
HAL Id: tel-01665358
https://hal.science/tel-01665358v2

Submitted on 17 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid fully homomorphic framework
Pierrick Méaux

To cite this version:
Pierrick Méaux. Hybrid fully homomorphic framework. Cryptography and Security [cs.CR]. Université
Paris sciences et lettres, 2017. English. �NNT : 2017PSLEE066�. �tel-01665358v2�

https://hal.science/tel-01665358v2
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’École normale supérieure

Hybrid fully homomorphic framework

École doctorale n◦386
Sciences Mathématiques de Paris Centre

Spécialité Informatique

Soutenue par Pierrick
MÉAUX
le 8 décembre 2017

Dirigée par
Vadim LYUBASHEVSKY
et David POINTCHEVAL

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH  UNIVERSITY  PARIS

COMPOSITION DU JURY

MME. CANTEAUT Anne
Inria de Paris
Rapporteur

M. CARLET Claude
Université Paris VIII
Président du jury

M. LYUBASHEVSKY Vadim
IBM Zürich
Co-directeur de thèse

MME. MESNAGER Sihem
Université Paris VIII
Examinateur

M. POINTCHEVAL David
CNRS, École normale supérieure
Directeur de thèse

M. SIRDEY Renaud
Commissariat à l’énergie atomique
Examinateur

M. STANDAERT François-Xavier
Université catholique de Louvain
Examinateur

M. STEHLÉ Damien
École normale supérieure de Lyon
Rapporteur





Hybrid Fully Homomorphic Framework

Pierrick Méaux

Thèse de doctorat dirigée par
Vadim Lyubashevsky et David Pointcheval





Abstract
Fully homomorphic encryption, firstly built in 2009, is a very powerful kind of encryption,
allowing to compute any function on encrypted data, and to get an encrypted version of the
result. Such encryption enables to securely delegate data to a cloud, ask for computations,
recover the result, while keeping private the data during the whole process. However, today’s
inefficiency of fully homomorphic encryption, and its inadequateness to the outsourcing
computation context, makes its use alone insufficient for this application. Both of these
issues can be circumvented, using fully homomorphic encryption in a larger framework, by
combining it with a symmetric encryption scheme. This combination gives a hybrid fully
homomorphic framework, designed towards efficient outsourcing computation, providing both
security and privacy.

In this thesis, we contribute to the study of hybrid fully homomorphic framework, through
the analysis, and the design of symmetric primitives making efficient this hybrid construction.
Through the examination of fully homomorphic encryption schemes, we develop tools to
efficiently use the homomorphic properties in a more complex framework. By investigat-
ing various symmetric encryption schemes, and building blocks up to the circuit level, we
determine good candidates for a hybrid context. Through evaluating the security of con-
structions optimizing the homomorphic evaluation, we contribute to a wide study within the
cryptographic Boolean functions area.
More particularly, we introduce a new family of symmetric encryption schemes, with a

new design, adapted to the hybrid fully homomorphic framework. We then investigate its
behavior relatively to homomorphic evaluation, and we address the security of such design.
Finally, particularities of this family of ciphers motivate specific cryptanalyses, therefore we
develop and analyze new cryptographic Boolean criteria.

— iii —





Résumé
Le chiffrement complètement homomorphe est une classe de chiffrement permettant de
calculer n’importe quelle fonction sur des données chiffrées et de produire une version chiffrée
du résultat. Il permet de déléguer des données à un cloud de façon sécurisée, faire effectuer des
calculs, tout en gardant le caractère privé de ces données. Cependant, l’innéficacité actuelle
des schémas de chiffrement complètement homomorphes, et leur inadéquation au contexte
de délégation de calculs, rend son usage seul insuffisant pour cette application. Ces deux
problèmes peuvent être résolus, en utilisant ce chiffrement dans un cadre plus large, en le
combinant avec un schéma de chiffrement symétrique. Cette combinaison donne naissance
au chiffrement complètement homomorphe hybride, conçu dans le but d’une délégation de
calculs efficace, garantissant des notions de sécurité et de vie privée.
Dans cette thèse, nous étudions le chiffrement complètement homomorphe hybride et ses

composantes, à travers la conception de primitives cryptographiques symétriques rendant
efficace cette construction hybride. En examinant les schémas de chiffrement complètement
homomorphes, nous developpons des outils pour utiliser efficacement leurs propriétés homo-
morphiques dans un cadre plus complexe. En analysant différents schémas symétriques, et
leurs composantes, nous déterminons de bons candidats pour le contexte hybride. En étudiant
la sécurité des constructions optimisant l’évaluation homomorphique, nous contribuons au
domaine des fonctions booléennes utilisées en cryptologie.
Plus particulièrement, nous introduisons une nouvelle famille de schémas de chiffrement

symétriques, avec une nouvelle construction, adaptée au contexte hybride. Ensuite, nous
nous intéressons à son comportement homomorphique, et nous étudions la sécurité de
cette construction. Finalement, les particularités de cette famille de schémas de chiffrement
motivant des cryptanalyses spécifiques, nous développons et analysons de nouveaux critères
cryptographiques booléens.

— v —





Acknowledgments

Différentes personnes ont contribué au bon déroulement de ma thèse, que ce soit par ce
qu’elles m’ont appris, par le soutient qu’elles m’ont apporté, ou par les bons moments qu’elles
m’ont fait passer, au cours de ces trois dernières années. Je remercie toutes ces personnes
et je leur en suis reconnaissant. Ces remerciements sont la dernière partie de ce manuscrit
que j’écris (après une rédaction un peu longue, voire douloureuse) ; je m’excuse par avance
pour tous ceux que j’oublierai de mentionner, ou pour qui je ne trouverai pas les mots pour
exprimer ma gratitude.
Je remercie tout d’abord mes deux directeurs de thèse, Vadim Lyubashevsky et David

Pointcheval, pour avoir accepté d’encadrer ma thèse, et pour m’avoir permis de faire ma
thèse au sein de l’équipe crypto/cascade de l’ENS (INRIA, CNRS, PSL, choisissez votre
affiliation préférée). I thank Vadim for sharing his insight on the important problems in
lattice-based cryptography (and on research in general), for inviting me at IBM Zurich last
year, and for inciting me to visit François-Xavier Standaert at UCL. Je remercie David pour
son extrême efficacité, pour m’avoir toujours apporté rapidement des solutions aux problèmes
administratifs, d’enseignement, de financement de missions, ou de vie du labo, ainsi que pour
avoir relu mon manuscrit. Je le remercie aussi pour toujours contribuer à faire de l’équipe
crypto ce qu’elle est, entre-autres un bon environnement pour faire sa thèse.

Je tiens à remercier Anne Canteaut et Damien Stehlé pour avoir accepté d’être mes rappor-
teurs. Ce sont deux chercheurs que j’admire pour leurs résultats, la qualité de leurs travaux,
et leur engagement pédagogique. Je suis reconnaissant pour leurs nombreux commentaires
qui m’ont permis d’améliorer ce manuscrit.

Je remercie mes coauteurs avec qui j’ai beaucoup appris à travers différentes collaborations :
Claude Carlet, Romain Gay, Anthony Journault, Yann Rotella, François-Xavier Standaert,
et Hoeteck Wee. Je remercie tout particulièrement François-Xavier et Claude. Je remercie
François-Xavier pour m’avoir accueilli chaleureusement au sein de l’équipe à LLN, à de nom-
breuses reprises. Nos discutions de recherches, confrontant parfois des notions diamétralement
opposées (du hardware au FHE), m’ont beaucoup apporté. Je lui suis reconnaissant pour
avoir accepté d’être dans mon jury, et de faire un post-doc avec lui. Je remercie Claude pour
les nombreux échanges que l’on a pu avoir au cours de nos collaborations. Ses connaissances
en fonctions booléennes, (et l’élégance de certaines de ses démonstrations), ont largement
influencé mon attrait récent pour ce domaine. Je lui suis reconnaissant pour avoir accepté
d’être dans mon jury.
Je remercie aussi Sihem Mesnager et Renaud Sirdey pour avoir accepté de faire parti de

mon jury. J’ai trouvé très intéressantes les différentes discussions que j’ai eu l’occasion d’avoir
avec chacun de ces deux chercheurs. Et je les remercie pour l’intérêt qu’ils ont manifesté
concernant mes travaux.
Au cours de cette thèse j’ai pu rencontrer d’autres chercheurs lors de conférences ou

réunions diverses. Je les remercie pour des échanges intéressants sur la cryptographie ou plus
généraux, ou pour m’avoir invité à présenter mes travaux. Je pense plus particulièrement à
Lilya Budaghyan, Léo Ducas, Sébastien Duval, Jean-Pierre Fiori, Malika Izabachène, Virginie

— vii —



viii Acknowledgments

Lallemand, Adeline Langlois, Fabrice Mouhartem, Pascal Pailler, María Naya-Plasencia, et
Elizabeth Quaglia.

Ces trois ans de thèse ont plus souvent été marqués par beaucoup de temps à chercher et
peu de temps à trouver. Je remercie toute l’équipe de l’ENS pour m’avoir permis de relativiser
sur les hauts et les bas de la recherche, ou de sortir de la solitude le temps d’une (parfois
longue) pause café. Je remercie Damien Vergnaud pour m’avoir fait confiance pour être son
chargé de TD. J’ai beaucoup apprécié ces deux années de LFCC et plus généralement d’avoir
pu m’impliquer dans l’enseignement à l’ENS. Je tiens aussi à remercier Michel Abdalla,
pour ses conseils avisés et bienveillants sur la vie d’un jeune chercheur. Je lui suis aussi
reconnaissant pour les responsabilités qu’il m’a confiées pour l’organisation d’Eurocrypt 2017,
et je n’oublierai pas l’intense semaine que toute l’équipe a passée.

Je remercie le personnel administratif qui a fréquemment contribué au bon déroulement de
ma thèse, en particulier Nathalie Gaudechoux, à qui j’ai toujours pu faire appel, indépendam-
ment du jour et du problème. Je pense aussi à Jacques Beigbeder, Lise-Marie Bivard, Isabelle
Delais, Joëlle Isnard, Sophie Jaudon, Valérie Mongiat, Ludovic Ricardou et Benoit Speriazi.
Les nombreux moments passés avec les doctorants, post-docs et jeunes chercheurs de

l’équipe crypto ont élargi mon domaine de connaissance en cryptographie, et ont veillé à
garder le cap durant cette thèse. Je remercie d’abord les plus anciens doctorants, qui ont
partagé leur expérience : Tancrède Lepoint pour Ses conseils divers, Thomas Prest un presque
mentor, Mario Cornejo por esos cafés antes de las diez, Alain Passelègue pour nos débats sans
fin, Adrian Thillard pour son humour, et aussi Sonia Belaid, Fabrice Benhamouda, et Sylvain
Ruhault. Je remercie ceux avec qui j’ai partagé pendant ces trois années la vie au labo, des
conférences, et parfois même des vacances : Florian Bourse, Geoffroy Couteau, Rafaël Del
Pino, Pierre-Alain Dupont, Thierry Mefenza et Anca Nitulescu. Je remercie particulièrement
Romain Gay pour nos repas/soirées au labo, toutes nos discussions crypto et nos digressions.
Je tiens aussi à remercier les plus "jeunes" du labo (et leur souhaite bon courage pour la
future rédaction) : Balthazar Bauer, Jérémy Chotard, Dahmun Goudarzi (qui mérite bien son
mug), Chloé Hébant, Louiza Khati, Michele Minelli, Michele Orrù, Razvan Rosie et Mélissa
Rossi. Je remercie beaucoup Aurélien Dupin, sur qui l’on peut compter même pour coder
des fonctions Booléennes, discuter de PRG et plus encore. Je pense aussi à ceux que j’ai
côtoyés plus brièvement : Raphaël Bost, Céline Chevalier, Simon Cogliani, Angelo De Caro,
Aisling Connolly, Itai Dinur, Edouard Dufour-Sans, Pooya Farshim, Houda Ferradi, Georg
Fuchsbauer, Rémi Géraud, Giuseppe Guagliardo, Aurore Guillevic, Julia Hesse, Duong Hieu
Phan, Thomas Peters, Antonia Schmidt-Lademann et Bogdan Ursu. J’ai une pensée pour
l’équipe de LLN où j’ai été très bien accueilli à chaque fois.

Je suis reconnaissant envers mes amis, qui m’ont soutenu, ou tout simplement changé les
idées. Je remercie les "cryptis" : Élise, Tom, Adrien, Zoé, Colin, et Anthony pour ces bons
moments passés entre Paris, Limoges, les Vosges et Bruxelles. Je remercie tout particulièrement
Anthony, qui en plus d’être un ami de longue date est un chercheur avec qui j’ai pris beaucoup
de plaisir à travailler. Je remercie Christophe, qui bien qu’il ait préféré la physique, est
resté un ami proche. Je remercie le groupe des "corréziens", pour nos week-end ou "jeudi
corréziens" à Paris : Maxime (jamais très loin ces 16 dernières années), Jérémy, Baptiste,
Aline, Louis, Mélou et Milou, et plus récemment Marlène et Clément. Agradezco a mi grupo
del Erasmus : Paulina, Thomas, Magda P, Magda F, Fran y Claire por nuestros encuentros
en varias ciudades esos tres años. Je remercie aussi ceux qui ont égayé les dimanches soirs au
quizz du Bombardier, comme Ilaria et Camilla.
Cette thèse n’aurait pu être possible sans ma famille, qui sans forcement comprendre ce



ix

qui pouvait autant me plaire dans les maths, m’ont soutenu. Je remercie particulièrement
mes parents et ma soeur pour l’amour dont ils m’ont fait part.
Je finis ces remerciements par Éyandé, qui par sa joie de vivre, ses encouragements, son

amour, et son imprévisibilité, m’a rendu heureux ces deux dernières années et demie.





Contents
Abstract iii

Résumé v

Acknowledgments vii

1 Introduction 1
1.1 Outsourcing Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Asymmetric Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Hybrid Fully Homomorphic Framework . . . . . . . . . . . . . . . . . 4

1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Hybrid Homomorphic Framework and Error-Growth . . . . . . . . . . 7
1.2.2 New Stream Cipher Design: the Filter Permutator . . . . . . . . . . . 7
1.2.3 New Criteria on Boolean Functions . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9
2.1 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Algorithms, and Provable Security . . . . . . . . . . . . . . . . . . . . 11

2.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Generic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Lattice-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Generalities on Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Boolean criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Constructions of Boolean Functions . . . . . . . . . . . . . . . . . . . 26

2.5 Additional Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Binomial Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Fully Homomorphic Encryption 31
3.1 First and Second Generations . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 First FHE: Gentry’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Second Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

— xi —



xii Contents

3.2 Third Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Batched GSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Ring GSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Error-growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Classical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Optimized Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Particular Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Hybrid Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Filter Permutator 61
4.1 Homomorphic Behavior of Standard Constructions . . . . . . . . . . . . . . . 62

4.1.1 Homomorphically Evaluating a Block Cipher . . . . . . . . . . . . . . 63
4.1.2 Homomorphically Evaluating a Stream Cipher . . . . . . . . . . . . . 64
4.1.3 Homomorphically Evaluating an LWE-related Cipher . . . . . . . . . . 66

4.2 First Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Filter Permutator Design and Instantiation . . . . . . . . . . . . . . . . . . . 69

4.3.1 General Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 FLIP Family of stream ciphers . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Design Tweaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Homomorphic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Concrete Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Symmetric Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.1 Classical Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Guess-and-Determine Attacks . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.3 Behavior relatively to Fixed Hamming Weight . . . . . . . . . . . . . 87
4.5.4 Instances and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 New Criteria on Boolean Functions 95
5.1 Low-cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Low-cost Functions and Standard Criteria . . . . . . . . . . . . . . . . 97
5.1.2 Exact Algebraic Immunity of Direct Sums of Monomials . . . . . . . . 105

5.2 Recurrent Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.1 Definitions and General Bounds . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Recurrent Criteria for Direct Sums of Monomials . . . . . . . . . . . . 114

5.3 Restricted Algebraic Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.1 Algebraic Immunity Upper Bound for all Restricted Sets . . . . . . . . 119
5.3.2 Algebraic Immunity Upper Bound for Fixed Hamming Weight Input . 121
5.3.3 Algebraic Immunity Restricted To En,k and Direct Sums . . . . . . . 126

5.4 Restricted Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.1 Nonlinearity Upper Bound for All Restricted Sets . . . . . . . . . . . . 128
5.4.2 Nonlinearity Restricted To Fixed Hamming Weight Input . . . . . . . 132
5.4.3 Deterioration of Functions with Optimal Standard Nonlinearity . . . . 137

5.5 Restricted Balancedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.1 Weightwise Balancedness and ANF . . . . . . . . . . . . . . . . . . . . 140
5.5.2 Constructions of Weightwise (Almost) Perfectly Balanced Functions . 143



Contents xiii

6 Conclusion and Perspectives 149
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.1 Goldreich’s PRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.2 Improved Filter Permutator . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.3 Weightwise Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.4 New Considerations on Boolean Functions . . . . . . . . . . . . . . . . 156

Bibliography 159





Chapter 1
Introduction
In this chapter we introduce the topic of this thesis in the area of cryptology.
First we briefly motivate cryptology, then we specify the focal point of this thesis, and

finally we present the organization of this manuscript.

Contents
1.1 Outsourcing Computation . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Asymmetric Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Hybrid Fully Homomorphic Framework . . . . . . . . . . . . . . . . . . 4

1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Hybrid Homomorphic Framework and Error-Growth . . . . . . . . . . . 7
1.2.2 New Stream Cipher Design: the Filter Permutator . . . . . . . . . . . . 7
1.2.3 New Criteria on Boolean Functions . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

— 1 —



2 Chapter 1 Introduction

Telling everything to everyone might not be the best way to build a human society. When
hearing the same message, two people might react quite differently, based on their feelings,
knowledge and aspirations; the fear of a bad reaction justifies not communicating everything
publicly. When one wants to establish a communication with one person (or a group), rather
than with everyone, the notion of secret emerges, as occulted knowledge. The development
of this notion leads to cryptology, from the Greek kruptos, hidden, and logos, the study, the
science, as science of the secret.

For a long time, cryptology mostly consisted in enabling private communications between
lovers, ensuring secure transmission of military knowledge, or trying to learn these secrets when
not authorized to do so. Since then, cryptology is grossly divided in two: first the construction
of systems or protocols (cryptosystems) to securely communicate called cryptography, second
the analysis of the security and the concrete attacks on these constructions as the cryptanalysis.
Cryptology has been considered as an art, before being mentioned as a science and then
more systematically defined and studied since the XX-th century. At the beginning, the
most important functionalities supplied by cryptography, secure communication between
two parties and authentication, were supposed to be guaranteed by ad-hoc constructions,
and secret on the design of the cryptosystems. Later, the industrial revolution and the
apparitions of machines changed both the possible functionalities and the theoretic treatment
of cryptosystems. Indeed, the amount of computations that could make a particular machine,
designed to create or break a cryptosystem, is way more important than the one of a human,
as witnessed during World War II by the Enigma machine. Since then, cryptology lives in the
intersection of mathematics and computer science, the security of the cryptosystems being
related to mathematical problems and the limitations of the machines designed to break
them.
As any science, cryptology evolves with the epochs, depending on the needs and the

capabilities of the society. In our digital era, the number of ways to communicate explodes,
together with the concerns about security and privacy, giving birth to plenty of new challenges
in cryptology. In this thesis, we focus on one of these challenges, and on the solutions developed
to address it.

1.1 Outsourcing Computation
The challenge we investigate in this thesis is outsourcing computation; or more precisely,
how a person could allow another entity to perform some computations on his data without
renouncing to his privacy relatively to this data. First we motivate this challenge, then we
present a first theoretical answer and then a second more suited solution.

1.1.1 Asymmetric Situation
In today’s world, computers and Internet are everywhere, and take an important part in the
day-to-day life. For a lambda user of Internet, later called Alice, well-connected to the digital
world, we highlight the asymmetry between the quantity of data she is the source of, and the
devices she owns to process it.

Alice is very connected: she communicates via instant messaging, she is involved in various
social networks, she often does on-line shopping, and she uses plenty of apps. Alice is always
connected to Internet through various devices, as her smartphone, laptop, smartwatch, tablet
computer, smart card, etc. The number of on-line activities she may be interested in grows



1.1 Outsourcing Computation 3

up whereas the devices she uses are more and more limited devices; devices with small storage
capacity and low computational power. The current trend is to be more and more implicated
in the digital world and with smaller and smaller connected devices. Alice stores and accesses
more and more pictures, music, texts, videos, etc. whereas she uses more and more limited
devices.

With this trend, Alice is no longer able to store all the data she owns. The limited devices
in her possession are not powerful enough to handle the quickly increasing amount of data
related to her digital life. As an example, it becomes impossible for Alice to simply access
the pictures of her last year holidays on her phone. The storage incapacity is the tip of the
iceberg of what Alice cannot do anymore relatively to her data. Beside storing, Alice can be
interested in doing some processing on her data, as some research functions, on her emails or
address book; as photographic modification, correcting the red-eye effect or more generally
photoshopping. She can be interested in computing basic statistics over her data, as financial
incomes and outcomes or more involved computations.
What Alice cannot do anymore on her data, other entities can. In the recent years the

proliferation of small embedded devices with limited storage and computing facilities for
users have been compensated by the apparition of cloud services with extensive storage and
computing facilities. Therefore, to bypass her storage and computation boundaries, Alice
can use a cloud, later called Claude, a society using multiple servers and providing huge
storage and computational power. This context justifies the outsourcing of data and the
delegation of data processing. With an agreement between Alice and Claude, all storage and
computational functionalities desired by Alice can be handled.

Nevertheless, it raises new security and privacy concerns, Alice may not want the cloud to
access all her data and learn her whole life. The data outsourced by Alice can be sensitive
as health information or business indications, and she may not want the cloud to own
and potentially use or distribute the outsourced data or any knowledge inferred from this
data. Namely, users typically want to prevent the server from learning about their data and
processing. Such privacy for outsourcing computation framework can be guaranteed using
Fully Homomorphic Encryption (FHE).

1.1.2 Fully Homomorphic Encryption

Fully homomorphic encryption allows to encrypt data such that any operation on the data
can be performed on the encrypted data without knowing the concrete values of this data.
Gentry’s breakthrough fully homomorphic encryption scheme [Gen09] brought a perfect
conceptual answer for outsourcing computation.
In this context, it means that Alice can encrypt her data, and that Claude can perform

computations on the encrypted data. Alice learns the result of the computation whereas
Claude learns nothing on Alice’s initial data or on the result of the computation. This
use of fully homomorphic encryption can be described in terms of cloud-service application
framework. First, Alice subscribes to Claude for outsourcing her computations and they
exchange some information. Then, Alice sends homomorphically encrypted data to Claude,
corresponding to a storage phase. When Alice wants to get the result of a computation on
her data, she describes the computation to Claude, he evaluates it on the encrypted data and
returns a homomorphic ciphertext to Alice. Finally, Alice decrypts and obtains the results of
the computation she asked for. It is also possible for Alice to repetitively encrypt new data
to Claude and ask for other computations.



4 Chapter 1 Introduction

Fully homomorphic encryption gives access to an outsourcing computation framework with
privacy guarantees for Alice, as desired. However, today’s knowledge on fully homomorphic
encryption does not give a practical solution for this context. Indeed, current fully homo-
morphic encryption (abbreviated as FHE) schemes are not efficient enough to be performed
on limited devices as the one used by Alice. Diverse barriers prevent this framework from
being a practical solution, given the limited devices of Alice and the time of execution she
can expect. The main limitation for the deployment of cloud services based on such FHE
frameworks relates to its important overheads, that can be linked to two main concerns.
First, the computational and memory costs, especially on Alice’s side, are very important.
Homomorphic encryption and decryption algorithms that Alice should execute are still very
expensive in time, and the memory cost is mostly influenced by the homomorphic ciphertexts
and public key sizes which are still prohibitive for limited devices. For use-cases where Alice
needs to contract a cloud to perform the computations she wants, we cannot assume that
she has powerful enough devices to run a typical FHE scheme. Second, fully homomorphic
encryption allows to evaluate any function on the encrypted data but any processing is not
performed with the same efficiency; this efficiency can be measured in terms of homomorphic
capacity. The homomorphic capacity relates to the fact that FHE constructions are built
on noise-based cryptography, where the unbounded amount of homomorphic operations is
guaranteed by an expensive bootstrapping technique. The homomorphic capacity corresponds
to the amount of operations doable before the noise grows too much, forcing the use of
bootstrapping and preventing quick evaluation.
These two main limitations lead to not using fully homomorphic encryption schemes

on their own for outsourcing computation, but preferably use FHE as a building block.
Taken into account these strong limitations, a more suited framework arises, called hybrid
homomorphic framework, and later referred to as efficient homomorphic framework.

1.1.3 Hybrid Fully Homomorphic Framework

One possible solution for outsourcing computation (efficiently) is to use a hybrid encryption
scheme: preserving the homomorphic encryption scheme to keep the privacy of Alice’s data,
and using an efficient scheme to make the framework handleable in memory for Alice’s
limited devices and in time for real-life applications. Consequently, the efficient homomorphic
framework contains two encryption schemes, a (fully) homomorphic one, and another used for
its efficiency, that will be a symmetric encryption scheme. The whole framework, appearing
first in [LNV11], is called hybrid fully homomorphic framework, or hybrid homomorphic
framework, depending on whether we consider a homomorphic encryption scheme enabling
to evaluate any function (case of fully), or a restricted class of functions.
The framework is called hybrid as it uses two types of encryption schemes, and it can be

described in the following way. First, Alice contracts Claude for outsourcing her computations
and they exchange some information about the two schemes. Then, Alice symmetrically
encrypts her data and sends it to Claude, corresponding to the storage phase. Claude
computes a homomorphically encrypted version of Alice’s data from the information given by
Alice at the contract signature and the symmetrically encrypted data he received. As in the
previous framework, when Alice wants to get the result of a computation on her data, she
describes the computation to Claude and he evaluates it on the homomorphically encrypted
data. Then, Claude compresses the (homomorphically) encrypted result and sends it back to
Alice, who decrypts it and gets the result.



1.1 Outsourcing Computation 5

Three differences between this hybrid framework and the previous one are the core points to
get a framework efficient for outsourcing computation. These critical points are the symmetric
encryption done by Alice, the transformation performed by Claude and the compression. To
develop them we use the following denomination, the data of Alice is called plaintext and
then ciphertext when it is encrypted, the words symmetric, homomorphic and others from
the same families are used to differentiate what relates to the symmetric scheme or to the
homomorphic one. The symmetric encryption done by Alice has to be easier to handle for
the devices she owns than homomorphic encryption. This is generally the case as symmetric
encryption is supposed to be fast and symmetric ciphertexts are supposed to be much smaller
in term of data than homomorphic ciphertexts. The compression is a feature exhibited for
some existing homomorphic scheme, it consists in transforming the homomorphic ciphertext
in a ciphertext of reduced size such that decryption is still possible. In the known FHE
constructions there is some redundancy in the ciphertexts, the associated structure allows the
homomorphisms but this structure is not necessary to recover the plaintexts. As an example,
in some schemes the matrix structure of the ciphertexts allows homomorphic operations
whereas only one column of the ciphertext is sufficient to decrypt. The transformation
performed by Claude is the trickiest part of the hybrid encryption and the central problem
of (fully) hybrid homomorphic framework.

Claude has some information on the two schemes from his first exchange with Alice and he
needs to convert ciphertexts for the symmetric scheme into ciphertexts for the homomorphic
scheme. More details on the pieces of information given by Alice relatively to the two schemes
are necessary to understand this transformation. For the symmetric encryption scheme, a
piece of information called key is chosen and kept private by Alice. This key combined with
a plaintext gives the corresponding symmetric ciphertext (encryption), and reciprocally this
key combined with a ciphertext gives the corresponding plaintext (decryption). Therefore,
Alice keeps private her key and sends only the specifications of the scheme to Claude. For
the homomorphic encryption scheme, there are two important pieces of information, one
allowing anyone to encrypt, which is sent to Claude, and one allowing to decrypt which is
kept private by Alice. Alice communicates this information, the specifications of the scheme
and a homomorphic encryption of the (symmetric) key, to Claude. The cloud cannot recover
this key, as he can encrypt homomorphically but he cannot decrypt, however with all these
informations he can do the transformation.

Claude cannot evaluate homomorphic operations on the symmetric ciphertexts, but he can
do homomorphic encryption, hence he homomorphically encrypts the symmetric ciphertexts.
Some caution is required here: these ciphertexts correspond to the homomorphic encryption of
symmetrically encrypted plaintexts (two layers of encryption) and they are not homomorphic
ciphertexts relatively to the considered scheme, so it is not sufficient for the conversion. Instead,
if we consider as function the decryption of the symmetric scheme, Claude owns homomorphic
encryptions of all its inputs: the homomorphic encryption of the key sent by Alice, and
the homomorphic encryption of the symmetric ciphertext he computed. Using the fully
homomorphic property, he can compute the homomorphic encryption of any function evaluated
on homomorphically encrypted ciphertext. Then, Claude homomorphically evaluates the
symmetric decryption function on these encrypted inputs, which gives a homomorphic
encryption of the plaintext, and finalizes the transformation. A more efficient method is
used in practice for this transformation, using a more intricate hybrid decryption function.
It consists in tweaking the homomorphic evaluation of the symmetric decryption function
to directly take as inputs the symmetric ciphertexts rather than homomorphic encryption



6 Chapter 1 Introduction

of these ciphertexts. It avoids an unnecessary homomorphic encryption, and it enables to
design a decryption function more efficiently evaluable. This tweaked evaluation is even
more adapted for some symmetric schemes, later leading to consider stream ciphers more
particularly.
With this hybrid framework, all the algorithms performed by Alice are handleable by

constrained devices, as Alice performs the algorithms of the symmetric scheme and a simplified
decryption of the homomorphic scheme. On his side, Claude takes care of all the homomorphic
operations, which is adapted to his huge memory and computational power. Even with the
second scheme, he only gets encrypted versions of Alice’s data, keeping the privacy concern
of the whole framework. These two points are sufficient to design the hybrid homomorphic
framework as a better candidate for outsourcing computation than fully homomorphic
encryption framework. However, core questions on this hybrid framework still have to be
correctly addressed to provide a concrete solution.

Mainly, the efficiency of the whole framework depends on the symmetric encryption scheme
used, and its compatibility with homomorphic encryption. Its efficiency as encryption scheme
used on limited devices is already assumed, but it does not guarantee that the correspond-
ing decryption function can be quickly evaluated by Claude to produce homomorphically
encrypted data. A first problem is therefore to determine which functions can be evaluated
quickly enough by Claude in this context. Note that the step performed by Claude to obtain
homomorphically encrypted data should not be noticed by Alice, as it does not depend on the
computation she asks for. Then, it requires to find or build a symmetric encryption scheme
that can be expressed in terms of these functions easy to homomorphically evaluate. The
high compatibility between the two schemes makes a small overhead of Claude’s conversion
step. Finally, the security of this scheme is a main concern for the privacy requirements of
the whole outsourcing computation framework.

1.2 Our Results

In this thesis we present our results relative to the hybrid homomorphic framework previously
introduced. These results come from two articles and further personal results. The first article,
”Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts” [MJSC16], published
at EUROCRYPT 2016, is a joint work with Anthony Journault, François-Xavier Standaert
and Claude Carlet, introducing a new kind of stream-ciphers designed for the context of
outsourcing computation. This article contributes to a better study of the homomorphic
error-growth of a family of fully homomorphic encryption schemes in theory and practice,
it presents a new design of stream ciphers, the Filter Permutator, with associated security
analysis and gives a candidate instantiation of hybrid homomorphic framework with record
efficiency. The second article, ”Boolean functions with restricted input and their robustness;
application to the FLIP cipher” [CMR17], accepted in ToSC(Transactions on Symmetric
Cryptology) 2018, is a joint work with Claude Carlet and Yann Rotella, investigating the
cryptographic criteria when the input of a Boolean function is restricted. This article presents
a theoretical study on the main cryptographic criteria on Boolean functions when they are
evaluated only on a restricted set of inputs, it shows how this study can be used to investigate
the security of some symmetric encryption schemes, and more precisely how it can contribute
to the security analysis of Filter Permutator instantiations.
Therefore in this thesis we present a hybrid framework for outsourcing computation and



1.2 Our Results 7

instantiations, and more specifically theoretical results developed to achieve it, on the error
growth metric of a FHE and on Boolean functions.

1.2.1 Hybrid Homomorphic Framework and Error-Growth

The first component of the hybrid homomorphic framework we consider is a (fully) homo-
morphic encryption scheme. For the efficiency of the whole framework this scheme has to be
compatible with the symmetric scheme and well understood. Therefore our first contribution
concerns homomorphic encryption, for which we solve the efficiency bottlenecks by analyzing
functions efficiently evaluable homomorphically.

We analyze the error-growth produced by homomorphic evaluation using a particular family
of homomorphic encryption schemes. This detailed analysis enables to consider particular
functions which involve a low error-growth and therefore to determine good building blocks
for a scheme homomorphically evaluated quickly and with limited memory resources.
We also define more formally the hybrid homomorphic framework, showing how and

in which cases its efficiency can be improved, depending on particular choices of the two
component schemes.

1.2.2 New Stream Cipher Design: the Filter Permutator

The Filter Permutator is the stream-cipher construction we designed for homomorphic
encryption framework. Its goal is to be instantiated as a symmetric encryption scheme
with the most efficient homomorphic evaluation of its decryption relatively to a specified
homomorphic encryption scheme.
We analyze the behavior of various symmetric schemes relatively to homomorphic eval-

uations, and then more particularly the error-growth associated to the Filter Permutator
construction. In particular we investigate the efficiency of its instantiation: FLIP ciphers, in
general and more concretely in the hybrid homomorphic framework context.

The security of the Filter Permutator and its instantiation as symmetric encryption scheme
are examined. Various attacks are considered, some generic ones for stream-ciphers, others
dedicated to the new design of the Filter Permutator, a class of attacks connected to guess-
and-determine strategies and a new class related to a Hamming weight invariant appearing
in the scheme.

1.2.3 New Criteria on Boolean Functions

Relatively to the specific functions involving a low error-growth and the security analysis of the
Filter Permutator we investigate particular cryptographic criteria on Boolean functions. This
study aims to determine which functions can provide security in the considered context and
it contributes to the knowledge of Boolean functions used in cryptography and cryptanalysis.
The functions efficiently homomorphically evaluated, also called low-cost functions, are

not currently considered Boolean functions. Consequently we examine their parameters
relatively to the standard cryptographic criteria on Boolean function as algebraic immunity,
nonlinearity and resiliency.

New cryptographic criteria on Boolean functions emerge from the security analysis of the
Filter Permutator, referred as recurrent criteria and restricted input criteria. We study these
adaptations, or generalizations, of standard cryptographic criteria on Boolean functions;



8 Chapter 1 Introduction

examining the behavior of commonly considered Boolean functions and investigating optimal
constructions.

1.2.4 Organization
According to these contributions, the thesis is organized in the following way. After this
introduction, Chapter 2 contains the preliminaries, introducing the notions used through
the thesis. Then, Chapter 3 presents the results relatively to fully homomorphic encryption,
in Chapter 4 we develop the construction of the Filter Permutator, its achievements and
its security, and in Chapter 5 we investigate the related new cryptographic Boolean criteria.
Finally, Chapter 6 concludes on the contributions presented in this thesis and gives more
perspectives.

1.3 Other Contributions
Besides the material exposed in this thesis, we worked on other cryptographic topics, one
of them leading to the article ”Predicate Encryption for Multi-Dimensional Range Queries
from Lattices” [GMW15], published at PKC 2015. In this joint work with Romain Gay and
Hoeteck Wee we construct a predicate encryption scheme for two principal predicates, with
security based on Learning With Errors.
Predicate encryption is a recent paradigm to treat search queries on encrypted data. A

predicate encryption scheme is a kind of public key scheme where ciphertexts (encrypted
data) are associated with a descriptive value x in addition to the plaintext (data), and secret
keys are associated to a predicate f (i.e. a Boolean function) such that the decryption is
possible only if f(x) = 1. In this article, we consider the predicate of multi-dimensional
range queries: we are given a point (z1, · · · , zD) ∈ [T ]D, where [T ] denotes the set of
integers {1, · · · , T}, and interval ranges [x1, y1], · · · , [xD, yD] ⊆ [T ] and we want to know
if (x1 ≤ z1 ≤ y1) ∧ · · · ∧ (xD ≤ zD ≤ yD). We also give an adapted construction for the
predicate of multi-dimensional subset queries where the ranges of the precedent definition are
replaced by subsets of [T ]. On the predicate side the results are obtained by firstly building a
predicate encryption scheme with the appropriate notions of security for a simple predicate of
disjunctions of equalities. Then this predicate is generalized to the conjunction of disjunctions
of equalities and other reductions between predicates enable to get results on the predicates
multi-dimensional range queries and multi-dimensional subset queries.

On the lattice side, the security of the scheme is based on the standard Learning with error
problem. Our result comes from an adaptation of lattice-based identity based encryption
and techniques on lattice trapdoors. The encryption scheme follows the generic LWE-based
anonymous identity based encryption obtained using the trapdoor sampling techniques. The
correctness of the scheme is obtained by using properties on trapdoors on the extending
right part of a matrix, as used in (hierarchical) identity based encryption. The security of
the scheme, selectively secure and weakly attribute-hiding, is obtained using the leftover
hash lemma and the technique of trapdoor extension on left side of the matrix. We refer to
[GMW15] for the detailed constructions and proofs as it is not the theme of this thesis.



Chapter 2
Preliminaries
In this chapter, we introduce the notations used throughout this manuscript and give some
definitions and notions.
We begin with standard notations of mathematics and computer science, then we define

less general notions. More particularly we introduce the basic notions on cryptographic
primitives, on Lattice-based cryptography and on Boolean functions later referred in this
thesis. Finally we give additional preliminaries, completing the introduction part of the
thesis.

Contents
2.1 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Algorithms, and Provable Security . . . . . . . . . . . . . . . . . . . . . 11

2.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Generic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Lattice-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Generalities on Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Boolean criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Constructions of Boolean Functions . . . . . . . . . . . . . . . . . . . . 26

2.5 Additional Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Binomial Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

— 9 —



10 Chapter 2 Preliminaries

2.1 Notations and Preliminaries

The notation and preliminaries introduced in this chapter are common in cryptography or
are basic notions used later in the thesis, they enable us to define and give basic results
on objects used or mentioned later. These preliminaries are adapted from several books,
cited in the relevant parts, and inspired by various PhD thesis preliminaries; the ones by
Fabrice Ben Hamouda–Guichoux [Ben16], Geoffroy Couteau, Virginie Lallemand [Lal16],
Alain Passelègue [Pas16], and Thomas Prest [Pre15].

2.1.1 Mathematical Notations

2.1.1.1 Sets, Rings, Integers

We denote by Z the set of integers, by N the set of non-negative integers and by R the set of
real numbers. For a and b two integers such that a < b, we denote by {a, · · · , b} the set of
integers between a and b (a and b included); if a = 1 we denote this set [b]. s ∈ {0, 1}n is a
bitstring of length n and we denote En,k the set of all bitstrings of length n with k 1’s and
n− k 0’s. For a finite set we denote |S| its cardinality.

If n is a positive integer, Zn denotes the ring of integers modulo n. F2 denotes the field of
two elements (Z2,+, ·), also referred as Boolean field; relatively to this field the operation
+ is called addition or XOR, also denoted ⊕. If R is a ring, then R[X] denotes the ring of
polynomials with coefficients in R.

For x ∈ Z, x mod q or [x]q denotes the remainder of the Euclidean division of x by q. For
y ∈ R, |y| is its absolute value, log(y) denotes its logarithm in basis 2, dye is the smallest
integer a such that y ≤ a; byc is the biggest integer a such that a ≤ y. The rounding
b[a]qe2 ∈ {0, 1} is a function in a ∈ Zq giving 1 if b q4c ≤ a ≤ b

3q
4 c and 0 otherwise.

2.1.1.2 Matrices and Vectors

Vectors are usually bold (e.g. u, v) and by default column vectors, while matrices are usually
denoted by capital bold letters (e.g. A, G).

For a matrix M we refer to the i-th row as m>i and to the j-th column as mj (as we do not
use the operation transposition the sign > enables to differentiate row vectors from column
vectors).

If u ∈ Rn is a vector, its coordinates or entries are u1, . . . , un (not in bold). We use |x|
and ||x||2 for the standard norms 1 and 2 on vectors x ∈ Rn. For two vectors u and v of Rn,
< u,v > or u · v denotes their inner product ∑i∈[n] uivi.

Elements u, v of Fn2 are sometimes considered as bitstrings of {0, 1}n with order � where
u � v if and only if for all i ∈ [n] ui ≤ vi. For a bitstring u ∈ {0, 1}∗ we denote |u| ∈ N its
length. For an element u of Fn2 , considered as a bitstring or a vector we define its Hamming
weight (or weight), denoted wH(v) as the number of its non-zero coefficients.

2.1.1.3 Distributions and Probabilities

If S is a set, x←$ S indicates that x is taken uniformly at random from the set S (indepen-
dently of everything else). Similarly, if χ is a probability distribution, x←$ χ indicates that
x is drawn randomly according to χ. For a probability distribution we generally denote µ its
mean and σ its parameter i.e. standard deviation.



2.1 Notations and Preliminaries 11

We denote Pr[X = x] the probability of a random variable X taking value x, and
Prx∈χ[f(x) = y] to denote the probability that f(x) is equal to a fixed value y when x is
sampled from the distribution χ. We denote by Un the uniform distribution over {0, 1}n. We
often use the term “random” to mean “uniformly at random”.

2.1.1.4 Miscellaneous

When f and g are two functions from N to the set of real numbers, we write f = O(g) or
g = Ω(f) to indicate that there exists a constant c and an integer n0 ∈ N such that for any
integer n ≥ n0, |f(n)| ≤ c · |g(n)|.

2.1.2 Algorithms, and Provable Security

We will use the notion of algorithm (at least implicitly) in most of this thesis and the notion
of provable security when dealing with homomorphic encryption.

2.1.2.1 Algorithms, and Turing machines

Algorithms are programs for Turing machines. By default, algorithms are probabilistic, i.e.
they can use an additional tape of the Turing machine containing random bits (random coins).
For an algorithm A, we write y ← A(x) or y = A(x) to say that we execute the algorithm A
on input x with fresh random coins and that we store the result in y. For a deterministic A,
we also use the same notation.

By default, algorithms are not supposed to run in polynomial time; if we want them to be
polynomial time, we say it explicitly, denoting by PPT algorithm a probabilistic polynomial
time algorithm. Relatively to provable security, we qualify an algorithm as ”efficient” if it is
a PPT algorithm in its input size (in opposition to exponential time).

2.1.2.2 Security Parameters and Negligibility

Almost any cryptosystem could be broken with a powerful enough computer, then the goal
of cryptographers is to construct fast enough cryptosystems which cannot be broken by
reasonable computers. Estimating an upper bound on the amount of computations deployable
to break a cryptosystem gives a security level, defining the limit between cryptosystems
considered insecure or secure. In practice, we often consider today that if at least 2128

elementary operations are required to break a cryptosystem with high probability (greater
than 1/2), then this cryptosystem is considered secure, this cryptosystem is said to provide
λ = 128 bits of security. 80 bits of security is also a very commonly used level of security,
particularly for cryptosystems used in the context of low-cost devices.

For asymptotic constructions, it is relevant to formalize this idea of security as a security
parameter λ ∈ N. In this particular context, all algorithms of a cryptosystem take as input a
unitary representation 1λ and all these algorithms run in polynomial time in λ. Adequately
all attacks against the cryptosystem are performed by algorithms running in time polynomial
in λ.
For concrete attacks, when the parameter λ is fixed to a particular integer, we consider

the cryptosystem broken if the amount of computation of an algorithm is smaller than 2λ
elementary operations and if its data complexity is smaller than 2λ, as detailed later in this
chapter.



12 Chapter 2 Preliminaries

The notion of negligibility is often used for security, to mathematically quantify the
proportion of events we can neglect. We say that the quantity ε is negligible or 1 − ε is
overwhelming, if for any k ∈ N, ε = O(1/λk). When the parameter λ is fixed, we will consider
as negligible a positive quantity ε such that ε ≤ 2−λ.

2.1.2.3 Adversaries, Experiments, Oracles, Success Probabilities and Advantage.

Adversaries are probabilistic algorithms or Turing machines, we consider that they implicitly
take as input a unary representation of the security parameter. As inputs to adversaries
are always polynomial in the security parameter, a polynomial-time adversary runs in time
polynomial in the security parameter. We write A(x) to say that the adversary A is called
with input x.

An experiment is a succession of executions of algorithms; security notions and security
assumptions are often described as experiments where an adversary is called one or several
times with various inputs. An experiment can also be seen as a game between an adversary
A and an implicit challenger which gives its input to the adversary and allows some oracle
calls. As usual, experiments are parameterized by the security parameter λ.
An adversary may also be given access to oracles, machines which running times are not

taken into account in the running time of the adversary: a query to an oracle always only
counts for one clock cycle. We write AO(x) to say that the adversary A is called with input
x and has access to the oracle O.

The success probability of an adversary A in an experiment Expexp is the probability that
this adversary outputs 1 in this experiment:

Succexp(A, λ) = Pr[Expexp(A, λ) = 1].

Sometimes, it is more relevant to formulate a security notion in term of advantage. When
the security notion or assumption consists in distinguishing two experiments Expexp-0 and
Expexp-1, we define the advantage of an adversary A in distinguishing the experiments Expexp-b

(where b ∈ {0, 1} ) as:

Advexp(A, λ) =
∣∣∣Pr[Expexp-1(A, λ) = 1]− Pr[Expexp-0(A, λ) = 1]

∣∣∣ .
When the experiment Expexp corresponds to a cryptographic assumption or to a security

notion, we say that the assumption or the security notion statistically holds when this success
probability is negligible (in λ) for any unbounded adversary A. It computationally holds
when this success probability is negligible (in λ) for any polynomial-time adversary A.

2.2 Cryptographic Primitives
2.2.1 Generic Primitives
We introduce some basic cryptographic primitives as in [Gol01], referring to this book for a
rigorous and developed treatment of these primitives and associated security notions.

First we present the concept of one-way function, a core notion in cryptography expressing
the property of some functions to be easy to evaluate and difficult to invert.

Definition 2.2.1 (One-Way Function). A function f : {0, 1}∗ → {0, 1}∗ is called One-Way
if the two following conditions hold:



2.2 Cryptographic Primitives 13

• Easy to compute: There exists a polynomial-time algorithm A such that A(x) = f(x)
for all x.

• Hard to invert: For every PPT algorithm B, every positive polynomial p(.), and all
sufficiently large n’s:

Pr[B(f(Un), 1n) ∈ f−1(f(Un))] < 1
p(n) .

Note that the second item corresponds to a negligible probability. One-way functions play
a central role in cryptography as, informally, they enable efficient computation for a user and
inefficient computation (overwhelmingly) for an attacker. In provable security most of the
functions considered one-way are functions which inversion rely on a mathematical problem
assumed difficult (with all known resolution algorithm running in exponential time).
To introduce the other basic cryptographic primitives we need to precise the notions

of indistinguishability and pseudorandomness. The first one expresses the difficulty of
distinguishing two mathematical objects, distributions mostly. As it is difficult to tackle the
randomness quality of a sequence of elements, the second notion permits to qualify what we
can consider as random, or more precisely what we cannot reject as random samples. It leads
to the three following definitions:

Definition 2.2.2 (Probability Ensemble). Let I be a countable index set. An ensemble
indexed by I is a sequence of random variables indexed by I. Namely, any X = {Xi}i∈I ,
where each Xi is a random variable is an ensemble indexed by I.

Definition 2.2.3 (Polynomial-Time Indistinguishability). Let X and Y be two ensembles
indexed by N, they are indistinguishable in polynomial-time if for every PPT algorithm A,
every polynomial p(.) and all sufficiently large n’s:

|Pr[A(Xn, 1n) = 1]− Pr[A(Yn, 1n) = 1]| < 1
p(n) .

This definition can be extended to other ensembles.

Definition 2.2.4 (Pseudorandom Ensembles). The ensemble X = {Xn}n∈N is called pseu-
dorandom if there exists a uniform ensemble U = {U`(n)}n∈N, where ` : N→ N, such that U
and X are indistinguishable in polynomial time.

With these definitions we can formally define the important cryptographic primitive called
Pseudorandom generator; later in this thesis we will denote PRG or PRNG for Pseudorandom
(Number) Generator such constructions.

Definition 2.2.5 (Pseudorandom Generator (PRG)). A pseudorandom generator is a deter-
ministic polynomial-time algorithm G satisfying the two following conditions:

• Expansion: There exists a function ` : N → N such that `(n) > n for all n ∈ N, and
|G(s)| = `(|s|), for all bitstring s ∈ {0, 1}∗.

• Pseudorandomness: The set {G(Un)}n∈N is pseudorandom.



14 Chapter 2 Preliminaries

We finish this introduction of basic cryptographic primitives by defining pseudorandom
functions and pseudorandom permutations. Informally, these functions are such that it is
impossible to efficiently distinguish if they are taken from a particular set or randomly taken
from the set of all functions (of specified input and output size). Formally it leads to the
following definitions:

Definition 2.2.6 (Function Ensembles). Let ` : N → N, a `-bit function ensemble is a
sequence F = {Fn}n∈N of random variables such that the random variable Fn assumes values
in the set of functions mapping `(n)-bit-long strings to `(n)-bit-long strings.

The uniform `-bit function ensemble, denoted H = {Hn}n∈N has Hn uniformly distributed
over the set of all functions mapping `(n)-bit-long strings to `(n)-bit-long strings.

This definition can be generalized to functions with different input and output sizes.

Definition 2.2.7 (Pseudorandom Function (PRF)). Let d, r : N→ N. We say that:

{fs : {0, 1}d(|s|) → {0, 1}r(|s|)}s∈{0,1}∗ ,

is a pseudorandom function ensemble if it satisfies the following two conditions:

• Efficient Evaluation: There exists a PPT algorithm that on input s and x ∈ {0, 1}d(|s|)

returns fs(x)

• Pseudorandomness: For every PPT adversary using oracles OFn sampling from Fn or
OHn sampling from Hn, every polynomial p(.), and all sufficiently large n’s:

|Pr[AOFn (1n) = 1]− Pr[AOHn (1n) = 1]| < 1
p(n) ,

where Fn is a random variable uniformly distributed over the multi-set {fs}s∈{0,1}n,
and Hn is uniformly distributed among all functions mapping d(n)-bit-long strings to
r(n)-bit-long strings.

We call pseudorandom functions, denoted PRF, functions from this ensemble.

This definition corresponds more precisely to efficiently computable generalized pseudo-
random function ensemble in [Gol01], we adapt it as we will not consider other kinds of
PRF.

The more specific concept of pseudorandom random permutation can be of particular use.
We similarly define it.

Definition 2.2.8 (Permutation Ensembles). A permutation ensemble is a sequence P =
{Pn}n∈N of random variables such that the random variable Pn assumes values in the set of
permutations mapping n-bit-long strings to n-bit-long strings.
The uniform permutation ensemble, denoted K = {Kn}n∈N has Kn uniformly distributed

over the set of all permutations mapping n-bit-long strings to n-bit-long strings.

Definition 2.2.9 (Pseudorandom Permutation (PRP)). A permutation ensemble P =
{Pn}n∈N is called pseudorandom if it satisfies the three following conditions:

• Efficient Evaluation: There exists a PPT algorithm that on input s, |s| = n and
x ∈ {0, 1}n returns fs(x)



2.2 Cryptographic Primitives 15

• Efficient Inversion: There exists a PPT algorithm that on input s, |s| = n and x ∈
{0, 1}n returns f−1

s (x)

• Pseudorandomness: For every PPT adversary using oracle OPn sampling from Pn or
OKn sampling from Kn, every polynomial p(.), and all sufficiently large n’s:

|Pr[AOPn (1n) = 1]− Pr[AOKn (1n) = 1]| < 1
p(n) ,

where Kn is uniformly distributed among all permutations of n-bit length strings.

We call pseudorandom permutations, denoted PRP, functions from this ensemble.

This definition corresponds more precisely to efficiently computable and invertible pseu-
dorandom function ensemble in [Gol01], we adapt it as we will not consider other kinds of
PRP.

The four primitives presented above are theoretical objects permitting many applications
and they are a (unreachable) goal to keep in mind when constructing cryptosystems, a
direction to follow. The existence of one-way functions would imply the inequality of the
computational classes P 6= NP, this equality or inequality being (one of) the main open
problems of computer science. The existence of these four primitives has been proven
equivalent since the eighties, OWF and PRG [GL89], PRG and PRF [GGM84], PRF and
PRP [LR88].
Consequently, we will mention these concepts for some cryptographic constructions we

consider as potential instantiation of this theoretic primitives. In the following part we
introduce current families of instantiations of some of these primitives for fixed security
parameters.

2.2.2 Symmetric Encryption
We begin by giving a general definition of an encryption scheme, before specifying it to
symmetric (or secret key) encryption.

2.2.2.1 Encryption Scheme

Encryption is one of the most fundamental primitives in cryptography, it permits to com-
municate between two users; an encrypted message under a first key is sent to the user
knowing a second key (the same or a different one, making the difference between symmetric
and asymmetric encryption) enabling to decrypt and recover this message. The two users
communicate securely if anybody without knowledge of the second key intercepting the
encrypted message learns nothing on the original message. The original message is called
plaintext and the encrypted message is called ciphertext.

Definition 2.2.10 (Encryption Scheme). Let M be the plaintext space, C the ciphertext
space and λ the security parameter. We define an encryption scheme as a tuple of three
polynomial-time algorithms:

• KeyGen(1λ). Generates a pair (sk, pk), where pk is an encryption key (public key) and
sk is a decryption key (secret key); these two keys are supposed to implicitly contain the
global parameters.



16 Chapter 2 Preliminaries

• Enc(m, pk). Generates c ∈ C called a ciphertext encrypting the plaintext (or message)
m ∈M under the public key pk.

• Dec(c, sk). Decrypts the ciphertext c ∈ C using the secret key sk, outputs m′ ∈M.

The encryption scheme should satisfy a notion of correctness (and of security which will be
discussed later). For symmetric encryption scheme we will consider the property of perfect
correctness.

Definition 2.2.11 (Perfect Correctness). An encryption scheme satisfies the Perfect Cor-
rectness property if for any key pair (pk, sk) ← KeyGen(1λ), for any plaintext m ∈ M, for
any ciphertext c← Enc(m, pk), we have Dec(c, sk) = m.

A symmetric encryption scheme, or secret key encryption scheme, is an encryption scheme
such that pk = sk. It means that there is only one key in the scheme, which is therefore
secret, and two users can communicate securely via a symmetric encryption scheme if they
use the same key. When various kinds of encryption schemes are used, we distinguish a
symmetric encryption scheme using the capital letter S, at the beginning for an algorithm as
S.Enc or as exponent as for skS .

Various notions of security can be defined on symmetric encryption schemes, as investigated
in [BDJR97], mostly relying on the assumption of some constructions to be PRP or PRF.
These notions go from the consideration of an adversary learning the secret key to its
advantage to distinguish a ciphertext from a random bitstring (of specified length), through
various models of attacks. As in this thesis we will focus on a concrete family of symmetric
encryption schemes, we introduce in the following part concrete instantiations of symmetric
encryption schemes and a concrete consideration of the security.

2.2.2.2 Instantiating Symmetric Encryption Schemes

Instantiating symmetric encryption, depending on the plaintext space, two classes of schemes
appear; the block-ciphers close to the concept of PRP and the stream ciphers close to the
concept of PRG. We introduce here some basic notions of these constructions as we will refer
to it later in this thesis, more details on these classic instantiations can be found in books on
applied cryptography e.g. [MvV97].

Block-ciphers are deterministic algorithms acting on a fixed-length bitstring, called a block
and parametrized by a key. More formally we give the following definition of block-cipher:

Definition 2.2.12 (Block-cipher). A Block-cipher is a family of permutations of n bits
parametrized by a key sk:

Esk : Fn2 → Fn2 ,

where Esk and E−1
sk can be computed by an efficient deterministic algorithm.

They are the core piece of block-cipher encryption, a kind of symmetric encryption where
the length of the key sk is generally the security parameter λ and for the key generation
algorithm the key is randomly chosen in the set of all bitstrings of length λ. For encryption,
the plaintext considered as a bitstring is divided in blocks of length n (which is often equal
to |sk|) with a particular padding for the last block if the plaintext length is not a multiple
of n. A particular mode of operation is chosen to connect the different blocks encrypted with
the block-cipher; as example the mode Cipher Block Chaining (CBC) consists in XORing the



2.2 Cryptographic Primitives 17

first plaintext block to an Initialization Vector (IV) before applying the block-cipher, then
each following plaintext block is XORed to the precedent ciphertext block before applying
the block-cipher. Therefore it gives a ciphertext of the same length as the padded plaintext.
The decryption algorithm is deduced from the encryption algorithm, as block-ciphers are
families of (efficiently invertible) permutations.
Many Block-ciphers are built on the idea of iterated encryption; informally it consists in

decomposing the encryption in various similar rounds in order to obtain a secure permutation
that can be studied based on simpler building blocks. More formally:

Definition 2.2.13 (Iterated Block-cipher). We call Iterated Block-cipher a block-cipher E,
with:

• r ∈ N∗ rounds,

• r round keys k1, · · · , kr efficiently derivable from each sk,

• a round function Fk indexed by the round key k,

• For each key sk and each plaintext m:

Esk(m) = Fkr ◦ Fkr−1 ◦ · · · ◦ Fk1(m).

The separation of an iterated block-cipher in rounds is useful for the implementation and
analysis of the construction, as when the round functions are very similar, studying one
round and the round keys derivation can be sufficient to derive results on the efficiency or
security of the whole scheme. Various families of block-ciphers have been developed and
investigated in many works, we presented here only the basic notions used in this thesis.

In the following we present the class of stream ciphers. Informally, they are deterministic
algorithms generating a pseudorandom sequence from a secret key and an IV and combining
it to the plaintext. We give a more formal definition of stream ciphers (more precisely of
synchronous binary stream ciphers):

Definition 2.2.14 (Stream Cipher). A stream cipher is defined by the following four deter-
ministic efficiently computable algorithms:

• Init(IV, sk). Generates an initial state st1.

• Transition(sti). Outputs the next state sti+1.

• Filter(sti). Generates a keystream bit si.

• Combine(si,mi). Generates a ciphertext bit ci.

