
HAL Id: tel-01664726
https://hal.science/tel-01664726

Submitted on 15 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structuring an Abstract Interpreter through Value and
State Abstractions: EVA, an Evolved Value Analysis for

Frama-C
David Bühler

To cite this version:
David Bühler. Structuring an Abstract Interpreter through Value and State Abstractions: EVA, an
Evolved Value Analysis for Frama-C. Programming Languages [cs.PL]. Université de Rennes 1, 2017.
English. �NNT : �. �tel-01664726�

https://hal.science/tel-01664726
https://hal.archives-ouvertes.fr

ANNÉE 2017

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique
Ecole doctorale Matisse

présentée par

David Bühler
préparée à l’Unité Mixte de Recherche 6074 – IRISA

Institut de recherche en informatique et systèmes aléatoires
UFR Informatique Electronique (ISTIC)

Structuring
an Abstract Interpreter
through Value and State
Abstractions :

EVA, an
Evolved Value Analysis
for Frama-C

Thèse soutenue à Rennes
le 15 mars 2017
devant le jury composé de :

Antoine Miné
Professeur des universités – Université Pierre et Ma-
rie Curie / rapporteur

Mihaela Sighireanu
Maître de conférences – Université Paris Diderot /
rapporteur

Thomas Jensen
Directeur de recherche – INRIA/
examinateur

Yann Régis-Gianas
Maître de conférences – Université Paris Diderot /
examinateur

Sandrine Blazy
Professeur des universités – Université de Rennes 1 /
directrice de thèse

Boris Yakobowski
Ingénieur Chercheur – CEA LIST/
co-directeur de thèse

« Of all the communities available to us,
there is not one I would want to devote myself to,

except for the society of the true searchers,
which has very few living members at any time. »

— Albert Einstein

« We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty. »

— Donald E. Knuth [Knu74]

This thesis is dedicated to the society of all those
who strive to be true searchers and artists.

« How can one check a routine
in the sense of making sure that it is right?

[...]
In order to assist the checker,

the programmer should make assertions
about the various states that the machine can reach. »

— Alan M. Turing, June 1949 [Tur49]

A respectful tribute to the memory of Alan Turing.

[The C language has] the power of assembly language,
and the convenience of. . . assembly language.

— Dennis Ritchie

Indeed.

— Anyone who ever tried to formally verify C programs.

R É S U M É

La vérification formelle de programmes est devenue un enjeu majeur
de l’informatique, à l’heure où des erreurs logicielles dans des sys-
tèmes critiques peuvent avoir des conséquences dramatiques. L’inter-
prétation abstraite est une théorie générale d’approximation des sé-
mantiques des langages de programmation, qui permet des analyses
automatiques de programmes pour en détecter de façon certaine les
comportements indésirables. Ces analyses reposent sur des abstrac-
tions d’une sémantique concrète, qui calculent une sur-approximation
des comportements possibles d’un programme.

Cette thèse propose une nouvelle technique de composition modu-
laire entre les abstractions d’un interpréteur abstrait. L’idée principale
en est l’organisation d’une sémantique abstraite suivant la distinction
usuelle entre expressions et instructions. Les abstractions sont alors
séparées entre abstractions de valeurs, en charge de la sémantique
des expressions, et les abstractions d’états (ou domaines abstraits), en
charge de la sémantique des instructions.

Cette adéquate hiérarchie guide les interactions entre abstractions
durant l’analyse. Lors de l’interprétation d’une instruction, les états
abstraits peuvent échanger des informations au moyen de valeurs
abstraites, qui expriment des propriétés sur les expressions. Ces va-
leurs abstraites forment donc l’interface de communication entre les
domaines, mais sont également des éléments canoniques de l’inter-
prétation abstraite. Les outils standards de la théorie s’appliquent
donc naturellement aux abstractions de valeurs. En particulier, elles
peuvent elle-mêmes être composées par les techniques existantes, ou-
vrant la voie à plus d’interactions encore.

Cette thèse explore les possibilités offertes par cette nouvelle archi-
tecture des sémantiques abstraites. Elle décrit en particulier des straté-
gies efficaces pour le calcul de valeurs abstraites précises à partir des
propriétés inférées par les domaines, et illustre les différents moyens
d’interactions que ce système offre. Notre architecture comprend éga-
lement une collaboration directe des différentes abstractions à l’émis-
sion des alarmes qui signalent les erreurs possibles d’un programme.

Ce système de composition des abstractions a été mis en œuvre
dans EVA, la nouvelle version de l’interpréteur abstrait de la plate-
forme Frama-C. EVA a été spécifiquement conçu pour faciliter l’intro-
duction de nouvelles abstractions, et permettre des interactions riches
entre ces abstractions. Grâce à son architecture modulaire et exten-
sible, cinq nouveaux domaines abstraits ont pu être introduits dans
l’analyseur en moins d’un an, améliorant ainsi tant ses capacités que
sa précision.

vi

A B S T R A C T

The formal verification of programs is nowadays a crucial challenge
for computer science, as software bugs in critical systems may lead
to catastrophic outcomes. Abstract interpretation is a general theory
of approximation of the semantics of programming languages, prac-
tically used to detect errors in programs. Automatic analyses can be
derived by computing an over-approximation of the possible behav-
iors of a program, through abstractions of its concrete semantics.

This thesis proposes a new framework for the combination of multi-
ple abstractions in the abstract interpretation theory. Its core concept
is the structuring of the abstract semantics by following the usual dis-
tinction between expressions and statements. This can be achieved
by a convenient architecture where abstractions are separated in two
layers: value abstractions, in charge of the expression semantics, and
state abstractions (or abstract domains), in charge of the statement
semantics.

This design leads naturally to an elegant communication system
where the abstract states, when interpreting a statement, interact and
exchange information through abstract values, that express proper-
ties about expressions. While the values form the communication
interface between states, they are also standard elements of the ab-
stract interpretation framework. The communication system is thus
embedded in the abstract semantics, and the usual tools of abstract
interpretation apply naturally to value abstractions. For instance, dif-
ferent kinds of value abstractions can be composed through the ex-
isting methods of combination of abstractions, enabling even further
interaction between the components of the abstract semantics.

This thesis explores the possibilities offered by this framework. We
discuss efficient strategies to compute precise value abstractions from
the properties inferred by abstract domains, and illustrate the means
of communication between different state abstractions. Our architec-
ture also features a direct collaboration for the emission of alarms
that report the possible errors of a program.

The general system of abstractions combination has been imple-
mented within EVA, the new version of the abstract interpreter pro-
vided by the Frama-C platform. Thus, EVA enjoys a modular and
extensible architecture designed to facilitate the introduction of new
abstractions and to enable rich interactions between them. Thanks
to this work, five new domains from the literature have been imple-
mented in less than a year, enhancing both the scope and the preci-
sion of the analyzer.

vii

R E M E R C I E M E N T S

Ces travaux n’auraient jamais vu le jour si Boris Yakobowski, qui était
alors mon directeur de stage, ne m’avait proposé de poursuivre une
thèse, alors que, fidèle à moi-même, je n’y avais jamais réfléchi. Je
veux aujourd’hui l’en remercier, car ces trois années (et demi) furent
pour moi une aventure passionnante et fructueuse, et ce en grande
partie grâce à lui. Je remercie tout aussi chaleureusement ma direc-
trice, Sandrine Blazy, de m’avoir accompagné tout au long de cette
thèse. Tous deux ont toujours été présents lorsque j’en ressentais le
besoin, nonobstant leurs emplois du temps souvent (toujours ?) sur-
chargés. Ils ont su me guider judicieusement et m’assister efficace-
ment dans mes recherches, tout en me laissant une liberté d’action
que j’ai beaucoup appréciée, et dont j’ai d’ailleurs largement profité.

Je remercie chaleureusement mes rapporteurs, Mihaela Sighireanu
et Antoine Miné, d’avoir consacré de leur temps pour juger de mes
travaux. L’intérêt qu’ils ont porté à ce manuscrit me fait grand hon-
neur, et je leur suis reconnaissant des remarques pertinentes mais
toujours bienveillantes qu’ils ont pu m’adresser pour m’aider à l’amé-
liorer. Je remercie également Thomas Jensen et Yann Régis-Gianas
d’avoir accepter de participer à mon jury. C’est un grand plaisir, en
particulier, d’être amené à présenter mes recherches devant Yann, qui
m’avait orienté vers le stage à l’origine de cette thèse et avait, déjà à
l’époque, jugé de la qualité de mes travaux.

Je salue avec grande estime l’ensemble du Laboratoire de Sûreté
du Logiciel, auquel je suis honoré et heureux d’appartenir. Je re-
mercie chacun de ses membres avec lesquels j’ai travaillé ou par-
tagé de bons moments. Pour leur aide précieuse, leur conseils avisés,
leur soutien indéfectible, leur humour et leur bonne humeur, et pour
toutes nos passionnantes conversations, qu’elles fussent ou non scien-
tifiques, je rends grâce à François Bobot, André Maroneze, Virgile
Prevosto, Florent Kirchner, Zakaria Chihani, Julien Signoles, Valen-
tin Perelle, et j’en oublie encore. . . Je remercie en particulier Zakaria,
pour sa relecture attentive de ce manuscrit. J’ai une pensée particu-
lière pour Mounir Assaf, doctorant lorsque j’étais stagiaire, et qui,
tant par ses qualités humaines que scientifiques, a été pour moi un
exemple à suivre. Je remercie enfin les autres doctorants du labora-
toire, pour toutes nos interactions, des plus dérisoires aux plus mé-
morables, durant ces trois années : Robin David, Allan Blanchard, Ste-
ven De Oliveira, Jean-Christophe Lechenet, Benjamin Farinier, Hugo
Illous, Lionel Blatter et Vincent Botbol.

Je remercie les membres de l’équipe Celtique pour leur accueil cha-
leureux à chacune de mes incursions sur leurs terres. Au crépuscule

ix

de cette thèse, je regrette n’avoir pas davantage profité de mon rat-
tachement à l’université de Rennes pour les visiter plus souvent, et
ainsi bénéficier de leur excellent niveau scientifique.

Je souhaite également remercier les assistantes de ces deux labora-
toires, Frédérique Descreaux au LSL et Lydie Mabil à Celtique, qui
m’ont à l’occasion sauvé de situations administratives inextricables.
Je leur en suis très reconnaissant.

D’une façon générale, je remercie tous ceux avec qui mes rapports
furent aussi divers qu’enrichissants.

Comme toute recherche scientifique, cette thèse n’est que la suite
de travaux accomplis avant moi. Je ne saurais dresser une liste ex-
haustive des fondements, contributions et inspirations de mon travail
personnel, mais je veux ici rendre hommage à tous ceux qui parti-
cipent à faire avancer la science et propagent leurs savoirs, leurs idées
et leurs expériences.

De plus, ce manuscrit ne couronne pas seulement trois ans de doc-
torat. Tout au long de mes études, j’ai eu la chance de rencontrer
nombre de professeurs formidables, qui non seulement m’ont beau-
coup appris, mais ont surtout su me faire partager leurs passions,
dans des domaines très variés. Ma mémoire défaillante des noms et
des visages m’empêchent de les citer précisément, mais je leur en suis
particulièrement reconnaissant. J’espère qu’ils en ont (eu) conscience.

Enfin, mes derniers mots seront pour ma famille, que je remercie
du fond du cœur : mon frère, que j’ai vu devenir au fil des années une
personnalité remarquable, pour nos longues heures de jeux qui ont
ponctué ma rédaction, et mes parents, car c’étaient, au fond, d’excellents
parents [Aym39], pour avoir fait de moi ce que je suis. Il est impossible
de quantifier ni de qualifier exactement ce que je vous dois, mais vous
avez assurément su cultiver ma curiosité, ma sensibilité, mon amour
des sciences et des arts. Vous m’avez toujours supporté, soutenu et
encouragé dans chacun de mes choix. Je suis aujourd’hui grâce à vous.
Merci pour tout.

x

xi

C O N T E N T S

Résumé étendu en français 1

i context 5

1 introduction 7

2 abstract interpretation 17

2.1 Semantics of a Programming Language 17

2.1.1 Control-flow Graph and Denotational Semantics 17

2.1.2 A toy language 19

2.1.3 Syntax Simplifications 22

2.1.4 Collecting Semantics 23

2.2 Abstract Interpretation Principles 26

2.2.1 Main Concepts 26

2.2.2 Formalization . 27

2.2.3 Lattices . 28

2.2.4 Fixpoint Computation 30

2.2.5 Widening . 32

2.2.6 Abstract Domains: Summary 33

2.3 Combination of Abstractions 34

2.3.1 Abstract Domains of the Literature 35

2.3.2 Direct Product . 37

2.3.3 Reduced Product 38

2.3.4 Open Product . 42

2.3.5 Communication through a Shared Language . . 42

2.3.6 Communication by Messages 43

2.3.7 Abstract Interpretation Based Analyzers 45

ii eva : a modular analyzer for c 49

3 architecture of the analyzer 51

3.1 Overview of the EVA Structure 51

3.1.1 The Frama-C Platform 51

3.1.2 The Abstract Interpreter 53

3.1.3 Abstractions . 53

3.2 A Modular Abstract Interpreter 55

3.2.1 Inner Workings of the Abstract Interpreter . . . 55

3.2.2 Combination of Abstractions 58

3.2.3 Instantiating the Abstractions 60

3.3 Structuring a Combination of Datatypes 60

3.3.1 Context and Motivation 60

3.3.2 Interface of a Combination 61

3.3.3 Polymorphic Keys 62

3.3.4 Naive Implementation 64

3.3.5 GADT Structure of a Datatype 64

xiii

xiv contents

3.3.6 Automatic Generation of the Accessors 67

3.4 Development and Contributions 69

3.4.1 Evolution of the Abstract Interpreter 69

3.4.2 Contributions . 70

3.4.3 Development . 71

4 syntax and semantics of the language 73

4.1 The C Language . 73

4.1.1 The C Standard 74

4.1.2 C Intermediate Language 74

4.1.3 The C Spirit . 75

4.2 A C-like Language . 79

4.2.1 Syntax . 80

4.2.2 Representation of Values in Memory 83

4.2.3 Validity of Pointers and Locations, Memories . 86

4.2.4 Evaluation of Expressions in a Memory 87

4.3 A Concrete Semantics for Clike 89

4.3.1 Pointer Arithmetic and Memory Layout 89

4.3.2 Concrete States Independent of the Memory Lay-
out . 90

4.3.3 Concrete Semantics of Expressions 92

4.3.4 Concrete Semantics of Statements 96

iii abstract semantics of expressions 99

5 value abstractions 101

5.1 Alarms . 101

5.1.1 Reporting Undesirable Behaviors 101

5.1.2 Alarms as ACSL Assertions for the End User . 102

5.1.3 Set of Possible Alarms 103

5.1.4 Maps of Alarms 106

5.1.5 Propagating Alarms and Bottom Elements . . . 110

5.2 Abstractions of Concrete Values 111

5.2.1 Concretization and Soundness of Value Abstrac-
tions . 112

5.2.2 Lattice Structure 114

5.2.3 Semantics of Values and Alarms 115

5.2.4 Abstraction of Constants 115

5.2.5 Abstraction of Operators 116

5.2.6 Abstractions of Memory Locations 118

5.3 The Cvalue Implementation 121

5.3.1 Basic Representation of Constant Values 121

5.3.2 Garbled Mix: a Representation of Not Constant
Values . 125

5.3.3 Forward Abstract Semantics of Cvalues 129

5.3.4 Meet of Garbled Mixes 132

5.3.5 Backward Propagators 137

6 evaluation of expressions 141

contents xv

6.1 Evaluation and Valuation 141

6.1.1 A Generic Functor 142

6.1.2 Abstract Domain Requirement 142

6.1.3 Valuations . 144

6.1.4 Forward and Backward Evaluations 146

6.1.5 Atomic Updates of a Valuation 149

6.1.6 Complete Evaluations 153

6.1.7 Simplified Implementation 155

6.2 Forward and Backward Evaluation Strategies 157

6.2.1 Backward Propagation of Reductions 158

6.2.2 Forward Propagation of Reductions 163

6.2.3 Interweaving Forward and Backward Propaga-
tions . 166

6.2.4 Evaluation Subdivision 173

iv abstract semantics of statements 177

7 state abstractions 179

7.1 Collaboration for the Evaluation: Domain Queries . . . 180

7.1.1 Semantics of Dereference 180

7.1.2 Additional Query on any Expressions 184

7.1.3 Interaction through an Oracle 186

7.2 Backward Propagators 191

7.2.1 Backward Semantics of Dereference 191

7.2.2 Triggering New Reductions 194

7.3 Abstract Semantics of Statements 197

7.3.1 Abstract Semantics of Statements 198

7.3.2 Domain Product 201

7.3.3 Tracking Reductions 202

7.3.4 Related Works and Limitations 204

8 domains and experimental results in eva 209

8.1 The Cvalue Domain . 209

8.1.1 Description . 209

8.1.2 Integration in the EVA Framework 210

8.1.3 Performance Compared to VALUE 212

8.2 The Equality Domain . 216

8.2.1 Dependences of an Expression 216

8.2.2 The Equality Abstract States and Queries 218

8.2.3 Interpretation of Assignments 221

8.2.4 Interpretation of Other Statements 227

8.2.5 Implementation 228

8.2.6 Experimental Results 229

8.3 Other New Domains in EVA 230

8.3.1 Binding to the APRON domains 230

8.3.2 The Symbolic Locations Domain 231

8.3.3 The Gauges Domain 231

8.3.4 Bitwise Abstractions 231

xvi contents

8.3.5 Experimental Results 231

8.3.6 Conclusion . 232

v abstract semantics of traces 235

9 predicated analyses 237

9.1 Motivation . 237

9.2 A Generic Abstract Interpretation Based Framework . 239

9.3 The Predicated Domain 241

9.3.1 Predicated Elements 241

9.3.2 Predicated Lattice 243

9.3.3 A Weaker Join . 245

9.4 A Predicated Analysis 248

9.4.1 The Abstract Transfer Functions 248

9.4.2 Improving the Analysis: Avoiding Redundant
Values . 250

9.4.3 Propagating Unreachable States 253

9.4.4 Convergence of the Analysis 254

9.5 A Verified Soundness Proof 254

9.5.1 Prerequisites . 254

9.5.2 Lattice Structure 255

9.5.3 Weak-Join . 255

9.5.4 Analysis . 256

9.6 Related Work . 257

9.7 Experimental Results . 260

9.7.1 Scope of the Current Implementation 260

9.7.2 Application on two Simple Domains 261

9.7.3 Results on Variables Initialization 262

9.7.4 Validation of the Optimizations 264

9.7.5 Experiments on Examples from the Literature . 266

9.8 Conclusion . 267

vi conclusion 269

10 perspectives 271

10.1 Summary . 271

10.2 Future Works in EVA . 272

10.3 Long-Term Perspectives 274

vii appendix 277

a notations summary 279

b proofs 281

c development files 285

bibliography 290

R É S U M É É T E N D U E N F R A N Ç A I S

contexte

Il aura fallu moins de 80 années à l’informatique pour devenir un
composant essentiel de nos sociétés. En 1936, Alan Turing pose les
bases de l’informatique théorique ; dans les années qui suivent sont
construites les premières machines précurseurs des ordinateurs mo-
dernes, désormais omniprésents dans nos vies quotidiennes. Nous
nous sommes habitués à leurs avantages, et avons appris à gérer leurs
occasionnels désagréments : les bugs, ou erreurs logicielles. Dans le
même temps, les systèmes informatiques se sont également répan-
dus dans l’industrie, et se retrouvent dans les appareils ménagers,
les systèmes de transports, les équipements médicaux, les contrô-
leurs d’usine, les programmes spatiaux. . . Dans des systèmes cri-
tiques en particulier (tels que les robots médicaux, les voitures auto-
nomes, l’aviation ou les centrales nucléaires), les conséquences d’une
erreur logicielle peuvent se révéler dramatiques, en termes de vies
humaines, d’impact environnemental ou de destructions matérielles.
Cette observation met en évidence le besoin impérieux de méthodes
fiables pour la détection des erreurs d’un programme, ou mieux en-
core, pour la preuve de leur absence.

Un moyen simple de découvrir les fautes d’un programme est de
le tester, c’est-à-dire de l’exécuter en vérifiant si son comportement
est bien conforme à ce qui en est attendu. Les tests sont couramment
utilisés dans l’industrie, mais atteignent rapidement leur limites : les
programmes informatiques dépendent généralement de leur contexte
d’exécution et d’actions de l’utilisateur qui ne peuvent être exhaus-
tivement essayés. Les méthodes de tests, aussi efficaces soient-elles
pour détecter les erreurs, ne peuvent jamais en garantir l’absence.

C’est pour obtenir de telles garanties qu’ont été développées des
méthodes formelles de raisonnement sur les programmes informa-
tiques, fondées sur les mathématiques. Elles visent à établir une spéci-
fication logique des programmes, et à prouver que cette spécification
est effectivement vérifiée par leurs implémentations. Elles reposent
sur une sémantique formelle des langages de programmation, qui
définit dans le monde mathématique la signification de chacun de
leurs éléments syntaxiques. Un programme peut alors être vu et ma-
nipulé comme un objet mathématique sur lequel différentes proprié-
tés peuvent être formulées et prouvées. Mais de nos jours, les pro-
grammes peuvent être composés de millions de lignes de code, et leur
représentation mathématique est alors démesurément complexe. . . et
ne peut être efficacement manipulée qu’au travers de l’informatique.

1

2 contents

Cette approche connait elle-même ses limitations : le théorème de
Rice établit que toute propriété non triviale d’un langage de program-
mation est indécidable. Une conséquence directe de cet énoncé est
l’impossibilité de développer un programme capable de déterminer
automatiquement si un programme quelconque est erroné. Les ou-
tils de vérification formelle contournent cet obstacle en sacrifiant la
complétude, se limitant à une certaine catégorie de programmes, ou
requièrent une intervention humaine pour compléter leurs actions.

interprétation abstraite

Parmi les méthodes formelles, l’interprétation abstraite est une théo-
rie générale d’approximation des sémantiques des langages de pro-
grammation. Elle découle de l’idée qu’il n’existe pas une sémantique
universelle et idéale, mais de nombreuses façons de caractériser un
langage. Puisqu’une sémantique concrète exacte se révèle générale-
ment non calculable, l’interprétation abstraite propose de raisonner
sur des sémantique abstraites, moins précises mais plus aisées à ma-
nipuler. De telles sémantiques permettent de calculer automatique-
ment une sur-approximation des comportements possibles d’un pro-
gramme. Une propriété prouvée par la sémantique abstraite est alors
vérifiée par toute exécution du programme. Les analyses fondées sur
l’interprétation abstraite sont particulièrement efficaces pour démon-
trer l’absence d’opérations illégales menant à des échecs (divisions
par zéro, accès invalides à la mémoire. . .). Néanmoins, les approxi-
mations opérées par une sémantique abstraite peuvent contrecarrer
la vérification d’un programme.

La conception d’une sémantique abstraite —ou domaine abstrait—
est délicate : celle-ci doit être suffisamment précise pour permettre
la preuve des propriétés désirées, et suffisamment simple pour per-
mettre l’analyse de larges programmes. Depuis l’introduction de l’in-
terprétation abstraite par Patrick et Radhia Cousot à la fin des an-
nées 70, une large variété de domaines abstraits a été proposée dans
la littérature. Chaque domaine possède ses avantages et ses incon-
vénients, offre un certain compromis entre précision et efficacité, et
répond à différentes problématiques. L’une des forces de l’interpréta-
tion abstraite est la possibilité de composer plusieurs domaines abs-
traits en une seule analyse. En effet, la vérification d’un programme
réel nécessite bien souvent la combinaison de différents domaines. De
plus, les informations inférées par un domaine peuvent être utiles à
un autre domaine dans son interprétation du programme. Pour at-
teindre une meilleure précision, un interpréteur abstrait doit donc
mettre en œuvre une communication entre les différents domaines
durant l’analyse d’un programme. Enfin, chaque domaine se montre
plus ou moins efficace selon le programme considéré. Un analyseur

contents 3

dispose d’un champ d’action d’autant plus large qu’il est modulaire,
favorisant l’ajout, le retrait ou le remplacement de domaines abstraits.

contributions

Cette thèse propose un nouveau cadre pour la composition de do-
maines abstraits. L’idée principale en est l’organisation d’une séman-
tique abstraite suivant la distinction usuelle entre expressions et ins-
tructions, en cours dans la plupart des langages impératifs. Une ex-
pression exprime le calcul d’une valeur, alors qu’une instruction re-
présente une action à exécuter. Un programme est alors une liste
d’instructions à réaliser, définies au moyen d’expressions. La défi-
nition d’une sémantique abstraite peut se diviser entre abstractions
de valeurs et abstractions d’états. Les abstractions de valeurs repré-
sentent les valeurs possibles d’une expression en un point donné, et
assurent l’interprétation de la sémantique des expressions. Les abs-
tractions d’états représentent les états machines qui peuvent se pro-
duire lors de l’exécution d’un programme, et permettent d’interpréter
la sémantique des instructions.

De ce choix de conception découle naturellement un élégant sys-
tème de communication entre abstractions. Lors de l’interprétation
d’une instruction, les abstractions d’états peuvent échanger des infor-
mations au moyen d’abstractions de valeurs, qui expriment des pro-
priétés à propos des expressions. Les valeurs forment donc une inter-
face de communication entre états abstraits, mais sont également des
éléments canoniques de l’interprétation abstraite. Ils peuvent donc
eux-même être combinés par les moyens existants de composition
d’abstractions, permettant encore davantage d’interactions entre les
composants des sémantiques abstraites.

Cette thèse explore les possibilités offertes par cette nouvelle archi-
tecture des sémantiques abstraites. Nous décrivons en particulier des
stratégies efficaces pour le calcul d’abstractions de valeurs précises à
partir des propriétés inférées par les domaines, et nous illustrons les
différentes possibilités d’interactions que ce système offre. L’architec-
ture que nous proposons inclue également une collaboration directe
des abstractions pour l’émission des alarmes qui signalent les erreurs
possibles du programme analysé.

Nous proposons également un mécanisme permettant d’interagir
avec les composants d’une combinaison générique de types OCaml.
Nous utilisons des GADT pour encoder la structure interne d’une
combinaison, et construisons automatiquement les fonctions d’injec-
tion et de projection entre le produit et ses composants. Cette fonc-
tionnalité permet d’établir une communication directe entre les diffé-
rentes abstractions d’un interpréteur abstrait.

Enfin, une dernière contribution de cette thèse est l’extension au-
tomatique de domaines abstraits à l’aide de prédicats logiques qui

4 contents

évitent les pertes d’information aux points de jonction. De fait, lorsque
plusieurs chemins d’exécution se rejoignent, un domaine abstrait doit
représenter les comportements possibles de chacun des chemins, ce
qui engendre souvent des pertes de précision. Pour remédier à cette
limitation, nous proposons de propager un ensemble d’états abstraits,
munis chacun d’un prédicat qui indique sous quelle condition l’état
est valable. Contrairement à d’autres approches, notre analyse ne
maintient pas une stricte partition des états abstraits, car les prédi-
cats utilisés ne sont pas mutuellement exclusifs. Cette particularité
rend possible des optimisations cruciales pour le passage à l’échelle
de cette technique, confirmée par nos résultats expérimentaux sur un
programme industriel généré.

mise en œuvre au sein de frama-c

Frama-C est une plateforme logicielle libre, extensible et collabora-
tive, dédiée à l’analyse de programme C. Elle fournit un large éven-
tail de fonctionnalités à travers plusieurs analyseurs qui exploitent
différentes technologies pour vérifier des propriétés logiques sur des
programmes. Ces propriétés peuvent être spécifiées par des annota-
tions écrites dans un langage de spécification dédié. Depuis ses ori-
gines, Frama-C inclut un interpréteur abstrait nommé Value Analysis
(ou simplement VALUE). Il calcule une sur-approximation des valeurs
de chaque variable d’un programme, et émet une alarme en chaque
point dont il échoue à prouver l’absence d’erreur à l’exécution. Cet
analyseur est capable de traiter le sous-ensemble de C99 utilisé dans
l’informatique embarquée, et a déjà été appliqué avec succès sur des
codes industriels critiques. Néanmoins, VALUE ne bénéficie pas d’une
architecture modulaire : il a été écrit autour de son domaine d’origine,
et le fort couplage entre l’analyseur et ses abstractions rend difficile
l’implémentation de nouveaux domaines abstraits.

L’ensemble du système de composition des abstractions proposé
dans cette thèse a été mis en œuvre dans EVA, la nouvelle version de
l’interpréteur abstrait de Frama-C. EVA est une évolution majeure de
VALUE, et a été spécifiquement conçue pour faciliter l’introduction de
nouvelles abstractions et permettre des interactions riches entre ces
abstractions. Grâce à son architecture modulaire et extensible, cinq
nouveaux domaines abstraits ont pu être introduit dans l’analyseur
en moins d’un an, améliorant ainsi tant ses capacités que sa précision.
Des efforts considérables ont également été consacrés à préserver les
bonnes performances de l’analyseur. En particulier, le mécanisme de
GADT décrit plus haut a été déployé pour maintenir certaines optimi-
sations cruciales qui dépendent du domaine originel de VALUE. Enfin,
l’extension automatique de domaines abstraits à l’aide de prédicats
disjonctifs a été implémentée en tant que plugin indépendant dans la
plateforme Frama-C.

Part I

C O N T E X T

1
I N T R O D U C T I O N

In the last decades, computer systems have become more and more
pervasive in our everyday lives. We are now accustomed to use com-
puters and smartphones everywhere, and also to face the occasional
bugs in their operating systems, software components or online plat-
forms. They may be a real annoyance for the users, but their resolu-
tion goes rarely beyond “rebooting the damn thing” in the worst case
scenario. At the same time, but perhaps less visibly, computer sys-
tems also made inroads in the industry. “Embedded system“ refers
to a computer system integrated as part of a larger device, whose pri-
mary function is not computing. They are now widespread and essen-
tial in household appliance, transportation systems, medical equip-
ments, factory controllers, space programs. . . This includes safety
critical systems such as operating room machines, autonomous cars,
flight-control systems in avionics and nuclear power plants manage-
ments. In such systems, a bug can lead to catastrophic outcomes
in terms of human lives, environmental disasters or property dam-
ages. Most often, bugs cannot be easily circumvented in this context.
This raises the need for efficient methodologies to detect bugs in com-
puter programs beforehand, and even more importantly, to prove the
absence of bugs in computer programs.

The execution of a program usually depends on some inputs that
come from its context or from users actions. In order to hunt bugs, a
program can be tested, by running it multiple times on various inputs,
and by checking the behavior of each execution in compliance with
some requirements. Testing methods are commonly used in industry,
as they can be very effective for quickly discovering bugs in programs,
especially at the earlier stages of their development. However, most
programs accept an infinite set of possible inputs, and thus cannot
be tested exhaustively in every possible configuration. Testing can
then miss some bugs, and can never ensure the absence of bugs in a
program.

To obtain stronger guarantees on program behaviors, we need to
turn towards formal methods, that gather the techniques for reason-
ing about computer programs based on mathematical foundations.
Formal methods aim at establishing a logical specification of pro-
grams, and at verifying that programs satisfy their specification. They
rely on a formal semantics of the programming language used to
write programs. The semantics gives a mathematical characterization
of the meaning of each syntactic element of the language. Then, a
program, which is a composition of these elements, can be seen as a

7

8 introduction

mathematical object on which properties can be formally stated and
proved. The semantics is meant to describe precisely the possible be-
haviors of a program execution, according to its inputs. Various kinds
of logical properties can be expressed about program behaviors. This
thesis focuses on the safety property that the execution of a program
can never cause a runtime error. A runtime error is a failure at the
execution of an illegal operation (forbidden by the semantics of the
programming language), such as a division by zero, a buffer overflow
or an invalid memory access. The absence of runtime error does not
ensure that the program behaves as expected by the programmer or
by the user, but only that its execution does not crash. Other inter-
esting properties include the termination of a program computation,
or its functional correctness —that is proving that the output of the
program meets some logical specification. However, establishing an
exact specification of large and complex programs is often particu-
larly challenging.

Even the mathematical representation of a program is generally
huge and cumbersome: modern programs often consist of millions
of lines of code, divided into various, nested and intricate compo-
nents interacting with each other. This complexity prevents the proof
of programs to be manageable manually. Instead, much efforts have
been devoted to the mechanization of formal methods, and many
tools have been developed to assist or even automatically achieve the
verification of programs. However, this approach faces the barrier
of the algorithmical undecidability of any non-trivial property about
program semantics, stated by Rice’s theorem [Ric53]. A non-trivial
property is neither true or false for every program. A semantic prop-
erty is related to the formal semantics of the programming language
(and not to its syntax). For such a non-trivial semantic property, there
exists no algorithm (and thus no program) that decides for all pro-
gram P whether P satisfies the property. A direct consequence of
Rice’s theorem is the impossibility of a universal machine able to
check in a finite time whether any program contains bugs. To cir-
cumvent this impossibility, formal verification tools sacrifice either
completeness, by being limited to a specific class of programs, termi-
nation, which is another form of incompleteness, or complete mech-
anization, by eventually resorting to human interventions in order to
overcome their inherent limitations.

The formal verification of programs has been an active research
area from the early days of computer science, and various sets of
techniques have sprung up since them. The current techniques in-
clude deductive methods, model checking and abstract interpretation,
which is the subject of this thesis.

deductive verification establishes the compliance of a program
to its specifications as a collection of mathematical proof obliga-
tions, and discharges these obligations using SMT solvers (such

introduction 9

as Alt-Ergo, Z3 or CVC4) or interactive theorem provers (such
as Coq or Isabelle). In this context, the specification of a pro-
gram often consists of preconditions and postconditions for each
of its functions. While deductive verification techniques relieve
the user from the burden of most intermediate steps of a pro-
gram proof, they cannot infer in general the inductive argu-
ments required to handle loops. They thus rely on loop invari-
ants that the user must provide.

model checking works on the model of a program, generally ex-
pressed as a Kripke structure or as a labelled transition sys-
tem. The system is explored exhaustively to determine if all
its possible sequences of states satisfy a given property. The
property to be verified is generally expressed in temporal logic,
and thus can be related to the execution traces of the program.
Model checking has the advantage of being completely auto-
matic, and can exhibit an erroneous execution trace when the
program does not satisfy a property. However, designing a prac-
tical model of the program can be difficult, and the size of the
model is critical: scalability issues prevent the use of model
checking for large realistic programs.

abstract interpretation is a general theory for the analysis of
computer programs by sound approximations of their seman-
tics. A language semantics, defined as the most precise mathe-
matical characterization of program behaviors, describes closely
the execution of programs, but is generally not computable. The
gist of abstract interpretation is to reason on relaxed abstract se-
mantics, less precise but easier to handle. Analyses can be de-
rived from a computable abstract semantics; they compute an
over-approximation of the possible behaviors of a program, by
interpreting it according to the given semantics.

Once given an abstract semantics, an abstract interpretation based
analysis is completely automatic and can be applied to any program.
However, the approximations made by the semantics may prevent
the proof of the property to be verified. An analysis either proves the
property despite its approximations, or does not state anything about
it —due to overly wide approximations, or because the property is
false. In other words, abstract interpretation may fail to prove the cor-
rectness of correct programs, but always detects incorrect programs.

The design of an abstract semantics —also called abstract domain—
is always a delicate matter. Above all, an abstract semantics must be
sound, by capturing all the possible behaviors of a program execution.
This ensures the correctness of abstract interpretation based analyses:
if a property can be proved within the abstract semantics, then the
property is satisfied for every possible execution of the program. The
soundness of an abstract semantics is usually guaranteed by relating

10 introduction

it to a more precise concrete semantics. Furthermore, an abstract se-
mantics seeks to strike a balance between precision and efficiency, in
order to enable the practical analysis of large and complex programs.
It needs to be sufficiently subtle to prove the property to be verified,
and tractable enough to scale on large codes. The abstract interpre-
tation framework provides mathematical tools and methodologies to
ensure the soundness of an abstract semantics, and the termination
of the derived analyses.

The abstract interpretation has been introduced and developed by
Patrick and Radhia Cousot in the late 1970s. Since then, much work
has been conducted to design abstract domains suitable for the anal-
ysis of different classes of programs and for the proof of various fam-
ilies of properties. A wide variety of abstract domains have already
been described in the literature; each one features different reasoning
and approximations, and offers a different trade-off between accuracy
and efficiency. A major asset of the abstract interpretation framework
is the possibility to compose several abstract domains within a single
analysis. Indeed, the verification of complex programs often requires
joining the strengths of multiples abstract domains.

The principles of abstract interpretation have been applied to imple-
ment static analyzers that have already shown their industrial appli-
cability to prove safety properties on critical codes. One of the most
significant achievements of abstract interpretation remains the com-
pletely automatic proof of absence of runtime errors in the primary
flight control software in the Airbus A340 and A380 airplanes by the
Astrée analyzer [Ber+10]. Nevertheless, designing sound but precise
abstract interpreters remains difficult. To enable accurate analyses
on large classes of programs and properties, most analyzers imple-
ment a way of combining abstract domains where abstractions can
be added, removed or replaced as needed. However, the combination
of abstract domains is a challenge in itself. On the one hand, the
domains must remain relatively independent: adding one domain
should not require modifying the existing ones. On the other hand,
they must also be able to cooperate by exchanging information, in
order to achieve a better interpretation of the programs.

1.0.0.1 The C Language

In this thesis, we focus more specifically on the analysis of programs
written in C. The C language, created by Thompson and Ritchie in
the early 1970s as the development language of the Unix operating
system, has become over the years one of the foremost programming
languages in computer science. It remains nowadays among the most
widely used programming language in the world, especially for em-
bedded, safety-critical programs. The C Programming Language [KR78],
written by Kernighan and Rithchie in 1978, was formerly regarded as
the authoritative reference on C. Since 1989, the semantics of C is

introduction 11

officially specified by the successive versions of the C standard, pub-
lished by the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO); its current ver-
sion is the C11 standard [C11]. However, these documents are all
written in a natural language prose, without any mathematical for-
malization, and can only provide an informal description, with its
inevitable share of ambiguities. This situation leads to some misun-
derstandings of the standard, and different visions (with subtle vari-
ations) of the C semantics coexist among programmers and compiler
writers.

Moreover, the C language is oriented towards efficiency and porta-
bility. These features probably explain the success of the language,
that offers strong performances on almost any existing hardware.
They also make the language more bug-prone, by sacrificing the math-
ematical rigour and clarity needed to avoid errors. In particular, the
language achieves its goals by underspecifications, and by exposing
both low-level and high-level views of the memory.

underspecification The C standard contains hundreds of under-
specifications, where the exact behavior of a specific construct is
not precisely defined. In particular, the execution of any illegal
operation (as a division by zero) may behave arbitrarily. This
supports an efficient portability, as the compiler can choose the
most practical way to handle these operations. This also makes
bugs harder to detect and to understand, as their effects may
vary and are generally unpredictable. This aspect of the C stan-
dard is often overlooked: some programmers rely on the com-
mon implementation of unspecified behaviors by current com-
pilers, without any guarantee that their implementation choices
will persist.

dual views of the memory The C language features both low-
level and high-level accesses to the memory (respectively via
bit manipulations and typed expressions), and exposes the bi-
nary representation of high-level memory structures. Those
dual views of the memory give more leeway to the program-
mers for implementing efficient programs, letting them choose
the most convenient approach to address different algorithms.
However, the interactions (and their restrictions) between the
two models can be subtle and must be well understood. In par-
ticular, a commonly held view is that variable addresses and
pointer values are simply integers, and can be handled accord-
ingly. Even though the standard does not strictly legitimate this
idea, a formal verication tool may choose to embrace it, in order
to be able to verify the real-world programs that rely on this
assumption.

12 introduction

While these features of the C language drive even more the need for
the formal verification of C programs, they also are challenging to
address precisely in sound and scalable analyzers.

1.0.0.2 Frama-C

The Frama-C platform is an extensible and collaborative framework
dedicated to the analysis of C programs [Kir+15]. It provides a collec-
tion of interoperable analyzers, organized as plugins around a com-
mon kernel that centralizes information. Through its modular plugin
architecture, Frama-C features a wide range of functionalities, and
enables the user to exploit different techniques to prove properties
on a program. The properties to be verified can be specified in the
program as C annotation comments, written in a dedicated specifi-
cation language. This formal language supports a wide variety of
properties, and allows the user to write partial or complete specifica-
tions of functions.

Frama-C currently includes analyses based on abstract interpre-
tation, deductive verification and dynamic checking. The work pre-
sented in this thesis is built upon the Value Analysis plugin (abbrevi-
ated as VALUE), that uses abstract interpretation techniques to over-
approximate the values of the variables of a program. During its
analysis, VALUE emits an alarm at each program point where it fails
to prove the absence of an undefined behavior according to the C
standard. It handles the subset of C99 commonly used in embedded
softwares, and has already been successfully applied to verify safety-
critical code. One of its key features is an intricate memory abstrac-
tion, able to represent efficiently and precisely both low-level and
high-level concepts of the C memory model. However, the VALUE
analyzer was written around a single abstract domain, resulting in
a very tight coupling. So far, adding new abstract domains was not
possible.

1.0.0.3 Contributions

This thesis presents the guiding principles, the design and the im-
plementation of EVA [BBY17], the new abstract interpreter of the
Frama-C platform. EVA stands for Evolved Value Analysis, and is
a major evolution of the former VALUE analyzer. EVA overcomes
the limitations of VALUE and features a modular and extensible ar-
chitecture, designed to facilitate the implementation of new abstract
semantics. Its main principle is to organize the internal abstractions
by following the distinction between expressions and statements used
in most imperative languages. An expression expresses the computa-
tion of a value (for instance, an integer) from a combination of con-
stants, variables and operators. A statement represents an action to
be carried out, such as the modification of a variable, or a jump in

introduction 13

another part of the code. Then, a program consists of a sequence
of statements, which usually uses expressions to define their actions.
The cornerstone of EVA’s architecture is the division of the abstract
semantics between value and state abstractions. A value abstraction
approximates the possible values of an expression, while a state ab-
straction represents the machine states that can occur at a program
point during an execution. Value abstractions interpret the seman-
tics of expressions, while state abstractions interpret the semantics of
statements —whose actions are modeled on the abstract states.

This design of such an abstract interpreter leads quite naturally to a
new communication system between abstractions. When interpreting
a statement that contains some expressions, different state abstrac-
tions can exchange information through value abstractions of these
expressions. This interaction system is elegant, as it is completely
embedded in the abstract semantics of the analyzer: while the value
abstractions act as a communication interface between state abstrac-
tions, they also are standard elements of the abstract interpretation
framework. Thus, they can also be composed through the existing
combination methods, enabling even more interactions between the
components of the abstract semantics. In EVA, both value and state
abstractions are extensible.

The main contributions of this thesis are:

• a new framework for the combination and the interaction of
multiple abstractions in the abstract interpretation theory. We
define in this document the modular interfaces and the formal
requirements that the abstractions must fulfill. We detail their
means of communication, and prove that they do not contra-
vene the soundness of the analysis. We also formalize a seman-
tics and a cooperative emission mechanism for the alarms that
report the possible bugs of a program.

• the implementation of this architecture within EVA, the new
open-source abstract interpreter of Frama-C. It has been used
on various industrial case studies, and features a better preci-
sion and similar performances than the former abstract inter-
preter of Frama-C. Our design has also been validated by in-
troducing different new abstractions in the analyzer.

• a mechanism to enable interacting with the components of a
modular combination of OCaml types. We use GADTs [JG08]
to encode the inner shape of a combination, and automatically
build injection and projection functions between a product of
datatypes and its components. This mechanism has allowed us
to maintain some crucial optimizations of the former VALUE
analyzer that heavily rely on some specific abstraction within a
modular combination.

14 introduction

• orthogonally, the automatic extension of abstract domains to
track sets of disjunctive abstract states, each one being qualified
with a predicate for which the state holds. This enhances the
precision of an abstract semantics at join points, when several
possible paths of a program execution meet. At these points,
predicates preserve the information lost by the merge of abstract
states. Unlike other approaches, the analysis does not main-
tain a strict partition of the abstract states, as the predicates
we use are not mutually exclusive. This design enables some
optimizations that are crucial for scalability, as confirmed by
our experimental results on an industrial, generated Safety Crit-
ical Application Development Environment (SCADE) program.
This mechanism has not been implemented within EVA, but as
a new dedicated plugin of Frama-C that exploit the results of
EVA. This work has been published in [BBY14] and [BBY16].

1.0.0.4 Overview of this Manuscript

This thesis is structured as follows.
Chapter 2 presents the mathematical foundations of our works: it

formalizes the semantics of a programming language, and introduces
the abstract interpretation framework. Special attention is devoted to
the standard approaches for the combination of abstract semantics
proposed in the literature.

Chapter 3 outlines the architecture and the core principles of EVA.
It presents the hierarchy of abstractions, the inner working of the ab-
stract interpreter, and the structuring of a modular product of OCaml
types through GADT. These features do not depend on the analyzed
language, and could be easily reused in another analyzer. This chap-
ter also underlines the differences between VALUE and EVA.

Chapter 4 introduces the semantics of the C language, with a spe-
cial focus on its underspecifications and its dual views of the memory.
For the sake of simplicity, we formalize our works on a simplified lan-
guage, smaller than C but with the same distinctive features. In par-
ticular, its pointer values are standard integers. This chapter defines
this language and its semantics.

Chapter 5 is dedicated to the abstractions of expressions: the value
abstractions, but also the alarms that report the possibly illegal opera-
tions on expressions. This chapter formalizes their interfaces and the
soundness requirements of their semantics. It also presents the value
abstractions currently available in EVA, focusing on their handling of
pointer values as integers.

Chapter 6 shows how the abstract semantics of values and alarms
enables the precise and complete evaluation of expressions, i.e. the
computation of abstractions for an expression from abstractions of its
subterms, and conversely. This chapter also presents the evaluation
strategies implemented within EVA.

introduction 15

Chapter 7 is dedicated to the state abstractions —or abstract do-
mains. It formalizes their interface and their formal specification, and
proposes different examples to illustrate the opportunities for interac-
tions between abstract domains using the evaluation of expressions
into value abstractions. Finally, this chapter compares our communi-
cation system with the most relevant related works of the literature.

Chapter 8 describes the abstract domains that have been imple-
mented within EVA so far, and presents the results of the experiments
conducted to validate our works.

Chapter 9 presents the extension of an arbitrary abstract domain
with conditional predicates to postpone the loss of information at join
points. It formalizes the “predicated domains” and their semantics,
and shows how to conduct efficient analyses over them. It is impor-
tant to note that this last work has not been integrated into EVA, but
as a new plugin of Frama-C.

Chapter 10 concludes this thesis. It summarizes the results achieved
in this thesis, and proposes some ideas of future works, to further im-
prove the EVA analyzer.

2
A B S T R A C T I N T E R P R E TAT I O N

This thesis is based on abstract interpretation, a general theory for
the sound approximation of the semantics of computer programs. Its
core concept is that there is no innate, universal or ideal semantics to
characterize program behaviors. Instead, a wide variety of formal se-
mantics can be designed to this end, and one should choose carefully
the most appropriate one to prove a specific property on a given pro-
gram. Abstract interpretation links a very precise, but generally non
computable, concrete semantics to abstract ones – the abstract seman-
tics being sound approximations of the concrete one. The abstract
semantics are thus conservative: the absence of errors in an abstract
semantics ensures the absence of errors in the concrete semantics.

This chapter describes our mathematical representation of com-
puter programs, and formalizes more specifically the collecting se-
mantics of a simplistic programming language. Then, it introduces
the mathematical foundations of abstract interpretation, and defines
the concepts and the notations used in this thesis. It finally presents
some well-known abstract semantics of the literature, and the differ-
ent ways to compose them in the abstract interpretation framework.

2.1 semantics of a programming language

In computer science, the formal methods gather the techniques based
on logic and mathematics for the specification, the development and
the verification of algorithms and computer programs. In this context,
a formal verification is a mathematical proof of the correspondence
between a program and a logical specification. The first step towards
the formal verification of programs is the mathematical characteriza-
tion of the programming language used to write them. A program-
ming language is a formal notation designed to express algorithms
by encoding sequences of instructions that a machine (a computer)
can execute. It is described by its syntax —the definition of the valid
sequences of characters of the language— and by its semantics —the
meaning of its syntactic entities, i.e. their effect when they are exe-
cuted by the machine.

2.1.1 Control-flow Graph and Denotational Semantics

The behavior of a program (of its execution by a machine) can be for-
mally described as a sequence of machine states. We call statements
the smallest syntactic elements of the language that express an action

17

18 abstract interpretation

to be carried out. The execution of a statement can alter the current
state: for instance, assignments modify the value of a variable. We
call control structures the syntactic parts of the language that spec-
ify the order of statements execution. In this thesis, programs are
represented as control-flow graphs that explicitely encode the control
structure of a program; the edges are labeled by statements.

The statement semantics of a language can be defined using three
main kinds of formal semantics. An operational semantics closely de-
scribes the behavior of a construct execution through a transition sys-
tem between the program states. Transitions can be defined as atomic
execution steps (in small-step semantics), or inductively as sequences
of computational steps (in big-step semantics). An axiomatic seman-
tics establishes logical implications between assertions valid before a
statement and assertions valid after it. The assertions are logical pred-
icates describing the program states, closely related to Hoare logic. A
program and the property to be verified can be translated into a logic
formula, and proving that the program satisfies the property is re-
duced to proving the validity of the formula. Finally, a denotational
semantics formalizes the meaning of the language syntax through
mathematical objects (called denotations). This is the most abstract
definition of a language semantics, independent of its concrete imple-
mentation. This thesis uses denotational semantics as they are easier
to manipulate in mathematical proofs. For instance, we define the
semantics of statements as functions on the program states.

Definition 1 (Control-flow graph). A control-flow graph is a directed
labeled graph G = (N, init ,final ,Σ, I,Ω, T) where:

• the finite set of nodes N is the set of program points. Among
them, init ∈ N and final ∈ N are respectively the initial and the
ending node of the program.

• Σ is a set of states. Among them, I ⊆ Σ is the set of possible
initial states and Ω ⊆ Σ is a set of erroneous states.

• T is a set of labeled edges, namely transitions (n, f,m) between
two nodes n ∈ N and m ∈ N with a function f such that:

f : Σ\Ω→ Σ]∅

f is the denotation of a language statement, modeling its effect
on a non-erroneous program state. It computes a new (possibly
erroneous) state as the result of the execution of the statement,
or the special value ∅ if the statement cannot be executed from
the argument state.

By convention, program points (nodes) are represented by natural in-
tegers N ⊆ N and the initial node is always 0.
The erroneous states are states that a correct program should never

2.1 semantics of a programming language 19

reach. They can correspond to bugs or crashes of a program execu-
tion.

Henceforth, we identify programs and control–flow graphs. A con-
trol–flow graph describes the possible executions of a program as
sequences of pairs of a state in Σ and a node in N . An execution
starts with an initial state in I at the node init , and then follows the
transitions given by the edges of the graph. It is worth noting that
the graph structure can encode non–determinism, if multiple transi-
tions can be chosen for a state at a point. An execution stops with
success when reaching the final node final , and stops by failure if
reaching an erroneous state. An execution may also never end, either
through an infinite sequence of states, or by reaching a node without
any transition to apply.

The representation of a program execution as a sequence of states
and nodes is called a trace.

Definition 2 (Traces). Let G = (N, init ,final ,Σ, I,Ω, T) be a control-
flow graph. For K = N or K = {0, . . . , `}, the sequence (Sk, nk)k∈K ∈
(Σ×N)K is a trace of G if:{

S0 ∈ I ∧ n0 = init

∀k ∈ K\{0}, ∃(nk−1, f, nk) ∈ T, Sk = f(Sk−1) 6= ∅

The finite sequence (Sk, nk)k∈{0,. . . ,`} is a complete execution of G
if, on top of that, n` = final . Infinite sequences are also complete
executions of G.

The sequence (Sk, nk)k∈{0,. . . ,`} is an erroneous execution of G if
S` ∈ Ω.

The set of the possible behaviors of a program execution is then
described by all its traces. This is the trace semantics of a program.

Definition 3 (Trace semantics). The trace semantics of a program G

is the set of its traces, denoted TG.

2.1.2 A toy language

This chapter is based on a simplified language that we call Toy. A
Toy program operates on a finite set X of integer variables, whose
values can change during the execution. It is thus natural to define
the states of a program as the set of environments ρ : X → N that
link each program variable to an integer, augmented with a single
erroneous state Ω —as there is only one erroneous state, we identify
the set of erroneous states with this state.

Σ = (X → N)]Ω

Figure 2.1 presents the syntax of the Toy language, divided into
statements and expressions. Expressions are either integer constants,

20 abstract interpretation

Variables: x, y, z ∈ X
Expressions: e ::= n n ∈ Z integers

| x x ∈ X variables

| e+ e | e− e | e× e | e÷ e arithmetic

| e = e | e 6= e | e < e | e ≤ e comparisons

Statements: stmt ::= x := e assignment

| e==0? test

| skip identity

Figure 2.1: Syntax of the Toy language

variables or arithmetic operations and comparisons between subex-
pressions. Their mathematical meaning should be clear. Statements
are:

• assignments x := e, whose effect is to change the value of the
given variable x into the value of the expression e in the current
environment.

• test filters e==0? that enable the transition only if the expres-
sion e has the value 0. In other words, it blocks the execution
for the environments in which e is not zero.

• skip statements, which have no effect on the program states.

Again, their semantics is really standard. Figure 2.2 formally de-
fines the semantics of statements and expressions as mathematical
functions.

The evaluation of an expression e is a function JeK from environ-
ments to integers or to the erroneous state.

JeK : (X → N)→ (N]Ω)

The evaluation of a variable is its value in the environment; the eval-
uation of arithmetic operations follows the integer arithmetics; the
evaluation of a comparison is 1 if the comparison holds, and 0 other-
wise. The evaluation of a division fails if the evaluation of the divisor
is 0.

According to the definition 1 of control-flow graph, the semantics
of a statement s is a function:

|{s}| : (X → N)→ Σ] ∅

Given an environment ρ, we denote byρ[x← v] the environment ρ in
which x has the image v.

ρ[x← v](y) =

v if y = x

ρ(y) otherwise

2.1 semantics of a programming language 21

JnK(ρ) , n

JxK(ρ) , ρ(x)

Je1 ♦ e2K(ρ) ,

Ω if JeiK(ρ) = Ω

Je1K(ρ)♦ Je2K(ρ) otherwise
∀♦ ∈ {+,−,×}

Je1

♦

e2K(ρ) ,


Ω if JeiK(ρ) = Ω

1 if Je1K(ρ)
♦

Je2K(ρ)

0 otherwise

∀ ♦ ∈ {=, 6=, <,≤}

Je1 ÷ e2K(ρ) ,

Ω if JeiK(ρ) = Ω ∨ Je2K(ρ) = 0

Je1K(ρ)/Je2K(ρ) otherwise

|{x := e}| (ρ) ,

Ω if JeK(ρ) = Ω

ρ[x← JeK(ρ)] otherwise

|{e==0?}| (ρ) ,


Ω if JeK(ρ) = Ω

ρ if JeK(ρ) = 0

∅ otherwise

|{skip}| (ρ) , ρ

Figure 2.2: Denotational semantics of Toy

22 abstract interpretation

The semantics of an assignment x := e changes an environment ρ
into the environment ρ[x← v], where v is the result of the evaluation
of e in ρ. The semantics of a test e==0? in an environment ρ is the
identity if e evaluates to 0, and blocks otherwise. Both semantics lead
to the error state if the evaluation of e is the error state. Finally, the
semantics of the skip statement is the identity function.

We henceforth use the statements to denote their semantics in pro-
gram graphs: a transition is (n, stmt,m) where n and m are two
program points, and stmt a language statement.

2.1.3 Syntax Simplifications

Encoding the control structures by control-flow graphs allows us to
focus only on the statement semantics, and greatly simplifies the for-
malization of the language. However, graphs are not a very conve-
nient way for humans to write algorithms or programs. We use in-
stead the standard control structures of imperative programming lan-
guages —sequences of statements, conditional branches through if in-
structions and loops— as syntactic sugar for the control-flow graphs
that they represent. The connection between those syntactic struc-
tures and control-flow graphs is given below. In this thesis, most
code examples are written using this C-like syntax.

sequences :

1: x1 := e1;

2: x2 := e2;

3: ... �
1

2

3

x1 := e1

x2 := e2

conditional branches : the condition e 6= 0 induced by an if(e)

statement is translated into the test filter (e = 0)==0?, which is
equivalent.

1: if (e) {

2: [A]

3: } else {

4: [B]

5: }

6: ... �

1

A B

2 4

3 5

6

(e = 0)==0? e==0?

skip skip

loop :

1: while (e) {

2: [A]

3: }

4: ... �

1

A

2

3

4

(e = 0)==0?

skip

e==0?

2.1 semantics of a programming language 23

variables: a b t

while (b 6= 0) {

t := b;

b := a− (a÷ b)× b;
a := t;

} �

0

1

2

3

4

5

(b = 0)==0?

t := b

b := a− (a÷ b)× b

a := t

skip

b==0?

Figure 2.3: Euclidean algorithm

Example 1. Figure 2.3 presents an optimized implementation of the
oldest known non-trivial algorithm: the Euclidean algorithm. It op-
erates on three variables a, b and t; the initial node is 0 and the final
node is 5. As the modulo operation a mod b does not exists in the
language, it is translated into a − (a ÷ b) × b. When an execution
reaches this final node, the variable a has the value of the greatest
common divisor (gcd) of the initial values of a and b.

2.1.4 Collecting Semantics

The definition 1 of a program includes a set of erroneous states. They
describe undesirable behaviors that should not happen during a pro-
gram execution and that we aim to prevent. In the Toy language for
instance, a program reaches the erroneous state when a division by
zero occurs, which is mathematically undefined. In this thesis, we
are interested in formally proving the property that a given program
is free of undesirable behaviors. This means that an execution of
the program cannot reach an erroneous state. This property can be
seen as a global invariant of all possible program executions. In the
trace semantics, a program satisfies this invariant if none of its traces
reaches an erroneous state. We then say that the program is correct.

@(Sk, nk)k∈{0,. . . ,n} ∈ TG, Sn ∈ Ω

However, we do not need the full expressivity of the trace semantics
to formalize this property. We are only interested in the states that a
program execution can reach, but not in the connection between the
successive states. We thus can overlook the exact traces of a program
and reason only on the set of reachable states. This is our choice
of the collecting semantics of a program, that connects each program
point to the set of possible states at this point.

24 abstract interpretation

Definition 4 (Collecting semantics). The collecting semantics of a pro-
gram G = (N, init ,final ,Σ, I,Ω, T), denoted CG, is the function from
nodes N to states Σ defined as:

CG : N → Σ

CG(n) , {S ∈ Σ | ∃t ∈ TG, (S, n) ∈ t}

The collecting semantics is strictly less expressive than the trace
semantics. The trace semantics can be used to ensure the termination
of a program G (if all traces of TG are finite), or to express properties
that relate the final state of an execution with its initial state. In the
program G of example 1, the correction of the Euclidian algorithm
can be stated by the following property:

∀(ρk, pck)k∈{0,. . . ,n} ∈ TG, pcn = final ⇒ ρn(a) = gcd(ρ0(a), ρ0(b))

The simpler collecting semantics, although unable to express such
properties, allows however a straightforward definition of the correct-
ness of programs.

Definition 5. A program G is correct if ∀n ∈ N, CG(n) ∩Ω = ∅.

While the collecting semantics is really convenient to our needs, it
is built upon the trace semantics. Let us rather define the collecting
semantics as the solution of equations between the sets of reachable
states at each node of a program, using the transition system of the
graph. To simplify the equations, we assume that no transition ends
at the initial node. This property ensures that CG(init) is exactly the
set of initial states of the program G. Any program can be turned
into a graph that satisfies this property by adding a new initial node
and a skip statement from it to the previous initial node.

Theorem 1. Let G = (N, init ,final ,Σ, I,Ω, T) be a program such that
@(n, f, init) ∈ T . The collecting semantics CG is the smallest solution of
the following system of equations:

C(init) = I

∀n∈N\{init}, C(n) =
⋃

(m,stmt,n)∈T

{ |{stmt}| (S) | S ∈ C(m) } (2.1)

Proof. Let us prove first that CG is a solution of this equation system.
By definition 4 of the collecting semantics:

S ∈ CG(n) ⇔ ∃(ti)i∈K ∈ TG ∧ ∃k ∈ K, tk = (S, n)

By definition 2 of traces:

k = 0 ⇒ (S, n) = t0 ⇒ S ∈ I ∧ n = init

k > 0 ⇒

{
S′ ∈ CG(n′)

∃(n′, stmt, n) ∈ T, S = |{stmt}| (S′)
with (S′, n′) = tk−1

2.1 semantics of a programming language 25

As @(n, f, init) ∈ T , if k > 0 then n 6= init . Thus, CG(init) ⊆ I and as
I is defined as the initial states at the program point init , we naturally
obtain CG(init) = I .
Conversely to the k > 0 case, we assume a state S′ ∈ CG(n′) and a
transition (n′, stmt, n) ∈ T such that S = |{stmt}| (S′). Then:

∃(ti)i∈K ∈ TG ∧ ∃k ∈ K, tk = (S′, n′)

We define a new sequence (t′i) as:

∀i ∈ {0, . . . , k} t′i = ti

tk+1 = (S, n)

This sequence is a trace of G, as (ti) is a trace of G and by hypothesis
S = |{stmt}| (S′) for the transition (n′, stmt, n). Thus, S ∈ CG(n).

S ∈ CG(n)⇔ ∃S′ ∈ CG(n′) ∧ ∃(n′, stmt, n) ∈ T, S = |{stmt}| (S′)

This ensures finally:

∀n ∈ N\{init}, CG(n) =
⋃

(m,stmt,n)∈T

{ |{stmt}| (S) | S ∈ CG(m) }

Let us now prove that CG is the smallest solution of the equation
system via the following stronger lemma.

Lemma 1. Let G = (N, init ,final ,Σ, I,Ω, T) be a program such that
@(n, f, init) ∈ T . The collecting semantics CG is the smallest solution of
the following system of equations:

C(init) ⊇ I

∀n∈N\{init}, C(n) ⊇
⋃

(m,stmt,n)∈T

{ |{stmt}| (S) | S ∈ C(m) } (2.2)

In other words, if X : N → P(Σ) is a solution of this system of equations,
then ∀n ∈ N, CG(n) ⊆ X(n).

Proof. Let X be a solution of 2.2. Then X(init) ⊇ I . Let n ∈ N

different from init . We need to prove that CG(n) ⊆ X(n). Let S be a
state of CG(n).

∃(Si, ni)i∈K ∈ TG ∧ ∃k ∈ K, S = Sk ∧ n = nk

By definition 2 of traces:{
S0 ∈ I ∧ n0 = init

∀k ∈ K\{0}, ∃(nk−1, stmt, nk) ∈ T, Sk = |{stmt}| (Sk−1)

We can easily prove by induction that ∀k ∈ K, Sk ∈ X(nk). The base
case is immediate: S0 ∈ I ⊆ X(n0). We assume Sk−1 ∈ X(nk−1).
There exists a transition (nk−1, stmt, nk) ∈ T such that nk 6= init and
Sk = |{stmt}| (Sk−1). Equation 2.1 ensures that Sk ∈ X(nk).
In particular, (S, n) ∈ (Si, ni)i∈K and thus S ∈ X(n).
We have thus proved CG(n) ⊆ X(n).

26 abstract interpretation

Although suitable for expressing the property we aim at proving,
the collecting semantics is usually not computable. The semantics
of the Toy language manipulates infinite sets of states, and even the
semantics of the Euclidian algorithm given in Figure 2.3 would not be
easy to formalize. On a real machine, the number of possible states
is finite but remains far too oversized to be used directly as means of
proof. We now need to work on more practical approximations of this
precise semantics.

2.2 abstract interpretation principles

The abstract interpretation [CC77a; CC79b; CC92a; Cou81; Cou78] is
a fundamental theory and a practical framework for the realistic ap-
proximation of the semantics of programs. This section presents and
formalizes its principles. It explains how to ensure that an approxi-
mated semantics is correct according to the collecting semantics, and
how to guarantee the termination of an abstract interpretation based
analysis.

2.2.1 Main Concepts

A language semantics, defined as a precise mathematical characteri-
zation of program executions, is generally not computable. Such se-
mantics —the collecting semantics, for instance— are called concrete
semantics. The gist of abstract interpretation is to reason on a relaxed
abstract semantics, designed to be easier to handle. An abstract se-
mantics is an approximated characterization of programs executions.

Collecting semantics link each program point to a set of reachable
states. The states used to define a concrete semantics are called con-
crete states. On the other hand, an abstract semantics operates on
abstract states. An abstract state represents a set of concrete states,
and an abstract collecting semantics links each program point to one
abstract state. The abstract interpretation theory provides a method-
ology to ensure that an abstract semantics is computable and sound.
An abstract semantics is sound if it captures all the possible behaviors
(all the executions) of a program. This means that the abstract state
at a program point must represent at least all the reachable states of
the collecting semantics. In a sound abstract semantics, an abstract
state expresses a property (an invariant) that holds in all reachable
states. In particular, if the abstract states of all program points ex-
clude the erroneous states, the soundness of the abstract semantics
guarantees that no erroneous state is a reachable state: the program
is then proved correct.

However, the abstract semantics is an over-approximation of the
concrete semantics. If the representation of an abstract state includes
an erroneous state, we cannot conclude that this is actually a reach-

2.2 abstract interpretation principles 27

able state. Designing an abstract semantics always involves a con-
tinuing trade-off between accuracy and efficiency: it must be precise
enough to exclude the erroneous states on correct programs, but its
computation must be tractable and scale on large programs.

2.2.2 Formalization

The collection of abstract states over which operates an abstract se-
mantics is called an abstract domain. The function that links each
abstract state to the set of concrete states it represents is called the
concretization of the domain.

Definition 6 (Abstract domain). An abstract domain is a set D of
abstractions and a concretization function γ from elements of the do-
main to sets of concrete states.

γ : D→ P(Σ)

We said that an abstract state d ∈ D abstracts or represents the con-
crete states of γ(d).

Traditionnally, the elements e of an abstract semantics are denoted
with a sharp note e]. In this thesis, we prefer the octothorpe e#.

Definition 7 (Abstract semantics). Let G = (N, init ,final ,Σ, I,Ω, T)

be a program, and D be an abstract domain. A sound abstract seman-
tics of G is a function CG

: N → D such that:

∀n ∈ N, CG(n) ⊆ γ(CG
#(n))

An abstract semantics on an abstract domain can be defined through
functions that over-approximate the concrete semantics of the lan-
guage statements. Such functions —one for each statement kind—
are called transfer functions. An abstract domain must also be equipped
with an over-approximation of the union of concrete states.

Definition 8 (Transfer function). A sound transfer function for a state-
ment stmt is a function |{stmt}| #:

|{stmt}| # : D→ D
∀S# ∈ D, |{stmt}| (γ(S#)) ⊆ γ(|{stmt}| #(S#))

Definition 9 (Inclusion and join). A sound approximation of the in-
clusion of concrete states is a relation v between abstract states such
that:

∀(S1
#, S2

#) ∈ D, S1
v S2

⇒ γ(S1
#) ⊆ γ(S2

#)

A sound approximation of the union of concrete states is a join oper-
ation t between abstract states such that:

∀(S1
#, S2

#) ∈ D, γ(S1
#) ∪ γ(S2

#) ⊆ γ(S1
t S2

#))

28 abstract interpretation

Theorem 2. Let G = (N, init ,final ,Σ, I,Ω, T) be a program such that
@(n, f, init) ∈ T , and D be an abstract domain. Any solution of the follow-
ing system of equations is a sound abstract semantics of G:

γ(X(init)) ⊇ I

∀n∈N\{init}, X(n) w
⊔

(m,stmt,n)∈T

(|{stmt}| #(X(m))) (2.3)

Proof. Let X : N → D be a solution of 2.3. Let C : X → P(Σ) defined
as ∀n ∈ N, C(n) = γ(X(n)). Then we have:

C(init) ⊇ I

∀n∈N\{init}, X(n) w
⊔

(m,stmt,n)∈T

(|{stmt}| #(X(m)))

⇒ C(n) ⊇ γ(
⊔

(m,stmt,n)∈T

(|{stmt}| #(X(m))))

⇒ C(n) ⊇
⋃

(m,stmt,n)∈T

(γ(|{stmt}| #(X(m))))

⇒ C(n) ⊇
⋃

(m,stmt,n)∈T

(|{stmt}| (γ(X(m))))

⇒ C(n) ⊇
⋃

(m,stmt,n)∈T

(|{stmt}| (C(m)))

C is thus a solution of the system of equations 2.2, and by lemma 1:

∀n ∈ N, CG(n) ⊆ C(n) = γ(X(n))

Any solution of 2.3 is a sound abstract semantics of G, according to
definition 7.

We will focus now on the conditions ensuring that the system of
equations has a solution, and how to efficiently compute it.

2.2.3 Lattices

The abstractions used in abstract interpretation have generally a lat-
tice structure. We introduce here the standard notions of lattices in
order theory and as an algebraic structure.

Definition 10 (Partially ordered set). A partial order over a set E is a
binary relation v that is reflexive, antisymmetrical and transitive:

• ∀x ∈ E, x v x (reflexivity)

• ∀(x, y) ∈ E2, (x v y ∧ y v x) ⇒ x = y (antisymmetry)

• ∀(x, y) ∈ E2, (x v y ∧ y v z) ⇒ x v z (transitivity)

A set with a partial order (E,v) is called a partially ordered set (or
poset).

2.2 abstract interpretation principles 29

Definition 11 (Lower and upper bounds). Let (E,v) be a partially
ordered set, and S ⊆ E a subset of it. An upper bound of S is an
element u ∈ E such that ∀x ∈ S, x v u. An upper bound b of S is its
least upper bound if b v b′ for each upper bound b′ of S. A lower bound
of S is an element l ∈ E such that ∀x ∈ S, l v x. A lower bound l

of S is its greatest lower bound if l′ v l for each lower bound l′ of S.

Definition 12 (Lattice). A lattice (L,v,t,u) is a partially ordered
set (L,v) where each pair (x, y) ∈ L2 has a least upper bound, de-
noted by x t y, and a greatest lower bound, denoted by x u y. The
binary operators t and u are respectively called the join and the meet
of L.

A lattice can also be defined as an algebraic structure. Both defini-
tions 12 and 13 are equivalent.

Definition 13 (Algebraic lattice). A lattice is a set L with two commu-
tative and associative binary operations t and u such that

∀(x, y) ∈ L2, xu (xt y) = x = xt (xu y)

We can define a partial order v over such a structure as:

∀(x, y) ∈ L2, x v y ⇔ xt y = y

And for this partial order, xt y is the greatest lower bound of {x, y},
and x u y is its least upper bound. Conversely, the join and meet of
definition 12 satisfy the properties of definition 13.

Definition 14 (Semilattice). A join-semilattice is a partially ordered
set where any pair has a least upper bound (called join). A meet-
semilattice is a partially ordered set where any pair has a greatest
lower bound (called meet).

Definition 15 (Bounded lattice). A bounded lattice is a lattice (L,v
,t,u) that has a greatest element >, called top, and a least element ⊥,
called bottom. For the algebraic structure, this is equivalent to:

∀x ∈ L, xt⊥ = x ∧ xu> = x

Definition 16 (Complete lattice). A complete lattice is a partially or-
dered set in which every subset S has a least upper bound, denoted
tS. This is equivalent to state that every subset S has a greatest lower
bound, denoted uS.

A complete lattice L is bounded: ⊥ = u∅ and > = tL.

We have defined the basic notions of lattice structure as a mathe-
matical object. However, we must not lose sight that the lattices used
in abstract interpretation are composed of abstractions of a concrete
semantics, and that a concretization function gives meaning to these
abstractions by relating them to sets of concrete elements. The lattice
structure of abstractions must be consistent with their concretization.

30 abstract interpretation

γ : X# → P(X)

γ (>) = X
γ (⊥) = ∅

x1 v x2 ⇒ γ (x1) ⊆ γ (x2)

γ (x1) ∪ γ (x2) ⊆ γ (x1 t x2)

γ (x1) ∩ γ (x2) ⊆ γ (x1 u x2)

Figure 2.4: Lattices

Definition 17. Let (X#, γ) be a set of abstractions of concrete ele-
ments in X. The lattice structure (X#,v,t,u,>,⊥) of X# must sat-
isfy the properties stated in Figure 2.4:

• the partial order over abstractions entails the inclusion of their
concretizations;

• the concretization of > is the set of all concrete elements; the
concretization of ⊥ is the empty set;

• the join is an over-approximation of the union of concrete sets;

• the meet is an over-approximation of the intersection of concrete
sets.

