LIR and transmitter-receiver pair 2 is in HIR.

Information Measures

THIS chapter introduces some information measures that are used along this thesis. These fundamental notions correspond to Shannon's original measures 77 , which build the foundations of information theory. Shannon's information measures include entropy, joint entropy, conditional entropy, mutual information, and conditional mutual information.

P.1. Discrete Random Variables

P.1.1. Entropy

The entropy $H(X)$ of a discrete random variable X is a functional of the pmf P_{X}, which measures the average amount of information contained into X.

Definition 9 (Entropy). Let \mathcal{X} be a countable set and let also X be a random variable with $p m f P_{X}: \mathcal{X} \rightarrow[0,1]$. Then, the entropy of X, denoted by $H(X)$, is:

$$
\begin{equation*}
H(X)=-\sum_{x \in \operatorname{supp}\left(P_{X}\right)} P_{X}(x) \log P_{X}(x) \tag{P.1}
\end{equation*}
$$

This entropy is measured in bits given that the base of the logarithm is two. Note that $H(X)$ depends only on P_{X} and not on the elements of \mathcal{X}.

The entropy of a random variable X can also be written as follows:

$$
\begin{equation*}
H(X)=-\mathbb{E}_{X}\left[\log P_{X}(X)\right] \tag{P.2}
\end{equation*}
$$

For each $x \in \operatorname{supp}\left(P_{X}\right)$, define $\iota(x)=-\log P_{X}(x)$. Then, ι is a new random variable, and $H(X)$ is its average. The function $\iota(x)$ can be interpreted as the amount of information provided by the event $X=x$ (See Figure P.1). According to this interpretation, an unlikely event provides a very large amount of information and an event that occurs with probability close to one provides no information 49.

Figure P.1.: The function $\iota(x)$.

The following corollary presents the entropy of a binary random variable.

Corollary 11. Let X be a binary random variable with distribution $P_{X}(0)=1-P_{X}(1)=p$ and $0 \leqslant p \leqslant 1$. Then,

$$
H(X)=\left\{\begin{array}{lc}
0 & \text { if } p=0 \tag{P.3}\\
-p \log p-(1-p) \log (1-p) & \text { otherwise }
\end{array}\right.
$$

The binary entropy function in (P.3) is plotted in Figure P.2 as a function of p. It is worth noting that the binary entropy function is a non-negative function with a maximum equal to one when $P_{X}(0)=1-P_{X}(1)=\frac{1}{2}$ (uniform distribution).

In general, the entropy takes non-negative values, i.e., $H(X) \geqslant 0$, with equality if and only if X is non-random. The entropy takes its maximum value when all the events have the same occurrence probability, i.e., $H(X)=\log (|\mathcal{X}|)$, as stated by the following lemma.

Lemma 37. Let \mathcal{X} be a countable set and let also X be a random variable with pmf P_{X} : $\mathcal{X} \rightarrow[0,1]$. Then,

$$
\begin{equation*}
0 \leqslant H(X) \leqslant \log |\mathcal{X}| . \tag{P.4}
\end{equation*}
$$

Proof: The lower-bound on the entropy of a random variable X is obtained from the fact that for all $x \in \operatorname{supp}\left(P_{X}\right), 0<P_{X}(x) \leqslant 1$, then $\frac{1}{P_{X}(x)} \geqslant 1$ and $\log \left(\frac{1}{P_{X}(x)}\right) \geqslant 0$. Thus, $H(X) \geqslant 0$

The upper-bound on the entropy of the random variable X is also obtained from (P.2) as

Figure P.2.: Entropy of a binary random variable.
follows:

$$
\begin{align*}
H(X) & =\mathbb{E}_{X}\left[\log \frac{1}{P_{X}(X)}\right] \tag{P.5a}\\
& \leqslant \log \mathbb{E}_{X}\left[\frac{1}{P_{X}(X)}\right] \tag{P.5b}\\
& =\log \sum_{x \in \operatorname{supp}\left(P_{X}\right)} 1 \tag{P.5c}\\
& =\log |\mathcal{X}|,
\end{align*}
$$

where, P.5b follows from Jensen's inequality. Thus, the maximum value of the entropy of a random variable X is obtained when this is uniformly distributed, i.e., $P_{X}(x)=\frac{1}{|\mathcal{X}|}$ for all $x \in \operatorname{supp}\left(P_{X}\right)$, and this completes the proof of Lemma 37

P.1.2. Joint Entropy

The joint entropy $H(X, Y)$ of the discrete random variables X and Y is a functional of the $\mathrm{pmf} P_{X, Y}$, which measures the average amount of information simultaneously contained into X and Y. It is a measure of the uncertainty about the simultaneous outcome of the random variables X and Y.

Definition 10 (Joint Entropy). Let \mathcal{X} and \mathcal{Y} be two countable sets and let also X and Y be two random variables with joint pmf $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$. Then, the joint entropy of X and Y, denoted by $H(X, Y)$, is:

$$
\begin{equation*}
H(X, Y)=-\sum_{(x, y) \in \operatorname{supp}\left(P_{X Y}\right)} P_{X Y}(x, y) \log P_{X Y}(x, y) . \tag{P.6}
\end{equation*}
$$

The joint entropy of the random variables X and Y can also be written as follows:

$$
\begin{equation*}
H(X, Y)=-\mathbb{E}_{X Y}\left[\log P_{X Y}(X, Y)\right] . \tag{P.7}
\end{equation*}
$$

The joint entropy between two random variables is less than or equal to the sum of the entropy of each random variable, as stated by the following lemma.

Lemma 38. Let \mathcal{X} and \mathcal{Y} be two countable sets and let also X and Y be two random variables with joint pmf $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$. Then,

$$
\begin{equation*}
H(X, Y) \leqslant H(X)+H(Y) \tag{P.8}
\end{equation*}
$$

with equality if and only if the random variables X and Y are independent.
Proof: From (P.7), the following holds:

$$
\begin{align*}
H(X, Y) & =-\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X}(X) P_{Y}(Y) P_{X Y}(X, Y)}{P_{X}(X) P_{Y}(Y)}\right)\right] \tag{P.9a}\\
& =-\mathbb{E}_{X}\left[\log P_{X}(X)\right]-\mathbb{E}_{Y}\left[\log P_{Y}(Y)\right]-\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X Y}(X, Y)}{P_{X}(X) P_{Y}(Y)}\right)\right] \tag{P.9b}\\
& =H(X)+H(Y)+\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X}(X) P_{Y}(Y)}{P_{X, Y}(X Y)}\right)\right] \tag{P.9c}\\
& \leqslant H(X)+H(Y)+\log \left(\mathbb{E}_{X Y}\left[\left(\frac{P_{X}(X) P_{Y}(Y)}{P_{X Y}(X, Y)}\right)\right]\right) \tag{P.9d}\\
& =H(X)+H(Y)+\log \left(\sum_{(x, y) \in \operatorname{supp}\left(P_{X Y}\right)}^{\sum_{X} P_{X}(X) P_{Y}(Y)}\right) \tag{P.9e}\\
& =H(X)+H(Y) \tag{P.9f}
\end{align*}
$$

where, P.9d follows from Jensen's inequality.
If the random variables X and Y are independent, from (P.9c) the following holds:

$$
\begin{align*}
H(X, Y) & =H(X)+H(Y)+\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X}(X) P_{Y}(Y)}{P_{X}(X) P_{Y}(Y)}\right)\right] \tag{P.10a}\\
& =H(X)+H(Y), \tag{P.10b}
\end{align*}
$$

and this completes the proof of Lemma 38.
Definition 11 generalizes Definition 10
Definition 11. Let $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{N}$ be N countable sets and let also $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{T}$ be a vector of N random variables with joint pmf $P_{\boldsymbol{X}}: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{N} \rightarrow[0,1]$. Then, the joint entropy of \boldsymbol{X}, denoted by $H(\boldsymbol{X})$, is:

$$
\begin{equation*}
H(\boldsymbol{X})=-\sum_{\boldsymbol{x} \in \operatorname{supp}\left(P_{\boldsymbol{X}}\right)} P_{\boldsymbol{X}}(\boldsymbol{x}) \log P_{\boldsymbol{X}}(\boldsymbol{x}) \tag{P.11}
\end{equation*}
$$

The joint entropy of a vector of discrete random variables \boldsymbol{X} can also be written as follows:

$$
\begin{equation*}
H(\boldsymbol{X})=-\mathbb{E}_{\boldsymbol{X}}\left[\log P_{\boldsymbol{X}}(\boldsymbol{X})\right] . \tag{P.12}
\end{equation*}
$$

If $X_{1}, X_{2}, \ldots, X_{N}$ are mutually independent, the following holds:

$$
\begin{equation*}
H(\boldsymbol{X})=\sum_{n=1}^{N} H\left(X_{n}\right) \tag{P.13}
\end{equation*}
$$

P.1.3. Conditional Entropy

The conditional entropy $H(Y \mid X)$ of Y given X is a measure of the average amount of information necessary to identify the random variable Y given the observation of the random variable X.

Definition 12 (Conditional Entropy). Let \mathcal{X} and \mathcal{Y} be two countable sets and let also X and Y be two random variables with joint pmf $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$. Then, the entropy of Y conditioning on X, denoted by $H(Y \mid X)$, is:

$$
\begin{equation*}
H(Y \mid X)=-\sum_{(x, y) \in \operatorname{supp}\left(P_{X Y}\right)} P_{X Y}(x, y) \log P_{Y \mid X}(y \mid x) \tag{P.14}
\end{equation*}
$$

The entropy of the random variable Y conditioning on the random variable X can also be written as follows:

$$
\begin{equation*}
H(Y \mid X)=-\mathbb{E}_{X Y}\left[\log P_{Y \mid X}(Y \mid X)\right] \tag{P.15}
\end{equation*}
$$

Note also that the conditional entropy in (P.14) can be written as follows:

$$
\begin{align*}
H(Y \mid X) & =\sum_{x \in \operatorname{supp}\left(P_{X}\right)} P_{X}(x)\left[-\sum_{y \in \operatorname{supp}\left(P_{Y \mid X=x}\right)} P_{Y \mid X}(y \mid x) \log P_{Y \mid X}(y \mid x)\right] \\
& =\sum_{x \in \operatorname{supp}\left(P_{X}\right)} P_{X}(x) H(Y \mid X=x) \tag{P.16}
\end{align*}
$$

where, $H(Y \mid X=x)=-\sum_{y \in \operatorname{supp}\left(P_{Y}\right)} P_{Y \mid X}(y \mid x) \log P_{Y \mid X}(y \mid x)$ is the entropy of Y conditioning on a fixed $X=x$.

The following lemma presents a generalization of the chain rule for entropy and the conditional entropy.

Lemma 39 (Chain rule for entropy and chain rule for conditional entropy). Let $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots$, \mathcal{X}_{N} and \mathcal{Y} be $N+1$ countable sets, let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{T}$ be a vector of N random variables, and let also Y be a random variable with joint pmfs $P_{\boldsymbol{X}}: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{N} \rightarrow[0,1]$ and $P_{X Y}: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{N} \times \mathcal{Y} \rightarrow[0,1]$. Then,

$$
\begin{align*}
H\left(X_{1}, \ldots, X_{N}\right) & =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\sum_{n=3}^{N} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right), \text { and } \tag{P.17}\\
H\left(X_{1}, \ldots, X_{N} \mid Y\right) & =H\left(X_{1} \mid Y\right)+H\left(X_{2} \mid Y, X_{1}\right)+\sum_{n=3}^{N} H\left(X_{n} \mid Y, X_{1}, \ldots, X_{n-1}\right) . \tag{P.18}
\end{align*}
$$

Proof:

Proof of (P.17): From (P.12), the following holds:

$$
\begin{align*}
H(\boldsymbol{X}) & =-\mathbb{E}_{\boldsymbol{X}}\left[\log \left(P_{X 1}\left(X_{1}\right) P_{X_{2} \mid X_{1}}\left(X_{2} \mid X_{1}\right) \ldots P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1}}\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}\right)\right)\right] \\
& =-\mathbb{E}_{X_{1}}\left[\log P_{X 1}\left(X_{1}\right)\right]-\mathbb{E}_{X_{1} X_{2}}\left[\log P_{X_{2} \mid X_{1}}\left(X_{2} \mid X_{1}\right)\right]-\ldots-\mathbb{E}_{\boldsymbol{X}}\left[\log P_{X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}}\right] \tag{P.19a}\\
& =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}\right), \tag{P.19с}
\end{align*}
$$

and this completes the proof of P.17).
Proof of (P.18): From (P.15), the following holds:

$$
\begin{align*}
H(\boldsymbol{X} \mid Y)= & -\mathbb{E}_{\boldsymbol{X} Y}\left[\log P_{\boldsymbol{X} \mid Y}(\boldsymbol{X} \mid Y)\right] \tag{P.20a}\\
& -\mathbb{E}_{\boldsymbol{X} Y}\left[\operatorname { l o g } \left(P_{X 1 \mid Y}\left(X_{1} \mid Y\right) P_{X_{2} \mid X_{1} Y}\left(X_{2} \mid Y, X_{1}\right) \ldots\right.\right. \\
& \left.\left.P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1} Y}\left(X_{N} \mid Y, X_{1}, X_{2}, \ldots, X_{N-1}\right)\right)\right] \tag{P.20b}\\
= & -\mathbb{E}_{X_{1} Y}\left[\log P_{X 1 \mid Y}\left(X_{1} \mid Y\right)\right]-\mathbb{E}_{X_{1} X_{2} Y}\left[\log P_{X_{2} \mid X_{1} Y}\left(X_{2} \mid Y, X_{1}\right)\right]-\ldots \\
& -\mathbb{E}_{\boldsymbol{X} Y}\left[\log P_{X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1} Y}\right] \tag{P.20c}\\
= & H\left(X_{1} \mid Y\right)+H\left(X_{2} \mid Y, X_{1}\right)+\ldots+H\left(X_{N} \mid Y, X_{1}, X_{2}, \ldots, X_{N-1}\right), \tag{P.20e}
\end{align*}
$$

and this completes the proof of (P.18). This completes the proof of Lemma 39 .
The entropy of one random variable is bigger than or equal to the entropy of the same random variable conditioned in the occurrence of other random variable, as stated by the following lemma.

Lemma 40 (Conditioning does not increase entropy). Let \mathcal{X} and \mathcal{Y} be two countable sets and let also X and Y be two random variables with joint pmf $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$. Then,

$$
\begin{equation*}
H(Y \mid X) \leqslant H(Y), \tag{P.21}
\end{equation*}
$$

with equality if and only if the random variables X and Y are independent.
Proof: From P.15), the following holds:

$$
\begin{align*}
H(Y \mid X) & =-\mathbb{E}_{X Y}\left[\log \left(\frac{P_{Y}(Y) P_{X \mid Y}(X \mid Y)}{P_{X}(X)}\right)\right] \tag{P.22a}\\
& =-\mathbb{E}_{Y}\left[\log P_{Y}(Y)\right]-\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X \mid Y}(X \mid Y)}{P_{X}(X)}\right)\right] \tag{P.22b}\\
& =H(Y)-\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X Y}(X, Y)}{P_{X}(X) P_{Y}(Y)}\right)\right] \tag{P.22c}\\
& =H(Y)+\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X}(X) P_{Y}(Y)}{P_{X Y}(X, Y)}\right)\right] \tag{P.22d}\\
& \leqslant H(Y)+\log \left(\mathbb{E}_{X Y}\left[\left(\frac{P_{X}(X) P_{Y}(Y)}{P_{X Y}(X, Y)}\right)\right]\right) \tag{P.22e}
\end{align*}
$$

$$
\begin{align*}
& =H(Y)+\log \left(\sum_{(x, y) \in \operatorname{supp}\left(P_{X Y}\right)} P_{X}(X) P_{Y}(Y)\right) \tag{P.22f}\\
& =H(Y) \tag{P.22g}
\end{align*}
$$

where, (P.22e follows from Jensen's inequality.
If the random variables X and Y are independent, from (P.22d) the following holds:

$$
\begin{align*}
& H(Y \mid X)=H(Y)+\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X}(X) P_{Y}(Y)}{P_{X}(X) P_{Y}(Y)}\right)\right] \tag{P.23a}\\
& H(Y \mid X)=H(Y) \tag{P.23b}
\end{align*}
$$

and this completes the proof of Lemma 40.
The joint entropy of a vector of random variables is less than or equal to the sum of the entropy of each random variable, as stated by the following lemma.
Lemma 41. Let $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{N}$ be N countable sets and let also $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{T}$ be a vector of N random variables with joint pmf $P_{\boldsymbol{X}}: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{N} \rightarrow[0,1]$. Then,

$$
\begin{equation*}
H\left(X_{1}, \ldots, X_{N}\right) \leqslant \sum_{n=1}^{N} H\left(X_{N}\right) \tag{P.24}
\end{equation*}
$$

with equality if and only if the random variables $X_{1}, X_{2}, \ldots, X_{N}$ are mutually independent.
Proof: The proof of Lemma 41 follows from Lemma 39 and Lemma 40.
The entropy of a deterministic function of the random variable X is less than or equal to the entropy of the random variable X, with equality only when the function is an injective function. This is stated in Lemma 42.

Lemma 42 (Entropy of a function). Let \mathcal{X} and \mathcal{Y} be countable sets, let X be a random variable with pmf $P_{X}: \mathcal{X} \rightarrow[0,1]$, and let also $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a deterministic function of X. Then,

$$
\begin{equation*}
H(X) \geqslant H(f(X)) \tag{P.25}
\end{equation*}
$$

Proof: Let Y be a random variable with $Y=f(X)$ and $f: \mathcal{X} \rightarrow \mathcal{Y}$. From P.2), the following holds:

$$
\begin{align*}
H(Y) & =-\mathbb{E}_{Y}\left[\log P_{Y}(Y)\right] \tag{P.26a}\\
& \leqslant-\mathbb{E}_{X}\left[\log P_{X}(X)\right] \tag{P.26b}\\
& =H(X) \tag{P.26c}
\end{align*}
$$

where, (P.26b follows from the fact that $P_{Y}(y)=\sum_{x \in \operatorname{supp}\left(P_{X}\right), y=f(x)} P_{X}(x)$, which implies that $P_{Y}(y) \geqslant$ $P_{X}(x)$ and $-\log P_{Y}(y) \leqslant-\log P_{X}(x)$. If f is an injective function $P_{Y}(y)=P_{X}(x)$, then $H(Y)=H(X)$, and this completes the proof of Lemma 42 .

P.1.4. Mutual Information

The mutual information $I(X ; Y)$ between the random variables X and Y is the average amount of information about one of the random variables provided by the occurrence of the other random variable.

Definition 13 (Mutual Information). Let \mathcal{X} and \mathcal{Y} be two countable sets and let also X and Y be two random variables with joint pmf $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$. Then, the mutual information between X and Y, denoted by $I(X ; Y)$, is:

$$
\begin{equation*}
I(X ; Y)=-\sum_{(x, y) \in \operatorname{supp}\left(P_{X Y}\right)} P_{X Y}(x, y) \log \left(\frac{P_{X Y}(x, y)}{P_{X}(x) P_{Y}(y)}\right) \tag{P.27}
\end{equation*}
$$

The mutual information between the random variables X and Y can also be written as follows:

$$
\begin{align*}
& I(X ; Y)=\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X Y}(X, Y)}{P_{X}(X) P_{Y}(Y)}\right)\right] \tag{P.28a}\\
& I(X ; Y)=\mathbb{E}_{X Y}\left[\log \left(\frac{P_{Y \mid X}(Y \mid X)}{P_{Y}(Y)}\right)\right], \text { and } \tag{P.28b}\\
& I(X ; Y)=\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X \mid Y}(X \mid Y)}{P_{X}(X)}\right)\right] \tag{P.28c}
\end{align*}
$$

The following lemma presents some useful properties of the mutual information.