We decided to have a more "algorithmic" definition of stream-ciphers as we will focus on
some of its components. Otherwise, it could be defined in term of a family of functions as for
block-ciphers. Note that with this definition the keystream (i.e. the sequence (sj)j∈[r+1,r+m])
is independent of the plaintext (apart from its length); and we sometimes refer to it as key
and IV dependent part of the cipher. We also refer to additive IV stream cipher when the
Combine algorithm gives the result of the XOR of its two inputs.
Stream ciphers are the core piece of stream cipher encryption, a kind of symmetric

encryption where the length of the key sk is generally the security parameter λ, and the IV



18 Chapter 2 Preliminaries

length is frequently set to the same quantity. For the key generation algorithm sk is randomly
chosen in a set K, which is often the set of all bitstrings of length λ. To encrypt an `-bit
plaintext m, an IV is chosen (randomly or not) and the stream cipher is applied in three
steps. First, the Init algorithm is evaluated once. Then the Transition algorithm is evaluated
r times to update the register, where the fixed integer value r corresponds to the number of
transitions evaluated without keystream output, i.e. blank rounds. Finally, the last three
algorithms are successively evaluated ` times, giving an `-bit ciphertext. As the keystream
is independent of the plaintext the decryption algorithm is deduced from the encryption,
performing the same algorithms with the same inputs except Combine where the role of the
plaintext and ciphertext bits are interchanged.

A primitive often used as a building block for stream ciphers is the Linear Feedback Shift
Register (LFSR), used to efficiently generate long sequences. Informally, it is a construction
with a register of L cells with a particular update process used to produce a sequence of
bits. As example we describe it for the case of a binary LFSR in Fibonacci mode. First, the
register is initialized with a L length bitstring, it corresponds to the initial state. Then this
register is updated at each clock tick by applying a linear function on the current values of
the L cells, outputting this result as st (the t-th bit of the sequence). The content of each of
the L− 1 last cells is overwritten by the current value of the precedent cell, and the contain
of the first cell is set to st. Applying iteratively this update gives the sequence (st)t≥1, called
the LFSR sequence. More formally we give the following definition of (binary) LFSR:

Definition 2.2.15 (Linear Feedback Shift Register). A Linear Feedback Shift Register of
length L is a finite state automaton which produces a semi-infinite binary sequence (st)t≥1
satisfying a linear recurrence relation of degree L over F2:

∀t ∈ N∗, st+L =
L∑
i=1

cist+L−i,

where the L binary coefficients ci are the feedback coefficients of the LFSR.

Another commonly used primitive in the context of stream ciphers is the Nonlinear Feedback
Shift Register (NFSR), where the feedback function is nonlinear. These two primitives are
often used as building blocks for stream ciphers, where it is common to combine and/or filter
various LFSR and NFSR.

We need to discuss the notion of efficiency in the context of symmetric instantiations.
When we deal with theoretical (asymptotic or connected to an idealized model) constructions,
an efficient algorithm corresponds to a PPT algorithm (independently of the constants).
When we mention practical, concrete, or real-life constructions, as symmetric instantiations,
an efficient algorithm should be understood as an algorithm with execution time bounded in
seconds or minutes on a current desktop computer, and with data resources handleable by
the same kind of computer. This concern is naturally extended to the security notion, as
for deployed cryptosystems as symmetric encryption schemes, the feasibility of an attacker
using todays computer to decrypt a message is a main concern, even if the construction is
asymptotically secure. It motivates the next part, dealing with heuristic security.

2.2.2.3 Heuristic Security

For concrete considerations of the security we consider cryptanalyses performed by a real-life
attacker on an instantiated scheme with a fixed security parameter. In this case the security is



2.2 Cryptographic Primitives 19

not expressed in terms of experiment performed by PPT algorithms but in terms of estimations
of the best time (or data) complexity over the known attacks in term of elementary machine
operation (or storage units). It corresponds to a heuristic approach, as a non investigated
attack could break the scheme in less than 2λ operations, without compromising the security
claims concerning the known attacks. Particular interests of this approach are to set concrete
parameters for applications (indeed, this approach is necessary for any concrete instantiation),
and to investigate the behavior of constructions not relying on well studied assumptions. We
introduce here the basic notions of heuristic cryptanalysis used to investigate the security of
a concrete instantiation of a stream cipher encryption scheme.
For a symmetric encryption scheme with proposed security level λ bits, the scheme is

considered broken if a key recovery attack in less that 2λ machine operations is exhibited.
Different kinds of attacks are possible, depending on the capacities of the attacker and on
her target; recovering the key or only distinguishing the encrypted message from a random
message. More formally, we consider the following cryptanalysis models:

Definition 2.2.16 (Cryptanalysis Models). For a symmetric encryption scheme we define
four kinds of cryptanalysis models, from the weaker to the stronger attacker:

• Ciphertexts Only. The attacker accesses only to the ciphertexts produced during the
encryption.

• Known Plaintexts. The attacker accesses to pairs of corresponding plaintext-ciphertext.

• Chosen Plaintexts. The attacker chooses plaintexts to be encrypted (in an adaptive
manner or not).

• Chosen Ciphertexts. The attacker chooses ciphertexts to be decrypted (in an adaptive
manner or not).

The cryptanalyses are considered with a fixed key not influenced by the attacker, and the
efficiency of a cryptanalysis is measured in terms of time complexity or data complexity.

Definition 2.2.17 (Cryptanalysis Efficiency). When cryptanalysing an instantiated symmet-
ric encryption scheme we define the following measures for the efficiency of the key recovery
attack:

• Time Complexity. Denoted CT , it corresponds to the number of operations necessary to
recover the key sk used in the scheme.

• Data Complexity. Denoted CD, it corresponds to the number of ciphertexts needed by
the attacker to conduct the attack.

Note that these definitions can be adapted to attacks aiming at distinguishing the ciphertexts
from random bitstrings.

2.2.3 Fully Homomorphic Encryption
In this section we recall the usual definitions of (Fully) Homomorphic Encryption, a particular
kind of encryption. It belongs to the class of public key encryption schemes, as introduced
in Definition 2.2.10, a large class where the decryption key and the encryption key are
different (in opposition to symmetric encryption), and encryption key is public. In order



20 Chapter 2 Preliminaries

to differentiate homomorphic encryption schemes from other encryption schemes, as when
different encryption schemes are combined, we use the capital letter H, for algorithms or
objects relative to the homomorphic encryption scheme.

Definition 2.2.18 (Homomorphic Encryption Scheme). LetM be the plaintext space, C the
ciphertext space and λ the security parameter. A homomorphic encryption scheme consists
of four PPT algorithms:

• H.KeyGen(1λ). Generates a pair (pkH , skH) the public and secret keys of the scheme.

• H.Enc(m, pkH). From the plaintext m ∈ M and the public key, outputs a ciphertext
c ∈ C.

• H.Dec(c, skH). From the ciphertext c ∈ C and the secret key, outputs m′ ∈M.

• H.Eval(f, c1, · · · , ck, pkH). With ci = H.Enc(mi, pkH) for 1 ≤ i ≤ k, outputs a cipher-
text cf ∈ C.

Different notions of homomorphic encryption exist, it depends on the set where the function
f can be taken, or in practice it depends on which operations are possible. For all these kinds
of homomorphic encryptions we assume a compactness property, |C| is finite, and the size of a
ciphertext does not depend on the number of homomorphic operations performed to obtain it.
When only one kind of operation is permitted the scheme is simply homomorphic; it is called
SomeWhat Homomorphic (SWHE) when more than one operation can be performed, at least
partially. We refer to Leveled Homomorphic Encryption (LHE) scheme, when f is restricted
to be any polynomial of bounded degree (defining the level) and bounded coefficients, and
finally we refer to Fully Homomorphic Encryption (FHE) scheme when f can be any function
defined overM.

For these encryption schemes we consider particular correctness and security notions. For
the correctness it is linked to the family of functions f and corresponds to overwhelming
correctness rather than perfect correctness, as the probabilistic encryption algorithm used in
these kind of schemes can lead to H.Dec(H.Enc(m, pkH), skH) 6= m. Formally, it leads to the
following definition:

Definition 2.2.19 (Correctness of Homomorphic Encryption Scheme). A Homomorphic
Encryption Scheme achieves the Correctness property for the family of functions F if for
all f ∈ F and for all m1, · · · ,mk ∈ M, with (pkH , skH) ← H.KeyGen(1λ), such that
ci ← H.Enc(mi, pkH) for i ∈ [k] and cf ← H.Eval(f, c1, · · · , ck, pkH) are properly generated
it holds:

Pr[H.Dec(cf , skH) 6= f(m1, · · · ,mk)] = negl(λ),

where the probability is taken over all the randomness in the experiment.

The security notion we consider for these encryption schemes is Indistinguishability under
Chosen Plaintext Attack (IND-CPA), informally it relies to the impossibility for an adversary
to know which plaintext is encrypted between two plaintexts of her choice. More formally:

Definition 2.2.20 (Indistinguishability under Chosen Plaintext Attack Security). Let
(KeyGen,Enc,Dec) be an encryption scheme, the advantage of an adversary A against In-
distinguishability under Chosen Plaintext Attack (IND-CPA) is defined by the following
experiments (defined for b = 0 and b = 1):



2.3 Lattice-Based Cryptography 21

Expind-cpa-b(A, λ):
(pk, sk)← KeyGen(1λ),
(m0,m1)← A(pk),
c∗ ← Enc(mb),
b′ ← A(c∗),
return b′.

The encryption scheme is IND-CPA if this advantage is negligible in λ, for any polynomial-
time adversary A.

2.3 Lattice-Based Cryptography
Lattice-based cryptography is a wide research topic, relatively to the presented material
of this thesis we restrict our preliminaries to notions related to the Learning With Errors
(LWE) problem, for a general introduction to Lattice-based cryptography we refer to [Pei15].
We first present basic definitions on lattices, then we introduce the Learning With Errors
problem and finally some definitions relatively to Gaussian distributions.

2.3.1 Generalities on Lattices

We give a definition of lattice and of the successive minima of a lattice.

Definition 2.3.1 (Lattice). A lattice is a discrete additive subgroup of Rm denoted Λ.
Let b1, · · · ,bn be n linearly independent vectors of Rm and B = {b1, · · · ,bn}, we call

Lattice generated by B:

L(B) = SpanZ(B) = B · Zn =
{

n∑
i=1

xibi ; xi ∈ Z
}
,

where:

• B is a basis of the lattice,

• m is the dimension of the lattice,

• n is the rank of the lattice.

When m = n the lattice is called full rank.

Definition 2.3.2 (Successive Minima of a Lattice). Let Λ ⊆ Rm be a rank-n Lattice, for
i ∈ [n] we denote λi(Λ) the i-th Successive Minimum of Λ the value:

λi(Λ) = min
∈R+
{r ; dim(Span(Λ ∩ B̄(0, r))) ≥ i},

where B̄(0, r) is the closed ball of radius r centered at 0.

We recall classical problems defined over lattices, defined on full-rank lattices.

Definition 2.3.3 (Shortest Vector Problem (SVP)). Given a basis of an n-dimensional
lattice Λ, find a vector v ∈ Λ such that ||v|| = λ1(Λ).



22 Chapter 2 Preliminaries

Definition 2.3.4 (Decisional Approximate Shortest Vector Problem (GapSVPγ)). Given a
basis of an n-dimensional Lattice Λ, determine whether λ1(Λ) ≤ 1 or λ1(Λ) > γ(n).

Definition 2.3.5 (Approximate Shortest Independent Vector Problem (SIVPγ)). Given a
basis of an n-dimensional Lattice Λ, find a set S = {si} ⊂ Λ of n linearly independent vectors
such that ∀i ∈ [n], si ≤ γ(n)λn(Λ).

2.3.2 Learning With Errors

In this section, we recall useful notation and definitions needed about the decisional LWE
problem and its ring variation. The decisional Learning With Error problem (dLWE) was
introduced by Regev [Reg05].

Definition 2.3.6 (dLWE Assumption). For an integer q = q(n) ≥ 2, an adversary A and
an error distribution χ = χ(n) over Zq, we define the following advantage function:

AdvdLWEn,m,q,χ
A := |Pr[A(A, z0) = 1]− Pr[A(A, z1) = 1]|,

where

A←$ Zn×mq , s←$ Znq , e←$ χ
m, z0 := s>A + e> and z1 ←$ Zmq .

The dLWEn,m,q,χ assumption asserts that for all PPT adversaries A, the advantage
AdvdLWEn,m,q,χ

A is a negligible function in n.

The ring variant was introduced in [SSTX09], and later referred as Ring LWE in [LPR10].

Definition 2.3.7 (dR-LWE Assumption). For a polynomial ring R = Z[X]/f(X) with f
of degree n, an integer q ≥ 2, an adversary A and an error distribution χ over R∨q , where
Rq = R/qR, R∨ being R dual fractional ideal, we define the following advantage function:

AdvdRLWER,q,χ,m
A := |Pr[A(a, z0) = 1]− Pr[A(a, z1) = 1]|,

where
a←$ Rm

q , s←$ R∨q , e←$ χ
m, z0 := s · a + e and z1 ←$ Rm .

With f(X) a cyclotomic polynomial, the dRLWER,q,χ,m assumption asserts that for all
PPT adversaries A, the advantage AdvdRLWER,q,χ,m

A is a negligible function in n.

The problems associated to these assumptions have nice reductions to older Lattice
problems; in [Reg05] Regev proved that an efficient solution to LWE implies a quantum
algorithm for GapSVP and SIVP. The reduction have been improved since, and the result
generalized for RLWE; making the LWE problem a fruitful assumption to build cryptographic
primitives and relying on well-studied assumed-hard problems.
Variants of LWE are sometimes considered, as the Learning Parity With Noise (LPN)

problem and the Learning with Rounding (LWR) problem. The first one is a learning
problem, predecessor of LWE using only binary values; the second one is a more recent
problem [BPR12], partially de-randomized, with reduction from the LWE problem. We
present the search versions of these problems.



2.3 Lattice-Based Cryptography 23

Definition 2.3.8 (Learning Parity With Noise Problem). Let s←$ {0, 1}n, ε ∈ (0, 1/2) be
a constant noise parameter and Bernoulli(ε) be a Bernoulli distribution of parameter ε, let
As,ε be the following distribution:

{a←$ {0, 1}n; ν ←$ Bernoulli(ε); (a, 〈a, s〉+ ν)},

solving the Learning Parity With Noise Problem consists in finding the vector s from inde-
pendent samples taken from the distribution As,ε.

Definition 2.3.9 (Learning With Rounding Problem). Let s ←$ Znq , and let b·cp be a
rounding defined as:

b·cp : Zq → Zp : x 7→ b(p/q) · xc,
let As,q,p be the following distribution:

{a←$ Znq ; (a, b〈a, s〉cp)},

solving the Learning With Rounding Problem consists in finding the vector s from independent
samples taken from the distribution As,ε.

2.3.3 Gaussians

For our constructions based on the LWE problem, we will take the distribution χ as a
subgaussian random variable which we define hereafter. More details about subgaussian
distributions and the lemmata’s proof can be found in [AP14].

Definition 2.3.10 (Subgaussian Random Variables). Let X be a random variable. We say
X is subgaussian with parameter σ if there exists σ such that:

∀t ∈ R,E[etX ] ≤ eσ2t2/2,

where E[etX ] is the moment generating function of X.

Lemma 2.3.11 (Subgaussian Random Variables properties). Let X, X ′ be independent
subgaussian random variables of parameter σ and σ′ respectively. Assuming E(X) = E(X ′) = 0
we have the following properties:

• Tails: ∀t ≥ 0 we have Pr[|X| ≥ t] ≤ 2e−πt2/σ2.

• Homogeneity: ∀c ∈ R, cX is subgaussian with parameter |c|σ.

• Pythagorean additivity: X +X ′ is subgaussian with parameter
√
σ2 + σ′2.

We extend the notion of subgaussianity to vectors and polynomials. Since the coefficients
of a polynomial are seen as a vector, we call subgaussian vector of parameter σ a vector
where each coefficient follows an independent subgaussian distribution with parameter σ.

Lemma 2.3.12 (Subgaussian Vector Norm, adapted from [AP14], Lemma 2.1). Let x ∈ Rn
be a random vector where each coordinates follows an independent subgaussian distribution of
parameter σ. Then for some universal constant C > 0 we have Pr [||x||2 > Cσ

√
n] ≤ 2−Ω(n)

and therefore ||x||2 = O(σ
√
n).



24 Chapter 2 Preliminaries

2.4 Boolean Functions
Boolean functions are a wide research area, we introduce here some core notions of Boolean
functions in cryptography. We use the following definition of Boolean function, more restrictive
than vectorial Boolean function, as in this thesis we will consider only this type of functions.

Definition 2.4.1 (Boolean Function). A Boolean function f with n variables is a function
from Fn2 to F2. The set of all Boolean functions in n variables is denoted by Bn.
We call pseudo-Boolean function a function with input space Fn2 but output space different

to F2.

As example, considering a pseudo-Boolean functions with output space {−1, 1} will be
more convenient to use in some proofs.

The following representation is commonly used, and its basic properties also.

Definition 2.4.2 (Algebraic Normal Form (ANF)). We call Algebraic Normal Form of
a Boolean function f its n-variable polynomial representation over F2 (i.e. belonging to
F2[x1, · · · , xn]/(x2

1 + x1, · · · , x2
n + xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2.

Corollary 2.4.3 (Algebraic Normal Form Properties). The following properties follow the
ANF definition:

• The algebraic degree of f equals the global degree maxI:aI=1 |I| of its ANF.

• Any term
∏
i∈I xi in such an ANF is called a monomial and its degree equals |I|. A

function with only one non zero coefficient aI is called a monomial function.

• The function f is affine if and only if its algebraic degree is at most 1; the function is
linear if in addition a∅ = 0.

2.4.1 Boolean criteria
In this part, we recall the cryptographic properties of Boolean functions, mostly taken
from [Car10], as we refer to for more details on Boolean functions. We define here crypto-
graphic criteria on Boolean functions, whose connection to cryptography will be explained
later in this thesis. Through this thesis we refer to ”cryptographic criteria on Boolean
functions” as ”Boolean criteria”, or ”criteria”.

2.4.1.1 Balancedness and Resiliency

Definition 2.4.4 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if its
outputs are uniformly distributed over {0, 1}.
Definition 2.4.5 (Resiliency). A Boolean function f ∈ Bn is said to be m-resilient if any
of its restrictions obtained by fixing at most m of its coordinates is balanced. We denote by
res(f) the maximum resiliency (also called resiliency order) m of f and set res(f) = −1 if f
is unbalanced.



2.4 Boolean Functions 25

Note that the resiliency is the extended notion of the balancedness, a balanced function is
a k-resilient function with k ≥ 0.

The Fourier transform is an important tool to study the resiliency of a Boolean functions,
we define here the discrete Fourier transform (or Hadamard) transform:

Definition 2.4.6 (Discrete Fourier Transform). The discrete Fourier transform is the linear
mapping which maps any pseudo-Boolean function f on Fn2 (with output space included in Z)
to the function f̂ defined on Fn2 as:

f̂(a) =
∑
x∈Fn2

f(x)(−1)a·x,

where a · x denotes the inner product in Fn2 , and the sum is performed in Z.

The discrete Fourier transform can be applied to a Boolean function f itself but also to
the sign function fχ(x) = (−1)f(x), giving the Walsh transform:

Definition 2.4.7 (Walsh Transform). Let f ∈ Bn a Boolean function, its Walsh transform
f̂χ at a ∈ Fn2 is defined as:

f̂χ(a) =
∑
x∈Fn2

(−1)f(x)+a·x.

Note that the Walsh transform is strongly connected to the balancedness and the resiliency,
as shown by the following theorem from [XM88]:

Theorem 2.4.8 ([XM88]). Let f ∈ Bn, f is m-resilient if and only if f̂χ(a) = 0 for all
a ∈ Fn2 such that wH(a) ≤ m.

2.4.1.2 Nonlinearity

Definition 2.4.9 (Nonlinearity). The nonlinearity NL of a Boolean function f ∈ Bn, where n
is a positive integer, is the minimum Hamming distance between f and all the affine functions
in Bn:

NL(f) = min
g,deg(g)≤1

{dH(f, g)},

with dH(f, g) = #{x ∈ Fn2 | f(x) 6= g(x)} the Hamming distance between f and g; and
g(x) = a · x+ ε, a ∈ Fn2 , ε ∈ F2 (where · is some inner product in Fn2 ; any choice of an inner
product will give the same definition).
The nonlinearity of a Boolean function can also be defined by its Walsh transform:

NL(f) = 2n−1 − 1
2 max
a∈Fn2

|f̂χ(a)|.

The functions maximizing the nonlinearity are called bent functions, they exist for even
n only, many families of bent functions are known [McF73], reaching the upper bound
NL(f) ≤ 2n−1 − 2n/2−1. Note that the nonlinearity measures the distance to affine functions,
it can be generalized to the notion of higher order nonlinearity of denoted NLd where the
distance is taken over all functions of degree less than or equal to d.



26 Chapter 2 Preliminaries

2.4.1.3 Algebraic Immunity and Fast Algebraic Immunity

Definition 2.4.10 (Algebraic Immunity). The algebraic immunity of a Boolean function
f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f ⊕ 1)g = 0},

where deg(g) is the degree of g. The function g is called an annihilator of f (or (f ⊕ 1)).

Note that this definition directly leads to the following properties for simple functions:

Corollary 2.4.11 (Algebraic Immunity Properties). Let f be a Boolean function:

• The null function and the all-one function are the only functions such that AI(f) = 0.

• All monomial non constant functions f are such that AI(f) = 1.

• For all f it holds: AI(f) ≤ deg(f).

Definition 2.4.12 (Fast Algebraic Immunity). The fast algebraic immunity of a Boolean
function f ∈ Bn, denoted as FAI(f), is defined as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

(max[deg(g) + deg(fg), 3 deg(g)])}.

This definition finished our preliminary presentation of Boolean cryptographic criteria.
The high nonlinearity and resiliency properties have to be ensured to thwart correlation
attacks [Sie85] and fast correlation attacks [MS88]. The high algebraic immunity and fast
algebraic immunity have to be ensured to thwart algebraic attacks [Cou03a].

2.4.2 Constructions of Boolean Functions
In this part we highlight some constructions of Boolean functions, widely used in this thesis.
We begin by the secondary construction commonly called direct sum construction.

Definition 2.4.13 (Direct Sum). Let f be a Boolean function of n variables and g a Boolean
function of m variables, f and g depending on distinct variables, the direct sum h of f and g
is defined by:

h(x, y) = f(x) + g(y), where x ∈ Fn2 and y ∈ Fm2 .

A family of functions obtained by direct sums can be of particular interest when looking
for functions simple to evaluate; functions obtained by direct sums of monomials. Informally
it consists of functions where each variable appears at most once in the ANF, and we focus
on the ones where each variable appears once and only once.

Definition 2.4.14 (Direct Sum of Monomials). Let f be a Boolean function of n variables,
we call f a Direct Sum of Monomials a function obtained by direct sum of monomials if the
following holds for its ANF:

∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.



2.4 Boolean Functions 27

Definition 2.4.15 (Direct Sum Vector). Let f be a direct sum of monomials, we define its
Direct Sum Vector:

mf = [m1,m2, · · · ,mk],

of length k = deg(f), where each mi is the number of monomials of degree i of f :

mi = |{aI = 1 | |I| = i}|.

When we consider a function F associated to the direct sum vector mF = [m1,m2, · · · ,mk]
it corresponds to the function with:

• M = ∑k
i=1mi monomials,

• N = ∑k
i=1 imi variables.

Note that it corresponds to a function without variables not used, each variable appears once
and only once in the ANF.

A sub-family of direct sum of monomials is the family of triangular functions.

Definition 2.4.16 (Triangular Functions). Let k be a strictly positive integer. The k-th
Triangular Function Tk is a direct sum of monomials of k(k + 1)/2 variables:

Tk(x1, · · · , xk(k+1)/2) =
k∑
i=1

i∏
j=1

xj+i(i−1)/2.

It can also be defined from its direct sum vector which is the all-1 vector of length k:
mTk = [1, 1, · · · , 1].

Another sub-family of direct sum of monomials is of particular interest in this thesis, called
the family of FLIP functions.

Definition 2.4.17 (FLIP Functions). Let n1, n2, nb and h be positive integers, we call FLIP
function the direct sum of monomials defined as:

F (x) = Ln1(x) +Qn2/2(x) + nb∆h,

where:

• F is an (n1 + n2 + n3)-variable Boolean function, with n3 = nb(h(h+ 1)/2),

• Ln1 is called the linear part and is defined as:

Ln1(x) = x1 + x2 + · · ·+ xn1 ,

• Qn2/2 is called the quadratic part and defined as:

Qn2/2(x) = xn1+1xn1+2 + xn1+3xn1+4 + · · ·+ xn1+n2−1xn1+n2 ,



28 Chapter 2 Preliminaries

• nb∆h is called the triangular part and defined as:

nb∆h(x) =
nb∑
1
Th(x) =

nb∑
i=1

 h∑
j=1

j∏
k=1

xn1+n2+`

 ,
where ` = (i− 1)(h(h+ 1)/2) + k + j(j − 1)/2.

It can also be defined from its direct sum vector of length h:

mF = [n1 + nb, n2/2 + nb, nb, · · · , nb].

We finish these preliminaries on Boolean functions by defining the majority functions,
sometimes considered in the area of Boolean functions used in cryptography.

Definition 2.4.18 (Majority Function). For any positive odd integer N we define the Boolean
function MajN as:

∀x = (x1, · · · , xN ) ∈ FN2 , MajN (x) =
{

0 if wH(x) ≤ bN2 c,
1 otherwise.

2.5 Additional Preliminaries
2.5.1 Circuits
We introduce here the basic vocabulary relative to circuits.

Definition 2.5.1 (Boolean Circuit). We define a Boolean Circuit with n input bits as a
finite directed acyclic graph in which every node (usually called gates in this context) is either
an input node of in-degree 0 labeled by one of the n input bits, an AND gate, a XOR gate,
or a NOT gate. One node is designated as the output node.

We call:

• size the number of Boolean gates (AND, XOR, NOT ) of the circuit,

• depth of the circuit the maximal length from an input node to the output node,

• multiplicative depth of the circuit the maximal number of AND gates from an input
node to the output node.

More generally we will refer to circuits for finite directed acyclic graph with nodes being gates.
These gates are the usual Boolean functions defined as AND(x1, x2) = x1x2, XOR(x1, x2) =
x1 + x2, NOT (x1) = 1 + x1. We additionally describe the so-called MUX gate (named after
multiplexer).

Definition 2.5.2 (MUX Gate). We define the Boolean function used in Boolean circuit
MUX gate as:

MUX(x1, x2, x3) = x1x2 + x1x3 + x2,

where x1 is called the control bit as if it equals 0 the gate’s output is the value of x2, otherwise
it equals 1 and the gate’s output is the value of x3.

We also give the basic vocabulary related to branching programs.



2.5 Additional Preliminaries 29

Definition 2.5.3 (Branching Program). We define a Branching Program on the variable
set {x1, · · · , xn} as a finite directed acyclic connected graph with ` layers. The first layer
consists of one source node and the last layer consists of sink nodes partitioned in two sets
(corresponding to the output value 0 or 1). Each non-sink node is labeled by a variable,
common to its layer, and has two outgoing edges labeled 0 and 1 respectively. The output of
the Branching program on an input is the value of the sink node where ends the path obtained
by taking the edges corresponding to the input value of the variable indexing each layer.

We call:
• length of the program the maximum length of any path from the source node to a sink
node,

• width of the program the maximum number of nodes in a layer.

2.5.2 Binomial Coefficients
We recall here some basic relations on binomial coefficients used several times in this thesis.
Definition 2.5.4 (Binomial Coefficient). Let n be a positive integer and k an integer such
that 0 ≤ k ≤ n, we call binomial coefficient n choose k denoted

(n
k

)
the integer defined as:(

n

k

)
= n!
k!(n− k)! , where n! =

n∏
i=1

i.

It corresponds to the number of ways to choose a subset of k elements, disregarding their
order, from a set of n elements.
Proposition 2.5.5 (Basic Properties on Binomial Coefficients). Let n be a positive integer
and k an integer such that 0 ≤ k ≤ n, the following holds:

• Pascal Identity. (
n

k

)
+
(

n

k + 1

)
=
(
n+ 1
k + 1

)
.

• Symmetry. (
n

k

)
=
(

n

n− k

)
.

• Sum.
n∑
i=0

(
n

k

)
= 2n.

• Vandermonde Convolution. Let m be a positive integer:
n∑
i=0

(
n

i

)(
m

k − i

)
=
(
n+m

k

)
.

• Parity, (sub-case of Lucas’s Theorem). Considering a bitstring representation of n and
k (n and k) of length r where r = dlog(2)e:(

n

k

)
≡ 1 mod 2⇔ ∃i ∈ [r + 1] | ki > ni.

It finishes our preliminaries, letting place to the core chapters of this thesis.





Chapter 3
Fully Homomorphic Encryption
In this part we explain fully homomorphic encryption principles and how this theoretical
construction can be converted into a practical primitive for real-life applications. Despite a
theoretic feasibility, the road from FHE to efficient computation delegation is quite long. In
this chapter we describe the important steps and how to overcome the bottlenecks towards
efficiency.

We firstly recall some historic of FHE and principal techniques, then we focus on particular
encryption schemes; their mechanism, security, and potential efficiency. After identifying the
main bottleneck for the real-world applications, we amplify our study on the error-growth for
the considered schemes. Finally, we describe hybrid frameworks, and new protocols that lead
to practical constructions for outsourcing computation.

Contents
3.1 First and Second Generations . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 First FHE: Gentry’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Second Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Third Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Batched GSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Ring GSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Error-growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Classical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Optimized Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Particular Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Hybrid Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

— 31 —



32 Chapter 3 Fully Homomorphic Encryption

The first consideration we have in mind when we are looking for practical homomorphic
encryption frameworks is the practicability of fully homomorphic encryption by itself. Study-
ing the requirements of this primitive shows various barriers against efficiency. However
they can be circumvented or reduced for the applications we consider such as outsourcing
computations. Some of the bottlenecks of FHE may never be overcome, as the important
size of the ciphertexts or the time complexity of some algorithms. Nevertheless, a better
understanding of this kind of encryption and its use jointly with other primitives, can lead
to efficient outsourcing computation frameworks. Therefore, when we refer to practical
homomorphic encryption frameworks, we consider frameworks using homomorphic encryption
and other primitives, particularly hybrid frameworks using an FHE scheme and a symmetric
encryption scheme (more details are given in the last part of this chapter). The goal of the
current section is to handle the homomorphic part of such frameworks; the principal steps
towards efficiency depend on two main points. The first one is the understanding of what can
be efficiently done by a homomorphic encryption scheme. The second one is how compatible
a homomorphic encryption scheme and the symmetric encryption scheme can be in a hybrid
framework. Answering these two main questions enables us to design efficient frameworks,
assuming that the symmetric encryption scheme is efficient (executable quickly, and using
limited memory resources).

In order to handle the homomorphic part of practical homomorphic encryption frameworks,
we proceed in successive steps. We begin by presenting the first constructions of fully
homomorphic encryption. The objective of this part is to explain how fully homomorphic
encryption is possible, and to present the main components of FHE. These descriptions
illustrate the limitations towards efficiency, the minimal complexity involved in homomorphic
encryption. It shows that some operations are more costly (homomorphic multiplication)
and some algorithms are not practical enough (bootstrapping). Then, based on these
considerations, we further investigate what can be efficient enough in the homomorphic
schemes to be used in a more general framework. It consists in examining more specifically
one kind of FHE schemes and its adequateness with some functions. To do so, we focus on one
family of homomorphic schemes, and examine its efficiency using the notion of error-growth.
We perform a detailed study of the error-growth involved in the homomorphic operations,
and we investigate families of functions related to very low error-growth. The objective of
this part is to identify the efficient homomorphic operations and how to design functions or
circuits that allow homomorphic evaluation with a reasonable execution time. Finally, these
efficient homomorphic blocks are considered in a hybrid framework designed for outsourcing
computation. We describe this environment and explain how handling the homomorphic part
enables to reach a framework where the latency for Alice depends on the amount, and on the
complexity of the computations she asks rather than on the usual FHE overheads.

Most of this chapter is adapted from the article [MJSC16]. Other origins are specified by
the relevant citations, except Section 3.3.3.2 (and Section 3.3.2.3) which develops additional
personal results (not published yet).

3.1 First and Second Generations

In this section, we present the first constructions of fully homomorphic encryption and we
introduce the main techniques of FHE. These schemes illustrate the common difficulties
of homomorphic encryption and highlight the bottlenecks we want to overcome in efficient



3.1 First and Second Generations 33

frameworks. More particularly, it shows that homomorphic operations have a minimal
unavoidable cost, some algorithms are intrinsically difficult to evaluate efficiently, and it leads
to consider solutions emerging from a better management of the homomorphic operations.

3.1.1 First FHE: Gentry’s Thesis

First suggested in 1978 by Rivest, Adleman and Dertouzos [RAD78], fully homomorphic
encryption was presumed out of reach until Gentry’s breakthrough in 2009. This kind of
encryption, enabling unlimited computation on encrypted data, was considered as a ”never-to-
be-found Holy Grail of cryptography” [Mic10]. It seemed impossible to build ciphertexts with
enough structure to allow computation over the ciphertexts but without too much structure
to ensure security. Gentry used some key ideas to circumvent this barrier, we succinctly
explain these key ideas in the following.
First, let us informally describe his encryption scheme published at STOC 2009 [Gen09];

a formal description and more details can be found in his article or in [GH10]. Here we do
not present a technical description of the scheme, as we want to give insights on the core
properties enabling FHE. Therefore we invite the reader to forget about the technicality of
(fractional) ideal lattices, and to focus on the general picture. To do so, we describe Gentry’s
scheme using the vocabulary of lattice-based constructions, but we neglect the mathematical
objects to focus on the underlying ideas. This scheme is a public-key encryption scheme
that can be seen as a GGH-type scheme [GGH97] over ideal lattices in a polynomial ring
R. In the ring R two ideals I and J are chosen, the public key is a bad basis of the ideal
lattice J whereas the secret key is a good basis for this ideal. To encrypt a 1-bit plaintext,
the plaintext is embedded in R/I and added to an error term sampled from the ideal I,
the sum is then reduced using the public basis of J ; giving the ciphertext. If the error is
low enough, the secret basis enables to identify the fractional part of the ciphertext, and
then the error and the plaintext can be recovered. If the error is too big, the fractional part
cannot be identified, then the plaintext cannot be recovered. The homomorphic operations
are straightforward: the homomorphic addition is obtained by adding two ciphertexts, the
homomorphic multiplication is obtained by multiplying two ciphertexts. The simplicity of
these homomorphic operations comes from the expression of a ciphertext as a plaintext part
and an error part; then, for the homomorphic addition the two parts can be treated separately.
For the homomorphic product, the mixed terms between plaintext and error belong to the
ideal I and they are therefore part of the error, still giving a decomposition as plaintext
part and error part. This decomposition is therefore an important underlying idea; which
first enables to preserve a structure across the homomorphic operations. Second, beyond
the fractional ideal structure, the magnitude of the error part determines the feasibility of
decryption.
This overview shows an encryption scheme which allows to perform some operations on

the ciphertexts. When published, this scheme was not standard; the security being based
on problems on ideal lattices and polynomial rings rather than well established problem of
number theoretic algebra. One of the key ideas for fully homomorphic encryption is to use
noise-based cryptography, or equivalently to use the notion of error as in this scheme. Note
that this idea was already present when the firsts public-key encryptions schemes appeared, as
in [BMT78]. With this kind of cryptography, the mathematical structure used in the scheme
is borrowed by some noise, by some error term, guarantying security. This provides some
plasticity usable for homomorphic encryption; manipulating noisy ciphertexts has an impact



34 Chapter 3 Fully Homomorphic Encryption

on the error, and when the error-growth is compatible with the desired computation over the
encrypted data, it enables somewhat homomorphic encryption (as defined in Section 2.2.3).
In Gentry’s scheme, the noise doubles for an addition and it is squared for a product. A

ciphertext of this scheme can be decrypted as long as the error magnitude is lower than a
certain threshold after which we cannot identify with certainty the decomposition enabling
to recover the plaintext. This boundary limits this scheme to evaluate a fixed amount
of computation, as it is the case for all somewhat homomorphic encryption scheme. The
revolutionary idea of Gentry was to extend the homomorphic property from a somewhat
homomorphic encryption scheme to a fully homomorphic encryption scheme using the so-called
bootstrapping algorithm.

After some operations, a ciphertext has a noise close to the decryption threshold, if this
ciphertext can be publicly converted in a ciphertext of the same plaintext with a smaller
noise, then the encryption scheme becomes fully homomorphic. The method consists in
homomorphically evaluating the decryption circuit of the encryption scheme, which gives a
low-noise ciphertext if the decryption circuit is simple enough. Given a bootstrapping key, i.e.
an encryption of the secret key of the scheme, a ciphertext can be publicly manipulated to
obtain a ciphertext, referred as refreshed ciphertext, of the same plaintext, with smaller noise.
This step obliges to assume the hypothesis of circular security, as a secret key encrypted by
its public key is given as a public parameter. Therefore, bootstrapping was the missing stone
to theoretically reach fully homomorphic encryption, but the road is still long to reach fully
homomorphic encryption usable in practice.
In this scheme, the decryption function is not simple enough to provide ciphertexts with

small noise. Then another technique, called squashing, is used: the decryption circuit is
replaced by a simpler one (implying for the security to additionally assume the difficulty of
the sparse subset sum problem, a special case of the well-known knapsack problem). After
this breakthrough the next steps for fully homomorphic encryption are to build somewhat
homomorphic encryption schemes with good properties of the decryption circuit, to use more
convenient assumptions as learning with errors and to optimize the schemes to approach a
practical use.

3.1.2 Second Generation

Lots of fully homomorphic encryption schemes following Gentry’s idea appeared in the
next years as [SV10; BGV12; BV11; GH11; Bra12], these works improve the security
or the simplicity of the construction, leading to the new notion of leveled homomorphic
encryption (see Section 2.2.3 for the various notions of homomorphic encryption). For
a leveled homomorphic encryption scheme there is a parameter L in input of the Setup
algorithm, it is the maximal depth of a circuit (the depth is the maximal length of a path
from an input gate to the output gate) that we want to homomorphically evaluate, and the
scheme enables to evaluate all circuits of depth inferior or equal to L. This notion enables to
compare the various schemes, its efficiency relatively to a particular depth, and to improve
the practicability of the constructions. The previously listed schemes are generally considered
as the second generation as the error-growth mostly depends on the multiplicative depth of
the evaluated circuit and not the multiplicative size as for Gentry’s scheme. This list contains
schemes which security is related to the LWE problem, another large family is the one of
fully encryption schemes on the integers as [DGHV09; CNT12; CCK+13; CLT14; CS15]. For
these schemes which security is linked to the approximate greatest common divisor problem,



3.1 First and Second Generations 35

the same concept of second or third generation can be used.
We present here some techniques developed in [BV11], as presented in [BGV12], they are

examples of the improvements necessary on the path to practical homomorphic encryption.
Some of these techniques are relevant for more recent homomorphic schemes and they witness
some difficulties to improve the practicability of homomorphic encryption. This scheme is
based on LWE, an easier assumption to use than the one in Gentry’s scheme. Here we focus
on important techniques for bootstrapping; modulus switching, and key switching.

First, we informally describe a version of Regev’s public key cryptosystem:

• secret key: s = (1, t) ∈ Zn+1
q ,

• public key : A =
[
b‖ −B

] ∈ Zm×(n+1)
q with B←$ Zm×nq , b = Bt + 2e, and e from an

error distribution over Znq ,

• Enc: µ ∈ {0, 1}; c = (µ,0) + A>r with r←$ {0, 1}m,

• Dec: µ = [[〈c, s〉]q]2, where 〈 , 〉 denotes a scalar product and [ ]k a modular reduction.

Note that As = 2e by construction, then decryption is meaningful: the first coordinate of
s being 1, the inner product is the sum of µ with an inner product between r>A and s. The
resulting term being small due to the choices of r and e, the modular reductions give µ. This
construction based on LWE, or equivalently on RLWE (defined in Section 2.3.2), is more
plastic: it is possible to encode the plaintext bit in the lower bit or in the upper bit. Various
moduli and the inner product enable to use different techniques to bound the error-growth
and manage bootstrapping.
In this scheme, two algorithms are used for the key switching technique: BitDecomp and

PowerOf2, using the binary expression. Let c ∈ Znq , we define BitDecomp(c) and PowerOf2(c)
as vectors of length ndlog qe with coefficients in Zq. BitDecomp(c) is the concatenation of
the binary decomposition of all coefficients of c. Instead, PowerOf2(c) is the concatenation of
the coefficients of c multiplied by the successive powers of 2 up to dlog qe. Combining these
algorithms gives the equality:

〈c, s〉 = 〈BitDecomp(c),PowerOf2(s)〉 mod q.

The key switching technique from s1 to s2 consists then in generating a public key A for
the key s2 and in adding at the first column PowerOf2(s1); this matrix B is the one of the
key switching. We get the cipher c2, relatively to the key s2, of the same plaintext as c1
relatively to the key s1, by computing c2 = (BitDecomp(c1))> ∗B:

〈c2, s2〉 = (BitDecomp(c1))> ∗B ∗ s2

= (BitDecomp(c1))> ∗A ∗ s2 + 〈BitDecomp(c1),PowerOf2(s1)〉
= 2〈BitDecomp(c1), e2〉+ 〈c1, s1〉.

The left term depends on a sub-sum of e2 coordinates which is small, then we get:

m = [[〈c2, s2〉]q]2 = [[〈c1, s1〉]q]2.

The modulus switching technique relies on an algorithm Scale(c, q, p, r) which outputs the
vector c′ with coefficients in Zp closest to p

qc such that c ≡ c′ mod r. For all s fulfilling



36 Chapter 3 Fully Homomorphic Encryption

a norm restriction on ‖〈c, s〉‖q (see [BGV12] for the exact analysis), if p ≡ q mod r and
c′ = Scale(c, q, p, r) then

m = [[〈c, s〉]q]r = [[〈c′, s〉]p]r.
These two techniques enable to obtain more efficient FHE schemes; the modulus switching

enables to reduce the error magnitude (which is a major concern in SWHE schemes) even if
the ratio error/modulus is not improved a lot. An appropriate reduction scale enables to
keep an error under a particular bound whereas usual multiplication would blow it up. The
key switching enables to treat in an easier way the homomorphic product; under the same
key the product of two ciphertexts can be seen as a ciphertext under the tensor product s⊗ s,
instead here we get a new cipher under a key of smaller size, reusable for the scheme. The
use of binary decomposition has become a usual technique for fully homomorphic encryption;
practical for noise management, as presented later in this chapter.

Another technique presented in this article is the so-called batching, first appeared in [SV11],
which consists in encrypting various bits in the same ciphertext, using the version of the
scheme based on RLWE with a modulus p such that xd + 1 totally splits, enabling to apply
the Chinese remainders theorem. The batching is one of the techniques giving the possibility
of encrypting elements of Zp or other rings rather than encrypting only one bit by ciphertext.
These techniques are very important for the efficiency of Homomorphic Encryption (HE)
schemes because homomorphic properties lead to use schemes with larger key and ciphertext
sizes compared to classic public key schemes and these techniques amortize this cost. Lots of
batching techniques have been developed since the second generation, in order to optimize
the delays of homomorphic evaluation or improve the quantity of data treated in the same
time.

All the techniques developed for the second generation led to a variety of schemes relying
on classic assumptions, with smaller key and ciphertext sizes, with a better management of
the error. Even after a lot of improvements, the bootstrapping technique still involves a high
time and data cost. Therefore, practicability of homomorphic encryption relies on a well
managed error-growth to limit the number of bootstrappings or to bootstrap in a particular
way. For the second generation, it gives a quite simple metric to determine how efficiently
a computation can be homomorphically evaluated; it mostly depends on the multiplicative
depth of the computed circuit. Indeed, these schemes contain homomorphic addition and
homomorphic product, the second involving much more error than the first one leading to an
error of the computed ciphertext proportional to the multiplicative depth of the circuit.

3.2 Third Generation
In 2013, Gentry, Sahai and Waters [GSW13] introduced a homomorphic encryption scheme
based on LWE using a new technique stemming from the so-called approximate eigenvector
problem. This new technique leads to a new family of FHE, called 3rd-generation FHE,
consisting in HE schemes such that the homomorphic product, main issue for the previous
schemes, is easier to treat. Let consider an informal public key cryptosystem based on LWE;
m is a plaintext in Zq, the approximate eigenvector technique consists in building a ciphertext
C such that the secret key s is almost an eigenvector of C with associated eigenvalue m:

C ∗ s = e +m ∗ s mod q.

We focus on the impact of this construction on the homomorphic product:



3.2 Third Generation 37

C1 ∗C2 ∗ s = C1(e2 +m2s)
= C1 ∗ e2 +m2C1 ∗ s
= C1 ∗ e2 +m2m1s +m2e1

= m2m1s + e′

The resulting error is interesting over various aspects. First, this error is asymmetric:
the error term changes depending on the order of multiplication of the ciphertexts. This
is primordial when we compute a product between ciphertexts with errors of different
magnitudes. Then, the two parts of the error have different consequences on the efficiency of
the scheme. The term m2e1 depends on the plaintext space: if m2 is a bit then this term is
canceled or only equal to the error of the first ciphertext. Nevertheless if the plaintext space
is bigger, as example Zp, then this error term can be multiplied by p, giving a worst case
being exponential in the plaintext space size. The other term is C1 ∗ e2, if C1 were a random
matrix it would give an important error but a formal scheme guarantees a small norm by
using a function on C1 to conserve the multiplicative property, and by reducing the norm
of C1 ∗ e2. The bit decomposition techniques or relatives enable to refresh C1 and then to
obtain a quasi-additive error for the homomorphic product.
Due to the particular error-growth of the third generation schemes and their novelty we

decide to mostly focus on these constructions in the rest of this thesis, rather than all kinds
of fully homomorphic encryption schemes. First, their novelty and the better understanding
of the underlying mathematical property (approximate eigenvector), make us hope that the
time and space complexity of the schemes can be improved. Then, we study theoretic tools
to reach practicability, identifying the bottlenecks in the process from FHE to outsourcing
computations, therefore we develop solutions that can be adapted to any kind of FHE we
could use. The focus on the third generation enables to concretely study the problems
arising when looking for real-life instantiations, finding the solutions and extend them to all
noise-based HE constructions. More particularly, the understanding of the error-growth, the
metric of a HE scheme is predominant. Controlling the error-growth is the cornerstone to
design efficient primitives, fast and using limited memory, to make possible the functionalities
desired in each client-server frameworks. Then, our tools are generic and can be adapted
to future improvements on homomorphic operation timing, space reduction, new batching,
better bootstrapping, etc.

Hereafter, we present two schemes belonging to this generation, the first one with security
based on LWE (assuming circular security), and the second one based on RLWE. As we
modified these schemes from the original works introducing them in order to fit better in our
context, we give the correctness and security proofs of our adapted schemes.

3.2.1 Batched GSW
This scheme is a batched version of GSW presented in [HAO15], enabling to pack independently
r plaintexts in one ciphertext. We described this particular version because it enables to
treat different plaintexts in parallel, which can be useful for many cases of outsourcing
computations, as applying the same function on parallel sets of data. This version is more
efficient in data than encrypting r bits as r standard GSW ciphertexts, and therefore decreases
the expansion factor of this homomorphic encryption scheme. From the security parameter



38 Chapter 3 Fully Homomorphic Encryption

λ and the considered applications, we can derive the parameters n, q, r, χ of the scheme
described below.

• H.KeyGen(n, q, r, χ). From the following inputs: the lattice dimension n, the modulus
q, the number of bits by ciphertext r and the error distribution χ:

– Set ` = dlog qe, m = O(n`), N = (r + n)`,M = {0, 1}r and C = Z(r+n)×N
q .

– Pick A←$ Zn×mq , S′ ←$ χ
r×n and E←$ χ

r×m.

– Set S = [I| − S′] ∈ Zr×(r+n)
q and B =

(
S′A + E

A

)
∈ Z(r+n)×m

q .

– For all m ∈ {0, 1}r:
∗ Pick Rm ←$ {0, 1}m×N .

∗ Set Pm =

BRm +


m1 · s>1

...
mr · s>r

0

G

 ∈ Z(r+n)×N
q .

with s>i the i-th row of S and G = (20, · · · , 2`−1)> ⊗ I ∈ Z(r+n)×N
q .

– Output pkH := ({Pm}m∈{0,1}r ,B) and skH := S.

• H.Enc(pkH ,m). Using as inputs pkH = ({Pm},B), and m ∈ {0, 1}r:
– Pick R ←$ {0, 1}m×N , and output C = [BR + Pm]q ∈ Z(r+n)×N

q .

• H.Dec(C, skH). Using as inputs the secret key skH , and a ciphertext C,
– For all i ∈ [r] : m′i = b[〈s>i , ci`〉]qe2 where cil is the column of index i` of C and

the rounding b[a]qe2, is a function from a ∈ Zq to {0, 1} giving 1 if b q4c ≤ a ≤ b
3q
4 c

and 0 otherwise.
– Output (m′1, · · · ,m′r) ∈ {0, 1}r.

Note that SC = SBR + SPm = ER + ERm +


m1 · s>1

...
mr · s>r

G = E′ +


m1 · s>1

...
mr · s>r

G.

• TheH.Eval algorithm finally consists in iterating, following a circuit f , the homomorphic
operations H.Add and H.Mul:
– H.Add(C1,C2) : C+ = C1 + C2.
– H.Mul(C1,C2) : C× = C1 × G−1C2 with G−1 a function such that ∀C ∈

Z(r+n)×N
q ,GG−1(C) = C and the values of G−1(C) follow a subgaussian distri-

bution with parameter O(1) (G−1 uses a bit decomposition technique, see [MP12]
for the existence and correctness proof of G−1).

Remark 3.2.1. For practical use, we only need to store r+ 1 matrices Pm, namely the r+ 1
ones with m of Hamming weight equal to 0 or 1 are sufficient to generate correct encryption
of all m ∈ {0, 1}r with at most r additions of the corresponding Pm matrices.



3.2 Third Generation 39

Lemma 3.2.2 (Correctness of Batch GSW scheme.). For every
(pkH , skH)← H.KeyGen(n, q, r, χ), m ∈ {0, 1}r, and C← H.Enc(pkH ,m), (respectively
Cf ← H.Eval(f,C1, · · · ,Ck, pkH)) such that for all i ∈ [r], |s>i ci` −mi2`−1 mod q| < 2`−2

(where x mod q ∈ [−q/2 + 1, q/2]) we have m = H.Dec(C, skH) (respectively f(m1, · · · ,mk)
mod 2 = H.Dec(Cf , skH)).

Proof. With the expression of SC for all i ∈ [r]; s>i ci` can be written as:

(SC)i,i` = e′i,i` + 2`−1mi mod q.

Then, if |e′i,i` mod q| < 2`−2, the rounding in the decryption algorithm outputs mi. If the
inequality is correct for all i ∈ [r], then m = H.Dec(C, skH).

Note that a sufficient condition for correctness is to ensure |e′i,j | < 2`−2 for all pairs (i, j)
in [r]× [N ].

Lemma 3.2.3 (Security of Batch GSW scheme ). Let B,Rm,R be generated in H.KeyGen
and H.Enc. Then, the joint distribution (B,BRm,BR) is computationally indistinguishable
from uniform over Z(n+r)×m

q × Z(n+r)×N
q × Z(n+r)×N

q .

Proof. B is indistinguishable from uniform over Z(n+r)×m
q using the dLWEq,n,m,χ assumption

r times (more specifically, using the assumption where the secret is taken accordingly to
an error distribution rather than randomly, considering an appropriate choice of the error
distribution, this assumption reduces to the standard one). Then, we can apply the leftover
hash lemma on (B,BRm) and (B,BR) which concludes the proof.
It is enough if the matrices Pm are not given to the adversary. Otherwise using also the

circular security assumption on Pm as in [HAO15], the joint distribution (B,BRm, Pm,BR)
is computationally indistinguishable from uniform over Z(n+r)×m

q × Z(n+r)×N
q × Z(n+r)×N

q ×
Z(n+r)×N
q .

Remark 3.2.4. Note that for the decryption algorithm, only r columns of the ciphertext
are used, in the hybrid framework context it enables Claude to compress the ciphertext in
Z(r+n)×N
q to one in Z(r+n)×r

q , that Alice can still decrypt.

3.2.2 Ring GSW

This scheme is a ring version of GSW, introduced in the appendix of [GSW13], and imple-
mented in [KGV14], transposing the approximate eigenvector problem into the ring setting.
From λ the security parameter and the considered applications, we can derive the parameters
n, q andM of the scheme described below.

• H.KeyGen(n, q, χ,M). On inputs the lattice dimension n, which is set to a power of 2,
the modulus q, the error distribution χ and the plaintext spaceM:
– Set R = Z[X]/(Xn + 1), Rq = R/qR, ` = dlog qe, N = 2` and C = R2×N

q .
– Set R0,1 = {P ∈ Rq, pi ∈ {0, 1}, 0 ≤ i < n}.
– Pick a←$ Rq, s′ ←$ χ and e←$ χ.



40 Chapter 3 Fully Homomorphic Encryption

– Set s = [1| − s′]> ∈ R1×2
q and b =

(
s′a+ e

a

)
∈ R2×1

q .

– Output pkH := b and skH := s.

• H.Enc(pkH ,m). On input pkH , and m ∈M:
– Pick E←$ χ

2×N .
– Pick r ←$ RN

0,1, and output C = [br> + mG + E]q ∈ R2×N
q , where G =

(20, · · · , 2`−1)> ⊗ I ∈ R2×N
q .

• H.Dec(C, skH). On input the secret key skH , and a ciphertext C:
– Compute m′ = b[< s, cl >]qe2.
– Output m′ ∈ Rq.

• The H.Eval algorithm finally consists in iterating H.Add and H.Mul:
– H.Add(C1,C2) : C+ = C1 + C2.
– H.Mul(C1,C2) : C× = C1 ×G−1C2.

Remark 3.2.5. The plaintext spaceM has a major influence on the considered application
in terms of quantity of information contained in a single ciphertext and error-growth. For
our application we chooseM as the set of polynomials with all coefficients of degree greater
than 0 being zero, and the constant coefficient being bounded. This choice is very restrictive,
later we will explain that the error-growth can be exponential in the plaintext norm, justifying
this restriction. The use of polynomial is still interesting in this case as FFT can be applied
to speed up the homomorphic operations.

Lemma 3.2.6 (Correctness of Ring-GSW scheme ). For every
(pkH , skH) ← H.KeyGen(n, q, χ,M), m ∈ M and C ← H.Enc(pkH ,m) (respectively
Cf ← H.Eval(f,C1, · · · ,Ck, pkH)) such that all the coefficients of |s>c`−m2`−1 mod q| are
inferiors to 2`−2 then we have m = H.Dec(C, skH) (respectively f(m1, · · · ,mk) mod 2 =
H.Dec(Cf , skH) ).

The proof follows directly from the one of Lemma 3.2.2 for each coefficient of the polynomial.

Lemma 3.2.7 (Security of Ring-GSW scheme ). Let pkH ← H.KeyGen and
C← H.Enc(pkH ,m). Then the joint distribution (b,C) is computationally indistinguishable
from uniform over R2×1

q × R2×N
q .

Proof. b is computationally indistinguishable from uniform over R2
q using the dRLWER,q,χ

assumption (more specifically it relies on the assumption where s′ is taken from χ rather than
randomly from the dual fractional ideal R∨q but this assumption reduces to the dRLWER,q,χ
assumption). Applying the dRLWER,q,χ assumption with a secret from R0,1 on b, r, and E,
(b,C) is indistinguishable from uniform over R2×1

q × R2×N
q , it concludes the proof.

Remark 3.2.8. Note that for the decryption algorithm, only one columns of the ciphertext
is used, in the hybrid framework context it enables Claude to compress the ciphertext in R2×N

q

to one in R2×1
q , that Alice can still decrypt.



3.3 Error-growth 41

3.3 Error-growth

We develop in the following the error-growth involved in the homomorphic operations of
the two previous schemes we described; studying this evolution enables us to find the
circuits or functions more adapted to homomorphic evaluation and therefore to find the
best way to obtain practical FHE. Regardless of the functionality desired to be performed
homomorphically, a huge number of circuits and also protocols can be used. Choosing
the adapted designs relatively to the homomorphic scheme and the functionality results in
choosing in the range from feasibility to practicability. By carefully examining the error
metric of a HE scheme, we determine how we should modify a circuit to make it efficient for
the same result of computation. The goal of this section is to study the error-growth of basic
homomorphic operations in order to identify functions, or circuits, which are very compatible
with homomorphic evaluation. This compatibility means that, when homomorphically
evaluated with the described schemes, these functions or circuits involve low noise and
therefore low time and data cost. Consequently, these are the appropriate basic blocks to use
in a hybrid homomorphic framework to make it efficient.

3.3.1 Classical Operations

We first need to evaluate the error-growth of the basic homomorphic operations, the addition
and the multiplication of ciphertexts. We use the analysis of [AP14] based on subgaussian
distributions to study the error-growth in these homomorphic operations. From a coefficient
or a vector following a subgaussian distribution of parameter σ, we can bound its norm
with overwhelming probability. Then we can study the evolution of this parameter while
performing the homomorphic operations. Hence we can bound the final error to ensure
correctness.

For simplicity, we use two notations arising in the error-growth depending on the arithmetic
of the underlying ring of the two schemes, γ the expansion factor (see [BGV12]) andNorm(mj)
such that:

• Batched GSW: γ = 1 and Norm(mj) = |mj | (arithmetic in Z) .

• Ring GSW: γ = n and Norm(mj) = ||mj ||2 (arithmetic in R).

3.3.1.1 Error-growth of H.Add

Lemma 3.3.1 (H.Add error-growth). Suppose Ci for 1 ≤ i ≤ k are ciphertexts of a GSW
based Homomorphic Encryption scheme with error components ei of coefficients following a
subgaussian distribution of parameter σi. Let Cf = H.Add(Ci, for 1 ≤ i ≤ k), then ef the
related error follows a subgaussian distribution with parameter σ′ such that:

σ′ =

√√√√ k∑
i=1

σ2
i or σ′ = σ

√
k if σi = σ, ∀i ∈ [k].

Proof. We first prove the lemma in the batched GSW setting following the analysis in [AP14]
for the sum of two ciphertexts. Considering the addition of two ciphertexts we can write:



42 Chapter 3 Fully Homomorphic Encryption

SC+ = SC1 + SC2 = E′1 +


m1,1 · s>1

...
m1,r · s>r

G + E′2 +


m2,1 · s>1

...
m2,r · s>r

G.

The error of C+ is therefore E+ = E′1 + E′2 ∈ Zr×Nq ; each row e>+,j for 1 ≤ j ≤ r is the
sum of e>1,j and e>2,j . Then for 1 ≤ j ≤ r the N coefficients of e>1,j (respectively e>2,j) follow a
subgaussian distribution of parameter σ1 (respectively σ2) and by Pythagorean additivity
each coefficient of e>+,j has subgaussian parameter σ+ =

√
σ2

1 + σ2
2.