2.2.4 Fixpoint Computation

Resolving the system of equations 2.3 can be reduced to the compu-
tation of a function fixpoint. Let (X,v) be a partially ordered set,
and f : X → X a function. A fixpoint of f is an element x ∈ X

such that f(x) = x. A pre-fixpoint of f (respectively a post-fixpoint)
is an element x ∈ X such that x v f(x) (respectively f(x) v x).
If it exists, the least fixpoint of a function f is denoted lfp(f), and
its greatest fixpoint is denoted gfp(f). An important result for the
abstract interpretation of programs is the fundamental theorem of
Knaster-Tarski [Tar55]:

Theorem 3 (Knaster-Tarski fixpoint theorem). Let L be a complete lattice
and let f : L → L be a monotonic function. Then the set of fixpoints of f
is also a complete lattice. In particular, f has a least and a greatest fixpoint,
and:

lfp(f) = u{x ∈ L | x v f(x)} = u{x ∈ L | x = f(x)}
gfp(f) = t{x ∈ L | f(x) v x} = t{x ∈ L | x = f(x)}

This theorem proves the existence of a solution of the equations 2.3
when the abstract domain is a complete lattice and the transfer func-
tions are monotonic.

Let G = (N, init ,final ,Σ, I,Ω, T) be a program and let the abstract
domain (D,v,t,u,>,⊥) be a complete lattice of abstractions of con-
crete states Σ. We write X the set of functions X : N → D from

2.2 abstract interpretation principles 31

program points to abstractions. We can lift the complete lattice struc-
ture of D into X:

X1 vX X2 ⇔ ∀n ∈ N, X1(n) v X2(n)

X1 tXX2 , λn. X1(n) tX2(n)

X1 uXX2 , λn. X1(n) uX2(n)

>X , λn. >

⊥X , λn. ⊥

One can easily prove that (X,vX,tX,uX,>X,⊥X) is a complete lattice.
Let I# ∈ D such that I ⊆ γ(I#). We consider the function F : X→ X
defined as follows:

F(X) = λn.

I if n = init⊔
(m,stmt,n)∈T (|{stmt}| #(X(m))) otherwise

If each abstract transfer function |{stmt}|# is monotone, then the func-
tion F is also monotone. In this case, the Knaster-Tarski theorem ap-
plies, and F has a least fixpoint, which is a solution of equations 2.3.
In practice, any fixpoint and post-fixpoint of F is a solution of equa-
tions 2.3, but the least fixpoint is clearly the most precise abstract
semantics of G.

Many further works have been devoted to the actual and efficient
computation of such fixpoints. The Kleene fixpoint theorem expresses
the fixpoint of a continuous function f (that preserves the lower
upper bounds of chains) as the supremum of the ascending chain
(fn(⊥))n. Cousot and Cousot [CC79a] have proven a constructive
version of the Tarski theorem by means of transfinite iteration se-
quences. Bourdoncle [Bou93] studies precise and efficient algorithms
for computing approximate fixpoints through chaotic iteration strate-
gies; it especially targets the systems of semantic equations used in
abstract interpretation. In practice, these systems are solved by itera-
tive dataflow analysis [NNH99].

This thesis does not tackle the problem of the efficient computa-
tion of fixpoints. It assumes provided a fixpoint engine able to solve
the equations of theorem 2 if the abstract semantics has the right
properties: the abstract domain is a complete lattice, and the trans-
fer functions are monotonic. This thesis is dedicated to the design
of such abstract semantics, and more specifically to the combination
of several abstract semantics. This is why the graph representation
of programs is really convenient: it abstracts the control-flow of pro-
grams, which is handled by the fixpoint engine through a dataflow
analysis, and let us focus on the statement semantics.

32 abstract interpretation

2.2.5 Widening

We have seen that the abstract interpretation theory expresses an ab-
stract semantics of programs as a system of equations (theorem 2).
These systems are solved by applying iteratively the equations un-
til reaching a post-fixpoint. However, these equations may require
a large number of iterations to be solved. Especially when the ab-
stract domain is infinite or simply disproportionate, the convergence
may be extremely slow. Moreover, some abstract domains used in
real-world analyzers do not have a complete lattice structure. To ac-
celerate the convergence, abstract interpretation relies on an extrapo-
lation operator called widening [CC92b; Cor08], usually denoted by∇,
and provided by each domain. Precise widenings usually study the
differences between the states computed by two successive iterations,
and extrapolate the effect of the next iterations to predict a possi-
ble fixpoint. In the dataflow analysis of a program, this consists in
generalizing the behaviors of a loop from the properties of the first
iterations.

Definition 18 (Widening). Let (L,v) be a partially ordered set. A
widening operator is a function ∇ : L×L → L such that:

• For all pairs of elements x, y ∈ L2, we have x v x∇ y and
y v x∇ y.

• for all increasing chains x0 v x1 v . . . v xn v . . . , the increas-
ing chain defined as:

y0 , x0

yn+1 , yn∇ xn+1

(2.4)

is ultimately stationary, i.e. ∃k ∈ N, ∀j ≥ k, yj = yk.

The first property of the definition ensures the soundness of the op-
erator, that acts like the join of two abstractions. The second property
allows a fast convergence of the iterative resolving of equations. We
consider the monotone function F : X → X defined in Section 2.2.4,
whose post-fixpoints are solutions of the equations 2.3. We now de-
fine the increasing chain yn as:

y0 , ⊥

yn+1 , yn∇F(yn)

The chain (yn) is increasing as yn v yn∇F(yn). By definition of the
widening, this chain is stationary starting from a k ∈ N. We then
have:

F(yk) v yk ∇F(yk) = yk+1 = yk

and yk is thus a post–fixpoint of F .

2.2 abstract interpretation principles 33

While ensuring a fast convergence of the fixpoint computation,
the extrapolations made by a widening operator may be very im-
precise and lose crucial information, thus leading to a post-fixpoint
much greater than the least fixpoint. Several techniques can be imple-
mented to mitigate this loss of precision.

A worthwhile observation is that all iterations do not need to ap-
ply the widening operator. It can be safely replaced by the standard
join of abstractions at some iterations, as long as the widening is ap-
plied often enough to guarantee the convergence. The join ensures
that the chain (yn) is increasing, and the widening ensures the chain
(yφ(n)) is ultimately stationary, with φ(n) being the steps where the
extrapolations are done. Above a certain point however, if φ is not the
identity, the widening must be applied between the last abstraction
and the last widened abstraction, such that yφ(n) = yφ(n−1) ∇ yφ(n)−1.
How often to extrapolate the next iteration by widening is a trade-off
between precision and efficiency. Different heuristics can be used to
choose when to widen [Cou+09]. A common strategy is to delay the
widening [Bla+07; Bag+05], replacing the extrapolation operator by
the standard join of abstractions for the first n iterations. This allows
the computed abstractions to accumulate more constraints that can be
used for a better extrapolation of a loop behavior. Two extrapolation
steps can also be separated by m iterations without widening.

A widening with thresholds [LJG11; Lea+08; Hal93] can also be used
to limit the extrapolations made by standard widenings. It consists in
defining a finite set C of threshold constraints that express candidate
properties that may hold in the concrete semantics of the analyzed
program, and that we enforce in the widening. The widening be-
tween yn and yn+1 is then reduced by the constraints that are still
satisfied in yn+1. The constraints can be expressed as a set of thresh-
old abstract states TH . The widening with thresholds is then built
upon the standard widening as follows:

x∇TH y = min(z ∈ TH ∪ {x∇ y} | y v z)

The widening with thresholds x∇TH y is the least threshold state
greater than y, or the standard wideninng x∇ y. The precision and
the efficiency of this approach depends on the choice and the number
of the thresholds.

Finally, the over-approximations made for the computation of a
post-fixpoint can be corrected afterwards, by decreasing iteration se-
quence [Cou99]. Dually to the widening operator, a narrowing oper-
ator ∆ can be defined to accelerate the decreasing iterations [CC92b].

2.2.6 Abstract Domains: Summary

The abstract interpretation theory approximates the collecting seman-
tics of a program through an abstract semantics expressed as equa-

34 abstract interpretation

tions over an abstract domain. An abstract domain is a collection of
abstract states, related to sets of concrete states through a concretiza-
tion function γ. An abstract domain provides:

• an inclusion and a join operations that over-approximate the
inclusion and the union of sets of concrete states, according to γ.

• a set of transfer functions, or abstract transformers, that over-
approximate the concrete semantics of statements in the collect-
ing semantics.

As shown by Section 2.2.2, these are the only requirements that an
abstract domain must fulfill to ensure the soundness of an abstract
interpretation based analysis. Guaranteeing the termination of the
analysis also requires the abstract domain to have a complete lat-
tice structure, and its transfer functions to be monotone. In prac-
tice however, the fast convergence of the analysis is usually achieved
through the extrapolations made by a widening operator. This tech-
nique makes unnecessary the other restrictions on abstract domains.
Most abstract interpreters use relaxed hypotheses on their abstract
domains and rely only on widenings to limit their analysis time. Sev-
eral domains proposed in the literature do not have a complete lattice
structure. Gange et al. [Gan+13] explore the abstract interpretation
over domains that do not have a lattice structure. The Astrée static
analyzer includes domains without a lattice structure, without even a
preorder, and whose transfer functions are not monotonic [Cou+06].

However, the lattice structure of abstractions brings good proper-
ties to an abstract interpretation based analysis, even if it is not strictly
needed for its termination or its soundness. In particular, the commu-
tativity and the associativity of the join and meet operators ensure
that the iterations order does not affect the result (and thus the preci-
sion) of the analysis. If we do not enforce complete lattices or mono-
tonic transfer functions, we assume henceforth that the abstractions
we use have a bounded lattice structure —or at least a semilattice
structure.

2.3 combination of abstractions

Over the years, many abstract domains have been designed to address
various problems on different classes of programs. The complete ver-
ification of a program often requires properties inferred by different
domains. The abstract interpretation framework provides some stan-
dard ways to create new abstractions from existing ones, especially
by combining abstract domains and their abstract semantics. Most
of them allow abstract domains to interact with each other during
the analysis, exchanging information in order to reach more precise
abstractions of the program semantics. Cortesi et al. [CCF13] offers
a good survey of the product operators on abstract domains in the

2.3 combination of abstractions 35

Domain Reference Properties

Signs [CC77b] x ∈ ±

Intervals [CC77b] x ∈ [a..b]

Boxes [GC10a] x ∈
⋃n
i=1[ai..bi]

Congruences [Gra89; Gra97] x ≡ c mod m

Linear congruences [Gra91]
∑n

i=1(ai · xi) ≡ c mod m

Linear equalities [Kar76]
∑n

i=1(ai · xi) = n

Polyhedra [CH78]
∑n

i=1(ai · xi) ≤ n

Octagons [Min06c] ±x± y ≤ c

Ellipsoids [Fer04] ax2 + by2 + cxy ≤ n

a, b, c, n,m ∈ N
x, y ∈ X

Table 2.1: Numerical abstract domains in the literature

literature. In this section, we first give an overview of the existing
abstract domains; we then present different approaches to combine
abstract domains.

2.3.1 Abstract Domains of the Literature

A wide variety of abstract domains have already been proposed in
the literature, and the design of new abstract domains remains a very
active field of reseach. Each domain has its strengths and weaknesses.
They provide different expressiveness and computational complexity.
They infer different families of properties, handle precisely various
kinds of code patterns and offer different balances between precision
and efficiency. Relational domains encode properties that involve mul-
tiple variables. Some relational domains limit the number of variables
that can be related through the properties they infer. Non-relational
domain abstracts each variable independently.

Table 2.1 presents some of the well-known numerical abstract do-
mains in the literature. The family of properties that each domain
may infer is given to the right. An abstract state represents the set of
concrete states in which the properties hold.

signs The sign domain [CC77b] is one of the simplest abstractions
known in abstract interpretation: it only infers the sign of each
variable of the program.

36 abstract interpretation

intervals The interval domain [CC77b] represents the range of
variables by maintaining an upper bound and a lower bound
for their possible values. It relies on the well-known interval
arithmetics [Moo66]. The interval domain is very popular as
it is able to infer crucial information for program verification
despite its low complexity.

boxes Boxes [GC10a] are a refinement of the interval domain: they
represent the possible values of each variable as a disjunction
of intervals, encoded by a propositional formula over interval
constraints and represented by Linear Decision Diagrams, an
extension of Binary Decision Diagrams.

congruences The arithmetical congruence domain [Gra89; Gra97]
infers congruence constraints for each variable independently.
This domain is especially useful for variables used as array in-
dices, that are most of the time congruent to the size of the array
elements.

linear equalities A linear equality domain [Kar76] detects affine
relationships among program variables.

linear congruences A linear congruences domain [Gra91] dis-
covers a system of linear congruence equations satisfied by the
integer variables of a program. It generalizes the domain of
arithmetical congruences into a fully relational domain.

polyhedra A convex polyhedra domain [CH78] manipulates sys-
tems of linear inequalities between program variables. It can
express complex invariants at the cost of a very high complex-
ity.

zones & octagons Zones [Min01] and octagons [Min06c] aim to
find an happy medium between the expressiveness and the cost
of the polyhedron and the interval domains. They use Different-
Bound Matrices [Yov96; Lar+97] to efficiently encode bounds on
the sum and the difference of pairs of variables.

ellipsoids Ellipsoids [Fer04] are a specialized domain dedicated to
the analysis of digital filters.

These are only numerical domains on arithmetical variables, but the
abstract interpretation framework has also been successfully applied
to prove various properties on memory. Abstract domains have been
notably designed to infer information about pointer aliasing [Hin01;
RL12], large or complex memory structures [VB04; Min06a] or heap-
allocated storage [BR06; SRW02; TCR13].

2.3 combination of abstractions 37

2.3.2 Direct Product

We now study the composition of abstract domains within the ab-
stract interpretation framework. Henceforth, we assume given two
abstract domains A# and B# and their respective concretizations,
join-semilattice structures with widenings and transfer functions.

γA : A→ P(Σ) (A#,vA,tA,∇A) |{stmt}| A# : A→ A

γB : B → P(Σ) (B#,vB,tB,∇B) |{stmt}| B# : B → B

The direct product of two abstract domains is simply the set of
pairs of elements of each domain. A pair (a, b) from A×B abstracts
the concrete states represented by both abstract states a and b. The
operators are defined by the pointwise application of the operator
of each underlying domain. This trivially preserves the soundness
properties of the domains, as well as their (possibly complete) lattice
structure, the monotony of the transfer functions and the definition 18

of widening.

γA×B : A×B → P(Σ)

γA×B(a, b) , γA(a) ∩ γB(b)

(a, b) vA×B (a′, b′)⇔ a vA a′ ∧ b vB b′

(a, b) tA×B (a′, b′) , (atA a′, btB b′)

(a, b)∇A×B (a′, b′) , (a∇A a′, b∇B b′)

|{stmt}| A×B#(a, b) , (|{stmt}| A#(a), |{stmt}| B#(b))

The direct product allows an automatic parallelization of analyzes
based on different abstract domains, but it is not more precise than
the sequence of these analyzes. It discovers in one analysis the invari-
ants inferred by its underlying domains in separate analyzes. While
the direct product adds no intrinsic complexity to the abstract se-
mantics of the domains, more accurate analyzes can be obtained by
mutually refining the underlying abstract domains.

Example 2. Let us consider the program of Figure 2.5 that operates
on variables i, x and y. The assumption of line 2 constrains the set
of initial states of the program: they are environments in which the
variable i has a value between 0 and 3. Such an assumption can also
be translated as a test filter of the toy language, as in the graph rep-
resentation given at the right of the figure. In this case, the program
accepts any initial state, but those that do not satisfy the condition
are stuck in the initial node. Both representations are equivalent.

On this program, the interval domain infers that i ∈ [0..3] initially,
that x ∈ [0..12] at line 1, that x ∈ [1..12] at line 3 and finally that
x− i ∈ [−2..12]. This does not exclude the division by zero at line 3.
The arithmetic congruence domain infers that x ≡ 0 mod 4, but has

38 abstract interpretation

-2 vars: i, x, y.

-1 /* assume 0 <= i <= 3; */

0

1 x := 4*i;

2 if (x > 0) {

3 y := 10/(x-i);

4 } �

0

1

2

3

4

((0 > i) + (i > 3))==0?

x := 4× i

(x ≤ 0)==0?

y := 10÷ (x− i)
(x > 0)==0?

Figure 2.5: Need for interactions between abstract domains

no information about the expression x− i at line 3. Therefore, the
direct product between an interval domain and an arithmetic cannot
prove that the division by zero never occurs on this program. Nev-
ertheless, the product of abstract states inferred at line 3 contains all
information needed to prove this property:

i → [0..3]

x→ [1..12]

y → >

x ≡ 0 mod 4 (2.5)

The two constraints on variable x ensure that the value of x belongs
to the interval [4..12], and thus that the expression x− i belongs to
the interval [1..12], excluding the division by zero. Here, proving
the correctness of the program requires an inter-reduction between
the properties inferred by each abstract domain. This is exactly the
purpose of a reduced product.

2.3.3 Reduced Product

The reduced product [CC79b] is a refinement of the direct product
that overcomes its limitations by mutually refining the underlying ab-
stract states. Intuitively, it reduces the abstract state of each domain
by exploiting the properties inferred by the other. These reductions
improve the information known by each component without affect-
ing the meaning (the concretization) of the pair. This allows each
domain to approximate more precisely the program without compro-
mising the soundness of the analysis. Formally, the reduced product
considers the equivalence classes of the direct products that have the
same concretization. Practically, it works on the smallest representa-
tives of each class, by reducing maximally the result of each operation
through a reduction operator. reduce(a, b) computes the smallest el-
ement of A × B that has the same concretization as (a, b). If both

2.3 combination of abstractions 39

underlying domains have a complete lattice structure, it can be de-
fined as the meet of the equivalence class of (a, b).

reduce(a, b) = minvA×B ((a′, b′) | γA×B(a′, b′) = γA×B(a, b))

=
l
{(a′, b′) | γA×B(a′, b′) = γA×B(a, b)}

The reduced product A ∗B is then defined as the set A×B with the
following operators. The concretization is the same as for the direct
product. The lattice operators and the transfer functions use the re-
duction operator to minimize their output in the direct product. As
its concretization remains unchanged, this does not affect the sound-
ness of the product domain. On the other hand, the result of the
widening cannot be reduced without breaking the properties stated
in definition 18. A widened state is thus not necessarily the smallest
element of its equivalence class. This is why the reduced product
cannot be defined as {reduce(a, b) | (a, b) ∈ A×B}.

γA∗B(a, b) , γA(a) ∩ γB(b)

(a, b) vA∗B (a′, b′)⇔ a vA a′ ∧ b vB b′

(a, b) tA∗B (a′, b′) , reduce(atA a′, btB b′)

|{stmt}| A∗B#(a, b) , reduce(|{stmt}| A#(a), |{stmt}| B#(b))

(a, b)∇A∗B (a′, b′) , (a∇A a′, b∇B b′)

Example 3. On the program of Figure 2.5, the direct product state
inferred at line 3 was given by equation 2.5. Its reduction in the
reduced product is:

i → [0..3]

x→ [4..12]

y → >

x ≡ 0 mod 4

The interval component is then able to prove the absence of a division
by zero in the program.

Although the mathematical definition of the reduced product en-
joys ideal theoretical properties, the maximal reduction between ar-
bitrary domains is not computable in general. The implementations
of domains composition usually fall back to an approximate reduced
product, through a relaxed version of the reduction operator. Such a
relaxed operator partially reduces a pair of abstract states, satisfying
the following properties:

reduce : A×B → A×B

∀(a, b) ∈ A×B,

{
reduce(a, b) vA×B (a, b)

γA×B(reduce(a, b)) = γA×B(a, b)

40 abstract interpretation

The choice of the reductions performed within an approximate re-
duced product must reach a balance between precision and efficiency.
A standard (and trivial) reduction is the normalization of a canonical
bottom element: any pair (⊥A, b) or (a,⊥B) has an empty concretiza-
tion and can be replaced by (⊥A,⊥B). The specification and the com-
plexity of the stronger reductions depend entirely on the involved
abstract domains.

2.3.3.1 Granger Product

Granger [Gra92] proposes a convenient approach to compute an ap-
proximation of the reduce function. It simplifies its implementation
by separating the reduction of each component of the pair. The
reductions are split up into two operations %A : A × B → A and
%B : A×B → B such that:

∀(a, b) ∈ A×B,

{
γ(a, b) = γ(%A(a, b), b) = γ(a, %B(a, b))

%A(a, b) vA a ∧ %B(a, b) vB b

Each operator refines the state of a domain with the information of
the other state. Both operators can then be used iteratively until reach-
ing a fixpoint. The Granger product of a pair (a, b) is defined as the
fixpoint of the decreasing sequence:

(a0, b0) , (a, b)

(an+1, bn+1) , (%A(an, bn), %B(an, bn))

2.3.3.2 Limitations of the Reduced Product

Approximate reduced products are well suited on some specific ab-
stract domains, as proved by the well-known product of interval and
congruence domains [Gra89]. Nevertheless, the reduced product is
not the panacea of domain composition. Two main impediments hin-
der the spread of its use for arbitrary abstract domains.

1. Reduced products are not modular: the reduction operator is
specific to the domains it refines. It can be hard to define on rich
domains, and is even more intricate to apply on a high number
of domains. Adding a new abstract domain to a Granger prod-
uct of n domains may require the implementation of 2n reduc-
tion functions, and each one may involve different alternatives
to approximate the maximal reduced product.

2. The reduced product performs the inter-reduction of domains
on the result of the transfer functions. There is no interaction be-
tween abstract domains during their interpretation of the state-
ment semantics. However, an abstract domain could exploit the
properties inferred by other domains to approximate more accu-
rately the semantics of a statement. The shared properties could

2.3 combination of abstractions 41

-5 vars: x, y, z.

/* assume 0 < x < 10

&& 0 < y < 10

&& 0 < z < 10; */

0 if (z > 5) {

y := x + 3

z := 100 / (x - y + z)

} �

0

1

2

3

(z ≤ 5)==0?

y := x+ 3

z := 100÷ (x− y + z)

(z > 5)==0?

Figure 2.6: Need for interactions during statements interpretation

be lost or pointless after the statement, preventing the reduced
product from recovering the same precision.

Example 4. The program of Figure 2.6 operates on three variables x, y,
z. The assumption constrains the initial states. We study the analysis
with the domains of intervals and linear equalities. An interval anal-
ysis infers the initial range [1..9] of each variable, and the properties
z ∈ [6..9] at line 1 and y ∈ [4..12] at line 2. The interval arithmetics
leads to x− y + z ∈ [−6..11] at line 2. The linear equalities domain
cannot express a constraint over z, and only infers y = x+ 3 at line 2.
None of the two domains can exclude the possibility of a divison
by zero. The states of each domain cannot be mutually refined here:
their product is already minimal. The state computed by the reduced
product at line 2 is:

x ∈ [1..9]

y ∈ [6..12]

z ∈ [6..9]

× y = x+ 3

Therefore, the reduced product of intervals and linear equalities can-
not prove the correctness of the program. However, the equality
y = x + 3 implies that x − y ∈ [−3]. As the interval domain en-
sures that z ∈ [6..9], this proves that x− y + z ∈ [3..6]. The program
can thus be proved correct by a combination of the interval and the
equality domain, provided that both domains can collaborate during
the approximation of a statement semantics.

Example 5. A more classic example of this limitation of reduced prod-
ucts is the abstract interpretation of programming languages includ-
ing arrays. A precise approximation of an array access t[i] often
requires at the same time some bounds and a congruence informa-
tion about the possible values of i. This requires some interaction
between an interval and a congruence domain within the transfer
functions. Otherwise, the loss of precision can be too big to be recov-
ered afterwards, especially on large arrays.

42 abstract interpretation

2.3.4 Open Product

The open product [CCH00] is a framework to easily implement inter-
actions between abstract domains during their abstract operations. It
bases their inter-reductions on queries and open operations. A query is
a boolean function that expresses a property inferred by an abstract
state. An open operation is a transfer function that additionaly re-
ceives a set of queries describing some properties that are known to
hold. The transfer functions over an abstract domain can use the
queries provided by other domains to improve their precision. Infor-
mation thus flows between abstract domains through queries. In this
context, an open interpretation is an abstract domain that implements
a set of queries Q, and open operations with respect to the same set
of queries Q. The open product of several open interpretations over
the same queries Q is defined as:

• the cartesian product of domains;

• queries as the disjunction of the queries of each domain (as
true ≤ false is used as the order on booleans, λx. qA(x)∨ qB(x)

is the most precise query logically implied by qA and qB);

• the component-wise application of the open operations on each
domain, with the queries defined above.

While the open product has been specifically designed to let domains
interact during a statement interpretation, a reduce operator can also
be used to refine the result of the open operations. In particular,
the open product is orthogonal and complementary to the Granger
product.

The main drawback of the open product is the restriction to boolean
functions, that lack expressivity. Moreover, designing an open prod-
uct requires to properly identify beforehand the set of properties that
need to be exchanged by abstract domains. Finally, this communica-
tion system could be extended to improve the join of abstract states:
queries are only used by open operations, but could also be used at
join points to mitigate their usual loss of precision.

2.3.5 Communication through a Shared Language

We have seen that the reduced product is highly non modular and
thus cumbersome to apply on a wide variety of domains. A natural
solution to this issue is the use of an independant language of con-
straints L as intermediary between abstract domains [Cou+06]. Such
a language is for instance defined in [TCR13] for the inter-reduction
between shape abstract domains. Following the Granger product
idea, one can interface an abstract domain D with the language L

by extending it with two functions:

2.3 combination of abstractions 43

• extract : D → L , that expresses the constraints guaranteed to
hold by an abstract state;

• refine : D×L → D, that refines an abstract state according to
some constraints.

If we assume the constraints L equipped with a concretization func-
tion γL : L → P(Σ), the two functions must satisfy the following
properties (the two first are soundness properties, and the third states
that the refinement of an abstract state d cannot be less precise than d):

γ(d) ⊆ γL (extract(d))

γ(d) ∩ γL (l) ⊆ γL (refine(d, l))

refine(d, l) v d

An approximate reduced product can then be implemented by suc-
cessive iterations of extracting constraints from states and refining
states with these constraints. The constraint language should be de-
signed in advance with utmost care, as it is the fixed interface be-
tween all abstract domains. Unlike the open product, this extension
of domains does not allow interactions during the interpretation of
statements.

2.3.6 Communication by Messages

The most advanced collaboration between abstract domains is un-
questionably the communication by messages introduced and imple-
mented in Astrée [Cou+06]. This design has been followed later in
other analyzers such as Canal [Dup13] and Verasco [Jou+15]. Its main
idea is to use as shared interface between domains an extensible set
of atomic messages. The messages can be of various kinds; each one
carries a different type of information. For instance, Verasco [Jou16]
uses different messages to express the interval of a variable, the arith-
metical congruence of a variable, the exact value of a variable, the
equality between a variable and an expression, or the equality be-
tween an expression and a quasi-linear expression. Communication
channels relay a list of messages from domains to domains. Each do-
main can use some of the messages from a channel, and emit some
new messages of its own. A domain is always free to ignore the
messages it does not understand. This allows adding a new kind of
message without having to modify all the existing domains.

A domain creates messages and is reduced according to messages
through the two functions extract and refine presented in the above
subsection. Following the concepts of the open product, the transfer
functions can also exploit the information conveyed by channels. Sev-
eral channels can enable various forms of communication between
abstract domains. Astrée uses channels of two types:

44 abstract interpretation

• input channel for a domain to request more information. An
input channel is implemented as a list of functions, each one
computing messages of a fixed kind.

• output channel for a domain to emit a message intended for
other domains. An output channel can be implemented as a list
of messages to be processed.

2.3.6.1 Input Channels

An input channel works as the set of queries in the open product. The
communication model of Astrée actually extends the open product in
two different ways:

• the functions of an input channel produce messages and not
simply booleans;

• two input channels are provided: a pre and a post channels, that
contain messages describing properties known to hold respec-
tively before and after the given statement.

The new signature of transfer functions is given below. The trans-
fer function |{stmt}| #((d, pre), post) over-approximates the semantics
of stmt on the concrete states represented by d and satisfying pre,
knowing that the resulting states satisfy post .

|{stmt}| # : (D×L)→ L → D
|{stmt}| (γ(d) ∩ γ(pre)) ∩ γ(post) ⊆ γ(|{stmt}| #((d, pre), post))

The pre channel is collaboratively built by the product of abstract
states inferred at the program point before the statement —this states
product is the argument of the transfer function. The post channel is
built from the abstract states inferred after the statement —this states
product is the result of the transfer function. The post channel is thus
incrementally filled by each abstract state computed by the transfer
function of one of the domains. The evaluation order of abstract
domains thereby affects the communication between them. The first
domain to be processed has always an empty post channel. The nth

domain to be processed benefits from the messages created by the
previous domains, and can add some new messages for the next ones.

2.3.6.2 Output Channels

While an input channel allows a domain to request information, an
output channel allows a domain to send information on its own ini-
tiative. Input and output channels are used in parallel by the transfer
functions. Astrée uses two output channels:

• an oriented output channel, that allows a domain to send a
message to the next domains to be processed;

2.3 combination of abstractions 45

• a broadcast output channel, that allows a domain to send a mes-
sage to all domains (including those that have already perform
their computation).

At the beginning of the interpretation of a statement, both output
channels are empty. Messages are incrementally provided by each
domain when interpreting the statement (through the transfer func-
tions). The contents of the oriented channel can directly be used by
the transfer function of a domain to be more accurate. The use of the
broadcast channel is postponed to the end of the interpretation of the
statement. The content of the broacast channel is only then sent to all
domains, that finally have the opportunity to use its information.

2.3.6.3 Summary

The communication by messages resolves the two main issues of the
reduced product. It is modular, as a domain can be freely added or
removed from a product without directly impacting the others. It is
extensible, as adding a new kind of message does not require the com-
munication system or all existing domains to be modified. Finally,
it enables various powerful interactions between abstract domains.
However, this extensive leeway for domain collaboration comes at
the price of some complexity. The communication system can be in-
vasive in the implementation of the abstract interpreter. It has to be
maintained in parallel of the abstract semantics implemented by the
domains. It features four different channels of two different types that
must be handled by the abstract domains and their transfer functions.
The product of domains is ordered, and the order impacts the pos-
sible interactions. Moreover, each domain needs to choose carefully
how to exchange each atomic information, as each channel reaches
different domains at different costs.

2.3.7 Abstract Interpretation Based Analyzers

Over the years, the fundamental principles of the abstract interpre-
tation theory have been applied to develop static analyzers, which
are software that aim at proving automatically the absence of some
undesirable behaviors in real-world programs. The undesirable be-
haviors tracked by an analyzer are generally the runtime errors of a
programming language, modeled by the error states Ω in our con-
crete semantics. Static analysis has already shown its industrial ap-
plicability to prove safety properties on critical or embedded code,
and abstract interpretation has known considerable progress in recent
years, in terms of both research breakthrough and industrial-strength
implementations. However, although most abstract interpreters use
multiple domains internally, few explain how the different domains

46 abstract interpretation

exchange information. We present here some of the worthwhile tools
based on abstract interpretation.

ikos [Bra+14] is an open-source framework that supports the devel-
opment of static analysis based on abstract interpretation. It
provides a front-end for C/C++ programs based on llvm [LA04],
some optimized fixpoint algorithms and several numerical ab-
stract domains including octagons, discrete symbolic domains,
and a reduced product between intervals and congruences. It is
used for instance by the verification software SeaHorn [Gur+15].

apron [JM09] is an open-source library providing numerical abstract
domains of the literature under a unified interface. It currently
contains an implementation of intervals, octagons, linear equali-
ties, convex polyhedra, linear congruences, and a reduced prod-
uct between polyhedra and linear congruences. The Interproc
analyzer [Ja] has been designed to demonstrate the features of
the apron library.

astrée [Bla+02; Bla+07; Cou+05; Cou+09] is an abstract interpreter
tailored towards the verification of safety-critical embedded real-
time softwares written in C. It contains many numerical abstract
domains able to handle heterogeneous kinds of abstract prop-
erties and to prove complex numerical invariants. Astrée en-
joys a modular architecture that organizes a hierarchy of do-
mains, and features the advanced communication by messages
between them described above. It has been successfully applied
to prove the absence of runtime errors in the flight control codes
of the Airbus fly-by-wire systems.

verasco [Jou+15] is an abstract interpreter that is itself formally
proved using the Coq proof assistant. Verasco is integrated into
CompCert [Ler09], a formally-verified compiler for C, in such
a way that the safety properties established by Verasco carry
over the compiled code. The design of Verasco follows closely
that of Astrée, especially for the interactions between abstract
domains.

clousot [FL10] checks the absence of runtime errors, but also ver-
ifies the contract specifications of functions. It analyzes each
function of a program in isolation, using its pre– and post– con-
ditions. It works at the bytecode level and is thus language in-
dependent. It organizes several domains in a hierarchy inspired
by that of Astrée, and enables some communications between
them. Clousot relies on an abstract interpretation engine, but
also embodies other techniques such as goal-directed backward
propagations or the inference of pre- and post-conditions.

frama-c/value Frama-C [Kir+15] is an extensible and collabora-
tive platform dedicated to the specification and the verification

2.3 combination of abstractions 47

of C programs. For this purpose, Frama-C provides several plu-
gins based on different techniques. Among them, the VALUE
plugin uses abstract interpretation to compute a variation do-
main for the variables of a program. Unlike other analyzers, the
VALUE architecture is not modular: it contains only one abstract
domain and does not allow the introduction of new abstractions.
The work presented in the next chapter and developed in the
remaining of this thesis extends the VALUE plugin to overcome
this limitation. The Frama-C platform is introduced in more
details in Section 3.1.1, and the differences between the former
VALUE analyzer and our work are emphasized in Section 3.4.

Part II

E VA : A M O D U L A R A N A LY Z E R F O R C

3
A R C H I T E C T U R E O F T H E A N A LY Z E R

This chapter outlines the main ideas that have guided the develop-
ment of EVA, and that still underlie its architecture. Each of the up-
coming chapters focuses on a specific component of EVA, while this
chapter explains how these components fit together and interact with
each other to form a complete abstract interpreter. Thus, it does not
dwell on the details or the formalization of the analyzer, but intro-
duces its main features.

EVA being a plugin of the Frama-C plateform, we start by briefly
presenting this framework. We then describe the modular architec-
ture of EVA, which relies on a particular hierarchy of different ab-
stractions. We explain the role of these abstractions in the generic ab-
stract interpreter, and sketch the communication between them. We
also propose an implementation mechanism that enables some inter-
action between the components of a generic combination of datatypes.
This has been successfully implemented to improve the product of ab-
stractions in EVA. We finally discuss the software development of the
analyzer, which is based on VALUE, the previous abstract interpreter
of Frama-C.

3.1 overview of the eva structure

Figure 3.1 sketches the different layers of our analyzer architecture.
The services each layer provides are given on the left, and the syn-
tax fragments on which they operate are on the right. This section
follows the internal organization of the analyzer. We first introduce
Frama-C, the platform that EVA is part of. Then, we describe the
abstract interpreter itself, and the hierarchy of abstractions it uses to
represent program semantics.

3.1.1 The Frama-C Platform

The EVA abstract interpreter is a plugin of the Frama-C [Kir+15] plat-
form: an extensible and collaborative framework dedicated to the
analysis of the source code of C programs. It is structured around a
kernel providing shared functionalities, and a set of plugins that im-
plement various types of verification. The plugins may interact with
each other, and a plugin may build upon the properties proved by an
other analysis. In particular, the results inferred by EVA are available
to the other plugins of Frama-C.

51

52 architecture of the analyzer

Frama-C Kernel

Abstract Interpreter

Abstract Domains

Values and Alarms

QueriesLattice Transfer

C and Logic AST

Function CFG

Statements

Expressions

Parsing

Forward Analysis

State Abstraction

C Values and Memory
Locations Abstraction

Figure 3.1: Overall layers of EVA

Available analyses in Frama-C include abstract interpretation (EVA
plugin), deductive verification (WP plugin), generation of temporal an-
notations (aorai plugin), runtime assertion checking (E-ACSL plugin),
etc. A more exhaustive list can be found at http://frama-c.com/

plugins.html. Note that EVA is not a new plugin of Frama-C, but a
major evolution of its former abstract interpreter, the Value Analysis
plugin (often abbreviated as VALUE).

Among the main features provided by the kernel are:

• the parsing and the type-checking of the C files supplied as
input. A symbolic linker then produces a program equivalent to
the input files. The resulting AST is expressed in the augmented
Frama-C version of the C Intermediate Language [Nec+02].

• the possibility to specify C functions, using a first-order logic
called ANSI/ISO C Specification Language (ACSL). Logical an-
notations may range from basic assertions (e.g. expressing that
an operation does not overflow), to full-fledged functional spec-
ification of the function behavior.

• the tracking and automatic consolidation of the logical statuses
(true, false or unknown) set by the plugins on the ACSL annota-
tions present in the program [CS12].

The verification of a program generally starts by proving that it does
not contain runtime errors, i.e. undefined behaviors according to the C
standard (detailed in Section 4.1). This is often a prerequisite to
more complex verifications such as functional correctness. Within
Frama-C, safety assertions (that ensure the absence of undefined be-
haviors) can be generated in a systematic way by two plugins: RTE

and EVA. Afterwards, all plugins may attempt to prove these asser-
tions. EVA is somewhat special, in that it intermingles the generation
of safety assertions and their verification. EVA is also able to emit
logical statuses on simple user-written ACSL assertions.

http://frama-c.com/plugins.html
http://frama-c.com/plugins.html

3.1 overview of the eva structure 53

Frama-C —and thus EVA— is written in OCaml [Cuo+09], and is
an open source, free software. Its source code is available at http:

//frama-c.com/download.html. The first version of EVA was publicly
released in Frama-C Aluminium in June 2016. This thesis is based
on this work.

3.1.2 The Abstract Interpreter

The generic abstract interpreter works on the AST provided by the
Frama-C kernel. It iterates an interprocedural forward dataflow anal-
ysis over the CFG of the functions of a given program. The analysis
propagates the states of an abstract domain through the CFG, according
to an abstract semantics soundly modeling the effect of statements.
Statements are visited following a chaotic iteration strategy [Bou93].
Widening steps are performed to ensure convergence. The analysis
of a whole program is fully context-sensitive: function calls are sym-
bolically inlined. Recursive functions are currently not handled.

Once a fixpoint has been reached, the computed abstract states in-
fer valid properties at each program point. During the analysis, EVA
emits an alarm for each operation where the abstract semantics fails
to prove the absence of an undesirable behavior (i.e. an undefined
behavior that EVA tracks). Alarms are expressed as ACSL assertions
that may be proved later by another plugin of Frama-C. Each alarm
may report a real error if the reported undesirable behavior indeed
occurs at runtime for at least one possible execution. Otherwise, the
alarm is a false alarm, due to the over-approximation made by the
abstract semantics. Importantly, the soundness of the abstract seman-
tics ensures that an alarm is issued for each operation that may fail.
If the analysis raises no alarm for a given program, then this program
is free of the undesirable behavior that EVA detects.

The abstract interpreter is generic: it does not depend on a par-
ticular abstraction. The architecture and the inner working of this
interpreter are further developed in Section 3.2.1. But before delving
into the details of the interpreter, we need to present the hierarchy of
abstractions on which it relies.

3.1.3 Abstractions

The design of EVA relies on the separation between state abstractions
and value abstractions. As the name implies, a state abstraction repre-
sents some concrete states at a point of a program execution. A value
abstraction represents the C values an expression can have in some
concrete states. A state abstraction handles the semantics of state-
ments, while a value abstraction operates at the level of expressions.
This distinction between value and state abstractions was already pro-
posed by Cousot [Cou99] to design an abstract interpreter, but was

http://frama-c.com/download.html
http://frama-c.com/download.html

54 architecture of the analyzer

not used to structure or reduce a product of different abstractions. On
the other hand, EVA uses the value abstractions as a shared commu-
nication interface that allows different state abstractions to interact
with each other.

Value abstractions and state abstractions are fully formalized in
Chapter 5 and in Chapter 7 respectively. The main value abstraction
used by EVA is described in Section 5.3. The state abstractions cur-
rently available in EVA are listed in Chapter 8. The following is an
outline of the role of both kinds of abstractions in the abstract inter-
preter.

3.1.3.1 State Abstractions

An abstract domain —or a state abstraction— is a collection of abstract
states which are abstractions of the sets of possible concrete states that
may occur at a program point. An abstract domain must provide:

• a join-semilattice structure, fulfilling the properties established
in Figure 2.4 (on page 30). The inclusion relation reflects the
precision of the abstract states. The join computes an upper
bound of two states, and is used when two branches of the CFG
merge. A widening operator is also mandatory, to ensure a fast
convergence of the fixpoint computation.

• sound transformers —or transfer functions— for statements,
that infer properties by modeling the effect of a statement on
an abstract state. They are the abstract semantics of the domain,
and are used to propagate abstract states through the CFG.They
must satisfy the property of definition 8 (on page 27).

• queries, which extract information from abstract states by as-
signing an abstract value to some expressions (including expres-
sions denoting addresses). They are detailed in Chapter 7.

The abstract domains do not interact directly with each other, but
achieve some communications and inter-reductions through value
and locations abstractions expressed by the queries.

3.1.3.2 Value and Locations Abstractions

Value and location abstractions are non-relational abstractions about
expressions and addresses in some given concrete states. A value ab-
straction is an approximation of the set of possible concrete values
that an expression may have in these states. As expressions include
dereferences of a program variable, a value abstraction may be an ap-
proximation of the concrete value of a variable in some states. A lo-
cation abstraction is an approximation of the set of possible memory
locations that an address may have. Both abstractions serve similar
purposes, and must fulfill the same requirements. Although they are

3.2 a modular abstract interpreter 55

internally two different entities, the value and location abstractions
in EVA are very close, and share a large part of their implementation.
Therefore, we usually do not distinguish between value and location
abstractions, and often write “value abstraction” for both kinds of
abstractions.

Value (and location) abstractions are used to cooperatively evalu-
ate addresses and expressions in a product of abstract states coming
from several abstract domains. Value (respectively location) abstrac-
tions encode an abstract semantics of the operators on expressions
(respectively addresses). According to the properties it has inferred,
an abstract state may express the possible concrete value of a vari-
able, expression or address by providing such abstractions. These
abstractions are then made available to the transformers of all do-
mains, which can use them to approximate more precisely the effect
of a statement.

Value and location abstractions must have a meet-semilattice struc-
ture. Similarly to state abstractions, the order relation reflects the pre-
cision of the abstractions. The meet is used to combine abstractions
provided by different domains. Value and location abstractions also
provide sound transformers over-approximating the effect of arith-
metic operators on expressions and addresses. As the concrete oper-
ators may cause undefined behavior at execution time, their abstract
counterparts also produce alarms, which report the error cases.

Alarms are essential: they are the final result of an analysis, and
highlight all the possible undesirable behaviors that may happen dur-
ing the execution of a given program. In return, the absence of alarm
guarantees the absence of undesirable behavior. An abstract inter-
preter aims at emitting as few alarms as possible —while remaining
sound. It is thus natural to also involve the state abstraction in their
computation, allowing them to avoid some alarms thanks to their in-
ferred properties.

Values, locations and alarms form the complete communication in-
terface between the abstract domains and the generic abstract inter-
preter. They are formally described in Chapter 5.

3.2 a modular abstract interpreter

This section offers a more detailed view of the inner workings of an
abstract interpreter based on the separation between value and state
abstractions. We also briefly explain the combination of abstractions,
as well as the principles that underlie their inter-reduction.

3.2.1 Inner Workings of the Abstract Interpreter

Figure 3.2 presents the internal architecture of EVA. We comment
on the diagram from bottom to top. Note that the three layers of

56 architecture of the analyzer

ValuesAlarms

Memory Locations

Communication Interface

Queries Transfer Lattice

Domain

Evaluation

PartitioningInterpretation

DataflowMemExec

Computation Initialization

provides uses

ba
ck

w
ar

d
re

fe
re

nc
e

Expressions

Statements

Functions

Programs

Functor

Generic module

Figure 3.2: Architecture of the analyzer

3.2 a modular abstract interpreter 57

Figure 3.1 are still shown, and that the figure focuses on the structure
of the abstract interpreter. As described above, it relies on different
abstractions to model the semantics of the C language.

The alarms are abstractions of the possible undesirable behaviors
of a program. They are listed in a fixed module that defines the
scope of the verification made by the abstract interpreter. On the
other hand, the value, location and state abstractions are parameters
of an analysis. The abstract interpreter is made of a hierarchy of func-
tors built upon these abstractions. In the diagram, yellow boxes are
generic OCaml functors, and the plain arrows point out the module
arguments of each functor.

The evaluator depends on the value (and location) abstractions, and
the queries of an abstract domain. It is able to evaluate any expres-
sion into a value abstraction, or any address into a location abstrac-
tion, based on the abstract semantics provided by both value and
location modules. It queries the abstract domain for initial value ab-
stractions to work on, especially for abstractions of the possible value
of variables. The evaluator also gathers the alarms produced during
the evaluation of an expression.

The interpretation functor depends on an evaluator and the abstract
transformers of the domain. It implements the generic transfer func-
tions for C statements. It evaluates all the expressions involved in a
given statement, emits the alarms issued by the evaluations, and then
calls the abstract transformers of the domain. These transformers may
use all the abstractions computed by the evaluations. For an assign-
ment, this includes a value abstraction for the right expression, and
a location abstraction for the lvalue being assigned. These abstrac-
tions have been computed cooperatively, using information coming
from any abstract domain. Thus, if the analyzer is instantiated on a
product of abstract domains, information may flow from a domain to
another.

The partitioning functor expands an abstract domain into its power-
set extension. Such an extension refines a domain by inferring a finite
disjunction of abstract states at each program point, instead of only
one abstract state. Most domains of abstract interpretation are con-
vex: they can only represent convex sets of concrete elements. The
convexity of domains leads to more scalable analyses, but prevents
the verification of non-convex properties. Disjunctions may signifi-
cantly improve the precision of an analysis: they overcome convexity
limitations, and also mitigate the need for relational abstractions. In
order to limit the cost of processing multiple abstract states in paral-
lel, the number of disjuncts is bounded by a parameter of the analysis.
The dataflow functor implements a forward dataflow analysis propa-
gating a disjunctive set of states over a function body. Abstract states
are propagated separately until their number reaches the configured
limit; then, new states are systematically joined together. This functor

58 architecture of the analyzer

relies on a powerset domain, and on the generic transfer functions for
one abstract state. It computes a fixpoint on the CFG of a function for
the abstract semantics defined by the transfer functions.

A backward reference links the interpretation functor to the upper-
most one. Indeed, the interpreter has to handle all the C statements,
including function calls. The analysis of EVA is context-sensitive: the
function calls are all symbolically inlined. On a function call, a new
dataflow analysis is instantiated over the body of the called function,
starting at its entry point with the abstract state from the call site.
When the inner dataflow reaches a fixpoint, the analysis of the call-
ing function continues with the abstract state computed at the return
statement of the called function. The memexec functor serves as a
cache for the entire analysis of a function. It stores the abstract state
inferred at the end of a function body, according to the entry abstract
state of the dataflow analysis. It is used to avoid performing a new
analysis of a function body when the entry state would lead to the
same results as with a previous input [Yak15].

In addition to the dataflow and to memexec, the computation func-
tor also relies on an initialization functor. This last component pro-
duces the initial abstract state of the analysis, according to the global
variables of the program, and to the arguments of its main function.

3.2.2 Combination of Abstractions

The abstract interpreter of EVA is modular: it can be instantiated over
any compatible abstractions. Moreover, the abstractions it relies on
may be a product of several datatypes. Indeed, the shared evalua-
tion through value abstractions has been designed to let information
flow between different abstract domains. The value and location ab-
stractions may also be extended to enable new forms of communi-
cation. To this end, we provide generic combiners for state, value
and locations abstractions. These three combiners are OCaml func-
tors, from two abstraction modules to a new one, whose elements are
pairs of both incoming abstractions. They preserve all the require-
ments needed to guarantee the soundness of the analyzer. Successive
applications of these functors allow the combination of any number
of abstractions.

The value and the location combiners make a standard partial re-
duced product. An inter-reduction function can be provided, to nar-
row the approximations made by each component using the other
one. Otherwise, the new abstract semantics is simply the pointwise
application of the semantics of each component.

The state combiner takes two abstract domains operating on the
same value (and location) abstractions, and produces a new domain
still operating on the same value (and location) abstractions. A query
to a combination of abstract states returns the meet of the value ab-

3.2 a modular abstract interpreter 59

stractions extracted from the query to each state. The abstract trans-
formers are carried out pointwise on each abstract state, but each one
may use value (and location) abstractions computed with the results
provided by the other abstract state. Thus, there is no explicit reduc-
tion function for the product of states. Instead, their inter-reduction is
achieved through the value (and location) abstractions, cooperatively
computed by the evaluation of the expression and lvalues involved in
the program statements.

The state combiner is limited to abstract domains understanding
the same value abstractions. In order to link abstract domains built
over different value abstractions, we also provide a generic converter:
a functor that lifts an abstract domain over an abstraction V to an
equivalent domain over an abstraction W , according to injection and
projection functions between V and W .

More precisely, let D be an abstract domain working on a value
abstraction V , and E be an abstract domain working on a value ab-
straction W . We can combine them by:

1. combining the two value abstractions into the product V ×W .
Conversion functions between the initial abstractions and the
product are straightforward —the injection completes an ab-
stract value with the top abstraction of the other module:

inj V : V → V ×W proj V : V ×W → V

v 7→ v,>W (v, w) 7→ v

2. lifting separately each domain D and E to equivalent new do-
mains D′ and E′ working on the value abstraction V ×W . This
operation uses the conversion functions between value abstrac-
tions.

3. combining the domains D′ and E′ into the product D′ ×E′.

The communication mechanism of EVA uses the value abstractions
as implicit interface between state abstractions. This naturally limits
the communication between domains understanding different value
abstractions. However, a reduced product between value abstractions
may achieve a communication even between such domains. Indeed,
a value component provided by the query of the first domain may
reduce the value component used by the transformer of the second
domain. The following example illustrates this.

Example 6. We consider two non-relational memory domains D and
E storing information about the possible C values of integer variables.
D abstracts the value of a variable as an interval, while E abstracts it
with a congruence. D and E naturally use respectively intervals and
congruences as value abstractions.

Assuming a condition x > 3, where D and E provide respectively
the interval abstraction [0..12] and the congruence 0[3] for x:

60 architecture of the analyzer

• the standard arithmetic semantics of intervals and congruences
leads to the abstractions [4..12] and 0[3] for the variable x after
the condition;

• the congruence information allows reducing the interval [4..12]

into [6..12]. This is the natural inter-reduction between interval
and congruence.

• the domain transformers use the computed value abstractions
to reduce their current states. The interval domain binds x to
the new interval [6..12].

To a certain extent, the architecture of EVA transfers the need of
a reduced product to the lower layer of value abstractions, rather
than to the more complicated layer of state abstractions. Finally, note
that both abstraction combiners may be specialized, to enable further
(direct) communication between specific modules.

3.2.3 Instantiating the Abstractions

The abstractions used for an analysis are parameters of a run of the
abstract interpreter, provided on the command-line, or set through
the graphical interface. The different abstractions are thus instanti-
ated and combined at runtime, as well as the set of functors that
forms the abstract interpreter.

3.3 structuring a combination of datatypes

In this section, we present a mechanism to enable interacting with
the components of a generic combination of OCaml types. We de-
scribe the constant inner shape of the datatype combination through
a GADT [JG08], and automatically build injection and projection func-
tions between compound values (from the combination) and leaf val-
ues (at the root of the combination). We use such a structuring for
the different abstractions of EVA.

3.3.1 Context and Motivation

EVA is a modular analyzer, and can be instantiated with any abstrac-
tion fulfilling the requirements described in the next sections. Several
abstractions are already provided, as well as generic combiners. By
construction, the abstractions used during an execution of the ana-
lyzer are unknown, and are often a product of several underlying
abstractions. However, there are real advantages in being able to ex-
tract a particular component from within these abstractions.

• Some optimizations of EVA rely on a particular abstraction, both
for precision and performance. For instance, the evaluator can

3.3 structuring a combination of datatypes 61

Listing 3.1: Combination of Datatypes

1 module type Abstraction = sig type t [...] end

module A1 : Abstraction = sig [...] end (* leaf abstraction *)

module A2 : Abstraction = sig [...] end (* leaf abstraction *)

[...]

5

(* Abstraction combiner *)

module Combiner (Left: Abstraction) (Right: Abstraction)

: Abstraction with type t = Left.t * Right.t = struct

type t = Left.t * Right.t

10 [...]

end �
proceed by disjunction on some specific value abstractions. The
partitioning strategy can also be chosen according to the repre-
sentation of the main abstract domain.

• Although the design of EVA enables some communication be-
tween abstractions, further collaboration may require a direct
access to each other. This is typically the case when two linked
state domains want to exchange information without using a
new kind of abstract values.

• Tracking a particular abstraction during an analysis may ease
its debugging.

Listing 3.1 presents the general situation we tackle. A generic module
interface is defined, including an abstract type t; in our case, this is
the signature of the abstractions used by the analyzer. Several leaf
modules implement this interface. One or several functors are able to
create new modules satisfying the signature from existing ones. Such
a combiner builds a new datatype upon the types of its arguments.
The objective is to automatically equip any abstraction module with
functions enabling a direct interaction with its components —the leaf
modules that are part of its composition. For a leaf module, this
includes only itself.

3.3.2 Interface of a Combination

Listing 3.2 presents the External signature we seek. The keys are
polymorphic OCaml values identifying the type of the abstractions
that may be part of the combination. Such a leaf abstraction, whose
elements are of type t, must export a key carrying its type t, i.e. a key
of type t Key.k. The Key module provides two functions: create and
eq_type. The first one creates a new key from a string describing the
abstraction to which the key will be linked. The second one compares

62 architecture of the analyzer

Listing 3.2: Keys and interface

1 type (_,_) eq = Eq : (’a,’a) eq | Neq

module type Key = sig

type ’a k

5 val create : string -> ’a k

val eq_type : ’a k -> ’b k -> (’a, ’b) eq

val compare : ’a k -> ’b k -> int

end

10 module type External = sig

type t

val get : ’a Key.k -> (t -> ’a) option

val set : ’a Key.k -> ’a -> t -> t

end �
two keys of respective types a Key.k and b Key.k. If they are the same,
then eq_type returns an equality witness of the types a and b.

The External interface exports the type t, and two access func-
tions get and set. If the type t is a combination of several datatypes,
these functions allow interacting with its components, identified by
their keys.

• get takes a key of type a Key.k, and:

– if the type t is a combination of datatypes including the
type a carried by the key, then get produces a new function
that takes a value of type t and returns its component of
type a.

– otherwise, get returns None.

• set takes a key of type a Key.k and a matching value of type a,
and inserts it in a value of type t, if possible —i.e. if the type t
is a combination of datatypes including the type a. In this case,
the previous value of type a in the combination is erased and re-
placed by the new value. Otherwise, the combination does not
include a component of type a, and set is the identity function:
it returns the combination as is, and ignores the value of type a.

3.3.3 Polymorphic Keys

If the leaf modules are all statically known, the keys can easily be im-
plemented as a GADT (see Listing 3.3). However, this choice prevents
creating keys for new abstractions dynamically. The architecture of
EVA is intended to ease the introduction of new abstractions. We ul-
timately want to enable new abstractions to be implemented as other
plugins of Frama-C, without modifying the analyzer itself.

3.3 structuring a combination of datatypes 63

Listing 3.3: Implementing keys with GADT

1 type ’a gadt_key =

| A1 : A1.t gadt_key

| A2 : A2.t gadt_key �
Listing 3.4: Using extensible types to implement polymorphic keys

1 module Key : Key = struct

type _ key = ..

module type K = sig

5 type t

type _ key += Key : t key

end

type ’a k = (module K with type t = ’a)

10

let create (type a) () =

let module M = struct

type t = a

type _ key += Key : t key

15 end in

(module M : K with type t = a)

let eq_type (type a) (type b) (x : a k) (y : b k) : (a, b) eq =

let module A = (val x : K with type t = a) in

20 let module B = (val y : K with type t = b) in

match A.Key with

| B.Key -> Eq

| _ -> Neq

end �
This is why we use an extensible phantom type for keys. As we

need to dynamically extend this type, we define each new construc-
tor into a new module, allowing us to use the same constructor name
each time. The keys are first class modules, each embedding a fresh
constructor of the extensible type. Listing 3.4 exhibits their implemen-
tation. The idea comes from the module Type_equal.Id of the Core
kernel library1, which uses the same mechanism.

In practice, a key is a record gathering not only the first class mod-
ule, but also an integer and a string. The string is the name of the key;
it must be provided to the create function, and can then be printed
for debugging purpose. A different integer is chosen for each key (by

1 https://ocaml.janestreet.com/ocaml-core/latest/doc/core_kernel/Core_

kernel/Type_equal.mod/

https://ocaml.janestreet.com/ocaml-core/latest/doc/core_kernel/Core_kernel/Type_equal.mod/
https://ocaml.janestreet.com/ocaml-core/latest/doc/core_kernel/Core_kernel/Type_equal.mod/

64 architecture of the analyzer

Listing 3.5: Exporting keys

1 module A1 : Abstraction = sig type t = [...] end

let a1_key : A1.t = Key.create "A1"
module A2 : Abstraction = sig type t = [...] end

let a2_key : A2.t = Key.create "A2" �
successive increment of a static counter). It serves as a hash of the
key.

And now that we have polymorphic keys, a leaf abstraction module
may export a key that identifies it, as in Listing 3.5.

3.3.4 Naive Implementation

The polymorphic key allows a first straightforward implementation
of the External signature, shown by Listing 3.6. For a leaf module,
an access function compares the given key with the internal key of the
domain, and behaves accordingly. The combiner requires that both
argument modules also implement the External signature. Then, the
access function of a combination simply calls that of the components.

Although simple, this implementation has several drawbacks:

• the code of the get and set functions is quite odd, and must be
identically duplicated in each leaf module of abstractions;

• adding a new function based on the keys to the External sig-
nature requires modifying all existing domains.

• the functions are inefficient on a large combination of abstrac-
tions, as they systematically process all the underlying modules.

To address these issues, we only require the abstraction modules (leaf
and combination) to provide a formal description of the internal struc-
ture of their datatype. More efficient implementation of the get and
set functions for a particular module can then be deduced from its
datatype structure.

3.3.5 GADT Structure of a Datatype

Listing 3.7 presents the structure type used to describe the internal
shape of a datatype. A value of type t structure defines the struc-
ture of the datatype t. This definition can be directly the type t

(the Leaf constructor, for a leaf module), or a pair of two datatypes
described by structures (the Node constructor, for a combination of
modules). The Void constructor is a valid structure for any type, but
does not allow interacting with its components. It can be used for
the components of a combination that do not need the functionalities

3.3 structuring a combination of datatypes 65

Listing 3.6: Naïve implementation of the External signature

1 module External_A1 : External with type t = A1.t = struct

type t = A1.t

let key : t key = Key.create ()

5 let get : type a. a key -> (t -> a) option = fun k ->

match Key.eq_type key k with

| Eq -> Some (fun t -> t)

| Neq -> None

10 let set : type a. a key -> t -> a -> t = fun k t new_t ->

match Key.eq_type key k with

| Eq -> new_t

| Neq -> t

end

15

module External_Combiner (Left : External) (Right : External)

: External = struct

include Combiner (Left) (Right)

20 let get key =

match Left.get key with

| Some g -> Some (fun t -> g (fst t))

| None -> match Right.get key with

| Some g -> Some (fun t -> g (snd t))

25 | None -> None

let set key (left, right) new_d =

Left.set key left new_d, Right.set key right new_d

end �

66 architecture of the analyzer

Listing 3.7: Structure of a Datatype

1 type ’a structure =

| Void : ’a structure

| Leaf : ’a key -> ’a structure

| Node : ’a structure * ’b structure -> (’a * ’b) structure

5

module type Internal = sig

include Abstraction

val structure : t structure

end

10

module A1 = struct

include A1

let key : t key = Key.create "A1"
let structure = Leaf key

15 end

module A2 = struct

include A2

let structure = Void

20 end

module Combiner (Left: Internal) (Right: Internal)

: Internal = struct

include Combiner (Left) (Right)

25 let structure = Node (Left.structure) (Right.structure)

end �

3.3 structuring a combination of datatypes 67

Listing 3.8: Dependent Maps

1 type map =

| Empty : map

| Node : map * ’a key * ’a data * map -> map

5 let rec find : type a. a Key.k -> map -> a Data.t option

= fun key -> function

| Empty -> None

| Node (left, k, d, right, _) ->

match Key.eq_type key k with

10 | Eq -> Some d

| Neq ->

find key (if compare key k <= 0 then left else right) �
provided by the External signature. New constructors may also be
added to describe other datatype layouts.

Then, any abstraction module has to fulfill the signature Internal

of Listing 3.7, which simply adds to the signature of abstractions a
value of type t structure, where t is the type of the abstractions. The
structure of some leaf modules and of the combiner are also given in
the listing.

For a leaf type t identified by a key k and a module M implement-
ing the External interface, we call accessors for t in M the application
of the get and set functions of a module to the key k. This builds the
functions allowing the interaction with the component of type t from
the module M , if it exists. The structure value of a module M allows
the automatic generation of the relevant accessors for the datatypes
that the module M indeed contains. These are the relevant accessors
for the module, the others being dummy constant functions: for the
types not included in a module, get always returns None and set is
the identity function. Thanks to the structure, the relevant accessors
can even be built once and for all, when the module is created (at
compile-time for the leaf module, or at the application of the com-
biner functor). After their generation, we need to store the accessors
and to make them available for use. As the type of an accessor de-
pends on the type of the key, we use maps from keys to dependent
data. Their implementation follows the one for usual maps, except
that find needs the equality witness of keys (see Listing 3.8).

3.3.6 Automatic Generation of the Accessors

Finally, Listing 3.9 presents the generation of the relevant accessors
of a module, based on the structure that it provides. The Open func-
tor transforms a generic internal module, including a structure value
that matches its internal type, into an external one. All relevant acces-

68 architecture of the analyzer

Listing 3.9: Accessors generation

1 module Open (M : Internal) = struct

(* Getters *)

type (’a, ’b) get = ’b key * (’a -> ’b)

5 type ’a getter = Get : (’a, ’b) get -> ’a getter

let lift_get f (Get (key, get)) = Get (key, fun t -> get (f t))

let rec compute_getters :

type a. a structure -> (a getter) KMap.t = function

10 | Void -> KMap.empty

| Leaf key -> KMap.singleton key (Get (key, fun (t : a) -> t))

| Node (left, right) ->

let l = compute_getters left and r = compute_getters right in

let l = KMap.map (lift_get fst) l

15 and r = KMap.map (lift_get snd) r in

KMap.merge l r

let getters = compute_getters M.structure

let get (type a) (key: a key) : (M.t -> a) option =

20 match KMap.find key getters with

| None -> None

| Some (Get (k, get)) -> match Key.eq_type key k with

| None -> None

| Some Eq -> Some get

25

(* Setters *)

type (’a, ’b) set = ’b key * (’b -> ’a -> ’a)

type ’a setter = Set : (’a, ’b) set -> ’a setter

30 let lift_set f (Set (key, set)) =

Set (key, fun v b -> f (fun a -> set v a) b)

let rec compute_setters:

type a. a structure -> (a setter) KMap.t = function

| Void -> KMap.empty

35 | Leaf key -> KMap.singleton key (Set (key, fun v _t -> v))

| Node (left, right) ->

let l = compute_setters left and r = compute_setters right in

let l = KMap.map (lift_set (fun set (l, r) -> set l, r)) l

and r = KMap.map (lift_set (fun set (l, r) -> l, set r)) r in

40 KMap.merge l r

let setters = compute_setters M.structure

let set (type a) (key: a key) : (a -> M.t -> M.t) =

match KMap.find key setters with

45 | None -> fun _ t -> t

| Some (Set (k, set)) -> match Key.eq_type key k with

| None -> fun _ t -> t

| Some Eq -> set �

3.4 development and contributions 69

sors are computed at the application of this functor, and stored in a
dependent map. Then, we can pick up the accessor for a specific key;
if the key is not in the map, the dummy accessor is returned instead.
In both cases, the obtained accessor is efficient, as it knows statically
the path to the requested leaf abstraction in the compound datatype.
We detail the generation for the get function; the principles are the
same for the set function.

The (′a, ′b) get type denotes pairs of a key of type ′b and the get

accessor for this key in the type ′a. The compute_getters function
recursively gathers all the get pairs for a type a described by an
a structure, using a map from keys to these pairs (KMap). For a
void structure, no accessor can be recovered. For a leaf structure,
the only relevant accessor is the identity function for the key of the
leaf. For a node structure, we compute recursively the accessors
for both branches of the node; they are accessors for the sub-type
of each branch, and we lift them on the new type denoted by the
structure: pairs of elements from each branch. We then merge both
accessor maps. getters is the map resulting from the application
of compute_getters to the structure of the module argument of the
functor. Then, the final get function amounts to search the corre-
sponding accessor in the map. Note that we need again the type
equality witness given by Key.eq_type for the correct typing of the
function.

3.4 development and contributions

EVA is not a completely new abstract interpreter: it is a major evo-
lution of a pre-existing plugin of Frama-C called Value Analysis,
and simply abbreviated as VALUE. In this section, we briefly present
this former abstract interpreter, emphasize the main innovations in-
troduced with EVA, and comment on its development.

3.4.1 Evolution of the Abstract Interpreter

Since its inception, Frama-C has contained an abstract interpreter,
the VALUE plugin. This analyzer handles the subset of C99 com-
monly used in embedded software, and already gets precise results
on such codes. It has also been considerably optimized for years to
achieve scalability on large programs, and has indeed been success-
fully used to verify safety-critical industrial codes [Cuo+12]. VALUE
features an intricate memory abstraction [Kir+15, §4] , able to repre-
sent efficiently and precisely both low-level concepts such as unions
and bitfields, or high-level ones, such as arrays. This abstract domain
is rich, but cannot infer relational properties. Interestingly, aggressive
state partitioning is often sufficient to alleviate this limitation: the re-

70 architecture of the analyzer

lation information is instead carried out by the disjunction encoded
by the multiple states.

More problematic was the fact that VALUE has been written around
its abstract domain, resulting in a very tight coupling. The abstract
domain was hard-wired in the analyzer, and adding new abstractions
—relational or not— was not really possible. The primary objective of
this work was to make the abstract interpreter adequately modular,
in order to ultimately be able to complete the initial abstract domain
with new abstractions, including (but not limited to) relational ones.
Such a goal could only be achieved by a deep reorganization of the
analyzer. This has required to specify the functions ascribed to the
abstractions, and to design clear interfaces for them. Then we have
rewritten the analyzer to comply with the new architecture, separat-
ing the existing code between a generic abstract interpreter and ab-
stractions implementing the abstract semantics of VALUE. Thus, in
the new EVA interpreter, the legacy abstract domain, inherited from
VALUE, is only one of many abstractions.

However, a major challenge was also to preserve the already good
performances of the VALUE analyzer, in terms of both precision and
scalability. Yet, some optimizations and heuristics of the analyzer,
which were crucial for its efficiency, relied on its internal represen-
tation of a program semantics, which is now the internal type of
one abstract domain among others. These mechanisms could only
be kept in EVA thanks to the architecture of abstractions described
in Section 3.3. Indeed, this allows the generic abstract interpreter to
extract from an abstract domain the component corresponding to the
legacy VALUE, and to apply the algorithms accordingly. Such opti-
mizations or heuristics, that need a specific abstraction to work, are
simply disabled when the given abstraction is not available for an
analysis. This may impact the results precision or analysis time, but
not the soundness of the analysis. In particular, such optimizations
and heuristics support the instance of trace partitioning and the cache
of a function dataflow that was used by VALUE, and that have been
ported for EVA.

In the end, EVA is a modular and extensible abstract interpreter.
When instantiated with the legacy abstract domain inherited from
VALUE, it provides the same functionnalities, with equivalent perfor-
mances, as VALUE did.

3.4.2 Contributions

The evolution of the abstract interpreter is not just about modularity;
EVA also features a combination of abstractions and an implicit means
of communication between them that achieve a new form of partial
reduced products. Compared to the former abstract interpreter, the
main novelties of EVA are:

3.4 development and contributions 71

• a modular architecture, enabling the instantiation of the ana-
lyzer on generic abstractions. It has also been designed to facil-
itate the introduction and the combination of new abstractions.

• a generic combination of abstractions that enables some direct
interaction within the components.

• the direct cooperation of all abstractions to the emission of the
alarms, that report the undesirable behaviors of a program. In
VALUE, alarms were directly emitted as a side effect of the appli-
cation of any abstract semantics, which would have prevented
an abstraction to reduce the alarms stemming from another one.

• the communication between state abstractions, through non re-
lational abstractions of the possible C values of expressions —
or of the possible locations of addresses.

• a shared evaluation of expressions in a product of abstract states,
featuring an efficient backward propagation phase [CC79b], that
depends on the produced alarms and on the reductions per-
formed by the abstract domains. More systematic backward
propagators have been written accordingly.

• the introduction of several new abstractions, including:

– a binding for the numerical abstract domains provided by
the APRON library;

– an abstract domain of symbolic equalities;

– bitwise value and state abstractions, a domain of symbolic
locations and a gauge domain, all contributed by Boris
Yakobowski.

From the diagram of Figure 3.2, the initialization, partitioning, data-
flow and memexec functors are mostly inherited from the former
VALUE interpreter. We have only modified them to turn them into
generic functors, without modifying their algorithms. The other parts
of the abstract interpreter are essentially new.

3.4.3 Development

The OCaml implementation of the work presented in this manuscript
is available as the EVA plugin of the silicon version of Frama-C2, re-
leased on December 2016. The source files can be found in the direc-
tory src/plugins/value/. The table of Appendix C presents the divi-
sion in sub-directories, as well as the main files of the development,
with a brief description of the features that each file implements, and
references to the sections of this thesis that expound their role.

2 Available at http://frama-c.com/download-all-versions.html

http://frama-c.com/download-all-versions.html

72 architecture of the analyzer

conclusion

Within the EVA abstract interpreter, the internal hierarchy of abstrac-
tions follows the usual distinction between the expressions and the
statements of imperative programming languages. Value abstractions
approximate the semantics of expressions, while state abstractions
—or abstract domains— approximate the semantics of statements.
Multiple value abstractions are combined in a standard reduced prod-
uct. Multiple abstract domains exchange information using the value
abstractions as a shared communication interface. Furthermore, an
OCaml GADT encodes the inner shape of the combination of abstrac-
tions, enabling direct interactions with its components.

The architecture and the features described in this chapter seem
suitable for the development of the abstract interpreter of any imper-
ative language. As a plugin of Frama-C, EVA is dedicated to the anal-
ysis of C programs. The next chapter introduces the C programming
language, and formalizes the concrete semantics used to establish the
soundness of our analysis.

4
S Y N TA X A N D S E M A N T I C S O F T H E L A N G U A G E

The C programming language [KR78], created by Thompson and
Ritchie around 1970, is nowadays one of the most used in the world.
It remains the choice language for embedded and safety-critical pro-
grams. Yet, some of the distinctive features that explain its success
also make it difficult to analyze. To cope with some of these imped-
iments, Frama-C is built on an extended version of the C Interme-
diate Language (CIL) [Nec+02], an open-source front-end for the C
programming language that facilitates program analysis and trans-
formation. Basically, CIL is a simplified subset of C featuring a few
core constructs with a clean semantics.

However, CIL is still huge and overly complicated for our needs.
This thesis is not intended to present the exhaustive interpretation
of the C semantics by EVA, but only some of its most interesting
concepts. While EVA works directly on the CIL AST, we formalize
its analysis on a simplified language named clike. We design clike

as a toy language, but close enough to C for the features we want
to focus on. On the one hand, clike enables the encoding of all
the pointer arithmetic allowed in C. It is even more permissive than
a strict interpretation of the C standard: its pointer values can be
handled as standard integers. This allows the analysis of more real-
world programs. On the other hand, it does not include the most
complex memory structures, such as unions or bitfields. They are
however supported by EVA, in particular by the main abstract domain
inherited from the VALUE plugin.

The remainder of this chapter presents the C language through
some important facets of its spirit, its underlying principles. It also
outlines the simplifications offered by CIL. It then describes the syn-
tax and the principles of our own language, and finally formalizes its
concrete semantics, emphasizing the processing of the pointer arith-
metic.

4.1 the c language

This section provides an overview of the C language, as described in
the standard, and of the CIL front-end. It especially focuses on some
key features of the language that are crucial for programmers, and
that a static analyzer cannot overlook.

73

74 syntax and semantics of the language

4.1.1 The C Standard

The current official specification of the syntax and the semantics of
the C language is the C11 standard [C11], issued by the ISO. This doc-
ument is written in natural language and does not use a mathemati-
cal formalization to characterize the C semantics. Although intended
to be well defined, this natural language text can only provide an
informal semantics description, that may be ambiguous for the read-
ers and sometimes leads to misinterpretation. This is all the more
a serious drawback that the C standard is a contract between com-
piler implementors and program writers. Misunderstanding about
the standard meaning often results in programming bugs, when the
execution of a program does not behave as its author planned to.

Another difficulty of formally analyzing the C semantics lies in the
large number of constructs included in the C language. For instance,
it supports many control flow patterns, some of them being redun-
dant: for iterations in addition to the while loops, switch disjunctions
in addition to if conditionals, and several jump statements, either re-
stricted (break and continue) or unrestricted (goto). It also provides a
large choice of data types, including recursively defined types, enu-
merations, variable length arrays, unions, bitfields. . . Moreover, any
expression may embed side-effects, which change the state of the exe-
cution environment when evaluating the expression. The unspecified
evaluation order even leads to non-determinism. All this diversity of
functionalities is a blessing for the programmers, but also a curse for
analyzers.

