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Abstract
In this thesis, the two-user Gaussian interference channel with noisy channel-output

feedback (GIC-NOF) is studied from two perspectives: centralized and decentralized
networks.

From the perspective of centralized networks, the fundamental limits of the two-user GIC-
NOF are characterized by the capacity region. One of the main contributions of this thesis is
an approximation to within a constant number of bits of the capacity region of the two-user
GIC-NOF. This result is obtained thanks to the analysis of a simpler channel model, i.e., a
two-user linear deterministic interference channel with noisy channel-output feedback (LDIC-
NOF). The analysis to obtain the capacity region of the two-user LDIC-NOF provides the
main insights required to analyze the two-user GIC-NOF.

From the perspective of decentralized networks, the fundamental limits of the two-user
decentralized GIC-NOF (D-GIC-NOF) are characterized by the ÷-Nash equilibrium (÷-NE)
region. Another contribution of this thesis is an approximation to the ÷-NE region of the two-
user GIC-NOF, with ÷ > 1. As in the centralized case, the two-user decentralized LDIC-NOF
(D-LDIC-NOF) is studied first and the lessons learnt are applied in the two-user D-GIC-NOF.

The final contribution of this thesis consists of a closed-form answer to the question: “When
does channel-output feedback enlarges the capacity or ÷-NE regions of the two-user GIC-NOF
or two-user D-GIC-NOF?”. This answer is of the form: Implementing channel-output feedback
in transmitter-receiver i enlarges the capacity or ÷-NE regions if the feedback SNR is beyond
SNRú

i , with i œ {1, 2}. The approximate value of SNRú
i is shown to be a function of all the

other parameters of the two-user GIC-NOF or two-user D-GIC-NOF.
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Notation
Throughout this thesis, sets are denoted with uppercase calligraphic letters, e.g. X . Random
variables are denoted by uppercase letters, e.g., X. The realizations and the set of events from
which the random variable X takes values are respectively denoted by x and X .

For discrete random variables, the probability mass function (pmf) of X over the set X
is denoted by PX : X æ [0, 1]. The support of PX is supp (PX) = {x œ X : PX (x) > 0}.
Whenever a second discrete random variable Y is considered, PX Y and PY |X denote respectively
the joint pmf of (X, Y ), i.e., PXY : X ◊Y æ [0, 1], and the conditional pmf of Y given X, i.e.,
PY |X : X ◊ Y æ [0, 1]. EX [·] denotes the expectation with respect to the distribution of the
random variable X. For real-valued random variables, the probability density function (pdf) of
X is denoted by fX : R æ [0, Œ). The support of fX is supp (fX) = {x œ R : fX (x) > 0}.
Whenever a second real-valued random variable Y is considered, fX Y and fY |X denote
respectively the joint pdf of (X, Y ), i.e., fXY : R2 æ [0, Œ), and the conditional pdf of Y

given X, i.e., fY |X : R2 æ [0, Œ).
Let N be a fixed natural number. An N -dimensional vector of random variables is denoted by

X = (X1, X2, ..., XN )T and a corresponding realization is denoted by x = (x1, x2, ..., xN )T œ
X N . Given X = (X1, X2, ..., XN )T and (a, b) œ N2, with a < b 6 N , the (b ≠ a + 1)-
dimensional vector of random variables formed by the components a to b of X is denoted
by X(a:b) = (Xa, Xa+1, . . . , Xb)T. If the component a of the N -dimensional vector of random
variables X is also a q-dimensional vector, it is denoted by Xa. Given (c, d) œ N2, with
c < d 6 q, the (d ≠ c + 1)-dimensional vector formed by the components c to d of Xa is
denoted by X(c:d)

a =
⇣
X

(c)
a , X

(c+1)
a , . . . , X

(d)
a

⌘T
. The notation (·)+ denotes the positive part

operator, i.e., (·)+ = max(·, 0) The logarithm function log is assumed to be in base 2.

xxi
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Introduction

The interference channel (IC) is one of the simplest yet insightful multi-user
channels in network information theory. An important class of ICs is the two-
user Gaussian interference channel (GIC) in which there exists two point-to-point

links subject to mutual interference. In this model, each output signal is a noisy version of the
sum of the two transmitted signals a�ected by the corresponding channel gains. The two-user
GIC is a model that forms a basis to analyze not only the e�ect of the noise but also the e�ect
of the interference in a multiuser communication system.

Some of the techniques often used to deal with interference have been to avoid it, suppress
it, or treat it as noise. However, these techniques are not necessarily optimal in all cases.
These approaches follow the long-established convention of communication networks in which
nodes act as stand alone systems without considering the messages transmitted by other
nodes [44]. From this perspective, the determination of the capacity region of a two-user GIC
has remained as a long standing open problem. While, the capacity region of the two-user
GIC is known in the very strong interference regime [19] and in the strong interference regime
[33, 73]. In both of these cases, each receiver must decode the messages coming from both
transmitters. The best known achievable region for the two-GIC is given in [33], which is
simplified in [21]. The strategy in [33] uses rate-splitting [20], whereas the strategy in [21] uses
rate-splitting [20, 33] and block-Markov superposition coding [24]. These strategies split each
user’s message in two parts: (1) a common part that can be decoded at both receivers; and (2)
a private part that is only decoded at the intended received. That is, only part of the other
transmitter message is decoded. Partial decoding provides a means of controlling at least
partially the interference. The capacity region of the two-user GIC is at most one bit away
from the achievable region described in [21]. That is, the capacity region is approximated
to within one bit [28]. However, the afore mentioned strategies do not allow users to work
together to deal with o�ending interference. To obtain further performance gains, intelligent
cooperation among users to control interference is required. How to carry out this cooperation
is therefore an important question and forms the basic question addressed in this thesis.

One way to achieve cooperation is through channel-output feedback. Channel-output
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1. Introduction

feedback is an interference management technique that aims to improve the reliability and
the performance of a communication network. From a general perspective, channel-output
feedback enables a transmitter in a wireless network to observe the channel-output at its
intended receiver. This allows the transmitters to exploit a coding strategy to control the
interference, namely use interference as side information, and at the same time to benefit from
the broadcast nature of the wireless channel making use of all possible links, establishing new
paths for the communication.

Perfect observation of the channel-output at the intended receiver by each one of the
corresponding transmitters is studied in [80]. The achievability scheme presented in [80]
is based on: rate-splitting [20, 33], block Markov superposition coding [24], and backward
decoding [88, 89]. The capacity region of the two-user GIC with perfect channel-output
feedback (GIC-POF) is at most two bits from the achievable region. One of the most
important observations made in [80] is that there exist a multiplicative gain in the capacity in
certain interference regimes, particularly when both transmitter-receiver pairs are in the very
strong interference regime. The next step towards a more general model was to consider the
e�ect of the noise in the feedback links of a two-user symmetric GIC [47]. The results on the
interference channel with generalized feedback (IC-GF) in [84, 92] are applied to obtain an
achievable region in this channel model. The capacity region of the two-user symmetric GIC
with noisy channel-ouput feedback is at most 4.7 bits away from the achievable region. The
results provide a means of identifying certain values of the signal-to-noise ratios (SNRs) in
the feedback links beyond which the capacity region can be enlarged with respect to the case
without feedback. An important observation from these results is that the benefits of feedback
are bounded by noise in the feedback links.

The benefits of channel-output feedback in communication systems have been also observed
in other network topologies. More specifically, the e�ect of feedback in the multiple access
channel (MAC) has been studied in [11, 24, 30, 45, 55, 83, 87] and references therein; in the
broadcast channel (BCs) in [11, 14, 15, 26, 32, 56, 79, 86, 90, 91] and references therein; in the
relay channel (RCs) in [18, 23, 31] and references therein; and in the wiretap channel (WCs)
in [5]. Channel-output feedback has been also shown to be beneficial in the simultaneous
transmission of both information and energy in the MAC [10] as well as in the IC [37, 38].

From the perspective of decentralized networks, very little is known about the benefits of
feedback. Some works highlighting these benefits in the MAC are described in [9] and in the
IC in [59, 60, 61, 62]. The case of decentralized communications systems without feedback
is a bit better understood [34, 46]. For instance, the NEs of games arising in the MAC are
described in [7, 8, 50, 58] and in the IC are described in [13, 69, 71].

This thesis considers the two-user asymmetric GIC-NOF. The analysis is performed con-
sidering two general scenarios: (1) centralized, in which the entire network is controlled by a
central entity that configures both transmitter-receiver pairs; and (2) decentralized, in which
each transmitter-receiver pair autonomously configure their transmission-reception parameters.
The analysis in these two scenarios allows the characterization of the approximate capacity
region and the approximate ÷-Nash equilibrium (NE) region of the two-user GIC-NOF. These
results also allow the identification of the scenarios and the conditions in which one feedback
link can enlarge the capacity region and the equilibrium region, respectively.
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1.1. Motivation

This thesis focuses in the case of the GIC with NOF (GIC-NOF). The analysis of channel-
output feedback in the IC has been fueled by the significant improvement it gives to the
number of generalized degrees of freedom (GDoF) [36] with respect to the case without
feedback. In particular, one of the main benefits of feedback is that the number of GDoF
with perfect feedback increases monotonically with the interference-to-noise ratio (INR) in
the very strong interference regime [80]. However, in the presence of additive Gaussian noise
in the feedback links, the number of GDoF is bounded [47]. A significant improvement of
the Nash equilibrium (NE) region of the Gaussian IC is also observed in the decentralized
IC [60], i.e., the case in which the transmitter-receiver pairs autonomously choose their own
transmit-receive configurations to achieve the highest data transmission rate. More specifically,
the NE region is enlarged with respect to the case in which feedback is not available.

The GDoF gain due to feedback in the IC depends on the topology of the network and
the number of transmitter-receiver pairs in the network. In the symmetric K-user cyclic
Z-interference channel, the GDoF gain does not increase with K [82]. In particular, in the very
strong interference regime, the GDoF gain is shown to be monotonically decreasing with K.
In the fully connected symmetric K-user IC with perfect feedback, the number of GDoF per
user is shown to be identical to the one in the two-user case, with an exception in a particular
singularity, and totally independent of the exact number of transmitter-receiver pairs [51]. It
is important to highlight that the network topology, the number of transmitter-receiver pairs,
and the interference regimes are not the only parameters determining the e�ect of feedback.
Indeed, the presence of noise in the feedback links turns out to be another relevant factor.

The main motivation to study the two-user GIC-NOF is to analyze the e�ect of the noise in
the feedback links on the capacity region and the NE region of the two-user GIC-NOF under
asymmetric conditions. This implies the identification of the scenarios in which the capacity
region and the NE Region can be enlarged by the use of one noisy feedback link and how the
feedback parameters are related to the parameters of the GIC.

1.2. Contributions

The following are the main contributions of this thesis:

• A full characterization of the capacity region of the two-user LDIC-NOF [64, 66]. This
contribution generalizes the results for the cases of the LDIC without feedback [17], with
perfect channel-output feedback (LDIC-POF) [80], with noisy channel-output feedback
(LDIC-NOF) under symmetric conditions [47], and the cases involving channel-output
feedback from the intended receivers to the corresponding transmitters in [72].

• An achievable region and a converse region for the two-user GIC-NOF [63, 64]. These
two regions approximate the capacity region of the two-user GIC-NOF within 4.4 bits.
The achievable region is obtained using a random coding argument combining message
splitting, block-Markov superposition coding, and backward decoding, as first suggested
in [80, 84, 92]. The converse region is obtained using some existing outer bounds from
the case of the two-user GIC with POF (GIC-POF) [80] as well as a set of new outer
bounds that are obtained by using genie-aided models. This contribution generalizes the
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results obtained for the cases without feedback (GIC) [28], with POF (GIC-POF) [80],
and with NOF (GIC-NOF) under symmetric conditions [47].

• A full characterization of the ÷-NE region of the two-user LDIC-NOF [68]. This
contribution generalizes the results for the cases of the linear deterministic interference
channel (LDIC) without feedback [12], with POF (LDIC-POF) [60], and with NOF
(LDIC-NOF) under symmetric conditions [62].

• An achievable ÷-NE region and a non-equilibrium region with ÷ > 1 for the two-user
GIC-NOF [67]. The achievable ÷-NE region is obtained introducing a modification of
the achievability coding scheme considered in the centralized part. This modification
implies the introduction of common randomness in the coding scheme as suggested in
[13] and [60], which allows both transmitter-receiver pairs to limit the rate improvement
of each other when either of them deviates from equilibrium. The non-equilibrium region
obtained with ÷ > 1 is obtained using the insights obtained from the analysis of the
linear deterministic model.

• Identification of the scenarios in which the use of one feedback link enlarges the capacity
region and the ÷-NE region [65].

1.3. Outlines
This thesis contains 5 parts as follows:

• Part I. This part describes the system model of the two-user continuous IC as well
as the particular cases studied in this thesis: the two-user GIC-NOF and the two-user
LDIC-NOF. It also establishes the di�erences between centralized and decentralized
systems.

– Chapter 2. This chapter formulates the IC-NOF and more particularly, it describes
the two-user GIC-NOF and the two-user LDIC-NOF as centralized systems. This
chapter also presents the fundamental limits in both models in the cases without
feedback, with perfect channel-output feedback (POF), and noisy channel-output
feedback (NOF) under symmetric conditions.

– Chapter 3. This chapter establishes the di�erence between the centralized and
decentralized systems. It establishes a formulation of the game for the decentralized
system. Finally, this chapter also presents the fundamental limits in the two-user
GIC-NOF and the two-user LDIC-NOF as decentralized systems in the cases
without feedback, with POF, and NOF under symmetric conditions.

– Chapter 4. This chapter establishes the connections between the two-user GIC-
NOF and the two-user LDIC-NOF.

• Part II. This part presents the main results and the analysis of the two-user LDIC-NOF
and two-user GIC-NOF considering a centralized control of the communication network.

– Chapter 5. This chapter presents the main results for the two-user LDIC-NOF,
i.e., the capacity region, and analyzes the cases in which the capacity region can be
enlarged by the use of feedback;
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– Chapter 6. This chapter presents the main results for the two-user GIC-NOF,
i.e., an achievable region, a converse region, and the gap between both regions, and
analyzes the cases in which the approximate capacity region might be enlarged.

• Part III. This part presents the main results and the analysis of the two-user LDIC-
NOF and two-user GIC-NOF considering a decentralized control of the communication
network.

– Chapter 7. This chapter presents the main results for the two-user D-LDIC-NOF,
i.e., the ÷-NE region, and analyzes the e�ciency of the equilibrium region.

– Chapter 8. This chapter presents the main results for the two-user D-GIC-NOF,
i.e., an achievable ÷-NE region and a non-equilibrium region with ÷ > 1.

• Part IV. This part contains the conclusions of this thesis.

• Part V. This part contains fundamental concepts on information theory and network
information theory that are used along this thesis and the proofs of the main results in
parts II and III.

– Appendix A. This appendix contains the description of the achievability scheme
for the two-user LDIC-NOF and two-user GIC-NOF.

– Appendix B. This appendix contains an outer bound for the two-user LDIC-NOF.
– Appendix C. This appendix contains the calculation of the thresholds in the

feedback parameters, beyond which the capacity region of the two-user LDIC-NOF
can be enlarged with respect to the case without feedback. This calculation is made
for the case in which both transmitter-receiver pairs are in very weak interference
regime.

– Appendix D. This appendix contains the calculation of the threshold in the
feedback parameter i with i œ {1, 2}, beyond which the individual rate Ri can be
improved in the two-user LDIC-NOF with respect to the case without feedback.

– Appendix E. This appendix contains the calculation of the threshold in one
feedback parameter, beyond which the sum-rate capacity can be improved in the
two-user LDIC-NOF with respect to the case without feedback.

– Appendix F. This appendix contains a proof of the number of GDoF for the
two-user LDIC-NOF.

– Appendix G. This appendix contains an outer bound for the two-user GIC-NOF.
– Appendix H. This appendix contains the proof of the gap between the inner-

bound and the outer-bound of the two-user GIC-NOF. The proof is for the case in
which both transmitter-receiver pairs are in high interference regime (HIR). This
appendix gives the values of the parameters of the coding scheme that must be
considered in the other cases.

– Appendix I. This appendix contains a proof of the ÷-Nash Equilibrium (NE)
region for the two-user LDIC-NOF.

– Appendix J. This appendix contains an inner bound on the ÷-NE region for the
two-user GIC-NOF.
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– Appendix K. This appendix contains a proof of the non-equilibrium region for
the two-user GIC-NOF.

– Appendix L. This appendix contains a proof of a Lemma 21 in Appendix G.
– Appendix M. This appendix contains a proof of a Lemma I for the two-user

LDIC-NOF in Appendix I.
– Appendix N. This appendix contains a proof of an inner-bound of the ÷-Nash

equilibrium (NE) region for the two-user GIC-NOF.
– Appendix O. This appendix presents the sum-rate capacity and the maximum

and minimum sum-rate in the decentralized case for the two-user LDIC-NOF.
– Appendix P. This appendix introduces some fundamental concepts on information

measures.
– Appendix Q. This appendix introduces Fano’s inequality.
– Appendix R. This appendix introduces the concept of weak asymptotic equipar-

tition property (AEP).
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INTERFERENCE CHANNELS
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Centralized

Interference Channels

Consider the two-user continuous IC-NOF in Figure 2.1. Transmitter i, i œ {1, 2},
wishes to reliable communicate an independent and uniformly distributed mes-
sage index Wi œ Wi = {1, 2, . . . , 2NRi} to receiver i, during N œ N channel uses,

where Ri œ R+ denotes the transmission rate of transmitter-receiver i in bits per channel use.
In this respect, the transmitter i sends the codeword Xi = (Xi,1, Xi,2, . . . , Xi,N )T œ Ci ™ RN ,
where Ci is the codebook of transmitter i.

For a given channel use n œ {1, 2, . . . , N}, the transmitters 1 and 2 send the channel inputs
X1,n œ R and X2,n œ R, respectively, which generate the channel-outputs ≠æ

Y 1,n œ R, ≠æ
Y 2,n œ R,

Ω≠
Y 1,n œ R, and Ω≠

Y 2,n œ R according to the conditional pdf f≠æ
Y 1,

≠æ
Y 2,

Ω≠
Y 1,

Ω≠
Y 2|X1,X2

⇣≠æ
y 1, ≠æ

y 2, Ω≠
y 1,

Ω≠
y 2|x1, x2

⌘
, for all (≠æy 1,

≠æ
y 2,

Ω≠
y 1,

Ω≠
y 2, x1, x2) œ R6.

The transmitter i generates the symbol Xi,n œ R considering the message index Wi and
all previous outputs from the feedback link i, i.e.,

⇣Ω≠
Y i,1, Ω≠

Y i,2, . . ., Ω≠
Y i,n≠1

⌘
. The transmitter

i observes Ω≠
Y i,n at the end of the channel use n. The transmitter i is defined by the set

of deterministic functions {fi,1, fi,2, . . . , fi,N }, with fi,1 : Wi æ R and for n œ {2, 3, . . . , N},
fi,n : Wi ◊Rn≠1 æ R, such that

Xi,1 =fi,1 (Wi) , and (2.1a)
Xi,n=fi,n

⇣
Wi,

Ω≠
Y i,1,

Ω≠
Y i,2, . . . ,

Ω≠
Y i,n≠1

⌘
for all n > 1. (2.1b)

At the end of the transmission, the receiver i uses all the channel-outputs ≠æ
Y i,1,

≠æ
Y i,2, . . . ,

≠æ
Y i,N

to obtain an estimate of the message index Wi, denoted by cWi.

9



2. Centralized Interference Channels

W1

W2 cW2

cW1Tx 1

Tx 2

Rx 1

Rx 2

IC-NOFX1

X2
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Y 1

��
Y 2

��
Y 1

��
Y 2

f��
Y 1,

��
Y 2,

��
Y 1,

��
Y 2|X1,X2

Figure 2.1.: Two-User continuous interference channel with noisy channel-output feedback.

Thus, the following Markov chain holds:

Wi,
Ω≠
Y i,(1;n≠1) æ Xi,n æ ≠æ

Y i,n. (2.2)

Let T œ N be fixed. Assume that during a communication, T blocks, each of N channel uses,
are transmitted. The receiver i is defined by the deterministic function Âi : RNT æ WT

i
. At

the end of the communication, receiver i uses the vector
⇣≠æ

Y i,1, ≠æ
Y i,2, . . ., ≠æ

Y i,NT

⌘T
to obtain

⇣
cW (1)

i
, cW (2)

i
, . . . , cW (T )

i

⌘
=Âi

⇣≠æ
Y i,1,

≠æ
Y i,2, . . . ,

≠æ
Y i,NT

⌘
, (2.3)

where cW (t)
i

is an estimate of the message index W
(t)
i

sent during block t œ {1, 2, . . . , T}.
The decoding error probability in the two-user continuous IC during the block t, denoted

by Pe(N), is given by

P
(t)
e (N)=max

 

Pr
ï
dW1

(t) ”= W
(t)
1

ò
, Pr
ï
dW2

(t) ”= W
(t)
2

ò!
. (2.4)

The definition of an achievable rate pair (R1, R2) œ R2
+ is given below.

Definition 1 (Achievable Rate Pairs). A rate pair (R1, R2) œ R2
+ is achievable if there

exist sets of encoding functions
n

f
(1)
1 , f

(2)
1 , . . . , f

(N)
1

o
and

n
f

(1)
2 , f

(2)
2 , . . . , f

(N)
2

o
, and decoding

functions Â1 and Â2, such that the error probability Pe(N) can be made arbitrarily small by
letting the block-length N grow to infinity, for all blocks t œ {1, 2, . . . , T}.

In a centralized system, a central controller determines the configurations of all transmitter-
receiver pairs. The central controller has a global view of the network and can select optimal
configurations with respect to a given metric, e.g., sum-rate, energy-e�ciency, etc. The
fundamental limits in a centralized system are characterized by the capacity region.
Definition 2 (Capacity region of a two-user IC). The capacity region of a two-user IC is the
closure of the set of all possible achievable rate pairs (R1, R2) œ R2

+.

2.1. Gaussian Interference Channel
A special case of the IC-NOF described above from the perspective of centralized networks is
the Gaussian IC-NOF. Consider the two-user GIC-NOF depicted in Figure 2.2. The channel

10
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Tx1

Tx2
Rx2

Rx1+W1

W2
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+

+

+

��
h 11

��
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��
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��
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h12

h21

Delay

Delay

X1,n

X2,n

��
Y 1,n

��
Y 2,n

��
Z 1,n

��
Z 2,n

��
Y 1,n

��
Y 2,n

��
Z 1,n

��
Z 2,n

Figure 2.2.: Gaussian interference channel with noisy channel-output feedback at channel
use n.

coe�cient from transmitter j to receiver i is denoted by hij ; the channel coe�cient from
transmitter i to receiver i is denoted by ≠æ

h ii; and the channel coe�cient from channel-output
i to transmitter i is denoted by Ω≠

h ii. All channel coe�cients are assumed to be non-negative
real numbers. During channel use n, the input-output relations of the channel model are given
by

≠æ
Y i,n=

≠æ
h iiXi,n + hijXj,n + ≠æ

Z i,n, (2.5)

and

Ω≠
Y i,n=

(Ω≠
Z i,n for nœ {1,2, . . . , d}
Ω≠
h ii

≠æ
Y i,n≠d+Ω≠

Z i,n, for nœ {d+1,d+2, . . . ,N},
(2.6)

where ≠æ
Z i,n and Ω≠

Z i,n are independent real Gaussian random variables with zero mean and
unit variance and d > 0 is the finite feedback delay measured in channel uses.

In the following of this thesis, without loss of generality, the feedback delay is assumed to
be one channel use, i.e., d = 1. The components of the input vector Xi are real numbers
subject to an average power constraint:

1
N

NX

n=1
E
î
X

2
i,n

ó
Æ 1, (2.7)

where the expectation is taken over the joint distribution of the message indices W1 and W2,
and the noise terms, i.e., ≠æ

Z 1, ≠æ
Z 2, Ω≠

Z 1, and Ω≠
Z 2. The dependence of Xi,n on W1, W2, and the

previously observed noise realizations is due to the e�ect of feedback as shown in (2.1) and
(2.6).

The two-user GIC-NOF in Figure 2.2 can be described by six parameters: ≠≠æSNRi,
Ω≠≠SNRi, and

11



2. Centralized Interference Channels

INRij , with i œ {1, 2} and j œ {1, 2}\{i}, which are defined as follows:
≠≠æSNRi=

≠æ
h

2
ii, (2.8a)

INRij=h
2
ij , and (2.8b)

Ω≠≠SNRi=
Ω≠
h

2
ii

⇣≠æ
h

2
ii + 2

≠æ
h iihij + h

2
ij + 1

⌘
. (2.8c)

When INRij 6 1, transmitter-receiver pair i is impaired mainly by noise instead of interference.
In this case, treating interference as noise (TIN) is optimal and feedback does not bring a
significant rate improvement. Therefore, the analysis developed in this thesis focuses exclusively
on the case in which INRij > 1 for all i œ {1, 2} and j œ {1, 2} \ {i}.

In this special case, the pdf of the IC-NOF can be factorized as follows:

f≠æ
Y 1,

≠æ
Y 2,

Ω≠
Y 1,

Ω≠
Y 2|X1,X2

= f≠æ
Y 1|X1,X2

f≠æ
Y 2|X1,X2

fΩ≠
Y 1|≠æY 1

fΩ≠
Y 2|≠æY 2

, (2.9)

given that for all i œ {1, 2} and j œ {1, 2} \ {i}, ≠æ
Y i is independent of ≠æ

Y j conditioning on
Xi and Xj ; and Ω≠

Y i is independent of Xi, Xj , and ≠æ
Y j conditioning on ≠æ

Y i. Based on the
input-output relation in (2.5), for all i œ {1, 2} and given the channel-inputs x1 and x2 during
a specific channel use, the pdf f≠æ

Y i|X1,X2
in (2.9) can be expressed as follows:

f≠æ
Y i|X1,X2

(≠æy i|x1, x2) = 1Ô
2fi

exp
Å

≠1
2
⇣≠æ

y i ≠
≠æ
h iixi ≠ hijxj

⌘2ã
. (2.10)

Similarly, based on the input-output relation in (2.6), for all i œ {1, 2} and given the
channel-outputs ≠æ

y 1 and ≠æ
y 2 during a specific channel use, the pdf fΩ≠

Y i|
≠æ
Y i

in (2.9) can be
expressed as follows:

fΩ≠
Y i|

≠æ
Y i

(Ω≠y i|≠æy i) = 1Ô
2fi

exp
Å

≠1
2
⇣Ω≠

y i ≠
Ω≠
h ii

≠æ
y ii

⌘2ã
. (2.11)

2.1.1. Case without Feedback

Assessing the capacity region of the two-user GIC is also a long-standing problem in network
information theory. The capacity region is perfectly known in the very strong interference
regime [19], which is the same capacity region of two non-interfering point to point links. In this
case, the interference in both receivers is stronger than the intended signals and therefore the
interference can be decoded and substracted from the received signals to decode the intended
signals in each receiver (successive interference cancellation, SIC). The capacity region of the
GIC is also known in the case of strong interference regime and it was independently obtained
by [33] and [73]. The capacity region of the GIC for the case of strong interference regime
in [73] is obtained considering that each receiver must decode both messages. Thus, each
transmitter with both receivers can be seen as a multiple access channel (MAC) and the
capacity region of the GIC under strong interference can be obtained as the intersection of
the capacity regions of the two MACs [1]. This capacity region was initially introduced in [2].
This approach considered the joint decoding instead of sequential decoding as in [19].

In the other interference regimes, di�erent strategies have been investigated, including
considering partial decoding of the interference and TIN.

Fundamental results on the GIC are described in [20]. Particularly, two general coding

12



2.1. Gaussian Interference Channel

schemes are presented. The first one is based on time division multiplexing and frequency
division multiplexing (TDM/FDM), in which transmitter 1 and transmitter 2 use a fraction
– and 1 ≠ – of the bandwidth with powers P1/– and P2/(1 ≠ –), respectively. The second
coding scheme is rate-splitting, in which transmitter i œ {1, 2} splits the message index
Wi œ Wi = {1, 2, . . . , 2NRi} into two message indices Wi,1 œ Wi,1 = {1, 2, . . . , 2NRi,1} and
Wi,2 œ Wi,2 = {1, 2, . . . , 2NRi,2}, with Ri = Ri,1 + Ri,2. Transmitter i generates two codebooks
with independent codewords to represent all message indices in Wi,1 and Wi,2. Transmitter i

encodes the message index Wi summing the two independent codewords corresponding to the
indices Wi,1 and Wi,2, i.e., xi = ui(Wi,1)+vi(Wi,2), where ui(Wi,1) and vi(Wi,2) represent the
corresponding codewords for the message indices Wi,1 and Wi,2 in transmitter i, respectively.
The general idea is to decode the interfering signals in order to facilitate the decoding of the
intended signals (this can be seen as a kind of cooperation), which can allow to achieve higher
rates.

The best known achievable region for the two-GIC is given in [33]. This achievable region
is simplified in [21]. The strategy in [33] uses rate-splitting [20], which implies dividing the
transmitted information of both users into two parts: common information that can be decoded
at both receivers and private information to be decoded only at the intended receiver. This
strategy also implies to arbitrarily split the user signal power into the common and private
parts of the message. In reception, this strategy uses joint typical decoding.

The following lemma presents the achievable region for the two-user GIC obtained in [33].
Lemma 1 (Han-Kobayashi Achievable Region for the two-user GIC). Let C µ R2

+ denote the
capacity region of the two-user GIC. Then, C contains all the rate pairs (R1, R2) œ R2

+ that
satisfy the following inequalities:

R1Æ‡1 (⁄1,P , ⁄2,P )+ 1
2 log

 

1 + ⁄1,P

≠≠æSNR1
1 + ⁄2,P INR12

!

, (2.12a)

R2Æ‡2 (⁄1,P , ⁄2,P )+ 1
2 log

 

1 + ⁄2,P

≠≠æSNR2
1 + ⁄1,P INR21

!

, (2.12b)

R1 + R2Æ‡0(⁄1,P , ⁄2,P )+ 1
2 log

 

1+ ⁄1,P

≠≠æSNR1
1+⁄2,P INR12

!

+ 1
2 log

 

1+ ⁄2,P

≠≠æSNR2
1+⁄1,P INR21

!

, (2.12c)

2R1 + R2Æ2‡1 (⁄1,P , ⁄2,P )+ log
 

1 + ⁄1,P

≠≠æSNR1
1 + ⁄2,P INR12

!

+ 1
2 log

 

1 + ⁄2,P

≠≠æSNR2
1 + ⁄1,P INR21

!

≠
 

‡1 (⁄1,P , ⁄2,P ) ≠ 1
2 log

 

1 + (1 ≠ ⁄1,P ) INR21

1 + ⁄2,P

≠≠æSNR2 + ⁄1,P INR21

!!+

+ min
 

1
2 log

 

1+ (1 ≠ ⁄2,P ) ≠≠æSNR2

1+⁄2,P

≠≠æSNR2+⁄1,P INR21

!

,
1
2 log

 

1+ (1 ≠ ⁄2,P ) ≠≠æSNR2

1+⁄2,P

≠≠æSNR2+INR21

!

+
 

1
2 log

 

1+ (1 ≠ ⁄1,P ) INR21

1 + ⁄2,P

≠≠æSNR2 + ⁄1,P INR21

!

≠‡1 (⁄1,P , ⁄2,P )
!+

,

1
2 log

 

1+ (1 ≠ ⁄2,P ) INR12

1 + ⁄1,P

≠≠æSNR1 + ⁄2,P INR12

!

,

1
2 log

 

1+ (1 ≠ ⁄1,P ) ≠≠æSNR1 + (1 ≠ ⁄2,P ) INR12

1 + ⁄1,P

≠≠æSNR1 + ⁄2,P INR12

!

≠‡1 (⁄1,P , ⁄2,P )
!

, (2.12d)
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R1+2R2 Æ 2‡2 (⁄1,P , ⁄2,P )+ 1
2 log

 

1 + ⁄1,P

≠≠æSNR1
1 + ⁄2,P INR12

!

+ 1
2 log

 

1 + ⁄2,P

≠≠æSNR2
1 + ⁄1,P INR21

!

≠
 

‡2 (⁄1,P , ⁄2,P ) ≠ 1
2 log

 

1 + (1 ≠ ⁄2,P ) ≠≠æSNR2

1 + ⁄2,P

≠≠æSNR2 + ⁄1,P INR21

!!+
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1
2 log

 

1 + (1 ≠ ⁄1,P ) ≠≠æSNR1

1 + ⁄1,P

≠≠æSNR1 + ⁄2,P INR12

!

,
1
2 log

 

1 + (1 ≠ ⁄1,P ) ≠≠æSNR1

1 + ⁄1,P

≠≠æSNR1 + INR12

!

+
 

1
2 log

 

1 + (1 ≠ ⁄2,P ) INR12

1 + ⁄1,P

≠≠æSNR1 + ⁄2,P INR12

!

≠‡2 (⁄1,P , ⁄2,P )
!+

,

1
2 log

 

1 + (1 ≠ ⁄1,P ) INR21

1 + ⁄2,P

≠≠æSNR2 + ⁄1,P INR21

!

,
1
2 log

 

1 + (1 ≠ ⁄2,P ) ≠≠æSNR2 + ⁄1,CINR21

1 + ⁄2,P

≠≠æSNR2 + ⁄1,P INR21

!

≠‡2 (⁄1,P , ⁄2,P )
!

, (2.12e)

with

‡1 (⁄1,P , ⁄2,P )=min
 

1
2 log

 

1 + (1 ≠ ⁄1,P ) ≠≠æSNR1

1 + ⁄1,P

≠≠æSNR1 + ⁄2,P INR12

!

,

1
2 log

Ç
1 + (1 ≠ ⁄1,P ) INR21

1 + ⁄1,P INR21

å!
, (2.13a)

‡2 (⁄1,P , ⁄2,P )=min
 

1
2 log
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,

1
2 log
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, (2.13b)
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1
2 log
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!
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1
2 log
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1 + ⁄2,P
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!
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1
2 log
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!

+1
2 log

 

1 + (1 ≠ ⁄2,P ) ≠≠æSNR2

1 + ⁄2,P

≠≠æSNR2 + ⁄1,P INR21

!

,

1
2 log

 

1 + (1 ≠ ⁄1,P ) INR21
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≠≠æSNR2 + ⁄1,P INR21

!

+1
2 log

 

1 + (1 ≠ ⁄2,P ) ≠≠æSNR2

1 + ⁄2,P

≠≠æSNR2 + ⁄1,P INR21

!!

, (2.13c)

with ⁄i,P œ [0, 1] for all i œ {1, 2}.

The strategy in [21] uses rate-splitting [20, 33] and superposition coding [24]. The superposi-
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tion coding is a technique that was introduced in the study of the broadcast channel (BC) in [22].
Consider the message index sent by transmitter i denoted by Wi œ {1, 2, . . . , 2NRi}. Following
a rate-splitting argument, assume that Wi is represented by two subindices (Wi,C , Wi,P ) œ
{1, 2, . . . , 2NRi,C } ◊ {1, 2, . . . , 2NRi,P }, where Ri,C + Ri,P = Ri. The message index Wi,C is
assumed to be decoded at both receivers (common part of the message) and the message
index Wi,P is assumed to be decoded at the intended receiver (private part of the message) at
the end of the transmission. Using the index Wi,C , transmitter i identifies a codeword in the
first code-layer. The first code-layer is a sub-codebook of 2NRi,C codewords (cloud centers).
Denote by ui (Wi,C) the corresponding codeword in the first code-layer. The second codeword
is chosen by transmitter i using Wi,P from the second code-layer, which is a sub-codebook of
2NRi,P codewords corresponding to ui (Wi,C). Denote by xi (Wi,C , Wi,P ) the corresponding
codeword in the second code-layer. Finally, transmitter i sends the codeword xi (Wi,C , Wi,P ).
The simplification of the Han-Kobayashi achievable region for the two-user IC in [21] is due to
an observation of the authors in which each receiver is not interested to decode the common
message index coming from the non-corresponding transmitter. The consideration of decoding
in each receiver the common message index coming from the non-corresponding transmitter
in [33] generated a pair of inequalities in the evaluation of the error probability that are not
necessary, which is proved in [39].

The following lemma presents the achievable region for the two-user GIC in [38] obtained
from the results in [21].

Lemma 2 (Chong-Motani-Garg-El Gamal Achievable Region for the two-user GIC). Let
C µ R2

+ denote the capacity region of the two-user GIC. Then, C contains all the rate pairs
(R1, R2) œ R2

+ that satisfy the following inequalities:

R1Æ1
2 log
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1 + ⁄2,P INR12

!

, (2.14a)

R2Æ1
2 log
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2R1 + R2Æ1
2 log

 
1 + ≠≠æSNR1 + INR12

1 + ⁄2,P INR12

!

+1
2 log

 
1 + ⁄2,P

≠≠æSNR2 + INR21
1 + ⁄1,P INR21

!

+1
2 log

 

1 + ⁄1,P

≠≠æSNR1
1 + ⁄2,P INR12

!

, (2.14f)

15



2. Centralized Interference Channels

R1 + 2R2Æ1
2 log
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1 + ⁄1,P INR21

!

+ 1
2 log
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+1
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!

, (2.14g)

with ⁄i,P œ [0, 1] for all i œ {1, 2}.

There are several outer bounds on the capacity region of the GIC [3, 28, 41, 52, 74, 75].
Some outer bounds correspond to the capacity region of other network models that are seen as
simplified models of the GIC under certain conditions. Some other outer bounds are obtained
based on genie-aided models. Some of these outer bounds allow to obtain the sum-rate capacity
or at least some corner points of the capacity region for specific conditions in the GIC. In
the cases in which both transmitter-receiver pairs are in low-interference regime and the
interference parameters are below certain thresholds, TIN achieves the sum-capacity of the
GIC (this is also denominated the noisy interference regime) [3, 52, 75].

The authors in [28] obtained an outer bound based on genie-aided models which was used to
prove that the achievable region in [21] (Lemma 2) is at most one bit per channel use away from
the capacity region of the two-user GIC. Note that the authors in [28] assumed ⁄i,P = 1

INRji

for all i œ {1, 2} and j œ {1, 2} \ {i} in the achievable region introduced in [21], considering
that the private part of a message has not to be decoded in the non-intended receiver because
it can be under the noise level. The authors in [28] considered three di�erent interference
regimes: weak interference channel (INR12 <

≠≠æSNR2 and INR21 <
≠≠æSNR1); mixed interference

channel (INR12 > ≠≠æSNR2 and INR21 <
≠≠æSNR1, or INR12 <

≠≠æSNR2 and INR21 > ≠≠æSNR1); and
strong interference channel (INR12 > ≠≠æSNR2 and INR21 > ≠≠æSNR1), where the outer bound for
the last interference regime is not shown given that the capacity region is already known [19,
33, 73]. The following two lemmas present the outer bounds on the capacity region of the
two-user GIC for the weak interference channel and for the mixed interference channel.

Lemma 3 (Outer bound for weak GIC, Theorem 3 in [28]). Let C µ R2
+ denote the capacity

region of the GIC. Then, C is contained within the set of rate pairs (R1, R2) œ R2
+ that satisfy

the following inequalities:
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2 log
 

1 + INR21 +
≠≠æSNR2

1 + INR12

!

+1
2 log

 
1 + ≠≠æSNR1
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, (2.15f)

R1 + 2R26
1
2 log

⇣
1 + ≠≠æSNR2 + INR21

⌘
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2 log
 

1 + INR12 +
≠≠æSNR1

1 + INR21

!

+1
2 log

 
1 + ≠≠æSNR2
1 + INR12

!

. (2.15g)

Lemma 4 (Outer bound for mixed GIC, Theorem 4 in [28]). Let C µ R2
+ denote the capacity

region of the GIC. Then, C is contained within the set of rate pairs (R1, R2) œ R2
+ that satisfy

the following inequalities:

R16
1
2 log

⇣
1 + ≠≠æSNR1

⌘
, (2.16a)

R26
1
2 log

⇣
1 + ≠≠æSNR2

⌘
, (2.16b)

R1 + R26
1
2 log

⇣
1 + ≠≠æSNR1

⌘
+ 1

2 log
 

1 +
≠≠æSNR2

1 + INR21

!

, (2.16c)

R1 + R26
1
2 log

⇣
1 + ≠≠æSNR1 + INR12

⌘
, (2.16d)

R1 + 2R26
1
2 log

⇣
1 + ≠≠æSNR2 + INR21

⌘
+ 1

2 log
 

1 + INR12 +
≠≠æSNR1

1 + INR21

!

(2.16e)

+1
2 log

 

1 +
≠≠æSNR2

1 + INR12

!

. (2.16f)

2.1.2. Case with Perfect Channel-Output Feedback

The two-user GIC-POF is analyzed in [80], and its capacity region is characterized to within
two bits per channel use. The achievability scheme presented in [80] is based on: rate-splitting
[20, 33], block Markov superposition coding [24], and backward decoding [88, 89]. The outer-
bound is obtained considering genie-aided models. One of the most important conclusions in
[80] is that feedback can provide an arbitrary multiplicative gain in the high SNR regime for
certain channel conditions in the two-user GIC, i.e., the very strong interference regime.

The following two lemmas present an inner bound and an outer bound on the capacity
region of the two-user GIC-POF.

Lemma 5 (Inner bound two-user GIC-POF, Theorem 2 in [80]). Let C µ R2
+ denote the

capacity region of the two-user GIC-POF. Then, C contains all the rate pairs (R1, R2) œ R2
+

that satisfy the following inequalities:

R16
1
2 log

Å
1 + ≠≠æSNR1 + INR12 + 2fl

»≠≠æSNR1INR12

ã
≠ 1

2 , (2.17a)

R16
1
2 log (1 + (1 ≠ fl) INR21) + 1

2 log
 

2 +
≠≠æSNR1
INR21

!

≠ 1, (2.17b)
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R26
1
2 log

Å
1 + ≠≠æSNR2 + INR21 + 2fl

»≠≠æSNR2INR21

ã
≠ 1

2 , (2.17c)

R26
1
2 log (1 + (1 ≠ fl) INR12) + 1

2 log
 

2 +
≠≠æSNR2
INR12

!

≠ 1, (2.17d)

R1 + R26
1
2 log

 

2 +
≠≠æSNR1
INR21

!

+ 1
2 log

Å
1 + ≠≠æSNR2 + INR21 + 2fl

»≠≠æSNR2INR21

ã
≠ 1, (2.17e)

R1 + R26
1
2 log

 

2 +
≠≠æSNR2
INR12

!

+ 1
2 log

Å
1 + ≠≠æSNR1 + INR12 + 2fl

»≠≠æSNR1INR12

ã
≠ 1, (2.17f)

with fl œ [0, 1].

Lemma 6 (Outer bound two-user GIC-POF, Theorem 3 in [80]). Let C µ R2
+ denote the

capacity region of the GIC-POF. Then, C is contained within the set of rate pairs (R1, R2) œ R2
+

that satisfy the following inequalities:

R16
1
2 log

Å
1 + ≠≠æSNR1 + INR12 + 2fl

»≠≠æSNR1INR12

ã
, (2.18a)

R16
1
2 log

Ä
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ä
+ 1

2 log
 

1 +
�
1 ≠ fl

2�≠≠æSNR1
1 + (1 ≠ fl2) INR21

!

, (2.18b)
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1
2 log

Å
1 + ≠≠æSNR2 + INR21 + 2fl

»≠≠æSNR2INR21

ã
, (2.18c)

R26
1
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Ä
1 + (1 ≠ fl) INR12
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+ 1

2 log
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�
1 ≠ fl

2�≠≠æSNR2
1 + (1 ≠ fl2) INR12

!

, (2.18d)

R1 + R26
1
2 log

 

1 +
�
1 ≠ fl

2�≠≠æSNR1
1 + (1 ≠ fl2) INR21

!

+1
2 log

Å
1 + ≠≠æSNR2 + INR21 + 2fl

»≠≠æSNR2INR21

ã
, (2.18e)

R1 + R26
1
2 log

 

1 +
�
1 ≠ fl

2�≠≠æSNR2
1 + (1 ≠ fl2) INR12

!

+1
2 log

Å
1 + ≠≠æSNR1 + INR12 + 2fl

»≠≠æSNR1INR12

ã
, (2.18f)

with fl œ [0, 1].

In [51], it is shown that the number of GDoF of a symmetric fully connected K-user
symmetric GIC with POF is the same as in the case of the two-user IC-POF, except for the
case in which the power signal in each receiver is equal to the interfering signal. Then, feedback
can improve the performance of the networks except under the aforementioned condition.
The coding scheme takes advantage of the network symmetry and is based on interference
alignment and interference decoding. Thus, given the alignment of the interference (it is
necessary to decode the interference to remove it, which is suppressed in standard approaches),
the interference received from all other users can be seen as a single message using a lattice
code approach. In [82], an approximate capacity region of the cyclic K-user GIC is presented.
The network considers K-users where each intended signal is only interfered by one of the
neighboring transmitters in a cyclic fashion. It is shown that the number of GDoF of a cyclic
symmetric K-user symmetric GIC with POF is a function of K, i.e., the capacity gain for
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each user is inversely proportional to K. Thus, the improvement in the capacity per user of
a cyclic and symmetric K-user GIC vanishes as K grows, and when K tends to infinity the
number of GDoF with feedback is equal to the number of GDoF without feedback. It is worth
noting that the GDoF of the symmetric and cyclic K-user without feedback are the same as
for the two-user GIC [95]. Other feedback coding schemes for K-user Gaussian interference
networks have been analyzed in [43, 42].

In [72] the impact of nine di�erent POF architectures are studied for the symmetric LDIC
and the symmetric GIC. The exact capacity region is obtained for the linear deterministic
model and an approximate capacity region is obtained for the Gaussian case in which the
capacity region is within 4.59 bits from the inner-bound. The authors proposed two achievable
strategies: one based on rate splitting [20, 33] and the other one based on block-Markov
coding (at one transmitter) and dirty paper coding at the other transmitter. The authors also
proposed two new outer bounds that are tighter than the cut-set bound in some interference
regimes.

The authors in [57] presented an inner bound and an outer bound on the sum-capacity
of a symmetric IC with source cooperation (IC-CT). The inner bound is obtained using
block-Markov superposition coding [24], backward decoding [88, 89], and a decode-and-forward
strategy. The coding scheme splits the message index in four message indices, considering
that common and private messages can be split into cooperative and non-cooperative. The
outer bound is shown to be at most 20 bits away from the sum-rate capacity. Even though
the IC-NOF is a model that di�ers from the symmetric IC-CT, there exists a connection
between these two models. In this sense, the authors in [57] show that using their results
on the symmetric IC-CT, the sum-capacity of the two-user symmetric GIC-POF is within a
constant gap of 19 bits.

2.1.3. Symmetric Case with Noisy Channel-Output Feedback

The two-user symmetric GIC-NOF is analyzed in [47], and its capacity region is characterized
to within 4.7 bits per channel use. Despite this approximate description of the capacity
region, very little can be concluded in the case in which feedback is available in only one of
the point-to-point links or simply when the point-to-point links are in di�erent interference
regimes. The results on the interference channel with generalized feedback (IC-GF) in [84,
92] are applied to obtain an inner bound in this channel model. The outer bound is derived
using genie-aided models thanks to insights from the analysis of the corresponding linear
deterministic model.

The following two lemmas present an inner bound and an outer bound on the capacity
region of the two-user symmetric GIC-NOF.

Lemma 7 (Inner bound two-user symmetric GIC-NOF, Theorem 3 in [47]). Let C µ R2
+

denote the capacity region of the two-user symmetric GIC-NOF. Then, C contains all the rate
pairs (R1, R2) œ R2

+ that satisfy the following inequalities:

R16min
⇣
·6 (fl, ⁄P ) , ·4 (⁄NC , ⁄P ) + ·1 (⁄CC , ⁄NC , ⁄P ) , ·1 (⁄CC , ⁄NC , ⁄P ) + ·2 (⁄P )

+·3 (⁄NC , ⁄P )
⌘
, (2.19a)
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R26min
⇣
(·6 (fl, ⁄P ) , ·4 (⁄NC , ⁄P ) + ·1 (⁄CC , ⁄NC , ⁄P ) , ·1 (⁄CC , ⁄NC , ⁄P ) + ·2 (⁄P )

+·3 (⁄NC , ⁄P )
⌘
, (2.19b)

R1 + R26min
⇣
·2 (⁄P ) + ·6 (fl, ⁄P ) , 2·1 (⁄CC , ⁄NC , ⁄P ) + ·5 (⁄NC , ⁄P ) + ·2 (⁄P ) ,

2·1 (⁄CC , ⁄NC , ⁄P ) + 2·3 (⁄NC , ⁄P )
⌘
, (2.19c)

2R1 + R26min
⇣
·6 (fl, ⁄P )+·1 (⁄CC , ⁄NC , ⁄P )+·2 (⁄P )+·3 (⁄NC , ⁄P ) , 3·1 (⁄CC , ⁄NC , ⁄P )

+·2 (⁄P ) + ·3 (⁄NC , ⁄P ) + ·5 (⁄NC , ⁄P )
⌘
, (2.19d)

R1 + 2R26min
⇣
·6 (fl, ⁄P ) + ·1 (⁄CC , ⁄NC , ⁄P ) + ·2 (⁄P ) + ·3 (⁄NC , ⁄P ) , 3·1 (⁄CC , ⁄NC , ⁄P )

+·2 (⁄P ) + ·3 (⁄NC , ⁄P ) + ·5 (⁄NC , ⁄P )
⌘
, (2.19e)

with

·6 (fl, ⁄P ),1
2 log

Ñ
1 + ≠≠æSNR + INR + 2fl

»≠≠æSNRINR
⁄P INR + 1

é
, (2.20a)

·5 (⁄NC , ⁄P ),1
2 log

Ç
(⁄NC + ⁄P ) SNR + (⁄NC + ⁄P ) INR + 1

⁄P INR + 1

å
, (2.20b)

·4 (⁄NC , ⁄P ),1
2 log

Ç
(⁄NC + ⁄P ) SNR + ⁄P INR + 1

⁄P INR + 1

å
, (2.20c)

·3 (⁄NC , ⁄P ),1
2 log

Ç
⁄P SNR + (⁄NC + ⁄P ) INR + 1

⁄P INR + 1

å
, (2.20d)

·2 (⁄P ),1
2 log

Å
⁄P SNR + ⁄P INR + 1

⁄P INR + 1

ã
, (2.20e)

·1 (⁄CC , ⁄NC , ⁄P ),1
2 log

Ç
·1n (⁄CC , ⁄NC , ⁄P )

·1d (⁄NC , ⁄P )

å
, (2.20f)

·1n (⁄CC , ⁄NC , ⁄P ),1
2 log

ÑΩ≠≠SNR ((⁄CC + ⁄NC + ⁄P ) INR + 1)

1 + ≠≠æSNR + INR + 2
»≠≠æSNRINR

é
+ 1, (2.20g)

·1d (⁄NC , ⁄P ),1
2 log

Ñ Ω≠≠SNR ((⁄NC + ⁄P ) INR + 1)

1 + ≠≠æSNR + INR + 2
»≠≠æSNRINR

é
+ 1, (2.20h)

fl œ [0, 1] and for all coding schemes that satisfy ⁄CC + ⁄NC + ⁄P = 1 ≠ fl.

Lemma 8 (Outer bound two-user symmetric GIC-NOF, Theorem 2 in [47]). Let C µ R2
+

denote the capacity region of the two-user symmetric GIC-NOF. Then, C is contained within
the set of rate pairs (R1, R2) œ R2

+ that satisfy the following inequalities:

R16min (�1 (fl) , �2) , (2.21a)
R26min (�1 (fl) , �2) , (2.21b)

R1 + R26min (�3 (fl) , �4) , (2.21c)
2R1 + R26�5 (fl) , (2.21d)
R1 + 2R26�5 (fl) , (2.21e)
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with
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and –G , log INR
log ≠≠æSNR

, and fl œ [0, 1].

An other outer bound for the two-user IC-NOF is introduced in [35], which considers the
Hekstra-Willems dependence-balance arguments used in the analysis of two-way channels. In
the GIC, these results suggest that feedback loses its ability to increase the capacity region
when the noise variance on the feedback link is larger than on the forward link. Using similar
arguments, new outer bounds that are tighter than the cut-set bound in some interference
regimes are presented in [81].

2.1.4. Rate-Limited Feedback
The two-user GIC with rate-limited feedback (GIC-RLF), that is, the feedback links have
finite capacity instead of the case in which the feedback is perfect or noiseless, is analyzed in
[85]. This corresponds to a more realistic feedback model in which the receivers can use all the
information they have received to feed back information through an orthogonal channel of finite
capacity. The rate-limited feedback (RLF) increases the complexity of the receivers, given that
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these must encode the information they transmit over the capacity-limited feedback channels.
Under symmetric conditions in this channel model, the symmetric capacity is approximated to
within 7.4 bits from the inner bound. The problem is analyzed using three di�erent IC models:
the El Gamal-Costa deterministic model [27], the linear deterministic model [6, 17], and the
Gaussian model. In the analysis of the deterministic models the coding strategies are based
on: rate-splitting [20, 33], quantize-and-binning, and decode-and-forward. In the analysis of
the Gaussian model the coding strategy is based on block-Markov superposition coding [24],
backward decoding [88, 89], and lattice coding, which enable receivers to decode superposition
of codewords. Outer bounds are developed based on the insights from the analysis of the
deterministic models.

In [47, 51, 57, 80, 82, 85], the key insights for the analysis of the Gaussian cases are obtained
from previous analysis of the respective linear deterministic models.

2.2. Linear Deterministic Interference Channel

A deterministic channel model is introduced by [6] as an approximation to the Gaussian
channel models in the very high SNR regime. This model captures the key properties of the
wireless communication systems: the signal strength; the broadcast nature of the wireless
channel in which the signal sent by one transmitter can be overheard by many receivers at
di�erent signal strengths; and multiple signals can arrive to one receiver coming from di�erent
transmitters. Except for the point-to-point networks in which noise is the only source of
uncertainty, networks are a�ected not only by noise but also by interference. This linear
deterministic approximation considers that the network is operating in an interference-limited
regime, where the noise power is small compared to the signal powers. Thus, this model focus
on the interactions of the signals rather than the noise. Therefore, the noise as well as the
parts of the signal a�ected by the noise are neglected. the LDIC is a special class of the El
Gamal-Costa deterministic IC [27] and a special class of the IC-NOF.

Consider the two-user LDIC-NOF depicted in Figure 2.3. For all i œ {1, 2}, with j œ
{1, 2} \ {i}, the number of bit-pipes between transmitter i and its corresponding intended
receiver is denoted by ≠æ

n ii; the number of bit-pipes between transmitter i and its corresponding
non-intended receiver is denoted by nji; and the number of bit-pipes between receiver i and
its corresponding transmitter is denoted by Ω≠

n ii. These six non-negative integer parameters
describe the two-user LDIC-NOF in Figure 2.3.

At transmitter i, the channel-input Xi,n at channel use n, is a q-dimensional binary vector
Xi,n =

⇣
X

(1)
i,n

, X
(2)
i,n

, . . . , X
(q)
i,n

⌘T
, where

q = max (≠æn 11,
≠æ
n 22, n12, n21) . (2.23)

At receiver i, the channel-output ≠æ
Y i,n is also a q-dimensional binary vector ≠æ

Y i,n =
⇣≠æ

Y
(1)
i,n

,
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Figure 2.3.: Two-user linear deterministic interference channel with noisy channel-output
feedback at channel use n.

≠æ
Y

(2)
i,n

, . . . ,
≠æ
Y

(q)
i,n

⌘T
. Let S be a q ◊ q lower shift matrix of the form:

S =

2

66666664

0 0 0 · · · 0
1 0 0 · · · 0

0 1 0 · · ·
...

... . . . . . . . . . 0
0 · · · 0 1 0

3

77777775

. (2.24)

The input-output relation during channel use n is given by
≠æ
Y i,n=Sq≠≠æ

n iiXi,n + Sq≠nij Xj,n, (2.25)

and the feedback signal Ω≠
Y i,n available at transmitter i at the end of channel use n satisfies

Å
(0, . . . , 0) ,

Ω≠
Y

T
i,n

ãT
=S(max(≠æn ii,nij)≠Ω≠

n ii)+ ≠æ
Y i,n≠d, (2.26)

where d is a finite delay and additions and multiplications between matrices and vectors are
defined over the Galois Field of two elements GF(2).

The dimension of the vector (0, . . . , 0) in (2.26) is q≠min
ÄΩ≠

n ii, max(≠æn ii, nij)
ä

and the vector
Ω≠
Y i,n represents the min

ÄΩ≠
n ii, max(≠æn ii, nij)

ä
least significant bits of S(max(≠æn ii,nij)≠Ω≠

n ii)+≠æ
Y i,n≠d.

Without any loss of generality, the feedback delay is assumed to be equal to 1 channel use.
In this special case, the pdf of the IC-NOF can be factorized as in (2.9). Based on the

input-output relation in (2.25), for all i œ {1, 2} and given the channel-inputs x1 and x2
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during a specific channel use, the pdf f≠æ
Y i|X1,X2

in (2.9) can be expressed as follows:

f≠æ
Y i|X1,X2

�≠æy i|x1, x2
�

= 1{≠æy i=Sq≠≠æn ii xi+Sq≠nij xj}. (2.27)

Similarly, based on the input-output relation in (2.26), for all i œ {1, 2} and given the
channel-outputs ≠æy 1 and ≠æy 2 during a specific channel use, the pdf fΩ≠

Y i|
≠æ
Y i

in (2.9) can be
expressed as follows:

fΩ≠
Y i|

≠æ
Y i

�Ω≠y i|≠æy i

�
= 1ß

Ω≠y T
i =S(max(≠æn ii,nij )≠Ω≠n ii)+ ≠æy i

™. (2.28)

2.2.1. Case without Feedback
The following lemma presents the capacity region for the two-user LDIC without channel-output
feedback.

Lemma 9 (Capacity region two-user LDIC, Lemma 4 in [17]). Let C µ R2
+ denote the capacity

region of the two-user LDIC without channel-output feedback. Then, C contains all the rate
pairs (R1, R2) œ R2

+ that satisfy the following inequalities:

R16 ≠æ
n 11, (2.29a)

R26 ≠æ
n 22, (2.29b)

R1 + R26 (≠æn 11 ≠ n12)+ + max (≠æn 22, n12) , (2.29c)
R1 + R26 (≠æn 22 ≠ n21)+ + max (≠æn 11, n21) , (2.29d)
R1 + R26 max

Ä
n21, (≠æn 11 ≠ n12)+ä+ max

Ä
n12, (≠æn 22 ≠ n21)+ä

, (2.29e)
2R1 + R26 max (≠æn 11, n21) + (≠æn 11 ≠ n12)+ + max

Ä
n12, (≠æn 22 ≠ n21)+ä

, (2.29f)
R1 + 2R26 max (≠æn 22, n12) + (≠æn 22 ≠ n21)+ + max

Ä
n21, (≠æn 11 ≠ n12)+ä

. (2.29g)

2.2.2. Case with Perfect Channel-Output Feedback
The following lemma presents the capacity region for the two-user LDIC-POF.

Lemma 10 (Capacity region two-user LDIC-POF, Corollary 1 in [80]). Let C µ R2
+ denote the

capacity region of the two-user LDIC-POF. Then, C contains all the rate pairs (R1, R2) œ R2
+

that satisfy the following inequalities:

R16 min (max (≠æn 11, n21) , max (≠æn 11, n12)) , (2.30a)
R26 min (max (≠æn 22, n12) , max (≠æn 22, n21)) , (2.30b)

R1 + R26 min
Ä
max (≠æn 22, n21) + (≠æn 11 ≠ n21)+

, max (≠æn 11, n12) + (≠æn 22 ≠ n12)+ä
. (2.30c)

2.2.3. Symmetric Case with Noisy Channel-Output Feedback
The following lemma presents the capacity region for the two-user symmetric LDIC-NOF, in
which ≠æ

n 11 = ≠æ
n 22 = ≠æ

n , n12 = n21 = m, and Ω≠
n 11 = Ω≠

n 22 = Ω≠
n .

Lemma 11 (Capacity region two-user symmetric LDIC-NOF, Theorem 1 in [47]). Let C µ R2
+

denote the capacity region of the two-user symmetric LDIC-NOF. Then, C contains all the
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2.2. Linear Deterministic Interference Channel

rate pairs (R1, R2) œ R2
+ that satisfy the following inequalities:

R16 max (≠æn , m) , (2.31a)
R26 max (≠æn , m) , (2.31b)
R16 ≠æ

n + (Ω≠n ≠ ≠æ
n )+

, (2.31c)
R26 ≠æ

n + (Ω≠n ≠ ≠æ
n )+

, (2.31d)
R1 + R26 max (≠æn , m) + (≠æn ≠ m)+

, (2.31e)
R1 + R26 2 max

Ä
(≠æn ≠m)+

, m

ä
+ 2 min

⇣
(≠æn ≠m)+

,

ÄΩ≠
n ≠max

Ä
m, (≠æn ≠m)+ää+⌘

,(2.31f)
2R1 + R26 max (≠æn , m) + (≠æn ≠ m)+ + max

Ä
(≠æn ≠ m)+

, m

ä

+ min
Ä

(≠æn ≠ m)+
,

ÄΩ≠
n ≠ max

Ä
m, (≠æn ≠ m)+ää+ ä

, (2.31g)
R1 + 2R26 max (≠æn , m) + (≠æn ≠ m)+ + max

Ä
(≠æn ≠ m)+

, m

ä

+ min
Ä

(≠æn ≠ m)+
,

ÄΩ≠
n ≠ max

Ä
m, (≠æn ≠ m)+ää+ ä

. (2.31h)

2.2.4. Symmetric Case with only one Perfect Channel-Output Feedback
The following lemma presents the capacity region for the two-user symmetric LDIC with only
one POF, in which ≠æ

n 11 = ≠æ
n 22 = ≠æ

n , n12 = n21 = m and Ω≠
n 11 = max (≠æn , m), and Ω≠

n 22 = 0.

Lemma 12 (Capacity region two-user LDIC with only one POF, Theorem 4.1 model 1000 in
[72]). Let C µ R2

+ denote the capacity region of the two-user symmetric LDIC with only one
POF between receiver 1 and transmitter 1. Then, C contains all the rate pairs (R1, R2) œ R2

+
that satisfy the following inequalities:

R16 ≠æ
n , (2.32)

R26 max (≠æn , m) , (2.33)
R1 + R26 max (≠æn , m) + (≠æn ≠ m)+

, (2.34)
2R1 + R26 max (≠æn , m) + (≠æn ≠ m)+ + max (≠æn ≠ m, m) . (2.35)

Note that the model 0001 in [72] corresponds to the two-user symmetric LDIC with only one
POF between receiver 2 and transmitter 2. Note also that the model 1001 in [72] corresponds
to the two-user symmetric LDIC with POF that corresponds to the Lemma 10 for symmetric
parameters in the LDIC.

2.2.5. Sum-Capacity with Source Cooperation
In the two-user IC-NOF, a transmitter sees a noisy version of the sum of its own transmitted
signal and the interfering signal from the other transmitter. Hence, subject to a finite delay,
one transmitter knows at least partially the information transmitted by the other transmitter
in the network. This observation highlights the connections between the IC with feedback
and the IC with source cooperation studied in [57]. These two channel models are related but
they are not the same. There are two main di�erences between the two channel models. First,
the channel-output signal observed by the transmitter in the case of IC-NOF is impaired by
the noise in the feedback link and the noise in the forward channel. In the case of source
cooperation, the cooperation signal is only a�ected by the noise in the cooperative link. Second,
the cooperation between transmitters is direct and symmetric in the case of source cooperation.
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Conversely, in the case of IC-NOF, the signal that is observed by the transmitter is a�ected
by the delay in the feedback link, and the part of the signal that was transmitted by the other
transmitter is obtained from the substraction between the signal observed by the transmit-
ter and the own signal that was transmitted previously. Then, the cooperation is not direct [47].

The two-user IC with source cooperation has two transmitters, i.e., 1 and 2, two receivers,
i.e., 3 and 4, and it also has noisy connections between the two transmitters [57]. The following
lemma presents the sum-capacity of the LDIC with source cooperation.

Lemma 13 (Sum-capacity two-user LDIC with source cooperation, Theorem 1 in [57]). The
sum-capacity region of the two-user LDIC with source cooperation is the minimum of the
following inequalities:

R1 + R2= max (n1,3 ≠ n1,4 + nc, n2,3, nc) + max (n2,4 ≠ n2,3 + nc, n1,4, nc) , (2.36a)
R1 + R2= max (n1,3, n2,3) + (max (n2,4, n2,3, nc) ≠ n2,3) , (2.36b)
R1 + R2= max (n2,4, n1,4) + (max (n1,3, n1,4, nc) ≠ n1,4) , (2.36c)
R1 + R2= max (n1,3, nc) + max (n2,4, nc) , (2.36d)

R1 + R2=
(

max (n1,3 + n2,4, n1,4 + n2,3) , if n1,3 ≠ n2,3 ”= n1,4 ≠ n2,4,

max (n1,3, n2,4, n1,4, n2,3) , otherwise
, (2.36e)

In order to establish a connection between (2.36) and the sum-rate capacity of the two-user
LDIC-NOF the following identities must be introduced: n1,3 = ≠æ

n 11, n2,4 = ≠æ
n 22, n2,3 = n12,

n1,4 = n21, and nc = Ω≠
n 11≠(≠æn 11 ≠ n12)+ = Ω≠

n 22≠(≠æn 22 ≠ n21)+. The last equality implies that
the feedback must include the signal levels that contain information about the non-intended
source in order to allow cooperation between the sources.
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Decentralized

Interference Channels
In a decentralized system, a central controller does not exist and each transmitter-

receiver pair is responsible for the selection of its own transmit-receive configuration
to maximize its data transmission rate. A transmit-receive configuration for

transmitter-receiver pair i, with i œ {1, 2}, denoted by si, can be described in terms of the
block-length Ni, the number of bits per block Mi = Álog2 |Wi|Ë, the channel-input alphabet
Xi, the codebook Ci, the encoding function fi, the decoding function Âi, etc. The aim of
transmitter i is to autonomously choose its transmit-receive configuration si, in order to
maximize its achievable rate Ri. Note that the rate achieved by transmitter-receiver i depends
on both configurations s1 and s2 due to mutual interference. This reveals the competitive
interaction between both links in the decentralized interference channel.

The system models for the two-user decentralized continuous IC-NOF; the two-user D-GIC-
NOF; and the two-user D-LDIC-NOF are in general the same as in the centralized case. The
main di�erences are the following:

• Each transmitter-receiver defines the number of channel-uses per block, i.e., N1 and N2
channel uses.

• The transmission of a block consists of N channel uses, where N = max (N1, N2). Then,
Xi,n = 0 for all n > Ni.

• Encoder i generates the symbol xi,n considering not only the message index Wi œ Wi =
{1, 2, . . . , 2NiRi} and all previous outputs from the feedback link i, i.e.,

⇣Ω≠
y i,1, Ω≠

y i,2, . . .,
Ω≠
y i,n≠1

⌘
, but also the random message index �i œ N. The index �i is an additional

index randomly generated which is assumed to be known by both transmitter i and
receiver i, while unknown by transmitter j and receiver j (common randomness).
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3. Decentralized Interference Channels

• At the end of the transmission, decoder i uses all the channel-outputs, i.e.,
⇣≠æ

y i,1,
≠æ
y i,2, . . ., ≠æ

y i,N

⌘
and the random message index �i to obtain an estimate of the message

index Wi, denoted by cWi.

• The following Markov chain holds:

Wi, �i,
Ω≠
Y i,(1;n≠1) æ Xi,n æ ≠æ

Y i,n. (3.1)

• The calculation of the probability of error is made for each of the transmitter-receiver
pairs. Let W

(t)
i

be written as c
(t)
i,1 c

(t)
i,2 . . . c

(t)
i,Mi

in binary form. Let also cW (t)
i

be written
as bc(t)

i,1 bc
(t)
i,2 . . . bc(t)

i,Mi
in binary form. Then, the average bit error probability at decoder i

given the configurations s1 and s2, denoted by pi(s1, s2), is given by

pi(s1, s2)= 1
Mi

MiX

¸=1
1¶bc(t)

i,¸ ”=c
(t)
i,¸

©. (3.2)

The fundamental limits in a decentralized two-user IC-NOF system are defined by the ÷-NE
region.