Then we prove the analogous property in the ring setting. To add two ciphertexts we
consider:

s>C+ = s>C1 + s>C2 = e′>1 +m1s>G + e′>2 +m2s>G.

The error of C+ is therefore e>+ = e′>1 + e′>2 ∈ RN where each one of the N coefficient is the
sum of polynomials where each component follows a subgaussian distribution of parameter
respectively σ1 or σ2. By Pythagorean additivity on subgaussian parameters, each component
of the polynomials of the vector e>+ has therefore subgaussian parameter σ+ =

√
σ2

1 + σ2
2.

Finally, in both cases the subgaussian parameter for the addition of k ciphertexts is simply
obtained by applying successively the formula of the addition of two ciphertexts. The case
σ′ = σ

√
k is a sub-case when all ciphertexts error distributions have identical parameter

σ.

3.3.1.2 Error-growth of H.Mul

Lemma 3.3.2 (H.Mul error-growth). Suppose Ci for 1 ≤ i ≤ k are ciphertexts of a GSW
based Homomorphic Encryption scheme with error components ei, of coefficients following a
subgaussian distribution of parameter σi, corresponding to the plaintexts mi. Cf is the result
of a multiplicative homomorphic chain such that:

Cf = H.Mul(C1, H.Mul(C2, H.Mul(· · · , H.Mul(Ck,G)))),

and ef is the corresponding error with subgaussian parameter σ′ such that:

σ′ = O
√Nγ

√√√√σ2
1 +

k∑
i=2

(
σiΠi−1

j=1Norm(mj)
)2
 .

Proof. We first prove the statement on batched-GSW following the same direction as [AP14]
(considering only the sub-case of diagonal matrices as plaintexts). Let consider the noise in a



3.3 Error-growth 43

product of two ciphertexts SC×. We have the following relations:

SC× = SC1G−1(C2) =

E′1 +


m1,1 · s>1

...
m1,r · s>r

G

G−1(C2)

= E′1G−1(C2) +


m1,1 · s>1

...
m1,r · s>r

C2 = E′1G−1(C2) +


m1,1 0 . . . 0

0 m1,2 . . . 0
...

... . . . ...
0 0 . . . m1,n

SC2

= E′1G−1(C2) +


m1,1 0 . . . 0

0 m1,2 . . . 0
...

... . . . ...
0 0 . . . m1,n

E′2 +


m1,1m2,1 · s>1

...
m1,rm2,r · s>r

G.

The error of C× is therefore E× = E′1G−1(C2) +


m1,1 0 . . . 0

0 m1,2 . . . 0
...

... . . . ...
0 0 . . . m1,n

E′2.

As G−1(C2) is an N ×N matrix sampled from independent subgaussian distribution with
parameter σG−1 = 1, we can consider independently the r rows of E×, leading to:

e>×,j = e>1,jG−1(C2) +m1,je>2,j .

The components of m1,je>2,j follow a subgaussian distribution of parameter |m1,j |σ2 by
homogeneity, with |m1,j | ∈ N the absolute norm of m1,j . By Pythagorean additivity and
then Lemma 2.3.12, the components of e>1,jG−1(C2) follow a subgaussian distribution of
parameter: √√√√ N∑

`=1
(σG−1e>1,j,`)2 = σG−1 ||e>1,j ||2 = O(σ1

√
N).

The components of e>×,j therefore follow independent subgaussian distributions of parameter:

σ′ = O
(√

(σ1
√
N)2 + (|m1,j |σ2)2

)
.

Applying this formula recursively for a multiplicative chain we obtain for σ′:

O
(√

(σ1
√
N)2 + (|m1,j |σ2

√
N)2 + · · ·+ ((Πk−1

i=1 |mi,j |)σk
√
N)2 + ((Πk

i=1|mi,j |)σG)2
)
.

As G is a noiseless encryption of I, σG = 0 and we can conclude:

σ′ = O
√N

√√√√σ2
1 +

k∑
i=2

(σiΠi−1
j=1|mj |)2

 .
Then we prove the property in the ring setting.



44 Chapter 3 Fully Homomorphic Encryption

We first recall that R is a cyclotomic polynomial of degree being a power of two. Hence we
have the following relations on a product of a, b ∈ Rq:

ab =
n−1∑
i=0

 i∑
j=0

ajbi−jX
i

+
n−2∑
i=0

 n−1∑
j=i+1

ajbn+i−jX
n+i

 mod (Xn + 1).

Using the reduction modulus Xn + 1 we get:

ab =
n−1∑
i=0

 i∑
j=0

ajbi−jX
i

− n−2∑
i=0

 n−1∑
j=i+1

ajbn+i−jX
i

 ,
and for each coefficient:

(ab)i =

 i∑
j=0

ajbi−j

−
 n−1∑
j=i+1

ajbn+i−j

 ,
where each coefficient of a and b appears only once in the sum. This expression on the

coefficients then enables us to obtain the subgaussian parameter of a product of subgaussian
polynomials.
With a, b ∈ Rq, each coefficient of b following independent subgaussian distributions of

parameter σb, by Pythagorean additivity we obtain the subgaussian parameter σab of the
coefficients of ab:

σab =

√√√√n−1∑
j=0

(ajσb)2 = σb||a||2. (3.1)

Hereafter, as in the batched setting, we obtain the subgaussian parameter in the simpler
case of a product of two ciphertexts. Multiplying two ciphertexts C1 and C2 we can consider
the resultant error vector:

e>× = e>1G−1(C2) +m1e>2 ∈ RN
q .

For the second part, we consider all polynomials of e2 with coefficient from subgaussian
independent distributions of parameter σ2. Then, the subgaussian parameter obtained is
σ2||m1||2 using Equation (3.1).

For the first component e>1G−1(C2), each polynomial of the result is the sum of N indepen-
dent products from an element of e>1 and a polynomial with coefficients following subgaussian
distributions of parameter 1 (by construction of G−1). The subgaussian parameter of the
first part is

√∑N
i=1(||e>1i||2)2 by Equation (3.1).

Finally, the subgaussian parameter σ× of the coefficients of the polynomials of e× is:

σ× = O
(√

(σ1
√
nN)2 + (σ2||m1||2)2

)
.

using Lemma 2.3.12 on the e1i and Pythagorean additivity.
We apply this formula recursively for a multiplicative chain ending by G. The resulting

subgaussian parameter is σ′:



3.3 Error-growth 45

O


√√√√√σ2

1nN + ||m1,j ||22σ2
2nN + · · ·+

((
k−1∏
i=1
||mi,j ||2

)
σk
√
nN

)2

+
((

k∏
i=1
||mi,j ||2

)
σG

)2
 .

As G is a noiseless encryption of I, σG = 0 and we can conclude:

σ′ = O
√nN

√√√√σ2
1 +

k∑
i=2

(σiΠi−1
j=1||mj ||2)2

 .

3.3.2 Optimized Operations
We describe here some optimizations when performing homomorphic evaluation, these
optimizations improve in practice the efficiency on a fixed circuit. They are the first step to
design functions or circuits which involves small error-growth with the third generation FHE.

3.3.2.1 Error-growth in H.Comb

For the sake of clarity, we formalize hereafter the corresponding comb homomorphic product
H.Comb and the quantity σcomb which stands for the subgaussian parameter. We study the
error-growth of H.Comb as we will use it as a tool for the error-growth analysis of direct
sums of monomials (and FLIP ciphers as explained in Chapter 4).

Definition 3.3.3 (homomorphic comb H.Comb). Let C1, · · · ,Ck be k ciphertexts of a GSW
based Homomorphic Encryption scheme with error coefficients from independent distributions
with same subgaussian parameter σ. We define H.Comb(y, σ, c, k) = H.Mul(C1, · · · ,Ck,G)
where:

• y =
√
Nγ is a constant depending on the ring,

• c = max1≤i≤k(Norm(mi)) is a constant which depends on the plaintexts,

and Ccomb = H.Comb(y, σ, c, k) has error components following a subgaussian distribution of
parameter O(σcomb).

Lemma 3.3.4 (σcomb quantity). Let C1, · · · ,Ck be k ciphertexts of a GSW based Homo-
morphic Encryption scheme with same error parameter σ and Ccomb = H.Comb(y, σ, c, k).
Then we have:

σcomb(y, σ, c, k) = yσck, where ck =

√√√√k−1∑
i=0

c2i.

Proof. Thanks to Lemma 3.3.2 we obtain:
σcomb =

√
Nγ

√
σ2 +∑k

i=2(σΠi−1
j=1Norm(mj))2,

σcomb = y
√
σ2 +∑k

i=2(σci−1)2,

σcomb = yσ
√∑k

i=1(ci−1)2,
σcomb = yσck.



46 Chapter 3 Fully Homomorphic Encryption

The compatibility of this comb structure with the asymmetric multiplicative error-growth
property of GSW enables us to easily quantify the error in some constructions, with a better
accuracy than computing the multiplicative depth. In order to minimize the quantity σcomb,
we can choose the plaintext space such that c = 1 for freshly generated ciphertexts. The
resulting σcomb(y, σ, 1, k) quantity is therefore yσ

√
k, growing less than linearly in the number

of ciphertexts. Fixing the constant c to be 1 is usual with FHE. As we mostly consider
Boolean circuits, it is usual to use plaintexts in {−1, 0, 1} to encrypt bits, leading to c = 1
and therefore ck =

√
k.

3.3.2.2 Sign optimization

The particular error-growth in GSW Homomorphic Encryption enables to use more optimiza-
tions to reduce the error norm and perform more operations without increasing the parameter
sizes. The error-growth in H.Comb depends on the quantity ck derived from bounds on
norms of the plaintexts, this quantity can be reduced using negative numbers. Note that
even if the decryption is performed modulo 2, the plaintext and the errors evolve in the ring
of the scheme. A typical example is in the LWE-based scheme to use m ∈ {−1, 0, 1} rather
than {0, 1}; the ck quantity is the same and in average the sums in Z are smaller. Then the
norm |∑mi| is smaller which is important when multiplying. Conserving this norm as low
as possible gives better bounds and ck coefficients, leading to smaller noise when performing
distinct levels of operations. An equivalent way of minimizing the error-growth is to still use
M = {0, 1} but redefining the homomorphic addition as:

H.Add(C1,C2) = C1 ±C2,

where for each H.Add evaluation the operation ± is randomly (and independently) chosen
between the + operation and the − operation with probability 1/2. The chosen operation is
applied coordinate-wise on the whole matrices. This homomorphic addition is still correct
because:

S(−C2) = −E′2 −


m2,1 · s>1

...
m2,r · s>r

G = E′′2 +


−m2,1 · s>1

...
−m2,r · s>r

 ,
where the coefficients in E′′2 rows follow a distribution of the same subgaussian parameter as
the one in E′2 by homogeneity and −m = m mod 2.

3.3.2.3 Error-growth in MUX gates

MUX gates are well adapted to third generation error-growth, as observed in the context
of branching programs [BV14], or in the context of deterministic automata [CGGI16]. The
asymmetric error-growth of the third generation enables to produce low-noise ciphertexts
when a MUX gate or a combination of MUX gates are evaluated, as the final error depends
only on the errors from the ciphertext of the control bit and only one of the two other errors.

Lemma 3.3.5 (Homomorphic MUX error-growth). Let Ca,Cb,Cd be 3 ciphertexts of a
GSW based Homomorphic Encryption scheme with error parameter σa, σb, σd, and σmax =



3.3 Error-growth 47

max {σa, σb}, and y =
√
Nγ the constant from the ring. Defining the MUX ciphertext as

CMUX = H.Add(H.Mul(Cd,Ca −Cb),Cb), we have:

σMUX = O
(√

y2σ2
d + σ2

max

)
.

Proof.

CMUX = CdG−1(Ca −Cb) + Cb,

s>CMUX = s>CdG−1(Ca −Cb) + s>Cb,

= e>dG−1(Ca −Cb) +mds>(Ca −Cb) + e>b +mbs>G,

= e>dG−1(Ca −Cb) +md(e>a + e>b) +md(ma −mb)s>G + e>b +mbs>G.

We obtain two cases depending on the value of d:

• If md = 0 then:

s>CMUX = e>dG−1(Ca −Cb) + e>b +mbs>G.

In term of errors, the first part has an error parameter of yσd from Lemma 3.3.2, which
gives a total error of σMUX = O

(√
y2σ2

d + σ2
b

)
.

• If md = 1 then:

s>CMUX = e>dG−1(Ca −Cb) + e>a +mas>G.

With the same reasoning we get a total error of σMUX = O
(√

y2σ2
d + σ2

a

)
.

As d is a control bit, only these two cases can happen, giving the final formula. Note that
we used the notation of ring-GSW but the result is exactly the same for batched-GSW, as
we are only using lemmata 3.3.1, and 3.3.2.

Note that the formula in this lemma gives a final error parameter which depends on the
error parameter of the 3 ciphertexts (due to the max), and not only 2, as it relates to an
upper bound to tackle worst case scenarii rather than the exact value which depends on two
of the 3 ciphertexts only.

3.3.3 Particular Functions

In this part we focus on particular functions whose evaluation generates a small error-growth.
It is the cornerstone to find designs which strongly improve the efficiency of homomorphic
encryption. In other words, finding the building blocks as compatible as possible with the
error-growth metric enables to construct practical homomorphic protocols for which the time
and space costs only depend on the functionalities required by the client.



48 Chapter 3 Fully Homomorphic Encryption

3.3.3.1 Evaluating Direct Sums of Monomials

Direct sum of monomials are quite simple functions with many advantages (which are
described in Chapter 5) and they are easy to evaluate homomorphically. All monomial
functions can be evaluated in parallel, and all the sums are almost free, therefore the error-
growth of this kind of function for a second generation FHE scheme is proportional to the
logarithm of the degree of the highest monomial.

Thereafter we compute the error-growth for the third generation, we begin with a sub-case
of direct sum of monomials: the sum of a linear part, a quadratic part and a sum of triangular
functions as it is of particular interest later in this thesis (corresponding to FLIP functions
from Definition 2.4.17). Then we expand this example to the general case of direct sums of
monomials using the direct sum vector representation.

Lemma 3.3.6. Let F be a FLIP function, i.e. a direct sum of monomials in N variables
built as a sum of a linear function of n1 variables, a quadratic function of n2 degree-two
monomials and a sum of triangular functions totalizing n3 variables.

Assume that Ci for 0 ≤ i ≤ N − 1 are ciphertexts of a GSW-like HE scheme with the
same subgaussian parameter σ and c = 1. We define CF = H.Eval(F,Ci) the output of the
homomorphic evaluation of the ciphertexts Ci’s along the circuit F . Then the error parameter
σ′ is:

σ′ = O
(
σ
√
n1 + y2(n2 + n3)

)
≈ O

(
σy
√
N
)
.

Proof. We first evaluate the noise brought by F for each of its components Ln1 , Qn2 , nb∆k,
defining the respective ciphertexts CLn1

,CQn2
,CTk(the last one standing for one triangle

only) and the subgaussian parameter of the respective error distributions (of the components
of the error vectors) σLn1

, σQn2
, σTk :

• Ln1 : CLn1
= H.Eval(Ln1 ,C0, · · · ,Cn1−1) = H.Add(C0, · · · ,Cn1−1) then σLn1

=
σ
√
n1.

• Qn2 : CQn2
= H.Add(H.Mul(Cn1+2j ,Cn1+2j+1,G)) for 0 ≤ j < n2.

H.Mul(Cn1+2j ,Cn1+2j+1,G) = H.Comb(y, σ, 1, 2) has subgaussian parameter
O(σcomb(y, σ, 1, 2)) = O(yσ

√
2) for 0 ≤ j < n2.

Then σQn2
= O

(
yσ
√

2
√

n2
2

)
= O(yσ√n2).

• Tk: CTk = H.Add(H.Mul(Cn1+n2+j+(i−1)(i−2)/2; 1 ≤ j ≤ i); 1 ≤ i ≤ k).
CTk = H.Add(H.Comb(y, σ, 1, i), 1 ≤ i ≤ k).

then σTk = O
(√∑k

i=1(yσ
√
i)2
)

= O
(
yσ
√

k(k+1)
2

)
.

As nb∆k is obtained by adding nb independent triangles, we get:
Cnb∆k = H.Add(CTk,i, 1 ≤ i ≤ nb),

and σnb∆k = O
(
yσ
√
nb
√

k(k+1)
2

)
= O(yσ√n3).



3.3 Error-growth 49

By Pythagorean additivity the subgaussian parameter of CF is finally:

σ′ = O
(√

(σ√n1)2 + (yσ√n2)2 + (yσ√n3)2
)

= O
(
σ
√
n1 + y2(n2 + n3)

)
.

Similarly we extend this result to all direct sums of monomials, using the direct sum vector
definition (Definition 2.4.15).

Lemma 3.3.7. Let F be the direct sum of monomials in N variables with associated direct
sum vector [m1,m2, · · · ,md].

Assume that Ci for 0 ≤ i ≤ N − 1 are ciphertexts of a GSW-like HE scheme with same
subgaussian parameter σ and c = 1. We define CF = H.Eval(F,Ci) the output of the
homomorphic evaluation of the ciphertexts Ci’s along the circuit F . Then the error parameter
σ′ is:

σ′ = O
σ
√√√√m1 + y2

(
d∑

2=1
i ·mi

) ≈ O (σy√N) .
Proof. We first evaluate the error given by the monomials of a given degree i, that we denote
σi. σ1 corresponding to the error of the linear part, as in Lemma 3.3.6, we obtain σ1 = σ

√
m1.

Then the monomials of degree i with 2 ≤ i ≤ d are evaluated as product of i+ 1 ciphertexts,
giving:

H.Mul(Cj , · · · ,Cj+i−1,G) = H.Comb(y, σ, 1, i),

with an error with subgaussian parameter O(yσ
√
i). Adding all the ciphertexts related to

the same degree we get:

σi = O(yσ
√
i
√
mi) = O(yσ

√
i ·mi).

Adding all these ciphertexts gives CF with error parameter:

O
σ
√√√√m1 + y2(

d∑
i=2

i ·mi)

 .
By definition of the direct sum vector: ∑d

i=1 i ·mi ≤ N (the equality corresponding to the
case where all variables appear in the ANF of F ), giving the final result:

σ′ ≈ O
(
σy
√
N
)
.

3.3.3.2 Evaluating Majority Functions

The asymmetric error-growth of the third generation has been proven highly compatible
with the evaluation of branching programs as in [BV14], and particularly with MUX gates
(see Definition 2.5.2) as witnesses the work [CGGI16] where circuits with MUX gates and
deterministic finite automata are quickly evaluated. In this part we show how the majority



50 Chapter 3 Fully Homomorphic Encryption

function can be homomorphically evaluated without generating an important error-growth.
The algebraic normal form (Definition 2.4.2) of the majority function in N variables contains
at least N choose dN/2e monomials, i.e. an exponential number of monomials. This number
of monomials rules out the evaluation using homomorphic combs, nevertheless using a
branching program approach this function can be computed with a small number of gates,
and therefore it can be a function of potential use in homomorphic frameworks. Majority
functions are considered in the area of Boolean functions used in cryptography as they are
optimal relatively to the algebraic immunity criterion (see Definition 2.4.10). As a majority
function could then be used as building block of the symmetric encryption scheme used in the
hybrid framework, it justifies to study the error-growth involved when such kind of function
is homomorphically evaluated. A filtering function using a majority function could then been
considered as an alternative of the construction studied in Section 4.3.2, which is based on a
direct sum of monomials.

First, let us consider a branching program for the function majority on 2n+1 bits, described
in Figure 3.1. Barrington’s theorem proves the existence of a width 5, polynomial length
branching program for majority; here we focus on a circuit whose homomorphic evaluation
with a GSW-like FHE produces a small error-growth. Therefore we consider a branching
program of 2n+ 2 layers, where each transition from layer i to i+ 1 is indexed by the variable
xi, each dashed vertical arrow corresponds to the value 0 of the variable and each diagonal
arrow corresponds to the value 1. The final result is 0 if the path ends in the left half of the
last layer, 1 otherwise. The idea behind this circuit is to force a path to finish in the right
half when at least n+ 1 variables are equal to 1.

Proposition 3.3.8 (Branching program for majority (informal)). Let B2n+1 be the branching
program of 2n+ 2 layers and (2n+2)(2n+3)

2 nodes described in Figure 3.1, then B2n+1 computes
the majority function in 2n+ 1 bits.

Proof. First, the circuit is well defined, for all nodes not in the terminal layer there is a
transition for the two potential values of the variable associated to the layer. Then, each
variable is used once and only once: the variable i is used between layers i and i+ 1. Each
transition is either leading to the same position in the following layer, or leading to the
successive (right) position in the following layer. For all layers the transition keeps the
position if and only if the variable is equal to 0. As the first layer begins at the leftmost
position, by induction, the end node of the path (in the final layer) is in the right half if
and only if at least n + 1 variables took the value 1. Finally the result of B2n+1 on the
entry (x1, · · · , x2n+1) is 1 if and only if wH(x1, · · · , x2n+1) ≥ n+ 1 which is the definition of
Maj2n+1.

Evaluating this branching program in clear, the final node reached gives the result: 0 if
we reached the left part, 1 otherwise. Considering homomorphic evaluation we want to get
a unique ciphertext, encrypting this binary result. We modify this branching program to
get a circuit with gates AND, MUX, XOR easy to homomorphically evaluate, and with a
unique final node. We use a standard technique using the truth table of a function, the truth
table associate each 2n+ 1-bit possible input to the value of F evaluated in this input. The
value of F (x) can be computed by testing the equality of x to an input of the truth table,
the result of the test being multiplied by F (x), applying it to all possible inputs of the truth
table (and summing the result) gives a correct computation of F (x). Applying this strategy
only on the inputs such that F gives 1, and summing, still gives a correct computation. For



3.3 Error-growth 51

· · ·

· · ·

0 0 0 0 1 1 1 1

x1

x2

xn+1

xn+2

x2n+1

0 1

Figure 3.1: Branching program for majority.



52 Chapter 3 Fully Homomorphic Encryption

· · ·

· · ·

+

+

+

CMaj

C̄1 C1

Cn+1

Cn+2

Figure 3.2: Homomorphic circuit for majority.

the branching program this approach consists in considering only the paths leading to one:
the result can be obtained by summing the results of all the paths leading to 1. As only one
path corresponds to the 2n+ 1 bits entry really evaluated (the unique equality test giving 1),
if the entry corresponds to one of these paths then the result is 1 otherwise it is 0. Therefore,
homomorphically at each layer a transition indexed by xi is replaced by a homomorphic
product by Ci for the value 1 and by C̄i = G−Ci for the value 0.

The branching program is modified in the following way: all the transitions leading to final
value 0 are cut, therefore all the bottom left part is deleted, and all the nodes for which all
future transitions lead to 1 are merged: all the paths of the bottom right part are compressed,
using additions. It gives the circuit to homomorphically evaluate, given in Figure 3.2. To deal
with additions we modify the representation, the nodes in red are not computed as a MUX,
but as a sum. The first summand is the product of the left parent node by the ciphertext
of this layer, the second summand is the right parent node. Black arrows, dashed or not,
symbolize the product by the ciphertext of the corresponding layer (its complementary for a
dashed arrow), and a red arrow symbolizes the addition. The color of the nodes symbolizes
how they are computed, a white node corresponds to a MUX, a red one to an addition, and
a blue one to an AND or nothing.
From this circuit we can compute the standard deviation of the ciphertext obtained by



3.3 Error-growth 53

evaluating the majority function Maj2n+1.

Lemma 3.3.9. Let Ci for 0 ≤ i ≤ 2n+ 1 be ciphertexts of a GSW-like FHE scheme with
same subgaussian parameter σ and c = 1. We define CMaj the output of the homomorphic
evaluation of the ciphertexts Ci’s along the circuit of Figure 3.2. Then the error parameter
σ′ associated to CMaj is:

σ′ = O
(
yσn
√

2n+ 1
)
.

Proof. We decompose the circuit in three parts to do the proof; the part of blue nodes, white
nodes and red nodes on Figure 3.2. The blue nodes correspond to ciphertexts obtained by a
chain of multiplications of freshly encrypted ciphertexts i.e. homomorphic comb, the white
nodes are the output of a MUX gate and the red nodes are the output of an addition.
We first prove that the ciphertext of a blue or white node of the layer i has an error

parameter of O(y
√
i). Let us focus on the blue nodes; the ciphertext obtained at the layer i

is the product of i freshly encrypted ciphertexts with error parameter σ, obtained from the
ciphertexts C̄j (with 1 ≤ j ≤ i) for the left part of the parallelogram or from the ciphertexts
Cj (with 1 ≤ j ≤ i) for the right part of the parallelogram. From Lemma 3.3.4 the associated
error-growth is therefore:

H.Comb(y, σ, 1, i) = yσ
√
i.

Then we prove by induction that the ciphertext of a blue or white node of the layer k has
the following error parameter:

O(yσ
√
k), for layer 1 ≤ k ≤ 2n.

• k = 1, this layer has only two nodes, both blue, corresponding to the ciphertexts C̄1
and C1. As C̄1 = G−C1, the associated error parameter is the same as the one of C1:
σ = O(yσ

√
1) validating the initialization (Note that the constant y appears naturally

if we begin the initialization at step k = 2).

• k → k + 1, the layer k + 1 has at least one white node. If the ciphertext corresponds
to a blue node, the associate error has parameter O(y

√
k + 1) as previously proved.

Otherwise, a ciphertext corresponding to a white node is obtained by a MUX gate with
input two ciphertexts from the precedent layer and the control bit encrypted by Ci.
Then using Lemma 3.3.5 together with the induction hypothesis, the associated error
parameter is:

O(
√
y2σ2 + max{y2σ2k, y2σ2k}) = O(yσ

√
k + 1),

proving the induction.

Note that this property also applies for the layer 0, but as for the layer 1 it serves more for
notation (and for understanding the principle of the circuit) than for the final result.
The remaining part of the proof concerns the red nodes, which are the one adding two

inputs; one of them (left) being the product of a cipher from the precedent level by Ci, and
the other (right) being a ciphertext of the precedent level. Note that the two summands may
have not independent error terms, as they have been computed from the same ciphertexts
(or minus the matrix G), and that contrarily to the MUX gates, additions does not ensure



54 Chapter 3 Fully Homomorphic Encryption

error independence. Then we prove by induction that the ciphertext corresponding to the
red node of the layer k has the following error parameter:

O(yσ
k∑

i=n+1

√
i), for layer n+ 2 ≤ k ≤ 2n+ 1.

• k = n+2, the parent nodes are a blue and a white node of the layer n+1, so corresponding
to ciphertexts with error parameter O(yσ

√
n+ 1). One of the two ciphertexts (left,

white) is multiplied by Cn+2, giving an error parameter of O(yσ
√
n+ 2). The error

parameter (recall that it is a standard deviation) of the sum is upper bounded by the
sum of the two error parameters as the distributions can be correlated, giving an error
parameter of:

O(yσ(
√
n+ 1 +

√
n+ 2)),

validating the initialization.

• k → k + 1, the parent nodes are a white node and the red node of the layer k. The
ciphertext corresponding to the white node of layer k is multiplied by Ck+1, giving an
error parameter of:

O(yσ
√
k + 1).

By the induction hypothesis, the other ciphertext has associated error parameter of:

O(yσ
k∑

i=n+1

√
i).

As the error of these two ciphertexts may be correlated, performing the sum we obtain
an error parameter of:

O(yσ
k+1∑
i=n+1

√
i),

proving the induction.

The red node of the layer 2n+ 1 corresponding to CMaj , we get that the final error is:

O(yσ
2n+1∑
i=n+1

√
i),

and as
2n+1∑
i=n+1

√
i ≤ yσn

√
2n+ 1,

we obtain the final result of the lemma:

σ′ = O(yσn
√

2n+ 1)



3.3 Error-growth 55

This result shows that the majority function can be used in a homomorphic framework
using a GSW-like FHE as the homomorphic error-growth involved is quite small (for a
function in N variables it is proportional to N1.5). Using a randomization technique it can
be even more reduced (proportional to N0.5). To do so, we avoid the use of additions which
obliges to consider the sum of errors and we use a circuit of bigger size but using only AND
and MUX gates.
The principle is to duplicate the circuit of Figure 3.1 without the part leading to 0 and

to add the copy at the end of the first circuit in reverse order. This construction enables
to get only one node in the final layer, and it guarantees that every path to 1 from the top
circuit is by construction completed by the symmetric path (horizontal symmetry) to the
final node on the bottom part. No path leading to 0 gets to the bottom circuit, and every
path to 1 in the first circuit is completed by a unique path to 1 in the bottom circuit due to
the symmetry. It enables to use the same technique based on the truth table of a function as
for the first circuit for the homomorphic evaluation. The main difference is that the bottom
circuit obliges to have new encryptions of the 2n+ 1 plaintexts xi, with independent errors.
The new circuit is presented in Figure 3.3.

Note that this construction preserves the result of the homomorphic evaluation. As x2
i = xi

in F2, re-use variables do not change the result. Then the final value is a sum of all potential
entries of the majority function giving 1 and all corresponding paths are counted exactly
once by construction (the symmetry). The final ciphertext is an encryption of the majority
over the 2n+ 1 encrypted bits. From this circuit of length 4n+ 3 and size 3(n+ 1)2 with
MUX and AND gates we can compute the standard deviation of the ciphertext obtained by
evaluating the majority function Maj2n+1.

Lemma 3.3.10. Let Ci for 0 ≤ i ≤ 2n+ 1 be ciphertexts of a GSW-like FHE scheme with
same subgaussian parameter σ and c = 1. Let C′i for 0 ≤ i ≤ 2n + 1 be ciphertexts of
the same plaintext as Ci (but independent distribution) of a GSW-like FHE scheme with
same subgaussian parameter σ and c = 1. We define CMaj the output of the homomorphic
evaluation of the ciphertexts Ci and C′i along the circuit of Figure 3.3. Then the error
parameter σ′ associated to CMaj is:

σ′ = O
(
yσ
√

4n+ 3
)
.

Proof. The proof is similar to the one of Lemma 3.3.9; the circuit containing only blue and
white nodes, all ciphertexts of the layer i > 0 is computed by a product of a ciphertext from
the precedent layer with a freshly encrypted ciphertext or by a MUX gate with input two
ciphertexts from the precedent layer. Then the proof by induction giving that the error
parameter associated to a ciphertext of the layer i is O(yσ

√
i) can here be extended to all

layers, from k = 1 to k = 4n+ 3. Finally CMaj being the ciphertext of the layer 4n+ 3, it
enables to conclude:

σ′ = O
(
yσ
√

4n+ 3
)
.

Remark 3.3.11. The branching program approach enables to homomorphically compute the
majority function with a small error-growth whereas the ANF approach leads to a different
conclusion. The bigger length and size of the second circuit enables to have an error-growth
similar to the one of direct sum of monomials nevertheless it requires to perform more



56 Chapter 3 Fully Homomorphic Encryption

· · ·

· · ·

· · ·

· · ·

C̄1 C1

C̄′1 C′1

CMaj

Figure 3.3: Homomorphic circuit for majority, using randomization.



3.4 Hybrid Frameworks 57

homomorphic gates and to randomize ciphertexts, which has an additional cost in time and
in data.

3.4 Hybrid Frameworks

In the previous part of this chapter, we saw that fully homomorphic encryption is feasible,
all functions can be homomorphically evaluated, but we can debate on the efficiency aspect
for the application we focus on: outsourcing computations. The error-growth study shows
that the error in a ciphertext greatly depends on the function we homomorphically evaluate
and how this function is expressed. The handling of the noise is the principal challenge
for efficient FHE framework, it implies the usual bottlenecks of FHE that we briefly recall
here. Afterward we describe a hybrid framework, as introduced in Chapter 1 here developed
with the adequate notation, designed to circumvent the FHE bottlenecks to reach efficient
framework for outsourcing computations.

From the presentation of the main FHE generations, three main concerns against efficient
fully homomorphic frameworks emerge: the size of the ciphertexts, the complexity of the
bootstrapping, and the choice of when to bootstrap. The first main problem is the size of
the ciphertexts; the error used cannot be too small otherwise standard polynomial attacks
on lattices as LLL or BKZ can break the security. However the error cannot be too big,
otherwise only few operations are possible before bootstrapping. To handle this error the
modulus is increased, the ciphertexts used for FHE applications are then way bigger than
other constructions relying on the same assumptions. Therefore this problem is connected
to the works on schemes based on better assumptions enabling smaller ciphertexts [BV11;
BLP+13], and the works on cryptanalysis on lattices (e.g. [LLL82; SE94; CN11; APS15]) to
find the parameters enabling compromise between security and ciphertext size. The concern
of ciphertext size in homomorphic frameworks is referred as the expansion factor issue, which
corresponds to the quantity of data needed to encrypt one bit of plaintext. For a security
parameter λ ≈ 100, the dimension of the lattices considered is at least around 29, or 210,
the modulus is polynomial in this quantity, making the expansion factor of the order of one
megabit at least. This factor can be reduced using batching techniques, encrypting more data
in a single ciphertext, which has been studied by a large line of works [GHS12; HAO15].

Then, the second core problem relates to the complexity of bootstrapping. This algorithm
consists in homomorphically evaluating a decryption circuit of a public key encryption scheme,
therefore its complexity cannot be too low in practice. Concerning the data complexity, the
bootstrapping key corresponds to an encryption of the secret key by this scheme, therefore
both the expansion factor and the secret key size have an influence on the final size of the
bootstrapping key. Concerning the time complexity, a lot of works have been made to make
more efficient the bootstrapping technique [AP13; OPS15]. Other works examined how to
reduce the number of homomorphic operations, or to adapt the decryption circuit to the
error-growth metric of the underlying scheme [AP14; DM15; CGGI16].
Finally, the third main problem consists in determining the number and places of boot-

strappings during a particular computation. As the execution of the bootstrapping algorithm
is the process with the highest cost in an FHE framework, minimizing its number of execu-
tions enables consequent improvements in time. We can consider two extrema; on one side
considering no bootstrapping, and on the other side considering a bootstrapping after each
circuit gate computation. Between these two extrema, some work focused on determining the



58 Chapter 3 Fully Homomorphic Encryption

minimal number of bootstrapping to evaluate a circuit [LP13; BLMZ16]. Another relatively
close line of work consists in finding where to add bootstrapping gates in a circuit to optimize
the time of the homomorphic evaluation of the whole process [PV16].
For outsourcing computation, an improvement of the previously cited bottlenecks will

improve the efficiency but some issues can already be circumvented using a hybrid framework.
We precise this framework overviewed in Chapter 1, using in the following the necessary
concepts developed in Chapter 2 and in this chapter. The point of this hybrid framework is
to use the advantage of classical symmetric encryption to minimize the costs for Alice and to
make the time cost for the outsourced computation depending on the ordered computation
rather than homomorphic encryption issues. It enables to transfer the factor expansion issue
from Alice to Claude, and to allow Alice to only use algorithms with low cost in time and data
for her part of the protocol. Reducing the size of the ciphertexts used by Alice via a hybrid
encryption scheme has been first addressed by [LNV11]. More technically, the outsourcing
computation can be integrated in a quite general cloud service application framework, that
can be seen as a combination of 5 steps, combining a symmetric encryption scheme and an
asymmetric homomorphic encryption scheme, as summarized in Figure 3.4 and described
next:

1. Initialization. Accordingly to a security parameter λ, Alice runs the key generation
algorithms H.KeyGen and S.KeyGen of the two schemes. She sends her homomorphic
public key pkH and the homomorphic ciphertext of her symmetric key CH(skS).

2. Storage. Alice encrypts her data mi with the symmetric encryption scheme, and sends
CS(mi) to Claude.

3. Evaluation. Claude homomorphically evaluates, with the H.Eval algorithm, the decryp-
tion CH(mi) of the symmetric scheme on Alice’s data CS(mi). The H.Eval algorithm
being defined only over homomorphic ciphertexts, he homomorphically encrypts CS(mi)
(two layers of encryption) as CH(CS(mi)) = H.Enc(CS(mi), pkH), and then homomor-
phically evaluate the symmetric decryption:

CH(mi) = H.Eval(S.Dec,CH(CS(mi)),CH(skS), pkH).

If the homomorphic evaluation of the symmetric decryption algorithm is tweaked to
apply directly on homomorphic and symmetric ciphertexts Claude applies it on inputs
CS(mi), CH(skS), and pkH and outputs CH(mi).

4. Computation. Claude homomorphically executes the treatment f on Alice’s encrypted
data.

5. Result. Claude sends a compressed encrypted result of the data treatment cH(f(mi)),
obtained with the H.Comp algorithm, and Alice decrypts it.

Some restrictions of this generic framework can lead to more efficient instantiations. Note
that if we assume the existence of a trusted third party active only during the initialization
step, Alice can avoid Step 1, which requires a significant computational and memory storage
effort. Note also that Step 3 can be way easier to perform for some kind of symmetric schemes,
those for which the homomorphic evaluation of their decryption can be tweaked to handle
both symmetric and homomorphic ciphertexts. It can be done by treating separately the



3.4 Hybrid Frameworks 59

symmetric encryption of the plaintext, and the homomorphic encryption of the symmetric
key, during most of the evaluation process. It can also be done considering hybrid ciphertexts,
containing a homomorphic part, and a part in clear. The separation technique generally
applies to stream ciphers (with keystream denoted s(j)), in this context the decryption
algorithm combines homomorphic ciphertexts derived only from the encrypted symmetric key
and the symmetric encryption of the plaintext. In [CCF+16], the authors refer to additive
stream ciphers, they obtain a better evaluation separating it in two phases. In their context
step 3 is decomposed in an off-line phase and an on-line phase. During the off-line phase
Claude can homomorphically produce the whole part which is only key and IV dependent, as
it only requires an IV and CH(skSi ), both sent to Claude at Step 1. During the on-line phase,
Claude performs the homomorphic evaluation related to the plaintext dependent part, which
can be way more efficient than the off-line phase. Note that this two-phase decomposition
also applies to stream ciphers with a non-additive combination, and improve the efficiency of
the whole transformation since the off-line phase is precomputed.
Then, the authors of [CCF+16] remark that for this phase performing hybrid clear and

encrypted data calculations is possible for some ciphertexts, in order to avoid to homomorphi-
cally encrypt all CS(mj). Beyond this remark, for all schemes using a keystream combined
with the plaintext, Claude can homomorphically produce the keystream (homomorphically
encrypted) from CH(skSi ). Then the on-line phase can be trivial, he can produce hybrid
ciphertexts of two parts: the first one depending only in CS(mj) and the second one de-
pending only on CH(sj). As CS(mj) is obtained combining these two parts only, the hybrid
ciphertext contains all the information needed by Alice to decrypt, and they are compatible
with the homomorphic operations. These operations can be naturally extended to operations
on a homomorphic part and a part in clear, allowing further computations (following some
hybrid arithmetic). One advantage of these hybrid ciphertexts is to avoid to homomorphically
encrypt all symmetric ciphertexts received from Alice. This data being already encrypted
there is no need to encrypt it again for security reason. Therefore, the hybrid ciphertexts
can be used during all the evaluation step, and even during the computation step, avoiding
all re-encryptions. Even for other kinds of symmetric schemes, the inconvenience of this
re-encryption can be reduced if 0-noised ciphertexts (independent of the key) are public. In
this case, the symmetric ciphertexts can be replaced by the 0-noise ciphertext corresponding
to their bit value, and therefore the re-encryption is not adding more noise. For the homo-
morphic schemes we presented, 0-noise homomorphic ciphertext corresponds for a binary
symmetric ciphertext to replace 0 by the null matrix and 1 by G.

Note also that this framework is very versatile: it can be adapted to particular client-server
application and modified for efficiency of the underlying schemes. The presented framework
uses a public key FHE, where Alice gives pkH to Claude, enabling Claude to randomize
ciphertext or to encrypt plaintexts that only Alice will decrypt. The homomorphic scheme can
be reduced to secret-key FHE if Alice does not send pkH . Provided 0-noise (independent of the
key) ciphertexts Claude is still able to compute CH(mi) and to perform some homomorphic
computations. A real use of the public key property of the FHE of this framework is to
consider another client of the server, Bob, for which Alice makes the outsourced computation.
In this scenario Bob is handling the homomorphic key generation, Alice uses his public key
to encrypt CH(skS), and then the server is performing operations on Alice data that only
Bob will be able to decrypt. Finally, a good point for the versatility of this framework is the
possibility of computing in parallel, and therefore to be combined with the batch settings of
homomorphic encryption schemes.



60 Chapter 3 Fully Homomorphic Encryption

Alice Claude

(skH , pkH)← H.KeyGen(λ)
1: Initialization skS ← S.KeyGen(λ)

CH(skS) = H.Enc(skS , pkH) CH(skS), pkH−−−−−−−−−→ CH(skS), pkH

2: Storage CS(mi) = S.Enc(mi, skS) CS(mi)−−−−−−−−−→ CS(mi)

CH(mi)
3: Evaluation =

H.Eval(S.Dec,CH(CS(mi)),CH(skS), pkH)

4: Computation f
f−−−−−−−−−→ CH(f(mi)) = H.Eval(f,CH(mi, pkH)

cH(f(mi)) = H.Comp(CH(f(mi)))
5: Result cH(f(mi)) cH(f(mi))←−−−−−−−−−

f(mi) = H.Dec(cH(f(mi)), skH)

Figure 3.4: Homomorphic Encryption - Symmetric Encryption framework. H and S respec-
tively refer to homomorphic and symmetric encryption schemes, for algorithms
(e.g. H.KeyGen) or scheme components (e.g. skS).

Regarding security, this framework uses hybrid encryption and is related to the generic
KEM-DEM construction, nevertheless the notions of security of this framework have not been
particularly investigated. As the public key scheme used here is homomorphic, we cannot rely
on its IND-CCA security and benefit from security guarantees of usual KEM-DEM [AGKS05].
For the applications we described, it seems reasonable to consider IND-CPA security for the
homomorphic scheme, and a similar notion of indistinguishability for the symmetric scheme
as explained in [BDJR97] which determines the security notion of the whole framework.
In this hybrid framework, the encryption of a scheme under another encryption scheme

is sometimes called transciphering. Other transcipherings are studied in the FHE area, as
between schemes of second and third generation [CGGI17], as each FHE generation has its
advantages in term of error-growth, plaintext space, and ciphertext sizes. Here we focus on
the main problem to make efficient the transciphering from a symmetric scheme to a fully
homomorphic scheme. It consists in making the homomorphic error-growth of the symmetric
decryption algorithm as low as possible, and the evaluation as fast as possible compared to
the cost of the computation ordered by Alice, it will be the scope of the following chapter.



Chapter 4
Filter Permutator
In this part we introduce and study the Filter Permutator, a new kind of stream cipher
designed for homomorphic frameworks. We in-light the core idea making this construction
ideal to be homomorphically evaluated in the context of outsourcing computations.
First we examine the homomorphic behavior of some standard symmetric constructions,

then we deduce from these behaviors a first attempt to design a scheme more adapted to
homomorphic frameworks. Thereafter we present the Filter Permutator design, how the
construction is optimally designed relatively to the homomorphic error-growth. We study
the homomorphic results of the Filter Permutator and finally we analyze and measure its
security as a symmetric encryption scheme.

Contents
4.1 Homomorphic Behavior of Standard Constructions . . . . . . . . . . 62

4.1.1 Homomorphically Evaluating a Block Cipher . . . . . . . . . . . . . . . 63
4.1.2 Homomorphically Evaluating a Stream Cipher . . . . . . . . . . . . . . 64
4.1.3 Homomorphically Evaluating an LWE-related Cipher . . . . . . . . . . . 66

4.2 First Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Filter Permutator Design and Instantiation . . . . . . . . . . . . . . . 69

4.3.1 General Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 FLIP Family of stream ciphers . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Design Tweaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Homomorphic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Concrete Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Symmetric Security Analysis . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.1 Classical Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Guess-and-Determine Attacks . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.3 Behavior relatively to Fixed Hamming Weight . . . . . . . . . . . . . . 87
4.5.4 Instances and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

— 61 —



62 Chapter 4 Filter Permutator

The goal of this chapter is to study the Filter Permutator, a new symmetric primitive
designed for efficient FHE frameworks. In the previous chapter, we tackled the homomorphic
concern of the hybrid framework, here we handle the second half. In order to examine this
construction, we first present other works on symmetric encryption schemes considered for
this hybrid framework. They illustrate the difficulty of efficiently evaluating homomorphically
a symmetric decryption algorithm. Then, some conclusions on these constructions enable to
build a scheme with high potential in term of error-growth, that we consider as a first attempt.
More lessons from this attempt lead to the Filter Permutator design, a new primitive we
explain and instantiate.
In this chapter we examine the two core requirements of the Filter Permutator: its

optimality for homomorphic evaluation and its security as a symmetric encryption scheme.
The investigations on the homomorphic results prove its excellent behavior relatively to the
third generation FHE, and they draw a pattern usable for all kinds of FHE. The security
analysis gives the limits on the design that can be considered for the homomorphic efficiency.
Moreover, the security concerns develop a concrete understanding of the construction, and
propose to stand on the practical security of instances.

The results presented in this chapter essentially come from the article [MJSC16]. Otherwise
it is specified, except the second section which relates to personal material conceived for the
understanding of the manuscript.

4.1 Homomorphic Behavior of Standard Constructions

Let us begin this chapter by highlighting the potential difficulty to efficiently evaluate a
function homomorphically, even in the case of a function used in a standard symmetric scheme.
We use the denomination standard for symmetric schemes that are proposed and used for fast
encryption scheme, as the Advanced Encryption Standard (AES [DR02]) or more recently
schemes proposed to the eSTREAM or CAESAR competitions. We consider these schemes
rather than instantiations of Pseudo-Random Functions or Pseudo-Random Permutations
whose security is based on standard (number-theory based) assumptions because they are
more relevant for a primitive which needs to be performed a lot and quickly for a very
common use as symmetric encryption. Therefore standard symmetric schemes are designed
to be evaluated quickly and without requiring an important storage (the expansion factor,
the ratio between the ciphertext size and the corresponding plaintext size, is close to 1).
Then it makes hope that homomorphically evaluating the functions of these schemes should
be easy, but it is not the case. Most of the techniques used to efficiently compute a function
in clear, as for a symmetric encryption scheme, are not compatible with homomorphic
evaluation. Take as example a look-up table, it is used to tabulate the input/outputs of a
function which is used plenty of time in one single encryption. It corresponds to a switch on
the value of the input, homomorphically it can be evaluated only by verifying the equality
between the encrypted input and each particular case of the switch, with the result of each
equality test being afterward multiplied by an encryption of the corresponding output. In
this example, all the branches of the computations have to be performed (and summed)
homomorphically, which makes it very inefficient contrarily to computing this step in clear.
The same inefficiency appear for additionners, and generally for all optimizations using the
knowledge of an intermediate value to cut a branch of computation (as identifying 0 in a chain
of AND gates or 1 in a chain of OR gates). To sum up, the efficiency of the homomorphic



4.1 Homomorphic Behavior of Standard Constructions 63

evaluation of a symmetric scheme does not depend overwhelmingly in the efficiency of this
scheme as a standard symmetric key cipher. Instead it rather depends on the homomorphic
growth obtained when evaluating entirely its decryption circuit.
Various schemes have been considered for homomorphic frameworks, first based on AES

mostly as a proof of concept for homomorphic evaluation and then on better suited schemes.
Some of these schemes have been identified as compatible with homomorphic evaluation
i.e. with decryption circuit providing a low error-growth. Finally some schemes have been
designed for the hybrid framework, in order to provide candidates for outsourcing computation
applications. We separate these works in three families; the first one consisting in block
ciphers, the second one on stream ciphers and the third one symmetric schemes related to
the LWE problem. For these three families we briefly describe the most adapted construction,
we study the involved error-growth, and we conclude on the homomorphic behavior of this
kind of constructions.

4.1.1 Homomorphically Evaluating a Block Cipher
Various block ciphers have been homomorphically evaluated, always with the second generation
of FHE. First the AES scheme has been homomorphically evaluated [GHS12; CLT14], then
ciphers more adapted as Prince [DSES14] and SIMON [LN14] and finally ciphers designed
for homomorphic frameworks as LowMC [ARS+15], that we describe here.

The LowMC (standing for Low Multiplicative Complexity) family of block ciphers is a very
parameterizable family designed for FHE, MPC and ZK as it is optimized to have the lower
number of AND gates by bit of ciphertext or to obtain the smallest AND depth. These two
metrics are more accurate in the MPC setting than in the third generation FHE as examined
in the precedent chapter. We describe a round of LowMC, focusing on the multiplicative
depth as it imports for second generation FHE.
A round is defined on blocks of size n as the composition of (in temporal order) an Sbox

layer, a linear layer, a constant addition and a key addition where:

• The Sbox layer consists of 3-bit Sboxes with multiplicative depth 1, or the identity.

• The linear layer corresponds to a product with a matrix randomly chosen in GLn(F2)
which is set public, it does not add multiplicative depth.

• The constant addition consists in adding a random binary vector of length n which is
set public and which does not require to compute a product.

• The key addition consists in adding an n-bit vector to the state, where this vector is
computed as the product of the key and a random binary matrix (which is set public)
of size n×k and rank min{n, k} where k is the key size parameter. This operation does
not require to homomorphically evaluate a product neither, as the product with the
public matrix enables to use only additions, and accordingly for the round key addition.

To sum up, the multiplicative depth of one round is only 1, and the number of rounds
necessary for a given security parameter is evaluated relatively to the known attacks. Based
on current cryptanalyses [DLMW15; DEM16], it requires 12 rounds for a security of 80 bits,
and 14 rounds for a security of 128 bits, giving the multiplicative depth to consider.
Examining the error-growth when LowMC is evaluated, the multiplicative depth record

of 12 or 14 made it the best symmetric cipher to use for homomorphic frameworks using



64 Chapter 4 Filter Permutator

second generation FHE when it was published. Nevertheless, as noticed [CCF+16] when it
was evaluated with the homomorphic library HElib [HS14], the high number of additions
involves an error-growth similar to 1 or 2 multiplicative levels. It imposes to allow at least
14 or 16 levels of noise only to evaluate LowMC (corresponding to Step 3 of the hybrid
framework). The high number of additions comes from the linear layer, where the use of
random matrices requires at each round and for each of the n ciphertexts to perform the
homomorphic addition of around n/2 ciphertexts. For the third generation FHE, we saw in
Chapter 3 that different ways for evaluating a circuit give very different error-growths. Here,
the exact expression of a final ciphertext in terms of the key bits and the bits of the first
round is too complicated (in theory, considering only the λ bits of the key as variables, the
expression of a final ciphertext bit would be an expression with algebraic normal form of
approximatively 2λ−1 monomials). As we cannot use this expression, we can only use the
circuit to compute a ciphertext obtained after a few rounds, generally no more than one
round, to determine the optimal way to homomorphically compute this ciphertext. Therefore,
after one round (or a few rounds if the circuit obtained by combining a few rounds is still
simple enough) there are no more fresh ciphertexts that can be used to guarantee a small
error. As a consequence, the multiplicative part of the error (term y) can be a polynomial
with degree equal to the number of rounds, and the repetitive use of additions increases the
plaintext norm which involves a very high error-growth for further products.

On the homomorphic side various lessons can be learnt from this cipher and more generally
relatively to block-ciphers. First, the iteration of rounds makes very difficult to use fresh
ciphertexts during the whole homomorphic evaluation. It drastically limits the advantages of
the third generation. Then, the minimal number of rounds necessary to guarantee security
seems to be lower bounded, as in LowMC determined by the complexity bounds (which
depend on r) of the known attacks, or proved for theoretic constructions as [LR88]. The
multiplicative depth of a round being at least 1 to guarantee that it is not linear, and the
existence of a minimal number of rounds, imply a lower bound on the multiplicative depths
of all block-ciphers. It leads to think that even for second generation FHE the block cipher
approach may not be the optimal one. On another side, the fixed number of rounds guarantees
that all ciphertexts of a block contain a similar amount of noise (which is also compatible
with some chaining modes as CBC mode), that can be bounded, and therefore easily studied
for further applications. Finally the particular design of LowMC shows that the number
of XOR cannot be totally neglected in a homomorphic framework (independently of the
generation). Compensating a low number of AND gates by a huge number of XOR gates
still gives a consequent error-growth.

4.1.2 Homomorphically Evaluating a Stream Cipher

In 2015; independently of [MJSC16] proposing the Filter Permutator construction, the work
[CCF+16] considers the use of an additive IV-based stream-cipher for hybrid homomorphic
frameworks and describes a generic construction applicable to almost all stream ciphers. The
authors instantiated this generic construction with the cipher Trivium [CP08] recommended
by the eSTREAM project and with Kreyvium, an extension of this lightweight cipher designed
to reach a security level of 128 bits.

The generic construction they described consists of a homomorphic encryption scheme with
binary plaintext space, an expansion function G mapping strings of IV length to arbitrary
length, and a fixed size function F . During the encryption, the IV is extended by the function



4.1 Homomorphic Behavior of Standard Constructions 65

G, and each bit of the keystream is an output of the function F taking as inputs the key
and a part of the output of G. This keystream is finally XORed to the plaintexts to give
the ciphertexts. When the construction is homomorphically evaluated, the function G does
not require homomorphic operations as it only uses the IV, contrarily to the function F .
Evaluating F requires the homomorphic encryption of the symmetric key to produce the
homomorphic keystream. The final XOR with the homomorphic keystream adds a small
noise; consequently in this construction the multiplicative depth comes entirely from the
function F and the error-growth comes mostly from this function.
For this construction, the authors of [CCF+16] focused on additive IV-based keystream

generators that can be decomposed in three functions: resynchronization, transition and
filtering. The resynchronization function takes as inputs the key and the IV and outputs an
n-bit initial state. The transition function φ computes the next internal state. Finally, the
filtering function f computes a keystream segment from the current internal state. Note that
the multiplicative depth of a circuit computing m keystream bits can be as high as the sum
of the multiplicative depth of the resynchronization, filtering, and m times the multiplicative
depth of the transition function.

The stream-ciphers chosen to instantiate this construction are Trivium, and its extension
Kreyvium, due to their low-depth circuit. Trivium is a synchronous stream cipher with key
and IV of 80 bits, an internal state of 288 bits, a transition function of degree 2 and a filtering
function of degree 1. Kreyvium is an extension of Trivium designed to provide 128 bits of
security, it consists of a key and an IV of 128 bits, an internal state of 544 bits, a transition
function of degree 2 and a filtering function of degree 1.

We focus on the homomorphic error-growth involved in the evaluation of these two ciphers.
The keystream length that can be produced with a circuit of multiplicative depth d is proved
([CCF+16], Propositions 1 and 2), it enables to stand on the number of ciphertexts than
can be efficiently produced using second generation FHE. Concretely Trivium enables to
produce 57 ciphertexts with multiplicative depth 12, or 136 bits with multiplicative depth 13,
and Kreyvium enables to produce 46 or 125 ciphertexts for the same multiplicative depths.
The multiplicative depth is increasing if more ciphertexts are produced, and therefore it
becomes not competitive with LowMC anymore. To produce more ciphertexts the encryption
process has to be reinitialized with a different IV. The increasing multiplicative depth during
the encryption process, and more generally the increasing complexity of the circuit, does
not lead to a low error-growth for third generation FHE. In these ciphers, there are no
fresh ciphertexts that can be used when the transition function has been sufficiently applied,
therefore the good properties of the homomorphic product of this generation cannot be used.
As for the second generation, the slowly increasing complexity also enables to produce a few
low noise ciphertexts in this context.
Various lessons can be learnt from this line of work, one of the most important being

the use of a keystream and the use of an encryption process containing a key-dependent
part, and an IV-dependent part. However, Trivium and Kreyvium deviate from the generic
construction, as the function F is not fed by a part containing only key-dependent bits and a
part containing only IV-dependent bits; in both ciphers the internal state contains both kinds
of bits and is updating accordingly. As a transition function increasing the homomorphic
noise is iterated, the quantity of homomorphic noise increases with the size of the keystream.
Then, for all ciphers using this strategy, a limited quantity of ciphertexts usable in the
homomorphic framework can be computed, with potentially lower noise than with the block
cipher approach. Note that the barrier impeaching the homomorphic error-growth of the



66 Chapter 4 Filter Permutator

produced ciphertexts to remain low is the error-growth involved by the transition function,
the update of the internal register. This is the barrier that the Filter Permutator overcomes,
as explained later in this chapter.

4.1.3 Homomorphically Evaluating an LWE-related Cipher
In the work [FHK16], the authors present three symmetric encryption schemes based on
lattice problems, more precisely on learning problems. Even if these schemes are less standard
on a symmetric encryption perspective, they benefit from the connexion to assumptions on
lattices, assumptions that are already assumed for the security of the hybrid framework.
Standard LWE cannot be used directly as a symmetric primitive, as the error could lead
to a different rounding for decryption than for encryption, therefore the error has to be
deterministic to avoid this correctness issue. An intuition to use these deterministic LWE
encryption schemes in homomorphic framework comes from the logarithmic depth of the
decryption circuit of this kind of schemes. This logarithmic depth is the crucial point for
bootstrapping and therefore to reach full homomorphism, then this decryption circuit could
be considerate as a valid candidate in hybrid frameworks.

The three encryption schemes studied in this work have security reduction respectively to
LPN, LWR and LWE (previously defined in Section 2.3.2), and they are described in a very
general way as defined in [BV11; LS12], to give a variety of instances covering the integer
setting and the ring setting. For simplicity we use the same notation for these schemes: x is
a plaintext, S the secret matrix, a a random vector for each ciphertext and y the ciphertext
corresponding to x. We briefly describe these schemes, for a detailed description and analysis
we refer to [FHK16].

• LPN version:
An error correcting code is used with encoding function E and decoding function D, a
delinearization function F involving layers of multiplication is used to avoid the Arora-
Ge attack [AG11]. The encryption of x is then S.Enc(x,S) = (a, E(x) + F (aS) + e),
where e is the error from the Bernoulli distribution defining the LPN problem. The
decryption is therefore S.Dec(y,S) = D(F (aS) + y).

• LWR version:
The encryption of x is S.Enc(x,S) = (a, x+ baSep), where b·ep is a rounding function.
Here q and p are powers of two, the rounding function consists in deleting the lower
bits and keeping only the log q− log p upper bits. The decryption is then S.Dec(y,S) =
y − baSep.

• LWE version:
This scheme is derived from the precedent one, the distribution of a being tweaked
to rely on the LWE assumption. From a matrix S and an error distribution χ (for e)
the distribution DS is defined such that the probability Pr[DS = a] is proportional to
Pr[|bpq (b(baSep + e)e)ep − p

q (bbaSep + ee)| < 1
4 ]. In a few words the distribution avoids

to round on a different value. Then encryption and decryption are defined as in the
previous scheme; only the distribution of a is different.