Lemma 43. Let \mathcal{X} and \mathcal{Y} be two countable sets and let also X and Y be two random variables with joint pmf $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$. Then,

$$
\begin{align*}
& I(X ; Y)=I(Y ; X) \tag{P.29}\\
& I(X ; Y)=H(X)-H(X \mid Y) \tag{P.30}\\
& I(X ; Y)=H(Y)-H(Y \mid X) \tag{P.31}\\
& I(X ; Y) \geqslant 0 \tag{P.32}\\
& I(X ; Y)=H(X)+H(Y)-H(X, Y) \tag{P.33}\\
& I(X ; X)=H(X) \tag{P.34}
\end{align*}
$$

Proof:
Proof of (P.29): This follows directly from Definition 13 ,
Proof of (P.30): From (P.28c), the following holds:

$$
\begin{align*}
I(X ; Y) & =-\mathbb{E}_{X}\left[\log P_{X}(X)\right]+\mathbb{E}_{X Y}\left[\log P_{X \mid Y}(X \mid Y)\right] \tag{P.35a}\\
& =H(X)-H(X \mid Y) \tag{P.35b}
\end{align*}
$$

and this completes the proof of P .30 .
Proof of (P.31): From P.28b), the following holds:

$$
\begin{align*}
I(X ; Y) & =\mathbb{E}_{X Y}\left[\log \left(\frac{P_{Y \mid X}(Y \mid X)}{P_{Y}(Y)}\right)\right] \tag{P.36a}\\
& =-\mathbb{E}_{Y}\left[\log P_{Y}(Y)\right]+\mathbb{E}_{X Y}\left[\log P_{Y \mid X}(Y \mid X)\right] \tag{P.36b}\\
& =H(Y)-H(Y \mid X), \tag{P.36c}
\end{align*}
$$

and this completes the proof of $(\overline{\mathrm{P} .31})$.

Proof of (P.32): From (P.30) and (P.31), the following holds:

$$
\begin{align*}
I(X ; Y) & \geqslant H(X)-H(X) \tag{P.37a}\\
& =0 \tag{P.37b}
\end{align*}
$$

where, (P.37a follows from Lemma 40, and this completes the proof of (P.32).
Proof of (P.33): From P.28a, the following holds:

$$
\begin{align*}
I(X ; Y) & =-\mathbb{E}_{X}\left[\log P_{X}(X)\right]-\mathbb{E}_{Y}\left[\log P_{Y}(Y)\right]+\mathbb{E}_{X Y}\left[\log P_{X Y}(X, Y)\right] \tag{P.38a}\\
& =H(X)+H(Y)-H(X, Y) \tag{P.38b}
\end{align*}
$$

and this completes the proof of $(\mathrm{P} .33)$.
Proof of $(\mathrm{P} .34)$: Let Y be a random variable identical to the random variable X, i.e., $Y=X$. From (P.28a), the following holds:

$$
\begin{align*}
I(X ; X) & =\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X Y}(X, Y)}{P_{X}(X) P_{Y}(Y)}\right)\right] \tag{P.39a}\\
& =\mathbb{E}_{X}\left[\log \left(\frac{P_{X}(X)}{P_{X}(X) P_{X}(X)}\right)\right] \tag{P.39b}\\
& =\mathbb{E}_{X}\left[\log \left(\frac{1}{P_{X}(X)}\right)\right] \tag{P.39c}\\
& =-\mathbb{E}_{X}\left[\log P_{X}(X)\right] \tag{P.39d}\\
& =H(X) \tag{P.39e}
\end{align*}
$$

and this completes the proof of (P.34). This completes the proof of Lemma 43 .
The mutual information between two independent random variables is equal to zero. This means that the occurrence of one random variable does not provide information about the occurrence of the other random variable. This is stated by the following lemma.

Lemma 44 (Mutual information of independent random variables). Let \mathcal{X} and \mathcal{Y} be two countable sets and let also X and Y be two independent random variables with pmfs $P_{X}: \mathcal{X} \rightarrow$ $[0,1]$ and $P_{Y}: \mathcal{Y} \rightarrow[0,1]$. Then,

$$
\begin{equation*}
I(X ; Y)=0 \tag{P.40}
\end{equation*}
$$

Proof: From the assumption of the lemma, it follows that $P_{X Y}(x, y)=P_{X}(x) P_{Y}(y)$ for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$. Hence, from (P.28a) the following holds:

$$
\begin{align*}
I(X ; Y) & =\mathbb{E}_{X Y}\left[\log \left(\frac{P_{X}(X) P_{Y}(Y)}{P_{X}(X) P_{Y}(Y)}\right)\right] \tag{P.41a}\\
& =\mathbb{E}_{X Y}[\log 1] \tag{P.41b}\\
& =0 \tag{P.41c}
\end{align*}
$$

and this completes the proof.
The mutual information between a random variable X and two random variables Y and Z is bigger than or equal to the mutual information between the random variable X and one of the random variables Y and Z. This is stated by the following lemma.

Lemma 45. Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be three countable sets and let also X, Y, and Z be three random variables with joint pmf $P_{X Y Z}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow[0,1]$. Then,

$$
\begin{equation*}
I(X ; Y, Z) \geqslant I(X ; Y) \tag{P.42a}
\end{equation*}
$$

with equality if and only if $X \rightarrow Y \rightarrow Z$. Similarly,

$$
\begin{equation*}
I(X ; Y, Z) \geqslant I(X ; Z) \tag{P.42b}
\end{equation*}
$$

with equality if and only if $X \rightarrow Z \rightarrow Y$.

Proof:
Proof of P.42a): From P.30, the following holds:

$$
\begin{align*}
I(X ; Y, Z) & =H(Y, Z)-H(Y, Z \mid X) \tag{P.43a}\\
& =H(Y)+H(Z \mid Y)-H(Y \mid X)-H(Z \mid X, Y) \tag{P.43b}\\
& =I(X ; Y)+H(Z \mid Y)-H(Z \mid X, Y) \tag{P.43c}\\
& \geqslant I(X ; Y) \tag{P.43d}
\end{align*}
$$

where, (P.43d) follows from the fact the fact that $H(Z \mid Y)-H(Z \mid X, Y) \geqslant 0$ given that conditioning does not increase entropy (Lemma 40). Note that the equality holds if $H(Z \mid Y)-$ $H(Z \mid X, Y)=H(Z \mid Y)-H(Z \mid Y)=0$. This means that the random variables X and Z are independent conditioning on the random variable Y, i.e., $X \rightarrow Y \rightarrow Z$. This completes the proof of (P.42a).

Proof of (P.42b): From (P.30), the following holds:

$$
\begin{align*}
I(X ; Y, Z) & =H(Y, Z)-H(Y, Z \mid X) \tag{P.44a}\\
& =H(Z)+H(Y \mid Z)-H(Z \mid X)-H(Y \mid X, Z) \tag{P.44b}\\
& =I(X ; Z)+H(Y \mid Z)-H(Y \mid X, Z) \tag{P.44c}\\
& \geqslant I(X ; Z) \tag{P.44d}
\end{align*}
$$

where, (P.43d) follows from the fact the fact that $H(Y \mid Z)-H(Y \mid X, Z) \geqslant 0$ given that conditioning does not increase entropy (Lemma 40), and this completes the proof of (P.42b). This completes the proof of Lemma 45.

P.1.5. Conditional Mutual Information

Definition 14 (Conditional Mutual Information). Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be three countable sets and let X, Y and Z be three random variables with joint pmf $P_{X Y Z}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow[0,1]$. Then, the mutual information between X and Y conditioning on Z, denoted by $I(X ; Y \mid Z)$, is:

$$
\begin{equation*}
I(X ; Y \mid Z)=-\sum_{(x, y, z) \in \operatorname{supp}\left(P_{X Y Z}\right)} P_{X Y Z}(x, y, z) \log \left(\frac{P_{X Y \mid Z}(x, y \mid z)}{P_{X \mid Z}(x \mid z) P_{Y \mid Z}(y \mid z)}\right) \tag{P.45}
\end{equation*}
$$

The mutual information between the random variables X and Y conditioning on the random variable Z can also be written as follows:

$$
\begin{align*}
& I(X ; Y \mid Z)=\mathbb{E}_{X Y Z}\left[\log \left(\frac{P_{X Y \mid Z}(X, Y \mid Z)}{P_{X \mid Z}(X \mid Z) P_{Y \mid Z}(Y \mid Z)}\right)\right] \tag{P.46a}\\
& I(X ; Y \mid Z)=\mathbb{E}_{X Y Z}\left[\log \left(\frac{P_{Y \mid X Z}(y \mid x, z)}{P_{Y \mid Z}(y \mid z)}\right)\right], \text { and } \tag{P.46b}\\
& I(X ; Y \mid Z)=\mathbb{E}_{X Y Z}\left[\log \left(\frac{P_{X \mid Y Z}(x \mid y z)}{P_{X \mid Z}(x \mid z)}\right)\right] . \tag{P.46c}
\end{align*}
$$

Note also that the conditional mutual information in (P.45) can be written as follows:

$$
\begin{align*}
I(X ; Y \mid Z) & =\sum_{z \in \operatorname{supp}\left(P_{Z}\right)} P_{Z}(z)\left[-\sum_{(x, y) \in \operatorname{supp}\left(P_{X Y \mid Z=z}\right)} P_{X, Y \mid Z}(x, y \mid z) \log \left(\frac{P_{X Y \mid Z}(x, y \mid z)}{P_{X \mid Z}(x \mid z) P_{Y \mid Z}(y \mid z)}\right)\right] \\
& =\sum_{z \in \operatorname{supp}\left(P_{Z}\right)} P_{Z}(z) I(X ; Y \mid Z=z) \tag{P.47}
\end{align*}
$$

where, $I(X ; Y \mid Z=z)=-\sum_{(x, y) \in \operatorname{supp}\left(P_{X Y \mid Z=z}\right)} P_{X, Y \mid Z}(x, y \mid z) \log \left(\frac{P_{X Y \mid Z}(x, y \mid z)}{P_{X \mid Z}(x \mid z) P_{Y \mid Z}(y \mid z)}\right)$ is the mutual information between X and Y conditioning on a fixed $Z=z$.

The following lemma presents some useful properties of the mutual information and conditional mutual information.

Lemma 46. Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be three countable sets and let X, Y and Z be three random variables with joint pmf $P_{X Y Z}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow[0,1]$. Then,

$$
\begin{align*}
& I(X ; Y \mid Z)=H(Y \mid Z)-H(Y \mid X, Z) \tag{P.48}\\
& I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z) \tag{P.49}\\
& I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X), \text { and } \tag{P.50}\\
& I(X, Y ; Z)=I(Y ; Z)+I(X ; Z \mid Y) \tag{P.51}
\end{align*}
$$

Proof:

Proof of P .48 : From P .46 b , the following holds:

$$
\begin{align*}
I(X ; Y \mid Z) & =\mathbb{E}_{X Y Z}\left[\log P_{Y \mid X Z}(Y \mid X, Z)\right]-\mathbb{E}_{Y Z}\left[\log P_{Y \mid Z}(Y \mid Z)\right] \tag{P.52a}\\
& =H(Y \mid Z)-H(Y \mid X, Z) \tag{P.52b}
\end{align*}
$$

and this completes the proof of (P.48).
Proof of (P.49): From (P.46c), the following holds:

$$
\begin{align*}
I(X ; Y \mid Z) & =\mathbb{E}_{X Y Z}\left[\log P_{X \mid Y Z}(X \mid Y, Z)\right]-\mathbb{E}_{X Z}\left[\log P_{X \mid Z}(X \mid Z)\right] \tag{P.53a}\\
& =H(X \mid Z)-H(X \mid Y, Z) \tag{P.53b}
\end{align*}
$$

and this completes the proof of $(\mathrm{P} .49)$.

Proof of (P.50): From (P.30), the following holds:

$$
\begin{align*}
I(X, Y ; Z) & =H(X, Y)-H(X, Y \mid Z) \tag{P.54a}\\
& =H(X)+H(Y \mid X)-H(X \mid Z)-H(Y \mid X, Z) \tag{P.54b}\\
& =I(X ; Z)+I(Y ; Z \mid X) \tag{P.54c}
\end{align*}
$$

and this completes the proof of $(\bar{P} .50)$.
Proof of (P.51): From (P.30), the following holds:

$$
\begin{align*}
I(X, Y ; Z) & =H(X, Y)-H(X, Y \mid Z) \tag{P.55a}\\
& =H(Y)+H(X \mid Y)-H(Y \mid Z)-H(X \mid Y, Z) \tag{P.55b}\\
& =I(Y ; Z)+I(X ; Z \mid Y) \tag{P.55c}
\end{align*}
$$

and this completes the proof of $(\mathrm{P} .51)$. This completes the proof of Lemma 46

The mutual information between the random variables X and Y conditioning on the random variable Z is equal to zero if X and Y are independent conditioning on Z, i.e., $X \rightarrow Z \rightarrow Y$, as stated by the following lemma.

Lemma 47. Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be three countable sets and let also X, Y and Z be three random variables with joint pmf $P_{X Y Z}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow[0,1]$ such that $X \rightarrow Z \rightarrow Y$. Then,

$$
\begin{equation*}
I(X ; Y \mid Z)=0 \tag{P.56}
\end{equation*}
$$

Proof: From (P.46c), the following holds:

$$
\begin{align*}
I(X ; Y \mid Z) & =\mathbb{E}_{X Y Z}\left[\log \left(\frac{P_{X \mid Z}(x \mid z)}{P_{X \mid Z}(x \mid z)}\right)\right] \tag{P.57a}\\
& =\mathbb{E}_{X Y Z}[\log 1] \tag{P.57b}\\
& =0 . \tag{P.57c}
\end{align*}
$$

where, P.57a follows from the fact that the random variables X and Y are mutually independent conditioning on the random variable Z, i.e., $X \rightarrow Z \rightarrow Y$, and this completes the proof of Lemma 47.

The following lemma presents some additional useful properties of the mutual information and conditional mutual information.

Lemma 48 (Chain rule for mutual information and chain rule for conditional mutual information). Let $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{N}, \mathcal{Y}$ and \mathcal{Z} be $N+2$ countable sets. Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{T}$ be a vector of N random variables and let also Y and Z be two random variables with joint pmfs $P_{X Y}: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{N} \times \mathcal{Y} \rightarrow[0,1]$ and $P_{X Y Z}: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{N} \times \mathcal{Y} \times \mathcal{Z} \rightarrow[0,1]$. Then,

$$
\begin{align*}
& I\left(X_{1}, X_{2}, \ldots, X_{N} ; Y\right)=I\left(X_{1} ; Y\right)+I\left(X_{2} ; Y \mid X_{1}\right)+\sum_{n=3}^{N} I\left(X_{n} ; Y \mid X_{1}, X_{2}, \ldots, X_{n-1}\right), \tag{P.58a}\\
& I\left(X_{1}, X_{2}, \ldots, X_{N} ; Y\right) \geqslant 0, \text { and } \tag{P.58b}
\end{align*}
$$

$$
\begin{equation*}
I\left(X_{1}, X_{2}, \ldots, X_{N} ; Y \mid Z\right)=I\left(X_{1} ; Y \mid Z\right)+I\left(X_{2} ; Y \mid Z, X_{1}\right)+\sum_{n=3}^{N} I\left(X_{n} ; Y \mid Z, X_{1}, X_{2}, \ldots, X_{n-1}\right) . \tag{P.58c}
\end{equation*}
$$

Proof:

Proof of P.58a): From P.28a), the following holds:

$$
\begin{align*}
I(\boldsymbol{X} ; Y)= & \mathbb{E}_{\boldsymbol{X} Y}\left[\log \left(\frac{P_{\boldsymbol{X} Y}(\boldsymbol{X}, Y)}{P_{\boldsymbol{X}}(\boldsymbol{X}) P_{Y}(Y)}\right)\right] \tag{P.59a}\\
= & \mathbb{E}_{\boldsymbol{X} Y}\left[\operatorname { l o g } \left(\frac{P_{X_{1} Y}\left(X_{1}, Y\right)}{P_{X_{1}}\left(X_{1}\right) P_{Y}(Y)} \frac{P_{X_{2} \mid X_{1} Y}\left(X_{2} \mid X_{1}, Y\right)}{P_{X_{2} \mid X_{1}}\left(X_{2} \mid X_{1}\right)} \frac{P_{X_{3} \mid X_{1} X_{2} Y}\left(X_{3} \mid X_{1}, X_{2}, Y\right)}{P_{X_{3} \mid X_{1} X_{2}}\left(X_{3} \mid X_{1}, X_{2}\right)} \ldots\right.\right. \\
& \left.\left.\frac{P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1} Y}\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}, Y\right)}{P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1}}\left(X_{3} \mid X_{1}, X_{2}, \ldots, X_{N}-1\right)}\right)\right] \tag{P.59b}\\
= & \mathbb{E}_{X_{1} Y}\left[\log \frac{P_{X_{1} Y}\left(X_{1}, Y\right)}{P_{X_{1}}\left(X_{1}\right) P_{Y}(Y)}\right]+\mathbb{E}_{X_{1} X_{2} Y}\left[\log \frac{P_{X_{2} \mid X_{1} Y}\left(X_{2} \mid X_{1}, Y\right)}{P_{X_{2} \mid X_{1}}\left(X_{2} \mid X_{1}\right)}\right] \\
& +\mathbb{E}_{X_{1} X_{2} X_{3} Y}\left[\log \frac{P_{X_{3} \mid X_{1} X_{2} Y}\left(X_{3} \mid X_{1}, X_{2}, Y\right)}{P_{X_{3} \mid X_{1} X_{2}}\left(X_{3} \mid X_{1}, X_{2}\right)}\right]+\ldots \\
& +\mathbb{E}_{\boldsymbol{X} Y}\left[\log \frac{P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1} Y}\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}, Y\right)}{P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1}}\left(X_{3} \mid X_{1}, X_{2}, \ldots, X_{N}-1\right)}\right] \tag{P.59c}\\
= & I\left(X_{1} ; Y\right)+I\left(X_{2} ; Y \mid X_{1}\right)+I\left(X_{3} ; Y \mid X_{1}, X_{2}\right)+\ldots+I\left(X_{N} ; Y \mid X_{1}, X_{2}, \ldots, X_{N-1}\right)
\end{align*}
$$

(P.59d)
where, P.59d follows from (P.28a) and P.46b) and this completes the proof of P.58a).