Definition 3 (÷-NE region of a two-user IC). The ÷-NE region of a two-user IC is the closure
of the set of all possible achievable rate pairs (R1, R2) œ R2

+ that are stable in the sense of
a Nash equilibrium. More specifically, given an NE coding scheme, there does not exist an
alternative coding scheme for either transmitter-receiver pair that increases their individual
rates by more than ÷ bits per channel-use.

3.1. Game Formulation

The competitive interaction between the two transmitter-receiver pairs in the IC can be
modeled by the following game in normal-form:

G =
�
K, {Ak}

kœK , {uk}
kœK

�
. (3.3)

The set K = {1, 2} is the set of players, that is, the set of transmitter-receiver pairs. The
sets A1 and A2 are the sets of actions of player 1 and 2, respectively. The choice of one
transmit-receive configuration by player i œ K is an action, which is denoted by si œ Ai. The
utility function of player i is ui : A1 ◊ A2 æ R+ and it is defined as the achieved rate of
transmitter i,

ui(s1, s2) =

8
<

:
Ri = Mi

Ni

, if pi(s1, s2) < ‘

0, otherwise,
(3.4)

where ‘ > 0 is an arbitrarily small number and Ri denotes a transmission rate achievable with
the configurations s1 and s2. This game formulation was first proposed in [12] and [93].

A class of transmit-receive configuration pairs sú = (sú
1, s

ú
2) œ A1 ◊ A2 that are particularly

important in the analysis of this game is referred to as the set of ÷-Nash equilibria (÷-NE),
with ÷ > 0. These pairs of configurations satisfy the following definition.
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3.2. Gaussian Interference Channel

Definition 4 (÷-NE [54]). In the game G =
�
K, {Ak}

kœK , {uk}
kœK

�
, a configuration pair

(sú
1, s

ú
2) œ A1 ◊ A2 is an ÷-NE if for all i œ K and for all si œ Ai, there exits an ÷ > 0 such

that
ui(si, s

ú
j ) 6 ui(sú

i , s
ú
j ) + ÷. (3.5)

Let (sú
1, s

ú
2) be an ÷-NE configuration pair of the game in (3.3). Then, none of the transmitters

can increase its own information transmission rate more than ÷ bits per channel use by changing
its own transmit-receive configuration and keeping the average bit error probability arbitrarily
close to zero. Note that for ÷ su�ciently large, from Definition 4, any pair of configurations
can be an ÷-NE. Alternatively, for ÷ = 0, the classical definition of NE is obtained [53]. In this
case, if a pair of configurations is a NE (÷ = 0), then each individual configuration is optimal
with respect to each other. Hence, the interest is to describe the set of all possible ÷-NE rate
pairs (R1, R2) œ R2

+ of the game in (3.3) with the smallest ÷ for which there exists at least
one equilibrium configuration pair.

The set of rate pairs that can be achieved at an ÷-NE is known as the ÷-NE region.

Definition 5 (÷-NE Region). Let ÷ > 0 be fixed. An achievable rate pair (R1, R2) œ R2
+ is

said to be in the ÷-NE region of the game G =
�
K, {Ak}

kœK , {uk}
kœK

�
if there exists a pair

(sú
1, s

ú
2) œ A1 ◊ A2 that is an ÷-NE and the following holds:

u1(sú
1, s

ú
2) = R1 and u2(sú

1, s
ú
2) = R2. (3.6)

Following along the same lines in [13], if there exists a configuration pair (s1, s2) that
achieves a rate pair (R1, R2) œ R2

+ using codes of block lengths N1 and N2 respectively, then
it can be shown that there exists a configuration pair (sÕ

1, s
Õ
2) that achieves the same rate pair

using the same block length for both users, e.g., N = max(N1, N2). The resulting probability
of error with (sÕ

1, s
Õ
2) is smaller than or equal to the probability of error obtained by the

configuration pair (s1, s2). For this reason, without loss of generality, the same block length is
considered for both users in the remaining of this thesis.

3.2. Gaussian Interference Channel

3.2.1. Case without Feedback

The following lemma presents an approximate NE region for the two-user GIC without
channel-output feedback.

Lemma 14 (Approximate NE region two-user GIC, Theorem 2 in [13]). Let N µ R2
+ denote

the NE region of the two-user GIC without channel-output feedback. Then,

C fl B ™ N ™ C fl B, (3.7)

with C the capacity region of the two-user GIC, C the achievable region of the two-user GIC
(Lemma 1), and, B and B given by

B =
¶

(R1, R2) œ R2
+ : Li 6 Ri 6 Ui, for all i œ {1, 2}

©
, (3.8a)

B =
¶

(R1, R2) œ R2
+ : Li 6 Ri 6 max (Ui ≠ 1, Li) , for all i œ {1, 2}

©
, (3.8b)
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3. Decentralized Interference Channels

where for all i œ {1, 2}

Li=
1
2 log

 

1 +
≠≠æSNRi

1 + INRij

!

and (3.9a)

Ui=min
 

1
2 log

⇣
1 + ≠≠æSNRi + INRij

⌘
≠ 1

2 log

Ü

1 +

Å≠≠æSNRj ≠ max
Å

INRji,

≠≠æSNRj

INRij

ãã+

1 + INRji + max
Å

INRji,

≠≠æSNRj

INRij

ã

ê

,

1
2 log

⇣
1 + ≠≠æSNRi

⌘!

. (3.9b)

The region defined by B di�ers from B by at most one bit, given that the achievable region
in Lemma 1 is at most one bit from the capacity region [28].

3.2.2. Case with Perfect Channel-Output Feedback

The following lemma presents an approximate NE region for the two-user GIC-POF.

Lemma 15 (Approximate NE region two-user GIC-POF, Theorem 2 in [60]). Let ÷ > 1 and
let N µ R2

+ denote the NE region of the two-user GIC-POF. Then,

C fl B÷ ™ N ™ C fl B÷, (3.10)

with C the achievable region of the two-user GIC-POF (Lemma 5), C the converse region of
the two-user GIC-POF (Lemma 6), and B÷ given by

B÷ =
¶

(R1, R2) œ R2
+ : (Li ≠ ÷)+ 6 Ri, for all i œ {1, 2}

©
, (3.11)

where for all i œ {1, 2} Li is given by (3.9a).

3.3. Linear Deterministic Interference Channel

3.3.1. Case without Feedback

The following lemma presents the NE region for the two-user LDIC without channel-output
feedback.

Lemma 16 (NE region two-user LDIC, Theorem 1 in [13]). Let N µ R2
+ denote the NE

region of the two-user LDIC without channel-output feedback. Then, N contains all the rate
pairs (R1, R2) œ R2

+ that satisfy:
N = C fl B, (3.12)

with C the capacity region of the two-user LDIC (Lemma 9) and B given by

B =
¶

(R1, R2) œ R2
+ : Li 6 Ri 6 Ui, for all i œ {1, 2}

©
, (3.13)

30



3.3. Linear Deterministic Interference Channel

where for all i œ {1, 2}

Li=(≠æn ii ≠ nij)+ and (3.14)

Ui=
(≠æ

n ii ≠ min (Lj , nij) , if nij 6 ≠æ
n ii

min
Ä
(nij ≠ Lj)+

,
≠æ
n ii

ä
, if nij >

≠æ
n ii

. (3.15)

3.3.2. Case with Perfect Channel-Output Feedback
The following lemma presents the NE region for the two-user LDIC-POF.

Lemma 17 (NE region two-user LDIC-POF, Theorem 1 in [60]). Let ÷ > 0 and let N µ
R2

+ denote the NE region of the two-user LDIC-POF. Then, N contains all the rate pairs
(R1, R2) œ R2

+ that satisfy:
N = C fl B÷, (3.16)

with C the capacity region of the two-user LDIC-POF (Lemma 10) and B given by

B÷ =
¶

(R1, R2) œ R2
+ : (Li ≠ ÷)+ 6 Ri, for all i œ {1, 2}

©
, (3.17)

where for all i œ {1, 2}

Li=(≠æn ii ≠ nij)+
. (3.18)

3.3.3. Symmetric Case with Noisy Channel-Output Feedback
The following lemma presents the NE region for the two-user symmetric LDIC-NOF, in which
≠æ
n 11 = ≠æ

n 22 = ≠æ
n , n12 = n21 = m, and Ω≠

n 11 = Ω≠
n 22 = Ω≠

n ..

Lemma 18 (NE region two-user symmetric LDIC-NOF, Theorem 1 in [62]). Let N µ R2
+

denote the NE region of the two-user symmetric LDIC-NOF. Then, N contains all the rate
pairs (R1, R2) œ R2

+ that satisfy:
N = C fl B, (3.19)

with C the capacity region of the two-user symmetric LDIC-NOF (Lemma 11) and B given by

B =
¶

(R1, R2) œ R2
+ : L 6 Ri 6 U, for all i œ {1, 2}

©
, (3.20)

where for all i œ {1, 2}

Li=(≠æn ≠ m)+ and (3.21)

Ui=

8
>><

>>:

min (max (≠æn ,
Ω≠
n ) , m) , if m > ≠æ

n

max (≠æn , m) ≠ min
Ä
(≠æn ≠ m)+

, m

ä

+
Ä
min

Ä
(≠æn ≠ m)+

, m

ä
≠ (max (≠æn , m) ≠ Ω≠

n )
ä+ if m 6 ≠æ

n .

(3.22)
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Connections between

Linear Deterministic
and Gaussian

Interference Channels
The capacity region of the two-user GIC-NOF with parameters ≠≠æSNR1, ≠≠æSNR2,

INR12, INR21, Ω≠≠SNR1 and Ω≠≠SNR2 can be approximated by the capacity region
of an LDIC-NOF with parameters ≠æ

n ii =
j

1
2 log(≠≠æSNRi)

k
; nij =

ö1
2 log(INRij)

ù
;

Ω≠
n ii =

j
1
2 log(Ω≠≠SNRi)

k
, with i œ {1, 2} and j œ {1, 2} \ {i}. For instance, in the case without

feedback, the capacity region of any GIC with parameters ≠≠æSNR1 > 1, ≠≠æSNR2 > 1, INR12 > 1
and INR21 > 1 is within 18.6 bits per channel use per user of the capacity of an LDIC
with parameters ≠æ

n 11 = Â1
2 log(≠≠æSNR1)Ê, ≠æ

n 22 = Â1
2 log(≠≠æSNR2)Ê, n12 = Â1

2 log(INR12)Ê, and
n21 = Â1

2 log(INR21)Ê (Theorem 2 in [17]). More specifically, if the capacity region of the
two-user GIC and the two-user LDIC without feedback are denoted by CG and CLD, respectively,
the following holds:

CLD™CG + (5, 5), and (4.1a)
CG ™CLD + (13.6, 13.6). (4.1b)

In a more general setting, for instance in the case with NOF, the two-user LDIC is known
to be a close approximation of the two-user GIC. In Section 6.4, this approximation is used
to simplify the identification of the cases in which channel-output feedback, even subject to
additive noise, enlarges the capacity region of the two-user GIC.
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Linear Deterministic

Interference Channel

This chapter presents the main results on the two-user centralized LDIC-NOF
described in Section 2.2.

5.1. Capacity Region

Denote by C(≠æn 11,
≠æ
n 22, n12, n21, Ω≠

n 11,
Ω≠
n 22) the capacity region of the two-user LDIC-NOF

with parameters ≠æ
n 11, ≠æ

n 22, n12, n21, Ω≠
n 11, and Ω≠

n 22. Theorem 5.1.1 characterizes the latter.
5.1.1 Theorem (Capacity Region)

The capacity region C(≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22) of the two-user LDIC-NOF

is the set of rate pairs (R1, R2) œ R2
+ that for all i œ {1, 2}, with j œ {1, 2} \ {i}

satisfy:

Ri6min (max (≠æn ii, nji) , max (≠æn ii, nij)) , (5.1a)
Ri6min

Ä
max (≠æn ii, nji) , max

Ä≠æ
n ii,

Ω≠
n jj ≠ (≠æn jj ≠ nji)+ää

, (5.1b)
R1 + R26min

Ä
max (≠æn 22, n12) + (≠æn 11 ≠ n12)+

, max (≠æn 11, n21) + (≠æn 22 ≠ n21)+ä
,

R1 + R26max
⇣

(≠æn 11 ≠ n12)+
, n21,

≠æ
n 11 ≠ (max (≠æn 11, n12) ≠ Ω≠

n 11)+ ⌘

+ max
⇣

(≠æn 22 ≠ n21)+
, n12,

≠æ
n 22 ≠ (max (≠æn 22, n21) ≠ Ω≠

n 22)+ ⌘
, (5.1c)

2Ri + Rj6max (≠æn ii, nji)+(≠æn ii≠nij)+

+max
⇣
(≠æn jj ≠nji)+

, nij ,
≠æ
n jj ≠(max (≠æn jj , nji) ≠ Ω≠

n jj)+⌘
. (5.1d)
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5. Linear Deterministic Interference Channel

The proof of Theorem 5.1.1 is divided into two parts. The first part describes the achievable
region and is presented in Appendix A. The second part describes the converse region and is
presented in Appendix B.

Theorem 5.1.1 generalizes previous results regarding the capacity region of the two-user
LDIC with channel-output feedback. For instance, when Ω≠

n 11 = 0 and Ω≠
n 22 = 0, Theorem 5.1.1

describes the capacity region of the two-user LDIC without feedback (Lemma 4 in [17]);
when Ω≠

n 11 > max (≠æn 11, n12) and Ω≠
n 22 > max (≠æn 22, n21), Theorem 5.1.1 describes the capacity

region of the two-user LDIC with perfect channel output feedback (LDIC-POF) (Corollary 1
in [80]); when ≠æ

n 11 = ≠æ
n 22, n12 = n21 and Ω≠

n 11 = Ω≠
n 22, Theorem 5.1.1 describes the capacity

region of the two-user symmetric LDIC-NOF (Theorem 1 in [47] and Theorem 4.1, Case 1001
in [72]); and when ≠æ

n 11 = ≠æ
n 22, n12 = n21, Ω≠

n ii > max (≠æn ii, nij) and Ω≠
n jj = 0, with i œ {1, 2}

and j œ {1, 2} \ {i}, Theorem 5.1.1 describes the capacity region of the two-user symmetric
LDIC with only one perfect channel output feedback (Theorem 4.1, Cases 1000 and 0001 in
[72]).

An interesting observation from Theorem 5.1.1 is that feedback is beneficial only when at
least one of the feedback parameters Ω≠

n 11 or Ω≠
n 22 is beyond a certain threshold (See Section

5.2). For instance, note that when Ω≠
n ii 6 (≠æn ii ≠ nij)+, receiver i is unable to send to its

corresponding transmitter via feedback any information about the message sent by transmitter
j, and thus, feedback does not play any role for enlarging the capacity region. This is basically
because the bit-pipes that are subject to interference at receiver i are not included in the set
of bit-pipes that are above the (feedback) noise level. However, the threshold (≠æn ii ≠ nij)+ for
Ω≠
n ii is necessary but not su�cient for feedback to enlarge the capacity region. Consider for
instance the following examples.

Example 1. Consider the two-user LDIC-NOF with parameters ≠æ
n 11 = 5, ≠æ

n 22 = 1, ≠æ
n 12 = 3,

≠æ
n 21 = 4, and Ω≠

n 22 = 0. The capacity regions C(5, 1, 3, 4, 0, 0) and C(5, 1, 3, 4, 4, 0) are shown in
Figure 5.1a. In this case, channel-output feedback in the transmitter-receiver pair 1 enlarges
the capacity region only when Ω≠

n 11 >
≠æ
n 22 + (≠æn 11 ≠ n12)+ = 3. More specifically, for all

Ω≠
n 11 œ {0, . . . , 3},

C(5, 1, 3, 4,
Ω≠
n 11, 0)=C(5, 1, 3, 4, 0, 0)

and for all Ω≠
n 11 œ {4, 5, . . . , Œ},

C(5, 1, 3, 4, 0, 0)µC(5, 1, 3, 4,
Ω≠
n 11, 0).

In Example 3, in the absence of channel-output feedback, the rate R2 is upper-bounded by
1 bit per channel use, whereas the sum-rate R1 + R2 is upper-bounded by 5 bits per channel
use. Figure 5.1b shows a simple achievability scheme for the rate pair (3, 1). Note that R2
cannot be improved letting transmitter 2 use the bit-pipes X(2:5)

2,n
as they are not observed at

receiver 2. When channel-output feedback is available at least at transmitter-receiver pair 1
and the bit-pipe from transmitter 2 ending at ≠æ

Y
(4)
1,n

is included in the feedback signal Ω≠
Y i,n, the

bit-pipe X
(2)
2,n

can be used by transmitter 2 as feedback provides a path between transmitter 2
and receiver 2: transmitter 2 – receiver 1 – transmitter 1 – receiver 2. For this alternative
path to become available at least the

Ä≠æ
n 22 + (≠æn 11 ≠ n12)+ + 1

ä
-th (feedback) bit-pipe from

receiver 1 to transmitter 1 must be above the noise level, i.e., Ω≠
n 11 >

≠æ
n 22 + (≠æn 11 ≠ n12)+.
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Figure 5.1.: (a) Capacity regions of C(5, 1, 3, 4, 0, 0) (thick red line) and C(5, 1, 3, 4, 4, 0) (thin
blue line). (b) Achievability of the rate pair (3, 1) in an LDIC-NOF with param-
eters ≠æ

n 11 = 5, ≠æ
n 22 = 1, n12 = 3, n21 = 4, Ω≠

n 11 = 0 and Ω≠
n 22 = 0 (no feedback

links). (c) Achievability of the rate pair (3, 2) in an LDIC-NOF with parameters
≠æ
n 11 = 5, ≠æ

n 22 = 1, n12 = 3, n21 = 4, Ω≠
n 11 = 4 and Ω≠

n 22 = 0.

Example 2. Consider an LDIC-NOF with parameters ≠æ
n 11 = 7, ≠æ

n 22 = 7, n12 = 3,
n21 = 5, and Ω≠

n 22 = 0. The capacity regions C(7, 7, 3, 5, 0, 0) and C(7, 7, 3, 5, 6, 0) are shown in
Figure 5.2a. In this case, channel-output feedback in the transmitter-receiver pair 1 enlarges
the capacity region only when Ω≠

n 11 > max
Ä
n21, (≠æn 11 ≠ n12)+ä = 5. More specifically, for all

Ω≠
n 11 œ {0, 1, . . . , 5},

C(7, 7, 3, 5,
Ω≠
n 11, 0) = C(7, 7, 3, 5, 0, 0),

and for all Ω≠
n 11 œ {6, 7, . . . , Œ},

C(7, 7, 3, 5, 0, 0) µ C(7, 7, 3, 5,
Ω≠
n 11, 0).

In Example 5, in the absence of feedback, the sum-rate capacity can be achieved by
simultaneously using two groups of bit-pipes: (a) all bit-pipes starting at transmitter i and
being exclusively observed by receiver i; and (b) all bit-pipes starting at transmitter i that are
observed at receiver j but do not interfere with the first group of bit-pipes, with i œ {1, 2} and
j œ {1, 2} \ {i}. Figure 5.2b shows an achievability scheme that uses this idea and achieves
the sum-rate capacity. Note that using other bit-pipes to increase any of the individual
rates produces interference that cannot be resolved and thus, impedes reliable decoding. In
particular note that X

(2)
2,n

and X
(3)
2,n

must remain unused. When feedback is available at least at
transmitter-receiver pair 1 and the bit-pipe from transmitter 2 ending at ≠æ

Y
(6)
1,n

is included in
the feedback signal Ω≠

Y 1,n, the bit-pipe X
(2)
2,n

can be used for transmitting maximum-entropy i.i.d.
bits for increasing the individual rate R2 and the sum-rate (see Figure 5.2c). This is mainly
because the bits X

(2)
2,n

can be decoded by transmitter 1 via feedback and be re-transmitted to
resolve interference at receiver 1. Interestingly, during the re-transmission by transmitter 1
these bits produce an interference that can be resolved by receiver 2, as these bits have been
received interference-free in the previous channel uses. Note that for this to be possible, at
least one of the bit-pipes of transmitter 2 that does not belong to either of the two groups
mentioned above, i.e., X

(2)
2,n

and X
(3)
2,n

, must be observed above the noise level in the feedback
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Figure 5.2.: (a) Capacity regions of C(7, 7, 3, 5, 0, 0) (thick red line) and C(7, 7, 3, 5, 6, 0) (thin
blue line). (b) Achievability of the rate pair (3, 5) in an LDIC-NOF with param-
eters ≠æ

n 11 = 7, ≠æ
n 22 = 7, n12 = 3, n21 = 5, Ω≠

n 11 = 0 and Ω≠
n 22 = 0 (no feedback

links). (c) Achievability of the rate pair (3, 6) in an LDIC-NOF with parameters
≠æ
n 11 = 7, ≠æ

n 22 = 7, n12 = 3, n21 = 5, Ω≠
n 11 = 6 and Ω≠

n 22 = 0.

link of the transmitter-receiver pair 1, i.e., Ω≠
n 11 > 5.

The exact thresholds for the feedback parameters Ω≠
n 11 or Ω≠

n 22 beyond which the capacity
region is enlarged are strongly dependent on the parameters, i.e., ≠æ

n 11, ≠æ
n 22, n12, and n21. A

characterization of these thresholds is presented in Section 5.2.

5.1.1. Comments on the Achievability Scheme
The achievable region is obtained using a coding scheme that combines classical tools such as
rate splitting, superposition coding, and backward decoding. This coding scheme is described
in Appendix A. In the following, an intuitive description of this coding scheme is presented.
Let the message index sent by transmitter i during the t-th block be denoted by W

(t)
i

œ
{1, 2, . . . , 2NRi}. Following a rate-splitting argument, assume that W

(t)
i

is represented by three
subindices (W (t)

i,C1, W
(t)
i,C2, W

(t)
i,P

) œ {1, 2, . . . , 2NRi,C1} ◊ {1, 2, . . . , 2NRi,C2} ◊ {1, 2, . . . , 2NRi,P },
where Ri,C1 + Ri,C2 + Ri,P = Ri. The codeword generation from (W (t)

i,C1, W
(t)
i,C2, W

(t)
i,P

) fol-
lows a four-level superposition coding scheme. The index W

(t≠1)
i,C1 is assumed to be de-

coded at transmitter j via the feedback link of the transmitter-receiver pair j at the end
of the transmission of block t ≠ 1. Therefore, at the beginning of block t, each trans-
mitter possesses the knowledge of the indices W

(t≠1)
1,C1 and W

(t≠1)
2,C1 . In the case of the first

block t = 1, the indices W
(0)
1,C1 and W

(0)
2,C1 correspond to two indices assumed to be known

by all transmitters and receivers. Using these indices both transmitters are able to iden-
tify the same codeword in the first code-layer. This first code-layer is a sub-codebook of
2N(R1,C1+R2,C1) codewords (see Figure A.1). Denote by u

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1

⌘
the corresponding

codeword in the first code-layer. The second codeword is chosen by transmitter i using
W

(t)
i,C1 from the second code-layer, which is a sub-codebook of 2N Ri,C1 codewords correspond-

ing at u
⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1

⌘
as shown in Figure A.1. Denote by ui

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
i,C1

⌘

the corresponding codeword in the second code-layer. The third codeword is chosen by
transmitter i using W

(t)
i,C2 from the third code-layer, which is a sub-codebook of 2N Ri,C2
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codewords corresponding at ui

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
t,C1

⌘
as shown in Figure A.1. Denote by

vi

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
i,C1, W

(t)
i,C2

⌘
the corresponding codeword in the third code-layer. The

fourth codeword is chosen by transmitter i using W
(t)
i,P

from the fourth code-layer, which is
a sub-codebook of 2N Ri,P codewords corresponding at vi

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
i,C1, W

(t)
i,C2

⌘
as

shown in Figure A.1. Denote by xi,P

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
i,C1, W

(t)
i,C2, W

(t)
i,P

⌘
the correspond-

ing codeword in the fourth code-layer. Finally, the generation of the codeword xi =
(xi,1, xi,2, . . . , xi,N ) œ Ci ™ X N

i
during block t œ {1, 2, . . . , T} is a simple concatenation of

the codewords ui

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
i,C1

⌘
, vi

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
i,C1, W

(t)
i,C2

⌘
and xi,P

⇣
W

(t≠1)
1,C1 ,

W
(t≠1)
2,C1 , W

(t)
i,C1, W

(t)
i,C2, W

(t)
i,P

⌘
, i.e., xi =

Ä
uT

i
, vT

i
, xT

i,P

äT, where the message indices have been
dropped for ease of notation.

The intuition to build this code structure follows from the identification of three types of
bit-pipes that start at transmitter i: (a) the set of bit-pipes that are observed by receiver
j but not necessarily by receiver i and are above the (feedback) noise level; (b) the set of
bit-pipes that are observed by receiver j but not necessarily by receiver i and are below the
(feedback) noise level; and (c) the set of bit-pipes that are exclusively observed by receiver
i. The first set of bit-pipes can be used to convey message index W

(t)
i,C1 from transmitter i

to receiver j and to transmitter j during block t. The second set of bit-pipes can be used to
convey message index W

(t)
i,C2 from transmitter i to receiver j and not to transmitter j during

block t. The third set of bit-pipes can be used to convey message index W
(t)
i,P

from transmitter
i to receiver i during block t.

These three types of bit-pipes justify the three code-layers superposed over a common layer,
which is justified by the fact that feedback allows both transmitters to decode part of the
message sent by each other. The decoder follows a classical backward decoding scheme. This
coding/decoding scheme is thoroughly described in Appendix A in the most general case.
Later, it is particularized for the case of the two-user LDIC-NOF and two-user GIC-NOF.

Other achievable schemes, as reported in [47], can also be obtained as special cases of the
more general scheme presented in [84]. However, in this more general case, the resulting
code for the IC-NOF counts with a handful of unnecessary superposing code-layers, which
demands further optimization. This observation becomes clearer in the analysis of the two-user
GIC-NOF in Chapter 6.

5.1.2. Comments on the Converse Region
The outer bounds (5.1a) and (5.1c) are cut-set bounds and were first reported in [17] for the
case without feedback. These outer bounds are still useful in the case of POF [80]. The outer
bounds (5.1b), (5.1c) and (5.1d) are new.

Consider the notation used in Appendix B (See Figure B.1 and Figure B.2). The outer
bound (5.1b) on the individual rate i is a cut-set bound at the input of an enhanced version of
receiver i. More specifically, this outer bound is calculated considering that receiver i possesses
the message index of transmitter j, i.e., Wj , as side information and observes the channel
output ≠æ

Y i and the feedback signal Ω≠
Y j of the transmitter-receiver pair j at each channel use.

A complete proof of (5.1b) is presented in Appendix B.
The intuition behind the outer bound (5.1c) follows from the observation that in the absence

of feedback, the sum-rate is upper-bounded by the sum of the bit-pipes from transmitter i that
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5. Linear Deterministic Interference Channel

are exclusively observed by receiver i (denoted by Xi,P ) and the bit-pipes from transmitter i

that are observed by receiver j and do not interfere with bit-pipes Xj,P (denoted by Xi,U ),
with i œ {1, 2} and j œ {1, 2} \ {i}. More specifically, in the absence of feedback:

R1 + R26
2X

i=1
dim Xi,P + dim Xi,U . (5.2)

When R1 + R2 = P2
i=1 dim Xi,P + dim Xi,U is achievable without feedback, the bit-pipes

Xi,P and Xi,U can be used for sending maximum-entropy i.i.d. bits from transmitter i to
receiver i, which maximizes the sum-rate. Interestingly, any attempt of using any of the other
bit-pipes creates interference that cannot be resolved and thus impedes reliable decoding.
This observation is formally proved in Appendix B (see proof of (5.1c)). Note also that this
outer bound is not necessarily tight (see Example 3). When feedback is available at least at
transmitter-receiver pair i, other bit-pipes di�erent from Xj,P and Xj,U might be used by
transmitter j for simultaneously increasing the rate Rj and the sum-rate (see Example 5).
This simple observation suggests that there must exits an upper-bound on the sum-rate of the
form:

R1 + R26
2X

i=1
dim Xi,P + dim Xi,U + Fi, (5.3)

where, Fi 6 dim Xi,C + dim Xi,D represents the bit-pipes other than Xi,P and Xi,U , whose
origin is at transmitter i, that can be used for sending maximum entropy i.i.d. bits from
transmitter i to receiver i, while generating an interference that can be resolved by the use
of feedback. Following this idea, the following outer bound is presented in Appendix B (see
proof of (5.1c)):

R1+R26
2X

i=1
dimXi,P +dimXi,U +dimXi,CFj +dimXi,DF , (5.4)

where dim
Ä
Xi,CFj , Xi,DF

ä
is the number of the bit-pipes whose origin is at transmitter i and

are observed above the noise level in the feedback link of transmitter-receiver pair j. The
outer bound (5.4) is derived considering genie-aided receivers. More specifically, receiver i has
inputs ≠æ

Y i and Ω≠
Y i, with i œ {1, 2}.

A similar reasoning is followed to derive the outer bound (5.1d) considering three genie-aided
receivers. More specifically, receiver i has inputs ≠æ

Y i and Ω≠
Y i, with i œ {1, 2}, and a third

receiver has inputs ≠æ
Y i,

Ω≠
Y j , and Wj for at most one i œ {1, 2}, with j œ {1, 2} \ {i}.

5.2. Cases in which Feedback Enlarges the Capacity Region

Let –i œ Q, with i œ {1, 2} and j œ {1, 2} \ {i} be defined as

–i = nij

≠æ
n ii

. (5.5)

For each transmitter-receiver pair i, there exist five possible interference regimes (IRs), as
suggested in [28]: the very weak IR (VWIR), i.e., –i 6 1

2 , the weak IR (WIR), i.e., 1
2 < –i 6 2

3 ,
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the moderate IR (MIR), i.e., 2
3 < –i < 1, the strong IR (SIR), i.e., 1 6 –i 6 2 and the very

strong IR (VSIR), i.e., –i > 2. The scenarios in which the desired signal is stronger than
the interference (–i < 1), namely the VWIR, the WIR, and the MIR, are referred to as the
low-interference regimes (LIRs). Conversely, the scenarios in which the desired signal is weaker
than or equal to the interference (–i > 1), namely the SIR and the VSIR, are referred to as
the high-interference regimes (HIRs).

The main results of this section are presented using a set of events (Boolean variables) that
are determined by the parameters ≠æ

n 11,
≠æ
n 22, n12, and n21. Given a fixed tuple (≠æn 11, ≠æ

n 22,
n12, n21), the events are defined below:

E1 : –1 < 1 · –2 < 1, (5.6)
E2,i : –i 6

1
2 · 1 6 –j 6 2, (5.7)

E3,i : –i 6
1
2 · –j > 2, (5.8)

E4,i : 1
2 < –i 6

2
3 · –j > 1, (5.9)

E5,i : 2
3 < –i < 1 · –j > 1, (5.10)

E6,i : 1
2 < –i 6 1 · –j > 1, (5.11)

E7,i : –i > 1 · –j 6 1, (5.12)
E8,i : ≠æ

n ii > nji, (5.13)
E9 : ≠æ

n 11 + ≠æ
n 22 > n12 + n21, (5.14)

E10,i : ≠æ
n ii + ≠æ

n jj > nij + 2nji, (5.15)
E11,i : ≠æ

n ii + ≠æ
n jj < nij . (5.16)

In the following, in the case of E8,i : ≠æ
n ii > nji, the notation ‹E8,i indicates ≠æ

n ii < nji;
the notation E8,i indicates ≠æ

n ii 6 nji (logical complement); and the notation Ě8,i indicates
≠æ
n ii > nji. In the case E1 : –1 < 1 · –2 < 1, the notation ‹E1 indicates –1 > 1 · –2 > 1; and
the notation E1 indicates –1 > 1 · –2 > 1. In the case E9 : ≠æ

n 11 + ≠æ
n 22 > n12 + n21, the

notation E9 indicates ≠æ
n 11 + ≠æ

n 22 6 n12 + n21.
Combining the events (5.6)-(5.16), five main scenarios are identified:

S1,i: (E1 · E8,i)‚(E2,i · E8,i)‚(E3,i·E8,i·E9)‚(E4,i·E8,i·E9)‚(E5,i·E8,i·E9) , (5.17)
S2,i:

Ä
E3,i · ‹E8,j · E9

ä
‚
Ä
E6,i · ‹E8,j · E9

ä
‚
Ä‹E1 · ‹E8,j

ä
, (5.18)

S3,i:
Ä
E1 · E8,i

ä
‚
Ä
E2,i · E8,i

ä
‚
Ä
E3,i · Ě8,j · E8,i

ä
‚
Ä
E4,i · Ě8,j · E8,i

ä

‚
Ä
E5,i · Ě8,j · E8,i

ä
‚
Ä
E1 · Ě8,j

ä
‚ (E7,i) , (5.19)

S4 : E1 · E8,1 · E8,2 · E10,1 · E10,2, (5.20)
S5 : E1 · E11,1 · E11,2. (5.21)

For all i œ {1, 2}, the events S1,i, S2,i, S3,i, S4 and S5 exhibit the properties stated by the
following corollaries.

Corollary 1. For all (≠æn 11,
≠æ
n 22, n12, n21) œ N4, given a fixed i œ {1, 2}, only one of the

events S1,i, S2,i and S3,i holds true.
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Corollary 2. For all (≠æn 11,
≠æ
n 22, n12, n21) œ N4, when one of the events S4 or S5 holds true,

then the other necessarily holds false.

Note that Corollary 2 does not exclude the case in which both S4 and S5 simultaneously
hold false.

Corollary 3. For all (≠æn 11,
≠æ
n 22, n12, n21) œ N4, when S4 holds true, then both S1,1 and S1,2

hold true; and when S5 holds true, then both S2,1 and S2,2 hold true.

5.2.1. Rate Improvement Metrics
Given a fixed tuple (≠æn 11,

≠æ
n 22, n12, n21), let C(Ω≠n 11,

Ω≠
n 22) be the capacity region of an LDIC-

NOF with parameters Ω≠
n 11 and Ω≠

n 22. The maximum improvement of the individual rates R1
and R2, denoted by �1(Ω≠n 11,

Ω≠
n 22) and �2(Ω≠n 11,

Ω≠
n 22), due to the e�ect of channel-output

feedback with respect to the case without feedback is:

�1(Ω≠n 11,
Ω≠
n 22)= max

0<R2<R
ú
2

(

sup
n

R1 : (R1, R2) œ C(Ω≠n 11,
Ω≠
n 22)

o
≠sup

n
R

†
1 : (R†

1, R2) œ C(0, 0)
o)

and (5.22)

�2(Ω≠n 11,
Ω≠
n 22)= max

0<R1<R
ú
1

(

sup
n

R2 : (R1, R2) œ C(Ω≠n 11,
Ω≠
n 22)

o
≠sup

n
R

†
2 : (R1, R

†
2) œ C(0, 0)

o)

,

(5.23)

with

R
ú
1=sup

n
r1 : (r1, r2) œ C(0, 0)

o
and (5.24)

R
ú
2=sup

n
r2 : (r1, r2) œ C(0, 0)

o
. (5.25)

Note that for a fixed i œ {1, 2}, �i(Ω≠n 11,
Ω≠
n 22) > 0 if and only if it is possible to achieve a rate

pair (R1, R2) œ R2
+ with channel-output feedback such that Ri is greater than the maximum

rate achievable by transmitter-receiver i without feedback when the rate of transmitter-receiver
pair j is fixed at Rj . In the following, given fixed parameters Ω≠

n 11 and Ω≠
n 22, the statement

“the rate Ri is improved by using feedback” is used to indicate that �i(Ω≠n 11,
Ω≠
n 22) > 0.

Alternatively, the maximum improvement of the sum-rate �(Ω≠n 11,
Ω≠
n 22) with respect to the

case without feedback is:

�(Ω≠n 11,
Ω≠
n 22)=sup

n
R1 + R2 : (R1, R2) œ C(Ω≠n 11,

Ω≠
n 22)

o
≠ sup

n
R

†
1 + R

†
2 : (R†

1, R
†
2) œ C(0, 0)

o
.

(5.26)

Note that �(Ω≠n 11,
Ω≠
n 22) > 0 if and only if there exists a rate pair with feedback whose sum

is greater than the maximum sum-rate achievable without feedback. In the following, given
fixed parameters Ω≠

n 11 and Ω≠
n 22, the statement “the sum-rate is improved by using feedback” is

used to imply that �(Ω≠n 11,
Ω≠
n 22) > 0.

In the following, when feedback is exclusively used by transmitter-receiver pair i, i.e., Ω≠
n ii > 0

and Ω≠
n jj = 0, then the maximum improvement of the individual rate of transmitter-receiver k,

with k œ {1, 2}, and the maximum improvement of the sum-rate are denoted by �k(Ω≠n ii) and
�(Ω≠n ii), respectively. Hence, this notation �k(Ω≠n ii) replaces either �k(Ω≠n 11, 0) or �k(0,

Ω≠
n 22),
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5.2. Cases in which Feedback Enlarges the Capacity Region

when i = 1 or i = 2, respectively. The same holds for the notation �(Ω≠n ii) that replaces
�(Ω≠n 11, 0) or �(0,

Ω≠
n 22), when i = 1 or i = 2, respectively.

5.2.2. Enlargement of the Capacity Region
Given fixed parameters (≠æn 11,

≠æ
n 22, n12, n21), i œ {1, 2}, and j œ {1, 2} \ {i}, the capacity

region of a two-user LDIC-NOF, when feedback is available only at transmitter-receiver pair
i, i.e., Ω≠

n ii > 0 and Ω≠
n jj = 0, is denoted by C (Ω≠n ii) instead of C (Ω≠n 11, 0) or C (0,

Ω≠
n 22), when

i = 1 or i = 2, respectively. Following this notation, Theorem 5.2.1 identifies the exact values
of Ω≠

n ii for which the strict inclusion C (0, 0) µ C (Ω≠n ii) holds for i œ {1, 2}.
5.2.1 Theorem (Enlargement of the Capacity Region)

Let (≠æn 11,
≠æ
n 22, n12, n21) œ N4 be a fixed tuple. Let also i œ {1, 2}, j œ {1, 2}\{i}

and Ω≠
n

ú
ii

œ N be fixed integers, with

Ω≠
n

ú
ii =

®
max

Ä
nji, (≠æn ii ≠ nij)+ä if S1,i holds true

≠æ
n jj + (≠æn ii ≠ nij)+ if S2,i holds true.

(5.27)

Assume that S3,i holds true. Then, for all Ω≠
n ii œ N, C

⇣
0, 0
⌘

= C
⇣Ω≠

n ii

⌘
. Assume

that either S1,i holds true or S2,i holds true. Then, for all Ω≠
n ii 6 Ω≠

n
ú
ii

, C
⇣
0, 0
⌘

=

C
⇣Ω≠

n ii

⌘
and for all Ω≠

n ii >
Ω≠
n

ú
ii

, C
⇣
0, 0
⌘

µ C
⇣Ω≠

n ii

⌘
.

Proof: The proof of Theorem 5.2.1 is presented in Appendix C.
Theorem 5.2.1 shows that under event S3,i in (5.19), implementing feedback in transmitter-

receiver pair i, with any Ω≠
n ii > 0 and Ω≠

n jj = 0, does not enlarge the capacity region. Note
that when both E8,i and ‹E8,j hold false, then both S1,i and S2,i hold false, which implies that
S3,i holds true (Corollary 1). The following remark is a consequence of this observation.

Remark 1: A necessary but not su�cient condition for enlarging the capacity region by
using feedback in transmitter-receiver pair i is: there exists at least one transmitter able to
send more information bits to receiver i than to receiver j, i.e., ≠æ

n ii > nji (Event E8,i) or
nij >

≠æ
n jj (Event ‹E8,j).

Alternatively, under events S1,i in (5.17) and S2,i in (5.18), the capacity region can be
enlarged when Ω≠

n ii >
Ω≠
n

ú
ii

. It is important to highlight that in the cases in which feedback
enlarges the capacity region of the two-user LDIC-NOF, that is, in events S1,1, S2,1, S1,2 or
S2,2, for all i œ {1, 2} and j œ {1, 2} \ {i}, the following always holds true:

Ω≠
n

ú
ii > (≠æn ii ≠ nij)+

. (5.28)

Essentially, the inequality in (5.28) unveils a necessary but not su�cient condition to enlarge
the capacity region using channel-output feedback. This condition is that for at least one
i œ {1, 2}, with j œ {1, 2} \ {i}, transmitter i decodes a subset of the information bits sent by
transmitter j at each channel use.

Another interesting observation is that the threshold Ω≠
n

ú
ii

beyond which feedback is useful is
di�erent under event S1,i in (5.17) and event S2,i in (5.18). In general when S1,i holds true,
the enlargement of the capacity region is due to the fact that feedback allows using interference
as side information [78]. Alternatively, when S2,i in (5.18) holds true, the enlargement of

45
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the capacity region occurs as a consequence of the fact that some of the bits that cannot be
transmitted directly from transmitter j to receiver j, can arrive to receiver j via an alternative
path: transmitter j - receiver i - transmitter i - receiver j.

5.2.3. Improvement of the Individual Rate Ri by Using Feedback in Link i

Given fixed parameters (≠æn 11,
≠æ
n 22, n12, n21), and i œ {1, 2}, implementing channel-output

feedback in transmitter-receiver pair i increases the individual rate Ri, i.e., �i(Ω≠n ii) > 0 for
some values of Ω≠

n ii. Theorem 5.2.2 identifies the exact values of Ω≠
n ii for which �i(Ω≠n ii) > 0.

5.2.2 Theorem (Improvement of Ri by Using Feedback in Link i)

Let (≠æn 11,
≠æ
n 22, n12, n21) œ N4 be a fixed tuple. Let also i œ {1, 2}, j œ {1, 2}\{i}

and Ω≠
n

†
ii

œ N be fixed integers, with

Ω≠
n

†
ii

= max
Ä
nji, (≠æn ii ≠ nij)+ä

. (5.29)

Assume that either S2,i holds true or S3,i holds true. Then, for all Ω≠
n ii œ N,

�i(Ω≠n ii) = 0. Assume that S1,i holds true. Then, when Ω≠
n ii 6 Ω≠

n
†
ii

, it holds that
�i(Ω≠n ii) = 0; and when Ω≠

n ii >
Ω≠
n

†
ii

, it holds that �i(Ω≠n ii) > 0.

Proof: The proof of Theorem 5.2.2 is presented in Appendix D.
Theorem 5.2.2 highlights that under events S2,i in (5.18) and S3,i in (5.19), the individual

rate Ri cannot be improved by using feedback in transmitter-receiver pair i, i.e., �i(Ω≠n ii) =
0. Alternatively, under event S1,i in (5.17), the individual rate Ri can be improved, i.e.,
�i

⇣Ω≠
n ii

⌘
> 0, whenever Ω≠

n ii > max
Ä
nji, (≠æn ii ≠ nij)+ä. Hence, given the definition of S1,i,

the following remark is relevant.
Remark 2: A necessary but not su�cient condition for �i

⇣Ω≠
n ii

⌘
> 0 is: the number of

bit-pipes from transmitter i to receiver i is greater than the number of bit-pipes from transmitter
i to receiver j, i.e., ≠æ

n ii > nji (Event E8,i)

5.2.4. Improvement of the Individual Rate Rj by Using Feedback in Link i

Given fixed parameters (≠æn 11,
≠æ
n 22, n12, n21), i œ {1, 2}, and j œ {1, 2} \ {i}, implementing

channel-output feedback in transmitter-receiver pair i increases the individual rate Rj , i.e.,
�j(Ω≠n ii) > 0 for some values of Ω≠

n ii. Theorem 5.2.3 identifies the exact values of Ω≠
n ii for which

�j(Ω≠n ii) > 0.
5.2.3 Theorem (Improvement of Rj by Using Feedback in Link i)

Let (≠æn 11,
≠æ
n 22, n12, n21) œ N4 be a fixed tuple. Let also i œ {1, 2}, j œ {1, 2}\{i}

and Ω≠
n

ú
ii

œ N given in (5.27), be fixed integers. Assume that S3,i holds true.
Then, for all Ω≠

n ii œ N, �j(Ω≠n ii) = 0. Assume that either S1,i holds true or
S2,i holds true. Then, when Ω≠

n ii 6 Ω≠
n

ú
ii

, it holds that �j(Ω≠n ii) = 0; and when
Ω≠
n ii >

Ω≠
n

ú
ii

, it holds that �j(Ω≠n ii) > 0.

Proof: The proof of Theorem 5.2.3 follows along the same lines of the proof of Theorem
5.2.2 in Appendix D.
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Theorem 5.2.3 shows that under event S3,i in (5.19), implementing feedback in transmitter-
receiver pair i does not bring any improvement on the rate Rj . This is in line with the results
of Theorem 5.2.1. In contrast, under events S1,i in (5.17) and S2,i in (5.18), the individual
rate Rj can be improved, i.e., �j(Ω≠n ii) > 0 for all Ω≠

n ii >
Ω≠
n

ú
ii

. From the definition of events
S1,i and S2,i, the following remark holds:

Remark 3: A necessary but not su�cient condition for �j

⇣Ω≠
n ii

⌘
> 0 is: there exists at

least one transmitter able to send more information bits to receiver i than to receiver j, i.e.,
≠æ
n ii > nji (Event E8,i) or nij >

≠æ
n jj (Event ‹E8,j).

It is important to highlight that under event S1,i, the threshold on Ω≠
n ii for increasing the

individual rate Ri, i.e., Ω≠
n

†
ii

, and Rj , i.e., Ω≠
n

ú
ii

, are identical, see Theorem 5.2.2 and Theorem
5.2.3. This implies that in this case, the use of feedback in transmitter-receiver pair i, with
Ω≠
n ii >

Ω≠
n

†
ii

= Ω≠
n

ú
ii

, benefits both transmitter-receiver pairs, i.e., �i(Ω≠n ii) > 0 and �j(Ω≠n ii) > 0.
Under event S2,i, using feedback in transmitter-receiver pair i, with Ω≠

n ii >
Ω≠
n

ú
ii

, exclusively
benefits transmitter-receiver pair j, i.e., �i(Ω≠n ii) = 0 and �j(Ω≠n ii) > 0.

5.2.5. Improvement of the Sum-Rate
Given fixed parameters (≠æn 11,

≠æ
n 22, n12, n21), and i œ {1, 2}, implementing channel-output

feedback in transmitter-receiver pair i increases the sum-rate, i.e., �(Ω≠n ii) > 0 for some values
of Ω≠

n ii. Theorem 5.2.4 identifies the exact values of Ω≠
n ii for which �(Ω≠n ii) > 0.

5.2.4 Theorem (Improvement of the Sum-Capacity)

Let (≠æn 11,
≠æ
n 22, n12, n21) œ N4 be a fixed tuple. Let also i œ {1, 2}, j œ {1, 2}\{i}

and Ω≠
n

+
ii

œ N be fixed integers, with

Ω≠
n

+
ii

=
®

max
Ä
nji, (≠æn ii ≠ nij)+ä if S4 holds true

≠æ
n jj + (≠æn ii ≠ nij)+ if S5 holds true.

(5.30)

Assume that S4 holds false and S5 holds false. Then, �(Ω≠n ii) = 0 for all Ω≠
n ii œ N.

Assume that S4 holds true or S5 holds true. Then, when Ω≠
n ii 6 Ω≠

n
+
ii

, it holds
that �(Ω≠n ii) = 0; and when Ω≠

n ii >
Ω≠
n

+
ii

, it holds that �(Ω≠n ii) > 0.

Proof: The proof of Theorem 5.2.4 is presented in Appendix E.
Theorem 5.2.4 introduces a necessary but not su�cient condition for improving the sum-rate

by implementing feedback in transmitter-receiver pair i.
Remark 4: A necessary but not su�cient condition for observing �(Ω≠n ii) > 0 is to satisfy

one of the following conditions: (a) both transmitter-receiver pairs are in LIR (Event E1); or
(b) both transmitter-receiver pairs are in HIR (Event E1).

Finally, it follows from Corollary 3 that when S4 or S5 holds true, with i œ {1, 2} and
Ω≠
n ii >

Ω≠
n

+
ii

, in addition to �(Ω≠n ii) > 0, it also holds that �1(Ω≠n ii) > 0 and �2(Ω≠n ii) > 0.

5.2.6. Examples
Example 3. Consider an LDIC-NOF with parameters ≠æ

n 11 = 7, ≠æ
n 22 = 7, n12 = 3, and

n21 = 5.
In Example 3, both S1,1 and S1,2 hold true. Hence, from Theorem 5.2.1, when Ω≠

n 11 > 5
or Ω≠

n 22 > 3, there always exists an enlargement of the capacity region. More specifically, it
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5. Linear Deterministic Interference Channel

Figure 5.3.: Capacity regions C(0, 0) (thick red line) and C(6, 0) (thin blue line), with ≠æ
n 11 = 7,

≠æ
n 22 = 7, n12 = 3, n21 = 5.

follows from Theorem 5.2.2 and Theorem 5.2.3 that using feedback in transmitter-receiver
pair 1, with Ω≠

n 11 > 5 or using feedback in transmitter-receiver pair 2, with Ω≠
n 22 > 3, both

individual rates can be simultaneously improved, i.e., �1(Ω≠n ii) > 0 and �2(Ω≠n ii) > 0 with
i = 1 or i = 2 respectively. Alternatively, note that S4 holds true. Hence, it follows from
Theorem 5.2.4 that using feedback in transmitter-receiver pair 1, with Ω≠

n 11 > 5 or using
feedback in transmitter-receiver pair 2, with Ω≠

n 22 > 3, improves the sum-rate, i.e., �(Ω≠n ii) > 0
with i = 1 or i = 2, respectively. These conclusions are observed in Figure 5.3, for the case
Ω≠
n 11 = 6 and Ω≠

n 22 = 0, where the capacity regions C(0, 0) (thick red line) and C(6, 0) (thin blue
line) are plotted. Note that, when Ω≠

n 11 = 6, there always exist a rate pair (RÕ
1, R

Õ
2) œ C (0, 0)

and a rate pair (R1, R2) œ C(6, 0) \ C(0, 0) such that R
Õ
1 < R1 and R

Õ
2 = R2 (Theorem

5.2.2). Simultaneously, there always exist a rate pair (RÕ
1, R

Õ
2) œ C (0, 0) and a rate pair

(R1, R2) œ C(6, 0) \ C(0, 0) such that R
Õ
2 < R2 and R

Õ
1 = R1 (Theorem 5.2.3). Finally, note

that for all rate pairs (RÕ
1, R

Õ
2) œ C (0, 0) there always exists a rate pair (R1, R2) œ C(6, 0), for

which R1 + R2 > R
Õ
1 + R

Õ
2 (Theorem 5.2.4).

Example 4. Consider an LDIC-NOF with parameters ≠æ
n 11 = 7, ≠æ

n 22 = 8, n12 = 6, and
n21 = 5.

In Example 4, the events S1,1 and S1,2 hold true, and the events S4 and S5 hold false. Hence,
it follows from Theorem 5.2.4 that using feedback in either transmitter-receiver pair does not
improve the sum-rate, i.e., for all i œ {1, 2} and for all Ω≠

n ii > 0, �(Ω≠n ii) = 0. These conclusions
are observed in Figure 5.4, for the case Ω≠

n 11 = 0 and Ω≠
n 22 = 7, where the capacity regions

C(0, 0) (thick red line) and C(0, 7) (thin blue line) are plotted. From Example 4, it becomes
evident that when S1,1 and S1,2 hold true, S4 and S5 do not necessarily hold true. That is,
the improvements on the individual rates, despite that they can be observed simultaneously,
are not enough to improve the sum-rate beyond what is already achievable without feedback.
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Figure 5.4.: Capacity regions C(0, 0) (thick red line) and C(0, 7) (thin blue line), with ≠æ
n 11 = 7,

≠æ
n 22 = 8, n12 = 6, n21 = 5.

Example 5. Consider an LDIC-NOF with parameters ≠æ
n 11 = 5, ≠æ

n 22 = 1, n12 = 3, and
n21 = 4.

In Example 5, both S2,1 in (5.18) and S3,2 in (5.19) hold true. Hence, it follows from
Theorem 5.2.1 that the capacity region can be enlarged by using feedback in transmitter-
receiver pair 1 when Ω≠

n 11 > 3, whereas using feedback in transmitter-receiver pair 2 does not
enlarge the capacity region. More specifically, it follows from Theorem 5.2.2 and Theorem
5.2.3 that using feedback in transmitter-receiver pair 1 does not improve the individual rate
R1 but R2, i.e., �1(Ω≠n 11) = 0 and �2(Ω≠n 11) > 0. Note also that S4 and S5 hold false. Hence,
it follows from Theorem 5.2.4 that using feedback in either transmitter-receiver pair does not
improve the sum-rate, i.e., �(Ω≠n 11) = 0 and �(Ω≠n 22) = 0. These conclusions are observed in
Figure 5.5, for the case Ω≠

n 11 = 4 and Ω≠
n 22 = 0, where the capacity regions C(0, 0) (thick red

line) and C(4, 0) (thin blue line) are plotted.

5.3. Generalized Degrees of Freedom
This section focuses on the analysis of the number of GDoF of the two-user LDIC-NOF for
studying the case in which feedback is simultaneously implemented in both transmitter-receiver
pairs. Moreover, the analysis is only performed for the symmetric case, i.e., ≠æ

n = ≠æ
n 11 = ≠æ

n 22,
m = n12 = n21, and Ω≠

n = Ω≠
n 11 = Ω≠

n 22, with (≠æn , m,
Ω≠
n ) œ N3. The results in Theorem 5.1.1

allow a more general analysis of the number of GDoF, e.g., non-symmetric case. However,
the symmetric case captures some of the most important insights regarding how the capacity
region is enlarged when feedback is used in both transmitter-receiver pairs.

Essentially, given the parameters ≠æ
n , m and Ω≠

n , with – = m≠æ
n

and — =
Ω≠
n≠æ
n

, the number of
GDoF, denoted by D(–, —), is the ratio between the symmetric capacity, i.e., Csym(≠æn , m,

Ω≠
n ) =
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Figure 5.5.: Capacity regions C(0, 0) (thick red line) and C(4, 0) (thin blue line), with ≠æ
n 11 = 5,

≠æ
n 22 = 1, n12 = 3, n21 = 4.

sup{R : (R, R) œ C(≠æn ,
≠æ
n , m, m,

Ω≠
n ,

Ω≠
n )}, and the individual interference-free point-to-point

capacity, i.e., ≠æ
n , when (≠æn , m,

Ω≠
n ) æ (Œ, Œ, Œ) at constant ratios – = m≠æ

n
and — =

Ω≠
n≠æ
n

. More
specifically, the number of GDoF is:

D(–, —) = lim
(≠æ

n ,m,
Ω≠
n )æ(Œ,Œ,Œ)

Csym(≠æn , m,
Ω≠
n )

≠æ
n

. (5.31)

Theorem 5.3.1 determines the number of GDoF for the two-user symmetric LDIC-NOF.

5.3.1 Theorem (The number of GDoF)

The number of GDoF for the two-user symmetric LDIC-NOF with parameters
– and — is given by

D(–, —)=min
 

max(1, –), max
Ä
1, — ≠ (1 ≠ –)+ä

,
1
2
Ä
max(1, –) + (1 ≠ –)+ä

,

max
Ä
(1 ≠ –)+

, –, 1 ≠ (max(1, –) ≠ —)+ä
!

. (5.32)

Proof: The proof of Theorem 5.3.1 is presented in Appendix F.
The result in Theorem 5.3.1 can also be obtained from Theorem 1 in [47]. The following

properties are a direct consequence of Theorem 5.3.1.

Corollary 4. The number of GDoF for the two-user symmetric LDIC-NOF with parameters
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Figure 5.6.: Generalized Degrees of Freedom as a function of the parameters – and —, with
0 6 – 6 3 and — œ {3

5 ,
4
5 ,

6
5}, of the two-user symmetric LDIC-NOF. The plot

without feedback is obtained from [28] and the plot with perfect-output feedback
is obtained from [80].

– and — satisfies the following properties:

’– œ
ï
0,

2
3

ò
and — 6 1, max

Å1
2 , —

ã
6 D(–, —) 6 1, (5.33a)

’– œ
ï
0,

2
3

ò
and — > 1, D(–, —) = 1 ≠ –

2 , (5.33b)

’– œ
Å2

3 , 2
ò

and — œ [0, Œ), D(–, 0) = D(–, —) = D(–, max(1, –)), (5.33c)

’– œ (2, Œ) and — > 1, 1 6 D(–, —) 6 min
Å

–

2 , —

ã
, (5.33d)

’– œ (2, Œ) and — < 1, D(–, —) = 1. (5.33e)

Properties (5.33a) and (5.33b) highlight the fact that the existence of feedback links in
the two-user symmetric LDIC-NOF in the VWIR and WIR does not have any impact in the
number of GDoF when — 6 1

2 , and the number of GDoF is equal to the case with perfect-output
feedback when — > 1. Property (5.33c) underlines that in the two-user symmetric LDIC-NOF
in MIR and SIR, the number of GDoF is identical in both extreme cases: without feedback
(— = 0) and with perfect-output feedback

Ä
— = max(1, –)

ä
. Finally, from (5.33d) and (5.33e),

it follows that for observing an improvement in the number of GDoF of the two-user symmetric
LDIC-NOF in VSIR, the following condition must be met: — > 1. That is, the number of
bit-pipes in the feedback links must be greater than the number of bit-pipes in the direct links.

Figure 5.6 shows the number of GDoF for the two-user symmetric LDIC-NOF for the case
in which 0 6 – 6 3 and — œ {3

5 ,
4
5 ,

6
5}.
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— 6 —
Gaussian Interference

Channel

This chapter presents the main results on the centralized GIC-NOF described in
Section 2.1. These include an achievable region (Theorem 6.1.1) and a converse
region (Theorem 6.2.1), denoted by C and C respectively, for the two-user GIC-

NOF with fixed parameters ≠≠æSNR1, ≠≠æSNR2, INR12, INR21, Ω≠≠SNR1, and Ω≠≠SNR2. In general, the
capacity region of a given multi-user channel is said to be approximated to within a constant
gap according to the following definition.

Definition 6 (Approximation to within › units).
A closed and convex set T µ Rm

+ is approximated to within › units by the sets T and T if
T ™ T ™ T and for all t = (t1, t2, . . . , tm) œ T ,

Ä
(t1 ≠ ›)+

, (t2 ≠ ›)+
, . . . , (tm ≠ ›)+ä œ T .

Denote by C the capacity region of the 2-user GIC-NOF. The achievable region C and the
converse region C approximate the capacity region C to within 4.4 bits (Theorem 6.3.1).

6.1. An Achievable Region
The description of the achievable region C is presented using the constants a1,i; the functions
a2,i : [0, 1] æ R+, al,i : [0, 1]2 æ R+, with l œ {3, . . . , 6}; and a7,i : [0, 1]3 æ R+, which are
defined as follows, for all i œ {1, 2}, with j œ {1, 2} \ {i}:

a1,i=
1
2 log

 

2 +
≠≠≠æSNRi

INRji

!

≠ 1
2 , (6.1a)

a2,i(fl)=1
2 log

⇣
b1,i(fl) + 1

⌘
≠ 1

2 , (6.1b)
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a3,i(fl, µ)=1
2 log

Ö Ω≠≠SNRi

⇣
b2,i(fl) + 2

⌘
+ b1,i(1) + 1

Ω≠≠SNRi

⇣
(1 ≠ µ) b2,i(fl) + 2

⌘
+ b1,i(1) + 1

è

, (6.1c)

a4,i(fl, µ)=1
2 log

Ç⇣
1 ≠ µ

⌘
b2,i(fl) + 2

å
≠ 1

2 , (6.1d)

a5,i(fl, µ)=1
2 log

 

2 +
≠≠æSNRi

INRji

+
⇣
1 ≠ µ

⌘
b2,i(fl)

!

≠ 1
2 , (6.1e)

a6,i(fl, µ)=1
2 log

 ≠≠æSNRi

INRji

Ç⇣
1 ≠ µ

⌘
b2,j(fl) + 1

å
+ 2

!

≠ 1
2 , and (6.1f)

a7,i(fl, µ1, µ2)=1
2 log

 ≠≠æSNRi

INRji

Ç⇣
1 ≠ µi

⌘
b2,j(fl) + 1

å
+
⇣
1 ≠ µj

⌘
b2,i(fl) + 2

!

≠ 1
2 , (6.1g)

where the functions bl,i : [0, 1] æ R+, with (l, i) œ {1, 2}2 are defined as follows:

b1,i(fl)=≠≠æSNRi + 2fl

q≠≠æSNRiINRij + INRij and (6.2a)
b2,i(fl)=

⇣
1 ≠ fl

⌘
INRij ≠ 1, (6.2b)

with j œ {1, 2} \ {i}.

Note that the functions in (6.1) and (6.2) depend on ≠≠æSNR1, ≠≠æSNR2, INR12, INR21, Ω≠≠SNR1,
and Ω≠≠SNR2, however as these parameters are fixed in this analysis, this dependence is not
emphasized in the definition of these functions. Finally, using this notation, Theorem 6.1.1 is
presented as follows:

6.1.1 Theorem (Achievable Region)

The capacity region C contains the region C given by the closure of the set of
all possible achievable rate pairs (R1, R2) œ R2

+ that satisfy:

R16min
⇣
a2,1(fl), a6,1(fl, µ1) + a3,2(fl, µ1), a1,1 + a3,2(fl, µ1) + a4,2(fl, µ1)

⌘
,

(6.3a)
R26min

⇣
a2,2(fl), a3,1(fl, µ2) + a6,2(fl, µ2), a3,1(fl, µ2) + a4,1(fl, µ2) + a1,2

⌘
,

(6.3b)
R1 + R26min

⇣
a2,1(fl) + a1,2, a1,1 + a2,2(fl),

a3,1(fl, µ2) + a1,1 + a3,2(fl, µ1) + a7,2(fl, µ1, µ2),
a3,1(fl, µ2) + a5,1(fl, µ2) + a3,2(fl, µ1) + a5,2(fl, µ1),
a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + a3,2(fl, µ1) + a1,2

⌘
, (6.3c)

2R1 + R26min
⇣
a2,1(fl) + a1,1 + a3,2(fl, µ1) + a7,2(fl, µ1, µ2),

a3,1(fl, µ2) + a1,1 + a7,1(fl, µ1, µ2) + 2a3,2(fl, µ1) + a5,2(fl, µ1),
a2,1(fl) + a1,1 + a3,2(fl, µ1) + a5,2(fl, µ1)

⌘
, (6.3d)
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R1 + 2R26min
⇣
a3,1(fl, µ2) + a5,1(fl, µ2) + a2,2(fl) + a1,2,

a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + a2,2(fl) + a1,2,

2a3,1(fl, µ2) + a5,1(fl, µ2) + a3,2(fl, µ1) + a1,2 + a7,2(fl, µ1, µ2)
⌘
,(6.3e)

with (fl, µ1, µ2) œ
h
0,

Ä
1 ≠ max

Ä 1
INR12

,
1

INR21

ää+i◊ [0, 1] ◊ [0, 1].

Proof: The proof of Theorem 6.1.1 is presented in Appendix A.
The achievability scheme presented in Appendix A is general and thus, it can be used for

both the two-user LDIC-NOF and the two-user GIC-NOF. The special case of the two-user
GIC-NOF is derived in Appendix A.

6.2. A Converse Region

The description of the converse region C is determined by two events denoted by Sl1,1 and
Sl2,2, where (l1, l2) œ {1, . . . , 5}2. The events are defined as follows:

S1,i:
≠≠æSNRj < min (INRij , INRji) , (6.4a)

S2,i: INRji 6
≠≠æSNRj < INRij , (6.4b)

S3,i: INRij 6 ≠≠æSNRj < INRji, (6.4c)
S4,i: max (INRij , INRji) 6

≠≠æSNRj < INRijINRji, (6.4d)
S5,i:

≠≠æSNRj > INRijINRji. (6.4e)

Note that for all i œ {1, 2}, the events S1,i, S2,i, S3,i, S4,i, and S5,i are mutually exclusive.
This observation shows that given any 4-tuple (≠≠æSNR1,

≠≠æSNR2, INR12, INR21), there always
exists one and only one pair of events (Sl1,1, Sl2,2), with (l1, l2) œ {1, . . . , 5}2, that identifies a
unique scenario. Note also that the pairs of events (S2,1, S2,2) and (S3,1, S3,2) are not feasible.
In view of this, twenty-three di�erent scenarios can be identified using the events in (6.4).
Once the exact scenario is identified, the converse region is described using the functions
Ÿl,i : [0, 1] æ R+, with l œ {1, . . . , 3}; Ÿl : [0, 1] æ R+, with l œ {4, 5}; Ÿ6,l : [0, 1] æ R+, with
l œ {1, . . . , 4}; and Ÿ7,i,l : [0, 1] æ R+, with l œ {1, 2}. These functions are defined as follows,
for all i œ {1, 2}, with j œ {1, 2} \ {i}:

Ÿ1,i(fl)=1
2 log

⇣
b1,i(fl) + 1

⌘
, (6.5a)

Ÿ2,i(fl)=1
2 log

⇣
1 + b5,j(fl)

⌘
+ 1

2 log
 

1+ b4,i(fl)
1 + b5,j(fl)

!

, (6.5b)

Ÿ3,i(fl)=1
2log

áÇ
b4,i(fl) + b5,j(fl) + 1

å
Ω≠≠SNRj

Ç
b1,j(1)+1

åÇ
b4,i(fl)+ 1

å +1

ë

+ 1
2 log

⇣
b4,i(fl) + 1

⌘
, (6.5c)

Ÿ4(fl)=1
2 log

 

1 + b4,1(fl)
1 + b5,2(fl)

!

+ 1
2 log

⇣
b1,2(fl) + 1

⌘
, (6.5d)
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Ÿ5(fl)=1
2 log

 

1+ b4,2(fl)
1+b5,1(fl)

!

+ 1
2 log

⇣
b1,1(fl)+1

⌘
, (6.5e)

Ÿ6(fl)=

8
>>>>><

>>>>>:

Ÿ6,1(fl) if (S1,2 ‚ S2,2 ‚ S5,2) · (S1,1 ‚ S2,1 ‚ S5,1)
Ÿ6,2(fl) if (S1,2 ‚ S2,2 ‚ S5,2) · (S3,1 ‚ S4,1)
Ÿ6,3(fl) if (S3,2 ‚ S4,2) · (S1,1 ‚ S2,1 ‚ S5,1)
Ÿ6,4(fl) if (S3,2 ‚ S4,2) · (S3,1 ‚ S4,1)

(6.5f)

Ÿ7,i(fl)=
(

Ÿ7,i,1(fl) if (S1,i ‚ S2,i ‚ S5,i)
Ÿ7,i,2(fl) if (S3,i ‚ S4,i)

(6.5g)

where

Ÿ6,1(fl)= 1
2log

⇣
b1,1(fl)+b5,1(fl)INR21

⌘
≠ 1

2 log
⇣
1+INR12

⌘
+ 1

2 log
 

1 + b5,2(fl)Ω≠≠SNR2
b1,2(1) + 1

!

(6.6a)

+1
2 log

⇣
b1,2(fl) + b5,1(fl)INR21

⌘
≠ 1

2 log
⇣
1+INR21

⌘
+ 1

2 log
 

1+ b5,1(fl)Ω≠≠SNR1
b1,1(1) + 1

!

+ log(2fie),

Ÿ6,2(fl)= 1
2 log

Ç
b6,2(fl) + b5,1(fl)INR21

≠≠æSNR2

⇣≠≠æSNR2 + b3,2
⌘å

≠ 1
2 log

⇣
1+INR12

⌘
(6.6b)

+1
2 log

 

1 + b5,1(fl)Ω≠≠SNR1
b1,1(1) + 1

!

+ 1
2log

⇣
b1,1(fl)+b5,1(fl)INR21

⌘
≠ 1

2 log
⇣
1 + INR21

⌘

+1
2 log

 

1 + b5,2(fl)
≠≠æSNR2

 

INR12 + b3,2
Ω≠≠SNR2

b1,2(1) + 1

!!