We focus in the error-growth involved in the homomorphic evaluation of these decryption
circuits. The authors of [FHK16] considered the second generation FHE and more particularly



4.1 Homomorphic Behavior of Standard Constructions 67

the optimizations using batching in HElib. For this generation, the multiplicative depth is
crucial; for the LPN-based scheme the multiplicative depth is the sum of the multiplicative
depth of the scalar product, delinearization and decoding. Without delinearization and with
a 3-repetition code decoded by a majority vote the authors obtain a multiplicative depth of 5
which is better than for previously mentioned constructions. Nevertheless, a delinearization
of multiplicative depth at least 3 being needed to avoid the Arora-Ge attack and the (up
to date) not so well understood security of this construction makes believe that the total
multiplicative depth is comparable to the other constructions. Both LWR and LWE-based
schemes use an inner product and a rounding, the inner product gives a multiplicative depth
of 1, but the rounding is more costly. The authors consider to keep the ciphertext without
performing homomorphically the rounding part, as the plaintext is recoverable in the upper
bits, but this evaluation does not give a ciphertext usable for the framework we consider.
Evaluating the decryption circuit forces to extract the plaintext from the upper bits and
therefore it implies a multiplicative depth of log q [GHS12] as the ExtractDigits function used
in HElib or in subroutines used for bootstrapping.

Considering the third generation FHE, up to our knowledge, there is no known LPN scheme
instantiation (with code and delinearization fixed) with decryption circuit providing both
low error-growth and established security. We note that if an instance with a delinearization
function and a decoding function similar to the ones of Section 3.3.3 is considered secure,
it would give a good candidate for homomorphic frameworks. For the other two schemes,
homomorphically evaluating an inner product and a rounding with the third generation FHE
corresponds to the bootstrapping of [AP14] where a GSW-like encryption scheme is used to
bootstrap an LWE ciphertext. It leads to avoid this kind of construction for the framework
we consider for two reasons. First, bootstrapping is quite costly in time and data, then the
error-growth is proportional to different parameters as log q, preventing to provide a low
error-growth. Note that log q cannot be too small as this quantity is related to the size of the
ciphertexts, to the amount of homomorphic operations doable and to the security. The cost
in time can be discussed, based on the works [DM15; CGGI16] both realizing bootstrapping
in less than a second through GSW-like schemes, but they are gate-bootstrappings: after
each gate of a particular type bootstrapping needs to be performed. The techniques they use
cannot be used in all contexts as the ciphertexts necessitate to follow some properties. A
low starting error is mandatory and it is kept low using third generation FHE only as an
intermediate step, then homomorphic transciphering as key-switching and mod-switching
(similar to the one described in Section 3.1.2) are performed. All this process is performed at
each homomorphic gate involving noise, to give a ciphertext following the same properties
and therefore usable for another gate. Homomorphic evaluation by gate-bootstrapping leads
to a different approach where Alice computation has to be described gate by gate (rather than
with operations), each gate being way more expensive in time to evaluate with bootstrapping
than without, but without any other kind of bootstrapping needed afterward. As the time
cost by gate is lower without bootstrapping and that the restriction to particular gates (as
only NAND gates for [DM15]) does not seem adequate with the framework allowing all kind
of computations for Alice, we do not consider these improvement usable in this context. On
a technical side, the final error of these bootstrapping evaluations still contain log q and other
terms in the involved error-growth.
Among the lessons that can be learnt from this line of work, these constructions are less

efficient than standard symmetric constructions (data cost mostly) but potentially more
adapted for the hybrid framework we consider. The state of the art shows error-growth



68 Chapter 4 Filter Permutator

comparable to the one of the adapted ciphers of the previously presented two families.
However, the efficiency of these schemes in our context is linked to bootstrapping, which is
still a costly algorithm to perform, with logarithmic depth and always non trivial error-growth.
An improvement in the efficiency of bootstrapping, as constant depth or reduced number of
operations in practice, would not change only the efficiency in hybrid framework, it would
generally impact fully homomorphic encryption efficiency.

4.2 First Attempt
In view of this state-of-the-art, a natural direction would be to try combining the achievements
of the two standards families, block ciphers and stream ciphers. That is, to design a cipher
inheriting from the constant noise property offered by block ciphers, and the lower noise
levels of stream ciphers (due to the lower algebraic degree of their outputs). The goal of this
section is to introduce a prototype of construction reaching these two achievements. This first
attempt serves as a transition between standard constructions and constructions targeting
optimal homomorphic evaluation.

First, let us have a closer look on the generic construction of [CCF+16], where a function
G expends the IV and a function F generates the keystream from the key and from the
output of G. Implemented with standard stream ciphers this structure is not preserved. As
example the internal registers of some constructions are updated by a nonlinear function,
with a content depending both of the IV and of the key for each state. Homomorphically the
IV-part can be updated with nonlinear functions without increasing the noise, but the impact
is different if the key part is updated with the same function. To provide a low error-growth,
the update of the key part should be as low as possible. Using the IV-based keystream
generator notation, it consists in finding a transition function φ as simple as possible for
the part containing the key-dependent bits, but strong enough to ensure security when the
filtering function f is applied. It leads to the following first attempt of stream cipher with
low homomorphic error-growth.

Let us consider a simple filtered Fibonacci LFSR (without considering the current security
of these constructions), in order to witness the impact of the transition function on the
homomorphic error-growth. This construction consists of:

• A size-N register,

• an affine update function g (the feedback function of the LFSR),

• a filtering function f .

At each clock cycle the register is updated, and a keystream bit is obtained by applying F to
the current register. As the key is loaded at the initial state, we can study the homomorphic
error-growth by examining separately the error-growth of the ciphertexts in the current
register and then the error-growth involved by f homomorphically applied to this register.
We begin by examining the error of the ciphertexts corresponding to the current internal
state.

Proposition 4.2.1. Let ai,t be the bit at the i-th position of the register at time t, and its
corresponding ciphertext Ci,t (i.e. the homomorphic ciphertext corresponding to the plaintext
ai,t when we consider the homomorphic evaluation). Assume that Ci = Ci,0 for 0 ≤ i ≤ N −1



4.3 Filter Permutator Design and Instantiation 69

are ciphertexts of a GSW-like HE scheme with same subgaussian parameter σ and c = 1.
Then for all t ≥ 0 and for all i, (0 ≤ i < N), the error parameter σ′ of Ci,t satisfies:

σ′ ≤ σ
√
N.

Proof. At each clock cycle the register is updated by the affine function g, therefore for
any strictly positive t, each ciphertext Ci,t can be computed from the ciphertexts Ci,t−1
using homomorphic additions. As the ciphertexts encrypt bits, there is no need to add
twice the same ciphertext, canceling rather than adding twice gives the same result, and
does not increase the error. To avoid useless additions we use a simple structure of lists, to
track the ciphertext to add for each position of the internal state. Indeed, for each register
position we can associate a list of integers between 0 and N − 1, standing for the initial
ciphertexts to add in order to get the ciphertext related to this position, and this list evolves
with t. For positions 0 < j < N , the list at time t > 0 is the one of the position j − 1 at
time t− 1. At position 0 the list is obtained by keeping only the values happening an odd
number of time in the concatenation of the lists at time t − 1 of the taps of the feedback.
For each i, (with 0 ≤ i < N), and t ≥ 0 the ciphertext Ci,t is associated to a list of at most
N numbers standing for the initial ciphertexts, hence Ci,t can be computed by evaluating
the homomorphic addition of at most N independent ciphertexts with same subgaussian
parameter σ and c = 1. Using Lemma 3.3.1, it gives the final result.

The filtering function F is then homomorphically applied to the ciphertexts corresponding
to the current state to give an encryption of a keystream bit. As the ciphertexts corresponding
to the encrypted internal state are obtained by additions of at most N initial ciphertexts, the
parameter c for homomorphic combs can be as high as N or dN/2e using sign optimization.
Then, the error-growth after applying F can be O(Nd) (see Lemma 3.3.2 and Lemma 3.3.4)
where d is the degree of F . As F is a nonlinear filtering function, this error cannot be used
in the context of homomorphic frameworks.

To conclude on this first attempt, it consists in a simple stream cipher design, relying on a
linear transition. Homomorphically it reveals a particular case where the additions make the
homomorphic error-growth too important. Therefore it shows that even a linear cost for the
homomorphic update is too much to realize a homomorphic evaluation with a very low error.
The next step is then to find an update process which makes a homomorphic evaluation with
constant noise, or more adequately a zero-noise homomorphic update. That is the realization
of the Filter Permutator; using a public permutation - more precisely a rearrangement - of
the internal register to update it.

4.3 Filter Permutator Design and Instantiation
Here, we present the design of the Filter Permutator, a few selected instances and the potential
variations of the design. This section introduces the components of the main construction,
and serves as a setting point before evaluating its homomorphic behavior and its security.

4.3.1 General Design
We introduce a new stream cipher construction, next called Filter Permutator (by analogy
with filter generators). Its main design principle is to filter a constant key register with a



70 Chapter 4 Filter Permutator

variable (public) bit permutation. More precisely, at each cycle, the key register is (bitwise)
permuted with a pseudo-randomly generated permutation, and we apply a non-linear filtering
function to the output of this permuted key register. The main advantage of this construction
is to always apply the non-linear filtering directly on the key bits, which allows to maintain the
noise level of our outputs constant. Conceptually, this type of construction seems appealing
for any FHE scheme.

The general structure of the Filter Permutator is depicted in Figure 4.1. It is composed of
three parts:

• A register where the key is stored,

• a (bit) permutation generator parametrized by a Pseudo Random Number Generator
(PRNG) [BM84; KL07] (which is initialized with a public IV),

• a filtering function which generates a keystream.

The Filter Permutator can be compared to a filter generator, in which the LFSR is replaced
by a permuted key register. In other words, the register is no longer updated by means of
the LFSR, but with pseudorandom bit permutations. More precisely, at each cycle (i.e. each
time the filtering function outputs a bit), a public pseudo-random permutation is applied
to the register and the permuted key register is filtered. Eventually, the encryption (resp.
decryption) with a Filter Permutator simply consists in XORing the bits output by the
filtering function with those of the plaintext (resp. ciphertext).

. Key register K

Pi

F

plaintext

ciphertext

PRNG

Permutation
Generator

Figure 4.1: Filter Permutator construction.



4.3 Filter Permutator Design and Instantiation 71

4.3.2 FLIP Family of stream ciphers
We give an instantiation of the Filter Permutator with a particular structure oriented to
efficient homomorphic evaluation with third generation FHE, and with proposed instances for
current security levels; 80 and 128 bits of security. This third generation oriented instantiation
is called FLIP, a name derived from a pronounceable abbreviation of the Filter Permutator.

4.3.2.1 FLIP Construction

Based on the general design and definitions of Boolean functions from Chapter 2, we specify
the FLIP family of stream ciphers as a Filter Permutator using the following components.
A key register of size N , where N is also the number of variables of F , is filled with a key
randomly chosen in the set of binary words of length N and Hamming weight N/2. The
PRNG is a forward secure PRNG [BY03] based on the AES-128 (e.g. as instantiated in the
context of leakage-resilient cryptography [SPY13]). The permutation generator, generating
rearrangements of the key register is instantiated with the Knuth shuffle [Knu97] (or Fisher-
Yates shuffle). This algorithm guarantees to give the same probability to all permutations if
used with a random number generator. The filtering function F is the N -variable Boolean
function defined by the direct sum of three Boolean functions f1, f2 and f3 of respectively
n1, n2 and n3 variables, such that:

• f1(x1, · · · , xn1) = Ln1 ,

• f2(xn1+1, · · · , xn1+n2) = Qn2/2,

• f3(xn1+n2+1, · · · , xn1+n2+n3) is the direct sum of nb triangular functions Th, i.e. such
that each Th acts on different and independent variables, that we denote as nb∆h.

Hence, we have F : Fn1+n2+n3
2 → F2 the Boolean function such that:

F (x1, · · · , xn1+n2+n3) = Ln1 ⊕Qn2/2 ⊕
nb⊕
i=1

Th,

a Boolean function obtained by direct sum of monomials.

4.3.2.2 FLIP Instances

We give here the filtering functions of the 4 proposed instances of the FLIP family proposed
in the Eurocrypt 2016 publication [MJSC16] in Table 4.1. Each function is defined by 4
parameters n1, n2, nb and h as described above: a linear function of n1 variables, a quadratic
function of n2 variables and nb triangular functions of degree h. Notice that each of these
functions being obtained by direct sum of monomials only, they can also be represented by
their direct sum vector.

4.3.3 Design Tweaks
Due to the novelty of this stream cipher construction, some characteristics of the design may
not be optimal yet, for a security concern or for a homomorphic concern. We discuss here
two particularities of the Filter Permutator instantiated as FLIP that could be modified by
design tweaks, in order to improve the security or the homomorphic evaluation efficiency.



72 Chapter 4 Filter Permutator

Name N n1 n2 nb h λ

FLIP-530 530 42 128 8 9 80
FLIP-662 662 46 136 4 15 80
FLIP-1394 1394 82 224 8 16 128
FLIP-1704 1704 86 238 5 23 128

Table 4.1: FLIP filtering function instances, N is the total number of variables, n1 is the
number of variables over the linear part, n2 is the number of variables over the
quadratic part, nb is the number of triangular functions, h is the degree of the
triangular functions and λ is the security parameter.

4.3.3.1 Invariant on F Input

Generally, security analyses of filtered registers are based on standard cryptanalysis and
design tools, similarly the security of the FLIP designs can be based on properties of Boolean
functions. These properties are generally computed assuming a uniform input distribution,
yet, for Filter Permutators this condition is not strictly respected since the Hamming weight
of the key register is constant during the encryption, as a rearrangement keeps invariant
the Hamming weight. For the FLIP family the Hamming weight is fixed (set to N/2 in
order to avoid weak keys, but even without this condition, it would be fixed to an unknown
value). The impact of this non-uniform distribution is studied at the end of this chapter for
the cryptanalysis concern of FLIP and at the end of Chapter 5 for the Boolean functions
point-of-view.
Note that in case the Filter Permutator turns out to have weaknesses specifically due to

the non-uniform distribution of F function’s inputs, there are tweaks that could be used to
mitigate their impact. The simplest one is to apply a public whitening to the input bits of
the non-linear parts of F (using additional public PRNG outputs), which has no impact on
the homomorphic error-growth. The adversary could then bias the F function’s inputs based
on his knowledge of the whitening bits, but to a lower extent than with fixed Hamming-
weight keys. Another tweak consists in applying F to a reduced part of the key register, or
equivalently to define F as a direct sum containing a null function. Then the exact Hamming
weight in input of the bits influencing F output cannot be known, this incertitude can be
enough to avoid the attacks applying on constant Hamming weight input. Alternatively,
one could add a (more or less complex) linear layer before the non-linear part of F , which
would then make the Filter Permutator conceptually more similar to filter generators, and
(at least for certain layers) only imply moderate cost from the FHE point-of-view. These
strategies can also be combined, leading to think that the invariant created by the zero cost
homomorphic update can be rectified without damaging the good homomorphic behavior of
the primitive.

4.3.3.2 Indirect Sums

Before analyzing the FHE properties of Filter Permutators, we finally suggest FLIP designs
based on indirect sums as another interesting topic for evaluation, since they lead to quite
different challenges. Namely, the main motivations to use direct sums in the FLIP family are
the possibility to assess their cryptographic properties based on existing tools and their good



4.4 Homomorphic Results 73

behavior relatively to homomorphic error-growth, as shown in Section 3.3.3.1. With direct
sums, the homomorphic evaluation benefits of the sum of independent errors, whereas for
indirect sums this independence is not guaranteed, neither the use of homomorphic combs
on freshly encrypted ciphertexts. By contrast, Filter Permutator designs based on indirect
sums seem harder to analyze (both for designers and cryptanalysts). This is mainly because
in this case, we can make the inputs of the Boolean functions vary, but also the Boolean
functions themselves. Using a filtering function F which is not a direct sum of monomials
enables to use other constructions of Boolean functions, and functions with fewer variables
involving a better homomorphic error-growth. More plastic constructions can even imply
variations in the functions used for each keystream bit. For illustration, we can specify
”multi-FLIP” designs, next denoted as b-FLIP designs, such that we compute b instances of
FLIP in parallel, each with the same filtering function but with different permutations, and
then XOR the b computed bits in order to produce a keystream bit. We can conjecture that
such b-FLIP designs could lead to secure stream ciphers with smaller states, and suggest
10-FLIP(10, 20, 1∆20) and 15-FLIP(15, 30, 1∆30) as exemplary instances for 80 and 128 bits
security.

4.4 Homomorphic Results

The main purpose of the Filter Permutator is to guarantee the production of low noise
ciphertexts in a hybrid framework. In this part we detail how low this error can be,
considering the third generation FHE or even the second. As we are considering an evaluation
avoiding bootstrappings (rely on SWHE rather than FHE formally), we need to control the
magnitude of the error and keep it below a critical level to ensure the correctness of a final
ciphertext. This noise management is crucial for the applications, it is directly linked with the
quantity of computation that the server can do for the client. We now study the error-growth
stemming from the homomorphic evaluation of FLIP. In this case, all the ciphertexts used by
the server in the computation step will have a same starting error. The knowledge of this
starting error (defined by some parameter) and its growth for additions and multiplications
(in a chosen order) is enough to determine the amount of computations that can be performed
correctly by the server.

Note that independently of the generation of the used FHE, the error-growth of a ciphertext
produced by a Filter Permutator construction can be determined by examining the error-
growth involved by the filtering function F . Indeed, when the decryption is homomorphically
evaluated, the permutations are in clear as the input of the PRNG is public, then the
ciphertexts of the key bits are reordered without increasing the noise before the evaluation of
F . After the evaluation of F , the unique XOR to a freshly encrypted ciphertext (or even
zero noise ciphertext as explained in Section 3.4) can be neglected relatively to the noise
involved by the nonlinear function F . Therefore to conclude on the homomorphic behavior
of the FLIP ciphers, we focus on the error-growth involved by the filtering function, relatively
to the FHE generation considered. We first study it in a general way, focusing more on the
asymptotic behavior than on the particular instances, and then we present concrete results
based on implemented instances.



74 Chapter 4 Filter Permutator

Algorithm Reference Multiplicative depth Security
SIMON-32/64 [LN14] 32 64
Trivium-12 [CCF+16] 12 80
Trivium-13 [CCF+16] 13 80
LowMC-80 [ARS+15] 11 80
FLIP− 530 [MJSC16] dlog 9e = 4 80
AES-128 [GHS12; CLT14] 40 128

SIMON-64/128 [LN14] 44 128
Prince [DSES14] 24 128

Kreyvium-12 [CCF+16] 12 128
Kreyvium-13 [CCF+16] 13 128
LowMC-128 [ARS+15] 12 128
FLIP− 1394 [MJSC16] dlog 16e = 4 128
Table 4.2: Multiplicative depth of different symmetric ciphers.

4.4.1 General Results

4.4.1.1 FLIP and Third Generation FHE

As the filtering functions used for the FLIP instances are all direct sums of monomials, the
study of homomorphic error-growth of Section 3.3.3.1 directly gives the error-growth of the
ciphertexts produced when FLIP (decryption) circuit is homomorphically evaluated with a
GSW-like HE scheme. From ciphertexts CH(skSi ) with associated error parameter σ, the final
ciphertext used in the hybrid framework CH(m) has an error parameter of O(σy

√
N). This is

the same error parameter as the one involved by a multiplicative chain of N fresh ciphertexts,
therefore we can limit the noise after the homomorphic evaluation of a decryption to a level
of the same order of magnitude as for a single homomorphic multiplication. Consequently,
we essentially make the impact of the symmetric encryption scheme as small as possible.

Note that if the design of FLIP is generalized, with instances defined for all λ > 0, different
asymptotic error-growths are possible, depending on the relation between λ and N . A constant
register size will imply a constant error-growth, then a degree-d polynomial increasing of the
register size will imply an error-growth of half this degree.

4.4.1.2 FLIP and Second Generation FHE

The FLIP design has not been oriented for the second generation FHE, but the quite low degree
of the proposed instance makes it interesting to compare it with the ciphers studied for their
behavior relatively to the second generation FHE. The main measure for the compatibility
with this generation being the multiplicative depth of the decryption circuit, the degree of
the filtering function enables us to compare with the other ciphers as presented in Table 4.2.
The multiplicative depths listed in this table are the ones given in their respective paper,
rather than a comparison on the same library. The table is not complete, more specifically
the results of [FHK16] have not been instantiated, otherwise the corresponding multiplicative
depth will be slightly lower than the one of LowMC. The values relative to LowMC are the one
presented in the original paper, the security of these version has been reduced then [DLMW15;
DEM16].



4.4 Homomorphic Results 75

Security λ n log q
80 256 80
128 512 120

Table 4.3: (R)LWE parameters used in our applications.

Note that if the design of FLIP is generalized, with instances defined for all λ > 0, the
degree of the filtering functions could evolve polynomially in λ. Then the multiplicative
depth could be logarithmic in λ, enabling efficient homomorphic frameworks using the second
generation for all security levels.

4.4.2 Concrete Results
4.4.2.1 Performances for Third Generation Schemes

As all previous symmetric schemes used in a hybrid homomorphic framework have been
evaluated with a second generation scheme, we have no indicated library to compare the results
of the FLIP instances to others. Therefore we implement the third generation evaluation of
these instances on our own code, giving other measures to prove the efficiency of the design.

For the security parameters choices, we follow the analysis of Lindner and Peikert [LP11]
for the hardness of LWE and RLWE, considering distinguishing and decoding attacks using
BKZ [SE94; CN11]. We assume that the distribution χ in the considered LWE instances is
the discrete Gaussian distribution with mean 0 and standard deviation σ. First we compute
the best root Hermite factor δ of a basis (see [GN08]) computable with complexity 2λ from
the conservative lower bound of [LP11]:

log(δ) = 1.8/(110 + λ). (4.1)

The distinguishing attack described in [RS10; LP11] is successful with advantage ε by
finding vectors of length α q

σ with α =
√

ln(1/ε)/π. The length of the shortest vector that
can be computed is 22

√
n log q log δ, leading to the inequation:

α
q

σ
< 22
√
n log q log δ. (4.2)

Given σ ≥ 2
√
n from Regev’s reduction [Reg05], we can choose parameters for n and q

matching equation (4.2) for the considered security parameter λ. The parameters we select
for our application are summarized in Table 4.3.
Contrary to other works published in the context of symmetric encryption schemes for

efficient FHE [GHS12; CCF+16; ARS+15], our primary focus is not on the performances (see
SHIELD [KGV14] for efficient implementation of Ring-GSW) but rather on the error-growth.
As pointed out in [CCF+16], in most of these previous works, after the decryption process the
noise inside the ciphertexts was too high to perform any other operation on them, whereas it
is the main motivation for a practical use of FHE. In the following, we consequently provide
experimental results about this error-growth in the ciphertexts after different operations
evaluated on the Ring GSW scheme. As the link between subgaussian parameter, ciphertext
error and homomorphic computation is not direct, we make some choices for representing
these results focusing on giving intuition on how the error behaves.
The choice of the Ring GSW setting rather than Batched GSW is for convenience. It

allows to deal with smaller matrices and faster evaluations, providing the same confirmation



76 Chapter 4 Filter Permutator

Ring (n, `) FLIP Fresh H.Add H.Mul H.Eval(FLIP)
log e % log e % log e % log e %

256 80 FLIP− 530 13, 07 17 % 13, 96 18% 19, 82 25% 24, 71 31%
512 120 FLIP− 1394 14, 68 12 % 15, 14 13% 23, 27 20% 28, 77 24%

Table 4.4: Experimental error-growth of Ring-GSW. Fresh, H.Add, H.Mul and H.Eval(FLIP)
respectively stands for the noise e measure after a fresh homomorphic encryption,
the homomorphic addition of two fresh ciphertexts, the homomorphic multiplica-
tion of two fresh ciphertexts and the homomorphic evaluation of FLIP on fresh
ciphertexts. The first value is the log of the error e inside the corresponding
ciphertexts and the percentage represents the proportion of the noise with respect
to the capacity of decryption (i.e. `− 2).

on the heuristic error-growth. We give the parameters n and ` defining the polynomial ring
and fix σ = 2d√ne for the error distribution of the ciphertexts CH(skSi ).
An efficient way of measuring the error-growth within the ciphertexts is to compute the

difference by applying the rounding b·e2 in H.Dec between various ciphertexts with known
plaintext. This difference (for each polynomial coefficient or vector component) corresponds
to the amount of noise contained in this ciphertext. The correctness requires this quantity to
be inferior to 2`−2. Then, considering its logarithm in base 2, it enables to have an intuitive
and practical measure of the ciphertext noise: this quantity grows with the homomorphic
operations until this log equals `− 2. Concretely, in our experiments we encrypt polynomials
being m = 0 or m = 1, compute on the constant coefficient the quantity e = |(〈s, c`〉−m2`−1)
mod q|, and give its logarithm. We give another quantity in order to provide intuition about
the homomorphic computation possibilities over the ciphertexts, by simply computing a
percentage of the actual level of noise relatively to the maximal level `− 2.

Remark 4.4.1. The quantity exhibited by our measures is roughly the subgaussian parameter
of the distribution of the error contained in the ciphertexts. Considering the simpler case
of a real Gaussian distribution N (0, σ2), the difference that we compute then follows a half
normal distribution with mean σ

√
2√
π
.

We based our prototype implementation on the NTL library combined with GMP and the
discrete Gaussian sampler of BLISS [DDLL13]. We report in Table 4.4 experimental results
on the error-growth for different RLWE and FLIP parameters, based on an average over one
thousand of samples. The implementations were done by Anthony Journault, they correspond
to proof of concepts rather than optimized code, they are experimental and not public. These
results illustrate the behavior of FLIP relatively to the third generation error-growth, and not
timing performances. This homomorphic evaluation is compatible with the recent library of
[CGGI16], well optimized, and which could give very competitive timings.
The results confirm the quasi-additive error-growth when considering the specific metric

of GSW given by the asymptotic bounds. The main conclusion of these results is that the
error inside the ciphertexts after a homomorphic evaluation of FLIP is of the same order of
magnitude as the one after a multiplication. The only difference between these noise increases
is a term provided by the root of the symmetric key register size. Therefore, assuming a
register size constant or linear in λ, with the FLIP construction the error-growth is roughly



4.4 Homomorphic Results 77

Algorithm Security Nb L Number Latency Throughput
of Slots (sec) (bits/min)

Trivium-12 80 45 (max) 12 600 1417.4 1143.0
80 45 (max) 19 720 4420.3 439.8

Trivium-13 80 136 (max) 13 600 3650.3 1341.3
80 136 (max) 20 720 11379.7 516.3

Kreyvium-12 128 42 (max) 12 504 1715.0 740.5
128 42 (max) 19 756 4956.0 384.4

Kreyvium-13 128 124 (max) 13 682 3987.2 1272.6
128 124 (max) 20 420 12450.8 286.8

LowMC-128 ? ≤ 128 256 13 682 3608.4 2903.1
? ≤ 128 256 20 480 10619.6 694.3

FLIP− 530 80 1 5 378 4.72 4805.08
80 1 12 600 17.39 2070.16

FLIP− 1394 128 1 6 630 14.53 2601,51
128 1 13 720 102.51 421.42

Table 4.5: Timings of the homomorphic evaluation of several instances of the Boolean function
of FLIP using HElib on an Intel Core i7-3770. The other results are taken
from [CCF+16]. L and Number of Slots are HElib parameters which stand
respectively for the level of noise and the number of bits packed in one ciphertext.
(Nb * Number of Slots) corresponds to the number of decrypted bits.

the basic multiplicative error-growth of two ciphertexts. Hence, we can conclude that Filter
Permutators as FLIP release the bottleneck of evaluating symmetric decryption, and lead
the further improvement of the calculus delegation framework to depend overwhelmingly on
improvements of the homomorphic operations.

4.4.2.2 Performances for Second Generation Schemes

Despite our new constructions are primarily designed for 3rd-generation FHE, a look at
Table 4.5 suggests that also from the multiplicative depth point of view, FLIP instances
bring good results compared to their natural competitors such as LowMC [ARS+15] and
Trivium/Kreyvium [CCF+16]. For completeness, we finally investigated the performances
of some instances of FLIP for second generation FHE schemes using HElib, as reported in
Table 4.5, where the latency is the amount of time (in seconds) needed to homomorphically
decrypt (Nb * Number of Slots) bits, and the throughput is calculated as (Nb * Number of
Slots * 60)/latency.
As in [CCF+16], we have considered two noise levels: a first one that does not allow

any other operations on the ciphertexts, and a second one where we allow operations of
multiplicative depth up to 7. Note that the (max) parenthesis in the Nb column recalls that
for Trivium/Kreyvium, the homomorphic capacity decreases with the number of keystream
bits generated, which therefore bounds the number of such bits before re-initializing. We
observe that for 80-bit security, our instances outperform the ones based on Trivium. As
for 128-bit security, the gap between our instances and Kreyvium is limited (despite the
larger state of FLIP), and LowMC has better throughput in this context. Note also that our
results correspond to the evaluation of the F function of FLIP (we verified that the time



78 Chapter 4 Filter Permutator

needed to generate the permutations only marginally affects the overall performances of
homomorphic FLIP evaluations). We finally mention that these results should certainly not
be viewed as strict comparisons, since obtained on different computers and for relatively
new ciphers for which we have limited understanding of the security margins (especially for
LowMC [DLMW15; DEM16] and FLIP). So they should mainly be seen as an indication
that besides their excellent features from the FHE capacity point-of-view, Filter Permutators
inherently have good properties for efficient second generation FHE implementations as well.

4.5 Symmetric Security Analysis

The security analysis assesses the consideration of the Filter Permutator as the symmetric
encryption scheme in the hybrid framework. It also enables to study the limits of this
design and consequently to examine the boundaries of its homomorphic performances. In the
following section we provide a security analysis of the FLIP ciphers, as the design is recent
and that no reduction to a well studied assumption is known up to now, the security analysis
is based on the complexity of the attacks known to apply to this construction.

More precisely, as symmetric encryption scheme used in the hybrid framework it would be
nice to guarantee a strong notion of indistinguishability as in [BDJR97] or more particularly
for stream-ciphers as in [BG07]. It could be obtained by relying on the Pseudorandom
Function quality of a particular formulation of FLIP cipher, nevertheless as there is no known
reduction between FLIP and another well-studied scheme or assumption, this would be a
hypothesis with little meaning. Indeed, this hypothesis would be tailored for a scheme, and
breaking this hypothesis will not solve a well-studied mathematical problem. Therefore in
the following we do not examine FLIP in term of proven security, but in term of concrete
cryptanalysis, our heuristic approach consists investigating the complexity of an attack on
this scheme, investigating all attacks known to potentiality apply. In our context of hybrid
framework, the more adapted model is known ciphertext model, we will consider it in the
following section.

For this purpose, we will assume that no additional weaknesses arise from its PRNG and
bit permutation generator. In this respect, we note that our forward secure PRNG does
not allow malleability, so it should be hard to obtain a collision in the chosen IV model
better than with the birthday probability. This should prevent collisions on the generated
permutations. Besides, the Knuth shuffle [Knu97] (or Fisher-Yates shuffle) is an algorithm
allowing to generate a random permutation on a finite set. This algorithm has the interesting
property of giving the same probability to all permutations if used with a random number
generator. As a result, we expect that any deviation between a bit permutation based on a
Knuth shuffle fed with the PRNG will be hard to exploit by an adversary. Our motivation
for this assumption is twofold. First, it allows us to focus on whether the filter Permutator
construction is theoretically sound. Second, if such a choice was leading to an exploitable
weakness, it remains possible to build a pseudorandom permutation based on standard
cryptographic constructions [LR88].
As a consequence, the attacks to consider target the filtering function, we present these

attacks in three parts. First we examine classical (or generic) attacks against stream ciphers,
based on state-of-the-art tools. Then we study the attacks combining a guess-and-determine
technique with these classical attacks. Finally we investigate the attacks using the Hamming
weight invariance of the internal state together with the previous strategies.



4.5 Symmetric Security Analysis 79

Remark 4.5.1. Since the permutation generation part of FLIP has only birthday security
(with respect to the size of the PRNG), it implies that it is only secure up to 264 PRNG outputs
when implemented with the AES-128. Generating more keystream bits using block-ciphers
with larger block size should be feasible. However, in view of the novelty of the FLIP instances,
our claims are only made for this limited (birthday) data complexity so far, which should not
be limiting for the intended FHE applications. We leave the investigation of their security
against attacks using larger data complexities as a scope for further research. Besides, we note
that using a PRNG based on a tweakable block cipher [LRW11] (where a part of the larger IV
would be used as tweak) could be an interesting track to reduce the impact of a collision on
the PRNG output in the known IV model, which we also leave as an open research direction.

4.5.1 Classical Attacks

Since the Filter Permutator shares similarities with a filter generator, it is natural to start
our investigations with the typical attacks considered against such types of stream ciphers.
For this purpose, we next study the applicability of algebraic attacks and correlation attacks,
together with more specialized cryptanalyses that have been considered against stream
ciphers. Note that the attacks considered in the rest of this section frequently require to solve
systems of equations and to implement a Gaussian reduction. Our complexity estimations
will consider Strassen’s algorithm for this purpose and assume ω = log 7 to be the exponent
in a Gaussian elimination. Admittedly, approaches based on Groebner bases [Fau99] or
taking advantage of the sparsity of the matrices [Wie86] could lead to even faster algorithms.
We ignore them for simplicity in these investigations, considering security margins when
instantiating. Note also that we only claim security in the single-key setting.

4.5.1.1 Algebraic Attacks

These attacks were first introduced by Courtois and Meier in [CM03] and applied to the
stream cipher Toyocrypt. Their main idea is to build an over-defined system of equations
with the initial state of the LFSR as unknown, and to solve this system with Gaussian
elimination. More precisely, by using a nonzero function g such that both g and h = gF have
low algebraic degree, an adversary is able to obtain T equations with monomials of degree at
most AI(f). It is easily shown that g can be taken equal to the annihilator of F or of F ⊕ 1,
i.e. such that gF = 0 or g(F ⊕ 1) = 0. After a linearization step, the adversary obtains a
system of T equations in D = ∑AI(F )

i=0
(N
i

)
variables. Therefore, the time complexity of the

algebraic attack is O(Dω), that is, O(NωAI(f)).

4.5.1.2 Fast Algebraic Attacks

They are a variation of the previous algebraic attacks introduced by Courtois at Crypto [Cou03a].
Considering the relation gF = h, their goal is to find and use functions g of low algebraic
degree e, possibly smaller than AI(f), and h of low but possibly larger degree d. Then, they
lower the degree of the resulting equations by an off-line elimination of the monomials of
degrees larger than e (several equations being needed to obtain each one with degree at most
e). Following [ACG+06], this attack can be decomposed into four steps:

1. The search for the polynomials g and h generating a system of D + E equations in



80 Chapter 4 Filter Permutator

D + E unknowns, where:

D =
d∑
i=0

(
N

i

)
, and E =

e∑
i=0

(
N

i

)
.

This step has a time complexity in:

O
(

d∑
i=0

(
n

i

)
+

e∑
i=0

(
n

i

))ω
.

2. The search for linear relations which allow the suppression of the monomials of degree
more than e. This step has a time complexity in O(D log2(D)).

3. The elimination of monomials of degree larger than e using the Berlekamp-Massey
algorithm. This step has a time complexity in O(ED log(D)).

4. The resolution of the system. This step has a time complexity in O(Eω).

Given the FAI of F , ignoring Step 1 which is trivial for our choice of F , the time complexity
of this attack is:

O(D log2D + E2D + Eω) ≈ O(NFAI).

4.5.1.3 Correlation Attacks.

In the following we call ”correlation attacks” the one trying to distinguish the output sequence
of a stream cipher from a random sequence, by exploiting the bias δ of the filtering function.
Note that it is different from the classical correlation attacks introduced in [Sie84]. For the
classical definition, the attack on filtered registers relies on the correlation of the keystream
with the output of one LFSR only. We use the denomination of correlation attacks here as
we consider the correlation between the keystream and a reduced part of the key. It this case,
these attacks corresponds to distinguishing attacks, then more techniques are necessary for
the key recovery. Therefore will assume that the data complexity of a key recovery attack is
more important than the one of the corresponding distinguishing attack.
We can easily rule out such attacks by considering a (much) simplified version of Filter

Permutator where the bit permutations Pi’s would be made of two independent permutations
P 1
i and P 2,3

i (respectively acting on the n1 +h bits of the linear part and the n2 +n3−h bits
of the non-linear part of F ). Suppose for simplicity that P 1

i is kept constant t times, then
the output distribution of F has a bias δ to a balanced output. In this case, a correlation
attack would have a data complexity of:

O(δ−2), with δ =
1
2−

(
NL(F )

2N

)
.

For simplicity, we will consider this conservative estimation in our following selection of
security parameters. Yet, we note that since the permutation Pi of a Filter Permutator is
acting on all the N bits of the filter F , the probability that the linear part of F is kept
invariant by the permutations t times is in fact considerably small, and it is linked to the
resiliency. For the functions we consider, the linear part gives all the resiliency, and even if
the complexity bound of the attack does not depend on the resiliency, a non trivial resiliency



4.5 Symmetric Security Analysis 81

is here a good feature. Indeed, an m-resilient function ensures that no bias on the output
distribution can be used if the adversary obtains a set where less than m variables are fixed.
Therefore, a non-trivial resiliency implies a consequent data cost for the adversary, who needs
to collect a bunch of equations with the same variables fixed in order to mount a correlation
attack or a similar attack. Accordingly, we decide to guarantee a resiliency of at least λ/2.

4.5.1.4 BKW-like Attack.

The BKW algorithm was introduced in [BKW00] as a solution to solve the LPN problem
using smart combinations of well-chosen vectors and their associated bias. Intuitively, our
stream-cipher construction simplified as just explained (with two independent permutations
P 1
i and P 2,3

i rather than a single one Pi) also shares similarities with this problem. Indeed,
we could see the linear part as the parity of an LPN problem and the non-linear one (with
a small bias) as a (large) noise. It is the principle of the more general fast correlation
attacks [MS88] (explained in Section 4.5.1.6). Adapting the BKW algorithm to our setting
amounts to XOR some linear parts of F in order to obtain vectors of low Hamming weight,
and then to consider a distinguishing attack with the associated bias. Denoting w the target
Hamming weight, x the log of the number of XORs and δ the bias, the resulting attack
(which can be viewed as an extension of the previous correlation attack) has data complexity
O(2wδ−2(x+1)). We detail the translation of our keystream correlated problem into a LPN
problem in the following two paragraphs.
Decomposing F in a linear and non-linear part, we can study our filtering function by

analogy with LPN and therefore consider the impact of BKW on our construction. Let
s ←$ {0, 1}N , a LPN sample is a couple (a, 〈a, s〉 + ν) such that a ←$ {0, 1}N and ν ←$
Bernoulli(ε). At each cycle of the filter Permutator, the permutation on the linear part of F
of ` bits is analogous to the random choice of a, with the restriction that its Hamming weight
is fixed to `. Then the non-linear part of F can be considered as the ν part of a LPN sample,
such that the output bit follows a Bernoulli distribution with parameter ε = NL(F )

2N . As in
our case the a distribution is restricted and the output bits are produced from dependent
distributions, we cannot formally reduce the Filter Permutator key recovery to the search-LPN
problem. Nevertheless, we can evaluate the computational cost of a strategy similar to the
BKW algorithm to recover the key, based on the LF1 algorithm complexity [LF06].
Namely, writing N as a ∗ b, the main point of the attack is to find a lot of groups of 2a

well-chosen vectors such that a1⊕· · ·⊕a2a = ej . With 2a a small number, the bias introduced
by XORing 2a LPN samples is not too small, enabling to recover sj from a majority vote over
the different groups of 2a vectors, since 〈s,a1⊕· · ·⊕a2a〉 = 〈s, ej〉 = sj . For our construction,
the case a = 1 is impossible: as the Hamming weight of each ai is the same, no difference
can give a vector of Hamming weight 1. Therefore, at least two XORs are needed to obtain
a new vector with Hamming weight 1. Let δ = 0.5 − ε be the bias of the original vectors.
This implies that the bias of such new vectors is δ3. To distinguish this bias and to recover
sj , we therefore need O(δ−6) operations. Such an attack can be extended by finding vectors
such that the sum is ei ⊕ ej , which leads to perform at least one XOR to obtain a targeted
vector if ` > 2. The computational cost of recovering one sum is then O(δ−4). It leads to a
complexity O(Nδ−4) to recover the whole key. For the case where ` = 2, there is no need to
perform XORs: the ai’s are already of Hamming weight 2 and the corresponding attacks are
therefore the correlation attacks described above. But we can extend this attack considering
vectors of Hamming weight w ≤ `, and number of XORs x, leading to the (conservative)



82 Chapter 4 Filter Permutator

complexity of O(2wδ−2(x+1)).

4.5.1.5 Higher-Order Correlation Attacks

These attacks were introduced by Courtois [Cou03b] and exploit the so-called XL algorithm.
They look for good correlations between F and an approximation g of degree d > 1, in order
to solve a linearized system based on the values of this approximation. The value ε is defined
such that g is equal to F with probability greater than 1 − ε. Such attacks have a (very
conservative) time complexity estimate:

O
((

N

D

)ω
(1− ε)−m

)
, where D ≥ d and m ≥

(N
D

)( N
D−d

).
4.5.1.6 Other attacks.

Besides the previous attacks that will be taken into account quantitatively when selecting
our concrete instances of FLIP designs, we also investigated the following other cryptanaly-
ses. First, fast correlation attacks were introduced by Meier and Staffelbach at Eurocrypt
1988 [MS88]. A recent survey can be found in [Mei11]. The attack is divided into two phases.
The first one aims at looking for relations between the output bits ai of the LFSR to generate
a system of parity-check equations. The second one uses a fast decoding algorithm (e.g. the
belief propagation algorithm) in order to decode the words of the code zi = F (ai) satisfying
the previous relations, where the channel is a binary symmetric channel with error probability
p = NL(F )/2N . Note that the BKW-like attack can be described accordingly, the first phase
corresponds to the generation of noisy vectors of low Hamming weight (the ej for example),
the second phase corresponds to the majority vote. There are many attack variants of this
strategy, with various decoding algorithms, giving time-data trade-offs around O(2wδ−2(x+1)).
So we assume that the previous (conservative) complexity estimates rule out these variation
as well.
Second, weak keys (i.e. keys of low or high Hamming weights) can produce a keystream

sufficiently biased to determine this Hamming weight, and then to recover the key among the
small amount of possible ones. The complexity of such attacks can be computed from the
resiliency of F . However, since our N parameter will typically be significantly larger than
the bit-security of our filter Permutator instances, we suggest to restrict the key space to
keys of Hamming weight N/2 to rule out this concern. For this purpose, master keys can
simply be generated by applying a first (secret) random permutation to any stream with
Hamming weight N/2.

Third, augmented function attacks are attacks focusing on multiple outputs of the function
rather than one. The goal is to find coefficients j1, · · · , jr such that a relation between the
key and the outputs si+j1 , · · · , si+jr can be exploited. This relation can be a correlation (as
explained in [And95]) or simply algebraic [FM07]. In both cases, a prerequisite is that the
relation holds on a sufficient number of i. As each bit output by FLIP depends on a different
permutation, we believe that there is no exploitable relation between different outputs.

Eventually, cube attacks were introduced by Dinur and Shamir at Eurocrypt 2009 [DS09]
as a variant of algebraic attacks taking advantage of the public parameters of a cryptographic
protocol (plaintext in block ciphers, IV in stream cipher) in order to generate a system of
equations of low degree. However in filter Permutator constructions, the only such public



4.5 Symmetric Security Analysis 83

parameter is the seed of the PRNG allowing to generate the pseudo-random bit permutations
Pi. Since controlling this seed hardly allows any control of the F function’s inputs, such
attacks do not seem applicable. A similar observation holds for conditional differential
cryptanalysis [KMN10] and for integral/zero-sum distinguishers [BC11; KW02].

4.5.2 Guess-and-Determine Attacks

Note that the relevance of guess-and-determine attacks on the FLIP cipher and more generally
on the Filter Permutator construction was not considered for the first instantiations. After a
presentation of work in progress at the Journées Codages et Crypto 2015, private communi-
cations between the authors of [MJSC16] and the ones of [DLR16a] tackle this issue. These
discussions resulted in an attack published at CRYPTO [DLR16b] on a preliminary instance
of the filtering function containing a single triangular function and a reduced quadratic part,
and on the published version of [MJSC16] with the current instances and a section devoted
to guess-and-determine impact on Boolean functions.
The principle of the guess-and-determine attack consists in guessing ` bits of the key in

order to cancel some monomials. In our context, as the key register has not even a linear
update, the guess of a key bit enables to know the value of a position in the register during
all the encryption. Therefore, when the values of ` bits are guessed, at each clock cycle,
the filtering function is then F ′ a N − ` bits function, with a shape depending on the part
of the function where the guessed bits appear. The attack presented in [DLR16b] targets
the degree of F ′ as the presence of a single triangular function implies a few number of
monomials of degree higher than 2. With a few number of variables guesses to be 0 (the
number of monomials of degree higher than 2, as if a variable of a monomial is equal to 0
the monomial is canceled), the adversary collects all the equations of degree 2, and try to
solve this quadratic system by linearizing it. If the guess was correct, the key is recovered,
with a time complexity corresponding to the time required for solving a quadratic system in
N − ` variables multiplied by 2` potential guesses, and a data complexity depending on the
probability of obtaining the function F ′ from the function F .

Various lessons can be learn from this attack, first a guess-and-determine strategy applies on
the particular register update of the Filter Permutator, second the practicability of this kind
of strategies depends on the probability of getting a particular function F ′ by doing ` guesses
and on the Boolean criteria of this function F ′. The attack described above targets the degree
of F ′, which is a sub-case of the algebraic attack; it can be generalized in a straightforward
manner to the other attacks. More generally, the guess-and-determine strategy allows an
adversary to focus on a filtering function restricted to a subset of variables. This weaker
function can then be cryptanalyzed, e.g. analyzed with the four aforementioned attacks, i.e.
the algebraic attack, the fast algebraic attack, the correlation/BKW-like attacks and the
higher-order correlation attack. In the following study we neglect the data complexity of
obtaining the function F ′, and we prove conservative bounds based on the cryptographic
criteria of the Boolean function F ′. Then, the complexity of a guess-and-determine attack
against a function F of N variables is min`{2` minC(F ′)} where the second minimum is
taken over all the functions F ′ that can be obtain by a guess of ` of the N variables of F
(that is, over 2` times N choose ` potential guesses). C(F ) is the complexity of the best of
the four attacks considered on the filtering function F . The case ` = 0 corresponds to attack
the scheme without guess-and-determine.

In the following, we bound the minimal complexity over these four attacks considering the



84 Chapter 4 Filter Permutator

weakest functions obtained by guessing. To do so, we introduce some notation and criteria
allowing us to specify the cryptographic properties of Boolean functions obtained by guessing
` variables, we call such criteria ‘’recurrent criteria”. For a Boolean criterion (take as example
the algebraic immunity AI(F )), we define its recurrent version of order ` (AI[`]F for our
example) as the minimum value it takes over all the functions F ′ than can be obtained by
a guess of ` of the N variables of F . A formal definition is given in Chapter 5, where the
behavior of particular functions relatively to these criteria is studied. The following lemmata
enable to give a lower bound on the minimal complexity of a guess-and-determine attack
combined with a standard attack, the complexity depends on the number of guesses and the
recurrent criteria of the filtering function.

Lemma 4.5.2 (Guess-And-Determine & Algebraic Attack). Let F be a Boolean function
in N variables and CGDAA(F ) (respectively CAA(F )) be the minimum complexity of the
Guess-and-Determine with Algebraic Attack, denoted GDAA, (respectively Algebraic Attack)
on F , then :

CGDAA(F ) ≥ min
0≤`≤λ

[
2`
(
N − `

AI[`](F )

)ω]
.

Proof. As guessing ` binary variables has a worst case cost of 2`, by definition:

CGDAA(F ) = min
`

(2` minCAA(F ′)),

with the minimum taken over all guesses of ` variables, with 0 ≤ ` ≤ λ. We can then use
the complexity of the algebraic attack, and the definition of the recurrent algebraic immunity:

CGDAA(F ) = min
`

2` min
F ′

AI(F ′)∑
i=1

(
N − `
i

)ω ≥ min
`

[
2`
(
N − `

AI[`](F )

)ω]
.

Note that the inequality is the final result of the lemma; a precedent result ([MJSC16]) gives
a more conservative bound where the linearized system is considered with fewer variables.
Even if F ′ has a lower number of variables than N−`, the different permutations give a system
with all the N − ` guessed variables, or restricting the number of variables consequently
increases the data complexity. The conservative bound is obtained by considering N [`]:
the minimal number of variables over all the functions F ′ obtained by guessing ` of the N
variables, this number of variables being obtained after removing the variables not influencing
the function. This bound is therefore:

min
`

[
2` min

F ′

(
N(F ′)
AI(F ′)

)]
.

Focusing on the binomial, as for all Boolean functions the algebraic immunity is inferior to
the ceil of half the number of its variables, all these binomial coefficients are on the left part
of Pascal’s triangle, guarantying for fixed ` and for all functions F ′:(

N(F ′)
AI(F ′)

)
≥
(
N(F ′)

AI[`](F )

)
≥
(
N [`](F )
AI[`](F )

)
.

As it applies for all F ′, it applies for the minimal value, giving a lower bound of:



4.5 Symmetric Security Analysis 85

min
`

[
2`
(

N [`]
AI[`](F )

)]
.

Lemma 4.5.3 (Guess-and-determine & Fast Algebraic Attacks). Let F be a boolean function
in N variables and CGDFAA(F ) be the minimum complexity of the Guess-and-determine with
Fast Algebraic Attacks on F , then :

CGDFAA(F ) ≥ min
0≤`≤λ

[
2`
((

N − `
AI[`]

)
log2

(
N − `
AI[`]

)
+ (N − `)2

(
N − `
AI[`]

)
+ (N − `)ω

)]
.

Proof. By definition:

CGDFAA(F ) = min
`

(2` min
F ′

CFAA(F ′)).

Then for all Boolean functions f , CFAA(f) = min[(D log2D + E2D + Eω)] where:

• The minimum is taken over all Boolean functions g and h such that fg = h.

• d = deg(h) and e = deg(g).

• D = ∑d
i=1

(N
i

)
and E = ∑e

i=1
(N
i

)
.

• ω is the exponent appearing in the complexity required for solving a linear system.

We need to bound d and e for all guesses, therefore we use a property of the algebraic
immunity (applying when g and h are non zero and distinct functions):

fg = h⇒ fg = fh⇒ f(g + h) = 0,

and by definition of AI(f), deg(g + h) ≥ AI(f), hence max(d, e) ≥ AI(f).
As CFAA(f) is defined as a minimal value over all choices of g and h (not null and distinct)

such that fg = h, we can restrict the choices to 1 ≤ e ≤ d with d ≥ AI(f). Therefore we get:
CFAA(f) = min(D log2D + E2D + Eω) ≥ min

((N
d

)
log2 (N

d

)
+
(N
e

)2(N
d

)
+
(N
e

)ω)
,

CFAA(f) ≥ ( N
AI(f)

)
log2 ( N

AI(f)
)

+
(N

1
)2( N

AI(f)
)

+
(N

1
)ω
.

Therefore, for the complexity of the fast algebraic attack with guess-and-determine, the
number of variables in the system being reduced by ` and we get:

CGDFAA(F ) ≥ min
0≤`≤λ

[
2`
((

N − `
AI[`]

)
log2

(
N − `
AI[`]

)
+ (N − `)2

(
N − `
AI[`]

)
+ (N − `)ω

)]
.

Note that, as for the previous lemma, a more conservative bound can be derived, replacing
N − ` by N [`], using the same techniques as the proof of the previous lemma.

For the correlation attacks, BKW-like attacks or similar strategies, we bound the whole
attack complexity by the quantity of data necessary to distinguish a bias, considering this
quantity necessary independently of the attack variant considered.



86 Chapter 4 Filter Permutator

Lemma 4.5.4 (Guess-and-determine & CA/BKW-like Attack). Let F be a Boolean function
in N variables and CGDCA/BKW (F ) be the minimum complexity of the Guess-and-determine
with Correlation/BKW Attack on F , then :

CGDCA/BKW (F ) ≥ min
0≤`≤λ

{2`δ[`](F )},

where δ[`] is the recurrent bias to 1/2, related to NL[`].

Proof. Without considering the resiliency but only the nonlinearity criterion, for all functions
f we have CCA(f) ≥ δ−2, and CBKW (f) ≥ δ−2 where CCA and CBKW stand for the (data)
complexity of the correlation attack and for the BKW attack; δ is the bias to 1/2, defined for
generic attacks. Then applying the definitions of CGDCA/BKW (F ) and δ[`] gives the result.

The higher order correlation attack considers the best approximation of fixed degree of a
Boolean function, which corresponds to determine its nonlinearity of order greater than 1,
that we denote NLd and accordingly δd and the recurrent versions.

Lemma 4.5.5 (Guess-and-determine and HOC). Let F be a Boolean function in N variables
and CGDHOC be the minimum complexity of the Guess-and-determine with High Order
Correlation Attack on F , then :

CGDHOC(F ) = min
0≤`≤λ

(
2` min

1≤d≤deg(F )

[(
N − `
D

)ω (1
2 + δd[`]

)])
,

where d ≤ D ≤ N−`
2 , and m ≥ (N−`D )

(N−`D−d)
, for each `.

Proof. By definition:

CGDHOC(F ) = min
`

(2` min
F ′

CHOC(F ′)).

Then for all Boolean functions f in n variables, CHOC(f) = min1≤d≤deg(F )[
(n
D

)ω(1−ε)−m]),
where:

• d ≤ D ≤ n,

• ε = dH(f,g)
2n with g a Boolean function of degree at most d,

• m ≥ (nD)
( n
D−d)

.

First, in our context we bound the term (1− ε) using the definition of the nonlinearity of
order d and δd, which gives (1− ε) ≥ 1

2 + δd[`].
Then, the number of variables is reduced to N − ` for the algebraic system to solve as `

variables are fixed.
Finally we bound the term

(N−`
D

)
and m in consequences. Following [Cou03b] we assume

D << N and more precisely D ≤ N−`
2 , to avoid the decrease of the binomial coefficient

affecting the complexity bound whereas this particular D does not give an attack in practice.
Putting all together we obtain the final result. Note that as for Lemma 4.5.2 and

Lemma 4.5.3 a more conservative bound can be obtained considering N [`].



4.5 Symmetric Security Analysis 87

Note that on particular functions, the parameters relatively to the recurrent criteria can be
efficiently bounded, making these complexity bounds simpler and practical to give security
guarantees; it will be developed in Section 5.2.2.

4.5.3 Behavior relatively to Fixed Hamming Weight

The non-standard design of the FLIP ciphers is not common to use for Boolean filtering
functions: the updating process of the internal state consists in permuting the coordinates.
Therefore, the Hamming weight of the internal state is constant during the whole encryption.
In the four proposed instances, the Hamming weight of this register is forced to n/2 where n
is the size of the register (n is larger than the security parameter λ, enough to ensure that( n
n/2
) ≥ 2λ).

For classical filtered pseudo-random generators (for example filtered Linear Feedback Shift
Registers), when the next-state function reaches all elements in Fn2 or Fn2 \ {0}, the main
criteria, AI, FAI, and NL, (for functions defined over Fn2 ) are relevant. Indeed, as the input
is the whole space, designers can ensure that there are no extra relations on the filtering
function inputs. However, if all possible inputs are not all reachable by the next-state function
as in our case, then an adversary can use this restriction and the security does not directly
rely on the classical criteria defined for Boolean functions over the whole Fn2 , because the
internal state itself does not reach all possible values. Then, the security analysis has to be
adapted to the adequate model: the stream cipher function is only evaluated on entries from
En,n2 , and the security needs to be studied relatively to the robustness of Boolean functions
over En,n2 . The study of Boolean functions over En,n2 and the security of FLIP relatively to
fixed Hamming weight input presented here comes from the work [CMR17].

The purpose of this section is to stand on the attacks applying when the adversary uses the
restriction of the input space jointly with previously defined attacks: classical ones and with
guess-and-determine. We describe these attacks based on parameters of the proposed filtering
functions relatively to fixed input weight criteria. We call ‘’restricted criteria” cryptographic
criteria on Boolean functions which input is restricted to a subset of the whole Fn2 . The
denomination ‘’fixed input weight” refers to the particular case where we consider the subsets
of Fn2 where all elements have the same Hamming weight. The restricted criteria we consider
are more precisely the adaptation of the classical criteria of AI, NL and balancedness. We
restrict our study to parameters relatively to these criteria, as the others are not well
understood enough up to now or less applicable in the context of a fixed Hamming weight
input. In the three last sections of Chapter 5 we properly define these criteria for all subset of
Fn2 and investigate them. Here we informally introduce these criteria for constant Hamming
weight input sets, and we consider the parameters of the filtering functions relatively to these
criteria in order to provide a security analysis. For the sets En,k and for the quantities of
AI, NL and bal, we note AIEn,k , NLEn,k and balEn,k the corresponding quantities where the
functions are considered only on the restricted set En,k rather than Fn2 . In the following, we
explain three attacks applying on the cipher FLIP, we give lower bounds on the complexity of
these attacks depending on two main parameters: the fixed Hamming weight input parameter
(relatively to a criterion) of the filtering function and the Hamming weight of the key.



88 Chapter 4 Filter Permutator

4.5.3.1 Algebraic Attack based on Restricted Algebraic Immunity

Assuming that an attacker wants to recover some internal state of the cipher rather than
distinguishing the keystream, she could improve the so-called algebraic attacks. We briefly
recall the principle defined in Subsection 4.5.1 to adapt it to the restricted algebraic immunity.
The main idea for algebraic attacks (and fast algebraic attacks) is to build an over-defined
system of equations with the initial state of the stream cipher as unknown, and to solve this
system with Gaussian elimination. More precisely, by using a nonzero function g such that
both g and h = gf have low algebraic degree, an adversary is able to obtain T equations
with monomials of degree at most AI(f). Function g can be taken equal to an annihilator of
f or of f ⊕ 1, i.e. such that gf = 0 or g(f ⊕ 1) = 0. The fast version consists in finding a
function g with low degree and a function h with degree slightly higher than AI(f) which
are solutions of the equation h = gF , providing an algebraic system easier to solve. In our
context of fixed Hamming weight, the functions have to be non zero on EN,k and we care
only at the relations holding on this set, even if they do not hold on the entire FN2 . Then the
data complexity will drop to D′ = ∑AIk(f)

i=0
(N
i

)
, the number of independent equations needed

to mount a solvable algebraic system.