To handle more easily the breadth of the C semantics, Frama-C
relies on the CIL framework.

4.1.2 C Intermediate Language

CIL [Nec+02; Cil] is the Abstract Syntax Tree (AST) of Frama-C. It
was originally a front-end for the C programming language aiming
at facilitating program analysis and transformation. It consists in
a highly-structured subset of C, provided with a cleaner semantics.
It simplifies C programs by clarifying ambiguous constructs and re-
moving redundant ones. It parses, type-checks and transforms any
valid C program into a structured and typed AST that the Frama-C
plugins —including EVA— can analyze. Among the most important
simplifications performed by CIL are the following:

• All forms of loop constructs are transformed into an infinite
loop while(1) with an explicit break statement for termination.

• Shortcut evaluations of boolean expressions and ternary condi-
tional operators ?: are also compiled into explicit conditionals.

• All functions bodies include a single return statement.

4.1 the c language 75

• Explicit casts are inserted for all necessary promotions and con-
versions of types.

• The side-effects of expressions are moved into separate state-
ments. Non-determinism is handled by specific unspecified se-
quence of statements, whose order of execution is not specified.

• The prototype of never called functions are removed.

All these transformations help the analyzer, both by reducing the
number of constructs to deal with, and by making explicit some intri-
cate behaviors of the C standard (like side-effects). The CIL version of
Frama-C also supports the logical annotation of a program through
the ANSI/ISO C Specification Langage (ACSL) [ACSL]. It is a be-
havioral formal language for C programs, inspired by JML [Lea+08].
ACSL can express a wide range of functional properties through as-
sertions attached to a statement or function contracts, either partial
or complete.

Despite the efforts made toward a clearer semantics, CIL remains a
large piece of work. Although the EVA analyzer handles most part of
CIL, the scope of this thesis does not include the exhaustive interpre-
tation of the C semantics. This is why this thesis is based on a smaller,
simplified language. However, some key features of the C language
are too important to be overlooked by our simplications. We detail
these features and their consequences before defining our language.

4.1.3 The C Spirit

The complexity of analyzing C programs is not only due to the lack
of mathematical formalization of the semantics, or to the wide range
of program constructs provided by the language. Some difficulties
also arise directly from some of the goals pursued by the language,
and thus cannot be avoided by simplifying it, or by considering only
a subset of its semantics, without depreciating the relevance of the
analysis.

The main principles that have guided the standard committee are
underlined in the introduction of the C99 Rationale [C99]. In par-
ticular, the committee states that a major goal was to preserve the
traditional spirit of C, which essence lies in the underlying principles
upon which the C language is based. This spirit is summarized by a few
sentences, including:

• Trust the programmer.

• Don’t prevent the programmer from doing what needs to be
done.

• Make it fast, even if it is not guaranteed to be portable.

76 syntax and semantics of the language

The C standard mostly achieves these objectives by underspecifying
the language, and by providing both a low and a high level view of
the memory. These design choices probably explain a part of the pop-
ularity of the C language, but are a burden for an abstract interpreter
that has to cope with them.

4.1.3.1 Underspecified Behaviors

In order not to restrict compilers implementation, the C standard
under-specifies the semantics of the language. It distinguishes three
kinds of underspecifications:

• an implementation-defined behavior depends on the compiler im-
plementation. Their precise specification is thus left to the com-
piler, which must document these behaviors. An example of
such behavior is the size of integers in memory, even if the stan-
dard imposes a lower bound.

• an unspecified behavior is a choice between several fixed behav-
iors on some program constructs, defined by the standard. A
compiler does not need to document its choices, that may de-
pend on the context. For instance, the arguments of a function
can be evaluated in any order at each call site.

• an undefined behavior occurs on non-portable or illegal program
constructs, and on use of erroneous data, for which the standard
imposes no requirements. In case of undefined behaviors, the
execution of a program can do literally anything, including ter-
mination, crash or unforeseeable results. Undefined behaviors
include dereferencing a null pointer, signed integer overflows
and divisions by zero.

The underspecification of the C standard gives a compiler more lee-
way to efficiently compile C programs. Implementation-defined be-
haviors have been used to ease the support of various hardware archi-
tectures, and nowadays C runs on almost any computer in the world.
Unspecified behaviors let the compiler choose freely the most conve-
nient way to process some constructs. Undefined behaviors spare the
compiler to check for error cases, and thus allow the generation of
more efficient code.

However, underspecification is also a burden for program writers.
To be portable, a program must not depend on some specific behav-
iors defined by a compiler, or on the choice of unspecified behaviors
made by the compiler. Moreover, a program is correct only if it is
free of undefined behaviors. However, such behaviors can be hard to
detect at runtime, as their actual effect during the execution is unpre-
dictable. Sometimes, the implementation of undefined behaviors by
a compiler does not raise any error, and behaves exactly as expected
by the programmer. But a compiler may change its implementation

4.1 the c language 77

Listing 4.1: Detection of undefined behaviors

1 int main () {

int a, b, c;

b = 1;

*((int *)&a + 1) = 0;

5 c = 1 / b;

return c;

} �
choices at any time without notice. A program involving such behav-
iors is not correct, even if its execution reveals nothing wrong.

Example 7. Let us consider the program of listing 4.1. At line 4, the
addition between the pointer (int*)&a and the integer 1 is well de-
fined: the pointer behaves the same as a pointer to the first element
of an array of length one with int type, and the expression(int*)&a+1
points one past the last element of this array [C11, Section 6.5.6]. How-
ever, the use of the result of an addition that points just beyond an
array object as the operand of the * operator is an undefined behav-
ior [C11, Annex J.2]. The standard allows the computation of such
pointers that cannot be dereferenced because of their convenience
when looping through arrays. Still, according to the C standard, the
program of listing 4.1 exhibits an undefined behavior, and thus its
execution behaves arbitrarily.

In practice, most compilers dereference the address resulting from
the addition without further check. The location that is assigned at
line 4 thus depends on the memory layout between the program vari-
ables, that can differ at each execution. If the variable c is adjacent
to a in memory, then the variable c is written at line 4, which does not
impact the remainder of the program. If the variable b is adjacent to a
in memory, then the variable b has the value 0 at line 5, which may
cause a crash when dividing by b (or a flight simulator to launch). If
the memory location adjacent to a is invalid, then the program will
probably fail from line 4.

Writing correct C programs requires an extensive knowledge of the
underspecifications, which are pervasive in the language: the C11

version of the standard includes no less than 203 kinds of undefined
behaviors [C11, Annex J.2]. In this regard, automatic analyzers able to
ensure the absence of undefined behavior in a program can provide
a valuable assistance.

These analyzers have to handle the three kinds of underspecifi-
cations used by the standard. The concrete semantics of EVA fol-
lows the solutions commonly used in abstract interpretation. The
implementation-defined behaviors are mostly parameters of the anal-
ysis: a program is then verified with respect to a given target architec-

78 syntax and semantics of the language

Listing 4.2: Object representation of pointers

1 int main () {

int y = 1, x = 0;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0)

5 printf("%d %d %d\n", *p, *q, p == q);

6 } �
ture and a specific compiler. The unspecified behaviors are modeled
by non-determinism: all possible implementation choices are consid-
ered by the analysis. Finally, the undefined behaviors are considered
as errors that abort program executions. The undefined behaviors
that EVA currently detects are listed in Section 5.1.

4.1.3.2 Low-level and High-level View of the Memory

The desire of providing the programmers with all the tools they may
need explains the duality of the C memory model. The C standard
exposes both a low-level and a high-level view to the memory:

• a high-level view by means of the effective types of structured
objects, including arrays, structs and unions [C11, Section 6.2.5];

• a low-level view by means of the untyped byte representations
of values [C11, Section 6.2.6].

Any value of a type τ is represented as a sequence of bytes, and
can be interpreted as an array of n unsigned single-byte characters,
where n is the size in bytes of an object of type τ . This byte inter-
pretation is called the object representation of the value. An object can
be read and written either though typed expressions or through byte
manipulations of their object representation. The definition of the ob-
ject representations of values is partly imposed by the standard, and
partly left to the compiler. A formal analysis of C programs requires
to reconcile the low-level and the high-level world. Greater difficul-
ties arise when these two worlds conflict, i.e. when a typed value and
its object representation are inconsistent.

Some object representations do not match a typed value, and are
called trap representations [C11, 6.2.6.1 §5]. They can be manipu-
lated byte to byte, but their access through a typed lvalue is unde-
fined. A value may have also several object representations, and thus
the equality between two values x and y of type τ does not imply
the equivalence of their byte interpretations, that can be checked by
memcmp(&x, &y, sizeof(τ)). The standard states that the equality x ==

y does not necessarily imply that x and y have the same value; other
operations may distinguish between them [C11, 6.2.6.1 §8].

4.2 a c-like language 79

Even more unsettling, it appears that the equivalence of the object
representation may not guarantee the equality between values. The
program of listing 4.2 may exhibit such a behavior. If the variable y

is adjacent to x in memory, then the two pointers p and q point to
the same memory address &y. Therefore, they may have the same
object representation (unless the compiler stores additional informa-
tion in the pointer representation, such as the origin of the pointer).
However, as seen at example 7, the dereference of p is an undefined
behavior and may behave arbitrarily, unlike the dereference of q. In
practice, the program is compiled without warning by gcc 6.2.1 with
the options -O1 -Wall, and it prints ’1 1 0’ for *p, *q and p==q, mean-
ing that the pointers have the same object representation, different
values, and that they point to the same variable.

In practice, such examples are corner cases that can be forbid-
den without a significant loss of expressiveness: a program behavior
should not depend on the variable layout in memory. However, both
kinds of memory accesses offered by the C standard are important to
programmers, and a realistic analyzer cannot omit the features that
support the low-level world, such as the pointer arithmetic or the
connection between pointers and arrays. Therefore, the concrete se-
mantics that we use in EVA forbids any discrepancy between typed
values and their objects representations, but provides:

• both consistent low-level and high-level views of the memory,
linked by bijective interpretation functions that are parameters
of the analysis. This is described in Section 4.2.2.

• pointer arithmetic where pointer values are integer addresses,
and can be manipulated as such. However, the language pre-
vents jumping from a variable to another, establishing a separa-
tion of the variables in memory. This is described in Section 4.3.

4.2 a c-like language

Although EVA works on CIL and thus supports a large part of the C
language, this thesis does not aim at detailing its interpretation of the
whole C semantics. It rather intends to present and formalize the gen-
eral concepts that underlie the abstract interpreter architecture. We
believe that these concepts are worthwhile regardless of the analyzed
language, but they also take into account the specificities of the C
standard described by the above section. We thus base our work on a
simplified language, close enough to CIL, provided with a clearer se-
mantics, and that still complies with the principles of the C standard
stated before. This language is inspired by that of Miné [Min06b]. We
name it clike.

80 syntax and semantics of the language

4.2.1 Syntax

Figure 4.1 introduces the syntax of clike.
A program operates over a fixed, finite set of variables x ∈ X in

memory. Each variable has a type, and can hold only a value of its
type. The type of a variable x is given by a builtin function typeof(x).
Our language manipulates values and objects of different types:

• arithmetic types denote values in different subsets of Q, includ-
ing signed or unsigned integers types, real floating-point types,
and the basic type char.

• a τ -pointer type describes a reference to an entity of type τ in
the memory. A pointer value is either the null pointer or a
pair (&x, i) of a variable x and an integer, byte-expressed, off-
set i such that 0 ≤ i ≤ sizeof(x).

• Arithmetic and pointer types are collectively called scalar types.
We denote by Vτ the set of values ranged by a scalar type τ , and
by V the set of all scalar values.

• Finally, inhabitants of aggregate types can be constructed from
objects of different types, through arrays of fixed size and struc-
tures:

– τ [n] is the type of an array of n objects of type τ , adjacent
in memory.

– {field1 : τ1; . . . ; fieldk : τk} is the type of a structure made of
k adjacent boxes in memory, such that the nth box has the
name fieldn and contains an object of type τn.

Definition 19 (pointer value). A not null pointer value is a pair of
a variable x and an integer i such that 0 ≤ i ≤ sizeof(x). It is
written (&x, i).

The expressions of clike are typed. An expression of our language is
either:

• a constant, namely a scalar value. Among them, the address of
a variable x is (&x, 0), but we often write it &x for readability.

• the application of an n-ary operator ♦ on expressions. Opera-
tors in OP include arithmetic operations, equality and relational
comparisons, left and right shifts, bitwise operators and casts
into a scalar type. They follow the same syntax as in C but are
specialized according to their type. For instance, the addition is
derived into several operators +τ carrying the type τ of scalar
values on which it can be applied.

• the dereference ∗τa of an address a. It reads a value of a scalar
type τ at the memory location denoted by a.

4.2 a c-like language 81

Types:

integer ::= char | short | int | long | long long

float ::= float | double | long double

arith ::= char | (signed | unsigned) integer | float

scalar ::= arith | type ptr

τ ∈ type ::= scalar | τ [n] | {fieldi : τi}i≤n n ∈ N

Variables: x ∈ X

Field names: field ∈ F

Values:

Vint ⊂ Z
Vfloat ⊂ Q
Vptr , {(&x, i) | x ∈ X , 0 ≤ i ≤ sizeof(x)}

∪ {null}
V ,

⋃
τ∈scalar Vτ

Expressions and addresses:

e ∈ expr ::= cst cst ∈ V scalar constant

| ♦ (en) ♦ ∈ OP operators

| ∗τa dereference

a ∈ addr ::= e | a.field | a[e]

Statements:

stmt ::= ∗τa := e assignment

| ∗τa ← ∗τa copy

| e==0? test

| enter_scope(x)

| exit_scope(x)

Figure 4.1: Syntax of the clike language

82 syntax and semantics of the language

The dereference ∗τa of the address a is called a lvalue. An address is
either:

• a direct expression of pointer type;

• an address a plus an offset field for a field in a structure: a.field ;

• an address a plus an integer expression i for the offset of a cell
in an array: a[i].

In clike, an access to the memory is always an explicit dereference of
an address. This design provides a clear separation between the com-
putation of a memory location from an address, and the reading of
the memory at this location. This leads to a unified formal definition
of the semantics of any memory access. In this semantics, reading
the value of a variable x of type τ is achieved by the dereference of
its address ∗τ (&x). Similarly, the access to the nth cell of an array t

is the dereference ∗τ (&t[n]). It is important to remember that in the
general case where e is an arbitrary expression of pointer type, e[n]

is an address, and the access to the cell is made by ∗τ (e[n]). For read-
ability however, we write most of our examples using the C syntax:
we simply write x for the dereference ∗τ (&x), and t[n] for an access
to an array cell.

As in CIL, the expressions have no side-effects. All modification
of the environment or observable behaviors are carried out by state-
ments. A statement is either:

• an assignment from the value of an expression to a lvalue;

• the direct copy of the content of a lvalue location into another;

• a test that halts the execution when a condition is not satisfied;

• the entry in scope or the exit from scope of a variable.

Following our mathematical representation of programs defined in
Section 2.1, a program is a graph whose nodes are integer-numbered
program points and whose edges are labeled by statements. A pro-
gram has a single entry point, which by convention is the node 0, and
a single ending point. Such a graph is a CFG and is represented by
a set of triples (source node, statement, destination node). However,
for clarity, we write code using a C-like syntax.

As explained in Section 2.1, the graph structure of clike clearly en-
codes the various control-flow constructs of the C language, as condi-
tional branchs, switch disjunctions, loops or goto statements. In this
way, they are directly managed by the fixpoint engine of Frama-C.
Figure 4.2 gives an example of C code, its conversion in a clike

graph structure, and the exact translation of each statement in the
clike syntax. The side-effect ++i of the conditional expression at
line 3 is converted into the assignment statement between nodes 2

4.2 a c-like language 83

int i = -1;

while (i < 10) {

if (t[++i] > 0)

break;

}

int x = t[i]; �
(a) C code

0

1

2

3

4

5

i=-1

if(i<10)

i=i+1

if(t[i]<=0)

if(i>=10)

if(t[i]>0)

x=t[i]

(b) clike graph

i = -1 : ∗τ (&i) := −1

if(i<10) : (∗τ (&i) ≥ 10)==0?

if(i>=10) : (∗τ (&i) < 10)==0?

i = i+1 : ∗τ (&i) := ∗τ (&i) + 1

if(t[i]<=0) : (∗τ (&t[∗τ (&i)]) > 0)==0?

if(t[i]>0) : (∗τ (&t[∗τ (&i)]) ≤ 0)==0?

x = t[i] : ∗τ (&x) := ∗τ (&t[∗τ (&i)])

(with τ = int)

(c) Translation of the statements

Figure 4.2: From C to clike

and 3, before the translation of the conditional statement. The while
loop becomes simply the graph loop between nodes 1 (the loop entry
point) to 3. The natural loop exit is the edge between nodes 1 and 4,
and the break exit is the edge between nodes 3 and 4.

The remaining of this section gives meaning to the values and ex-
pressions of clike, but the concrete semantics that we will actually
use is formally defined in the next section.

4.2.2 Representation of Values in Memory

The semantics of clike is designed to allow the dereference ∗τa of a
value of any scalar type τ at any address a, provided that a is a valid
address for this type (the validity of a pointer is defined later). In
particular, the value of any variable can be read as an array of char, as
in the C language. However, defining such a semantics firstly requires
to formalize the connections between values of different types. This
section defines the representation of the values in memory, and their
interpretation as a scalar type.

84 syntax and semantics of the language

notation signature

for an arithmetic type τ φτ (Vbytes)sizeof(τ) → Vτ

for variable addresses φaddress (Vbytes)sizeof(ptr) → N

memory layouts θ X → N

for the pointer type ptr φptr (Vbytes)sizeof(ptr) → Vptr

φptr(&x, i) = φaddress(θ(x) + i)

Figure 4.3: Interpretation functions and memory layouts

4.2.2.1 Interpretation of Values

The execution of a program is described by a sequence of concrete
memories. A memory represents the content of each variable in X as
an array of single-byte characters in Vbytes = {0, 1, . . . , 255}. Concrete
memories are kept untyped to allow casts between scalar types: an
integer variable may store a pointer, and conversely. However, this
requires some conversions between scalar values and sequences of
bytes.

Indeed, the C values Vτ of a scalar type τ may be encoded on
successive bytes, whose number and meaning depend on the hard-
ware architecture, which we assume fixed. We assume given, for
each scalar type τ :

• its size in bytes sizeof(τ). This function is naturally extended
to variables and expressions, whose size is that of their type.

• a bijective interpretation function φτ defining the memory rep-
resentation of its values. This function interprets a sequence
of sizeof(τ) bytes as a value of type τ , and conversely for its
inverse.

Definition 20 (Interpretation function). For a scalar type τ , an inter-
pretation function is a bijective function φτ in:

φτ : (Vbytes)
sizeof(τ) → Vτ

The interpretation functions of arithmetic values in Q are completely
determined by the hardware architecture. However, the interpreta-
tion of pointer values depends on the memory layout. Each execu-
tion of a program induces a map θ from the variables to integers-
numbered memory addresses. Such a map always fulfills some re-
quirements.

Definition 21 (Memory layout). For a program P , a valid memory
layout is an injective function θ : X → N from variables to integers
addresses such that:

4.2 a c-like language 85

• the integer memory address of a variable is strictly positive (the
integer 0 is used for the representation of the null pointer):
∀x ∈ X , θ(x) > 0

• the contents of different variables do not overlap in memory :
∀x, y ∈ X , θ(y) > θ(x)⇒ θ(y)− θ(x) > sizeof(x)

The comparison is strict to prevent two variables to be placed
contiguously in memory. This is used later to always disam-
biguate pointers to &y from pointers to (&x, sizeof(x)).

• the content of the variables fits in memory:
∀x ∈ X , θ(x) + sizeof(x) < 2sizeof(ptr)

Notation 1. For a program P , the set of valid memory layouts is writ-
ten ΘP .

Note that the requirements for the valid memory layouts limit the
number and the size of the variables a program can use, according to
the size of the pointer type.

The interpretation of pointers is then the combination of the mem-
ory layout θ and an interpretation φaddress of integer memory ad-
dresses. The null pointer is always interpreted as the integer 0. A
pointer (&x, i) made of a variable x and an offset i is interpreted
as the integer address θ(x) + i. Figure 4.3 summarizes the type of
each interpretation function and the link between the interpretation
of pointers and the memory layouts.

Definition 22 (Pointer interpretation). The interpretation φptr of poin-
ter values is defined as:

φptr(null) = 0

φptr(&x, i) = φaddress(θ(x) + i)

Note that the second requirement of Definition 21 ensures that two
different pointer values have different integer addresses.

Lemma 2. In any memory layout θ and for any two pointer values (&x, i)

and (&y, j) in Vptr, we have:

θ(x) + i = θ(y) + j ⇒ x = y ∧ i = j

Proof. We suppose that the two pointer values (&x, i) and (&y, j) are
different. As a memory layout is injective, θ(x) 6= θ(y). We assume
θ(y) > θ(x) (the other case is symmetrical). According to the second
condition of Definition 21: θ(y) > θ(x) + sizeof(x). We also know
from the definition 19 of Vptr that 0 ≤ i ≤ sizeof(x) and 0 ≤ j ≤
sizeof(y). Finally, we get:

θ(y)+j > θ(x) + sizeof(x) ≥ θ(x) + i

86 syntax and semantics of the language

Thus, the function f(&x, i) = θ(x) + i is injective. As we require
the interpretation functions to be bijective, φaddress is also bijective.
The interpretation φptr is then injective, and its inverse can be defined
on the image φptr(Vptr). Outside this image, the inverse fails.

Definition 23 (Inverse of the pointer interpretation). The interpreta-
tion of sizeof(ptr) bytes as a pointer value is defined as:

g(n) =

(&x, i) if θ(x) + i = n

∅ if ∀(&x, i) ∈ Vptr, θ(x) + i 6= n

φ−1
ptr = g ◦ φ−1

address

4.2.2.2 Indeterminate Values

During the execution of a program, the value of a variable is not
always well defined in memory. On the one hand, the program vari-
ables have a scope, i.e. a part of the program where they can be re-
ferred to. Out of its scope, a variable has no content in memory, and
any reference to it results in an error. On the other hand, at its entry
in scope, the content of a variable is unspecified, until an assignment
sets a first value to the variable.

To report these two indeterminate states of a variable in the mem-
ories, the bytes are enriched with two special values: uninit for the
uninitialized variables and none for the out-of-scope variables. We
distinguish these values to properly report the related undefined be-
haviors when they occur.

4.2.3 Validity of Pointers and Locations, Memories

We define here the validity of a pointer and the notion of memory
location as a consecutive sequence of byte addresses. We then define
concrete memories, on which the semantics of clike is based.

4.2.3.1 Pointer and Memory Locations

Definition 24 (Validity of a pointer). A pointer value (&x, i) is valid
when it points inside the content of x: 0 ≤ i < sizeof(x).

Definition 25 (Memory location). A memory location is a pointer value
(&x, i) together with a type τ . We write it locτ (&x, i). It represents
the consecutive addresses of the sizeof(τ) bytes in memory starting
at the pointer value. Those are bytes whose contents in memory form
a value of type τ .

locτ (&x, i) , {(&x, i+ n) | 0 ≤ n < sizeof(τ)}

We denote by τ -location a location of type τ .

4.2 a c-like language 87

Definition 26 (Validity of a memory location). A location of type τ
is valid when all the pointer values it represents are valid. In other
words, a τ -location is valid when its pointer value is valid and when
the offset plus the size being read (i.e. the size of τ) is smaller than
the size of the variable.

Notation 2 (Valid τ -pointers). A pointer value is a valid τ -pointer
when it defines a valid τ -location. The set of valid τ -pointers is writ-
ten Lτ . By extension, Lbytes is the set of valid pointer values.

Lτ , {(&x, i) | x ∈ X , 0 ≤ i ≤ sizeof(x)− sizeof(τ)}

Lbytes , {(&x, i) | x ∈ X , 0 ≤ i < sizeof(x)}

4.2.3.2 Concrete Memories

Finally, memories bind valid byte locations to byte values, enriched
with the special values for uninitialized and out-of-scope variables.

Definition 27 (Concrete memories). A concrete memory m is a map
from valid pointer values to the set of values Vbytes ∪ {uninit, none}.

Notation 3. For a program P , the set of all concrete memories is writ-
ten M.

M : Lbytes → (Vbytes ∪ {uninit, none})

The set of concrete memories depends on the program through its
variables, that define the set of valid pointer values. For readability,
we choose to omit this dependency in the notation.

4.2.4 Evaluation of Expressions in a Memory

Figure 4.4 details the evaluation JeKm of an expression e of scalar type
in a memory m. It produces either a value in V or an error Ω, in case
of an illegal operation.

Constants are already values in V, and so require no treatment.
The application of an operator ♦en relies on the semantics [(♦)] of the
operator. It computes the resulting value or fails, according to the
values of the arguments, and does not involve the memory. For the
most part, our operator semantics follow that of the corresponding C
operator, as defined in the standard. The undesirable behaviors that
may occur in the C semantics are here failures leading to the error
value. This includes for instance divisions by zero, integer overflows
or invalid pointer manipulations. An exhaustive list of the undesir-
able behaviors tracked by EVA is available in Section 5.1.

The next rules of Figure 4.4 describe the computation of addresses
and their dereference. The evaluation of the address of an array cell
t [e] shifts the address of t by the value of e, using pointer arithmetic.

88 syntax and semantics of the language

[(♦)] : Vn → V] {Ω}

JvKm , v ∀v ∈ V

J♦(e1, . . . , en)Km , [(♦)]
(
Je1Km, . . . , JenKm

)

Jt[e]Km ,


(&x, i+ sizeof(t[0]) · j)

if

{
JtKm = (&x, i) ∈ Vptr

JeKm = j ∈ N
Ω otherwise

Js.fieldKm ,


(&x, i+ offsetof(field))

if JsKm = (&x, i) ∈ Vptr

Ω otherwise

J∗τaKm ,


φτ (m(&x, i), . . . ,m(&x, i+ sizeof(τ)− 1))

if

{
JaKm = (&x, i) ∈ Lτ
∀l ∈ locτ (&x, i), m(l) /∈ {uninit, none}

Ω otherwise

Figure 4.4: Evaluation of expressions and addresses

Assuming that t evaluates to the pointer value (&x, i) and e evalu-
ates to the integer j, the address of t[e] is (&x, i + sizeof(t[0]) · j).
Computing the address of a structure field is similar, but relies on the
offsetof() C macro to obtain the offset of the field in the structure
type. This macro gives the offset (in bytes) of a given member within
a structure type.

The dereference of an address fails if it is not valid for the read
type τ : the address must evaluate to a valid τ -pointer (&x, i) in Lτ .
The dereference also fails if the memory contains some indeterminate
value at any byte of the location locτ (&x, i). Otherwise, the derefer-
ence reads the sizeof(τ) bytes starting at the address in memory,
and interprets them as a value of type τ .

In order to simplify the writing of the dereference semantics, we
introduce here a new notation about memories. We write mτ [(&x, i)]

the interpretation of the bytes of locτ (&x, i) —i.e. the contents of
these byte addresses in memory— as a value of type τ . If v is not
a valid τ -pointer, then mτ [v] is the error value. If for a byte l of
locτ (&x, i), m(l) is uninitialized or out-of-scope, then mτ [(&x, i)] is
the error value. The value of the dereference ∗τa is then the τ -value
stored in memory at the address a, namely mτ [JaKm].

4.3 a concrete semantics for clike 89

Definition 28 (Load in memory and dereference).

φ′τ (v1, . . . , vn) ,

φτ (v1, . . . , vn) if ∀i, vi /∈ {uninit, none}

Ω otherwise

mτ [v] ,

φ′τ (m(locτ (&x, i)) if v = (&x, i) ∈ Lτ

Ω otherwise

J∗τaKm = mτ [JaKm]

The next section uses these definition of values and expressions to
develop a concrete semantics that remains consistent when pointer
values can be handled as standard integers.

4.3 a concrete semantics for clike

In the clike language as in the C spirit, pointer values can be seen
as integers, and can be converted into any scalar types through the
interpretation functions. This tight connection between pointer val-
ues and integers makes the evaluation of expressions dependent of
the address of variables —that is, dependent of the memory layout of
program variables. This section illustrates this behavior, explains why
it is undesirable, and formalizes a concrete semantics for clike that
is independent of memory layouts. Following the guideline of Sec-
tion 2.1, this concrete semantics is defined through the denotational
characterization of expressions and statements.

4.3.1 Pointer Arithmetic and Memory Layout

Let us formally define the semantics of some operations about point-
ers, as they reveal interesting connections between our semantics of
expressions and the memory layout of a program execution.

According to the C standard, arithmetic operations over pointers
may only create nearly valid pointer values, namely pointers that point
inside a variable or one byte past it. Reflecting this, a pointer value of
clike is always nearly valid (definition 19). For instance, the addition
of an integer to a τ pointer value adds to its offset the integer, multi-
plied by the size in bytes of the type τ of the pointed value. However,
if the resulting pointer value is not nearly valid, the operation is un-
defined, and degenerates into the error value in our semantics1. As
we specifically banned overlapping between (even nearly) valid point-
ers values, this behavior prevents pointer arithmetic to jump from a
variable to another. This is less general than in the C semantics, that
state that two pointers compare equal if “one is a pointer to one past the

1 Currently, EVA allows the computation of any invalid pointer, and only emits
alarms when such pointers are dereferenced. We intend to change this behavior.

90 syntax and semantics of the language

end of an object and the other is a pointer to the start of another object that
immediately follows the first object in the address space” [C11, 6.5.9 §6].

[(+τ ptr)]((&x, i), n) ,


(&x, i+ sizeof(τ) · n)

if i+ sizeof(τ) · n ≤ sizeof(x)

Ω otherwise

However, the conversions between pointer and integer values are
allowed, as long as they are consistent with the memory layout θ of
the program execution. This is slightly more permissive that the C
standard, in which such conversions are implementation defined, ex-
cept for the null pointer that is equivalent to the integer constant 0.
However, as stated in a footnote, “the mapping functions [for conver-
sions between pointers and integers] are intended to be consistent with
the addressing structure of the execution environment” [C11, 6.3.2.3 §5].

Definition 29 (Conversions between integer and pointer types).

∀n ∈ Vint, ∀(&x, i) ∈ Vptr, ∀τ ∈ integer ,

[((τ))](&x, i) ,

θ(x) + i if θ(x) + i ∈ Vτ
Ω otherwise

[((τ ptr))](n) ,


null if n = 0

(&x, i) if n = θ(x) + i and (&x, i) ∈ Vptr

Ω otherwise

Note that Lemma 2 ensures that the conversion from an integer to
a pointer is well defined.

Moreover, integer arithmetic does not have the same constraints
as pointer arithmetic. Thus, integer arithmetic on converted pointer
values may lead to jumps between variables, according to a memory
layout θ. The program on Figure 4.5 illustrates this possibility, on an
architecture where unsigned integers can encode all pointer values.
In a memory layout θ such that θ(b) = θ(a) + 5, this program is “cor-
rect” and assigns the value 42 to the variable b. In all other memory
layouts, the value of addr cannot be cast into a (nearly) valid pointer
value at line 5, and the program is incorrect.

Thus, through the conversions between pointer values and integers,
the concrete evaluation of expressions leads to program semantics
that depend on the memory layout of a particular environment.

4.3.2 Concrete States Independent of the Memory Layout

An important asset of the C language is to feature both high-level and
low-level access to the memory. While typed variables, structures and

4.3 a concrete semantics for clike 91

1 void main() {

int a, b;

unsigned int addr = (unsigned int) &a;

addr = addr + 5;

5 int *ptr = (int *) addr;

*ptr = 42;

} �
Figure 4.5: Jump between variables via integer arithmetic

arrays provide a high-level view of the memory, the objects stored in
that memory can also be seen as an untyped contiguous sequence
of bytes. Any values can then be read or written byte to byte. This
low-level management can even be used for addresses and pointer
values. As an example, on a standard architecture, the union struc-
ture of Figure 4.6 allows easy accesses to the low and high bytes of
a pointer. Although programs seeking for portability should not in-
clude such constructs, they are perfectly legitimate in other contexts.
This duality between low-level and high-level view of the memory
needs to be reflected in our concrete semantics. Hence its dependen-
cies to the interpretation functions, which link typed values to their
byte representations.

However, a programmer should never assume anything about the
memory layout of a program execution. A program based on an
expected memory layout (as the one of Figure 4.5) must not be con-
sidered correct. Thus, the concrete semantics of our language should
not depend on the addressing structure given by the θ function. Yet
concrete memories have to depend on it: pointer values cannot be
fully abstracted as long as they may be cut into bytes or converted
into an integer.

The code snippet of Figure 4.7 illustrates this dependency through
a quite strange but nevertheless legitimate way for writing a value in a
variable x. The unsigned integer half _addr can not be represented as
an abstract pointer value (&x, i). First, its integer offset would itself
depend on the integer address of x. Moreover, the multiplication at
line 4 has no meaning for a pointer value. However, the integers
half _addr and mod2 _addr are still related to the address of x, as the
pointer x_ptr , computed from them, is a valid pointer to x.

Since memories are perforce related to the variable layout, our con-
crete semantics involve memories attached with the corresponding
memory layouts. We remind the reader that for a program P , we de-
note by ΘP the set of possible memory layouts for its execution; they
are the maps from the program variables to integer addresses satis-
fying the conditions stated in Section 4.2.2. Then, a concrete state of
our semantics is a function from memory layouts to concrete memo-

92 syntax and semantics of the language

1 union ptr {

struct ptr_s {

low: short;

high: short;

5 };

void * ptr_p;

} �
Figure 4.6: Pointer union

1 int x;

unsigned half_addr = (unsigned)&x / 2;

unsigned mod2_addr = (unsigned)&x % 2;

int *x_ptr = (int *) (half_addr * 2 + mod2_addr);

5 *x_ptr = 42; �
Figure 4.7: Pointer arithmetic through integers

ries. Such functions give the memory that occurs at a program point,
according to the addressing structure of the program variables.

Definition 30 (Concrete State). For a program P , a concrete state S is
a function from the memory layouts in ΘP to concrete memories in
M. The set of concrete states is:

S : ΘP →M

Thus, the value of some variables at a program point may also
depend on the addressing structure. However, the behavior of the
program should not. For instance, in the code of Figure 4.7, the inte-
ger variables half _addr and mod2 _addr depend on the address of the
variable x, but the final assignment at line 5 does not. The concrete
state after this assignment would then be:

S = λθ.


x 7→ 42

half_addr 7→ θ(x)/2

mod2_addr 7→ θ(x) mod 2

x_ptr 7→ &x


In contrast, in the code of Figure 4.5, the location of the final assign-

ment at line 6 depends on the memory placement of the variables a
and b. This later behavior should be strictly forbidden by the concrete
semantics. We now formalize a concrete semantics of the language
that meets those demands.

4.3.3 Concrete Semantics of Expressions

The concrete states of our semantics are functions from memory lay-
outs to memories. As the value of expressions depends on the ad-

4.3 a concrete semantics for clike 93

JeK
Θ

: S → (V] {Ω})

JvK
Θ

(S) , λθ. v ∀v ∈ V

J♦(−→ei)K
Θ

(S) ,

{
λθ. J♦(−→ei)KS(θ) if ∀θ ∈ ΘP , J♦(−→ei)KS(θ) 6= Ω

Ω otherwise

Jt[e]K
Θ

(S) ,

{
λθ. Jt[e]KS(θ) if ∀θ ∈ ΘP , Jt[e]KS(θ) 6= Ω

Ω otherwise

Js.fieldK
Θ

(S) ,

{
λθ. Js.fieldKS(θ) if ∀θ ∈ ΘP , Js.fieldKS(θ) 6= Ω

Ω otherwise

J∗τaK
Θ

(S) ,


λθ. (S(θ))τ [l] if ∀θ ∈ ΘP ,

{
JaKS(θ) = l ∈ Lτ
S(θ)τ [l] 6= Ω

Ω otherwise

Figure 4.8: Concrete semantics of expressions and addresses

dressing structure, the concrete values are also indexed by the mem-
ory layouts. For a program P , they are functions from its correct
memory layouts ΘP to C values in V.

Definition 31 (Concrete value). For a program P , a concrete value V
is a function from the memory layouts in ΘP to C values in V. The
set of concrete values is:

V : ΘP → V

The semantics of an expression in a concrete state S is its evalua-
tion in each memory bound to a possible layout in S. If any of these
evaluations fails, the semantics leads to the error value Ω. Otherwise,
the semantics of an expression computes a value in V for each mem-
ory layout —and the computed value may be different in each layout.
However, some expressions not only affect the computation of values,
but also impact the memory behavior of the program. This is the case
for the addresses being dereferenced (for a read or a write operation),
and for the conditions of if statements. We want such expressions
to have the same value in a concrete state, regardless of the memory
layout. We thus chose to enforce this rule in the concrete semantics
of clike.

Figure 4.8 formalizes the concrete semantics of expressions and ad-
dresses on concrete values. It operates on concrete values in V . It is
denoted by J·KΘ , and derived from the expression evaluation in one

94 syntax and semantics of the language

memory J·K. Concrete states S are functions of type λθ. mθ, such as
S(θ) is the memory mθ in the layout θ. Concrete values V are func-
tions of type λθ. v such as V (θ) is the C value v in the layout θ. The
semantics of an expression e take a concrete state and produce either
a concrete value or the error case Ω.

JeK
Θ

: S → (V] {Ω})

The concrete semantics of a constant v is the constant function λ_.v.
The concrete semantics of an operator application ♦(−→ei) is the point-
wise application of the evaluation J♦(−→ei)KS(θ) for all layouts θ, pro-
vided that none of them fails. The concrete semantics of addresses
are defined likewise: they also fail if the evaluation fails in one of
the memory layouts. A dereference also requires the address to be
independent of the memory layout: for a dereference ∗τa, the ad-
dress a must evaluate to the same valid τ -location l in all the possible
memory layouts of the program. All the memories of the state must
also contain no indeterminate byte value at this location, allowing
the dereference of the location to succeed in all layouts. Then, in the
concrete state S, for each layout θ, the value of the dereference is the
τ -value stored in the memory S(θ) at this location l. This value may
depend on the memory layout.

The semantics of operators can also be lifted from C values in V
to functions in V . Their concrete semantics become their pointwise
application on the C value for each memory layout. A failure in one
layout causes the error to be the result of the operation in all layouts.

Definition 32 (Concrete semantics of operators). The concrete seman-

tics of operators [(♦)]
Θ

is defined from their previous semantics [(♦)]

as follows:

[(♦)]
Θ

: (V)n → (V] {Ω})

[(♦)]
Θ

(~V) ,

Ω if ∃θ ∈ ΘP , [(♦)](~V (θ)) = Ω

λθ. [(♦)](~V (θ)) otherwise

The concrete semantics of operator application ♦(−→ei) can be equiv-
alently redefined as the application of the concrete semantics of the
operator ♦ on the concrete values V1 to Vn stemming from the seman-
tics of the expressions e1 to en, provided that none of them fails.

Lemma 3.

J♦(e1, . . . , en)K
Θ

(S) =


[(♦)]

Θ
(V1, . . . , Vn) if


Je1K

Θ
(S) = V1 ∈ V

. . .

JenK
Θ

(S) = Vn ∈ V
Ω otherwise

Proof. Immediate from the above definition.

4.3 a concrete semantics for clike 95

loc(&x) , loctypeof(x)(&x, 0)

∀θ ∈ ΘP , JaKS(θ) = l ∈ Lτ JeK
Θ

(S) = V ∈ V
S ` ∗τa := e ⇓ λθ. S(θ)

[
locτ (l) 7→ φ−1

τ (V (θ))
]

∀θ ∈ ΘP , JaKS(θ) = l ∈ Lτ ∀θ ∈ ΘP , Ja′KS(θ) = l′ ∈ Lτ
S ` ∗τa← ∗τa′ ⇓ λθ. S(θ)

[
locτ (l) 7→ S(θ)(locτ (l′))

]
∀θ ∈ ΘP , JeKS(θ) = 0

S ` e==0? ⇓ S
∀θ ∈ ΘP , JeKS(θ) /∈ {0,Ω}

S ` e==0? ⇓ ∅

S ` enter_scope(x) ⇓ λθ. S(θ)
[
loc(&x) 7→ uninitsizeof(x)

]

S ` exit_scope(x) ⇓ λθ. S(θ)
[
loc(&x) 7→ nonesizeof(x)

]
(a) Operational semantics

|{ ∗τ a := e}| (S) ,


λθ. S(θ)

[
locτ (l) 7→ φ−1

τ (V (θ))
]

if

{
∀θ ∈ ΘP , JaKS(θ) = l ∈ Lτ
JeK

Θ
(S) = V ∈ V

Ω otherwise

|{ ∗τ a← ∗τa′}| (S) ,


λθ. S(θ)

[
locτ (l) 7→ S(θ)(locτ (l′))

]
if

 ∀θ ∈ ΘP , JaKS(θ) = l ∈ Lτ
∀θ ∈ ΘP , Ja′KS(θ) = l′ ∈ Lτ

Ω otherwise

|{e==0?}| (S) ,


S if ∀θ ∈ ΘP , JeKS(θ) = 0

∅ if ∀θ ∈ ΘP , JeKS(θ) /∈ {0,Ω}
Ω otherwise

|{enter_scope(x)}| (S) , λθ. S(θ)
[
loc(&x) 7→ uninitsizeof(x)

]
|{exit_scope(x)}| (S) , λθ. S(θ)

[
loc(&x) 7→ nonesizeof(x)

]
(b) Denotational semantics

Figure 4.9: Concrete semantics of statements

96 syntax and semantics of the language

4.3.4 Concrete Semantics of Statements

Figure 4.9 presents the concrete semantics of statements, which is
much more standard than the semantics of expressions. It operates
on S ∪ {Ω, ∅}, where:

• S is the set of concrete states;

• Ω is a special state denoting an error —when the execution of
a statement fails and the program aborts;

• ∅ represents a blocking state: an assumption statement blocks
the execution if the condition does not hold.

Figure 4.9 presents the equivalent operational and denotational se-
mantics of statements. The operational semantics defines rules S `
i ⇓ S′ that link an initial state S and a statement i to the result of the
execution of i in S. The rules leading to the error state Ω are omitted
in the figure. The denotational semantics of a statement i is a transfer
function |{i}| :

|{i}| : S → S] {Ω, ∅}

Again, a concrete state S is a function of type λθ. mθ, such as S(θ)

is the memory mθ in the layout θ. A sequence of concrete states
throughout the statements describes an execution of the program for
each possible memory layout.

assignment For an assignment ∗τa := e in the concrete state S:

• the address a must evaluate to the same valid τ -location l ∈ Lτ
in the memory S(θ), for all memory layout θ;

• the evaluation of the expression e must produce a concrete
value V such that in any memory layout θ, V (θ) is a valid value
in V.

Then, the concrete state after the assignment is the function S′ such
as for each layout θ, the memory S′(θ) is the previous memory S(θ)

where the sizeof(τ) bytes of the location l are bound to the interpre-
tation in bytes of the value V (θ). The sizeof(τ) bytes of the location l
are denoted by locτ (l), and the interpretation in bytes of a value v of
type τ is φ−1

τ (v). In each memory layout θ, the resulting memory is
thus S(θ)

[
locτ (l) 7→ φ−1

τ (V (θ))
]
.

Otherwise, the assignment fails.

copy For a copy of lvalues ∗τa ← ∗τa′ in the concrete state S,
both addresses —the one being copied and the one being assigned—
should be independent of the memory layout. They must evaluate
respectively to the same valid τ -locations l and l′ in the memory S(θ),
for all memory layout θ. Then, the concrete state after the assignment

4.3 a concrete semantics for clike 97

is the function S′ such as for each layout θ, the memory S′(θ) is the
previous memory S(θ) where the sizeof(τ) bytes of the location l

are bound to the content of the sizeof(τ) bytes of the location l′

in S(θ). Thus, in each memory layout θ, the resulting memory is
S(θ)

[
locτ (l) 7→ S(θ)(locτ (l′))

]
. Otherwise, the copy of lvalues fails.

assumption The truth value of the condition of a test should not
depend on the memory layout. For a test e==0? in a concrete state
S:

• if for all layout θ, the condition e evaluates without error to the
zero value in the memory S(θ), then the state S passes through
the test unchanged;

• if for all layout θ, the condition e evaluates without error to a
non-zero value in the memory S(θ), then the state S does not
pass through the test, and the execution blocks —but does not
fail;

• otherwise, the assumption fails, and the execution aborts. This
happens when the evaluation of e fails for some layouts, or
when it yields a zero value for some layouts, and a non-zero
value for some others.

entry in scope and exit from scope These two statements
never fail. They change all the content of the involved variable in all
the memories carried by the state. We write loc(&x) for the set of
the valid byte locations of the variable x, which are loctypeof(x)(&x, 0).
All those bytes becomes uninit at the entry in scope of x, and none

at its exit from scope. From a previous state S, the new state is then
λθ. S(θ)

[
loc(&x) 7→ vsizeof(x)

]
, where v ∈ {uninit, none}.

conclusion

Following the principles given in Section 2.1, the denotational seman-
tics of the expressions and statements of clike defines naturally the
collecting semantics of its programs. As in the common vision of the
C language, this semantics allows addresses and pointer values to
be handled as standard integers. However, the semantics also pro-
hibits the behavior of a program to depend on the specific integer
value of a variable address. This collecting semantics can then be
soundly approximated in accordance with the abstract interpretation
theory. The remaining of this thesis describes how this semantics can
be practically handled by the hierarchy of abstractions implemented
in EVA.

Part iii is dedicated to the abstract semantics of expressions:

• Chapter 5 formalizes the abstractions used for this purpose: the
alarms, that report the illegal operations in expressions, and the

98 syntax and semantics of the language

value abstractions, that approximate the result of the evaluation
of an expression in a concrete state.

• Chapter 6 presents some efficient strategies to compute precise
abstractions for complete expressions from partial information.

Part iv is dedicated to the abstract semantics of statements:

• Chapter 7 formalizes the state abstractions, on which are mod-
eled the action expressed by a statement. It illustrates how the
cooperative computation of alarms and value abstractions can
assist a domain to precisely interpret the effect of statements.

• Chapter 8 describes the abstract domains that have been imple-
mented within EVA, and the results of some experiments con-
ducted to validate the design of the analyzer.

Finally, Part v is dedicated to the abstract semantics of traces. Chap-
ter 9 presents a generic framework to improve the precision of stan-
dard abstract domains when two control-flow paths meet. At these
points, domains are extended with conditional predicates that retain
information coming from each path.

Part III

A B S T R A C T S E M A N T I C S O F E X P R E S S I O N S

5
VA L U E A B S T R A C T I O N S

The abstract domains of EVA interact by exchanging properties about
the expressions and the addresses involved in a program statement.
These properties are expressed through specific abstractions of values
and locations. A value abstraction (respectively a location abstraction)
represents the possible values of an expression (resp. the possible lo-
cations pointed to an address) in the set of concrete states represented
by the abstract domains. They implement an abstract semantics of
the operations on expressions and addresses, except for dereferences
that involve concrete states. To support further interactions between
domains, value and location abstractions are extensible and can be
combined into a standard reduced product. A typical example is the
reduced product of intervals and congruences.

In clike, the evaluation of an expression or address either pro-
duces a concrete value, or fails when it exhibits an undefined behav-
ior according to the C standard. The eventuality of such failures are
represented by alarms, emitted by the abstract interpreter to report
the undesirable behaviors of a program. They are collaboratively pro-
duced by all abstractions of values, locations or states.

Alarms, value and location abstractions are the communication in-
terface between abstract domains. This chapter formalizes the alarms
used by EVA, and defines the requirements that the value (and loca-
tion) abstractions must fulfil. It finally presents the value abstractions
currently available in EVA, and focuses on their representation and
their abstract semantics of concrete values depending on the memory
layouts (through integer arithmetic on variable addresses).

5.1 alarms

5.1.1 Reporting Undesirable Behaviors

Although abstract interpretation is a generic framework for inferring
properties about programs, most static analyzers focus on proving
the absence of undesirable behaviors. These behaviors are usually
those that may lead to an error during a program execution, or to
an unexpected result due to undefined behaviors in the C standard.
EVA is no exception, and currently detects the following undefined
behaviors (some of which are out of the scope of the simplified clike

language):

• for lvalue dereferences: invalid memory accesses (null pointer
dereferencing or out-of-bounds accesses); reading uninitialized

101

102 value abstractions

memory or dangling pointers (i.e. to out of scope variables);
writing in const memory;

• for arithmetic operations: divisions by zero, integer overflows,
undefined bit shifts;

• for floating-point operations: infinite values or NaN results1;
overflows in the conversion from floating-point to integer;

• for pointer-related operations: subtractions between pointers
ranging over different objects; function calls through a pointer
with an incompatible type; invalid pointer comparisons;

• multiple side-effects on the same variable without a sequence
point; assignments of an aggregate where the left- and right-
hand-side overlap.

One of the main purposes of EVA is to emit an alarm at each program
point where it fails to prove the absence of one of these undesirable
behaviors. Each alarm may either reveal a real bug in the program,
or be due to the over-approximations made through the abstractions
used for the analysis. The latter alarms are false alarms. On the
other hand, the soundness of the analysis guarantees that each un-
safe statement, where an undesirable behavior may occur, is indeed
annotated by an alarm. Thus, the alarms are themselves a sound
over-approximation of the undesirable behaviors of the program. If
an analysis raises no alarm on a program, then this program is free
of the undesirable behaviors that EVA detects.

By pointing out all the potential runtime errors of a program, the
alarms are the main result of the analyzer for the end user. We nat-
urally aim at producing as few alarms as possible while remaining
sound – ideally none on a program without any undesirable behavior.
It is thus essential that the different abstractions used for the analysis
may directly influence which alarms are generated. Therefore, alarms
are part of the communication interface between the abstract domains
and the analyzer.

5.1.2 Alarms as ACSL Assertions for the End User

The alarms that EVA emits are standard ACSL assertions [ACSL], han-
dled by the Frama-C kernel. Each one is a guard against an unde-
sirable behavior that EVA has failed to exclude. If such an assertion
is satisfied for all possible executions of the program, then the corre-
sponding undesirable behavior never occurs, meaning that the alarm
was a false alarm. Otherwise, there is at least one execution that

1 These are not undefined behaviors w.r.t. the ISO C99 or IEEE 754 specifications, but
we choose to report them as undesirable errors.

5.1 alarms 103

violates the assertion, and this execution triggers the reported unde-
sirable behavior.

To each assertion is associated a logical status, ranging over true,
false and unknown. A true status is naturally given to the assertions
that have been proven correct, which excludes the undesirable behav-
ior. Otherwise, the undesirable behavior may occur (unknown status)
or definitely happens if the program point is reachable in at least one
concrete execution (false status). Thus, an assertion with a false

status is not a false alarm (but it can be in dead code, and thus never
triggered at runtime). The assertions are inserted into the source code,
and are searchable in the GUI. In order not to overload the interface,
EVA does not emit assertions it has already proven correct (i.e. with
a true status): it does not report on the undesirable behaviors it has
been able to exclude. To show them, it is possible to run the analysis
with no abstract domain at all, to force the emission of the alarms for
all possible undesirable behaviors our analyzer handles, and compare
the outcome with the normal analysis.

At the end of an analysis, the conjunction of all emitted assertions
is a sufficient condition for the code to be correct. An alarm with a
false status precludes this, unless the code it concerns is dead. Oth-
erwise, the assertions with an unknown status remain to be proven.
If one can prove, one way or another, that they hold for all possible
executions of the program, then they were all false alarms: the pro-
gram is free of undesirable behaviors, even if our analyzer alone was
unable to ensure it. To spare the burden of the manual proof of these
assertions, the other plugins of Frama-C can also be used to prove
them. The Frama-C kernel then ensures the automatic consolidation
of the logical statuses set by different plugins on an assertion. Thus,
a true status may eventually be set on all alarms issued by EVA.

5.1.3 Set of Possible Alarms

Alarms stem from illegal operations on expressions. They are pro-
duced by the abstract operators on values, accumulated during ex-
pression evaluation, and ultimately raised by the analyzer. In the
meantime, the abstract domains may exclude some of them, thanks
to the properties they have inferred. We define here the set of possible
alarms that may be raised for a given expression.

5.1.3.1 Alarms from Operators

In the concrete semantics, the operators on expressions may return ei-
ther a scalar value in V in case of success, or an error Ω which denotes
the undesirable behaviors that we track. For each operator, there is a
finite set of logical conditions on its input values that are necessary
and sufficient to exclude the error cases. To each one corresponds
an ACSL assertion [ACSL, Figure 2.2], whose free variables are the

104 value abstractions

arguments of the operator. We denote by alarms(♦) the set of these
assertions: they are the possible alarms for the operator ♦. As a re-
minder, [(♦)](~v) denotes the application of the operator ♦ on a vector
~v of C values. This operation fails if and only if at least one assertion
of alarms(♦) is not satisfied for the values ~v of the arguments.

Definition 33. For an n-ary operator ♦, alarms(♦) is a set of asser-
tions in Vn → {true, false} such that:

[(♦)](~v) = Ω ⇔ ∃A ∈ alarms(♦), ¬A(~v)

As an example, the possible alarms for a signed integer addition are
the arithmetic conditions avoiding integer overflows, which are on a
32-bits hardware:

alarms(·+ ·)(x, y) =

{
−2147483648 ≤ x+ y,

x+ y ≤ 2147483647

}

And the possible alarms for a division prevent the divisor from being
zero, and the quotient from overflowing, which can happen for x =

−231 and y = −1 on the same hardware.

alarms(·/·)(x, y) =

{
y 6= 0,

x/y ≤ 2147483647

}

It is worth noting that the arithmetical operations used in these logical
assertions are the mathematical operators with infinite precision.

Section 4.3.3 defined the concrete values as functions from memory

layouts to C values. Also, the semantics [(♦)]
Θ

of an operator on con-
crete values ~V are its pointwise application on the C values ~V (θ) for
each memory layout θ. Such semantics fail if and only if there exists
one memory layout θ in which the operation on the C values fails,
that is if an alarm is not satisfied for ~V (θ).

∀~V ∈ Vn,

[(♦)]
Θ

(~V) 6= Ω ⇔ ∀A ∈ alarms(♦), ∀θ ∈ ΘP , A(~V (θ))

Then, in a concrete state S, an operation ♦(e1, . . . , en) succeeds if
and only if for all layout θ, all the alarms for♦ hold for the values of e1

to en in the memory S(θ). For an alarm A, we write A(e1, . . . , en)(S)

for the truth value of A applied to the values of e1 to en in the mem-
ories S(θ) for all layouts θ.

Definition 34. Let♦ be an n-ary operator andA : Vn → {true, false}
an alarm of alarms(♦). For any expressions e1 to en, we define
A(e1, . . . , en) as the assertion in S → {true, false} such that:

A(e1, . . . , en)(S) , ∀θ ∈ ΘP , A(Je1KS(θ), . . . , Je1KS(θ))

5.1 alarms 105

Lemma 4. For any n-ary operator ♦ and expressions e1 to en, the operation
♦(e1, . . . , en) succeeds in the concrete state S if and only if for any alarm A

of alarms(♦), the assertion A(e1, . . . , en) holds in S.

J♦(e1, . . . , en)K
Θ

(S) 6= Ω ⇔

{
∀A ∈ alarms(♦), A(e1, . . . , en)(S)

∀i ∈ {1, . . . , n}, JeiK
Θ

(S) 6= Ω

Proof. This directly results from the semantics J♦(−→ei)K
Θ

(S) as stated
in lemma 3.

5.1.3.2 Alarms from Dereferences

For a dereference, three alarms ensure respectively the validity of the
memory read, and that the pointed value in memory is initialized
and not a dangling address. Their validity depends on the memories
of a state, and is thus defined through the layout-wise semantics of
expressions, in a given concrete state S:

• \valid_read(a)(S) holds whenever the address a evaluates to
the same valid τ -location l in every memory of S;

• \initialized(a)(S) holds whenever no memory of S contains
the uninit value at a byte of the τ -location of a;

• ¬\dangling(a)(S) holds whenever no memory of S contains
the none value at a byte of the τ -location of a.

alarms(∗τ ·)(a) , { \valid_read(a);

\initialized(a);¬\dangling(a) }

J∗τaK
Θ

(S) 6= Ω ⇔


\valid_read(a)(S)

∧ \initialized(a)(S)

∧ ¬\dangling(a)(S)

5.1.3.3 Alarms on Complete Expressions

The set of possible alarms is easily extended to any expression e, by
gathering the union of all possible alarms of its operators and deref-
erences. Then, the evaluation of e in a concrete state S succeeds if
and only if the assertions of alarms(e) are satisfied for the values of
the variables of e in all memories of the state.

Definition 35. For any expression e, the set alarms(e) of possible
alarms for this expression is the set of assertions in S → {true, false}
defined as:

alarms(♦(e1, . . . , en)) , alarms(♦)(e1, . . . , en) ∪ (
⋃

1≤i≤n
alarms(ei))

alarms(∗τa) , alarms(∗τ)(a) ∪ alarms(a)

106 value abstractions

Lemma 5. The evaluation of an expression e succeeds in a concrete state S
if and only if all the assertions in alarms(e) hold in S.

JeK
Θ

(S) 6= Ω ⇔ ∀A ∈ alarms(e), A(S)

Proof. Immediate from the definition of the expression semantics from
Figure 4.8: an expression fails if one of its operation fails (including
dereferences).

These possible alarms are syntactically deduced from the expres-
sions involved in the program statements. In the absence of abstract
domains able to infer properties about the program behaviors, the
analyzer would emit all of them. Otherwise, the abstractions used
by the analyzer should be able to express a precise status for at least
some of these alarms.

5.1.4 Maps of Alarms

EVA aims at establishing whether undesirable behaviors may occur in
a program execution. Proving the absence of undesirable behaviors
amounts to prove the assertions of alarms(e), for each expression e of
the program. On the other hand, if an assertion is unsatisfied, then its
undesirable behavior occurs in some execution. Thus, EVA strives to
give a precise logical status to these assertions, during the evaluation
of expressions.

5.1.4.1 Definition

Formally, the alarms propagated by EVA are partial maps from logical
assertions to property statuses (Figure 5.1). An alarm map for the
expression e must give a status to each assertion in alarms(e), but
does not necessarily contain explicitly all of these assertions. The
missing assertions are implicitly bound to a default status. The set of
assertions explicitly bound in a map A is denoted dom(A). EVA uses
two different kinds of alarm maps, closed or open, with a different
default status:

• closed maps bind missing assertions to true, excluding the un-
desirable behaviors they stand for. Thus, a closed map reports
all the alarms that may occur for the given expression.

• open maps bind missing assertions to unknown. An open map
gives a precise status to some alarms, but without guaranteeing
completeness: all other alarms may occur. However, open maps
are useful to assert the absence of some particular behaviors,
without a complete knowledge of the evaluation.

Definition 36. An alarm map is a map from assertions to logical
statuses. A closed map implicitly binds missing assertions to true,
while an open map implicitly binds missing assertions to false.

5.1 alarms 107

inconsistency

true false

unknown

(a) Lattice of statuses

kind = closed | open
A = (assertion9 status)× kind

(b) Alarm maps

∀A ∈ A,
default(A) =

{
true if snd(A) = closed

unknown if snd(A) = open

A(a) =

{
A(a) if a ∈ dom(fst(A))

default(A) otherwise

(c) Statuses bound to assertions in alarm maps

Figure 5.1: Statuses and alarms

Notation 4. The set of (open and closed) alarm maps is denoted A.

As all the possible alarms for an expression are syntactically known,
these partial maps are not absolutely necessary. In particular, an
open map A about an expression e can always be completed into
a closed map by binding all its missing assertions from alarms(e)

to the unknown status. However, they make simpler the use of alarm
maps as means of communication between abstractions. Value and
state abstractions are thus simpler to write, because they can focus on
the alarms they are able to understand. Also, adding new alarms can
be done in a transparent way.

5.1.4.2 Semantics of Alarm Maps

We define the semantics of alarm maps as abstractions of the undesir-
able behaviors that arise from the application of an n-ary operator ♦
to a vector ~V of concrete values.

Definition 37. An alarm map A is a sound abstraction of an operation
[(♦)](~V) if and only if:

• all alarms of A are alarms of alarms(♦);

• the precise statuses assigned by A to the alarms in alarms(♦)

are correct for the values ~V .

We denote this fact by A |=A [(♦)](~V).

108 value abstractions

∀~V ∈ Vn, ∀A ∈ A,
A |=A [(♦)] ~(V) ⇔

∀A ∈ A, A ∈ alarms(♦)

∀A ∈ alarms(♦), A(A) = true ⇒ ∀θ ∈ ΘP , A(~V (θ))

∀A ∈ alarms(♦), A(A) = false ⇒ ∀θ ∈ ΘP ,¬A(~V (θ))

Firstly, this definition requires that the assertions carried by the
alarm maps indeed prevent undesirable behaviors of the operation.
An alarm map cannot contain any assertion unrelated to the given
operation. Secondly, it also requires that the precise statuses assigned
to assertions in A are correct in all memory layouts: the assertions
bound to true (resp. false) in A are satisfied (resp. their negation
is satisfied) on the C values ~V (θ), for any layout θ. This condition is
extended to the omitted assertions of closed maps, that are implicitly
bound to true. (As the default status of open map is imprecise, the
condition does not apply to the missing assertions of open maps.)

For a closed map, as the missing assertions are bound to true, the
conjunction of all these assertions ensures the absence of undesirable
behavior: if all the assertions are satisfied for the values ~V (θ) in all
memory layouts θ, then the computation of ♦

(
~V
)

succeeds.

Lemma 6. If a closed map A is a sound abstraction of the operation

[(♦)]
Θ

(~V), then the assertions in A ensure that the computation succeeds.{
A |=A [(♦)] ~(V)

A closed
⇒ ∀θ ∈ ΘP , ∀A ∈ A, A(~V (θ))⇒ [(♦)](~V) 6= Ω

Proof. Let A be such a map. By definition of closed map, for any
alarm A ∈ alarms(♦), either A ∈ A or A(A) = true. If for all alarms
A ∈ A, we have ∀θ ∈ ΘP , A(~V (θ)), then we have this property
for all alarms of alarms(♦), as A(A) = true also implies it. Thus,
definition 33 ensures [(♦)](~V) 6= Ω.

The soundness definition of alarm maps is similarly extended to
the evaluation of any expression e in a concrete state S. The evalu-
ation of an expression fails if one of the involved operators fails. A
map of alarms A is a sound abstraction of the evaluation JeK

Θ
(S) if

each assertion of A belongs to alarms(e), and if the statuses of A are
correct in the state S. Once again, this latter condition also applies
to the assertion of alarms(e) implicitly bound to the default status of
the map. If the map is closed, then the evaluation of e succeeds in
this state if all its assertions are satisfied.

Definition 38. An alarm map A is a sound abstraction of the evalua-
tion of an expression e in a concrete state S if and only if:

5.1 alarms 109

• the alarms of A are alarms of alarms(e);

• the precise statuses assigned by A to the alarms in alarms(e)

are correct in the state S.

We denote this fact by A |=A JeK
Θ

(S).

∀e ∈ expr , ∀S ∈ S, ∀A ∈ A,
A |=A JeK

Θ
(S) ⇔

∀A ∈ A, A ∈ alarms(e)

∀A ∈ alarms(e), A(A) = true ⇒ A(S)

∀A ∈ alarms(e), A(A) = false ⇒ ¬A(S)

Lemma 7. If a closed map A is a sound abstraction of the evaluation
JeK

Θ
(S), then the assertions in A ensure that the computation succeeds.

A |=A JeK
Θ

(S)

A closed

}
⇒ ∀θ ∈ ΘP , ∀A ∈ A, A(S)⇒ JeK

Θ
(S) 6= Ω

Proof. Same reasonning than for lemma 6, by using lemma 5.

As a consequence, if the empty closed map is a sound abstraction
of an evaluation, then the evaluation always succeeds.

5.1.4.3 Lattice Structure of Alarm Maps

The alarms are also equipped with a bounded lattice structure. The
join tA and meet uA are defined pointwise. The domains of the two
maps are equalized by adding in each map the assertions present
only in the other, bound to the default status of the map. Then, the
join or meet of the statuses lattice (Figure 5.1) is applied pointwise on
the maps, as well as on their default status. Thus, the join or meet
of two maps of the same kind returns a map of this kind; the join
with an open map returns an open map, while the meet with a closed

map returns a closed map. The meet may discover an inconsistency
between statuses, which stops the analysis as it means the analysis
is incorrect. The bottom of the alarms lattice is the closed empty
map, denoting an absence of undesirable behavior. Its top is the open

empty map: any undesirable behavior may happen, and no assertion
has a precise status (i.e. they all have implicitly the unknown status).

Lemma 8. If A1 and A2 are both sound abstractions of the evaluation
JeK

Θ
(S), then the meet A1 uA A2 is a sound abstraction of the evalua-

tion JeK
Θ

(S).

A1 |=A JeK
Θ

(S)

A2 |=A JeK
Θ

(S)

}
⇒ (A1 uA A2) |=A JeK

Θ
(S)

110 value abstractions

Proof. Let e be an expression, S a concrete state, and A1 and A2 two
sound abstractions of the evaluation JeK

Θ
(S). The alarms carried by

A1 or A2 are in alarms(e); an alarm of the meet is an alarm from A1

or A2, and thus is in alarms(e). The status assigned by each map to
the alarm is correct, and thus the meet of theses statuses —which is
the status of the meet of the maps— is also correct.

5.1.5 Propagating Alarms and Bottom Elements

Each operator on expressions yields a value or raises an undesirable
behavior. The abstract semantics take into account both possibilities.
Thus, each abstract operator produces an abstraction of the possible
resulting value and an alarm map. During the evaluation of an ex-
pression e, the intermediate value abstractions are directly consumed
by further operators, until finally reaching a value abstraction for e.
On the other hand, the alarm maps produced at each step of an eval-
uation are joined together. Indeed, the final alarm map must over-
approximate the possible undesirable behaviors of all the operators
involved in the evaluation of e. Thus, a sound abstraction of the un-
desirable behavior of the evaluation of the expression ♦(e1, . . . , en) is
the join of:

• the alarm maps for the complete evaluation of each operand ei

• the alarm maps for the application of the operator ♦ to the
values of its operands.

Lemma 9. Let ♦ be an n-ary operator, e1 to en be n expressions and S

be a concrete state. Let n alarm maps A1 to An be respectively sound ab-
stractions of the evaluation of the expressions e1 to en in S. Let an alarm
map A♦ be a sound abstraction of the operation [(♦)](~V), where ~V is the vec-
tor of concrete values of the expressions e1 to en in S. The join between A1,
. . . , An and A♦ is a sound abstraction of the evaluation of the expression
♦(e1, . . . , en) in the state S.

∀i ∈ {1, . . . , n}, Ai |=A JeiK
Θ

(S)

∧ ∀θ ∈ ΘP , A♦ |=A [(♦)](Je1KS(θ), . . . , JenKS(θ))

⇓

(
⊔

1≤i≤n
Ai) tA A♦ |=A J♦(e1, . . . , en)K

Θ
(S)

Lemma 10. Let a be an address, and S be a concrete state. If the alarm
map A is a sound abstraction of the evaluation of the address a and A∗ is
a sound abstraction of the dereference ∗(JaKΘ(S)), then the join between A

and A∗ is a sound abstraction of the evaluation J∗τaK
Θ

(S) .

A |=A JaK
Θ

(S)

A∗ |=A J∗JaKΘ(S)K
Θ

(S)

 ⇒ AtA A∗ |=A J∗τaK
Θ

(S)

5.2 abstractions of concrete values 111

1 type ’a or_bottom = [‘Value of ’a | ‘Bottom]

type ’t with_alarms = ’t * Alarmset.t

type ’t evaluated = ’t or_bottom with_alarms

5 let (>>=) (t, a) f =

match t with

| ‘Bottom -> ‘Bottom, a

| ‘Value t -> let t’, a’ = f t in t’, Alarmset.union a a’ �
Figure 5.2: OCaml types for the alarms and the bottom case

Proof. Both lemmas stem directly from definition 35 of the set of pos-
sible alarms for an arbitrary expression.

An alarm gets a false status when the analysis guarantees that its un-
desirable behavior always occurs, meaning that the evaluation of the
given expression always fails. An alarm with a false status should
always be issued with the special value abstraction ⊥, which means
that no value can be produced. This canonical value is used to com-
plement the lattice structure of each abstraction used by our analyzer.
It denotes an abstraction with an empty concretization, i.e. an un-
reachable state, and is shared between all abstractions. When this
bottom value ⊥ arises for the evaluation of a subterm, then the com-
plete evaluation fails and returns ⊥ as well.

Figure 5.2 presents the OCaml type related to the alarms and the
bottom element. The bottom case is implemented via a polymorphic
variant, to simplify its use through the analyzer. The types or_bottom
and with_alarms complement any existing type respectively with the
bottom case and with a map of alarms. The type evaluated is the
combination of both, and is pervasive in the implementation of the
forward abstract semantics of expression. During an evaluation, we
use the >>= monad to join the alarms produced at each step, and to
propagate the bottom case when it arises.

5.2 abstractions of concrete values

The alarms over-approximate the undesirable behaviors of a program.
The other abstractions over-approximate the correct behaviors of the
program, and do not consider the erroneous cases that are taken into
account through the alarms. These other abstractions are divided into
several layers, each operating at a different level of the program se-
mantics. The bottom layer is made of over-approximations of the
C scalar value an expression may have at a given program point.
Those approximations are abstractions of values of integer types, real
floating-point types or pointer type. They model the semantics of ex-
pressions, and are part of the communication interface between the

112 value abstractions

different abstractions of the top layer, which models the semantics of
statements.

This section first defines the soundness of such value abstractions.
It then presents their lattice structure and their abstraction of the se-
mantics of constants and operators. It finally outlines the concept
of location abstractions, that similarly abstract the semantics of ad-
dresses.

5.2.1 Concretization and Soundness of Value Abstractions

Values in V# are abstractions of sets of concrete values of scalar types.
They implement an abstract semantics of expressions. The soundness
of these abstract semantics is defined through a concretization func-
tion γV, that connects each value to the set of concrete values it repre-
sents. As explained in Section 4.3, while the C value of an expression
may depend on the memory layout, our concrete semantics should
not. Let us remind that in this semantics, a concrete value is a C
value for each correct memory layout of the given program P , repre-
sented as a function from memory layouts in ΘP to scalar values in
V. The set of concrete values is written V .

γV : V# → P(V) with V , ΘP → V

In order to illustrate this approximation of functions, we introduce
here two kinds of integer value abstractions based on intervals. We
will use them as example in this section.

• Basic intervals, denoted as [i..s], represent sets of scalar values
independent from the memory layout, that are constant func-
tions in our concrete semantics. More formally, the concretiza-
tion of a basic interval is defined as:

γV([i..s]) = {λ_. v | i ≤ v ≤ s}

• Garbled intervals, denoted as [i..s]ΘP , may represent values that
depend on the memory layout. Their concretization includes
any function whose image is in the given interval.

γV([i..s]ΘP) = {f | ∀θ ∈ ΘP , i ≤ f(θ) ≤ s}

An expression independent from the memory layout has the same C
value for all of them. A precise abstraction of its possible values may
have a concretization made of constant functions only, thus encoding
this independence. If the expression is a constant, a precise abstrac-
tion of its value represents a single constant function. Less precise
abstractions could however fail to maintain these properties.

Example 8. Consider the code sample of Figure 5.3. At the end of the
main function, the variables i and j have an integer value between 0

5.2 abstractions of concrete values 113

1 void main (int c) {

unsigned int i = c ? 0 : 10;

unsigned int j = 10 / ((unsigned int) &i)

} �
Figure 5.3: Value abstraction of some expressions

and 10, but the value of j depends on the memory layout through
the address of i. In the concrete semantics, the concrete value of i
is a constant function among λ_.0 and λ_.10, according to the value
of the main argument c. The most precise interval abstraction of
these functions is the basic interval [0..10]. Any larger basic interval
is also a sound approximation of the concrete values of i, although
less precise. These basic intervals not only encode a range for the
integer value of the variable i, but also the fact that these values are
independent from the memory layout.

On the other hand, the garbled interval [0..10]ΘP (or any larger
garbled interval) is also a sound approximation of the concrete values
of i, but fails to encode this fact. This garbled interval is also a sound
approximation of the set of possible concrete values of j, that cannot
be represented by a basic interval.

Value abstractions represent function from memory layouts to C
values. To simplify this semantics, we may be tempted to consider
the set of C values denoted by an abstraction v# in a given memory
layout θ: it is the union of the image of θ by all functions in the
concretization of v#. We denote this set by γV(v#)(θ), even if γV(v#)

is a set of functions.

γV(v#)(θ) = {f(θ) | f ∈ γV(v#)}

This view of a value abstraction yields a set of C values in each
memory layout of ΘP , but leaves out some information given by the
set of functions. For instance, an abstraction can encode that the value
of an expression is independent of the memory layout, even without
any information about its precise value. This is the case of the basic
interval [−∞..∞]. Its concretization is then the set of constant func-
tions λ_.k in V , much more precise than the set of all these functions.
However, for all memory layouts, the set γV([−∞..∞])(θ) is the set of
all values V, and the property carried by the abstraction is lost. Yet,
this property may be important if the expression is used as a condi-
tional in an if statement, as the control flow of a program should not
depend on the memory layout.