Proof of P.58b: From P.58a), the following holds:

$$
\begin{align*}
I\left(X_{1}, X_{2}, \ldots, X_{N} ; Y\right)= & I\left(X_{1} ; Y\right)+I\left(X_{2} ; Y \mid X_{1}\right)+\sum_{n=3}^{N} I\left(X_{n} ; Y \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \tag{P.60a}\\
= & H(Y)-H\left(Y \mid X_{1}\right)+H\left(Y \mid X_{1}\right)-H\left(Y \mid X_{1}, X_{2}\right) \\
& +\sum_{n=3}^{N}\left(H\left(Y \mid X_{1}, X_{2}, \ldots, X_{n-1}\right)-H\left(Y \mid X_{1}, X_{2}, \ldots, X_{n-1}, X_{n}\right)\right) \tag{P.60b}\\
\geqslant & 0 \tag{P.60c}
\end{align*}
$$

where, (P.60c) follows from Lemma 40 and the fact that $H(Y) \geqslant H\left(Y \mid X_{1}\right), H\left(Y \mid X_{1}\right) \geqslant$ $H\left(Y \mid X_{1}, X_{2}\right), \ldots, H\left(Y \mid X_{1}, X_{2}, \ldots, X_{N-1}\right) \geqslant H\left(Y \mid X_{1}, X_{2}, \ldots, X_{N-1}, X_{N}\right)$. This completes the proof of of P.58b.

Proof of (P.58c): From (P.46c), the following holds:

$$
\begin{equation*}
I(\boldsymbol{X} ; Y \mid Z)=\mathbb{E}_{\boldsymbol{X} Y Z}\left[\log \left(\frac{P_{\boldsymbol{X} \mid Y Z}(\boldsymbol{X} \mid Y, Z)}{P_{\boldsymbol{X} \mid Z}(\boldsymbol{X})}\right)\right] \tag{P.61a}
\end{equation*}
$$

$$
\begin{align*}
= & \mathbb{E}_{\boldsymbol{X} Y Z}\left[\operatorname { l o g } \left(\frac{P_{X_{1} \mid Y Z}\left(X_{1} \mid Y Z\right)}{P_{X_{1} \mid Z}\left(X_{1} \mid Z\right)} \frac{P_{X_{2} \mid X_{1} Y Z}\left(X_{2} \mid X_{1}, Y, Z\right)}{P_{X_{2} \mid X_{1} Z}\left(X_{2} \mid X_{1}, Z\right)}\right.\right. \\
& \frac{P_{X_{3} \mid X_{1} X_{2} Y Z}\left(X_{3} \mid X_{1}, X_{2}, Y, Z\right)}{P_{X_{3} \mid X_{1} X_{2} Z}\left(X_{3} \mid X_{1}, X_{2}, Z\right)} \ldots \\
& \left.\left.\frac{P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1} Y Z}\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}, Y, Z\right)}{P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1}, Z}\left(X_{3} \mid X_{1}, X_{2}, \ldots, X_{N}-1, Z\right)}\right)\right] \tag{P.61b}\\
= & \mathbb{E}_{X_{1} Y Z}\left[\log \frac{P_{X_{1} \mid Y Z}\left(X_{1} \mid Y, Z\right)}{P_{X_{1} \mid Z}\left(X_{1} \mid Z\right)}\right]+\mathbb{E}_{X_{1} X_{2} Y Z}\left[\log \frac{P_{X_{2} \mid X_{1} Y Z}\left(X_{2} \mid X_{1}, Y, Z\right)}{P_{X_{2} \mid X_{1} Z}\left(X_{2} \mid X_{1}, Z\right)}\right] \\
& +\mathbb{E}_{X_{1} X_{2} X_{3} Y Z}\left[\log \frac{P_{X_{3} \mid X_{1} X_{2} Y Z}\left(X_{3} \mid X_{1}, X_{2}, Y, Z\right)}{P_{X_{3} \mid X_{1} X_{2} Z}\left(X_{3} \mid X_{1}, X_{2}, Z\right)}\right]+\ldots \\
& +\mathbb{E}_{X Y Z}\left[\log \frac{P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1} Y Z}\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}, Y, Z\right)}{P_{X_{N} \mid X_{1} X_{2} \ldots X_{N-1} Z}\left(X_{3} \mid X_{1}, X_{2}, \ldots, X_{N}-1, Z\right)}\right] \tag{P.61c}\\
= & I\left(X_{1} ; Y \mid Z\right)+I\left(X_{2} ; Y \mid X_{1}, Z\right)+I\left(X_{3} ; Y \mid X_{1}, X_{2}, Z\right)+\ldots \\
& +I\left(X_{N} ; Y \mid X_{1}, X_{2}, \ldots, X_{N-1}, Z\right), \tag{P.61d}
\end{align*}
$$

where, (P .61 d$)$ follows from (P .46 c$)$, and this completes the proof of $(\overline{\mathrm{P} .58 \mathrm{c})}$. This completes the proof of Lemma 48.

The mutual information between the random variables X and Z is less than or equal to the mutual information between the random variables X and Y, or between the random variables Y and Z, if the random variables X and Z are independent conditioning on the random variable Y, i.e., $X \rightarrow Y \rightarrow Z$. This is stated in the following lemma.

Lemma 49 (Data Processing Inequality. Theorem 2.8.1 in 25). Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be three countable sets and let X, Y and Z be three random variables with joint pmf $P_{X Y Z}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow$ $[0,1]$ such that $X \rightarrow Y \rightarrow Z$. Then,

$$
\begin{align*}
& I(X ; Z) \leqslant I(X ; Y) \text { and } \tag{P.62a}\\
& I(X ; Z) \leqslant I(Y ; Z) \tag{P.62b}
\end{align*}
$$

If $Z=g(Y)$, then

$$
\begin{equation*}
I(X ; g(Y)) \leqslant I(X ; Y) \tag{P.62c}
\end{equation*}
$$

Proof:
Proof of P.62a): From P.58a, the following holds:

$$
\begin{align*}
I(X ; Y, Z) & =I(X ; Z)+I(X ; Y \mid Z) \tag{P.63a}\\
& \geqslant I(X ; Z) \tag{P.63b}
\end{align*}
$$

and

$$
\begin{align*}
I(X ; Y, Z) & =I(X ; Y)+I(X ; Z \mid Y) \tag{P.63c}\\
& =I(X ; Y) \tag{P.63d}
\end{align*}
$$

where, P.63d follows from the fact that the random variables X and Z are mutually
independent conditioning on the random variable Y, i.e., $X \rightarrow Y \rightarrow Z$. From (P.63b) and (P.63d), the following holds:

$$
\begin{equation*}
I(X ; Z) \leqslant I(X ; Y) \tag{P.63e}
\end{equation*}
$$

and this completes the proof of (P.62a).
Proof of P.62b): From P.58a), the following holds:

$$
\begin{align*}
I(X, Y ; Z) & =I(Y ; Z)+I(X ; Z \mid Y) \tag{P.64a}\\
& =I(Y ; Z) \tag{P.64b}
\end{align*}
$$

and

$$
\begin{align*}
I(X, Y ; Z) & =I(X ; Z)+I(Y ; Z \mid X) \tag{P.64c}\\
& \geqslant I(X ; Z) \tag{P.64d}
\end{align*}
$$

where, P.64b follows from the fact that the random variables X and Z are mutually independent conditioning on the random variable Y, i.e., $X \rightarrow Y \rightarrow Z$. From (P.64b) and (P.64d), the following holds:

$$
\begin{equation*}
I(X ; Z) \leqslant I(Y ; Z) \tag{P.64e}
\end{equation*}
$$

and this completes the proof of (P.62b).
Proof of (P.62c): Plugging $Z=g(Y)$ into (P.63e), yields:

$$
\begin{equation*}
I(X ; g(Y)) \leqslant I(X ; Y) \tag{P.65}
\end{equation*}
$$

and this completes the proof of (P.62c). This completes the proof of Lemma 49 .
The following lemma presents some useful properties of the conditional mutual information if the random variables X and Z are independent conditioning on the random variable Y, i.e., $X \rightarrow Y \rightarrow Z$.

Lemma 50 (Corollary in Theorem 2.8.1 in 25). Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be three countable sets and let X, Y and Z be three random variables with joint pmf $P_{X Y Z}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow[0,1]$ such that $X \rightarrow Y \rightarrow Z$. Then,

$$
\begin{align*}
& I(X ; Y \mid Z) \leqslant I(X ; Y) \text { and } \tag{P.66a}\\
& I(Y ; Z \mid X) \leqslant I(Y ; Z) \tag{P.66b}
\end{align*}
$$

Proof:

Proof of P.66a): From P.58a, the following holds:

$$
\begin{align*}
I(X ; Y, Z) & =I(X ; Z)+I(X ; Y \mid Z) \tag{P.67a}\\
& \geqslant I(X ; Y \mid Z) \tag{P.67b}
\end{align*}
$$

From (P.63d) and P.67b), the following holds:

$$
\begin{equation*}
I(X ; Y \mid Z) \leqslant I(X ; Y) \tag{P.67c}
\end{equation*}
$$

and this completes the proof of (P.66a).
Proof of (P.66b: From P.58a), the following holds:

$$
\begin{align*}
I(X, Y ; Z) & =I(X ; Z)+I(Y ; Z \mid X) \\
& \geqslant I(Y ; Z \mid X) \tag{P.68a}
\end{align*}
$$

From P.64b and P.68a), the following holds:

$$
\begin{equation*}
I(Y ; Z \mid X) \leqslant I(Y ; Z) \tag{P.68b}
\end{equation*}
$$

and this completes the proof of P .66 b . This completes the proof of Lemma 50 .
The following lemma presents a property of the conditional mutual information when the random variables X, Y, and Z do not form a Markov Chain, which is contrary in result to the stated in Lemma 50

Lemma 51 (Corollary in Theorem 2.8.1 in 25). Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be three countable sets and let X, Y and Z be three random variables with joint pmf $P_{X Y Z}: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow[0,1]$ such that $P_{X Y Z}(x, y, z)=P_{X}(x) P_{Y}(y) P_{Z \mid X Y}(z \mid x, y)$. Then,

$$
\begin{equation*}
I(X ; Y \mid Z) \geqslant I(X ; Y) \tag{P.69}
\end{equation*}
$$

Proof: From the assumption of the lemma, X and Y are two independent random variables, then $I(X ; Y)=0$. Hence, the inequality is trivial from the non-negativity of mutual information.

The following two lemmas present some useful properties of the mutual information between two N-dimensional vectors of random variables. These two lemmas are considering that the components of the N-dimensional vector of random variables \boldsymbol{Y} correspond to the channeloutputs generated by the components of the N-dimensional vector of random variables \boldsymbol{X} as channel-inputs in a given channel. In the first lemma, the components of the N-dimensional vector of random variables \boldsymbol{X} are assumed be mutually independent. In the second lemma, the channel is assumed to be memoryless.

Lemma 52 (Theorem 1.8 in 49). Let $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{N}$, and $\mathcal{Y}_{1}, \mathcal{Y}_{2}, \ldots, \mathcal{Y}_{N}$ be $2 N$ countable sets, let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top}$ be an N-dimensional vector of independent random variables, and let also $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)^{T}$ be an N-dimensional vector of random variables such that the joint pmf is $P_{\boldsymbol{X Y}}: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{N} \times \mathcal{Y}_{1} \times \mathcal{Y}_{2} \ldots \times \mathcal{Y}_{N} \rightarrow[0,1]$. Then,

$$
\begin{equation*}
I(\boldsymbol{X} ; \boldsymbol{Y}) \geqslant \sum_{n=1}^{N} I\left(X_{n} ; Y_{n}\right) \tag{P.70}
\end{equation*}
$$

Proof: From (P.28c), the following holds:

$$
\begin{align*}
I(\boldsymbol{X} ; \boldsymbol{Y}) & =\mathbb{E}_{\boldsymbol{X} \boldsymbol{Y}}\left[\log \left(\frac{P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{X} \mid \boldsymbol{Y})}{P_{\boldsymbol{X}}(\boldsymbol{X})}\right)\right] \tag{P.71a}\\
& =\mathbb{E}_{\boldsymbol{X} \boldsymbol{Y}}\left[\log \left(\frac{P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{X} \mid \boldsymbol{Y})}{P_{X_{1}}\left(X_{1}\right) P_{X_{2}}\left(X_{2}\right) \ldots P_{X_{N}}\left(X_{N}\right)}\right)\right] \tag{P.71b}
\end{align*}
$$

where, P.71b follows from the fact that $X_{1}, X_{2}, \ldots, X_{N}$ are mutually independent. On the
other hand,

$$
\begin{align*}
\sum_{n=1}^{N} I\left(X_{n} ; Y_{n}\right) & =\sum_{n=1}^{N} \mathbb{E}_{X_{n} Y_{n}}\left[\log \left(\frac{P_{X_{n} \mid Y_{n}}\left(X_{n} \mid Y_{n}\right)}{P_{X_{n}}\left(X_{n}\right)}\right)\right] \tag{P.71c}\\
& =\mathbb{E}_{\boldsymbol{X} \boldsymbol{Y}}\left[\log \left(\frac{P_{X_{1} \mid Y_{1}}\left(X_{1} \mid Y_{1}\right) P_{X_{2} \mid Y_{2}}\left(X_{2} \mid Y_{2}\right) \ldots P_{X_{N} \mid Y_{N}}\left(X_{N} \mid Y_{N}\right)}{P_{X_{1}}\left(X_{1}\right) P_{X_{2}}\left(X_{2}\right) \ldots P_{X_{N}}\left(X_{N}\right)}\right)\right] . \tag{P.71d}
\end{align*}
$$

Hence,

$$
\sum_{n=1}^{N} I\left(X_{n} ; Y_{n}\right)-I(\boldsymbol{X} ; \boldsymbol{Y})=\mathbb{E}_{\boldsymbol{X} \boldsymbol{Y}}\left[\log \left(\frac{P_{X_{1} \mid Y_{1}}\left(X_{1} \mid Y_{1}\right) P_{X_{2} \mid Y_{2}}\left(X_{2} \mid Y_{2}\right) \ldots P_{X_{N} \mid Y_{N}}\left(X_{N} \mid Y_{N}\right)}{P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{X} \mid \boldsymbol{Y})}\right)\right]
$$

$$
\begin{equation*}
\leqslant \log \left(\mathbb{E}_{\boldsymbol{X} \boldsymbol{Y}}\left[\left(\frac{P_{X_{1} \mid Y_{1}}\left(X_{1} \mid Y_{1}\right) P_{X_{2} \mid Y_{2}}\left(X_{2} \mid Y_{2}\right) \ldots P_{X_{N} \mid Y_{N}}\left(X_{N} \mid Y_{N}\right)}{P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{X} \mid \boldsymbol{Y})}\right)\right]\right) \tag{P.71e}
\end{equation*}
$$

$$
\begin{equation*}
=\log \left(\sum_{\boldsymbol{x} \in \mathcal{X}^{N} \boldsymbol{y} \in \mathcal{Y}^{N}}\left(P_{\boldsymbol{Y}}(\boldsymbol{y}) P_{X_{1} \mid Y_{1}}\left(x_{1} \mid y_{1}\right) P_{X_{2} \mid Y_{2}}\left(x_{2} \mid y_{2}\right) \ldots P_{X_{N} \mid Y_{N}}\left(x_{N} \mid y_{N}\right)\right)\right) \tag{P.71f}
\end{equation*}
$$

$$
\begin{equation*}
=\log \left(\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y}) \sum_{\boldsymbol{x} \in \mathcal{X}^{N}}\left(P_{X_{1} \mid Y_{1}}\left(x_{1} \mid y_{1}\right) P_{X_{2} \mid Y_{2}}\left(x_{2} \mid y_{2}\right) \ldots P_{X_{N} \mid Y_{N}}\left(x_{N} \mid y_{N}\right)\right)\right) \tag{P.71~g}
\end{equation*}
$$

$$
\begin{equation*}
=\log \left(\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y})\right) \tag{P.71h}
\end{equation*}
$$

$$
\begin{equation*}
=\log 1 \tag{P.71i}
\end{equation*}
$$

$$
\begin{equation*}
=0 \tag{P.71j}
\end{equation*}
$$

where, (P.71f) follows from Jensen's inequality. Then,

$$
\begin{equation*}
I(\boldsymbol{X} ; \boldsymbol{Y}) \geqslant \sum_{n=1}^{N} I\left(X_{n} ; Y_{n}\right) \tag{P.711}
\end{equation*}
$$

and this completes the proof of 52 .

Lemma 53 (Theorem 1.9 in 49). Let \mathcal{X} and \mathcal{Y} be two countable sets. Let also $X_{1}, X_{2}, \ldots, X_{N}$, $Y_{1}, Y_{2}, \ldots, Y_{N}$ be $2 N$ random variables with joint pmf $P_{\boldsymbol{X Y}}: \mathcal{X}^{N} \times \mathcal{Y}^{N} \rightarrow[0,1]$ such that for all $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{X}^{N} \times \mathcal{Y}^{N}$ it follows that $P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})=P_{\boldsymbol{Y} \mid \boldsymbol{X}}(\boldsymbol{y} \mid \boldsymbol{x}) P_{\boldsymbol{X}}(\boldsymbol{x})$, with $P_{\boldsymbol{Y} \mid \boldsymbol{X}}(\boldsymbol{y} \mid \boldsymbol{x})=$ $\prod_{n=1}^{N} P_{Y_{n} \mid X_{n}}\left(y_{n} \mid x_{n}\right)$. Then,

$$
\begin{equation*}
I(\boldsymbol{X} ; \boldsymbol{Y}) \leqslant \sum_{n=1}^{N} I\left(X_{n} ; Y_{n}\right) \tag{P.72}
\end{equation*}
$$

Proof: From P.28b), the following holds:

$$
\begin{equation*}
I(\boldsymbol{X} ; \boldsymbol{Y})=\mathbb{E}_{\boldsymbol{X} \boldsymbol{Y}}\left[\log \left(\frac{P_{\boldsymbol{Y} \mid \boldsymbol{X}}(\boldsymbol{Y} \mid \boldsymbol{X})}{P_{\boldsymbol{Y}}(\boldsymbol{Y})}\right)\right] \tag{P.73a}
\end{equation*}
$$

$$
\begin{equation*}
=\mathbb{E}_{\boldsymbol{X} \boldsymbol{Y}}\left[\log \left(\frac{P_{Y_{1} \mid X_{1}}\left(Y_{1} \mid X_{1}\right) P_{Y_{2} \mid X_{2}}\left(Y_{2} \mid X_{2}\right) \ldots P_{Y_{N} \mid X_{N}}\left(Y_{N} \mid X_{N}\right)}{P_{\boldsymbol{Y}}(\boldsymbol{Y})}\right)\right] \tag{P.73b}
\end{equation*}
$$

where, P.73b follows from the fact that $P_{\boldsymbol{Y} \mid \boldsymbol{X}}(\boldsymbol{y} \mid \boldsymbol{x})=\prod_{n=1}^{N} P_{Y_{n} \mid X_{n}}\left(y_{n} \mid x_{n}\right)$. On the other hand,

$$
\begin{align*}
\sum_{n=1}^{N} I\left(X_{n} ; Y_{n}\right) & =\sum_{n=1}^{N} \mathbb{E}_{X_{n} Y_{n}}\left[\log \left(\frac{P_{Y_{n} \mid X_{n}}\left(Y_{n} \mid X_{n}\right)}{P_{Y_{n}}\left(Y_{n}\right)}\right)\right] \tag{P.73c}\\
& =\mathbb{E}_{\boldsymbol{X} \boldsymbol{Y}}\left[\log \left(\frac{P_{Y_{1} \mid X_{1}}\left(Y_{1} \mid X_{1}\right) P_{Y_{2} \mid X_{2}}\left(Y_{2} \mid X_{2}\right) \ldots P_{Y_{N} \mid X_{N}}\left(Y_{N} \mid X_{N}\right)}{P_{Y_{1}}\left(Y_{1}\right) P_{Y_{2}}\left(Y_{2}\right) \ldots P_{Y_{N}}\left(Y_{N}\right)}\right)\right] \tag{P.73d}
\end{align*}
$$

Hence,

$$
\begin{align*}
\sum_{n=1}^{N} I(\boldsymbol{X} ; \boldsymbol{Y})-I\left(X_{n} ; Y_{n}\right) & =\mathbb{E}_{\boldsymbol{Y}}\left[\log \left(\frac{P_{Y_{1}}\left(Y_{1}\right) P_{Y_{2}}\left(Y_{2}\right) \ldots P_{Y_{N}}\left(Y_{N}\right)}{P_{\boldsymbol{Y}}(\boldsymbol{Y})}\right)\right] \tag{P.73e}\\
& \leqslant \log \left(\mathbb{E}_{\boldsymbol{Y}}\left[\left(\frac{P_{Y_{1}}\left(Y_{1}\right) P_{Y_{2}}\left(Y_{2}\right) \ldots P_{Y_{N}}\left(Y_{N}\right)}{P_{\boldsymbol{Y}}(\boldsymbol{Y})}\right)\right]\right) \tag{P.73f}\\
& =\log \left(\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}}\left(P_{Y_{1}}\left(y_{1}\right) P_{Y_{2}}\left(y_{2}\right) \ldots P_{Y_{N}}\left(y_{N}\right)\right)\right) \tag{P.73g}\\
& =\log 1 \tag{P.73h}\\
& =0 \tag{P.73i}
\end{align*}
$$

where, (P.73f follows from Jensen's inequality. Then,

$$
\begin{equation*}
I(\boldsymbol{X} ; \boldsymbol{Y}) \leqslant \sum_{n=1}^{N} I\left(X_{n} ; Y_{n}\right) \tag{P.73j}
\end{equation*}
$$

and this completes the proof of Lemma 53.