4.5.3.2 Correlation Attack based on Restricted Nonlinearity

In our model we target only the function F generating the keystream, in this sense the
classical correlation attacks cannot work because there is no way we can do a divide-and-
conquer technique as in Siegenthaler’s attack [Sie84]. In this case only fast correlation
attacks [MS88] could have smaller complexity than an exhaustive search in our model.
Therefore we refer as correlation attack in our setting the following attack (similarly to the
description of the correlation attack in Subsection 4.5.1). The attacker first computes the
linear approximations lk of f restricted to EN,k where NLEN,k(f) is small. Approximating
the keystream equations by their linear approximation, she builds a linear system and relies
it to a decoding problem. When no particular code structure is used, this system can be
seen by the attacker as an instance of the Learning Parity with Noise problem, where the
noise parameter is εk =

NLEN,k
(Nk ) , (and bias δk = 0.5− εk). Standard algorithms can be used

to solve this instance, as BKW [BKW00] or LF [LF06] algorithms giving an attack with data
complexity of O(2wδ−2(x+1)

k ) where the parameters w and x depend on the algorithm used
and the number of variables used in lk.

4.5.3.3 Distinguishing Attack based on Restricted Balancedness

For any stream cipher, it is important to guarantee that the keystream has good statistical
properties (i. e. looks like a random sequence), to avoid the possibility for an attacker to
distinguish the keystream from a random sequence. That is a reason why Boolean functions
used in cryptography should be balanced and therefore, in a model where the Hamming
weight is known, Boolean functions should be balanced on the corresponding set EN,k. Indeed,
let us denote pk = Prx∈EN,k [f(x) = 1] = 1

2 − εk. Then if there exists k such that εk 6= 0, then
there exists a distinguisher on the function f for this weight. The amount of data needed to
detect the bias εk is equal to ε−2

k ; If we consider all entries of f , we scale the probability of
having a word of weight k, so the amount of data needed for our distinguisher to detect a
bias is therefore:



4.5 Symmetric Security Analysis 89

min
k

(
1
εk2 ×

2N(N
k

))
As FLIP cipher always applies the filtering function on entries of constant Hamming weight

k, there is no need to scale the probability; k being fixed to N/2, we care about εN/2 and
balEN,N/2 . However, balancedness for all weights is also important in this setting; a guess-
and-determine technique consists in fixing some entries, modifying the weight. Therefore
we study the balancedness criterion for Hamming weights k close to N/2, giving the lower
bound on the data complexity of this attack: ε−2

k .

4.5.4 Instances and Security

In this part we investigate the current security provided by the proposed instances, relatively
to the previously described attacks. For these instances designed to provide 80 and 128 bits
of security we first compute the bounds on the complexity of the standard and guess-and-
determine attacks. Secondly, from [CMR17], we examine their robustness against the attacks
using the input Hamming weight restriction.

4.5.4.1 Instances relatively to Standard, and Guess-and-determine Attacks

Table 4.6 lists the minimal bounds on the complexity of the attacks we described, for classical
attacks with or without using a guess-and-determine strategy. These bounds are very close
to the security level targeted as the functions have been chosen to have parameters tailored
to the security analysis relying on these two classes of attacks. These instances are then
naturally contrasted. On the one hand, the bounds taken are very conservative with respect
to the considered attacks: if these attacks were the best ones, more aggressive instances could
be proposed (e.g. in order to reduce the key size). On the other hand, Filter Permutators
are based on non-standard design principles, and the security analysis could be incomplete,
which naturally suggests the need of security margins. As an example, the results of the
attacks based on restricted criteria at the end of this chapter, show that the security margins
enabled to avoid attacks unknown when the instances were published. Overall, we believe
the proposed instances are a reasonable trade-off between efficiency and security based on
our current understanding of Filter Permutators, and therefore are good targets for further
investigations. Their rational design and security margins enable to instantiate a proof of
concept; the better understanding of the Filter Permutator and the applicable attacks coming
with time will allow to reduce or modify the instances.

The complexity bounds are considered very conservative in this table for various reasons.
First, the complexity of the standard attacks might be underestimated, as they are not studied
exactly in the framework of our context but based on the work they appeared, generally
adapted to filtered registers. Then, applying the impact of guess-and-determine attacks, we
combine the worst cases of the minimal number of variables of F ′ and minimal AI reachable
(the same technique is reproduced for the FAA and HOC attack), whereas these cases are
sometimes mutually exclusive. Moreover, the data complexity of the guess-and-determine
strategy is neglected, otherwise it could invalidate some guesses that correspond to the
exhibited bounds, as the weakest functions can be obtained by the less probable guesses.
Finally, we use rough bounds for the parameter of the functions considered, as the recurrent
criteria have been recently introduced and therefore they do not enable to use exact values



90 Chapter 4 Filter Permutator

Instance N AA ` FAA l CA/BKW ` HOC ` λ

FLIP− 530 530 95 56 81 0 86 72 94 55 81
FLIP− 662 662 91 52 81 52 80 72 90 48 80
FLIP− 1394 1394 156 112 140 40 134 120 155 109 134
FLIP− 1704 1704 149 105 137 105 133 124 128 74 128

Table 4.6: Attack complexities for the different FLIP instances. AA stands for algebraic
attacks, FAA stands for fast algebraic attacks, CA stands for correlation or BKW-
like attacks, HOC stands for higher-order correlation attacks, and ` stands for
the optimal number of bits guessed i.e. leading to the best complexity for guess-
and-determine attacks. For the CA/BKW column, we reported the minimum
complexity between the correlation attack and the BKW-like attack. Eventually,
λ stands for the security parameter of F and is simply taken as the minimum
between AA, FAA,CA/BKW and HOC complexities.

Instance N Bound D Dlog(7)

FLIP-530 530 4 231.6 288.7

FLIP-662 662 6 246.7 2131.1

FLIP-1394 1394 6 253.2 2150.2

FLIP-1704 1704 8 270.6 2198.2

Table 4.7: Lower bounds on AIEN,k of FLIP instances and complexity of the algebraic attack,
N refers to the number of variables, Bound is a lower bound on AIEN,k , D refers
to the number of variables after linearization and Dlog(7) to the corresponding
attack complexity.

relatively to these criteria. In conclusion, a better understanding on the Filter Permutator, a
more precise investigation of the algorithmic implementation of these attacks in this context
and further research on the recurrent parameters could guarantee a consequently higher level
of security for these instances.

4.5.4.2 Instances and Restricted Algebraic Immunity

For the FLIP family of stream cipher, we cannot conclude on the exact algebraic immunity of
FLIP instances (regarding the restricted input). However, we will use a lower bound on AIEN,k
proven later in Section 5.3 (using a partition of each filtering function and their structure
of direct sum) to examine the potential of the attack based on AIEN,k for the instances we
consider. With the lower bounds on AIEN,k for the four instances, we calculate a lower bound

on the complexity of an algebraic attack on FLIP which is
(∑AIEN,k

i=1
(N
i

))log 7
. The results

and the bounds giving us the complexity are shown in Table 4.7.
It is important to notice that the lower bounds here may be not tight and the algebraic

immunity (on constant Hamming weight inputs) of FLIP instances could be as great as the
general AI(F ). Then it remains to determine the exact AIEN,N/2 of FLIP instances, which we



4.5 Symmetric Security Analysis 91

Instance N v0 ` N1 v1
FLIP-530 530 [107, 464] 40 450 [142, 383]
FLIP-662 662 [136, 556] 40 582 [189, 453]
FLIP-1394 1394 [221, 1239] 64 1266 [296, 1094]
FLIP-1704 1704 [266, 1492] 64 1576 [363, 1321]

Table 4.8: Lower bound on NLEN,k for FLIP instances, N refers to the number of variables,
v0 the range of weight k for which

NLEN,k (f)

(Nk ) ≥ 0.499. ` refers to the number of
canceled monomials of the quadratic part by the guess strategy, N1 and v1 are
the corresponding number of variables and range of weights.

could not determine by computation due to the high number of variables of these functions.
Moreover, it remains not clear whether or not a guess-and-determine attack targeting the

algebraic immunity could apply. Considering all possible guesses leads to functions where
the lower bound decreases enough to contemplate an attack, but different aspects impeach
us to exhibit an attack. Firstly, the guessing technique conducts to cancel or diminish the
degree of some monomials. When a monomial is canceled, some variables unguessed inside
could be ones, and therefore the considered function is evaluated on an input for which we
cannot know exactly the Hamming weight. Secondly, the probability of obtaining a targeted
weight on a targeted simpler function enough times (i.e. disposing of enough keystream
bits with a coherent set of permutations) quickly decreases. Finally, the time complexity of
the attack exhibited with the lower bound (Table 4.7) is out of reach when no guesses are
made;,computational trials make us believe that the additional complexity cost of fixing `
variables of the filtering function (additional cost of 2`) compensate the potential decrease of
AIEN,k of the obtained weaker function.

4.5.4.3 Instances and Restricted Nonlinearity

The high number of variables in the four instances makes impossible to compute exactly the
nonlinearity on constant weight inputs. Nevertheless a lower bound from Section 5.4 (using
the direct sum structure of the filtering functions and parameters of components simple
enough) enables to state on a minimal NLEN,k of the instances and then to stand on the
attack using the restricted nonlinearity. In Table 4.8 we summarize the results.
The results in Table 4.8 show that for k = N/2, NLEN,k(f) is high enough to ensure that

the system of equations defining the LPN problem will be unsolvable with data complexity
inferior to 2λ as the error is considered as coming from a Bernoulli distribution with mean
p following the relation 0.499 ≤ p ≤ 0.5. Even with a guess-and-determine attack (with
simulated results in the right part of the table), the NLEN,k of the various functions and the
number of variables are too big to lead to a concrete cryptanalysis with an attack scenario
based on NLEN,k .

4.5.4.4 Instances and Restricted Balancedness

We compute the bias for each weight on toy versions of FLIP, and it appears that for all
not extreme k (k close to 0 or N) the Boolean function is not balanced. Nevertheless the



92 Chapter 4 Filter Permutator

Instance N v0 ` N1 v1 N2 v2 N3 v3
FLIP-530 530 [78, 482] 40 490 [134, 446] 450 [70, 409] 250 [30, 190]
FLIP-662 662 [102, 621] 40 622 [178, 585] 582 [97, 547] 242 [29, 185]
FLIP-1394 1394 [207, 1325] 64 1330 [348, 1266] 1266 [203, 1205] 594 [69, 514]
FLIP-1704 1704 [257, 1643] 64 1640 [429, 1582] 1576 [254, 1519] 610 [70, 533]

Table 4.9: Balancedness (with constant weight inputs) bias for FLIP filtering function in-
stances, and modified instances. N is the number of variables of the instance, ` is
the number of variables guessed to be 0. vi stands for the range of weights with
bias < 2−` for the various strategies of guesses i and Ni the number of variables
of the resulting function, with v0 the attack without guesses of the N variables
function.

calculated biases are not exploitable to distinguish the output from a random sequence,
regarding that we cannot have more than 280 or 2128 bits of keystream. Using the direct sum
structure of filtering functions, we can exactly compute the values |{x | f(x) = 1,wH(x) = k}|
for all k for the four instances and the bias from a random sequence. In Table 4.9 we
summarize our computation results, providing for which weights k the bias is inferior to 2−λ2 .
As the impact of guess-and-determine attack on the restricted balancedness is not known, for
the 4 instances we study this criterion for three particular guesses. The first guess consists in
canceling (forcing to be 0) λ/2 linear variables, the second one λ/2 variables of the quadratic
part and the third one λ/2 variables of the highest degree monomials. These three strategies
represent the best deterioration that an attacker can obtain on one part of a FLIP filtering
function. We assume that if none of these strategies reveal a sufficient bias for a concrete
cryptanalysis then no hybrid approach will lead to an efficient attack.

Interpreting the results of Table 4.9, as k = N/2 is in the ranges of the v0 column for the 4
instances of f , we conclude that we cannot apply our distinguisher based on the balancedness
criterion as it will require more than 2λ keystream bits. Even considering a combination with
guess-and-determine attack, the biases on the simpler functions obtained are insufficient to
mount a concrete attack.

4.5.4.5 Conclusions on Attacks based on Restricted Criteria

As a preliminary conclusion, the lower bounds exhibited for algebraic immunity, nonlinearity,
and balancedness do not reveal any concrete attack on the four instances of the FLIP cipher.
In this section the security analysis focusing on the Boolean function is made in the more
relevant model: taken into account that the entries of the filtering function only belong to
En,n2 and not the whole Fn2 .
On one side, we get only lower bounds on the parameters relative to the criteria of

nonlinearity and algebraic immunity, leading to lower bounds on the attack complexity rather
than practical bounds. On the other side, if the bounds for AIEN,k were tight, a modification
of a guess-and-determine attack could be a potential attack. In conclusion, these attacks
based on a better understanding of the Filter Permutator construction are a step in favor
of the general security of this construction, and of the particular security of the proposed
instances. As for the two other classes of attacks, a lot of improvements on the bounds on the



4.5 Symmetric Security Analysis 93

attack complexities and on the parameters relative to the recently defined Boolean criteria
are possible. It would enable to obtain a tighter relation between provable lower bounds and
concrete attack complexities, enabling to determine more efficient instances.





Chapter 5
New Criteria on Boolean Functions
In this part, we investigate new Boolean criteria, and new constructions of Boolean functions,
both inspired by the design of efficient homomorphic frameworks. The restrictions on
functions to produce low-error when they are homomorphically evaluated lead to consider
very simple functions, and their behavior relatively to the standard cryptographic criteria.
The particular design of the Filter Permutator motivates two other kinds of criteria. The
recurrent criteria handle the behavior of a function when a determined part of its inputs
are known. The restricted-input criteria generalize the standard criteria to functions whose
inputs are restricted to a particular subset of Fn2 .

First, we examine simple functions with good cryptographic properties and progress towards
optimal constructions of low-cost functions. Then, we investigate the recurrent criteria, and
more specifically the behavior of low-cost functions relatively to these criteria. Finally,
we study the restricted-input criteria, separately for algebraic immunity, nonlinearity and
balancedness.

Contents
5.1 Low-cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Low-cost Functions and Standard Criteria . . . . . . . . . . . . . . . . . 97
5.1.2 Exact Algebraic Immunity of Direct Sums of Monomials . . . . . . . . . 105

5.2 Recurrent Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.1 Definitions and General Bounds . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Recurrent Criteria for Direct Sums of Monomials . . . . . . . . . . . . . 114

5.3 Restricted Algebraic Immunity . . . . . . . . . . . . . . . . . . . . . . 118
5.3.1 Algebraic Immunity Upper Bound for all Restricted Sets . . . . . . . . . 119
5.3.2 Algebraic Immunity Upper Bound for Fixed Hamming Weight Input . . 121
5.3.3 Algebraic Immunity Restricted To En,k and Direct Sums . . . . . . . . 126

5.4 Restricted Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.1 Nonlinearity Upper Bound for All Restricted Sets . . . . . . . . . . . . . 128
5.4.2 Nonlinearity Restricted To Fixed Hamming Weight Input . . . . . . . . 132
5.4.3 Deterioration of Functions with Optimal Standard Nonlinearity . . . . . 137

5.5 Restricted Balancedness . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.1 Weightwise Balancedness and ANF . . . . . . . . . . . . . . . . . . . . . 140
5.5.2 Constructions of Weightwise (Almost) Perfectly Balanced Functions . . 143

— 95 —



96 Chapter 5 New Criteria on Boolean Functions

In the cryptographic constructions, Boolean functions are generally used as components of
symmetric encryption schemes, and have then been studied relatively to this context. We
can differentiate the notions of Boolean functions and vectorial Boolean functions, the first
one considering only the functions with one bit of output, which is the class of Boolean
functions that we study in this chapter. The second one, larger, is more relevant in the
context of block cipher constructions. Since the eighties, Boolean functions have been widely
used in the context of filtered LFSR or combined registers, and more generally in most
of the stream cipher constructions. In this context, the cryptographic properties required
for security have been identified and extensively studied [Car10], corresponding to Boolean
criteria as: high algebraic degree, high algebraic immunity, high fast algebraic immunity,
high nonlinearity, balancedness, high resiliency, nonzero linear structure, etc. For efficient
homomorphic frameworks we saw in Chapter 3 that the context is different, implying new
restrictions on constructions of Boolean functions. More particularly, the commonly accepted
cryptographic criteria are not adapted to state on the security of the Filter Permutator,
therefore new criteria and new constructions of Boolean functions are required. The goal of
this chapter is to introduce these new criteria, to propose new constructions, and to study
both of them. These investigations enable to know the parameters of some functions relatively
to specific Boolean criteria, which serve to derive the complexities of the best known attacks
on a particular instance and to assess its security. This study also enables to consider the
constructions guarantying security together with the efficiency concern of the homomorphic
evaluation.
In order to introduce and study these new criteria and constructions, we proceed in

the following order. First, we take care of the low-cost functions, the ones which produce
low-error when they are homomorphically evaluated. Therefore, as low-cost functions, we
consider the functions with a low number of monomials, more precisely we consider the
ones with a linear (in the number of variables N) number of monomials in its algebraic
normal form. Among these functions, we look for the ones with good behavior relatively to
the standard cryptographic criteria for filtering functions: high (fast) algebraic immunity,
high nonlinearity, balancedness and high resiliency. We study the robustness of particular
constructions relatively to these criteria, progressing towards optimal functions in the low-
cost context. Then, we introduce the recurrent criteria, extending the standard notions
to multiple reduced functions, as considered in a guess ans determine attack. We study
more particularly the recurrent algebraic immunity for all functions, and give particular
examples. We explore the behavior of the family of Boolean functions obtained by direct
sums of monomials, relatively to all recurrent criteria linked to a known attack. Finally,
we investigate the behavior of Boolean functions which are evaluated only on a subset of
Fn2 , more precisely we study the restricted algebraic immunity, the restricted nonlinearity
and the restricted balancedness. Based on the work [CMR17], we present a general study
of these three criteria. To do so we study the parameters, or quantities, of the functions
relatively to these criteria. For these quantities, we investigate their behavior for all sets,
then we study more particularly their behaviors relatively to the sets formed by all inputs of
a fixed Hamming weight. Finally, we focus on the fragility of some functions commonly used
in cryptography which revealed to be weak in this context.
The results of the first two sections come from the article [MJSC16]. Otherwise it is

specified, except the final theorem of Section 5.1.2, and Section 5.2.1 which are supplementary
personal results not published yet. The results of the last three sections, corresponding to
the main part of this chapter, come from [CMR17], otherwise it is specified.



5.1 Low-cost Functions 97

5.1 Low-cost Functions
Generally, the Boolean functions used in cryptography are used for symmetric encryption
and studied more particularly in adequateness with the corresponding applications. Indeed,
most of the stream ciphers use filtering functions of less than 30 bits, and a lot of other
functions act on registers of 64, 80, 128 or 256 bits. These functions are also chosen for
their implementation, in order to be evaluated fast (in clear). Therefore, the functions
known for their good behavior relatively to standard cryptographic criteria, are not the most
indicated for homomorphic evaluation. First, we need to consider functions in higher number
of variables, as we are looking for functions whose parameters alone guarantee the security
of the scheme. It imposes to consider functions with a few hundred variables rather than
less than 30 variables. Then, optimal constructions for a particular criterion are known for
infinite values of N , as functions with optimal algebraic immunity for all N or functions with
optimal nonlinearity for all even N . Even if a lot of work on Boolean criteria have be done,
most of these constructions do not fit our low-cost consideration. A meaningful example is
the family of majority functions, which have optimal algebraic immunity but a number of
monomials which is exponential in N . Therefore in this section we investigate the behavior
of functions with a low number of monomials, and the simple constructions, which guarantee
good enough parameters for the different criteria we consider.

5.1.1 Low-cost Functions and Standard Criteria

A promising direction to obtain low-cost functions is to bound the number of monomials
in the algebraic normal form of the function: it gives an upper bound on the number of
additions and multiplications needed to compute it. Nevertheless, considering a very low
number of monomials is quite restrictive, and not many constructions of Boolean functions
enable to do so. The direct sum, a secondary construction, permits to build functions with
few monomials and non trivial parameters. Indeed, the number of monomials is the sum
of the number of monomials of the two components; and for the parameters, they can be
computed from the parameters of the two added functions.
We begin our study by investigating the behavior of a direct sum relatively to the main

Boolean criteria of a filtering function: (fast) algebraic immunity, nonlinearity and resiliency:

Lemma 5.1.1 (Direct sum properties). Let F be the direct sum of f and g with n and m
variables respectively. Then F has the following cryptographic properties:

1. Algebraic Immunity: max(AI(f),AI(g)) ≤ AI(F ) ≤ AI(f) + AI(g).

2. Fast Algebraic Immunity: FAI(F ) ≥ max(FAI(f),FAI(g)).

3. Resiliency: res(F ) = res(f) + res(g) + 1.

4. Non Linearity: NL(F ) = 2mNL(f) + 2nNL(g)− 2NL(f)NL(g).

Proof. 1. We begin by the upper bound, AI(F ) ≤ AI(f) + AI(g):
Let h1 be any annihilator of f or 1 + f of degree AI(f) and h2 be any annihilator of g
or 1 + g of degree AI(g), then:

h1 · h2 · F = 0 or h1 · h2 · (1 + F ) = 0.



98 Chapter 5 New Criteria on Boolean Functions

The last concern on the function h1 · h2 to state on the algebraic immunity of F is
to guaranty that this function is not null (a core problem for proofs on the algebraic
immunity). As f and g are functions in different variables, there exist annihilators
h1 and h2 in the respective variables of f and g only. Then the monomials of highest
degree of h1 and h2 are disjuncts or both equal to 1; in both cases h1 · h2 is not null.

Finally, deg(h1 · h2) = AI(f1) + AI(f2), so AI(f) ≤ AI(f1) + AI(f2).

Now we prove the lower bound, AI(F ) ≥ max(AI(f),AI(g)):

We proceed by contradiction, let suppose AI(F ) < max(AI(f),AI(g)). Without loss of
generality we take max{AI(f),AI(g)} = AI(f).

By definition of the algebraic immunity there exists h such that F ·h = 0 or (1+F )·h = 0
with deg(h) = AI(F ). We first consider the case F · h = 0.

Then, F (x)h(x) = 0 for all x ∈ Fn+m
2 , so a fortiori when the last m variables are equal

to zero, denoting all x as (x′, 0, · · · , 0) with x′ ∈ Fn2 :

F (x1, · · · , xn, 0, · · · , 0)h(x1, · · · , xn, 0, · · · , 0) = f(x′)h(x′, 0, · · · , 0) = 0.

Hence h(x1, · · · , xn, 0, · · · , 0) is a function in n variables and degree strictly less than
AI(f) annihilating f , therefore this function is null or we get a contradiction. Note that
h(x1, · · · , xn, 0, · · · , 0) being null does not imply the nullity of h, therefore we consider
all the potential values of the m last variables:

∀u ∈ Fm2 , 0 = h(x1, · · · , xn, u) · (x1, · · · , xn, u) = h(x1, · · · , xn, u) · (f + ε),

where ε ∈ {0, 1}.
Consequently, for all u ∈ Fm2 , h(x1, · · · , xn, u) is an n-variables function of degree
strictly less than AI(f) annihilating f or f + 1 or the null function. If at least one of
the functions is a non null annihilator then it contradicts the supposition on AI(F ).
otherwise, all these functions are null, implying that the n+m variables function h is
null, which is also a contradiction.

We considered the case F ·h = 0; the other case where h annihilates F +1 is proved with
the same reasoning, changing F into F + 1 and f into f + 1 in the previous equations.
It concludes this item of the proof.

2. The proof follows the same techniques as the precedent proof; if the FAI of the direct
sum is strictly less than the one of one of its components, then it enables to find a
function h in n (or m) variables contradicting the definition of FAI.

3. For this item and the next one the proof is given for instance in [Car10] (page 125), for
self containment we give here a detailed proof.

Let consider the Walsh transform of F , defined for all u ∈ Fn+m
2 . For each element

u we use the following partition: we denote a the first n bits and b the last m bits,
then a and b are uniquely defined. Denoting u as (a, b), enables to derive the following
equalities:



5.1 Low-cost Functions 99

F̂χ(u) =
∑

x∈Fn+m
2

(−1)F (x)+u·x

=
∑

(y,z)∈Fn2×Fm2

(−1)f(y)+g(z)+a·y+b·z

=
∑
y∈Fn2

 ∑
z∈Fm2

(−1)f(y)+a·y+g(z)+b·z


=
∑
y∈Fn2

(−1)f(y)+a·y (ĝχ(b))

= f̂χ(a) ĝχ(b).

The expression of the Walsh transform of F as the product of the Walsh transforms of
f and g can be used together with Theorem 2.4.8. As the Walsh transform is equal to
0 for all vectors of Hamming weight less than or equal to the resiliency, we study the
value of the Walsh transform of F for any vector u of Hamming weight less than or
equal to res(f) + res(g) + 1.
For all vectors u ∈ Fn+m

2 , written as (a, b), the restriction wH(u) ≤ res(f) + res(g) + 1
can be separated in two cases: either wH(a) ≤ res(f), or wH(a) > res(f).
In the first case, wH(a) ≤ res(f) then f̂χ(a) = 0, giving F̂χ(u) = 0. In the second case,
wH(a) > res(f) then wH(b) ≤ res(g), giving ĝχ(b) = 0, and finally F̂χ(u) = 0.
From these two cases, we conclude:

res(F ) ≥ res(f) + res(g) + 1.

To get the equality it is sufficient to consider two elements, one for f and one for g. As f
is not res(f) + 1 resilient, we can choose an element a ∈ Fn2 such that wH(a) = res(f) + 1
and f̂χ(a) 6= 0. Similarly, we can choose an element b ∈ Fm2 such that wH(b) = res(g) + 1
and ĝχ(b) 6= 0.
Therefore, we can choose an element u ∈ Fn+m

2 , u = (a, b) such that:

wH(u) = res(f) + res(g) + 2, and F̂χ(u) 6= 0.

Ensuring res(F ) < res(f) + res(g) + 2, finalizing this item of the proof.

4. Using the second part of Definition 2.4.9, the nonlinearity can be obtained from the
maximum of the Walsh transform:

NL(F ) = 2n+m−1 − 1
2 max
u∈Fn+m

2

|F̂χ(u)|.

From the proof of the precedent item (on the resiliency), we know:

F̂χ(u) = f̂χ(a)ĝχ(b),



100 Chapter 5 New Criteria on Boolean Functions

therefore:

max
u∈Fn+m

2

F̂χ(u) = max
a∈Fn2

f̂χ(a) · max
b∈Fm2

ĝχ(b),

= (2n − 2NL(f)) · (2m − 2NL(g)).

Finally, it gives:

NL(F ) = 2n+m−1 − 1
2
(
2n+m − 2n+1NL(g)− 2m+1NL(f) + 4NL(f)NL(g)

)
,

= 2mNL(f) + 2nNL(g)− 2NL(f)NL(g),

concluding the proof.

Based on this lemma, we can hope to find functions with good cryptographic properties
and few monomials using direct sum constructions. However, these constructions require to
find functions in a few variables good, or even optimal, for a particular criterion. Indeed,
for the 4 criteria we study, the direct sum construction enhance the parameter of the better
function: the parameter of the final function is at least as high as the one of the better
function. Then, finding a strong function in a few variables and with a few monomials for
each criterion enables to build a function in more variables with still a quite low number of
monomials, and good parameters relatively to the 4 criteria. Functions with a low number
of monomials (linear in the number of variables) and optimal relatively to resiliency and
nonlinearity are well-known in the (Boolean functions) literature, and we will present them
slightly later. For the algebraic immunity and fast algebraic immunity criteria, way less is
known in this direction; the functions known for optimal algebraic immunity are the majority
functions (Definition 2.4.18) or variants and the Carlet-Feng functions [CF08]. Both are
functions with ANF containing a high number of monomials (exponential in the number of
variables), then inappropriate for the low-cost constructions we consider. To circumvent this
issue, in [MJSC16] we introduce the triangular functions: functions with a low number of
monomials (proportional to the square root of the number of variables), and good algebraic
and fast algebraic immunities.
We examine the different parameters of a triangular function (Definition 2.4.16)in the

following lemma. We particularly focus on the algebraic immunity, as it is the core motivation
of this particular construction.

Lemma 5.1.2 (Triangular functions properties). Let k be a non null positive integer and let
Tk the k-th triangular function. Then the following properties hold:

1. Algebraic Immunity: AI(Tk) = k.

2. Fast Algebraic Immunity: FAI(Tk) = k + 1.

3. The Nonlinearity follows the recursive formula defined by:
(i) NL(T1) = 0,
(ii) NL(Tk+1) = (2k+1 − 2)NL(Tk) + 2k(k+1)/2.

4. resiliency: res(Tk) = 0.



5.1 Low-cost Functions 101

1. We give here a proof simpler than the one presented in [MJSC16]. We proceed by
induction on k, showing that for all k ∈ N∗,AI(Tk) = k.
For k = 1 we have T1 = x1 of algebraic immunity AI(x1) ≥ 1 by definition. Hence
1 + x1 is a degree 1 annihilator of x1, giving AI(T1) = 1.
For k → k + 1, by the induction hypothesis we have that AI(Tk) = k. We want now to
determine AI(Tk+1) where Tk+1 = Tk + Π where Π is the product of the k + 1 variables
which are not in Tk. Π is a monomial of degree k + 1, therefore its algebraic immunity
is 1 (Corollary 2.4.11). By Lemma 5.1.1 we get:

k ≤ AI(Tk+1) ≤ k + 1.

We prove the induction step by contradiction: suppose that AI(Tk+1) = k, then ∃h such
that deg(h) = k and h · Tk+1 = 0 or h · (1 + Tk+1) = 0. Hence we have two different
cases, we first consider the case h · Tk+1 = 0.
For readability, let use note x1 · · ·xn, the n variables of Tk and y1, · · · , yk+1 the k + 1
variables of Π. For all (x, y) ∈ Fn+k+1

2 the following holds:

h(x1, · · · , xn, y1, · · · , yk+1)(Tk(x1, · · · , xn) + Π(y1, · · · , yn)) = 0.

Therefore, fixing the k + 1 variables of the Π part, for all y ∈ Fk+1
2 we get:

h(x1, · · · , xn, y)(Tk(x1, · · · , xn) + ε) = 0,

where ε = 1 if y = (1, · · · , 1) and ε = 0 for all the other values.
Then, for all y, h(x1, · · · , xn, y) is a n-variable function of degree less than or equal
to k (due to our supposition on the degree of h), annihilator of Tk or annihilator of
1 + Tk. Using the induction hypothesis, either this function is null, or its degree is
exactly k. If for all y this function is null, the entire function h is null, which contradicts
our assumption on h. Otherwise, for at least one value of y, h(x1, · · · , xn, y) is not
null, hence its ANF contains at least one monomial of degree k in the n variables of
Tk. Therefore, the ANF of h contains at least one monomial with exactly k of the
n variables of Tk, this monomial does not contain any other variables as we assume
deg(h) = k; giving that h’s ANF contains at least one degree k monomial in the n
variables of Tk. Note that if there is more than one monomial of this kind, they are
distinct, by definition of the ANF.
The existence of a monomial of degree k only in the n variables of Tk in h’s ANF
enables to get the contradiction. Indeed, for each monomial of this kind, the product
of h times Π, produces then a monomial of degree 2k + 1 which cannot be canceled by
any monomial of h · Tk, giving h · (Tk + Π) 6= 0, contradicting the hypothesis.
Now, we consider the case h · (Tk+1 + 1) = 0, the previous reasoning holds, changing
Tk to 1 + Tk. Therefore, we can conclude, the assumption AI(Tk+1) = k leads to a
contradiction; then AI(Tk+1) = k + 1.
It finalizes the proof by induction, giving the final result.

2. We proceed by contradiction, let assume that FAI(Tk) < k + 1.



102 Chapter 5 New Criteria on Boolean Functions

By definition we have:

min{2AI(Tk),max{deg(g · Tk) + deg(g), 3 deg(g)} | 1 ≤ deg(g) < AI(Tk)} < k + 1.

Applying the first item of Lemma 5.1.2 (proven just above) we have:

min{2k,max{deg(g · Tk) + deg(g), 3 deg(g)} | 1 ≤ deg(g) < k)} < k + 1.

Hence, it implies that:

∃g | deg(g · Tk) + deg(g) < k + 1 and 3 · deg(g) < k + 1 and 1 ≤ deg(g) < k.

In the following we prove that such g does not exist: either the restrictions on the
degree of g or the properties of the algebraic immunity are violated.
We begin by considering Tk + 1, which is an annihilator of g ·Tk. Then, Tk(gTk + g) = 0,
it implies that g · Tk + g = 0 or deg(g · Tk + g) ≥ k.
If g · Tk + g = 0, we have either g = 0 or deg(g) ≥ k, both giving in contradiction with
the restrictions on the degree of g.
If deg(gTk + g) ≥ k then we get deg(g) ≥ k or deg(gTk) ≥ k, where the first inequality
leads to a contradiction. The second inequality, deg(gTk) ≥ k, combined with the
restriction on the degree of g, deg(g) ≥ 1, leads to deg(g · Tk) + deg(g) ≥ k + 1 which
is in contradiction with the first condition on g.
To sum up, the assumption FAI(Tk) < k + 1 always leads to a contradiction, so
FAI(Tk) ≥ k + 1.
For the exact value of the fast algebraic immunity, let us denote by x` one of the variables
contained in the monomial of degree k. We can take the degree-one function g = 1 + x`.
The product of g by Tk cancels the highest monomial of Tk, giving deg(g · Tk) ≤ k. As
the second highest degree monomial of Tk (for k > 1) does not contain x`, g · Tk has a
monomial of degree k. These two remarks gives:

deg(g · Tk) + deg(g) = k + 1.

Note that in these cases, max{deg(g · Tk) + deg(g), 3 deg(g)} is equal to the first value
if k is not less than 2.
To sum up, for k > 1 in the previous paragraph we exhibit a function ensuring
FAI(Tk) ≤ k + 1. For the particular case k = 1, as AI(T1) = 1, the definition of the FAI
imposes FAI(T1) = 2. Combining the two inequalities, we conclude: FAI(Tk) = k + 1.

3. Here we proceed by induction.
For k = 1, T1 is a linear function so considering T1 as its own best affine approximation
we get NL(T1) = 0.
For k → k+1, we use the fourth item of Lemma 5.1.1, using the following decomposition:

∀k ∈ N∗, Tk+1 = Tk + Π,

where Π is the monomial of degree k + 1 in the last k + 1 variables.



5.1 Low-cost Functions 103

Denoting n the number of variables of Tk (note that n = k(k + 1)/2), we obtain the
following equalities:

NL(Tk+1) = NL(Tk + Π),
= 2k+1NL(Tk) + 2nNL(Π)− 2NL(Tk)NL(Π),
= (2k+1 − 2)NL(Tk) + 2n, as NL(Π) = 1 for all k ≥ 1.

It concludes the induction, and finishes the proof of this item.

4. We proceed by induction, let suppose that for k ≥ 1, res(Tk) = 0.
For k = 1, T1 = x1; it is a linear non null 1−variable function, therefore balanced and
with resiliency 0.
For k → k + 1, The induction hypothesis gives that Tk has resiliency 0, then as by
construction, for k ≥ 1, Tk+1 is the direct sum of Tk and a monomial of degree k + 1,
we can use the third item of Lemma 5.1.1. As a monomial function of degree strictly
greater than one is unbalanced, its resiliency is −1. The lemma gives then:

res(Tk+1) = 1 + res(Tk) + (−1) = res(Tk) = 0.

In conclusion, for all k ∈ N∗ we conclude: res(Tk) = 0.

Some important particularities of the triangular functions can be observed, on its simplicity
and its behavior relatively to the algebraic immunity. First, a triangular function is a direct
sum of monomials, hence it can be represented by a direct sum vector (of k ones), and
computed by a Boolean circuit of N − 1 gates, where N is the number of variables and k
the degree of the function. Regarding the algebraic immunity criterion, this construction
maximizes the ratio between algebraic immunity and number of monomials in the ANF.
Indeed, an ANF of ` monomials implies an algebraic immunity less than or equal to `, as
each monomial can be canceled by a degree one function. The triangular function has not an
optimal algebraic immunity then, as this parameter is equivalent to its number of monomials,
which is proportional to the root of N . Nevertheless, it can be observed that for the same
parameter of algebraic immunity, a triangular function can be evaluated more efficiently
than a majority function. For this parameter being equal to k, Tk can be evaluated by a
circuit of (k − 1)k/2 AND gates and k − 1 XOR gates, with a multiplicative depth of log k.
In comparison, the circuit represented in Figure 3.2 requires (k + 1)k − 3 AND gates and
(2k − 1)(k − 1) XOR gates (counting one AND and two XOR for one MUX).

The triangular function is an important step towards our low-cost construction with high
cryptographic parameters. More precisely this low-cost function provides good algebraic
and fast algebraic immunities with very few monomials. It cannot be directly used as a
filtering function as its nonlinearity and resiliency are too low. Nevertheless, the direct sum
construction enables to complement this function with already know low-cost functions in
order to get functions strong and low-cost, that we call FLIP functions. For the nonlinearity
criterion, the Dickson function in 2n variables are bent functions of degree 2 and their ANF
contain only n monomials. Regarding the resiliency criterion, the elementary symmetric
function in n variables of degree 1 is n− 1 resilient, we note that it is the optimal function in
terms of monomials and resiliency. Siegenthaler’s bound gives that an n-variable function is



104 Chapter 5 New Criteria on Boolean Functions

at most n − 1 resilient and the equality implies that the function is affine; the parameter
n− 1 implies that all variables have to appear in the ANF, therefore the symmetric function
we consider minimizes the number of monomials relatively to the optimal resiliency.

We conclude this part by giving the parameters of the FLIP functions, relatively to the
cryptographic criteria we consider and the number of monomials in the ANF. Note that the
repetitive use of the direct sum construction gives a direct sum of monomials, an N -variable
function which can always be evaluated in at most N − 1 AND and XOR gates.

Lemma 5.1.3 (FLIP functions properties). Let F bean N -variable FLIP function defined by n1,
n2, nb and h or equivalently by the direct sum vector of length h:[n1+nb, n2/2+nb, nb, · · · , nb].
Then the following properties hold:

1. Number of monomials of F : n1 + n2/2 + nb · h.

2. Algebraic Immunity: AI(F ) = h.

3. Fast Algebraic Immunity: FAI(F ) ≥ h+ 1.

4. Nonlinearity: NL(F ) ≥ 2N−1 − 2N−n2/2−nb−1.

5. resiliency: res(F ) = n1 + nb− 1.

Proof. The proof follows quite directly the ideas of the previous two lemmata: Lemma 5.1.1
and Lemma 5.1.2, we briefly recall here the core ideas.

1. Summing all the elements of the direct sum vector we obtain the number of monomials:
n1 +n2/2 +nb · h. We can also count that the ANF of Ln1 has n1 monomials, the ANF
of Qn2/2 contains n2/2 monomials and each of the nb triangular functions has an ANF
with h monomials.

2. We can write F as the direct sum of Th and another function, which gives the lower
bound AI(F ) ≥ h using the algebraic immunity items of Lemma 5.1.1 and Lemma 5.1.2.
As F is a degree h function, we conclude AI(F ) = h.

3. Lemma 5.1.2 guarantees FAI(Th) = h+ 1; applying Lemma 5.1.1 to the same decompo-
sition in direct sum as the previous item we obtain FAI(F ) ≥ h+ 1.

4. Note that the exact nonlinearity of Ln1 , Qn2/2 and of each triangular function Th can be
computed and the exact value of NL(F ) can be recursively computed using Lemma 5.1.1.
In this lemma we give only an upper bound here for readability, considering only the
nonlinearity provided by the degree two monomials.
Denoting G the part of F containing all the degree two monomials (so G is a n2 + 2nb
variables function) and H the remaining part, we can write F as the direct sum of G
and H and apply Lemma 5.1.1:

NL(F ) = 2n2+2nb NL(H) + 2N−n2−2nb NL(G)− 2NL(G) NL(H) (5.1)
= (2n2+2nb − 2NL(G)) NL(H) + 2N−n2−2nb NL(G) (5.2)
≥ 2N−n2−2nb NL(G) (5.3)
≥ 2N−1 − 2N−n2/2−nb−1. (5.4)



5.1 Low-cost Functions 105

We obtain Equation (5.3) because the nonlinearity of a n variables function is positive
and smaller than 2n−1, ensuring here that the first summand is positive. Equation (5.4)
comes from the fact that G (a Dickson function) is bent; it enables to conclude for this
item.

5. We can obtain this result only considering the resiliency of monomial functions and
Lemma 5.1.1. The resiliency of a monomial function is 0 if the monomial has degree 1,
−1 otherwise. Therefore, applying Lemma 5.1.1, the n1 + nb degree one monomials
contribute to a resiliency of n1 + nb− 1 and the other monomials do not modify the
resulting resiliency; giving the final result: res(F ) = n1 + nb− 1.

This lemma totally quantifies the parameters of the FLIP functions relatively to the
cryptographic Boolean criteria, it enables to link the mathematical properties of these
low-cost functions to their security in the contexts we consider.

5.1.2 Exact Algebraic Immunity of Direct Sums of Monomials

The previous part shows the good behavior of direct sums of monomials as low-cost cryp-
tographic Boolean functions. More particularly, Lemma 5.1.1 enables to derive the exact
nonlinearity and resiliency of all functions of this class, nevertheless the exact algebraic
immunity is only proven for the sub-cases of triangular functions and FLIP functions. In
this part we prove the exact algebraic immunity of all functions obtained by direct sums
of monomials. The exact algebraic immunity is not known for a large variety of families of
functions, this study increases this knowledge for a small family. The number of "shapes"
(only the distinct direct sum vectors) of direct sum functions of N variables corresponds to
the number of integer partitions of N , and for all N this number can be derived exactly from
Euler’s pentagonal number theorem.

In order to prove the exact value of the algebraic immunity of a direct sum of monomials
we need the following steps. First, we use the result on the algebraic immunity of a triangular
function: AI(Tk) = k. Then, we introduce a proposition connecting the algebraic immunity
of two functions. Finally, we give the theorem standing on the result, linking all direct sums
of monomials to triangular functions.

The triangular function Tk has as associated direct sum vector the vector of length k with
all mi being equal to 1. In the previous part we prove AI(Tk) = k, giving an AI equal to
the number of monomials of this function. The algebraic immunity of FLIP functions shows
that we can extend the knowledge of the algebraic immunity of the triangular function to
some other direct sums of monomial. Indeed, for the functions obtained by a direct sum
of a triangular function of degree d and another function of degree less than or equal to d,
the algebraic immunity is exactly d. However, this result does not cover all direct sums of
monomials, for example it cannot apply to a function obtained by withdrawing a monomial
of a triangular function, neither to a direct sum of d monomials of degree d. To take care of
all these functions, in [CMR17] we introduce a proposition linking the algebraic immunity
of two related functions. The proposition guarantees that the AI of the function in fewer
variables is less than or equal to the AI of the first function, or equivalently that the AI of
the function in more variables is at least as high as the AI of the second function. In the
particular case of direct sums of monomials this relation can be explained using their direct



106 Chapter 5 New Criteria on Boolean Functions

sum vector. The second vector is simply obtained by decreasing by 1 one of the mi (with
i > 1 and mi > 0) and adding one to mi−1; it illustrates the contraction of two variables
in one. Using repetitively this proposition, all direct sums of monomials can be linked to a
triangular function, providing an upper bound or a lower bound on its algebraic immunity.
Proposition 5.1.4. Let f(x1, x2, x3, · · · , xn) be a Boolean function in n variables such that
there exists two variables (x1 and x2 without loss of generality) satisfying:

∀x ∈ Fn−2
2 f(0, 0, x) = f(0, 1, x) = f(1, 0, x)

Let F (X,x3, · · · , xn) be the Boolean function in n− 1 variables defined by :

∀x ∈ Fn−2
2 F (1, x) = f(1, 1, x) and F (0, x) = f(0, 0, x)

If AI(f) ≤ d then AI(F ) ≤ d.
Proof. Formally we prove that if there exists a non null function g in n variables of degree
≤ d such that fg = 0 (respectively (f + 1)g = 0) over the whole Fn2 then there exists a non
null function G in n−1 variables of degree ≤ d such that FG = 0 (respectively (F + 1)G = 0)
over Fn−1

2 .
First we decompose g in a unique way:

g = g(x1, x2, · · · , xn) = g1x1 + g2x2 + gmixx1x2 + gnone,

where:
• gmixx1x2 contains all monomials with both x1 and x2,

• g1x1 contains all monomials with x1 and without x2,

• g2x2 contains all monomials with x2 and without x1,

• gnone contains all monomials without x1 and without x2.
As g is non null there exists at least one x̄ ∈ Fn−2

2 such that for at least one of the four
entries (0, 0, x̄), (0, 1, x̄), (1, 0, x̄) or (1, 1, x̄) the function g is not null. Therefore we realize a
disjunction of cases, for the four possible values of (x1, x2) we build a different function G.
In each case G is an annihilator of F (respectively F + 1) in n− 1 variables of degree less
than or equal to d based on the fact that the function in n− 2 variables defined ∀x ∈ Fn−2

2
as g(x1, x2, x) is non null and with degree less than or equal to d.

• Case g(1, 1, x) is not the null function:

∀x ∈ Fn−2
2 , g(1, 1, x) = g1 + g2 + gmix + gnone,

then, we can define G as

G(X,x) = (g1 + g2 + gmix)X + gnone.

Therefore, ∀x ∈ Fn−2
2 :

if X = 0 then F (X,x)G(X,x) = f(0, 0, x)gnone = f(0, 0, x)g(0, 0, x) = 0,
else X = 1 then FG = f(1, 1, x)(g1 + g2 + gmix + gnone) = f(1, 1, x)g(1, 1, x) = 0.
In both cases G is an annihilator of F (respectively of 1 +F ), non null because g(1, 1, x)
is non null and of degree less than or equal to d as the degree of g1 and g2 are upper
bounded by d− 1, the degree of gmix is upper bounded by d− 2 and the degree of gnone
is upper bounded by d.



5.1 Low-cost Functions 107

• Case g(1, 0, x) is not the null function:
we define G(X,x) = g1 + gnone + (g2 + gmix)X, then ∀x ∈ Fn−2

2 :
if X = 0, then

F (X,x)G(X,x) = f(0, 0, x)(g1 + gnone) = f(1, 0, x)g(1, 0, x) = 0,

else X = 1, then

F (X,x)G(X,x) = f(1, 1, x)(g1 + g2 + gmix + gnone) = f(1, 1, x)g(1, 1, x) = 0.

We can conclude similarly than the previous item.

• Case g(0, 1, x) is not the null function:
we define G(X,x) as g2 + gnone + (g1 + gmix)X; we only switch the impact of x1 and
x2 from the previous item.

• Case g(0, 0, x) is not the null function:
we define G(X,x) = (g1 + g2 + gmix)X + gnone as for the first item and as g(0, 0, x) is
not null in this case we can conclude in the same way.

We conclude that for all f with this property relatively to two variables there exists a
function G with the described property, and therefore AI(f) ≤ d then AI(F ) ≤ d.

In this section we care only on direct sums of monomials, however we highlight the general
character of the precedent proposition: this contraction technique can be used for functions
with a higher number of monomials. Other contractions could lead to generic techniques to
prove the exact algebraic immunity of family of functions based on the knowledge of the AI of
simple functions. In the following we use this proposition as a tool to quantify the algebraic
immunity of direct sums of monomials, we express the exact value using the coefficients of
the direct sum vector representation. To obtain interesting bounds from the proposition on a
function f , we need to target functions with AI known and we need to find a path from our
n-variable function to the target function. For the case of direct sums of monomials, we can
illustrate it through the direct sum vector, showing the link between the vectors of f and F
and the shape of the vectors for which the corresponding AI is known.

As an illustration, let us consider f a Boolean function obtained by direct sums of monomials,
and the associated direct sum vector mf = [m1, · · · ,mk]. We can apply the proposition on
all mi such that i > 1 and mi > 0, giving:

mF = [m1, · · · ,mi−1 + 1,mi − 1, · · · ,mk] and AI(f) ≤ d⇒ AI(F ) ≤ d.

The direct sums of monomials for which the AI is known are the triangular functions, and the
direct sums of a triangular function and a function of lower (or similar) degree, corresponding
to the following vectors mTk and mH :

mTk = [m1, · · · ,mk] = [1, · · · , 1], and AI(Tk) = k.

mH = [m1, · · · ,mk],where ∀i ∈ [1, k] mi ≥ 1, and AI(H) = k.



108 Chapter 5 New Criteria on Boolean Functions

For direct sums of monomials, a way to determine the exact algebraic immunity of a
function consists in modifying its direct sum vector using the previous proposition until we
get a vector of one of the two shapes just above. It finally gives the exact algebraic immunity
if we identify an annihilator reaching the bound given by the proposition. Therefore we can
now enunciate the theorem on the algebraic immunity of direct sums of monomials.

Theorem 5.1.5 (Algebraic Immunity of Direct Sums of Monomials). Let f ∈ Fn2 be a
Boolean function obtained by direct sums of monomials with associated direct sum vector
mf = [m1, · · · ,mk], its algebraic immunity is:

AI(f) = min
0≤d≤k

d+
k∑

i=d+1
mi

 .
Proof. First, we prove the inequality:

AI(f) ≤ min
0≤d≤k

d+
k∑

i=d+1
mi

 .
For this inequality it is sufficient to show that there exists a non null annihilator of f of

degree d+∑k
i=d+1mi for all d such that 0 ≤ d ≤ k. We fix d, and express f as a direct sum

of two functions f1 and f2, with direct sum vectors:

mf1 = [m1, · · · ,md], and mf2 = [0, · · · , 0,md+1, · · · ,mk].

From mf1 we have deg(f1) = d, therefore the degree-d function f1 + 1 is an annihilator of f1.
Then, for each of the monomials of f2, we choose a variable xj appearing in this monomial.
As 1 + xj is a degree-1 annihilator for all monomial functions containing xj , f2 the direct
sum f2 of ∑k

i=d+1mi monomials admits as annihilator the product of the annihilator of each
individual monomial. Hence, the function obtained by multiplying the appropriate 1 + xj is
an annihilator of f2, as f2 is obtained by direct sums of monomials all 1 + xj are distinct
therefore their product has degree ∑k

i=d+1mi. Denoting this function h which is non zero by
construction we obtain the following:

(f1 + f2) · (f1 + 1)h = 0, with (f1 + 1)h 6= 0, and deg((f1 + 1)h) = d+
k∑

i=d+1
mi.

Therefore, considering all d such that 0 ≤ d ≤ k gives the inequality. Note that this
inequality shows, for the case of direct sums of monomials, that the algebraic immunity is
upper bounded both by the number of monomials (case d = 0) and the degree of f (case
d = k).

Then, we prove the second inequality:

AI(f) ≥ min
0≤d≤k

d+
k∑

i=d+1
mi.

Let us denote by e the integer between 0 and k giving the minimal value of the sum, we take
e as the smallest element if multiple integers lead to the minimal value.



5.1 Low-cost Functions 109

So, for all integers j such that 1 ≤ j ≤ e:

e− j +
k∑

i=e−j+1
mi ≥ e+

k∑
i=e+1

mi,

which is equivalent to:
e∑

i=e−j+1
mi ≥ j.

This inequality holds for all j such that 1 ≤ j ≤ e; for j = 1 it guarantees that me is non
null, for j = 2 it gives that me + me−1 ≥ 2, so one and so forth until m1 + · · · + me ≥ e.
Therefore it guarantees that we can repetitively apply Proposition 5.1.4 on f to obtain a
function with direct sum vector having all mi non null for 1 ≤ i ≤ e, which already gives
AI(f) ≥ e. A constructive way can consist in contracting all but one monomials of each
degree less than or equal to e, beginning by the degree-e monomials. It would lead to a
function F with direct sum vector:

mF =
[(

e∑
i=1

mi

)
− e+ 1, · · · , 1,me+1, · · · ,mk

]
.

Now, let us consider the monomials of degree higher than e; for all integers j such that
1 ≤ j ≤ k − e:

e+ j +
k∑

i=e+j+1
mi ≥ e+

k∑
i=e+1

mi,

which is equivalent to:

j ≥
e+j∑
i=e+1

mi.

This inequality holds for all j such that 1 ≤ j ≤ k−e; for j = 1 it guarantees thatme+1 ≤ 1,
for j = 2 it gives that me+1 +me+2 ≤ 2, so one and so forth until me+1 + · · ·+mk ≤ k − e.
Therefore it guarantees that they are no more monomials than positions between e and any
position of degree higher than e. So we can repetitively apply Proposition 5.1.4 on f to
obtain a function with direct sum vector containing ∑k

i=e+1mi consecutive 1 from me+1 and
zeros for higher positions (the zeros are then deleted for a correct representation of the direct
sum vector). A constructive way can consist in contracting each monomial to the first empty
position of the vector, from me+1 to mk. It would lead to a function F with direct sum
vector of length e+∑k

i=e+1mi:

mF = [(m1, · · · ,me, 1, · · · , 1].

Together with the reasoning on the lower positions of the vector, this result shows that the
AI of f can be linked through the repetitive use of Proposition 5.1.4 to the AI of a function
F with direct sum vector of length e+∑k

i=e+1mi:

mF = [m1, · · · ,me, 1, · · · , 1], such that mi > 0 ∀i ∈ [1, e].

As AI(F ) = e+∑k
i=e+1mi, Proposition 5.1.4 gives that AI(f) > e− 1 +∑k

i=e+1mi, proving
the second inequality, and finishing the proof.



110 Chapter 5 New Criteria on Boolean Functions

Remark 5.1.6. This theorem gives the exact algebraic immunity of all functions obtained
by direct sums of monomials, it also characterizes all functions whose algebraic immunity
is exactly the number of monomials in the ANF. Indeed, these functions are direct sums of
monomials, otherwise similarly to the first part of the proof of the theorem, we can construct
functions 1+xj which annihilate more than one monomial, giving a final annihilator of degree
strictly less than the number of monomials. Among the functions with algebraic immunity
equal to the number of monomials in their ANF, by construction the triangular functions are
the ones with the minimal number of variables for a fixed algebraic immunity.

5.2 Recurrent Criteria
In [MJSC16], the motivation to study the recurrent criteria on Boolean functions is the
guess-and-determine attack as presented in [DLR16b]. The efficiency of the attack can
be bounded using the parameters relatively to the standard cryptographic criteria of the
functions that can be obtained by fixing the values of some of the variables. The complexity
of the attack depends on the worst parameters among all the Boolean functions that can be
obtained from F by fixing ` of its N variables (each one to 0 or 1); it defines the notion that
we call recurrent criterion of order `. As example, the recurrent algebraic immunity of order
` of F is the minimal algebraic immunity taken over all functions obtained by fixing ` among
N variables of F , therefore a minimum taken over 2` times N choose ` values, and denoted
by AI[`](F ).

According to the security requirements for the Filter Permutator (see Section 4.5.2) in this
study we focus on the extension of a limited number of standard criteria to their recurrent
versions, the one which are connected with a known attack. Therefore we examine the
recurrent algebraic immunity, the recurrent nonlinearity and the recurrent nonlinearity of
higher order. Except for the first one, we investigate the recurrent parameters only for a
family of functions: the direct sums of monomials. Note that we do not examine the recurrent
balancedness whereas balancedness is an important cryptographic criterion; in fact, this
notion coincides with the resiliency: the function with worst balancedness when ` inputs are
fixed is unbalanced if res(F ) < ` and balanced otherwise.

5.2.1 Definitions and General Bounds

5.2.1.1 Definitions

We give here a formal definition of the recurrent algebraic immunity, recurrent nonlinearity
and recurrent nonlinearity of higher order, of a function. These are the three quantities to
examine for the attacks considered in Section 4.5.2.

Definition 5.2.1 (Recurrent Algebraic Immunity). Let F be a Boolean function of N
variables and ` an integer such that 0 ≤ ` < N , we define the Recurrent Algebraic Immunity
of F of order ` as:

AI[`](F ) = min
π∈SN

(
min
v∈F`2

[
AI
(
F (x1, · · · , xn) | (xπ(1), · · · , xπ(`)) = v

)])
,

where SN is the group of permutations of N elements.
Note that the minimum is finally taken over 2`

(N
`

)
functions defined over N − ` variables.



5.2 Recurrent Criteria 111

In the following part we give bounds on the parameters relative to this criterion and exhibit
functions reaching these bounds. The recurrent algebraic immunity is important on a security
perspective, it enables to stand on the security of both algebraic and fast algebraic attacks
combined with guess-and-determine techniques.
We define in a very similar way the recurrent nonlinearity and recurrent nonlinearity of

higher oder. To avoid misunderstandings, we denote the order of nonlinearity as an index
(bottom, right) whereas the recurrent order is denoted between square brackets. As the
standard nonlinearity is the nonlinearity of order one, the NL1 notation is replaced by NL in
the other sections.

Definition 5.2.2 (Recurrent Nonlinearity (of Higher Order)). Let F be a Boolean function
of N variables and ` an integer such that 0 ≤ ` < N , we define the recurrent nonlinearity (of
order d) of F of recurrent order ` as:

NLd[`](F ) = min
π∈SN

(
min
v∈F`2

[
NLd

(
F (x1, · · · , xn) | (xπ(1), · · · , xπ(`)) = v

)])
.

This quantity can be sufficient to stand on the security relatively to correlation-like attacks
of various orders combined with guess-and-determine techniques.
Note that for all recurrent quantities the recurrent order 0 corresponds to the standard

quantity, then the parameters of a function relatively to a recurrent criterion can be as high
as in the standard case, and as low as for a trivial function, depending on the recurrent order.

5.2.1.2 Bounds on the Recurrent Algebraic Immunity

In this part we investigate the minimal and maximal values of the recurrent algebraic
immunity for all functions F , in term of the algebraic immunity of F and the recurrent
order `. Then, finding functions reaching these extrema enable us to stand on the good
candidates for cryptographic constructions affected by (fast) algebraic attacks combined with
guess-and-determine attacks.

Lemma 5.2.3 (Extremum Values of the Recurrent Algebraic Immunity). Let F be a Boolean
function in N variables, and ` an integer such that 0 ≤ ` < N , the recurrent algebraic
immunity of F follows:

AI(F )− ` ≤ AI[`](F ) ≤ AI(F ).

Proof. First we prove the upper bound AI[`](F ) ≤ AI(F ). By definition of the algebraic
immunity, we can take a function g in N variables such that:

gF = 0 or g(F + 1) = 0, where deg(g) = AI(F ) 6= 0.