Still, in a memory layout θ, an abstraction v# is a sound approxi-
mation of the value of an expression e in a given concrete memory m

114 value abstractions

when e evaluates in the memory m into a C value that belongs to the
concretization γV(v#)(θ):

∃f ∈ γV(v#), JeKm = f(θ) ⇔ JeKm ∈ γV(v#)(θ)

However, according to a concrete state, the soundness of a value
abstraction is not defined for each memory layout independently. The
concrete states of our language semantics are functions from correct
memory layouts to memories. The evaluation of a scalar expression
in a concrete state is then a function from memory layouts to scalar
values. The soundness of value abstraction is defined accordingly.

Definition 39. An abstraction v# is a sound approximation of the
value of an expression e in a given concrete state S when the eval-
uation of e in S is in the concretization of v#.

JeK(S) ∈ γV(v#)

5.2.2 Lattice Structure

A value abstraction V# must be equipped with a lattice structure
(V#,vV,tV,uV,>V) that satisfies the properties specified in Figure 2.4,
according to the value concretization γV. The join and the meet over-
approximate respectively the union and the intersection of sets of
concrete values. Value abstractions are partially ordered according to
the inclusion of their concretization. The top element represents all
possible C values of scalar type.

During the analysis, two values are met when they are both sound
abstractions of the possible values of the same lvalue or expression.
Then, the meet produces the most precise value abstraction for this
expression. In particular, each abstract domain supplies the analyzer
with value abstractions during the evaluation of an expression. The
generic evaluator performs naturally the meet of these values, to ben-
efit from the information inferred by all domains.

By contrast with the lattice structure required for state abstractions,
the join between value abstractions is not really crucial. In abstract
interpretation, the join of abstract states is used at a merge point in
the CFG, to over-approximate the concrete states coming from each
branch. But there is not such thing in our expressions (as conditional
operators are compiled into conditionals statements in CIL). In EVA,
the join on values is only used when the evaluation of an expression
is separated into several cases, to rejoin the abstractions computed for
each case. The process of subdividing an evaluation is explained in
Section 6.2.4.

The state abstractions and the generic analyzer naturally resort to
the top element of the value lattice whenever they have no informa-
tion about a variable or an expression.

5.2 abstractions of concrete values 115

5.2.3 Semantics of Values and Alarms

An alarm map models the undesirable behaviors that may occur when
the evaluation of an expression fails into the error value Ω. If the
assertions carried by such a map are satisfied at runtime, then the
evaluation cannot fail. A value abstraction approximates the concrete
value an expression may have when its evaluation does not fail. A
pair of a value abstraction and an alarm map can thus exhaustively
represent the evaluation of an expression.

Definition 40 (Semantics of pairs of values and alarms). A pair of a
value abstraction v and an alarm map A is a sound abstraction of the
evaluation of an expression e in a concrete state S when A is a sound
approximation of the undesirable behaviors of the evaluation, and v

is a sound approximation of its resulting value. We denote that by

(v,A) |=V×A JeK
Θ

(S).

(v,A) |=V×A JeK
Θ

(S) ⇔

{
A |=A JeK

Θ
(S)

JeK
Θ

(S) ⊆ γV (v) ∪ {Ω}

We also define the lattice structure of such pairs, by the pointwise
application of the lattice structure of value abstrations and alarm
maps.

Definition 41 (Lattice structure of pairs of values and alarms).

∀(v1, v2) ∈ (V#)2, ∀(A1,A2) ∈ A2,

(v1,A1) vV×A (v2,A2)⇔ v1 vV v2 ∧ A1 vA A2

(v1,A1) tV×A (v2,A2) , (v1 tV v2,A1 tA A2)

(v1,A1) uV×A (v2,A2) , (v1 uV v2,A1 uA A2)

>V×A , (>V,>A)

Lemma 11. If two pairs of value abstractions and alarm maps (v1,A1)

and (v2,A2) are sound abstractions of the evaluation of an expression e

in a concrete state S, then their meet is also a sound abstraction of this
evaluation JeK

Θ
(S).

(v1,A1) |=V×A JeK
Θ

(S)

(v2,A2) |=V×A JeK
Θ

(S)

}
⇒ (v1,A1) uV×A (v2,A2) |=V×A JeK

Θ
(S)

Proof. This lemma is a direct consequence of the properties of Fig-
ure 2.4 and of lemma 8.

5.2.4 Abstraction of Constants

Some lifting functions embed concrete values into abstract ones. They
are used to translate the constants into the abstracted world. For a

116 value abstractions

constant c of the language, we write c# its injection in the value ab-
straction V#: c# is simply the smallest abstract element v of V# such
that c ∈ γV(v). Let us recall that the constants of our language include
integer, floating-point and pointer values. For a value abstraction un-
able to represent some types, c# could be >V for some constants c.

5.2.5 Abstraction of Operators

The main feature of value abstractions is to implement an abstract
semantics for the C operators on expressions. For each n-ary oper-
ation ♦ on C expressions, the value abstraction provides a forward
and a backward abstract counterpart F#

♦ and B
#
♦ . Their correctness

is defined through the concretization γV. As the concretization of a
value abstraction is a set of concrete values, we silently lift the seman-
tics of operators from elements to sets. By convenience, we also write
γV(~v) for the concretization of a vector ~v of value abstractions.

Notation 5 (Concretization of a vector of abstractions, and concrete
semantics on sets).

∀~v = (v1, . . . , vn) ∈ (V#)n,

γV(~v) , γV(v1), . . . , γV(vn)

[(♦)]
Θ

(γV (~v)) , {[(♦)]
Θ

(~V) | ~V ∈ γV (~v)}

5.2.5.1 Forward Abstract Semantics

Given abstractions ~v of the operands, the forward function F
#
♦ pro-

duces a sound abstraction of the output of the operation, when ap-
plied to concrete values in the concretization of ~v. The resulting ab-
straction of F#

♦ consists of:

• an alarm map that is a sound abstraction of the undesirable

behaviors of the evaluation of [(♦)]
Θ

(γV (~v)).

• a value that is an over-approximation of the set of the possible

concrete values resulting from [(♦)]
Θ

(γV (~v)), when no undesir-
able behavior occurs. This value may be ⊥, if the operation is
completely illegal (i.e. if it always fails with the error Ω).

Definition 42. A forward abstract semantics of an n-ary operator ♦
is a function F

#
♦ from a vector ~v of n value abstractions to a pair of

a value abstraction and an alarm map that are sound abstractions of
the possible output of the operator, when applied to concrete values
in the concretization of ~v.

F
#
♦ : (V#)n → (V# +⊥)×A

∀~v ∈ (V#)n, F
#
♦ (~v) = (r,A)⇒

{
A |=A [(♦)]

Θ
(γV(~v))

[(♦)]
Θ

(γV (~v)) ⊆ γV (r) ∪ {Ω}

5.2 abstractions of concrete values 117

5.2.5.2 Backward Abstract Semantics

Conversely, the backward function B
#
♦ produces abstractions of the

operands from an abstraction of the result. However, such a back-
ward propagation of abstractions cannot be precise for operators with
several operands, as multiple abstractions should be deduced from
only one. Indeed, knowing that x ≤ y or that x + y ∈ [0..10] in
all layouts is not enough to infer any information about the value
of x and y. Instead, a backward operator B

#
♦ takes the value ab-

stractions of the operands, and tries to reduce them according to the
abstraction of the result. The reduced abstractions must still over-
approximate all the possible concrete values for the arguments lead-
ing to a value included in the result abstraction through the operator.
For instance, the backward operation on interval abstractions for the
comparison > ≤ [0..10] with result [1] reduces the first argument
value to [−∞..10], and lets the second argument value unchanged.
The backward addition >+ [0..+∞] with a result in [0..10] leads to
the same result.

Definition 43. A backward abstract semantics of an n-ary operator ♦
is a function B

#
♦ that takes an abstraction r and a vector ~v of n abstrac-

tions, and that produces a vector of value abstractions that are sound
abstractions of the possible inputs in ~v for which the operator leads
to a result in the concretization of r.

B
#
♦ : (V#)n ×V# → (V# +⊥)n

∀~v, r ∈ (V#)n+1, {~x ∈ γV (~v) |[(♦)]
Θ

(~x) ∈ γV (r)} ⊆ γV(B#
♦ (~v, r))

The backward operators handle only value abstractions, and do not
produce or reduce alarms. Indeed, while the value of ♦(~e) depends
directly on the value of the expressions ~e, the alarms issued for the
operation are independent from those issued for its operands. Also,
the backward operators can assume that the operation succeeds, since
the alarms produced by the forward abstract semantics report the
error cases. This may achieve some reductions of the operands, if
some values lead necessarily to an undesirable behavior. However,
backward operators may also reveal a contradiction, leading to the
empty value abstraction ⊥ for one of the operand, and so for the
whole expression. This happens typically when the condition of an
if statement is unsatisfied.

5.2.5.3 Implementation Signature

Figure 5.4 presents the OCaml interface of the abstract operators of
value abstractions in EVA. The type t is the one of the value abstrac-
tion. Operators are grouped by arity; unop and binop are the unary
and binary operators of the CIL AST. The type on which this oper-
ator is applied is also explicitly given, as the CIL operators are not

118 value abstractions

1 type t (* type of value abstraction *)

val forward_unop :

context:unop_context -> typ -> unop -> t -> t evaluated

5 val forward_binop :

context:binop_context -> typ -> binop -> t -> t -> t evaluated

val forward_cast :

context:exp -> src_typ:typ -> dst_typ: typ -> t -> t evaluated

10 val backward_unop :

typ -> unop -> arg:t -> res:t -> t option or_bottom

val backward_binop :

typ -> binop -> left:t -> right:t -> result:t ->

(t option * t option) or_bottom

15 val backward_cast:

src_typ: typ -> dst_typ: typ -> src_val: t -> dst_val: t ->

t option or_bottom �
Figure 5.4: Interface of the abstract operators on values

specialized by their type. The context argument gathers the expres-
sions of the operands; they are only needed to create the proper map
of alarms for this particular application of the operator. Indeed, the
relevant alarms are assertions whose free variables are these expres-
sions. Finally, an abstract operator takes the value abstractions of
the operands, and returns an abstraction of the result —value and
alarms— through the t evaluated type introduced in Section 5.1.5.

Likewise, a backward operator takes a value abstraction for each
operand and for the result, and returns either bottom —in case of
contradiction— or a value abstraction for each operand. In many
cases, the abstraction of the result is too imprecise to achieve a reduc-
tion of the operands. The backward operator could then return the
operand abstractions unchanged, but it may be useful to notify explic-
itly the absence of reduction. To this end, the results of the backward
operators are OCaml option types, None meaning that no reduction
has been performed.

Similar functions are provided for conversions, which are not stan-
dard unary operators in CIL, and for which the source and destination
types are given explicitly.

5.2.6 Abstractions of Memory Locations

Values are abstractions of C values of scalar types only. Copies of
aggregate types such as arrays and structures must be handled by the
state abstractions – although the content of their fields and cells can
be represented as values. However, in a language with pointers such
as C, scalar variables may contain addresses. Hence, values are also

5.2 abstractions of concrete values 119

abstractions of pointer values, and thus of memory addresses. The
abstract (forward and backward) transformers on value abstractions
encompass all expression operations involving pointers: addition of
an integer to a pointer, subtraction of two pointers, comparison of
pointers, conversion between integer types and pointers.

However, the abstract value operators do not include the address
operations —array subscripting and structure fields. Instead, the ad-
dress semantics is abstracted by specific representations of memory
locations. They are abstractions of the set of the possible memory
locations pointed to by an address in some concrete states. They im-
plement an abstract semantics of addresses, and are used to process
dereferencing through the state abstractions of the memory. These
abstractions of address locations are closely tied to the abstractions
of the expression values. Indeed, an address is an expression (eval-
uating to a pointer value, thus a location), plus certain offsets for
fields in structures and cells in arrays, the latter being also denoted
by expressions (evaluating to integers). In fact, the abstractions for lo-
cations could be exactly the same as for the pointer values. However,
the distinction between the two allows to gain precision and some
subtleties in the handling of addresses. In particular, EVA handles
bitfields through the location abstractions only (although clike does
not include bitfield).

It is worth remembering that in clike, addresses appear only in
dereferences and assignments. In a given concrete state, the derefer-
ence and assignment semantics both require their address to evaluate
to the same valid τ -location in all possible memory layouts. Thus,
the location abstractions approximate sets of constant locations, iden-
tified as valid pointer values for the considered type. If the value of
an address depends on the memory layout, an alarm is emitted.

A set of such location abstractions is denoted L#. A concretization
γL links each location abstraction to the set of memory locations it
represents.

γL : L# → P(L)

As usual, location abstractions are equipped with a lattice structure
(L#,vL,tL,uL,>L). Finally, location abstractions provide the ab-
stract address semantics:

• F
#
addr converts a value abstraction v into a location abstraction

(as an expression with pointer type is also an address): the re-
sult only abstracts the constant valid pointer values of γV(v).

• F
#
[]

abstracts array subscripting a[e], from a location abstraction
of the address a and a value abstraction of the expression e.

• F
#
.f abstracts the location of the field f in the structures repre-

sented by the given location abstraction.

120 value abstractions

Listing 5.1: Reducing abstract location

1 void main (int i) {

int t[2] = {1,2};

int x = t[i];

int *p = i ? &x : NULL;

5 int y = *p;

} �
F

#
addr : V# → (L#+⊥)×A

F
#
[]

: L# → V# → (L#+⊥)×A

F
#
.f : L# → (L#+⊥)×A

These forward functions also have their backward counterparts. As
for value operator ♦, these operations do not depend on memories.
Their abstract forward and backward semantics are guided by the
same principles and the same soundness requirements as the seman-
tics of expression. We do not detail them here, and refer the reader
to Section 5.2.5.

5.2.6.1 Reductions on Addresses

As mentioned earlier, the dereference of an address forces some re-
quirements about the value of the address, regardless of the concrete
state and the resulting concrete value. In the absence of dynamic
allocation, the validity of an address can be checked without any
knowledge of the memory. A dereferenced address must have the
same valid pointer value in all memory layout, i.e. a value such as
λ_.(&x, i) with x a variable of the program, and i an integer between 0

and sizeof(x)− 1. Otherwise, the dereference raises an error.
In EVA, the location semantics reflects this:

• if an abstract location does not guarantee the validity of the
address, an alarm is emitted;

• if possible, abstract locations are shrunk to their valid parts for a
dereference. This includes reducing the abstraction of an array
index to a positive integer value, strictly less than the size of the
array.

Example 9. The code of listing 5.1 includes two dereferences that
fails for some initial value of the argument i. At line 3, the abstract
semantics F#

[]
can reduce the value abstraction of i to a representation

of {0; 1}, the only possible integer offset for the array t. At line 5, the
abstract semantics F

#
addr can reduce the value abstraction of p to a

representation of {&x}, as null is never a valid pointer value. In
both cases, the location abstraction of the address represents only the
valid memory locations for the dereference.

5.3 the cvalue implementation 121

5.3 the cvalue implementation

EVA provides abstractions of integer, floating–point and pointer val-
ues called cvalue. These abstractions are not new: they are inherited
from VALUE, the former abstract interpreter of Frama-C. They han-
dle the whole semantics of expressions, and always produce closed
maps of alarms to report undesirable behaviors. As the default value
abstractions, they are the privileged means of communication be-
tween abstract domains in our analyzer. They are able to express
precise alias information between variables, which is very convenient
for purely numerical domains.

This section focuses especially on garbled mixes, an abstraction de-
signed to soundly approximate the result of any arithmetic opera-
tions on pointer values. While these abstractions are not new, their
formal semantics and their backward propagators are a contribution
of this thesis. This section first describes formally the representation
of the cvalue abstractions. It then gives an overview of their seman-
tics, focusing on the addition between pointers and integers. It finally
addresses the backward propagators for the same operation.

5.3.1 Basic Representation of Constant Values

As explained in Section 4.3.3, the concrete values of our semantics
are functions from memory layouts to C values. In practice, most
of the values manipulated by a program are independent from the
memory layout —and are thus constant functions in our semantics.
Other concrete values only arise when performing integer arithmetic
on variable addresses. The cvalue module provides specific and pre-
cise abstractions of sets of concrete values that are independent of
the memory layout, and another coarser representation for arbitrary
concrete values.

The basic arithmetic and pointer abstractions stand only for C val-
ues independent of the memory layout. They simply describe a set
of C values, and their concretization is the set of constant functions,
from any memory layouts to a C value in the set they describe. Their
representation of sets of C values and their abstract semantics are
quite precise.

On the other hand, values depending on the memory layout are
captured by an imprecise abstraction called garbled mix, whose se-
mantics is postponed to the next subsection.

5.3.1.1 Basic Integer Abstractions

The basic integer abstractions represent sets of integer values. They
are a reduced product of sets of discrete integers and integer intervals
with congruence.

122 value abstractions

discrete sets The sets of integers are not real abstractions: they
represent exactly their elements. However, for performance reasons,
their cardinal is kept small: above a certain limit, they are automati-
cally converted into integer intervals. Their maximal cardinal is user-
configurable2, and is 8 by default. These sets are ordered, and are
implemented with sorted arrays.

{i1, i2, . . . , in} ∀k, ik ∈ Z k < l⇒ ik < il

integer intervals These abstract values are themselves a re-
duced product between intervals and congruence. An integer inter-
val is a pair of two values min and max in Z∪ {+∞;−∞}, such that
min ≤ max . A congruence information is encoded with two natural
integers rem and mod of N, such that 0 < mod and 0 ≤ rem < mod .
Such an interval and a congruence represent the set of integers be-
tween min and max and congruent to rem modulo mod . We write
this abstraction as:

[min..max]rem%mod

A canonical representation of these abstractions is maintained. The
lower (respectively upper) bound of the interval is always refined up
(resp. down) to the nearest integer validating the congruence. A value
carrying no congruence information has mod = 1 and rem = 0. Any
value representing less than 8 integers (by default) is automatically
converted into the set of these integers.

concretization These abstractions represent only integer val-
ues that do not depend on the memory layout. Formally, their con-
cretizations are the following:

γCVal(X) , {λ_. i | i ∈ Z ∧ i ∈ X}
γCVal([min..max]r%m) , {λ_. i | i ∈ Z ∧ min ≤ i ≤ max

∧ i ≡ r mod m}

These concretizations go into mathematical numbers. They de-
scribe sets of concrete values in any integer type. The set of concrete
values of type τ depicted by an abstraction v is then the intersection
(Vτ)ΘP ∩ γCVal(v).

By a slight abuse of notation, as a basic arithmetic abstraction v

describes only constant functions to integer i, we write i ∈ v for
λ_.i ∈ γCVal(v).

canonization Maintaining a canonical representation of these
abstractions requires conversions between discrete sets and intervals.
The conversions have to be sound through the concretization. The op-
erator continuous expands a set {i1, . . . , in} into the smallest interval

2 Through the parameter -val-ilevel

5.3 the cvalue implementation 123

and congruence abstraction whose concretization contains the con-
stants i1 to in. As the integers of the set are ordered, the interval
bounds are i1 and in. The modulo m is the greatest common divisor
of the subtractions ik − i1. Indeed, we have:

∃r, ∀k, ik ≡ r mod m ⇔ ∀k, m | (ik − i1)

And the remainder r can be deduced from the modulo m and any ik.
Conversely, the operator discrete breaks an interval [i..s]r%m (where
i and s are finite) into the set of all integers it describes. As the
bounds of the interval satisfy the congruence, both are in the set, as
well as all integers i1 + k ·m between i1 and in.

continuous({i1, . . . , in}) = [i1..in]r%m

with

{
m = gcd(i2 − i1, . . . , in − i1)

r = i1 mod m

discrete([i..s]r%m) = {i, i+m, i+ 2m, . . . , s}
where i, s ∈ Z2

Note that the discrete operation is exact, while the continuous can
lose much precision. For instance, continuous({1, 100}) = [1..100]0%1.
Finally, the canonize operator maintains a canonical representation of
the basic integer abstractions.

canonize({i1, . . . , in}) =

{
{i1, . . . , in} if n ≤ 8

continuous({i1, . . . , in}) otherwise

canonize([i..s]r%m) =

{
discrete([i′..s′]r%m) if (s′ − i′)/m<8

[i′..s′]r%m otherwise

with


i′ =

{
minj(j ≥ i ∧ j ≡ r mod m) if i ∈ Z
i otherwise

s′ =

{
maxt(t ≤ s ∧ t ≡ r mod m) if s ∈ Z
s otherwise

5.3.1.2 Basic Floating-point Abstractions

Sets of floating-point values are represented by a floating-point inter-
val, that is a pair of two double-precision floating-point numbers. It
represents the set of all floating-point numbers between them, exclud-
ing infinite and NaNs. We write them as:

[min..max]

And the concretization of such an interval is:

γCVal([min..max]) , {λ_. f | f ∈ Q ∧ min ≤ f ≤ max}

124 value abstractions

5.3.1.3 Basic Pointer Abstractions

Concrete pointer values are pairs of a program variable and an in-
teger offset, expressed in bytes. The basic pointer abstractions are
maps from variables to basic integer abstractions. The set of variables
bound in such a map M is written dom(M). A map binding the
variables xk to the abstractions ok is written as follows:

{{ &xk+ok }}k

These maps represent pointer values independent of the memory lay-
out, i.e. pointing to the same memory position in all layouts. Thus,
the concretization of a map L contains the set of all constant functions
to a pointer value (&x, i) such that the variable x is in the map, and
the integer offset i is in the concretization of L(x).

Furthermore, such a map is also used to depict the integer inter-
pretation of a pointer value. Indeed, the basic arithmetic abstractions
are unable to capture the dependence between an integer and a mem-
ory location, and cannot represent the integer conversion of a pointer.
Instead, we use the maps to represent a set of pointer values, or the
integer conversion of these pointer values. Thus, they can represent
integer values that are dependent of the memory layout, but whose
conversion into a pointer value is independent of the memory layout.

Thus, the maps may denote the possible values of an expression of
pointer or integer type. Formally, their concretization is:

γCVal({{ &x+o }}) , {λ_. (&x, i) | λ_.i ∈ γCVal(o)}
∪ {λθ. (θ(x) + i) | λ_.i ∈ γCVal(o)})

γCVal({{ &xk+ok }}k∈K) ,
⋃
k∈K

γCVal({{ &xk+ok }})

As for the integer abstractions, this concretization must be intersected
with the set of concrete values V . In particular, some of the pointer
values (&xk, i) may be invalid and not exist in Vptr. The concretiza-
tion of a basic pointer abstraction may even contain no pointer values
but only integers. For instance, at line 4 of listing 5.2, a sound ab-
straction of the variable y is the map {{ &x+[42] }}; its concretization
is the singleton {λθ. (θ(x) + 42)}, whose conversion into a pointer
value would fail. At line 5, the abstraction of the integer y-42 and of
the pointer (int *)(y-42) is the same map {{ &x+[0] }}. It is worth
noting that an access through this pointer would be an undefined be-
havior according to the C standard, but is ligitimate in our semantics
of clike, where we authorize this kind of arithmetic operation on
pointer values.

In the implementation, the numerical abstractions are embedded
into pointers abstractions as maps from the null base to the arith-
metic abstraction. For the sake of clarity, we keep separate these
abstractions in this manuscript.

5.3 the cvalue implementation 125

Listing 5.2: Basic pointer abstraction representing integers

1 #include <stdint.h>

int x = 1;

uintptr_t y = (uintptr_t)&x + 42;

5 int *z = (int *)(y - 42); �
5.3.2 Garbled Mix: a Representation of Not Constant Values

The basic pointer abstractions are able to precisely handle the whole
semantics of pointers. They also represent the integer conversion of
pointers, but are unable to interpret all the integer arithmetic on those
concrete values. For instance, the result of an integer multiplication
between two variable addresses cannot be represented as a map from
a variable to a basic integer representation.

After arithmetic operations that are meaningless on variable ad-
dresses, the precise maps for pointer values degenerate into impre-
cise abstractions in which the offset information is discarded. These
new abstractions store only the variable addresses from which the
new concrete value has been computed. These abstractions are called
garbled mix.

5.3.2.1 Definition

Let X be a set of program variables. A garbled mix GM(X) mod-
els all the concrete values whose byte interpretation according to the
memory layout depends only on the integer addresses of the vari-
ables of X . Such a concrete value has the same byte interpretation
in two memory layouts where the variables of X have the same ad-
dresses. We consider the byte interpretation of the value to make the
symbolic representation of pointer values (&x, i) dependent of the
address of x.

Definition 44. A concrete value V of type τ depends only on the
integer addresses of variables in X when for any layouts θ and θ′ that
coincide on X , the byte interpretations of the C values V (θ) and V (θ′)

are equal.

∀θ, θ′ ∈ (ΘP)2, θ|X = θ′|X ⇒ φτ (V (θ)) = φτ (V (θ′))

We denote this property by V ≡ V |X .

Definition 45 (Concretization of garbled mixes). The concretization
of a garbled mix is then defined as:

γCVal(GM(X)) = {V ∈ V | V ≡ V |X}

126 value abstractions

Finally, the widest abstraction is the special garbled mix GM(X) —
X being the set of the program variables.

Lemma 12. The concretization of GM(X) is the set of all concrete values.

γCVal(GM(X)) = V

Proof. As memory layouts are functions from X to N:

∀θ, θ′ ∈ (ΘP)2, θ|X = θ′|X ⇒ θ = θ′

⇒ ∀V ∈ V , φτ (V (θ)) = φτ (V (θ′))

And thus ∀V ∈ V , V ≡ V |X ⇒ ∀V ∈ V , V ∈ γCVal(GM(X)).

It is worth noting that a garbled mix for an expression expresses
nothing on the C values this expression may have, but only specifies
the variable addresses on which its values may depend. Thus, a gar-
bled mix may depict the possible values of any expression, regardless
of its type.

5.3.2.2 Assumption About Memory Layouts

The semantics of the cvalue abstractions makes an assumption over
the possible memory layouts of a program. It requires that the integer
address of a variable x cannot be deduced from the address of the
other program variables. If this invariant is not guaranteed for a
particular program P , then the semantics of the cvalue abstractions is
unsound for the analysis of P .

Axiom 1. Let P be a program, X the set of variables of this program, and
Θ the set of possible memory layouts for these variables. Let x be a variable
of X . The address of x is not determined by the address of all other variables
from X : there is no function f : N(|X |−1) → N such that in all layout of Θ,
the memory address of x is f(θ(X\{x})).

∀x ∈ X , @f : N(|X |−1) → N, ∀θ ∈ ΘP , θ(x) = f(θ(X\{x}))

In other words, for each variable x of the program P , there exists two
memory layout θ and θ′ such that:

• the addresses of x in θ and in θ′ are different;

• but the addresses of all other variables are the same in θ and in θ′.

∀x ∈ X , ∃(θ, θ′) ∈ (ΘP)2,

{
θ(x) 6= θ′(x)

∀y ∈ X , y 6= x ⇒ θ(y) = θ′(y)

The immediate consequence of this axiom is that a pointer value
(&x, i) belongs to the concretization of a garbled mix GM(X) if and
only if x belongs to X .

5.3 the cvalue implementation 127

Theorem 4. Let X be a set of variables, x be a variable, and i be an integer.

λ_.(&x, i) ∈ γCVal(GM(X))⇔ x ∈ X
λθ.(θ(x) + i) ∈ γCVal(GM(X))⇔ x ∈ X

Proof. Let us remind definition 22 of pointer interpretation:

φptr(&x, i) = φaddress(θ(x) + i) (5.1)

We assume first that x ∈ X . Let θ and θ′ be two memory layouts such
that θ|X = θ′|X . In particular, θ(x) = θ′(x).
Let V = (λ_.(&x, i))(θ). Equation 5.1 ensures:

φptr(V (θ)) = φaddress(θ(x) + i)

= φaddress(θ
′(x) + i) = φptr(V (θ′))

Let V ′ = λθ.(θ(x) + i), we also have:

φint(V (θ)) = φint(θ(x) + i) = φint(θ
′(x) + i) = φint(V (θ′))

In conclusion, V and V ′ belong to γCVal(GM(X)).
Conversely, let y be a variable such that λ_.(&y, i) ∈ γCVal(GM(X)).

Axiom 1 ensures the existence of two memory layouts θ and θ′ such
that: {

θ(y) 6= θ′(y)

∀x ∈ X , x 6= y ⇒ θ(x) = θ′(x)

And thus y /∈ X ⇔ θ|X = θ′|X .
By definition 45 of garbled mixes, equation 5.1 and the bijectivity of
interpretation functions (stated in definition 20):

θ|X = θ′|X ⇔ φptr(V (θ)) = φptr(V (θ′))

⇔ φaddress(θ(y) + i) = φaddress(θ
′(y) + i)

⇔ θ(y) + i = θ′(y) + i

⇔ θ(y) = θ′(y)

Finally, y /∈ X ⇔ θ(y) = θ′(y) and θ(y) 6= θ′(y) by hypothesis, which
implies y ∈ X .
The proof is exactly the same for the concrete value λθ.θ(x) + i.

This proposition allows us to define the lattice structure of cvalue
abstractions.

5.3.2.3 Lattice Structure of the Cvalue Abstractions

The diagram of Figure 5.5 defines the lattice structure of the cvalue
abstractions. The floating-point intervals are omitted. The top ele-
ment GM(X) includes all other abstractions. The inclusion of garbled
mixes is the inclusion of their variable sets. All garbled mixes include
all basic arithmetic abstractions; a garbled mix includes a pointer map

128 value abstractions

GM(X)

GM({xi}i)

{{ xi+oi }}i
[i..s]r%m

{ik}

⊥

includes

may include

GM(X) v GM(Y) ⇔ X ⊆ Y
{{ xi+oi }}i v GM(X) ⇔ ∀i, xi ∈ X

{{ xi+oi }}i v {{ yj+pj }}j ⇔ ∀i, ∃j, yj = xi ∧ oi v pj

[i..s]r%m v [i′..s′]r′%m′ ⇔

{
i ≥ i′ ∧ s ≤ s′

m ≡ 0[m′] ∧ r ≡ r′[m′]
{jl} v [i..s]r%m ⇔ ∀l, i ≤ jl ≤ s ∧ jl ≡ r[m]

{ik} v {jl} ⇔ {ik} ⊆ {jl}

Figure 5.5: Lattice structure of the cvalue abstractions

if all variables of the map belong also to the garbled mix. A map M is
more precise than another M ′ if for all variable, the abstraction of its
offset is more precise in M than in M ′ —considering that the missing
variables of a map are bound to ⊥. Finally, the lattice structure of the
arithmetic cvalue abstractions follows the standard rules of intervals
and congruences.

We prove the structure lattice for the operations involving garbled
mixes —the other abstractions being more standard.

Lemma 13. The order relation defined at Figure 5.5 is sound according to
the concretization γCVal. For all cvalue abstractions C and C ′:

C v C ′ ⇔ γCVal(C) ⊆ γCVal(C ′)

Proof. We prove the case C ′ = GM(X), according to the cvalue C.

Case 1. if C is a basic integer or float abstraction:

γCVal(C) ⊆ {λ_.r | r ∈ Q}

Let V = λ_.r with r ∈ Q. The byte interpretation of r does
not depend on the memory layout:

∀θ, θ′ ∈ (ΘP)2, φτ (V (θ)) = φτ (r) = φτ (V (θ′))

And by definition 45, for all set X , V ∈ γCVal(GM(X)).
Thus, for all basic integer or float abstraction C and all
set X ,

γCVal(C) ⊆ γCVal(GM(X))

5.3 the cvalue implementation 129

Case 2. If C is a map abstraction: C = {{ xi + oi }}i.
Let V be a concrete value in γCVal(C). It has the form V =

λ_.(&xi, j) or V = λθ.θ(xi) + j.
By theorem 4, such a concrete value belongs to γCVal(GM(X))

if and only if xi ∈ X .
Thus:

γCVal({{ xi + oi }}i) ⊆ γCVal(GM(X)) ⇔ ∀i, xi ∈ X

Case 3. If C is a garbled mix: C = GM(Y).
Let V be a concrete value of type τ in γCVal(GM(Y)).

∀θ, θ′ ∈ (ΘP)2, θ|Y = θ′|Y ⇒ φτ (V (θ)) = φτ (V (θ′))

If Y ⊆ X , then θ|X = θ′|X ⇒ θ|Y = θ′|Y , and:

∀θ, θ′ ∈ (ΘP)2, θ|X = θ′|X ⇒ φτ (V (θ)) = φτ (V (θ′))

This implies that V also belongs to γCVal(GM(X)).

Y ⊆ X ⇒ γCVal(GM(Y)) ⊆ γCVal(GM(X))

Conversely, we assume that γCVal(GM(Y)) ⊆ γCVal(GM(X)).
By theorem 4:

y ∈ Y ⇒ (λ .(&y, 0)) ∈ γCVal(GM(Y))

⇒ (λ .(&y, 0)) ∈ γCVal(GM(X))⇒ y ∈ X

And thus Y ⊆ X . We have finally:

Y ⊆ X ⇔ γCVal(GM(Y)) ⊆ γCVal(GM(X))

5.3.3 Forward Abstract Semantics of Cvalues

The cvalue semantics of the C operators is divided into the approx-
imation of the corresponding mathematical operation, and the em-
bedding of its result into the type of the concrete operator. In what
follows, we omit the emission of alarms and focus on the abstrac-
tion of the correct behaviors of the operators. Without detailing the
complete cvalue semantics, we use the integer addition as running
example.

5.3.3.1 Mathematical Arithmetic

arithmetic on basic arithmetic abstractions The basic
arithmetic abstractions represent only constant functions from mem-
ory layout to C values. The semantics of an operator♦ is its pointwise

130 value abstractions

application on C values under each memory layout independently.
As long as the operator on C values does not depend itself on the lay-
outs, its semantics on constant functions lead to a constant function.
This is the case for all operators, except for the casts between integer
and pointer values.

∀i, Vi = λ_. vi ⇒ [(♦)]
Θ

(V1, . . . , Vn) = λθ. [(♦)](V1(θ), . . . , Vn(θ))

= λ_. [(♦)](v1, . . . , vn)

Thus, the abstract semantics of basic arithmetic abstractions for
these operators produce only basic arithmetic abstractions. The se-
mantics of discrete sets amount to performing the concrete operation
on each element of the sets. The semantics of the other abstractions
follow the standard arithmetic on intervals and congruences [Moo66;
Gra89]. If an operation involves a discrete set and an interval with
congruence, the set is treated as an interval abstraction. In any case,
the resulting abstraction is revised into its canonical representation.

The abstract semantics for the integer addition is given as exam-
ple. We use the infix notation +CVal for the cvalue semantics of the
mathematical addition.

{xk}0≤k≤i +CVal {yl}0≤l≤j = canonize({xk + yl}0≤k≤i ∧ 0≤l≤j)

[ix..sx]rx%mx +CVal [iy..sy]ry%my = canonize([i..s]r%m)

where

{
i = ix + iy

s = sy + sy

m = gcd(mx,my)

r = (rx + ry) mod m

[i..s]r%m +CVal {yl}0≤l≤j = [i..s]r%m +CVal continuous({yl}0≤l≤j)

integer arithmetic on pointers abstractions As vari-
able addresses can be manipulated through integer arithmetic, the
pointer abstractions end up describing integer values. As far as possi-
ble, maps from variable to integer offsets are used as a precise repre-
sentation of the integer interpretation of valid pointer values. But for
the operations that are meaningless on pointers, the maps degenerate
into garbled mix.

We use again the integer addition as an example of the abstract
semantics on cvalues. The addition between the integer view of a
pointer and an integer is naturally defined as:

[(+int)]
Θ

(λθ. θ(x) + i , λ_. j) = λθ. θ(x) + (i+ j)

This output can be soundly described by a map from the variable x
to an abstraction of (i+ j). Let M be a basic pointer abstraction and

5.3 the cvalue implementation 131

a be a basic arithmetic abstraction, both representing a set of concrete
integer values. We want a map R such that:

M +CVal a = R

⇒ ∀x ∈ γCVal(M), ∀y ∈ γCVal(a), [(+int)]
Θ

(x, y) ∈ γCVal(R)

Note that, as the operator +int is typed, the concrete values x and y
must be of integer type. By using the notation j ∈ a for λ_.j ∈
γCVal(a), this condition can be rewritten as:

∀x ∈M, ∀i ∈M(x),∀j ∈ a, (λθ. θ(x) + (i+ j)) ∈ γCVal(R)

Thus, the map R binds each variable x in M to a basic integer ab-
straction of λ_.(i+ j), for all integers i and j in the abstractions M(x)

and a. A precise abstraction for it is M(x) +CVal a. The result of the
abstract addition is then a precise map:

{{ &xi+oi }} +CVal a = {{ &xi+(oi +CVal a) }}i

However, the map abstractions can only approximate concrete inte-
gers that point to the same memory position, regardless of the mem-
ory layouts. Yet, most integer operations on variable addresses do
not keep this property. For instance, the result of the addition of the
address of two variables x and y cannot be represented as a map
from a variable to a basic arithmetic abstraction. Indeed, the abstrac-
tion bound to x should stand for the address of y, which obviously
depends on the memory layout.

[(+int)]
Θ

(λθ. θ(x), λθ. θ(y)) = λθ. θ(x) + θ(y)

However, the resulting concrete value λθ. θ(x) + θ(y) belongs to
the concretization of the garbled mix GM({x, y}), as a function from
the integer address of the variables x and y. More generally, in the
abstract semantics of cvalues, the integer addition of two abstractions
containing variable addresses degenerates into garbled mix, only re-
taining the addresses from which the new value has been computed.
The complete abstract addition on pointer maps and garbled mix is
given by:

{{ &xi+oi }}i +CVal a = {{ &xi+(oi +CVal a) }}i
{{ &xi+oi }}i +CVal {{ &yj+pj }}j = GM({xi}i ∪ {yj}j)

{{ &xi+oi }}i +CVal GM({yj}j) = GM({xi}i ∪ {yj}j)
GM({xi}i) +CVal GM({yj}j) = GM({xi}i ∪ {yj}j)

5.3.3.2 Embedding into the Machine World

The cvalue abstractions describe sets of mathematical values, but the
actual operators of our language operate on machine values, encoded

132 value abstractions

by a fixed and finite number of bytes. Some operations have the
same semantics in the mathematical and the machine worlds. This is
typically the case for all comparison operators, whose result is always
a boolean in {0, 1}. For the other operators, we need to shrink the
abstract cvalue resulting from their mathematical semantics, in order
for it to fit inside the operator type. This last step also handles the
alarms about integer overflows.

5.3.3.3 Memory Locations of Addresses and Dereference

The cvalue abstractions of the possible memory locations of an ad-
dress are roughly the same as the basic pointer abstractions of ex-
pressions: maps from variables to offset abstractions, except that the
offsets are always expressed in bits instead of bytes. This allows the
maps to model accurately the location of bitfields. The arithmetic ab-
stractions are ineffective to account for address values, but are used
for their integer offsets.

The semantics of the variable maps are the same as before. Com-
posing an address expression and its offset amounts to the addition
of a pointer abstraction and an integer abstraction. The abstraction
of the address locations is reduced to its valid part. The valid offsets
for a variable x, expressed in bit, are [0..8 · (sizeof(x)− 1)]0%8, ex-
cept for a bitfield, on which case no assumption can be made on the
alignment of the offset. We omit the bitfield case in the following.
The reduction of a map amounts to the reduction of all its offsets.
The reduction of a garbled mix coming from an expression allows its
conversion into a map, from the variables it contains to all possible
offsets for them. Indeed, a dereference requires that the pointed loca-
tion is the same in all memory layouts, which is exactly expressed by
such a map.

offset(x) = [0..8 · (sizeof(xi)− 1)]0%8

valid({{ &xi+oi }}i) = {{ &xx+(oi u offset(x)) }}i
valid(GM({xi}i)) = {{ xi+ offset(xi) }}i

This forward reduction can be crucial for the precision of the analy-
sis. As we have seen above, a garbled mix tends to propagate to all ab-
stractions, as the composition through any operator of a garbled mix
and any other abstraction leads to another garbled mix. However, by
requiring the address to be independent of the memory layout, deref-
erences allow reducing a garbed mix to a precise map representation.

5.3.4 Meet of Garbled Mixes

5.3.4.1 Motivation and General Considerations

Backward propagators on the basic cvalue abstractions can be imple-
mented by following the standard rules of interval, congruence and

5.3 the cvalue implementation 133

pointer arithmetic. The next section is dedicated to an abstract back-
ward semantics involving garbled mixes. As garbled mixes are very
loose approximations, their reduction is of particular importance for
the analysis precision. However, most reductions on garbled mixes
are only possible if the variable addresses are adequately indepen-
dent from each other in the possible memory layouts of a program.
Ideally, we want the guarantee that if a concrete value depends only
on the variable addresses in X on one hand, and on the variable
addresses in Y in the other, then it depends only on the variable ad-
dresses in X ∩ Y . This would allow us to define the meet between
garbled mixes as:

GM(X) uCVal GM(Y) = GM(X ∩ Y)

This definition is correct if and only if:

γCVal(GM(X)) ∩ γCVal(GM(Y)) ⊆ γCVal(GM(X ∩ Y))

If any function from program variables X to integers N were a
memory layout, this would definitely be the case.

Proof. Let V be a concrete value in both concretizations of GM(X)

and GM(Y), and let θ and θ′ be two functions from X to N such that
θ|X∩Y = θ′|X∩Y . We define a third function θ” by:

θ”(x) =

θ(x) if x ∈ X

θ′(x) otherwise

As θ|X∩Y = θ′|X∩Y , we have θ|X = θ”|X and θ′|Y = θ”|Y .
By definition 45, φτ (V (θ)) = φτ (V (θ”)) = φτ (V (θ′)).
Thus, for all functions θ and θ′:

θ|X∩Y = θ′|X∩Y ⇒ φτ (V (θ)) = φτ (V (θ′))

Which implies that V is in γCVal(GM(X ∩ Y)).

However, definition 21 imposes some restriction over memory lay-
outs, and the intermediate function used in the proof could not be a
memory layout.

5.3.4.2 Difficulties

Variable addresses cannot be completely independent from each oth-
ers, as definition 21 precludes overlapping between variables. There-
fore, if x and y are different variables, then their addresses cannot be
the same in a valid memory layout. Axiom 1 excludes the address of a
variable to be certainly determined by the addresses of the other vari-
ables. This is equivalent to state that the addressing space is strictly
larger than the set of program variables. The size of the addressing

134 value abstractions

space is determined by the number of possible pointer values, namely
2sizeof(ptr), and a variable x takes sizeof(x) bytes in memory, plus
one byte after that must not overlap with an other variable either (see
definition 21). Finally, the address 0 is reserved to the null pointer.∑

x∈X
(sizeof(x) + 1) + 1 < 2sizeof(ptr)

However, this is not sufficient for our needs, as illustrated by the
following exemple.

Example 10. We consider a set X of variables, and assume the ad-
dressing space to be only one more than

∑
x∈X (sizeof(x) + 1) + 1.

Let x be a variable of X , and θ be any valid memory layout for X .
Then we have:

θ(x) < 3 ⇔ ∀y ∈ X\{x}, θ(y) > 2

Thus, the concrete value V = λθ.(θ(x) < 3) can be computed in each
layout from θ(x) or from the set of θ(y) for all other variables y. This
means that V belongs to GM({x}) and to GM(X\{x}).
Thus, GM({x}) uCVal GM(X\{x}) 6= GM(∅).

5.3.4.3 New Restrictions on the Addressing Space

As axiom 1 is not strong enough, we reinforce it by axiom 2: it re-
quires that the difference between the size of the addressing space
and the size of all program variables is bigger than the size of the
biggest program variable.

Axiom 2.∑
x∈X

(sizeof(x) + 1) + 1 + max
x∈X

(sizeof(x)) < 2sizeof(ptr)

Lemma 14. Given a program P with a set X of variables and two memory
layouts θ and θ′ in ΘP , axiom 2 ensures the existence of a series of valid
memory layouts θ0, . . . , θn such that θ0 = θ, θn = θ′ and:

∀i ∈ {1, . . . , n}, ∃x ∈ X , ∀y ∈ X , y 6= x ⇒ θi(y) = θi−1(y)

Proof. The complete proof is given in Annex B. The idea is to shift one
variable at a time in θ and θ′ until all variables are adjacent, starting at
address 1. Then, axiom 2 ensures that it remains enough addressing
space to move any variable at the end of the space. The same variable
is put at the same address at the end of the addressing space in the
two series, and the process can be repeated on the remaining vari-
ables (shifting the variables to fill the gap left by the previous move,
and chosing a shared variable to move at the released space).

Lemma 14 allows us to define the meet of two garbled mixes of
disjoint sets of variables.

5.3 the cvalue implementation 135

Lemma 15. Let X and Y be two sets of program variables. Then:

X ∩ Y = ∅ ⇒ GM(X) uCVal GM(Y) = GM(∅)

The concretization of GM(∅) is the set of concrete values V that are constant
according to the layout: ∀(θ, θ′), φ(V (θ)) = φ(V (θ′)).

Proof. Let X and Y be two sets of program variables such that X ∩
Y = ∅. Let V ∈ V be a concrete value of type τ that belongs to
γCVal(GM(X)) and γCVal(GM(Y)). We want to prove that V also be-
longs to γCVal(GM(X ∩ Y)). Let θ and θ′ be two memory layouts. By
lemma 14, there exists a series of layouts (θi)0≤i≤n from θ to θ′ such
that:

∀i ∈ {1, . . . , n}, ∃x ∈ X , ∀y ∈ X , y 6= x ⇒ θi(y) = θi−1(y)

Let i ∈ {1, . . . , n}. Let x such that y 6= x ⇒ θi(y) = θi−1(y).

• Either x /∈ X , and thus θi−1|X = θi|X . As V ∈ γCVal(GM(X)), we
have φτ (V (θi)) = φτ (V (θi−1));

• Or x ∈ X , and thus x /∈ Y . By the same reasoning applied to Y ,
φτ (V (θi)) = φτ (V (θi−1)).

For each i ∈ {1, . . . , n}, φτ (V (θi)) = φτ (V (θi−1)).
Finally, φτ (V (θ)) = φτ (V (θ0)) = φτ (V (θn)) = φτ (V (θ′)),
and V ∈ γCVal(GM(∅)).

However, axiom 2 is still not sufficient to allow the general defini-
tion of garbled mixes. To extend the preceding proof to the general
case where X ∩ Y 6= ∅, we need the existence of a series of layouts
from θ to θ′ such that two successive layouts differ only on one vari-
able x such that θ(x) 6= θ(x′). This means that the series of layouts
from θ to θ′ remains constant on the variables such that θ(x) = θ′(x).

Axiom 3.

(
∑
x∈X

(sizeof(x) + 1)) + 1 + (|X |+ 2)(max
x∈X

(sizeof(x))) < 2sizeof(ptr)

Conjecture 1. Given a set X ⊆ X of variables and two memory layouts θ
and θ′ such that θ|X = θ′|X , axiom 3 ensures the existence of a series of
valid memory layouts θ0, . . . , θn such that θ0 = θ, θn = θ′ and:

∀i ∈ {1, . . . , n}, ∃x ∈ X\X, ∀y ∈ X , y 6= x ⇒ θi(y) = θi−1(y)

Proof. We only give a general idea of a proof of this conjecture by
induction on the number of variables x such that θ(x) 6= θ(x′). The
result is trival if there is no such variable. Otherwise, we choose such
a variable x, and simply move it in θ by defining θ(x) , θ′(x). If the
new function is a layout (i.e. if there is no aliasing conflict), then we
are in the inductive case. Otherwise, there is a variable y such that
θ(y) and θ′(x) are in conflict. In this case, axiom 3 gives us enough
addressing space to move y in θ before moving x.

136 value abstractions

Lemma 16. Let X and Y be two sets of program variables,

GM(X) uCVal GM(Y) = GM(X ∩ Y)

Proof. Let V ∈ V a concrete value that belongs to γCVal(GM(X)) and
γCVal(GM(Y)). Let θ and θ′ be two memory layouts such that θ|X∩Y =

θ′|X∩Y . By conjecture 1, there exists a series of layouts (θi)0≤i≤n
from θ to θ′ such that:

∀i ∈ {1, . . . , n}, ∃x ∈ X\(X ∩ Y), ∀y ∈ X , y 6= x ⇒ θi(y) = θi−1(y)

Let i ∈ {1, . . . , n}. Let x ∈ X\(X ∩ Y) such that y 6= x ⇒ θi(y) =

θi−1(y).

• Either x /∈ X , and θi−1|X = θi|X ⇒ φτ (V (θi)) = φτ (V (θi−1))

• Or x /∈ Y , and θi−1|Y = θi|Y ⇒ φτ (V (θi)) = φτ (V (θi−1))

For each i ∈ {1, . . . , n}, φτ (V (θi)) = φτ (V (θi−1)).
Thus, φτ (V (θ)) = φτ (V (θ0)) = φτ (V (θn)) = φτ (V (θ′))

and V ∈ γCVal(GM(∅)).

5.3.4.4 Discussion on the Address Space Restrictions

In order to define some relevant reductions on garbled mixes, we have
made some restrictions on the address space offered by the range of
pointer values. We require the address space to be large enough (com-
pared to the space required by the variables of a program), so that no
bit of information about the integer addresses of some variables can
be inferred from the integer addresses of other variables. Axiom 1

ensures that the integer address of a variable x cannot be computed
from the integer addresses of other variables. Axiom 2 ensures that
any concrete value that can be computed from the integer addresses
of two disjoint sets of variables is a constant functions: it does not
depend on the memory layout. In particular, this is the case for the
integer address of x, which is not a constant function, and thus cannot
be computed from the addresses of other variables. Axiom 3 ensures
that a concrete value that can be computed from the integer addresses
of two sets X and Y of variables is a function that depends only on
the integer addresses of the variables in X ∩ Y : it has the same C
value in two memory layouts in which the variables of X ∩ Y have
the same addresses. It can thus be computed from these addresses
only. It is worth noting that axiom 3 entails axiom 2, which in turn
entails axiom 1.

These restrictions on the range of pointer values may seem too
strong. However, on modern architectures, the limitation of the ad-
dress space comes from the hardware rather than from the range of
pointer values. When pointers are stored on 64 bits, 16 exabits of
storage are required to exhaust the address space. Thus, axiom 3 is

5.3 the cvalue implementation 137

a sensible assumption on 64 bit systems: it holds for any program
that does not require several exabits of memory to be executed. In
more constrained architectures, our backward propagators on gar-
bled mixes remain sound on programs that do not take advantage of
the limited address space to compute the same information about the
memory layout from the addresses of different variables. This also
seems to be a sensible request.

A last observation can also mitigate the severity of our axioms. In
definition 21 of memory layouts, the non-aliasing condition applies si-
multaneously to all the variables of a program. This choice was made
for the sake of simplicity. In practice, variables have a scope, and they
do not exist in memory outside their scope. The non-aliasing condi-
tion could thus be weakened: at each program point, it must be valid
for all the variables in scope at this point. Then, the axioms need to
hold only for the set of variables in scope at a program point.

5.3.5 Backward Propagators

We prove here the two lemmas that ensure the soundness of a back-
ward propagation of the garbled mixes involved on an addition. Ax-
iom 2 allows a backward propagation in the specific case of two gar-
bled mixes that do not intersect. Axiom 3 leads to a general backward
propagation.

Lemma 17. Let X = {xi}, Y = {yi} and Z = {zi} three sets of variables
such that X ∩ Y = ∅. Let M be a basic pointer map such that dom(M) =

Z. Assuming axiom 2, if

x + y = z

∈ ∈ ∈

GM(X) GM(Y) M

then

x ∈ {{ xi +> | xi ∈ Z }} ∪ {{ null+> }}
y ∈ {{ yi +> | yi ∈ Z }} ∪ {{ null+> }}

Proof. Let VX , VY and VZ be three concrete values of arithmetic type τ
such that VX + VY = VZ and

VX ∈ γCVal(GM(X)) VY ∈ γCVal(GM(Y)) VZ ∈ γCVal(M)

There exists z ∈ Z and i ∈ N such that VZ = λθ.θ(z) + i.
We assume z /∈ Y (otherwise, z /∈ X as X ∩ Y = ∅, and the proof is
symmetric). Let θ and θ′ two memory layouts. By lemma 14, there
exists a series of layouts θ0, . . . , θn such that θ0 = θ, θn = θ′ and

∀i ∈ {1, . . . , n}, ∃xi ∈ X , ∀y ∈ X , y 6= xi ⇒ θi(y) = θi−1(y)

Let i ∈ {1, . . . , n}.

138 value abstractions

• If xi /∈ X , then VX(θi) = VX(θi−1).

• Otherwise, x /∈ Y and VY (θi) = VY (θi−1).

– If x 6= z, VZ(θi) = VZ(θi−1). As VX = VZ − VY , we also
have VX(θi) = VX(θi−1).

– Otherwise, VX(θi)− VX(θi−1) = θi(z)− θi−1(z).

In all cases, VX(θi)− VX(θi−1) = θi(z)− θi−1(z).
Thus, VX(θ′)− VX(θ) = θ′(z)− θ(z).
This equation holds for any layouts θ and θ′. We can conclude that it
exists k ∈ N such that for any layout θ:{

VX(θ) = θ(z) + k

VY (θ) = i− k

And thus VX ∈ γCVal({{ z+> }}) and VY ∈ γCVal({{ null+> }}).
This is true for any z ∈ X ∩Z, and symmetrically for any z ∈ Y ∩Z.
In the general case, we have:{

VX ∈ γCVal({{ xi +> | xi ∈ Z }} ∪ {{ null+> }})
VY ∈ γCVal({{ yi +> | yi ∈ Z }} ∪ {{ null+> }})

As the addition is inversible, the general backward propagator can
simply be defined using the forward semantics and the meet operator.

Lemma 18. Let X = {xi}, Y = {yi} and Z = {zi} three sets of variables.
LetMX , MY andMZ be three basic pointer maps such that dom(MX) = X ,
dom(MY) = Y and dom(MZ) = Z. Assuming axiom 3, if

x + y = z

∈ ∈ ∈

GM(X) GM(Y) GM(Z)

or MX or MY or MZ

then

x ∈ GM(X ∩ (Y ∪Z))

y ∈ GM(Y ∩ (X ∪Z))

Proof. Let VX , VY and VZ be three concrete values of arithmetic type τ
such that VX + VY = VZ and

VX ∈ γCVal(GM(X)) VY ∈ γCVal(GM(Y)) VZ ∈ γCVal(GM(Z))

Then VX = VZ − VY and VZ − VY ∈ γCVal(Y ∪Z).
Thus:

VX ∈ γCVal(GM(X))∩γCVal(GM(Y ∪Z)) ⊆ γCVal(GM(X)uCVal GM(Y ∪Z))

5.3 the cvalue implementation 139

and by lemma 16:

γCVal(GM(X) uCVal GM(Y ∪Z)) ⊆ γCVal(GM(X ∩ (Y ∪Z)))

Finally, VX ∈ γCVal(GM(X ∩ (Y ∪Z)). The proof is identical for VY .
As MX vCVal GM(X):

V ∈ γCVal(MX) ⇒ V ∈ γCVal(GM(X))

Likewise for MY and MZ , and the proof holds for VX ∈ γCVal(MX),
or VY ∈ γCVal(MY), or VZ ∈ γCVal(MZ). Naturally, if VX ∈ γCVal(MX)

and VY ∈ γCVal(MY), there is a more precise backward propagation
using pointer arithmetic.

conclusion

An abstract semantics of expression is implemented through alarm
maps and value abstractions. An alarm map reports the undesir-
able behaviors that may arise when the evaluation of an expression
reaches an illegal operation. A value abstractions represents the valid
results of the evaluation of an expression. Forward and backward
functions over-approximate the semantics of each operator ♦ of the
programming language, linking abstractions of the operands and ab-
stractions of the result. In a language with pointers, the value abstrac-
tions can also represent variable addresses and pointer values. On a
language where the addresses of variables can be handled as stan-
dard integers, the abstract semantics of values must also be able to
soundly interpret the integer arithmetic on pointer values. To remain
scalable, EVA uses coarse abstractions, named garbled mixes, to rep-
resent the integer computations on addresses that cannot be easily
represented as standard pointer values. Backward propagators are
then important to regain precision on garbled mixes, but they require
further assumptions about the address space provided by the range
of possible pointer values.

The next chapter describes how a generic engine to compute sound
abstractions of complete expressions can be derived from the abstract
semantics of operators.

6
E VA L U AT I O N O F E X P R E S S I O N S

A value abstraction implements a full abstract semantics for all the
operators of our language. These semantics issue alarms to report
undesirable behaviors; otherwise, they over-approximate their effects
by producing abstractions for the result, or for the operands. Like-
wise, a location abstraction represents the meaning of addresses, by
modeling the offset of fields in structures and cells of arrays.

Thus, value and location abstractions allow the evaluation of all
expression fragments, except for dereferences. Indeed, dereferences
depend on the concrete state in which they occur, more precisely on
the content of memories at the location pointed out by the address.
This chapter assumes given an abstract semantics for the dereference:
a forward and a backward function that link an (abstract) location to
the (abstract) value at this location.

F#
∗τ (S#) : L# → V#

B#
∗τ (S#) : V# → L#

This is actually the main feature required from a state abstraction
—also called abstract domain. Unlike the semantics of other oper-
ators, these functions depend on the current abstract state S#, rep-
resenting a set of concrete states. Equipped with such functions, a
value abstraction and a location abstraction are sufficient to evaluate
any expression, by successive applications of the appropriate abstract
semantics.

This chapter is dedicated to the inner workings of the EVA evalua-
tor and the strategies it uses, regardless of the underlying abstractions
it relies on. We especially focus on the trade-off reached for the inter-
weaving of forward and backward evaluations. We also mention the
partitioning of evaluations, to mitigate the need for relational infor-
mation.

6.1 evaluation and valuation

This section presents the generic evaluator of EVA, that can be instan-
tiated above any value and state abstractions. The previous chapter
was dedicated to the value abstractions of EVA. This section first
explains the requirements that the state abstraction must fulfill, and
then presents the operating principles of the evaluator, that acts by
atomic update of maps from expressions to value abstractions, named
valuations.

141

142 evaluation of expressions

1 module Make

(Value : Abstract_value.S)

(Loc : Abstract_location.S with type value = Value.t)

(Domain : Abstract_domain.S with type value = Value.t

5 and type location = Loc.location) �
Figure 6.1: The evaluation functor

6.1.1 A Generic Functor

In EVA, the generic evaluator is an OCaml functor from a module of
value abstractions, a module of location abstractions and a module of
state abstractions. These abstractions have to be compatible with each
other. The location semantics use the value abstractions of the expres-
sions appearing in addresses. Conversely, on C expressions such as
addrof(a) and startof(a), the abstract location of the address a must
be converted into an abstract value for the expression. Finally, the
abstract semantics of dereferences, provided by the state abstraction,
are functions mapping a location to a value abstraction.

6.1.2 Abstract Domain Requirement

We present here the features required from an abstract domain (our
state abstractions) in order to enable the evaluation of expressions.
Chapter 7 is fully dedicated to abstract domains, and expounds their
formalization with more details and examples. An abstract domain D
is a collection of state abstractions: each abstract state represents a set
of concrete states. As usual, we assume the existence of a concretiza-
tion function γD that links abstract states to concrete states.

γD : D→ P(S)

The evaluation of an expression depends on an abstract state, describ-
ing the possible concrete states in which the evaluation occurs. The
domain implements different queries that supplies the evaluator with
value abstractions.

6.1.2.1 Abstract Semantics of Dereferences

The first query of an abstract domain is the abstract semantics of
dereference, mandatory to complete the evaluation of expressions.
This semantics takes place in an abstract state D. The forward seman-
tics F

#
∗τ (D) receives an abstraction of the possible memory locations

of the lvalue being dereferenced; it computes a sound value abstrac-
tion of the concrete values that may be stored in these locations in all
the states represented by the abstract state D. F

#
∗τ (D) also produces

the alarms that ensure the validity of the location, and that the con-

6.1 evaluation and valuation 143

tents of the read memory slice are proper (i.e. not indeterminate in C
parlance, and in particular initialized).

Thus, in an abstract state D, from an abstract location l, the value
abstraction and the alarm map produced by F

#
∗τ (D) must be a sound

approximation of J∗τ cK
Θ

(S), for any concrete state S in γD(D) and
any constant c in γV(l).

F#
∗τ : D→ L# → V# ×A

∀c ∈ γL(l),∀S ∈ γD(D), F#
∗τ (D, l) |=V×A J∗τ cK

Θ
(S)

See definition 40 for the formalization of |=V×A. It is worth noting
that this forward semantics only abstracts the dereference of constant
locations c in γL(l), which must be valid locations to avoid undesir-
able behaviors. It does not handle the evaluation of an address into
a memory location, whose abstract semantics is provided by location
abstractions.

The backward counterpart B
#
∗τ (D, l, v) of this abstract semantics

tries to reduce the abstract location l, knowing a value abstraction v of
its dereference. The concretization of the new abstract location must
contain all the concrete locations that lead to a concrete value in γV(v)

in the concrete states in γD(D).

B#
∗τ : D→ L# → V# → L#

γL(B#
∗τ (D, l, v)) ⊇ {c ∈ γL(l) | ∃S ∈ γD(D), J∗τ cK

Θ
(S) ∈ γV(v)}

The forward and backward semantics of dereferences provided
by an abstract domain are respectively illustrated in Sections 7.1.1
and 7.2.1.

6.1.2.2 Additional Queries

As abstraction of the concrete states, the abstract domain is naturally
able to provide an abstract semantics for dereference. However, an
abstract domain may infer some relevant properties on other expres-
sions than dereferences. Thus, an abstract domain also supplies the
evaluator with alarm maps and value abstractions for arbitrary ex-
pressions. This is the query F

#
D (D, e), which computes sound ab-

stractions of the concrete evaluation of an expression e in an abstract
state D

F
#
D : D→ expr → V# ×A

∀S ∈ γD (D) , F#
D (D, e) |=V×A JeK

Θ
(S)

This additional query is detailed in Section 7.1.2.

144 evaluation of expressions

6.1.3 Valuations

The generic evaluator manipulates partial maps from expressions to
value abstractions. Such a map stores the results of all computations
done during an evaluation, including all intermediate steps. They
make available the value abstraction computed for each expression
fragment processed by the evaluator. These maps are called valua-
tions, ranged over by E . They are abstractions of sets of concrete
states.

6.1.3.1 Formalization

Definition 46 (Valuations). A valuation is a partial function from ex-
pressions to value abstractions. A valuation E represents all the con-
crete states S for which the abstraction E(e) is a sound approximation
of the concrete evaluation JeK

Θ
(S), for all expressions e in the valua-

tion.
γE(E) , {S | ∀e ∈ dom(E), JeK

Θ
(S) ∈ γV(E(e))}

Notation 6. The set of valuations is denoted E.

E = expr 9 V#

By extension, we consider that any missing expression in a valua-
tion is implicitly bound to the special top abstraction >V+Ω, whose
concretization is the set of concrete values plus the error value. Then,
a valuation E abstracts the set of concrete states S such that for all
expression e, JeK

Θ
(S) ∈ γV(E(e)). However, notice that a valuation

only contains explicitly value abstraction for some expressions, with-
out any error abstraction. Thus, a valuation only abstracts the states
in which the concrete evaluation of these expressions succeeds. To
exclude the potential error cases —and the states leading to them—,
the evaluator also produces alarms, separately from valuations.

In order to store evenly all computations of an evaluation, a valua-
tion is actually a pair of a two maps, one from expressions to value
abstractions and the other from addresses to locations abstractions.
Both maps work in the same way, so we omit the second map in the
formalization for the sake of simplicity. Also, the two maps are used
to record some other information provided or used by the evaluator.
However, these additional data impact neither the concretization nor
the soundness of the valuation, and may safely be omitted from their
formalization.

6.1.3.2 Lattice Structure

The valuations naturally get a lattice structure. A valuation E1 is
more precise than another valuation E2 whenever E1 contains at least
all expressions constrained by E2, and that their abstractions in E1

6.1 evaluation and valuation 145

are more precise than those in E2. The top valuation is the empty
valuation, that constrains the value of no expression. The join and the
meet are defined by the pointwise application of the corresponding
operations in the underlying abstractions. Finally, would a valuation
bind an expression to the bottom abstraction, then the valuation is
itself ⊥.

Definition 47 (Lattice of valuations). The lattice of valuations is de-
fined as:

E vE E ′ ⇔ ∀e ∈ dom(E ′), e ∈ dom(E) ∧ E(e) vV E ′(e)
dom(E tE E ′) , dom(E) ∩ dom(E ′)
dom(E uE E ′) , dom(E) ∪ dom(E ′)

E tE E ′ , λe. E(e) tV E ′(e) if e ∈ dom(E tE E ′)

E uE E ′ , λe.


E(e) uV E ′(e) if e ∈ dom(E) ∩ dom(E ′)

E(e) if e ∈ dom(E)\dom(E ′)

E ′(e) if e ∈ dom(E ′)\dom(E)

Lemma 19. The valuation order is consistent with the concretization:

E vE E ′ ⇒ γE (E) ⊆ γE (E ′)

Proof. This lemma relies on the same soundness property of the un-
derlying value lattice: v vV v′ ⇒ γV(v) ⊆ γV(v′). Thus, we can
rewrite:

E vE E ′ ⇒ dom(E ′) ⊆ dom(E) ∧ ∀e ∈ dom(E ′), γV(E(e)) ⊆ γV(E ′(e))

We assume E vE E ′. Then, for any concrete state S ∈ S, we have:

∀e ∈ dom(E), JeK
Θ

(S) ∈ γV (E (e))

⇒ ∀e ∈ dom(E ′), JeKΘ(S) ∈ γV (E (e))

⇒ ∀e ∈ dom(E ′), JeKΘ(S) ∈ γV (E ′ (e))

Thus, by definition 46, γE (E) ⊆ γE (E ′).

Lemma 20. The valuation join is an over-approximation of the union of
concrete states.

γE(E) ∪ γE(E ′) ⊆ γE(E tE E ′)

Proof. Let E” = E tE E ′, and let S ∈ γE(E)∪ γE(E ′). We need to prove
that S ∈ γE(E”).
Let e ∈D dom(E”). By definition of the join, e ∈ dom(E) ∩ dom(E ′).
By definition of the concretization of valuations:

JeK
Θ

(S) ∈ γV(E(e)) ∨ JeK
Θ

(S) ∈ γV(E ′(e))

146 evaluation of expressions

By soundness property of the join of value abstractions:

JeK
Θ

(S) ∈ γV(E(e) tV E ′(e))

As E”(e) = E(e) tV E ′(e), we finally have:

∀e ∈ dom(E”), JeK
Θ

(S) ∈ γV(E”(e))

Which implies S ∈ γE(E”).

Lemma 21. The valuation meet is an over-approximation of the intersection
of concrete states.

γE(E) ∩ γE(E ′) ⊆ γE(E uE E ′)

Proof. Let E” = E uE E ′, and let S ∈ γE(E)∩ γE(E ′). We need to prove
that S ∈ γE(E”).
Let e ∈D dom(E”). By definition of the meet, e ∈ dom(E) ∪ dom(E ′).

Case 1. e ∈ dom(E) ∩ dom(E ′)
By definition of the concretization,

JeK
Θ

(S) ∈ γV(E(e)) ∧ JeK
Θ

(S) ∈ γV(E ′(e))

By soundness property of the meet of value abstractions:

JeK
Θ

(S) ∈ γV(E(e) uV E ′(e)) = γE(E”)

Case 2. e ∈ dom(E)\ dom(E ′)
By definition of the concretization,

JeK
Θ

(S) ∈ γV(E(e)) = γE(E”)

Case 3. e ∈ dom(E ′)\ dom(E): symmetric case.

In all three cases, ∀e ∈ dom(E”), JeK
Θ

(S) ∈ γE(E”).
Thus, S ∈ γE(E”).

6.1.4 Forward and Backward Evaluations

6.1.4.1 Definitions

A forward evaluation of an expression is an abstract transposition of
its concrete evaluation, through the complete semantics induced by
the value, location and state abstractions. It is a bottom-up propa-
gation of value (and location) abstractions, from the leaves (the con-
stants) to the root of the expression. The constants are first converted
into value abstractions, including the integer addresses of the vari-
ables appearing in the expression. Then, the forward evaluation re-
lies on the abstract forward semantics of operators and dereference

6.1 evaluation and valuation 147

to approximate the value of each subterm, until it reaches the root ex-
pression. It also accumulates the alarms issued by these semantics at
each step. The alarms ensuring the absence of undesirable behavior
during the concrete evaluation of the expression are the union of all
those alarms.

Conversely, a backward evaluation is a top-down propagation that
aims at reducing the value (and location) abstractions computed for
the subterms of an expression, knowing an abstraction of the value
of the expression. It relies on the abstract backward semantics for
operators and dereference, which learn information from the result
of an operation – possibly enabling reductions on the arguments.

Both evaluations operate on a valuation. At the beginning, the valu-
ation is empty by default, but an evaluation can also be initiated with
a valuation that already constrains the value of some expressions. At
each step, the forward or the backward evaluation fills this valuation
with the computed abstractions. At the end, the valuation is the main
result of the evaluation: it contains all the computed abstractions, in-
cluding one for the root expression. Thus, forward and backward
evaluations are functions from an initial valuation to an updated val-
uation. In addition, the forward evaluation produces a map of alarms,
and the backward evaluation takes as argument a value abstraction
for the root expression.

Notation 7 (Forward and backward evaluation). For an abstract stateD,
we write respectively JeK#

D and J←−e K#
D the forward and the backward

evaluation of the expression e.

J · K#
D : E→ E×A

J←−· K#
D : E×V# → E

Forward and backward evaluations over-approximate the concrete
evaluation of e in all the concrete states in the concretization of D.
Their soundness, defined below, relies on the concretization of the
abstract state D.

6.1.4.2 Soundness and Precision Requirements

Basically, both abstract evaluations must preserve the soundness of
the valuation. An evaluation plays out in an abstract state, and starts
with an initial valuation. Both the abstract state and the valuation
are abstractions of a set of concrete states. An abstract evaluation ap-
proximates the possible concrete value of expressions in the concrete
states represented by both abstractions.

Notation 8. Let D be an abstract state and E be a valuation. We de-
note by γDE(D, E) the intersection of the concretization of an abstract
state A and the concretization of a valuation E .

γDE(D, E) , γD (D) ∩ γE (E)

148 evaluation of expressions

Proposition 1 (Soundness of a forward evaluation). A sound forward
evaluation JeK#

D(E) produces an alarm map A and a valuation E ′ such that,
for any state S in γDE(D, E):

• A is a sound abstraction of the undesirable behaviors of JeK
Θ

(S);

• if the expression e evaluates without error in S, the valuation E ′ is
still a sound abstraction of S. Otherwise, this state is excluded by
some assertions of the alarm map.

J e K#
D(E) = E ′,A ⇒ ∀S ∈ γDE(D, E),

{
A |=A JeK

Θ
(S)

JeK
Θ

(S) 6= Ω ⇒ S ∈ γE(E ′)

A backward evaluation ignores the undesirable behaviors and deals
only with value (and location) abstractions. It takes a value abstrac-
tion v for the expression e, and updates a valuation accordingly.

Proposition 2 (Soundness of a backward evaluation). A sound back-
ward evaluation J←−e K#

D(E , v) produces a valuation E ′ which is a sound ab-
straction of all concrete states of γDE(D, E) in which e evaluates to a con-
crete value in γV(v).

J←−e K#
D(E , v) = E ′ ⇒ ∀S ∈ γDE(D, E), JeK

Θ
(S) ∈ γV(v)⇒ S ∈ γE(E ′)

In both cases, the condition on the produced valuation E ′ implies
that the abstraction bound in E ′ to any expression is a correct approx-
imation of its possible concrete value in some states of γDE(D, E).
For a forward evaluation, these are the states in which the concrete
evaluation succeeds. For a backward evaluation, these are the states
for which the given value abstraction represents the resulting value
of the concrete evaluation. However, in both cases, there is no guar-
antee that the new valuation actually contains an abstraction for the
requested expression. In fact, according to the soundness require-
ment, the empty valuation is always sound as the result of a forward
or a backward evaluation. Thus, we also impose some precision re-
quirements to an abstract evaluation.

Proposition 3 (Precision of forward and backward evaluations). A
precise forward evaluation J e K#

D(E) or backward evaluation J←−e K#
D(E , v)

produces a valuation E ′ such that:

• the updated valuation E ′ is more precise than the initial valuation E ;

• the updated valuation E ′ contains an abstraction of the requested ex-
pression e;

• in the case of the backward evaluation J←−e K#
D(E , v), the value abstrac-

tion bound to e in the new valuation E ′ is at least as precise as the
given value v.

6.1 evaluation and valuation 149

J e K#
D(E) = E ′,A ⇒ E ′ vE E ∧ e ∈ dom(E ′)

J←−e K#
D(E , v) = E ′ ⇒ E ′ vE E ∧ e ∈ dom(E ′) ∧ E ′(e) v v

In practice, all subterms of the requested expression appear in
the valuation produced by our evaluator. However, the abstractions
bound to some subterms or to the requested expression itself may be
very imprecise, and may even be the top value abstraction.