≠ 1
2 log

Ç
1 + b5,1(fl)INR21

≠≠æSNR2

å
+ log(2fie),

Ÿ6,3(fl)= 1
2 log

 

b6,1(fl) + b5,1(fl)INR21
≠≠æSNR1

⇣≠≠æSNR1 + b3,1
⌘!

≠ 1
2 log

⇣
1 + INR12

⌘
(6.6c)

+1
2 log

 

1 + b5,2(fl)Ω≠≠SNR2
b1,2(1) + 1

!

+ 1
2 log

⇣
b1,2(fl)+b5,1(fl)INR21

⌘
≠ 1

2 log
⇣
1+INR21

⌘

+1
2 log

 

1 + b5,1(fl)
≠≠æSNR1

 

INR21 + b3,1
Ω≠≠SNR1

b1,1(1) + 1

!!

≠ 1
2 log

Ç
1 + b5,1(fl)INR21

≠≠æSNR1

å
+ log(2fie),

Ÿ6,4(fl) = 1
2 log

Ç
b6,1(fl) + b5,1(fl)INR21

≠≠æSNR1

⇣≠≠æSNR1 + b3,1
⌘å

≠ 1
2 log

⇣
1 + INR12

⌘
(6.6d)

+1
2 log

 

1 + b5,2(fl)
≠≠æSNR2

 

INR12 + b3,2
Ω≠≠SNR2

b1,2(1) + 1

!!

≠ 1
2 log

Ç
1 + b5,1(fl)INR21

≠≠æSNR2

å

≠1
2 log

Ç
1 + b5,1(fl)INR21

≠≠æSNR1

å
+ 1

2 log
Ç

b6,2(fl) + b5,1(fl)INR21
≠≠æSNR2

⇣≠≠æSNR2 + b3,2
⌘å

≠1
2 log

⇣
1 + INR21

⌘
+ 1

2 log
 

1 + b5,1(fl)
≠≠æSNR1

 

INR21 + b3,1
Ω≠≠SNR1

b1,1(1) + 1

!!

+ log(2fie),
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and

Ÿ7,i,1(fl) = 1
2 log

⇣
b1,i(fl) + 1

⌘
≠ 1

2 log
⇣
1 + INRij

⌘
+ 1

2 log
 

1 + b5,j(fl)Ω≠≠SNRj

b1,j(1) + 1

!

(6.7a)

+1
2 log

⇣
b1,j(fl) + b5,i(fl)INRji

⌘
+ 1

2 log
⇣
1+b4,i(fl)+b5,j(fl)

⌘
≠ 1

2 log
⇣
1+b5,j(fl)

⌘

+2 log(2fie),

Ÿ7,i,2(fl) = 1
2 log

⇣
b1,i(fl) + 1

⌘
≠ 1

2 log
⇣
1 + INRij

⌘
≠ 1

2 log
⇣
1 + b5,j(fl)

⌘
(6.7b)

+1
2 log

⇣
1 + b4,i(fl) + b5,j(fl)

⌘
+ 1

2 log
 

1 +
⇣
1 ≠ fl

2
⌘ INRji

≠≠æSNRj

 

INRij + b3,j

Ω≠≠SNRj

b1,j(1) + 1

!!

≠1
2 log

 

1 + b5,i(fl)INRji

≠≠æSNRj

!

+ 1
2log

 

b6,j(fl)+ b5,i(fl)INRji

≠≠æSNRj

⇣≠≠æSNRj + b3,j

⌘!

+ 2 log(2fie),

where, the functions bl,i, with (l, i) œ {1, 2}2 are defined in (6.2); b3,i are constants; and
the functions bl,i : [0, 1] æ R+, with (l, i) œ {4, 5, 6} ◊ {1, 2} are defined as follows, with
j œ {1, 2} \ {i}:

b3,i=
≠≠æSNRi ≠ 2

q≠≠æSNRiINRji + INRji, (6.8a)
b4,i(fl)=

⇣
1 ≠ fl

2
⌘≠≠æSNRi, (6.8b)

b5,i(fl)=
⇣
1 ≠ fl

2
⌘
INRij , (6.8c)

b6,i(fl)=≠≠æSNRi+INRij +2fl

»
INRij

Å»≠≠æSNRi ≠
»

INRji

ã
(6.8d)

+INRij

p
INRji

≠≠æSNRi

Å»
INRji ≠ 2

»≠≠æSNRi

ã
.

Note that the functions in (6.5), (6.6), (6.7), and (6.8) depend on ≠≠æSNR1, ≠≠æSNR2, INR12,
INR21, Ω≠≠SNR1, and Ω≠≠SNR2. However, these parameters are fixed in this analysis, and therefore,
this dependence is not emphasized in the definition of these functions. Finally, using this
notation, Theorem 6.2.1 is presented below.
6.2.1 Theorem (Converse Region)

The capacity region C is contained within the region C given by the closure of
the set of rate pairs (R1, R2) œ R2

+ that for all i œ {1, 2}, with j œ {1, 2} \ {i}
satisfy:

Ri6min (Ÿ1,i(fl), Ÿ2,i(fl)) , (6.9a)
Ri6Ÿ3,i(fl), (6.9b)

R1 + R26min (Ÿ4(fl), Ÿ5(fl)) , (6.9c)
R1 + R26Ÿ6(fl), (6.9d)

2Ri + Rj6Ÿ7,i(fl), (6.9e)

with fl œ [0, 1].
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Proof: The proof of Theorem 6.2.1 is presented in Appendix G.
The outer bounds (6.9a) and (6.9c) play the same role as the outer bounds (5.1a) and (5.1c)

in the linear deterministic model and have been previously reported in [80] for the case of
POF. The bounds (6.9b), (6.9d), and (6.9e) correspond to new outer bounds. The intuition
for deriving these outer bounds follows along the same steps of those used to prove the outer
bounds (5.1b), (5.1c), and (5.1d), respectively. Note the duality between the Gaussian signals
Xi,C and Xi,U (in (G.2) and (G.3), respectively) and the bit-pipes (Xi,C , Xi,D) and Xi,U (in
(B.1a), (B.1d) and (B.5), respectively).

6.3. Gap between the Achievable Region and the Converse Region

Theorem 6.3.1 describes the gap between the achievable region C and the converse region C
(Definition 6).

6.3.1 Theorem (GAP)

The capacity region of the two-user GIC-NOF is approximated to within 4.4
bits by the achievable region C and the converse region C.

Proof: The proof of Theorem 6.3.1 is presented in Appendix H.
Figure 6.1 presents the exact gap existing between the achievable region C and the con-

verse region C for the case in which ≠≠æSNR1 = ≠≠æSNR2 = ≠≠æSNR, INR12 = INR21 = INR, and
Ω≠≠SNR1 = Ω≠≠SNR2 = Ω≠≠SNR as a function of – = log INR

log ≠≠æSNR
and — = log Ω≠≠SNR

log ≠≠æSNR
. Note that in this case,

the maximum gap is 1.1 bits and occurs when – = 1.05 and — = 1.2.

6.4. Cases in which Feedback Enlarges the Capacity Region

This section considers the application of the obtained results in Section 5.2.2 into the two-user
GIC-NOF. Therefore, this section defines for a given two-user GIC the approximate thresholds
for the feedback parameters beyond which its capacity region can be enlarged.

6.4.1. Rate Improvement Metrics

In order to quantify the benefits of channel-output feedback in enlarging the achievable region
C(Ω≠≠SNR1,

Ω≠≠SNR2) or the converse region C(Ω≠≠SNR1,
Ω≠≠SNR2), consider the following improvement

metrics, which are similar to those defined in Section 5.2.1 for the two-user LDIC-NOF. The
improvement metrics on the individual rates are defined as

�A
1 (Ω≠≠SNR1,

Ω≠≠SNR2)= max
0<R2<R

ú
2

(

sup
n

R1 : (R1, R2) œ C(Ω≠≠SNR1,
Ω≠≠SNR2)

o

≠ sup
n

R
†
1 : (R†

1, R2) œ C(0, 0)
o)

, (6.10)
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Figure 6.1.: Gap between the converse region C and the achievable region C of the two-
user GIC-NOF under symmetric channel conditions, i.e., ≠≠æSNR1 = ≠≠æSNR2 = ≠≠æSNR,
INR12 = INR21 = INR, and Ω≠≠SNR1 = Ω≠≠SNR2 = Ω≠≠SNR, as a function of – = log INR

log ≠≠æSNR

and — = log Ω≠≠SNR
log ≠≠æSNR

.

�A
2 (Ω≠≠SNR1,

Ω≠≠SNR2)= max
0<R1<R

ú
1

(

sup
n

R2 : (R1, R2) œ C(Ω≠≠SNR1,
Ω≠≠SNR2)

o

≠ sup
n

R
†
2 : (R1, R

†
2) œ C(0, 0)

o)

, (6.11)

�C
1 (Ω≠≠SNR1,

Ω≠≠SNR2)= max
0<R2<R

†
2

(

sup
n

R1 : (R1, R2) œ C(Ω≠≠SNR1,
Ω≠≠SNR2)

o

≠ sup
n

R
†
1 : (R†

1, R2) œ C(0, 0)
o)

, and (6.12)

�C
2 (Ω≠≠SNR1,

Ω≠≠SNR2)= max
0<R1<R

†
1

(

sup
n

R2 : (R1, R2) œ C(Ω≠≠SNR1,
Ω≠≠SNR2)

o

≠ sup
n

R
†
2 : (R1, R

†
2) œ C(0, 0)

o)

, (6.13)

with

R
ú
1=sup{r1 : (r1, r2) œ C(0, 0)}, (6.14)

R
ú
2=sup{r2 : (r1, r2) œ C(0, 0)}, (6.15)
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R
†
1=sup{r1 : (r1, r2) œ C(0, 0)}, and (6.16)

R
†
2=sup{r2 : (r1, r2) œ C(0, 0)}. (6.17)

Alternatively, the maximum improvements of the sum-rate �A(Ω≠≠SNR1,
Ω≠≠SNR2) and �C(Ω≠≠SNR1,

Ω≠≠SNR2)
with respect to the case without feedback are:

�A(Ω≠≠SNR1,
Ω≠≠SNR2)=sup

(

R1 + R2 : (R1, R2) œ C(Ω≠≠SNR1,
Ω≠≠SNR2)

)

≠ sup
(

R
†
1 + R

†
2 : (R†

1, R
†
2) œ C(0, 0)

)

, and (6.18)

�C(Ω≠≠SNR1,
Ω≠≠SNR2)=sup

(

R1 + R2 : (R1, R2) œ C(Ω≠≠SNR1,
Ω≠≠SNR2)

)

≠ sup
(

R
†
1 + R

†
2 : (R†

1, R
†
2) œ C(0, 0)

)

. (6.19)

6.4.2. Improvements

In Chapter 4, the connections between the two-user LDIC-NOF and the two-user GIC-
NOF were discussed. Using these connections, a GIC with fixed parameters

⇣≠≠æSNR1, ≠≠æSNR2,
INR12, INR21

⌘
is approximated by an LDIC with parameters ≠æ

n 11 =
j

1
2 log(≠≠æSNR1)

k
, ≠æ

n 22 =
j

1
2 log(≠≠æSNR2)

k
, n12 =

ö1
2 log(INR12)

ù
and n21 =

ö1
2 log(INR21)

ù
. From this observation,

the results from Theorem 5.2.1 - Theorem 5.2.4 can be used to determine the feedback
SNR thresholds beyond which either an individual rate or the sum-rate is improved in the
original GIC-NOF. The procedure consists on using the equalities Ω≠

n ii =
j

1
2 log

⇣Ω≠≠SNRi

⌘k
, with

i œ {1, 2}. Hence, the corresponding thresholds in the two-user GIC can be approximated by:
Ω≠≠SNRú

i =22Ω≠
n

ú
ii , (6.20a)

Ω≠≠SNR†
i

=22Ω≠
n

†
ii , and (6.20b)

Ω≠≠SNR+
i

=22Ω≠
n

+
ii . (6.20c)

When the corresponding LDIC-NOF is such that its capacity region can be improved, i.e.,
when Ω≠

n ii >
Ω≠
n

ú
ii

(Theorem 5.2.1) for a given i œ {1, 2}, it is expected that either the
achievability or converse regions of the original GIC-NOF become larger when Ω≠≠SNRi >

Ω≠≠SNRú
i
.

Similarly, when the corresponding LDIC-NOF is such that �i(Ω≠n ii) > 0 or �i(Ω≠n jj) > 0, it is
expected to observe an improvement on the individual rate Ri by either using feedback in
transmitter-receiver pair i, with Ω≠≠SNRi >

Ω≠≠SNR†
i

or by using feedback in transmitter-receiver
pair j, with Ω≠≠SNRj >

Ω≠≠SNRú
j
. When the corresponding LDIC-NOF is such that �(Ω≠n ii) > 0

using feedback in transmitter-receiver pair i, with Ω≠
n ii >

Ω≠
n

+
ii

(Theorem 5.2.4), it is expected to
observe an improvement on the sum-rate by using feedback in transmitter-receiver pair i, withΩ≠≠SNRi >

Ω≠≠SNR+
i

. Finally, when no improvement in a given metric is observed in the two-user
LDIC-NOF, i.e., �1(Ω≠n 11) = 0, �1(Ω≠n 22) = 0, �2(Ω≠n 11) = 0, �2(Ω≠n 22) = 0, �(Ω≠n 11) = 0,
or �(Ω≠n 22) = 0, only a negligible improvement (if any) is observed in the corresponding
metric of the two-user GIC-NOF. For instance, when �1(Ω≠n 11) = 0, it is expected that
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�A
1 (Ω≠≠SNR1) < ‘ and �C

1 (Ω≠≠SNR1) < ‘, with ‘ > 0. Similarly, when �2(Ω≠n 11) = 0, it is expected
that �A

2 (Ω≠≠SNR1) < ‘ and �C
2 (Ω≠≠SNR1) < ‘. Finally, when �(Ω≠n 11) = 0, it is expected that

�A(Ω≠≠SNR1) < ‘ and �C(Ω≠≠SNR1) < ‘.

6.4.3. Examples
The following examples highlight the relevance of the approximations in (6.20).

Example 6. Consider a GIC with parameters ≠≠æSNR1 = 44dB, ≠≠æSNR2 = 44dB, INR12 = 20dB,
and INR21 = 33dB.

The linear deterministic approximation of the two-user GIC in Example 6 is the one presented
in Example 3. Hence, Ω≠

n
ú
11 = Ω≠

n
†
11 = Ω≠

n
+
11 = 5 and Ω≠

n
ú
22 = Ω≠

n
†
22 = Ω≠

n
+
22 = 3. This implies that

Ω≠≠SNRú
1 = Ω≠≠SNR†

1 = Ω≠≠SNR+
1 = 30dB and Ω≠≠SNRú

2 = Ω≠≠SNR†
2 = Ω≠≠SNR+

2 = 18dB.
Figure 6.2 shows that significant improvements on the metrics �A

i
(Ω≠≠SNR1,

Ω≠≠SNR2), �C
i

(Ω≠≠SNR1,
Ω≠≠SNR2), �A(Ω≠≠SNR1,

Ω≠≠SNR2) and �C(Ω≠≠SNR1,
Ω≠≠SNR2) are obtained when the feedback SNRs are

beyond the corresponding thresholds. More importantly, negligible e�ects are observed whenΩ≠≠SNR1 <
Ω≠≠SNRú

1 and Ω≠≠SNR2 <
Ω≠≠SNRú

2.

Example 7. Consider a GIC with parameters ≠≠æSNR1 = 45dB, ≠≠æSNR2 = 50dB, INR12 = 40dB,
and INR21 = 33dB.

The linear deterministic approximation of the two-user GIC in Example 7 is the one
presented in Example 4. Hence, Ω≠

n
ú
11 = Ω≠

n
†
11 = 5 and Ω≠

n
ú
22 = Ω≠

n
†
22 = 6. This implies that

Ω≠≠SNRú
1 = Ω≠≠SNR†

1 = 30dB and Ω≠≠SNRú
2 = Ω≠≠SNR†

2 = 36dB.
Figure 6.3 shows that significant improvements on the metrics �A

i
(Ω≠≠SNR1,

Ω≠≠SNR2), and
�C

i
(Ω≠≠SNR1, Ω≠≠SNR2), are obtained when the feedback SNRs are beyond the corresponding

thresholds. More importantly, negligible e�ects are observed when Ω≠≠SNR1 <
Ω≠≠SNRú

1 and Ω≠≠SNR2 <
Ω≠≠SNRú

2. Note also that using feedback in either transmitter-receiver pair does not improve
the sum-rate in the two-user LDIC-NOF, i.e., �(Ω≠n 11) = �(Ω≠n 22) = 0. This is also verified
in the two-user GIC-NOF by Figure 6.3e and Figure 6.3d, where �A

⇣Ω≠≠SNR1, ≠100
⌘

< 0.45,
�C

⇣Ω≠≠SNR1, ≠100dB
⌘

< 0.05, �A
⇣
≠100dB,

Ω≠≠SNR2
⌘

< 0.45, and �C
⇣
≠100dB,

Ω≠≠SNR2
⌘

< 0.05.

Example 8. Consider a GIC with parameters ≠≠æSNR1 = 33dB, ≠≠æSNR2 = 9dB, INR12 = 20dB,
and INR21 = 27dB.

The linear deterministic approximation of the two-user GIC in Example 8 is the one
presented in Example 5. Hence, Ω≠

n
ú
11 = 3, which implies that Ω≠≠SNRú

1 = 18dB. It follows from
the two-user LDIC-NOF that using feedback in transmitter-receiver pair 1 exclusively increases
the individual rate R2. This is observed in Figure 6.4c. Note that the improvement in the
individual rate R2 for all Ω≠≠SNR1 <

Ω≠≠SNRú
1 is negligible. Significant improvement is observed

only beyond the threshold Ω≠≠SNRú
1.

Note also that using feedback in either transmitter-receiver pair does not improve the rate
R1 in the two-user LDIC-NOF, i.e., �1(Ω≠n 11) = �1(Ω≠n 22) = 0. This is also verified in the
GIC-NOF by Figure 6.4a, Figure 6.4b, and Figure 6.4d, where �A

1
⇣
≠100dB,

Ω≠≠SNR2
⌘

< 0.15

and �C
1
⇣
≠100dB,

Ω≠≠SNR2
⌘

< 0.1.
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Figure 6.2.: Improvement metrics �A
i

, �C
i

, �A, and �C as functions of Ω≠≠SNR1 and Ω≠≠SNR2, with
i œ {1, 2}, for Example 6.
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Figure 6.3.: Improvement metrics �A
i

, �C
i

, �A, and �C as functions of Ω≠≠SNR1 and Ω≠≠SNR2, with
i œ {1, 2}, for Example 7.

Finally, note that using feedback in either transmitter-receiver pair does not increase the
sum-rate in the two-user LDIC-NOF, i.e., �(Ω≠n 11) = �(Ω≠n 22) = 0. This is also verified in
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Figure 6.4.: Improvement metrics �A
i

, �C
i

, �A, and �C as functions of Ω≠≠SNR1 and Ω≠≠SNR2, with
i œ {1, 2}, for Example 8.

the two-user GIC-NOF by Figure 6.4e and Figure 6.4f, where �A
⇣Ω≠≠SNR1, ≠100dB

⌘
< 0.15,
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�C
⇣Ω≠≠SNR1, ≠100dB

⌘
< 0.05, �A

⇣
≠100dB,

Ω≠≠SNR2
⌘

< 0.15, and �C
⇣
≠100dB,

Ω≠≠SNR2
⌘

< 0.05.
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— 7 —
Linear Deterministic

Interference Channel

This chapter presents the main results on the two-user D-LDIC-NOF. This model
was described in Section 2.2 and can be modeled by a game as suggested in
Section 3.1. Denote by C(≠æn 11,

≠æ
n 22, n12, n21, Ω≠

n 11,
Ω≠
n 22) the capacity region of

the two-user LDIC-NOF with parameters ≠æ
n 11, ≠æ

n 22, n12, n21, Ω≠
n 11, and Ω≠

n 22, characterized in
Theorem 5.1.1.

7.1. ÷-Nash Equilibrium Region

This section characterizes the ÷-NE region (Definition 5) of the two-user D-LDIC-NOF.
The ÷-NE region of the two-user D-LDIC-NOF, given the fixed parameters

Ä≠æ
n 11, ≠æ

n 22, n12,
n21, Ω≠

n 11,Ω≠n 22
ä

œ N6, is denoted by N÷ (≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22). This is characterized

in terms of two regions: the capacity region, denoted by C(≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22),

and a convex region, denoted by B÷(≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22). This region was first

characterized in [13] for the case without feedback, in [60] for the case of POF, and in [62] for
the case of NOF under symmetric conditions.

In the following, the analysis of these regions is presented for fix parameters ≠æ
n 11, ≠æ

n 22,
n12, n21, Ω≠

n 11, and Ω≠
n 22, and thus, the tuple

⇣≠æ
n 11, ≠æ

n 22, n12, n21, Ω≠
n 11, Ω≠

n 22
⌘

is used only
when needed. The capacity region C of the two-user LDIC-NOF is described in Theorem 5.1.1,
which is a generalization of the cases with and without POF, studied respectively in [17] and
[80]. For all ÷ > 0, the convex region B÷ is defined as follows:

B÷=
n

(R1, R2) œ R2
+ : Li 6Ri 6 Ui, for all i œ K = {1, 2}

o
, (7.1)
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7. Linear Deterministic Interference Channel

where,

Li=
Ä
(≠æn ii ≠ nij)+ ≠ ÷

ä+ and (7.2a)
Ui=max (≠æn ii, nij) (7.2b)

≠
 

min
Ä
(≠æn jj ≠nji)+

, nij

ä
≠
Ç

min
Ä
(≠æn jj ≠nij)+

, nji

ä
≠(max (≠æn jj , nji)≠Ω≠

n jj)+
å+!+

+ ÷,

with i œ {1, 2} and j œ {1, 2} \ {i}. Theorem 7.1.1 uses the capacity region C (Theorem 5.1.1)
and the region B÷ in (7.1) to describe the ÷-NE region.

7.1.1 Theorem (÷-NE region)

Let ÷ > 0 be fixed. The ÷-NE region N÷ of the two-user D-LDIC-NOF with
parameters ≠æ

n 11, ≠æ
n 22, n12, n21, Ω≠

n 11, Ω≠
n 22, is

N÷ = C fl B÷. (7.3)

Proof: The proof of Theorem 7.1.1 is presented in Appendix I.
The following describes some interesting observations from Theorem 7.1.1. Figure 7.1

shows the capacity region C and the ÷-NE region N÷ of a channel with parameters ≠æ
n 11 = 7,

≠æ
n 22 = 6, n12 = 4, n21 = 4 and di�erent values for Ω≠

n 11 and Ω≠
n 22, with ÷ arbitrarily small.

Note that when Ω≠
n 11 œ {0, 1, 2, 3, 4} and Ω≠

n 22 œ {0, 1, 2, 3, 4} (Figure 7.1a), it follows that
N÷(7, 6, 4, 4,

Ω≠
n 11,

Ω≠
n 22) = N÷(7, 6, 4, 4, 0, 0). Thus, in this case the use of feedback in any of

the transmitter-receiver pairs does not enlarge the ÷-NE region. Alternatively, when Ω≠
n 11 > 4

and Ω≠
n 22 œ {0, 1, 2, 3, 4} (Figures 7.1b, 7.1c and 7.1d), the resulting ÷-NE region is larger than

in the previous case. A similar e�ect is observed in Figures 7.1e and 7.1f. This observation
implies the existence of a threshold on each feedback parameter Ω≠

n 11 and Ω≠
n 22 beyond which

the ÷-NE region is enlarged. The exact values of Ω≠
n 11 and Ω≠

n 22, given a fixed tuple (≠æn 11, ≠æ
n 22,

n12, n21), beyond which the ÷-NE region can be enlarged is presented in Section 7.2.
Note that the bound Ri 6 Ui is not always active. For instance, when ≠æ

n jj 6 min (nji, nij),
then Ui = max (≠æn ii, nij), which is redundant with the bounds given by the capacity region C
(see Theorem 5.1.1). When ≠æ

n jj > max (nji, nij) and the condition

 ⇣≠æ
n jj > nij + nji · max

Ä
nji,

≠æ
n ii ≠ (max (≠æn ii, nij) ≠ Ω≠

n ii)+ä
> (≠æn ii ≠ nij)+ ⌘‚

⇣≠æ
n jj 6 nij + nji · ≠æ

n ii < nij + nji · ≠æ
n ii > nij · nji >

≠æ
n ii ≠ (≠æn ii ≠ Ω≠

n ii)+ ⌘‚
⇣≠æ

n jj 6 nij + nji · ≠æ
n ii < nij + nji · ≠æ

n ii > nij · nij > (≠æn ii ≠ Ω≠
n ii)+ ⌘‚

⇣≠æ
n jj 6 nij + nji · ≠æ

n ii < nij + nji · ≠æ
n ii 6 nij · ≠æ

n ii > nij ≠ ≠æ
n jj + nji

⌘!

, (7.4)

÷-NE region, the bound Ri 6 Ui is active. In this case
Ç

min (≠æn jj ≠ nji, nij) ≠
⇣

min (≠æn jj ≠ nij , nji) ≠ (≠æn jj ≠ Ω≠
n jj)+ ⌘+

å+
> 0,
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7.1. ÷-Nash Equilibrium Region

0 1 2 3 4 5 6 7 8
R1 (bits/channel use)

0

1

2

3

4

5

6

7

R
2 (b

its
/c

ha
nn

el
 u

se
)

C with feeedback
C without feeedback
N without feeedback
N with feeedback

0 1 2 3 4 5 6 7 8
R1 (bits/channel use)

0

1

2

3

4

5

6

7

R
2 (b

its
/c

ha
nn

el
 u

se
)

C with feeedback
C without feeedback
N without feeedback
N with feeedback

0 1 2 3 4 5 6 7 8
R1 (bits/channel use)

0

1

2

3

4

5

6

7

R
2 (b

its
/c

ha
nn

el
 u

se
)

C with feeedback
C without feeedback
N without feeedback
N with feeedback

0 1 2 3 4 5 6 7 8
R1 (bits/channel use)

0

1

2

3

4

5

6

7

R
2 (b

its
/c

ha
nn

el
 u

se
)

C with feeedback
C without feeedback
N without feeedback
N with feeedback

0 1 2 3 4 5 6 7 8
R1 (bits/channel use)

0

1

2

3

4

5

6

7

R
2 (b

its
/c

ha
nn

el
 u

se
)

C with feeedback
C without feeedback
N without feeedback
N with feeedback

0 1 2 3 4 5 6 7 8
R1 (bits/channel use)

0

1

2

3

4

5

6

7

R
2 (b

its
/c

ha
nn

el
 u

se
)

C with feeedback
C without feeedback
N without feeedback
N with feeedback

(d)

(a)

a1

b1

a2

a3

a4

a5

a6

b3

b2

. . .

. . .

. . .

. . .

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

a7

a8

a9

�
�

�
�

���

eb1
eb2

eb3

�

�

�

�
b1

b2b6

b5

b4

b6

b5

b7

b8

b9

b10

b11

b12

a1

a2

a3

�
�

a1

a2

b1

b3

b2
eb1

b4

b1

b3

b2
eb1

+

+

+

a4

a5

a6

b1

b2

a4

a5

b1

b2

eb2

b6

b5

b7

+

+

eb2

b6

b5

b7

b8

+

+

+

a7

a8

a9

b6

b5

a7

a8

b6

b5

eb3

b9

b10

b11

b12

eb3

b9

b10

b11

+

+

+

+

+

a1

b1

a2

a3

a4

a5

a6

�

��
b2

. . .

. . .

. . .

. . .

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

a7

a8

a9

�

�

�
�

���

a10

a11

a12

a13

a14

a15

b2b6

b3

b4

b6

b5

b7

b8

b9

b10

b11

b12

a1

a2

a3

a4

a5

�

a1

a2

b1

b2

b3

b4

b1

b2+

a6

a7

a8

a9

a10

b2

a6

a7

b2

b6

b5

b7

b8

b6

b5

+

+

a11

a12

a13

a14

a15

b6

a11

a12

b6

��

b9

b10

b9

b10

b11

b12

+

+

(e) (f)

(g) (h)

C
C
N�

N�

C
C
N�

N�

C
C
N�

N�

C
C
N�

N�

C
C
N�

N�

C
C
N�

N�

(b) (c)

C
C
N�

N�

C
C
N�

N�

C
C
N�

N�

Figure 7.1.: Capacity region C(7, 6, 4, 4, 0, 0) (thin blue line) and ÷-NE region N÷(7, 6, 4, 4, 0, 0)
(thick black line) with ÷ arbitrarily small. Fig. 7.1a shows the capacity region
C(7, 6, 4, 4,

Ω≠
n 11,

Ω≠
n 22) (thick red line) and the ÷-NE region N÷(7, 6, 4, 4,

Ω≠
n 11,

Ω≠
n 22)

(thin green line), with Ω≠
n 11 œ {0, 1, 2, 3, 4} and Ω≠

n 22 œ {0, 1, 2, 3, 4}. Fig. 7.1b
shows the capacity region C(7, 6, 4, 4, 5,

Ω≠
n 22) (thick red line) and the ÷-NE re-

gion N÷(7, 6, 4, 4, 5,
Ω≠
n 22) (thin green line), with Ω≠

n 22 œ {0, 1, 2, 3, 4}. Fig. 7.1c
shows the capacity region C(7, 6, 4, 4, 6,

Ω≠
n 22) (thick red line) and the ÷-NE re-

gion N÷(7, 6, 4, 4, 6,
Ω≠
n 22) (thin green line), with Ω≠

n 22 œ {0, 1, 2, 3, 4}. Fig. 7.1d
shows the capacity region C(7, 6, 4, 4, 7,

Ω≠
n 22) (thick red line) and the ÷-NE re-

gion N÷(7, 6, 4, 4, 7,
Ω≠
n 22) (thin green line), with Ω≠

n 22 œ {0, 1, 2, 3, 4}. Fig. 7.1e
shows the capacity region C(7, 6, 4, 4, 7, 5) (thick red line) and the ÷-NE re-
gion N÷(7, 6, 4, 4, 7, 5) (thin green line). Fig. 7.1f shows the capacity region
C(7, 6, 4, 4, 7, 6) (thick red line) and the ÷-NE region N÷(7, 6, 4, 4, 7, 6) (thin green
line). Fig. 7.1g and Fig. 7.1h illustrate the achievability scheme for the equilibrium
rate pair (3, 4) and (5, 4) in N÷(7, 6, 4, 4, 5, 0).
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7. Linear Deterministic Interference Channel

and the following is a necessary condition to observe a larger ÷-NE region with respect to the
case in which feedback in transmitter-receiver j, i.e., Ω≠

n jj , is not available:
Ω≠
n jj > max (nij ,

≠æ
n jj ≠ nji) . (7.5)

Note that condition (7.5) is identical to the condition needed to observe an enlargement of
the capacity region in this case (see Section 5.2).

The ÷-NE region N÷ without feedback, i.e., when Ω≠
n 11 = 0 and Ω≠

n 22 = 0, is described by
Theorem 1 in [13]. This result is obtained as a corollary of Theorem 7.1.1.

Corollary 5 (Theorem 1 in [13]). The ÷-NE region of the two-user decentralized linear
deterministic interference channel (D-LDIC) without channel-output feedback, with parameters
≠æ
n 11, ≠æ

n 22, n12, and n21, is N÷(≠æn 11,
≠æ
n 22, n12, n21, 0, 0).

The ÷-NE region with POF, i.e., Ω≠
n 11 > max(≠æn 11, n12) and Ω≠

n 22 > max(≠æn 22, n21), is
described by Theorem 1 in [60]. This result can also be obtained as a corollary of Theorem
7.1.1.

Corollary 6 (Theorem 1 in [60]). The ÷-NE region of the two-user D-LDIC with perfect
channel-output feedback, with parameters ≠æ

n 11, ≠æ
n 22, n12, and n21, is N÷(≠æn 11, ≠æ

n 22, n12, n21,
max(≠æn 11, n12), max(≠æn 22, n21)).

The ÷-NE region with noisy feedback under symmetric conditions, i.e., ≠æ
n 11 = ≠æ

n 22 = ≠æ
n ,

n12 = n21 = m, and Ω≠
n 11 = Ω≠

n 22 = Ω≠
n , is described by Theorem 1 in [62]. This result can also

be obtained as a corollary of Theorem 7.1.1.

Corollary 7 (Theorem 1 in [62]). The ÷-NE region of the two-user symmetric D-LDIC-NOF,
e.g., ≠æ

n 11 = ≠æ
n 22 = ≠æ

n , n12 = n21 = m, and Ω≠
n 11 = Ω≠

n 22 = Ω≠
n , is N÷(≠æn , ≠æ

n , m, m, Ω≠
n , Ω≠

n ).

From the comments above, it is interesting to highlight the following set of inclusions:

N÷

⇣≠æ
n 11,

≠æ
n 22, n12, n21, 0, 0

⌘
™ N÷

⇣≠æ
n 11,

≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22

⌘
™ (7.6)

N÷

⇣≠æ
n 11,

≠æ
n 22, n12, n21, max (≠æn 11, n12) , max (≠æn 22, n21)

⌘
,

for all ÷ > 0. The inclusions above might appear trivial, however, enlarging the set of actions
often leads to paradoxes (Braess Paradox [16]) in which the new game possesses equilibria
at which players obtain smaller individual benefits and/or smaller total benefit. Nonetheless,
letting both transmitter-receiver pairs to use feedback does not induce this type of paradoxes
with respect to the case without feedback.

Consider again the example in which ≠æ
n 11 = 7, ≠æ

n 22 = 6, n12 = 4, n21 = 4, Ω≠
n 11 = 5 and

Ω≠
n 22 = 0 (See Figure 7.1b). In this case, the ÷-NE region N÷ is the convex hull of the rate
pairs (3, 2), (3, 4), (5, 4), and (5, 2). The rate pair (3, 4) is achieved at an ÷-NE thanks to the
use of feedback in transmitter-receiver pair 1. Transmitter 1 uses the bit-pipes 2 and 3 of the
channel input X1,n to re-transmit during channel use n two bits that have been previously
transmitted by transmitter 2 and have produced interference at receiver 1 during channel
use n ≠ 1 (See Figure 7.1g). Note that there are four bit-pipes at receiver 1 impaired by
interference from transmitter 2, however, only two bits can be fed back due to the e�ect of
noise in the feedback channel. At channel use n, transmitter 1 re-transmits the interfering bits
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7.2. Enlargement of the ÷-Nash Equilibrium Region with Feedback

through bit-pipes 2 and 3 that are simultaneously received by receiver 1 and receiver 2. At
receiver 2, these bits are seen at bit-pipes 5 and 6. However, these bits do not represent any
interference for receiver 2 since they were received interference free at channel use n ≠ 1, and
thus, they can be cancelled at channel use n. At receiver 1, these bits are seen during channel
use n at bit-pipes 2 and 3 and thus, interference free. Hence, at channel use n, receiver 1 can
cancel the interference produced during channel use n ≠ 1. In this case, transmitter 1 and
transmitter 2 are able to send three and four bits per channel use, respectively. Note that
transmitter 2 also sends randomly generated bits, denoted by eb1,eb2, . . . in Figure 7.1g. These
bits are assumed to be known at both transmitter 2 and receiver 2 and thus, they do not
increase the transmission rate of transmitter-receiver 2, however, they produce interference
at receiver 1. In this case, the sole objective of transmitting randomly generated bits by
transmitter 2 is to prevent the transmitter 1 from sending new information bits and thus, from
increasing its transmission rate. Then, any attempt of transmitter i to transmit additional
information bits would bound its probability of error away from zero. Thus, the rate pair
(3, 4) is achieved at an ÷-NE. The use of common randomness is also observed in [13, 60, 62].
Common randomness reflects a competitive behavior between both transmitter-receiver pairs.

The achievability of the rate pair (5, 4) follows the same explanation of the achievability of
the ÷-NE rate pair (3, 4) with the di�erence that for this rate pair, it is not necessary that
transmitter 2 sends randomly generated bits (See Figure 7.1h), and thus, transmitter-receiver
pair 1 achieves a greater rate at an ÷-NE with respect to the previous example. This suggests
a more altruistic behavior. In this case, transmitter 1 and transmitter 2 are able to send
five and four bits per channel use, respectively. Any attempt of transmitter i to transmit
additional information bits would bound its probability of error away from zero. Thus, the
rate pair (5, 4) is achieved at an ÷-NE.

7.2. Enlargement of the ÷-Nash Equilibrium Region with Feedback

The metrics, the conditions, and the values on the feedback parameters beyond which the
÷-NE region of the two-user LDIC-NOF can be enlarged are the same as in the centralized
case, taking into account that these are referred to the ÷-NE region instead of the capacity
region.

7.3. E�ciency of the ÷-NE

This section characterizes the e�ciency of the set of equilibria in the two-user D-LDIC-NOF
using two metrics: price of anarchy (PoA) and price of stability (PoS). The PoA measures the
loss of performance due to decentralization by comparing the maximum sum-rate achieved by
a centralized two-user LDIC-NOF with the minimum sum-rate achieved by a decentralized
two-user LDIC-NOF at an ÷-NE. That is, the ratio between the sum-rate capacity and the
smallest sum-rate at an ÷-NE region. Alternatively, the PoS measures the loss of performance
due to decentralization by comparing the maximum sum-rate achieved by a centralized two-user
LDIC-NOF with the maximum sum-rate achieved by a decentralized two-user LDIC-NOF at
an ÷-NE region. That is, the ratio between the sum-rate capacity and the biggest sum-rate at
an ÷-NE region [61].
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7. Linear Deterministic Interference Channel

7.3.1. Definitions

The results of this section are presented using a list of events (Boolean variables) that are
determined by the parameters ≠æ

n 11,
≠æ
n 22, n12, and n21. Let i œ {1, 2} and j œ {1, 2} \ {i}, and

define the following events:

A1,i : ≠æ
n ii ≠ nij > nji, (7.7a)

A2,i : ≠æ
n ii > nji, (7.7b)

B1 : A1,1 · A1,2, (7.7c)
B2,i : A1,i · A1,j · A2,j , (7.7d)
B3,i : A1,i · A1,j · A2,j , (7.7e)
B4 : A1,1 · A1,2 · A2,1 · A2,2, (7.7f)

B5,i : A1,1 · A1,2 · A2,i · A2,j , (7.7g)
B6 : A1,1 · A1,2 · A2,1 · A2,2, (7.7h)
B7 : A1,1, (7.7i)
B8 : A1,1 · A2,1 · A2,2, (7.7j)
B9 : A1,1 · A2,1 · A2,2, (7.7k)

B10 : A1,1 · A2,2. (7.7l)

When both transmitter-receiver pairs are in LIR, i.e., ≠æ
n 11 > n12 and ≠æ

n 22 > n21, the events
B1, B2,1, B2,2, B3,1, B3,2, B4, B5,1, B5,2, and B6 exhibit the property stated by the following
lemma.

Lemma 19. For a fixed tuple (≠æn 11,
≠æ
n 22, n12, n21) œ N4 with ≠æ

n 11 > n12 and ≠æ
n 22 > n21, only

one of the events B1, B2,1, B2,2, B3,1, B3,2, B4, B5,1, B5,2, and B6 holds true.

Proof: The proof follows from verifying that when both transmitter-receiver pairs are in
LIR, i.e., ≠æ

n 11 > n12 and ≠æ
n 22 > n21, the events (7.7c)-(7.7h) are mutually exclusive. This

completes the proof.
When transmitter-receiver pair 1 is in LIR and transmitter-receiver pair 2 is in HIR, i.e.,

≠æ
n 11 > n12 and ≠æ

n 22 6 n21, the events B7, B8, B9, and B10 exhibit the property stated by the
following lemma.

Lemma 20. For a fixed tuple (≠æn 11,
≠æ
n 22, n12, n21) œ N4 with ≠æ

n 11 > n12 and ≠æ
n 22 6 n21, only

one of the events B7, B8, B9, and B10 holds true.

Proof: The proof of Lemma 20 follows along the same lines of the proof of Lemma 19.

7.3.2. Price of Anarchy

Let A = A1 ◊ A2 be the set of all possible configuration pairs and A÷≠NE µ A be the set of
÷-NE configuration pairs of the game in (3.3) (Definition 4).

Definition 7 (Price of Anarchy [40]). Let ÷ > 0. The PoA of the game G, denoted by
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7.3. E�ciency of the ÷-NE

PoA (÷, G), is given by:

PoA (÷, G) =
max

(s1,s2)œA

2X

i=1
Ri(s1, s2)

min
(sú

1,s
ú
2)œA÷≠NE

2X

i=1
Ri(sú

1, s
ú
2)

. (7.8)

Let �C denote the solution to the optimization problem in the numerator of (7.8), which
correspond to the maximum sum-rate in the centralized case. Let also �N denote the
solution to the optimization problem in the denominator of (7.8). Closed-form expressions of
the maximum sum-rate in the centralized case, i.e., �C and the minimum sum-rate in the
decentralized case, i.e., �N , are presented in Appendix O.

The following theorems describe the PoA (÷, G) in particular interference regimes of the two-
user D-LDIC-NOF. In all the cases, it is assumed that Ω≠

n ii 6 max (≠æn ii, nij) for all i œ {1, 2}
and j œ {1, 2} \ {i}. If Ω≠

n 11 > max (≠æn 11, n12) or Ω≠
n 22 > max (≠æn 22, n21), the results are the

same as those in the case of POF, i.e., Ω≠
n 11 = max (≠æn 11, n12) or Ω≠

n 22 = max (≠æn 22, n21).

7.3.1 Theorem (Both transmitter-receiver pairs in LIR)

For all i œ {1, 2}, j œ {1, 2}\{i} and for all (≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22) œ N6

with ≠æ
n 11 > n12 and ≠æ

n 22 > n21, the PoA (÷, G) satisfies:

PoA (÷, G) =

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

�C1
≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
if B1 holds true

�C2,i

≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
if B2,i holds true

≠æ
n ii

≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
if B3,i ‚ B5,i holds true

�C3
≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
if B4 holds true

min(≠æn 11,
≠æ
n 22)

≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
if B6 holds true,

(7.9)
where,

�C1=min
 
≠æ
n 22 + ≠æ

n 11 ≠ n12,
≠æ
n 11 + ≠æ

n 22 ≠ n21, (7.10a)

max
⇣≠æ

n 11 ≠ n12,
Ω≠
n 11

⌘
+ max

⇣≠æ
n 22 ≠ n21,

Ω≠
n 22

⌘
,

2≠æ
n 11 ≠ n12 + max

⇣≠æ
n 22 ≠ n21,

Ω≠
n 22

⌘
, 2≠æ

n 22 ≠ n21 + max
⇣≠æ

n 11 ≠ n12,
Ω≠
n 11

⌘!

;
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7. Linear Deterministic Interference Channel

�C2,i=min
 
≠æ
n 22 + ≠æ

n 11 ≠ n12,
≠æ
n 11 + ≠æ

n 22 ≠ n21, (7.10b)

max
⇣≠æ

n 11 ≠ n12,
Ω≠
n 11

⌘
+ max

⇣≠æ
n 22 ≠ n21,

Ω≠
n 22

⌘
,

2≠æ
n ii ≠ nij + max

⇣
nij ,

Ω≠
n jj

⌘
, 2≠æ

n jj ≠ nji + max
⇣≠æ

n ii ≠ nij ,
Ω≠
n ii

⌘!

; and

�C3=min
 

≠æ
n 22 + ≠æ

n 11 ≠ n12,
≠æ
n 11 + ≠æ

n 22 ≠ n21, max
⇣
n21,

Ω≠
n 11

⌘
+ max

⇣
n12,

Ω≠
n 22

⌘
,

2≠æ
n 11 ≠ n12 + max

⇣
n12,

Ω≠
n 22

⌘
, 2≠æ

n 22 ≠ n21 + max
⇣
n21,

Ω≠
n 11

⌘!

. (7.10c)

Proof: The proof is presented in Appendix O.
From Theorem 7.3.1, the following conclusions can be drawn. When both transmitter-

receiver pairs are in LIR, and at least one of the conditions B3,i, B5,i, or B6 holds true, with
i œ {1, 2}, then the PoA (÷, G) does not depend on the feedback parameters Ω≠

n 11 and Ω≠
n 22.

However, under other conditions, i.e., B1, B2,i, or B4, this is not always the case as shown in
the following corollaries.

Corollary 8. For any (≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22) œ N6 with ≠æ

n 11 > n12 and ≠æ
n 22 > n21,

such that B1 holds true, it follows that:

1 <

≠æ
n 11 + ≠æ

n 22 ≠ n12 ≠ n21
≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
6PoA (÷, G)6

≠æ
n 11 + ≠æ

n 22 ≠ max (n12, n21)
≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
. (7.11)

The lower bound in (7.11) is obtained assuming that Ω≠
n 11 = 0 and Ω≠

n 22 = 0 in (7.9). That
is, when feedback is not available. The upper bound in (7.11) is obtained assuming that
Ω≠
n 11 = max (≠æn 11, n12) = ≠æ

n 11 and Ω≠
n 22 = max (≠æn 22, n21) = ≠æ

n 22 in (7.9). That is, when POF
is available at both transmitter-receiver pairs.

Note also that for any ÷, when both transmitter-receiver pairs are in LIR, condition B1
holds true, Ω≠

n 11 6 ≠æ
n 11 ≠ n12, and Ω≠

n 22 6 ≠æ
n 22 ≠ n21, the sum-rate capacity approaches to the

minimum sum-rate at an ÷-NE region (PoA (÷, G) ¥ 1). Alternatively, when both transmitter-
receiver pairs are in LIR, condition B1 holds true, and at least one the following conditions:
Ω≠
n 11 >

≠æ
n 11 ≠ n12 or Ω≠

n 22 >
≠æ
n 22 ≠ n21 holds true, the use of feedback in transmitter-receiver

pair 1 or transmitter-receiver pair 2, respectively, enlarges both the capacity region and the
÷-NE region. Nonetheless, the PoA increases as the smallest sum-rate at an ÷-NE region
remains unchanged with respect to the case without feedback.

Corollary 9. For any (≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22) œ N6 with ≠æ

n 11 > n12 and ≠æ
n 22 > n21,

such that B2,i holds true for all i œ {1, 2} and j œ {1, 2} \ {i}, it follows that:

1 <

≠æ
n ii

≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
6PoA (÷, G)6

≠æ
n 11 + ≠æ

n 22 ≠ max (n12, n21)
≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
. (7.12)

Note that when both transmitter-receiver pairs are in LIR and for a given i œ {1, 2} condition
B2,i holds true, Ω≠

n ii 6 ≠æ
n ii ≠ nij ; and Ω≠

n jj 6 nij , the use of feedback in either transmitter-
receiver pair does not enlarge the capacity region or the ÷-NE region. Then, the PoA (÷, G) is
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equal to the lower bound in (7.12), i.e., PoA (÷, G) =
≠æ
n ii

≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
. Conversely,

when both transmitter-receiver pairs are in LIR and for a given i œ {1, 2} condition B2,i holds
true, and at least one of the following conditions: Ω≠

n ii >
≠æ
n ii ≠ nij or Ω≠

n jj > nij holds true,
the use of feedback enlarges both the capacity region and the ÷-NE region.

The lower and upper bounds in (7.12) are obtained as in the case of (7.11).

Corollary 10. For any (≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22) œ N6 with ≠æ

n 11 > n12 and ≠æ
n 22 > n21,

such that B4 holds true, it follows that:

1 <

min
⇣≠æ

n 11 + ≠æ
n 22 ≠ max (n12, n21) , n12 + n21

⌘

≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
6PoA (÷, G)6

≠æ
n 11 + ≠æ

n 22 ≠ max (n12, n21)
≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
.

(7.13)

Note that when both transmitter-receiver pairs are in LIR, condition B4 holds true, and
�C5 6 n12 + n21, then the PoA (÷, G) does not depend on the feedback parameters Ω≠

n 11 and
Ω≠
n 22. When both transmitter-receiver pairs are in LIR, condition B4 holds true, ≠æ

n 11 + ≠æ
n 22 ≠

max (n12, n21) > n12 + n21; Ω≠
n 11 6 n21, and Ω≠

n 22 6 n12, then the PoA (÷, G) is equal to the
lower bound in (7.13), i.e., PoA (÷, G) = n12 + n21

≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21 ≠ 2÷
. Conversely, when both

transmitter-receiver pairs are in LIR, condition B4 holds true, ≠æ
n 11 + ≠æ

n 22 ≠ max (n12, n21) >

n12 + n21, and at least one of the following conditions: Ω≠
n 11 > n21 or Ω≠

n 22 > n12 holds true,
the use of feedback in transmitter-receiver pair 1 or transmitter-receiver pair 2, respectively,
enlarges the capacity region and the ÷-NE region.

7.3.2 Theorem (Transmitter-receiver pair 1 in LIR and transmitter-receiver
pair 2 in HIR)

For all (≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 11,

Ω≠
n 22) œ N6 with ≠æ

n 11 > n12 and ≠æ
n 22 6 n21,

the PoA (÷, G) satisfies:

PoA (÷, G) =

8
>>>>><

>>>>>:

≠æ
n 11

≠æ
n 11 ≠ n12 ≠ ÷

if B7 ‚ B8 ‚ B10 holds true

min(≠æn 22 + ≠æ
n 11 ≠ n12, n21)

≠æ
n 11 ≠ n12 ≠ ÷

if B9 holds true

(7.14)

Proof: The proof is presented in Appendix O.
Note that in the cases in which transmitter-receiver pair 1 is in LIR and transmitter-receiver

pair 2 is in HIR, the PoA (÷, G) does not depend on the feedback parameters. This follows
since the use of feedback in this scenario can enlarge the capacity region but it does not
increase the sum-rate capacity (Theorem 5.2.4).

In the case in which transmitter-receiver pair 1 is in HIR and transmitter-receiver pair 2
is in LIR, i.e., ≠æ

n 11 6 n12 and ≠æ
n 22 > n21, the PoA (÷, G) for the two-user D-LDIC-NOF is

characterized as in Theorem 7.3.2 interchanging the indices of the parameters.
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7.3.3 Theorem (Both transmitter-receiver pairs in HIR)

For all (≠æn 11, ≠æ
n 22, n12, n21, Ω≠

n 11, Ω≠
n 22) œ N6 with ≠æ

n 11 6 n12 and ≠æ
n 22 6 n21,

the PoA (÷, G) satisfies:
PoA (÷, G) = Œ. (7.15)

The result on Theorem 7.3.3 is due to the fact that
⇣Ä≠æ

n 11 ≠n12
ä+ ≠÷

⌘+
+
⇣Ä≠æ

n 22 ≠n21
ä+ ≠

÷

⌘+
= 0. That is, when ≠æ

n 11 6 n12 and ≠æ
n 22 6 n21, none of the transmitter-receiver pairs is

able to transmit at a strictly positive rate at the worst ÷-NE (the smallest sum-rate at the
÷-NE region).

In general, in any interference regime in which the PoA (÷, G) depends on the feedback
parameters Ω≠

n 11 or Ω≠
n 22, there exists a value in the feedback parameter Ω≠

n 11 or the feedback
parameter Ω≠

n 22 beyond which the PoA (÷, G) increases. These values correspond to those
values beyond which the sum-capacity can be enlarged (Theorem 5.2.4).

7.3.3. Price of Stability
In this section, the e�ciency of the ÷-NE of the game G in (3.3) is analyzed by using the PoS.

Definition 8 (Price of stability [4]). Let ÷ > 0. The PoS of the game G, denoted by PoS (÷, G),
is given by:

PoS (÷, G)=
max

(s1,s2)œA

2X

i=1
Ri(s1, s2)

max
(sú

1,s
ú
2)œA÷≠NE

2X

i=1
Ri(sú

1, s
ú
2)

. (7.16)

Let �N denote the solution to the optimization problem in the denominator of (7.16).
A closed-form expression of the maximum sum-rate in the decentralized case, i.e., �N is
presented in Appendix O and it can be obtained from Theorem 7.1.1.

The following proposition characterizes the PoS of the game G in (3.3) for the two-user
D-LDIC-NOF.

Proposition 1 (PoS). For all (≠æn 11, ≠æ
n 22, n12, n21, Ω≠

n 11, Ω≠
n 22) œ N6 and for all ÷ > 0

arbitrary small, the PoS in the game G of the two-user D-LDIC-NOF is:

PoS (÷, G)=1. (7.17)

Proof: The proof of Proposition 1 is obtained from Lemma 34 and Lemma 35 in Appendix
O.

Note that the fact that the price of stability is equal to one, independently of the parameters
≠æ
n 11, ≠æ

n 22, n12, n21, Ω≠
n 11 and Ω≠

n 22, implies that despite the anarchical behavior of both
transmitter-receiver pairs, the biggest ÷-NE sum-rate is equal to the sum-rate capacity, i.e.,
�C = �N . This implies that in all interference regimes, there always exists an ÷-NE that is
sum-rate optimal (Pareto optimal ÷-NE). The thresholds on the feedback parameters beyond
which the sum-capacity and the maximum sum-rate in the ÷-NE region can be improved can
be obtained from Theorem 5.2.4.
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In conclusion, with ÷ > 0 and when both transmitter-receiver pairs are in LIR, the PoA
can be made arbitrarily close to one as ÷ approaches zero, subject to a particular condition.
This immediately implies that in this regime even the worst ÷-NE (in terms of sum-rate) is
arbitrarily close to the Pareto boundary of the capacity region. The use of feedback increases
the PoA in some interference regimes. This is basically because in these regimes, the use
of feedback increases the sum-capacity, whereas the smallest sum-rate at an ÷-NE region
is not changed. In some cases the PoA can be infinity due to the fact that when both
transmitter-receiver pairs are in HIR, the smallest sum-rate at an ÷-NE region is zero bit per
channel use. In other regimes, the use of feedback does not have any impact on the PoA as
it does not increase the sum-capacity. Finally, the PoS is shown to be equal to one in all
interference regimes. This implies that there always exists an ÷-NE in the Pareto boundary of
the capacity region. These results highlight the relevance of designing equilibrium selection
methods such that decentralized networks can operate at e�cient ÷-NE points. The need of
these methods becomes more relevant when channel-output feedback is available as it might
increase the PoA.
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— 8 —
Gaussian Interference

Channel
This chapter presents the main results on the two-user D-GIC-NOF. This model

was described in Section 2.1 and can be modeled by a game as suggested in
Section 3.1. Denote by C the capacity region of the two-user GIC-NOF with fixed

parameters ≠≠æSNR1, ≠≠æSNR2, INR12, INR21, Ω≠≠SNR1, and Ω≠≠SNR2. The achievable capacity region
C and the converse region C approximate the capacity region C to within 4.4 bits (Theorem
6.3.1). The achievable capacity region C and the converse region C are defined by Theorem
6.1.1 and Theorem 6.2.1, respectively.

8.1. Achievable ÷-Nash Equilibrium Region
Let the ÷-NE region (Definition 5) of the two-user D-GIC-NOF be denoted by N÷. This section
introduces a region N ÷ ™ N÷ that is achievable using the randomized Han-Kobayashi scheme
with noisy channel-output feedback (RHK-NOF). This coding scheme is presented in Appendix
M and Appendix N. The RHK-NOF is proved to be an ÷-NE configuration pair with ÷ > 1.
That is, any unilateral deviation from the RHK-NOF by any of the transmitter-receiver pairs
might lead to an individual rate improvement that is upper bounded by one bit per channel
use. The description of the achievable ÷-NE region N ÷ is presented using the constants a1,i;
the functions a2,i : [0, 1] æ R+, al,i : [0, 1]2 æ R+, with l œ {3, . . . , 6}; and a7,i : [0, 1]3 æ R+,
defined in (6.1), for all i œ {1, 2}, with j œ {1, 2} \ {i}, and the functions bl,i : [0, 1] æ R+,
with (l, i) œ {1, 2}2, defined in (6.2).

Note that the functions in (6.1) and (6.2) depend on ≠≠æSNR1, ≠≠æSNR2, INR12, INR21, Ω≠≠SNR1,
and Ω≠≠SNR2. However, as these parameters are fixed in this analysis, this dependence is not
emphasized in the definition of these functions. Finally, using this notation, the main result is
presented by Theorem 8.1.1.
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8. Gaussian Interference Channel
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Achievable regions (dashed-lines) and �-NE achievable regions (solid lines) of

the GIC-NOF with parameters
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SNR1 = 24 dB,
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SNR2 = 18 dB, INR12 = 16 dB,

INR21 = 10 dB,
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SNR1 � {0, 18, 50} dB and
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SNR = �100dB
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���
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Figure 8.1.: Achievable capacity regions (dashed-lines) and achievable ÷-NE regions (solid lines)
of the two-user GIC-NOF and two-user D-GIC-NOF with parameters ≠≠æSNR1 = 24
dB, ≠≠æSNR2 = 18 dB, INR12 = 16 dB, INR21 = 10 dB, Ω≠≠SNR1 œ {≠100, 18, 50} dB,
Ω≠≠SNR2 œ {≠100, 12, 50} dB and ÷ = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
R1 bits/channel use

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
2 b

its
/c

ha
nn

el
 u

se

� = 1

����
SNR1 = 50dB,

����
SNR2 = 50dB

����
SNR1 = 18dB,

����
SNR2 = 12dB

Achievable regions (dashed-lines) and �-NE achievable regions (solid lines) of

the GIC-NOF with parameters
���
SNR1 = 24 dB,

���
SNR2 = 18 dB, INR12 = 48 dB,

INR21 = 30 dB,
���
SNR1 � {0, 18, 50} dB and

���
SNR2 � {0, 12, 50} dB

���
SNR = �100dB

���
SNR1 = �100dB,

���
SNR2 = �100dB

Figure 8.2.: Achievable capacity regions (dashed-lines) and achievable ÷-NE regions (solid lines)
of the two-user GIC-NOF and two-user D-GIC-NOF with parameters ≠≠æSNR1 = 24
dB, ≠≠æSNR2 = 18 dB, INR12 = 48 dB, INR21 = 30 dB, Ω≠≠SNR1 œ {≠100, 18, 50} dB,
Ω≠≠SNR2 œ {≠100, 12, 50} dB and ÷ = 1.
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Achievable regions (dashed-lines) and �-NE achievable regions (solid lines) of

the GIC-NOF with parameters
���
SNR1 = 24 dB,
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INR21 = 9 dB,
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SNR1 � {0, 18, 50} dB and
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Figure 8.3.: Achievable capacity regions (dashed-lines) and achievable ÷-NE regions (solid lines)
of the two-user GIC-NOF and two-user D-GIC-NOF with parameters ≠≠æSNR1 = 24
dB, ≠≠æSNR2 = 3 dB, INR12 = 16 dB, INR21 = 9 dB, Ω≠≠SNR1 œ {≠100, 18, 50} dB,
Ω≠≠SNR2 œ {≠100, 8, 50} dB and ÷ = 1.

8.1.1 Theorem (achievable ÷-NE region)

Let ÷ > 1. The achievable ÷-NE region N ÷ is given by the closure of all
possible achievable rate pairs (R1, R2) œ C that satisfy, for all i œ {1, 2} and
j œ {1, 2} \ {i}, the following conditions:

Ri>
⇣
a2,i(fl) ≠ a3,i(fl, µj) ≠ a4,i(fl, µj) ≠ ÷

⌘+
, (8.1a)

Ri6min
⇣
a2,i(fl) + a3,j(fl, µi) + a5,j(fl, µi) ≠ a2,j(fl) + ÷, (8.1b)

a3,i(fl, µj) + a7,i(fl, µ1, µ2) + 2a3,j(fl, µi) + a5,j(fl, µi) ≠ a2,j(fl) + ÷,

a2,i(fl)+a3,i(fl, µj)+2a3,j(fl, µi)+a5,j(fl, µi)+a7,j(fl, µ1, µ2)≠2a2,j(fl) + 2÷

⌘
,

R1 + R26a1,i+a3,i(fl, µj)+a7,i(fl, µ1, µ2)+a2,j(fl)+a3,j(fl, µ1)≠a2,i(fl) + ÷, (8.1c)

for all (fl, µ1, µ2) œ
h
0,

Ä
1 ≠ max

Ä 1
INR12

,
1

INR21

ää+i◊ [0, 1] ◊ [0, 1].

Proof: The proof of Theorem 8.1.1 is presented in Appendix J.
The following describes some interesting observations from Theorem 8.1.1. Figure 8.1 shows

an inner-bound on the capacity region (Theorem 6.2.1) and the achievable ÷-NE region in
Theorem 8.1.1 for a two-user D-GIC-NOF with parameters ≠≠æSNR1 = 24 dB, ≠≠æSNR2 = 18 dB,
INR12 = 16 dB, INR21 = 10 dB, Ω≠≠SNR1 œ {≠100, 18, 50} dB and Ω≠≠SNR2 œ {≠100, 12, 50} dB. At
low values of Ω≠≠SNR1 and Ω≠≠SNR2, the achievable ÷-NE region approaches the region reported in
[13] for the case of the two-user decentralized GIC (D-GIC) without channel-output feedback.
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Figure 8.4.: Converse regions (dashed-lines) and non-equilibrium regions with ÷ > 1 (solid lines)
of the two-user GIC-NOF and two-user D-GIC-NOF with parameters ≠≠æSNR1 = 3
dB, ≠≠æSNR2 = 8 dB, INR12 = 16 dB, INR21 = 5 dB, Ω≠≠SNR1 œ {≠100, 9, 50} dB and
Ω≠≠SNR2 œ {≠100, 6, 50} dB.

Alternatively, for high values of Ω≠≠SNR1 and Ω≠≠SNR2, the achievable ÷-NE region approaches the
region reported in [60] for the case of the two-user D-GIC with POF.

Denote by N ÷PF the achievable ÷-NE region of the two-user GIC with perfect channel-
output feedback presented in [60]. Figure 8.2 shows an inner-region on the capacity region
(Theorem 6.1.1) and the achievable ÷-NE region in Theorem 8.1.1 for a two-user D-GIC-NOF
channel with parameters ≠≠æSNR1 = 24 dB, ≠≠æSNR2 = 18 dB, INR12 = 48 dB, INR21 = 30 dB,Ω≠≠SNR1 œ {≠100, 18, 50} dB and Ω≠≠SNR2 œ {≠100, 12, 50} dB. In this case, the achievable ÷-NE
region and the inner-region on the capacity region (Theorem 6.1.1) are almost identical, which
implies that in the cases in which ≠≠≠æSNRi < INRij , for both i œ {1, 2}, with j œ {1, 2} \ {i},
the ÷-NE region is almost the same as the achievable region in the centralized case (Theorem
6.1.1).

Figure 8.3 shows an inner-region on the capacity region (Theorem 6.1.1) and the achievable
÷-NE region in Theorem 8.1.1 for a two-user D-GIC-NOF channel with parameters ≠≠æSNR1 = 24
dB, ≠≠æSNR2 = 3 dB, INR12 = 16 dB, INR21 = 9 dB, Ω≠≠SNR1 œ {≠100, 18, 50} dB and Ω≠≠SNR2 œ
{≠100, 8, 50} dB. Note that in this case, the feedback parameter Ω≠≠≠SNR2 does not have an
e�ect on the achievable ÷-NE region and the inner-region on the capacity region (Theorem
6.1.1). This is due to the fact that when one transmitter-receiver pair is in LIR and the other
transmitter-receiver pair is in HIR, feedback is useless on the transmitter-receiver pair in HIR.
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8.2. Non-Equilibrium Region

8.2. Non-Equilibrium Region

Let the ÷-NE region (Def. 5) of the two-user D-GIC-NOF be denoted by N÷. This section
introduces a region N ÷ ´ N÷ which is given in terms of the convex region B÷. Here, for the
case of the two-user D-GIC-NOF, the convex region B÷ is given by the closure of non-negative
rate pairs (R1, R2) that for all i œ {1, 2}, with j œ {1, 2} \ {i} satisfy:

B÷=
n

(R1, R2) œ R2
+ : Li 6 Ri 6 U i, for all i œ K = {1, 2}

o
, (8.2)

where

Li=
 

1
2 log

 

1 +
≠≠æSNRi

1 + INRij

!

≠ ÷

!+

and (8.3)

U i=
1
2 log

Å≠≠æSNRi + 2fl

q≠≠æSNRiINRij + INRij + 1
ã

≠1
2 log

Ö ≠≠æSNRj + 2
Ä
fl ≠ flXiVj

Ô
“j

äq≠≠æSNRjINRji + INRji + 1

(1 ≠ “j) ≠≠æSNRj + 2
Ä
fl ≠ flXiVj

Ô
“j

äq≠≠æSNRjINRji + INRji + 1

è

≠1
2 log

Ä
INRji

Ä
1 ≠ fl

2ä+ 1
ä

+ 1
2 log

⇣
INRji

⇣
1 ≠
Ä
fl ≠ flXiVj

Ô
“j

ä2⌘+ 1
⌘

+1
2 log

⇣≠≠æSNRj + 2fl

q≠≠æSNRjINRji + INRji + 1
⌘

≠1
2log

 
≠≠æSNRj

Ä
“j ≠ “

2
j

ä
+ 2“j

Ä
fl≠ flXiVj

Ô
“j

äq≠≠æSNRjINRji+ “jINRji

Ä
1≠ fl

2
XiVj

ä
+ “j

!

≠1
2 log

Ä
1 ≠ fl

2
XiVj

ä
≠ 1

2 log
Ä
INRij

Ä
1 ≠ fl

2ä+ 1
ä

+1
2 log

 

“j

Ä
INRij

Ä
1 ≠ fl

2ä+ 1
ä

≠ fl
2
XiVj

“j (INRij + 1) + “2INRij

Ä
2flXiVj fl

Ô
“j ≠ “j

ä!

+÷. (8.4)

with

“j =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

min
 ≠≠æSNRj

INRijINRji

,
1

INRji

!

if C1,j ‚
⇣
C2,j · C3,j

⌘
holds true

min
 

1
INRji

,
INRij

INRji

≠≠æSNRj

!

if C4,j holds true

min
 

1,
INRij

≠≠æSNRj

!

if C5,j · C6,j holds true

min
 ≠≠æSNRj

Ω≠≠SNRjINRji

,
INRij

Ω≠≠SNRjINRji

, 1
!

if C7,j ‚ C8,j holds true

0 otherwise,

(8.5)
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Figure 8.5.: Converse region (blue dashed-line), non-equilibrium region with ÷ > 1 (blue
solid lines), achievable capacity regions (red dashed-line), and achievable ÷-NE
regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with
parameters ≠≠æSNR1 = 24 dB, ≠≠æSNR2 = 18 dB, INR12 = 16 dB, INR21 = 10 dB, (a)
Ω≠≠SNR1 = ≠100 dB and Ω≠≠SNR2 = ≠100 dB, (b) Ω≠≠SNR1 = 18 dB and Ω≠≠SNR2 = 12dB,
and (c) Ω≠≠SNR1 = 50 dB and Ω≠≠SNR2 = 50dB.

C1,j : INRji <
≠≠æSNRj 6 INRij , (8.6a)

C2,j : max
⇣
INRij , INRji,

Ω≠≠SNRj

⌘
<

≠≠æSNRj < INRijINRji, (8.6b)

C3,j : Ω≠≠SNRj 6 INRij , (8.6c)
C4,j : INRji < INRij <

≠≠æSNRj 6 Ω≠≠SNRj , (8.6d)
C5,j : ≠≠æSNRj > max

⇣
INRij , INRji,

Ω≠≠SNRj

⌘
, (8.6e)

C6,j : ≠≠æSNRj > max
⇣
INRijINRji,

Ω≠≠SNRjINRji

⌘
, (8.6f)

C7,j : max
 

INRij , INRji,
Ω≠≠SNRj ,

Ω≠≠SNRjINRji

INRij

!

<
≠≠æSNRj <

Ω≠≠SNRjINRji 6
Ω≠≠SNRj

≠≠æSNRj

INRij

, (8.6g)

C8,j : max
 

INRij , INRji,
Ω≠≠SNRj ,

Ω≠≠SNRjINRji

INRij

!

<
≠≠æSNRj < INRijINRji <

Ω≠≠SNRjINRji, (8.6h)

,fl œ [0, 1], and flXiVj œ [0, 1).
Note that Li is the rate achieved by the transmitter-receiver pair i when it saturates

the power constraint in (2.7) and treats interference as noise. Following this notation, the
non-equilibrium region of the two-user GIC-NOF, i.e., N ÷, can be written as in the following
theorem.
8.2.1 Theorem (The non-equilibrium region)

Let ÷ > 1. The non-equilibrium region N ÷ of the two-user D-GIC-NOF is given
by the closure of all possible non-negative rate pairs (R1, R2) œ C fl B÷ for all
fl œ [0, 1].