As g is not null, for all ` less than N there exists a set I of ` indexes between 1 and N and
an element v ∈ F`2 such that the (N − `)-variable function g(x1, · · · , xn)|(xI1 , · · · , xI`) = v is
non null. Without loss of generality we take I as the integer set from N − `+ 1 to N .
If g annihilates F on FN2 we get:

F (x1, · · · , xN−`, v)g(x1, · · · , xN−`, v) = 0, and g(x1, · · · , xN−`, v) 6= 0.



112 Chapter 5 New Criteria on Boolean Functions

Otherwise g annihilates F + 1, then we get the same equation with 1 + (x1, · · · , xN−`, v).
Combining these two equations gives:

AI(F (x1, · · · , xN−`, v)) ≤ deg(g(x1, · · · , xN−`, v),

by definition of the degree,

deg(g(x1, · · · , xN−`, v)) ≤ deg(g),

by definition of the recurrent algebraic immunity,

AI[`](F ) ≤ AI(F (x1, · · · , xN−`, v)),

finally giving the upper bound
AI[`](F ) ≤ AI(F ).

Then, we prove the lower bound AI(F )− ` ≤ AI[`](F ), proceeding by contradiction. Let us
suppose AI[`](F ) < AI(F )− `, then there exist:

• an element v ∈ F`2,

• an integer set I of ` elements between 1 and N ,

such that the (N − `)-variable F ′ defined over elements

(x1, · · · , xN ) | (xI1 , · · · , xI`) = v

has an algebraic immunity strictly smaller than AI(F )− `.
Without loss of generality we set I = [N − `+ 1, N ], giving

F ′(x1, · · · , xN−`) = F (x1, · · · , xN−`, v1, · · · , v`), with AI(F ′) < AI(F )− `.

Then, we create an annihilator of F or F + 1 of degree strictly smaller than AI(F ). To do so,
we first consider a simpler case: ` = 1 and v = 0. In this case, if g is a non null annihilator of
F ′ (or F ′ + 1) we have that (1 + xN )g is a non null annihilator of F (or F + 1). Indeed, if
xN = 0 then g annihilates F (or F + 1) where F ′ is defined, otherwise xN = 1 then 1 + xN
is null. By construction (1 + xN )g cannot be null and is therefore an annihilator of F (or
F + 1) of degree deg(g) + 1.
We generalize this strategy for all ` such that 0 ≤ ` < N and all v ∈ F`2; let g be an

(N − `)-variable function of degree AI(F ′) annihilating F ′, then the following holds:(∏̀
i=1

(1 + xN−`+i + vi)
)
gF = 0.

If g is an annihilator of F ′ + 1 instead, the above equation is still correct for F + 1 instead of
F . In both cases, it gives a non null annihilator of degree AI(F ′) + `, strictly less than AI(F ),
which gives a contradiction.

Therefore we can conclude that AI(F )− ` ≤ AI[`](F ), finishing the proof.



5.2 Recurrent Criteria 113

Note that this result corresponds to the Proposition 1 in [DGM04], written differently.
These two bounds are tight, we exhibit cases where the lower bound is tight, focusing on

the family of majority functions. Majority functions have optimal algebraic immunity, then
it makes interesting the study of their behavior relatively to recurrent algebraic immunity;
wondering if they are still optimal in this context or not. We show in the following proposition
that they reach the lower bound of the precedent lemma.

Proposition 5.2.4. Let N be a positive odd integer and ` an integer such that 0 ≤ ` < N ,
then the following holds for the majority functions:

AI[`](MajN ) = max
(

0,
⌈
N

2

⌉
− `
)
.

Proof. From the definition of the majority function (Definition 2.4.18) we know that:

MajN (x) = 1⇐⇒ Hw(x) ≥
⌈
N

2

⌉
.

We consider the function obtained from MajN by fixing the last ` variables to 1, noted F , a
(N − `)-variable function:

∀y ∈ FN−`2 , F (y) = MajN (y1, · · · , yN−`, 1, · · · , 1),

which is equivalent to:
F (y) = 1⇐⇒ Hw(y) ≥

⌈
N

2

⌉
− `.

Then, let us consider the elementary symmetric function in N−` variables of degree dN/2e−`
that we denote σdN/2e−`.
Now we focus on the Hamming weight of the elements y ∈ FN−`2 : if wH(y) < dN/2e − `

then F (y) = σdN/2e−`(y) = 0, otherwise wH(y) ≥ dN/2e − ` then (F + 1)(y) = 0.
Combining these two cases:

∀y ∈ FN−`2 (F + 1)σdN/2e−`(y) = 0.

Therefore, σdN/2e−` is a non null annihilator of F + 1 if dN/2e − ` > 0, giving in this case

AI[`](F ) ≤ dN/2e − `.

Note that if this function is null, we are in the case where F = 1 giving AI(F ) = 0. The lower
bound of Lemma 5.2.3 enables to conclude:

AI[`](MajN ) = max
(

0,
⌈
N

2

⌉
− `
)
.

We can also exhibit functions whose recurrent algebraic immunity follows the upper bound
of Lemma 5.2.3. For example, the direct sum of nb triangular functions of degree k has
the same recurrent algebraic immunity for all orders ` such that 0 ≤ ` < nb (it is a direct
corollary of Theorem 5.1.5). Moreover, some functions can reach the upper bound for all
recurrent orders as illustrated by the next remark .



114 Chapter 5 New Criteria on Boolean Functions

Remark 5.2.5. The elementary symmetric function of degree 1, noted σ1, reaches the upper
bound of Lemma 5.2.3 for all recurrent order. Indeed, for all N this non constant linear
functions is such that AI(σ1) = 1, and as res(σ1) = N − 1, all functions obtained from σ1 by
fixing at most N − 1 of its variables is still balanced. The algebraic immunity of a balanced
function being at least 1, it gives:

∀` such that 0 ≤ ` < N, AI[`](σ1) = AI(σ1) = 1.

Note that the examples for the lower and upper bounds of Lemma 5.2.3 show a variety of
behaviors for the recurrent algebraic immunity. From the algebraic immunity upper bound we
can derive the upper bound of d(N − `)/2e for its recurrent analog. Some of the functions we
exhibit reach this upper bound for particular values of `, a natural question consists in asking
if there exists functions of N variables reaching this bound for all ` such that 0 ≤ ` < N .
It would lead to the concept of optimal recurrent algebraic immunity, functions with all
sub-functions obtained by fixing variables have optimal algebraic immunity. For N = 2, it is
the case of σ1 as shown in the precedent remark, however we do not know constructions for
all N satisfying this property, and defer it to future investigations.

5.2.2 Recurrent Criteria for Direct Sums of Monomials

In this part we examine the recurrent criteria specifically for functions obtained by direct
sums of monomials. As the FLIP functions are a sub-part of this family, upper bounds on the
parameters of these functions enable to study the concrete security of the instantiations of
the Filter Permutator.

We begin by defining two criteria of particular interest for the direct sums of monomials:

Definition 5.2.6 (Recurrent Criteria for Direct Sums of Monomials). For a Boolean function
F of N variables obtained by direct sums of monomials and with associated direct sum vector
mF = [m1,m2, · · · ,mk] we define the criteria:

• m∗F as the number of nonzero values of mF ,

• δd = 1
2 −

NLd(F )
2N as the bias to 1/2 of the best degree d approximation of F .

We accordingly define m∗F [`] and δd[`], as the minimal value (relatively to these criteria) taken
over the N choose ` times 2` functions obtained from F by fixing ` variables.

These criteria are adapted to quantify the impact of guessing some bits on the cryptographic
properties of a Boolean function obtained by direct sums. mF , m∗F are easily computable
from the description of F , δd and δd[`] can be computed recursively using Lemma 5.1.1. We
first give an upper bound on m∗F [`], this quantity being easy to derive from the direct sum
vector notation, and strongly connected to AI[`](F ).

Lemma 5.2.7. Let F be a Boolean function obtained by direct sums of M monomials with
associated direct sum vector mF = [m1,m2, · · · ,mk], and ` an integer such that 0 ≤ ` < M
then the following holds for m∗F [`]:

m∗F [`] ≥m∗F −
⌊

`

min1≤i≤kmi

⌋
.



5.2 Recurrent Criteria 115

Proof. First, note that for each variable fixed, the function obtained is still a direct sum of
monomials, and at most one of the mi is reduced. Indeed, a variable fixed to 0 cancels one
monomial, reducing by one the coefficient mi where the variable appears. A variable fixed to
1 changes a monomial of degree d into a monomial of degree d− 1; if d > 1 then it adds one
to mi−1 and reduce mi by one, otherwise d = 1 and it only reduces m1 by one.
Then, as each fixed variable reduces at most one mi and by 1, m∗F cannot be reduced by

more than the maximal number of mis than can be reduced to 0 by fixing ` variables. It
ensures:

m∗F [`] ≥m∗F −max
π∈Sk

j |
 j∑
i=1

mπ(i)

 ≤ `
 ,

where Sk denotes the group of permutations of k = deg(F ) elements.
This maximum corresponds to the maximal number of mis that can be changed in 0 with `

variables fixed, as fixing these ` variables to 0 does not increase any other mi this maximum
is reached, transforming this bound in an equality. This maximum can be computed by
summing the successive minima of mF until the sum exceeds `, the number of successive
minima subtracted to m∗F giving the exact value of m∗F [`]. We follow our analysis to give an
upper bound on m∗F [`] easier to compute and express.

We can bound this maximum:

max
π∈Sk

j |
 j∑
i=1

mπ(i)

 ≤ `
 ≤ ⌊ `

min1≤i≤kmi

⌋
.

Using this bound (corresponding to the worst case where all mis are equals) we get the
final bound:

m∗F [`] ≥m∗F −
⌊

`

min1≤i≤kmi

⌋
.

Note that for all Boolean functions obtained by direct sums of monomials F , m∗F ≤ AI(F )
as a direct consequence of Theorem 5.1.5. Then as fixing variables of F does not change its
quality of direct sums of monomials, m∗F [`] gives a lower bound on AI[`](F ) for this family
of functions. The advantage of m∗F [`] is to be easily computed or bounded; instead, the
exact AI[`] can be determined using Theorem 5.1.5. It requires to consider the minimum
over all functions obtained by fixing ` variables; each one being obtained by direct sums of
monomials, the theorem gives its exact AI. Nevertheless this strategy supposes to compute a
minimum over at most 2` times N choose ` minima, which can be quite costly.
We then give a lower bound on δ1[`], related to the recurrent nonlinearity, this quantity

appearing in the complexity bounds of the attacks we described related to correlation-like
attacks combined with guess-and-determine attacks. For readability in the rest of this section
we refer as δ for δ1 and δ[`] for δ1[`].

Lemma 5.2.8. Let F be a Boolean function obtained by direct sums of M monomials with
associated direct sum vector mF = [m1,m2, · · · ,mk], and ` an integer such that 0 ≤ ` < M
then the following holds for δ[`]:

δ[`](F ) ≤ δ(F ) · 2`.



116 Chapter 5 New Criteria on Boolean Functions

Proof. First, we study the parameter δ on similar functions, noting that for all functions
0 < δ(F ) ≤ 1/2. We focus on δ(F ) and δ(G) where F is the direct sum of G (of N − n
variables) and a monomial m of degree n > 1.

Using the Walsh transform:

∀(u, v) ∈ FN−n2 × Fn2 , F̂χ(u, v) = Ĝχ(u)m̂χ(v).

As maxv∈Fn2 (m̂χ(v)) = 2n − 2, we deduce:

δ(F )2N = δ(G)2N−n(2n − 2),

and accordingly:

δ(G) = δ(F ) ·
(

2n−1

2n−1 − 1

)
.

The last case to consider is when n = 1, then NL(F ) = 2NL(G) by Lemma 5.1.1 and
therefore δ(G) = δ(F ).

Then, we generalize this study for all `, using the direct sum vector notation. As explained
in the proof of Lemma 5.2.7, all functions obtained by fixing ` variables of the direct sum
of monomials F is a direct sum of monomials. Fixing a variable to 0 cancels a monomial,
decreasing the nonlinearity and increasing δ if this monomial is not of degree 1 (in this
particular case the nonlinearity does not change). Fixing a variable to 1 increases the
nonlinearity if the degree of the monomial is greater than 2, otherwise has the same impact
on the nonlinearity as fixing it to 0.

As
(

2n−1

2n−1−1

)
decreases when n increases we obtain the bound:

δ[`](F ) ≤ δ(F ) max
(`1,··· ,`k)

∀i `i≤mi and `=
∑k

i=1 `i

k∏
i=2

(
2i−1

2i−1 − 1

)`i
.

The maximum is taken over all the possible choices of fixing ` of the N variables to 0.
Indeed, the maximum over all possible choices of fixing the value of ` of the N variables can
be reached by fixing zeros only as explained above. As the maximum corresponds to at least
one of the potential fixes and as the value corresponding to the 2` times N choose ` functions,
the recurrent bias equals the product of δ(F ) by this maximum.

So, we optimize the choices for the `i to determine this maximum. Let j denote the integer
such that:

j∑
i=2

mi ≤ ` <
j+1∑
i=2

mi.

If such a j exists (it means that `+m1 ≤M) then:

max
(`1,··· ,`k)

∀i `i≤mi and `=
∑k

i=1 `i

k∏
i=1

(
2i−1

2i−1 − 1

)`i
=

 j∏
i=2

(
2i−1

2i−1 − 1

)mi( 2j
2j − 1

)`−∑j

i=2 mi

,

otherwise (the case `+m1 > M), the maximum becomes:
k∏
i=2

(
2i−1

2i−1 − 1

)mi
.



5.2 Recurrent Criteria 117

Summing the two cases, we get the exact value of δ[`](F ) for all ` such that 0 ≤ ` < M for
all direct sums of monomials. We give a not tight bound, as it is easier to compute and can
be derived only from NL(F ), without using the direct sum vector representation.

As we always have `2 ≤ `, and that the higher value of
(

2i−1

2i−1−1

)
is obtained for i = 2, we

consider the worst case: `2 = `, giving:

k∏
i=2

(
2i−1

2i−1 − 1

)`i
≤ 2`,

and therefore the conservative bound

δ[`](F ) ≤ δ(F )2`.

Finally, we give a lower bound on δd[`], related to the recurrent nonlinearity of higher order
(greater than 1); this quantity enables to stand on the attacks related to high order correlation
attacks combined with guess-and-determine attacks. Even for direct sums constructions the
nonlinearity of higher order is not a criterion well studied (up to our knowledge), way less
examined than the other cryptographic criteria. Therefore, the best approximation of degree
d of a function obtained by direct sums of monomials F is not exhibited. In order to get
bounds for security we assume in the next lemma that the best approximation of F of degree
d is reached by its part of degree less than or equal to d. Note that it is not the case for all
functions, but we did not find any counter example for functions obtained by direct sums of
monomials. In this particular case, it seems that no better approximation of a direct sum
could be reached than the one obtained by the direct sum of the best approximations of the
two components.

Lemma 5.2.9. Let F be a Boolean function obtained by direct sums of M monomials with
associated direct sum vector mf = [m1,m2, · · · ,mk], ` an integer such that 0 ≤ ` < M , and
d an integer such that 1 < d ≤ k. If we assume that for all Boolean functions G obtained
by direct sums of monomials with associated direct sum vector mG = [m1,m2, · · · ,mk], the
function Gd with associated direct sum vector mGd = [m1,m2, · · · ,md] corresponds to the
best approximation of F of degree d, then the following holds for δ[`]:

δd[`] ≤ δ ·
(

2d
2d − 1

)`
.

Proof. This proof is very similar to the proof of the precedent lemma, the main difference
is the need of the assumption to determine the high order nonlinearity of direct sums of
monomials. For the first order nonlinearity, Lemma 5.1.1 item 4 enables to determine this
quantity, the assumption enables to use the same formula for higher order nonlinearity, in
the particular case of direct sums of monomials.

We begin by examining the parameter δd on similar functions, noting F = G+ xI where F
is an N -variable function, G an (N − n)-variable function and xI a monomial function of
degree n. F and G are obtained by direct sums of monomials. We consider two cases: either
n ≤ d, or n > d.



118 Chapter 5 New Criteria on Boolean Functions

• Case n ≤ d. We make a partition of the truth table of F , in 2n parts, depending on the
value of the n variables of xI . For all choices not taking the n variables of xI all equal
to 1, we obtain a truth table of size 2N−n where F is equal to G, the distance between
(Gd + xI) and F on this part is therefore NLd(G) using the assumption. On the part
corresponding to the n variables of xI being all equal to 1, the function F takes the
values of G+ 1, the distance between (Gd + xI) and F on this part is therefore NLd(G)
using the assumption. Summing the 2n parts, it gives:

NLd(F ) = 2nNLd(G).

• Case n > d. Using the assumption, the best approximation of F is Gd + 0. Using the
same partition as before, on all parts where the n variables of xI are not all equal to
1, the distance between Gd and F is equal to NLd(G). On the last part, F takes the
values of G+ 1, therefore the distance to Gd is equal to 2N−n − NLd(G). Summing the
2n parts, it gives:

NLd(F ) = (2n − 2)NLd(G) + 2N−n.

In terms of δd it gives:

δd(G) =
{
δd(F ) if n ≤ d,
δd(F ) ·

(
2n−1

2n−1−1

)
otherwise.

The behavior of δd for direct sums of monomials is then the same as δ, where the same
equation holds for d = 1. Then, we can use the proof of the precedent lemma (Lemma 5.2.8),
giving the exact value of δd[`](F ) for all ` such that 0 ≤ ` < M , or the upper bound:

δd[`] ≤ δ ·
(

2d
2d − 1

)`
.

Note that for these criteria, if the recurrent order ` reaches or exceeds the number of
monomials M of the function F , then m∗F [`] = 0, and δd[`](F ) = 1/2. So, these criteria are
useful tools to study the security of direct sums of monomials, when a limited number of
variables are fixed. The 3 associated lemmata enable to derive lower bounds easy to compute
in order to discard functions for security reasons, and their proof enables to determine the
exact value of AI[`] and NL[`].

5.3 Restricted Algebraic Immunity
In a cryptographic framework, Boolean functions are classically studied with an input ranging
over the whole vector space Fn2 of binary vectors of some length n. This is the case when
Boolean functions are used as the (main) nonlinear components of a stream cipher, in the
so-called combiner and filter models of pseudo-random generators. However, it can happen
that the function be in fact restricted to a subset (say E) of Fn2 , an example of such situation
is given by the cipher FLIP (see [MJSC16]). Consequently, in [CMR17] we study the main
cryptographic criteria of Boolean functions when their input is not Fn2 but restricted to a
subset of Fn2 . This formulation of cryptographic Boolean criteria is quite general: as an



5.3 Restricted Algebraic Immunity 119

example the standard criteria correspond to the whole set Fn2 , and the recurrent criteria
correspond to the subsets of Fn2 of cardinal 2n−` obtained by fixing ` of the n variables.

This study focuses on the properties of algebraic immunity, nonlinearity and balancedness,
restricted to any subset and then more particularly to the subsets of all words of a fixed
Hamming weight - that we note En,k where En,k = {x ∈ Fn2 | wH(x) = k} - due to their
relation to the Filter Permutator construction, as explained in Section 4.5.3. A study has
been made by Yuval Filmus et al. on the restrictions of Boolean functions to sets of inputs of
fixed Hamming weight (that he calls "slices") [Fil16b; Fil16a; FKMW16; FM16]. This study
is asymptotic and does not really fit with our cryptographic framework; the results from these
papers have no overlap with the ones of [CMR17]. For readability, we decide to present the
results of [CMR17] relatively to the three main restricted criteria in three different sections.
In this section we present the results on restricted algebraic immunity, in the following section
(Section 5.4) the study of the restricted nonlinearity and finally we examine the restricted
balancedness in Section 5.5 to finish this chapter. We chose this particular order to follow
the pattern adopted various times in this manuscript, considering first algebraic immunity,
then nonlinearity, and finally balancedness.

We begin our study on the restricted algebraic immunity by defining this concept. It is the
natural generalization of the algebraic immunity introduced in [CM03] to any subset of Fn2 .

Definition 5.3.1 (Restricted Algebraic Immunity). We call Algebraic Immunity of a function
f over a set E the number:

AIE = min{deg(g) : g annihilator of f or of f+1 over E and g not identically null over E}.

Note that the work [CFGR12] realizes a theoretical study of the algebraic phase of the
so-called algebraic side channel attacks on block ciphers. The authors modify the notion of
algebraic immunity to include the information (on Hamming weight or Hamming distance)
obtained by exploiting the leakage and are able to obtain enough equations of degree one to
solve the algebraic system with Groebner methods. In the following, our modification of the
definition of algebraic immunity is also related to Hamming weight when we focus on the
sets En,k but is of a different nature, being related to the fact that the input is restricted.
Another major difference is that we focus on functions with one bit of output and not on
S-boxes.
In the following, we generalize the algebraic immunity upper bound for all sets E and

then we give precise results in the constant Hamming weight case. Finally, we examine the
algebraic immunity restricted to En,k for direct sums of functions and prove a counter-intuitive
result showing how the general algebraic immunity can decrease in this case.

5.3.1 Algebraic Immunity Upper Bound for all Restricted Sets

In the case of E = Fn2 , Courtois and Meier have shown that, for every non-negative integers
d and e such that d+ e ≥ n, there exists a nonzero Boolean function g of algebraic degree
at most e and a Boolean function h of algebraic degree at most d such that h = gf . For
e = d = dn/2e, this proved that the algebraic immunity of f is at most dn/2e. We revisit
here these results for functions defined over a subset of Fn2 .

Proposition 5.3.2. Let E be any non-empty subset of Fn2 and f any Boolean function
defined over E. Let d and e be two non-negative integers and Md,E be the (∑d

i=0
(n
i

)
)× |E|



120 Chapter 5 New Criteria on Boolean Functions

binary matrix whose term at row indexed by u ∈ Fn2 , wH(u) ≤ d, and at column indexed by
x ∈ E equals xu := ∏n

i=1 x
ui
i . Assume that the ranks of matrices Md,E and Me,E are such

that:
rank(Md,E) + rank(Me,E) > |E|,

then there exists a Boolean function g of algebraic degree at most e over Fn2 , whose restriction
to E is not identically null, and a Boolean function h of algebraic degree at most d on Fn2 ,
such that functions gf and h coincide on E.

Proof. Let Fd (respectively Fe) be a maximum-size free family of restrictions to E of
monomials xu of algebraic degree deg(xu) = wH(u) ≤ d (respectively at most e). By
definition of the rank of a matrix, the size of Fd equals rank(Md,E) and that of Fe equals
rank(Me,E).

Let us consider now the family, that we shall denote by Fef , whose elements (with possible
repetitions) are the products of the elements of Fe by the function f . By hypothesis:

|Fd|+ |Fef | > |E|,

where |E| is the dimension of the F2-vector-space of all Boolean functions over E, (indeed,
the number of Boolean functions over E equals 2|E|).
Then, there exists a linear combination of the elements of Fd and of those of Fef , which

equals the zero function and whose coefficients are not all null. Gathering the part of this
linear combination dealing with the elements of Fd and those dealing with Fef , we obtain
respectively functions h and g such that h and gf coincide over E, and the restrictions of g
and h to E are not both null (since both families Fe and Fd are free), that is, the restriction
of g to E is nonzero.

Remark 5.3.3. The matrices Md,E and Me,E are generator matrices of punctured binary
Reed-Muller codes of order d and e respectively; more connexions between restricted criteria
and punctured binary Reed-Muller code are explained in Section 5.4.

Taking e = 0 in Proposition 5.3.2, we obtain rank(Me,E) = 1, since the constant function 1
does not vanish over E, and:

Corollary 5.3.4. Let E be any non-empty subset of Fn2 and f any Boolean function defined
over E. Let n and d be such that rank(Md,E) = |E|, then there exists a Boolean function over
Fn2 of algebraic degree at most d which coincides with f on E.

In other words, the algebraic degree of any Boolean function over E is bounded above by
the least value of d such that rank(Md,E) = |E|. Indeed, in Proposition 5.3.2, we have g = 1
and gf = h on E where h has algebraic degree at most d.
Taking d = 0, we have rank(Md,E) = 1 and, calling annihilator of f on E any Boolean

function g over E whose product with f vanishes:

Corollary 5.3.5. Let E be any non-empty subset of Fn2 and f any non-constant Boolean
function defined over E. Let n and e be such that rank(Me,E) = |E|, then there exists a
nonzero annihilator of f of algebraic degree at most e over E.

Indeed, in Proposition 5.3.2, we have h constant and since gf = 1 on E is impossible (as
f is non constant), we have then h = 0. Note that this shows that the algebraic immunity



5.3 Restricted Algebraic Immunity 121

of a function, can tumble down when the input is restricted to a set E. Notice also that
Corollary 5.3.5 can be viewed as a consequence of Corollary 5.3.4, since we can take f + 1 for
annihilator.

This being observed, we have in fact a stronger result when taking e = d. We obtain:

Corollary 5.3.6. Let E be any non-empty subset of Fn2 and f any Boolean function defined
over E. Let n and e be such that rank(Me,E) > |E|

2 , then there exists g of algebraic degree at
most e, whose product with f or f + 1 is null on E, and whose restriction to E is nonzero.

Indeed, using a classical idea of Courtois and Meier [CM03], either the functions g and h
of Proposition 5.3.2 coincide on E, and we have then gf + h = g(f + 1) = 0 on E, where g
has algebraic degree at most e and nonzero restriction to E, or they do not and we have,
after multiplication of equality h = gf by f , that (g + h)f = 0, where g + h has algebraic
degree at most e and nonzero restriction to E.
The situation is then similar to that described by Courtois and Meier and this explains

our definition of restricted algebraic immunity and leads to the following property:

Corollary 5.3.7. The algebraic immunity of any Boolean function F defined over E is
bounded above:

AIE(F ) ≤ min
(
e; rank(Me,E) > |E|2

)
.

5.3.2 Algebraic Immunity Upper Bound for Fixed Hamming Weight Input

In this section, we focus on the particular case when the input is restricted to the words with
fixed Hamming weight: En,k for some k ∈ [1, n− 1]. More formally for k ≤ n we denote by
En,k the set of such entries: En,k = {x ∈ Fn2 ; wH(x) = k}. To be able to evaluate efficiently
in such situation the algebraic immunity by using Proposition 5.3.2 and its corollaries, there
remains to calculate the rank of the matrix Md,En,k for each d and k:

Theorem 5.3.8. Let n, k, and d be non negative integers, letMd,En,k be the (∑d
i=0

(n
i

)
)×|En,k|

binary matrix whose term at row indexed by u ∈ Fn2 , wH(u) ≤ d, and at column indexed by
x ∈ En,k equals xu := ∏n

i=1 x
ui
i . Then the following holds:

rank(Md,En,k) =
(

n

min(d, k, n− k)

)

Proof. For a readability perspective we first denote Md,En,k as Mn,k,d in the following proof.
The principle of this proof is to find a recurring relation on the rank of Mn,k,d. To this aim,
we use a construction which looks like the well-known u ‖ u+ v construction of Reed-Muller
codes where every Boolean function f of algebraic degree at most d can be written in the
form :

f(x1, · · · , xn) = g(x1, · · · , xn−1) + xnh(x1, · · · , xn−1),

where g has algebraic degree at most d and h has algebraic degree at most d − 1. In the
sequel of the proof, we shall use the additional notation:

Nk =
(
n

k

)
, and D =

∑
0≤i≤d

(
n

i

)
.



122 Chapter 5 New Criteria on Boolean Functions

Let ψn,k,d be the following linear application, mapping every Boolean function in n variables
(defined by its ANF) of algebraic degree at most d to the restriction of its truth table to the
elements in En,k:

ψn,k,d : FD2 −→ FNk2
(au)u∈Fn2 ,wH(u)≤d 7−→

(∑
u�x au

)
x∈Fn2 ,wH(x)=k

where u � x means ui ≤ xi for every i such that 1 ≤ i ≤ n. This application ψn,k,d is linear
and moreover, the rank of Mn,k,d is exactly the rank of this linear application ψn,k,d.
Denoting by mu the monomial xu, the rank of ψn,k,d is the rank of the family of the

following vectors:
(ψn,k,d(mu))u∈Fn2 ,wH(u)≤d.

We split the family of vectors u ∈ Fn2 ,wH(u) ≤ d in two families, depending on the value of
the last coordinate:

F1 = {u ∈ Fn2 ,wH(u) ≤ d;un = 0}, and F2 = {u ∈ Fn2 ,wH(u) ≤ d;un = 1}.

We also split the vectors x of Fn2 of Hamming weight k in two sets, depending on the value of
the last coordinate:

E1 = {x ∈ Fn2 ,wH(x) = k;xn = 0} and E2 = {x ∈ Fn2 ,wH(x) = k;xn = 1}.

Notice that for every u ∈ F2 and every x ∈ E1, we have mu(x) = 0.
The FD2 × FNk2 matrix Mn,k,d representing the linear application ψn,k,d has then the form

given in Figure 5.1, we use the represented decomposition to illustrate a recurrent relation
on the rank of Mn,k,d.
The matrix An,k,d takes its entries on the set of monomials in which xn does not occur

and of degrees at most d. The output of the linear application defined by An,k,d is the truth
table of Boolean functions on those inputs of Hamming weight k where the value of xn is set
to 0. Then, as xn does not occur in the entries and is fixed to 0 in the output, An,k,d defines
exactly the linear application which gives the truth table on words of Hamming weight k of
all Boolean functions with n− 1 variables (xn being fixed) and of degree at most d.
The matrix Bn,k,d defines the linear application which gives the truth table on words of

weight k − 1 (because xn is fixed to 1 and not 0 anymore) of all Boolean functions with
n− 1 variables (xn being fixed) and of degree at most d− 1. Hence, An,k,d defines the linear
application ψn−1,k,d and Bn,k,d defines ψn−1,k−1,d−1.
Moreover, let us prove that the rank of this matrix is equal to the rank of An,k,d plus

the rank of Bn,k,d (i.e. Mn−1,k−1,d does not play any role in the rank of the whole matrix).
Indeed, if we have a vector of length

(n
k

)
which is a linear combination on the lines such

that the last
(n−1
k

)
coordinates of the resulting vector are null, (i.e. we are in the kernel of

An,k,d) then this vector is linearly dependent from the vectors defined by Bn,k,d. In terms of
Boolean functions, we prove that if f is a Boolean function in the linear span of F1 such that
∀x ∈ E1, f(x) = 0 (i.e. in the kernel of An,k,d) then f is in the linear span of F2; indeed:

f(x1, · · · , xn) = xng(x1, · · · , xn−1) + h(x1, · · · , xn−1).

The Boolean function f is of degree less than d, implying that h is of degree less than d
and g is of degree less than d− 1. But for all x ∈ E1, we have f(x) = 0, then that means



5.3 Restricted Algebraic Immunity 123

Bn,k,d

Mn−1,k−1,d

0

An,k,d

(ψ(mu))x∈E2 (ψ(mu))x∈E1

(ψ(mu))mu∈F1

(ψ(mu))mu∈F2

(n−1
k−1
) (n−1

k

)
(n
k

)

d−1∑
i=0

(
n− 1
i

)

d∑
i=0

(
n− 1
i

)
d∑
i=0

(
n

i

)

Figure 5.1: Decomposition of the matrix Mn,k,d.



124 Chapter 5 New Criteria on Boolean Functions

that h(x1, · · · , xn−1) = 0, then f is in the linear span of F2. Then we deduce the following
recurring relation:

dim(=(ψn,k,d)) = dim(=(ψn−1,k−1,d−1)) + dim(=(ψn−1,k,d)).

We need to initialize this relation. This can be done by considering the cases d = 0, d = k
and d = n−k. In the case d = 0 the matrix is only a row vector corresponding to the constant
function 1, giving a dimension on 1 =

(n
d

)
. Moreover, if d ≥ k then dim(=(ψn,k,d)) =

(n
k

)
=

dim(=(ψn,k,k)). In fact, the monomials of degree exactly k correspond to the canonical basis of
the Boolean functions defined over En,k (representing within their truth table). For d ≥ n−k,
we can choose the Boolean functions defined by f(x) = (1 +xi1)(1 +xi2) · · · (1 +xin−k) which
are of degree less than or equal to d and form also the canonical basis of the Boolean functions
defined over En,k, giving here dim(=(ψn,k,d)) =

( n
n−k

)
= dim(=(ψn,k,n−k)). Then, as we found

a recurring relation between dim(=(ψn,k,d)), dim(=(ψn−1,k−1,d−1)) and dim(=(ψn−1,k,d)), the
recursion always ends on one of these cases d = 0, d ≥ k or d ≥ n− k, justifying the choice
of initialization step.

Finally, using Pascal’s identity we deduce by induction that:

dim(=(ψn,k,d)) =
(

n

min(d, k, n− k)

)
.

From Corollary 5.3.7 and Theorem 5.3.8, we deduce:
Corollary 5.3.9. Let k be any positive integer such that k ≤ n/2. The algebraic immunity
of the restriction of F to En,k respects the following bound:

AIEn,k(F ) ≤ min
{
e; 2

(
n

e

)
>

(
n

k

)}
.

Remark 5.3.10. We investigate the behavior of this bound compared to the bound on Fn2 :
AI(F ) ≤ dn/2e. For r > 0, we have:

2
(

n

k − r

)
= 2

(
n

k

)
k(k − 1) . . . (k − r + 1)

(n− k + r) . . . (n− k + 1) = 2
(
n

k

)
k

(n− k + r) · · ·
(k − r + 1)
(n− k + 1) .

Considering k such that:

k >
(n+ 1) + 21/r(r − 1)

1 + 21/r , is equivalent to (k − r + 1)
(n− k + 1) >

1
21/r ,

then the r fractions are all superior to 2−1/r, therefore guaranteeing:

2
(

n

k − r

)
>

(
n

k

)
.

Fixing k = n/2, the condition on k can be propagated to n (even):

n >
2 + 2(r − 1)21/r

21/r − 1
=⇒ 2

(
n

n/2− r

)
>

(
n

n/2

)
.

Hence, the best possible algebraic immunity of a function with constrained input Hamming
weight is lower than for unconstrained functions.



5.3 Restricted Algebraic Immunity 125

With Theorem 5.3.8, we have the dimension of the image of ψn,k,d and then of its kernel.
We can exhibit more properties of its kernel: first we give a proposition identifying elements
of this kernel, second we give a direct corollary of Theorem 5.3.8 giving a basis of the image
of ψn,k,d in particular cases.

Proposition 5.3.11. Let k, r and n be non negative integers such that r ≤ k ≤ n, let
1 ≤ i1 < i2 < · · · < ir ≤ n. Then, any n-variable Boolean function defined as:

xi1xi2 · · ·xir

 ∑
j 6=i1,i2,··· ,ir

xj

 if k − r ≡ 0 mod 2,

xi1xi2 · · ·xir

1 +
∑

j 6=i1,i2,··· ,ir
xj

 if k − r ≡ 1 mod 2,

is null on the set En,k.
More generally, let k, n, r and s be non negative integers such that r ≤ k ≤ n, and

1 ≤ s ≤ n− r, let 1 ≤ i1 < i2 < · · · < ir ≤ n and note I = {i1, · · · , ir}. Then, any n-variable
Boolean function defined as:

xi1xi2 · · ·xir

 ∑
{j1,...,js}∩I=∅

s∏
`=1

xi`

 if
(k−r
s

) ≡ 0 mod 2,

xi1xi2 · · ·xir

1 +
∑

{j1,...,js}∩I=∅

s∏
`=1

xi`

 if
(k−r
s

) ≡ 1 mod 2,

is null on En,k.

Proof. The first part of the proposition is a particular of the second one, corresponding to
the case s = 1, therefore we prove the second part. Without loss of generality, we take
I = {1, · · · , r} and denote f the function we study in this proposition. Let x ∈ En,k, we
consider two cases. If the Hamming weight on the first r coordinates of x is less than r then
x1x2 · · ·xr = 0 giving f = 0. In the other case, the Hamming weight of x on the first r
coordinates is r, giving:

f(x) = f ′(xr+1, · · · , xn) =

 ∑
{j1,...,js}∩I=∅

s∏
`=1

xi`

+
(
k − r
s

)
mod 2

The Hamming weight on the n − r other coordinates of x is k − r. The n − r variables
Boolean function f ′ described just above is an elementary symmetric Boolean function of
degree s, then it is constant when the Hamming weight of the entry is fixed, and its value
is
(k−r
s

)
mod 2. Therefore f(x) = 0 in this second case, in conclusion f(x) = 0 for all x of

Hamming weight k.

Corollary 5.3.12. Let n, k, and d be non negative integers, and ψn,k,d be the linear application
defined as in Theorem 5.3.8 then the following holds:

• If d ≥ k, then = (ψn,k,d) = F(nk)
2 and a basis is the set of all the monomials of degree k.



126 Chapter 5 New Criteria on Boolean Functions

• If d ≥ n− k, then = (ψn,k,d) = F(nk)
2 and a basis is the set of all the Boolean functions

of the form (1 + xi1)(1 + xi2) · · · (1 + xin−k) with i1 < i2 < · · · < in−k.

We noticed afterwards that the result of Theorem 5.3.8 have already been proven, in-
dependently, in the context of error-correcting codes. Recently, Dumer and Kapralova
published results on Spherically Punctured Reed-Muller Codes [DK17], whose generator
matrix corresponds to the matrix Mn,k,d. Our article [CMR17] was posted on Eprint before
this publication, however it turns out that the rank of this matrix is already mentioned
and proved in Olga Kapralova’s PhD thesis, of 2013, together with results equivalent to
Corollary 5.3.12. Their proof techniques are similar to ours, using the recursive decomposition,
and based on older results [Got66; Wil90].

5.3.3 Algebraic Immunity Restricted To En,k and Direct Sums
We investigate here the behavior of AIEn,k relatively to direct sums, and then prove a
counter-intuitive relation between AIEn,k and the standard algebraic immunity for these
constructions.

Lemma 5.3.13 (Direct Sum and AIEN,k). Let F be the direct sum of f and g with n and m
variables respectively, an N = n+m-variable Boolean function. Then for all k ≤ min(n,m),
AIEN,k(f) follows the bound :

AIEN,k(F ) ≥ min
0≤`≤k

(max[AIEn,`(f),AIEm,k−`(g)]).

Proof. Suppose that we have h a non-zero annihilator of F on EN,k, then we show that the
restriction of h is a non-zero annihilator of f or 1 + f on En,` and of g or 1 + g on Em,k−` for
some ` such that 0 ≤ ` ≤ k.
For all X ∈ En+m,k, h(X)F (X) = 0, and h is non-null on En+m,k, so, there exists

X̃ ∈ En+m,k such that h(X̃) = 1. We split X̃ as (x̃, ỹ) where x̃ ∈ Fn2 and we define ` as
` = wH(x̃), giving the Hamming weight of ỹ ∈ Fm2 equal to k − `.
For this particular `, we fix for X ∈ En+m,k the x part (the first n coordinates) to the

value x̃ and we consider all possible values for y ∈ Fm2 of Hamming weight k− `. By doing so,
it appears that h restricted to {(x̃, y) | y ∈ Em,k−`} is an annihilator of g or 1 + g on Em,k−`,
and is non null by construction. We can also fix y to ỹ and consider all possible values for x
of Hamming weight ` and similarly find out that h restricted to {(x, ỹ) | x ∈ En,`} is also a
non-zero annihilator of f or 1 + f on En,`. Therefore:

deg(h) ≥ deg(h(X) | X ∈ En+m,k) ≥ max[AIEn,`(f),AIEm,k−`(g)].

Recalling that ` = wH(x̃), and then 0 ≤ ` ≤ k finishes the proof.

Moreover, for direct sums constructions we can link the standard algebraic immunity to
the restricted algebraic immunity on EN,k for particular values of k, as explained by the
following theorem.

Theorem 5.3.14 (Link between AIEN,k and AI in direct sum constructions). Let F be the
direct sum of the two Boolean functions f and g with n and m variables respectively, and let
k be such that n ≤ k ≤ m. Then the following relation holds:

AIEn+m,k(F ) ≥ AI(f)− deg(g).



5.3 Restricted Algebraic Immunity 127

Proof. Let h(x, y) be a non-null annihilator of F over En+m,k, let (a, b) ∈ Fn+m
2 have Hamming

weight k and be such that h(a, b) = 1. Since (a, b) has Hamming weight k, and n ≤ k ≤ m,
we may, up to changing the order of the coordinates of b (and without loss of generality),
assume that for every j = 1, . . . , n, we have bj = aj + 1 and for every j = n + 1, . . . k, we
have bj = 1 (so that for every j = k + 1, . . .m, we have bj = 0). We define the following
affine function over Fn2 :

L(x) = (x1 + 1, x2 + 1, . . . , xn + 1, 1, . . . , 1, 0, . . . , 0),

where the length of the part (1, . . . , 1) equals k−n. We have L(a) = b, the n-variable function
h(x, L(x)) is then non-zero and is an annihilator of f(x) + g(L(x)) over Fn2 . If g(b) = 0, then
function h(x, L(x)) (g(L(x)) + 1) is a non-zero annihilator of f and has algebraic degree at
most deg(h) + deg(g); then we have:

deg(h) + deg(g) ≥ AI(f).

If g(b) = 1, then by applying the same reasoning to f + 1 instead of f and g + 1 instead of g,
we obtain the same relation. If h(x, y) is a non-null annihilator of F + 1 over En+m,k, we
have the same conclusion by replacing f by f + 1 or g by g+ 1, this completes the proof.

Remark 5.3.15. Note that this theorem used jointly with Theorem 5.1.5 enables to derive
lower bounds on AIEN,k for FLIP functions.

The lower bound of this theorem proves in particular that, if k ≥ n, then adding m ≥ k
virtual variables to a function (taking g = 0) does not lower the algebraic immunity with
inputs of Hamming weight k with respect to the (global) original algebraic immunity. Note
that this is already true (with no condition on n and m) when dealing with functions with no
restriction on the input and is straightforward (as a direct consequence of Lemma 5.1.1 item
1 as example), while here it is less obvious. Notice that the bound of Theorem 5.3.14 is tight
when deg(g) = 0: take for f a function whose algebraic immunity equals its algebraic degree;
we have then AIEN,k(F ) = AI(f) = deg(f), since it cannot be larger than the algebraic degree
of f over En,k (consequence of Corollary 5.3.4) which is at most equal to deg(f); the three
parameters AIEN,k(F ), the algebraic degree of f over En,k and deg(f) are then equal.

Nevertheless, the bound of Theorem 5.3.14 also suggests that making the direct sum with a
non-constant Boolean function g may lower the algebraic immunity over inputs of Hamming
weight k with respect to the (global) original algebraic immunity. This may seem rather
counter-intuitive, but it is true. Let us give an example:

f(x1, x2, x3) = x1 + x2x3, and g(x4, . . . , x10) =
10∑
i=4

xi, and k = 5,

then AI(f) = deg(f) = 2, and AI(f)− deg(g) = 1. On E10,5 we have:

x2(f(x1, x2, x3) + g(x4, . . . , x10)) = x2(1 +
10∑
i=1

xi) = 0, and x2 6= 0,

resulting to:
AIE10,5(f + g) = 1 = AI(f)− deg(g),

the bound is tight here.



128 Chapter 5 New Criteria on Boolean Functions

Making the direct sum with a non-constant Boolean function g may decrease drastically
the algebraic immunity over inputs of Hamming weight k, take n odd:

f(x) = 1 +Majn(x), and g(y) = Majn(y), and k = n.

Majn has optimal algebraic immunity n+1
2 , but F (x, y) = f(x) + g(y) is null at fixed input

weight n, because if wH(x) + wH(y) = n then either wH(x) ≤ n−1
2 and wH(y) ≥ n+1

2 or
wH(x) ≥ n+1

2 and wH(y) ≤ n−1
2 .

It gives AIE2n,n(F ) = 0: we fall down to a null algebraic immunity with input Hamming
weight n, however, the bound is not tight here because the algebraic degree of Majn is in
general strictly larger than its algebraic immunity. Note that the same construction with g a
constant function gives a different result. These examples of degradation of the standard
algebraic immunity of direct sum constructions on constant-Hamming-weight sets finish our
study on the restricted algebraic immunity.

5.4 Restricted Nonlinearity

A second criterion to consider on subsets of Fn2 , which plays an important role for quantifying
the contribution of the function to the resistance against attacks by affine approximations,
like the fast correlation attack [MS88], is the nonlinearity NL(f). We shall denote it NLE(f)
when the input to f is taken from a set E rather than the whole set Fn2 . It leads to the
following definition:

Definition 5.4.1 (Restricted Nonlinearity). Let E be any subset of Fn2 and f any Boolean
function defined over E. We call nonlinearity of f over E and denote by NLE(f) the minimum
Hamming distance between f and the restrictions to E of affine functions over Fn2 .

The nonlinearity of Boolean functions under non-uniform input distribution has been
recently studied in [GGPS17], but the chosen distribution is binomial and there is no overlap
with our work [CMR17] in this case. Posteriorly to our work, Sihem Mesnager improved
the upper bound of the maximal restricted nonlinearity [Mes17] that we introduced; in
Section 5.4.2.1 we present our results on this bound and we briefly explain how she improved
it.
In this section we study the criterion of nonlinearity on restricted inputs; first we study

the bound on the maximal nonlinearity reachable by a function on a restricted set, then
we investigate the behavior of this bound for the fixed-Hamming-weight case. We give an
error-correcting code perspective on these investigations, enabling to construct functions with
a guaranteed amount of nonlinearity when the Hamming weight is fixed, then we show how
direct sums can provide some nonlinearity in this setting. Finally, we show how fixing the
Hamming weight can deteriorate the standard nonlinearity of a function, giving example of
bent functions affine on all sets of fixed Hamming weight.

5.4.1 Nonlinearity Upper Bound for All Restricted Sets

As for the standard nonlinearity definition (Definition 2.4.9), we can give another definition
linked to the Walsh transform, as shown by the following proposition.



5.4 Restricted Nonlinearity 129

Proposition 5.4.2. For every n-variable Boolean function f over Fn2 and every non empty
subset E of Fn2 , we have:

NLE(f) = |E|2 −
1
2 max
a∈Fn2

|
∑
x∈E

(−1)f(x)+a·x|.

Proof. Let a ∈ F2
2 and ε ∈ F2, then any affine function (in n variables) is uniquely defined as

`(x) = a · x+ ε. Denoting by fa(x) the sum (in F2) of f(x) and a · x, we have:∑
x∈E

(−1)f(x)+a·x =
∑
x∈E

(1− 2fa(x)),

and the Hamming distance between f and a · x on inputs ranging over E equals:∑
x∈E

fa(x) = |E|2 −
1
2
∑
x∈E

(−1)f(x)+a·x,

where the sums are performed in Z. Hence, the Hamming distance between f and ` over E
equals:

|E|
2 −

(−1)ε
2

∑
x∈E

(−1)f(x)+a·x.

Finally, NLE , the minimum distance over E between f and all affine functions is therefore:

NLE(f) = |E|2 −
1
2 max
a∈Fn2

|
∑
x∈E

(−1)f(x)+a·x|.

There exist nice properties (see e.g. [Car10]) of the Walsh transform that can be used in
proofs. In particular, the Parseval relation

∑
a∈Fn2

W 2
f (a) = 22n leads to the so-called covering

radius (upper) bound on the standard nonlinearity: NL(f) ≤ 2n−1 − 2n/2−1. On a restricted
set E, the same relation can be used, leading to a upper bound on NLE :

Proposition 5.4.3. For every subset E of Fn2 and every Boolean function f defined over E,
we have:

NLE(f) ≤ |E|2 −
√
|E|
2 .

Proof. We have:

∑
a∈Fn2

(∑
x∈E

(−1)f(x)+a·x
)2

=
∑
x,y∈E

(−1)f(x)+f(y) ∑
a∈Fn2

(−1)a·(x+y)

= 2n |E|.

The first equation is obtained by changing the order of the two summations and applying
the classical equality (∑i∈I ai)2 = ∑

i,j∈I aiaj expressing the square of a summation. The
second sum being not null only when x+y = 0, we get the second equation. As the maximum
of a sequence of numbers is always bounded below by the arithmetic mean, we deduce the
final bound.



130 Chapter 5 New Criteria on Boolean Functions

This bound when applied with E = Fn2 is the covering radius bound, reached by the bent
functions. We show that for some sets E this bound can be improved.

Proposition 5.4.4. Let E be any subset of Fn2 , f a Boolean function over E, and F a
vector-space where there exists v in Fn2 such that v · (x+ y) = 1 for all (x, y) ∈ E2 satisfying
0 6= x+ y ∈ F⊥. Then we have:

NLE(f) ≤ |E|2 −
1
2

√
|E|+ λ,

where
λ = |

∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y)|.

Proof. Let F be any vector subspace of Fn2 . Then we have:

∑
a∈F

(∑
x∈E

(−1)f(x)+a·x
)2

=
∑

(x,y)∈E2

(−1)f(x)+f(y) ∑
a∈F

(−1)a·(x+y)

= |F |
∑

(x,y)∈E2
x+y∈F⊥

(−1)f(x)+f(y)

= |F |

|E|+ ∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y)

 ,
which implies:

max
a∈Fn2

|
∑
x∈E

(−1)f(x)+a·x| ≥
√√√√|E|+ ∑

(x,y)∈E2
0 6=x+y∈F⊥

(−1)f(x)+f(y),

and
NLE(f) ≤ |E|2 −

1
2

√√√√|E|+ ∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y).

Let us assume that there exists v in Fn2 such that, for all (x, y) ∈ E2 such that 0 6= x+y ∈ F⊥,
we have v · (x+ y) = 1. Suppose that:∑

(x,y)∈E2
0 6=x+y∈F⊥

(−1)f(x)+f(y) = λ 6= 0.

Then λ may be without loss of generality assumed to be positive. Indeed, if λ is negative, then
let v be as above, and let f ′(x) = f(x)+v ·x, as for every b ∈ Fn2 , denoting f ′(x) = f(x)+b ·x,
we have NLE(f ′) = NLE(f); we obtain:∑

(x,y)∈E2
0 6=x+y∈F⊥

(−1)f ′(x)+f ′(y) =
∑

(x,y)∈E2
0 6=x+y∈F⊥

(−1)f(x)+f(y)+v·(x+y) = −λ > 0.

Therefore we deduce the bound of the proposition.



5.4 Restricted Nonlinearity 131

Moreover, we can also take a family of vector-spaces F , and the proposition above can
then lead to the corollary below.

Corollary 5.4.5. Let E be any subset of Fn2 , f a Boolean function over E, and F a family
of vector-spaces F for each of which there exists v in Fn2 such that v · (x + y) = 1 for all
(x, y) ∈ E2 such that 0 6= x+ y ∈ F⊥. Then we have:

NLE(f) ≤ |E|2 −
1
2

√
|E|+ λ,

where
λ = max

F∈F
|

∑
(x,y)∈E2

0 6=x+y∈F⊥

(−1)f(x)+f(y)|.

In particular, taking for F the family of all linear hyperplanes of Fn2 (for which such v
always exists since F⊥ has dimension 1), we have:

Corollary 5.4.6. Let E be a subset of Fn2 and f a Boolean function over E. Then:

NLE(f) ≤ |E|2 −
1
2

√
|E|+ λ,

where
λ = max

a∈Fn2 ;a6=0
|
∑

(x,y)∈E2
x+y=a

(−1)f(x)+f(y)|.

Remark 5.4.7. Note that this result applied for E = Fn2 proves again that the derivatives of
bent functions are all balanced.

At the "13th International Conference on Finite Fields and their Applications" in 2017
Sihem Mesnager gave a talk called "On the nonlinearity of Boolean functions with restricted
input" [Mes17] where she gave a better upper bound for particular sets E, using the power
sums of Walsh transforms. For completeness we briefly describe here the core ideas of
her presentation leading to this upper bound. To do so, we first define a restricted Walsh
transform and the power sums of the restricted Walsh transform.

Definition 5.4.8 (Restricted Walsh Transform). Let f ∈ Bn be a Boolean function and E a
subset of Fn2 , the Walsh transform of f on E; f̂χ,E at a ∈ Fn2 is defined as:

f̂χ,E =
∑
x∈E

(−1)f(x)+a·x.

Definition 5.4.9 (Power Sum of Restricted Walsh Transforms). Let f be a Boolean function
in n variables, let E and F be non empty subsets of Fn2 and ` a nonnegative integer, we define
the power sum of Walsh transforms S2`(f,E, F ) as :

S2`(f,E, F ) =
∑
a∈F

(
f̂χ,E(a)

)2`
.

Power sums of Walsh transforms have already been used to give upper bounds on covering
radii in [CM07], here it enables to derive the following proposition:



132 Chapter 5 New Criteria on Boolean Functions

Proposition 5.4.10. Let f be a Boolean function in n variables, let E be a non empty
subset of Fn2 , for all F ⊆ Fn2 such that S2(f,E, F ) 6= 0 and for all nonnegative integers ` the
following holds:

NLE(f) ≤ |E|2 −
1
2

√
S2`+2(f,E, F )
S2`(f,E, F ) .

Proof. First note that, for every strictly positive integer `, S2`+2(f,E, F ) = 0 if and only if
S2`(f,E, F ) = 0, and note that S0(f,E, F ) 6= 0 since F is non empty.

Then we bound the quotient of two consecutive power sums, as:

∑
a∈F

(
f̂χ,E(a)

)2`+2
≤
(

max
a∈F

f̂χ,E(a)
)2 ∑

a∈F

(
f̂χ,E(a)

)2`
,

we obtain the bound:
S2`+2(f,E, F )
S2`(f,E, F ) ≤

(
max
a∈F

f̂χ,E(a)
)2

Using the definition of the restricted Walsh transform and Proposition 5.4.2 enables to
conclude.

With these notation, SihemMesnager showed that our analysis (Proposition 5.4.3 and Propo-
sition 5.4.4 and their corollaries) focuses on the case ` = 0: the behavior of S2(f,E, F )/S0(f,E, F ).
Remarking that S2`+2(f,E,F )

S2`(f,E,F ) is a non-decreasing sequence, she analyses when:

S2`+2(f,E, F )
S2`(f,E, F ) >

S2(f,E, F )
S0(f,E, F ) > 0,

where ` ≥ 1. For this case the fraction can be decomposed in 2 strictly positive terms, and
she gives examples of subsets E where it leads to a better upper bound.

We think that further works in this direction could give an even better upper bound, and
could extract cases where an upper bound is reached by a function. It concludes this part on
the maximal nonlinearity over all restricted sets. We follow our study by focusing on sets of
particular interest: En,k.

5.4.2 Nonlinearity Restricted To Fixed Hamming Weight Input
In this part we investigate more particularly the restricted nonlinearity on the sets En,k. First
we examine the upper bound on the nonlinearity for this family of sets. Then, we consider
this nonlinearity in the context of error-correcting codes to prove the existence of functions
with nontrivial NLEn,k . Finally we explore the behavior of direct sum constructions relatively
to this criterion.

5.4.2.1 Nonlinearity Upper Bound for Fixed Hamming Weight Input

Let us now consider the case of E = En,k for k = 0, . . . , n, where En,k is the set of vectors of
Hamming weight k in Fn2 . From Proposition 5.4.2 we have:

NLEn,k(f) ≤
(n
k

)
2 −

1
2

√√√√(n
k

)
.



5.4 Restricted Nonlinearity 133

Note that this bound could be tight only if
(n
k

)
is a square, but we shall see that even in

that case, it is not. Erdos showed the following theorem.

Theorem 5.4.11. [AZ04] The equation
(n
k

)
= m` has no integer solution with ` ≥ 2 and

3 ≤ k ≤ n− 3, except for n = 3 and k = 3 or k = 47.

We can give the following proposition to stand on the bound of Equation 5.4.2.1.

Proposition 5.4.12. For all n and k ∈ {1, . . . , n−1}, Bound (5.4.2.1) is never tight, except
maybe for two particular pairs (n, k): (50, 3) and (50, 47).

Proof. Indeed, the bound can only be tight when En,k is a square.
The only solution for k = 3 is n = 50, therefore we only consider the cases k ∈ {0, 1, 2, n−

2, n− 1, n}.

• k = 0 (or k = n): Proposition 5.4.3 gives NLEn,0(f) ≤ 0 which is tight because for all n
and for all Boolean function f , fk when k = 0 (or k = n) is constant.

• k = 1 (or k = n − 1): |En,1| is a square if and only if n is a square; every function
restricted to its entries of Hamming weight 1 (or n − 1) is linear (more details in
Remark 5.4.15) therefore NLEn,1(f) = 0 whereas the bound tells NLEn,1(f) ≤ n−

√
n

2 .

• k = 2 (or k = n− 2): We use here the Corollary 5.4.6, finding cases where λ cannot be
null, it consists in finding a particular vector a such that:

a ∈ Fn2 , a 6= 0, and
∑

(x,y)∈E2
n,k

x+y=a

(−1)f(x)+f(y) 6= 0.

Let us denote by i the Hamming weight of a, and by S the previous sum. If i is odd
then {(x, y) ∈ E2

n,k; x+ y = a} is empty forcing S to be null; otherwise, i is even, then
|{(x, y) ∈ E2

n,k; x + y = a}| equals the number of possible choices (for building the
support of x) of i/2 indexes in the support of a and of k − i/2 indexes outside the
support of a. Then,

|{(x, y) ∈ E2
n,k; x+ y = a}| =

(
i
i
2

)(
n− i
k − i

2

)
.

Since the sum S is invariant when swapping x and y:((
i
i
2

)(
n− i
k − i

2

)
mod 4

)
6= 0 =⇒ (S mod 4) = 2,

as S equals twice the sum of an odd number of integers equal to ±1. Now we consider
various cases for i.
For i = 2: (

i
i
2

)(
n− i
2− i

2

)
= 2(n− 2),

then, if n is odd, the sum S cannot be null.



134 Chapter 5 New Criteria on Boolean Functions

For i = 4: (
i
i
2

)(
n− i
2− i

2

)
= 6

(
n− 4

0

)
,

then for n ≥ 4 the sum S cannot be null.
By summing the two cases we can conclude on the case k = 2 (or k = n− 2) we finish
the proof, for all strictly positive n and for all Boolean functions f :

NLEn,2(f) <
|En,2| −

√
|En,2|

2 .

This proposition shows that for the family of sets En,k there are few chances to find
functions reaching the upper bound of Proposition 5.4.3. Naturally the bound can be released
to:

NLEn,k(f) ≤
(nk)

2 −
1
2

√√√√(n
k

) ,
but it seems difficult to determine for which values of n this latter bound is tight. Moreover,
the particular examples exhibited in [Mes17] where the bound of Proposition 5.4.4 cannot
be tight are sets En,k. It makes think that the real maximal nonlinearity over most of the
sets En,k is much lower than the upper bounds proved up to date, and deserves further
investigations.