6.1.5 Atomic Updates of a Valuation

An evaluation is implemented as a series of atomic updates of a val-
uation, following the abstract semantics applied to the abstractions it
already contains. Definition 48 formally defines the atomic forward

and backward steps at the level of an expression e, which may be
the root expression to be evaluated, or any of its subterms. Let E
be the current valuation and D the current abstract state. If the ex-
pression e is an operation ♦(e1, . . . , en), the forward step binds e to
the meet of the value abstractions given by the semantics F

#
♦ applied

to E(e1) to E(en), and by the query F
#
D (D,♦(−→ei)) of the abstract do-

main. The backward step binds sequentially the expressions e1 to en
to the abstractions given by the semantics B

#
♦ applied to E(e1), . . . ,

E(en) and E(e). If one of the expressions is not bound in the map,
the top value abstraction >V is used instead. The same principles
apply to the dereference, with the abstract semantics F#

∗τ and B
#
∗τ pro-

vided by the abstract domain. We omit the computation of addresses,
which follows likewise the abstract semantics of location abstractions,
with the same requirements as for the value abstractions. Finally, if
the expression e is a constant c, the forward step binds e to the ab-
stract embedding c# of the constant, while the backward step is the
identity.

Also, the update of a valuation is conservative: when a new ab-
straction v is computed for an expression e at any step, the update

operation of valuations meets the new abstraction v with the previ-
ous abstraction bound at e in the valuation.

150 evaluation of expressions

Definition 48 (Atomic update of a valuation). In an abstract state D
and the valuation E , the forward and backward atomic updates of a
valuation are defined as:

E(e) ,

E(e) if e ∈ dom(E)

>v otherwise

update(E , e, v) , E [e 7→ E(e) uV v]

F♦#(♦(−→ei)) , fst(F#
♦(
−−−→
E(ei))) uV fst(F#

D (D,♦(−→ei)))

forward(E , e) ,


update(E , e,F♦#(♦(−→ei))) if e = ♦(−→ei)

update(E , e, fst(F#
∗τ (E(a)))) if e = ∗τa

update(E , e, c#) if e = c ∈ V

backward(E , e) ,


update(E ,−→ei , B#

♦(
−−−→
E(ei), E(e))) if e = ♦(−→ei)

update(E , a, B#
∗τ (E(a), E(e))) if e = ∗τa

E if e = c ∈ V

For the backward step, we wrote update(E ,−→e ,−→v) for the multiple
updates of a vector of expressions −→e to a vector of abstractions −→v in
the valuation E .

Any atomic step preserves the following invariants on the valua-
tion:

• the updated valuation is at least as precise as the previous valu-
ation;

• the updated valuation is an abstraction of the same concrete
states as the previous valuation when the concrete evaluation
succeeds.

Lemma 22. In an abstract state D and an initial valuation E , a forward or
backward atomic step only performs updates of the valuation update(E , e, v)

such that the value v is a sound approximation of the concrete evaluation of
the expression e when it does not fail:

∀S ∈ γDE(D, E), JeK
Θ

(S) ∈ γV(v) ∪ {Ω}

Proof. This lemma stems from the soundness of the abstract semantics
used to compute the value abstraction v. The proof is similar for each
case of the definition of the forward or backward functions. We prove
it for the forward evaluation of the application of a value operation.
Let −→ei = e1, . . . , en be n expressions and ♦ an n-ary operator. We
need to prove that either the evaluation of♦(−→ei) raises the error value,
or:

J♦(−→ei)K
Θ

(S) ∈ γV(fst(F#
♦(
−−−→
E(ei))) uV F

#
D (D,♦(−→ei)))

6.1 evaluation and valuation 151

From definition 52 of the query F
#
D (see also Section 6.1.2), we have:

J♦(−→ei)K
Θ

(S) ∈ γV(F#
D (D,♦(−→ei))) ∪ {Ω} (6.1)

And from definition 42 of the semantics of value:

∀~v ∈ (V#)n, [(♦)]
Θ

(γv(~v)) ⊆ γV(fst(F#
♦(−→v))) (6.2)

And from the definition 46 of valuation soundness:

∀e ∈ dom(E), ∀S ∈ γE(E), JeK
Θ

(S) ∈ γv(E(e)) (6.3)

Finally, the definition of concrete evaluations given by Figure 4.8 is:

∀S ∈ S, (∀i, JeiK
Θ

(S) = Vi 6= Ω) ⇒ J♦(−→ei)K
Θ

(S) , [(♦)]
Θ

(
−→
Vi) (6.4)

If the evaluation of ♦(−→ei) does not fail, then the evaluation of each
expression ei does not fail either. By 6.3 and by defining E(e) = >V

for all expressions e outside the domain of E , we have

∀S ∈ γE(E), JeiK
Θ

(S) ∈ γv(E(ei)) (6.5)

And then:

∀S ∈ γDE(D, E), J♦(−→ei)K
Θ

(S) = [(♦)]
Θ

(
−−−−−−→
JeiK

Θ
(S)) by 6.4

∈ [(♦)]
Θ

(γV(
−−−→
E(ei))) by 6.5

⊆ γV(fst(F#
♦(
−−−→
E(ei))) by 6.2

Finally, by 6.1, this result and the soundness of the meet of value
abstractions ensure that, if the concrete evaluation does not fail, then:

∀S ∈ γDE(D, E),

J♦(−→ei)K
Θ

(S) ⊆ γV(fst(F#
♦(
−−−→
E(ei))) ∩ γV(F#

D (D,♦(−→ei)))

⊆ γV(fst(F#
♦(
−−−→
E(ei))) uV F

#
D (D,♦(−→ei)))

⊆ γV(F♦#(♦(−→ei)))

Therefore, the value abstraction F♦#(♦(−→ei)) used to update the val-
uation in the case of the forward evaluation of ♦(−→ei) is a sound ap-
proximation of the concrete evaluation of the expression e, if it does
not fail.

Theorem 5 (Soundness of atomic updates). In an abstract state D, an
atomic step forward(E , e) or backward(E , e) produces a valuation E ′ such
that:

E ′ vE E

∀S ∈ S such that JeK
Θ

(S) 6= Ω, S ∈ γDE(D, E) ⇔ S ∈ γDE(D, E ′)

152 evaluation of expressions

Proof. Let E be an initial valuation, D an abstract state, e an expres-
sion and v a value abstraction. The first condition of Theorem 5 is
guaranteed by the update function:{

∀e′ 6= e, update(E , e, v)(e′) = E(e′)

e ∈ dom(E) ⇒ update(E , e, v)(e) = E(e) uV v vV E(e)

We write E ′ = update(E , e, v), and we have:

∀e′ ∈ dom(E), e′ ∈ dom(E ′) ∧ E ′(e′) vV E(e′) ⇒ E ′ vE E

By lemma 19, this ensures that γE(E ′) ⊆ γE(E), and thus that
γDE(D, E ′) ⊆ γDE(D, E), which implies the left-to-right implication
of the second condition.

The converse stems from lemma 22. We assume JeK
Θ

(S) 6= Ω. Let
S be a concrete state in γDE(D, E). As v is the value used to update the
abstraction of the expression e in the valuation E , the lemma ensures
that:

JeK
Θ

(S) ∈ γV(v) (6.6)

By definition 46, we have:

∀e′ ∈ dom(E), Je′K
Θ

(S) ∈ γv (E (e′)) (6.7)

As ∀e′ 6= e, E ′(e′) = E(e′), we deduce:

∀e′ ∈ dom(E), e 6= e′ ⇒ Je′K
Θ

(S) ∈ γv (E ′ (e′))

For the expression e itself, E ′(e) = E(e) uV v. Then:

• either e ∈ dom(E), and by 6.7: JeK
Θ

(S) ∈ γV(E (e)). Thus:

JeK
Θ

(S) ∈ γV(v) ∩ γV(E (e)) ⊆ γV(v uV E (e)) = γV(E ′(e))

• or e /∈ dom(E), and E ′(e) = v uV > = v 3 JeK
Θ

(S).

In both cases, as dom(E ′) = dom(E) ∪ {e}, we finally have

∀e ∈ dom(E ′), JeKΘ(S) ∈ γv (E ′ (e))

which implies S ∈ γE(E ′).
We have proved that for all concrete states S such that the evalua-

tion of e succeeds,

S ∈ γDE(D, E) ⇒ S ∈ γDE(D, E ′)

6.1 evaluation and valuation 153

6.1.6 Complete Evaluations

Complete evaluations of an expression e can now be defined by series
of atomic steps. Thanks to the invariant of theorem 5, any sequence
of the atomic steps on some subterms of e leads to a valuation more
precise than the initial one, and which is a sound abstraction of the
considered concrete states. But in order for the evaluation to be mean-
ingful, these atomic updates must also be properly ordered. As de-
fined previously, a forward evaluation is a bottom-up propagation,
and performs the forward steps from the constants to the root ex-
pression, going up the operations. In particular, this ensures that the
abstractions needed at one step have already been computed at a pre-
vious step, and are thus available in the valuation. On the other hand,
the backward semantics of an operator need abstractions of its result
and of its operands at the same time. Thus, a backward evaluation
should follow a forward evaluation that gives a first value abstrac-
tion to each subterm of the root expression. Then, the valuation is
updated with the new value for the expression, which is propagated
through a sequence of backward steps, going down the operators un-
til reaching constants.

Definition 49 (Forward evaluation). A possible definition of the for-
ward evaluation J e K#

D(E) for an expression e in an abstract state D
is:

J c K#
D(E) , ⊥A, forward(E , c)

J ∗τa K#
D(E) , snd(F#

∗τ (E ′(a))) tA A
′, forward(E ′, e)

where JaK#
D(E) = A′, E ′

J♦−→ei K#
D(E) , snd(F#

D (D,♦−→ei)) uA (snd(F#
♦(
−−−→
E ′(ei))) tA A

′),

forward(E ′, e)

where



Je1K
#
D(E) = A1, E1

Je2K
#
D(E1) = A2, E2

. . .

JenK
#
D(En−1) = An, E ′

A′ = A1 tA A2. . . tA An

Theorem 6. The above definition of forward evaluation satisfies the sound-
ness and precision properties stated in propositions 1 and 3.

Proof. Let e be an expression, E an initial valuation and D an abstract
state. Let S be a state in the concretization γDE(D, E). We write
JeK#

D(E) = A, E ′. The soundness and precision requirements on the
valuation E ′ is a direct consequence of theorem 5: as the result of
applications of atomic steps, E ′ satisfies:

E ′ vE E

JeK
Θ

(S) 6= Ω ⇒ S ∈ γE(E ′)

154 evaluation of expressions

E ′ also contains a value abstraction for e and for each subterm of e,
as a forward step has been applied to each.

Finally, we can prove that A |=A JeK
Θ

(S) by an inductive reasoning
on expressions. Let us assume that e = ♦−→ei —the same proof applies
for a dereference—, and that the alarm maps A1 to An produced by
Je1K

#
D(E) to JenK

#
D(E) are sound abstraction of the concrete evaluation

of e1 to en. By definition 42, the alarm map A produced by the
forward semantics F

#
♦ is a sound abstraction of the operation. By

lemma 9, the join of A1, . . . , An and A is a sound abstraction of the
evaluation of ♦−→ei . By soundness of the domain query F

#
D , the alarm

map snd(F#
D (D,♦−→ei)) is also a sound abstraction of the evaluation

of ♦−→ei . By lemma 8, the meet of both alarm maps is still a sound
abstraction of this evaluation.

Definition 50 (Backward evaluation). A possible definition of the
backward evaluation J←−e K#

D(E , v) of an expression e to a value ab-
straction v in an abstract state D is:

J←−c K#
D
′(E) , E

J←−∗τaK#
D
′(E) , J←−a K#

D(backward(E , ∗τa))

J
←−−
♦−→ei K#

D
′(E) , (J←−enK#

D ◦ J←−−en−1K
#
D ◦ . . . ◦ J←−e1K#

D)(backward(E ,♦−→ei))

J←−e K#
D(E , v) , J←−e K#

D
′(update(E , e, v))

Theorem 7. The above definition of backward evaluation satisfies the sound-
ness and precision properties stated in propositions 2 and 3.

Proof. This theorem results from theorem 5. Let e be an expression, v
a value abstraction, E a valuation and D an abstract state. We write:

E ′ = update(E , e, v)

E” = J←−e K#
D
′(E ′) = J←−e K#

D(E , v)

Let S be a concrete state in γDE(D, E) such that JeK
Θ

(S) ∈ γV(v).

Then JeK
Θ

(S) ∈ γV(v) ∩ γV(E(e)) since S ∈ γE(E). We have:

JeK
Θ

(S) ∈ γV(v) ∩ γV(E(e)) ⊆ γV(v uV E(e)) = γV(E ′(e))

∀e′ 6= e, Je′K
Θ

(S) ∈ γE(E(e′)) = γ(E ′(e′))

And thus, S ∈ γE(E ′).
We have S ∈ γDE(D, E ′) and JeK

Θ
(S) 6= Ω. As E” results from a se-

ries of backward steps from E ′, theorem 5 implies that S ∈ γDE(D, E”).
Thus:

∀S ∈ γDE(D, E), JeK
Θ

(S) ∈ γV(v) ⇒ S ∈ γDE(D, E”)

Moreover, we have E” vE E ′ vE E , and E”(e) vV E ′(e) vV v. The
conditions of proposition 3 are satisfied too.

6.1 evaluation and valuation 155

6.1.7 Simplified Implementation

Figure 6.1 is a short OCaml implementation of a simple evaluator,
following the foundations laid previously. Monads, introduced in
Section 5.1.5, are widely used to handle both the bottom case and the
alarms. The gradually updated valuation is an imperative reference.
It is initially the empty map, unless otherwise specified.

6.1.7.1 Forward Evaluator

The forward evaluation naturally uses the valuation as a cache: if the
valuation already contains a value abstraction for the requested ex-
pression, this abstraction is returned. Otherwise, a value abstraction
is internally computed for the expression, added into the valuation,
and then returned. As the forward evaluation also produces alarms,
the valuation also caches the alarm maps gathered at each level of the
evaluation of an expression. Note that the computation is done only
if the given expression is missing in the valuation, so we can simply
add the new abstractions in the valuation.

As explained in Section 6.1.2.2, an abstract domain may infer rel-
evant information about arbitrary expressions. Thus, the coopera-
tive forward evaluation involves the abstract domain systematically,
which supplies it with sound abstractions (value and alarms) for the
current expression. In parallel, the internal forward evaluation is the
application of the abstract semantics corresponding to the expression.
It uses the result of the main forward evaluation for the subterms.
The propagation of the bottom case and the join of all alarms is hid-
den in the monad. Finally, the cooperative evaluation meets the ab-
stractions given by the domain and those computed by the abstract
semantics, as both are sound approximations of the evaluation.

In practice, the EVA evaluator only involves the abstract domain
on some expressions: dereferences, cast, operators. These are the ex-
pressions on which a state abstraction may provide further precision
than the internal evaluation. The constants and some particular con-
structs of the C language (as sizeof) are only internally processed
by the value semantics. Also, the semantics of dereferences and the
additional query on arbitrary expressions are kept separate in the
interface of abstract domains.

6.1.7.2 Backward Evaluator

The backward evaluation starts with a new value abstraction for a
given expression, and compares it with the value abstraction com-
puted by a forward evaluation. If the new abstraction brings more
precision, the meet between the former and the new value abstraction
is stored in the valuation, and is then backward propagated to the
subterm of the expression. If the former value abstraction is included

156 evaluation of expressions

Listing 6.1: Implementation of a simplified evaluator

1 let (>>-) t f = match t with

| ‘Bottom -> Bottom

| ‘Value t -> f t

5 let (>>=) (t, a) f = match t with

| ‘Bottom -> ‘Bottom, a

| ‘Value t -> let t’, a’ = f t in t’, Alarmset.union a a’

let valuation = ref Valuation.empty

10

let rec forward_eval state expr =

try Valuation.find !valuation expr

with Not_found ->

let r = coop_forward_eval state expr in

15 Valuation.add !valuation expr r; r

and coop_forward_eval state expr =

let v, a = internal_forward_eval state expr in

let v’, a’ = Domain.extract_expr state expr in

20 Value.meet v v’, Alarms.meet a a’

and internal_forward_eval state = function

| BinOp (op, e1, e2) ->

forward_eval state e1 >>= fun v1 ->

25 forward_eval state e2 >>= fun v2 ->

Value.forward_binop (e1, e2) op v1 v2

| Const c -> Value.constant c

| [...]

30 let rec backward_eval state expr new_value =

let old_value, alarms = forward_eval state expr in

if Value.is_included old_value new_value then ‘Value ()

else

Value.meet new_value old_value >>- fun result ->

35 Valuation.add !valuation expr (result, alarms);

internal_backward state result expr

and internal_backward state result = function

| BinOp (op, e1, e2) ->

40 fst (forward_eval state e1) >>- fun left ->

fst (forward_eval state e2) >>- fun right ->

Value.backward_binop binop ~left ~right ~result

>>- fun (v1, v2) ->

backward_eval state e1 v1 >>- fun () ->

45 backward_eval state e2 v2

| Const c -> ‘Value ()

| [...] �

6.2 forward and backward evaluation strategies 157

in the new abstraction or if the expression is a constant, the backward
evaluation stops. Remember that the multiple calls to forward_eval

amount to searching in the valuation, once the first forward evalua-
tion has been done.

The backward evaluation directly updates the valuation. It returns
the bottom case if it discovers a contradiction, or unit at the end of
the propagation.

6.1.7.3 Effective Implementation

The implementation that Figure 6.1 presents is pleasantly simple, but
also relatively naive. A real implementation would likely be more
intricate; as an example, the generic evaluator of EVA now exceeds
1000 lines of code. Especially, Figure 6.1 omits the high-level evalua-
tion functions that trigger each evaluation pass. Carefully choosing
when to propagate information is a crucial matter in order to imple-
ment an efficient evaluation strategy. The next section presents the
strategies used in EVA for the interweaving of forward and backward
propagations.

6.2 forward and backward evaluation strategies

The last section presented the evaluation as a series of atomic updates
of a valuation, following the abstract semantics provided by both
value and state abstractions. Such updates preserve the required in-
variants of soundness and precision of the valuation. It now remains
to determine an effective strategy for ordering these atomic opera-
tions that achieves a precise evaluation of a complete expression. As
usual in abstract interpretation, this involves seeking a good trade-off
between accuracy and efficiency. In particular, we will see in exam-
ple 16 that applying an unbounded number of atomic updates may
lead to a slow convergence before the valuation reaches a fixpoint.

As we have seen, starting from an empty valuation, the first step
needs to be a forward propagation step from the constants of the
expressions, as the backward semantics need value abstractions for
the result of some operations. Also, applying successively the same
semantics on the same subterm is pointless. Apart from that, any
interweaving of forward and backward semantics could work.

However, there are a number of scenarios in which some propaga-
tions cannot bring new information in a valuation. In this section, we
first focus on the conditions where a forward or a backward propaga-
tion step is useful, i.e. may improve further the precision of the cur-
rent valuation. We then present the interweaving strategy between
forward and backward propagations used in EVA.

158 evaluation of expressions

6.2.1 Backward Propagation of Reductions

We detail here the situations where an atomic propagation of the
backward semantics is relevant, i.e. may compute more precise ab-
stractions than a previous forward evaluation did. This is the case
when alarms have been issued by the corresponding forward evalu-
ation step, when an abstract domain improved the value abstraction
given by the forward semantics, or for the conditional expression of
an if statement.

6.2.1.1 Reduction on Alarms

Let us consider the application of a binary C operator ♦. The same
reasoning would apply for an operator of any arity. At the level of an
expression e = ♦(e1, e2), the forward atomic step applies the forward
semantics F

#
♦ to some value abstractions v1 and v2 of e1 and e2. It

produces an alarm map A and a value abstraction v of the result.

F
#
♦(v1, v2) = (A, v)

Then, a backward atomic step may try to reduce the abstractions v1

and v2 by the new abstractions v′1 and v′2 given by the backward se-
mantics B#

♦ .
B

#
♦(v1, v2, v) = (v′1, v

′
2)

The soundness of the abstract semantics B
#
♦ (definition 43) ensures

that any concrete values V1 and V2 in the respective concretizations

of v1 and v2 such that [(♦)]
Θ

(V1, V2) ∈ γV(v) are also in the respective
concretizations of v′1 and v′2.

∀(V1, V2) ∈ γV(v1, v2), [(♦)]
Θ

(V1, V2) ∈ γV(v) ⇒ (V1, V2) ∈ γV(v′1, v
′
2)

Moreover, the soundness of the forward semantics F#
♦ (definition 42)

ensures that for such concrete values V1 ∈ γV(v1) and V2 ∈ γV(v2), the

concrete value [(♦)]
Θ

(V1, V2) is indeed in γV(v), unless the operation
fails with the error case. Thus, we have:

∀(V1, V2) ∈ γV(v1, v2), [(♦)]
Θ

(V1, V2) 6= Ω ⇒ (V1, V2) ∈ γV(v′1, v
′
2)

Finally, if the alarm map A is the empty closed map (the bottom
element representing the empty set of undesirable behavior), then the
error case never happens.

A = none ⇒ γV(v1, v2) ⊆ γV(v′1, v
′
2)

In this case, the new abstractions v′1 and v′2 computed by the back-
ward abstract semantics cannot be more precise than the former ab-
stractions v1 and v2. The backward step is then pointless on the ex-
pression fragment e.

6.2 forward and backward evaluation strategies 159

1 void f(char a, char b) {

char w = 0;

if (a > 49 && b > 49)

w = a + b;

5 } �
1 extern int t[10];

void g(int n) { int w = t[n] } �
Figure 6.2: Backward propagation after alarm emission

Otherwise, if the alarm map A is not empty, the application of
the operator ♦ may fail for some concrete values V1 and V2 in the
respective concretizations of v1 and v2. Remember that an alarm map
is only an over-approximation of undesirable behaviors, and it can
be non empty even if no error occurs. Nevertheless, if the operation
really fails for some concrete values, the backward semantics B#

♦ may
successfully reduce the initial value abstractions v1 and v2 to remove
such concrete values from their concretizations.

Example 11. Let us consider the first code of Figure 6.2, and more
specifically the evaluation of the expression a+ b at line 4. All com-
putations are done on the signed integer type of 1 byte. As the values
of the variables a and b are unbounded to the right, the result of their
addition may exceed the signed integer range, which is an undefined
behavior. At this point, the forward semantics F

#
+ of any value ab-

straction must produce a non empty alarm map, with at least the
alarm a+b ≤ 127 bound to an unknown status.

An interval analysis easily infers the interval [50..127] as value ab-
straction for the variables a and b at line 4, and the interval arithmetic
leads to the interval [100..127] for a+b (together with the alarm men-
tioned above). This resulting interval excludes some values for a and
for b, those such a+b ≥ 128. Indeed, as a ≥ 50 and b ≥ 50, we can
deduce that both variables must be between 50 and 77. Thus, the
backward propagation on intervals for this addition reduces the in-
terval for a and b to [50..77]. Note that this interval would still not be
sufficient to exclude the error case.

Example 12. On the second code of Figure 6.2, the dereference of t[n]

at line 5 raises an alarm, as the index n is unbounded. Then, with
the cvalue representation of memory locations, the abstraction of the
possible memory address of t[n] is the map {{ &t+[0..9] }}. The
backward propagation of this abstraction allows reducing the possi-
ble value of n to the interval [0..9].

Note that the same reductions could be achieved from the alarm
map, which carries the same information about the inconsistent val-

160 evaluation of expressions

ues of the operands of an operation. However, some backward prop-
agations may also be relevant in the absence of alarms, when a value
abstraction computed for an expression is directly reduced, as ex-
plained below.

6.2.1.2 Value Reduction on Conditional Statements

We have seen that on operations producing no alarms, a backward
propagation of the value computed by the forward semantics is point-
less: a sound backward semantics cannot achieve a better precision.
However, the value abstraction computed by a forward evaluation
can sometimes be reduced, and such a reduction may lead to further
reductions downstream.

A natural place for a value reduction is on the condition of if state-
ments, translated into e==0? filters in our language syntax. A e==0?
filter halts the concrete states in which the expression e has not a zero
value. Through a dataflow analysis, when an abstract state D reaches
a filter e==0?, its processing depends on the value abstraction com-
puted by the forward evaluation of e:

• if the abstraction represents only a zero value, then the abstract
state goes through the filter statement unchanged;

• if it is an abstraction of non-zero value only, the abstract state is
not propagated through the filter statement;

• otherwise, the expression e may evaluate to zero and non-zero
values. The abstract state must be propagated through the filter
statement, but from this point forward, we can assume that the
expression e evaluates to zero.

In the latter case, the valuation resulting from the forward evaluation
of e is inaccurate. In this valuation, the value abstraction for the con-
dition e can be replaced by an abstraction of the concrete zero value.
Then, this more precise value for e can be backward propagated to
the subterms of e, to make the valuation even more precise.

Example 13. Figure 6.3 illustrates the forward and backward evalu-
ations of the condition of an if statement. The C code we consider
is on top, next to its representation as a control-flow graph with our
language syntax. The node 0 is the entry point of the function f , and
the conditional construct is separated into two filter statements on
the boolean expressions x+y < 0 and x+y ≥ 0. The latter leads to
the first branch, and the former to the second branch. The table be-
low shows the valuations produced by the evaluations of each filter
condition, with interval abstractions. The precondition of function f

ensures that the variable x is between −10 and 10, and the variable y
is between 5 and 20. The forward evaluation of the expression x+ y

leads to the interval [−5..30] in each edge, the constant 0 is evidently

6.2 forward and backward evaluation strategies 161

1 /*@ requires -10 <= x <= 10

&& 5 <= y <= 20; */

void f(int x, int y) {

if (x + y >= 0)

5 { [Branch 1] }

else {

{ [Branch 2] }

} �

0

1

2

(x+y < 0)==0?

(x+y ≥ 0)==0?

Valuation after: forward backward

branch 1



x 7→
y 7→

x+y 7→
0 7→

x+y < 0 7→

y

[−10..10]

[5..20]

[−5..30]

[0]

[0..1]

x

[−5..10]

[5..20]

[0..30]

[0]

[0]

branch 2



x 7→
y 7→

x+y 7→
0 7→

x+y ≥ 0 7→

y

[−10..10]

[5..20]

[−5..30]

[0]

[0..1]

x

[−10..− 6]

[5..9]

[−5..− 1]

[0]

[0]

Figure 6.3: Backward propagation on a conditional statement

162 evaluation of expressions

bound to the singleton interval [0], and the truth value of each condi-
tion is unknown, represented by the interval [0..1].

Then, in each edge, the value abstraction of the condition is re-
duced to the interval [0], which is then backward propagated to the
subterms. Note that in the table of Figure 6.3, the expressions are or-
dered following the forward evaluation; the backward one operates
in the reverse order. The interval for constants cannot be reduced. In
the first branch, x+y < 0 is equal to 0, so x+y ≥ 0, and the interval
for x+y is reduced to [0..30]. This interval is again backward propa-
gated, reducing x to [−5..10] and leaving y unchanged. Conversely,
in the valuation for second branch, x+y is reduced to [−5..− 1], and
then x is reduced to [−10..− 6] and y to [5..9].

6.2.1.3 Value Reduction from the Abstract Domain

If the reductions on the conditionals of a program are especially natu-
ral, an abstract domain may also induce some reductions of the value
abstractions computed during a forward evaluation of arbitrary ex-
pressions. Indeed, as explained in Section 6.1.2.2, a state abstraction
provides not only the abstract semantics of dereferences, but also sup-
plies the forward evaluator with value abstractions for arbitrary ex-
pressions. These value abstractions are based on the properties in-
ferred by the domain, and may bring additional precision to the eval-
uation. In that case, it may also be beneficial to backward propagate
them. Figure 6.4 presents an example where such a propagation may
be useful.

Example 14. We focus on the last assignment of the left code of Fig-
ure 6.4, and more specifically on the evaluation of the expression y-x.
We assume that this evaluation involves an interval domain and a
relational domain, whose inferred properties at line 5 are shown at
the right table of the figure. The interval bounds for x and y come
directly from the assertion, and the inequality between them follows
from the conditional. We also assume that the evaluation uses inter-
vals as value abstractions. The internal forward evaluation uses the
interval provided by the interval domain for the dereferences of the
variables and computes [−15..5] for the expression y − x. However,
the relational domain can use its inequality to supply the interval
[1..+∞] as a sound abstraction for this same expression. The meet of
both intervals gives [1..5], which is strictly more precise. Through the
usual interval arithmetic, the backward propagation of this new value
allows reducing the respective interval for x and y to [0..4] and [1..5],
and thus makes the resulting valuation more accurate.

Ultimately, this backward propagation allows the interval domain
to reduce the value abstraction it has inferred for the variables x and y.
In practice, the reduction of the interval domain could also be done
at the evaluation of the conditional, at line 4. However, when using

6.2 forward and backward evaluation strategies 163

1 /*@ assert 0 ≤ x ≤ 10

2 && -5 ≤ y ≤ 5; */

3 b = x < y;

if (b)

5 w = y - x; �

Intervals Relational{
x 7→ [0..10]

y 7→ [−5..5]

b = (x < y)

x < y

Figure 6.4: Backward propagation from an abstract domain

deeply relational abstractions, achieving a maximal inter-reduction
between abstract domains can be overly costly on intricate condition-
als. In some cases, a better strategy is to postpone some reductions to
the program points where the involved variables are actually used.

6.2.2 Forward Propagation of Reductions

A backward propagation aims at reducing some value abstractions of
the valuation, increasing its precision. The same objective can also
motivate a forward propagation. After a reduction achieved by a
backward propagation, may a forward propagation improve the pre-
cision further?

6.2.2.1 Exact Forward Operator

We say that an abstract forward semantics F
#
♦ is exact when they do

not introduce irrelevant concrete values in the concretization of the
resulting abstraction. This means that:

∀(v1, v2) ∈ (V#)2,

∀V ∈ γV(F#
♦(v1, v2)), ∃(V1, V2) ∈ γV(v1, v2), V = [(♦)]

Θ
(V1, V2)

For instance, this is the case for the interval arithmetic of the integer
addition and subtraction. Indeed, the abstract addition of interval
abstractions is:

[i1, s1] +# [i2, s2] , [i1 + i2, s1 + s2]

and we have indeed:

∀n ∈ [i1 + i2, s1 + s2], ∃n1 ∈ [i1, s1] ∧ n2 ∈ [i2, s2], n = n1 + n2

However, the abstract multiplication of intervals is not exact. As
a simple example, [0..4] ∗# [3] = [0..12], but there is no integer n
between 0 and 4 such that 3 ∗ n = 1. Note that the abstract semantics
of integer interval with congruence, used in the cvalue abstraction of
EVA and described at Section 5.3, is exact on the multiplication with
a constant, but not on any arbitrary multiplication.

164 evaluation of expressions

6.2.2.2 Forward Propagation after a Backward Evaluation Step

We consider again the application of a binary operator ♦, through
the forward and backward evaluation steps of an expression e =

♦(e1, e2). We denote respectively by v1 and v2 the initial value ab-
stractions of the operands e1 and e2 —and by v the value abstraction
given by the forward abstract operator F#

♦ for the expression e.

F
#
♦(v1, v2) = v

We then assume that a reduction has soundly narrowed this value ab-
straction v to v′. The former abstraction v′ has to be at least as precise
as the latter one v, but they may also be equal. Then, a backward step
has reduced the value abstractions of the operands e1 and e2 to v′1
and v′2. We thus have:

v′ vV v v′1 vV v1 v′2 vV v2

∀(V1, V2) ∈ γV(v1, v2), [(♦)]
Θ

(V1, V2) ∈ γV(v′) ⇒ (V1, V2) ∈ γV(v′1, v
′
2)

Using these reduced abstractions, a forward step leads to a new
value abstraction v” for the expression e. We now have:

∀(V1, V2) ∈ γV(v′1, v
′
2), [(♦)]

Θ
(V1, V2) ∈ γV(v”) + Ω

If the forward abstract semantics for this operator are exact, then
we also have:

∀V ∈ γV(v), ∃(V1, V2) ∈ γV(v1, v2), V = [(♦)]
Θ

(V1, V2)

As v′ vV v, and from the soundness requirement of the backward
step, we can deduce that:

∀V ∈ γV(v′), ∃(V1, V2) ∈ γV(v1, v2),

{
V = [(♦)]

Θ
(V1, V2)

(V1, V2) ∈ γV(v′1, v
′
2)

The second assertion implies that [(♦)]
Θ

(V1, V2) ∈ γV(v”), and thus
V ∈ γV(v”). Finally, we have that all concrete values of γV(v′) are
also in γV(v”), and thus the value abstraction v” recomputed by the
forward semantics cannot be more precise than the already reduced
value abstraction v′ for the expression e = ♦(e1, e2).

On the other hand, if the forward abstract semantics are not exact,
the forward semantics may compute a more precise abstraction after
a standard backward propagation. We give an example of such a
situation, using the interval semantics of the multiplication.

Example 15. We consider the evaluation of the conditional (3 ∗x)<12

of a filter statement, where the values of the variable x may range
from 0 to 4. This corresponds to the evaluation of the conditional at

6.2 forward and backward evaluation strategies 165

1 int x = -1;

while (x < 4) {

x++;

if (3*x < 12)

5 [...]

} �
Figure 6.5: Forward propagation after a backward reduction

line 4 of the sample code shown on Figure 6.5. With interval abstrac-
tions, the initial forward evaluation naturally leads to no alarm and
this valuation (we omit the constants):

x 7→ [0..4]

3 ∗ x 7→ [0..12]

(3 ∗ x) < 12 7→ [0..1]

Then, a backward evaluation propagates the fact that the condition
holds, and we obtain the updated, more precise valuation:

x 7→ [0..3]

3 ∗ x 7→ [0..11]

(3 ∗ x) < 12 7→ [1]

Finally, a second forward evaluation makes the valuation even more
precise, as 3 ∗# [0..3] = [0..9]:

x 7→ [0..3]

3 ∗ x 7→ [0..9]

(3 ∗ x) < 12 7→ [1]

At this point, neither forward nor backward propagation may re-
duce further the value abstraction computed in the valuation.

The second forward propagation is able to be more precise than
the previous backward propagation because the interval arithmetic
is not exact on the multiplication by a constant. On the other hand,
the reduced product between intervals and congruences is exact on
such an operation. With these abstractions, the value computed for
the expression 3 ∗ x by the first backward propagation is [0..11]0%3,
internally reduced to [0..9]0%3. This is the most precise abstraction
of the possible value of the expression, and thus cannot be reduced
further. A second forward propagation is then pointless.

6.2.2.3 Forward Propagation after Multiple Reductions

When a subterm appears several times in an expression, a backward
evaluation may lead to successive reductions of this subterm, when-
ever the propagation reaches it. Each of these reductions may have

166 evaluation of expressions

1 /*@ assert 0 <= x <= 100; */

if (x == x+1)

[...] �
forward backward forward backward

x 7→
x+1 7→

x==x+1 7→

[0..100]

[1..101]

[0..1]

[1..99]

[1..100]

[1]

[1..99]

[2..100]

[0..1]

[2..98]

[2..99]

[1]

. . .

Figure 6.6: Slow convergence of interval propagations

a different reason. In this case, a forward propagation may achieve
further precision, even if the abstract semantics are exact.

Example 16. The processing of the unsatisfiable conditional (x==x+1)
is a classical example of a slow convergence through the propagation
of intervals. If the interval representing the possible values of the
variable x is not a singleton, then the forward abstract semantics of
interval are unable to prove that the condition does not hold. In the
code of Figure 6.6, for example, the value of the variable x ranges
from 0 to 100. Thus, the value of x+1 ranges from 1 to 101, and
the interval abstractions cannot disprove the equality between both
expressions. The backward propagation of this equality reduces the
interval for each expression (including x) to the meet of both intervals,
which is [1..100]. And the backward propagation of this new interval
for x+1 reduces a second time the interval for the variable x, down to
the interval [1..99]. Then, the cycle recurs: the forward propagation of
these new intervals is still unable to disprove the equality, but reduces
the value of x+1, and the backward propagation of the equality rules
out the bounds of the interval for x. Ultimately, alternating forward
and backward propagations leads to the empty interval, raising the
bottom case. The table of Figure 6.6 shows the successive valuations
produced by the first steps of this process. Here, proving the condi-
tion to not hold requires 50 iterations of a forward and a backward
propagation of intervals.

6.2.3 Interweaving Forward and Backward Propagations

The two previous sections detail the cases where a forward or a
backward propagation is relevant, i.e. may achieve further precision
through the produced valuation. However, the last presented exam-
ple points out that an unrestricted application of forward and back-
ward propagation may lead to a slow convergence of the evaluation
of an expression. Rather than always seeking for the most precise
valuation for the given expression, a better balance between precision
and efficiency has to be found in the use of both propagations.

6.2 forward and backward evaluation strategies 167

This section expounds the evaluation strategies implemented in
EVA for the interweaving of the forward and the backward propa-
gations.

6.2.3.1 Complete Propagations Strategy

Section 6.1.5 presented the atomic steps of a forward or backward
propagation. Each of these steps soundly updates the valuation, and
they may thus be intertwined in any way that leads to the complete
evaluation of a given expression. However, we choose to avoid mixing
these forward and backward steps.

Instead, EVA always performs a complete propagation through an
expression in a given direction: from the constants to the root ex-
pression for a forward evaluation, and conversely for a backward
one. While opposite full propagations may follow one after another,
there is no alternating during a complete propagation, and thus no
direct interaction between forward and backward phases. This choice
makes the implementation much simpler, as in the code presented in
Figure 6.1. The forward and the backward mechanisms are kept sep-
arate, rather than being all mutually recursive functionalities. This
design allows a better control of the evaluation convergence, as we
seek for a single global fixpoint of the computed valuation. It also
avoids successive reductions of the same subterm where the last one
supersedes the others. The following example illustrates this.

Example 17. Let us consider the evaluation of the expression 2x− 1,
where the value of the variable x is unknown. We assume that the
computations are done in the signed integer type of 1 byte, whose
values range from −128 to 127. As signed integer overflows are pro-
hibited, the multiplication 2 ∗ x requires the value of x to be in the
interval [−64..63]. Furthermore, the next subtraction 2x− 1 requires
2x to be in the interval [−127..127], and thus x to be in [−63..63].

If each atomic step that produces some alarms triggers a backward
propagation of its resulting value, the value abstraction of variable x
would be reduced twice in the valuation. Actually, the first backward
propagation of the value [−128..126] for the subterm 2x is useless, as
the upcoming backward propagation of the value [−128..125] for the
expression 2x− 1 is strictly stronger. We can also notice that if the
variable x is replaced by a more complex expression, each backward
propagation may be overly costly.

Thus, instead of performing a backward propagation whenever
possible, the evaluator first completes the forward propagation, and
only then starts a backward propagation of the computed value for
the root expression 2x− 1. On this example, this leads to the same
precise valuation as the other strategy, but minimizes the number of
backward steps done.

168 evaluation of expressions

We argue that this strategy of complete propagations is always as
precise as triggering opposite propagations as soon as possible. We
call this latter strategy the greedy algorithm. Remember that during
these propagations, the valuation contains the value abstractions pre-
viously computed for all the subterms of the evaluated expression.
The atomic propagation steps always meet the new value abstraction
they infer for some subterm with the one stored in the valuation.
Thus, the valuation can only become more and more precise through
the propagations. An atomic step always uses the value abstractions
stored in the valuation. Now, during a (forward or backward) propa-
gation, when an opposite atomic step is relevant on a subterm t, it is
postponed until the end of the current propagation. Afterwards, the
complete opposite (backward or forward) propagation reaches this
subterm t, and makes the postponed step using the abstractions of
the current valuation. These value abstractions are at least as precise
as the ones that were in the valuation during the previous propaga-
tion phase. Thus, the postponed atomic step is at least as precise as
the initial step would have been.

However, in some specific cases, the strategy of complete propaga-
tions may require more computations to achieve the same precision as
the alternate strategy. Indeed, during a (forward or backward) prop-
agation A, an opposite propagation B may reduce some abstractions
that will be used by the current propagation A. Then, the A propaga-
tion leads to less precise results due to the lack of reductions, which
the B propagations will make later. After the B propagation, another
complete propagation A′ will however lead to the same precision as
the greedy algorithm. The following example illustrates this.

Example 18. Consider now the evaluation of the quite contrived ex-
pression (1/x)+x, with the variable x having a value in {0; 1}. The
division by x requires x to have a non-zero value. A backward step
at the subterm 1/x will reduce the value of x to {1}. Note that we
use here integer sets as value abstractions.

If the expression is evaluated from left to right, the greedy algo-
rithm produces the following successive valuations at each step:

valuation after 1 2 3 4
x 7→

1/x 7→
(1/x)+x 7→

{0; 1}
>
>

{0; 1}
{1}
>

{1}
{1}
>

{1}
{1}
{2}

1. forward evaluation of the variable x (for the evaluation of 1/x)

2. forward evaluation of 1/x

3. backward propagation of the value {1} for 1/x

4. forward evaluation of (1/x)+x

6.2 forward and backward evaluation strategies 169

On the other hand, our strategy of complete propagations post-
pones any backward step after the first forward evaluation, which
does not benefit from the reduction of the variable x. Thus, the pro-
duced valuation are the following:

valuation after 1 2 3
x 7→

1/x 7→
(1/x)+x 7→

{0; 1}
{1}
{1; 2}

{1}
{1}
{1; 2}

{1}
{1}
{2}

1. first complete forward propagation

2. complete backward propagation

3. second complete forward propagation

Both strategies lead ultimately to the same valuation, but here, our
strategy requires more computations. However, note that the number
of steps for the greedy algorithm depends on the evaluation order
of the subterm. If the right operand of the addition is processed
before the left operand, an additional forward propagation is needed
anyway to take into account the reduction of x.

6.2.3.2 Triggering Relevant Propagation Steps

The propagations are done globally on entire expressions. However,
as explained in both previous sections, the atomic steps of a prop-
agation are not all relevant: some are unable to improve the pre-
cision of the valuation resulting from a previous computation. We
naturally want the propagations to avoid performing pointless opera-
tions, without forgetting any effective reduction. This requires keep-
ing track of the subterms where a new propagation may be useful.

At each level of a complete (forward or backward) propagation,
EVA checks whether an opposite propagation step may improve the
precision further, according to the criteria listed in Sections 6.2.1 and
6.2.2. Through a forward propagation, these are the steps where
alarms are produced, or where an abstract domain reduces the ab-
straction internally computed by the value semantics. Through a
backward propagation, this only requires the reduction of the value
abstraction stored in the valuation. The information is internally
stored in the valuation —this information is not exported in its inter-
face. Then, a (forward or backward) propagation goes through the en-
tire expression, but uses this information to only perform the relevant
atomic steps. A propagation always needs to cross the whole expres-
sion, to ensure not to neglect some possible reductions. Through the
propagation, an atomic step of the abstract semantics is performed if
and only if:

• this propagation is marked as relevant in the valuation;

170 evaluation of expressions

• the current propagation has reduced some value abstractions on
which this semantics step is based (compared to the abstractions
previously computed and stored in the valuation).

Example 19. Let us consider the expression ((3x+5)/4)− 1, where x
is a signed integer of 1 byte. We assume known that the variable x
ranges from 0 to 42. With the interval abstractions, a complete for-
ward propagation leads to the following valuation. The exclamation
mark indicates the relevance of a backward propagation for a subterm
(here because of the alarm preventing the addition to overflow).

x 7→ [0..42]

3x 7→ [0..126]

3x+5 7→ [5..127] !

(3x+5)/4 7→ [1..31]

((3x+5)/4)− 1 7→ [0..30]

Then, a backward propagation omits the subtraction and the divi-
sion step, but propagates backward the interval [0..127] through the
addition to its operands, using the backward semantics of interval.
This reduces the interval for 3x to [0..122]. Thus, this new interval is
again backward propagated through the multiplication. This reduces
the interval for x to [0..40]. The resulting valuation is the following,
where this time, the exclamation mark indicates the relevance of a
forward propagation.

x 7→ [0..40] !

3x 7→ [0..122] !

3x+5 7→ [5..127]

(3x+5)/4 7→ [1..31]

((3x+5)/4)− 1 7→ [0..30]

Then, a forward propagation may start again. As the interval ab-
straction of x has been reduced by the previous backward propaga-
tion, it is now forward propagated. The forward semantics of multi-
plication reduces the interval for 3x to [0..120], which is in turn used
by the forward semantics of addition and leads to the reduction of
the interval for 3x+1 to [5..125], which is in turn used by the for-
ward semantics of division, but leads to the same interval as before
for (3x+5)/4. Thus, the propagation avoids the following step, and
returns the valuation:

x 7→ [0..40]

3x 7→ [0..120]

3x+5 7→ [5..125]

(3x+5)/4 7→ [1..31]

((3x+5)/4)− 1 7→ [0..30]

6.2 forward and backward evaluation strategies 171

There was no alarm during this last forward propagation, and
no domain was involved either. Thus, there is no place for a back-
ward propagation, and the evaluation should stop here: this is the
most precise valuation we can obtain for the evaluation of the expres-
sion ((3x+5)/4)− 1, knowing that the variable x has a value in the
interval [0..42].

6.2.3.3 The Interweaving Strategy

This section finally explains how the complete forward and back-
ward propagations are intertwined. As shown by example 16, the
unbounded alternating of both kinds of propagation may take a large
number of iterations until reaching a fixed point, namely a valuation
that cannot be improved by any new propagation. Instead, we use a
fixed number of iterations: an initial forward evaluation, then a com-
plete backward propagation, and finally a second complete forward
propagation for conditional expressions only. These complete prop-
agations are unconditionally made, but as explained in the previous
subsection, they only perform the relevant atomic steps. This strat-
egy spares the evaluator from dealing with slow convergence issues,
and has little impact on the precision of the resulting valuations, as
shown by our experiments related in Section 8.1.3.1.

initial forward evaluation In any context, the evaluation of
an expression starts necessarily by a complete forward propagation.
This fills the valuation with a value abstraction for each subterm of
the expression, and gathers the alarms needed to exclude the undesir-
able behaviors that the evaluation may cause. If the starting valuation
is non-empty, the evaluation uses it to avoid the computation of the
expressions it contains.

backward propagation Then, a complete backward propaga-
tion tries to improve the precision of the valuation on the subterms
of the expression. For the conditional expression of a test statement,
if the computed abstraction for the expression represents non-zero
concrete values, it is reduced to the zero abstraction and marked as
relevant for the backward propagation. If the computed abstraction
represents only non-zero values, the condition is unsatisfied, and the
evaluation raises the bottom case.

For arbitrary expressions, this backward propagation only aims at
reducing some subterms according to the emitted alarms or to the
contributions of the abstract domain. It is especially useful to reduce
the value abstraction of variables, as the main abstract domain of EVA
is a memory model of variables: it will learn only from the abstrac-
tions computed for variables. Backward reductions may also avoid
the emission of successive redundant alarms, as in the next example.

172 evaluation of expressions

Example 20. On the code of Listing 6.2, an alarm has to be emitted at
line 2 to prevent the addition from overflowing. Without any reduc-
tion of the variable i, the same alarm would be emitted at line 3 as
well. The backward propagation of the value abstraction computed
for i+1 to the operand i may solve this issue.

Listing 6.2: Avoiding redundant alarms

1 void main (char i) {

int a = i+1;

int b = i+1;

} �
second forward evaluation for conditionals For arbi-
trary expressions involved in assignments, EVA does only the initial
forward evaluation and one complete backward propagation. How-
ever, on the conditional expression of a test statement, EVA performs
a second forward propagation. Indeed, the backward propagation
of conditions is especially important, as it reflects that the condition
holds after the test statement. Moreover, this second forward prop-
agation aims not only at reducing even more the value abstractions
computed by both previous passes, but it also:

• determines whether the last backward propagation has fully re-
duced the subterms according to the truth value of the condi-
tion;

• reveals the inconsistency of the condition in some rare cases.

If the second forward propagation evaluates the condition as true,
then no other reduction is needed to take into account that the condi-
tion holds. We then say that the backward propagation has fully re-
duced the subterms of the condition. Otherwise, an imprecise value
abstraction for the condition means that one backward pass was not
enough to fully propagate the truth value of the condition on its sub-
terms (and especially its variables). As in Example 16, more prop-
agations may solve the issue, at the expense of the efficiency of the
evaluation. Instead, EVA stops the propagations here, but enables an-
other mechanism to recover some precision: the partitioning of the
evaluation, described in the following subsection.

Finally, the second forward evaluation may also discover an incon-
sistency. The following example presents such a case.

Example 21. In any execution of the code presented on the Listing 6.3,
the condition at line 4 does not hold. However, the semantics of in-
tervals is unable to prove this fact on a single forward propagation:
as the precise value of the variable i is unknown, t[i] and t[i+1] are

6.2 forward and backward evaluation strategies 173

Listing 6.3: Second forward propagation on conditional expression

1 int t[4] = {0, 1, 2, 3};

/*@ requires 0 <= i <= 2; */

void main (int i) {

if (t[i] == t[i+1])

5 [...]

} �
respectively depicted by the intervals [0..2] and [1..3], whose intersec-
tion is not empty. Then, a backward propagation assumes that the
conditional expression evaluates to true, and reduces the interval for
both expressions to the meet [1..2]. To the left, this allows reducing
the variable i to [1..2]; to the right, this allows reducing i to [0..1].
At the end of the backward propagation, i is bound to the singleton
interval [1] in the valuation.

Stopping the evaluation here would lead to a quite odd valuation,
where the variable i has the precise value [1] for which the condition
is clearly false, while the condition is still considered as true. The
second forward propagation solves this issue, raising the bottom case
when reaching the equality.

6.2.4 Evaluation Subdivision

6.2.4.1 General Considerations

An evaluation can be split according to the possible values of a sub-
term. Let us consider the evaluation of an expression e, and a sub-
term t of e. Given a partition {v1, . . . , vn} of the possible values of t,
the evaluation is done independently for each vi, assuming t has a
value in vi. The result (alarm map and valuation) of each evalua-
tion are then joined. This mechanism was introduced to mitigate the
absence of relational information in the former VALUE abstract inter-
preter. It has been maintained in EVA with some improvements. The
following example illustrates how subdividing an evaluation may im-
prove its precision.

Example 22. This example uses the standard interval arithmetic as
abstract value semantics. We first consider the evaluation of the ex-
pression x*x where x has a value between −10 and 10. The evaluation
of x*x naturally leads to the interval [−100..100]. However, when
x ∈ [−10..0] or when x ∈ [0..10], the evaluation leads to the interval
[0..100]. We can conclude that [0..100] is a sound approximation of
x*x when x ∈ [−10..10].

174 evaluation of expressions

Listing 6.4: Subdivision of evaluation

1 int t[5] = {0, 1, 2, 3, 4};

/*@ assert 0 <= i <= 4; */

if (t[i] == i) {

[...]

5 } �
Listing 6.4 presents another example of useful subdivision. When

evaluating the condition at line 3, both expressions t[i] and i have
a value in the interval [0..4], but the interval semantics cannot guar-
antee that they have the same value in this interval. Dividing the
evaluation according to each possible value of i proves the equality
in each case. Obviously, this technique is only reasonable when the
interval for i is small enough.

6.2.4.2 Formalization

The soundness of subdividing an evaluation is stated by the following
theorem.

Theorem 8 (Subdivision of a forward evaluation). Let e be an expres-
sion, E be a valuation, and D be an abstract state. If E1, E2, . . . , En is a set
of valuations such that{

∀i ∈ {1, . . . , n}, Ei vE E
γE(E) = γE(E1) ∪ γE(E2) ∪ . . . ∪ γE(En)

then the subdivision of an evaluation according to the sets {Ei}, defined as:

J e K#
D(E) =

⊔
i∈{1. . .n}

(J e K#
D(Ei))

satisfies the properties 1 and 3 of a forward evaluation in E .
(Here,

⊔
is the join of pairs of valuations and alarm maps.)

It is worth noting that the theorem condition γE(E) = ∪i(γE(Ei)) is
stronger than the condition E = ti(Ei), which only guarantees that
γE(E) ⊇ ∪i(γE(Ei)).

Proof. We use the same notations as the theorem. Let S be a concrete
state in γDE(D, E). As γE(E) = ∪i(γE(Ei)), there exists i such that
S ∈ γDE(D, Ei).
Let E ′,A = J e K#

D(Ei). By proposition 1:{
A |=A JeK

Θ
(S)

JeK
Θ

(S) 6= Ω ⇒ S ∈ γE(E ′)

6.2 forward and backward evaluation strategies 175

Let E”,A” =
⊔
i∈{1. . .n}(J e K#

D(Ei)). We have E ′ vE E” and A vA A”,
which implies: {

A” |=A JeK
Θ

(S)

JeK
Θ

(S) 6= Ω ⇒ S ∈ γE(E”)

This holds for any concrete state S in γDE(D, E), validating proposi-
tion 1.

Let (E ′i,Ai) = J e K#
D(Ei). Proposition 3 ensures that E ′i vE Ei and

e ∈ dom(E ′i) . By hypothesis, Ei vE E . Finally:

∀i ∈ {1, . . . , n},

{
e ∈ dom(E ′i)
E ′i vE E

⇒

{
e ∈ dom(

⊔
i(E ′i))⊔

i(E ′i) vE E

This validates proposition 3 for
⊔
i(E ′i).

6.2.4.3 Heuristics and Implementation

Theorem 8 provides a sound and general context for subdividing an
evaluation. However, repeating an evaluation in n different valua-
tions has a high cost —it basically multiplies the evaluation time by n.
The use of the valuation as a cache alleviates lightly the cost of a sub-
division: only the computations that actually depend on the split
subterm have to be performed again.

Example 23. We consider the expression ((x+y)*(x+y)+ e). If the sign
of x+y is not known, subdividing the evaluation according to this sub-
term is useful, as shown by the previous example. However, there
is no need to repeat the computation of the addition x+y or the eval-
uation of e. In fact, the subdivision can be limited to the subterm
(x+y)*(x+y). The resulting valuations are then joined, and the evalua-
tion of the complete expression can continue.

While theorem 8 is proved for any “partition” of a valuation, the
evaluation subdivision in EVA is limited to the partitioning of the ab-
stract value of only one subterm of the considered expression. From
a current valuation E and for a subterm t, we assume given a set of
abstract value v1, . . . , vn such that:{

∀i ∈ {1, . . . , n}, vi vE E(t)

γV(E(t)) = γV(v1) ∪ γV(v2) ∪ . . . ∪ γV(vn)
(6.8)

Then, the set of valuations Ei = E [t → vi] satisfies the condition
of theorem 8, and the evaluation subdivision according to them is
sound.

From an arbitrary abstract value E(t), there is not always a set of
values satisfying equation 6.8. As example, a garbled mix (see Sec-
tion 5.3.2) cannot be divided into a partition of smaller abstractions.

176 evaluation of expressions

On the other hand, an interval can be divided into many different par-
titions. In EVA, the subdivision is done only on the intervals and the
integer sets of the cvalue abstraction (see Section 5.3.1), in compliance
with the hypothesis of theorem 8. The value combination structuring,
described in Section 3.3, is used to work on the cvalue component of
an arbitrary value abstraction (if this component exists).

Finally, the evaluation engine of EVA triggers such a subdivision
when:

• on the condition of an if statement, the second forward evalua-
tion proves that the backward propagation failed to fully prop-
agate the truth value of the condition on its subterms (see Sec-
tion 6.2.3).
In this case, a subdivision is applied on any integer variable:

– appearing in the address of a dereference (in an array offset
or in the computation of a pointer);

– whose possible values are represented by an integer set.

The subdivision is done by considering separately all integers
in the set. As the cardinal of integer sets are kept small by the
analyzer, this does not overly impact the analysis time. This is
exactly the instance described in listing 6.4.

• on the right expression e of an assignment that contains several
occurrences of the same syntactic subterm t, if the possible val-
ues of t are approximated by a basic integer or floating cvalue.
The subdivided evaluation is limited to the smaller subterm of e
that contains all occurrences of t, as already illustrated in exam-
ple 23. The number of divisions of an interval is specified by a
parameter of the abstract interpreter.

Although a subdivision is limited to one subterm, successive subdivi-
sions of different subterms can be performed on the evaluation of an
expression. On the expression (x*x + y*y), EVA executes two subdi-
visions:

• one of the subterm of x*x, according to the value of x;

• one of the subterm of y*y, according to the value of y.

Part IV

A B S T R A C T S E M A N T I C S O F S TAT E M E N T S

7
S TAT E A B S T R A C T I O N S

An abstract domain D is a collection of state abstractions carrying
information about program variables. Each abstract state D repre-
sents a set of concrete states S at a program point. A concretization
function γD links abstract states to the concrete states they represent.

γD : D→ P(S)

A domain can be a combination of several domains D1, D2, . . . , Dn.
Its abstract states are then tuples (d1, d2, . . . , dn) representing the in-
tersection of the concretization of each subdomain:

γD(d1, d2, . . . , dn) = γD(d1) ∩ γD(d2) ∩ . . . ∩ γD(dn)

This section expounds how the subdomains of a combination interact
with each other in our architecture.

Abstract domains provide transformers implementing an abstract
semantics of statements. Each transformer models the effect of a state-
ment on abstract states, inferring properties about how a program ex-
ecution may behave at this point. The abstract interpreter uses them
to propagate abstract states through the CFG of a program. At a node
of the CFG, the computed abstract state is an over-approximation of
the possible concrete states given by the concrete semantics of the
language.

The above description of abstract domains is absolutely standard in
abstract interpretation. This chapter does not develop the general no-
tion of abstract domains further, but only focuses on the interactions
between them. The previous chapter was dedicated to the evaluation
of an expression into alarms and value abstractions. This evaluation
is collaborative: it involves all available domains, extracting informa-
tion from each abstract state and pooling them. This information
is expressed with alarm maps and value abstractions. The abstract
domains provide the mandatory abstract semantics for the derefer-
ence of lvalues, but they can also supply the evaluator with some
abstractions of other expressions. To compute precise abstractions,
an abstract domain may request additional information from other
domains. Finally, an abstract domain can trigger the backward prop-
agation of value abstractions for some expressions.

When processing a statement, the abstract interpreter evaluates the
expressions involved in the statement. At the end of these evalua-
tions, a valuation (see Section 6.1.3) stores all the produced alarms
and value abstractions. They have been cooperatively computed us-
ing the properties inferred by each abstract domain at the program

179

180 state abstractions

Listing 7.1: Signature of domain queries

1 type ’a or_bottom = ‘Bottom | ‘Value of ’a

type ’a evaluated = ’a or_bottom * alarms

val extract_lval : (* F
#
∗τ *)

5 oracle:(exp -> value evaluated) ->

state -> lval -> typ -> location -> value evaluated

val extract_expr : (* F
#
D *)

9 oracle:(exp -> value evaluated) ->

10 state -> exp -> (value * origin) evaluated �
point before the statement. Then, these abstractions are available for
the abstract domain transformers to model the semantics of the state-
ment as precisely as possible. Thus, information may flow from a
domain to another, through the shared evaluation of expressions.

7.1 collaboration for the evaluation : domain queries

A state abstract domain D provides two query functions, on which
the generic evaluator relies. Those functions translate AST fragments
into alarm maps and value abstractions. If the domain is a product of
several domains, all their answers to a query are intersected thanks
to the meet operator of the alarm and value lattices. Thereby, each
domain may contribute to reduce the abstract value computed for an
expression, or decrease the number of emitted alarms.

These queries have been briefly presented through Section 6.1.2,
but this section illustrates them in examples. Listing 7.1 shows their
OCaml signature. The explanation of the oracle argument is post-
poned to Subsection 7.1.3.

7.1.1 Semantics of Dereference

The first query is a forward abstract semantics F
#
∗τ for dereferences,

mandatory to perform the evaluation of expressions.

Definition 51 (Semantics of dereference). In an abstract state D, a
sound abstract semantics F

#
∗τ of dereferences is a function from a lo-

cation abstraction l to a value abstraction v and a map of alarms A

such that:

• v is a sound approximation of the concrete values that may be
stored at any concrete address of γL(l) in any concrete state of
γD(D);

7.1 collaboration for the evaluation : domain queries 181

• A is a sound abstraction of the possible failure of the derefer-
ence of any concrete address in γL(l). Therefore, the assertions
of A ensure that the dereference succeeds.

F#
∗τ : D→ L# → V# ×A

∀a ∈ γv (l) , ∀S ∈ γD (D) , F#
∗τ (D, l) |=V×A J∗τaK

Θ
(S)

The alarms produced by F
#
∗τ ensure the validity of the location, and

that the contents of the read memory slice are proper (i.e. not indeter-
minate in C parlance, that is not uninit or none in our semantics of
clike). They have been described in Section 5.1.3.2.

Proposition 4. For a product of domains D = D1 × . . . × Dn, a sound
abstract semantics F#

∗τ can be defined by:

F#
∗τ ((d1, . . . , dn), l) = F#

∗τ (d1, l) uV×A . . . uV×A F
#
∗τ (dn, l)

Proof. Let l be a location abstraction and D = (d1, d2, . . . , dn) be a
product of n abstract states from domains D1, D2, . . . , Dn. For each
domain Di, we have:

∀S ∈ γD(di), F
#
∗τ (di, l) |=V×A J∗τaK

Θ
(S)

We thus have:

S ∈ γD(d1, . . . , dn) ⇒ ∀i ∈ {1, . . . , n}, S ∈ γD(di)

⇒ ∀i ∈ {1, . . . , n}, F#
∗τ (d, l) |=V×A J∗τaK

Θ
(S)

⇒ F#
∗τ ((d1, d2, . . . , dn), l) |=V×A J∗τaK

Θ
(S)

The last deduction is the application of lemma 11.

Example 24. Figure 7.1 illustrates the collaboration between state ab-
stractions through their semantics of dereference. The objective is to
analyze the C code at the top, where the value of i ranges between
0 and 4 at the first line. This code features basic integer arithmetic
and the access to an array. We focus on the evaluation of the right
expression at line 3, which is written ∗int (&t[i+1]) in our language
(see Chapter 4). We omit the alarms: as the analyzed code does not
include C undefined behaviors, there may be none with sufficiently
precise abstractions.

As all the C values of the target code are constant in any memory
layout, we do not need abstractions of values dependent on the layout.
We thus use only some of the basic value abstractions presented in
Section 5.3 for the evaluation of expressions:

• integer intervals with congruences [i..j]r%m represent sets of
integer values; an interval without congruence information is
written [i..j], and a singleton interval is written [i].

182 state abstractions

1 int t[5] = {1, 2, 3, 4, 5};

if (0 <= i && i < 2)

• r = t[i + 1]; �
Env Array

States D
i 7→ [0..1]

r 7→ ⊥
t : [1; 2; 3; 4; 5]

F
#
∗int (D,&i+[0]) [0..1] >

F
#
∗int (D,&r+[0]) ⊥ >

F
#
∗int (D,&t+[4..8]0%4) > [2..3]

F
#
∗int (D,&t+[0..16]0%4) > [1..5]

J&iK#(D) = (&i)# = {{ &i+[0] }} (1)

JiK#(D) = J∗int(&i)K#(D)

= F#
∗int (D, {{ &i+[0] }})

= [0..1] uV >V = [0..1] (2)

J1K#(D) = 1# = [1] (3)

Ji+1K#(D) = JiK#(D) +# J1K#(D)

= [0..1] +# [1] = [1..2] (4)

J&tK#(D) = (&t)# = {{ &t+[0] }} (5)

J&t [i+ 1]K#(D) = J&tK#(D) +# sizeof(int) ×# Ji+1K#(S)

= {{ &t+[0] }} +# [4] ×# [1..2]

= {{ &t+[0] }} +# [4..8]0%4

= {{ &t+[4..8]0%4 }} (6)

J∗int (&t [i])K#(D) = F#
∗int(D, {{ &t+[4..8]0%4 }})

= >V uV [2..3] = [2..3] (7)

Figure 7.1: Forward collaboration between domains

7.1 collaboration for the evaluation : domain queries 183

• maps {{ &x+[i..j]r%m }} from variables to intervals-expressed
byte offsets represent sets of pointer values.

We assume given two abstract domains that cooperate:

• an environment mapping integer variables to intervals repre-
senting their possible values at a statement;

• an array domain, able to represent precisely the value of each
cell of an array, but also to model an imprecise access to an
array;

We are not interested in their implementation or their interpretation
of statements, but only in their semantics of dereferences. A repre-
sentation of the state D of each domain at the bullet point in the code
is given in the first line of the table. The following lines show their
answers to some queries, i.e. the value abstraction computed by their
dereference semantics for some location abstractions. In this exam-
ple, each domain has information about different expressions, and
returns >V for the others.

Finally, the equations of Figure 7.1 detail each step of the forward
evaluation of the expression ∗int (&t[i+1]) in the state D. It proceeds
bottom-up, using the domains semantics of dereference and the nat-
ural semantics of value abstractions. Note that we write the abstract
value semantics F#

♦ with an infix notation ♦#.

1. The read of the variable i is a dereference of the address &i.
First, the address &i is converted into its abstract representation
in the value abstractions, here the map {{ &i+[0] }}.

2. The abstract semantics of dereferences is provided by the do-
mains. The environment provides the interval [0..1] for the vari-
able i. The array domain cannot interpret a non-array lvalue,
and returns >V. The meet of those two values is [0..1].

3. The constant 1 is directly converted into its abstract representa-
tion in the value abstractions, here the interval [1].

4. The evaluation of the expression i+1 relies on the abstract se-
mantics of intervals and congruences, leading to the abstrac-
tion [1..2].

5. The constant &t is converted into the map {{ &t+[0] }}.

6. The evaluation of the address &t[i+1] relies on the abstract se-
mantics of pointer abstractions —array subscripting is equiv-
alent to the addition of a pointer and an integer. The inter-
val [1..2] computed for the offset is multiplied by the size in
bytes of the type of the array elements. Here we assumed

184 state abstractions

Listing 7.2: Assignment through a pointer

1 int t[5] = {1, 2, 3, 4, 5};

int *p = t;

if (0 <= i && i < 2)

• r = *(p+(i+1)); �
sizeof(int) = 4. The resulting interval is [4..8], and the con-
gruence abstraction is able to express that the result is also con-
gruent to 0 modulo 4. Then, this integer abstraction is added to
the offset of the pointer abstraction of &t, which gives the new
map {{ &t+[4..8]0%4 }}.

7. Finally, this dereference of the array cell is processed by the do-
mains. The environment domain does not handle arrays, and so
returns the top value abstraction. However, using the abstrac-
tion of the address computed at the previous step, the array
domain is able to provide the interval [2..3].

The important point in this example is the collaboration between
both abstract domains, without any direct interaction. Even if the
environment domain is purely numeric, it contributes to the compu-
tation of a precise abstraction for the address &t[i+1]. This helps the
array domain to provide an accurate abstraction of the dereference,
without knowing anything about the index i+1. Then, the environ-
ment domain will use this accurate abstraction for the assignment
of r in the program. Here, neither domain is able to precisely inter-
pret the statement on its own, but the cooperative evaluation allows
an easy division of roles between state abstractions acting on different
subsets of the C language.

In the example, both domains are numerical, and do not infer prop-
erties on pointer variables. To process dereferences or assignments
though pointers, we would also need a domain inferring alias infor-
mation, and able to express it by producing pointer value abstractions.
For instance, listing 7.2 shows a variant of the code used in exam-
ple 24, where the array t is accessed through the pointer p at line 4.
Thus, interpreting this statement requires another domain providing
an abstraction of the value of the pointer p, such as {{ &t+[0] }}. As
before, numerical domains may also assist in the computation of the
integer abstraction of the address offset.

7.1.2 Additional Query on any Expressions

The abstract semantics of dereferences is the only mandatory feature
required from an abstract domain to achieve a complete evaluation
of any expression. Indeed, dereferences depend on memories —and

7.1 collaboration for the evaluation : domain queries 185

thus on concrete states, and must be approximated by state abstrac-
tions. All other operations on expressions can be safely handled by
value (and location) abstractions. Yet, an abstract domain may infer
relevant properties about any expressions, and not only dereferences.
For instance, a domain tracking inequalities in a program may ex-
press that e1 − e2 is positive when it has inferred e1 ≥ e2, regardless
of the value of e1 and e2. To take advantage of all inferences made
by the domains, the evaluation also involves the abstract states on
arbitrary expressions.

The second query provided by an abstract domain supplies addi-
tional information about arbitrary C expressions. It computes sound
abstractions for their complete evaluations in all the concrete states
in the concretization of the abstract state.

Definition 52 (Arbitrary domain query). In an abstract state D, a
sound query F

#
D (D, e) for an expression e computes:

• a sound value abstraction v of the concrete values that the ex-
pression e may have in a concrete state of γD(D);

• an alarm map A which is a sound abstraction of the evaluation
of e in any concrete state of γD(D).

F
#
D : D→ expr → V# ×A

∀S ∈ γD (D) , F#
D (D, e) |=V×A JeK

Θ
(S)

Proposition 5. For a product of domains D = D1 × . . . × Dn, a sound
abstract semantics F#

D can be defined by:

F
#
D ((d1, d2, . . . , dn), l) = F

#
D (d1, l)uV×A F

#
D (d2, l)uV×A . . . uV×A F

#
D (dn, l)

Proof. The same reasoning as for proposition 4 applies here.

In EVA, the evaluation of an expression queries the state domains
on each non-constant expression, using F

#
∗τ for dereferences and F

#
D

for other expressions. In the second case, the meet uV×A is used to in-
tersect the abstractions computed by the abstract semantics of values
and by the query of domains.

Example 25. The analysis of the code shown at Figure 7.2 illustrates
the utility of the query on arbitrary expressions. We use integer inter-
vals as value abstractions, and two state abstractions: an environment
mapping variables to intervals, and a relational domain inferring
symbolic inequalities between C expressions. The two assertions con-
strain the possible values of the variables a and b between 0 and 10,
which are stored as intervals in the environment domain. The condi-
tion at line 3 does not allow reducing these intervals, but the symbolic
domain retains that the inequality a+b>9 holds. The table shows the
abstract states inferred at line 4, and their answers to queries on some
expressions, including but not limited to dereferences. The evaluation
of the expression 2*(a+b) is as follow:

186 state abstractions

1 /*@ assert 0 <= a <= 10; */

/*@ assert 0 <= b <= 10; */

if (a + b >= 10)

• r = 2 * (a + b); �
Environment Inequalities

States D
a 7→ [0..10]

b 7→ [0..10]

r 7→ ⊥

a+ b > 9

a [0..10] >
b [0..10] >

a+ b > [10..+∞]

2 ∗ (a+ b) > >

Figure 7.2: Collaboration between domains on arbitrary expressions

• the environment domain provides the interval [0..10] for the
variables a and b.

• the environment domain provides no value abstraction for the
expression a+b, but the interval value semantics of addition
computes the interval [0..20]. The relational domain supplies
the interval [10..+∞]. The meet of both intervals is [10..20].

• the interval semantics of multiplication computes [20..40] for
the expression 2*(a+b), and no domain can reduce this value.

Here, the relational domain cannot avail its inferred inequality with-
out the query on arbitrary expressions, which would have led to a
significant loss of precision when interpreting the assignment.

7.1.3 Interaction through an Oracle

To compute a precise value abstraction for an expression, a domain
—and especially a relational one— may need additional information
about other expressions. Thus, a domain can request the evaluation
of new expressions, through an oracle given in argument of the query
functions. The oracle triggers the requested evaluation using all avail-
able domains, and returns the cooperatively computed abstractions to
the initial domain. The oracle has the same specification as the for-
ward evaluation function: it provides an alarm map and a value that
are sound approximations of the concrete evaluation of the expres-
sion in the current state D. A domain can thus rely on it to make its
own answer to a query.

7.1 collaboration for the evaluation : domain queries 187

Definition 53 (Oracle). An oracle is a function from expressions to
pairs of a value abstraction and an alarm map.

oracle : expr → V# ×A

Definition 54 (Oracle concretization). For an oracle oracle, we define
γo(oracle) as the set of concrete states S for which the answer of the
oracle for any expression e is a sound approximation of its evaluation
in S:

γo(oracle) , {S ∈ S | ∀e ∈ expr , oracle(e) |=V×A JeK
Θ

(S)}

Definition 55 (Sound oracle). In an abstract state D and a valuation E ,
an oracle is sound if it produces sound approximations of the evalua-
tions in the concrete state of γDE(D, E).

∀S ∈ γDE(D, E), ∀e ∈ expr , oracle(e) |=V×A JeK
Θ

(S)

This is equivalent to γDE(D, E) ⊆ γo(oracle).

Definition 56. The domain queries F
#
∗τ and F

#
D of an abstract state D

take as additional argument an oracle. The queries produce sound
alarm maps and value abstractions for the concrete states in γD(D) ∩
γo(oracle).

F#
∗τ : (expr → V# ×A)→ D→ expr → L# → V# ×A

F
#
D : (expr → V# ×A)→ D→ expr → V# ×A

∀D ∈ D, ∀e ∈ expr , ∀l ∈ L, ∀a ∈ γv (l) , ∀S ∈ γD(D) ∩ γo(oracle),{
F

#
∗τ (oracle, D, ∗τa, l) |=V×A J∗τaK

Θ
(S)

F
#
D (oracle, D, e) |=V×A JeK

Θ
(S)

Theorem 9. If the oracle given to a domain is sound in the current abstract
state and valuation, then the requirement of the queries of definition 56 still
guarantees the soundness of the forward evaluation stated by proposition 1
and proved by theorem 6.

Proof. According to proposition 1, a sound forward evaluation in an
abstract state D and a valuation E produces abstractions (a new valu-
ation and an alarm map) that are over-approximations of the concrete
evaluation in any concrete states in γDE(D, E). By definition 55, if an
oracle is sound for D and E , then:

γDE(D, E) ⊆ γo(oracle) (7.1)

We can informally see that refining the query of a state D to an ap-
proximation of the concrete states in γD(D) ∩ γo(oracle) instead of
just γD(D) does not impact the soundness of the evaluation.