Proof: The proof of Theorem 8.2.1 is presented in Appendix K.
It is worth noting that Theorem 8.2.1 has a strong connection with Theorem 7.1.1. The
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8.2. Non-Equilibrium Region
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Figure 8.6.: Converse region (blue dashed-line), non-equilibrium region with ÷ > 1 (blue
solid lines), achievable capacity regions (red dashed-line), and achievable ÷-NE
regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with
parameters ≠≠æSNR1 = 24 dB, ≠≠æSNR2 = 18 dB, INR12 = 48 dB, INR21 = 30 dB, (a)
Ω≠≠SNR1 = ≠100 dB and Ω≠≠SNR2 = ≠100 dB, (b) Ω≠≠SNR1 = 18 dB and Ω≠≠SNR2 = 12dB,
and (c) Ω≠≠SNR1 = 50 dB and Ω≠≠SNR2 = 50dB.
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Figure 8.7.: Converse region (blue dashed-line), non-equilibrium region with ÷ > 1 (blue
solid lines), achievable capacity regions (red dashed-line), and achievable ÷-NE
regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with
parameters ≠≠æSNR1 = 24 dB, ≠≠æSNR2 = 3 dB, INR12 = 16 dB, INR21 = 9 dB, (a)
Ω≠≠SNR1 = ≠100 dB and Ω≠≠SNR2 = ≠100 dB, (b) Ω≠≠SNR1 = 18 dB and Ω≠≠SNR2 = 8dB,
and (c) Ω≠≠SNR1 = 50 dB and Ω≠≠SNR2 = 50dB.

relevance of Theorem 8.2.1 relies on two important implications: (a) if the pair of configurations
(s1, s2) is an ÷-NE, then transmitter-receiver pair 1 and transmitter-receiver pair 2 always
achieve a rate equal to or larger than L1 and L2, with L1 and L2 as in (8.3), respectively; and
(b) there always exists an ÷-NE transmit-receive configuration pair (s1, s2) that achieves a
rate pair (R1(s1, s2), R2(s1, s2)) that is at most ÷ bits per channel use per user away from the
outer bound on the converse region.

Figure 8.4 shows an outer-bound on the capacity region (Theorem 6.2.1) and the non-
equilibrium region with ÷ > 1 N ÷ in Theorem 8.2.1 for a two-user D-GIC-NOF channel with
parameters ≠≠æSNR1 = 3 dB, ≠≠æSNR2 = 8 dB, INR12 = 16 dB, INR21 = 5 dB, Ω≠≠SNR1 œ {≠100, 9, 50}
dB and Ω≠≠SNR2 œ {≠100, 6, 50} dB.

Figure 8.5 shows an inner-bound (Theorem 6.1.1), an outer-bound on the capacity region
(Theorem 6.2.1), the achievable ÷-NE region N ÷ (Theorem 8.1.1), the non-equilibrium region
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8. Gaussian Interference Channel
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Figure 8.8.: Converse region (blue dashed-line), non-equilibrium region with ÷ > 1 (blue
solid lines), achievable capacity regions (red dashed-line), and achievable ÷-NE
regions (red solid lines) of the two-user GIC-NOF and two-user D-GIC-NOF with
parameters ≠≠æSNR1 = 3 dB, ≠≠æSNR2 = 8 dB, INR12 = 16 dB, INR21 = 5 dB, (a)
Ω≠≠SNR1 = ≠100 dB and Ω≠≠SNR2 = ≠100 dB, (b) Ω≠≠SNR1 = 9 dB and Ω≠≠SNR2 = 6dB,
and (c) Ω≠≠SNR1 = 50 dB and Ω≠≠SNR2 = 50dB.

with ÷ > 1 N ÷ (Theorem 8.2.1) for a two-user D-GIC-NOF channel with parameters ≠≠æSNR1 = 24
dB, ≠≠æSNR2 = 18 dB, INR12 = 16 dB, INR21 = 10 dB, Ω≠≠SNR1 œ {≠100, 18, 50} dB and
Ω≠≠SNR2 œ {≠100, 12, 50} dB.

Figure 8.6 shows an inner-bound (Theorem 6.1.1), an outer-bound on the capacity region
(Theorem 6.2.1), the achievable ÷-NE region N ÷ (Theorem 8.1.1), the non-equilibrium region
with ÷ > 1 N ÷ (Theorem 8.2.1) for a two-user D-GIC-NOF channel with parameters ≠≠æSNR1 = 24
dB, ≠≠æSNR2 = 18 dB, INR12 = 48 dB, INR21 = 30 dB, Ω≠≠SNR1 œ {≠100, 18, 50} dB and
Ω≠≠SNR2 œ {≠100, 12, 50} dB.

Figure 8.7 shows an inner-bound (Theorem 6.1.1), an outer-bound on the capacity region
(Theorem 6.2.1), the achievable ÷-NE region N ÷ (Theorem 8.1.1), the non-equilibrium region
with ÷ > 1 N ÷ (Theorem 8.2.1) for a two-user D-GIC-NOF channel with parameters ≠≠æSNR1 =
24 dB, ≠≠æSNR2 = 3 dB, INR12 = 16 dB, INR21 = 9 dB, Ω≠≠SNR1 œ {≠100, 18, 50} dB and
Ω≠≠SNR2 œ {≠100, 8, 50} dB.

Figure 8.8 shows an inner-bound (Theorem 6.1.1), an outer-bound on the capacity region
(Theorem 6.2.1), the achievable ÷-NE region N ÷ (Theorem 8.1.1), the non-equilibrium region
with ÷ > 1 N ÷ (Theorem 8.2.1) for a two-user D-GIC-NOF channel with parameters ≠≠æSNR1 = 3
dB, ≠≠æSNR2 = 8 dB, INR12 = 16 dB, INR21 = 5 dB, Ω≠≠SNR1 œ {≠100, 9, 50} dB and Ω≠≠SNR2 œ
{≠100, 6, 50} dB.
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— 9 —
Conclusions

This thesis presented the fundamental limits in the asymptotic regime of the
two-user IC with channel-output feedback using tools of information theory and
network information theory. More specifically, the focus of this thesis was on the

e�ect of the noise in the feedback links on these fundamental limits under asymmetric conditions
on the IC-NOF. The results obtained in this thesis can be seen as a generalization of the
results on the two-user IC for the cases without channel-output feedback, with POF, and with
NOF under symmetric conditions. To the best of the author’s knowledge, this approximation
is the most general with respect to existing literature and the one that guarantees the smallest
gap between the achievable and converse regions on the GIC when feedback links are subject
to Gaussian additive noise. Additionally, the results of this work allowed to identify the
scenarios in which the use of only one channel-output feedback can bring benefits in terms
of rate improvements in a two-user IC despite the e�ect of the noise in the feedback link.
Particularly, in the case in which one transmitter-receiver pair is in HIR and the other is in
LIR, the use of feedback in the transmitter-receiver in HIR does not enlarge the capacity
region, even in the case of POF. Additionally, a necessary but no su�cient condition on the
GIC for improving the sum-rate is that both transmitter-receiver pairs must be in LIR or both
transmitter receiver pairs must be in LIR. These improvements were observed and analyzed
from the perspective of centralized and decentralized networks.

An achievable region for the two-user LDIC-NOF and an achievable region for the two-user
GIC-NOF were obtained using well-known techniques on information theory: rate-splitting,
block-Markov superposition coding, and backward decoding. The converse region was the
result of using genie-aided models. The genie-aided models and the insights that were used
in the Gaussian case were obtained from the analysis of the linear deterministic model. The
linear deterministic model is an approximation to the Gaussian case in a very high SNR
regime. Therefore, it allowed the analysis of the IC as an interference-limited network focusing
more the attention in the interactions of the signals. The achievable and converse regions
coincided for the two-user LDIC-NOF. Thus, the capacity region of the two-user LDIC-NOF
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9. Conclusions

was characterized. The achievable and converse regions for the two-user GIC-NOF were
also characterized and they did not coincide. Nonetheless, It was shown that the capacity
region is at most 4.4 bits from the achievable region, which is a very good approximation
if it is taken into account that the capacity region of the two-user GIC is only known in
certain specific cases. The capacity regions of the two-user LDIC-NOF and the two-user LDIC
were compared to identify the values in the feedback parameters of the two-user LDIC-NOF
beyond which the capacity region can be enlarged. This allowed to identify the scenarios in
which the capacity region can be enlarged, and more specifically the scenarios in which both
individual transmission rates can be improved and not the sum-rate capacity, the scenarios
in which the sum-capacity can be improved, and the scenarios in which the use of feedback
in one transmitter-receiver pair allows to improve the individual transmission rate. It was
also identified the scenarios in which feedback does not enlarge the capacity region. Given
the established connection between the Gaussian and the linear deterministic models, an
approximate value in the feedback parameter beyond which the approximate capacity region
can be enlarged is also identified. This is a very important result from the engineering point
of view, because it establishes the scenarios or the conditions in which is useful to implement
channel-output feedback at least in one transmitter-receiver pair of the two-user GIC. These
results confirmed the fact that the interference regimes are not the only factor determining the
e�ect of feedback. Indeed, the quality of the feedback links turns out to be another relevant
factor.

An achievable ÷-NE region for the two-user LDIC-NOF and an achievable ÷-NE region for
the two-user GIC-NOF were obtained including common randomness in the coding schemes
introduced in the centralized part. This common randomness allowed both transmitter-
receiver pairs to limit the rate improvement of each other when either of them deviates from an
equilibrium rate pair. A non-equilibrium region was obtained for the two-user LDIC-NOF and
a non-equilibrium region was also obtained for the two-user GIC-NOF based on the insights
from the analysis in the linear deterministic model. This allowed to define an ÷-NE region
for the two-user LDIC-NOF with ÷ > 0 and an approximate ÷-NE region for the two-user
GIC-NOF with ÷ > 1. The e�ciency of the ÷-NE region of the two-user LDIC-NOF was
characterized using well-known metrics in game theory: price of anarchy (PoA) and price of
stability (PoS). These metrics allowed to compare the sum-capacity of the two-user LDIC-NOF
with the smallest and the best sum-rate at an ÷-NE region. The PoS is equal to one in all the
interference regimes which implies that there always exists an ÷-NE in the Pareto boundary of
the capacity region. It is worth noting here that feedback plays a key role on increasing the
PoA in the interference regimes in which feedback can enlarge the sum-rate capacity.

The scenarios, conditions, and values in the feedback parameters beyond which the capacity
region of the two-user LDIC-NOF can be enlarged are the same scenarios, conditions, and
values to enlarge its ÷-NE region. In the decentralized case, despite the anarchical behavior of
each transmitter-receiver pair, feedback can be seen as an altruistic technique. The latter is
because implementing feedback in one transmitter-receiver pair can enlarge the ÷-NE region
improving the individual rate of the other transmitter-receiver pair.

Future works in this area must consider the cost of feedback, which means to define metrics
to analyze if the improvements on the individual rates justify feedback and the additional
functionalities that must be implemented overall in the transmitters or to analyze if the use of
feedback allows to use less transmission power to achieve the same rate pairs as in the case
without feedback. It will be also important to analyze the e�ect of feedback in the capacity
region when fading is considered into the system models. These studies can be complemented
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with a real implementation of a basic network using channel-output feedback. Another step
to go to a more general model will be the analysis of the two-user GIC in which feedback
can be also implemented between each receiver and the non-corresponding transmitter. In
the decentralized part, a future work will be the analysis of equilibrium selection methods to
reduce the e�ect of anarchical behavior in a network with channel-output feedback.

Interference is increasing due to the massive use of wireless devices operating in licensed and
unlicensed bands. Thus, channel-output feedback might be an e�ective technique to manage
the interference taking advantage of its structure.
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— A —
Achievability Proof of

Theorem 5.1.1 and
Proof of Theorem 6.1.1

This appendix describes an achievability scheme for the two-user LDIC-NOF and
two-user GIC-NOF based on a three-part message splitting, superposition coding,
and backward decoding.

Codebook Generation: Fix a strictly positive joint probability distribution

PU U1 U2 V1 V2 X1,P X2,P (u, u1, u2, v1, v2, x1,P , x2,P ) = PU (u)PU1|U (u1|u)PU2|U (u2|u)
PV1|U U1(v1|u, u1)PV2|U U2(v2|u, u2)PX1,P |U U1 V1(x1,P |u, u1, v1)
PX2,P |U U2 V2(x2,P |u, u2, v2), (A.1)

for all (u, u1, u2, v1, v2, x1,P , x2,P ) œ (X1 fi X2) ◊ X1 ◊ X2 ◊ X1 ◊ X2 ◊ X1 ◊ X2.
Let R1,C1, R1,C2, R2,C1, R2,C2, R1,P , and R2,P be non-negative real numbers. Define also

R1,C = R1,C1 + R1,C2, R2,C = R2,C1 + R2,C2, R1 = R1,C + R1,P , and R2 = R2,C + R2,P .
Generate 2N(R1,C1+R2,C1) i.i.d. N -length codewords u(s, r) =

Ä
u1(s, r), u2(s, r), . . . , uN (s, r)

ä

according to the product distribution

PU

Ä
u(s, r)

ä
=

NY

i=1
PU (ui(s, r)), (A.2)

with s œ {1, 2, . . . , 2NR1,C1} and r œ {1, 2, . . . , 2NR2,C1}.
For encoder 1, generate for each codeword u(s, r), 2NR1,C1 i.i.d. N -length codewords

u1(s, r, k) =
Ä
u1,1(s, r, k), u1,2(s, r, k), . . . , u1,N (s, r, k)

ä
according to the conditional distribu-
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tion
PU1|U

Ä
u1(s, r, k)|u(s, r)

ä
=

NY

i=1
PU1|U

Ä
u1,i(s, r, k)|ui(s, r)

ä
, (A.3)

with k œ {1, 2, . . . , 2NR1,C1}. For each pair of codewords
Ä
u(s, r), u1(s, r, k)

ä
, generate 2NR1,C2

i.i.d. N -length codewords v1(s, r, k, l) =
Ä
v1,1(s, r, k, l), v1,2(s, r, k, l), . . . , v1,N (s, r, k, l)

ä
ac-

cording to

P V 1|U U1

Ä
v1(s, r, k, l)|u(s, r), u1(s, r, k)

ä
=

NY

i=1
PV1|U U1

Ä
v1,i(s, r, k, l)|ui(s, r), u1,i(s, r, k)

ä
,

(A.4)

with l œ {1, 2, . . . , 2NR1,C2}. For each triplet of codewords
Ä
u(s, r), u1(s, r, k), v1(s, r, k, l)

ä
,

generate 2NR1,P i.i.d. N -length codewords x1,P (s,r,k,l,q) =
Ä
x1,P,1(s,r,k,l,q), x1,P,2(s,r,k,l,q),

. . ., x1,P,N (s,r,k,l,q)
ä

according to the conditional distribution

P X1,P |U U1 V 1

Ä
x1,P (s, r, k, l, q)|u(s, r),u1(s, r, k), v1(s, r, k, l)

ä

=
NY

i=1
PX1,P |U U1 V1

Ä
x1,P,i(s, r, k, l, q)|ui(s, r), u1,i(s, r, k), v1,i(s, r, k, l)

ä
, (A.5)

with q œ {1, 2, . . . , 2NR1,P }.
For encoder 2, generate for each codeword u(s, r), 2NR2,C1 i.i.d. N -length codewords

u2(s, r, j) =
Ä
u2,1(s, r, j), u2,2(s, r, j), . . . , u2,N (s, r, j)

ä
according to the conditional distribu-

tion
PU2|U

Ä
u2(s, r, j)|u(s, r)

ä
=

NY

i=1
PU2|U

Ä
u2,i(s, r, j)|ui(s, r)

ä
, (A.6)

with j œ {1, 2, . . . , 2NR2,C1}. For each pair of codewords
Ä
u(s, r), u2(s, r, j)

ä
, generate 2NR2,C2

i.i.d. N -length codewords v2(s, r, j, m) =
Ä
v2,1(s, r, j, m), v2,2(s, r, j, m), . . . , v2,N (s, r, j, m)

ä

according to the conditional distribution

P V 2|U U2

Ä
v2(s, r, j, m)|u(s, r), u2(s, r, j)

ä
=

NY

i=1
PV2|U U2(v2,i(s, r, j, m)|ui(s, r), u2,i(s, r, j)),

(A.7)

with m œ {1, 2, . . . , 2NR2,C2}. For each triplet of codewords
Ä
u(s, r), u2(s, r, j), v2(s, r, j, m)

ä
,

generate 2NR2,P i.i.d. N -length codewords x2,P (s,r,j,m,b) =
Ä
x2,P,1(s,r,j,m,b), x2,P,2(s,r,j,m,b),

. . ., x2,P,N (s,r,j,m,b)
ä

according to

P X2,P |U U2 V 2

Ä
x2,P (s, r, j, m, b)|u(s, r), u2(s, r, j), v2(s, r, j, m)

ä

=
NY

i=1
PX2,P |U U2 V2

Ä
x2,P,i(s, r, j, m, b)|ui(s, r), u2,i(s, r, j), v2,i(s, r, j, m, b)

ä
, (A.8)

with b œ {1, 2, . . . , 2NR2,P }. The resulting code structure is shown in Figure A.1.

Encoding: Denote by W
(t)
i

œ Wi = {1, 2, . . . , 2NRi} the message index of transmitter
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i œ {1, 2} during block t œ {1, 2, . . . , T}, with T œ N the total number of blocks. Let W
(t)
i

be composed of the message index W
(t)
i,C

œ Wi,C = {1, 2, . . . , 2NRi,C } and message index
W

(t)
i,P

œ Wi,P = {1, 2, . . . , 2NRi,P }. That is, W
(t)
i

=
⇣
W

(t)
i,C

, W
(t)
i,P

⌘
. The message index

W
(t)
i,P

must be reliably decoded at receiver i. Let also W
(t)
i,C

be composed of the message
indices W

(t)
i,C1 œ Wi,C1 = {1, 2, . . . , 2NRi,C1} and W

(t)
i,C2 œ Wi,C2 = {1, 2, . . . , 2NRi,C2}. That is,

W
(t)
i,C

=
⇣
W

(t)
i,C1,W (t)

i,C2
⌘
. The message index W

(t)
i,C1 must be reliably decoded by transmitter j,

with j œ {1, 2} \ {i} (via feedback), and by the non-intended receiver, but not necessarily by
the intended receiver. The message index W

(t)
i,C2 must be reliably decoded by the non-intended

receiver, but not necessarily by the intended receiver.
Consider Markov encoding over T blocks. At encoding step t, with t œ {1, 2, . . . , T},

transmitter 1 sends the codeword:

x(t)
1 =�1

 

u
⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1

⌘
,u1
⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
1,C1

⌘
, v1

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
1,C1, W

(t)
1,C2

⌘
,

x1,P

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
1,C1, W

(t)
1,C2, W

(t)
1,P

⌘!

, (A.9)

where, �1 : (X1 fi X2)N ◊ X N
1 ◊ X N

1 ◊ X N
1 æ X N

1 is a function that transforms the code-
words u

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1

⌘
, u1

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
1,C1

⌘
, v1

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
1,C1, W

(t)
1,C2

⌘
,

and x1,P

⇣
W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
1,C1, W

(t)
1,C2, W

(t)
1,P

⌘
into the N -dimensional vector x(t)

1 of chan-
nel inputs. The indices W

(0)
1,C1 = W

(T )
1,C1 = s

ú and W
(0)
2,C1 = W

(T )
2,C1 = r

ú, and the pair
(sú

, r
ú) œ {1, 2, . . . , 2N R1,C1} ◊ {1, 2, . . . , 2NR2,C1} are pre-defined and known by both receivers

and transmitters. It is worth noting that the message index W
(t≠1)
2,C1 is obtained by transmitter

1 from the feedback signal Ω≠y (t≠1)
1 at the end of the previous encoding step t ≠ 1.

Transmitter 2 follows a similar encoding scheme.
Decoding: Both receivers decode their message indices at the end of block T in a backward

decoding fashion. At each decoding step t, with t œ {1, 2, . . . , T}, receiver 1 obtains the
message indices

ÄcW (T ≠t)
1,C1 , cW (T ≠t)

2,C1 , cW (T ≠(t≠1))
1,C2 , cW (T ≠(t≠1))

1,P
, cW (T ≠(t≠1))

2,C2
ä

œ W1,C1 ◊ W2,C1 ◊
W1,C2 ◊ W1,P ◊ W2,C2 from the channel output ≠æy (T ≠(t≠1))

1 . The tuple
⇣
cW (T ≠t)

1,C1 , cW (T ≠t)
2,C1 ,

cW (T ≠(t≠1))
1,C2 , cW (T ≠(t≠1))

1,P
, cW (T ≠(t≠1))

2,C2
⌘

is the unique tuple that satisfies
⇣
u
⇣
cW (T ≠t)

1,C1 , cW (T ≠t)
2,C1

⌘
, u1

⇣
cW (T ≠t)

1,C1 , cW (T ≠t)
2,C1 , W

(T ≠(t≠1))
1,C1

⌘
,

v1
⇣
cW (T ≠t)

1,C1 , cW (T ≠t)
2,C1 , W

(T ≠(t≠1))
1,C1 , cW (T ≠(t≠1))

1,C2
⌘

,

x1,P

⇣
cW (T ≠t)

1,C1 , cW (T ≠t)
2,C1 , W

(T ≠(t≠1))
1,C1 , cW (T ≠(t≠1))

1,C2 , cW (T ≠(t≠1))
1,P

⌘
,

u2
⇣
cW (T ≠t)

1,C1 , cW (T ≠t)
2,C1 , W

(T ≠(t≠1))
2,C1

⌘
, v2

⇣
cW (T ≠t)

1,C1 , cW (T ≠t)
2,C1 , W

(T ≠(t≠1))
2,C1 , cW (T ≠(t≠1))

2,C2
⌘

,

≠æy (T ≠(t≠1))
1

⌘
œ T (N,‘)î

U U1 V1 X1,P U2 V2
≠æ
Y 1
ó, (A.10)

where W
(T ≠(t≠1))
1,C1 and W

(T ≠(t≠1))
2,C1 are assumed to be perfectly decoded in the previous decoding
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2N(R1,C1+R2,C1)

1

1 1 1

11 1

v1

⇣
W (t�1)

1,C1 , W (t�1)
2,C1 , W (t)

1,C1, W
(t)
1,C2

⌘

v2

⇣
W (t�1)

1,C1 , W (t�1)
2,C1 , W (t)

2,C1, W
(t)
2,C2

⌘

u1

⇣
W (t�1)

1,C1 , W (t�1)
2,C1 , W (t)

1,C1

⌘

u2

⇣
W (t�1)

1,C1 , W (t�1)
2,C1 , W (t)

2,C1

⌘

u
⇣
W (t�1)

1,C1 , W (t�1)
2,C1

⌘

x1,P

⇣
W (t�1)

1,C1 , W (t�1)
2,C1 , W (t)

1,C1, W
(t)
1,C2, W

(t)
1,P

⌘

x2,P

⇣
W (t�1)

1,C1 , W (t�1)
2,C1 , W (t)

2,C1, W
(t)
2,C2, W

(t)
2,P

⌘

2NR1,C1 2NR1,C2 2NR1,P

2NR2,C1 2NR2,C2 2NR2,P

Figure A.1.: Structure of the superposition code. The codewords corresponding to the message
indices W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
i,C1, W

(t)
i,C2, W

(t)
i,P

with i œ {1, 2} as well as the block
index t are both highlighted. The (approximate) number of codewords for each
code layer is also highlighted.

step t ≠ 1. The set T (N,‘)î
U U1 V1 X1,P U2 V2

≠æ
Y 1
ó represents the set of jointly typical sequences of

the random variables U, U1, V1, X1,P , U2, V2, and ≠æ
Y 1, with ‘ > 0. Receiver 2 follows a similar

decoding scheme.
Probability of Error Analysis: An error might occur during encoding step t if the

message index W
(t≠1)
2,C1 is not correctly decoded at transmitter 1. From the AEP [25], it follows

that the message index W
(t≠1)
2,C1 can be reliably decoded at transmitter 1 during encoding step

t, under the condition:

R2,C1 6 I

⇣Ω≠
Y 1; U2|U, U1, V1, X1

⌘

= I

⇣Ω≠
Y 1; U2|U, X1

⌘
. (A.11)

An error might occur during the (backward) decoding step t if the message indices W
(T ≠t)
1,C1 ,

W
(T ≠t)
2,C1 , W

(T ≠(t≠1))
1,C2 , W

(T ≠(t≠1))
1,P

, and W
(T ≠(t≠1))
2,C2 are not decoded correctly given that the

message indices W
(T ≠(t≠1))
1,C1 and W

(T ≠(t≠1))
2,C1 were correctly decoded in the previous decoding

step t ≠ 1. These errors might arise for two reasons: (i) there does not exist a tuple
⇣
cW (T ≠t)

1,C1 ,
cW (T ≠t)

2,C1 , cW (T ≠(t≠1))
1,C2 , cW (T ≠(t≠1))

1,P
, cW (T ≠(t≠1))

2,C2
⌘

that satisfies (A.10), or (ii) there exist several tu-
ples

⇣
cW (T ≠t)

1,C1 , cW (T ≠t)
2,C1 , cW (T ≠(t≠1))

1,C2 , cW (T ≠(t≠1))
1,P

, cW (T ≠(t≠1))
2,C2

⌘
that simultaneously satisfy (A.10).

From the AEP [25], the probability of an error due to (i) tends to zero when N grows to infinity.
Consider the error due to (ii) and define the event E

(t)
(s,r,l,q,m) that describes the case in which
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the codewords
Ä
u(s, r), u1(s, r, W

(T ≠(t≠1))
1,C1 ), v1(s, r, W

(T ≠(t≠1))
1,C1 , l), x1,P (s, r, W

(T ≠(t≠1))
1,C1 , l, q),

u2(s, r, W
(T ≠(t≠1))
2,C1 ), and v2(s, r, W

(T ≠(t≠1))
2,C1 , m)

ä
are jointly typical with ≠æy (T ≠(t≠1))

1 during
decoding step t. Without loss of generality assume that the codeword to be decoded at
decoding step t corresponds to the indices (s, r, l, q, m) = (1, 1, 1, 1, 1) due to the symmetry of
the code. Then, the probability of error due to (ii) during decoding step t, can be bounded
using Boole’s inequality as follows:

Pr

2

4
[

(s,r,l,q,m) ”=(1,1,1,1,1)
E

(t)
(s,r,l,q,m)

3

5

6
X

(s,r,l,q,m)œT

Pr
h
E

(t)
(s,r,l,q,m)

i
, (A.12)

with T =
n

W1,C1 ◊ W2,C1 ◊ W1,C2 ◊ W1,P ◊ W2,C2
o

\ {(1, 1, 1, 1, 1)}.

From the AEP [25], it follows that

P
(t)
e1 (N)62N(R2,C2≠I(≠æY 1;V2|U,U1,U2,V1,X1)+2‘) + 2N(R1,P ≠I(≠æY 1;X1|U,U1,U2,V1,V2)+2‘)

+2N(R2,C2+R1,P ≠I(≠æY 1;V2,X1|U,U1,U2,V1)+2‘) + 2N(R1,C2≠I(≠æY 1;V1,X1|U,U1,U2,V2)+2‘)

+2N(R1,C2+R2,C2≠I(≠æY 1;V1,V2,X1|U,U1,U2)+2‘) + 2N(R1,C2+R1,P ≠I(≠æY 1;V1,X1|U,U1,U2,V2)+2‘)

+2N(R1,C2+R1,P +R2,C2≠I(≠æY 1;V1,V2,X1|U,U1,U2)+2‘) + 2N(R2,C1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R2,C1+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R2,C1+R1,C2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C+R1,C2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R2,C1+R1,C2+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C+R1,C2+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R1,C1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R2,C2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R1,C1+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R1,P +R2,C2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R1,C≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C+R2,C2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1+R2,C2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R1,C1+R2,C1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R2,C≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R1,C1+R2,C1+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R2,C+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R1,C+R2,C1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C+R2,C≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘) + 2N(R1+R2,C1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1+R2,C≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)
. (A.13)

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence, in
general, from (A.11) and (A.13), reliable decoding holds under the following conditions for
transmitter i œ {1, 2}, with j œ {1, 2} \ {i}:

Rj,C16◊1,i

,I

⇣Ω≠
Y i; Uj |U, Ui, Vi, Xi

⌘

=I

⇣Ω≠
Y i; Uj |U, Xi

⌘
, (A.14a)
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Ri + Rj,C6◊2,i

,I(≠æY i; U, Ui, Uj , Vi, Vj , Xi)
=I(≠æY i; U, Uj , Vj , Xi), (A.14b)

Rj,C26◊3,i

,I(≠æY i; Vj |U, Ui, Uj , Vi, Xi)
=I(≠æY i; Vj |U, Uj , Xi), (A.14c)

Ri,P6◊4,i

,I(≠æY i; Xi|U, Ui, Uj , Vi, Vj), (A.14d)
Ri,P + Rj,C26◊5,i

,I(≠æY i; Vj , Xi|U, Ui, Uj , Vi), (A.14e)
Ri,C2 + Ri,P6◊6,i

,I(≠æY i; Vi, Xi|U, Ui, Uj , Vj)
=I(≠æY i; Xi|U, Ui, Uj , Vj), and (A.14f)

Ri,C2 + Ri,P + Rj,C26◊7,i

,I(≠æY i; Vi, Vj , Xi|U, Ui, Uj)
=I(≠æY i; Vj , Xi|U, Ui, Uj). (A.14g)

Taking into account that Ri = Ri,C1 + Ri,C2 + Ri,P , a Fourier-Motzkin elimination process in
(A.14) yields:

R16min (◊2,1, ◊6,1 + ◊1,2, ◊4,1 + ◊1,2 + ◊3,2) , (A.15a)
R26min (◊2,2, ◊1,1 + a6,2, ◊1,1 + ◊3,1 + ◊4,2) , (A.15b)

R1 + R26min(◊2,1 + ◊4,2, ◊2,1 + a6,2, ◊4,1 + ◊2,2, ◊6,1 + ◊2,2, ◊1,1 + ◊3,1 + ◊4,1 + ◊1,2 + ◊5,2,

◊1,1 + ◊7,1 + ◊1,2 + ◊5,2, ◊1,1 + ◊4,1 + ◊1,2 + ◊7,2, ◊1,1 + ◊5,1 + ◊1,2 + ◊3,2 + ◊4,2,

◊1,1 + ◊5,1 + ◊1,2 + ◊5,2, ◊1,1 + ◊7,1 + ◊1,2 + ◊4,2), (A.15c)
2R1 + R26min(◊2,1 + ◊4,1 + ◊1,2 + ◊7,2, ◊1,1 + ◊4,1 + ◊7,1 + 2◊1,2 + ◊5,2, ◊2,1 + ◊4,1 + ◊1,2 + ◊5,2),

(A.15d)
R1 + 2R26min(◊1,1 + ◊5,1 + ◊2,2 + ◊4,2, ◊1,1 + ◊7,1 + ◊2,2 + ◊4,2, 2◊1,1 + ◊5,1 + ◊1,2 + ◊4,2 + ◊7,2),

(A.15e)

where ◊l,i are defined in (A.14) with (l, i) œ {1, . . . , 7} ◊ {1, 2}.

A.1. An Achievable Region for the Two-user Linear Deterministic
Interference Channel with Noisy Channel-Output Feedback

In the two-user LDIC-NOF, the channel input of transmitter i at each channel use is a
q-dimensional binary vector Xi œ {0, 1}q with i œ {1, 2} and q as defined in (2.23). Following
this observation, the random variables U , Ui, Vi, and Xi,P described in (A.1) in the codebook
generation are also vectors, and thus, in this subsection, they are denoted by U , U i, V i

and Xi,P , respectively. The random variables U i, V i, and Xi,P are assumed to be mutu-
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ally independent and uniformly distributed over the sets {0, 1}
Ä

nji≠(max(≠æ
n jj ,nji)≠Ω≠

n jj)+ä+

,
{0, 1}

Ä
min
Ä

nji,(max(≠æ
n jj ,nji)≠Ω≠

n jj)+ää
and {0, 1}(≠æ

n ii≠nji)+
, respectively. Note that the random

variables U i, V i, and Xi,P have the following dimensions:

dim U i =
Ä
nji ≠ (max (≠æn jj , nji) ≠ Ω≠

n jj)+ä+
, (A.16a)

dim V i =min
Ä
nji, (max (≠æn jj , nji) ≠ Ω≠

n jj)+ä
, and (A.16b)

dim Xi,P =(≠æn ii ≠ nji)+
. (A.16c)

These dimensions satisfy the following condition:

dim U i + dim V i + dim Xi,P = max (≠æn ii, nji) 6 q. (A.17)

Note that the random variable U in (A.1) is not used, and therefore, is a constant. The
input symbol of transmitter i during channel use n is Xi =

Ä
UT

i , V T
i , XT

i,P , (0, . . . , 0)
äT,

where (0, . . . , 0) is put to meet the dimension constraint dim Xi = q. Hence, during block
t œ {1, 2, . . . , T}, the codeword X(t)

i
in the two-user LDIC-NOF is a q ◊ N matrix, i.e.,

X(t)
i

= (Xi,1, Xi,2 . . . , Xi,N ) œ {0, 1}q◊N .
The intuition behind this choice is based on the following observations: (a) the vector U i

represents the bits in Xi that can be observed by transmitter j via feedback but no necessarily
by receiver i; (b) the vector V i represents the bits in Xi that can be observed by receiver
j but no necessarily by receiver i; and finally, (c) the vector Xi,P is a notational artefact
to denote the bits of Xi that are neither in U i nor V i. In particular, the bits in Xi,P are
only observed by receiver i, as shown in Figure A.2. This intuition justifies the dimensions
described in (A.16).

Considering this particular code structure, the following holds for the terms ◊l,i, with
(l, i) œ {1, . . . , 7} ◊ {1, 2}, in (A.14):

◊1,i =I

⇣Ω≠
Y i; U j |U , Xi

⌘

(a)=H

⇣Ω≠
Y i|U , Xi

⌘

=H (U j)
=
Ä
nij ≠ (max (≠æn ii, nij) ≠ Ω≠

n ii)+ä+
, (A.18a)

◊2,i =I

⇣≠æ
Y i; U , U j , V j , Xi

⌘

(b)=H

⇣≠æ
Y i

⌘

=max (≠æn ii, nij) ; (A.18b)
◊3,i =I

⇣≠æ
Y i; V j |U , U j , Xi

⌘

(b)=H

⇣≠æ
Y i|U , U j , Xi

⌘

=H (V j)
=min

Ä
nij , (max (≠æn ii, nij) ≠ Ω≠

n ii)+ä
, (A.18c)
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Figure A.2.: The auxiliary random variables and their relation with signals when channel-
output feedback is considered in (a) very weak interference regime, (b) weak
interference regime, (c) moderate interference regime, (d) strong interference
regime and (e) very strong interference regime.

◊4,i =I

⇣≠æ
Y i; Xi|U , U i, U j , V i, V j

⌘

(b)=H

⇣≠æ
Y i|U , U i, U j , V i, V j

⌘

=H (Xi,P )
=(≠æn ii ≠ nji)+

, and (A.18d)
◊5,i =I

⇣≠æ
Y i; V j , Xi|U , U i, U j , V i

⌘

(b)=H

⇣≠æ
Y i|U , U i, U j , V i

⌘

=max (dim Xi,P , dim V j)
=max

⇣
(≠æn ii ≠ nji)+

, min
Ä
nij , (max (≠æn ii, nij) ≠ Ω≠

n ii)+ä ⌘
, (A.18e)

where (a) follows from the fact that H

⇣Ω≠
Y i|U , U j , Xi

⌘
= 0; and (b) follows from the fact

that H(≠æY i|U , U j , V j , Xi) = 0.
For the calculation of the last two mutual information terms in inequalities (A.14f) and

(A.14g), special notation is used. Let for instance the vector V i be the concatenation of the
vectors Xi,HA and Xi,HB, i.e., V i = (Xi,HA, Xi,HB). The vector Xi,HA is the part of V i

that is available in both receivers. The vector Xi,HB is the part of V i that is exclusively
available in receiver j (see Figure A.2). Note that H (V i) = H (Xi,HA) + H (Xi,HB). Note
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also that the vectors Xi,HA and Xi,HB possess the following dimensions:

dim Xi,HA=min
Ä
nji, (max (≠æn jj , nji) ≠ Ω≠

n jj)+ä≠min
Ä

(nji≠≠æ
n ii)+

, (max (≠æn jj , nji)≠Ω≠
n jj)+ ä

dim Xi,HB=min
Ä

(nji ≠ ≠æ
n ii)+

, (max (≠æn jj , nji) ≠ Ω≠
n jj)+ ä

.

Using this notation, the following holds:

◊6,i =I

⇣≠æ
Y i; Xi|U , U i, U j , V j

⌘

(c)=H

⇣≠æ
Y i|U , U i, U j , V j

⌘

=H (Xi,HA, Xi,P )
=dim Xi,HA + dim Xi,P

=min
Ä
nji, (max (≠æn jj , nji) ≠ Ω≠

n jj)+ä≠ min
Ä

(nji ≠ ≠æ
n ii)+

, (max (≠æn jj , nji) ≠ Ω≠
n jj)+ ä

+ (≠æn ii ≠ nji)+ and (A.18f)
◊7,i =I

⇣≠æ
Y i; V j , Xi|U , U i, U j

⌘

=I

⇣≠æ
Y i; Xi|U , U i, U j

⌘
+ I

⇣≠æ
Y i; V j |U , U i, U j , Xi

⌘

=I

⇣≠æ
Y i; Xi|U , U i, U j

⌘
+ I

⇣≠æ
Y i; V j |U , U j , Xi

⌘

(c)=H

⇣≠æ
Y i|U , U i, U j

⌘

=max (H (V j) , H (Xi,HA) + H (Xi,P ))
=max (dim V j , dim Xi,HA + dim Xi,P )
=max

Ä
min

Ä
nij , (max (≠æn ii, nij) ≠ Ω≠

n ii)+ ä
, min

Ä
nji, (max (≠æn jj , nji) ≠ Ω≠

n jj)+ ä

≠ min
Ä

(nji ≠ ≠æ
n ii)+

, (max (≠æn jj , nji) ≠ Ω≠
n jj)+ ä+ (≠æn ii ≠ nji)+ ä

, (A.18g)

where (c) follows from the fact that H(≠æY i|U , U j , V j , Xi) = 0.
Plugging (A.18) into (A.15) (after some trivial manipulations) yields the system of inequali-

ties in Theorem 5.1.1.
The sum-rate bound in (A.15c) can be simplified as follows:

R1 + R26min(◊2,1 + ◊4,2, ◊4,1 + ◊2,2, ◊1,1 + ◊5,1 + ◊1,2 + ◊5,2). (A.19)

Note that this follows from the fact that max(◊2,1 + ◊4,2, ◊4,1 + ◊2,2, ◊1,1 + ◊5,1 + ◊1,2 + ◊5,2) 6
min(◊2,1 + a6,2, ◊6,1 + ◊2,2, ◊1,1 + ◊3,1 + ◊4,1 + ◊1,2 + ◊5,2, ◊1,1 + ◊7,1 + ◊1,2 + ◊5,2, ◊1,1 + ◊4,1 + ◊1,2 +
◊7,2, ◊1,1 + ◊5,1 + ◊1,2 + ◊3,2 + ◊4,2, ◊1,1 + ◊7,1 + ◊1,2 + ◊4,2).

This completes the achievability proof of Theorem 5.1.1.

A.2. An Achievable Region for the Two-user Gaussian Interference
Channel with Noisy Channel-Output Feedback

Consider that transmitter i uses the following Gaussian input distribution:

Xi = U + Ui + Vi + Xi,P , (A.20)
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A. Achievability Proof of Theorem 5.1.1 and Proof of Theorem 6.1.1

where U , U1, U2, V1, V2, X1,P , and X2,P in (A.1) are mutually independent and distributed
as follows:

U≥N (0, fl) , (A.21a)
Ui≥N (0, µi⁄i,C) , (A.21b)
Vi≥N (0, (1 ≠ µi)⁄i,C) , (A.21c)

Xi,P ≥N (0, ⁄i,P ) , (A.21d)

with
fl + ⁄i,C + ⁄i,P = 1 and (A.22a)

⁄i,P =min
Ç

1
INRji

, 1
å

, (A.22b)

where µi œ [0, 1] and fl œ
h
0,

Ä
1 ≠ max

Ä 1
INR12

,
1

INR21

ää+i. The random variables U , U1, U2,
V1, V2, X1,P , and X2,P can be interpreted as components of the signals X1 and X2 following
the insights described in this appendix. The random variable U , which is used in this case,
represents the common component of the channel inputs of transmitter 1 and transmitter 2.

The parameters fl, µi, and ⁄i,P define a particular coding scheme for transmitter i. The
assignment in (A.22b) is based on the intuition obtained from the linear deterministic model,
in which the power of the signal Xi,P from transmitter i to receiver j must be observed at the
noise level. From (2.5), (2.6), and (A.20), the right-hand side of the inequalities in (A.14) can
be written in terms of ≠≠æSNR1, ≠≠æSNR2, INR12, INR21, Ω≠≠SNR1, Ω≠≠SNR2, fl, µ1, and µ2 as follows:

◊1,i=I

⇣Ω≠
Y i; Uj |U, Xi

⌘

=1
2 log

Ö Ω≠≠SNRi

⇣
b2,i(fl) + 2

⌘
+ b1,i(1) + 1

Ω≠≠SNRi

⇣
(1≠µj) b2,i(fl)+2

⌘
+b1,i(1)+ 1

è

=a3,i(fl, µj), (A.23a)
◊2,i=I

⇣≠æ
Y i; U, Uj , Vj , Xi

⌘

=1
2 log

⇣
b1,i(fl) + 1

⌘
≠ 1

2
=a2,i(fl), (A.23b)

◊3,i=I

⇣≠æ
Y i; Vj |U, Uj , Xi

⌘

=1
2 log

Ç⇣
1 ≠ µj

⌘
b2,i(fl) + 2

å
≠ 1

2
=a4,i(fl, µj), (A.23c)

◊4,i=I

⇣≠æ
Y i; Xi|U, Ui, Uj , Vi, Vj

⌘

=1
2 log

 ≠≠æSNRi

INRji

+ 2
!

≠ 1
2

=a1,i, (A.23d)
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A.2. An Achievable Region for the Two-user Gaussian Interference Channel with Noisy
Channel-Output Feedback

◊5,i=I

⇣≠æ
Y i; Vj , Xi|U, Ui, Uj , Vi

⌘

=1
2 log

 

2 +
≠≠æSNRi

INRji

+
⇣
1 ≠ µj

⌘
b2,i(fl)

!

≠ 1
2

=a5,i(fl, µj), (A.23e)
◊6,i=I

⇣≠æ
Y i; Xi|U, Ui, Uj , Vj

⌘

=1
2 log

 ≠≠æSNRi

INRji

Ç⇣
1 ≠ µi

⌘
b2,j(fl) + 1

!

+ 2
å

≠ 1
2

=a6,i(fl, µi), and (A.23f)
◊7,i=I

⇣≠æ
Y i; Vj , Xi|U, Ui, Uj

⌘

=1
2log

 ≠≠æSNRi

INRji

Ç⇣
1≠µi

⌘
b2,j(fl)+1

å
+
⇣
1≠µj

⌘
b2,i(fl)+2

!

≠ 1
2

=a7,i(fl, µ1, µ2). (A.23g)

Finally, plugging (A.23) into (A.15) (after some trivial manipulations) yields the system of
inequalities in Theorem 6.1.1. The sum-rate bound in (A.15c) can be simplified as follows:

R1 + R26min
⇣
a2,1(fl) + a1,2, a1,1 + a2,2(fl), a3,1(fl, µ2) + a1,1 + a3,2(fl, µ1) + a7,2(fl, µ1, µ2),

a3,1(fl, µ2)+a5,1(fl, µ2)+a3,2(fl, µ1)+a5,2(fl, µ1),
a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + a3,2(fl, µ1) + a1,2

⌘
. (A.24)

Note that this follows from the fact that max(a2,1(fl) + a1,2, a1,1 + a2,2(fl), a3,1(fl, µ2) +
a1,1 + a3,2(fl, µ1) + a7,2(fl, µ1, µ2), a3,1(fl, µ2) + a5,1(fl, µ2) + a3,2(fl, µ1) + a5,2(fl, µ1), a3,1(fl, µ2) +
a7,1(fl, µ1, µ2) + a3,2(fl, µ1) + a1,2) 6 min(a2,1 + a6,2(fl, µ2), a6,1(fl, µ1) + a2,2(fl), a3,1(fl, µ2) +
a4,1(fl, µ2) + a1,1 + a3,2(fl, µ1) + a5,2(fl, µ1), a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + a3,2(fl, µ1) + a5,2(fl, µ1),
a3,1(fl, µ2) + a5,1(fl, µ2) + a3,2(fl, µ1) + ◊3,2 + a1,2). Therefore, the inequalities in (A.15) simplify
into (6.3) and this completes the proof of Theorem 6.1.1.
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— B —
Converse Proof of

Theorem 5.1.1

This appendix provides a converse proof of Theorem 5.1.1. Inequalities (5.1a) and
(5.1c) correspond to the minimum cut-set bound [76] and the sum-rate bound
for the case of the two-user LDIC with POF. The proofs of these bounds are

presented in [80]. The rest of this appendix provides a proof of the inequalities (5.1b), (5.1c)
and (5.1d).

Notation. For all i œ {1, 2}, the channel input Xi,n of the two-user LDIC-NOF in (2.25)
for any channel use n œ {1, 2, . . . , N} is a q-dimensional binary vector, with q in (2.23), that
can be written as the concatenation of four vectors: Xi,C,n, Xi,P,n, Xi,D,n, and Xi,Q,n, i.e.,
Xi,n =

⇣
XT

i,C,n, XT
i,P,n, XT

i,D,n, XT
i,Q,n

⌘T
, as shown in Figure B.1. Note that this notation is

independent of the feedback parameters Ω≠
n 11 and Ω≠

n 22, and it holds for all n œ {1, 2, . . . , N}.
More specifically,

Xi,C,n represents the bits of Xi,n that are observed by both receivers. Then,

dim Xi,C,n=min (≠æn ii, nji) ; (B.1a)

Xi,P,n represents the bits of Xi,n that are observed only at receiver i. Then,

dim Xi,P,n=(≠æn ii ≠ nji)+; (B.1b)

Xi,D,n represents the bits of Xi,n that are observed only at receiver j. Then,

dim Xi,D,n=(nji ≠ ≠æ
n ii)+; and (B.1c)
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Figure B.1.: Example of the notation of the channel inputs and the channel outputs when
channel-output feedback is considered.

Xi,Q,n = (0, . . . , 0)T is included for dimensional matching of the model in (2.26). Then,

dim Xi,Q,n=q ≠ max (≠æn ii, nji) . (B.1d)

The bits Xi,Q,n are fixed and thus do not carry any information. Hence, the following holds:

H (Xi,n)=H

Ä
Xi,C,n, Xi,P,n, Xi,D,n, Xi,Q,n

ä

=H

Ä
Xi,C,n, Xi,P,n, Xi,D,n

ä

6dim Xi,C,n + dim Xi,P,n + dim Xi,D,n. (B.1e)

Note that the vectors Xi,P,n and Xi,D,n do not exist simultaneously. The former exists when
≠æ
n ii > nji, while the latter exists when ≠æ

n ii < nji. Moreover, the dimension of Xi,n satisfies

dim Xi,n=dim Xi,C,n + dim Xi,P,n + dim Xi,D,n + dim Xi,Q,n

=q. (B.1f)

For the case in which feedback is taken into account an alternative notation is adopted. Let
Xi,D,n be written in terms of Xi,DF,n and Xi,DG,n, i.e., Xi,D,n =

⇣
XT

i,DF,n, XT
i,DG,n

⌘T
. The

vector Xi,DF,n represents the bits of Xi,D,n that are above the noise level in the feedback link
from receiver j to transmitter j; and Xi,DG,n represents the bits of Xi,D,n that are below the
noise level in the feedback link from receiver j to transmitter j, as shown in Figure B.1. The
dimension of the vectors Xi,DF,n and Xi,DG,n are given by

dim Xi,DF,n =min
⇣
(nji≠≠æ

n ii)+
,

⇣Ω≠
n jj ≠≠æ

n ii≠min
Ä
(≠æn jj ≠nji)+

, nij

ä
≠
Ä
(≠æn jj ≠nij)+≠nji

ä+⌘+⌘

and (B.2a)
dim Xi,DG,n=dim Xi,D,n ≠ dim Xi,DF,n. (B.2b)

Let Xi,C,n be written in terms of Xi,CFj ,n and Xi,CGj ,n, i.e., Xi,C,n =
⇣
XT

i,CFj ,n, XT
i,CGj ,n

⌘T
.

The vector Xi,CFj ,n represents the bits of Xi,C,n that are above the noise level in the feedback
link from receiver j to transmitter j; and Xi,CGj ,n represents the bits of Xi,C,n that are below
the noise level in the feedback link from receiver j to transmitter j, as shown in Figure B.1.
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Let also, the dimension of the vector
Ä
XT

i,CFj ,n, XT
i,DF,n

ä
be defined as follows:

dim
ÄÄ

XT
i,CFj ,n, XT

i,DF,n

ää
=
Ä
min (Ω≠n jj , max (≠æn jj , nji)) ≠ (≠æn jj ≠ nji)+ä+

. (B.3)

The dimension of the vectors Xi,CFj ,n and Xi,CGj ,n can be obtained as follows:

dim Xi,CFj ,n =dim
ÄÄ

XT
i,CFj ,n, XT

i,DF,n

ää
≠ dim Xi,DF,n and (B.4a)

dim Xi,CGj ,n=dim Xi,C,n ≠ dim Xi,CFj ,n. (B.4b)

More generally, when needed, the vector XiFk,n is used to represent the bits of Xi,n that
are above the noise level in the feedback link from receiver k to transmitter k, with k œ {1, 2}.
The vector XiGk,n is used to represent the bits of Xi,n that are below the noise level in the
feedback link from receiver k to transmitter k.

The vector Xi,U,n is used to represent the bits of the vector Xi,n that interfere with bits
of Xj,C,n at receiver j and those bits of Xi,n that are observed by receiver j and do not
interfere any bits from transmitter j. An alternative definition of the vector Xi,U,n is the
following: the bits of the vector Xi,n that are observed by receiver j and do not interfere any
bits corresponding to the vector Xj,P,n. An example is shown in Figure B.2.

Based on its definition, the dimension of the vector Xi,U,n is

dim Xi,U,n=min (≠æn jj , nij) ≠ min
Ä
(≠æn jj ≠ nji)+

, nij

ä
+ (nji ≠ ≠æ

n jj)+
. (B.5)

Finally, for all i œ {1, 2}, with j œ {1, 2} \ {i}, the channel output ≠æ
Y i,n of the two-user

LDIC-NOF in (2.25) for any channel use n œ {1, 2, . . . , N} is a q-dimensional binary vector,
with q in (2.23), that can be written as the concatenation of three vectors: ≠æ

Y i,Q,n, Ω≠
Y i,n, and

≠æ
Y i,G,n, i.e., ≠æ

Y i,n =
⇣≠æ

Y T
i,Q,n

,
Ω≠
Y T

i,n
,
≠æ
Y T

i,G,n

⌘T
, as shown in Figure B.1. More specifically, the

vector Ω≠
Y i,n contains the bits that are above the noise level in the feedback link from receiver i

to transmitter i. Then,

dim Ω≠
Y i,n=min

⇣Ω≠
n ii, max (≠æn ii, nij)

⌘
. (B.6a)

The vector ≠æ
Y i,G,n contains the bits that are below the noise level in the feedback link from

receiver i to transmitter i. Then,

dim ≠æ
Y i,G,n=

⇣
max (≠æn ii, nij) ≠ Ω≠

n ii

⌘+
. (B.6b)

The vector ≠æ
Y i,Q,n = (0, . . . , 0) is included for dimensional matching with the model in

(2.26). Then,

H

⇣≠æ
Y i,n

⌘
=H

Ä≠æ
Y i,Q,n,

Ω≠
Y i,n,

≠æ
Y i,G,n

ä

=H

ÄΩ≠
Y i,n,

≠æ
Y i,G,n

ä

6dim Ω≠
Y i,n + dim ≠æ

Y i,G,n. (B.6c)

The dimension of ≠æ
Y i,n satisfies dim ≠æ

Y i,n = q.
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Using this notation, the proof continues as follows.
Proof of (5.1b): First, consider nji 6 ≠æ

n ii, i.e., the vector Xi,P,n exists and the vector
Xi,D,n does not exist. From the assumption that the message index Wi is i.i.d. following a
uniform distribution over the set Wi, the following holds for any k œ {1, 2, . . . , N}:

NRi =H (Wi)
(a)=H (Wi|Wj)
(b)
6I

⇣
Wi;

≠æ
Y i,

Ω≠
Y j |Wj

⌘
+ N”(N)

=H

⇣≠æ
Y i,

Ω≠
Y j |Wj

⌘
+ N”(N)

(c)=
NX

n=1
H

⇣≠æ
Y i,n,

Ω≠
Y j,n|Wj ,

≠æ
Y i,(1:n≠1),

Ω≠
Y j,(1:n≠1), Xj,n

⌘
+ N”(N)

6
NX

n=1
H

⇣
Xi,n,

Ω≠
Y j,n|Xj,n

⌘
+ N”(N)

6
NX

n=1
H (Xi,n) + N”(N)

=NH (Xi,k) + N”(N),
6N (dim Xi,C,k + dim Xi,P,k) + N”(N), (B.7)

where, (a) follows from the fact that W1 and W2 are mutually independent; (b) follows from
Fano’s inequality with ” : N æ R+ a positive monotonically decreasing function (Lemma
58); and (c) follows from the fact that Xj,n = f

(n)
j

⇣
Wj ,

Ω≠
Y j,(1:n≠1)

⌘
with f

(n)
j

a deterministic
injective function.

Second, consider the case in which nji >
≠æ
n ii. In this case the vector Xi,P,n does not exist

and the vector Xi,D,n exists. From the assumption that the message index Wi is i.i.d. following
a uniform distribution over the set Wi, hence the following holds for any k œ {1, 2, . . . , N}:

NRi =H (Wi)
(a)=H (Wi|Wj)
(b)
6I

⇣
Wi;

≠æ
Y i,

Ω≠
Y j |Wj

⌘
+ N”(N)

=H

⇣≠æ
Y i,

Ω≠
Y j |Wj

⌘
+ N”(N)

(c)=
NX

n=1
H

⇣≠æ
Y i,n,

Ω≠
Y j,n|Wj ,

≠æ
Y i,(1:n≠1),

Ω≠
Y j,(1:n≠1), Xj,n

⌘
+ N”(N)

6
NX

n=1
H

⇣
Xi,C,n, Xi,CFj ,n, Xi,DF,n

⌘
+ N”(N)

=
NX

n=1
H

⇣
Xi,C,n, Xi,DF,n

⌘
+ N”(N)

=NH

⇣
Xi,C,k, Xi,DF,k

⌘
+ N”(N),

6N (dim Xi,C,k + dim Xi,DF,k) + N”(N). (B.8)
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Figure B.2.: Vector Xi,U,n in di�erent combination of interference regimes.

Then, (B.7) and (B.8) can be expressed as one inequality in the block-length asymptotic
regime, as follows:

Ri6dim Xi,C,k + dim Xi,P,k + dim Xi,DF,k, (B.9)

which holds for any k œ {1, 2, . . . , N}.

Plugging (B.1a), (B.1b), and (B.2a) into (B.9), and after some trivial manipulations, the
following holds:

Ri6min
⇣
max(≠æn ii, nji) , max

⇣≠æ
n ii,

Ω≠
n jj ≠(≠æn jj ≠nji)+ ⌘⌘

. (B.10)

This completes the proof of (5.1b).

Proof of (5.1c): From the assumption that the message indices W1 and W2 are i.i.d.
following a uniform distribution over the sets W1 and W2 respectively, the following holds for
any k œ {1, 2, . . . , N}:

N (R1 + R2)=H (W1) + H (W2)
(a)
6I

⇣
W1; ≠æ

Y 1,
Ω≠
Y 1
⌘

+ I

⇣
W2; ≠æ

Y 2,
Ω≠
Y 2
⌘

+ N”(N)

6H

⇣≠æ
Y 1
⌘

≠ H

⇣Ω≠
Y 1|W1

⌘
≠ H

⇣
X2,C |W1,

Ω≠
Y 1, X1

⌘
+ H

⇣≠æ
Y 2
⌘

≠ H

⇣Ω≠
Y 2|W2

⌘

≠H

⇣
X1,C |W2,

Ω≠
Y 2, X2

⌘
+ N”(N)

=H

⇣≠æ
Y 1
⌘

≠ H

⇣Ω≠
Y 1|W1

⌘
≠ H

⇣
X2,C , X1,U |W1,

Ω≠
Y 1, X1

⌘
+ H

⇣≠æ
Y 2
⌘

≠H

⇣Ω≠
Y 2|W2

⌘
≠ H

⇣
X1,C , X2,U |W2,

Ω≠
Y 2, X2

⌘
+ N”(N)

=H

⇣≠æ
Y 1
⌘

+
h
I

⇣
X2,C , X1,U ; W1,

Ω≠
Y 1
⌘

≠ H (X2,C , X1,U )
i

+ H

⇣≠æ
Y 2
⌘

+
h
I

⇣
X1,C , X2,U ; W2,

Ω≠
Y 2
⌘

≠ H (X1,C , X2,U )
i

≠ H

⇣Ω≠
Y 1|W1

⌘
≠ H

⇣Ω≠
Y 2|W2

⌘

+N”(N)

111



B. Converse Proof of Theorem 5.1.1

(b)=H

⇣≠æ
Y 1|X1,C , X2,U

⌘
≠ H

⇣
X1,C , X2,U |≠æY 1

⌘
+ H

⇣≠æ
Y 2|X2,C , X1,U

⌘

≠H

⇣
X2,C , X1,U |≠æY 2

⌘
+ I

⇣
X2,C , X1,U ; W1,

Ω≠
Y 1
⌘

+ I

⇣
X1,C , X2,U ; W2,

Ω≠
Y 2
⌘

≠H

⇣Ω≠
Y 1|W1

⌘
≠ H

⇣Ω≠
Y 2|W2

⌘
+ N”(N)

6H

⇣≠æ
Y 1|X1,C , X2,U

⌘
+ H

⇣≠æ
Y 2|X2,C , X1,U

⌘
+ I

⇣
X2,C , X1,U ; W1,

Ω≠
Y 1
⌘

+I

⇣
X1,C , X2,U ; W2,

Ω≠
Y 2
⌘

≠ H

⇣Ω≠
Y 1|W1

⌘
≠ H

⇣Ω≠
Y 2|W2

⌘
+ N”(N)

6H

⇣≠æ
Y 1|X1,C , X2,U

⌘
+ H

⇣≠æ
Y 2|X2,C , X1,U

⌘
+ I

⇣
X2,C , X1,U , W2,

Ω≠
Y 2; W1,

Ω≠
Y 1
⌘

+I

⇣
X1,C , X2,U , W1,

Ω≠
Y 1; W2,

Ω≠
Y 2
⌘

≠ H

⇣Ω≠
Y 1|W1

⌘
≠ H

⇣Ω≠
Y 2|W2

⌘
+ N”(N)

=H

⇣≠æ
Y 1|X1,C , X2,U

⌘
+ H

⇣≠æ
Y 2|X2,C , X1,U

⌘
+ I

⇣
W2; W1,

Ω≠
Y 1
⌘

+I

⇣
X2,C , X1,U ,

Ω≠
Y 2; W1,

Ω≠
Y 1|W2

⌘
+ I

⇣
W1; W2,

Ω≠
Y 2
⌘

+ I

⇣
X1,C , X2,U ,

Ω≠
Y 1; W2,

Ω≠
Y 2|W1

⌘

≠H

⇣Ω≠
Y 1|W1

⌘
≠ H

⇣Ω≠
Y 2|W2

⌘
+ N”(N)

(c)=H

⇣≠æ
Y 1|X1,C , X2,U

⌘
+ H

⇣≠æ
Y 2|X2,C , X1,U

⌘
+ H (W1) + H

⇣Ω≠
Y 1|W1

⌘
≠ H (W1|W2)

≠H

⇣Ω≠
Y 1|W2, W1

⌘
+ H

⇣
X2,C , X1,U ,

Ω≠
Y 2|W2

⌘
+ H (W2) + H

⇣Ω≠
Y 2|W2

⌘
≠ H (W2|W1)

≠H

⇣Ω≠
Y 2|W1, W2

⌘
+ H

⇣
X1,C , X2,U ,

Ω≠
Y 1|W1

⌘
≠ H

⇣Ω≠
Y 1|W1

⌘
≠ H

⇣Ω≠
Y 2|W2

⌘
+ N”(N)

6H

⇣≠æ
Y 1|X1,C , X2,U

⌘
+ H

⇣≠æ
Y 2|X2,C , X1,U

⌘
+ H

⇣
X2,C , X1,U ,

Ω≠
Y 2|W2

⌘

+H

⇣
X1,C , X2,U ,

Ω≠
Y 1|W1

⌘
+ N”(N)

=
NX

n=1

h
H

⇣≠æ
Y 1,n|X1,C , X2,U ,

≠æ
Y 1,(1:n≠1)

⌘
+ H

⇣≠æ
Y 2,n|X2,C , X1,U ,

≠æ
Y 2,(1:n≠1)

⌘

+H

⇣
X2,C,n, X1,U,n,

Ω≠
Y 2,n|W2, X2,C,(1:n≠1), X1,U,(1:n≠1),

Ω≠
Y 2,(1:n≠1)

⌘

+H

⇣
X1,C,n, X2,U,n,

Ω≠
Y 1,n|W1, X1,C,(1:n≠1), X2,U,(1:n≠1),

Ω≠
Y 1,(1:n≠1)

⌘i
+ N”(N)

(d)=
NX

n=1

h
H

⇣≠æ
Y 1,n|X1,C , X2,U ,

≠æ
Y 1,(1:n≠1)

⌘
+ H

⇣≠æ
Y 2,n|X2,C , X1,U ,

≠æ
Y 2,(1:n≠1)

⌘

+H

⇣
X2,C,n, X1,U,n,

Ω≠
Y 2,n|W2, X2,C,(1:n≠1), X1,U,(1:n≠1),

Ω≠
Y 2,(1:n≠1), X2,n

⌘

+H

⇣
X1,C,n, X2,U,n,

Ω≠
Y 1,n|W1, X1,C,(1:n≠1), X2,U,(1:n≠1),

Ω≠
Y 1,(1:n≠1), X1,n

⌘i
+ N”(N)

(e)
6

NX

n=1

h
H

⇣≠æ
Y 1,n|X1,C,n, X2,U,n

⌘
+ H

⇣≠æ
Y 2,n|X2,C,n, X1,U,n

⌘
+ H

⇣
X1,U,n,

Ω≠
Y 2,n|X2,n

⌘

+H

⇣
X2,U,n,

Ω≠
Y 1,n|X1,n

⌘ i
+ N”(N)

6
NX

n=1

h
H(X1,P,n) + H(X2,P,n) + H

⇣
X1,U,n,

Ω≠
Y 2,n|X2,n

⌘
+ H

⇣
X2,U,n,

Ω≠
Y 1,n|X1,n

⌘i
+N”(N)

(e)
6N

h
H (X1,P,k) + H (X2,P,k) + H (X1,U,k) + H

⇣Ω≠
Y 2,k|X2,k, X1,U,k

⌘
+ H (X2,U,k)

+H

⇣Ω≠
Y 1,k|X1,k, X2,U,k

⌘ i
+ N”(N),

=N

h
H (X1,P,k) + H (X2,P,k) + H (X1,U,k) + H (X1,CF2,k, X1,DF,k|X2,k, X1,U,k)

+H (X2,U,k) + H (X2,CF1,k, X2,DF,k|X1,k, X2,U,k)
i

+ N”(N)
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6N

h
H (X1,P,k) + H (X2,P,k) + H (X1,U,k) + H (X1,CF2,k, X1,DF,k|X1,U,k) + H (X2,U,k)

+H (X2,CF1,k, X2,DF,k|X2,U,k)
i

+ N”(N),

6N

h
dim X1,P,k + dim X2,P,k + dim X1,U,k +

⇣
dim (X1,CF2,k, X1,DF,k) ≠ dim X1,U,k

⌘+

+ dim X2,U,k +
⇣

dim (X2,CF1,k, X2,DF,k) ≠ dim X2,U,k

⌘+i
+ N”(N). (B.11)

where, (a) follows from Fano’s inequality with ” : N æ R+ a positive monotonically decreasing
function (Lemma 58); (b) follows from the fact that H(Y ) ≠ H(X) = H(Y |X) ≠ H(X|Y );
(c) follows from the fact that H

⇣
Xi,C , Xj,U , Ω≠

Y i|Wi, Wj ,
Ω≠
Y j

⌘
= 0; (d) follows from the

fact that Xi,n = f
(n)
i

⇣
Wi,

Ω≠
Y i,(1:n≠1)

⌘
from the definition of the encoding function in (??)

and Wi,
Ω≠
Y i,(1:n≠1) æ Xi,n æ ≠æ

Y i,n; and (e) follows from the fact that conditioning does not
increase entropy (Lemma 40).

Plugging (B.1b), (B.3), and (B.5) into (B.11) and after some trivial manipulations, the
following holds in the block-length asymptotic regime:

R1 + R26max
⇣

(≠æn 11 ≠ n12)+
, n21,

≠æ
n 11 ≠ (max (≠æn 11, n12) ≠ Ω≠

n 11)+ ⌘

+ max
⇣

(≠æn 22 ≠ n21)+
, n12,

≠æ
n 22 ≠ (max (≠æn 22, n21) ≠ Ω≠

n 22)+ ⌘
. (B.12)

This completes the proof of (5.1c).