5.4.2.2 Error Correcting Codes Perspective

In the following part we study the nonlinearity restricted to the sets En,k from the error-
correcting code theory. We use this perspective to prove the existence of functions with
nontrivial restricted nonlinearity; the strong connection between restricted nonlinearity (of
any strictly positive order) and punctured Reed-Muller codes could lead to more results on
restricted criteria.
Reed-Muller codes RM(r, n) are binary codes of length 2n whose codewords are the

evaluations of all Boolean functions in n variables of algebraic degree at most r on their 2n
entries. Fixing the Hamming weight of the entries gives particular punctured Reed-Muller
codes whose characteristics are directly linked to Boolean functions with fixed weight entries.
As Reed-Muller codes have been intensively studied in other contexts we do not describe
fundamental new results in this part, we rather use another perspective to give interesting
constructions and help to link our problematic to a quite well-known topic.

Definition 5.4.13. For all n ∈ N∗; r, k ∈ [0, n] we denote by RM(r, n)En,k the punctured
Reed-Muller code of length

(n
k

)
obtained by puncturing RM(r, n) on all entries of Hamming

weight different from k.

Remark 5.4.14. RM(1, n)En,k corresponds to the evaluation of all affine functions in n
variables on entries of Hamming weight k; therefore, for every Boolean function f , NLEn,k(f) is
the distance between f ’s truth table restricted to Hamming weight k entries and RM(1, n)En,k .
The maximal value of NLEn,k(f) when f ranges over the set of all Boolean functions equals
the covering radius of RM(1, n)En,k .



5.4 Restricted Nonlinearity 135

Note also that the previous definition can be generalized to all non empty subsets E of Fn2 ;
all punctured Reed-Muller code can then be written as RM(r, n)E and its covering radius is
therefore NLE.

In the next remark we exhibit the parameters of the code RM(1, n)En,k ; this provides a
lower bound on the maximal value of NLEn,k .

Remark 5.4.15. RM(1, n)En,k is a linear code with parameters [
(n
k

)
, n, d] where

d =
(n
k

)−max(0<`≤n/2)
∣∣∣∑i∈Z(−1)i

(`
i

)(n−`
k−i
)∣∣∣

2 .

Let s(x) = ∑
i∈I xi be any linear Boolean function whose restriction to the entries of

Hamming weight k is non constant, and let |I| = `. We have ` ∈ {1, . . . , n− 1}. The number
of entries x of Hamming weight k such that |supp(x)∩ I| = i equals

(`
i

)(n−`
k−i
)
. We deduce that

the minimum distance of RM(1, n)En,k equals:

min
(0<`<n)

(
min

(∑
i odd

(
`

i

)(
n− `
k − i

)
,
∑
i even

(
`

i

)(
n− `
k − i

)))
=

min(0<`<n)

(
min

(∑
i∈Z
(

`
i

)(
n−`
k−i

)
−∑i∈Z(−1)i

(
`
i

)(
n−`
k−i

)
,
∑

i∈Z
(

`
i

)(
n−`
k−i

)
+
∑

i∈Z(−1)i
(

`
i

)(
n−`
k−i

)))
2 =

min(0<`<n)

(∑
i∈Z
(

`
i

)(
n−`
k−i

)
−
∣∣∣∑i∈Z(−1)i

(
`
i

)(
n−`
k−i

)∣∣∣)
2 .

In other words, writing P [Xk] for the coefficient of Xk in a polynomial P (X), the minimum
distance of RM(1, n)En,k

equals:

min(0<`<n)
(
(1 +X)`(1 +X)n−`[Xk]−

∣∣(1−X)`(1 +X)n−`[Xk]
∣∣)

2 =

min(0<`<n)
((

n
k

)
−
∣∣(1−X)`(1 +X)n−`[Xk]

∣∣)
2 =(

n
k

)
−max(0<`<n)

∣∣∣∑i∈Z(−1)i
(

`
i

)(
n−`
k−i

)∣∣∣
2 .

Note that
∣∣∣∑i∈Z(−1)i

(
`
i

)(
n−`
k−i

)∣∣∣ is invariant when changing ` into n− ` (by changing i into k − i); we
can then replace max(0<`<n) by max(0<`≤n/2).

Note that the maximal value of NLEn,k(f) when f ranges over the set of all Boolean
functions (i.e. the covering radius of RM(1, n)k) is bounded from below by d

2 . Therefore,
this remark proves that it is nonzero except for particular values of k, consequently it enables
to build functions with nonlinearity reaching this lower bound.
We noticed afterwards that Dumer and Kapralova have, independently, already obtained

the result of Remark 5.4.15. They studied these particular punctured Reed-Muller codes
of order 1 in 2012 in term of Spherically Punctured Bi-orthogonal Codes [DK12] and more
recently [DK13; DK17] they also studied the general case (order r ≥ 1) as Spherically



136 Chapter 5 New Criteria on Boolean Functions

Punctured Reed-Muller Codes. More particularly concerning Remark 5.4.15, they obtain the
same result using a decomposition of the generator matrix similar to the one of Theorem 5.3.8,
and they get a simpler expression of the minimal distance. Their work being in the optic of
error correcting codes, they determine the parameters of these codes (length, dimension and
minimal distance) and focus on efficient decoding algorithms; they do not present particular
results on the covering radius, the major concern of our study on restricted nonlinearity.

5.4.2.3 Direct sum and NLEn,k
In this part we focus on the behavior of direct sum constructions relatively to the nonlinearity
restricted to the sets of all input of Hamming weight fixed to k. The first motivation for this
focus is to know more on the parameters of FLIP functions. Indeed, knowing the parameters
of simple functions and a lower bound for direct sums construction enables to derive security
bounds when FLIP functions are use in a Filter Permutator construction.

Lemma 5.4.16 (Direct sum and NLEN,k). Let F be the direct sum of f and g of n and m
variables respectively, we have:

NLEN,k(F ) ≥
k∑
i=0

(
n

i

)
NLEm,k−i(g) +

k∑
i=0

NLEn,i(f)
((

m

k − i

)
− 2NLEm,k−i(g)

)
.

Proof. We have:

NLEN,k(F ) =
(N
k

)
2 − 1

2 max
(a,b)∈Fn2×Fm2

∣∣∣∣∣∣
∑

(x,y)∈EN,k

(−1)F (x,y)+a·x+b·y

∣∣∣∣∣∣
≥

(N
k

)
2 − 1

2 max
a∈Fn2 ,b∈F

m
2

k∑
i=0

∣∣∣∣∣∣
∑

x∈En,i, y∈Em,k−i

(−1)f(x)+g(y)+a·x+b·y

∣∣∣∣∣∣
=

(N
k

)
2 − 1

2 max
a∈Fn2 ,b∈F

m
2

k∑
i=0

∣∣∣∣∣∣
∑

x∈En,i
(−1)f(x)+a·x

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

y∈Em,k−i

(−1)g(y)+b·y

∣∣∣∣∣∣
≥

(N
k

)
2 − 1

2

k∑
i=0

max
a∈Fn2

∣∣∣∣∣∣
∑

x∈En,i
(−1)f(x)+a·x

∣∣∣∣∣∣
max

b∈Fm2

∣∣∣∣∣∣
∑

y∈Em,k−i

(−1)g(y)+b·y

∣∣∣∣∣∣


=
(N
k

)
2 − 1

2

k∑
i=0

((
n

i

)
− 2NLEn,i(f)

)((
m

k − i

)
− 2NLEm,k−i(g)

)

=
k∑
i=0

(
n

i

)
NLEm,k−i(g) +

k∑
i=0

(
m

k − i

)
NLEn,i(f)− 2

k∑
i=0

NLEn,i(f)NLEm,k−i(g)

=
k∑
i=0

(
n

i

)
NLEm,k−i(g) +

k∑
i=0

NLEn,i(f)
((

m

k − i

)
− 2NLEm,k−i(g)

)
.

Equation (5.5) is obtained using Vandermonde convolution (see Proposition 2.5.5).

Although this inequality does not provide a tight bound, it enables to guarantee some
nonlinearity on fixed Hamming weight input of a function from two simpler functions with
high nonlinearity in this context.



5.4 Restricted Nonlinearity 137

5.4.3 Deterioration of Functions with Optimal Standard Nonlinearity

Fixing the input Hamming weight may deteriorate in an extreme way the nonlinearity of a
Boolean function, we examine in this part some Boolean functions with optimal standard
nonlinearity (bent functions) with trivial restricted nonlinearity (defined on the sets EN,k).

Proposition 5.4.17. For every n, there exist n-variable bent functions f such that, for
every k = 0, . . . , n, NLEn,k(f) = 0.

Proof. This is for instance the case of the function f(x) =
(wH(x)

2
)

= ∑
1≤i<j≤n xixj . This

function is, up to the addition of an affine function, the only bent symmetric function (see
e.g. [Car10]). Since it is symmetric, fixing the Hamming weight of its input makes it constant
and therefore with null nonlinearity.

More generally, it would be interesting to characterize those bent functions whose restrictions
to En,k have null nonlinearity (i.e. are affine), for every k. This task seems very difficult
but we are able to achieve it in the particular case of quadratic functions. We begin with a
proposition characterizing the functions with null NLEn,k for every k.

Proposition 5.4.18. Let f be a Boolean function in n variables, the following holds:

∀k NLEn,k(f) = 0⇐⇒ f(x) = `′0(x) +
n∑
i=1

σi(x)`′i(x),

where the `′i’s are all affine functions and σi are the elementary symmetric functions in n
variables.

Proof. First, a Boolean function satisfies NLEn,k(f) = 0 for every k if all its restrictions to
En,k are affine by definition. Such function can be expressed in terms of indicator functions
of the n+ 1 sets En,k and affine functions. As an indicator function of En,k is a symmetric
function, and as a sum of symmetric functions is still a symmetric function, we can use the
following equivalence. The n+ 1 (weightwise) restrictions of a Boolean function are affine if
and only if there exist symmetric Boolean functions ϕ0, ϕ1, . . . , ϕn such that:

f(x) = ϕ0(x) +
n∑
i=1

ϕi(x)xi.

Using the fundamental theorem of symmetric polynomials, any symmetric Boolean func-
tions ϕ(x) can be written in the form ` ◦ Σ(x) where ` is affine and Σ is the vecto-
rial (n, n)-function whose ith coordinate function is the elementary symmetric function
σi = ∑

1≤j1<···<ji≤n
∏i
`=1 xjl .

We deduce that f satisfies NLEn,k(f) = 0 for every k if and only if it has the form
f(x) = `0 ◦ Σ(x) +∑n

i=1 `i ◦ Σ(x)xi, where the `i’s are affine.
Gathering all the terms in this expression which involve each elementary symmetric function

σi we obtain the result:

f(x) = `′0(x) +
n∑
i=1

σi(x)`′i(x).



138 Chapter 5 New Criteria on Boolean Functions

Now, we can characterize all quadratic bent functions which are affine on all sets of constant
input weight in the following proposition.

Proposition 5.4.19 (Characterization of quadratic bent functions with null NLEn,k for all
k). For every even n ≥ 4, the quadratic bent functions satisfying NLEn,k(f) = 0 for every k
are those functions of the form f(x) = σ1(x)`(x) + σ2(x), where `(1, . . . , 1) = 0.

Proof. According to Proposition 5.4.18, a quadratic function satisfies NLEn,k(f) = 0 for every
k if and only if, up to the addition of an affine function, it has the form:

f(x) = σ1(x)`(x) + εσ2(x),

where ` is linear and ε ∈ F2.
The symplectic form associated to (x, y) 7→ f(x+ y) + f(x) + f(y) + f(0) (see e.g. [Car10]

p.70) equals:
σ1(y)`(x) + σ1(x)`(y) + ε

∑
1≤j 6=i≤n

xjyi.

Denoting `(x) = ∑n
i=1 lixi, the kernel

E = {x ∈ Fn2 ;∀y ∈ Fn2 , f(x+ y) + f(x) + f(y) + f(0) = 0}

of this symplectic form is the vector space of equations:

(Li) : `(x) + li

n∑
j=1

xj + ε
∑
j 6=i

xj = 0,

where i ranges from 1 to n. The sum Li + Li′ of two of these equations equals

(Li + Li′) : (li + li′)
n∑
j=1

xj + ε(xi + xi′) = 0.

If li = li′ we obtain: ∀x ∈ E, xi = xi′ if ε = 1 and no condition on x ∈ E otherwise. If li 6= li′ ,
we obtain: ∀x ∈ E, ∑n

j=1 xj = xi + xi′ if ε = 1 and ∀x ∈ E, ∑n
j=1 xj = 0 otherwise. Hence,

denoting
I = {i = 1, . . . , n; li = 0},

we have that, if ε = 1, then all the coordinates of indexes i ∈ I of an element of E are equal
to some bit η and all those such that i ∈ Ic are equal to η +∑n

j=1 xj , and if ε = 0, there is
no condition on x ∈ E if I = ∅ or I = {1, . . . , n} and if I 6= ∅, {1, . . . , n}, the condition is∑n
j=1 xj = 0. We then have two cases:

• if x ∈ E is such that ∑n
j=1 xj = 0 then:

– if ε = 1, then either all xi’s are null, in which case (Li) is satisfied, or all are equal
to 1, in which case (Li) becomes (since n is even) `(1, . . . , 1) = 1; hence, if this
latter equality is true (i.e. if I has odd cardinality), E 6= {0};

– if ε = 0 then all equations Li are equal to `(x) = 0; then E 6= {0} unless
the hyperplane ker ` has a trivial intersection with the hyperplane of equation∑n
j=1 xj = 0, which is possible only if n = 2; the case ε = 0 is then compatible

with f bent only for n = 2; we shall not consider it anymore.



5.5 Restricted Balancedness 139

• if x ∈ E is such that∑n
j=1 xj = 1 then if ε = 1, all xi’s such that i ∈ I are equal to η and

those xi’s such that i ∈ Ic are equal to η + 1, which implies η|I|+ (η + 1)|Ic| = |Ic| = 1
(mod 2); hence I has odd cardinality and we have seen that E 6= {0} in such case.

The only case where f is bent, i.e. where E = {0}, for n ≥ 4, is then
{
ε = 1
`(1, . . . , 1) = 0 ,

finishing the proof.

Note that all the functions above are EA-equivalent to each others (two n-variable Boolean
functions f and g are called EA-equivalent if there exist an affine automorphism L over Fn2
and an affine n-variable function ` such that f = g ◦ L + `). EA-equivalence is does not
preserve the Hamming weight, so the nonlinearity degradation on constant-Hamming-weight
sets cannot be studied equivalence class by equivalence class.
These examples of functions with the best nonlinearity in the general context and worst

nonlinearity in the fixed-Hamming-weight context finishes our study on the restricted nonlin-
earity.

5.5 Restricted Balancedness
A first requirement on cryptographic Boolean functions is to be balanced or at least almost
balanced. We shall then be focus on those functions which are balanced on the input set
E, which corresponds to a notion of balancedness (for any set of even cardinality), where
a function is balanced over E if it takes the value 1 for exactly half of the elements of E.
But since E may change in the process (this is not the case in FLIP but it could be in a
variant), we are interested in Boolean functions whose restrictions to all sets E in some family
E are balanced. Even if E does not change, we may wish to have a Boolean function which
is balanced on a family of sets E, so that it can be used in a variety of situations. Given
some family E of subsets of Fn2 , we shall say that a Boolean function f is perfectly balanced
over E if its restriction to any set E ∈ E of even size is balanced, and this is the notion of
balancedness we study in this section. We shall be in particular interested in the family
of sets of all elements of fixed Hamming weight: E = {En,0, En,1, . . . , En,n−1, En,n}, where
En,k = {x ∈ Fn2 ; wH(x) = k}. We shall then call such functions weightwise perfectly balanced.

As we center our study of the restricted balancedness on this family, we use the following
notation. We denote by wH(f)k the Hamming weight of the evaluation vector of the function
f on all the entries of fixed Hamming weight k:

wH(f)k = |{x ∈ Fn2 ,wH(x) = k, f(x) = 1}|,

where wH denotes the Hamming weight. We accordingly denote wH(f)k = |{x,wH(x) =
k, f(x) = 0}| = (n

k

)− wH(f)k.

Definition 5.5.1. Let f be a Boolean function defined over Fn2 . It will be called weightwise
perfectly balanced (WPB) if, for every k ∈ {1, . . . , n − 1}, the restriction of f to En,k, is
balanced, that is, ∀k ∈ [1, n− 1],wH(f)k = (nk)

2 .
To make the function balanced on its whole domain Fn2 , we additionally impose that

f(0, . . . , 0) 6= f(1, . . . , 1) and more precisely that:

f(0, . . . , 0) = 0; f(1, . . . , 1) = 1.



140 Chapter 5 New Criteria on Boolean Functions

This last constraint does not reduce the generality (when f(0, . . . , 0) 6= f(1, . . . , 1)), up to
the addition of constant 1 to f , and it makes some constructions clearer. Note that weightwise
perfectly balanced Boolean functions exist only if, for every k ∈ [1, n− 1],

(n
k

)
is even and

this property is satisfied if and only if n is a power of 2. Note that for these n, wH(f)k = (2`
k )
2

is then even for k ∈ [1, . . . , 2`−1 − 1] ∪ [2`−1 + 1, . . . , 2` − 1] and odd for k = 2`−1 = n/2, this
property will be used in the rest of the section. To be able to address the case where n is not
a power of 2, we introduce:

Definition 5.5.2. Let f be a Boolean function defined over Fn2 . It will be called weightwise
almost perfectly balanced functions (WAPB) if, for every k ∈ [1, n− 1], wH(f)k = (nk)

2 when(n
k

)
is even and wH(f)k = (nk)±1

2 when
(n
k

)
is odd.

The bias of a stream cipher output in presence of Hamming weight leakage is considered
in [JD06]. Precisely, it is shown that knowing the Hamming weight of a register when
the updating function is an LFSR in a particular representation enables to distinguish the
keystream from a random binary stream, and the authors also describe a correlation attack
in this setting. This result is therefore connected to our study on restricted balancedness:
they use the balancedness flaw of a function on the sets {x | wH(x) = k}. They exploit the
fact that this function is not weightwise (almost) perfectly balanced, and combine it with
other equations to mount a fast correlation attack on these LFSR (similarly to the attack
presented in Section 4.5.3.3).
We focus our study on necessary conditions for Boolean functions to be WPB or WAPB

and on the construction of such functions. Note that contrarily to balanced functions
the weightwise (almost) perfect balanced functions represent a negligible proportion of the
Boolean functions in n variables. The next remark shows that these functions can be quite
different than the functions usually used in cryptography for their balancedness, as highly
resilient functions.

Remark 5.5.3. For all n ≥ 2, there exists an (n − 1)-resilient function (i.e. a balanced
Boolean function which remains balanced when at most n− 1 of its variables are arbitrarily
fixed) which is unbalanced for all weights k ∈ [1, n− 1].
Indeed, the first elementary symmetric Boolean function σ1 = ∑n

i=1 xi = wH(x) mod 2 is
(n− 1)-resilient and is constant on all fixed-weight inputs, its weightwise restrictions are as
much unbalanced as possible.

The goal of this study on the restricted balancedness is therefore to identify and construct
WPB and WAPB functions for all strictly positive n. First we examine some relations between
ANF and weightwise balancedness, second we present constructions of WPB and WAPB
functions.

5.5.1 Weightwise Balancedness and ANF
In the following, we give more insights on necessary conditions on the ANF of WPB or
WAPB. We begin by determining the possible number of monomials of degree 1 and 2.

Proposition 5.5.4. If f is a weightwise (almost) perfectly balanced Boolean function of
n variables then the ANF of f contains dn/2c monomials of degree 1 and at least bn/4c
monomials of degree 2, where dn/2c equals n/2 if n is even and (n± 1)/2 if n is odd.



5.5 Restricted Balancedness 141

Proof. In the particular case where f is linear, wH(f)k is exactly the number of entries of
weight k for which an odd number of the monomials of f are set to 1. Therefore denoting by
d the number of (degree-1) monomials in the ANF of f , we have:

wH(f)k =
∑
i odd

(
d

i

)(
n− d
k − i

)
.

For any function f , as wH(f)k is only determined by the monomials of f of degree at most k,
let us partition f into `f , qf and f ′, respectively made of the monomials of degree 1, 2 and
strictly larger than 2 in the ANF of f . For k = 1, we have:

wH(f)1 = wH(`f )1 =
(
|`f |
1

)
,

where |`f | is the number of monomials of `f .
Therefore, if f is (almost) balanced for fixed weight 1, then |`f | = n

2 for n even and
|`f | = n±1

2 for n odd. We have:

wH(f)2 = wH(`f + qf )2 = wH(`f )2 + wH(qf )2 − 2wH(`f · qf )2.

As wH(qf )2 ≥ 2wH(`f · qf )2 − wH(qf )2 it implies wH(qf )2 ≥ wH(`f )2 − wH(f)2.
Therefore, if f is (almost) balanced for fixed weights 1 and 2, then:

• for n even:

wH(`f )2 =
(
n
2
1

)(
n
2
1

)
= n2

4 , and wH(`f )2 −
(n

2
)

2 = n

4 , so wH(qf )2 ≥
⌊
n

4

⌋
,

• for n odd:

wH(`f )2 =
(
n+1

2
1

)(
n−1

2
1

)
= n2 − 1

4 , and wH(`f )2 −
(n

2
)

2 = n− 1
4 , so wH(qf )2 ≥

⌊
n

4

⌋
.

We can prove that all weightwise perfectly balanced functions ha an algebraic degree of at
least n/2 (giving an upper bound on their resiliency).

Proposition 5.5.5. If f is a weightwise perfectly balanced Boolean function of n variables,
then the ANF of f contains at least one monomial of degree n/2.

Proof. Let md be a monomial of degree d, we focus on the parity of wH(md)k; for all
1 ≤ k ≤ n− 1 and 1 ≤ d ≤ k:

wH(md)k =
(
n− d
k − d

)

More particularly when k = d, wH(mk)k =
(n−k

0
)

= 1. We have seen that f being weightwise
perfectly balanced implies that n = 2` and therefore we can determine the parity of wH(f)k =
(2`
k )
2 :



142 Chapter 5 New Criteria on Boolean Functions

(2`
k

)
2 mod 2 =

{
0 if k ∈ [1, . . . , 2`−1 − 1, ] ∪ [2`−1 + 1, . . . , 2` − 1]
1 if k = 2`−1 = n/2.

This enables to determine the parity of the number of monomials of each degree of f
smaller than or equal to 2`−1 = n/2. As wH(mk)k = 1, and wH(f)k depends only on the
monomials of degree less than or equal to k, we first show by induction that the number of
monomials of degree k is even for k such that 1 ≤ k < n/2. The principle of this proof is to
decompose a function as a sum, and then to study the parity of its weight using the weight
of its summands.
For k = 1, only the degree-1 monomials determine wH(f)1, as wH(m1)1 = 1 (and as the

supports of two degree-1 monomials on En,1 are disjoint), only a sum of an even number of
degree-1 monomials gives an even wH(f)1. From k to k + 1 (with k < n/2 + 1), we denote
g the part of the function containing all these monomials and h the part containing the
monomials of degree k + 1. The following relation holds:

wH(f)k+1 = wH(g)k+1 + wH(h)k+1 − 2wH(gh)k+1. (5.5)

First, we show than wH(g)k+1 has even parity. We can express wH(g)k+1 using the
decomposition of g in k terms, each term gi corresponding to all the monomials of g of degree
i with 1 ≤ i ≤ k. Indeed, wH(g)k+1 is equal to the sum of all the wH(gi)k+1 minus twice the
cross-terms as in Equation (5.5). Each term gi is the sum of an even number of monomials
of degree i by hypothesis, then wH(gi)k+1 is equal to the sum of an even number of times
wH(mi)k+1 minus twice the cross-terms. Then each wH(gi)k+1 is even, and wH(g)k+1 is even.

As wH(g)k+1 is even, wH(f)k+1 has the same parity as wH(h)k+1. As h is the part containing
the monomials of degree k+1, and w(mk+1)k+1 = 1, using the same decomposition technique,
the parity of wH(h)k+1 is equal to the parity of the number of monomials of degree k+ 1. The
parity of the number of monomials of degree k + 1 is then equal to the parity of wH(f)k+1
which is even (as k + 1 < n/2), finishing the induction.

Finally, for k = n/2 we can apply the same strategy of decomposition, wH(g)n/2 is still
even in this case. Consequently the number of monomials of degree k + 1 is then odd, equal
to the parity of wH(f)n/2. It implies that the ANF of f contains at least one monomial of
degree n/2. Note that as wH(f)n/2 is odd, we cannot use the same strategy to determine the
parity of the number of monomials of higher degree.

Remark 5.5.6. The precedent results show that the ANF of every weightwise perfectly
balanced function of 2` variables contains monomials of degrees 20, 21 and 2`−1. This raises
the question if having monomials of degree all powers of 2 is a necessary condition for
weightwise perfectly balanced function. It turns out that it is not necessary, for example the
function of 16 variables and algebraic degree 3:

f =
8∑
i=1

xi +
4∑
i=1

xixi+8 + x1x2x5 + x1x4x16

is weightwise balanced for k ∈ [0, · · · , 4] and can be completed in a weightwise perfectly
balanced function only by adding monomials of degree > 4.

All the necessary conditions for weightwise (almost) perfect balancedness presented above
are not sufficient; thus we investigate the constructions of such functions in the next part.



5.5 Restricted Balancedness 143

5.5.2 Constructions of Weightwise (Almost) Perfectly Balanced Functions

The direct sum construction (see Definition 2.4.13) can be a starting point to build weightwise
perfectly balanced function. This secondary construction does not build a weightwise perfectly
balanced function from two weightwise perfectly balanced functions as we can see from the
next lemma and corollary.

Lemma 5.5.7. Let f be the direct sum of g1 and g2 each one in 2`−1 variables such that
` ∈ N∗, and such that:

g1(0 . . . 0) + g1(1 . . . 1) + g2(0 . . . 0) + g2(1 . . . 1) ≡ 0 mod 2,

then f cannot be weightwise perfectly balanced.

Proof. As f is a direct sum of g1 and g2, for every k ∈ [1, n − 1] we can link the value of
wH(f)k to wH(g1)i and wH(g2)k−1 with i ≤ k.

First, we do a partition of the entries of f of Hamming weight k depending on the Hamming
weight of the entries of g1 and g2, this gives a partition in k + 1 sets where g1 is evaluated on
En1,i and g2 is evaluated on En2,k−i.

Then, f(x1, . . . , xn) = 1 is equivalent to g1(x1, . . . , xn1) 6= g2(xn1+1, . . . , xn), so we can link
wH(f)k to the number of entries where g1 gives 1 and g2 gives 0 plus the number of entries
where g1 gives 0 and g2 gives 1. Finally we obtain:

wH(f)k =
k∑
i=0

wH(g1)i
((

n2
k − i

)
− wH(g2)k−i

)
+ wH(g2)k−i

((
n1
i

)
− wH(g1)i

)

Now we suppose that f is weightwise perfectly balanced and we use that n1 = n2 = n
2 ; in

particular, wH(f)n
2

= 1
2
(n
n
2

) ≡ 1 mod 2 and developing:

wH(f)n
2

=
n/2∑
i=0

(
n
2

n
2 − i

)
wH(g1)i +

(
n
2
i

)
wH(g2)n

2−i − 2wH(g1)iwH(g2)n
2−i

Moreover, we know that, as n
2 is also a power of 2, then for each i ∈ [1, n2 − 1],

(n/2
i

)
is even.

To conclude, if f is weightwise perfectly balanced, then we have the following relation:

1 ≡ wH(g1)0 + wH(g1)n
2

+ wH(g2)0 + wH(g2)n
2

mod 2

Then we need that g1(0 . . . 0) + g1(1 . . . 1) + g2(0 . . . 0) + g2(1 . . . 1) ≡ 1 mod 2

The corollary below is a direct consequence:

Corollary 5.5.8. If g1(x1, . . . , xn2 ) and g2(xn
2 +1, . . . , xn) are two weightwise perfectly bal-

anced functions, then the Boolean function defined by the direct sum of g1 and g2 cannot be
weightwise perfectly balanced.

Hence, the direct sum, when applied to perfectly balanced functions, does not lead to
a weightwise perfectly balanced function. It comes from the constraint wH(f)0 6= wH(f)n
guarantying the classical balancedness (i.e. on Fn2 ) of a WPB function. Nevertheless we can
derive such construction from weightwise perfectly balanced functions by applying the direct



144 Chapter 5 New Criteria on Boolean Functions

sum after modifying one of the functions: if f and g are two n-variable weightwise perfectly
balanced functions, then:

h(x, y) = f(x) +
n∏
i=1

xi + g(y),

is a 2n-variable weightwise perfectly balanced function. In fact, this result is a particular
case of a more general construction, inspired by the indirect sum construction, which builds
a Boolean function from four Boolean functions as follows:

h(x, y) = f(x) + g(y) + (f(x) + f ′(x))(g(y) + g′(y)),

and which allowed to construct bent and correlation immune functions.

Theorem 5.5.9. Let f , f ′ and g be three weightwise perfectly balanced n-variable functions
and let g′ be any n-variable Boolean function, then:

h(x, y) = f(x) +
n∏
i=1

xi + g(y) + (f(x) + f ′(x))g′(y),

where x, y ∈ Fn2 , is a weightwise perfectly balanced 2n-variable function.

Proof. • If k = 0, then wH(x, y) = k is equivalent to x = y = (0, . . . , 0) and we have
h(x, y) = f(0, . . . , 0) + g(0, . . . , 0) = 0.

• If k ∈ {1, . . . , n−1}, then, the set {(x, y) ∈ F2n
2 ; wH(x, y) = k} equals the disjoint union

of the following sets:
– {(0, . . . , 0)} × {y ∈ Fn2 ; wH(y) = k}, on which h(x, y) equals f(0, . . . , 0) + g(y)
(since f(0, . . . , 0) + f ′(0, . . . , 0) = 0) and is then balanced;

– {x ∈ Fn2 ; wH(x) = i} × {y}, where 1 ≤ i ≤ k and wH(y) = k − i, on each of which
h(x, y) equals f(x) + g(y) if g′(y) = 0 and f ′(x) + g(y) if g′(y) = 1; in both cases,
it is balanced;

• If k = n, then the set {(x, y) ∈ F2n
2 ; wH(x, y) = k} equals the disjoint union of the

following sets:
– {((0, . . . , 0), (1, . . . , 1))} ∪ {((1, . . . , 1), (0, . . . , 0))}, on which h(x, y) equals respec-

tively f(0, . . . , 0) + g(1, . . . , 1) = 1 (since f(0, . . . , 0) + f ′(0, . . . , 0) = 0) and
f(1, . . . , 1) + g(0, . . . , 0) + 1 = 0 (since f(1, . . . , 1) + f ′(1, . . . , 1) = 0) and is then
globally balanced;

– {x ∈ Fn2 ; wH(x) = i} × {y}, where 1 ≤ i ≤ n − 1 and wH(y) = n − i, on each of
which h(x, y) equals f(x) + g(y) if g′(y) = 0 and f ′(x) + g(y) if g′(y) = 1; in both
cases, it is balanced;

• If k ∈ {n+ 1, . . . , 2n− 1}, then the set {(x, y) ∈ F2n
2 ; wH(x, y) = k} equals the disjoint

union of the following sets:
– {(1, . . . , 1)}×{y ∈ Fn2 ; wH(y) = k−n}, on which h(x, y) equals f(1, . . . , 1)+g(y)+1

and is then balanced;
– {x ∈ Fn2 ; wH(x) = i} × {y}, where k − n + 1 ≤ i ≤ n − 1 and wH(y) = k − i, on

each of which h(x, y) equals f(x) + g(y) if g′(y) = 0 and f ′(x) + g(y) if g′(y) = 1;
in both cases, it is balanced;



5.5 Restricted Balancedness 145

• If k = 2n, then wH(x, y) = k is equivalent to x = y = (1, . . . , 1) and we have
h(x, y) = 1 + 1 + 1 = 1.

Note that for f = f ′ or g′ = 0, we obtain the construction related to the direct sum
mentioned above. Noting that f(x1, x2) = x1 is weightwise perfectly balanced, we can
recursively build weightwise perfectly balanced Boolean functions of 2` variables, for all ` in
N∗. For instance, applying the construction with f = f ′, we get:

f(x1, x2, . . . , x2`) =
∑̀
a=1

2`−a∑
i=1

2a−1−1∏
j=0

xi+j2`−a+1 .

And since g′ can be freely chosen and f ′ can be a version of f in which the coordinates of x
are permuted, we have a large number of weightwise perfectly balanced functions by applying
Theorem 5.5.9.

We can extend the previous example to get weightwise almost perfectly balanced Boolean
function on n variables for all n.

Proposition 5.5.10. The function fn in n ≥ 2 variables, recursively defined by f2(x1, x2) =
x1 and for n ≥ 3:

fn(x1, . . . , xn) =


fn−1(x1, . . . , xn−1) if n odd,
fn−1(x1, . . . , xn−1) + xn−2 +∏2d−1

i=1 xn−i if n = 2d; d > 1,
fn−1(x1, . . . , xn−1) + xn−2 +∏2d

i=1 xn−i otherwise n = p · 2d; p odd.

is a weightwise almost perfectly balanced Boolean function of degree 2d−1, where 2d ≤ n < 2d+1,
and with n− 1 monomials in its ANF if n is even and n− 2 monomials if n is odd. Note
that this function can be written as a direct sum for all n ≥ 2.

Proof. The degree and number of monomials of fn are easily checked by induction on n for
n ≥ 2. We prove the weightwise almost perfect balance property by induction on n as well:
The initialization step is n = 2, in this case f2 = x1 is WPB. We now assume that n ≥ 3

and that, for every 2 ≤ i ≤ n− 1, fi is WAPB. We prove under this induction hypothesis
that fn is WAPB, using a disjunction of cases depending when n is odd, a power of 2 or an
even number not power of 2.

• for n odd:
– if k = 0, then wH(fn)0 = wH(fn−1)0 = 0;
– if k ∈ [1, n− 1], then:

wH(fn)k = wH(fn−1)k + wH(fn−1)k−1.

As n− 1 is even, at least one of the coefficients
(n−1
k

)
,
(n−1
k−1
)
is even. As n− 1 is

even and k or k−1 is odd therefore one of those written in binary has a digit equal
to 1 where the corresponding one of n is 0 which characterize the even parity of
this binomial coefficient, more precisely

(n
k

)
has the same parity as

( n−1
k−(k mod 2)

)
.

Therefore, it gives two cases. If both are even:

wH(fn−1)k + wH(fn−1)k−1 =
(n−1
k

)
+
(n−1
k−1
)

2 =
(n
k

)
2 ,



146 Chapter 5 New Criteria on Boolean Functions

otherwise:

wH(fn−1)k + wH(fn−1)k−1 =
(n−1
k

)
+
(n−1
k−1
)± 1

2 =
(n
k

)± 1
2 .

– if k = n, then wH(fn)n = wH(fn−1)n−1 = 1
Hence, fn is WAPB.

• for n = 2d; d > 1, we can view fn as the following direct sum:

fn(x1, . . . , xn) =

f2d−1(x1, · · · , x2d−1−1, xn) + f2d−1(x2d−1 , · · · , xn−1) +
2d−1∏
i=1

xn−i.

As f2d−1 is WPB by hypothesis, we can apply Theorem 5.5.9 with g′ = 0, giving that
fn is WPB.

• n = p · 2d; 1 < p odd ; we decompose fn in a direct sum and use techniques of
Theorem 5.5.9’s proof:

fn(x1, . . . , xn) =

f(x1, · · · , xn−2d−1, xn) + g(xn−2d , · · · , xn−1) +
2d∏
i=1

xn−i

reordering the variables we get f = fn−2d and g = f2d , with f2d WPB and fn−2d WAPB
by the induction hypothesis. fn being a direct sum of f and g +∏2d

i=1 xn−i we get:
– if k = 0: wH(fn)0 = wH(f)0wH(g)0 + wH(f)0wH(g)0 = 0
– if k ∈ [1, 2d − 1]:

wH(fn)k =
k∑
i=0

wH(g)iwH(f)k−i + wH(g)iwH(f)k−i, (5.6)

= wH(f)k +
k∑
i=1

wH(g)i(wH(f)k−i + wH(f)k−i), (5.7)

= wH(f)k + 1
2

k∑
i=1

(
2d
i

)(
n− 2d
k − i

)
, (5.8)

= wH(f)k + 1
2

((
n

k

)
−
(
n− 2d
k

))
. (5.9)

Equation (5.7) comes from g being WPB of 2d variables, therefore for i ∈ [1, 2d−1]:
wH(g)i = wH(g)i. Equation (5.8) is obtained using that wH(f)k−i + wH(f)k−i =(n−2d
k−i

)
by definition and wH(g)i = 1

2
(2d
i

)
because f is a WPB function. Equa-

tion (5.9) is obtained using Vandermonde convolution: ∑k
i=0

(n
i

)( m
k−i
)

=
(n+m

k

)
.

Therefore wH(fn)k = 1
2
(n
k

)
if
(n−2d

k

)
is even and wH(fn)k = 1

2
((n
k

)± 1
)
otherwise.



5.5 Restricted Balancedness 147

– if k ∈ [2d, n− 1]:

wH(fn)k =
2d−1∑
i=1

wH(g)iwH(f)k−i + wH(g)iwH(f)k−i

+ wH(g)0wH(f)k + wH(g)0wH(f)k
+ wH(g)2dwH(f)k−2d + wH(g)2dwH(f)k−2d

=
2d−1∑
i=1

1
2

(
2d
i

)(
n− 2d
k − i

)
+ wH(f)k + wH(f)k−2d

= 1
2

((
n

k

)
−
(
n− 2d
k

)
−
(
n− 2d
k − 2d

))
+ wH(f)k + wH(f)k−2d

As n− 2d ≡ 0[2d+1] at least one of
(n−2d

k

)
,
(n−2d
k−2d

)
is even therefore wH(fn)k = 1

2
(n
k

)
if both are even and wH(fn)k = 1

2
((n
k

)± 1
)
otherwise.

– if k = n: wH(fn)n = wH(f)n−2dwH(g)2d + wH(f)n−2dwH(g)2d = 1 Giving that fn
is WAPB.

To conclude for all n ≥ 2, fn is weightwise (almost) perfectly balanced.

These highlighted weightwise (almost) perfectly balanced functions are very structured,
obtainable from direct sum constructions and with an ANF containing a low number of
monomials. It finishes our study on the restricted balancedness, and also on the new criteria
on Boolean functions presented in this thesis.





Chapter 6
Conclusion and Perspectives
In this part we conclude on the main topic addressed in this thesis, working towards
practical fully homomorphic frameworks for outsourcing computations. We summarize the
contributions of the previous chapters in this direction, and finally we give more perspectives
on the presented material, emphasizing on the connections with future works and open
questions.

Contents
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.1 Goldreich’s PRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.2 Improved Filter Permutator . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.3 Weightwise Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.4 New Considerations on Boolean Functions . . . . . . . . . . . . . . . . . 156

— 149 —



150 Chapter 6 Conclusion and Perspectives

6.1 Conclusion
In this thesis, we presented a solution towards efficient fully homomorphic encryption frame-
works for outsourcing computations. Beyond the mathematical beauty of fully homomorphic
encryption, a deeper study is necessary to materialize the applications it was dreamed for.
The existence of fully homomorphic encryption is due to lattice-based cryptography, in this
thesis we showed that the realization of one of these applications, outsourcing computation,
becomes realistic with the joint use of constructions from other domains of cryptography.
In Chapter 3, we presented a hybrid framework designed for outsourcing computations,

enabling to transfer the cost in time and data of the homomorphic executions from the client
to the Cloud. The technical study of the homomorphic properties in practice permitted
to identify adapted functions in order to minimize the delay which is independent of the
outsourced computations.

Then, in Chapter 4, we introduced the Filter Permutator, a family of symmetric encryption
schemes which is designed to be combined with homomorphic encryption schemes in hybrid
frameworks. We examined its behavior relatively to a particular error-growth metric, with a
close to optimal achievement in theory, and good results in practice.
Finally, in Chapter 5, we investigated the relevant Boolean criteria to assess the security

of the symmetric primitive, and therefore of the whole framework. It required to examine
the parameters of low-cost functions, and to identify and study new Boolean cryptographic
criteria.
This material provides a blueprint for efficient homomorphic hybrid frameworks for out-

sourcing computations almost optimal in theory, and giving room for practical improvements.
It also contributes to a better understanding of some cryptographic constructions, as the
study of the error-growth of homomorphic operations, the consideration of transciphering
between symmetric and homomorphic encryptions, and the investigation of Boolean functions
in a specific context.

6.2 Perspectives
In the following part we introduce a few selected topics related to the material developed in
this thesis, that could lead to further studies. First, we describe Goldreich’s PRG [Gol00],
and show how this primitive can be related to the Filter Permutator. Then, we investigate
modifications of the Filter Permutator which could lead to more efficient instantiations than
FLIP. We also consider how the cryptanalysis method based on fixed Hamming weight input
applying on the Filter Permutator can be extended to other primitives. Finally, we emphasis
some open questions on Boolean functions arising from our study.

6.2.1 Goldreich’s PRG

More known in the complexity theory community, the work of Oded Goldreich on pseu-
dorandom generators with low complexity has been recently (Spring 2017) pointed out in
the cryptographic community, as part of a candidate construction for indistinguishability
obfuscation. In 2000, Oded Goldreich introduced a candidate one-way function based on
expander graphs [Gol00], which is very easy to evaluate, as designed for practical concerns.
More particularly, with appropriate choices of the parameters this one-way function can be in
the complexity class NC1 and even NC0, giving birth to the pseudorandom local generators,



6.2 Perspectives 151

PRG for which any output depends on a number of inputs upper bounded by a constant. For
a more general view on pseudorandom local generators and more generally on pseudorandom
local functions (PRF for which each output bit depends on a limited number of inputs)
we refer to the survey of Benny Applebaum [App13]. Local pseudorandom generators can
be used to construct indistinguishability obfuscation, where the locality of the generator
determines the degree of the multi-linear map (studied as a cryptographic primitive in [BS02])
necessary to the construction. Indistinguishability obfuscation is a primitive which received a
lot of attention in the last years, as it has been proved that this primitive implies most of the
cryptographic primitives, as depicted in [Bar16]. For the constructions of indistinguishability
obfuscation from d-linear maps and the frenetic publications on Eprint on this topic we refer
to [LT17].
In the following we begin by describing Goldreich’s PRG, then we show the connection

with the Filter Permutator, finally we consider how this connection could be interesting
relatively to these two primitives.

6.2.1.1 Generalities on Goldreich’s PRG

Definition 6.2.1 (Goldreich’s One Way Function (adapted from [Gol00])). Let

• {fn : {0, 1}n → {0, 1}m}n∈N be a (uniform) collection of functions where m = ns,

• S1, · · · , Sm ⊂ [n] be a collection of subsets of size d,

• P : {0, 1}d → {0, 1} be a predicate.

For all x ∈ {0, 1}n and S ⊂ [n], where S = {i1, · · · , id} and ij < ij+1 we denote by xS the
projection of x on S that is xi1 · · ·xid. Fixing P and S1, · · ·Sm we define Goldreich’s One
Way Function as:

fn(x) = (P (xS1), P (xS2), · · · , P (xSm)) ∈ Fm2 .

Note that in [Gol00] the value s is fixed to 1 (i.e. m = n) and the function is conjectured
non invertible within time 2n/O(1) (with more concerns on P and the collection of subsets).
Benny Applebaum [App12] proved that these random local functions are weak PRG where
the distinguishing advantage is upper bounded by an arbitrary fixed inverse polynomial in n
(called PPRG) if they are one-way; justifying the denomination of Goldreich’s PRG in this
section. More precisely, from [AL16], for any polynomial stretch (s > 1) the family fn is
conjectured to be a PPRG if:

• the hypergraph obtained by considering as nodes the n coefficients of x and as hyperedges
of arity d each subset Si is a good expander,

• the predicate P has resiliency at least 2s and algebraic immunity at least s.

This statement concerns in fact 1 − o(1) of such predicates and hypergraphs, for the
exact result we refer to [AL16]. For our perspective, it is interesting to know that such
kind of pseudorandom generator exists and reductions to other cryptographic primitives are
known for it, together with studied conjectures. For example the precedent statement has
been proven for particular classes of adversaries: F2 linear tests and the Lasserre/Parrilo
sum-of-squares hierarchy, and conjectured for any polynomial time adversary. These results
can be of particular interest for the Filter Permutator model.



152 Chapter 6 Conclusion and Perspectives

x

n

Si

x′ x′ ∈ Fd2

P

P (xSi)

Figure 6.1: Goldreich’s PRG output generation.

6.2.1.2 Goldreich’s PRG and Filter Permutator

To show the connection between Goldreich’s PRG and the Filter Permutator, let us first
depict in Figure 6.1 how a bit of output of Goldreich’s PRG is computed.
The similitudes between Figure 6.1 and Figure 4.1 permit to show a connection between

the two primitives they represent. For a fixed n and a fixed seed x ∈ Fn2 for each of the
m outputs this instantiation of Goldreich’s PRG takes the d coefficients of x indexed by
the randomly chosen subset Si and apply the d variables predicate P . First, note that the
predicate P is a Boolean function defined over d variables, that can also be defined as the
direct sum of a Boolean function in d variables and the null function in n − d variables.
Then, note that XORing the output of a PRG to a plaintext (of smaller or equal length) is
equivalent to a stream cipher where the secret key is the PRG seed and whose security relies
on the one of the PRG. Finally, note that choosing at random m subsets of [n] of d elements
in the natural order (ij < ij+1) is equivalent to choosing at random m permutations of [n]
where the first d elements are in the natural order.

Summing up these observations, it gives only two differences between Goldreich’s PRG
and the Filter Permutator construction (without considering the security requirements of
these different primitives). The first one is the size of the input of the predicate (respectively
the filtering function), which is smaller than the seed length (respectively key length) for
Goldreich’s PRG, giving the locality of the PRG and more particularly the membership in
NC0 for d independent of n. The second difference is the order in the subsets, for all Si
the elements are in natural order whereas the permutations of the Filter Permutator do not



6.2 Perspectives 153

guarantee any order. Thus, at the cost of minor modifications, instantiations of Goldreich
PRG and instantiations of the Filter Permutator are equivalent, motivating further researches
on how the knowledge of one of these primitives can benefit to the other.
A potential research direction is to reduce the security of the Filter Permutator to more

investigated hypotheses as the one developed to analyze Goldreich PRG and more generally
random local functions. These functions have been studied extensively in the complexity
theory community and can be used to construct a variety of cryptographic primitives (as
surveyed in [App13]) as public key encryption [ABW10]. All these results are asymptotic, then
they could ensure notion of security for families of instantiations of the Filter Permutator rather
than concrete security as required for deployed symmetric encryption schemes. Nevertheless,
it could also have applications on the symmetric encryption scheme for a fixed security
parameter as the security of Goldreich’s PRG is conjectured to depend on only two Boolean
criteria, the resiliency and the algebraic immunity. Such conjecture could lead to consider
instantiations of the filter Permutator similar to FLIP without the quadratic part and exempted
of considerations of nonlinearity.
Another interesting research direction is the cryptanalysis of Goldreich’s PRG or of the

Filter Permutator. The resiliency and algebraic immunity of the 4 proposed candidates of
FLIP have parameters adequate with conjectured secure instances of Goldreich’s PRG, but as
they are not part of a family indexed by n ∈ N it does not lead to more conclusions. Simpler
candidates can be broken for a fixed security (as shown in [DLR16b]), with parameter still
adequate with conjectured secure families of functions, then it could be interesting to examine
if these attacks can be extended to the asymptotic constructions. Then, in the complexity
theory community, the algebraic attacks have been rediscovered in 2016 in [AL16] where
before the Boolean function:

2s∑
i=1

xi +
3s∏

i=2s+1
xi,

where s is the polynomial stretch, was conjectured to be a good predicate for Goldreich’s
PRG.
Note that this function has algebraic immunity 2 independently of s, as defined in 2003

([CM03]), reducing the security to solving an algebraic system of degree at most 2 of ns
equations in n variables, totally breaking the pseudorandomness for all stretch s ≥ 2. As
the only criterion considered before were the algebraic degree and the resiliency, it seems
interesting to study which standard symmetric cryptanalysis could apply to Goldreich’s
PRG, and why some cannot apply for constructions defined for all n. This study could
also determine minimal values of n for which concrete instantiations of Goldreich’s PRG
could not be distinguished with good probability with particular attacks bounded by 2λ
computations. Indeed, up to our knowledge, it seems difficult to find parameters (values
of n) for a concrete instantiation of Goldreich’s PRG for polynomial stretch relatively to
a fixed security level λ, whereas it could be needed for instantiating indistinguishability
obfuscation candidates. Finally, one important particularity of the Filter Permutator beyond
the symmetric encryption schemes is the invariance of the Hamming weight of its input
during the encryption. For Goldreich’s PRG the seed does not variate neither but each
output bit depends on a few bits of the seed, then using the notation used in Figure 6.1, we
have wH(x) = k and 0 ≤ wH(x′) ≤ min (d, k). Then the distribution of wH(x′) is not uniform,
as it depends on k and d, and it could be interesting to investigate if this particularity implies
a usable weakness or not. Due to the particular relations between n and d the distribution



154 Chapter 6 Conclusion and Perspectives

of wH(x′) could be more or less statistically close to the uniform distribution over binary
string of length d. Then the choice of the predicate could also play a role in the security,
depending on how it amplifies or reduces the impact of this particularity. As this concept
seems orthogonal to the standard criteria of resiliency and algebraic immunity, it could lead
to further studies. This concludes our perspective on Goldreich’s PRG from the contributions
of this thesis.

6.2.2 Improved Filter Permutator

In this thesis we presented the version of the Filter Permutator as presented in [MJSC16], since
then the symmetric security of this primitive is more understood, enabling to contemplate new
instantiations for particular applications. We briefly describe here 3 potential orientations of
the initial design deserving further investigations.
In the presented instantiation FLIP, most of the security analysis concerns guess-and-

determine attacks and fixed-Hamming-weight cryptanalysis, requiring to consider a filtering
function with good parameters relatively to many criteria. In particular for FLIP filtering
functions it leads to consider functions built from various triangular functions, increasing
the number of variables, so decreasing the efficiency of the scheme. Two modifications of the
Filter Permutator permit to reduce the impact of these attacks: fixing the input size of F
smaller than the key size (as in Goldreich’s PRG) and adding a public whitening on F input
at each clock cycle. Both of these techniques break the invariant of the Hamming weight
on F input, the first modification gives more variation on the Hamming weight of the input
of F , depending on the Hamming weight of the key and the input size of F . The second
modification makes the input of F uniform, making more complex to consider an attack
based on the parameters of F on restricted subsets as we did for FLIP in Section 4.5.3. Then,
the first modification diminishes the impact of guess-and-determine attacks as the guessed
variables are not always taken in F inputs, so with the same function as in the instances of
Section 4.3.2.2 and a larger key register the data cost of the attacks with guess-and-determine
increases. The second modification makes more difficult to obtain samples where a particular
function F ′ in fewer variables is obtained, as the guesses on the key bits have to match with
the whitening, also increasing the data complexity of such attacks.
Note that both of these modifications do not have a negative impact when the Filter

Permutator is used in a hybrid homomorphic framework: the increasing of the key register
do not imply to compute more complex functions on the homomorphic ciphertexts and the
whitening can be performed by adding zero-noise ciphertext or using hybrid ciphertexts as
explained in Section 3.4. Then using these modifications together with the same analysis
of error-growth for the third generation FHE and a similar security analysis centered on
the standard Boolean criteria could lead to use simpler FLIP functions and therefore more
efficient FHE frameworks for outsourcing computation.

The third generation of FHE has been shown to be compatible with branching programs,
as illustrated by the works [BV14; CGGI16], it could be interesting to design an instantiation
of the Filter Permutator in this direction. The instantiation FLIP is oriented to produce low-
noise ciphertexts when they are computed with AND and XOR gates, the Filter Permutator
could be oriented to produce low-noise ciphertexts when its decryption circuit is evaluated
as a branching program, or a close variation. For the third generation, the use of MUX
gates to evaluate a function can influence the low-noise quality of a function, as proved in
Section 3.3.3.2. Then it could lead to study other Boolean functions than direct sums of



6.2 Perspectives 155

monomials in order to obtain secure instantiations as symmetric encryption scheme and
low-noise branching programs. The particular shape of functions corresponding to low-noise
branching programs could be quite different from the well-studied families of Boolean functions
or from the functions with bounded number of monomials potentially requiring a new study
as Section 5.1.
Finally, an orientation of the Filter Permutator for bigger fields could be an attractive

research direction. As shown in [AGR+16], symmetric cryptographic primitives with low
multiplicative complexity can be useful in context various as MPC, FHE and zero-knowledge
proofs, not only for primitives working on F2 but also on bigger fields. As a first approach,
we could consider the relations between current instantiations of FLIP (on F2) and similar
instantiations on bigger rings or fields R. Considering a secret key of elements in R and
FLIP functions defined from RN to R, we can consider the system of equations given by
the keystream function of this version of the Filter Permutator. The FLIP functions being
Boolean functions, their sums should be interpreted as XOR for other moduli using that
x1⊕x2 = x1 +x2−2x1x2 for these cases, and the considered system should be complemented
with the ring or fields equations. Considering such systems some reductions of security of
FLIP versions from a structure to another could be proven. As a trivial example, a decryption
oracle for FLIP defined on Z/2`Z would be sufficient to solve the system of FLIP defined over
the Boolean field. In this case, it could lead to a non-binary symmetric encryption scheme
with security at least the one of the current instantiations. A better (but way more intricate)
approach would consist in determining which are the important cryptographic criteria for a
filtering function defined over a particular ring or field, and investigate which functions have
good parameters for these criteria and are sufficiently low cost for the considered applications.

These 3 potential orientations show that is still large room for improvements on the Filter
Permutator, both on a practical side: find more efficient instantiations, and on a theoretical
side: find the minimal functions providing security.

6.2.3 Weightwise Cryptanalysis

In Section 4.5.3 we presented a security analysis of the FLIP ciphers based on the behavior of
a function on restricted sets, more particularly on the sets of all vectors of a fixed Hamming
weight. Up to our knowledge, this Weightwise Cryptanalysis has not been considered before
[CMR17] and could be applied to other ciphers. Note that on the preprint version of this
work, this cryptanalysis is explained in a context of side channel (a strong model where at
multiple times the exact Hamming weight of a register is leaked), and as a proof of concept
described on the stream-cipher Grain. The restriction to a constant and known Hamming
weight is not common in cryptographic constructions, the leakage of the exact Hamming
weight of critical values of a scheme is not common neither, nevertheless these considerations
can lead to two interesting topics.
First, in a constrained context where functions are forced to be evaluated on inputs with

bounded-Hamming-weight, which security could be expected? And consequently, could we
obtain constructions with better guaranties of security dealing with functions restricted to
bounded Hamming weight inputs rather than functions considered on their whole input
space? Note that the Hamming weight is a common measure in the side-channel area, and
that restricting the Hamming weight has a non negligible influence on an electronic device
perspective, potentially motivating the study of good cryptographic functions on inputs of
restricted Hamming weight.



156 Chapter 6 Conclusion and Perspectives

Second, for some constructions the Hamming weight could be determined, exactly or
approximatively and then a weaker weightwise cryptanalysis could be applied. More precisely
for ciphers using LFSR or NFSR with the Fibonacci representation the Hamming weight is not
variating a lot when few updates are performed, therefore in a chosen plaintext attack some
information on the Hamming weight of the registers at particular times could be extracted.
This weight would be in a particular range of possible Hamming weights, if this range defines
a subset where one of the applied functions has a cryptographic flaw it could be used to
attack the whole scheme. Regarding LFSR, various results are known on the sequence they
generate, as its period. In the context we consider, results on the evolution of the Hamming
weight of consecutive elements of this sequence could be sufficient to apply a weightwise
cryptanalysis. Indeed, it could be sufficient to determine particular times where the input of
a function has Hamming weight restricted to a particular range of values and then use the
analysis of the Boolean function on these sets only. Therefore weightwise cryptanalysis could
lead to interesting studies relatively to LFSR or NFSR sequences, finishing our thoughts on
this perspective.

6.2.4 New Considerations on Boolean Functions

The study of Chapter 5 presents various results on Boolean functions whose motivation
comes from the particularities of the Filter Permutator. Beyond this motivation, extending
this study could benefit to other works. First, the investigation on the simplest functions
(relatively to a specific metric) providing security is suitable for the design of efficient
cryptographic primitives. Then, the generalization of Boolean cryptographic criteria to
particular restrictions of the function’s input (recurrent and restricted criteria) could have
various applications in cryptanalysis. Finally, the better understanding of mathematical
objects as Boolean functions, Codes, Lattices, etc has many applications, and above all, it is
a goal in itself. Consequently we lay emphasis in the following on some of the open problems
arising from our work on Boolean functions.

6.2.4.1 Open Questions on Low Cost Boolean Functions

In Section 5.1 we presented results on functions with an extremely low number of monomials
and good parameters relatively to standard cryptographic criteria, nevertheless some questions
are still open for these simple constructions.

The first one arises from the recurrent high-order nonlinearity of direct sums of monomials
(Section 5.2.2):

Question 6.1. For all Boolean functions g and h, and all integers d such that d > 1 what is
the exact expression of the nonlinearity of order d of their direct sum f = g + h in terms of
NLd(g) and NLd(h)?

Many questions remain open on the high-order nonlinearity criterion, for the applications
we considered to provide nonlinearity we used a Dickson function in 2n variables as it is a
bent function with only n monomials in its ANF. Optimizing the nonlinearity relatively to
the number of monomials leads to this question:

Question 6.2. For all strictly positive integers n and d, what is the minimal number of
monomials of an n-variable Boolean function to reach the optimal nonlinearity of order d?



6.2 Perspectives 157

For the algebraic immunity criterion, a similar question is still open:

Question 6.3. What is the minimal number of monomials of an n-variable Boolean function
to reach the optimal algebraic immunity?

Remark 5.1.6 emphases on the equality of the algebraic immunity and the number of
monomials of the triangular functions, and on the optimality of this ratio, but it does not
answer to the precedent question for n > 2. More investigations could be conducted relatively
to this ratio, denoting M(f) the number of monomials in the ANF of the function f :

Question 6.4. For a strictly positive integer c, what are the families of functions (indexed
by n) such that the algebraic immunity of f is (less than or) equal to M(f)/c?

6.2.4.2 Open Questions on Restricted Criteria

In Sections 5.3, 5.4 and 5.5, we considered Boolean functions on restricted input, which is
quite a new cryptographic point of view. Our study focusing on fixed Hamming weight input
tries to address most of the natural questions in this context, we highlight here some other
questions of various interest and presumed difficulty which are not answered yet.
Following on constructions with few monomials, in Section 5.5.2 we exhibited a WPB

function with ANF containing n− 1 monomials whereas we proved a lower bound of 3n/4 + 1
(for n > 4), raising the following interrogation:

Question 6.5. For any integer `, ` > 3, what is the minimal number of monomials of a
WPB function in 2` variables?