188 state abstractions

Listing 7.3: Implementation of an oracle in the evaluator

1 let rec forward_eval fuel state expr =

try Valuation.find !valuation expr

with Not_found ->

Valuation.add !valuation expr (Value.top, Alarmset.all);

5 let r = coop_forward_eval fuel state expr in

Valuation.add !valuation expr r; r

and coop_forward_eval fuel state expr =

let oracle =

10 if fuel > 0

then forward_eval (pred fuel) state

else (Value.top, Alarmset.all)

in

let v, a = internal_forward_eval fuel state expr in

15 let v’, a’ = Domain.extract_expr oracle state expr in

Value.meet v v’, Alarms.meet a a’

and internal_forward_eval fuel state expr =

[...] �
In order to formally verify this fact, we would need to redo the

proof of theorem 6. This proof relies on the invariant of the atomic
updates of the valuation, stated by theorem 5, which itself relies on
lemma 22. This lemma asserts that the forward semantics used for
an atomic update produces sound value abstractions of the concrete
evaluation of the expression being processed. In other words, for an
expression e, the forward abstract semantics must compute a value v
such that:

∀S ∈ γDE(D, E), JeK
Θ

(S) ∈ γV(v) ∪ {Ω}

By inclusion 7.1, a concrete state in γDE(D, E) is also in γo(oracle),
and thus the queries of the domain produce value abstractions that
satisfy this equation. The same reasoning applies for the alarm maps.

A forward evaluation satisfying the properties of propositions 1

and 3 is a sound oracle. As the forward evaluation returns a valuation,
the oracle just needs to extract the expected value abstraction from the
valuation.

Proposition 6. In an abstract state D and a valuation E , a sound oracle
can be defined by:

oracleD,E(e) , (E ′(e),A) where (E ′,A) = JeK#
D(E)

7.1 collaboration for the evaluation : domain queries 189

Proof. Let S be a concrete state in γDE(D, E). Proposition 1 ensures
that:

A |=A JeK
Θ

(S)

JeK
Θ

(S) 6= Ω ⇒ S ∈ γE(E ′)

By definition 46, S ∈ γE(E ′) ⇒ JeK
Θ

(S) ∈ γv(E ′(e)) —proposition 3

ensures that e ∈ dom(E ′). We thus have JeK
Θ

(S) ∈ γv(E ′(e)) ∪ {Ω} in
all cases, and then:

(E ′(e),A) |=V×A JeK
Θ

(S)

As the oracle triggers new evaluations, an uncontrolled use of the
oracle may lead to (1) a loop in the evaluation, or to (2) an infinite
chain of evaluations of different expressions. To prevent (1) from
happening, the oracle can return > on re-occurrences of the same
expression. The number of recursive uses of the oracle should also
be limited by a parameter of the analysis, to avoid (2).

Listing 7.3 contains an improvement of the simplified evaluator pre-
sented in Section 6.1.7, that shows the implementation of the oracle
used in EVA. The extract_expr query of the domain takes as argument
the oracle, which calls the main forward evaluation. The evaluation
uses a valuation as a cache. Before any computation on an expres-
sion e, it also binds the top value and alarm abstractions to e in the
valuation. This prevents any loop in the evaluation: if a domain re-
quests the re-evaluation of e, the main function returns directly this
top abstractions. This imprecise value is replaced by the computed
one at the end of the evaluation. Moreover, an integer fuel is used to
avoid an infinite sequence of evaluations: a call of the oracle decre-
ments it, and the oracle returns the top abstractions when the fuel
reaches zero.

Thanks to the oracle, the abstract domains may share information
through alarms and value abstractions during the evaluation, without
resorting to a direct communication between domains. Especially,
the oracle allows a relational domain to fully avail the relations it
has inferred, and lets the other domains collaborate in leveraging
these relations. The following example illustrates this with a symbolic
equality domain.

Example 26. In this example, we study the analysis of the code snip-
pet shown in figure 7.3, which is quite similar to the code of exam-
ple 24: at line 5, the assignment of the variable r depends on the
value of t[i], under the condition i < 2. However, the access to the
array cell t[i] is done through the tmp variable, which has been com-
puted before the condition. Accurately interpreting the assignment

190 state abstractions

thus requires to take into account the reduction of tmp implied by the
condition i < 2.

We use the same value abstractions as in the previous example:
intervals and congruences for integers, and maps from variables to
integer abstractions for pointers. We assume given three abstract do-
mains —the first two being those already used in the example 24.
Their abstract states before the interpretation of the assignment of
line 5 is given in the first line of the figure table. The following lines
show their answers to some queries about various expressions. Once
again, the domains supply the top value abstraction on expressions
that they do not handle, even if they have inferred relevant proper-
ties about the subterms: they let the interval semantics compute a
precise value for these expressions from the values of the subterms.
The domains used in this example are:

• an environment mapping integer variables to intervals. After
the initial assertion 0 ≤ i and the condition i < 2, the variable
i is known to be in [0..1]. The set of possible values of tmp

has been cooperatively computed at line 3, but has not been
reduced by the condition, since this domain is unable to link i

and tmp.

• the array domain that represents the values of each cell of t

• a relational domain inferring symbolic equalities between ex-
pressions. At line 3, it has inferred tmp = t[i] + 1, which is still
valid at line 5.

Without the oracle mechanism, the evaluation of 2 ∗ tmp in these
states leads simply to the abstraction [2] ∗# [2..6] = [4..12]0%2. The
equality domain cannot supply a value abstraction for tmp by itself,
despite the relation it has inferred. But it can use the oracle to get
a value abstraction of t[i]+1, and then returns it as a sound value
abstraction of tmp. The oracle calls the complete evaluation of t[i]+1

in the full state, which proceeds as shown previously in example 24:
by intertwining the value semantics and the semantics of dereference
provided by the environment and the array domain, it computes the
precise interval [2..3] for t[i]+1. Indeed, the standard evaluation of
t[i]+1 takes into account the reduction of i stemming from the condi-
tion at line 4. Then, the equality domain returns the interval [2..3] for
tmp, and the evaluation of 2 ∗ tmp becomes [2] ∗# [2..3] = [4..6]0%2.

Note that when evaluating t[i]+1, the equality domain can request
the evaluation of tmp through the oracle, for the same reason as be-
fore. Here, the oracle returns the top abstraction directly, to prevent
the evaluation to loop endlessly between tmp and t[i]+1.

7.2 backward propagators 191

1 /*@ assert 0 <= i <= 4; */

int t[5] = {1, 2, 3, 4, 5};

int tmp = t[i] + 1;

if (i < 2)

5 • r = 2 * tmp; �
Env Array Equality

States D
i 7→ [0..1]

tmp 7→ [2..6]

r 7→ ⊥

t :

[1; 2; 3; 4; 5]
tmp = t[i] + 1

2 ∗ tmp > > >
tmp [2..6] > oracleD(t[i] + 1)

i [0..1] > >
t[i] > [1..2] >

t[i] + 1 > > oracleD(tmp)

r ⊥ > >

Figure 7.3: Interaction through the oracle

Listing 7.4: Signature of domain backward propagators

1 type ’a or_bottom = ‘Bottom | ‘Value of ’a

val backward_location : (* B
#
∗τ *)

4 state -> location -> value -> location or_bottom

5

val reduce_further : (* B
#
D *)

7 state -> exp -> value -> (exp * value) list �
7.2 backward propagators

Within value abstractions, forward and backward propagators are
dual. Likewise, state abstractions can provide the backward coun-
terparts of queries. Listing 7.4 presents their signature.

7.2.1 Backward Semantics of Dereference

When an abstraction of the possible values of an lvalue is reduced, the
abstraction of the memory location of the lvalue might be reduced
as well. This is typically the case for memory accesses through an
imprecise pointer or in an array. This reduction requires knowledge
of the memory state, and thus involves the state abstractions.

192 state abstractions

Definition 57 (Backward semantics of dereference). In an abstract
state D, a sound backward semantics B

#
∗τ of dereference is a func-

tion from a location abstraction l and a value abstraction v to a new
location abstraction l′ such that l′ over-approximates all concrete ad-
dresses in γV(l) whose dereference is in γV(v) for at least one concrete
state of γD(D).

B#
∗τ : D→ L# → V# → L#

{a ∈ γL(l) | ∃S ∈ γD(D), J∗τaK
Θ

(S) ∈ γV(v)} ⊆ γL(B#
∗τ (D, l, v))

As usual for backward propagators, it is always sound to return
the previous location unreduced.

Proposition 7. For a product of domains D = D1 × . . . × Dn, a sound
abstract semantics B#

∗τ can be defined by:

B#
∗τ ((d1, . . . , dn), l, v) , B#

∗τ (d1, l, v) uV . . . uV B
#
∗τ (dn, l, v)

Proof. Let D = (d1, . . . , dn) be a product of abstract states of a domain
D = D1 × . . . ×Dn. Let l be a location abstraction and v be a value
abstraction. Let a be a constant pointer value such that:

a ∈ γL(l) ∧ J∗τaK
Θ

(S) ∈ γV(v)

We need to prove that a ∈ γL(B#
∗τ (D, l, v)). Let S be a state in γD(D)

such that J∗τaK
Θ

(S) ∈ γV(v). For each i between 1 and n, we have
γD(D) ⊆ γD(di) and thus S ∈ γD(di). This implies:

a ∈ γL(l) ∧ ∀i ∈ {1, . . . , n}, ∃S ∈ γD(di), J∗τaK
Θ

(S) ∈ γV(v)

By definition 57:

∀i ∈ {1, . . . , n}, a ∈ γL(B#
∗τ (di, l, v))

By soundness of the meet of value abstractions, we can deduce:

a ∈ B#
∗τ (d1, l, v) uV . . . uV B

#
∗τ (dn, l, v) = γL(B#

∗τ (D, l, v))

Example 27. The analysis of the code snippet of Figure 7.4 illustrates
the need for a backward propagator for dereferences. We use the
environment domain and the array domain already used in the pre-
vious examples. Their abstract states at line 3 are represented in the
figure table. In these states, a forward evaluation of the condition of
line 4 computes:

• the interval [1..4] for the expression i+1, according to the ab-
stract semantics of addition.

7.2 backward propagators 193

1 /*@ assert 0 <= i <= 3; */

int t[5] = {1, 2, 3, 4, 5};

•
4 if (t[i+1] < 4)

5 r = 2 * i; �
Env Array

States D
i 7→ [0..3]

r 7→ ⊥
t : [1; 2; 3; 4; 5]

Figure 7.4: Backward propagation on an array access

• the map {{ &t+[4..16]0%4 }} for the address &t[i+1], according
to the abstract semantics of array subscripting.

• the interval [2..5] for the expression t [i+1], through the derefer-
ence semantics of the array domain.

• the interval [0..1] for the condition t [i+1] < 4, according to the
abstract semantics of comparison.

Then, the analysis of the if branch assumes the condition to be true
by backward propagating the singleton interval [1] through the ex-
pression t [i+1]<4. This backward evaluation reduces:

• the interval for t [i+1] to [2..3], according to the backward prop-
agator of intervals on comparisons.

• the map for the address &t[i+1] to {{ &t+[4..8]0%4 }}, thanks
to the backward propagation provided by the array domain. In-
deed, this map represents the only locations of the previous
abstraction of the address for which the dereference has a value
in [2..3].

• the interval for the expression i+1 to [1..2], through the back-
ward semantics of array subscripting.

• the interval for the variable i to [0..1], according to the backward
semantics of addition.

The backward semantics of dereference allows reducing the value
abstraction of i+1 according to the value abstraction t [i+1]. If the
variable i is used later in the branch, this reduction can be significant
for the precision of the analysis.

Example 28. The previous example exhibits a reduction of an array
index according to the value of the array cell. The code of Figure 7.5
presents a reduction of a pointer according to the pointed value. We
use here the environment domain for integer variables, along with

194 state abstractions

1 int a = 42;

int b = 0;

int v = rand();

int *p = v ? &a : &b;

5 •
6 int r = 100 / *p; �

Environment Alias analysis

States D
a 7→ [42]

b 7→ [0]

v 7→ >
r 7→ ⊥

p→ {{ &a+[0], &b+[0] }}

Figure 7.5: Backward propagation on a pointer dereference

a domain performing an alias analysis and inferring pointer abstrac-
tions (maps from variables to integer offsets). The table presents their
states at line 5. When evaluating the expression at line 6, the alias-
ing domain provides the abstraction {{ &a+[0], &b+[0] }} for the
pointer p. Using it, the environment domain abstracts the result of
the dereference *p into the interval [0..42], by joining the intervals
it stores at each location {{ &a+[0] }} and {{ &b+[0] }}. Then, the
forward evaluation of 100 / *p raises an alarm about the potential
division by zero.

We have seen in Section 6.2.1 that an alarm makes a backward prop-
agation relevant. Here, the interval backward semantics on division
reduces the abstraction of the divisor *p to [1..42]. Then, the environ-
ment domain can reduce the abstraction of the dereference location:
as b is equal to 0, {{ &a+[0] }} is the only possible location for this
dereference. This reduces the abstraction of p for the alias analysis.

7.2.2 Triggering New Reductions

On a backward propagation, the relations inferred by a domain may
induce further interesting reductions. For instance, if a ≤ b holds,
then any reduction of the infimum of the possible values of a im-
plies the same reduction for b. Hence, when performing a reduction,
the generic evaluator notifies the domains through the function B

#
D ,

which returns a set of new reductions to be backward propagated
by the evaluator. The new reductions, deduced from the prior one
and from the inferences made by the domain, must be correct in the
concrete states for which the initial reductions are valid. To avoid
diverging, the generic evaluator limits the number of successive re-
ductions made through B

#
D . In the signature of Listing 7.4, B

#
D is

named reduce_further, and we call it the reducer.

Definition 58. In an abstract state D, a reduction of an expression e to
a value abstraction v soundly implies a reduction of an expression e′

7.2 backward propagators 195

to a value abstraction v′ when for all concrete state S in γD(D) in
which the evaluation of e is in γV(v), the evaluation of e′ is in γV(v′).

The query B
#
D (D, e, v) returns a set of pairs (e′, v′) such that the

reduction of e to v soundly implies the reduction of e′ to v′.

B
#
D : D→ expr → V# → P(expr ×V#)

∀(e′, v′) ∈ B
#
D (D, e, v), ∀S ∈ γD(D),

JeK
Θ

(S) ∈ γV(v)⇒ Je′K
Θ

(S) ∈ γV(v′)

Proposition 8. For a product of domains D = D1 × . . . × Dn, a sound
abstract semantics B#

D can be defined as the union of all the new reductions
proposed by each domain Di.

Proof. Let D = (d1, . . . , dn) be a product of abstract states of domains
D1, . . . , Dn. Let e and e′ be two expressions, and v and v′ two value
abstractions, and let i ∈ {1, . . . , n}. If (e′, v′) is a new reduction pro-
posed by the domain Di as a sound consequence of the reduction of
e to v, then:

∀S ∈ γD(di), JeK
Θ

(S) ∈ γV(v)⇒ Je′K
Θ

(S) ∈ γV(v′)

As γD(D) ⊆ γD(di), this implies:

∀S ∈ γD(D), JeK
Θ

(S) ∈ γV(v)⇒ Je′K
Θ

(S) ∈ γV(v′)

and thus (e′, v′) is also a valid new reduction in the state D.

Theorem 10. The backward propagations of the reductions proposed by a
domain through B

#
D (D, e, v) do not impact the soundness of the backward

evaluation stated by proposition 2 and proved by theorem 6.

Proof. Let D be an abstract state, E be a valuation, e be an expres-
sion and v be a value abstraction. Proposition 2 states that a sound
backward propagation J←−e K#

D(E , v) produces a valuation E ′ such that:

∀S ∈ γDE(D, E), JeK
Θ

(S) ∈ γV(v)⇒ S ∈ γE(E ′)

We consider a new reduction proposed by the domain:

(e′, v′) ∈ B
#
D (D, e, v)

Then we have:

∀S ∈ γD(D), JeK
Θ

(S) ∈ γV(v)⇒ Je′K
Θ

(S) ∈ γV(v′)

As γDE(D, E) ⊆ γD(D), we also have:

∀S ∈ γDE(D, E), JeK
Θ

(S) ∈ γV(v)⇒ Je′K
Θ

(S) ∈ γV(v′) (7.2)

196 state abstractions

1 /*@ assert 0 <= i <= 4; */

int t[] = {1, 2, 3, 4, 5};

int tmp = t[i] + 1;

•
5 if (tmp < 4)

[...] �
Environment Array domain Equalities

States D
i 7→ [0..4]

tmp 7→ [2..6]
t : [1; 2; 3; 4; 5] tmp = t[i] + 1

Figure 7.6: Triggering new reductions

By proposition 2 again, we know that the backward propagation
J
←−
e′ K#

D(E ′, v′) produces a valuation E” that satisfies:

∀S ∈ γDE(D, E), Je′K
Θ

(S) ∈ γV(v′)⇒ S ∈ γE(E”) (7.3)

By 7.2 and 7.3, we have:

∀S ∈ γDE(D, E), JeK
Θ

(S) ∈ γV(v)⇒ S ∈ γE(E”)

We can conclude that the sequence of two backward propagations
J
←−
e′ K#

D(J←−e K#
D(E , v), v′) satisfies the property of proposition 2.

In a way, the reducer B#
D is the backward counterpart of the oracle:

the oracle allows a domain to start new forward evaluations, while
the reducer allows it to start new backward propagations. As for the
oracle, letting a domain start new backward propagations may lead
to a loop in the evaluation, or to an infinite chain of propagations on
different expressions. The same solutions can be applied to solve this
issue: the number of recursive uses of B#

D should be limited, using a
decreasing fuel, and re-occurrences of the same expression should be
detected.

Example 29. We point out the interest for a domain to propagate new
reductions on the analysis of the if statement at line 5 of the code
of Figure 7.6. We use the environment, array and equality domain
shown previously. The table shows their states at the bullet point of
line 4. On the if branch, the backward propagation of the value [1]

for the condition reduces the abstraction for tmp to the interval [2..3].
The evaluation notifies the domains of this reduction. As the equality
domain has inferred tmp = t[i] + 1, it can start the backward propa-
gation of the interval [2..3] to the other expression t[i]+1. This will
lead to the reduction of the variable i to the interval [0..1], allowing
further precision when analyzing the branch.

Both the oracle and the reducer allow a domain to avail its inferred
relation during an evaluation. It may not always be obvious for a

7.3 abstract semantics of statements 197

1 /*@ assert 0 <= x <= 20; */

int y = x;

if (y < 10)

r = x; �
1 /*@ assert 0 <= x <= 20; */

int y = x;

if (y < 10) {

y = 0;

5 r = x;

} �
Figure 7.7: Using the oracle or the reducer

domain to determine when to use either of the functionalities. On
the left code of Figure 7.7, an equality domain can use the reducer
at line 3 to propagate that not only y but also x is smaller than 10.
If it does not, it can also use the oracle at line 4 to evaluate y, and
return the result for x. In both cases, the equality domain assists
in interpreting the assignment, leading the abstraction of r to reflect
that the variable is smaller than 10. Using the reducer narrows the
abstraction of x as soon as possible, even if it is not read in the branch.
On the other hand, relying on the oracle postpones the reduction of
the abstraction of x to when it becomes useful (i.e. when x is read).
However, if y is written in the branch before the assignment of r,
then the equality does not hold anymore, and x cannot be reduced
according to the condition y < 10. On the right code of Figure 7.7,
using the reducer when backward propagating the condition is the
only way to allow a precise interpretation of the assignment at line 5.

On some code patterns, only one of the oracle or reducer can be
of some help. On the code of Figure 7.6, the equality tmp = t[i] + 1

allows a reduction of the abstraction of i through the reducer. But
the equality domain has inferred no equality about i itself, and thus
cannot use the oracle to narrow the abstraction of i. With the oracle,
the domain can only narrow the abstraction of t[i]+1 in the branch.
It is possible to deduce the value of i from the value of t[i]+1 by
a backward propagation, but the oracle does not provide this fea-
ture. On the other hand, on the code of Figure 7.3, the same equality
tmp = t[i] + 1 does not allow reducing the abstraction of tmp from
the reduction of i. This would need a forward evaluation of t[i]+1

first, and the reducer does not provide this feature.
This restriction of the oracle and the reducer —the oracle does only

forward evaluation, and the reducer only backward propagation—
helps limiting their cost. It also makes their implementation much
easier, by keeping separate the forward and the backward propaga-
tions.

7.3 abstract semantics of statements

An abstract domains implements an abstract semantics of statements
through abstract transformers (or transfer functions). Such transform-

198 state abstractions

ers over-approximate the effects of a statement on an element of the
domain. These transformers are used to propagate abstract states
through the CFG, inferring properties about the possible behaviors
that may occur at a program point during its concrete execution.

Until now, we have focused on the cooperative evaluation of ex-
pressions to alarms and value abstractions. We will now see how this
evaluation assists the domain transformers to accurately interpret a
statement, using information provided by all abstract domains.

7.3.1 Abstract Semantics of Statements

When interpreting a statement, EVA starts by evaluating cooperatively
all involved addresses and expressions into value and location ab-
stractions. It follows the strategy described in Chapter 6, and involves
the abstract domains as explained above. The evaluations produce
an alarm map that over-approximates the undesirable behaviors that
may occur at this statement, according to the current abstract state.
Using the internal features of the Frama-C kernel, EVA emits the un-
proven alarms (with a non-true status) as ACSL assertions that report
the potential undesirable behaviors to the final user.

Then, EVA interprets the statement semantics in the case where no
undesirable behavior happens: it considers only the concrete states
in which the concrete evaluations succeed, which are the concrete
states that satisfy the emitted assertions. The valuation produced by
the evaluations is a sound abstraction of these concrete states: this
is guaranteed by the invariant of the atomic updates of a valuation,
proved in theorem 5. The abstract transformers of a domain can safely
use this valuation to model the effect of the statement on their abstract
states.

Definition 59 (Domain transformers). A domain transformer is a
function from a statement, a valuation and an abstract state to a
new abstract state that is a sound over-approximation of the non-
erroneous concrete states after the statement.

TD : stmt→ E→ D→ D
∀stmt ∈ stmt, ∀E ∈ E, ∀D ∈ D,

γD(TD(stmt , E , D)) ⊇ {S′ ∈ S\{Ω} |
∃S ∈ γDE(D, E), S′ = |{stmt}| (S)}

The content of the valuation E given to a domain transformer de-
pends on the interpreted statement. The valuation is the result of:

• for an assignment ∗τa := e, the evaluation of the expression e

to a value abstraction and of the address a to a location abstrac-
tion;

• for a copy ∗τa← ∗τa′, the evaluation of both addresses a and a′;

7.3 abstract semantics of statements 199

• for an assumption e==0?, the evaluation of the expression e

and the backward propagation of the value abstraction 0# for
this expression;

• for the entry in scope or exit from scope of variables, the valua-
tion is empty as the statement does not involve any expression
or address. Actually, the domain transformers for these state-
ments take no valuation.

The soundness properties of the evaluation functions have been stated
in Chapter 6. They ensure that the use of the domain transformers
described by definition 59 on these valuations leads to sound transfer
functions over-approximating the concrete semantics of statements.
This is formally proved by the following theorems for assignments,
copies and assumptions. Since the entry in scope and exit from scope
cannot fail and do not involve valuations, their abstract transformers
fulfill directly the requirement of definition 8.

Theorem 11. Let stmt be the assignment ∗τa := e, and letD be an abstract
state of the domain D. If JeK#

D : E → E × A is an evaluation function
satisfying the properties of proposition 1, then the function |{stmt}|# defined
as follows is a sound transfer function on non erroneous states, according to
definition 8.

|{stmt}| #(D) = TD(stmt , E , D) where E ,A = JaK#
D(E ′)

and E ′,A′ = JeK#
D(>E)

Moreover, if it exists a concrete state S in γD(D) for which the execution of
stmt fails (i.e. such that |{stmt}| (S) = Ω), then A or A′ is a non-bottom
alarm map, and an alarm is thus emitted by the analyzer (EVA emits all
alarms of AtA A

′ that have a non-true status).

Proof. Let S be a concrete state of γD(D). The semantics of assign-

ment, given in Figure 4.9, defines |{stmt}| (S) = Ω only if JeK
Θ

(S) = Ω

or JaK
Θ

(S) = Ω. Otherwise, the execution of stmt in S succeeds.

Case 1. JeK
Θ

(S) = Ω. By lemma 5, ∃A ∈ alarms(e), ¬A(S).
As S ∈ γDE(D,>E), the soundness of the evaluation (propo-
sition 1) ensures that A′ |=A JeK

Θ
(S). By definition 38,

A(A) 6= true. Therefore, A is not the bottom alarm map,
and the alarm A is emitted by the analyzer.

Case 2. JeK
Θ

(S) 6= Ω but JaK
Θ

(S) = Ω.

As S ∈ γDE(D,>E) and JeK
Θ

(S) 6= Ω, proposition 1 en-
sures that S ∈ γE(E ′). Thus, S ∈ γDE(D, E ′) and the same
reasoning as before applies: ∃A ∈ alarms(a), ¬A(S), and

A |=A JeK
Θ

(S), and finally A(A) 6= true. The alarm A is
emitted by the analyzer.

200 state abstractions

Case 3. JeK
Θ

(S) 6= Ω and JaK
Θ

(S) 6= Ω.
By proposition 1, we have S ∈ γE(E ′).
Thus S ∈ γDE(D, E ′), and we also have S ∈ γE(E).
Finally, S ∈ γDE(D, E) and definition 59 ensures that:

|{stmt}| (S) ∈ γD(TD(stmt , E , D))

Finally, TD(stmt , E , D) is a sound over-approximation of the non-
erroneous concrete states in |{stmt}| (γD(D)). Moreover, an alarm is
emitted if Ω ∈ |{stmt}| (γD(D)).

Theorem 12. Let stmt be a copy ∗τa1 ← ∗τa2, and let D be an abstract
state of the domain D. If JeK#

D : E → E × A is an evaluation function
satisfying the properties of proposition 1, then the function |{stmt}|# defined
as follows is a sound transfer function on non erroneous states, according to
definition 8.

|{stmt}| #(D) = TD(stmt , E , D) where E ,A = Ja1K
#
D(E ′)

and E ′,A′ = Ja2K
#
D(>E)

Moreover, if it exists a concrete state S in γD(D) for which the execution of
stmt fails (i.e. such that |{stmt}| (S) = Ω), then A or A′ is a non-bottom
alarm map, and an alarm is thus emitted by the analyzer (EVA emits all
alarms of AtA A

′ that have a non-true status).

Proof. The same reasoning as for theorem 11 applies.

It is worth noting that the dereference of the right address is not
evaluated; indeed, in the concrete semantics of a copy, the bytes lo-
cated at the right address are only copied at the location denoted by
the left address, without further computation.

Theorem 13. Let stmt be an assumption e==0?, and let D be an abstract
state of the domain D. If JeK#

D : E → E×A and J←−e K#
D : E → V# → E

are a forward and a backward evaluation functions satisfying the properties
of propositions 1 and 2, then the function |{stmt}| # defined as follows is a
sound transfer function on non erroneous states, according to definition 8.

|{stmt}| #(D) = TD(stmt , E , D) where E = J←−e K#
D(E ′, 0#)

and E ′,A = JeK#
D(>E)

Moreover, if it exists a concrete state S in γD(D) for which the execution of
stmt fails (i.e. such that |{stmt}| (S) = Ω), then A is a non-bottom alarm
map, and an alarm is thus emitted by the analyzer (EVA emits all alarms of
A that have a non-true status).

Proof. Let S be a concrete state of γD(D). The semantics of assign-

ment, given in Figure 4.9, defines |{stmt}| (S) = Ω only if JeK
Θ

(S) = Ω.
Otherwise, the execution of stmt in S succeeds or blocks.

7.3 abstract semantics of statements 201

Case 1. JeK
Θ

(S) = Ω. By lemma 5, ∃A ∈ alarms(e), ¬A(S).
As S ∈ γDE(D,>E), the soundness of the evaluation (propo-
sition 1) ensures that A′ |=A JeK

Θ
(S). By definition 38,

A(A) 6= true. Therefore, A is not the bottom alarm map,
and the alarm A is emitted by the analyzer.

Case 2. JeK
Θ

(S) 6= Ω but JeK
Θ

(S) 6= 0.
Then |{stmt}| (S) = ∅ ⊆ γD(TD(stmt , E , D)).

Case 3. JeK
Θ

(S) = 0

By proposition 1, we have S ∈ γE(E ′).
By proposition 2, we also have S ∈ γE(E).
Finally, S ∈ γDE(D, E) and definition 59 ensures that:

|{stmt}| (S) ∈ γD(TD(stmt , E , D))

Finally, TD(stmt , E , D) is an sound over-approximation of the non-
erroneous concrete states in |{stmt}| (γD(D)). Moreover, an alarm is
emitted if Ω ∈ |{stmt}| (γD(D)).

7.3.2 Domain Product

The product of several abstract domains D1 to Dn is straightforward.
An abstract state is a tuple (D1, . . . , Dn) ∈ D1 × . . . ×Dn. The lattice
structure is that of the direct product (see Section 2.3.2). In particular,
the product maintains the properties of the underlying lattices. If the
domains D1 to Dn are complete lattices, then their product is a com-
plete lattice as well. The forward and backward queries of the prod-
uct perform the meet of the abstractions produced by each domain.
They have been formally defined and proved correct all through the
definition of queries, in section 7.1 and 7.2. Finally, the abstract trans-
formers of the product are the component-wise applications of the
abstract transformers of each underlying domain.

TD1×. . .×Dn(stmt , E , (D1, . . . , Dn)) , (TD1
(stmt , E , D1),

. . . ,

TDn(stmt , E , Dn))

The monotonicity of the transfer functions requires the monotonicity
of the computation of the valuation. This requires the monotonicity
of the abstract semantics of value and location abstractions, as well as
the monotonicity of all domain queries. However, as most analyzers
(see Section 2.2.6), EVA relies mainly on widening operators to en-
sure a fast convergence of its analysis. The monotonicity of transfer
functions, as a complete lattice structure of domains, are ancillary.

The interactions between domains are entirely embedded in the
collaborative computation of the valuation. The same valuation is

202 state abstractions

1 int main (int i) {

int x = 17;

int t[] = {1, 2, 3, 4, 5};

•
5 int r = t[i] + x;

if (r + i >= 20)

[...] �
Environment Array domain

States D
i 7→ >
x 7→ [17]

r 7→ ⊥

t : [1; 2; 3; 4; 5]

Figure 7.8: Interpreting a statement

then used separately by each domain for interpreting the statement
as precisely as possible. The examples of this chapter are intended to
illustrate how domains contribute cooperatively to the computation
of a precise valuation, but also how this valuation supports their in-
terpretation of statements. Chapter 8 presents the domains currently
available in EVA, and their different uses of the valuation. Finally,
the next section identifies the relevance of some elements of a valu-
ation owing to the reductions that have been performed during the
evaluation.

7.3.3 Tracking Reductions

Some abstractions included in the valuation given to a domain trans-
former are especially relevant to assist the interpretation of a state-
ment. This is for instance the case for the value abstraction of the
right expression of an assignment, and for the location abstraction
of the address being assigned. However, the valuation also contains
sound approximations of the values or locations of all subterms of
the evaluated expressions and addresses, and these abstractions may
also help a domain to be more accurate. To process a conditional test,
the abstractions computed for the subterms of the condition can be
especially important, as the backward propagation of the truth value
of the condition could have reduced them.

Example 30. Let us consider the analysis of the code of Figure 7.8,
with the previously introduced environment and array domain. The
table represents their abstract states at line 4. The interpretation of
the statement at line 5 starts by evaluating the expression t[i]+x, that
leads to the interval [18..22]. This interval can be directly used by
the environment domain as an abstraction of the possible values of
r after the assignment. Furthermore, the evaluation of t[i] raises an
alarm asserting that the success of the dereference requires i to be

7.3 abstract semantics of statements 203

between 0 and 4. And the backward propagation on t[i] reduces the
abstraction of i to the interval [0..4].

This new interval is a sound abstraction of the possible values of
i after the assignment, as any other concrete value leads to the error
value for the dereference t[i] at line 5 —and thus aborts the pro-
gram execution in our semantics, or exhibits an undefined behavior
according to the C standard. The environment domain can use the
abstractions of t[i]+x and i to compute the abstract state:

i 7→ [0..4]

x 7→ [17]

r 7→ [18..22]

which is a sound and precise abstraction of the concrete states after
the assignment of line 5.

Afterwards, the interpretation of the conditional statement at line 6

propagates the value 1# to the condition r+i>=20. The backward prop-
agators of the interval semantics reduce the abstraction of r to [20..22],
and cannot reduce the abstraction [0..4] of i. Without interpreting the
comparison, the environment domain can use again the resulting val-
uation to compute the abstract state:

i 7→ [0..4]

x 7→ [17]

r 7→ [20..22]

which is a sound and precise abstraction of the concrete states at the
beginning of the if branch at line 5.

Although some abstractions of the valuation may assist a domain
transformer, some others are already known by the abstract state. For
instance, at line 5 of the previous example, the value abstraction of
x in the valuation is the interval [17] provided by the environment
domain. Thus, the domain transformer cannot learn anything new
from this abstraction. Similarly, the value abstraction of i is not re-
duced by the backward propagation of line 6, and the abstract state
already contains it. Generally, browsing the full valuation seeking
new or more precise abstractions to refine an abstract state can be
expensive, especially when complex expressions are involved in a
statement. Updating the state for each abstraction of the valuation is
obviously too costly, and determining which abstractions can refine
the state requires a read of the state and a comparison for each stored
abstraction.

To address this issue, the generic evaluator of EVA tracks the reduc-
tion of the value abstractions supplied by the abstract domains during
the backward propagation, and highlights the abstractions that have
actually been reduced. In practice, the valuation stores abstractions

204 state abstractions

along with a boolean flag indicating whether the abstraction is more
precise than the one supplied by the domain for the given expression.
This boolean is false by default, and is updated only when a reduc-
tion is achieved. A current limitation is that EVA tracks reductions
for the whole value abstraction, and not for each component. Thus,
as soon as a component is reduced, all components are marked as
reduced.

A value abstraction provided by a domain product D1 ×D2 can be
reduced by a backward propagation (which is tracked by the evalu-
ator), but the value v1 provided by a specific domain D1 can also be
reduced when performing the meet with the value v2 provided by
the other domain D2. This kind of reduction is tracked internally by
the domain combiner of EVA, which updates accordingly the boolean
flags for each domain.

7.3.4 Related Works and Limitations

The communication through value abstractions shares some objec-
tives and aspects of an open product (see Section 2.3.4). The queries
of both designs fulfill the same role: they express the properties in-
ferred by a domain in a form that another domain can use. Moreover,
the mutual refinement of abstract domains is not postponed to the
end of transfer functions: the information stemming from queries is
available to the domains during their interpretation of a statement.
However, the open product limits queries to boolean functions, with-
out further restrictions. Our design both extends the type and defines
more clearly the scope of the queries: they abstract the possible values
of addresses and expressions through specific abstractions (values, lo-
cations and alarms). Furthermore, the transfer functions do not inter-
act directly with the queries, but with the result of complete evalua-
tions of addresses and expressions. The evaluation engine, described
in Chapter 6, exploits all queries and includes various mechanisms to
achieve a better precision. This allows for further and easier interac-
tions between domains. In particular, a forward propagation allows
a query about a subterm to refine the abstraction of an expression; a
backward propagation allows a query about an expression to refine
the abstractions of the subterms. In this way, a domain may take ad-
vantage of a property about an expression that has been computed
from queries on other expressions. Finally, the oracle (Section 7.1.3)
and the reducer (Section 7.2.2) provides access to the complete for-
ward and backward evaluations, that cannot be implemented as a
query by a single domain.

We now focus more specifically on the comparison between our
model of domains interactions and the communication by messages
introduced by the Astrée analyzer (see Section 2.3.6).

7.3 abstract semantics of statements 205

7.3.4.1 Architecture

The Astrée design requires the communication system to be main-
tained in parallel of an abstract semantics implementation. The mul-
tiple channels conveying messages can be invasive in the analyzer
architecture. In EVA, the interface between abstract domains consists
of alarm, value and location abstractions, that are part of the abstract
semantics implemented by the analyzer. We believe that separating
value and state abstractions is a very convenient way to structure
an abstract interpreter. It naturally allows for the implementation of
smaller modules connected by clear interfaces. Moreover, while some
of the communication channels of Astrée are oriented, our product of
domains is unordered: the combination order does not impact the
precision of the analysis.

7.3.4.2 Expressiveness

The communication by messages is unquestionably more expressive
than the interactions through values and locations. The set of mes-
sages is extensible, and any property can be as expressed as a new
kind of message. On the other hand, the abstract domains of EVA only
interact through abstractions of address locations and expression val-
ues. Nevertheless, we claim that our design enables the information
exchanges that have been actually implemented via messages in As-
trée and Verasco. Since the messages of Astrée [Cou+06] are not as
thoroughly detailed as those of Verasco [Jou+15; Jou16], we focus on
the latter analyzer. For each kind of message, we describe how to
achieve the same interactions between the domains of EVA:

• the messages expressing an interval, a congruence relation or
the exact value of a variable are naturally supported by our
value abstractions, which include intervals, arithmetical congru-
ence and small sets of exact values.

• the messages expressing the equality between two expressions
can be replaced by the use of the oracle or the reducer, to state
that two expressions evaluates to the same value. This has been
illustrated by examples 26 and 29.

Finally, the emission of the alarms in EVA involves directly all the
abstractions of our analyzer. Some abstractions can thus be dedicated
to removing specific alarms without having to propagate information
towards existing domains. This cannot be achieved by a standard
communication by messages.

7.3.4.3 Ease of Use

We believe that the design we propose facilitates the introduction of
new domains —and new interactions between them— in the analyzer.

206 state abstractions

First, it seems natural to build an abstract domain upon value and
location abstractions. In Astrée, the intervals are the main actor of
the communication between abstract domains. In EVA, numerical do-
mains use the location abstractions to interpret precisely dereferences
and assignments through pointers, without embedding an alias anal-
ysis. In general, we have shown how our design allows the precise
combination of domains that handle different subsets of the language
semantics and of the undesirable behaviors tracked by the analyzer.
Provided that the union of domains covers the whole semantics, the
evaluation engine makes the connection between them and even en-
ables relevant mutual refinements between them (see examples 24

and 27).
Second, the value and location abstractions are natural candidates

for a reduced product. This enables interactions even between do-
mains understanding different components of the product, as demon-
strated by example 6. By mutually refining the components of the
value or location abstractions, new communications can be estab-
lished between existing domains without having to modify them.
Moreover, domains need not be adapted when a new kind of value is
added. The idea is already exploited in EVA, where the values are a
reduced product between interval and arithmetical congruence.

Third, the oracle and the reducer allow a relational domain to fully
exploit its inferred relations with the seamless support of all others
domains, without resorting to an explicit communication channel. A
relation between expressions is expressed as a comparison between
the result of their evaluations, and the evaluation engine harnesses
automatically the information known by all domains. This spares
non-relational domains to process relational properties, while taking
advantage from them.

7.3.4.4 Limitations

The interactions between EVA’s domains are currently limited to the
transfer functions. The inclusion, join and widening operations do
not embed any communication mechanism. A simple and suitable
solution in our architecture would be to provide the domains with the
oracle and the reducer when performing these operations. A domain
could then request the value of an expression to be more accurate, or
state the value of an expression to refine the other domains. However,
this would make the signature of these functions much more complex:
as binary operations, they would require two oracles (one for each
incoming state) and one reducer (for the resulting state). As we seek
a clear interface to ease the implementation of new abstract domains,
we chose to limit the interactions to the transfer functions, where the
relevant evaluations to perform are more obvious.

The use of a single valuation as means of communication can also
be seen as a limitation. Astrée and Verasco embed in parallel channels

7.3 abstract semantics of statements 207

for preconditions (whose messages are emitted by the states before
the transfer function) channels for postconditions (whose messages
are incrementally emitted by the states resulting from the transfer
function). Although there is no such distinction in our design, the
meaning of the valuation received by a transfer function stands in be-
tween preconditions and postconditions. The valuation results from
evaluations. While these evaluations are performed in the abstract
states before the considered statement, the resulting valuation is com-
puted assuming that the concrete evaluations succeed (thanks to the
alarm maps reporting the error cases). For instance, the location ab-
straction of an assignment address has been reduced to its valid parts
for a write operation. The value abstractions of variables can have
been reduced according to emitted alarms (see examples 11 and 12).
Furthermore, the valuation for a test statement has been reduced by
assuming the condition of the test. Therefore, the valuation also con-
tains postconditions of the statement.

Finally, value and location abstractions remain less expressive and
less extensible than arbitrary messages. The structuring of datatype
combinations, described in Section 3.3, could help to overcome the
limitations of our communication system. It allows interacting di-
rectly with the components of a generic product. Two specific do-
mains can thus be interconnected, should they require a novel form
of communication that cannot be encoded through abstractions of
expressions. While the evaluation to values and locations organizes
seamless interactions between domains, the structure of the domains
product enables explicit communications between them. However,
this comes down to an approximate reduced product, specific to the
domains it involves. Until now, we had not experiencing any problem
requiring such a radical workaround to our analyzer design.

8
D O M A I N S A N D E X P E R I M E N TA L R E S U LT S I N E VA

This chapter presents the different abstract domains that have been
successfully implemented within EVA. None of them is a novelty per
se. The main domain is an adaptation of the abstract semantics im-
plemented by the former abstract interpreter of Frama-C, the VALUE
plugin. The others are well-known abstractions of the existing liter-
ature. Nevertheless, their diversity is worth noticing: some are nu-
merical, some are symbolic, some are relational; some abstract the
memory and others do not. They also includes a binding to the ex-
isting domains provided by the apron library. Being able to embed
such different abstractions easily into EVA —five new domains have
been introduced in less than a year— seems a good validation of our
design choices.

This chapter does not provide a detailed, formal or exhaustive de-
scription of the implemented domains. It mainly underlines how
these domains fit into the EVA architecture. It also compares the per-
formance and the precision between VALUE and EVA, when the latter
is instanciated with abstractions that are equivalent to the semantics
implemented by the former. If finally presents some experimental
results obtained with the newer abstractions.

8.1 the cvalue domain

The most important abstract domain of EVA is the cvalue domain —
the name is historical. It is inherited from VALUE, and was retrofitted
for EVA. It is a non-relational domain describing whole memories as
maps from variables to sequences of sliced abstract values.

8.1.1 Description

cvalue embeds directly the standard value abstractions of EVA, de-
scribed in Section 5.3. Its state domain is quite involved, and we
refer the reader to [Kir+15, §4] for a more complete explanation. The
memory is represented as a map from the variables of the program to
offsetmaps [BC11]. Offsetmaps are basically maps from bits-expressed
intervals of offsets to abstract values. A struct with two int fields
containing the abstract values v1 and v2 respectively is represented,
on a 32-bit architecture, by

〈0− 31〉→v1 〈32− 63〉→v2 (8.1)

209

210 domains and experimental results in eva

The abstract values are the cvalue abstractions of Section 5.3, plus two
additional booleans that abstract the possibility that the value may be
uninitialized, or a dangling pointer. Most ocaml datastructures are
hash-consed for efficiency [CD08].

The memory is untyped, and it is possible to write an abstract value
of any type anywhere in the memory. This makes the domain able
to represent efficiently and precisely both low-level concepts such as
unions and bitfields, or high-level ones, such as arrays. Thus, the
offsetmap 8.1 can also be the representation of an array of two cells
containing respectively the abstract values v1 and v2; or the repre-
sentation of a 64-bits variable accessed as an array of two 32-bits
cells. Assignments overlapping existing bindings are automatically
handled, and remain precise. Assignments to a very large number
of non-contiguous locations are automatically approximated. This
domain shares some similarities with Miné’s [Min06a]. However, as-
signments with partial overlap to existing bindings are handled quite
differently, as Miné’s methodology may store multiple bindings at
the same offset.

As the cvalue abstractions embed some precise representations of
pointer values, the cvalue domain is able to infer accurate alias infor-
mation. This drastically simplifies the writing of other domains, that
do not need to track information about pointers. Currently, cvalue

is the only domain featuring an alias analysis, and the other domains
rely on it to interpret the assignments involving pointers.

Let us add that the abstractions of cvalue (the offsetmaps, as well
as the maps from variables) are written using generic ocaml func-
tors, which are also functors in the abstract interpretation sense. We
have reused these abstractions when writing some of the new EVA
domains.

8.1.2 Integration in the EVA Framework

8.1.2.1 Participation to the Cooperative Evaluation

A cvalue state is able to represent all objects in memory, from scalar
variables to arrays, unions and structures of any types. During the
cooperative evaluation of an expression, the cvalue domain provides
a forward and backward abstract semantics of dereference for the
cvalue abstractions. To the other queries F

#
D concerning arbitrary ex-

pressions, the domain always returns the top value and alarm abstrac-
tions. It does not use the oracle nor trigger new reductions.

8.1.2.2 Interpretation of Statements

The cvalue domain uses the valuation produced on any statement to
refine its internal state. It browses the valuation to collect the deref-
erences: as the domain gathers information on variables only, the

8.1 the cvalue domain 211

abstractions computed for other expressions cannot directly help to
reduce its state. More specifically, the domain searches the derefer-
ences such that:

• the value abstraction is flagged as reduced compared to the
value abstraction provided by the dereference semantics of the
current cvalue state. Otherwise, the cvalue abstraction stored
in the state is already as precise as the one in the valuation.

• the location abstraction of the address represent only one con-
crete location (this location abstraction is also stored in the val-
uation). Otherwise, the cvalue abstraction cannot be soundly
written in the state, since its exact location remains unknown.

For such dereferences ∗τa, the value abstraction stored in the valua-
tion is written at the single possible location of the address a.

On a conditional statement if (c), the produced valuation is an ab-
straction of the set of concrete states before the statement in which
the evaluation of the condition c succeeds and returns a non-zero
value. Thanks to the backward propagation achieved by the coop-
erative evaluation, updating the state from the valuation allows the
domain to take into account that the condition holds without having
to understand it.

On an assignment, the produced valuation is a sound abstraction
of the concrete states before the statement in which the evaluations
of the left address and of the right expression succeed. As the ab-
stract transformer has to interpret the statement only for those states,
it starts by updating the state from the valuation. This allows the do-
main to gain some precision, by rejecting some concrete states leading
to an error at this program point. Then, the transformer still has to in-
terpret the assignment. It uses the location abstractions cooperatively
computed for the addresses. This allows it to interpret in the same
precise way the assignments from both low-level and high–level view
of the memory. The interpretation of an assignment ∗τa := e amounts
to write the cvalue abstraction computed for e at the concrete loca-
tions represented by the location abstraction computed for a. If the
location abstraction represents a single concrete location, this opera-
tion overwrites the previous value stored by the state at this location.
Otherwise, the assignment can write at any of the concrete locations
described by the address abstraction, and let the others unmodified.
For each of these possible locations, the cvalue domain stores the
join between the cvalue abstraction of e and the previous cvalue ab-
straction stored at this location. The offsetmap data structure handles
automatically the write operation in both cases.

On a copy, the cvalue domain uses the location abstractions com-
puted for both left and right addresses. It copies and pastes the off-
setmap slice from the right locations to the left locations, performing

212 domains and experimental results in eva

joins if necessary (i.e. if the location abstractions have non-singleton
concretizations).

8.1.3 Performance Compared to VALUE

As the cvalue domain has the same abstract semantics as the one
which was implemented by the former abstract interpreter VALUE, it
is especially worthwhile to compare the performance between VALUE
and EVA, when the latter is instanciated with this domain alone.
Structuring the abstract interpreter into multiple separate layers in-
teracting through minimal interfaces was mandatory to achieve a
generic analyzer, but also entails some slowdown of the analysis.
Many optimizations of the VALUE analyzer relied on the tight con-
nection between the analyzer and the implemented semantics. Some
had to be abandoned within EVA for the sake of genericity and ex-
tensibility; others have been kept thanks to the GADT structure of the
domain combination: this mechanism, detailed in Section 3.3, allows
the generic abstract interpreter to extract the cvalue component from
an arbitrary product of abstraction and to perform the optimizations
accordingly. If the product of combination does not include a cvalue
component, then these optimizations are disabled.

Furthermore, the evaluation strategy has been entirely revised in
EVA. In particular, the complete and systematic backward propaga-
tion made by EVA on every evaluated expression is new; formerly,
VALUE relied mainly on syntactic patterns to perform some backward
propagations. Even if all backward propagators have not been imple-
mented yet in the cvalue abstractions —backward propagators for
multiplication and division are especially lacking—, the new prop-
agators are strictly stronger than before, and the generic evaluator
resorts to them more aggressively. This has improved the precision
of EVA with respect to VALUE.

Table 8.1 presents the results of the experiments we conducted to
compare the performance between VALUE and EVA. During the de-
velopment of the EVA interpreter, we continuously validated it on
the pre-existing test suite of VALUE. These tests can be found in
the tests/value directory of Frama-C. They are C code snippets in-
tended for verifying the soundness or the accuracy of the analyzer on
particular constructs. We used them to ensure that the new analyzer
had no regression, whether in terms of soundness or precision. Ta-
ble 8.1a shows the number of files that bring out differences between
the two interpreters. We have omitted two tests that focus on recur-
sion and downcasts. On the one hand, VALUE features a preliminary
support for recursive functions, which has not been ported on EVA
yet. On the other hand, EVA emits alarms about unsafe downcasts,
and VALUE does not. On all other tests, not only EVA exhibits no
regression with respect to the former analyzer, but it also obtains a

8.1 the cvalue domain 213

tests/value files 389

Precision loss in EVA 0

Less emitted alarms in EVA 7 (1.8%)

Reduced final state in EVA 22 (5.6%)

Precision gain with EVA 27 (6.9%)

(a) Improved precision on the test suite of Frama-C

loc statements VALUE EVA

idct 342 586 (94%)
1.5s 1.4s time

56 56 alarms

tweetnacl 799 658 (99%)
9.8s 11.9s time

2 2 alarms

hiredis 3935 982 (83%)
10.3s 13.2s time

212 208 alarms

papabench 3199 1845 (55%)
1.1s 1.3s time

31 31 alarms

debie 5326 2872 (98%)
9.3s 10.9s time

62 55 alarms

gzip 5196 4170 (94%)
81s 94s time

1928 1865 alarms

polarssl 24k 2758 (49%)
227s 236s time

159 158 alarms

indus1 99k 30955 (81%)
408s 430s time

228 228 alarms

indus2 125k 36782 (80%)
758s 715s time

244 244 alarms

(b) Performance comparison on case studies

Table 8.1: Comparisons between VALUE and EVA

214 domains and experimental results in eva

better result on 27 of the 389 test files of Frama-C. A better result
means either less alarms (for 7 files) or a more precise abstract state
at the end of the main function (for 22 files). Note that these tests
have been designed for the legacy interpreter, and not for the new
features of EVA. It is thus quite positive to register improvements
within this test suite, without even introducing new abstractions.

Table 8.1b compares the performance of both analyzers on case
studies. For each case study, the table indicates the number of lines of
code (without blanks, comments and headers), the number of state-
ments visited by the analysis (with the coverage percentage for the
whole program), and the analysis time and number of alarms emit-
ted for each analyzer. The first line concerns the biggest file of the test
suite of Frama-C, which is not in the previously tested tests/value

directory, but in tests/idct. The six following lines present vari-
ous case studies on open-source codes, mainly used to benchmark
the analyzer. The analysis is more or less well configured between
those codes, which leads to a large disparity in the number of emit-
ted alarms (but both analyzers always run with the same parameters
for a given case study). The last two lines are about proprietary soft-
wares. They are safety-critical embedded programs on which EVA is
currently deployed in industry.

EVA shows improvements in 4 of these 9 case studies, emitting less
alarms than VALUE did. However, these improvements remain small,
except for the debie program, where the number of emitted alarms
falls from 62 to 55 (a decrease of 11%). At the same time, EVA is
generally slower than VALUE by 5 to 20%, which remains satisfactory.
The biggest time increase happens on tweetnacl and hiredis, where
the analyzes are respectively 21% and 28% slower. However, these
analyzes take about 10 seconds only. On polarssl and indus1 where the
analyzes take several minutes, EVA is only 5% slower. On our biggest
benchmark, EVA is even faster than VALUE from 6%. This may be
due to more precise abstract states, leading to a faster convergence.

8.1.3.1 Efficiency of Possible Evaluation Strategies

Chapter 6 was dedicated to the evaluation of expression in EVA. In
particular, Section 6.2.3 presented the strategy of intertwining prop-
agations used in EVA, and discussed some alternatives. Table 8.2
presents the experimental results obtained for different strategies:

• EVA: the current strategy used in EVA, described in Section 6.2.3,
consists in a single complete backward propagation after any
forward evaluation.

• (-): expressions and addresses of assignments are only forward
evaluated, without any backward propagation. It is worth not-
ing that the reduction of a dereferenced location to its valid part
is done during the forward evaluation, and thus still achieved

8.1 the cvalue domain 215

(-) EVA (+) (++)

Differences on tests/value files 40 - 0 1

(-) : no backward propagation

EVA : one forward and one backward propagations

(+) : second forward propagation

(++) : second forward and second backward propagations

stmts (-) EVA (+) (++)

tweetnacl 658

11.9s 11.9s 12.5s 13.1 time

2 2 2 2 alarms

hiredis 982

12.9s 13.2s 13.4s 14.0 time

211 208 208 208 alarms

papabench 1845

1.26s 1.27s 1.31s 1.33s time

31 31 31 31 alarms

debie 2872

10.9s 10.9s 11.3s 11.7 time

57 55 55 55 alarms

gzip 4183

83s 94s 96s 103s time

1923 1865 1859 1859 alarms

polarssl 2758

228s 236s 239s ? time

158 158 158 158 alarms

Table 8.2: Comparisons between different evaluation strategies

in this configuration. The backward propagation of the truth
value of a condition is still performed.

• (+): a second forward propagation is systematically performed
after any backward propagation.

• (++): a second backward propagation is systematically done
after the second forward propagation.

For each strategy, the first table shows the number of differences
on the test suite of VALUE, and the second table presents the analysis
time and the number of emitted alarms on the open-source case stud-
ies previously used. These experiments have been conducted with
the cvalue domain only.

Omitting the backward propagation entails a precision loss in 40

of the 391 test files of tests/value —characterized by either more
emitted alarms or a less precise final abstract state. This also results
in a few more alarms in 3 of the 6 open-source case studies for a
small reduction of the analysis time. Interestingly, in this configura-

216 domains and experimental results in eva

tion, EVA obtains approximately the same results and analysis times
than VALUE on the biggest open-source case studies, gzip and polarssl.
It is still slightly more precise thanks to the stronger backward prop-
agation on conditionals.

On the other hand, the second forward propagation and the second
backward propagation show nearly no difference in the test suite or
in the open-source case studies. The only difference in the test suite
comes from a non-idempotent backward propagator, which gain pre-
cision by being applied twice. The only difference in the case studies
occurs on gzip, where the second forward propagation avoids the
emission of 6 alarms out of 1865. Even if the cost of these additional
propagations is insignificant, their low impact on the analysis preci-
sion seems to make them unnecessary.

8.2 the equality domain

The cvalue domain provides a precise representation of memories,
but is unable to infer relations between variables. The first relational
abstraction introduced in EVA has been a symbolic domain track-
ing Herbrand equalities between C expressions. Our intentions was
somewhat similar to those of Miné [Min06b], in particular abstract-
ing over temporary variables resulting from code normalization. Our
equality domain is especially interesting because of its use of the ora-
cle and the reducer during the cooperative evaluation. The equalities
are deduced from equality conditions and from assignments that do
not read the memory locations being modified. They are then used
to trigger new forward evaluations or backward propagations. A
sound interpretation of a statement also requires to remove from the
abstract state the equalities which hold no longer afterwards. This is
only needed on assignments, for the equalities between expressions
that depend on the written location. To do so, the equality domain
needs an abstraction of the byte locations on which an expression
depends.

This section first defines the dependences of expressions and ad-
dresses, as well as abstractions of these dependences. It then for-
malizes the abstract states of the domain, its queries and its abstract
transformers. Finally, it presents some details about the implementa-
tion and the experimental results obtained with this new domain.

8.2.1 Dependences of an Expression

We first define the dependence of an expression as an operator deps

computing sets of bytes in P(Lbytes): deps(e, S) is the set of the mem-
ory bytes on which the evaluation of e depends in the concrete state S.
We remind the reader of the definition 25 of memory locations: for

8.2 the equality domain 217

a pointer value l, locτ (l) is the set of sizeof(τ) bytes in memory
starting at l.

locτ (&x, i) , {(&x, i+ n) | 0 ≤ n < sizeof(τ)}

Definition 60 (Dependences). If the evaluation of an expression e

succeeds in a concrete state S, the dependence of e in S is inductively
defined as:

deps(∗τa, S) , locτ (l) ∪ deps(a, S)

where ∀θ ∈ ΘP , JaKS(θ) = l ∈ Lτ
deps(♦(e1, . . . , en), S) , ∪i∈{1,. . . ,n}deps(ei, S)

deps(cst , S) , ∅

deps(t[i], S) , deps(t, S) ∪ deps(i, S)

deps(e.field , S) , deps(e, S)

Let us recall that if the evaluation of a dereference ∗τa, then the con-
crete semantics guarantees the existence of a valid location l such that
in all layouts θ, JaKS(θ) = l.

Lemma 23. Let e be an expression and S a concrete state such that the
evaluation of e in S succeeds: JeK

Θ
(S) = V . The resulting concrete value V

only depends on the bytes of deps(e, S). If S′ is another concrete state that
coincide with S on these bytes, then JeK

Θ
(S′) = V .

∀S, S′ ∈ S, ∀e ∈ expr , JeK
Θ

(S) 6= Ω,

(∀θ ∈ ΘP , ∀l ∈ deps(e, S), S(θ)(l) = S′(θ)(l))

⇒ JeK
Θ

(S′) = JeK
Θ

(S) ∧ deps(e, S) = deps(e, S′)

Proof. The concrete semantics of expressions involves the concrete
states only on dereferences, where the bytes of the address are read.
On two states coinciding on these bytes, the concrete semantics leads
to the same concrete values as result of the evaluation.

The dependence of an expression e in a concrete state depends
only on the evaluation of the addresses a dereferenced in the expres-
sion. The evaluation of such an address a depends on the bytes of
deps(a, S), and deps(a, S) ⊆ deps(e, S). Thus, the evaluation of a is
the same on two states coinciding on these bytes, and thus the depen-
dences of e is the same on such states.

Definition 61 (Zone abstraction). An abstraction of arbitrary sets of
bytes (i.e. dependences), called zone, is a collection of abstractions Z#

equipped with:

• a concretization γZ : Z# → P(Lbytes). A zone abstraction z is a
sound approximation of the dependence of an expression e in a
concrete state S if and only if deps(e, S) ⊆ γZ(z).

218 domains and experimental results in eva

• a lattice structure (Z#,vZ ,tZ ,uZ ,>Z) fulfilling the properties
specified in Figure 2.4 according to the concretization.

• an injection zone : L# → type→ Z# from location abstractions,
such that for a location abstraction l and a type τ , all bytes of
locτ (γL(l)) are in the concretization of zone(l, τ).

∀l ∈ L#, ∀τ, (λ_.L) ∈ γL(l) ⇒ locτ (L) ⊆ γZ(zone(l, τ))

We assume given a zone abstraction Z#. In the EVA equality do-
main, the zone abstractions are the maps from variables to integer
offset abstractions presented in Section 5.3.1.3. However, the formal-
ization below does not depend on the chosen zone abstraction.

8.2.2 The Equality Abstract States and Queries

We can now define the states and the semantics of the equality do-
main. An abstract state of this domain is a set of equalities between
syntactic expressions, and represents all the concrete states in which
the equalities hold. An abstraction of the dependence of each expres-
sion involved in an equality is also computed by the domain.

Definition 62 (Equality domain). The equality domain stores expres-
sions along with an abstraction of their dependences. An equality in
E is denoted as a set of expressions. An abstract state in Deq is a set
of equalities. The concretization of such an abstract state is the set of
concrete states in which, for each equality:

• all the expressions evaluate to the same concrete value;

• the zone stored for each expression is a sound approximation
of its dependences.

E , P(expr ×Z#)

Deq , P(E)

γeq : Deq → S

S ∈ γeq(D) ⇔ ∀E ∈ D, ∃V ∈ V , ∀(e, z) ∈ E,
{

JeK
Θ

(S) = V

deps(e, S) ⊆ γZ(z)

The equality domain should also maintain some invariants to make
the handling of abstract states easier. The equalities should be disjoint
sets of expressions, and no equality should be a singleton, as a sin-
gleton equality brings no information whatsoever. These conditions
do not impact the concretization of an abstract state, and thus do not
impact the soundness of the domain and its semantics. However, ne-
glecting these invariants leads to performance issues. Singleton equal-
ities enlarge needlessly the abstract states. Multiple equalities about

8.2 the equality domain 219

the same syntactic expression e make harder to find all expressions
guaranteed to be equal to e by the abstract state. As these invariants
are easy to maintain, we assume that they hold, and define the find

operation accordingly.

Definition 63. We define a find operation of an expression e in an
equality state D: it retrieves all the expressions that are guaranteed
to evaluate to the same concrete value as e.

find(e,D) ,

E if ∃z ∈ Z, (e, z) ∈ E ∧ E ∈ D

∅ otherwise

The find operator allows us to define the forward and backward
queries F

#
Deq

and B
#
Deq

, by simply using the oracle or the reducer on
the expressions that evaluate to the same concrete value as the re-
quested expression. The forward query F

#
∗τ on dereferences is imple-

mented exactly as the query on arbitrary expressions F
#
Deq

, without
using the location abstraction computed for the address. The back-
ward query B

#
∗τ on dereferences is the identity. Obviously, on an

expression implying an equality or an inequality, the forward query
of the domain may also answer directly, if the involved equality is
known by the abstract state.

Definition 64 (Queries of the equality domain). Let
⊗

be the concate-
nation of lists. Let D be an abstract state of the equality domain, e
be an expression, l be a location abstraction, v be a value abstraction.
The queries of the equality domain are defined as:

F#
eq(oracle, D, e),


>V,>A if find(e,D) = ∅

d
V

(e′,_)∈find(e,D)

(fst(oracle(e′))),⊥A otherwise

F#
∗τ (oracle, D, e, l) , F#

eq(oracle, D, e)

F
#
Deq

(oracle, D, e) ,


1# if e = (e1 ♦= e2) ∧ e2 ∈ find(e1, D)

0# if e = (e1 ♦6= e2) ∧ e2 ∈ find(e1, D)

F
#
eq(oracle, D, e) otherwise

B#
∗τ (D, l, v) , l

B
#
Deq

(D, e, v) ,
⊗

(e′,_)∈find(e,D)

[(e′, v)]

With ♦= ∈ {=,≤,≥} and ♦6= ∈ {6=, <,>}.

Theorem 14. The queries of the equality domain defined above satisfy the
requirements stated in definitions 56, 57 and 58.

Proof.

220 domains and experimental results in eva

forward queries We prove here the soundness of F#
Deq

; the proof

for F#
∗τ is exactly the same. Let D be an abstract state of the equality

domain, e be an expression and oracle be an oracle.
Let S be a concrete state in γeq(D) ∩ γo(oracle). We need to prove:

F
#
Deq

(oracle, D, e) |=V×A JeK
Θ

(S)

The first two cases for F
#
Deq

stem directly from the definition of the
abstract states. As S ∈ γ(D), we have:

e2 ∈ find(e1, D)⇒ Je1K
Θ

(S) = Je2K
Θ

(S)

⇒

{
Je1 ♦= e2K

Θ
(S) = 1

Je1 ♦6= e2K
Θ

(S) = 0

We now consider the general case. Let E = find(e,D). If E is
empty, then F

#
Deq

(oracle, D, e) is the top abstraction, which is sound
by definition. Otherwise, ∃z, (e, z) ∈ E and definition 62 of the
concretization of the domain ensures that:

∃V ∈ V , ∀(e′, z) ∈ E, Je′K
Θ

(S) = V

This ensures that JeK
Θ

(S) succeeds, and thus ⊥A |=A JeK
Θ

(S).

Moreover, for all (e′, z′) ∈ E, we have Je′K
Θ

(S) = JeK
Θ

(S).
As S ∈ γo(oracle), the definition 54 of the oracle concretization en-
sures that:

∀e′ ∈ expr , Je′K
Θ

(S) ∈ γV(fst(oracle(e′)))

Thus:
∀(e′, z′) ∈ E, JeK

Θ
(S) ∈ γV(fst(oracle(e′)))

And by the soundness property of the meet operation,

∀(e′, z′) ∈ E, JeK
Θ

(S) ∈ γV(
l

(e′,z)∈find(e,D)

(fst(oracle(e′))))

Finally, we have

(
l

(e′,z)∈find(e,D)

(fst(oracle(e′))),⊥A) |=
V×A

JeK
Θ

(S)

qed.

backward queries B
#
∗τ being the identity function, its sound-

ness is immediate. Let us prove the soundness of B#
Deq

. Let D be an
abstract state of the equality domain, let e be an expression and v

8.2 the equality domain 221

be a value abstraction. Let S be a concrete state in γeq(S) such that

JeK
Θ

(S) ∈ γV(v). We need to prove:

∀(e′, v′) ∈ B
#
Deq

(S, e, v), Je′K
Θ

(S) ∈ γV(v′)

⇔ ∀(e, z) ∈ find(e,D), Je′K
Θ

(S) ∈ γV(v)

From the definition 63 of find and the definition 62 of the concretiza-
tion of the equality domain, we know that:

∀(e, z) ∈ find(e,D), Je′K
Θ

(S) = JeK
Θ

(S)

and we already have JeK
Θ

(S) ∈ γV(v).

8.2.3 Interpretation of Assignments

On an assignment ∗τa := e, the equality transformer needs to:

1. remove from the abstract state the equalities involving syntactic
expressions whose value could be modified by the assignment;

2. computes an abstraction of the dependences of e and a.

3. adds the new equality ∗τa == e if it holds after the assignment,
i.e. if the assignment does not modifies the value of a or e.

The second point requires some abstractions of the addresses deref-
erenced in expressions or assigned by assignment. As mentionned
in Section 6.1.3, the valuations of EVA are made of a map from ex-
pressions to value abstractions, and a map from addresses to location
abstractions. The latter map was omitted in the formalization of the
evaluation, but it fulfills the same purpose and requirements as the
expression map. The concretization of valuations is extended accord-
ingly.

Definition 65 (Concretization of extended valuations). The concretiza-
tion of valuation is extended to:

γE(E) , {S | ∀e ∈ dom(E), JeK
Θ

(S) ∈ γV(E(e))

∧ ∀a ∈ dom(E), JaK
Θ

(S) ∈ γL(E(a))}

Thus, the valuation makes available the location abstractions that
the equality domain needs to interpret assignments.

8.2.3.1 Removing Equalities

We first define a kill function that removes from the equalities of an
abstract state each expression whose dependence intersects a given
memory location.

222 domains and experimental results in eva

Definition 66. Let l be a location abstraction. We define the function
kill as:

killE : Z# → E→ E
killeq : L# → type→ Deq → Deq

killE(z, E) , {(e, z′) | (e, z′) ∈ E ∧ z uZ z
′ = ⊥}

killeq(l, τ,D) , {killE(zone(l, τ), E) | E ∈ D}

Lemma 24. Let ∗τa := e be an assignment, l a location abstraction and D
an abstract state of the equality domain. If D is a sound approximation of
the concrete states before the statement and if l is a sound approximation of
the address a in these concrete states, then killeq(l, τ,D) is a sound approxi-
mation of the concrete states after the execution of the assignment.

∀S ∈ γeq(D), JaK
Θ

(S) ∈ γL(l) ⇒ |{ ∗τ a := e}| (S) ∈ γeq(killeq(l, τ,D))

Proof. Let ∗τa := e be an assignment and let l be a sound approx-
imation of the value of a. Let D be an abstract state of the equal-
ity domain and let D′ = killeq(l, τ,D). Let S a concrete state in
γeq(D) for which the interpretation of the assignment succeeds, and
let S′ = |{ ∗τ a := e}| (S). We want to prove that S′ ∈ γeq(D

′). This
requires that:

∀E′ ∈ D′, ∃V ∈ V , ∀(e, z) ∈ E′,
{

JeK
Θ

(S′) = V

deps(e, S′) ∈ γZ(z)

Let E′ be an equality of D′. By the definition of kill, we have:

∃E ∈ D, E′ = killE(zone(l, τ), E)

⇔ ∃E ∈ D, E′ = {(e, z) | (e, z) ∈ E ∧ z uZ zone(l, τ) = ⊥} (8.2)

As E ∈ D and S ∈ γeq(D), definition 62 states that it exists a concrete
value V such that:

∀(e, z) ∈ E,

{
JeK

Θ
(S) = V

deps(e, S) ∈ γZ(z)
(8.3)

We also have S′ = |{ ∗τ a := e}| (S).
Let L ∈ Lτ such that ∀θ ∈ ΘP , JaKS(θ) = L. Such a concrete loca-
tion exists, as the execution of the assignment succeeds in S, and we
have λ_.L ∈ γL(l), since l is a sound approximation of the address a.
The state S′ can then be rewritten:

S′ = λθ. S(θ)
[
locτ (L) 7→ φ−1

τ (V (θ))
]

This implies that:

∀θ ∈ ΘP , ∀l /∈ locτ (L), S(θ)(l) = S′(θ)(l) (8.4)

8.2 the equality domain 223

Now, let (e, z) ∈ E′. By 8.2:

(e, z) ∈ E ∧ z uZ zone(l, τ) = ⊥ (8.5)

By the concretization 62 of the equality domain: deps(e, S) ⊆ γZ(z)

As λ_.L ∈ γL(l), by definition 61: locτ (L) ⊆ γZ(zone(l, τ))

As z uZ zone(l, τ) = ⊥, we have γZ(z) ∩ γZ(zone(l, τ)) ⊆ γZ(⊥Z) = ∅
And thus deps(e, S) ∩ locτ (l) ⊆ γZ(z) ∩ γZ(zone(l, τ)) = ∅
And by 8.4 and 8.5:

(e, z) ∈ E ∧ ∀θ ∈ ΘP , ∀l ∈ deps(e, S), S(θ)(l) = S′(θ)(l) (8.6)

By equation 8.3: {
JeK

Θ
(S) = V

deps(e, S) ∈ γZ(z)

Finally, lemma 23 and equation 8.6 ensure that:

JeK
Θ

(S) = JeK
Θ

(S′) ∧ deps(e, S) = deps(e, S′)

This means that

∀(e, z) ∈ E′,

{
JeK

Θ
(S′) = V

deps(e, S′) ∈ γZ(z)

qed.

8.2.3.2 Computing Dependences

We now present the computation of an abstraction of the dependences
of expressions in the concrete states represented by a valuation.

Definition 67 (Computation of dependences abstractions). We define
deps# : expr → E→ Z# inductively as:

deps#(∗τa, E) , zone(E(a), τ) tZ deps
#(a, E)

deps#(♦(e1, . . . , en), E) , ti∈{1,. . . ,n}deps
#(ei, E)

deps#(cst , E) , ⊥Z

deps#(t[i], E) , deps#(t, E) tZ deps
#(i, E)

deps#(e.field , E) , deps#(e, E)

Lemma 25. Let E be a valuation, e be an expression and a be an address.
The zone abstractions deps#(e, E) and deps#(a, E) are respectively sound
approximations of deps(e, S) and deps(a, S) for all states S in γE(E).

∀E ∈ E, ∀e ∈ expr , ∀a ∈ addr ,

∀S ∈ γE(E),

{
deps(e, S) ⊆ γZ(deps#(e, E))

deps(a, S) ⊆ γZ(deps#(a, E))

224 domains and experimental results in eva

Proof. By induction on the expression e and the address a, using that
the join tZ is an overapproximation of the union of sets ∪ (depen-
dences are sets of bytes). The base case, for constants cst , is trivial:
γZ(⊥Z) = ∅ by definition. We prove the case of dereferences, assum-
ing the induction hypothesis. Let E be a valuation, τ a scalar type
and a an address. Let S be a concrete state in γE(E).

deps(a, S) ⊆ γZ(deps#(a, E)) ⇒ deps(∗τa, S) ⊆ γZ(deps#(∗τa, E))

We recall the definition of the concrete and abstract dependences of
the dereference:

deps(∗τa, S) = locτ (L) ∪ deps(a, S)

where ∀θ ∈ ΘP , JaKS(θ) = L ∈ Lτ
deps#(∗τa, E) = zone(E(a), τ) tZ deps

#(a, E)

We have S ∈ γE(E) and JaK
Θ

(S) = λ_.L

By definition 65: (λ_.L) ∈ γL(E(a))

By definition 61: locτ (L) ⊆ γZ(zone(l, τ))

By induction hypothesis: deps(a, E) ⊆ γZ(deps#(a, E))

By these equations and the soundness of the join:

locτ (L) ∪ deps(a, S) ⊆ γZ(zone(l, τ)) ∪ γZ(deps#(a, E)

⊆ γZ(zone(E(a), τ) tZ deps
#(a, E))

qed.