Proof of (5.1d): From the assumption that the message indices Wi and Wj are i.i.d.
following a uniform distribution over the sets Wi and Wj respectively, for all i œ {1, 2}, with
j œ {1, 2} \ {i}, the following holds for any k œ {1, 2, . . . , N}:

N

Ä
2Ri +Rj

ä
= 2H (Wi) + H (Wj)

(a)
6I

⇣
Wi;

≠æ
Y i,

Ω≠
Y i

⌘
+ I

⇣
Wi;

≠æ
Y i,

Ω≠
Y j |Wj

⌘
+ I

⇣
Wj ; ≠æ

Y j ,
Ω≠
Y j

⌘
+ N”(N)

(b)=H

⇣≠æ
Y i

⌘
≠H

⇣Ω≠
Y i|Wi

⌘
≠H

⇣≠æ
Y i|Wi,

Ω≠
Y i

⌘
+H

⇣≠æ
Y i|Wj ,

Ω≠
Y j

⌘
+ H

⇣≠æ
Y j

⌘

≠H

⇣≠æ
Y j |Wj ,

Ω≠
Y j

⌘
+ N”(N)

=H

⇣≠æ
Y i

⌘
≠ H

⇣Ω≠
Y i|Wi

⌘
≠ H

⇣
Xj,C , Xj,D|Wi,

Ω≠
Y i

⌘
+ H

⇣≠æ
Y i|Wj ,

Ω≠
Y j

⌘
+ H

⇣≠æ
Y j

⌘

≠H

⇣
Xi,C , Xi,D|Wj ,

Ω≠
Y j

⌘
+ N”(N)

6H

⇣≠æ
Y i

⌘
≠ H

⇣Ω≠
Y i|Wi

⌘
≠ H

⇣
Xj,C , Xi,U |Wi,

Ω≠
Y i

⌘

+H

⇣≠æ
Y i|Wj ,

Ω≠
Y j

⌘
+ H

⇣≠æ
Y j

⌘
≠ H

⇣
Xi,C |Wj ,

Ω≠
Y j

⌘
+ N”(N)

6H

⇣≠æ
Y i

⌘
≠ H

⇣Ω≠
Y i|Wi

⌘
+
î
I

⇣
Xj,C , Xi,U ; Wi,

Ω≠
Y i

⌘
≠ H (Xj,C , Xi,U )

ó

+H

⇣≠æ
Y i, Xi,C |Wj ,

Ω≠
Y j

⌘
+ H

⇣≠æ
Y j

⌘
≠ H

⇣
Xi,C |Wj ,

Ω≠
Y j

⌘
+ N”(N)

=H

⇣≠æ
Y i

⌘
≠ H

⇣Ω≠
Y i|Wi

⌘
+
h
I

⇣
Xj,C , Xi,U ; Wi,

Ω≠
Y i

⌘
≠ H (Xj,C , Xi,U )

i

+H

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘
+ H

⇣≠æ
Y j

⌘
+ N”(N)
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6H

⇣≠æ
Y i

⌘
≠ H

⇣Ω≠
Y i|Wi

⌘
+
h
I

⇣
Xj,C , Xi,U ; Wi,

Ω≠
Y i

⌘
≠ H (Xj,C , Xi,U )

i

+H

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘
+ H

⇣≠æ
Y j , Xj,C , Xi,U

⌘
+ N”(N)

(c)=H

⇣≠æ
Y i

⌘
≠ H

⇣Ω≠
Y i|Wi

⌘
+ I

⇣
Xj,C , Xi,U ; Wi,

Ω≠
Y i

⌘
+ H

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘

+H

⇣≠æ
Y j |Xj,C , Xi,U

⌘
+ N”(N)

6H

⇣≠æ
Y i

⌘
≠ H

⇣Ω≠
Y i|Wi

⌘
+ I

⇣
Xj,C , Xi,U , Wj ,

Ω≠
Y j ; Wi,

Ω≠
Y i

⌘
+ H

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘

+H

⇣≠æ
Y j |Xj,C , Xi,U

⌘
+ N”(N)

(d)=H

⇣≠æ
Y i

⌘
≠ H

⇣Ω≠
Y i|Wj , Wi,

⌘
+ H

⇣
Xj,C , Xi,U ,

Ω≠
Y j |Wj

⌘
+ H

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘

+H

⇣≠æ
Y j |Xj,C , Xi,U

⌘
+ N”(N)

6H

⇣≠æ
Y i

⌘
+ H

⇣
Xj,C , Xi,U ,

Ω≠
Y j |Wj

⌘
+ H

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘
+ H

⇣≠æ
Y j |Xj,C , Xi,U

⌘
+ N”(N)

6
NX

n=1

h
H

⇣≠æ
Y i,n

⌘
+ H

⇣
Xj,C,n, Xi,U,n,

Ω≠
Y j,n|Wj , Xj,C,(1:n≠1), Xi,U,(1:n≠1),

Ω≠
Y j,(1:n≠1)

⌘

+H

⇣≠æ
Y i,n|Wj ,

Ω≠
Y j , Xi,C ,

≠æ
Y i,(1:n≠1)

⌘
+ H

⇣≠æ
Y j,n|Xj,C , Xi,U ,

≠æ
Y j,(1:n≠1)

⌘ i
+ N”(N)

=
NX

n=1

h
H

⇣≠æ
Y i,n

⌘
+ H

⇣
Xj,C,n, Xi,U,n,

Ω≠
Y j,n|Wj , Xj,C,(1:n≠1), Xi,U,(1:n≠1),

Ω≠
Y j,(1:n≠1), Xj,n

⌘

+H

⇣≠æ
Y i,n|Wj ,

Ω≠
Y j , Xi,C ,

≠æ
Y i,(1:n≠1), Xj,n

⌘
+ H

⇣≠æ
Y j,n|Xj,C , Xi,U ,

≠æ
Y j,(1:n≠1)

⌘ i
+ N”(N)

6
NX

n=1

h
H

⇣≠æ
Y i,n

⌘
+ H (Xi,U,n|Xj,n) + H

⇣Ω≠
Y j,n|Xj,n, Xi,U,n

⌘
+ H

⇣≠æ
Y i,n|Xi,C,n, Xj,n

⌘

+H

⇣≠æ
Y j,n|Xj,C,n, Xi,U,n

⌘ i
+ N”(N)

6N

h
H

⇣≠æ
Y i,k

⌘
+ H (Xi,U,k) + H

⇣Ω≠
Y j,k|Xj,k, Xi,U,k

⌘
+ H (Xi,P,k) + H (Xj,P,k)

i
+ N”(N)

=N

h
H

⇣≠æ
Y i,k

⌘
+H(Xi,U,k)+H

Ä
Xi,CFj ,k, Xi,DF,k|Xi,U,k

ä
+H(Xi,P,k)+H (Xj,P,k)

i
+N”(N),

6N

h
dim Ω≠

Y i,k + dim ≠æ
Y i,G,k + dim Xi,U,k +

Ä
dim

Ä
Xi,CFj ,k, Xi,DF,k

ä
≠ dim Xi,U,k

ä+

+ dim Xi,P,k + dim Xj,P,k

ó
+ N”(N), (B.13)

where, (a) follows from Fano’s inequality with ” : N æ R+ a positive monotonically decreasing
function (Lemma 58); (b) follows from the fact that H

⇣≠æ
Y i,

Ω≠
Y j |Wi, Wj

⌘
= 0; (c) follows from

the fact that H(Y |X) = H(X, Y ) ≠ H(X); and (d) follows from the fact that H

⇣
Xj,C , Xi,U ,

Ω≠
Y j |Wj , Wi,

Ω≠
Y i

⌘
= 0.

Plugging (B.1b), (B.3), (B.5), (B.6a), and (B.6b) into (B.13) and after some trivial manip-
ulations, the following holds in the block-length asymptotic regime:

2Ri + Rj6max (≠æn ii, nji) + (≠æn ii ≠ nij)+

+ max
⇣

(≠æn jj ≠ nji)+
, nij ,

≠æ
n jj ≠ (max (≠æn jj , nji) ≠ Ω≠

n jj)+ ⌘
. (B.14)

This completes the proof of (5.1d).
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— C —
Proof of Theorem 5.2.1

The proof of Theorem 5.2.1 is obtained by comparing C(Ω≠n 11, 0)
Ä
resp. C(0,

Ω≠
n 22)

ä

and C(0, 0), with fixed parameters ≠æ
n 11, ≠æ

n 22, n12, and n21. More specifically,
for each tuple

Ä≠æ
n 11, ≠æ

n 22, n12, n21
ä
, the exact value Ω≠

n
ú
11 (resp Ω≠

n
ú
22) for which

any Ω≠
n 11 >

Ω≠
n

ú
11 (resp Ω≠

n 22 >
Ω≠
n

ú
22) ensures C(0, 0) µ C(Ω≠n 11, 0) (resp. C(0, 0) µ C(0,

Ω≠
n 22))

is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one
combination of interference regimes is studied, namely, VWIR - VWIR.

Proof:
Consider that both transmitter-receiver pairs are in VWIR, that is,

–1 = n12
≠æ
n 11

6 1
2 and –2 = n21

≠æ
n 22

6 1
2 . (C.1)

When the conditions in (C.1) are fulfilled, it follows from Theorem 5.1.1 that C(0, 0) is the
set of rate pairs (R1, R2) œ R2

+ that satisfy:

R16◊1 , ≠æ
n 11, (C.2a)

R26◊2 , ≠æ
n 22, (C.2b)

R1 + R26◊3 , min (max (≠æn 22, n12) + ≠æ
n 11 ≠ n12, max (≠æn 11, n21) + ≠æ

n 22 ≠ n21) ,(C.2c)
R1 + R26◊4 , max (≠æn 11 ≠ n12, n21) + max (≠æn 22 ≠ n21, n12) , (C.2d)

2R1 + R26◊5 , max (≠æn 11, n21) + ≠æ
n 11 ≠ n12 + max (≠æn 22 ≠ n21, n12) , (C.2e)

R1 + 2R26◊6 , max (≠æn 22, n12) + ≠æ
n 22 ≠ n21 + max (n21,

≠æ
n 11 ≠ n12) . (C.2f)

Note that for all (≠æn 11,
≠æ
n 22, n12, n21,

Ω≠
n 22) œ N5 and Ω≠

n 11 > max (≠æn 11, n12), it follows that
C(Ω≠n 11,

Ω≠
n 22) = C(max(≠æn 11, n12), Ω≠

n 22). Hence, in the following, the analysis is restricted to
the following condition:

Ω≠
n 11 6 max (≠æn 11, n12) . (C.3)

Under conditions (C.1) and (C.3), it follows from Theorem 5.1.1 that C(Ω≠n 11, 0) is the set of
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C. Proof of Theorem 5.2.1

rate pairs (R1, R2) œ R2
+ that satisfy:

R16≠æ
n 11, (C.4a)

R26≠æ
n 22, (C.4b)

R1 + R26min (max (≠æn 22, n12) + ≠æ
n 11 ≠ n12, max (≠æn 11, n21) + ≠æ

n 22 ≠ n21) , (C.4c)
R1 + R26◊7 , max (≠æn 11 ≠ n12, n21,

Ω≠
n 11) + max (≠æn 22 ≠ n21, n12) , (C.4d)

2R1 + R26max (≠æn 11, n21) + ≠æ
n 11 ≠ n12 + max (≠æn 22 ≠ n21, n12) , (C.4e)

R1 + 2R26◊8 , max (≠æn 22, n12) + ≠æ
n 22 ≠ n21 + max (≠æn 11 ≠ n12, n21,

Ω≠
n 11) . (C.4f)

When comparing C(0, 0) and C(Ω≠n 11, 0), note that (C.2a), (C.2b), (C.2c), and (C.2e) are
equivalent to (C.4a), (C.4b), (C.4c), and (C.4e), respectively. That being the case, the region
C(Ω≠n 11, 0) is larger than the region C(0, 0) if at least one of the following conditions holds true:

min(◊3, ◊4, ◊1 + ◊2, ◊5, ◊6)<◊7<min(◊3, ◊1 + ◊2, ◊5, ◊8), (C.5a)
min(◊6, ◊1 + 2◊2, ◊2 + ◊3, ◊4 + ◊2)<◊8<min (◊1 + 2◊2, ◊2 + ◊3, ◊2 + ◊7) . (C.5b)

Condition (C.5a) implies that the active sum-rate bound in C(Ω≠n 11, 0) is greater than the active
sum-rate bound in C(0, 0). Condition (C.5b) implies that the active weighted sum-rate bound
on R1 + 2R2 in C(Ω≠n 11, 0) is greater than the active weighted sum-rate bound on R1 + 2R2 in
C(0, 0).

To simplify the inequalities containing the operator max(·, ·) in (C.4) and (C.2), the following
4 cases are identified:

Case 1 :≠æn 11 ≠ n12 < n21 and ≠æ
n 22 ≠ n21 < n12; (C.6)

Case 2 :≠æn 11 ≠ n12 < n21 and ≠æ
n 22 ≠ n21 > n12; (C.7)

Case 3: ≠æ
n 11 ≠ n12 > n21 and ≠æ

n 22 ≠ n21 < n12; and (C.8)
Case 4: ≠æ

n 11 ≠ n12 > n21 and ≠æ
n 22 ≠ n21 > n12. (C.9)

Case 1: Under condition (C.1), the Case 1, i.e., (C.6), is not possible.

Case 2: Under condition (C.1), the Case 2, i.e., (C.7), is possible.

Plugging (C.7) into (C.4) yields:

R1 + R26min (≠æn 22 + ≠æ
n 11 ≠ n12, max (≠æn 11, n21) + ≠æ

n 22 ≠ n21) , (C.10a)
R1 + R26max (n21,

Ω≠
n 11) + ≠æ

n 22 ≠ n21, (C.10b)
R1 + 2R262≠æ

n 22 ≠ n21 + max (n21,
Ω≠
n 11) . (C.10c)

Plugging (C.7) into (C.2) yields:

R1 + R26≠æ
n 22, (C.11a)

R1 + 2R262≠æ
n 22. (C.11b)

To simplify the inequalities containing the operator max(·, ·) in (C.10), the following 2 cases
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are identified:

Case 2a :≠æn 11 > n21; and (C.12)
Case 2b :≠æn 11 6 n21. (C.13)

Case 2a: Plugging (C.12) into (C.10) yields:

R1 + R26≠æ
n 11 + ≠æ

n 22 ≠ n21, (C.14a)
R1 + R26max (n21,

Ω≠
n 11) + ≠æ

n 22 ≠ n21, (C.14b)
R1 + 2R262≠æ

n 22 ≠ n21 + max (n21,
Ω≠
n 11) . (C.14c)

Comparing inequalities (C.14a) and (C.14b) with inequality (C.11a), it can be verified that
min

⇣≠æ
n 11 + ≠æ

n 22 ≠ n21, max
Ä
n21, Ω≠

n 11
ä

+ ≠æ
n 22 ≠ n21

⌘
>

≠æ
n 22, i.e., condition (C.5a) holds,

when Ω≠
n 11 > n21. Comparing inequalities (C.14c) and (C.11b), it can be verified that

2≠æ
n 22 ≠n21 +max (n21,

Ω≠
n 11) > 2≠æ

n 22, i.e., condition (C.5b) holds, when Ω≠
n 11 > n21. Therefore,

Ω≠
n

ú
11 = n21 under conditions (C.1), (C.3), (C.7), and (C.12).

Case 2b: Plugging (C.13) into (C.10) yields:

R1 + R26≠æ
n 22, (C.15a)

R1 + R26max (n21,
Ω≠
n 11) + ≠æ

n 22 ≠ n21, (C.15b)
R1 + 2R262≠æ

n 22 ≠ n21 + max (n21,
Ω≠
n 11) . (C.15c)

Comparing inequalities (C.15a) and (C.15b) with inequality (C.11a), it can be verified that
min

⇣≠æ
n 22, max

Ä
n21, Ω≠

n 11
ä

+ ≠æ
n 22 ≠ n21

⌘
= ≠æ

n 22, i.e., condition (C.5a) does not hold, for
all Ω≠

n 11 œ N. Comparing inequalities (C.15c) and (C.11b) it can be verified that 2≠æ
n 22 ≠

n21 + max (n21,
Ω≠
n 11) > 2≠æ

n 22, when Ω≠
n 11 > n21, which implies that Ω≠

n 11 > max (≠æn 11, n12).
However, under the conditions (C.1), (C.3), (C.7), and (C.13), the bounds (C.11b) and (C.15c)
are not active. Hence, condition (C.5b) does not hold. Therefore, for all Ω≠

n 11 œ N, the capacity
region cannot be enlarged under conditions (C.1), (C.3), (C.7), and (C.13).
Case 3: Under condition (C.1), the Case 3, i.e., (C.8), is possible.

Plugging (C.8) into (C.4) yields:

R1 + R26min (max (≠æn 22, n12) + ≠æ
n 11 ≠ n12,

≠æ
n 11 + ≠æ

n 22 ≠ n21) , (C.16a)
R1 + R26max (≠æn 11 ≠ n12,

Ω≠
n 11) + n12, (C.16b)

R1 + 2R26max (≠æn 22, n12) + ≠æ
n 22 ≠ n21 + max (≠æn 11 ≠ n12,

Ω≠
n 11) . (C.16c)

Plugging (C.8) into (C.2) yields:

R1 + R26≠æ
n 11, (C.17a)

R1 + 2R26max (≠æn 22, n12) + ≠æ
n 22 ≠ n21 + ≠æ

n 11 ≠ n12. (C.17b)

To simplify the inequalities containing the operator max(·, ·) in (C.16) and (C.17), the following
2 cases are identified:

Case 3a :≠æn 22 > n12; and (C.18)
Case 3b :≠æn 22 6 n12. (C.19)
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C. Proof of Theorem 5.2.1

Case 3a: Plugging (C.18) into (C.16) yields:

R1 + R26≠æ
n 22 + ≠æ

n 11 ≠ n12, (C.20a)
R1 + R26max (≠æn 11 ≠ n12,

Ω≠
n 11) + n12, (C.20b)

R1 + 2R262≠æ
n 22 ≠ n21 + max (≠æn 11 ≠ n12,

Ω≠
n 11) . (C.20c)

Plugging (C.18) into (C.17) yields:

R1 + R26≠æ
n 11, (C.21a)

R1 + 2R262≠æ
n 22 ≠ n21 + ≠æ

n 11 ≠ n12. (C.21b)

Comparing inequalities (C.20a) and (C.20b) with inequality (C.21a), it can be verified that
min

⇣≠æ
n 22 + ≠æ

n 11 ≠ n12, max
Ä≠æ

n 11 ≠ n12, Ω≠
n 11
ä

+ n12
⌘

>
≠æ
n 11, i.e., condition (C.5a) holds,

when Ω≠
n 11 >

≠æ
n 11 ≠ n12. Comparing inequalities (C.20c) and (C.21b), it can be verified that

2≠æ
n 22 ≠ n21 + max

Ä≠æ
n 11 ≠ n12, Ω≠

n 11
ä

> 2≠æ
n 22 ≠ n21 + ≠æ

n 11 ≠ n12, i.e., condition (C.5b) holds,
when Ω≠

n 11 >
≠æ
n 11 ≠ n12. Therefore, Ω≠

n
ú
11 = ≠æ

n 11 ≠ n12 under conditions (C.1), (C.3), (C.8),
and (C.18).
Case 3b: Plugging (C.19) into (C.16) yields:

R1 + R26≠æ
n 11, (C.22a)

R1 + R26max (≠æn 11 ≠ n12,
Ω≠
n 11) + n12, (C.22b)

R1 + 2R26n12 + ≠æ
n 22 ≠ n21 + max (≠æn 11 ≠ n12,

Ω≠
n 11) . (C.22c)

Plugging (C.18) into (C.17) yields:

R1 + R26≠æ
n 11, (C.23a)

R1 + 2R26≠æ
n 22 ≠ n21 + ≠æ

n 11. (C.23b)

Comparing inequalities (C.22a) and (C.22b) with inequality (C.23a), it can be verified that
min

⇣≠æ
n 11, max

Ä≠æ
n 11 ≠ n12, Ω≠

n 11
ä

+ n12
⌘

= ≠æ
n 11, i.e., condition (C.5a) does not hold, for all

Ω≠
n 11 œ N. Comparing inequalities (C.22c) and (C.23b), it can be verified that n12 +≠æ

n 22 ≠n21 +
max

Ä≠æ
n 11 ≠n12, Ω≠

n 11
ä

>
≠æ
n 22 ≠n21 +≠æ

n 11, i.e., condition (C.5b) holds, when Ω≠
n 11 >

≠æ
n 11 ≠n12.

Therefore, Ω≠
n

ú
11 = ≠æ

n 11 ≠ n12 under conditions (C.1), (C.3), (C.8), and (C.19).
Case 4: Under condition (C.1), the Case 4, i.e., (C.9), is possible.

Plugging (C.9) into (C.4) yields:

R1 + R26min (≠æn 22 + ≠æ
n 11 ≠ n12,

≠æ
n 11 + ≠æ

n 22 ≠ n21) , (C.24a)
R1 + R26max (≠æn 11 ≠ n12,

Ω≠
n 11) + ≠æ

n 22 ≠ n21, (C.24b)
R1 + 2R262≠æ

n 22 ≠ n21 + max (≠æn 11 ≠ n12,
Ω≠
n 11) . (C.24c)

Plugging (C.9) into (C.2) yields:

R1 + R26≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21, (C.25a)
R1 + 2R262≠æ

n 22 ≠ n21 + ≠æ
n 11 ≠ n12. (C.25b)

Comparing inequalities (C.24a) and (C.24b) with inequality (C.25a), it can be verified that
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min
⇣
min

Ä≠æ
n 22 +≠æ

n 11 ≠ n12, ≠æ
n 11 + ≠æ

n 22 ≠ n21
ä
, max

Ä≠æ
n 11 ≠ n12, Ω≠

n 11
ä

+ ≠æ
n 22 ≠ n21

⌘
>

≠æ
n 11 ≠ n12 + ≠æ

n 22 ≠ n21, i.e., condition (C.5a) holds, when Ω≠
n 11 >

≠æ
n 11 ≠ n12. Comparing

inequalities (C.24c) and (C.25b), it can be verified that: 2≠æ
n 22 ≠ n21 + max

Ä≠æ
n 11 ≠ n12,

Ω≠
n 11
ä

> 2≠æ
n 22 ≠ n21 + ≠æ

n 11 ≠ n12, i.e., condition (C.5b) holds, when Ω≠
n 11 >

≠æ
n 11 ≠ n12.

Therefore, Ω≠
n

ú
11 = ≠æ

n 11 ≠ n12 under conditions (C.1), (C.3), and (C.9).
From all the observations above, when both transmitter-receiver pairs are in VWIR (event

E1 in (5.6) holds true), it follows that when Ω≠
n 11 >

Ω≠
n

ú
11 and ≠æ

n 11 > n21 (event E8,1 in (5.13)
with i = 1 holds true) with Ω≠

n
ú
11 = max (≠æn 11 ≠ n12, n21), then C(0, 0) µ C(Ω≠n 11, 0). Otherwise,

C(0, 0) = C(Ω≠n 11, 0). Note that when events E1 and E8,1 hold simultaneously true, then the
event S1,1 in (5.17) with i = 1 holds true, which verifies the statement of Theorem 5.2.1. The
same procedure can be applied for all the other combinations of interference regimes. This
completes the proof.
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— D —
Proof of Theorem 5.2.2
The proof of Theorem 5.2.2 is obtained by comparing C(Ω≠n 11, 0)

Ä
resp. C(0,

Ω≠
n 22)

ä

and C(0, 0), for all possible parameters ≠æ
n 11, ≠æ

n 22, n12, n21, and Ω≠
n 11 (resp. ≠æ

n 11,
≠æ
n 22, n12, n21, and Ω≠

n 22). More specifically, for each tuple
Ä≠æ

n 11, ≠æ
n 22, n12, n21

ä
,

the exact value Ω≠
n

†
11 (resp Ω≠

n
†
22) for which any Ω≠

n 11 >
Ω≠
n

†
11 (resp Ω≠

n 22 >
Ω≠
n

†
22) ensures an

improvement on R1 (resp. R2), i.e., �1(Ω≠n 11, 0) > 0 (resp. �2(0, Ω≠
n 22) > 0), is calculated.

This procedure is tedious and repetitive, and thus, in this appendix only one combination of
interference regimes is studied, namely, VWIR - VWIR.

Proof:
Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (C.1) hold.

Under these conditions, the capacity regions C(0, 0) and C(Ω≠n 11, 0) are given by (C.2) and
(C.4), respectively. When comparing C(0, 0) and C(Ω≠n 11, 0), note that (C.2a), (C.2b), (C.2c),
and (C.2e) are equivalent to (C.4a), (C.4b), (C.4c), and (C.4e), respectively. In this case any
improvement on R1 is produced by an improvement on R1 +R2 (condition (C.5a)) or 2R1 +R2
(condition (C.5a)), and thus, the proof of Theorem 5.2.2 in these particular interference regimes
follows exactly the same steps as in Theorem 5.2.1. This completes the proof.
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— E —
Proof of Theorem 5.2.4

The proof of Theorem 5.2.4 is obtained by comparing C(Ω≠n 11, 0)
Ä
resp. C(0,

Ω≠
n 22)

ä

and C(0, 0), for all possible parameters ≠æ
n 11, ≠æ

n 22, n12, n21, and Ω≠
n 11 (resp. ≠æ

n 11,
≠æ
n 22, n12, n21, and Ω≠

n 22). More specifically, for each tuple
Ä≠æ

n 11, ≠æ
n 22, n12, n21

ä
,

the exact value Ω≠
n

+
11 (resp Ω≠

n
+
22) for which any Ω≠

n 11 >
Ω≠
n

+
11 (resp Ω≠

n 22 >
Ω≠
n

+
22) ensures an

improvement on R1 + R2, i.e., �(Ω≠n 11, 0) > 0 (resp. �(0,
Ω≠
n 22) > 0), is calculated. This

procedure is tedious and repetitive, and thus, in this appendix only one combination of
interference regimes is studied, namely, VWIR - VWIR.

Proof:
Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (C.1) hold.

Under these conditions, the capacity regions C(0, 0) and C(Ω≠n 11, 0) are given by (C.2) and
(C.4), respectively. When comparing C(0, 0) and C(Ω≠n 11, 0), note that (C.2a), (C.2b), (C.2c),
and (C.2e) are equivalent to (C.4a), (C.4b), (C.4c), and (C.4e), respectively.

In this case, the proof is focused on any improvement on R1 + R2 (condition (C.5a)), and
thus, the proof of Theorem 5.2.4 in these particular interference regimes follows exactly the
same steps as in Theorem 5.2.1.

From the analysis presented in Appendix C, it follows that:
Case 2a: condition (C.5a) holds true, when Ω≠

n 11 > n21 under conditions (C.1), (C.3), (C.7),
and (C.12).
Case 2b: condition (C.5a) does not hold true, under conditions (C.1), (C.7), and (C.13).
Case 3a: condition (C.5a) holds true, when Ω≠

n 11 >
≠æ
n 11 ≠ n12 under conditions (C.1), (C.3),

(C.8), and (C.18).
Case 3b: condition (C.5a) does not hold true, when Ω≠

n 11 >
≠æ
n 11 ≠ n12 under conditions (C.1),

(C.3), (C.8), and (C.19).
Case 4: condition (C.5a) holds true, when Ω≠

n 11 >
≠æ
n 11 ≠ n12 under conditions (C.1), (C.3),

and (C.9).
From all the observations above, when both transmitter-receiver pairs are in VWIR (event E1

in (5.6) holds true), it follows that when Ω≠
n 11 >

Ω≠
n

+
11, ≠æ

n 11 > n21 (event E8,1 in (5.13) with i = 1
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E. Proof of Theorem 5.2.4

holds true), ≠æ
n 22 > n12 (event E8,2 in (5.13) with i = 2 holds true), ≠æ

n 11 + ≠æ
n 22 > n12 + 2n21

(event E10,1 in (5.15) with i = 1 holds true), and ≠æ
n 11 +≠æ

n 22 > n21 +2n12 (event E10,2 in (5.15)
with i = 2 holds true) with Ω≠

n
+
11 = max (≠æn 11 ≠ n12, n21), then �(Ω≠n 11, 0) > 0. Otherwise,

�(Ω≠n 11, 0) = 0. Note that when events E1, E8,1, E8,2, E10,1, and E10,2 hold simultaneously
true, then the event S4 in (5.20) holds true, which verifies the statement of Theorem 5.2.4.
The same procedure can be applied for all the other combinations of interference regimes.
This completes the proof.
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— F —
Proof of Theorem 5.3.1

This appendix provides a proof to Theorem 5.3.1 for the two-user LDIC-NOF.

Proof:

Under symmetric conditions, i.e., ≠æ
n = ≠æ

n 11 = ≠æ
n 22, m = n12 = n21 and Ω≠

n = Ω≠
n 11 = Ω≠

n 22,
from (5.1a) and (5.1b) with i œ {1, 2} and j œ {1, 2} \ {i}, it follows that:

R1 6 a1 , min
Ä
max (≠æn , m) , max

Ä≠æ
n ,

Ω≠
n ≠ (≠æn ≠ m)+ää

, (F.1)
R2 6 a1 , min

Ä
max (≠æn , m) , max

Ä≠æ
n ,

Ω≠
n ≠ (≠æn ≠ m)+ää ; (F.2)

from (5.1c) and (5.1c), it follows that:

R1+R2 6 a2 (F.3)
,min

⇣
max (≠æn , m) + (≠æn ≠ m)+

, 2 max
⇣

(≠æn ≠ m)+
, m,

≠æ
n ≠ (max (≠æn , m) ≠ Ω≠

n )+ ⌘⌘ ;

and from (5.1d), it follows that:

2R1+R2 6 a3 (F.4)
,max (≠æn , m) + (≠æn ≠ m)+ + max

⇣
(≠æn ≠ m)+

, m,
≠æ
n ≠ (max (≠æn , m) ≠ Ω≠

n )+ ⌘
,

R1+2R2 6 a3 (F.5)
,max (≠æn , m) + (≠æn ≠ m)+ + max

⇣
(≠æn ≠ m)+

, m,
≠æ
n ≠ (max (≠æn , m) ≠ Ω≠

n )+ ⌘
.

The sum-capacity can be obtained considering the sum of (F.1) and (F.2); (F.3); and the sum-
rate bound that can be obtained from (F.4) and (F.5) with R1 > 0 and R2 > 0, respectively.
Then,
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F. Proof of Theorem 5.3.1

R1 + R26min (2a1, a2, a3)
=min (2a1, a2) , (F.6)

given that a3 > a2.
The symmetric capacity, Csym(≠æn , m,

Ω≠
n ) = sup{R œ R+ : (R, R) œ C(≠æn , ≠æ

n , m, m, Ω≠
n ,

Ω≠
n )}, can be obtained from (F.6), (F.1), and (F.3) as follows:

Csym=min
Å

a1,
a2
2

ã

=min
 

max (≠æn , m) , max
Ä≠æ

n ,
Ω≠
n ≠ (≠æn ≠ m)+ä

,
1
2
Ä
max (≠æn , m) + (≠æn ≠ m)+ä

,

max
⇣

(≠æn ≠ m)+
, m,

≠æ
n ≠ (max (≠æn , m) ≠ Ω≠

n )+ ⌘
!

. (F.7)

Plugging (F.7) into (5.31) yields:

Dsym(–, —)=min
 

max (1, –) , max
Ä
1, — ≠ (1 ≠ –)+ä

,
1
2
Ä
max (1, –) + (1 ≠ –)+ä

,

max
⇣

(1 ≠ –)+
, –, 1 ≠ (max (1, –) ≠ —)+

⌘!

, (F.8)

where – = m≠æ
n

and — =
Ω≠
n≠æ
n

. This completes the proof.
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— G —
Proof of Theorem 6.2.1

The outer bounds (6.9a) and (6.9c) correspond to the outer bounds of the case of
POF derived in [80]. The bounds (6.9b), (6.9d) and (6.9e) correspond to new
outer bounds. Before presenting the proof, consider the parameter hji,U , with

i œ {1, 2} and j œ {1, 2} \ {i}, defined as follows:

hji,U =

8
<

:

0 if (S1,i ‚ S2,i ‚ S3,i)…
INRijINRji≠≠æSNRj

if (S4,i ‚ S5,i), (G.1)

where, the events S1,i, S2,i, S3,i, S4,i, and S5,i are defined in (6.4). Consider also the following
signals:

Xi,C,n=
»

INRjiXi,n + ≠æ
Z j,n and (G.2)

Xi,U,n=hji,U Xi,n + ≠æ
Z j,n, (G.3)

where, Xi,n and ≠æ
Z j,n are the channel input of transmitter i and the noise observed at receiver

j during a given channel use n œ {1, 2, . . . , N}, as described by (2.5). The following lemma is
instrumental in the present proof of Theorem 6.2.1.

Lemma 21. For all i œ {1, 2}, with j œ {1, 2} \ {i}, the following holds:

I

⇣
Xi,C , Xj,U ,

Ω≠
Y i, Wi;

Ω≠
Y j , Wj

⌘
6h

⇣Ω≠
Y j |Wj

⌘
+

NX

n=1

h
h (Xj,U,n|Xi,C,n) + h

⇣Ω≠
Y i,n|Xi,n, Xj,U,n

⌘

≠3
2 log (2fie)

i
. (G.4)

Proof: The proof of Lemma 21 is presented in appendix L.
Proof of (6.9b): From the assumption that the message index Wi is i.i.d. following a
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Figure G.1.: Genie-Aided GIC-NOF models for channel use n. (a) Model used to calculate
the outer bound on R1; (b) Model used to calculate the outer bound on R1 + R2;
and (c) Model used to calculate the outer bound on 2R1 + R2

uniform distribution over the set Wi, the following holds for any k œ {1, 2, . . . , N}:

NRi =H (Wi)
=H (Wi|Wj)
(a)
6I

⇣
Wi;

≠æ
Y i,

Ω≠
Y j |Wj

⌘
+ N”(N)

6
NX

n=1

h
h

⇣≠æ
Y i,n,

Ω≠
Y j,n|Wj ,

≠æ
Y i,(1:n≠1),

Ω≠
Y j,(1:n≠1), Xj,n

⌘
≠ h

⇣≠æ
Z i,n

⌘
≠ h

⇣Ω≠
Z j,n

⌘ i

+N”(N)

6
NX

n=1

h
h

⇣≠æ
Y i,n,

Ω≠
Y j,n|Xj,n

⌘
≠ h

⇣≠æ
Z i,n

⌘
≠ h

⇣Ω≠
Z j,n

⌘ i
+ N”(N)

=N

h
h

⇣≠æ
Y i,k,

Ω≠
Y j,k|Xj,k

⌘
≠ log (2fie)

i
+ N”(N), (G.5)

where (a) follows from Fano’s inequality with ” : N æ R+ a positive monotonically decreasing
function (Lemma 58) (see Figure G.1a).

From (G.5), the following holds in the block-length asymptotic regime:

Ri6h

⇣≠æ
Y i,k,

Ω≠
Y j,k|Xj,k

⌘
≠ log (2fie)

61
2 log

⇣
b3,i + 1

⌘
+ 1

2log

Ö ⇣
b3,i + b4,j(fl) + 1

⌘Ω≠≠SNRj

⇣
b1,j(fl) + 1

⌘⇣
b3,i + (1 ≠ fl2)

⌘+1

è

. (G.6)

This completes the proof of (6.9b).
Proof of (6.9d):
From the assumption that the message indices W1 and W2 are i.i.d. following a uniform

distribution over the sets W1 and W2 respectively, the following holds for any k œ {1, 2, . . . , N}:

N

⇣
R1 + R2

⌘
=H (W1) + H (W2)
(a)
6I

⇣
W1; ≠æ

Y 1,
Ω≠
Y 1
⌘

+ I

⇣
W2; ≠æ

Y 2,
Ω≠
Y 2
⌘

+ N”(N)
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=h

⇣≠æ
Y 1
⌘

+ h

⇣Ω≠
Z 1|≠æY 1

⌘
≠ h

⇣Ω≠
Y 1|W1

⌘
≠ h

⇣≠æ
Y 1|W1,

Ω≠
Y 1, X1

⌘
+ h

⇣≠æ
Y 2
⌘

+ h

⇣Ω≠
Z 2|≠æY 2

⌘

≠h

⇣Ω≠
Y 2|W2

⌘
≠ h

⇣≠æ
Y 2|W2,

Ω≠
Y 2, X2

⌘
+ N”(N)

6h

⇣≠æ
Y 1
⌘

+ h

⇣Ω≠
Z 1
⌘

≠ h

⇣Ω≠
Y 1|W1

⌘
≠ h

⇣
X2,C |W1,

Ω≠
Y 1, X1

⌘
+ h

⇣≠æ
Y 2
⌘

+ h

⇣Ω≠
Z 2
⌘

≠h

⇣Ω≠
Y 2|W2

⌘
≠ h

⇣
X1,C |W2,

Ω≠
Y 2, X2

⌘
+ N”(N)

=h

⇣≠æ
Y 1
⌘

≠ h

⇣Ω≠
Y 1|W1

⌘
≠ h

⇣
X2,C ,

≠æ
Z 2|W1,

Ω≠
Y 1, X1

⌘
+ h

⇣≠æ
Z 2|W1,

Ω≠
Y 1, X1, X2,C

⌘

+h

⇣≠æ
Y 2
⌘

≠ h

⇣Ω≠
Y 2|W2

⌘
≠ h

⇣
X1,C ,

≠æ
Z 1|W2,

Ω≠
Y 2, X2

⌘
+ h

⇣≠æ
Z 1|W2,

Ω≠
Y 2, X2, X1,C

⌘

+N log (2fie) + N”(N)
=h

⇣≠æ
Y 1
⌘

≠ h

⇣Ω≠
Y 1|W1

⌘
≠ h

⇣
X2,C , X1,U |W1,

Ω≠
Y 1, X1

⌘
+ h

⇣≠æ
Z 2|W1,

Ω≠
Y 1, X1, X2,C

⌘

+h

⇣≠æ
Y 2
⌘

≠ h

⇣Ω≠
Y 2|W2

⌘
≠ h

⇣
X1,C , X2,U |W2,

Ω≠
Y 2, X2

⌘
+ h

⇣≠æ
Z 1|W2,

Ω≠
Y 2, X2, X1,C

⌘

+N log (2fie) + N”(N)
=h

⇣≠æ
Y 1
⌘

≠h

⇣Ω≠
Y 1|W1

⌘
+
h
I

⇣
X2,C , X1,U ; W1,

Ω≠
Y 1
⌘

≠ h (X2,C , X1,U )
i

+ h

⇣≠æ
Y 2
⌘

≠h

⇣Ω≠
Y 2|W2

⌘
+
h
I

⇣
X1,C , X2,U ; W2,

Ω≠
Y 2
⌘

≠ h (X1,C , X2,U )
i

+h

⇣≠æ
Z 1|W2,

Ω≠
Y 2, X2, X1,C

⌘
+ h

⇣≠æ
Z 2|W1,

Ω≠
Y 1, X1, X2,C

⌘
+ N log (2fie) + N”(N)

6h

⇣≠æ
Y 1
⌘

≠h

⇣Ω≠
Y 1|W1

⌘
+
h
I

⇣
X2,C , X1,U ; W1,

Ω≠
Y 1
⌘

≠ h (X2,C , X1,U )
i

+ h

⇣≠æ
Y 2
⌘

≠h

⇣Ω≠
Y 2|W2

⌘
+
h
I

⇣
X1,C , X2,U ; W2,

Ω≠
Y 2
⌘

≠ h (X1,C , X2,U )
i

+
h
h

⇣
X2,C , X1,U |≠æY 2

⌘

≠h

⇣
X2,C , X1,U |≠æY 2, X1, X2

⌘i
+
h
h

⇣
X1,C , X2,U |≠æY 1

⌘
≠h

⇣
X1,C , X2,U |≠æY 1, X2, X1

⌘i

+h

⇣≠æ
Z 1|W2,

Ω≠
Y 2, X2, X1,C

⌘
+ h

⇣≠æ
Z 2|W1,

Ω≠
Y 1, X1, X2,C

⌘
+ N log (2fie) + N”(N)

(b)=h

⇣≠æ
Y 1|X1,C , X2,U

⌘
≠ h

⇣Ω≠
Y 1|W1

⌘
+ I

⇣
X2,C , X1,U ; W1,

Ω≠
Y 1
⌘

+ h

⇣≠æ
Y 2|X2,C , X1,U

⌘

≠h

⇣Ω≠
Y 2|W2

⌘
+ I

⇣
X1,C , X2,U ; W2,

Ω≠
Y 2
⌘

≠ h

⇣≠æ
Z 1,

≠æ
Z 2|≠æY 2, X1, X2

⌘

≠h

⇣≠æ
Z 2,

≠æ
Z 1|≠æY 1, X2, X1

⌘
+ h

⇣≠æ
Z 1|W2,

Ω≠
Y 2, X2, X1,C

⌘
+ h

⇣≠æ
Z 2|W1,

Ω≠
Y 1, X1, X2,C

⌘

+N log (2fie) + N”(N)
(c)
6h

⇣≠æ
Y 1|X1,C , X2,U

⌘
≠ h

⇣Ω≠
Y 1|W1

⌘
+ I

⇣
X2,C , X1,U ; W1,

Ω≠
Y 1
⌘

+ h

⇣≠æ
Y 2|X2,C , X1,U

⌘

≠h

⇣Ω≠
Y 2|W2

⌘
+ I

⇣
X1,C , X2,U ; W2,

Ω≠
Y 2
⌘

+ N log (2fie) + N”(N)

6h

⇣≠æ
Y 1|X1,C , X2,U

⌘
≠ h

⇣Ω≠
Y 1|W1

⌘
+ I

⇣
X2,C , X1,U , W2,

Ω≠
Y 2; W1,

Ω≠
Y 1
⌘

+h

⇣≠æ
Y 2|X2,C , X1,U

⌘
≠ h

⇣Ω≠
Y 2|W2

⌘
+ I

⇣
X1,C , X2,U , W1,

Ω≠
Y 1; W2,

Ω≠
Y 2
⌘

+ N log (2fie)
+N”(N)

(d)
6

NX

n=1

h
h

⇣≠æ
Y 1,n|X1,C , X2,U ,

≠æ
Y 1,(1:n≠1)

⌘
+ h (X1,U,n|X2,C,n) + h

⇣Ω≠
Y 2,n|X2,n, X1,U,n

⌘

+h

⇣≠æ
Y 2,n|X2,C , X1,U

≠æ
Y 2,(1:n≠1)

⌘
+ h (X2,U,n|X1,C,n) + h

⇣Ω≠
Y 1,n|X1,n, X2,U,n

⌘
≠ 3 log (2fie)

i

+N log (2fie) + N”(N)
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6
NX

n=1

h
h

⇣≠æ
Y 1,n|X1,C,n, X2,U,n

⌘
+ h (X1,U,n|X2,C,n) + h

⇣Ω≠
Y 2,n|X2,n, X1,U,n

⌘

+h

⇣≠æ
Y 2,n|X2,C,n, X1,U,n

⌘
+ h (X2,U,n|X1,C,n) + h

⇣Ω≠
Y 1,n|X1,n, X2,U,n

⌘
≠ 3 log (2fie)

i

+N log (2fie) + N”(N)
=N

h
h

⇣≠æ
Y 1,k|X1,C,k, X2,U,k

⌘
+ h (X1,U,k|X2,C,k) + h

⇣Ω≠
Y 2,k|X2,k, X1,U,k

⌘

+h

⇣≠æ
Y 2,k|X2,C,k, X1,U,k

⌘
+ h (X2,U,k|X1,C,k) + h

⇣Ω≠
Y 1,k|X1,k, X2,U,k

⌘
≠ 3 log (2fie)

i

+N log (2fie) + N”(N), (G.7)

where (a) follows from Fano’s inequality with ” : N æ R+ a positive monotonically de-
creasing function (Lemma 58) (see Figure G.1b); (b) follows from the fact that h

⇣≠æ
Y i

⌘
≠

h (Xi,C , Xj,U ) + h

⇣
Xi,C , Xj,U |≠æY i

⌘
= h

⇣≠æ
Y i|Xi,C , Xj,U

⌘
; (c) follows from the fact that

h

⇣≠æ
Z i|Wj ,

Ω≠
Y j , Xj , Xi,C

⌘
≠ h

⇣≠æ
Z i,

≠æ
Z j |≠æY j , Xi, Xj

⌘
6 0; and (d) follows from Lemma 21.

From (G.7), the following holds in the block-length asymptotic regime for any k œ
{1, 2, . . . , N}:

R1 + R26h

⇣≠æ
Y 1,k|X1,C,k, X2,U,k

⌘
+ h (X1,U,k|X2,C,k) + h

⇣Ω≠
Y 2,k|X2,k, X1,U,k

⌘

+h

⇣≠æ
Y 2,k|X2,C,k, X1,U,k

⌘
+ h (X2,U,k|X1,C,k) + h

⇣Ω≠
Y 1,k|X1,k, X2,U,k

⌘
≠ 2 log (2fie)

61
2 log

⇣
det

⇣
Var

⇣≠æ
Y 1,k, X1,C,k, X2,U,k

⌘⌘⌘
≠ 1

2 log (INR12 + 1)

+1
2 log

⇣
det

⇣
Var

⇣Ω≠
Y 2,k, X2,k, X1,U,k

⌘⌘⌘
≠ 1

2 log (det (Var (X2,k, X1,U,k)))

+1
2 log

⇣
det

⇣
Var

⇣≠æ
Y 2,k, X2,C,k, X1,U,k

⌘⌘⌘
≠ 1

2 log (INR21 + 1)

+1
2 log

⇣
det

⇣
Var

⇣Ω≠
Y 1,k, X1,k, X2,U,k

⌘⌘⌘
≠ 1

2 log (det (Var (X1,k, X2,U,k)))
+ log (2fie) , (G.8)

where, for all i œ {1, 2}, with j œ {1, 2} \ {i} the following holds for any k œ {1, 2, . . . , N}:

det
⇣
Var

⇣≠æ
Y j,k, Xj,C,k, Xi,U,k

⌘⌘
= ≠≠æSNRj + INRji + h

2
ji,U ≠ 2hji,U

»
INRji (G.9a)

+
Ä
1 ≠ fl

2ä
 

INRijINRji + h
2
ji,U

⇣≠≠æSNRj + INRij

⌘
≠ 2hji,U INRij

»
INRji

!

+2fl

q≠≠æSNRj

Ä»
INRji ≠ hji,U

ä
,

det
⇣
Var

⇣Ω≠
Y j,k, Xj,k, Xi,U,k

⌘⌘
=1 + h

2
ji,U

Ä
1 ≠ fl

2ä (G.9b)

+
Ω≠≠SNRj

�
1 ≠ fl

2� Ä
h

2
ji,U

≠ 2hji,U

p
INRji + INRji

ä
Å≠≠æSNRj + 2fl

q≠≠æSNRjINRji + INRji + 1
ã , and

det (Var (Xj,k, Xi,U,k))=1 +
Ä
1 ≠ fl

2ä
h

2
ji,U . (G.9c)

The expressions in (G.9) depend on S1,i, S2,i, S3,i, S4,i, and S5,i via the parameter hji,U in
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(G.1). Hence, the following cases are identified:
Case 1: (S1,2 ‚ S2,2 ‚ S5,2) · (S1,1 ‚ S2,1 ‚ S5,1). From (G.1), it follows that h12,U = 0 and

h21,U = 0. Therefore, plugging the expression (G.9) into (G.8) yields (6.6a).
Case 2: (S1,2 ‚ S2,2 ‚ S5,2) · (S3,1 ‚ S4,1). From (G.1), it follows that h12,U = 0 and

h21,U =
…

INR12INR21≠≠æSNR2
. Therefore, plugging the expression (G.9) into (G.8) yields (6.6b).

Case 3: (S3,2 ‚ S4,2) · (S1,1 ‚ S2,1 ‚ S5,1). From (G.1), it follows that h12,U =
…

INR12INR21≠≠æSNR1

and h21,U = 0. Therefore, plugging the expression (G.9) into (G.8) yields (6.6c).
Case 4: (S3,2 ‚ S4,2) · (S3,1 ‚ S4,1). From (G.1), it follows that h12,U =

…
INR12INR21≠≠æSNR1

and

h21,U =
…

INR12INR21≠≠æSNR2
. Therefore, plugging the expression (G.9) into (G.8) yields (6.6d).

This completes the proof of (6.9d).
Proof of (6.9e): From the assumption that the message indices Wi and Wj are i.i.d.

following a uniform distribution over the sets Wi and Wj respectively, for all i œ {1, 2}, with
j œ {1, 2} \ {i}, the following holds for any k œ {1, 2, . . . , N}:

N

⇣
2Ri + Rj

⌘
= 2H (Wi) + H (Wj)

(a)=H (Wi) + H (Wi|Wj) + H (Wj)
(b)
6I

⇣
Wi;

≠æ
Y i,

Ω≠
Y i

⌘
+ I

⇣
Wi;

≠æ
Y i,

Ω≠
Y j |Wj

⌘
+ I

⇣
Wj ; ≠æ

Y j ,
Ω≠
Y j

⌘
+ N”(N)

6h

⇣≠æ
Y i

⌘
+ h

⇣Ω≠
Z i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣≠æ
Y i|Wi,

Ω≠
Y i

⌘
+ h

⇣Ω≠
Y j |Wj

⌘
≠ h

⇣Ω≠
Y j |Wi, Wj

⌘

+I

⇣
Wi;

≠æ
Y i|Wj ,

Ω≠
Y j

⌘
+ h

⇣≠æ
Y j

⌘
+ h

⇣Ω≠
Z j

⌘
≠ h

⇣Ω≠
Y j |Wj

⌘
≠ h

⇣≠æ
Y j |Wj ,

Ω≠
Y j

⌘
+ N”(N)

=h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣≠æ
Y i|Wi,

Ω≠
Y i, Xi

⌘
≠ h

⇣Ω≠
Y j |Wi, Wj

⌘
+ I

⇣
Wi;

≠æ
Y i|Wj ,

Ω≠
Y j

⌘

+h

⇣≠æ
Y j

⌘
≠ h

⇣≠æ
Y j |Wj ,

Ω≠
Y j , Xj

⌘
+ N log (2fie) + N”(N)

6h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣≠æ
Y i|Wi,

Ω≠
Y i, Xi

⌘
+ I

⇣
Wi;

≠æ
Y i|Wj ,

Ω≠
Y j

⌘
+ h

⇣≠æ
Y j

⌘

≠h

⇣≠æ
Y j |Wj ,

Ω≠
Y j , Xj

⌘
+ N log (2fie) + N”(N)

(c)=h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣
Xj,C |Wi,

Ω≠
Y i, Xi

⌘
+ I

⇣
Wi;

≠æ
Y i|Wj ,

Ω≠
Y j

⌘
+ h

⇣≠æ
Y j

⌘

≠h

⇣
Xi,C |Wj ,

Ω≠
Y j , Xj

⌘
+ N log (2fie) + N”(N)

=h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣
Xj,C ,

≠æ
Z j |Wi,

Ω≠
Y i, Xi

⌘
+ h

⇣≠æ
Z j |Wi,

Ω≠
Y i, Xi, Xj,C

⌘

+I

⇣
Wi;

≠æ
Y i|Wj ,

Ω≠
Y j

⌘
+ h

⇣≠æ
Y j

⌘
≠ h

⇣
Xi,C |Wj ,

Ω≠
Y j , Xj

⌘
+ N log (2fie) + N”(N)

(d)=h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣
Xj,C , Xi,U |Wi,

Ω≠
Y i, Xi

⌘
+ h

⇣≠æ
Z j |Wi,

Ω≠
Y i, Xi, Xj,C

⌘

+I

⇣
Wi;

≠æ
Y i|Wj ,

Ω≠
Y j

⌘
+ h

⇣≠æ
Y j

⌘
≠ h

⇣
Xi,C |Wj ,

Ω≠
Y j , Xj

⌘
+ N log (2fie) + N”(N)

6h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣
Xj,C , Xi,U |Wi,

Ω≠
Y i

⌘
+ h

⇣≠æ
Z j |Wi,

Ω≠
Y i, Xi, Xj,C

⌘

+I

⇣
Wi;

≠æ
Y i, Xi,C |Wj ,

Ω≠
Y j

⌘
+ h

⇣≠æ
Y j

⌘
≠ h

⇣
Xi,C |Wj ,

Ω≠
Y j

⌘
+ N log (2fie) + N”(N)

=h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣
Xj,C , Xi,U |Wi,

Ω≠
Y i

⌘
+ h

⇣≠æ
Z j |Wi,

Ω≠
Y i, Xi, Xj,C

⌘

+h

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘
≠ h

⇣≠æ
Y i, Xi,C |Wi, Wj ,

Ω≠
Y j

⌘
+ h

⇣≠æ
Y j

⌘
+ N log (2fie) + N”(N)
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(e)
6h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣
Xj,C , Xi,U |Wi,

Ω≠
Y i

⌘
+ h

⇣≠æ
Z j |Wi,

Ω≠
Y i, Xi, Xj,C

⌘

+h

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘
≠ h

⇣≠æ
Y i, Xi,C |Wi, Wj ,

Ω≠
Y j , Xi, Xj

⌘
+ h

⇣≠æ
Y j

⌘
+ N log (2fie)

+N”(N)
=h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣
Xj,C , Xi,U |Wi,

Ω≠
Y i

⌘
+ h

⇣≠æ
Z j |Wi,

Ω≠
Y i, Xi, Xj,C

⌘

+h

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘
≠ h

⇣≠æ
Z i,

≠æ
Z j |Wi, Wj ,

Ω≠
Y j , Xi, Xj

⌘
+ h

⇣≠æ
Y j

⌘

+N log (2fie) + N”(N)
(f)
6h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
≠ h

⇣
Xj,C , Xi,U |Wi,

Ω≠
Y i

⌘
+ h

⇣≠æ
Y i|Wj ,

Ω≠
Y j , Xi,C

⌘
+ h

⇣≠æ
Y j

⌘

+N log (2fie) + N”(N)
6h

⇣≠æ
Y i

⌘
≠ h

⇣Ω≠
Y i|Wi

⌘
+ I

⇣
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h

⇣≠æ
Y i,n

⌘
+ h (Xi,U,n|Xj,C,n) + h
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i
, (G.10)

where, (a) follows from the fact that W1 and W2 are mutually independent; (b) follows from
Fano’s inequality with ” : N æ R+ a positive monotonically decreasing function (Lemma 58)
(see Figure G.1c); (c) follows from (2.5) and (G.2); (d) follows from (G.3); (e) follows from
(2.1) and the fact that conditioning does not increase entropy (Lemma 40); (f) follows from the
fact that h

⇣≠æ
Z j |Wj ,

Ω≠
Y i, Xi, Xj,C

⌘
≠ h

⇣≠æ
Z i,

≠æ
Z j |Wi, Wj ,

Ω≠
Y j , Xi, Xj

⌘
6 0; (g) follows from

the fact that h

⇣≠æ
Y j

⌘
≠ h (Xj,C , Xi,U ) + h

⇣
Xj,C , Xi,U |≠æY j

⌘
= h

⇣≠æ
Y j |Xj,C , Xi,U

⌘
; (h) follows

from Lemma 21; and (i) follows from the fact that conditioning does not increase entropy
(Lemma 40).
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From (G.10), the following holds in the block-length asymptotic regime for any k œ
{1, 2, . . . N}:

2Ri + Rj6h
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⌘
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⇣Ω≠
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⌘
+h
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⌘

+h
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Y j,k|Xj,C,k, Xi,U,k

⌘
≠ 1

2 log (2fie)

61
2 log

Å≠≠æSNRi + 2fl

q≠≠æSNRiINRij + INRij + 1
ã

≠ 1
2 log (INRij + 1)

+1
2 log

⇣
det

⇣
Var

⇣Ω≠
Y j,k, Xj,k, Xi,U,k

⌘⌘⌘
≠ 1

2 log (det (Var (Xj,k, Xi,U,k)))

+1
2 log

⇣
1 +
Ä
1 ≠ fl

2ä ⇣≠≠æSNRi + INRji

⌘⌘
≠ 1

2 log
Ä
1 +
Ä
1 ≠ fl

2ä INRji

ä

+1
2log

⇣
det
⇣
Var

⇣≠æ
Y j,k, Xj,C,k, Xi,U,k

⌘⌘⌘
+2 log (2fie) . (G.11)

The outer bound on (G.11) depends on S1,i, S2,i, S3,i, S4,i, and S5,i via the parameter hji,U

in (G.1). Hence, as in the previous part, the following cases are identified:
Case 1: (S1,i ‚ S2,i ‚ S5,i). From (G.1), it follows that hji,U = 0. Therefore, plugging the

expressions (G.9) into (G.11) yields (6.7a).
Case 2: (S3,i ‚ S4,i). From (G.1), it follows that hji,U =

…
INRijINRji≠≠æSNRj

. Therefore, plugging
the expressions (G.9) into (G.11) yields (6.7b).

This completes the proof of (6.9e) and the proof of Theorem 6.2.1.
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— H —
Proof of Theorem 6.3.1

This appendix presents a proof of the Theorem 6.3.1. The gap, denoted by ”,
between the sets C and C (Definition 6) is approximated as follows:

”= max
Å

”R1 , ”R2 ,
”2R

2 ,
”3R1

3 ,
”3R2

3

ã
, (H.1)

where,

”R1=min
⇣
Ÿ1,1(flÕ), Ÿ2,1(flÕ), Ÿ3,1(flÕ)

⌘
≠ min

⇣
a2,1(fl), a6,1(fl, µ1) + a3,2(fl, µ1),

a1,1 + a3,2(fl, µ1) + a4,2(fl, µ1)
⌘
, (H.2a)

”R2=min
⇣
Ÿ1,2(flÕ), Ÿ2,2(flÕ), Ÿ3,2(flÕ)

⌘
≠ min

⇣
a2,2(fl), a3,1(fl, µ2) + a6,2(fl, µ2),

a3,1(fl, µ2) + a4,1(fl, µ2) + a1,2
⌘
, (H.2b)

”2R=min
⇣
Ÿ4(flÕ), Ÿ5(flÕ), Ÿ6(flÕ)

⌘
≠ min

⇣
a2,1(fl) + a1,2, a1,1 + a2,2(fl),

a3,1(fl, µ2) + a1,1 + a3,2(fl, µ1) + a7,2(fl, µ1, µ2),
a3,1(fl, µ2) + a5,1(fl, µ2) + a3,2(fl, µ1) + a5,2(fl, µ1),
a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + a3,2(fl, µ1) + a1,2

⌘
, (H.2c)

”3R1=Ÿ7,1(flÕ) ≠ min
⇣
a2,1(fl) + a1,1 + a3,2(fl, µ1) + a7,2(fl, µ1, µ2),

a3,1(fl, µ2) + a1,1 + a7,1(fl, µ1, µ2) + 2a3,2(fl, µ1) + a5,2(fl, µ1),
a2,1(fl) + a1,1 + a3,2(fl, µ1) + a5,2(fl, µ1)

⌘
, (H.2d)

”3R2=Ÿ7,2(flÕ) ≠ min
⇣
a3,1(fl, µ2) + a5,1(fl, µ2) + a2,2(fl) + a1,2,

a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + a2,2(fl) + a1,2,

2a3,1(fl, µ2) + a5,1(fl, µ2) + a3,2(fl, µ1) + a1,2 + a7,2(fl, µ1, µ2)
⌘
, (H.2e)
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where, fl
Õ œ [0, 1] and (fl, µ1, µ2) œ

î
0,
Ä
1 ≠ max

Ä 1
INR12

, 1
INR21

ää+ó◊ [0, 1] ◊ [0, 1].
Note that ”R1 and ”R2 represent the gap between the active achievable single-rate bound

and the active converse single-rate bound; ”2R represents the gap between the active achievable
sum-rate bound and the active converse sum-rate bound; and, ”3R1 and ”3R2 represent the
gap between the active achievable weighted sum-rate bound and the active converse weighted
sum-rate bound.

It is important to highlight that, as suggested in [28, 47, 80], the gap between C and C
can be calculated more precisely. However, the choice in (H.1) eases the calculations at the
expense of less precision. Note also that whether or not the bounds are active (achievable
or converse) in either of the equalities in (H.2) depend on the exact values of ≠≠æSNR1, ≠≠æSNR2,
INR12, INR21, Ω≠≠SNR1, and Ω≠≠SNR2. Hence, a key point in order to find the gap between the
achievable region and the converse region is to choose a convenient coding scheme parameters
for the achievable region, i.e., the values of fl, µ1, and µ2, according to the definitions in
(H.2) for all i œ {1, 2}. These particular coding scheme parameters are chosen such that the
expressions in (H.2) become simpler to upper bound at the expense of a looser outer bound.
These particular coding scheme parameters are di�erent for each interference regime. The
following describes all the key cases and the corresponding coding scheme parameters.

Case 1: INR12 >
≠≠æSNR1 and INR21 >

≠≠æSNR2. This case corresponds to the scenario in which
both transmitter-receiver pairs are in HIR. Three subcases follow considering the SNR in the
feedback links.

Case 1.1: Ω≠≠SNR2 6 ≠≠æSNR1 and Ω≠≠SNR1 6 ≠≠æSNR2. In this case the coding scheme has parameters:
fl = 0, µ1 = 0 and µ2 = 0.

Case 1.2: Ω≠≠SNR2 >
≠≠æSNR1 and Ω≠≠SNR1 >

≠≠æSNR2. In this case the coding scheme has parameters:
fl = 0, µ1 = 1, and µ2 = 1.

Case 1.3: Ω≠≠SNR2 6 ≠≠æSNR1 and Ω≠≠SNR1 >
≠≠æSNR2. In this case the coding scheme has parameters:

fl = 0, µ1 = 0, and µ2 = 1.
Case 2: INR12 6 ≠≠æSNR1 and INR21 6 ≠≠æSNR2. This case corresponds to the scenario in which

both transmitter-receiver pairs are in LIR. There are twelve subcases that must be studied
separately.

In the following four subcases, the achievability scheme presented above is used considering
the following parameters: fl = 0, µ1 = 0, and µ2 = 0.

Case 2.1: Ω≠≠SNR1 6 INR21, Ω≠≠SNR2 6 INR12, INR12INR21 >
≠≠æSNR1 and INR12INR21 >

≠≠æSNR2.
Case 2.2: Ω≠≠SNR1 6 INR21, Ω≠≠SNR2INR21 6 ≠≠æSNR2, INR12INR21 >

≠≠æSNR1 and INR12INR21 <≠≠æSNR2.
Case 2.3: Ω≠≠SNR1INR12 6 ≠≠æSNR1, Ω≠≠SNR2 6 INR12, INR12INR21 <

≠≠æSNR1 and INR12INR21 >≠≠æSNR2.
Case 2.4: Ω≠≠SNR1INR12 6 ≠≠æSNR1, Ω≠≠SNR2INR21 6 ≠≠æSNR2, INR12INR21 <

≠≠æSNR1 and
INR12INR21 <

≠≠æSNR2.
In the following four subcases, the achievability scheme presented above is used con-

sidering the following parameters: fl = 0, µ1 = INR2
21

Ω≠≠SNR2

(INR21 ≠ 1)
⇣
INR21

Ω≠≠SNR2 + ≠≠æSNR2
⌘ , and

µ2 = INR2
12

Ω≠≠SNR1

(INR12 ≠ 1)
⇣
INR12

Ω≠≠SNR1 + ≠≠æSNR1
⌘ .

Case 2.5: Ω≠≠SNR1 > INR21, Ω≠≠SNR2 > INR12, INR12INR21 >
≠≠æSNR1 and INR12INR21 >

≠≠æSNR2.
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Case 2.6: Ω≠≠SNR1 > INR21, Ω≠≠SNR2INR21 >
≠≠æSNR2, INR12INR21 >

≠≠æSNR1 and INR12INR21 <≠≠æSNR2.
Case 2.7: Ω≠≠SNR1INR12 >

≠≠æSNR1, Ω≠≠SNR2 > INR12, INR12INR21 <
≠≠æSNR1 and INR12INR21 >≠≠æSNR2.

Case 2.8: Ω≠≠SNR1INR12 >
≠≠æSNR1, Ω≠≠SNR2INR21 >

≠≠æSNR2, INR12INR21 <
≠≠æSNR1 and

INR12INR21 <
≠≠æSNR2.

In the following four subcases, the achievability scheme presented above is used considering

the following parameters: fl = 0, µ1 = 0, and µ2 = INR2
12

Ω≠≠SNR1

(INR12 ≠ 1)
⇣
INR12

Ω≠≠SNR1 + ≠≠æSNR1
⌘ .

Case 2.9: Ω≠≠SNR1 > INR21, Ω≠≠SNR2 6 INR12, INR12INR21 >
≠≠æSNR1 and INR12INR21 >

≠≠æSNR2.

Case 2.10: Ω≠≠SNR1 > INR21, Ω≠≠SNR2INR21 6 ≠≠æSNR2, INR12INR21 >
≠≠æSNR1 and INR12INR21 <≠≠æSNR2.

Case 2.11: Ω≠≠SNR1INR12 >
≠≠æSNR1, Ω≠≠SNR2 6 INR12, INR12INR21 <

≠≠æSNR1 and INR12INR21 >≠≠æSNR2.
Case 2.12: Ω≠≠SNR1INR12 >

≠≠æSNR1, Ω≠≠SNR2INR21 6 ≠≠æSNR2, INR12INR21 <
≠≠æSNR1 and

INR12INR21 <
≠≠æSNR2.

Case 3: INR12 >
≠≠æSNR1 and INR21 6 ≠≠æSNR2. This case corresponds to the scenario in which

transmitter-receiver pair 1 is in HIR and transmitter-receiver pair 2 is in LIR. There are four
subcases that must be studied separately.

In the following two subcases, the achievability scheme presented above is used considering
the following parameters: fl = 0, µ1 = 0, and µ2 = 0.

Case 3.1: Ω≠≠SNR2 6 INR12 and INR12INR21 >
≠≠æSNR2.

Case 3.2: Ω≠≠SNR2INR21 6 ≠≠æSNR2 and INR12INR21 <
≠≠æSNR2.

In the following two subcases, the achievability scheme presented above is used considering
the following parameters:: fl = 0, µ1 = 1, and µ2 = 0.

Case 3.3: Ω≠≠SNR2 > INR12 and INR12INR21 >
≠≠æSNR2.

Case 3.4: Ω≠≠SNR2INR21 >
≠≠æSNR2 and INR12INR21 <

≠≠æSNR2.
The following is the calculation of the gap ” in Case 1.1.

1. Calculation of ”R1 .

From (H.2a) and considering the corresponding coding scheme parameters for the
achievable region (fl = 0, µ1 = 0 and µ2 = 0), it follows that

”R16min
⇣
Ÿ1,1(flÕ), Ÿ2,1(flÕ), Ÿ3,1(flÕ)

⌘
≠ min

⇣
a6,1(0, 0), a1,1 + a4,2(0, 0)

⌘
, (H.3)

where the exact value of fl
Õ is chosen to provide at least an outer bound for (H.3).
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Note that in this case:

Ÿ1,1(flÕ)= 1
2 log

⇣
b1,1(flÕ) + 1

⌘

(a)
6 1

2 log
Å≠≠æSNR1 + 2

»≠≠æSNR1INR12 + INR12 + 1
ã

(b)
6 1

2 log
⇣
2≠≠æSNR1 + 2INR12 + 1

⌘

6 1
2 log

⇣≠≠æSNR1 + INR12 + 1
⌘

+ 1
2 , (H.4a)

Ÿ2,1(flÕ)= 1
2 log

�
1 + b4,1(flÕ) + b5,2(flÕ)

�

6 1
2 log

⇣≠≠æSNR1 + INR21 + 1
⌘

, (H.4b)

Ÿ3,1(flÕ)= 1
2 log

⇣
b4,1(flÕ) + 1

⌘
+ 1

2 log
 Ω≠≠SNR2 (b4,1(flÕ) + b5,2(flÕ) + 1)

(b1,2(1) + 1) (b4,1(flÕ) + 1) + 1
!

(c)
6 1

2 log
⇣≠≠æSNR1 + 1

⌘
+ 1

2 log

Ñ Ω≠≠SNR2
⇣≠≠æSNR1 + INR21 + 1

⌘

⇣≠≠æSNR2 + INR21 + 1
⌘ ⇣≠≠æSNR1 + 1

⌘ + 1

é

= 1
2 log

ÑΩ≠≠SNR2
⇣≠≠æSNR1 + INR21 + 1

⌘

≠≠æSNR2 + INR21 + 1
+ ≠≠æSNR1 + 1

é
, (H.4c)

where (a) follows from the fact that 0 6 fl
Õ 6 1; (b) follows from the fact that

Å»≠≠æSNR1 ≠
p

INR12

ã2
> 0; (H.5)

and (c) follows from the fact that Ÿ3,1(flÕ) is a monotonically decreasing function of fl
Õ.

Note also that the achievable bound a1,1 + a4,2(0, 0) can be lower bounded as follows:

a1,1+a4,2(0, 0)=1
2log

 ≠≠æSNR1
INR21

+2
!

+ 1
2 log

⇣
INR21+1

⌘
≠1

>1
2log

 ≠≠æSNR1
INR21

+2
!

+ 1
2log

⇣
INR21

⌘
≠1

=1
2 log

⇣≠≠æSNR1 + 2INR21
⌘

≠ 1

=1
2 log

⇣≠≠æSNR1 + INR21 + INR21
⌘

≠ 1

>1
2 log

⇣≠≠æSNR1 + INR21 + 1
⌘

≠ 1. (H.6)

From (H.3), (H.4) and (H.6), assuming that a1,1 + a4,2(0, 0) < a6,1(0, 0), it follows that

”R16min
⇣
Ÿ1,1(flÕ), Ÿ2,1(flÕ), Ÿ3,1(fl)

⌘
≠
⇣
a1,1 + a4,2(0, 0)

⌘

6Ÿ2,1(flÕ) ≠
⇣
a1,1 + a4,2(0, 0)

⌘

61. (H.7)
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Now, assuming that a6,1(0, 0) < a1,1 + a4,2(0, 0), the following holds:

”R16min
⇣
Ÿ1,1(flÕ), Ÿ2,1(flÕ), Ÿ3,1(fl)

⌘
≠ a6,1(0, 0). (H.8)

To calculate an upper bound for (H.8), the following cases are considered:

Case 1.1.1: ≠≠æSNR1 > INR21 ·
≠≠æSNR2 < INR12;

Case 1.1.2: ≠≠æSNR1 < INR21 ·
≠≠æSNR2 > INR12; and

Case 1.1.3: ≠≠æSNR1 < INR21 ·
≠≠æSNR2 < INR12.