The optimal restricted nonlinearity is examined in Section 5.4.1 where various upper
bounds are considered in the general case and latter for the sets En,k. It leads to the wide
question:

Question 6.6. For a particular integer n and a particular set E ∈ Fn2 , what is the maximal
possible value of NLE? And, generalizing to a family of sets E = {En}n∈I⊆N where for each
n ∈ I a subset of Fn2 is associated, what are the families of functions (indexed by n) reaching
this optimal restricted nonlinearity for all sets of E?

Note that it is equivalent to determine the covering radius of all punctured Reed-Muller
codes of order 1 and exhibit families of vectors reaching this value. This code analogy
also brings back the simpler question of constructing functions with optimal weightwise
nonlinearity for a particular Hamming weight using the recursive structure of Reed-Muller
codes.

Some questions naturally arise from our study of Section 5.3.2 on the restricted algebraic
immunity, more specifically regarding the sets En,k. We proved that on these sets the
restricted algebraic immunity e is bounded (Corollary 5.3.9) by the relation:

2
(
n

e

)
>

(
n

k

)
.

Leading to the following issue:

Question 6.7. For all integers n and k, what is the smallest integer e satisfying this relation?
And what is the asymptotic behavior of e relatively to the standard algebraic immunity upper
bound dn/2e?



158 Chapter 6 Conclusion and Perspectives

We linked the algebraic immunity upper bound to the rank of the generator matrix of a
punctured Reed-Muller code RM(d, n)En,k . This matrix can also be used to compute the
exact AIEn,k of a given function, by partitioning the columns depending on the value of f
on the column entry and determining when the rank of one of these two matrices is strictly
inferior to the rank of the global one. For matrices with rank r at least twice the number of
columns, proving the existence of a partition of the columns in two matrices with rank r will
prove the tightness of the AIEn,k upper bound e, leading to the following question:

Question 6.8. For all sets En,k, is the upper bound of Corollary 5.3.9 tight?

If this bound is tight, it would be interesting to find families of functions reaching it. It
cannot be the case of the majority functions, with optimal standard algebraic immunity,
as being symmetric functions they are constant when the input Hamming weight is fixed.
Therefore optimal functions for restricted weight algebraic immunity could lead to very
different constructions. The same reasoning applies for the nonlinearity for which we proved
that bent functions could have trivial weightwise nonlinearity (Section 5.4.3); and for the
balancedness as the lower bound on the degree of a WPB function (see Section 5.5.1) implies
an upper bound on its resiliency. These examples of degradation of the optimality between a
standard criterion and its weightwise variant leads to the following question:

Question 6.9. Can we find families of functions (indexed by n) which are both optimal for
a cryptographic criterion on Fn2 and for its restricted variant on the family of sets En,k?

All these questions witness the potential variety of research direction concerning the
restricted Boolean criteria. They also enable to envisage other families of sets of Fn2 neither
vectorspaces neither En,k with particular cryptanalysis applications and new constructions of
Boolean functions, potentially leading to plenty of further studies.



Bibliography
[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. “Public-key cryptography

from different assumptions”. In: 42nd Annual ACM Symposium on Theory of
Computing. Ed. by Leonard J. Schulman. Cambridge, MA, USA: ACM Press,
June 2010, pp. 171–180 (cit. on p. 153).

[ACG+06] Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Künzli, Willi
Meier, and Olivier Ruatta. “Efficient Computation of Algebraic Immunity for
Algebraic and Fast Algebraic Attacks”. In: Advances in Cryptology – EURO-
CRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. Lecture Notes in Computer
Science. St. Petersburg, Russia: Springer, Heidelberg, Germany, May 2006,
pp. 147–164 (cit. on p. 79).

[AG11] Sanjeev Arora and Rong Ge. “New Algorithms for Learning in Presence of Er-
rors”. In: ICALP 2011: 38th International Colloquium on Automata, Languages
and Programming, Part I. Ed. by Luca Aceto, Monika Henzinger, and Jiri Sgall.
Vol. 6755. Lecture Notes in Computer Science. Zurich, Switzerland: Springer,
Heidelberg, Germany, July 2011, pp. 403–415 (cit. on p. 66).

[AGKS05] Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. “Tag-
KEM/DEM: A New Framework for Hybrid Encryption and A New Analysis of
Kurosawa-Desmedt KEM”. In: Advances in Cryptology – EUROCRYPT 2005.
Ed. by Ronald Cramer. Vol. 3494. Lecture Notes in Computer Science. Aarhus,
Denmark: Springer, Heidelberg, Germany, May 2005, pp. 128–146 (cit. on
p. 60).

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. “MiMC: Efficient Encryption and Cryptographic Hashing with Minimal
Multiplicative Complexity”. In: Advances in Cryptology – ASIACRYPT 2016,
Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. Lecture Notes
in Computer Science. Hanoi, Vietnam: Springer, Heidelberg, Germany, Dec.
2016, pp. 191–219. doi: 10.1007/978-3-662-53887-6_7 (cit. on p. 155).

[AL16] Benny Applebaum and Shachar Lovett. “Algebraic attacks against random local
functions and their countermeasures”. In: 48th Annual ACM Symposium on
Theory of Computing. Ed. by Daniel Wichs and Yishay Mansour. Cambridge,
MA, USA: ACM Press, June 2016, pp. 1087–1100 (cit. on pp. 151, 153).

[And95] Ross J. Anderson. “Searching for the Optimum Correlation Attack”. In: Fast
Software Encryption – FSE’94. Ed. by Bart Preneel. Vol. 1008. Lecture Notes
in Computer Science. Leuven, Belgium: Springer, Heidelberg, Germany, Dec.
1995, pp. 137–143 (cit. on p. 82).

[AP13] Jacob Alperin-Sheriff and Chris Peikert. “Practical Bootstrapping in Quasilinear
Time”. In: Advances in Cryptology – CRYPTO 2013, Part I. Ed. by Ran Canetti
and Juan A. Garay. Vol. 8042. Lecture Notes in Computer Science. Santa

— 159 —

http://dx.doi.org/10.1007/978-3-662-53887-6_7


160 Bibliography

Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2013, pp. 1–20. doi:
10.1007/978-3-642-40041-4_1 (cit. on p. 57).

[AP14] Jacob Alperin-Sheriff and Chris Peikert. “Faster Bootstrapping with Polynomial
Error”. In: Advances in Cryptology – CRYPTO 2014, Part I. Ed. by Juan A.
Garay and Rosario Gennaro. Vol. 8616. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2014, pp. 297–
314. doi: 10.1007/978-3-662-44371-2_17 (cit. on pp. 23, 41, 42, 57, 67).

[App12] Benny Applebaum. “Pseudorandom generators with long stretch and low locality
from random local one-way functions”. In: 44th Annual ACM Symposium on
Theory of Computing. Ed. by Howard J. Karloff and Toniann Pitassi. New York,
NY, USA: ACM Press, May 2012, pp. 805–816 (cit. on p. 151).

[App13] Benny Applebaum. “Cryptographic Hardness of Random Local Functions-
Survey”. In: TCC 2013: 10th Theory of Cryptography Conference. Ed. by Amit
Sahai. Vol. 7785. Lecture Notes in Computer Science. Tokyo, Japan: Springer,
Heidelberg, Germany, Mar. 2013, p. 599. doi: 10.1007/978-3-642-36594-
2_33 (cit. on pp. 151, 153).

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On The Concrete Hardness
Of Learning With Errors. Cryptology ePrint Archive, Report 2015/046. http:
//eprint.iacr.org/2015/046. 2015 (cit. on p. 57).

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. “Ciphers for MPC and FHE”. In: Advances in Cryptology
– EUROCRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin.
Vol. 9056. Lecture Notes in Computer Science. Sofia, Bulgaria: Springer, Heidel-
berg, Germany, Apr. 2015, pp. 430–454. doi: 10.1007/978-3-662-46800-5_17
(cit. on pp. 63, 74, 75, 77).

[AZ04] Martin Aigner and Gunter M. Ziegler. Proofs from THE BOOK (3. ed.) Springer,
2004. isbn: 978-3-540-40460-6 (cit. on p. 133).

[Bar16] Boaz Barak. Hopes, Fears and Software Obfuscation: A Survey. Cryptology
ePrint Archive, Report 2016/210. http://eprint.iacr.org/2016/210. 2016
(cit. on p. 151).

[BC11] Christina Boura and Anne Canteaut. “Zero-Sum Distinguishers for Iterated
Permutations and Application to Keccak-f and Hamsi-256”. In: SAC 2010: 17th
Annual International Workshop on Selected Areas in Cryptography. Ed. by Alex
Biryukov, Guang Gong, and Douglas R. Stinson. Vol. 6544. Lecture Notes in
Computer Science. Waterloo, Ontario, Canada: Springer, Heidelberg, Germany,
Aug. 2011, pp. 1–17 (cit. on p. 83).

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. “A Concrete
Security Treatment of Symmetric Encryption”. In: 38th Annual Symposium
on Foundations of Computer Science. Miami Beach, Florida: IEEE Computer
Society Press, Oct. 1997, pp. 394–403 (cit. on pp. 16, 60, 78).

[Ben16] Fabrice Benhamouda. “Diverse modules and zero-knowledge”. PhD thesis.
École Normale Supérieure, Paris, France, 2016. url: https://tel.archives-
ouvertes.fr/tel-01399476 (cit. on p. 10).

http://dx.doi.org/10.1007/978-3-642-40041-4_1
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-642-36594-2_33
http://dx.doi.org/10.1007/978-3-642-36594-2_33
http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://eprint.iacr.org/2016/210
https://tel.archives-ouvertes.fr/tel-01399476
https://tel.archives-ouvertes.fr/tel-01399476


161

[BG07] Côme Berbain and Henri Gilbert. “On the Security of IV Dependent Stream
Ciphers”. In: Fast Software Encryption – FSE 2007. Ed. by Alex Biryukov.
Vol. 4593. Lecture Notes in Computer Science. Luxembourg, Luxembourg:
Springer, Heidelberg, Germany, Mar. 2007, pp. 254–273 (cit. on p. 78).

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully ho-
momorphic encryption without bootstrapping”. In: ITCS 2012: 3rd Innovations
in Theoretical Computer Science. Ed. by Shafi Goldwasser. Cambridge, MA,
USA: Association for Computing Machinery, Jan. 2012, pp. 309–325 (cit. on
pp. 34–36, 41).

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. “Noise-tolerant learning, the
parity problem, and the statistical query model”. In: 32nd Annual ACM Sym-
posium on Theory of Computing. Portland, OR, USA: ACM Press, May 2000,
pp. 435–440 (cit. on pp. 81, 88).

[BLMZ16] Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang Zhou.
Optimization of Bootstrapping in Circuits. Cryptology ePrint Archive, Report
2016/785. http://eprint.iacr.org/2016/785. 2016 (cit. on p. 58).

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. “Classical hardness of learning with errors”. In: 45th Annual ACM
Symposium on Theory of Computing. Ed. by Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum. Palo Alto, CA, USA: ACM Press, June 2013, pp. 575–584
(cit. on p. 57).

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically Strong
Sequences of Pseudorandom Bits”. In: SIAM Journal on Computing 13.4 (1984),
pp. 850–864 (cit. on p. 70).

[BMT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. “On the
inherent intractability of certain coding problems (Corresp.)” In: IEEE Trans.
Information Theory 24.3 (1978), pp. 384–386. doi: 10.1109/TIT.1978.1055873.
url: https://doi.org/10.1109/TIT.1978.1055873 (cit. on p. 33).

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom Functions
and Lattices”. In: Advances in Cryptology – EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in Computer
Science. Cambridge, UK: Springer, Heidelberg, Germany, Apr. 2012, pp. 719–
737 (cit. on p. 22).

[Bra12] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switching
from Classical GapSVP”. In: Advances in Cryptology – CRYPTO 2012. Ed. by
Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2012,
pp. 868–886 (cit. on p. 34).

[BS02] Dan Boneh and Alice Silverberg. Applications of Multilinear Forms to Cryp-
tography. Cryptology ePrint Archive, Report 2002/080. http://eprint.iacr.
org/2002/080. 2002 (cit. on p. 151).

http://eprint.iacr.org/2016/785
http://dx.doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2002/080


162 Bibliography

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Homomorphic
Encryption from (Standard) LWE”. In: 52nd Annual Symposium on Foundations
of Computer Science. Ed. by Rafail Ostrovsky. Palm Springs, CA, USA: IEEE
Computer Society Press, Oct. 2011, pp. 97–106 (cit. on pp. 34, 35, 57, 66).

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. “Lattice-based FHE as secure as
PKE”. In: ITCS 2014: 5th Innovations in Theoretical Computer Science. Ed. by
Moni Naor. Princeton, NJ, USA: Association for Computing Machinery, Jan.
2014, pp. 1–12 (cit. on pp. 46, 49, 154).

[BY03] Mihir Bellare and Bennet S. Yee. “Forward-Security in Private-Key Cryptogra-
phy”. In: Topics in Cryptology – CT-RSA 2003. Ed. by Marc Joye. Vol. 2612.
Lecture Notes in Computer Science. San Francisco, CA, USA: Springer, Heidel-
berg, Germany, Apr. 2003, pp. 1–18 (cit. on p. 71).

[Car10] Claude Carlet. “Boolean Functions for Cryptography and Error-Correcting
Codes”. In: Boolean Models and Methods in Mathematics, Computer Science,
and Engineering. Ed. by Yves Crama and Peter L.Editors Hammer. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2010, pp. 257–
397. doi: 10.1017/CBO9780511780448.011 (cit. on pp. 24, 96, 98, 129, 137,
138).

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. “Stream Ciphers: A Prac-
tical Solution for Efficient Homomorphic-Ciphertext Compression”. In: Fast
Software Encryption – FSE 2016. Ed. by Thomas Peyrin. Vol. 9783. Lecture
Notes in Computer Science. Bochum, Germany: Springer, Heidelberg, Germany,
Mar. 2016, pp. 313–333. doi: 10.1007/978-3-662-52993-5_16 (cit. on pp. 59,
64, 65, 68, 74, 75, 77).

[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède
Lepoint, Mehdi Tibouchi, and Aaram Yun. “Batch Fully Homomorphic En-
cryption over the Integers”. In: Advances in Cryptology – EUROCRYPT 2013.
Ed. by Thomas Johansson and Phong Q. Nguyen. Vol. 7881. Lecture Notes in
Computer Science. Athens, Greece: Springer, Heidelberg, Germany, May 2013,
pp. 315–335. doi: 10.1007/978-3-642-38348-9_20 (cit. on p. 34).

[CF08] Claude Carlet and Keqin Feng. “An Infinite Class of Balanced Functions with
Optimal Algebraic Immunity, Good Immunity to Fast Algebraic Attacks and
Good Nonlinearity”. In: Advances in Cryptology – ASIACRYPT 2008. Ed. by
Josef Pieprzyk. Vol. 5350. Lecture Notes in Computer Science. Melbourne,
Australia: Springer, Heidelberg, Germany, Dec. 2008, pp. 425–440 (cit. on
p. 100).

[CFGR12] Claude Carlet, Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault.
“Analysis of the algebraic side channel attack”. In: J. Cryptographic Engineering
2.1 (2012), pp. 45–62. doi: 10 . 1007 / s13389 - 012 - 0028 - 0. url: https :
//doi.org/10.1007/s13389-012-0028-0 (cit. on p. 119).

http://dx.doi.org/10.1017/CBO9780511780448.011
http://dx.doi.org/10.1007/978-3-662-52993-5_16
http://dx.doi.org/10.1007/978-3-642-38348-9_20
http://dx.doi.org/10.1007/s13389-012-0028-0
https://doi.org/10.1007/s13389-012-0028-0
https://doi.org/10.1007/s13389-012-0028-0


163

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Sec-
onds”. In: Advances in Cryptology – ASIACRYPT 2016, Part I. Ed. by Jung Hee
Cheon and Tsuyoshi Takagi. Vol. 10031. Lecture Notes in Computer Science.
Hanoi, Vietnam: Springer, Heidelberg, Germany, Dec. 2016, pp. 3–33. doi:
10.1007/978-3-662-53887-6_1 (cit. on pp. 46, 49, 57, 67, 76, 154).

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“Improving TFHE: faster packed homomorphic operations and efficient circuit
bootstrapping”. In: IACR Cryptology ePrint Archive 2017 (2017), p. 430. url:
http://eprint.iacr.org/2017/430 (cit. on p. 60).

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. “Scale-Invariant
Fully Homomorphic Encryption over the Integers”. In: PKC 2014: 17th In-
ternational Conference on Theory and Practice of Public Key Cryptography.
Ed. by Hugo Krawczyk. Vol. 8383. Lecture Notes in Computer Science. Buenos
Aires, Argentina: Springer, Heidelberg, Germany, Mar. 2014, pp. 311–328. doi:
10.1007/978-3-642-54631-0_18 (cit. on pp. 34, 63, 74).

[CM03] Nicolas Courtois and Willi Meier. “Algebraic Attacks on Stream Ciphers with
Linear Feedback”. In: Advances in Cryptology – EUROCRYPT 2003. Ed. by
Eli Biham. Vol. 2656. Lecture Notes in Computer Science. Warsaw, Poland:
Springer, Heidelberg, Germany, May 2003, pp. 345–359 (cit. on pp. 79, 119,
121, 153).

[CM07] Claude Carlet and Sihem Mesnager. “Improving the Upper Bounds on the
Covering Radii of Binary Reed-Muller Codes”. In: IEEE Trans. Information
Theory 53.1 (2007), pp. 162–173. doi: 10 . 1109 / TIT . 2006 . 887494. url:
https://doi.org/10.1109/TIT.2006.887494 (cit. on p. 131).

[CMR17] Claude Carlet, Pierrick Méaux, and Yann Rotella. Boolean functions with
restricted input and their robustness; application to the FLIP cipher. Cryptology
ePrint Archive, Report 2017/097. http://eprint.iacr.org/2017/097. 2017
(cit. on pp. 6, 87, 89, 96, 105, 118, 119, 126, 128, 155).

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Esti-
mates”. In: Advances in Cryptology – ASIACRYPT 2011. Ed. by Dong Hoon
Lee and Xiaoyun Wang. Vol. 7073. Lecture Notes in Computer Science. Seoul,
South Korea: Springer, Heidelberg, Germany, Dec. 2011, pp. 1–20 (cit. on pp. 57,
75).

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. “Public Key
Compression and Modulus Switching for Fully Homomorphic Encryption over
the Integers”. In: Advances in Cryptology – EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in Computer
Science. Cambridge, UK: Springer, Heidelberg, Germany, Apr. 2012, pp. 446–
464 (cit. on p. 34).

[Cou03a] Nicolas Courtois. “Fast Algebraic Attacks on Stream Ciphers with Linear
Feedback”. In: Advances in Cryptology – CRYPTO 2003. Ed. by Dan Boneh.
Vol. 2729. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2003, pp. 176–194 (cit. on pp. 26, 79).

http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://eprint.iacr.org/2017/430
http://dx.doi.org/10.1007/978-3-642-54631-0_18
http://dx.doi.org/10.1109/TIT.2006.887494
https://doi.org/10.1109/TIT.2006.887494
http://eprint.iacr.org/2017/097


164 Bibliography

[Cou03b] Nicolas Courtois. “Higher Order Correlation Attacks, XL Algorithm and Crypt-
analysis of Toyocrypt”. In: ICISC 02: 5th International Conference on In-
formation Security and Cryptology. Ed. by Pil Joong Lee and Chae Hoon
Lim. Vol. 2587. Lecture Notes in Computer Science. Seoul, Korea: Springer,
Heidelberg, Germany, Nov. 2003, pp. 182–199 (cit. on pp. 82, 86).

[CP08] Christophe De Cannière and Bart Preneel. “Trivium”. In: LNCS, New Stream
Cipher Designs - The eSTREAM Finalists 4986 (2008), pp. 244–266 (cit. on
p. 64).

[CS15] Jung Hee Cheon and Damien Stehlé. “Fully Homomophic Encryption over
the Integers Revisited”. In: Advances in Cryptology – EUROCRYPT 2015,
Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. Lecture Notes in
Computer Science. Sofia, Bulgaria: Springer, Heidelberg, Germany, Apr. 2015,
pp. 513–536. doi: 10.1007/978-3-662-46800-5_20 (cit. on p. 34).

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
“Lattice Signatures and Bimodal Gaussians”. In: Advances in Cryptology –
CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidel-
berg, Germany, Aug. 2013, pp. 40–56. doi: 10.1007/978-3-642-40041-4_3
(cit. on p. 76).

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Higher-Order
Cryptanalysis of LowMC”. In: ICISC 15: 18th International Conference on
Information Security and Cryptology. Ed. by Soonhak Kwon and Aaram Yun.
Vol. 9558. Lecture Notes in Computer Science. Seoul, Korea: Springer, Heidel-
berg, Germany, Nov. 2016, pp. 87–101. doi: 10.1007/978-3-319-30840-1_6
(cit. on pp. 63, 74, 78).

[DGHV09] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
Homomorphic Encryption over the Integers. Cryptology ePrint Archive, Report
2009/616. http://eprint.iacr.org/2009/616. 2009 (cit. on p. 34).

[DGM04] Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. “Results on
Algebraic Immunity for Cryptographically Significant Boolean Functions”. In:
Progress in Cryptology - INDOCRYPT 2004: 5th International Conference in
Cryptology in India. Ed. by Anne Canteaut and Kapalee Viswanathan. Vol. 3348.
Lecture Notes in Computer Science. Chennai, India: Springer, Heidelberg,
Germany, Dec. 2004, pp. 92–106 (cit. on p. 113).

[DK12] Ilya Dumer and Olga Kapralova. “Spherically punctured biorthogonal codes”.
In: Proceedings of the 2012 IEEE International Symposium on Information
Theory, ISIT 2012, Cambridge, MA, USA, July 1-6, 2012. 2012, pp. 259–263.
doi: 10.1109/ISIT.2012.6283988. url: https://doi.org/10.1109/ISIT.
2012.6283988 (cit. on p. 135).

[DK13] Ilya Dumer and Olga Kapralova. “Spherically Punctured Biorthogonal Codes”.
In: IEEE Trans. Information Theory 59.9 (2013), pp. 6010–6017. doi: 10.1109/
TIT.2013.2250579. url: https://doi.org/10.1109/TIT.2013.2250579
(cit. on p. 135).

http://dx.doi.org/10.1007/978-3-662-46800-5_20
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1007/978-3-319-30840-1_6
http://eprint.iacr.org/2009/616
http://dx.doi.org/10.1109/ISIT.2012.6283988
https://doi.org/10.1109/ISIT.2012.6283988
https://doi.org/10.1109/ISIT.2012.6283988
http://dx.doi.org/10.1109/TIT.2013.2250579
http://dx.doi.org/10.1109/TIT.2013.2250579
https://doi.org/10.1109/TIT.2013.2250579


165

[DK17] Ilya Dumer and Olga Kapralova. “Spherically Punctured Reed-Muller Codes”.
In: IEEE Trans. Information Theory 63.5 (2017), pp. 2773–2780. doi: 10.1109/
TIT.2017.2673827. url: https://doi.org/10.1109/TIT.2017.2673827
(cit. on pp. 126, 135).

[DLMW15] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. “Optimized Interpo-
lation Attacks on LowMC”. In: Advances in Cryptology – ASIACRYPT 2015,
Part II. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453. Lecture Notes in
Computer Science. Auckland, New Zealand: Springer, Heidelberg, Germany,
Nov. 2015, pp. 535–560. doi: 10.1007/978-3-662-48800-3_22 (cit. on pp. 63,
74, 78).

[DLR16a] Sébastien Duval, Virginie Lallemand, and Yann Rotella. Cryptanalysis of the
FLIP Family of Stream Ciphers. Cryptology ePrint Archive, Report 2016/271.
http://eprint.iacr.org/2016/271. 2016 (cit. on p. 83).

[DLR16b] Sébastien Duval, Virginie Lallemand, and Yann Rotella. “Cryptanalysis of the
FLIP Family of Stream Ciphers”. In: Advances in Cryptology – CRYPTO 2016,
Part I. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9814. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2016, pp. 457–475. doi: 10.1007/978-3-662-53018-4_17 (cit. on pp. 83,
110, 153).

[DM15] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second”. In: Advances in Cryptology – EURO-
CRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
Lecture Notes in Computer Science. Sofia, Bulgaria: Springer, Heidelberg, Ger-
many, Apr. 2015, pp. 617–640. doi: 10.1007/978-3-662-46800-5_24 (cit. on
pp. 57, 67).

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Berlin, Heidelberg, New York: Springer Verlag, 2002. isbn:
3-540-42580-2 (cit. on p. 62).

[DS09] Itai Dinur and Adi Shamir. “Cube Attacks on Tweakable Black Box Polynomi-
als”. In: Advances in Cryptology – EUROCRYPT 2009. Ed. by Antoine Joux.
Vol. 5479. Lecture Notes in Computer Science. Cologne, Germany: Springer,
Heidelberg, Germany, Apr. 2009, pp. 278–299 (cit. on p. 82).

[DSES14] Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. “Toward
Practical Homomorphic Evaluation of Block Ciphers Using Prince”. In: FC 2014
Workshops. Ed. by Rainer Böhme, Michael Brenner, Tyler Moore, and Matthew
Smith. Vol. 8438. Lecture Notes in Computer Science. Christ Church, Barbados:
Springer, Heidelberg, Germany, Mar. 2014, pp. 208–220. doi: 10.1007/978-3-
662-44774-1_17 (cit. on pp. 63, 74).

[Fau99] Jean-Charles Faugère. “A new efficient algorithm for computing Groebner
bases”. In: Journal of Pure and Applied Algebra 139 (1999) (cit. on p. 79).

http://dx.doi.org/10.1109/TIT.2017.2673827
http://dx.doi.org/10.1109/TIT.2017.2673827
https://doi.org/10.1109/TIT.2017.2673827
http://dx.doi.org/10.1007/978-3-662-48800-3_22
http://eprint.iacr.org/2016/271
http://dx.doi.org/10.1007/978-3-662-53018-4_17
http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1007/978-3-662-44774-1_17
http://dx.doi.org/10.1007/978-3-662-44774-1_17


166 Bibliography

[FHK16] Pierre-Alain Fouque, Benjamin Hadjibeyli, and Paul Kirchner. “Homomorphic
Evaluation of Lattice-Based Symmetric Encryption Schemes”. In: Computing
and Combinatorics : 22nd International Conference, COCOON 2016, Ho Chi
Minh City, Vietnam, August 2-4, 2016, Proceedings. Ed. by Thang N. Dinh and
My T. Thai. Cham: Springer International Publishing, 2016, pp. 269–280. doi:
10.1007/978-3-319-42634-1_22. url: https://doi.org/10.1007/978-3-
319-42634-1_22 (cit. on pp. 66, 74).

[Fil16a] Yuval Filmus. “An Orthogonal Basis for Functions over a Slice of the Boolean
Hypercube”. In: Electr. J. Comb. 23.1 (2016), P1.23. url: http : / / www .
combinatorics.org/ojs/index.php/eljc/article/view/v23i1p23 (cit.
on p. 119).

[Fil16b] Yuval Filmus. “Friedgut-Kalai-Naor Theorem for Slices of the Boolean Cube”.
In: Chicago J. Theor. Comput. Sci. 2016 (2016). url: http://cjtcs.cs.
uchicago.edu/articles/2016/14/contents.html (cit. on p. 119).

[FKMW16] Yuval Filmus, Guy Kindler, Elchanan Mossel, and Karl Wimmer. “Invariance
Principle on the Slice”. In: 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan. 2016, 15:1–15:10. doi:
10.4230/LIPIcs.CCC.2016.15. url: https://doi.org/10.4230/LIPIcs.
CCC.2016.15 (cit. on p. 119).

[FM07] Simon Fischer and Willi Meier. “Algebraic Immunity of S-Boxes and Augmented
Functions”. In: Fast Software Encryption – FSE 2007. Ed. by Alex Biryukov.
Vol. 4593. Lecture Notes in Computer Science. Luxembourg, Luxembourg:
Springer, Heidelberg, Germany, Mar. 2007, pp. 366–381 (cit. on p. 82).

[FM16] Yuval Filmus and Elchanan Mossel. “Harmonicity and Invariance on Slices of the
Boolean Cube”. In: 31st Conference on Computational Complexity, CCC 2016,
May 29 to June 1, 2016, Tokyo, Japan. 2016, 16:1–16:13. doi: 10.4230/LIPIcs.
CCC.2016.16. url: https://doi.org/10.4230/LIPIcs.CCC.2016.16 (cit. on
p. 119).

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st An-
nual ACM Symposium on Theory of Computing. Ed. by Michael Mitzenmacher.
Bethesda, MD, USA: ACM Press, May 2009, pp. 169–178 (cit. on pp. 3, 33).

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Public-Key Cryptosystems
from Lattice Reduction Problems”. In: Advances in Cryptology – CRYPTO’97.
Ed. by Burton S. Kaliski Jr. Vol. 1294. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1997, pp. 112–
131 (cit. on p. 33).

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Ran-
dom Functions (Extended Abstract)”. In: 25th Annual Symposium on Foun-
dations of Computer Science. Singer Island, Florida: IEEE Computer Society
Press, Oct. 1984, pp. 464–479 (cit. on p. 15).

http://dx.doi.org/10.1007/978-3-319-42634-1_22
https://doi.org/10.1007/978-3-319-42634-1_22
https://doi.org/10.1007/978-3-319-42634-1_22
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p23
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p23
http://cjtcs.cs.uchicago.edu/articles/2016/14/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/14/contents.html
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.15
https://doi.org/10.4230/LIPIcs.CCC.2016.15
https://doi.org/10.4230/LIPIcs.CCC.2016.15
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.16
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.16
https://doi.org/10.4230/LIPIcs.CCC.2016.16


167

[GGPS17] Sugata Gangopadhyay, Aditi Kar Gangopadhyay, Spyridon Pollatos, and Pante-
limon Stanica. “Cryptographic Boolean functions with biased inputs”. In: Cryp-
tography and Communications 9.2 (2017), pp. 301–314. doi: 10.1007/s12095-
015-0174-1. url: https://doi.org/10.1007/s12095-015-0174-1 (cit. on
p. 128).

[GH10] Craig Gentry and Shai Halevi. Implementing Gentry’s Fully-Homomorphic
Encryption Scheme. Cryptology ePrint Archive, Report 2010/520. http://
eprint.iacr.org/2010/520. 2010 (cit. on p. 33).

[GH11] Craig Gentry and Shai Halevi. “Fully Homomorphic Encryption without Squash-
ing Using Depth-3 Arithmetic Circuits”. In: 52nd Annual Symposium on Foun-
dations of Computer Science. Ed. by Rafail Ostrovsky. Palm Springs, CA, USA:
IEEE Computer Society Press, Oct. 2011, pp. 107–109 (cit. on p. 34).

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic Evaluation
of the AES Circuit”. In: Advances in Cryptology – CRYPTO 2012. Ed. by
Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2012,
pp. 850–867 (cit. on pp. 57, 63, 67, 74, 75).

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-Core Predicate for all One-Way
Functions”. In: 21st Annual ACM Symposium on Theory of Computing. Seattle,
WA, USA: ACM Press, May 1989, pp. 25–32 (cit. on p. 15).

[GMW15] Romain Gay, Pierrick Méaux, and Hoeteck Wee. “Predicate Encryption for
Multi-dimensional Range Queries from Lattices”. In: PKC 2015: 18th Inter-
national Conference on Theory and Practice of Public Key Cryptography. Ed.
by Jonathan Katz. Vol. 9020. Lecture Notes in Computer Science. Gaithers-
burg, MD, USA: Springer, Heidelberg, Germany, Mar. 2015, pp. 752–776. doi:
10.1007/978-3-662-46447-2_34 (cit. on p. 8).

[GN08] Nicolas Gama and Phong Q. Nguyen. “Predicting Lattice Reduction”. In:
Advances in Cryptology – EUROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965.
Lecture Notes in Computer Science. Istanbul, Turkey: Springer, Heidelberg,
Germany, Apr. 2008, pp. 31–51 (cit. on p. 75).

[Gol00] Oded Goldreich. “Candidate One-Way Functions Based on Expander Graphs”.
In: Electronic Colloquium on Computational Complexity (ECCC) 7.90 (2000).
url: http://eccc.hpi-web.de/eccc-reports/2000/TR00-090/index.html
(cit. on pp. 150, 151).

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Vol. 1. Cambridge,
UK: Cambridge University Press, 2001, pp. xix + 372. isbn: 0-521-79172-3
(hardback) (cit. on pp. 12, 14, 15).

[Got66] D. H. Gottlieb. “A Certain Class of Incidence Matrices”. In: Proceedings of the
American Mathematical Society 17.6 (1966), pp. 1233–1237. issn: 00029939,
10886826. url: http://www.jstor.org/stable/2035716 (cit. on p. 126).

http://dx.doi.org/10.1007/s12095-015-0174-1
http://dx.doi.org/10.1007/s12095-015-0174-1
https://doi.org/10.1007/s12095-015-0174-1
http://eprint.iacr.org/2010/520
http://eprint.iacr.org/2010/520
http://dx.doi.org/10.1007/978-3-662-46447-2_34
http://eccc.hpi-web.de/eccc-reports/2000/TR00-090/index.html
http://www.jstor.org/stable/2035716


168 Bibliography

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-
Based”. In: Advances in Cryptology – CRYPTO 2013, Part I. Ed. by Ran
Canetti and Juan A. Garay. Vol. 8042. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2013, pp. 75–92.
doi: 10.1007/978-3-642-40041-4_5 (cit. on pp. 36, 39).

[HAO15] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. “Packing Messages and
Optimizing Bootstrapping in GSW-FHE”. In: PKC 2015: 18th International
Conference on Theory and Practice of Public Key Cryptography. Ed. by Jonathan
Katz. Vol. 9020. Lecture Notes in Computer Science. Gaithersburg, MD, USA:
Springer, Heidelberg, Germany, Mar. 2015, pp. 699–715. doi: 10.1007/978-3-
662-46447-2_31 (cit. on pp. 37, 39, 57).

[HS14] Shai Halevi and Victor Shoup. “Algorithms in HElib”. In: Advances in Cryp-
tology – CRYPTO 2014, Part I. Ed. by Juan A. Garay and Rosario Gennaro.
Vol. 8616. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2014, pp. 554–571. doi: 10.1007/978-3-
662-44371-2_31 (cit. on p. 64).

[JD06] Antoine Joux and Pascal Delaunay. “Galois LFSR, Embedded Devices and
Side Channel Weaknesses”. In: Progress in Cryptology - INDOCRYPT 2006:
7th International Conference in Cryptology in India. Ed. by Rana Barua and
Tanja Lange. Vol. 4329. Lecture Notes in Computer Science. Kolkata, India:
Springer, Heidelberg, Germany, Dec. 2006, pp. 436–451 (cit. on p. 140).

[KGV14] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: Scalable
Homomorphic Implementation of Encrypted Data-Classifiers. Cryptology ePrint
Archive, Report 2014/838. http://eprint.iacr.org/2014/838. 2014 (cit. on
pp. 39, 75).

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
Chapman, Hall/Crc Cryptography, and Network Security Series, 2007. isbn:
ISBN:1584885513 (cit. on p. 70).

[KMN10] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. “Conditional Differen-
tial Cryptanalysis of NLFSR-Based Cryptosystems”. In: Advances in Cryptology
– ASIACRYPT 2010. Ed. by Masayuki Abe. Vol. 6477. Lecture Notes in Com-
puter Science. Singapore: Springer, Heidelberg, Germany, Dec. 2010, pp. 130–
145 (cit. on p. 83).

[Knu97] Donald E. Knuth. Seminumerical Algorithms. Third. Vol. 2. The Art of Com-
puter Programming. Addison-Wesley Professional, Nov. 1997 (cit. on pp. 71,
78).

[KW02] Lars R. Knudsen and David Wagner. “Integral Cryptanalysis”. In: Fast Software
Encryption – FSE 2002. Ed. by Joan Daemen and Vincent Rijmen. Vol. 2365.
Lecture Notes in Computer Science. Leuven, Belgium: Springer, Heidelberg,
Germany, Feb. 2002, pp. 112–127 (cit. on p. 83).

http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-662-46447-2_31
http://dx.doi.org/10.1007/978-3-662-46447-2_31
http://dx.doi.org/10.1007/978-3-662-44371-2_31
http://dx.doi.org/10.1007/978-3-662-44371-2_31
http://eprint.iacr.org/2014/838


169

[Lal16] Virginie Lallemand. “Cryptanalyse de chiffrements symétriques. (Cryptanalysis
of symmetric ciphers)”. PhD thesis. Pierre and Marie Curie University, Paris,
France, 2016. url: https://tel.archives- ouvertes.fr/tel- 01405436
(cit. on p. 10).

[LF06] Éric Levieil and Pierre-Alain Fouque. “An Improved LPN Algorithm”. In: SCN
06: 5th International Conference on Security in Communication Networks. Ed.
by Roberto De Prisco and Moti Yung. Vol. 4116. Lecture Notes in Computer
Science. Maiori, Italy: Springer, Heidelberg, Germany, Sept. 2006, pp. 348–359
(cit. on pp. 81, 88).

[LLL82] Arjen Lenstra, Hendrik Lenstra, and Lászlò Lovász. “Factoring polynomials
with rational coefficients”. In: Math. Ann. 261 (1982), pp. 515–534 (cit. on
p. 57).

[LN14] Tancrède Lepoint and Michael Naehrig. “A Comparison of the Homomorphic En-
cryption Schemes FV and YASHE”. In: AFRICACRYPT 14: 7th International
Conference on Cryptology in Africa. Ed. by David Pointcheval and Damien
Vergnaud. Vol. 8469. Lecture Notes in Computer Science. Marrakesh, Morocco:
Springer, Heidelberg, Germany, May 2014, pp. 318–335. doi: 10.1007/978-3-
319-06734-6_20 (cit. on pp. 63, 74).

[LNV11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can Homomorphic
Encryption be Practical? Cryptology ePrint Archive, Report 2011/405. http:
//eprint.iacr.org/2011/405. 2011 (cit. on pp. 4, 58).

[LP11] Richard Lindner and Chris Peikert. “Better Key Sizes (and Attacks) for LWE-
Based Encryption”. In: Topics in Cryptology – CT-RSA 2011. Ed. by Aggelos
Kiayias. Vol. 6558. Lecture Notes in Computer Science. San Francisco, CA,
USA: Springer, Heidelberg, Germany, Feb. 2011, pp. 319–339 (cit. on p. 75).

[LP13] Tancrède Lepoint and Pascal Paillier. “On the Minimal Number of Bootstrap-
pings in Homomorphic Circuits”. In: FC 2013 Workshops. Ed. by Andrew A.
Adams, Michael Brenner, and Matthew Smith. Lecture Notes in Computer Sci-
ence. Okinawa, Japan: Springer, Heidelberg, Germany, Apr. 2013, pp. 189–200.
doi: 10.1007/978-3-642-41320-9_13 (cit. on p. 58).

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices
and Learning with Errors over Rings”. In: Advances in Cryptology – EURO-
CRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. Lecture Notes in Computer
Science. French Riviera: Springer, Heidelberg, Germany, May 2010, pp. 1–23
(cit. on p. 22).

[LR88] Michael Luby and Charles Rackoff. “How to construct pseudorandom permu-
tations from pseudorandom functions”. In: SIAM Journal on Computing 17.2
(1988) (cit. on pp. 15, 64, 78).

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. “Tweakable Block Ciphers”.
In: Journal of Cryptology 24.3 (July 2011), pp. 588–613 (cit. on p. 79).

[LS12] Adeline Langlois and Damien Stehlé. Worst-Case to Average-Case Reductions
for Module Lattices. Cryptology ePrint Archive, Report 2012/090. http://
eprint.iacr.org/2012/090. 2012 (cit. on p. 66).

https://tel.archives-ouvertes.fr/tel-01405436
http://dx.doi.org/10.1007/978-3-319-06734-6_20
http://dx.doi.org/10.1007/978-3-319-06734-6_20
http://eprint.iacr.org/2011/405
http://eprint.iacr.org/2011/405
http://dx.doi.org/10.1007/978-3-642-41320-9_13
http://eprint.iacr.org/2012/090
http://eprint.iacr.org/2012/090


170 Bibliography

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability Obfuscation from Trilinear
Maps and Block-Wise Local PRGs. Cryptology ePrint Archive, Report 2017/250.
http://eprint.iacr.org/2017/250. 2017 (cit. on p. 151).

[McF73] Robert L McFarland. “A family of difference sets in non-cyclic groups”. In:
Journal of Combinatorial Theory, Series A 15.1 (1973), pp. 1–10. issn: 0097-
3165. doi: https://doi.org/10.1016/0097-3165(73)90031-9. url: http:
//www.sciencedirect.com/science/article/pii/0097316573900319 (cit.
on p. 25).

[Mei11] Willi Meier. “Fast Correlation Attacks: Methods and Countermeasures (Invited
Talk)”. In: Fast Software Encryption – FSE 2011. Ed. by Antoine Joux. Vol. 6733.
Lecture Notes in Computer Science. Lyngby, Denmark: Springer, Heidelberg,
Germany, Feb. 2011, pp. 55–67 (cit. on p. 82).

[Mes17] Sihem Mesnager. On the nonlinearity of Boolean functions with restricted
input. Talk at The 13th International Conference on Finite Fields and their
Applications. 2017 (cit. on pp. 128, 131, 134).

[Mic10] Daniele Micciancio. “A first glimpse of cryptography′s Holy Grail”. In: Com-
munications of the ACM 53 Issue 3 (2010), pp. 96–96 (cit. on p. 33).

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. “Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts”.
In: Advances in Cryptology – EUROCRYPT 2016, Part I. Ed. by Marc Fischlin
and Jean-Sébastien Coron. Vol. 9665. Lecture Notes in Computer Science.
Vienna, Austria: Springer, Heidelberg, Germany, May 2016, pp. 311–343. doi:
10.1007/978-3-662-49890-3_13 (cit. on pp. 6, 32, 62, 64, 71, 74, 83, 84, 96,
100, 101, 110, 118, 154).

[MP12] Daniele Micciancio and Chris Peikert. “Trapdoors for Lattices: Simpler, Tighter,
Faster, Smaller”. In: Advances in Cryptology – EUROCRYPT 2012. Ed. by
David Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in Com-
puter Science. Cambridge, UK: Springer, Heidelberg, Germany, Apr. 2012,
pp. 700–718 (cit. on p. 38).

[MS88] Willi Meier and Othmar Staffelbach. “Fast Correltaion Attacks on Stream
Ciphers (Extended Abstract)”. In: Advances in Cryptology – EUROCRYPT’88.
Ed. by C. G. Günther. Vol. 330. Lecture Notes in Computer Science. Davos,
Switzerland: Springer, Heidelberg, Germany, May 1988, pp. 301–314 (cit. on
pp. 26, 81, 82, 88, 128).

[MvV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. The CRC Press series on discrete mathematics and its
applications. 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA:
CRC Press, 1997, pp. xxviii + 780. isbn: 0-8493-8523-7 (cit. on p. 16).

[OPS15] Emmanuela Orsini, Joop van de Pol, and Nigel P. Smart. “Bootstrapping BGV
Ciphertexts with a Wider Choice of p and q”. In: PKC 2015: 18th International
Conference on Theory and Practice of Public Key Cryptography. Ed. by Jonathan
Katz. Vol. 9020. Lecture Notes in Computer Science. Gaithersburg, MD, USA:
Springer, Heidelberg, Germany, Mar. 2015, pp. 673–698. doi: 10.1007/978-3-
662-46447-2_30 (cit. on p. 57).

http://eprint.iacr.org/2017/250
http://dx.doi.org/https://doi.org/10.1016/0097-3165(73)90031-9
http://www.sciencedirect.com/science/article/pii/0097316573900319
http://www.sciencedirect.com/science/article/pii/0097316573900319
http://dx.doi.org/10.1007/978-3-662-49890-3_13
http://dx.doi.org/10.1007/978-3-662-46447-2_30
http://dx.doi.org/10.1007/978-3-662-46447-2_30


171

[Pas16] Alain Passelègue. “Algebraic Frameworks for Pseudorandom Functions”. PhD
thesis. PSL Research University, Paris, France, 2016. url: https : / / tel .
archives-ouvertes.fr/tel-01422093 (cit. on p. 10).

[Pei15] Chris Peikert. A Decade of Lattice Cryptography. Cryptology ePrint Archive,
Report 2015/939. http://eprint.iacr.org/2015/939. 2015 (cit. on p. 21).

[Pre15] Thomas Prest. “Gaussian Sampling in Lattice-Based Cryptography”. PhD thesis.
École Normale Supérieure, Paris, France, 2015. url: https://tel.archives-
ouvertes.fr/tel-01245066 (cit. on p. 10).

[PV16] Marie Paindavoine and Bastien Vialla. “Minimizing the Number of Bootstrap-
pings in Fully Homomorphic Encryption”. In: SAC 2015: 22nd Annual Inter-
national Workshop on Selected Areas in Cryptography. Ed. by Orr Dunkelman
and Liam Keliher. Vol. 9566. Lecture Notes in Computer Science. Sackville,
NB, Canada: Springer, Heidelberg, Germany, Aug. 2016, pp. 25–43. doi: 10.
1007/978-3-319-31301-6_2 (cit. on p. 58).

[RAD78] Ron Rivest, Len Adleman, and Michael Dertouzos. “On Data Banks and Privacy
Homomorphisms”. In: Foundations of Secure Computation, Academia Press
(1978), pp. 169–179 (cit. on p. 33).

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: 37th Annual ACM Symposium on Theory of Computing.
Ed. by Harold N. Gabow and Ronald Fagin. Baltimore, MA, USA: ACM Press,
May 2005, pp. 84–93 (cit. on pp. 22, 75).

[RS10] Markus Rückert and Michael Schneider. Estimating the Security of Lattice-based
Cryptosystems. Cryptology ePrint Archive, Report 2010/137. http://eprint.
iacr.org/2010/137. 2010 (cit. on p. 75).

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems”. In: Math. Programming 66
(1994), pp. 181–199 (cit. on pp. 57, 75).

[Sie84] Thomas Siegenthaler. “Correlation-immunity of nonlinear combining functions
for cryptographic applications”. In: IEEE IT-30.5 (1984), pp. 776–780 (cit. on
pp. 80, 88).

[Sie85] Thomas Siegenthaler. “Decrypting a Class of Stream Ciphers Using Ciphertext
Only”. In: IEEE Trans. Computers 34.1 (1985), pp. 81–85. doi: 10.1109/TC.
1985.1676518. url: http://doi.ieeecomputersociety.org/10.1109/TC.
1985.1676518 (cit. on p. 26).

[SPY13] François-Xavier Standaert, Olivier Pereira, and Yu Yu. “Leakage-Resilient
Symmetric Cryptography under Empirically Verifiable Assumptions”. In: Ad-
vances in Cryptology – CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan A.
Garay. Vol. 8042. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2013, pp. 335–352. doi: 10.1007/978-3-
642-40041-4_19 (cit. on p. 71).

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
Public Key Encryption Based on Ideal Lattices. Cryptology ePrint Archive,
Report 2009/285. http://eprint.iacr.org/2009/285. 2009 (cit. on p. 22).

https://tel.archives-ouvertes.fr/tel-01422093
https://tel.archives-ouvertes.fr/tel-01422093
http://eprint.iacr.org/2015/939
https://tel.archives-ouvertes.fr/tel-01245066
https://tel.archives-ouvertes.fr/tel-01245066
http://dx.doi.org/10.1007/978-3-319-31301-6_2
http://dx.doi.org/10.1007/978-3-319-31301-6_2
http://eprint.iacr.org/2010/137
http://eprint.iacr.org/2010/137
http://dx.doi.org/10.1109/TC.1985.1676518
http://dx.doi.org/10.1109/TC.1985.1676518
http://doi.ieeecomputersociety.org/10.1109/TC.1985.1676518
http://doi.ieeecomputersociety.org/10.1109/TC.1985.1676518
http://dx.doi.org/10.1007/978-3-642-40041-4_19
http://dx.doi.org/10.1007/978-3-642-40041-4_19
http://eprint.iacr.org/2009/285


172 Bibliography

[SV10] Nigel P. Smart and Frederik Vercauteren. “Fully Homomorphic Encryption with
Relatively Small Key and Ciphertext Sizes”. In: PKC 2010: 13th International
Conference on Theory and Practice of Public Key Cryptography. Ed. by Phong Q.
Nguyen and David Pointcheval. Vol. 6056. Lecture Notes in Computer Science.
Paris, France: Springer, Heidelberg, Germany, May 2010, pp. 420–443 (cit. on
p. 34).

[SV11] N.P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. Cryp-
tology ePrint Archive, Report 2011/133. http://eprint.iacr.org/2011/133.
2011 (cit. on p. 36).

[Wie86] D H Wiedemann. “Solving Sparse Linear Equations over Finite Fields”. In:
IEEE Trans. Inf. Theor. 32.1 (Jan. 1986), pp. 54–62. issn: 0018-9448. doi:
10.1109/TIT.1986.1057137. url: http://dx.doi.org/10.1109/TIT.1986.
1057137 (cit. on p. 79).

[Wil90] Richard M. Wilson. “A Diagonal Form for the Incidence Matrices of t-Subsets
vs.k-Subsets”. In: European Journal of Combinatorics 11.6 (1990), pp. 609–
615. issn: 0195-6698. doi: https://doi.org/10.1016/S0195- 6698(13)
80046-7. url: http://www.sciencedirect.com/science/article/pii/
S0195669813800467 (cit. on p. 126).

[XM88] Guo-Zhen Xiao and James L. Massey. “A spectral characterization of correlation-
immune combining functions”. In: IEEE Trans. Information Theory 34.3 (1988),
pp. 569–571. doi: 10.1109/18.6037. url: https://doi.org/10.1109/18.
6037 (cit. on p. 25).

http://eprint.iacr.org/2011/133
http://dx.doi.org/10.1109/TIT.1986.1057137
http://dx.doi.org/10.1109/TIT.1986.1057137
http://dx.doi.org/10.1109/TIT.1986.1057137
http://dx.doi.org/https://doi.org/10.1016/S0195-6698(13)80046-7
http://dx.doi.org/https://doi.org/10.1016/S0195-6698(13)80046-7
http://www.sciencedirect.com/science/article/pii/S0195669813800467
http://www.sciencedirect.com/science/article/pii/S0195669813800467
http://dx.doi.org/10.1109/18.6037
https://doi.org/10.1109/18.6037
https://doi.org/10.1109/18.6037




Résumé

Le chiffrement complètement homomorphe est une
classe de chiffrement permettant de calculer n’importe
quelle fonction sur des données chiffrées et de produire
une version chiffrée du résultat. Il permet de déléguer
des données à un cloud de façon sécurisée, faire ef-
fectuer des calculs, tout en gardant le caractère privé
de ces données. Cependant, l’innéficacité actuelle des
schémas de chiffrement complètement homomorphes,
et leur inadéquation au contexte de délégation de cal-
culs, rend son usage seul insuffisant pour cette ap-
plication. Ces deux problèmes peuvent être résolus,
en utilisant ce chiffrement dans un cadre plus large,
en le combinant avec un schéma de chiffrement symé-
trique. Cette combinaison donne naissance au chiffre-
ment complètement homomorphe hybride, conçu dans
le but d’une délégation de calculs efficace, garantissant
des notions de sécurité et de vie privée.

Dans cette thèse, nous étudions le chiffrement com-
plètement homomorphe hybride et ses composantes, à
travers la conception de primitives cryptographiques
symétriques rendant efficace cette construction hy-
bride. En examinant les schémas de chiffrement com-
plètement homomorphes, nous developpons des outils
pour utiliser efficacement leurs propriétés homomor-
phiques dans un cadre plus complexe. En analysant
différents schémas symétriques, et leurs composantes,
nous déterminons de bons candidats pour le contexte
hybride. En étudiant la sécurité des constructions
optimisant l’évaluation homomorphique, nous contri-
buons au domaine des fonctions booléennes utilisées
en cryptologie.

Plus particulièrement, nous introduisons une nouvelle
famille de schémas de chiffrement symétriques, avec
une nouvelle construction, adaptée au contexte hy-
bride. Ensuite, nous nous intéressons à son comporte-
ment homomorphique, et nous étudions la sécurité de
cette construction. Finalement, les particularités de
cette famille de schémas de chiffrement motivant des
cryptanalyses spécifiques, nous développons et analy-
sons de nouveaux critères cryptographiques booléens.

Mots Clés
cryptographie, chiffrement complètement homomor-
phe, fonctions booléennes

Abstract

Fully homomorphic encryption, firstly built in 2009, is
a very powerful kind of encryption, allowing to com-
pute any function on encrypted data, and to get an en-
crypted version of the result. Such encryption enables
to securely delegate data to a cloud, ask for compu-
tations, recover the result, while keeping private the
data during the whole process. However, today’s in-
efficiency of fully homomorphic encryption, and its
inadequateness to the outsourcing computation con-
text, makes its use alone insufficient for this applica-
tion. Both of these issues can be circumvented, us-
ing fully homomorphic encryption in a larger frame-
work, by combining it with a symmetric encryption
scheme. This combination gives a hybrid fully ho-
momorphic framework, designed towards efficient out-
sourcing computation, providing both security and
privacy.

In this thesis, we contribute to the study of hybrid
fully homomorphic framework, through the analysis,
and the design of symmetric primitives making effi-
cient this hybrid construction. Through the exami-
nation of fully homomorphic encryption schemes, we
develop tools to efficiently use the homomorphic prop-
erties in a more complex framework. By investigating
various symmetric encryption schemes, and building
blocks up to the circuit level, we determine good can-
didates for a hybrid context. Through evaluating the
security of constructions optimizing the homomorphic
evaluation, we contribute to a wide study within the
cryptographic Boolean functions area.

More particularly, we introduce a new family of
symmetric encryption schemes, with a new design,
adapted to the hybrid fully homomorphic framework.
We then investigate its behavior relatively to homo-
morphic evaluation, and we address the security of
such design. Finally, particularities of this family of
ciphers motivate specific cryptanalyses, therefore we
develop and analyze new cryptographic Boolean crite-
ria.

Keywords
cryptography, fully homomorphic encryption,
Boolean functions


	Abstract
	Résumé
	Acknowledgments
	Introduction
	Outsourcing Computation
	Asymmetric Situation
	Fully Homomorphic Encryption
	Hybrid Fully Homomorphic Framework

	Our Results
	Hybrid Homomorphic Framework and Error-Growth
	New Stream Cipher Design: the Filter Permutator
	New Criteria on Boolean Functions
	Organization

	Other Contributions

	Preliminaries
	Notations and Preliminaries
	Mathematical Notations
	Sets, Rings, Integers
	Matrices and Vectors
	Distributions and Probabilities
	Miscellaneous

	Algorithms, and Provable Security
	Algorithms, and Turing machines
	Security Parameters and Negligibility
	Adversaries, Experiments, Oracles, Success Probabilities and Advantage.


	Cryptographic Primitives
	Generic Primitives
	Symmetric Encryption
	Encryption Scheme
	Instantiating Symmetric Encryption Schemes
	Heuristic Security

	Fully Homomorphic Encryption

	Lattice-Based Cryptography
	Generalities on Lattices
	Learning With Errors
	Gaussians

	Boolean Functions
	Boolean criteria
	Balancedness and Resiliency
	Nonlinearity
	Algebraic Immunity and Fast Algebraic Immunity

	Constructions of Boolean Functions

	Additional Preliminaries
	Circuits
	Binomial Coefficients


	Fully Homomorphic Encryption
	First and Second Generations
	First FHE: Gentry's Thesis
	Second Generation

	Third Generation
	Batched GSW
	Ring GSW

	Error-growth
	Classical Operations
	Error-growth of H.Add
	Error-growth of H.Mul

	Optimized Operations
	Error-growth in H.Comb
	Sign optimization
	Error-growth in MUX gates

	Particular Functions
	Evaluating Direct Sums of Monomials
	Evaluating Majority Functions


	Hybrid Frameworks

	Filter Permutator
	Homomorphic Behavior of Standard Constructions
	Homomorphically Evaluating a Block Cipher
	Homomorphically Evaluating a Stream Cipher
	Homomorphically Evaluating an LWE-related Cipher

	First Attempt
	Filter Permutator Design and Instantiation
	General Design
	FLIP Family of stream ciphers
	FLIP Construction
	FLIP Instances

	Design Tweaks
	Invariant on F Input
	Indirect Sums


	Homomorphic Results
	General Results
	FLIP and Third Generation FHE
	FLIP and Second Generation FHE

	Concrete Results
	Performances for Third Generation Schemes
	Performances for Second Generation Schemes


	Symmetric Security Analysis
	Classical Attacks
	Algebraic Attacks
	Fast Algebraic Attacks
	Correlation Attacks.
	BKW-like Attack.
	Higher-Order Correlation Attacks
	Other attacks.

	Guess-and-Determine Attacks
	Behavior relatively to Fixed Hamming Weight
	Algebraic Attack based on Restricted Algebraic Immunity
	Correlation Attack based on Restricted Nonlinearity
	Distinguishing Attack based on Restricted Balancedness

	Instances and Security
	Instances relatively to Standard, and Guess-and-determine Attacks
	Instances and Restricted Algebraic Immunity
	Instances and Restricted Nonlinearity
	Instances and Restricted Balancedness
	Conclusions on Attacks based on Restricted Criteria



	New Criteria on Boolean Functions
	Low-cost Functions
	Low-cost Functions and Standard Criteria
	Exact Algebraic Immunity of Direct Sums of Monomials

	Recurrent Criteria
	Definitions and General Bounds
	Definitions
	Bounds on the Recurrent Algebraic Immunity

	Recurrent Criteria for Direct Sums of Monomials

	Restricted Algebraic Immunity
	Algebraic Immunity Upper Bound for all Restricted Sets
	Algebraic Immunity Upper Bound for Fixed Hamming Weight Input
	Algebraic Immunity Restricted To En,k and Direct Sums

	Restricted Nonlinearity
	Nonlinearity Upper Bound for All Restricted Sets
	Nonlinearity Restricted To Fixed Hamming Weight Input
	Nonlinearity Upper Bound for Fixed Hamming Weight Input
	Error Correcting Codes Perspective
	Direct sum and NLEn,k

	Deterioration of Functions with Optimal Standard Nonlinearity

	Restricted Balancedness
	Weightwise Balancedness and ANF
	Constructions of Weightwise (Almost) Perfectly Balanced Functions


	Conclusion and Perspectives
	Conclusion
	Perspectives
	Goldreich's PRG
	Generalities on Goldreich's PRG
	Goldreich's PRG and Filter Permutator

	Improved Filter Permutator
	Weightwise Cryptanalysis
	New Considerations on Boolean Functions
	Open Questions on Low Cost Boolean Functions
	Open Questions on Restricted Criteria



	Bibliography