8.2.3.3 Adding New Equalities

After an assignment ∗τa := e, the equality between ∗τa and e holds,
unless if the assignment modifies the value of the expression e or of
the value of the address a.

Example 31. An example of the first case is the assignment ∗τ (&x, 0)=

∗τ (&x, 0) +τ 1 where τ is a scalar type. This assignment is written x

= x+1 in the C syntax. Obviously, the equality x = x+ 1 does not
hold after the assignment.

Example 32. Figure 8.1 presents two code snippets where the exe-
cution of the final assignment ∗τa := e modifies the value of the
syntactic address a. At line 2 on the left code, t[t[0]] refers to t[0],
the first cell of the array t, which is thus modified by the assignment.
Afterwards, t[0] contains the value 2 and t[t[0]] refers to t[2], the
third cell of the array. The equality t[t[0]]==2 is false, as t[2] has
value 0.

At line 3 on the right code, *(p+i) refers to &i, and the assignment
modifies the value of the variable i. Afterwards, the pointer *(p+i)

refers to &(i+1), which is not even a valid address to read at: the
equality *(p+i)==1 does not hold.

8.2 the equality domain 225

int t[5] = {0; 0; 0; 0; 0}

int t[t[0]] = 2; �
int i = 0;

int *p = &i;

*(p+i) = 1; �
Figure 8.1: Assignment modifying the address

Lemma 26. Let ∗τa := e be an assignment. Let S be a concrete state in
which the execution of the assignment succeeds. Let a location abstraction l
be a sound approximation of the value of a in S. Let two zone abstractions za
and ze be sound approximations of the dependences of respectively a and e
in S. If zone(l, τ) uZ za and zone(l, τ) uZ ze are bottom, then the syntactic
equality ∗τa = e holds after the assignment, i.e. in the state |{ ∗τ a := e}| (S).
Moreover, the zone abstractions za and ze are still sound approximations of
the dependences of e and a in this post state.

If we write S′ = |{ ∗τ a := e}| (S):

JaK
Θ

(S) ∈ γL(l)

deps(a, S) ⊆ za
deps(e, S) ⊆ ze

zone(l, τ) uZ ze = ⊥Z

zone(l, τ) uZ za = ⊥Z


⇒


J∗τaK

Θ
(S′) = JeK

Θ
(S′)

deps(a, S′) ⊆ za
deps(e, S′) ⊆ ze

Proof. This proof uses the same notations as the lemma. As the exe-
cution of the assignment succeeds in the concrete state S, JaK

Θ
(S) is

a constant location (independent of the memory location). We then
write:

(λ_.L) = JaK
Θ

(S) V = JeK
Θ

(S) S′ = |{ ∗τ a := e}| (S)

As l is a sound approximation of the value of a in S: (λ_.L) ∈ γL(l)

By definition 61, locτ (L) ⊆ zone(l, τ)

By soundness of zones: deps(a, S) ⊆ γZ(za) ∧ deps(e, S) ⊆ γZ(ze)

By the soundness property of the meet:

zone(l, τ) uZ za = ⊥Z ⇒ locτ (L) ∩ deps(a, S) = ∅
zone(l, τ) uZ ze = ⊥Z ⇒ locτ (L) ∩ deps(e, S) = ∅

Thanks to the concrete semantics of assignment (Figure 4.9), the post
state S′ can be written as:

S′ = λθ. S(θ)
[
locτ (L) 7→ φ−1

τ (V (θ))] (8.7)

The concrete states S and S′ coincide on all bytes but locτ (L). As the
intersection between locτ (L) and the dependences of e and a in S is
empty, lemma 23 applies, and we have:

JeK
Θ

(S′) = JeK
Θ

(S) ∧ deps(e, S) = deps(e, S′)

JaK
Θ

(S′) = JaK
Θ

(S) ∧ deps(a, S) = deps(a, S′)

226 domains and experimental results in eva

This already ensures that deps(a, S′) ⊆ γZ(za) ∧ deps(e, S′) ⊆ γZ(ze).
The zone abstractions za and ze are still sound approximations of the
dependences of a and e in the post state S′.
Moreover, we have:

JeK
Θ

(S′) = JeK
Θ

(S) = V

JaK
Θ

(S′) = JaK
Θ

(S) = λ_.L

By the concrete semantics of expressions (Figure 4.8) and 8.7:

J∗τaK
Θ

(S) = λθ. (S′(θ))τ [l]

= λθ. φ′τ (S
′(θ)(locτ (L))

= λθ. φ′τ (φ
−1
τ (V (θ)))

= λθ. V (θ)

= V = JeK
Θ

(S′)

The equality ∗τa = e holds in the post state S′.

The last requirement to finally define the transfer function on as-
signments is the addition of a new equality into an abstract state. We
assume given an operator ⊕eq that adds a new equality between two
expressions (and their dependences) to an abstract state. It must sat-
isfy the following lemma.

Proposition 9. Let D be an abstract state of the equality domain, e1 and
e2 be two expressions, and z1 and z2 be two zone abstractions. We write
D′ = {(e1, z1), (e2, z2)} ⊕eq D. Then:

∀S ∈ γeq(D),

Je1K
Θ

(S) = Je2K
Θ

(S)

deps(e1, S) ⊆ z1

deps(e2, S) ⊆ z2

 ⇒ S ∈ γeq(D
′)

8.2.3.4 Complete Interpretation of Assignments

Definition 68. Let ∗τa := e be an assignment, D be an abstract state
of the equality domain, E be a valuation containing an abstraction for
each subterm of a and e.

T eq(∗τa := e, E , D) ,

E′ ⊕eq D
′ if za uZ z = ze uZ z = ⊥Z

D′ otherwise

where



za = deps#(a, E)

ze = deps#(e, E)

z = zone(E(a), τ)

E′ = {(∗τa, za), (e, ze)}
D′ = kill(E(a), D)

8.2 the equality domain 227

Theorem 15. Let ∗τa := e be an assignment, D be an abstract state of
the equality domain, E be a valuation. For all the concrete states S in
γeqE(D, E) for which the execution of the statement succeeds, the concrete
state |{ ∗τ a := e}| (S) is in γeq(T eq(∗τa := e, E , D)).

In other words, T eq satisfies the property of definition 59, and is thus a
sound abstract transformer of assignments.

Proof. Let ∗τa := e be an assignment, D be an abstract state of the
equality domain, E be a valuation containing an abstraction for each
subterm of a and e.
Let S be a concrete state in γeqE(D, E). We write S′ = |{ ∗τ a := e}| (S),
D” = T eq(∗τa := e, E , D) and want to prove that S′ ∈ γeq(D”).

As S ∈ γE(E), by definition 65: JaK
Θ

(S) ∈ γL(E(a)).
By lemma 24: S′ ∈ γeq(killeq(E(a), τ,D))

In the second case of the definition, D” = killeq(E(a), τ,D), and the
proof is completed. We now consider the first case only.
Lemma 25 ensures that the zones za=deps#(a, E) and ze=deps#(e, E)

are sound approximations of the dependences of a and e in the con-
crete states of γE(E): {

deps(e, S) ⊆ γZ(ze)

deps(a, S) ⊆ γZ(za)

And we already know JaK
Θ

(S) ∈ γL(E(a)).
Thus, lemma 26 ensures that:

zone(E(a), τ) uZ ze = ⊥Z

zone(E(a), τ) uZ za = ⊥Z

}
⇒


J∗τaK

Θ
(S′) = JeK

Θ
(S′)

deps(e, S′) ⊆ γZ(ze)

deps(a, S′) ⊆ γZ(za)

The new equality holds in the concrete state S′, and the depen-
dences are still correct. Proposition 9 ensures that the new abstract
state {(∗τa, za), (e, ze)} ⊕eq S

′ is a sound abstraction of S. In all cases:

S′ ∈ γeq(D”)

8.2.4 Interpretation of Other Statements

The interpretation of other statements than assignments is straight-
forward.

On a test filter (e1 6= e2)==0?, the equality e1 = e2 is added to the
abstract state. In the C syntax, this corresponds to the if branch of
if(e1==e2) or the else branch of if(e1!=e2). Otherwise, the equality
domain cannot learn anything from a test filter, and the abstract state
after the statement is the same as the abstract state before.

228 domains and experimental results in eva

Finally, the abstract transformer for the entry in scope of variables
is the identity; the abstract transformer for the exit of scope of vari-
ables removes from the state the expressions that depends on these
variables.

8.2.5 Implementation

An equality is encoded as a set of at least two expressions. A set
of equalities is encoded as a map from expressions to equalities: it
binds each involved expression to the equality containing it. This rep-
resentation makes efficient the find operation, used for every query
during the evaluation. On the other hand, the addition or removal of
an equality can be costly, as the modification of an existing equality E
requires to update the binding of each expression in E. In an abstract
state where e1 and e2 belong respectively to the disjoint equalities E1

and E2, adding the equality e1 = e2 amounts to merge E1 and E2,
and requires |E1|+ |E2| binding updates. In an abstract state where e
belongs to E, removing e —when e can be modified by an assign-
ment— requires |E| binding updates. In practice, the cardinal of the
equalities propagated by the domain remains small enough to not
overly imped the analysis.

Two last optimizations limit the number of equalities created by
the domain. Firstly, if the removal of e makes E a singleton, then E

is totally removed instead. Secondly, the addition of a new equality
e1 = e2 is avoided if the two abstractions for e1 and e2 in the valuation
are singleton —if they represent only one concrete value. (For the
equality stemming from the assignment ∗τa := e, this means that the
abstractions for a and e are singleton.) In this case, the equality is de
facto already known by the abstract states of the other domains.

The join of two abstract states must keep only the equalities carried
by both states. It is simply a merge of both maps, by intersectinng
pointwise the equalities bound to the same expressions. Expressions
belonging to only one map are simply removed. The maps used by
the domain are patricia trees [OG98], where the placement of a data is
fixed by the bits of its key. This allows efficient merges, by traversing
the two maps at the same time.

As shown in the previous sections, the abstract domain relies on
dependence abstractions to remove from the states the expressions
whose value may be modified by assignments. These dependence ab-
stractions are built upon the location abstractions cooperatively com-
puted by the evaluation, and made available by the valuation. To ef-
ficiently retrieve the expressions to be removed at an assignment, the
domain also maintains a dependency table —implemented through
the generic datastructures of cvalue— that links a location to the
expressions that depends on it.

8.2 the equality domain 229

loc statements EVA EVA+EQ

idct 342 586 (94%)
1.4s 1.7 time

56 56 alarms

tweetnacl 799 658 (99%)
12s 15s time

2 2 alarms

papabench 3199 1845 (55%)
1.3s 1.4s time

31 31 alarms

debie 5326 2872 (98%)
13s 13s time

55 42 alarms

gzip 5196 4170 (94%)
42s 53s time

1505 1501 alarms

polarssl 24k 2758 (49%)
230s 294s time

158 149 alarms

indus1 99k 30955 (81%)
430s 686s time

228 222 alarms

indus2 125k 36782 (80%)
715s 1343s time

244 238 alarms

Table 8.3: Experimental results of the equality domain

Finally, the domain only relies on the oracle and the reducer to
avail the relations it infers. It is thus independent of the chosen value
abstraction, and is implemented as a functor from value to state ab-
straction.

8.2.6 Experimental Results

In practice, the equality domain of EVA behaves exactly as explained
in examples 26 and 29.

Table 8.3 presents the experimental results obtained with the equal-
ity domain on the programs already used in Section 8.1.3. It compares
the analysis time and the number of emitted alarms by EVA’s analysis
instantiated with only the cvalue domain, or with the product of the
cvalue domain and the equality domain. In 5 out of 8 programs (all
those with a significant number of alarms), less alarms are emitted.
The slowdown introduced by the equality domain does not exceed
30%, except on the two industrial case studies, on which the analy-
sis is 60% and 88% slower. Still, gaining 6 alarms there (on analyses
that use loop unrolling and disjunctive completion very aggressively
for maximum precision) is already a very positive result, given the
limited relationality of the equality domain.

230 domains and experimental results in eva

8.3 other new domains in eva

In addition to the equality domain, four other new abstract domains
have been introduced in EVA during the last year: a binding to the
numerical abstract domains provided by the apron library, a domain
of symbolic locations, a gauges domain and a bitwise domain. The
first three domains are purely numerical. They process the assign-
ments through pointers in the same way as the equality domain: they
rely on the location abstractions computed by the cvalue domain to
remove the properties invalidated by the assignment. The bitwise do-
main is built upon the same memory model than the cvalue domain,
reusing the generic OCaml functors of its data structures.

This section briefly describes these new domains, and presents
their performances on the same case studies used before in this chap-
ter. It should be remembered that the implementation of these do-
mains remain mostly experimental.

8.3.1 Binding to the APRON domains

We have implemented a minimal binding to the numerical domains
available in apron [JM09]. The resulting domains (boxes, octagons,
strict or loose convex polyhedra, linear equalities) are proofs of con-
cept to demonstrate that preexisting relational domains fit within the
communication model of EVA, and are easy to introduce. Our apron

binding has currently less than 1000 lines of code. The abstract state
is an apron state. A (static) mapping between the apron dimensions
and the scalar variables present in the program is created by the bind-
ing, and used as a correspondence table to translate the memory loca-
tions inferred by the cvalue domain. Indeed, the apron domains
bring no information about which variable a pointer may point to;
instead, they entirely rely on the other domains for aliasing informa-
tion. The domain answers queries for arithmetic expressions, that
are translated into the apron internal langage. Sub-expressions that
cannot be handled by apron are linearized on-the-fly into intervals,
using the cooperatively computed value. Currently, the binding is
limited to variables with integer types.

We plan to add support for variables with floating-point types.
Tracking information for structs or arrays is also easy, and simply re-
quires extending the correspondence table. However, the most impor-
tant improvement would consist in using variable packing [Cou+09].
Analyzing large problems in which all variables are in relation is
known to be unfeasible, due to the high algorithmic complexity of
relational domains. The domain should instead infer subsets of “re-
lated” variables, and only track relations within those sets. The dif-
ficulty lies in finding good heuristics, which should then be imple-
mented on the EVA side of the domain.

8.3 other new domains in eva 231

8.3.2 The Symbolic Locations Domain

The symbolic locations domain tracks accesses to arrays or through
pointers in a symbolic way. Its intent is to analyze code such as if
if (t[i]<=e)v=t[i]; in a precise way. Indeed, when i is imprecise, do-
mains that represent arrays in extenso cannot learn information from
the condition (because any cell may be involved). The domain shares
some similarities with the recency abstraction [BR06]. Its state is a
map from symbolic locations (such as t[i], *p or p->v) to an abstract
value. Strong reductions may be performed on those values when
analyzing conditions, to be shared with the other domains when the
location is encountered again later.

8.3.3 The Gauges Domain

Gauges [Ven12] are a weakly relational domain, able to efficiently in-
fer general linear inequality invariants within loops. Technically, the
variables involved in the invariants are all related to loop counters,
that model the current number of iterations in each loop. Gauges
are especially useful to infer invariants for pointer offsets, as pointer
arithmetic introduces +4 or +8 increments (for 32- and 64-bits architec-
ture respectively), that cannot be directly handled by domains such
as octagons . The gauges domain communicates integer and pointer
values through the standard values of EVA.

8.3.4 Bitwise Abstractions

The bitwise domain aims at adding bitvector-like reasoning to EVA
(including on floating-point values and pointers), without resorting
to a dedicated implementation. Instead, we reuse the expressivity of
the offsetmaps, that represent sequences of bits in the cvalue domain.
Indeed, this abstraction is already able to extract the possible values
of some bits in a memory range. This bitwise domain works on a
new kind of value abstractions, namely a sequence of bits of known
length. Only the forward and backward abstract semantics for the
bitwise C operators, as well as integer casts and multiplication/divi-
sion by a power of 2, have been implemented. All other operations
degenerate to >V. The reduced product between the standard values
and those new bitwise values performs a conversion between the two
representations when possible.

8.3.5 Experimental Results

Figure 8.2 presents the results of some experiments conducted on the
new abstract domains of our analyzer. We compare the precision and
the analysis time of:

232 domains and experimental results in eva

loc EVA Eqs Loc Gau All

tweetnacl 799

12s 15s 14s 15s 19s time

2 2 2 2 2 alarms

papabench 3199

1.3s 1.4s 1.3s 1.3s 1.6s time

31 31 31 31 31 alarms

debie 5326

11s 13s 14s 13s 16s time

55 42 55 53 40 alarms

gzip 5196

42s 53s — 60s — time

1505 1501 — 1500 — alarms

polarssl 24k
230s 294s 266s 382s 432s time

158 149 156 152 140 alarms

indus 125k
850s 1090s 1390s 1120s 1930s time

153 136 150 153 134 alarms

Figure 8.2: Experimental results on the new abstract domains

• EVA with the default cvalue domain (EVA);

• EVA with the cvalue domain, augmented respectively with:

– the equality domain (Eqs);

– the symbolic locations domain (Loc);

– the gauges domain (Gau);

– all these three domains (All).

We observe some improvements on two case studies, debie and po-
larssl, where the introduction of the new domains allows the analyzer
to rule out a few more alarms. The slowdown introduced by each
domain basically ranges between 15 to 66% from case to case. On po-
larssl, the largest open-source case study, the analysis with all these
domains is twice as slow than the analysis with the cvalue domain
only, and proves 11% of the alarms emitted by the cvalue domain.

These results are quite encouraging, given that the new domains
remain experimental and mostly unoptimized. However, much work
remains to be done to bring the new domain to the same level of
maturity than the cvalue domain.

8.3.6 Conclusion

This concludes our presentation of the EVA analyzer. The alarms
and the value abstractions used by the analyzer have been formal-
ized in Chapter 5. The strategies for the cooperative computation

8.3 other new domains in eva 233

of these abstractions of expressions has been detailled in Chapter 6.
Chapter 7 illustrated how this cooperative computation can assist ab-
stract domains to precisely interpret the statement semantics. Finally,
this chapter described the new abstract domains that have been im-
plemented within EVA, and how they fit into its architecture. Even
though the new abstractions are not as efficient as the legacy cvalue

domain yet, they fit properly in the architecture of our analyzer. In
our experience, the communication through value abstractions does
not restrain the expressivity of the product of abstract domains, and
the cooperative evaluation of expressions effectively assists the imple-
mentation of new domains. We believe that the variety of abstractions
introduced within EVA in less than a year validates its core concepts
and its design.

Part V

A B S T R A C T S E M A N T I C S O F T R A C E S

9
P R E D I C AT E D A N A LY S E S

This chapter differs slightly from the other parts of this thesis. While
the preceding chapters are mostly dedicated to the structuring of a
hierachy of abstractions, and to the organization of interactions be-
tween them, this chapter presents a generic framework to improve
the precision of any abstract domain at join points. Moreover, this
work has not been implemented in EVA, but as a standalone new
plugin of Frama-C.

Abstract semantics often perform wide approximations when two
control-flow paths meet, by merging the states from each path. This
join of abstract states ensures the soundness of the abstract semantics,
but is also a common source of imprecision: the properties inferred
in only one path are generally lost. This chapter presents how to
mechanically augment any standard domain with conditional predi-
cates to circumvent this imprecision. The predicates are derived from
conditional statements, and postpone the loss of information. The
resulting domain is called a predicated domain, and analyses over
such a domain are called predicated analyses. This work has been
published in [BBY16].

After detailing our motivations, this chapter formalizes the seman-
tics of a predicated domain, and explains how to build an efficient
predicated analysis. It also outlines the coq proof of the soundness of
a predicated analysis, exposes some related works, and describes the
experimental evaluation of our practical implementation.

9.1 motivation

Seeking to strike the best balance between precision and efficiency is
always a challenge in abstract interpretation. Flow-sensitivity, which
allows to infer static properties that depend on program points, is
often considered as a prerequisite to obtain a precise program anal-
ysis. More aggressive analyses are path-sensitive: the analysis of a
program statement depends on the control-flow path followed to
reach this statement. Nevertheless, most analyses sacrifice full path-
sensitivity and perform approximations when two control-flow paths
meet. Those approximations may lead to a significant loss of preci-
sion, and may preclude inferring some interesting properties of the
program.

Consider as an example the code fragment of Figure 9.1, which
is a simplified version of a real-life program that opens and closes
file descriptors. Proving that the three calls to the close function

237

238 predicated analyses

1 i f (f l a g 1)
{ fd1 = open (path1) ;

i f (fd1 == −1) e x i t () ; }
[. . .] // code 1

5 i f (f l a g 2)
{ fd2 = open (path2) ;

i f (fd2 == −1) {
i f (f l a g 1) c l o s e (fd1) ;
e x i t () ; } }

10 [. . .] // code 2

i f (f l a g 1) c l o s e (fd1) ;
i f (f l a g 2) c l o s e (fd2) ; �

Figure 9.1: Example of interleaved conditionals

are correct, i.e. that the corresponding fd variable has been properly
created following the calls to the open function, heavily relies on the
possible values for the flag1 and flag2 variables. An analysis that
does not keep track of the relation between flag1 and fd1 on the one
hand, and flag2 and fd2 on the other hand, will not be able to prove
that the program is correct.

In this chapter, we define an analysis in which information about
the conditionals that have been encountered so far is retained using
boolean predicates. These predicates guard the values inferred about
the program. Our analysis is parameterized by a pre-existing analy-
sis domain, which we use to derive a new predicated analysis. More
precisely, we propagate two kinds of information that are not present
in the original domain: a context and an implication map.

1. A context is a boolean predicate synthesized from the guards
of the conditionals that have been reached so far, and that is
guaranteed to hold at the current program point. In our exam-
ple, at the beginning of line 8, the context would be flag2 ∧
(fd2 = −1).

2. An implication map is a set of facts from the original analysis do-
main, guarded by boolean predicates. Each fact is guaranteed to
hold when its guard holds. In this example, we suppose that the
analysis domain keeps track of whether open returned a valid
file descriptor, or −1 in case of error. Here are the implications
we would like to infer after line 6:

flag1 7→ valid_fd(fd1) true 7→ valid_fd(fd2) ∨ (fd2 = −1)

The first implication results from the analysis of the condition-
als at lines 1–3; it precisely models the information we need
between flag1 and fd1. The second implication is simply the
postcondition of the open function, which holds uncondition-
ally.

9.2 a generic abstract interpretation based framework 239

e ∈ expr ::= x x ∈ X
| v v ∈ V
| e♦e

c, p ∈ C ::= e |¬c | c∧c | c∨c | true | false
stmt ::= x := e

| c ?

Figure 9.2: Syntax of our language

Based on abstract interpretation, our framework is generic: it enables
mechanically augmenting any standard dataflow analysis with pred-
icates, regardless of its specific properties. The results stated in this
chapter have been formally verified with Coq, an interactive proof
management system. We also integrated it into Frama-C as a stan-
dalone plugin, designed to complement EVA. Our experiments show
that predicated analyses over more focused – hence simpler to imple-
ment – domains may significantly enhance the precision of the results
of EVA, while remaining scalable.

9.2 a generic abstract interpretation based framework

Predicated analyzes are mostly independent of the target language,
even though our implementation handles C programs. For the sake
of brevity, we formalizes the predicated domains and analyses over
a simplified version of clike, without pointer values. Thus, the con-
crete values and the concrete states of its semantics do not involve
memory layouts. We still identify the programs and their control-
flow graphs, and use a collecting semantics to characterize them. We
briefly present the simplified language hereafter.

syntax Figure 9.2 presents the syntax of our language. Programs
operate over a fixed, finite set of variables X whose values belong
to an unspecified set V. Expressions are either variables, constants,
or the application of a binary operator ♦ to expressions. We strat-
ify expressions e in expr and conditions c in C, the truth value of
an element of V being given by a mapping T from V to booleans.
Statements are either assignments such as x := e, or tests c ? that halt
execution when the condition does not hold.

concrete semantics A concrete state of the program at a node
n of its control-flow graph is described by a memory m ∈ VX assign-
ing a value to each variable. The semantics JeKm (resp. JcKm) of an
expression e (resp. a condition c) is its evaluation in the memory m,
and implicitly depends on the semantics of the operators ♦.

240 predicated analyses

(a) Concrete semantics

|{x := e}| (S) ,
{
m[x 7→ JeKm] |m ∈ S

}
|{c ?}| (S) ,

{
m |m ∈ S ∧T(JcKm) = true

}
(b) Abstract semantics

γL(>L) = VX

γL(l1) ∪ γL(l2) ⊆ γL(l1 tL l2)

|{i}| (γL(l)) ⊆ γL(|{i}|#L (l))

Figure 9.3: Concrete and abstract semantics

The semantics |{stmt}| of a statement stmt is a transfer function
over a set of memories, described by the first equalities of Figure 9.3a.
After an assignment x := e, the variable x is bound (in the new states)
to the value of the expression e. A test blocks execution and only
allows states in which the condition holds.

abstract semantics A predicated analysis relies on a standard
abstract domain L, equipped with the classic operations of the ab-
stract interpretation framework presented in Section 2.2.2:

• a partial order vL over abstract states,

• a monotone concretization function γL from L to P(VX), linking
the abstract states to the concrete ones,

• greatest and smallest elements >L and ⊥L, such that γL(>L) =

VX and γL(⊥L) = ∅,

• sound over-approximations join tL and meet uL of the union
and intersection of concrete states,

• sound abstract transfer functions |{stmt}| L# from L to L that
over-approximate the concrete semantics.

entailment and equivalence of conditions In the follow-
ing, we will need to compare some conditions, in particular to decide
whether one condition logically implies another. To do so, we choose
a coarse interpretation, that treats the expressions present inside con-
ditions as uninterpreted terms. Let ∆ be the set expr{true,false}
of functions from expressions to booleans. Given such a function
δ ∈ ∆, we lift it to a valuation on conditions in the obvious way,
e.g. δ(c1∧c2) = δ(c1) ∧ δ(c2) where in the r.h.s., the symbol ∧ is the
usual conjunction operator. We say that a condition c1 entails another
condition c2, written c1 ` c2 when the evaluation of c1 implies the

9.3 the predicated domain 241

evaluation of c2 for all valuations. Similarly, we define the equivalence
a` of two conditions as their mutual entailment.

c1 ` c2 , ∀δ ∈ ∆, δ(c1)⇒ δ(c2)

c1a` c2 , ∀δ ∈ ∆, δ(c1)⇔ δ(c2)

For example, ((x > y)∧(z = 0))∧(h = 2) ` (h = 2)∧(x > y)

holds.
As a partial preorder, this entailment remains quite weak. Since

it does not give a meaning to the operators ♦ inside expressions,
the relation between e.g. x > 3 and x ≥ 1 is not captured, and
x > 3 ` x ≥ 1 does not hold. This is by design, so that implication and
equivalence may be decided efficiently. The real entailment relation
may be arbitrarily stronger: any decidable pre-order compatible with
T(JxKm) is also suitable.

9.3 the predicated domain

This section shows how to augment a generic abstract domain with
conditional predicates. We first define our predicated domain, equip
it with a lattice structure, and then define operations suitable for an
efficient analysis.

9.3.1 Predicated Elements

Our analysis builds a predicated domain on top of any abstract do-
main L; we refer to L as the underlying domain. The information we
propagate in this new domain is two-fold:

1. A mapping I from predicates in C to elements of L, called a map.
Maps stand for implications from guards to (abstract) values.
Hence they contain conditional information: if I maps p to l,
then l is a correct approximation of the state as soon as p holds.

2. A boolean predicate c ∈ C, called the context, standing for a
set of facts that we know to hold at the current program point.
Contexts are used to preserve information when performing a
join operation. In particular, the join defined in Section 9.3.3
uses the context to form new interesting guards.1

We use the syntax λp.l to denote the map from p to l. We write
〈p→ l〉 ∈ I to mean that I guards l by p, and I(p) for l. We say that
〈p→ l〉 is trivial when l = >L, as the value >L brings no information
whatsoever. In order to have a decidable semantics, we restrict our-
selves to finite maps in which all but a finite number of implications

1 In our analysis, presented in Section 9.4, contexts are always derived from the guards
of the test statements present in the program.

242 predicated analyses

are trivial. This restriction is also important because we often perform
seemingly infinite intersections

d
p∈C I(p). In fact, those intersections

always involve a finite number of guards p bound to a value different
from >L.

We also require the guard false, which corresponds to a contradic-
tion, to be bound to ⊥L. In the following, we only mention non-trivial
guards, and omit the guard for false.2

We call a context and a map that satisfy these properties a context-
implication-map pair, ranged over by Φ and abbreviated as CI-pair. We
define Lpred, the predicated domain over L, as the set of such CI-pairs.
CI-pairs will represent the abstract state of our predicated analysis.

The concretization of a CI-pair is defined as follows. We say that an
implication 〈p→ l〉 holds in a concrete state m when, if p holds in the
concrete state m, then m belongs to the concretization of l. Formally,
JpKm ⇒ m ∈ γL (l). The concretization γpred (c, I) of a CI-pair is the
set of states wherein c is true and all implications of I hold.

γpred (c, I) ,
{
m | JcKm = true∧ ∀p ∈ C, JpKm ⇒ m ∈ γL (I(p))

}
Notice that the concretization is consistent with our convention for

trivial implications, which hold by definition in any concrete state.
Therefore, only the non-trivial implications impact the concretization
of a CI-pair.

9.3.1.1 Rewriting Guards

For the sake of clarity, we use a special notation λu to denote the ap-
plication of a rewriting operator on the guards of a map. Given an
operator O from guards to guards, applying it naively on an implica-
tion map I would lead to “collisions”: distinct guards p1, . . . , pn may
be rewritten by O into a single guard p. In this case, O(I) should
bind p to the meet of all the values previously mapped to p1, . . . , pn,
i.e. to I(p1)uL · · · uL I(pn). Our notation λu makes implicit this meet.
Formally, given f : Cn → C and l : Cn → L:

λ~xu (f(~x)) . l (~x) means λp.
l

~x∈Cn
{l (~x) | pa` f (~x)}

f(~x) should be seen as a pattern, that involves the variables bound
by ~x, but may also mention other variables bound elsewhere. For in-
stance, to add by conjunction a predicate c to the guard of each impli-
cation of a map I , we will write the new map as I ′ = λpu (p∧ c) . I (p).
Here, the notation stands for λp.

d
L {I (q) | ∀q ∈ C, qa` p∧ c}. For

any predicate p such that p 6` c, the new map binds the predicate
p ∧ c to the meet of both previous values I (p) and I (p∧ c). On the
contrary, p is now bound to >L (the meet of the empty set) since no
predicate q verifies pa` q ∧ c.

2 By a slight abuse of notation, we also omit the guard for false when defining maps
through the notation λp.l.

9.3 the predicated domain 243

9.3.2 Predicated Lattice

Assuming that (L,tL,uL) is a lattice, we can equip the set of CI-pairs
with a derived lattice structure. For convenience, given a CI-pair
Φ = (c, I), we use Φ(p) for I(p). First and foremost, note that for
a given CI-pair Φ and a predicate p, not only does Φ (p) approximate
the concrete states whenever p holds, but so do all the L-states bound
in Φ to weaker guards p′. We can therefore define an even more pre-
cise abstraction of the states implied by p by gathering all the abstract
states guarded by such a guard p′, and over-approximating their in-
tersection. We call this abstraction consequence.

Definition 69. Given Φ = (c, I), the consequence Φ ↓ p of p in Φ is
defined as:

Φ ↓ p ,
l

p′∈L

{
I(p′) | p∧c ` p′

}
It is immediate that Φ ↓ p vL Φ(p) indeed holds for all Φ and p.

Also, guards that contradict the context have ⊥L as a consequence,
since I maps false to ⊥L.

Example 33. In the following examples, L is a basic interval domain.
Consider a CI-pair Φ with the trivial context true and two non-trivial
implications, p → x ∈ [2; 6] and q → x ∈ [1; 3]. Then Φ also carries
some information for p∧q, since Φ ↓ (p∧q) = {x ∈ [2; 3]}. Suppose
now that the context of Φ is p∧r. Then Φ ↓ true = {x ∈ [2; 6]}, since
p∧r ` p.

Using the consequence operator, we can now define a preorder on
CI-pairs, as well as join and meet operations. This will induce a lattice
structure on the set CI-pairs. A CI-pair Φ1 = (c1, I1) is more precise
than Φ2 = (c2, I2), which we write Φ1 v↓pred Φ2, when c1 is stronger
than c2 and all the consequences of Φ1 are more precise than those of
Φ2. The join Φ1 t↓pred Φ2 has a context equal to the disjunction of c1

and c2, and associates each predicate to the join of its consequences
in Φ1 and Φ2. Conversely, the meet Φ1 u↓pred Φ2 has a context equal
to the conjunction of c1 and c2, and a map obtained by lifting uL
pointwise. Finally, v↓pred establishes naturally an equivalence relation
∼↓pred on the set of CI-pairs.

Definition 70. Let Φ1 = (c1, I1) and Φ2 = (c2, I2).

Φ1 v↓pred Φ2 , c1 ` c2 ∧ ∀p ∈ C, Φ1 ↓ p vL Φ2 ↓ p
Φ1 ∼↓pred Φ2 , c1a` c2 ∧ ∀p ∈ C, Φ1 ↓ p = Φ2 ↓ p
Φ1 t↓pred Φ2 , c1∨c2 , λp. (Φ1 ↓ ptL Φ2 ↓ p)
Φ1 u↓pred Φ2 , c1∧c2 , λp. (Φ1(p) uL Φ2(p))

We write Lpred∼ the set of CI-pairs quotiented by the relation ∼↓pred.
By construction, two CI-pairs that are equivalent w.r.t this relation

244 predicated analyses

contain exactly the same information. In fact, their concretizations
are identical, as stated below:

Lemma 27. Given two CI-pairs Φ1 and Φ2, Φ1 ∼ Φ2 implies γpred (Φ1) =

γpred (Φ2).

Equiped with the operators defined above, Lpred∼ is itself a lattice,
as stated by the following three results.

Lemma 28. The relation v↓pred is a partial order on Lpred∼.

We write sup (resp. inf) the least upper bound (resp. greatest lower
bound) of two elements of Lpred∼. Then t↓pred and sup coincide, u↓pred
and inf coincide, and v↓pred induces a lattice structure over Lpred∼.

Lemma 29. (Lpred∼,v↓pred) is a lattice, in which

Φ1 t↓pred Φ2 = sup (Φ1,Φ2)

Φ1 u↓pred Φ2 = inf (Φ1,Φ2)

Finally, the predicated join and meet of CI-pairs are respectively
over-approximations of the union and intersection of concrete states
(with respect to the concretization function).

Lemma 30. t↓pred and u↓pred are sound:

γpred(Φ1) ∪ γpred(Φ2) ⊆ γL(Φ1 t↓pred Φ2)

γpred(Φ1) ∩ γpred(Φ2) ⊆ γL(Φ1 u↓pred Φ2)

We write >pred and ⊥pred for the most general and most restrictive
CI-pairs, respectively. Both >pred and ⊥pred contain trivial implica-
tions only (except for false).

Definition 71. The greatest and least element of (Lpred∼,v↓pred) are
respectively

>pred , (true, λp.>L)

⊥pred , (false, λp.>L)

The definition of⊥pred might seem strange, as it would be tempting
to bind all predicates to ⊥L instead. However, such a map would not
be finite. Furthermore, since the context is false, the contents of the
map are actually irrelevant. Indeed, given any map I and predicate
p, (false, I) ↓ p = I(false) = ⊥L.

9.3.2.1 Computing joins

The definition we have given for t↓pred does not easily lend itself to
an implementation. Indeed, our definition uses an universal quan-
tification on all predicates, and the result of a join may contain an

9.3 the predicated domain 245

unbounded number of non-trivial implications. (Trivial implications
do not contribute to the result of ↓, as their bound is >L.) However,
if the two inputs are finite CI-pairs, then there is a finite CI-pair in the
equivalence class of the join.

Example 34. Consider two CI-pairs Φ1 and Φ2 with the same trivial
context true and these respective non-trivial implications:

p → x ∈ [0]

q → x ∈ [1]
r → x ∈ [42]

Then their join Φt has context true, and contains at least these
implications:

p∧r → x ∈ [0; 42] q∧r → x ∈ [1; 42] p∧q∧r → x ∈ [42]

All weaker or unrelated predicates are bound to >L, as either Φ1 or
Φ2 (or both) has no information about them. The three implications
above immediately arise from the definitions of t↓pred. Finally, and
this is the key to having a finite join, there exist maps representing
Φt in which all the other (stronger) implications are trivial ones. Con-
sider, for instance, a predicate s stronger than p∧q∧r. By definition
of t↓pred, it should be bound in Φt to (Φ1 ↓ s) tL (Φ2 ↓ s), which is
equal to {x ∈ [42]}. However, since Φt(p∧q∧r) vL Φt ↓ s by def-
inition, binding s to {x ∈ [42]} is redundant, and it can instead be
bound to >L.

However, notice that we had to consider all combinations of con-
junctions of predicates from Φ1 and Φ2 to compute Φt. In the general
case, computing a join is exponential in the number of implications
present in its inputs. We let |Φ| be the number of non-trivial and
non-false implications in the CI-pair Φ. There exist CI-pairs Φ1 and
Φ2 such that Φ1 t↓pred Φ2 requires at least 2|Φ1|+|Φ2| implications to be
represented.

9.3.3 A Weaker Join

The high complexity of the algebraic lattice structure of CI-pairs would
be a serious hindrance to an efficient practical analysis. We construct
instead a relaxed join operation. In essence, we define a weak-join
tpred which is an upper bound of its arguments, but not the least
[San+06a]. Said otherwise, tpred is an over-approximation of t↓pred.

246 predicated analyses

Definition 72. Let Φ1 = (c1, I1) and Φ2 = (c2, I2) be two CI-pairs.
The weak-join Φ1 tpred Φ2 between them is defined as:

(c1, I1) tpred (c2, I2) = (c1∨c2, λp. (l∪ (p) uL l1 (p) uL l2 (p)))

where


l∪ = λ

(p1,p2)
u (p1∧p2) . I1(p1) tL I2(p2)

l1 = λp1u (¬c2∧p1) . I1(p1)

l2 = λp2u (¬c1∧p2) . I2(p2)

The context of the weak-join remains the disjunction of the prior
contexts. Within the implication map, the operator l∪ combines impli-
cations of the two previous maps: the L-join of values present under
guards p1 and p2 respectively in Φ1 and Φ2 is kept under the new
guard p1∧p2. Conversely, the operators l1 and l2 preserve the values
only present in Φ1 or Φ2 respectively. A value l valid in Φ1 under a
guard p1 may be present in the weak-join under a guard q, provided
that the two following conditions hold. First, q must imply p1, so that
its consequence in Φ1 is smaller than l. Second, q must contradict c2,
so that its consequence in Φ2 is ⊥L. Thus, the consequences of q in
Φ1 and Φ2 are both included in the value l, which can be bound to
q in the weak-join. We naturally choose q = ¬c2∧p1. Symetrically,
values present in Φ2 are present under guards that negate c1. Note
that this additional information from Φi is useless if all guards p∧¬cj
contradict the new context, i.e. whenever ci ` cj .

Example 35. Let us continue Example 34. Operator l∪ creates only
the first two implications stemming from the “full” join operator, thus
avoiding the potential blow-up of processing all the combinations of
conjunctions of predicates from Φ1 and Φ2. Also, the operators l1 and
l2 do nothing here, as the negation of the contexts of the CI-pairs is
false. Notice that the loss of precision regarding p∧q∧r is irrecover-
able: knowing p∧r → x ∈ [0; 42] and q∧r → x ∈ [1; 42] by the weak-
join of definition 72, we can only deduce that p∧q∧r → x ∈ [1; 42].
This is strictly less precise than the value x ∈ [42] obtained with the
“strong” join operator.

This is actually a general property of tpred. The implications “miss-
ing” in the weak join always contain a conjunction of several guards
from the same map. These are for example the guards of the form
(
∧
i pi)∧(

∧
j pj) with |i| > 1 or |j| > 1, where the pi come from one

map, and the pj from the other.

Example 36. Consider now Figure 9.4, that introduces the result of a
predicated analysis with the interval domain on the sample code on
its left. We write Φi for the state at the end of line i, its context and
non-trivial implications being shown in the two rightmost columns.
We have Φ4 = Φ2tpred Φ3 by definition. The value implied by true in
Φ4 comes from the operator l∪, and is equal to I2(true) tL I3(true).

9.3 the predicated domain 247

1 x = 0; y = 0; v = 1;

if (c) { x = v; }

else { y = v; }

5 w = 0;

if (c)

{ c = 2; }

... �
line

Φline: state after the statement

context implications

1 true true 7→ v ∈ [1], x ∈ [0], y ∈ [0]

2 c true 7→ v ∈ [1], x ∈ [1], y ∈ [0]

3 ¬c true 7→ v ∈ [1], x ∈ [0], y ∈ [1]

4
c∨¬c
≡ true

true 7→ v ∈ [1], x ∈ [0, 1], y ∈ [0, 1]

c 7→ v ∈ [1], x ∈ [1], y ∈ [0]

¬c 7→ v ∈ [1], x ∈ [0], y ∈ [1]

5 true

true 7→ v ∈ [1], w ∈ [0], x ∈ [0, 1], y ∈ [0, 1]

c 7→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0]

¬c 7→ v ∈ [1], w ∈ [0], x ∈ [0], y ∈ [1]

6 c true 7→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0]

7 true true 7→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0], c ∈ [2]

8 true
true 7→ v ∈ [1], w ∈ [0], x ∈ [0, 1], y ∈ [0, 1]

c 7→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0], c ∈ [2]

Figure 9.4: Example of an analysis using a predicated interval analysis

Conversely, the value implied by c comes from the operator l1, which
negates the context of Φ3; furthermore, the value is exactly Φ2(true).
Note that the intervals inferred in Φ2 and Φ3 are entirely retained,
guarded by the negations of the converse contexts; no information is
actually lost. The figure serves as an example throughout this chapter,
and is thus explained in detail afterwards.

The following result states that our weak-join tpred is weaker than
t↓pred. Since t↓pred is the least upper bound, tpred is an upper bound,
hence correct.

Lemma 31. : If Φ1 and Φ2 are two CI-pairs, then(
Φ1 t↓pred Φ2

)
v↓pred (Φ1 tpred Φ2)

9.3.3.1 Efficient implementation of the weak-join operation

Consider the definition of Φ1 tpred Φ2. The operators l1 and l2 are
linear on the size of the corresponding map. On the other hand, l∪

248 predicated analyses

lift(i, (c, I)) ,
(
c, λp. |{i}| #L (I (p))

)
kill(x, (c, I)) ,

(
kill+C(x, c) , λpu

(
kill−C(x, p)

)
. I (p)

)
assume(e, (c, I)) , (c∧e , λpu (p [e← true]) . I (p))

|{x := e}| #pred(Φ) , lift(x := e, kill(x,Φ))

|{c ?}| #pred(Φ) , lift(c ?, assume(c,Φ))

Figure 9.5: Definition of the abstract semantics |{ · }|#pred

requires |Φ1| × |Φ2| operations. Thus, the total complexity is a priori
in |Φ1| × |Φ2|.

We can however refine this bound. Any implication 〈p→ l〉 present
in both Φ1 and Φ2 will exist in the join. Thus, any implication of the
form 〈p∧p′ → l tL l′〉 is redundant with 〈p→ l〉 and does not need
to be considered. An optimized implementation of the weak-join
should thus consider only the subparts of the maps that are distinct.
The practical complexity is now in

∣∣Φdiff
1

∣∣× ∣∣Φdiff
2

∣∣, where
∣∣Φdiff

i

∣∣ is the
map that contains the implications of Φi not present in the other map.
This is of particular interest when performing a dataflow analysis:
the two maps at a join point share all implications collected before
the control-flow split and not modified in-between.

9.4 a predicated analysis

This section presents the transfer functions used for a dataflow anal-
ysis on predicated domains, explains how to avoid the computation
of redundant guarded values, and details some strategies to decrease
the practical complexity of our analysis.

9.4.1 The Abstract Transfer Functions

As the symbolic equality domain presented in Section 8.2, predicated
analyses rely on an operator that computes the dependence of ex-
pressions (see Section 8.2.1): deps(e) is the set of variables on which
the evaluation of e depends. On our toy language, this is the set of
variables syntactically present in e. However, due to pointer values,
deps(e) usually depends on the current program point in the C lan-
guage.

Figure 9.5 defines our abstract semantics for statements in Lpred.
The gist of the analysis is to apply the transfer functions of L to each
of its elements in the map, which is carried out by the lift function.
However, to remain sound, we also need to modify predicates (either
in the context or in a guard) whose truth values are possibly modified

9.4 a predicated analysis 249

assume(¬e, (c, I)) , (c∧¬e , λpu (p [e← false]) . I (p))

assume(p1∧p2,Φ) , assume(p1,Φ) u↓pred assume(p2,Φ)

assume(p1∨p2,Φ) , assume(p1,Φ) t↓pred assume(p2,Φ)

Figure 9.6: Extended assume to predicates in disjunctive normal form.

by a statement. Following standard dataflow terminology, we define
a kill operator, that removes within predicates the expressions that de-
pend on a certain variable x. This operator is used for an assignment
such as x := e, as this instruction modifies the value of x. It relies on
two killC functions on predicates, whose action depend on whether
the predicate occurs in a positive or a negative position. kill+C(x, p)

(resp. kill−C(x, p)) replaces by true (resp. false) the sub-expressions
of p that depend on x, alternating with the other operator when they
encounter the operator ¬.3

While kill and lift used in conjunction are sufficient to define a
sound abstract semantics for Lpred, they never use the existing impli-
cations or enrich the context. The join operation retains some of the
specific information of each branch (by creating new implications),
but only when the branches have different non-true contexts. Thus,
we define an operator assume that enriches the context by a new ex-
pression e ∈ C, supposed to be satisfied, and replaces by true the
occurrences of e in the guards of the map. As a side-effect, the
value under a guard implied by e gets merged with the value un-
der the guard true, refining it. This assume operator is extended in
Figure 9.6 to predicates in disjunctive normal form: assuming a dis-
junction amounts to joining the assume of each conjunctive clauses,
which are themselves the meet of the assume of the literals. Assum-
ing the negation of an expression consists in replacing it by false in
the guards.

Within our abstract semantics |{ · }| #pred, it is natural to use assume

after a test c ?, where the predicate c holds by definition. This is
exactly what we did in the examples of Section 9.3, to keep track of
which branch of a conditional we were in.

Example 37. After line 2 in Figure 9.4, in the branches of the con-
ditional, the operator assume enriches the context according to the
condition. After the conditional, the context reverts to true due
to the join between Φ2 and Φ3. At line 6, on a conditional with
the same condition c, the assume operator maps the true guard to
I5(true) uL I5(c), as c is now true. We have re-learnt the informa-
tion known about x and y at line 5. Notice that assume removes the
guards that are redundant or incompatible with the context, keeping

3 Those operators are formally defined as function kill_pred in the Coq proofs.

250 predicated analyses

only the facts relevant at the current program point. On line 7, c is
overwritten. Hence, the context c is reset to true by the kill oper-
ator. Finally, upon exiting the conditional, we lose the information
¬c 7→ v ∈ [1], w ∈ [0], x ∈ [0], y ∈ [1] coming from the “else” branch,
as negating the context true results in an implication that never holds.
But the information coming from the “then” branch is preserved un-
der the guard ¬¬c, equivalent to c.

As an optimization not presented in Figure 9.5, it is sometimes use-
ful to skip the application of assume. Typically, if a preliminary analy-
sis has detected that no part of condition c will never be tested again,
there is no point in tracking it. Conversely, since any application of
assume(p, ·) is sound – provided p actually holds – it is sometimes
useful to use assume after some well-suited assignments.

Consider for example b := p where b is a boolean variable and p a
predicate not dependent on b, a common pattern in generated code.
We may assume (b ∨ ¬p) ∧ (¬b∨ p) after such a statement. Then, on
a test b ?, the analysis will be able to re-learn p. Using the assume

function more or less aggressively can be seen as a trade-off between
precision and complexity —in particular because contexts are used
by our weak-join operation to create new implications.

9.4.1.1 Soundness of the Analysis

The analysis we have defined above correctly approximates the con-
crete semantics of the program.

Lemma 32. Our predicated analysis over Lpred is sound.

γpred (Φ1) ∪ sγpred (Φ2) ⊆ γpred (Φ1 tpred Φ2)

|{i}| (γpred (Φ)) ⊆ γpred
(
|{i}| #pred(Φ)

)
Moreover, we can state a stronger result, that links, at a program

point n, the abstract semantics of L with its counterpart on Lpred.

Lemma 33. If the underlying transfer functions are monotonic, our predi-
cated analysis is as precise as the non-predicated one.

Of course, the predicated analysis can be more precise. As an ex-
ample, on line 6 of the program of Figure 9.4, the non-predicated
analysis would have inferred the value I5(true). Our own result
—namely I6(true)— is much more precise.

9.4.2 Improving the Analysis: Avoiding Redundant Values

Amongst the values guarded in the implications of a map I , the value
under the true guard plays a special role. I (true) always holds by
definition, and represents the broadest, less precise knowledge we

9.4 a predicated analysis 251

have on the state. All other values can be used to refine this value,
under some hypothesis. Indeed, whenever a predicate p is satisfied,
the meet between I (true) and I (p) is a correct abstraction of the
state, more precise than I(true).

Based on this reasoning, all information carried by I (true) can be
removed from the other values without any loss of precision. Further-
more, the guarded values may be seen as complementing I (true),
and can be handled differently. In particular, the transfer functions of
the underlying domain may be expensive – even more so if they are
precise. Applying them under each guard is likely to be costly, and
may uselessly duplicate some information in each implication of the
map.

Reducing the size of the guarded values, as well as the cost of treat-
ing them, is essential to decrease the practical complexity of the pred-
icated analysis. For this purpose, we require two additional features
from the underlying domain L.

1. A transfer function |{i, p}| #L×C over statements i, parameterized
by the predicate p that guards the processed value. This way, the
analysis can be more precise on the true guard only and avoid
the duplication of new information. Thus, |{i, true}| #L×C may
be defined as |{i}| #L , while |{i, ·}| #L×C applied to any guard other
than true should be defined as a very imprecise operation, that
only guarantees the soundness of the analysis on L. Formally,
we only require |{i, ·}| #L×C to be an over-approximation of |{i}| #L .
The lift operator is then redefined as

lift(i, (c, I)) ,
(
c, λp. |{i, p}| #L×C(I(p))

)
2. A difference operation \L that discards information already con-

tained in another element of L, that we use to simplify impli-
cation maps. Ideally, a\Lb should be as large as possible (w.r.t.
vL), while retaining all the information of a not already present
in b. To be sound, we require a vL a\Lb. We define an operator
reduce, that simplifies each implication w.r.t. the value mapped
in the true guard. It can be used at any time, but it is most use-
ful whenever the shape of the map has changed significantly
and redundancies may have been introduced (i.e. after a join or
an assumption).

reduce(I) , λp. I (p) \LI (true)

These two operators may discard a lot of information; ideally, they
would just keep the values that the non-predicated analysis fails to
compute. In fact, provided that \L is such that no information is
irrecoverably lost by its application, then reduce actually preserves
the information contained in the map: only its actual contents are
altered.

252 predicated analyses

1 x = 0 ; y = 0 ; v = 1 ;
i f (c) { x = v ; }
e l s e { y = v ; }

5 w = 0 ;
. . . �

line context implications after the statement

4
c∨¬c
≡ true

true 7→ v ∈ [1] ;x ∈ [0, 1] ; y ∈ [0, 1]

c 7→ x ∈ [1] ; y ∈ [0]

¬c 7→ x ∈ [0] ; y ∈ [1]

5 true

true 7→ v ∈ [1] ;w ∈ [0] ;x ∈ [0, 1] ; y ∈ [0, 1]

c 7→ x ∈ [1] ; y ∈ [0]

¬c 7→ x ∈ [0] ; y ∈ [1]

Figure 9.7: Analysis of Figure 9.4 with factorization.

Lemma 34. Suppose that (a\Lb) uL b = a holds for all a, b ∈ L. Then we
have (c, I) ∼↓pred (c, reduce(I)).

Example 38. Let us come back to the example of Figure 9.4. The
join and the lift function duplicate the value of variables v and w

at line 4 and 5 respectively. Here, our previous analysis kept more
information within implications than needed. The benefit of the im-
provements described above are shown in Figure 9.7. When joining
the values coming from lines 2 and 3, the reduce operator removes
under the guards c and ¬c the information about v, which is already
present under the weaker guard true. In parallel, at line 5, the modi-
fied lift operator does not apply the full interval analysis to the values
guarded by c and ¬c. Instead, we use a simpler abstraction, that only
removes information about variables that are overwritten. This way,
the information about w is no longer duplicated.

Finally, the new transfer functions |{i, ·}| #L×C should always have
access to the special value I (true). Thus, the transfer functions may
rely on I (true) for the parts of the processed value that have been
removed by the difference operator.

9.4.2.1 Application to standard domains

A non-relational domain, such as the interval domain, is usually an
environment that maps variables (or more complex memory loca-
tions) to abstract numeric values. For such a domain, the difference
operation can be implemented pointwise, by dropping the bindings
already included in the reference state, namely I (true).

For all predicates p, a sound transfer function |{i, p}| #L×C has to re-
move the numeric values bound to the variables that are possibly
modified by the statement i. But they should avoid creating new

9.4 a predicated analysis 253

bindings in a state guarded by a predicate p 6a` true. A worthwhile
trade-off could be to add more information to a guarded state only
when the statement involves variables present in this particular state.
Indeed, thanks to the application of reduce, if such a state contains a
mapping for a given variable, then its numeric value is more precise
than the one bound in the state I (true). Thus, the evaluation of the
statement may really be more precise in the guarded state. Note that
this last refinement is not implemented in the domains used for our
experimental evaluation.

These two optimizations have another advantage. Indeed, they de-
crease the size of the guarded values and postpone their alteration
until it becomes necessary. Thus, the implications collected before
a split of the control-flow graph are more likely not to be modified
in the branches. This maximises the shared subparts of the CI-pairs
propagated through parallel branches. Since our efficient join only
considers the distinct subparts of maps to create new implications,
maximizing the shared subparts prevents an unnecessary increase in
the size of the predicated maps.

For relational domains, the principles of those improvements would
be the same, but the difference operation may be more difficult to im-
plement. However, it does not have to be complete: it is always sound
to retain some redundancy.

9.4.3 Propagating Unreachable States

Whenever the lifted transfer function of the underlying domain re-
turns the abstract state ⊥L for a value kept under a guard p, there is
by definition no concrete state where p holds. We can thus refine the
CI-pair by assuming the predicate ¬p. The former and latter maps are
not equivalent, as their context differ. However, their concretization
is exactly the same, as stated by the result below.

Lemma 35. Given Φ and p such that either Φ(p) =⊥L or Φ ↓ p = ⊥L,
then γpred (Φ) = γpred (assume(¬p,Φ))

Through this mechanism, information can flow from the underly-
ing domain to the predicated one, by means of the contrapositive of
the collected implications.

This also means we could embed the context of our abstract states
directly in the implication map. A domain mathematically isomor-
phic to ours is obtained simply by mapping the negation of the con-
text to bottom. However, we chose a formalisation that keeps separate
the context and the implication map. For the sake of clarity firstly, as
these two components play very different roles in the analysis. Sec-
ondly, this design provides more leeway in the implementation, in
particular to select finely the predicates of the context.

254 predicated analyses

9.4.4 Convergence of the Analysis

Throughout the analysis of a given program, all guards of non trivial
implications present in a map are derived from the conditionals of the
program, so their number remains finite. In practice, this number can
be high; we discuss a possible way of limiting it in Section 9.7. The
predicated analysis essentially amounts to performing the underly-
ing analysis over the values under each guard (except for the assume

operations, which allow us to be more precise). Thus, if the underly-
ing domain provides (or requires) a widening operator to effectively
compute the fixpoint, then it can (and should) be lifted as well. Fi-
nally, if the underlying transfer functions are monotonic, so are the
predicated ones, which ensures the termination of our analysis.

9.5 a verified soundness proof

The lattice structure of the predicated domain, the relation between
the join and the weak-join and the soundness of the analysis have
been formalized and proven in Coq [Coq], an interactive theorem
prover. The proofs scripts are mechanically checked by the Coq ker-
nel, ensuring their correctness. This increases very significantly the
confidence in our formalization. In particular, the soundness of the
weak-join operator, and of its optimized version, was a non-trivial
result.

This section gives a brief outline of this development. A correspon-
dance between the notations of this manuscript and the Coq ones is
available at the beginning of the script.

9.5.1 Prerequisites

Our Coq development is parameterized by the following elements,
that are kept abstract.

expressions and environments . We require three sets, stand-
ing for numeric values Value, variables Var, and expressions
Exp. Concrete states are environments in Env := Var → Value.
Given an environment, the evaluation function eval_expr as-
sesses the value of an expression. The update function models
the assignment of a single variable in an environment, and the
deps function verifies that if an expression exp does not depend
on a variable var, then no update of var can affect the evalua-
tion of exp.

lattice . We require a lattice (L,v,t,u) – the underlying abstract
domain – plus the correctness of its operations. The Coq de-
velopment requires a complete lattice. Indeed, the join and meet
are infinitary, and have type (L→ Prop)→ L; the first argument

9.5 a verified soundness proof 255

denotes the set of elements of L that are being joined or met.4

This was done to simplifiy the proofs, as using a binary join or
meet would have required to reason on the order in which the
operations are performed.

analysis over L . We require a monotonic concretization function
concr from L to Env, and monotonic transfer functions assign

and assume with the properties of definition 8.

9.5.2 Lattice Structure

We define the predicates as an inductive structure over the expres-
sions, and extend the evaluation on expressions to predicates. The
entailment ` and equivalencea` between predicates are defined us-
ing this evaluation. We then show that the constructors LAnd, LOr
and LNot for predicates are morphisms of the relations induced by `
anda`, and register those lemmas in the type classes mechanism of
Coq [SO08]. Then, given p a` q, we can prove (p ∧ r) a` (q ∧ r)
directly by a rewriting step. This mechanism is used extensively
throughout the proofs.

CI-pairs are records of a predicate (the context) and a function from
predicates to L (the map). To simplify some definitions, we do not
require false to be always bound to ⊥L. Instead, we prove that all
abstract operations preserve this property, called false_bottom in the
development.

The function in_map ci P gathers the values of L bound to guards
of ci that satisfy the proposition (on predicates) P. The definition of
the consequence ci ↓ p is then:

u (in_map ci (fun p′ ⇒ p∧ (context ci) ` p′))

The inclusion CI_incl, equivalence CI_equiv, join CI_join and
meet CI_meet of CI-pairs are then defined as specified in Section 9.3,
together with the proofs of their correctness: CI_incl is an order
relation, CI_equiv an equivalence relation, CI_join the least upper
bound and CI_meet the greatest lower bound of two CI-pairs. These
proofs heavily rely on intermediate lemmas about consequences.

9.5.3 Weak-Join

Proving the correctness of the weak-join —and of its optimization—
is the more involved part of the development.

The weak-join of CI-pairs is defined as the meet of three CI-pairs,
which correspond to the three operators l∪, l1 and l2 of Definition 72.
The first one is created by the function CI_conj_join, and the lat-
ter two are symmetrically created by the same function CI_neg_join.

4 Readers unfamiliar with Coq can simply see Prop as the set of booleans.

256 predicated analyses

Given Φ1 and Φ2, their weak-join is the meet of CI_conj_join Φ1 Φ2,
CI_neg_join Φ1 Φ2 and CI_neg_join Φ2 Φ1. We prove that the re-
sults of CI_conj_join and CI_neg_join are greater (less precise) than
the original join. Therefore, so is their meet, and the weak-join is in-
deed greater than the join.

We then validate the final optimization of the weak-join.
CI_shared ci1 ci2 contains implications belonging to both ci1 and
ci2; other predicates are bound to >. Conversely, CI_diff ci1 ci2

contains only the elements of ci1 mapped to different values in ci2;
other predicates are bound to >. The efficient weak-join is the meet
between the shared CI-pair and the previous weak-join of the rests.
The last lemma asserts the equality between the former and the effi-
cient weak-join.

9.5.4 Analysis

The concretization CI_concr links CI-pairs to concrete environments.
We prove that this concretization is monotonic, and consistent with
the join and meet operations. The deps function is also extended to
predicates. We then define a function kill_pred that implements the
two operators kill+C and kill−C , defined respectively as weaken_pred and
strengthen_pred.

Then we define the transfer function CI_assign and CI_assume
such as specified in Section 9.4.1. Finally, we ensure the soundness of
their definition:

• If the environment env is a concretization of ci, and if the ex-
pression exp evaluates to val in env, then update var val env

is a concretization of CI_assign var exp ci;

• If the environment env is a concretization of ci, and if the ex-
pression exp evaluates to a positive value in env, then env is a
concretization of CI_assume exp ci.

The soundness of CI_assign does not depend on the exact definitions
of the functions weaken_pred and strengthen_pred on predicates.
We actually prove that more involved operators killC are also sound.
For example, we could use two operators that invert assignments
of the form x := x + k in the guards, instead of removing all the
occurrences of x.

Those generalized operators are called weaken and strengthen in
the formalization, and take as additional argument the expression to
which the variable is being assigned. Let us recall that the operator

9.6 related work 257

T(·) injects values of V into booleans. The properties that must be
satisfied by weaken and strengthen are as follows:

∀c ∈ C,m ∈M, x ∈ X , e ∈ exp, T(JcKm) ⇒ T(Jweaken (c, x, e)Km[x 7→JeKm])

T(Jstrenghten (c, x, e)Km[x 7→JeKm]) ⇒ T(JcKm)

Given the assignment x := x + 3, taking for weaken the function
that replaces occurrences of x by x− 3 is obviously correct here. The
drawback of this approach is that a potentially infinite number of new
predicates may be created, which might lead to a non-terminating
analysis. Performing widening steps on the context and the guards
might be required.

9.6 related work

Convex numeric domains, such as intervals, polyhedra, octagons and
linear equalities, are widely used in abstract interpretation. Their
convexity enables scalable analysis but impedes the representation of
disjunctive invariants, causing overly wide imprecisions. Therefore,
a large body of work has been devoted to remedy this shortcoming.
Disjunctive completion [CC79b; GR98] of abstract domains avoids the
computation of joins by propagating multiple abstract states in par-
allel along the analysis. One downside is that the code may need
to be fully analyzed for each separate state, whereas our framework
strives to minimize the unnecessary computations by getting rid of
redundancy. On the other side, disjunctive completion can be used
to unroll loop symbolically, something our approach does not han-
dle. However, as widening is notably hard to perform properly on
disjunctive sets [BHZ04], most of these analyses operate on a before-
hand bounded number of disjunct states. Then, some join must even-
tually be performed, and a distance between abstract states [San+06b;
PC06] can be used to first rejoin the most related states. This is linked
to our difference operator, since nearby states (according to this dis-
tance metrics) should have small differences.

Additional information can be attached to the disjunct components.
In practice, such disjunctive domains are often stored by binary deci-
sion–diagram (bdd) [Bry86] where the nodes contain some predicates
and the leaves are numeric abstract states.

Boolean partitioning [Ber+10] distinguishes the numerical values of
small sets of variables with respect to the truth values of some boolean
variables. Such a partitioning may include several boolean trees work-
ing on different sets of variables, chosen by heuristics. By comparison,
our predicated domain is built on entire states of the underlying do-
main. Indeed, we do not restrict the variables that may appear in
our abstract states. This could be an interesting extension to further

258 predicated analyses

improve scalability. Under a guard p, we could choose to keep in-
formation only on the variables that are read or written inside an if

whose condition involves p. The Binary Decision Tree Abstract Domain,
proposed by Chen and Cousot [CC15], uses the conditionals of the
program as nodes for the tree, as in our analysis. In their work, the
shape of the tree is mostly static, making the join operation simpler to
implement. The transfer function for assignments preserves all nodes,
unlike in our approach where some guards are weakened or removed.
On the other hand, the whole tree must be rebuilt after assignments,
which may be very costly.

Trace partitioning [HT98; MR05] associates each component with
some set of execution paths, and involves heuristics on the control-
flow to choose a partition of the traces that guides the disjunction.
Also, traces should be merged when it is no longer useful to keep
them separate; syntactic criteria are used to detect such merge points.
Property simulation [DLS02] avoids the cost of full path-sensitivity for
proving a single fixed property: it groups the abstractions of execu-
tion states wherein the given property has the same state. The boxes
domain [GC10a] implements a specific disjunctive refinement of in-
tervals with decision diagrams extended over linear arithmetic, while
our framework is parametrized by the underlying domain under con-
sideration. Closer to our approach, although focusing on termination
proof through backward analysis, [UM14] designs a decision tree ab-
stract domain from linear constraints to generic values. Some effort is
also made to maintain a canonical representation of the trees. How-
ever, unlike our setup, the ordering and the join are point-to-point
operations relying on unification of trees. Also, widening must be
used, as the height of the trees height is not bounded a priori.

While binary decision trees make choices on the truth values of
boolean predicates, the Segmented Decision Tree Domain [CCM10] can
express properties depending on the range of values of arithmetic
variables. Each node is a disjunction over exclusive value intervals
for a variable, specified by a symbolic segmentation, and the number
of possible choices is not bounded a priori. Since the number of seg-
ments may grow indefinetely, the widening operator must act on the
shape of the tree.

As disjunctive completions, all these domains make a strict parti-
tion of their abstract states. Each component of the disjunction is
the only abstraction of the concrete states for some cases, and the
join between them are postponed as much as possible. Therefore, the
analysis can not be relaxed on some disjunct without losing precision
for the cases it represents. In contrast, our framework performs the
join immediately, but preserves the lost information in abstract values
guarded in implications. Then, these separate values provide some
additional information to the join, but are not intended to be inter-
preted alone. This design allows the optimizations proposed in Sec-

9.6 related work 259

tion 9.4.2, where the treatment of these ancillary values is lightened.
This would be impossible to implement on a disjunctive domain with-
out leading to arbitrary precision loss.

Predicate abstraction [GS96] would infer a single fact along all execu-
tion paths, but this fact may be arbitrarily complex and thus can ex-
press disjunctive properties. CEGAR [Cla+00] improves predicate ab-
straction by refining the invariants inferred using counter-examples.
Different approaches have been proposed to combine numeric do-
mains with predicates [GC10b; BHT08; FJM05]. In particular, Fischer
et al. show how to build analyses that propagate a map from a de-
terminate set of predicates to the numerical elements of any existing
dataflow analysis [FJM05]. As usual in counter-examples based tech-
niques, the predicates are incrementally found by successive refine-
ment iterations of the analysis, that prune out unverified invariants.
Still, finding the proper predicate may be arbitrarily complex, result-
ing in hard to predict analysis times. Also, the refinement phase
requires decidable theories and powerful decision procedures to find
the counter-examples from which the predicate is deduced. We in-
stead chose to limit ourselves to uninterpreted predicates relating the
conditionals present in the program, for simplicity and predictability.
Furthermore, predicate abstraction is mostly goal-driven, and used
by model-checkers to prove that a certain property is valid. Our pred-
icated framework uses predicates to postpone the loss of precision
inherent to joins in abstract interpretation, but it is not goal-driven. In-
stead, the same analysis will be done for e.g. all the potential runtime
errors of the program (which is why the analysis needs to be run only
once). In particular, improving an unsufficiently precise analysis re-
quires designing more fine-grained analysis domains. This contrasts
with the automatic refinement available with predicate abstraction.

Otherwise, Mihaila and Simon present in [MS14] another way to
synthesize predicates by observing losses in abstract domain. They
propagate a single numeric state augmented with sets of implications
between predicates, specifically generated by the numerical abstract
domain at join points. For the domain of intervals, the join between
the two states where x ∈ [0; 5] and x ∈ [10; 15] would typically pro-
duce the implication x > 5 ⇒ x ≥ 10. At conditionals in the control-
flow graph, implications are fed to the underlying domain to recover
the numeric loss. The transfer functions follow the same general con-
siderations than ours, but the predicates stem from the numeric do-
main and are not restricted to the conditionals of the program. Thus
they also heed to avoid generating redundant implications, although
this makes the full recovery more intricate than in our construction.

Finally, combining abstract domains is a standard way to enhance
the abilities of static analysis based on abstract interpretation. These
analyses were introduced in the founding papers [CC79b] and widely
studied since [CCF13]. In particular, our predicated domain is a re-

260 predicated analyses

duced product between contexts and maps, and the maps can be seen
as instances of a reduced cardinal power [CC79b], where the base is
the chosen underlying abstract domain and the exponent is the set of
conditional predicates.

9.7 experimental results

We have integrated our predicated analyses framework as a new plu-
gin of the Frama-C platform. This plugin complements the results of
the Value Analysis (previously VALUE, and now EVA). We used it on
two simple domains presented in the previous section; the obtained
results are presented in this section.

9.7.1 Scope of the Current Implementation

To limit the imprecisions caused by the junctions of convex abstrac-
tions, EVA already embeds an instance of trace partitioning: it post-
pones the joins of abstract states by propagating multiple ones sep-
arately. As dissociating every feasible execution path leads to in-
tractable analyses, the maximum number of parallel states maintained
by EVA is limited by a parameter called slevel. Once this threshold is
reached, all new states are joined and propagated without trace par-
titioning. Still, high slevel values may lead to high analysis time.

For performance reasons, this partitioning is directly integrated on
the dataflow analysis. It is systematically applied on top of all the
domains on which is instanciated the analysis. Unlike the value and
state abstractions, this trace abstraction is not extensible for the time
being. Instead, we have integrated our predicated analyses frame-
work as a new plugin of the Frama-C platform. This plugin comple-
ments the EVA analysis by validating a posteriori some of the alarms
it has emitted. By construction, our plugin mainly improves EVA’s
results on successive test statements with identical conditions5. Al-
though such pattern is relatively unusual in idiomatic C code, it is
much more frequent in generated programs, for which our method is
well adapted.

This predicated analyses plugin has been designed to be modular.
It is parameterized by the underlying abstract domain, and builds a
dataflow analysis with predicates for this domain. This plugin runs
after EVA, which it mainly uses to get aliasing information on point-
ers. This information is needed to ensure the soundness of the deps

operator. For convenience, we also chose to reuse some data struc-
tures of EVA. In particular, the maps from predicates to abstract val-
ues are patricia trees with hash-consing. Finally, all the predicates are

5 Modulo conjunction, disjunction and negation, but only over uninterpreted expres-
sions.

9.7 experimental results 261

normalized into a disjunctive normal form. This way, a CI-pair never
manages different equivalent predicates.

Generated programs can include a very large number of nested con-
ditional branches and loops, leading to overly wide contexts in our
own analysis. To avoid a complexity explosion, we limit the number
of literals in the predicates used in contexts and guards (thereby de-
creasing the precision of our results), according to a parameter clevel.
The join removes any implications whose guard exceeds this limit; in
the context, we try to keep the most recent predicates.

The analysis is modular: it processes once and separately each func-
tion of a program, retains a summary of their effect regardless of their
call context and still benefit from it at each function call. The kill op-
erator, applied to the set of variables potentially modified by the call,
guarantees the soundness of our analysis, and the meet of the pred-
icated domain put together the abstract states before the call and at
the return statement of the called function.
The plugin is available at http://yakobowski.org/predicated.html.

9.7.2 Application on two Simple Domains

This subsection describes the two abstract domains on which we have
instantiated our predicated analysis plugin. Of course, our frame-
work could also be applied to other domains, e.g. intervals or the
“valid file descriptors” domain used for Figure 9.1.

9.7.2.1 Tracking Initialized Variables

Our experiments relied on a domain retaining, at each program point,
the set of variables that were properly initialized. This domain can
be used to prove that no unitialized variables are read at execution
time. We used it successfully on generated C programs. In this kind
of code, variable initialization may happen inside conditionals, and
far away from the points where the variable is used.

In the semantics of our simplified language, we introduce a default
value uninit in V, to which all variables are equal at program entry.
The execution of a statement is correct when all the involved variables
are initialized.

γinit (V) = {m | ∀x ∈ V,m (x) 6= uninit}

|{x := e}| #init(V) =

V ∪ {x} if deps(e) ⊆ V

V \ {x} otherwise

|{c ?}| #init(V) = V

http://yakobowski.org/predicated.html

262 predicated analyses

|{c ?, p}|#eq×C(E) ,

E ∪ {e1 = e2} if p ≡ true and c = (e1 = e2)

E otherwise

|{x := e, p}|#eq×C(E) ,

killeq(x,E) ∪ {x = e} if p ≡ true and x /∈ deps(e)

killeq(x,E) otherwise

killeq(v,E) , {(a = b) ∈ E | v /∈ deps(a) ∧ v /∈ deps(b)}

E\eqF , {(a = b) ∈ E | (a = b) /∈ F}

γeq (E) ,
{
m | (a = b) ∈ E ⇒ JaKm = JbKm

}
Figure 9.8: Abstract semantics for the equality domain

9.7.2.2 A Second Abstract Domain: Herbrand Equalities

We also reused for our experiments the symbolic domain tracking
Herbrand equalities between C expressions, presented at Section 8.2.
This equality domain boils down to retaining equalities stemming
from assignments or equality conditions. Its formal definition is re-
called in Figure 9.8, where the set E of equalities increases on tests
involving an equality, and on assignments that do not refer to the
variable being modified. To be sound, the transfer function on assign-
ments must also remove equalities that involve the overwritten vari-
able, through the killeq operator. Following Section 9.4.2, we present
simplified transfer functions, for which only the true guard is en-
riched, and in which the operator \eq can be used to remove redun-
dant equalities.