P.2. Real-Valued Random Variables

Shannon formalized the information measures on discrete random variables and these notions were extended to real-valued random variables. The differential entropy (the entropy of a real-valued random variable) does not have the same meaning as the entropy for the discrete case. Nonetheless, the real importance of the differential entropy is in the calculation of the mutual information between two real-valued random variables, which allows to compare two probability distributions and to keep the same meaning as in the discrete case.

P.2.1. Differential Entropy

The differential entropy $h(X)$ of a real-valued random variable X is a functional of the pdf f_{X}. Although entropy and differential entropy have similar mathematical forms, the differential entropy does not serve as a measure of the average amount of information contained in a real-valued random variable. In fact, a real-valued random variable generally contains an
infinite amount of information (94).
Definition 15 (Differential Entropy). Let X be a random variable with pdf $f_{X}: \mathbb{R} \rightarrow[0, \infty)$. Then, the differential entropy of X, denoted by $h(X)$, is:

$$
\begin{equation*}
h(X)=-\int_{-\infty}^{\infty} f_{X}(x) \log f_{X}(x) \mathrm{d} x . \tag{P.74}
\end{equation*}
$$

Note that $h(X)$ depends only on f_{X} and not in the values in \mathbb{R}. The differential entropy of a random variable X can also be written as follows:

$$
\begin{equation*}
h(X)=-\mathbb{E}_{X}\left[\log f_{X}(X)\right] . \tag{P.75}
\end{equation*}
$$

Corollary 12. Let X be a random variable uniformly distributed on $[0, a]$. Then,

$$
\begin{equation*}
h(X)=-\int_{0}^{a} \frac{1}{a} \log \frac{1}{a} \mathrm{~d} x=\log a . \tag{P.76}
\end{equation*}
$$

Proof: The proof of Corollary 12 follows directly from Definition 15
Note that in this case $h(X)<0$ if $a<1$.
Corollary 13. Let X be a Gaussian random variable with zero mean and variance σ^{2}, i.e., $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Then,

$$
\begin{equation*}
h(X)=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right) . \tag{P.77}
\end{equation*}
$$

Proof:
From Definition 15 with $f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$ and e the base of the logarithm, the following holds:

$$
\begin{align*}
h(X) & =-\int_{-\infty}^{\infty} f_{X}(x) \ln f_{X}(x) \mathrm{d} x \tag{P.78a}\\
& =-\int_{-\infty}^{\infty} f_{X}(x)\left(-\frac{x^{2}}{2 \sigma^{2}}-\ln \sqrt{2 \pi \sigma^{2}}\right) \mathrm{d} x \tag{P.78b}\\
& =\frac{1}{2 \sigma^{2}} \int_{-\infty}^{\infty} x^{2} f_{X}(x) \mathrm{d} x+\ln \sqrt{2 \pi \sigma^{2}} \int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x \tag{P.78c}\\
& =\frac{\mathbb{E}_{X}\left[X^{2}\right]}{2 \sigma^{2}}+\ln \sqrt{2 \pi \sigma^{2}} \tag{P.78d}\\
& =\frac{1}{2}+\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right) \tag{P.78e}\\
& =\frac{1}{2} \ln e+\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right) \tag{P.78f}\\
& =\frac{1}{2} \ln \left(2 \pi e \sigma^{2}\right), \tag{P.78g}
\end{align*}
$$

in nats, where f.78e follows from the fact that $\mathbb{E}_{X}\left[X^{2}\right]=\operatorname{Var}_{X}[X]+\left(\mathbb{E}_{X}[X]\right)^{2}=\sigma^{2}$. Changing the base of the logarithm to two completes the proof of Corollary 13 ,

Lemma 54. Let X be a random variable with pdf $f_{X}: \mathbb{R} \rightarrow[0, \infty)$, zero mean, and variance σ^{2}. The maximum value of the differential entropy of the random variable X is obtained when the random variable X has a Gaussian distribution with zero mean and variance σ^{2}. Then,

$$
\begin{equation*}
h(X) \leqslant \frac{1}{2} \log \left(2 \pi e \sigma^{2}\right) \tag{P.79}
\end{equation*}
$$

Proof: Let $\phi_{X}: \mathbb{R} \rightarrow[0, \infty)$ be a Gaussian pdf on the random variable X with zero mean and variance σ^{2}, i.e., $\phi_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$. Then, the following holds:

$$
\begin{align*}
h(X)+\int_{-\infty}^{\infty} f_{X}(x) \log \phi_{X}(x) \mathrm{d} & =-\int_{-\infty}^{\infty} f_{X}(x) \log f_{X}(x) \mathrm{d} x+\int_{-\infty}^{\infty} f_{X}(x) \log \phi_{X}(x) \mathrm{d} x \tag{P.80a}\\
& =\int_{-\infty}^{\infty} f_{X}(x) \log \frac{\phi_{X}(x)}{f_{X}(x)} \mathrm{d} x \tag{P.80b}\\
& =\mathbb{E}_{X}\left[\log \frac{\phi_{X}(X)}{f_{X}(X)}\right] \tag{P.80c}\\
& \leqslant \log \left(\mathbb{E}_{X}\left[\frac{\phi_{X}(X)}{f_{X}(X)}\right]\right) \tag{P.80d}\\
& =\log \left(\int_{-\infty}^{\infty} f_{X}(x) \frac{\phi_{X}(x)}{f_{X}(x)} \mathrm{d} x\right) \tag{P.80e}\\
& =\log \left(\int_{-\infty}^{\infty} \phi_{X}(x) \mathrm{d} x\right) \tag{P.80f}\\
& =\log 1 \tag{P.80g}\\
& =0 \tag{P.80h}
\end{align*}
$$

where, (P.80d) follows from Jensen's inequality.
Then,

$$
\begin{align*}
h(X) & \leqslant-\int_{-\infty}^{\infty} f_{X}(x) \log \phi_{X}(x) \mathrm{d} x \tag{P.80i}\\
& =\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right) \tag{P.80j}
\end{align*}
$$

and equality holds if $f_{X}(x)=\phi_{X}(x)$, and this completes the proof of Lemma 54 .

P.2.2. Joint Differential Entropy

The joint differential entropy can be understood as the extension of the joint entropy for discrete random variables to real-valued random variables. Although joint entropy and joint differential entropy have similar mathematical forms, the joint differential entropy does not serve as a measure of the average amount of information simultaneously contained into the considered real-valued random variables.

Definition 16 (Joint Differential Entropy). Let X and Y be two random variables with joint $p d f f_{X Y}: \mathbb{R}^{2} \rightarrow[0, \infty)$. Then, the joint differential entropy of the random variables X and Y,
denoted by $h(X, Y)$, is:

$$
\begin{equation*}
h(X, Y)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) \log f_{X Y}(x, y) \mathrm{d} x \mathrm{~d} y \tag{P.81}
\end{equation*}
$$

The joint differential entropy of the random variables X and Y can also be written as follows:

$$
\begin{equation*}
h(X, Y)=-\mathbb{E}_{X Y}\left[\log f_{X Y}(X, Y)\right] \tag{P.82}
\end{equation*}
$$

Lemma 38 and Definition 11 can be extended to real-valued random variables.

Lemma 55 (Differential Entropy of a Bivariate Gaussian Distribution). Let X and Y be two Gaussian random variables with covariance matrix $\mathbf{K}=\mathbb{E}_{X Y}\left[\left[\begin{array}{l}X \\ Y\end{array}\right]\left[\begin{array}{ll}X & Y\end{array}\right]\right]=$ $\left[\begin{array}{cc}\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\ \rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}\end{array}\right]$, where $\rho=\frac{\mathbb{E}_{X Y}[X Y]}{\sigma_{X} \sigma_{Y}}$ is the Pearson correlation coefficient. The joint differential entropy of the random variables X and Y is:

$$
\begin{equation*}
h(X, Y)=\frac{1}{2} \log \left((2 \pi e)^{2}|\mathbf{K}|\right) \tag{P.83}
\end{equation*}
$$

where, $|\mathbf{K}|$ is the determinant of the covariance matrix \mathbf{K}, i.e., $|\mathbf{K}|=\operatorname{det}(\mathbf{K})$.

Proof: From (P.82), the following holds:

$$
\begin{equation*}
h(X, Y)=-\mathbb{E}_{X Y}\left[\log f_{X Y}(X, Y)\right] \tag{P.84a}
\end{equation*}
$$

For all $(x, y) \in \mathbb{R}^{2}$, the following holds:

$$
f_{X Y}(x, y)=\frac{1}{(\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}} e^{-\frac{1}{2}\left([x y] \mathbf{K}^{-1}\left[\begin{array}{l}
x \tag{P.84b}\\
y
\end{array}\right]\right)}
$$

where \mathbf{K}^{-1} is the inverse of the covariance matrix. The determinant of the covariance matrix \mathbf{K} is:

$$
\begin{equation*}
|\mathbf{K}|=\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right) \tag{P.84c}
\end{equation*}
$$

and the inverse of the covariance matrix \mathbf{K} is:

$$
\mathbf{K}^{-1}=\frac{1}{|\mathbf{K}|}\left[\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \tag{P.84d}\\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right]
$$

Plugging (P.84d into P.84b the following holds:

$$
f_{X Y}(x, y)=\frac{1}{(\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\frac{1}{|\mathbf{K}|}[x y]\left[\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \tag{P.84e}\\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)}
$$

$$
\begin{align*}
& =\frac{1}{(\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\frac{1}{|\mathbf{K}|}[x y]\left[\begin{array}{c}
x \sigma_{Y}^{2}-y \rho \sigma_{X} \sigma_{Y} \\
-x \rho \sigma_{X} \sigma_{Y}+y \sigma_{X}^{2}
\end{array}\right]\right)} \tag{P.84f}\\
& =\frac{1}{(\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\frac{1}{|\mathbf{K}|}\left(x^{2} \sigma_{Y}^{2}-2 x y \rho \sigma_{X} \sigma_{Y}+y^{2} \sigma_{X}^{2}\right)\right)} . \tag{P.84g}
\end{align*}
$$

Plugging (P.84g) into (P.84a) and considering the logarithm of base e, the following holds:

$$
\begin{align*}
h(X, Y) & =-\mathbb{E}_{X Y}\left[\ln \left(\frac{1}{(\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\frac{1}{|\mathbf{K}|}\left(X^{2} \sigma_{Y}^{2}-2 X Y \rho \sigma_{X} \sigma_{Y}+Y^{2} \sigma_{X}^{2}\right)\right)}\right)_{(\mathrm{P} .8}\right. \\
& =-\mathbb{E}_{X Y}\left[\ln \left(\frac{1}{(\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}}\right)-\frac{1}{2}\left(\frac{1}{|\mathbf{K}|}\left(X^{2} \sigma_{Y}^{2}-2 X Y \rho \sigma_{X} \sigma_{Y}+Y^{2} \sigma_{X}^{2}\right)\right)\right]_{(\mathrm{P} .8} \tag{P.84h}\\
& =\ln \left((\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}\right)+\frac{1}{2}\left(\frac{1}{|\mathbf{K}|}\left(\sigma_{Y}^{2} \mathbb{E}_{X}\left[X^{2}\right]-2 \rho \sigma_{X} \sigma_{Y} \mathbb{E}_{X Y}[X Y]+\sigma_{X}^{2} \mathbb{E}_{Y}\left[Y^{2}\right]\right)\right) \tag{P.84i}\\
& =\ln \left((\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}\right)+\frac{1}{2}\left(\frac{1}{|\mathbf{K}|}\left(\sigma_{Y}^{2} \sigma_{X}^{2}-2 \rho^{2} \sigma_{X}^{2} \sigma_{Y}^{2}+\sigma_{X}^{2} \sigma_{Y}^{2}\right)\right) \tag{P.84j}\\
& =\ln \left((\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}\right)+\left(\frac{1}{|\mathbf{K}|}\left(\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)\right)\right) \tag{P.841}\\
& =\ln \left((\sqrt{2 \pi})^{2}|\mathbf{K}|^{\frac{1}{2}}\right)+1 \tag{P.84m}\\
& =\ln \left((\sqrt{2 \pi e})^{2}|\mathbf{K}|^{\frac{1}{2}}\right) \tag{P.84n}\\
& =\frac{1}{2} \ln \left((2 \pi e)^{2}|\mathbf{K}|\right), \tag{P.84o}
\end{align*}
$$

in nats, where, P.84m) follows from (P.84c). Changing the base of the logarithm to two completes the proof of Lemma 55
Lemma 56 generalizes Lemma 55
Lemma 56. Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{T} \in \mathbb{R}^{N}$ be a vector of N random variables with joint Gaussian pdf $f_{\boldsymbol{X}}: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{N} \rightarrow[0, \infty)$, i.e., $\boldsymbol{X} \sim \mathcal{N}(0, \mathbf{K})$. Then, the joint entropy of \boldsymbol{X}, denoted by $h(\boldsymbol{X})$, is:

$$
\begin{equation*}
h(\boldsymbol{X})=\frac{1}{2} \log \left((2 \pi e)^{N}|\mathbf{K}|\right) . \tag{P.85}
\end{equation*}
$$

P.2.3. Conditional Differential Entropy

Definition 17 (Conditional Differential Entropy). Let X and Y be two random variables with joint pdf $f_{X Y}: \mathbb{R}^{2} \rightarrow[0, \infty)$. Then, the differential entropy of Y conditioning on X, denoted
by $h(Y \mid X)$, is:

$$
\begin{equation*}
h(Y \mid X)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) \log f_{Y \mid X}(y \mid x) \mathrm{d} x \mathrm{~d} y \tag{P.86}
\end{equation*}
$$

The differential entropy of the random variable Y conditioning on the random variable X can be written as follows:

$$
\begin{equation*}
h(Y \mid X)=-\mathbb{E}_{X Y}\left[\log f_{Y \mid X}(Y \mid X)\right] \tag{P.87}
\end{equation*}
$$

Note also that the conditional differential entropy in (P.86) can be written as follows:

$$
\begin{align*}
h(Y \mid X) & =\int_{-\infty}^{\infty} f_{X}(x)\left[-\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) \log f_{Y \mid X}(y \mid x)\right] \mathrm{d} y \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} f_{X}(x) h(Y \mid X=x) \mathrm{d} x \tag{P.88}
\end{align*}
$$

where, $h(Y \mid X=x)=-\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) \log f_{Y \mid X}(y \mid x) \mathrm{d} y$, the differental entropy of Y conditioning on a fixed $X=x$.

Lemmas 39,42 can be extended to real-valued random variables.

P.2.4. Mutual Information

Definition 18 (Mutual Information). Let X and Y be two random variables with joint pdf $f_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0, \infty)$. Then, the mutual information between X and Y, denoted by $I(X ; Y)$, is:

$$
\begin{equation*}
I(X ; Y)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) \log \left(\frac{f_{X Y}(x, y)}{f_{X}(x) f_{Y}(y)}\right) \mathrm{d} x \mathrm{~d} y \tag{P.89}
\end{equation*}
$$

The mutual information between the real-valued random variables X and Y can also be written as follows:

$$
\begin{align*}
I(X ; Y) & =\mathbb{E}_{X Y}\left[\log \left(\frac{f_{X Y}(X, Y)}{f_{X}(X) f_{Y}(Y)}\right)\right] \tag{P.90a}\\
& =\mathbb{E}_{X Y}\left[\log \left(\frac{f_{Y \mid X}(Y \mid X)}{f_{Y}(Y)}\right)\right] \tag{P.90b}\\
& =\mathbb{E}_{X Y}\left[\log \left(\frac{f_{X \mid Y}(X \mid Y)}{f_{X}(X)}\right)\right] . \tag{P.90c}
\end{align*}
$$

Lemmas 43,45 can be extended to real-valued random variables.
Lemma 57 (Mutual Information of a two Gaussian Distributions). Let X and Y be two Gaussian random variables with zero means, correlation ρ, and variances σ_{X}^{2} and σ_{Y}^{2}, respectively, i.e., $(X, Y)^{T} \sim \mathcal{N}\left(\left[\begin{array}{l}X \\ Y\end{array}\right],\left[\begin{array}{cc}\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\ \rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}\end{array}\right]\right)$. The mutual information between the random variables X and Y is:

$$
\begin{equation*}
I(X ; Y)=-\frac{1}{2} \log \left(1-\rho^{2}\right) \tag{P.91}
\end{equation*}
$$

Proof: From Lemma P.33, the following holds:

$$
\begin{equation*}
I(X ; Y)=h(X)+h(Y)-h(X, Y) \tag{P.92a}
\end{equation*}
$$

Plugging (P.77) and (P.83) into (P.92a), the following holds:

$$
\begin{align*}
I(X ; Y) & =\frac{1}{2} \log \left(2 \pi e \sigma_{X}^{2}\right)+\frac{1}{2} \log \left(2 \pi e \sigma_{Y}^{2}\right)-\frac{1}{2} \log \left((2 \pi e)^{2}|\mathbf{K}|\right) \tag{P.92b}\\
& =\frac{1}{2} \log \left(\frac{\sigma_{X}^{2} \sigma_{Y}^{2}}{|\mathbf{K}|}\right) \tag{P.92c}\\
& =-\frac{1}{2} \log \left(1-\rho^{2}\right) \tag{P.92d}
\end{align*}
$$

where, (P.92d) follows from the fact that $|\mathbf{K}|=\operatorname{det}(\mathbf{K})=\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)$, and this completes the proof.

Note that if $\rho= \pm 1$ (perfectly correlated), then $I(X ; Y)$ approaches to infinite.