In Case 1.1.1, from (H.4) and (H.8), it follows that

”R16Ÿ2,1(flÕ) ≠ a6,1(0, 0)

61
2 log

⇣≠≠æSNR1 + INR21 + 1
⌘

≠ 1
2 log

⇣≠≠æSNR1 + 2
⌘

+ 1
2

61
2 log

⇣≠≠æSNR1 + ≠≠æSNR1 + 1
⌘

≠ 1
2 log

⇣≠≠æSNR1 + 2
⌘

+ 1
2

61. (H.9)

In Case 1.1.2, from (H.4) and (H.8), it follows that

”R16Ÿ3,1(flÕ) ≠ a6,1(0, 0)

61
2 log

ÑΩ≠≠SNR2
⇣≠≠æSNR1+INR21+1

⌘

≠≠æSNR2 + INR21 + 1
+≠≠æSNR1+1

é
≠ 1

2 log
⇣≠≠æSNR1 + 2

⌘
+ 1

2

61
2 log
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⌘

≠ 1
2 log
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⌘

+ 1
2

61
2 log
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⌘

≠ 1
2 log

⇣≠≠æSNR1 + 2
⌘

+ 1
2

61. (H.10)

In Case 1.1.3 two additional cases are considered:

Case 1.1.3.1: ≠≠æSNR1 > ≠≠æSNR2; and

Case 1.1.3.2: ≠≠æSNR1 <
≠≠æSNR2.

In Case 1.1.3.1, from (H.4) and (H.8), it follows that

”R16Ÿ3,1(flÕ) ≠ a6,1(0, 0)

61
2 log

ÑΩ≠≠SNR2
⇣≠≠æSNR1+INR21+1

⌘

≠≠æSNR2 + INR21 + 1
+≠≠æSNR1+1

é
≠ 1

2 log
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⌘
+ 1

2

=1
2 log
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⌘

+ 1
2 log
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⇣≠≠æSNR1 + INR21 + 1

⌘

⇣≠≠æSNR2+INR21+1
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⌘+1

é
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2 log

⇣≠≠æSNR1 + 2
⌘

+ 1
2

139



H. Proof of Theorem 6.3.1

61
2 log

 ≠≠æSNR1 (INR21 + INR21 + INR21)
INR21
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2 . (H.11)

In Case 1.1.3.2, from (H.4) and (H.8), it follows that

”R16Ÿ3,1(flÕ) ≠ a6,1(0, 0)
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61. (H.12)

Then, from (H.7), (H.9), (H.10), (H.11), and (H.12), it follows that in Case 1.1:

”R16
3
2 . (H.13)

The same procedure holds to calculate ”R2 and it yields:

”R26
3
2 . (H.14)

2. Calculation of ”2R. From (H.2c) and considering the corresponding coding scheme
parameters for the achievable region (fl = 0, µ1 = 0 and µ2 = 0), it follows that

”2R6min
⇣
Ÿ4(flÕ), Ÿ5(flÕ), Ÿ6(flÕ)

⌘
≠min

⇣
a2,1(0)+a1,2, a1,1+a2,2(0), a5,1(0, 0)+a5,2(0, 0)

⌘

6min
⇣
Ÿ4(flÕ), Ÿ5(flÕ)

⌘
≠ min

⇣
a2,1(0) + a1,2, a1,1 + a2,2(0), a5,1(0, 0) + a5,2(0, 0)

⌘
.

(H.15)

Note that

Ÿ4(flÕ)= 1
2 log
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Ç
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Ç
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where (h) follows from the fact that
Å»≠≠æSNR2 ≠

p
INR21

ã2
> 0; (H.17)

and (i) follows from the fact that
Å»≠≠æSNR1 ≠

p
INR12

ã2
> 0. (H.18)

From (H.15) and (H.16), assuming that a2,1(0) + a1,2 < min
⇣
a1,1 + a2,2(0), a5,1(0, 0) +

a5,2(0, 0)
⌘
, it follows that

”2R6min
⇣
Ÿ4(flÕ), Ÿ5(flÕ)

⌘
≠
⇣
a2,1(0) + a1,2

⌘

6Ÿ5(flÕ) ≠
⇣
a2,1(0) + a1,2

⌘
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!

+ 1

=3
2 . (H.19)

From (H.15) and (H.16), assuming that a1,1 + a2,2(0) < min
⇣
a2,1(0) + a1,2, a5,1(0, 0) +

a5,2(0, 0)
⌘
, it follows that

”2R6min
⇣
Ÿ4(flÕ), Ÿ5(flÕ)

⌘
≠
⇣
a1,1 + a2,2(0)

⌘
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6Ÿ4(flÕ) ≠
⇣
a1,1 + a2,2(0)

⌘
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2 . (H.20)

Now, assume that a5,1(0, 0) + a5,2(0, 0) < min(a2,1(0) + a1,2, a1,1 + a2,2(0)). In this case,
the following holds:

”2R6min
⇣
Ÿ4(flÕ), Ÿ5(flÕ)

⌘
≠
⇣
a5,1(0, 0)+a5,2(0, 0)

⌘
. (H.21)

To calculate an upper bound for (H.21), the cases 1.1.1 - 1.1.3 defined above are analyzed
hereunder.

In Case 1.1.1, a5,1(0, 0) + a5,2(0, 0) can be lower bounded as follows:

a5,1(0, 0) + a5,2(0, 0)=1
2log

 ≠≠æSNR1
INR21

+INR12+1
!

+ 1
2log

 ≠≠æSNR2
INR12

+INR21+1
!

≠1

>1
2 log (INR12 + 1) ≠ 1. (H.22)

From (H.16), (H.21), and (H.22), it follows that

”2R6min
⇣
Ÿ4(flÕ), Ÿ5(flÕ)

⌘
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61
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2
61

2 log (3) + 2. (H.23)

In Case 1.1.2, a5,1(0, 0) + a5,2(0, 0) can be lower bounded as follows:

a5,1(0, 0)+a5,2(0, 0)=1
2log
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INR21

+INR12+1
!

+ 1
2log

 ≠≠æSNR2
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!
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>1
2 log (INR21 + 1) ≠ 1. (H.24)
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From (H.16), (H.21), and (H.24), it follows that
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61

2 log (3) + 2. (H.25)

In Case 1.1.3, from (H.16), (H.21), and (H.22), it follows that
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≠
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61

2 log (3) + 2. (H.26)

Then, from (H.19), (H.20), (H.23), (H.25), and (H.26), it follows that in Case 1.1:

”2R62 + 1
2 log (3) . (H.27)

3. Calculation of ”3R1 . From (H.2d) and considering the corresponding coding scheme
parameters for the achievable region (fl = 0, µ1 = 0 and µ2 = 0), it follows that

”3R16Ÿ7,1(flÕ) ≠
⇣
a1,1 + a7,1(0, 0, 0) + a5,2(0, 0)

⌘
. (H.28)

The sum a1,1 + a7,1(0, 0, 0) + a5,2(0, 0) can be lower bounded as follows:

a1,1 + a7,1(0, 0, 0) + a5,2(0, 0)=1
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If the term Ÿ7,1(flÕ) is active in the converse region, this can be upper bounded by the
sum Ÿ1,1(flÕ) + Ÿ4(flÕ), which corresponds to the sum of the single rate and sum-rate outer
bounds respectively, and this can be upper bounded as follows:

Ÿ7,1(flÕ)6Ÿ1,1(flÕ) + Ÿ4(flÕ)
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From (H.28), (H.29) and (H.30), it follows that in Case 1.1:

”3R16
1
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!
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!
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≠ 1
2 log (INR21 + 1) + 3

2
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The same procedure holds in the calculation of ”3R2 and it yields:

”3R263. (H.32)

Therefore, in Case 1.1, from (H.1), (H.14), (H.13), (H.27), (H.31) and (H.32) it follows
that

”=max
Å

”R1 , ”R2 ,
”2R

2 ,
”3R1

3 ,
”3R2

3

ã
6 3

2 . (H.33)

This completes the calculation of the gap in Case 1.1. Applying the same procedure to all
the other cases listed above yields that ” 6 4.4 bits.
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— I —
Proof of Theorem 7.1.1
To prove Theorem 7.1.1, the first step is to show that a rate pair (R1, R2) œ R2

+,
with Ri < Li or Ri > Ui for at least one i œ {1, 2}, is not achievable at an ÷-NE
for all ÷ > 0. That is,

N÷ ™ C fl B÷. (I.1)

The second step is to show that any point in C fl B÷ can be achievable at an ÷-NE for all ÷ > 0.
That is,

N÷ ´ C fl B÷. (I.2)
This proves Theorem 7.1.1.

Proof of (I.1): The proof of (I.1) is completed by the following lemmas.

Lemma 22. A rate pair (R1, R2) œ C, with either R1 < L1 or R2 < L2 is not achievable at
an ÷-NE for all ÷ > 0.

Proof: Let (sú
1, s

ú
2) œ A1 ◊ A2 be an ÷-NE transmit-receive configuration pair such that

u1 (sú
1, s

ú
2) = R1 and u2 (sú

1, s
ú
2) = R2, respectively. Assume, without loss of generality, that

R1 < L1. Let s
Õ
1 œ A1 be a transmit receive configuration in which transmitter 1 uses its

(≠æn 11 ≠ n12)+ most significant bit-pipes, which are interference free, to transmit new bits at
each channel use n. Hence, it achieves a rate R1 (sÕ

1, s
ú
2) > (≠æn 11 ≠ n12)+ and thus, a utility

improvement of at least ÷ bits per channel use is always possible, i.e., R1 (sÕ
1, s

ú
2) ≠ R1 > ÷,

independently of the current transmit-receive configuration s
ú
2 of user 2. This implies that

the transmit-receive configuration pair (sú
1, s

ú
2) is not an ÷-NE, which contradicts the initial

assumption. This proves that if (sú
1, s

ú
2) is an ÷-NE, then R1 > L1 and R2 > L2. This

completes the proof.

Lemma 23. A rate pair (R1, R2) œ C, with either R1 > U1 or R2 > U2 is not achievable at
an ÷-NE for all ÷ > 0.
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Proof: Let (sú
1, s

ú
2) œ A1 ◊ A2 be an ÷-NE transmit-receive configuration pair such that

u1 (sú
1, s

ú
2) = R1 and u2 (sú

1, s
ú
2) = R2, respectively. Hence, the following holds for transmitter-

receiver i:

N Ri =H (Wi)
(a)=H (Wi|�i)
(b)
6I

⇣
Wi;

≠æ
Y i|�i

⌘
+ N”i(N), (I.3)

where, (a) follows from the independence between the indices Wi and �i; and (b) follows
from Fano’s inequality, as the rate Ri is achievable from the assumptions of the lemma, with
”i : N æ R+ a positive monotonically decreasing function for all i œ {1, 2} (Lemma 58). In
particular, for transmitter-receiver pair 1 in (I.3), the following holds:

N R1
(c)
6N max (≠æn 11, n12) ≠

NX

n=1
H

⇣≠æ
Y 1,n|�1, W1,

≠æ
Y 1,(1:n≠1)

⌘
+ N”1(N), (I.4)

where, (c) follows from H

⇣≠æ
Y 1,n|�1,

≠æ
Y 1,(1:n≠1)

⌘
6 H

⇣≠æ
Y 1,n

⌘
6 max (≠æn 11, n12), for all n œ

{1, 2, . . . , N}. Note that X1,n = f
(N)
1,n

⇣
W1, �1,

Ω≠
Y 1,(1:n≠1)

⌘
from the definition of the encoding

function in (??). Moreover, for all n œ {1, 2, . . . , N}, the channel input Xi,n can be written as

Xi,n = (Xi,C,n, Xi,D,n, Xi,P,n, Xi,Q,n) , (I.5)

where for all i œ {1, 2}, the vector Xi,C,n represents the bits of Xi,n that are observed by both
receivers, i.e.,

dim Xi,C,n=min (≠æn ii, nji) ; (I.6)

the vector Xi,P,n represents the bits of Xi,n that are exclusively observed by receiver i, i.e.,

dim Xi,P,n=(≠æn ii ≠ nji)+; (I.7)

the vector Xi,D,n represents the bits of Xi,n that are exclusively observed at receiver j, i.e.,

dim Xi,D,n=(nji ≠ ≠æ
n ii)+; (I.8)

finally, Xi,Q,n = (0, . . . , 0)T is included for dimensional matching of the model in (2.26), i.e.,

dim Xi,Q,n=q ≠ max (≠æn ii, nji) . (I.9)

Using this notation, the following holds from (I.4):

R16max (≠æn 11, n12) ≠ 1
N

NX

n=1
H

⇣
X2,C,n, X2,D,n|�1, W1,

≠æ
Y 1,(1:n≠1)

⌘
+ ”1(N) (I.10)

=max (≠æn 11, n12) ≠ H

ÄfX2,C,n,fX2,D,n

ä
+ ”1(N), for any n œ {1, 2, . . . , N}

(I.11)
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where fX2,C =
ÄfX2,C,1,fX2,C,2, . . . ,fX2,C,N

ä
and fX2,D =

ÄfX2,D,1,fX2,D,2, . . . ,fX2,D,N

ä
; and

for all n œ {1, 2, . . . , N}, fX2,C,n and fX2,D,n are respectively the bits in X2,C,n and X2,D,n

that are independent of W1, �1, and ≠æ
Y 1,(1:n≠1). That is, the bits other than those depending

on bits previously transmitted by transmitter 1. The inequality in (I.11) follows from the
signal construction in (2.25).

For all i œ {1, 2}, let Xi,C,n =
Ä
XT

i,C1,n, XT
i,C2,n

äT be such that Xi,C1,n satisfies:

dim Xi,C1,n =
 

min
Ä
(≠æn ii≠nij)+

,nji

ä
≠
Ç

min
Ä
(≠æn ii≠nji)+

,nij

ä
≠(max (≠æn ii, nij)≠Ω≠

n ii)+
å+!+

.

(I.12)

The dimension of Xi,C1,n is chosen as the non-negative di�erence between two values: (a)
All the bits in Xi,C,n that are observed at both receivers and the observation at receiver i

is interference-free, i.e., min
Ä
(≠æn ii ≠ nij)+

, nji

ä
; and (b) the number of bits in Xi,n that are

only observed at receiver i, interfered by transmitter j, and can be sent via feedback from

receiver i to transmitter i, i.e.,
Ç

min
Ä
(≠æn ii ≠ nji)+

, nij

ä
≠ (max (≠æn ii, nij) ≠ Ω≠

n ii)+
å+

. The
vector Xi,C2,n contains the bits in Xi,C,n that are not in Xi,C1,n. That is,

dim Xi,C2,n = min (≠æn ii, nji) ≠ dim Xi,C1,n. (I.13)

For i = 2, Xi,C1,n satisfies:

dim X2,C1,n =
 

min
Ä
(≠æn 22≠n21)+

,n12
ä
≠
Ç

min
Ä
(≠æn 22≠n12)+

,n21
ä
≠(max (≠æn 22, n21)≠Ω≠

n 22)+
å+!+

.

(I.14)

Consider a set of events (Boolean variables) that are determined by the parameters
≠æ
n 11,

≠æ
n 22, n12, n21, and Ω≠

n 22. Given a fixed tuple (≠æn 11, ≠æ
n 22, n12, n21,

Ω≠
n 2), the events

are defined below:

C1,2 : n21 <
≠æ
n 22 6 n12, (I.15a)

C2,2 : max (n12, n21,
Ω≠
n 22) <

≠æ
n 22 < n12 + n21, (I.15b)

C3,2 : Ω≠
n 22 6 n12, (I.15c)

C4,2 : n21 < n12 <
≠æ
n 22 6 Ω≠

n 22, (I.15d)
C5,2 : ≠æ

n 22 > max (n12, n21,
Ω≠
n 22) , (I.15e)

C6,2 : ≠æ
n 22 > max (n12 + n21,

Ω≠
n 22 + n21) , (I.15f)

C7,2 : max (n12, n21,
Ω≠
n 22,

Ω≠
n 22 + n21 ≠ n12) <

≠æ
n 22 <

Ω≠
n 22 + n21 6 Ω≠

n 22 + ≠æ
n 22 ≠ n12,

(I.15g)
C8,2 : max (n12, n21,

Ω≠
n 22,

Ω≠
n 22 + n21 ≠ n12) <

≠æ
n 22 < n12 + n21 <

Ω≠
n 22 + n21. (I.15h)
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Then, the following holds:

dim X2,C1,n =

8
>>>>>><

>>>>>>:

≠æ
n 22 ≠ n21 if C1,2 ‚

⇣
C2,2 · C3,2

⌘
holds true

n12 ≠ n21 if C4,2 holds true
n12 if C5,2 · C6,2 holds true

≠æ
n 22 + n12 ≠ Ω≠

n 22 ≠ n21 if C7,2 ‚ C8,2 holds true
0 otherwise.

(I.16)

The following step is to obtain a lower bound for H

ÄfX2,C,n,fX2,D,n

ä
at an ÷-NE. From

(I.3) the following inequality holds for transmitter-receiver pair 2:

N R26I

⇣
W2; ≠æ

Y 2|�2
⌘

+ N”2(N)

=
NX

n=1

⇣
H

⇣≠æ
Y 2,n|�1,

≠æ
Y 2,(1:n≠1)

⌘
≠ H

⇣≠æ
Y 2,n|W2, �1,

≠æ
Y 2,(1:n≠1)

⌘ ⌘
+ N”2(N)

6
NX

n=1

⇣
H

⇣≠æ
Y 2,n

⌘
≠ H

⇣≠æ
Y 2,n|W2, �2,

≠æ
Y 2,(1:n≠1)

⌘ ⌘
+ N”2(N)

(d)=
NX

n=1

⇣
H

⇣≠æ
Y 2,n

⌘
≠ H

⇣≠æ
Y 2,n|X2,n

⌘ ⌘
+ N”2(N)

=
NX

n=1
I

⇣≠æ
Y 2,n; X2,n

⌘
+ N”2(N)

=
NX

n=1
I

⇣≠æ
Y 2,n; X2,C1,n, X2,C2,n, X2,P,n, X2,D,n

⌘
+ N”2(N)

=
NX

n=1

 

I

⇣≠æ
Y 2,n; X2,C2,n, X2,P,n, X2,D,n

⌘

+I

⇣≠æ
Y 2,n; X2,C1,n|X2,C2,n, X2,P,n, X2,D,n

⌘!

+ N”2(N)

=
NX

n=1

 

I

⇣≠æ
Y 2,n; X2,C2,n, X2,P,n, X2,D,n

⌘
+ H (X2,C1,n|X2,C2,n, X2,P,n, X2,D,n)

!

+N”2(N)

=
NX

n=1

 

I

⇣≠æ
Y 2,n; X2,C2,n, X2,P,n, X2,D,n

⌘
+ H (X2,C1,n)

!

+ N”2(N), (I.17)

where, (d) follows from the fact that Xi,n = f
(N)
i,n

⇣
Wi, �i,

Ω≠
Y i,(1:n≠1)

⌘
from the definition of

the encoding function and Wi, �i,
Ω≠
Y i,(1:n≠1) æ Xi,n æ ≠æ

Y i,n.
Let Ï : N æ R+ be a monotonically decreasing function such that (I.17) holds with equality,

i.e., ,
It holds from (I.17) that

R2=I

⇣≠æ
Y 2,n; X2,C2,n, X2,P,n, X2,D,n

⌘
+ H (X2,C1,n) + Ï(N). (I.18)

Assume now that there exists another transmit-receive configuration for receiver-transmitter
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pair 2 and denote it by s
Õ
2. Assume also that using s

Õ
2, for all n œ {1, 2, . . . , N}, transmitter-

receiver pair 2 continues to generate the symbols X2,C2,n, X2,P,n, and X2,D,n as with the
equilibrium transmit-receive configuration s

ú
2. Alternatively, for all n œ {1, 2, . . . , N}, the bits

X2,C1,n are generated at maximum entropy and independently of any other symbol previously
transmitted by any transmitter. More specifically, the bits X2,C1,n are used to send new
information bits at each channel use n, i.e.,

R2(sú
1, s

Õ
2)6I

⇣
X2,C2,n, X2,P,n; ≠æ

Y 2,n

⌘
+ dim X2,C1,n + ”

Õ
2(N), (I.19)

with ”
Õ
2 : N æ R+ a positive monotonically decreasing function. From Definition 4, it follows

that R2(sú
1, s

Õ
2) ≠ R2 6 ÷. Hence, from (I.18) and (I.19), it follows that

H

Ä
X2,C1,n

ä
>dim X2,C1,n ≠ ÷ ≠ Ï(N) + ”

Õ
2(N). (I.20)

Note that for a finite N , (I.20) can be satisfied only if ÷ > ≠Ï(N) + ”
Õ
2(N). This suggests

that in the block-length asymptotic regime and ÷ arbitrarily small at an ÷-NE, the bits X2,C1,n

are used at maximum entropy. Note also that from the definition of fX2,C,n, it follows that
the bits X2,C1,n are contained into fX2,C,n and thus, it follows that

H

ÄfX2,C,n,fX2,D,n

ä
>H

ÄfX2,C,n

ä

>H (X2,C1,n)
>dim X2,C1,n ≠ ÷ ≠ Ï(N) + ”

Õ
2(N). (I.21)

Plugging (I.12) and (I.21) into (I.11), it follows that at an ÷-NE,

R16max (≠æn 11, n12)

≠
 

min
Ä
(≠æn 22≠n21)+

,n12
ä
≠
Ç

min
Ä
(≠æn 22≠n12)+

,n21
ä
≠(max (≠æn 22,n21)≠Ω≠

n 22)+
å+!+

+÷ + Ï(N) ≠ ”
Õ
2(N), (I.22)

which proves, in the block-length asymptotic regime and for all ÷ > 0, that

U16max (≠æn 11, n12)

≠
 

min
Ä
(≠æn 22≠n21)+

,n12
ä
≠
Ç

min
Ä
(≠æn 22≠n12)+

,n21
ä
≠(max (≠æn 22,n21)≠Ω≠

n 22)+
å+!+

+ ÷,

and this completes the proof of Lemma 23.

Proof of (I.2): To continue with the second part of the proof of Theorem 7.1.1, consider a
modification of the coding scheme with noisy feedback presented in the centralized part (Part
II). The novelty consists in allowing users to introduce common randomness as suggested in
[13, 60].

Consider without any loss of generality that N = N1 = N2. Let W
(t)
i

œ {1, 2, . . . , 2NRi}
and �(t)

i
œ {1, 2, . . . , 2NRi,R} denote the message index and the random message index sent
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I. Proof of Theorem 7.1.1

by transmitter i during the t-th block, with t œ {1, 2, . . . , T}, respectively. Following a rate-
splitting argument, assume that

⇣
W

(t)
i

, �(t)
i

⌘
is represented by the indices

⇣
W

(t)
i,C1, �(t)

i,R1, W
(t)
i,C2,

�(t)
i,R2, W

(t)
i,P

⌘
œ {1, 2, . . . , 2NRi,C1}◊{1, 2, . . . , 2NRi,R1}◊{1, 2, . . . , 2NRi,C2}◊{1, 2, . . . , 2NRi,R2}◊

{1, 2, . . . , 2NRi,P }, where Ri = Ri,C1 + Ri,C2 + Ri,P and Ri,R = Ri,R1 + Ri,R2. The rate Ri,R

is the number of transmitted bits that are known by both transmitter i and receiver i per
channel use, and thus it does not have an impact on the information rate Ri.

The codeword generation follows a four-level superposition coding scheme. The indices
W

(t≠1)
i,C1 and �(t≠1)

i,R1 are assumed to be decoded at transmitter j via the feedback link of
transmitter-receiver pair j at the end of the transmission of block t ≠ 1. Therefore, at
the beginning of block t, each transmitter possesses the knowledge of the indices W

(t≠1)
1,C1 ,

�(t≠1)
1,R1 , W

(t≠1)
2,C1 and �(t≠1)

2,R1 . In the case of the first block t = 1, the indices W
(0)
1,C1, �(0)

1,R1,
W

(0)
2,C1 and �(0)

1,R2 are assumed to be known by all transmitters and receivers. Using these
indices, both transmitters are able to identify the same codeword in the first code-layer.
This first code-layer, which is common for both transmitter-receiver pairs, is a sub-codebook
of 2N(R1,C1+R2,C1+R1,R1+R2,R1) codewords. Denote by u

⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1 , W
(t≠1)
2,C1 , �(t≠1)

2,R1
⌘

the
corresponding codeword in the first code-layer. The second codeword is chosen by transmitter
i using

⇣
W

(t)
i,C1, �(t)

i,R1
⌘

from the second code-layer, which is a sub-codebook of 2N(Ri,C1+Ri,R1)

codewords corresponding to the codeword u
⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1 , W
(t≠1)
2,C1 , �(t≠1)

2,R1
⌘
. Denote by

ui

⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1 , W
(t≠1)
2,C1 , �(t≠1)

2,R1 , W
(t)
i,C1, �(t)

i,R1
⌘

the corresponding codeword in the second
code-layer. The third codeword is chosen by transmitter i using

⇣
W

(t)
i,C2, �(t)

i,R2
⌘

from the
third code-layer, which is a sub-codebook of 2N(Ri,C2+Ri,R2) codewords corresponding to
the codeword ui

⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1 , W
(t≠1)
2,C1 , �(t≠1)

2,R1 , W
(t)
i,C1, �(t)

i,R1
⌘
. Denote by vi

⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1 ,

W
(t≠1)
2,C1 , �(t≠1)

2,R1 , W
(t)
i,C1, �(t)

i,R1, W
(t)
i,C2, �(t)

i,R2
⌘

the corresponding codeword in the third code-layer.
The fourth codeword is chosen by transmitter i using W

(t)
i,P

from the fourth code-layer, which
is a sub-codebook of 2N Ri,P codewords corresponding to the codeword vi

⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1 ,

W
(t≠1)
2,C1 , �(t≠1)

2,R1 , W
(t)
i,C1, �(t)

i,R1, W
(t)
i,C2, �(t)

i,R2
⌘
. Denote by xi,P

⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1 , W
(t≠1)
2,C1 , �(t≠1)

2,R1 ,

W
(t)
i,C1, �(t)

i,R1, W
(t)
i,C2, �(t)

i,R2, W
(t)
i,P

⌘
the corresponding codeword in the fourth code-layer. Fi-

nally, the codeword xi

⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1 , W
(t≠1)
2,C1 , �(t≠1)

2,R1 , W
(t)
i,C1, �(t)

i,R1, W
(t)
i,C2, �(t)

i,R2, W
(t)
i,P

⌘
to be

sent during block t œ {1, 2, . . . , T} is a simple concatenation of the previous codewords, i.e.,
xi =

Ä
uT

i
, vT

i
, xT

i,P

äT œ {0, 1}q◊N , where the message indices have been dropped for ease of
notation.

The decoder follows a backward decoding scheme. In the following, this coding scheme is
referred to as a randomized Han-Kobayashi coding scheme with noisy feedback (RHK-NOF).
This coding/decoding scheme is thoroughly described in Appendix M.

The proof of (I.2) uses the following results:
Lemma 24 proves that the RHK-NOF achieves all the rate pairs (R1, R2) œ C; Lemma 25

provides the maximum rate improvement that a transmitter-receiver pair can obtain when it
deviates from the RHK-NOF coding scheme; Lemma 26 proves that when the rates of the
random components R1,R1, R1,R2, R2,R1, and R2,R2 are properly chosen, the RHK-NOF is an
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÷-NE for all ÷ > 0; and Lemma 27 shows that for all rate pairs in C fl B÷ there always exists a
RHK-NOF that is an ÷-NE and achieves such a rate pair.

This verifies that N÷ ´ C fl B÷ and completes the proof of (I.2).

Lemma 24. The achievable region of the randomized Han-Kobayashi coding scheme for the
two-user D-LDIC-NOF is the set of rates

⇣
R1,C1, R1,R1, R1,C2, R1,R2, R1,P , R2,C1, R2,R1,

R2,C2, R2,R2, R2,P

⌘
œ R10

+ that for all i œ {1, 2} and j œ {1, 2} \ {i} satisfy the following
conditions:

Rj,C1 + Rj,R16◊1,i, (I.23a)
Ri + Rj,C + Rj,R6◊2,i, (I.23b)

Rj,C2 + Rj,R26◊3,i, (I.23c)
Ri,P6◊4,i, (I.23d)

Ri,P + Rj,C2 + Rj,R26◊5,i, (I.23e)
Ri,C2 + Ri,P6◊6,i, and (I.23f)

Ri,C2 + Ri,P + Rj,C2 + Rj,R26◊7,i, (I.23g)

where,

◊1,i=
Ä
nij ≠ (max (≠æn ii, nij) ≠ Ω≠

n ii)+ä+
, (I.24a)

◊2,i=max (≠æn ii, nij) , (I.24b)
◊3,i=min

Ä
nij , (max (≠æn ii, nij) ≠ Ω≠

n ii)+ä
, (I.24c)

◊4,i=(≠æn ii ≠ nji)+
, (I.24d)

◊5,i=max
⇣

(≠æn ii ≠ nji)+
, min

Ä
nij , (max (≠æn ii, nij) ≠ Ω≠

n ii)+ä ⌘
, (I.24e)

◊6,i=min
Ä
nji, (max (≠æn jj , nji) ≠ Ω≠

n jj)+ä≠ min
Ä

(nji ≠ ≠æ
n ii)+

, (max (≠æn jj , nji) ≠ Ω≠
n jj)+ ä

+ (≠æn ii ≠ nji)+
, and (I.24f)

◊7,i=max
Ä

min
Ä
nij , (max (≠æn ii, nij) ≠ Ω≠

n ii)+ ä
, min

Ä
nji, (max (≠æn jj , nji) ≠ Ω≠

n jj)+ ä

≠ min
Ä

(nji ≠ ≠æ
n ii)+

, (max (≠æn jj , nji) ≠ Ω≠
n jj)+ ä+ (≠æn ii ≠ nji)+ ä

. (I.24g)

Proof: The proof of Lemma 24 is presented in Appendix M.
The set of inequalities in (I.23) can be written in terms of the transmission rates R1 =

R1,C1+R1,C2+R1,P , R2 = R2,C1+R2,C2+R2,P , R1,R = R1,R1+R1,R2 and R2,R = R2,R1+R2,R2.
When R1,R = R2,R = 0, the region characterized by (I.23) in terms of R1 and R2, corresponds
to the region C (Theorem 5.1.1). Therefore, the relevance of Lemma 24 relies on the implication
that any rate pair (R1, R2) œ C is achievable by the RHK-NOF, under the assumption that the
random common rates R1,R1, R1,R2, R2,R1, and R2,R2 are chosen accordingly to the conditions
in (I.23).

The following lemma shows than when both transmitter-receiver links use the RHK-NOF
and one of them unilaterally changes its coding scheme, it obtains a rate improvement that
can be upper bounded.

Lemma 25. Let the rate tuple R = (R1,C , R1,R, R1,P , R2,C , R2,R, R2,P ) be achievable with the
RHK-NOF such that R1 = R1,P + R1,C and R2 = R2,P + R2,C . Then, any unilateral deviation
of transmitter-receiver pair i by using any other coding scheme leads to a transmission rate R

Õ
i
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that satisfies:

R
Õ
i6max (≠æn ii, nij) ≠ (Rj,C + Rj,R). (I.25)

Proof: Without loss of generality, let i = 1 be the deviating user in the following analysis.
After the deviation, the new coding scheme used by transmitter 1 can be of any type. Indeed,
with such a new coding scheme, the deviating transmitter might or might not use feedback to
generate its codewords. It can also use or not random symbols and it might possibly have
a di�erent block-length N

Õ
1 ”= N1. Let ≠æ

Y Õ
1 =

⇣≠æ
Y ÕT

1,1,
≠æ
Y ÕT

1,2, . . . ,
≠æ
Y ÕT

1,N

⌘T
be the super vector of

channel outputs at receiver 1 during N = max(N Õ
1, N2) consecutive channel uses in the model

in (2.25). Hence, an upper bound for R
Õ
1 is obtained from the following inequalities:

NR
Õ
1 =H (W1)
=H (W1|�1)
=I

⇣
W1; ≠æ

Y Õ
1|�1

⌘
+ H

⇣
W1|≠æY Õ

1, �1
⌘

(a)
6I

⇣
W1; ≠æ

Y Õ
1|�1

⌘
+ N”1(N)

=H

⇣≠æ
Y Õ

1|�1
⌘

≠ H

⇣≠æ
Y Õ

1|W1, �1
⌘

+ N”1(N)
(b)
6N max (≠æn 11, n12) ≠ H

⇣≠æ
Y Õ

1|W1, �1
⌘

+ N”1(N),
(I.26)

where, (a) follows from Fano’s inequality, as the rate R
Õ
1 is achievable as the indice W1 can be

reliably decoded by receiver 1 using the signals ≠æ
Y

Õ
1 and �1 from the assumptions of the lemma

with ”1 : N æ R+ a positive monotonically decreasing function (Lemma 58); and (b) follows
from H(≠æY Õ

1|�1) 6 N dim ≠æ
Y Õ

1,n
= N max (≠æn 11, n12), for all n œ {1, 2, . . . , N}. To refine this

upper bound, the term H

⇣≠æ
Y Õ

1|W1, �1
⌘

in (I.26) can be lower bounded as follows:

N (R2,C + R2,R)=H(W2,C , �2)
(c)=H(W2,C , �2|W1, �1)
=I(W2,C , �2; ≠æ

Y Õ
1|W1, �1) + H(W2,C , �2|W1, �1,

≠æ
Y Õ

1)
(d)
6I(W2,C , �2; ≠æ

Y Õ
1|W1, �1) + N”2(N)

=H(≠æY Õ
1|W1, �1) ≠ H(≠æY Õ

1|W1, �1, W2,C , �2) + N”2(N)
6H(≠æY Õ

1|W1, �1) + N”2(N), (I.27)

where (c) follows from the mutual independence between W2,C , �2, W1 and �1; and (d) follows
from Fano’s inequality as the indices W2,C and �2 can be reliably decoded by receiver 1 using
the signals ≠æ

Y Õ
1 from the assumptions of the lemma with ”2 : N æ R+ a positive monotonically

decreasing function (Lemma 58). Hence, it follows from (I.27) that

H(≠æY Õ
1|W1, �1)>N (R2,C + R2,R) ≠ N”2(N). (I.28)

Finally, plugging (I.28) into (I.26) yields, in the block-length asymptotic regime, the following
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upper bound:

R
Õ
16max (≠æn 11, n12) ≠ (R2,C + R2,R). (I.29)

The same can be proved for the other transmitter-receiver pair. This completes the proof.
Lemma 25 reveals the relevance of the random symbols �1 and �2 used by the RHK-

NOF. Even though the random symbols used by transmitter j do not increase the e�ective
transmission rate of transmitter-receiver pair j, they strongly limit the rate improvement
transmitter-receiver pair i can obtain by deviating from the RHK-NOF coding scheme. This
observation can be used to show that the RHK-NOF can be an ÷-NE, when both R1,R and
R2,R are properly chosen. For instance, for any achievable rate pair (R1, R2) œ C fl B÷, there
exists a RHK-NOF that achieves the rate tuple R = (R1,C , R1,R, R1,P , R2,C , R2,R, R2,P ), with
Ri = Ri,P + Ri,C . Denote by R

Õ
i,max = max (≠æn ii, nij) ≠ (Rj,C + Rj,R) the maximum rate

transmitter-receiver pair i can obtain by unilaterally deviating from its RHK-NOF. Then,
when the rates R1,R and R2,R are chosen such that R

Õ
i,max ≠Ri 6 ÷, any improvement obtained

by either transmitter deviating from its RHK-NOF is bounded by ÷. The following lemma
formalizes this observation.

Lemma 26. Let ÷ > 0 be fixed and let the rate tuple R = (R1,C , R1,R, R1,P , R2,C , R2,R, R2,P )
be achievable with the RHK-NOF and satisfy for all i œ {1, 2},

Ri,C + Ri,P + Rj,C + Rj,R=max(≠æn ii, nij) ≠ ÷. (I.30)

Then, the rate pair (R1, R2) œ R2
+, with Ri = Ri,C + Ri,P is achievable at an ÷-NE.

Proof: Let (sú
1, s

ú
2) œ A1 ◊ A2 be a transmit-receive configuration pair, in which the

configuration s
ú
i

is a RHK-NOF satisfying condition (I.30). From the assumptions of the lemma,
it follows that (sú

1, s
ú
2) is an ÷-NE at which u1(sú

1, s
ú
2) = R1,C +R1,P and u2(sú

1, s
ú
2) = R2,C +R2,P .

Consider that such a transmit-receive configuration pair (sú
1, s

ú
2) is not an ÷-NE. Then, from

Definition 4, there exists at least one i œ {1, 2} and at least one configuration si œ Ai such
that the utility ui is improved by at least ÷ bits per channel use when transmitter-receiver
pair i deviates from s

ú
i

to si. Without loss of generality, let i = 1 be the deviating user and
denote by R

Õ
1 the rate achieved after the deviation. Then,

u1(s1, s
ú
2) = R

Õ
1 > u1(sú

1, s
ú
2) + ÷ = R1,C + R1,P + ÷. (I.31)

However, from Lemma 25, it follows that

R
Õ
16max (≠æn 11, n12) ≠ (R2,C + R2,R), (I.32)

and from the assumption in (I.30), with i = 1, i.e.,

R2,C + R2,R = max(≠æn 11, n12) ≠ (R1,C + R1,P ) ≠ ÷, (I.33)

it follows that

R
Õ
16R1,C + R1,P + ÷. (I.34)

The result in (I.34) contradicts condition (I.31) for any ÷ > 0 and shows that there exists no
other coding scheme that brings an individual utility improvement greater than ÷. The same
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can be proved for the other transmitter-receiver pair. This completes the proof.
The following lemma shows that all the rate pairs (R1, R2) œ C fl B÷ are achievable by the

RHK-NOF coding scheme at an ÷-NE, for all ÷ > 0.

Lemma 27. Let ÷ > 0 be fixed. Then, for all rate pairs (R1, R2) œ C fl B÷, there always
exists at least one ÷-NE transmit-receive configuration pair (sú

1, s
ú
2) œ A1 ◊ A2, such that

u1(sú
1, s

ú
2) = R1 and u2(sú

1, s
ú
2) = R2.

Proof: From Lemma 26, it follows that the configuration pair (sú
1, s

ú
2) in which each

player’s transmit-receive configuration is the RHK-NOF satisfying condition (I.30) is an ÷-NE.
Thus, from the conditions in (I.23) and (I.30), the following holds:

Rj,C1 + Rj,R16◊1,i,

Ri + Rj,C + Rj,R6◊2,i,

Ri + Rj,C + Rj,R>◊2,i ≠ ÷,

Rj,C2 + Rj,R26◊3,i,

Ri,P6◊4,i,

Ri,P + Rj,C2 + Rj,R26◊5,i,

Ri,C2 + Ri,P6◊6,i, and
Ri,C2 + Ri,P + Rj,C2 + Rj,R26◊7,i. (I.35)

The region characterized by (I.35) can be written in terms of R1 = R1,C1 + R1,C2 + R1,P

and R2 = R2,C1 + R2,C2 + R2,P following a Fourier-Motzkin elimination process:

R1>(◊2,1 ≠ ◊1,1 ≠ ◊3,1 ≠ ÷)+
,

R16min
Ä
◊6,1 + ◊1,2, ◊2,1 + ◊1,2 + ◊5,2 ≠ ◊2,2 + ÷, ◊2,1

ä
,

R2>(◊2,2 ≠ ◊1,2 ≠ ◊3,2 ≠ ÷)+
,

R26min
Ä
◊1,1 + ◊6,2, ◊2,2, ◊1,1 + ◊5,1 + ◊2,2 ≠ ◊2,1 + ÷

ä
,

R1 + R26min
Ä
◊4,1 + ◊2,2 ≠ ÷, ◊2,1 + ◊4,2, ◊1,1 + ◊5,1 + ◊1,2 + ◊5,2

ä
,

R1 + 2R26min
Ä
◊1,1 + ◊5,1 + ◊2,2 + ◊4,2, ◊1,1 + ◊2,1 + ◊4,2 + ◊6,2

ä
,

2R1 + R26min
Ä
◊4,1 + ◊6,1 + ◊1,2 + ◊2,2, ◊2,1 + ◊4,1 + ◊1,2 + ◊5,2

ä
. (I.36)

The region described by (I.36) is identical to C fl B÷. This completes the proof.
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Proof of Theorem 8.1.1
The proof of Theorem 8.1.1 consists of constructing a coding scheme that satis-

fies Definition 4. The coding scheme is a generalization to continuous chan-
nel inputs of the coding scheme introduced in Appendix I for the linear de-

terministic interference channel. The di�erence is that the generation of the codeword
xi = (xi,1, xi,2, . . . , xi,N ) œ RN during block t œ {1, 2, . . . , T} is obtained by adding the
described codewords , i.e., xi = u + ui + vi + xi,p, whose message indices and random indices
are dropped by ease of notation. The rest of the proof consists of showing that this code
construction is an ÷-NE for certain values of ÷. This is immediate from the following lemmas.
Lemma 28 describes all the rate pairs (R1, R2) œ R2

+ that can be achieved with the RHK-NOF
scheme.

Lemma 28. The RHK-NOF scheme achieves the set of rates
⇣
R1,C1, R1,R1, R1,C2, R1,R2,

R1,P , R2,C1, R2,R1, R2,C2, R2,R2, R2,P

⌘
œ R10

+ that satisfy the following conditions:

Ri,P6a1,i, (J.1a)
Ri + Rj,C + Rj,R6a2,i(fl), (J.1b)

Rj,C1 + Rj,R16a3,i(fl, µj), (J.1c)
Rj,C2 + Rj,R26a4,i(fl, µj), (J.1d)

Ri,P + Rj,C2 + Rj,R26a5,i(fl, µj), (J.1e)
Ri,C2 + Ri,P6a6,i(fl, µi), and (J.1f)

Ri,C2 + Ri,P + Rj,C2 + Rj,R26a7,i(fl, µ1, µ2), (J.1g)

for all (fl, µ1, µ2) œ
h
0,

Ä
1 ≠ max

Ä 1
INR12

,
1

INR21

ää+i◊ [0, 1] ◊ [0, 1].

Proof: The proof of Lemma 28 is presented in Appendix M and Appendix N.
The set of inequalities in (J.1) can be written in terms of the transmission rates R1 =

R1,C1+R1,C2+R1,P , R2 = R2,C1+R2,C2+R2,P , R1,R = R1,R1+R1,R2, and R2,R = R2,R1+R2,R2
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J. Proof of Theorem 8.1.1

following a Fourier-Motzkin elimination process. The resulting region, when R1,R1 = R1,R2 =
R2,R1 = R2,R2 = 0 corresponds to the region C (Theorem 6.1.1). Therefore, the relevance
of Lemma 28 relies on the implication that any rate pair (R1, R2) œ C is achievable by the
RHK-NOF coding scheme, under the assumption that the random rates R1,R1, R1,R2, R2,R1,
and R2,R2 are properly chosen.

Lemma 29 provides the maximum rate improvement that a given transmitter-receiver pair
achieves by unilateral deviation from the R-KH-NOF coding scheme.

Lemma 29. Assume that the rate tuple R = (R1,C1, R1,R1, R1,C2, R1,R2, R1,P , R2,C1, R2,R1,
R2,C2, R2,R2, R2,P ) œ R10

+ is achievable with the RHK-NOF. Then, any unilateral deviation
of transmitter-receiver pair i by using any other coding scheme leads to a transmission rate
R

Õ
i

œ R+ that satisfies:

R
Õ
i6

1
2 log

⇣
1 + ≠≠æSNRi + INRij + 2

q≠≠æSNRiINRij

⌘
≠ (Rj,C + Rj,R) .

Proof: Assume that both transmitters achieve the rates R by using the RHK-NOF coding
scheme following the code construction in Appendix N.

Without loss of generality, let transmitter 1 change its transmit-receive configuration while
the transmitter-receiver pair 2 remains unchanged. Note that the new transmit-receive
configuration of transmitter-receiver pair 1 can be arbitrary, i.e., it may or may not use
feedback, and it may or may not use any random symbols. It can also use a new block
length N

Õ
1 ”= N1. Denote by X Õ

1 =
Ä
X

Õ
1,1, X

Õ
1,2, . . . , X

Õ
1,N

ä
and ≠æ

Y
Õ
1 =

⇣≠æ
Y

Õ
1,1,

≠æ
Y

Õ
1,2, . . . ,

≠æ
Y

Õ
1,N

⌘

respectively the vector of channel outputs of transmitter 1 and channel inputs to receiver
1, with N = max(N Õ

1, N2). Hence, an upper bound for R
Õ
1 is obtained from the following

inequalities:

R
Õ
1 =H (W1|�1)

(a)
6I

Å
W1; ≠æ

Y
Õ
1|�1

ã
+ N”1(N)

=h

Å≠æ
Y

Õ
1|�1

ã
≠ h

Å≠æ
Y

Õ
1|W1, �1

ã
+ N”1(N)

(b)
6 N

2 log
Å

2fie

Å≠≠æSNR1 + 2
»≠≠≠æSNR1INR12 + INR12 + 1

ãã
≠ h

Å≠æ
Y

Õ
1|W1, �1

ã
+ N”1(N),

(J.2)

where, (a) follows from Fano’s inequality, as the rate R
Õ
1 is achievable from the assumptions of

the lemma with ”1 : N æ R+ a positive monotonically decreasing function (Lemma 58), and
(b) follows from the fact that for all n œ {1, 2, . . . , N}, h(≠æY Õ

1,n
|≠æY Õ

1,1,
≠æ
Y

Õ
1,2 . . . ,

≠æ
Y

Õ
1,n≠1, �1) 6

h(≠æY Õ
1,n

) 6 1
2 log

⇣
2fie

⇣≠≠æSNR1 + 2fl

»≠≠≠æSNR1INR12 + INR12 + 1
⌘⌘

. To refine this upper bound,

the term h

Å≠æ
Y

Õ
1|W1, �1

ã
in (J.2) can be lower bounded:

N2(R2,C + R2,R)=H(W2,C , �2)
(d)=H(W2,C , �2|W1, �1)

=I(W2,C , �2; ≠æ
Y

Õ
1|W1, �1) + H

Å
W2,C , �2|≠æY

Õ
1, W1, �1

ã
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(e)
6 I(W2,C , �2; ≠æ

Y
Õ
1|W1, �1) + N”2(N)

=h(≠æY
Õ
1|W1, �1) ≠ h(≠æY

Õ
1|W1, �1, W2,C , �2) + N”2(N)

(f)
6h(≠æY

Õ
1|W1, �1) + N

Å
”2(N) ≠ 1

2 log(2fie)
ã

, (J.3)

where, (d) follows from the independence of the indices W1, �1, W2, and �2; (e) follows from
Fano’s inequality as the indices W2,C and �2 can be reliably decoded by receiver 1 using the
signals ≠æ

Y
Õ
1, W1, and �1 from the assumptions of the lemma with ”2 : N æ R+ a positive

monotonically decreasing function (Lemma 58); and finally, (f) follows from the fact that
h

Å≠æ
Y

Õ
1|W1, �1, W2,C , �2

ã
>

N

2 log(2fie). Substituting (J.3) into (J.2), it follows that

R
Õ
16

1
2 log

Å≠≠æSNR1 + 2
»≠≠≠æSNR1INR12 + INR12 + 1

ã
≠ (R2,C + R2,R) ≠ 1

2 log(2fie) + ”(N)

61
2 log

Å≠≠æSNR1 + 2
»≠≠≠æSNR1INR12 + INR12 + 1

ã
≠ (R2,C + R2,R) + ”(N). (J.4)

Note that ”(N) = ”1(N) + ”2(N) is a monotonically decreasing function of N . Hence, in the
block-length asymptotic regime, it follows that

R
Õ
16

1
2 log

Å≠≠æSNR1 + 2
»≠≠≠æSNR1INR12 + INR12 + 1

ã
≠ (R2,C + R2,R) .

The same can be proved for the other transmitter-receiver pair 2 and this completes the proof.

Note that if there exists an ÷ > 0 and a rate tuple R = (R1,C1, R1,R1, R1,C2, R1,R2,
R1,P , R2,C1, R2,R1, R2,C2, R2,R2, R2,P ) achievable with the RHK-NOF coding scheme, such
that R

Õ
i
≠ (Ri,C + Ri,P ) < ÷, then the rate pair (R1, R2) œ R2

+, with R1,C = R1,C1 + R1,C2,
R2,C = R2,C1 + R2,C2, R1 = R1,P + R1,C and R2 = R2,P + R2,C , is achievable at an ÷-NE.
The following lemma formalizes this observation.

Lemma 30. Let ÷ > 1 and let the rate tuple R = (R1,C1, R1,R1, R1,C2, R1,R2, R1,P , R2,C1,
R2,R1, R2,C2, R2,R2, R2,P ) œ R10

+ be achievable with the RHK-NOF scheme. Let also fl œ [0, 1]
and for all i œ {1, 2} and j œ {1, 2} \ {i},

Ri,C + Ri,P + Rj,C + Rj,R = 1
2 log

Ä≠≠æSNRi + 2fl

q≠≠æSNRiINRij + INRij + 1
ä

≠ 1
2 . (J.5)

Then, the rate pair (R1, R2) œ R2
+, with Ri,C = Ri,C1+Ri,C2 and Ri = Ri,P +Ri,C is achievable

at an ÷-NE.

The proof of Lemma 30 follows the same steps as in the proof of Lemma 26.
Proof: Let s

ú
i

œ Ai be a transmit-receive configuration in which communication takes
place using the RHK-NOF coding scheme and R1,R1, R1,R2, R2,R1, and R2,R2 are chosen
according to condition (J.5), with i = 1 and i = 2, respectively. From the assumptions of the

157



J. Proof of Theorem 8.1.1

lemma such that the configuration pair (sú
1, s

ú
2) is an ÷-NE and

ui(sú
1, s

ú
2)=Ri

=Ri,C + Ri,P

=1
2 log

Å≠≠æSNRi + 2fl

q≠≠æSNRiINRij + INRij + 1
ã

≠ (Rj,C + Rj,R) ≠ 1
2 , (J.6)

where the last equality holds from (J.5). Then, from Definition 4, it holds that for all i œ {1, 2}
and for all transmit-receive configurations si ”= s

ú
i

œ Ai, the utility improvement is upper
bounded by ÷, that is,

ui(si, s
ú
j ) ≠ ui(sú

i , s
ú
j ) 6 ÷. (J.7)

Without loss of generality, let i = 1 be the deviating transmitter-receiver pair and assume it
achieves the highest improvement (Lemma 29), that is,

u1(s1, s
ú
2)=1

2 log
Å≠≠æSNR1 + 2

»≠≠≠æSNR1INR12 + INR12 + 1
ã

≠ (R2,C + R2,R) . (J.8)

Hence, plugging (J.6) and (J.8) into (J.7) yields:

u1(s1, s
ú
2) ≠ u1(sú

1, s
ú
2)= 1

2 log
Å≠≠æSNR1 + 2

»≠≠≠æSNR1INR12 + INR12 + 1
ã

(J.9)

≠1
2 log

Å≠≠æSNR1 + 2fl

»≠≠≠æSNR1INR12 + INR12 + 1
ã

+ 1
2

(a)
61
6÷,

where (a) follows from the fact that � = 1
2 log

⇣≠≠æSNR1 + 2
»≠≠≠æSNR1INR12 + INR12 + 1

⌘
≠

1
2 log

⇣≠≠æSNR1 + 2fl

»≠≠≠æSNR1INR12 + INR12 + 1
⌘

+ 1
2 satisfies the following inequality:

�=1
2 log

Ñ
1 + 2(1 ≠ fl)

»≠≠≠æSNR1INR12
≠≠æSNR1 + 2fl

»≠≠≠æSNR1INR12 + INR12 + 1

é
+ 1

2

61
2 log

Ñ
1 + 2

»≠≠≠æSNR1INR12
≠≠æSNR1 + INR12 + 1

é
+ 1

2

61
2 log

 

1 +
≠≠æSNR1 + INR12

≠≠æSNR1 + INR12 + 1

!

+ 1
2

61
2 log (2) + 1

2
=1
6÷. (J.10)

This verifies that any rate improvement by unilateral deviation of the transmit-receive config-
uration (sú

1, s
ú
2) is upper bounded by any ÷ arbitrarily close to 1, i.e., ÷ > 1. The same can be

proved for the other transmitter-receiver pair and this completes the proof.

Finally, Lemma 31 shows the achievable ÷-NE region N ÷ and this completes the proof of
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Theorem 8.1.1.

Lemma 31. For all rate pairs (R1, R2) œ N ÷, there always exists at least one ÷-NE configu-
ration pair (sú

1, s
ú
2) œ A1 ◊ A2, with ÷ > 1, such that u1(sú

1, s
ú
2) = R1 and u2(sú

1, s
ú
2) = R2.

Proof: A rate tuple (R1,C1, R1,R1, R1,C2, R1,R2, R1,P , R2,C1, R2,R1, R2,C2, R2,R2, R2,P ) œ
R10

+ that is achievable with the RHK-NOF coding scheme satisfies the inequalities in (J.1).
Additionally, any rate tuple (R1,C1, R1,R1, R1,C2, R1,R2, R1,P , R2,C1, R2,R1, R2,C2, R2,R2,
R2,P ) œ R10

+ that satisfies (J.1) and (J.5) is an ÷-NE (Lemma 30). A Fourier-Motzkin
elimination of inequalities (J.1) and (J.5) leads to a region in terms of the rates R1 and R2,
as follows:

R1>
⇣
a2,1(fl) ≠ a3,1(fl, µ2) ≠ a4,1(fl, µ2) ≠ ÷

⌘+
,

R16min
⇣
a2,1(fl), a6,1(fl, µ1) + a3,2(fl, µ1), a1,1 + a3,2(fl, µ1) + a4,2(fl, µ1),

a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + 2a3,2(fl, µ1) + a5,2(fl, µ1) ≠ a2,2(fl) + ÷,

a2,1(fl) + a3,1(fl, µ2) + 2a3,2(fl, µ1) + a5,2(fl, µ1) + a7,2(fl, µ1, µ2) ≠ 2a2,2(fl) + 2÷,

a2,1(fl) + a3,2(fl, µ1) + a5,2(fl, µ1) ≠ a2,2(fl) + ÷

⌘
,

R2>
⇣
a2,2(fl) ≠ a3,2(fl, µ1) ≠ a4,2(fl, µ1) ≠ ÷

⌘+
,

R26min
⇣
a3,1(fl, µ2) + a6,2(fl, µ2), a2,2(fl), a3,1(fl, µ2) + a4,1(fl, µ2) + a1,2,

2a3,1(fl, µ2) + a5,1(fl, µ2) + a7,1(fl, µ1, µ2) + a2,2(fl) + a3,2(fl, µ1) ≠ 2a2,1(fl) + 2÷,

2a3,1(fl, µ2) + a5,1(fl, µ2) + a3,2(fl, µ1) + a7,2(fl, µ1, µ2) ≠ a2,1(fl) + ÷,

a3,1(fl, µ2) + a5,1(fl, µ2) + a2,2(fl) ≠ a2,1(fl) + ÷

⌘
,

R1 + R26min
⇣
a1,1+a2,2(fl), a1,2+a2,1(fl), a3,1(fl, µ2)+a5,1(fl, µ2)+a3,2(fl, µ1)+a5,2(fl, µ1),

a1,1 + a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + a2,2(fl) + a3,2(fl, µ1) ≠ a2,1(fl) + ÷,

a1,1 + a3,1(fl, µ2) + a3,2(fl, µ1) + a7,2(fl, µ1, µ2),
a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + a1,2 + a3,2(fl, µ1),
a2,1(fl) + a3,1(fl, µ2) + a1,2 + a3,2(fl, µ1) + a7,2(fl, µ1, µ2) ≠ a2,2(fl) + ÷

⌘
,

R1 + 2R26min
⇣
a3,1(fl, µ2) + a5,1(fl, µ2) + a1,2 + a2,2(fl),

2a3,1(fl, µ2) + a5,1(fl, µ2) + a1,2 + a3,2(fl, µ1) + a7,2(fl, µ1, µ2)
⌘
,

2R1 + R26min
⇣
a1,1 + a2,1(fl) + a3,2(fl, µ1) + a5,2(fl, µ1),

a1,1 + a3,1(fl, µ2) + a7,1(fl, µ1, µ2) + 2a3,2(fl, µ1) + a5,2(fl, µ1)
⌘
. (J.11)

The region (J.11) corresponds to the achievable ÷-NE region for the two-user D-GIC-NOF, i.e.,
N ÷. Finally, the achievable ÷-NE region in (J.11) can be presented in terms of the achievable
region C (Theorem 6.1.1) and the bounds in (J.11) that are not in the achievable region C.
This completes the proof.
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Proof of Theorem 8.2.1

G iven an ÷ > 1, it is shown that R1 > L1, R2 > L2, R1 < U1, and R2 < U2 are
necessary conditions for the rate pair (R1, R2) to be an ÷-NE. This shows that
if any rate pair (R1, R2) is an ÷-NE, then (R1, R2) œ C fl B÷. This proof is

completed by Lemma 32 and Lemma 33.

Lemma 32. A rate pair (R1, R2) œ C, with either R1 <

Å
1
2 log(1 +

≠≠æSNR1
1+INR12

) ≠ ÷

ã+
or

R2 <

Å
1
2 log(1 +

≠≠æSNR2
1+INR21

) ≠ ÷

ã+
is not an ÷-NE, for any given ÷ > 0.

Proof: Let (sú
1, s

ú
2) be an ÷-NE transmit-receive configuration pair such that u1 (sú

1, s
ú
2) = R1

and u2 (sú
1, s

ú
2) = R2, respectively. Hence, from Definition 4, it holds that any rate improvement

of a transmitter-receiver pair that unilaterally deviates from (sú
1, s

ú
2) is upper bounded by ÷.

Without loss of generality, let R1 <

Å
1
2 log(1 +

≠≠æSNR1
1+INR12

) ≠ ÷

ã+
. Then, note that independently

of the transmit-receive configuration of transmitter-receiver pair 2, transmitter-receiver pair 1
can always use a transmit-receive configuration s

Õ
1 in which transmitter 1 saturates the average

power constraint (2.7) and interference is treated as noise at receiver 1. Thus, transmitter-
receiver pair 1 is always able to achieve the rate R(sÕ

1, s
ú
2) = 1

2 log
Å

1 +
≠≠æSNR1

1+INR12

ã
, which implies

that a utility improvement R(sÕ
1, s

ú
2) ≠ R(sú

1, s
ú
2) > ÷ is always possible. Thus, from Definition

4, the assumption that the rate pair (R1, R2) is an ÷-NE does not hold. This completes the
proof.

Lemma 33. A rate pair (R1, R2) œ C, with either R1 > U1 or R2 > U2 is not an ÷-NE, for
any given ÷ > 1.

Proof: Let (sú
1, s

ú
2) be an ÷-NE transmit-receive configuration pair such that u1 (sú

1, s
ú
2) = R1

and u2 (sú
1, s

ú
2) = R2, respectively. Hence, from Definition 4, it holds that any rate improvement

of a transmitter-receiver pair that unilaterally deviates from (sú
1, s

ú
2) is upper bounded by ÷.
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Without loss of generality, the focus is on user 1 to show the upper bound on R1. Then, the
following holds:

N R1 =H (W1)
(a)=H (W1|�1)
=I

⇣
W1; ≠æ

Y 1|�1
⌘

+ H

⇣
W1|�1,

≠æ
Y 1

⌘

(b)
6I

⇣
W1; ≠æ

Y 1|�1
⌘

+ N”1(N)

=h

⇣≠æ
Y 1|�1

⌘
≠ h

⇣≠æ
Y 1|W1, �1

⌘
+ N”1(N)

=
NX

n=1

⇣
h

⇣≠æ
Y 1,n|�1,

≠æ
Y 1,(1:n≠1)

⌘
≠ h

⇣≠æ
Y 1,n|W1, �1,

≠æ
Y 1,(1:n≠1)

⌘ ⌘
+ N”1(N)

6
NX

n=1

⇣
h

⇣≠æ
Y 1,n

⌘
≠ h

⇣≠æ
Y 1,n|W1, �1,

≠æ
Y 1,(1:n≠1)

⌘ ⌘
+ N”1(N)

(c)=
NX

n=1

⇣
h

⇣≠æ
Y 1,n

⌘
≠ h

⇣≠æ
Y 1,n|X1,n

⌘ ⌘
+ N”1(N)

=
NX

n=1

⇣
h

⇣≠æ
Y 1,n

⌘
≠ h

⇣≠æ
Z 1,n

⌘
≠ h

⇣≠æ
Y 1,n|X1,n

⌘
+ h

⇣≠æ
Z 1,n

⌘ ⌘
+ N”1(N)

6 N

2 log
Å≠≠æSNR1 + 2fl

»≠≠æSNR1INR12 + INR12 + 1
ã

≠
NX

n=1

⇣
h

⇣≠æ
Y 1,n|X1,n

⌘

≠h

⇣≠æ
Y 1,n|X1,n, X2,n

⌘ ⌘
+ N”1(N)

= N

2 log
Å≠≠æSNR1 + 2fl

»≠≠æSNR1INR12 + INR12 + 1
ã

≠
NX

n=1
I

⇣≠æ
Y 1,n; X2,n|X1,n

⌘

+N”1(N), (K.1)

where, (a) follows from the independence between the indices Wi and �i; (b) follows from
Fano’s inequality, as the rate Ri is achievable from the assumptions of the lemma with
”1 : N æ R+ a positive monotonically decreasing function (Lemma 58); and (c) follows from
the fact that Xi,n = f

(N)
i,n

⇣
Wi, �i,

Ω≠
Y i,(1:n≠1)

⌘
from the definition of the encoding function in

(??) and Wi, �i,
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Then, the following holds:
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(K.2)

The term 1
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in (K.2) plays the same role of 1
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in (I.10) in the linear deterministic case. The remaining of the proof consists
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on finding a lower-bound on 1
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variables) that are determined by the parameters ≠≠æSNR2, INR12, INR21, and Ω≠≠SNR2. Given a
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C1,2 : INR21 <
≠≠æSNR2 6 INR12, (K.3a)

C2,2 : max
⇣
INR12, INR21,

Ω≠≠SNR2
⌘

<
≠≠æSNR2 < INR12INR21, (K.3b)

C3,2 : Ω≠≠SNR2 6 INR12, (K.3c)
C4,2 : INR21 < INR12 <

≠≠æSNR2 6 Ω≠≠SNR2, (K.3d)
C5,2 : ≠≠æSNR2 > max

⇣
INR12, INR21,

Ω≠≠SNR2
⌘

, (K.3e)
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Let 0 6 “2 6 1, be a fixed positive real defined as follows:

“2 =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:
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Ç
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INR12
Ω≠≠SNR2INR21

, 1
!

if C7,2 ‚ C8,2 holds true

0 otherwise.

(K.4)

For all n œ {1, 2, . . . , N}, let U2,n and V2,n be two independent random variables with zero
means and variances 1 ≠ “2 and “2, respectively, with “2 defined as in (K.4), such that
X2,n = U2,n + V2,n. Using this notation, the inequality in (K.2) can be written as follows:
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where, (d) follows from the fact that I
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The remaining of the proof consists on finding a lower-bound on 1
N

NX

n=1
I

⇣≠æ
Y 1,n; V2,n|X1,n

⌘
.

Following the same steps as in (K.1), the following holds:
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Let Ï : N æ R+ be a monotonically decreasing function such that (K.6) holds with equality,
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Consider that player 2 implements an alternative strategy s
Õ
2 that induces channel inputs

X Õ
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Õ
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Õ
2,2, . . . , X

Õ
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Õ
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⌘
where X

Õ
2,n
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Õ

2,n
, with V

Õ
2,n

a random variable with
variance “2 and independent of any symbol transmitted by either transmitter until channel use
n. Note that U2,n continues to be the same as with the strategy s

ú
2. Then, the channel-output

at receiver 2 after the deviation from s
ú
2 to s

Õ
2, denoted by ≠æ

Y
Õ
2,n

, is:
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Let fl = E [X1,nX2,n], E [X1,nU2,n] =
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R2(sú
1, s

Õ
2)6 1

N

NX

n=1

 

I

⇣≠æ
Y

Õ
2,n; V

Õ
2,n

⌘
+ h

⇣≠æ
Y

Õ
2,n|V Õ

2,n

⌘
≠ h

⇣≠æ
Y

Õ
2,n|X Õ

2,n

⌘!

+ ”
Õ
2(N), (K.9)

where, for all n œ {1, 2, . . . , N},
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The inequality in (K.10) follows from using a worst-case noise argument.

From Definition 4, it follows that R2(sú
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Õ
2) 6 R2 + ÷, with ÷ > 0. Hence, the following

holds:
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From (K.11) the following holds:
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where, (f) follows from (K.10).
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Plugging (K.13) into (K.5), and in the block-length asymptotic regime, the following holds:
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The same procedure can be applied for the other user and this completes the proof.

168



— L —
Proof of Lemma 21

Lemma 21 is proved as follows:

I

⇣
Xi,C , Xj,U ,

Ω≠
Y i, Wi;

Ω≠
Y j , Wj

⌘

=I

⇣
Wi;

Ω≠
Y j , Wj

⌘
+ I

⇣
Xi,C , Xj,U ,

Ω≠
Y i;

Ω≠
Y j , Wj |Wi

⌘

=h

⇣Ω≠
Y j , Wj

⌘
≠ h

⇣Ω≠
Y j , Wj |Wi

⌘
+ h

⇣
Xi,C , Xj,U ,

Ω≠
Y i|Wi

⌘
≠ h

⇣
Xi,C , Xj,U ,

Ω≠
Y i|Wi, Wj ,

Ω≠
Y j

⌘

=h

⇣Ω≠
Y j |Wj

⌘
≠ h

⇣Ω≠
Y j |Wi, Wj

⌘
+ h

⇣
Xi,C , Xj,U ,

Ω≠
Y i|Wi

⌘
≠ h

⇣
Xi,C , Xj,U ,

Ω≠
Y i|Wi, Wj ,

Ω≠
Y j

⌘

=h

⇣Ω≠
Y j |Wj

⌘
+ h

⇣
Xi,C , Xj,U ,

Ω≠
Y i|Wi

⌘
≠ h

⇣
Xi,C , Xj,U ,

Ω≠
Y i,

Ω≠
Y j |Wi, Wj

⌘

=h

⇣Ω≠
Y j |Wj

⌘
+

NX

n=1

"

h

⇣
Xi,C,n, Xj,U,n,

Ω≠
Y i,n|Wi, Xi,C,(1:n≠1), Xj,U,(1:n≠1),

Ω≠
Y i,(1:n≠1), Xi,n

⌘

≠h

⇣
Xi,C,n, Xj,U,n,

Ω≠
Y i,n,

Ω≠
Y j,n|Wi, Wj , Xi,C,(1:n≠1), Xj,U,(1:n≠1),

Ω≠
Y i,(1:n≠1),

Ω≠
Y j,(1:n≠1),

Xi,n, Xj,n

⌘#

6h

⇣Ω≠
Y j |Wj

⌘
+

NX

n=1

"

h

⇣
Xi,C,n, Xj,U,n,

Ω≠
Y i,n|Xi,n

⌘
≠ h

⇣≠æ
Z j,n,

≠æ
Z i,n,

Ω≠
Y i,n,

Ω≠
Y j,n|Wi, Wj ,

Xi,C,(1:n≠1), Xj,U,(1:n≠1),
Ω≠
Y i,(1:n≠1),

Ω≠
Y j,(1:n≠1), Xi,n, Xj,n

⌘#
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=h

⇣Ω≠
Y j |Wj

⌘
+

NX

n=1

"

h

⇣
Xi,C,n|Xi,n

⌘
+ h

⇣
Xj,U,n|Xi,n, Xi,C,n

⌘
+ h

⇣Ω≠
Y i,n|Xi,n, Xi,C,n, Xj,U,n

⌘

≠h

⇣≠æ
Z j,n

⌘
≠ h

⇣≠æ
Z i,n

⌘
≠ h

⇣Ω≠
Y i,n,

Ω≠
Y j,n|Wi, Wj , Xi,C,(1:n≠1), Xj,U,(1:n≠1),

Ω≠
Y i,(1:n≠1),

Ω≠
Y j,(1:n≠1), Xi,n, Xj,n,

≠æ
Z j,n,

≠æ
Z i,n

⌘#

6h

⇣Ω≠
Y j |Wj

⌘
+

NX

n=1

"

h

⇣≠æ
Z j,n|Xi,n

⌘
+ h

⇣
Xj,U,n|Xi,C,n

⌘
+ h

⇣Ω≠
Y i,n|Xi,n, Xj,U,n

⌘
≠ h

⇣≠æ
Z j,n

⌘

≠h

⇣≠æ
Z i,n

⌘
≠ h

⇣Ω≠
Z i,n,

Ω≠
Z j,n|Wi, Wj , Xi,C,(1:n≠1), Xj,U,(1:n≠1),

Ω≠
Y i,(1:n≠1),

Ω≠
Y j,(1:n≠1), Xi,n,

Xj,n,
≠æ
Z j,n,

≠æ
Z i,n

⌘#

(a)=h

⇣Ω≠
Y j |Wj

⌘
+

NX

n=1

"

h

⇣
Xj,U,n|Xi,C,n

⌘
+h

⇣Ω≠
Y i,n|Xi,n, Xj,U,n

⌘
≠h

⇣≠æ
Z i,n

⌘
≠h

⇣Ω≠
Z i,n

⌘
≠h

⇣Ω≠
Z j,n

⌘#

=h

⇣Ω≠
Y j |Wj

⌘
+

NX

n=1

"

h (Xj,U,n|Xi,C,n) + h

⇣Ω≠
Y i,n|Xi,n, Xj,U,n

⌘
≠ 3

2 log (2fie)
#

,

where (a) follows from the fact that Ω≠
Z i,n and Ω≠

Z j,n are independent of Wi, Wj , Xi,C,(1:n≠1),
Xj,U,(1:n≠1),

Ω≠
Y i,(1:n≠1),

Ω≠
Y j,(1:n≠1), Xi,n, Xj,n, ≠æ

Z j,n, and ≠æ
Z i,n.