This domain lends itself to a natural extension of our analysis,
namely the strengthening of the context and the guards by backward-
propagating information from L. For example, we can quotient all
the predicates of the CI-pairs by the congruence relation induced by
the equalities stored in the map. Furthermore, when applying the op-
erator kill (following an assignment, say to x) on an expression e that
involves x, we may instead substitute e by another equal expression.
This is more precise than removing the occurrences of x in the guards
and the context.

9.7.3 Results on Variables Initialization

We tested our plugin on a C program of 5800 lines generated by the
industrial environment SCADE, devoted to real-time software. As
often with such codes, multiple conditionals are heavily used —typ-
ically to test automata states or clocks. In fact, this program has an
extremely high ratio of conditionals w.r.t. the total number of state-
ments: 819 out of 2830. Furthermore, many conditionals are complex,
with multiple conjunctions and disjunctions. If the operators && and

9.7 experimental results 263

0

100

200

300

400

500

0 1 2 3 4 5 6 7in
it

ia
liz

at
io

n
as

se
rt

io
ns

to
be

va
lid

at
ed

clevel: size of predicates (context and guards)

slevel = 1

slevel = 100

slevel = 1000

slevel assertions to
be validated

initialization
assertions

remaining assertions/clevel

1 2 3 4 5 6

1 632 439 188 167 131 130 130 126

100 488 297 150 144 110 109 109 106

1000 430 239 113 102 71 70 70 67

2000 409 218 100 96 65 64 64 61

time of the Value Analysis

slevel time

1 1.4s

100 6.7s

1000 175s

2000 400s

time of the predicated analysis

clevel time

1 0.7s

2 0.73s

3 0.8s

4 1.0s

5 1.9s

6 10s

7 85s

Figure 9.9: Experimental results

264 predicated analyses

|| are desugared into multiple if, the resulting program has 9576

statements, and 3428 conditionals. Thus, this program is a very good
benchmark for an analysis.

Our results are presented in Figure 9.9. We first applied EVA, which
emitted various assertions it could not validate (column 2). As ex-
pected, a higher slevel results in fewer alarms. Between 55% and 70%
of those are assertions requiring variables to be properly initialized
(column 3), which are those the domain of Section 9.7.2.1 understands.
We then ran our predicated analysis, instantiated by this domain,
with different limits for the size of predicates. For the values of clevel
we used, the number of initialization assertions still unproven after
the predicated analysis are shown in the five corresponding columns.
Hence, lower curves are better. The analysis time for the EVA and for
the predicated analysis are also given, according to their parameter;
they are independent from each other. Remember that EVA must be
run (at least with slevel 1) before our analysis can run. So the two
timings should be added to compare the total analysis time.

While EVA produces significantly less alarms with a higher slevel,
its analysis time also increases drastically. This is unsurprising, as
fully partitioning for k successive conditionals may require as much
as 2k distinct states. On the other hand, our plugin is effective to
quickly validate numerous assertions left unproven by EVA, even with
strongly limited predicates. The precision of our analysis increases
rapidly with the clevel parameter, while the analysis time remains rea-
sonable. More generally, it turns out that small contexts are sufficient
to retain most of the relevant information: fewer assertions remain to
be validated with clevel = 1 (2.1s) and slevel = 1 than with clevel = 0

and slevel = 2000 (400s). Intuitively, even inside deeply nested con-
ditionals (which generate complex contexts), the most recent guards
seem to be the most useful. The results of our experiments show that
it is much more cost efficient to increase the clevel parameter than
the slevel parameter. Those results are extremely encouraging, given
the difference in maturity between our plugin and EVA. Indeed, the
main abstract domain of EVA has been considerably optimized for
speed for many years.

9.7.4 Validation of the Optimizations

The relevance of the improvements developed in Section 9.4.2 have
been validated through some experiments on the same code as above.
We compared the efficiency of the optimized predicated analysis (Opt
in the results) with two modified versions of our framework:

• one without any difference operation, where each relevant value
is kept unreduced in the join (Diffless);

9.7 experimental results 265

Initialization Equalities

clevel Opt Diffless OrigTF Opt Diffless OrigTF

1

0.7s

10

22

0.7s

10

22

0.9s

10

22

2.2s

187

304

11s

1751

3895

28s

1786

4320

time

average

max

2

0.73s

25

44

0.74s

26

45

2.9s

97

302

3.7s

391

680

58s

6983

18653

timeout

time

average

max

3

0.8s

89

157

1.0s

101

172

30s

777

2732

8.4s

1015

2269

240s

23616

73518

timeout

time

average

max

4

1.1s

279

552

1.6s

382

601

timeout

26s

3195

9258

timeout timeout

time

average

max

5

1.9s

847

1132

4.8s

1255

1764

timeout

160s

9004

46386

timeout timeout

time

average

max

Opt : Optimized analysis as described in the manuscript

Diffless : Analysis without the difference operation

OrigTF : Analysis with the original transfer functions applied

in each implication

Figure 9.10: Effectiveness of the optimizations

• one in which the original transfer function of the underlying
abstract domain is applied to each abstract value in the implica-
tions (OrigTF).

We used as underlying domains the two domains presented in Sec-
tion 9.7.2. For each configuration and for different size limits for
predicates, the Figure 9.10 shows the analysis time and some mea-
sure of the amount of information propagated during the analysis.
With the domain of initialized variables, we give the average and the
maximum numbers of implications kept during the analysis at each
program point. For the equality domain, we give the average and the
maximum numbers of equalities (in implications) propagated by the
analysis at each program point. A timeout denotes an analysis time
that exceeds 10 minutes.

The introduction of the difference operation has little impact on
the performance analysis for the initialization domain. In contrast, it
greatly improves the equality analysis, as it removes many equalities
from the implications, and all the operations on equality sets depend

266 predicated analyses

1 if (i >= 0 && i < 10)

x = 1;

else

x = 0;

5 [...]

if (x==1)

/*@ assert 0 <= i < 10; */

a[i] = 42; �

1p = &x;

while (n > 0) {

/*@ assert p != 0; */

x = *p + x;

5n--;

if (!(n > 0))

p = 0;

} �
Figure 9.11: Examples of disjunctions in the literature

on their size. Not surprisingly, the benefits of the difference operation
depend on the underlying abstract domain, as its aim is to reduce the
size of the abstract values.

The application of a lighter transfer function for the implications
speeds up substantially the analysis for both domains. Not only this
new function is itself faster than the original one, but it also leads to
an important decrease of superfluous implications. Indeed, the orig-
inal transfer function alters systematically all implications, and thus
the shared subparts of two CI-pairs are minimized after a disjunction.
With the lighter transfer function, most of the implications collected
before a split in the control-flow are propagated in the branches with-
out any change, and are kept unchanged in the join. The combination
of these implications is then avoided, thanks to the optimization of
the join presented at the end of Section 9.3.3.

9.7.5 Experiments on Examples from the Literature

We have successfully applied our predicated analyses, instantiated
with the domain of equalities, to various examples of the literature
[FJM05; San+06b; MS14; HHP13] —starting with the motivating ex-
ample introduced in Figure 9.1. To analyze it, we simply modeled the
open function as a random assignment to 1 or −1 (corresponding to a
successful or failed call, respectively), and replaced the calls to close

by an assertion requiring the file descriptor to be 1. The implications
gathered along the analysis link flag1 and flag2 to the value of fd1
and fd2, and the close assertions are directly proved.

Two other interesting examples are presented in Figure 9.11. The
properties required for the program to be correct are given as acsl as-
sertions. The left one requires the variable i to be within the bounds
of the array a at line 8, which is effectively ensured by the condition
x == 1. This pattern —storing a predicate within a boolean, which
is tested later— is actually quite frequent. Disjunctive domains han-
dle this code naturally, since they propagate two complete separate
states after the disjunction, while our analysis is guided by the mean-
ing of the implications. At line 6, we have no implication of the form
〈x = c→ _〉; however, we have 〈¬ (0 ≤ i < 10)→ x = 0〉, which be-

9.8 conclusion 267

comes 〈¬ (0 ≤ i < 10)→ ⊥〉 at line 7. The predicate 0 ≤ i < 10 can
then be added to the context, as stated in Section 9.4.3. This is suffi-
cient to validate the assertion.

Finally, disjunctive domains may distinguish loop iterations, by
propagating one abstract state for each iteration. Without specific
predicates able to label each iteration, our framework cannot offer the
same expressiveness. Still, we can sometimes convey relevant infor-
mation through a loop. The example on the right of Figure 9.11 shows
a loop in which a pointer p is dereferenced and then freed (set to 0) in
its last iteration. Our predicated analyses infer 〈¬ (n > 0)→ p = 0〉
and 〈n > 0→ p = &x〉, thus ensuring the validity of dereferencing p

in the loop, where the context is n > 0.

9.8 conclusion

We have described a generic framework to enhance the precision of
standard dataflow analyses. This framework constructs a derived
predicated analysis able to mitigate information loss at junction points
of the control-flow graph, by retaining the conditional values about
each branch. Our analysis strives to minimize redundant information
processing due to these disjunctions. Experimental tests led through
a dedicated plugin of Frama-C, applied to generated C code, showed
that a predicated analysis over simple domains can significantly im-
prove the results of prior analyses.

9.8.0.1 Future works

The literals of our predicates are expressions that we currently con-
sider as uninterpreted. In order to improve our analysis, we intend
to give some meaning to the operators in these expressions and to
extend the logical implication between guards accordingly. In par-
ticular, we could handle successive conditions on distinct but related
expressions, such as (x ≥ 0) ? and (x ≥ 2) ?. The difficulty lies in find-
ing an equational theory for entailments ` that would be expressive
enough, but not too costly.

Another interesting extension would be to preserve more informa-
tion when encountering invertible assignments such as x := x + 1.
Currently, all information about x is lost in the context and the guards
afterwards. This requires some care to avoid producing an infinite
number of new predicates, which would endanger the convergence
of the analysis.

Moreover, prior syntactic analyses or heuristics could help to se-
lect relevant predicates for the contexts, which would no longer be
extended at each test statement. This would avoid maintaining im-
plication guards that will never be useful again later in the program.
Likewise, we could use heuristics to define variable packing strate-
gies, in order to limit the abstract states themselves. The boolean

268 predicated analyses

partitioning used in Astrée [Ber+10] keeps information only for some
syntactically well-chosen variables. We could do the same, by keep-
ing in the state under a guard p only the variables that are related to
p in the program.

Finally, it would be worthwhile to apply our predicated analysis
over more complex abstract domains.

Part VI

C O N C L U S I O N

10
P E R S P E C T I V E S

10.1 summary

In this thesis, we have proposed a new framework for the combina-
tion of multiple domains in the abstract interpretation theory. Its core
concept is the structuring of the abstract semantics by following the
usual distinction between expressions and statements. This can be
achieved by a convenient architecture where abstractions are sepa-
rated in two layers: value abstractions, in charge of the expression
semantics, and state abstractions —or abstract domains—, in charge
of the statement semantics. This design leads to a natural communi-
cation system where the abstract domains, when interpreting a state-
ment, interact and exchange information through value abstractions,
that express properties about expressions. While the values form the
communication interface between domains, they are also standard el-
ements of the abstract interpretation framework. The communication
system is thus embedded in the abstract semantics, and the usual
tools of abstract interpretation apply naturally to value abstractions.
For instance, different kinds of value abstractions can be composed
through the existing methods of combination of abstractions. This
thesis has explored the possibilities offered by this framework, and
we have described strategies to compute precise value abstractions
from the information inferred by abstract domains. The architecture
also features a direct collaboration for the emission of alarms that
report the possible errors of a program.

This design has been implemented within EVA, the new version
of the abstract interpreter provided by the Frama-C platform. EVA
is a major evolution of the former abstract interpreter of Frama-C,
named VALUE. Unlike VALUE, EVA enjoys a modular and extensible
architecture designed to ease the introduction of new abstractions.
Thanks to this work, five new domains from the literature have been
implemented in the last year, enhancing the scope of the analyzer.
Considerable efforts have also been devoted to preserve the efficiency
of the analyzer. To maintain some crucial optimizations relying on
a specific abstraction, we have developed a GADT structure allow-
ing direct and efficient interactions with the components of a generic
product of OCaml data types (Section 3.3). We have also defined a
formal semantics for the value abstractions called garbled mixes, that
soundly represent the results of integer arithmetic applied to pointer
values (Section 5.3). In the end, EVA is now an accomplished project:

271

272 perspectives

it is already used in industrial case studies, and has definitely super-
seded VALUE in the Frama-C framework.

10.2 future works in eva

This section outlines diverse developments that are planned to im-
prove EVA in the short to medium term. They derive from the work
done in this thesis or from the state of the art, and aim mainly to
facilitate the implementation of even more domains.

simplify the api The foremost motivation for the development
of EVA was to enable and to ease the introduction of new abstractions
in the analyzer. The modular architecture and the communication
system of EVA meet these goals. Nonetheless, the programming in-
terface of abstract domains is still relatively complicated; some parts
are a remnant of the former analyzer, such as the functions for the
initialization of the initial state of the analysis —that have not been
mentioned in this thesis. Much work remains to be done towards the
simplification, the standardization and the documentation of the API
of EVA. Moreover, we would like to provide support tools to build
complete domains from simpler abstractions —such as domains that
do not interact with others, or simple observers that do not participate
in the computations. We also intend to develop a simpler functor to
automatically manage the memory model of C for purely numerical
domains (the memory functor of the cvalue domain is far too com-
plex to play this role). This functor could follow the preliminary work
undertaken with the binding of the apron domains.

extend the value abstractions All means of communica-
tion between abstract domains involve value abstractions. Even if
the reduced product of value abstractions currently available in EVA
already establishes a rich and expressive interface, new value abstrac-
tions may enable further interactions. We draw here a few avenues
worth exploring to extend value abstractions.

• In general, intervals cannot precisely represent the possible val-
ues of an unsigned integer variable in case of arithmetic over-
flow (which is not an undefined behavior for unsigned integers
in the C standard). At the end of Listing 10.1, the variable x
can be 0 or 2n− 1 (where n is the size in bits of an integer). The
most precise interval that contains these two values is [0..2n− 1],
which is overly imprecise. A dedicated value abstraction may
circumvent this loss of precision.

• The disjunctive union of intervals is a well-known refinement
of intervals [GC10a] that enables the precise approximation of

10.2 future works in eva 273

Listing 10.1: Unsigned integer overflow in C

1 unsigned int x = 0;

if (c) x--; �
non-convex sets of values. To remain scalable, some strategies
must be found to bound the number of disjuncts.

• Some relational domains rely on the linear approximation of
expressions [Min06b], that is the simplification of arbitrary ex-
pressions into affine forms with interval coefficients. The lin-
earization of an expression could be easily encoded as a value
abstraction, in a reduced product with intervals to extract the
coefficients that approximate nonlinear expressions.

cooperatively evaluate logical assertions The Frama-C
platform embeds the ACSL language for the formal specification of a
program through logical annotations. These annotations can be un-
derstood by its diverse plugins —and by the abstract domains of EVA.
ACSL annotations can be written by the user or by another plugin.
Then, the domains of EVA can prove some annotations (if they are
logically implied by the inferred abstract state), or use them to re-
duce their states (and rely on other plugins to prove them). For the
time being, only the main cvalue domain understands and processes
the logical assertions. The cooperation between the domains of EVA
is currently limited to the interpretation of C statements —through
the shared evaluation of C expressions. The same collaborative mech-
anism should also be applied to the interpretation of ACSL assertions,
by a shared evaluation of the logical terms. However, this requires
some weighty works, as the ACSL AST is much larger than the C AST.

improve the state partitioning To achieve further precision,
EVA uses an automatic partitioning of abstract domains and infers a
disjunction of states at each point of a program. To remain scalable,
the maximal number of disjuncts is bounded by a parameter of the
analysis. Apart from this parameter, the strategy for the choice of
the state partitioning is naive, cannot be adjusted for specific needs,
and rests upon optimization heuristics tailored to the main cvalue

domain. Further development should allow the user to specify crite-
ria and directives for both the disjunction and the junction of states
during the analysis. Moreover, trace partitioning [MR05] is a tech-
nique that relates each state with a trace abstraction of the execution
paths it represents. Then, choosing a partition of the traces (through
heuristics or user commands) can guide the disjunction of states. A
form of trace partitioning could greatly improve the precision and the
user-friendliness of EVA.

274 perspectives

develop and hone new abstractions within eva Finally,
we should carry on reaping the rewards of this thesis, by developing
and improving even further the domains of EVA. On the one hand,
the new abstract domains that have been implemented last year re-
main mostly experimental; they need to be strengthened to reach the
same level of maturity as the inherited cvalue domain. On the other
hand, new classes of worthwhile domains can be contemplated to
further enrich the abstract interpreter. For instance, abstract domains
for shape may be required to precisely analyze programs including
linked and dynamically allocated data structures. Moreover, it is dif-
ficult to exactly foresee the specific needs of new domains before try-
ing to implement them. Confronting our framework to a wide range
of abstract domains will bring its strengths and weaknesses to light.
Such experiments should guide our further developments of the EVA
internal architecture.

10.3 long-term perspectives

This section presents some ideas of future research directions that
we deem worthwhile and promising, to go along with or beyond the
concepts proposed in this thesis.

extension of the communication system Our successful
experiments on various abstract domains have convinced us of the
suitability and the merits of a communication through value abstrac-
tions. Nonetheless, this communication system could be extended to
create further opportunities for domains to interact, leading to more
accurate analyses. We sketch here some ideas for further improve-
ments.

Firstly, the interactions are for now limited to the interpretation of
statements. The domains could also benefit from interactions during
join operations, where some precision is usually lost. At join points,
there are no natural expressions to evaluate. Nevertheless, any ex-
pression can still be evaluated (or reduced by backward propagation)
at the request of domains that want to acquire (or send) information
through value abstractions. This would enable nearly the same re-
ductions between abstract states at the merge points of the CFG as
those on regular statements. More generally, we could extend the
possibilities of interactions by providing the domains with a greater
access to the evaluation functionalities. In our design, a domain can
send information to the others by asserting a value for an expres-
sion —the value is then backward propagated through the expression.
Currently, a domain can initiate a backward propagation only when
a value abstraction is reduced (the new backward propagation must
then be a consequence of the reduction). However, some domains

10.3 long-term perspectives 275

may want to initiate backward propagations on other circumstances
that need to be identified.

Secondly, when answering a query, a domain is unaware of the con-
text of the operation, such as the program point, the expression being
evaluated, or the abstractions computed so far by other domains. This
information may assist a costly domain to choose the right trade-off
between precision and efficiency on a case-by-case basis. For instance,
a domain could choose to perform more complex but more accurate
computation at some specific points of interest, or when the abstrac-
tions provided by other domains remain overly imprecise, or where
an alarm can be avoided.

Finally, value abstractions can only express properties about the
expressions of the language. While this expressivity seems perfectly
suitable for a cooperative interpretation of statements one by one, a
more advanced communication system may involve properties about
the effect of a block of statements, a loop, or a whole function. How-
ever, this would require the design of brand new kinds of interactions
altogether.

efficient combination of different domains Regardless
of the interactions established between abstractions, the combination
of very different domains may cause serious efficiency issues. First,
the high complexity of some domains impedes their scalability on
large programs, while the reasoning they conduct can be highly valu-
able in some settings. A modular abstract interpreter should enable
the activation of such domains on only parts of the analyzed pro-
gram, according to automatic heuristics or to criteria specified by the
user. Secondly, different domains may have different convergence
speeds, depending on their lattice structure and the implementation
of the widening operator. Even without any inter-reduction between
abstract states, the convergence speed of a domain product is that of
the slowest domain. This implies that the faster domains perform un-
necessary computations through the last iterations needed to reach
the fixpoint of the slowest domain. Interplay between domains may
also slow down the convergence, and makes the optimizations of the
fixpoint computation even harder, since the states of a domain may
be reduced after reaching a first fixpoint. While this thesis has tackled
the challenge of designing a modular and practical communication sys-
tem between various abstractions, progress needs to be strengthened
toward the efficient combination of arbitrary domains.

summary of function analyses The strong efficiency of the
cvalue domain, inherited from the VALUE plugin, is partly due to an
automatic summarization mechanism that speeds up analyses [Yak15].
This cache mechanism has been specifically tailored to this domain,
and its soundness relies on the absence of relational properties. It

276 perspectives

now needs to be extended to arbitrary domains while remaining cost-
efficient. In particular, the use of relational properties significantly
complicates the computation of a concise summary, as the set of vari-
ables that serves for the analysis of a function cannot be easily deter-
mined.

other formal verification techniques This thesis is ded-
icated to the formal verification of programs through abstract inter-
pretation, by uniting the strengths of manifold abstract domains. An
ambitious research direction would be to unite the strengths of dif-
ferent techniques of formal verification. Frama-C is a platform that
already gathers a set of interoperable tools based on various verifica-
tion technologies. Although these different tools can be applied to the
same program, each one works mostly independently from the oth-
ers. However, they could certainly benefit from closer interactions. In
particular, abstract interpretation and weakest precondition calculus
can be intertwined to achieve the automation of a program proof or a
better precision. On the one hand, abstract interpretation has already
been successfully applied to infer the loop invariants required to the
computation of weakest preconditions [Bar+05]. On the other hand,
abstract interpretation based analyses can be improved by resorting
to decision procedures and SMT solvers [HMM12].

Part VII

A P P E N D I X

A
N O TAT I O N S S U M M A RY

Color notation: Concrete vs Abstract.

v
a

r
i
a

b
l
e

variables x ∈ X 4.2.1

memory layouts θ ∈ ΘP 4.2.2

C
v
a

l
u

e
s

C values of τ type c ∈ Vτ 4.2.1

. . . including pointer values (&x, i) ∈ Vptr 4.2.1

all scalar C values c ∈ V 4.2.1

byte values V , {0, . . . , 255} 4.2.2

undeterminate values uninit, none 4.2.2.2

interpretation functions φτ : (Vbytes)sizeof(τ) → Vτ 4.2.2

v
a

l
u

e
s

concrete values as functions

from layouts to C values
V ∈ V : ΘP → V 4.3.3

error value Ω 4.2.4

value abstraction v ∈ V#
5.2.1

value concretization γV : V# → P(V) 5.2.1

value lattice structure γV : V# → P(V) 5.2.2

l
o

c
a

t
i
o

n
s valid location of type τ1 Lτ 4.2.3.1

abstract location L#
5.2.6

location concretization γL : L# → P(L) 5.2.6

location lattice structure vL, tL, uL, >L 5.2.6

a
l
a

r
m

s

possible alarms for an expression alarms(e) 5.1.3

alarm map A ∈ A 5.1.4

alarm map soundness |=A 5.1.4

alarm map lattice vA, tA, uA, >A 5.1.4

1 always independent of memory layouts

279

280 notations summary

o
p
e
r

a
t
o

r
s

n-ary operator ♦ 4.2.1

application of ♦ [(♦)] : Vn → V 4.2.4

concrete semantics of ♦ [(♦)]
Θ

: (V)n → V 4.3.3

forward abstract semantics F
#
♦ 5.2.5

backward abstract semantics B
#
♦ 5.2.5

s
t
a

t
e
s

memories m ∈M 4.2.3.1

concrete states S ∈ S = MΘP 4.3.2

state abstractions

(abstract domain)
D ∈ D 7

domain concretization γD : D→ P(S) 7

domain lattice vD, tD, uD, >D 7

forward dereference semantics F
#
∗τ 7.1.1

backward dereference semantics B
#
∗τ 7.2.1

forward query on arbitrary

expression
F

#
D 7.1.2

backward query on arbitrary

expression
B

#
D 7.2.2

v
a

l
u

a
t
i
o

n
s

valuations E ∈ E 6.1.3

valuation concretization γE : E→ P(S) 6.1.3

valuation lattice vE, tE, uE, >E 6.1.3

B
P R O O F S

lemma 14

Lemma. Given a program P with a set X of variables and two memory
layouts θ and θ′ in ΘP , axiom 2 ensures the existence of a series of valid
memory layouts θ0, . . . , θn such that θ0 = θ, θn = θ′ and for all i, θi−1 and
θi differ on at most one variable.

∀i ∈ {1, . . . , n}, ∃x ∈ X , ∀y ∈ X , y 6= x ⇒ θi−1(y) = θi(y)

Proof. By induction on the number of variables. For one variable,
the result is trivial. We assume the lemma true for any set of n− 1

variables, and we consider a set X of n variables.
We fix a special memory layout θ′ and we prove the existence of a

series of adequate layouts from any layout θ to θ′ —adequate meaning
that two succesive layouts differ on at most one variable. Then, for
any layouts θ and θ”, two series of adequate layouts from θ to θ′ and
from θ” to θ′ can be combined into a series of adequate layouts from θ

to θ”. We name the variables of X = {y1, . . . , yn}, and fix θ′ as:

θ′(yk) = 2sizeof(ptr) − 1−
∑

j∈{k,. . . ,n}

(sizeof(yj) + 1)

This function from ΘP to N is a memory layout according to defi-
nition 21:

1. Strictly positive addresses by axiom 2:

∀k, θ′(yk) = 2sizeof(ptr) − 1−
∑

j∈{k,. . . ,n}

(sizeof(yj) + 1)

≥ 2sizeof(ptr) − 1−
∑

j∈{1,. . . ,n}

(sizeof(yj) + 1)

> max
x∈X

(sizeof(y)) > 0

2. Non-aliasing:

∀k > k′, θ′(yk)− θ′(yk′) =
∑

j∈{k,. . . ,k′−1}

(sizeof(yj) + 1)

≥ sizeof(yk) + 1 > sizeof(yk)

3. Fits in memory:

∀k, θ′(yk) = 2sizeof(ptr) − 1−
∑

j∈{k,. . . ,n}

(sizeof(yj) + 1)

< 2sizeof(ptr) − sizeof(yk)

281

282 proofs

We now consider an arbitrary memory layouts θ. We construct the
series of layouts θ0 to θk. The idea is to shift one variable at a time in
θ until all variables are adjacent. Then, axiom 2 ensures that

We rename the variables of X as x1, . . . , xn such that

j ≤ k ⇒ θ(xj) ≤ θ(xk)

We then define the functions θ0 to θn as follows:

θ0 = θ

∀i ∈ {1, . . . , n},

{
∀k 6= i, θi(xk) = θi−1(xk)

θi(xi) =
∑

j∈{1,. . . ,i−1}(sizeof(xj) + 1) + 1

Let us prove inductively that for all i ∈ {0, . . . , n}, θi is a valid layout,
and that the variables x1 to xn are still ordered in θi.

j ≤ k ⇒ θi(xi) ≤ θi(xk)

It is true for θ0 by hypothesis. We assume it is also true for θi−1, and
prove it for θi. As θi is equal to θi−1 except on xi, we only have to
consider this variable.

1. Strictly positive address: θi(xi) > 0.

2. Non-aliasing with “smaller” variables xk with k < i:

θi(xi−1) = θi−1(xi−1) =
∑

j∈{1,. . . ,i−2}

(sizeof(xj) + 1) + 1

⇒ θi(xi)− θi(xi−1) = sizeof(xi−1) + 1 > sizeof(xi−1)

And for any variable xk with k < i− 1, as θi−1 is valid:
θi−1(xi−1)− θi−1(xk) > sizeof(xk)

And:

θi(xi)− θi(xk) = θi(xi)− θi−1(xk)

= (θi(xi)− θi−1(xi−1)) + (θi−1(xi−1)− θi−1(xk))

> sizeof(xi−1) + sizeof(xk)

> sizeof(xk)

3. Non-aliasing with “greater” variables xk with k > i:
By inductive hypothesis, θi−1(xi−1) ≤ θi−1(xi).
As θi−1 is a memory layout according to definition 21:

θi−1(xi)− θi−1(xi−1) ≥ sizeof(xi−1) + 1

⇒ θi−1(xi) ≥ θi−1(xi−1) + sizeof(xi−1) + 1

≥
∑

j∈{1,. . . ,i−1}

(sizeof(xj) + 1) + 1

≥ θi(xi)

proofs 283

For k > i, θi(xk) = θi−1(xk) and:

θi(xk)− θi(xi) ≥ θi−1(xk)− θi−1(xi)

≥ sizeof(xk)

(Still by definition 21)

4. The address fits in memory thanks to axiom 2:

θi(xi) =
∑

j∈{1,. . . ,i−1}

(sizeof(xj) + 1) + 1

≤
∑
x∈X

(sizeof(x) + 1) + 1

< 2sizeof(ptr) −max
x∈X

(sizeof(x))

≤ 2sizeof(ptr) − sizeof(xi)

5. Point 2 and 3 have also proved the invariant{
k < i ⇒ θi(xi) < θi(xk)

k > i ⇒ θi(xi) > θi(xk)

Thus, the series of functions θ0 to θn are memory layouts, according
to definition 21. By definition, for any i ∈ {1, . . . , n}, θi and θi−1 are
equal except on xi.

We finally consider the function θn+1 defined as:

θn+1(x) =

θn(x) if x 6= yn

2sizeof(ptr) − (sizeof(yn) + 1) if x = yn

We can note that θn+1(yn) = θ′(yn). Let us prove that this last
function θn+1 is also a memory layout. As θn is a memory layout, we
only consider the variable yn on which θn+1 differs.
As θn+1(yn) = θ′(yn) or by axiom 2, we directly have:

0 < θn+1(yn) < 2sizeof(ptr) − sizeof(yn)

Let xi be a variable different from yn. Then:

θn(xi) =
∑

j∈{1,. . . ,i−1}

(sizeof(xj) + 1) + 1

≤
∑
j 6=i

(sizeof(xj) + 1) + 1

< 2sizeof(ptr) −max
y∈X

(sizeof(y)) + sizeof(xi)

θn+1(yn)− θn+1(xi) = 2sizeof(ptr) − sizeof(yn)− θn(xi)

≥ 2sizeof(ptr) −max
y∈X

(sizeof(y))− θn(xi)

> sizeof(xi)

284 proofs

summary : We have a series of memory layouts θ0 to θn+1 such
that θ0 = θ, θn+1(yn) = θ′(yn) and for all i ∈ {0, . . . , n}, θi and θi+1

differ on at most one variable (this is immediate by their definitions).
Let M = 2sizeof(ptr)− sizeof(yn)− 1. We now consider the restric-

tion of θn+1 and θ′ from the set of variables X\{yn} = {y1, . . . , yn−1}
to the integer addresses strictly between 0 and M . They are valid
memory layouts on a set of n− 1 variables in a space addressing ver-
ifying axiom 2. Indeed, we have:

M = 2sizeof(ptr) − sizeof(yn)− 1

>
∑
y∈X

(sizeof(y) + 1) + 1 + max
y∈X

(sizeof(y))− sizeof(yn)− 1

>
∑

y∈X\{yn}

(sizeof(y) + 1) + 1 + max
y∈X\{yn}

(sizeof(y))

Thus, the inductive hypothesis applies: there exists a series of ad-
equate memory layouts from θn+1 to θ′, restricted to the variables
X\{yn} and the addressing space {1, . . . ,M − 1}. We can complete
each memory layout θ? of this series by θ?(yn) = M , and obtain a se-
ries of adequate memory layouts from θn+1 to θ′ without restriction.

We have finally constructed a series of adequate memory layouts
from an arbitrary layout θ to the fixed memory layout θ′.

C
D E V E L O P M E N T F I L E S

File Main functionalities Ref

alarmset.mli Maps of alarms, embodying the undesirable

behaviors tracked down by EVA
5.1

eval.mli Types heavily used in EVA (including bottom

and alarm monads, the valuations and some

types about assignments and function calls)

5.1.5

6.1.3

value_parameters Options of the analyzer

engine/ Generic abstract interpreter 3.2.1

evaluation Evaluation of expressions 6

non_linear_evaluation Subdivision of an evaluation 6.2.4

transfer_stmt Interpretation of statements 3.2.1

transfer_logic Interpretation of logical assertion — incomplete

partitioning Disjunctive powerset of an abstract domain 3.2.1

partitioned_dataflow Dataflow on a disjunctive powerset domain 3.2.1

mem_exec Cache for the dataflow of a function body 3.2.1

initialization Generation of the abstract state at the entry

point of a program

3.2.1

abstractions Instantiation of the abstractions (according to the

options of the analyzer)

3.2.3

compute_functions Analysis of an entire function and beginning of

the analysis (Computation functor on Figure 3.2)

3.2.1

values/ Abstractions of values 5

abstract_value Signature of value abstractions 5.2

abstract_locations Signature of location abstractions 5.2.6

cvalue_forward Forward abstract transformers of cvalues1
5.3.3

cvalue_backward Backward abstract transformers of cvalues 5.3.4

1 The implementation of cvalues is in src/plugins/value_types/cvalue.ml

285

286 development files

offsm_values Bitwise value abstractions

main_values Value abstractions currently provided by EVA

(including cvalues)

5.3

main_locations Location abstractions currently provided by EVA 5.3

value_product Reduced product of value abstractions 3.2.2

domains/ Abstract domains iv

abstract_domain Signature of abstract domains 7

domain_builder Automatic generation of some domain features

domain_lift Lifts a domain to another value abstraction 3.2.2

domain_product Combines two domains working on the same

value abstractions

3.2.2

cvalue/ Legacy memory domain 8.1

apron/ Binding with the numerical abstract domains of

the APRON library

8.3.1

equality/ Symbolic equality domain 8.2

gauges/ Gauges domain 8.3.3

offsm_domain Bitwise abstract domain 8.3.4

symbolic_locs Symbolic location domain 8.3.2

utils/ Utilitary files shared between VALUE and EVA

structure Structure of a datatype 3.3

legacy/ The legacy abstract interpreter VALUE

gui_files/ The graphical user interface of VALUE/EVA

L I S T O F F I G U R E S

Figure 2.1 Syntax of the Toy language 20

Figure 2.2 Denotational semantics of Toy 21

Figure 2.3 Euclidean algorithm 23

Figure 2.4 Lattices . 30

Figure 2.5 Need for interactions between abstract domains 38

Figure 2.6 Need for interactions during statements inter-
pretation . 41

Figure 3.1 Overall layers of EVA 52

Figure 3.2 Architecture of the analyzer 56

Figure 4.1 Syntax of the clike language 81

Figure 4.2 From C to clike 83

Figure 4.3 Interpretation functions and memory layouts . 84

Figure 4.4 Evaluation of expressions and addresses 88

Figure 4.5 Jump between variables via integer arithmetic 91

Figure 4.6 Pointer union 92

Figure 4.7 Pointer arithmetic through integers 92

Figure 4.8 Concrete semantics of expressions and addresses 93

Figure 4.9 Concrete semantics of statements 95

Figure 5.1 Statuses and alarms 107

Figure 5.2 OCaml types for the alarms and the bottom case111

Figure 5.3 Value abstraction of some expressions 113

Figure 5.4 Interface of the abstract operators on values . . 118

Figure 5.5 Lattice structure of the cvalue abstractions . . 128

Figure 6.1 The evaluation functor 142

Figure 6.2 Backward propagation after alarm emission . . 159

Figure 6.3 Backward propagation on a conditional state-
ment . 161

Figure 6.4 Backward propagation from an abstract domain 163

Figure 6.5 Forward propagation after a backward reduction165

Figure 6.6 Slow convergence of interval propagations . . 166

Figure 7.1 Forward collaboration between domains 182

Figure 7.2 Collaboration between domains on arbitrary
expressions . 186

Figure 7.3 Interaction through the oracle 191

Figure 7.4 Backward propagation on an array access . . . 193

Figure 7.5 Backward propagation on a pointer dereference 194

Figure 7.6 Triggering new reductions 196

Figure 7.7 Using the oracle or the reducer 197

Figure 7.8 Interpreting a statement 202

Figure 8.1 Assignment modifying the address 225

287

Figure 8.2 Experimental results on the new abstract do-
mains . 232

Figure 9.1 Example of interleaved conditionals 238

Figure 9.2 Syntax of our language 239

Figure 9.3 Concrete and abstract semantics 240

Figure 9.4 Example of an analysis using a predicated in-
terval analysis 247

Figure 9.5 Definition of the abstract semantics |{ · }| #pred . . 248

Figure 9.6 Extended assume to predicates in disjunctive
normal form. 249

Figure 9.7 Analysis of Figure 9.4 with factorization. . . . 252

Figure 9.8 Abstract semantics for the equality domain . . 262

Figure 9.9 Experimental results 263

Figure 9.10 Effectiveness of the optimizations 265

Figure 9.11 Examples of disjunctions in the literature . . . 266

L I S T O F TA B L E S

Table 2.1 Numerical abstract domains in the literature . 35

Table 8.1 Comparisons between VALUE and EVA 213

Table 8.2 Comparisons between different evaluation strate-
gies . 215

Table 8.3 Experimental results of the equality domain . 229

L I S T I N G S

Listing 3.1 Combination of Datatypes 61

Listing 3.2 Keys and interface 62

Listing 3.3 Implementing keys with GADT 63

Listing 3.4 Using extensible types to implement polymor-
phic keys . 63

Listing 3.5 Exporting keys 64

Listing 3.6 Naïve implementation of the External signature 65

Listing 3.7 Structure of a Datatype 66

Listing 3.8 Dependent Maps 67

Listing 3.9 Accessors generation 68

Listing 4.1 Detection of undefined behaviors 77

Listing 4.2 Object representation of pointers 78

Listing 5.1 Reducing abstract location 120

288

Listing 5.2 Basic pointer abstraction representing integers 125

Listing 6.1 Implementation of a simplified evaluator . . . 156

Listing 6.2 Avoiding redundant alarms 172

Listing 6.3 Second forward propagation on conditional ex-
pression . 173

Listing 6.4 Subdivision of evaluation 174

Listing 7.1 Signature of domain queries 180

Listing 7.2 Assignment through a pointer 184

Listing 7.3 Implementation of an oracle in the evaluator . 188

Listing 7.4 Signature of domain backward propagators . . 191

Listing 10.1 Unsigned integer overflow in C 273

A C R O N Y M S

ACSL ANSI/ISO C Specification Language

ANSI American National Standards Institute

API Application Programming Interface

AST Abstract Syntax Tree

CIL C Intermediate Language

CFG Control-Flow Graph

GADT Generalized Algebraic Data Type

GUI Graphical User Interface

ISO International Organization for Standardization

SCADE Safety Critical Application Development Environment

SMT Satisfiability Modulo Theories

EVA Evolved Value Analysis

VALUE the legacy Value Analysis of Frama-C

CI Context and Implication map

289

B I B L I O G R A P H Y

[ACSL] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre,
Claude Marché, Benjamin Monate, Yannick Moy, and Vir-
gile Prevosto. ACSL: ANSI/ISO C Specification Language,
Version 1.12. Tech. rep. http://frama-c.com/download/
acsl.pdf. CEA LIST and INRIA, 2016 (cit. on pp. 75, 102,
103).

[Aym39] Marcel Aymé. Les contes du chat perché. Gallimard, 1939

(cit. on p. x).

[Bag+05] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea
Zaffanella. “Precise widening operators for convex poly-
hedra”. In: Sci. Comput. Program. 58.1-2 (2005), pp. 28–56

(cit. on p. 33).

[Bar+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine,
Bart Jacobs, and K. Rustan M. Leino. “Boogie: A Modu-
lar Reusable Verifier for Object-Oriented Programs”. In:
Formal Methods for Components and Objects, 4th Interna-
tional Symposium, FMCO 2005, Amsterdam, The Nether-
lands, November 1-4, 2005, Revised Lectures. Ed. by Frank
S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever. Vol. 4111. Lecture Notes in Com-
puter Science. Springer, 2005, pp. 364–387 (cit. on p. 276).

[BBY14] Sandrine Blazy, David Bühler, and Boris Yakobowski.
“Improving Static Analyses of C Programs with Condi-
tional Predicates”. In: Formal Methods for Industrial Crit-
ical Systems - 19th International Conference, FMICS 2014,
Florence, Italy, September 11-12, 2014. Proceedings. Ed. by
Frédéric Lang and Francesco Flammini. Vol. 8718. Lec-
ture Notes in Computer Science. Springer, 2014, pp. 140–
154 (cit. on p. 14).

[BBY16] Sandrine Blazy, David Bühler, and Boris Yakobowski.
“Improving static analyses of C programs with condi-
tional predicates”. In: Sci. Comput. Program. 118 (2016),
pp. 77–95 (cit. on pp. 14, 237).

[BBY17] Sandrine Blazy, David Bühler, and Boris Yakobowski.
“Structuring Abstract Interpreters through State and
Value Abstractions”. In: 18th International Conference on
Verification, Model Checking, and Abstract Interpretation VM-
CAI 2017. 2017 (cit. on p. 12).

291

http://frama-c.com/download/acsl.pdf
http://frama-c.com/download/acsl.pdf

292 Bibliography

[BC11] Richard Bonichon and Pascal Cuoq. “A Mergeable Inter-
val Map”. In: Stud. Inform. Univ. 9.1 (2011), pp. 5–37 (cit.
on p. 209).

[Ber+10] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, and X. Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. In: Proc. of
AIAA Infotech@Aerospace. AIAA-2010-3385. 2010, p. 38

(cit. on pp. 10, 257, 268).

[BHT08] Dirk Beyer, Thomas A. Henzinger, and Grégory Théodu-
loz. “Program Analysis with Dynamic Precision Adjust-
ment”. In: 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering ASE. 2008, pp. 29–38 (cit. on
p. 259).

[BHZ04] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella.
“Widening Operators for Powerset Domains”. In: Verifi-
cation, Model Checking, and Abstract Interpretation, 5th In-
ternational Conference, VMCAI. 2004, pp. 135–148 (cit. on
p. 257).

[Bla+02] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme
Feret, Laurent Mauborgne, Antoine Miné, David Monni-
aux, and Xavier Rival. “Design and Implementation of
a Special-Purpose Static Program Analyzer for Safety-
Critical Real-Time Embedded Software”. In: The Essence
of Computation, Complexity, Analysis, Transformation. Essays
Dedicated to Neil D. Jones [on occasion of his 60th birthday].
2002, pp. 85–108 (cit. on p. 46).

[Bla+07] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme
Feret, Laurent Mauborgne, Antoine Miné, David Mon-
niaux, and Xavier Rival. “A Static Analyzer for Large
Safety-Critical Software”. In: CoRR abs/cs/0701193

(2007) (cit. on pp. 33, 46).

[Bou93] François Bourdoncle. “Efficient chaotic iteration strate-
gies with widenings”. English. In: Formal Methods in Pro-
gramming and Their Applications. Ed. by Dines Bjørner,
Manfred Broy, and IgorV. Pottosin. Vol. 735. Lecture
Notes in Computer Science. Springer Berlin Heidelberg,
1993, pp. 128–141 (cit. on pp. 31, 53).

[BR06] Gogul Balakrishnan and Thomas W. Reps. “Recency-
Abstraction for Heap-Allocated Storage”. In: Static Analy-
sis, 13th International Symposium, SAS 2006, Seoul, Korea,
August 29-31, 2006, Proceedings. Ed. by Kwangkeun Yi.
Vol. 4134. Lecture Notes in Computer Science. Springer,
2006, pp. 221–239 (cit. on pp. 36, 231).

Bibliography 293

[Bra+14] Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud
Venet. “IKOS: A Framework for Static Analysis Based
on Abstract Interpretation”. In: Software Engineering and
Formal Methods - 12th International Conference, SEFM 2014,
Grenoble, France, September 1-5, 2014. Proceedings. 2014,
pp. 271–277 (cit. on p. 46).

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for Boolean
Function Manipulation”. In: IEEE Trans. Computers 35.8
(1986), pp. 677–691 (cit. on p. 257).

[C11] ISO Working Group 14. Programming languages – C. Stan-
dard. ISO/IEC 9899:2011. International Organization for
Standardization, 2011 (cit. on pp. 11, 74, 77, 78, 90).

[C99] Rationale for International Standard – Programming Lan-
guages – C. Standard. Revision 5.10. International Orga-
nization for Standardization, 2003 (cit. on p. 75).

[CC15] Junjie Chen and Patrick Cousot. “A Binary Decision Tree
Abstract Domain Functor”. In: Static Analysis - 22nd Inter-
national Symposium, SAS 2015, Saint-Malo, France, Septem-
ber 9-11, 2015, Proceedings. 2015, pp. 36–53 (cit. on p. 258).

[CC77a] Patrick Cousot and Radhia Cousot. “Abstract Interpreta-
tion: A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fixpoints”.
In: Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, Califor-
nia, USA, January 1977. 1977, pp. 238–252 (cit. on p. 26).

[CC77b] Patrick Cousot and Radhia Cousot. “Static Determination
of Dynamic Properties of Generalized Type Unions”. In:
Language Design for Reliable Software. 1977, pp. 77–94 (cit.
on pp. 35, 36).

[CC79a] P. Cousot and R. Cousot. “Constructive Versions of
Tarski’s Fixed Point Theorems”. In: Pacific Journal of Math-
ematics 81.1 (1979), pp. 43–57 (cit. on p. 31).

[CC79b] Patrick Cousot and Radhia Cousot. “Systematic Design
of Program Analysis Frameworks”. In: Conference Record
of the Sixth Annual ACM Symposium on Principles of Pro-
gramming Languages, San Antonio, Texas, USA, January
1979. 1979, pp. 269–282 (cit. on pp. 26, 38, 71, 257, 259,
260).

[CC92a] Patrick Cousot and Radhia Cousot. “Abstract Interpreta-
tion Frameworks”. In: J. Log. Comput. 2.4 (1992), pp. 511–
547 (cit. on p. 26).

294 Bibliography

[CC92b] Patrick Cousot and Radhia Cousot. “Comparing the Ga-
lois Connection and Widening/Narrowing Approaches
to Abstract Interpretation”. In: Programming Language Im-
plementation and Logic Programming, 4th International Sym-
posium, PLILP’92, Leuven, Belgium, August 26-28, 1992, Pro-
ceedings. 1992, pp. 269–295 (cit. on pp. 32, 33).

[CCF13] Agostino Cortesi, Giulia Costantini, and Pietro Ferrara.
“A Survey on Product Operators in Abstract Interpreta-
tion”. In: Semantics, Abstract Interpretation, and Reasoning
about Programs: Essays Dedicated to David A. Schmidt on the
Occasion of his Sixtieth Birthday, Manhattan, Kansas, USA,
19-20th September 2013. 2013, pp. 325–336 (cit. on pp. 34,
259).

[CCH00] Agostino Cortesi, Baudouin Le Charlier, and Pascal Van
Hentenryck. “Combinations of abstract domains for logic
programming: open product and generic pattern con-
struction”. In: Sci. Comput. Program. 38.1-3 (2000), pp. 27–
71 (cit. on p. 42).

[CCM10] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne.
“A Scalable Segmented Decision Tree Abstract Domain”.
In: Time for Verification, Essays in Memory of Amir Pnueli.
2010, pp. 72–95 (cit. on p. 258).

[CD08] Pascal Cuoq and Damien Doligez. “Hashconsing in an
incrementally garbage-collected system: a story of weak
pointers and hashconsing in ocaml 3.10.2”. In: Proceedings
of the ACM Workshop on ML, 2008, Victoria, BC, Canada,
September 21, 2008. 2008, pp. 13–22 (cit. on p. 210).

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic Dis-
covery of Linear Restraints Among Variables of a Pro-
gram”. In: Conference Record of the Fifth Annual ACM Sym-
posium on Principles of Programming Languages, Tucson, Ari-
zona, USA, January 1978. 1978, pp. 84–96 (cit. on pp. 35,
36).

[Cil] CIL: Infrastructure for C Program Analysis and Transforma-
tion. https://people.eecs.berkeley.edu/~necula/cil/.
2009 (cit. on p. 74).

[Cla+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan
Lu, and Helmut Veith. “Counterexample-Guided Ab-
straction Refinement”. In: Computer Aided Verification,
12th International Conference, CAV. 2000, pp. 154–169 (cit.
on p. 259).

[Coq] The Coq development team. The Coq proof assistant refer-
ence manual. http://coq.inria.fr. LogiCal Project. 2015

(cit. on p. 254).

https://people.eecs.berkeley.edu/~necula/cil/
http://coq.inria.fr

Bibliography 295

[Cor08] Agostino Cortesi. “Widening Operators for Abstract In-
terpretation”. In: Sixth IEEE International Conference on
Software Engineering and Formal Methods, SEFM 2008, Cape
Town, South Africa, 10-14 November 2008. 2008, pp. 31–40

(cit. on p. 32).

[Cou+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier
Rival. “The ASTRÉE Analyzer”. In: Programming Lan-
guages and Systems, 14th European Symposium on Program-
ming,ESOP 2005, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2005, Ed-
inburgh, UK, April 4-8, 2005, Proceedings. 2005, pp. 21–30

(cit. on p. 46).

[Cou+06] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier
Rival. “Combination of Abstractions in the ASTRÉE
Static Analyzer”. In: Advances in Computer Science -
ASIAN 2006. Secure Software and Related Issues, 11th Asian
Computing Science Conference, Tokyo, Japan, December 6-8,
2006, Revised Selected Papers. 2006, pp. 272–300 (cit. on
pp. 34, 42, 43, 205).

[Cou+09] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, and Xavier Rival. “Why does
Astrée scale up?” In: Formal Methods in System Design 35.3
(2009), pp. 229–264 (cit. on pp. 33, 46, 230).

[Cou78] P. Cousot. “Méthodes itératives de construction et d’ap-
proximation de points fixes d’opérateurs monotones
sur un treillis, analyse sémantique de programmes (in
French)”. Thèse d’État ès sciences mathématiques. Gre-
noble, France: Université Joseph Fourier, 21 March 1978

(cit. on p. 26).

[Cou81] P. Cousot. “Semantic Foundations of Program Analysis”.
In: Program Flow Analysis: Theory and Applications. Ed. by
S.S. Muchnick and N.D. Jones. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1981. Chap. 10, pp. 303–342 (cit.
on p. 26).

[Cou99] Patrick Cousot. “The Calculational Design of a Generic
Abstract Interpreter”. In: Calculational System Design.
NATO ASI Series F. IOS Press, 1999 (cit. on pp. 33, 53).

[CS12] Loïc Correnson and Julien Signoles. “Combining Anal-
yses for C Program Verification”. In: Formal Methods for
Industrial Critical Systems - 17th International Workshop,
FMICS 2012, Paris, France, August 27-28, 2012. Proceedings.
2012, pp. 108–130 (cit. on p. 52).

296 Bibliography

[Cuo+09] Pascal Cuoq, Julien Signoles, Patrick Baudin, Richard
Bonichon, Géraud Canet, Loïc Correnson, Benjamin
Monate, Virgile Prevosto, and Armand Puccetti. “Experi-
ence report: OCaml for an industrial-strength static anal-
ysis framework”. In: Proceeding of the 14th ACM SIGPLAN
international conference on Functional programming, ICFP
2009, Edinburgh, Scotland, UK, August 31 - September 2,
2009. 2009, pp. 281–286 (cit. on p. 53).

[Cuo+12] Pascal Cuoq, Philippe Hilsenkopf, Florent Kirchner,
Sébastien Labbé, Nguyen Thuy, and Boris Yakobowski.
“Formal verification of software important to safety us-
ing the Frama-C tool suite”. In: NPIC & HMIT. 2012 (cit.
on p. 69).

[DLS02] Manuvir Das, Sorin Lerner, and Mark Seigle. “ESP:
Path-Sensitive Program Verification in Polynomial Time”.
In: Proceedings of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2002. 2002, pp. 57–68 (cit. on p. 258).

[Dup13] Jan Dupal. “Reduced Product of Abstract Domains”. PhD
thesis. Masarykova univerzita, Fakulta informatiky, 2013

(cit. on p. 43).

[Fer04] Jérôme Feret. “Static Analysis of Digital Filters”. In: Pro-
gramming Languages and Systems, 13th European Sympo-
sium on Programming, ESOP 2004, Held as Part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Pro-
ceedings. 2004, pp. 33–48 (cit. on pp. 35, 36).

[FJM05] Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. “Join-
ing dataflow with predicates”. In: Proceedings of the 10th
European Software Engineering Conference held jointly with
13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2005, Lisbon, Portugal, Septem-
ber 5-9, 2005. 2005, pp. 227–236 (cit. on pp. 259, 266).

[FL10] Manuel Fähndrich and Francesco Logozzo. “Static Con-
tract Checking with Abstract Interpretation”. In: Formal
Verification of Object-Oriented Software - International Con-
ference, FoVeOOS 2010, Paris, France, June 28-30, 2010, Re-
vised Selected Papers. 2010, pp. 10–30 (cit. on p. 46).

[Gan+13] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald
Søndergaard, and Peter J. Stuckey. “Abstract Interpreta-
tion over Non-lattice Abstract Domains”. In: Static Anal-
ysis - 20th International Symposium, SAS 2013, Seattle, WA,
USA, June 20-22, 2013. Proceedings. 2013, pp. 6–24 (cit. on
p. 34).

Bibliography 297

[GC10a] Arie Gurfinkel and Sagar Chaki. “Boxes: A Symbolic Ab-
stract Domain of Boxes”. In: Static Analysis - 17th Interna-
tional Symposium, SAS 2010, Perpignan, France, September
14-16, 2010. Proceedings. 2010, pp. 287–303 (cit. on pp. 35,
36, 258, 272).

[GC10b] Arie Gurfinkel and Sagar Chaki. “Combining predicate
and numeric abstraction for software model checking”.
In: STTT 12.6 (2010), pp. 409–427 (cit. on p. 259).

[GR98] Roberto Giacobazzi and Francesco Ranzato. “Optimal
Domains for Disjunctive Abstract Intepretation”. In: Sci.
Comput. Program. 32.1-3 (1998), pp. 177–210 (cit. on
p. 257).

[Gra89] Philippe Granger. “Static analysis of arithmetical congru-
ences”. In: International Journal of Computer Mathematics
30.3-4 (1989), pp. 165–190 (cit. on pp. 35, 36, 40, 130).

[Gra91] Philippe Granger. “Static Analysis of Linear Congru-
ence Equalities among Variables of a Program”. In: TAP-
SOFT’91: Proceedings of the International Joint Conference on
Theory and Practice of Software Development, Brighton, UK,
April 8-12, 1991, Volume 1: Colloquium on Trees in Algebra
and Programming (CAAP’91). 1991, pp. 169–192 (cit. on
pp. 35, 36).

[Gra92] Philippe Granger. “Improving the Results of Static Anal-
yses Programs by Local Decreasing Iteration”. In: Foun-
dations of Software Technology and Theoretical Computer Sci-
ence, 12th Conference, New Delhi, India, December 18-20,
1992, Proceedings. 1992, pp. 68–79 (cit. on p. 40).

[Gra97] Philippe Granger. “Static Analyses of Congruence Prop-
erties on Rational Numbers (Extended Abstract)”. In:
Static Analysis, 4th International Symposium, SAS ’97, Paris,
France, September 8-10, 1997, Proceedings. 1997, pp. 278–
292 (cit. on pp. 35, 36).

[GS96] Susanne Graf and Hassen Saïdi. “Verifying Invariants Us-
ing theorem Proving”. In: CAV. Vol. 1102. LNCS. 1996,
pp. 196–207 (cit. on p. 259).

[Gur+15] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli,
and Jorge A. Navas. “The SeaHorn Verification Frame-
work”. In: Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I. 2015, pp. 343–361 (cit. on p. 46).

[Hal93] Nicolas Halbwachs. “Delay Analysis in Synchronous Pro-
grams”. In: Computer Aided Verification, 5th International
Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993,
Proceedings. 1993, pp. 333–346 (cit. on p. 33).

298 Bibliography

[HHP13] Matthias Heizmann, Jochen Hoenicke, and Andreas
Podelski. “Software Model Checking for People Who
Love Automata”. In: Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Rus-
sia, July 13-19, 2013. Proceedings. 2013, pp. 36–52 (cit. on
p. 266).

[Hin01] Michael Hind. “Pointer analysis: haven’t we solved this
problem yet?” In: Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering, PASTE’01, Snowbird, Utah, USA, June 18-
19, 2001. Ed. by John Field and Gregor Snelting. ACM,
2001, pp. 54–61 (cit. on p. 36).

[HMM12] Julien Henry, David Monniaux, and Matthieu Moy.
“PAGAI: a path sensitive static analyzer”. In: CoRR
abs/1207.3937 (2012) (cit. on p. 276).

[HT98] Maria Handjieva and Stanislav Tzolovski. “Refining
Static Analyses by Trace-Based Partitioning Using Con-
trol Flow”. In: Static Analysis, 5th International Symposium,
SAS. 1998, pp. 200–214 (cit. on p. 258).

[Ja] B. Jeannet and al. The Interproc Analyzer. url: http://pop-
art.inrialpes.fr/people/bjeannet/bjeannet-forge/

interproc/index.html (cit. on p. 46).

[JG08] Patricia Johann and Neil Ghani. “Foundations for struc-
tured programming with GADTs”. In: Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco, Califor-
nia, USA, January 7-12, 2008. Ed. by George C. Necula and
Philip Wadler. ACM, 2008, pp. 297–308 (cit. on pp. 13, 60).

[JM09] Bertrand Jeannet and Antoine Miné. “Apron: A Library
of Numerical Abstract Domains for Static Analysis”. In:
Computer Aided Verification, 21st International Conference,
CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceed-
ings. 2009, pp. 661–667 (cit. on pp. 46, 230).

[Jou+15] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy,
Xavier Leroy, and David Pichardie. “A Formally-Verified
C Static Analyzer”. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2015, Mumbai, India, January
15-17, 2015. 2015, pp. 247–259 (cit. on pp. 43, 46, 205).

[Jou16] Jacques-Henri Jourdan. “Verasco: a Formally Verified C
Static Analyzer. (Verasco: un analyseur statique pour C
formellement vérifié)”. PhD thesis. Paris Diderot Univer-
sity, France, 2016 (cit. on pp. 43, 205).

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html

Bibliography 299

[Kar76] Michael Karr. “Affine Relationships Among Variables of
a Program”. In: Acta Inf. 6 (1976), pp. 133–151 (cit. on
pp. 35, 36).

[Kir+15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. “Frama-C: A soft-
ware analysis perspective”. In: Formal Asp. Comput. 27.3
(2015), pp. 573–609 (cit. on pp. 12, 46, 51, 69, 209).

[Knu74] Donald E. Knuth. “Computer Programming as an Art”.
In: Communications of the ACM 17.12 (1974), pp. 667–673

(cit. on p. iii).

[KR78] Brian W. Kernighan and Dennis Ritchie. The C Program-
ming Language. Prentice-Hall, 1978 (cit. on pp. 10, 73).

[LA04] Chris Lattner and Vikram S. Adve. “LLVM: A Compila-
tion Framework for Lifelong Program Analysis & Trans-
formation”. In: 2nd IEEE / ACM International Symposium
on Code Generation and Optimization (CGO 2004), 20-24
March 2004, San Jose, CA, USA. 2004, pp. 75–88 (cit. on
p. 46).

[Lar+97] Kim Guldstrand Larsen, Fredrik Larsson, Paul Petters-
son, and Wang Yi. “Efficient verification of real-time sys-
tems: compact data structure and state-space reduction”.
In: Proceedings of the 18th IEEE Real-Time Systems Sympo-
sium (RTSS ’97), December 3-5, 1997, San Francisco, CA,
USA. 1997, pp. 14–24 (cit. on p. 36).

[Lea+08] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon,
Clyde Ruby, David Cok, Peter Müller, Joseph Kiniry, and
Patrice Chalin. JML Reference Manual. 2008 (cit. on pp. 33,
75).

[Ler09] Xavier Leroy. “Formal verification of a realistic compiler”.
In: Commun. ACM 52.7 (2009), pp. 107–115 (cit. on p. 46).

[LJG11] Lies Lakhdar-Chaouch, Bertrand Jeannet, and Alain Gi-
rault. “Widening with Thresholds for Programs with
Complex Control Graphs”. In: Automated Technology
for Verification and Analysis, 9th International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings.
2011, pp. 492–502 (cit. on p. 33).

[Min01] Antoine Miné. “A New Numerical Abstract Domain
Based on Difference-Bound Matrices”. In: Programs as
Data Objects, Second Symposium, PADO 2001, Aarhus, Den-
mark, May 21-23, 2001, Proceedings. Ed. by Olivier Danvy
and Andrzej Filinski. Vol. 2053. Lecture Notes in Com-
puter Science. Springer, 2001, pp. 155–172 (cit. on p. 36).

300 Bibliography

[Min06a] Antoine Miné. “Field-sensitive value analysis of em-
bedded C programs with union types and pointer
arithmetics”. In: Proceedings of the 2006 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES’06), Ottawa, Ontario,
Canada, June 14-16, 2006. 2006, pp. 54–63 (cit. on pp. 36,
210).

[Min06b] Antoine Miné. “Symbolic Methods to Enhance the Pre-
cision of Numerical Abstract Domains”. In: Verification,
Model Checking, and Abstract Interpretation, 7th Interna-
tional Conference, VMCAI 2006, Charleston, SC, USA, Jan-
uary 8-10, 2006, Proceedings. 2006, pp. 348–363 (cit. on
pp. 79, 216, 273).

[Min06c] Antoine Miné. “The octagon abstract domain”. In: Higher-
Order and Symbolic Computation 19.1 (2006), pp. 31–100

(cit. on pp. 35, 36).

[Moo66] Ramon E Moore. Interval analysis. Vol. 4. Prentice-Hall En-
glewood Cliffs, 1966 (cit. on pp. 36, 130).

[MR05] Laurent Mauborgne and Xavier Rival. “Trace Partition-
ing in Abstract Interpretation Based Static Analyzers”. In:
Programming Languages and Systems, 14th European Sym-
posium on Programming, ESOP. 2005, pp. 5–20 (cit. on
pp. 258, 273).

[MS14] Bogdan Mihaila and Axel Simon. “Synthesizing Predi-
cates from Abstract Domain Losses”. In: NASA Formal
Methods - 6th International Symposium, NFM 2014, Hous-
ton, TX, USA, April 29 - May 1, 2014. Proceedings. 2014,
pp. 328–342 (cit. on pp. 259, 266).

[Nec+02] George C. Necula, Scott McPeak, Shree Prakash Rahul,
and Westley Weimer. “CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs”.
In: Compiler Construction, 11th International Conference, CC
2002, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2002, Grenoble, France,
April 8-12, 2002, Proceedings. 2002, pp. 213–228 (cit. on
pp. 52, 73, 74).

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Han-
kin. Principles of program analysis. Springer, 1999 (cit. on
p. 31).

[OG98] Chris Okasaki and Andrew Gill. “Fast Mergeable Integer
Maps”. In: In Workshop on ML. 1998, pp. 77–86 (cit. on
p. 228).

Bibliography 301

[PC06] Corneliu Popeea and Wei-Ngan Chin. “Inferring Disjunc-
tive Postconditions”. In: Advances in Computer Science -
ASIAN 2006. Secure Software and Related Issues, 11th Asian
Computing Science Conference. 2006, pp. 331–345 (cit. on
p. 257).

[Ric53] Henry Gordon Rice. “Classes of recursively enumerable
sets and their decision problems”. In: Transactions of the
American Mathematical Society 74.2 (1953), pp. 358–366 (cit.
on p. 8).

[RL12] Valentin Robert and Xavier Leroy. “A Formally-Verified
Alias Analysis”. In: Certified Programs and Proofs - Sec-
ond International Conference, CPP 2012, Kyoto, Japan, De-
cember 13-15, 2012. Proceedings. Ed. by Chris Hawblitzel
and Dale Miller. Vol. 7679. Lecture Notes in Computer
Science. Springer, 2012, pp. 11–26 (cit. on p. 36).

[San+06a] Sriram Sankaranarayanan, Michael Colón, Henny B.
Sipma, and Zohar Manna. “Efficient Strongly Relational
Polyhedral Analysis”. In: Verification, Model Checking, and
Abstract Interpretation, 7th International Conference, VMCAI
2006, Charleston, SC, USA, January 8-10, 2006, Proceedings.
2006, pp. 111–125 (cit. on p. 245).

[San+06b] Sriram Sankaranarayanan, Franjo Ivancic, Ilya
Shlyakhter, and Aarti Gupta. “Static Analysis in
Disjunctive Numerical Domains”. In: Static Analysis, 13th
International Symposium, SAS 2006, Seoul, Korea, August
29-31, 2006, Proceedings. 2006, pp. 3–17 (cit. on pp. 257,
266).

[SO08] Matthieu Sozeau and Nicolas Oury. “First-Class Type
Classes”. In: Theorem Proving in Higher Order Logics, 21st
International Conference, TPHOLs 2008, Montreal, Canada,
August 18-21, 2008. Proceedings. 2008, pp. 278–293 (cit. on
p. 255).

[SRW02] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm.
“Parametric shape analysis via 3-valued logic”. In: ACM
Trans. Program. Lang. Syst. 24.3 (2002), pp. 217–298 (cit. on
p. 36).

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and
its applications.” In: Pacific J. Math. 5.2 (1955), pp. 285–
309 (cit. on p. 30).

[TCR13] Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Ri-
val. “Reduced Product Combination of Abstract Domains
for Shapes”. In: Verification, Model Checking, and Abstract
Interpretation, 14th International Conference, VMCAI 2013,

302 Bibliography

Rome, Italy, January 20-22, 2013. Proceedings. 2013, pp. 375–
395 (cit. on pp. 36, 42).

[Tur49] Alan Turing. “Checking a large routine”. In: Report of a
Conference on High Speed Automatic Calculating Machines.
University Mathematical Laboratory, Cambridge. 1949,
pp. 67–69 (cit. on p. iv).

[UM14] Caterina Urban and Antoine Miné. “A Decision Tree Ab-
stract Domain for Proving Conditional Termination”. In:
Static Analysis - 21st International Symposium, SAS. 2014,
pp. 302–318 (cit. on p. 258).

[VB04] Arnaud Venet and Guillaume P. Brat. “Precise and ef-
ficient static array bound checking for large embedded
C programs”. In: Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implemen-
tation 2004, Washington, DC, USA, June 9-11, 2004. Ed. by
William Pugh and Craig Chambers. ACM, 2004, pp. 231–
242 (cit. on p. 36).

[Ven12] Arnaud Venet. “The Gauge Domain: Scalable Analysis of
Linear Inequality Invariants”. In: Computer Aided Verifica-
tion - 24th International Conference, CAV 2012, Berkeley, CA,
USA, July 7-13, 2012 Proceedings. Ed. by P. Madhusudan
and Sanjit A. Seshia. Vol. 7358. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 139–154 (cit. on p. 231).

[Yak15] Boris Yakobowski. “Fast Whole-program Verification Us-
ing On-the-fly Summarization.” In: Workshop on Tools for
Automatic Program Analysis. 2015 (cit. on pp. 58, 275).

[Yov96] Sergio Yovine. “Model Checking Timed Automata”. In:
Lectures on Embedded Systems, European Educational Forum,
School on Embedded Systems, Veldhoven, The Netherlands,
November 25-29, 1996. 1996, pp. 114–152 (cit. on p. 36).

	Dedication
	Abstract
	Acknowledgments
	Contents
	Résumé étendu en français
	Context
	1 Introduction
	2 Abstract Interpretation
	2.1 Semantics of a Programming Language
	2.1.1 Control-flow Graph and Denotational Semantics
	2.1.2 A toy language
	2.1.3 Syntax Simplifications
	2.1.4 Collecting Semantics

	2.2 Abstract Interpretation Principles
	2.2.1 Main Concepts
	2.2.2 Formalization
	2.2.3 Lattices
	2.2.4 Fixpoint Computation
	2.2.5 Widening
	2.2.6 Abstract Domains: Summary

	2.3 Combination of Abstractions
	2.3.1 Abstract Domains of the Literature
	2.3.2 Direct Product
	2.3.3 Reduced Product
	2.3.4 Open Product
	2.3.5 Communication through a Shared Language
	2.3.6 Communication by Messages
	2.3.7 Abstract Interpretation Based Analyzers

	EVA: a Modular Analyzer for C
	3 Architecture of the Analyzer
	3.1 Overview of the EVA Structure
	3.1.1 The Frama-C Platform
	3.1.2 The Abstract Interpreter
	3.1.3 Abstractions

	3.2 A Modular Abstract Interpreter
	3.2.1 Inner Workings of the Abstract Interpreter
	3.2.2 Combination of Abstractions
	3.2.3 Instantiating the Abstractions

	3.3 Structuring a Combination of Datatypes
	3.3.1 Context and Motivation
	3.3.2 Interface of a Combination
	3.3.3 Polymorphic Keys
	3.3.4 Naive Implementation
	3.3.5 GADT Structure of a Datatype
	3.3.6 Automatic Generation of the Accessors

	3.4 Development and Contributions
	3.4.1 Evolution of the Abstract Interpreter
	3.4.2 Contributions
	3.4.3 Development

	4 Syntax and Semantics of the Language
	4.1 The C Language
	4.1.1 The C Standard
	4.1.2 C Intermediate Language
	4.1.3 The C Spirit

	4.2 A C-like Language
	4.2.1 Syntax
	4.2.2 Representation of Values in Memory
	4.2.3 Validity of Pointers and Locations, Memories
	4.2.4 Evaluation of Expressions in a Memory

	4.3 A Concrete Semantics for Clike
	4.3.1 Pointer Arithmetic and Memory Layout
	4.3.2 Concrete States Independent of the Memory Layout
	4.3.3 Concrete Semantics of Expressions
	4.3.4 Concrete Semantics of Statements

	Abstract Semantics of Expressions
	5 Value Abstractions
	5.1 Alarms
	5.1.1 Reporting Undesirable Behaviors
	5.1.2 Alarms as ACSL Assertions for the End User
	5.1.3 Set of Possible Alarms
	5.1.4 Maps of Alarms
	5.1.5 Propagating Alarms and Bottom Elements

	5.2 Abstractions of Concrete Values
	5.2.1 Concretization and Soundness of Value Abstractions
	5.2.2 Lattice Structure
	5.2.3 Semantics of Values and Alarms
	5.2.4 Abstraction of Constants
	5.2.5 Abstraction of Operators
	5.2.6 Abstractions of Memory Locations

	5.3 The Cvalue Implementation
	5.3.1 Basic Representation of Constant Values
	5.3.2 Garbled Mix: a Representation of Not Constant Values
	5.3.3 Forward Abstract Semantics of Cvalues
	5.3.4 Meet of Garbled Mixes
	5.3.5 Backward Propagators

	6 Evaluation of Expressions
	6.1 Evaluation and Valuation
	6.1.1 A Generic Functor
	6.1.2 Abstract Domain Requirement
	6.1.3 Valuations
	6.1.4 Forward and Backward Evaluations
	6.1.5 Atomic Updates of a Valuation
	6.1.6 Complete Evaluations
	6.1.7 Simplified Implementation

	6.2 Forward and Backward Evaluation Strategies
	6.2.1 Backward Propagation of Reductions
	6.2.2 Forward Propagation of Reductions
	6.2.3 Interweaving Forward and Backward Propagations
	6.2.4 Evaluation Subdivision

	Abstract Semantics of Statements
	7 State Abstractions
	7.1 Collaboration for the Evaluation: Domain Queries
	7.1.1 Semantics of Dereference
	7.1.2 Additional Query on any Expressions
	7.1.3 Interaction through an Oracle

	7.2 Backward Propagators
	7.2.1 Backward Semantics of Dereference
	7.2.2 Triggering New Reductions

	7.3 Abstract Semantics of Statements
	7.3.1 Abstract Semantics of Statements
	7.3.2 Domain Product
	7.3.3 Tracking Reductions
	7.3.4 Related Works and Limitations

	8 Domains and Experimental Results in EVA
	8.1 The Cvalue Domain
	8.1.1 Description
	8.1.2 Integration in the EVA Framework
	8.1.3 Performance Compared to VALUE

	8.2 The Equality Domain
	8.2.1 Dependences of an Expression
	8.2.2 The Equality Abstract States and Queries
	8.2.3 Interpretation of Assignments
	8.2.4 Interpretation of Other Statements
	8.2.5 Implementation
	8.2.6 Experimental Results

	8.3 Other New Domains in EVA
	8.3.1 Binding to the APRON domains
	8.3.2 The Symbolic Locations Domain
	8.3.3 The Gauges Domain
	8.3.4 Bitwise Abstractions
	8.3.5 Experimental Results
	8.3.6 Conclusion

	Abstract Semantics of Traces
	9 Predicated Analyses
	9.1 Motivation
	9.2 A Generic Abstract Interpretation Based Framework
	9.3 The Predicated Domain
	9.3.1 Predicated Elements
	9.3.2 Predicated Lattice
	9.3.3 A Weaker Join

	9.4 A Predicated Analysis
	9.4.1 The Abstract Transfer Functions
	9.4.2 Improving the Analysis: Avoiding Redundant Values
	9.4.3 Propagating Unreachable States
	9.4.4 Convergence of the Analysis

	9.5 A Verified Soundness Proof
	9.5.1 Prerequisites
	9.5.2 Lattice Structure
	9.5.3 Weak-Join
	9.5.4 Analysis

	9.6 Related Work
	9.7 Experimental Results
	9.7.1 Scope of the Current Implementation
	9.7.2 Application on two Simple Domains
	9.7.3 Results on Variables Initialization
	9.7.4 Validation of the Optimizations
	9.7.5 Experiments on Examples from the Literature

	9.8 Conclusion

	Conclusion
	10 Perspectives
	10.1 Summary
	10.2 Future Works in EVA
	10.3 Long-Term Perspectives

	Appendix
	A Notations Summary
	B Proofs
	C Development Files
	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