P.2.5. Conditional Mutual Information

Definition 19 (Conditional Mutual Information). Let X, Y, and Z be three random variables with joint pdf $f_{X Y Z}: \mathbb{R}^{3} \rightarrow[0, \infty)$. Then, the mutual information between X and Y conditioning on Z, denoted by $I(X ; Y \mid Z)$, is:

$$
\begin{equation*}
I(X ; Y \mid Z)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y Z}(x, y, z) \log \left(\frac{f_{X Y \mid Z}(x, y \mid z)}{f_{X \mid Z}(x \mid z) f_{Y \mid Z}(y \mid z)}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \tag{P.93}
\end{equation*}
$$

The mutual information between the real-valued random variables X and Y conditioning on the real-valued random variable Z can also be written as follows:

$$
\begin{align*}
& I(X ; Y \mid Z)=\mathbb{E}_{X Y Z}\left[\log \left(\frac{f_{X Y \mid Z}(X, Y \mid Z)}{f_{X \mid Z}(X \mid Z) f_{Y \mid Z}(Y \mid Z)}\right)\right] \tag{P.94}\\
& I(X ; Y \mid Z)=\mathbb{E}_{X Y Z}\left[\log \left(\frac{f_{Y \mid X Z}(Y \mid X, Z)}{f_{Y \mid Z}(Y \mid Z)}\right)\right], \text { and } \tag{P.95}\\
& I(X ; Y \mid Z)=\mathbb{E}_{X Y Z}\left[\log \left(\frac{f_{X \mid Y Z}(X \mid Y Z)}{f_{X \mid Z}(X \mid)}\right)\right] \tag{P.96}
\end{align*}
$$

Lemmas 46453 can be extended to real-valued random variables.

Fano’s Inequality

In data transmission, Fano's inequality establishes a connection between a traditional practical measure, the probability of error, and an information measure of the effect of the channel noise, the equivocation or conditional entropy. This inequality gives a lower bound on the probability of error or an upper bound in the equivocation. Fano's inequality is critical to establishing fundamental limits in data transmission. This result is used in all converse proofs in this thesis.

Lemma 58 (Fano's Inequality). Let \mathcal{X} be a countable set and let X and \widehat{X} be two random variables with joint pmf $P_{X \widehat{X}}: \mathcal{X}^{2} \rightarrow(0,1]$ such that for all $(x, \widehat{x}) \in \mathcal{X}^{2}, P_{X} \widehat{X}(x, \widehat{x})=$ $P_{X \mid \widehat{X}}(x \mid \widehat{x}) P_{\widehat{X}}(\widehat{x})$. Let also $E=\mathbb{1}_{\{X \neq \hat{X}\}}$ be a binary random variable with pmf $P_{E}:\{0,1\} \rightarrow$ $[0,1]$ such that $p=P_{E}(1)=1-P_{E}(0)$. Then,

$$
\begin{equation*}
H(X \mid \widehat{X}) \leqslant H(E)+p \log (|\mathcal{X}|-1) \tag{Q.1}
\end{equation*}
$$

Proof:

$$
\begin{align*}
H(X \mid \widehat{X})= & H(X \mid \widehat{X})+H(E \mid X, \widehat{X}) \tag{Q.2a}\\
= & H(E, X \mid \widehat{X}) \tag{Q.2b}\\
= & H(E \mid \widehat{X})+H(X \mid E, \widehat{X}) \tag{Q.2c}\\
\leqslant & H(E)+H(X \mid E, \widehat{X}) \tag{Q.2d}\\
= & H(E)+\sum_{\widehat{x} \in \operatorname{supp}\left(P_{\widehat{X}}\right)}\left(P_{E, \widehat{X}}(0, \widehat{x}) H(X \mid E=0, \widehat{X}=\widehat{x})\right. \tag{Q.2e}\\
& \left.+P_{E, \widehat{X}}(1, \widehat{x}) H(X \mid E=1, \widehat{X}=\widehat{x})\right) \tag{Q.2f}\\
= & H(E)+\sum_{\widehat{x} \in \operatorname{supp}\left(P_{\widehat{X}}\right)}^{\sum P_{E, \widehat{X}}(1, \widehat{x}) H(X \mid E=1, \widehat{X}=\widehat{x})} \tag{Q.2g}
\end{align*}
$$

$$
\begin{align*}
& \leqslant H(E)+\sum_{\widehat{x} \in \operatorname{supp}\left(P_{\widehat{X}}\right)} P_{E, \widehat{X}}(1, \widehat{x}) \log (|\mathcal{X}|-1) \tag{Q.2h}\\
& =H(E)+\log (|\mathcal{X}|-1) \sum_{\widehat{x} \in \operatorname{supp}\left(P_{\widehat{X}}\right)} P_{E, \widehat{X}}(1, \widehat{x}) \tag{Q.2i}\\
& =H(E)+P_{E}(1) \log (|\mathcal{X}|-1) \tag{Q.2j}\\
& =H(E)+p \log (|\mathcal{X}|-1), \tag{Q.2k}
\end{align*}
$$

where, (Q.2a) follows from the fact that the value of the random variable E is known given the knowledge of the random variables X and \widehat{X}, i.e., $H(E \mid X, \widehat{X})=0$; $\widehat{Q} .2 \mathrm{~d})$ follows from the fact that conditioning does not increase entropy (Lemma 40) © Q.2e) follows from Definition 12 (Equation P.16) and $P_{E \mid \widehat{X}}:\{0,1\} \times \mathcal{X} \rightarrow(0,1] ;$ Q.2g follows from the fact that if $E=0$ the value of the random variable X is known given the knowledge of the random variable \widehat{X}, i.e, $H(X \mid E=0, \widehat{X}=\widehat{x})=0 ; \widehat{Q .2 h})$ follows from the fact that given $E=1$ and $\widehat{X}=\widehat{x}, X$ can take any of the $\mathcal{X}-1$ values and the entropy can be upper-bounded assuming that all the values the random variable X can take are uniformly distributed, i.e., $H(X \mid E=1, \widehat{X}=\widehat{x}) \leqslant \log (|\mathcal{X}|-1)$ (Lemma 37; and Q.2k follows from the fact that $p=\operatorname{Pr}[X \neq \widehat{X}]=P_{E}(1)$. This completes the proof of Lemma 58 .

Fano's inequality corresponds to a model of communication in which a message selected from a set \mathcal{X} is encoded into an input signal for transmission through a noisy channel, and the resulting output signal is decoded into a message of the same set. The conditional entropy $H(X \mid \widehat{X})$ or equivocation represents the remaining of the uncertainty on the random variable X. It can also be seen as the average number of bits needed to transmit such that the receiver can identify X with the knowledge of \widehat{X}. In other words, it is the average information lost in a noisy channel. If $H(X \mid \widehat{X})=0$, then, the probability of error p is equal to zero.

Consider the following Markov chain: $X \rightarrow Y \rightarrow \widehat{X}$, with $\widehat{X}=g(Y)$, where g is a deterministic function. Then, from Lemma 49, the following holds:

$$
\begin{align*}
I(X ; Y) & \geqslant I(X ; g(Y)) \tag{Q.3}\\
& =I(X ; \widehat{X}) . \tag{Q.4}
\end{align*}
$$

From (Q.4), the following holds:

$$
\begin{equation*}
H(X \mid \widehat{X}) \geqslant H(X \mid Y) \tag{Q.5}
\end{equation*}
$$

and

$$
\begin{equation*}
H(X \mid Y) \leqslant H(X \mid \widehat{X}) \leqslant H(E)+P_{E} \log (|\mathcal{X}|-1) . \tag{Q.6}
\end{equation*}
$$

A loose bound on the equivocation can be obtained as follows:

$$
\begin{equation*}
H(X \mid \widehat{X}) \leqslant 1+P_{E} \log |\mathcal{X}|, \tag{Q.7}
\end{equation*}
$$

which represents an upper bound on the equivocation.
A lower bound on the probability of error can be obtained from Q.7, as follows:

$$
\begin{equation*}
P_{E} \geqslant \frac{H(X \mid \widehat{X})-1}{\log |\mathcal{X}|} . \tag{Q.8}
\end{equation*}
$$

If the probability of error P_{E} is small, then $H(X \mid \widehat{X})$ should also be small. Note also that $H(X \mid \widehat{X})=H(X)-I(X ; \widehat{X})$ in which a high equivocation implies a low mutual information, and this also implies a high probability of error. A low probability of error implies a high mutual information, and this implies a low equivocation.

Weak Typicality

THE AEP is a direct consequence of the weak law of large numbers (WLLN). It states that a sequence of N independent and identically distributed (i.i.d.) random variables $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ with N sufficiently large, is almost certain to belong to a subset of all possible sequences \mathcal{X}^{N} having only $2^{N H(X)}$ elements, each having a probability close to $2^{-N H(X)} 48$, where X is a random variable representing any of the random variables in the long sequence. This divides the set of all sequences into two sets: the typical set and the nontypical set. All of the sequences in the typical set, the set with a probability measure close to one, have roughly the same probability of occurrence. Thus, the sequences in a typical set are almost uniformly distributed.

R.1. Discrete Random Variables

Let $\mathcal{X}=\{0,1\}$ and let also $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top}$ be an N-dimensional vector of i.i.d binary random variables with joint pmf $P_{\boldsymbol{X}}:\{0,1\}^{N} \rightarrow[0,1]$. The probability of a binary sequence that contains r ones and $N-r$ zeros is:

$$
\begin{equation*}
P_{\boldsymbol{X}}(\boldsymbol{x})=p_{1}^{r}\left(1-p_{1}\right)^{N-r}, \tag{R.1}
\end{equation*}
$$

where, $p_{1}=P_{X}(1)$. The total number of binary sequences that contain r ones in a binary sequence of N symbols is:

$$
\begin{equation*}
n=\binom{N}{r} \tag{R.2}
\end{equation*}
$$

Let $R \in \mathbb{N}$ be a random variable that represents the number of ones, r, in a binary sequence of N symbols. Then, the probability of all binary sequences of N symbols that contain r ones is:

$$
\begin{equation*}
P_{R}(r)=\binom{N}{r} p_{1}^{r}\left(1-p_{1}\right)^{N-r} \tag{R.3}
\end{equation*}
$$

where $\mathbb{E}_{R}[R]=N p_{1}$ and $\operatorname{Var}_{R}[R]=N p_{1}\left(1-p_{1}\right)\left(\right.$ standard deviation equal to $\left.\sqrt{N p_{1}\left(1-p_{1}\right)}\right)$. The number of binary sequences with r ones will be approximately equal to $N p_{1} \pm \sqrt{N p_{1}\left(1-p_{1}\right)}$. As N increases, the probability distribution of the random variable R becomes more concentrated, in the sense that its expected value increases as N and the standard deviation increases only as \sqrt{N}. It implies that the binary sequence \boldsymbol{x} is most likely to fall in a small subset of sequences that is called the typical set 48 .

Now, let \mathcal{X} be a countable set and let also $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top}$ be an N-dimensional vector of i.i.d random variables with joint $\operatorname{pmf} P_{\boldsymbol{X}}: \mathcal{X}^{N} \rightarrow[0,1]$. A long typical sequence of N symbols contains approximately $p_{1} N$ occurrences of the first symbol, $p_{2} N$ occurrences of the second symbol, $\ldots, p_{\ell} N$ occurrences of the ℓ-th symbol, where $p_{1}=P_{X}(1), p_{2}=P_{X}(2)$, $\ldots, p_{\ell}=P_{X}(\ell)$. When the probability distribution $\left(p_{1}, p_{2}, \ldots, p_{\ell}\right)$ is conmesurable with denominator n, the probability of that typical sequence is:

$$
\begin{align*}
P_{\boldsymbol{X}}(\boldsymbol{x}) & =P_{X}\left(x_{1}\right) P_{X}\left(x_{2}\right) \ldots P_{X}\left(x_{N}\right) \tag{R.4a}\\
& =p_{1}^{\left(N p_{1}\right)} p_{2}^{\left(N p_{2}\right)} \ldots p_{\ell}^{\left(N p_{\ell}\right)} \tag{R.4b}
\end{align*}
$$

where, ℓ is the cardinality of the set \mathcal{X}, i.e., $\ell=|\mathcal{X}|$. The amount of information provided by the typical sequence \boldsymbol{x} is:

$$
\begin{align*}
\iota(\boldsymbol{x}) & =-\log P_{\boldsymbol{X}}(\boldsymbol{x}) \tag{R.5a}\\
& =-N \sum_{x \in \operatorname{supp}\left(P_{X}\right)} P_{X}(x) \log P_{X}(x) \tag{R.5b}\\
& =N H(X) . \tag{R.5c}
\end{align*}
$$

Then, the amount of information provided by the typical sequence \boldsymbol{x} is equal to $N H(X)$, even when the distribution $\left(p_{1}, p_{2}, \ldots, p_{\ell}\right)$ are non conmesurable values. Here, $H(X)=-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{x})$ is called the empirical entropy of a typical sequence.

The following lemma is the foundations to understand typical sequences.

Lemma 59 (Chebyshev Inequality). Let X be a random variable with finite expected value μ, i.e., $\mathbb{E}_{X}[X]=\mu<\infty$, and variance σ^{2}, i.e., $\operatorname{Var}_{X}[X]=\sigma^{2}$. Then, for any $a>0$, the following holds:

$$
\begin{equation*}
\operatorname{Pr}[|X-\mu| \geqslant a] \leqslant \frac{\sigma^{2}}{a^{2}} \tag{R.6}
\end{equation*}
$$

R.1.1. Weak Typicality

Lemma 60 (Theorem 5.1 in 94). Let X be a random variable defined on a countable set \mathcal{X} with pmf $P_{X}: \mathcal{X} \rightarrow[0,1]$. Let also $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top} \in \mathcal{X}^{N}$ be an N-dimensional vector of random variables whose joint pmf is:

$$
\begin{equation*}
P_{\boldsymbol{X}}\left(x_{1}, x_{2} \ldots, x_{N}\right)=\prod_{n=1}^{N} P_{X}\left(x_{n}\right) \tag{R.7}
\end{equation*}
$$

for all $\left(x_{1}, x_{2} \ldots, x_{N}\right) \in \mathcal{X}^{N}$. Then, for any $\epsilon>0$ arbitrarily small, there always exists an N sufficiently large such that \boldsymbol{X} satisfies:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})-H(X)\right|<\epsilon\right] \geqslant 1-\epsilon \tag{R.8}
\end{equation*}
$$

Proof: Let the discrete random variable Y be defined by:

$$
\begin{equation*}
Y=-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X}) \tag{R.9}
\end{equation*}
$$

Note that

$$
\begin{align*}
\mathbb{E}_{Y}[Y] & =\mathbb{E}_{\boldsymbol{X}}\left[-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})\right] \tag{R.10a}\\
& =-\frac{1}{N} \sum_{x \in \operatorname{supp} P_{\boldsymbol{X}}} P_{\boldsymbol{X}}(\boldsymbol{x}) \log P_{\boldsymbol{X}}(\boldsymbol{x}) \tag{R.10b}\\
& =-\frac{1}{N} \sum_{n=1}^{N} \sum_{x \in \operatorname{supp} P_{\boldsymbol{X}}} P_{\boldsymbol{X}}(\boldsymbol{x}) \log P_{X}\left(x_{n}\right) \tag{R.10c}\\
& =-\frac{1}{N} \sum_{n=1}^{N} \sum_{x_{1} \in \operatorname{supp} P_{X}} \sum_{x_{2} \in \operatorname{supp} P_{X}} \ldots \sum_{x_{N} \in \operatorname{supp} P_{X}} P_{X}\left(x_{1}\right) P_{X}\left(x_{2}\right) \ldots P_{X}\left(x_{N}\right) \log P_{X}\left(x_{n}\right) \tag{R.10d}\\
& =-\frac{1}{N} \sum_{n=1}^{N} \sum_{x_{n} \in \operatorname{supp} P_{X}} P_{X}\left(x_{n}\right) \log P_{X}\left(x_{n}\right) \tag{R.10e}\\
& =\frac{1}{N} \sum_{n=1}^{N} H(X) \tag{R.10f}\\
& =H(X) \tag{R.10g}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{Var}_{Y}[Y] & =\operatorname{Var}_{\boldsymbol{X}}\left[-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})\right] \tag{R.11a}\\
& =\frac{1}{N^{2}} \operatorname{Var}_{\boldsymbol{X}}\left[\log P_{\boldsymbol{X}}(\boldsymbol{X})\right] \tag{R.11b}\\
& =\frac{1}{N^{2}} \sum_{n=1}^{N} \operatorname{Var}_{X_{n}}\left[\log P_{X_{n}}\left(X_{n}\right)\right] \tag{R.11c}\\
& =\frac{1}{N} \operatorname{Var}_{X}\left[\log P_{X}(X)\right] \tag{R.11d}
\end{align*}
$$

where, R .10 c and $(\mathrm{R} .11 \mathrm{c}$ follow from the fact that all the random variables in the vector of random variables are independent (R.7).

From Chebyshev inequality (Lemma 59), it holds for any $a>0$ that:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|Y-\mathbb{E}_{Y}[Y]\right| \geqslant a\right] \leqslant \frac{\operatorname{Var}_{Y}[Y]}{a^{2}} \tag{R.12}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})-H(X)\right| \geqslant a\right] \leqslant \frac{1}{a^{2} N} \operatorname{Var}_{X}\left[\log P_{X}(x)\right] . \tag{R.13}
\end{equation*}
$$

Note that since the random variable X has finite expected value and a finite variance, it follows that $\frac{1}{a^{2}} \operatorname{Var}_{X}\left[\log P_{X}(x)\right]$ is always finite.

Thus, for all $\epsilon^{\prime}>0$, there always exists an N sufficiently large, such that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})-H(X)\right| \geqslant a\right] \leqslant \epsilon^{\prime} \tag{R.14}
\end{equation*}
$$

Finally, note that

$$
\begin{align*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})-H(X)\right|<a\right] & =1-\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})-H(X)\right| \geqslant a\right] \tag{R.15a}\\
& \geqslant 1-\epsilon^{\prime} . \tag{R.15b}
\end{align*}
$$

Therefore, for all $\epsilon>0$, there always exists an N sufficiently large such that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})-H(X)\right|<\epsilon\right] \geqslant 1-\epsilon \tag{R.16}
\end{equation*}
$$

This completes the proof.

Remark 1. Since the probability space is discrete and finite, it follows from Vitali convergence theorem [70] that the convergence in probability of $-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})$ to $H(X)$, i.e., $-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X}) \xrightarrow{p} H(X)$ established in Lemma 60 implies the \mathscr{L}^{1} convergence of $-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X})$ to $H(X)$, i.e., $-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{X}) \xrightarrow{\mathscr{L}^{1}} H(X)$.

Definition 20 (Weakly Typical Set). Consider a random variable $X \in \mathcal{X}$ distributed according to P_{X} and the joint pmf of the N-dimensional vector of random variables \boldsymbol{X} in (R.7). For any $\epsilon>0$ arbitrarily small, the set of weakly typical sequences with respect to P_{X} is the set of sequences $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathcal{X}^{N}$, denoted by $\mathcal{T}_{X}^{(N, \epsilon)}$, such that:

$$
\begin{equation*}
\mathcal{T}_{X}^{(N, \epsilon)}=\left\{\boldsymbol{x} \in \mathcal{X}^{N}:\left|-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{x})-H(X)\right|<\epsilon\right\} . \tag{R.17}
\end{equation*}
$$

The expression $-\frac{1}{N} \log P_{\boldsymbol{X}}(\boldsymbol{x})$ is called the empirical entropy of a weakly typical sequence. The typical sequences are those sequences that have probability close to $2^{-N H(X)}$. Note that the most probable sequence and the least probable sequence are not necessarily typical sequences. Nonetheless, the set formed by the typical sequences has a probability measure close to one as N increases. Note also that \mathcal{T}_{X} depends only on N, ϵ, and the distribution P_{X}. Figure R.1 shows that the empirical entropy of a binary sequence approaches to the entropy of a binary random variable for N sufficiently large.