This completes the proof of Lemma 21.
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Proof of Lemma 24

This appendix provides a description of the RHK-NOF and a proof of Lemma 24.
This scheme is based on a three-part message splitting, superposition coding,
common randomness and backward decoding.

Codebook Generation: Fix a strictly positive joint probability distribution

P U U1 U2 V1 V2 X1,P X2,P (u, u1, u2, v1, v2, x1,P , x2,P ) = PU (u)PU1|U (u1|u)PU2|U (u2|u)
PV1|U U1(v1|u, u1)PV2|U U2(v2|u, u2)PX1,P |U U1 V1(x1,P |u, u1, v1)PX2,P |U U2 V2(x2,P |u, u2, v2),

(M.1)

for all (u, u1, u2, v1, v2, x1,P , x2,P ) œ U ◊ U1 ◊ U2 ◊ V1 ◊ V2 ◊ X1,P ◊ X2,P .
Let R1,C1, R1,R1, R1,C2, R1,R2, R2,C1, R2,R1, R2,C2, R1,R2, R1,P , and R2,P be non-negative

real numbers. Let R1,C = R1,C1 + R1,C2, R2,C = R2,C1 + R2,C2, R1,R = R1,R1 + R1,R2, R2,R =
R2,R1 + R2,R2. Define also R1 = R1,C + R1,P and R2 = R2,C + R2,P . Note that the rate Ri is
not considering the rate Ri,R, this is due to the fact that it corresponds to a message that is
assumed to be known by transmitter i and receiver i. Consider without any loss of generality
that N = N1 = N2.

Generate 2N(R1,C1+R1,R1+R2,C1+R2,R1) i.i.d. N -length codewords u(s, r) =
Ä
u1(s, r), u2(s, r),

. . ., uN (s, r)
ä

according to the product distribution

PU

Ä
u(s, r)

ä
=

NY

i=1
PU (ui(s, r)),

with s œ {1, 2, . . . , 2N(R1,C1+R1,R1)} and r œ {1, 2, . . . , 2N(R2,C1+R2,R1)}.
For encoder 1, generate for each codeword u(s, r), 2N(R1,C1+R1,R1) i.i.d. N -length code-

words u1(s, r, k) =
Ä
u1,1(s, r, k), u1,2(s, r, k), . . ., u1,N (s, r, k)

ä
according to the conditional
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M. Proof of Lemma 24

distribution
PU1|U

Ä
u1(s, r, k)|u(s, r)

ä
=

NY

i=1
PU1|U

Ä
u1,i(s, r, k)|ui(s, r)

ä
,

with k œ {1, 2, . . . , 2N(R1,C1+R1,R1)}.
For each pair of codewords

Ä
u(s, r), u1(s, r, k)

ä
, generate 2N(R1,C2+R1,R2) i.i.d. N -length

codewords v1(s, r, k, l, d) =
Ä
v1,1(s, r, k, l), v1,2(s, r, k, l), . . ., v1,N (s, r, k, l)

ä
according to the

conditional distribution

P V 1|U U1

Ä
v1(s, r, k, l)|u(s, r), u1(s, r, k)

ä
=

NY

i=1
PV1|U U1

Ä
v1,i(s, r, k, l)|ui(s, r), u1,i(s, r, k)

ä
,

with l œ {1, 2, . . . , 2N(R1,C2+R1,R2)}.
For each triplet of codewords

Ä
u(s, r), u1(s, r, k), v1(s, r, k, l)

ä
, generate 2NR1,P i.i.d. N -

length codewords x1,P (s, r, k, l, q) =
Ä
x1,P,1(s, r, k, l, q), x1,P,2(s, r, k, l, q), . . ., x1,P,N (s, r, k, l, q)

ä

according to the conditional distribution

P X1,P |U U1V 1

Ä
x1,P (s, r, k, l, q)|u(s, r), u1(s, r, k), v1(s, r, k, l)

ä
=

NY

i=1
PX1,P |U U1 V1

Ä
x1,P,i(s, r, k, l, q)|ui(s, r), u1,i(s, r, k), v1,i(s, r, k, l)

ä
,

with q œ {1, 2, . . . , 2NR1,P }.
For encoder 2, generate for each codeword u(s, r), 2N(R2,C1+R2,R1) i.i.d. N -length code-

words u2(s, r, j) =
Ä
u2,1(s, r, j), u2,2(s, r, j), . . ., u2,N (s, r, j)

ä
according to the conditional

distribution
PU2|U

Ä
u2(s, r, j)|u(s, r)

ä
=

NY

i=1
PU2|U

Ä
u2,i(s, r, j)|ui(s, r)

ä
,

with j œ {1, 2, . . . , 2N(R2,C1+R2,R1)}.
For each pair of codewords

Ä
u(s, r), u2(s, r, j)

ä
, generate 2N(R2,C2+R2,R2) i.i.d. N -length

codewords v2(s, r, j, m) =
Ä
v2,1(s, r, j, m), v2,2(s, r, j, m), . . ., v2,N (s, r, j, m)

ä
according to the

conditional distribution

P V 2|U U2

Ä
v2(s, r, j, m)|u(s, r), u2(s, r, j)

ä
=

NY

i=1
PV2|U U2(v2,i(s, r, j, m)|ui(s, r), u2,i(s, r, j)),

with m œ {1, 2, . . . , 2N(R2,C2+R2,R2)}.
For each triplet of codewords

Ä
u(s, r), u2(s, r, j), v2(s, r, j, m)

ä
, generate 2NR2,P i.i.d. N -

length codewords x2,P (s, r, j, m, b) =
Ä
x2,P,1(s, r, j, m, b), x2,P,2(s, r, j, m, b), . . ., x2,P,N (s, r, j, m)

ä

according to

PX2,P |U U2 V 2

Ä
x2,P (s, r, j, m, b)|u(s, r), u2(s, r, j), v2(s, r, j, m)

ä
=

NY

i=1
PX2,P |U U2 V2

Ä
x2,P,i(s, r, j, m, b)|ui(s, r), u2,i(s, r, j), v2,i(s, r, j, m, b)

ä
,

with b œ {1, 2, . . . , 2NR2,P }. The resulting code structure is shown in Figure M.1.
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Encoding: Denote by W
(t)
i

œ Wi =
n

1, 2, . . . , 2N(Ri,C+Ri,P )o and �(t)
i

œ Wi,R = {1,
2, . . ., 2NRi,R} the message index and the random message index of transmitter i during
block t œ {1, 2, . . . , T}, respectively, with T œ N the total number of blocks. Let W

(t)
i

be decomposed into the message index W
(t)
i,C

œ Wi,C = {1, 2, . . . , 2NRi,C } and the message
index W

(t)
i,P

œ Wi,P ={1, 2, . . . , 2NRi,P }. That is, W
(t)
i

=
⇣
W

(t)
i,C

, W
(t)
i,P

⌘
. The message index

W
(t)
i,P

must be reliably decoded at receiver i. Let W
(t)
i,C

be decomposed into the message
indices W

(t)
i,C1 œ Wi,C1 = {1, 2, . . . , 2NRi,C1} and W

(t)
i,C2 œ Wi,C2 = {1, 2, . . . , 2NRi,C2}. That is,

W
(t)
i,C

=
⇣
W

(t)
i,C1, W

(t)
i,C2

⌘
. Let �(t)

i
be decomposed into the message indices �(t)

i,R1 œ Wi,R1 =

{1, 2, . . . , 2NRi,R1} and �(t)
i,R2 œ Wi,R2 = {1, 2, . . . , 2NRi,R2}. That is, �(t)

i
=
⇣
�(t)

i,R1, �(t)
i,R2

⌘
.

The index
⇣
W

(t)
i,C1, �(t)

i,R1
⌘

must be reliably decoded at transmitter j, with j œ {1, 2} \ {i} (via
feedback), but no necessarily by receiver i. The index

⇣
W

(t)
i,C2, �(t)

i,R2
⌘

must be reliably decoded
by receiver j but no necessarily by receiver i.

Consider Markov encoding over T blocks. At encoding step t, with t œ {1, 2, . . . , T},
transmitter 1 sends the codeword

x(t)
1 =�1

 

u
⇣ ⇣

W
(t≠1)
1,C1 , �(t≠1)

1,R1
⌘

,

⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘ ⌘

, (M.2)

u1
⇣ ⇣

W
(t≠1)
1,C1 , �(t≠1)

1,R1
⌘

,

⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘

,

⇣
W

(t)
1,C1, �(t)

1,R1
⌘ ⌘

,

v1
⇣ ⇣

W
(t≠1)
1,C1 , �(t≠1)

1,R1
⌘

,

⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘

,

⇣
W

(t)
1,C1, �(t)

1,R1
⌘

,

⇣
W

(t)
1,C2, �(t)

1,R2
⌘ ⌘

,

x1,P

⇣ ⇣
W

(t≠1)
1,C1 , �(t≠1)

1,R1
⌘

,

⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘

,

⇣
W

(t)
1,C1, �(t)

1,R1
⌘

,

⇣
W

(t)
1,C2, �(t)

1,R2
⌘

, W
(t)
1,P

⌘!

,

where �1 : UN ◊ UN
1 ◊ VN

1 ◊ X N

1,P
æ X N

1 is a function that transforms the codewords
u
⇣⇣

W
(t≠1)
1,C1 , �(t≠1)

1,R1
⌘
,
⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘ ⌘

, u1
⇣⇣

W
(t≠1)
1,C1 , �(t≠1)

1,R1
⌘
,
⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘
,
⇣
W

(t)
1,C1, �(t)

1,R1
⌘⌘

,

v1
⇣ ⇣

W
(t≠1)
1,C1 , �(t≠1)

1,R1
⌘
,
⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘
,
⇣
W

(t)
1,C1, �(t)

1,R1
⌘
,
⇣
W

(t)
1,C2, �(t)

1,R2
⌘ ⌘

, and x1,P

⇣⇣
W

(t≠1)
1,C1 ,

�(t≠1)
1,R1

⌘
,
⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘
,
⇣
W

(t)
1,C1, �(t)

1,R1
⌘
,
⇣
W

(t)
1,C2, �(t)

1,R2
⌘
, W

(t)
1,P

⌘
into the N -dimensional

vector x(t)
1 of channel inputs. The indices

⇣
W

(0)
1,C1, �(0)

1,R1
⌘

=
⇣
W

(T )
1,C1, �(T )

1,R1
⌘

= s
ú and

⇣
W

(0)
2,C1 = �(0)

2,R1
⌘

=
⇣
W

(T )
2,C1, �(T )

2,R1
⌘

= r
ú, and the pair (sú

, r
ú) œ {1, 2, . . . , 2N(R1,C1+R1,R1)} ◊

{1, 2, . . . , 2N(R2,C1+R2,R1)} are pre-defined and known by both receivers and transmitters. It is
worth noting that the index

⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘

is obtained by transmitter 1 from the feedback
signal Ω≠y (t≠1)

1 at the end of the previous encoding step t ≠ 1.
Transmitter 2 follows a similar encoding scheme.
Decoding: Both receivers decode their message indices at the end of block T in a back-

ward decoding fashion. At each decoding step t, with t œ {1, 2, . . . , T}, receiver 1 ob-
tains the indices

⇣ ⇣
cW (T ≠t)

1,C1 , �(T ≠t)
1,R1

⌘
,
⇣
cW (T ≠t)

2,C1 ,“�(T ≠t)
2,R1

⌘
,
⇣
cW (T ≠(t≠1))

1,C2 , �(T ≠(t≠1))
1,R2

⌘
, cW (T ≠(t≠1))

1,P
,

⇣
cW (T ≠(t≠1))

2,C2 ,“�(T ≠(t≠1))
2,R2

⌘ ⌘
œ W1,C1 ◊ W1,R1 ◊ W2,C1 ◊ W2,R1 ◊ W1,C2 ◊ W1,R2 ◊ W1,P ◊
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W2,C2 ◊ W2,R2 from the channel output ≠æy (T ≠(t≠1))
1 . The tuple

⇣ ⇣
cW (T ≠t)

1,C1 , �(T ≠t)
1,R1

⌘
,
⇣
cW (T ≠t)

2,C1 ,
“�(T ≠t)

2,R1
⌘
,
⇣
cW (T ≠(t≠1))

1,C2 , �(T ≠(t≠1))
1,R2

⌘
, cW (T ≠(t≠1))

1,P
,
⇣
cW (T ≠(t≠1))

2,C2 , “�(T ≠(t≠1))
2,R2

⌘⌘
is the unique tuple

that satisfies:
 

u
⇣⇣
cW (T ≠t)

1,C1 , �(T ≠t)
1,R1

⌘
,

⇣
cW (T ≠t)

2,C1 ,“�(T ≠t)
2,R1

⌘⌘
, u1

⇣⇣
cW (T ≠t)

1,C1 , �(T ≠t)
1,R1

⌘
,

⇣
cW (T ≠t)

2,C1 ,“�(T ≠t)
2,R1

⌘
,

⇣
W

(T ≠(t≠1))
1,C1 , �(T ≠(t≠1))

1,R1
⌘ ⌘

, v1
⇣ ⇣
cW (T ≠t)

1,C1 , �(T ≠t)
1,R1

⌘
,

⇣
cW (T ≠t)

2,C1 ,“�(T ≠t)
2,R1

⌘
,

⇣
W

(T ≠(t≠1))
1,C1 , �(T ≠(t≠1))

1,R1
⌘
,

⇣
cW (T ≠(t≠1))

1,C2 , �(T ≠(t≠1))
1,R2

⌘ ⌘
, x1,P

⇣⇣
cW (T ≠t)

1,C1 , �(T ≠t)
1,R1

⌘
,

⇣
cW (T ≠t)

2,C1 ,“�(T ≠t)
2,R1

⌘
,

⇣
W

(T ≠(t≠1))
1,C1 , �(T ≠(t≠1))

1,R1
⌘

,

⇣
cW (T ≠(t≠1))

1,C2 , �(T ≠(t≠1))
1,R2

⌘
, cW (T ≠(t≠1))

1,P

⌘
,

u2
⇣⇣
cW (T ≠t)

1,C1 , �(T ≠t)
1,R1

⌘
,

⇣
cW (T ≠t)

2,C1 ,“�(T ≠t)
2,R1

⌘
,

⇣
W

(T ≠(t≠1))
2,C1 , �(T ≠(t≠1))

2,R1
⌘ ⌘

,

v2
⇣ ⇣
cW (T ≠t)

1,C1 , �(T ≠t)
1,R1

⌘
,

⇣
cW (T ≠t)

2,C1 ,“�(T ≠t)
2,R1

⌘
,

⇣
W

(T ≠(t≠1))
2,C1 , �(T ≠(t≠1))

2,R1
⌘
,

⇣
cW (T ≠(t≠1))

2,C2 ,“�(T ≠(t≠1))
2,R2

⌘ ⌘
,
≠æy (T ≠(t≠1))

1

!

œ T (N,‘)î
U U1 V1 X1,P U2 V2

≠æ
Y 1
ó, (M.3)

where W
(T ≠(t≠1))
1,C1 and

⇣
W

(T ≠(t≠1))
2,C1 , �(T ≠(t≠1))

2,R1
⌘

are assumed to be perfectly decoded in the
previous decoding step t≠1, given that �(T ≠(t≠1))

1,R1 is known at both transmitter 1 and receiver 1.
The set T (N,‘)î

U U1 V1 X1,P U2 V2
≠æ
Y 1
ó represents the set of jointly typical sequences of the random

variables U, U1, V1, X1,P , U2, V2, and ≠æ
Y 1, with ‘ > 0. Finally, receiver 2 follows a similar

decoding scheme.

Probability of Error Analysis: An error might occur during encoding step t if the index⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘

is not correctly decoded at transmitter 1. From the AEP [25], it follows that
the index

⇣
W

(t≠1)
2,C1 , �(t≠1)

2,R1
⌘

can be reliably decoded at transmitter 1 during encoding step t,
under the condition:

R2,C1 + R2,R1 6 I

⇣Ω≠
Y 1; U2|U, U1, V1, X1

⌘

= I

⇣Ω≠
Y 1; U2|U, X1

⌘
. (M.4)

An error might occur during the (backward) decoding step t if the indices W
(T ≠t)
1,C1 ,

⇣
W

(T ≠t)
2,C1 ,

�(T ≠t)
2,R1

⌘
, W

(T ≠(t≠1))
1,C2 , W

(T ≠(t≠1))
1,P

, and
⇣
W

(T ≠(t≠1))
2,C2 , �(T ≠(t≠1))

2,R2
⌘

are not decoded correctly
given that the indices W

(T ≠(t≠1))
1,C1 and

⇣
W

(T ≠(t≠1))
2,C1 , �(T ≠(t≠1))

2,R1
⌘

were correctly decoded in the
previous decoding step t ≠ 1. These errors might arise for two reasons: (i) there does not
exist a tuple

⇣
cW (T ≠t)

1,C1 ,
⇣
cW (T ≠t)

2,C1 ,“�(T ≠t)
2,R1

⌘
, cW (T ≠(t≠1))

1,C2 , cW (T ≠(t≠1))
1,P

,
⇣
cW (T ≠(t≠1))

2,C2 ,“�(T ≠(t≠1))
2,R2

⌘ ⌘

that satisfies (M.3), or (ii) there exist several tuples
⇣
cW (T ≠t)

1,C1 ,
⇣
cW (T ≠t)

2,C1 , “�(T ≠t)
2,R1

⌘
, cW (T ≠(t≠1))

1,C2 ,
cW (T ≠(t≠1))

1,P
,
⇣
cW (T ≠(t≠1))

2,C2 , “�(T ≠(t≠1))
2,R2

⌘⌘
that simultaneously satisfy (M.3). From the AEP

[25], the probability of an error due to (i) tends to zero when N grows to infinity. Con-
sider the error due to (ii) and define the event E

(t)
(s,r,l,q,m) that describes the case in which
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2N(R1,P )

2N(R2,P )

1

1 1 1

11 1
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2N(R2,C1+R2,R1) 2N(R2,C2+R2,R2)

2N(R1,C2+R2,C2+R1,R2+R2,R2)
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u2

⇣⇣
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⌘
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W (t�1)
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Figure M.1.: Structure of the superposition code. The codewords corresponding to the message
indices W

(t≠1)
1,C1 , W

(t≠1)
2,C1 , W

(t)
i,C1, W

(t)
i,C2, W

(t)
i,P

with i œ {1, 2} as well as the block
index t are both highlighted. The (approximate) number of codewords for each
code layer is also highlighted.

the codewords
⇣
u (s, r), u1

⇣
s, r,

Ä
W

(T ≠(t≠1))
1,C1 , �(T ≠(t≠1))

1,R1
⌘
, v1

⇣
s, r,

⇣
W

(T ≠(t≠1))
1,C1 , �(T ≠(t≠1))

1,R1
⌘
, l

⌘
,

x1,P

⇣
s, r,

⇣
W

(T ≠(t≠1))
1,C1 , �(T ≠(t≠1))

1,R1
⌘
, l, q

⌘
, u2

⇣
s, r,

⇣
W

(T ≠(t≠1))
2,C1 , �(T ≠(t≠1))

2,R1
⌘⌘

, and v2
⇣
s, r,

⇣
W

(T ≠(t≠1))
2,C1 , �(T ≠(t≠1))

2,R1
⌘
, m

⌘⌘
are jointly typical with ≠æy (T ≠(t≠1))

1 during decoding step t.
Without loss of generality assume that the codeword to be decoded at decoding step t corre-
sponds to the indices (s, r, l, q, m) = (1, 1, 1, 1, 1) due to the symmetry of the code. Then, the
probability of error due to (ii) during decoding step t, can be bounded using Boole’s inequality
as follows:

P
(t)
1 (s1, s2)=Pr

2

4
[

(s,r,l,q,m) ”=(1,1,1,1,1)
E

(t)
(s,r,l,q,m)

3

5

6
X

(s,r,l,q,m)œT

Pr
h
E

(t)
(s,r,l,q,m)

i
, (M.5)

with T =
n

W1,C1 ◊ W1,R1 ◊ W2,C1 ◊ W2,R1 ◊ W1,C2 ◊ W1,R2 ◊ W1,P ◊ W2,C2 ◊ W2,R2
o

\
{(1, 1, 1, 1, 1)}. Therefore,
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P
(t)
1 (s1, s2)62N(R2,C2+R2,R2≠I(≠æY 1;V2|U,U1,U2,V1,X1)+2‘)

+2N(R1,P ≠I(≠æY 1;X1|U,U1,U2,V1,V2)+2‘)

+2N(R2,C2+R2,R2+R1,P ≠I(≠æY 1;V2,X1|U,U1,U2,V1)+2‘)

+2N(R1,C2≠I(≠æY 1;V1,X1|U,U1,U2,V2)+2‘)

+2N(R1,C2+R2,C2+R2,R2≠I(≠æY 1;V1,V2,X1|U,U1,U2)+2‘)

+2N(R1,C2+R1,P ≠I(≠æY 1;V1,X1|U,U1,U2,V2)+2‘)

+2N(R1,C2+R1,P +R2,C2+R2,R2≠I(≠æY 1;V1,V2,X1|U,U1,U2)+2‘)

+2N(R2,C1+R2,R1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C+R2,R≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)
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+2N(R2,C1+R2,R1+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C+R2,R+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C1+R2,R1+R1,C2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C+R2,R+R1,C2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C1+R2,R1+R1,C2+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R2,C+R2,R+R1,C2+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R2,C2+R2,R2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R1,P +R2,C2+R2,R2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C+R2,C2+R2,R2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1+R2,C2+R2,R2≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R2,C1+R2,R1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R2,C+R2,R≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R2,C1+R2,R1+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C1+R2,C+R2,R+R1,P ≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C+R2,C1+R2,R1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1,C+R2,C+R2,R≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1+R2,C1+R2,R1≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)

+2N(R1+R2,C+R2,R≠I(≠æY 1;U,U1,U2,V1,V2,X1)+2‘)
. (M.7)

The same analysis of the probability of error holds for transmitter-receiver pair 2. From the
AEP [25], and from (M.4) and (M.7), reliable decoding holds under the following conditions
for transmitter i œ {1, 2}, with j œ {1, 2} \ {i}:

Rj,C1 + Rj,R16◊1,i

,I

⇣Ω≠
Y i; Uj |U, Ui, Vi, Xi

⌘

=I

⇣Ω≠
Y i; Uj |U, Xi

⌘
, (M.8a)

Ri + Rj,C + Rj,R6◊2,i

,I(≠æY i; U, Ui, Uj , Vi, Vj , Xi)
=I(≠æY i; U, Uj , Vj , Xi), (M.8b)

Rj,C2 + Rj,R26◊3,i

,I(≠æY i; Vj |U, Ui, Uj , Vi, Xi)
=I(≠æY i; Vj |U, Uj , Xi), (M.8c)

Ri,P6◊4,i

,I(≠æY i; Xi|U, Ui, Uj , Vi, Vj), (M.8d)
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Figure M.2.: The auxiliary random variables and their relation with signals when channel-
output feedback is considered in (a) very weak interference regime, (b) weak
interference regime, (c) moderate interference regime, (d) strong interference
regime and (e) very strong interference regime.

Ri,P + Rj,C2 + Rj,R26◊5,i

,I(≠æY i; Vj , Xi|U, Ui, Uj , Vi), (M.8e)
Ri,C2 + Ri,P6◊6,i

,I(≠æY i; Vi, Xi|U, Ui, Uj , Vj)
=I(≠æY i; Xi|U, Ui, Uj , Vj), and (M.8f)

Ri,C2 + Ri,P + Rj,C2 + Rj,R26◊7,i

,I(≠æY i; Vi, Vj , Xi|U, Ui, Uj)
=I(≠æY i; Vj , Xi|U, Ui, Uj). (M.8g)

From the probability of error analysis, it follows that the rate-pairs achievable with the
proposed randomized coding scheme with NOF are those simultaneously satisfying conditions
(M.8) with i œ {1, 2} and j œ {1, 2}\{i} . Indeed, when R1,R = R2,R = 0, the coding scheme
described above reduces to the coding scheme presented in Appendix A.

In the two-user LDIC-NOF model, the channel input of transmitter i at each channel
use is a q-dimensional binary vector Xi œ Xi = {0, 1}q with i œ {1, 2} and q as defined
in (2.23). Following this observation, the random variables U , Ui, Vi, and Xi,P described
in (M.1) in the codebook generation are also vectors, and thus, they are denoted by U ,
U i, V i and Xi,P , respectively. The random variables U i, V i, and Xi,P are assumed to be
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mutually independent and uniformly distributed over the sets {0, 1}
Ä

nji≠(max(≠æ
n jj ,nji)≠Ω≠

n jj)+ä+

,
{0, 1}

Ä
min
Ä

nji,(max(≠æ
n jj ,nji)≠Ω≠

n jj)+ää
, and {0, 1}(≠æ

n ii≠nji)+
, respectively. Note that the random

variables U i, V i, and Xi,P have the dimensions indicated in (A.16a), (A.16b), and (A.16c),
respectively.

Note that the random variable U in (M.1) is not used, and therefore, is a constant. The
input symbol of transmitter i during channel use n is Xi =

Ä
UT

i , V T
i , XT

i,P , (0, . . . , 0)
äT,

where (0, . . . , 0) is put to meet the dimension constraint dim Xi = q. Hence, during block
t œ {1, 2, . . . , T}, the codeword X(t)

i
in the two-user LDIC-NOF is a q ◊ N matrix, i.e.,

X(t)
i

= (Xi,1, Xi,2 . . . , Xi,N ) œ {0, 1}q◊N .
The intuition behind this choice is based on the following observations: (a) the vector U i

represents the bits in Xi that can be observed by transmitter j via feedback but no necessarily
by receiver i; (b) the vector V i represents the bits in Xi that can be observed by receiver
j but no necessarily by receiver i; and finally, (c) the vector Xi,P is a notational artefact
to denote the bits of Xi that are neither in U i nor V i. In particular, the bits in Xi,P are
only observed by receiver i, as shown in Figure M.2. This intuition justifies the dimensions
described in (A.16).

Considering this particular code structure, the terms ◊l,i, with (l, i) œ {1, . . . , 7} ◊ {1, 2} in
(M.8), are defined in (I.24). This completes the proof of Lemma 24.
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Proof of Lemma 28

This appendix provides a proof of Lemma 28. For the two-user D-GIC-NOF model,
consider that transmitter i uses the following Gaussian input distribution:

Xi = U + Ui + Vi + Xi,P , (N.1)

where U , U1, U2, V1, V2, X1,P , and X2,P in (A.1) are mutually independent and distributed
as follows:

U≥N (0, fl) , (N.2a)
Ui≥N (0, µi⁄i,C) , (N.2b)
Vi≥N (0, (1 ≠ µi)⁄i,C) , (N.2c)

Xi,P ≥N (0, ⁄i,P ) , (N.2d)

with
fl + ⁄i,C + ⁄i,P = 1 and (N.3a)

⁄i,P =min
Ç

1
INRji

, 1
å

, (N.3b)

where µi œ [0, 1] and fl œ
h
0,

Ä
1 ≠ max

Ä 1
INR12

,
1

INR21

ää+i.
The random variables U , U1, U2, V1, V2, X1,P , and X2,P can be interpreted as components

of the signals X1 and X2. The random variable U , which is used in this case, represents the
common component of the channel inputs of transmitter 1 and transmitter 2.

The parameters fl, µi, and ⁄i,P define a particular coding scheme for transmitter i. The
assignment in (N.3b) is based on the intuition obtained from the linear deterministic model,
in which the power of the signal Xi,P from transmitter i to receiver j must be observed at the
noise level. From (2.5), (2.6), and (N.1), the right-hand side of the inequalities in (A.14) can
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be written in terms of ≠≠æSNR1, ≠≠æSNR2, INR12, INR21, Ω≠≠SNR1, Ω≠≠SNR2, fl, µ1, and µ2. Then, the
following holds in (A.14) for the two-user GIC-NOF:

◊1,i,a3,i(fl, µj), (N.4a)
◊2,i,a2,i(fl), (N.4b)
◊3,i,a4,i(fl, µj), (N.4c)
◊4,i,a1,i, (N.4d)
◊5,i,a5,i(fl, µj), (N.4e)
◊6,i,a6,i(fl, µi), and (N.4f)
◊7,i,a7,i(fl, µ1, µ2), (N.4g)

where the functions a1,i, a2,i(fl), a3,i(fl, µj), a4,i(fl, µj), a5,i(fl, µj), a6,i(fl, µi), and a7,i(fl, µ1, µ2)
are defined in (6.1). This completes the proof of Lemma 28.
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Price of Anarchy and

Maximum and
Minimum Sum-Rates

This appendix presents the maximum sum-rate in the centralized case and the
maximum and minimum sum-rate in the decentralized case.Denote by �C

the maximum sum-rate in the centralized case, which is the solution to the
optimization problem in the numerator of (7.8) and the numerator of (7.16). A closed-form
expression of �C is given by the Lemma 34.

Lemma 34 (Maximum sum-rate in the capacity region). For all (≠æn 11, ≠æ
n 22, n12, n21, Ω≠

n 11,
Ω≠
n 22) œ N6, �C satisfies the following equality:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=min

 

max (≠æn 11, n12) + max (≠æn 22, n21) ,

max (≠æn 11, n12) + max
⇣≠æ

n 22,
Ω≠
n 11 ≠ (≠æn 11 ≠ n12)+ ⌘

,

max
⇣≠æ

n 11,
Ω≠
n 22 ≠ (≠æn 22 ≠ n21)+ ⌘+ max (≠æn 22, n21) ,

max
⇣≠æ

n 11,
Ω≠
n 22 ≠ (≠æn 22≠n21)+⌘+ max

⇣≠æ
n 22,

Ω≠
n 11 ≠ (≠æn 11≠n12)+⌘

,

max (≠æn 22, n12) + (≠æn 11 ≠ n12)+
, max (≠æn 11, n21) + (≠æn 22 ≠ n21)+

,

max
⇣

(≠æn 11 ≠ n12)+
, n21,

≠æ
n 11 ≠ (max (≠æn 11, n12) ≠ Ω≠

n 11)+ ⌘

+ max
⇣

(≠æn 22 ≠ n21)+
, n12,

≠æ
n 22 ≠ (max (≠æn 22, n21) ≠ Ω≠

n 22)+ ⌘
,
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max (≠æn 11, n21) + (≠æn 11 ≠ n12)+

+ max
⇣

(≠æn 22 ≠ n21)+
, n12,

≠æ
n 22 ≠ (max (≠æn 22, n21) ≠ Ω≠

n 22)+ ⌘
,

max (≠æn 22, n12) + (≠æn 22 ≠ n21)+

+ max
⇣

(≠æn 11 ≠ n12)+
, n21,

≠æ
n 11 ≠ (max (≠æn 11, n12) ≠ Ω≠

n 11)+ ⌘
!

. (O.1)

Proof: The proof of Lemma 34 is obtained by combining the minimum between the
sum-rate bounds (5.1c)-(5.1c), the weighted sum-rate bounds (5.1d), and the sum of single
rate bounds (5.1a)-(5.1b) on the capacity region of the two-user LDIC-NOF (Theorem 5.1.1)
for all i œ {1, 2}, with j œ {1, 2} \ {i}.

Denote by �N÷ the maximum sum-rate in the decentralized case, which is the solution to
the optimization problem in the denominator of (7.16). A closed-form expression of �N÷ is
given by the Lemma 35.

Lemma 35 (Maximum Sum-Rate at an ÷-NE). For all (≠æn 11, ≠æ
n 22, n12, n21, Ω≠

n 11, Ω≠
n 22) œ N6,

�N÷(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22) satisfies the following equality:

�N÷(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22) = min

 

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22), max (≠æn 11, n21) + max (≠æn 22, n21)

≠
 

min
⇣

(≠æn 11 ≠ n12)+
, n21

⌘
≠
⇣
min

Ä
(≠æn 11 ≠ n21)+

, n12
ä
≠
Å
max (≠æn 11, n12) ≠ Ω≠

n 11
⌘+ã+

!+

+ ÷,

max
⇣≠æ

n 11,
Ω≠
n 22 ≠ (≠æn 22 ≠ n21)+ ⌘+ max (≠æn 22, n21) + ÷

≠
 

min
⇣

(≠æn 11 ≠ n12)+
, n21

⌘
≠
⇣

min
Ä
(≠æn 11 ≠ n21)+

, n12
ä

≠
Å

max (≠æn 11, n12) ≠ Ω≠
n 11

⌘+ã+
!+

,

max (≠æn 11, n12) + max (≠æn 22, n21) + ÷

≠
 

min
⇣

(≠æn 11 ≠ n12)+
, n21

⌘
≠
⇣

min
Ä
(≠æn 11 ≠ n21)+

, n12
ä

≠
Å

max (≠æn 11, n12) ≠ Ω≠
n 11

⌘+ã+
!+

,

max (≠æn 11, n12) + max (≠æn 22, n21) + ÷

≠
 

min
⇣

(≠æn 22 ≠ n21)+
, n12

⌘
≠
⇣

min
Ä
(≠æn 22 ≠ n12)+

, n21
ä

≠
Å

max (≠æn 22, n21) ≠ Ω≠
n 22

⌘+ã+
!+

,

max (≠æn 11, n12) + max (≠æn 22, n12) + ÷

≠
 

min
⇣

(≠æn 22 ≠ n21)+
, n12

⌘
≠
⇣

min
Ä
(≠æn 22 ≠ n12)+

, n21
ä

≠
Å

max (≠æn 22, n21) ≠ Ω≠
n 22

⌘+ã+
!+

,

max (≠æn 11, n12) + max
⇣≠æ

n 22,
Ω≠
n 11 ≠ (≠æn 11 ≠ n12)+ ⌘+ ÷

≠
 

min
⇣

(≠æn 22 ≠ n21)+
, n12

⌘
≠
⇣

min
Ä
(≠æn 22 ≠ n12)+

, n21
ä

≠
Å

max (≠æn 22, n21) ≠ Ω≠
n 22

⌘+ã+
!+

,
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max (≠æn 11, n12) + max (≠æn 22, n21) + 2÷

≠
 

min
⇣

(≠æn 22 ≠ n21)+
, n12

⌘
≠
⇣

min
Ä
(≠æn 22 ≠ n12)+

, n21
ä

≠
Å

max (≠æn 22, n21) ≠ Ω≠
n 22

⌘+ã+
!+

≠
 

min
⇣

(≠æn 11 ≠ n12)+
, n21

⌘
≠
⇣

min
Ä
(≠æn 11 ≠ n21)+

, n12
ä

≠
Å

max (≠æn 11, n12) ≠ Ω≠
n 11

⌘+ã+
!+

,

max (≠æn 11, n21) + (≠æn 11 ≠ n12)+ + max
⇣

(≠æn 22 ≠ n21)+
, n12,

≠æ
n 22 ≠ (max (≠æn 22, n21) ≠ Ω≠

n 22)+ ⌘

≠
⇣

(≠æn 11 ≠ n12)+ ≠ ÷

⌘+
, max (≠æn 11, n21) + (≠æn 11 ≠ n12)+ ≠

⇣
(≠æn 22 ≠ n21)+ ≠ ÷

⌘+

+ max
⇣

(≠æn 11 ≠ n12)+
, n21,

≠æ
n 11 ≠ (max (≠æn 11, n12) ≠ Ω≠

n 11)+ ⌘
!

, (O.2)

where, �C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22) is defined in Lemma 34.

Proof: The proof of Lemma 35 follows from obtaining the maximum sum-rate for the
÷-NE region of the two-user LDIC-NOF (Theorem 7.1.1). It corresponds to the minimum
between the sum-rate upper-bounds (5.1c)-(5.1c), the di�erence between the upper-bound
on the weighted sum-rate (5.1d) and the lower-bound on the single rate (7.2b), i.e., Ui, and
the sum of upper-bounds on single rates (5.1a)-(5.1b) in Theorem 5.1.1 and (7.2b), for all
i œ {1, 2}, with j œ {1, 2} \ {i}.

Denote by �N÷
the minimum sum-rate in the decentralized case, which is the solution to

the optimization problem in the denominator of (7.8). A closed-form expression of �N÷
is

given by the Lemma 36.

Lemma 36 (Minimum Sum-Rate at an ÷-NE). For all (≠æn 11, ≠æ
n 22, n12, n21, Ω≠

n 11, Ω≠
n 22) œ N6,

�N÷(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22) satisfies the following equality:

�N÷(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=

⇣Ä≠æ
n 11 ≠ n12

ä+ ≠ ÷

⌘+
+
⇣Ä≠æ

n 22 ≠ n21
ä+ ≠ ÷

⌘+
. (O.3)

Proof: The proof of Lemma 36 follows from obtaining the minimum sum-rate for the
÷-NE region of the two-user LDIC-NOF (Theorem 7.1.1) and it is obtained as the sum of the
lower-bounds on the single rates in (7.2a), i.e., Li, for all i œ {1, 2}, with j œ {1, 2} \ {i}.

O.1. PoA when both Transmitter-Receiver Pairs are in the
Low-Interference Regime

When both transmitter-receiver pairs are in LIR, i.e., ≠æ
n 11 > n12 and ≠æ

n 22 > n21, and assuming
that Ω≠

n ii 6 max (≠æn ii, nij) for all i œ {1, 2} and j œ {1, 2} \ {i}, the following holds:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=min

 

max (≠æn 22, n12) + ≠æ
n 11 ≠ n12, max (≠æn 11, n21) + ≠æ

n 22 ≠ n21,

max
⇣≠æ

n 11 ≠ n12, n21,
Ω≠
n 11

⌘
+ max

⇣≠æ
n 22 ≠ n21, n12,

Ω≠
n 22

⌘
,
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max (≠æn 11, n21) + ≠æ
n 11 ≠ n12 + max

⇣≠æ
n 22 ≠ n21, n12,

Ω≠
n 22

⌘
,

max (≠æn 22, n12) + ≠æ
n 22 ≠ n21 + max

⇣≠æ
n 11 ≠ n12, n21,

Ω≠
n 11

!

(O.4)

and

�N÷(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=≠æ

n 11 ≠ n12 + ≠æ
n 22 ≠ n21 ≠ 2÷

=�N 1. (O.5)

Then, the PoA when both transmitter-receiver pairs are in LIR can be calculated using
(O.4) and (O.5).

If B1 in (7.7c) holds true, the following holds:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=min

 
≠æ
n 22 + ≠æ

n 11 ≠ n12,
≠æ
n 11 + ≠æ

n 22 ≠ n21,

max
⇣≠æ

n 11 ≠ n12,
Ω≠
n 11

⌘
+ max

⇣≠æ
n 22 ≠ n21,

Ω≠
n 22

⌘
,

2≠æ
n 11 ≠ n12 + max

⇣≠æ
n 22 ≠ n21,

Ω≠
n 22

⌘
,

2≠æ
n 22 ≠ n21 + max

⇣≠æ
n 11 ≠ n12,

Ω≠
n 11

!

=�C1, (O.6)

and this proves (7.10a).

If B2,i in (7.7d) with i = 1 and j = 2 holds true, the following holds:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=min

 
≠æ
n 22 + ≠æ

n 11 ≠ n12,
≠æ
n 11 + ≠æ

n 22 ≠ n21,

max
⇣≠æ

n 11 ≠ n12,
Ω≠
n 11

⌘
+ max

⇣
n12,

Ω≠
n 22

⌘
,

2≠æ
n 11 ≠ n12 + max

⇣
n12,

Ω≠
n 22

⌘
,

2≠æ
n 22 ≠ n21 + max

⇣≠æ
n 11 ≠ n12,

Ω≠
n 11

⌘!

=�C2,1, (O.7)

and this proves (7.10b) with i = 1 and j = 2. The same procedure can be followed when B2,i

in (7.7d) with i = 2 and j = 1 holds true.

If B3,i in (7.7e) or B5,i in (7.7g) with i = 1 and j = 2 holds true, the following holds:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=≠æ

n 11. (O.8)

The same procedure can be followed when B3,i in (7.7e) or B5,i in (7.7g) with i = 2 and j = 1
holds true.
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Transmitter-Receiver Pair 2 is in the High-Interference Regime

If B4 in (7.7f) holds true, the following holds:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=min

 
≠æ
n 22 + ≠æ

n 11 ≠ n12,
≠æ
n 11 + ≠æ

n 22 ≠ n21,

max
⇣
n21,

Ω≠
n 11

⌘
+ max

⇣
n12,

Ω≠
n 22

⌘
,

2≠æ
n 11 ≠ n12 + max

⇣
n12,

Ω≠
n 22

⌘
,

2≠æ
n 22 ≠ n21 + max

⇣
n21,

Ω≠
n 11

!

=�C3, (O.9)

and this proves (7.10c). Plugging (O.6), (O.7), (O.8), (O.9), and (O.5) into (7.8) yields (7.9),
and this completes the proof of the PoA when both transmitter receiver pairs are in LIR.

O.2. PoA when Transmitter-Receiver Pair 1 is in the
Low-Interference Regime and Transmitter-Receiver Pair 2 is
in the High-Interference Regime

When transmitter-receiver pair 1 is in LIR, i.e., ≠æ
n 11 > n12, and transmitter-receiver pair

2 is in HIR, i.e, ≠æ
n 22 6 n21, and assuming that Ω≠

n ii 6 max (≠æn ii, nij) for all i œ {1, 2} and
j œ {1, 2} \ {i}, the following holds:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=min

 
≠æ
n 11 + max

⇣≠æ
n 22,

Ω≠
n 11 ≠ ≠æ

n 11 + n12
⌘
, (O.10)

max (≠æn 22, n12) + ≠æ
n 11 ≠ n12, max (≠æn 11, n21) ,

max
⇣≠æ

n 11 ≠ n12, n21,
Ω≠
n 11

⌘
+ max

⇣
n12,

≠æ
n 22 ≠ n21 + Ω≠

n 22
⌘!

and

�N÷(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=≠æ

n 11 ≠ n12 ≠ ÷. (O.11)

If B7 in (7.7i), or B8 in (7.7j), or B10 in (7.7l) holds true, the following holds:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=≠æ

n 11. (O.12)

If B9 in (7.7k) holds true, the following holds:

�C(≠æn 11,
≠æ
n 22,n12,n21,

Ω≠
n 11,

Ω≠
n 22)=min

⇣≠æ
n 22 + ≠æ

n 11 ≠ n12, n21
⌘
. (O.13)

Plugging (O.12), (O.13), and (O.11) into (7.8) yields (7.14), and this completes the proof
of the PoA when when transmitter-receiver pair 1 is in LIR and transmitter-receiver pair 2 is
in HIR.
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Information Measures
This chapter introduces some information measures that are used along this thesis.

These fundamental notions correspond to Shannon’s original measures [77], which
build the foundations of information theory. Shannon’s information measures

include entropy, joint entropy, conditional entropy, mutual information, and conditional mutual
information.

P.1. Discrete Random Variables
P.1.1. Entropy
The entropy H(X) of a discrete random variable X is a functional of the pmf PX , which
measures the average amount of information contained into X.
Definition 9 (Entropy). Let X be a countable set and let also X be a random variable with
pmf PX : X æ [0, 1]. Then, the entropy of X, denoted by H(X), is:

H(X) = ≠
X

xœsupp(PX)
PX(x) log PX(x). (P.1)

This entropy is measured in bits given that the base of the logarithm is two. Note that
H(X) depends only on PX and not on the elements of X .

The entropy of a random variable X can also be written as follows:

H(X) = ≠EX [log PX(X)] . (P.2)
For each x œ supp (PX), define ÿ(x) = ≠ log PX(x). Then, ÿ is a new random variable,

and H(X) is its average. The function ÿ(x) can be interpreted as the amount of information
provided by the event X = x (See Figure P.1) [29]. According to this interpretation, an
unlikely event provides a very large amount of information and an event that occurs with
probability close to one provides no information [49].
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Figure P.1.: The function ÿ(x).

The following corollary presents the entropy of a binary random variable.

Corollary 11. Let X be a binary random variable with distribution PX(0) = 1 ≠ PX(1) = p

and 0 6 p 6 1. Then,

H(X) =
®

0 if p = 0
≠p log p ≠ (1 ≠ p) log(1 ≠ p) otherwise (P.3)

The binary entropy function in (P.3) is plotted in Figure P.2 as a function of p. It is worth
noting that the binary entropy function is a non-negative function with a maximum equal to
one when PX(0) = 1 ≠ PX(1) = 1

2 (uniform distribution).
In general, the entropy takes non-negative values, i.e., H(X) > 0, with equality if and only

if X is non-random. The entropy takes its maximum value when all the events have the same
occurrence probability, i.e., H(X) = log (|X |), as stated by the following lemma.

Lemma 37. Let X be a countable set and let also X be a random variable with pmf PX :
X æ [0, 1]. Then,

0 6 H(X) 6 log |X |. (P.4)

Proof: The lower-bound on the entropy of a random variable X is obtained from the fact
that for all x œ supp (PX), 0 < PX(x) 6 1, then 1

PX(x) > 1 and log
Ç

1
PX(x)

å
> 0. Thus,

H(X) > 0
The upper-bound on the entropy of the random variable X is also obtained from (P.2) as
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Figure P.2.: Entropy of a binary random variable.

follows:

H(X)=EX

ñ
log 1

PX(X)

ô
(P.5a)

6logEX

ñ
1

PX(X)

ô
(P.5b)

=log
X

xœsupp(PX)
1 (P.5c)

=log |X |, (P.5d)

where, (P.5b) follows from Jensen’s inequality. Thus, the maximum value of the entropy of a
random variable X is obtained when this is uniformly distributed, i.e., PX(x) = 1

|X | for all
x œ supp (PX), and this completes the proof of Lemma 37.

P.1.2. Joint Entropy

The joint entropy H(X, Y ) of the discrete random variables X and Y is a functional of the
pmf PX,Y , which measures the average amount of information simultaneously contained into
X and Y . It is a measure of the uncertainty about the simultaneous outcome of the random
variables X and Y .

Definition 10 (Joint Entropy). Let X and Y be two countable sets and let also X and Y be
two random variables with joint pmf PXY : X ◊ Y æ [0, 1]. Then, the joint entropy of X and
Y , denoted by H(X, Y ), is:

H(X, Y ) = ≠
X

(x,y)œsupp(PXY )
PXY (x, y) log PXY (x, y). (P.6)
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The joint entropy of the random variables X and Y can also be written as follows:

H(X, Y ) = ≠EXY [log PXY (X, Y )] . (P.7)

The joint entropy between two random variables is less than or equal to the sum of the
entropy of each random variable, as stated by the following lemma.

Lemma 38. Let X and Y be two countable sets and let also X and Y be two random variables
with joint pmf PXY : X ◊ Y æ [0, 1]. Then,

H(X, Y ) 6 H(X) + H(Y ), (P.8)

with equality if and only if the random variables X and Y are independent.

Proof: From (P.7), the following holds:

H(X, Y )=≠EXY

ñ
log
Ç

PX(X)PY (Y )PXY (X, Y )
PX(X)PY (Y )

åô
. (P.9a)

=≠EX [log PX(X)] ≠ EY [log PY (Y )] ≠ EXY

ñ
log
Ç

PXY (X, Y )
PX(X)PY (Y )

åô
(P.9b)

=H(X) + H(Y ) + EXY

ñ
log
Ç

PX(X)PY (Y )
PX,Y (XY )

åô
(P.9c)

6H(X) + H(Y ) + log
Ç
EXY

ñÇ
PX(X)PY (Y )
PXY (X, Y )

åôå
(P.9d)

=H(X) + H(Y ) + log

Ñ
X

(x,y)œsupp(PXY )
PX(X)PY (Y )

é
(P.9e)

=H(X) + H(Y ), (P.9f)

where, (P.9d) follows from Jensen’s inequality.
If the random variables X and Y are independent, from (P.9c) the following holds:

H(X, Y )=H(X) + H(Y ) + EXY

ñ
log
Ç

PX(X)PY (Y )
PX(X)PY (Y )

åô
(P.10a)

=H(X) + H(Y ), (P.10b)

and this completes the proof of Lemma 38.
Definition 11 generalizes Definition 10.

Definition 11. Let X1, X2, . . ., XN be N countable sets and let also X = (X1, X2, . . . , XN )T

be a vector of N random variables with joint pmf PX : X1 ◊ X2 ◊ . . . ◊ XN æ [0, 1]. Then, the
joint entropy of X, denoted by H(X), is:

H(X) = ≠
X

xœsupp(PX)
PX(x) log PX(x). (P.11)

The joint entropy of a vector of discrete random variables X can also be written as follows:

H(X) = ≠EX [log PX(X)] . (P.12)
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If X1, X2, . . . , XN are mutually independent, the following holds:

H(X) =
NX

n=1
H(Xn). (P.13)

P.1.3. Conditional Entropy
The conditional entropy H(Y |X) of Y given X is a measure of the average amount of
information necessary to identify the random variable Y given the observation of the random
variable X.

Definition 12 (Conditional Entropy). Let X and Y be two countable sets and let also X and
Y be two random variables with joint pmf PXY : X ◊ Y æ [0, 1]. Then, the entropy of Y

conditioning on X, denoted by H(Y |X), is:

H(Y |X) = ≠
X

(x,y)œsupp(PXY )
PXY (x, y) log PY |X(y|x). (P.14)

The entropy of the random variable Y conditioning on the random variable X can also be
written as follows:

H(Y |X) = ≠EXY

î
log PY |X(Y |X)

ó
. (P.15)

Note also that the conditional entropy in (P.14) can be written as follows:

H(Y |X)=
X

xœsupp(PX)
PX(x)

2

64≠
X

yœsupp(PY |X=x)
PY |X(y|x) log PY |X(y|x)

3

75

=
X

xœsupp(PX)
PX(x)H(Y |X = x), (P.16)

where, H(Y |X = x) = ≠
X

yœsupp(PY )
PY |X(y|x) log PY |X(y|x) is the entropy of Y conditioning on a

fixed X = x.
The following lemma presents a generalization of the chain rule for entropy and the condi-

tional entropy.

Lemma 39 (Chain rule for entropy and chain rule for conditional entropy). Let X1, X2, . . .,
XN and Y be N + 1 countable sets, let X = (X1, X2, . . . , XN )T be a vector of N random
variables, and let also Y be a random variable with joint pmfs PX : X1 ◊ X2 ◊ . . . ◊ XN æ [0, 1]
and PXY : X1 ◊ X2 ◊ . . . ◊ XN ◊ Y æ [0, 1]. Then,

H(X1, . . . , XN )=H(X1) + H(X2|X1) +
NX

n=3
H(Xn|X1, . . . , Xn≠1), and (P.17)

H(X1, . . . , XN |Y )=H(X1|Y ) + H(X2|Y, X1) +
NX

n=3
H(Xn|Y, X1, . . . , Xn≠1). (P.18)
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Proof:
Proof of (P.17): From (P.12), the following holds:

H(X)=≠EX

î
log
Ä
PX1(X1)PX2|X1(X2|X1) . . . PXN |X1X2...XN≠1(XN |X1, X2, . . . , XN≠1)

äó

(P.19a)
=≠EX1 [log PX1(X1)] ≠ EX1X2

î
log PX2|X1(X2|X1)

ó
≠ . . . ≠ EX

î
log PXN |X1,X2,...,XN≠1

ó

(P.19b)
=H(X1) + H(X2|X1) + . . . + H(XN |X1, X2, . . . , XN≠1), (P.19c)

and this completes the proof of (P.17).
Proof of (P.18): From (P.15), the following holds:

H(X|Y )=≠EXY

î
log PX|Y (X|Y )

ó
(P.20a)

≠EXY

h
log

⇣
PX1|Y (X1|Y )PX2|X1Y (X2|Y, X1) . . .

PXN |X1X2...XN≠1Y (XN |Y, X1, X2, . . . , XN≠1)
⌘i

(P.20b)

=≠EX1Y

î
log PX1|Y (X1|Y )

ó
≠ EX1X2Y

î
log PX2|X1Y (X2|Y, X1)

ó
≠ . . .

≠EXY

î
log PXN |X1,X2,...,XN≠1Y

ó
(P.20c)
(P.20d)

=H(X1|Y ) + H(X2|Y, X1) + . . . + H(XN |Y, X1, X2, . . . , XN≠1), (P.20e)

and this completes the proof of (P.18). This completes the proof of Lemma 39.
The entropy of one random variable is bigger than or equal to the entropy of the same

random variable conditioned in the occurrence of other random variable, as stated by the
following lemma.

Lemma 40 (Conditioning does not increase entropy). Let X and Y be two countable sets and
let also X and Y be two random variables with joint pmf PXY : X ◊ Y æ [0, 1]. Then,

H(Y |X) 6 H(Y ), (P.21)

with equality if and only if the random variables X and Y are independent.

Proof: From (P.15), the following holds:

H(Y |X)=≠EXY

ñ
log
Ç

PY (Y )PX|Y (X|Y )
PX(X)

åô
(P.22a)

=≠EY [log PY (Y )] ≠ EXY

ñ
log
Ç

PX|Y (X|Y )
PX(X)

åô
(P.22b)

=H(Y ) ≠ EXY

ñ
log
Ç

PXY (X, Y )
PX(X)PY (Y )

åô
(P.22c)

=H(Y ) + EXY

ñ
log
Ç

PX(X)PY (Y )
PXY (X, Y )

åô
(P.22d)

6H(Y ) + log
Ç
EXY

ñÇ
PX(X)PY (Y )
PXY (X, Y )

åôå
(P.22e)
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=H(Y ) + log

Ñ
X

(x,y)œsupp(PXY )
PX(X)PY (Y )

é
(P.22f)

=H(Y ), (P.22g)

where, (P.22e) follows from Jensen’s inequality.
If the random variables X and Y are independent, from (P.22d) the following holds:

H(Y |X)=H(Y ) + EXY

ñ
log
Ç

PX(X)PY (Y )
PX(X)PY (Y )

åô
(P.23a)

H(Y |X)=H(Y ), (P.23b)

and this completes the proof of Lemma 40.
The joint entropy of a vector of random variables is less than or equal to the sum of the

entropy of each random variable, as stated by the following lemma.
Lemma 41. Let X1, X2, . . ., XN be N countable sets and let also X = (X1, X2, . . . , XN )T be
a vector of N random variables with joint pmf PX : X1 ◊ X2 ◊ . . . ◊ XN æ [0, 1]. Then,

H(X1, . . . , XN ) 6
NX

n=1
H(XN ), (P.24)

with equality if and only if the random variables X1, X2, . . . , XN are mutually independent.
Proof: The proof of Lemma 41 follows from Lemma 39 and Lemma 40.

The entropy of a deterministic function of the random variable X is less than or equal to
the entropy of the random variable X, with equality only when the function is an injective
function. This is stated in Lemma 42.
Lemma 42 (Entropy of a function). Let X and Y be countable sets, let X be a random
variable with pmf PX : X æ [0, 1], and let also f : X æ Y be a deterministic function of X.
Then,

H(X) > H(f(X)). (P.25)
Proof: Let Y be a random variable with Y = f(X) and f : X æ Y. From (P.2), the

following holds:

H(Y )=≠EY [log PY (Y )] (P.26a)
6≠EX [log PX(X)] (P.26b)
=H(X), (P.26c)

where, (P.26b) follows from the fact that PY (y) =
X

xœsupp(PX),y=f(x)
PX(x), which implies that PY (y) >

PX(x) and ≠ log PY (y) 6 ≠ log PX(x). If f is an injective function PY (y) = PX(x), then
H(Y ) = H(X), and this completes the proof of Lemma 42.

P.1.4. Mutual Information
The mutual information I(X; Y ) between the random variables X and Y is the average amount
of information about one of the random variables provided by the occurrence of the other
random variable.
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Definition 13 (Mutual Information). Let X and Y be two countable sets and let also X and
Y be two random variables with joint pmf PXY : X ◊Y æ [0, 1]. Then, the mutual information
between X and Y , denoted by I(X; Y ), is:

I(X; Y ) = ≠
X

(x,y)œsupp(PXY )
PXY (x, y) log

Ç
PXY (x, y)

PX(x)PY (y)

å
. (P.27)

The mutual information between the random variables X and Y can also be written as
follows:

I(X; Y )=EXY

ñ
log
Ç

PXY (X, Y )
PX(X)PY (Y )

åô
, (P.28a)

I(X; Y )=EXY

ñ
log
Ç

PY |X(Y |X)
PY (Y )

åô
, and (P.28b)

I(X; Y )=EXY

ñ
log
Ç

PX|Y (X|Y )
PX(X)

åô
. (P.28c)

The following lemma presents some useful properties of the mutual information.

Lemma 43. Let X and Y be two countable sets and let also X and Y be two random variables
with joint pmf PXY : X ◊ Y æ [0, 1]. Then,

I(X; Y )=I(Y ; X), (P.29)
I(X; Y )=H(X) ≠ H(X|Y ), (P.30)
I(X; Y )=H(Y ) ≠ H(Y |X), (P.31)
I(X; Y )>0, (P.32)
I(X; Y )=H(X) + H(Y ) ≠ H(X, Y ), (P.33)
I(X; X)=H(X). (P.34)

Proof:
Proof of (P.29): This follows directly from Definition 13.
Proof of (P.30): From (P.28c), the following holds:

I(X; Y )=≠EX [log PX(X)] + EXY

î
log PX|Y (X|Y )

ó
(P.35a)

=H(X) ≠ H(X|Y ), (P.35b)

and this completes the proof of (P.30).
Proof of (P.31): From (P.28b), the following holds:

I(X; Y )=EXY

ñ
log
Ç

PY |X(Y |X)
PY (Y )

åô
(P.36a)

=≠EY [log PY (Y )] + EXY

î
log PY |X(Y |X)

ó
(P.36b)

=H(Y ) ≠ H(Y |X), (P.36c)

and this completes the proof of (P.31).
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Proof of (P.32): From (P.30) and (P.31), the following holds:

I(X; Y )>H(X) ≠ H(X) (P.37a)
=0, (P.37b)

where, (P.37a) follows from Lemma 40, and this completes the proof of (P.32).
Proof of (P.33): From (P.28a), the following holds:

I(X; Y )=≠EX [log PX(X)] ≠ EY [log PY (Y )] + EXY [log PXY (X, Y )] (P.38a)
=H(X) + H(Y ) ≠ H(X, Y ), (P.38b)

and this completes the proof of (P.33).
Proof of (P.34): Let Y be a random variable identical to the random variable X, i.e.,

Y = X. From (P.28a), the following holds:

I(X; X)=EXY

ñ
log
Ç

PXY (X, Y )
PX(X)PY (Y )

åô
(P.39a)

=EX

ñ
log
Ç

PX(X)
PX(X)PX(X)

åô
(P.39b)

=EX

ñ
log
Ç

1
PX(X)

åô
(P.39c)

=≠EX [log PX(X)] (P.39d)
=H(X), (P.39e)

and this completes the proof of (P.34). This completes the proof of Lemma 43.
The mutual information between two independent random variables is equal to zero. This

means that the occurrence of one random variable does not provide information about the
occurrence of the other random variable. This is stated by the following lemma.

Lemma 44 (Mutual information of independent random variables). Let X and Y be two
countable sets and let also X and Y be two independent random variables with pmfs PX : X æ
[0, 1] and PY : Y æ [0, 1]. Then,

I(X; Y ) = 0, (P.40)

Proof: From the assumption of the lemma, it follows that PXY (x, y) = PX(x)PY (y) for
all (x, y) œ X ◊ Y. Hence, from (P.28a) the following holds:

I(X; Y )=EXY

ñ
log
Ç

PX(X)PY (Y )
PX(X)PY (Y )

åô
(P.41a)

=EXY [log 1] (P.41b)
=0, (P.41c)

and this completes the proof.
The mutual information between a random variable X and two random variables Y and Z

is bigger than or equal to the mutual information between the random variable X and one of
the random variables Y and Z. This is stated by the following lemma.
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Lemma 45. Let X , Y, and Z be three countable sets and let also X, Y , and Z be three
random variables with joint pmf PXY Z : X ◊ Y ◊ Z æ [0, 1]. Then,

I(X; Y, Z) > I(X; Y ), (P.42a)

with equality if and only if X æ Y æ Z. Similarly,

I(X; Y, Z) > I(X; Z), (P.42b)

with equality if and only if X æ Z æ Y .

Proof:
Proof of (P.42a): From (P.30), the following holds:

I(X; Y, Z)=H(Y, Z) ≠ H(Y, Z|X) (P.43a)
=H(Y ) + H(Z|Y ) ≠ H(Y |X) ≠ H(Z|X, Y ) (P.43b)
=I(X; Y ) + H(Z|Y ) ≠ H(Z|X, Y ) (P.43c)
>I(X; Y ), (P.43d)

where, (P.43d) follows from the fact the fact that H(Z|Y ) ≠ H(Z|X, Y ) > 0 given that
conditioning does not increase entropy (Lemma 40). Note that the equality holds if H(Z|Y ) ≠
H(Z|X, Y ) = H(Z|Y ) ≠ H(Z|Y ) = 0. This means that the random variables X and Z are
independent conditioning on the random variable Y , i.e., X æ Y æ Z. This completes the
proof of (P.42a).

Proof of (P.42b): From (P.30), the following holds:

I(X; Y, Z)=H(Y, Z) ≠ H(Y, Z|X) (P.44a)
=H(Z) + H(Y |Z) ≠ H(Z|X) ≠ H(Y |X, Z) (P.44b)
=I(X; Z) + H(Y |Z) ≠ H(Y |X, Z) (P.44c)
>I(X; Z), (P.44d)

where, (P.43d) follows from the fact the fact that H(Y |Z) ≠ H(Y |X, Z) > 0 given that
conditioning does not increase entropy (Lemma 40), and this completes the proof of (P.42b).
This completes the proof of Lemma 45.

P.1.5. Conditional Mutual Information

Definition 14 (Conditional Mutual Information). Let X , Y, and Z be three countable sets
and let X, Y and Z be three random variables with joint pmf PXY Z : X ◊ Y ◊ Z æ [0, 1].
Then, the mutual information between X and Y conditioning on Z, denoted by I(X; Y |Z), is:

I(X; Y |Z) = ≠
X

(x,y,z)œsupp(PXY Z)
PXY Z(x, y, z) log

Ç
PXY |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)

å
. (P.45)

The mutual information between the random variables X and Y conditioning on the random
variable Z can also be written as follows:

198



P.1. Discrete Random Variables

I(X; Y |Z)=EXY Z

ñ
log
Ç

PXY |Z(X, Y |Z)
PX|Z(X|Z)PY |Z(Y |Z)

åô
, (P.46a)

I(X; Y |Z)=EXY Z

ñ
log
Ç

PY |XZ(y|x, z)
PY |Z(y|z)

åô
, and (P.46b)

I(X; Y |Z)=EXY Z

ñ
log
Ç

PX|Y Z(x|yz)
PX|Z(x|z)

åô
. (P.46c)

Note also that the conditional mutual information in (P.45) can be written as follows:

I(X; Y |Z)=
X

zœsupp(PZ)
PZ(z)

2

64≠
X

(x,y)œsupp(PXY |Z=z)
PX,Y |Z(x, y|z) log

Ç
PXY |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)

å3
75

=
X

zœsupp(PZ)
PZ(z)I(X; Y |Z = z), (P.47)

where, I(X; Y |Z = z) = ≠
X

(x,y)œsupp(PXY |Z=z)
PX,Y |Z(x, y|z) log

Ç
PXY |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)

å
is the mutual

information between X and Y conditioning on a fixed Z = z.
The following lemma presents some useful properties of the mutual information and condi-

tional mutual information.

Lemma 46. Let X , Y, and Z be three countable sets and let X, Y and Z be three random
variables with joint pmf PXY Z : X ◊ Y ◊ Z æ [0, 1]. Then,

I(X; Y |Z)=H(Y |Z) ≠ H(Y |X, Z), (P.48)
I(X; Y |Z)=H(X|Z) ≠ H(X|Y, Z), (P.49)
I(X, Y ; Z)=I(X; Z) + I(Y ; Z|X), and (P.50)
I(X, Y ; Z)=I(Y ; Z) + I(X; Z|Y ). (P.51)

Proof:
Proof of (P.48): From (P.46b), the following holds:

I(X; Y |Z)=EXY Z

î
log PY |XZ(Y |X, Z)

ó
≠ EY Z

î
log PY |Z(Y |Z)

ó
(P.52a)

=H(Y |Z) ≠ H(Y |X, Z), (P.52b)

and this completes the proof of (P.48).
Proof of (P.49): From (P.46c), the following holds:

I(X; Y |Z)=EXY Z

î
log PX|Y Z(X|Y, Z)

ó
≠ EXZ

î
log PX|Z(X|Z)

ó
(P.53a)

=H(X|Z) ≠ H(X|Y, Z), (P.53b)

and this completes the proof of (P.49).
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Proof of (P.50): From (P.30), the following holds:

I(X, Y ; Z)=H(X, Y ) ≠ H(X, Y |Z) (P.54a)
=H(X) + H(Y |X) ≠ H(X|Z) ≠ H(Y |X, Z) (P.54b)
=I(X; Z) + I(Y ; Z|X), (P.54c)

and this completes the proof of (P.50).
Proof of (P.51): From (P.30), the following holds:

I(X, Y ; Z)=H(X, Y ) ≠ H(X, Y |Z) (P.55a)
=H(Y ) + H(X|Y ) ≠ H(Y |Z) ≠ H(X|Y, Z) (P.55b)
=I(Y ; Z) + I(X; Z|Y ), (P.55c)

and this completes the proof of (P.51). This completes the proof of Lemma 46.

The mutual information between the random variables X and Y conditioning on the random
variable Z is equal to zero if X and Y are independent conditioning on Z, i.e., X æ Z æ Y ,
as stated by the following lemma.

Lemma 47. Let X , Y, and Z be three countable sets and let also X, Y and Z be three random
variables with joint pmf PXY Z : X ◊ Y ◊ Z æ [0, 1] such that X æ Z æ Y . Then,

I(X; Y |Z) = 0. (P.56)

Proof: From (P.46c), the following holds:

I(X; Y |Z)=EXY Z

ñ
log
Ç

PX|Z(x|z)
PX|Z(x|z)

åô
(P.57a)

=EXY Z [log 1] (P.57b)
=0. (P.57c)

where, (P.57a) follows from the fact that the random variables X and Y are mutually
independent conditioning on the random variable Z, i.e., X æ Z æ Y , and this completes
the proof of Lemma 47.