Lemma 61 (Weak AEP). Let $\mathcal{T}_{X}^{(N, \epsilon)}$ be the set of weakly typical sequences with respect to P_{X}

Figure R.1.: Empirical entropy of random binary sequence with $P_{X}(0)=1-P_{X}(1)=0.3$.
and with $\epsilon>0$. Then, for N sufficiently large and for all $\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}$, the following holds:

$$
\begin{align*}
& \quad 2^{-N(H(X)+\epsilon)}<P_{\boldsymbol{X}}(\boldsymbol{x})<2^{-N(H(X)-\epsilon)} \tag{R.18a}\\
& \sum_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} P_{\boldsymbol{X}}(\boldsymbol{x}) \geqslant 1-\epsilon, \text { and } \tag{R.18b}\\
& \quad(1-\epsilon) 2^{N(H(X)-\epsilon)}<\left|\mathcal{T}_{X}^{(N, \epsilon)}\right|<2^{N(H(X)+\epsilon)} \tag{R.18c}
\end{align*}
$$

Proof:

Proof of R.18a): This is obtained directly from Definition 20 .
Proof of (R.18b): From R.8), the following holds:

$$
\begin{equation*}
\sum_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} P_{\boldsymbol{X}}(\boldsymbol{x}) \geqslant 1-\epsilon \tag{R.19}
\end{equation*}
$$

with $\epsilon>0$, and this completes the proof of R.18b .
Proof of (R.18c): From (R.18a) and (R.18b), the following holds:

$$
\begin{align*}
1 & =\sum_{\boldsymbol{x} \in \mathcal{X}^{N}} P_{\boldsymbol{X}}(\boldsymbol{x}) \tag{R.20a}\\
& \geqslant \sum_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} P_{\boldsymbol{X}(\boldsymbol{x})} \tag{R.20b}\\
& >\sum_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} 2^{-N(H(X)+\epsilon)} \tag{R.20c}\\
& =\left|\mathcal{T}_{X}^{(N, \epsilon)}\right| 2^{-N(H(X)+\epsilon)} \tag{R.20d}
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\left|\mathcal{T}_{X}^{(N, \epsilon)}\right|<2^{N(H(X)+\epsilon)} \tag{R.20e}
\end{equation*}
$$

and

$$
\begin{align*}
1-\epsilon & \leqslant \sum_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} P_{\boldsymbol{X}}(\boldsymbol{x}) \tag{R.20f}\\
& <\sum_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} 2^{-N(H(X)-\epsilon)} \tag{R.20g}\\
& =\left|\mathcal{T}_{X}^{(N, \epsilon)}\right| 2^{-N(H(X)-\epsilon)}, \tag{R.20h}
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\left|\mathcal{T}_{X}^{(N, \epsilon)}\right|>(1-\epsilon) 2^{N(H(X)-\epsilon)} \tag{R.20i}
\end{equation*}
$$

and this completes the proof of $(\overline{R .18 c})$. This completes the proof of Lemma 61 .

R.1.2. Weak Joint Typicality

The notion of typicality can be extended to multiple vectors of random variables.
Lemma 62. Let \mathcal{X} and \mathcal{Y} be two countable sets and let also X and Y be two random variables with joint pmf $P_{X Y}: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$. Let also $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top}$ and $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots\right.$, $\left.Y_{N}\right)^{\top}$ be two N-dimensional vectors of random variables whose joint pmf is:

$$
\begin{equation*}
P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})=\prod_{n=1}^{N} P_{X Y}\left(x_{n}, y_{n}\right) \tag{R.21}
\end{equation*}
$$

for all $\left(x_{1}, x_{2} \ldots, x_{N}\right) \in \mathcal{X}^{N}$ and $\left(y_{1}, y_{2} \ldots, y_{N}\right) \in \mathcal{Y}^{N}$. Then, for any $\epsilon>0$ arbitrarily small, there always exists an N sufficiently large such that \boldsymbol{X} and \boldsymbol{Y} satisfies:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-H(X, Y)\right|<\epsilon\right] \geqslant 1-\epsilon \tag{R.22}
\end{equation*}
$$

Proof: This proof follows along the same lines the proof of Lemma 60. Then, let the discrete random variable Z be defined by:

$$
\begin{equation*}
Z=-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X} \boldsymbol{Y}) \tag{R.23}
\end{equation*}
$$

Note that

$$
\begin{align*}
\mathbb{E}_{Z}[Z] & =H(X, Y) \text { and } \tag{R.24a}\\
\operatorname{Var}_{Z}[Z] & =\frac{1}{N} \operatorname{Var}_{X Y}\left[\log P_{X Y}(X, Y)\right] \tag{R.24b}
\end{align*}
$$

From Chebyshev inequality (Lemma 59), it holds for any $a>0$ that:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|Z-\mathbb{E}_{Z}[Z]\right| \geqslant a\right] \leqslant \frac{\operatorname{Var}_{Z}[Z]}{a^{2}} \tag{R.25}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X} \boldsymbol{Y})-H(X, Y)\right| \geqslant a\right] \leqslant \frac{1}{a^{2} N} \operatorname{Var}_{X Y}\left[\log P_{X Y}(X, Y)\right] \tag{R.26}
\end{equation*}
$$

Note that since the random variables X and Y have a finite joint expected value and a finite joint variance, it follows that $\frac{1}{a^{2}} \operatorname{Var}_{X Y}\left[\log P_{X Y}(X, Y)\right]$ is always finite.

Thus, for all $\epsilon^{\prime}>0$, there always exists an N sufficiently large, such that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-H(X, Y)\right| \geqslant a\right] \leqslant \epsilon^{\prime} \tag{R.27}
\end{equation*}
$$

Finally, note that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-H(X, Y)\right|<a\right]=1-\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-H(X, Y)\right| \geqslant a\right] \tag{R.28a}
\end{equation*}
$$

$$
\begin{equation*}
\geqslant 1-\epsilon^{\prime} \tag{R.28b}
\end{equation*}
$$

Therefore, for all $\epsilon>0$, there always exists an N sufficiently large such that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-H(X, Y)\right|<\epsilon\right] \geqslant 1-\epsilon \tag{R.29}
\end{equation*}
$$

This completes the proof.

Remark 2. Since the probability space is discrete and finite, it follows from Vitali convergence theorem [r0] that the convergence in probability of $-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})$ to $H(X, Y)$, i.e., $-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y}) \xrightarrow{p} H(X, Y)$ established in Lemma 62 implies the \mathscr{L}^{1} convergence of $-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})$ to $H(X, Y)$, i.e., $-\frac{1}{N} \log P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y}) \xrightarrow{\mathscr{L}^{1}} H(X, Y)$.

Definition 21 (Weakly Joint Typical Set). Consider two random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ distributed according to $P_{X Y}$, and the pmfs and joint pmf of the N-dimensional vectors of random variables \boldsymbol{X} and \boldsymbol{Y} according to (R.7), $P_{\boldsymbol{Y}}\left(y_{1}, y_{2} \ldots, y_{N}\right)=\prod_{n=1}^{N} P_{Y}\left(y_{n}\right)$, and (R.21). For any $\epsilon>0$ arbitrarily small, the set of weakly joint typical sequences with respect to $P_{X Y}$ is the set of sequences $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right) \in(\mathcal{X} \times \mathcal{Y})^{N}$, denoted by $\mathcal{T}_{X Y}^{(N, \epsilon)}$, such that:

$$
\begin{align*}
& \mathcal{T}_{X Y}^{(N, \epsilon)}=\left\{(\boldsymbol{x}, \boldsymbol{y}) \in(\mathcal{X} \times \mathcal{Y})^{N}:\left|-\frac{1}{N} \log \left(P_{\boldsymbol{X}}(\boldsymbol{x})\right)-H(X)\right|<\epsilon,\right. \\
&\left|-\frac{1}{N} \log \left(P_{\boldsymbol{Y}}(\boldsymbol{y})\right)-H(Y)\right|<\epsilon, \text { and } \\
&\left.\left|-\frac{1}{N} \log \left(P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})\right)-H(X, Y)\right|<\epsilon\right\} \tag{R.30}
\end{align*}
$$

Note that if $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}$ then $\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}$ and $\boldsymbol{y} \in \mathcal{T}_{Y}^{(N, \epsilon)}$.

Lemma 63. Let $\mathcal{T}_{X}^{(N, \epsilon)}$ be the set of weakly joint typical sequences with respect to $P_{X Y}$ and with $\epsilon>0$. Then, for N sufficiently large and for all $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}$, the following holds:

$$
\begin{align*}
& 2^{-N(H(X, Y)+\epsilon)}<P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})<2^{-N(H(X, Y)-\epsilon)}, \tag{R.31a}\\
& 2^{-N(H(X \mid Y)+2 \epsilon)}<P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y})<2^{-N(H(X \mid Y)-2 \epsilon)}, \tag{R.31b}\\
& \sum_{\boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) \geqslant 1-\epsilon, \text { and } \tag{R.31c}\\
& (1-\epsilon) 2^{N(H(X, Y)-\epsilon)}<\left|\mathcal{T}_{X Y}^{(N, \epsilon)}\right|<2^{N(H(X, Y)+\epsilon)} . \tag{R.31d}
\end{align*}
$$

Proof:
Proof of R.31a): This is obtained directly from Definition 21 .
Proof of R.31b: From the assumptions of the lemma, following along the same steps of the proof of R.18a for all $\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}$ and for all $\boldsymbol{y} \in \mathcal{T}_{Y}^{(N, \epsilon)}$ yields:

$$
\begin{align*}
& 2^{-N(H(X)+\epsilon)}<P_{\boldsymbol{X}}(\boldsymbol{x})<2^{-N(H(X)-\epsilon)} \text { and } \tag{R.32a}\\
& 2^{-N(H(Y)+\epsilon)}<P_{\boldsymbol{Y}}(\boldsymbol{y})<2^{-N(H(Y)-\epsilon)} \tag{R.32b}
\end{align*}
$$

From R.21) and (R.32b), the following holds:

$$
\begin{equation*}
2^{-N(H(X \mid Y)+2 \epsilon)}<P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y})<2^{-N(H(X \mid Y)-2 \epsilon)} \tag{R.32c}
\end{equation*}
$$

and this completes the proof of R.31b.
Proof of R.31c : From Lemma 62, the following holds:

$$
\begin{equation*}
\sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} P_{\boldsymbol{X Y}}(\boldsymbol{x}, \boldsymbol{y}) \geqslant 1-\epsilon \tag{R.33}
\end{equation*}
$$

with $\epsilon>0$, and this completes the proof of R.31d.
Proof of (R.31d): From R.31a and (R.31c), the following holds:

$$
\begin{align*}
& 1=\sum_{(\boldsymbol{x}, \boldsymbol{y}) \in(\mathcal{X} \times \mathcal{Y})^{N}} P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) \tag{R.34a}\\
& \quad \geqslant \sum P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) \tag{R.34b}\\
& (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)} \\
& \quad>\sum 2^{-N(H(X, Y)+\epsilon)} \tag{R.34c}\\
& (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)} \tag{R.34d}\\
& \quad=\left|\mathcal{T}_{X Y}^{(N, \epsilon)}\right| 2^{-N(H(X, Y)+\epsilon)},
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\left|\mathcal{T}_{X Y}^{(N, \epsilon)}\right|<2^{N(H(X, Y)+\epsilon)} \tag{R.34e}
\end{equation*}
$$

and

$$
\begin{align*}
1-\epsilon & \leqslant \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) \tag{R.34f}\\
& <\sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} 2^{-N(H(X, Y)-\epsilon)} \\
& =\left|\mathcal{T}_{X Y}^{(N, \epsilon)}\right| 2^{-N(H(X, Y)-\epsilon)}, \tag{R.34g}
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\left|\mathcal{T}_{X}^{(N, \epsilon)}\right|>(1-\epsilon) 2^{N(H(X, Y)-\epsilon)}, \tag{R.34i}
\end{equation*}
$$

and this completes the proof.

R.1.3. Weak Conditional Typicality

Definition 22 (Weakly Typical Set Subject to Conditioning). Consider two random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ distributed according to $P_{X Y}$, and the conditional pmf of the N-dimensional vectors of random variables \boldsymbol{X} and \boldsymbol{Y} according to $P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y})=\prod_{n=1}^{N} P_{X \mid Y}\left(x_{n} \mid y_{n}\right)$ for all $\boldsymbol{x} \in \mathcal{X}^{n}$ and $\boldsymbol{y} \in \mathcal{Y}^{n}$. Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{N}\right)^{\top}$ be a sequence such that $\boldsymbol{y} \in \mathcal{T}_{Y}^{(N, \epsilon)}$, with $\epsilon>0$ and N sufficiently large. Then, the set of weakly typical sequences with respect to P_{X} conditioning on the sequence \boldsymbol{y} is the set of sequences $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathcal{X}^{N}$, denoted by $\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})$, such that:

$$
\begin{align*}
\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})=\left\{\boldsymbol{x} \in \mathcal{X}^{N}:\right. & \left|-\frac{1}{N} \log \left(P_{\boldsymbol{X}}(\boldsymbol{x})\right)-H(X)\right|<\epsilon, \text { and } \\
& \left.\left|-\frac{1}{N} \log \left(P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})\right)-H(X, Y)\right|<\epsilon\right\} . \tag{R.35}
\end{align*}
$$

Lemma 64. Let $\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})$ be the set of weakly typical sequences with respect to $P_{X Y}$ conditioning on $\boldsymbol{Y}=\boldsymbol{y}$ and with $\epsilon>0$. Then, for N sufficiently large and for all $\boldsymbol{x} \in \mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})$, the following holds:

$$
\begin{align*}
& \left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right|<2^{N(H(X \mid Y)+2 \epsilon)} \tag{R.36a}\\
& \sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y})\left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right|>(1-\epsilon) 2^{N(H(X \mid Y)-2 \epsilon)} . \tag{R.36b}
\end{align*}
$$

Proof:

Proof of R.36a):

$$
\begin{align*}
& 1=\sum_{(\boldsymbol{x}, \boldsymbol{y}) \in(\mathcal{X} \times \mathcal{Y})^{N}} P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) \tag{R.37a}\\
& \quad=\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y}) \sum_{\boldsymbol{x} \in \mathcal{X}^{N}} P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y}) \tag{R.37b}\\
& >\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y}) \sum_{\boldsymbol{x} \in \mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})} P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{Y}=\boldsymbol{y}) \tag{R.37c}\\
& \quad>\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y}) \sum_{\boldsymbol{x} \in \mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})} 2^{-N(H(X \mid Y)+2 \epsilon)} \tag{R.37d}\\
& =\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y})\left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right| 2^{-N(H(X \mid Y)+2 \epsilon)} \tag{R.37e}\\
& =\left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right| 2^{-N(H(X \mid Y)+2 \epsilon)} \sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y}) \tag{R.37f}\\
& =\left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right| 2^{-N(H(X \mid Y)+2 \epsilon),} \tag{R.37g}
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right|<2^{N(H(X \mid Y)+2 \epsilon)}, \tag{R.37h}
\end{equation*}
$$

and this completes the proof of (R.36a).

Proof of R.36b):

$$
\begin{align*}
& 1-\epsilon \leqslant \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} P_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) \tag{R.38a}\\
& \quad=\sum_{\boldsymbol{y} \in \mathcal{T}_{Y}^{(N, \epsilon)}} P_{\boldsymbol{Y}}(\boldsymbol{y}) \sum_{x \in \mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})} P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y}) \tag{R.38b}\\
& \tag{R.38c}\\
& \leqslant \sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y}) \sum_{\boldsymbol{x} \in \mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})} P_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y}) \tag{R.38d}\\
& \quad<\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y}) \sum_{\boldsymbol{x} \in \mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})} 2^{-N(H(X \mid Y)-2 \epsilon)} \tag{R.38e}\\
& = \tag{R.38f}\\
& \quad \sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y})\left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right| 2^{-N(H(X \mid Y)-2 \epsilon)} \\
& = \\
& \quad 2^{-N(H(X \mid Y)-2 \epsilon)} \sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y})\left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right|
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\sum_{\boldsymbol{y} \in \mathcal{Y}^{N}} P_{\boldsymbol{Y}}(\boldsymbol{y})\left|\mathcal{T}_{X \mid Y}^{(N, \epsilon)}(\boldsymbol{y})\right|>(1-\epsilon) 2^{N(H(X \mid Y)-2 \epsilon)} \tag{R.38g}
\end{equation*}
$$

and this completes the proof of $R .36 \mathrm{~b}$. This completes the proof of Lemma 64

R.2. Real-Valued Random Variables

R.2.1. Weak Typicality

Lemma 65 (Theorem 10.35 in 94). Let X be a random variable X with $p d f f_{X}: \mathbb{R} \rightarrow[0, \infty)$. Let also $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top} \in \mathcal{X}^{N}$ be an N-dimensional vector of random variables whose joint pdf is:

$$
\begin{equation*}
f_{\boldsymbol{X}}\left(x_{1}, x_{2} \ldots, x_{N}\right)=\prod_{n=1}^{N} f_{X}\left(x_{n}\right) \tag{R.39}
\end{equation*}
$$

for all $\left(x_{1}, x_{2} \ldots, x_{N}\right) \in \mathbb{R}^{N}$. Then, for any $\epsilon>0$ arbitrarily small, there always exists an N sufficiently large such that \boldsymbol{X} satisfies:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})-h(X)\right|<\epsilon\right] \geqslant 1-\epsilon \tag{R.40}
\end{equation*}
$$

Proof: Let the real-valued random variable Y be defined by:

$$
\begin{equation*}
Y=-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X}) \tag{R.41}
\end{equation*}
$$

Note that

$$
\begin{align*}
\mathbb{E}_{Y}[Y] & =\mathbb{E}_{\boldsymbol{X}}\left[-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})\right] \tag{R.42a}\\
& =-\frac{1}{N} \int_{-\infty}^{\infty} f_{\boldsymbol{X}}(\boldsymbol{x}) \log f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{R.42b}\\
& =-\frac{1}{N} \sum_{n=1}^{N} \int_{-\infty}^{\infty} f_{\boldsymbol{X}}(\boldsymbol{x}) \log f_{X}\left(x_{n}\right) \mathrm{d} x_{n} \tag{R.42c}\\
& =-\frac{1}{N} \sum_{n=1}^{N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{X}\left(x_{1}\right) f_{X}\left(x_{2}\right) \ldots f_{X}\left(x_{N}\right) \log f_{X}\left(x_{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{N} \tag{R.42d}
\end{align*}
$$

$$
\begin{equation*}
=-\frac{1}{N} \sum_{n=1}^{N} \int_{-\infty}^{\infty} f_{X}\left(x_{n}\right) \log f_{X}\left(x_{n}\right) \tag{R.42e}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{N} \sum_{n=1}^{N} h(X) \tag{R.42f}
\end{equation*}
$$

$$
\begin{equation*}
=h(X) \tag{R.42g}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Var}_{Y}[Y] & =\operatorname{Var}_{\boldsymbol{X}}\left[-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})\right] \tag{R.43a}\\
& =\frac{1}{N^{2}} \operatorname{Var}_{\boldsymbol{X}}\left[\log f_{\boldsymbol{X}}(\boldsymbol{X})\right] \tag{R.43b}\\
& =\frac{1}{N^{2}} \sum_{n=1}^{N} \operatorname{Var}_{X_{n}}\left[\log f_{X_{n}}\left(X_{n}\right)\right] \tag{R.43c}\\
& =\frac{1}{N} \operatorname{Var}_{X}\left[\log f_{X}(X)\right] \tag{R.43d}
\end{align*}
$$

where, R .42 c and R .43 c follow from the fact that all the random variables in the vector of random variables are independent (R.39).