The following lemma presents some additional useful properties of the mutual information
and conditional mutual information.

Lemma 48 (Chain rule for mutual information and chain rule for conditional mutual infor-
mation). Let X1, X2, . . ., XN , Y and Z be N + 2 countable sets. Let X = (X1, X2, . . . , XN )T

be a vector of N random variables and let also Y and Z be two random variables with joint
pmfs PXY : X1 ◊ X2 ◊ . . . ◊ XN ◊ Y æ [0, 1] and PXY Z : X1 ◊ X2 ◊ . . . ◊ XN ◊ Y ◊ Z æ [0, 1].
Then,

I(X1, X2, . . . , XN ; Y )=I(X1; Y ) + I(X2; Y |X1) +
NX

n=3
I(Xn; Y |X1, X2, . . . , Xn≠1), (P.58a)

I(X1, X2, . . . , XN ; Y )>0, and (P.58b)
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I(X1, X2, . . . , XN ; Y |Z)=I(X1; Y |Z) + I(X2; Y |Z, X1) +
NX

n=3
I(Xn; Y |Z, X1, X2, . . . , Xn≠1).

(P.58c)

Proof:

Proof of (P.58a): From (P.28a), the following holds:

I(X; Y )=EXY

ñ
log
Ç

PXY (X, Y )
PX(X)PY (Y )

åô
(P.59a)

=EXY

"

log
 

PX1Y (X1, Y )
PX1(X1)PY (Y )

PX2|X1Y (X2|X1, Y )
PX2|X1(X2|X1)

PX3|X1X2Y (X3|X1, X2, Y )
PX3|X1X2(X3|X1, X2) . . .

PXN |X1X2...XN≠1Y (XN |X1, X2, . . . , XN≠1, Y )
PXN |X1X2...XN≠1(X3|X1, X2, . . . , XN ≠ 1)

!#

(P.59b)

=EX1Y

ñ
log PX1Y (X1, Y )

PX1(X1)PY (Y )

ô
+ EX1X2Y

ñ
log

PX2|X1Y (X2|X1, Y )
PX2|X1(X2|X1)

ô

+EX1X2X3Y

ñ
log

PX3|X1X2Y (X3|X1, X2, Y )
PX3|X1X2(X3|X1, X2)

ô
+ . . .

+EXY

ñ
log

PXN |X1X2...XN≠1Y (XN |X1, X2, . . . , XN≠1, Y )
PXN |X1X2...XN≠1(X3|X1, X2, . . . , XN ≠ 1)

ô
(P.59c)

=I(X1; Y ) + I(X2; Y |X1) + I(X3; Y |X1, X2) + . . . + I(XN ; Y |X1, X2, . . . , XN≠1),
(P.59d)

where, (P.59d) follows from (P.28a) and (P.46b), and this completes the proof of (P.58a).

Proof of (P.58b): From (P.58a), the following holds:

I(X1, X2, . . . , XN ; Y )=I(X1; Y ) + I(X2; Y |X1) +
NX

n=3
I(Xn; Y |X1, X2, . . . , Xn≠1) (P.60a)

=H(Y ) ≠ H(Y |X1) + H(Y |X1) ≠ H(Y |X1, X2)

+
NX

n=3
(H(Y |X1, X2, . . . , Xn≠1) ≠ H(Y |X1, X2, . . . , Xn≠1, Xn)) (P.60b)

>0, (P.60c)

where, (P.60c) follows from Lemma 40 and the fact that H(Y ) > H(Y |X1), H(Y |X1) >
H(Y |X1, X2), . . ., H(Y |X1, X2, . . . , XN≠1) > H(Y |X1, X2, . . . , XN≠1, XN ). This completes
the proof of of (P.58b).

Proof of (P.58c): From (P.46c), the following holds:

I(X; Y |Z)=EXY Z

ñ
log
Ç

PX|Y Z(X|Y, Z)
PX|Z(X)

åô
(P.61a)
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=EXY Z

"

log
 

PX1|Y Z(X1|Y Z)
PX1|Z(X1|Z)

PX2|X1Y Z(X2|X1, Y, Z)
PX2|X1Z(X2|X1, Z)

PX3|X1X2Y Z(X3|X1, X2, Y, Z)
PX3|X1X2Z(X3|X1, X2, Z) . . .

PXN |X1X2...XN≠1Y Z(XN |X1, X2, . . . , XN≠1, Y, Z)
PXN |X1X2...XN≠1,Z(X3|X1, X2, . . . , XN ≠ 1, Z)

!#

(P.61b)

=EX1Y Z

ñ
log

PX1|Y Z(X1|Y, Z)
PX1|Z(X1|Z)

ô
+ EX1X2Y Z

ñ
log

PX2|X1Y Z(X2|X1, Y, Z)
PX2|X1Z(X2|X1, Z)

ô

+EX1X2X3Y Z

ñ
log

PX3|X1X2Y Z(X3|X1, X2, Y, Z)
PX3|X1X2Z(X3|X1, X2, Z)

ô
+ . . .

+EXY Z

ñ
log

PXN |X1X2...XN≠1Y Z(XN |X1, X2, . . . , XN≠1, Y, Z)
PXN |X1X2...XN≠1Z(X3|X1, X2, . . . , XN ≠ 1, Z)

ô
(P.61c)

=I(X1; Y |Z) + I(X2; Y |X1, Z) + I(X3; Y |X1, X2, Z) + . . .

+I(XN ; Y |X1, X2, . . . , XN≠1, Z), (P.61d)

where, (P.61d) follows from (P.46c), and this completes the proof of (P.58c). This completes
the proof of Lemma 48.

The mutual information between the random variables X and Z is less than or equal to the
mutual information between the random variables X and Y , or between the random variables
Y and Z, if the random variables X and Z are independent conditioning on the random
variable Y , i.e., X æ Y æ Z. This is stated in the following lemma.

Lemma 49 (Data Processing Inequality. Theorem 2.8.1 in [25]). Let X , Y, and Z be three
countable sets and let X, Y and Z be three random variables with joint pmf PXY Z : X ◊Y◊Z æ
[0, 1] such that X æ Y æ Z. Then,

I(X; Z)6I(X; Y ) and (P.62a)
I(X; Z)6I(Y ; Z). (P.62b)

If Z = g(Y ), then

I(X; g(Y ))6I(X; Y ). (P.62c)

Proof:
Proof of (P.62a): From (P.58a), the following holds:

I(X; Y, Z)=I(X; Z) + I(X; Y |Z) (P.63a)
>I(X; Z) (P.63b)

and

I(X; Y, Z)=I(X; Y ) + I(X; Z|Y ) (P.63c)
=I(X; Y ), (P.63d)

where, (P.63d) follows from the fact that the random variables X and Z are mutually
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independent conditioning on the random variable Y , i.e., X æ Y æ Z. From (P.63b) and
(P.63d), the following holds:

I(X; Z)6I(X; Y ), (P.63e)

and this completes the proof of (P.62a).
Proof of (P.62b): From (P.58a), the following holds:

I(X, Y ; Z)=I(Y ; Z) + I(X; Z|Y ) (P.64a)
=I(Y ; Z) (P.64b)

and

I(X, Y ; Z)=I(X; Z) + I(Y ; Z|X) (P.64c)
>I(X; Z), (P.64d)

where, (P.64b) follows from the fact that the random variables X and Z are mutually
independent conditioning on the random variable Y , i.e., X æ Y æ Z. From (P.64b) and
(P.64d), the following holds:

I(X; Z)6I(Y ; Z), (P.64e)

and this completes the proof of (P.62b).
Proof of (P.62c): Plugging Z = g(Y ) into (P.63e), yields:

I (X; g(Y ))6I (X; Y ) , (P.65)

and this completes the proof of (P.62c). This completes the proof of Lemma 49.
The following lemma presents some useful properties of the conditional mutual information

if the random variables X and Z are independent conditioning on the random variable Y , i.e.,
X æ Y æ Z.

Lemma 50 (Corollary in Theorem 2.8.1 in [25]). Let X , Y, and Z be three countable sets
and let X, Y and Z be three random variables with joint pmf PXY Z : X ◊ Y ◊ Z æ [0, 1] such
that X æ Y æ Z. Then,

I(X; Y |Z)6I(X; Y ) and (P.66a)
I(Y ; Z|X)6I(Y ; Z). (P.66b)

Proof:
Proof of (P.66a): From (P.58a), the following holds:

I(X; Y, Z)=I(X; Z) + I(X; Y |Z) (P.67a)
>I(X; Y |Z). (P.67b)

From (P.63d) and (P.67b), the following holds:

I(X; Y |Z)6I(X; Y ), (P.67c)
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and this completes the proof of (P.66a).
Proof of (P.66b): From (P.58a), the following holds:

I(X, Y ; Z)=I(X; Z) + I(Y ; Z|X)
>I(Y ; Z|X). (P.68a)

From (P.64b) and (P.68a), the following holds:

I(Y ; Z|X)6I(Y ; Z), (P.68b)

and this completes the proof of (P.66b). This completes the proof of Lemma 50.
The following lemma presents a property of the conditional mutual information when the

random variables X, Y , and Z do not form a Markov Chain, which is contrary in result to
the stated in Lemma 50.

Lemma 51 (Corollary in Theorem 2.8.1 in [25]). Let X , Y, and Z be three countable sets
and let X, Y and Z be three random variables with joint pmf PXY Z : X ◊ Y ◊ Z æ [0, 1] such
that PXY Z(x, y, z) = PX(x)PY (y)PZ|XY (z|x, y). Then,

I(X; Y |Z) > I(X; Y ). (P.69)

Proof: From the assumption of the lemma, X and Y are two independent random
variables, then I(X; Y ) = 0. Hence, the inequality is trivial from the non-negativity of mutual
information.

The following two lemmas present some useful properties of the mutual information between
two N -dimensional vectors of random variables. These two lemmas are considering that the
components of the N -dimensional vector of random variables Y correspond to the channel-
outputs generated by the components of the N -dimensional vector of random variables X as
channel-inputs in a given channel. In the first lemma, the components of the N -dimensional
vector of random variables X are assumed be mutually independent. In the second lemma,
the channel is assumed to be memoryless.

Lemma 52 (Theorem 1.8 in [49]). Let X1, X2, . . ., XN , and Y1, Y2, . . ., YN be 2N countable
sets, let X = (X1, X2, . . . , XN )T be an N - dimensional vector of independent random variables,
and let also Y = (Y1, Y2, . . . , YN )T be an N -dimensional vector of random variables such that
the joint pmf is PXY : X1 ◊ X2 ◊ . . . ◊ XN ◊ Y1 ◊ Y2 . . . ◊ YN æ [0, 1]. Then,

I (X; Y ) >
NX

n=1
I (Xn; Yn) . (P.70)

Proof: From (P.28c), the following holds:

I (X; Y )=EXY

ñ
log
Ç

PX|Y (X|Y )
PX(X)

åô
(P.71a)

=EXY

ñ
log
Ç

PX|Y (X|Y )
PX1(X1)PX2(X2) . . . PXN (XN )

åô
, (P.71b)

where, (P.71b) follows from the fact that X1, X2, . . . , XN are mutually independent. On the
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other hand,
NX

n=1
I (Xn; Yn)=

NX

n=1
EXnYn

ñ
log
Ç

PXn|Yn
(Xn|Yn)

PXn(Xn)

åô
(P.71c)

=EXY

ñ
log
Ç

PX1|Y1(X1|Y1)PX2|Y2(X2|Y2) . . . PXN |YN
(XN |YN )

PX1(X1)PX2(X2) . . . PXN (XN )

åô
. (P.71d)

Hence,
NX

n=1
I (Xn; Yn) ≠ I (X; Y ) = EXY

ñ
log
Ç

PX1|Y1(X1|Y1)PX2|Y2(X2|Y2) . . . PXN |YN
(XN |YN )

PX|Y (X|Y )

åô

(P.71e)

6log
Ç
EXY

ñÇ
PX1|Y1(X1|Y1)PX2|Y2(X2|Y2) . . . PXN |YN

(XN |YN )
PX|Y (X|Y )

åôå
(P.71f)

=log

Ñ
X

xœX N yœYN

Ä
PY (y)PX1|Y1(x1|y1)PX2|Y2(x2|y2) . . . PXN |YN

(xN |yN )
ä
é

(P.71g)

=log

Ñ
X

yœYN

PY (y)
X

xœX N

Ä
PX1|Y1(x1|y1)PX2|Y2(x2|y2) . . . PXN |YN

(xN |yN )
ä
é

(P.71h)

=log

Ñ
X

yœYN

PY (y)

é
(P.71i)

=log 1 (P.71j)
=0, (P.71k)

where, (P.71f) follows from Jensen’s inequality. Then,

I (X; Y ) >
NX

n=1
I (Xn; Yn) , (P.71l)

and this completes the proof of 52.

Lemma 53 (Theorem 1.9 in [49]). Let X and Y be two countable sets. Let also X1, X2, . . . , XN ,
Y1, Y2, . . . , YN be 2N random variables with joint pmf PXY : X N ◊ YN æ [0, 1] such that
for all (x, y) œ X N ◊ YN it follows that PXY (x, y) = PY |X(y|x)PX(x), with PY |X(y|x) =
NY

n=1
PYn|Xn

(yn|xn). Then,

I (X; Y ) 6
NX

n=1
I (Xn; Yn) . (P.72)

Proof: From (P.28b), the following holds:

I (X; Y )=EXY

ñ
log
Ç

PY |X(Y |X)
PY (Y )

åô
(P.73a)
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=EXY

ñ
log
Ç

PY1|X1(Y1|X1)PY2|X2(Y2|X2) . . . PYN |XN
(YN |XN )

PY (Y )

åô
, (P.73b)

where, (P.73b) follows from the fact that PY |X(y|x) =
NY

n=1
PYn|Xn

(yn|xn). On the other hand,

NX

n=1
I (Xn; Yn)=

NX

n=1
EXnYn

ñ
log
Ç

PYn|Xn
(Yn|Xn)

PYn(Yn)

åô
(P.73c)

=EXY

ñ
log
Ç

PY1|X1(Y1|X1)PY2|X2(Y2|X2) . . . PYN |XN
(YN |XN )

PY1(Y1)PY2(Y2) . . . PYN (YN )

åô
.(P.73d)

Hence,
NX

n=1
I (X; Y ) ≠ I (Xn; Yn)=EY

ñ
log
Ç

PY1(Y1)PY2(Y2) . . . PYN (YN )
PY (Y )

åô
(P.73e)

6log
Ç
EY

ñÇ
PY1(Y1)PY2(Y2) . . . PYN (YN )

PY (Y )

åôå
(P.73f)

=log

Ñ
X

yœYN

(PY1(y1)PY2(y2) . . . PYN (yN ))

é
(P.73g)

=log 1 (P.73h)
=0, (P.73i)

where, (P.73f) follows from Jensen’s inequality. Then,

I (X; Y ) 6
NX

n=1
I (Xn; Yn) , (P.73j)

and this completes the proof of Lemma 53.

P.2. Real-Valued Random Variables

Shannon formalized the information measures on discrete random variables and these notions
were extended to real-valued random variables. The di�erential entropy (the entropy of a
real-valued random variable) does not have the same meaning as the entropy for the discrete
case. Nonetheless, the real importance of the di�erential entropy is in the calculation of the
mutual information between two real-valued random variables, which allows to compare two
probability distributions and to keep the same meaning as in the discrete case.

P.2.1. Di�erential Entropy

The di�erential entropy h(X) of a real-valued random variable X is a functional of the pdf fX .
Although entropy and di�erential entropy have similar mathematical forms, the di�erential
entropy does not serve as a measure of the average amount of information contained in a
real-valued random variable. In fact, a real-valued random variable generally contains an
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infinite amount of information [94].

Definition 15 (Di�erential Entropy). Let X be a random variable with pdf fX : R æ [0, Œ).
Then, the di�erential entropy of X, denoted by h(X), is:

h(X) = ≠
Z Œ

≠Œ
fX(x) log fX(x) dx. (P.74)

Note that h(X) depends only on fX and not in the values in R. The di�erential entropy of
a random variable X can also be written as follows:

h(X) = ≠EX [log fX(X)] . (P.75)

Corollary 12. Let X be a random variable uniformly distributed on [0, a]. Then,

h(X) = ≠
Z

a

0

1
a

log 1
a

dx = log a. (P.76)

Proof: The proof of Corollary 12 follows directly from Definition 15.

Note that in this case h(X) < 0 if a < 1.

Corollary 13. Let X be a Gaussian random variable with zero mean and variance ‡
2, i.e.,

X ≥ N (0, ‡
2). Then,

h(X) = 1
2 log

Ä
2fie‡

2ä
. (P.77)

Proof:

From Definition 15, with fX(x) = 1Ô
2fi‡2

e
≠

x
2

2‡2 and e the base of the logarithm, the
following holds:

h(X)=≠
Z Œ

≠Œ
fX(x) ln fX(x) dx (P.78a)

=≠
Z Œ

≠Œ
fX(x)

Ç
≠ x

2

2‡2 ≠ ln
Ô

2fi‡2
å

dx (P.78b)

= 1
2‡2

Z Œ

≠Œ
x

2
fX(x) dx + ln

Ô
2fi‡2

Z Œ

≠Œ
fX(x) dx (P.78c)

=EX

⇥
X

2⇤

2‡2 + ln
Ô

2fi‡2 (P.78d)

=1
2 + 1

2 ln
Ä
2fi‡

2ä (P.78e)

=1
2 ln e + 1

2 ln
Ä
2fi‡

2ä (P.78f)

=1
2 ln
Ä
2fie‡

2ä
, (P.78g)

in nats, where (P.78e) follows from the fact that EX

⇥
X

2⇤ = VarX [X] + (EX [X])2 = ‡
2.

Changing the base of the logarithm to two completes the proof of Corollary 13.
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Lemma 54. Let X be a random variable with pdf fX : R æ [0, Œ), zero mean, and variance
‡

2. The maximum value of the di�erential entropy of the random variable X is obtained when
the random variable X has a Gaussian distribution with zero mean and variance ‡

2. Then,

h(X) 6 1
2 log

Ä
2fie‡

2ä
. (P.79)

Proof: Let „X : R æ [0, Œ) be a Gaussian pdf on the random variable X with zero mean

and variance ‡
2, i.e., „X(x) = 1Ô

2fi‡2
e

≠
x

2

2‡2 . Then, the following holds:

h(X) +
Z Œ

≠Œ
fX(x) log „X(x) dx=≠

Z Œ

≠Œ
fX(x) log fX(x) dx +

Z Œ

≠Œ
fX(x) log „X(x) dx (P.80a)

=
Z Œ

≠Œ
fX(x) log „X(x)

fX(x) dx (P.80b)

=EX

ñ
log „X(X)

fX(X)

ô
(P.80c)

6log
Ç
EX

ñ
„X(X)
fX(X)

ôå
(P.80d)

=log
ÇZ Œ

≠Œ
fX(x)„X(x)

fX(x) dx

å
(P.80e)

=log
ÅZ Œ

≠Œ
„X(x) dx

ã
(P.80f)

=log 1 (P.80g)
=0, (P.80h)

where, (P.80d) follows from Jensen’s inequality.
Then,

h(X)6≠
Z Œ

≠Œ
fX(x) log „X(x) dx (P.80i)

=1
2 log

Ä
2fie‡

2ä
, (P.80j)

and equality holds if fX(x) = „X(x), and this completes the proof of Lemma 54.

P.2.2. Joint Di�erential Entropy

The joint di�erential entropy can be understood as the extension of the joint entropy for
discrete random variables to real-valued random variables. Although joint entropy and joint
di�erential entropy have similar mathematical forms, the joint di�erential entropy does not
serve as a measure of the average amount of information simultaneously contained into the
considered real-valued random variables.

Definition 16 (Joint Di�erential Entropy). Let X and Y be two random variables with joint
pdf fXY : R2 æ [0, Œ). Then, the joint di�erential entropy of the random variables X and Y ,
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denoted by h(X, Y ), is:

h(X, Y ) = ≠
Z Œ

≠Œ

Z Œ

≠Œ
fXY (x, y) log fXY (x, y) dx dy. (P.81)

The joint di�erential entropy of the random variables X and Y can also be written as
follows:

h(X, Y ) = ≠EXY [log fXY (X, Y )] . (P.82)

Lemma 38 and Definition 11 can be extended to real-valued random variables.

Lemma 55 (Di�erential Entropy of a Bivariate Gaussian Distribution). Let X and Y

be two Gaussian random variables with covariance matrix K = EXY

ññ
X

Y

ô î
X Y

óô
=

ñ
‡

2
X

fl‡X‡Y

fl‡X‡Y ‡
2
Y

ô
, where fl = EXY [XY ]

‡X‡Y

is the Pearson correlation coe�cient. The joint

di�erential entropy of the random variables X and Y is:

h(X, Y ) = 1
2 log

Ä
(2fie)2 |K|

ä
, (P.83)

where, |K| is the determinant of the covariance matrix K, i.e., |K| = det(K).

Proof: From (P.82), the following holds:

h(X, Y ) = ≠EXY [log fXY (X, Y )] . (P.84a)
For all (x, y) œ R2, the following holds:

fXY (x, y) = 1
ÄÔ

2fi

ä2 |K|
1
2

e

≠
1
2

Ç
[x y] K≠1

ñ
x

y

ôå

, (P.84b)

where K≠1 is the inverse of the covariance matrix. The determinant of the covariance matrix
K is:

|K|=‡
2
X‡

2
Y

Ä
1 ≠ fl

2ä
, (P.84c)

and the inverse of the covariance matrix K is:

K≠1= 1
|K|

ñ
‡

2
Y

≠fl‡X‡Y

≠fl‡X‡Y ‡
2
X

ô
. (P.84d)

Plugging (P.84d) into (P.84b) the following holds:

fXY (x, y)= 1
ÄÔ

2fi

ä2 |K|
1
2

e

≠
1
2

Ç
1

|K| [x y]
ñ

‡
2
Y

≠fl‡X‡Y

≠fl‡X‡Y ‡
2
X

ô ñ
x

y

ôå

(P.84e)
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= 1
ÄÔ

2fi

ä2 |K|
1
2

e

≠
1
2

Ç
1

|K| [x y]
ñ

x‡
2
Y

≠ yfl‡X‡Y

≠xfl‡X‡Y + y‡
2
X

ôå

(P.84f)

= 1
ÄÔ

2fi

ä2 |K|
1
2

e

≠
1
2

Ç
1

|K|
Ä
x

2
‡

2
Y ≠ 2xyfl‡X‡Y + y

2
‡

2
X

äå

. (P.84g)

Plugging (P.84g) into (P.84a) and considering the logarithm of base e, the following holds:

h(X, Y )=≠EXY

2

664ln

Ü
1

ÄÔ
2fi

ä2 |K|
1
2

e

≠
1
2

Ç
1

|K|
Ä
X

2
‡

2
Y ≠ 2XY fl‡X‡Y + Y

2
‡

2
X

äåê3

775

(P.84h)

=≠EXY

2

4ln

Ñ
1

ÄÔ
2fi

ä2 |K|
1
2

é
≠ 1

2

Ç
1

|K|
Ä
X

2
‡

2
Y ≠ 2XY fl‡X‡Y + Y

2
‡

2
X

äå
3

5

(P.84i)

=ln
⇣ÄÔ

2fi

ä2|K|
1
2
⌘

+ 1
2

Ç
1

|K|
Ä
‡

2
YEX

î
X

2ó≠2fl‡X‡YEXY [XY ]+‡
2
XEY

î
Y

2óä
å

(P.84j)

=ln
⇣ÄÔ

2fi

ä2 |K|
1
2
⌘

+ 1
2

Ç
1

|K|
Ä
‡

2
Y ‡

2
X ≠ 2fl

2
‡

2
X‡

2
Y + ‡

2
X‡

2
Y

äå
(P.84k)

=ln
⇣ÄÔ

2fi

ä2 |K|
1
2
⌘

+
Ç

1
|K|
Ä
‡

2
X‡

2
Y

Ä
1 ≠ fl

2ää
å

(P.84l)

=ln
⇣ÄÔ

2fi

ä2 |K|
1
2
⌘

+ 1 (P.84m)

=ln
⇣ÄÔ

2fie

ä2 |K|
1
2
⌘

(P.84n)

=1
2 ln
Ä
(2fie)2 |K|

ä
, (P.84o)

in nats, where, (P.84m) follows from (P.84c). Changing the base of the logarithm to two
completes the proof of Lemma 55.

Lemma 56 generalizes Lemma 55.

Lemma 56. Let X = (X1, X2, . . . , XN )T œ RN be a vector of N random variables with joint
Gaussian pdf fX : X1 ◊ X2 ◊ . . . ◊ XN æ [0, Œ), i.e., X ≥ N (0, K). Then, the joint entropy
of X, denoted by h(X), is:

h(X) = 1
2 log

Ä
(2fie)N |K|

ä
. (P.85)

P.2.3. Conditional Di�erential Entropy

Definition 17 (Conditional Di�erential Entropy). Let X and Y be two random variables with
joint pdf fXY : R2 æ [0, Œ). Then, the di�erential entropy of Y conditioning on X, denoted
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by h(Y |X), is:
h(Y |X) = ≠

Z Œ

≠Œ

Z Œ

≠Œ
fXY (x, y) log fY |X(y|x) dx dy. (P.86)

The di�erential entropy of the random variable Y conditioning on the random variable X

can be written as follows:

h(Y |X) = ≠EXY

î
log fY |X(Y |X)

ó
. (P.87)

Note also that the conditional di�erential entropy in (P.86) can be written as follows:

h(Y |X)=
Z Œ

≠Œ
fX(x)

ï
≠
Z Œ

≠Œ
fY |X(y|x) log fY |X(y|x)

ò
dy dx

=
Z Œ

≠Œ
fX(x)h(Y |X = x) dx, (P.88)

where, h(Y |X = x) = ≠
Z Œ

≠Œ
fY |X(y|x) log fY |X(y|x) dy, the di�erental entropy of Y conditioning

on a fixed X = x.
Lemmas 39-42 can be extended to real-valued random variables.

P.2.4. Mutual Information
Definition 18 (Mutual Information). Let X and Y be two random variables with joint pdf
fXY : X ◊ Y æ [0, Œ). Then, the mutual information between X and Y , denoted by I(X; Y ),
is:

I(X; Y ) = ≠
Z Œ

≠Œ

Z Œ

≠Œ
fXY (x, y) log

Ç
fXY (x, y)

fX(x)fY (y)

å
dx dy. (P.89)

The mutual information between the real-valued random variables X and Y can also be
written as follows:

I(X; Y )=EXY

ñ
log
Ç

fXY (X, Y )
fX(X)fY (Y )

åô
(P.90a)

=EXY

ñ
log
Ç

fY |X(Y |X)
fY (Y )

åô
(P.90b)

=EXY

ñ
log
Ç

fX|Y (X|Y )
fX(X)

åô
. (P.90c)

Lemmas 43-45 can be extended to real-valued random variables.
Lemma 57 (Mutual Information of a two Gaussian Distributions). Let X and Y be two
Gaussian random variables with zero means, correlation fl, and variances ‡

2
X

and ‡
2
Y

, respec-

tively, i.e., (X, Y )T ≥ N
Çñ

X

Y

ô
,

ñ
‡

2
X

fl‡X‡Y

fl‡X‡Y ‡
2
Y

ôå
. The mutual information between the

random variables X and Y is:

I(X; Y ) = ≠1
2 log

Ä
1 ≠ fl

2ä
. (P.91)

Proof: From Lemma P.33, the following holds:

I(X; Y ) = h(X) + h(Y ) ≠ h(X, Y ). (P.92a)
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Plugging (P.77) and (P.83) into (P.92a), the following holds:

I(X; Y )=1
2 log

Ä
2fie‡

2
X

ä
+ 1

2 log
Ä
2fie‡

2
Y

ä
≠ 1

2 log
Ä
(2fie)2 |K|

ä
, (P.92b)

=1
2 log

Ç
‡

2
X

‡
2
Y

|K|

å
, (P.92c)

=≠1
2 log

Ä
1 ≠ fl

2ä
, (P.92d)

where, (P.92d) follows from the fact that |K| = det(K) = ‡
2
X

‡
2
Y

�
1 ≠ fl

2�, and this completes
the proof.

Note that if fl = ±1 (perfectly correlated), then I(X; Y ) approaches to infinite.

P.2.5. Conditional Mutual Information
Definition 19 (Conditional Mutual Information). Let X, Y , and Z be three random vari-
ables with joint pdf fXY Z : R3 æ [0, Œ). Then, the mutual information between X and Y

conditioning on Z, denoted by I(X; Y |Z), is:

I(X; Y |Z) = ≠
Z Œ

≠Œ

Z Œ

≠Œ

Z Œ

≠Œ
fXY Z(x, y, z) log

Ç
fXY |Z(x, y|z)

fX|Z(x|z)fY |Z(y|z)

å
dx dy dz. (P.93)

The mutual information between the real-valued random variables X and Y conditioning
on the real-valued random variable Z can also be written as follows:

I(X; Y |Z)=EXY Z

ñ
log
Ç

fXY |Z(X, Y |Z)
fX|Z(X|Z)fY |Z(Y |Z)

åô
, (P.94)

I(X; Y |Z)=EXY Z

ñ
log
Ç

fY |XZ(Y |X, Z)
fY |Z(Y |Z)

åô
, and (P.95)

I(X; Y |Z)=EXY Z

ñ
log
Ç

fX|Y Z(X|Y Z)
fX|Z(X|)

åô
. (P.96)

Lemmas 46-53 can be extended to real-valued random variables.
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Fano’s Inequality

In data transmission, Fano’s inequality establishes a connection between a traditional
practical measure, the probability of error, and an information measure of the e�ect
of the channel noise, the equivocation or conditional entropy. This inequality gives

a lower bound on the probability of error or an upper bound in the equivocation. Fano’s
inequality is critical to establishing fundamental limits in data transmission. This result is
used in all converse proofs in this thesis.

Lemma 58 (Fano’s Inequality). Let X be a countable set and let X and “X be two random
variables with joint pmf P

X bX : X 2 æ (0, 1] such that for all (x, bx) œ X 2, P
X bX(x, bx) =

P
X| bX(x|bx)P bX(bx). Let also E = 1{X ”=X̂} be a binary random variable with pmf PE : {0, 1} æ

[0, 1] such that p = PE(1) = 1 ≠ PE(0). Then,

H

Ä
X|“X

ä
6 H (E) + p log (|X | ≠ 1) . (Q.1)

Proof:

H(X|“X)=H(X|“X) + H(E|X, “X) (Q.2a)
=H(E, X|“X) (Q.2b)
=H(E|“X) + H(X|E, “X) (Q.2c)
6H(E) + H(X|E, “X) (Q.2d)
=H(E) +

X

bxœsupp
�

PbX
�

⇣
P

E, bX(0, bx)H(X|E = 0, “X = bx) (Q.2e)

+P
E, bX(1, bx)H(X|E = 1, “X = bx)

⌘
(Q.2f)

=H(E) +
X

bxœsupp
�

PbX
�

P
E, bX(1, bx)H(X|E = 1, “X = bx) (Q.2g)
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Q. Fano’s Inequality

6H(E) +
X

bxœsupp
�

PbX
�

P
E, bX(1, bx) log (|X | ≠ 1) (Q.2h)

=H(E) + log (|X | ≠ 1)
X

bxœsupp
�

PbX
�

P
E, bX(1, bx) (Q.2i)

=H(E) + PE(1) log (|X | ≠ 1) (Q.2j)
=H(E) + p log (|X | ≠ 1) , (Q.2k)

where, (Q.2a) follows from the fact that the value of the random variable E is known given the
knowledge of the random variables X and “X, i.e., H(E|X, “X) = 0; (Q.2d) follows from the
fact that conditioning does not increase entropy (Lemma 40); (Q.2e) follows from Definition 12
(Equation P.16) and P

E| bX : {0, 1} ◊ X æ (0, 1]; (Q.2g) follows from the fact that if E = 0 the
value of the random variable X is known given the knowledge of the random variable “X, i.e,
H(X|E = 0, “X = bx) = 0; (Q.2h) follows from the fact that given E = 1 and “X = bx, X can take
any of the X ≠1 values and the entropy can be upper-bounded assuming that all the values the
random variable X can take are uniformly distributed, i.e., H(X|E = 1, “X = bx) 6 log (|X | ≠ 1)
(Lemma 37); and (Q.2k) follows from the fact that p = Pr

î
X ”= “X

ó
= PE(1). This completes

the proof of Lemma 58.
Fano’s inequality corresponds to a model of communication in which a message selected

from a set X is encoded into an input signal for transmission through a noisy channel, and
the resulting output signal is decoded into a message of the same set. The conditional entropy
H

Ä
X|“X

ä
or equivocation represents the remaining of the uncertainty on the random variable

X. It can also be seen as the average number of bits needed to transmit such that the receiver
can identify X with the knowledge of “X. In other words, it is the average information lost in
a noisy channel. If H

Ä
X|“X

ä
= 0, then, the probability of error p is equal to zero.

Consider the following Markov chain: X æ Y æ “X, with “X = g(Y ), where g is a
deterministic function. Then, from Lemma 49, the following holds:

I(X; Y )>I(X; g(Y )) (Q.3)
=I(X; “X). (Q.4)

From (Q.4), the following holds:

H(X|“X)>H(X|Y ) (Q.5)

and
H(X|Y ) 6 H

Ä
X|“X

ä
6 H (E) + PE log (|X | ≠ 1) . (Q.6)

A loose bound on the equivocation can be obtained as follows:

H

Ä
X|“X

ä
6 1 + PE log |X | , (Q.7)

which represents an upper bound on the equivocation.
A lower bound on the probability of error can be obtained from (Q.7), as follows:

PE >
H

Ä
X|“X

ä
≠ 1

log |X | . (Q.8)
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If the probability of error PE is small, then H

Ä
X|“X

ä
should also be small. Note also that

H

Ä
X|“X

ä
= H (X) ≠ I

Ä
X; “X

ä
in which a high equivocation implies a low mutual information,

and this also implies a high probability of error. A low probability of error implies a high
mutual information, and this implies a low equivocation.
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— R —
Weak Typicality

The AEP is a direct consequence of the weak law of large numbers (WLLN).
It states that a sequence of N independent and identically distributed (i.i.d.)
random variables X = (X1, X2, . . . , XN ) with N su�ciently large, is almost

certain to belong to a subset of all possible sequences X N having only 2NH(X) elements, each
having a probability close to 2≠NH(X) [48], where X is a random variable representing any of
the random variables in the long sequence. This divides the set of all sequences into two sets:
the typical set and the nontypical set. All of the sequences in the typical set, the set with a
probability measure close to one, have roughly the same probability of occurrence. Thus, the
sequences in a typical set are almost uniformly distributed.

R.1. Discrete Random Variables

Let X = {0, 1} and let also X = (X1, X2, . . . , XN )T be an N -dimensional vector of i.i.d binary
random variables with joint pmf PX : {0, 1}N æ [0, 1]. The probability of a binary sequence
that contains r ones and N ≠ r zeros is:

PX(x) = p
r

1 (1 ≠ p1)N≠r
, (R.1)

where, p1 = PX(1). The total number of binary sequences that contain r ones in a binary
sequence of N symbols is:

n =
Ç

N

r

å
. (R.2)

Let R œ N be a random variable that represents the number of ones, r, in a binary sequence of
N symbols. Then, the probability of all binary sequences of N symbols that contain r ones is:

PR(r) =
Ç

N

r

å
p

r

1 (1 ≠ p1)N≠r
, (R.3)
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R. Weak Typicality

where ER [R] = Np1 and VarR [R] = Np1(1 ≠ p1) (standard deviation equal to
»

Np1(1 ≠ p1)).
The number of binary sequences with r ones will be approximately equal to Np1±

»
Np1(1 ≠ p1).

As N increases, the probability distribution of the random variable R becomes more concen-
trated, in the sense that its expected value increases as N and the standard deviation increases
only as

Ô
N . It implies that the binary sequence x is most likely to fall in a small subset of

sequences that is called the typical set [48].
Now, let X be a countable set and let also X = (X1, X2, . . . , XN )T be an N -dimensional

vector of i.i.d random variables with joint pmf PX : X N æ [0, 1]. A long typical sequence of
N symbols contains approximately p1N occurrences of the first symbol, p2N occurrences of
the second symbol, . . ., p¸N occurrences of the ¸-th symbol, where p1 = PX(1), p2 = PX(2),
. . ., p¸ = PX(¸). When the probability distribution (p1, p2, . . . , p¸) is conmesurable with
denominator n, the probability of that typical sequence is:

PX(x)=PX(x1)PX(x2) . . . PX(xN ) (R.4a)
=p

(Np1)
1 p

(Np2)
2 . . . p

(Np¸)
¸

, (R.4b)

where, ¸ is the cardinality of the set X , i.e., ¸ = |X |. The amount of information provided by
the typical sequence x is:

ÿ(x)=≠ log PX(x) (R.5a)
=≠N

X

xœsupp(PX)
PX(x) log PX(x) (R.5b)

=NH(X). (R.5c)

Then, the amount of information provided by the typical sequence x is equal to NH(X), even
when the distribution (p1, p2, . . . , p¸) are non conmesurable values. Here, H(X) = ≠ 1

N
log PX(x)

is called the empirical entropy of a typical sequence.
The following lemma is the foundations to understand typical sequences.

Lemma 59 (Chebyshev Inequality). Let X be a random variable with finite expected value
µ, i.e., EX [X] = µ < Œ, and variance ‡

2, i.e., VarX [X] = ‡
2. Then, for any a > 0, the

following holds:

Pr [|X ≠ µ| > a] 6 ‡
2

a2 . (R.6)

R.1.1. Weak Typicality

Lemma 60 (Theorem 5.1 in [94]). Let X be a random variable defined on a countable set X
with pmf PX : X æ [0, 1]. Let also X = (X1, X2, . . . , XN )T œ X N be an N -dimensional vector
of random variables whose joint pmf is:

PX(x1, x2 . . . , xN ) =
NY

n=1
PX(xn), (R.7)
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for all (x1, x2 . . . , xN ) œ X N . Then, for any ‘ > 0 arbitrarily small, there always exists an N

su�ciently large such that X satisfies:

Pr
ï����≠

1
N

log PX (X) ≠ H(X)
���� < ‘

ò
> 1 ≠ ‘. (R.8)

Proof: Let the discrete random variable Y be defined by:

Y = ≠ 1
N

log PX (X) . (R.9)

Note that

EY [Y ]=EX

ï
≠ 1

N
log PX (X)

ò
(R.10a)

=≠ 1
N

X

xœsupp PX

PX (x) log PX (x) (R.10b)

=≠ 1
N

NX

n=1

X

xœsupp PX

PX (x) log PX (xn) (R.10c)

=≠ 1
N

NX

n=1

X

x1œsupp PX

X

x2œsupp PX

. . .

X

xN œsupp PX

PX (x1) PX (x2) . . . PX (xN ) log PX (xn)

(R.10d)

=≠ 1
N

NX

n=1

X

xnœsupp PX

PX (xn) log PX (xn) (R.10e)

= 1
N

NX

n=1
H(X) (R.10f)

=H(X) (R.10g)

and

VarY [Y ]=VarX

ï
≠ 1

N
log PX (X)

ò
(R.11a)

= 1
N2 VarX [log PX (X)] (R.11b)

= 1
N2

NX

n=1
VarXn [log PXn (Xn)] (R.11c)

= 1
N

VarX [log PX (X)] , (R.11d)

where, (R.10c) and (R.11c) follow from the fact that all the random variables in the vector of
random variables are independent (R.7).

From Chebyshev inequality (Lemma 59), it holds for any a > 0 that:

Pr [|Y ≠ EY [Y ]| > a] 6 VarY [Y ]
a2 . (R.12)
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That is,
Pr
ï����≠

1
N

log PX (X) ≠ H(X)
���� > a

ò
6 1

a2N
VarX [log PX (x)] . (R.13)

Note that since the random variable X has finite expected value and a finite variance, it
follows that 1

a2 VarX [log PX (x)] is always finite.
Thus, for all ‘

Õ
> 0, there always exists an N su�ciently large, such that

Pr
ï����≠

1
N

log PX (X) ≠ H(X)
���� > a

ò
6 ‘

Õ
. (R.14)

Finally, note that

Pr
ï����≠

1
N

log PX (X) ≠ H(X)
���� < a

ò
=1 ≠ Pr

ï����≠
1
N

log PX (X) ≠ H(X)
���� > a

ò
(R.15a)

>1 ≠ ‘
Õ
. (R.15b)

Therefore, for all ‘ > 0, there always exists an N su�ciently large such that

Pr
ï����≠

1
N

log PX (X) ≠ H(X)
���� < ‘

ò
> 1 ≠ ‘. (R.16)

This completes the proof.

Remark 1. Since the probability space is discrete and finite, it follows from Vitali con-
vergence theorem [70] that the convergence in probability of ≠ 1

N
log PX (X) to H(X), i.e.,

≠ 1
N

log PX (X) pæ H(X) established in Lemma 60 implies the L 1 convergence of ≠ 1
N

log PX (X)

to H(X), i.e., ≠ 1
N

log PX (X) L 1
æ H(X).

Definition 20 (Weakly Typical Set). Consider a random variable X œ X distributed according
to PX and the joint pmf of the N-dimensional vector of random variables X in (R.7). For
any ‘ > 0 arbitrarily small, the set of weakly typical sequences with respect to PX is the set of
sequences x = (x1, x2, . . . , xN ) œ X N , denoted by T (N,‘)

X
, such that:

T (N,‘)
X

=
ß

x œ X N :
����≠

1
N

log PX (x) ≠ H(X)
���� < ‘

™
. (R.17)

The expression ≠ 1
N

log PX (x) is called the empirical entropy of a weakly typical sequence.
The typical sequences are those sequences that have probability close to 2≠NH(X). Note
that the most probable sequence and the least probable sequence are not necessarily typical
sequences. Nonetheless, the set formed by the typical sequences has a probability measure
close to one as N increases. Note also that TX depends only on N , ‘, and the distribution PX .
Figure R.1 shows that the empirical entropy of a binary sequence approaches to the entropy
of a binary random variable for N su�ciently large.

Lemma 61 (Weak AEP). Let T (N,‘)
X

be the set of weakly typical sequences with respect to PX
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Figure R.1.: Empirical entropy of random binary sequence with PX (0) = 1 ≠ PX (1) = 0.3.

and with ‘ > 0. Then, for N su�ciently large and for all x œ T (N,‘)
X

, the following holds:

2≠N(H(X)+‘)
< PX(x) < 2≠N(H(X)≠‘)

, (R.18a)
X

xœT (N,‘)
X

PX(x) > 1 ≠ ‘, and (R.18b)

(1 ≠ ‘)2N(H(X)≠‘)
<

���T (N,‘)
X

��� < 2N(H(X)+‘)
. (R.18c)

Proof:

Proof of (R.18a): This is obtained directly from Definition 20.
Proof of (R.18b): From (R.8), the following holds:

X

xœT (N,‘)
X

PX(x) > 1 ≠ ‘, (R.19)

with ‘ > 0, and this completes the proof of (R.18b).
Proof of (R.18c): From (R.18a) and (R.18b), the following holds:

1=
X

xœX N

PX(x) (R.20a)

>
X

xœT (N,‘)
X

PX(x) (R.20b)

>

X

xœT (N,‘)
X

2≠N(H(X)+‘) (R.20c)

=
���T (N,‘)

X

��� 2≠N(H(X)+‘)
, (R.20d)
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for N su�ciently large, which implies:
���T (N,‘)

X

��� < 2N(H(X)+‘)
, (R.20e)

and

1 ≠ ‘6
X

xœT (N,‘)
X

PX(x) (R.20f)

<

X

xœT (N,‘)
X

2≠N(H(X)≠‘) (R.20g)

=
���T (N,‘)

X

��� 2≠N(H(X)≠‘)
, (R.20h)

for N su�ciently large, which implies:
���T (N,‘)

X

��� > (1 ≠ ‘) 2N(H(X)≠‘)
, (R.20i)

and this completes the proof of (R.18c). This completes the proof of Lemma 61.

R.1.2. Weak Joint Typicality
The notion of typicality can be extended to multiple vectors of random variables.
Lemma 62. Let X and Y be two countable sets and let also X and Y be two random variables
with joint pmf PXY : X ◊ Y æ [0, 1]. Let also X = (X1, X2, . . ., XN )T and Y = (Y1, Y2,. . .,
YN )T be two N -dimensional vectors of random variables whose joint pmf is:

PXY (x, y) =
NY

n=1
PXY (xn, yn), (R.21)

for all (x1, x2 . . . , xN ) œ X N and (y1, y2 . . . , yN ) œ YN . Then, for any ‘ > 0 arbitrarily small,
there always exists an N su�ciently large such that X and Y satisfies:

Pr
ï����≠

1
N

log PXY (X, Y ) ≠ H(X, Y )
���� < ‘

ò
> 1 ≠ ‘. (R.22)

Proof: This proof follows along the same lines the proof of Lemma 60. Then, let the
discrete random variable Z be defined by:

Z = ≠ 1
N

log PXY (XY ) . (R.23)

Note that

EZ [Z]=H(X, Y ) and (R.24a)
VarZ [Z]= 1

N
VarXY [log PXY (X, Y )] . (R.24b)

From Chebyshev inequality (Lemma 59), it holds for any a > 0 that:

Pr [|Z ≠ EZ [Z]| > a] 6 VarZ [Z]
a2 . (R.25)
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That is,

Pr
ï����≠

1
N

log PXY (XY ) ≠ H(X, Y )
���� > a

ò
6 1

a2N
VarXY [log PXY (X, Y )] . (R.26)

Note that since the random variables X and Y have a finite joint expected value and a
finite joint variance, it follows that 1

a2 VarXY [log PXY (X, Y )] is always finite.
Thus, for all ‘

Õ
> 0, there always exists an N su�ciently large, such that

Pr
ï����≠

1
N

log PXY (X, Y ) ≠ H(X, Y )
���� > a

ò
6 ‘

Õ
. (R.27)

Finally, note that

Pr
ï����≠

1
N

log PXY (X, Y ) ≠ H(X, Y )
���� < a

ò
=1 ≠ Pr

ï����≠
1
N

log PXY (X, Y ) ≠ H(X, Y )
���� > a

ò

(R.28a)
>1 ≠ ‘

Õ
. (R.28b)

Therefore, for all ‘ > 0, there always exists an N su�ciently large such that

Pr
ï����≠

1
N

log PXY (X, Y ) ≠ H(X, Y )
���� < ‘

ò
> 1 ≠ ‘. (R.29)

This completes the proof.

Remark 2. Since the probability space is discrete and finite, it follows from Vitali convergence
theorem [70] that the convergence in probability of ≠ 1

N
log PXY (X, Y ) to H(X, Y ), i.e.,

≠ 1
N

log PXY (X, Y ) pæ H(X, Y ) established in Lemma 62 implies the L 1 convergence of

≠ 1
N

log PXY (X, Y ) to H(X, Y ), i.e., ≠ 1
N

log PXY (X, Y ) L 1
æ H(X, Y ).

Definition 21 (Weakly Joint Typical Set). Consider two random variables X œ X and Y œ Y
distributed according to PXY , and the pmfs and joint pmf of the N-dimensional vectors of

random variables X and Y according to (R.7), PY (y1, y2 . . . , yN ) =
NY

n=1
PY (yn), and (R.21).

For any ‘ > 0 arbitrarily small, the set of weakly joint typical sequences with respect to PXY is
the set of sequences ((x1, y1), (x2, y2), . . . , (xN , yN )) œ (X ◊ Y)N , denoted by T (N,‘)

XY
, such that:

T (N,‘)
XY

=
(

(x, y) œ (X ◊ Y)N :
����≠

1
N

log (PX (x)) ≠ H(X)
���� < ‘,

����≠
1
N

log (PY (y)) ≠ H(Y )
���� < ‘, and

����≠
1
N

log (PXY (x, y)) ≠ H(X, Y )
���� < ‘

)

. (R.30)

Note that if (x, y) œ T (N,‘)
XY

then x œ T (N,‘)
X

and y œ T (N,‘)
Y

.
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Lemma 63. Let T (N,‘)
X Y

be the set of weakly joint typical sequences with respect to PXY and
with ‘ > 0. Then, for N su�ciently large and for all (x, y) œ T (N,‘)

XY
, the following holds:

2≠N(H(X,Y )+‘)
< PXY (x, y) < 2≠N(H(X,Y )≠‘)

, (R.31a)
2≠N(H(X|Y )+2‘)

< PX|Y (x|y) < 2≠N(H(X|Y )≠2‘)
, (R.31b)

X

(x,y)œT (N,‘)
XY

PXY (x, y) > 1 ≠ ‘, and (R.31c)

(1 ≠ ‘)2N(H(X,Y )≠‘)
< |T (N,‘)

XY
| < 2N(H(X,Y )+‘)

. (R.31d)

Proof:

Proof of (R.31a): This is obtained directly from Definition 21.

Proof of (R.31b): From the assumptions of the lemma, following along the same steps of
the proof of (R.18a) for all x œ T (N,‘)

X
and for all y œ T (N,‘)

Y
yields:

2≠N(H(X)+‘)
<PX(x) < 2≠N(H(X)≠‘) and (R.32a)

2≠N(H(Y )+‘)
<PY (y) < 2≠N(H(Y )≠‘)

. (R.32b)

From (R.21) and (R.32b), the following holds:

2≠N(H(X|Y )+2‘)
< PX|Y (x|y) < 2≠N(H(X|Y )≠2‘)

, (R.32c)

and this completes the proof of (R.31b).

Proof of (R.31c): From Lemma 62, the following holds:
X

(x,y)œT (N,‘)
XY

PXY (x, y) > 1 ≠ ‘, (R.33)

with ‘ > 0, and this completes the proof of (R.31d).

Proof of (R.31d): From (R.31a) and (R.31c), the following holds:

1=
X

(x,y)œ(X ◊Y)N

PXY (x, y) (R.34a)

>
X

(x,y)œT (N,‘)
XY

PXY (x, y) (R.34b)

>

X

(x,y)œT (N,‘)
XY

2≠N(H(X,Y )+‘) (R.34c)

=
���T (N,‘)

XY

��� 2≠N(H(X,Y )+‘)
, (R.34d)

for N su�ciently large, which implies:
���T (N,‘)

XY

��� < 2N(H(X,Y )+‘)
, (R.34e)
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and

1 ≠ ‘6
X

(x,y)œT (N,‘)
XY

PXY (x, y) (R.34f)

<

X

(x,y)œT (N,‘)
XY

2≠N(H(X,Y )≠‘) (R.34g)

=
���T (N,‘)

XY

��� 2≠N(H(X,Y )≠‘)
, (R.34h)

for N su�ciently large, which implies:
���T (N,‘)

X Y

��� > (1 ≠ ‘) 2N(H(X,Y )≠‘)
, (R.34i)

and this completes the proof.

R.1.3. Weak Conditional Typicality

Definition 22 (Weakly Typical Set Subject to Conditioning). Consider two random variables
X œ X and Y œ Y distributed according to PXY , and the conditional pmf of the N -dimensional

vectors of random variables X and Y according to PX|Y (x|y) =
NY

n=1
PX|Y (xn|yn) for all

x œ X n and y œ Yn. Let y = (y1, . . . , yN )T be a sequence such that y œ T (N,‘)
Y

, with ‘ > 0 and
N su�ciently large. Then, the set of weakly typical sequences with respect to PX conditioning
on the sequence y is the set of sequences x = (x1, x2, . . . , xN ) œ X N , denoted by T (N,‘)

X|Y (y),
such that:

T (N,‘)
X|Y (y) =

(

x œ X N :
����≠

1
N

log (PX (x)) ≠ H(X)
���� < ‘, and

����≠
1
N

log (PXY (x, y)) ≠ H(X, Y )
���� < ‘

)

. (R.35)

Lemma 64. Let T (N,‘)
X|Y (y) be the set of weakly typical sequences with respect to PXY condi-

tioning on Y = y and with ‘ > 0. Then, for N su�ciently large and for all x œ T (N,‘)
X|Y (y),

the following holds:

|T (N,‘)
X|Y (y)| < 2N(H(X|Y )+2‘) (R.36a)
X

yœYN

PY (y)
���T (N,‘)

X|Y (y)
��� > (1 ≠ ‘)2N(H(X|Y )≠2‘)

. (R.36b)

Proof:
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Proof of (R.36a):

1=
X

(x,y)œ(X ◊Y)N

PXY (x, y) (R.37a)

=
X

yœYN

PY (y)
X

xœX N

PX|Y (x|y) (R.37b)

>

X

yœYN

PY (y)
X

xœT (N,‘)
X|Y (y)

PX|Y (x|Y = y) (R.37c)

>

X

yœYN

PY (y)
X

xœT (N,‘)
X|Y (y)

2≠N(H(X|Y )+2‘) (R.37d)

=
X

yœYN

PY (y)
���T (N,‘)

X|Y (y)
��� 2≠N(H(X|Y )+2‘) (R.37e)

=
���T (N,‘)

X|Y (y)
��� 2≠N(H(X|Y )+2‘) X

yœYN

PY (y) (R.37f)

=
���T (N,‘)

X|Y (y)
��� 2≠N(H(X|Y )+2‘)

, (R.37g)

for N su�ciently large, which implies:
���T (N,‘)

X|Y (y)
��� < 2N(H(X|Y )+2‘)

, (R.37h)

and this completes the proof of (R.36a).

Proof of (R.36b):

1 ≠ ‘6
X

(x,y)œT (N,‘)
XY

PXY (x, y) (R.38a)

=
X

yœT (N,‘)
Y

PY (y)
X

xœT (N,‘)
X|Y (y)

PX|Y (x|y) (R.38b)

6
X

yœYN

PY (y)
X

xœT (N,‘)
X|Y (y)

PX|Y (x|y) (R.38c)

<

X

yœYN

PY (y)
X

xœT (N,‘)
X|Y (y)

2≠N(H(X|Y )≠2‘) (R.38d)

=
X

yœYN

PY (y)
���T (N,‘)

X|Y (y)
��� 2≠N(H(X|Y )≠2‘) (R.38e)

=2≠N(H(X|Y )≠2‘)X

yœYN

PY (y)
���T (N,‘)

X|Y (y)
��� , (R.38f)

for N su�ciently large, which implies:
X

yœYN

PY (y)
���T (N,‘)

X|Y (y)
��� > (1 ≠ ‘)2N(H(X|Y )≠2‘)

, (R.38g)

and this completes the proof of (R.36b). This completes the proof of Lemma 64.
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R.2. Real-Valued Random Variables

R.2.1. Weak Typicality

Lemma 65 (Theorem 10.35 in [94]). Let X be a random variable X with pdf fX : R æ [0, Œ).
Let also X = (X1, X2, . . . , XN )T œ X N be an N -dimensional vector of random variables whose
joint pdf is:

fX(x1, x2 . . . , xN ) =
NY

n=1
fX(xn), (R.39)

for all (x1, x2 . . . , xN ) œ RN . Then, for any ‘ > 0 arbitrarily small, there always exists an N

su�ciently large such that X satisfies:

Pr
ï����≠

1
N

log fX (X) ≠ h(X)
���� < ‘

ò
> 1 ≠ ‘. (R.40)

Proof: Let the real-valued random variable Y be defined by:

Y = ≠ 1
N

log fX (X) . (R.41)

Note that

EY [Y ]=EX

ï
≠ 1

N
log fX (X)

ò
(R.42a)

=≠ 1
N

Z Œ

≠Œ
fX (x) log fX (x) dx (R.42b)

=≠ 1
N

NX

n=1

Z Œ

≠Œ
fX (x) log fX (xn) dxn (R.42c)

=≠ 1
N

NX

n=1

Z Œ

≠Œ

Z Œ

≠Œ
. . .

Z Œ

≠Œ
fX (x1) fX (x2) . . . fX (xN ) log fX (xn) dx1dx2 . . . dxN

(R.42d)

=≠ 1
N

NX

n=1

Z Œ

≠Œ
fX (xn) log fX (xn) (R.42e)

= 1
N

NX

n=1
h(X) (R.42f)

=h(X) (R.42g)

and

VarY [Y ]=VarX

ï
≠ 1

N
log fX (X)

ò
(R.43a)

= 1
N2 VarX [log fX (X)] (R.43b)

= 1
N2

NX

n=1
VarXn [log fXn (Xn)] (R.43c)

= 1
N

VarX [log fX (X)] , (R.43d)
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where, (R.42c) and (R.43c) follow from the fact that all the random variables in the vector of
random variables are independent (R.39).

From Chebyshev inequality (Lemma 59), it holds for any a > 0 that:

Pr [|Y ≠ EY [Y ]| > a] 6 VarY [Y ]
a2 . (R.44)

That is,
Pr
ï����≠

1
N

log fX (X) ≠ h(X)
���� > a

ò
6 1

a2N
VarX [log fX (x)] . (R.45)

Note that since the random variable X has finite expected value and a finite variance, it
follows that 1

a2 VarX [log fX (x)] is always finite.
Thus, for all ‘

Õ
> 0, there always exists an N su�ciently large, such that

Pr
ï����≠

1
N

log fX (X) ≠ h(X)
���� > a

ò
6 ‘

Õ
. (R.46)

Finally, note that

Pr
ï����≠

1
N

log fX (X) ≠ h(X)
���� < a

ò
=1 ≠ Pr

ï����≠
1
N

log fX (X) ≠ h(X)
���� > a

ò
(R.47a)

>1 ≠ ‘
Õ
. (R.47b)

Therefore, for all ‘ > 0, there always exists an N su�ciently large such that

Pr
ï����≠

1
N

log fX (X) ≠ h(X)
���� < ‘

ò
> 1 ≠ ‘. (R.48)

This completes the proof.

Remark 3. Since the probability space is real-valued, it follows from Vitali convergence theorem
[70] that the convergence in probability of ≠ 1

N
log fX (X) to H(X), i.e., ≠ 1

N
log fX (X) pæ

H(X) established in Lemma 65 implies the L 1 convergence of ≠ 1
N

log fX (X) to h(X), i.e.,

≠ 1
N

log fX (X) L 1
æ h(X).

Definition 23 (Weakly Typical Set). Consider a random variable X œ R distributed according
to fX and the joint pdf of the N-dimensional vector of random variables X in (R.39). For
any ‘ > 0 arbitrarily small, the set of weakly typical sequences with respect to fX is the set of
sequences x = (x1, x2, . . . , xN ) œ X N , denoted by T (N,‘)

X
, such that:

T (N,‘)
X

=
ß

x œ X N :
����≠

1
N

log fX (x) ≠ h(X)
���� < ‘

™
, (R.49)

where, ‘ is an arbitrarily small positive real number and ≠ 1
N

log fX (x) is called the empirical
di�erential entropy of a weakly typical sequence.

The expression ≠ 1
N

log fX (x) is called the empirical di�erential entropy of a weakly typical
sequence. Note also that TX depends only on N , ‘, and the distribution fX .
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Definition 24. The volume of a set A œ RN , denoted by Vol(A), is:

Vol(A) =
Z

AœRN
dx. (R.50)

Lemma 66 (Weak AEP. Theorem 10.38 in [94]). Let T (N,‘)
X

be the set of weakly typical
sequences with respect to fX and with ‘ > 0. Then, for N su�ciently large and for all
x œ T (N,‘)

X
, the following holds:

2≠N(h(X)+‘)
< fX(x) < 2≠N(h(X)≠‘)

, (R.51a)Z

xœT (N,‘)
X

fX(x) dx > 1 ≠ ‘, and (R.51b)

(1 ≠ ‘)2N(h(X)≠‘)
< Vol

⇣
T (N,‘)

X

⌘
< 2N(h(X)+‘)

. (R.51c)

Proof:

Proof of (R.51a): This is obtained directly from Definition 23.

Proof of (R.51b): From (R.40), the following holds:
Z

xœT (N,‘)
X

fX(x) dx > 1 ≠ ‘, (R.52)

with ‘ > 0 and this completes the proof of (R.51b).

Proof of (R.51c): From (R.51a) and (R.51b), the following holds:

1=
Z

xœX N
fX(x) dx (R.53a)

>
Z

xœT (N,‘)
X

fX(x) dx (R.53b)

>

Z

xœT (N,‘)
X

2≠N(h(X)+‘)
dx (R.53c)

=2≠N(h(X)+‘)
Z

xœT (N,‘)
X

dx (R.53d)

=2≠N(h(X)+‘)Vol
⇣
T (N,‘)

X

⌘
, (R.53e)

for N su�ciently large, which implies:

Vol
⇣
T (N,‘)

X

⌘
< 2N(h(X)+‘)

, (R.53f)
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and

1 ≠ ‘6
Z

xœT (N,‘)
X

fX(x) dx (R.53g)

<

Z

xœT (N,‘)
X

2≠N(h(X)≠‘)
dx (R.53h)

=2≠N(h(X)≠‘)
Z

xœT (N,‘)
X

dx (R.53i)

=2≠N(h(X)≠‘)Vol
⇣
T (N,‘)

X

⌘
, (R.53j)

for N su�ciently large, which implies:

Vol
⇣
T (N,‘)

X

⌘
> (1 ≠ ‘) 2N(h(X)≠‘)

, (R.53k)

and this completes the proof of (R.51c). This completes the proof of Lemma 66.

R.2.2. Weak Joint Typicality

Lemma 67. Let X and Y be two random variables with joint pdf fXY : R2 æ [0, Œ). Let
also X = (X1, X2, . . ., XN )T and Y = (Y1, Y2,. . ., YN )T be two N-dimensional vectors of
random variables whose joint pdf is:

fXY (x, y) =
NY

n=1
fXY (xn, yn), (R.54)

for all (x1, x2 . . . , xN ) œ RN and (y1, y2 . . . , yN ) œ RN . Then, for any ‘ > 0 arbitrarily small,
there always exists an N su�ciently large such that X and Y satisfies:

Pr
ï����≠

1
N

log fXY (X, Y ) ≠ h(X, Y )
���� < ‘

ò
> 1 ≠ ‘. (R.55)

Proof:
This proof follows along the same lines the proof of Lemma 65. Then, let the real-valued

random variable Z be defined by:

Z = ≠ 1
N

log fXY (XY ) . (R.56)

Note that

EZ [Z]=h(X, Y ) and (R.57a)
VarZ [Z]= 1

N
VarXY [log fXY (X, Y )] . (R.57b)

From Chebyshev inequality (Lemma 59), it holds for any a > 0 that:

Pr [|Z ≠ EZ [Z]| > a] 6 VarZ [Z]
a2 . (R.58)

230



R.2. Real-Valued Random Variables

That is,

Pr
ï����≠

1
N

log fXY (XY ) ≠ h(X, Y )
���� > a

ò
6 1

a2N
VarXY [log fXY (X, Y )] . (R.59)

Note that since the random variables X and Y have a finite joint expected value and a finite
joint variance, it follows that 1

a2 VarXY [log fXY (X, Y )] is always finite. Thus, for all ‘
Õ
> 0,

there always exists an N su�ciently large, such that

Pr
ï����≠

1
N

log fXY (X, Y ) ≠ h(X, Y )
���� > a

ò
6 ‘

Õ
. (R.60)

Finally, note that

Pr
ï����≠

1
N

log fXY (X, Y ) ≠ h(X, Y )
���� < a

ò
=1 ≠ Pr

ï����≠
1
N

log fXY (X, Y ) ≠ h(X, Y )
���� > a

ò

(R.61a)
>1 ≠ ‘

Õ
. (R.61b)

Therefore, for all ‘ > 0, there always exists an N su�ciently large such that

Pr
ï����≠

1
N

log fXY (X, Y ) ≠ h(X, Y )
���� < ‘

ò
> 1 ≠ ‘. (R.62)

This completes the proof.

Remark 4. Since the probability space is continuous, it follows from Vitali convergence
theorem [70] that the convergence in probability of ≠ 1

N
log fXY (X, Y ) to h(X, Y ), i.e.,

≠ 1
N

log fXY (X, Y ) pæ h(X, Y ) established in Lemma 67 implies the L 1 convergence of

≠ 1
N

log fXY (X, Y ) to h(X, Y ), i.e., ≠ 1
N

log fXY (X, Y ) L 1
æ h(X, Y ).

Definition 25 (Weakly Joint Typical Set). Consider two random variables X œ R and Y œ R
distributed according to fXY , and the pdfs and joint pdf of the N-dimensional vectors of

random variables X and Y according to (R.7), PY (y1, y2 . . . , yN ) =
NY

n=1
PY (yn), and (R.54).

For any ‘ > 0 arbitrarily small, the set of weakly joint typical sequences with respect to PXY is
the set of sequences ((x1, y1), (x2, y2), . . . , (xN , yN )) œ (X ◊ Y)N , denoted by T (N,‘)

XY
, such that:

T (N,‘)
XY

=
(

(x, y) œ (X ◊ Y)N :
����≠

1
N

log (fX (x)) ≠ h(X)
���� < ‘,

����≠
1
N

log (fY (y)) ≠ h(Y )
���� < ‘, and

����≠
1
N

log (fXY (x, y)) ≠ h(X, Y )
���� < ‘

)

. (R.63)

Note that if (x, y) œ T (N,‘)
XY

then x œ T (N,‘)
X

and y œ T (N,‘)
Y

.

231



R. Weak Typicality

Lemma 68. Let T (N,‘)
X Y

be the set of weakly joint typical sequences with respect to fXY and
with ‘ > 0. Then, for N su�ciently large and for all (x, y) œ T (N,‘)

XY
, the following holds:

2≠N(h(X,Y )+‘)
< fXY (x, y) < 2≠N(h(X,Y )≠‘)

, (R.64a)
2≠N(h(X|Y )+2‘)

< fX|Y (x|y) < 2≠N(h(X|Y )≠2‘)
, (R.64b)

Z

(x,y)œT (N,‘)
XY

fXY (x, y) dx dy > 1 ≠ ‘, and (R.64c)

(1 ≠ ‘)2N(h(X,Y )≠‘)
< Vol

⇣
T (N,‘)

XY

⌘
< 2N(h(X,Y )+‘)

. (R.64d)

Proof:

Proof of (R.64a): This is obtained directly from Definition 25.

Proof of (R.64b): From the assumptions of the lemma, it follows that

2≠N(h(X)+‘)
<fX(x) < 2≠N(h(X)≠‘) and , (R.65a)

2≠N(h(Y )+‘)
<fY (y) < 2≠N(h(Y )≠‘)

. (R.65b)

From (R.64a) and (R.65b), the following holds:

2≠N(h(X|Y )+2‘)
< fX|Y (x|y) < 2≠N(h(X|Y )≠2‘)

, (R.65c)

and this completes the proof of (R.64b).

Proof of (R.64c): From Lemma 67, the following holds:
Z

(x,y)œT (N,‘)
XY

fXY (x, y) dx dy > 1 ≠ ‘, (R.66)

with ‘ > 0 and this completes the proof of (R.64c).

Proof of (R.64d): From (R.64a) and (R.64c), the following holds:

1=
Z

(x,y)œX N ◊YN
fXY (x, y) dx dy (R.67a)

>
Z

(x,y)œT (N,‘)
XY

fXY (x, y) dx dy (R.67b)

>

Z

(x,y)œT (N,‘)
XY

2≠N(h(X,Y )+‘)
dx dy (R.67c)

=2≠N(h(X,Y )+‘)
Z

(x,y)œT (N,‘)
XY

dx dy (R.67d)

=2≠N(h(X,Y )+‘)Vol
⇣
T (N,‘)

XY

⌘
, (R.67e)

for N su�ciently large, which implies:

Vol
⇣
T (N,‘)

XY

⌘
< 2N(h(X,Y )+‘)

, (R.67f)
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and

1 ≠ ‘6
Z

(x,y)œT (N,‘)
XY

fXY (x, y) dx dy (R.67g)

<

Z

(x,y)œT (N,‘)
XY

2≠N(h(X,Y )≠‘)
dx dy (R.67h)

=2≠N(h(X,Y )≠‘)
Z

(x,y)œT (N,‘)
XY

dx dy (R.67i)

=2≠N(h(X,Y )≠‘)Vol
⇣
T (N,‘)

XY

⌘
, (R.67j)

for N su�ciently large, which implies:

Vol
⇣
T (N,‘)

XY

⌘
> (1 ≠ ‘) 2N(h(X,Y )≠‘)

, (R.67k)

and this completes the proof of (R.64d). This completes the proof of Lemma 68.
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