From Chebyshev inequality (Lemma 59), it holds for any $a>0$ that:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|Y-\mathbb{E}_{Y}[Y]\right| \geqslant a\right] \leqslant \frac{\operatorname{Var}_{Y}[Y]}{a^{2}} \tag{R.44}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})-h(X)\right| \geqslant a\right] \leqslant \frac{1}{a^{2} N} \operatorname{Var}_{X}\left[\log f_{X}(x)\right] \tag{R.45}
\end{equation*}
$$

Note that since the random variable X has finite expected value and a finite variance, it follows that $\frac{1}{a^{2}} \operatorname{Var}_{X}\left[\log f_{X}(x)\right]$ is always finite.

Thus, for all $\epsilon^{\prime}>0$, there always exists an N sufficiently large, such that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})-h(X)\right| \geqslant a\right] \leqslant \epsilon^{\prime} \tag{R.46}
\end{equation*}
$$

Finally, note that

$$
\begin{align*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})-h(X)\right|<a\right] & =1-\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})-h(X)\right| \geqslant a\right] \tag{R.47a}\\
& \geqslant 1-\epsilon^{\prime} \tag{R.47b}
\end{align*}
$$

Therefore, for all $\epsilon>0$, there always exists an N sufficiently large such that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})-h(X)\right|<\epsilon\right] \geqslant 1-\epsilon \tag{R.48}
\end{equation*}
$$

This completes the proof.
Remark 3. Since the probability space is real-valued, it follows from Vitali convergence theorem [70] that the convergence in probability of $-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})$ to $H(X)$, i.e., $-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X}) \xrightarrow{p}$ $H(X)$ established in Lemma 65 implies the \mathscr{L}^{1} convergence of $-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X})$ to $h(X)$, i.e., $-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{X}) \xrightarrow{\mathscr{L}^{1}} h(X)$.

Definition 23 (Weakly Typical Set). Consider a random variable $X \in \mathcal{R}$ distributed according to f_{X} and the joint pdf of the N-dimensional vector of random variables \boldsymbol{X} in (R.39). For any $\epsilon>0$ arbitrarily small, the set of weakly typical sequences with respect to f_{X} is the set of sequences $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathcal{X}^{N}$, denoted by $\mathcal{T}_{X}^{(N, \epsilon)}$, such that:

$$
\begin{equation*}
\mathcal{T}_{X}^{(N, \epsilon)}=\left\{\boldsymbol{x} \in \mathcal{X}^{N}:\left|-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{x})-h(X)\right|<\epsilon\right\} \tag{R.49}
\end{equation*}
$$

where, ϵ is an arbitrarily small positive real number and $-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{x})$ is called the empirical differential entropy of a weakly typical sequence.

The expression $-\frac{1}{N} \log f_{\boldsymbol{X}}(\boldsymbol{x})$ is called the empirical differential entropy of a weakly typical sequence. Note also that \mathcal{T}_{X} depends only on N, ϵ, and the distribution f_{X}.

Definition 24. The volume of a set $\mathcal{A} \in \mathbb{R}^{N}$, denoted by $\operatorname{Vol}(\mathcal{A})$, is:

$$
\begin{equation*}
\operatorname{Vol}(\mathcal{A})=\int_{\mathcal{A} \in \mathbb{R}^{N}} d \boldsymbol{x} \tag{R.50}
\end{equation*}
$$

Lemma 66 (Weak AEP. Theorem 10.38 in 94). Let $\mathcal{T}_{X}^{(N, \epsilon)}$ be the set of weakly typical sequences with respect to f_{X} and with $\epsilon>0$. Then, for N sufficiently large and for all $\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}$, the following holds:

$$
\begin{align*}
& 2^{-N(h(X)+\epsilon)}<f_{\boldsymbol{X}}(\boldsymbol{x})<2^{-N(h(X)-\epsilon)}, \tag{R.51a}\\
& \int_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \geqslant 1-\epsilon, \text { and } \tag{R.51b}\\
& (1-\epsilon) 2^{N(h(X)-\epsilon)}<\operatorname{Vol}\left(\mathcal{T}_{X}^{(N, \epsilon)}\right)<2^{N(h(X)+\epsilon)} . \tag{R.51c}
\end{align*}
$$

Proof:

Proof of R.51a): This is obtained directly from Definition 23.

Proof of R.51b: From R.40, the following holds:

$$
\begin{equation*}
\int_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \geqslant 1-\epsilon, \tag{R.52}
\end{equation*}
$$

with $\epsilon>0$ and this completes the proof of R.51b).

Proof of R.51c): From R.51a and R.51b, the following holds:

$$
\begin{align*}
& 1=\int_{\boldsymbol{x} \in \mathcal{X}^{N}} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \tag{R.53a}\\
& \geqslant \int_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} f_{\boldsymbol{X}(\boldsymbol{x})} d \boldsymbol{x} \tag{R.53b}\\
&>\int_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} 2^{-N(h(X)+\epsilon)} d \boldsymbol{x} \tag{R.53c}\\
&=2^{-N(h(X)+\epsilon)} \int_{\boldsymbol{x} \in \mathcal{T}_{X}} d \boldsymbol{\mathcal { T }}_{(N, \epsilon)} \tag{R.53d}\\
&=2^{-N(h(X)+\epsilon)} \operatorname{Vol}\left(\mathcal{T}_{X}^{(N, \epsilon)}\right), \tag{R.53e}
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\operatorname{Vol}\left(\mathcal{T}_{X}^{(N, \epsilon)}\right)<2^{N(h(X)+\epsilon)}, \tag{R.53f}
\end{equation*}
$$

and

$$
\begin{align*}
1-\epsilon & \leqslant \int_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \tag{R.53g}\\
& <\int_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} 2^{-N(h(X)-\epsilon)} d \boldsymbol{x} \tag{R.53h}\\
& =2^{-N(h(X)-\epsilon)} \int_{\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}} d \boldsymbol{x} \tag{R.53i}\\
& =2^{-N(h(X)-\epsilon)} \operatorname{Vol}\left(\mathcal{T}_{X}^{(N, \epsilon)}\right) \tag{R.53j}
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\operatorname{Vol}\left(\mathcal{T}_{X}^{(N, \epsilon)}\right)>(1-\epsilon) 2^{N(h(X)-\epsilon)} \tag{R.53k}
\end{equation*}
$$

and this completes the proof of R .51 c . This completes the proof of Lemma 66 .

R.2.2. Weak Joint Typicality

Lemma 67. Let X and Y be two random variables with joint pdf $f_{X Y}: \mathbb{R}^{2} \rightarrow[0, \infty)$. Let also $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top}$ and $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)^{\top}$ be two N-dimensional vectors of random variables whose joint pdf is:

$$
\begin{equation*}
f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})=\prod_{n=1}^{N} f_{X Y}\left(x_{n}, y_{n}\right) \tag{R.54}
\end{equation*}
$$

for all $\left(x_{1}, x_{2} \ldots, x_{N}\right) \in \mathbb{R}^{N}$ and $\left(y_{1}, y_{2} \ldots, y_{N}\right) \in \mathbb{R}^{N}$. Then, for any $\epsilon>0$ arbitrarily small, there always exists an N sufficiently large such that \boldsymbol{X} and \boldsymbol{Y} satisfies:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-h(X, Y)\right|<\epsilon\right]>1-\epsilon \tag{R.55}
\end{equation*}
$$

Proof:
This proof follows along the same lines the proof of Lemma 65. Then, let the real-valued random variable Z be defined by:

$$
\begin{equation*}
Z=-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X} \boldsymbol{Y}) \tag{R.56}
\end{equation*}
$$

Note that

$$
\begin{align*}
\mathbb{E}_{Z}[Z] & =h(X, Y) \text { and } \tag{R.57a}\\
\operatorname{Var}_{Z}[Z] & =\frac{1}{N} \operatorname{Var}_{X Y}\left[\log f_{X Y}(X, Y)\right] \tag{R.57b}
\end{align*}
$$

From Chebyshev inequality (Lemma 59), it holds for any $a>0$ that:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|Z-\mathbb{E}_{Z}[Z]\right| \geqslant a\right] \leqslant \frac{\operatorname{Var}_{Z}[Z]}{a^{2}} \tag{R.58}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X} \boldsymbol{Y})-h(X, Y)\right| \geqslant a\right] \leqslant \frac{1}{a^{2} N} \operatorname{Var}_{X Y}\left[\log f_{X Y}(X, Y)\right] \tag{R.59}
\end{equation*}
$$

Note that since the random variables X and Y have a finite joint expected value and a finite joint variance, it follows that $\frac{1}{a^{2}} \operatorname{Var}_{X Y}\left[\log f_{X Y}(X, Y)\right]$ is always finite. Thus, for all $\epsilon^{\prime}>0$, there always exists an N sufficiently large, such that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-h(X, Y)\right| \geqslant a\right] \leqslant \epsilon^{\prime} \tag{R.60}
\end{equation*}
$$

Finally, note that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-h(X, Y)\right|<a\right]=1-\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-h(X, Y)\right| \geqslant a\right] \tag{R.61a}
\end{equation*}
$$

$$
\begin{equation*}
\geqslant 1-\epsilon^{\prime} \tag{R.61b}
\end{equation*}
$$

Therefore, for all $\epsilon>0$, there always exists an N sufficiently large such that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})-h(X, Y)\right|<\epsilon\right] \geqslant 1-\epsilon \tag{R.62}
\end{equation*}
$$

This completes the proof.

Remark 4. Since the probability space is continuous, it follows from Vitali convergence theorem [r0] that the convergence in probability of $-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})$ to $h(X, Y)$, i.e., $-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y}) \xrightarrow{p} h(X, Y)$ established in Lemma 67 implies the \mathscr{L}^{1} convergence of $-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y})$ to $h(X, Y)$, i.e., $-\frac{1}{N} \log f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{X}, \boldsymbol{Y}) \xrightarrow{\mathscr{L}^{1}} h(X, Y)$.

Definition 25 (Weakly Joint Typical Set). Consider two random variables $X \in \mathbb{R}$ and $Y \in \mathbb{R}$ distributed according to $f_{X Y}$, and the pdfs and joint pdf of the N-dimensional vectors of random variables \boldsymbol{X} and \boldsymbol{Y} according to (R.7), $P_{\boldsymbol{Y}}\left(y_{1}, y_{2} \ldots, y_{N}\right)=\prod_{n=1}^{N} P_{Y}\left(y_{n}\right)$, and (R.54). For any $\epsilon>0$ arbitrarily small, the set of weakly joint typical sequences with respect to $P_{X Y}$ is the set of sequences $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right) \in(\mathcal{X} \times \mathcal{Y})^{N}$, denoted by $\mathcal{T}_{X Y}^{(N, \epsilon)}$, such that:

$$
\begin{align*}
\mathcal{T}_{X Y}^{(N, \epsilon)}=\left\{(\boldsymbol{x}, \boldsymbol{y}) \in(\mathcal{X} \times \mathcal{Y})^{N}:\right. & \left|-\frac{1}{N} \log \left(f_{\boldsymbol{X}}(\boldsymbol{x})\right)-h(X)\right|<\epsilon \\
& \left|-\frac{1}{N} \log \left(f_{\boldsymbol{Y}}(\boldsymbol{y})\right)-h(Y)\right|<\epsilon, \text { and } \\
& \left.\left|-\frac{1}{N} \log \left(f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})\right)-h(X, Y)\right|<\epsilon\right\} \tag{R.63}
\end{align*}
$$

Note that if $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}$ then $\boldsymbol{x} \in \mathcal{T}_{X}^{(N, \epsilon)}$ and $\boldsymbol{y} \in \mathcal{T}_{Y}^{(N, \epsilon)}$.

Lemma 68. Let $\mathcal{T}_{X}^{(N, \epsilon)}$ be the set of weakly joint typical sequences with respect to $f_{X Y}$ and with $\epsilon>0$. Then, for N sufficiently large and for all $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}$, the following holds:

$$
\begin{align*}
& 2^{-N(h(X, Y)+\epsilon)}<f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})<2^{-N(h(X, Y)-\epsilon)} \tag{R.64a}\\
& 2^{-N(h(X \mid Y)+2 \epsilon)}<f_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y})<2^{-N(h(X \mid Y)-2 \epsilon)} \tag{R.64b}\\
& \int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{x} d \boldsymbol{y} \geqslant 1-\epsilon, \text { and } \tag{R.64c}\\
& (1-\epsilon) 2^{N(h(X, Y)-\epsilon)}<\operatorname{Vol}\left(\mathcal{T}_{X Y}^{(N, \epsilon)}\right)<2^{N(h(X, Y)+\epsilon)} \tag{R.64d}
\end{align*}
$$

Proof:
Proof of R.64a): This is obtained directly from Definition 25.
Proof of R.64b): From the assumptions of the lemma, it follows that

$$
\begin{align*}
& 2^{-N(h(X)+\epsilon)}<f_{\boldsymbol{X}}(\boldsymbol{x})<2^{-N(h(X)-\epsilon)} \text { and } \tag{R.65a}\\
& 2^{-N(h(Y)+\epsilon)}<f_{\boldsymbol{Y}}(\boldsymbol{y})<2^{-N(h(Y)-\epsilon)} \tag{R.65b}
\end{align*}
$$

From R.64a and R.65b , the following holds:

$$
\begin{equation*}
2^{-N(h(X \mid Y)+2 \epsilon)}<f_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y})<2^{-N(h(X \mid Y)-2 \epsilon)} \tag{R.65c}
\end{equation*}
$$

and this completes the proof of R.64b.
Proof of $(\overline{\text { R.64c }}$: From Lemma 67, the following holds:

$$
\begin{equation*}
\int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{x} d \boldsymbol{y} \geqslant 1-\epsilon \tag{R.66}
\end{equation*}
$$

with $\epsilon>0$ and this completes the proof of R.64c).
Proof of R.64d : From R.64a and R.64c , the following holds:

$$
\begin{align*}
& 1=\int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{X}^{N} \times \mathcal{Y}^{N}} f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{x} d \boldsymbol{y} \tag{R.67a}\\
& \geqslant \int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{x} d \boldsymbol{y} \tag{R.67b}\\
& >\int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} 2^{-N(h(X, Y)+\epsilon)} d \boldsymbol{x} d \boldsymbol{y} \tag{R.67c}\\
& \left.=2^{-N(h(X, Y)+\epsilon)} \int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} d \boldsymbol{x} d \boldsymbol{y}^{(N,}\right) \tag{R.67d}\\
& =2^{-N(h(X, Y)+\epsilon)} \operatorname{Vol}\left(\mathcal{T}_{X Y}^{(N, \epsilon)}\right) \tag{R.67e}
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\operatorname{Vol}\left(\mathcal{T}_{X Y}^{(N, \epsilon)}\right)<2^{N(h(X, Y)+\epsilon)} \tag{R.67f}
\end{equation*}
$$

and

$$
\begin{align*}
1-\epsilon & \leqslant \int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} f_{\boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{x} d \boldsymbol{y} \tag{R.67g}\\
& <\int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} 2^{-N(h(X, Y)-\epsilon)} d \boldsymbol{x} d \boldsymbol{y} \tag{R.67h}\\
& =2^{-N(h(X, Y)-\epsilon)} \int_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}_{X Y}^{(N, \epsilon)}} d \boldsymbol{x} d \boldsymbol{x}^{(N(X, Y)-\epsilon)} \operatorname{Vol}\left(\mathcal{T}_{X Y}^{(N, \epsilon)}\right) \tag{R.67i}\\
& \left.=2^{-N(h(X,}\right) \tag{R.67j}
\end{align*}
$$

for N sufficiently large, which implies:

$$
\begin{equation*}
\operatorname{Vol}\left(\mathcal{T}_{X Y}^{(N, \epsilon)}\right)>(1-\epsilon) 2^{N(h(X, Y)-\epsilon)} \tag{R.67k}
\end{equation*}
$$

and this completes the proof of $R .64 \mathrm{~d}$. This completes the proof of Lemma 68

Bibliography

[1] Ahlswede, R. "Multi-way communication channels". In: Proc. 2nd International Symposium on Information Theory. Tsahkadsor, Armenian S.S.R. Hungarian Academy of Sciences, Budapest, Sept. 1971, pp. 23-52 (Cited in page 12).
[2] Ahlswede, R. "The capacity region of a channel with two senders and two receivers". In: The Annals of Probability 2.5 (Oct. 1974), pp. 805-814 (Cited in page 12).
[3] Annapureddy, V. S. and Veeravalli, V. V. "Gaussian interference networks: Sum-capacity in the low-interference regime and new outer bounds on the capacity region". In: IEEE Trans. Inf. Theory 55.7 (July 2009), pp. 3032-3050 (Cited in page 16).
[4] Anshelevich, E., Dasgupta, A., Tardos, E., and Wexler, T. "Near-optimal network design with selfish agents". In: Proc. Annual ACM Symposium on Theory of Computing. San Diego, CA, USA, June 2003 (Cited in page 78).
[5] Ardestanizadeh, E., Franceschetti, M., Javidi, T., and Kim, Y.-H. "Wiretap channel with secure rate-limited feedback". In: IEEE Trans. Inf. Theory 55.12 (Dec. 2009), pp. 5353-5361 (Cited in page 2).
[6] Avestimehr, S., Diggavi, S., and Tse, D. N. C. "Wireless network information flow: A deterministic approach". In: IEEE Trans. Inf. Theory 57.4 (Apr. 2011), pp. 1872-1905 (Cited in page 22.
[7] Belhadj Amor, S. and Perlaza, S. M. "Decentralized K-user Gaussian multiple access channels". In: Proc. International conference on NETwork Games, COntrol and OPtimization (Netgcoop 2016). Avignon, France, Nov. 2016 (Cited in page 2).
[8] Belhadj Amor, S. and Perlaza, S. M. "Decentralized simultaneous energy and information transmission in multiple access channels". In: Proc. 2016 Annual Conference on Information Science and Systems (CISS). Princeton, NJ, USA, Mar. 2016 (Cited in page 2).
[9] Belhadj Amor, S., Perlaza, S. M., Krikidis, I., and Poor, H. V. "Feedback enhances simultaneous energy and information transmission in multiple access channels". In: Proc. IEEE International Symposium on Information Theory (ISIT). Barcelona, Spain, July 2016, pp. 1974-1978 (Cited in page 2).
[10] Belhadj Amor, S., Perlaza, S. M., Krikidis, I., and Poor, H. V. "Feedback enhances simultaneous wireless information and energy transmission in multiple access channels". In: IEEE Trans. Inf. Theory 63.8 (Aug. 2017), pp. 5244-5265 (Cited in page 22).
[11] Belhadj Amor, S., Steinberg, Y., and Wigger, M. "MIMO MAC-BC duality with linearfeedback Coding Schemes". In: IEEE Trans. Inf. Theory 61.11 (Nov. 2015), pp. 59765998 (Cited in page 2).
[12] Berry, R. and Tse, D. N. C. "Information theoretic games on interference channels". In: Proc. of the IEEE International Symposium on Information Theory (ISIT). Toronto,Canada, July 2008 (Cited in pages 4. 28).
[13] Berry, R. and Tse, D. N. C. "Shannon meets Nash on the interference channel". In: IEEE Trans. Inf. Theory 57.5 (May 2011), pp. 2821-2836 (Cited in pages 2, 4, 29, 30, 69, 72, 73, 83, 149).
[14] Bhaskaran, S. R. "Gaussian broadcast channel with feedback". In: IEEE Trans. Inf. Theory 54.11 (Nov. 2008), pp. 5252-5257 (Cited in page 2).
[15] Bracher, A. and Wigger, M. "Feedback and partial message side-information on the semideterministic broadcast channel". In: IEEE Trans. Inf. Theory 63.8 (Aug. 2017), pp. 505-5073 (Cited in page 2).
[16] Braess, D. "Über ein Paradoxon aus der Verkehrsplanung". In: Unternehmensforschung 24.5 (May 1969), pp. 258-268 (Cited in page 72).
[17] Bresler, G. and Tse, D. N. C. "The two user Gaussian interference channel: A deterministic view". In: European Transactions on Telecommunications 19.4 (Apr. 2008), pp. 333-354 (Cited in pages 3, 22, 24, 33, 38, 41, 69).
[18] Bross, S. I. and Wigger, M. "On the relay channel with receiver-transmitter feedback". In: IEEE Trans. Inf. Theory 55.1 (Jan. 2009), pp. 275-291 (Cited in page 2).
[19] Carleial, A. "A case where Interference does not reduce capacity". In: IEEE Trans. Inf. Theory 21.5 (Sept. 1975), pp. 569-570 (Cited in pages 1, 12,16 .
[20] Carleial, A. "Interference channels". In: IEEE Trans. Inf. Theory 24.1 (Sept. 1978), pp. 60-70 (Cited in pages 1, 2, 12, 14, 17, 19, 22).
[21] Chong, H.-F., Motani, M., Garg, H. K., and El Gamal, H. "On the Han-Kobayashi region for the interference channel". In: IEEE Trans. Inf. Theory 54.7 (July 2008), pp. 3188-3195 (Cited in pages 1, 13, 16).
[22] Cover, T. "Broadcast channels". In: IEEE Trans. Inf. Theory 18.1 (Jan. 1972), pp. 2-14 (Cited in page 15).
[23] Cover, T. and Gamal, A. E. "Capacity theorems for the relay channel". In: IEEE Trans. Inf. Theory 25.5 (Sept. 1979), pp. 572-584 (Cited in page 2).
[24] Cover, T. M. and Leung, C. S. K. "An achievable rate region for the multiple-access channel with feedback". In: IEEE Trans. Inf. Theory 27.3 (May 1981), pp. 292-298 (Cited in pages 1, 2, 14, 17, 19, 22).
[25] Cover, T. M. and Thomas, J. A. Elements of information theory. Hoboken, NJ, USA: Wiley-Interscience, 1991 (Cited in pages 98, 99, 174, 177, 202, 204).
[26] Dueck, G. "Partial feedback for two-way and broadcast channels". In: Information and Control 46.1 (July 1980), pp. 1-15 (Cited in page 2).
[27] El Gamal, A. and Costa, M. "The capacity region of a class of deterministic interference channels". In: IEEE Trans. Inf. Theory 28.2 (Mar. 1982), pp. 343-346 (Cited in page 22).
[28] Etkin, R. H., Tse, D. N. C., and Hua, W. "Gaussian interference channel capacity to within one bit". In: IEEE Trans. Inf. Theory 54.12 (Dec. 2008), pp. 5534-5562 (Cited in pages 1, 4, 16, 17, 30, 42, 51, 136).
[29] Fano, R. Transmission of information - a statistical theory of communication. MIT Press, Mar. 1961 (Cited in page 189).
[30] Gaarder, N. T. and Wolf, J. K. "The capacity region of a mulitple-access discrete memoryless channel can increase with feedback". In: IEEE Trans. Inf. Theory 21.1 (Jan. 1975), pp. 100-102 (Cited in page 2).
[31] Gabbai, Y. and Bross, S. I. "Achievable rates for the discrete memoryless relay channel with partial feedback configurations". In: IEEE Trans. Inf. Theory 52.11 (Nov. 2006), pp. 4989-5007 (Cited in page 2).
[32] Gastpar, M., Lapidoth, A., Steinberg, Y., and Wigger, M. "Coding schemes and asymptotic capacity for the Gaussian broadcast and interference channels with feedback". In: IEEE Trans. Inf. Theory 60.1 (Jan. 2014), pp. 54-71 (Cited in page 2).
[33] Han, T. S. and Kobayashi, K. "A new achievable rate region for the interference channel". In: IEEE Trans. Inf. Theory 27.1 (1981), pp. 49-60 (Cited in pages 1, 2, 12, 17, 19, 22).
[34] Han, Z., Niyato, D., Saad, W., and Hjørungnes, A. Game theory in wireless and communication networks: Theory, models, and applications. New York, NY.: Cambridge University Press, 2012 (Cited in page 2).
[35] Hekstra, A. P. and Willems, F. M. J. "Dependence balance bounds for single-output two-way channels". In: IEEE Trans. Inf. Theory 35.1 (Jan. 1989), pp. 44-53 (Cited in page 21.
[36] Jafar, S. A. "Interference alignment: A new look at signal dimensions in a communication network". In: Foundations and Trends in Communications and Information Theory 7.1 (2010), pp. 1-134 (Cited in page 3).
[37] Khalfet, N. and Perlaza, S. M. "Simultaneous information and energy transmission in Gaussian interference channels with feedback". In: Proc. 55th Annual Allerton Conference on Communications, Control, and Computing. Allerton, USA., Oct. 2017 (Cited in page (2).
[38] Khalfet, N. and Perlaza, S. M. Simultaneous information and energy transmission in the interference channel. Tech. rep. 9102. Lyon, France: IINRIA, July 2017 (Cited in pages 2. 15.
[39] Kobayashi, K. and Han, T. S. "A further consideration on the HK and the CMG regions for the interference channel". In: Information Theory and Applications Workshop (ITA). San Diego, CA, USA, Feb. 2007 (Cited in page 15).
[40] Koutsoupias, E. and Papadimitriou, C. "Worst-case equilibria". In: Proc. 16th Annual Symposium on Theoretical Aspects of Computer Science. Trier, Germany, Mar. 1999 (Cited in page 74.
[41] Kramer, G. "Outer bounds on the capacity of Gaussian interference channels". In: IEEE Trans. Inf. Theory 50.3 (Mar. 2004), pp. 581-586 (Cited in page 16).
[42] Kramer, G. "Correction to "Feedback strategies for white Gaussian interference networks"". In: IEEE Trans. Inf. Theory 50.6 (June 2004), pp. 1373-1374 (Cited in page 19).
[43] Kramer, G. "Feedback strategies for white Gaussian interference networks". In: IEEE Trans. Inf. Theory 48.6 (June 2002), pp. 1423-1438 (Cited in page 19).
[44] Kramer, G., Marić, I., and Yates, R. D. Cooperative communications. Now Publishers, 2007 (Cited in page 1).
[45] Lapidoth, A. and Wigger, M. "On the AWGN MAC with imperfect feedback". In: IEEE Trans. Inf. Theory 56.11 (Nov. 2010), pp. 5432-5476 (Cited in page 2).
[46] Lasaulce, S. and Tembine, H. Game theory and learning in wireless networks: Fundamentals and applications. Waltham, MA, USA: Elsevier Academic Press, 2011 (Cited in page 2.
[47] Le, S.-Q., Tandon, R., Motani, M., and Poor, H. V. "Approximate capacity region for the symmetric Gaussian interference channel with noisy feedback". In: IEEE Trans. Inf. Theory 61.7 (July 2015), pp. 3737-3762 (Cited in pages 24, 19, 20, 22, 24, 26, 38, 41, 50, 136.
[48] Mackay, D. J. C. Information theory, inference, and learning algorithms. Cambridge, UK: Cambridge University Press, 2003 (Cited in pages 217, 218).
[49] McEliece, R. The theory of information and coding. Cambridge, UK: Cambridge University Press, 2004 (Cited in pages 189, 204, 205).
[50] Mertikopoulos, P., Belmega, E. V., Moustakas, A. L., and Lasaulce, S. "Distributed learning policies for power allocation in multiple access channels". In: IEEE Journal on Selected Areas in Communications 30.1 (Jan. 2012), pp. 96-106 (Cited in page 2).
[51] Mohajer, S., Tandon, R., and Poor, H. V. "On the feedback capacity of the fully connected-user interference channel". In: IEEE Trans. Inf. Theory 59.5 (May 2013), pp. 2863-2881 (Cited in pages 3, 18, 22).
[52] Motahari, A. S. and Khandani, A. K. "Capacity bounds for the Gaussian interference channel". In: IEEE Trans. Inf. Theory 55.2 (Feb. 2009), pp. 620-643 (Cited in page 16).
[53] Nash, J. F. "Equilibrium points in n-person games". In: Proc. National Academy of Sciences of the United States of America 36.1 (Jan. 1950), pp. 48-49 (Cited in page 29).
[54] Nisan, N., Roughgarden, T., Tardos, É., and Vazirani, V. V. Algorithmic game theory. Cambridge, UK: Cambridge University Press, 2007 (Cited in page 29).
[55] Ozarow, L. H. "The capacity of the white Gaussian multiple access channel with feedback". In: IEEE Trans. Inf. Theory 30.4 (July 1984), pp. 623-629 (Cited in page 2).
[56] Ozarow, L. H. and Leung-Yan-Cheong, S. "An achievable region and outer bound for the Gaussian broadcast channel with feedback". In: IEEE Trans. Inf. Theory IT-30.4 (July 1984), pp. 667-671 (Cited in page 2).
[57] Pabhakaran, V. M. and Viswanath, P. "Interference channel with source cooperation". In: IEEE Trans. Inf. Theory 57.1 (Jan. 2011), pp. 156-186 (Cited in pages 19, 22, 25, (26).
[58] Perlaza, S. M., Lasaulce, S., and Debbah, M. "Equilibria of channel selection games in parallel multiple access ahannels". In: EURASIP Journal in Wireless Communications Networks 2013.15 (Jan. 2013), pp. 1-23 (Cited in page 2).
[59] Perlaza, S. M., Tandon, R., Poor, H. V., and Han, Z. "The Nash equilibrium region of the linear deterministic interference channel with feedback". In: Proc. 50th Annual Allerton Conference on Communications, Control, and Computing. Monticello, IL, Oct. 2012 (Cited in page 2).
[60] Perlaza, S. M., Tandon, R., Poor, H. V., and Han, Z. "Perfect output feedback in the two-user decentralized interference channel". In: IEEE Trans. Inf. Theory 61.10 (Oct. 2015), pp. 5441-5462 (Cited in pages 2, 4, 30, 31, 69, 72, 73, 84, 149).
[61] Perlaza, S. M., Tandon, R., and Poor, H. V. "Decentralized interference channels with noisy feedback possess Pareto optimal Nash equilibria". In: Proc. of the 6th International Symposium on Communications, Control, and Signal Processing (ISCCSP 2014). Athens, Greece, May 2014 (Cited in pages 2, 73).
[62] Perlaza, S. M., Tandon, R., and Poor, H. V. "Symmetric decentralized interference channels with noisy feedback". In: Proc. IEEE Intl. Symposium on Information Theory (ISIT). Honolulu, HI, USA, June 2014 (Cited in pages 2, 4, 31, 69, 72, 73).
[63] Quintero, V., Perlaza, S. M., Esnaola, I., and Gorce, J.-M. "Approximate capacity of the Gaussian interference channel with noisy channel-output feedback". In: Proc. IEEE Information Theory Workshop (ITW). Cambridge, UK, Sept. 2016 (Cited in page 3).
[64] Quintero, V., Perlaza, S. M., Esnaola, I., and Gorce, J.-M. "Approximate capacity region of the two-user Gaussian interference channel with noisy channel-output feedback". In: (Submitted to) IEEE Trans. Inf. Theory (Nov. 2016) (Cited in page 3).
[65] Quintero, V., Perlaza, S. M., Esnaola, I., and Gorce, J.-M. "When does output feedback enlarge the capacity of the interference channel?" In: (To appear in) IEEE Trans. Commun. (Dec. 2016) (Cited in page 4).
[66] Quintero, V., Perlaza, S. M., and Gorce, J.-M. "Noisy channel-output feedback capacity of the linear deterministic interference channel". In: IEEE Information Theory Workshop. Jeju Island, Korea, Oct. 2015 (Cited in page 3).
[67] Quintero, V., Perlaza, S. M., Gorce, J.-M., and Poor, H. V. Decentralized interference channels with noisy output feedback. Tech. rep. 9011. Lyon, France: INRIA, Jan. 2017 (Cited in page (4).
[68] Quintero, V., Perlaza, S. M., Gorce, J.-M., and Poor, H. V. "Nash region of the linear deterministic interference channel with noisy output feedback". In: Proc. IEEE International Symposium on Information Theory (ISIT). Aachen, Germany, June 2017 (Cited in page (4).
[69] Rose, L., Perlaza, S. M., and Debbah, M. "On the Nash equilibria in decentralized parallel interference channels". In: Proc. IEEE Intl. Conference on Communications (ICC). Kyoto, Japan, June 2011 (Cited in page 2).
[70] Royden, H. and Fitzpatrick, P. Real analysis. Boston, MA, USA: Prentice Hall, 2014 (Cited in pages 220, 223, 228, 231.
[71] Saha, S. and Berry, R. "On information theoretic games for interference networks". In: Proc. 44 th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, Nov. 2010 (Cited in page 2).
[72] Sahai, A., Aggarwal, V., Yuksel, M., and Sabharwal, A. "Capacity of all nine models of channel output feedback for the two-user interference channel". In: IEEE Trans. Inf. Theory 59.11 (2013), pp. 6957-6979 (Cited in pages 3, 19, 25, 38).
[73] Sato, H. "The capacity of the Gaussian interference channel under strong interference". In: IEEE Trans. Inf. Theory 27.6 (Nov. 1981), pp. 786-788 (Cited in pages 1. 12, 16).
[74] Sato, H. "Two-user communication channels". In: IEEE Trans. Inf. Theory 23.3 (1977), pp. 295-304 (Cited in page 16).
[75] Shang, X., Kramer, G., and Chen, B. "A new outer bound and the noisy-interference sum-rate capacity for Gaussian interference channels". In: IEEE Trans. Inf. Theory 55.2 (Feb. 2009), pp. 689-699 (Cited in page 16).
[76] Shannon, C. E. "The zero-error capacity of a noisy channel". In: IRE Transactions on Information Theory 2.3 (Sept. 1956), pp. 8-19 (Cited in page 107).
[77] Shannon, C. E. "A mathematical theory of communication". In: The Bell System Technical Journal 27.3 (July 1948), pp. 379-423 (Cited in page 189).
[78] Shannon, C. E. "Channels with side information at the transmitter". In: IBM Journal of Research and Development 2.4 (Oct. 1958), pp. 289-293 (Cited in page 45).
[79] Shayevitz, O. and Wigger, M. "On the capacity of the discrete memoryless broadcast channel with feedback". In: IEEE Trans. Inf. Theory To appear (2013) (Cited in page 2).
[80] Suh, C. and Tse, D. N. C. "Feedback capacity of the Gaussian interference channel to within 2 Bits". In: IEEE Trans. Inf. Theory 57.5 (May 2011), pp. 2667-2685 (Cited in pages 2, 4, 17, 18, 22, 24, 38, 41, 51, 58, 69, 107, 127, 136).
[81] Tandon, R. and Ulukus, S. "Dependence balance based outer bounds for Gaussian networks with cooperation and feedback". In: IEEE Trans. Inf. Theory 57.7 (July 2011), pp. 4063-4086 (Cited in page 21).
[82] Tandon, R., Mohajer, S., and Poor, H. V. "On the symmetric feedback capacity of the K-user cyclic Z-interference channel". In: IEEE Trans. Inf. Theory 59.5 (May 2013), pp. 2713-2734 (Cited in pages 3, 18, 22).
[83] Thomas, J. A. "Feedback can at most double Gaussian multiple access channel capacity". In: IEEE Trans. Inf. Theory 33.5 (Sept. 1987), pp. 711-716 (Cited in page 2).
[84] Tuninetti, D. "On interference channel with generalized feedback (IFC-GF)". In: Proc. of International Symposium on Information Theory (ISIT). Nice, France, June 2007, pp. 2661-2665 (Cited in pages 2, 3, 19, 41).
[85] Vahid, A., Suh, C., and Avestimehr, A. S. "Interference channels with rate-limited feedback". In: IEEE Trans. Inf. Theory 58.5 (May 2012), pp. 2788-2812 (Cited in pages 21, 22).
[86] Venkataramanan, R. and Pradhan, S. S. "An achievable rate region for the broadcast channel with feedback". In: IEEE Trans. Inf. Theory 59.10 (June 2013), pp. 6175-6191 (Cited in page 2).
[87] Willems, F. "The feedback capacity region of a class of discrete memoryless multiple access channels". In: IEEE Trans. Inf. Theory 28.1 (Jan. 1982), pp. 93-95 (Cited in page 2.
[88] Willems, F. M. J. "Information theoretical results for multiple access channels". PhD thesis. Leuven, Belgium: Katholieke Universiteit, Oct. 1982 (Cited in pages 2, 17, 19, 22.
[89] Willems, F. M. J. and Van Der Meulen, E. C. "The discrete memoryless multiple-access channel with cribbing encoders". In: IEEE Trans. Inf. Theory IT-31.3 (May 1985), pp. 313-327 (Cited in pages 2, 17, 19, 22).
[90] Wu, Y. and Wigger, M. "Any positive feedback rate increases the capacity of strictly less-noisy broadcast channels". In: Information Theory Workshop. IEEE, Sept. 2013, pp. 1-5 (Cited in page 2).
[91] Wu, Y. and Wigger, M. "Coding schemes with rate-limited feedback that improve over the no feedback capacity for a large class of broadcast channels". In: IEEE Trans. Inf. Theory 62.4 (Apr. 2016), pp. 2009-2033 (Cited in page 2).
[92] Yang, S. and Tuninetti, D. "Interference channel with generalized feedback (a.k.a. with source cooperation): Part I: Achievable Region". In: IEEE Trans. Inf. Theory 5.57 (May 2011), pp. 2686-2710 (Cited in pages 2, 3, 19).
[93] Yates, R. D., Tse, D., and Li, Z. "Secret communication on interference channels". In: Proc. of the IEEE International Symposium on Information Theory (ISIT). Toronto, Canada, July 2008 (Cited in page 28).
[94] Yeung, R. W. Information theory and network coding. Springer, 2008 (Cited in pages 207. 218. 227, 229).
[95] Zhou, L. and Yu, W. "On the capacity of the K-user cyclic Gaussian interference channel". In: IEEE Trans. Inf. Theory 59.1 (Jan. 2013), pp. 154-165 (Cited in page 19).

